diff options
author | dos-reis <gdr@axiomatics.org> | 2013-05-16 04:16:52 +0000 |
---|---|---|
committer | dos-reis <gdr@axiomatics.org> | 2013-05-16 04:16:52 +0000 |
commit | f5ca9521817b2953e4420ca39ec7a5124d721fb8 (patch) | |
tree | 48398d49be3dbbfa703a688a8a0e119e7c04ab89 /src/share/algebra | |
parent | 18e6b03f77c94e70f2381e484918e108260655f0 (diff) | |
download | open-axiom-f5ca9521817b2953e4420ca39ec7a5124d721fb8.tar.gz |
* algebra/aggcat.spad.pamphlet (FiniteAggregate): New.
* algebra/exposed.lsp.pamphlet: Expose it.
Diffstat (limited to 'src/share/algebra')
-rw-r--r-- | src/share/algebra/browse.daase | 2962 | ||||
-rw-r--r-- | src/share/algebra/category.daase | 6078 | ||||
-rw-r--r-- | src/share/algebra/compress.daase | 31 | ||||
-rw-r--r-- | src/share/algebra/interp.daase | 7929 | ||||
-rw-r--r-- | src/share/algebra/operation.daase | 20446 |
5 files changed, 18734 insertions, 18712 deletions
diff --git a/src/share/algebra/browse.daase b/src/share/algebra/browse.daase index 3c609762..17440831 100644 --- a/src/share/algebra/browse.daase +++ b/src/share/algebra/browse.daase @@ -1,12 +1,12 @@ -(1960126 . 3577545198) +(1961956 . 3577666331) (-18 A S) ((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result."))) NIL NIL (-19 S) ((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result."))) -((-3994 . T) (-3993 . T)) +((-3995 . T) (-3994 . T)) NIL (-20 S) ((|constructor| (NIL "The class of abelian groups,{} \\spadignore{i.e.} additive monoids where each element has an additive inverse. \\blankline")) (- (($ $ $) "\\spad{x-y} is the difference of \\spad{x} and \\spad{y} \\spadignore{i.e.} \\spad{x + (-y)}.") (($ $) "\\spad{-x} is the additive inverse of \\spad{x}"))) @@ -38,7 +38,7 @@ NIL NIL (-27) ((|constructor| (NIL "Model for algebraically closed fields.")) (|zerosOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible. Otherwise they are implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|zeroOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity which displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity.") (($ (|Polynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. If possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootsOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}.") (($ (|Polynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) -((-3985 . T) (-3991 . T) (-3986 . T) ((-3995 "*") . T) (-3987 . T) (-3988 . T) (-3990 . T)) +((-3986 . T) (-3992 . T) (-3987 . T) ((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T)) NIL (-28 S R) ((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) @@ -46,7 +46,7 @@ NIL NIL (-29 R) ((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) -((-3990 . T) (-3988 . T) (-3987 . T) ((-3995 "*") . T) (-3986 . T) (-3991 . T) (-3985 . T)) +((-3991 . T) (-3989 . T) (-3988 . T) ((-3996 "*") . T) (-3987 . T) (-3992 . T) (-3986 . T)) NIL (-30) ((|refine| (($ $ (|DoubleFloat|)) "\\spad{refine(p,x)} \\undocumented{}")) (|makeSketch| (($ (|Polynomial| (|Integer|)) (|Symbol|) (|Symbol|) (|Segment| (|Fraction| (|Integer|))) (|Segment| (|Fraction| (|Integer|)))) "\\spad{makeSketch(p,x,y,a..b,c..d)} creates an ACPLOT of the curve \\spad{p = 0} in the region {\\em a <= x <= b, c <= y <= d}. More specifically,{} 'makeSketch' plots a non-singular algebraic curve \\spad{p = 0} in an rectangular region {\\em xMin <= x <= xMax},{} {\\em yMin <= y <= yMax}. The user inputs \\spad{makeSketch(p,x,y,xMin..xMax,yMin..yMax)}. Here \\spad{p} is a polynomial in the variables \\spad{x} and \\spad{y} with integer coefficients (\\spad{p} belongs to the domain \\spad{Polynomial Integer}). The case where \\spad{p} is a polynomial in only one of the variables is allowed. The variables \\spad{x} and \\spad{y} are input to specify the the coordinate axes. The horizontal axis is the \\spad{x}-axis and the vertical axis is the \\spad{y}-axis. The rational numbers xMin,{}...,{}yMax specify the boundaries of the region in which the curve is to be plotted."))) @@ -56,14 +56,14 @@ NIL ((|constructor| (NIL "This domain represents the syntax for an add-expression.")) (|body| (((|SpadAst|) $) "base(\\spad{d}) returns the actual body of the add-domain expression `d'.")) (|base| (((|SpadAst|) $) "\\spad{base(d)} returns the base domain(\\spad{s}) of the add-domain expression."))) NIL NIL -(-32 R -3091) +(-32 R -3092) ((|constructor| (NIL "This package provides algebraic functions over an integral domain.")) (|iroot| ((|#2| |#1| (|Integer|)) "\\spad{iroot(p, n)} should be a non-exported function.")) (|definingPolynomial| ((|#2| |#2|) "\\spad{definingPolynomial(f)} returns the defining polynomial of \\spad{f} as an element of \\spad{F}. Error: if \\spad{f} is not a kernel.")) (|minPoly| (((|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{minPoly(k)} returns the defining polynomial of \\spad{k}.")) (** ((|#2| |#2| (|Fraction| (|Integer|))) "\\spad{x ** q} is \\spad{x} raised to the rational power \\spad{q}.")) (|droot| (((|OutputForm|) (|List| |#2|)) "\\spad{droot(l)} should be a non-exported function.")) (|inrootof| ((|#2| (|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{inrootof(p, x)} should be a non-exported function.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}. Error: if \\spad{op} is not an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|rootOf| ((|#2| (|SparseUnivariatePolynomial| |#2|) (|Symbol|)) "\\spad{rootOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}."))) NIL -((|HasCategory| |#1| (QUOTE (-949 (-483))))) +((|HasCategory| |#1| (QUOTE (-950 (-484))))) (-33 S) ((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} := empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) == [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,v)} tests if \\spad{u} and \\spad{v} are same objects."))) NIL -((|HasAttribute| |#1| (QUOTE -3993))) +((|HasAttribute| |#1| (QUOTE -3994))) (-34) ((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} := empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) == [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,v)} tests if \\spad{u} and \\spad{v} are same objects."))) NIL @@ -74,7 +74,7 @@ NIL NIL (-36 |Key| |Entry|) ((|constructor| (NIL "An association list is a list of key entry pairs which may be viewed as a table. It is a poor mans version of a table: searching for a key is a linear operation.")) (|assoc| (((|Union| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) "failed") |#1| $) "\\spad{assoc(k,u)} returns the element \\spad{x} in association list \\spad{u} stored with key \\spad{k},{} or \"failed\" if \\spad{u} has no key \\spad{k}."))) -((-3993 . T) (-3994 . T)) +((-3994 . T) (-3995 . T)) NIL (-37 S R) ((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline"))) @@ -82,20 +82,20 @@ NIL NIL (-38 R) ((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline"))) -((-3987 . T) (-3988 . T) (-3990 . T)) +((-3988 . T) (-3989 . T) (-3991 . T)) NIL (-39 UP) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in \\spadtype{AlgebraicNumber}.")) (|doublyTransitive?| (((|Boolean|) |#1|) "\\spad{doublyTransitive?(p)} is \\spad{true} if \\spad{p} is irreducible over over the field \\spad{K} generated by its coefficients,{} and if \\spad{p(X) / (X - a)} is irreducible over \\spad{K(a)} where \\spad{p(a) = 0}.")) (|split| (((|Factored| |#1|) |#1|) "\\spad{split(p)} returns a prime factorisation of \\spad{p} over its splitting field.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p} over the field generated by its coefficients.") (((|Factored| |#1|) |#1| (|List| (|AlgebraicNumber|))) "\\spad{factor(p, [a1,...,an])} returns a prime factorisation of \\spad{p} over the field generated by its coefficients and \\spad{a1},{}...,{}an."))) NIL NIL -(-40 -3091 UP UPUP -2613) +(-40 -3092 UP UPUP -2614) ((|constructor| (NIL "Function field defined by \\spad{f}(\\spad{x},{} \\spad{y}) = 0.")) (|knownInfBasis| (((|Void|) (|NonNegativeInteger|)) "\\spad{knownInfBasis(n)} \\undocumented{}"))) -((-3986 |has| (-348 |#2|) (-312)) (-3991 |has| (-348 |#2|) (-312)) (-3985 |has| (-348 |#2|) (-312)) ((-3995 "*") . T) (-3987 . T) (-3988 . T) (-3990 . T)) -((|HasCategory| (-348 |#2|) (QUOTE (-118))) (|HasCategory| (-348 |#2|) (QUOTE (-120))) (|HasCategory| (-348 |#2|) (QUOTE (-299))) (OR (|HasCategory| (-348 |#2|) (QUOTE (-312))) (|HasCategory| (-348 |#2|) (QUOTE (-299)))) (|HasCategory| (-348 |#2|) (QUOTE (-312))) (|HasCategory| (-348 |#2|) (QUOTE (-318))) (OR (-12 (|HasCategory| (-348 |#2|) (QUOTE (-190))) (|HasCategory| (-348 |#2|) (QUOTE (-312)))) (|HasCategory| (-348 |#2|) (QUOTE (-299)))) (OR (-12 (|HasCategory| (-348 |#2|) (QUOTE (-190))) (|HasCategory| (-348 |#2|) (QUOTE (-312)))) (-12 (|HasCategory| (-348 |#2|) (QUOTE (-189))) (|HasCategory| (-348 |#2|) (QUOTE (-312)))) (|HasCategory| (-348 |#2|) (QUOTE (-299)))) (OR (-12 (|HasCategory| (-348 |#2|) (QUOTE (-312))) (|HasCategory| (-348 |#2|) (QUOTE (-808 (-1088))))) (-12 (|HasCategory| (-348 |#2|) (QUOTE (-299))) (|HasCategory| (-348 |#2|) (QUOTE (-808 (-1088)))))) (OR (-12 (|HasCategory| (-348 |#2|) (QUOTE (-312))) (|HasCategory| (-348 |#2|) (QUOTE (-808 (-1088))))) (-12 (|HasCategory| (-348 |#2|) (QUOTE (-312))) (|HasCategory| (-348 |#2|) (QUOTE (-810 (-1088)))))) (|HasCategory| (-348 |#2|) (QUOTE (-579 (-483)))) (OR (|HasCategory| (-348 |#2|) (QUOTE (-312))) (|HasCategory| (-348 |#2|) (QUOTE (-949 (-348 (-483)))))) (|HasCategory| (-348 |#2|) (QUOTE (-949 (-348 (-483))))) (|HasCategory| (-348 |#2|) (QUOTE (-949 (-483)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-318))) (-12 (|HasCategory| (-348 |#2|) (QUOTE (-189))) (|HasCategory| (-348 |#2|) (QUOTE (-312)))) (-12 (|HasCategory| (-348 |#2|) (QUOTE (-312))) (|HasCategory| (-348 |#2|) (QUOTE (-810 (-1088))))) (-12 (|HasCategory| (-348 |#2|) (QUOTE (-190))) (|HasCategory| (-348 |#2|) (QUOTE (-312)))) (-12 (|HasCategory| (-348 |#2|) (QUOTE (-312))) (|HasCategory| (-348 |#2|) (QUOTE (-808 (-1088)))))) -(-41 R -3091) +((-3987 |has| (-349 |#2|) (-312)) (-3992 |has| (-349 |#2|) (-312)) (-3986 |has| (-349 |#2|) (-312)) ((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T)) +((|HasCategory| (-349 |#2|) (QUOTE (-118))) (|HasCategory| (-349 |#2|) (QUOTE (-120))) (|HasCategory| (-349 |#2|) (QUOTE (-299))) (OR (|HasCategory| (-349 |#2|) (QUOTE (-312))) (|HasCategory| (-349 |#2|) (QUOTE (-299)))) (|HasCategory| (-349 |#2|) (QUOTE (-312))) (|HasCategory| (-349 |#2|) (QUOTE (-319))) (OR (-12 (|HasCategory| (-349 |#2|) (QUOTE (-190))) (|HasCategory| (-349 |#2|) (QUOTE (-312)))) (|HasCategory| (-349 |#2|) (QUOTE (-299)))) (OR (-12 (|HasCategory| (-349 |#2|) (QUOTE (-190))) (|HasCategory| (-349 |#2|) (QUOTE (-312)))) (-12 (|HasCategory| (-349 |#2|) (QUOTE (-189))) (|HasCategory| (-349 |#2|) (QUOTE (-312)))) (|HasCategory| (-349 |#2|) (QUOTE (-299)))) (OR (-12 (|HasCategory| (-349 |#2|) (QUOTE (-312))) (|HasCategory| (-349 |#2|) (QUOTE (-809 (-1089))))) (-12 (|HasCategory| (-349 |#2|) (QUOTE (-299))) (|HasCategory| (-349 |#2|) (QUOTE (-809 (-1089)))))) (OR (-12 (|HasCategory| (-349 |#2|) (QUOTE (-312))) (|HasCategory| (-349 |#2|) (QUOTE (-809 (-1089))))) (-12 (|HasCategory| (-349 |#2|) (QUOTE (-312))) (|HasCategory| (-349 |#2|) (QUOTE (-811 (-1089)))))) (|HasCategory| (-349 |#2|) (QUOTE (-580 (-484)))) (OR (|HasCategory| (-349 |#2|) (QUOTE (-312))) (|HasCategory| (-349 |#2|) (QUOTE (-950 (-349 (-484)))))) (|HasCategory| (-349 |#2|) (QUOTE (-950 (-349 (-484))))) (|HasCategory| (-349 |#2|) (QUOTE (-950 (-484)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-319))) (-12 (|HasCategory| (-349 |#2|) (QUOTE (-189))) (|HasCategory| (-349 |#2|) (QUOTE (-312)))) (-12 (|HasCategory| (-349 |#2|) (QUOTE (-312))) (|HasCategory| (-349 |#2|) (QUOTE (-811 (-1089))))) (-12 (|HasCategory| (-349 |#2|) (QUOTE (-190))) (|HasCategory| (-349 |#2|) (QUOTE (-312)))) (-12 (|HasCategory| (-349 |#2|) (QUOTE (-312))) (|HasCategory| (-349 |#2|) (QUOTE (-809 (-1089)))))) +(-41 R -3092) ((|constructor| (NIL "AlgebraicManipulations provides functions to simplify and expand expressions involving algebraic operators.")) (|rootKerSimp| ((|#2| (|BasicOperator|) |#2| (|NonNegativeInteger|)) "\\spad{rootKerSimp(op,f,n)} should be local but conditional.")) (|rootSimp| ((|#2| |#2|) "\\spad{rootSimp(f)} transforms every radical of the form \\spad{(a * b**(q*n+r))**(1/n)} appearing in \\spad{f} into \\spad{b**q * (a * b**r)**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{b}.")) (|rootProduct| ((|#2| |#2|) "\\spad{rootProduct(f)} combines every product of the form \\spad{(a**(1/n))**m * (a**(1/s))**t} into a single power of a root of \\spad{a},{} and transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form.")) (|rootPower| ((|#2| |#2|) "\\spad{rootPower(f)} transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form if \\spad{m} and \\spad{n} have a common factor.")) (|ratPoly| (((|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{ratPoly(f)} returns a polynomial \\spad{p} such that \\spad{p} has no algebraic coefficients,{} and \\spad{p(f) = 0}.")) (|ratDenom| ((|#2| |#2| (|List| (|Kernel| |#2|))) "\\spad{ratDenom(f, [a1,...,an])} removes the \\spad{ai}'s which are algebraic from the denominators in \\spad{f}.") ((|#2| |#2| (|List| |#2|)) "\\spad{ratDenom(f, [a1,...,an])} removes the \\spad{ai}'s which are algebraic kernels from the denominators in \\spad{f}.") ((|#2| |#2| |#2|) "\\spad{ratDenom(f, a)} removes \\spad{a} from the denominators in \\spad{f} if \\spad{a} is an algebraic kernel.") ((|#2| |#2|) "\\spad{ratDenom(f)} rationalizes the denominators appearing in \\spad{f} by moving all the algebraic quantities into the numerators.")) (|rootSplit| ((|#2| |#2|) "\\spad{rootSplit(f)} transforms every radical of the form \\spad{(a/b)**(1/n)} appearing in \\spad{f} into \\spad{a**(1/n) / b**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{a} and \\spad{b}.")) (|coerce| (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(x)} \\undocumented")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(x)} \\undocumented")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(x)} \\undocumented"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-390))) (|HasCategory| |#1| (QUOTE (-949 (-483)))) (|HasCategory| |#2| (|%list| (QUOTE -362) (|devaluate| |#1|))))) +((-12 (|HasCategory| |#1| (QUOTE (-391))) (|HasCategory| |#1| (QUOTE (-950 (-484)))) (|HasCategory| |#2| (|%list| (QUOTE -363) (|devaluate| |#1|))))) (-42 OV E P) ((|constructor| (NIL "This package factors multivariate polynomials over the domain of \\spadtype{AlgebraicNumber} by allowing the user to specify a list of algebraic numbers generating the particular extension to factor over.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|) (|List| (|AlgebraicNumber|))) "\\spad{factor(p,lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}. \\spad{p} is presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#3|) |#3| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}."))) NIL @@ -106,31 +106,31 @@ NIL ((|HasCategory| |#1| (QUOTE (-258)))) (-44 R |n| |ls| |gamma|) ((|constructor| (NIL "AlgebraGivenByStructuralConstants implements finite rank algebras over a commutative ring,{} given by the structural constants \\spad{gamma} with respect to a fixed basis \\spad{[a1,..,an]},{} where \\spad{gamma} is an \\spad{n}-vector of \\spad{n} by \\spad{n} matrices \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{ai * aj = gammaij1 * a1 + ... + gammaijn * an}. The symbols for the fixed basis have to be given as a list of symbols.")) (|coerce| (($ (|Vector| |#1|)) "\\spad{coerce(v)} converts a vector to a member of the algebra by forming a linear combination with the basis element. Note: the vector is assumed to have length equal to the dimension of the algebra."))) -((-3990 |has| |#1| (-494)) (-3988 . T) (-3987 . T)) -((|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-494)))) +((-3991 |has| |#1| (-495)) (-3989 . T) (-3988 . T)) +((|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-495)))) (-45 |Key| |Entry|) ((|constructor| (NIL "\\spadtype{AssociationList} implements association lists. These may be viewed as lists of pairs where the first part is a key and the second is the stored value. For example,{} the key might be a string with a persons employee identification number and the value might be a record with personnel data."))) -((-3993 . T) (-3994 . T)) -((OR (-12 (|HasCategory| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3858) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (QUOTE (-755)))) (-12 (|HasCategory| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3858) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (QUOTE (-1012))))) (OR (|HasCategory| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (QUOTE (-551 (-771)))) (|HasCategory| |#2| (QUOTE (-551 (-771))))) (|HasCategory| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (QUOTE (-552 (-472)))) (-12 (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (OR (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (QUOTE (-755))) (|HasCategory| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (QUOTE (-1012)))) (|HasCategory| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (QUOTE (-755))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (QUOTE (-755))) (|HasCategory| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (QUOTE (-1012)))) (|HasCategory| |#1| (QUOTE (-755))) (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| (-483) (QUOTE (-755))) (|HasCategory| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (QUOTE (-1012))) (OR (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (QUOTE (-1012)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-551 (-771)))) (|HasCategory| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (QUOTE (-551 (-771)))) (|HasCategory| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (-12 (|HasCategory| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3858) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (QUOTE (-1012))))) +((-3994 . T) (-3995 . T)) +((OR (-12 (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3859) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-756)))) (-12 (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3859) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013))))) (OR (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-552 (-772)))) (|HasCategory| |#2| (QUOTE (-552 (-772))))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-473)))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (OR (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-756))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-756))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-756))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| (-484) (QUOTE (-756))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013))) (OR (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-552 (-772)))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-552 (-772)))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (-12 (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3859) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013))))) (-46 S R E) ((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#2|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#2| $ |#3|) "\\spad{coefficient(p,e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#2| |#3|) "\\spad{monomial(r,e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#3| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}."))) NIL -((|HasCategory| |#2| (QUOTE (-38 (-348 (-483))))) (|HasCategory| |#2| (QUOTE (-494))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-312)))) +((|HasCategory| |#2| (QUOTE (-38 (-349 (-484))))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-312)))) (-47 R E) ((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#1|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(p,e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#2| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}."))) -(((-3995 "*") |has| |#1| (-146)) (-3986 |has| |#1| (-494)) (-3987 . T) (-3988 . T) (-3990 . T)) +(((-3996 "*") |has| |#1| (-146)) (-3987 |has| |#1| (-495)) (-3988 . T) (-3989 . T) (-3991 . T)) NIL (-48) ((|constructor| (NIL "Algebraic closure of the rational numbers,{} with mathematical =")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}."))) -((-3985 . T) (-3991 . T) (-3986 . T) ((-3995 "*") . T) (-3987 . T) (-3988 . T) (-3990 . T)) -((|HasCategory| $ (QUOTE (-960))) (|HasCategory| $ (QUOTE (-949 (-483))))) +((-3986 . T) (-3992 . T) (-3987 . T) ((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T)) +((|HasCategory| $ (QUOTE (-961))) (|HasCategory| $ (QUOTE (-950 (-484))))) (-49) ((|constructor| (NIL "This domain implements anonymous functions")) (|body| (((|Syntax|) $) "\\spad{body(f)} returns the body of the unnamed function `f'.")) (|parameters| (((|List| (|Identifier|)) $) "\\spad{parameters(f)} returns the list of parameters bound by `f'."))) NIL NIL (-50 R |lVar|) ((|constructor| (NIL "The domain of antisymmetric polynomials.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,p)} changes each coefficient of \\spad{p} by the application of \\spad{f}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the homogeneous degree of \\spad{p}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(p)} tests if \\spad{p} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{p}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(p)} tests if all of the terms of \\spad{p} have the same degree.")) (|exp| (($ (|List| (|Integer|))) "\\spad{exp([i1,...in])} returns \\spad{u_1\\^{i_1} ... u_n\\^{i_n}}")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th multiplicative generator,{} a basis term.")) (|coefficient| ((|#1| $ $) "\\spad{coefficient(p,u)} returns the coefficient of the term in \\spad{p} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise. Error: if the second argument \\spad{u} is not a basis element.")) (|reductum| (($ $) "\\spad{reductum(p)},{} where \\spad{p} is an antisymmetric polynomial,{} returns \\spad{p} minus the leading term of \\spad{p} if \\spad{p} has at least two terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(p)} returns the leading basis term of antisymmetric polynomial \\spad{p}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the leading coefficient of antisymmetric polynomial \\spad{p}."))) -((-3990 . T)) +((-3991 . T)) NIL (-51) ((|constructor| (NIL "\\spadtype{Any} implements a type that packages up objects and their types in objects of \\spadtype{Any}. Roughly speaking that means that if \\spad{s : S} then when converted to \\spadtype{Any},{} the new object will include both the original object and its type. This is a way of converting arbitrary objects into a single type without losing any of the original information. Any object can be converted to one of \\spadtype{Any}. The original object can be recovered by `is-case' pattern matching as exemplified here and \\spad{AnyFunctions1}.")) (|obj| (((|None|) $) "\\spad{obj(a)} essentially returns the original object that was converted to \\spadtype{Any} except that the type is forced to be \\spadtype{None}.")) (|dom| (((|SExpression|) $) "\\spad{dom(a)} returns a \\spadgloss{LISP} form of the type of the original object that was converted to \\spadtype{Any}.")) (|any| (($ (|SExpression|) (|None|)) "\\spad{any(type,object)} is a technical function for creating an \\spad{object} of \\spadtype{Any}. Arugment \\spad{type} is a \\spadgloss{LISP} form for the \\spad{type} of \\spad{object}."))) @@ -144,7 +144,7 @@ NIL ((|constructor| (NIL "\\spad{ApplyUnivariateSkewPolynomial} (internal) allows univariate skew polynomials to be applied to appropriate modules.")) (|apply| ((|#2| |#3| (|Mapping| |#2| |#2|) |#2|) "\\spad{apply(p, f, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = f(m)}. \\spad{f} must be an \\spad{R}-pseudo linear map on \\spad{M}."))) NIL NIL -(-54 |Base| R -3091) +(-54 |Base| R -3092) ((|constructor| (NIL "This package apply rewrite rules to expressions,{} calling the pattern matcher.")) (|localUnquote| ((|#3| |#3| (|List| (|Symbol|))) "\\spad{localUnquote(f,ls)} is a local function.")) (|applyRules| ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3| (|PositiveInteger|)) "\\spad{applyRules([r1,...,rn], expr, n)} applies the rules \\spad{r1},{}...,{}rn to \\spad{f} a most \\spad{n} times.") ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3|) "\\spad{applyRules([r1,...,rn], expr)} applies the rules \\spad{r1},{}...,{}rn to \\spad{f} an unlimited number of times,{} \\spadignore{i.e.} until none of \\spad{r1},{}...,{}rn is applicable to the expression."))) NIL NIL @@ -158,28 +158,28 @@ NIL NIL (-57 R |Row| |Col|) ((|constructor| (NIL "\\indented{1}{TwoDimensionalArrayCategory is a general array category which} allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and columns returned as objects of type Col. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,a)} assign \\spad{a(i,j)} to \\spad{f(a(i,j))} for all \\spad{i, j}")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $ |#1|) "\\spad{map(f,a,b,r)} returns \\spad{c},{} where \\spad{c(i,j) = f(a(i,j),b(i,j))} when both \\spad{a(i,j)} and \\spad{b(i,j)} exist; else \\spad{c(i,j) = f(r, b(i,j))} when \\spad{a(i,j)} does not exist; else \\spad{c(i,j) = f(a(i,j),r)} when \\spad{b(i,j)} does not exist; otherwise \\spad{c(i,j) = f(r,r)}.") (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i, j}") (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,a)} returns \\spad{b},{} where \\spad{b(i,j) = f(a(i,j))} for all \\spad{i, j}")) (|setColumn!| (($ $ (|Integer|) |#3|) "\\spad{setColumn!(m,j,v)} sets to \\spad{j}th column of \\spad{m} to \\spad{v}")) (|setRow!| (($ $ (|Integer|) |#2|) "\\spad{setRow!(m,i,v)} sets to \\spad{i}th row of \\spad{m} to \\spad{v}")) (|qsetelt!| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{qsetelt!(m,i,j,r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} NO error check to determine if indices are in proper ranges")) (|setelt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{setelt(m,i,j,r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} error check to determine if indices are in proper ranges")) (|column| ((|#3| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of \\spad{m} error check to determine if index is in proper ranges")) (|row| ((|#2| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of \\spad{m} error check to determine if index is in proper ranges")) (|qelt| ((|#1| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} NO error check to determine if indices are in proper ranges")) (|elt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise") ((|#1| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} error check to determine if indices are in proper ranges")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the array \\spad{m}")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the array \\spad{m}")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the array \\spad{m}")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the array \\spad{m}")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the array \\spad{m}")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the array \\spad{m}")) (|fill!| (($ $ |#1|) "\\spad{fill!(m,r)} fills \\spad{m} with \\spad{r}'s")) (|new| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{new(m,n,r)} is an \\spad{m}-by-\\spad{n} array all of whose entries are \\spad{r}")) (|finiteAggregate| ((|attribute|) "two-dimensional arrays are finite")) (|shallowlyMutable| ((|attribute|) "one may destructively alter arrays"))) -((-3993 . T) (-3994 . T)) +((-3994 . T) (-3995 . T)) NIL (-58 S) ((|constructor| (NIL "This is the domain of 1-based one dimensional arrays")) (|oneDimensionalArray| (($ (|NonNegativeInteger|) |#1|) "\\spad{oneDimensionalArray(n,s)} creates an array from \\spad{n} copies of element \\spad{s}") (($ (|List| |#1|)) "\\spad{oneDimensionalArray(l)} creates an array from a list of elements \\spad{l}"))) -((-3994 . T) (-3993 . T)) -((OR (-12 (|HasCategory| |#1| (QUOTE (-755))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-551 (-771)))) (|HasCategory| |#1| (QUOTE (-552 (-472)))) (OR (|HasCategory| |#1| (QUOTE (-755))) (|HasCategory| |#1| (QUOTE (-1012)))) (|HasCategory| |#1| (QUOTE (-755))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-755))) (|HasCategory| |#1| (QUOTE (-1012)))) (|HasCategory| (-483) (QUOTE (-755))) (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) +((-3995 . T) (-3994 . T)) +((OR (-12 (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-553 (-473)))) (OR (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-756))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| (-484) (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (-59 A B) ((|constructor| (NIL "\\indented{1}{This package provides tools for operating on one-dimensional arrays} with unary and binary functions involving different underlying types")) (|map| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1|) (|OneDimensionalArray| |#1|)) "\\spad{map(f,a)} applies function \\spad{f} to each member of one-dimensional array \\spad{a} resulting in a new one-dimensional array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the one-dimensional array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-arrays \\spad{x} of one-dimensional array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}."))) NIL NIL (-60 R) ((|constructor| (NIL "\\indented{1}{A TwoDimensionalArray is a two dimensional array with} 1-based indexing for both rows and columns."))) -((-3993 . T) (-3994 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1012))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1012)))) (|HasCategory| |#1| (QUOTE (-551 (-771)))) (|HasCategory| |#1| (QUOTE (-72)))) +((-3994 . T) (-3995 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1013))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-72)))) (-61 R L) ((|constructor| (NIL "\\spadtype{AssociatedEquations} provides functions to compute the associated equations needed for factoring operators")) (|associatedEquations| (((|Record| (|:| |minor| (|List| (|PositiveInteger|))) (|:| |eq| |#2|) (|:| |minors| (|List| (|List| (|PositiveInteger|)))) (|:| |ops| (|List| |#2|))) |#2| (|PositiveInteger|)) "\\spad{associatedEquations(op, m)} returns \\spad{[w, eq, lw, lop]} such that \\spad{eq(w) = 0} where \\spad{w} is the given minor,{} and \\spad{lw_i = lop_i(w)} for all the other minors.")) (|uncouplingMatrices| (((|Vector| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{uncouplingMatrices(M)} returns \\spad{[A_1,...,A_n]} such that if \\spad{y = [y_1,...,y_n]} is a solution of \\spad{y' = M y},{} then \\spad{[\\$y_j',y_j'',...,y_j^{(n)}\\$] = \\$A_j y\\$} for all \\spad{j}'s.")) (|associatedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| (|List| (|PositiveInteger|))))) |#2| (|PositiveInteger|)) "\\spad{associatedSystem(op, m)} returns \\spad{[M,w]} such that the \\spad{m}-th associated equation system to \\spad{L} is \\spad{w' = M w}."))) NIL ((|HasCategory| |#1| (QUOTE (-312)))) (-62 S) ((|constructor| (NIL "A stack represented as a flexible array.")) (|arrayStack| (($ (|List| |#1|)) "\\spad{arrayStack([x,y,...,z])} creates an array stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}."))) -((-3993 . T) (-3994 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1012))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1012)))) (|HasCategory| |#1| (QUOTE (-551 (-771)))) (|HasCategory| |#1| (QUOTE (-72)))) +((-3994 . T) (-3995 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1013))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-72)))) (-63 S) ((|constructor| (NIL "This is the category of Spad abstract syntax trees."))) NIL @@ -202,11 +202,11 @@ NIL NIL (-68) ((|constructor| (NIL "This category exports the attributes in the AXIOM Library")) (|canonical| ((|attribute|) "\\spad{canonical} is \\spad{true} if and only if distinct elements have distinct data structures. For example,{} a domain of mathematical objects which has the \\spad{canonical} attribute means that two objects are mathematically equal if and only if their data structures are equal.")) (|multiplicativeValuation| ((|attribute|) "\\spad{multiplicativeValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)*euclideanSize(b)}.")) (|additiveValuation| ((|attribute|) "\\spad{additiveValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)+euclideanSize(b)}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} is \\spad{true} if all of its ideals are finitely generated.")) (|central| ((|attribute|) "\\spad{central} is \\spad{true} if,{} given an algebra over a ring \\spad{R},{} the image of \\spad{R} is the center of the algebra,{} \\spadignore{i.e.} the set of members of the algebra which commute with all others is precisely the image of \\spad{R} in the algebra.")) (|partiallyOrderedSet| ((|attribute|) "\\spad{partiallyOrderedSet} is \\spad{true} if a set with \\spadop{<} which is transitive,{} but \\spad{not(a < b or a = b)} does not necessarily imply \\spad{b<a}.")) (|arbitraryPrecision| ((|attribute|) "\\spad{arbitraryPrecision} means the user can set the precision for subsequent calculations.")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalsClosed} is \\spad{true} if \\spad{unitCanonical(a)*unitCanonical(b) = unitCanonical(a*b)}.")) (|canonicalUnitNormal| ((|attribute|) "\\spad{canonicalUnitNormal} is \\spad{true} if we can choose a canonical representative for each class of associate elements,{} that is \\spad{associates?(a,b)} returns \\spad{true} if and only if \\spad{unitCanonical(a) = unitCanonical(b)}.")) (|noZeroDivisors| ((|attribute|) "\\spad{noZeroDivisors} is \\spad{true} if \\spad{x * y \\~~= 0} implies both \\spad{x} and \\spad{y} are non-zero.")) (|rightUnitary| ((|attribute|) "\\spad{rightUnitary} is \\spad{true} if \\spad{x * 1 = x} for all \\spad{x}.")) (|leftUnitary| ((|attribute|) "\\spad{leftUnitary} is \\spad{true} if \\spad{1 * x = x} for all \\spad{x}.")) (|unitsKnown| ((|attribute|) "\\spad{unitsKnown} is \\spad{true} if a monoid (a multiplicative semigroup with a 1) has \\spad{unitsKnown} means that the operation \\spadfun{recip} can only return \"failed\" if its argument is not a unit.")) (|shallowlyMutable| ((|attribute|) "\\spad{shallowlyMutable} is \\spad{true} if its values have immediate components that are updateable (mutable). Note: the properties of any component domain are irrevelant to the \\spad{shallowlyMutable} proper.")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} is \\spad{true} if it has an operation \\spad{\"*\": (D,D) -> D} which is commutative.")) (|finiteAggregate| ((|attribute|) "\\spad{finiteAggregate} is \\spad{true} if it is an aggregate with a finite number of elements."))) -((-3993 . T) ((-3995 "*") . T) (-3994 . T) (-3990 . T) (-3988 . T) (-3987 . T) (-3986 . T) (-3991 . T) (-3985 . T) (-3984 . T) (-3983 . T) (-3982 . T) (-3981 . T) (-3989 . T) (-3992 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-3980 . T)) +((-3994 . T) ((-3996 "*") . T) (-3995 . T) (-3991 . T) (-3989 . T) (-3988 . T) (-3987 . T) (-3992 . T) (-3986 . T) (-3985 . T) (-3984 . T) (-3983 . T) (-3982 . T) (-3990 . T) (-3993 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-3981 . T)) NIL (-69 R) ((|constructor| (NIL "Automorphism \\spad{R} is the multiplicative group of automorphisms of \\spad{R}.")) (|morphism| (($ (|Mapping| |#1| |#1| (|Integer|))) "\\spad{morphism(f)} returns the morphism given by \\spad{f^n(x) = f(x,n)}.") (($ (|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|)) "\\spad{morphism(f, g)} returns the invertible morphism given by \\spad{f},{} where \\spad{g} is the inverse of \\spad{f}..") (($ (|Mapping| |#1| |#1|)) "\\spad{morphism(f)} returns the non-invertible morphism given by \\spad{f}."))) -((-3990 . T)) +((-3991 . T)) NIL (-70 R UP) ((|constructor| (NIL "This package provides balanced factorisations of polynomials.")) (|balancedFactorisation| (((|Factored| |#2|) |#2| (|List| |#2|)) "\\spad{balancedFactorisation(a, [b1,...,bn])} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{pi} is balanced with respect to \\spad{[b1,...,bm]}.") (((|Factored| |#2|) |#2| |#2|) "\\spad{balancedFactorisation(a, b)} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{pi} is balanced with respect to \\spad{b}."))) @@ -222,24 +222,24 @@ NIL NIL (-73 S) ((|constructor| (NIL "\\spadtype{BalancedBinaryTree(S)} is the domain of balanced binary trees (bbtree). A balanced binary tree of \\spad{2**k} leaves,{} for some \\spad{k > 0},{} is symmetric,{} that is,{} the left and right subtree of each interior node have identical shape. In general,{} the left and right subtree of a given node can differ by at most leaf node.")) (|mapDown!| (($ $ |#1| (|Mapping| (|List| |#1|) |#1| |#1| |#1|)) "\\spad{mapDown!(t,p,f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. Let \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t}. The root value \\spad{x} of \\spad{t} is replaced by \\spad{p}. Then \\spad{f}(value \\spad{l},{} value \\spad{r},{} \\spad{p}),{} where \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t},{} is evaluated producing two values pl and pr. Then \\spad{mapDown!(l,pl,f)} and \\spad{mapDown!(l,pr,f)} are evaluated.") (($ $ |#1| (|Mapping| |#1| |#1| |#1|)) "\\spad{mapDown!(t,p,f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. The root value \\spad{x} is replaced by \\spad{q} := \\spad{f}(\\spad{p},{}\\spad{x}). The mapDown!(\\spad{l},{}\\spad{q},{}\\spad{f}) and mapDown!(\\spad{r},{}\\spad{q},{}\\spad{f}) are evaluated for the left and right subtrees \\spad{l} and \\spad{r} of \\spad{t}.")) (|mapUp!| (($ $ $ (|Mapping| |#1| |#1| |#1| |#1| |#1|)) "\\spad{mapUp!(t,t1,f)} traverses \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r},{}\\spad{l1},{}\\spad{r1}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes. Values \\spad{l1} and \\spad{r1} are values at the corresponding nodes of a balanced binary tree \\spad{t1},{} of identical shape at \\spad{t}.") ((|#1| $ (|Mapping| |#1| |#1| |#1|)) "\\spad{mapUp!(t,f)} traverses balanced binary tree \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes.")) (|setleaves!| (($ $ (|List| |#1|)) "\\spad{setleaves!(t, ls)} sets the leaves of \\spad{t} in left-to-right order to the elements of ls.")) (|balancedBinaryTree| (($ (|NonNegativeInteger|) |#1|) "\\spad{balancedBinaryTree(n, s)} creates a balanced binary tree with \\spad{n} nodes each with value \\spad{s}."))) -((-3993 . T) (-3994 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1012))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1012)))) (|HasCategory| |#1| (QUOTE (-551 (-771)))) (|HasCategory| |#1| (QUOTE (-72)))) +((-3994 . T) (-3995 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1013))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-72)))) (-74 R UP M |Row| |Col|) ((|constructor| (NIL "\\spadtype{BezoutMatrix} contains functions for computing resultants and discriminants using Bezout matrices.")) (|bezoutDiscriminant| ((|#1| |#2|) "\\spad{bezoutDiscriminant(p)} computes the discriminant of a polynomial \\spad{p} by computing the determinant of a Bezout matrix.")) (|bezoutResultant| ((|#1| |#2| |#2|) "\\spad{bezoutResultant(p,q)} computes the resultant of the two polynomials \\spad{p} and \\spad{q} by computing the determinant of a Bezout matrix.")) (|bezoutMatrix| ((|#3| |#2| |#2|) "\\spad{bezoutMatrix(p,q)} returns the Bezout matrix for the two polynomials \\spad{p} and \\spad{q}.")) (|sylvesterMatrix| ((|#3| |#2| |#2|) "\\spad{sylvesterMatrix(p,q)} returns the Sylvester matrix for the two polynomials \\spad{p} and \\spad{q}."))) NIL -((|HasAttribute| |#1| (QUOTE (-3995 "*")))) +((|HasAttribute| |#1| (QUOTE (-3996 "*")))) (-75 A S) ((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#2| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#2| $) "\\spad{insert!(x,u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#2| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#2|)) "\\spad{bag([x,y,...,z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed."))) NIL NIL (-76 S) ((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#1| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#1| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#1|)) "\\spad{bag([x,y,...,z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed."))) -((-3994 . T)) +((-3995 . T)) NIL (-77) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating binary expansions.")) (|binary| (($ (|Fraction| (|Integer|))) "\\spad{binary(r)} converts a rational number to a binary expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(b)} returns the fractional part of a binary expansion."))) -((-3985 . T) (-3991 . T) (-3986 . T) ((-3995 "*") . T) (-3987 . T) (-3988 . T) (-3990 . T)) -((|HasCategory| (-483) (QUOTE (-820))) (|HasCategory| (-483) (QUOTE (-949 (-1088)))) (|HasCategory| (-483) (QUOTE (-118))) (|HasCategory| (-483) (QUOTE (-120))) (|HasCategory| (-483) (QUOTE (-552 (-472)))) (|HasCategory| (-483) (QUOTE (-932))) (|HasCategory| (-483) (QUOTE (-739))) (|HasCategory| (-483) (QUOTE (-755))) (OR (|HasCategory| (-483) (QUOTE (-739))) (|HasCategory| (-483) (QUOTE (-755)))) (|HasCategory| (-483) (QUOTE (-949 (-483)))) (|HasCategory| (-483) (QUOTE (-1064))) (|HasCategory| (-483) (QUOTE (-795 (-328)))) (|HasCategory| (-483) (QUOTE (-795 (-483)))) (|HasCategory| (-483) (QUOTE (-552 (-799 (-328))))) (|HasCategory| (-483) (QUOTE (-552 (-799 (-483))))) (|HasCategory| (-483) (QUOTE (-189))) (|HasCategory| (-483) (QUOTE (-810 (-1088)))) (|HasCategory| (-483) (QUOTE (-190))) (|HasCategory| (-483) (QUOTE (-808 (-1088)))) (|HasCategory| (-483) (QUOTE (-454 (-1088) (-483)))) (|HasCategory| (-483) (QUOTE (-260 (-483)))) (|HasCategory| (-483) (QUOTE (-241 (-483) (-483)))) (|HasCategory| (-483) (QUOTE (-258))) (|HasCategory| (-483) (QUOTE (-482))) (|HasCategory| (-483) (QUOTE (-579 (-483)))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-483) (QUOTE (-820)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-483) (QUOTE (-820)))) (|HasCategory| (-483) (QUOTE (-118))))) +((-3986 . T) (-3992 . T) (-3987 . T) ((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T)) +((|HasCategory| (-484) (QUOTE (-821))) (|HasCategory| (-484) (QUOTE (-950 (-1089)))) (|HasCategory| (-484) (QUOTE (-118))) (|HasCategory| (-484) (QUOTE (-120))) (|HasCategory| (-484) (QUOTE (-553 (-473)))) (|HasCategory| (-484) (QUOTE (-933))) (|HasCategory| (-484) (QUOTE (-740))) (|HasCategory| (-484) (QUOTE (-756))) (OR (|HasCategory| (-484) (QUOTE (-740))) (|HasCategory| (-484) (QUOTE (-756)))) (|HasCategory| (-484) (QUOTE (-950 (-484)))) (|HasCategory| (-484) (QUOTE (-1065))) (|HasCategory| (-484) (QUOTE (-796 (-329)))) (|HasCategory| (-484) (QUOTE (-796 (-484)))) (|HasCategory| (-484) (QUOTE (-553 (-800 (-329))))) (|HasCategory| (-484) (QUOTE (-553 (-800 (-484))))) (|HasCategory| (-484) (QUOTE (-189))) (|HasCategory| (-484) (QUOTE (-811 (-1089)))) (|HasCategory| (-484) (QUOTE (-190))) (|HasCategory| (-484) (QUOTE (-809 (-1089)))) (|HasCategory| (-484) (QUOTE (-455 (-1089) (-484)))) (|HasCategory| (-484) (QUOTE (-260 (-484)))) (|HasCategory| (-484) (QUOTE (-241 (-484) (-484)))) (|HasCategory| (-484) (QUOTE (-258))) (|HasCategory| (-484) (QUOTE (-483))) (|HasCategory| (-484) (QUOTE (-580 (-484)))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-484) (QUOTE (-821)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-484) (QUOTE (-821)))) (|HasCategory| (-484) (QUOTE (-118))))) (-78) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Binding' is a name asosciated with a collection of properties.")) (|binding| (($ (|Identifier|) (|List| (|Property|))) "\\spad{binding(n,props)} constructs a binding with name `n' and property list `props'.")) (|properties| (((|List| (|Property|)) $) "\\spad{properties(b)} returns the properties associated with binding \\spad{b}.")) (|name| (((|Identifier|) $) "\\spad{name(b)} returns the name of binding \\spad{b}"))) NIL @@ -254,11 +254,11 @@ NIL NIL (-81) ((|constructor| (NIL "\\spadtype{Bits} provides logical functions for Indexed Bits.")) (|bits| (($ (|NonNegativeInteger|) (|Boolean|)) "\\spad{bits(n,b)} creates bits with \\spad{n} values of \\spad{b}"))) -((-3994 . T) (-3993 . T)) -((-12 (|HasCategory| (-85) (QUOTE (-260 (-85)))) (|HasCategory| (-85) (QUOTE (-1012)))) (|HasCategory| (-85) (QUOTE (-552 (-472)))) (|HasCategory| (-85) (QUOTE (-755))) (|HasCategory| (-483) (QUOTE (-755))) (|HasCategory| (-85) (QUOTE (-1012))) (|HasCategory| (-85) (QUOTE (-551 (-771)))) (|HasCategory| (-85) (QUOTE (-72)))) +((-3995 . T) (-3994 . T)) +((-12 (|HasCategory| (-85) (QUOTE (-260 (-85)))) (|HasCategory| (-85) (QUOTE (-1013)))) (|HasCategory| (-85) (QUOTE (-553 (-473)))) (|HasCategory| (-85) (QUOTE (-756))) (|HasCategory| (-484) (QUOTE (-756))) (|HasCategory| (-85) (QUOTE (-1013))) (|HasCategory| (-85) (QUOTE (-552 (-772)))) (|HasCategory| (-85) (QUOTE (-72)))) (-82 R S) ((|constructor| (NIL "A \\spadtype{BiModule} is both a left and right module with respect to potentially different rings. \\blankline")) (|rightUnitary| ((|attribute|) "\\spad{x * 1 = x}")) (|leftUnitary| ((|attribute|) "\\spad{1 * x = x}"))) -((-3988 . T) (-3987 . T)) +((-3989 . T) (-3988 . T)) NIL (-83 S) ((|constructor| (NIL "This is the category of Boolean logic structures.")) (|or| (($ $ $) "\\spad{x or y} returns the disjunction of \\spad{x} and \\spad{y}.")) (|and| (($ $ $) "\\spad{x and y} returns the conjunction of \\spad{x} and \\spad{y}.")) (|not| (($ $) "\\spad{not x} returns the complement or negation of \\spad{x}."))) @@ -280,22 +280,22 @@ NIL ((|constructor| (NIL "This package exports functions to set some commonly used properties of operators,{} including properties which contain functions.")) (|constantOpIfCan| (((|Union| |#1| "failed") (|BasicOperator|)) "\\spad{constantOpIfCan(op)} returns \\spad{a} if \\spad{op} is the constant nullary operator always returning \\spad{a},{} \"failed\" otherwise.")) (|constantOperator| (((|BasicOperator|) |#1|) "\\spad{constantOperator(a)} returns a nullary operator op such that \\spad{op()} always evaluate to \\spad{a}.")) (|derivative| (((|Union| (|List| (|Mapping| |#1| (|List| |#1|))) "failed") (|BasicOperator|)) "\\spad{derivative(op)} returns the value of the \"\\%diff\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{derivative(op, foo)} attaches foo as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{f},{} then applying a derivation \\spad{D} to \\spad{op}(a) returns \\spad{f(a) * D(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|List| (|Mapping| |#1| (|List| |#1|)))) "\\spad{derivative(op, [foo1,...,foon])} attaches [\\spad{foo1},{}...,{}foon] as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{[f1,...,fn]} then applying a derivation \\spad{D} to \\spad{op(a1,...,an)} returns \\spad{f1(a1,...,an) * D(a1) + ... + fn(a1,...,an) * D(an)}.")) (|evaluate| (((|Union| (|Mapping| |#1| (|List| |#1|)) "failed") (|BasicOperator|)) "\\spad{evaluate(op)} returns the value of the \"\\%eval\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{evaluate(op, foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to a returns the result of \\spad{f(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| (|List| |#1|))) "\\spad{evaluate(op, foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to \\spad{(a1,...,an)} returns the result of \\spad{f(a1,...,an)}.") (((|Union| |#1| "failed") (|BasicOperator|) (|List| |#1|)) "\\spad{evaluate(op, [a1,...,an])} checks if \\spad{op} has an \"\\%eval\" property \\spad{f}. If it has,{} then \\spad{f(a1,...,an)} is returned,{} and \"failed\" otherwise."))) NIL NIL -(-88 -3091 UP) +(-88 -3092 UP) ((|constructor| (NIL "\\spadtype{BoundIntegerRoots} provides functions to find lower bounds on the integer roots of a polynomial.")) (|integerBound| (((|Integer|) |#2|) "\\spad{integerBound(p)} returns a lower bound on the negative integer roots of \\spad{p},{} and 0 if \\spad{p} has no negative integer roots."))) NIL NIL (-89 |p|) ((|constructor| (NIL "Stream-based implementation of Zp: \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}."))) -((-3986 . T) ((-3995 "*") . T) (-3987 . T) (-3988 . T) (-3990 . T)) +((-3987 . T) ((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T)) NIL (-90 |p|) ((|constructor| (NIL "Stream-based implementation of Qp: numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}."))) -((-3985 . T) (-3991 . T) (-3986 . T) ((-3995 "*") . T) (-3987 . T) (-3988 . T) (-3990 . T)) -((|HasCategory| (-89 |#1|) (QUOTE (-820))) (|HasCategory| (-89 |#1|) (QUOTE (-949 (-1088)))) (|HasCategory| (-89 |#1|) (QUOTE (-118))) (|HasCategory| (-89 |#1|) (QUOTE (-120))) (|HasCategory| (-89 |#1|) (QUOTE (-552 (-472)))) (|HasCategory| (-89 |#1|) (QUOTE (-932))) (|HasCategory| (-89 |#1|) (QUOTE (-739))) (|HasCategory| (-89 |#1|) (QUOTE (-755))) (OR (|HasCategory| (-89 |#1|) (QUOTE (-739))) (|HasCategory| (-89 |#1|) (QUOTE (-755)))) (|HasCategory| (-89 |#1|) (QUOTE (-949 (-483)))) (|HasCategory| (-89 |#1|) (QUOTE (-1064))) (|HasCategory| (-89 |#1|) (QUOTE (-795 (-328)))) (|HasCategory| (-89 |#1|) (QUOTE (-795 (-483)))) (|HasCategory| (-89 |#1|) (QUOTE (-552 (-799 (-328))))) (|HasCategory| (-89 |#1|) (QUOTE (-552 (-799 (-483))))) (|HasCategory| (-89 |#1|) (QUOTE (-579 (-483)))) (|HasCategory| (-89 |#1|) (QUOTE (-189))) (|HasCategory| (-89 |#1|) (QUOTE (-810 (-1088)))) (|HasCategory| (-89 |#1|) (QUOTE (-190))) (|HasCategory| (-89 |#1|) (QUOTE (-808 (-1088)))) (|HasCategory| (-89 |#1|) (|%list| (QUOTE -454) (QUOTE (-1088)) (|%list| (QUOTE -89) (|devaluate| |#1|)))) (|HasCategory| (-89 |#1|) (|%list| (QUOTE -260) (|%list| (QUOTE -89) (|devaluate| |#1|)))) (|HasCategory| (-89 |#1|) (|%list| (QUOTE -241) (|%list| (QUOTE -89) (|devaluate| |#1|)) (|%list| (QUOTE -89) (|devaluate| |#1|)))) (|HasCategory| (-89 |#1|) (QUOTE (-258))) (|HasCategory| (-89 |#1|) (QUOTE (-482))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-89 |#1|) (QUOTE (-820)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-89 |#1|) (QUOTE (-820)))) (|HasCategory| (-89 |#1|) (QUOTE (-118))))) +((-3986 . T) (-3992 . T) (-3987 . T) ((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T)) +((|HasCategory| (-89 |#1|) (QUOTE (-821))) (|HasCategory| (-89 |#1|) (QUOTE (-950 (-1089)))) (|HasCategory| (-89 |#1|) (QUOTE (-118))) (|HasCategory| (-89 |#1|) (QUOTE (-120))) (|HasCategory| (-89 |#1|) (QUOTE (-553 (-473)))) (|HasCategory| (-89 |#1|) (QUOTE (-933))) (|HasCategory| (-89 |#1|) (QUOTE (-740))) (|HasCategory| (-89 |#1|) (QUOTE (-756))) (OR (|HasCategory| (-89 |#1|) (QUOTE (-740))) (|HasCategory| (-89 |#1|) (QUOTE (-756)))) (|HasCategory| (-89 |#1|) (QUOTE (-950 (-484)))) (|HasCategory| (-89 |#1|) (QUOTE (-1065))) (|HasCategory| (-89 |#1|) (QUOTE (-796 (-329)))) (|HasCategory| (-89 |#1|) (QUOTE (-796 (-484)))) (|HasCategory| (-89 |#1|) (QUOTE (-553 (-800 (-329))))) (|HasCategory| (-89 |#1|) (QUOTE (-553 (-800 (-484))))) (|HasCategory| (-89 |#1|) (QUOTE (-580 (-484)))) (|HasCategory| (-89 |#1|) (QUOTE (-189))) (|HasCategory| (-89 |#1|) (QUOTE (-811 (-1089)))) (|HasCategory| (-89 |#1|) (QUOTE (-190))) (|HasCategory| (-89 |#1|) (QUOTE (-809 (-1089)))) (|HasCategory| (-89 |#1|) (|%list| (QUOTE -455) (QUOTE (-1089)) (|%list| (QUOTE -89) (|devaluate| |#1|)))) (|HasCategory| (-89 |#1|) (|%list| (QUOTE -260) (|%list| (QUOTE -89) (|devaluate| |#1|)))) (|HasCategory| (-89 |#1|) (|%list| (QUOTE -241) (|%list| (QUOTE -89) (|devaluate| |#1|)) (|%list| (QUOTE -89) (|devaluate| |#1|)))) (|HasCategory| (-89 |#1|) (QUOTE (-258))) (|HasCategory| (-89 |#1|) (QUOTE (-483))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-89 |#1|) (QUOTE (-821)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-89 |#1|) (QUOTE (-821)))) (|HasCategory| (-89 |#1|) (QUOTE (-118))))) (-91 A S) ((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,\"right\",b)} (also written \\axiom{\\spad{b} . right := \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,\"left\",b)} (also written \\axiom{a . left := \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child."))) NIL -((|HasAttribute| |#1| (QUOTE -3994))) +((|HasAttribute| |#1| (QUOTE -3995))) (-92 S) ((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,\"right\",b)} (also written \\axiom{\\spad{b} . right := \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,\"left\",b)} (also written \\axiom{a . left := \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child."))) NIL @@ -306,15 +306,15 @@ NIL NIL (-94 S) ((|constructor| (NIL "BinarySearchTree(\\spad{S}) is the domain of a binary trees where elements are ordered across the tree. A binary search tree is either empty or has a value which is an \\spad{S},{} and a right and left which are both BinaryTree(\\spad{S}) Elements are ordered across the tree.")) (|split| (((|Record| (|:| |less| $) (|:| |greater| $)) |#1| $) "\\spad{split(x,b)} splits binary tree \\spad{b} into two trees,{} one with elements greater than \\spad{x},{} the other with elements less than \\spad{x}.")) (|insertRoot!| (($ |#1| $) "\\spad{insertRoot!(x,b)} inserts element \\spad{x} as a root of binary search tree \\spad{b}.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,b)} inserts element \\spad{x} as leaves into binary search tree \\spad{b}.")) (|binarySearchTree| (($ (|List| |#1|)) "\\spad{binarySearchTree(l)} \\undocumented"))) -((-3993 . T) (-3994 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1012))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1012)))) (|HasCategory| |#1| (QUOTE (-551 (-771)))) (|HasCategory| |#1| (QUOTE (-72)))) +((-3994 . T) (-3995 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1013))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-72)))) (-95 S) ((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}."))) NIL NIL (-96) ((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}."))) -((-3994 . T) (-3993 . T)) +((-3995 . T) (-3994 . T)) NIL (-97 A S) ((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#2| $) "\\spad{node(left,v,right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components"))) @@ -322,24 +322,24 @@ NIL NIL (-98 S) ((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#1| $) "\\spad{node(left,v,right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components"))) -((-3993 . T) (-3994 . T)) +((-3994 . T) (-3995 . T)) NIL (-99 S) ((|constructor| (NIL "\\spadtype{BinaryTournament(S)} is the domain of binary trees where elements are ordered down the tree. A binary search tree is either empty or is a node containing a \\spadfun{value} of type \\spad{S},{} and a \\spadfun{right} and a \\spadfun{left} which are both \\spadtype{BinaryTree(S)}")) (|insert!| (($ |#1| $) "\\spad{insert!(x,b)} inserts element \\spad{x} as leaves into binary tournament \\spad{b}.")) (|binaryTournament| (($ (|List| |#1|)) "\\spad{binaryTournament(ls)} creates a binary tournament with the elements of \\spad{ls} as values at the nodes."))) -((-3993 . T) (-3994 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1012))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1012)))) (|HasCategory| |#1| (QUOTE (-551 (-771)))) (|HasCategory| |#1| (QUOTE (-72)))) +((-3994 . T) (-3995 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1013))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-72)))) (-100 S) ((|constructor| (NIL "\\spadtype{BinaryTree(S)} is the domain of all binary trees. A binary tree over \\spad{S} is either empty or has a \\spadfun{value} which is an \\spad{S} and a \\spadfun{right} and \\spadfun{left} which are both binary trees.")) (|binaryTree| (($ $ |#1| $) "\\spad{binaryTree(l,v,r)} creates a binary tree with value \\spad{v} with left subtree \\spad{l} and right subtree \\spad{r}.") (($ |#1|) "\\spad{binaryTree(v)} is an non-empty binary tree with value \\spad{v},{} and left and right empty."))) -((-3993 . T) (-3994 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1012))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1012)))) (|HasCategory| |#1| (QUOTE (-551 (-771)))) (|HasCategory| |#1| (QUOTE (-72)))) +((-3994 . T) (-3995 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1013))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-72)))) (-101) ((|constructor| (NIL "Byte is the datatype of 8-bit sized unsigned integer values.")) (|sample| (($) "\\spad{sample} gives a sample datum of type Byte.")) (|bitior| (($ $ $) "bitor(\\spad{x},{}\\spad{y}) returns the bitwise `inclusive or' of `x' and `y'.")) (|bitand| (($ $ $) "\\spad{bitand(x,y)} returns the bitwise `and' of `x' and `y'.")) (|byte| (($ (|NonNegativeInteger|)) "\\spad{byte(x)} injects the unsigned integer value `v' into the Byte algebra. `v' must be non-negative and less than 256."))) NIL NIL (-102) ((|constructor| (NIL "ByteBuffer provides datatype for buffers of bytes. This domain differs from PrimitiveArray Byte in that it is not as rigid as PrimitiveArray Byte. That is,{} the typical use of ByteBuffer is to pre-allocate a vector of Byte of some capacity `n'. The array can then store up to `n' bytes. The actual interesting bytes count (the length of the buffer) is therefore different from the capacity. The length is no more than the capacity,{} but it can be set dynamically as needed. This functionality is used for example when reading bytes from input/output devices where we use buffers to transfer data in and out of the system. Note: a value of type ByteBuffer is 0-based indexed,{} as opposed \\indented{6}{Vector,{} but not unlike PrimitiveArray Byte.}")) (|finiteAggregate| ((|attribute|) "A ByteBuffer object is a finite aggregate")) (|setLength!| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{setLength!(buf,n)} sets the number of active bytes in the `buf'. Error if `n' is more than the capacity.")) (|capacity| (((|NonNegativeInteger|) $) "\\spad{capacity(buf)} returns the pre-allocated maximum size of `buf'.")) (|byteBuffer| (($ (|NonNegativeInteger|)) "\\spad{byteBuffer(n)} creates a buffer of capacity \\spad{n},{} and length 0."))) -((-3994 . T) (-3993 . T)) -((OR (-12 (|HasCategory| (-101) (QUOTE (-260 (-101)))) (|HasCategory| (-101) (QUOTE (-755)))) (-12 (|HasCategory| (-101) (QUOTE (-260 (-101)))) (|HasCategory| (-101) (QUOTE (-1012))))) (|HasCategory| (-101) (QUOTE (-551 (-771)))) (|HasCategory| (-101) (QUOTE (-552 (-472)))) (OR (|HasCategory| (-101) (QUOTE (-755))) (|HasCategory| (-101) (QUOTE (-1012)))) (|HasCategory| (-101) (QUOTE (-755))) (OR (|HasCategory| (-101) (QUOTE (-72))) (|HasCategory| (-101) (QUOTE (-755))) (|HasCategory| (-101) (QUOTE (-1012)))) (|HasCategory| (-483) (QUOTE (-755))) (|HasCategory| (-101) (QUOTE (-1012))) (|HasCategory| (-101) (QUOTE (-72))) (-12 (|HasCategory| (-101) (QUOTE (-260 (-101)))) (|HasCategory| (-101) (QUOTE (-1012))))) +((-3995 . T) (-3994 . T)) +((OR (-12 (|HasCategory| (-101) (QUOTE (-260 (-101)))) (|HasCategory| (-101) (QUOTE (-756)))) (-12 (|HasCategory| (-101) (QUOTE (-260 (-101)))) (|HasCategory| (-101) (QUOTE (-1013))))) (|HasCategory| (-101) (QUOTE (-552 (-772)))) (|HasCategory| (-101) (QUOTE (-553 (-473)))) (OR (|HasCategory| (-101) (QUOTE (-756))) (|HasCategory| (-101) (QUOTE (-1013)))) (|HasCategory| (-101) (QUOTE (-756))) (OR (|HasCategory| (-101) (QUOTE (-72))) (|HasCategory| (-101) (QUOTE (-756))) (|HasCategory| (-101) (QUOTE (-1013)))) (|HasCategory| (-484) (QUOTE (-756))) (|HasCategory| (-101) (QUOTE (-1013))) (|HasCategory| (-101) (QUOTE (-72))) (-12 (|HasCategory| (-101) (QUOTE (-260 (-101)))) (|HasCategory| (-101) (QUOTE (-1013))))) (-103) ((|constructor| (NIL "This datatype describes byte order of machine values stored memory.")) (|unknownEndian| (($) "\\spad{unknownEndian} for none of the above.")) (|bigEndian| (($) "\\spad{bigEndian} describes big endian host")) (|littleEndian| (($) "\\spad{littleEndian} describes little endian host"))) NIL @@ -358,13 +358,13 @@ NIL NIL (-107) ((|constructor| (NIL "Members of the domain CardinalNumber are values indicating the cardinality of sets,{} both finite and infinite. Arithmetic operations are defined on cardinal numbers as follows. \\blankline If \\spad{x = \\#X} and \\spad{y = \\#Y} then \\indented{2}{\\spad{x+y\\space{2}= \\#(X+Y)}\\space{3}\\tab{30}disjoint union} \\indented{2}{\\spad{x-y\\space{2}= \\#(X-Y)}\\space{3}\\tab{30}relative complement} \\indented{2}{\\spad{x*y\\space{2}= \\#(X*Y)}\\space{3}\\tab{30}cartesian product} \\indented{2}{\\spad{x**y = \\#(X**Y)}\\space{2}\\tab{30}\\spad{X**Y = \\{g| g:Y->X\\}}} \\blankline The non-negative integers have a natural construction as cardinals \\indented{2}{\\spad{0 = \\#\\{\\}},{} \\spad{1 = \\{0\\}},{} \\spad{2 = \\{0, 1\\}},{} ...,{} \\spad{n = \\{i| 0 <= i < n\\}}.} \\blankline That \\spad{0} acts as a zero for the multiplication of cardinals is equivalent to the axiom of choice. \\blankline The generalized continuum hypothesis asserts \\center{\\spad{2**Aleph i = Aleph(i+1)}} and is independent of the axioms of set theory [Goedel 1940]. \\blankline Three commonly encountered cardinal numbers are \\indented{3}{\\spad{a = \\#Z}\\space{7}\\tab{30}countable infinity} \\indented{3}{\\spad{c = \\#R}\\space{7}\\tab{30}the continuum} \\indented{3}{\\spad{f = \\#\\{g| g:[0,1]->R\\}}} \\blankline In this domain,{} these values are obtained using \\indented{3}{\\spad{a := Aleph 0},{} \\spad{c := 2**a},{} \\spad{f := 2**c}.} \\blankline")) (|generalizedContinuumHypothesisAssumed| (((|Boolean|) (|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed(bool)} is used to dictate whether the hypothesis is to be assumed.")) (|generalizedContinuumHypothesisAssumed?| (((|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed?()} tests if the hypothesis is currently assumed.")) (|countable?| (((|Boolean|) $) "\\spad{countable?(\\spad{a})} determines whether \\spad{a} is a countable cardinal,{} \\spadignore{i.e.} an integer or \\spad{Aleph 0}.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(\\spad{a})} determines whether \\spad{a} is a finite cardinal,{} \\spadignore{i.e.} an integer.")) (|Aleph| (($ (|NonNegativeInteger|)) "\\spad{Aleph(n)} provides the named (infinite) cardinal number.")) (** (($ $ $) "\\spad{x**y} returns \\spad{\\#(X**Y)} where \\spad{X**Y} is defined \\indented{1}{as \\spad{\\{g| g:Y->X\\}}.}")) (- (((|Union| $ "failed") $ $) "\\spad{x - y} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists.")) (|commutative| ((|attribute| "*") "a domain \\spad{D} has \\spad{commutative(\"*\")} if it has an operation \\spad{\"*\": (D,D) -> D} which is commutative."))) -(((-3995 "*") . T)) +(((-3996 "*") . T)) NIL -(-108 |minix| -2620 R) +(-108 |minix| -2621 R) ((|constructor| (NIL "CartesianTensor(minix,{}dim,{}\\spad{R}) provides Cartesian tensors with components belonging to a commutative ring \\spad{R}. These tensors can have any number of indices. Each index takes values from \\spad{minix} to \\spad{minix + dim - 1}.")) (|sample| (($) "\\spad{sample()} returns an object of type \\%.")) (|unravel| (($ (|List| |#3|)) "\\spad{unravel(t)} produces a tensor from a list of components such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|ravel| (((|List| |#3|) $) "\\spad{ravel(t)} produces a list of components from a tensor such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|leviCivitaSymbol| (($) "\\spad{leviCivitaSymbol()} is the rank \\spad{dim} tensor defined by \\spad{leviCivitaSymbol()(i1,...idim) = +1/0/-1} if \\spad{i1,...,idim} is an even/is nota /is an odd permutation of \\spad{minix,...,minix+dim-1}.")) (|kroneckerDelta| (($) "\\spad{kroneckerDelta()} is the rank 2 tensor defined by \\indented{3}{\\spad{kroneckerDelta()(i,j)}} \\indented{6}{\\spad{= 1\\space{2}if i = j}} \\indented{6}{\\spad{= 0 if\\space{2}i \\~= j}}")) (|reindex| (($ $ (|List| (|Integer|))) "\\spad{reindex(t,[i1,...,idim])} permutes the indices of \\spad{t}. For example,{} if \\spad{r = reindex(t, [4,1,2,3])} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank for tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(l,i,j,k)}.}")) (|transpose| (($ $ (|Integer|) (|Integer|)) "\\spad{transpose(t,i,j)} exchanges the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices of \\spad{t}. For example,{} if \\spad{r = transpose(t,2,3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(i,k,j,l)}.}") (($ $) "\\spad{transpose(t)} exchanges the first and last indices of \\spad{t}. For example,{} if \\spad{r = transpose(t)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(l,j,k,i)}.}")) (|contract| (($ $ (|Integer|) (|Integer|)) "\\spad{contract(t,i,j)} is the contraction of tensor \\spad{t} which sums along the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices. For example,{} if \\spad{r = contract(t,1,3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 2 \\spad{(= 4 - 2)} tensor given by \\indented{4}{\\spad{r(i,j) = sum(h=1..dim,t(h,i,h,j))}.}") (($ $ (|Integer|) $ (|Integer|)) "\\spad{contract(t,i,s,j)} is the inner product of tenors \\spad{s} and \\spad{t} which sums along the \\spad{k1}\\spad{-}th index of \\spad{t} and the \\spad{k2}\\spad{-}th index of \\spad{s}. For example,{} if \\spad{r = contract(s,2,t,1)} for rank 3 tensors rank 3 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is the rank 4 \\spad{(= 3 + 3 - 2)} tensor given by \\indented{4}{\\spad{r(i,j,k,l) = sum(h=1..dim,s(i,h,j)*t(h,k,l))}.}")) (* (($ $ $) "\\spad{s*t} is the inner product of the tensors \\spad{s} and \\spad{t} which contracts the last index of \\spad{s} with the first index of \\spad{t},{} \\spadignore{i.e.} \\indented{4}{\\spad{t*s = contract(t,rank t, s, 1)}} \\indented{4}{\\spad{t*s = sum(k=1..N, t[i1,..,iN,k]*s[k,j1,..,jM])}} This is compatible with the use of \\spad{M*v} to denote the matrix-vector inner product.")) (|product| (($ $ $) "\\spad{product(s,t)} is the outer product of the tensors \\spad{s} and \\spad{t}. For example,{} if \\spad{r = product(s,t)} for rank 2 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is a rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = s(i,j)*t(k,l)}.}")) (|elt| ((|#3| $ (|List| (|Integer|))) "\\spad{elt(t,[i1,...,iN])} gives a component of a rank \\spad{N} tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,i,j,k,l)} gives a component of a rank 4 tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,i,j,k)} gives a component of a rank 3 tensor.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(t,i,j)} gives a component of a rank 2 tensor.") ((|#3| $) "\\spad{elt(t)} gives the component of a rank 0 tensor.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(t)} returns the tensorial rank of \\spad{t} (that is,{} the number of indices). This is the same as the graded module degree."))) NIL NIL -(-109 |minix| -2620 S T$) +(-109 |minix| -2621 S T$) ((|constructor| (NIL "This package provides functions to enable conversion of tensors given conversion of the components.")) (|map| (((|CartesianTensor| |#1| |#2| |#4|) (|Mapping| |#4| |#3|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{map(f,ts)} does a componentwise conversion of the tensor \\spad{ts} to a tensor with components of type \\spad{T}.")) (|reshape| (((|CartesianTensor| |#1| |#2| |#4|) (|List| |#4|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{reshape(lt,ts)} organizes the list of components \\spad{lt} into a tensor with the same shape as \\spad{ts}."))) NIL NIL @@ -386,8 +386,8 @@ NIL NIL (-114) ((|constructor| (NIL "This domain allows classes of characters to be defined and manipulated efficiently.")) (|alphanumeric| (($) "\\spad{alphanumeric()} returns the class of all characters for which \\spadfunFrom{alphanumeric?}{Character} is \\spad{true}.")) (|alphabetic| (($) "\\spad{alphabetic()} returns the class of all characters for which \\spadfunFrom{alphabetic?}{Character} is \\spad{true}.")) (|lowerCase| (($) "\\spad{lowerCase()} returns the class of all characters for which \\spadfunFrom{lowerCase?}{Character} is \\spad{true}.")) (|upperCase| (($) "\\spad{upperCase()} returns the class of all characters for which \\spadfunFrom{upperCase?}{Character} is \\spad{true}.")) (|hexDigit| (($) "\\spad{hexDigit()} returns the class of all characters for which \\spadfunFrom{hexDigit?}{Character} is \\spad{true}.")) (|digit| (($) "\\spad{digit()} returns the class of all characters for which \\spadfunFrom{digit?}{Character} is \\spad{true}.")) (|charClass| (($ (|List| (|Character|))) "\\spad{charClass(l)} creates a character class which contains exactly the characters given in the list \\spad{l}.") (($ (|String|)) "\\spad{charClass(s)} creates a character class which contains exactly the characters given in the string \\spad{s}."))) -((-3993 . T) (-3983 . T) (-3994 . T)) -((OR (-12 (|HasCategory| (-117) (QUOTE (-260 (-117)))) (|HasCategory| (-117) (QUOTE (-318)))) (-12 (|HasCategory| (-117) (QUOTE (-260 (-117)))) (|HasCategory| (-117) (QUOTE (-1012))))) (|HasCategory| (-117) (QUOTE (-552 (-472)))) (|HasCategory| (-117) (QUOTE (-318))) (|HasCategory| (-117) (QUOTE (-755))) (|HasCategory| (-117) (QUOTE (-1012))) (|HasCategory| (-117) (QUOTE (-551 (-771)))) (|HasCategory| (-117) (QUOTE (-72))) (-12 (|HasCategory| (-117) (QUOTE (-260 (-117)))) (|HasCategory| (-117) (QUOTE (-1012))))) +((-3994 . T) (-3984 . T) (-3995 . T)) +((OR (-12 (|HasCategory| (-117) (QUOTE (-260 (-117)))) (|HasCategory| (-117) (QUOTE (-319)))) (-12 (|HasCategory| (-117) (QUOTE (-260 (-117)))) (|HasCategory| (-117) (QUOTE (-1013))))) (|HasCategory| (-117) (QUOTE (-553 (-473)))) (|HasCategory| (-117) (QUOTE (-319))) (|HasCategory| (-117) (QUOTE (-756))) (|HasCategory| (-117) (QUOTE (-1013))) (|HasCategory| (-117) (QUOTE (-552 (-772)))) (|HasCategory| (-117) (QUOTE (-72))) (-12 (|HasCategory| (-117) (QUOTE (-260 (-117)))) (|HasCategory| (-117) (QUOTE (-1013))))) (-115 R Q A) ((|constructor| (NIL "CommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator([q1,...,qn])} returns \\spad{[[p1,...,pn], d]} such that \\spad{qi = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}'s.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator([q1,...,qn])} returns \\spad{[p1,...,pn]} such that \\spad{qi = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}'s.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator([q1,...,qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}qn."))) NIL @@ -402,7 +402,7 @@ NIL NIL (-118) ((|constructor| (NIL "Rings of Characteristic Non Zero")) (|charthRoot| (((|Maybe| $) $) "\\spad{charthRoot(x)} returns the \\spad{p}th root of \\spad{x} where \\spad{p} is the characteristic of the ring."))) -((-3990 . T)) +((-3991 . T)) NIL (-119 R) ((|constructor| (NIL "This package provides a characteristicPolynomial function for any matrix over a commutative ring.")) (|characteristicPolynomial| ((|#1| (|Matrix| |#1|) |#1|) "\\spad{characteristicPolynomial(m,r)} computes the characteristic polynomial of the matrix \\spad{m} evaluated at the point \\spad{r}. In particular,{} if \\spad{r} is the polynomial 'x,{} then it returns the characteristic polynomial expressed as a polynomial in 'x."))) @@ -410,9 +410,9 @@ NIL NIL (-120) ((|constructor| (NIL "Rings of Characteristic Zero."))) -((-3990 . T)) +((-3991 . T)) NIL -(-121 -3091 UP UPUP) +(-121 -3092 UP UPUP) ((|constructor| (NIL "Tools to send a point to infinity on an algebraic curve.")) (|chvar| (((|Record| (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) |#3| |#3|) "\\spad{chvar(f(x,y), p(x,y))} returns \\spad{[g(z,t), q(z,t), c1(z), c2(z), n]} such that under the change of variable \\spad{x = c1(z)},{} \\spad{y = t * c2(z)},{} one gets \\spad{f(x,y) = g(z,t)}. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x, y) = 0}. The algebraic relation between \\spad{z} and \\spad{t} is \\spad{q(z, t) = 0}.")) (|eval| ((|#3| |#3| (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{eval(p(x,y), f(x), g(x))} returns \\spad{p(f(x), y * g(x))}.")) (|goodPoint| ((|#1| |#3| |#3|) "\\spad{goodPoint(p, q)} returns an integer a such that a is neither a pole of \\spad{p(x,y)} nor a branch point of \\spad{q(x,y) = 0}.")) (|rootPoly| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| (|Fraction| |#2|)) (|:| |radicand| |#2|)) (|Fraction| |#2|) (|NonNegativeInteger|)) "\\spad{rootPoly(g, n)} returns \\spad{[m, c, P]} such that \\spad{c * g ** (1/n) = P ** (1/m)} thus if \\spad{y**n = g},{} then \\spad{z**m = P} where \\spad{z = c * y}.")) (|radPoly| (((|Union| (|Record| (|:| |radicand| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) "failed") |#3|) "\\spad{radPoly(p(x, y))} returns \\spad{[c(x), n]} if \\spad{p} is of the form \\spad{y**n - c(x)},{} \"failed\" otherwise.")) (|mkIntegral| (((|Record| (|:| |coef| (|Fraction| |#2|)) (|:| |poly| |#3|)) |#3|) "\\spad{mkIntegral(p(x,y))} returns \\spad{[c(x), q(x,z)]} such that \\spad{z = c * y} is integral. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x, y) = 0}. The algebraic relation between \\spad{x} and \\spad{z} is \\spad{q(x, z) = 0}."))) NIL NIL @@ -423,14 +423,14 @@ NIL (-123 A S) ((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(p,u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) == [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#2| $) "\\spad{remove(x,u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) == [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} ~= \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(p,u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) == [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2| |#2|) "\\spad{reduce(f,u,x,z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2|) "\\spad{reduce(f,u,x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#2| (|Mapping| |#2| |#2| |#2|) $) "\\spad{reduce(f,u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#2| "failed") (|Mapping| (|Boolean|) |#2|) $) "\\spad{find(p,u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#2|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List."))) NIL -((|HasCategory| |#2| (QUOTE (-552 (-472)))) (|HasCategory| |#2| (QUOTE (-1012))) (|HasAttribute| |#1| (QUOTE -3993))) +((|HasCategory| |#2| (QUOTE (-553 (-473)))) (|HasCategory| |#2| (QUOTE (-1013))) (|HasAttribute| |#1| (QUOTE -3994))) (-124 S) ((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) == [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#1| $) "\\spad{remove(x,u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) == [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} ~= \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(p,u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) == [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) "\\spad{reduce(f,u,x,z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) "\\spad{reduce(f,u,x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#1| (|Mapping| |#1| |#1| |#1|) $) "\\spad{reduce(f,u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#1| "failed") (|Mapping| (|Boolean|) |#1|) $) "\\spad{find(p,u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List."))) NIL NIL (-125 |n| K Q) ((|constructor| (NIL "CliffordAlgebra(\\spad{n},{} \\spad{K},{} \\spad{Q}) defines a vector space of dimension \\spad{2**n} over \\spad{K},{} given a quadratic form \\spad{Q} on \\spad{K**n}. \\blankline If \\spad{e[i]},{} \\spad{1<=i<=n} is a basis for \\spad{K**n} then \\indented{3}{1,{} \\spad{e[i]} (\\spad{1<=i<=n}),{} \\spad{e[i1]*e[i2]}} (\\spad{1<=i1<i2<=n}),{}...,{}\\spad{e[1]*e[2]*..*e[n]} is a basis for the Clifford Algebra. \\blankline The algebra is defined by the relations \\indented{3}{\\spad{e[i]*e[j] = -e[j]*e[i]}\\space{2}(\\spad{i \\~~= j}),{}} \\indented{3}{\\spad{e[i]*e[i] = Q(e[i])}} \\blankline Examples of Clifford Algebras are: gaussians,{} quaternions,{} exterior algebras and spin algebras.")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} computes the multiplicative inverse of \\spad{x} or \"failed\" if \\spad{x} is not invertible.")) (|coefficient| ((|#2| $ (|List| (|PositiveInteger|))) "\\spad{coefficient(x,[i1,i2,...,iN])} extracts the coefficient of \\spad{e(i1)*e(i2)*...*e(iN)} in \\spad{x}.")) (|monomial| (($ |#2| (|List| (|PositiveInteger|))) "\\spad{monomial(c,[i1,i2,...,iN])} produces the value given by \\spad{c*e(i1)*e(i2)*...*e(iN)}.")) (|e| (($ (|PositiveInteger|)) "\\spad{e(n)} produces the appropriate unit element."))) -((-3988 . T) (-3987 . T) (-3990 . T)) +((-3989 . T) (-3988 . T) (-3991 . T)) NIL (-126) ((|constructor| (NIL "\\indented{1}{The purpose of this package is to provide reasonable plots of} functions with singularities.")) (|clipWithRanges| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{clipWithRanges(pointLists,xMin,xMax,yMin,yMax)} performs clipping on a list of lists of points,{} \\spad{pointLists}. Clipping is done within the specified ranges of \\spad{xMin},{} \\spad{xMax} and \\spad{yMin},{} \\spad{yMax}. This function is used internally by the \\fakeAxiomFun{iClipParametric} subroutine in this package.")) (|clipParametric| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clipParametric(p,frac,sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clipParametric(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.")) (|clip| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{clip(ll)} performs two-dimensional clipping on a list of lists of points,{} \\spad{ll}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|Point| (|DoubleFloat|)))) "\\spad{clip(l)} performs two-dimensional clipping on a curve \\spad{l},{} which is a list of points; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clip(p,frac,sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable \\spad{y = f(x)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\spadfun{clip} function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clip(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable,{} \\spad{y = f(x)}; the default parameters \\spad{1/4} for the fraction and \\spad{5/1} for the scale are used in the \\spadfun{clip} function."))) @@ -452,7 +452,7 @@ NIL ((|constructor| (NIL "Color() specifies a domain of 27 colors provided in the \\Language{} system (the colors mix additively).")) (|color| (($ (|Integer|)) "\\spad{color(i)} returns a color of the indicated hue \\spad{i}.")) (|numberOfHues| (((|PositiveInteger|)) "\\spad{numberOfHues()} returns the number of total hues,{} set in totalHues.")) (|hue| (((|Integer|) $) "\\spad{hue(c)} returns the hue index of the indicated color \\spad{c}.")) (|blue| (($) "\\spad{blue()} returns the position of the blue hue from total hues.")) (|green| (($) "\\spad{green()} returns the position of the green hue from total hues.")) (|yellow| (($) "\\spad{yellow()} returns the position of the yellow hue from total hues.")) (|red| (($) "\\spad{red()} returns the position of the red hue from total hues.")) (+ (($ $ $) "\\spad{c1 + c2} additively mixes the two colors \\spad{c1} and \\spad{c2}.")) (* (($ (|DoubleFloat|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.") (($ (|PositiveInteger|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}."))) NIL NIL -(-131 R -3091) +(-131 R -3092) ((|constructor| (NIL "Provides combinatorial functions over an integral domain.")) (|ipow| ((|#2| (|List| |#2|)) "\\spad{ipow(l)} should be local but conditional.")) (|iidprod| ((|#2| (|List| |#2|)) "\\spad{iidprod(l)} should be local but conditional.")) (|iidsum| ((|#2| (|List| |#2|)) "\\spad{iidsum(l)} should be local but conditional.")) (|iipow| ((|#2| (|List| |#2|)) "\\spad{iipow(l)} should be local but conditional.")) (|iiperm| ((|#2| (|List| |#2|)) "\\spad{iiperm(l)} should be local but conditional.")) (|iibinom| ((|#2| (|List| |#2|)) "\\spad{iibinom(l)} should be local but conditional.")) (|iifact| ((|#2| |#2|) "\\spad{iifact(x)} should be local but conditional.")) (|product| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{product(f(n), n = a..b)} returns \\spad{f}(a) * ... * \\spad{f}(\\spad{b}) as a formal product.") ((|#2| |#2| (|Symbol|)) "\\spad{product(f(n), n)} returns the formal product \\spad{P}(\\spad{n}) which verifies \\spad{P}(\\spad{n+1})/P(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|summation| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{summation(f(n), n = a..b)} returns \\spad{f}(a) + ... + \\spad{f}(\\spad{b}) as a formal sum.") ((|#2| |#2| (|Symbol|)) "\\spad{summation(f(n), n)} returns the formal sum \\spad{S}(\\spad{n}) which verifies \\spad{S}(\\spad{n+1}) - \\spad{S}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|factorials| ((|#2| |#2| (|Symbol|)) "\\spad{factorials(f, x)} rewrites the permutations and binomials in \\spad{f} involving \\spad{x} in terms of factorials.") ((|#2| |#2|) "\\spad{factorials(f)} rewrites the permutations and binomials in \\spad{f} in terms of factorials.")) (|factorial| ((|#2| |#2|) "\\spad{factorial(n)} returns the factorial of \\spad{n},{} \\spadignore{i.e.} n!.")) (|permutation| ((|#2| |#2| |#2|) "\\spad{permutation(n, r)} returns the number of permutations of \\spad{n} objects taken \\spad{r} at a time,{} \\spadignore{i.e.} n!/(\\spad{n}-\\spad{r})!.")) (|binomial| ((|#2| |#2| |#2|) "\\spad{binomial(n, r)} returns the number of subsets of \\spad{r} objects taken among \\spad{n} objects,{} \\spadignore{i.e.} n!/(r! * (\\spad{n}-\\spad{r})!).")) (** ((|#2| |#2| |#2|) "\\spad{a ** b} is the formal exponential a**b.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a combinatorial operator.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a combinatorial operator."))) NIL NIL @@ -483,10 +483,10 @@ NIL (-138 S R) ((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#2|) (|:| |phi| |#2|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#2| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(x, r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#2| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#2| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#2| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#2| |#2|) "\\spad{complex(x,y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})"))) NIL -((|HasCategory| |#2| (QUOTE (-820))) (|HasCategory| |#2| (QUOTE (-482))) (|HasCategory| |#2| (QUOTE (-914))) (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (QUOTE (-972))) (|HasCategory| |#2| (QUOTE (-932))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-552 (-472)))) (|HasCategory| |#2| (QUOTE (-312))) (|HasAttribute| |#2| (QUOTE -3989)) (|HasAttribute| |#2| (QUOTE -3992)) (|HasCategory| |#2| (QUOTE (-258))) (|HasCategory| |#2| (QUOTE (-494)))) +((|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (QUOTE (-483))) (|HasCategory| |#2| (QUOTE (-915))) (|HasCategory| |#2| (QUOTE (-1114))) (|HasCategory| |#2| (QUOTE (-973))) (|HasCategory| |#2| (QUOTE (-933))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-553 (-473)))) (|HasCategory| |#2| (QUOTE (-312))) (|HasAttribute| |#2| (QUOTE -3990)) (|HasAttribute| |#2| (QUOTE -3993)) (|HasCategory| |#2| (QUOTE (-258))) (|HasCategory| |#2| (QUOTE (-495)))) (-139 R) ((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#1|) (|:| |phi| |#1|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(x, r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#1| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#1| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#1| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#1| |#1|) "\\spad{complex(x,y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})"))) -((-3986 OR (|has| |#1| (-494)) (-12 (|has| |#1| (-258)) (|has| |#1| (-820)))) (-3991 |has| |#1| (-312)) (-3985 |has| |#1| (-312)) (-3989 |has| |#1| (-6 -3989)) (-3992 |has| |#1| (-6 -3992)) (-1374 . T) ((-3995 "*") . T) (-3987 . T) (-3988 . T) (-3990 . T)) +((-3987 OR (|has| |#1| (-495)) (-12 (|has| |#1| (-258)) (|has| |#1| (-821)))) (-3992 |has| |#1| (-312)) (-3986 |has| |#1| (-312)) (-3990 |has| |#1| (-6 -3990)) (-3993 |has| |#1| (-6 -3993)) (-1375 . T) ((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T)) NIL (-140 RR PR) ((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Basic Functions: Related Constructors: Complex,{} UnivariatePolynomial Also See: AMS Classifications: Keywords: complex,{} polynomial factorization,{} factor References:")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} factorizes the polynomial \\spad{p} with complex coefficients."))) @@ -498,8 +498,8 @@ NIL NIL (-142 R) ((|constructor| (NIL "\\spadtype {Complex(R)} creates the domain of elements of the form \\spad{a + b * i} where \\spad{a} and \\spad{b} come from the ring \\spad{R},{} and \\spad{i} is a new element such that \\spad{i**2 = -1}."))) -((-3986 OR (|has| |#1| (-494)) (-12 (|has| |#1| (-258)) (|has| |#1| (-820)))) (-3991 |has| |#1| (-312)) (-3985 |has| |#1| (-312)) (-3989 |has| |#1| (-6 -3989)) (-3992 |has| |#1| (-6 -3992)) (-1374 . T) ((-3995 "*") . T) (-3987 . T) (-3988 . T) (-3990 . T)) -((|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-299))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-299)))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-318))) (OR (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-299)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-312)))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-299)))) (|HasCategory| |#1| (QUOTE (-808 (-1088)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-808 (-1088))))) (|HasCategory| |#1| (QUOTE (-810 (-1088))))) (|HasCategory| |#1| (QUOTE (-579 (-483)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-949 (-348 (-483)))))) (|HasCategory| |#1| (QUOTE (-949 (-348 (-483))))) (|HasCategory| |#1| (QUOTE (-949 (-483)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-820)))) (-12 (|HasCategory| |#1| (QUOTE (-299))) (|HasCategory| |#1| (QUOTE (-820)))) (|HasCategory| |#1| (QUOTE (-312)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-820)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-820)))) (-12 (|HasCategory| |#1| (QUOTE (-299))) (|HasCategory| |#1| (QUOTE (-820))))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-494)))) (-12 (|HasCategory| |#1| (QUOTE (-914))) (|HasCategory| |#1| (QUOTE (-1113)))) (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (QUOTE (-932))) (|HasCategory| |#1| (QUOTE (-552 (-472)))) (OR (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-299))) (|HasCategory| |#1| (QUOTE (-494)))) (OR (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-299)))) (|HasCategory| |#1| (QUOTE (-552 (-799 (-328))))) (|HasCategory| |#1| (QUOTE (-552 (-799 (-483))))) (|HasCategory| |#1| (QUOTE (-795 (-328)))) (|HasCategory| |#1| (QUOTE (-795 (-483)))) (|HasCategory| |#1| (|%list| (QUOTE -454) (QUOTE (-1088)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -241) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-972))) (-12 (|HasCategory| |#1| (QUOTE (-972))) (|HasCategory| |#1| (QUOTE (-1113)))) (|HasCategory| |#1| (QUOTE (-482))) (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-820))) (OR (-12 (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-820)))) (|HasCategory| |#1| (QUOTE (-312)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-820)))) (|HasCategory| |#1| (QUOTE (-494)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-312)))) (|HasCategory| |#1| (QUOTE (-189)))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-810 (-1088)))) (|HasCategory| |#1| (QUOTE (-190))) (-12 (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-820)))) (|HasAttribute| |#1| (QUOTE -3989)) (|HasAttribute| |#1| (QUOTE -3992)) (-12 (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-312)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-810 (-1088))))) (-12 (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-312)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-808 (-1088))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-820))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-299)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-820))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) +((-3987 OR (|has| |#1| (-495)) (-12 (|has| |#1| (-258)) (|has| |#1| (-821)))) (-3992 |has| |#1| (-312)) (-3986 |has| |#1| (-312)) (-3990 |has| |#1| (-6 -3990)) (-3993 |has| |#1| (-6 -3993)) (-1375 . T) ((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T)) +((|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-299))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-299)))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-319))) (OR (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-299)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-312)))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-299)))) (|HasCategory| |#1| (QUOTE (-809 (-1089)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-809 (-1089))))) (|HasCategory| |#1| (QUOTE (-811 (-1089))))) (|HasCategory| |#1| (QUOTE (-580 (-484)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-950 (-349 (-484)))))) (|HasCategory| |#1| (QUOTE (-950 (-349 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-484)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-821)))) (-12 (|HasCategory| |#1| (QUOTE (-299))) (|HasCategory| |#1| (QUOTE (-821)))) (|HasCategory| |#1| (QUOTE (-312)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-821)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-821)))) (-12 (|HasCategory| |#1| (QUOTE (-299))) (|HasCategory| |#1| (QUOTE (-821))))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-495)))) (-12 (|HasCategory| |#1| (QUOTE (-915))) (|HasCategory| |#1| (QUOTE (-1114)))) (|HasCategory| |#1| (QUOTE (-1114))) (|HasCategory| |#1| (QUOTE (-933))) (|HasCategory| |#1| (QUOTE (-553 (-473)))) (OR (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-299))) (|HasCategory| |#1| (QUOTE (-495)))) (OR (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-299)))) (|HasCategory| |#1| (QUOTE (-553 (-800 (-329))))) (|HasCategory| |#1| (QUOTE (-553 (-800 (-484))))) (|HasCategory| |#1| (QUOTE (-796 (-329)))) (|HasCategory| |#1| (QUOTE (-796 (-484)))) (|HasCategory| |#1| (|%list| (QUOTE -455) (QUOTE (-1089)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -241) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-973))) (-12 (|HasCategory| |#1| (QUOTE (-973))) (|HasCategory| |#1| (QUOTE (-1114)))) (|HasCategory| |#1| (QUOTE (-483))) (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-821))) (OR (-12 (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-821)))) (|HasCategory| |#1| (QUOTE (-312)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-821)))) (|HasCategory| |#1| (QUOTE (-495)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-312)))) (|HasCategory| |#1| (QUOTE (-189)))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-811 (-1089)))) (|HasCategory| |#1| (QUOTE (-190))) (-12 (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-821)))) (|HasAttribute| |#1| (QUOTE -3990)) (|HasAttribute| |#1| (QUOTE -3993)) (-12 (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-312)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-811 (-1089))))) (-12 (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-312)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-809 (-1089))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-299)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) (-143 R S) ((|constructor| (NIL "This package extends maps from underlying rings to maps between complex over those rings.")) (|map| (((|Complex| |#2|) (|Mapping| |#2| |#1|) (|Complex| |#1|)) "\\spad{map(f,u)} maps \\spad{f} onto real and imaginary parts of \\spad{u}."))) NIL @@ -514,7 +514,7 @@ NIL NIL (-146) ((|constructor| (NIL "The category of commutative rings with unity,{} \\spadignore{i.e.} rings where \\spadop{*} is commutative,{} and which have a multiplicative identity. element.")) (|commutative| ((|attribute| "*") "multiplication is commutative."))) -(((-3995 "*") . T) (-3987 . T) (-3988 . T) (-3990 . T)) +(((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T)) NIL (-147) ((|constructor| (NIL "This category is the root of the I/O conduits.")) (|close!| (($ $) "\\spad{close!(c)} closes the conduit \\spad{c},{} changing its state to one that is invalid for future read or write operations."))) @@ -522,7 +522,7 @@ NIL NIL (-148 R) ((|constructor| (NIL "\\spadtype{ContinuedFraction} implements general \\indented{1}{continued fractions.\\space{2}This version is not restricted to simple,{}} \\indented{1}{finite fractions and uses the \\spadtype{Stream} as a} \\indented{1}{representation.\\space{2}The arithmetic functions assume that the} \\indented{1}{approximants alternate below/above the convergence point.} \\indented{1}{This is enforced by ensuring the partial numerators and partial} \\indented{1}{denominators are greater than 0 in the Euclidean domain view of \\spad{R}} \\indented{1}{(\\spadignore{i.e.} \\spad{sizeLess?(0, x)}).}")) (|complete| (($ $) "\\spad{complete(x)} causes all entries in \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed. If \\spadvar{\\spad{x}} is an infinite continued fraction,{} a user-initiated interrupt is necessary to stop the computation.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,n)} causes the first \\spadvar{\\spad{n}} entries in the continued fraction \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed.")) (|denominators| (((|Stream| |#1|) $) "\\spad{denominators(x)} returns the stream of denominators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|numerators| (((|Stream| |#1|) $) "\\spad{numerators(x)} returns the stream of numerators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|convergents| (((|Stream| (|Fraction| |#1|)) $) "\\spad{convergents(x)} returns the stream of the convergents of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|approximants| (((|Stream| (|Fraction| |#1|)) $) "\\spad{approximants(x)} returns the stream of approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be infinite and periodic with period 1.")) (|reducedForm| (($ $) "\\spad{reducedForm(x)} puts the continued fraction \\spadvar{\\spad{x}} in reduced form,{} \\spadignore{i.e.} the function returns an equivalent continued fraction of the form \\spad{continuedFraction(b0,[1,1,1,...],[b1,b2,b3,...])}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} extracts the whole part of \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{wholePart(x) = b0}.")) (|partialQuotients| (((|Stream| |#1|) $) "\\spad{partialQuotients(x)} extracts the partial quotients in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{partialQuotients(x) = [b0,b1,b2,b3,...]}.")) (|partialDenominators| (((|Stream| |#1|) $) "\\spad{partialDenominators(x)} extracts the denominators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{partialDenominators(x) = [b1,b2,b3,...]}.")) (|partialNumerators| (((|Stream| |#1|) $) "\\spad{partialNumerators(x)} extracts the numerators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{partialNumerators(x) = [a1,a2,a3,...]}.")) (|reducedContinuedFraction| (($ |#1| (|Stream| |#1|)) "\\spad{reducedContinuedFraction(b0,b)} constructs a continued fraction in the following way: if \\spad{b = [b1,b2,...]} then the result is the continued fraction \\spad{b0 + 1/(b1 + 1/(b2 + ...))}. That is,{} the result is the same as \\spad{continuedFraction(b0,[1,1,1,...],[b1,b2,b3,...])}.")) (|continuedFraction| (($ |#1| (|Stream| |#1|) (|Stream| |#1|)) "\\spad{continuedFraction(b0,a,b)} constructs a continued fraction in the following way: if \\spad{a = [a1,a2,...]} and \\spad{b = [b1,b2,...]} then the result is the continued fraction \\spad{b0 + a1/(b1 + a2/(b2 + ...))}.") (($ (|Fraction| |#1|)) "\\spad{continuedFraction(r)} converts the fraction \\spadvar{\\spad{r}} with components of type \\spad{R} to a continued fraction over \\spad{R}."))) -(((-3995 "*") . T) (-3986 . T) (-3991 . T) (-3985 . T) (-3987 . T) (-3988 . T) (-3990 . T)) +(((-3996 "*") . T) (-3987 . T) (-3992 . T) (-3986 . T) (-3988 . T) (-3989 . T) (-3991 . T)) NIL (-149) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Contour' a list of bindings making up a `virtual scope'.")) (|findBinding| (((|Maybe| (|Binding|)) (|Identifier|) $) "\\spad{findBinding(c,n)} returns the first binding associated with `n'. Otherwise `nothing.")) (|push| (($ (|Binding|) $) "\\spad{push(c,b)} augments the contour with binding `b'.")) (|bindings| (((|List| (|Binding|)) $) "\\spad{bindings(c)} returns the list of bindings in countour \\spad{c}."))) @@ -539,7 +539,7 @@ NIL (-152 R S CS) ((|constructor| (NIL "This package supports matching patterns involving complex expressions")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(cexpr, pat, res)} matches the pattern \\spad{pat} to the complex expression \\spad{cexpr}. res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL -((|HasCategory| (-856 |#2|) (|%list| (QUOTE -795) (|devaluate| |#1|)))) +((|HasCategory| (-857 |#2|) (|%list| (QUOTE -796) (|devaluate| |#1|)))) (-153 R) ((|constructor| (NIL "This package \\undocumented{}")) (|multiEuclideanTree| (((|List| |#1|) (|List| |#1|) |#1|) "\\spad{multiEuclideanTree(l,r)} \\undocumented{}")) (|chineseRemainder| (((|List| |#1|) (|List| (|List| |#1|)) (|List| |#1|)) "\\spad{chineseRemainder(llv,lm)} returns a list of values,{} each of which corresponds to the Chinese remainder of the associated element of \\axiom{\\spad{llv}} and axiom{\\spad{lm}}. This is more efficient than applying chineseRemainder several times.") ((|#1| (|List| |#1|) (|List| |#1|)) "\\spad{chineseRemainder(lv,lm)} returns a value \\axiom{\\spad{v}} such that,{} if \\spad{x} is \\axiom{\\spad{lv}.\\spad{i}} modulo \\axiom{\\spad{lm}.\\spad{i}} for all \\axiom{\\spad{i}},{} then \\spad{x} is \\axiom{\\spad{v}} modulo \\axiom{\\spad{lm}(1)*lm(2)*...*lm(\\spad{n})}.")) (|modTree| (((|List| |#1|) |#1| (|List| |#1|)) "\\spad{modTree(r,l)} \\undocumented{}"))) NIL @@ -576,7 +576,7 @@ NIL ((|constructor| (NIL "This domain enumerates the three kinds of constructors available in OpenAxiom: category constructors,{} domain constructors,{} and package constructors.")) (|package| (($) "`package' is the kind of package constructors.")) (|domain| (($) "`domain' is the kind of domain constructors")) (|category| (($) "`category' is the kind of category constructors"))) NIL NIL -(-162 R -3091) +(-162 R -3092) ((|constructor| (NIL "\\spadtype{ComplexTrigonometricManipulations} provides function that compute the real and imaginary parts of complex functions.")) (|complexForm| (((|Complex| (|Expression| |#1|)) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f, imag f]}.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| (((|Expression| |#1|) |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| (((|Expression| |#1|) |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f, x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f, x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels."))) NIL NIL @@ -604,23 +604,23 @@ NIL ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: July 2,{} 2010 Date Last Modified: July 2,{} 2010 Descrption: \\indented{2}{Representation of a dual vector space basis,{} given by symbols.}")) (|dual| (($ (|LinearBasis| |#1|)) "\\spad{dual x} constructs the dual vector of a linear element which is part of a basis."))) NIL NIL -(-169 -3091 UP UPUP R) +(-169 -3092 UP UPUP R) ((|constructor| (NIL "This package provides functions for computing the residues of a function on an algebraic curve.")) (|doubleResultant| ((|#2| |#4| (|Mapping| |#2| |#2|)) "\\spad{doubleResultant(f, ')} returns \\spad{p}(\\spad{x}) whose roots are rational multiples of the residues of \\spad{f} at all its finite poles. Argument ' is the derivation to use."))) NIL NIL -(-170 -3091 FP) +(-170 -3092 FP) ((|constructor| (NIL "Package for the factorization of a univariate polynomial with coefficients in a finite field. The algorithm used is the \"distinct degree\" algorithm of Cantor-Zassenhaus,{} modified to use trace instead of the norm and a table for computing Frobenius as suggested by Naudin and Quitte .")) (|irreducible?| (((|Boolean|) |#2|) "\\spad{irreducible?(p)} tests whether the polynomial \\spad{p} is irreducible.")) (|tracePowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{tracePowMod(u,k,v)} produces the sum of \\spad{u**(q**i)} for \\spad{i} running and q= size \\spad{F}")) (|trace2PowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{trace2PowMod(u,k,v)} produces the sum of \\spad{u**(2**i)} for \\spad{i} running from 1 to \\spad{k} all computed modulo the polynomial \\spad{v}.")) (|exptMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{exptMod(u,k,v)} raises the polynomial \\spad{u} to the \\spad{k}th power modulo the polynomial \\spad{v}.")) (|separateFactors| (((|List| |#2|) (|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|)))) "\\spad{separateFactors(lfact)} takes the list produced by \\spadfunFrom{separateDegrees}{DistinctDegreeFactorization} and produces the complete list of factors.")) (|separateDegrees| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|))) |#2|) "\\spad{separateDegrees(p)} splits the square free polynomial \\spad{p} into factors each of which is a product of irreducibles of the same degree.")) (|distdfact| (((|Record| (|:| |cont| |#1|) (|:| |factors| (|List| (|Record| (|:| |irr| |#2|) (|:| |pow| (|Integer|)))))) |#2| (|Boolean|)) "\\spad{distdfact(p,sqfrflag)} produces the complete factorization of the polynomial \\spad{p} returning an internal data structure. If argument \\spad{sqfrflag} is \\spad{true},{} the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#2|) |#2|) "\\spad{factorSquareFree(p)} produces the complete factorization of the square free polynomial \\spad{p}.")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} produces the complete factorization of the polynomial \\spad{p}."))) NIL NIL (-171) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions.")) (|decimal| (($ (|Fraction| (|Integer|))) "\\spad{decimal(r)} converts a rational number to a decimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(d)} returns the fractional part of a decimal expansion."))) -((-3985 . T) (-3991 . T) (-3986 . T) ((-3995 "*") . T) (-3987 . T) (-3988 . T) (-3990 . T)) -((|HasCategory| (-483) (QUOTE (-820))) (|HasCategory| (-483) (QUOTE (-949 (-1088)))) (|HasCategory| (-483) (QUOTE (-118))) (|HasCategory| (-483) (QUOTE (-120))) (|HasCategory| (-483) (QUOTE (-552 (-472)))) (|HasCategory| (-483) (QUOTE (-932))) (|HasCategory| (-483) (QUOTE (-739))) (|HasCategory| (-483) (QUOTE (-755))) (OR (|HasCategory| (-483) (QUOTE (-739))) (|HasCategory| (-483) (QUOTE (-755)))) (|HasCategory| (-483) (QUOTE (-949 (-483)))) (|HasCategory| (-483) (QUOTE (-1064))) (|HasCategory| (-483) (QUOTE (-795 (-328)))) (|HasCategory| (-483) (QUOTE (-795 (-483)))) (|HasCategory| (-483) (QUOTE (-552 (-799 (-328))))) (|HasCategory| (-483) (QUOTE (-552 (-799 (-483))))) (|HasCategory| (-483) (QUOTE (-189))) (|HasCategory| (-483) (QUOTE (-810 (-1088)))) (|HasCategory| (-483) (QUOTE (-190))) (|HasCategory| (-483) (QUOTE (-808 (-1088)))) (|HasCategory| (-483) (QUOTE (-454 (-1088) (-483)))) (|HasCategory| (-483) (QUOTE (-260 (-483)))) (|HasCategory| (-483) (QUOTE (-241 (-483) (-483)))) (|HasCategory| (-483) (QUOTE (-258))) (|HasCategory| (-483) (QUOTE (-482))) (|HasCategory| (-483) (QUOTE (-579 (-483)))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-483) (QUOTE (-820)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-483) (QUOTE (-820)))) (|HasCategory| (-483) (QUOTE (-118))))) +((-3986 . T) (-3992 . T) (-3987 . T) ((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T)) +((|HasCategory| (-484) (QUOTE (-821))) (|HasCategory| (-484) (QUOTE (-950 (-1089)))) (|HasCategory| (-484) (QUOTE (-118))) (|HasCategory| (-484) (QUOTE (-120))) (|HasCategory| (-484) (QUOTE (-553 (-473)))) (|HasCategory| (-484) (QUOTE (-933))) (|HasCategory| (-484) (QUOTE (-740))) (|HasCategory| (-484) (QUOTE (-756))) (OR (|HasCategory| (-484) (QUOTE (-740))) (|HasCategory| (-484) (QUOTE (-756)))) (|HasCategory| (-484) (QUOTE (-950 (-484)))) (|HasCategory| (-484) (QUOTE (-1065))) (|HasCategory| (-484) (QUOTE (-796 (-329)))) (|HasCategory| (-484) (QUOTE (-796 (-484)))) (|HasCategory| (-484) (QUOTE (-553 (-800 (-329))))) (|HasCategory| (-484) (QUOTE (-553 (-800 (-484))))) (|HasCategory| (-484) (QUOTE (-189))) (|HasCategory| (-484) (QUOTE (-811 (-1089)))) (|HasCategory| (-484) (QUOTE (-190))) (|HasCategory| (-484) (QUOTE (-809 (-1089)))) (|HasCategory| (-484) (QUOTE (-455 (-1089) (-484)))) (|HasCategory| (-484) (QUOTE (-260 (-484)))) (|HasCategory| (-484) (QUOTE (-241 (-484) (-484)))) (|HasCategory| (-484) (QUOTE (-258))) (|HasCategory| (-484) (QUOTE (-483))) (|HasCategory| (-484) (QUOTE (-580 (-484)))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-484) (QUOTE (-821)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-484) (QUOTE (-821)))) (|HasCategory| (-484) (QUOTE (-118))))) (-172) ((|constructor| (NIL "This domain represents the syntax of a definition.")) (|body| (((|SpadAst|) $) "\\spad{body(d)} returns the right hand side of the definition `d'.")) (|signature| (((|Signature|) $) "\\spad{signature(d)} returns the signature of the operation being defined. Note that this list may be partial in that it contains only the types actually specified in the definition.")) (|head| (((|HeadAst|) $) "\\spad{head(d)} returns the head of the definition `d'. This is a list of identifiers starting with the name of the operation followed by the name of the parameters,{} if any."))) NIL NIL -(-173 R -3091) +(-173 R -3092) ((|constructor| (NIL "\\spadtype{ElementaryFunctionDefiniteIntegration} provides functions to compute definite integrals of elementary functions.")) (|innerint| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{innerint(f, x, a, b, ignore?)} should be local but conditional")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|)) (|String|)) "\\spad{integrate(f, x = a..b, \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|))) "\\spad{integrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}."))) NIL NIL @@ -634,19 +634,19 @@ NIL NIL (-176 S) ((|constructor| (NIL "Linked list implementation of a Dequeue")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,y,...,z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}."))) -((-3993 . T) (-3994 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1012))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1012)))) (|HasCategory| |#1| (QUOTE (-551 (-771)))) (|HasCategory| |#1| (QUOTE (-72)))) +((-3994 . T) (-3995 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1013))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-72)))) (-177 |CoefRing| |listIndVar|) ((|constructor| (NIL "The deRham complex of Euclidean space,{} that is,{} the class of differential forms of arbitary degree over a coefficient ring. See Flanders,{} Harley,{} Differential Forms,{} With Applications to the Physical Sciences,{} New York,{} Academic Press,{} 1963.")) (|exteriorDifferential| (($ $) "\\spad{exteriorDifferential(df)} returns the exterior derivative (gradient,{} curl,{} divergence,{} ...) of the differential form \\spad{df}.")) (|totalDifferential| (($ (|Expression| |#1|)) "\\spad{totalDifferential(x)} returns the total differential (gradient) form for element \\spad{x}.")) (|map| (($ (|Mapping| (|Expression| |#1|) (|Expression| |#1|)) $) "\\spad{map(f,df)} replaces each coefficient \\spad{x} of differential form \\spad{df} by \\spad{f(x)}.")) (|degree| (((|Integer|) $) "\\spad{degree(df)} returns the homogeneous degree of differential form \\spad{df}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(df)} tests if differential form \\spad{df} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{df}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(df)} tests if all of the terms of differential form \\spad{df} have the same degree.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th basis term for a differential form.")) (|coefficient| (((|Expression| |#1|) $ $) "\\spad{coefficient(df,u)},{} where \\spad{df} is a differential form,{} returns the coefficient of \\spad{df} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise.")) (|reductum| (($ $) "\\spad{reductum(df)},{} where \\spad{df} is a differential form,{} returns \\spad{df} minus the leading term of \\spad{df} if \\spad{df} has two or more terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(df)} returns the leading basis term of differential form \\spad{df}.")) (|leadingCoefficient| (((|Expression| |#1|) $) "\\spad{leadingCoefficient(df)} returns the leading coefficient of differential form \\spad{df}."))) -((-3990 . T)) +((-3991 . T)) NIL -(-178 R -3091) +(-178 R -3092) ((|constructor| (NIL "\\spadtype{DefiniteIntegrationTools} provides common tools used by the definite integration of both rational and elementary functions.")) (|checkForZero| (((|Union| (|Boolean|) "failed") (|SparseUnivariatePolynomial| |#2|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p, a, b, incl?)} is \\spad{true} if \\spad{p} has a zero between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.") (((|Union| (|Boolean|) "failed") (|Polynomial| |#1|) (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p, x, a, b, incl?)} is \\spad{true} if \\spad{p} has a zero for \\spad{x} between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.")) (|computeInt| (((|Union| (|OrderedCompletion| |#2|) "failed") (|Kernel| |#2|) |#2| (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{computeInt(x, g, a, b, eval?)} returns the integral of \\spad{f} for \\spad{x} between a and \\spad{b},{} assuming that \\spad{g} is an indefinite integral of \\spad{f} and \\spad{f} has no pole between a and \\spad{b}. If \\spad{eval?} is \\spad{true},{} then \\spad{g} can be evaluated safely at \\spad{a} and \\spad{b},{} provided that they are finite values. Otherwise,{} limits must be computed.")) (|ignore?| (((|Boolean|) (|String|)) "\\spad{ignore?(s)} is \\spad{true} if \\spad{s} is the string that tells the integrator to assume that the function has no pole in the integration interval."))) NIL NIL (-179) ((|constructor| (NIL "\\indented{1}{\\spadtype{DoubleFloat} is intended to make accessible} hardware floating point arithmetic in \\Language{},{} either native double precision,{} or IEEE. On most machines,{} there will be hardware support for the arithmetic operations: \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and possibly also the \\spadfunFrom{sqrt}{DoubleFloat} operation. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat},{} \\spadfunFrom{atan}{DoubleFloat} are normally coded in software based on minimax polynomial/rational approximations. Note that under Lisp/VM,{} \\spadfunFrom{atan}{DoubleFloat} is not available at this time. Some general comments about the accuracy of the operations: the operations \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and \\spadfunFrom{sqrt}{DoubleFloat} are expected to be fully accurate. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat} and \\spadfunFrom{atan}{DoubleFloat} are not expected to be fully accurate. In particular,{} \\spadfunFrom{sin}{DoubleFloat} and \\spadfunFrom{cos}{DoubleFloat} will lose all precision for large arguments. \\blankline The \\spadtype{Float} domain provides an alternative to the \\spad{DoubleFloat} domain. It provides an arbitrary precision model of floating point arithmetic. This means that accuracy problems like those above are eliminated by increasing the working precision where necessary. \\spadtype{Float} provides some special functions such as \\spadfunFrom{erf}{DoubleFloat},{} the error function in addition to the elementary functions. The disadvantage of \\spadtype{Float} is that it is much more expensive than small floats when the latter can be used.")) (|nan?| (((|Boolean|) $) "\\spad{nan? x} holds if \\spad{x} is a Not a Number floating point data in the IEEE 754 sense.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n, b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)} (that is,{} \\spad{|(r-f)/f| < b**(-n)}).") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|Beta| (($ $ $) "\\spad{Beta(x,y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|atan| (($ $ $) "\\spad{atan(x,y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm with base 10 for \\spad{x}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm with base 2 for \\spad{x}.")) (|exp1| (($) "\\spad{exp1()} returns the natural log base \\spad{2.718281828...}.")) (** (($ $ $) "\\spad{x ** y} returns the \\spad{y}th power of \\spad{x} (equal to \\spad{exp(y log x)}).")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}."))) -((-3768 . T) (-3985 . T) (-3991 . T) (-3986 . T) ((-3995 "*") . T) (-3987 . T) (-3988 . T) (-3990 . T)) +((-3769 . T) (-3986 . T) (-3992 . T) (-3987 . T) ((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T)) NIL (-180) ((|constructor| (NIL "This package provides special functions for double precision real and complex floating point.")) (|hypergeometric0F1| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{hypergeometric0F1(c,z)} is the hypergeometric function \\spad{0F1(; c; z)}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{hypergeometric0F1(c,z)} is the hypergeometric function \\spad{0F1(; c; z)}.")) (|airyBi| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Bi''(x) - x * Bi(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Bi''(x) - x * Bi(x) = 0}.}")) (|airyAi| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Ai''(x) - x * Ai(x) = 0}.}") (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Ai''(x) - x * Ai(x) = 0}.}")) (|besselK| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselK(v,x)} is the modified Bessel function of the first kind,{} \\spad{K(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,x) = \\%pi/2*(I(-v,x) - I(v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselK(v,x)} is the modified Bessel function of the first kind,{} \\spad{K(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,x) = \\%pi/2*(I(-v,x) - I(v,x))/sin(v*\\%pi)}.} so is not valid for integer values of \\spad{v}.")) (|besselI| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselI(v,x)} is the modified Bessel function of the first kind,{} \\spad{I(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselI(v,x)} is the modified Bessel function of the first kind,{} \\spad{I(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}")) (|besselY| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselY(v,x)} is the Bessel function of the second kind,{} \\spad{Y(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,x) = (J(v,x) cos(v*\\%pi) - J(-v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselY(v,x)} is the Bessel function of the second kind,{} \\spad{Y(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,x) = (J(v,x) cos(v*\\%pi) - J(-v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.")) (|besselJ| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselJ(v,x)} is the Bessel function of the first kind,{} \\spad{J(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselJ(v,x)} is the Bessel function of the first kind,{} \\spad{J(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}")) (|polygamma| (((|Complex| (|DoubleFloat|)) (|NonNegativeInteger|) (|Complex| (|DoubleFloat|))) "\\spad{polygamma(n, x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.") (((|DoubleFloat|) (|NonNegativeInteger|) (|DoubleFloat|)) "\\spad{polygamma(n, x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.")) (|digamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}")) (|logGamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.")) (|Beta| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Beta(x, y)} is the Euler beta function,{} \\spad{B(x,y)},{} defined by \\indented{2}{\\spad{Beta(x,y) = integrate(t^(x-1)*(1-t)^(y-1), t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{Beta(x, y)} is the Euler beta function,{} \\spad{B(x,y)},{} defined by \\indented{2}{\\spad{Beta(x,y) = integrate(t^(x-1)*(1-t)^(y-1), t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}")) (|Gamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t), t=0..\\%infinity)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t), t=0..\\%infinity)}.}"))) @@ -654,19 +654,19 @@ NIL NIL (-181 R) ((|constructor| (NIL "\\indented{1}{A Denavit-Hartenberg Matrix is a 4x4 Matrix of the form:} \\indented{1}{\\spad{nx ox ax px}} \\indented{1}{\\spad{ny oy ay py}} \\indented{1}{\\spad{nz oz az pz}} \\indented{2}{\\spad{0\\space{2}0\\space{2}0\\space{2}1}} (\\spad{n},{} \\spad{o},{} and a are the direction cosines)")) (|translate| (($ |#1| |#1| |#1|) "\\spad{translate(X,Y,Z)} returns a dhmatrix for translation by \\spad{X},{} \\spad{Y},{} and \\spad{Z}")) (|scale| (($ |#1| |#1| |#1|) "\\spad{scale(sx,sy,sz)} returns a dhmatrix for scaling in the \\spad{X},{} \\spad{Y} and \\spad{Z} directions")) (|rotatez| (($ |#1|) "\\spad{rotatez(r)} returns a dhmatrix for rotation about axis \\spad{Z} for \\spad{r} degrees")) (|rotatey| (($ |#1|) "\\spad{rotatey(r)} returns a dhmatrix for rotation about axis \\spad{Y} for \\spad{r} degrees")) (|rotatex| (($ |#1|) "\\spad{rotatex(r)} returns a dhmatrix for rotation about axis \\spad{X} for \\spad{r} degrees")) (|identity| (($) "\\spad{identity()} create the identity dhmatrix")) (* (((|Point| |#1|) $ (|Point| |#1|)) "\\spad{t*p} applies the dhmatrix \\spad{t} to point \\spad{p}"))) -((-3993 . T) (-3994 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1012))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1012)))) (|HasCategory| |#1| (QUOTE (-551 (-771)))) (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-494))) (|HasAttribute| |#1| (QUOTE (-3995 "*"))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-72)))) +((-3994 . T) (-3995 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1013))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-495))) (|HasAttribute| |#1| (QUOTE (-3996 "*"))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-72)))) (-182 A S) ((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones."))) NIL NIL (-183 S) ((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones."))) -((-3994 . T)) +((-3995 . T)) NIL (-184 R) ((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%."))) -((-3990 . T)) +((-3991 . T)) NIL (-185 S T$) ((|constructor| (NIL "This category captures the interface of domains with a distinguished operation named \\spad{differentiate}. Usually,{} additional properties are wanted. For example,{} that it obeys the usual Leibniz identity of differentiation of product,{} in case of differential rings. One could also want \\spad{differentiate} to obey the chain rule when considering differential manifolds. The lack of specific requirement in this category is an implicit admission that currently \\Language{} is not expressive enough to express the most general notion of differentiation in an adequate manner,{} suitable for computational purposes.")) (D ((|#2| $) "\\spad{D x} is a shorthand for \\spad{differentiate x}")) (|differentiate| ((|#2| $) "\\spad{differentiate x} compute the derivative of \\spad{x}."))) @@ -678,7 +678,7 @@ NIL NIL (-187 R) ((|constructor| (NIL "An \\spad{R}-module equipped with a distinguised differential operator. If \\spad{R} is a differential ring,{} then differentiation on the module should extend differentiation on the differential ring \\spad{R}. The latter can be the null operator. In that case,{} the differentiation operator on the module is just an \\spad{R}-linear operator. For that reason,{} we do not require that the ring \\spad{R} be a DifferentialRing; \\blankline"))) -((-3988 . T) (-3987 . T)) +((-3989 . T) (-3988 . T)) NIL (-188 S) ((|constructor| (NIL "This category is like \\spadtype{DifferentialDomain} where the target of the differentiation operator is the same as its source.")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x, n)} returns the \\spad{n}\\spad{-}th derivative of \\spad{x}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x,n)} returns the \\spad{n}\\spad{-}th derivative of \\spad{x}."))) @@ -690,7 +690,7 @@ NIL NIL (-190) ((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline"))) -((-3990 . T)) +((-3991 . T)) NIL (-191) ((|constructor| (NIL "Dioid is the class of semirings where the addition operation induces a canonical order relation."))) @@ -699,28 +699,28 @@ NIL (-192 A S) ((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#2| $) "\\spad{remove!(x,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#2|)) "\\spad{dictionary([x,y,...,z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}."))) NIL -((|HasAttribute| |#1| (QUOTE -3993))) +((|HasAttribute| |#1| (QUOTE -3994))) (-193 S) ((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#1| $) "\\spad{remove!(x,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#1|)) "\\spad{dictionary([x,y,...,z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}."))) -((-3994 . T)) +((-3995 . T)) NIL (-194) ((|constructor| (NIL "any solution of a homogeneous linear Diophantine equation can be represented as a sum of minimal solutions,{} which form a \"basis\" (a minimal solution cannot be represented as a nontrivial sum of solutions) in the case of an inhomogeneous linear Diophantine equation,{} each solution is the sum of a inhomogeneous solution and any number of homogeneous solutions therefore,{} it suffices to compute two sets: \\indented{3}{1. all minimal inhomogeneous solutions} \\indented{3}{2. all minimal homogeneous solutions} the algorithm implemented is a completion procedure,{} which enumerates all solutions in a recursive depth-first-search it can be seen as finding monotone paths in a graph for more details see Reference")) (|dioSolve| (((|Record| (|:| |varOrder| (|List| (|Symbol|))) (|:| |inhom| (|Union| (|List| (|Vector| (|NonNegativeInteger|))) "failed")) (|:| |hom| (|List| (|Vector| (|NonNegativeInteger|))))) (|Equation| (|Polynomial| (|Integer|)))) "\\spad{dioSolve(u)} computes a basis of all minimal solutions for linear homogeneous Diophantine equation \\spad{u},{} then all minimal solutions of inhomogeneous equation"))) NIL NIL -(-195 S -2620 R) +(-195 S -2621 R) ((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (|dot| ((|#3| $ $) "\\spad{dot(x,y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#3|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size"))) NIL -((|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-716))) (|HasCategory| |#3| (QUOTE (-755))) (|HasAttribute| |#3| (QUOTE -3990)) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-318))) (|HasCategory| |#3| (QUOTE (-662))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-960))) (|HasCategory| |#3| (QUOTE (-1012)))) -(-196 -2620 R) +((|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-717))) (|HasCategory| |#3| (QUOTE (-756))) (|HasAttribute| |#3| (QUOTE -3991)) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-319))) (|HasCategory| |#3| (QUOTE (-663))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-961))) (|HasCategory| |#3| (QUOTE (-1013)))) +(-196 -2621 R) ((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (|dot| ((|#2| $ $) "\\spad{dot(x,y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#2|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size"))) -((-3987 |has| |#2| (-960)) (-3988 |has| |#2| (-960)) (-3990 |has| |#2| (-6 -3990)) (-3993 . T)) +((-3988 |has| |#2| (-961)) (-3989 |has| |#2| (-961)) (-3991 |has| |#2| (-6 -3991)) (-3994 . T)) NIL -(-197 -2620 R) +(-197 -2621 R) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying component type. This contrasts with simple vectors in that the members can be viewed as having constant length. Thus many categorical properties can by lifted from the underlying component type. Component extraction operations are provided but no updating operations. Thus new direct product elements can either be created by converting vector elements using the \\spadfun{directProduct} function or by taking appropriate linear combinations of basis vectors provided by the \\spad{unitVector} operation."))) -((-3987 |has| |#2| (-960)) (-3988 |has| |#2| (-960)) (-3990 |has| |#2| (-6 -3990)) (-3993 . T)) -((OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-662))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-716))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-755))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-808 (-1088)))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-960))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))))) (|HasCategory| |#2| (QUOTE (-551 (-771)))) (|HasCategory| |#2| (QUOTE (-312))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-960)))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-312)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-960))) (|HasCategory| |#2| (QUOTE (-662))) (|HasCategory| |#2| (QUOTE (-716))) (OR (|HasCategory| |#2| (QUOTE (-716))) (|HasCategory| |#2| (QUOTE (-755)))) (|HasCategory| |#2| (QUOTE (-755))) (|HasCategory| |#2| (QUOTE (-318))) (OR (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-579 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-579 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-579 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-579 (-483)))) (|HasCategory| |#2| (QUOTE (-808 (-1088))))) (-12 (|HasCategory| |#2| (QUOTE (-579 (-483)))) (|HasCategory| |#2| (QUOTE (-960))))) (|HasCategory| |#2| (QUOTE (-808 (-1088)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-662))) (|HasCategory| |#2| (QUOTE (-716))) (|HasCategory| |#2| (QUOTE (-755))) (|HasCategory| |#2| (QUOTE (-808 (-1088)))) (|HasCategory| |#2| (QUOTE (-960))) (|HasCategory| |#2| (QUOTE (-1012)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-662))) (|HasCategory| |#2| (QUOTE (-716))) (|HasCategory| |#2| (QUOTE (-755))) (|HasCategory| |#2| (QUOTE (-808 (-1088)))) (|HasCategory| |#2| (QUOTE (-960))) (|HasCategory| |#2| (QUOTE (-1012)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-808 (-1088)))) (|HasCategory| |#2| (QUOTE (-960)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-808 (-1088)))) (|HasCategory| |#2| (QUOTE (-960)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-808 (-1088)))) (|HasCategory| |#2| (QUOTE (-960)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-808 (-1088)))) (|HasCategory| |#2| (QUOTE (-960)))) (OR (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-808 (-1088)))) (|HasCategory| |#2| (QUOTE (-960)))) (|HasCategory| |#2| (QUOTE (-190))) (OR (|HasCategory| |#2| (QUOTE (-190))) (-12 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-960))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-810 (-1088)))) (|HasCategory| |#2| (QUOTE (-960)))) (|HasCategory| |#2| (QUOTE (-808 (-1088))))) (|HasCategory| |#2| (QUOTE (-1012))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-949 (-348 (-483)))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-949 (-348 (-483)))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-949 (-348 (-483)))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-949 (-348 (-483)))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-949 (-348 (-483)))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-949 (-348 (-483)))))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-949 (-348 (-483)))))) (-12 (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-949 (-348 (-483)))))) (-12 (|HasCategory| |#2| (QUOTE (-662))) (|HasCategory| |#2| (QUOTE (-949 (-348 (-483)))))) (-12 (|HasCategory| |#2| (QUOTE (-716))) (|HasCategory| |#2| (QUOTE (-949 (-348 (-483)))))) (-12 (|HasCategory| |#2| (QUOTE (-755))) (|HasCategory| |#2| (QUOTE (-949 (-348 (-483)))))) (-12 (|HasCategory| |#2| (QUOTE (-808 (-1088)))) (|HasCategory| |#2| (QUOTE (-949 (-348 (-483)))))) (-12 (|HasCategory| |#2| (QUOTE (-949 (-348 (-483))))) (|HasCategory| |#2| (QUOTE (-960)))) (-12 (|HasCategory| |#2| (QUOTE (-949 (-348 (-483))))) (|HasCategory| |#2| (QUOTE (-1012))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-949 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-949 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-949 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-949 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-949 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-949 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-716))) (|HasCategory| |#2| (QUOTE (-949 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-755))) (|HasCategory| |#2| (QUOTE (-949 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-808 (-1088)))) (|HasCategory| |#2| (QUOTE (-949 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-949 (-483)))) (|HasCategory| |#2| (QUOTE (-1012)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-949 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-949 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-662))) (|HasCategory| |#2| (QUOTE (-949 (-483))))) (|HasCategory| |#2| (QUOTE (-960)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-949 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-949 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-949 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-949 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-949 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-949 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-716))) (|HasCategory| |#2| (QUOTE (-949 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-755))) (|HasCategory| |#2| (QUOTE (-949 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-808 (-1088)))) (|HasCategory| |#2| (QUOTE (-949 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-949 (-483)))) (|HasCategory| |#2| (QUOTE (-1012)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-949 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-949 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-662))) (|HasCategory| |#2| (QUOTE (-949 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-949 (-483)))) (|HasCategory| |#2| (QUOTE (-960))))) (|HasCategory| (-483) (QUOTE (-755))) (-12 (|HasCategory| |#2| (QUOTE (-579 (-483)))) (|HasCategory| |#2| (QUOTE (-960)))) (-12 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-960)))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1088)))) (|HasCategory| |#2| (QUOTE (-960)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-949 (-483)))) (|HasCategory| |#2| (QUOTE (-1012)))) (|HasCategory| |#2| (QUOTE (-960)))) (-12 (|HasCategory| |#2| (QUOTE (-949 (-483)))) (|HasCategory| |#2| (QUOTE (-1012)))) (-12 (|HasCategory| |#2| (QUOTE (-949 (-348 (-483))))) (|HasCategory| |#2| (QUOTE (-1012)))) (|HasAttribute| |#2| (QUOTE -3990)) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-960)))) (-12 (|HasCategory| |#2| (QUOTE (-808 (-1088)))) (|HasCategory| |#2| (QUOTE (-960)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-72))) (-12 (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))))) -(-198 -2620 A B) +((-3988 |has| |#2| (-961)) (-3989 |has| |#2| (-961)) (-3991 |has| |#2| (-6 -3991)) (-3994 . T)) +((OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-809 (-1089)))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))))) (|HasCategory| |#2| (QUOTE (-552 (-772)))) (|HasCategory| |#2| (QUOTE (-312))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-961)))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-312)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-717))) (OR (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-756)))) (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-319))) (OR (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-580 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-580 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-580 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-580 (-484)))) (|HasCategory| |#2| (QUOTE (-809 (-1089))))) (-12 (|HasCategory| |#2| (QUOTE (-580 (-484)))) (|HasCategory| |#2| (QUOTE (-961))))) (|HasCategory| |#2| (QUOTE (-809 (-1089)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-809 (-1089)))) (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (QUOTE (-1013)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-809 (-1089)))) (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (QUOTE (-1013)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-809 (-1089)))) (|HasCategory| |#2| (QUOTE (-961)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-809 (-1089)))) (|HasCategory| |#2| (QUOTE (-961)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-809 (-1089)))) (|HasCategory| |#2| (QUOTE (-961)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-809 (-1089)))) (|HasCategory| |#2| (QUOTE (-961)))) (OR (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-809 (-1089)))) (|HasCategory| |#2| (QUOTE (-961)))) (|HasCategory| |#2| (QUOTE (-190))) (OR (|HasCategory| |#2| (QUOTE (-190))) (-12 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-961))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-811 (-1089)))) (|HasCategory| |#2| (QUOTE (-961)))) (|HasCategory| |#2| (QUOTE (-809 (-1089))))) (|HasCategory| |#2| (QUOTE (-1013))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-809 (-1089)))) (|HasCategory| |#2| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-950 (-349 (-484))))) (|HasCategory| |#2| (QUOTE (-961)))) (-12 (|HasCategory| |#2| (QUOTE (-950 (-349 (-484))))) (|HasCategory| |#2| (QUOTE (-1013))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-809 (-1089)))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-950 (-484)))) (|HasCategory| |#2| (QUOTE (-1013)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (|HasCategory| |#2| (QUOTE (-961)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-809 (-1089)))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-950 (-484)))) (|HasCategory| |#2| (QUOTE (-1013)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-950 (-484)))) (|HasCategory| |#2| (QUOTE (-961))))) (|HasCategory| (-484) (QUOTE (-756))) (-12 (|HasCategory| |#2| (QUOTE (-580 (-484)))) (|HasCategory| |#2| (QUOTE (-961)))) (-12 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-961)))) (-12 (|HasCategory| |#2| (QUOTE (-811 (-1089)))) (|HasCategory| |#2| (QUOTE (-961)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-950 (-484)))) (|HasCategory| |#2| (QUOTE (-1013)))) (|HasCategory| |#2| (QUOTE (-961)))) (-12 (|HasCategory| |#2| (QUOTE (-950 (-484)))) (|HasCategory| |#2| (QUOTE (-1013)))) (-12 (|HasCategory| |#2| (QUOTE (-950 (-349 (-484))))) (|HasCategory| |#2| (QUOTE (-1013)))) (|HasAttribute| |#2| (QUOTE -3991)) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-961)))) (-12 (|HasCategory| |#2| (QUOTE (-809 (-1089)))) (|HasCategory| |#2| (QUOTE (-961)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-72))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))))) +(-198 -2621 A B) ((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} direct products of elements of some type \\spad{A} and functions from \\spad{A} to another type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a direct product over \\spad{B}.")) (|map| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2|) (|DirectProduct| |#1| |#2|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#3| (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{reduce(func,vec,ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if the vector is empty.")) (|scan| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{scan(func,vec,ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}."))) NIL NIL @@ -734,7 +734,7 @@ NIL NIL (-201) ((|constructor| (NIL "A division ring (sometimes called a skew field),{} \\spadignore{i.e.} a not necessarily commutative ring where all non-zero elements have multiplicative inverses.")) (|inv| (($ $) "\\spad{inv x} returns the multiplicative inverse of \\spad{x}. Error: if \\spad{x} is 0.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}."))) -((-3986 . T) (-3987 . T) (-3988 . T) (-3990 . T)) +((-3987 . T) (-3988 . T) (-3989 . T) (-3991 . T)) NIL (-202 S) ((|constructor| (NIL "A doubly-linked aggregate serves as a model for a doubly-linked list,{} that is,{} a list which can has links to both next and previous nodes and thus can be efficiently traversed in both directions.")) (|setnext!| (($ $ $) "\\spad{setnext!(u,v)} destructively sets the next node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|setprevious!| (($ $ $) "\\spad{setprevious!(u,v)} destructively sets the previous node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|concat!| (($ $ $) "\\spad{concat!(u,v)} destructively concatenates doubly-linked aggregate \\spad{v} to the end of doubly-linked aggregate \\spad{u}.")) (|next| (($ $) "\\spad{next(l)} returns the doubly-linked aggregate beginning with its next element. Error: if \\spad{l} has no next element. Note: \\axiom{next(\\spad{l}) = rest(\\spad{l})} and \\axiom{previous(next(\\spad{l})) = \\spad{l}}.")) (|previous| (($ $) "\\spad{previous(l)} returns the doubly-link list beginning with its previous element. Error: if \\spad{l} has no previous element. Note: \\axiom{next(previous(\\spad{l})) = \\spad{l}}.")) (|tail| (($ $) "\\spad{tail(l)} returns the doubly-linked aggregate \\spad{l} starting at its second element. Error: if \\spad{l} is empty.")) (|head| (($ $) "\\spad{head(l)} returns the first element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty.")) (|last| ((|#1| $) "\\spad{last(l)} returns the last element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty."))) @@ -742,20 +742,20 @@ NIL NIL (-203 S) ((|constructor| (NIL "This domain provides some nice functions on lists")) (|elt| (((|NonNegativeInteger|) $ "count") "\\axiom{\\spad{l}.\"count\"} returns the number of elements in \\axiom{\\spad{l}}.") (($ $ "sort") "\\axiom{\\spad{l}.sort} returns \\axiom{\\spad{l}} with elements sorted. Note: \\axiom{\\spad{l}.sort = sort(\\spad{l})}") (($ $ "unique") "\\axiom{\\spad{l}.unique} returns \\axiom{\\spad{l}} with duplicates removed. Note: \\axiom{\\spad{l}.unique = removeDuplicates(\\spad{l})}.")) (|datalist| (($ (|List| |#1|)) "\\spad{datalist(l)} creates a datalist from \\spad{l}"))) -((-3994 . T) (-3993 . T)) -((OR (-12 (|HasCategory| |#1| (QUOTE (-755))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-551 (-771)))) (|HasCategory| |#1| (QUOTE (-552 (-472)))) (OR (|HasCategory| |#1| (QUOTE (-755))) (|HasCategory| |#1| (QUOTE (-1012)))) (|HasCategory| |#1| (QUOTE (-755))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-755))) (|HasCategory| |#1| (QUOTE (-1012)))) (|HasCategory| (-483) (QUOTE (-755))) (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) +((-3995 . T) (-3994 . T)) +((OR (-12 (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-553 (-473)))) (OR (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-756))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| (-484) (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (-204 M) ((|constructor| (NIL "DiscreteLogarithmPackage implements help functions for discrete logarithms in monoids using small cyclic groups.")) (|shanksDiscLogAlgorithm| (((|Union| (|NonNegativeInteger|) "failed") |#1| |#1| (|NonNegativeInteger|)) "\\spad{shanksDiscLogAlgorithm(b,a,p)} computes \\spad{s} with \\spad{b**s = a} for assuming that \\spad{a} and \\spad{b} are elements in a 'small' cyclic group of order \\spad{p} by Shank's algorithm. Note: this is a subroutine of the function \\spadfun{discreteLog}.")) (** ((|#1| |#1| (|Integer|)) "\\spad{x ** n} returns \\spad{x} raised to the integer power \\spad{n}"))) NIL NIL (-205 R) ((|constructor| (NIL "Category of modules that extend differential rings. \\blankline"))) -((-3988 . T) (-3987 . T)) +((-3989 . T) (-3988 . T)) NIL (-206 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is lexicographic specified by the variable list parameter with the most significant variable first in the list.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-3995 "*") |has| |#2| (-146)) (-3986 |has| |#2| (-494)) (-3991 |has| |#2| (-6 -3991)) (-3988 . T) (-3987 . T) (-3990 . T)) -((|HasCategory| |#2| (QUOTE (-820))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-390))) (|HasCategory| |#2| (QUOTE (-494))) (|HasCategory| |#2| (QUOTE (-820)))) (OR (|HasCategory| |#2| (QUOTE (-390))) (|HasCategory| |#2| (QUOTE (-494))) (|HasCategory| |#2| (QUOTE (-820)))) (OR (|HasCategory| |#2| (QUOTE (-390))) (|HasCategory| |#2| (QUOTE (-820)))) (|HasCategory| |#2| (QUOTE (-494))) (|HasCategory| |#2| (QUOTE (-146))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-494)))) (-12 (|HasCategory| |#2| (QUOTE (-795 (-328)))) (|HasCategory| (-772 |#1|) (QUOTE (-795 (-328))))) (-12 (|HasCategory| |#2| (QUOTE (-795 (-483)))) (|HasCategory| (-772 |#1|) (QUOTE (-795 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-552 (-799 (-328))))) (|HasCategory| (-772 |#1|) (QUOTE (-552 (-799 (-328)))))) (-12 (|HasCategory| |#2| (QUOTE (-552 (-799 (-483))))) (|HasCategory| (-772 |#1|) (QUOTE (-552 (-799 (-483)))))) (-12 (|HasCategory| |#2| (QUOTE (-552 (-472)))) (|HasCategory| (-772 |#1|) (QUOTE (-552 (-472))))) (|HasCategory| |#2| (QUOTE (-579 (-483)))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-38 (-348 (-483))))) (|HasCategory| |#2| (QUOTE (-949 (-483)))) (OR (|HasCategory| |#2| (QUOTE (-38 (-348 (-483))))) (|HasCategory| |#2| (QUOTE (-949 (-348 (-483)))))) (|HasCategory| |#2| (QUOTE (-949 (-348 (-483))))) (|HasCategory| |#2| (QUOTE (-312))) (|HasAttribute| |#2| (QUOTE -3991)) (|HasCategory| |#2| (QUOTE (-390))) (-12 (|HasCategory| |#2| (QUOTE (-820))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-820))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#2| (QUOTE (-118))))) +(((-3996 "*") |has| |#2| (-146)) (-3987 |has| |#2| (-495)) (-3992 |has| |#2| (-6 -3992)) (-3989 . T) (-3988 . T) (-3991 . T)) +((|HasCategory| |#2| (QUOTE (-821))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-391))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-821)))) (OR (|HasCategory| |#2| (QUOTE (-391))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-821)))) (OR (|HasCategory| |#2| (QUOTE (-391))) (|HasCategory| |#2| (QUOTE (-821)))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-146))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-495)))) (-12 (|HasCategory| |#2| (QUOTE (-796 (-329)))) (|HasCategory| (-773 |#1|) (QUOTE (-796 (-329))))) (-12 (|HasCategory| |#2| (QUOTE (-796 (-484)))) (|HasCategory| (-773 |#1|) (QUOTE (-796 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-553 (-800 (-329))))) (|HasCategory| (-773 |#1|) (QUOTE (-553 (-800 (-329)))))) (-12 (|HasCategory| |#2| (QUOTE (-553 (-800 (-484))))) (|HasCategory| (-773 |#1|) (QUOTE (-553 (-800 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-553 (-473)))) (|HasCategory| (-773 |#1|) (QUOTE (-553 (-473))))) (|HasCategory| |#2| (QUOTE (-580 (-484)))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-38 (-349 (-484))))) (|HasCategory| |#2| (QUOTE (-950 (-484)))) (OR (|HasCategory| |#2| (QUOTE (-38 (-349 (-484))))) (|HasCategory| |#2| (QUOTE (-950 (-349 (-484)))))) (|HasCategory| |#2| (QUOTE (-950 (-349 (-484))))) (|HasCategory| |#2| (QUOTE (-312))) (|HasAttribute| |#2| (QUOTE -3992)) (|HasCategory| |#2| (QUOTE (-391))) (-12 (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#2| (QUOTE (-118))))) (-207) ((|showSummary| (((|Void|) $) "\\spad{showSummary(d)} prints out implementation detail information of domain `d'.")) (|reflect| (($ (|ConstructorCall| (|DomainConstructor|))) "\\spad{reflect cc} returns the domain object designated by the ConstructorCall syntax `cc'. The constructor implied by `cc' must be known to the system since it is instantiated.")) (|reify| (((|ConstructorCall| (|DomainConstructor|)) $) "\\spad{reify(d)} returns the abstract syntax for the domain `x'.")) (|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Create: October 18,{} 2007. Date Last Updated: December 20,{} 2008. Basic Operations: coerce,{} reify Related Constructors: Type,{} Syntax,{} OutputForm Also See: Type,{} ConstructorCall") (((|DomainConstructor|) $) "\\spad{constructor(d)} returns the domain constructor that is instantiated to the domain object `d'."))) NIL @@ -770,23 +770,23 @@ NIL NIL (-210 |n| R M S) ((|constructor| (NIL "This constructor provides a direct product type with a left matrix-module view."))) -((-3990 OR (-2561 (|has| |#4| (-960)) (|has| |#4| (-190))) (|has| |#4| (-6 -3990)) (-2561 (|has| |#4| (-960)) (|has| |#4| (-808 (-1088))))) (-3987 |has| |#4| (-960)) (-3988 |has| |#4| (-960)) (-3993 . T)) -((OR (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-312))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-318))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-662))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-716))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-755))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-808 (-1088)))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-960))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1012))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|))))) (|HasCategory| |#4| (QUOTE (-312))) (OR (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-312))) (|HasCategory| |#4| (QUOTE (-960)))) (OR (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-312)))) (|HasCategory| |#4| (QUOTE (-960))) (|HasCategory| |#4| (QUOTE (-662))) (|HasCategory| |#4| (QUOTE (-716))) (OR (|HasCategory| |#4| (QUOTE (-716))) (|HasCategory| |#4| (QUOTE (-755)))) (|HasCategory| |#4| (QUOTE (-755))) (|HasCategory| |#4| (QUOTE (-318))) (OR (-12 (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-579 (-483))))) (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-579 (-483))))) (-12 (|HasCategory| |#4| (QUOTE (-312))) (|HasCategory| |#4| (QUOTE (-579 (-483))))) (-12 (|HasCategory| |#4| (QUOTE (-579 (-483)))) (|HasCategory| |#4| (QUOTE (-808 (-1088))))) (-12 (|HasCategory| |#4| (QUOTE (-579 (-483)))) (|HasCategory| |#4| (QUOTE (-960))))) (|HasCategory| |#4| (QUOTE (-808 (-1088)))) (OR (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-808 (-1088)))) (|HasCategory| |#4| (QUOTE (-960)))) (|HasCategory| |#4| (QUOTE (-190))) (OR (|HasCategory| |#4| (QUOTE (-190))) (-12 (|HasCategory| |#4| (QUOTE (-189))) (|HasCategory| |#4| (QUOTE (-960))))) (OR (-12 (|HasCategory| |#4| (QUOTE (-810 (-1088)))) (|HasCategory| |#4| (QUOTE (-960)))) (|HasCategory| |#4| (QUOTE (-808 (-1088))))) (|HasCategory| |#4| (QUOTE (-1012))) (OR (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-949 (-348 (-483)))))) (-12 (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-949 (-348 (-483)))))) (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-949 (-348 (-483)))))) (-12 (|HasCategory| |#4| (QUOTE (-312))) (|HasCategory| |#4| (QUOTE (-949 (-348 (-483)))))) (-12 (|HasCategory| |#4| (QUOTE (-318))) (|HasCategory| |#4| (QUOTE (-949 (-348 (-483)))))) (-12 (|HasCategory| |#4| (QUOTE (-662))) (|HasCategory| |#4| (QUOTE (-949 (-348 (-483)))))) (-12 (|HasCategory| |#4| (QUOTE (-716))) (|HasCategory| |#4| (QUOTE (-949 (-348 (-483)))))) (-12 (|HasCategory| |#4| (QUOTE (-755))) (|HasCategory| |#4| (QUOTE (-949 (-348 (-483)))))) (-12 (|HasCategory| |#4| (QUOTE (-808 (-1088)))) (|HasCategory| |#4| (QUOTE (-949 (-348 (-483)))))) (-12 (|HasCategory| |#4| (QUOTE (-949 (-348 (-483))))) (|HasCategory| |#4| (QUOTE (-960)))) (-12 (|HasCategory| |#4| (QUOTE (-949 (-348 (-483))))) (|HasCategory| |#4| (QUOTE (-1012))))) (OR (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-949 (-483))))) (-12 (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-949 (-483))))) (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-949 (-483))))) (-12 (|HasCategory| |#4| (QUOTE (-716))) (|HasCategory| |#4| (QUOTE (-949 (-483))))) (-12 (|HasCategory| |#4| (QUOTE (-755))) (|HasCategory| |#4| (QUOTE (-949 (-483))))) (-12 (|HasCategory| |#4| (QUOTE (-808 (-1088)))) (|HasCategory| |#4| (QUOTE (-949 (-483))))) (-12 (|HasCategory| |#4| (QUOTE (-949 (-483)))) (|HasCategory| |#4| (QUOTE (-1012)))) (-12 (|HasCategory| |#4| (QUOTE (-312))) (|HasCategory| |#4| (QUOTE (-949 (-483))))) (-12 (|HasCategory| |#4| (QUOTE (-318))) (|HasCategory| |#4| (QUOTE (-949 (-483))))) (-12 (|HasCategory| |#4| (QUOTE (-662))) (|HasCategory| |#4| (QUOTE (-949 (-483))))) (|HasCategory| |#4| (QUOTE (-960)))) (OR (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-949 (-483))))) (-12 (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-949 (-483))))) (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-949 (-483))))) (-12 (|HasCategory| |#4| (QUOTE (-716))) (|HasCategory| |#4| (QUOTE (-949 (-483))))) (-12 (|HasCategory| |#4| (QUOTE (-755))) (|HasCategory| |#4| (QUOTE (-949 (-483))))) (-12 (|HasCategory| |#4| (QUOTE (-808 (-1088)))) (|HasCategory| |#4| (QUOTE (-949 (-483))))) (-12 (|HasCategory| |#4| (QUOTE (-949 (-483)))) (|HasCategory| |#4| (QUOTE (-1012)))) (-12 (|HasCategory| |#4| (QUOTE (-312))) (|HasCategory| |#4| (QUOTE (-949 (-483))))) (-12 (|HasCategory| |#4| (QUOTE (-318))) (|HasCategory| |#4| (QUOTE (-949 (-483))))) (-12 (|HasCategory| |#4| (QUOTE (-662))) (|HasCategory| |#4| (QUOTE (-949 (-483))))) (-12 (|HasCategory| |#4| (QUOTE (-949 (-483)))) (|HasCategory| |#4| (QUOTE (-960))))) (|HasCategory| (-483) (QUOTE (-755))) (-12 (|HasCategory| |#4| (QUOTE (-579 (-483)))) (|HasCategory| |#4| (QUOTE (-960)))) (OR (-12 (|HasCategory| |#4| (QUOTE (-808 (-1088)))) (|HasCategory| |#4| (QUOTE (-960)))) (-12 (|HasCategory| |#4| (QUOTE (-810 (-1088)))) (|HasCategory| |#4| (QUOTE (-960))))) (OR (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-960)))) (-12 (|HasCategory| |#4| (QUOTE (-189))) (|HasCategory| |#4| (QUOTE (-960))))) (-12 (|HasCategory| |#4| (QUOTE (-949 (-483)))) (|HasCategory| |#4| (QUOTE (-1012)))) (OR (-12 (|HasCategory| |#4| (QUOTE (-949 (-483)))) (|HasCategory| |#4| (QUOTE (-1012)))) (|HasCategory| |#4| (QUOTE (-960)))) (-12 (|HasCategory| |#4| (QUOTE (-949 (-348 (-483))))) (|HasCategory| |#4| (QUOTE (-1012)))) (OR (-12 (|HasCategory| |#4| (QUOTE (-808 (-1088)))) (|HasCategory| |#4| (QUOTE (-960)))) (|HasAttribute| |#4| (QUOTE -3990)) (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-960))))) (-12 (|HasCategory| |#4| (QUOTE (-189))) (|HasCategory| |#4| (QUOTE (-960)))) (-12 (|HasCategory| |#4| (QUOTE (-810 (-1088)))) (|HasCategory| |#4| (QUOTE (-960)))) (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-23))) (|HasCategory| |#4| (QUOTE (-104))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (QUOTE (-551 (-771)))) (|HasCategory| |#4| (QUOTE (-72))) (-12 (|HasCategory| |#4| (QUOTE (-1012))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|))))) +((-3991 OR (-2562 (|has| |#4| (-961)) (|has| |#4| (-190))) (|has| |#4| (-6 -3991)) (-2562 (|has| |#4| (-961)) (|has| |#4| (-809 (-1089))))) (-3988 |has| |#4| (-961)) (-3989 |has| |#4| (-961)) (-3994 . T)) +((OR (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-312))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-319))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-663))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-717))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-756))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-809 (-1089)))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-961))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1013))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|))))) (|HasCategory| |#4| (QUOTE (-312))) (OR (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-312))) (|HasCategory| |#4| (QUOTE (-961)))) (OR (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-312)))) (|HasCategory| |#4| (QUOTE (-961))) (|HasCategory| |#4| (QUOTE (-663))) (|HasCategory| |#4| (QUOTE (-717))) (OR (|HasCategory| |#4| (QUOTE (-717))) (|HasCategory| |#4| (QUOTE (-756)))) (|HasCategory| |#4| (QUOTE (-756))) (|HasCategory| |#4| (QUOTE (-319))) (OR (-12 (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-580 (-484))))) (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-580 (-484))))) (-12 (|HasCategory| |#4| (QUOTE (-312))) (|HasCategory| |#4| (QUOTE (-580 (-484))))) (-12 (|HasCategory| |#4| (QUOTE (-580 (-484)))) (|HasCategory| |#4| (QUOTE (-809 (-1089))))) (-12 (|HasCategory| |#4| (QUOTE (-580 (-484)))) (|HasCategory| |#4| (QUOTE (-961))))) (|HasCategory| |#4| (QUOTE (-809 (-1089)))) (OR (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-809 (-1089)))) (|HasCategory| |#4| (QUOTE (-961)))) (|HasCategory| |#4| (QUOTE (-190))) (OR (|HasCategory| |#4| (QUOTE (-190))) (-12 (|HasCategory| |#4| (QUOTE (-189))) (|HasCategory| |#4| (QUOTE (-961))))) (OR (-12 (|HasCategory| |#4| (QUOTE (-811 (-1089)))) (|HasCategory| |#4| (QUOTE (-961)))) (|HasCategory| |#4| (QUOTE (-809 (-1089))))) (|HasCategory| |#4| (QUOTE (-1013))) (OR (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#4| (QUOTE (-312))) (|HasCategory| |#4| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#4| (QUOTE (-319))) (|HasCategory| |#4| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#4| (QUOTE (-663))) (|HasCategory| |#4| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#4| (QUOTE (-717))) (|HasCategory| |#4| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#4| (QUOTE (-756))) (|HasCategory| |#4| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#4| (QUOTE (-809 (-1089)))) (|HasCategory| |#4| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#4| (QUOTE (-950 (-349 (-484))))) (|HasCategory| |#4| (QUOTE (-961)))) (-12 (|HasCategory| |#4| (QUOTE (-950 (-349 (-484))))) (|HasCategory| |#4| (QUOTE (-1013))))) (OR (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#4| (QUOTE (-717))) (|HasCategory| |#4| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#4| (QUOTE (-756))) (|HasCategory| |#4| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#4| (QUOTE (-809 (-1089)))) (|HasCategory| |#4| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#4| (QUOTE (-950 (-484)))) (|HasCategory| |#4| (QUOTE (-1013)))) (-12 (|HasCategory| |#4| (QUOTE (-312))) (|HasCategory| |#4| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#4| (QUOTE (-319))) (|HasCategory| |#4| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#4| (QUOTE (-663))) (|HasCategory| |#4| (QUOTE (-950 (-484))))) (|HasCategory| |#4| (QUOTE (-961)))) (OR (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#4| (QUOTE (-717))) (|HasCategory| |#4| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#4| (QUOTE (-756))) (|HasCategory| |#4| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#4| (QUOTE (-809 (-1089)))) (|HasCategory| |#4| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#4| (QUOTE (-950 (-484)))) (|HasCategory| |#4| (QUOTE (-1013)))) (-12 (|HasCategory| |#4| (QUOTE (-312))) (|HasCategory| |#4| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#4| (QUOTE (-319))) (|HasCategory| |#4| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#4| (QUOTE (-663))) (|HasCategory| |#4| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#4| (QUOTE (-950 (-484)))) (|HasCategory| |#4| (QUOTE (-961))))) (|HasCategory| (-484) (QUOTE (-756))) (-12 (|HasCategory| |#4| (QUOTE (-580 (-484)))) (|HasCategory| |#4| (QUOTE (-961)))) (OR (-12 (|HasCategory| |#4| (QUOTE (-809 (-1089)))) (|HasCategory| |#4| (QUOTE (-961)))) (-12 (|HasCategory| |#4| (QUOTE (-811 (-1089)))) (|HasCategory| |#4| (QUOTE (-961))))) (OR (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-961)))) (-12 (|HasCategory| |#4| (QUOTE (-189))) (|HasCategory| |#4| (QUOTE (-961))))) (-12 (|HasCategory| |#4| (QUOTE (-950 (-484)))) (|HasCategory| |#4| (QUOTE (-1013)))) (OR (-12 (|HasCategory| |#4| (QUOTE (-950 (-484)))) (|HasCategory| |#4| (QUOTE (-1013)))) (|HasCategory| |#4| (QUOTE (-961)))) (-12 (|HasCategory| |#4| (QUOTE (-950 (-349 (-484))))) (|HasCategory| |#4| (QUOTE (-1013)))) (OR (-12 (|HasCategory| |#4| (QUOTE (-809 (-1089)))) (|HasCategory| |#4| (QUOTE (-961)))) (|HasAttribute| |#4| (QUOTE -3991)) (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-961))))) (-12 (|HasCategory| |#4| (QUOTE (-189))) (|HasCategory| |#4| (QUOTE (-961)))) (-12 (|HasCategory| |#4| (QUOTE (-811 (-1089)))) (|HasCategory| |#4| (QUOTE (-961)))) (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-23))) (|HasCategory| |#4| (QUOTE (-104))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (QUOTE (-552 (-772)))) (|HasCategory| |#4| (QUOTE (-72))) (-12 (|HasCategory| |#4| (QUOTE (-1013))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|))))) (-211 |n| R S) ((|constructor| (NIL "This constructor provides a direct product of \\spad{R}-modules with an \\spad{R}-module view."))) -((-3990 OR (-2561 (|has| |#3| (-960)) (|has| |#3| (-190))) (|has| |#3| (-6 -3990)) (-2561 (|has| |#3| (-960)) (|has| |#3| (-808 (-1088))))) (-3987 |has| |#3| (-960)) (-3988 |has| |#3| (-960)) (-3993 . T)) -((OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-318))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-662))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-716))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-755))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-808 (-1088)))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-960))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1012))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|))))) (|HasCategory| |#3| (QUOTE (-312))) (OR (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-960)))) (OR (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-312)))) (|HasCategory| |#3| (QUOTE (-960))) (|HasCategory| |#3| (QUOTE (-662))) (|HasCategory| |#3| (QUOTE (-716))) (OR (|HasCategory| |#3| (QUOTE (-716))) (|HasCategory| |#3| (QUOTE (-755)))) (|HasCategory| |#3| (QUOTE (-755))) (|HasCategory| |#3| (QUOTE (-318))) (OR (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-579 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-579 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-579 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-579 (-483)))) (|HasCategory| |#3| (QUOTE (-808 (-1088))))) (-12 (|HasCategory| |#3| (QUOTE (-579 (-483)))) (|HasCategory| |#3| (QUOTE (-960))))) (|HasCategory| |#3| (QUOTE (-808 (-1088)))) (OR (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-808 (-1088)))) (|HasCategory| |#3| (QUOTE (-960)))) (|HasCategory| |#3| (QUOTE (-190))) (OR (|HasCategory| |#3| (QUOTE (-190))) (-12 (|HasCategory| |#3| (QUOTE (-189))) (|HasCategory| |#3| (QUOTE (-960))))) (OR (-12 (|HasCategory| |#3| (QUOTE (-810 (-1088)))) (|HasCategory| |#3| (QUOTE (-960)))) (|HasCategory| |#3| (QUOTE (-808 (-1088))))) (|HasCategory| |#3| (QUOTE (-1012))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-949 (-348 (-483)))))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-949 (-348 (-483)))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-949 (-348 (-483)))))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-949 (-348 (-483)))))) (-12 (|HasCategory| |#3| (QUOTE (-318))) (|HasCategory| |#3| (QUOTE (-949 (-348 (-483)))))) (-12 (|HasCategory| |#3| (QUOTE (-662))) (|HasCategory| |#3| (QUOTE (-949 (-348 (-483)))))) (-12 (|HasCategory| |#3| (QUOTE (-716))) (|HasCategory| |#3| (QUOTE (-949 (-348 (-483)))))) (-12 (|HasCategory| |#3| (QUOTE (-755))) (|HasCategory| |#3| (QUOTE (-949 (-348 (-483)))))) (-12 (|HasCategory| |#3| (QUOTE (-808 (-1088)))) (|HasCategory| |#3| (QUOTE (-949 (-348 (-483)))))) (-12 (|HasCategory| |#3| (QUOTE (-949 (-348 (-483))))) (|HasCategory| |#3| (QUOTE (-960)))) (-12 (|HasCategory| |#3| (QUOTE (-949 (-348 (-483))))) (|HasCategory| |#3| (QUOTE (-1012))))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-949 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-949 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-949 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-716))) (|HasCategory| |#3| (QUOTE (-949 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-755))) (|HasCategory| |#3| (QUOTE (-949 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-808 (-1088)))) (|HasCategory| |#3| (QUOTE (-949 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-949 (-483)))) (|HasCategory| |#3| (QUOTE (-1012)))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-949 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-318))) (|HasCategory| |#3| (QUOTE (-949 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-662))) (|HasCategory| |#3| (QUOTE (-949 (-483))))) (|HasCategory| |#3| (QUOTE (-960)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-949 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-949 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-949 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-716))) (|HasCategory| |#3| (QUOTE (-949 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-755))) (|HasCategory| |#3| (QUOTE (-949 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-808 (-1088)))) (|HasCategory| |#3| (QUOTE (-949 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-949 (-483)))) (|HasCategory| |#3| (QUOTE (-1012)))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-949 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-318))) (|HasCategory| |#3| (QUOTE (-949 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-662))) (|HasCategory| |#3| (QUOTE (-949 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-949 (-483)))) (|HasCategory| |#3| (QUOTE (-960))))) (|HasCategory| (-483) (QUOTE (-755))) (-12 (|HasCategory| |#3| (QUOTE (-579 (-483)))) (|HasCategory| |#3| (QUOTE (-960)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-808 (-1088)))) (|HasCategory| |#3| (QUOTE (-960)))) (-12 (|HasCategory| |#3| (QUOTE (-810 (-1088)))) (|HasCategory| |#3| (QUOTE (-960))))) (OR (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-960)))) (-12 (|HasCategory| |#3| (QUOTE (-189))) (|HasCategory| |#3| (QUOTE (-960))))) (-12 (|HasCategory| |#3| (QUOTE (-949 (-483)))) (|HasCategory| |#3| (QUOTE (-1012)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-949 (-483)))) (|HasCategory| |#3| (QUOTE (-1012)))) (|HasCategory| |#3| (QUOTE (-960)))) (-12 (|HasCategory| |#3| (QUOTE (-949 (-348 (-483))))) (|HasCategory| |#3| (QUOTE (-1012)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-808 (-1088)))) (|HasCategory| |#3| (QUOTE (-960)))) (|HasAttribute| |#3| (QUOTE -3990)) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-960))))) (-12 (|HasCategory| |#3| (QUOTE (-189))) (|HasCategory| |#3| (QUOTE (-960)))) (-12 (|HasCategory| |#3| (QUOTE (-810 (-1088)))) (|HasCategory| |#3| (QUOTE (-960)))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-551 (-771)))) (|HasCategory| |#3| (QUOTE (-72))) (-12 (|HasCategory| |#3| (QUOTE (-1012))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|))))) +((-3991 OR (-2562 (|has| |#3| (-961)) (|has| |#3| (-190))) (|has| |#3| (-6 -3991)) (-2562 (|has| |#3| (-961)) (|has| |#3| (-809 (-1089))))) (-3988 |has| |#3| (-961)) (-3989 |has| |#3| (-961)) (-3994 . T)) +((OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-319))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-663))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-717))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-756))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-809 (-1089)))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-961))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1013))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|))))) (|HasCategory| |#3| (QUOTE (-312))) (OR (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-961)))) (OR (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-312)))) (|HasCategory| |#3| (QUOTE (-961))) (|HasCategory| |#3| (QUOTE (-663))) (|HasCategory| |#3| (QUOTE (-717))) (OR (|HasCategory| |#3| (QUOTE (-717))) (|HasCategory| |#3| (QUOTE (-756)))) (|HasCategory| |#3| (QUOTE (-756))) (|HasCategory| |#3| (QUOTE (-319))) (OR (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-580 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-580 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-580 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-580 (-484)))) (|HasCategory| |#3| (QUOTE (-809 (-1089))))) (-12 (|HasCategory| |#3| (QUOTE (-580 (-484)))) (|HasCategory| |#3| (QUOTE (-961))))) (|HasCategory| |#3| (QUOTE (-809 (-1089)))) (OR (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-809 (-1089)))) (|HasCategory| |#3| (QUOTE (-961)))) (|HasCategory| |#3| (QUOTE (-190))) (OR (|HasCategory| |#3| (QUOTE (-190))) (-12 (|HasCategory| |#3| (QUOTE (-189))) (|HasCategory| |#3| (QUOTE (-961))))) (OR (-12 (|HasCategory| |#3| (QUOTE (-811 (-1089)))) (|HasCategory| |#3| (QUOTE (-961)))) (|HasCategory| |#3| (QUOTE (-809 (-1089))))) (|HasCategory| |#3| (QUOTE (-1013))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#3| (QUOTE (-319))) (|HasCategory| |#3| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#3| (QUOTE (-663))) (|HasCategory| |#3| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#3| (QUOTE (-717))) (|HasCategory| |#3| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#3| (QUOTE (-756))) (|HasCategory| |#3| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#3| (QUOTE (-809 (-1089)))) (|HasCategory| |#3| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#3| (QUOTE (-950 (-349 (-484))))) (|HasCategory| |#3| (QUOTE (-961)))) (-12 (|HasCategory| |#3| (QUOTE (-950 (-349 (-484))))) (|HasCategory| |#3| (QUOTE (-1013))))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-717))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-756))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-809 (-1089)))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-950 (-484)))) (|HasCategory| |#3| (QUOTE (-1013)))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-319))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-663))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (|HasCategory| |#3| (QUOTE (-961)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-717))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-756))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-809 (-1089)))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-950 (-484)))) (|HasCategory| |#3| (QUOTE (-1013)))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-319))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-663))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-950 (-484)))) (|HasCategory| |#3| (QUOTE (-961))))) (|HasCategory| (-484) (QUOTE (-756))) (-12 (|HasCategory| |#3| (QUOTE (-580 (-484)))) (|HasCategory| |#3| (QUOTE (-961)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-809 (-1089)))) (|HasCategory| |#3| (QUOTE (-961)))) (-12 (|HasCategory| |#3| (QUOTE (-811 (-1089)))) (|HasCategory| |#3| (QUOTE (-961))))) (OR (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-961)))) (-12 (|HasCategory| |#3| (QUOTE (-189))) (|HasCategory| |#3| (QUOTE (-961))))) (-12 (|HasCategory| |#3| (QUOTE (-950 (-484)))) (|HasCategory| |#3| (QUOTE (-1013)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-950 (-484)))) (|HasCategory| |#3| (QUOTE (-1013)))) (|HasCategory| |#3| (QUOTE (-961)))) (-12 (|HasCategory| |#3| (QUOTE (-950 (-349 (-484))))) (|HasCategory| |#3| (QUOTE (-1013)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-809 (-1089)))) (|HasCategory| |#3| (QUOTE (-961)))) (|HasAttribute| |#3| (QUOTE -3991)) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-961))))) (-12 (|HasCategory| |#3| (QUOTE (-189))) (|HasCategory| |#3| (QUOTE (-961)))) (-12 (|HasCategory| |#3| (QUOTE (-811 (-1089)))) (|HasCategory| |#3| (QUOTE (-961)))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-552 (-772)))) (|HasCategory| |#3| (QUOTE (-72))) (-12 (|HasCategory| |#3| (QUOTE (-1013))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|))))) (-212 A R S V E) ((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#4| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#3|) "\\spad{weight(p, s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#3|) "\\spad{weights(p, s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p, s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{order(p,s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#3|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} := makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#3|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored."))) NIL ((|HasCategory| |#2| (QUOTE (-190)))) (-213 R S V E) ((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#3| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#2|) "\\spad{weight(p, s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#2|) "\\spad{weights(p, s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#2|) "\\spad{degree(p, s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(p,s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#2|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} := makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#2|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored."))) -(((-3995 "*") |has| |#1| (-146)) (-3986 |has| |#1| (-494)) (-3991 |has| |#1| (-6 -3991)) (-3988 . T) (-3987 . T) (-3990 . T)) +(((-3996 "*") |has| |#1| (-146)) (-3987 |has| |#1| (-495)) (-3992 |has| |#1| (-6 -3992)) (-3989 . T) (-3988 . T) (-3991 . T)) NIL (-214 S) ((|constructor| (NIL "A dequeue is a doubly ended stack,{} that is,{} a bag where first items inserted are the first items extracted,{} at either the front or the back end of the data structure.")) (|reverse!| (($ $) "\\spad{reverse!(d)} destructively replaces \\spad{d} by its reverse dequeue,{} \\spadignore{i.e.} the top (front) element is now the bottom (back) element,{} and so on.")) (|extractBottom!| ((|#1| $) "\\spad{extractBottom!(d)} destructively extracts the bottom (back) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|extractTop!| ((|#1| $) "\\spad{extractTop!(d)} destructively extracts the top (front) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|insertBottom!| ((|#1| |#1| $) "\\spad{insertBottom!(x,d)} destructively inserts \\spad{x} into the dequeue \\spad{d} at the bottom (back) of the dequeue.")) (|insertTop!| ((|#1| |#1| $) "\\spad{insertTop!(x,d)} destructively inserts \\spad{x} into the dequeue \\spad{d},{} that is,{} at the top (front) of the dequeue. The element previously at the top of the dequeue becomes the second in the dequeue,{} and so on.")) (|bottom!| ((|#1| $) "\\spad{bottom!(d)} returns the element at the bottom (back) of the dequeue.")) (|top!| ((|#1| $) "\\spad{top!(d)} returns the element at the top (front) of the dequeue.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(d)} returns the number of elements in dequeue \\spad{d}. Note: \\axiom{height(\\spad{d}) = \\# \\spad{d}}.")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,y,...,z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.") (($) "\\spad{dequeue()}\\$\\spad{D} creates an empty dequeue of type \\spad{D}."))) -((-3993 . T) (-3994 . T)) +((-3994 . T) (-3995 . T)) NIL (-215 |Ex|) ((|constructor| (NIL "TopLevelDrawFunctions provides top level functions for drawing graphics of expressions.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(f(x,y),x = a..b,y = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} appears as the default title.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f(x,y),x = a..b,y = c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{makeObject(curve(f(t),g(t),h(t)),t = a..b)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f(t),g(t),h(t)),t = a..b,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d)} draws the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d,l)} draws the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(f(x,y),x = a..b,y = c..d)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} appears in the title bar.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x,y),x = a..b,y = c..d,l)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),g(t),h(t)),t = a..b)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),g(t),h(t)),t = a..b,l)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),g(t)),t = a..b)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{(f(t),g(t))} appears in the title bar.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),g(t)),t = a..b,l)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{(f(t),g(t))} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|))) "\\spad{draw(f(x),x = a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{f(x)} appears in the title bar.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x),x = a..b,l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{f(x)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied."))) @@ -827,15 +827,15 @@ NIL (-224 S R) ((|constructor| (NIL "Extension of a base differential space with a derivation. \\blankline")) (D (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{D(x,d,n)} is a shorthand for \\spad{differentiate(x,d,n)}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{D(x,d)} is a shorthand for \\spad{differentiate(x,d)}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{differentiate(x,d,n)} computes the \\spad{n}\\spad{-}th derivative of \\spad{x} using a derivation extending \\spad{d} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x,d)} computes the derivative of \\spad{x},{} extending differentiation \\spad{d} on \\spad{R}."))) NIL -((|HasCategory| |#2| (QUOTE (-810 (-1088)))) (|HasCategory| |#2| (QUOTE (-189)))) +((|HasCategory| |#2| (QUOTE (-811 (-1089)))) (|HasCategory| |#2| (QUOTE (-189)))) (-225 R) ((|constructor| (NIL "Extension of a base differential space with a derivation. \\blankline")) (D (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{D(x,d,n)} is a shorthand for \\spad{differentiate(x,d,n)}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{D(x,d)} is a shorthand for \\spad{differentiate(x,d)}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{differentiate(x,d,n)} computes the \\spad{n}\\spad{-}th derivative of \\spad{x} using a derivation extending \\spad{d} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(x,d)} computes the derivative of \\spad{x},{} extending differentiation \\spad{d} on \\spad{R}."))) NIL NIL (-226 R S V) ((|constructor| (NIL "\\spadtype{DifferentialSparseMultivariatePolynomial} implements an ordinary differential polynomial ring by combining a domain belonging to the category \\spadtype{DifferentialVariableCategory} with the domain \\spadtype{SparseMultivariatePolynomial}. \\blankline"))) -(((-3995 "*") |has| |#1| (-146)) (-3986 |has| |#1| (-494)) (-3991 |has| |#1| (-6 -3991)) (-3988 . T) (-3987 . T) (-3990 . T)) -((|HasCategory| |#1| (QUOTE (-820))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-390))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-820)))) (OR (|HasCategory| |#1| (QUOTE (-390))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-820)))) (OR (|HasCategory| |#1| (QUOTE (-390))) (|HasCategory| |#1| (QUOTE (-820)))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-494)))) (-12 (|HasCategory| |#1| (QUOTE (-795 (-328)))) (|HasCategory| |#3| (QUOTE (-795 (-328))))) (-12 (|HasCategory| |#1| (QUOTE (-795 (-483)))) (|HasCategory| |#3| (QUOTE (-795 (-483))))) (-12 (|HasCategory| |#1| (QUOTE (-552 (-799 (-328))))) (|HasCategory| |#3| (QUOTE (-552 (-799 (-328)))))) (-12 (|HasCategory| |#1| (QUOTE (-552 (-799 (-483))))) (|HasCategory| |#3| (QUOTE (-552 (-799 (-483)))))) (-12 (|HasCategory| |#1| (QUOTE (-552 (-472)))) (|HasCategory| |#3| (QUOTE (-552 (-472))))) (|HasCategory| |#1| (QUOTE (-579 (-483)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-348 (-483))))) (|HasCategory| |#1| (QUOTE (-949 (-483)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-348 (-483))))) (|HasCategory| |#1| (QUOTE (-949 (-348 (-483)))))) (|HasCategory| |#1| (QUOTE (-949 (-348 (-483))))) (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-810 (-1088)))) (|HasCategory| |#1| (QUOTE (-808 (-1088)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasAttribute| |#1| (QUOTE -3991)) (|HasCategory| |#1| (QUOTE (-390))) (-12 (|HasCategory| |#1| (QUOTE (-820))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-820))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) +(((-3996 "*") |has| |#1| (-146)) (-3987 |has| |#1| (-495)) (-3992 |has| |#1| (-6 -3992)) (-3989 . T) (-3988 . T) (-3991 . T)) +((|HasCategory| |#1| (QUOTE (-821))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-391))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-821)))) (OR (|HasCategory| |#1| (QUOTE (-391))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-821)))) (OR (|HasCategory| |#1| (QUOTE (-391))) (|HasCategory| |#1| (QUOTE (-821)))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (-12 (|HasCategory| |#1| (QUOTE (-796 (-329)))) (|HasCategory| |#3| (QUOTE (-796 (-329))))) (-12 (|HasCategory| |#1| (QUOTE (-796 (-484)))) (|HasCategory| |#3| (QUOTE (-796 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-800 (-329))))) (|HasCategory| |#3| (QUOTE (-553 (-800 (-329)))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-800 (-484))))) (|HasCategory| |#3| (QUOTE (-553 (-800 (-484)))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-473)))) (|HasCategory| |#3| (QUOTE (-553 (-473))))) (|HasCategory| |#1| (QUOTE (-580 (-484)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-349 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-484)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-349 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-349 (-484)))))) (|HasCategory| |#1| (QUOTE (-950 (-349 (-484))))) (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-811 (-1089)))) (|HasCategory| |#1| (QUOTE (-809 (-1089)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasAttribute| |#1| (QUOTE -3992)) (|HasCategory| |#1| (QUOTE (-391))) (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) (-227 A S) ((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#2| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#2| (|NonNegativeInteger|)) "\\spad{makeVariable(s, n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate."))) NIL @@ -848,11 +848,11 @@ NIL ((|constructor| (NIL "A domain used in the construction of the exterior algebra on a set \\spad{X} over a ring \\spad{R}. This domain represents the set of all ordered subsets of the set \\spad{X},{} assumed to be in correspondance with {1,{}2,{}3,{} ...}. The ordered subsets are themselves ordered lexicographically and are in bijective correspondance with an ordered basis of the exterior algebra. In this domain we are dealing strictly with the exponents of basis elements which can only be 0 or 1. \\blankline The multiplicative identity element of the exterior algebra corresponds to the empty subset of \\spad{X}. A coerce from List Integer to an ordered basis element is provided to allow the convenient input of expressions. Another exported function forgets the ordered structure and simply returns the list corresponding to an ordered subset.")) (|Nul| (($ (|NonNegativeInteger|)) "\\spad{Nul()} gives the basis element 1 for the algebra generated by \\spad{n} generators.")) (|exponents| (((|List| (|Integer|)) $) "\\spad{exponents(x)} converts a domain element into a list of zeros and ones corresponding to the exponents in the basis element that \\spad{x} represents.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(x)} gives the numbers of 1's in \\spad{x},{} \\spadignore{i.e.} the number of non-zero exponents in the basis element that \\spad{x} represents.")) (|coerce| (($ (|List| (|Integer|))) "\\spad{coerce(l)} converts a list of 0's and 1's into a basis element,{} where 1 (respectively 0) designates that the variable of the corresponding index of \\spad{l} is (respectively,{} is not) present. Error: if an element of \\spad{l} is not 0 or 1."))) NIL NIL -(-230 R -3091) +(-230 R -3092) ((|constructor| (NIL "Provides elementary functions over an integral domain.")) (|localReal?| (((|Boolean|) |#2|) "\\spad{localReal?(x)} should be local but conditional")) (|specialTrigs| (((|Union| |#2| "failed") |#2| (|List| (|Record| (|:| |func| |#2|) (|:| |pole| (|Boolean|))))) "\\spad{specialTrigs(x,l)} should be local but conditional")) (|iiacsch| ((|#2| |#2|) "\\spad{iiacsch(x)} should be local but conditional")) (|iiasech| ((|#2| |#2|) "\\spad{iiasech(x)} should be local but conditional")) (|iiacoth| ((|#2| |#2|) "\\spad{iiacoth(x)} should be local but conditional")) (|iiatanh| ((|#2| |#2|) "\\spad{iiatanh(x)} should be local but conditional")) (|iiacosh| ((|#2| |#2|) "\\spad{iiacosh(x)} should be local but conditional")) (|iiasinh| ((|#2| |#2|) "\\spad{iiasinh(x)} should be local but conditional")) (|iicsch| ((|#2| |#2|) "\\spad{iicsch(x)} should be local but conditional")) (|iisech| ((|#2| |#2|) "\\spad{iisech(x)} should be local but conditional")) (|iicoth| ((|#2| |#2|) "\\spad{iicoth(x)} should be local but conditional")) (|iitanh| ((|#2| |#2|) "\\spad{iitanh(x)} should be local but conditional")) (|iicosh| ((|#2| |#2|) "\\spad{iicosh(x)} should be local but conditional")) (|iisinh| ((|#2| |#2|) "\\spad{iisinh(x)} should be local but conditional")) (|iiacsc| ((|#2| |#2|) "\\spad{iiacsc(x)} should be local but conditional")) (|iiasec| ((|#2| |#2|) "\\spad{iiasec(x)} should be local but conditional")) (|iiacot| ((|#2| |#2|) "\\spad{iiacot(x)} should be local but conditional")) (|iiatan| ((|#2| |#2|) "\\spad{iiatan(x)} should be local but conditional")) (|iiacos| ((|#2| |#2|) "\\spad{iiacos(x)} should be local but conditional")) (|iiasin| ((|#2| |#2|) "\\spad{iiasin(x)} should be local but conditional")) (|iicsc| ((|#2| |#2|) "\\spad{iicsc(x)} should be local but conditional")) (|iisec| ((|#2| |#2|) "\\spad{iisec(x)} should be local but conditional")) (|iicot| ((|#2| |#2|) "\\spad{iicot(x)} should be local but conditional")) (|iitan| ((|#2| |#2|) "\\spad{iitan(x)} should be local but conditional")) (|iicos| ((|#2| |#2|) "\\spad{iicos(x)} should be local but conditional")) (|iisin| ((|#2| |#2|) "\\spad{iisin(x)} should be local but conditional")) (|iilog| ((|#2| |#2|) "\\spad{iilog(x)} should be local but conditional")) (|iiexp| ((|#2| |#2|) "\\spad{iiexp(x)} should be local but conditional")) (|iisqrt3| ((|#2|) "\\spad{iisqrt3()} should be local but conditional")) (|iisqrt2| ((|#2|) "\\spad{iisqrt2()} should be local but conditional")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(p)} returns an elementary operator with the same symbol as \\spad{p}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(p)} returns \\spad{true} if operator \\spad{p} is elementary")) (|pi| ((|#2|) "\\spad{pi()} returns the \\spad{pi} operator")) (|acsch| ((|#2| |#2|) "\\spad{acsch(x)} applies the inverse hyperbolic cosecant operator to \\spad{x}")) (|asech| ((|#2| |#2|) "\\spad{asech(x)} applies the inverse hyperbolic secant operator to \\spad{x}")) (|acoth| ((|#2| |#2|) "\\spad{acoth(x)} applies the inverse hyperbolic cotangent operator to \\spad{x}")) (|atanh| ((|#2| |#2|) "\\spad{atanh(x)} applies the inverse hyperbolic tangent operator to \\spad{x}")) (|acosh| ((|#2| |#2|) "\\spad{acosh(x)} applies the inverse hyperbolic cosine operator to \\spad{x}")) (|asinh| ((|#2| |#2|) "\\spad{asinh(x)} applies the inverse hyperbolic sine operator to \\spad{x}")) (|csch| ((|#2| |#2|) "\\spad{csch(x)} applies the hyperbolic cosecant operator to \\spad{x}")) (|sech| ((|#2| |#2|) "\\spad{sech(x)} applies the hyperbolic secant operator to \\spad{x}")) (|coth| ((|#2| |#2|) "\\spad{coth(x)} applies the hyperbolic cotangent operator to \\spad{x}")) (|tanh| ((|#2| |#2|) "\\spad{tanh(x)} applies the hyperbolic tangent operator to \\spad{x}")) (|cosh| ((|#2| |#2|) "\\spad{cosh(x)} applies the hyperbolic cosine operator to \\spad{x}")) (|sinh| ((|#2| |#2|) "\\spad{sinh(x)} applies the hyperbolic sine operator to \\spad{x}")) (|acsc| ((|#2| |#2|) "\\spad{acsc(x)} applies the inverse cosecant operator to \\spad{x}")) (|asec| ((|#2| |#2|) "\\spad{asec(x)} applies the inverse secant operator to \\spad{x}")) (|acot| ((|#2| |#2|) "\\spad{acot(x)} applies the inverse cotangent operator to \\spad{x}")) (|atan| ((|#2| |#2|) "\\spad{atan(x)} applies the inverse tangent operator to \\spad{x}")) (|acos| ((|#2| |#2|) "\\spad{acos(x)} applies the inverse cosine operator to \\spad{x}")) (|asin| ((|#2| |#2|) "\\spad{asin(x)} applies the inverse sine operator to \\spad{x}")) (|csc| ((|#2| |#2|) "\\spad{csc(x)} applies the cosecant operator to \\spad{x}")) (|sec| ((|#2| |#2|) "\\spad{sec(x)} applies the secant operator to \\spad{x}")) (|cot| ((|#2| |#2|) "\\spad{cot(x)} applies the cotangent operator to \\spad{x}")) (|tan| ((|#2| |#2|) "\\spad{tan(x)} applies the tangent operator to \\spad{x}")) (|cos| ((|#2| |#2|) "\\spad{cos(x)} applies the cosine operator to \\spad{x}")) (|sin| ((|#2| |#2|) "\\spad{sin(x)} applies the sine operator to \\spad{x}")) (|log| ((|#2| |#2|) "\\spad{log(x)} applies the logarithm operator to \\spad{x}")) (|exp| ((|#2| |#2|) "\\spad{exp(x)} applies the exponential operator to \\spad{x}"))) NIL NIL -(-231 R -3091) +(-231 R -3092) ((|constructor| (NIL "ElementaryFunctionStructurePackage provides functions to test the algebraic independence of various elementary functions,{} using the Risch structure theorem (real and complex versions). It also provides transformations on elementary functions which are not considered simplifications.")) (|tanQ| ((|#2| (|Fraction| (|Integer|)) |#2|) "\\spad{tanQ(q,a)} is a local function with a conditional implementation.")) (|rootNormalize| ((|#2| |#2| (|Kernel| |#2|)) "\\spad{rootNormalize(f, k)} returns \\spad{f} rewriting either \\spad{k} which must be an \\spad{n}th-root in terms of radicals already in \\spad{f},{} or some radicals in \\spad{f} in terms of \\spad{k}.")) (|validExponential| (((|Union| |#2| "failed") (|List| (|Kernel| |#2|)) |#2| (|Symbol|)) "\\spad{validExponential([k1,...,kn],f,x)} returns \\spad{g} if \\spad{exp(f)=g} and \\spad{g} involves only \\spad{k1...kn},{} and \"failed\" otherwise.")) (|realElementary| ((|#2| |#2| (|Symbol|)) "\\spad{realElementary(f,x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log, exp, tan, atan}.") ((|#2| |#2|) "\\spad{realElementary(f)} rewrites \\spad{f} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log, exp, tan, atan}.")) (|rischNormalize| (((|Record| (|:| |func| |#2|) (|:| |kers| (|List| (|Kernel| |#2|))) (|:| |vals| (|List| |#2|))) |#2| (|Symbol|)) "\\spad{rischNormalize(f, x)} returns \\spad{[g, [k1,...,kn], [h1,...,hn]]} such that \\spad{g = normalize(f, x)} and each \\spad{ki} was rewritten as \\spad{hi} during the normalization.")) (|normalize| ((|#2| |#2| (|Symbol|)) "\\spad{normalize(f, x)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{normalize(f)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels."))) NIL NIL @@ -875,10 +875,10 @@ NIL (-236 A S) ((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge!(p,u,v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,u,i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#2| $ (|Integer|)) "\\spad{insert!(x,u,i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#2| $) "\\spad{remove!(x,u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#2|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}."))) NIL -((|HasCategory| |#2| (QUOTE (-755))) (|HasCategory| |#2| (QUOTE (-1012)))) +((|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-1013)))) (-237 S) ((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge!(p,u,v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,u,i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#1| $ (|Integer|)) "\\spad{insert!(x,u,i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#1| $) "\\spad{remove!(x,u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#1|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}."))) -((-3994 . T)) +((-3995 . T)) NIL (-238 S) ((|constructor| (NIL "Category for the elementary functions.")) (** (($ $ $) "\\spad{x**y} returns \\spad{x} to the power \\spad{y}.")) (|exp| (($ $) "\\spad{exp(x)} returns \\%\\spad{e} to the power \\spad{x}.")) (|log| (($ $) "\\spad{log(x)} returns the natural logarithm of \\spad{x}."))) @@ -899,14 +899,14 @@ NIL (-242 S |Dom| |Im|) ((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#3| $ |#2| |#3|) "\\spad{qsetelt!(u,x,y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(u,x,y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#3| $ |#2|) "\\spad{qelt(u, x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#3| $ |#2| |#3|) "\\spad{elt(u, x, y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range."))) NIL -((|HasAttribute| |#1| (QUOTE -3994))) +((|HasAttribute| |#1| (QUOTE -3995))) (-243 |Dom| |Im|) ((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#2| $ |#1| |#2|) "\\spad{qsetelt!(u,x,y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(u,x,y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#2| $ |#1|) "\\spad{qelt(u, x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#2| $ |#1| |#2|) "\\spad{elt(u, x, y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range."))) NIL NIL -(-244 S R |Mod| -2036 -3516 |exactQuo|) +(-244 S R |Mod| -2037 -3517 |exactQuo|) ((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#2| |#3|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#2| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#3| $) "\\spad{modulus(x)} \\undocumented"))) -((-3986 . T) ((-3995 "*") . T) (-3987 . T) (-3988 . T) (-3990 . T)) +((-3987 . T) ((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T)) NIL (-245 S) ((|constructor| (NIL "Entire Rings (non-commutative Integral Domains),{} \\spadignore{i.e.} a ring not necessarily commutative which has no zero divisors. \\blankline")) (|noZeroDivisors| ((|attribute|) "if a product is zero then one of the factors must be zero."))) @@ -914,7 +914,7 @@ NIL NIL (-246) ((|constructor| (NIL "Entire Rings (non-commutative Integral Domains),{} \\spadignore{i.e.} a ring not necessarily commutative which has no zero divisors. \\blankline")) (|noZeroDivisors| ((|attribute|) "if a product is zero then one of the factors must be zero."))) -((-3986 . T) (-3987 . T) (-3988 . T) (-3990 . T)) +((-3987 . T) (-3988 . T) (-3989 . T) (-3991 . T)) NIL (-247) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: March 18,{} 2010. An `Environment' is a stack of scope.")) (|categoryFrame| (($) "the current category environment in the interpreter.")) (|interactiveEnv| (($) "the current interactive environment in effect.")) (|currentEnv| (($) "the current normal environment in effect.")) (|putProperties| (($ (|Identifier|) (|List| (|Property|)) $) "\\spad{putProperties(n,props,e)} set the list of properties of \\spad{n} to \\spad{props} in \\spad{e}.")) (|getProperties| (((|List| (|Property|)) (|Identifier|) $) "\\spad{getBinding(n,e)} returns the list of properties of \\spad{n} in \\spad{e}.")) (|putProperty| (($ (|Identifier|) (|Identifier|) (|SExpression|) $) "\\spad{putProperty(n,p,v,e)} binds the property \\spad{(p,v)} to \\spad{n} in the topmost scope of \\spad{e}.")) (|getProperty| (((|Maybe| (|SExpression|)) (|Identifier|) (|Identifier|) $) "\\spad{getProperty(n,p,e)} returns the value of property with name \\spad{p} for the symbol \\spad{n} in environment \\spad{e}. Otherwise,{} \\spad{nothing}.")) (|scopes| (((|List| (|Scope|)) $) "\\spad{scopes(e)} returns the stack of scopes in environment \\spad{e}.")) (|empty| (($) "\\spad{empty()} constructs an empty environment"))) @@ -926,16 +926,16 @@ NIL NIL (-249 S) ((|constructor| (NIL "Equations as mathematical objects. All properties of the basis domain,{} \\spadignore{e.g.} being an abelian group are carried over the equation domain,{} by performing the structural operations on the left and on the right hand side.")) (|subst| (($ $ $) "\\spad{subst(eq1,eq2)} substitutes \\spad{eq2} into both sides of \\spad{eq1} the lhs of \\spad{eq2} should be a kernel")) (|inv| (($ $) "\\spad{inv(x)} returns the multiplicative inverse of \\spad{x}.")) (/ (($ $ $) "\\spad{e1/e2} produces a new equation by dividing the left and right hand sides of equations \\spad{e1} and \\spad{e2}.")) (|factorAndSplit| (((|List| $) $) "\\spad{factorAndSplit(eq)} make the right hand side 0 and factors the new left hand side. Each factor is equated to 0 and put into the resulting list without repetitions.")) (|rightOne| (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side.") (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side,{} if possible.")) (|leftOne| (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side.") (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side,{} if possible.")) (* (($ $ |#1|) "\\spad{eqn*x} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.") (($ |#1| $) "\\spad{x*eqn} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.")) (- (($ $ |#1|) "\\spad{eqn-x} produces a new equation by subtracting \\spad{x} from both sides of equation eqn.") (($ |#1| $) "\\spad{x-eqn} produces a new equation by subtracting both sides of equation eqn from \\spad{x}.")) (|rightZero| (($ $) "\\spad{rightZero(eq)} subtracts the right hand side.")) (|leftZero| (($ $) "\\spad{leftZero(eq)} subtracts the left hand side.")) (+ (($ $ |#1|) "\\spad{eqn+x} produces a new equation by adding \\spad{x} to both sides of equation eqn.") (($ |#1| $) "\\spad{x+eqn} produces a new equation by adding \\spad{x} to both sides of equation eqn.")) (|eval| (($ $ (|List| $)) "\\spad{eval(eqn, [x1=v1, ... xn=vn])} replaces \\spad{xi} by \\spad{vi} in equation \\spad{eqn}.") (($ $ $) "\\spad{eval(eqn, x=f)} replaces \\spad{x} by \\spad{f} in equation \\spad{eqn}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,eqn)} constructs a new equation by applying \\spad{f} to both sides of \\spad{eqn}.")) (|rhs| ((|#1| $) "\\spad{rhs(eqn)} returns the right hand side of equation \\spad{eqn}.")) (|lhs| ((|#1| $) "\\spad{lhs(eqn)} returns the left hand side of equation \\spad{eqn}.")) (|swap| (($ $) "\\spad{swap(eq)} interchanges left and right hand side of equation \\spad{eq}.")) (|equation| (($ |#1| |#1|) "\\spad{equation(a,b)} creates an equation.")) (= (($ |#1| |#1|) "\\spad{a=b} creates an equation."))) -((-3990 OR (|has| |#1| (-960)) (|has| |#1| (-411))) (-3987 |has| |#1| (-960)) (-3988 |has| |#1| (-960))) -((|HasCategory| |#1| (QUOTE (-312))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-960)))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-960))) (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-808 (-1088)))) (OR (|HasCategory| |#1| (QUOTE (-808 (-1088)))) (|HasCategory| |#1| (QUOTE (-960)))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-808 (-1088)))) (|HasCategory| |#1| (QUOTE (-960)))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-808 (-1088)))) (|HasCategory| |#1| (QUOTE (-960)))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-960)))) (OR (|HasCategory| |#1| (QUOTE (-411))) (|HasCategory| |#1| (QUOTE (-662)))) (|HasCategory| |#1| (QUOTE (-411))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-411))) (|HasCategory| |#1| (QUOTE (-662))) (|HasCategory| |#1| (QUOTE (-808 (-1088)))) (|HasCategory| |#1| (QUOTE (-960))) (|HasCategory| |#1| (QUOTE (-1024))) (|HasCategory| |#1| (QUOTE (-1012)))) (OR (|HasCategory| |#1| (QUOTE (-411))) (|HasCategory| |#1| (QUOTE (-662))) (|HasCategory| |#1| (QUOTE (-1024)))) (|HasCategory| |#1| (|%list| (QUOTE -454) (QUOTE (-1088)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-254))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-411)))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-662)))) (OR (|HasCategory| |#1| (QUOTE (-411))) (|HasCategory| |#1| (QUOTE (-960)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1024))) (|HasCategory| |#1| (QUOTE (-662)))) +((-3991 OR (|has| |#1| (-961)) (|has| |#1| (-412))) (-3988 |has| |#1| (-961)) (-3989 |has| |#1| (-961))) +((|HasCategory| |#1| (QUOTE (-312))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-961)))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-961))) (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-809 (-1089)))) (OR (|HasCategory| |#1| (QUOTE (-809 (-1089)))) (|HasCategory| |#1| (QUOTE (-961)))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-809 (-1089)))) (|HasCategory| |#1| (QUOTE (-961)))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-809 (-1089)))) (|HasCategory| |#1| (QUOTE (-961)))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-961)))) (OR (|HasCategory| |#1| (QUOTE (-412))) (|HasCategory| |#1| (QUOTE (-663)))) (|HasCategory| |#1| (QUOTE (-412))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-412))) (|HasCategory| |#1| (QUOTE (-663))) (|HasCategory| |#1| (QUOTE (-809 (-1089)))) (|HasCategory| |#1| (QUOTE (-961))) (|HasCategory| |#1| (QUOTE (-1025))) (|HasCategory| |#1| (QUOTE (-1013)))) (OR (|HasCategory| |#1| (QUOTE (-412))) (|HasCategory| |#1| (QUOTE (-663))) (|HasCategory| |#1| (QUOTE (-1025)))) (|HasCategory| |#1| (|%list| (QUOTE -455) (QUOTE (-1089)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-254))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-412)))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-663)))) (OR (|HasCategory| |#1| (QUOTE (-412))) (|HasCategory| |#1| (QUOTE (-961)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1025))) (|HasCategory| |#1| (QUOTE (-663)))) (-250 S R) ((|constructor| (NIL "This package provides operations for mapping the sides of equations.")) (|map| (((|Equation| |#2|) (|Mapping| |#2| |#1|) (|Equation| |#1|)) "\\spad{map(f,eq)} returns an equation where \\spad{f} is applied to the sides of \\spad{eq}"))) NIL NIL (-251 |Key| |Entry|) ((|constructor| (NIL "This domain provides tables where the keys are compared using \\spadfun{eq?}. Thus keys are considered equal only if they are the same instance of a structure."))) -((-3993 . T) (-3994 . T)) -((-12 (|HasCategory| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3858) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (QUOTE (-1012)))) (OR (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (QUOTE (-1012)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (QUOTE (-1012)))) (OR (|HasCategory| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (QUOTE (-551 (-771)))) (|HasCategory| |#2| (QUOTE (-551 (-771))))) (|HasCategory| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (QUOTE (-552 (-472)))) (-12 (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (QUOTE (-1012))) (|HasCategory| |#1| (QUOTE (-755))) (|HasCategory| |#2| (QUOTE (-1012))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-551 (-771)))) (|HasCategory| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (QUOTE (-551 (-771)))) (|HasCategory| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) +((-3994 . T) (-3995 . T)) +((-12 (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3859) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) (OR (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) (OR (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-552 (-772)))) (|HasCategory| |#2| (QUOTE (-552 (-772))))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-473)))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-1013))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-552 (-772)))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-552 (-772)))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (-252) ((|constructor| (NIL "ErrorFunctions implements error functions callable from the system interpreter. Typically,{} these functions would be called in user functions. The simple forms of the functions take one argument which is either a string (an error message) or a list of strings which all together make up a message. The list can contain formatting codes (see below). The more sophisticated versions takes two arguments where the first argument is the name of the function from which the error was invoked and the second argument is either a string or a list of strings,{} as above. When you use the one argument version in an interpreter function,{} the system will automatically insert the name of the function as the new first argument. Thus in the user interpreter function \\indented{2}{\\spad{f x == if x < 0 then error \"negative argument\" else x}} the call to error will actually be of the form \\indented{2}{\\spad{error(\"f\",\"negative argument\")}} because the interpreter will have created a new first argument. \\blankline Formatting codes: error messages may contain the following formatting codes (they should either start or end a string or else have blanks around them): \\indented{3}{\\spad{\\%l}\\space{6}start a new line} \\indented{3}{\\spad{\\%b}\\space{6}start printing in a bold font (where available)} \\indented{3}{\\spad{\\%d}\\space{6}stop\\space{2}printing in a bold font (where available)} \\indented{3}{\\spad{ \\%ceon}\\space{2}start centering message lines} \\indented{3}{\\spad{\\%ceoff}\\space{2}stop\\space{2}centering message lines} \\indented{3}{\\spad{\\%rjon}\\space{3}start displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%rjoff}\\space{2}stop\\space{2}displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%i}\\space{6}indent\\space{3}following lines 3 additional spaces} \\indented{3}{\\spad{\\%u}\\space{6}unindent following lines 3 additional spaces} \\indented{3}{\\spad{\\%xN}\\space{5}insert \\spad{N} blanks (eg,{} \\spad{\\%x10} inserts 10 blanks)} \\blankline")) (|error| (((|Exit|) (|String|) (|List| (|String|))) "\\spad{error(nam,lmsg)} displays error messages \\spad{lmsg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|String|) (|String|)) "\\spad{error(nam,msg)} displays error message \\spad{msg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|List| (|String|))) "\\spad{error(lmsg)} displays error message \\spad{lmsg} and terminates.") (((|Exit|) (|String|)) "\\spad{error(msg)} displays error message \\spad{msg} and terminates."))) NIL @@ -943,16 +943,16 @@ NIL (-253 S) ((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x, s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x, y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f, k)} returns \\spad{op(f(x1),...,f(xn))} where \\spad{k = op(x1,...,xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op, [f1,...,fn])} constructs \\spad{op(f1,...,fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op, x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x, s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x, op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}fn,{} \\spad{op(f1,...,fn)} has height equal to \\spad{1 + max(height(f1),...,height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f, g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,...,fn])} returns \\spad{(f1,...,fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x, 2])} returns the formal kernel \\spad{atan((x, 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,...,fn])} returns \\spad{(f1,...,fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x, 2])} returns the formal kernel \\spad{atan(x, 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f, [k1...,kn], [g1,...,gn])} replaces the kernels \\spad{k1},{}...,{}kn by \\spad{g1},{}...,{}gn formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f, [k1 = g1,...,kn = gn])} replaces the kernels \\spad{k1},{}...,{}kn by \\spad{g1},{}...,{}gn formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f, k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,[x1,...,xn])} or \\spad{op}([\\spad{x1},{}...,{}xn]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}xn.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,x,y,z,t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,x,y,z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,x,y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}."))) NIL -((|HasCategory| |#1| (QUOTE (-949 (-483)))) (|HasCategory| |#1| (QUOTE (-960)))) +((|HasCategory| |#1| (QUOTE (-950 (-484)))) (|HasCategory| |#1| (QUOTE (-961)))) (-254) ((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x, s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x, y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f, k)} returns \\spad{op(f(x1),...,f(xn))} where \\spad{k = op(x1,...,xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op, [f1,...,fn])} constructs \\spad{op(f1,...,fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op, x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x, s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x, op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}fn,{} \\spad{op(f1,...,fn)} has height equal to \\spad{1 + max(height(f1),...,height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f, g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,...,fn])} returns \\spad{(f1,...,fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x, 2])} returns the formal kernel \\spad{atan((x, 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,...,fn])} returns \\spad{(f1,...,fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x, 2])} returns the formal kernel \\spad{atan(x, 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f, [k1...,kn], [g1,...,gn])} replaces the kernels \\spad{k1},{}...,{}kn by \\spad{g1},{}...,{}gn formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f, [k1 = g1,...,kn = gn])} replaces the kernels \\spad{k1},{}...,{}kn by \\spad{g1},{}...,{}gn formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f, k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,[x1,...,xn])} or \\spad{op}([\\spad{x1},{}...,{}xn]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}xn.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,x,y,z,t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,x,y,z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,x,y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}."))) NIL NIL -(-255 -3091 S) +(-255 -3092 S) ((|constructor| (NIL "This package allows a map from any expression space into any object to be lifted to a kernel over the expression set,{} using a given property of the operator of the kernel.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|String|) (|Kernel| |#1|)) "\\spad{map(f, p, k)} uses the property \\spad{p} of the operator of \\spad{k},{} in order to lift \\spad{f} and apply it to \\spad{k}."))) NIL NIL -(-256 E -3091) +(-256 E -3092) ((|constructor| (NIL "This package allows a mapping \\spad{E} -> \\spad{F} to be lifted to a kernel over \\spad{E}; This lifting can fail if the operator of the kernel cannot be applied in \\spad{F}; Do not use this package with \\spad{E} = \\spad{F},{} since this may drop some properties of the operators.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|Kernel| |#1|)) "\\spad{map(f, k)} returns \\spad{g = op(f(a1),...,f(an))} where \\spad{k = op(a1,...,an)}."))) NIL NIL @@ -962,7 +962,7 @@ NIL NIL (-258) ((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,...,fn],z)} returns a list of coefficients \\spad{[a1, ..., an]} such that \\spad{ z / prod fi = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,y,z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a gcd of \\spad{x} and \\spad{y}. The gcd is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}."))) -((-3986 . T) ((-3995 "*") . T) (-3987 . T) (-3988 . T) (-3990 . T)) +((-3987 . T) ((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T)) NIL (-259 S R) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation'' substitutions.")) (|eval| (($ $ (|List| (|Equation| |#2|))) "\\spad{eval(f, [x1 = v1,...,xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#2|)) "\\spad{eval(f,x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) @@ -972,7 +972,7 @@ NIL ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation'' substitutions.")) (|eval| (($ $ (|List| (|Equation| |#1|))) "\\spad{eval(f, [x1 = v1,...,xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#1|)) "\\spad{eval(f,x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-261 -3091) +(-261 -3092) ((|constructor| (NIL "This package is to be used in conjuction with \\indented{12}{the CycleIndicators package. It provides an evaluation} \\indented{12}{function for SymmetricPolynomials.}")) (|eval| ((|#1| (|Mapping| |#1| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{eval(f,s)} evaluates the cycle index \\spad{s} by applying \\indented{1}{the function \\spad{f} to each integer in a monomial partition,{}} \\indented{1}{forms their product and sums the results over all monomials.}"))) NIL NIL @@ -986,12 +986,12 @@ NIL NIL (-264 R FE |var| |cen|) ((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent essential singularities of functions. Objects in this domain are quotients of sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) "\\spad{coerce(f)} converts a \\spadtype{UnivariatePuiseuxSeries} to an \\spadtype{ExponentialExpansion}.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> a+,f(var))}."))) -((-3985 . T) (-3991 . T) (-3986 . T) ((-3995 "*") . T) (-3987 . T) (-3988 . T) (-3990 . T)) -((|HasCategory| (-1164 |#1| |#2| |#3| |#4|) (QUOTE (-820))) (|HasCategory| (-1164 |#1| |#2| |#3| |#4|) (QUOTE (-949 (-1088)))) (|HasCategory| (-1164 |#1| |#2| |#3| |#4|) (QUOTE (-118))) (|HasCategory| (-1164 |#1| |#2| |#3| |#4|) (QUOTE (-120))) (|HasCategory| (-1164 |#1| |#2| |#3| |#4|) (QUOTE (-552 (-472)))) (|HasCategory| (-1164 |#1| |#2| |#3| |#4|) (QUOTE (-932))) (|HasCategory| (-1164 |#1| |#2| |#3| |#4|) (QUOTE (-739))) (|HasCategory| (-1164 |#1| |#2| |#3| |#4|) (QUOTE (-755))) (OR (|HasCategory| (-1164 |#1| |#2| |#3| |#4|) (QUOTE (-739))) (|HasCategory| (-1164 |#1| |#2| |#3| |#4|) (QUOTE (-755)))) (|HasCategory| (-1164 |#1| |#2| |#3| |#4|) (QUOTE (-949 (-483)))) (|HasCategory| (-1164 |#1| |#2| |#3| |#4|) (QUOTE (-1064))) (|HasCategory| (-1164 |#1| |#2| |#3| |#4|) (QUOTE (-795 (-328)))) (|HasCategory| (-1164 |#1| |#2| |#3| |#4|) (QUOTE (-795 (-483)))) (|HasCategory| (-1164 |#1| |#2| |#3| |#4|) (QUOTE (-552 (-799 (-328))))) (|HasCategory| (-1164 |#1| |#2| |#3| |#4|) (QUOTE (-552 (-799 (-483))))) (|HasCategory| (-1164 |#1| |#2| |#3| |#4|) (QUOTE (-579 (-483)))) (|HasCategory| (-1164 |#1| |#2| |#3| |#4|) (QUOTE (-189))) (|HasCategory| (-1164 |#1| |#2| |#3| |#4|) (QUOTE (-810 (-1088)))) (|HasCategory| (-1164 |#1| |#2| |#3| |#4|) (QUOTE (-190))) (|HasCategory| (-1164 |#1| |#2| |#3| |#4|) (QUOTE (-808 (-1088)))) (|HasCategory| (-1164 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -454) (QUOTE (-1088)) (|%list| (QUOTE -1164) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1164 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -260) (|%list| (QUOTE -1164) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1164 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -241) (|%list| (QUOTE -1164) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (|%list| (QUOTE -1164) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1164 |#1| |#2| |#3| |#4|) (QUOTE (-258))) (|HasCategory| (-1164 |#1| |#2| |#3| |#4|) (QUOTE (-482))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-1164 |#1| |#2| |#3| |#4|) (QUOTE (-820)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-1164 |#1| |#2| |#3| |#4|) (QUOTE (-820)))) (|HasCategory| (-1164 |#1| |#2| |#3| |#4|) (QUOTE (-118))))) +((-3986 . T) (-3992 . T) (-3987 . T) ((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T)) +((|HasCategory| (-1165 |#1| |#2| |#3| |#4|) (QUOTE (-821))) (|HasCategory| (-1165 |#1| |#2| |#3| |#4|) (QUOTE (-950 (-1089)))) (|HasCategory| (-1165 |#1| |#2| |#3| |#4|) (QUOTE (-118))) (|HasCategory| (-1165 |#1| |#2| |#3| |#4|) (QUOTE (-120))) (|HasCategory| (-1165 |#1| |#2| |#3| |#4|) (QUOTE (-553 (-473)))) (|HasCategory| (-1165 |#1| |#2| |#3| |#4|) (QUOTE (-933))) (|HasCategory| (-1165 |#1| |#2| |#3| |#4|) (QUOTE (-740))) (|HasCategory| (-1165 |#1| |#2| |#3| |#4|) (QUOTE (-756))) (OR (|HasCategory| (-1165 |#1| |#2| |#3| |#4|) (QUOTE (-740))) (|HasCategory| (-1165 |#1| |#2| |#3| |#4|) (QUOTE (-756)))) (|HasCategory| (-1165 |#1| |#2| |#3| |#4|) (QUOTE (-950 (-484)))) (|HasCategory| (-1165 |#1| |#2| |#3| |#4|) (QUOTE (-1065))) (|HasCategory| (-1165 |#1| |#2| |#3| |#4|) (QUOTE (-796 (-329)))) (|HasCategory| (-1165 |#1| |#2| |#3| |#4|) (QUOTE (-796 (-484)))) (|HasCategory| (-1165 |#1| |#2| |#3| |#4|) (QUOTE (-553 (-800 (-329))))) (|HasCategory| (-1165 |#1| |#2| |#3| |#4|) (QUOTE (-553 (-800 (-484))))) (|HasCategory| (-1165 |#1| |#2| |#3| |#4|) (QUOTE (-580 (-484)))) (|HasCategory| (-1165 |#1| |#2| |#3| |#4|) (QUOTE (-189))) (|HasCategory| (-1165 |#1| |#2| |#3| |#4|) (QUOTE (-811 (-1089)))) (|HasCategory| (-1165 |#1| |#2| |#3| |#4|) (QUOTE (-190))) (|HasCategory| (-1165 |#1| |#2| |#3| |#4|) (QUOTE (-809 (-1089)))) (|HasCategory| (-1165 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -455) (QUOTE (-1089)) (|%list| (QUOTE -1165) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1165 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -260) (|%list| (QUOTE -1165) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1165 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -241) (|%list| (QUOTE -1165) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (|%list| (QUOTE -1165) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1165 |#1| |#2| |#3| |#4|) (QUOTE (-258))) (|HasCategory| (-1165 |#1| |#2| |#3| |#4|) (QUOTE (-483))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-1165 |#1| |#2| |#3| |#4|) (QUOTE (-821)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-1165 |#1| |#2| |#3| |#4|) (QUOTE (-821)))) (|HasCategory| (-1165 |#1| |#2| |#3| |#4|) (QUOTE (-118))))) (-265 R) ((|constructor| (NIL "Expressions involving symbolic functions.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} \\undocumented{}")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} \\undocumented{}")) (|simplifyPower| (($ $ (|Integer|)) "simplifyPower?(\\spad{f},{}\\spad{n}) \\undocumented{}")) (|number?| (((|Boolean|) $) "\\spad{number?(f)} tests if \\spad{f} is rational")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic quantities present in \\spad{f} by applying their defining relations."))) -((-3990 OR (-12 (|has| |#1| (-494)) (OR (|has| |#1| (-960)) (|has| |#1| (-411)))) (|has| |#1| (-960)) (|has| |#1| (-411))) (-3988 |has| |#1| (-146)) (-3987 |has| |#1| (-146)) ((-3995 "*") |has| |#1| (-494)) (-3986 |has| |#1| (-494)) (-3991 |has| |#1| (-494)) (-3985 |has| |#1| (-494))) -((OR (-12 (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-949 (-483))))) (|HasCategory| |#1| (QUOTE (-949 (-348 (-483)))))) (|HasCategory| |#1| (QUOTE (-494))) (OR (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-960)))) (|HasCategory| |#1| (QUOTE (-960))) (|HasCategory| |#1| (QUOTE (-21))) (OR (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-949 (-348 (-483)))))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-960)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-579 (-483))))) (-12 (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-579 (-483))))) (-12 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-579 (-483))))) (-12 (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-579 (-483))))) (-12 (|HasCategory| |#1| (QUOTE (-579 (-483)))) (|HasCategory| |#1| (QUOTE (-960))))) (OR (|HasCategory| |#1| (QUOTE (-411))) (|HasCategory| |#1| (QUOTE (-1024)))) (|HasCategory| |#1| (QUOTE (-411))) (|HasCategory| |#1| (QUOTE (-552 (-472)))) (OR (|HasCategory| |#1| (QUOTE (-949 (-483)))) (|HasCategory| |#1| (QUOTE (-960)))) (|HasCategory| |#1| (QUOTE (-949 (-483)))) (|HasCategory| |#1| (QUOTE (-795 (-328)))) (|HasCategory| |#1| (QUOTE (-795 (-483)))) (|HasCategory| |#1| (QUOTE (-552 (-799 (-328))))) (|HasCategory| |#1| (QUOTE (-552 (-799 (-483))))) (-12 (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-949 (-483))))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-960)))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-960)))) (OR (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-960)))) (-12 (|HasCategory| |#1| (QUOTE (-390))) (|HasCategory| |#1| (QUOTE (-494)))) (OR (|HasCategory| |#1| (QUOTE (-411))) (|HasCategory| |#1| (QUOTE (-494)))) (-12 (|HasCategory| |#1| (QUOTE (-579 (-483)))) (|HasCategory| |#1| (QUOTE (-960)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-579 (-483)))) (|HasCategory| |#1| (QUOTE (-960)))) (|HasCategory| |#1| (QUOTE (-21)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-579 (-483)))) (|HasCategory| |#1| (QUOTE (-960)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1024)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-579 (-483)))) (|HasCategory| |#1| (QUOTE (-960)))) (|HasCategory| |#1| (QUOTE (-25)))) (OR (|HasCategory| |#1| (QUOTE (-411))) (|HasCategory| |#1| (QUOTE (-960)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-949 (-348 (-483)))))) (-12 (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-949 (-483)))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1024))) (|HasCategory| |#1| (QUOTE (-949 (-348 (-483))))) (|HasCategory| $ (QUOTE (-960))) (|HasCategory| $ (QUOTE (-949 (-483))))) +((-3991 OR (-12 (|has| |#1| (-495)) (OR (|has| |#1| (-961)) (|has| |#1| (-412)))) (|has| |#1| (-961)) (|has| |#1| (-412))) (-3989 |has| |#1| (-146)) (-3988 |has| |#1| (-146)) ((-3996 "*") |has| |#1| (-495)) (-3987 |has| |#1| (-495)) (-3992 |has| |#1| (-495)) (-3986 |has| |#1| (-495))) +((OR (-12 (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-950 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-349 (-484)))))) (|HasCategory| |#1| (QUOTE (-495))) (OR (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-961)))) (|HasCategory| |#1| (QUOTE (-961))) (|HasCategory| |#1| (QUOTE (-21))) (OR (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-950 (-349 (-484)))))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-961)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-580 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-580 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-580 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-580 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-580 (-484)))) (|HasCategory| |#1| (QUOTE (-961))))) (OR (|HasCategory| |#1| (QUOTE (-412))) (|HasCategory| |#1| (QUOTE (-1025)))) (|HasCategory| |#1| (QUOTE (-412))) (|HasCategory| |#1| (QUOTE (-553 (-473)))) (OR (|HasCategory| |#1| (QUOTE (-950 (-484)))) (|HasCategory| |#1| (QUOTE (-961)))) (|HasCategory| |#1| (QUOTE (-950 (-484)))) (|HasCategory| |#1| (QUOTE (-796 (-329)))) (|HasCategory| |#1| (QUOTE (-796 (-484)))) (|HasCategory| |#1| (QUOTE (-553 (-800 (-329))))) (|HasCategory| |#1| (QUOTE (-553 (-800 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-950 (-484))))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-961)))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-961)))) (OR (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-961)))) (-12 (|HasCategory| |#1| (QUOTE (-391))) (|HasCategory| |#1| (QUOTE (-495)))) (OR (|HasCategory| |#1| (QUOTE (-412))) (|HasCategory| |#1| (QUOTE (-495)))) (-12 (|HasCategory| |#1| (QUOTE (-580 (-484)))) (|HasCategory| |#1| (QUOTE (-961)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-580 (-484)))) (|HasCategory| |#1| (QUOTE (-961)))) (|HasCategory| |#1| (QUOTE (-21)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-580 (-484)))) (|HasCategory| |#1| (QUOTE (-961)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1025)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-580 (-484)))) (|HasCategory| |#1| (QUOTE (-961)))) (|HasCategory| |#1| (QUOTE (-25)))) (OR (|HasCategory| |#1| (QUOTE (-412))) (|HasCategory| |#1| (QUOTE (-961)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-950 (-484)))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1025))) (|HasCategory| |#1| (QUOTE (-950 (-349 (-484))))) (|HasCategory| $ (QUOTE (-961))) (|HasCategory| $ (QUOTE (-950 (-484))))) (-266 R S) ((|constructor| (NIL "Lifting of maps to Expressions. Date Created: 16 Jan 1989 Date Last Updated: 22 Jan 1990")) (|map| (((|Expression| |#2|) (|Mapping| |#2| |#1|) (|Expression| |#1|)) "\\spad{map(f, e)} applies \\spad{f} to all the constants appearing in \\spad{e}."))) NIL @@ -1000,7 +1000,7 @@ NIL ((|constructor| (NIL "This package provides functions to convert functional expressions to power series.")) (|series| (((|Any|) |#2| (|Equation| |#2|) (|Fraction| (|Integer|))) "\\spad{series(f,x = a,n)} expands the expression \\spad{f} as a series in powers of (\\spad{x} - a); terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{series(f,x = a)} expands the expression \\spad{f} as a series in powers of (\\spad{x} - a).") (((|Any|) |#2| (|Fraction| (|Integer|))) "\\spad{series(f,n)} returns a series expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{series(f)} returns a series expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{series(x)} returns \\spad{x} viewed as a series.")) (|puiseux| (((|Any|) |#2| (|Equation| |#2|) (|Fraction| (|Integer|))) "\\spad{puiseux(f,x = a,n)} expands the expression \\spad{f} as a Puiseux series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{puiseux(f,x = a)} expands the expression \\spad{f} as a Puiseux series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|Fraction| (|Integer|))) "\\spad{puiseux(f,n)} returns a Puiseux expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{puiseux(f)} returns a Puiseux expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{puiseux(x)} returns \\spad{x} viewed as a Puiseux series.")) (|laurent| (((|Any|) |#2| (|Equation| |#2|) (|Integer|)) "\\spad{laurent(f,x = a,n)} expands the expression \\spad{f} as a Laurent series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{laurent(f,x = a)} expands the expression \\spad{f} as a Laurent series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|Integer|)) "\\spad{laurent(f,n)} returns a Laurent expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{laurent(f)} returns a Laurent expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{laurent(x)} returns \\spad{x} viewed as a Laurent series.")) (|taylor| (((|Any|) |#2| (|Equation| |#2|) (|NonNegativeInteger|)) "\\spad{taylor(f,x = a)} expands the expression \\spad{f} as a Taylor series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{taylor(f,x = a)} expands the expression \\spad{f} as a Taylor series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|NonNegativeInteger|)) "\\spad{taylor(f,n)} returns a Taylor expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{taylor(f)} returns a Taylor expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{taylor(x)} returns \\spad{x} viewed as a Taylor series."))) NIL NIL -(-268 R -3091) +(-268 R -3092) ((|constructor| (NIL "Taylor series solutions of explicit ODE's.")) (|seriesSolve| (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq, y, x = a, [b0,...,bn])} is equivalent to \\spad{seriesSolve(eq = 0, y, x = a, [b0,...,b(n-1)])}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq, y, x = a, y a = b)} is equivalent to \\spad{seriesSolve(eq=0, y, x=a, y a = b)}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq, y, x = a, b)} is equivalent to \\spad{seriesSolve(eq = 0, y, x = a, y a = b)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,y, x=a, b)} is equivalent to \\spad{seriesSolve(eq, y, x=a, y a = b)}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x = a,[y1 a = b1,..., yn a = bn])} is equivalent to \\spad{seriesSolve([eq1=0,...,eqn=0], [y1,...,yn], x = a, [y1 a = b1,..., yn a = bn])}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x=a, [b1,...,bn])} is equivalent to \\spad{seriesSolve([eq1=0,...,eqn=0], [y1,...,yn], x=a, [b1,...,bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x=a, [b1,...,bn])} is equivalent to \\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x = a, [y1 a = b1,..., yn a = bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,...,eqn],[y1,...,yn],x = a,[y1 a = b1,...,yn a = bn])} returns a taylor series solution of \\spad{[eq1,...,eqn]} around \\spad{x = a} with initial conditions \\spad{yi(a) = bi}. Note: eqi must be of the form \\spad{fi(x, y1 x, y2 x,..., yn x) y1'(x) + gi(x, y1 x, y2 x,..., yn x) = h(x, y1 x, y2 x,..., yn x)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,y,x=a,[b0,...,b(n-1)])} returns a Taylor series solution of \\spad{eq} around \\spad{x = a} with initial conditions \\spad{y(a) = b0},{} \\spad{y'(a) = b1},{} \\spad{y''(a) = b2},{} ...,{}\\spad{y(n-1)(a) = b(n-1)} \\spad{eq} must be of the form \\spad{f(x, y x, y'(x),..., y(n-1)(x)) y(n)(x) + g(x,y x,y'(x),...,y(n-1)(x)) = h(x,y x, y'(x),..., y(n-1)(x))}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,y,x=a, y a = b)} returns a Taylor series solution of \\spad{eq} around \\spad{x} = a with initial condition \\spad{y(a) = b}. Note: \\spad{eq} must be of the form \\spad{f(x, y x) y'(x) + g(x, y x) = h(x, y x)}."))) NIL NIL @@ -1010,8 +1010,8 @@ NIL NIL (-270 FE |var| |cen|) ((|constructor| (NIL "ExponentialOfUnivariatePuiseuxSeries is a domain used to represent essential singularities of functions. An object in this domain is a function of the form \\spad{exp(f(x))},{} where \\spad{f(x)} is a Puiseux series with no terms of non-negative degree. Objects are ordered according to order of singularity,{} with functions which tend more rapidly to zero or infinity considered to be larger. Thus,{} if \\spad{order(f(x)) < order(g(x))},{} \\spadignore{i.e.} the first non-zero term of \\spad{f(x)} has lower degree than the first non-zero term of \\spad{g(x)},{} then \\spad{exp(f(x)) > exp(g(x))}. If \\spad{order(f(x)) = order(g(x))},{} then the ordering is essentially random. This domain is used in computing limits involving functions with essential singularities.")) (|exponentialOrder| (((|Fraction| (|Integer|)) $) "\\spad{exponentialOrder(exp(c * x **(-n) + ...))} returns \\spad{-n}. exponentialOrder(0) returns \\spad{0}.")) (|exponent| (((|UnivariatePuiseuxSeries| |#1| |#2| |#3|) $) "\\spad{exponent(exp(f(x)))} returns \\spad{f(x)}")) (|exponential| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{exponential(f(x))} returns \\spad{exp(f(x))}. Note: the function does NOT check that \\spad{f(x)} has no non-negative terms."))) -(((-3995 "*") |has| |#1| (-146)) (-3986 |has| |#1| (-494)) (-3991 |has| |#1| (-312)) (-3985 |has| |#1| (-312)) (-3987 . T) (-3988 . T) (-3990 . T)) -((|HasCategory| |#1| (QUOTE (-38 (-348 (-483))))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-494)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-808 (-1088)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -348) (QUOTE (-483))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -348) (QUOTE (-483))) (|devaluate| |#1|)))) (|HasCategory| (-348 (-483)) (QUOTE (-1024))) (|HasCategory| |#1| (QUOTE (-312))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-494)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-494)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -348) (QUOTE (-483)))))) (|HasSignature| |#1| (|%list| (QUOTE -3944) (|%list| (|devaluate| |#1|) (QUOTE (-1088)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -348) (QUOTE (-483)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-348 (-483))))) (|HasCategory| |#1| (QUOTE (-29 (-483)))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1113)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-348 (-483))))) (|HasSignature| |#1| (|%list| (QUOTE -3810) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1088))))) (|HasSignature| |#1| (|%list| (QUOTE -3080) (|%list| (|%list| (QUOTE -582) (QUOTE (-1088))) (|devaluate| |#1|))))))) +(((-3996 "*") |has| |#1| (-146)) (-3987 |has| |#1| (-495)) (-3992 |has| |#1| (-312)) (-3986 |has| |#1| (-312)) (-3988 . T) (-3989 . T) (-3991 . T)) +((|HasCategory| |#1| (QUOTE (-38 (-349 (-484))))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-809 (-1089)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -349) (QUOTE (-484))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -349) (QUOTE (-484))) (|devaluate| |#1|)))) (|HasCategory| (-349 (-484)) (QUOTE (-1025))) (|HasCategory| |#1| (QUOTE (-312))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-495)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-495)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -349) (QUOTE (-484)))))) (|HasSignature| |#1| (|%list| (QUOTE -3945) (|%list| (|devaluate| |#1|) (QUOTE (-1089)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -349) (QUOTE (-484)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-349 (-484))))) (|HasCategory| |#1| (QUOTE (-29 (-484)))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1114)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-349 (-484))))) (|HasSignature| |#1| (|%list| (QUOTE -3811) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1089))))) (|HasSignature| |#1| (|%list| (QUOTE -3081) (|%list| (|%list| (QUOTE -583) (QUOTE (-1089))) (|devaluate| |#1|))))))) (-271 M) ((|constructor| (NIL "computes various functions on factored arguments.")) (|log| (((|List| (|Record| (|:| |coef| (|NonNegativeInteger|)) (|:| |logand| |#1|))) (|Factored| |#1|)) "\\spad{log(f)} returns \\spad{[(a1,b1),...,(am,bm)]} such that the logarithm of \\spad{f} is equal to \\spad{a1*log(b1) + ... + am*log(bm)}.")) (|nthRoot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#1|) (|:| |radicand| (|List| |#1|))) (|Factored| |#1|) (|NonNegativeInteger|)) "\\spad{nthRoot(f, n)} returns \\spad{(p, r, [r1,...,rm])} such that the \\spad{n}th-root of \\spad{f} is equal to \\spad{r * \\spad{p}th-root(r1 * ... * rm)},{} where \\spad{r1},{}...,{}rm are distinct factors of \\spad{f},{} each of which has an exponent smaller than \\spad{p} in \\spad{f}."))) NIL @@ -1022,8 +1022,8 @@ NIL NIL (-273 S) ((|constructor| (NIL "The free abelian group on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the \\spad{si}'s are in \\spad{S},{} and the \\spad{ni}'s are integers. The operation is commutative."))) -((-3988 . T) (-3987 . T)) -((|HasCategory| |#1| (QUOTE (-755))) (|HasCategory| (-483) (QUOTE (-715)))) +((-3989 . T) (-3988 . T)) +((|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| (-484) (QUOTE (-716)))) (-274 S E) ((|constructor| (NIL "A free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the \\spad{si}'s are in \\spad{S},{} and the \\spad{ni}'s are in a given abelian monoid. The operation is commutative.")) (|highCommonTerms| (($ $ $) "\\spad{highCommonTerms(e1 a1 + ... + en an, f1 b1 + ... + fm bm)} returns \\indented{2}{\\spad{reduce(+,[max(ei, fi) ci])}} where \\spad{ci} ranges in the intersection of \\spad{{a1,...,an}} and \\spad{{b1,...,bm}}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, e1 a1 +...+ en an)} returns \\spad{e1 f(a1) +...+ en f(an)}.")) (|mapCoef| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapCoef(f, e1 a1 +...+ en an)} returns \\spad{f(e1) a1 +...+ f(en) an}.")) (|coefficient| ((|#2| |#1| $) "\\spad{coefficient(s, e1 a1 + ... + en an)} returns \\spad{ei} such that \\spad{ai} = \\spad{s},{} or 0 if \\spad{s} is not one of the \\spad{ai}'s.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th term of \\spad{x}.")) (|nthCoef| ((|#2| $ (|Integer|)) "\\spad{nthCoef(x, n)} returns the coefficient of the n^th term of \\spad{x}.")) (|terms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{terms(e1 a1 + ... + en an)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of terms in \\spad{x}. mapGen(\\spad{f},{} \\spad{a1}\\^\\spad{e1} ... an\\^en) returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (* (($ |#2| |#1|) "\\spad{e * s} returns \\spad{e} times \\spad{s}.")) (+ (($ |#1| $) "\\spad{s + x} returns the sum of \\spad{s} and \\spad{x}."))) NIL @@ -1031,26 +1031,26 @@ NIL (-275 S) ((|constructor| (NIL "The free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the \\spad{si}'s are in \\spad{S},{} and the \\spad{ni}'s are non-negative integers. The operation is commutative."))) NIL -((|HasCategory| (-693) (QUOTE (-715)))) +((|HasCategory| (-694) (QUOTE (-716)))) (-276 S R E) ((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#2| $) "\\spad{content(p)} gives the gcd of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(p,r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,q,n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#2| |#3| $) "\\spad{pomopo!(p1,r,e,p2)} returns \\spad{p1 + monomial(e,r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#3| |#3|) $) "\\spad{mapExponents(fn,u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#3| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#2| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring."))) NIL -((|HasCategory| |#2| (QUOTE (-390))) (|HasCategory| |#2| (QUOTE (-494))) (|HasCategory| |#2| (QUOTE (-146)))) +((|HasCategory| |#2| (QUOTE (-391))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-146)))) (-277 R E) ((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#1| $) "\\spad{content(p)} gives the gcd of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(p,r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,q,n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#1| |#2| $) "\\spad{pomopo!(p1,r,e,p2)} returns \\spad{p1 + monomial(e,r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExponents(fn,u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#2| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#1| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring."))) -(((-3995 "*") |has| |#1| (-146)) (-3986 |has| |#1| (-494)) (-3987 . T) (-3988 . T) (-3990 . T)) +(((-3996 "*") |has| |#1| (-146)) (-3987 |has| |#1| (-495)) (-3988 . T) (-3989 . T) (-3991 . T)) NIL (-278 S) ((|constructor| (NIL "\\indented{1}{A FlexibleArray is the notion of an array intended to allow for growth} at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets."))) -((-3994 . T) (-3993 . T)) -((OR (-12 (|HasCategory| |#1| (QUOTE (-755))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-551 (-771)))) (|HasCategory| |#1| (QUOTE (-552 (-472)))) (OR (|HasCategory| |#1| (QUOTE (-755))) (|HasCategory| |#1| (QUOTE (-1012)))) (|HasCategory| |#1| (QUOTE (-755))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-755))) (|HasCategory| |#1| (QUOTE (-1012)))) (|HasCategory| (-483) (QUOTE (-755))) (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) -(-279 S -3091) +((-3995 . T) (-3994 . T)) +((OR (-12 (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-553 (-473)))) (OR (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-756))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| (-484) (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) +(-279 S -3092) ((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,d} from {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\$SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#2|) "failed") $ $) "\\spad{linearAssociatedLog(b,a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#2|)) "\\spad{linearAssociatedExp(a,f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,d} form {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\$SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,d) = reduce(+,[a**(q**(d*i)) for i in 0..n/d])}.") ((|#2| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(q**(d*i)) for \\spad{i} in 0..n/d])") ((|#2| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#2|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}vn are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}'s with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\$ as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\$ as \\spad{F}-vectorspace."))) NIL -((|HasCategory| |#2| (QUOTE (-318)))) -(-280 -3091) +((|HasCategory| |#2| (QUOTE (-319)))) +(-280 -3092) ((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,d} from {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\$SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") $ $) "\\spad{linearAssociatedLog(b,a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#1|)) "\\spad{linearAssociatedExp(a,f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,d} form {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\$SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,d) = reduce(+,[a**(q**(d*i)) for i in 0..n/d])}.") ((|#1| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(q**(d*i)) for \\spad{i} in 0..n/d])") ((|#1| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#1|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}vn are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}'s with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\$ as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\$ as \\spad{F}-vectorspace."))) -((-3985 . T) (-3991 . T) (-3986 . T) ((-3995 "*") . T) (-3987 . T) (-3988 . T) (-3990 . T)) +((-3986 . T) (-3992 . T) (-3987 . T) ((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T)) NIL (-281 E) ((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: 12 June 1992 Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the argument of a given sin/cos expressions")) (|sin?| (((|Boolean|) $) "\\spad{sin?(x)} returns \\spad{true} if term is a sin,{} otherwise \\spad{false}")) (|cos| (($ |#1|) "\\spad{cos(x)} makes a cos kernel for use in Fourier series")) (|sin| (($ |#1|) "\\spad{sin(x)} makes a sin kernel for use in Fourier series"))) @@ -1060,7 +1060,7 @@ NIL ((|constructor| (NIL "Represntation of data needed to instantiate a domain constructor.")) (|lookupFunction| (((|Identifier|) $) "\\spad{lookupFunction x} returns the name of the lookup function associated with the functor data \\spad{x}.")) (|categories| (((|PrimitiveArray| (|ConstructorCall| (|CategoryConstructor|))) $) "\\spad{categories x} returns the list of categories forms each domain object obtained from the domain data \\spad{x} belongs to.")) (|encodingDirectory| (((|PrimitiveArray| (|NonNegativeInteger|)) $) "\\spad{encodintDirectory x} returns the directory of domain-wide entity description.")) (|attributeData| (((|List| (|Pair| (|Syntax|) (|NonNegativeInteger|))) $) "\\spad{attributeData x} returns the list of attribute-predicate bit vector index pair associated with the functor data \\spad{x}.")) (|domainTemplate| (((|DomainTemplate|) $) "\\spad{domainTemplate x} returns the domain template vector associated with the functor data \\spad{x}."))) NIL NIL -(-283 -3091 UP UPUP R) +(-283 -3092 UP UPUP R) ((|constructor| (NIL "This domains implements finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}'s are integers and the \\spad{P}'s are finite rational points on the curve.")) (|lSpaceBasis| (((|Vector| |#4|) $) "\\spad{lSpaceBasis(d)} returns a basis for \\spad{L(d) = {f | (f) >= -d}} as a module over \\spad{K[x]}.")) (|finiteBasis| (((|Vector| |#4|) $) "\\spad{finiteBasis(d)} returns a basis for \\spad{d} as a module over {\\em K[x]}."))) NIL NIL @@ -1068,33 +1068,33 @@ NIL ((|constructor| (NIL "\\indented{1}{Lift a map to finite divisors.} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 19 May 1993")) (|map| (((|FiniteDivisor| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{map(f,d)} \\undocumented{}"))) NIL NIL -(-285 S -3091 UP UPUP R) +(-285 S -3092 UP UPUP R) ((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}'s are integers and the \\spad{P}'s are finite rational points on the curve.")) (|generator| (((|Union| |#5| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) (|:| |principalPart| |#5|)) $) "\\spad{decompose(d)} returns \\spad{[id, f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#5| |#3| |#3| |#3| |#2|) "\\spad{divisor(h, d, d', g, r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,discriminant)} contains the ramified zeros of \\spad{d}") (($ |#2| |#2| (|Integer|)) "\\spad{divisor(a, b, n)} makes the divisor \\spad{nP} where P: \\spad{(x = a, y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#2| |#2|) "\\spad{divisor(a, b)} makes the divisor P: \\spad{(x = a, y = b)}. Error: if \\spad{P} is singular.") (($ |#5|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}."))) NIL NIL -(-286 -3091 UP UPUP R) +(-286 -3092 UP UPUP R) ((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}'s are integers and the \\spad{P}'s are finite rational points on the curve.")) (|generator| (((|Union| |#4| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) "\\spad{decompose(d)} returns \\spad{[id, f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#4| |#2| |#2| |#2| |#1|) "\\spad{divisor(h, d, d', g, r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,discriminant)} contains the ramified zeros of \\spad{d}") (($ |#1| |#1| (|Integer|)) "\\spad{divisor(a, b, n)} makes the divisor \\spad{nP} where P: \\spad{(x = a, y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#1| |#1|) "\\spad{divisor(a, b)} makes the divisor P: \\spad{(x = a, y = b)}. Error: if \\spad{P} is singular.") (($ |#4|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}."))) NIL NIL (-287 S R) ((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f, ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex."))) NIL -((|HasCategory| |#2| (|%list| (QUOTE -454) (QUOTE (-1088)) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -241) (|devaluate| |#2|) (|devaluate| |#2|)))) +((|HasCategory| |#2| (|%list| (QUOTE -455) (QUOTE (-1089)) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -241) (|devaluate| |#2|) (|devaluate| |#2|)))) (-288 R) ((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f, ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex."))) NIL NIL (-289 |p| |n|) ((|constructor| (NIL "FiniteField(\\spad{p},{}\\spad{n}) implements finite fields with p**n elements. This packages checks that \\spad{p} is prime. For a non-checking version,{} see \\spadtype{InnerFiniteField}."))) -((-3985 . T) (-3991 . T) (-3986 . T) ((-3995 "*") . T) (-3987 . T) (-3988 . T) (-3990 . T)) -((OR (|HasCategory| (-816 |#1|) (QUOTE (-118))) (|HasCategory| (-816 |#1|) (QUOTE (-318)))) (|HasCategory| (-816 |#1|) (QUOTE (-120))) (|HasCategory| (-816 |#1|) (QUOTE (-318))) (|HasCategory| (-816 |#1|) (QUOTE (-118)))) -(-290 S -3091 UP UPUP) +((-3986 . T) (-3992 . T) (-3987 . T) ((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T)) +((OR (|HasCategory| (-817 |#1|) (QUOTE (-118))) (|HasCategory| (-817 |#1|) (QUOTE (-319)))) (|HasCategory| (-817 |#1|) (QUOTE (-120))) (|HasCategory| (-817 |#1|) (QUOTE (-319))) (|HasCategory| (-817 |#1|) (QUOTE (-118)))) +(-290 S -3092 UP UPUP) ((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#2|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#2|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in \\spad{u1},{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (|Mapping| |#3| |#3|)) "\\spad{algSplitSimple(f, D)} returns \\spad{[h,d,d',g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d, discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#3| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#3| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#2| $ |#2| |#2|) "\\spad{elt(f,a,b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a, y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#3| |#3|)) "\\spad{differentiate(x, d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#3|)) (|:| |den| |#3|)) (|Mapping| |#3| |#3|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(wi)} with respect to \\spad{(w1,...,wn)} where \\spad{(w1,...,wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#3|) |#3|) "\\spad{integralRepresents([A1,...,An], D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,...,wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,...,wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#3|) |#3|) "\\spad{represents([A0,...,A(n-1)],D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,...,vn) = (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,...,vn) = M (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,...,wn) = (1, y, ..., y**(n-1))} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,...,wn) = M (1, y, ..., y**(n-1))},{} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,...,bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,...,bn)} returns the complementary basis \\spad{(b1',...,bn')} of \\spad{(b1,...,bn)}.")) (|integral?| (((|Boolean|) $ |#3|) "\\spad{integral?(f, p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#2|) "\\spad{integral?(f, a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#3|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#2|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#3|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#2|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#3|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#2|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#2| |#2|) "\\spad{rationalPoint?(a, b)} tests if \\spad{(x=a,y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components."))) NIL -((|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-312)))) -(-291 -3091 UP UPUP) +((|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-312)))) +(-291 -3092 UP UPUP) ((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#1|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in \\spad{u1},{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (|Mapping| |#2| |#2|)) "\\spad{algSplitSimple(f, D)} returns \\spad{[h,d,d',g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d, discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#2| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#2| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#1| $ |#1| |#1|) "\\spad{elt(f,a,b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a, y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x, d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#2|)) (|:| |den| |#2|)) (|Mapping| |#2| |#2|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(wi)} with respect to \\spad{(w1,...,wn)} where \\spad{(w1,...,wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#2|) |#2|) "\\spad{integralRepresents([A1,...,An], D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,...,wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,...,wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#2|) |#2|) "\\spad{represents([A0,...,A(n-1)],D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,...,vn) = (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,...,vn) = M (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,...,wn) = (1, y, ..., y**(n-1))} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,...,wn) = M (1, y, ..., y**(n-1))},{} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,...,bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,...,bn)} returns the complementary basis \\spad{(b1',...,bn')} of \\spad{(b1,...,bn)}.")) (|integral?| (((|Boolean|) $ |#2|) "\\spad{integral?(f, p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#1|) "\\spad{integral?(f, a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#2|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#1|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#2|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#1|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#2|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#1|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#1| |#1|) "\\spad{rationalPoint?(a, b)} tests if \\spad{(x=a,y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components."))) -((-3986 |has| (-348 |#2|) (-312)) (-3991 |has| (-348 |#2|) (-312)) (-3985 |has| (-348 |#2|) (-312)) ((-3995 "*") . T) (-3987 . T) (-3988 . T) (-3990 . T)) +((-3987 |has| (-349 |#2|) (-312)) (-3992 |has| (-349 |#2|) (-312)) (-3986 |has| (-349 |#2|) (-312)) ((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T)) NIL (-292 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) ((|constructor| (NIL "Lifts a map from rings to function fields over them.")) (|map| ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f, p)} lifts \\spad{f} to \\spad{F1} and applies it to \\spad{p}."))) @@ -1102,16 +1102,16 @@ NIL NIL (-293 |p| |extdeg|) ((|constructor| (NIL "FiniteFieldCyclicGroup(\\spad{p},{}\\spad{n}) implements a finite field extension of degee \\spad{n} over the prime field with \\spad{p} elements. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. The Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly."))) -((-3985 . T) (-3991 . T) (-3986 . T) ((-3995 "*") . T) (-3987 . T) (-3988 . T) (-3990 . T)) -((OR (|HasCategory| (-816 |#1|) (QUOTE (-118))) (|HasCategory| (-816 |#1|) (QUOTE (-318)))) (|HasCategory| (-816 |#1|) (QUOTE (-120))) (|HasCategory| (-816 |#1|) (QUOTE (-318))) (|HasCategory| (-816 |#1|) (QUOTE (-118)))) +((-3986 . T) (-3992 . T) (-3987 . T) ((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T)) +((OR (|HasCategory| (-817 |#1|) (QUOTE (-118))) (|HasCategory| (-817 |#1|) (QUOTE (-319)))) (|HasCategory| (-817 |#1|) (QUOTE (-120))) (|HasCategory| (-817 |#1|) (QUOTE (-319))) (|HasCategory| (-817 |#1|) (QUOTE (-118)))) (-294 GF |defpol|) ((|constructor| (NIL "FiniteFieldCyclicGroupExtensionByPolynomial(GF,{}defpol) implements a finite extension field of the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial {\\em defpol},{} which MUST be primitive (user responsibility). Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field it is used to perform additions in the field quickly."))) -((-3985 . T) (-3991 . T) (-3986 . T) ((-3995 "*") . T) (-3987 . T) (-3988 . T) (-3990 . T)) -((OR (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-318)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-118)))) +((-3986 . T) (-3992 . T) (-3987 . T) ((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T)) +((OR (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-319)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-118)))) (-295 GF |extdeg|) ((|constructor| (NIL "FiniteFieldCyclicGroupExtension(GF,{}\\spad{n}) implements a extension of degree \\spad{n} over the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly."))) -((-3985 . T) (-3991 . T) (-3986 . T) ((-3995 "*") . T) (-3987 . T) (-3988 . T) (-3990 . T)) -((OR (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-318)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-118)))) +((-3986 . T) (-3992 . T) (-3987 . T) ((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T)) +((OR (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-319)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-118)))) (-296 GF) ((|constructor| (NIL "FiniteFieldFunctions(GF) is a package with functions concerning finite extension fields of the finite ground field {\\em GF},{} \\spadignore{e.g.} Zech logarithms.")) (|createLowComplexityNormalBasis| (((|Union| (|SparseUnivariatePolynomial| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) (|PositiveInteger|)) "\\spad{createLowComplexityNormalBasis(n)} tries to find a a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix If no low complexity basis is found it calls \\axiomFunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}(\\spad{n}) to produce a normal polynomial of degree {\\em n} over {\\em GF}")) (|createLowComplexityTable| (((|Union| (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) "failed") (|PositiveInteger|)) "\\spad{createLowComplexityTable(n)} tries to find a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix Fails,{} if it does not find a low complexity basis")) (|sizeMultiplication| (((|NonNegativeInteger|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{sizeMultiplication(m)} returns the number of entries of the multiplication table {\\em m}.")) (|createMultiplicationMatrix| (((|Matrix| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{createMultiplicationMatrix(m)} forms the multiplication table {\\em m} into a matrix over the ground field.")) (|createMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createMultiplicationTable(f)} generates a multiplication table for the normal basis of the field extension determined by {\\em f}. This is needed to perform multiplications between elements represented as coordinate vectors to this basis. See \\spadtype{FFNBP},{} \\spadtype{FFNBX}.")) (|createZechTable| (((|PrimitiveArray| (|SingleInteger|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createZechTable(f)} generates a Zech logarithm table for the cyclic group representation of a extension of the ground field by the primitive polynomial {\\em f(x)},{} \\spadignore{i.e.} \\spad{Z(i)},{} defined by {\\em x**Z(i) = 1+x**i} is stored at index \\spad{i}. This is needed in particular to perform addition of field elements in finite fields represented in this way. See \\spadtype{FFCGP},{} \\spadtype{FFCGX}."))) NIL @@ -1126,51 +1126,51 @@ NIL NIL (-299) ((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see ch.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields."))) -((-3985 . T) (-3991 . T) (-3986 . T) ((-3995 "*") . T) (-3987 . T) (-3988 . T) (-3990 . T)) +((-3986 . T) (-3992 . T) (-3987 . T) ((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T)) NIL -(-300 R UP -3091) +(-300 R UP -3092) ((|constructor| (NIL "In this package \\spad{R} is a Euclidean domain and \\spad{F} is a framed algebra over \\spad{R}. The package provides functions to compute the integral closure of \\spad{R} in the quotient field of \\spad{F}. It is assumed that \\spad{char(R/P) = char(R)} for any prime \\spad{P} of \\spad{R}. A typical instance of this is when \\spad{R = K[x]} and \\spad{F} is a function field over \\spad{R}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) |#1|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}"))) NIL NIL (-301 |p| |extdeg|) ((|constructor| (NIL "FiniteFieldNormalBasis(\\spad{p},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the prime field with \\spad{p} elements. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial created by \\spadfunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}.")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: The time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| (|PrimeField| |#1|))) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| (|PrimeField| |#1|)) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-3985 . T) (-3991 . T) (-3986 . T) ((-3995 "*") . T) (-3987 . T) (-3988 . T) (-3990 . T)) -((OR (|HasCategory| (-816 |#1|) (QUOTE (-118))) (|HasCategory| (-816 |#1|) (QUOTE (-318)))) (|HasCategory| (-816 |#1|) (QUOTE (-120))) (|HasCategory| (-816 |#1|) (QUOTE (-318))) (|HasCategory| (-816 |#1|) (QUOTE (-118)))) +((-3986 . T) (-3992 . T) (-3987 . T) ((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T)) +((OR (|HasCategory| (-817 |#1|) (QUOTE (-118))) (|HasCategory| (-817 |#1|) (QUOTE (-319)))) (|HasCategory| (-817 |#1|) (QUOTE (-120))) (|HasCategory| (-817 |#1|) (QUOTE (-319))) (|HasCategory| (-817 |#1|) (QUOTE (-118)))) (-302 GF |uni|) ((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(GF,{}uni) implements a finite extension of the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to. a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element,{} where \\spad{q} is the size of {\\em GF}. The normal element is chosen as a root of the extension polynomial,{} which MUST be normal over {\\em GF} (user responsibility)")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-3985 . T) (-3991 . T) (-3986 . T) ((-3995 "*") . T) (-3987 . T) (-3988 . T) (-3990 . T)) -((OR (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-318)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-118)))) +((-3986 . T) (-3992 . T) (-3987 . T) ((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T)) +((OR (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-319)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-118)))) (-303 GF |extdeg|) ((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(GF,{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial,{} created by {\\em createNormalPoly} from \\spadtype{FiniteFieldPolynomialPackage}")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-3985 . T) (-3991 . T) (-3986 . T) ((-3995 "*") . T) (-3987 . T) (-3988 . T) (-3990 . T)) -((OR (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-318)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-118)))) +((-3986 . T) (-3992 . T) (-3987 . T) ((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T)) +((OR (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-319)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-118)))) (-304 GF |defpol|) ((|constructor| (NIL "FiniteFieldExtensionByPolynomial(GF,{} defpol) implements the extension of the finite field {\\em GF} generated by the extension polynomial {\\em defpol} which MUST be irreducible. Note: the user has the responsibility to ensure that {\\em defpol} is irreducible."))) -((-3985 . T) (-3991 . T) (-3986 . T) ((-3995 "*") . T) (-3987 . T) (-3988 . T) (-3990 . T)) -((OR (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-318)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-118)))) +((-3986 . T) (-3992 . T) (-3987 . T) ((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T)) +((OR (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-319)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-118)))) (-305 GF) ((|constructor| (NIL "This package provides a number of functions for generating,{} counting and testing irreducible,{} normal,{} primitive,{} random polynomials over finite fields.")) (|reducedQPowers| (((|PrimitiveArray| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reducedQPowers(f)} generates \\spad{[x,x**q,x**(q**2),...,x**(q**(n-1))]} reduced modulo \\spad{f} where \\spad{q = size()\\$GF} and \\spad{n = degree f}.")) (|leastAffineMultiple| (((|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{leastAffineMultiple(f)} computes the least affine polynomial which is divisible by the polynomial \\spad{f} over the finite field {\\em GF},{} \\spadignore{i.e.} a polynomial whose exponents are 0 or a power of \\spad{q},{} the size of {\\em GF}.")) (|random| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{random(m,n)}\\$FFPOLY(GF) generates a random monic polynomial of degree \\spad{d} over the finite field {\\em GF},{} \\spad{d} between \\spad{m} and \\spad{n}.") (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{random(n)}\\$FFPOLY(GF) generates a random monic polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|nextPrimitiveNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitiveNormalPoly(f)} yields the next primitive normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or,{} in case these numbers are equal,{} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. If these numbers are equals,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g},{} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are coefficients according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextNormalPrimitivePoly(\\spad{f}).")) (|nextNormalPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPrimitivePoly(f)} yields the next normal primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or if {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. Otherwise,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextPrimitiveNormalPoly(\\spad{f}).")) (|nextNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPoly(f)} yields the next normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than that for \\spad{g}. In case these numbers are equal,{} \\spad{f < g} if if the number of monomials of \\spad{f} is less that for \\spad{g} or if the list of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitivePoly(f)} yields the next primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g}. If these values are equal,{} then \\spad{f < g} if if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextIrreduciblePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextIrreduciblePoly(f)} yields the next monic irreducible polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than this number for \\spad{g}. If \\spad{f} and \\spad{g} have the same number of monomials,{} the lists of exponents are compared lexicographically. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|createPrimitiveNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitiveNormalPoly(n)}\\$FFPOLY(GF) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. polynomial of degree \\spad{n} over the field {\\em GF}.")) (|createNormalPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPrimitivePoly(n)}\\$FFPOLY(GF) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. Note: this function is equivalent to createPrimitiveNormalPoly(\\spad{n})")) (|createNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPoly(n)}\\$FFPOLY(GF) generates a normal polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitivePoly(n)}\\$FFPOLY(GF) generates a primitive polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createIrreduciblePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createIrreduciblePoly(n)}\\$FFPOLY(GF) generates a monic irreducible univariate polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfNormalPoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfNormalPoly(n)}\\$FFPOLY(GF) yields the number of normal polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfPrimitivePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfPrimitivePoly(n)}\\$FFPOLY(GF) yields the number of primitive polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfIrreduciblePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfIrreduciblePoly(n)}\\$FFPOLY(GF) yields the number of monic irreducible univariate polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|normal?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{normal?(f)} tests whether the polynomial \\spad{f} over a finite field is normal,{} \\spadignore{i.e.} its roots are linearly independent over the field.")) (|primitive?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{primitive?(f)} tests whether the polynomial \\spad{f} over a finite field is primitive,{} \\spadignore{i.e.} all its roots are primitive."))) NIL NIL -(-306 -3091 GF) +(-306 -3092 GF) ((|constructor| (NIL "\\spad{FiniteFieldPolynomialPackage2}(\\spad{F},{}GF) exports some functions concerning finite fields,{} which depend on a finite field {\\em GF} and an algebraic extension \\spad{F} of {\\em GF},{} \\spadignore{e.g.} a zero of a polynomial over {\\em GF} in \\spad{F}.")) (|rootOfIrreduciblePoly| ((|#1| (|SparseUnivariatePolynomial| |#2|)) "\\spad{rootOfIrreduciblePoly(f)} computes one root of the monic,{} irreducible polynomial \\spad{f},{} which degree must divide the extension degree of {\\em F} over {\\em GF},{} \\spadignore{i.e.} \\spad{f} splits into linear factors over {\\em F}.")) (|Frobenius| ((|#1| |#1|) "\\spad{Frobenius(x)} \\undocumented{}")) (|basis| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{}")) (|lookup| (((|PositiveInteger|) |#1|) "\\spad{lookup(x)} \\undocumented{}")) (|coerce| ((|#1| |#2|) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-307 -3091 FP FPP) +(-307 -3092 FP FPP) ((|constructor| (NIL "This package solves linear diophantine equations for Bivariate polynomials over finite fields")) (|solveLinearPolynomialEquation| (((|Union| (|List| |#3|) "failed") (|List| |#3|) |#3|) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}'s exists."))) NIL NIL (-308 GF |n|) ((|constructor| (NIL "FiniteFieldExtensionByPolynomial(GF,{} \\spad{n}) implements an extension of the finite field {\\em GF} of degree \\spad{n} generated by the extension polynomial constructed by \\spadfunFrom{createIrreduciblePoly}{FiniteFieldPolynomialPackage} from \\spadtype{FiniteFieldPolynomialPackage}."))) -((-3985 . T) (-3991 . T) (-3986 . T) ((-3995 "*") . T) (-3987 . T) (-3988 . T) (-3990 . T)) -((OR (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-318)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-118)))) +((-3986 . T) (-3992 . T) (-3987 . T) ((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T)) +((OR (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-319)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-118)))) (-309 R |ls|) ((|constructor| (NIL "This is just an interface between several packages and domains. The goal is to compute lexicographical Groebner bases of sets of polynomial with type \\spadtype{Polynomial R} by the {\\em FGLM} algorithm if this is possible (\\spadignore{i.e.} if the input system generates a zero-dimensional ideal).")) (|groebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|))) "\\axiom{groebner(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}}. If \\axiom{\\spad{lq1}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|Polynomial| |#1|)) "failed") (|List| (|Polynomial| |#1|))) "\\axiom{fglmIfCan(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lq1})} holds.")) (|zeroDimensional?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "\\axiom{zeroDimensional?(\\spad{lq1})} returns \\spad{true} iff \\axiom{\\spad{lq1}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables of \\axiom{ls}."))) NIL NIL (-310 S) ((|constructor| (NIL "The free group on a set \\spad{S} is the group of finite products of the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}'s are in \\spad{S},{} and the \\spad{ni}'s are integers. The multiplication is not commutative.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|Integer|)))) $) "\\spad{factors(a1\\^e1,...,an\\^en)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|Integer|) (|Integer|)) $) "\\spad{mapExpon(f, a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|Integer|) $ (|Integer|)) "\\spad{nthExpon(x, n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (** (($ |#1| (|Integer|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left."))) -((-3990 . T)) +((-3991 . T)) NIL (-311 S) ((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0."))) @@ -1178,7 +1178,7 @@ NIL NIL (-312) ((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0."))) -((-3985 . T) (-3991 . T) (-3986 . T) ((-3995 "*") . T) (-3987 . T) (-3988 . T) (-3990 . T)) +((-3986 . T) (-3992 . T) (-3987 . T) ((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T)) NIL (-313 S) ((|constructor| (NIL "This domain provides a basic model of files to save arbitrary values. The operations provide sequential access to the contents.")) (|readIfCan!| (((|Union| |#1| "failed") $) "\\spad{readIfCan!(f)} returns a value from the file \\spad{f},{} if possible. If \\spad{f} is not open for reading,{} or if \\spad{f} is at the end of file then \\spad{\"failed\"} is the result."))) @@ -1191,3574 +1191,3578 @@ NIL (-315 S R) ((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#2|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,b,c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Lie algebra \\spad{(A,+,*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Jordan algebra \\spad{(A,+,*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\"*\")} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,a,b) = 0 = 2*associator(a,b,b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,b,a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,b,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,a,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#2| (|Vector| $)) "\\spad{rightDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,...,vn]))}.")) (|leftDiscriminant| ((|#2| (|Vector| $)) "\\spad{leftDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,...,vn]))}.")) (|represents| (($ (|Vector| |#2|) (|Vector| $)) "\\spad{represents([a1,...,am],[v1,...,vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,...,am],[v1,...,vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#2|) $ (|Vector| $)) "\\spad{coordinates(a,[v1,...,vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#2| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#2| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#2| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#2| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#2|)) (|Vector| $)) "\\spad{structuralConstants([v1,v2,...,vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,...,vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#2|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,...,vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis."))) NIL -((|HasCategory| |#2| (QUOTE (-494)))) +((|HasCategory| |#2| (QUOTE (-495)))) (-316 R) ((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#1|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,b,c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Lie algebra \\spad{(A,+,*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Jordan algebra \\spad{(A,+,*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\"*\")} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,a,b) = 0 = 2*associator(a,b,b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,b,a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,b,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,a,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#1| (|Vector| $)) "\\spad{rightDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,...,vn]))}.")) (|leftDiscriminant| ((|#1| (|Vector| $)) "\\spad{leftDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,...,vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,...,am],[v1,...,vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,...,am],[v1,...,vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,[v1,...,vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#1| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#1| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#1| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#1| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|Vector| $)) "\\spad{structuralConstants([v1,v2,...,vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,...,vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,...,vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis."))) -((-3990 |has| |#1| (-494)) (-3988 . T) (-3987 . T)) +((-3991 |has| |#1| (-495)) (-3989 . T) (-3988 . T)) NIL (-317 S) +((|constructor| (NIL "A finite aggregate is a homogeneous aggregate with a finite number of elements.")) (|member?| (((|Boolean|) |#1| $) "\\spad{member?(x,u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#1|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#1| $) "\\spad{count(x,u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{count(p,u)} returns the number of elements \\spad{x} \\indented{1}{in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} holds. For collections,{}} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{every?(f,u)} tests if \\spad{p}(\\spad{x}) holds for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{any?(p,u)} tests if \\spad{p(x)} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\#u} returns the number of items in \\spad{u}."))) +NIL +NIL +(-318 S) ((|constructor| (NIL "The category of domains composed of a finite set of elements. We include the functions \\spadfun{lookup} and \\spadfun{index} to give a bijection between the finite set and an initial segment of positive integers. \\blankline")) (|random| (($) "\\spad{random()} returns a random element from the set.")) (|lookup| (((|PositiveInteger|) $) "\\spad{lookup(x)} returns a positive integer such that \\spad{x = index lookup x}.")) (|index| (($ (|PositiveInteger|)) "\\spad{index(i)} takes a positive integer \\spad{i} less than or equal to \\spad{size()} and returns the \\spad{i}\\spad{-}th element of the set. This operation establishs a bijection between the elements of the finite set and \\spad{1..size()}.")) (|size| (((|NonNegativeInteger|)) "\\spad{size()} returns the number of elements in the set."))) NIL NIL -(-318) +(-319) ((|constructor| (NIL "The category of domains composed of a finite set of elements. We include the functions \\spadfun{lookup} and \\spadfun{index} to give a bijection between the finite set and an initial segment of positive integers. \\blankline")) (|random| (($) "\\spad{random()} returns a random element from the set.")) (|lookup| (((|PositiveInteger|) $) "\\spad{lookup(x)} returns a positive integer such that \\spad{x = index lookup x}.")) (|index| (($ (|PositiveInteger|)) "\\spad{index(i)} takes a positive integer \\spad{i} less than or equal to \\spad{size()} and returns the \\spad{i}\\spad{-}th element of the set. This operation establishs a bijection between the elements of the finite set and \\spad{1..size()}.")) (|size| (((|NonNegativeInteger|)) "\\spad{size()} returns the number of elements in the set."))) NIL NIL -(-319 S R UP) +(-320 S R UP) ((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#3| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#3| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{traceMatrix([v1,..,vn])} is the \\spad{n}-by-\\spad{n} matrix ( Tr(\\spad{vi} * vj) )")) (|discriminant| ((|#2| (|Vector| $)) "\\spad{discriminant([v1,..,vn])} returns \\spad{determinant(traceMatrix([v1,..,vn]))}.")) (|represents| (($ (|Vector| |#2|) (|Vector| $)) "\\spad{represents([a1,..,an],[v1,..,vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,...,vm], basis)} returns the coordinates of the \\spad{vi}'s with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $ (|Vector| $)) "\\spad{coordinates(a,basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#2| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#2| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{regularRepresentation(a,basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra."))) NIL ((|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-312)))) -(-320 R UP) +(-321 R UP) ((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#2| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#2| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{traceMatrix([v1,..,vn])} is the \\spad{n}-by-\\spad{n} matrix ( Tr(\\spad{vi} * vj) )")) (|discriminant| ((|#1| (|Vector| $)) "\\spad{discriminant([v1,..,vn])} returns \\spad{determinant(traceMatrix([v1,..,vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,..,an],[v1,..,vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,...,vm], basis)} returns the coordinates of the \\spad{vi}'s with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#1| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#1| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{regularRepresentation(a,basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra."))) -((-3987 . T) (-3988 . T) (-3990 . T)) +((-3988 . T) (-3989 . T) (-3991 . T)) NIL -(-321 A S) +(-322 A S) ((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort!(p,u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,v,i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#2| $ (|Integer|)) "\\spad{position(x,a,n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} >= \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#2| $) "\\spad{position(x,a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{position(p,a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sorted?(p,a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(<=,{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort(p,a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(<=,{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge(p,a,b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}."))) NIL -((|HasAttribute| |#1| (QUOTE -3994)) (|HasCategory| |#2| (QUOTE (-755))) (|HasCategory| |#2| (QUOTE (-1012)))) -(-322 S) +((|HasAttribute| |#1| (QUOTE -3995)) (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-1013)))) +(-323 S) ((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort!(p,u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,v,i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#1| $ (|Integer|)) "\\spad{position(x,a,n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} >= \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#1| $) "\\spad{position(x,a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{position(p,a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sorted?(p,a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(<=,{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort(p,a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(<=,{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge(p,a,b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}."))) -((-3993 . T)) +((-3994 . T)) NIL -(-323 S A R B) +(-324 S A R B) ((|constructor| (NIL "\\spad{FiniteLinearAggregateFunctions2} provides functions involving two FiniteLinearAggregates where the underlying domains might be different. An example of this might be creating a list of rational numbers by mapping a function across a list of integers where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-aggregates \\spad{x} of aggregrate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,a)} applies function \\spad{f} to each member of aggregate \\spad{a} resulting in a new aggregate over a possibly different underlying domain."))) NIL NIL -(-324 |VarSet| R) +(-325 |VarSet| R) ((|constructor| (NIL "The category of free Lie algebras. It is used by domains of non-commutative algebra: \\spadtype{LiePolynomial} and \\spadtype{XPBWPolynomial}. \\newline Author: Michel Petitot (petitot@lifl.fr)")) (|eval| (($ $ (|List| |#1|) (|List| $)) "\\axiom{eval(\\spad{p},{} [\\spad{x1},{}...,{}xn],{} [\\spad{v1},{}...,{}vn])} replaces \\axiom{\\spad{xi}} by \\axiom{\\spad{vi}} in \\axiom{\\spad{p}}.") (($ $ |#1| $) "\\axiom{eval(\\spad{p},{} \\spad{x},{} \\spad{v})} replaces \\axiom{\\spad{x}} by \\axiom{\\spad{v}} in \\axiom{\\spad{p}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\axiom{trunc(\\spad{p},{}\\spad{n})} returns the polynomial \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns \\axiom{Sum(r_i mirror(w_i))} if \\axiom{\\spad{x}} is \\axiom{Sum(r_i w_i)}.")) (|LiePoly| (($ (|LyndonWord| |#1|)) "\\axiom{LiePoly(\\spad{l})} returns the bracketed form of \\axiom{\\spad{l}} as a Lie polynomial.")) (|rquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{rquo(\\spad{x},{}\\spad{y})} returns the right simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|lquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{lquo(\\spad{x},{}\\spad{y})} returns the left simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{x})} returns the greatest length of a word in the support of \\axiom{\\spad{x}}.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as distributed polynomial.") (($ |#1|) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a Lie polynomial.")) (|coef| ((|#2| (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coef(\\spad{x},{}\\spad{y})} returns the scalar product of \\axiom{\\spad{x}} by \\axiom{\\spad{y}},{} the set of words being regarded as an orthogonal basis."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-3988 . T) (-3987 . T)) +((|JacobiIdentity| . T) (|NullSquare| . T) (-3989 . T) (-3988 . T)) NIL -(-325 S V) +(-326 S V) ((|constructor| (NIL "This package exports 3 sorting algorithms which work over FiniteLinearAggregates.")) (|shellSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{shellSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the shellSort algorithm.")) (|heapSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{heapSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the heapsort algorithm.")) (|quickSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{quickSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the quicksort algorithm."))) NIL NIL -(-326 S R) +(-327 S R) ((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}"))) NIL -((|HasCategory| |#2| (QUOTE (-579 (-483))))) -(-327 R) +((|HasCategory| |#2| (QUOTE (-580 (-484))))) +(-328 R) ((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}"))) NIL NIL -(-328) +(-329) ((|outputSpacing| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputSpacing(n)} inserts a space after \\spad{n} (default 10) digits on output; outputSpacing(0) means no spaces are inserted.")) (|outputGeneral| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputGeneral(n)} sets the output mode to general notation with \\spad{n} significant digits displayed.") (((|Void|)) "\\spad{outputGeneral()} sets the output mode (default mode) to general notation; numbers will be displayed in either fixed or floating (scientific) notation depending on the magnitude.")) (|outputFixed| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFixed(n)} sets the output mode to fixed point notation,{} with \\spad{n} digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFixed()} sets the output mode to fixed point notation; the output will contain a decimal point.")) (|outputFloating| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFloating(n)} sets the output mode to floating (scientific) notation with \\spad{n} significant digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFloating()} sets the output mode to floating (scientific) notation,{} \\spadignore{i.e.} \\spad{mantissa * 10 exponent} is displayed as \\spad{0.mantissa E exponent}.")) (|atan| (($ $ $) "\\spad{atan(x,y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|exp1| (($) "\\spad{exp1()} returns exp 1: \\spad{2.7182818284...}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm for \\spad{x} to base 10.") (($) "\\spad{log10()} returns \\spad{ln 10}: \\spad{2.3025809299...}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm for \\spad{x} to base 2.") (($) "\\spad{log2()} returns \\spad{ln 2},{} \\spadignore{i.e.} \\spad{0.6931471805...}.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n, b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)},{} that is \\spad{|(r-f)/f| < b**(-n)}.") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(x,n)} adds \\spad{n} to the exponent of float \\spad{x}.")) (|relerror| (((|Integer|) $ $) "\\spad{relerror(x,y)} computes the absolute value of \\spad{x - y} divided by \\spad{y},{} when \\spad{y \\~= 0}.")) (|normalize| (($ $) "\\spad{normalize(x)} normalizes \\spad{x} at current precision.")) (** (($ $ $) "\\spad{x ** y} computes \\spad{exp(y log x)} where \\spad{x >= 0}.")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}."))) -((-3976 . T) (-3984 . T) (-3768 . T) (-3985 . T) (-3991 . T) (-3986 . T) ((-3995 "*") . T) (-3987 . T) (-3988 . T) (-3990 . T)) +((-3977 . T) (-3985 . T) (-3769 . T) (-3986 . T) (-3992 . T) (-3987 . T) ((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T)) NIL -(-329 |Par|) +(-330 |Par|) ((|constructor| (NIL "\\indented{3}{This is a package for the approximation of complex solutions for} systems of equations of rational functions with complex rational coefficients. The results are expressed as either complex rational numbers or complex floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|complexRoots| (((|List| (|List| (|Complex| |#1|))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) (|List| (|Symbol|)) |#1|) "\\spad{complexRoots(lrf, lv, eps)} finds all the complex solutions of a list of rational functions with rational number coefficients with respect the the variables appearing in \\spad{lv}. Each solution is computed to precision eps and returned as list corresponding to the order of variables in \\spad{lv}.") (((|List| (|Complex| |#1|)) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexRoots(rf, eps)} finds all the complex solutions of a univariate rational function with rational number coefficients. The solutions are computed to precision eps.")) (|complexSolve| (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(eq,eps)} finds all the complex solutions of the equation \\spad{eq} of rational functions with rational rational coefficients with respect to all the variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexSolve(p,eps)} find all the complex solutions of the rational function \\spad{p} with complex rational coefficients with respect to all the variables appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|)))))) |#1|) "\\spad{complexSolve(leq,eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{leq} of equations of rational functions over complex rationals with respect to all the variables appearing in lp.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(lp,eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{lp} of rational functions over the complex rationals with respect to all the variables appearing in \\spad{lp}."))) NIL NIL -(-330 |Par|) +(-331 |Par|) ((|constructor| (NIL "\\indented{3}{This is a package for the approximation of real solutions for} systems of polynomial equations over the rational numbers. The results are expressed as either rational numbers or floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|realRoots| (((|List| |#1|) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{realRoots(rf, eps)} finds the real zeros of a univariate rational function with precision given by eps.") (((|List| (|List| |#1|)) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|Symbol|)) |#1|) "\\spad{realRoots(lp,lv,eps)} computes the list of the real solutions of the list \\spad{lp} of rational functions with rational coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}. Each solution is expressed as a list of numbers in order corresponding to the variables in \\spad{lv}.")) (|solve| (((|List| (|Equation| (|Polynomial| |#1|))) (|Equation| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(eq,eps)} finds all of the real solutions of the univariate equation \\spad{eq} of rational functions with respect to the unique variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{solve(p,eps)} finds all of the real solutions of the univariate rational function \\spad{p} with rational coefficients with respect to the unique variable appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Integer|))))) |#1|) "\\spad{solve(leq,eps)} finds all of the real solutions of the system \\spad{leq} of equationas of rational functions with respect to all the variables appearing in lp,{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(lp,eps)} finds all of the real solutions of the system \\spad{lp} of rational functions over the rational numbers with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}."))) NIL NIL -(-331 R S) -((|constructor| (NIL "A \\spad{bi}-module is a free module over a ring with generators indexed by an ordered set. Each element can be expressed as a finite linear combination of generators. Only non-zero terms are stored."))) -((-3988 . T) (-3987 . T)) -((|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#2| (QUOTE (-1012))))) (-332 R S) +((|constructor| (NIL "A \\spad{bi}-module is a free module over a ring with generators indexed by an ordered set. Each element can be expressed as a finite linear combination of generators. Only non-zero terms are stored."))) +((-3989 . T) (-3988 . T)) +((|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#2| (QUOTE (-1013))))) +(-333 R S) ((|constructor| (NIL "This domain implements linear combinations of elements from the domain \\spad{S} with coefficients in the domain \\spad{R} where \\spad{S} is an ordered set and \\spad{R} is a ring (which may be non-commutative). This domain is used by domains of non-commutative algebra such as: \\indented{4}{\\spadtype{XDistributedPolynomial},{}} \\indented{4}{\\spadtype{XRecursivePolynomial}.} Author: Michel Petitot (petitot@lifl.fr)")) (* (($ |#2| |#1|) "\\spad{s*r} returns the product \\spad{r*s} used by \\spadtype{XRecursivePolynomial}"))) -((-3988 . T) (-3987 . T)) +((-3989 . T) (-3988 . T)) ((|HasCategory| |#1| (QUOTE (-146)))) -(-333 R |Basis|) +(-334 R |Basis|) ((|constructor| (NIL "A domain of this category implements formal linear combinations of elements from a domain \\spad{Basis} with coefficients in a domain \\spad{R}. The domain \\spad{Basis} needs only to belong to the category \\spadtype{SetCategory} and \\spad{R} to the category \\spadtype{Ring}. Thus the coefficient ring may be non-commutative. See the \\spadtype{XDistributedPolynomial} constructor for examples of domains built with the \\spadtype{FreeModuleCat} category constructor. Author: Michel Petitot (petitot@lifl.fr)")) (|reductum| (($ $) "\\spad{reductum(x)} returns \\spad{x} minus its leading term.")) (|leadingTerm| (((|Record| (|:| |k| |#2|) (|:| |c| |#1|)) $) "\\spad{leadingTerm(x)} returns the first term which appears in \\spad{ListOfTerms(x)}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(x)} returns the first coefficient which appears in \\spad{ListOfTerms(x)}.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(x)} returns the first element from \\spad{Basis} which appears in \\spad{ListOfTerms(x)}.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(x)} returns the number of monomials of \\spad{x}.")) (|monomials| (((|List| $) $) "\\spad{monomials(x)} returns the list of \\spad{r_i*b_i} whose sum is \\spad{x}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(x)} returns the list of coefficients of \\spad{x}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{ListOfTerms(x)} returns a list \\spad{lt} of terms with type \\spad{Record(k: Basis, c: R)} such that \\spad{x} equals \\spad{reduce(+, map(x +-> monom(x.k, x.c), lt))}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} contains a single monomial.")) (|monom| (($ |#2| |#1|) "\\spad{monom(b,r)} returns the element with the single monomial \\indented{1}{\\spad{b} and coefficient \\spad{r}.}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients \\indented{1}{of the non-zero monomials of \\spad{u}.}")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(x,b)} returns the coefficient of \\spad{b} in \\spad{x}.")) (* (($ |#1| |#2|) "\\spad{r*b} returns the product of \\spad{r} by \\spad{b}."))) -((-3988 . T) (-3987 . T)) +((-3989 . T) (-3988 . T)) NIL -(-334 S) +(-335 S) ((|constructor| (NIL "A free monoid on a set \\spad{S} is the monoid of finite products of the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}'s are in \\spad{S},{} and the \\spad{ni}'s are nonnegative integers. The multiplication is not commutative.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|NonNegativeInteger|) (|NonNegativeInteger|)) $) "\\spad{mapExpon(f, a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|NonNegativeInteger|) $ (|Integer|)) "\\spad{nthExpon(x, n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $) "\\spad{factors(a1\\^e1,...,an\\^en)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (|overlap| (((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) "\\spad{overlap(x, y)} returns \\spad{[l, m, r]} such that \\spad{x = l * m},{} \\spad{y = m * r} and \\spad{l} and \\spad{r} have no overlap,{} \\spadignore{i.e.} \\spad{overlap(l, r) = [l, 1, r]}.")) (|divide| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{divide(x, y)} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} \\spadignore{i.e.} \\spad{[l, r]} such that \\spad{x = l * y * r},{} \"failed\" if \\spad{x} is not of the form \\spad{l * y * r}.")) (|rquo| (((|Union| $ "failed") $ $) "\\spad{rquo(x, y)} returns the exact right quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = q * y},{} \"failed\" if \\spad{x} is not of the form \\spad{q * y}.")) (|lquo| (((|Union| $ "failed") $ $) "\\spad{lquo(x, y)} returns the exact left quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = y * q},{} \"failed\" if \\spad{x} is not of the form \\spad{y * q}.")) (|hcrf| (($ $ $) "\\spad{hcrf(x, y)} returns the highest common right factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = a d} and \\spad{y = b d}.")) (|hclf| (($ $ $) "\\spad{hclf(x, y)} returns the highest common left factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = d a} and \\spad{y = d b}.")) (** (($ |#1| (|NonNegativeInteger|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left."))) NIL NIL -(-335 S) +(-336 S) ((|constructor| (NIL "The free monoid on a set \\spad{S} is the monoid of finite products of the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}'s are in \\spad{S},{} and the \\spad{ni}'s are nonnegative integers. The multiplication is not commutative."))) NIL -((|HasCategory| |#1| (QUOTE (-755)))) -(-336) +((|HasCategory| |#1| (QUOTE (-756)))) +(-337) ((|constructor| (NIL "This domain provides an interface to names in the file system."))) NIL NIL -(-337) +(-338) ((|constructor| (NIL "This category provides an interface to names in the file system.")) (|new| (($ (|String|) (|String|) (|String|)) "\\spad{new(d,pref,e)} constructs the name of a new writable file with \\spad{d} as its directory,{} \\spad{pref} as a prefix of its name and \\spad{e} as its extension. When \\spad{d} or \\spad{t} is the empty string,{} a default is used. An error occurs if a new file cannot be written in the given directory.")) (|writable?| (((|Boolean|) $) "\\spad{writable?(f)} tests if the named file be opened for writing. The named file need not already exist.")) (|readable?| (((|Boolean|) $) "\\spad{readable?(f)} tests if the named file exist and can it be opened for reading.")) (|exists?| (((|Boolean|) $) "\\spad{exists?(f)} tests if the file exists in the file system.")) (|extension| (((|String|) $) "\\spad{extension(f)} returns the type part of the file name.")) (|name| (((|String|) $) "\\spad{name(f)} returns the name part of the file name.")) (|directory| (((|String|) $) "\\spad{directory(f)} returns the directory part of the file name.")) (|filename| (($ (|String|) (|String|) (|String|)) "\\spad{filename(d,n,e)} creates a file name with \\spad{d} as its directory,{} \\spad{n} as its name and \\spad{e} as its extension. This is a portable way to create file names. When \\spad{d} or \\spad{t} is the empty string,{} a default is used."))) NIL NIL -(-338 |n| |class| R) +(-339 |n| |class| R) ((|constructor| (NIL "Generate the Free Lie Algebra over a ring \\spad{R} with identity; A \\spad{P}. Hall basis is generated by a package call to HallBasis.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(i)} is the \\spad{i}th Hall Basis element")) (|shallowExpand| (((|OutputForm|) $) "\\spad{shallowExpand(x)} \\undocumented{}")) (|deepExpand| (((|OutputForm|) $) "\\spad{deepExpand(x)} \\undocumented{}")) (|dimension| (((|NonNegativeInteger|)) "\\spad{dimension()} is the rank of this Lie algebra"))) -((-3988 . T) (-3987 . T)) +((-3989 . T) (-3988 . T)) NIL -(-339 -3091 UP UPUP R) +(-340 -3092 UP UPUP R) ((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 11 Jul 1990")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{order(x)} \\undocumented"))) NIL NIL -(-340 -3091 UP) +(-341 -3092 UP) ((|constructor| (NIL "\\indented{1}{Full partial fraction expansion of rational functions} Author: Manuel Bronstein Date Created: 9 December 1992 Date Last Updated: June 18,{} 2010 References: \\spad{M}.Bronstein & \\spad{B}.Salvy,{} \\indented{12}{Full Partial Fraction Decomposition of Rational Functions,{}} \\indented{12}{in Proceedings of \\spad{ISSAC'93},{} Kiev,{} ACM Press.}")) (|construct| (($ (|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|)))) "\\spad{construct(l)} is the inverse of fracPart.")) (|fracPart| (((|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|))) $) "\\spad{fracPart(f)} returns the list of summands of the fractional part of \\spad{f}.")) (|polyPart| ((|#2| $) "\\spad{polyPart(f)} returns the polynomial part of \\spad{f}.")) (|fullPartialFraction| (($ (|Fraction| |#2|)) "\\spad{fullPartialFraction(f)} returns \\spad{[p, [[j, Dj, Hj]...]]} such that \\spad{f = p(x) + \\sum_{[j,Dj,Hj] in l} \\sum_{Dj(a)=0} Hj(a)/(x - a)\\^j}.")) (+ (($ |#2| $) "\\spad{p + x} returns the sum of \\spad{p} and \\spad{x}"))) NIL NIL -(-341 R) +(-342 R) ((|constructor| (NIL "A set \\spad{S} is PatternMatchable over \\spad{R} if \\spad{S} can lift the pattern-matching functions of \\spad{S} over the integers and float to itself (necessary for matching in towers)."))) NIL NIL -(-342 S) +(-343 S) ((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0."))) NIL NIL -(-343) +(-344) ((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0."))) -((-3985 . T) (-3991 . T) (-3986 . T) ((-3995 "*") . T) (-3987 . T) (-3988 . T) (-3990 . T)) +((-3986 . T) (-3992 . T) (-3987 . T) ((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T)) NIL -(-344 S) +(-345 S) ((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\"+\") does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling's precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling's precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,e,b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\"."))) NIL -((|HasAttribute| |#1| (QUOTE -3976)) (|HasAttribute| |#1| (QUOTE -3984))) -(-345) +((|HasAttribute| |#1| (QUOTE -3977)) (|HasAttribute| |#1| (QUOTE -3985))) +(-346) ((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\"+\") does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling's precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling's precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,e,b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\"."))) -((-3768 . T) (-3985 . T) (-3991 . T) (-3986 . T) ((-3995 "*") . T) (-3987 . T) (-3988 . T) (-3990 . T)) +((-3769 . T) (-3986 . T) (-3992 . T) (-3987 . T) ((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T)) NIL -(-346 R) +(-347 R) ((|constructor| (NIL "\\spadtype{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like multiplication and gcd are relatively easy to do. Others,{} like addition require somewhat more work,{} and unless the argument domain provides a factor function,{} the result may not be completely factored. Each object consists of a unit and a list of factors,{} where a factor has a member of \\spad{R} (the \"base\"),{} and exponent and a flag indicating what is known about the base. A flag may be one of \"nil\",{} \"sqfr\",{} \"irred\" or \"prime\",{} which respectively mean that nothing is known about the base,{} it is square-free,{} it is irreducible,{} or it is prime. The current restriction to integral domains allows simplification to be performed without worrying about multiplication order.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(u)} returns a rational number if \\spad{u} really is one,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(u)} assumes spadvar{\\spad{u}} is actually a rational number and does the conversion to rational number (see \\spadtype{Fraction Integer}).")) (|rational?| (((|Boolean|) $) "\\spad{rational?(u)} tests if \\spadvar{\\spad{u}} is actually a rational number (see \\spadtype{Fraction Integer}).")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps the function \\userfun{\\spad{fn}} across the factors of \\spadvar{\\spad{u}} and creates a new factored object. Note: this clears the information flags (sets them to \"nil\") because the effect of \\userfun{\\spad{fn}} is clearly not known in general.")) (|unitNormalize| (($ $) "\\spad{unitNormalize(u)} normalizes the unit part of the factorization. For example,{} when working with factored integers,{} this operation will ensure that the bases are all positive integers.")) (|unit| ((|#1| $) "\\spad{unit(u)} extracts the unit part of the factorization.")) (|flagFactor| (($ |#1| (|Integer|) (|Union| #1="nil" #2="sqfr" #3="irred" #4="prime")) "\\spad{flagFactor(base,exponent,flag)} creates a factored object with a single factor whose \\spad{base} is asserted to be properly described by the information \\spad{flag}.")) (|sqfrFactor| (($ |#1| (|Integer|)) "\\spad{sqfrFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be square-free (flag = \"sqfr\").")) (|primeFactor| (($ |#1| (|Integer|)) "\\spad{primeFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be prime (flag = \"prime\").")) (|numberOfFactors| (((|NonNegativeInteger|) $) "\\spad{numberOfFactors(u)} returns the number of factors in \\spadvar{\\spad{u}}.")) (|nthFlag| (((|Union| #1# #2# #3# #4#) $ (|Integer|)) "\\spad{nthFlag(u,n)} returns the information flag of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} \"nil\" is returned.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(u,n)} returns the base of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 1 is returned. If \\spadvar{\\spad{u}} consists only of a unit,{} the unit is returned.")) (|nthExponent| (((|Integer|) $ (|Integer|)) "\\spad{nthExponent(u,n)} returns the exponent of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 0 is returned.")) (|irreducibleFactor| (($ |#1| (|Integer|)) "\\spad{irreducibleFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be irreducible (flag = \"irred\").")) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) "\\spad{factors(u)} returns a list of the factors in a form suitable for iteration. That is,{} it returns a list where each element is a record containing a base and exponent. The original object is the product of all the factors and the unit (which can be extracted by \\axiom{unit(\\spad{u})}).")) (|nilFactor| (($ |#1| (|Integer|)) "\\spad{nilFactor(base,exponent)} creates a factored object with a single factor with no information about the kind of \\spad{base} (flag = \"nil\").")) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| #1# #2# #3# #4#)) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) "\\spad{factorList(u)} returns the list of factors with flags (for use by factoring code).")) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| #1# #2# #3# #4#)) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) "\\spad{makeFR(unit,listOfFactors)} creates a factored object (for use by factoring code).")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of the first factor of \\spadvar{\\spad{u}},{} or 0 if the factored form consists solely of a unit.")) (|expand| ((|#1| $) "\\spad{expand(f)} multiplies the unit and factors together,{} yielding an \"unfactored\" object. Note: this is purposely not called \\spadfun{coerce} which would cause the interpreter to do this automatically."))) -((-3986 . T) ((-3995 "*") . T) (-3987 . T) (-3988 . T) (-3990 . T)) -((|HasCategory| |#1| (QUOTE (-454 (-1088) $))) (|HasCategory| |#1| (QUOTE (-260 $))) (|HasCategory| |#1| (QUOTE (-241 $ $))) (|HasCategory| |#1| (QUOTE (-552 (-472)))) (|HasCategory| |#1| (QUOTE (-1132))) (OR (|HasCategory| |#1| (QUOTE (-390))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| |#1| (QUOTE (-932))) (|HasCategory| |#1| (QUOTE (-949 (-348 (-483))))) (|HasCategory| |#1| (QUOTE (-949 (-483)))) (|HasCategory| |#1| (|%list| (QUOTE -454) (QUOTE (-1088)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -241) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-810 (-1088)))) (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-808 (-1088)))) (|HasCategory| |#1| (QUOTE (-482))) (|HasCategory| |#1| (QUOTE (-390)))) -(-347 R S) +((-3987 . T) ((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T)) +((|HasCategory| |#1| (QUOTE (-455 (-1089) $))) (|HasCategory| |#1| (QUOTE (-260 $))) (|HasCategory| |#1| (QUOTE (-241 $ $))) (|HasCategory| |#1| (QUOTE (-553 (-473)))) (|HasCategory| |#1| (QUOTE (-1133))) (OR (|HasCategory| |#1| (QUOTE (-391))) (|HasCategory| |#1| (QUOTE (-1133)))) (|HasCategory| |#1| (QUOTE (-933))) (|HasCategory| |#1| (QUOTE (-950 (-349 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-484)))) (|HasCategory| |#1| (|%list| (QUOTE -455) (QUOTE (-1089)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -241) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-811 (-1089)))) (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-809 (-1089)))) (|HasCategory| |#1| (QUOTE (-483))) (|HasCategory| |#1| (QUOTE (-391)))) +(-348 R S) ((|constructor| (NIL "\\spadtype{FactoredFunctions2} contains functions that involve factored objects whose underlying domains may not be the same. For example,{} \\spadfun{map} might be used to coerce an object of type \\spadtype{Factored(Integer)} to \\spadtype{Factored(Complex(Integer))}.")) (|map| (((|Factored| |#2|) (|Mapping| |#2| |#1|) (|Factored| |#1|)) "\\spad{map(fn,u)} is used to apply the function \\userfun{\\spad{fn}} to every factor of \\spadvar{\\spad{u}}. The new factored object will have all its information flags set to \"nil\". This function is used,{} for example,{} to coerce every factor base to another type."))) NIL NIL -(-348 S) +(-349 S) ((|constructor| (NIL "Fraction takes an IntegralDomain \\spad{S} and produces the domain of Fractions with numerators and denominators from \\spad{S}. If \\spad{S} is also a GcdDomain,{} then gcd's between numerator and denominator will be cancelled during all operations.")) (|canonical| ((|attribute|) "\\spad{canonical} means that equal elements are in fact identical."))) -((-3980 -12 (|has| |#1| (-6 -3991)) (|has| |#1| (-390)) (|has| |#1| (-6 -3980))) (-3985 . T) (-3991 . T) (-3986 . T) ((-3995 "*") . T) (-3987 . T) (-3988 . T) (-3990 . T)) -((|HasCategory| |#1| (QUOTE (-820))) (|HasCategory| |#1| (QUOTE (-949 (-1088)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-552 (-472)))) (|HasCategory| |#1| (QUOTE (-932))) (|HasCategory| |#1| (QUOTE (-739))) (|HasCategory| |#1| (QUOTE (-755))) (OR (|HasCategory| |#1| (QUOTE (-739))) (|HasCategory| |#1| (QUOTE (-755)))) (|HasCategory| |#1| (QUOTE (-949 (-483)))) (|HasCategory| |#1| (QUOTE (-1064))) (|HasCategory| |#1| (QUOTE (-795 (-328)))) (|HasCategory| |#1| (QUOTE (-795 (-483)))) (|HasCategory| |#1| (QUOTE (-552 (-799 (-328))))) (|HasCategory| |#1| (QUOTE (-552 (-799 (-483))))) (|HasCategory| |#1| (QUOTE (-579 (-483)))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-810 (-1088)))) (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-808 (-1088)))) (|HasCategory| |#1| (|%list| (QUOTE -454) (QUOTE (-1088)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -241) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-482))) (-12 (|HasAttribute| |#1| (QUOTE -3980)) (|HasAttribute| |#1| (QUOTE -3991)) (|HasCategory| |#1| (QUOTE (-390)))) (-12 (|HasCategory| |#1| (QUOTE (-820))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-820))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) -(-349 A B) +((-3981 -12 (|has| |#1| (-6 -3992)) (|has| |#1| (-391)) (|has| |#1| (-6 -3981))) (-3986 . T) (-3992 . T) (-3987 . T) ((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T)) +((|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-950 (-1089)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-553 (-473)))) (|HasCategory| |#1| (QUOTE (-933))) (|HasCategory| |#1| (QUOTE (-740))) (|HasCategory| |#1| (QUOTE (-756))) (OR (|HasCategory| |#1| (QUOTE (-740))) (|HasCategory| |#1| (QUOTE (-756)))) (|HasCategory| |#1| (QUOTE (-950 (-484)))) (|HasCategory| |#1| (QUOTE (-1065))) (|HasCategory| |#1| (QUOTE (-796 (-329)))) (|HasCategory| |#1| (QUOTE (-796 (-484)))) (|HasCategory| |#1| (QUOTE (-553 (-800 (-329))))) (|HasCategory| |#1| (QUOTE (-553 (-800 (-484))))) (|HasCategory| |#1| (QUOTE (-580 (-484)))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-811 (-1089)))) (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-809 (-1089)))) (|HasCategory| |#1| (|%list| (QUOTE -455) (QUOTE (-1089)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -241) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-483))) (-12 (|HasAttribute| |#1| (QUOTE -3981)) (|HasAttribute| |#1| (QUOTE -3992)) (|HasCategory| |#1| (QUOTE (-391)))) (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) +(-350 A B) ((|constructor| (NIL "This package extends a map between integral domains to a map between Fractions over those domains by applying the map to the numerators and denominators.")) (|map| (((|Fraction| |#2|) (|Mapping| |#2| |#1|) (|Fraction| |#1|)) "\\spad{map(func,frac)} applies the function \\spad{func} to the numerator and denominator of the fraction \\spad{frac}."))) NIL NIL -(-350 S R UP) +(-351 S R UP) ((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#2|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#2|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#2|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(vi * vj)} ),{} where \\spad{v1},{} ...,{} vn are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} vn are the elements of the fixed basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} vn are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}'s with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) NIL NIL -(-351 R UP) +(-352 R UP) ((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#1|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#1|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#1|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(vi * vj)} ),{} where \\spad{v1},{} ...,{} vn are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} vn are the elements of the fixed basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} vn are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}'s with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) -((-3987 . T) (-3988 . T) (-3990 . T)) +((-3988 . T) (-3989 . T) (-3991 . T)) NIL -(-352 A S) +(-353 A S) ((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don't retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991"))) NIL -((|HasCategory| |#2| (QUOTE (-949 (-348 (-483))))) (|HasCategory| |#2| (QUOTE (-949 (-483))))) -(-353 S) +((|HasCategory| |#2| (QUOTE (-950 (-349 (-484))))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) +(-354 S) ((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don't retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991"))) NIL NIL -(-354 R -3091 UP A) +(-355 R -3092 UP A) ((|constructor| (NIL "Fractional ideals in a framed algebra.")) (|randomLC| ((|#4| (|NonNegativeInteger|) (|Vector| |#4|)) "\\spad{randomLC(n,x)} should be local but conditional.")) (|minimize| (($ $) "\\spad{minimize(I)} returns a reduced set of generators for \\spad{I}.")) (|denom| ((|#1| $) "\\spad{denom(1/d * (f1,...,fn))} returns \\spad{d}.")) (|numer| (((|Vector| |#4|) $) "\\spad{numer(1/d * (f1,...,fn))} = the vector \\spad{[f1,...,fn]}.")) (|norm| ((|#2| $) "\\spad{norm(I)} returns the norm of the ideal \\spad{I}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,...,fn))} returns the vector \\spad{[f1,...,fn]}.")) (|ideal| (($ (|Vector| |#4|)) "\\spad{ideal([f1,...,fn])} returns the ideal \\spad{(f1,...,fn)}."))) -((-3990 . T)) +((-3991 . T)) NIL -(-355 R1 F1 U1 A1 R2 F2 U2 A2) +(-356 R1 F1 U1 A1 R2 F2 U2 A2) ((|constructor| (NIL "\\indented{1}{Lifting of morphisms to fractional ideals.} Author: Manuel Bronstein Date Created: 1 Feb 1989 Date Last Updated: 27 Feb 1990 Keywords: ideal,{} algebra,{} module.")) (|map| (((|FractionalIdeal| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{map(f,i)} \\undocumented{}"))) NIL NIL -(-356 R -3091 UP A |ibasis|) +(-357 R -3092 UP A |ibasis|) ((|constructor| (NIL "Module representation of fractional ideals.")) (|module| (($ (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{module(I)} returns \\spad{I} viewed has a module over \\spad{R}.") (($ (|Vector| |#4|)) "\\spad{module([f1,...,fn])} = the module generated by \\spad{(f1,...,fn)} over \\spad{R}.")) (|norm| ((|#2| $) "\\spad{norm(f)} returns the norm of the module \\spad{f}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,...,fn))} = the vector \\spad{[f1,...,fn]}."))) NIL -((|HasCategory| |#4| (|%list| (QUOTE -949) (|devaluate| |#2|)))) -(-357 AR R AS S) +((|HasCategory| |#4| (|%list| (QUOTE -950) (|devaluate| |#2|)))) +(-358 AR R AS S) ((|constructor| (NIL "\\spad{FramedNonAssociativeAlgebraFunctions2} implements functions between two framed non associative algebra domains defined over different rings. The function map is used to coerce between algebras over different domains having the same structural constants.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the coordinates of \\spad{u} to get an element in \\spad{AS} via identification of the basis of \\spad{AR} as beginning part of the basis of \\spad{AS}."))) NIL NIL -(-358 S R) +(-359 S R) ((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#2|) $) "\\spad{apply(m,a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn't fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#2|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#2|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#2|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#2|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#2|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#2|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#2|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#2|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#2|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#2|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([a1,...,am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) NIL ((|HasCategory| |#2| (QUOTE (-312)))) -(-359 R) +(-360 R) ((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#1|) $) "\\spad{apply(m,a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn't fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#1|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#1|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#1|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#1|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([a1,...,am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) -((-3990 |has| |#1| (-494)) (-3988 . T) (-3987 . T)) +((-3991 |has| |#1| (-495)) (-3989 . T) (-3988 . T)) NIL -(-360 R) +(-361 R) ((|constructor| (NIL "\\spadtype{FactoredFunctionUtilities} implements some utility functions for manipulating factored objects.")) (|mergeFactors| (((|Factored| |#1|) (|Factored| |#1|) (|Factored| |#1|)) "\\spad{mergeFactors(u,v)} is used when the factorizations of \\spadvar{\\spad{u}} and \\spadvar{\\spad{v}} are known to be disjoint,{} \\spadignore{e.g.} resulting from a content/primitive part split. Essentially,{} it creates a new factored object by multiplying the units together and appending the lists of factors.")) (|refine| (((|Factored| |#1|) (|Factored| |#1|) (|Mapping| (|Factored| |#1|) |#1|)) "\\spad{refine(u,fn)} is used to apply the function \\userfun{\\spad{fn}} to each factor of \\spadvar{\\spad{u}} and then build a new factored object from the results. For example,{} if \\spadvar{\\spad{u}} were created by calling \\spad{nilFactor(10,2)} then \\spad{refine(u,factor)} would create a factored object equal to that created by \\spad{factor(100)} or \\spad{primeFactor(2,2) * primeFactor(5,2)}."))) NIL NIL -(-361 S R) +(-362 S R) ((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f, k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $)) (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#2|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#2|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#2|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n, x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,f)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,op)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a1,...,am)**n} in \\spad{x} by \\spad{f(a1,...,am)} for any \\spad{a1},{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)**ni} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a)**ni} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x, [s1,...,sm], [f1,...,fm], y)} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x, s, f, y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f, [foo1,...,foon])} unquotes all the \\spad{fooi}'s in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f, foo)} unquotes all the foo's in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo, [x1,...,xn])} returns \\spad{'foo(x1,...,xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo, x, y, z, t)} returns \\spad{'foo(x,y,z,t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo, x, y, z)} returns \\spad{'foo(x,y,z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo, x, y)} returns \\spad{'foo(x,y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo, x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#2| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}."))) NIL -((|HasCategory| |#2| (QUOTE (-949 (-483)))) (|HasCategory| |#2| (QUOTE (-494))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-960))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-411))) (|HasCategory| |#2| (QUOTE (-1024))) (|HasCategory| |#2| (QUOTE (-552 (-472))))) -(-362 R) +((|HasCategory| |#2| (QUOTE (-950 (-484)))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-412))) (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (QUOTE (-553 (-473))))) +(-363 R) ((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f, k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $)) (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#1|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#1|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#1|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n, x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,f)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,op)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a1,...,am)**n} in \\spad{x} by \\spad{f(a1,...,am)} for any \\spad{a1},{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)**ni} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a)**ni} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x, [s1,...,sm], [f1,...,fm], y)} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x, s, f, y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f, [foo1,...,foon])} unquotes all the \\spad{fooi}'s in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f, foo)} unquotes all the foo's in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo, [x1,...,xn])} returns \\spad{'foo(x1,...,xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo, x, y, z, t)} returns \\spad{'foo(x,y,z,t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo, x, y, z)} returns \\spad{'foo(x,y,z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo, x, y)} returns \\spad{'foo(x,y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo, x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#1| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}."))) -((-3990 OR (|has| |#1| (-960)) (|has| |#1| (-411))) (-3988 |has| |#1| (-146)) (-3987 |has| |#1| (-146)) ((-3995 "*") |has| |#1| (-494)) (-3986 |has| |#1| (-494)) (-3991 |has| |#1| (-494)) (-3985 |has| |#1| (-494))) +((-3991 OR (|has| |#1| (-961)) (|has| |#1| (-412))) (-3989 |has| |#1| (-146)) (-3988 |has| |#1| (-146)) ((-3996 "*") |has| |#1| (-495)) (-3987 |has| |#1| (-495)) (-3992 |has| |#1| (-495)) (-3986 |has| |#1| (-495))) NIL -(-363 R A S B) +(-364 R A S B) ((|constructor| (NIL "This package allows a mapping \\spad{R} -> \\spad{S} to be lifted to a mapping from a function space over \\spad{R} to a function space over \\spad{S}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f, a)} applies \\spad{f} to all the constants in \\spad{R} appearing in \\spad{a}."))) NIL NIL -(-364 R FE |x| |cen|) +(-365 R FE |x| |cen|) ((|constructor| (NIL "This package converts expressions in some function space to exponential expansions.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won't allow it.")) (|exprToXXP| (((|Union| (|:| |%expansion| (|ExponentialExpansion| |#1| |#2| |#3| |#4|)) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|)) "\\spad{exprToXXP(fcn,posCheck?)} converts the expression \\spad{fcn} to an exponential expansion. If \\spad{posCheck?} is \\spad{true},{} log's of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed."))) NIL NIL -(-365 R FE |Expon| UPS TRAN |x|) +(-366 R FE |Expon| UPS TRAN |x|) ((|constructor| (NIL "This package converts expressions in some function space to power series in a variable \\spad{x} with coefficients in that function space. The function \\spadfun{exprToUPS} converts expressions to power series whose coefficients do not contain the variable \\spad{x}. The function \\spadfun{exprToGenUPS} converts functional expressions to power series whose coefficients may involve functions of \\spad{log(x)}.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won't allow it.")) (|exprToGenUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToGenUPS(fcn,posCheck?,atanFlag)} converts the expression \\spad{fcn} to a generalized power series. If \\spad{posCheck?} is \\spad{true},{} log's of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} we return a record containing the name of the function that caused the problem and a brief description of the problem. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|exprToUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToUPS(fcn,posCheck?,atanFlag)} converts the expression \\spad{fcn} to a power series. If \\spad{posCheck?} is \\spad{true},{} log's of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} a record containing the name of the function that caused the problem and a brief description of the problem is returned. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|integrate| (($ $) "\\spad{integrate(x)} returns the integral of \\spad{x} since we need to be able to integrate a power series")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x} since we need to be able to differentiate a power series"))) NIL NIL -(-366 A S) +(-367 A S) ((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#2| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#2| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}."))) NIL -((|HasCategory| |#2| (QUOTE (-755))) (|HasCategory| |#2| (QUOTE (-318)))) -(-367 S) +((|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-319)))) +(-368 S) ((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#1| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}."))) -((-3993 . T) (-3983 . T) (-3994 . T)) +((-3994 . T) (-3984 . T) (-3995 . T)) NIL -(-368 S A R B) +(-369 S A R B) ((|constructor| (NIL "\\spad{FiniteSetAggregateFunctions2} provides functions involving two finite set aggregates where the underlying domains might be different. An example of this is to create a set of rational numbers by mapping a function across a set of integers,{} where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-aggregates \\spad{x} of aggregate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad {[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialised to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does a \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as an identity element for the function.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,a)} applies function \\spad{f} to each member of aggregate \\spad{a},{} creating a new aggregate with a possibly different underlying domain."))) NIL NIL -(-369 R -3091) +(-370 R -3092) ((|constructor| (NIL "\\spadtype{FunctionSpaceComplexIntegration} provides functions for the indefinite integration of complex-valued functions.")) (|complexIntegrate| ((|#2| |#2| (|Symbol|)) "\\spad{complexIntegrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|internalIntegrate0| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate0 should} be a local function,{} but is conditional.")) (|internalIntegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable."))) NIL NIL -(-370 R E) +(-371 R E) ((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|makeCos| (($ |#2| |#1|) "\\spad{makeCos(e,r)} makes a sin expression with given argument and coefficient")) (|makeSin| (($ |#2| |#1|) "\\spad{makeSin(e,r)} makes a sin expression with given argument and coefficient")) (|coerce| (($ (|FourierComponent| |#2|)) "\\spad{coerce(c)} converts sin/cos terms into Fourier Series") (($ |#1|) "\\spad{coerce(r)} converts coefficients into Fourier Series"))) -((-3980 -12 (|has| |#1| (-6 -3980)) (|has| |#2| (-6 -3980))) (-3987 . T) (-3988 . T) (-3990 . T)) -((-12 (|HasAttribute| |#1| (QUOTE -3980)) (|HasAttribute| |#2| (QUOTE -3980)))) -(-371 R -3091) +((-3981 -12 (|has| |#1| (-6 -3981)) (|has| |#2| (-6 -3981))) (-3988 . T) (-3989 . T) (-3991 . T)) +((-12 (|HasAttribute| |#1| (QUOTE -3981)) (|HasAttribute| |#2| (QUOTE -3981)))) +(-372 R -3092) ((|constructor| (NIL "\\spadtype{FunctionSpaceIntegration} provides functions for the indefinite integration of real-valued functions.")) (|integrate| (((|Union| |#2| (|List| |#2|)) |#2| (|Symbol|)) "\\spad{integrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable."))) NIL NIL -(-372 R -3091) +(-373 R -3092) ((|constructor| (NIL "Provides some special functions over an integral domain.")) (|iiabs| ((|#2| |#2|) "\\spad{iiabs(x)} should be local but conditional.")) (|iiGamma| ((|#2| |#2|) "\\spad{iiGamma(x)} should be local but conditional.")) (|airyBi| ((|#2| |#2|) "\\spad{airyBi(x)} returns the airybi function applied to \\spad{x}")) (|airyAi| ((|#2| |#2|) "\\spad{airyAi(x)} returns the airyai function applied to \\spad{x}")) (|besselK| ((|#2| |#2| |#2|) "\\spad{besselK(x,y)} returns the besselk function applied to \\spad{x} and \\spad{y}")) (|besselI| ((|#2| |#2| |#2|) "\\spad{besselI(x,y)} returns the besseli function applied to \\spad{x} and \\spad{y}")) (|besselY| ((|#2| |#2| |#2|) "\\spad{besselY(x,y)} returns the bessely function applied to \\spad{x} and \\spad{y}")) (|besselJ| ((|#2| |#2| |#2|) "\\spad{besselJ(x,y)} returns the besselj function applied to \\spad{x} and \\spad{y}")) (|polygamma| ((|#2| |#2| |#2|) "\\spad{polygamma(x,y)} returns the polygamma function applied to \\spad{x} and \\spad{y}")) (|digamma| ((|#2| |#2|) "\\spad{digamma(x)} returns the digamma function applied to \\spad{x}")) (|Beta| ((|#2| |#2| |#2|) "\\spad{Beta(x,y)} returns the beta function applied to \\spad{x} and \\spad{y}")) (|Gamma| ((|#2| |#2| |#2|) "\\spad{Gamma(a,x)} returns the incomplete Gamma function applied to a and \\spad{x}") ((|#2| |#2|) "\\spad{Gamma(f)} returns the formal Gamma function applied to \\spad{f}")) (|abs| ((|#2| |#2|) "\\spad{abs(f)} returns the absolute value operator applied to \\spad{f}")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a special function operator")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a special function operator."))) NIL NIL -(-373 R -3091) +(-374 R -3092) ((|constructor| (NIL "FunctionsSpacePrimitiveElement provides functions to compute primitive elements in functions spaces.")) (|primitiveElement| (((|Record| (|:| |primelt| |#2|) (|:| |pol1| (|SparseUnivariatePolynomial| |#2|)) (|:| |pol2| (|SparseUnivariatePolynomial| |#2|)) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) |#2| |#2|) "\\spad{primitiveElement(a1, a2)} returns \\spad{[a, q1, q2, q]} such that \\spad{k(a1, a2) = k(a)},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The minimal polynomial for \\spad{a2} may involve \\spad{a1},{} but the minimal polynomial for \\spad{a1} may not involve \\spad{a2}; This operations uses \\spadfun{resultant}.") (((|Record| (|:| |primelt| |#2|) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#2|))) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) (|List| |#2|)) "\\spad{primitiveElement([a1,...,an])} returns \\spad{[a, [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}."))) NIL ((|HasCategory| |#2| (QUOTE (-27)))) -(-374 R -3091) +(-375 R -3092) ((|constructor| (NIL "This package provides function which replaces transcendental kernels in a function space by random integers. The correspondence between the kernels and the integers is fixed between calls to new().")) (|newReduc| (((|Void|)) "\\spad{newReduc()} \\undocumented")) (|bringDown| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) |#2| (|Kernel| |#2|)) "\\spad{bringDown(f,k)} \\undocumented") (((|Fraction| (|Integer|)) |#2|) "\\spad{bringDown(f)} \\undocumented"))) NIL NIL -(-375) +(-376) ((|constructor| (NIL "Creates and manipulates objects which correspond to the basic FORTRAN data types: REAL,{} INTEGER,{} COMPLEX,{} LOGICAL and CHARACTER")) (= (((|Boolean|) $ $) "\\spad{x=y} tests for equality")) (|logical?| (((|Boolean|) $) "\\spad{logical?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type LOGICAL.")) (|character?| (((|Boolean|) $) "\\spad{character?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type CHARACTER.")) (|doubleComplex?| (((|Boolean|) $) "\\spad{doubleComplex?(t)} tests whether \\spad{t} is equivalent to the (non-standard) FORTRAN type DOUBLE COMPLEX.")) (|complex?| (((|Boolean|) $) "\\spad{complex?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type COMPLEX.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type INTEGER.")) (|double?| (((|Boolean|) $) "\\spad{double?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type DOUBLE PRECISION")) (|real?| (((|Boolean|) $) "\\spad{real?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type REAL.")) (|coerce| (((|SExpression|) $) "\\spad{coerce(x)} returns the \\spad{s}-expression associated with \\spad{x}") (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol associated with \\spad{x}") (($ (|Symbol|)) "\\spad{coerce(s)} transforms the symbol \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of real,{} complex,{}double precision,{} logical,{} integer,{} character,{} REAL,{} COMPLEX,{} LOGICAL,{} INTEGER,{} CHARACTER,{} DOUBLE PRECISION") (($ (|String|)) "\\spad{coerce(s)} transforms the string \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of \"real\",{} \"double precision\",{} \"complex\",{} \"logical\",{} \"integer\",{} \"character\",{} \"REAL\",{} \"COMPLEX\",{} \"LOGICAL\",{} \"INTEGER\",{} \"CHARACTER\",{} \"DOUBLE PRECISION\""))) NIL NIL -(-376 R -3091 UP) +(-377 R -3092 UP) ((|constructor| (NIL "\\indented{1}{Used internally by IR2F} Author: Manuel Bronstein Date Created: 12 May 1988 Date Last Updated: 22 September 1993 Keywords: function,{} space,{} polynomial,{} factoring")) (|anfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) "failed") |#3|) "\\spad{anfactor(p)} tries to factor \\spad{p} over algebraic numbers,{} returning \"failed\" if it cannot")) (|UP2ifCan| (((|Union| (|:| |overq| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) (|:| |overan| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) (|:| |failed| (|Boolean|))) |#3|) "\\spad{UP2ifCan(x)} should be local but conditional.")) (|qfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "failed") |#3|) "\\spad{qfactor(p)} tries to factor \\spad{p} over fractions of integers,{} returning \"failed\" if it cannot")) (|ffactor| (((|Factored| |#3|) |#3|) "\\spad{ffactor(p)} tries to factor a univariate polynomial \\spad{p} over \\spad{F}"))) NIL -((|HasCategory| |#2| (QUOTE (-949 (-48))))) -(-377) +((|HasCategory| |#2| (QUOTE (-950 (-48))))) +(-378) ((|constructor| (NIL "Creates and manipulates objects which correspond to FORTRAN data types,{} including array dimensions.")) (|fortranCharacter| (($) "\\spad{fortranCharacter()} returns CHARACTER,{} an element of FortranType")) (|fortranDoubleComplex| (($) "\\spad{fortranDoubleComplex()} returns DOUBLE COMPLEX,{} an element of FortranType")) (|fortranComplex| (($) "\\spad{fortranComplex()} returns COMPLEX,{} an element of FortranType")) (|fortranLogical| (($) "\\spad{fortranLogical()} returns LOGICAL,{} an element of FortranType")) (|fortranInteger| (($) "\\spad{fortranInteger()} returns INTEGER,{} an element of FortranType")) (|fortranDouble| (($) "\\spad{fortranDouble()} returns DOUBLE PRECISION,{} an element of FortranType")) (|fortranReal| (($) "\\spad{fortranReal()} returns REAL,{} an element of FortranType")) (|construct| (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1="void")) (|List| (|Polynomial| (|Integer|))) (|Boolean|)) "\\spad{construct(type,dims)} creates an element of FortranType") (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#)) (|List| (|Symbol|)) (|Boolean|)) "\\spad{construct(type,dims)} creates an element of FortranType")) (|external?| (((|Boolean|) $) "\\spad{external?(u)} returns \\spad{true} if \\spad{u} is declared to be EXTERNAL")) (|dimensionsOf| (((|List| (|Polynomial| (|Integer|))) $) "\\spad{dimensionsOf(t)} returns the dimensions of \\spad{t}")) (|scalarTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#)) $) "\\spad{scalarTypeOf(t)} returns the FORTRAN data type of \\spad{t}")) (|coerce| (($ (|FortranScalarType|)) "\\spad{coerce(t)} creates an element from a scalar type"))) NIL NIL -(-378 |f|) +(-379 |f|) ((|constructor| (NIL "This domain implements named functions")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol"))) NIL NIL -(-379) +(-380) ((|constructor| (NIL "This is the datatype for exported function descriptor. A function descriptor consists of: (1) a signature; (2) a predicate; and (3) a slot into the scope object.")) (|signature| (((|Signature|) $) "\\spad{signature(x)} returns the signature of function described by \\spad{x}."))) NIL NIL -(-380 UP) +(-381 UP) ((|constructor| (NIL "\\spadtype{GaloisGroupFactorizer} provides functions to factor resolvents.")) (|btwFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|) (|Set| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{btwFact(p,sqf,pd,r)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors). \\spad{pd} is the \\spadtype{Set} of possible degrees. \\spad{r} is a lower bound for the number of factors of \\spad{p}. Please do not use this function in your code because its design may change.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(p,sqf)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).")) (|factorOfDegree| (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|) (|Boolean|)) "\\spad{factorOfDegree(d,p,listOfDegrees,r,sqf)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,p,listOfDegrees,r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorOfDegree(d,p,listOfDegrees)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,p,r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1|) "\\spad{factorOfDegree(d,p)} returns a factor of \\spad{p} of degree \\spad{d}.")) (|factorSquareFree| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,d,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,listOfDegrees,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorSquareFree(p,listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} returns the factorization of \\spad{p} which is supposed not having any repeated factor (this is not checked).")) (|factor| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factor(p,d,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factor(p,listOfDegrees,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factor(p,listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factor(p,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns the factorization of \\spad{p} over the integers.")) (|tryFunctionalDecomposition| (((|Boolean|) (|Boolean|)) "\\spad{tryFunctionalDecomposition(b)} chooses whether factorizers have to look for functional decomposition of polynomials (\\spad{true}) or not (\\spad{false}). Returns the previous value.")) (|tryFunctionalDecomposition?| (((|Boolean|)) "\\spad{tryFunctionalDecomposition?()} returns \\spad{true} if factorizers try functional decomposition of polynomials before factoring them.")) (|eisensteinIrreducible?| (((|Boolean|) |#1|) "\\spad{eisensteinIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by Eisenstein's criterion,{} \\spad{false} is inconclusive.")) (|useEisensteinCriterion| (((|Boolean|) (|Boolean|)) "\\spad{useEisensteinCriterion(b)} chooses whether factorizers check Eisenstein's criterion before factoring: \\spad{true} for using it,{} \\spad{false} else. Returns the previous value.")) (|useEisensteinCriterion?| (((|Boolean|)) "\\spad{useEisensteinCriterion?()} returns \\spad{true} if factorizers check Eisenstein's criterion before factoring.")) (|useSingleFactorBound| (((|Boolean|) (|Boolean|)) "\\spad{useSingleFactorBound(b)} chooses the algorithm to be used by the factorizers: \\spad{true} for algorithm with single factor bound,{} \\spad{false} for algorithm with overall bound. Returns the previous value.")) (|useSingleFactorBound?| (((|Boolean|)) "\\spad{useSingleFactorBound?()} returns \\spad{true} if algorithm with single factor bound is used for factorization,{} \\spad{false} for algorithm with overall bound.")) (|modularFactor| (((|Record| (|:| |prime| (|Integer|)) (|:| |factors| (|List| |#1|))) |#1|) "\\spad{modularFactor(f)} chooses a \"good\" prime and returns the factorization of \\spad{f} modulo this prime in a form that may be used by \\spadfunFrom{completeHensel}{GeneralHenselPackage}. If prime is zero it means that \\spad{f} has been proved to be irreducible over the integers or that \\spad{f} is a unit (\\spadignore{i.e.} 1 or \\spad{-1}). \\spad{f} shall be primitive (\\spadignore{i.e.} content(\\spad{p})\\spad{=1}) and square free (\\spadignore{i.e.} without repeated factors).")) (|numberOfFactors| (((|NonNegativeInteger|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{numberOfFactors(ddfactorization)} returns the number of factors of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|stopMusserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{stopMusserTrials(n)} sets to \\spad{n} the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**n} trials. Returns the previous value.") (((|PositiveInteger|)) "\\spad{stopMusserTrials()} returns the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**stopMusserTrials()} trials.")) (|musserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{musserTrials(n)} sets to \\spad{n} the number of primes to be tried in \\spadfun{modularFactor} and returns the previous value.") (((|PositiveInteger|)) "\\spad{musserTrials()} returns the number of primes that are tried in \\spadfun{modularFactor}.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{degreePartition(ddfactorization)} returns the degree partition of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|makeFR| (((|Factored| |#1|) (|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|))))))) "\\spad{makeFR(flist)} turns the final factorization of henselFact into a \\spadtype{Factored} object."))) NIL NIL -(-381 R UP -3091) +(-382 R UP -3092) ((|constructor| (NIL "\\spadtype{GaloisGroupFactorizationUtilities} provides functions that will be used by the factorizer.")) (|length| ((|#3| |#2|) "\\spad{length(p)} returns the sum of the absolute values of the coefficients of the polynomial \\spad{p}.")) (|height| ((|#3| |#2|) "\\spad{height(p)} returns the maximal absolute value of the coefficients of the polynomial \\spad{p}.")) (|infinityNorm| ((|#3| |#2|) "\\spad{infinityNorm(f)} returns the maximal absolute value of the coefficients of the polynomial \\spad{f}.")) (|quadraticNorm| ((|#3| |#2|) "\\spad{quadraticNorm(f)} returns the \\spad{l2} norm of the polynomial \\spad{f}.")) (|norm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{norm(f,p)} returns the lp norm of the polynomial \\spad{f}.")) (|singleFactorBound| (((|Integer|) |#2|) "\\spad{singleFactorBound(p,r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri's norm. \\spad{p} shall be of degree higher or equal to 2.") (((|Integer|) |#2| (|NonNegativeInteger|)) "\\spad{singleFactorBound(p,r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri's norm. \\spad{r} is a lower bound for the number of factors of \\spad{p}. \\spad{p} shall be of degree higher or equal to 2.")) (|rootBound| (((|Integer|) |#2|) "\\spad{rootBound(p)} returns a bound on the largest norm of the complex roots of \\spad{p}.")) (|bombieriNorm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{bombieriNorm(p,n)} returns the \\spad{n}th Bombieri's norm of \\spad{p}.") ((|#3| |#2|) "\\spad{bombieriNorm(p)} returns quadratic Bombieri's norm of \\spad{p}.")) (|beauzamyBound| (((|Integer|) |#2|) "\\spad{beauzamyBound(p)} returns a bound on the larger coefficient of any factor of \\spad{p}."))) NIL NIL -(-382 R UP) +(-383 R UP) ((|constructor| (NIL "\\spadtype{GaloisGroupPolynomialUtilities} provides useful functions for univariate polynomials which should be added to \\spadtype{UnivariatePolynomialCategory} or to \\spadtype{Factored} (July 1994).")) (|factorsOfDegree| (((|List| |#2|) (|PositiveInteger|) (|Factored| |#2|)) "\\spad{factorsOfDegree(d,f)} returns the factors of degree \\spad{d} of the factored polynomial \\spad{f}.")) (|factorOfDegree| ((|#2| (|PositiveInteger|) (|Factored| |#2|)) "\\spad{factorOfDegree(d,f)} returns a factor of degree \\spad{d} of the factored polynomial \\spad{f}. Such a factor shall exist.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|Factored| |#2|)) "\\spad{degreePartition(f)} returns the degree partition (\\spadignore{i.e.} the multiset of the degrees of the irreducible factors) of the polynomial \\spad{f}.")) (|shiftRoots| ((|#2| |#2| |#1|) "\\spad{shiftRoots(p,c)} returns the polynomial which has for roots \\spad{c} added to the roots of \\spad{p}.")) (|scaleRoots| ((|#2| |#2| |#1|) "\\spad{scaleRoots(p,c)} returns the polynomial which has \\spad{c} times the roots of \\spad{p}.")) (|reverse| ((|#2| |#2|) "\\spad{reverse(p)} returns the reverse polynomial of \\spad{p}.")) (|unvectorise| ((|#2| (|Vector| |#1|)) "\\spad{unvectorise(v)} returns the polynomial which has for coefficients the entries of \\spad{v} in the increasing order.")) (|monic?| (((|Boolean|) |#2|) "\\spad{monic?(p)} tests if \\spad{p} is monic (\\spadignore{i.e.} leading coefficient equal to 1)."))) NIL NIL -(-383 R) +(-384 R) ((|constructor| (NIL "\\spadtype{GaloisGroupUtilities} provides several useful functions.")) (|safetyMargin| (((|NonNegativeInteger|)) "\\spad{safetyMargin()} returns the number of low weight digits we do not trust in the floating point representation (used by \\spadfun{safeCeiling}).") (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{safetyMargin(n)} sets to \\spad{n} the number of low weight digits we do not trust in the floating point representation and returns the previous value (for use by \\spadfun{safeCeiling}).")) (|safeFloor| (((|Integer|) |#1|) "\\spad{safeFloor(x)} returns the integer which is lower or equal to the largest integer which has the same floating point number representation.")) (|safeCeiling| (((|Integer|) |#1|) "\\spad{safeCeiling(x)} returns the integer which is greater than any integer with the same floating point number representation.")) (|fillPascalTriangle| (((|Void|)) "\\spad{fillPascalTriangle()} fills the stored table.")) (|sizePascalTriangle| (((|NonNegativeInteger|)) "\\spad{sizePascalTriangle()} returns the number of entries currently stored in the table.")) (|rangePascalTriangle| (((|NonNegativeInteger|)) "\\spad{rangePascalTriangle()} returns the maximal number of lines stored.") (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rangePascalTriangle(n)} sets the maximal number of lines which are stored and returns the previous value.")) (|pascalTriangle| ((|#1| (|NonNegativeInteger|) (|Integer|)) "\\spad{pascalTriangle(n,r)} returns the binomial coefficient \\spad{C(n,r)=n!/(r! (n-r)!)} and stores it in a table to prevent recomputation."))) NIL -((|HasCategory| |#1| (QUOTE (-345)))) -(-384) +((|HasCategory| |#1| (QUOTE (-346)))) +(-385) ((|constructor| (NIL "Package for the factorization of complex or gaussian integers.")) (|prime?| (((|Boolean|) (|Complex| (|Integer|))) "\\spad{prime?(zi)} tests if the complex integer \\spad{zi} is prime.")) (|sumSquares| (((|List| (|Integer|)) (|Integer|)) "\\spad{sumSquares(p)} construct \\spad{a} and \\spad{b} such that \\spad{a**2+b**2} is equal to the integer prime \\spad{p},{} and otherwise returns an error. It will succeed if the prime number \\spad{p} is 2 or congruent to 1 mod 4.")) (|factor| (((|Factored| (|Complex| (|Integer|))) (|Complex| (|Integer|))) "\\spad{factor(zi)} produces the complete factorization of the complex integer \\spad{zi}."))) NIL NIL -(-385 |Dom| |Expon| |VarSet| |Dpol|) +(-386 |Dom| |Expon| |VarSet| |Dpol|) ((|constructor| (NIL "\\spadtype{GroebnerPackage} computes groebner bases for polynomial ideals. The basic computation provides a distinguished set of generators for polynomial ideals over fields. This basis allows an easy test for membership: the operation \\spadfun{normalForm} returns zero on ideal members. When the provided coefficient domain,{} Dom,{} is not a field,{} the result is equivalent to considering the extended ideal with \\spadtype{Fraction(Dom)} as coefficients,{} but considerably more efficient since all calculations are performed in Dom. Additional argument \"info\" and \"redcrit\" can be given to provide incremental information during computation. Argument \"info\" produces a computational summary for each \\spad{s}-polynomial. Argument \"redcrit\" prints out the reduced critical pairs. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|normalForm| ((|#4| |#4| (|List| |#4|)) "\\spad{normalForm(poly,gb)} reduces the polynomial \\spad{poly} modulo the precomputed groebner basis \\spad{gb} giving a canonical representative of the residue class.")) (|groebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) "\\spad{groebner(lp, \"info\", \"redcrit\")} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp},{} displaying both a summary of the critical pairs considered (\\spad{\"info\"}) and the result of reducing each critical pair (\"redcrit\"). If the second or third arguments have any other string value,{} the indicated information is suppressed.") (((|List| |#4|) (|List| |#4|) (|String|)) "\\spad{groebner(lp, infoflag)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}. Argument infoflag is used to get information on the computation. If infoflag is \"info\",{} then summary information is displayed for each \\spad{s}-polynomial generated. If infoflag is \"redcrit\",{} the reduced critical pairs are displayed. If infoflag is any other string,{} no information is printed during computation.") (((|List| |#4|) (|List| |#4|)) "\\spad{groebner(lp)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}."))) NIL ((|HasCategory| |#1| (QUOTE (-312)))) -(-386 |Dom| |Expon| |VarSet| |Dpol|) +(-387 |Dom| |Expon| |VarSet| |Dpol|) ((|constructor| (NIL "\\spadtype{EuclideanGroebnerBasisPackage} computes groebner bases for polynomial ideals over euclidean domains. The basic computation provides a distinguished set of generators for these ideals. This basis allows an easy test for membership: the operation \\spadfun{euclideanNormalForm} returns zero on ideal members. The string \"info\" and \"redcrit\" can be given as additional args to provide incremental information during the computation. If \"info\" is given,{} \\indented{1}{a computational summary is given for each \\spad{s}-polynomial. If \"redcrit\"} is given,{} the reduced critical pairs are printed. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|euclideanGroebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) "\\spad{euclideanGroebner(lp, \"info\", \"redcrit\")} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}. If the second argument is \\spad{\"info\"},{} a summary is given of the critical pairs. If the third argument is \"redcrit\",{} critical pairs are printed.") (((|List| |#4|) (|List| |#4|) (|String|)) "\\spad{euclideanGroebner(lp, infoflag)} computes a groebner basis for a polynomial ideal over a euclidean domain generated by the list of polynomials \\spad{lp}. During computation,{} additional information is printed out if infoflag is given as either \"info\" (for summary information) or \"redcrit\" (for reduced critical pairs)") (((|List| |#4|) (|List| |#4|)) "\\spad{euclideanGroebner(lp)} computes a groebner basis for a polynomial ideal over a euclidean domain generated by the list of polynomials \\spad{lp}.")) (|euclideanNormalForm| ((|#4| |#4| (|List| |#4|)) "\\spad{euclideanNormalForm(poly,gb)} reduces the polynomial \\spad{poly} modulo the precomputed groebner basis \\spad{gb} giving a canonical representative of the residue class."))) NIL NIL -(-387 |Dom| |Expon| |VarSet| |Dpol|) +(-388 |Dom| |Expon| |VarSet| |Dpol|) ((|constructor| (NIL "\\spadtype{GroebnerFactorizationPackage} provides the function groebnerFactor\" which uses the factorization routines of \\Language{} to factor each polynomial under consideration while doing the groebner basis algorithm. Then it writes the ideal as an intersection of ideals determined by the irreducible factors. Note that the whole ring may occur as well as other redundancies. We also use the fact,{} that from the second factor on we can assume that the preceding factors are not equal to 0 and we divide all polynomials under considerations by the elements of this list of \"nonZeroRestrictions\". The result is a list of groebner bases,{} whose union of solutions of the corresponding systems of equations is the solution of the system of equation corresponding to the input list. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|groebnerFactorize| (((|List| (|List| |#4|)) (|List| |#4|) (|Boolean|)) "\\spad{groebnerFactorize(listOfPolys, info)} returns a list of groebner bases. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys}. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}. If {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|)) "\\spad{groebnerFactorize(listOfPolys)} returns a list of groebner bases. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys}. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}.") (((|List| (|List| |#4|)) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\spad{groebnerFactorize(listOfPolys, nonZeroRestrictions, info)} returns a list of groebner basis. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys} under the restriction that the polynomials of {\\em nonZeroRestrictions} don't vanish. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}. If argument {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|) (|List| |#4|)) "\\spad{groebnerFactorize(listOfPolys, nonZeroRestrictions)} returns a list of groebner basis. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys} under the restriction that the polynomials of {\\em nonZeroRestrictions} don't vanish. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}.")) (|factorGroebnerBasis| (((|List| (|List| |#4|)) (|List| |#4|) (|Boolean|)) "\\spad{factorGroebnerBasis(basis,info)} checks whether the \\spad{basis} contains reducible polynomials and uses these to split the \\spad{basis}. If argument {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|)) "\\spad{factorGroebnerBasis(basis)} checks whether the \\spad{basis} contains reducible polynomials and uses these to split the \\spad{basis}."))) NIL NIL -(-388 |Dom| |Expon| |VarSet| |Dpol|) +(-389 |Dom| |Expon| |VarSet| |Dpol|) ((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Keywords: Description This package provides low level tools for Groebner basis computations")) (|virtualDegree| (((|NonNegativeInteger|) |#4|) "\\spad{virtualDegree }\\undocumented")) (|makeCrit| (((|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|)) |#4| (|NonNegativeInteger|)) "\\spad{makeCrit }\\undocumented")) (|critpOrder| (((|Boolean|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{critpOrder }\\undocumented")) (|prinb| (((|Void|) (|Integer|)) "\\spad{prinb }\\undocumented")) (|prinpolINFO| (((|Void|) (|List| |#4|)) "\\spad{prinpolINFO }\\undocumented")) (|fprindINFO| (((|Integer|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{fprindINFO }\\undocumented")) (|prindINFO| (((|Integer|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (|Integer|) (|Integer|) (|Integer|)) "\\spad{prindINFO }\\undocumented")) (|prinshINFO| (((|Void|) |#4|) "\\spad{prinshINFO }\\undocumented")) (|lepol| (((|Integer|) |#4|) "\\spad{lepol }\\undocumented")) (|minGbasis| (((|List| |#4|) (|List| |#4|)) "\\spad{minGbasis }\\undocumented")) (|updatD| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{updatD }\\undocumented")) (|sPol| ((|#4| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{sPol }\\undocumented")) (|updatF| (((|List| (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|))) |#4| (|NonNegativeInteger|) (|List| (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|)))) "\\spad{updatF }\\undocumented")) (|hMonic| ((|#4| |#4|) "\\spad{hMonic }\\undocumented")) (|redPo| (((|Record| (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (|List| |#4|)) "\\spad{redPo }\\undocumented")) (|critMonD1| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critMonD1 }\\undocumented")) (|critMTonD1| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critMTonD1 }\\undocumented")) (|critBonD| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critBonD }\\undocumented")) (|critB| (((|Boolean|) |#2| |#2| |#2| |#2|) "\\spad{critB }\\undocumented")) (|critM| (((|Boolean|) |#2| |#2|) "\\spad{critM }\\undocumented")) (|critT| (((|Boolean|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{critT }\\undocumented")) (|gbasis| (((|List| |#4|) (|List| |#4|) (|Integer|) (|Integer|)) "\\spad{gbasis }\\undocumented")) (|redPol| ((|#4| |#4| (|List| |#4|)) "\\spad{redPol }\\undocumented")) (|credPol| ((|#4| |#4| (|List| |#4|)) "\\spad{credPol }\\undocumented"))) NIL NIL -(-389 S) +(-390 S) ((|constructor| (NIL "This category describes domains where \\spadfun{gcd} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common gcd of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,y)} returns the greatest common divisor of \\spad{x} and \\spad{y}."))) NIL NIL -(-390) +(-391) ((|constructor| (NIL "This category describes domains where \\spadfun{gcd} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common gcd of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,y)} returns the greatest common divisor of \\spad{x} and \\spad{y}."))) -((-3986 . T) ((-3995 "*") . T) (-3987 . T) (-3988 . T) (-3990 . T)) +((-3987 . T) ((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T)) NIL -(-391 R |n| |ls| |gamma|) +(-392 R |n| |ls| |gamma|) ((|constructor| (NIL "AlgebraGenericElementPackage allows you to create generic elements of an algebra,{} \\spadignore{i.e.} the scalars are extended to include symbolic coefficients")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis") (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,...,vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}")) (|genericRightDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericRightDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericRightTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericRightTraceForm (a,b)} is defined to be \\spadfun{genericRightTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericLeftDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericLeftDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericLeftTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericLeftTraceForm (a,b)} is defined to be \\spad{genericLeftTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericRightNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{rightRankPolynomial} and changes the sign if the degree of this polynomial is odd")) (|genericRightTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{rightRankPolynomial} and changes the sign")) (|genericRightMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericRightMinimalPolynomial(a)} substitutes the coefficients of \\spad{a} for the generic coefficients in \\spadfun{rightRankPolynomial}")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{rightRankPolynomial()} returns the right minimimal polynomial of the generic element")) (|genericLeftNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{leftRankPolynomial} and changes the sign if the degree of this polynomial is odd. This is a form of degree \\spad{k}")) (|genericLeftTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{leftRankPolynomial} and changes the sign. \\indented{1}{This is a linear form}")) (|genericLeftMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericLeftMinimalPolynomial(a)} substitutes the coefficients of {em a} for the generic coefficients in \\spad{leftRankPolynomial()}")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{leftRankPolynomial()} returns the left minimimal polynomial of the generic element")) (|generic| (($ (|Vector| (|Symbol|)) (|Vector| $)) "\\spad{generic(vs,ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} with the symbolic coefficients \\spad{vs} error,{} if the vector of symbols is shorter than the vector of elements") (($ (|Symbol|) (|Vector| $)) "\\spad{generic(s,v)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{v} with the symbolic coefficients \\spad{s1,s2,..}") (($ (|Vector| $)) "\\spad{generic(ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} basis with the symbolic coefficients \\spad{\\%x1,\\%x2,..}") (($ (|Vector| (|Symbol|))) "\\spad{generic(vs)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{vs}; error,{} if the vector of symbols is too short") (($ (|Symbol|)) "\\spad{generic(s)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{s1,s2,..}") (($) "\\spad{generic()} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{\\%x1,\\%x2,..}")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|coerce| (($ (|Vector| (|Fraction| (|Polynomial| |#1|)))) "\\spad{coerce(v)} assumes that it is called with a vector of length equal to the dimension of the algebra,{} then a linear combination with the basis element is formed"))) -((-3990 |has| (-348 (-856 |#1|)) (-494)) (-3988 . T) (-3987 . T)) -((|HasCategory| (-348 (-856 |#1|)) (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| (-348 (-856 |#1|)) (QUOTE (-494)))) -(-392 |vl| R E) +((-3991 |has| (-349 (-857 |#1|)) (-495)) (-3989 . T) (-3988 . T)) +((|HasCategory| (-349 (-857 |#1|)) (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| (-349 (-857 |#1|)) (QUOTE (-495)))) +(-393 |vl| R E) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is specified by its third parameter. Suggested types which define term orderings include: \\spadtype{DirectProduct},{} \\spadtype{HomogeneousDirectProduct},{} \\spadtype{SplitHomogeneousDirectProduct} and finally \\spadtype{OrderedDirectProduct} which accepts an arbitrary user function to define a term ordering.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-3995 "*") |has| |#2| (-146)) (-3986 |has| |#2| (-494)) (-3991 |has| |#2| (-6 -3991)) (-3988 . T) (-3987 . T) (-3990 . T)) -((|HasCategory| |#2| (QUOTE (-820))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-390))) (|HasCategory| |#2| (QUOTE (-494))) (|HasCategory| |#2| (QUOTE (-820)))) (OR (|HasCategory| |#2| (QUOTE (-390))) (|HasCategory| |#2| (QUOTE (-494))) (|HasCategory| |#2| (QUOTE (-820)))) (OR (|HasCategory| |#2| (QUOTE (-390))) (|HasCategory| |#2| (QUOTE (-820)))) (|HasCategory| |#2| (QUOTE (-494))) (|HasCategory| |#2| (QUOTE (-146))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-494)))) (-12 (|HasCategory| |#2| (QUOTE (-795 (-328)))) (|HasCategory| (-772 |#1|) (QUOTE (-795 (-328))))) (-12 (|HasCategory| |#2| (QUOTE (-795 (-483)))) (|HasCategory| (-772 |#1|) (QUOTE (-795 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-552 (-799 (-328))))) (|HasCategory| (-772 |#1|) (QUOTE (-552 (-799 (-328)))))) (-12 (|HasCategory| |#2| (QUOTE (-552 (-799 (-483))))) (|HasCategory| (-772 |#1|) (QUOTE (-552 (-799 (-483)))))) (-12 (|HasCategory| |#2| (QUOTE (-552 (-472)))) (|HasCategory| (-772 |#1|) (QUOTE (-552 (-472))))) (|HasCategory| |#2| (QUOTE (-579 (-483)))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-38 (-348 (-483))))) (|HasCategory| |#2| (QUOTE (-949 (-483)))) (OR (|HasCategory| |#2| (QUOTE (-38 (-348 (-483))))) (|HasCategory| |#2| (QUOTE (-949 (-348 (-483)))))) (|HasCategory| |#2| (QUOTE (-949 (-348 (-483))))) (|HasCategory| |#2| (QUOTE (-312))) (|HasAttribute| |#2| (QUOTE -3991)) (|HasCategory| |#2| (QUOTE (-390))) (-12 (|HasCategory| |#2| (QUOTE (-820))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-820))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#2| (QUOTE (-118))))) -(-393 R BP) +(((-3996 "*") |has| |#2| (-146)) (-3987 |has| |#2| (-495)) (-3992 |has| |#2| (-6 -3992)) (-3989 . T) (-3988 . T) (-3991 . T)) +((|HasCategory| |#2| (QUOTE (-821))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-391))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-821)))) (OR (|HasCategory| |#2| (QUOTE (-391))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-821)))) (OR (|HasCategory| |#2| (QUOTE (-391))) (|HasCategory| |#2| (QUOTE (-821)))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-146))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-495)))) (-12 (|HasCategory| |#2| (QUOTE (-796 (-329)))) (|HasCategory| (-773 |#1|) (QUOTE (-796 (-329))))) (-12 (|HasCategory| |#2| (QUOTE (-796 (-484)))) (|HasCategory| (-773 |#1|) (QUOTE (-796 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-553 (-800 (-329))))) (|HasCategory| (-773 |#1|) (QUOTE (-553 (-800 (-329)))))) (-12 (|HasCategory| |#2| (QUOTE (-553 (-800 (-484))))) (|HasCategory| (-773 |#1|) (QUOTE (-553 (-800 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-553 (-473)))) (|HasCategory| (-773 |#1|) (QUOTE (-553 (-473))))) (|HasCategory| |#2| (QUOTE (-580 (-484)))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-38 (-349 (-484))))) (|HasCategory| |#2| (QUOTE (-950 (-484)))) (OR (|HasCategory| |#2| (QUOTE (-38 (-349 (-484))))) (|HasCategory| |#2| (QUOTE (-950 (-349 (-484)))))) (|HasCategory| |#2| (QUOTE (-950 (-349 (-484))))) (|HasCategory| |#2| (QUOTE (-312))) (|HasAttribute| |#2| (QUOTE -3992)) (|HasCategory| |#2| (QUOTE (-391))) (-12 (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#2| (QUOTE (-118))))) +(-394 R BP) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni.} January 1990 The equation \\spad{Af+Bg=h} and its generalization to \\spad{n} polynomials is solved for solutions over the \\spad{R},{} euclidean domain. A table containing the solutions of \\spad{Af+Bg=x**k} is used. The operations are performed modulus a prime which are in principle big enough,{} but the solutions are tested and,{} in case of failure,{} a hensel lifting process is used to get to the right solutions. It will be used in the factorization of multivariate polynomials over finite field,{} with \\spad{R=F[x]}.")) (|testModulus| (((|Boolean|) |#1| (|List| |#2|)) "\\spad{testModulus(p,lp)} returns \\spad{true} if the the prime \\spad{p} is valid for the list of polynomials \\spad{lp},{} \\spadignore{i.e.} preserves the degree and they remain relatively prime.")) (|solveid| (((|Union| (|List| |#2|) "failed") |#2| |#1| (|Vector| (|List| |#2|))) "\\spad{solveid(h,table)} computes the coefficients of the extended euclidean algorithm for a list of polynomials whose tablePow is \\spad{table} and with right side \\spad{h}.")) (|tablePow| (((|Union| (|Vector| (|List| |#2|)) "failed") (|NonNegativeInteger|) |#1| (|List| |#2|)) "\\spad{tablePow(maxdeg,prime,lpol)} constructs the table with the coefficients of the Extended Euclidean Algorithm for \\spad{lpol}. Here the right side is \\spad{x**k},{} for \\spad{k} less or equal to \\spad{maxdeg}. The operation returns \"failed\" when the elements are not coprime modulo \\spad{prime}.")) (|compBound| (((|NonNegativeInteger|) |#2| (|List| |#2|)) "\\spad{compBound(p,lp)} computes a bound for the coefficients of the solution polynomials. Given a polynomial right hand side \\spad{p},{} and a list \\spad{lp} of left hand side polynomials. Exported because it depends on the valuation.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(p,prime)} reduces the polynomial \\spad{p} modulo \\spad{prime} of \\spad{R}. Note: this function is exported only because it's conditional."))) NIL NIL -(-394 OV E S R P) +(-395 OV E S R P) ((|constructor| (NIL "\\indented{2}{This is the top level package for doing multivariate factorization} over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| |#5|) |#5|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-395 E OV R P) +(-396 E OV R P) ((|constructor| (NIL "This package provides operations for GCD computations on polynomials")) (|randomR| ((|#3|) "\\spad{randomR()} should be local but conditional")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcdPolynomial(p,q)} returns the GCD of \\spad{p} and \\spad{q}"))) NIL NIL -(-396 R) +(-397 R) ((|constructor| (NIL "\\indented{1}{Description} This package provides operations for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" the finite \"berlekamp's\" factorization")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{factor(p)} returns the factorisation of \\spad{p}"))) NIL NIL -(-397 R FE) +(-398 R FE) ((|constructor| (NIL "\\spadtype{GenerateUnivariatePowerSeries} provides functions that create power series from explicit formulas for their \\spad{n}th coefficient.")) (|series| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{series(a(n),n,x = a,r0..,r)} returns \\spad{sum(n = r0,r0 + r,r0 + 2*r..., a(n) * (x - a)**n)}; \\spad{series(a(n),n,x = a,r0..r1,r)} returns \\spad{sum(n = r0 + k*r while n <= r1, a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Fraction| (|Integer|))) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{series(n +-> a(n),x = a,r0..,r)} returns \\spad{sum(n = r0,r0 + r,r0 + 2*r..., a(n) * (x - a)**n)}; \\spad{series(n +-> a(n),x = a,r0..r1,r)} returns \\spad{sum(n = r0 + k*r while n <= r1, a(n) * (x - a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{series(a(n),n,x=a,n0..)} returns \\spad{sum(n = n0..,a(n) * (x - a)**n)}; \\spad{series(a(n),n,x=a,n0..n1)} returns \\spad{sum(n = n0..n1,a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{series(n +-> a(n),x = a,n0..)} returns \\spad{sum(n = n0..,a(n) * (x - a)**n)}; \\spad{series(n +-> a(n),x = a,n0..n1)} returns \\spad{sum(n = n0..n1,a(n) * (x - a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|)) "\\spad{series(a(n),n,x = a)} returns \\spad{sum(n = 0..,a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|)) "\\spad{series(n +-> a(n),x = a)} returns \\spad{sum(n = 0..,a(n)*(x-a)**n)}.")) (|puiseux| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{puiseux(a(n),n,x = a,r0..,r)} returns \\spad{sum(n = r0,r0 + r,r0 + 2*r..., a(n) * (x - a)**n)}; \\spad{puiseux(a(n),n,x = a,r0..r1,r)} returns \\spad{sum(n = r0 + k*r while n <= r1, a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Fraction| (|Integer|))) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{puiseux(n +-> a(n),x = a,r0..,r)} returns \\spad{sum(n = r0,r0 + r,r0 + 2*r..., a(n) * (x - a)**n)}; \\spad{puiseux(n +-> a(n),x = a,r0..r1,r)} returns \\spad{sum(n = r0 + k*r while n <= r1, a(n) * (x - a)**n)}.")) (|laurent| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{laurent(a(n),n,x=a,n0..)} returns \\spad{sum(n = n0..,a(n) * (x - a)**n)}; \\spad{laurent(a(n),n,x=a,n0..n1)} returns \\spad{sum(n = n0..n1,a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{laurent(n +-> a(n),x = a,n0..)} returns \\spad{sum(n = n0..,a(n) * (x - a)**n)}; \\spad{laurent(n +-> a(n),x = a,n0..n1)} returns \\spad{sum(n = n0..n1,a(n) * (x - a)**n)}.")) (|taylor| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|NonNegativeInteger|))) "\\spad{taylor(a(n),n,x = a,n0..)} returns \\spad{sum(n = n0..,a(n)*(x-a)**n)}; \\spad{taylor(a(n),n,x = a,n0..n1)} returns \\spad{sum(n = n0..,a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|NonNegativeInteger|))) "\\spad{taylor(n +-> a(n),x = a,n0..)} returns \\spad{sum(n=n0..,a(n)*(x-a)**n)}; \\spad{taylor(n +-> a(n),x = a,n0..n1)} returns \\spad{sum(n = n0..,a(n)*(x-a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|)) "\\spad{taylor(a(n),n,x = a)} returns \\spad{sum(n = 0..,a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|)) "\\spad{taylor(n +-> a(n),x = a)} returns \\spad{sum(n = 0..,a(n)*(x-a)**n)}."))) NIL NIL -(-398 RP TP) +(-399 RP TP) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni} General Hensel Lifting Used for Factorization of bivariate polynomials over a finite field.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(u,pol)} computes the symmetric reduction of \\spad{u} mod \\spad{pol}")) (|completeHensel| (((|List| |#2|) |#2| (|List| |#2|) |#1| (|PositiveInteger|)) "\\spad{completeHensel(pol,lfact,prime,bound)} lifts \\spad{lfact},{} the factorization mod \\spad{prime} of \\spad{pol},{} to the factorization mod prime**k>bound. Factors are recombined on the way.")) (|HenselLift| (((|Record| (|:| |plist| (|List| |#2|)) (|:| |modulo| |#1|)) |#2| (|List| |#2|) |#1| (|PositiveInteger|)) "\\spad{HenselLift(pol,lfacts,prime,bound)} lifts \\spad{lfacts},{} that are the factors of \\spad{pol} mod \\spad{prime},{} to factors of \\spad{pol} mod prime**k > \\spad{bound}. No recombining is done ."))) NIL NIL -(-399 |vl| R IS E |ff| P) +(-400 |vl| R IS E |ff| P) ((|constructor| (NIL "This package \\undocumented")) (* (($ |#6| $) "\\spad{p*x} \\undocumented")) (|multMonom| (($ |#2| |#4| $) "\\spad{multMonom(r,e,x)} \\undocumented")) (|build| (($ |#2| |#3| |#4|) "\\spad{build(r,i,e)} \\undocumented")) (|unitVector| (($ |#3|) "\\spad{unitVector(x)} \\undocumented")) (|monomial| (($ |#2| (|ModuleMonomial| |#3| |#4| |#5|)) "\\spad{monomial(r,x)} \\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|leadingIndex| ((|#3| $) "\\spad{leadingIndex(x)} \\undocumented")) (|leadingExponent| ((|#4| $) "\\spad{leadingExponent(x)} \\undocumented")) (|leadingMonomial| (((|ModuleMonomial| |#3| |#4| |#5|) $) "\\spad{leadingMonomial(x)} \\undocumented")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(x)} \\undocumented"))) -((-3988 . T) (-3987 . T)) +((-3989 . T) (-3988 . T)) NIL -(-400 E V R P Q) +(-401 E V R P Q) ((|constructor| (NIL "Gosper's summation algorithm.")) (|GospersMethod| (((|Union| |#5| "failed") |#5| |#2| (|Mapping| |#2|)) "\\spad{GospersMethod(b, n, new)} returns a rational function \\spad{rf(n)} such that \\spad{a(n) * rf(n)} is the indefinite sum of \\spad{a(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{a(n+1) * rf(n+1) - a(n) * rf(n) = a(n)},{} where \\spad{b(n) = a(n)/a(n-1)} is a rational function. Returns \"failed\" if no such rational function \\spad{rf(n)} exists. Note: \\spad{new} is a nullary function returning a new \\spad{V} every time. The condition on \\spad{a(n)} is that \\spad{a(n)/a(n-1)} is a rational function of \\spad{n}."))) NIL NIL -(-401 R E |VarSet| P) +(-402 R E |VarSet| P) ((|constructor| (NIL "A domain for polynomial sets.")) (|convert| (($ (|List| |#4|)) "\\axiom{convert(lp)} returns the polynomial set whose members are the polynomials of \\axiom{lp}."))) -((-3994 . T) (-3993 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1012))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (|HasCategory| |#4| (QUOTE (-552 (-472)))) (|HasCategory| |#4| (QUOTE (-1012))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#4| (QUOTE (-551 (-771)))) (|HasCategory| |#4| (QUOTE (-72)))) -(-402 S R E) +((-3995 . T) (-3994 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1013))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (|HasCategory| |#4| (QUOTE (-553 (-473)))) (|HasCategory| |#4| (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#4| (QUOTE (-552 (-772)))) (|HasCategory| |#4| (QUOTE (-72)))) +(-403 S R E) ((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra''. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product'' is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,b) = product(a1,b) + product(a2,b)}} \\indented{2}{\\spad{product(a,b1+b2) = product(a,b1) + product(a,b2)}} \\indented{2}{\\spad{product(r*a,b) = product(a,r*b) = r*product(a,b)}} \\indented{2}{\\spad{product(a,product(b,c)) = product(product(a,b),c)}}")) (|One| (($) "1 is the identity for \\spad{product}."))) NIL NIL -(-403 R E) +(-404 R E) ((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra''. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product'' is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,b) = product(a1,b) + product(a2,b)}} \\indented{2}{\\spad{product(a,b1+b2) = product(a,b1) + product(a,b2)}} \\indented{2}{\\spad{product(r*a,b) = product(a,r*b) = r*product(a,b)}} \\indented{2}{\\spad{product(a,product(b,c)) = product(product(a,b),c)}}")) (|One| (($) "1 is the identity for \\spad{product}."))) NIL NIL -(-404) +(-405) ((|constructor| (NIL "GrayCode provides a function for efficiently running through all subsets of a finite set,{} only changing one element by another one.")) (|firstSubsetGray| (((|Vector| (|Vector| (|Integer|))) (|PositiveInteger|)) "\\spad{firstSubsetGray(n)} creates the first vector {\\em ww} to start a loop using {\\em nextSubsetGray(ww,n)}")) (|nextSubsetGray| (((|Vector| (|Vector| (|Integer|))) (|Vector| (|Vector| (|Integer|))) (|PositiveInteger|)) "\\spad{nextSubsetGray(ww,n)} returns a vector {\\em vv} whose components have the following meanings:\\begin{items} \\item {\\em vv.1}: a vector of length \\spad{n} whose entries are 0 or 1. This \\indented{3}{can be interpreted as a code for a subset of the set 1,{}...,{}\\spad{n};} \\indented{3}{{\\em vv.1} differs from {\\em ww.1} by exactly one entry;} \\item {\\em vv.2.1} is the number of the entry of {\\em vv.1} which \\indented{3}{will be changed next time;} \\item {\\em vv.2.1 = n+1} means that {\\em vv.1} is the last subset; \\indented{3}{trying to compute nextSubsetGray(vv) if {\\em vv.2.1 = n+1}} \\indented{3}{will produce an error!} \\end{items} The other components of {\\em vv.2} are needed to compute nextSubsetGray efficiently. Note: this is an implementation of [Williamson,{} Topic II,{} 3.54,{} \\spad{p}. 112] for the special case {\\em r1 = r2 = ... = rn = 2}; Note: nextSubsetGray produces a side-effect,{} \\spadignore{i.e.} {\\em nextSubsetGray(vv)} and {\\em vv := nextSubsetGray(vv)} will have the same effect."))) NIL NIL -(-405) +(-406) ((|constructor| (NIL "TwoDimensionalPlotSettings sets global flags and constants for 2-dimensional plotting.")) (|screenResolution| (((|Integer|) (|Integer|)) "\\spad{screenResolution(n)} sets the screen resolution to \\spad{n}.") (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution \\spad{n}.")) (|minPoints| (((|Integer|) (|Integer|)) "\\spad{minPoints()} sets the minimum number of points in a plot.") (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot.")) (|maxPoints| (((|Integer|) (|Integer|)) "\\spad{maxPoints()} sets the maximum number of points in a plot.") (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot.")) (|adaptive| (((|Boolean|) (|Boolean|)) "\\spad{adaptive(true)} turns adaptive plotting on; \\spad{adaptive(false)} turns adaptive plotting off.") (((|Boolean|)) "\\spad{adaptive()} determines whether plotting will be done adaptively.")) (|drawToScale| (((|Boolean|) (|Boolean|)) "\\spad{drawToScale(true)} causes plots to be drawn to scale. \\spad{drawToScale(false)} causes plots to be drawn so that they fill up the viewport window. The default setting is \\spad{false}.") (((|Boolean|)) "\\spad{drawToScale()} determines whether or not plots are to be drawn to scale.")) (|clipPointsDefault| (((|Boolean|) (|Boolean|)) "\\spad{clipPointsDefault(true)} turns on automatic clipping; \\spad{clipPointsDefault(false)} turns off automatic clipping. The default setting is \\spad{true}.") (((|Boolean|)) "\\spad{clipPointsDefault()} determines whether or not automatic clipping is to be done."))) NIL NIL -(-406) +(-407) ((|constructor| (NIL "TwoDimensionalGraph creates virtual two dimensional graphs (to be displayed on TwoDimensionalViewports).")) (|putColorInfo| (((|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|))) "\\spad{putColorInfo(llp,lpal)} takes a list of list of points,{} \\spad{llp},{} and returns the points with their hue and shade components set according to the list of palette colors,{} \\spad{lpal}.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(gi)} returns the indicated graph,{} \\spad{gi},{} of domain \\spadtype{GraphImage} as output of the domain \\spadtype{OutputForm}.") (($ (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{coerce(llp)} component(\\spad{gi},{}pt) creates and returns a graph of the domain \\spadtype{GraphImage} which is composed of the list of list of points given by \\spad{llp},{} and whose point colors,{} line colors and point sizes are determined by the default functions \\spadfun{pointColorDefault},{} \\spadfun{lineColorDefault},{} and \\spadfun{pointSizeDefault}. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.")) (|point| (((|Void|) $ (|Point| (|DoubleFloat|)) (|Palette|)) "\\spad{point(gi,pt,pal)} modifies the graph \\spad{gi} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color is set to be the palette color \\spad{pal},{} and whose line color and point size are determined by the default functions \\spadfun{lineColorDefault} and \\spadfun{pointSizeDefault}.")) (|appendPoint| (((|Void|) $ (|Point| (|DoubleFloat|))) "\\spad{appendPoint(gi,pt)} appends the point \\spad{pt} to the end of the list of points component for the graph,{} \\spad{gi},{} which is of the domain \\spadtype{GraphImage}.")) (|component| (((|Void|) $ (|Point| (|DoubleFloat|)) (|Palette|) (|Palette|) (|PositiveInteger|)) "\\spad{component(gi,pt,pal1,pal2,ps)} modifies the graph \\spad{gi} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color is set to the palette color \\spad{pal1},{} line color is set to the palette color \\spad{pal2},{} and point size is set to the positive integer \\spad{ps}.") (((|Void|) $ (|Point| (|DoubleFloat|))) "\\spad{component(gi,pt)} modifies the graph \\spad{gi} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color,{} line color and point size are determined by the default functions \\spadfun{pointColorDefault},{} \\spadfun{lineColorDefault},{} and \\spadfun{pointSizeDefault}.") (((|Void|) $ (|List| (|Point| (|DoubleFloat|))) (|Palette|) (|Palette|) (|PositiveInteger|)) "\\spad{component(gi,lp,pal1,pal2,p)} sets the components of the graph,{} \\spad{gi} of the domain \\spadtype{GraphImage},{} to the values given. The point list for \\spad{gi} is set to the list \\spad{lp},{} the color of the points in \\spad{lp} is set to the palette color \\spad{pal1},{} the color of the lines which connect the points \\spad{lp} is set to the palette color \\spad{pal2},{} and the size of the points in \\spad{lp} is given by the integer \\spad{p}.")) (|units| (((|List| (|Float|)) $ (|List| (|Float|))) "\\spad{units(gi,lu)} modifies the list of unit increments for the \\spad{x} and \\spad{y} axes of the given graph,{} \\spad{gi} of the domain \\spadtype{GraphImage},{} to be that of the list of unit increments,{} \\spad{lu},{} and returns the new list of units for \\spad{gi}.") (((|List| (|Float|)) $) "\\spad{units(gi)} returns the list of unit increments for the \\spad{x} and \\spad{y} axes of the indicated graph,{} \\spad{gi},{} of the domain \\spadtype{GraphImage}.")) (|ranges| (((|List| (|Segment| (|Float|))) $ (|List| (|Segment| (|Float|)))) "\\spad{ranges(gi,lr)} modifies the list of ranges for the given graph,{} \\spad{gi} of the domain \\spadtype{GraphImage},{} to be that of the list of range segments,{} \\spad{lr},{} and returns the new range list for \\spad{gi}.") (((|List| (|Segment| (|Float|))) $) "\\spad{ranges(gi)} returns the list of ranges of the point components from the indicated graph,{} \\spad{gi},{} of the domain \\spadtype{GraphImage}.")) (|key| (((|Integer|) $) "\\spad{key(gi)} returns the process ID of the given graph,{} \\spad{gi},{} of the domain \\spadtype{GraphImage}.")) (|pointLists| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{pointLists(gi)} returns the list of lists of points which compose the given graph,{} \\spad{gi},{} of the domain \\spadtype{GraphImage}.")) (|makeGraphImage| (($ (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|)) (|List| (|Palette|)) (|List| (|PositiveInteger|)) (|List| (|DrawOption|))) "\\spad{makeGraphImage(llp,lpal1,lpal2,lp,lopt)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} whose point colors are indicated by the list of palette colors,{} \\spad{lpal1},{} and whose lines are colored according to the list of palette colors,{} \\spad{lpal2}. The paramater \\spad{lp} is a list of integers which denote the size of the data points,{} and \\spad{lopt} is the list of draw command options. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|)) (|List| (|Palette|)) (|List| (|PositiveInteger|))) "\\spad{makeGraphImage(llp,lpal1,lpal2,lp)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} whose point colors are indicated by the list of palette colors,{} \\spad{lpal1},{} and whose lines are colored according to the list of palette colors,{} \\spad{lpal2}. The paramater \\spad{lp} is a list of integers which denote the size of the data points. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{makeGraphImage(llp)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} with default point size and default point and line colours. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ $) "\\spad{makeGraphImage(gi)} takes the given graph,{} \\spad{gi} of the domain \\spadtype{GraphImage},{} and sends it's data to the viewport manager where it waits to be included in a two-dimensional viewport window. \\spad{gi} cannot be an empty graph,{} and it's elements must have been created using the \\spadfun{point} or \\spadfun{component} functions,{} not by a previous \\spadfun{makeGraphImage}.")) (|graphImage| (($) "\\spad{graphImage()} returns an empty graph with 0 point lists of the domain \\spadtype{GraphImage}. A graph image contains the graph data component of a two dimensional viewport."))) NIL NIL -(-407 S R E) +(-408 S R E) ((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module'',{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#2|) "\\spad{g*r} is right module multiplication.") (($ |#2| $) "\\spad{r*g} is left module multiplication.")) (|Zero| (($) "0 denotes the zero of degree 0.")) (|degree| ((|#3| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module."))) NIL NIL -(-408 R E) +(-409 R E) ((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module'',{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#1|) "\\spad{g*r} is right module multiplication.") (($ |#1| $) "\\spad{r*g} is left module multiplication.")) (|Zero| (($) "0 denotes the zero of degree 0.")) (|degree| ((|#2| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module."))) NIL NIL -(-409 |lv| -3091 R) +(-410 |lv| -3092 R) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni,{} Summer \\spad{'88},{} revised November \\spad{'89}} Solve systems of polynomial equations using Groebner bases Total order Groebner bases are computed and then converted to lex ones This package is mostly intended for internal use.")) (|genericPosition| (((|Record| (|:| |dpolys| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |coords| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{genericPosition(lp,lv)} puts a radical zero dimensional ideal in general position,{} for system \\spad{lp} in variables \\spad{lv}.")) (|testDim| (((|Union| (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "failed") (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{testDim(lp,lv)} tests if the polynomial system \\spad{lp} in variables \\spad{lv} is zero dimensional.")) (|groebSolve| (((|List| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{groebSolve(lp,lv)} reduces the polynomial system \\spad{lp} in variables \\spad{lv} to triangular form. Algorithm based on groebner bases algorithm with linear algebra for change of ordering. Preprocessing for the general solver. The polynomials in input are of type \\spadtype{DMP}."))) NIL NIL -(-410 S) +(-411 S) ((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}."))) NIL NIL -(-411) +(-412) ((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}."))) -((-3990 . T)) +((-3991 . T)) NIL -(-412 |Coef| |var| |cen|) +(-413 |Coef| |var| |cen|) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x\\^r)}.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{coerce(f)} converts a Puiseux series to a general power series.") (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series."))) -(((-3995 "*") |has| |#1| (-146)) (-3986 |has| |#1| (-494)) (-3991 |has| |#1| (-312)) (-3985 |has| |#1| (-312)) (-3987 . T) (-3988 . T) (-3990 . T)) -((|HasCategory| |#1| (QUOTE (-38 (-348 (-483))))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-494)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-808 (-1088)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -348) (QUOTE (-483))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -348) (QUOTE (-483))) (|devaluate| |#1|)))) (|HasCategory| (-348 (-483)) (QUOTE (-1024))) (|HasCategory| |#1| (QUOTE (-312))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-494)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-494)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -348) (QUOTE (-483)))))) (|HasSignature| |#1| (|%list| (QUOTE -3944) (|%list| (|devaluate| |#1|) (QUOTE (-1088)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -348) (QUOTE (-483)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-348 (-483))))) (|HasCategory| |#1| (QUOTE (-29 (-483)))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1113)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-348 (-483))))) (|HasSignature| |#1| (|%list| (QUOTE -3810) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1088))))) (|HasSignature| |#1| (|%list| (QUOTE -3080) (|%list| (|%list| (QUOTE -582) (QUOTE (-1088))) (|devaluate| |#1|))))))) -(-413 |Key| |Entry| |Tbl| |dent|) +(((-3996 "*") |has| |#1| (-146)) (-3987 |has| |#1| (-495)) (-3992 |has| |#1| (-312)) (-3986 |has| |#1| (-312)) (-3988 . T) (-3989 . T) (-3991 . T)) +((|HasCategory| |#1| (QUOTE (-38 (-349 (-484))))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-809 (-1089)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -349) (QUOTE (-484))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -349) (QUOTE (-484))) (|devaluate| |#1|)))) (|HasCategory| (-349 (-484)) (QUOTE (-1025))) (|HasCategory| |#1| (QUOTE (-312))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-495)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-495)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -349) (QUOTE (-484)))))) (|HasSignature| |#1| (|%list| (QUOTE -3945) (|%list| (|devaluate| |#1|) (QUOTE (-1089)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -349) (QUOTE (-484)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-349 (-484))))) (|HasCategory| |#1| (QUOTE (-29 (-484)))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1114)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-349 (-484))))) (|HasSignature| |#1| (|%list| (QUOTE -3811) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1089))))) (|HasSignature| |#1| (|%list| (QUOTE -3081) (|%list| (|%list| (QUOTE -583) (QUOTE (-1089))) (|devaluate| |#1|))))))) +(-414 |Key| |Entry| |Tbl| |dent|) ((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key."))) -((-3994 . T)) -((-12 (|HasCategory| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3858) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (QUOTE (-1012)))) (OR (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (QUOTE (-1012)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (QUOTE (-1012)))) (OR (|HasCategory| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (QUOTE (-551 (-771)))) (|HasCategory| |#2| (QUOTE (-551 (-771))))) (|HasCategory| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (QUOTE (-552 (-472)))) (-12 (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-755))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-551 (-771)))) (|HasCategory| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (QUOTE (-551 (-771)))) (|HasCategory| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (QUOTE (-1012)))) -(-414 R E V P) +((-3995 . T)) +((-12 (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3859) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) (OR (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) (OR (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-552 (-772)))) (|HasCategory| |#2| (QUOTE (-552 (-772))))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-473)))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-756))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-552 (-772)))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-552 (-772)))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) +(-415 R E V P) ((|constructor| (NIL "A domain constructor of the category \\axiomType{TriangularSetCategory}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members but they are displayed in reverse order.\\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}"))) -((-3994 . T) (-3993 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1012))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (|HasCategory| |#4| (QUOTE (-552 (-472)))) (|HasCategory| |#4| (QUOTE (-1012))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#3| (QUOTE (-318))) (|HasCategory| |#4| (QUOTE (-551 (-771)))) (|HasCategory| |#4| (QUOTE (-72)))) -(-415) +((-3995 . T) (-3994 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1013))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (|HasCategory| |#4| (QUOTE (-553 (-473)))) (|HasCategory| |#4| (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#3| (QUOTE (-319))) (|HasCategory| |#4| (QUOTE (-552 (-772)))) (|HasCategory| |#4| (QUOTE (-72)))) +(-416) ((|constructor| (NIL "\\indented{1}{Symbolic fractions in \\%\\spad{pi} with integer coefficients;} \\indented{1}{The point for using \\spad{Pi} as the default domain for those fractions} \\indented{1}{is that \\spad{Pi} is coercible to the float types,{} and not Expression.} Date Created: 21 Feb 1990 Date Last Updated: 12 Mai 1992")) (|pi| (($) "\\spad{pi()} returns the symbolic \\%\\spad{pi}."))) -((-3985 . T) (-3991 . T) (-3986 . T) ((-3995 "*") . T) (-3987 . T) (-3988 . T) (-3990 . T)) +((-3986 . T) (-3992 . T) (-3987 . T) ((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T)) NIL -(-416) +(-417) ((|constructor| (NIL "This domain represents a `has' expression.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the case expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the has expression `e'."))) NIL NIL -(-417 |Key| |Entry| |hashfn|) +(-418 |Key| |Entry| |hashfn|) ((|constructor| (NIL "This domain provides access to the underlying Lisp hash tables. By varying the hashfn parameter,{} tables suited for different purposes can be obtained."))) -((-3993 . T) (-3994 . T)) -((-12 (|HasCategory| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3858) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (QUOTE (-1012)))) (OR (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (QUOTE (-1012)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (QUOTE (-1012)))) (OR (|HasCategory| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (QUOTE (-551 (-771)))) (|HasCategory| |#2| (QUOTE (-551 (-771))))) (|HasCategory| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (QUOTE (-552 (-472)))) (-12 (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (QUOTE (-1012))) (|HasCategory| |#1| (QUOTE (-755))) (|HasCategory| |#2| (QUOTE (-1012))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-551 (-771)))) (|HasCategory| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (QUOTE (-551 (-771)))) (|HasCategory| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) -(-418) +((-3994 . T) (-3995 . T)) +((-12 (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3859) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) (OR (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) (OR (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-552 (-772)))) (|HasCategory| |#2| (QUOTE (-552 (-772))))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-473)))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-1013))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-552 (-772)))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-552 (-772)))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) +(-419) ((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date Created : August 1988 Date Last Updated : March 9 1990 Related Constructors: OrderedSetInts,{} Commutator,{} FreeNilpotentLie AMS Classification: Primary 17B05,{} 17B30; Secondary 17A50 Keywords: free Lie algebra,{} Hall basis,{} basic commutators Description : Generate a basis for the free Lie algebra on \\spad{n} generators over a ring \\spad{R} with identity up to basic commutators of length \\spad{c} using the algorithm of \\spad{P}. Hall as given in Serre's book Lie Groups -- Lie Algebras")) (|generate| (((|Vector| (|List| (|Integer|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generate(numberOfGens, maximalWeight)} generates a vector of elements of the form [left,{}weight,{}right] which represents a \\spad{P}. Hall basis element for the free lie algebra on \\spad{numberOfGens} generators. We only generate those basis elements of weight less than or equal to maximalWeight")) (|inHallBasis?| (((|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{inHallBasis?(numberOfGens, leftCandidate, rightCandidate, left)} tests to see if a new element should be added to the \\spad{P}. Hall basis being constructed. The list \\spad{[leftCandidate,wt,rightCandidate]} is included in the basis if in the unique factorization of \\spad{rightCandidate},{} we have left factor leftOfRight,{} and leftOfRight <= \\spad{leftCandidate}")) (|lfunc| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{lfunc(d,n)} computes the rank of the \\spad{n}th factor in the lower central series of the free \\spad{d}-generated free Lie algebra; This rank is \\spad{d} if \\spad{n} = 1 and binom(\\spad{d},{}2) if \\spad{n} = 2"))) NIL NIL -(-419 |vl| R) +(-420 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is total degree ordering refined by reverse lexicographic ordering with respect to the position that the variables appear in the list of variables parameter.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-3995 "*") |has| |#2| (-146)) (-3986 |has| |#2| (-494)) (-3991 |has| |#2| (-6 -3991)) (-3988 . T) (-3987 . T) (-3990 . T)) -((|HasCategory| |#2| (QUOTE (-820))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-390))) (|HasCategory| |#2| (QUOTE (-494))) (|HasCategory| |#2| (QUOTE (-820)))) (OR (|HasCategory| |#2| (QUOTE (-390))) (|HasCategory| |#2| (QUOTE (-494))) (|HasCategory| |#2| (QUOTE (-820)))) (OR (|HasCategory| |#2| (QUOTE (-390))) (|HasCategory| |#2| (QUOTE (-820)))) (|HasCategory| |#2| (QUOTE (-494))) (|HasCategory| |#2| (QUOTE (-146))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-494)))) (-12 (|HasCategory| |#2| (QUOTE (-795 (-328)))) (|HasCategory| (-772 |#1|) (QUOTE (-795 (-328))))) (-12 (|HasCategory| |#2| (QUOTE (-795 (-483)))) (|HasCategory| (-772 |#1|) (QUOTE (-795 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-552 (-799 (-328))))) (|HasCategory| (-772 |#1|) (QUOTE (-552 (-799 (-328)))))) (-12 (|HasCategory| |#2| (QUOTE (-552 (-799 (-483))))) (|HasCategory| (-772 |#1|) (QUOTE (-552 (-799 (-483)))))) (-12 (|HasCategory| |#2| (QUOTE (-552 (-472)))) (|HasCategory| (-772 |#1|) (QUOTE (-552 (-472))))) (|HasCategory| |#2| (QUOTE (-579 (-483)))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-38 (-348 (-483))))) (|HasCategory| |#2| (QUOTE (-949 (-483)))) (OR (|HasCategory| |#2| (QUOTE (-38 (-348 (-483))))) (|HasCategory| |#2| (QUOTE (-949 (-348 (-483)))))) (|HasCategory| |#2| (QUOTE (-949 (-348 (-483))))) (|HasCategory| |#2| (QUOTE (-312))) (|HasAttribute| |#2| (QUOTE -3991)) (|HasCategory| |#2| (QUOTE (-390))) (-12 (|HasCategory| |#2| (QUOTE (-820))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-820))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#2| (QUOTE (-118))))) -(-420 -2620 S) +(((-3996 "*") |has| |#2| (-146)) (-3987 |has| |#2| (-495)) (-3992 |has| |#2| (-6 -3992)) (-3989 . T) (-3988 . T) (-3991 . T)) +((|HasCategory| |#2| (QUOTE (-821))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-391))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-821)))) (OR (|HasCategory| |#2| (QUOTE (-391))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-821)))) (OR (|HasCategory| |#2| (QUOTE (-391))) (|HasCategory| |#2| (QUOTE (-821)))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-146))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-495)))) (-12 (|HasCategory| |#2| (QUOTE (-796 (-329)))) (|HasCategory| (-773 |#1|) (QUOTE (-796 (-329))))) (-12 (|HasCategory| |#2| (QUOTE (-796 (-484)))) (|HasCategory| (-773 |#1|) (QUOTE (-796 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-553 (-800 (-329))))) (|HasCategory| (-773 |#1|) (QUOTE (-553 (-800 (-329)))))) (-12 (|HasCategory| |#2| (QUOTE (-553 (-800 (-484))))) (|HasCategory| (-773 |#1|) (QUOTE (-553 (-800 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-553 (-473)))) (|HasCategory| (-773 |#1|) (QUOTE (-553 (-473))))) (|HasCategory| |#2| (QUOTE (-580 (-484)))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-38 (-349 (-484))))) (|HasCategory| |#2| (QUOTE (-950 (-484)))) (OR (|HasCategory| |#2| (QUOTE (-38 (-349 (-484))))) (|HasCategory| |#2| (QUOTE (-950 (-349 (-484)))))) (|HasCategory| |#2| (QUOTE (-950 (-349 (-484))))) (|HasCategory| |#2| (QUOTE (-312))) (|HasAttribute| |#2| (QUOTE -3992)) (|HasCategory| |#2| (QUOTE (-391))) (-12 (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#2| (QUOTE (-118))))) +(-421 -2621 S) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered first by the sum of their components,{} and then refined using a reverse lexicographic ordering. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-3987 |has| |#2| (-960)) (-3988 |has| |#2| (-960)) (-3990 |has| |#2| (-6 -3990)) (-3993 . T)) -((OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-662))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-716))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-755))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-808 (-1088)))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-960))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))))) (|HasCategory| |#2| (QUOTE (-551 (-771)))) (|HasCategory| |#2| (QUOTE (-312))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-960)))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-312)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-960))) (|HasCategory| |#2| (QUOTE (-662))) (|HasCategory| |#2| (QUOTE (-716))) (OR (|HasCategory| |#2| (QUOTE (-716))) (|HasCategory| |#2| (QUOTE (-755)))) (|HasCategory| |#2| (QUOTE (-755))) (|HasCategory| |#2| (QUOTE (-318))) (OR (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-579 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-579 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-579 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-579 (-483)))) (|HasCategory| |#2| (QUOTE (-808 (-1088))))) (-12 (|HasCategory| |#2| (QUOTE (-579 (-483)))) (|HasCategory| |#2| (QUOTE (-960))))) (|HasCategory| |#2| (QUOTE (-808 (-1088)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-662))) (|HasCategory| |#2| (QUOTE (-716))) (|HasCategory| |#2| (QUOTE (-755))) (|HasCategory| |#2| (QUOTE (-808 (-1088)))) (|HasCategory| |#2| (QUOTE (-960))) (|HasCategory| |#2| (QUOTE (-1012)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-662))) (|HasCategory| |#2| (QUOTE (-716))) (|HasCategory| |#2| (QUOTE (-755))) (|HasCategory| |#2| (QUOTE (-808 (-1088)))) (|HasCategory| |#2| (QUOTE (-960))) (|HasCategory| |#2| (QUOTE (-1012)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-808 (-1088)))) (|HasCategory| |#2| (QUOTE (-960)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-808 (-1088)))) (|HasCategory| |#2| (QUOTE (-960)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-808 (-1088)))) (|HasCategory| |#2| (QUOTE (-960)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-808 (-1088)))) (|HasCategory| |#2| (QUOTE (-960)))) (OR (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-808 (-1088)))) (|HasCategory| |#2| (QUOTE (-960)))) (|HasCategory| |#2| (QUOTE (-190))) (OR (|HasCategory| |#2| (QUOTE (-190))) (-12 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-960))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-810 (-1088)))) (|HasCategory| |#2| (QUOTE (-960)))) (|HasCategory| |#2| (QUOTE (-808 (-1088))))) (|HasCategory| |#2| (QUOTE (-1012))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-949 (-348 (-483)))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-949 (-348 (-483)))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-949 (-348 (-483)))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-949 (-348 (-483)))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-949 (-348 (-483)))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-949 (-348 (-483)))))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-949 (-348 (-483)))))) (-12 (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-949 (-348 (-483)))))) (-12 (|HasCategory| |#2| (QUOTE (-662))) (|HasCategory| |#2| (QUOTE (-949 (-348 (-483)))))) (-12 (|HasCategory| |#2| (QUOTE (-716))) (|HasCategory| |#2| (QUOTE (-949 (-348 (-483)))))) (-12 (|HasCategory| |#2| (QUOTE (-755))) (|HasCategory| |#2| (QUOTE (-949 (-348 (-483)))))) (-12 (|HasCategory| |#2| (QUOTE (-808 (-1088)))) (|HasCategory| |#2| (QUOTE (-949 (-348 (-483)))))) (-12 (|HasCategory| |#2| (QUOTE (-949 (-348 (-483))))) (|HasCategory| |#2| (QUOTE (-960)))) (-12 (|HasCategory| |#2| (QUOTE (-949 (-348 (-483))))) (|HasCategory| |#2| (QUOTE (-1012))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-949 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-949 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-949 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-949 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-949 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-949 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-716))) (|HasCategory| |#2| (QUOTE (-949 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-755))) (|HasCategory| |#2| (QUOTE (-949 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-808 (-1088)))) (|HasCategory| |#2| (QUOTE (-949 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-949 (-483)))) (|HasCategory| |#2| (QUOTE (-1012)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-949 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-949 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-662))) (|HasCategory| |#2| (QUOTE (-949 (-483))))) (|HasCategory| |#2| (QUOTE (-960)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-949 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-949 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-949 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-949 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-949 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-949 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-716))) (|HasCategory| |#2| (QUOTE (-949 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-755))) (|HasCategory| |#2| (QUOTE (-949 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-808 (-1088)))) (|HasCategory| |#2| (QUOTE (-949 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-949 (-483)))) (|HasCategory| |#2| (QUOTE (-1012)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-949 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-949 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-662))) (|HasCategory| |#2| (QUOTE (-949 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-949 (-483)))) (|HasCategory| |#2| (QUOTE (-960))))) (|HasCategory| (-483) (QUOTE (-755))) (-12 (|HasCategory| |#2| (QUOTE (-579 (-483)))) (|HasCategory| |#2| (QUOTE (-960)))) (-12 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-960)))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1088)))) (|HasCategory| |#2| (QUOTE (-960)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-949 (-483)))) (|HasCategory| |#2| (QUOTE (-1012)))) (|HasCategory| |#2| (QUOTE (-960)))) (-12 (|HasCategory| |#2| (QUOTE (-949 (-483)))) (|HasCategory| |#2| (QUOTE (-1012)))) (-12 (|HasCategory| |#2| (QUOTE (-949 (-348 (-483))))) (|HasCategory| |#2| (QUOTE (-1012)))) (|HasAttribute| |#2| (QUOTE -3990)) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-960)))) (-12 (|HasCategory| |#2| (QUOTE (-808 (-1088)))) (|HasCategory| |#2| (QUOTE (-960)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-72))) (-12 (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))))) -(-421) +((-3988 |has| |#2| (-961)) (-3989 |has| |#2| (-961)) (-3991 |has| |#2| (-6 -3991)) (-3994 . T)) +((OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-809 (-1089)))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))))) (|HasCategory| |#2| (QUOTE (-552 (-772)))) (|HasCategory| |#2| (QUOTE (-312))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-961)))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-312)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-717))) (OR (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-756)))) (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-319))) (OR (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-580 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-580 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-580 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-580 (-484)))) (|HasCategory| |#2| (QUOTE (-809 (-1089))))) (-12 (|HasCategory| |#2| (QUOTE (-580 (-484)))) (|HasCategory| |#2| (QUOTE (-961))))) (|HasCategory| |#2| (QUOTE (-809 (-1089)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-809 (-1089)))) (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (QUOTE (-1013)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-809 (-1089)))) (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (QUOTE (-1013)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-809 (-1089)))) (|HasCategory| |#2| (QUOTE (-961)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-809 (-1089)))) (|HasCategory| |#2| (QUOTE (-961)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-809 (-1089)))) (|HasCategory| |#2| (QUOTE (-961)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-809 (-1089)))) (|HasCategory| |#2| (QUOTE (-961)))) (OR (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-809 (-1089)))) (|HasCategory| |#2| (QUOTE (-961)))) (|HasCategory| |#2| (QUOTE (-190))) (OR (|HasCategory| |#2| (QUOTE (-190))) (-12 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-961))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-811 (-1089)))) (|HasCategory| |#2| (QUOTE (-961)))) (|HasCategory| |#2| (QUOTE (-809 (-1089))))) (|HasCategory| |#2| (QUOTE (-1013))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-809 (-1089)))) (|HasCategory| |#2| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-950 (-349 (-484))))) (|HasCategory| |#2| (QUOTE (-961)))) (-12 (|HasCategory| |#2| (QUOTE (-950 (-349 (-484))))) (|HasCategory| |#2| (QUOTE (-1013))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-809 (-1089)))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-950 (-484)))) (|HasCategory| |#2| (QUOTE (-1013)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (|HasCategory| |#2| (QUOTE (-961)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-809 (-1089)))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-950 (-484)))) (|HasCategory| |#2| (QUOTE (-1013)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-950 (-484)))) (|HasCategory| |#2| (QUOTE (-961))))) (|HasCategory| (-484) (QUOTE (-756))) (-12 (|HasCategory| |#2| (QUOTE (-580 (-484)))) (|HasCategory| |#2| (QUOTE (-961)))) (-12 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-961)))) (-12 (|HasCategory| |#2| (QUOTE (-811 (-1089)))) (|HasCategory| |#2| (QUOTE (-961)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-950 (-484)))) (|HasCategory| |#2| (QUOTE (-1013)))) (|HasCategory| |#2| (QUOTE (-961)))) (-12 (|HasCategory| |#2| (QUOTE (-950 (-484)))) (|HasCategory| |#2| (QUOTE (-1013)))) (-12 (|HasCategory| |#2| (QUOTE (-950 (-349 (-484))))) (|HasCategory| |#2| (QUOTE (-1013)))) (|HasAttribute| |#2| (QUOTE -3991)) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-961)))) (-12 (|HasCategory| |#2| (QUOTE (-809 (-1089)))) (|HasCategory| |#2| (QUOTE (-961)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-72))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))))) +(-422) ((|constructor| (NIL "This domain represents the header of a definition.")) (|parameters| (((|List| (|ParameterAst|)) $) "\\spad{parameters(h)} gives the parameters specified in the definition header `h'.")) (|name| (((|Identifier|) $) "\\spad{name(h)} returns the name of the operation defined defined.")) (|headAst| (($ (|Identifier|) (|List| (|ParameterAst|))) "\\spad{headAst(f,[x1,..,xn])} constructs a function definition header."))) NIL NIL -(-422 S) +(-423 S) ((|constructor| (NIL "Heap implemented in a flexible array to allow for insertions")) (|heap| (($ (|List| |#1|)) "\\spad{heap(ls)} creates a heap of elements consisting of the elements of \\spad{ls}."))) -((-3993 . T) (-3994 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1012))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1012)))) (|HasCategory| |#1| (QUOTE (-551 (-771)))) (|HasCategory| |#1| (QUOTE (-72)))) -(-423 -3091 UP UPUP R) +((-3994 . T) (-3995 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1013))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-72)))) +(-424 -3092 UP UPUP R) ((|constructor| (NIL "This domains implements finite rational divisors on an hyperelliptic curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}'s are integers and the \\spad{P}'s are finite rational points on the curve. The equation of the curve must be \\spad{y^2} = \\spad{f}(\\spad{x}) and \\spad{f} must have odd degree."))) NIL NIL -(-424 BP) +(-425 BP) ((|constructor| (NIL "This package provides the functions for the heuristic integer gcd. Geddes's algorithm,{}for univariate polynomials with integer coefficients")) (|lintgcd| (((|Integer|) (|List| (|Integer|))) "\\spad{lintgcd([a1,..,ak])} = gcd of a list of integers")) (|content| (((|List| (|Integer|)) (|List| |#1|)) "\\spad{content([f1,..,fk])} = content of a list of univariate polynonials")) (|gcdcofactprim| (((|List| |#1|) (|List| |#1|)) "\\spad{gcdcofactprim([f1,..fk])} = gcd and cofactors of \\spad{k} primitive polynomials.")) (|gcdcofact| (((|List| |#1|) (|List| |#1|)) "\\spad{gcdcofact([f1,..fk])} = gcd and cofactors of \\spad{k} univariate polynomials.")) (|gcdprim| ((|#1| (|List| |#1|)) "\\spad{gcdprim([f1,..,fk])} = gcd of \\spad{k} PRIMITIVE univariate polynomials")) (|gcd| ((|#1| (|List| |#1|)) "\\spad{gcd([f1,..,fk])} = gcd of the polynomials \\spad{fi}."))) NIL NIL -(-425) +(-426) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating hexadecimal expansions.")) (|hex| (($ (|Fraction| (|Integer|))) "\\spad{hex(r)} converts a rational number to a hexadecimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(h)} returns the fractional part of a hexadecimal expansion."))) -((-3985 . T) (-3991 . T) (-3986 . T) ((-3995 "*") . T) (-3987 . T) (-3988 . T) (-3990 . T)) -((|HasCategory| (-483) (QUOTE (-820))) (|HasCategory| (-483) (QUOTE (-949 (-1088)))) (|HasCategory| (-483) (QUOTE (-118))) (|HasCategory| (-483) (QUOTE (-120))) (|HasCategory| (-483) (QUOTE (-552 (-472)))) (|HasCategory| (-483) (QUOTE (-932))) (|HasCategory| (-483) (QUOTE (-739))) (|HasCategory| (-483) (QUOTE (-755))) (OR (|HasCategory| (-483) (QUOTE (-739))) (|HasCategory| (-483) (QUOTE (-755)))) (|HasCategory| (-483) (QUOTE (-949 (-483)))) (|HasCategory| (-483) (QUOTE (-1064))) (|HasCategory| (-483) (QUOTE (-795 (-328)))) (|HasCategory| (-483) (QUOTE (-795 (-483)))) (|HasCategory| (-483) (QUOTE (-552 (-799 (-328))))) (|HasCategory| (-483) (QUOTE (-552 (-799 (-483))))) (|HasCategory| (-483) (QUOTE (-189))) (|HasCategory| (-483) (QUOTE (-810 (-1088)))) (|HasCategory| (-483) (QUOTE (-190))) (|HasCategory| (-483) (QUOTE (-808 (-1088)))) (|HasCategory| (-483) (QUOTE (-454 (-1088) (-483)))) (|HasCategory| (-483) (QUOTE (-260 (-483)))) (|HasCategory| (-483) (QUOTE (-241 (-483) (-483)))) (|HasCategory| (-483) (QUOTE (-258))) (|HasCategory| (-483) (QUOTE (-482))) (|HasCategory| (-483) (QUOTE (-579 (-483)))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-483) (QUOTE (-820)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-483) (QUOTE (-820)))) (|HasCategory| (-483) (QUOTE (-118))))) -(-426 A S) +((-3986 . T) (-3992 . T) (-3987 . T) ((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T)) +((|HasCategory| (-484) (QUOTE (-821))) (|HasCategory| (-484) (QUOTE (-950 (-1089)))) (|HasCategory| (-484) (QUOTE (-118))) (|HasCategory| (-484) (QUOTE (-120))) (|HasCategory| (-484) (QUOTE (-553 (-473)))) (|HasCategory| (-484) (QUOTE (-933))) (|HasCategory| (-484) (QUOTE (-740))) (|HasCategory| (-484) (QUOTE (-756))) (OR (|HasCategory| (-484) (QUOTE (-740))) (|HasCategory| (-484) (QUOTE (-756)))) (|HasCategory| (-484) (QUOTE (-950 (-484)))) (|HasCategory| (-484) (QUOTE (-1065))) (|HasCategory| (-484) (QUOTE (-796 (-329)))) (|HasCategory| (-484) (QUOTE (-796 (-484)))) (|HasCategory| (-484) (QUOTE (-553 (-800 (-329))))) (|HasCategory| (-484) (QUOTE (-553 (-800 (-484))))) (|HasCategory| (-484) (QUOTE (-189))) (|HasCategory| (-484) (QUOTE (-811 (-1089)))) (|HasCategory| (-484) (QUOTE (-190))) (|HasCategory| (-484) (QUOTE (-809 (-1089)))) (|HasCategory| (-484) (QUOTE (-455 (-1089) (-484)))) (|HasCategory| (-484) (QUOTE (-260 (-484)))) (|HasCategory| (-484) (QUOTE (-241 (-484) (-484)))) (|HasCategory| (-484) (QUOTE (-258))) (|HasCategory| (-484) (QUOTE (-483))) (|HasCategory| (-484) (QUOTE (-580 (-484)))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-484) (QUOTE (-821)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-484) (QUOTE (-821)))) (|HasCategory| (-484) (QUOTE (-118))))) +(-427 A S) ((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#2| $) "\\spad{member?(x,u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#2|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#2|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#2| $) "\\spad{count(x,u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{count(p,u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{every?(f,u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{any?(p,u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#2| |#2|) $) "\\spad{map!(f,u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}."))) NIL -((|HasAttribute| |#1| (QUOTE -3993)) (|HasAttribute| |#1| (QUOTE -3994)) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-551 (-771))))) -(-427 S) +((|HasAttribute| |#1| (QUOTE -3994)) (|HasAttribute| |#1| (QUOTE -3995)) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-552 (-772))))) +(-428 S) ((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#1| $) "\\spad{member?(x,u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#1|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#1|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#1| $) "\\spad{count(x,u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{count(p,u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{every?(f,u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{any?(p,u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}."))) NIL NIL -(-428 S) +(-429 S) ((|constructor| (NIL "A is homotopic to \\spad{B} iff any element of domain \\spad{B} can be automically converted into an element of domain \\spad{B},{} and nay element of domain \\spad{B} can be automatically converted into an A."))) NIL NIL -(-429) +(-430) ((|constructor| (NIL "This domain represents hostnames on computer network.")) (|host| (($ (|String|)) "\\spad{host(n)} constructs a Hostname from the name `n'."))) NIL NIL -(-430 S) +(-431 S) ((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}."))) NIL NIL -(-431) +(-432) ((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}."))) NIL NIL -(-432 -3091 UP |AlExt| |AlPol|) +(-433 -3092 UP |AlExt| |AlPol|) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of a field over which we can factor UP's.")) (|factor| (((|Factored| |#4|) |#4| (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{factor(p, f)} returns a prime factorisation of \\spad{p}; \\spad{f} is a factorisation map for elements of UP."))) NIL NIL -(-433) +(-434) ((|constructor| (NIL "Algebraic closure of the rational numbers.")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|trueEqual| (((|Boolean|) $ $) "\\spad{trueEqual(x,y)} tries to determine if the two numbers are equal")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}."))) -((-3985 . T) (-3991 . T) (-3986 . T) ((-3995 "*") . T) (-3987 . T) (-3988 . T) (-3990 . T)) -((|HasCategory| $ (QUOTE (-960))) (|HasCategory| $ (QUOTE (-949 (-483))))) -(-434 S |mn|) +((-3986 . T) (-3992 . T) (-3987 . T) ((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T)) +((|HasCategory| $ (QUOTE (-961))) (|HasCategory| $ (QUOTE (-950 (-484))))) +(-435 S |mn|) ((|constructor| (NIL "\\indented{1}{Author Micheal Monagan \\spad{Aug/87}} This is the basic one dimensional array data type."))) -((-3994 . T) (-3993 . T)) -((OR (-12 (|HasCategory| |#1| (QUOTE (-755))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-551 (-771)))) (|HasCategory| |#1| (QUOTE (-552 (-472)))) (OR (|HasCategory| |#1| (QUOTE (-755))) (|HasCategory| |#1| (QUOTE (-1012)))) (|HasCategory| |#1| (QUOTE (-755))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-755))) (|HasCategory| |#1| (QUOTE (-1012)))) (|HasCategory| (-483) (QUOTE (-755))) (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) -(-435 R |Row| |Col|) +((-3995 . T) (-3994 . T)) +((OR (-12 (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-553 (-473)))) (OR (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-756))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| (-484) (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) +(-436 R |Row| |Col|) ((|constructor| (NIL "\\indented{1}{This is an internal type which provides an implementation of} 2-dimensional arrays as PrimitiveArray's of PrimitiveArray's."))) -((-3993 . T) (-3994 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1012))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1012)))) (|HasCategory| |#1| (QUOTE (-551 (-771)))) (|HasCategory| |#1| (QUOTE (-72)))) -(-436 K R UP) +((-3994 . T) (-3995 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1013))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-72)))) +(-437 K R UP) ((|constructor| (NIL "\\indented{1}{Author: Clifton Williamson} Date Created: 9 August 1993 Date Last Updated: 3 December 1993 Basic Operations: chineseRemainder,{} factorList Related Domains: PAdicWildFunctionFieldIntegralBasis(\\spad{K},{}\\spad{R},{}UP,{}\\spad{F}) Also See: WildFunctionFieldIntegralBasis,{} FunctionFieldIntegralBasis AMS Classifications: Keywords: function field,{} finite field,{} integral basis Examples: References: Description:")) (|chineseRemainder| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|List| |#3|) (|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|NonNegativeInteger|)) "\\spad{chineseRemainder(lu,lr,n)} \\undocumented")) (|listConjugateBases| (((|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{listConjugateBases(bas,q,n)} returns the list \\spad{[bas,bas^Frob,bas^(Frob^2),...bas^(Frob^(n-1))]},{} where \\spad{Frob} raises the coefficients of all polynomials appearing in the basis \\spad{bas} to the \\spad{q}th power.")) (|factorList| (((|List| (|SparseUnivariatePolynomial| |#1|)) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorList(k,n,m,j)} \\undocumented"))) NIL NIL -(-437 R UP -3091) +(-438 R UP -3092) ((|constructor| (NIL "This package contains functions used in the packages FunctionFieldIntegralBasis and NumberFieldIntegralBasis.")) (|moduleSum| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{moduleSum(m1,m2)} returns the sum of two modules in the framed algebra \\spad{F}. Each module \\spad{mi} is represented as follows: \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn} and \\spad{mi} is a record \\spad{[basis,basisDen,basisInv]}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then a basis \\spad{v1,...,vn} for \\spad{mi} is given by \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|idealiserMatrix| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiserMatrix(m1, m2)} returns the matrix representing the linear conditions on the Ring associatied with an ideal defined by \\spad{m1} and \\spad{m2}.")) (|idealiser| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{idealiser(m1,m2,d)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2} where \\spad{d} is the known part of the denominator") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiser(m1,m2)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2}")) (|leastPower| (((|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{leastPower(p,n)} returns \\spad{e},{} where \\spad{e} is the smallest integer such that \\spad{p **e >= n}")) (|divideIfCan!| ((|#1| (|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Integer|)) "\\spad{divideIfCan!(matrix,matrixOut,prime,n)} attempts to divide the entries of \\spad{matrix} by \\spad{prime} and store the result in \\spad{matrixOut}. If it is successful,{} 1 is returned and if not,{} \\spad{prime} is returned. Here both \\spad{matrix} and \\spad{matrixOut} are \\spad{n}-by-\\spad{n} upper triangular matrices.")) (|matrixGcd| ((|#1| (|Matrix| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{matrixGcd(mat,sing,n)} is \\spad{gcd(sing,g)} where \\spad{g} is the gcd of the entries of the \\spad{n}-by-\\spad{n} upper-triangular matrix \\spad{mat}.")) (|diagonalProduct| ((|#1| (|Matrix| |#1|)) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}"))) NIL NIL -(-438 |mn|) +(-439 |mn|) ((|constructor| (NIL "\\spadtype{IndexedBits} is a domain to compactly represent large quantities of Boolean data."))) -((-3994 . T) (-3993 . T)) -((-12 (|HasCategory| (-85) (QUOTE (-260 (-85)))) (|HasCategory| (-85) (QUOTE (-1012)))) (|HasCategory| (-85) (QUOTE (-552 (-472)))) (|HasCategory| (-85) (QUOTE (-755))) (|HasCategory| (-483) (QUOTE (-755))) (|HasCategory| (-85) (QUOTE (-1012))) (|HasCategory| (-85) (QUOTE (-551 (-771)))) (|HasCategory| (-85) (QUOTE (-72)))) -(-439 K R UP L) +((-3995 . T) (-3994 . T)) +((-12 (|HasCategory| (-85) (QUOTE (-260 (-85)))) (|HasCategory| (-85) (QUOTE (-1013)))) (|HasCategory| (-85) (QUOTE (-553 (-473)))) (|HasCategory| (-85) (QUOTE (-756))) (|HasCategory| (-484) (QUOTE (-756))) (|HasCategory| (-85) (QUOTE (-1013))) (|HasCategory| (-85) (QUOTE (-552 (-772)))) (|HasCategory| (-85) (QUOTE (-72)))) +(-440 K R UP L) ((|constructor| (NIL "IntegralBasisPolynomialTools provides functions for \\indented{1}{mapping functions on the coefficients of univariate and bivariate} \\indented{1}{polynomials.}")) (|mapBivariate| (((|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#4|)) (|Mapping| |#4| |#1|) |#3|) "\\spad{mapBivariate(f,p(x,y))} applies the function \\spad{f} to the coefficients of \\spad{p(x,y)}.")) (|mapMatrixIfCan| (((|Union| (|Matrix| |#2|) "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|Matrix| (|SparseUnivariatePolynomial| |#4|))) "\\spad{mapMatrixIfCan(f,mat)} applies the function \\spad{f} to the coefficients of the entries of \\spad{mat} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariateIfCan| (((|Union| |#2| "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariateIfCan(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)},{} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariate| (((|SparseUnivariatePolynomial| |#4|) (|Mapping| |#4| |#1|) |#2|) "\\spad{mapUnivariate(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.") ((|#2| (|Mapping| |#1| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariate(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}."))) NIL NIL -(-440) +(-441) ((|constructor| (NIL "\\indented{1}{This domain implements a container of information} about the AXIOM library")) (|fullDisplay| (((|Void|) $) "\\spad{fullDisplay(ic)} prints all of the information contained in \\axiom{\\spad{ic}}.")) (|display| (((|Void|) $) "\\spad{display(ic)} prints a summary of the information contained in \\axiom{\\spad{ic}}.")) (|elt| (((|String|) $ (|Symbol|)) "\\spad{elt(ic,s)} selects a particular field from \\axiom{\\spad{ic}}. Valid fields are \\axiom{name,{} nargs,{} exposed,{} type,{} abbreviation,{} kind,{} origin,{} params,{} condition,{} doc}."))) NIL NIL -(-441 R Q A B) +(-442 R Q A B) ((|constructor| (NIL "InnerCommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) "\\spad{splitDenominator([q1,...,qn])} returns \\spad{[[p1,...,pn], d]} such that \\spad{qi = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}'s.")) (|clearDenominator| ((|#3| |#4|) "\\spad{clearDenominator([q1,...,qn])} returns \\spad{[p1,...,pn]} such that \\spad{qi = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}'s.")) (|commonDenominator| ((|#1| |#4|) "\\spad{commonDenominator([q1,...,qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}qn."))) NIL NIL -(-442 -3091 |Expon| |VarSet| |DPoly|) +(-443 -3092 |Expon| |VarSet| |DPoly|) ((|constructor| (NIL "This domain represents polynomial ideals with coefficients in any field and supports the basic ideal operations,{} including intersection sum and quotient. An ideal is represented by a list of polynomials (the generators of the ideal) and a boolean that is \\spad{true} if the generators are a Groebner basis. The algorithms used are based on Groebner basis computations. The ordering is determined by the datatype of the input polynomials. Users may use refinements of total degree orderings.")) (|relationsIdeal| (((|SuchThat| (|List| (|Polynomial| |#1|)) (|List| (|Equation| (|Polynomial| |#1|)))) (|List| |#4|)) "\\spad{relationsIdeal(polyList)} returns the ideal of relations among the polynomials in \\spad{polyList}.")) (|saturate| (($ $ |#4| (|List| |#3|)) "\\spad{saturate(I,f,lvar)} is the saturation with respect to the prime principal ideal which is generated by \\spad{f} in the polynomial ring \\spad{F[lvar]}.") (($ $ |#4|) "\\spad{saturate(I,f)} is the saturation of the ideal \\spad{I} with respect to the multiplicative set generated by the polynomial \\spad{f}.")) (|coerce| (($ (|List| |#4|)) "\\spad{coerce(polyList)} converts the list of polynomials \\spad{polyList} to an ideal.")) (|generators| (((|List| |#4|) $) "\\spad{generators(I)} returns a list of generators for the ideal \\spad{I}.")) (|groebner?| (((|Boolean|) $) "\\spad{groebner?(I)} tests if the generators of the ideal \\spad{I} are a Groebner basis.")) (|groebnerIdeal| (($ (|List| |#4|)) "\\spad{groebnerIdeal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList} which are assumed to be a Groebner basis. Note: this operation avoids a Groebner basis computation.")) (|ideal| (($ (|List| |#4|)) "\\spad{ideal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList}.")) (|leadingIdeal| (($ $) "\\spad{leadingIdeal(I)} is the ideal generated by the leading terms of the elements of the ideal \\spad{I}.")) (|dimension| (((|Integer|) $) "\\spad{dimension(I)} gives the dimension of the ideal \\spad{I}. in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Integer|) $ (|List| |#3|)) "\\spad{dimension(I,lvar)} gives the dimension of the ideal \\spad{I},{} in the ring \\spad{F[lvar]}")) (|backOldPos| (($ (|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $))) "\\spad{backOldPos(genPos)} takes the result produced by \\spadfunFrom{generalPosition}{PolynomialIdeals} and performs the inverse transformation,{} returning the original ideal \\spad{backOldPos(generalPosition(I,listvar))} = \\spad{I}.")) (|generalPosition| (((|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $)) $ (|List| |#3|)) "\\spad{generalPosition(I,listvar)} perform a random linear transformation on the variables in \\spad{listvar} and returns the transformed ideal along with the change of basis matrix.")) (|groebner| (($ $) "\\spad{groebner(I)} returns a set of generators of \\spad{I} that are a Groebner basis for \\spad{I}.")) (|quotient| (($ $ |#4|) "\\spad{quotient(I,f)} computes the quotient of the ideal \\spad{I} by the principal ideal generated by the polynomial \\spad{f},{} \\spad{(I:(f))}.") (($ $ $) "\\spad{quotient(I,J)} computes the quotient of the ideals \\spad{I} and \\spad{J},{} \\spad{(I:J)}.")) (|intersect| (($ (|List| $)) "\\spad{intersect(LI)} computes the intersection of the list of ideals \\spad{LI}.") (($ $ $) "\\spad{intersect(I,J)} computes the intersection of the ideals \\spad{I} and \\spad{J}.")) (|zeroDim?| (((|Boolean|) $) "\\spad{zeroDim?(I)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Boolean|) $ (|List| |#3|)) "\\spad{zeroDim?(I,lvar)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]}")) (|inRadical?| (((|Boolean|) |#4| $) "\\spad{inRadical?(f,I)} tests if some power of the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|in?| (((|Boolean|) $ $) "\\spad{in?(I,J)} tests if the ideal \\spad{I} is contained in the ideal \\spad{J}.")) (|element?| (((|Boolean|) |#4| $) "\\spad{element?(f,I)} tests whether the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|zero?| (((|Boolean|) $) "\\spad{zero?(I)} tests whether the ideal \\spad{I} is the zero ideal")) (|one?| (((|Boolean|) $) "\\spad{one?(I)} tests whether the ideal \\spad{I} is the unit ideal,{} \\spadignore{i.e.} contains 1.")) (+ (($ $ $) "\\spad{I+J} computes the ideal generated by the union of \\spad{I} and \\spad{J}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{I**n} computes the \\spad{n}th power of the ideal \\spad{I}.")) (* (($ $ $) "\\spad{I*J} computes the product of the ideal \\spad{I} and \\spad{J}."))) NIL -((|HasCategory| |#3| (QUOTE (-552 (-1088))))) -(-443 |vl| |nv|) +((|HasCategory| |#3| (QUOTE (-553 (-1089))))) +(-444 |vl| |nv|) ((|constructor| (NIL "\\indented{2}{This package provides functions for the primary decomposition of} polynomial ideals over the rational numbers. The ideals are members of the \\spadtype{PolynomialIdeals} domain,{} and the polynomial generators are required to be from the \\spadtype{DistributedMultivariatePolynomial} domain.")) (|contract| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|List| (|OrderedVariableList| |#1|))) "\\spad{contract(I,lvar)} contracts the ideal \\spad{I} to the polynomial ring \\spad{F[lvar]}.")) (|primaryDecomp| (((|List| (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{primaryDecomp(I)} returns a list of primary ideals such that their intersection is the ideal \\spad{I}.")) (|radical| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radical(I)} returns the radical of the ideal \\spad{I}.")) (|prime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{prime?(I)} tests if the ideal \\spad{I} is prime.")) (|zeroDimPrimary?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrimary?(I)} tests if the ideal \\spad{I} is 0-dimensional primary.")) (|zeroDimPrime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrime?(I)} tests if the ideal \\spad{I} is a 0-dimensional prime."))) NIL NIL -(-444 T$) +(-445 T$) ((|constructor| (NIL "This is the category of all domains that implement idempotent operations."))) -(((|%Rule| |idempotence| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|)) (-3055 (|f| |x| |x|) |x|))) . T)) +(((|%Rule| |idempotence| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|)) (-3056 (|f| |x| |x|) |x|))) . T)) NIL -(-445) +(-446) ((|constructor| (NIL "This domain provides representation for plain identifiers. It differs from Symbol in that it does not support any form of scripting. It is a plain basic data structure. \\blankline")) (|gensym| (($) "\\spad{gensym()} returns a new identifier,{} different from any other identifier in the running system"))) NIL NIL -(-446 A S) +(-447 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of abelian groups over an abelian group \\spad{A} of} generators indexed by the ordered set \\spad{S}. All items have finite support: only non-zero terms are stored."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#2| (QUOTE (-1012))))) -(-447 A S) +((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#2| (QUOTE (-1013))))) +(-448 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of abelian monoids over an abelian monoid \\spad{A} of} generators indexed by the ordered set \\spad{S}. All items have finite support. Only non-zero terms are stored."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#2| (QUOTE (-1012))))) -(-448 A S) +((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#2| (QUOTE (-1013))))) +(-449 A S) ((|constructor| (NIL "This category represents the direct product of some set with respect to an ordered indexing set.")) (|terms| (((|List| (|IndexedProductTerm| |#1| |#2|)) $) "\\spad{terms x} returns the list of terms in \\spad{x}. Each term is a pair of a support (the first component) and the corresponding value (the second component).")) (|reductum| (($ $) "\\spad{reductum(z)} returns a new element created by removing the leading coefficient/support pair from the element \\spad{z}. Error: if \\spad{z} has no support.")) (|leadingSupport| ((|#2| $) "\\spad{leadingSupport(z)} returns the index of leading (with respect to the ordering on the indexing set) monomial of \\spad{z}. Error: if \\spad{z} has no support.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(z)} returns the coefficient of the leading (with respect to the ordering on the indexing set) monomial of \\spad{z}. Error: if \\spad{z} has no support.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(a,s)} constructs a direct product element with the \\spad{s} component set to \\spad{a}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,z)} returns the new element created by applying the function \\spad{f} to each component of the direct product element \\spad{z}."))) NIL NIL -(-449 A S) +(-450 A S) ((|constructor| (NIL "Indexed direct products of objects over a set \\spad{A} of generators indexed by an ordered set \\spad{S}. All items have finite support.")) (|combineWithIf| (($ $ $ (|Mapping| |#1| |#1| |#1|) (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{combineWithIf(u,v,f,p)} returns the result of combining index-wise,{} coefficients of \\spad{u} and \\spad{u} if when satisfy the predicate \\spad{p}. Those pairs of coefficients which fail\\spad{p} are implicitly ignored."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#2| (QUOTE (-1012))))) -(-450 A S) +((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#2| (QUOTE (-1013))))) +(-451 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoids \\spad{A} of} generators indexed by the ordered set \\spad{S}. The inherited order is lexicographical. All items have finite support: only non-zero terms are stored."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#2| (QUOTE (-1012))))) -(-451 A S) +((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#2| (QUOTE (-1013))))) +(-452 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoid sups \\spad{A},{}} generators indexed by the ordered set \\spad{S}. All items have finite support: only non-zero terms are stored."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#2| (QUOTE (-1012))))) -(-452 A S) +((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#2| (QUOTE (-1013))))) +(-453 A S) ((|constructor| (NIL "An indexed product term is a utility domain used in the representation of indexed direct product objects.")) (|coefficient| ((|#1| $) "\\spad{coefficient t} returns the coefficient of the tern \\spad{t}.")) (|index| ((|#2| $) "\\spad{index t} returns the index of the term \\spad{t}.")) (|term| (($ |#2| |#1|) "\\spad{term(s,a)} constructs a term with index \\spad{s} and coefficient \\spad{a}."))) NIL NIL -(-453 S A B) +(-454 S A B) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation'' substitutions. The difference between this and \\spadtype{Evalable} is that the operations in this category specify the substitution as a pair of arguments rather than as an equation.")) (|eval| (($ $ (|List| |#2|) (|List| |#3|)) "\\spad{eval(f, [x1,...,xn], [v1,...,vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ |#2| |#3|) "\\spad{eval(f, x, v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-454 A B) +(-455 A B) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation'' substitutions. The difference between this and \\spadtype{Evalable} is that the operations in this category specify the substitution as a pair of arguments rather than as an equation.")) (|eval| (($ $ (|List| |#1|) (|List| |#2|)) "\\spad{eval(f, [x1,...,xn], [v1,...,vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ |#1| |#2|) "\\spad{eval(f, x, v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-455 S E |un|) +(-456 S E |un|) ((|constructor| (NIL "Internal implementation of a free abelian monoid."))) NIL -((|HasCategory| |#2| (QUOTE (-715)))) -(-456 S |mn|) +((|HasCategory| |#2| (QUOTE (-716)))) +(-457 S |mn|) ((|constructor| (NIL "\\indented{1}{Author: Michael Monagan \\spad{July/87},{} modified SMW \\spad{June/91}} A FlexibleArray is the notion of an array intended to allow for growth at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")) (|shrinkable| (((|Boolean|) (|Boolean|)) "\\spad{shrinkable(b)} sets the shrinkable attribute of flexible arrays to \\spad{b} and returns the previous value")) (|physicalLength!| (($ $ (|Integer|)) "\\spad{physicalLength!(x,n)} changes the physical length of \\spad{x} to be \\spad{n} and returns the new array.")) (|physicalLength| (((|NonNegativeInteger|) $) "\\spad{physicalLength(x)} returns the number of elements \\spad{x} can accomodate before growing")) (|flexibleArray| (($ (|List| |#1|)) "\\spad{flexibleArray(l)} creates a flexible array from the list of elements \\spad{l}"))) -((-3994 . T) (-3993 . T)) -((OR (-12 (|HasCategory| |#1| (QUOTE (-755))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-551 (-771)))) (|HasCategory| |#1| (QUOTE (-552 (-472)))) (OR (|HasCategory| |#1| (QUOTE (-755))) (|HasCategory| |#1| (QUOTE (-1012)))) (|HasCategory| |#1| (QUOTE (-755))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-755))) (|HasCategory| |#1| (QUOTE (-1012)))) (|HasCategory| (-483) (QUOTE (-755))) (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) -(-457) +((-3995 . T) (-3994 . T)) +((OR (-12 (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-553 (-473)))) (OR (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-756))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| (-484) (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) +(-458) ((|constructor| (NIL "This domain represents AST for conditional expressions.")) (|elseBranch| (((|SpadAst|) $) "thenBranch(\\spad{e}) returns the `else-branch' of `e'.")) (|thenBranch| (((|SpadAst|) $) "\\spad{thenBranch(e)} returns the `then-branch' of `e'.")) (|condition| (((|SpadAst|) $) "\\spad{condition(e)} returns the condition of the if-expression `e'."))) NIL NIL -(-458 |p| |n|) +(-459 |p| |n|) ((|constructor| (NIL "InnerFiniteField(\\spad{p},{}\\spad{n}) implements finite fields with \\spad{p**n} elements where \\spad{p} is assumed prime but does not check. For a version which checks that \\spad{p} is prime,{} see \\spadtype{FiniteField}."))) -((-3985 . T) (-3991 . T) (-3986 . T) ((-3995 "*") . T) (-3987 . T) (-3988 . T) (-3990 . T)) -((OR (|HasCategory| (-516 |#1|) (QUOTE (-118))) (|HasCategory| (-516 |#1|) (QUOTE (-318)))) (|HasCategory| (-516 |#1|) (QUOTE (-120))) (|HasCategory| (-516 |#1|) (QUOTE (-318))) (|HasCategory| (-516 |#1|) (QUOTE (-118)))) -(-459 R |Row| |Col| M) +((-3986 . T) (-3992 . T) (-3987 . T) ((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T)) +((OR (|HasCategory| (-517 |#1|) (QUOTE (-118))) (|HasCategory| (-517 |#1|) (QUOTE (-319)))) (|HasCategory| (-517 |#1|) (QUOTE (-120))) (|HasCategory| (-517 |#1|) (QUOTE (-319))) (|HasCategory| (-517 |#1|) (QUOTE (-118)))) +(-460 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{InnerMatrixLinearAlgebraFunctions} is an internal package which provides standard linear algebra functions on domains in \\spad{MatrixCategory}")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|generalizedInverse| ((|#4| |#4|) "\\spad{generalizedInverse(m)} returns the generalized (Moore--Penrose) inverse of the matrix \\spad{m},{} \\spadignore{i.e.} the matrix \\spad{h} such that m*h*m=h,{} h*m*h=m,{} m*h and h*m are both symmetric matrices.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}."))) NIL -((|HasAttribute| |#3| (QUOTE -3994))) -(-460 R |Row| |Col| M QF |Row2| |Col2| M2) +((|HasAttribute| |#3| (QUOTE -3995))) +(-461 R |Row| |Col| M QF |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{InnerMatrixQuotientFieldFunctions} provides functions on matrices over an integral domain which involve the quotient field of that integral domain. The functions rowEchelon and inverse return matrices with entries in the quotient field.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|inverse| (((|Union| |#8| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square. Note: the result will have entries in the quotient field.")) (|rowEchelon| ((|#8| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}. the result will have entries in the quotient field."))) NIL -((|HasAttribute| |#7| (QUOTE -3994))) -(-461) +((|HasAttribute| |#7| (QUOTE -3995))) +(-462) ((|constructor| (NIL "This domain represents an `import' of types.")) (|imports| (((|List| (|TypeAst|)) $) "\\spad{imports(x)} returns the list of imported types.")) (|coerce| (($ (|List| (|TypeAst|))) "ts::ImportAst constructs an ImportAst for the list if types `ts'."))) NIL NIL -(-462) +(-463) ((|constructor| (NIL "This domain represents the `in' iterator syntax.")) (|sequence| (((|SpadAst|) $) "\\spad{sequence(i)} returns the sequence expression being iterated over by `i'.")) (|iterationVar| (((|Identifier|) $) "\\spad{iterationVar(i)} returns the name of the iterating variable of the `in' iterator 'i'"))) NIL NIL -(-463 S) +(-464 S) ((|constructor| (NIL "This category describes input byte stream conduits.")) (|readBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{readBytes!(c,b)} reads byte sequences from conduit `c' into the byte buffer `b'. The actual number of bytes written is returned,{} and the length of `b' is set to that amount.")) (|readUInt32!| (((|Maybe| (|UInt32|)) $) "\\spad{readUInt32!(cond)} attempts to read a \\spad{UInt32} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt32!| (((|Maybe| (|Int32|)) $) "\\spad{readInt32!(cond)} attempts to read an \\spad{Int32} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt16!| (((|Maybe| (|UInt16|)) $) "\\spad{readUInt16!(cond)} attempts to read a \\spad{UInt16} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt16!| (((|Maybe| (|Int16|)) $) "\\spad{readInt16!(cond)} attempts to read an \\spad{Int16} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt8!| (((|Maybe| (|UInt8|)) $) "\\spad{readUInt8!(cond)} attempts to read a \\spad{UInt8} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt8!| (((|Maybe| (|Int8|)) $) "\\spad{readInt8!(cond)} attempts to read an \\spad{Int8} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readByte!| (((|Maybe| (|Byte|)) $) "\\spad{readByte!(cond)} attempts to read a byte from the input conduit `cond'. Returns the read byte if successful,{} otherwise \\spad{nothing}."))) NIL NIL -(-464) +(-465) ((|constructor| (NIL "This category describes input byte stream conduits.")) (|readBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{readBytes!(c,b)} reads byte sequences from conduit `c' into the byte buffer `b'. The actual number of bytes written is returned,{} and the length of `b' is set to that amount.")) (|readUInt32!| (((|Maybe| (|UInt32|)) $) "\\spad{readUInt32!(cond)} attempts to read a \\spad{UInt32} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt32!| (((|Maybe| (|Int32|)) $) "\\spad{readInt32!(cond)} attempts to read an \\spad{Int32} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt16!| (((|Maybe| (|UInt16|)) $) "\\spad{readUInt16!(cond)} attempts to read a \\spad{UInt16} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt16!| (((|Maybe| (|Int16|)) $) "\\spad{readInt16!(cond)} attempts to read an \\spad{Int16} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt8!| (((|Maybe| (|UInt8|)) $) "\\spad{readUInt8!(cond)} attempts to read a \\spad{UInt8} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt8!| (((|Maybe| (|Int8|)) $) "\\spad{readInt8!(cond)} attempts to read an \\spad{Int8} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readByte!| (((|Maybe| (|Byte|)) $) "\\spad{readByte!(cond)} attempts to read a byte from the input conduit `cond'. Returns the read byte if successful,{} otherwise \\spad{nothing}."))) NIL NIL -(-465 GF) +(-466 GF) ((|constructor| (NIL "InnerNormalBasisFieldFunctions(GF) (unexposed): This package has functions used by every normal basis finite field extension domain.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) (|Vector| |#1|)) "\\spad{minimalPolynomial(x)} \\undocumented{} See \\axiomFunFrom{minimalPolynomial}{FiniteAlgebraicExtensionField}")) (|normalElement| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{normalElement(n)} \\undocumented{} See \\axiomFunFrom{normalElement}{FiniteAlgebraicExtensionField}")) (|basis| (((|Vector| (|Vector| |#1|)) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{} See \\axiomFunFrom{basis}{FiniteAlgebraicExtensionField}")) (|normal?| (((|Boolean|) (|Vector| |#1|)) "\\spad{normal?(x)} \\undocumented{} See \\axiomFunFrom{normal?}{FiniteAlgebraicExtensionField}")) (|lookup| (((|PositiveInteger|) (|Vector| |#1|)) "\\spad{lookup(x)} \\undocumented{} See \\axiomFunFrom{lookup}{Finite}")) (|inv| (((|Vector| |#1|) (|Vector| |#1|)) "\\spad{inv x} \\undocumented{} See \\axiomFunFrom{inv}{DivisionRing}")) (|trace| (((|Vector| |#1|) (|Vector| |#1|) (|PositiveInteger|)) "\\spad{trace(x,n)} \\undocumented{} See \\axiomFunFrom{trace}{FiniteAlgebraicExtensionField}")) (|norm| (((|Vector| |#1|) (|Vector| |#1|) (|PositiveInteger|)) "\\spad{norm(x,n)} \\undocumented{} See \\axiomFunFrom{norm}{FiniteAlgebraicExtensionField}")) (/ (((|Vector| |#1|) (|Vector| |#1|) (|Vector| |#1|)) "\\spad{x/y} \\undocumented{} See \\axiomFunFrom{/}{Field}")) (* (((|Vector| |#1|) (|Vector| |#1|) (|Vector| |#1|)) "\\spad{x*y} \\undocumented{} See \\axiomFunFrom{*}{SemiGroup}")) (** (((|Vector| |#1|) (|Vector| |#1|) (|Integer|)) "\\spad{x**n} \\undocumented{} See \\axiomFunFrom{**}{DivisionRing}")) (|qPot| (((|Vector| |#1|) (|Vector| |#1|) (|Integer|)) "\\spad{qPot(v,e)} computes \\spad{v**(q**e)},{} interpreting \\spad{v} as an element of normal basis field,{} \\spad{q} the size of the ground field. This is done by a cyclic \\spad{e}-shift of the vector \\spad{v}.")) (|expPot| (((|Vector| |#1|) (|Vector| |#1|) (|SingleInteger|) (|SingleInteger|)) "\\spad{expPot(v,e,d)} returns the sum from \\spad{i = 0} to \\spad{e - 1} of \\spad{v**(q**i*d)},{} interpreting \\spad{v} as an element of a normal basis field and where \\spad{q} is the size of the ground field. Note: for a description of the algorithm,{} see \\spad{T}.Itoh and \\spad{S}.Tsujii,{} \"A fast algorithm for computing multiplicative inverses in GF(2^m) using normal bases\",{} Information and Computation 78,{} pp.171-177,{} 1988.")) (|repSq| (((|Vector| |#1|) (|Vector| |#1|) (|NonNegativeInteger|)) "\\spad{repSq(v,e)} computes \\spad{v**e} by repeated squaring,{} interpreting \\spad{v} as an element of a normal basis field.")) (|dAndcExp| (((|Vector| |#1|) (|Vector| |#1|) (|NonNegativeInteger|) (|SingleInteger|)) "\\spad{dAndcExp(v,n,k)} computes \\spad{v**e} interpreting \\spad{v} as an element of normal basis field. A divide and conquer algorithm similar to the one from \\spad{D}.\\spad{R}.Stinson,{} \"Some observations on parallel Algorithms for fast exponentiation in GF(2^n)\",{} Siam \\spad{J}. Computation,{} Vol.19,{} No.4,{} pp.711-717,{} August 1990 is used. Argument \\spad{k} is a parameter of this algorithm.")) (|xn| (((|SparseUnivariatePolynomial| |#1|) (|NonNegativeInteger|)) "\\spad{xn(n)} returns the polynomial \\spad{x**n-1}.")) (|pol| (((|SparseUnivariatePolynomial| |#1|) (|Vector| |#1|)) "\\spad{pol(v)} turns the vector \\spad{[v0,...,vn]} into the polynomial \\spad{v0+v1*x+ ... + vn*x**n}.")) (|index| (((|Vector| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{index(n,m)} is a index function for vectors of length \\spad{n} over the ground field.")) (|random| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{random(n)} creates a vector over the ground field with random entries.")) (|setFieldInfo| (((|Void|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) |#1|) "\\spad{setFieldInfo(m,p)} initializes the field arithmetic,{} where \\spad{m} is the multiplication table and \\spad{p} is the respective normal element of the ground field GF."))) NIL NIL -(-466) +(-467) ((|constructor| (NIL "This domain provides representation for binary files open for input operations. `Binary' here means that the conduits do not interpret their contents.")) (|position!| (((|SingleInteger|) $ (|SingleInteger|)) "position(\\spad{f},{}\\spad{p}) sets the current byte-position to `i'.")) (|position| (((|SingleInteger|) $) "\\spad{position(f)} returns the current byte-position in the file `f'.")) (|isOpen?| (((|Boolean|) $) "\\spad{isOpen?(ifile)} holds if `ifile' is in open state.")) (|eof?| (((|Boolean|) $) "\\spad{eof?(ifile)} holds when the last read reached end of file.")) (|inputBinaryFile| (($ (|String|)) "\\spad{inputBinaryFile(f)} returns an input conduit obtained by opening the file named by `f' as a binary file.") (($ (|FileName|)) "\\spad{inputBinaryFile(f)} returns an input conduit obtained by opening the file named by `f' as a binary file."))) NIL NIL -(-467 R) +(-468 R) ((|constructor| (NIL "This package provides operations to create incrementing functions.")) (|incrementBy| (((|Mapping| |#1| |#1|) |#1|) "\\spad{incrementBy(n)} produces a function which adds \\spad{n} to whatever argument it is given. For example,{} if {\\spad{f} := increment(\\spad{n})} then \\spad{f x} is \\spad{x+n}.")) (|increment| (((|Mapping| |#1| |#1|)) "\\spad{increment()} produces a function which adds \\spad{1} to whatever argument it is given. For example,{} if {\\spad{f} := increment()} then \\spad{f x} is \\spad{x+1}."))) NIL NIL -(-468 |Varset|) +(-469 |Varset|) ((|constructor| (NIL "\\indented{2}{IndexedExponents of an ordered set of variables gives a representation} for the degree of polynomials in commuting variables. It gives an ordered pairing of non negative integer exponents with variables"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| (-693) (QUOTE (-1012))))) -(-469 K -3091 |Par|) +((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| (-694) (QUOTE (-1013))))) +(-470 K -3092 |Par|) ((|constructor| (NIL "This package is the inner package to be used by NumericRealEigenPackage and NumericComplexEigenPackage for the computation of numeric eigenvalues and eigenvectors.")) (|innerEigenvectors| (((|List| (|Record| (|:| |outval| |#2|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#2|))))) (|Matrix| |#1|) |#3| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|))) "\\spad{innerEigenvectors(m,eps,factor)} computes explicitly the eigenvalues and the correspondent eigenvectors of the matrix \\spad{m}. The parameter \\spad{eps} determines the type of the output,{} \\spad{factor} is the univariate factorizer to br used to reduce the characteristic polynomial into irreducible factors.")) (|solve1| (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{solve1(pol, eps)} finds the roots of the univariate polynomial polynomial \\spad{pol} to precision eps. If \\spad{K} is \\spad{Fraction Integer} then only the real roots are returned,{} if \\spad{K} is \\spad{Complex Fraction Integer} then all roots are found.")) (|charpol| (((|SparseUnivariatePolynomial| |#1|) (|Matrix| |#1|)) "\\spad{charpol(m)} computes the characteristic polynomial of a matrix \\spad{m} with entries in \\spad{K}. This function returns a polynomial over \\spad{K},{} while the general one (that is in EiegenPackage) returns Fraction \\spad{P} \\spad{K}"))) NIL NIL -(-470) +(-471) NIL NIL NIL -(-471) +(-472) ((|constructor| (NIL "Default infinity signatures for the interpreter; Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|minusInfinity| (((|OrderedCompletion| (|Integer|))) "\\spad{minusInfinity()} returns minusInfinity.")) (|plusInfinity| (((|OrderedCompletion| (|Integer|))) "\\spad{plusInfinity()} returns plusIinfinity.")) (|infinity| (((|OnePointCompletion| (|Integer|))) "\\spad{infinity()} returns infinity."))) NIL NIL -(-472) +(-473) ((|constructor| (NIL "Domain of parsed forms which can be passed to the interpreter. This is also the interface between algebra code and facilities in the interpreter.")) (|compile| (((|Symbol|) (|Symbol|) (|List| $)) "\\spad{compile(f, [t1,...,tn])} forces the interpreter to compile the function \\spad{f} with signature \\spad{(t1,...,tn) -> ?}. returns the symbol \\spad{f} if successful. Error: if \\spad{f} was not defined beforehand in the interpreter,{} or if the \\spad{ti}'s are not valid types,{} or if the compiler fails.")) (|declare| (((|Symbol|) (|List| $)) "\\spad{declare(t)} returns a name \\spad{f} such that \\spad{f} has been declared to the interpreter to be of type \\spad{t},{} but has not been assigned a value yet. Note: \\spad{t} should be created as \\spad{devaluate(T)\\$Lisp} where \\spad{T} is the actual type of \\spad{f} (this hack is required for the case where \\spad{T} is a mapping type).")) (|parseString| (($ (|String|)) "parseString is the inverse of unparse. It parses a string to InputForm.")) (|unparse| (((|String|) $) "\\spad{unparse(f)} returns a string \\spad{s} such that the parser would transform \\spad{s} to \\spad{f}. Error: if \\spad{f} is not the parsed form of a string.")) (|flatten| (($ $) "\\spad{flatten(s)} returns an input form corresponding to \\spad{s} with all the nested operations flattened to triples using new local variables. If \\spad{s} is a piece of code,{} this speeds up the compilation tremendously later on.")) (|One| (($) "\\spad{1} returns the input form corresponding to 1.")) (|Zero| (($) "\\spad{0} returns the input form corresponding to 0.")) (** (($ $ (|Integer|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.")) (/ (($ $ $) "\\spad{a / b} returns the input form corresponding to \\spad{a / b}.")) (* (($ $ $) "\\spad{a * b} returns the input form corresponding to \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the input form corresponding to \\spad{a + b}.")) (|lambda| (($ $ (|List| (|Symbol|))) "\\spad{lambda(code, [x1,...,xn])} returns the input form corresponding to \\spad{(x1,...,xn) +-> code} if \\spad{n > 1},{} or to \\spad{x1 +-> code} if \\spad{n = 1}.")) (|function| (($ $ (|List| (|Symbol|)) (|Symbol|)) "\\spad{function(code, [x1,...,xn], f)} returns the input form corresponding to \\spad{f(x1,...,xn) == code}.")) (|binary| (($ $ (|List| $)) "\\spad{binary(op, [a1,...,an])} returns the input form corresponding to \\spad{a1 op a2 op ... op an}.")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} makes \\spad{s} into an input form.")) (|interpret| (((|Any|) $) "\\spad{interpret(f)} passes \\spad{f} to the interpreter."))) NIL NIL -(-473 R) +(-474 R) ((|constructor| (NIL "Tools for manipulating input forms.")) (|interpret| ((|#1| (|InputForm|)) "\\spad{interpret(f)} passes \\spad{f} to the interpreter,{} and transforms the result into an object of type \\spad{R}.")) (|packageCall| (((|InputForm|) (|Symbol|)) "\\spad{packageCall(f)} returns the input form corresponding to \\spad{f}\\$\\spad{R}."))) NIL NIL -(-474 |Coef| UTS) +(-475 |Coef| UTS) ((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an integral domain of characteristic 0.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-475 K -3091 |Par|) +(-476 K -3092 |Par|) ((|constructor| (NIL "This is an internal package for computing approximate solutions to systems of polynomial equations. The parameter \\spad{K} specifies the coefficient field of the input polynomials and must be either \\spad{Fraction(Integer)} or \\spad{Complex(Fraction Integer)}. The parameter \\spad{F} specifies where the solutions must lie and can be one of the following: \\spad{Float},{} \\spad{Fraction(Integer)},{} \\spad{Complex(Float)},{} \\spad{Complex(Fraction Integer)}. The last parameter specifies the type of the precision operand and must be either \\spad{Fraction(Integer)} or \\spad{Float}.")) (|makeEq| (((|List| (|Equation| (|Polynomial| |#2|))) (|List| |#2|) (|List| (|Symbol|))) "\\spad{makeEq(lsol,lvar)} returns a list of equations formed by corresponding members of \\spad{lvar} and \\spad{lsol}.")) (|innerSolve| (((|List| (|List| |#2|)) (|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) |#3|) "\\spad{innerSolve(lnum,lden,lvar,eps)} returns a list of solutions of the system of polynomials \\spad{lnum},{} with the side condition that none of the members of \\spad{lden} vanish identically on any solution. Each solution is expressed as a list corresponding to the list of variables in \\spad{lvar} and with precision specified by \\spad{eps}.")) (|innerSolve1| (((|List| |#2|) (|Polynomial| |#1|) |#3|) "\\spad{innerSolve1(p,eps)} returns the list of the zeros of the polynomial \\spad{p} with precision \\spad{eps}.") (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{innerSolve1(up,eps)} returns the list of the zeros of the univariate polynomial \\spad{up} with precision \\spad{eps}."))) NIL NIL -(-476 R BP |pMod| |nextMod|) +(-477 R BP |pMod| |nextMod|) ((|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(f,p)} reduces the coefficients of the polynomial \\spad{f} modulo the prime \\spad{p}.")) (|modularGcd| ((|#2| (|List| |#2|)) "\\spad{modularGcd(listf)} computes the gcd of the list of polynomials \\spad{listf} by modular methods.")) (|modularGcdPrimitive| ((|#2| (|List| |#2|)) "\\spad{modularGcdPrimitive(f1,f2)} computes the gcd of the two polynomials \\spad{f1} and \\spad{f2} by modular methods."))) NIL NIL -(-477 OV E R P) +(-478 OV E R P) ((|constructor| (NIL "\\indented{2}{This is an inner package for factoring multivariate polynomials} over various coefficient domains in characteristic 0. The univariate factor operation is passed as a parameter. Multivariate hensel lifting is used to lift the univariate factorization")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|))) "\\spad{factor(p,ufact)} factors the multivariate polynomial \\spad{p} by specializing variables and calling the univariate factorizer \\spad{ufact}. \\spad{p} is represented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#4|) |#4| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|))) "\\spad{factor(p,ufact)} factors the multivariate polynomial \\spad{p} by specializing variables and calling the univariate factorizer \\spad{ufact}."))) NIL NIL -(-478 K UP |Coef| UTS) +(-479 K UP |Coef| UTS) ((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an arbitrary finite field.")) (|generalInfiniteProduct| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#4| |#4|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#4| |#4|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#4| |#4|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-479 |Coef| UTS) +(-480 |Coef| UTS) ((|constructor| (NIL "This package computes infinite products of univariate Taylor series over a field of prime order.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-480 R UP) +(-481 R UP) ((|constructor| (NIL "Find the sign of a polynomial around a point or infinity.")) (|signAround| (((|Union| (|Integer|) #1="failed") |#2| |#1| (|Mapping| (|Union| (|Integer|) #1#) |#1|)) "\\spad{signAround(u,r,f)} \\undocumented") (((|Union| (|Integer|) #1#) |#2| |#1| (|Integer|) (|Mapping| (|Union| (|Integer|) #1#) |#1|)) "\\spad{signAround(u,r,i,f)} \\undocumented") (((|Union| (|Integer|) #1#) |#2| (|Integer|) (|Mapping| (|Union| (|Integer|) #1#) |#1|)) "\\spad{signAround(u,i,f)} \\undocumented"))) NIL NIL -(-481 S) +(-482 S) ((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,b)},{} \\spad{0<=a<b>1},{} \\spad{(a,b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{a-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd."))) NIL NIL -(-482) +(-483) ((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,b)},{} \\spad{0<=a<b>1},{} \\spad{(a,b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{a-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd."))) -((-3991 . T) (-3992 . T) (-3986 . T) ((-3995 "*") . T) (-3987 . T) (-3988 . T) (-3990 . T)) +((-3992 . T) (-3993 . T) (-3987 . T) ((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T)) NIL -(-483) +(-484) ((|constructor| (NIL "\\spadtype{Integer} provides the domain of arbitrary precision integers.")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality."))) -((-3981 . T) (-3985 . T) (-3980 . T) (-3991 . T) (-3992 . T) (-3986 . T) ((-3995 "*") . T) (-3987 . T) (-3988 . T) (-3990 . T)) +((-3982 . T) (-3986 . T) (-3981 . T) (-3992 . T) (-3993 . T) (-3987 . T) ((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T)) NIL -(-484) +(-485) ((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 16 bits."))) NIL NIL -(-485) +(-486) ((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 32 bits."))) NIL NIL -(-486) +(-487) ((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 64 bits."))) NIL NIL -(-487) +(-488) ((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 8 bits."))) NIL NIL -(-488 |Key| |Entry| |addDom|) +(-489 |Key| |Entry| |addDom|) ((|constructor| (NIL "This domain is used to provide a conditional \"add\" domain for the implementation of \\spadtype{Table}."))) -((-3993 . T) (-3994 . T)) -((-12 (|HasCategory| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3858) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (QUOTE (-1012)))) (OR (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (QUOTE (-1012)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (QUOTE (-1012)))) (OR (|HasCategory| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (QUOTE (-551 (-771)))) (|HasCategory| |#2| (QUOTE (-551 (-771))))) (|HasCategory| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (QUOTE (-552 (-472)))) (-12 (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (QUOTE (-1012))) (|HasCategory| |#1| (QUOTE (-755))) (|HasCategory| |#2| (QUOTE (-1012))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-551 (-771)))) (|HasCategory| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (QUOTE (-551 (-771)))) (|HasCategory| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) -(-489 R -3091) +((-3994 . T) (-3995 . T)) +((-12 (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3859) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) (OR (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) (OR (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-552 (-772)))) (|HasCategory| |#2| (QUOTE (-552 (-772))))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-473)))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-1013))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-552 (-772)))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-552 (-772)))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) +(-490 R -3092) ((|constructor| (NIL "This package provides functions for the integration of algebraic integrands over transcendental functions.")) (|algint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|SparseUnivariatePolynomial| |#2|) (|SparseUnivariatePolynomial| |#2|))) "\\spad{algint(f, x, y, d)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x}; \\spad{d} is the derivation to use on \\spad{k[x]}."))) NIL NIL -(-490 R0 -3091 UP UPUP R) +(-491 R0 -3092 UP UPUP R) ((|constructor| (NIL "This package provides functions for integrating a function on an algebraic curve.")) (|palginfieldint| (((|Union| |#5| "failed") |#5| (|Mapping| |#3| |#3|)) "\\spad{palginfieldint(f, d)} returns an algebraic function \\spad{g} such that \\spad{dg = f} if such a \\spad{g} exists,{} \"failed\" otherwise. Argument \\spad{f} must be a pure algebraic function.")) (|palgintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{palgintegrate(f, d)} integrates \\spad{f} with respect to the derivation \\spad{d}. Argument \\spad{f} must be a pure algebraic function.")) (|algintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{algintegrate(f, d)} integrates \\spad{f} with respect to the derivation \\spad{d}."))) NIL NIL -(-491) +(-492) ((|constructor| (NIL "This package provides functions to lookup bits in integers")) (|bitTruth| (((|Boolean|) (|Integer|) (|Integer|)) "\\spad{bitTruth(n,m)} returns \\spad{true} if coefficient of 2**m in abs(\\spad{n}) is 1")) (|bitCoef| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{bitCoef(n,m)} returns the coefficient of 2**m in abs(\\spad{n})")) (|bitLength| (((|Integer|) (|Integer|)) "\\spad{bitLength(n)} returns the number of bits to represent abs(\\spad{n})"))) NIL NIL -(-492 R) +(-493 R) ((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This category implements of interval arithmetic and transcendental + functions over intervals.")) (|contains?| (((|Boolean|) $ |#1|) "\\spad{contains?(i,f)} returns \\spad{true} if \\axiom{\\spad{f}} is contained within the interval \\axiom{\\spad{i}},{} \\spad{false} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is negative,{} \\axiom{\\spad{false}} otherwise.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is positive,{} \\axiom{\\spad{false}} otherwise.")) (|width| ((|#1| $) "\\spad{width(u)} returns \\axiom{sup(\\spad{u}) - inf(\\spad{u})}.")) (|sup| ((|#1| $) "\\spad{sup(u)} returns the supremum of \\axiom{\\spad{u}}.")) (|inf| ((|#1| $) "\\spad{inf(u)} returns the infinum of \\axiom{\\spad{u}}.")) (|qinterval| (($ |#1| |#1|) "\\spad{qinterval(inf,sup)} creates a new interval \\axiom{[\\spad{inf},{}\\spad{sup}]},{} without checking the ordering on the elements.")) (|interval| (($ (|Fraction| (|Integer|))) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1|) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1| |#1|) "\\spad{interval(inf,sup)} creates a new interval,{} either \\axiom{[\\spad{inf},{}\\spad{sup}]} if \\axiom{\\spad{inf} <= \\spad{sup}} or \\axiom{[\\spad{sup},{}in]} otherwise."))) -((-3768 . T) (-3986 . T) ((-3995 "*") . T) (-3987 . T) (-3988 . T) (-3990 . T)) +((-3769 . T) (-3987 . T) ((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T)) NIL -(-493 S) +(-494 S) ((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,c,a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found."))) NIL NIL -(-494) +(-495) ((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,c,a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found."))) -((-3986 . T) ((-3995 "*") . T) (-3987 . T) (-3988 . T) (-3990 . T)) +((-3987 . T) ((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T)) NIL -(-495 R -3091) +(-496 R -3092) ((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for elemntary functions.")) (|lfextlimint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (|Symbol|) (|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{lfextlimint(f,x,k,[k1,...,kn])} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f - c dk/dx}. Value \\spad{h} is looked for in a field containing \\spad{f} and \\spad{k1},{}...,{}kn (the \\spad{ki}'s must be logs).")) (|lfintegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{lfintegrate(f, x)} = \\spad{g} such that \\spad{dg/dx = f}.")) (|lfinfieldint| (((|Union| |#2| "failed") |#2| (|Symbol|)) "\\spad{lfinfieldint(f, x)} returns a function \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|lflimitedint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Symbol|) (|List| |#2|)) "\\spad{lflimitedint(f,x,[g1,...,gn])} returns functions \\spad{[h,[[ci, gi]]]} such that the \\spad{gi}'s are among \\spad{[g1,...,gn]},{} and \\spad{d(h+sum(ci log(gi)))/dx = f},{} if possible,{} \"failed\" otherwise.")) (|lfextendedint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) #1#) |#2| (|Symbol|) |#2|) "\\spad{lfextendedint(f, x, g)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f - cg},{} if (\\spad{h},{} \\spad{c}) exist,{} \"failed\" otherwise."))) NIL NIL -(-496 I) +(-497 I) ((|constructor| (NIL "\\indented{1}{This Package contains basic methods for integer factorization.} The factor operation employs trial division up to 10,{}000. It then tests to see if \\spad{n} is a perfect power before using Pollards rho method. Because Pollards method may fail,{} the result of factor may contain composite factors. We should also employ Lenstra's eliptic curve method.")) (|PollardSmallFactor| (((|Union| |#1| "failed") |#1|) "\\spad{PollardSmallFactor(n)} returns a factor of \\spad{n} or \"failed\" if no one is found")) (|BasicMethod| (((|Factored| |#1|) |#1|) "\\spad{BasicMethod(n)} returns the factorization of integer \\spad{n} by trial division")) (|squareFree| (((|Factored| |#1|) |#1|) "\\spad{squareFree(n)} returns the square free factorization of integer \\spad{n}")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(n)} returns the full factorization of integer \\spad{n}"))) NIL NIL -(-497 R -3091 L) +(-498 R -3092 L) ((|constructor| (NIL "This internal package rationalises integrands on curves of the form: \\indented{2}{\\spad{y\\^2 = a x\\^2 + b x + c}} \\indented{2}{\\spad{y\\^2 = (a x + b) / (c x + d)}} \\indented{2}{\\spad{f(x, y) = 0} where \\spad{f} has degree 1 in \\spad{x}} The rationalization is done for integration,{} limited integration,{} extended integration and the risch differential equation.")) (|palgLODE0| (((|Record| (|:| |particular| (|Union| |#2| #1="failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgLODE0(op,g,x,y,z,t,c)} returns the solution of \\spad{op f = g} Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Record| (|:| |particular| (|Union| |#2| #1#)) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgLODE0(op, g, x, y, d, p)} returns the solution of \\spad{op f = g}. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|lift| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{lift(u,k)} \\undocumented")) (|multivariate| ((|#2| (|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|Kernel| |#2|) |#2|) "\\spad{multivariate(u,k,f)} \\undocumented")) (|univariate| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|SparseUnivariatePolynomial| |#2|)) "\\spad{univariate(f,k,k,p)} \\undocumented")) (|palgRDE0| (((|Union| |#2| #2="failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| #2#) |#2| |#2| (|Symbol|)) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgRDE0(f, g, x, y, foo, t, c)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{foo},{} called by \\spad{foo(a, b, x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.") (((|Union| |#2| #2#) |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| #2#) |#2| |#2| (|Symbol|)) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgRDE0(f, g, x, y, foo, d, p)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}. Argument \\spad{foo},{} called by \\spad{foo(a, b, x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.")) (|palglimint0| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #3="failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palglimint0(f, x, y, [u1,...,un], z, t, c)} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}'s are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #3#) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palglimint0(f, x, y, [u1,...,un], d, p)} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}'s are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|palgextint0| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) #4="failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgextint0(f, x, y, g, z, t, c)} returns functions \\spad{[h, d]} such that \\spad{dh/dx = f(x,y) - d g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy},{} and \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,y)}. The operation returns \"failed\" if no such functions exist.") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) #4#) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgextint0(f, x, y, g, d, p)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f(x,y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)},{} or \"failed\" if no such functions exist.")) (|palgint0| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgint0(f, x, y, z, t, c)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,y)}.") (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgint0(f, x, y, d, p)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)}."))) NIL -((|HasCategory| |#3| (|%list| (QUOTE -599) (|devaluate| |#2|)))) -(-498) +((|HasCategory| |#3| (|%list| (QUOTE -600) (|devaluate| |#2|)))) +(-499) ((|constructor| (NIL "This package provides various number theoretic functions on the integers.")) (|sumOfKthPowerDivisors| (((|Integer|) (|Integer|) (|NonNegativeInteger|)) "\\spad{sumOfKthPowerDivisors(n,k)} returns the sum of the \\spad{k}th powers of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. the sum of the \\spad{k}th powers of the divisors of \\spad{n} is often denoted by \\spad{sigma_k(n)}.")) (|sumOfDivisors| (((|Integer|) (|Integer|)) "\\spad{sumOfDivisors(n)} returns the sum of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The sum of the divisors of \\spad{n} is often denoted by \\spad{sigma(n)}.")) (|numberOfDivisors| (((|Integer|) (|Integer|)) "\\spad{numberOfDivisors(n)} returns the number of integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The number of divisors of \\spad{n} is often denoted by \\spad{tau(n)}.")) (|moebiusMu| (((|Integer|) (|Integer|)) "\\spad{moebiusMu(n)} returns the Moebius function \\spad{mu(n)}. \\spad{mu(n)} is either \\spad{-1},{}0 or 1 as follows: \\spad{mu(n) = 0} if \\spad{n} is divisible by a square > 1,{} \\spad{mu(n) = (-1)^k} if \\spad{n} is square-free and has \\spad{k} distinct prime divisors.")) (|legendre| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{legendre(a,p)} returns the Legendre symbol \\spad{L(a/p)}. \\spad{L(a/p) = (-1)**((p-1)/2) mod p} (\\spad{p} prime),{} which is 0 if \\spad{a} is 0,{} 1 if \\spad{a} is a quadratic residue \\spad{mod p} and \\spad{-1} otherwise. Note: because the primality test is expensive,{} if it is known that \\spad{p} is prime then use \\spad{jacobi(a,p)}.")) (|jacobi| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{jacobi(a,b)} returns the Jacobi symbol \\spad{J(a/b)}. When \\spad{b} is odd,{} \\spad{J(a/b) = product(L(a/p) for p in factor b )}. Note: by convention,{} 0 is returned if \\spad{gcd(a,b) ~= 1}. Iterative \\spad{O(log(b)^2)} version coded by Michael Monagan June 1987.")) (|harmonic| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{harmonic(n)} returns the \\spad{n}th harmonic number. This is \\spad{H[n] = sum(1/k,k=1..n)}.")) (|fibonacci| (((|Integer|) (|Integer|)) "\\spad{fibonacci(n)} returns the \\spad{n}th Fibonacci number. the Fibonacci numbers \\spad{F[n]} are defined by \\spad{F[0] = F[1] = 1} and \\spad{F[n] = F[n-1] + F[n-2]}. The algorithm has running time \\spad{O(log(n)^3)}. Reference: Knuth,{} The Art of Computer Programming Vol 2,{} Semi-Numerical Algorithms.")) (|eulerPhi| (((|Integer|) (|Integer|)) "\\spad{eulerPhi(n)} returns the number of integers between 1 and \\spad{n} (including 1) which are relatively prime to \\spad{n}. This is the Euler phi function \\spad{\\phi(n)} is also called the totient function.")) (|euler| (((|Integer|) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler number. This is \\spad{2^n E(n,1/2)},{} where \\spad{E(n,x)} is the \\spad{n}th Euler polynomial.")) (|divisors| (((|List| (|Integer|)) (|Integer|)) "\\spad{divisors(n)} returns a list of the divisors of \\spad{n}.")) (|chineseRemainder| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{chineseRemainder(x1,m1,x2,m2)} returns \\spad{w},{} where \\spad{w} is such that \\spad{w = x1 mod m1} and \\spad{w = x2 mod m2}. Note: \\spad{m1} and \\spad{m2} must be relatively prime.")) (|bernoulli| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli number. this is \\spad{B(n,0)},{} where \\spad{B(n,x)} is the \\spad{n}th Bernoulli polynomial."))) NIL NIL -(-499 -3091 UP UPUP R) +(-500 -3092 UP UPUP R) ((|constructor| (NIL "algebraic Hermite redution.")) (|HermiteIntegrate| (((|Record| (|:| |answer| |#4|) (|:| |logpart| |#4|)) |#4| (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f, ')} returns \\spad{[g,h]} such that \\spad{f = g' + h} and \\spad{h} has a only simple finite normal poles."))) NIL NIL -(-500 -3091 UP) +(-501 -3092 UP) ((|constructor| (NIL "Hermite integration,{} transcendental case.")) (|HermiteIntegrate| (((|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |logpart| (|Fraction| |#2|)) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f, D)} returns \\spad{[g, h, s, p]} such that \\spad{f = Dg + h + s + p},{} \\spad{h} has a squarefree denominator normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. Furthermore,{} \\spad{h} and \\spad{s} have no polynomial parts. \\spad{D} is the derivation to use on \\spadtype{UP}."))) NIL NIL -(-501 R -3091 L) +(-502 R -3092 L) ((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for pure algebraic integrands.")) (|palgLODE| (((|Record| (|:| |particular| (|Union| |#2| #1="failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Symbol|)) "\\spad{palgLODE(op, g, kx, y, x)} returns the solution of \\spad{op f = g}. \\spad{y} is an algebraic function of \\spad{x}.")) (|palgRDE| (((|Union| |#2| #1#) |#2| |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| #1#) |#2| |#2| (|Symbol|))) "\\spad{palgRDE(nfp, f, g, x, y, foo)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}; \\spad{foo(a, b, x)} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}. \\spad{nfp} is \\spad{n * df/dx}.")) (|palglimint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|)) "\\spad{palglimint(f, x, y, [u1,...,un])} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}'s are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}.")) (|palgextint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2|) "\\spad{palgextint(f, x, y, g)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f(x,y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x}; returns \"failed\" if no such functions exist.")) (|palgint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|)) "\\spad{palgint(f, x, y)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x}."))) NIL -((|HasCategory| |#3| (|%list| (QUOTE -599) (|devaluate| |#2|)))) -(-502 R -3091) +((|HasCategory| |#3| (|%list| (QUOTE -600) (|devaluate| |#2|)))) +(-503 R -3092) ((|constructor| (NIL "\\spadtype{PatternMatchIntegration} provides functions that use the pattern matcher to find some indefinite and definite integrals involving special functions and found in the litterature.")) (|pmintegrate| (((|Union| |#2| "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{pmintegrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b} if it can be found by the built-in pattern matching rules.") (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmintegrate(f, x)} returns either \"failed\" or \\spad{[g,h]} such that \\spad{integrate(f,x) = g + integrate(h,x)}.")) (|pmComplexintegrate| (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmComplexintegrate(f, x)} returns either \"failed\" or \\spad{[g,h]} such that \\spad{integrate(f,x) = g + integrate(h,x)}. It only looks for special complex integrals that pmintegrate does not return.")) (|splitConstant| (((|Record| (|:| |const| |#2|) (|:| |nconst| |#2|)) |#2| (|Symbol|)) "\\spad{splitConstant(f, x)} returns \\spad{[c, g]} such that \\spad{f = c * g} and \\spad{c} does not involve \\spad{t}."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-552 (-799 (-483))))) (|HasCategory| |#1| (QUOTE (-795 (-483)))) (|HasCategory| |#2| (QUOTE (-1051)))) (-12 (|HasCategory| |#1| (QUOTE (-552 (-799 (-483))))) (|HasCategory| |#1| (QUOTE (-795 (-483)))) (|HasCategory| |#2| (QUOTE (-568))))) -(-503 -3091 UP) +((-12 (|HasCategory| |#1| (QUOTE (-553 (-800 (-484))))) (|HasCategory| |#1| (QUOTE (-796 (-484)))) (|HasCategory| |#2| (QUOTE (-1052)))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-800 (-484))))) (|HasCategory| |#1| (QUOTE (-796 (-484)))) (|HasCategory| |#2| (QUOTE (-569))))) +(-504 -3092 UP) ((|constructor| (NIL "This package provides functions for the base case of the Risch algorithm.")) (|limitedint| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|List| (|Fraction| |#2|))) "\\spad{limitedint(f, [g1,...,gn])} returns fractions \\spad{[h,[[ci, gi]]]} such that the \\spad{gi}'s are among \\spad{[g1,...,gn]},{} \\spad{ci' = 0},{} and \\spad{(h+sum(ci log(gi)))' = f},{} if possible,{} \"failed\" otherwise.")) (|extendedint| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{extendedint(f, g)} returns fractions \\spad{[h, c]} such that \\spad{c' = 0} and \\spad{h' = f - cg},{} if \\spad{(h, c)} exist,{} \"failed\" otherwise.")) (|infieldint| (((|Union| (|Fraction| |#2|) "failed") (|Fraction| |#2|)) "\\spad{infieldint(f)} returns \\spad{g} such that \\spad{g' = f} or \"failed\" if the integral of \\spad{f} is not a rational function.")) (|integrate| (((|IntegrationResult| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{integrate(f)} returns \\spad{g} such that \\spad{g' = f}."))) NIL NIL -(-504 S) +(-505 S) ((|constructor| (NIL "Provides integer testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|integerIfCan| (((|Union| (|Integer|) "failed") |#1|) "\\spad{integerIfCan(x)} returns \\spad{x} as an integer,{} \"failed\" if \\spad{x} is not an integer.")) (|integer?| (((|Boolean|) |#1|) "\\spad{integer?(x)} is \\spad{true} if \\spad{x} is an integer,{} \\spad{false} otherwise.")) (|integer| (((|Integer|) |#1|) "\\spad{integer(x)} returns \\spad{x} as an integer; error if \\spad{x} is not an integer."))) NIL NIL -(-505 -3091) +(-506 -3092) ((|constructor| (NIL "This package provides functions for the integration of rational functions.")) (|extendedIntegrate| (((|Union| (|Record| (|:| |ratpart| (|Fraction| (|Polynomial| |#1|))) (|:| |coeff| (|Fraction| (|Polynomial| |#1|)))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{extendedIntegrate(f, x, g)} returns fractions \\spad{[h, c]} such that \\spad{dc/dx = 0} and \\spad{dh/dx = f - cg},{} if \\spad{(h, c)} exist,{} \"failed\" otherwise.")) (|limitedIntegrate| (((|Union| (|Record| (|:| |mainpart| (|Fraction| (|Polynomial| |#1|))) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| (|Polynomial| |#1|))) (|:| |logand| (|Fraction| (|Polynomial| |#1|))))))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limitedIntegrate(f, x, [g1,...,gn])} returns fractions \\spad{[h, [[ci,gi]]]} such that the \\spad{gi}'s are among \\spad{[g1,...,gn]},{} \\spad{dci/dx = 0},{} and \\spad{d(h + sum(ci log(gi)))/dx = f} if possible,{} \"failed\" otherwise.")) (|infieldIntegrate| (((|Union| (|Fraction| (|Polynomial| |#1|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{infieldIntegrate(f, x)} returns a fraction \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|internalIntegrate| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{internalIntegrate(f, x)} returns \\spad{g} such that \\spad{dg/dx = f}."))) NIL NIL -(-506 R) +(-507 R) ((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This domain is an implementation of interval arithmetic and transcendental + functions over intervals."))) -((-3768 . T) (-3986 . T) ((-3995 "*") . T) (-3987 . T) (-3988 . T) (-3990 . T)) +((-3769 . T) (-3987 . T) ((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T)) NIL -(-507) +(-508) ((|constructor| (NIL "This package provides the implementation for the \\spadfun{solveLinearPolynomialEquation} operation over the integers. It uses a lifting technique from the package GenExEuclid")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| (|Integer|))) "failed") (|List| (|SparseUnivariatePolynomial| (|Integer|))) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}'s exists."))) NIL NIL -(-508 R -3091) +(-509 R -3092) ((|constructor| (NIL "\\indented{1}{Tools for the integrator} Author: Manuel Bronstein Date Created: 25 April 1990 Date Last Updated: 9 June 1993 Keywords: elementary,{} function,{} integration.")) (|intPatternMatch| (((|IntegrationResult| |#2|) |#2| (|Symbol|) (|Mapping| (|IntegrationResult| |#2|) |#2| (|Symbol|)) (|Mapping| (|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|))) "\\spad{intPatternMatch(f, x, int, pmint)} tries to integrate \\spad{f} first by using the integration function \\spad{int},{} and then by using the pattern match intetgration function \\spad{pmint} on any remaining unintegrable part.")) (|mkPrim| ((|#2| |#2| (|Symbol|)) "\\spad{mkPrim(f, x)} makes the logs in \\spad{f} which are linear in \\spad{x} primitive with respect to \\spad{x}.")) (|removeConstantTerm| ((|#2| |#2| (|Symbol|)) "\\spad{removeConstantTerm(f, x)} returns \\spad{f} minus any additive constant with respect to \\spad{x}.")) (|vark| (((|List| (|Kernel| |#2|)) (|List| |#2|) (|Symbol|)) "\\spad{vark([f1,...,fn],x)} returns the set-theoretic union of \\spad{(varselect(f1,x),...,varselect(fn,x))}.")) (|union| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|))) "\\spad{union(l1, l2)} returns set-theoretic union of \\spad{l1} and \\spad{l2}.")) (|ksec| (((|Kernel| |#2|) (|Kernel| |#2|) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{ksec(k, [k1,...,kn], x)} returns the second top-level \\spad{ki} after \\spad{k} involving \\spad{x}.")) (|kmax| (((|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{kmax([k1,...,kn])} returns the top-level \\spad{ki} for integration.")) (|varselect| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{varselect([k1,...,kn], x)} returns the \\spad{ki} which involve \\spad{x}."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-552 (-799 (-483))))) (|HasCategory| |#1| (QUOTE (-390))) (|HasCategory| |#1| (QUOTE (-795 (-483)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-949 (-1088))))) (-12 (|HasCategory| |#1| (QUOTE (-390))) (|HasCategory| |#2| (QUOTE (-239)))) (|HasCategory| |#1| (QUOTE (-494)))) -(-509 -3091 UP) +((-12 (|HasCategory| |#1| (QUOTE (-553 (-800 (-484))))) (|HasCategory| |#1| (QUOTE (-391))) (|HasCategory| |#1| (QUOTE (-796 (-484)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-950 (-1089))))) (-12 (|HasCategory| |#1| (QUOTE (-391))) (|HasCategory| |#2| (QUOTE (-239)))) (|HasCategory| |#1| (QUOTE (-495)))) +(-510 -3092 UP) ((|constructor| (NIL "This package provides functions for the transcendental case of the Risch algorithm.")) (|monomialIntPoly| (((|Record| (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{monomialIntPoly(p, ')} returns [\\spad{q},{} \\spad{r}] such that \\spad{p = q' + r} and \\spad{degree(r) < degree(t')}. Error if \\spad{degree(t') < 2}.")) (|monomialIntegrate| (((|Record| (|:| |ir| (|IntegrationResult| (|Fraction| |#2|))) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomialIntegrate(f, ')} returns \\spad{[ir, s, p]} such that \\spad{f = ir' + s + p} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t} the derivation '.")) (|expintfldpoly| (((|Union| (|LaurentPolynomial| |#1| |#2|) "failed") (|LaurentPolynomial| |#1| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintfldpoly(p, foo)} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument foo is a Risch differential equation function on \\spad{F}.")) (|primintfldpoly| (((|Union| |#2| "failed") |#2| (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #1="failed") |#1|) |#1|) "\\spad{primintfldpoly(p, ', t')} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument \\spad{t'} is the derivative of the primitive generating the extension.")) (|primlimintfrac| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|List| (|Fraction| |#2|))) "\\spad{primlimintfrac(f, ', [u1,...,un])} returns \\spad{[v, [c1,...,cn]]} such that \\spad{ci' = 0} and \\spad{f = v' + +/[ci * ui'/ui]}. Error: if \\spad{degree numer f >= degree denom f}.")) (|primextintfrac| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Fraction| |#2|)) "\\spad{primextintfrac(f, ', g)} returns \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0}. Error: if \\spad{degree numer f >= degree denom f} or if \\spad{degree numer g >= degree denom g} or if \\spad{denom g} is not squarefree.")) (|explimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|List| (|Fraction| |#2|))) "\\spad{explimitedint(f, ', foo, [u1,...,un])} returns \\spad{[v, [c1,...,cn], a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,[ci * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primlimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (|List| (|Fraction| |#2|))) "\\spad{primlimitedint(f, ', foo, [u1,...,un])} returns \\spad{[v, [c1,...,cn], a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,[ci * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|expextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|Fraction| |#2|)) "\\spad{expextendedint(f, ', foo, g)} returns either \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (|Fraction| |#2|)) "\\spad{primextendedint(f, ', foo, g)} returns either \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|tanintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|List| |#1|) "failed") (|Integer|) |#1| |#1|)) "\\spad{tanintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential system solver on \\spad{F}.")) (|expintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential equation solver on \\spad{F}.")) (|primintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #1#) |#1|)) "\\spad{primintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Argument foo is an extended integration function on \\spad{F}."))) NIL NIL -(-510 R -3091) +(-511 R -3092) ((|constructor| (NIL "This package computes the inverse Laplace Transform.")) (|inverseLaplace| (((|Union| |#2| "failed") |#2| (|Symbol|) (|Symbol|)) "\\spad{inverseLaplace(f, s, t)} returns the Inverse Laplace transform of \\spad{f(s)} using \\spad{t} as the new variable or \"failed\" if unable to find a closed form."))) NIL NIL -(-511) +(-512) ((|constructor| (NIL "This category describes byte stream conduits supporting both input and output operations."))) NIL NIL -(-512) +(-513) ((|constructor| (NIL "\\indented{2}{This domain provides representation for binary files open} \\indented{2}{for input and output operations.} See Also: InputBinaryFile,{} OutputBinaryFile")) (|isOpen?| (((|Boolean|) $) "\\spad{isOpen?(f)} holds if `f' is in open state.")) (|inputOutputBinaryFile| (($ (|String|)) "\\spad{inputOutputBinaryFile(f)} returns an input/output conduit obtained by opening the file named by `f' as a binary file.") (($ (|FileName|)) "\\spad{inputOutputBinaryFile(f)} returns an input/output conduit obtained by opening the file designated by `f' as a binary file."))) NIL NIL -(-513) +(-514) ((|constructor| (NIL "This domain provides constants to describe directions of IO conduits (file,{} etc) mode of operations.")) (|closed| (($) "\\spad{closed} indicates that the IO conduit has been closed.")) (|bothWays| (($) "\\spad{bothWays} indicates that an IO conduit is for both input and output.")) (|output| (($) "\\spad{output} indicates that an IO conduit is for output")) (|input| (($) "\\spad{input} indicates that an IO conduit is for input."))) NIL NIL -(-514) +(-515) ((|constructor| (NIL "This domain provides representation for ARPA Internet \\spad{IP4} addresses.")) (|resolve| (((|Maybe| $) (|Hostname|)) "\\spad{resolve(h)} returns the \\spad{IP4} address of host `h'.")) (|bytes| (((|DataArray| 4 (|Byte|)) $) "\\spad{bytes(x)} returns the bytes of the numeric address `x'.")) (|ip4Address| (($ (|String|)) "\\spad{ip4Address(a)} builds a numeric address out of the ASCII form `a'."))) NIL NIL -(-515 |p| |unBalanced?|) +(-516 |p| |unBalanced?|) ((|constructor| (NIL "This domain implements Zp,{} the \\spad{p}-adic completion of the integers. This is an internal domain."))) -((-3986 . T) ((-3995 "*") . T) (-3987 . T) (-3988 . T) (-3990 . T)) +((-3987 . T) ((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T)) NIL -(-516 |p|) +(-517 |p|) ((|constructor| (NIL "InnerPrimeField(\\spad{p}) implements the field with \\spad{p} elements. Note: argument \\spad{p} MUST be a prime (this domain does not check). See \\spadtype{PrimeField} for a domain that does check."))) -((-3985 . T) (-3991 . T) (-3986 . T) ((-3995 "*") . T) (-3987 . T) (-3988 . T) (-3990 . T)) -((|HasCategory| $ (QUOTE (-120))) (|HasCategory| $ (QUOTE (-118))) (|HasCategory| $ (QUOTE (-318)))) -(-517) +((-3986 . T) (-3992 . T) (-3987 . T) ((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T)) +((|HasCategory| $ (QUOTE (-120))) (|HasCategory| $ (QUOTE (-118))) (|HasCategory| $ (QUOTE (-319)))) +(-518) ((|constructor| (NIL "A package to print strings without line-feed nor carriage-return.")) (|iprint| (((|Void|) (|String|)) "\\axiom{iprint(\\spad{s})} prints \\axiom{\\spad{s}} at the current position of the cursor."))) NIL NIL -(-518 -3091) +(-519 -3092) ((|constructor| (NIL "If a function \\spad{f} has an elementary integral \\spad{g},{} then \\spad{g} can be written in the form \\spad{g = h + c1 log(u1) + c2 log(u2) + ... + cn log(un)} where \\spad{h},{} which is in the same field than \\spad{f},{} is called the rational part of the integral,{} and \\spad{c1 log(u1) + ... cn log(un)} is called the logarithmic part of the integral. This domain manipulates integrals represented in that form,{} by keeping both parts separately. The logs are not explicitly computed.")) (|differentiate| ((|#1| $ (|Symbol|)) "\\spad{differentiate(ir,x)} differentiates \\spad{ir} with respect to \\spad{x}") ((|#1| $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(ir,D)} differentiates \\spad{ir} with respect to the derivation \\spad{D}.")) (|integral| (($ |#1| (|Symbol|)) "\\spad{integral(f,x)} returns the formal integral of \\spad{f} with respect to \\spad{x}") (($ |#1| |#1|) "\\spad{integral(f,x)} returns the formal integral of \\spad{f} with respect to \\spad{x}")) (|elem?| (((|Boolean|) $) "\\spad{elem?(ir)} tests if an integration result is elementary over F?")) (|notelem| (((|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) "\\spad{notelem(ir)} returns the non-elementary part of an integration result")) (|logpart| (((|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) $) "\\spad{logpart(ir)} returns the logarithmic part of an integration result")) (|ratpart| ((|#1| $) "\\spad{ratpart(ir)} returns the rational part of an integration result")) (|mkAnswer| (($ |#1| (|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) (|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) "\\spad{mkAnswer(r,l,ne)} creates an integration result from a rational part \\spad{r},{} a logarithmic part \\spad{l},{} and a non-elementary part \\spad{ne}."))) -((-3988 . T) (-3987 . T)) -((|HasCategory| |#1| (QUOTE (-808 (-1088)))) (|HasCategory| |#1| (QUOTE (-949 (-1088))))) -(-519 E -3091) +((-3989 . T) (-3988 . T)) +((|HasCategory| |#1| (QUOTE (-809 (-1089)))) (|HasCategory| |#1| (QUOTE (-950 (-1089))))) +(-520 E -3092) ((|constructor| (NIL "\\indented{1}{Internally used by the integration packages} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 12 August 1992 Keywords: integration.")) (|map| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |mainpart| |#1|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) "\\spad{map(f,ufe)} \\undocumented") (((|Union| |#2| "failed") (|Mapping| |#2| |#1|) (|Union| |#1| "failed")) "\\spad{map(f,ue)} \\undocumented") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed")) "\\spad{map(f,ure)} \\undocumented") (((|IntegrationResult| |#2|) (|Mapping| |#2| |#1|) (|IntegrationResult| |#1|)) "\\spad{map(f,ire)} \\undocumented"))) NIL NIL -(-520 R -3091) +(-521 R -3092) ((|constructor| (NIL "This package allows a sum of logs over the roots of a polynomial to be expressed as explicit logarithms and arc tangents,{} provided that the indexing polynomial can be factored into quadratics.")) (|complexExpand| ((|#2| (|IntegrationResult| |#2|)) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| |#2|) (|IntegrationResult| |#2|)) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| |#2|) (|IntegrationResult| |#2|)) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,x) + ... + sum_{Pn(a)=0} Q(a,x)} where \\spad{P1},{}...,{}Pn are the factors of \\spad{P}."))) NIL NIL -(-521) +(-522) ((|constructor| (NIL "This domain provides representations for the intermediate form data structure used by the Spad elaborator.")) (|irDef| (($ (|Identifier|) (|InternalTypeForm|) $) "\\spad{irDef(f,ts,e)} returns an IR representation for a definition of a function named \\spad{f},{} with signature \\spad{ts} and body \\spad{e}.")) (|irCtor| (($ (|Identifier|) (|InternalTypeForm|)) "\\spad{irCtor(n,t)} returns an IR for a constructor reference of type designated by the type form \\spad{t}")) (|irVar| (($ (|Identifier|) (|InternalTypeForm|)) "\\spad{irVar(x,t)} returns an IR for a variable reference of type designated by the type form \\spad{t}"))) NIL NIL -(-522 I) +(-523 I) ((|constructor| (NIL "The \\spadtype{IntegerRoots} package computes square roots and \\indented{2}{\\spad{n}th roots of integers efficiently.}")) (|approxSqrt| ((|#1| |#1|) "\\spad{approxSqrt(n)} returns an approximation \\spad{x} to \\spad{sqrt(n)} such that \\spad{-1 < x - sqrt(n) < 1}. Compute an approximation \\spad{s} to \\spad{sqrt(n)} such that \\indented{10}{\\spad{-1 < s - sqrt(n) < 1}} A variable precision Newton iteration is used. The running time is \\spad{O( log(n)**2 )}.")) (|perfectSqrt| (((|Union| |#1| "failed") |#1|) "\\spad{perfectSqrt(n)} returns the square root of \\spad{n} if \\spad{n} is a perfect square and returns \"failed\" otherwise")) (|perfectSquare?| (((|Boolean|) |#1|) "\\spad{perfectSquare?(n)} returns \\spad{true} if \\spad{n} is a perfect square and \\spad{false} otherwise")) (|approxNthRoot| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{approxRoot(n,r)} returns an approximation \\spad{x} to \\spad{n**(1/r)} such that \\spad{-1 < x - n**(1/r) < 1}")) (|perfectNthRoot| (((|Record| (|:| |base| |#1|) (|:| |exponent| (|NonNegativeInteger|))) |#1|) "\\spad{perfectNthRoot(n)} returns \\spad{[x,r]},{} where \\spad{n = x\\^r} and \\spad{r} is the largest integer such that \\spad{n} is a perfect \\spad{r}th power") (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{perfectNthRoot(n,r)} returns the \\spad{r}th root of \\spad{n} if \\spad{n} is an \\spad{r}th power and returns \"failed\" otherwise")) (|perfectNthPower?| (((|Boolean|) |#1| (|NonNegativeInteger|)) "\\spad{perfectNthPower?(n,r)} returns \\spad{true} if \\spad{n} is an \\spad{r}th power and \\spad{false} otherwise"))) NIL NIL -(-523 GF) +(-524 GF) ((|constructor| (NIL "This package exports the function generateIrredPoly that computes a monic irreducible polynomial of degree \\spad{n} over a finite field.")) (|generateIrredPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{generateIrredPoly(n)} generates an irreducible univariate polynomial of the given degree \\spad{n} over the finite field."))) NIL NIL -(-524 R) +(-525 R) ((|constructor| (NIL "\\indented{2}{This package allows a sum of logs over the roots of a polynomial} \\indented{2}{to be expressed as explicit logarithms and arc tangents,{} provided} \\indented{2}{that the indexing polynomial can be factored into quadratics.} Date Created: 21 August 1988 Date Last Updated: 4 October 1993")) (|complexIntegrate| (((|Expression| |#1|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{complexIntegrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|integrate| (((|Union| (|Expression| |#1|) (|List| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{integrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable..")) (|complexExpand| (((|Expression| |#1|) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| (|Expression| |#1|)) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,x) + ... + sum_{Pn(a)=0} Q(a,x)} where \\spad{P1},{}...,{}Pn are the factors of \\spad{P}."))) NIL ((|HasCategory| |#1| (QUOTE (-120)))) -(-525) +(-526) ((|constructor| (NIL "IrrRepSymNatPackage contains functions for computing the ordinary irreducible representations of symmetric groups on \\spad{n} letters {\\em {1,2,...,n}} in Young's natural form and their dimensions. These representations can be labelled by number partitions of \\spad{n},{} \\spadignore{i.e.} a weakly decreasing sequence of integers summing up to \\spad{n},{} \\spadignore{e.g.} {\\em [3,3,3,1]} labels an irreducible representation for \\spad{n} equals 10. Note: whenever a \\spadtype{List Integer} appears in a signature,{} a partition required.")) (|irreducibleRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|PositiveInteger|)) (|List| (|Permutation| (|Integer|)))) "\\spad{irreducibleRepresentation(lambda,listOfPerm)} is the list of the irreducible representations corresponding to {\\em lambda} in Young's natural form for the list of permutations given by {\\em listOfPerm}.") (((|List| (|Matrix| (|Integer|))) (|List| (|PositiveInteger|))) "\\spad{irreducibleRepresentation(lambda)} is the list of the two irreducible representations corresponding to the partition {\\em lambda} in Young's natural form for the following two generators of the symmetric group,{} whose elements permute {\\em {1,2,...,n}},{} namely {\\em (1 2)} (2-cycle) and {\\em (1 2 ... n)} (\\spad{n}-cycle).") (((|Matrix| (|Integer|)) (|List| (|PositiveInteger|)) (|Permutation| (|Integer|))) "\\spad{irreducibleRepresentation(lambda,pi)} is the irreducible representation corresponding to partition {\\em lambda} in Young's natural form of the permutation {\\em pi} in the symmetric group,{} whose elements permute {\\em {1,2,...,n}}.")) (|dimensionOfIrreducibleRepresentation| (((|NonNegativeInteger|) (|List| (|PositiveInteger|))) "\\spad{dimensionOfIrreducibleRepresentation(lambda)} is the dimension of the ordinary irreducible representation of the symmetric group corresponding to {\\em lambda}. Note: the Robinson-Thrall hook formula is implemented."))) NIL NIL -(-526 R E V P TS) +(-527 R E V P TS) ((|constructor| (NIL "\\indented{1}{An internal package for computing the rational univariate representation} \\indented{1}{of a zero-dimensional algebraic variety given by a square-free} \\indented{1}{triangular set.} \\indented{1}{The main operation is \\axiomOpFrom{rur}{InternalRationalUnivariateRepresentationPackage}.} \\indented{1}{It is based on the {\\em generic} algorithm description in [1]. \\newline References:} [1] \\spad{D}. LAZARD \"Solving Zero-dimensional Algebraic Systems\" \\indented{4}{Journal of Symbolic Computation,{} 1992,{} 13,{} 117-131}")) (|checkRur| (((|Boolean|) |#5| (|List| |#5|)) "\\spad{checkRur(ts,lus)} returns \\spad{true} if \\spad{lus} is a rational univariate representation of \\spad{ts}.")) (|rur| (((|List| |#5|) |#5| (|Boolean|)) "\\spad{rur(ts,univ?)} returns a rational univariate representation of \\spad{ts}. This assumes that the lowest polynomial in \\spad{ts} is a variable \\spad{v} which does not occur in the other polynomials of \\spad{ts}. This variable will be used to define the simple algebraic extension over which these other polynomials will be rewritten as univariate polynomials with degree one. If \\spad{univ?} is \\spad{true} then these polynomials will have a constant initial."))) NIL NIL -(-527) +(-528) ((|constructor| (NIL "This domain represents a `has' expression.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the is expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the is expression `e'."))) NIL NIL -(-528 E V R P) +(-529 E V R P) ((|constructor| (NIL "tools for the summation packages.")) (|sum| (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2|) "\\spad{sum(p(n), n)} returns \\spad{P(n)},{} the indefinite sum of \\spad{p(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{P(n+1) - P(n) = a(n)}.") (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2| (|Segment| |#4|)) "\\spad{sum(p(n), n = a..b)} returns \\spad{p(a) + p(a+1) + ... + p(b)}."))) NIL NIL -(-529 |Coef|) -((|constructor| (NIL "InnerSparseUnivariatePowerSeries is an internal domain \\indented{2}{used for creating sparse Taylor and Laurent series.}")) (|cAcsch| (($ $) "\\spad{cAcsch(f)} computes the inverse hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsech| (($ $) "\\spad{cAsech(f)} computes the inverse hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcoth| (($ $) "\\spad{cAcoth(f)} computes the inverse hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtanh| (($ $) "\\spad{cAtanh(f)} computes the inverse hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcosh| (($ $) "\\spad{cAcosh(f)} computes the inverse hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsinh| (($ $) "\\spad{cAsinh(f)} computes the inverse hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsch| (($ $) "\\spad{cCsch(f)} computes the hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSech| (($ $) "\\spad{cSech(f)} computes the hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCoth| (($ $) "\\spad{cCoth(f)} computes the hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTanh| (($ $) "\\spad{cTanh(f)} computes the hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCosh| (($ $) "\\spad{cCosh(f)} computes the hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSinh| (($ $) "\\spad{cSinh(f)} computes the hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcsc| (($ $) "\\spad{cAcsc(f)} computes the arccosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsec| (($ $) "\\spad{cAsec(f)} computes the arcsecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcot| (($ $) "\\spad{cAcot(f)} computes the arccotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtan| (($ $) "\\spad{cAtan(f)} computes the arctangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcos| (($ $) "\\spad{cAcos(f)} computes the arccosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsin| (($ $) "\\spad{cAsin(f)} computes the arcsine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsc| (($ $) "\\spad{cCsc(f)} computes the cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSec| (($ $) "\\spad{cSec(f)} computes the secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCot| (($ $) "\\spad{cCot(f)} computes the cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTan| (($ $) "\\spad{cTan(f)} computes the tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCos| (($ $) "\\spad{cCos(f)} computes the cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSin| (($ $) "\\spad{cSin(f)} computes the sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cLog| (($ $) "\\spad{cLog(f)} computes the logarithm of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cExp| (($ $) "\\spad{cExp(f)} computes the exponential of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cRationalPower| (($ $ (|Fraction| (|Integer|))) "\\spad{cRationalPower(f,r)} computes \\spad{f^r}. For use when the coefficient ring is commutative.")) (|cPower| (($ $ |#1|) "\\spad{cPower(f,r)} computes \\spad{f^r},{} where \\spad{f} has constant coefficient 1. For use when the coefficient ring is commutative.")) (|integrate| (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. Warning: function does not check for a term of degree \\spad{-1}.")) (|seriesToOutputForm| (((|OutputForm|) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) (|Reference| (|OrderedCompletion| (|Integer|))) (|Symbol|) |#1| (|Fraction| (|Integer|))) "\\spad{seriesToOutputForm(st,refer,var,cen,r)} prints the series \\spad{f((var - cen)^r)}.")) (|iCompose| (($ $ $) "\\spad{iCompose(f,g)} returns \\spad{f(g(x))}. This is an internal function which should only be called for Taylor series \\spad{f(x)} and \\spad{g(x)} such that the constant coefficient of \\spad{g(x)} is zero.")) (|taylorQuoByVar| (($ $) "\\spad{taylorQuoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...}")) (|iExquo| (((|Union| $ "failed") $ $ (|Boolean|)) "\\spad{iExquo(f,g,taylor?)} is the quotient of the power series \\spad{f} and \\spad{g}. If \\spad{taylor?} is \\spad{true},{} then we must have \\spad{order(f) >= order(g)}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(fn,f)} returns the series \\spad{sum(fn(n) * an * x^n,n = n0..)},{} where \\spad{f} is the series \\spad{sum(an * x^n,n = n0..)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")) (|getStream| (((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $) "\\spad{getStream(f)} returns the stream of terms representing the series \\spad{f}.")) (|getRef| (((|Reference| (|OrderedCompletion| (|Integer|))) $) "\\spad{getRef(f)} returns a reference containing the order to which the terms of \\spad{f} have been computed.")) (|makeSeries| (($ (|Reference| (|OrderedCompletion| (|Integer|))) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{makeSeries(refer,str)} creates a power series from the reference \\spad{refer} and the stream \\spad{str}."))) -(((-3995 "*") |has| |#1| (-146)) (-3986 |has| |#1| (-494)) (-3987 . T) (-3988 . T) (-3990 . T)) -((|HasCategory| |#1| (QUOTE (-38 (-348 (-483))))) (|HasCategory| |#1| (QUOTE (-494))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-494)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-808 (-1088)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-483)) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-483)) (|devaluate| |#1|)))) (|HasCategory| (-483) (QUOTE (-1024))) (|HasCategory| |#1| (QUOTE (-312))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-483))))) (|HasSignature| |#1| (|%list| (QUOTE -3944) (|%list| (|devaluate| |#1|) (QUOTE (-1088)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-483)))))) (-530 |Coef|) +((|constructor| (NIL "InnerSparseUnivariatePowerSeries is an internal domain \\indented{2}{used for creating sparse Taylor and Laurent series.}")) (|cAcsch| (($ $) "\\spad{cAcsch(f)} computes the inverse hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsech| (($ $) "\\spad{cAsech(f)} computes the inverse hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcoth| (($ $) "\\spad{cAcoth(f)} computes the inverse hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtanh| (($ $) "\\spad{cAtanh(f)} computes the inverse hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcosh| (($ $) "\\spad{cAcosh(f)} computes the inverse hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsinh| (($ $) "\\spad{cAsinh(f)} computes the inverse hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsch| (($ $) "\\spad{cCsch(f)} computes the hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSech| (($ $) "\\spad{cSech(f)} computes the hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCoth| (($ $) "\\spad{cCoth(f)} computes the hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTanh| (($ $) "\\spad{cTanh(f)} computes the hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCosh| (($ $) "\\spad{cCosh(f)} computes the hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSinh| (($ $) "\\spad{cSinh(f)} computes the hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcsc| (($ $) "\\spad{cAcsc(f)} computes the arccosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsec| (($ $) "\\spad{cAsec(f)} computes the arcsecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcot| (($ $) "\\spad{cAcot(f)} computes the arccotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtan| (($ $) "\\spad{cAtan(f)} computes the arctangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcos| (($ $) "\\spad{cAcos(f)} computes the arccosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsin| (($ $) "\\spad{cAsin(f)} computes the arcsine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsc| (($ $) "\\spad{cCsc(f)} computes the cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSec| (($ $) "\\spad{cSec(f)} computes the secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCot| (($ $) "\\spad{cCot(f)} computes the cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTan| (($ $) "\\spad{cTan(f)} computes the tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCos| (($ $) "\\spad{cCos(f)} computes the cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSin| (($ $) "\\spad{cSin(f)} computes the sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cLog| (($ $) "\\spad{cLog(f)} computes the logarithm of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cExp| (($ $) "\\spad{cExp(f)} computes the exponential of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cRationalPower| (($ $ (|Fraction| (|Integer|))) "\\spad{cRationalPower(f,r)} computes \\spad{f^r}. For use when the coefficient ring is commutative.")) (|cPower| (($ $ |#1|) "\\spad{cPower(f,r)} computes \\spad{f^r},{} where \\spad{f} has constant coefficient 1. For use when the coefficient ring is commutative.")) (|integrate| (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. Warning: function does not check for a term of degree \\spad{-1}.")) (|seriesToOutputForm| (((|OutputForm|) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) (|Reference| (|OrderedCompletion| (|Integer|))) (|Symbol|) |#1| (|Fraction| (|Integer|))) "\\spad{seriesToOutputForm(st,refer,var,cen,r)} prints the series \\spad{f((var - cen)^r)}.")) (|iCompose| (($ $ $) "\\spad{iCompose(f,g)} returns \\spad{f(g(x))}. This is an internal function which should only be called for Taylor series \\spad{f(x)} and \\spad{g(x)} such that the constant coefficient of \\spad{g(x)} is zero.")) (|taylorQuoByVar| (($ $) "\\spad{taylorQuoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...}")) (|iExquo| (((|Union| $ "failed") $ $ (|Boolean|)) "\\spad{iExquo(f,g,taylor?)} is the quotient of the power series \\spad{f} and \\spad{g}. If \\spad{taylor?} is \\spad{true},{} then we must have \\spad{order(f) >= order(g)}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(fn,f)} returns the series \\spad{sum(fn(n) * an * x^n,n = n0..)},{} where \\spad{f} is the series \\spad{sum(an * x^n,n = n0..)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")) (|getStream| (((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $) "\\spad{getStream(f)} returns the stream of terms representing the series \\spad{f}.")) (|getRef| (((|Reference| (|OrderedCompletion| (|Integer|))) $) "\\spad{getRef(f)} returns a reference containing the order to which the terms of \\spad{f} have been computed.")) (|makeSeries| (($ (|Reference| (|OrderedCompletion| (|Integer|))) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{makeSeries(refer,str)} creates a power series from the reference \\spad{refer} and the stream \\spad{str}."))) +(((-3996 "*") |has| |#1| (-146)) (-3987 |has| |#1| (-495)) (-3988 . T) (-3989 . T) (-3991 . T)) +((|HasCategory| |#1| (QUOTE (-38 (-349 (-484))))) (|HasCategory| |#1| (QUOTE (-495))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-809 (-1089)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-484)) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-484)) (|devaluate| |#1|)))) (|HasCategory| (-484) (QUOTE (-1025))) (|HasCategory| |#1| (QUOTE (-312))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-484))))) (|HasSignature| |#1| (|%list| (QUOTE -3945) (|%list| (|devaluate| |#1|) (QUOTE (-1089)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-484)))))) +(-531 |Coef|) ((|constructor| (NIL "Internal package for dense Taylor series. This is an internal Taylor series type in which Taylor series are represented by a \\spadtype{Stream} of \\spadtype{Ring} elements. For univariate series,{} the \\spad{Stream} elements are the Taylor coefficients. For multivariate series,{} the \\spad{n}th Stream element is a form of degree \\spad{n} in the power series variables.")) (* (($ $ (|Integer|)) "\\spad{x*i} returns the product of integer \\spad{i} and the series \\spad{x}.")) (|order| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{order(x,n)} returns the minimum of \\spad{n} and the order of \\spad{x}.") (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the order of a power series \\spad{x},{} \\indented{1}{\\spadignore{i.e.} the degree of the first non-zero term of the series.}")) (|pole?| (((|Boolean|) $) "\\spad{pole?(x)} tests if the series \\spad{x} has a pole. \\indented{1}{Note: this is \\spad{false} when \\spad{x} is a Taylor series.}")) (|series| (($ (|Stream| |#1|)) "\\spad{series(s)} creates a power series from a stream of \\indented{1}{ring elements.} \\indented{1}{For univariate series types,{} the stream \\spad{s} should be a stream} \\indented{1}{of Taylor coefficients. For multivariate series types,{} the} \\indented{1}{stream \\spad{s} should be a stream of forms the \\spad{n}th element} \\indented{1}{of which is a} \\indented{1}{form of degree \\spad{n} in the power series variables.}")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(x)} returns a stream of ring elements. \\indented{1}{When \\spad{x} is a univariate series,{} this is a stream of Taylor} \\indented{1}{coefficients. When \\spad{x} is a multivariate series,{} the} \\indented{1}{\\spad{n}th element of the stream is a form of} \\indented{1}{degree \\spad{n} in the power series variables.}"))) -(((-3995 "*") |has| |#1| (-494)) (-3986 |has| |#1| (-494)) (-3987 . T) (-3988 . T) (-3990 . T)) -((|HasCategory| |#1| (QUOTE (-494)))) -(-531) +(((-3996 "*") |has| |#1| (-495)) (-3987 |has| |#1| (-495)) (-3988 . T) (-3989 . T) (-3991 . T)) +((|HasCategory| |#1| (QUOTE (-495)))) +(-532) ((|constructor| (NIL "This domain provides representations for internal type form.")) (|mappingMode| (($ $ (|List| $)) "\\spad{mappingMode(r,ts)} returns a mapping mode with return mode \\spad{r},{} and parameter modes \\spad{ts}.")) (|categoryMode| (($) "\\spad{categoryMode} is a constant mode denoting Category.")) (|voidMode| (($) "\\spad{voidMode} is a constant mode denoting Void.")) (|noValueMode| (($) "\\spad{noValueMode} is a constant mode that indicates that the value of an expression is to be ignored.")) (|jokerMode| (($) "\\spad{jokerMode} is a constant that stands for any mode in a type inference context"))) NIL NIL -(-532 A B) +(-533 A B) ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|InfiniteTuple| |#2|) (|Mapping| |#2| |#1|) (|InfiniteTuple| |#1|)) "\\spad{map(f,[x0,x1,x2,...])} returns \\spad{[f(x0),f(x1),f(x2),..]}."))) NIL NIL -(-533 A B C) +(-534 A B C) ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|Stream| |#2|)) "\\spad{map(f,a,b)} \\undocumented") (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,a,b)} \\undocumented") (((|InfiniteTuple| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,a,b)} \\undocumented"))) NIL NIL -(-534 R -3091 FG) +(-535 R -3092 FG) ((|constructor| (NIL "This package provides transformations from trigonometric functions to exponentials and logarithms,{} and back. \\spad{F} and FG should be the same type of function space.")) (|trigs2explogs| ((|#3| |#3| (|List| (|Kernel| |#3|)) (|List| (|Symbol|))) "\\spad{trigs2explogs(f, [k1,...,kn], [x1,...,xm])} rewrites all the trigonometric functions appearing in \\spad{f} and involving one of the \\spad{xi's} in terms of complex logarithms and exponentials. A kernel of the form \\spad{tan(u)} is expressed using \\spad{exp(u)**2} if it is one of the \\spad{ki's},{} in terms of \\spad{exp(2*u)} otherwise.")) (|explogs2trigs| (((|Complex| |#2|) |#3|) "\\spad{explogs2trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (F2FG ((|#3| |#2|) "\\spad{F2FG(a + sqrt(-1) b)} returns \\spad{a + i b}.")) (FG2F ((|#2| |#3|) "\\spad{FG2F(a + i b)} returns \\spad{a + sqrt(-1) b}.")) (GF2FG ((|#3| (|Complex| |#2|)) "\\spad{GF2FG(a + i b)} returns \\spad{a + i b} viewed as a function with the \\spad{i} pushed down into the coefficient domain."))) NIL NIL -(-535 S) +(-536 S) ((|constructor| (NIL "This package implements 'infinite tuples' for the interpreter. The representation is a stream.")) (|construct| (((|Stream| |#1|) $) "\\spad{construct(t)} converts an infinite tuple to a stream.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,s)} returns \\spad{[s,f(s),f(f(s)),...]}.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,t)} returns \\spad{[x for x in t | p(x)]}.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,t)} returns \\spad{[x for x in t while not p(x)]}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,t)} returns \\spad{[x for x in t while p(x)]}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,t)} replaces the tuple \\spad{t} by \\spad{[f(x) for x in t]}."))) NIL NIL -(-536 S |Index| |Entry|) +(-537 S |Index| |Entry|) ((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#2| |#2|) "\\spad{swap!(u,i,j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#3|) "\\spad{fill!(u,x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#3| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#2| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#2| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#3| $) "\\spad{entry?(x,u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#2|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#2| $) "\\spad{index?(i,u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#3|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order."))) NIL -((|HasAttribute| |#1| (QUOTE -3994)) (|HasCategory| |#2| (QUOTE (-755))) (|HasAttribute| |#1| (QUOTE -3993)) (|HasCategory| |#3| (QUOTE (-1012)))) -(-537 |Index| |Entry|) +((|HasAttribute| |#1| (QUOTE -3995)) (|HasCategory| |#2| (QUOTE (-756))) (|HasAttribute| |#1| (QUOTE -3994)) (|HasCategory| |#3| (QUOTE (-1013)))) +(-538 |Index| |Entry|) ((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#1| |#1|) "\\spad{swap!(u,i,j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#2|) "\\spad{fill!(u,x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#2| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#1| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#1| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#2| $) "\\spad{entry?(x,u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#1|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#1| $) "\\spad{index?(i,u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#2|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order."))) NIL NIL -(-538) +(-539) ((|constructor| (NIL "This domain represents the join of categories ASTs.")) (|categories| (((|List| (|TypeAst|)) $) "catehories(\\spad{x}) returns the types in the join `x'.")) (|coerce| (($ (|List| (|TypeAst|))) "ts::JoinAst construct the AST for a join of the types `ts'."))) NIL NIL -(-539 R A) +(-540 R A) ((|constructor| (NIL "\\indented{1}{AssociatedJordanAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A}} \\indented{1}{to define the new multiplications \\spad{a*b := (a *\\$A b + b *\\$A a)/2}} \\indented{1}{(anticommutator).} \\indented{1}{The usual notation \\spad{{a,b}_+} cannot be used due to} \\indented{1}{restrictions in the current language.} \\indented{1}{This domain only gives a Jordan algebra if the} \\indented{1}{Jordan-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds} \\indented{1}{for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}.} \\indented{1}{This relation can be checked by} \\indented{1}{\\spadfun{jordanAdmissible?()\\$A}.} \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Jordan algebra. Moreover,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same \\spad{true} for the associated Jordan algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Jordan algebra \\spadtype{AssociatedJordanAlgebra}(\\spad{R},{}A)."))) -((-3990 OR (-2561 (|has| |#2| (-316 |#1|)) (|has| |#1| (-494))) (-12 (|has| |#2| (-359 |#1|)) (|has| |#1| (-494)))) (-3988 . T) (-3987 . T)) -((OR (|HasCategory| |#2| (|%list| (QUOTE -316) (|devaluate| |#1|))) (|HasCategory| |#2| (|%list| (QUOTE -359) (|devaluate| |#1|)))) (|HasCategory| |#2| (|%list| (QUOTE -359) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (|%list| (QUOTE -359) (|devaluate| |#1|)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#2| (|%list| (QUOTE -316) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#2| (|%list| (QUOTE -359) (|devaluate| |#1|))))) (|HasCategory| |#2| (|%list| (QUOTE -316) (|devaluate| |#1|)))) -(-540) +((-3991 OR (-2562 (|has| |#2| (-316 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-495)))) (-3989 . T) (-3988 . T)) +((OR (|HasCategory| |#2| (|%list| (QUOTE -316) (|devaluate| |#1|))) (|HasCategory| |#2| (|%list| (QUOTE -360) (|devaluate| |#1|)))) (|HasCategory| |#2| (|%list| (QUOTE -360) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (|%list| (QUOTE -360) (|devaluate| |#1|)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#2| (|%list| (QUOTE -316) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#2| (|%list| (QUOTE -360) (|devaluate| |#1|))))) (|HasCategory| |#2| (|%list| (QUOTE -316) (|devaluate| |#1|)))) +(-541) ((|constructor| (NIL "This is the datatype for the JVM bytecodes."))) NIL NIL -(-541) +(-542) ((|constructor| (NIL "JVM class file access bitmask and values.")) (|jvmAbstract| (($) "The class was declared abstract; therefore object of this class may not be created.")) (|jvmInterface| (($) "The class file represents an interface,{} not a class.")) (|jvmSuper| (($) "Instruct the JVM to treat base clss method invokation specially.")) (|jvmFinal| (($) "The class was declared final; therefore no derived class allowed.")) (|jvmPublic| (($) "The class was declared public,{} therefore may be accessed from outside its package"))) NIL NIL -(-542) +(-543) ((|constructor| (NIL "JVM class file constant pool tags.")) (|jvmNameAndTypeConstantTag| (($) "The correspondong constant pool entry represents the name and type of a field or method info.")) (|jvmInterfaceMethodConstantTag| (($) "The correspondong constant pool entry represents an interface method info.")) (|jvmMethodrefConstantTag| (($) "The correspondong constant pool entry represents a class method info.")) (|jvmFieldrefConstantTag| (($) "The corresponding constant pool entry represents a class field info.")) (|jvmStringConstantTag| (($) "The corresponding constant pool entry is a string constant info.")) (|jvmClassConstantTag| (($) "The corresponding constant pool entry represents a class or and interface.")) (|jvmDoubleConstantTag| (($) "The corresponding constant pool entry is a double constant info.")) (|jvmLongConstantTag| (($) "The corresponding constant pool entry is a long constant info.")) (|jvmFloatConstantTag| (($) "The corresponding constant pool entry is a float constant info.")) (|jvmIntegerConstantTag| (($) "The corresponding constant pool entry is an integer constant info.")) (|jvmUTF8ConstantTag| (($) "The corresponding constant pool entry is sequence of bytes representing Java \\spad{UTF8} string constant."))) NIL NIL -(-543) +(-544) ((|constructor| (NIL "JVM class field access bitmask and values.")) (|jvmTransient| (($) "The field was declared transient.")) (|jvmVolatile| (($) "The field was declared volatile.")) (|jvmFinal| (($) "The field was declared final; therefore may not be modified after initialization.")) (|jvmStatic| (($) "The field was declared static.")) (|jvmProtected| (($) "The field was declared protected; therefore may be accessed withing derived classes.")) (|jvmPrivate| (($) "The field was declared private; threfore can be accessed only within the defining class.")) (|jvmPublic| (($) "The field was declared public; therefore mey accessed from outside its package."))) NIL NIL -(-544) +(-545) ((|constructor| (NIL "JVM class method access bitmask and values.")) (|jvmStrict| (($) "The method was declared fpstrict; therefore floating-point mode is FP-strict.")) (|jvmAbstract| (($) "The method was declared abstract; therefore no implementation is provided.")) (|jvmNative| (($) "The method was declared native; therefore implemented in a language other than Java.")) (|jvmSynchronized| (($) "The method was declared synchronized.")) (|jvmFinal| (($) "The method was declared final; therefore may not be overriden. in derived classes.")) (|jvmStatic| (($) "The method was declared static.")) (|jvmProtected| (($) "The method was declared protected; therefore may be accessed withing derived classes.")) (|jvmPrivate| (($) "The method was declared private; threfore can be accessed only within the defining class.")) (|jvmPublic| (($) "The method was declared public; therefore mey accessed from outside its package."))) NIL NIL -(-545) +(-546) ((|constructor| (NIL "This is the datatype for the JVM opcodes."))) NIL NIL -(-546 |Entry|) +(-547 |Entry|) ((|constructor| (NIL "This domain allows a random access file to be viewed both as a table and as a file object.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space."))) -((-3993 . T) (-3994 . T)) -((-12 (|HasCategory| (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (QUOTE (|:| -3858 (-1071))) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|)) (QUOTE (-1012)))) (|HasCategory| (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|)) (QUOTE (-552 (-472)))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| (-1071) (QUOTE (-755))) (|HasCategory| (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|)) (QUOTE (-1012))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-551 (-771)))) (|HasCategory| (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|)) (QUOTE (-551 (-771)))) (|HasCategory| (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|)) (QUOTE (-72)))) -(-547 S |Key| |Entry|) +((-3994 . T) (-3995 . T)) +((-12 (|HasCategory| (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (QUOTE (|:| -3859 (-1072))) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (QUOTE (-1013)))) (|HasCategory| (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (QUOTE (-553 (-473)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| (-1072) (QUOTE (-756))) (|HasCategory| (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (QUOTE (-552 (-772)))) (|HasCategory| (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (QUOTE (-72)))) +(-548 S |Key| |Entry|) ((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#3| "failed") |#2| $) "\\spad{search(k,t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#3| "failed") |#2| $) "\\spad{remove!(k,t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#2|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#2| $) "\\spad{key?(k,t)} tests if \\spad{k} is a key in table \\spad{t}."))) NIL NIL -(-548 |Key| |Entry|) +(-549 |Key| |Entry|) ((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#2| "failed") |#1| $) "\\spad{search(k,t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#2| "failed") |#1| $) "\\spad{remove!(k,t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#1|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#1| $) "\\spad{key?(k,t)} tests if \\spad{k} is a key in table \\spad{t}."))) -((-3994 . T)) +((-3995 . T)) NIL -(-549 S) +(-550 S) ((|constructor| (NIL "A kernel over a set \\spad{S} is an operator applied to a given list of arguments from \\spad{S}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op(a1,...,an), s)} tests if the name of op is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(op(a1,...,an), f)} tests if op = \\spad{f}.")) (|symbolIfCan| (((|Union| (|Symbol|) "failed") $) "\\spad{symbolIfCan(k)} returns \\spad{k} viewed as a symbol if \\spad{k} is a symbol,{} and \"failed\" otherwise.")) (|kernel| (($ (|Symbol|)) "\\spad{kernel(x)} returns \\spad{x} viewed as a kernel.") (($ (|BasicOperator|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{kernel(op, [a1,...,an], m)} returns the kernel \\spad{op(a1,...,an)} of nesting level \\spad{m}. Error: if \\spad{op} is \\spad{k}-ary for some \\spad{k} not equal to \\spad{m}.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(k)} returns the nesting level of \\spad{k}.")) (|argument| (((|List| |#1|) $) "\\spad{argument(op(a1,...,an))} returns \\spad{[a1,...,an]}.")) (|operator| (((|BasicOperator|) $) "\\spad{operator(op(a1,...,an))} returns the operator op."))) NIL -((|HasCategory| |#1| (QUOTE (-552 (-472)))) (|HasCategory| |#1| (QUOTE (-552 (-799 (-328))))) (|HasCategory| |#1| (QUOTE (-552 (-799 (-483)))))) -(-550 R S) +((|HasCategory| |#1| (QUOTE (-553 (-473)))) (|HasCategory| |#1| (QUOTE (-553 (-800 (-329))))) (|HasCategory| |#1| (QUOTE (-553 (-800 (-484)))))) +(-551 R S) ((|constructor| (NIL "This package exports some auxiliary functions on kernels")) (|constantIfCan| (((|Union| |#1| "failed") (|Kernel| |#2|)) "\\spad{constantIfCan(k)} \\undocumented")) (|constantKernel| (((|Kernel| |#2|) |#1|) "\\spad{constantKernel(r)} \\undocumented"))) NIL NIL -(-551 S) +(-552 S) ((|constructor| (NIL "A is coercible to \\spad{B} means any element of A can automatically be converted into an element of \\spad{B} by the interpreter.")) (|coerce| ((|#1| $) "\\spad{coerce(a)} transforms a into an element of \\spad{S}."))) NIL NIL -(-552 S) +(-553 S) ((|constructor| (NIL "A is convertible to \\spad{B} means any element of A can be converted into an element of \\spad{B},{} but not automatically by the interpreter.")) (|convert| ((|#1| $) "\\spad{convert(a)} transforms a into an element of \\spad{S}."))) NIL NIL -(-553 -3091 UP) +(-554 -3092 UP) ((|constructor| (NIL "\\spadtype{Kovacic} provides a modified Kovacic's algorithm for solving explicitely irreducible 2nd order linear ordinary differential equations.")) (|kovacic| (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{kovacic(a_0,a_1,a_2,ezfactor)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{\\$a_2 y'' + a_1 y' + a0 y = 0\\$}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{kovacic(a_0,a_1,a_2)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{a_2 y'' + a_1 y' + a0 y = 0}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions."))) NIL NIL -(-554 S) +(-555 S) ((|constructor| (NIL "A is coercible from \\spad{B} iff any element of domain \\spad{B} can be automically converted into an element of domain A.")) (|coerce| (($ |#1|) "\\spad{coerce(s)} transforms `s' into an element of `\\%'."))) NIL NIL -(-555) +(-556) ((|constructor| (NIL "This domain implements Kleene's 3-valued propositional logic.")) (|case| (((|Boolean|) $ (|[\|\|]| |true|)) "\\spad{s case true} holds if the value of `x' is `true'.") (((|Boolean|) $ (|[\|\|]| |unknown|)) "\\spad{x case unknown} holds if the value of `x' is `unknown'") (((|Boolean|) $ (|[\|\|]| |false|)) "\\spad{x case false} holds if the value of `x' is `false'")) (|unknown| (($) "the indefinite `unknown'"))) NIL NIL -(-556 S) +(-557 S) ((|constructor| (NIL "A is convertible from \\spad{B} iff any element of domain \\spad{B} can be explicitly converted into an element of domain A.")) (|convert| (($ |#1|) "\\spad{convert(s)} transforms `s' into an element of `\\%'."))) NIL NIL -(-557 A R S) +(-558 A R S) ((|constructor| (NIL "LocalAlgebra produces the localization of an algebra,{} \\spadignore{i.e.} fractions whose numerators come from some \\spad{R} algebra.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{a / d} divides the element \\spad{a} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}."))) -((-3987 . T) (-3988 . T) (-3990 . T)) -((|HasCategory| |#1| (QUOTE (-754)))) -(-558 S R) +((-3988 . T) (-3989 . T) (-3991 . T)) +((|HasCategory| |#1| (QUOTE (-755)))) +(-559 S R) ((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#2|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra."))) NIL NIL -(-559 R) +(-560 R) ((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#1|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra."))) -((-3990 . T)) +((-3991 . T)) NIL -(-560 R -3091) +(-561 R -3092) ((|constructor| (NIL "This package computes the forward Laplace Transform.")) (|laplace| ((|#2| |#2| (|Symbol|) (|Symbol|)) "\\spad{laplace(f, t, s)} returns the Laplace transform of \\spad{f(t)} using \\spad{s} as the new variable. This is \\spad{integral(exp(-s*t)*f(t), t = 0..\\%plusInfinity)}. Returns the formal object \\spad{laplace(f, t, s)} if it cannot compute the transform."))) NIL NIL -(-561 R UP) +(-562 R UP) ((|constructor| (NIL "\\indented{1}{Univariate polynomials with negative and positive exponents.} Author: Manuel Bronstein Date Created: May 1988 Date Last Updated: 26 Apr 1990")) (|separate| (((|Record| (|:| |polyPart| $) (|:| |fracPart| (|Fraction| |#2|))) (|Fraction| |#2|)) "\\spad{separate(x)} \\undocumented")) (|monomial| (($ |#1| (|Integer|)) "\\spad{monomial(x,n)} \\undocumented")) (|coefficient| ((|#1| $ (|Integer|)) "\\spad{coefficient(x,n)} \\undocumented")) (|trailingCoefficient| ((|#1| $) "\\spad{trailingCoefficient }\\undocumented")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient }\\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|order| (((|Integer|) $) "\\spad{order(x)} \\undocumented")) (|degree| (((|Integer|) $) "\\spad{degree(x)} \\undocumented")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} \\undocumented"))) -((-3988 . T) (-3987 . T) ((-3995 "*") . T) (-3986 . T) (-3990 . T)) -((|HasCategory| |#2| (QUOTE (-808 (-1088)))) (|HasCategory| |#2| (QUOTE (-810 (-1088)))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-949 (-348 (-483))))) (|HasCategory| |#1| (QUOTE (-949 (-483))))) -(-562 R E V P TS ST) +((-3989 . T) (-3988 . T) ((-3996 "*") . T) (-3987 . T) (-3991 . T)) +((|HasCategory| |#2| (QUOTE (-809 (-1089)))) (|HasCategory| |#2| (QUOTE (-811 (-1089)))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-950 (-349 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-484))))) +(-563 R E V P TS ST) ((|constructor| (NIL "A package for solving polynomial systems by means of Lazard triangular sets [1]. This package provides two operations. One for solving in the sense of the regular zeros,{} and the other for solving in the sense of the Zariski closure. Both produce square-free regular sets. Moreover,{} the decompositions do not contain any redundant component. However,{} only zero-dimensional regular sets are normalized,{} since normalization may be time consumming in positive dimension. The decomposition process is that of [2].\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| |#6|) (|List| |#4|) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{}clos?)} has the same specifications as \\axiomOpFrom{zeroSetSplit(lp,{}clos?)}{RegularTriangularSetCategory}.")) (|normalizeIfCan| ((|#6| |#6|) "\\axiom{normalizeIfCan(ts)} returns \\axiom{ts} in an normalized shape if \\axiom{ts} is zero-dimensional."))) NIL NIL -(-563 OV E Z P) +(-564 OV E Z P) ((|constructor| (NIL "Package for leading coefficient determination in the lifting step. Package working for every \\spad{R} euclidean with property \"F\".")) (|distFact| (((|Union| (|Record| (|:| |polfac| (|List| |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (|List| (|SparseUnivariatePolynomial| |#3|)))) "failed") |#3| (|List| (|SparseUnivariatePolynomial| |#3|)) (|Record| (|:| |contp| |#3|) (|:| |factors| (|List| (|Record| (|:| |irr| |#4|) (|:| |pow| (|Integer|)))))) (|List| |#3|) (|List| |#1|) (|List| |#3|)) "\\spad{distFact(contm,unilist,plead,vl,lvar,lval)},{} where \\spad{contm} is the content of the evaluated polynomial,{} \\spad{unilist} is the list of factors of the evaluated polynomial,{} \\spad{plead} is the complete factorization of the leading coefficient,{} \\spad{vl} is the list of factors of the leading coefficient evaluated,{} \\spad{lvar} is the list of variables,{} \\spad{lval} is the list of values,{} returns a record giving the list of leading coefficients to impose on the univariate factors,{}")) (|polCase| (((|Boolean|) |#3| (|NonNegativeInteger|) (|List| |#3|)) "\\spad{polCase(contprod, numFacts, evallcs)},{} where \\spad{contprod} is the product of the content of the leading coefficient of the polynomial to be factored with the content of the evaluated polynomial,{} \\spad{numFacts} is the number of factors of the leadingCoefficient,{} and evallcs is the list of the evaluated factors of the leadingCoefficient,{} returns \\spad{true} if the factors of the leading Coefficient can be distributed with this valuation."))) NIL NIL -(-564) +(-565) ((|constructor| (NIL "This domain represents assignment expressions.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the assignment expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the assignment expression `e'."))) NIL NIL -(-565 |VarSet| R |Order|) +(-566 |VarSet| R |Order|) ((|constructor| (NIL "Management of the Lie Group associated with a free nilpotent Lie algebra. Every Lie bracket with length greater than \\axiom{Order} are assumed to be null. The implementation inherits from the \\spadtype{XPBWPolynomial} domain constructor: Lyndon coordinates are exponential coordinates of the second kind. \\newline Author: Michel Petitot (petitot@lifl.fr).")) (|identification| (((|List| (|Equation| |#2|)) $ $) "\\axiom{identification(\\spad{g},{}\\spad{h})} returns the list of equations \\axiom{g_i = h_i},{} where \\axiom{g_i} (resp. \\axiom{h_i}) are exponential coordinates of \\axiom{\\spad{g}} (resp. \\axiom{\\spad{h}}).")) (|LyndonCoordinates| (((|List| (|Record| (|:| |k| (|LyndonWord| |#1|)) (|:| |c| |#2|))) $) "\\axiom{LyndonCoordinates(\\spad{g})} returns the exponential coordinates of \\axiom{\\spad{g}}.")) (|LyndonBasis| (((|List| (|LiePolynomial| |#1| |#2|)) (|List| |#1|)) "\\axiom{LyndonBasis(lv)} returns the Lyndon basis of the nilpotent free Lie algebra.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{g})} returns the list of variables of \\axiom{\\spad{g}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{g})} is the mirror of the internal representation of \\axiom{\\spad{g}}.")) (|coerce| (((|XPBWPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| (|PoincareBirkhoffWittLyndonBasis| |#1|)) (|:| |c| |#2|))) $) "\\axiom{ListOfTerms(\\spad{p})} returns the internal representation of \\axiom{\\spad{p}}.")) (|log| (((|LiePolynomial| |#1| |#2|) $) "\\axiom{log(\\spad{p})} returns the logarithm of \\axiom{\\spad{p}}.")) (|exp| (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{exp(\\spad{p})} returns the exponential of \\axiom{\\spad{p}}."))) -((-3990 . T)) +((-3991 . T)) NIL -(-566 R |ls|) +(-567 R |ls|) ((|constructor| (NIL "A package for solving polynomial systems with finitely many solutions. The decompositions are given by means of regular triangular sets. The computations use lexicographical Groebner bases. The main operations are \\axiomOpFrom{lexTriangular}{LexTriangularPackage} and \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage}. The second one provide decompositions by means of square-free regular triangular sets. Both are based on the {\\em lexTriangular} method described in [1]. They differ from the algorithm described in [2] by the fact that multiciplities of the roots are not kept. With the \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage} operation all multiciplities are removed. With the other operation some multiciplities may remain. Both operations admit an optional argument to produce normalized triangular sets. \\newline")) (|zeroSetSplit| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{} norm?)} decomposes the variety associated with \\axiom{lp} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{lp} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{} norm?)} decomposes the variety associated with \\axiom{lp} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{lp} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|squareFreeLexTriangular| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{squareFreeLexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|lexTriangular| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{lexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|groebner| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{groebner(lp)} returns the lexicographical Groebner basis of \\axiom{lp}. If \\axiom{lp} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "failed") (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{fglmIfCan(lp)} returns the lexicographical Groebner basis of \\axiom{lp} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(lp)} holds .")) (|zeroDimensional?| (((|Boolean|) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{zeroDimensional?(lp)} returns \\spad{true} iff \\axiom{lp} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables involved in \\axiom{lp}."))) NIL NIL -(-567 R -3091) +(-568 R -3092) ((|constructor| (NIL "This package provides liouvillian functions over an integral domain.")) (|integral| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{integral(f,x = a..b)} denotes the definite integral of \\spad{f} with respect to \\spad{x} from \\spad{a} to \\spad{b}.") ((|#2| |#2| (|Symbol|)) "\\spad{integral(f,x)} indefinite integral of \\spad{f} with respect to \\spad{x}.")) (|dilog| ((|#2| |#2|) "\\spad{dilog(f)} denotes the dilogarithm")) (|erf| ((|#2| |#2|) "\\spad{erf(f)} denotes the error function")) (|li| ((|#2| |#2|) "\\spad{li(f)} denotes the logarithmic integral")) (|Ci| ((|#2| |#2|) "\\spad{Ci(f)} denotes the cosine integral")) (|Si| ((|#2| |#2|) "\\spad{Si(f)} denotes the sine integral")) (|Ei| ((|#2| |#2|) "\\spad{Ei(f)} denotes the exponential integral")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns the Liouvillian operator based on \\spad{op}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} checks if \\spad{op} is Liouvillian"))) NIL NIL -(-568) +(-569) ((|constructor| (NIL "Category for the transcendental Liouvillian functions.")) (|erf| (($ $) "\\spad{erf(x)} returns the error function of \\spad{x},{} \\spadignore{i.e.} \\spad{2 / sqrt(\\%pi)} times the integral of \\spad{exp(-x**2) dx}.")) (|dilog| (($ $) "\\spad{dilog(x)} returns the dilogarithm of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{log(x) / (1 - x) dx}.")) (|li| (($ $) "\\spad{li(x)} returns the logarithmic integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{dx / log(x)}.")) (|Ci| (($ $) "\\spad{Ci(x)} returns the cosine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{cos(x) / x dx}.")) (|Si| (($ $) "\\spad{Si(x)} returns the sine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{sin(x) / x dx}.")) (|Ei| (($ $) "\\spad{Ei(x)} returns the exponential integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{exp(x)/x dx}."))) NIL NIL -(-569 |lv| -3091) +(-570 |lv| -3092) ((|constructor| (NIL "\\indented{1}{Given a Groebner basis \\spad{B} with respect to the total degree ordering for} a zero-dimensional ideal \\spad{I},{} compute a Groebner basis with respect to the lexicographical ordering by using linear algebra.")) (|transform| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{transform }\\undocumented")) (|choosemon| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{choosemon }\\undocumented")) (|intcompBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{intcompBasis }\\undocumented")) (|anticoord| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|List| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{anticoord }\\undocumented")) (|coord| (((|Vector| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{coord }\\undocumented")) (|computeBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{computeBasis }\\undocumented")) (|minPol| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented") (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented")) (|totolex| (((|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{totolex }\\undocumented")) (|groebgen| (((|Record| (|:| |glbase| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |glval| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{groebgen }\\undocumented")) (|linGenPos| (((|Record| (|:| |gblist| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |gvlist| (|List| (|Integer|)))) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{linGenPos }\\undocumented"))) NIL NIL -(-570) +(-571) ((|constructor| (NIL "This domain provides a simple way to save values in files.")) (|setelt| (((|Any|) $ (|Symbol|) (|Any|)) "\\spad{lib.k := v} saves the value \\spad{v} in the library \\spad{lib}. It can later be extracted using the key \\spad{k}.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")) (|library| (($ (|FileName|)) "\\spad{library(ln)} creates a new library file."))) -((-3994 . T)) -((-12 (|HasCategory| (-2 (|:| -3858 (-1071)) (|:| |entry| (-51))) (QUOTE (-260 (-2 (|:| -3858 (-1071)) (|:| |entry| (-51)))))) (|HasCategory| (-2 (|:| -3858 (-1071)) (|:| |entry| (-51))) (QUOTE (-1012)))) (OR (|HasCategory| (-51) (QUOTE (-1012))) (|HasCategory| (-2 (|:| -3858 (-1071)) (|:| |entry| (-51))) (QUOTE (-1012)))) (OR (|HasCategory| (-51) (QUOTE (-72))) (|HasCategory| (-51) (QUOTE (-1012))) (|HasCategory| (-2 (|:| -3858 (-1071)) (|:| |entry| (-51))) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3858 (-1071)) (|:| |entry| (-51))) (QUOTE (-1012)))) (OR (|HasCategory| (-2 (|:| -3858 (-1071)) (|:| |entry| (-51))) (QUOTE (-551 (-771)))) (|HasCategory| (-51) (QUOTE (-551 (-771))))) (|HasCategory| (-2 (|:| -3858 (-1071)) (|:| |entry| (-51))) (QUOTE (-552 (-472)))) (-12 (|HasCategory| (-51) (QUOTE (-260 (-51)))) (|HasCategory| (-51) (QUOTE (-1012)))) (|HasCategory| (-1071) (QUOTE (-755))) (OR (|HasCategory| (-51) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3858 (-1071)) (|:| |entry| (-51))) (QUOTE (-72)))) (|HasCategory| (-51) (QUOTE (-1012))) (|HasCategory| (-51) (QUOTE (-72))) (|HasCategory| (-51) (QUOTE (-551 (-771)))) (|HasCategory| (-2 (|:| -3858 (-1071)) (|:| |entry| (-51))) (QUOTE (-551 (-771)))) (|HasCategory| (-2 (|:| -3858 (-1071)) (|:| |entry| (-51))) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3858 (-1071)) (|:| |entry| (-51))) (QUOTE (-1012)))) -(-571 R A) +((-3995 . T)) +((-12 (|HasCategory| (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))) (QUOTE (-260 (-2 (|:| -3859 (-1072)) (|:| |entry| (-51)))))) (|HasCategory| (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))) (QUOTE (-1013)))) (OR (|HasCategory| (-51) (QUOTE (-1013))) (|HasCategory| (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))) (QUOTE (-1013)))) (OR (|HasCategory| (-51) (QUOTE (-72))) (|HasCategory| (-51) (QUOTE (-1013))) (|HasCategory| (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))) (QUOTE (-1013)))) (OR (|HasCategory| (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))) (QUOTE (-552 (-772)))) (|HasCategory| (-51) (QUOTE (-552 (-772))))) (|HasCategory| (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))) (QUOTE (-553 (-473)))) (-12 (|HasCategory| (-51) (QUOTE (-260 (-51)))) (|HasCategory| (-51) (QUOTE (-1013)))) (|HasCategory| (-1072) (QUOTE (-756))) (OR (|HasCategory| (-51) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))) (QUOTE (-72)))) (|HasCategory| (-51) (QUOTE (-1013))) (|HasCategory| (-51) (QUOTE (-72))) (|HasCategory| (-51) (QUOTE (-552 (-772)))) (|HasCategory| (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))) (QUOTE (-552 (-772)))) (|HasCategory| (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))) (QUOTE (-1013)))) +(-572 R A) ((|constructor| (NIL "AssociatedLieAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A} to define the Lie bracket \\spad{a*b := (a *\\$A b - b *\\$A a)} (commutator). Note that the notation \\spad{[a,b]} cannot be used due to restrictions of the current compiler. This domain only gives a Lie algebra if the Jacobi-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}. This relation can be checked by \\spad{lieAdmissible?()\\$A}. \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Lie algebra. Also,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same is \\spad{true} for the associated Lie algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Lie algebra \\spadtype{AssociatedLieAlgebra}(\\spad{R},{}A)."))) -((-3990 OR (-2561 (|has| |#2| (-316 |#1|)) (|has| |#1| (-494))) (-12 (|has| |#2| (-359 |#1|)) (|has| |#1| (-494)))) (-3988 . T) (-3987 . T)) -((OR (|HasCategory| |#2| (|%list| (QUOTE -316) (|devaluate| |#1|))) (|HasCategory| |#2| (|%list| (QUOTE -359) (|devaluate| |#1|)))) (|HasCategory| |#2| (|%list| (QUOTE -359) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (|%list| (QUOTE -359) (|devaluate| |#1|)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#2| (|%list| (QUOTE -316) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#2| (|%list| (QUOTE -359) (|devaluate| |#1|))))) (|HasCategory| |#2| (|%list| (QUOTE -316) (|devaluate| |#1|)))) -(-572 S R) +((-3991 OR (-2562 (|has| |#2| (-316 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-495)))) (-3989 . T) (-3988 . T)) +((OR (|HasCategory| |#2| (|%list| (QUOTE -316) (|devaluate| |#1|))) (|HasCategory| |#2| (|%list| (QUOTE -360) (|devaluate| |#1|)))) (|HasCategory| |#2| (|%list| (QUOTE -360) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (|%list| (QUOTE -360) (|devaluate| |#1|)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#2| (|%list| (QUOTE -316) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#2| (|%list| (QUOTE -360) (|devaluate| |#1|))))) (|HasCategory| |#2| (|%list| (QUOTE -316) (|devaluate| |#1|)))) +(-573 S R) ((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#2|) "\\axiom{x/r} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}."))) NIL ((|HasCategory| |#2| (QUOTE (-312)))) -(-573 R) +(-574 R) ((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#1|) "\\axiom{x/r} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-3988 . T) (-3987 . T)) +((|JacobiIdentity| . T) (|NullSquare| . T) (-3989 . T) (-3988 . T)) NIL -(-574 R FE) +(-575 R FE) ((|constructor| (NIL "PowerSeriesLimitPackage implements limits of expressions in one or more variables as one of the variables approaches a limiting value. Included are two-sided limits,{} left- and right- hand limits,{} and limits at plus or minus infinity.")) (|complexLimit| (((|Union| (|OnePointCompletion| |#2|) "failed") |#2| (|Equation| (|OnePointCompletion| |#2|))) "\\spad{complexLimit(f(x),x = a)} computes the complex limit \\spad{lim(x -> a,f(x))}.")) (|limit| (((|Union| (|OrderedCompletion| |#2|) #1="failed") |#2| (|Equation| |#2|) (|String|)) "\\spad{limit(f(x),x=a,\"left\")} computes the left hand real limit \\spad{lim(x -> a-,f(x))}; \\spad{limit(f(x),x=a,\"right\")} computes the right hand real limit \\spad{lim(x -> a+,f(x))}.") (((|Union| (|OrderedCompletion| |#2|) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| |#2|) #1#)) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| |#2|) #1#))) "failed") |#2| (|Equation| (|OrderedCompletion| |#2|))) "\\spad{limit(f(x),x = a)} computes the real limit \\spad{lim(x -> a,f(x))}."))) NIL NIL -(-575 R) +(-576 R) ((|constructor| (NIL "Computation of limits for rational functions.")) (|complexLimit| (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OnePointCompletion| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.")) (|limit| (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1="failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|String|)) "\\spad{limit(f(x),x,a,\"left\")} computes the real limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a} from the left; limit(\\spad{f}(\\spad{x}),{}\\spad{x},{}a,{}\"right\") computes the corresponding limit as \\spad{x} approaches \\spad{a} from the right.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1#)) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1#))) #2="failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limit(f(x),x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1#)) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1#))) #2#) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OrderedCompletion| (|Polynomial| |#1|)))) "\\spad{limit(f(x),x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}."))) NIL NIL -(-576 |vars|) +(-577 |vars|) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: July 2,{} 2010 Date Last Modified: July 2,{} 2010 Descrption: \\indented{2}{Representation of a vector space basis,{} given by symbols.}")) (|dual| (($ (|DualBasis| |#1|)) "\\spad{dual f} constructs the dual vector of a linear form which is part of a basis."))) NIL NIL -(-577 S R) +(-578 S R) ((|constructor| (NIL "Test for linear dependence.")) (|solveLinear| (((|Union| (|Vector| (|Fraction| |#1|)) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}'s exist in the quotient field of \\spad{S}.") (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}'s exist in \\spad{S}.")) (|linearDependence| (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|)) "\\spad{linearDependence([v1,...,vn])} returns \\spad{[c1,...,cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}'s are 0,{} \"failed\" if the \\spad{vi}'s are linearly independent over \\spad{S}.")) (|linearlyDependent?| (((|Boolean|) (|Vector| |#2|)) "\\spad{linearlyDependent?([v1,...,vn])} returns \\spad{true} if the \\spad{vi}'s are linearly dependent over \\spad{S},{} \\spad{false} otherwise."))) NIL -((-2559 (|HasCategory| |#1| (QUOTE (-312)))) (|HasCategory| |#1| (QUOTE (-312)))) -(-578 K B) +((-2560 (|HasCategory| |#1| (QUOTE (-312)))) (|HasCategory| |#1| (QUOTE (-312)))) +(-579 K B) ((|constructor| (NIL "A simple data structure for elements that form a vector space of finite dimension over a given field,{} with a given symbolic basis.")) (|coordinates| (((|Vector| |#1|) $) "\\spad{coordinates x} returns the coordinates of the linear element with respect to the basis \\spad{B}.")) (|linearElement| (($ (|List| |#1|)) "\\spad{linearElement [x1,..,xn]} returns a linear element \\indented{1}{with coordinates \\spad{[x1,..,xn]} with respect to} the basis elements \\spad{B}."))) -((-3988 . T) (-3987 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| (-576 |#2|) (QUOTE (-1012))))) -(-579 R) +((-3989 . T) (-3988 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| (-577 |#2|) (QUOTE (-1013))))) +(-580 R) ((|constructor| (NIL "An extension of left-module with an explicit linear dependence test.")) (|reducedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| $) (|Vector| $)) "\\spad{reducedSystem(A, v)} returns a matrix \\spad{B} and a vector \\spad{w} such that \\spad{A x = v} and \\spad{B x = w} have the same solutions in \\spad{R}.") (((|Matrix| |#1|) (|Matrix| $)) "\\spad{reducedSystem(A)} returns a matrix \\spad{B} such that \\spad{A x = 0} and \\spad{B x = 0} have the same solutions in \\spad{R}.")) (|leftReducedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Vector| $) $) "\\spad{reducedSystem([v1,...,vn],u)} returns a matrix \\spad{M} with coefficients in \\spad{R} and a vector \\spad{w} such that the system of equations \\spad{c1*v1 + ... + cn*vn = u} has the same solution as \\spad{c * M = w} where \\spad{c} is the row vector \\spad{[c1,...cn]}.") (((|Matrix| |#1|) (|Vector| $)) "\\spad{leftReducedSystem [v1,...,vn]} returns a matrix \\spad{M} with coefficients in \\spad{R} such that the system of equations \\spad{c1*v1 + ... + cn*vn = 0\\$\\%} has the same solution as \\spad{c * M = 0} where \\spad{c} is the row vector \\spad{[c1,...cn]}."))) NIL NIL -(-580 K B) +(-581 K B) ((|constructor| (NIL "A simple data structure for linear forms on a vector space of finite dimension over a given field,{} with a given symbolic basis.")) (|coordinates| (((|Vector| |#1|) $) "\\spad{coordinates x} returns the coordinates of the linear form with respect to the basis \\spad{DualBasis B}.")) (|linearForm| (($ (|List| |#1|)) "\\spad{linearForm [x1,..,xn]} constructs a linear form with coordinates \\spad{[x1,..,xn]} with respect to the basis elements \\spad{DualBasis B}."))) -((-3988 . T) (-3987 . T)) +((-3989 . T) (-3988 . T)) NIL -(-581 S) +(-582 S) ((|constructor| (NIL "\\indented{2}{A set is an \\spad{S}-linear set if it is stable by dilation} \\indented{2}{by elements in the semigroup \\spad{S}.} See Also: LeftLinearSet,{} RightLinearSet."))) NIL NIL -(-582 S) +(-583 S) ((|constructor| (NIL "\\spadtype{List} implements singly-linked lists that are addressable by indices; the index of the first element is 1. this constructor provides some LISP-like functions such as \\spadfun{null} and \\spadfun{cons}.")) (|setDifference| (($ $ $) "\\spad{setDifference(u1,u2)} returns a list of the elements of \\spad{u1} that are not also in \\spad{u2}. The order of elements in the resulting list is unspecified.")) (|setIntersection| (($ $ $) "\\spad{setIntersection(u1,u2)} returns a list of the elements that lists \\spad{u1} and \\spad{u2} have in common. The order of elements in the resulting list is unspecified.")) (|setUnion| (($ $ $) "\\spad{setUnion(u1,u2)} appends the two lists \\spad{u1} and \\spad{u2},{} then removes all duplicates. The order of elements in the resulting list is unspecified.")) (|append| (($ $ $) "\\spad{append(u1,u2)} appends the elements of list \\spad{u1} onto the front of list \\spad{u2}. This new list and \\spad{u2} will share some structure.")) (|cons| (($ |#1| $) "\\spad{cons(element,u)} appends \\spad{element} onto the front of list \\spad{u} and returns the new list. This new list and the old one will share some structure.")) (|null| (((|Boolean|) $) "\\spad{null(u)} tests if list \\spad{u} is the empty list.")) (|nil| (($) "\\spad{nil} is the empty list."))) -((-3994 . T) (-3993 . T)) -((OR (-12 (|HasCategory| |#1| (QUOTE (-755))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-551 (-771)))) (|HasCategory| |#1| (QUOTE (-552 (-472)))) (OR (|HasCategory| |#1| (QUOTE (-755))) (|HasCategory| |#1| (QUOTE (-1012)))) (|HasCategory| |#1| (QUOTE (-755))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-755))) (|HasCategory| |#1| (QUOTE (-1012)))) (|HasCategory| (-483) (QUOTE (-755))) (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) -(-583 A B) +((-3995 . T) (-3994 . T)) +((OR (-12 (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-553 (-473)))) (OR (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-756))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| (-484) (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) +(-584 A B) ((|constructor| (NIL "\\spadtype{ListFunctions2} implements utility functions that operate on two kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|List| |#1|)) "\\spad{map(fn,u)} applies \\spad{fn} to each element of list \\spad{u} and returns a new list with the results. For example \\spad{map(square,[1,2,3]) = [1,4,9]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{reduce(fn,u,ident)} successively uses the binary function \\spad{fn} on the elements of list \\spad{u} and the result of previous applications. \\spad{ident} is returned if the \\spad{u} is empty. Note the order of application in the following examples: \\spad{reduce(fn,[1,2,3],0) = fn(3,fn(2,fn(1,0)))} and \\spad{reduce(*,[2,3],1) = 3 * (2 * 1)}.")) (|scan| (((|List| |#2|) (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{scan(fn,u,ident)} successively uses the binary function \\spad{fn} to reduce more and more of list \\spad{u}. \\spad{ident} is returned if the \\spad{u} is empty. The result is a list of the reductions at each step. See \\spadfun{reduce} for more information. Examples: \\spad{scan(fn,[1,2],0) = [fn(2,fn(1,0)),fn(1,0)]} and \\spad{scan(*,[2,3],1) = [2 * 1, 3 * (2 * 1)]}."))) NIL NIL -(-584 A B) +(-585 A B) ((|constructor| (NIL "\\spadtype{ListToMap} allows mappings to be described by a pair of lists of equal lengths. The image of an element \\spad{x},{} which appears in position \\spad{n} in the first list,{} is then the \\spad{n}th element of the second list. A default value or default function can be specified to be used when \\spad{x} does not appear in the first list. In the absence of defaults,{} an error will occur in that case.")) (|match| ((|#2| (|List| |#1|) (|List| |#2|) |#1| (|Mapping| |#2| |#1|)) "\\spad{match(la, lb, a, f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is a default function to call if a is not in \\spad{la}. The value returned is then obtained by applying \\spad{f} to argument a.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) (|Mapping| |#2| |#1|)) "\\spad{match(la, lb, f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is used as the function to call when the given function argument is not in \\spad{la}. The value returned is \\spad{f} applied to that argument.") ((|#2| (|List| |#1|) (|List| |#2|) |#1| |#2|) "\\spad{match(la, lb, a, b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{b} is the default target value if a is not in \\spad{la}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) |#2|) "\\spad{match(la, lb, b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{b} is used as the default target value if the given function argument is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") ((|#2| (|List| |#1|) (|List| |#2|) |#1|) "\\spad{match(la, lb, a)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{a} is used as the default source value if the given one is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|)) "\\spad{match(la, lb)} creates a map with no default source or target values defined by lists \\spad{la} and lb of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index lb. Error: if \\spad{la} and lb are not of equal length. Note: when this map is applied,{} an error occurs when applied to a value missing from \\spad{la}."))) NIL NIL -(-585 A B C) +(-586 A B C) ((|constructor| (NIL "\\spadtype{ListFunctions3} implements utility functions that operate on three kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#3|) (|Mapping| |#3| |#1| |#2|) (|List| |#1|) (|List| |#2|)) "\\spad{map(fn,list1, u2)} applies the binary function \\spad{fn} to corresponding elements of lists \\spad{u1} and \\spad{u2} and returns a list of the results (in the same order). Thus \\spad{map(/,[1,2,3],[4,5,6]) = [1/4,2/4,1/2]}. The computation terminates when the end of either list is reached. That is,{} the length of the result list is equal to the minimum of the lengths of \\spad{u1} and \\spad{u2}."))) NIL NIL -(-586 T$) +(-587 T$) ((|constructor| (NIL "This domain represents AST for Spad literals."))) NIL NIL -(-587 S) +(-588 S) ((|constructor| (NIL "\\indented{2}{A set is an \\spad{S}-left linear set if it is stable by left-dilation} \\indented{2}{by elements in the semigroup \\spad{S}.} See Also: RightLinearSet.")) (* (($ |#1| $) "\\spad{s*x} is the left-dilation of \\spad{x} by \\spad{s}."))) NIL NIL -(-588 S) +(-589 S) ((|substitute| (($ |#1| |#1| $) "\\spad{substitute(x,y,d)} replace \\spad{x}'s with \\spad{y}'s in dictionary \\spad{d}.")) (|duplicates?| (((|Boolean|) $) "\\spad{duplicates?(d)} tests if dictionary \\spad{d} has duplicate entries."))) -((-3993 . T) (-3994 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1012))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1012)))) (|HasCategory| |#1| (QUOTE (-551 (-771)))) (|HasCategory| |#1| (QUOTE (-552 (-472)))) (|HasCategory| |#1| (QUOTE (-72)))) -(-589 R) +((-3994 . T) (-3995 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1013))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-553 (-473)))) (|HasCategory| |#1| (QUOTE (-72)))) +(-590 R) ((|constructor| (NIL "The category of left modules over an rng (ring not necessarily with unit). This is an abelian group which supports left multiplation by elements of the rng. \\blankline"))) NIL NIL -(-590 S E |un|) +(-591 S E |un|) ((|constructor| (NIL "This internal package represents monoid (abelian or not,{} with or without inverses) as lists and provides some common operations to the various flavors of monoids.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExpon(f, a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|commutativeEquality| (((|Boolean|) $ $) "\\spad{commutativeEquality(x,y)} returns \\spad{true} if \\spad{x} and \\spad{y} are equal assuming commutativity")) (|plus| (($ $ $) "\\spad{plus(x, y)} returns \\spad{x + y} where \\spad{+} is the monoid operation,{} which is assumed commutative.") (($ |#1| |#2| $) "\\spad{plus(s, e, x)} returns \\spad{e * s + x} where \\spad{+} is the monoid operation,{} which is assumed commutative.")) (|leftMult| (($ |#1| $) "\\spad{leftMult(s, a)} returns \\spad{s * a} where \\spad{*} is the monoid operation,{} which is assumed non-commutative.")) (|rightMult| (($ $ |#1|) "\\spad{rightMult(a, s)} returns \\spad{a * s} where \\spad{*} is the monoid operation,{} which is assumed non-commutative.")) (|makeUnit| (($) "\\spad{makeUnit()} returns the unit element of the monomial.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(l)} returns the number of monomials forming \\spad{l}.")) (|reverse!| (($ $) "\\spad{reverse!(l)} reverses the list of monomials forming \\spad{l},{} destroying the element \\spad{l}.")) (|reverse| (($ $) "\\spad{reverse(l)} reverses the list of monomials forming \\spad{l}. This has some effect if the monoid is non-abelian,{} \\spadignore{i.e.} \\spad{reverse(a1\\^e1 ... an\\^en) = an\\^en ... a1\\^e1} which is different.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(l, n)} returns the factor of the n^th monomial of \\spad{l}.")) (|nthExpon| ((|#2| $ (|Integer|)) "\\spad{nthExpon(l, n)} returns the exponent of the n^th monomial of \\spad{l}.")) (|makeMulti| (($ (|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|)))) "\\spad{makeMulti(l)} returns the element whose list of monomials is \\spad{l}.")) (|makeTerm| (($ |#1| |#2|) "\\spad{makeTerm(s, e)} returns the monomial \\spad{s} exponentiated by \\spad{e} (\\spadignore{e.g.} s^e or \\spad{e} * \\spad{s}).")) (|listOfMonoms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{listOfMonoms(l)} returns the list of the monomials forming \\spad{l}.")) (|outputForm| (((|OutputForm|) $ (|Mapping| (|OutputForm|) (|OutputForm|) (|OutputForm|)) (|Mapping| (|OutputForm|) (|OutputForm|) (|OutputForm|)) (|Integer|)) "\\spad{outputForm(l, fop, fexp, unit)} converts the monoid element represented by \\spad{l} to an \\spadtype{OutputForm}. Argument unit is the output form for the \\spadignore{unit} of the monoid (\\spadignore{e.g.} 0 or 1),{} \\spad{fop(a, b)} is the output form for the monoid operation applied to \\spad{a} and \\spad{b} (\\spadignore{e.g.} \\spad{a + b},{} \\spad{a * b},{} \\spad{ab}),{} and \\spad{fexp(a, n)} is the output form for the exponentiation operation applied to \\spad{a} and \\spad{n} (\\spadignore{e.g.} \\spad{n a},{} \\spad{n * a},{} \\spad{a ** n},{} \\spad{a\\^n})."))) NIL NIL -(-591 A S) +(-592 A S) ((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#2| $ (|UniversalSegment| (|Integer|)) |#2|) "\\spad{setelt(u,i..j,x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) := \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} := \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,u,k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#2| $ (|Integer|)) "\\spad{insert(x,u,i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) == concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(f,u,v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#2| $) "\\spad{concat(x,u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) == concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#2|) "\\spad{concat(u,x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) == concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#2|) "\\spad{new(n,x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}."))) NIL -((|HasAttribute| |#1| (QUOTE -3994))) -(-592 S) +((|HasAttribute| |#1| (QUOTE -3995))) +(-593 S) ((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#1| $ (|UniversalSegment| (|Integer|)) |#1|) "\\spad{setelt(u,i..j,x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) := \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} := \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,u,k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#1| $ (|Integer|)) "\\spad{insert(x,u,i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) == concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,u,v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#1| $) "\\spad{concat(x,u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) == concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#1|) "\\spad{concat(u,x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) == concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#1|) "\\spad{new(n,x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}."))) NIL NIL -(-593 M R S) +(-594 M R S) ((|constructor| (NIL "Localize(\\spad{M},{}\\spad{R},{}\\spad{S}) produces fractions with numerators from an \\spad{R} module \\spad{M} and denominators from some multiplicative subset \\spad{D} of \\spad{R}.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{m / d} divides the element \\spad{m} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}."))) -((-3988 . T) (-3987 . T)) -((|HasCategory| |#1| (QUOTE (-713)))) -(-594 R -3091 L) +((-3989 . T) (-3988 . T)) +((|HasCategory| |#1| (QUOTE (-714)))) +(-595 R -3092 L) ((|constructor| (NIL "\\spad{ElementaryFunctionLODESolver} provides the top-level functions for finding closed form solutions of linear ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#3| |#2| (|Symbol|) |#2| (|List| |#2|)) "\\spad{solve(op, g, x, a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{op y = g, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) "failed") |#3| |#2| (|Symbol|)) "\\spad{solve(op, g, x)} returns either a solution of the ordinary differential equation \\spad{op y = g} or \"failed\" if no non-trivial solution can be found; When found,{} the solution is returned in the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{op y = 0}. A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; \\spad{x} is the dependent variable."))) NIL NIL -(-595 A -2491) +(-596 A -2492) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator} defines a ring of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}"))) -((-3987 . T) (-3988 . T) (-3990 . T)) -((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-949 (-348 (-483))))) (|HasCategory| |#1| (QUOTE (-949 (-483)))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-390))) (|HasCategory| |#1| (QUOTE (-312)))) -(-596 A) +((-3988 . T) (-3989 . T) (-3991 . T)) +((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-950 (-349 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-484)))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-391))) (|HasCategory| |#1| (QUOTE (-312)))) +(-597 A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator1} defines a ring of differential operators with coefficients in a differential ring A. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}"))) -((-3987 . T) (-3988 . T) (-3990 . T)) -((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-949 (-348 (-483))))) (|HasCategory| |#1| (QUOTE (-949 (-483)))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-390))) (|HasCategory| |#1| (QUOTE (-312)))) -(-597 A M) +((-3988 . T) (-3989 . T) (-3991 . T)) +((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-950 (-349 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-484)))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-391))) (|HasCategory| |#1| (QUOTE (-312)))) +(-598 A M) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator2} defines a ring of differential operators with coefficients in a differential ring A and acting on an A-module \\spad{M}. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}"))) -((-3987 . T) (-3988 . T) (-3990 . T)) -((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-949 (-348 (-483))))) (|HasCategory| |#1| (QUOTE (-949 (-483)))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-390))) (|HasCategory| |#1| (QUOTE (-312)))) -(-598 S A) +((-3988 . T) (-3989 . T) (-3991 . T)) +((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-950 (-349 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-484)))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-391))) (|HasCategory| |#1| (QUOTE (-312)))) +(-599 S A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}."))) NIL ((|HasCategory| |#2| (QUOTE (-312)))) -(-599 A) +(-600 A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}."))) -((-3987 . T) (-3988 . T) (-3990 . T)) +((-3988 . T) (-3989 . T) (-3991 . T)) NIL -(-600 -3091 UP) +(-601 -3092 UP) ((|constructor| (NIL "\\spadtype{LinearOrdinaryDifferentialOperatorFactorizer} provides a factorizer for linear ordinary differential operators whose coefficients are rational functions.")) (|factor1| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor1(a)} returns the factorisation of a,{} assuming that a has no first-order right factor.")) (|factor| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor(a)} returns the factorisation of a.") (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{factor(a, zeros)} returns the factorisation of a. \\spad{zeros} is a zero finder in \\spad{UP}."))) NIL ((|HasCategory| |#1| (QUOTE (-27)))) -(-601 A L) +(-602 A L) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorsOps} provides symmetric products and sums for linear ordinary differential operators.")) (|directSum| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{directSum(a,b,D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use.")) (|symmetricPower| ((|#2| |#2| (|NonNegativeInteger|) (|Mapping| |#1| |#1|)) "\\spad{symmetricPower(a,n,D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}. \\spad{D} is the derivation to use.")) (|symmetricProduct| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{symmetricProduct(a,b,D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use."))) NIL NIL -(-602 S) +(-603 S) ((|constructor| (NIL "`Logic' provides the basic operations for lattices,{} \\spadignore{e.g.} boolean algebra.")) (|\\/| (($ $ $) "\\spadignore{ \\/ } returns the logical `join',{} \\spadignore{e.g.} `or'.")) (|/\\| (($ $ $) "\\spadignore { /\\ }returns the logical `meet',{} \\spadignore{e.g.} `and'.")) (~ (($ $) "\\spad{~(x)} returns the logical complement of \\spad{x}."))) NIL NIL -(-603) +(-604) ((|constructor| (NIL "`Logic' provides the basic operations for lattices,{} \\spadignore{e.g.} boolean algebra.")) (|\\/| (($ $ $) "\\spadignore{ \\/ } returns the logical `join',{} \\spadignore{e.g.} `or'.")) (|/\\| (($ $ $) "\\spadignore { /\\ }returns the logical `meet',{} \\spadignore{e.g.} `and'.")) (~ (($ $) "\\spad{~(x)} returns the logical complement of \\spad{x}."))) NIL NIL -(-604 R) +(-605 R) ((|constructor| (NIL "Given a PolynomialFactorizationExplicit ring,{} this package provides a defaulting rule for the \\spad{solveLinearPolynomialEquation} operation,{} by moving into the field of fractions,{} and solving it there via the \\spad{multiEuclidean} operation.")) (|solveLinearPolynomialEquationByFractions| (((|Union| (|List| (|SparseUnivariatePolynomial| |#1|)) "failed") (|List| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{solveLinearPolynomialEquationByFractions([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such exists."))) NIL NIL -(-605 |VarSet| R) +(-606 |VarSet| R) ((|constructor| (NIL "This type supports Lie polynomials in Lyndon basis see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.fr).")) (|construct| (($ $ (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.")) (|LiePolyIfCan| (((|Union| $ "failed") (|XDistributedPolynomial| |#1| |#2|)) "\\axiom{LiePolyIfCan(\\spad{p})} returns \\axiom{\\spad{p}} in Lyndon basis if \\axiom{\\spad{p}} is a Lie polynomial,{} otherwise \\axiom{\"failed\"} is returned."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-3988 . T) (-3987 . T)) +((|JacobiIdentity| . T) (|NullSquare| . T) (-3989 . T) (-3988 . T)) ((|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-146)))) -(-606 A S) +(-607 A S) ((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#2|) "\\spad{list(x)} returns the list of one element \\spad{x}."))) NIL NIL -(-607 S) +(-608 S) ((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#1|) "\\spad{list(x)} returns the list of one element \\spad{x}."))) -((-3994 . T) (-3993 . T)) +((-3995 . T) (-3994 . T)) NIL -(-608 -3091 |Row| |Col| M) +(-609 -3092 |Row| |Col| M) ((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}.")) (|rank| (((|NonNegativeInteger|) |#4| |#3|) "\\spad{rank(A,B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) |#4| |#3|) "\\spad{hasSolution?(A,B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| |#3| #1="failed") |#4| |#3|) "\\spad{particularSolution(A,B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| |#3| #1#)) (|:| |basis| (|List| |#3|)))) |#4| (|List| |#3|)) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| |#3| #1#)) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}."))) NIL NIL -(-609 -3091) +(-610 -3092) ((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}. It is essentially a particular instantiation of the package \\spadtype{LinearSystemMatrixPackage} for Matrix and Vector. This package's existence makes it easier to use \\spadfun{solve} in the AXIOM interpreter.")) (|rank| (((|NonNegativeInteger|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{rank(A,B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{hasSolution?(A,B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| (|Vector| |#1|) #1="failed") (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{particularSolution(A,B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) #1#)) (|:| |basis| (|List| (|Vector| |#1|))))) (|List| (|List| |#1|)) (|List| (|Vector| |#1|))) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) #1#)) (|:| |basis| (|List| (|Vector| |#1|))))) (|Matrix| |#1|) (|List| (|Vector| |#1|))) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) #1#)) (|:| |basis| (|List| (|Vector| |#1|)))) (|List| (|List| |#1|)) (|Vector| |#1|)) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) #1#)) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}."))) NIL NIL -(-610 R E OV P) +(-611 R E OV P) ((|constructor| (NIL "this package finds the solutions of linear systems presented as a list of polynomials.")) (|linSolve| (((|Record| (|:| |particular| (|Union| (|Vector| (|Fraction| |#4|)) "failed")) (|:| |basis| (|List| (|Vector| (|Fraction| |#4|))))) (|List| |#4|) (|List| |#3|)) "\\spad{linSolve(lp,lvar)} finds the solutions of the linear system of polynomials \\spad{lp} = 0 with respect to the list of symbols \\spad{lvar}."))) NIL NIL -(-611 |n| R) +(-612 |n| R) ((|constructor| (NIL "LieSquareMatrix(\\spad{n},{}\\spad{R}) implements the Lie algebra of the \\spad{n} by \\spad{n} matrices over the commutative ring \\spad{R}. The Lie bracket (commutator) of the algebra is given by \\spad{a*b := (a *\\$SQMATRIX(n,R) b - b *\\$SQMATRIX(n,R) a)},{} where \\spadfun{*\\$SQMATRIX(\\spad{n},{}\\spad{R})} is the usual matrix multiplication."))) -((-3990 . T) (-3993 . T) (-3987 . T) (-3988 . T)) -((|HasCategory| |#2| (QUOTE (-808 (-1088)))) (|HasCategory| |#2| (QUOTE (-810 (-1088)))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-189))) (|HasAttribute| |#2| (QUOTE (-3995 #1="*"))) (|HasCategory| |#2| (QUOTE (-579 (-483)))) (|HasCategory| |#2| (QUOTE (-949 (-348 (-483))))) (|HasCategory| |#2| (QUOTE (-949 (-483)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-579 (-483)))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-808 (-1088)))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))))) (|HasCategory| |#2| (QUOTE (-258))) (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-494))) (OR (|HasAttribute| |#2| (QUOTE (-3995 #1#))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-808 (-1088))))) (|HasCategory| |#2| (QUOTE (-551 (-771)))) (|HasCategory| |#2| (QUOTE (-72))) (-12 (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-146)))) -(-612) +((-3991 . T) (-3994 . T) (-3988 . T) (-3989 . T)) +((|HasCategory| |#2| (QUOTE (-809 (-1089)))) (|HasCategory| |#2| (QUOTE (-811 (-1089)))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-189))) (|HasAttribute| |#2| (QUOTE (-3996 #1="*"))) (|HasCategory| |#2| (QUOTE (-580 (-484)))) (|HasCategory| |#2| (QUOTE (-950 (-349 (-484))))) (|HasCategory| |#2| (QUOTE (-950 (-484)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-580 (-484)))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-809 (-1089)))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))))) (|HasCategory| |#2| (QUOTE (-258))) (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-495))) (OR (|HasAttribute| |#2| (QUOTE (-3996 #1#))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-809 (-1089))))) (|HasCategory| |#2| (QUOTE (-552 (-772)))) (|HasCategory| |#2| (QUOTE (-72))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-146)))) +(-613) ((|constructor| (NIL "This domain represents `literal sequence' syntax.")) (|elements| (((|List| (|SpadAst|)) $) "\\spad{elements(e)} returns the list of expressions in the `literal' list `e'."))) NIL NIL -(-613 |VarSet|) +(-614 |VarSet|) ((|constructor| (NIL "Lyndon words over arbitrary (ordered) symbols: see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). A Lyndon word is a word which is smaller than any of its right factors \\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering. If \\axiom{a} and \\axiom{\\spad{b}} are two Lyndon words such that \\axiom{a < \\spad{b}} holds \\spad{w}.\\spad{r}.\\spad{t} lexicographical ordering then \\axiom{a*b} is a Lyndon word. Parenthesized Lyndon words can be generated from symbols by using the following rule: \\axiom{[[a,{}\\spad{b}],{}\\spad{c}]} is a Lyndon word iff \\axiom{a*b < \\spad{c} <= \\spad{b}} holds. Lyndon words are internally represented by binary trees using the \\spadtype{Magma} domain constructor. Two ordering are provided: lexicographic and length-lexicographic. \\newline Author : Michel Petitot (petitot@lifl.fr).")) (|LyndonWordsList| (((|List| $) (|List| |#1|) (|PositiveInteger|)) "\\axiom{LyndonWordsList(vl,{} \\spad{n})} returns the list of Lyndon words over the alphabet \\axiom{vl},{} up to order \\axiom{\\spad{n}}.")) (|LyndonWordsList1| (((|OneDimensionalArray| (|List| $)) (|List| |#1|) (|PositiveInteger|)) "\\axiom{\\spad{LyndonWordsList1}(vl,{} \\spad{n})} returns an array of lists of Lyndon words over the alphabet \\axiom{vl},{} up to order \\axiom{\\spad{n}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|lyndonIfCan| (((|Union| $ "failed") (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndonIfCan(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word.")) (|lyndon| (($ (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word,{} error if \\axiom{\\spad{w}} is not a Lyndon word.")) (|lyndon?| (((|Boolean|) (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon?(\\spad{w})} test if \\axiom{\\spad{w}} is a Lyndon word.")) (|factor| (((|List| $) (|OrderedFreeMonoid| |#1|)) "\\axiom{factor(\\spad{x})} returns the decreasing factorization into Lyndon words.")) (|coerce| (((|Magma| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{Magma}(VarSet) corresponding to \\axiom{\\spad{x}}.") (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry."))) NIL NIL -(-614 A S) +(-615 A S) ((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least 'n' explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length <= \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#2| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(f,st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(f,st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,st) = [x for x in st | not f(x)]}."))) NIL NIL -(-615 S) +(-616 S) ((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least 'n' explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length <= \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#1| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(f,st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(f,st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,st) = [x for x in st | not f(x)]}."))) NIL NIL -(-616) +(-617) ((|constructor| (NIL "This domain represents the syntax of a macro definition.")) (|body| (((|SpadAst|) $) "\\spad{body(m)} returns the right hand side of the definition `m'.")) (|head| (((|HeadAst|) $) "\\spad{head(m)} returns the head of the macro definition `m'. This is a list of identifiers starting with the name of the macro followed by the name of the parameters,{} if any."))) NIL NIL -(-617 |VarSet|) +(-618 |VarSet|) ((|constructor| (NIL "This type is the basic representation of parenthesized words (binary trees over arbitrary symbols) useful in \\spadtype{LiePolynomial}. \\newline Author: Michel Petitot (petitot@lifl.fr).")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry.")) (|rest| (($ $) "\\axiom{rest(\\spad{x})} return \\axiom{\\spad{x}} without the first entry or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns the reversed word of \\axiom{\\spad{x}}. That is \\axiom{\\spad{x}} itself if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true} and \\axiom{mirror(\\spad{z}) * mirror(\\spad{y})} if \\axiom{\\spad{x}} is \\axiom{y*z}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}. \\spad{N}.\\spad{B}. This operation does not take into account the tree structure of its arguments. Thus this is not a total ordering.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|first| ((|#1| $) "\\axiom{first(\\spad{x})} returns the first entry of the tree \\axiom{\\spad{x}}.")) (|coerce| (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}} by removing parentheses.")) (* (($ $ $) "\\axiom{x*y} returns the tree \\axiom{[\\spad{x},{}\\spad{y}]}."))) NIL NIL -(-618 A) +(-619 A) ((|constructor| (NIL "various Currying operations.")) (|recur| ((|#1| (|Mapping| |#1| (|NonNegativeInteger|) |#1|) (|NonNegativeInteger|) |#1|) "\\spad{recur(n,g,x)} is \\spad{g(n,g(n-1,..g(1,x)..))}.")) (|iter| ((|#1| (|Mapping| |#1| |#1|) (|NonNegativeInteger|) |#1|) "\\spad{iter(f,n,x)} applies \\spad{f n} times to \\spad{x}."))) NIL NIL -(-619 A C) +(-620 A C) ((|constructor| (NIL "various Currying operations.")) (|arg2| ((|#2| |#1| |#2|) "\\spad{arg2(a,c)} selects its second argument.")) (|arg1| ((|#1| |#1| |#2|) "\\spad{arg1(a,c)} selects its first argument."))) NIL NIL -(-620 A B C) +(-621 A B C) ((|constructor| (NIL "various Currying operations.")) (|comp| ((|#3| (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|) |#1|) "\\spad{comp(f,g,x)} is \\spad{f(g x)}."))) NIL NIL -(-621) +(-622) ((|constructor| (NIL "This domain represents a mapping type AST. A mapping AST \\indented{2}{is a syntactic description of a function type,{} \\spadignore{e.g.} its result} \\indented{2}{type and the list of its argument types.}")) (|target| (((|TypeAst|) $) "\\spad{target(s)} returns the result type AST for `s'.")) (|source| (((|List| (|TypeAst|)) $) "\\spad{source(s)} returns the parameter type AST list of `s'.")) (|mappingAst| (($ (|List| (|TypeAst|)) (|TypeAst|)) "\\spad{mappingAst(s,t)} builds the mapping AST \\spad{s} -> \\spad{t}")) (|coerce| (($ (|Signature|)) "sig::MappingAst builds a MappingAst from the Signature `sig'."))) NIL NIL -(-622 A) +(-623 A) ((|constructor| (NIL "various Currying operations.")) (|recur| (((|Mapping| |#1| (|NonNegativeInteger|) |#1|) (|Mapping| |#1| (|NonNegativeInteger|) |#1|)) "\\spad{recur(g)} is the function \\spad{h} such that \\indented{1}{\\spad{h(n,x)= g(n,g(n-1,..g(1,x)..))}.}")) (** (((|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{f**n} is the function which is the \\spad{n}-fold application \\indented{1}{of \\spad{f}.}")) (|id| ((|#1| |#1|) "\\spad{id x} is \\spad{x}.")) (|fixedPoint| (((|List| |#1|) (|Mapping| (|List| |#1|) (|List| |#1|)) (|Integer|)) "\\spad{fixedPoint(f,n)} is the fixed point of function \\indented{1}{\\spad{f} which is assumed to transform a list of length} \\indented{1}{\\spad{n}.}") ((|#1| (|Mapping| |#1| |#1|)) "\\spad{fixedPoint f} is the fixed point of function \\spad{f}. \\indented{1}{\\spadignore{i.e.} such that \\spad{fixedPoint f = f(fixedPoint f)}.}")) (|coerce| (((|Mapping| |#1|) |#1|) "\\spad{coerce A} changes its argument into a \\indented{1}{nullary function.}")) (|nullary| (((|Mapping| |#1|) |#1|) "\\spad{nullary A} changes its argument into a \\indented{1}{nullary function.}"))) NIL NIL -(-623 A C) +(-624 A C) ((|constructor| (NIL "various Currying operations.")) (|diag| (((|Mapping| |#2| |#1|) (|Mapping| |#2| |#1| |#1|)) "\\spad{diag(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g a = f(a,a)}.}")) (|constant| (((|Mapping| |#2| |#1|) (|Mapping| |#2|)) "\\spad{vu(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g a= f ()}.}")) (|curry| (((|Mapping| |#2|) (|Mapping| |#2| |#1|) |#1|) "\\spad{cu(f,a)} is the function \\spad{g} \\indented{1}{such that \\spad{g ()= f a}.}")) (|const| (((|Mapping| |#2| |#1|) |#2|) "\\spad{const c} is a function which produces \\spad{c} when \\indented{1}{applied to its argument.}"))) NIL NIL -(-624 A B C) +(-625 A B C) ((|constructor| (NIL "various Currying operations.")) (* (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|)) "\\spad{f*g} is the function \\spad{h} \\indented{1}{such that \\spad{h x= f(g x)}.}")) (|twist| (((|Mapping| |#3| |#2| |#1|) (|Mapping| |#3| |#1| |#2|)) "\\spad{twist(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,b)= f(b,a)}.}")) (|constantLeft| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#2|)) "\\spad{constantLeft(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,b)= f b}.}")) (|constantRight| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#1|)) "\\spad{constantRight(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,b)= f a}.}")) (|curryLeft| (((|Mapping| |#3| |#2|) (|Mapping| |#3| |#1| |#2|) |#1|) "\\spad{curryLeft(f,a)} is the function \\spad{g} \\indented{1}{such that \\spad{g b = f(a,b)}.}")) (|curryRight| (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#1| |#2|) |#2|) "\\spad{curryRight(f,b)} is the function \\spad{g} such that \\indented{1}{\\spad{g a = f(a,b)}.}"))) NIL NIL -(-625 S R |Row| |Col|) +(-626 S R |Row| |Col|) ((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#4|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#2|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#2|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#2| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,i1,j1,y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,j)} is set to \\spad{y(i-i1+1,j-j1+1)} for \\spad{i = i1,...,i1-1+nrows y} and \\spad{j = j1,...,j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,i1,i2,j1,j2)} extracts the submatrix \\spad{[x(i,j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,rowList,colList,y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then \\spad{x(i<k>,j<l>)} is set to \\spad{y(k,l)} for \\spad{k = 1,...,m} and \\spad{l = 1,...,n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,rowList,colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then the \\spad{(k,l)}th entry of \\spad{elt(x,rowList,colList)} is \\spad{x(i<k>,j<l>)}.")) (|listOfLists| (((|List| (|List| |#2|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#3|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#4|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,...,mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{ri := nrows mi},{} \\spad{ci := ncols mi},{} then \\spad{m} is an (r1+..+rk) by (c1+..+ck) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#2|) "\\spad{scalarMatrix(n,r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}'s on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|Mapping| |#2| (|Integer|) (|Integer|))) "\\spad{matrix(n,m,f)} construcys and \\spad{n * m} matrix with the \\spad{(i,j)} entry equal to \\spad{f(i,j)}.") (($ (|List| (|List| |#2|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise."))) NIL -((|HasAttribute| |#2| (QUOTE (-3995 "*"))) (|HasCategory| |#2| (QUOTE (-258))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-494)))) -(-626 R |Row| |Col|) +((|HasAttribute| |#2| (QUOTE (-3996 "*"))) (|HasCategory| |#2| (QUOTE (-258))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-495)))) +(-627 R |Row| |Col|) ((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#1| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#3|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#1|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#2| |#2| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#3| $ |#3|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#1|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#1| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,i1,j1,y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,j)} is set to \\spad{y(i-i1+1,j-j1+1)} for \\spad{i = i1,...,i1-1+nrows y} and \\spad{j = j1,...,j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,i1,i2,j1,j2)} extracts the submatrix \\spad{[x(i,j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,rowList,colList,y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then \\spad{x(i<k>,j<l>)} is set to \\spad{y(k,l)} for \\spad{k = 1,...,m} and \\spad{l = 1,...,n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,rowList,colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then the \\spad{(k,l)}th entry of \\spad{elt(x,rowList,colList)} is \\spad{x(i<k>,j<l>)}.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#2|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#3|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,...,mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{ri := nrows mi},{} \\spad{ci := ncols mi},{} then \\spad{m} is an (r1+..+rk) by (c1+..+ck) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#1|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#1|) "\\spad{scalarMatrix(n,r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}'s on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|Mapping| |#1| (|Integer|) (|Integer|))) "\\spad{matrix(n,m,f)} construcys and \\spad{n * m} matrix with the \\spad{(i,j)} entry equal to \\spad{f(i,j)}.") (($ (|List| (|List| |#1|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise."))) -((-3993 . T) (-3994 . T)) +((-3994 . T) (-3995 . T)) NIL -(-627 R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) +(-628 R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{MatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#5| (|Mapping| |#5| |#1| |#5|) |#4| |#5|) "\\spad{reduce(f,m,r)} returns a matrix \\spad{n} where \\spad{n[i,j] = f(m[i,j],r)} for all indices \\spad{i} and \\spad{j}.")) (|map| (((|Union| |#8| "failed") (|Mapping| (|Union| |#5| "failed") |#1|) |#4|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.") ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}."))) NIL NIL -(-628 R |Row| |Col| M) +(-629 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{MatrixLinearAlgebraFunctions} provides functions to compute inverses and canonical forms.")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (|adjoint| (((|Record| (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) "\\spad{adjoint(m)} returns the ajoint matrix of \\spad{m} (\\spadignore{i.e.} the matrix \\spad{n} such that m*n = determinant(\\spad{m})*id) and the detrminant of \\spad{m}.")) (|invertIfCan| (((|Union| |#4| "failed") |#4|) "\\spad{invertIfCan(m)} returns the inverse of \\spad{m} over \\spad{R}")) (|fractionFreeGauss!| ((|#4| |#4|) "\\spad{fractionFreeGauss(m)} performs the fraction free gaussian elimination on the matrix \\spad{m}.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|elColumn2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elColumn2!(m,a,i,j)} adds to column \\spad{i} a*column(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} ~=j)")) (|elRow2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elRow2!(m,a,i,j)} adds to row \\spad{i} a*row(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} ~=j)")) (|elRow1!| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{elRow1!(m,i,j)} swaps rows \\spad{i} and \\spad{j} of matrix \\spad{m} : elementary operation of first kind")) (|minordet| ((|#1| |#4|) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square."))) NIL -((|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-494)))) -(-629 R) -((|constructor| (NIL "\\spadtype{Matrix} is a matrix domain where 1-based indexing is used for both rows and columns.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|diagonalMatrix| (($ (|Vector| |#1|)) "\\spad{diagonalMatrix(v)} returns a diagonal matrix where the elements of \\spad{v} appear on the diagonal."))) -((-3993 . T) (-3994 . T)) -((OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1012))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1012)))) (|HasCategory| |#1| (QUOTE (-551 (-771)))) (|HasCategory| |#1| (QUOTE (-552 (-472)))) (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-494))) (|HasAttribute| |#1| (QUOTE (-3995 "*"))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) +((|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-495)))) (-630 R) +((|constructor| (NIL "\\spadtype{Matrix} is a matrix domain where 1-based indexing is used for both rows and columns.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|diagonalMatrix| (($ (|Vector| |#1|)) "\\spad{diagonalMatrix(v)} returns a diagonal matrix where the elements of \\spad{v} appear on the diagonal."))) +((-3994 . T) (-3995 . T)) +((OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1013))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-553 (-473)))) (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-495))) (|HasAttribute| |#1| (QUOTE (-3996 "*"))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) +(-631 R) ((|constructor| (NIL "This package provides standard arithmetic operations on matrices. The functions in this package store the results of computations in existing matrices,{} rather than creating new matrices. This package works only for matrices of type Matrix and uses the internal representation of this type.")) (** (((|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{x ** n} computes the \\spad{n}-th power of a square matrix. The power \\spad{n} is assumed greater than 1.")) (|power!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{power!(a,b,c,m,n)} computes \\spad{m} ** \\spad{n} and stores the result in \\spad{a}. The matrices \\spad{b} and \\spad{c} are used to store intermediate results. Error: if \\spad{a},{} \\spad{b},{} \\spad{c},{} and \\spad{m} are not square and of the same dimensions.")) (|times!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{times!(c,a,b)} computes the matrix product \\spad{a * b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have compatible dimensions.")) (|rightScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rightScalarTimes!(c,a,r)} computes the scalar product \\spad{a * r} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|leftScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Matrix| |#1|)) "\\spad{leftScalarTimes!(c,r,a)} computes the scalar product \\spad{r * a} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|minus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{!minus!(c,a,b)} computes the matrix difference \\spad{a - b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{minus!(c,a)} computes \\spad{-a} and stores the result in the matrix \\spad{c}. Error: if a and \\spad{c} do not have the same dimensions.")) (|plus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{plus!(c,a,b)} computes the matrix sum \\spad{a + b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.")) (|copy!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{copy!(c,a)} copies the matrix \\spad{a} into the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions."))) NIL NIL -(-631 T$) +(-632 T$) ((|constructor| (NIL "This domain implements the notion of optional value,{} where a computation may fail to produce expected value.")) (|nothing| (($) "\\spad{nothing} represents failure or absence of value.")) (|autoCoerce| ((|#1| $) "\\spad{autoCoerce} is a courtesy coercion function used by the compiler in case it knows that `x' really is a \\spadtype{T}.")) (|case| (((|Boolean|) $ (|[\|\|]| |nothing|)) "\\spad{x case nothing} holds if the value for \\spad{x} is missing.") (((|Boolean|) $ (|[\|\|]| |#1|)) "\\spad{x case T} returns \\spad{true} if \\spad{x} is actually a data of type \\spad{T}.")) (|just| (($ |#1|) "\\spad{just x} injects the value `x' into \\%."))) NIL NIL -(-632 R Q) +(-633 R Q) ((|constructor| (NIL "MatrixCommonDenominator provides functions to compute the common denominator of a matrix of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| (|Matrix| |#1|)) (|:| |den| |#1|)) (|Matrix| |#2|)) "\\spad{splitDenominator(q)} returns \\spad{[p, d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the elements of \\spad{q}.")) (|clearDenominator| (((|Matrix| |#1|) (|Matrix| |#2|)) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the elements of \\spad{q}.")) (|commonDenominator| ((|#1| (|Matrix| |#2|)) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the elements of \\spad{q}."))) NIL NIL -(-633 S) +(-634 S) ((|constructor| (NIL "A multi-dictionary is a dictionary which may contain duplicates. As for any dictionary,{} its size is assumed large so that copying (non-destructive) operations are generally to be avoided.")) (|duplicates| (((|List| (|Record| (|:| |entry| |#1|) (|:| |count| (|NonNegativeInteger|)))) $) "\\spad{duplicates(d)} returns a list of values which have duplicates in \\spad{d}")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(d)} destructively removes any duplicate values in dictionary \\spad{d}.")) (|insert!| (($ |#1| $ (|NonNegativeInteger|)) "\\spad{insert!(x,d,n)} destructively inserts \\spad{n} copies of \\spad{x} into dictionary \\spad{d}."))) -((-3994 . T)) +((-3995 . T)) NIL -(-634 U) +(-635 U) ((|constructor| (NIL "This package supports factorization and gcds of univariate polynomials over the integers modulo different primes. The inputs are given as polynomials over the integers with the prime passed explicitly as an extra argument.")) (|exptMod| ((|#1| |#1| (|Integer|) |#1| (|Integer|)) "\\spad{exptMod(f,n,g,p)} raises the univariate polynomial \\spad{f} to the \\spad{n}th power modulo the polynomial \\spad{g} and the prime \\spad{p}.")) (|separateFactors| (((|List| |#1|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) (|Integer|)) "\\spad{separateFactors(ddl, p)} refines the distinct degree factorization produced by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} to give a complete list of factors.")) (|ddFact| (((|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) |#1| (|Integer|)) "\\spad{ddFact(f,p)} computes a distinct degree factorization of the polynomial \\spad{f} modulo the prime \\spad{p},{} \\spadignore{i.e.} such that each factor is a product of irreducibles of the same degrees. The input polynomial \\spad{f} is assumed to be square-free modulo \\spad{p}.")) (|factor| (((|List| |#1|) |#1| (|Integer|)) "\\spad{factor(f1,p)} returns the list of factors of the univariate polynomial \\spad{f1} modulo the integer prime \\spad{p}. Error: if \\spad{f1} is not square-free modulo \\spad{p}.")) (|linears| ((|#1| |#1| (|Integer|)) "\\spad{linears(f,p)} returns the product of all the linear factors of \\spad{f} modulo \\spad{p}. Potentially incorrect result if \\spad{f} is not square-free modulo \\spad{p}.")) (|gcd| ((|#1| |#1| |#1| (|Integer|)) "\\spad{gcd(f1,f2,p)} computes the gcd of the univariate polynomials \\spad{f1} and \\spad{f2} modulo the integer prime \\spad{p}."))) NIL NIL -(-635) +(-636) ((|constructor| (NIL "\\indented{1}{<description of package>} Author: Jim Wen Date Created: ?? Date Last Updated: October 1991 by Jon Steinbach Keywords: Examples: References:")) (|ptFunc| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{ptFunc(a,b,c,d)} is an internal function exported in order to compile packages.")) (|meshPar1Var| (((|ThreeSpace| (|DoubleFloat|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar1Var(s,t,u,f,s1,l)} \\undocumented")) (|meshFun2Var| (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) #1="undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshFun2Var(f,g,s1,s2,l)} \\undocumented")) (|meshPar2Var| (((|ThreeSpace| (|DoubleFloat|)) (|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(sp,f,s1,s2,l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,s1,s2,l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) #1#) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,g,h,j,s1,s2,l)} \\undocumented"))) NIL NIL -(-636 OV E -3091 PG) +(-637 OV E -3092 PG) ((|constructor| (NIL "Package for factorization of multivariate polynomials over finite fields.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field. \\spad{p} is represented as a univariate polynomial with multivariate coefficients over a finite field.") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field."))) NIL NIL -(-637 R) +(-638 R) ((|constructor| (NIL "\\indented{1}{Modular hermitian row reduction.} Author: Manuel Bronstein Date Created: 22 February 1989 Date Last Updated: 24 November 1993 Keywords: matrix,{} reduction.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelonLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| |#1|) "\\spad{rowEchelonLocal(m, d, p)} computes the row-echelon form of \\spad{m} concatenated with \\spad{d} times the identity matrix over a local ring where \\spad{p} is the only prime.")) (|rowEchLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchLocal(m,p)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus over a local ring where \\spad{p} is the only prime.")) (|rowEchelon| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchelon(m, d)} computes a modular row-echelon form mod \\spad{d} of \\indented{3}{[\\spad{d}\\space{5}]} \\indented{3}{[\\space{2}\\spad{d}\\space{3}]} \\indented{3}{[\\space{4}. ]} \\indented{3}{[\\space{5}\\spad{d}]} \\indented{3}{[\\space{3}\\spad{M}\\space{2}]} where \\spad{M = m mod d}.")) (|rowEch| (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{rowEch(m)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus."))) NIL NIL -(-638 S D1 D2 I) +(-639 S D1 D2 I) ((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#4| |#2| |#3|) |#1| (|Symbol|) (|Symbol|)) "\\spad{compiledFunction(expr,x,y)} returns a function \\spad{f: (D1, D2) -> I} defined by \\spad{f(x, y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(D1, D2)}")) (|binaryFunction| (((|Mapping| |#4| |#2| |#3|) (|Symbol|)) "\\spad{binaryFunction(s)} is a local function"))) NIL NIL -(-639 S) +(-640 S) ((|constructor| (NIL "MakeFloatCompiledFunction transforms top-level objects into compiled Lisp functions whose arguments are Lisp floats. This by-passes the \\Language{} compiler and interpreter,{} thereby gaining several orders of magnitude.")) (|makeFloatFunction| (((|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) |#1| (|Symbol|) (|Symbol|)) "\\spad{makeFloatFunction(expr, x, y)} returns a Lisp function \\spad{f: (\\axiomType{DoubleFloat}, \\axiomType{DoubleFloat}) -> \\axiomType{DoubleFloat}} defined by \\spad{f(x, y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(\\axiomType{DoubleFloat}, \\axiomType{DoubleFloat})}.") (((|Mapping| (|DoubleFloat|) (|DoubleFloat|)) |#1| (|Symbol|)) "\\spad{makeFloatFunction(expr, x)} returns a Lisp function \\spad{f: \\axiomType{DoubleFloat} -> \\axiomType{DoubleFloat}} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\axiomType{DoubleFloat}."))) NIL NIL -(-640 S) +(-641 S) ((|constructor| (NIL "transforms top-level objects into interpreter functions.")) (|function| (((|Symbol|) |#1| (|Symbol|) (|List| (|Symbol|))) "\\spad{function(e, foo, [x1,...,xn])} creates a function \\spad{foo(x1,...,xn) == e}.") (((|Symbol|) |#1| (|Symbol|) (|Symbol|) (|Symbol|)) "\\spad{function(e, foo, x, y)} creates a function \\spad{foo(x, y) = e}.") (((|Symbol|) |#1| (|Symbol|) (|Symbol|)) "\\spad{function(e, foo, x)} creates a function \\spad{foo(x) == e}.") (((|Symbol|) |#1| (|Symbol|)) "\\spad{function(e, foo)} creates a function \\spad{foo() == e}."))) NIL NIL -(-641 S T$) +(-642 S T$) ((|constructor| (NIL "MakeRecord is used internally by the interpreter to create record types which are used for doing parallel iterations on streams.")) (|makeRecord| (((|Record| (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) "\\spad{makeRecord(a,b)} creates a record object with type Record(part1:S,{} part2:R),{} where \\spad{part1} is \\spad{a} and \\spad{part2} is \\spad{b}."))) NIL NIL -(-642 S -2668 I) +(-643 S -2669 I) ((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#3| |#2|) |#1| (|Symbol|)) "\\spad{compiledFunction(expr, x)} returns a function \\spad{f: D -> I} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{D}.")) (|unaryFunction| (((|Mapping| |#3| |#2|) (|Symbol|)) "\\spad{unaryFunction(a)} is a local function"))) NIL NIL -(-643 E OV R P) +(-644 E OV R P) ((|constructor| (NIL "This package provides the functions for the multivariate \"lifting\",{} using an algorithm of Paul Wang. This package will work for every euclidean domain \\spad{R} which has property \\spad{F},{} \\spadignore{i.e.} there exists a factor operation in \\spad{R[x]}.")) (|lifting1| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|List| |#4|) (|List| (|List| (|Record| (|:| |expt| (|NonNegativeInteger|)) (|:| |pcoef| |#4|)))) (|List| (|NonNegativeInteger|)) (|Vector| (|List| (|SparseUnivariatePolynomial| |#3|))) |#3|) "\\spad{lifting1(u,lv,lu,lr,lp,lt,ln,t,r)} \\undocumented")) (|lifting| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|SparseUnivariatePolynomial| |#3|)) (|List| |#3|) (|List| |#4|) (|List| (|NonNegativeInteger|)) |#3|) "\\spad{lifting(u,lv,lu,lr,lp,ln,r)} \\undocumented")) (|corrPoly| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| |#3|) (|List| (|NonNegativeInteger|)) (|List| (|SparseUnivariatePolynomial| |#4|)) (|Vector| (|List| (|SparseUnivariatePolynomial| |#3|))) |#3|) "\\spad{corrPoly(u,lv,lr,ln,lu,t,r)} \\undocumented"))) NIL NIL -(-644 R) +(-645 R) ((|constructor| (NIL "This is the category of linear operator rings with one generator. The generator is not named by the category but can always be constructed as \\spad{monomial(1,1)}. \\blankline For convenience,{} call the generator \\spad{G}. Then each value is equal to \\indented{4}{\\spad{sum(a(i)*G**i, i = 0..n)}} for some unique \\spad{n} and \\spad{a(i)} in \\spad{R}. \\blankline Note that multiplication is not necessarily commutative. In fact,{} if \\spad{a} is in \\spad{R},{} it is quite normal to have \\spad{a*G \\~= G*a}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) \\~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}"))) -((-3987 . T) (-3988 . T) (-3990 . T)) +((-3988 . T) (-3989 . T) (-3991 . T)) NIL -(-645 R1 UP1 UPUP1 R2 UP2 UPUP2) +(-646 R1 UP1 UPUP1 R2 UP2 UPUP2) ((|constructor| (NIL "Lifting of a map through 2 levels of polynomials.")) (|map| ((|#6| (|Mapping| |#4| |#1|) |#3|) "\\spad{map(f, p)} lifts \\spad{f} to the domain of \\spad{p} then applies it to \\spad{p}."))) NIL NIL -(-646) +(-647) ((|constructor| (NIL "\\spadtype{MathMLFormat} provides a coercion from \\spadtype{OutputForm} to MathML format.")) (|display| (((|Void|) (|String|)) "prints the string returned by coerce,{} adding <math ...> tags.")) (|exprex| (((|String|) (|OutputForm|)) "coverts \\spadtype{OutputForm} to \\spadtype{String} with the structure preserved with braces. Actually this is not quite accurate. The function \\spadfun{precondition} is first applied to the \\spadtype{OutputForm} expression before \\spadfun{exprex}. The raw \\spadtype{OutputForm} and the nature of the \\spadfun{precondition} function is still obscure to me at the time of this writing (2007-02-14).")) (|coerceL| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format and displays result as one long string.")) (|coerceS| (((|String|) (|OutputForm|)) "\\spad{coerceS(o)} changes \\spad{o} in the standard output format to MathML format and displays formatted result.")) (|coerce| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format."))) NIL NIL -(-647 R |Mod| -2036 -3516 |exactQuo|) +(-648 R |Mod| -2037 -3517 |exactQuo|) ((|constructor| (NIL "\\indented{1}{These domains are used for the factorization and gcds} of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{EuclideanModularRing}")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented"))) -((-3985 . T) (-3991 . T) (-3986 . T) ((-3995 "*") . T) (-3987 . T) (-3988 . T) (-3990 . T)) +((-3986 . T) (-3992 . T) (-3987 . T) ((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T)) NIL -(-648 R P) +(-649 R P) ((|constructor| (NIL "This package \\undocumented")) (|frobenius| (($ $) "\\spad{frobenius(x)} \\undocumented")) (|computePowers| (((|PrimitiveArray| $)) "\\spad{computePowers()} \\undocumented")) (|pow| (((|PrimitiveArray| $)) "\\spad{pow()} \\undocumented")) (|An| (((|Vector| |#1|) $) "\\spad{An(x)} \\undocumented")) (|UnVectorise| (($ (|Vector| |#1|)) "\\spad{UnVectorise(v)} \\undocumented")) (|Vectorise| (((|Vector| |#1|) $) "\\spad{Vectorise(x)} \\undocumented")) (|lift| ((|#2| $) "\\spad{lift(x)} \\undocumented")) (|reduce| (($ |#2|) "\\spad{reduce(x)} \\undocumented")) (|modulus| ((|#2|) "\\spad{modulus()} \\undocumented")) (|setPoly| ((|#2| |#2|) "\\spad{setPoly(x)} \\undocumented"))) -(((-3995 "*") |has| |#1| (-146)) (-3986 |has| |#1| (-494)) (-3989 |has| |#1| (-312)) (-3991 |has| |#1| (-6 -3991)) (-3988 . T) (-3987 . T) (-3990 . T)) -((|HasCategory| |#1| (QUOTE (-820))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-494)))) (-12 (|HasCategory| |#1| (QUOTE (-795 (-328)))) (|HasCategory| (-993) (QUOTE (-795 (-328))))) (-12 (|HasCategory| |#1| (QUOTE (-795 (-483)))) (|HasCategory| (-993) (QUOTE (-795 (-483))))) (-12 (|HasCategory| |#1| (QUOTE (-552 (-799 (-328))))) (|HasCategory| (-993) (QUOTE (-552 (-799 (-328)))))) (-12 (|HasCategory| |#1| (QUOTE (-552 (-799 (-483))))) (|HasCategory| (-993) (QUOTE (-552 (-799 (-483)))))) (-12 (|HasCategory| |#1| (QUOTE (-552 (-472)))) (|HasCategory| (-993) (QUOTE (-552 (-472))))) (|HasCategory| |#1| (QUOTE (-579 (-483)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-348 (-483))))) (|HasCategory| |#1| (QUOTE (-949 (-483)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-348 (-483))))) (|HasCategory| |#1| (QUOTE (-949 (-348 (-483)))))) (|HasCategory| |#1| (QUOTE (-949 (-348 (-483))))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-390))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-820)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-390))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-820)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-390))) (|HasCategory| |#1| (QUOTE (-820)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-1064))) (|HasCategory| |#1| (QUOTE (-810 (-1088)))) (|HasCategory| |#1| (QUOTE (-808 (-1088)))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-299))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-190))) (|HasAttribute| |#1| (QUOTE -3991)) (|HasCategory| |#1| (QUOTE (-390))) (-12 (|HasCategory| |#1| (QUOTE (-820))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-820))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) -(-649 IS E |ff|) +(((-3996 "*") |has| |#1| (-146)) (-3987 |has| |#1| (-495)) (-3990 |has| |#1| (-312)) (-3992 |has| |#1| (-6 -3992)) (-3989 . T) (-3988 . T) (-3991 . T)) +((|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (-12 (|HasCategory| |#1| (QUOTE (-796 (-329)))) (|HasCategory| (-994) (QUOTE (-796 (-329))))) (-12 (|HasCategory| |#1| (QUOTE (-796 (-484)))) (|HasCategory| (-994) (QUOTE (-796 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-800 (-329))))) (|HasCategory| (-994) (QUOTE (-553 (-800 (-329)))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-800 (-484))))) (|HasCategory| (-994) (QUOTE (-553 (-800 (-484)))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-473)))) (|HasCategory| (-994) (QUOTE (-553 (-473))))) (|HasCategory| |#1| (QUOTE (-580 (-484)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-349 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-484)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-349 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-349 (-484)))))) (|HasCategory| |#1| (QUOTE (-950 (-349 (-484))))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-391))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-821)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-391))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-821)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-391))) (|HasCategory| |#1| (QUOTE (-821)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-1065))) (|HasCategory| |#1| (QUOTE (-811 (-1089)))) (|HasCategory| |#1| (QUOTE (-809 (-1089)))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-299))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-190))) (|HasAttribute| |#1| (QUOTE -3992)) (|HasCategory| |#1| (QUOTE (-391))) (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) +(-650 IS E |ff|) ((|constructor| (NIL "This package \\undocumented")) (|construct| (($ |#1| |#2|) "\\spad{construct(i,e)} \\undocumented")) (|index| ((|#1| $) "\\spad{index(x)} \\undocumented")) (|exponent| ((|#2| $) "\\spad{exponent(x)} \\undocumented"))) NIL NIL -(-650 R M) +(-651 R M) ((|constructor| (NIL "Algebra of ADDITIVE operators on a module.")) (|makeop| (($ |#1| (|FreeGroup| (|BasicOperator|))) "\\spad{makeop should} be local but conditional")) (|opeval| ((|#2| (|BasicOperator|) |#2|) "\\spad{opeval should} be local but conditional")) (** (($ $ (|Integer|)) "\\spad{op**n} \\undocumented") (($ (|BasicOperator|) (|Integer|)) "\\spad{op**n} \\undocumented")) (|evaluateInverse| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluateInverse(x,f)} \\undocumented")) (|evaluate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluate(f, u +-> g u)} attaches the map \\spad{g} to \\spad{f}. \\spad{f} must be a basic operator \\spad{g} MUST be additive,{} \\spadignore{i.e.} \\spad{g(a + b) = g(a) + g(b)} for any \\spad{a},{} \\spad{b} in \\spad{M}. This implies that \\spad{g(n a) = n g(a)} for any \\spad{a} in \\spad{M} and integer \\spad{n > 0}.")) (|conjug| ((|#1| |#1|) "\\spad{conjug(x)}should be local but conditional")) (|adjoint| (($ $ $) "\\spad{adjoint(op1, op2)} sets the adjoint of \\spad{op1} to be \\spad{op2}. \\spad{op1} must be a basic operator") (($ $) "\\spad{adjoint(op)} returns the adjoint of the operator \\spad{op}."))) -((-3988 |has| |#1| (-146)) (-3987 |has| |#1| (-146)) (-3990 . T)) +((-3989 |has| |#1| (-146)) (-3988 |has| |#1| (-146)) (-3991 . T)) ((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120)))) -(-651 R |Mod| -2036 -3516 |exactQuo|) +(-652 R |Mod| -2037 -3517 |exactQuo|) ((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{EuclideanModularRing} ,{}\\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented"))) -((-3990 . T)) +((-3991 . T)) NIL -(-652 S R) +(-653 S R) ((|constructor| (NIL "The category of modules over a commutative ring. \\blankline"))) NIL NIL -(-653 R) +(-654 R) ((|constructor| (NIL "The category of modules over a commutative ring. \\blankline"))) -((-3988 . T) (-3987 . T)) +((-3989 . T) (-3988 . T)) NIL -(-654 -3091) +(-655 -3092) ((|constructor| (NIL "\\indented{1}{MoebiusTransform(\\spad{F}) is the domain of fractional linear (Moebius)} transformations over \\spad{F}.")) (|eval| (((|OnePointCompletion| |#1|) $ (|OnePointCompletion| |#1|)) "\\spad{eval(m,x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,b,c,d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).") ((|#1| $ |#1|) "\\spad{eval(m,x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,b,c,d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).")) (|recip| (($ $) "\\spad{recip(m)} = recip() * \\spad{m}") (($) "\\spad{recip()} returns \\spad{matrix [[0,1],[1,0]]} representing the map \\spad{x -> 1 / x}.")) (|scale| (($ $ |#1|) "\\spad{scale(m,h)} returns \\spad{scale(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{scale(k)} returns \\spad{matrix [[k,0],[0,1]]} representing the map \\spad{x -> k * x}.")) (|shift| (($ $ |#1|) "\\spad{shift(m,h)} returns \\spad{shift(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{shift(k)} returns \\spad{matrix [[1,k],[0,1]]} representing the map \\spad{x -> x + k}.")) (|moebius| (($ |#1| |#1| |#1| |#1|) "\\spad{moebius(a,b,c,d)} returns \\spad{matrix [[a,b],[c,d]]}."))) -((-3990 . T)) +((-3991 . T)) NIL -(-655 S) +(-656 S) ((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation."))) NIL NIL -(-656) +(-657) ((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation."))) NIL NIL -(-657 S) +(-658 S) ((|constructor| (NIL "\\indented{1}{MonadWithUnit is the class of multiplicative monads with unit,{}} \\indented{1}{\\spadignore{i.e.} sets with a binary operation and a unit element.} Axioms \\indented{3}{leftIdentity(\"*\":(\\%,{}\\%)->\\%,{}1)\\space{3}\\tab{30} 1*x=x} \\indented{3}{rightIdentity(\"*\":(\\%,{}\\%)->\\%,{}1)\\space{2}\\tab{30} x*1=x} Common Additional Axioms \\indented{3}{unitsKnown---if \"recip\" says \"failed\",{} that PROVES input wasn't a unit}")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|NonNegativeInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,0) := 1}.")) (|rightPower| (($ $ (|NonNegativeInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,0) := 1}.")) (|one?| (((|Boolean|) $) "\\spad{one?(a)} tests whether \\spad{a} is the unit 1.")) (|One| (($) "1 returns the unit element,{} denoted by 1."))) NIL NIL -(-658) +(-659) ((|constructor| (NIL "\\indented{1}{MonadWithUnit is the class of multiplicative monads with unit,{}} \\indented{1}{\\spadignore{i.e.} sets with a binary operation and a unit element.} Axioms \\indented{3}{leftIdentity(\"*\":(\\%,{}\\%)->\\%,{}1)\\space{3}\\tab{30} 1*x=x} \\indented{3}{rightIdentity(\"*\":(\\%,{}\\%)->\\%,{}1)\\space{2}\\tab{30} x*1=x} Common Additional Axioms \\indented{3}{unitsKnown---if \"recip\" says \"failed\",{} that PROVES input wasn't a unit}")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|NonNegativeInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,0) := 1}.")) (|rightPower| (($ $ (|NonNegativeInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,0) := 1}.")) (|one?| (((|Boolean|) $) "\\spad{one?(a)} tests whether \\spad{a} is the unit 1.")) (|One| (($) "1 returns the unit element,{} denoted by 1."))) NIL NIL -(-659 S R UP) +(-660 S R UP) ((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#2|) (|Vector| $) (|Mapping| |#2| |#2|)) "\\spad{derivationCoordinates(b, ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#3| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#3|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#3|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#3|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#3|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain."))) NIL -((|HasCategory| |#2| (QUOTE (-299))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-318)))) -(-660 R UP) +((|HasCategory| |#2| (QUOTE (-299))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-319)))) +(-661 R UP) ((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#1|) (|Vector| $) (|Mapping| |#1| |#1|)) "\\spad{derivationCoordinates(b, ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#2| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#2|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#2|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#2|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#2|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain."))) -((-3986 |has| |#1| (-312)) (-3991 |has| |#1| (-312)) (-3985 |has| |#1| (-312)) ((-3995 "*") . T) (-3987 . T) (-3988 . T) (-3990 . T)) +((-3987 |has| |#1| (-312)) (-3992 |has| |#1| (-312)) (-3986 |has| |#1| (-312)) ((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T)) NIL -(-661 S) +(-662 S) ((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|One| (($) "1 is the multiplicative identity."))) NIL NIL -(-662) +(-663) ((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|One| (($) "1 is the multiplicative identity."))) NIL NIL -(-663 T$) +(-664 T$) ((|constructor| (NIL "This domain implements monoid operations.")) (|monoidOperation| (($ (|Mapping| |#1| |#1| |#1|) |#1|) "\\spad{monoidOperation(f,e)} constructs a operation from the binary mapping \\spad{f} with neutral value \\spad{e}."))) -(((|%Rule| |neutrality| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|)) (SEQ (-3055 (|f| |x| (-2411 |f|)) |x|) (|exit| 1 (-3055 (|f| (-2411 |f|) |x|) |x|))))) . T) ((|%Rule| |associativity| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|) (|:| |y| |#1|) (|:| |z| |#1|)) (-3055 (|f| (|f| |x| |y|) |z|) (|f| |x| (|f| |y| |z|))))) . T)) +(((|%Rule| |neutrality| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|)) (SEQ (-3056 (|f| |x| (-2412 |f|)) |x|) (|exit| 1 (-3056 (|f| (-2412 |f|) |x|) |x|))))) . T) ((|%Rule| |associativity| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|) (|:| |y| |#1|) (|:| |z| |#1|)) (-3056 (|f| (|f| |x| |y|) |z|) (|f| |x| (|f| |y| |z|))))) . T)) NIL -(-664 T$) +(-665 T$) ((|constructor| (NIL "This is the category of all domains that implement monoid operations")) (|neutralValue| ((|#1| $) "\\spad{neutralValue f} returns the neutral value of the monoid operation \\spad{f}."))) -(((|%Rule| |neutrality| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|)) (SEQ (-3055 (|f| |x| (-2411 |f|)) |x|) (|exit| 1 (-3055 (|f| (-2411 |f|) |x|) |x|))))) . T) ((|%Rule| |associativity| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|) (|:| |y| |#1|) (|:| |z| |#1|)) (-3055 (|f| (|f| |x| |y|) |z|) (|f| |x| (|f| |y| |z|))))) . T)) +(((|%Rule| |neutrality| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|)) (SEQ (-3056 (|f| |x| (-2412 |f|)) |x|) (|exit| 1 (-3056 (|f| (-2412 |f|) |x|) |x|))))) . T) ((|%Rule| |associativity| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|) (|:| |y| |#1|) (|:| |z| |#1|)) (-3056 (|f| (|f| |x| |y|) |z|) (|f| |x| (|f| |y| |z|))))) . T)) NIL -(-665 -3091 UP) +(-666 -3092 UP) ((|constructor| (NIL "Tools for handling monomial extensions.")) (|decompose| (((|Record| (|:| |poly| |#2|) (|:| |normal| (|Fraction| |#2|)) (|:| |special| (|Fraction| |#2|))) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{decompose(f, D)} returns \\spad{[p,n,s]} such that \\spad{f = p+n+s},{} all the squarefree factors of \\spad{denom(n)} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{denom(s)} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{n} and \\spad{s} are proper fractions (no pole at infinity). \\spad{D} is the derivation to use.")) (|normalDenom| ((|#2| (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{normalDenom(f, D)} returns the product of all the normal factors of \\spad{denom(f)}. \\spad{D} is the derivation to use.")) (|splitSquarefree| (((|Record| (|:| |normal| (|Factored| |#2|)) (|:| |special| (|Factored| |#2|))) |#2| (|Mapping| |#2| |#2|)) "\\spad{splitSquarefree(p, D)} returns \\spad{[n_1 n_2\\^2 ... n_m\\^m, s_1 s_2\\^2 ... s_q\\^q]} such that \\spad{p = n_1 n_2\\^2 ... n_m\\^m s_1 s_2\\^2 ... s_q\\^q},{} each \\spad{n_i} is normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D} and each \\spad{s_i} is special \\spad{w}.\\spad{r}.\\spad{t} \\spad{D}. \\spad{D} is the derivation to use.")) (|split| (((|Record| (|:| |normal| |#2|) (|:| |special| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{split(p, D)} returns \\spad{[n,s]} such that \\spad{p = n s},{} all the squarefree factors of \\spad{n} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{s} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. \\spad{D} is the derivation to use."))) NIL NIL -(-666 |VarSet| E1 E2 R S PR PS) +(-667 |VarSet| E1 E2 R S PR PS) ((|constructor| (NIL "\\indented{1}{Utilities for MPolyCat} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 28 March 1990 (PG)")) (|reshape| ((|#7| (|List| |#5|) |#6|) "\\spad{reshape(l,p)} \\undocumented")) (|map| ((|#7| (|Mapping| |#5| |#4|) |#6|) "\\spad{map(f,p)} \\undocumented"))) NIL NIL -(-667 |Vars1| |Vars2| E1 E2 R PR1 PR2) +(-668 |Vars1| |Vars2| E1 E2 R PR1 PR2) ((|constructor| (NIL "This package \\undocumented")) (|map| ((|#7| (|Mapping| |#2| |#1|) |#6|) "\\spad{map(f,x)} \\undocumented"))) NIL NIL -(-668 E OV R PPR) +(-669 E OV R PPR) ((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are polynomials over some ring \\spad{R} over which we can factor. It is used internally by packages such as the solve package which need to work with polynomials in a specific set of variables with coefficients which are polynomials in all the other variables.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors a polynomial with polynomial coefficients.")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-669 |vl| R) +(-670 |vl| R) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are from a user specified list of symbols. The ordering is specified by the position of the variable in the list. The coefficient ring may be non commutative,{} but the variables are assumed to commute."))) -(((-3995 "*") |has| |#2| (-146)) (-3986 |has| |#2| (-494)) (-3991 |has| |#2| (-6 -3991)) (-3988 . T) (-3987 . T) (-3990 . T)) -((|HasCategory| |#2| (QUOTE (-820))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-390))) (|HasCategory| |#2| (QUOTE (-494))) (|HasCategory| |#2| (QUOTE (-820)))) (OR (|HasCategory| |#2| (QUOTE (-390))) (|HasCategory| |#2| (QUOTE (-494))) (|HasCategory| |#2| (QUOTE (-820)))) (OR (|HasCategory| |#2| (QUOTE (-390))) (|HasCategory| |#2| (QUOTE (-820)))) (|HasCategory| |#2| (QUOTE (-494))) (|HasCategory| |#2| (QUOTE (-146))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-494)))) (-12 (|HasCategory| |#2| (QUOTE (-795 (-328)))) (|HasCategory| (-772 |#1|) (QUOTE (-795 (-328))))) (-12 (|HasCategory| |#2| (QUOTE (-795 (-483)))) (|HasCategory| (-772 |#1|) (QUOTE (-795 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-552 (-799 (-328))))) (|HasCategory| (-772 |#1|) (QUOTE (-552 (-799 (-328)))))) (-12 (|HasCategory| |#2| (QUOTE (-552 (-799 (-483))))) (|HasCategory| (-772 |#1|) (QUOTE (-552 (-799 (-483)))))) (-12 (|HasCategory| |#2| (QUOTE (-552 (-472)))) (|HasCategory| (-772 |#1|) (QUOTE (-552 (-472))))) (|HasCategory| |#2| (QUOTE (-579 (-483)))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-38 (-348 (-483))))) (|HasCategory| |#2| (QUOTE (-949 (-483)))) (OR (|HasCategory| |#2| (QUOTE (-38 (-348 (-483))))) (|HasCategory| |#2| (QUOTE (-949 (-348 (-483)))))) (|HasCategory| |#2| (QUOTE (-949 (-348 (-483))))) (|HasCategory| |#2| (QUOTE (-312))) (|HasAttribute| |#2| (QUOTE -3991)) (|HasCategory| |#2| (QUOTE (-390))) (-12 (|HasCategory| |#2| (QUOTE (-820))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-820))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#2| (QUOTE (-118))))) -(-670 E OV R PRF) +(((-3996 "*") |has| |#2| (-146)) (-3987 |has| |#2| (-495)) (-3992 |has| |#2| (-6 -3992)) (-3989 . T) (-3988 . T) (-3991 . T)) +((|HasCategory| |#2| (QUOTE (-821))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-391))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-821)))) (OR (|HasCategory| |#2| (QUOTE (-391))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-821)))) (OR (|HasCategory| |#2| (QUOTE (-391))) (|HasCategory| |#2| (QUOTE (-821)))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-146))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-495)))) (-12 (|HasCategory| |#2| (QUOTE (-796 (-329)))) (|HasCategory| (-773 |#1|) (QUOTE (-796 (-329))))) (-12 (|HasCategory| |#2| (QUOTE (-796 (-484)))) (|HasCategory| (-773 |#1|) (QUOTE (-796 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-553 (-800 (-329))))) (|HasCategory| (-773 |#1|) (QUOTE (-553 (-800 (-329)))))) (-12 (|HasCategory| |#2| (QUOTE (-553 (-800 (-484))))) (|HasCategory| (-773 |#1|) (QUOTE (-553 (-800 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-553 (-473)))) (|HasCategory| (-773 |#1|) (QUOTE (-553 (-473))))) (|HasCategory| |#2| (QUOTE (-580 (-484)))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-38 (-349 (-484))))) (|HasCategory| |#2| (QUOTE (-950 (-484)))) (OR (|HasCategory| |#2| (QUOTE (-38 (-349 (-484))))) (|HasCategory| |#2| (QUOTE (-950 (-349 (-484)))))) (|HasCategory| |#2| (QUOTE (-950 (-349 (-484))))) (|HasCategory| |#2| (QUOTE (-312))) (|HasAttribute| |#2| (QUOTE -3992)) (|HasCategory| |#2| (QUOTE (-391))) (-12 (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#2| (QUOTE (-118))))) +(-671 E OV R PRF) ((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are rational functions over some ring \\spad{R} over which we can factor. It is used internally by packages such as primary decomposition which need to work with polynomials with rational function coefficients,{} \\spadignore{i.e.} themselves fractions of polynomials.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(prf)} factors a polynomial with rational function coefficients.")) (|pushuconst| ((|#4| (|Fraction| (|Polynomial| |#3|)) |#2|) "\\spad{pushuconst(r,var)} takes a rational function and raises all occurances of the variable \\spad{var} to the polynomial level.")) (|pushucoef| ((|#4| (|SparseUnivariatePolynomial| (|Polynomial| |#3|)) |#2|) "\\spad{pushucoef(upoly,var)} converts the anonymous univariate polynomial \\spad{upoly} to a polynomial in \\spad{var} over rational functions.")) (|pushup| ((|#4| |#4| |#2|) "\\spad{pushup(prf,var)} raises all occurences of the variable \\spad{var} in the coefficients of the polynomial \\spad{prf} back to the polynomial level.")) (|pushdterm| ((|#4| (|SparseUnivariatePolynomial| |#4|) |#2|) "\\spad{pushdterm(monom,var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the monomial \\spad{monom}.")) (|pushdown| ((|#4| |#4| |#2|) "\\spad{pushdown(prf,var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the polynomial \\spad{prf}.")) (|totalfract| (((|Record| (|:| |sup| (|Polynomial| |#3|)) (|:| |inf| (|Polynomial| |#3|))) |#4|) "\\spad{totalfract(prf)} takes a polynomial whose coefficients are themselves fractions of polynomials and returns a record containing the numerator and denominator resulting from putting \\spad{prf} over a common denominator.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-671 E OV R P) +(-672 E OV R P) ((|constructor| (NIL "\\indented{1}{MRationalFactorize contains the factor function for multivariate} polynomials over the quotient field of a ring \\spad{R} such that the package MultivariateFactorize can factor multivariate polynomials over \\spad{R}.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} with coefficients which are fractions of elements of \\spad{R}."))) NIL NIL -(-672 R S M) +(-673 R S M) ((|constructor| (NIL "\\spad{MonoidRingFunctions2} implements functions between two monoid rings defined with the same monoid over different rings.")) (|map| (((|MonoidRing| |#2| |#3|) (|Mapping| |#2| |#1|) (|MonoidRing| |#1| |#3|)) "\\spad{map(f,u)} maps \\spad{f} onto the coefficients \\spad{f} the element \\spad{u} of the monoid ring to create an element of a monoid ring with the same monoid \\spad{b}."))) NIL NIL -(-673 R M) +(-674 R M) ((|constructor| (NIL "\\spadtype{MonoidRing}(\\spad{R},{}\\spad{M}),{} implements the algebra of all maps from the monoid \\spad{M} to the commutative ring \\spad{R} with finite support. Multiplication of two maps \\spad{f} and \\spad{g} is defined to map an element \\spad{c} of \\spad{M} to the (convolution) sum over {\\em f(a)g(b)} such that {\\em ab = c}. Thus \\spad{M} can be identified with a canonical basis and the maps can also be considered as formal linear combinations of the elements in \\spad{M}. Scalar multiples of a basis element are called monomials. A prominent example is the class of polynomials where the monoid is a direct product of the natural numbers with pointwise addition. When \\spad{M} is \\spadtype{FreeMonoid Symbol},{} one gets polynomials in infinitely many non-commuting variables. Another application area is representation theory of finite groups \\spad{G},{} where modules over \\spadtype{MonoidRing}(\\spad{R},{}\\spad{G}) are studied.")) (|reductum| (($ $) "\\spad{reductum(f)} is \\spad{f} minus its leading monomial.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} gives the coefficient of \\spad{f},{} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(f)} gives the monomial of \\spad{f} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(f)} is the number of non-zero coefficients with respect to the canonical basis.")) (|monomials| (((|List| $) $) "\\spad{monomials(f)} gives the list of all monomials whose sum is \\spad{f}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(f)} lists all non-zero coefficients.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|terms| (((|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|))) $) "\\spad{terms(f)} gives the list of non-zero coefficients combined with their corresponding basis element as records. This is the internal representation.")) (|coerce| (($ (|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|)))) "\\spad{coerce(lt)} converts a list of terms and coefficients to a member of the domain.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(f,m)} extracts the coefficient of \\spad{m} in \\spad{f} with respect to the canonical basis \\spad{M}.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,m)} creates a scalar multiple of the basis element \\spad{m}."))) -((-3988 |has| |#1| (-146)) (-3987 |has| |#1| (-146)) (-3990 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-318)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-755)))) -(-674 S) -((|constructor| (NIL "A multiset is a set with multiplicities.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove!(p,ms,number)} removes destructively at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove!(x,ms,number)} removes destructively at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove(p,ms,number)} removes at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove(x,ms,number)} removes at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|members| (((|List| |#1|) $) "\\spad{members(ms)} returns a list of the elements of \\spad{ms} {\\em without} their multiplicity. See also \\spadfun{parts}.")) (|multiset| (($ (|List| |#1|)) "\\spad{multiset(ls)} creates a multiset with elements from \\spad{ls}.") (($ |#1|) "\\spad{multiset(s)} creates a multiset with singleton \\spad{s}.") (($) "\\spad{multiset()}\\$\\spad{D} creates an empty multiset of domain \\spad{D}."))) -((-3993 . T) (-3983 . T) (-3994 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-552 (-472)))) (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (QUOTE (-551 (-771)))) (|HasCategory| |#1| (QUOTE (-72)))) +((-3989 |has| |#1| (-146)) (-3988 |has| |#1| (-146)) (-3991 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-319)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-756)))) (-675 S) +((|constructor| (NIL "A multiset is a set with multiplicities.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove!(p,ms,number)} removes destructively at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove!(x,ms,number)} removes destructively at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove(p,ms,number)} removes at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove(x,ms,number)} removes at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|members| (((|List| |#1|) $) "\\spad{members(ms)} returns a list of the elements of \\spad{ms} {\\em without} their multiplicity. See also \\spadfun{parts}.")) (|multiset| (($ (|List| |#1|)) "\\spad{multiset(ls)} creates a multiset with elements from \\spad{ls}.") (($ |#1|) "\\spad{multiset(s)} creates a multiset with singleton \\spad{s}.") (($) "\\spad{multiset()}\\$\\spad{D} creates an empty multiset of domain \\spad{D}."))) +((-3994 . T) (-3984 . T) (-3995 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-553 (-473)))) (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-72)))) +(-676 S) ((|constructor| (NIL "A multi-set aggregate is a set which keeps track of the multiplicity of its elements."))) -((-3983 . T) (-3994 . T)) +((-3984 . T) (-3995 . T)) NIL -(-676) +(-677) ((|constructor| (NIL "\\spadtype{MoreSystemCommands} implements an interface with the system command facility. These are the commands that are issued from source files or the system interpreter and they start with a close parenthesis,{} \\spadignore{e.g.} \\spadsyscom{what} commands.")) (|systemCommand| (((|Void|) (|String|)) "\\spad{systemCommand(cmd)} takes the string \\spadvar{\\spad{cmd}} and passes it to the runtime environment for execution as a system command. Although various things may be printed,{} no usable value is returned."))) NIL NIL -(-677 S) +(-678 S) ((|constructor| (NIL "This package exports tools for merging lists")) (|mergeDifference| (((|List| |#1|) (|List| |#1|) (|List| |#1|)) "\\spad{mergeDifference(l1,l2)} returns a list of elements in \\spad{l1} not present in \\spad{l2}. Assumes lists are ordered and all \\spad{x} in \\spad{l2} are also in \\spad{l1}."))) NIL NIL -(-678 |Coef| |Var|) +(-679 |Coef| |Var|) ((|constructor| (NIL "\\spadtype{MultivariateTaylorSeriesCategory} is the most general multivariate Taylor series category.")) (|integrate| (($ $ |#2|) "\\spad{integrate(f,x)} returns the anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{x} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| (((|NonNegativeInteger|) $ |#2| (|NonNegativeInteger|)) "\\spad{order(f,x,n)} returns \\spad{min(n,order(f,x))}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(f,x)} returns the order of \\spad{f} viewed as a series in \\spad{x} may result in an infinite loop if \\spad{f} has no non-zero terms.")) (|monomial| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[x1,x2,...,xk],[n1,n2,...,nk])} returns \\spad{a * x1^n1 * ... * xk^nk}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} returns \\spad{a*x^n}.")) (|extend| (($ $ (|NonNegativeInteger|)) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree \\spad{<= n} to be computed.")) (|coefficient| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(f,[x1,x2,...,xk],[n1,n2,...,nk])} returns the coefficient of \\spad{x1^n1 * ... * xk^nk} in \\spad{f}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{coefficient(f,x,n)} returns the coefficient of \\spad{x^n} in \\spad{f}."))) -(((-3995 "*") |has| |#1| (-146)) (-3986 |has| |#1| (-494)) (-3988 . T) (-3987 . T) (-3990 . T)) +(((-3996 "*") |has| |#1| (-146)) (-3987 |has| |#1| (-495)) (-3989 . T) (-3988 . T) (-3991 . T)) NIL -(-679 OV E R P) +(-680 OV E R P) ((|constructor| (NIL "\\indented{2}{This is the top level package for doing multivariate factorization} over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain where \\spad{p} is represented as a univariate polynomial with multivariate coefficients") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain"))) NIL NIL -(-680 E OV R P) +(-681 E OV R P) ((|constructor| (NIL "Author : \\spad{P}.Gianni This package provides the functions for the computation of the square free decomposition of a multivariate polynomial. It uses the package GenExEuclid for the resolution of the equation \\spad{Af + Bg = h} and its generalization to \\spad{n} polynomials over an integral domain and the package \\spad{MultivariateLifting} for the \"multivariate\" lifting.")) (|normDeriv2| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#3|) (|Integer|)) "\\spad{normDeriv2 should} be local")) (|myDegree| (((|List| (|NonNegativeInteger|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|NonNegativeInteger|)) "\\spad{myDegree should} be local")) (|lift| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#3|) |#4| (|List| |#2|) (|List| (|NonNegativeInteger|)) (|List| |#3|)) "\\spad{lift should} be local")) (|check| (((|Boolean|) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|)))) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) "\\spad{check should} be local")) (|coefChoose| ((|#4| (|Integer|) (|Factored| |#4|)) "\\spad{coefChoose should} be local")) (|intChoose| (((|Record| (|:| |upol| (|SparseUnivariatePolynomial| |#3|)) (|:| |Lval| (|List| |#3|)) (|:| |Lfact| (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) (|:| |ctpol| |#3|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|List| |#3|))) "\\spad{intChoose should} be local")) (|nsqfree| (((|Record| (|:| |unitPart| |#4|) (|:| |suPart| (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#4|)) (|:| |exponent| (|Integer|)))))) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|List| |#3|))) "\\spad{nsqfree should} be local")) (|consnewpol| (((|Record| (|:| |pol| (|SparseUnivariatePolynomial| |#4|)) (|:| |polval| (|SparseUnivariatePolynomial| |#3|))) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|) (|Integer|)) "\\spad{consnewpol should} be local")) (|univcase| (((|Factored| |#4|) |#4| |#2|) "\\spad{univcase should} be local")) (|compdegd| (((|Integer|) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) "\\spad{compdegd should} be local")) (|squareFreePrim| (((|Factored| |#4|) |#4|) "\\spad{squareFreePrim(p)} compute the square free decomposition of a primitive multivariate polynomial \\spad{p}.")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{squareFree(p)} computes the square free decomposition of a multivariate polynomial \\spad{p} presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#4|) |#4|) "\\spad{squareFree(p)} computes the square free decomposition of a multivariate polynomial \\spad{p}."))) NIL NIL -(-681 S R) +(-682 S R) ((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{r*(a*b) = (r*a)*b = a*(r*b)}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,n)} is recursively defined to be \\spad{plenaryPower(a,n-1)*plenaryPower(a,n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}."))) NIL NIL -(-682 R) +(-683 R) ((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{r*(a*b) = (r*a)*b = a*(r*b)}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,n)} is recursively defined to be \\spad{plenaryPower(a,n-1)*plenaryPower(a,n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}."))) -((-3988 . T) (-3987 . T)) +((-3989 . T) (-3988 . T)) NIL -(-683 S) +(-684 S) ((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure,{} not necessarily commutative or associative,{} and not necessarily with unit. Axioms \\indented{2}{x*(y+z) = x*y + x*z} \\indented{2}{(x+y)*z = x*z + y*z} Common Additional Axioms \\indented{2}{noZeroDivisors\\space{2}ab = 0 => \\spad{a=0} or \\spad{b=0}}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,b,c)} returns \\spad{(a*b)*c-a*(b*c)}."))) NIL NIL -(-684) +(-685) ((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure,{} not necessarily commutative or associative,{} and not necessarily with unit. Axioms \\indented{2}{x*(y+z) = x*y + x*z} \\indented{2}{(x+y)*z = x*z + y*z} Common Additional Axioms \\indented{2}{noZeroDivisors\\space{2}ab = 0 => \\spad{a=0} or \\spad{b=0}}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,b,c)} returns \\spad{(a*b)*c-a*(b*c)}."))) NIL NIL -(-685 S) +(-686 S) ((|constructor| (NIL "A NonAssociativeRing is a non associative rng which has a unit,{} the multiplication is not necessarily commutative or associative.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(n)} coerces the integer \\spad{n} to an element of the ring.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring."))) NIL NIL -(-686) +(-687) ((|constructor| (NIL "A NonAssociativeRing is a non associative rng which has a unit,{} the multiplication is not necessarily commutative or associative.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(n)} coerces the integer \\spad{n} to an element of the ring.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring."))) NIL NIL -(-687 |Par|) +(-688 |Par|) ((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the complex rational numbers. The results are expressed either as complex floating numbers or as complex rational numbers depending on the type of the precision parameter.")) (|complexEigenvectors| (((|List| (|Record| (|:| |outval| (|Complex| |#1|)) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| (|Complex| |#1|)))))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvectors(m,eps)} returns a list of records each one containing a complex eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} and are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|complexEigenvalues| (((|List| (|Complex| |#1|)) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvalues(m,eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) (|Symbol|)) "\\spad{characteristicPolynomial(m,x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over Complex Rationals with variable \\spad{x}.") (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|))))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over complex rationals with a new symbol as variable."))) NIL NIL -(-688 -3091) +(-689 -3092) ((|constructor| (NIL "\\spadtype{NumericContinuedFraction} provides functions \\indented{2}{for converting floating point numbers to continued fractions.}")) (|continuedFraction| (((|ContinuedFraction| (|Integer|)) |#1|) "\\spad{continuedFraction(f)} converts the floating point number \\spad{f} to a reduced continued fraction."))) NIL NIL -(-689 P -3091) +(-690 P -3092) ((|constructor| (NIL "This package provides a division and related operations for \\spadtype{MonogenicLinearOperator}\\spad{s} over a \\spadtype{Field}. Since the multiplication is in general non-commutative,{} these operations all have left- and right-hand versions. This package provides the operations based on left-division.")) (|leftLcm| ((|#1| |#1| |#1|) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftGcd| ((|#1| |#1| |#1|) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| ((|#1| |#1| |#1|) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| ((|#1| |#1| |#1|) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division''."))) NIL NIL -(-690 T$) +(-691 T$) NIL NIL NIL -(-691 UP -3091) +(-692 UP -3092) ((|constructor| (NIL "In this package \\spad{F} is a framed algebra over the integers (typically \\spad{F = Z[a]} for some algebraic integer a). The package provides functions to compute the integral closure of \\spad{Z} in the quotient quotient field of \\spad{F}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|)))) (|Integer|)) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{Z} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|))))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{Z} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|discriminant| (((|Integer|)) "\\spad{discriminant()} returns the discriminant of the integral closure of \\spad{Z} in the quotient field of the framed algebra \\spad{F}."))) NIL NIL -(-692 R) +(-693 R) ((|constructor| (NIL "NonLinearSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving. The solutions are given in the algebraic closure of \\spad{R} whenever possible.")) (|solve| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{solve(lp)} finds the solution in the algebraic closure of \\spad{R} of the list \\spad{lp} of rational functions with respect to all the symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{solve(lp,lv)} finds the solutions in the algebraic closure of \\spad{R} of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}.")) (|solveInField| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{solveInField(lp)} finds the solution of the list \\spad{lp} of rational functions with respect to all the symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{solveInField(lp,lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}."))) NIL NIL -(-693) +(-694) ((|constructor| (NIL "\\spadtype{NonNegativeInteger} provides functions for non \\indented{2}{negative integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : \\spad{x*y = y*x}.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(a,i)} shift \\spad{a} by \\spad{i} bits.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} returns the quotient of \\spad{a} and \\spad{b},{} or \"failed\" if \\spad{b} is zero or \\spad{a} rem \\spad{b} is zero.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(a,b)} returns a record containing both remainder and quotient.")) (|gcd| (($ $ $) "\\spad{gcd(a,b)} computes the greatest common divisor of two non negative integers \\spad{a} and \\spad{b}.")) (|rem| (($ $ $) "\\spad{a rem b} returns the remainder of \\spad{a} and \\spad{b}.")) (|quo| (($ $ $) "\\spad{a quo b} returns the quotient of \\spad{a} and \\spad{b},{} forgetting the remainder."))) -(((-3995 "*") . T)) +(((-3996 "*") . T)) NIL -(-694 R -3091) +(-695 R -3092) ((|constructor| (NIL "NonLinearFirstOrderODESolver provides a function for finding closed form first integrals of nonlinear ordinary differential equations of order 1.")) (|solve| (((|Union| |#2| "failed") |#2| |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(M(x,y), N(x,y), y, x)} returns \\spad{F(x,y)} such that \\spad{F(x,y) = c} for a constant \\spad{c} is a first integral of the equation \\spad{M(x,y) dx + N(x,y) dy = 0},{} or \"failed\" if no first-integral can be found."))) NIL NIL -(-695) +(-696) ((|constructor| (NIL "\\spadtype{None} implements a type with no objects. It is mainly used in technical situations where such a thing is needed (\\spadignore{e.g.} the interpreter and some of the internal \\spadtype{Expression} code)."))) NIL NIL -(-696 S) +(-697 S) ((|constructor| (NIL "\\spadtype{NoneFunctions1} implements functions on \\spadtype{None}. It particular it includes a particulary dangerous coercion from any other type to \\spadtype{None}.")) (|coerce| (((|None|) |#1|) "\\spad{coerce(x)} changes \\spad{x} into an object of type \\spadtype{None}."))) NIL NIL -(-697 R |PolR| E |PolE|) +(-698 R |PolR| E |PolE|) ((|constructor| (NIL "This package implements the norm of a polynomial with coefficients in a monogenic algebra (using resultants)")) (|norm| ((|#2| |#4|) "\\spad{norm q} returns the norm of \\spad{q},{} \\spadignore{i.e.} the product of all the conjugates of \\spad{q}."))) NIL NIL -(-698 R E V P TS) +(-699 R E V P TS) ((|constructor| (NIL "A package for computing normalized assocites of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of gcd over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of \\spad{AAECC11}} \\indented{5}{Paris,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")) (|normInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normInvertible?(\\spad{p},{}ts)} is an internal subroutine,{} exported only for developement.")) (|outputArgs| (((|Void|) (|String|) (|String|) |#4| |#5|) "\\axiom{outputArgs(\\spad{s1},{}\\spad{s2},{}\\spad{p},{}ts)} is an internal subroutine,{} exported only for developement.")) (|normalize| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normalize(\\spad{p},{}ts)} normalizes \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|normalizedAssociate| ((|#4| |#4| |#5|) "\\axiom{normalizedAssociate(\\spad{p},{}ts)} returns a normalized polynomial \\axiom{\\spad{n}} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts} such that \\axiom{\\spad{n}} and \\axiom{\\spad{p}} are associates \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} and assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|recip| (((|Record| (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) "\\axiom{recip(\\spad{p},{}ts)} returns the inverse of \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}."))) NIL NIL -(-699 -3091 |ExtF| |SUEx| |ExtP| |n|) +(-700 -3092 |ExtF| |SUEx| |ExtP| |n|) ((|constructor| (NIL "This package \\undocumented")) (|Frobenius| ((|#4| |#4|) "\\spad{Frobenius(x)} \\undocumented")) (|retractIfCan| (((|Union| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) "failed") |#4|) "\\spad{retractIfCan(x)} \\undocumented")) (|normFactors| (((|List| |#4|) |#4|) "\\spad{normFactors(x)} \\undocumented"))) NIL NIL -(-700 BP E OV R P) +(-701 BP E OV R P) ((|constructor| (NIL "Package for the determination of the coefficients in the lifting process. Used by \\spadtype{MultivariateLifting}. This package will work for every euclidean domain \\spad{R} which has property \\spad{F},{} \\spadignore{i.e.} there exists a factor operation in \\spad{R[x]}.")) (|listexp| (((|List| (|NonNegativeInteger|)) |#1|) "\\spad{listexp }\\undocumented")) (|npcoef| (((|Record| (|:| |deter| (|List| (|SparseUnivariatePolynomial| |#5|))) (|:| |dterm| (|List| (|List| (|Record| (|:| |expt| (|NonNegativeInteger|)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (|List| |#1|)) (|:| |nlead| (|List| |#5|))) (|SparseUnivariatePolynomial| |#5|) (|List| |#1|) (|List| |#5|)) "\\spad{npcoef }\\undocumented"))) NIL NIL -(-701 |Par|) +(-702 |Par|) ((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the Rational Numbers. The results are expressed as floating numbers or as rational numbers depending on the type of the parameter Par.")) (|realEigenvectors| (((|List| (|Record| (|:| |outval| |#1|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#1|))))) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvectors(m,eps)} returns a list of records each one containing a real eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} as floats or rational numbers depending on the type of \\spad{eps} .")) (|realEigenvalues| (((|List| |#1|) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvalues(m,eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as floats or rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|))) (|Symbol|)) "\\spad{characteristicPolynomial(m,x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over RN with variable \\spad{x}. Fraction \\spad{P} RN.") (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|)))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over RN with a new symbol as variable."))) NIL NIL -(-702 R |VarSet|) +(-703 R |VarSet|) ((|constructor| (NIL "A post-facto extension for \\axiomType{SMP} in order to speed up operations related to pseudo-division and gcd. This domain is based on the \\axiomType{NSUP} constructor which is itself a post-facto extension of the \\axiomType{SUP} constructor."))) -(((-3995 "*") |has| |#1| (-146)) (-3986 |has| |#1| (-494)) (-3991 |has| |#1| (-6 -3991)) (-3988 . T) (-3987 . T) (-3990 . T)) -((|HasCategory| |#1| (QUOTE (-820))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-390))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-820)))) (OR (|HasCategory| |#1| (QUOTE (-390))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-820)))) (OR (|HasCategory| |#1| (QUOTE (-390))) (|HasCategory| |#1| (QUOTE (-820)))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-494)))) (-12 (|HasCategory| |#1| (QUOTE (-795 (-328)))) (|HasCategory| |#2| (QUOTE (-795 (-328))))) (-12 (|HasCategory| |#1| (QUOTE (-795 (-483)))) (|HasCategory| |#2| (QUOTE (-795 (-483))))) (-12 (|HasCategory| |#1| (QUOTE (-552 (-799 (-328))))) (|HasCategory| |#2| (QUOTE (-552 (-799 (-328)))))) (-12 (|HasCategory| |#1| (QUOTE (-552 (-799 (-483))))) (|HasCategory| |#2| (QUOTE (-552 (-799 (-483)))))) (-12 (|HasCategory| |#1| (QUOTE (-552 (-472)))) (|HasCategory| |#2| (QUOTE (-552 (-472))))) (|HasCategory| |#1| (QUOTE (-579 (-483)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-348 (-483))))) (|HasCategory| |#1| (QUOTE (-949 (-483)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-348 (-483))))) (|HasCategory| |#1| (QUOTE (-949 (-348 (-483)))))) (|HasCategory| |#1| (QUOTE (-949 (-348 (-483))))) (-12 (|HasCategory| |#1| (QUOTE (-949 (-483)))) (|HasCategory| |#2| (QUOTE (-552 (-1088))))) (|HasCategory| |#2| (QUOTE (-552 (-1088)))) (|HasCategory| |#1| (QUOTE (-312))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-348 (-483))))) (|HasCategory| |#2| (QUOTE (-552 (-1088))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-483)))) (|HasCategory| |#2| (QUOTE (-552 (-1088)))) (-2559 (|HasCategory| |#1| (QUOTE (-38 (-348 (-483))))))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-348 (-483))))) (|HasCategory| |#2| (QUOTE (-552 (-1088)))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-552 (-1088)))) (-2559 (|HasCategory| |#1| (QUOTE (-38 (-348 (-483)))))) (-2559 (|HasCategory| |#1| (QUOTE (-38 (-483)))))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-483)))) (|HasCategory| |#2| (QUOTE (-552 (-1088)))) (-2559 (|HasCategory| |#1| (QUOTE (-38 (-348 (-483)))))) (-2559 (|HasCategory| |#1| (QUOTE (-482))))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-348 (-483))))) (|HasCategory| |#2| (QUOTE (-552 (-1088)))) (-2559 (|HasCategory| |#1| (QUOTE (-903 (-483))))))) (|HasAttribute| |#1| (QUOTE -3991)) (|HasCategory| |#1| (QUOTE (-390))) (-12 (|HasCategory| |#1| (QUOTE (-820))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-820))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) -(-703 R) +(((-3996 "*") |has| |#1| (-146)) (-3987 |has| |#1| (-495)) (-3992 |has| |#1| (-6 -3992)) (-3989 . T) (-3988 . T) (-3991 . T)) +((|HasCategory| |#1| (QUOTE (-821))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-391))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-821)))) (OR (|HasCategory| |#1| (QUOTE (-391))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-821)))) (OR (|HasCategory| |#1| (QUOTE (-391))) (|HasCategory| |#1| (QUOTE (-821)))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (-12 (|HasCategory| |#1| (QUOTE (-796 (-329)))) (|HasCategory| |#2| (QUOTE (-796 (-329))))) (-12 (|HasCategory| |#1| (QUOTE (-796 (-484)))) (|HasCategory| |#2| (QUOTE (-796 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-800 (-329))))) (|HasCategory| |#2| (QUOTE (-553 (-800 (-329)))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-800 (-484))))) (|HasCategory| |#2| (QUOTE (-553 (-800 (-484)))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-473)))) (|HasCategory| |#2| (QUOTE (-553 (-473))))) (|HasCategory| |#1| (QUOTE (-580 (-484)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-349 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-484)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-349 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-349 (-484)))))) (|HasCategory| |#1| (QUOTE (-950 (-349 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-950 (-484)))) (|HasCategory| |#2| (QUOTE (-553 (-1089))))) (|HasCategory| |#2| (QUOTE (-553 (-1089)))) (|HasCategory| |#1| (QUOTE (-312))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-349 (-484))))) (|HasCategory| |#2| (QUOTE (-553 (-1089))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-484)))) (|HasCategory| |#2| (QUOTE (-553 (-1089)))) (-2560 (|HasCategory| |#1| (QUOTE (-38 (-349 (-484))))))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-349 (-484))))) (|HasCategory| |#2| (QUOTE (-553 (-1089)))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-553 (-1089)))) (-2560 (|HasCategory| |#1| (QUOTE (-38 (-349 (-484)))))) (-2560 (|HasCategory| |#1| (QUOTE (-38 (-484)))))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-484)))) (|HasCategory| |#2| (QUOTE (-553 (-1089)))) (-2560 (|HasCategory| |#1| (QUOTE (-38 (-349 (-484)))))) (-2560 (|HasCategory| |#1| (QUOTE (-483))))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-349 (-484))))) (|HasCategory| |#2| (QUOTE (-553 (-1089)))) (-2560 (|HasCategory| |#1| (QUOTE (-904 (-484))))))) (|HasAttribute| |#1| (QUOTE -3992)) (|HasCategory| |#1| (QUOTE (-391))) (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) +(-704 R) ((|constructor| (NIL "A post-facto extension for \\axiomType{SUP} in order to speed up operations related to pseudo-division and gcd for both \\axiomType{SUP} and,{} consequently,{} \\axiomType{NSMP}.")) (|halfExtendedResultant2| (((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $) "\\axiom{\\spad{halfExtendedResultant2}(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} cb]}")) (|halfExtendedResultant1| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $) "\\axiom{\\spad{halfExtendedResultant1}(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} cb]}")) (|extendedResultant| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{}cb]} such that \\axiom{\\spad{r}} is the resultant of \\axiom{a} and \\axiom{\\spad{b}} and \\axiom{\\spad{r} = ca * a + cb * \\spad{b}}")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd2}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}cb]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} cb]}")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd1}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} cb]}")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} cb]} such that \\axiom{\\spad{g}} is a gcd of \\axiom{a} and \\axiom{\\spad{b}} in \\axiom{R^(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{g} = ca * a + cb * \\spad{b}}")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns \\axiom{resultant(a,{}\\spad{b})} if \\axiom{a} and \\axiom{\\spad{b}} has no non-trivial gcd in \\axiom{R^(\\spad{-1}) \\spad{P}} otherwise the non-zero sub-resultant with smallest index.")) (|subResultantsChain| (((|List| $) $ $) "\\axiom{subResultantsChain(a,{}\\spad{b})} returns the list of the non-zero sub-resultants of \\axiom{a} and \\axiom{\\spad{b}} sorted by increasing degree.")) (|lazyPseudoQuotient| (($ $ $) "\\axiom{lazyPseudoQuotient(a,{}\\spad{b})} returns \\axiom{\\spad{q}} if \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}")) (|lazyPseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{c^n * a = q*b +r} and \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} where \\axiom{\\spad{n} + \\spad{g} = max(0,{} degree(\\spad{b}) - degree(a) + 1)}.")) (|lazyPseudoRemainder| (($ $ $) "\\axiom{lazyPseudoRemainder(a,{}\\spad{b})} returns \\axiom{\\spad{r}} if \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]}. This lazy pseudo-remainder is computed by means of the \\axiomOpFrom{fmecg}{NewSparseUnivariatePolynomial} operation.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{c^n * a - \\spad{r}} where \\axiom{\\spad{c}} is \\axiom{leadingCoefficient(\\spad{b})} and \\axiom{\\spad{n}} is as small as possible with the previous properties.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} returns \\axiom{\\spad{r}} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{a -r} where \\axiom{\\spad{b}} is monic.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\axiom{fmecg(\\spad{p1},{}\\spad{e},{}\\spad{r},{}\\spad{p2})} returns \\axiom{\\spad{p1} - \\spad{r} * X**e * \\spad{p2}} where \\axiom{\\spad{X}} is \\axiom{monomial(1,{}1)}"))) -(((-3995 "*") |has| |#1| (-146)) (-3986 |has| |#1| (-494)) (-3989 |has| |#1| (-312)) (-3991 |has| |#1| (-6 -3991)) (-3988 . T) (-3987 . T) (-3990 . T)) -((|HasCategory| |#1| (QUOTE (-820))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-494)))) (-12 (|HasCategory| |#1| (QUOTE (-795 (-328)))) (|HasCategory| (-993) (QUOTE (-795 (-328))))) (-12 (|HasCategory| |#1| (QUOTE (-795 (-483)))) (|HasCategory| (-993) (QUOTE (-795 (-483))))) (-12 (|HasCategory| |#1| (QUOTE (-552 (-799 (-328))))) (|HasCategory| (-993) (QUOTE (-552 (-799 (-328)))))) (-12 (|HasCategory| |#1| (QUOTE (-552 (-799 (-483))))) (|HasCategory| (-993) (QUOTE (-552 (-799 (-483)))))) (-12 (|HasCategory| |#1| (QUOTE (-552 (-472)))) (|HasCategory| (-993) (QUOTE (-552 (-472))))) (|HasCategory| |#1| (QUOTE (-579 (-483)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-348 (-483))))) (|HasCategory| |#1| (QUOTE (-949 (-483)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-348 (-483))))) (|HasCategory| |#1| (QUOTE (-949 (-348 (-483)))))) (|HasCategory| |#1| (QUOTE (-949 (-348 (-483))))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-390))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-820)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-390))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-820)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-390))) (|HasCategory| |#1| (QUOTE (-820)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-1064))) (|HasCategory| |#1| (QUOTE (-810 (-1088)))) (|HasCategory| |#1| (QUOTE (-808 (-1088)))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-190))) (|HasAttribute| |#1| (QUOTE -3991)) (|HasCategory| |#1| (QUOTE (-390))) (-12 (|HasCategory| |#1| (QUOTE (-820))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-820))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) -(-704 R S) +(((-3996 "*") |has| |#1| (-146)) (-3987 |has| |#1| (-495)) (-3990 |has| |#1| (-312)) (-3992 |has| |#1| (-6 -3992)) (-3989 . T) (-3988 . T) (-3991 . T)) +((|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (-12 (|HasCategory| |#1| (QUOTE (-796 (-329)))) (|HasCategory| (-994) (QUOTE (-796 (-329))))) (-12 (|HasCategory| |#1| (QUOTE (-796 (-484)))) (|HasCategory| (-994) (QUOTE (-796 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-800 (-329))))) (|HasCategory| (-994) (QUOTE (-553 (-800 (-329)))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-800 (-484))))) (|HasCategory| (-994) (QUOTE (-553 (-800 (-484)))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-473)))) (|HasCategory| (-994) (QUOTE (-553 (-473))))) (|HasCategory| |#1| (QUOTE (-580 (-484)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-349 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-484)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-349 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-349 (-484)))))) (|HasCategory| |#1| (QUOTE (-950 (-349 (-484))))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-391))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-821)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-391))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-821)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-391))) (|HasCategory| |#1| (QUOTE (-821)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-1065))) (|HasCategory| |#1| (QUOTE (-811 (-1089)))) (|HasCategory| |#1| (QUOTE (-809 (-1089)))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-190))) (|HasAttribute| |#1| (QUOTE -3992)) (|HasCategory| |#1| (QUOTE (-391))) (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) +(-705 R S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|NewSparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|NewSparseUnivariatePolynomial| |#1|)) "\\axiom{map(func,{} poly)} creates a new polynomial by applying func to every non-zero coefficient of the polynomial poly."))) NIL NIL -(-705 R) +(-706 R) ((|constructor| (NIL "This package provides polynomials as functions on a ring.")) (|eulerE| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{eulerE(n,r)} \\undocumented")) (|bernoulliB| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{bernoulliB(n,r)} \\undocumented")) (|cyclotomic| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{cyclotomic(n,r)} \\undocumented"))) NIL -((|HasCategory| |#1| (QUOTE (-38 (-348 (-483)))))) -(-706 R E V P) +((|HasCategory| |#1| (QUOTE (-38 (-349 (-484)))))) +(-707 R E V P) ((|constructor| (NIL "The category of normalized triangular sets. A triangular set \\spad{ts} is said normalized if for every algebraic variable \\spad{v} of \\spad{ts} the polynomial \\spad{select(ts,v)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. every polynomial in \\spad{collectUnder(ts,v)}. A polynomial \\spad{p} is said normalized \\spad{w}.\\spad{r}.\\spad{t}. a non-constant polynomial \\spad{q} if \\spad{p} is constant or \\spad{degree(p,mdeg(q)) = 0} and \\spad{init(p)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. \\spad{q}. One of the important features of normalized triangular sets is that they are regular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[3] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of gcd over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of \\spad{AAECC11}} \\indented{5}{Paris,{} 1995.} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}"))) -((-3994 . T) (-3993 . T)) +((-3995 . T) (-3994 . T)) NIL -(-707 S) +(-708 S) ((|constructor| (NIL "Numeric provides real and complex numerical evaluation functions for various symbolic types.")) (|numericIfCan| (((|Union| (|Float|) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Expression| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numericIfCan(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.")) (|complexNumericIfCan| (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not constant.")) (|complexNumeric| (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x}") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Complex| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Complex| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) |#1| (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) |#1|) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.")) (|numeric| (((|Float|) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numeric(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Expression| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numeric(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Fraction| (|Polynomial| |#1|))) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Polynomial| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) |#1| (|PositiveInteger|)) "\\spad{numeric(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) |#1|) "\\spad{numeric(x)} returns a real approximation of \\spad{x}."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-755)))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-960))) (|HasCategory| |#1| (QUOTE (-146)))) -(-708) +((-12 (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-756)))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-961))) (|HasCategory| |#1| (QUOTE (-146)))) +(-709) ((|constructor| (NIL "NumberFormats provides function to format and read arabic and roman numbers,{} to convert numbers to strings and to read floating-point numbers.")) (|ScanFloatIgnoreSpacesIfCan| (((|Union| (|Float|) "failed") (|String|)) "\\spad{ScanFloatIgnoreSpacesIfCan(s)} tries to form a floating point number from the string \\spad{s} ignoring any spaces.")) (|ScanFloatIgnoreSpaces| (((|Float|) (|String|)) "\\spad{ScanFloatIgnoreSpaces(s)} forms a floating point number from the string \\spad{s} ignoring any spaces. Error is generated if the string is not recognised as a floating point number.")) (|ScanRoman| (((|PositiveInteger|) (|String|)) "\\spad{ScanRoman(s)} forms an integer from a Roman numeral string \\spad{s}.")) (|FormatRoman| (((|String|) (|PositiveInteger|)) "\\spad{FormatRoman(n)} forms a Roman numeral string from an integer \\spad{n}.")) (|ScanArabic| (((|PositiveInteger|) (|String|)) "\\spad{ScanArabic(s)} forms an integer from an Arabic numeral string \\spad{s}.")) (|FormatArabic| (((|String|) (|PositiveInteger|)) "\\spad{FormatArabic(n)} forms an Arabic numeral string from an integer \\spad{n}."))) NIL NIL -(-709) +(-710) ((|constructor| (NIL "This package is a suite of functions for the numerical integration of an ordinary differential equation of \\spad{n} variables: \\blankline \\indented{8}{\\center{dy/dx = \\spad{f}(\\spad{y},{}\\spad{x})\\space{5}\\spad{y} is an \\spad{n}-vector}} \\blankline \\par All the routines are based on a 4-th order Runge-Kutta kernel. These routines generally have as arguments: \\spad{n},{} the number of dependent variables; \\spad{x1},{} the initial point; \\spad{h},{} the step size; \\spad{y},{} a vector of initial conditions of length \\spad{n} which upon exit contains the solution at \\spad{x1 + h}; \\spad{derivs},{} a function which computes the right hand side of the ordinary differential equation: \\spad{derivs(dydx,y,x)} computes \\spad{dydx},{} a vector which contains the derivative information. \\blankline \\par In order of increasing complexity:\\begin{items} \\blankline \\item \\spad{rk4(y,n,x1,h,derivs)} advances the solution vector to \\spad{x1 + h} and return the values in \\spad{y}. \\blankline \\item \\spad{rk4(y,n,x1,h,derivs,t1,t2,t3,t4)} is the same as \\spad{rk4(y,n,x1,h,derivs)} except that you must provide 4 scratch arrays \\spad{t1}-\\spad{t4} of size \\spad{n}. \\blankline \\item Starting with \\spad{y} at \\spad{x1},{} \\spad{rk4f(y,n,x1,x2,ns,derivs)} uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta integrator to advance the solution vector to \\spad{x2} and return the values in \\spad{y}. Argument \\spad{x2},{} is the final point,{} and \\spad{ns},{} the number of steps to take. \\blankline \\item \\spad{rk4qc(y,n,x1,step,eps,yscal,derivs)} takes a 5-th order Runge-Kutta step with monitoring of local truncation to ensure accuracy and adjust stepsize. The function takes two half steps and one full step and scales the difference in solutions at the final point. If the error is within \\spad{eps},{} the step is taken and the result is returned. If the error is not within \\spad{eps},{} the stepsize if decreased and the procedure is tried again until the desired accuracy is reached. Upon input,{} an trial step size must be given and upon return,{} an estimate of the next step size to use is returned as well as the step size which produced the desired accuracy. The scaled error is computed as \\center{\\spad{error = MAX(ABS((y2steps(i) - y1step(i))/yscal(i)))}} and this is compared against \\spad{eps}. If this is greater than \\spad{eps},{} the step size is reduced accordingly to \\center{\\spad{hnew = 0.9 * hdid * (error/eps)**(-1/4)}} If the error criterion is satisfied,{} then we check if the step size was too fine and return a more efficient one. If \\spad{error > \\spad{eps} * (6.0E-04)} then the next step size should be \\center{\\spad{hnext = 0.9 * hdid * (error/\\spad{eps})**(\\spad{-1/5})}} Otherwise \\spad{hnext = 4.0 * hdid} is returned. A more detailed discussion of this and related topics can be found in the book \"Numerical Recipies\" by \\spad{W}.Press,{} \\spad{B}.\\spad{P}. Flannery,{} \\spad{S}.A. Teukolsky,{} \\spad{W}.\\spad{T}. Vetterling published by Cambridge University Press. Argument \\spad{step} is a record of 3 floating point numbers \\spad{(try , did , next)},{} \\spad{eps} is the required accuracy,{} \\spad{yscal} is the scaling vector for the difference in solutions. On input,{} \\spad{step.try} should be the guess at a step size to achieve the accuracy. On output,{} \\spad{step.did} contains the step size which achieved the accuracy and \\spad{step.next} is the next step size to use. \\blankline \\item \\spad{rk4qc(y,n,x1,step,eps,yscal,derivs,t1,t2,t3,t4,t5,t6,t7)} is the same as \\spad{rk4qc(y,n,x1,step,eps,yscal,derivs)} except that the user must provide the 7 scratch arrays \\spad{t1-t7} of size \\spad{n}. \\blankline \\item \\spad{rk4a(y,n,x1,x2,eps,h,ns,derivs)} is a driver program which uses \\spad{rk4qc} to integrate \\spad{n} ordinary differential equations starting at \\spad{x1} to \\spad{x2},{} keeping the local truncation error to within \\spad{eps} by changing the local step size. The scaling vector is defined as \\center{\\spad{yscal(i) = abs(y(i)) + abs(h*dydx(i)) + tiny}} where \\spad{y(i)} is the solution at location \\spad{x},{} \\spad{dydx} is the ordinary differential equation's right hand side,{} \\spad{h} is the current step size and \\spad{tiny} is 10 times the smallest positive number representable. The user must supply an estimate for a trial step size and the maximum number of calls to \\spad{rk4qc} to use. Argument \\spad{x2} is the final point,{} \\spad{eps} is local truncation,{} \\spad{ns} is the maximum number of call to \\spad{rk4qc} to use. \\end{items}")) (|rk4f| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4f(y,n,x1,x2,ns,derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector. Starting with \\spad{y} at \\spad{x1},{} this function uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta integrator to advance the solution vector to \\spad{x2} and return the values in \\spad{y}. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4qc| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |tryValue| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4qc(y,n,x1,step,eps,yscal,derivs,t1,t2,t3,t4,t5,t6,t7)} is a subfunction for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |tryValue| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4qc(y,n,x1,step,eps,yscal,derivs)} is a subfunction for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4a| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4a(y,n,x1,x2,eps,h,ns,derivs)} is a driver function for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4(y,n,x1,h,derivs,t1,t2,t3,t4)} is the same as \\spad{rk4(y,n,x1,h,derivs)} except that you must provide 4 scratch arrays \\spad{t1}-\\spad{t4} of size \\spad{n}. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4(y,n,x1,h,derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector. Argument \\spad{y} is a vector of initial conditions of length \\spad{n} which upon exit contains the solution at \\spad{x1 + h},{} \\spad{n} is the number of dependent variables,{} \\spad{x1} is the initial point,{} \\spad{h} is the step size,{} and \\spad{derivs} is a function which computes the right hand side of the ordinary differential equation. For details,{} see \\spadtype{NumericalOrdinaryDifferentialEquations}."))) NIL NIL -(-710) +(-711) ((|constructor| (NIL "This suite of routines performs numerical quadrature using algorithms derived from the basic trapezoidal rule. Because the error term of this rule contains only even powers of the step size (for open and closed versions),{} fast convergence can be obtained if the integrand is sufficiently smooth. \\blankline Each routine returns a Record of type TrapAns,{} which contains\\indent{3} \\newline value (\\spadtype{Float}):\\tab{20} estimate of the integral \\newline error (\\spadtype{Float}):\\tab{20} estimate of the error in the computation \\newline totalpts (\\spadtype{Integer}):\\tab{20} total number of function evaluations \\newline success (\\spadtype{Boolean}):\\tab{20} if the integral was computed within the user specified error criterion \\indent{0}\\indent{0} To produce this estimate,{} each routine generates an internal sequence of sub-estimates,{} denoted by {\\em S(i)},{} depending on the routine,{} to which the various convergence criteria are applied. The user must supply a relative accuracy,{} \\spad{eps_r},{} and an absolute accuracy,{} \\spad{eps_a}. Convergence is obtained when either \\center{\\spad{ABS(S(i) - S(i-1)) < eps_r * ABS(S(i-1))}} \\center{or \\spad{ABS(S(i) - S(i-1)) < eps_a}} are \\spad{true} statements. \\blankline The routines come in three families and three flavors: \\newline\\tab{3} closed:\\tab{20}romberg,{}\\tab{30}simpson,{}\\tab{42}trapezoidal \\newline\\tab{3} open: \\tab{20}rombergo,{}\\tab{30}simpsono,{}\\tab{42}trapezoidalo \\newline\\tab{3} adaptive closed:\\tab{20}aromberg,{}\\tab{30}asimpson,{}\\tab{42}atrapezoidal \\par The {\\em S(i)} for the trapezoidal family is the value of the integral using an equally spaced absicca trapezoidal rule for that level of refinement. \\par The {\\em S(i)} for the simpson family is the value of the integral using an equally spaced absicca simpson rule for that level of refinement. \\par The {\\em S(i)} for the romberg family is the estimate of the integral using an equally spaced absicca romberg method. For the \\spad{i}\\spad{-}th level,{} this is an appropriate combination of all the previous trapezodial estimates so that the error term starts with the \\spad{2*(i+1)} power only. \\par The three families come in a closed version,{} where the formulas include the endpoints,{} an open version where the formulas do not include the endpoints and an adaptive version,{} where the user is required to input the number of subintervals over which the appropriate closed family integrator will apply with the usual convergence parmeters for each subinterval. This is useful where a large number of points are needed only in a small fraction of the entire domain. \\par Each routine takes as arguments: \\newline \\spad{f}\\tab{10} integrand \\newline a\\tab{10} starting point \\newline \\spad{b}\\tab{10} ending point \\newline \\spad{eps_r}\\tab{10} relative error \\newline \\spad{eps_a}\\tab{10} absolute error \\newline \\spad{nmin} \\tab{10} refinement level when to start checking for convergence (> 1) \\newline \\spad{nmax} \\tab{10} maximum level of refinement \\par The adaptive routines take as an additional parameter \\newline \\spad{nint}\\tab{10} the number of independent intervals to apply a closed \\indented{1}{family integrator of the same name.} \\par Notes: \\newline Closed family level \\spad{i} uses \\spad{1 + 2**i} points. \\newline Open family level \\spad{i} uses \\spad{1 + 3**i} points.")) (|trapezoidalo| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{trapezoidalo(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the trapezoidal method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|simpsono| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{simpsono(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the simpson method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|rombergo| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{rombergo(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the romberg method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|trapezoidal| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{trapezoidal(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the trapezoidal method to numerically integrate function \\spadvar{\\spad{fn}} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|simpson| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{simpson(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the simpson method to numerically integrate function \\spad{fn} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|romberg| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{romberg(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the romberg method to numerically integrate function \\spadvar{\\spad{fn}} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|atrapezoidal| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{atrapezoidal(fn,a,b,epsrel,epsabs,nmin,nmax,nint)} uses the adaptive trapezoidal method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|asimpson| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{asimpson(fn,a,b,epsrel,epsabs,nmin,nmax,nint)} uses the adaptive simpson method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|aromberg| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{aromberg(fn,a,b,epsrel,epsabs,nmin,nmax,nint)} uses the adaptive romberg method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details."))) NIL NIL -(-711 |Curve|) +(-712 |Curve|) ((|constructor| (NIL "\\indented{1}{Author: Clifton \\spad{J}. Williamson} Date Created: Bastille Day 1989 Date Last Updated: 5 June 1990 Keywords: Examples: Package for constructing tubes around 3-dimensional parametric curves.")) (|tube| (((|TubePlot| |#1|) |#1| (|DoubleFloat|) (|Integer|)) "\\spad{tube(c,r,n)} creates a tube of radius \\spad{r} around the curve \\spad{c}."))) NIL NIL -(-712 S) +(-713 S) ((|constructor| (NIL "Ordered sets which are also abelian groups,{} such that the addition preserves the ordering.")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is \\spad{1} if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} and \\spad{0} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} holds when \\spad{x} is less than \\spad{0}."))) NIL NIL -(-713) +(-714) ((|constructor| (NIL "Ordered sets which are also abelian groups,{} such that the addition preserves the ordering.")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is \\spad{1} if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} and \\spad{0} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} holds when \\spad{x} is less than \\spad{0}."))) NIL NIL -(-714 S) +(-715 S) ((|constructor| (NIL "Ordered sets which are also abelian monoids,{} such that the addition preserves the ordering.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} holds when \\spad{x} is greater than \\spad{0}."))) NIL NIL -(-715) +(-716) ((|constructor| (NIL "Ordered sets which are also abelian monoids,{} such that the addition preserves the ordering.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} holds when \\spad{x} is greater than \\spad{0}."))) NIL NIL -(-716) +(-717) ((|constructor| (NIL "This domain is an OrderedAbelianMonoid with a \\spadfun{sup} operation added. The purpose of the \\spadfun{sup} operator in this domain is to act as a supremum with respect to the partial order imposed by \\spadop{-},{} rather than with respect to the total \\spad{>} order (since that is \"max\"). \\blankline")) (|sup| (($ $ $) "\\spad{sup(x,y)} returns the least element from which both \\spad{x} and \\spad{y} can be subtracted."))) NIL NIL -(-717) +(-718) ((|constructor| (NIL "Ordered sets which are also abelian semigroups,{} such that the addition preserves the ordering. \\indented{2}{\\spad{ x < y => x+z < y+z}}"))) NIL NIL -(-718 S R) +(-719 S R) ((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#2| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#2| |#2| |#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{octon(re,ri,rj,rk,rE,rI,rJ,rK)} constructs an octonion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#2| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#2| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#2| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#2| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#2| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#2| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#2| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}."))) NIL -((|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-482))) (|HasCategory| |#2| (QUOTE (-972))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-552 (-472)))) (|HasCategory| |#2| (QUOTE (-755))) (|HasCategory| |#2| (QUOTE (-318)))) -(-719 R) +((|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-483))) (|HasCategory| |#2| (QUOTE (-973))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-553 (-473)))) (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-319)))) +(-720 R) ((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#1| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) "\\spad{octon(re,ri,rj,rk,rE,rI,rJ,rK)} constructs an octonion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#1| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#1| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#1| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#1| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#1| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#1| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#1| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}."))) -((-3987 . T) (-3988 . T) (-3990 . T)) +((-3988 . T) (-3989 . T) (-3991 . T)) NIL -(-720) +(-721) ((|constructor| (NIL "Ordered sets which are also abelian cancellation monoids,{} such that the addition preserves the ordering."))) NIL NIL -(-721 R) +(-722 R) ((|constructor| (NIL "Octonion implements octonions (Cayley-Dixon algebra) over a commutative ring,{} an eight-dimensional non-associative algebra,{} doubling the quaternions in the same way as doubling the complex numbers to get the quaternions the main constructor function is {\\em octon} which takes 8 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j} imaginary part,{} the \\spad{k} imaginary part,{} (as with quaternions) and in addition the imaginary parts \\spad{E},{} \\spad{I},{} \\spad{J},{} \\spad{K}.")) (|octon| (($ (|Quaternion| |#1|) (|Quaternion| |#1|)) "\\spad{octon(qe,qE)} constructs an octonion from two quaternions using the relation {\\em O = Q + QE}."))) -((-3987 . T) (-3988 . T) (-3990 . T)) -((|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-552 (-472)))) (|HasCategory| |#1| (QUOTE (-755))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (|%list| (QUOTE -454) (QUOTE (-1088)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -241) (|devaluate| |#1|) (|devaluate| |#1|))) (OR (|HasCategory| |#1| (QUOTE (-949 (-348 (-483))))) (|HasCategory| (-908 |#1|) (QUOTE (-949 (-348 (-483)))))) (OR (|HasCategory| |#1| (QUOTE (-949 (-483)))) (|HasCategory| (-908 |#1|) (QUOTE (-949 (-483))))) (|HasCategory| |#1| (QUOTE (-972))) (|HasCategory| |#1| (QUOTE (-482))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-908 |#1|) (QUOTE (-949 (-348 (-483))))) (|HasCategory| (-908 |#1|) (QUOTE (-949 (-483)))) (|HasCategory| |#1| (QUOTE (-949 (-348 (-483))))) (|HasCategory| |#1| (QUOTE (-949 (-483))))) -(-722 OR R OS S) +((-3988 . T) (-3989 . T) (-3991 . T)) +((|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-553 (-473)))) (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (|%list| (QUOTE -455) (QUOTE (-1089)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -241) (|devaluate| |#1|) (|devaluate| |#1|))) (OR (|HasCategory| |#1| (QUOTE (-950 (-349 (-484))))) (|HasCategory| (-909 |#1|) (QUOTE (-950 (-349 (-484)))))) (OR (|HasCategory| |#1| (QUOTE (-950 (-484)))) (|HasCategory| (-909 |#1|) (QUOTE (-950 (-484))))) (|HasCategory| |#1| (QUOTE (-973))) (|HasCategory| |#1| (QUOTE (-483))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-909 |#1|) (QUOTE (-950 (-349 (-484))))) (|HasCategory| (-909 |#1|) (QUOTE (-950 (-484)))) (|HasCategory| |#1| (QUOTE (-950 (-349 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-484))))) +(-723 OR R OS S) ((|constructor| (NIL "\\spad{OctonionCategoryFunctions2} implements functions between two octonion domains defined over different rings. The function map is used to coerce between octonion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the component parts of the octonion \\spad{u}."))) NIL NIL -(-723 R -3091 L) +(-724 R -3092 L) ((|constructor| (NIL "Solution of linear ordinary differential equations,{} constant coefficient case.")) (|constDsolve| (((|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Symbol|)) "\\spad{constDsolve(op, g, x)} returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular solution of the equation \\spad{op y = g},{} and the \\spad{yi}'s form a basis for the solutions of \\spad{op y = 0}."))) NIL NIL -(-724 R -3091) +(-725 R -3092) ((|constructor| (NIL "\\spad{ElementaryFunctionODESolver} provides the top-level functions for finding closed form solutions of ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| #1="failed") |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq, y, x = a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{eq, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,y)}.") (((|Union| |#2| #1#) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq, y, x = a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{eq, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,y)}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| #2="failed") |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq, y, x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,y)} where \\spad{h(x,y) = c} is a first integral of the equation for any constant \\spad{c}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| #2#) (|Equation| |#2|) (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq, y, x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,y)} where \\spad{h(x,y) = c} is a first integral of the equation for any constant \\spad{c}; error if the equation is not one of those 2 forms.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| |#2|) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,...,eq_n], [y_1,...,y_n], x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p, [b_1,...,b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,...,eq_n], [y_1,...,y_n], x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p, [b_1,...,b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|List| (|Vector| |#2|)) "failed") (|Matrix| |#2|) (|Symbol|)) "\\spad{solve(m, x)} returns a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|Matrix| |#2|) (|Vector| |#2|) (|Symbol|)) "\\spad{solve(m, v, x)} returns \\spad{[v_p, [v_1,...,v_m]]} such that the solutions of the system \\spad{D y = m y + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable."))) NIL NIL -(-725 R -3091) +(-726 R -3092) ((|constructor| (NIL "\\spadtype{ODEIntegration} provides an interface to the integrator. This package is intended for use by the differential equations solver but not at top-level.")) (|diff| (((|Mapping| |#2| |#2|) (|Symbol|)) "\\spad{diff(x)} returns the derivation with respect to \\spad{x}.")) (|expint| ((|#2| |#2| (|Symbol|)) "\\spad{expint(f, x)} returns e^{the integral of \\spad{f} with respect to \\spad{x}}.")) (|int| ((|#2| |#2| (|Symbol|)) "\\spad{int(f, x)} returns the integral of \\spad{f} with respect to \\spad{x}."))) NIL NIL -(-726 -3091 UP UPUP R) +(-727 -3092 UP UPUP R) ((|constructor| (NIL "In-field solution of an linear ordinary differential equation,{} pure algebraic case.")) (|algDsolve| (((|Record| (|:| |particular| (|Union| |#4| "failed")) (|:| |basis| (|List| |#4|))) (|LinearOrdinaryDifferentialOperator1| |#4|) |#4|) "\\spad{algDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no solution in \\spad{R}. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{y_i's} form a basis for the solutions in \\spad{R} of the homogeneous equation."))) NIL NIL -(-727 -3091 UP L LQ) +(-728 -3092 UP L LQ) ((|constructor| (NIL "\\spad{PrimitiveRatDE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the transcendental case.} \\indented{1}{The derivation to use is given by the parameter \\spad{L}.}")) (|splitDenominator| (((|Record| (|:| |eq| |#3|) (|:| |rh| (|List| (|Fraction| |#2|)))) |#4| (|List| (|Fraction| |#2|))) "\\spad{splitDenominator(op, [g1,...,gm])} returns \\spad{op0, [h1,...,hm]} such that the equations \\spad{op y = c1 g1 + ... + cm gm} and \\spad{op0 y = c1 h1 + ... + cm hm} have the same solutions.")) (|indicialEquation| ((|#2| |#4| |#1|) "\\spad{indicialEquation(op, a)} returns the indicial equation of \\spad{op} at \\spad{a}.") ((|#2| |#3| |#1|) "\\spad{indicialEquation(op, a)} returns the indicial equation of \\spad{op} at \\spad{a}.")) (|indicialEquations| (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4| |#2|) "\\spad{indicialEquations(op, p)} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}'s are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}'s are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4|) "\\spad{indicialEquations op} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}'s are the affine singularities of \\spad{op},{} and the \\spad{e_i}'s are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3| |#2|) "\\spad{indicialEquations(op, p)} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}'s are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}'s are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3|) "\\spad{indicialEquations op} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}'s are the affine singularities of \\spad{op},{} and the \\spad{e_i}'s are the indicial equations at each \\spad{d_i}.")) (|denomLODE| ((|#2| |#3| (|List| (|Fraction| |#2|))) "\\spad{denomLODE(op, [g1,...,gm])} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{p/d} for some polynomial \\spad{p}.") (((|Union| |#2| "failed") |#3| (|Fraction| |#2|)) "\\spad{denomLODE(op, g)} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = g} is of the form \\spad{p/d} for some polynomial \\spad{p},{} and \"failed\",{} if the equation has no rational solution."))) NIL NIL -(-728 -3091 UP L LQ) +(-729 -3092 UP L LQ) ((|constructor| (NIL "In-field solution of Riccati equations,{} primitive case.")) (|changeVar| ((|#3| |#3| (|Fraction| |#2|)) "\\spad{changeVar(+/[ai D^i], a)} returns the operator \\spad{+/[ai (D+a)^i]}.") ((|#3| |#3| |#2|) "\\spad{changeVar(+/[ai D^i], a)} returns the operator \\spad{+/[ai (D+a)^i]}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op, zeros, ezfactor)} returns \\spad{[[f1, L1], [f2, L2], ... , [fk, Lk]]} such that the singular part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{fi}'s (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{Li z=0}. \\spad{zeros(C(x),H(x,y))} returns all the \\spad{P_i(x)}'s such that \\spad{H(x,P_i(x)) = 0 modulo C(x)}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op, zeros)} returns \\spad{[[p1, L1], [p2, L2], ... , [pk, Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{pi}'s (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{Li z =0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|constantCoefficientRicDE| (((|List| (|Record| (|:| |constant| |#1|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{constantCoefficientRicDE(op, ric)} returns \\spad{[[a1, L1], [a2, L2], ... , [ak, Lk]]} such that any rational solution with no polynomial part of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{ai}'s in which case the equation for \\spad{z = y e^{-int ai}} is \\spad{Li z = 0}. \\spad{ric} is a Riccati equation solver over \\spad{F},{} whose input is the associated linear equation.")) (|leadingCoefficientRicDE| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |eq| |#2|))) |#3|) "\\spad{leadingCoefficientRicDE(op)} returns \\spad{[[m1, p1], [m2, p2], ... , [mk, pk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must have degree mj for some \\spad{j},{} and its leading coefficient is then a zero of pj. In addition,{}\\spad{m1>m2> ... >mk}.")) (|denomRicDE| ((|#2| |#3|) "\\spad{denomRicDE(op)} returns a polynomial \\spad{d} such that any rational solution of the associated Riccati equation of \\spad{op y = 0} is of the form \\spad{p/d + q'/q + r} for some polynomials \\spad{p} and \\spad{q} and a reduced \\spad{r}. Also,{} \\spad{deg(p) < deg(d)} and {gcd(\\spad{d},{}\\spad{q}) = 1}."))) NIL NIL -(-729 -3091 UP) +(-730 -3092 UP) ((|constructor| (NIL "\\spad{RationalLODE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the rational case.}")) (|indicialEquationAtInfinity| ((|#2| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.") ((|#2| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.")) (|ratDsolve| (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op, [g1,...,gm])} returns \\spad{[[h1,...,hq], M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,...,dq,c1,...,cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) #1="failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}'s form a basis for the rational solutions of the homogeneous equation.") (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op, [g1,...,gm])} returns \\spad{[[h1,...,hq], M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,...,dq,c1,...,cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) #1#)) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}'s form a basis for the rational solutions of the homogeneous equation."))) NIL NIL -(-730 -3091 L UP A LO) +(-731 -3092 L UP A LO) ((|constructor| (NIL "Elimination of an algebraic from the coefficentss of a linear ordinary differential equation.")) (|reduceLODE| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) |#5| |#4|) "\\spad{reduceLODE(op, g)} returns \\spad{[m, v]} such that any solution in \\spad{A} of \\spad{op z = g} is of the form \\spad{z = (z_1,...,z_m) . (b_1,...,b_m)} where the \\spad{b_i's} are the basis of \\spad{A} over \\spad{F} returned by \\spadfun{basis}() from \\spad{A},{} and the \\spad{z_i's} satisfy the differential system \\spad{M.z = v}."))) NIL NIL -(-731 -3091 UP) +(-732 -3092 UP) ((|constructor| (NIL "In-field solution of Riccati equations,{} rational case.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op, zeros)} returns \\spad{[[p1, L1], [p2, L2], ... , [pk,Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{pi}'s (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int p}} is \\spad{Li z = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op, ezfactor)} returns \\spad{[[f1,L1], [f2,L2],..., [fk,Lk]]} such that the singular ++ part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{fi}'s (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int ai}} is \\spad{Li z = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|ricDsolve| (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, zeros, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op, zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, zeros, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op, zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}."))) NIL ((|HasCategory| |#1| (QUOTE (-27)))) -(-732 -3091 LO) +(-733 -3092 LO) ((|constructor| (NIL "SystemODESolver provides tools for triangulating and solving some systems of linear ordinary differential equations.")) (|solveInField| (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#2|) (|Vector| |#1|) (|Mapping| (|Record| (|:| |particular| (|Union| |#1| "failed")) (|:| |basis| (|List| |#1|))) |#2| |#1|)) "\\spad{solveInField(m, v, solve)} returns \\spad{[[v_1,...,v_m], v_p]} such that the solutions in \\spad{F} of the system \\spad{m x = v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{m x = 0}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|solve| (((|Union| (|Record| (|:| |particular| (|Vector| |#1|)) (|:| |basis| (|Matrix| |#1|))) "failed") (|Matrix| |#1|) (|Vector| |#1|) (|Mapping| (|Union| (|Record| (|:| |particular| |#1|) (|:| |basis| (|List| |#1|))) "failed") |#2| |#1|)) "\\spad{solve(m, v, solve)} returns \\spad{[[v_1,...,v_m], v_p]} such that the solutions in \\spad{F} of the system \\spad{D x = m x + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D x = m x}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|triangulate| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| |#2|) (|Vector| |#1|)) "\\spad{triangulate(m, v)} returns \\spad{[m_0, v_0]} such that \\spad{m_0} is upper triangular and the system \\spad{m_0 x = v_0} is equivalent to \\spad{m x = v}.") (((|Record| (|:| A (|Matrix| |#1|)) (|:| |eqs| (|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)) (|:| |eq| |#2|) (|:| |rh| |#1|))))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{triangulate(M,v)} returns \\spad{A,[[C_1,g_1,L_1,h_1],...,[C_k,g_k,L_k,h_k]]} such that under the change of variable \\spad{y = A z},{} the first order linear system \\spad{D y = M y + v} is uncoupled as \\spad{D z_i = C_i z_i + g_i} and each \\spad{C_i} is a companion matrix corresponding to the scalar equation \\spad{L_i z_j = h_i}."))) NIL NIL -(-733 -3091 LODO) +(-734 -3092 LODO) ((|constructor| (NIL "\\spad{ODETools} provides tools for the linear ODE solver.")) (|particularSolution| (((|Union| |#1| "failed") |#2| |#1| (|List| |#1|) (|Mapping| |#1| |#1|)) "\\spad{particularSolution(op, g, [f1,...,fm], I)} returns a particular solution \\spad{h} of the equation \\spad{op y = g} where \\spad{[f1,...,fm]} are linearly independent and \\spad{op(fi)=0}. The value \"failed\" is returned if no particular solution is found. Note: the method of variations of parameters is used.")) (|variationOfParameters| (((|Union| (|Vector| |#1|) "failed") |#2| |#1| (|List| |#1|)) "\\spad{variationOfParameters(op, g, [f1,...,fm])} returns \\spad{[u1,...,um]} such that a particular solution of the equation \\spad{op y = g} is \\spad{f1 int(u1) + ... + fm int(um)} where \\spad{[f1,...,fm]} are linearly independent and \\spad{op(fi)=0}. The value \"failed\" is returned if \\spad{m < n} and no particular solution is found.")) (|wronskianMatrix| (((|Matrix| |#1|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{wronskianMatrix([f1,...,fn], q, D)} returns the \\spad{q x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),...,fn^(i-1)]}.") (((|Matrix| |#1|) (|List| |#1|)) "\\spad{wronskianMatrix([f1,...,fn])} returns the \\spad{n x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),...,fn^(i-1)]}."))) NIL NIL -(-734 -2620 S |f|) +(-735 -2621 S |f|) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The ordering on the type is determined by its third argument which represents the less than function on vectors. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-3987 |has| |#2| (-960)) (-3988 |has| |#2| (-960)) (-3990 |has| |#2| (-6 -3990)) (-3993 . T)) -((OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-662))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-716))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-755))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-808 (-1088)))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-960))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))))) (|HasCategory| |#2| (QUOTE (-551 (-771)))) (|HasCategory| |#2| (QUOTE (-312))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-960)))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-312)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-960))) (|HasCategory| |#2| (QUOTE (-662))) (|HasCategory| |#2| (QUOTE (-716))) (OR (|HasCategory| |#2| (QUOTE (-716))) (|HasCategory| |#2| (QUOTE (-755)))) (|HasCategory| |#2| (QUOTE (-755))) (|HasCategory| |#2| (QUOTE (-318))) (OR (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-579 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-579 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-579 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-579 (-483)))) (|HasCategory| |#2| (QUOTE (-808 (-1088))))) (-12 (|HasCategory| |#2| (QUOTE (-579 (-483)))) (|HasCategory| |#2| (QUOTE (-960))))) (|HasCategory| |#2| (QUOTE (-808 (-1088)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-662))) (|HasCategory| |#2| (QUOTE (-716))) (|HasCategory| |#2| (QUOTE (-755))) (|HasCategory| |#2| (QUOTE (-808 (-1088)))) (|HasCategory| |#2| (QUOTE (-960))) (|HasCategory| |#2| (QUOTE (-1012)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-662))) (|HasCategory| |#2| (QUOTE (-716))) (|HasCategory| |#2| (QUOTE (-755))) (|HasCategory| |#2| (QUOTE (-808 (-1088)))) (|HasCategory| |#2| (QUOTE (-960))) (|HasCategory| |#2| (QUOTE (-1012)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-808 (-1088)))) (|HasCategory| |#2| (QUOTE (-960)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-808 (-1088)))) (|HasCategory| |#2| (QUOTE (-960)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-808 (-1088)))) (|HasCategory| |#2| (QUOTE (-960)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-808 (-1088)))) (|HasCategory| |#2| (QUOTE (-960)))) (OR (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-808 (-1088)))) (|HasCategory| |#2| (QUOTE (-960)))) (|HasCategory| |#2| (QUOTE (-190))) (OR (|HasCategory| |#2| (QUOTE (-190))) (-12 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-960))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-810 (-1088)))) (|HasCategory| |#2| (QUOTE (-960)))) (|HasCategory| |#2| (QUOTE (-808 (-1088))))) (|HasCategory| |#2| (QUOTE (-1012))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-949 (-348 (-483)))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-949 (-348 (-483)))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-949 (-348 (-483)))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-949 (-348 (-483)))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-949 (-348 (-483)))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-949 (-348 (-483)))))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-949 (-348 (-483)))))) (-12 (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-949 (-348 (-483)))))) (-12 (|HasCategory| |#2| (QUOTE (-662))) (|HasCategory| |#2| (QUOTE (-949 (-348 (-483)))))) (-12 (|HasCategory| |#2| (QUOTE (-716))) (|HasCategory| |#2| (QUOTE (-949 (-348 (-483)))))) (-12 (|HasCategory| |#2| (QUOTE (-755))) (|HasCategory| |#2| (QUOTE (-949 (-348 (-483)))))) (-12 (|HasCategory| |#2| (QUOTE (-808 (-1088)))) (|HasCategory| |#2| (QUOTE (-949 (-348 (-483)))))) (-12 (|HasCategory| |#2| (QUOTE (-949 (-348 (-483))))) (|HasCategory| |#2| (QUOTE (-960)))) (-12 (|HasCategory| |#2| (QUOTE (-949 (-348 (-483))))) (|HasCategory| |#2| (QUOTE (-1012))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-949 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-949 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-949 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-949 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-949 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-949 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-716))) (|HasCategory| |#2| (QUOTE (-949 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-755))) (|HasCategory| |#2| (QUOTE (-949 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-808 (-1088)))) (|HasCategory| |#2| (QUOTE (-949 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-949 (-483)))) (|HasCategory| |#2| (QUOTE (-1012)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-949 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-949 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-662))) (|HasCategory| |#2| (QUOTE (-949 (-483))))) (|HasCategory| |#2| (QUOTE (-960)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-949 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-949 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-949 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-949 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-949 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-949 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-716))) (|HasCategory| |#2| (QUOTE (-949 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-755))) (|HasCategory| |#2| (QUOTE (-949 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-808 (-1088)))) (|HasCategory| |#2| (QUOTE (-949 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-949 (-483)))) (|HasCategory| |#2| (QUOTE (-1012)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-949 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-949 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-662))) (|HasCategory| |#2| (QUOTE (-949 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-949 (-483)))) (|HasCategory| |#2| (QUOTE (-960))))) (|HasCategory| (-483) (QUOTE (-755))) (-12 (|HasCategory| |#2| (QUOTE (-579 (-483)))) (|HasCategory| |#2| (QUOTE (-960)))) (-12 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-960)))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1088)))) (|HasCategory| |#2| (QUOTE (-960)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-949 (-483)))) (|HasCategory| |#2| (QUOTE (-1012)))) (|HasCategory| |#2| (QUOTE (-960)))) (-12 (|HasCategory| |#2| (QUOTE (-949 (-483)))) (|HasCategory| |#2| (QUOTE (-1012)))) (-12 (|HasCategory| |#2| (QUOTE (-949 (-348 (-483))))) (|HasCategory| |#2| (QUOTE (-1012)))) (|HasAttribute| |#2| (QUOTE -3990)) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-960)))) (-12 (|HasCategory| |#2| (QUOTE (-808 (-1088)))) (|HasCategory| |#2| (QUOTE (-960)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-72))) (-12 (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))))) -(-735 R) +((-3988 |has| |#2| (-961)) (-3989 |has| |#2| (-961)) (-3991 |has| |#2| (-6 -3991)) (-3994 . T)) +((OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-809 (-1089)))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))))) (|HasCategory| |#2| (QUOTE (-552 (-772)))) (|HasCategory| |#2| (QUOTE (-312))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-961)))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-312)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-717))) (OR (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-756)))) (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-319))) (OR (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-580 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-580 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-580 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-580 (-484)))) (|HasCategory| |#2| (QUOTE (-809 (-1089))))) (-12 (|HasCategory| |#2| (QUOTE (-580 (-484)))) (|HasCategory| |#2| (QUOTE (-961))))) (|HasCategory| |#2| (QUOTE (-809 (-1089)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-809 (-1089)))) (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (QUOTE (-1013)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-809 (-1089)))) (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (QUOTE (-1013)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-809 (-1089)))) (|HasCategory| |#2| (QUOTE (-961)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-809 (-1089)))) (|HasCategory| |#2| (QUOTE (-961)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-809 (-1089)))) (|HasCategory| |#2| (QUOTE (-961)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-809 (-1089)))) (|HasCategory| |#2| (QUOTE (-961)))) (OR (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-809 (-1089)))) (|HasCategory| |#2| (QUOTE (-961)))) (|HasCategory| |#2| (QUOTE (-190))) (OR (|HasCategory| |#2| (QUOTE (-190))) (-12 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-961))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-811 (-1089)))) (|HasCategory| |#2| (QUOTE (-961)))) (|HasCategory| |#2| (QUOTE (-809 (-1089))))) (|HasCategory| |#2| (QUOTE (-1013))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-809 (-1089)))) (|HasCategory| |#2| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-950 (-349 (-484))))) (|HasCategory| |#2| (QUOTE (-961)))) (-12 (|HasCategory| |#2| (QUOTE (-950 (-349 (-484))))) (|HasCategory| |#2| (QUOTE (-1013))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-809 (-1089)))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-950 (-484)))) (|HasCategory| |#2| (QUOTE (-1013)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (|HasCategory| |#2| (QUOTE (-961)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-809 (-1089)))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-950 (-484)))) (|HasCategory| |#2| (QUOTE (-1013)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-950 (-484)))) (|HasCategory| |#2| (QUOTE (-961))))) (|HasCategory| (-484) (QUOTE (-756))) (-12 (|HasCategory| |#2| (QUOTE (-580 (-484)))) (|HasCategory| |#2| (QUOTE (-961)))) (-12 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-961)))) (-12 (|HasCategory| |#2| (QUOTE (-811 (-1089)))) (|HasCategory| |#2| (QUOTE (-961)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-950 (-484)))) (|HasCategory| |#2| (QUOTE (-1013)))) (|HasCategory| |#2| (QUOTE (-961)))) (-12 (|HasCategory| |#2| (QUOTE (-950 (-484)))) (|HasCategory| |#2| (QUOTE (-1013)))) (-12 (|HasCategory| |#2| (QUOTE (-950 (-349 (-484))))) (|HasCategory| |#2| (QUOTE (-1013)))) (|HasAttribute| |#2| (QUOTE -3991)) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-961)))) (-12 (|HasCategory| |#2| (QUOTE (-809 (-1089)))) (|HasCategory| |#2| (QUOTE (-961)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-72))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))))) +(-736 R) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is orderly. This is analogous to the domain \\spadtype{Polynomial}. \\blankline"))) -(((-3995 "*") |has| |#1| (-146)) (-3986 |has| |#1| (-494)) (-3991 |has| |#1| (-6 -3991)) (-3988 . T) (-3987 . T) (-3990 . T)) -((|HasCategory| |#1| (QUOTE (-820))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-390))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-820)))) (OR (|HasCategory| |#1| (QUOTE (-390))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-820)))) (OR (|HasCategory| |#1| (QUOTE (-390))) (|HasCategory| |#1| (QUOTE (-820)))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-494)))) (-12 (|HasCategory| |#1| (QUOTE (-795 (-328)))) (|HasCategory| (-737 (-1088)) (QUOTE (-795 (-328))))) (-12 (|HasCategory| |#1| (QUOTE (-795 (-483)))) (|HasCategory| (-737 (-1088)) (QUOTE (-795 (-483))))) (-12 (|HasCategory| |#1| (QUOTE (-552 (-799 (-328))))) (|HasCategory| (-737 (-1088)) (QUOTE (-552 (-799 (-328)))))) (-12 (|HasCategory| |#1| (QUOTE (-552 (-799 (-483))))) (|HasCategory| (-737 (-1088)) (QUOTE (-552 (-799 (-483)))))) (-12 (|HasCategory| |#1| (QUOTE (-552 (-472)))) (|HasCategory| (-737 (-1088)) (QUOTE (-552 (-472))))) (|HasCategory| |#1| (QUOTE (-579 (-483)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-348 (-483))))) (|HasCategory| |#1| (QUOTE (-949 (-483)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-348 (-483))))) (|HasCategory| |#1| (QUOTE (-949 (-348 (-483)))))) (|HasCategory| |#1| (QUOTE (-949 (-348 (-483))))) (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-810 (-1088)))) (|HasCategory| |#1| (QUOTE (-808 (-1088)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasAttribute| |#1| (QUOTE -3991)) (|HasCategory| |#1| (QUOTE (-390))) (-12 (|HasCategory| |#1| (QUOTE (-820))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-820))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) -(-736 |Kernels| R |var|) +(((-3996 "*") |has| |#1| (-146)) (-3987 |has| |#1| (-495)) (-3992 |has| |#1| (-6 -3992)) (-3989 . T) (-3988 . T) (-3991 . T)) +((|HasCategory| |#1| (QUOTE (-821))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-391))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-821)))) (OR (|HasCategory| |#1| (QUOTE (-391))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-821)))) (OR (|HasCategory| |#1| (QUOTE (-391))) (|HasCategory| |#1| (QUOTE (-821)))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (-12 (|HasCategory| |#1| (QUOTE (-796 (-329)))) (|HasCategory| (-738 (-1089)) (QUOTE (-796 (-329))))) (-12 (|HasCategory| |#1| (QUOTE (-796 (-484)))) (|HasCategory| (-738 (-1089)) (QUOTE (-796 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-800 (-329))))) (|HasCategory| (-738 (-1089)) (QUOTE (-553 (-800 (-329)))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-800 (-484))))) (|HasCategory| (-738 (-1089)) (QUOTE (-553 (-800 (-484)))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-473)))) (|HasCategory| (-738 (-1089)) (QUOTE (-553 (-473))))) (|HasCategory| |#1| (QUOTE (-580 (-484)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-349 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-484)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-349 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-349 (-484)))))) (|HasCategory| |#1| (QUOTE (-950 (-349 (-484))))) (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-811 (-1089)))) (|HasCategory| |#1| (QUOTE (-809 (-1089)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasAttribute| |#1| (QUOTE -3992)) (|HasCategory| |#1| (QUOTE (-391))) (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) +(-737 |Kernels| R |var|) ((|constructor| (NIL "This constructor produces an ordinary differential ring from a partial differential ring by specifying a variable."))) -(((-3995 "*") |has| |#2| (-312)) (-3986 |has| |#2| (-312)) (-3991 |has| |#2| (-312)) (-3985 |has| |#2| (-312)) (-3990 . T) (-3988 . T) (-3987 . T)) +(((-3996 "*") |has| |#2| (-312)) (-3987 |has| |#2| (-312)) (-3992 |has| |#2| (-312)) (-3986 |has| |#2| (-312)) (-3991 . T) (-3989 . T) (-3988 . T)) ((|HasCategory| |#2| (QUOTE (-312)))) -(-737 S) +(-738 S) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used orderly ranking to the set of derivatives of an ordered list of differential indeterminates. An orderly ranking is a ranking \\spadfun{<} of the derivatives with the property that for two derivatives \\spad{u} and \\spad{v},{} \\spad{u} \\spadfun{<} \\spad{v} if the \\spadfun{order} of \\spad{u} is less than that of \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines an orderly ranking \\spadfun{<} on derivatives \\spad{u} via the lexicographic order on the pair (\\spadfun{order}(\\spad{u}),{} \\spadfun{variable}(\\spad{u}))."))) NIL NIL -(-738 S) +(-739 S) ((|constructor| (NIL "\\indented{3}{The free monoid on a set \\spad{S} is the monoid of finite products of} the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}'s are in \\spad{S},{} and the \\spad{ni}'s are non-negative integers. The multiplication is not commutative. For two elements \\spad{x} and \\spad{y} the relation \\spad{x < y} holds if either \\spad{length(x) < length(y)} holds or if these lengths are equal and if \\spad{x} is smaller than \\spad{y} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\spad{S}. This domain inherits implementation from \\spadtype{FreeMonoid}.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables of \\spad{x}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the length of \\spad{x}.")) (|div| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{x div y} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} that is \\spad{[l, r]} such that \\spad{x = l * y * r}. \"failed\" is returned iff \\spad{x} is not of the form \\spad{l * y * r}. monomial of \\spad{x}.")) (|rquo| (((|Union| $ "failed") $ |#1|) "\\spad{rquo(x, s)} returns the exact right quotient of \\spad{x} by \\spad{s}.")) (|lquo| (((|Union| $ "failed") $ |#1|) "\\spad{lquo(x, s)} returns the exact left quotient of \\spad{x} by \\spad{s}.")) (|lexico| (((|Boolean|) $ $) "\\spad{lexico(x,y)} returns \\spad{true} iff \\spad{x} is smaller than \\spad{y} \\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering induced by \\spad{S}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns the reversed word of \\spad{x}.")) (|rest| (($ $) "\\spad{rest(x)} returns \\spad{x} except the first letter.")) (|first| ((|#1| $) "\\spad{first(x)} returns the first letter of \\spad{x}."))) NIL -((|HasCategory| |#1| (QUOTE (-755)))) -(-739) +((|HasCategory| |#1| (QUOTE (-756)))) +(-740) ((|constructor| (NIL "The category of ordered commutative integral domains,{} where ordering and the arithmetic operations are compatible \\blankline"))) -((-3986 . T) ((-3995 "*") . T) (-3987 . T) (-3988 . T) (-3990 . T)) +((-3987 . T) ((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T)) NIL -(-740 P R) +(-741 P R) ((|constructor| (NIL "This constructor creates the \\spadtype{MonogenicLinearOperator} domain which is ``opposite'' in the ring sense to \\spad{P}. That is,{} as sets \\spad{P = \\$} but \\spad{a * b} in \\spad{\\$} is equal to \\spad{b * a} in \\spad{P}.")) (|po| ((|#1| $) "\\spad{po(q)} creates a value in \\spad{P} equal to \\spad{q} in \\$.")) (|op| (($ |#1|) "\\spad{op(p)} creates a value in \\$ equal to \\spad{p} in \\spad{P}."))) -((-3987 . T) (-3988 . T) (-3990 . T)) +((-3988 . T) (-3989 . T) (-3991 . T)) ((|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-190)))) -(-741 S) +(-742 S) ((|constructor| (NIL "to become an in order iterator")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest entry in the multiset aggregate \\spad{u}."))) -((-3993 . T) (-3983 . T) (-3994 . T)) +((-3994 . T) (-3984 . T) (-3995 . T)) NIL -(-742 R) +(-743 R) ((|constructor| (NIL "Adjunction of a complex infinity to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one,{} \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is infinite.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|infinity| (($) "\\spad{infinity()} returns infinity."))) -((-3990 |has| |#1| (-754))) -((|HasCategory| |#1| (QUOTE (-754))) (|HasCategory| |#1| (QUOTE (-21))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-754)))) (|HasCategory| |#1| (QUOTE (-949 (-348 (-483))))) (OR (|HasCategory| |#1| (QUOTE (-754))) (|HasCategory| |#1| (QUOTE (-949 (-483))))) (|HasCategory| |#1| (QUOTE (-949 (-483)))) (|HasCategory| |#1| (QUOTE (-482)))) -(-743 R S) +((-3991 |has| |#1| (-755))) +((|HasCategory| |#1| (QUOTE (-755))) (|HasCategory| |#1| (QUOTE (-21))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-755)))) (|HasCategory| |#1| (QUOTE (-950 (-349 (-484))))) (OR (|HasCategory| |#1| (QUOTE (-755))) (|HasCategory| |#1| (QUOTE (-950 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-484)))) (|HasCategory| |#1| (QUOTE (-483)))) +(-744 R S) ((|constructor| (NIL "Lifting of maps to one-point completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|) (|OnePointCompletion| |#2|)) "\\spad{map(f, r, i)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = \\spad{i}.") (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|)) "\\spad{map(f, r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = infinity."))) NIL NIL -(-744 R) +(-745 R) ((|constructor| (NIL "Algebra of ADDITIVE operators over a ring."))) -((-3988 |has| |#1| (-146)) (-3987 |has| |#1| (-146)) (-3990 . T)) +((-3989 |has| |#1| (-146)) (-3988 |has| |#1| (-146)) (-3991 . T)) ((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120)))) -(-745 A S) +(-746 A S) ((|constructor| (NIL "This category specifies the interface for operators used to build terms,{} in the sense of Universal Algebra. The domain parameter \\spad{S} provides representation for the `external name' of an operator.")) (|is?| (((|Boolean|) $ |#2|) "\\spad{is?(op,n)} holds if the name of the operator \\spad{op} is \\spad{n}.")) (|arity| (((|Arity|) $) "\\spad{arity(op)} returns the arity of the operator \\spad{op}.")) (|name| ((|#2| $) "\\spad{name(op)} returns the externam name of \\spad{op}."))) NIL NIL -(-746 S) +(-747 S) ((|constructor| (NIL "This category specifies the interface for operators used to build terms,{} in the sense of Universal Algebra. The domain parameter \\spad{S} provides representation for the `external name' of an operator.")) (|is?| (((|Boolean|) $ |#1|) "\\spad{is?(op,n)} holds if the name of the operator \\spad{op} is \\spad{n}.")) (|arity| (((|Arity|) $) "\\spad{arity(op)} returns the arity of the operator \\spad{op}.")) (|name| ((|#1| $) "\\spad{name(op)} returns the externam name of \\spad{op}."))) NIL NIL -(-747) +(-748) ((|constructor| (NIL "This package exports tools to create AXIOM Library information databases.")) (|getDatabase| (((|Database| (|IndexCard|)) (|String|)) "\\spad{getDatabase(\"char\")} returns a list of appropriate entries in the browser database. The legal values for \\spad{\"char\"} are \"o\" (operations),{} \"k\" (constructors),{} \"d\" (domains),{} \"c\" (categories) or \"p\" (packages)."))) NIL NIL -(-748) +(-749) ((|constructor| (NIL "This the datatype for an operator-signature pair.")) (|construct| (($ (|Identifier|) (|Signature|)) "\\spad{construct(op,sig)} construct a signature-operator with operator name `op',{} and signature `sig'.")) (|signature| (((|Signature|) $) "\\spad{signature(x)} returns the signature of `x'."))) NIL NIL -(-749 R) +(-750 R) ((|constructor| (NIL "Adjunction of two real infinites quantities to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} cannot be so converted.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|whatInfinity| (((|SingleInteger|) $) "\\spad{whatInfinity(x)} returns 0 if \\spad{x} is finite,{} 1 if \\spad{x} is +infinity,{} and \\spad{-1} if \\spad{x} is -infinity.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is +infinity or -infinity,{}")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|minusInfinity| (($) "\\spad{minusInfinity()} returns -infinity.")) (|plusInfinity| (($) "\\spad{plusInfinity()} returns +infinity."))) -((-3990 |has| |#1| (-754))) -((|HasCategory| |#1| (QUOTE (-754))) (|HasCategory| |#1| (QUOTE (-21))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-754)))) (|HasCategory| |#1| (QUOTE (-949 (-348 (-483))))) (OR (|HasCategory| |#1| (QUOTE (-754))) (|HasCategory| |#1| (QUOTE (-949 (-483))))) (|HasCategory| |#1| (QUOTE (-949 (-483)))) (|HasCategory| |#1| (QUOTE (-482)))) -(-750 R S) +((-3991 |has| |#1| (-755))) +((|HasCategory| |#1| (QUOTE (-755))) (|HasCategory| |#1| (QUOTE (-21))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-755)))) (|HasCategory| |#1| (QUOTE (-950 (-349 (-484))))) (OR (|HasCategory| |#1| (QUOTE (-755))) (|HasCategory| |#1| (QUOTE (-950 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-484)))) (|HasCategory| |#1| (QUOTE (-483)))) +(-751 R S) ((|constructor| (NIL "Lifting of maps to ordered completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{map(f, r, p, m)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = \\spad{p} and that \\spad{f}(minusInfinity) = \\spad{m}.") (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|)) "\\spad{map(f, r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = plusInfinity and that \\spad{f}(minusInfinity) = minusInfinity."))) NIL NIL -(-751) +(-752) ((|constructor| (NIL "Ordered finite sets.")) (|max| (($) "\\spad{max} is the maximum value of \\%.")) (|min| (($) "\\spad{min} is the minimum value of \\%."))) NIL NIL -(-752 -2620 S) +(-753 -2621 S) ((|constructor| (NIL "\\indented{3}{This package provides ordering functions on vectors which} are suitable parameters for OrderedDirectProduct.")) (|reverseLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{reverseLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by the reverse lexicographic ordering.")) (|totalLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{totalLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by lexicographic ordering.")) (|pureLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{pureLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the lexicographic ordering."))) NIL NIL -(-753) +(-754) ((|constructor| (NIL "Ordered sets which are also monoids,{} such that multiplication preserves the ordering. \\blankline"))) NIL NIL -(-754) +(-755) ((|constructor| (NIL "Ordered sets which are also rings,{} that is,{} domains where the ring operations are compatible with the ordering. \\blankline"))) -((-3990 . T)) +((-3991 . T)) NIL -(-755) +(-756) ((|constructor| (NIL "The class of totally ordered sets,{} that is,{} sets such that for each pair of elements \\spad{(a,b)} exactly one of the following relations holds \\spad{a<b or a=b or b<a} and the relation is transitive,{} \\spadignore{i.e.} \\spad{a<b and b<c => a<c}."))) NIL NIL -(-756 T$ |f|) +(-757 T$ |f|) ((|constructor| (NIL "This domain turns any total ordering \\spad{f} on a type \\spad{T} into a model of the category \\spadtype{OrderedType}."))) NIL -((|HasCategory| |#1| (QUOTE (-551 (-771))))) -(-757 S) +((|HasCategory| |#1| (QUOTE (-552 (-772))))) +(-758 S) ((|constructor| (NIL "Category of types equipped with a total ordering.")) (|min| (($ $ $) "\\spad{min(x,y)} returns the minimum of \\spad{x} and \\spad{y} relative to the ordering.")) (|max| (($ $ $) "\\spad{max(x,y)} returns the maximum of \\spad{x} and \\spad{y} relative to the ordering.")) (>= (((|Boolean|) $ $) "\\spad{x <= y} holds if \\spad{x} is greater or equal than \\spad{y} in the current domain.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} holds if \\spad{x} is less or equal than \\spad{y} in the current domain.")) (> (((|Boolean|) $ $) "\\spad{x > y} holds if \\spad{x} is greater than \\spad{y} in the current domain.")) (< (((|Boolean|) $ $) "\\spad{x < y} holds if \\spad{x} is less than \\spad{y} in the current domain."))) NIL NIL -(-758) +(-759) ((|constructor| (NIL "Category of types equipped with a total ordering.")) (|min| (($ $ $) "\\spad{min(x,y)} returns the minimum of \\spad{x} and \\spad{y} relative to the ordering.")) (|max| (($ $ $) "\\spad{max(x,y)} returns the maximum of \\spad{x} and \\spad{y} relative to the ordering.")) (>= (((|Boolean|) $ $) "\\spad{x <= y} holds if \\spad{x} is greater or equal than \\spad{y} in the current domain.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} holds if \\spad{x} is less or equal than \\spad{y} in the current domain.")) (> (((|Boolean|) $ $) "\\spad{x > y} holds if \\spad{x} is greater than \\spad{y} in the current domain.")) (< (((|Boolean|) $ $) "\\spad{x < y} holds if \\spad{x} is less than \\spad{y} in the current domain."))) NIL NIL -(-759 S R) +(-760 S R) ((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = c * a + d * b = rightGcd(a, b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division''.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = a * c + b * d = leftGcd(a, b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division''.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#2| $) "\\spad{content(l)} returns the gcd of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division''.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division''.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(l, a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#2| $ |#2| |#2|) "\\spad{apply(p, c, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#2| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,1)}.")) (|coefficient| ((|#2| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}"))) NIL -((|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-390))) (|HasCategory| |#2| (QUOTE (-494))) (|HasCategory| |#2| (QUOTE (-146)))) -(-760 R) +((|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-391))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-146)))) +(-761 R) ((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = c * a + d * b = rightGcd(a, b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division''.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = a * c + b * d = leftGcd(a, b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division''.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#1| $) "\\spad{content(l)} returns the gcd of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division''.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division''.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(l, a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#1| $ |#1| |#1|) "\\spad{apply(p, c, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}"))) -((-3987 . T) (-3988 . T) (-3990 . T)) +((-3988 . T) (-3989 . T) (-3991 . T)) NIL -(-761 R C) +(-762 R C) ((|constructor| (NIL "\\spad{UnivariateSkewPolynomialCategoryOps} provides products and \\indented{1}{divisions of univariate skew polynomials.}")) (|rightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{rightDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division''. \\spad{\\sigma} is the morphism to use.")) (|leftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{leftDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division''. \\spad{\\sigma} is the morphism to use.")) (|monicRightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicRightDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division''. \\spad{\\sigma} is the morphism to use.")) (|monicLeftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicLeftDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division''. \\spad{\\sigma} is the morphism to use.")) (|apply| ((|#1| |#2| |#1| |#1| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{apply(p, c, m, sigma, delta)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|times| ((|#2| |#2| |#2| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{times(p, q, sigma, delta)} returns \\spad{p * q}. \\spad{\\sigma} and \\spad{\\delta} are the maps to use."))) NIL -((|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-494)))) -(-762 R |sigma| -3243) +((|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-495)))) +(-763 R |sigma| -3244) ((|constructor| (NIL "This is the domain of sparse univariate skew polynomials over an Ore coefficient field. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p, x)} returns the output form of \\spad{p} using \\spad{x} for the otherwise anonymous variable."))) -((-3987 . T) (-3988 . T) (-3990 . T)) -((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-949 (-348 (-483))))) (|HasCategory| |#1| (QUOTE (-949 (-483)))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-390))) (|HasCategory| |#1| (QUOTE (-312)))) -(-763 |x| R |sigma| -3243) +((-3988 . T) (-3989 . T) (-3991 . T)) +((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-950 (-349 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-484)))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-391))) (|HasCategory| |#1| (QUOTE (-312)))) +(-764 |x| R |sigma| -3244) ((|constructor| (NIL "This is the domain of univariate skew polynomials over an Ore coefficient field in a named variable. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}."))) -((-3987 . T) (-3988 . T) (-3990 . T)) -((|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-949 (-348 (-483))))) (|HasCategory| |#2| (QUOTE (-949 (-483)))) (|HasCategory| |#2| (QUOTE (-494))) (|HasCategory| |#2| (QUOTE (-390))) (|HasCategory| |#2| (QUOTE (-312)))) -(-764 R) +((-3988 . T) (-3989 . T) (-3991 . T)) +((|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-950 (-349 (-484))))) (|HasCategory| |#2| (QUOTE (-950 (-484)))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-391))) (|HasCategory| |#2| (QUOTE (-312)))) +(-765 R) ((|constructor| (NIL "This package provides orthogonal polynomials as functions on a ring.")) (|legendreP| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{legendreP(n,x)} is the \\spad{n}-th Legendre polynomial,{} \\spad{P[n](x)}. These are defined by \\spad{1/sqrt(1-2*x*t+t**2) = sum(P[n](x)*t**n, n = 0..)}.")) (|laguerreL| ((|#1| (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(m,n,x)} is the associated Laguerre polynomial,{} \\spad{L<m>[n](x)}. This is the \\spad{m}-th derivative of \\spad{L[n](x)}.") ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(n,x)} is the \\spad{n}-th Laguerre polynomial,{} \\spad{L[n](x)}. These are defined by \\spad{exp(-t*x/(1-t))/(1-t) = sum(L[n](x)*t**n/n!, n = 0..)}.")) (|hermiteH| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{hermiteH(n,x)} is the \\spad{n}-th Hermite polynomial,{} \\spad{H[n](x)}. These are defined by \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!, n = 0..)}.")) (|chebyshevU| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevU(n,x)} is the \\spad{n}-th Chebyshev polynomial of the second kind,{} \\spad{U[n](x)}. These are defined by \\spad{1/(1-2*t*x+t**2) = sum(T[n](x) *t**n, n = 0..)}.")) (|chebyshevT| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevT(n,x)} is the \\spad{n}-th Chebyshev polynomial of the first kind,{} \\spad{T[n](x)}. These are defined by \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x) *t**n, n = 0..)}."))) NIL -((|HasCategory| |#1| (QUOTE (-38 (-348 (-483)))))) -(-765) +((|HasCategory| |#1| (QUOTE (-38 (-349 (-484)))))) +(-766) ((|constructor| (NIL "Semigroups with compatible ordering."))) NIL NIL -(-766) +(-767) ((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date created : 14 August 1988 Date Last Updated : 11 March 1991 Description : A domain used in order to take the free \\spad{R}-module on the Integers \\spad{I}. This is actually the forgetful functor from OrderedRings to OrderedSets applied to \\spad{I}")) (|value| (((|Integer|) $) "\\spad{value(x)} returns the integer associated with \\spad{x}")) (|coerce| (($ (|Integer|)) "\\spad{coerce(i)} returns the element corresponding to \\spad{i}"))) NIL NIL -(-767) +(-768) ((|constructor| (NIL "OutPackage allows pretty-printing from programs.")) (|outputList| (((|Void|) (|List| (|Any|))) "\\spad{outputList(l)} displays the concatenated components of the list \\spad{l} on the ``algebra output'' stream,{} as defined by \\spadsyscom{set output algebra}; quotes are stripped from strings.")) (|output| (((|Void|) (|String|) (|OutputForm|)) "\\spad{output(s,x)} displays the string \\spad{s} followed by the form \\spad{x} on the ``algebra output'' stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|OutputForm|)) "\\spad{output(x)} displays the output form \\spad{x} on the ``algebra output'' stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|String|)) "\\spad{output(s)} displays the string \\spad{s} on the ``algebra output'' stream,{} as defined by \\spadsyscom{set output algebra}."))) NIL NIL -(-768 S) +(-769 S) ((|constructor| (NIL "This category describes output byte stream conduits.")) (|writeBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{writeBytes!(c,b)} write bytes from buffer `b' onto the conduit `c'. The actual number of written bytes is returned.")) (|writeUInt8!| (((|Maybe| (|UInt8|)) $ (|UInt8|)) "\\spad{writeUInt8!(c,b)} attempts to write the unsigned 8-bit value `v' on the conduit `c'. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeInt8!| (((|Maybe| (|Int8|)) $ (|Int8|)) "\\spad{writeInt8!(c,b)} attempts to write the 8-bit value `v' on the conduit `c'. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeByte!| (((|Maybe| (|Byte|)) $ (|Byte|)) "\\spad{writeByte!(c,b)} attempts to write the byte `b' on the conduit `c'. Returns the written byte if successful,{} otherwise,{} returns \\spad{nothing}."))) NIL NIL -(-769) +(-770) ((|constructor| (NIL "This category describes output byte stream conduits.")) (|writeBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{writeBytes!(c,b)} write bytes from buffer `b' onto the conduit `c'. The actual number of written bytes is returned.")) (|writeUInt8!| (((|Maybe| (|UInt8|)) $ (|UInt8|)) "\\spad{writeUInt8!(c,b)} attempts to write the unsigned 8-bit value `v' on the conduit `c'. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeInt8!| (((|Maybe| (|Int8|)) $ (|Int8|)) "\\spad{writeInt8!(c,b)} attempts to write the 8-bit value `v' on the conduit `c'. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeByte!| (((|Maybe| (|Byte|)) $ (|Byte|)) "\\spad{writeByte!(c,b)} attempts to write the byte `b' on the conduit `c'. Returns the written byte if successful,{} otherwise,{} returns \\spad{nothing}."))) NIL NIL -(-770) +(-771) ((|constructor| (NIL "This domain provides representation for binary files open for output operations. `Binary' here means that the conduits do not interpret their contents.")) (|isOpen?| (((|Boolean|) $) "open?(ifile) holds if `ifile' is in open state.")) (|outputBinaryFile| (($ (|String|)) "\\spad{outputBinaryFile(f)} returns an output conduit obtained by opening the file named by `f' as a binary file.") (($ (|FileName|)) "\\spad{outputBinaryFile(f)} returns an output conduit obtained by opening the file named by `f' as a binary file."))) NIL NIL -(-771) +(-772) ((|constructor| (NIL "This domain is used to create and manipulate mathematical expressions for output. It is intended to provide an insulating layer between the expression rendering software (\\spadignore{e.g.} TeX,{} or Script) and the output coercions in the various domains.")) (SEGMENT (($ $) "\\spad{SEGMENT(x)} creates the prefix form: \\spad{x..}.") (($ $ $) "\\spad{SEGMENT(x,y)} creates the infix form: \\spad{x..y}.")) (|not| (($ $) "\\spad{not f} creates the equivalent prefix form.")) (|or| (($ $ $) "\\spad{f or g} creates the equivalent infix form.")) (|and| (($ $ $) "\\spad{f and g} creates the equivalent infix form.")) (|exquo| (($ $ $) "\\spad{exquo(f,g)} creates the equivalent infix form.")) (|quo| (($ $ $) "\\spad{f quo g} creates the equivalent infix form.")) (|rem| (($ $ $) "\\spad{f rem g} creates the equivalent infix form.")) (|div| (($ $ $) "\\spad{f div g} creates the equivalent infix form.")) (** (($ $ $) "\\spad{f ** g} creates the equivalent infix form.")) (/ (($ $ $) "\\spad{f / g} creates the equivalent infix form.")) (* (($ $ $) "\\spad{f * g} creates the equivalent infix form.")) (- (($ $) "\\spad{- f} creates the equivalent prefix form.") (($ $ $) "\\spad{f - g} creates the equivalent infix form.")) (+ (($ $ $) "\\spad{f + g} creates the equivalent infix form.")) (>= (($ $ $) "\\spad{f >= g} creates the equivalent infix form.")) (<= (($ $ $) "\\spad{f <= g} creates the equivalent infix form.")) (> (($ $ $) "\\spad{f > g} creates the equivalent infix form.")) (< (($ $ $) "\\spad{f < g} creates the equivalent infix form.")) (~= (($ $ $) "\\spad{f ~= g} creates the equivalent infix form.")) (= (($ $ $) "\\spad{f = g} creates the equivalent infix form.")) (|blankSeparate| (($ (|List| $)) "\\spad{blankSeparate(l)} creates the form separating the elements of \\spad{l} by blanks.")) (|semicolonSeparate| (($ (|List| $)) "\\spad{semicolonSeparate(l)} creates the form separating the elements of \\spad{l} by semicolons.")) (|commaSeparate| (($ (|List| $)) "\\spad{commaSeparate(l)} creates the form separating the elements of \\spad{l} by commas.")) (|pile| (($ (|List| $)) "\\spad{pile(l)} creates the form consisting of the elements of \\spad{l} which displays as a pile,{} \\spadignore{i.e.} the elements begin on a new line and are indented right to the same margin.")) (|paren| (($ (|List| $)) "\\spad{paren(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in parentheses.") (($ $) "\\spad{paren(f)} creates the form enclosing \\spad{f} in parentheses.")) (|bracket| (($ (|List| $)) "\\spad{bracket(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in square brackets.") (($ $) "\\spad{bracket(f)} creates the form enclosing \\spad{f} in square brackets.")) (|brace| (($ (|List| $)) "\\spad{brace(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in curly brackets.") (($ $) "\\spad{brace(f)} creates the form enclosing \\spad{f} in braces (curly brackets).")) (|int| (($ $ $ $) "\\spad{int(expr,lowerlimit,upperlimit)} creates the form prefixing \\spad{expr} by an integral sign with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{int(expr,lowerlimit)} creates the form prefixing \\spad{expr} by an integral sign with a \\spad{lowerlimit}.") (($ $) "\\spad{int(expr)} creates the form prefixing \\spad{expr} with an integral sign.")) (|prod| (($ $ $ $) "\\spad{prod(expr,lowerlimit,upperlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{prod(expr,lowerlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with a \\spad{lowerlimit}.") (($ $) "\\spad{prod(expr)} creates the form prefixing \\spad{expr} by a capital \\spad{pi}.")) (|sum| (($ $ $ $) "\\spad{sum(expr,lowerlimit,upperlimit)} creates the form prefixing \\spad{expr} by a capital sigma with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{sum(expr,lowerlimit)} creates the form prefixing \\spad{expr} by a capital sigma with a \\spad{lowerlimit}.") (($ $) "\\spad{sum(expr)} creates the form prefixing \\spad{expr} by a capital sigma.")) (|overlabel| (($ $ $) "\\spad{overlabel(x,f)} creates the form \\spad{f} with \"x overbar\" over the top.")) (|overbar| (($ $) "\\spad{overbar(f)} creates the form \\spad{f} with an overbar.")) (|prime| (($ $ (|NonNegativeInteger|)) "\\spad{prime(f,n)} creates the form \\spad{f} followed by \\spad{n} primes.") (($ $) "\\spad{prime(f)} creates the form \\spad{f} followed by a suffix prime (single quote).")) (|dot| (($ $ (|NonNegativeInteger|)) "\\spad{dot(f,n)} creates the form \\spad{f} with \\spad{n} dots overhead.") (($ $) "\\spad{dot(f)} creates the form with a one dot overhead.")) (|quote| (($ $) "\\spad{quote(f)} creates the form \\spad{f} with a prefix quote.")) (|supersub| (($ $ (|List| $)) "\\spad{supersub(a,[sub1,super1,sub2,super2,...])} creates a form with each subscript aligned under each superscript.")) (|scripts| (($ $ (|List| $)) "\\spad{scripts(f, [sub, super, presuper, presub])} \\indented{1}{creates a form for \\spad{f} with scripts on all 4 corners.}")) (|presuper| (($ $ $) "\\spad{presuper(f,n)} creates a form for \\spad{f} presuperscripted by \\spad{n}.")) (|presub| (($ $ $) "\\spad{presub(f,n)} creates a form for \\spad{f} presubscripted by \\spad{n}.")) (|super| (($ $ $) "\\spad{super(f,n)} creates a form for \\spad{f} superscripted by \\spad{n}.")) (|sub| (($ $ $) "\\spad{sub(f,n)} creates a form for \\spad{f} subscripted by \\spad{n}.")) (|binomial| (($ $ $) "\\spad{binomial(n,m)} creates a form for the binomial coefficient of \\spad{n} and \\spad{m}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,n)} creates a form for the \\spad{n}th derivative of \\spad{f},{} \\spadignore{e.g.} \\spad{f'},{} \\spad{f''},{} \\spad{f'''},{} \"f super \\spad{iv}\".")) (|rarrow| (($ $ $) "\\spad{rarrow(f,g)} creates a form for the mapping \\spad{f -> g}.")) (|assign| (($ $ $) "\\spad{assign(f,g)} creates a form for the assignment \\spad{f := g}.")) (|slash| (($ $ $) "\\spad{slash(f,g)} creates a form for the horizontal fraction of \\spad{f} over \\spad{g}.")) (|over| (($ $ $) "\\spad{over(f,g)} creates a form for the vertical fraction of \\spad{f} over \\spad{g}.")) (|root| (($ $ $) "\\spad{root(f,n)} creates a form for the \\spad{n}th root of form \\spad{f}.") (($ $) "\\spad{root(f)} creates a form for the square root of form \\spad{f}.")) (|zag| (($ $ $) "\\spad{zag(f,g)} creates a form for the continued fraction form for \\spad{f} over \\spad{g}.")) (|matrix| (($ (|List| (|List| $))) "\\spad{matrix(llf)} makes \\spad{llf} (a list of lists of forms) into a form which displays as a matrix.")) (|box| (($ $) "\\spad{box(f)} encloses \\spad{f} in a box.")) (|label| (($ $ $) "\\spad{label(n,f)} gives form \\spad{f} an equation label \\spad{n}.")) (|string| (($ $) "\\spad{string(f)} creates \\spad{f} with string quotes.")) (|elt| (($ $ (|List| $)) "\\spad{elt(op,l)} creates a form for application of \\spad{op} to list of arguments \\spad{l}.")) (|infix?| (((|Boolean|) $) "\\spad{infix?(op)} returns \\spad{true} if \\spad{op} is an infix operator,{} and \\spad{false} otherwise.")) (|postfix| (($ $ $) "\\spad{postfix(op, a)} creates a form which prints as: a \\spad{op}.")) (|infix| (($ $ $ $) "\\spad{infix(op, a, b)} creates a form which prints as: a \\spad{op} \\spad{b}.") (($ $ (|List| $)) "\\spad{infix(f,l)} creates a form depicting the \\spad{n}-ary application of infix operation \\spad{f} to a tuple of arguments \\spad{l}.")) (|prefix| (($ $ (|List| $)) "\\spad{prefix(f,l)} creates a form depicting the \\spad{n}-ary prefix application of \\spad{f} to a tuple of arguments given by list \\spad{l}.")) (|vconcat| (($ (|List| $)) "\\spad{vconcat(u)} vertically concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{vconcat(f,g)} vertically concatenates forms \\spad{f} and \\spad{g}.")) (|hconcat| (($ (|List| $)) "\\spad{hconcat(u)} horizontally concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{hconcat(f,g)} horizontally concatenate forms \\spad{f} and \\spad{g}.")) (|center| (($ $) "\\spad{center(f)} centers form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{center(f,n)} centers form \\spad{f} within space of width \\spad{n}.")) (|right| (($ $) "\\spad{right(f)} right-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{right(f,n)} right-justifies form \\spad{f} within space of width \\spad{n}.")) (|left| (($ $) "\\spad{left(f)} left-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{left(f,n)} left-justifies form \\spad{f} within space of width \\spad{n}.")) (|rspace| (($ (|Integer|) (|Integer|)) "\\spad{rspace(n,m)} creates rectangular white space,{} \\spad{n} wide by \\spad{m} high.")) (|vspace| (($ (|Integer|)) "\\spad{vspace(n)} creates white space of height \\spad{n}.")) (|hspace| (($ (|Integer|)) "\\spad{hspace(n)} creates white space of width \\spad{n}.")) (|superHeight| (((|Integer|) $) "\\spad{superHeight(f)} returns the height of form \\spad{f} above the base line.")) (|subHeight| (((|Integer|) $) "\\spad{subHeight(f)} returns the height of form \\spad{f} below the base line.")) (|height| (((|Integer|)) "\\spad{height()} returns the height of the display area (an integer).") (((|Integer|) $) "\\spad{height(f)} returns the height of form \\spad{f} (an integer).")) (|width| (((|Integer|)) "\\spad{width()} returns the width of the display area (an integer).") (((|Integer|) $) "\\spad{width(f)} returns the width of form \\spad{f} (an integer).")) (|doubleFloatFormat| (((|String|) (|String|)) "change the output format for doublefloats using lisp format strings")) (|empty| (($) "\\spad{empty()} creates an empty form.")) (|outputForm| (($ (|DoubleFloat|)) "\\spad{outputForm(sf)} creates an form for small float \\spad{sf}.") (($ (|String|)) "\\spad{outputForm(s)} creates an form for string \\spad{s}.") (($ (|Symbol|)) "\\spad{outputForm(s)} creates an form for symbol \\spad{s}.") (($ (|Integer|)) "\\spad{outputForm(n)} creates an form for integer \\spad{n}.")) (|messagePrint| (((|Void|) (|String|)) "\\spad{messagePrint(s)} prints \\spad{s} without string quotes. Note: \\spad{messagePrint(s)} is equivalent to \\spad{print message(s)}.")) (|message| (($ (|String|)) "\\spad{message(s)} creates an form with no string quotes from string \\spad{s}.")) (|print| (((|Void|) $) "\\spad{print(u)} prints the form \\spad{u}."))) NIL NIL -(-772 |VariableList|) +(-773 |VariableList|) ((|constructor| (NIL "This domain implements ordered variables")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} returns a member of the variable set or failed"))) NIL NIL -(-773) +(-774) ((|constructor| (NIL "This domain represents set of overloaded operators (in fact operator descriptors).")) (|members| (((|List| (|FunctionDescriptor|)) $) "\\spad{members(x)} returns the list of operator descriptors,{} \\spadignore{e.g.} signature and implementation slots,{} of the overload set \\spad{x}.")) (|name| (((|Identifier|) $) "\\spad{name(x)} returns the name of the overload set \\spad{x}."))) NIL NIL -(-774 R |vl| |wl| |wtlevel|) +(-775 R |vl| |wl| |wtlevel|) ((|constructor| (NIL "This domain represents truncated weighted polynomials over the \"Polynomial\" type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} This changes the weight level to the new value given: NB: previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)"))) -((-3988 |has| |#1| (-146)) (-3987 |has| |#1| (-146)) (-3990 . T)) +((-3989 |has| |#1| (-146)) (-3988 |has| |#1| (-146)) (-3991 . T)) ((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312)))) -(-775 R PS UP) +(-776 R PS UP) ((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|padecf| (((|Union| (|ContinuedFraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{padecf(nd,dd,ns,ds)} computes the approximant as a continued fraction of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")) (|pade| (((|Union| (|Fraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{pade(nd,dd,ns,ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function)."))) NIL NIL -(-776 R |x| |pt|) +(-777 R |x| |pt|) ((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Trager,{}Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|pade| (((|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) "\\spad{pade(nd,dd,s)} computes the quotient of polynomials (if it exists) with numerator degree at most \\spad{nd} and denominator degree at most \\spad{dd} which matches the series \\spad{s} to order \\spad{nd + dd}.") (((|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateTaylorSeries| |#1| |#2| |#3|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) "\\spad{pade(nd,dd,ns,ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function)."))) NIL NIL -(-777 |p|) +(-778 |p|) ((|constructor| (NIL "Stream-based implementation of Zp: \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1)."))) -((-3986 . T) ((-3995 "*") . T) (-3987 . T) (-3988 . T) (-3990 . T)) +((-3987 . T) ((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T)) NIL -(-778 |p|) +(-779 |p|) ((|constructor| (NIL "This is the catefory of stream-based representations of \\indented{2}{the \\spad{p}-adic integers.}")) (|root| (($ (|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{root(f,a)} returns a root of the polynomial \\spad{f}. Argument \\spad{a} must be a root of \\spad{f} \\spad{(mod p)}.")) (|sqrt| (($ $ (|Integer|)) "\\spad{sqrt(b,a)} returns a square root of \\spad{b}. Argument \\spad{a} is a square root of \\spad{b} \\spad{(mod p)}.")) (|approximate| (((|Integer|) $ (|Integer|)) "\\spad{approximate(x,n)} returns an integer \\spad{y} such that \\spad{y = x (mod p^n)} when \\spad{n} is positive,{} and 0 otherwise.")) (|quotientByP| (($ $) "\\spad{quotientByP(x)} returns \\spad{b},{} where \\spad{x = a + b p}.")) (|moduloP| (((|Integer|) $) "\\spad{modulo(x)} returns a,{} where \\spad{x = a + b p}.")) (|modulus| (((|Integer|)) "\\spad{modulus()} returns the value of \\spad{p}.")) (|complete| (($ $) "\\spad{complete(x)} forces the computation of all digits.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,n)} forces the computation of digits up to order \\spad{n}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the exponent of the highest power of \\spad{p} dividing \\spad{x}.")) (|digits| (((|Stream| (|Integer|)) $) "\\spad{digits(x)} returns a stream of \\spad{p}-adic digits of \\spad{x}."))) -((-3986 . T) ((-3995 "*") . T) (-3987 . T) (-3988 . T) (-3990 . T)) +((-3987 . T) ((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T)) NIL -(-779 |p|) +(-780 |p|) ((|constructor| (NIL "Stream-based implementation of Qp: numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i) where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1)."))) -((-3985 . T) (-3991 . T) (-3986 . T) ((-3995 "*") . T) (-3987 . T) (-3988 . T) (-3990 . T)) -((|HasCategory| (-777 |#1|) (QUOTE (-820))) (|HasCategory| (-777 |#1|) (QUOTE (-949 (-1088)))) (|HasCategory| (-777 |#1|) (QUOTE (-118))) (|HasCategory| (-777 |#1|) (QUOTE (-120))) (|HasCategory| (-777 |#1|) (QUOTE (-552 (-472)))) (|HasCategory| (-777 |#1|) (QUOTE (-932))) (|HasCategory| (-777 |#1|) (QUOTE (-739))) (|HasCategory| (-777 |#1|) (QUOTE (-755))) (OR (|HasCategory| (-777 |#1|) (QUOTE (-739))) (|HasCategory| (-777 |#1|) (QUOTE (-755)))) (|HasCategory| (-777 |#1|) (QUOTE (-949 (-483)))) (|HasCategory| (-777 |#1|) (QUOTE (-1064))) (|HasCategory| (-777 |#1|) (QUOTE (-795 (-328)))) (|HasCategory| (-777 |#1|) (QUOTE (-795 (-483)))) (|HasCategory| (-777 |#1|) (QUOTE (-552 (-799 (-328))))) (|HasCategory| (-777 |#1|) (QUOTE (-552 (-799 (-483))))) (|HasCategory| (-777 |#1|) (QUOTE (-579 (-483)))) (|HasCategory| (-777 |#1|) (QUOTE (-189))) (|HasCategory| (-777 |#1|) (QUOTE (-810 (-1088)))) (|HasCategory| (-777 |#1|) (QUOTE (-190))) (|HasCategory| (-777 |#1|) (QUOTE (-808 (-1088)))) (|HasCategory| (-777 |#1|) (|%list| (QUOTE -454) (QUOTE (-1088)) (|%list| (QUOTE -777) (|devaluate| |#1|)))) (|HasCategory| (-777 |#1|) (|%list| (QUOTE -260) (|%list| (QUOTE -777) (|devaluate| |#1|)))) (|HasCategory| (-777 |#1|) (|%list| (QUOTE -241) (|%list| (QUOTE -777) (|devaluate| |#1|)) (|%list| (QUOTE -777) (|devaluate| |#1|)))) (|HasCategory| (-777 |#1|) (QUOTE (-258))) (|HasCategory| (-777 |#1|) (QUOTE (-482))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-777 |#1|) (QUOTE (-820)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-777 |#1|) (QUOTE (-820)))) (|HasCategory| (-777 |#1|) (QUOTE (-118))))) -(-780 |p| PADIC) +((-3986 . T) (-3992 . T) (-3987 . T) ((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T)) +((|HasCategory| (-778 |#1|) (QUOTE (-821))) (|HasCategory| (-778 |#1|) (QUOTE (-950 (-1089)))) (|HasCategory| (-778 |#1|) (QUOTE (-118))) (|HasCategory| (-778 |#1|) (QUOTE (-120))) (|HasCategory| (-778 |#1|) (QUOTE (-553 (-473)))) (|HasCategory| (-778 |#1|) (QUOTE (-933))) (|HasCategory| (-778 |#1|) (QUOTE (-740))) (|HasCategory| (-778 |#1|) (QUOTE (-756))) (OR (|HasCategory| (-778 |#1|) (QUOTE (-740))) (|HasCategory| (-778 |#1|) (QUOTE (-756)))) (|HasCategory| (-778 |#1|) (QUOTE (-950 (-484)))) (|HasCategory| (-778 |#1|) (QUOTE (-1065))) (|HasCategory| (-778 |#1|) (QUOTE (-796 (-329)))) (|HasCategory| (-778 |#1|) (QUOTE (-796 (-484)))) (|HasCategory| (-778 |#1|) (QUOTE (-553 (-800 (-329))))) (|HasCategory| (-778 |#1|) (QUOTE (-553 (-800 (-484))))) (|HasCategory| (-778 |#1|) (QUOTE (-580 (-484)))) (|HasCategory| (-778 |#1|) (QUOTE (-189))) (|HasCategory| (-778 |#1|) (QUOTE (-811 (-1089)))) (|HasCategory| (-778 |#1|) (QUOTE (-190))) (|HasCategory| (-778 |#1|) (QUOTE (-809 (-1089)))) (|HasCategory| (-778 |#1|) (|%list| (QUOTE -455) (QUOTE (-1089)) (|%list| (QUOTE -778) (|devaluate| |#1|)))) (|HasCategory| (-778 |#1|) (|%list| (QUOTE -260) (|%list| (QUOTE -778) (|devaluate| |#1|)))) (|HasCategory| (-778 |#1|) (|%list| (QUOTE -241) (|%list| (QUOTE -778) (|devaluate| |#1|)) (|%list| (QUOTE -778) (|devaluate| |#1|)))) (|HasCategory| (-778 |#1|) (QUOTE (-258))) (|HasCategory| (-778 |#1|) (QUOTE (-483))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-778 |#1|) (QUOTE (-821)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-778 |#1|) (QUOTE (-821)))) (|HasCategory| (-778 |#1|) (QUOTE (-118))))) +(-781 |p| PADIC) ((|constructor| (NIL "This is the category of stream-based representations of Qp.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,x)} removes up to \\spad{n} leading zeroes from the \\spad{p}-adic rational \\spad{x}.") (($ $) "\\spad{removeZeroes(x)} removes leading zeroes from the representation of the \\spad{p}-adic rational \\spad{x}. A \\spad{p}-adic rational is represented by (1) an exponent and (2) a \\spad{p}-adic integer which may have leading zero digits. When the \\spad{p}-adic integer has a leading zero digit,{} a 'leading zero' is removed from the \\spad{p}-adic rational as follows: the number is rewritten by increasing the exponent by 1 and dividing the \\spad{p}-adic integer by \\spad{p}. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}.")) (|continuedFraction| (((|ContinuedFraction| (|Fraction| (|Integer|))) $) "\\spad{continuedFraction(x)} converts the \\spad{p}-adic rational number \\spad{x} to a continued fraction.")) (|approximate| (((|Fraction| (|Integer|)) $ (|Integer|)) "\\spad{approximate(x,n)} returns a rational number \\spad{y} such that \\spad{y = x (mod p^n)}."))) -((-3985 . T) (-3991 . T) (-3986 . T) ((-3995 "*") . T) (-3987 . T) (-3988 . T) (-3990 . T)) -((|HasCategory| |#2| (QUOTE (-820))) (|HasCategory| |#2| (QUOTE (-949 (-1088)))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-552 (-472)))) (|HasCategory| |#2| (QUOTE (-932))) (|HasCategory| |#2| (QUOTE (-739))) (|HasCategory| |#2| (QUOTE (-755))) (OR (|HasCategory| |#2| (QUOTE (-739))) (|HasCategory| |#2| (QUOTE (-755)))) (|HasCategory| |#2| (QUOTE (-949 (-483)))) (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (QUOTE (-795 (-328)))) (|HasCategory| |#2| (QUOTE (-795 (-483)))) (|HasCategory| |#2| (QUOTE (-552 (-799 (-328))))) (|HasCategory| |#2| (QUOTE (-552 (-799 (-483))))) (|HasCategory| |#2| (QUOTE (-579 (-483)))) (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-810 (-1088)))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-808 (-1088)))) (|HasCategory| |#2| (|%list| (QUOTE -454) (QUOTE (-1088)) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -241) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-258))) (|HasCategory| |#2| (QUOTE (-482))) (-12 (|HasCategory| |#2| (QUOTE (-820))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-820))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#2| (QUOTE (-118))))) -(-781 S T$) +((-3986 . T) (-3992 . T) (-3987 . T) ((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T)) +((|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (QUOTE (-950 (-1089)))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-553 (-473)))) (|HasCategory| |#2| (QUOTE (-933))) (|HasCategory| |#2| (QUOTE (-740))) (|HasCategory| |#2| (QUOTE (-756))) (OR (|HasCategory| |#2| (QUOTE (-740))) (|HasCategory| |#2| (QUOTE (-756)))) (|HasCategory| |#2| (QUOTE (-950 (-484)))) (|HasCategory| |#2| (QUOTE (-1065))) (|HasCategory| |#2| (QUOTE (-796 (-329)))) (|HasCategory| |#2| (QUOTE (-796 (-484)))) (|HasCategory| |#2| (QUOTE (-553 (-800 (-329))))) (|HasCategory| |#2| (QUOTE (-553 (-800 (-484))))) (|HasCategory| |#2| (QUOTE (-580 (-484)))) (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-811 (-1089)))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-809 (-1089)))) (|HasCategory| |#2| (|%list| (QUOTE -455) (QUOTE (-1089)) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -241) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-258))) (|HasCategory| |#2| (QUOTE (-483))) (-12 (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#2| (QUOTE (-118))))) +(-782 S T$) ((|constructor| (NIL "\\indented{1}{This domain provides a very simple representation} of the notion of `pair of objects'. It does not try to achieve all possible imaginable things.")) (|second| ((|#2| $) "\\spad{second(p)} extracts the second components of `p'.")) (|first| ((|#1| $) "\\spad{first(p)} extracts the first component of `p'.")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,t)} is same as pair(\\spad{s},{}\\spad{t}),{} with syntactic sugar.")) (|pair| (($ |#1| |#2|) "\\spad{pair(s,t)} returns a pair object composed of `s' and `t'."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#2| (QUOTE (-1012)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-551 (-771)))) (|HasCategory| |#2| (QUOTE (-551 (-771))))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#2| (QUOTE (-1012))))) (-12 (|HasCategory| |#1| (QUOTE (-551 (-771)))) (|HasCategory| |#2| (QUOTE (-551 (-771)))))) -(-782) +((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#2| (QUOTE (-1013)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#2| (QUOTE (-552 (-772))))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#2| (QUOTE (-1013))))) (-12 (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#2| (QUOTE (-552 (-772)))))) +(-783) ((|constructor| (NIL "This domain describes four groups of color shades (palettes).")) (|shade| (((|Integer|) $) "\\spad{shade(p)} returns the shade index of the indicated palette \\spad{p}.")) (|hue| (((|Color|) $) "\\spad{hue(p)} returns the hue field of the indicated palette \\spad{p}.")) (|light| (($ (|Color|)) "\\spad{light(c)} sets the shade of a hue,{} \\spad{c},{} to it's highest value.")) (|pastel| (($ (|Color|)) "\\spad{pastel(c)} sets the shade of a hue,{} \\spad{c},{} above bright,{} but below light.")) (|bright| (($ (|Color|)) "\\spad{bright(c)} sets the shade of a hue,{} \\spad{c},{} above dim,{} but below pastel.")) (|dim| (($ (|Color|)) "\\spad{dim(c)} sets the shade of a hue,{} \\spad{c},{} above dark,{} but below bright.")) (|dark| (($ (|Color|)) "\\spad{dark(c)} sets the shade of the indicated hue of \\spad{c} to it's lowest value."))) NIL NIL -(-783) +(-784) ((|constructor| (NIL "This package provides a coerce from polynomials over algebraic numbers to \\spadtype{Expression AlgebraicNumber}.")) (|coerce| (((|Expression| (|Integer|)) (|Fraction| (|Polynomial| (|AlgebraicNumber|)))) "\\spad{coerce(rf)} converts \\spad{rf},{} a fraction of polynomial \\spad{p} with algebraic number coefficients to \\spadtype{Expression Integer}.") (((|Expression| (|Integer|)) (|Polynomial| (|AlgebraicNumber|))) "\\spad{coerce(p)} converts the polynomial \\spad{p} with algebraic number coefficients to \\spadtype{Expression Integer}."))) NIL NIL -(-784) +(-785) ((|constructor| (NIL "Representation of parameters to functions or constructors. For the most part,{} they are Identifiers. However,{} in very cases,{} they are \"flags\",{} \\spadignore{e.g.} string literals.")) (|autoCoerce| (((|String|) $) "\\spad{autoCoerce(x)@String} implicitly coerce the object \\spad{x} to \\spadtype{String}. This function is left at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(x)@Identifier} implicitly coerce the object \\spad{x} to \\spadtype{Identifier}. This function is left at the discretion of the compiler.")) (|case| (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{x case String} if the parameter AST object \\spad{x} designates a flag.") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{x case Identifier} if the parameter AST object \\spad{x} designates an \\spadtype{Identifier}."))) NIL NIL -(-785 CF1 CF2) +(-786 CF1 CF2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricPlaneCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricPlaneCurve| |#1|)) "\\spad{map(f,x)} \\undocumented"))) NIL NIL -(-786 |ComponentFunction|) +(-787 |ComponentFunction|) ((|constructor| (NIL "ParametricPlaneCurve is used for plotting parametric plane curves in the affine plane.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,i)} returns a coordinate function for \\spad{c} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component \\spad{i} of the plane curve is.")) (|curve| (($ |#1| |#1|) "\\spad{curve(c1,c2)} creates a plane curve from 2 component functions \\spad{c1} and \\spad{c2}."))) NIL NIL -(-787 CF1 CF2) +(-788 CF1 CF2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricSpaceCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricSpaceCurve| |#1|)) "\\spad{map(f,x)} \\undocumented"))) NIL NIL -(-788 |ComponentFunction|) +(-789 |ComponentFunction|) ((|constructor| (NIL "ParametricSpaceCurve is used for plotting parametric space curves in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,i)} returns a coordinate function of \\spad{c} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the space curve is.")) (|curve| (($ |#1| |#1| |#1|) "\\spad{curve(c1,c2,c3)} creates a space curve from 3 component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}."))) NIL NIL -(-789) +(-790) ((|constructor| (NIL "\\indented{1}{This package provides a simple Spad script parser.} Related Constructors: Syntax. See Also: Syntax.")) (|getSyntaxFormsFromFile| (((|List| (|Syntax|)) (|String|)) "\\spad{getSyntaxFormsFromFile(f)} parses the source file \\spad{f} (supposedly containing Spad scripts) and returns a List Syntax. The filename \\spad{f} is supposed to have the proper extension. Note that source location information is not part of result."))) NIL NIL -(-790 CF1 CF2) +(-791 CF1 CF2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricSurface| |#2|) (|Mapping| |#2| |#1|) (|ParametricSurface| |#1|)) "\\spad{map(f,x)} \\undocumented"))) NIL NIL -(-791 |ComponentFunction|) +(-792 |ComponentFunction|) ((|constructor| (NIL "ParametricSurface is used for plotting parametric surfaces in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(s,i)} returns a coordinate function of \\spad{s} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the surface is.")) (|surface| (($ |#1| |#1| |#1|) "\\spad{surface(c1,c2,c3)} creates a surface from 3 parametric component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}."))) NIL NIL -(-792) +(-793) ((|constructor| (NIL "PartitionsAndPermutations contains functions for generating streams of integer partitions,{} and streams of sequences of integers composed from a multi-set.")) (|permutations| (((|Stream| (|List| (|Integer|))) (|Integer|)) "\\spad{permutations(n)} is the stream of permutations \\indented{1}{formed from \\spad{1,2,3,...,n}.}")) (|sequences| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|))) "\\spad{sequences([l0,l1,l2,..,ln])} is the set of \\indented{1}{all sequences formed from} \\spad{l0} 0's,{}\\spad{l1} 1's,{}\\spad{l2} 2's,{}...,{}\\spad{ln} \\spad{n}'s.") (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{sequences(l1,l2)} is the stream of all sequences that \\indented{1}{can be composed from the multiset defined from} \\indented{1}{two lists of integers \\spad{l1} and \\spad{l2}.} \\indented{1}{For example,{}the pair \\spad{([1,2,4],[2,3,5])} represents} \\indented{1}{multi-set with 1 \\spad{2},{} 2 \\spad{3}'s,{} and 4 \\spad{5}'s.}")) (|shufflein| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|Stream| (|List| (|Integer|)))) "\\spad{shufflein(l,st)} maps shuffle(\\spad{l},{}\\spad{u}) on to all \\indented{1}{members \\spad{u} of \\spad{st},{} concatenating the results.}")) (|shuffle| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{shuffle(l1,l2)} forms the stream of all shuffles of \\spad{l1} \\indented{1}{and \\spad{l2},{} \\spadignore{i.e.} all sequences that can be formed from} \\indented{1}{merging \\spad{l1} and \\spad{l2}.}")) (|conjugates| (((|Stream| (|List| (|PositiveInteger|))) (|Stream| (|List| (|PositiveInteger|)))) "\\spad{conjugates(lp)} is the stream of conjugates of a stream \\indented{1}{of partitions \\spad{lp}.}")) (|conjugate| (((|List| (|PositiveInteger|)) (|List| (|PositiveInteger|))) "\\spad{conjugate(pt)} is the conjugate of the partition \\spad{pt}."))) NIL NIL -(-793 R) +(-794 R) ((|constructor| (NIL "An object \\spad{S} is Patternable over an object \\spad{R} if \\spad{S} can lift the conversions from \\spad{R} into \\spadtype{Pattern(Integer)} and \\spadtype{Pattern(Float)} to itself."))) NIL NIL -(-794 R S L) +(-795 R S L) ((|constructor| (NIL "A PatternMatchListResult is an object internally returned by the pattern matcher when matching on lists. It is either a failed match,{} or a pair of PatternMatchResult,{} one for atoms (elements of the list),{} and one for lists.")) (|lists| (((|PatternMatchResult| |#1| |#3|) $) "\\spad{lists(r)} returns the list of matches that match lists.")) (|atoms| (((|PatternMatchResult| |#1| |#2|) $) "\\spad{atoms(r)} returns the list of matches that match atoms (elements of the lists).")) (|makeResult| (($ (|PatternMatchResult| |#1| |#2|) (|PatternMatchResult| |#1| |#3|)) "\\spad{makeResult(r1,r2)} makes the combined result [\\spad{r1},{}\\spad{r2}].")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match."))) NIL NIL -(-795 S) +(-796 S) ((|constructor| (NIL "A set \\spad{R} is PatternMatchable over \\spad{S} if elements of \\spad{R} can be matched to patterns over \\spad{S}.")) (|patternMatch| (((|PatternMatchResult| |#1| $) $ (|Pattern| |#1|) (|PatternMatchResult| |#1| $)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}. res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion). Initially,{} res is just the result of \\spadfun{new} which is an empty list of matches."))) NIL NIL -(-796 |Base| |Subject| |Pat|) +(-797 |Base| |Subject| |Pat|) ((|constructor| (NIL "This package provides the top-level pattern macthing functions.")) (|Is| (((|PatternMatchResult| |#1| |#2|) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a match of the form \\spad{[v1 = e1,...,vn = en]}; returns an empty match if \\spad{expr} is exactly equal to pat. returns a \\spadfun{failed} match if pat does not match \\spad{expr}.") (((|List| (|Equation| (|Polynomial| |#2|))) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,...,vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|List| (|Equation| |#2|)) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,...,vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|PatternMatchListResult| |#1| |#2| (|List| |#2|)) (|List| |#2|) |#3|) "\\spad{Is([e1,...,en], pat)} matches the pattern pat on the list of expressions \\spad{[e1,...,en]} and returns the result.")) (|is?| (((|Boolean|) (|List| |#2|) |#3|) "\\spad{is?([e1,...,en], pat)} tests if the list of expressions \\spad{[e1,...,en]} matches the pattern pat.") (((|Boolean|) |#2| |#3|) "\\spad{is?(expr, pat)} tests if the expression \\spad{expr} matches the pattern pat."))) NIL -((-12 (-2559 (|HasCategory| |#2| (QUOTE (-949 (-1088))))) (-2559 (|HasCategory| |#2| (QUOTE (-960))))) (-12 (|HasCategory| |#2| (QUOTE (-960))) (-2559 (|HasCategory| |#2| (QUOTE (-949 (-1088)))))) (|HasCategory| |#2| (QUOTE (-949 (-1088))))) -(-797 R S) +((-12 (-2560 (|HasCategory| |#2| (QUOTE (-950 (-1089))))) (-2560 (|HasCategory| |#2| (QUOTE (-961))))) (-12 (|HasCategory| |#2| (QUOTE (-961))) (-2560 (|HasCategory| |#2| (QUOTE (-950 (-1089)))))) (|HasCategory| |#2| (QUOTE (-950 (-1089))))) +(-798 R S) ((|constructor| (NIL "A PatternMatchResult is an object internally returned by the pattern matcher; It is either a failed match,{} or a list of matches of the form (var,{} expr) meaning that the variable var matches the expression expr.")) (|satisfy?| (((|Union| (|Boolean|) "failed") $ (|Pattern| |#1|)) "\\spad{satisfy?(r, p)} returns \\spad{true} if the matches satisfy the top-level predicate of \\spad{p},{} \\spad{false} if they don't,{} and \"failed\" if not enough variables of \\spad{p} are matched in \\spad{r} to decide.")) (|construct| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|)))) "\\spad{construct([v1,e1],...,[vn,en])} returns the match result containing the matches (\\spad{v1},{}\\spad{e1}),{}...,{}(vn,{}en).")) (|destruct| (((|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|))) $) "\\spad{destruct(r)} returns the list of matches (var,{} expr) in \\spad{r}. Error: if \\spad{r} is a failed match.")) (|addMatchRestricted| (($ (|Pattern| |#1|) |#2| $ |#2|) "\\spad{addMatchRestricted(var, expr, r, val)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} that \\spad{var} is not matched to another expression already,{} and that either \\spad{var} is an optional pattern variable or that \\spad{expr} is not equal to val (usually an identity).")) (|insertMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{insertMatch(var, expr, r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} without checking predicates or previous matches for \\spad{var}.")) (|addMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{addMatch(var, expr, r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} and that \\spad{var} is not matched to another expression already.")) (|getMatch| (((|Union| |#2| "failed") (|Pattern| |#1|) $) "\\spad{getMatch(var, r)} returns the expression that \\spad{var} matches in the result \\spad{r},{} and \"failed\" if \\spad{var} is not matched in \\spad{r}.")) (|union| (($ $ $) "\\spad{union(a, b)} makes the set-union of two match results.")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match."))) NIL NIL -(-798 R A B) +(-799 R A B) ((|constructor| (NIL "Lifts maps to pattern matching results.")) (|map| (((|PatternMatchResult| |#1| |#3|) (|Mapping| |#3| |#2|) (|PatternMatchResult| |#1| |#2|)) "\\spad{map(f, [(v1,a1),...,(vn,an)])} returns the matching result [(\\spad{v1},{}\\spad{f}(\\spad{a1})),{}...,{}(vn,{}\\spad{f}(an))]."))) NIL NIL -(-799 R) +(-800 R) ((|constructor| (NIL "Patterns for use by the pattern matcher.")) (|optpair| (((|Union| (|List| $) "failed") (|List| $)) "\\spad{optpair(l)} returns \\spad{l} has the form \\spad{[a, b]} and a is optional,{} and \"failed\" otherwise.")) (|variables| (((|List| $) $) "\\spad{variables(p)} returns the list of matching variables appearing in \\spad{p}.")) (|getBadValues| (((|List| (|Any|)) $) "\\spad{getBadValues(p)} returns the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (($ $ (|Any|)) "\\spad{addBadValue(p, v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|resetBadValues| (($ $) "\\spad{resetBadValues(p)} initializes the list of \"bad values\" for \\spad{p} to \\spad{[]}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|hasTopPredicate?| (((|Boolean|) $) "\\spad{hasTopPredicate?(p)} tests if \\spad{p} has a top-level predicate.")) (|topPredicate| (((|Record| (|:| |var| (|List| (|Symbol|))) (|:| |pred| (|Any|))) $) "\\spad{topPredicate(x)} returns \\spad{[[a1,...,an], f]} where the top-level predicate of \\spad{x} is \\spad{f(a1,...,an)}. Note: \\spad{n} is 0 if \\spad{x} has no top-level predicate.")) (|setTopPredicate| (($ $ (|List| (|Symbol|)) (|Any|)) "\\spad{setTopPredicate(x, [a1,...,an], f)} returns \\spad{x} with the top-level predicate set to \\spad{f(a1,...,an)}.")) (|patternVariable| (($ (|Symbol|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{patternVariable(x, c?, o?, m?)} creates a pattern variable \\spad{x},{} which is constant if \\spad{c? = true},{} optional if \\spad{o? = true},{} and multiple if \\spad{m? = true}.")) (|withPredicates| (($ $ (|List| (|Any|))) "\\spad{withPredicates(p, [p1,...,pn])} makes a copy of \\spad{p} and attaches the predicate \\spad{p1} and ... and pn to the copy,{} which is returned.")) (|setPredicates| (($ $ (|List| (|Any|))) "\\spad{setPredicates(p, [p1,...,pn])} attaches the predicate \\spad{p1} and ... and pn to \\spad{p}.")) (|predicates| (((|List| (|Any|)) $) "\\spad{predicates(p)} returns \\spad{[p1,...,pn]} such that the predicate attached to \\spad{p} is \\spad{p1} and ... and pn.")) (|hasPredicate?| (((|Boolean|) $) "\\spad{hasPredicate?(p)} tests if \\spad{p} has predicates attached to it.")) (|optional?| (((|Boolean|) $) "\\spad{optional?(p)} tests if \\spad{p} is a single matching variable which can match an identity.")) (|multiple?| (((|Boolean|) $) "\\spad{multiple?(p)} tests if \\spad{p} is a single matching variable allowing list matching or multiple term matching in a sum or product.")) (|generic?| (((|Boolean|) $) "\\spad{generic?(p)} tests if \\spad{p} is a single matching variable.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests if \\spad{p} contains no matching variables.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(p)} tests if \\spad{p} is a symbol.")) (|quoted?| (((|Boolean|) $) "\\spad{quoted?(p)} tests if \\spad{p} is of the form 's for a symbol \\spad{s}.")) (|inR?| (((|Boolean|) $) "\\spad{inR?(p)} tests if \\spad{p} is an atom (\\spadignore{i.e.} an element of \\spad{R}).")) (|copy| (($ $) "\\spad{copy(p)} returns a recursive copy of \\spad{p}.")) (|convert| (($ (|List| $)) "\\spad{convert([a1,...,an])} returns the pattern \\spad{[a1,...,an]}.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(p)} returns the nesting level of \\spad{p}.")) (/ (($ $ $) "\\spad{a / b} returns the pattern \\spad{a / b}.")) (** (($ $ $) "\\spad{a ** b} returns the pattern \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** n} returns the pattern \\spad{a ** n}.")) (* (($ $ $) "\\spad{a * b} returns the pattern \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the pattern \\spad{a + b}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op, [a1,...,an])} returns \\spad{op(a1,...,an)}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| $)) "failed") $) "\\spad{isPower(p)} returns \\spad{[a, b]} if \\spad{p = a ** b},{} and \"failed\" otherwise.")) (|isList| (((|Union| (|List| $) "failed") $) "\\spad{isList(p)} returns \\spad{[a1,...,an]} if \\spad{p = [a1,...,an]},{} \"failed\" otherwise.")) (|isQuotient| (((|Union| (|Record| (|:| |num| $) (|:| |den| $)) "failed") $) "\\spad{isQuotient(p)} returns \\spad{[a, b]} if \\spad{p = a / b},{} and \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[q, n]} if \\spad{n > 0} and \\spad{p = q ** n},{} and \"failed\" otherwise.")) (|isOp| (((|Union| (|Record| (|:| |op| (|BasicOperator|)) (|:| |arg| (|List| $))) "failed") $) "\\spad{isOp(p)} returns \\spad{[op, [a1,...,an]]} if \\spad{p = op(a1,...,an)},{} and \"failed\" otherwise.") (((|Union| (|List| $) "failed") $ (|BasicOperator|)) "\\spad{isOp(p, op)} returns \\spad{[a1,...,an]} if \\spad{p = op(a1,...,an)},{} and \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{n > 1} and \\spad{p = a1 * ... * an},{} and \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[a1,...,an]} if \\spad{n > 1} \\indented{1}{and \\spad{p = a1 + ... + an},{}} and \"failed\" otherwise.")) (|One| (($) "1")) (|Zero| (($) "0"))) NIL NIL -(-800 R -2668) +(-801 R -2669) ((|constructor| (NIL "Tools for patterns.")) (|badValues| (((|List| |#2|) (|Pattern| |#1|)) "\\spad{badValues(p)} returns the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (((|Pattern| |#1|) (|Pattern| |#1|) |#2|) "\\spad{addBadValue(p, v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|satisfy?| (((|Boolean|) (|List| |#2|) (|Pattern| |#1|)) "\\spad{satisfy?([v1,...,vn], p)} returns \\spad{f(v1,...,vn)} where \\spad{f} is the top-level predicate attached to \\spad{p}.") (((|Boolean|) |#2| (|Pattern| |#1|)) "\\spad{satisfy?(v, p)} returns \\spad{f}(\\spad{v}) where \\spad{f} is the predicate attached to \\spad{p}.")) (|predicate| (((|Mapping| (|Boolean|) |#2|) (|Pattern| |#1|)) "\\spad{predicate(p)} returns the predicate attached to \\spad{p},{} the constant function \\spad{true} if \\spad{p} has no predicates attached to it.")) (|suchThat| (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#2|))) "\\spad{suchThat(p, [a1,...,an], f)} returns a copy of \\spad{p} with the top-level predicate set to \\spad{f(a1,...,an)}.") (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Mapping| (|Boolean|) |#2|))) "\\spad{suchThat(p, [f1,...,fn])} makes a copy of \\spad{p} and adds the predicate \\spad{f1} and ... and fn to the copy,{} which is returned.") (((|Pattern| |#1|) (|Pattern| |#1|) (|Mapping| (|Boolean|) |#2|)) "\\spad{suchThat(p, f)} makes a copy of \\spad{p} and adds the predicate \\spad{f} to the copy,{} which is returned."))) NIL NIL -(-801 R S) +(-802 R S) ((|constructor| (NIL "Lifts maps to patterns.")) (|map| (((|Pattern| |#2|) (|Mapping| |#2| |#1|) (|Pattern| |#1|)) "\\spad{map(f, p)} applies \\spad{f} to all the leaves of \\spad{p} and returns the result as a pattern over \\spad{S}."))) NIL NIL -(-802 |VarSet|) +(-803 |VarSet|) ((|constructor| (NIL "This domain provides the internal representation of polynomials in non-commutative variables written over the Poincare-Birkhoff-Witt basis. See the \\spadtype{XPBWPolynomial} domain constructor. See Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.fr).")) (|varList| (((|List| |#1|) $) "\\spad{varList([l1]*[l2]*...[ln])} returns the list of variables in the word \\spad{l1*l2*...*ln}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?([l1]*[l2]*...[ln])} returns \\spad{true} iff \\spad{n} equals \\spad{1}.")) (|rest| (($ $) "\\spad{rest([l1]*[l2]*...[ln])} returns the list \\spad{l2, .... ln}.")) (|ListOfTerms| (((|List| (|LyndonWord| |#1|)) $) "\\spad{ListOfTerms([l1]*[l2]*...[ln])} returns the list of words \\spad{l1, l2, .... ln}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length([l1]*[l2]*...[ln])} returns the length of the word \\spad{l1*l2*...*ln}.")) (|first| (((|LyndonWord| |#1|) $) "\\spad{first([l1]*[l2]*...[ln])} returns the Lyndon word \\spad{l1}.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} return \\spad{v}") (((|OrderedFreeMonoid| |#1|) $) "\\spad{coerce([l1]*[l2]*...[ln])} returns the word \\spad{l1*l2*...*ln},{} where \\spad{[l_i]} is the backeted form of the Lyndon word \\spad{l_i}.")) (|One| (($) "\\spad{1} returns the empty list."))) NIL NIL -(-803 UP R) +(-804 UP R) ((|constructor| (NIL "This package \\undocumented")) (|compose| ((|#1| |#1| |#1|) "\\spad{compose(p,q)} \\undocumented"))) NIL NIL -(-804 A T$ S) +(-805 A T$ S) ((|constructor| (NIL "\\indented{2}{This category captures the interface of domains with a distinguished} \\indented{2}{operation named \\spad{differentiate} for partial differentiation with} \\indented{2}{respect to some domain of variables.} See Also: \\indented{2}{DifferentialDomain,{} PartialDifferentialSpace}")) (D ((|#2| $ |#3|) "\\spad{D(x,v)} is a shorthand for \\spad{differentiate(x,v)}")) (|differentiate| ((|#2| $ |#3|) "\\spad{differentiate(x,v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}."))) NIL NIL -(-805 T$ S) +(-806 T$ S) ((|constructor| (NIL "\\indented{2}{This category captures the interface of domains with a distinguished} \\indented{2}{operation named \\spad{differentiate} for partial differentiation with} \\indented{2}{respect to some domain of variables.} See Also: \\indented{2}{DifferentialDomain,{} PartialDifferentialSpace}")) (D ((|#1| $ |#2|) "\\spad{D(x,v)} is a shorthand for \\spad{differentiate(x,v)}")) (|differentiate| ((|#1| $ |#2|) "\\spad{differentiate(x,v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}."))) NIL NIL -(-806 UP -3091) +(-807 UP -3092) ((|constructor| (NIL "This package \\undocumented")) (|rightFactorCandidate| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{rightFactorCandidate(p,n)} \\undocumented")) (|leftFactor| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftFactor(p,q)} \\undocumented")) (|decompose| (((|Union| (|Record| (|:| |left| |#1|) (|:| |right| |#1|)) "failed") |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{decompose(up,m,n)} \\undocumented") (((|List| |#1|) |#1|) "\\spad{decompose(up)} \\undocumented"))) NIL NIL -(-807 R S) +(-808 R S) ((|constructor| (NIL "A partial differential \\spad{R}-module with differentiations indexed by a parameter type \\spad{S}. \\blankline"))) -((-3988 . T) (-3987 . T)) +((-3989 . T) (-3988 . T)) NIL -(-808 S) +(-809 S) ((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline"))) -((-3990 . T)) +((-3991 . T)) NIL -(-809 A S) +(-810 A S) ((|constructor| (NIL "\\indented{2}{This category captures the interface of domains stable by partial} \\indented{2}{differentiation with respect to variables from some domain.} See Also: \\indented{2}{PartialDifferentialDomain}")) (D (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{D(x,[s1,...,sn],[n1,...,nn])} is a shorthand for \\spad{differentiate(x,[s1,...,sn],[n1,...,nn])}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{D(x,s,n)} is a shorthand for \\spad{differentiate(x,s,n)}.") (($ $ (|List| |#2|)) "\\spad{D(x,[s1,...sn])} is a shorthand for \\spad{differentiate(x,[s1,...sn])}.")) (|differentiate| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x,[s1,...,sn],[n1,...,nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{differentiate(x,s,n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}\\spad{-}th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#2|)) "\\spad{differentiate(x,[s1,...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x, s1)..., sn)}."))) NIL NIL -(-810 S) +(-811 S) ((|constructor| (NIL "\\indented{2}{This category captures the interface of domains stable by partial} \\indented{2}{differentiation with respect to variables from some domain.} See Also: \\indented{2}{PartialDifferentialDomain}")) (D (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{D(x,[s1,...,sn],[n1,...,nn])} is a shorthand for \\spad{differentiate(x,[s1,...,sn],[n1,...,nn])}.") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{D(x,s,n)} is a shorthand for \\spad{differentiate(x,s,n)}.") (($ $ (|List| |#1|)) "\\spad{D(x,[s1,...sn])} is a shorthand for \\spad{differentiate(x,[s1,...sn])}.")) (|differentiate| (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x,[s1,...,sn],[n1,...,nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{differentiate(x,s,n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}\\spad{-}th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{differentiate(x,[s1,...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x, s1)..., sn)}."))) NIL NIL -(-811 S) +(-812 S) ((|constructor| (NIL "\\indented{1}{A PendantTree(\\spad{S})is either a leaf? and is an \\spad{S} or has} a left and a right both PendantTree(\\spad{S})'s")) (|ptree| (($ $ $) "\\spad{ptree(x,y)} \\undocumented") (($ |#1|) "\\spad{ptree(s)} is a leaf? pendant tree"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1012))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1012)))) (|HasCategory| |#1| (QUOTE (-551 (-771)))) (|HasCategory| |#1| (QUOTE (-72)))) -(-812 S) +((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1013))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-72)))) +(-813 S) ((|constructor| (NIL "Permutation(\\spad{S}) implements the group of all bijections \\indented{2}{on a set \\spad{S},{} which move only a finite number of points.} \\indented{2}{A permutation is considered as a map from \\spad{S} into \\spad{S}. In particular} \\indented{2}{multiplication is defined as composition of maps:} \\indented{2}{{\\em pi1 * pi2 = pi1 o pi2}.} \\indented{2}{The internal representation of permuatations are two lists} \\indented{2}{of equal length representing preimages and images.}")) (|coerceImages| (($ (|List| |#1|)) "\\spad{coerceImages(ls)} coerces the list {\\em ls} to a permutation whose image is given by {\\em ls} and the preimage is fixed to be {\\em [1,...,n]}. Note: {coerceImages(\\spad{ls})=coercePreimagesImages([1,{}...,{}\\spad{n}],{}\\spad{ls})}. We assume that both preimage and image do not contain repetitions.")) (|fixedPoints| (((|Set| |#1|) $) "\\spad{fixedPoints(p)} returns the points fixed by the permutation \\spad{p}.")) (|sort| (((|List| $) (|List| $)) "\\spad{sort(lp)} sorts a list of permutations {\\em lp} according to cycle structure first according to length of cycles,{} second,{} if \\spad{S} has \\spadtype{Finite} or \\spad{S} has \\spadtype{OrderedSet} according to lexicographical order of entries in cycles of equal length.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(p)} returns \\spad{true} if and only if \\spad{p} is an odd permutation \\spadignore{i.e.} {\\em sign(p)} is {\\em -1}.")) (|even?| (((|Boolean|) $) "\\spad{even?(p)} returns \\spad{true} if and only if \\spad{p} is an even permutation,{} \\spadignore{i.e.} {\\em sign(p)} is 1.")) (|sign| (((|Integer|) $) "\\spad{sign(p)} returns the signum of the permutation \\spad{p},{} \\spad{+1} or \\spad{-1}.")) (|numberOfCycles| (((|NonNegativeInteger|) $) "\\spad{numberOfCycles(p)} returns the number of non-trivial cycles of the permutation \\spad{p}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of a permutation \\spad{p} as a group element.")) (|cyclePartition| (((|Partition|) $) "\\spad{cyclePartition(p)} returns the cycle structure of a permutation \\spad{p} including cycles of length 1 only if \\spad{S} is finite.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} retuns the number of points moved by the permutation \\spad{p}.")) (|coerceListOfPairs| (($ (|List| (|List| |#1|))) "\\spad{coerceListOfPairs(lls)} coerces a list of pairs {\\em lls} to a permutation. Error: if not consistent,{} \\spadignore{i.e.} the set of the first elements coincides with the set of second elements. coerce(\\spad{p}) generates output of the permutation \\spad{p} with domain OutputForm.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.") (($ (|List| (|List| |#1|))) "\\spad{coerce(lls)} coerces a list of cycles {\\em lls} to a permutation,{} each cycle being a list with no repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|coercePreimagesImages| (($ (|List| (|List| |#1|))) "\\spad{coercePreimagesImages(lls)} coerces the representation {\\em lls} of a permutation as a list of preimages and images to a permutation. We assume that both preimage and image do not contain repetitions.")) (|listRepresentation| (((|Record| (|:| |preimage| (|List| |#1|)) (|:| |image| (|List| |#1|))) $) "\\spad{listRepresentation(p)} produces a representation {\\em rep} of the permutation \\spad{p} as a list of preimages and images,{} \\spad{i}.\\spad{e} \\spad{p} maps {\\em (rep.preimage).k} to {\\em (rep.image).k} for all indices \\spad{k}. Elements of \\spad{S} not in {\\em (rep.preimage).k} are fixed points,{} and these are the only fixed points of the permutation."))) -((-3990 . T)) -((OR (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-755)))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-755)))) -(-813 |n| R) +((-3991 . T)) +((OR (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-756)))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-756)))) +(-814 |n| R) ((|constructor| (NIL "Permanent implements the functions {\\em permanent},{} the permanent for square matrices.")) (|permanent| ((|#2| (|SquareMatrix| |#1| |#2|)) "\\spad{permanent(x)} computes the permanent of a square matrix \\spad{x}. The {\\em permanent} is equivalent to the \\spadfun{determinant} except that coefficients have no change of sign. This function is much more difficult to compute than the {\\em determinant}. The formula used is by \\spad{H}.\\spad{J}. Ryser,{} improved by [Nijenhuis and Wilf,{} Ch. 19]. Note: permanent(\\spad{x}) choose one of three algorithms,{} depending on the underlying ring \\spad{R} and on \\spad{n},{} the number of rows (and columns) of x:\\begin{items} \\item 1. if 2 has an inverse in \\spad{R} we can use the algorithm of \\indented{3}{[Nijenhuis and Wilf,{} ch.19,{}\\spad{p}.158]; if 2 has no inverse,{}} \\indented{3}{some modifications are necessary:} \\item 2. if {\\em n > 6} and \\spad{R} is an integral domain with characteristic \\indented{3}{different from 2 (the algorithm works if and only 2 is not a} \\indented{3}{zero-divisor of \\spad{R} and {\\em characteristic()\\$R ~= 2},{}} \\indented{3}{but how to check that for any given \\spad{R} ?),{}} \\indented{3}{the local function {\\em permanent2} is called;} \\item 3. else,{} the local function {\\em permanent3} is called \\indented{3}{(works for all commutative rings \\spad{R}).} \\end{items}"))) NIL NIL -(-814 S) +(-815 S) ((|constructor| (NIL "PermutationCategory provides a categorial environment \\indented{1}{for subgroups of bijections of a set (\\spadignore{i.e.} permutations)}")) (< (((|Boolean|) $ $) "\\spad{p < q} is an order relation on permutations. Note: this order is only total if and only if \\spad{S} is totally ordered or \\spad{S} is finite.")) (|orbit| (((|Set| |#1|) $ |#1|) "\\spad{orbit(p, el)} returns the orbit of {\\em el} under the permutation \\spad{p},{} \\spadignore{i.e.} the set which is given by applications of the powers of \\spad{p} to {\\em el}.")) (|support| (((|Set| |#1|) $) "\\spad{support p} returns the set of points not fixed by the permutation \\spad{p}.")) (|cycles| (($ (|List| (|List| |#1|))) "\\spad{cycles(lls)} coerces a list list of cycles {\\em lls} to a permutation,{} each cycle being a list with not repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|cycle| (($ (|List| |#1|)) "\\spad{cycle(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur."))) -((-3990 . T)) +((-3991 . T)) NIL -(-815 S) +(-816 S) ((|constructor| (NIL "PermutationGroup implements permutation groups acting on a set \\spad{S},{} \\spadignore{i.e.} all subgroups of the symmetric group of \\spad{S},{} represented as a list of permutations (generators). Note that therefore the objects are not members of the \\Language category \\spadtype{Group}. Using the idea of base and strong generators by Sims,{} basic routines and algorithms are implemented so that the word problem for permutation groups can be solved.")) (|initializeGroupForWordProblem| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{initializeGroupForWordProblem(gp,m,n)} initializes the group {\\em gp} for the word problem. Notes: (1) with a small integer you get shorter words,{} but the routine takes longer than the standard routine for longer words. (2) be careful: invoking this routine will destroy the possibly stored information about your group (but will recompute it again). (3) users need not call this function normally for the soultion of the word problem.") (((|Void|) $) "\\spad{initializeGroupForWordProblem(gp)} initializes the group {\\em gp} for the word problem. Notes: it calls the other function of this name with parameters 0 and 1: {\\em initializeGroupForWordProblem(gp,0,1)}. Notes: (1) be careful: invoking this routine will destroy the possibly information about your group (but will recompute it again) (2) users need not call this function normally for the soultion of the word problem.")) (<= (((|Boolean|) $ $) "\\spad{gp1 <= gp2} returns \\spad{true} if and only if {\\em gp1} is a subgroup of {\\em gp2}. Note: because of a bug in the parser you have to call this function explicitly by {\\em gp1 <=\\$(PERMGRP S) gp2}.")) (< (((|Boolean|) $ $) "\\spad{gp1 < gp2} returns \\spad{true} if and only if {\\em gp1} is a proper subgroup of {\\em gp2}.")) (|support| (((|Set| |#1|) $) "\\spad{support(gp)} returns the points moved by the group {\\em gp}.")) (|wordInGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInGenerators(p,gp)} returns the word for the permutation \\spad{p} in the original generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em generators}.")) (|wordInStrongGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInStrongGenerators(p,gp)} returns the word for the permutation \\spad{p} in the strong generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em strongGenerators}.")) (|member?| (((|Boolean|) (|Permutation| |#1|) $) "\\spad{member?(pp,gp)} answers the question,{} whether the permutation {\\em pp} is in the group {\\em gp} or not.")) (|orbits| (((|Set| (|Set| |#1|)) $) "\\spad{orbits(gp)} returns the orbits of the group {\\em gp},{} \\spadignore{i.e.} it partitions the (finite) of all moved points.")) (|orbit| (((|Set| (|List| |#1|)) $ (|List| |#1|)) "\\spad{orbit(gp,ls)} returns the orbit of the ordered list {\\em ls} under the group {\\em gp}. Note: return type is \\spad{L} \\spad{L} \\spad{S} temporarily because FSET \\spad{L} \\spad{S} has an error.") (((|Set| (|Set| |#1|)) $ (|Set| |#1|)) "\\spad{orbit(gp,els)} returns the orbit of the unordered set {\\em els} under the group {\\em gp}.") (((|Set| |#1|) $ |#1|) "\\spad{orbit(gp,el)} returns the orbit of the element {\\em el} under the group {\\em gp},{} \\spadignore{i.e.} the set of all points gained by applying each group element to {\\em el}.")) (|permutationGroup| (($ (|List| (|Permutation| |#1|))) "\\spad{permutationGroup(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.")) (|wordsForStrongGenerators| (((|List| (|List| (|NonNegativeInteger|))) $) "\\spad{wordsForStrongGenerators(gp)} returns the words for the strong generators of the group {\\em gp} in the original generators of {\\em gp},{} represented by their indices in the list,{} given by {\\em generators}.")) (|strongGenerators| (((|List| (|Permutation| |#1|)) $) "\\spad{strongGenerators(gp)} returns strong generators for the group {\\em gp}.")) (|base| (((|List| |#1|) $) "\\spad{base(gp)} returns a base for the group {\\em gp}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(gp)} returns the number of points moved by all permutations of the group {\\em gp}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(gp)} returns the order of the group {\\em gp}.")) (|random| (((|Permutation| |#1|) $) "\\spad{random(gp)} returns a random product of maximal 20 generators of the group {\\em gp}. Note: {\\em random(gp)=random(gp,20)}.") (((|Permutation| |#1|) $ (|Integer|)) "\\spad{random(gp,i)} returns a random product of maximal \\spad{i} generators of the group {\\em gp}.")) (|elt| (((|Permutation| |#1|) $ (|NonNegativeInteger|)) "\\spad{elt(gp,i)} returns the \\spad{i}-th generator of the group {\\em gp}.")) (|generators| (((|List| (|Permutation| |#1|)) $) "\\spad{generators(gp)} returns the generators of the group {\\em gp}.")) (|coerce| (($ (|List| (|Permutation| |#1|))) "\\spad{coerce(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.") (((|List| (|Permutation| |#1|)) $) "\\spad{coerce(gp)} returns the generators of the group {\\em gp}."))) NIL NIL -(-816 |p|) +(-817 |p|) ((|constructor| (NIL "PrimeField(\\spad{p}) implements the field with \\spad{p} elements if \\spad{p} is a prime number. Error: if \\spad{p} is not prime. Note: this domain does not check that argument is a prime."))) -((-3985 . T) (-3991 . T) (-3986 . T) ((-3995 "*") . T) (-3987 . T) (-3988 . T) (-3990 . T)) -((|HasCategory| $ (QUOTE (-120))) (|HasCategory| $ (QUOTE (-118))) (|HasCategory| $ (QUOTE (-318)))) -(-817 R E |VarSet| S) +((-3986 . T) (-3992 . T) (-3987 . T) ((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T)) +((|HasCategory| $ (QUOTE (-120))) (|HasCategory| $ (QUOTE (-118))) (|HasCategory| $ (QUOTE (-319)))) +(-818 R E |VarSet| S) ((|constructor| (NIL "PolynomialFactorizationByRecursion(\\spad{R},{}\\spad{E},{}\\spad{VarSet},{}\\spad{S}) is used for factorization of sparse univariate polynomials over a domain \\spad{S} of multivariate polynomials over \\spad{R}.")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|bivariateSLPEBR| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) |#3|) "\\spad{bivariateSLPEBR(lp,p,v)} implements the bivariate case of \\spadfunFrom{solveLinearPolynomialEquationByRecursion}{PolynomialFactorizationByRecursionUnivariate}; its implementation depends on \\spad{R}")) (|randomR| ((|#1|) "\\spad{randomR produces} a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,...,pn],p)} returns the list of polynomials \\spad{[q1,...,qn]} such that \\spad{sum qi/pi = p / prod pi},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned."))) NIL NIL -(-818 R S) +(-819 R S) ((|constructor| (NIL "\\indented{1}{PolynomialFactorizationByRecursionUnivariate} \\spad{R} is a \\spadfun{PolynomialFactorizationExplicit} domain,{} \\spad{S} is univariate polynomials over \\spad{R} We are interested in handling SparseUnivariatePolynomials over \\spad{S},{} is a variable we shall call \\spad{z}")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|randomR| ((|#1|) "\\spad{randomR()} produces a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#2|)) "failed") (|List| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,...,pn],p)} returns the list of polynomials \\spad{[q1,...,qn]} such that \\spad{sum qi/pi = p / prod pi},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned."))) NIL NIL -(-819 S) +(-820 S) ((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Maybe| $) $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \\spad{nothing} if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}'s exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,q)} returns the gcd of the univariate polynomials \\spad{p} qnd \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}."))) NIL ((|HasCategory| |#1| (QUOTE (-118)))) -(-820) +(-821) ((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Maybe| $) $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \\spad{nothing} if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}'s exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,q)} returns the gcd of the univariate polynomials \\spad{p} qnd \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}."))) -((-3986 . T) ((-3995 "*") . T) (-3987 . T) (-3988 . T) (-3990 . T)) +((-3987 . T) ((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T)) NIL -(-821 R0 -3091 UP UPUP R) +(-822 R0 -3092 UP UPUP R) ((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#5|)) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsionIfCan(f)}\\\\ undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{order(f)} \\undocumented"))) NIL NIL -(-822 UP UPUP R) +(-823 UP UPUP R) ((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#3|)) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsionIfCan(f)} \\undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{order(f)} \\undocumented"))) NIL NIL -(-823 UP UPUP) +(-824 UP UPUP) ((|constructor| (NIL "\\indented{1}{Utilities for PFOQ and PFO} Author: Manuel Bronstein Date Created: 25 Aug 1988 Date Last Updated: 11 Jul 1990")) (|polyred| ((|#2| |#2|) "\\spad{polyred(u)} \\undocumented")) (|doubleDisc| (((|Integer|) |#2|) "\\spad{doubleDisc(u)} \\undocumented")) (|mix| (((|Integer|) (|List| (|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))))) "\\spad{mix(l)} \\undocumented")) (|badNum| (((|Integer|) |#2|) "\\spad{badNum(u)} \\undocumented") (((|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))) |#1|) "\\spad{badNum(p)} \\undocumented")) (|getGoodPrime| (((|PositiveInteger|) (|Integer|)) "\\spad{getGoodPrime n} returns the smallest prime not dividing \\spad{n}"))) NIL NIL -(-824 R) +(-825 R) ((|constructor| (NIL "The domain \\spadtype{PartialFraction} implements partial fractions over a euclidean domain \\spad{R}. This requirement on the argument domain allows us to normalize the fractions. Of particular interest are the 2 forms for these fractions. The ``compact'' form has only one fractional term per prime in the denominator,{} while the ``p-adic'' form expands each numerator \\spad{p}-adically via the prime \\spad{p} in the denominator. For computational efficiency,{} the compact form is used,{} though the \\spad{p}-adic form may be gotten by calling the function \\spadfunFrom{padicFraction}{PartialFraction}. For a general euclidean domain,{} it is not known how to factor the denominator. Thus the function \\spadfunFrom{partialFraction}{PartialFraction} takes as its second argument an element of \\spadtype{Factored(R)}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(p)} extracts the whole part of the partial fraction \\spad{p}.")) (|partialFraction| (($ |#1| (|Factored| |#1|)) "\\spad{partialFraction(numer,denom)} is the main function for constructing partial fractions. The second argument is the denominator and should be factored.")) (|padicFraction| (($ $) "\\spad{padicFraction(q)} expands the fraction \\spad{p}-adically in the primes \\spad{p} in the denominator of \\spad{q}. For example,{} \\spad{padicFraction(3/(2**2)) = 1/2 + 1/(2**2)}. Use \\spadfunFrom{compactFraction}{PartialFraction} to return to compact form.")) (|padicallyExpand| (((|SparseUnivariatePolynomial| |#1|) |#1| |#1|) "\\spad{padicallyExpand(p,x)} is a utility function that expands the second argument \\spad{x} ``p-adically'' in the first.")) (|numberOfFractionalTerms| (((|Integer|) $) "\\spad{numberOfFractionalTerms(p)} computes the number of fractional terms in \\spad{p}. This returns 0 if there is no fractional part.")) (|nthFractionalTerm| (($ $ (|Integer|)) "\\spad{nthFractionalTerm(p,n)} extracts the \\spad{n}th fractional term from the partial fraction \\spad{p}. This returns 0 if the index \\spad{n} is out of range.")) (|firstNumer| ((|#1| $) "\\spad{firstNumer(p)} extracts the numerator of the first fractional term. This returns 0 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|firstDenom| (((|Factored| |#1|) $) "\\spad{firstDenom(p)} extracts the denominator of the first fractional term. This returns 1 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|compactFraction| (($ $) "\\spad{compactFraction(p)} normalizes the partial fraction \\spad{p} to the compact representation. In this form,{} the partial fraction has only one fractional term per prime in the denominator.")) (|coerce| (($ (|Fraction| (|Factored| |#1|))) "\\spad{coerce(f)} takes a fraction with numerator and denominator in factored form and creates a partial fraction. It is necessary for the parts to be factored because it is not known in general how to factor elements of \\spad{R} and this is needed to decompose into partial fractions.") (((|Fraction| |#1|) $) "\\spad{coerce(p)} sums up the components of the partial fraction and returns a single fraction."))) -((-3985 . T) (-3991 . T) (-3986 . T) ((-3995 "*") . T) (-3987 . T) (-3988 . T) (-3990 . T)) +((-3986 . T) (-3992 . T) (-3987 . T) ((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T)) NIL -(-825 R) +(-826 R) ((|constructor| (NIL "The package \\spadtype{PartialFractionPackage} gives an easier to use interfact the domain \\spadtype{PartialFraction}. The user gives a fraction of polynomials,{} and a variable and the package converts it to the proper datatype for the \\spadtype{PartialFraction} domain.")) (|partialFraction| (((|Any|) (|Polynomial| |#1|) (|Factored| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(num, facdenom, var)} returns the partial fraction decomposition of the rational function whose numerator is \\spad{num} and whose factored denominator is \\spad{facdenom} with respect to the variable var.") (((|Any|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(rf, var)} returns the partial fraction decomposition of the rational function \\spad{rf} with respect to the variable var."))) NIL NIL -(-826 E OV R P) +(-827 E OV R P) ((|gcdPrimitive| ((|#4| (|List| |#4|)) "\\spad{gcdPrimitive lp} computes the gcd of the list of primitive polynomials lp.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcdPrimitive(p,q)} computes the gcd of the primitive polynomials \\spad{p} and \\spad{q}.") ((|#4| |#4| |#4|) "\\spad{gcdPrimitive(p,q)} computes the gcd of the primitive polynomials \\spad{p} and \\spad{q}.")) (|gcd| (((|SparseUnivariatePolynomial| |#4|) (|List| (|SparseUnivariatePolynomial| |#4|))) "\\spad{gcd(lp)} computes the gcd of the list of polynomials \\spad{lp}.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcd(p,q)} computes the gcd of the two polynomials \\spad{p} and \\spad{q}.") ((|#4| (|List| |#4|)) "\\spad{gcd(lp)} computes the gcd of the list of polynomials \\spad{lp}.") ((|#4| |#4| |#4|) "\\spad{gcd(p,q)} computes the gcd of the two polynomials \\spad{p} and \\spad{q}."))) NIL NIL -(-827) +(-828) ((|constructor| (NIL "PermutationGroupExamples provides permutation groups for some classes of groups: symmetric,{} alternating,{} dihedral,{} cyclic,{} direct products of cyclic,{} which are in fact the finite abelian groups of symmetric groups called Young subgroups. Furthermore,{} Rubik's group as permutation group of 48 integers and a list of sporadic simple groups derived from the atlas of finite groups.")) (|youngGroup| (((|PermutationGroup| (|Integer|)) (|Partition|)) "\\spad{youngGroup(lambda)} constructs the direct product of the symmetric groups given by the parts of the partition {\\em lambda}.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{youngGroup([n1,...,nk])} constructs the direct product of the symmetric groups {\\em Sn1},{}...,{}{\\em Snk}.")) (|rubiksGroup| (((|PermutationGroup| (|Integer|))) "\\spad{rubiksGroup constructs} the permutation group representing Rubic's Cube acting on integers {\\em 10*i+j} for {\\em 1 <= i <= 6},{} {\\em 1 <= j <= 8}. The faces of Rubik's Cube are labelled in the obvious way Front,{} Right,{} Up,{} Down,{} Left,{} Back and numbered from 1 to 6 in this given ordering,{} the pieces on each face (except the unmoveable center piece) are clockwise numbered from 1 to 8 starting with the piece in the upper left corner. The moves of the cube are represented as permutations on these pieces,{} represented as a two digit integer {\\em ij} where \\spad{i} is the numer of theface (1 to 6) and \\spad{j} is the number of the piece on this face. The remaining ambiguities are resolved by looking at the 6 generators,{} which represent a 90 degree turns of the faces,{} or from the following pictorial description. Permutation group representing Rubic's Cube acting on integers 10*i+j for 1 <= \\spad{i} <= 6,{} 1 <= \\spad{j} \\spad{<=8}. \\blankline\\begin{verbatim}Rubik's Cube: +-----+ +-- B where: marks Side # : / U /|/ / / | F(ront) <-> 1 L --> +-----+ R| R(ight) <-> 2 | | + U(p) <-> 3 | F | / D(own) <-> 4 | |/ L(eft) <-> 5 +-----+ B(ack) <-> 6 ^ | DThe Cube's surface: The pieces on each side +---+ (except the unmoveable center |567| piece) are clockwise numbered |4U8| from 1 to 8 starting with the |321| piece in the upper left +---+---+---+ corner (see figure on the |781|123|345| left). The moves of the cube |6L2|8F4|2R6| are represented as |543|765|187| permutations on these pieces. +---+---+---+ Each of the pieces is |123| represented as a two digit |8D4| integer ij where i is the |765| # of the side ( 1 to 6 for +---+ F to B (see table above )) |567| and j is the # of the piece. |4B8| |321| +---+\\end{verbatim}")) (|janko2| (((|PermutationGroup| (|Integer|))) "\\spad{janko2 constructs} the janko group acting on the integers 1,{}...,{}100.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{janko2(li)} constructs the janko group acting on the 100 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 100 different entries")) (|mathieu24| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu24 constructs} the mathieu group acting on the integers 1,{}...,{}24.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu24(li)} constructs the mathieu group acting on the 24 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 24 different entries.")) (|mathieu23| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu23 constructs} the mathieu group acting on the integers 1,{}...,{}23.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu23(li)} constructs the mathieu group acting on the 23 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 23 different entries.")) (|mathieu22| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu22 constructs} the mathieu group acting on the integers 1,{}...,{}22.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu22(li)} constructs the mathieu group acting on the 22 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 22 different entries.")) (|mathieu12| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu12 constructs} the mathieu group acting on the integers 1,{}...,{}12.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu12(li)} constructs the mathieu group acting on the 12 integers given in the list {\\em li}. Note: duplicates in the list will be removed Error: if {\\em li} has less or more than 12 different entries.")) (|mathieu11| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu11 constructs} the mathieu group acting on the integers 1,{}...,{}11.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu11(li)} constructs the mathieu group acting on the 11 integers given in the list {\\em li}. Note: duplicates in the list will be removed. error,{} if {\\em li} has less or more than 11 different entries.")) (|dihedralGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{dihedralGroup([i1,...,ik])} constructs the dihedral group of order 2k acting on the integers out of {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{dihedralGroup(n)} constructs the dihedral group of order 2n acting on integers 1,{}...,{}\\spad{N}.")) (|cyclicGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{cyclicGroup([i1,...,ik])} constructs the cyclic group of order \\spad{k} acting on the integers {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{cyclicGroup(n)} constructs the cyclic group of order \\spad{n} acting on the integers 1,{}...,{}\\spad{n}.")) (|abelianGroup| (((|PermutationGroup| (|Integer|)) (|List| (|PositiveInteger|))) "\\spad{abelianGroup([n1,...,nk])} constructs the abelian group that is the direct product of cyclic groups with order {\\em ni}.")) (|alternatingGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{alternatingGroup(li)} constructs the alternating group acting on the integers in the list {\\em li},{} generators are in general the {\\em n-2}-cycle {\\em (li.3,...,li.n)} and the 3-cycle {\\em (li.1,li.2,li.3)},{} if \\spad{n} is odd and product of the 2-cycle {\\em (li.1,li.2)} with {\\em n-2}-cycle {\\em (li.3,...,li.n)} and the 3-cycle {\\em (li.1,li.2,li.3)},{} if \\spad{n} is even. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{alternatingGroup(n)} constructs the alternating group {\\em An} acting on the integers 1,{}...,{}\\spad{n},{} generators are in general the {\\em n-2}-cycle {\\em (3,...,n)} and the 3-cycle {\\em (1,2,3)} if \\spad{n} is odd and the product of the 2-cycle {\\em (1,2)} with {\\em n-2}-cycle {\\em (3,...,n)} and the 3-cycle {\\em (1,2,3)} if \\spad{n} is even.")) (|symmetricGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{symmetricGroup(li)} constructs the symmetric group acting on the integers in the list {\\em li},{} generators are the cycle given by {\\em li} and the 2-cycle {\\em (li.1,li.2)}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{symmetricGroup(n)} constructs the symmetric group {\\em Sn} acting on the integers 1,{}...,{}\\spad{n},{} generators are the {\\em n}-cycle {\\em (1,...,n)} and the 2-cycle {\\em (1,2)}."))) NIL NIL -(-828 -3091) +(-829 -3092) ((|constructor| (NIL "Groebner functions for \\spad{P} \\spad{F} \\indented{2}{This package is an interface package to the groebner basis} package which allows you to compute groebner bases for polynomials in either lexicographic ordering or total degree ordering refined by reverse lex. The input is the ordinary polynomial type which is internally converted to a type with the required ordering. The resulting grobner basis is converted back to ordinary polynomials. The ordering among the variables is controlled by an explicit list of variables which is passed as a second argument. The coefficient domain is allowed to be any gcd domain,{} but the groebner basis is computed as if the polynomials were over a field.")) (|totalGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{totalGroebner(lp,lv)} computes Groebner basis for the list of polynomials \\spad{lp} with the terms ordered first by total degree and then refined by reverse lexicographic ordering. The variables are ordered by their position in the list \\spad{lv}.")) (|lexGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{lexGroebner(lp,lv)} computes Groebner basis for the list of polynomials \\spad{lp} in lexicographic order. The variables are ordered by their position in the list \\spad{lv}."))) NIL NIL -(-829) +(-830) ((|constructor| (NIL "\\spadtype{PositiveInteger} provides functions for \\indented{2}{positive integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : x*y = y*x")) (|gcd| (($ $ $) "\\spad{gcd(a,b)} computes the greatest common divisor of two positive integers \\spad{a} and \\spad{b}."))) -(((-3995 "*") . T)) +(((-3996 "*") . T)) NIL -(-830 R) +(-831 R) ((|constructor| (NIL "\\indented{1}{Provides a coercion from the symbolic fractions in \\%\\spad{pi} with} integer coefficients to any Expression type. Date Created: 21 Feb 1990 Date Last Updated: 21 Feb 1990")) (|coerce| (((|Expression| |#1|) (|Pi|)) "\\spad{coerce(f)} returns \\spad{f} as an Expression(\\spad{R})."))) NIL NIL -(-831) +(-832) ((|constructor| (NIL "The category of constructive principal ideal domains,{} \\spadignore{i.e.} where a single generator can be constructively found for any ideal given by a finite set of generators. Note that this constructive definition only implies that finitely generated ideals are principal. It is not clear what we would mean by an infinitely generated ideal.")) (|expressIdealMember| (((|Maybe| (|List| $)) (|List| $) $) "\\spad{expressIdealMember([f1,...,fn],h)} returns a representation of \\spad{h} as a linear combination of the \\spad{fi} or \\spad{nothing} if \\spad{h} is not in the ideal generated by the \\spad{fi}.")) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) "\\spad{principalIdeal([f1,...,fn])} returns a record whose generator component is a generator of the ideal generated by \\spad{[f1,...,fn]} whose coef component satisfies \\spad{generator = sum (input.i * coef.i)}"))) -((-3986 . T) ((-3995 "*") . T) (-3987 . T) (-3988 . T) (-3990 . T)) +((-3987 . T) ((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T)) NIL -(-832 |xx| -3091) +(-833 |xx| -3092) ((|constructor| (NIL "This package exports interpolation algorithms")) (|interpolate| (((|SparseUnivariatePolynomial| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(lf,lg)} \\undocumented") (((|UnivariatePolynomial| |#1| |#2|) (|UnivariatePolynomial| |#1| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(u,lf,lg)} \\undocumented"))) NIL NIL -(-833 -3091 P) +(-834 -3092 P) ((|constructor| (NIL "This package exports interpolation algorithms")) (|LagrangeInterpolation| ((|#2| (|List| |#1|) (|List| |#1|)) "\\spad{LagrangeInterpolation(l1,l2)} \\undocumented"))) NIL NIL -(-834 R |Var| |Expon| GR) +(-835 R |Var| |Expon| GR) ((|constructor| (NIL "Author: William Sit,{} spring 89")) (|inconsistent?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "inconsistant?(pl) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in pl is inconsistent. It is assumed that pl is a groebner basis.") (((|Boolean|) (|List| |#4|)) "inconsistant?(pl) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in pl is inconsistent. It is assumed that pl is a groebner basis.")) (|sqfree| ((|#4| |#4|) "\\spad{sqfree(p)} returns the product of square free factors of \\spad{p}")) (|regime| (((|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))) (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|List| |#4|)) (|NonNegativeInteger|) (|NonNegativeInteger|) (|Integer|)) "\\spad{regime(y,c, w, p, r, rm, m)} returns a regime,{} a list of polynomials specifying the consistency conditions,{} a particular solution and basis representing the general solution of the parametric linear system \\spad{c} \\spad{z} = \\spad{w} on that regime. The regime returned depends on the subdeterminant \\spad{y}.det and the row and column indices. The solutions are simplified using the assumption that the system has rank \\spad{r} and maximum rank \\spad{rm}. The list \\spad{p} represents a list of list of factors of polynomials in a groebner basis of the ideal generated by higher order subdeterminants,{} and ius used for the simplification. The mode \\spad{m} distinguishes the cases when the system is homogeneous,{} or the right hand side is arbitrary,{} or when there is no new right hand side variables.")) (|redmat| (((|Matrix| |#4|) (|Matrix| |#4|) (|List| |#4|)) "\\spad{redmat(m,g)} returns a matrix whose entries are those of \\spad{m} modulo the ideal generated by the groebner basis \\spad{g}")) (|ParCond| (((|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCond(m,k)} returns the list of all \\spad{k} by \\spad{k} subdeterminants in the matrix \\spad{m}")) (|overset?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\spad{overset?(s,sl)} returns \\spad{true} if \\spad{s} properly a sublist of a member of \\spad{sl}; otherwise it returns \\spad{false}")) (|nextSublist| (((|List| (|List| (|Integer|))) (|Integer|) (|Integer|)) "\\spad{nextSublist(n,k)} returns a list of \\spad{k}-subsets of {1,{} ...,{} \\spad{n}}.")) (|minset| (((|List| (|List| |#4|)) (|List| (|List| |#4|))) "\\spad{minset(sl)} returns the sublist of \\spad{sl} consisting of the minimal lists (with respect to inclusion) in the list \\spad{sl} of lists")) (|minrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{minrank(r)} returns the minimum rank in the list \\spad{r} of regimes")) (|maxrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{maxrank(r)} returns the maximum rank in the list \\spad{r} of regimes")) (|factorset| (((|List| |#4|) |#4|) "\\spad{factorset(p)} returns the set of irreducible factors of \\spad{p}.")) (|B1solve| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |mat| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|:| |vec| (|List| (|Fraction| (|Polynomial| |#1|)))) (|:| |rank| (|NonNegativeInteger|)) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) "\\spad{B1solve(s)} solves the system (\\spad{s}.mat) \\spad{z} = \\spad{s}.vec for the variables given by the column indices of \\spad{s}.cols in terms of the other variables and the right hand side \\spad{s}.vec by assuming that the rank is \\spad{s}.rank,{} that the system is consistent,{} with the linearly independent equations indexed by the given row indices \\spad{s}.rows; the coefficients in \\spad{s}.mat involving parameters are treated as polynomials. B1solve(\\spad{s}) returns a particular solution to the system and a basis of the homogeneous system (\\spad{s}.mat) \\spad{z} = 0.")) (|redpps| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|List| |#4|)) "\\spad{redpps(s,g)} returns the simplified form of \\spad{s} after reducing modulo a groebner basis \\spad{g}")) (|ParCondList| (((|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|)))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCondList(c,r)} computes a list of subdeterminants of each rank >= \\spad{r} of the matrix \\spad{c} and returns a groebner basis for the ideal they generate")) (|hasoln| (((|Record| (|:| |sysok| (|Boolean|)) (|:| |z0| (|List| |#4|)) (|:| |n0| (|List| |#4|))) (|List| |#4|) (|List| |#4|)) "\\spad{hasoln(g, l)} tests whether the quasi-algebraic set defined by \\spad{p} = 0 for \\spad{p} in \\spad{g} and \\spad{q} ~= 0 for \\spad{q} in \\spad{l} is empty or not and returns a simplified definition of the quasi-algebraic set")) (|pr2dmp| ((|#4| (|Polynomial| |#1|)) "\\spad{pr2dmp(p)} converts \\spad{p} to target domain")) (|se2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{se2rfi(l)} converts \\spad{l} to target domain")) (|dmp2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| |#4|)) "\\spad{dmp2rfi(l)} converts \\spad{l} to target domain") (((|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Matrix| |#4|)) "\\spad{dmp2rfi(m)} converts \\spad{m} to target domain") (((|Fraction| (|Polynomial| |#1|)) |#4|) "\\spad{dmp2rfi(p)} converts \\spad{p} to target domain")) (|bsolve| (((|Record| (|:| |rgl| (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))))) (|:| |rgsz| (|Integer|))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|String|) (|Integer|)) "\\spad{bsolve(c, w, r, s, m)} returns a list of regimes and solutions of the system \\spad{c} \\spad{z} = \\spad{w} for ranks at least \\spad{r}; depending on the mode \\spad{m} chosen,{} it writes the output to a file given by the string \\spad{s}.")) (|rdregime| (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{rdregime(s)} reads in a list from a file with name \\spad{s}")) (|wrregime| (((|Integer|) (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{wrregime(l,s)} writes a list of regimes to a file named \\spad{s} and returns the number of regimes written")) (|psolve| (((|Integer|) (|Matrix| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,k,s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks >= \\spad{k} of the matrix \\spad{c},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,w,k,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks >= \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,w,k,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks >= \\spad{k} of the matrix \\spad{c} and given right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|String|)) "\\spad{psolve(c,s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|String|)) "\\spad{psolve(c,w,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|String|)) "\\spad{psolve(c,w,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|PositiveInteger|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks >= \\spad{k} of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|)) "\\spad{psolve(c,w,k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks >= \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|)) "\\spad{psolve(c,w,k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks >= \\spad{k} of the matrix \\spad{c} and given right hand side vector \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|))) "\\spad{psolve(c,w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|)) "\\spad{psolve(c,w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w}"))) NIL NIL -(-835) +(-836) ((|constructor| (NIL "The Plot domain supports plotting of functions defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example floating point numbers and infinite continued fractions. The facilities at this point are limited to 2-dimensional plots or either a single function or a parametric function.")) (|debug| (((|Boolean|) (|Boolean|)) "\\spad{debug(true)} turns debug mode on \\spad{debug(false)} turns debug mode off")) (|numFunEvals| (((|Integer|)) "\\spad{numFunEvals()} returns the number of points computed")) (|setAdaptive| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive(true)} turns adaptive plotting on \\spad{setAdaptive(false)} turns adaptive plotting off")) (|adaptive?| (((|Boolean|)) "\\spad{adaptive?()} determines whether plotting be done adaptively")) (|setScreenResolution| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution(i)} sets the screen resolution to \\spad{i}")) (|screenResolution| (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution")) (|setMaxPoints| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints(i)} sets the maximum number of points in a plot to \\spad{i}")) (|maxPoints| (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot")) (|setMinPoints| (((|Integer|) (|Integer|)) "\\spad{setMinPoints(i)} sets the minimum number of points in a plot to \\spad{i}")) (|minPoints| (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}")) (|refine| (($ $) "\\spad{refine(p)} performs a refinement on the plot \\spad{p}") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,r,s)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,r)} \\undocumented")) (|parametric?| (((|Boolean|) $) "\\spad{parametric? determines} whether it is a parametric plot?")) (|plotPolar| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{plotPolar(f)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[0,2*\\%pi]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,a..b)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[a,b]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),g(t)),a..b,c..d,e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}; \\spad{x}-range of \\spad{[c,d]} and \\spad{y}-range of \\spad{[e,f]} are noted in Plot object.") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),g(t)),a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}.")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,a..b,c..d,e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}; \\spad{x}-range of \\spad{[c,d]} and \\spad{y}-range of \\spad{[e,f]} are noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,...,fm],a..b,c..d)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}; \\spad{y}-range of \\spad{[c,d]} is noted in Plot object.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,...,fm],a..b)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,a..b,c..d)} plots the function \\spad{f(x)} on the interval \\spad{[a,b]}; \\spad{y}-range of \\spad{[c,d]} is noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,a..b)} plots the function \\spad{f(x)} on the interval \\spad{[a,b]}."))) NIL NIL -(-836 S) +(-837 S) ((|constructor| (NIL "\\spad{PlotFunctions1} provides facilities for plotting curves where functions SF -> SF are specified by giving an expression")) (|plotPolar| (((|Plot|) |#1| (|Symbol|)) "\\spad{plotPolar(f,theta)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges from 0 to 2 \\spad{pi}") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,theta,seg)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges over an interval")) (|plot| (((|Plot|) |#1| |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,t,seg)} plots the graph of \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over an interval.") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(fcn,x,seg)} plots the graph of \\spad{y = f(x)} on a interval"))) NIL NIL -(-837) +(-838) ((|constructor| (NIL "Plot3D supports parametric plots defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example,{} floating point numbers and infinite continued fractions are real number systems. The facilities at this point are limited to 3-dimensional parametric plots.")) (|debug3D| (((|Boolean|) (|Boolean|)) "\\spad{debug3D(true)} turns debug mode on; debug3D(\\spad{false}) turns debug mode off.")) (|numFunEvals3D| (((|Integer|)) "\\spad{numFunEvals3D()} returns the number of points computed.")) (|setAdaptive3D| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive3D(true)} turns adaptive plotting on; setAdaptive3D(\\spad{false}) turns adaptive plotting off.")) (|adaptive3D?| (((|Boolean|)) "\\spad{adaptive3D?()} determines whether plotting be done adaptively.")) (|setScreenResolution3D| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution3D(i)} sets the screen resolution for a 3d graph to \\spad{i}.")) (|screenResolution3D| (((|Integer|)) "\\spad{screenResolution3D()} returns the screen resolution for a 3d graph.")) (|setMaxPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints3D(i)} sets the maximum number of points in a plot to \\spad{i}.")) (|maxPoints3D| (((|Integer|)) "\\spad{maxPoints3D()} returns the maximum number of points in a plot.")) (|setMinPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMinPoints3D(i)} sets the minimum number of points in a plot to \\spad{i}.")) (|minPoints3D| (((|Integer|)) "\\spad{minPoints3D()} returns the minimum number of points in a plot.")) (|tValues| (((|List| (|List| (|DoubleFloat|))) $) "\\spad{tValues(p)} returns a list of lists of the values of the parameter for which a point is computed,{} one list for each curve in the plot \\spad{p}.")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}.")) (|refine| (($ $) "\\spad{refine(x)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,r,s,t)} \\undocumented")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f1,f2,f3,f4,x,y,z,w)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,h,a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,x,y,z,w)} \\undocumented") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,g,h,a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}."))) NIL NIL -(-838) +(-839) ((|constructor| (NIL "This package exports plotting tools")) (|calcRanges| (((|List| (|Segment| (|DoubleFloat|))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{calcRanges(l)} \\undocumented"))) NIL NIL -(-839) +(-840) ((|constructor| (NIL "Attaching assertions to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list.")) (|optional| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation)..")) (|constant| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol 'x and no other quantity.")) (|assert| (((|Expression| (|Integer|)) (|Symbol|) (|Identifier|)) "\\spad{assert(x, s)} makes the assertion \\spad{s} about \\spad{x}."))) NIL NIL -(-840 R -3091) +(-841 R -3092) ((|constructor| (NIL "Attaching assertions to symbols for pattern matching; Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| ((|#2| |#2|) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list. Error: if \\spad{x} is not a symbol.")) (|optional| ((|#2| |#2|) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation). Error: if \\spad{x} is not a symbol.")) (|constant| ((|#2| |#2|) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol 'x and no other quantity. Error: if \\spad{x} is not a symbol.")) (|assert| ((|#2| |#2| (|Identifier|)) "\\spad{assert(x, s)} makes the assertion \\spad{s} about \\spad{x}. Error: if \\spad{x} is not a symbol."))) NIL NIL -(-841 S A B) +(-842 S A B) ((|constructor| (NIL "This packages provides tools for matching recursively in type towers.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#2| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches. Note: this function handles type towers by changing the predicates and calling the matching function provided by \\spad{A}.")) (|fixPredicate| (((|Mapping| (|Boolean|) |#2|) (|Mapping| (|Boolean|) |#3|)) "\\spad{fixPredicate(f)} returns \\spad{g} defined by \\spad{g}(a) = \\spad{f}(a::B)."))) NIL NIL -(-842 S R -3091) +(-843 S R -3092) ((|constructor| (NIL "This package provides pattern matching functions on function spaces.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-843 I) +(-844 I) ((|constructor| (NIL "This package provides pattern matching functions on integers.")) (|patternMatch| (((|PatternMatchResult| (|Integer|) |#1|) |#1| (|Pattern| (|Integer|)) (|PatternMatchResult| (|Integer|) |#1|)) "\\spad{patternMatch(n, pat, res)} matches the pattern \\spad{pat} to the integer \\spad{n}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-844 S E) +(-845 S E) ((|constructor| (NIL "This package provides pattern matching functions on kernels.")) (|patternMatch| (((|PatternMatchResult| |#1| |#2|) (|Kernel| |#2|) (|Pattern| |#1|) (|PatternMatchResult| |#1| |#2|)) "\\spad{patternMatch(f(e1,...,en), pat, res)} matches the pattern \\spad{pat} to \\spad{f(e1,...,en)}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-845 S R L) +(-846 S R L) ((|constructor| (NIL "This package provides pattern matching functions on lists.")) (|patternMatch| (((|PatternMatchListResult| |#1| |#2| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchListResult| |#1| |#2| |#3|)) "\\spad{patternMatch(l, pat, res)} matches the pattern \\spad{pat} to the list \\spad{l}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-846 S E V R P) +(-847 S E V R P) ((|constructor| (NIL "This package provides pattern matching functions on polynomials.")) (|patternMatch| (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|)) "\\spad{patternMatch(p, pat, res)} matches the pattern \\spad{pat} to the polynomial \\spad{p}; res contains the variables of \\spad{pat} which are already matched and their matches.") (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|) (|Mapping| (|PatternMatchResult| |#1| |#5|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|))) "\\spad{patternMatch(p, pat, res, vmatch)} matches the pattern \\spad{pat} to the polynomial \\spad{p}. \\spad{res} contains the variables of \\spad{pat} which are already matched and their matches; vmatch is the matching function to use on the variables."))) NIL -((|HasCategory| |#3| (|%list| (QUOTE -795) (|devaluate| |#1|)))) -(-847 -2668) +((|HasCategory| |#3| (|%list| (QUOTE -796) (|devaluate| |#1|)))) +(-848 -2669) ((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| (((|Expression| (|Integer|)) (|Symbol|) (|List| (|Mapping| (|Boolean|) |#1|))) "\\spad{suchThat(x, [f1, f2, ..., fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and fn to \\spad{x}.") (((|Expression| (|Integer|)) (|Symbol|) (|Mapping| (|Boolean|) |#1|)) "\\spad{suchThat(x, foo)} attaches the predicate foo to \\spad{x}."))) NIL NIL -(-848 R -3091 -2668) +(-849 R -3092 -2669) ((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| ((|#2| |#2| (|List| (|Mapping| (|Boolean|) |#3|))) "\\spad{suchThat(x, [f1, f2, ..., fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and fn to \\spad{x}. Error: if \\spad{x} is not a symbol.") ((|#2| |#2| (|Mapping| (|Boolean|) |#3|)) "\\spad{suchThat(x, foo)} attaches the predicate foo to \\spad{x}; error if \\spad{x} is not a symbol."))) NIL NIL -(-849 S R Q) +(-850 S R Q) ((|constructor| (NIL "This package provides pattern matching functions on quotients.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(a/b, pat, res)} matches the pattern \\spad{pat} to the quotient \\spad{a/b}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-850 S) +(-851 S) ((|constructor| (NIL "This package provides pattern matching functions on symbols.")) (|patternMatch| (((|PatternMatchResult| |#1| (|Symbol|)) (|Symbol|) (|Pattern| |#1|) (|PatternMatchResult| |#1| (|Symbol|))) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion)."))) NIL NIL -(-851 S R P) +(-852 S R P) ((|constructor| (NIL "This package provides tools for the pattern matcher.")) (|patternMatchTimes| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatchTimes(lsubj, lpat, res, match)} matches the product of patterns \\spad{reduce(*,lpat)} to the product of subjects \\spad{reduce(*,lsubj)}; \\spad{r} contains the previous matches and match is a pattern-matching function on \\spad{P}.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|Mapping| |#3| (|List| |#3|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatch(lsubj, lpat, op, res, match)} matches the list of patterns \\spad{lpat} to the list of subjects \\spad{lsubj},{} allowing for commutativity; \\spad{op} is the operator such that \\spad{op}(\\spad{lpat}) should match \\spad{op}(\\spad{lsubj}) at the end,{} \\spad{r} contains the previous matches,{} and match is a pattern-matching function on \\spad{P}."))) NIL NIL -(-852) +(-853) ((|constructor| (NIL "This package provides various polynomial number theoretic functions over the integers.")) (|legendre| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{legendre(n)} returns the \\spad{n}th Legendre polynomial \\spad{P[n](x)}. Note: Legendre polynomials,{} denoted \\spad{P[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{1/sqrt(1-2*t*x+t**2) = sum(P[n](x)*t**n, n=0..infinity)}.")) (|laguerre| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{laguerre(n)} returns the \\spad{n}th Laguerre polynomial \\spad{L[n](x)}. Note: Laguerre polynomials,{} denoted \\spad{L[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(x*t/(t-1))/(1-t) = sum(L[n](x)*t**n/n!, n=0..infinity)}.")) (|hermite| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{hermite(n)} returns the \\spad{n}th Hermite polynomial \\spad{H[n](x)}. Note: Hermite polynomials,{} denoted \\spad{H[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!, n=0..infinity)}.")) (|fixedDivisor| (((|Integer|) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{fixedDivisor(a)} for \\spad{a(x)} in \\spad{Z[x]} is the largest integer \\spad{f} such that \\spad{f} divides \\spad{a(x=k)} for all integers \\spad{k}. Note: fixed divisor of \\spad{a} is \\spad{reduce(gcd,[a(x=k) for k in 0..degree(a)])}.")) (|euler| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler polynomial \\spad{E[n](x)}. Note: Euler polynomials denoted \\spad{E(n,x)} computed by solving the differential equation \\spad{differentiate(E(n,x),x) = n E(n-1,x)} where \\spad{E(0,x) = 1} and initial condition comes from \\spad{E(n) = 2**n E(n,1/2)}.")) (|cyclotomic| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{cyclotomic(n)} returns the \\spad{n}th cyclotomic polynomial \\spad{phi[n](x)}. Note: \\spad{phi[n](x)} is the factor of \\spad{x**n - 1} whose roots are the primitive \\spad{n}th roots of unity.")) (|chebyshevU| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevU(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{U[n](x)}. Note: Chebyshev polynomials of the second kind,{} denoted \\spad{U[n](x)},{} computed from the two term recurrence. The generating function \\spad{1/(1-2*t*x+t**2) = sum(T[n](x)*t**n, n=0..infinity)}.")) (|chebyshevT| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevT(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{T[n](x)}. Note: Chebyshev polynomials of the first kind,{} denoted \\spad{T[n](x)},{} computed from the two term recurrence. The generating function \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x)*t**n, n=0..infinity)}.")) (|bernoulli| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli polynomial \\spad{B[n](x)}. Note: Bernoulli polynomials denoted \\spad{B(n,x)} computed by solving the differential equation \\spad{differentiate(B(n,x),x) = n B(n-1,x)} where \\spad{B(0,x) = 1} and initial condition comes from \\spad{B(n) = B(n,0)}."))) NIL NIL -(-853 R) +(-854 R) ((|constructor| (NIL "This domain implements points in coordinate space"))) -((-3994 . T) (-3993 . T)) -((OR (-12 (|HasCategory| |#1| (QUOTE (-755))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-551 (-771)))) (|HasCategory| |#1| (QUOTE (-552 (-472)))) (OR (|HasCategory| |#1| (QUOTE (-755))) (|HasCategory| |#1| (QUOTE (-1012)))) (|HasCategory| |#1| (QUOTE (-755))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-755))) (|HasCategory| |#1| (QUOTE (-1012)))) (|HasCategory| (-483) (QUOTE (-755))) (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-662))) (|HasCategory| |#1| (QUOTE (-960))) (-12 (|HasCategory| |#1| (QUOTE (-914))) (|HasCategory| |#1| (QUOTE (-960)))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) -(-854 |lv| R) +((-3995 . T) (-3994 . T)) +((OR (-12 (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-553 (-473)))) (OR (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-756))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| (-484) (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-663))) (|HasCategory| |#1| (QUOTE (-961))) (-12 (|HasCategory| |#1| (QUOTE (-915))) (|HasCategory| |#1| (QUOTE (-961)))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) +(-855 |lv| R) ((|constructor| (NIL "Package with the conversion functions among different kind of polynomials")) (|pToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToDmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{DMP}.")) (|dmpToP| (((|Polynomial| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToP(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{POLY}.")) (|hdmpToP| (((|Polynomial| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToP(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{POLY}.")) (|pToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToHdmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{HDMP}.")) (|hdmpToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToDmp(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{DMP}.")) (|dmpToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToHdmp(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{HDMP}."))) NIL NIL -(-855 |TheField| |ThePols|) +(-856 |TheField| |ThePols|) ((|constructor| (NIL "\\axiomType{RealPolynomialUtilitiesPackage} provides common functions used by interval coding.")) (|lazyVariations| (((|NonNegativeInteger|) (|List| |#1|) (|Integer|) (|Integer|)) "\\axiom{lazyVariations(\\spad{l},{}\\spad{s1},{}sn)} is the number of sign variations in the list of non null numbers [s1::l]@sn,{}")) (|sturmVariationsOf| (((|NonNegativeInteger|) (|List| |#1|)) "\\axiom{sturmVariationsOf(\\spad{l})} is the number of sign variations in the list of numbers \\spad{l},{} note that the first term counts as a sign")) (|boundOfCauchy| ((|#1| |#2|) "\\axiom{boundOfCauchy(\\spad{p})} bounds the roots of \\spad{p}")) (|sturmSequence| (((|List| |#2|) |#2|) "\\axiom{sturmSequence(\\spad{p}) = sylvesterSequence(\\spad{p},{}p')}")) (|sylvesterSequence| (((|List| |#2|) |#2| |#2|) "\\axiom{sylvesterSequence(\\spad{p},{}\\spad{q})} is the negated remainder sequence of \\spad{p} and \\spad{q} divided by the last computed term"))) NIL -((|HasCategory| |#1| (QUOTE (-754)))) -(-856 R) +((|HasCategory| |#1| (QUOTE (-755)))) +(-857 R) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are arbitrary symbols. The ordering is alphabetic determined by the Symbol type. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(p,x)} computes the integral of \\spad{p*dx},{} \\spadignore{i.e.} integrates the polynomial \\spad{p} with respect to the variable \\spad{x}."))) -(((-3995 "*") |has| |#1| (-146)) (-3986 |has| |#1| (-494)) (-3991 |has| |#1| (-6 -3991)) (-3988 . T) (-3987 . T) (-3990 . T)) -((|HasCategory| |#1| (QUOTE (-820))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-390))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-820)))) (OR (|HasCategory| |#1| (QUOTE (-390))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-820)))) (OR (|HasCategory| |#1| (QUOTE (-390))) (|HasCategory| |#1| (QUOTE (-820)))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-494)))) (-12 (|HasCategory| |#1| (QUOTE (-795 (-328)))) (|HasCategory| (-1088) (QUOTE (-795 (-328))))) (-12 (|HasCategory| |#1| (QUOTE (-795 (-483)))) (|HasCategory| (-1088) (QUOTE (-795 (-483))))) (-12 (|HasCategory| |#1| (QUOTE (-552 (-799 (-328))))) (|HasCategory| (-1088) (QUOTE (-552 (-799 (-328)))))) (-12 (|HasCategory| |#1| (QUOTE (-552 (-799 (-483))))) (|HasCategory| (-1088) (QUOTE (-552 (-799 (-483)))))) (-12 (|HasCategory| |#1| (QUOTE (-552 (-472)))) (|HasCategory| (-1088) (QUOTE (-552 (-472))))) (|HasCategory| |#1| (QUOTE (-579 (-483)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-348 (-483))))) (|HasCategory| |#1| (QUOTE (-949 (-483)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-348 (-483))))) (|HasCategory| |#1| (QUOTE (-949 (-348 (-483)))))) (|HasCategory| |#1| (QUOTE (-949 (-348 (-483))))) (|HasCategory| |#1| (QUOTE (-312))) (|HasAttribute| |#1| (QUOTE -3991)) (|HasCategory| |#1| (QUOTE (-390))) (-12 (|HasCategory| |#1| (QUOTE (-820))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-820))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) -(-857 R S) +(((-3996 "*") |has| |#1| (-146)) (-3987 |has| |#1| (-495)) (-3992 |has| |#1| (-6 -3992)) (-3989 . T) (-3988 . T) (-3991 . T)) +((|HasCategory| |#1| (QUOTE (-821))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-391))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-821)))) (OR (|HasCategory| |#1| (QUOTE (-391))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-821)))) (OR (|HasCategory| |#1| (QUOTE (-391))) (|HasCategory| |#1| (QUOTE (-821)))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (-12 (|HasCategory| |#1| (QUOTE (-796 (-329)))) (|HasCategory| (-1089) (QUOTE (-796 (-329))))) (-12 (|HasCategory| |#1| (QUOTE (-796 (-484)))) (|HasCategory| (-1089) (QUOTE (-796 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-800 (-329))))) (|HasCategory| (-1089) (QUOTE (-553 (-800 (-329)))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-800 (-484))))) (|HasCategory| (-1089) (QUOTE (-553 (-800 (-484)))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-473)))) (|HasCategory| (-1089) (QUOTE (-553 (-473))))) (|HasCategory| |#1| (QUOTE (-580 (-484)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-349 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-484)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-349 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-349 (-484)))))) (|HasCategory| |#1| (QUOTE (-950 (-349 (-484))))) (|HasCategory| |#1| (QUOTE (-312))) (|HasAttribute| |#1| (QUOTE -3992)) (|HasCategory| |#1| (QUOTE (-391))) (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) +(-858 R S) ((|constructor| (NIL "\\indented{2}{This package takes a mapping between coefficient rings,{} and lifts} it to a mapping between polynomials over those rings.")) (|map| (((|Polynomial| |#2|) (|Mapping| |#2| |#1|) (|Polynomial| |#1|)) "\\spad{map(f, p)} produces a new polynomial as a result of applying the function \\spad{f} to every coefficient of the polynomial \\spad{p}."))) NIL NIL -(-858 |x| R) +(-859 |x| R) ((|constructor| (NIL "This package is primarily to help the interpreter do coercions. It allows you to view a polynomial as a univariate polynomial in one of its variables with coefficients which are again a polynomial in all the other variables.")) (|univariate| (((|UnivariatePolynomial| |#1| (|Polynomial| |#2|)) (|Polynomial| |#2|) (|Variable| |#1|)) "\\spad{univariate(p, x)} converts the polynomial \\spad{p} to a one of type \\spad{UnivariatePolynomial(x,Polynomial(R))},{} ie. as a member of \\spad{R[...][x]}."))) NIL NIL -(-859 S R E |VarSet|) +(-860 S R E |VarSet|) ((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#4|) "\\spad{primitivePart(p,v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#4|) "\\spad{content(p,v)} is the gcd of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the gcd of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#4|) "\\spad{discriminant(p,v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#4|) "\\spad{resultant(p,q,v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),...,X^(n)]}.")) (|variables| (((|List| |#4|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#4|)) "\\spad{totalDegree(p, lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list lv.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#4|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#4|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#2|) |#4|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[v1..vn],[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\spad{monicDivide(a,b,v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{minimumDegree(p, lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list lv") (((|NonNegativeInteger|) $ |#4|) "\\spad{minimumDegree(p,v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#4| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#4|) "\\spad{univariate(p,v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),...,a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p, lv, ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{coefficient(p,v,n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{degree(p,lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#4|) "\\spad{degree(p,v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}."))) NIL -((|HasCategory| |#2| (QUOTE (-820))) (|HasAttribute| |#2| (QUOTE -3991)) (|HasCategory| |#2| (QUOTE (-390))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-795 (-328)))) (|HasCategory| |#2| (QUOTE (-795 (-328)))) (|HasCategory| |#4| (QUOTE (-795 (-483)))) (|HasCategory| |#2| (QUOTE (-795 (-483)))) (|HasCategory| |#4| (QUOTE (-552 (-799 (-328))))) (|HasCategory| |#2| (QUOTE (-552 (-799 (-328))))) (|HasCategory| |#4| (QUOTE (-552 (-799 (-483))))) (|HasCategory| |#2| (QUOTE (-552 (-799 (-483))))) (|HasCategory| |#4| (QUOTE (-552 (-472)))) (|HasCategory| |#2| (QUOTE (-552 (-472))))) -(-860 R E |VarSet|) +((|HasCategory| |#2| (QUOTE (-821))) (|HasAttribute| |#2| (QUOTE -3992)) (|HasCategory| |#2| (QUOTE (-391))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-796 (-329)))) (|HasCategory| |#2| (QUOTE (-796 (-329)))) (|HasCategory| |#4| (QUOTE (-796 (-484)))) (|HasCategory| |#2| (QUOTE (-796 (-484)))) (|HasCategory| |#4| (QUOTE (-553 (-800 (-329))))) (|HasCategory| |#2| (QUOTE (-553 (-800 (-329))))) (|HasCategory| |#4| (QUOTE (-553 (-800 (-484))))) (|HasCategory| |#2| (QUOTE (-553 (-800 (-484))))) (|HasCategory| |#4| (QUOTE (-553 (-473)))) (|HasCategory| |#2| (QUOTE (-553 (-473))))) +(-861 R E |VarSet|) ((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#3|) "\\spad{primitivePart(p,v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#3|) "\\spad{content(p,v)} is the gcd of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the gcd of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#3|) "\\spad{discriminant(p,v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#3|) "\\spad{resultant(p,q,v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),...,X^(n)]}.")) (|variables| (((|List| |#3|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#3|)) "\\spad{totalDegree(p, lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list lv.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#3|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#3|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[v1..vn],[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\spad{monicDivide(a,b,v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{minimumDegree(p, lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list lv") (((|NonNegativeInteger|) $ |#3|) "\\spad{minimumDegree(p,v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#3| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#3|) "\\spad{univariate(p,v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),...,a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p, lv, ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{coefficient(p,v,n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{degree(p,lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}."))) -(((-3995 "*") |has| |#1| (-146)) (-3986 |has| |#1| (-494)) (-3991 |has| |#1| (-6 -3991)) (-3988 . T) (-3987 . T) (-3990 . T)) +(((-3996 "*") |has| |#1| (-146)) (-3987 |has| |#1| (-495)) (-3992 |has| |#1| (-6 -3992)) (-3989 . T) (-3988 . T) (-3991 . T)) NIL -(-861 E V R P -3091) +(-862 E V R P -3092) ((|constructor| (NIL "This package transforms multivariate polynomials or fractions into univariate polynomials or fractions,{} and back.")) (|isPower| (((|Union| (|Record| (|:| |val| |#5|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#2|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1 ... an} and \\spad{n > 1},{} \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isPlus(p)} returns [\\spad{m1},{}...,{}mn] if \\spad{p = m1 + ... + mn} and \\spad{n > 1},{} \"failed\" otherwise.")) (|multivariate| ((|#5| (|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#2|) "\\spad{multivariate(f, v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|SparseUnivariatePolynomial| |#5|) |#5| |#2| (|SparseUnivariatePolynomial| |#5|)) "\\spad{univariate(f, x, p)} returns \\spad{f} viewed as a univariate polynomial in \\spad{x},{} using the side-condition \\spad{p(x) = 0}.") (((|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#5| |#2|) "\\spad{univariate(f, v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| |#2| "failed") |#5|) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| |#2|) |#5|) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}."))) NIL NIL -(-862 E |Vars| R P S) +(-863 E |Vars| R P S) ((|constructor| (NIL "This package provides a very general map function,{} which given a set \\spad{S} and polynomials over \\spad{R} with maps from the variables into \\spad{S} and the coefficients into \\spad{S},{} maps polynomials into \\spad{S}. \\spad{S} is assumed to support \\spad{+},{} \\spad{*} and \\spad{**}.")) (|map| ((|#5| (|Mapping| |#5| |#2|) (|Mapping| |#5| |#3|) |#4|) "\\spad{map(varmap, coefmap, p)} takes a \\spad{varmap},{} a mapping from the variables of polynomial \\spad{p} into \\spad{S},{} \\spad{coefmap},{} a mapping from coefficients of \\spad{p} into \\spad{S},{} and \\spad{p},{} and produces a member of \\spad{S} using the corresponding arithmetic. in \\spad{S}"))) NIL NIL -(-863 E V R P -3091) +(-864 E V R P -3092) ((|constructor| (NIL "computes \\spad{n}-th roots of quotients of multivariate polynomials")) (|nthr| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#4|) (|:| |radicand| (|List| |#4|))) |#4| (|NonNegativeInteger|)) "\\spad{nthr(p,n)} should be local but conditional")) (|froot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#5| (|NonNegativeInteger|)) "\\spad{froot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|qroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) (|Fraction| (|Integer|)) (|NonNegativeInteger|)) "\\spad{qroot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|rroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#3| (|NonNegativeInteger|)) "\\spad{rroot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|denom| ((|#4| $) "\\spad{denom(x)} \\undocumented")) (|numer| ((|#4| $) "\\spad{numer(x)} \\undocumented"))) NIL -((|HasCategory| |#3| (QUOTE (-390)))) -(-864) +((|HasCategory| |#3| (QUOTE (-391)))) +(-865) ((|constructor| (NIL "This domain represents network port numbers (notable TCP and UDP).")) (|port| (($ (|SingleInteger|)) "\\spad{port(n)} constructs a PortNumber from the integer `n'."))) NIL NIL -(-865) +(-866) ((|constructor| (NIL "PlottablePlaneCurveCategory is the category of curves in the plane which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x}-coordinates and \\spad{y}-coordinates of the points on the curve.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}."))) NIL NIL -(-866 R E) +(-867 R E) ((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and terms indexed by their exponents (from an arbitrary ordered abelian monoid). This type is used,{} for example,{} by the \\spadtype{DistributedMultivariatePolynomial} domain where the exponent domain is a direct product of non negative integers.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (|fmecg| (($ $ |#2| |#1| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}"))) -(((-3995 "*") |has| |#1| (-146)) (-3986 |has| |#1| (-494)) (-3991 |has| |#1| (-6 -3991)) (-3987 . T) (-3988 . T) (-3990 . T)) -((|HasCategory| |#1| (QUOTE (-38 (-348 (-483))))) (|HasCategory| |#1| (QUOTE (-494))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-494)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (OR (|HasCategory| |#1| (QUOTE (-38 (-348 (-483))))) (|HasCategory| |#1| (QUOTE (-949 (-348 (-483)))))) (|HasCategory| |#1| (QUOTE (-949 (-348 (-483))))) (|HasCategory| |#1| (QUOTE (-949 (-483)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-390))) (-12 (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#2| (QUOTE (-104)))) (|HasAttribute| |#1| (QUOTE -3991))) -(-867 R L) +(((-3996 "*") |has| |#1| (-146)) (-3987 |has| |#1| (-495)) (-3992 |has| |#1| (-6 -3992)) (-3988 . T) (-3989 . T) (-3991 . T)) +((|HasCategory| |#1| (QUOTE (-38 (-349 (-484))))) (|HasCategory| |#1| (QUOTE (-495))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (OR (|HasCategory| |#1| (QUOTE (-38 (-349 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-349 (-484)))))) (|HasCategory| |#1| (QUOTE (-950 (-349 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-484)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-391))) (-12 (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-104)))) (|HasAttribute| |#1| (QUOTE -3992))) +(-868 R L) ((|constructor| (NIL "\\spadtype{PrecomputedAssociatedEquations} stores some generic precomputations which speed up the computations of the associated equations needed for factoring operators.")) (|firstUncouplingMatrix| (((|Union| (|Matrix| |#1|) "failed") |#2| (|PositiveInteger|)) "\\spad{firstUncouplingMatrix(op, m)} returns the matrix A such that \\spad{A w = (W',W'',...,W^N)} in the corresponding associated equations for right-factors of order \\spad{m} of \\spad{op}. Returns \"failed\" if the matrix A has not been precomputed for the particular combination \\spad{degree(L), m}."))) NIL NIL -(-868 S) +(-869 S) ((|constructor| (NIL "\\indented{1}{This provides a fast array type with no bound checking on elt's.} Minimum index is 0 in this type,{} cannot be changed"))) -((-3994 . T) (-3993 . T)) -((OR (-12 (|HasCategory| |#1| (QUOTE (-755))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-551 (-771)))) (|HasCategory| |#1| (QUOTE (-552 (-472)))) (OR (|HasCategory| |#1| (QUOTE (-755))) (|HasCategory| |#1| (QUOTE (-1012)))) (|HasCategory| |#1| (QUOTE (-755))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-755))) (|HasCategory| |#1| (QUOTE (-1012)))) (|HasCategory| (-483) (QUOTE (-755))) (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) -(-869 A B) +((-3995 . T) (-3994 . T)) +((OR (-12 (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-553 (-473)))) (OR (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-756))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| (-484) (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) +(-870 A B) ((|constructor| (NIL "\\indented{1}{This package provides tools for operating on primitive arrays} with unary and binary functions involving different underlying types")) (|map| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1|) (|PrimitiveArray| |#1|)) "\\spad{map(f,a)} applies function \\spad{f} to each member of primitive array \\spad{a} resulting in a new primitive array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the primitive array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-arrays \\spad{x} of primitive array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}."))) NIL NIL -(-870) +(-871) ((|constructor| (NIL "Category for the functions defined by integrals.")) (|integral| (($ $ (|SegmentBinding| $)) "\\spad{integral(f, x = a..b)} returns the formal definite integral of \\spad{f} dx for \\spad{x} between \\spad{a} and \\spad{b}.") (($ $ (|Symbol|)) "\\spad{integral(f, x)} returns the formal integral of \\spad{f} dx."))) NIL NIL -(-871 -3091) +(-872 -3092) ((|constructor| (NIL "PrimitiveElement provides functions to compute primitive elements in algebraic extensions.")) (|primitiveElement| (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|Symbol|)) "\\spad{primitiveElement([p1,...,pn], [a1,...,an], a)} returns \\spad{[[c1,...,cn], [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}'s are the defining polynomials for the \\spad{ai}'s. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{primitiveElement([p1,...,pn], [a1,...,an])} returns \\spad{[[c1,...,cn], [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}'s are the defining polynomials for the \\spad{ai}'s. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef1| (|Integer|)) (|:| |coef2| (|Integer|)) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|Polynomial| |#1|) (|Symbol|) (|Polynomial| |#1|) (|Symbol|)) "\\spad{primitiveElement(p1, a1, p2, a2)} returns \\spad{[c1, c2, q]} such that \\spad{k(a1, a2) = k(a)} where \\spad{a = c1 a1 + c2 a2, and q(a) = 0}. The \\spad{pi}'s are the defining polynomials for the \\spad{ai}'s. The \\spad{p2} may involve \\spad{a1},{} but \\spad{p1} must not involve \\spad{a2}. This operation uses \\spadfun{resultant}."))) NIL NIL -(-872 I) +(-873 I) ((|constructor| (NIL "The \\spadtype{IntegerPrimesPackage} implements a modification of Rabin's probabilistic primality test and the utility functions \\spadfun{nextPrime},{} \\spadfun{prevPrime} and \\spadfun{primes}.")) (|primes| (((|List| |#1|) |#1| |#1|) "\\spad{primes(a,b)} returns a list of all primes \\spad{p} with \\spad{a <= p <= b}")) (|prevPrime| ((|#1| |#1|) "\\spad{prevPrime(n)} returns the largest prime strictly smaller than \\spad{n}")) (|nextPrime| ((|#1| |#1|) "\\spad{nextPrime(n)} returns the smallest prime strictly larger than \\spad{n}")) (|prime?| (((|Boolean|) |#1|) "\\spad{prime?(n)} returns \\spad{true} if \\spad{n} is prime and \\spad{false} if not. The algorithm used is Rabin's probabilistic primality test (reference: Knuth Volume 2 Semi Numerical Algorithms). If \\spad{prime? n} returns \\spad{false},{} \\spad{n} is proven composite. If \\spad{prime? n} returns \\spad{true},{} prime? may be in error however,{} the probability of error is very low. and is zero below 25*10**9 (due to a result of Pomerance et al),{} below 10**12 and 10**13 due to results of Pinch,{} and below 341550071728321 due to a result of Jaeschke. Specifically,{} this implementation does at least 10 pseudo prime tests and so the probability of error is \\spad{< 4**(-10)}. The running time of this method is cubic in the length of the input \\spad{n},{} that is \\spad{O( (log n)**3 )},{} for \\spad{n<10**20}. beyond that,{} the algorithm is quartic,{} \\spad{O( (log n)**4 )}. Two improvements due to Davenport have been incorporated which catches some trivial strong pseudo-primes,{} such as [Jaeschke,{} 1991] 1377161253229053 * 413148375987157,{} which the original algorithm regards as prime"))) NIL NIL -(-873) +(-874) ((|constructor| (NIL "PrintPackage provides a print function for output forms.")) (|print| (((|Void|) (|OutputForm|)) "\\spad{print(o)} writes the output form \\spad{o} on standard output using the two-dimensional formatter."))) NIL NIL -(-874 A B) +(-875 A B) ((|constructor| (NIL "This domain implements cartesian product")) (|selectsecond| ((|#2| $) "\\spad{selectsecond(x)} \\undocumented")) (|selectfirst| ((|#1| $) "\\spad{selectfirst(x)} \\undocumented")) (|makeprod| (($ |#1| |#2|) "\\spad{makeprod(a,b)} \\undocumented"))) -((-3990 -12 (|has| |#2| (-411)) (|has| |#1| (-411)))) -((OR (-12 (|HasCategory| |#1| (QUOTE (-716))) (|HasCategory| |#2| (QUOTE (-716)))) (-12 (|HasCategory| |#1| (QUOTE (-755))) (|HasCategory| |#2| (QUOTE (-755))))) (-12 (|HasCategory| |#1| (QUOTE (-716))) (|HasCategory| |#2| (QUOTE (-716)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-104)))) (-12 (|HasCategory| |#1| (QUOTE (-716))) (|HasCategory| |#2| (QUOTE (-716)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-104)))) (-12 (|HasCategory| |#1| (QUOTE (-716))) (|HasCategory| |#2| (QUOTE (-716)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23))))) (-12 (|HasCategory| |#1| (QUOTE (-411))) (|HasCategory| |#2| (QUOTE (-411)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-411))) (|HasCategory| |#2| (QUOTE (-411)))) (-12 (|HasCategory| |#1| (QUOTE (-662))) (|HasCategory| |#2| (QUOTE (-662))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-318)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-104)))) (-12 (|HasCategory| |#1| (QUOTE (-716))) (|HasCategory| |#2| (QUOTE (-716)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-411))) (|HasCategory| |#2| (QUOTE (-411)))) (-12 (|HasCategory| |#1| (QUOTE (-662))) (|HasCategory| |#2| (QUOTE (-662))))) (-12 (|HasCategory| |#1| (QUOTE (-662))) (|HasCategory| |#2| (QUOTE (-662)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-104)))) (-12 (|HasCategory| |#1| (QUOTE (-755))) (|HasCategory| |#2| (QUOTE (-755))))) -(-875) +((-3991 -12 (|has| |#2| (-412)) (|has| |#1| (-412)))) +((OR (-12 (|HasCategory| |#1| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-717)))) (-12 (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-756))))) (-12 (|HasCategory| |#1| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-717)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-104)))) (-12 (|HasCategory| |#1| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-717)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-104)))) (-12 (|HasCategory| |#1| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-717)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23))))) (-12 (|HasCategory| |#1| (QUOTE (-412))) (|HasCategory| |#2| (QUOTE (-412)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-412))) (|HasCategory| |#2| (QUOTE (-412)))) (-12 (|HasCategory| |#1| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-663))))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-319)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-104)))) (-12 (|HasCategory| |#1| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-717)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-412))) (|HasCategory| |#2| (QUOTE (-412)))) (-12 (|HasCategory| |#1| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-663))))) (-12 (|HasCategory| |#1| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-663)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-104)))) (-12 (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-756))))) +(-876) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. An `Property' is a pair of name and value.")) (|property| (($ (|Identifier|) (|SExpression|)) "\\spad{property(n,val)} constructs a property with name `n' and value `val'.")) (|value| (((|SExpression|) $) "\\spad{value(p)} returns value of property \\spad{p}")) (|name| (((|Identifier|) $) "\\spad{name(p)} returns the name of property \\spad{p}"))) NIL NIL -(-876 T$) +(-877 T$) ((|constructor| (NIL "This domain implements propositional formula build over a term domain,{} that itself belongs to PropositionalLogic")) (|disjunction| (($ $ $) "\\spad{disjunction(p,q)} returns a formula denoting the disjunction of \\spad{p} and \\spad{q}.")) (|conjunction| (($ $ $) "\\spad{conjunction(p,q)} returns a formula denoting the conjunction of \\spad{p} and \\spad{q}.")) (|isEquiv| (((|Maybe| (|Pair| $ $)) $) "\\spad{isEquiv f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is an equivalence formula.")) (|isImplies| (((|Maybe| (|Pair| $ $)) $) "\\spad{isImplies f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is an implication formula.")) (|isOr| (((|Maybe| (|Pair| $ $)) $) "\\spad{isOr f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is a disjunction formula.")) (|isAnd| (((|Maybe| (|Pair| $ $)) $) "\\spad{isAnd f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is a conjunction formula.")) (|isNot| (((|Maybe| $) $) "\\spad{isNot f} returns a value \\spad{v} such that \\spad{v case \\%} holds if the formula \\spad{f} is a negation.")) (|isAtom| (((|Maybe| |#1|) $) "\\spad{isAtom f} returns a value \\spad{v} such that \\spad{v case T} holds if the formula \\spad{f} is a term."))) NIL NIL -(-877 T$) +(-878 T$) ((|constructor| (NIL "This package collects unary functions operating on propositional formulae.")) (|simplify| (((|PropositionalFormula| |#1|) (|PropositionalFormula| |#1|)) "\\spad{simplify f} returns a formula logically equivalent to \\spad{f} where obvious tautologies have been removed.")) (|atoms| (((|Set| |#1|) (|PropositionalFormula| |#1|)) "\\spad{atoms f} ++ returns the set of atoms appearing in the formula \\spad{f}.")) (|dual| (((|PropositionalFormula| |#1|) (|PropositionalFormula| |#1|)) "\\spad{dual f} returns the dual of the proposition \\spad{f}."))) NIL NIL -(-878 S T$) +(-879 S T$) ((|constructor| (NIL "This package collects binary functions operating on propositional formulae.")) (|map| (((|PropositionalFormula| |#2|) (|Mapping| |#2| |#1|) (|PropositionalFormula| |#1|)) "\\spad{map(f,x)} returns a propositional formula where all atoms in \\spad{x} have been replaced by the result of applying the function \\spad{f} to them."))) NIL NIL -(-879) +(-880) ((|constructor| (NIL "This category declares the connectives of Propositional Logic.")) (|equiv| (($ $ $) "\\spad{equiv(p,q)} returns the logical equivalence of `p',{} `q'.")) (|implies| (($ $ $) "\\spad{implies(p,q)} returns the logical implication of `q' by `p'.")) (|false| (($) "\\spad{false} is a logical constant.")) (|true| (($) "\\spad{true} is a logical constant."))) NIL NIL -(-880 S) +(-881 S) ((|constructor| (NIL "A priority queue is a bag of items from an ordered set where the item extracted is always the maximum element.")) (|merge!| (($ $ $) "\\spad{merge!(q,q1)} destructively changes priority queue \\spad{q} to include the values from priority queue \\spad{q1}.")) (|merge| (($ $ $) "\\spad{merge(q1,q2)} returns combines priority queues \\spad{q1} and \\spad{q2} to return a single priority queue \\spad{q}.")) (|max| ((|#1| $) "\\spad{max(q)} returns the maximum element of priority queue \\spad{q}."))) -((-3993 . T) (-3994 . T)) +((-3994 . T) (-3995 . T)) NIL -(-881 R |polR|) +(-882 R |polR|) ((|constructor| (NIL "This package contains some functions: \\axiomOpFrom{discriminant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultant}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcd}{PseudoRemainderSequence},{} \\axiomOpFrom{chainSubResultants}{PseudoRemainderSequence},{} \\axiomOpFrom{degreeSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{lastSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultantEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcdEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{\\spad{semiSubResultantGcdEuclidean1}}{PseudoRemainderSequence},{} \\axiomOpFrom{\\spad{semiSubResultantGcdEuclidean2}}{PseudoRemainderSequence},{} etc. This procedures are coming from improvements of the subresultants algorithm. \\indented{2}{Version : 7} \\indented{2}{References : Lionel Ducos \"Optimizations of the subresultant algorithm\"} \\indented{2}{to appear in the Journal of Pure and Applied Algebra.} \\indented{2}{Author : Ducos Lionel \\axiom{Lionel.Ducos@mathlabo.univ-poitiers.fr}}")) (|semiResultantEuclideannaif| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the semi-extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantEuclideannaif| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantnaif| ((|#1| |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|nextsousResultant2| ((|#2| |#2| |#2| |#2| |#1|) "\\axiom{\\spad{nextsousResultant2}(\\spad{P},{} \\spad{Q},{} \\spad{Z},{} \\spad{s})} returns the subresultant \\axiom{S_{\\spad{e}-1}} where \\axiom{\\spad{P} ~ S_d,{} \\spad{Q} = S_{\\spad{d}-1},{} \\spad{Z} = S_e,{} \\spad{s} = lc(S_d)}")) (|Lazard2| ((|#2| |#2| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{\\spad{Lazard2}(\\spad{F},{} \\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{(x/y)**(\\spad{n}-1) * \\spad{F}}")) (|Lazard| ((|#1| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard(\\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{x**n/y**(\\spad{n}-1)}")) (|divide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{divide(\\spad{F},{}\\spad{G})} computes quotient and rest of the exact euclidean division of \\axiom{\\spad{F}} by \\axiom{\\spad{G}}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{pseudoDivide(\\spad{P},{}\\spad{Q})} computes the pseudoDivide of \\axiom{\\spad{P}} by \\axiom{\\spad{Q}}.")) (|exquo| (((|Vector| |#2|) (|Vector| |#2|) |#1|) "\\axiom{\\spad{v} exquo \\spad{r}} computes the exact quotient of \\axiom{\\spad{v}} by \\axiom{\\spad{r}}")) (* (((|Vector| |#2|) |#1| (|Vector| |#2|)) "\\axiom{\\spad{r} * \\spad{v}} computes the product of \\axiom{\\spad{r}} and \\axiom{\\spad{v}}")) (|gcd| ((|#2| |#2| |#2|) "\\axiom{gcd(\\spad{P},{} \\spad{Q})} returns the gcd of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiResultantReduitEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{semiResultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduitEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{resultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{coef1*P + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduit| ((|#1| |#2| |#2|) "\\axiom{resultantReduit(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|schema| (((|List| (|NonNegativeInteger|)) |#2| |#2|) "\\axiom{schema(\\spad{P},{}\\spad{Q})} returns the list of degrees of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|chainSubResultants| (((|List| |#2|) |#2| |#2|) "\\axiom{chainSubResultants(\\spad{P},{} \\spad{Q})} computes the list of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiDiscriminantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{...\\spad{P} + \\spad{coef2} * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}. Warning: \\axiom{degree(\\spad{P}) >= degree(\\spad{Q})}.")) (|discriminantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{\\spad{coef1} * \\spad{P} + \\spad{coef2} * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}.")) (|discriminant| ((|#1| |#2|) "\\axiom{discriminant(\\spad{P},{} \\spad{Q})} returns the discriminant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiSubResultantGcdEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{\\spad{semiSubResultantGcdEuclidean1}(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + ? \\spad{Q} = +/- S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|semiSubResultantGcdEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{\\spad{semiSubResultantGcdEuclidean2}(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = +/- S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible. Warning: \\axiom{degree(\\spad{P}) >= degree(\\spad{Q})}.")) (|subResultantGcdEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{subResultantGcdEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = +/- S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|subResultantGcd| ((|#2| |#2| |#2|) "\\axiom{subResultantGcd(\\spad{P},{} \\spad{Q})} returns the gcd of two primitive polynomials \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiLastSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{semiLastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{S}}. Warning: \\axiom{degree(\\spad{P}) >= degree(\\spad{Q})}.")) (|lastSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{lastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{S}}.")) (|lastSubResultant| ((|#2| |#2| |#2|) "\\axiom{lastSubResultant(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")) (|semiDegreeSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i}. Warning: \\axiom{degree(\\spad{P}) >= degree(\\spad{Q})}.")) (|degreeSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i}.")) (|degreeSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{degreeSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{d})} computes a subresultant of degree \\axiom{\\spad{d}}.")) (|semiIndiceSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{semiIndiceSubResultantEuclidean(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i(\\spad{P},{}\\spad{Q})} Warning: \\axiom{degree(\\spad{P}) >= degree(\\spad{Q})}.")) (|indiceSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i(\\spad{P},{}\\spad{Q})}")) (|indiceSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant of indice \\axiom{\\spad{i}}")) (|semiResultantEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{\\spad{semiResultantEuclidean1}(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{\\spad{coef1}.\\spad{P} + ? \\spad{Q} = resultant(\\spad{P},{}\\spad{Q})}.")) (|semiResultantEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{\\spad{semiResultantEuclidean2}(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}. Warning: \\axiom{degree(\\spad{P}) >= degree(\\spad{Q})}.")) (|resultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}")) (|resultant| ((|#1| |#2| |#2|) "\\axiom{resultant(\\spad{P},{} \\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}"))) NIL -((|HasCategory| |#1| (QUOTE (-390)))) -(-882) +((|HasCategory| |#1| (QUOTE (-391)))) +(-883) ((|constructor| (NIL "This domain represents `pretend' expressions.")) (|target| (((|TypeAst|) $) "\\spad{target(e)} returns the target type of the conversion..")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression being converted."))) NIL NIL -(-883) +(-884) ((|constructor| (NIL "Partition is an OrderedCancellationAbelianMonoid which is used as the basis for symmetric polynomial representation of the sums of powers in SymmetricPolynomial. Thus,{} \\spad{(5 2 2 1)} will represent \\spad{s5 * s2**2 * s1}.")) (|conjugate| (($ $) "\\spad{conjugate(p)} returns the conjugate partition of a partition \\spad{p}")) (|pdct| (((|PositiveInteger|) $) "\\spad{pdct(a1**n1 a2**n2 ...)} returns \\spad{n1! * a1**n1 * n2! * a2**n2 * ...}. This function is used in the package \\spadtype{CycleIndicators}.")) (|powers| (((|List| (|Pair| (|PositiveInteger|) (|PositiveInteger|))) $) "\\spad{powers(x)} returns a list of pairs. The second component of each pair is the multiplicity with which the first component occurs in \\spad{li}.")) (|partitions| (((|Stream| $) (|NonNegativeInteger|)) "\\spad{partitions n} returns the stream of all partitions of size \\spad{n}.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\#x} returns the sum of all parts of the partition \\spad{x}.")) (|parts| (((|List| (|PositiveInteger|)) $) "\\spad{parts x} returns the list of decreasing integer sequence making up the partition \\spad{x}.")) (|partition| (($ (|List| (|PositiveInteger|))) "\\spad{partition(li)} converts a list of integers \\spad{li} to a partition"))) NIL NIL -(-884 S |Coef| |Expon| |Var|) +(-885 S |Coef| |Expon| |Var|) ((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#4|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#3| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#4|) (|List| |#3|)) "\\spad{monomial(a,[x1,..,xk],[n1,..,nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#4| |#3|) "\\spad{monomial(a,x,n)} computes \\spad{a*x**n}."))) NIL NIL -(-885 |Coef| |Expon| |Var|) +(-886 |Coef| |Expon| |Var|) ((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#3|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#2| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#3|) (|List| |#2|)) "\\spad{monomial(a,[x1,..,xk],[n1,..,nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#3| |#2|) "\\spad{monomial(a,x,n)} computes \\spad{a*x**n}."))) -(((-3995 "*") |has| |#1| (-146)) (-3986 |has| |#1| (-494)) (-3987 . T) (-3988 . T) (-3990 . T)) +(((-3996 "*") |has| |#1| (-146)) (-3987 |has| |#1| (-495)) (-3988 . T) (-3989 . T) (-3991 . T)) NIL -(-886) +(-887) ((|constructor| (NIL "PlottableSpaceCurveCategory is the category of curves in 3-space which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the x-,{} y-,{} and \\spad{z}-coordinates of the points on the curve.")) (|zRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{zRange(c)} returns the range of the \\spad{z}-coordinates of the points on the curve \\spad{c}.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}."))) NIL NIL -(-887 S R E |VarSet| P) +(-888 S R E |VarSet| P) ((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(ps)} returns \\spad{true} iff \\axiom{ps} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{ps}.")) (|rewriteIdealWithRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithRemainder(lp,{}cs)} returns \\axiom{lr} such that every polynomial in \\axiom{lr} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{cs} and \\axiom{(lp,{}cs)} and \\axiom{(lr,{}cs)} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithHeadRemainder(lp,{}cs)} returns \\axiom{lr} such that the leading monomial of every polynomial in \\axiom{lr} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{cs} and \\axiom{(lp,{}cs)} and \\axiom{(lr,{}cs)} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{remainder(a,{}ps)} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ps},{} \\axiom{r*a - c*b} lies in the ideal generated by \\axiom{ps}. Furthermore,{} if \\axiom{\\spad{R}} is a gcd-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{headRemainder(a,{}ps)} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ps} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{ps}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(ps)} returns \\spad{true} iff \\axiom{ps} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(ps)} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{ps} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(ps)} returns \\spad{true} iff \\axiom{ps} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#4|) "\\axiom{sort(\\spad{v},{}ps)} returns \\axiom{us,{}vs,{}ws} such that \\axiom{us} is \\axiom{collectUnder(ps,{}\\spad{v})},{} \\axiom{vs} is \\axiom{collect(ps,{}\\spad{v})} and \\axiom{ws} is \\axiom{collectUpper(ps,{}\\spad{v})}.")) (|collectUpper| (($ $ |#4|) "\\axiom{collectUpper(ps,{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{ps} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#4|) "\\axiom{collect(ps,{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{ps} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#4|) "\\axiom{collectUnder(ps,{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{ps} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#4| $) "\\axiom{mainVariable?(\\spad{v},{}ps)} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{ps}.")) (|mainVariables| (((|List| |#4|) $) "\\axiom{mainVariables(ps)} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{ps}.")) (|variables| (((|List| |#4|) $) "\\axiom{variables(ps)} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{ps}.")) (|mvar| ((|#4| $) "\\axiom{mvar(ps)} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#5|)) "\\axiom{retract(lp)} returns an element of the domain whose elements are the members of \\axiom{lp} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#5|)) "\\axiom{retractIfCan(lp)} returns an element of the domain whose elements are the members of \\axiom{lp} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned."))) NIL -((|HasCategory| |#2| (QUOTE (-494)))) -(-888 R E |VarSet| P) +((|HasCategory| |#2| (QUOTE (-495)))) +(-889 R E |VarSet| P) ((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(ps)} returns \\spad{true} iff \\axiom{ps} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{ps}.")) (|rewriteIdealWithRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithRemainder(lp,{}cs)} returns \\axiom{lr} such that every polynomial in \\axiom{lr} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{cs} and \\axiom{(lp,{}cs)} and \\axiom{(lr,{}cs)} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithHeadRemainder(lp,{}cs)} returns \\axiom{lr} such that the leading monomial of every polynomial in \\axiom{lr} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{cs} and \\axiom{(lp,{}cs)} and \\axiom{(lr,{}cs)} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{remainder(a,{}ps)} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ps},{} \\axiom{r*a - c*b} lies in the ideal generated by \\axiom{ps}. Furthermore,{} if \\axiom{\\spad{R}} is a gcd-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{headRemainder(a,{}ps)} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ps} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{ps}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(ps)} returns \\spad{true} iff \\axiom{ps} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(ps)} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{ps} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(ps)} returns \\spad{true} iff \\axiom{ps} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#3|) "\\axiom{sort(\\spad{v},{}ps)} returns \\axiom{us,{}vs,{}ws} such that \\axiom{us} is \\axiom{collectUnder(ps,{}\\spad{v})},{} \\axiom{vs} is \\axiom{collect(ps,{}\\spad{v})} and \\axiom{ws} is \\axiom{collectUpper(ps,{}\\spad{v})}.")) (|collectUpper| (($ $ |#3|) "\\axiom{collectUpper(ps,{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{ps} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#3|) "\\axiom{collect(ps,{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{ps} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#3|) "\\axiom{collectUnder(ps,{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{ps} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#3| $) "\\axiom{mainVariable?(\\spad{v},{}ps)} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{ps}.")) (|mainVariables| (((|List| |#3|) $) "\\axiom{mainVariables(ps)} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{ps}.")) (|variables| (((|List| |#3|) $) "\\axiom{variables(ps)} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{ps}.")) (|mvar| ((|#3| $) "\\axiom{mvar(ps)} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#4|)) "\\axiom{retract(lp)} returns an element of the domain whose elements are the members of \\axiom{lp} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{retractIfCan(lp)} returns an element of the domain whose elements are the members of \\axiom{lp} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned."))) -((-3993 . T)) +((-3994 . T)) NIL -(-889 R E V P) +(-890 R E V P) ((|constructor| (NIL "This package provides modest routines for polynomial system solving. The aim of many of the operations of this package is to remove certain factors in some polynomials in order to avoid unnecessary computations in algorithms involving splitting techniques by partial factorization.")) (|removeIrreducibleRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeIrreducibleRedundantFactors(lp,{}lq)} returns the same as \\axiom{irreducibleFactors(concat(lp,{}lq))} assuming that \\axiom{irreducibleFactors(lp)} returns \\axiom{lp} up to replacing some polynomial \\axiom{pj} in \\axiom{lp} by some polynomial \\axiom{qj} associated to \\axiom{pj}.")) (|lazyIrreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{lazyIrreducibleFactors(lp)} returns \\axiom{lf} such that if \\axiom{lp = [\\spad{p1},{}...,{}pn]} and \\axiom{lf = [\\spad{f1},{}...,{}fm]} then \\axiom{p1*p2*...\\spad{*pn=0}} means \\axiom{f1*f2*...\\spad{*fm=0}},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct. The algorithm tries to avoid factorization into irreducible factors as far as possible and makes previously use of gcd techniques over \\axiom{\\spad{R}}.")) (|irreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{irreducibleFactors(lp)} returns \\axiom{lf} such that if \\axiom{lp = [\\spad{p1},{}...,{}pn]} and \\axiom{lf = [\\spad{f1},{}...,{}fm]} then \\axiom{p1*p2*...\\spad{*pn=0}} means \\axiom{f1*f2*...\\spad{*fm=0}},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct.")) (|removeRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInPols(lp,{}lf)} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{lp} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{lp} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{lf}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in every polynomial \\axiom{lp}.")) (|removeRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInContents(lp,{}lf)} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{lp} by removing in the content of every polynomial of \\axiom{lp} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{lf}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{lp}.")) (|removeRoughlyRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInContents(lp,{}lf)} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{lp} by removing in the content of every polynomial of \\axiom{lp} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{lf}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{lp}.")) (|univariatePolynomialsGcds| (((|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{univariatePolynomialsGcds(lp,{}opt)} returns the same as \\axiom{univariatePolynomialsGcds(lp)} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|)) "\\axiom{univariatePolynomialsGcds(lp)} returns \\axiom{lg} where \\axiom{lg} is a list of the gcds of every pair in \\axiom{lp} of univariate polynomials in the same main variable.")) (|squareFreeFactors| (((|List| |#4|) |#4|) "\\axiom{squareFreeFactors(\\spad{p})} returns the square-free factors of \\axiom{\\spad{p}} over \\axiom{\\spad{R}}")) (|rewriteIdealWithQuasiMonicGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteIdealWithQuasiMonicGenerators(lp,{}redOp?,{}redOp)} returns \\axiom{lq} where \\axiom{lq} and \\axiom{lp} generate the same ideal in \\axiom{R^(\\spad{-1}) \\spad{P}} and \\axiom{lq} has rank not higher than the one of \\axiom{lp}. Moreover,{} \\axiom{lq} is computed by reducing \\axiom{lp} \\spad{w}.\\spad{r}.\\spad{t}. some basic set of the ideal generated by the quasi-monic polynomials in \\axiom{lp}.")) (|rewriteSetByReducingWithParticularGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteSetByReducingWithParticularGenerators(lp,{}pred?,{}redOp?,{}redOp)} returns \\axiom{lq} where \\axiom{lq} is computed by the following algorithm. Chose a basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-test \\axiom{redOp?} among the polynomials satisfying property \\axiom{pred?},{} if it is empty then leave,{} else reduce the other polynomials by this basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-operation \\axiom{redOp}. Repeat while another basic set with smaller rank can be computed. See code. If \\axiom{pred?} is \\axiom{quasiMonic?} the ideal is unchanged.")) (|crushedSet| (((|List| |#4|) (|List| |#4|)) "\\axiom{crushedSet(lp)} returns \\axiom{lq} such that \\axiom{lp} and and \\axiom{lq} generate the same ideal and no rough basic sets reduce (in the sense of Groebner bases) the other polynomials in \\axiom{lq}.")) (|roughBasicSet| (((|Union| (|Record| (|:| |bas| (|GeneralTriangularSet| |#1| |#2| |#3| |#4|)) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|)) "\\axiom{roughBasicSet(lp)} returns the smallest (with Ritt-Wu ordering) triangular set contained in \\axiom{lp}.")) (|interReduce| (((|List| |#4|) (|List| |#4|)) "\\axiom{interReduce(lp)} returns \\axiom{lq} such that \\axiom{lp} and \\axiom{lq} generate the same ideal and no polynomial in \\axiom{lq} is reducuble by the others in the sense of Groebner bases. Since no assumptions are required the result may depend on the ordering the reductions are performed.")) (|removeRoughlyRedundantFactorsInPol| ((|#4| |#4| (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPol(\\spad{p},{}lf)} returns the same as removeRoughlyRedundantFactorsInPols([\\spad{p}],{}lf,{}\\spad{true})")) (|removeRoughlyRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{removeRoughlyRedundantFactorsInPols(lp,{}lf,{}opt)} returns the same as \\axiom{removeRoughlyRedundantFactorsInPols(lp,{}lf)} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPols(lp,{}lf)} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{lp} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{lp} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{lf}. This may involve a lot of exact-quotients computations.")) (|bivariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{bivariatePolynomials(lp)} returns \\axiom{bps,{}nbps} where \\axiom{bps} is a list of the bivariate polynomials,{} and \\axiom{nbps} are the other ones.")) (|bivariate?| (((|Boolean|) |#4|) "\\axiom{bivariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves two and only two variables.")) (|linearPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{linearPolynomials(lp)} returns \\axiom{lps,{}nlps} where \\axiom{lps} is a list of the linear polynomials in lp,{} and \\axiom{nlps} are the other ones.")) (|linear?| (((|Boolean|) |#4|) "\\axiom{linear?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} does not lie in the base ring \\axiom{\\spad{R}} and has main degree \\axiom{1}.")) (|univariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{univariatePolynomials(lp)} returns \\axiom{ups,{}nups} where \\axiom{ups} is a list of the univariate polynomials,{} and \\axiom{nups} are the other ones.")) (|univariate?| (((|Boolean|) |#4|) "\\axiom{univariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves one and only one variable.")) (|quasiMonicPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{quasiMonicPolynomials(lp)} returns \\axiom{qmps,{}nqmps} where \\axiom{qmps} is a list of the quasi-monic polynomials in \\axiom{lp} and \\axiom{nqmps} are the other ones.")) (|selectAndPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectAndPolynomials(lpred?,{}ps)} returns \\axiom{gps,{}bps} where \\axiom{gps} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{ps} such that \\axiom{pred?(\\spad{p})} holds for every \\axiom{pred?} in \\axiom{lpred?} and \\axiom{bps} are the other ones.")) (|selectOrPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectOrPolynomials(lpred?,{}ps)} returns \\axiom{gps,{}bps} where \\axiom{gps} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{ps} such that \\axiom{pred?(\\spad{p})} holds for some \\axiom{pred?} in \\axiom{lpred?} and \\axiom{bps} are the other ones.")) (|selectPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|Mapping| (|Boolean|) |#4|) (|List| |#4|)) "\\axiom{selectPolynomials(pred?,{}ps)} returns \\axiom{gps,{}bps} where \\axiom{gps} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{ps} such that \\axiom{pred?(\\spad{p})} holds and \\axiom{bps} are the other ones.")) (|probablyZeroDim?| (((|Boolean|) (|List| |#4|)) "\\axiom{probablyZeroDim?(lp)} returns \\spad{true} iff the number of polynomials in \\axiom{lp} is not smaller than the number of variables occurring in these polynomials.")) (|possiblyNewVariety?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\axiom{possiblyNewVariety?(newlp,{}llp)} returns \\spad{true} iff for every \\axiom{lp} in \\axiom{llp} certainlySubVariety?(newlp,{}lp) does not hold.")) (|certainlySubVariety?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{certainlySubVariety?(newlp,{}lp)} returns \\spad{true} iff for every \\axiom{\\spad{p}} in \\axiom{lp} the remainder of \\axiom{\\spad{p}} by \\axiom{newlp} using the division algorithm of Groebner techniques is zero.")) (|unprotectedRemoveRedundantFactors| (((|List| |#4|) |#4| |#4|) "\\axiom{unprotectedRemoveRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} but does assume that neither \\axiom{\\spad{p}} nor \\axiom{\\spad{q}} lie in the base ring \\axiom{\\spad{R}} and assumes that \\axiom{infRittWu?(\\spad{p},{}\\spad{q})} holds. Moreover,{} if \\axiom{\\spad{R}} is gcd-domain,{} then \\axiom{\\spad{p}} and \\axiom{\\spad{q}} are assumed to be square free.")) (|removeSquaresIfCan| (((|List| |#4|) (|List| |#4|)) "\\axiom{removeSquaresIfCan(lp)} returns \\axiom{removeDuplicates [squareFreePart(\\spad{p})\\$\\spad{P} for \\spad{p} in lp]} if \\axiom{\\spad{R}} is gcd-domain else returns \\axiom{lp}.")) (|removeRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Mapping| (|List| |#4|) (|List| |#4|))) "\\axiom{removeRedundantFactors(lp,{}lq,{}remOp)} returns the same as \\axiom{concat(remOp(removeRoughlyRedundantFactorsInPols(lp,{}lq)),{}lq)} assuming that \\axiom{remOp(lq)} returns \\axiom{lq} up to similarity.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(lp,{}lq)} returns the same as \\axiom{removeRedundantFactors(concat(lp,{}lq))} assuming that \\axiom{removeRedundantFactors(lp)} returns \\axiom{lp} up to replacing some polynomial \\axiom{pj} in \\axiom{lp} by some polynomial \\axiom{qj} associated to \\axiom{pj}.") (((|List| |#4|) (|List| |#4|) |#4|) "\\axiom{removeRedundantFactors(lp,{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(cons(\\spad{q},{}lp))} assuming that \\axiom{removeRedundantFactors(lp)} returns \\axiom{lp} up to replacing some polynomial \\axiom{pj} in \\axiom{lp} by some some polynomial \\axiom{qj} associated to \\axiom{pj}.") (((|List| |#4|) |#4| |#4|) "\\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors([\\spad{p},{}\\spad{q}])}") (((|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(lp)} returns \\axiom{lq} such that if \\axiom{lp = [\\spad{p1},{}...,{}pn]} and \\axiom{lq = [\\spad{q1},{}...,{}qm]} then the product \\axiom{p1*p2*...*pn} vanishes iff the product \\axiom{q1*q2*...*qm} vanishes,{} and the product of degrees of the \\axiom{\\spad{qi}} is not greater than the one of the \\axiom{pj},{} and no polynomial in \\axiom{lq} divides another polynomial in \\axiom{lq}. In particular,{} polynomials lying in the base ring \\axiom{\\spad{R}} are removed. Moreover,{} \\axiom{lq} is sorted \\spad{w}.\\spad{r}.\\spad{t} \\axiom{infRittWu?}. Furthermore,{} if \\spad{R} is gcd-domain,{} the polynomials in \\axiom{lq} are pairwise without common non trivial factor."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-258)))) (|HasCategory| |#1| (QUOTE (-390)))) -(-890 K) +((-12 (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-258)))) (|HasCategory| |#1| (QUOTE (-391)))) +(-891 K) ((|constructor| (NIL "PseudoLinearNormalForm provides a function for computing a block-companion form for pseudo-linear operators.")) (|companionBlocks| (((|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{companionBlocks(m, v)} returns \\spad{[[C_1, g_1],...,[C_k, g_k]]} such that each \\spad{C_i} is a companion block and \\spad{m = diagonal(C_1,...,C_k)}.")) (|changeBase| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{changeBase(M, A, sig, der)}: computes the new matrix of a pseudo-linear transform given by the matrix \\spad{M} under the change of base A")) (|normalForm| (((|Record| (|:| R (|Matrix| |#1|)) (|:| A (|Matrix| |#1|)) (|:| |Ainv| (|Matrix| |#1|))) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{normalForm(M, sig, der)} returns \\spad{[R, A, A^{-1}]} such that the pseudo-linear operator whose matrix in the basis \\spad{y} is \\spad{M} had matrix \\spad{R} in the basis \\spad{z = A y}. \\spad{der} is a \\spad{sig}-derivation."))) NIL NIL -(-891 |VarSet| E RC P) +(-892 |VarSet| E RC P) ((|constructor| (NIL "This package computes square-free decomposition of multivariate polynomials over a coefficient ring which is an arbitrary gcd domain. The requirement on the coefficient domain guarantees that the \\spadfun{content} can be removed so that factors will be primitive as well as square-free. Over an infinite ring of finite characteristic,{}it may not be possible to guarantee that the factors are square-free.")) (|squareFree| (((|Factored| |#4|) |#4|) "\\spad{squareFree(p)} returns the square-free factorization of the polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime."))) NIL NIL -(-892 R) +(-893 R) ((|constructor| (NIL "PointCategory is the category of points in space which may be plotted via the graphics facilities. Functions are provided for defining points and handling elements of points.")) (|extend| (($ $ (|List| |#1|)) "\\spad{extend(x,l,r)} \\undocumented")) (|cross| (($ $ $) "\\spad{cross(p,q)} computes the cross product of the two points \\spad{p} and \\spad{q}. Error if the \\spad{p} and \\spad{q} are not 3 dimensional")) (|dimension| (((|PositiveInteger|) $) "\\spad{dimension(s)} returns the dimension of the point category \\spad{s}.")) (|point| (($ (|List| |#1|)) "\\spad{point(l)} returns a point category defined by a list \\spad{l} of elements from the domain \\spad{R}."))) -((-3994 . T) (-3993 . T)) +((-3995 . T) (-3994 . T)) NIL -(-893 R1 R2) +(-894 R1 R2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|Point| |#2|) (|Mapping| |#2| |#1|) (|Point| |#1|)) "\\spad{map(f,p)} \\undocumented"))) NIL NIL -(-894 R) +(-895 R) ((|constructor| (NIL "This package \\undocumented")) (|shade| ((|#1| (|Point| |#1|)) "\\spad{shade(pt)} returns the fourth element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} shade to express a fourth dimension.")) (|hue| ((|#1| (|Point| |#1|)) "\\spad{hue(pt)} returns the third element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} hue to express a third dimension.")) (|color| ((|#1| (|Point| |#1|)) "\\spad{color(pt)} returns the fourth element of the point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} color to express a fourth dimension.")) (|phiCoord| ((|#1| (|Point| |#1|)) "\\spad{phiCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical coordinate system.")) (|thetaCoord| ((|#1| (|Point| |#1|)) "\\spad{thetaCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|rCoord| ((|#1| (|Point| |#1|)) "\\spad{rCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|zCoord| ((|#1| (|Point| |#1|)) "\\spad{zCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian or a cylindrical coordinate system.")) (|yCoord| ((|#1| (|Point| |#1|)) "\\spad{yCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system.")) (|xCoord| ((|#1| (|Point| |#1|)) "\\spad{xCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system."))) NIL NIL -(-895 K) +(-896 K) ((|constructor| (NIL "This is the description of any package which provides partial functions on a domain belonging to TranscendentalFunctionCategory.")) (|acschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acschIfCan(z)} returns acsch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asechIfCan(z)} returns asech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acothIfCan(z)} returns acoth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanhIfCan(z)} returns atanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acoshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acoshIfCan(z)} returns acosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinhIfCan(z)} returns asinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cschIfCan(z)} returns csch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sechIfCan(z)} returns sech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cothIfCan(z)} returns coth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanhIfCan(z)} returns tanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|coshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{coshIfCan(z)} returns cosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinhIfCan(z)} returns sinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acscIfCan(z)} returns acsc(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asecIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asecIfCan(z)} returns asec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acotIfCan(z)} returns acot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanIfCan(z)} returns atan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acosIfCan(z)} returns acos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinIfCan(z)} returns asin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cscIfCan(z)} returns csc(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|secIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{secIfCan(z)} returns sec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cotIfCan(z)} returns cot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanIfCan(z)} returns tan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cosIfCan(z)} returns cos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinIfCan(z)} returns sin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|logIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{logIfCan(z)} returns log(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|expIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{expIfCan(z)} returns exp(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|nthRootIfCan| (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{nthRootIfCan(z,n)} returns the \\spad{n}th root of \\spad{z} if possible,{} and \"failed\" otherwise."))) NIL NIL -(-896 R E OV PPR) +(-897 R E OV PPR) ((|constructor| (NIL "This package \\undocumented{}")) (|map| ((|#4| (|Mapping| |#4| (|Polynomial| |#1|)) |#4|) "\\spad{map(f,p)} \\undocumented{}")) (|pushup| ((|#4| |#4| (|List| |#3|)) "\\spad{pushup(p,lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushup(p,v)} \\undocumented{}")) (|pushdown| ((|#4| |#4| (|List| |#3|)) "\\spad{pushdown(p,lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushdown(p,v)} \\undocumented{}")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-897 K R UP -3091) +(-898 K R UP -3092) ((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a monogenic algebra over \\spad{R}. We require that \\spad{F} is monogenic,{} \\spadignore{i.e.} that \\spad{F = K[x,y]/(f(x,y))},{} because the integral basis algorithm used will factor the polynomial \\spad{f(x,y)}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|reducedDiscriminant| ((|#2| |#3|) "\\spad{reducedDiscriminant(up)} \\undocumented")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv] } containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If 'basis' is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if 'basisInv' is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv] } containing information regarding the integral closure of \\spad{R} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If 'basis' is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if 'basisInv' is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}."))) NIL NIL -(-898 R |Var| |Expon| |Dpoly|) +(-899 R |Var| |Expon| |Dpoly|) ((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet} constructs a domain representing quasi-algebraic sets,{} which is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). This domain provides simplification of a user-given representation using groebner basis computations. There are two simplification routines: the first function \\spadfun{idealSimplify} uses groebner basis of ideals alone,{} while the second,{} \\spadfun{simplify} uses both groebner basis and factorization. The resulting defining equations \\spad{L} always form a groebner basis,{} and the resulting defining inequation \\spad{f} is always reduced. The function \\spadfun{simplify} may be applied several times if desired. A third simplification routine \\spadfun{radicalSimplify} is provided in \\spadtype{QuasiAlgebraicSet2} for comparison study only,{} as it is inefficient compared to the other two,{} as well as is restricted to only certain coefficient domains. For detail analysis and a comparison of the three methods,{} please consult the reference cited. \\blankline A polynomial function \\spad{q} defined on the quasi-algebraic set is equivalent to its reduced form with respect to \\spad{L}. While this may be obtained using the usual normal form algorithm,{} there is no canonical form for \\spad{q}. \\blankline The ordering in groebner basis computation is determined by the data type of the input polynomials. If it is possible we suggest to use refinements of total degree orderings.")) (|simplify| (($ $) "\\spad{simplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using a heuristic algorithm based on factoring.")) (|idealSimplify| (($ $) "\\spad{idealSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using Buchberger's algorithm.")) (|definingInequation| ((|#4| $) "\\spad{definingInequation(s)} returns a single defining polynomial for the inequation,{} that is,{} the Zariski open part of \\spad{s}.")) (|definingEquations| (((|List| |#4|) $) "\\spad{definingEquations(s)} returns a list of defining polynomials for equations,{} that is,{} for the Zariski closed part of \\spad{s}.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(s)} returns \\spad{true} if the quasialgebraic set \\spad{s} has no points,{} and \\spad{false} otherwise.")) (|setStatus| (($ $ (|Union| (|Boolean|) #1="failed")) "\\spad{setStatus(s,t)} returns the same representation for \\spad{s},{} but asserts the following: if \\spad{t} is \\spad{true},{} then \\spad{s} is empty,{} if \\spad{t} is \\spad{false},{} then \\spad{s} is non-empty,{} and if \\spad{t} = \"failed\",{} then no assertion is made (that is,{} \"don't know\"). Note: for internal use only,{} with care.")) (|status| (((|Union| (|Boolean|) #1#) $) "\\spad{status(s)} returns \\spad{true} if the quasi-algebraic set is empty,{} \\spad{false} if it is not,{} and \"failed\" if not yet known")) (|quasiAlgebraicSet| (($ (|List| |#4|) |#4|) "\\spad{quasiAlgebraicSet(pl,q)} returns the quasi-algebraic set with defining equations \\spad{p} = 0 for \\spad{p} belonging to the list \\spad{pl},{} and defining inequation \\spad{q} ~= 0.")) (|empty| (($) "\\spad{empty()} returns the empty quasi-algebraic set"))) NIL ((-12 (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-258))))) -(-899 |vl| |nv|) +(-900 |vl| |nv|) ((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet2} adds a function \\spadfun{radicalSimplify} which uses \\spadtype{IdealDecompositionPackage} to simplify the representation of a quasi-algebraic set. A quasi-algebraic set is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). Quasi-algebraic sets are implemented in the domain \\spadtype{QuasiAlgebraicSet},{} where two simplification routines are provided: \\spadfun{idealSimplify} and \\spadfun{simplify}. The function \\spadfun{radicalSimplify} is added for comparison study only. Because the domain \\spadtype{IdealDecompositionPackage} provides facilities for computing with radical ideals,{} it is necessary to restrict the ground ring to the domain \\spadtype{Fraction Integer},{} and the polynomial ring to be of type \\spadtype{DistributedMultivariatePolynomial}. The routine \\spadfun{radicalSimplify} uses these to compute groebner basis of radical ideals and is inefficient and restricted when compared to the two in \\spadtype{QuasiAlgebraicSet}.")) (|radicalSimplify| (((|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radicalSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using using groebner basis of radical ideals"))) NIL NIL -(-900 R E V P TS) +(-901 R E V P TS) ((|constructor| (NIL "A package for removing redundant quasi-components and redundant branches when decomposing a variety by means of quasi-components of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}ts,{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(lp,{}lts,{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(\\spad{lpwt1},{}\\spad{lpwt2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(lts)} removes from \\axiom{lts} any \\spad{ts} such that \\axiom{subQuasiComponent?(ts,{}us)} holds for another \\spad{us} in \\axiom{lts}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(ts,{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(ts,{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(ts,{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(ts,{}us)} returns a boolean \\spad{b} value if the fact that the regular zero set of \\axiom{us} contains that of \\axiom{ts} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(ts,{}us)} returns \\spad{true} iff \\axiom{ts} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(ts,{}us)} returns \\spad{false} iff \\axiom{ts} and \\axiom{us} are both empty,{} or \\axiom{ts} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ts}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(lts)} sorts \\axiom{lts} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu?}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(ts,{}us)} returns \\spad{true} iff \\axiom{ts} has less elements than \\axiom{us} otherwise if \\axiom{ts} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) NIL NIL -(-901) +(-902) ((|constructor| (NIL "This domain implements simple database queries")) (|value| (((|String|) $) "\\spad{value(q)} returns the value (\\spadignore{i.e.} right hand side) of \\axiom{\\spad{q}}.")) (|variable| (((|Symbol|) $) "\\spad{variable(q)} returns the variable (\\spadignore{i.e.} left hand side) of \\axiom{\\spad{q}}.")) (|equation| (($ (|Symbol|) (|String|)) "\\spad{equation(s,\"a\")} creates a new equation."))) NIL NIL -(-902 A S) +(-903 A S) ((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#2| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#2| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#2| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#2| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#2| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#2| |#2|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}."))) NIL -((|HasCategory| |#2| (QUOTE (-820))) (|HasCategory| |#2| (QUOTE (-482))) (|HasCategory| |#2| (QUOTE (-258))) (|HasCategory| |#2| (QUOTE (-949 (-1088)))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-552 (-472)))) (|HasCategory| |#2| (QUOTE (-932))) (|HasCategory| |#2| (QUOTE (-739))) (|HasCategory| |#2| (QUOTE (-755))) (|HasCategory| |#2| (QUOTE (-949 (-483)))) (|HasCategory| |#2| (QUOTE (-1064)))) -(-903 S) +((|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (QUOTE (-483))) (|HasCategory| |#2| (QUOTE (-258))) (|HasCategory| |#2| (QUOTE (-950 (-1089)))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-553 (-473)))) (|HasCategory| |#2| (QUOTE (-933))) (|HasCategory| |#2| (QUOTE (-740))) (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-950 (-484)))) (|HasCategory| |#2| (QUOTE (-1065)))) +(-904 S) ((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#1| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#1| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#1| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#1| |#1|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}."))) -((-3985 . T) (-3991 . T) (-3986 . T) ((-3995 "*") . T) (-3987 . T) (-3988 . T) (-3990 . T)) +((-3986 . T) (-3992 . T) (-3987 . T) ((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T)) NIL -(-904 A B R S) +(-905 A B R S) ((|constructor| (NIL "This package extends a function between integral domains to a mapping between their quotient fields.")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(func,frac)} applies the function \\spad{func} to the numerator and denominator of \\spad{frac}."))) NIL NIL -(-905 |n| K) +(-906 |n| K) ((|constructor| (NIL "This domain provides modest support for quadratic forms.")) (|matrix| (((|SquareMatrix| |#1| |#2|) $) "\\spad{matrix(qf)} creates a square matrix from the quadratic form \\spad{qf}.")) (|quadraticForm| (($ (|SquareMatrix| |#1| |#2|)) "\\spad{quadraticForm(m)} creates a quadratic form from a symmetric,{} square matrix \\spad{m}."))) NIL NIL -(-906) +(-907) ((|constructor| (NIL "This domain represents the syntax of a quasiquote \\indented{2}{expression.}")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the syntax for the expression being quoted."))) NIL NIL -(-907 S) +(-908 S) ((|constructor| (NIL "A queue is a bag where the first item inserted is the first item extracted.")) (|back| ((|#1| $) "\\spad{back(q)} returns the element at the back of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|front| ((|#1| $) "\\spad{front(q)} returns the element at the front of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(q)} returns the number of elements in the queue. Note: \\axiom{length(\\spad{q}) = \\#q}.")) (|rotate!| (($ $) "\\spad{rotate! q} rotates queue \\spad{q} so that the element at the front of the queue goes to the back of the queue. Note: rotate! \\spad{q} is equivalent to enqueue!(dequeue!(\\spad{q})).")) (|dequeue!| ((|#1| $) "\\spad{dequeue! s} destructively extracts the first (top) element from queue \\spad{q}. The element previously second in the queue becomes the first element. Error: if \\spad{q} is empty.")) (|enqueue!| ((|#1| |#1| $) "\\spad{enqueue!(x,q)} inserts \\spad{x} into the queue \\spad{q} at the back end."))) -((-3993 . T) (-3994 . T)) +((-3994 . T) (-3995 . T)) NIL -(-908 R) +(-909 R) ((|constructor| (NIL "\\spadtype{Quaternion} implements quaternions over a \\indented{2}{commutative ring. The main constructor function is \\spadfun{quatern}} \\indented{2}{which takes 4 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j}} \\indented{2}{imaginary part and the \\spad{k} imaginary part.}"))) -((-3986 |has| |#1| (-246)) (-3987 . T) (-3988 . T) (-3990 . T)) -((|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-552 (-472)))) (|HasCategory| |#1| (QUOTE (-312))) (OR (|HasCategory| |#1| (QUOTE (-246))) (|HasCategory| |#1| (QUOTE (-312)))) (|HasCategory| |#1| (QUOTE (-246))) (|HasCategory| |#1| (QUOTE (-755))) (|HasCategory| |#1| (QUOTE (-579 (-483)))) (|HasCategory| |#1| (|%list| (QUOTE -454) (QUOTE (-1088)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -241) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-810 (-1088)))) (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-808 (-1088)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-949 (-348 (-483)))))) (|HasCategory| |#1| (QUOTE (-949 (-348 (-483))))) (|HasCategory| |#1| (QUOTE (-949 (-483)))) (|HasCategory| |#1| (QUOTE (-972))) (|HasCategory| |#1| (QUOTE (-482)))) -(-909 S R) +((-3987 |has| |#1| (-246)) (-3988 . T) (-3989 . T) (-3991 . T)) +((|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-553 (-473)))) (|HasCategory| |#1| (QUOTE (-312))) (OR (|HasCategory| |#1| (QUOTE (-246))) (|HasCategory| |#1| (QUOTE (-312)))) (|HasCategory| |#1| (QUOTE (-246))) (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-580 (-484)))) (|HasCategory| |#1| (|%list| (QUOTE -455) (QUOTE (-1089)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -241) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-811 (-1089)))) (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-809 (-1089)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-950 (-349 (-484)))))) (|HasCategory| |#1| (QUOTE (-950 (-349 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-484)))) (|HasCategory| |#1| (QUOTE (-973))) (|HasCategory| |#1| (QUOTE (-483)))) +(-910 S R) ((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#2| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#2| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#2| |#2| |#2| |#2|) "\\spad{quatern(r,i,j,k)} constructs a quaternion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#2| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#2| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}."))) NIL -((|HasCategory| |#2| (QUOTE (-482))) (|HasCategory| |#2| (QUOTE (-972))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-552 (-472)))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-755))) (|HasCategory| |#2| (QUOTE (-246)))) -(-910 R) +((|HasCategory| |#2| (QUOTE (-483))) (|HasCategory| |#2| (QUOTE (-973))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-553 (-473)))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-246)))) +(-911 R) ((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#1| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#1| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#1| |#1| |#1| |#1|) "\\spad{quatern(r,i,j,k)} constructs a quaternion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#1| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#1| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}."))) -((-3986 |has| |#1| (-246)) (-3987 . T) (-3988 . T) (-3990 . T)) +((-3987 |has| |#1| (-246)) (-3988 . T) (-3989 . T) (-3991 . T)) NIL -(-911 QR R QS S) +(-912 QR R QS S) ((|constructor| (NIL "\\spadtype{QuaternionCategoryFunctions2} implements functions between two quaternion domains. The function \\spadfun{map} is used by the system interpreter to coerce between quaternion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the component parts of the quaternion \\spad{u}."))) NIL NIL -(-912 S) -((|constructor| (NIL "Linked List implementation of a Queue")) (|queue| (($ (|List| |#1|)) "\\spad{queue([x,y,...,z])} creates a queue with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom) element \\spad{z}."))) -((-3993 . T) (-3994 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1012))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1012)))) (|HasCategory| |#1| (QUOTE (-551 (-771)))) (|HasCategory| |#1| (QUOTE (-72)))) (-913 S) +((|constructor| (NIL "Linked List implementation of a Queue")) (|queue| (($ (|List| |#1|)) "\\spad{queue([x,y,...,z])} creates a queue with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom) element \\spad{z}."))) +((-3994 . T) (-3995 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1013))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-72)))) +(-914 S) ((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}."))) NIL NIL -(-914) +(-915) ((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}."))) NIL NIL -(-915 -3091 UP UPUP |radicnd| |n|) +(-916 -3092 UP UPUP |radicnd| |n|) ((|constructor| (NIL "Function field defined by y**n = \\spad{f}(\\spad{x})."))) -((-3986 |has| (-348 |#2|) (-312)) (-3991 |has| (-348 |#2|) (-312)) (-3985 |has| (-348 |#2|) (-312)) ((-3995 "*") . T) (-3987 . T) (-3988 . T) (-3990 . T)) -((|HasCategory| (-348 |#2|) (QUOTE (-118))) (|HasCategory| (-348 |#2|) (QUOTE (-120))) (|HasCategory| (-348 |#2|) (QUOTE (-299))) (OR (|HasCategory| (-348 |#2|) (QUOTE (-312))) (|HasCategory| (-348 |#2|) (QUOTE (-299)))) (|HasCategory| (-348 |#2|) (QUOTE (-312))) (|HasCategory| (-348 |#2|) (QUOTE (-318))) (OR (-12 (|HasCategory| (-348 |#2|) (QUOTE (-190))) (|HasCategory| (-348 |#2|) (QUOTE (-312)))) (|HasCategory| (-348 |#2|) (QUOTE (-299)))) (OR (-12 (|HasCategory| (-348 |#2|) (QUOTE (-190))) (|HasCategory| (-348 |#2|) (QUOTE (-312)))) (-12 (|HasCategory| (-348 |#2|) (QUOTE (-189))) (|HasCategory| (-348 |#2|) (QUOTE (-312)))) (|HasCategory| (-348 |#2|) (QUOTE (-299)))) (OR (-12 (|HasCategory| (-348 |#2|) (QUOTE (-312))) (|HasCategory| (-348 |#2|) (QUOTE (-808 (-1088))))) (-12 (|HasCategory| (-348 |#2|) (QUOTE (-299))) (|HasCategory| (-348 |#2|) (QUOTE (-808 (-1088)))))) (OR (-12 (|HasCategory| (-348 |#2|) (QUOTE (-312))) (|HasCategory| (-348 |#2|) (QUOTE (-808 (-1088))))) (-12 (|HasCategory| (-348 |#2|) (QUOTE (-312))) (|HasCategory| (-348 |#2|) (QUOTE (-810 (-1088)))))) (|HasCategory| (-348 |#2|) (QUOTE (-579 (-483)))) (OR (|HasCategory| (-348 |#2|) (QUOTE (-312))) (|HasCategory| (-348 |#2|) (QUOTE (-949 (-348 (-483)))))) (|HasCategory| (-348 |#2|) (QUOTE (-949 (-348 (-483))))) (|HasCategory| (-348 |#2|) (QUOTE (-949 (-483)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-318))) (-12 (|HasCategory| (-348 |#2|) (QUOTE (-189))) (|HasCategory| (-348 |#2|) (QUOTE (-312)))) (-12 (|HasCategory| (-348 |#2|) (QUOTE (-312))) (|HasCategory| (-348 |#2|) (QUOTE (-810 (-1088))))) (-12 (|HasCategory| (-348 |#2|) (QUOTE (-190))) (|HasCategory| (-348 |#2|) (QUOTE (-312)))) (-12 (|HasCategory| (-348 |#2|) (QUOTE (-312))) (|HasCategory| (-348 |#2|) (QUOTE (-808 (-1088)))))) -(-916 |bb|) +((-3987 |has| (-349 |#2|) (-312)) (-3992 |has| (-349 |#2|) (-312)) (-3986 |has| (-349 |#2|) (-312)) ((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T)) +((|HasCategory| (-349 |#2|) (QUOTE (-118))) (|HasCategory| (-349 |#2|) (QUOTE (-120))) (|HasCategory| (-349 |#2|) (QUOTE (-299))) (OR (|HasCategory| (-349 |#2|) (QUOTE (-312))) (|HasCategory| (-349 |#2|) (QUOTE (-299)))) (|HasCategory| (-349 |#2|) (QUOTE (-312))) (|HasCategory| (-349 |#2|) (QUOTE (-319))) (OR (-12 (|HasCategory| (-349 |#2|) (QUOTE (-190))) (|HasCategory| (-349 |#2|) (QUOTE (-312)))) (|HasCategory| (-349 |#2|) (QUOTE (-299)))) (OR (-12 (|HasCategory| (-349 |#2|) (QUOTE (-190))) (|HasCategory| (-349 |#2|) (QUOTE (-312)))) (-12 (|HasCategory| (-349 |#2|) (QUOTE (-189))) (|HasCategory| (-349 |#2|) (QUOTE (-312)))) (|HasCategory| (-349 |#2|) (QUOTE (-299)))) (OR (-12 (|HasCategory| (-349 |#2|) (QUOTE (-312))) (|HasCategory| (-349 |#2|) (QUOTE (-809 (-1089))))) (-12 (|HasCategory| (-349 |#2|) (QUOTE (-299))) (|HasCategory| (-349 |#2|) (QUOTE (-809 (-1089)))))) (OR (-12 (|HasCategory| (-349 |#2|) (QUOTE (-312))) (|HasCategory| (-349 |#2|) (QUOTE (-809 (-1089))))) (-12 (|HasCategory| (-349 |#2|) (QUOTE (-312))) (|HasCategory| (-349 |#2|) (QUOTE (-811 (-1089)))))) (|HasCategory| (-349 |#2|) (QUOTE (-580 (-484)))) (OR (|HasCategory| (-349 |#2|) (QUOTE (-312))) (|HasCategory| (-349 |#2|) (QUOTE (-950 (-349 (-484)))))) (|HasCategory| (-349 |#2|) (QUOTE (-950 (-349 (-484))))) (|HasCategory| (-349 |#2|) (QUOTE (-950 (-484)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-319))) (-12 (|HasCategory| (-349 |#2|) (QUOTE (-189))) (|HasCategory| (-349 |#2|) (QUOTE (-312)))) (-12 (|HasCategory| (-349 |#2|) (QUOTE (-312))) (|HasCategory| (-349 |#2|) (QUOTE (-811 (-1089))))) (-12 (|HasCategory| (-349 |#2|) (QUOTE (-190))) (|HasCategory| (-349 |#2|) (QUOTE (-312)))) (-12 (|HasCategory| (-349 |#2|) (QUOTE (-312))) (|HasCategory| (-349 |#2|) (QUOTE (-809 (-1089)))))) +(-917 |bb|) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions or more generally as repeating expansions in any base.")) (|fractRadix| (($ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{fractRadix(pre,cyc)} creates a fractional radix expansion from a list of prefix ragits and a list of cyclic ragits. For example,{} \\spad{fractRadix([1],[6])} will return \\spad{0.16666666...}.")) (|wholeRadix| (($ (|List| (|Integer|))) "\\spad{wholeRadix(l)} creates an integral radix expansion from a list of ragits. For example,{} \\spad{wholeRadix([1,3,4])} will return \\spad{134}.")) (|cycleRagits| (((|List| (|Integer|)) $) "\\spad{cycleRagits(rx)} returns the cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{cycleRagits(x) = [7,1,4,2,8,5]}.")) (|prefixRagits| (((|List| (|Integer|)) $) "\\spad{prefixRagits(rx)} returns the non-cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{prefixRagits(x)=[1,0]}.")) (|fractRagits| (((|Stream| (|Integer|)) $) "\\spad{fractRagits(rx)} returns the ragits of the fractional part of a radix expansion.")) (|wholeRagits| (((|List| (|Integer|)) $) "\\spad{wholeRagits(rx)} returns the ragits of the integer part of a radix expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(rx)} returns the fractional part of a radix expansion."))) -((-3985 . T) (-3991 . T) (-3986 . T) ((-3995 "*") . T) (-3987 . T) (-3988 . T) (-3990 . T)) -((|HasCategory| (-483) (QUOTE (-820))) (|HasCategory| (-483) (QUOTE (-949 (-1088)))) (|HasCategory| (-483) (QUOTE (-118))) (|HasCategory| (-483) (QUOTE (-120))) (|HasCategory| (-483) (QUOTE (-552 (-472)))) (|HasCategory| (-483) (QUOTE (-932))) (|HasCategory| (-483) (QUOTE (-739))) (|HasCategory| (-483) (QUOTE (-755))) (OR (|HasCategory| (-483) (QUOTE (-739))) (|HasCategory| (-483) (QUOTE (-755)))) (|HasCategory| (-483) (QUOTE (-949 (-483)))) (|HasCategory| (-483) (QUOTE (-1064))) (|HasCategory| (-483) (QUOTE (-795 (-328)))) (|HasCategory| (-483) (QUOTE (-795 (-483)))) (|HasCategory| (-483) (QUOTE (-552 (-799 (-328))))) (|HasCategory| (-483) (QUOTE (-552 (-799 (-483))))) (|HasCategory| (-483) (QUOTE (-189))) (|HasCategory| (-483) (QUOTE (-810 (-1088)))) (|HasCategory| (-483) (QUOTE (-190))) (|HasCategory| (-483) (QUOTE (-808 (-1088)))) (|HasCategory| (-483) (QUOTE (-454 (-1088) (-483)))) (|HasCategory| (-483) (QUOTE (-260 (-483)))) (|HasCategory| (-483) (QUOTE (-241 (-483) (-483)))) (|HasCategory| (-483) (QUOTE (-258))) (|HasCategory| (-483) (QUOTE (-482))) (|HasCategory| (-483) (QUOTE (-579 (-483)))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-483) (QUOTE (-820)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-483) (QUOTE (-820)))) (|HasCategory| (-483) (QUOTE (-118))))) -(-917) +((-3986 . T) (-3992 . T) (-3987 . T) ((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T)) +((|HasCategory| (-484) (QUOTE (-821))) (|HasCategory| (-484) (QUOTE (-950 (-1089)))) (|HasCategory| (-484) (QUOTE (-118))) (|HasCategory| (-484) (QUOTE (-120))) (|HasCategory| (-484) (QUOTE (-553 (-473)))) (|HasCategory| (-484) (QUOTE (-933))) (|HasCategory| (-484) (QUOTE (-740))) (|HasCategory| (-484) (QUOTE (-756))) (OR (|HasCategory| (-484) (QUOTE (-740))) (|HasCategory| (-484) (QUOTE (-756)))) (|HasCategory| (-484) (QUOTE (-950 (-484)))) (|HasCategory| (-484) (QUOTE (-1065))) (|HasCategory| (-484) (QUOTE (-796 (-329)))) (|HasCategory| (-484) (QUOTE (-796 (-484)))) (|HasCategory| (-484) (QUOTE (-553 (-800 (-329))))) (|HasCategory| (-484) (QUOTE (-553 (-800 (-484))))) (|HasCategory| (-484) (QUOTE (-189))) (|HasCategory| (-484) (QUOTE (-811 (-1089)))) (|HasCategory| (-484) (QUOTE (-190))) (|HasCategory| (-484) (QUOTE (-809 (-1089)))) (|HasCategory| (-484) (QUOTE (-455 (-1089) (-484)))) (|HasCategory| (-484) (QUOTE (-260 (-484)))) (|HasCategory| (-484) (QUOTE (-241 (-484) (-484)))) (|HasCategory| (-484) (QUOTE (-258))) (|HasCategory| (-484) (QUOTE (-483))) (|HasCategory| (-484) (QUOTE (-580 (-484)))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-484) (QUOTE (-821)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-484) (QUOTE (-821)))) (|HasCategory| (-484) (QUOTE (-118))))) +(-918) ((|constructor| (NIL "This package provides tools for creating radix expansions.")) (|radix| (((|Any|) (|Fraction| (|Integer|)) (|Integer|)) "\\spad{radix(x,b)} converts \\spad{x} to a radix expansion in base \\spad{b}."))) NIL NIL -(-918) +(-919) ((|constructor| (NIL "Random number generators \\indented{2}{All random numbers used in the system should originate from} \\indented{2}{the same generator.\\space{2}This package is intended to be the source.}")) (|seed| (((|Integer|)) "\\spad{seed()} returns the current seed value.")) (|reseed| (((|Void|) (|Integer|)) "\\spad{reseed(n)} restarts the random number generator at \\spad{n}.")) (|size| (((|Integer|)) "\\spad{size()} is the base of the random number generator")) (|randnum| (((|Integer|) (|Integer|)) "\\spad{randnum(n)} is a random number between 0 and \\spad{n}.") (((|Integer|)) "\\spad{randnum()} is a random number between 0 and size()."))) NIL NIL -(-919 RP) +(-920 RP) ((|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} factors an extended squareFree polynomial \\spad{p} over the rational numbers.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} factors an extended polynomial \\spad{p} over the rational numbers."))) NIL NIL -(-920 S) +(-921 S) ((|constructor| (NIL "rational number testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") |#1|) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} \"failed\" if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) |#1|) "\\spad{rational?(x)} returns \\spad{true} if \\spad{x} is a rational number,{} \\spad{false} otherwise.")) (|rational| (((|Fraction| (|Integer|)) |#1|) "\\spad{rational(x)} returns \\spad{x} as a rational number; error if \\spad{x} is not a rational number."))) NIL NIL -(-921 A S) +(-922 A S) ((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#2| $ |#2|) "\\spad{setvalue!(u,x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#2| $ "value" |#2|) "\\spad{setelt(a,\"value\",x)} (also written \\axiom{a . value := \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#2|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#2| $ "value") "\\spad{elt(u,\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#2| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}."))) NIL -((|HasAttribute| |#1| (QUOTE -3994)) (|HasCategory| |#2| (QUOTE (-1012)))) -(-922 S) +((|HasAttribute| |#1| (QUOTE -3995)) (|HasCategory| |#2| (QUOTE (-1013)))) +(-923 S) ((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#1| $ |#1|) "\\spad{setvalue!(u,x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#1| $ "value" |#1|) "\\spad{setelt(a,\"value\",x)} (also written \\axiom{a . value := \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#1|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#1| $ "value") "\\spad{elt(u,\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#1| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}."))) NIL NIL -(-923 S) +(-924 S) ((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} ** (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} ** (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} ** (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} ** (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}"))) NIL NIL -(-924) +(-925) ((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} ** (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} ** (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} ** (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} ** (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}"))) -((-3986 . T) (-3991 . T) (-3985 . T) (-3988 . T) (-3987 . T) ((-3995 "*") . T) (-3990 . T)) +((-3987 . T) (-3992 . T) (-3986 . T) (-3989 . T) (-3988 . T) ((-3996 "*") . T) (-3991 . T)) NIL -(-925 R -3091) +(-926 R -3092) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 1 February 1988 Date Last Updated: 2 November 1995 Keywords: elementary,{} function,{} integration.")) (|rischDE| (((|Record| (|:| |ans| |#2|) (|:| |right| |#2|) (|:| |sol?| (|Boolean|))) (|Integer|) |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDE(n, f, g, x, lim, ext)} returns \\spad{[y, h, b]} such that \\spad{dy/dx + n df/dx y = h} and \\spad{b := h = g}. The equation \\spad{dy/dx + n df/dx y = g} has no solution if \\spad{h \\~~= g} (\\spad{y} is a partial solution in that case). Notes: \\spad{lim} is a limited integration function,{} and ext is an extended integration function."))) NIL NIL -(-926 R -3091) +(-927 R -3092) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 12 August 1992 Date Last Updated: 17 August 1992 Keywords: elementary,{} function,{} integration.")) (|rischDEsys| (((|Union| (|List| |#2|) "failed") (|Integer|) |#2| |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDEsys(n, f, g_1, g_2, x,lim,ext)} returns \\spad{y_1.y_2} such that \\spad{(dy1/dx,dy2/dx) + ((0, - n df/dx),(n df/dx,0)) (y1,y2) = (g1,g2)} if \\spad{y_1,y_2} exist,{} \"failed\" otherwise. \\spad{lim} is a limited integration function,{} \\spad{ext} is an extended integration function."))) NIL NIL -(-927 -3091 UP) +(-928 -3092 UP) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} transcendental case.} Author: Manuel Bronstein Date Created: Jan 1988 Date Last Updated: 2 November 1995")) (|polyRDE| (((|Union| (|:| |ans| (|Record| (|:| |ans| |#2|) (|:| |nosol| (|Boolean|)))) (|:| |eq| (|Record| (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (|Integer|)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (|Integer|) (|Mapping| |#2| |#2|)) "\\spad{polyRDE(a, B, C, n, D)} returns either: 1. \\spad{[Q, b]} such that \\spad{degree(Q) <= n} and \\indented{3}{\\spad{a Q'+ B Q = C} if \\spad{b = true},{} \\spad{Q} is a partial solution} \\indented{3}{otherwise.} 2. \\spad{[B1, C1, m, \\alpha, \\beta]} such that any polynomial solution \\indented{3}{of degree at most \\spad{n} of \\spad{A Q' + BQ = C} must be of the form} \\indented{3}{\\spad{Q = \\alpha H + \\beta} where \\spad{degree(H) <= m} and} \\indented{3}{\\spad{H} satisfies \\spad{H' + B1 H = C1}.} \\spad{D} is the derivation to use.")) (|baseRDE| (((|Record| (|:| |ans| (|Fraction| |#2|)) (|:| |nosol| (|Boolean|))) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDE(f, g)} returns a \\spad{[y, b]} such that \\spad{y' + fy = g} if \\spad{b = true},{} \\spad{y} is a partial solution otherwise (no solution in that case). \\spad{D} is the derivation to use.")) (|monomRDE| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |c| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDE(f,g,D)} returns \\spad{[A, B, C, T]} such that \\spad{y' + f y = g} has a solution if and only if \\spad{y = Q / T},{} where \\spad{Q} satisfies \\spad{A Q' + B Q = C} and has no normal pole. A and \\spad{T} are polynomials and \\spad{B} and \\spad{C} have no normal poles. \\spad{D} is the derivation to use."))) NIL NIL -(-928 -3091 UP) +(-929 -3092 UP) ((|constructor| (NIL "\\indented{1}{Risch differential equation system,{} transcendental case.} Author: Manuel Bronstein Date Created: 17 August 1992 Date Last Updated: 3 February 1994")) (|baseRDEsys| (((|Union| (|List| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDEsys(f, g1, g2)} returns fractions \\spad{y_1.y_2} such that \\spad{(y1', y2') + ((0, -f), (f, 0)) (y1,y2) = (g1,g2)} if \\spad{y_1,y_2} exist,{} \"failed\" otherwise.")) (|monomRDEsys| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |h| |#2|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDEsys(f,g1,g2,D)} returns \\spad{[A, B, H, C1, C2, T]} such that \\spad{(y1', y2') + ((0, -f), (f, 0)) (y1,y2) = (g1,g2)} has a solution if and only if \\spad{y1 = Q1 / T, y2 = Q2 / T},{} where \\spad{B,C1,C2,Q1,Q2} have no normal poles and satisfy A \\spad{(Q1', Q2') + ((H, -B), (B, H)) (Q1,Q2) = (C1,C2)} \\spad{D} is the derivation to use."))) NIL NIL -(-929 S) +(-930 S) ((|constructor| (NIL "This package exports random distributions")) (|rdHack1| (((|Mapping| |#1|) (|Vector| |#1|) (|Vector| (|Integer|)) (|Integer|)) "\\spad{rdHack1(v,u,n)} \\undocumented")) (|weighted| (((|Mapping| |#1|) (|List| (|Record| (|:| |value| |#1|) (|:| |weight| (|Integer|))))) "\\spad{weighted(l)} \\undocumented")) (|uniform| (((|Mapping| |#1|) (|Set| |#1|)) "\\spad{uniform(s)} \\undocumented"))) NIL NIL -(-930 F1 UP UPUP R F2) +(-931 F1 UP UPUP R F2) ((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 8 November 1994")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|) |#3| (|Mapping| |#5| |#1|)) "\\spad{order(f,u,g)} \\undocumented"))) NIL NIL -(-931) +(-932) ((|constructor| (NIL "This domain represents list reduction syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} return the list of expressions being redcued.")) (|operator| (((|SpadAst|) $) "\\spad{operator(e)} returns the magma operation being applied."))) NIL NIL -(-932) +(-933) ((|constructor| (NIL "The category of real numeric domains,{} \\spadignore{i.e.} convertible to floats."))) NIL NIL -(-933 |Pol|) +(-934 |Pol|) ((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the integers to arbitrary user-specified precision. The results are returned as a list of isolating intervals which are expressed as records with \"left\" and \"right\" rational number components.")) (|midpoints| (((|List| (|Fraction| (|Integer|))) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{midpoints(isolist)} returns the list of midpoints for the list of intervals \\spad{isolist}.")) (|midpoint| (((|Fraction| (|Integer|)) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{midpoint(int)} returns the midpoint of the interval \\spad{int}.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol, int, range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} containing exactly one real root of \\spad{pol}; the operation returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol, int, eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol, int, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol, range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}."))) NIL NIL -(-934 |Pol|) +(-935 |Pol|) ((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the rational numbers to arbitrary user-specified precision. The results are returned as a list of isolating intervals,{} expressed as records with \"left\" and \"right\" rational number components.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol, int, range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} which must contain exactly one real root of \\spad{pol},{} and returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol, int, eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol, int, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol, range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}."))) NIL NIL -(-935) +(-936) ((|constructor| (NIL "\\indented{1}{This package provides numerical solutions of systems of polynomial} equations for use in ACPLOT.")) (|realSolve| (((|List| (|List| (|Float|))) (|List| (|Polynomial| (|Integer|))) (|List| (|Symbol|)) (|Float|)) "\\spad{realSolve(lp,lv,eps)} = compute the list of the real solutions of the list \\spad{lp} of polynomials with integer coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}.")) (|solve| (((|List| (|Float|)) (|Polynomial| (|Integer|)) (|Float|)) "\\spad{solve(p,eps)} finds the real zeroes of a univariate integer polynomial \\spad{p} with precision \\spad{eps}.") (((|List| (|Float|)) (|Polynomial| (|Fraction| (|Integer|))) (|Float|)) "\\spad{solve(p,eps)} finds the real zeroes of a univariate rational polynomial \\spad{p} with precision \\spad{eps}."))) NIL NIL -(-936 |TheField|) +(-937 |TheField|) ((|constructor| (NIL "This domain implements the real closure of an ordered field.")) (|relativeApprox| (((|Fraction| (|Integer|)) $ $) "\\axiom{relativeApprox(\\spad{n},{}\\spad{p})} gives a relative approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|mainCharacterization| (((|Union| (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) "failed") $) "\\axiom{mainCharacterization(\\spad{x})} is the main algebraic quantity of \\axiom{\\spad{x}} (\\axiom{SEG})")) (|algebraicOf| (($ (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) (|OutputForm|)) "\\axiom{algebraicOf(char)} is the external number"))) -((-3986 . T) (-3991 . T) (-3985 . T) (-3988 . T) (-3987 . T) ((-3995 "*") . T) (-3990 . T)) -((OR (|HasCategory| |#1| (QUOTE (-949 (-483)))) (|HasCategory| (-348 (-483)) (QUOTE (-949 (-483))))) (|HasCategory| |#1| (QUOTE (-949 (-348 (-483))))) (|HasCategory| |#1| (QUOTE (-949 (-483)))) (|HasCategory| (-348 (-483)) (QUOTE (-949 (-348 (-483))))) (|HasCategory| (-348 (-483)) (QUOTE (-949 (-483))))) -(-937 -3091 L) +((-3987 . T) (-3992 . T) (-3986 . T) (-3989 . T) (-3988 . T) ((-3996 "*") . T) (-3991 . T)) +((OR (|HasCategory| |#1| (QUOTE (-950 (-484)))) (|HasCategory| (-349 (-484)) (QUOTE (-950 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-349 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-484)))) (|HasCategory| (-349 (-484)) (QUOTE (-950 (-349 (-484))))) (|HasCategory| (-349 (-484)) (QUOTE (-950 (-484))))) +(-938 -3092 L) ((|constructor| (NIL "\\spadtype{ReductionOfOrder} provides functions for reducing the order of linear ordinary differential equations once some solutions are known.")) (|ReduceOrder| (((|Record| (|:| |eq| |#2|) (|:| |op| (|List| |#1|))) |#2| (|List| |#1|)) "\\spad{ReduceOrder(op, [f1,...,fk])} returns \\spad{[op1,[g1,...,gk]]} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = gk \\int(g_{k-1} \\int(... \\int(g1 \\int z)...)} is a solution of \\spad{op y = 0}. Each \\spad{fi} must satisfy \\spad{op fi = 0}.") ((|#2| |#2| |#1|) "\\spad{ReduceOrder(op, s)} returns \\spad{op1} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = s \\int z} is a solution of \\spad{op y = 0}. \\spad{s} must satisfy \\spad{op s = 0}."))) NIL NIL -(-938 S) +(-939 S) ((|constructor| (NIL "\\indented{1}{\\spadtype{Reference} is for making a changeable instance} of something.")) (= (((|Boolean|) $ $) "\\spad{a=b} tests if \\spad{a} and \\spad{b} are equal.")) (|setref| ((|#1| $ |#1|) "\\spad{setref(r,s)} reset the reference \\spad{r} to refer to \\spad{s}")) (|deref| ((|#1| $) "\\spad{deref(r)} returns the object referenced by \\spad{r}")) (|ref| (($ |#1|) "\\spad{ref(s)} creates a reference to the object \\spad{s}."))) NIL NIL -(-939 R E V P) +(-940 R E V P) ((|constructor| (NIL "This domain provides an implementation of regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(lp,{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(lp,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}. Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}ts,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement."))) -((-3994 . T) (-3993 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1012))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (|HasCategory| |#4| (QUOTE (-552 (-472)))) (|HasCategory| |#4| (QUOTE (-1012))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#3| (QUOTE (-318))) (|HasCategory| |#4| (QUOTE (-551 (-771)))) (|HasCategory| |#4| (QUOTE (-72)))) -(-940) +((-3995 . T) (-3994 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1013))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (|HasCategory| |#4| (QUOTE (-553 (-473)))) (|HasCategory| |#4| (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#3| (QUOTE (-319))) (|HasCategory| |#4| (QUOTE (-552 (-772)))) (|HasCategory| |#4| (QUOTE (-72)))) +(-941) ((|constructor| (NIL "Package for the computation of eigenvalues and eigenvectors. This package works for matrices with coefficients which are rational functions over the integers. (see \\spadtype{Fraction Polynomial Integer}). The eigenvalues and eigenvectors are expressed in terms of radicals.")) (|orthonormalBasis| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{orthonormalBasis(m)} returns the orthogonal matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal. Error: if \\spad{m} is not a symmetric matrix.")) (|gramschmidt| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|List| (|Matrix| (|Expression| (|Integer|))))) "\\spad{gramschmidt(lv)} converts the list of column vectors \\spad{lv} into a set of orthogonal column vectors of euclidean length 1 using the Gram-Schmidt algorithm.")) (|normalise| (((|Matrix| (|Expression| (|Integer|))) (|Matrix| (|Expression| (|Integer|)))) "\\spad{normalise(v)} returns the column vector \\spad{v} divided by its euclidean norm; when possible,{} the vector \\spad{v} is expressed in terms of radicals.")) (|eigenMatrix| (((|Union| (|Matrix| (|Expression| (|Integer|))) "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{eigenMatrix(m)} returns the matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal,{} or \"failed\" if no such \\spad{b} exists.")) (|radicalEigenvalues| (((|List| (|Expression| (|Integer|))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvalues(m)} computes the eigenvalues of the matrix \\spad{m}; when possible,{} the eigenvalues are expressed in terms of radicals.")) (|radicalEigenvector| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Expression| (|Integer|)) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvector(c,m)} computes the eigenvector(\\spad{s}) of the matrix \\spad{m} corresponding to the eigenvalue \\spad{c}; when possible,{} values are expressed in terms of radicals.")) (|radicalEigenvectors| (((|List| (|Record| (|:| |radval| (|Expression| (|Integer|))) (|:| |radmult| (|Integer|)) (|:| |radvect| (|List| (|Matrix| (|Expression| (|Integer|))))))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvectors(m)} computes the eigenvalues and the corresponding eigenvectors of the matrix \\spad{m}; when possible,{} values are expressed in terms of radicals."))) NIL NIL -(-941 R) +(-942 R) ((|constructor| (NIL "\\spad{RepresentationPackage1} provides functions for representation theory for finite groups and algebras. The package creates permutation representations and uses tensor products and its symmetric and antisymmetric components to create new representations of larger degree from given ones. Note: instead of having parameters from \\spadtype{Permutation} this package allows list notation of permutations as well: \\spadignore{e.g.} \\spad{[1,4,3,2]} denotes permutes 2 and 4 and fixes 1 and 3.")) (|permutationRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|List| (|Integer|)))) "\\spad{permutationRepresentation([pi1,...,pik],n)} returns the list of matrices {\\em [(deltai,pi1(i)),...,(deltai,pik(i))]} if the permutations {\\em pi1},{}...,{}{\\em pik} are in list notation and are permuting {\\em {1,2,...,n}}.") (((|List| (|Matrix| (|Integer|))) (|List| (|Permutation| (|Integer|))) (|Integer|)) "\\spad{permutationRepresentation([pi1,...,pik],n)} returns the list of matrices {\\em [(deltai,pi1(i)),...,(deltai,pik(i))]} (Kronecker delta) for the permutations {\\em pi1,...,pik} of {\\em {1,2,...,n}}.") (((|Matrix| (|Integer|)) (|List| (|Integer|))) "\\spad{permutationRepresentation(pi,n)} returns the matrix {\\em (deltai,pi(i))} (Kronecker delta) if the permutation {\\em pi} is in list notation and permutes {\\em {1,2,...,n}}.") (((|Matrix| (|Integer|)) (|Permutation| (|Integer|)) (|Integer|)) "\\spad{permutationRepresentation(pi,n)} returns the matrix {\\em (deltai,pi(i))} (Kronecker delta) for a permutation {\\em pi} of {\\em {1,2,...,n}}.")) (|tensorProduct| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,...ak])} calculates the list of Kronecker products of each matrix {\\em ai} with itself for {1 <= \\spad{i} <= \\spad{k}}. Note: If the list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the representation with itself.") (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a)} calculates the Kronecker product of the matrix {\\em a} with itself.") (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,...,ak],[b1,...,bk])} calculates the list of Kronecker products of the matrices {\\em ai} and {\\em bi} for {1 <= \\spad{i} <= \\spad{k}}. Note: If each list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a,b)} calculates the Kronecker product of the matrices {\\em a} and \\spad{b}. Note: if each matrix corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.")) (|symmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{symmetricTensors(la,n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,0,...,0)} of \\spad{n}. Error: if the matrices in {\\em la} are not square matrices. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{symmetricTensors(a,n)} applies to the \\spad{m}-by-\\spad{m} square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,0,...,0)} of \\spad{n}. Error: if {\\em a} is not a square matrix. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.")) (|createGenericMatrix| (((|Matrix| (|Polynomial| |#1|)) (|NonNegativeInteger|)) "\\spad{createGenericMatrix(m)} creates a square matrix of dimension \\spad{k} whose entry at the \\spad{i}-th row and \\spad{j}-th column is the indeterminate {\\em x[i,j]} (double subscripted).")) (|antisymmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{antisymmetricTensors(la,n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (1,1,...,1,0,0,...,0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{antisymmetricTensors(a,n)} applies to the square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm},{} where \\spad{m} is the number of rows of {\\em a},{} which corresponds to the partition {\\em (1,1,...,1,0,0,...,0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product."))) NIL -((|HasAttribute| |#1| (QUOTE (-3995 "*")))) -(-942 R) +((|HasAttribute| |#1| (QUOTE (-3996 "*")))) +(-943 R) ((|constructor| (NIL "\\spad{RepresentationPackage2} provides functions for working with modular representations of finite groups and algebra. The routines in this package are created,{} using ideas of \\spad{R}. Parker,{} (the meat-Axe) to get smaller representations from bigger ones,{} \\spadignore{i.e.} finding sub- and factormodules,{} or to show,{} that such the representations are irreducible. Note: most functions are randomized functions of Las Vegas type \\spadignore{i.e.} every answer is correct,{} but with small probability the algorithm fails to get an answer.")) (|scanOneDimSubspaces| (((|Vector| |#1|) (|List| (|Vector| |#1|)) (|Integer|)) "\\spad{scanOneDimSubspaces(basis,n)} gives a canonical representative of the {\\em n}\\spad{-}th one-dimensional subspace of the vector space generated by the elements of {\\em basis},{} all from {\\em R**n}. The coefficients of the representative are of shape {\\em (0,...,0,1,*,...,*)},{} {\\em *} in \\spad{R}. If the size of \\spad{R} is \\spad{q},{} then there are {\\em (q**n-1)/(q-1)} of them. We first reduce \\spad{n} modulo this number,{} then find the largest \\spad{i} such that {\\em +/[q**i for i in 0..i-1] <= n}. Subtracting this sum of powers from \\spad{n} results in an \\spad{i}-digit number to \\spad{basis} \\spad{q}. This fills the positions of the stars.")) (|meatAxe| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{meatAxe(aG, numberOfTries)} calls {\\em meatAxe(aG,true,numberOfTries,7)}. Notes: 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|)) "\\spad{meatAxe(aG, randomElements)} calls {\\em meatAxe(aG,false,6,7)},{} only using Parker's fingerprints,{} if {\\em randomElemnts} is \\spad{false}. If it is \\spad{true},{} it calls {\\em meatAxe(aG,true,25,7)},{} only using random elements. Note: the choice of 25 was rather arbitrary. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|))) "\\spad{meatAxe(aG)} calls {\\em meatAxe(aG,false,25,7)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG}) creates at most 25 random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most 7 elements of its kernel to generate a proper submodule. If successful a list which contains first the list of the representations of the submodule,{} then a list of the representations of the factor module is returned. Otherwise,{} if we know that all the kernel is already scanned,{} Norton's irreducibility test can be used either to prove irreducibility or to find the splitting. Notes: the first 6 tries use Parker's fingerprints. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|) (|Integer|)) "\\spad{meatAxe(aG,randomElements,numberOfTries, maxTests)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG},{}\\spad{numberOfTries},{} maxTests) creates at most {\\em numberOfTries} random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most {\\em maxTests} elements of its kernel to generate a proper submodule. If successful,{} a 2-list is returned: first,{} a list containing first the list of the representations of the submodule,{} then a list of the representations of the factor module. Otherwise,{} if we know that all the kernel is already scanned,{} Norton's irreducibility test can be used either to prove irreducibility or to find the splitting. If {\\em randomElements} is {\\em false},{} the first 6 tries use Parker's fingerprints.")) (|split| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| (|Vector| |#1|))) "\\spad{split(aG,submodule)} uses a proper \\spad{submodule} of {\\em R**n} to create the representations of the \\spad{submodule} and of the factor module.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{split(aG, vector)} returns a subalgebra \\spad{A} of all square matrix of dimension \\spad{n} as a list of list of matrices,{} generated by the list of matrices \\spad{aG},{} where \\spad{n} denotes both the size of vector as well as the dimension of each of the square matrices. {\\em V R} is an A-module in the natural way. split(\\spad{aG},{} vector) then checks whether the cyclic submodule generated by {\\em vector} is a proper submodule of {\\em V R}. If successful,{} it returns a two-element list,{} which contains first the list of the representations of the submodule,{} then the list of the representations of the factor module. If the vector generates the whole module,{} a one-element list of the old representation is given. Note: a later version this should call the other split.")) (|isAbsolutelyIrreducible?| (((|Boolean|) (|List| (|Matrix| |#1|))) "\\spad{isAbsolutelyIrreducible?(aG)} calls {\\em isAbsolutelyIrreducible?(aG,25)}. Note: the choice of 25 was rather arbitrary.") (((|Boolean|) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{isAbsolutelyIrreducible?(aG, numberOfTries)} uses Norton's irreducibility test to check for absolute irreduciblity,{} assuming if a one-dimensional kernel is found. As no field extension changes create \"new\" elements in a one-dimensional space,{} the criterium stays \\spad{true} for every extension. The method looks for one-dimensionals only by creating random elements (no fingerprints) since a run of {\\em meatAxe} would have proved absolute irreducibility anyway.")) (|areEquivalent?| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{areEquivalent?(aG0,aG1,numberOfTries)} calls {\\em areEquivalent?(aG0,aG1,true,25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{areEquivalent?(aG0,aG1)} calls {\\em areEquivalent?(aG0,aG1,true,25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|)) "\\spad{areEquivalent?(aG0,aG1,randomelements,numberOfTries)} tests whether the two lists of matrices,{} all assumed of same square shape,{} can be simultaneously conjugated by a non-singular matrix. If these matrices represent the same group generators,{} the representations are equivalent. The algorithm tries {\\em numberOfTries} times to create elements in the generated algebras in the same fashion. If their ranks differ,{} they are not equivalent. If an isomorphism is assumed,{} then the kernel of an element of the first algebra is mapped to the kernel of the corresponding element in the second algebra. Now consider the one-dimensional ones. If they generate the whole space (\\spadignore{e.g.} irreducibility !) we use {\\em standardBasisOfCyclicSubmodule} to create the only possible transition matrix. The method checks whether the matrix conjugates all corresponding matrices from {\\em aGi}. The way to choose the singular matrices is as in {\\em meatAxe}. If the two representations are equivalent,{} this routine returns the transformation matrix {\\em TM} with {\\em aG0.i * TM = TM * aG1.i} for all \\spad{i}. If the representations are not equivalent,{} a small 0-matrix is returned. Note: the case with different sets of group generators cannot be handled.")) (|standardBasisOfCyclicSubmodule| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{standardBasisOfCyclicSubmodule(lm,v)} returns a matrix as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. standardBasisOfCyclicSubmodule(\\spad{lm},{}\\spad{v}) calculates a matrix whose non-zero column vectors are the \\spad{R}-Basis of {\\em Av} achieved in the way as described in section 6 of \\spad{R}. A. Parker's \"The Meat-Axe\". Note: in contrast to {\\em cyclicSubmodule},{} the result is not in echelon form.")) (|cyclicSubmodule| (((|Vector| (|Vector| |#1|)) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{cyclicSubmodule(lm,v)} generates a basis as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. cyclicSubmodule(\\spad{lm},{}\\spad{v}) generates the \\spad{R}-Basis of {\\em Av} as described in section 6 of \\spad{R}. A. Parker's \"The Meat-Axe\". Note: in contrast to the description in \"The Meat-Axe\" and to {\\em standardBasisOfCyclicSubmodule} the result is in echelon form.")) (|createRandomElement| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{createRandomElement(aG,x)} creates a random element of the group algebra generated by {\\em aG}.")) (|completeEchelonBasis| (((|Matrix| |#1|) (|Vector| (|Vector| |#1|))) "\\spad{completeEchelonBasis(lv)} completes the basis {\\em lv} assumed to be in echelon form of a subspace of {\\em R**n} (\\spad{n} the length of all the vectors in {\\em lv}) with unit vectors to a basis of {\\em R**n}. It is assumed that the argument is not an empty vector and that it is not the basis of the 0-subspace. Note: the rows of the result correspond to the vectors of the basis."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-318)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-258)))) -(-943 S) +((-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-319)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-258)))) +(-944 S) ((|constructor| (NIL "Implements multiplication by repeated addition")) (|double| ((|#1| (|PositiveInteger|) |#1|) "\\spad{double(i, r)} multiplies \\spad{r} by \\spad{i} using repeated doubling.")) (+ (($ $ $) "\\spad{x+y} returns the sum of \\spad{x} and \\spad{y}"))) NIL NIL -(-944 S) +(-945 S) ((|constructor| (NIL "Implements exponentiation by repeated squaring")) (|expt| ((|#1| |#1| (|PositiveInteger|)) "\\spad{expt(r, i)} computes r**i by repeated squaring")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}"))) NIL NIL -(-945 S) +(-946 S) ((|constructor| (NIL "This package provides coercions for the special types \\spadtype{Exit} and \\spadtype{Void}.")) (|coerce| ((|#1| (|Exit|)) "\\spad{coerce(e)} is never really evaluated. This coercion is used for formal type correctness when a function will not return directly to its caller.") (((|Void|) |#1|) "\\spad{coerce(s)} throws all information about \\spad{s} away. This coercion allows values of any type to appear in contexts where they will not be used. For example,{} it allows the resolution of different types in the \\spad{then} and \\spad{else} branches when an \\spad{if} is in a context where the resulting value is not used."))) NIL NIL -(-946 -3091 |Expon| |VarSet| |FPol| |LFPol|) +(-947 -3092 |Expon| |VarSet| |FPol| |LFPol|) ((|constructor| (NIL "ResidueRing is the quotient of a polynomial ring by an ideal. The ideal is given as a list of generators. The elements of the domain are equivalence classes expressed in terms of reduced elements")) (|lift| ((|#4| $) "\\spad{lift(x)} return the canonical representative of the equivalence class \\spad{x}")) (|coerce| (($ |#4|) "\\spad{coerce(f)} produces the equivalence class of \\spad{f} in the residue ring")) (|reduce| (($ |#4|) "\\spad{reduce(f)} produces the equivalence class of \\spad{f} in the residue ring"))) -(((-3995 "*") . T) (-3987 . T) (-3988 . T) (-3990 . T)) +(((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T)) NIL -(-947) +(-948) ((|constructor| (NIL "This domain represents `return' expressions.")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression returned by `e'."))) NIL NIL -(-948 A S) +(-949 A S) ((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#2| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#2| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}."))) NIL NIL -(-949 S) +(-950 S) ((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#1| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}."))) NIL NIL -(-950 Q R) +(-951 Q R) ((|constructor| (NIL "RetractSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving.")) (|solveRetract| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#2|))))) (|List| (|Polynomial| |#2|)) (|List| (|Symbol|))) "\\spad{solveRetract(lp,lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}. The function tries to retract all the coefficients of the equations to \\spad{Q} before solving if possible."))) NIL NIL -(-951 R) +(-952 R) ((|constructor| (NIL "Utilities that provide the same top-level manipulations on fractions than on polynomials.")) (|coerce| (((|Fraction| (|Polynomial| |#1|)) |#1|) "\\spad{coerce(r)} returns \\spad{r} viewed as a rational function over \\spad{R}.")) (|eval| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{eval(f, [v1 = g1,...,vn = gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}'s appearing inside the \\spad{gi}'s are not replaced. Error: if any \\spad{vi} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f, v = g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}. Error: if \\spad{v} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f, [v1,...,vn], [g1,...,gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}'s appearing inside the \\spad{gi}'s are not replaced.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{eval(f, v, g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}.")) (|multivariate| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Symbol|)) "\\spad{multivariate(f, v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{univariate(f, v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| (|Symbol|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| (|Symbol|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}."))) NIL NIL -(-952) +(-953) ((|t| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{t(n)} \\undocumented")) (F (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{F(n,m)} \\undocumented")) (|Beta| (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{Beta(n,m)} \\undocumented")) (|chiSquare| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{chiSquare(n)} \\undocumented")) (|exponential| (((|Mapping| (|Float|)) (|Float|)) "\\spad{exponential(f)} \\undocumented")) (|normal| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{normal(f,g)} \\undocumented")) (|uniform| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{uniform(f,g)} \\undocumented")) (|chiSquare1| (((|Float|) (|NonNegativeInteger|)) "\\spad{chiSquare1(n)} \\undocumented")) (|exponential1| (((|Float|)) "\\spad{exponential1()} \\undocumented")) (|normal01| (((|Float|)) "\\spad{normal01()} \\undocumented")) (|uniform01| (((|Float|)) "\\spad{uniform01()} \\undocumented"))) NIL NIL -(-953 UP) +(-954 UP) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients which are rational functions with integer coefficients.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL NIL -(-954 R) +(-955 R) ((|constructor| (NIL "\\spadtype{RationalFunctionFactorizer} contains the factor function (called factorFraction) which factors fractions of polynomials by factoring the numerator and denominator. Since any non zero fraction is a unit the usual factor operation will just return the original fraction.")) (|factorFraction| (((|Fraction| (|Factored| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{factorFraction(r)} factors the numerator and the denominator of the polynomial fraction \\spad{r}."))) NIL NIL -(-955 T$) +(-956 T$) ((|constructor| (NIL "This category defines the common interface for RGB color models.")) (|componentUpperBound| ((|#1|) "componentUpperBound is an upper bound for all component values.")) (|blue| ((|#1| $) "\\spad{blue(c)} returns the `blue' component of `c'.")) (|green| ((|#1| $) "\\spad{green(c)} returns the `green' component of `c'.")) (|red| ((|#1| $) "\\spad{red(c)} returns the `red' component of `c'."))) NIL NIL -(-956 T$) +(-957 T$) ((|constructor| (NIL "This category defines the common interface for RGB color spaces.")) (|whitePoint| (($) "whitePoint is the contant indicating the white point of this color space."))) NIL NIL -(-957 R |ls|) +(-958 R |ls|) ((|constructor| (NIL "A domain for regular chains (\\spadignore{i.e.} regular triangular sets) over a Gcd-Domain and with a fix list of variables. This is just a front-end for the \\spadtype{RegularTriangularSet} domain constructor.")) (|zeroSetSplit| (((|List| $) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?,info?)} returns a list \\spad{lts} of regular chains such that the union of the closures of their regular zero sets equals the affine variety associated with \\spad{lp}. Moreover,{} if \\spad{clos?} is \\spad{false} then the union of the regular zero set of the \\spad{ts} (for \\spad{ts} in \\spad{lts}) equals this variety. If \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSet}."))) -((-3994 . T) (-3993 . T)) -((-12 (|HasCategory| (-702 |#1| (-772 |#2|)) (QUOTE (-1012))) (|HasCategory| (-702 |#1| (-772 |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -702) (|devaluate| |#1|) (|%list| (QUOTE -772) (|devaluate| |#2|)))))) (|HasCategory| (-702 |#1| (-772 |#2|)) (QUOTE (-552 (-472)))) (|HasCategory| (-702 |#1| (-772 |#2|)) (QUOTE (-1012))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| (-772 |#2|) (QUOTE (-318))) (|HasCategory| (-702 |#1| (-772 |#2|)) (QUOTE (-551 (-771)))) (|HasCategory| (-702 |#1| (-772 |#2|)) (QUOTE (-72)))) -(-958) +((-3995 . T) (-3994 . T)) +((-12 (|HasCategory| (-703 |#1| (-773 |#2|)) (QUOTE (-1013))) (|HasCategory| (-703 |#1| (-773 |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -703) (|devaluate| |#1|) (|%list| (QUOTE -773) (|devaluate| |#2|)))))) (|HasCategory| (-703 |#1| (-773 |#2|)) (QUOTE (-553 (-473)))) (|HasCategory| (-703 |#1| (-773 |#2|)) (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| (-773 |#2|) (QUOTE (-319))) (|HasCategory| (-703 |#1| (-773 |#2|)) (QUOTE (-552 (-772)))) (|HasCategory| (-703 |#1| (-773 |#2|)) (QUOTE (-72)))) +(-959) ((|constructor| (NIL "This package exports integer distributions")) (|ridHack1| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{ridHack1(i,j,k,l)} \\undocumented")) (|geometric| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{geometric(f)} \\undocumented")) (|poisson| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{poisson(f)} \\undocumented")) (|binomial| (((|Mapping| (|Integer|)) (|Integer|) |RationalNumber|) "\\spad{binomial(n,f)} \\undocumented")) (|uniform| (((|Mapping| (|Integer|)) (|Segment| (|Integer|))) "\\spad{uniform(s)} \\undocumented"))) NIL NIL -(-959 S) +(-960 S) ((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists."))) NIL NIL -(-960) +(-961) ((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists."))) -((-3990 . T)) +((-3991 . T)) NIL -(-961 |xx| -3091) +(-962 |xx| -3092) ((|constructor| (NIL "This package exports rational interpolation algorithms"))) NIL NIL -(-962 S) +(-963 S) ((|constructor| (NIL "\\indented{2}{A set is an \\spad{S}-right linear set if it is stable by right-dilation} \\indented{2}{by elements in the semigroup \\spad{S}.} See Also: LeftLinearSet.")) (* (($ $ |#1|) "\\spad{x*s} is the right-dilation of \\spad{x} by \\spad{s}."))) NIL NIL -(-963 S |m| |n| R |Row| |Col|) +(-964 S |m| |n| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#6|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#4|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#4|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#4| |#4| |#4|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#4| |#4|) $) "\\spad{map(f,a)} returns \\spad{b},{} where \\spad{b(i,j) = a(i,j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#6| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#5| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#4| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#4| $ (|Integer|) (|Integer|) |#4|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#4| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#4|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#4|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite"))) NIL -((|HasCategory| |#4| (QUOTE (-258))) (|HasCategory| |#4| (QUOTE (-312))) (|HasCategory| |#4| (QUOTE (-494))) (|HasCategory| |#4| (QUOTE (-146)))) -(-964 |m| |n| R |Row| |Col|) +((|HasCategory| |#4| (QUOTE (-258))) (|HasCategory| |#4| (QUOTE (-312))) (|HasCategory| |#4| (QUOTE (-495))) (|HasCategory| |#4| (QUOTE (-146)))) +(-965 |m| |n| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#5|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#3|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#3|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#3| |#3|) $) "\\spad{map(f,a)} returns \\spad{b},{} where \\spad{b(i,j) = a(i,j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#5| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#4| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#3| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#3| $ (|Integer|) (|Integer|) |#3|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#3|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#3|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite"))) -((-3993 . T) (-3988 . T) (-3987 . T)) +((-3994 . T) (-3989 . T) (-3988 . T)) NIL -(-965 |m| |n| R) +(-966 |m| |n| R) ((|constructor| (NIL "\\spadtype{RectangularMatrix} is a matrix domain where the number of rows and the number of columns are parameters of the domain.")) (|rectangularMatrix| (($ (|Matrix| |#3|)) "\\spad{rectangularMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spad{RectangularMatrix}."))) -((-3993 . T) (-3988 . T) (-3987 . T)) -((|HasCategory| |#3| (QUOTE (-146))) (OR (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1012))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|))))) (|HasCategory| |#3| (QUOTE (-552 (-472)))) (OR (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-312)))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-1012))) (|HasCategory| |#3| (QUOTE (-258))) (|HasCategory| |#3| (QUOTE (-494))) (-12 (|HasCategory| |#3| (QUOTE (-1012))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (|HasCategory| |#3| (QUOTE (-72))) (|HasCategory| |#3| (QUOTE (-551 (-771))))) -(-966 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) +((-3994 . T) (-3989 . T) (-3988 . T)) +((|HasCategory| |#3| (QUOTE (-146))) (OR (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1013))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|))))) (|HasCategory| |#3| (QUOTE (-553 (-473)))) (OR (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-312)))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-1013))) (|HasCategory| |#3| (QUOTE (-258))) (|HasCategory| |#3| (QUOTE (-495))) (-12 (|HasCategory| |#3| (QUOTE (-1013))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (|HasCategory| |#3| (QUOTE (-72))) (|HasCategory| |#3| (QUOTE (-552 (-772))))) +(-967 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#7| (|Mapping| |#7| |#3| |#7|) |#6| |#7|) "\\spad{reduce(f,m,r)} returns a matrix \\spad{n} where \\spad{n[i,j] = f(m[i,j],r)} for all indices spad{\\spad{i}} and \\spad{j}.")) (|map| ((|#10| (|Mapping| |#7| |#3|) |#6|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}."))) NIL NIL -(-967 R) +(-968 R) ((|constructor| (NIL "The category of right modules over an rng (ring not necessarily with unit). This is an abelian group which supports right multiplation by elements of the rng. \\blankline"))) NIL NIL -(-968 S) +(-969 S) ((|constructor| (NIL "The category of associative rings,{} not necessarily commutative,{} and not necessarily with a 1. This is a combination of an abelian group and a semigroup,{} with multiplication distributing over addition. \\blankline")) (|annihilate?| (((|Boolean|) $ $) "\\spad{annihilate?(x,y)} holds when the product of \\spad{x} and \\spad{y} is \\spad{0}."))) NIL NIL -(-969) +(-970) ((|constructor| (NIL "The category of associative rings,{} not necessarily commutative,{} and not necessarily with a 1. This is a combination of an abelian group and a semigroup,{} with multiplication distributing over addition. \\blankline")) (|annihilate?| (((|Boolean|) $ $) "\\spad{annihilate?(x,y)} holds when the product of \\spad{x} and \\spad{y} is \\spad{0}."))) NIL NIL -(-970 S T$) +(-971 S T$) ((|constructor| (NIL "This domain represents the notion of binding a variable to range over a specific segment (either bounded,{} or half bounded).")) (|segment| ((|#1| $) "\\spad{segment(x)} returns the segment from the right hand side of the \\spadtype{RangeBinding}. For example,{} if \\spad{x} is \\spad{v=s},{} then \\spad{segment(x)} returns \\spad{s}.")) (|variable| (((|Symbol|) $) "\\spad{variable(x)} returns the variable from the left hand side of the \\spadtype{RangeBinding}. For example,{} if \\spad{x} is \\spad{v=s},{} then \\spad{variable(x)} returns \\spad{v}.")) (|equation| (($ (|Symbol|) |#1|) "\\spad{equation(v,s)} creates a segment binding value with variable \\spad{v} and segment \\spad{s}. Note that the interpreter parses \\spad{v=s} to this form."))) NIL -((|HasCategory| |#1| (QUOTE (-1012)))) -(-971 S) +((|HasCategory| |#1| (QUOTE (-1013)))) +(-972 S) ((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value."))) NIL NIL -(-972) +(-973) ((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value."))) -((-3985 . T) (-3991 . T) (-3986 . T) ((-3995 "*") . T) (-3987 . T) (-3988 . T) (-3990 . T)) +((-3986 . T) (-3992 . T) (-3987 . T) ((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T)) NIL -(-973 |TheField| |ThePolDom|) +(-974 |TheField| |ThePolDom|) ((|constructor| (NIL "\\axiomType{RightOpenIntervalRootCharacterization} provides work with interval root coding.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{relativeApprox(exp,{}\\spad{c},{}\\spad{p}) = a} is relatively close to exp as a polynomial in \\spad{c} ip to precision \\spad{p}")) (|mightHaveRoots| (((|Boolean|) |#2| $) "\\axiom{mightHaveRoots(\\spad{p},{}\\spad{r})} is \\spad{false} if \\axiom{\\spad{p}.\\spad{r}} is not 0")) (|refine| (($ $) "\\axiom{refine(rootChar)} shrinks isolating interval around \\axiom{rootChar}")) (|middle| ((|#1| $) "\\axiom{middle(rootChar)} is the middle of the isolating interval")) (|size| ((|#1| $) "The size of the isolating interval")) (|right| ((|#1| $) "\\axiom{right(rootChar)} is the right bound of the isolating interval")) (|left| ((|#1| $) "\\axiom{left(rootChar)} is the left bound of the isolating interval"))) NIL NIL -(-974) +(-975) ((|constructor| (NIL "\\spadtype{RomanNumeral} provides functions for converting \\indented{1}{integers to roman numerals.}")) (|roman| (($ (|Integer|)) "\\spad{roman(n)} creates a roman numeral for \\spad{n}.") (($ (|Symbol|)) "\\spad{roman(n)} creates a roman numeral for symbol \\spad{n}.")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality."))) -((-3981 . T) (-3985 . T) (-3980 . T) (-3991 . T) (-3992 . T) (-3986 . T) ((-3995 "*") . T) (-3987 . T) (-3988 . T) (-3990 . T)) +((-3982 . T) (-3986 . T) (-3981 . T) (-3992 . T) (-3993 . T) (-3987 . T) ((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T)) NIL -(-975 S R E V) +(-976 S R E V) ((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#2| |#2| $) "\\axiom{gcd(\\spad{r},{}\\spad{p})} returns the gcd of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{\\spad{nextsubResultant2}(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{\\spad{next_sousResultant2}}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{\\spad{LazardQuotient2}(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo b**(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo b**(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd2}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}cb]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}cb]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd1}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}cb]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}cb,{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + cb * cb = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a gcd of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#2|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#2|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a gcd-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#2|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)*r = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)*r = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)*r = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#4|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#4|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#4|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#4|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#4|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#4|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}."))) NIL -((|HasCategory| |#2| (QUOTE (-390))) (|HasCategory| |#2| (QUOTE (-494))) (|HasCategory| |#2| (QUOTE (-949 (-483)))) (|HasCategory| |#2| (QUOTE (-482))) (|HasCategory| |#2| (QUOTE (-38 (-483)))) (|HasCategory| |#2| (QUOTE (-903 (-483)))) (|HasCategory| |#2| (QUOTE (-38 (-348 (-483))))) (|HasCategory| |#4| (QUOTE (-552 (-1088))))) -(-976 R E V) +((|HasCategory| |#2| (QUOTE (-391))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-950 (-484)))) (|HasCategory| |#2| (QUOTE (-483))) (|HasCategory| |#2| (QUOTE (-38 (-484)))) (|HasCategory| |#2| (QUOTE (-904 (-484)))) (|HasCategory| |#2| (QUOTE (-38 (-349 (-484))))) (|HasCategory| |#4| (QUOTE (-553 (-1089))))) +(-977 R E V) ((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#1| |#1| $) "\\axiom{gcd(\\spad{r},{}\\spad{p})} returns the gcd of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{\\spad{nextsubResultant2}(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{\\spad{next_sousResultant2}}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{\\spad{LazardQuotient2}(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo b**(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo b**(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd2}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}cb]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}cb]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd1}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}cb]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}cb,{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + cb * cb = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a gcd of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#1|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#1|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a gcd-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#1|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)*r = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)*r = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)*r = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#3|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#3|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#3|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#3|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#3|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#3|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}."))) -(((-3995 "*") |has| |#1| (-146)) (-3986 |has| |#1| (-494)) (-3991 |has| |#1| (-6 -3991)) (-3988 . T) (-3987 . T) (-3990 . T)) +(((-3996 "*") |has| |#1| (-146)) (-3987 |has| |#1| (-495)) (-3992 |has| |#1| (-6 -3992)) (-3989 . T) (-3988 . T) (-3991 . T)) NIL -(-977) +(-978) ((|constructor| (NIL "This domain represents the `repeat' iterator syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} returns the body of the loop `e'.")) (|iterators| (((|List| (|SpadAst|)) $) "\\spad{iterators(e)} returns the list of iterators controlling the loop `e'."))) NIL NIL -(-978 S |TheField| |ThePols|) +(-979 S |TheField| |ThePols|) ((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#3| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#3|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#3| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#3| "failed") |#3| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#3| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#3| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#3| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#3| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}"))) NIL NIL -(-979 |TheField| |ThePols|) +(-980 |TheField| |ThePols|) ((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#2| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#2|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#2| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#2| "failed") |#2| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#2| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#2| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#2| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#2| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}"))) NIL NIL -(-980 R E V P TS) +(-981 R E V P TS) ((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are proposed: in the sense of Zariski closure (like in Kalkbrener's algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\axiomType{QCMPACK}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}TS) and \\axiomType{RSETGCD}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}TS). The same way it does not care about the way univariate polynomial gcd (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these gcd need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiom{TS}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) NIL NIL -(-981 S R E V P) +(-982 S R E V P) ((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,...,xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,...,tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,...,ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,...,Ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(Ti)} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,...,Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{Phd Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#5|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{extend(lp,lts)} returns the same as \\spad{concat([extend(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{extend(lp,ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,ts)} if \\spad{lp = [p]} else \\spad{extend(first lp, extend(rest lp, ts))}") (((|List| $) |#5| (|List| $)) "\\spad{extend(p,lts)} returns the same as \\spad{concat([extend(p,ts) for ts in lts])|}") (((|List| $) |#5| $) "\\spad{extend(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#5|) $) "\\spad{internalAugment(lp,ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp, internalAugment(first lp, ts))}") (($ |#5| $) "\\spad{internalAugment(p,ts)} assumes that \\spad{augment(p,ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{augment(lp,lts)} returns the same as \\spad{concat([augment(lp,ts) for ts in lts])}") (((|List| $) (|List| |#5|) $) "\\spad{augment(lp,ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp, augment(rest lp, ts))}") (((|List| $) |#5| (|List| $)) "\\spad{augment(p,lts)} returns the same as \\spad{concat([augment(p,ts) for ts in lts])}") (((|List| $) |#5| $) "\\spad{augment(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#5| (|List| $)) "\\spad{intersect(p,lts)} returns the same as \\spad{intersect([p],lts)}") (((|List| $) (|List| |#5|) (|List| $)) "\\spad{intersect(lp,lts)} returns the same as \\spad{concat([intersect(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{intersect(lp,ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#5| $) "\\spad{intersect(p,ts)} returns the same as \\spad{intersect([p],ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| $) "\\spad{squareFreePart(p,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| |#5| $) "\\spad{lastSubResultant(p1,p2,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic gcd of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial gcd \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#5| (|List| $)) |#5| |#5| $) "\\spad{lastSubResultantElseSplit(p1,p2,ts)} returns either \\spad{g} a quasi-monic gcd of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#5| $) "\\spad{invertibleSet(p,ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#5| $) "\\spad{invertible?(p,ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#5| $) "\\spad{invertible?(p,ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#5| $) "\\spad{invertibleElseSplit?(p,ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#5| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#5| $) "\\spad{algebraicCoefficients?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#5| $) "\\spad{purelyTranscendental?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#5| $) "\\spad{purelyAlgebraic?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}."))) NIL NIL -(-982 R E V P) +(-983 R E V P) ((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,...,xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,...,tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,...,ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,...,Ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(Ti)} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,...,Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{Phd Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{extend(lp,lts)} returns the same as \\spad{concat([extend(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{extend(lp,ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,ts)} if \\spad{lp = [p]} else \\spad{extend(first lp, extend(rest lp, ts))}") (((|List| $) |#4| (|List| $)) "\\spad{extend(p,lts)} returns the same as \\spad{concat([extend(p,ts) for ts in lts])|}") (((|List| $) |#4| $) "\\spad{extend(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#4|) $) "\\spad{internalAugment(lp,ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp, internalAugment(first lp, ts))}") (($ |#4| $) "\\spad{internalAugment(p,ts)} assumes that \\spad{augment(p,ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{augment(lp,lts)} returns the same as \\spad{concat([augment(lp,ts) for ts in lts])}") (((|List| $) (|List| |#4|) $) "\\spad{augment(lp,ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp, augment(rest lp, ts))}") (((|List| $) |#4| (|List| $)) "\\spad{augment(p,lts)} returns the same as \\spad{concat([augment(p,ts) for ts in lts])}") (((|List| $) |#4| $) "\\spad{augment(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#4| (|List| $)) "\\spad{intersect(p,lts)} returns the same as \\spad{intersect([p],lts)}") (((|List| $) (|List| |#4|) (|List| $)) "\\spad{intersect(lp,lts)} returns the same as \\spad{concat([intersect(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{intersect(lp,ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#4| $) "\\spad{intersect(p,ts)} returns the same as \\spad{intersect([p],ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| $) "\\spad{squareFreePart(p,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| |#4| $) "\\spad{lastSubResultant(p1,p2,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic gcd of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial gcd \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#4| (|List| $)) |#4| |#4| $) "\\spad{lastSubResultantElseSplit(p1,p2,ts)} returns either \\spad{g} a quasi-monic gcd of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#4| $) "\\spad{invertibleSet(p,ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#4| $) "\\spad{invertible?(p,ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#4| $) "\\spad{invertible?(p,ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#4| $) "\\spad{invertibleElseSplit?(p,ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#4| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#4| $) "\\spad{algebraicCoefficients?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#4| $) "\\spad{purelyTranscendental?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#4| $) "\\spad{purelyAlgebraic?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}."))) -((-3994 . T) (-3993 . T)) +((-3995 . T) (-3994 . T)) NIL -(-983 R E V P TS) +(-984 R E V P TS) ((|constructor| (NIL "An internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of gcd over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of \\spad{AAECC11}} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|toseSquareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseSquareFreePart(\\spad{p},{}ts)} has the same specifications as \\axiomOpFrom{squareFreePart}{RegularTriangularSetCategory}.")) (|toseInvertibleSet| (((|List| |#5|) |#4| |#5|) "\\axiom{toseInvertibleSet(\\spad{p1},{}\\spad{p2},{}ts)} has the same specifications as \\axiomOpFrom{invertibleSet}{RegularTriangularSetCategory}.")) (|toseInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}ts)} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.") (((|Boolean|) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}ts)} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.")) (|toseLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{toseLastSubResultant(\\spad{p1},{}\\spad{p2},{}ts)} has the same specifications as \\axiomOpFrom{lastSubResultant}{RegularTriangularSetCategory}.")) (|integralLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{integralLastSubResultant(\\spad{p1},{}\\spad{p2},{}ts)} is an internal subroutine,{} exported only for developement.")) (|internalLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#3| (|Boolean|)) "\\axiom{internalLastSubResultant(lpwt,{}\\spad{v},{}flag)} is an internal subroutine,{} exported only for developement.") (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5| (|Boolean|) (|Boolean|)) "\\axiom{internalLastSubResultant(\\spad{p1},{}\\spad{p2},{}ts,{}inv?,{}break?)} is an internal subroutine,{} exported only for developement.")) (|prepareSubResAlgo| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{prepareSubResAlgo(\\spad{p1},{}\\spad{p2},{}ts)} is an internal subroutine,{} exported only for developement.")) (|stopTableInvSet!| (((|Void|)) "\\axiom{stopTableInvSet!()} is an internal subroutine,{} exported only for developement.")) (|startTableInvSet!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableInvSet!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")) (|stopTableGcd!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTableGcd!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) NIL NIL -(-984) +(-985) ((|constructor| (NIL "This domain represents `restrict' expressions.")) (|target| (((|TypeAst|) $) "\\spad{target(e)} returns the target type of the conversion..")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression being converted."))) NIL NIL -(-985) +(-986) ((|constructor| (NIL "This is the datatype of OpenAxiom runtime values. It exists solely for internal purposes.")) (|eq| (((|Boolean|) $ $) "\\spad{eq(x,y)} holds if both values \\spad{x} and \\spad{y} resides at the same address in memory."))) NIL NIL -(-986 |Base| R -3091) +(-987 |Base| R -3092) ((|constructor| (NIL "\\indented{1}{Rules for the pattern matcher} Author: Manuel Bronstein Date Created: 24 Oct 1988 Date Last Updated: 26 October 1993 Keywords: pattern,{} matching,{} rule.")) (|quotedOperators| (((|List| (|Symbol|)) $) "\\spad{quotedOperators(r)} returns the list of operators on the right hand side of \\spad{r} that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,f,n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies the rule \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rhs| ((|#3| $) "\\spad{rhs(r)} returns the right hand side of the rule \\spad{r}.")) (|lhs| ((|#3| $) "\\spad{lhs(r)} returns the left hand side of the rule \\spad{r}.")) (|pattern| (((|Pattern| |#1|) $) "\\spad{pattern(r)} returns the pattern corresponding to the left hand side of the rule \\spad{r}.")) (|suchThat| (($ $ (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#3|))) "\\spad{suchThat(r, [a1,...,an], f)} returns the rewrite rule \\spad{r} with the predicate \\spad{f(a1,...,an)} attached to it.")) (|rule| (($ |#3| |#3| (|List| (|Symbol|))) "\\spad{rule(f, g, [f1,...,fn])} creates the rewrite rule \\spad{f == eval(eval(g, g is f), [f1,...,fn])},{} that is a rule with left-hand side \\spad{f} and right-hand side \\spad{g}; The symbols \\spad{f1},{}...,{}fn are the operators that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.") (($ |#3| |#3|) "\\spad{rule(f, g)} creates the rewrite rule: \\spad{f == eval(g, g is f)},{} with left-hand side \\spad{f} and right-hand side \\spad{g}."))) NIL NIL -(-987 |f|) +(-988 |f|) ((|constructor| (NIL "This domain implements named rules")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol"))) NIL NIL -(-988 |Base| R -3091) +(-989 |Base| R -3092) ((|constructor| (NIL "A ruleset is a set of pattern matching rules grouped together.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,f,n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies all the rules of \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rules| (((|List| (|RewriteRule| |#1| |#2| |#3|)) $) "\\spad{rules(r)} returns the rules contained in \\spad{r}.")) (|ruleset| (($ (|List| (|RewriteRule| |#1| |#2| |#3|))) "\\spad{ruleset([r1,...,rn])} creates the rule set \\spad{{r1,...,rn}}."))) NIL NIL -(-989 R |ls|) +(-990 R |ls|) ((|constructor| (NIL "\\indented{1}{A package for computing the rational univariate representation} \\indented{1}{of a zero-dimensional algebraic variety given by a regular} \\indented{1}{triangular set. This package is essentially an interface for the} \\spadtype{InternalRationalUnivariateRepresentationPackage} constructor. It is used in the \\spadtype{ZeroDimensionalSolvePackage} for solving polynomial systems with finitely many solutions.")) (|rur| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{rur(lp,univ?,check?)} returns the same as \\spad{rur(lp,true)}. Moreover,{} if \\spad{check?} is \\spad{true} then the result is checked.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{rur(lp)} returns the same as \\spad{rur(lp,true)}") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{rur(lp,univ?)} returns a rational univariate representation of \\spad{lp}. This assumes that \\spad{lp} defines a regular triangular \\spad{ts} whose associated variety is zero-dimensional over \\spad{R}. \\spad{rur(lp,univ?)} returns a list of items \\spad{[u,lc]} where \\spad{u} is an irreducible univariate polynomial and each \\spad{c} in \\spad{lc} involves two variables: one from \\spad{ls},{} called the coordinate of \\spad{c},{} and an extra variable which represents any root of \\spad{u}. Every root of \\spad{u} leads to a tuple of values for the coordinates of \\spad{lc}. Moreover,{} a point \\spad{x} belongs to the variety associated with \\spad{lp} iff there exists an item \\spad{[u,lc]} in \\spad{rur(lp,univ?)} and a root \\spad{r} of \\spad{u} such that \\spad{x} is given by the tuple of values for the coordinates of \\spad{lc} evaluated at \\spad{r}. If \\spad{univ?} is \\spad{true} then each polynomial \\spad{c} will have a constant leading coefficient \\spad{w}.\\spad{r}.\\spad{t}. its coordinate. See the example which illustrates the \\spadtype{ZeroDimensionalSolvePackage} package constructor."))) NIL NIL -(-990 R UP M) +(-991 R UP M) ((|constructor| (NIL "Domain which represents simple algebraic extensions of arbitrary rings. The first argument to the domain,{} \\spad{R},{} is the underlying ring,{} the second argument is a domain of univariate polynomials over \\spad{K},{} while the last argument specifies the defining minimal polynomial. The elements of the domain are canonically represented as polynomials of degree less than that of the minimal polynomial with coefficients in \\spad{R}. The second argument is both the type of the third argument and the underlying representation used by \\spadtype{SAE} itself."))) -((-3986 |has| |#1| (-312)) (-3991 |has| |#1| (-312)) (-3985 |has| |#1| (-312)) ((-3995 "*") . T) (-3987 . T) (-3988 . T) (-3990 . T)) -((|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-299))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-299)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-318))) (OR (-12 (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-312)))) (|HasCategory| |#1| (QUOTE (-299)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-312)))) (-12 (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-312)))) (|HasCategory| |#1| (QUOTE (-299)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-808 (-1088))))) (-12 (|HasCategory| |#1| (QUOTE (-299))) (|HasCategory| |#1| (QUOTE (-808 (-1088)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-808 (-1088))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-810 (-1088)))))) (|HasCategory| |#1| (QUOTE (-579 (-483)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-949 (-348 (-483)))))) (|HasCategory| |#1| (QUOTE (-949 (-348 (-483))))) (|HasCategory| |#1| (QUOTE (-949 (-483)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-312)))) (|HasCategory| |#1| (QUOTE (-299)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-810 (-1088))))) (-12 (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-312)))) (-12 (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-312)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-808 (-1088)))))) -(-991 UP SAE UPA) +((-3987 |has| |#1| (-312)) (-3992 |has| |#1| (-312)) (-3986 |has| |#1| (-312)) ((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T)) +((|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-299))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-299)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-319))) (OR (-12 (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-312)))) (|HasCategory| |#1| (QUOTE (-299)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-312)))) (-12 (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-312)))) (|HasCategory| |#1| (QUOTE (-299)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-809 (-1089))))) (-12 (|HasCategory| |#1| (QUOTE (-299))) (|HasCategory| |#1| (QUOTE (-809 (-1089)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-809 (-1089))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-811 (-1089)))))) (|HasCategory| |#1| (QUOTE (-580 (-484)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-950 (-349 (-484)))))) (|HasCategory| |#1| (QUOTE (-950 (-349 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-484)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-312)))) (|HasCategory| |#1| (QUOTE (-299)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-811 (-1089))))) (-12 (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-312)))) (-12 (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-312)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-809 (-1089)))))) +(-992 UP SAE UPA) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of the rational numbers (\\spadtype{Fraction Integer}).")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL NIL -(-992 UP SAE UPA) +(-993 UP SAE UPA) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of \\spadtype{Fraction Polynomial Integer}.")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL NIL -(-993) +(-994) ((|constructor| (NIL "This trivial domain lets us build Univariate Polynomials in an anonymous variable"))) NIL NIL -(-994) +(-995) ((|constructor| (NIL "This is the category of Spad syntax objects."))) NIL NIL -(-995 S) +(-996 S) ((|constructor| (NIL "\\indented{1}{Cache of elements in a set} Author: Manuel Bronstein Date Created: 31 Oct 1988 Date Last Updated: 14 May 1991 \\indented{2}{A sorted cache of a cachable set \\spad{S} is a dynamic structure that} \\indented{2}{keeps the elements of \\spad{S} sorted and assigns an integer to each} \\indented{2}{element of \\spad{S} once it is in the cache. This way,{} equality and ordering} \\indented{2}{on \\spad{S} are tested directly on the integers associated with the elements} \\indented{2}{of \\spad{S},{} once they have been entered in the cache.}")) (|enterInCache| ((|#1| |#1| (|Mapping| (|Integer|) |#1| |#1|)) "\\spad{enterInCache(x, f)} enters \\spad{x} in the cache,{} calling \\spad{f(x, y)} to determine whether \\spad{x < y (f(x,y) < 0), x = y (f(x,y) = 0)},{} or \\spad{x > y (f(x,y) > 0)}. It returns \\spad{x} with an integer associated with it.") ((|#1| |#1| (|Mapping| (|Boolean|) |#1|)) "\\spad{enterInCache(x, f)} enters \\spad{x} in the cache,{} calling \\spad{f(y)} to determine whether \\spad{x} is equal to \\spad{y}. It returns \\spad{x} with an integer associated with it.")) (|cache| (((|List| |#1|)) "\\spad{cache()} returns the current cache as a list.")) (|clearCache| (((|Void|)) "\\spad{clearCache()} empties the cache."))) NIL NIL -(-996) +(-997) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Scope' is a sequence of contours.")) (|currentCategoryFrame| (($) "\\spad{currentCategoryFrame()} returns the category frame currently in effect.")) (|currentScope| (($) "\\spad{currentScope()} returns the scope currently in effect")) (|pushNewContour| (($ (|Binding|) $) "\\spad{pushNewContour(b,s)} pushs a new contour with sole binding `b'.")) (|findBinding| (((|Maybe| (|Binding|)) (|Identifier|) $) "\\spad{findBinding(n,s)} returns the first binding of `n' in `s'; otherwise `nothing'.")) (|contours| (((|List| (|Contour|)) $) "\\spad{contours(s)} returns the list of contours in scope \\spad{s}.")) (|empty| (($) "\\spad{empty()} returns an empty scope."))) NIL NIL -(-997 R) +(-998 R) ((|constructor| (NIL "StructuralConstantsPackage provides functions creating structural constants from a multiplication tables or a basis of a matrix algebra and other useful functions in this context.")) (|coordinates| (((|Vector| |#1|) (|Matrix| |#1|) (|List| (|Matrix| |#1|))) "\\spad{coordinates(a,[v1,...,vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{structuralConstants(basis)} takes the \\spad{basis} of a matrix algebra,{} \\spadignore{e.g.} the result of \\spadfun{basisOfCentroid} and calculates the structural constants. Note,{} that the it is not checked,{} whether \\spad{basis} really is a \\spad{basis} of a matrix algebra.") (((|Vector| (|Matrix| (|Polynomial| |#1|))) (|List| (|Symbol|)) (|Matrix| (|Polynomial| |#1|))) "\\spad{structuralConstants(ls,mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}") (((|Vector| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|)) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{structuralConstants(ls,mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}"))) NIL NIL -(-998 R) +(-999 R) ((|constructor| (NIL "\\spadtype{SequentialDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is sequential. \\blankline"))) -(((-3995 "*") |has| |#1| (-146)) (-3986 |has| |#1| (-494)) (-3991 |has| |#1| (-6 -3991)) (-3988 . T) (-3987 . T) (-3990 . T)) -((|HasCategory| |#1| (QUOTE (-820))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-390))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-820)))) (OR (|HasCategory| |#1| (QUOTE (-390))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-820)))) (OR (|HasCategory| |#1| (QUOTE (-390))) (|HasCategory| |#1| (QUOTE (-820)))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-494)))) (-12 (|HasCategory| |#1| (QUOTE (-795 (-328)))) (|HasCategory| (-999 (-1088)) (QUOTE (-795 (-328))))) (-12 (|HasCategory| |#1| (QUOTE (-795 (-483)))) (|HasCategory| (-999 (-1088)) (QUOTE (-795 (-483))))) (-12 (|HasCategory| |#1| (QUOTE (-552 (-799 (-328))))) (|HasCategory| (-999 (-1088)) (QUOTE (-552 (-799 (-328)))))) (-12 (|HasCategory| |#1| (QUOTE (-552 (-799 (-483))))) (|HasCategory| (-999 (-1088)) (QUOTE (-552 (-799 (-483)))))) (-12 (|HasCategory| |#1| (QUOTE (-552 (-472)))) (|HasCategory| (-999 (-1088)) (QUOTE (-552 (-472))))) (|HasCategory| |#1| (QUOTE (-579 (-483)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-348 (-483))))) (|HasCategory| |#1| (QUOTE (-949 (-483)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-348 (-483))))) (|HasCategory| |#1| (QUOTE (-949 (-348 (-483)))))) (|HasCategory| |#1| (QUOTE (-949 (-348 (-483))))) (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-810 (-1088)))) (|HasCategory| |#1| (QUOTE (-808 (-1088)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasAttribute| |#1| (QUOTE -3991)) (|HasCategory| |#1| (QUOTE (-390))) (-12 (|HasCategory| |#1| (QUOTE (-820))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-820))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) -(-999 S) +(((-3996 "*") |has| |#1| (-146)) (-3987 |has| |#1| (-495)) (-3992 |has| |#1| (-6 -3992)) (-3989 . T) (-3988 . T) (-3991 . T)) +((|HasCategory| |#1| (QUOTE (-821))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-391))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-821)))) (OR (|HasCategory| |#1| (QUOTE (-391))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-821)))) (OR (|HasCategory| |#1| (QUOTE (-391))) (|HasCategory| |#1| (QUOTE (-821)))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (-12 (|HasCategory| |#1| (QUOTE (-796 (-329)))) (|HasCategory| (-1000 (-1089)) (QUOTE (-796 (-329))))) (-12 (|HasCategory| |#1| (QUOTE (-796 (-484)))) (|HasCategory| (-1000 (-1089)) (QUOTE (-796 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-800 (-329))))) (|HasCategory| (-1000 (-1089)) (QUOTE (-553 (-800 (-329)))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-800 (-484))))) (|HasCategory| (-1000 (-1089)) (QUOTE (-553 (-800 (-484)))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-473)))) (|HasCategory| (-1000 (-1089)) (QUOTE (-553 (-473))))) (|HasCategory| |#1| (QUOTE (-580 (-484)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-349 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-484)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-349 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-349 (-484)))))) (|HasCategory| |#1| (QUOTE (-950 (-349 (-484))))) (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-811 (-1089)))) (|HasCategory| |#1| (QUOTE (-809 (-1089)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasAttribute| |#1| (QUOTE -3992)) (|HasCategory| |#1| (QUOTE (-391))) (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) +(-1000 S) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used sequential ranking to the set of derivatives of an ordered list of differential indeterminates. A sequential ranking is a ranking \\spadfun{<} of the derivatives with the property that for any derivative \\spad{v},{} there are only a finite number of derivatives \\spad{u} with \\spad{u} \\spadfun{<} \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines a sequential ranking \\spadfun{<} on derivatives \\spad{u} by the lexicographic order on the pair (\\spadfun{variable}(\\spad{u}),{} \\spadfun{order}(\\spad{u}))."))) NIL NIL -(-1000 S) +(-1001 S) ((|constructor| (NIL "This type is used to specify a range of values from type \\spad{S}."))) NIL -((|HasCategory| |#1| (QUOTE (-754))) (|HasCategory| |#1| (QUOTE (-1012)))) -(-1001 R S) +((|HasCategory| |#1| (QUOTE (-755))) (|HasCategory| |#1| (QUOTE (-1013)))) +(-1002 R S) ((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,s)} expands the segment \\spad{s},{} applying \\spad{f} to each value. For example,{} if \\spad{s = l..h by k},{} then the list \\spad{[f(l), f(l+k),..., f(lN)]} is computed,{} where \\spad{lN <= h < lN+k}.") (((|Segment| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,l..h)} returns a new segment \\spad{f(l)..f(h)}."))) NIL -((|HasCategory| |#1| (QUOTE (-754)))) -(-1002) +((|HasCategory| |#1| (QUOTE (-755)))) +(-1003) ((|constructor| (NIL "This domain represents segement expressions.")) (|bounds| (((|List| (|SpadAst|)) $) "\\spad{bounds(s)} returns the bounds of the segment `s'. If `s' designates an infinite interval,{} then the returns list a singleton list."))) NIL NIL -(-1003 S) +(-1004 S) ((|constructor| (NIL "This domain is used to provide the function argument syntax \\spad{v=a..b}. This is used,{} for example,{} by the top-level \\spadfun{draw} functions."))) NIL -((|HasCategory| (-1000 |#1|) (QUOTE (-1012)))) -(-1004 R S) +((|HasCategory| (-1001 |#1|) (QUOTE (-1013)))) +(-1005 R S) ((|constructor| (NIL "This package provides operations for mapping functions onto \\spadtype{SegmentBinding}\\spad{s}.")) (|map| (((|SegmentBinding| |#2|) (|Mapping| |#2| |#1|) (|SegmentBinding| |#1|)) "\\spad{map(f,v=a..b)} returns the value given by \\spad{v=f(a)..f(b)}."))) NIL NIL -(-1005 S) +(-1006 S) ((|constructor| (NIL "This category provides operations on ranges,{} or {\\em segments} as they are called.")) (|segment| (($ |#1| |#1|) "\\spad{segment(i,j)} is an alternate way to create the segment \\spad{i..j}.")) (|incr| (((|Integer|) $) "\\spad{incr(s)} returns \\spad{n},{} where \\spad{s} is a segment in which every \\spad{n}\\spad{-}th element is used. Note: \\spad{incr(l..h by n) = n}.")) (|high| ((|#1| $) "\\spad{high(s)} returns the second endpoint of \\spad{s}. Note: \\spad{high(l..h) = h}.")) (|low| ((|#1| $) "\\spad{low(s)} returns the first endpoint of \\spad{s}. Note: \\spad{low(l..h) = l}.")) (|hi| ((|#1| $) "\\spad{hi(s)} returns the second endpoint of \\spad{s}. Note: \\spad{hi(l..h) = h}.")) (|lo| ((|#1| $) "\\spad{lo(s)} returns the first endpoint of \\spad{s}. Note: \\spad{lo(l..h) = l}.")) (BY (($ $ (|Integer|)) "\\spad{s by n} creates a new segment in which only every \\spad{n}\\spad{-}th element is used.")) (SEGMENT (($ |#1| |#1|) "\\spad{l..h} creates a segment with \\spad{l} and \\spad{h} as the endpoints."))) NIL NIL -(-1006 S L) +(-1007 S L) ((|constructor| (NIL "This category provides an interface for expanding segments to a stream of elements.")) (|map| ((|#2| (|Mapping| |#1| |#1|) $) "\\spad{map(f,l..h by k)} produces a value of type \\spad{L} by applying \\spad{f} to each of the succesive elements of the segment,{} that is,{} \\spad{[f(l), f(l+k), ..., f(lN)]},{} where \\spad{lN <= h < lN+k}.")) (|expand| ((|#2| $) "\\spad{expand(l..h by k)} creates value of type \\spad{L} with elements \\spad{l, l+k, ... lN} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand(1..5 by 2) = [1,3,5]}.") ((|#2| (|List| $)) "\\spad{expand(l)} creates a new value of type \\spad{L} in which each segment \\spad{l..h by k} is replaced with \\spad{l, l+k, ... lN},{} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand [1..4, 7..9] = [1,2,3,4,7,8,9]}."))) NIL NIL -(-1007) +(-1008) ((|constructor| (NIL "This domain represents a block of expressions.")) (|last| (((|SpadAst|) $) "\\spad{last(e)} returns the last instruction in `e'.")) (|body| (((|List| (|SpadAst|)) $) "\\spad{body(e)} returns the list of expressions in the sequence of instruction `e'."))) NIL NIL -(-1008 S) +(-1009 S) ((|constructor| (NIL "A set over a domain \\spad{D} models the usual mathematical notion of a finite set of elements from \\spad{D}. Sets are unordered collections of distinct elements (that is,{} order and duplication does not matter). The notation \\spad{set [a,b,c]} can be used to create a set and the usual operations such as union and intersection are available to form new sets. In our implementation,{} \\Language{} maintains the entries in sorted order. Specifically,{} the parts function returns the entries as a list in ascending order and the extract operation returns the maximum entry. Given two sets \\spad{s} and \\spad{t} where \\spad{\\#s = m} and \\spad{\\#t = n},{} the complexity of \\indented{2}{\\spad{s = t} is \\spad{O(min(n,m))}} \\indented{2}{\\spad{s < t} is \\spad{O(max(n,m))}} \\indented{2}{\\spad{union(s,t)},{} \\spad{intersect(s,t)},{} \\spad{minus(s,t)},{} \\spad{symmetricDifference(s,t)} is \\spad{O(max(n,m))}} \\indented{2}{\\spad{member(x,t)} is \\spad{O(n log n)}} \\indented{2}{\\spad{insert(x,t)} and \\spad{remove(x,t)} is \\spad{O(n)}}"))) -((-3993 . T) (-3983 . T) (-3994 . T)) -((OR (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-552 (-472)))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (QUOTE (-755))) (|HasCategory| |#1| (QUOTE (-551 (-771)))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) -(-1009 A S) +((-3994 . T) (-3984 . T) (-3995 . T)) +((OR (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-553 (-473)))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) +(-1010 A S) ((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#2| $) "\\spad{union(x,u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#2|) "\\spad{union(u,x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#2|) "\\spad{difference(u,x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#2|)) "\\spad{set([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#2|)) "\\spad{brace([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}."))) NIL NIL -(-1010 S) +(-1011 S) ((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#1| $) "\\spad{union(x,u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#1|) "\\spad{union(u,x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#1|) "\\spad{difference(u,x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#1|)) "\\spad{set([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#1|)) "\\spad{brace([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}."))) -((-3983 . T)) +((-3984 . T)) NIL -(-1011 S) +(-1012 S) ((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}."))) NIL NIL -(-1012) +(-1013) ((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}."))) NIL NIL -(-1013 |m| |n|) +(-1014 |m| |n|) ((|constructor| (NIL "\\spadtype{SetOfMIntegersInOneToN} implements the subsets of \\spad{M} integers in the interval \\spad{[1..n]}")) (|delta| (((|NonNegativeInteger|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{delta(S,k,p)} returns the number of elements of \\spad{S} which are strictly between \\spad{p} and the k^{th} element of \\spad{S}.")) (|member?| (((|Boolean|) (|PositiveInteger|) $) "\\spad{member?(p, s)} returns \\spad{true} is \\spad{p} is in \\spad{s},{} \\spad{false} otherwise.")) (|enumerate| (((|Vector| $)) "\\spad{enumerate()} returns a vector of all the sets of \\spad{M} integers in \\spad{1..n}.")) (|setOfMinN| (($ (|List| (|PositiveInteger|))) "\\spad{setOfMinN([a_1,...,a_m])} returns the set {\\spad{a_1},{}...,{}a_m}. Error if {\\spad{a_1},{}...,{}a_m} is not a set of \\spad{M} integers in \\spad{1..n}.")) (|elements| (((|List| (|PositiveInteger|)) $) "\\spad{elements(S)} returns the list of the elements of \\spad{S} in increasing order.")) (|replaceKthElement| (((|Union| $ #1="failed") $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{replaceKthElement(S,k,p)} replaces the k^{th} element of \\spad{S} by \\spad{p},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")) (|incrementKthElement| (((|Union| $ #1#) $ (|PositiveInteger|)) "\\spad{incrementKthElement(S,k)} increments the k^{th} element of \\spad{S},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more."))) NIL NIL -(-1014) +(-1015) ((|constructor| (NIL "This domain allows the manipulation of the usual Lisp values."))) NIL NIL -(-1015 |Str| |Sym| |Int| |Flt| |Expr|) +(-1016 |Str| |Sym| |Int| |Flt| |Expr|) ((|constructor| (NIL "This category allows the manipulation of Lisp values while keeping the grunge fairly localized.")) (|#| (((|Integer|) $) "\\spad{\\#((a1,...,an))} returns \\spad{n}.")) (|cdr| (($ $) "\\spad{cdr((a1,...,an))} returns \\spad{(a2,...,an)}.")) (|car| (($ $) "\\spad{car((a1,...,an))} returns \\spad{a1}.")) (|expr| ((|#5| $) "\\spad{expr(s)} returns \\spad{s} as an element of Expr; Error: if \\spad{s} is not an atom that also belongs to Expr.")) (|float| ((|#4| $) "\\spad{float(s)} returns \\spad{s} as an element of Flt; Error: if \\spad{s} is not an atom that also belongs to Flt.")) (|integer| ((|#3| $) "\\spad{integer(s)} returns \\spad{s} as an element of Int. Error: if \\spad{s} is not an atom that also belongs to Int.")) (|symbol| ((|#2| $) "\\spad{symbol(s)} returns \\spad{s} as an element of Sym. Error: if \\spad{s} is not an atom that also belongs to Sym.")) (|string| ((|#1| $) "\\spad{string(s)} returns \\spad{s} as an element of Str. Error: if \\spad{s} is not an atom that also belongs to Str.")) (|destruct| (((|List| $) $) "\\spad{destruct((a1,...,an))} returns the list [\\spad{a1},{}...,{}an].")) (|float?| (((|Boolean|) $) "\\spad{float?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Flt.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Int.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Sym.")) (|string?| (((|Boolean|) $) "\\spad{string?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Str.")) (|list?| (((|Boolean|) $) "\\spad{list?(s)} is \\spad{true} if \\spad{s} is a Lisp list,{} possibly ().")) (|pair?| (((|Boolean|) $) "\\spad{pair?(s)} is \\spad{true} if \\spad{s} has is a non-null Lisp list.")) (|atom?| (((|Boolean|) $) "\\spad{atom?(s)} is \\spad{true} if \\spad{s} is a Lisp atom.")) (|null?| (((|Boolean|) $) "\\spad{null?(s)} is \\spad{true} if \\spad{s} is the \\spad{S}-expression ().")) (|eq| (((|Boolean|) $ $) "\\spad{eq(s, t)} is \\spad{true} if \\%peq(\\spad{s},{}\\spad{t}) is \\spad{true} for pointers."))) NIL NIL -(-1016 |Str| |Sym| |Int| |Flt| |Expr|) +(-1017 |Str| |Sym| |Int| |Flt| |Expr|) ((|constructor| (NIL "This domain allows the manipulation of Lisp values over arbitrary atomic types."))) NIL NIL -(-1017 R E V P TS) +(-1018 R E V P TS) ((|constructor| (NIL "\\indented{2}{A internal package for removing redundant quasi-components and redundant} \\indented{2}{branches when decomposing a variety by means of quasi-components} \\indented{2}{of regular triangular sets. \\newline} References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{5}{Tech. Report (PoSSo project)} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}ts,{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(lp,{}lts,{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(\\spad{lpwt1},{}\\spad{lpwt2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(lts)} removes from \\axiom{lts} any \\spad{ts} such that \\axiom{subQuasiComponent?(ts,{}us)} holds for another \\spad{us} in \\axiom{lts}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(ts,{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(ts,{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(ts,{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?(ts,{}us)}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(ts,{}us)} returns a boolean \\spad{b} value if the fact the regular zero set of \\axiom{us} contains that of \\axiom{ts} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(ts,{}us)} returns \\spad{true} iff \\axiom{ts} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(ts,{}us)} returns \\spad{false} iff \\axiom{ts} and \\axiom{us} are both empty,{} or \\axiom{ts} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ts}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(lts)} sorts \\axiom{lts} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(ts,{}us)} returns \\spad{true} iff \\axiom{ts} has less elements than \\axiom{us} otherwise if \\axiom{ts} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) NIL NIL -(-1018 R E V P TS) +(-1019 R E V P TS) ((|constructor| (NIL "A internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field. There is no need to use directly this package since its main operations are available from \\spad{TS}. \\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of gcd over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of \\spad{AAECC11}} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) NIL NIL -(-1019 R E V P) +(-1020 R E V P) ((|constructor| (NIL "The category of square-free regular triangular sets. A regular triangular set \\spad{ts} is square-free if the gcd of any polynomial \\spad{p} in \\spad{ts} and \\spad{differentiate(p,mvar(p))} \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{collectUnder}{TriangularSetCategory}(ts,{}\\axiomOpFrom{mvar}{RecursivePolynomialCategory}(\\spad{p})) has degree zero \\spad{w}.\\spad{r}.\\spad{t}. \\spad{mvar(p)}. Thus any square-free regular set defines a tower of square-free simple extensions.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Habilitation Thesis,{} ETZH,{} Zurich,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) -((-3994 . T) (-3993 . T)) +((-3995 . T) (-3994 . T)) NIL -(-1020) +(-1021) ((|constructor| (NIL "SymmetricGroupCombinatoricFunctions contains combinatoric functions concerning symmetric groups and representation theory: list young tableaus,{} improper partitions,{} subsets bijection of Coleman.")) (|unrankImproperPartitions1| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions1(n,m,k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in at most \\spad{m} nonnegative parts ordered as follows: first,{} in reverse lexicographically according to their non-zero parts,{} then according to their positions (\\spadignore{i.e.} lexicographical order using {\\em subSet}: {\\em [3,0,0] < [0,3,0] < [0,0,3] < [2,1,0] < [2,0,1] < [0,2,1] < [1,2,0] < [1,0,2] < [0,1,2] < [1,1,1]}). Note: counting of subtrees is done by {\\em numberOfImproperPartitionsInternal}.")) (|unrankImproperPartitions0| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions0(n,m,k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in \\spad{m} nonnegative parts in reverse lexicographical order. Example: {\\em [0,0,3] < [0,1,2] < [0,2,1] < [0,3,0] < [1,0,2] < [1,1,1] < [1,2,0] < [2,0,1] < [2,1,0] < [3,0,0]}. Error: if \\spad{k} is negative or too big. Note: counting of subtrees is done by \\spadfunFrom{numberOfImproperPartitions}{SymmetricGroupCombinatoricFunctions}.")) (|subSet| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subSet(n,m,k)} calculates the {\\em k}\\spad{-}th {\\em m}-subset of the set {\\em 0,1,...,(n-1)} in the lexicographic order considered as a decreasing map from {\\em 0,...,(m-1)} into {\\em 0,...,(n-1)}. See \\spad{S}.\\spad{G}. Williamson: Theorem 1.60. Error: if not {\\em (0 <= m <= n and 0 < = k < (n choose m))}.")) (|numberOfImproperPartitions| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{numberOfImproperPartitions(n,m)} computes the number of partitions of the nonnegative integer \\spad{n} in \\spad{m} nonnegative parts with regarding the order (improper partitions). Example: {\\em numberOfImproperPartitions (3,3)} is 10,{} since {\\em [0,0,3], [0,1,2], [0,2,1], [0,3,0], [1,0,2], [1,1,1], [1,2,0], [2,0,1], [2,1,0], [3,0,0]} are the possibilities. Note: this operation has a recursive implementation.")) (|nextPartition| (((|Vector| (|Integer|)) (|List| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,part,number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. the first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.") (((|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,part,number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. The first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.")) (|nextLatticePermutation| (((|List| (|Integer|)) (|List| (|PositiveInteger|)) (|List| (|Integer|)) (|Boolean|)) "\\spad{nextLatticePermutation(lambda,lattP,constructNotFirst)} generates the lattice permutation according to the proper partition {\\em lambda} succeeding the lattice permutation {\\em lattP} in lexicographical order as long as {\\em constructNotFirst} is \\spad{true}. If {\\em constructNotFirst} is \\spad{false},{} the first lattice permutation is returned. The result {\\em nil} indicates that {\\em lattP} has no successor.")) (|nextColeman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{nextColeman(alpha,beta,C)} generates the next Coleman matrix of column sums {\\em alpha} and row sums {\\em beta} according to the lexicographical order from bottom-to-top. The first Coleman matrix is achieved by {\\em C=new(1,1,0)}. Also,{} {\\em new(1,1,0)} indicates that \\spad{C} is the last Coleman matrix.")) (|makeYoungTableau| (((|Matrix| (|Integer|)) (|List| (|PositiveInteger|)) (|List| (|Integer|))) "\\spad{makeYoungTableau(lambda,gitter)} computes for a given lattice permutation {\\em gitter} and for an improper partition {\\em lambda} the corresponding standard tableau of shape {\\em lambda}. Notes: see {\\em listYoungTableaus}. The entries are from {\\em 0,...,n-1}.")) (|listYoungTableaus| (((|List| (|Matrix| (|Integer|))) (|List| (|PositiveInteger|))) "\\spad{listYoungTableaus(lambda)} where {\\em lambda} is a proper partition generates the list of all standard tableaus of shape {\\em lambda} by means of lattice permutations. The numbers of the lattice permutation are interpreted as column labels. Hence the contents of these lattice permutations are the conjugate of {\\em lambda}. Notes: the functions {\\em nextLatticePermutation} and {\\em makeYoungTableau} are used. The entries are from {\\em 0,...,n-1}.")) (|inverseColeman| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{inverseColeman(alpha,beta,C)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For such a matrix \\spad{C},{} inverseColeman(\\spad{alpha},{}\\spad{beta},{}\\spad{C}) calculates the lexicographical smallest {\\em pi} in the corresponding double coset. Note: the resulting permutation {\\em pi} of {\\em {1,2,...,n}} is given in list form. Notes: the inverse of this map is {\\em coleman}. For details,{} see James/Kerber.")) (|coleman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{coleman(alpha,beta,pi)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For a representing element {\\em pi} of such a double coset,{} coleman(\\spad{alpha},{}\\spad{beta},{}\\spad{pi}) generates the Coleman-matrix corresponding to {\\em alpha, beta, pi}. Note: The permutation {\\em pi} of {\\em {1,2,...,n}} has to be given in list form. Note: the inverse of this map is {\\em inverseColeman} (if {\\em pi} is the lexicographical smallest permutation in the coset). For details see James/Kerber."))) NIL NIL -(-1021 T$) +(-1022 T$) ((|constructor| (NIL "This domain implements semigroup operations.")) (|semiGroupOperation| (($ (|Mapping| |#1| |#1| |#1|)) "\\spad{semiGroupOperation f} constructs a semigroup operation out of a binary homogeneous mapping known to be associative."))) -(((|%Rule| |associativity| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|) (|:| |y| |#1|) (|:| |z| |#1|)) (-3055 (|f| (|f| |x| |y|) |z|) (|f| |x| (|f| |y| |z|))))) . T)) +(((|%Rule| |associativity| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|) (|:| |y| |#1|) (|:| |z| |#1|)) (-3056 (|f| (|f| |x| |y|) |z|) (|f| |x| (|f| |y| |z|))))) . T)) NIL -(-1022 T$) +(-1023 T$) ((|constructor| (NIL "This is the category of all domains that implement semigroup operations"))) -(((|%Rule| |associativity| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|) (|:| |y| |#1|) (|:| |z| |#1|)) (-3055 (|f| (|f| |x| |y|) |z|) (|f| |x| (|f| |y| |z|))))) . T)) +(((|%Rule| |associativity| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|) (|:| |y| |#1|) (|:| |z| |#1|)) (-3056 (|f| (|f| |x| |y|) |z|) (|f| |x| (|f| |y| |z|))))) . T)) NIL -(-1023 S) +(-1024 S) ((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}."))) NIL NIL -(-1024) +(-1025) ((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}."))) NIL NIL -(-1025 |dimtot| |dim1| S) +(-1026 |dimtot| |dim1| S) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered as if they were split into two blocks. The \\spad{dim1} parameter specifies the length of the first block. The ordering is lexicographic between the blocks but acts like \\spadtype{HomogeneousDirectProduct} within each block. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-3987 |has| |#3| (-960)) (-3988 |has| |#3| (-960)) (-3990 |has| |#3| (-6 -3990)) (-3993 . T)) -((OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-318))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-662))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-716))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-755))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-808 (-1088)))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-960))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1012))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|))))) (|HasCategory| |#3| (QUOTE (-551 (-771)))) (|HasCategory| |#3| (QUOTE (-312))) (OR (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-960)))) (OR (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-312)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-960))) (|HasCategory| |#3| (QUOTE (-662))) (|HasCategory| |#3| (QUOTE (-716))) (OR (|HasCategory| |#3| (QUOTE (-716))) (|HasCategory| |#3| (QUOTE (-755)))) (|HasCategory| |#3| (QUOTE (-755))) (|HasCategory| |#3| (QUOTE (-318))) (OR (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-579 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-579 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-579 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-579 (-483)))) (|HasCategory| |#3| (QUOTE (-808 (-1088))))) (-12 (|HasCategory| |#3| (QUOTE (-579 (-483)))) (|HasCategory| |#3| (QUOTE (-960))))) (|HasCategory| |#3| (QUOTE (-808 (-1088)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-72))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-318))) (|HasCategory| |#3| (QUOTE (-662))) (|HasCategory| |#3| (QUOTE (-716))) (|HasCategory| |#3| (QUOTE (-755))) (|HasCategory| |#3| (QUOTE (-808 (-1088)))) (|HasCategory| |#3| (QUOTE (-960))) (|HasCategory| |#3| (QUOTE (-1012)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-318))) (|HasCategory| |#3| (QUOTE (-662))) (|HasCategory| |#3| (QUOTE (-716))) (|HasCategory| |#3| (QUOTE (-755))) (|HasCategory| |#3| (QUOTE (-808 (-1088)))) (|HasCategory| |#3| (QUOTE (-960))) (|HasCategory| |#3| (QUOTE (-1012)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-808 (-1088)))) (|HasCategory| |#3| (QUOTE (-960)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-808 (-1088)))) (|HasCategory| |#3| (QUOTE (-960)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-808 (-1088)))) (|HasCategory| |#3| (QUOTE (-960)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-808 (-1088)))) (|HasCategory| |#3| (QUOTE (-960)))) (OR (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-808 (-1088)))) (|HasCategory| |#3| (QUOTE (-960)))) (|HasCategory| |#3| (QUOTE (-190))) (OR (|HasCategory| |#3| (QUOTE (-190))) (-12 (|HasCategory| |#3| (QUOTE (-189))) (|HasCategory| |#3| (QUOTE (-960))))) (OR (-12 (|HasCategory| |#3| (QUOTE (-810 (-1088)))) (|HasCategory| |#3| (QUOTE (-960)))) (|HasCategory| |#3| (QUOTE (-808 (-1088))))) (|HasCategory| |#3| (QUOTE (-1012))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-949 (-348 (-483)))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-949 (-348 (-483)))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-949 (-348 (-483)))))) (-12 (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-949 (-348 (-483)))))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-949 (-348 (-483)))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-949 (-348 (-483)))))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-949 (-348 (-483)))))) (-12 (|HasCategory| |#3| (QUOTE (-318))) (|HasCategory| |#3| (QUOTE (-949 (-348 (-483)))))) (-12 (|HasCategory| |#3| (QUOTE (-662))) (|HasCategory| |#3| (QUOTE (-949 (-348 (-483)))))) (-12 (|HasCategory| |#3| (QUOTE (-716))) (|HasCategory| |#3| (QUOTE (-949 (-348 (-483)))))) (-12 (|HasCategory| |#3| (QUOTE (-755))) (|HasCategory| |#3| (QUOTE (-949 (-348 (-483)))))) (-12 (|HasCategory| |#3| (QUOTE (-808 (-1088)))) (|HasCategory| |#3| (QUOTE (-949 (-348 (-483)))))) (-12 (|HasCategory| |#3| (QUOTE (-949 (-348 (-483))))) (|HasCategory| |#3| (QUOTE (-960)))) (-12 (|HasCategory| |#3| (QUOTE (-949 (-348 (-483))))) (|HasCategory| |#3| (QUOTE (-1012))))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-949 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-949 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-949 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-949 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-949 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-949 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-716))) (|HasCategory| |#3| (QUOTE (-949 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-755))) (|HasCategory| |#3| (QUOTE (-949 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-808 (-1088)))) (|HasCategory| |#3| (QUOTE (-949 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-949 (-483)))) (|HasCategory| |#3| (QUOTE (-1012)))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-949 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-318))) (|HasCategory| |#3| (QUOTE (-949 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-662))) (|HasCategory| |#3| (QUOTE (-949 (-483))))) (|HasCategory| |#3| (QUOTE (-960)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-949 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-949 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-949 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-949 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-949 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-949 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-716))) (|HasCategory| |#3| (QUOTE (-949 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-755))) (|HasCategory| |#3| (QUOTE (-949 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-808 (-1088)))) (|HasCategory| |#3| (QUOTE (-949 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-949 (-483)))) (|HasCategory| |#3| (QUOTE (-1012)))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-949 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-318))) (|HasCategory| |#3| (QUOTE (-949 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-662))) (|HasCategory| |#3| (QUOTE (-949 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-949 (-483)))) (|HasCategory| |#3| (QUOTE (-960))))) (|HasCategory| (-483) (QUOTE (-755))) (-12 (|HasCategory| |#3| (QUOTE (-579 (-483)))) (|HasCategory| |#3| (QUOTE (-960)))) (-12 (|HasCategory| |#3| (QUOTE (-189))) (|HasCategory| |#3| (QUOTE (-960)))) (-12 (|HasCategory| |#3| (QUOTE (-810 (-1088)))) (|HasCategory| |#3| (QUOTE (-960)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-949 (-483)))) (|HasCategory| |#3| (QUOTE (-1012)))) (|HasCategory| |#3| (QUOTE (-960)))) (-12 (|HasCategory| |#3| (QUOTE (-949 (-483)))) (|HasCategory| |#3| (QUOTE (-1012)))) (-12 (|HasCategory| |#3| (QUOTE (-949 (-348 (-483))))) (|HasCategory| |#3| (QUOTE (-1012)))) (|HasAttribute| |#3| (QUOTE -3990)) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-960)))) (-12 (|HasCategory| |#3| (QUOTE (-808 (-1088)))) (|HasCategory| |#3| (QUOTE (-960)))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-72))) (-12 (|HasCategory| |#3| (QUOTE (-1012))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|))))) -(-1026 R |x|) +((-3988 |has| |#3| (-961)) (-3989 |has| |#3| (-961)) (-3991 |has| |#3| (-6 -3991)) (-3994 . T)) +((OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-319))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-663))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-717))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-756))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-809 (-1089)))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-961))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1013))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|))))) (|HasCategory| |#3| (QUOTE (-552 (-772)))) (|HasCategory| |#3| (QUOTE (-312))) (OR (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-961)))) (OR (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-312)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-961))) (|HasCategory| |#3| (QUOTE (-663))) (|HasCategory| |#3| (QUOTE (-717))) (OR (|HasCategory| |#3| (QUOTE (-717))) (|HasCategory| |#3| (QUOTE (-756)))) (|HasCategory| |#3| (QUOTE (-756))) (|HasCategory| |#3| (QUOTE (-319))) (OR (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-580 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-580 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-580 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-580 (-484)))) (|HasCategory| |#3| (QUOTE (-809 (-1089))))) (-12 (|HasCategory| |#3| (QUOTE (-580 (-484)))) (|HasCategory| |#3| (QUOTE (-961))))) (|HasCategory| |#3| (QUOTE (-809 (-1089)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-72))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-319))) (|HasCategory| |#3| (QUOTE (-663))) (|HasCategory| |#3| (QUOTE (-717))) (|HasCategory| |#3| (QUOTE (-756))) (|HasCategory| |#3| (QUOTE (-809 (-1089)))) (|HasCategory| |#3| (QUOTE (-961))) (|HasCategory| |#3| (QUOTE (-1013)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-319))) (|HasCategory| |#3| (QUOTE (-663))) (|HasCategory| |#3| (QUOTE (-717))) (|HasCategory| |#3| (QUOTE (-756))) (|HasCategory| |#3| (QUOTE (-809 (-1089)))) (|HasCategory| |#3| (QUOTE (-961))) (|HasCategory| |#3| (QUOTE (-1013)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-809 (-1089)))) (|HasCategory| |#3| (QUOTE (-961)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-809 (-1089)))) (|HasCategory| |#3| (QUOTE (-961)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-809 (-1089)))) (|HasCategory| |#3| (QUOTE (-961)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-809 (-1089)))) (|HasCategory| |#3| (QUOTE (-961)))) (OR (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-809 (-1089)))) (|HasCategory| |#3| (QUOTE (-961)))) (|HasCategory| |#3| (QUOTE (-190))) (OR (|HasCategory| |#3| (QUOTE (-190))) (-12 (|HasCategory| |#3| (QUOTE (-189))) (|HasCategory| |#3| (QUOTE (-961))))) (OR (-12 (|HasCategory| |#3| (QUOTE (-811 (-1089)))) (|HasCategory| |#3| (QUOTE (-961)))) (|HasCategory| |#3| (QUOTE (-809 (-1089))))) (|HasCategory| |#3| (QUOTE (-1013))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#3| (QUOTE (-319))) (|HasCategory| |#3| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#3| (QUOTE (-663))) (|HasCategory| |#3| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#3| (QUOTE (-717))) (|HasCategory| |#3| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#3| (QUOTE (-756))) (|HasCategory| |#3| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#3| (QUOTE (-809 (-1089)))) (|HasCategory| |#3| (QUOTE (-950 (-349 (-484)))))) (-12 (|HasCategory| |#3| (QUOTE (-950 (-349 (-484))))) (|HasCategory| |#3| (QUOTE (-961)))) (-12 (|HasCategory| |#3| (QUOTE (-950 (-349 (-484))))) (|HasCategory| |#3| (QUOTE (-1013))))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-717))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-756))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-809 (-1089)))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-950 (-484)))) (|HasCategory| |#3| (QUOTE (-1013)))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-319))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-663))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (|HasCategory| |#3| (QUOTE (-961)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-717))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-756))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-809 (-1089)))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-950 (-484)))) (|HasCategory| |#3| (QUOTE (-1013)))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-319))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-663))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-950 (-484)))) (|HasCategory| |#3| (QUOTE (-961))))) (|HasCategory| (-484) (QUOTE (-756))) (-12 (|HasCategory| |#3| (QUOTE (-580 (-484)))) (|HasCategory| |#3| (QUOTE (-961)))) (-12 (|HasCategory| |#3| (QUOTE (-189))) (|HasCategory| |#3| (QUOTE (-961)))) (-12 (|HasCategory| |#3| (QUOTE (-811 (-1089)))) (|HasCategory| |#3| (QUOTE (-961)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-950 (-484)))) (|HasCategory| |#3| (QUOTE (-1013)))) (|HasCategory| |#3| (QUOTE (-961)))) (-12 (|HasCategory| |#3| (QUOTE (-950 (-484)))) (|HasCategory| |#3| (QUOTE (-1013)))) (-12 (|HasCategory| |#3| (QUOTE (-950 (-349 (-484))))) (|HasCategory| |#3| (QUOTE (-1013)))) (|HasAttribute| |#3| (QUOTE -3991)) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-961)))) (-12 (|HasCategory| |#3| (QUOTE (-809 (-1089)))) (|HasCategory| |#3| (QUOTE (-961)))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-72))) (-12 (|HasCategory| |#3| (QUOTE (-1013))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|))))) +(-1027 R |x|) ((|constructor| (NIL "This package produces functions for counting etc. real roots of univariate polynomials in \\spad{x} over \\spad{R},{} which must be an OrderedIntegralDomain")) (|countRealRootsMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRootsMultiple(p)} says how many real roots \\spad{p} has,{} counted with multiplicity")) (|SturmHabichtMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtMultiple(p1,p2)} computes c_{+}-c_{-} where c_{+} is the number of real roots of \\spad{p1} with \\spad{p2>0} and c_{-} is the number of real roots of \\spad{p1} with \\spad{p2<0}. If \\spad{p2=1} what you get is the number of real roots of \\spad{p1}.")) (|countRealRoots| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRoots(p)} says how many real roots \\spad{p} has")) (|SturmHabicht| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabicht(p1,p2)} computes c_{+}-c_{-} where c_{+} is the number of real roots of \\spad{p1} with \\spad{p2>0} and c_{-} is the number of real roots of \\spad{p1} with \\spad{p2<0}. If \\spad{p2=1} what you get is the number of real roots of \\spad{p1}.")) (|SturmHabichtCoefficients| (((|List| |#1|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtCoefficients(p1,p2)} computes the principal Sturm-Habicht coefficients of \\spad{p1} and \\spad{p2}")) (|SturmHabichtSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtSequence(p1,p2)} computes the Sturm-Habicht sequence of \\spad{p1} and \\spad{p2}")) (|subresultantSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{subresultantSequence(p1,p2)} computes the (standard) subresultant sequence of \\spad{p1} and \\spad{p2}"))) NIL -((|HasCategory| |#1| (QUOTE (-390)))) -(-1027) +((|HasCategory| |#1| (QUOTE (-391)))) +(-1028) ((|constructor| (NIL "This is the datatype for operation signatures as \\indented{2}{used by the compiler and the interpreter.\\space{2}Note that this domain} \\indented{2}{differs from SignatureAst.} See also: ConstructorCall,{} Domain.")) (|source| (((|List| (|Syntax|)) $) "\\spad{source(s)} returns the list of parameter types of `s'.")) (|target| (((|Syntax|) $) "\\spad{target(s)} returns the target type of the signature `s'.")) (|signature| (($ (|List| (|Syntax|)) (|Syntax|)) "\\spad{signature(s,t)} constructs a Signature object with parameter types indicaded by `s',{} and return type indicated by `t'."))) NIL NIL -(-1028) +(-1029) ((|constructor| (NIL "This domain represents a signature AST. A signature AST \\indented{2}{is a description of an exported operation,{} \\spadignore{e.g.} its name,{} result} \\indented{2}{type,{} and the list of its argument types.}")) (|signature| (((|Signature|) $) "\\spad{signature(s)} returns AST of the declared signature for `s'.")) (|name| (((|Identifier|) $) "\\spad{name(s)} returns the name of the signature `s'.")) (|signatureAst| (($ (|Identifier|) (|Signature|)) "\\spad{signatureAst(n,s,t)} builds the signature AST n: \\spad{s} -> \\spad{t}"))) NIL NIL -(-1029 R -3091) +(-1030 R -3092) ((|constructor| (NIL "This package provides functions to determine the sign of an elementary function around a point or infinity.")) (|sign| (((|Union| (|Integer|) #1="failed") |#2| (|Symbol|) |#2| (|String|)) "\\spad{sign(f, x, a, s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from below if \\spad{s} is \"left\",{} or above if \\spad{s} is \"right\".") (((|Union| (|Integer|) #1#) |#2| (|Symbol|) (|OrderedCompletion| |#2|)) "\\spad{sign(f, x, a)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) #1#) |#2|) "\\spad{sign(f)} returns the sign of \\spad{f} if it is constant everywhere."))) NIL NIL -(-1030 R) +(-1031 R) ((|constructor| (NIL "Find the sign of a rational function around a point or infinity.")) (|sign| (((|Union| (|Integer|) #1="failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|)) (|String|)) "\\spad{sign(f, x, a, s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from the left (below) if \\spad{s} is the string \\spad{\"left\"},{} or from the right (above) if \\spad{s} is the string \\spad{\"right\"}.") (((|Union| (|Integer|) #1#) (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sign(f, x, a)} returns the sign of \\spad{f} as \\spad{x} approaches \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) #1#) (|Fraction| (|Polynomial| |#1|))) "\\spad{sign f} returns the sign of \\spad{f} if it is constant everywhere."))) NIL NIL -(-1031) +(-1032) ((|constructor| (NIL "\\indented{1}{Package to allow simplify to be called on AlgebraicNumbers} by converting to EXPR(INT)")) (|simplify| (((|Expression| (|Integer|)) (|AlgebraicNumber|)) "\\spad{simplify(an)} applies simplifications to \\spad{an}"))) NIL NIL -(-1032) +(-1033) ((|constructor| (NIL "SingleInteger is intended to support machine integer arithmetic.")) (|xor| (($ $ $) "\\spad{xor(n,m)} returns the bit-by-bit logical {\\em xor} of the single integers \\spad{n} and \\spad{m}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} all ideals are finitely generated (in fact principal).")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalClosed} means two positives multiply to give positive.")) (|canonical| ((|attribute|) "\\spad{canonical} means that mathematical equality is implied by data structure equality."))) -((-3981 . T) (-3985 . T) (-3980 . T) (-3991 . T) (-3992 . T) (-3986 . T) ((-3995 "*") . T) (-3987 . T) (-3988 . T) (-3990 . T)) +((-3982 . T) (-3986 . T) (-3981 . T) (-3992 . T) (-3993 . T) (-3987 . T) ((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T)) NIL -(-1033 S) +(-1034 S) ((|constructor| (NIL "A stack is a bag where the last item inserted is the first item extracted.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(s)} returns the number of elements of stack \\spad{s}. Note: \\axiom{depth(\\spad{s}) = \\#s}.")) (|top| ((|#1| $) "\\spad{top(s)} returns the top element \\spad{x} from \\spad{s}; \\spad{s} remains unchanged. Note: Use \\axiom{pop!(\\spad{s})} to obtain \\spad{x} and remove it from \\spad{s}.")) (|pop!| ((|#1| $) "\\spad{pop!(s)} returns the top element \\spad{x},{} destructively removing \\spad{x} from \\spad{s}. Note: Use \\axiom{top(\\spad{s})} to obtain \\spad{x} without removing it from \\spad{s}. Error: if \\spad{s} is empty.")) (|push!| ((|#1| |#1| $) "\\spad{push!(x,s)} pushes \\spad{x} onto stack \\spad{s},{} \\spadignore{i.e.} destructively changing \\spad{s} so as to have a new first (top) element \\spad{x}. Afterwards,{} pop!(\\spad{s}) produces \\spad{x} and pop!(\\spad{s}) produces the original \\spad{s}."))) -((-3993 . T) (-3994 . T)) +((-3994 . T) (-3995 . T)) NIL -(-1034 S |ndim| R |Row| |Col|) +(-1035 S |ndim| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#3| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#3| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#4| |#4| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#5| $ |#5|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#3| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#3| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#4| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#3|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#3|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}'s on the diagonal and zeroes elsewhere."))) NIL -((|HasCategory| |#3| (QUOTE (-312))) (|HasAttribute| |#3| (QUOTE (-3995 "*"))) (|HasCategory| |#3| (QUOTE (-146)))) -(-1035 |ndim| R |Row| |Col|) +((|HasCategory| |#3| (QUOTE (-312))) (|HasAttribute| |#3| (QUOTE (-3996 "*"))) (|HasCategory| |#3| (QUOTE (-146)))) +(-1036 |ndim| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#2| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#2| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#3| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#2|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}'s on the diagonal and zeroes elsewhere."))) -((-3993 . T) (-3987 . T) (-3988 . T) (-3990 . T)) +((-3994 . T) (-3988 . T) (-3989 . T) (-3991 . T)) NIL -(-1036 R |Row| |Col| M) +(-1037 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{SmithNormalForm} is a package which provides some standard canonical forms for matrices.")) (|diophantineSystem| (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{diophantineSystem(A,B)} returns a particular integer solution and an integer basis of the equation \\spad{AX = B}.")) (|completeSmith| (((|Record| (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) "\\spad{completeSmith} returns a record that contains the Smith normal form \\spad{H} of the matrix and the left and right equivalence matrices \\spad{U} and \\spad{V} such that U*m*v = \\spad{H}")) (|smith| ((|#4| |#4|) "\\spad{smith(m)} returns the Smith Normal form of the matrix \\spad{m}.")) (|completeHermite| (((|Record| (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) "\\spad{completeHermite} returns a record that contains the Hermite normal form \\spad{H} of the matrix and the equivalence matrix \\spad{U} such that U*m = \\spad{H}")) (|hermite| ((|#4| |#4|) "\\spad{hermite(m)} returns the Hermite normal form of the matrix \\spad{m}."))) NIL NIL -(-1037 R |VarSet|) +(-1038 R |VarSet|) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials. It is parameterized by the coefficient ring and the variable set which may be infinite. The variable ordering is determined by the variable set parameter. The coefficient ring may be non-commutative,{} but the variables are assumed to commute."))) -(((-3995 "*") |has| |#1| (-146)) (-3986 |has| |#1| (-494)) (-3991 |has| |#1| (-6 -3991)) (-3988 . T) (-3987 . T) (-3990 . T)) -((|HasCategory| |#1| (QUOTE (-820))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-390))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-820)))) (OR (|HasCategory| |#1| (QUOTE (-390))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-820)))) (OR (|HasCategory| |#1| (QUOTE (-390))) (|HasCategory| |#1| (QUOTE (-820)))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-494)))) (-12 (|HasCategory| |#1| (QUOTE (-795 (-328)))) (|HasCategory| |#2| (QUOTE (-795 (-328))))) (-12 (|HasCategory| |#1| (QUOTE (-795 (-483)))) (|HasCategory| |#2| (QUOTE (-795 (-483))))) (-12 (|HasCategory| |#1| (QUOTE (-552 (-799 (-328))))) (|HasCategory| |#2| (QUOTE (-552 (-799 (-328)))))) (-12 (|HasCategory| |#1| (QUOTE (-552 (-799 (-483))))) (|HasCategory| |#2| (QUOTE (-552 (-799 (-483)))))) (-12 (|HasCategory| |#1| (QUOTE (-552 (-472)))) (|HasCategory| |#2| (QUOTE (-552 (-472))))) (|HasCategory| |#1| (QUOTE (-579 (-483)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-348 (-483))))) (|HasCategory| |#1| (QUOTE (-949 (-483)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-348 (-483))))) (|HasCategory| |#1| (QUOTE (-949 (-348 (-483)))))) (|HasCategory| |#1| (QUOTE (-949 (-348 (-483))))) (|HasCategory| |#1| (QUOTE (-312))) (|HasAttribute| |#1| (QUOTE -3991)) (|HasCategory| |#1| (QUOTE (-390))) (-12 (|HasCategory| |#1| (QUOTE (-820))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-820))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) -(-1038 |Coef| |Var| SMP) +(((-3996 "*") |has| |#1| (-146)) (-3987 |has| |#1| (-495)) (-3992 |has| |#1| (-6 -3992)) (-3989 . T) (-3988 . T) (-3991 . T)) +((|HasCategory| |#1| (QUOTE (-821))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-391))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-821)))) (OR (|HasCategory| |#1| (QUOTE (-391))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-821)))) (OR (|HasCategory| |#1| (QUOTE (-391))) (|HasCategory| |#1| (QUOTE (-821)))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (-12 (|HasCategory| |#1| (QUOTE (-796 (-329)))) (|HasCategory| |#2| (QUOTE (-796 (-329))))) (-12 (|HasCategory| |#1| (QUOTE (-796 (-484)))) (|HasCategory| |#2| (QUOTE (-796 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-800 (-329))))) (|HasCategory| |#2| (QUOTE (-553 (-800 (-329)))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-800 (-484))))) (|HasCategory| |#2| (QUOTE (-553 (-800 (-484)))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-473)))) (|HasCategory| |#2| (QUOTE (-553 (-473))))) (|HasCategory| |#1| (QUOTE (-580 (-484)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-349 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-484)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-349 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-349 (-484)))))) (|HasCategory| |#1| (QUOTE (-950 (-349 (-484))))) (|HasCategory| |#1| (QUOTE (-312))) (|HasAttribute| |#1| (QUOTE -3992)) (|HasCategory| |#1| (QUOTE (-391))) (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) +(-1039 |Coef| |Var| SMP) ((|constructor| (NIL "This domain provides multivariate Taylor series with variables from an arbitrary ordered set. A Taylor series is represented by a stream of polynomials from the polynomial domain SMP. The \\spad{n}th element of the stream is a form of degree \\spad{n}. SMTS is an internal domain.")) (|fintegrate| (($ (|Mapping| $) |#2| |#1|) "\\spad{fintegrate(f,v,c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ |#2| |#1|) "\\spad{integrate(s,v,c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|csubst| (((|Mapping| (|Stream| |#3|) |#3|) (|List| |#2|) (|List| (|Stream| |#3|))) "\\spad{csubst(a,b)} is for internal use only")) (* (($ |#3| $) "\\spad{smp*ts} multiplies a TaylorSeries by a monomial SMP.")) (|coerce| (($ |#3|) "\\spad{coerce(poly)} regroups the terms by total degree and forms a series.") (($ |#2|) "\\spad{coerce(var)} converts a variable to a Taylor series")) (|coefficient| ((|#3| $ (|NonNegativeInteger|)) "\\spad{coefficient(s, n)} gives the terms of total degree \\spad{n}."))) -(((-3995 "*") |has| |#1| (-146)) (-3986 |has| |#1| (-494)) (-3988 . T) (-3987 . T) (-3990 . T)) -((|HasCategory| |#1| (QUOTE (-38 (-348 (-483))))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-494)))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-312)))) -(-1039 R E V P) +(((-3996 "*") |has| |#1| (-146)) (-3987 |has| |#1| (-495)) (-3989 . T) (-3988 . T) (-3991 . T)) +((|HasCategory| |#1| (QUOTE (-38 (-349 (-484))))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-312)))) +(-1040 R E V P) ((|constructor| (NIL "The category of square-free and normalized triangular sets. Thus,{} up to the primitivity axiom of [1],{} these sets are Lazard triangular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991}"))) -((-3994 . T) (-3993 . T)) +((-3995 . T) (-3994 . T)) NIL -(-1040 UP -3091) +(-1041 UP -3092) ((|constructor| (NIL "This package factors the formulas out of the general solve code,{} allowing their recursive use over different domains. Care is taken to introduce few radicals so that radical extension domains can more easily simplify the results.")) (|aQuartic| ((|#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{aQuartic(f,g,h,i,k)} \\undocumented")) (|aCubic| ((|#2| |#2| |#2| |#2| |#2|) "\\spad{aCubic(f,g,h,j)} \\undocumented")) (|aQuadratic| ((|#2| |#2| |#2| |#2|) "\\spad{aQuadratic(f,g,h)} \\undocumented")) (|aLinear| ((|#2| |#2| |#2|) "\\spad{aLinear(f,g)} \\undocumented")) (|quartic| (((|List| |#2|) |#2| |#2| |#2| |#2| |#2|) "\\spad{quartic(f,g,h,i,j)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quartic(u)} \\undocumented")) (|cubic| (((|List| |#2|) |#2| |#2| |#2| |#2|) "\\spad{cubic(f,g,h,i)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{cubic(u)} \\undocumented")) (|quadratic| (((|List| |#2|) |#2| |#2| |#2|) "\\spad{quadratic(f,g,h)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quadratic(u)} \\undocumented")) (|linear| (((|List| |#2|) |#2| |#2|) "\\spad{linear(f,g)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{linear(u)} \\undocumented")) (|mapSolve| (((|Record| (|:| |solns| (|List| |#2|)) (|:| |maps| (|List| (|Record| (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (|Mapping| |#2| |#2|)) "\\spad{mapSolve(u,f)} \\undocumented")) (|particularSolution| ((|#2| |#1|) "\\spad{particularSolution(u)} \\undocumented")) (|solve| (((|List| |#2|) |#1|) "\\spad{solve(u)} \\undocumented"))) NIL NIL -(-1041 R) +(-1042 R) ((|constructor| (NIL "This package tries to find solutions expressed in terms of radicals for systems of equations of rational functions with coefficients in an integral domain \\spad{R}.")) (|contractSolve| (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{contractSolve(rf,x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function. The result contains new symbols for common subexpressions in order to reduce the size of the output.") (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{contractSolve(eq,x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}. The result contains new symbols for common subexpressions in order to reduce the size of the output.")) (|radicalRoots| (((|List| (|List| (|Expression| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalRoots(lrf,lvar)} finds the roots expressed in terms of radicals of the list of rational functions \\spad{lrf} with respect to the list of symbols \\spad{lvar}.") (((|List| (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalRoots(rf,x)} finds the roots expressed in terms of radicals of the rational function \\spad{rf} with respect to the symbol \\spad{x}.")) (|radicalSolve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{radicalSolve(leq)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the unique symbol \\spad{x} appearing in \\spad{leq}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{radicalSolve(leq,lvar)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the list of symbols \\spad{lvar}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(lrf)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0,{} where \\spad{lrf} is a system of univariate rational functions.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalSolve(lrf,lvar)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0 with respect to the list of symbols \\spad{lvar},{} where \\spad{lrf} is a list of rational functions.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(eq)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{radicalSolve(eq,x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{radicalSolve(rf)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0,{} where \\spad{rf} is a univariate rational function.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalSolve(rf,x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function."))) NIL NIL -(-1042 R) +(-1043 R) ((|constructor| (NIL "This package finds the function \\spad{func3} where \\spad{func1} and \\spad{func2} \\indented{1}{are given and\\space{2}\\spad{func1} = \\spad{func3}(\\spad{func2}) .\\space{2}If there is no solution then} \\indented{1}{function \\spad{func1} will be returned.} \\indented{1}{An example would be\\space{2}\\spad{func1:= 8*X**3+32*X**2-14*X ::EXPR INT} and} \\indented{1}{\\spad{func2:=2*X ::EXPR INT} convert them via univariate} \\indented{1}{to FRAC SUP EXPR INT and then the solution is \\spad{func3:=X**3+X**2-X}} \\indented{1}{of type FRAC SUP EXPR INT}")) (|unvectorise| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Vector| (|Expression| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Integer|)) "\\spad{unvectorise(vect, var, n)} returns \\spad{vect(1) + vect(2)*var + ... + vect(n+1)*var**(n)} where \\spad{vect} is the vector of the coefficients of the polynomail ,{} \\spad{var} the new variable and \\spad{n} the degree.")) (|decomposeFunc| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|)))) "\\spad{decomposeFunc(func1, func2, newvar)} returns a function \\spad{func3} where \\spad{func1} = \\spad{func3}(\\spad{func2}) and expresses it in the new variable newvar. If there is no solution then \\spad{func1} will be returned."))) NIL NIL -(-1043 R) +(-1044 R) ((|constructor| (NIL "This package tries to find solutions of equations of type Expression(\\spad{R}). This means expressions involving transcendental,{} exponential,{} logarithmic and nthRoot functions. After trying to transform different kernels to one kernel by applying several rules,{} it calls zerosOf for the SparseUnivariatePolynomial in the remaining kernel. For example the expression \\spad{sin(x)*cos(x)-2} will be transformed to \\indented{3}{\\spad{-2 tan(x/2)**4 -2 tan(x/2)**3 -4 tan(x/2)**2 +2 tan(x/2) -2}} by using the function normalize and then to \\indented{3}{\\spad{-2 tan(x)**2 + tan(x) -2}} with help of subsTan. This function tries to express the given function in terms of \\spad{tan(x/2)} to express in terms of \\spad{tan(x)} . Other examples are the expressions \\spad{sqrt(x+1)+sqrt(x+7)+1} or \\indented{1}{\\spad{sqrt(sin(x))+1} .}")) (|solve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Expression| |#1|))) (|List| (|Symbol|))) "\\spad{solve(leqs, lvar)} returns a list of solutions to the list of equations \\spad{leqs} with respect to the list of symbols lvar.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|) (|Symbol|)) "\\spad{solve(expr,x)} finds the solutions of the equation \\spad{expr} = 0 with respect to the symbol \\spad{x} where \\spad{expr} is a function of type Expression(\\spad{R}).") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|)) (|Symbol|)) "\\spad{solve(eq,x)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|)) "\\spad{solve(expr)} finds the solutions of the equation \\spad{expr} = 0 where \\spad{expr} is a function of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in eq."))) NIL NIL -(-1044 S A) +(-1045 S A) ((|constructor| (NIL "This package exports sorting algorithnms")) (|insertionSort!| ((|#2| |#2|) "\\spad{insertionSort! }\\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{insertionSort!(a,f)} \\undocumented")) (|bubbleSort!| ((|#2| |#2|) "\\spad{bubbleSort!(a)} \\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{bubbleSort!(a,f)} \\undocumented"))) NIL -((|HasCategory| |#1| (QUOTE (-755)))) -(-1045 R) +((|HasCategory| |#1| (QUOTE (-756)))) +(-1046 R) ((|constructor| (NIL "The domain ThreeSpace is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them."))) NIL NIL -(-1046 R) +(-1047 R) ((|constructor| (NIL "The category ThreeSpaceCategory is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(s)} returns the \\spadtype{ThreeSpace} \\spad{s} to Output format.")) (|subspace| (((|SubSpace| 3 |#1|) $) "\\spad{subspace(s)} returns the \\spadtype{SubSpace} which holds all the point information in the \\spadtype{ThreeSpace},{} \\spad{s}.")) (|check| (($ $) "\\spad{check(s)} returns lllpt,{} list of lists of lists of point information about the \\spadtype{ThreeSpace} \\spad{s}.")) (|objects| (((|Record| (|:| |points| (|NonNegativeInteger|)) (|:| |curves| (|NonNegativeInteger|)) (|:| |polygons| (|NonNegativeInteger|)) (|:| |constructs| (|NonNegativeInteger|))) $) "\\spad{objects(s)} returns the \\spadtype{ThreeSpace},{} \\spad{s},{} in the form of a 3D object record containing information on the number of points,{} curves,{} polygons and constructs comprising the \\spadtype{ThreeSpace}..")) (|lprop| (((|List| (|SubSpaceComponentProperty|)) $) "\\spad{lprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of subspace component properties,{} and if so,{} returns the list; An error is signaled otherwise.")) (|llprop| (((|List| (|List| (|SubSpaceComponentProperty|))) $) "\\spad{llprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of curves which are lists of the subspace component properties of the curves,{} and if so,{} returns the list of lists; An error is signaled otherwise.")) (|lllp| (((|List| (|List| (|List| (|Point| |#1|)))) $) "\\spad{lllp(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lllip| (((|List| (|List| (|List| (|NonNegativeInteger|)))) $) "\\spad{lllip(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of indices to points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lp| (((|List| (|Point| |#1|)) $) "\\spad{lp(s)} returns the list of points component which the \\spadtype{ThreeSpace},{} \\spad{s},{} contains; these points are used by reference,{} \\spadignore{i.e.} the component holds indices referring to the points rather than the points themselves. This allows for sharing of the points.")) (|mesh?| (((|Boolean|) $) "\\spad{mesh?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} is composed of one component,{} a mesh comprising a list of curves which are lists of points,{} or returns \\spad{false} if otherwise")) (|mesh| (((|List| (|List| (|Point| |#1|))) $) "\\spad{mesh(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single surface component defined by a list curves which contain lists of points,{} and if so,{} returns the list of lists of points; An error is signaled otherwise.") (($ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh([[p0],[p1],...,[pn]], close1, close2)} creates a surface defined over a list of curves,{} \\spad{p0} through pn,{} which are lists of points; the booleans \\spad{close1} and \\spad{close2} indicate how the surface is to be closed: \\spad{close1} set to \\spad{true} means that each individual list (a curve) is to be closed (that is,{} the last point of the list is to be connected to the first point); \\spad{close2} set to \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)); the \\spadtype{ThreeSpace} containing this surface is returned.") (($ (|List| (|List| (|Point| |#1|)))) "\\spad{mesh([[p0],[p1],...,[pn]])} creates a surface defined by a list of curves which are lists,{} \\spad{p0} through pn,{} of points,{} and returns a \\spadtype{ThreeSpace} whose component is the surface.") (($ $ (|List| (|List| (|List| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,[ [[r10]...,[r1m]], [[r20]...,[r2m]],..., [[rn0]...,[rnm]] ], close1, close2)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size WxH where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; the booleans \\spad{close1} and \\spad{close2} indicate how the surface is to be closed: if \\spad{close1} is \\spad{true} this means that each individual list (a curve) is to be closed (\\spadignore{i.e.} the last point of the list is to be connected to the first point); if \\spad{close2} is \\spad{true},{} this means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)).") (($ $ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,[[p0],[p1],...,[pn]], close1, close2)} adds a surface component to the \\spadtype{ThreeSpace},{} which is defined over a list of curves,{} in which each of these curves is a list of points. The boolean arguments \\spad{close1} and \\spad{close2} indicate how the surface is to be closed. Argument \\spad{close1} equal \\spad{true} means that each individual list (a curve) is to be closed,{} \\spadignore{i.e.} the last point of the list is to be connected to the first point. Argument \\spad{close2} equal \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end,{} \\spadignore{i.e.} the boundaries are defined as the first list of points (curve) and the last list of points (curve).") (($ $ (|List| (|List| (|List| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,[ [[r10]...,[r1m]], [[r20]...,[r2m]],..., [[rn0]...,[rnm]] ], [props], prop)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size WxH where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; lprops is the list of the subspace component properties for each curve list,{} and prop is the subspace component property by which the points are defined.") (($ $ (|List| (|List| (|Point| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,[[p0],[p1],...,[pn]],[props],prop)} adds a surface component,{} defined over a list curves which contains lists of points,{} to the \\spadtype{ThreeSpace} \\spad{s}; props is a list which contains the subspace component properties for each surface parameter,{} and \\spad{prop} is the subspace component property by which the points are defined.")) (|polygon?| (((|Boolean|) $) "\\spad{polygon?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single polygon component,{} or \\spad{false} otherwise.")) (|polygon| (((|List| (|Point| |#1|)) $) "\\spad{polygon(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single polygon component defined by a list of points,{} and if so,{} returns the list of points; An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{polygon([p0,p1,...,pn])} creates a polygon defined by a list of points,{} \\spad{p0} through pn,{} and returns a \\spadtype{ThreeSpace} whose component is the polygon.") (($ $ (|List| (|List| |#1|))) "\\spad{polygon(s,[[r0],[r1],...,[rn]])} adds a polygon component defined by a list of points \\spad{r0} through \\spad{rn},{} which are lists of elements from the domain \\spad{PointDomain(m,R)} to the \\spadtype{ThreeSpace} \\spad{s},{} where \\spad{m} is the dimension of the points and \\spad{R} is the \\spadtype{Ring} over which the points are defined.") (($ $ (|List| (|Point| |#1|))) "\\spad{polygon(s,[p0,p1,...,pn])} adds a polygon component defined by a list of points,{} \\spad{p0} throught pn,{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|closedCurve?| (((|Boolean|) $) "\\spad{closedCurve?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single closed curve component,{} \\spadignore{i.e.} the first element of the curve is also the last element,{} or \\spad{false} otherwise.")) (|closedCurve| (((|List| (|Point| |#1|)) $) "\\spad{closedCurve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single closed curve component defined by a list of points in which the first point is also the last point,{} all of which are from the domain \\spad{PointDomain(m,R)} and if so,{} returns the list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{closedCurve(lp)} sets a list of points defined by the first element of \\spad{lp} through the last element of \\spad{lp} and back to the first elelment again and returns a \\spadtype{ThreeSpace} whose component is the closed curve defined by \\spad{lp}.") (($ $ (|List| (|List| |#1|))) "\\spad{closedCurve(s,[[lr0],[lr1],...,[lrn],[lr0]])} adds a closed curve component defined by a list of points \\spad{lr0} through \\spad{lrn},{} which are lists of elements from the domain \\spad{PointDomain(m,R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} in which the last element of the list of points contains a copy of the first element list,{} \\spad{lr0}. The closed curve is added to the \\spadtype{ThreeSpace},{} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{closedCurve(s,[p0,p1,...,pn,p0])} adds a closed curve component which is a list of points defined by the first element \\spad{p0} through the last element \\spad{pn} and back to the first element \\spad{p0} again,{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|curve?| (((|Boolean|) $) "\\spad{curve?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is a curve,{} \\spadignore{i.e.} has one component,{} a list of list of points,{} and returns \\spad{true} if it is,{} or \\spad{false} otherwise.")) (|curve| (((|List| (|Point| |#1|)) $) "\\spad{curve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single curve defined by a list of points and if so,{} returns the curve,{} \\spadignore{i.e.} list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{curve([p0,p1,p2,...,pn])} creates a space curve defined by the list of points \\spad{p0} through \\spad{pn},{} and returns the \\spadtype{ThreeSpace} whose component is the curve.") (($ $ (|List| (|List| |#1|))) "\\spad{curve(s,[[p0],[p1],...,[pn]])} adds a space curve which is a list of points \\spad{p0} through pn defined by lists of elements from the domain \\spad{PointDomain(m,R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} to the \\spadtype{ThreeSpace} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{curve(s,[p0,p1,...,pn])} adds a space curve component defined by a list of points \\spad{p0} through \\spad{pn},{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|point?| (((|Boolean|) $) "\\spad{point?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single component which is a point and returns the boolean result.")) (|point| (((|Point| |#1|) $) "\\spad{point(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of only a single point and if so,{} returns the point. An error is signaled otherwise.") (($ (|Point| |#1|)) "\\spad{point(p)} returns a \\spadtype{ThreeSpace} object which is composed of one component,{} the point \\spad{p}.") (($ $ (|NonNegativeInteger|)) "\\spad{point(s,i)} adds a point component which is placed into a component list of the \\spadtype{ThreeSpace},{} \\spad{s},{} at the index given by \\spad{i}.") (($ $ (|List| |#1|)) "\\spad{point(s,[x,y,z])} adds a point component defined by a list of elements which are from the \\spad{PointDomain(R)} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined.") (($ $ (|Point| |#1|)) "\\spad{point(s,p)} adds a point component defined by the point,{} \\spad{p},{} specified as a list from \\spad{List(R)},{} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point is defined.")) (|modifyPointData| (($ $ (|NonNegativeInteger|) (|Point| |#1|)) "\\spad{modifyPointData(s,i,p)} changes the point at the indexed location \\spad{i} in the \\spadtype{ThreeSpace},{} \\spad{s},{} to that of point \\spad{p}. This is useful for making changes to a point which has been transformed.")) (|enterPointData| (((|NonNegativeInteger|) $ (|List| (|Point| |#1|))) "\\spad{enterPointData(s,[p0,p1,...,pn])} adds a list of points from \\spad{p0} through pn to the \\spadtype{ThreeSpace},{} \\spad{s},{} and returns the index,{} to the starting point of the list.")) (|copy| (($ $) "\\spad{copy(s)} returns a new \\spadtype{ThreeSpace} that is an exact copy of \\spad{s}.")) (|composites| (((|List| $) $) "\\spad{composites(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single composite of \\spad{s}. If \\spad{s} has no composites defined (composites need to be explicitly created),{} the list returned is empty. Note that not all the components need to be part of a composite.")) (|components| (((|List| $) $) "\\spad{components(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single component of \\spad{s}. If \\spad{s} has no components defined,{} the list returned is empty.")) (|composite| (($ (|List| $)) "\\spad{composite([s1,s2,...,sn])} will create a new \\spadtype{ThreeSpace} that is a union of all the components from each \\spadtype{ThreeSpace} in the parameter list,{} grouped as a composite.")) (|merge| (($ $ $) "\\spad{merge(s1,s2)} will create a new \\spadtype{ThreeSpace} that has the components of \\spad{s1} and \\spad{s2}; Groupings of components into composites are maintained.") (($ (|List| $)) "\\spad{merge([s1,s2,...,sn])} will create a new \\spadtype{ThreeSpace} that has the components of all the ones in the list; Groupings of components into composites are maintained.")) (|numberOfComposites| (((|NonNegativeInteger|) $) "\\spad{numberOfComposites(s)} returns the number of supercomponents,{} or composites,{} in the \\spadtype{ThreeSpace},{} \\spad{s}; Composites are arbitrary groupings of otherwise distinct and unrelated components; A \\spadtype{ThreeSpace} need not have any composites defined at all and,{} outside of the requirement that no component can belong to more than one composite at a time,{} the definition and interpretation of composites are unrestricted.")) (|numberOfComponents| (((|NonNegativeInteger|) $) "\\spad{numberOfComponents(s)} returns the number of distinct object components in the indicated \\spadtype{ThreeSpace},{} \\spad{s},{} such as points,{} curves,{} polygons,{} and constructs.")) (|create3Space| (($ (|SubSpace| 3 |#1|)) "\\spad{create3Space(s)} creates a \\spadtype{ThreeSpace} object containing objects pre-defined within some \\spadtype{SubSpace} \\spad{s}.") (($) "\\spad{create3Space()} creates a \\spadtype{ThreeSpace} object capable of holding point,{} curve,{} mesh components and any combination."))) NIL NIL -(-1047) +(-1048) ((|constructor| (NIL "This domain represents a kind of base domain \\indented{2}{for Spad syntax domain.\\space{2}It merely exists as a kind of} \\indented{2}{of abstract base in object-oriented programming language.} \\indented{2}{However,{} this is not an abstract class.}"))) NIL NIL -(-1048) +(-1049) ((|constructor| (NIL "\\indented{1}{This package provides a simple Spad algebra parser.} Related Constructors: Syntax. See Also: Syntax.")) (|parse| (((|List| (|Syntax|)) (|String|)) "\\spad{parse(f)} parses the source file \\spad{f} (supposedly containing Spad algebras) and returns a List Syntax. The filename \\spad{f} is supposed to have the proper extension. Note that this function has the side effect of executing any system command contained in the file \\spad{f},{} even if it might not be meaningful."))) NIL NIL -(-1049) +(-1050) ((|constructor| (NIL "This category describes the exported \\indented{2}{signatures of the SpadAst domain.}")) (|autoCoerce| (((|Integer|) $) "\\spad{autoCoerce(s)} returns the Integer view of `s'. Left at the discretion of the compiler.") (((|String|) $) "\\spad{autoCoerce(s)} returns the String view of `s'. Left at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(s)} returns the Identifier view of `s'. Left at the discretion of the compiler.") (((|IsAst|) $) "\\spad{autoCoerce(s)} returns the IsAst view of `s'. Left at the discretion of the compiler.") (((|HasAst|) $) "\\spad{autoCoerce(s)} returns the HasAst view of `s'. Left at the discretion of the compiler.") (((|CaseAst|) $) "\\spad{autoCoerce(s)} returns the CaseAst view of `s'. Left at the discretion of the compiler.") (((|ColonAst|) $) "\\spad{autoCoerce(s)} returns the ColoonAst view of `s'. Left at the discretion of the compiler.") (((|SuchThatAst|) $) "\\spad{autoCoerce(s)} returns the SuchThatAst view of `s'. Left at the discretion of the compiler.") (((|LetAst|) $) "\\spad{autoCoerce(s)} returns the LetAst view of `s'. Left at the discretion of the compiler.") (((|SequenceAst|) $) "\\spad{autoCoerce(s)} returns the SequenceAst view of `s'. Left at the discretion of the compiler.") (((|SegmentAst|) $) "\\spad{autoCoerce(s)} returns the SegmentAst view of `s'. Left at the discretion of the compiler.") (((|RestrictAst|) $) "\\spad{autoCoerce(s)} returns the RestrictAst view of `s'. Left at the discretion of the compiler.") (((|PretendAst|) $) "\\spad{autoCoerce(s)} returns the PretendAst view of `s'. Left at the discretion of the compiler.") (((|CoerceAst|) $) "\\spad{autoCoerce(s)} returns the CoerceAst view of `s'. Left at the discretion of the compiler.") (((|ReturnAst|) $) "\\spad{autoCoerce(s)} returns the ReturnAst view of `s'. Left at the discretion of the compiler.") (((|ExitAst|) $) "\\spad{autoCoerce(s)} returns the ExitAst view of `s'. Left at the discretion of the compiler.") (((|ConstructAst|) $) "\\spad{autoCoerce(s)} returns the ConstructAst view of `s'. Left at the discretion of the compiler.") (((|CollectAst|) $) "\\spad{autoCoerce(s)} returns the CollectAst view of `s'. Left at the discretion of the compiler.") (((|StepAst|) $) "\\spad{autoCoerce(s)} returns the InAst view of \\spad{s}. Left at the discretion of the compiler.") (((|InAst|) $) "\\spad{autoCoerce(s)} returns the InAst view of `s'. Left at the discretion of the compiler.") (((|WhileAst|) $) "\\spad{autoCoerce(s)} returns the WhileAst view of `s'. Left at the discretion of the compiler.") (((|RepeatAst|) $) "\\spad{autoCoerce(s)} returns the RepeatAst view of `s'. Left at the discretion of the compiler.") (((|IfAst|) $) "\\spad{autoCoerce(s)} returns the IfAst view of `s'. Left at the discretion of the compiler.") (((|MappingAst|) $) "\\spad{autoCoerce(s)} returns the MappingAst view of `s'. Left at the discretion of the compiler.") (((|AttributeAst|) $) "\\spad{autoCoerce(s)} returns the AttributeAst view of `s'. Left at the discretion of the compiler.") (((|SignatureAst|) $) "\\spad{autoCoerce(s)} returns the SignatureAst view of `s'. Left at the discretion of the compiler.") (((|CapsuleAst|) $) "\\spad{autoCoerce(s)} returns the CapsuleAst view of `s'. Left at the discretion of the compiler.") (((|JoinAst|) $) "\\spad{autoCoerce(s)} returns the \\spadype{JoinAst} view of of the AST object \\spad{s}. Left at the discretion of the compiler.") (((|CategoryAst|) $) "\\spad{autoCoerce(s)} returns the CategoryAst view of `s'. Left at the discretion of the compiler.") (((|WhereAst|) $) "\\spad{autoCoerce(s)} returns the WhereAst view of `s'. Left at the discretion of the compiler.") (((|MacroAst|) $) "\\spad{autoCoerce(s)} returns the MacroAst view of `s'. Left at the discretion of the compiler.") (((|DefinitionAst|) $) "\\spad{autoCoerce(s)} returns the DefinitionAst view of `s'. Left at the discretion of the compiler.") (((|ImportAst|) $) "\\spad{autoCoerce(s)} returns the ImportAst view of `s'. Left at the discretion of the compiler.")) (|case| (((|Boolean|) $ (|[\|\|]| (|Integer|))) "\\spad{s case Integer} holds if `s' represents an integer literal.") (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{s case String} holds if `s' represents a string literal.") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{s case Identifier} holds if `s' represents an identifier.") (((|Boolean|) $ (|[\|\|]| (|IsAst|))) "\\spad{s case IsAst} holds if `s' represents an is-expression.") (((|Boolean|) $ (|[\|\|]| (|HasAst|))) "\\spad{s case HasAst} holds if `s' represents a has-expression.") (((|Boolean|) $ (|[\|\|]| (|CaseAst|))) "\\spad{s case CaseAst} holds if `s' represents a case-expression.") (((|Boolean|) $ (|[\|\|]| (|ColonAst|))) "\\spad{s case ColonAst} holds if `s' represents a colon-expression.") (((|Boolean|) $ (|[\|\|]| (|SuchThatAst|))) "\\spad{s case SuchThatAst} holds if `s' represents a qualified-expression.") (((|Boolean|) $ (|[\|\|]| (|LetAst|))) "\\spad{s case LetAst} holds if `s' represents an assignment-expression.") (((|Boolean|) $ (|[\|\|]| (|SequenceAst|))) "\\spad{s case SequenceAst} holds if `s' represents a sequence-of-statements.") (((|Boolean|) $ (|[\|\|]| (|SegmentAst|))) "\\spad{s case SegmentAst} holds if `s' represents a segment-expression.") (((|Boolean|) $ (|[\|\|]| (|RestrictAst|))) "\\spad{s case RestrictAst} holds if `s' represents a restrict-expression.") (((|Boolean|) $ (|[\|\|]| (|PretendAst|))) "\\spad{s case PretendAst} holds if `s' represents a pretend-expression.") (((|Boolean|) $ (|[\|\|]| (|CoerceAst|))) "\\spad{s case ReturnAst} holds if `s' represents a coerce-expression.") (((|Boolean|) $ (|[\|\|]| (|ReturnAst|))) "\\spad{s case ReturnAst} holds if `s' represents a return-statement.") (((|Boolean|) $ (|[\|\|]| (|ExitAst|))) "\\spad{s case ExitAst} holds if `s' represents an exit-expression.") (((|Boolean|) $ (|[\|\|]| (|ConstructAst|))) "\\spad{s case ConstructAst} holds if `s' represents a list-expression.") (((|Boolean|) $ (|[\|\|]| (|CollectAst|))) "\\spad{s case CollectAst} holds if `s' represents a list-comprehension.") (((|Boolean|) $ (|[\|\|]| (|StepAst|))) "\\spad{s case StepAst} holds if \\spad{s} represents an arithmetic progression iterator.") (((|Boolean|) $ (|[\|\|]| (|InAst|))) "\\spad{s case InAst} holds if `s' represents a in-iterator") (((|Boolean|) $ (|[\|\|]| (|WhileAst|))) "\\spad{s case WhileAst} holds if `s' represents a while-iterator") (((|Boolean|) $ (|[\|\|]| (|RepeatAst|))) "\\spad{s case RepeatAst} holds if `s' represents an repeat-loop.") (((|Boolean|) $ (|[\|\|]| (|IfAst|))) "\\spad{s case IfAst} holds if `s' represents an if-statement.") (((|Boolean|) $ (|[\|\|]| (|MappingAst|))) "\\spad{s case MappingAst} holds if `s' represents a mapping type.") (((|Boolean|) $ (|[\|\|]| (|AttributeAst|))) "\\spad{s case AttributeAst} holds if `s' represents an attribute.") (((|Boolean|) $ (|[\|\|]| (|SignatureAst|))) "\\spad{s case SignatureAst} holds if `s' represents a signature export.") (((|Boolean|) $ (|[\|\|]| (|CapsuleAst|))) "\\spad{s case CapsuleAst} holds if `s' represents a domain capsule.") (((|Boolean|) $ (|[\|\|]| (|JoinAst|))) "\\spad{s case JoinAst} holds is the syntax object \\spad{s} denotes the join of several categories.") (((|Boolean|) $ (|[\|\|]| (|CategoryAst|))) "\\spad{s case CategoryAst} holds if `s' represents an unnamed category.") (((|Boolean|) $ (|[\|\|]| (|WhereAst|))) "\\spad{s case WhereAst} holds if `s' represents an expression with local definitions.") (((|Boolean|) $ (|[\|\|]| (|MacroAst|))) "\\spad{s case MacroAst} holds if `s' represents a macro definition.") (((|Boolean|) $ (|[\|\|]| (|DefinitionAst|))) "\\spad{s case DefinitionAst} holds if `s' represents a definition.") (((|Boolean|) $ (|[\|\|]| (|ImportAst|))) "\\spad{s case ImportAst} holds if `s' represents an `import' statement."))) NIL NIL -(-1050) +(-1051) ((|constructor| (NIL "SpecialOutputPackage allows FORTRAN,{} Tex and \\indented{2}{Script Formula Formatter output from programs.}")) (|outputAsTex| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsTex(l)} sends (for each expression in the list \\spad{l}) output in Tex format to the destination as defined by \\spadsyscom{set output tex}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsTex(o)} sends output \\spad{o} in Tex format to the destination defined by \\spadsyscom{set output tex}.")) (|outputAsScript| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsScript(l)} sends (for each expression in the list \\spad{l}) output in Script Formula Formatter format to the destination defined. by \\spadsyscom{set output forumula}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsScript(o)} sends output \\spad{o} in Script Formula Formatter format to the destination defined by \\spadsyscom{set output formula}.")) (|outputAsFortran| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsFortran(l)} sends (for each expression in the list \\spad{l}) output in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsFortran(o)} sends output \\spad{o} in FORTRAN format.") (((|Void|) (|String|) (|OutputForm|)) "\\spad{outputAsFortran(v,o)} sends output \\spad{v} = \\spad{o} in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}."))) NIL NIL -(-1051) +(-1052) ((|constructor| (NIL "Category for the other special functions.")) (|airyBi| (($ $) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}.")) (|airyAi| (($ $) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}.")) (|besselK| (($ $ $) "\\spad{besselK(v,z)} is the modified Bessel function of the second kind.")) (|besselI| (($ $ $) "\\spad{besselI(v,z)} is the modified Bessel function of the first kind.")) (|besselY| (($ $ $) "\\spad{besselY(v,z)} is the Bessel function of the second kind.")) (|besselJ| (($ $ $) "\\spad{besselJ(v,z)} is the Bessel function of the first kind.")) (|polygamma| (($ $ $) "\\spad{polygamma(k,x)} is the \\spad{k-th} derivative of \\spad{digamma(x)},{} (often written \\spad{psi(k,x)} in the literature).")) (|digamma| (($ $) "\\spad{digamma(x)} is the logarithmic derivative of \\spad{Gamma(x)} (often written \\spad{psi(x)} in the literature).")) (|Beta| (($ $ $) "\\spad{Beta(x,y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $ $) "\\spad{Gamma(a,x)} is the incomplete Gamma function.") (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}."))) NIL NIL -(-1052 V C) +(-1053 V C) ((|constructor| (NIL "This domain exports a modest implementation for the vertices of splitting trees. These vertices are called here splitting nodes. Every of these nodes store 3 informations. The first one is its value,{} that is the current expression to evaluate. The second one is its condition,{} that is the hypothesis under which the value has to be evaluated. The last one is its status,{} that is a boolean flag which is \\spad{true} iff the value is the result of its evaluation under its condition. Two splitting vertices are equal iff they have the sane values and the same conditions (so their status do not matter).")) (|subNode?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNode?(\\spad{n1},{}\\spad{n2},{}\\spad{o2})} returns \\spad{true} iff \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{\\spad{o2}(condition(\\spad{n1}),{}condition(\\spad{n2}))}")) (|infLex?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#1| |#1|) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{infLex?(\\spad{n1},{}\\spad{n2},{}\\spad{o1},{}\\spad{o2})} returns \\spad{true} iff \\axiom{\\spad{o1}(value(\\spad{n1}),{}value(\\spad{n2}))} or \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{\\spad{o2}(condition(\\spad{n1}),{}condition(\\spad{n2}))}.")) (|setEmpty!| (($ $) "\\axiom{setEmpty!(\\spad{n})} replaces \\spad{n} by \\axiom{empty()\\$\\%}.")) (|setStatus!| (($ $ (|Boolean|)) "\\axiom{setStatus!(\\spad{n},{}\\spad{b})} returns \\spad{n} whose status has been replaced by \\spad{b} if it is not empty,{} else an error is produced.")) (|setCondition!| (($ $ |#2|) "\\axiom{setCondition!(\\spad{n},{}\\spad{t})} returns \\spad{n} whose condition has been replaced by \\spad{t} if it is not empty,{} else an error is produced.")) (|setValue!| (($ $ |#1|) "\\axiom{setValue!(\\spad{n},{}\\spad{v})} returns \\spad{n} whose value has been replaced by \\spad{v} if it is not empty,{} else an error is produced.")) (|copy| (($ $) "\\axiom{copy(\\spad{n})} returns a copy of \\spad{n}.")) (|construct| (((|List| $) |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v},{}lt)} returns the same as \\axiom{[construct(\\spad{v},{}\\spad{t}) for \\spad{t} in lt]}") (((|List| $) (|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|)))) "\\axiom{construct(lvt)} returns the same as \\axiom{[construct(vt.val,{}vt.tower) for vt in lvt]}") (($ (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) "\\axiom{construct(vt)} returns the same as \\axiom{construct(vt.val,{}vt.tower)}") (($ |#1| |#2|) "\\axiom{construct(\\spad{v},{}\\spad{t})} returns the same as \\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{false})}") (($ |#1| |#2| (|Boolean|)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{b})} returns the non-empty node with value \\spad{v},{} condition \\spad{t} and flag \\spad{b}")) (|status| (((|Boolean|) $) "\\axiom{status(\\spad{n})} returns the status of the node \\spad{n}.")) (|condition| ((|#2| $) "\\axiom{condition(\\spad{n})} returns the condition of the node \\spad{n}.")) (|value| ((|#1| $) "\\axiom{value(\\spad{n})} returns the value of the node \\spad{n}.")) (|empty?| (((|Boolean|) $) "\\axiom{empty?(\\spad{n})} returns \\spad{true} iff the node \\spad{n} is \\axiom{empty()\\$\\%}.")) (|empty| (($) "\\axiom{empty()} returns the same as \\axiom{[empty()\\$\\spad{V},{}empty()\\$\\spad{C},{}\\spad{false}]\\$\\%}"))) NIL NIL -(-1053 V C) +(-1054 V C) ((|constructor| (NIL "This domain exports a modest implementation of splitting trees. Spliiting trees are needed when the evaluation of some quantity under some hypothesis requires to split the hypothesis into sub-cases. For instance by adding some new hypothesis on one hand and its negation on another hand. The computations are terminated is a splitting tree \\axiom{a} when \\axiom{status(value(a))} is \\axiom{\\spad{true}}. Thus,{} if for the splitting tree \\axiom{a} the flag \\axiom{status(value(a))} is \\axiom{\\spad{true}},{} then \\axiom{status(value(\\spad{d}))} is \\axiom{\\spad{true}} for any subtree \\axiom{\\spad{d}} of \\axiom{a}. This property of splitting trees is called the termination condition. If no vertex in a splitting tree \\axiom{a} is equal to another,{} \\axiom{a} is said to satisfy the no-duplicates condition. The splitting tree \\axiom{a} will satisfy this condition if nodes are added to \\axiom{a} by mean of \\axiom{splitNodeOf!} and if \\axiom{construct} is only used to create the root of \\axiom{a} with no children.")) (|splitNodeOf!| (($ $ $ (|List| (|SplittingNode| |#1| |#2|)) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}ls,{}sub?)} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in ls | not subNodeOf?(\\spad{s},{}a,{}sub?)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.") (($ $ $ (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}ls)} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in ls | not nodeOf?(\\spad{s},{}a)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.")) (|remove!| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove!(\\spad{s},{}a)} replaces a by remove(\\spad{s},{}a)")) (|remove| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove(\\spad{s},{}a)} returns the splitting tree obtained from a by removing every sub-tree \\axiom{\\spad{b}} such that \\axiom{value(\\spad{b})} and \\axiom{\\spad{s}} have the same value,{} condition and status.")) (|subNodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNodeOf?(\\spad{s},{}a,{}sub?)} returns \\spad{true} iff for some node \\axiom{\\spad{n}} in \\axiom{a} we have \\axiom{\\spad{s} = \\spad{n}} or \\axiom{status(\\spad{n})} and \\axiom{subNode?(\\spad{s},{}\\spad{n},{}sub?)}.")) (|nodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $) "\\axiom{nodeOf?(\\spad{s},{}a)} returns \\spad{true} iff some node of \\axiom{a} is equal to \\axiom{\\spad{s}}")) (|result| (((|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) $) "\\axiom{result(a)} where \\axiom{ls} is the leaves list of \\axiom{a} returns \\axiom{[[value(\\spad{s}),{}condition(\\spad{s})]\\$VT for \\spad{s} in ls]} if the computations are terminated in \\axiom{a} else an error is produced.")) (|conditions| (((|List| |#2|) $) "\\axiom{conditions(a)} returns the list of the conditions of the leaves of a")) (|construct| (($ |#1| |#2| |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v1},{}\\spad{t},{}\\spad{v2},{}lt)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[[\\spad{v},{}\\spad{t}]\\$\\spad{S}]\\$\\% for \\spad{s} in ls]}.") (($ |#1| |#2| (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{construct(\\spad{v},{}\\spad{t},{}ls)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in ls]}.") (($ |#1| |#2| (|List| $)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}la)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with \\axiom{la} as children list.") (($ (|SplittingNode| |#1| |#2|)) "\\axiom{construct(\\spad{s})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{\\spad{s}} and no children. Thus,{} if the status of \\axiom{\\spad{s}} is \\spad{false},{} \\axiom{[\\spad{s}]} represents the starting point of the evaluation \\axiom{value(\\spad{s})} under the hypothesis \\axiom{condition(\\spad{s})}.")) (|updateStatus!| (($ $) "\\axiom{updateStatus!(a)} returns a where the status of the vertices are updated to satisfy the \"termination condition\".")) (|extractSplittingLeaf| (((|Union| $ "failed") $) "\\axiom{extractSplittingLeaf(a)} returns the left most leaf (as a tree) whose status is \\spad{false} if any,{} else \"failed\" is returned."))) -((-3993 . T) (-3994 . T)) -((-12 (|HasCategory| (-1052 |#1| |#2|) (|%list| (QUOTE -260) (|%list| (QUOTE -1052) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1052 |#1| |#2|) (QUOTE (-1012)))) (|HasCategory| (-1052 |#1| |#2|) (QUOTE (-1012))) (OR (|HasCategory| (-1052 |#1| |#2|) (QUOTE (-72))) (|HasCategory| (-1052 |#1| |#2|) (QUOTE (-1012)))) (|HasCategory| (-1052 |#1| |#2|) (QUOTE (-551 (-771)))) (|HasCategory| (-1052 |#1| |#2|) (QUOTE (-72)))) -(-1054 |ndim| R) +((-3994 . T) (-3995 . T)) +((-12 (|HasCategory| (-1053 |#1| |#2|) (|%list| (QUOTE -260) (|%list| (QUOTE -1053) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1053 |#1| |#2|) (QUOTE (-1013)))) (|HasCategory| (-1053 |#1| |#2|) (QUOTE (-1013))) (OR (|HasCategory| (-1053 |#1| |#2|) (QUOTE (-72))) (|HasCategory| (-1053 |#1| |#2|) (QUOTE (-1013)))) (|HasCategory| (-1053 |#1| |#2|) (QUOTE (-552 (-772)))) (|HasCategory| (-1053 |#1| |#2|) (QUOTE (-72)))) +(-1055 |ndim| R) ((|constructor| (NIL "\\spadtype{SquareMatrix} is a matrix domain of square matrices,{} where the number of rows (= number of columns) is a parameter of the type.")) (|unitsKnown| ((|attribute|) "the invertible matrices are simply the matrices whose determinants are units in the Ring \\spad{R}.")) (|central| ((|attribute|) "the elements of the Ring \\spad{R},{} viewed as diagonal matrices,{} commute with all matrices and,{} indeed,{} are the only matrices which commute with all matrices.")) (|squareMatrix| (($ (|Matrix| |#2|)) "\\spad{squareMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spadtype{SquareMatrix}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.")) (|new| (($ |#2|) "\\spad{new(c)} constructs a new \\spadtype{SquareMatrix} object of dimension \\spad{ndim} with initial entries equal to \\spad{c}."))) -((-3990 . T) (-3982 |has| |#2| (-6 (-3995 "*"))) (-3993 . T) (-3987 . T) (-3988 . T)) -((|HasCategory| |#2| (QUOTE (-808 (-1088)))) (|HasCategory| |#2| (QUOTE (-810 (-1088)))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-189))) (|HasAttribute| |#2| (QUOTE (-3995 #1="*"))) (|HasCategory| |#2| (QUOTE (-579 (-483)))) (|HasCategory| |#2| (QUOTE (-949 (-348 (-483))))) (|HasCategory| |#2| (QUOTE (-949 (-483)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-579 (-483)))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-808 (-1088)))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))))) (|HasCategory| |#2| (QUOTE (-552 (-472)))) (|HasCategory| |#2| (QUOTE (-258))) (|HasCategory| |#2| (QUOTE (-494))) (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| |#2| (QUOTE (-312))) (OR (|HasAttribute| |#2| (QUOTE (-3995 #1#))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-808 (-1088))))) (|HasCategory| |#2| (QUOTE (-551 (-771)))) (|HasCategory| |#2| (QUOTE (-72))) (-12 (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-146)))) -(-1055 S) +((-3991 . T) (-3983 |has| |#2| (-6 (-3996 "*"))) (-3994 . T) (-3988 . T) (-3989 . T)) +((|HasCategory| |#2| (QUOTE (-809 (-1089)))) (|HasCategory| |#2| (QUOTE (-811 (-1089)))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-189))) (|HasAttribute| |#2| (QUOTE (-3996 #1="*"))) (|HasCategory| |#2| (QUOTE (-580 (-484)))) (|HasCategory| |#2| (QUOTE (-950 (-349 (-484))))) (|HasCategory| |#2| (QUOTE (-950 (-484)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-580 (-484)))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-809 (-1089)))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))))) (|HasCategory| |#2| (QUOTE (-553 (-473)))) (|HasCategory| |#2| (QUOTE (-258))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (QUOTE (-312))) (OR (|HasAttribute| |#2| (QUOTE (-3996 #1#))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-809 (-1089))))) (|HasCategory| |#2| (QUOTE (-552 (-772)))) (|HasCategory| |#2| (QUOTE (-72))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-146)))) +(-1056 S) ((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,t,i)} returns the position \\axiom{\\spad{j} >= \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,t,i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} >= \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,i..j,t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,t,c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,s,wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\"*\")} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,t,i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) == reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) == reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case."))) NIL NIL -(-1056) +(-1057) ((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,t,i)} returns the position \\axiom{\\spad{j} >= \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,t,i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} >= \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,i..j,t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,t,c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,s,wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\"*\")} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,t,i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) == reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) == reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case."))) -((-3994 . T) (-3993 . T)) +((-3995 . T) (-3994 . T)) NIL -(-1057 R E V P TS) +(-1058 R E V P TS) ((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are provided: in the sense of Zariski closure (like in Kalkbrener's algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard- Moreno methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\spad{QCMPPK(R,E,V,P,TS)} and \\spad{RSETGCD(R,E,V,P,TS)}. The same way it does not care about the way univariate polynomial gcds (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these gcds need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiomType{TS}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) NIL NIL -(-1058 R E V P) +(-1059 R E V P) ((|constructor| (NIL "This domain provides an implementation of square-free regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{SquareFreeRegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.} \\indented{2}{Version: 2}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(lp,{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(lp,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} from \\spadtype{RegularTriangularSetCategory} Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}ts,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement."))) -((-3994 . T) (-3993 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1012))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (|HasCategory| |#4| (QUOTE (-552 (-472)))) (|HasCategory| |#4| (QUOTE (-1012))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#3| (QUOTE (-318))) (|HasCategory| |#4| (QUOTE (-551 (-771)))) (|HasCategory| |#4| (QUOTE (-72)))) -(-1059) +((-3995 . T) (-3994 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1013))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (|HasCategory| |#4| (QUOTE (-553 (-473)))) (|HasCategory| |#4| (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#3| (QUOTE (-319))) (|HasCategory| |#4| (QUOTE (-552 (-772)))) (|HasCategory| |#4| (QUOTE (-72)))) +(-1060) ((|constructor| (NIL "The category of all semiring structures,{} \\spadignore{e.g.} triples (\\spad{D},{}+,{}*) such that (\\spad{D},{}+) is an Abelian monoid and (\\spad{D},{}*) is a monoid with the following laws:"))) NIL NIL -(-1060 S) +(-1061 S) ((|constructor| (NIL "Linked List implementation of a Stack")) (|stack| (($ (|List| |#1|)) "\\spad{stack([x,y,...,z])} creates a stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}."))) -((-3993 . T) (-3994 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1012))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1012)))) (|HasCategory| |#1| (QUOTE (-551 (-771)))) (|HasCategory| |#1| (QUOTE (-72)))) -(-1061 A S) +((-3994 . T) (-3995 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1013))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-72)))) +(-1062 A S) ((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}."))) NIL NIL -(-1062 S) +(-1063 S) ((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}."))) NIL NIL -(-1063 |Key| |Ent| |dent|) +(-1064 |Key| |Ent| |dent|) ((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key."))) -((-3994 . T)) -((-12 (|HasCategory| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3858) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (QUOTE (-1012)))) (OR (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (QUOTE (-1012)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (QUOTE (-1012)))) (OR (|HasCategory| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (QUOTE (-551 (-771)))) (|HasCategory| |#2| (QUOTE (-551 (-771))))) (|HasCategory| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (QUOTE (-552 (-472)))) (-12 (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-755))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-551 (-771)))) (|HasCategory| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (QUOTE (-551 (-771)))) (|HasCategory| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (QUOTE (-1012)))) -(-1064) +((-3995 . T)) +((-12 (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3859) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) (OR (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) (OR (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-552 (-772)))) (|HasCategory| |#2| (QUOTE (-552 (-772))))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-473)))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-756))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-552 (-772)))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-552 (-772)))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) +(-1065) ((|constructor| (NIL "A class of objects which can be 'stepped through'. Repeated applications of \\spadfun{nextItem} is guaranteed never to return duplicate items and only return \"failed\" after exhausting all elements of the domain. This assumes that the sequence starts with \\spad{init()}. For non-fiinite domains,{} repeated application of \\spadfun{nextItem} is not required to reach all possible domain elements starting from any initial element. \\blankline")) (|nextItem| (((|Maybe| $) $) "\\spad{nextItem(x)} returns the next item,{} or \\spad{failed} if domain is exhausted.")) (|init| (($) "\\spad{init()} chooses an initial object for stepping."))) NIL NIL -(-1065) +(-1066) ((|constructor| (NIL "This domain represents an arithmetic progression iterator syntax.")) (|step| (((|SpadAst|) $) "\\spad{step(i)} returns the Spad AST denoting the step of the arithmetic progression represented by the iterator \\spad{i}.")) (|upperBound| (((|Maybe| (|SpadAst|)) $) "If the set of values assumed by the iteration variable is bounded from above,{} \\spad{upperBound(i)} returns the upper bound. Otherwise,{} its returns \\spad{nothing}.")) (|lowerBound| (((|SpadAst|) $) "\\spad{lowerBound(i)} returns the lower bound on the values assumed by the iteration variable.")) (|iterationVar| (((|Identifier|) $) "\\spad{iterationVar(i)} returns the name of the iterating variable of the arithmetic progression iterator \\spad{i}."))) NIL NIL -(-1066 |Coef|) +(-1067 |Coef|) ((|constructor| (NIL "This package computes infinite products of Taylor series over an integral domain of characteristic 0. Here Taylor series are represented by streams of Taylor coefficients.")) (|generalInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-1067 S) -((|constructor| (NIL "A stream is an implementation of an infinite sequence using a list of terms that have been computed and a function closure to compute additional terms when needed.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,s)} returns \\spad{[x0,x1,...,x(n)]} where \\spad{s = [x0,x1,x2,..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = true}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,s)} returns \\spad{[x0,x1,...,x(n-1)]} where \\spad{s = [x0,x1,x2,..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = false}.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,x)} creates an infinite stream whose first element is \\spad{x} and whose \\spad{n}th element (\\spad{n > 1}) is \\spad{f} applied to the previous element. Note: \\spad{generate(f,x) = [x,f(x),f(f(x)),...]}.") (($ (|Mapping| |#1|)) "\\spad{generate(f)} creates an infinite stream all of whose elements are equal to \\spad{f()}. Note: \\spad{generate(f) = [f(),f(),f(),...]}.")) (|setrest!| (($ $ (|Integer|) $) "\\spad{setrest!(x,n,y)} sets rest(\\spad{x},{}\\spad{n}) to \\spad{y}. The function will expand cycles if necessary.")) (|showAll?| (((|Boolean|)) "\\spad{showAll?()} returns \\spad{true} if all computed entries of streams will be displayed.")) (|showAllElements| (((|OutputForm|) $) "\\spad{showAllElements(s)} creates an output form which displays all computed elements.")) (|output| (((|Void|) (|Integer|) $) "\\spad{output(n,st)} computes and displays the first \\spad{n} entries of \\spad{st}.")) (|cons| (($ |#1| $) "\\spad{cons(a,s)} returns a stream whose \\spad{first} is \\spad{a} and whose \\spad{rest} is \\spad{s}. Note: \\spad{cons(a,s) = concat(a,s)}.")) (|delay| (($ (|Mapping| $)) "\\spad{delay(f)} creates a stream with a lazy evaluation defined by function \\spad{f}. Caution: This function can only be called in compiled code.")) (|findCycle| (((|Record| (|:| |cycle?| (|Boolean|)) (|:| |prefix| (|NonNegativeInteger|)) (|:| |period| (|NonNegativeInteger|))) (|NonNegativeInteger|) $) "\\spad{findCycle(n,st)} determines if \\spad{st} is periodic within \\spad{n}.")) (|repeating?| (((|Boolean|) (|List| |#1|) $) "\\spad{repeating?(l,s)} returns \\spad{true} if a stream \\spad{s} is periodic with period \\spad{l},{} and \\spad{false} otherwise.")) (|repeating| (($ (|List| |#1|)) "\\spad{repeating(l)} is a repeating stream whose period is the list \\spad{l}.")) (|shallowlyMutable| ((|attribute|) "one may destructively alter a stream by assigning new values to its entries."))) -((-3994 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1012))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1012)))) (|HasCategory| |#1| (QUOTE (-551 (-771)))) (|HasCategory| |#1| (QUOTE (-552 (-472)))) (|HasCategory| (-483) (QUOTE (-755))) (|HasCategory| |#1| (QUOTE (-72)))) (-1068 S) +((|constructor| (NIL "A stream is an implementation of an infinite sequence using a list of terms that have been computed and a function closure to compute additional terms when needed.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,s)} returns \\spad{[x0,x1,...,x(n)]} where \\spad{s = [x0,x1,x2,..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = true}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,s)} returns \\spad{[x0,x1,...,x(n-1)]} where \\spad{s = [x0,x1,x2,..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = false}.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,x)} creates an infinite stream whose first element is \\spad{x} and whose \\spad{n}th element (\\spad{n > 1}) is \\spad{f} applied to the previous element. Note: \\spad{generate(f,x) = [x,f(x),f(f(x)),...]}.") (($ (|Mapping| |#1|)) "\\spad{generate(f)} creates an infinite stream all of whose elements are equal to \\spad{f()}. Note: \\spad{generate(f) = [f(),f(),f(),...]}.")) (|setrest!| (($ $ (|Integer|) $) "\\spad{setrest!(x,n,y)} sets rest(\\spad{x},{}\\spad{n}) to \\spad{y}. The function will expand cycles if necessary.")) (|showAll?| (((|Boolean|)) "\\spad{showAll?()} returns \\spad{true} if all computed entries of streams will be displayed.")) (|showAllElements| (((|OutputForm|) $) "\\spad{showAllElements(s)} creates an output form which displays all computed elements.")) (|output| (((|Void|) (|Integer|) $) "\\spad{output(n,st)} computes and displays the first \\spad{n} entries of \\spad{st}.")) (|cons| (($ |#1| $) "\\spad{cons(a,s)} returns a stream whose \\spad{first} is \\spad{a} and whose \\spad{rest} is \\spad{s}. Note: \\spad{cons(a,s) = concat(a,s)}.")) (|delay| (($ (|Mapping| $)) "\\spad{delay(f)} creates a stream with a lazy evaluation defined by function \\spad{f}. Caution: This function can only be called in compiled code.")) (|findCycle| (((|Record| (|:| |cycle?| (|Boolean|)) (|:| |prefix| (|NonNegativeInteger|)) (|:| |period| (|NonNegativeInteger|))) (|NonNegativeInteger|) $) "\\spad{findCycle(n,st)} determines if \\spad{st} is periodic within \\spad{n}.")) (|repeating?| (((|Boolean|) (|List| |#1|) $) "\\spad{repeating?(l,s)} returns \\spad{true} if a stream \\spad{s} is periodic with period \\spad{l},{} and \\spad{false} otherwise.")) (|repeating| (($ (|List| |#1|)) "\\spad{repeating(l)} is a repeating stream whose period is the list \\spad{l}.")) (|shallowlyMutable| ((|attribute|) "one may destructively alter a stream by assigning new values to its entries."))) +((-3995 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1013))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-553 (-473)))) (|HasCategory| (-484) (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-72)))) +(-1069 S) ((|constructor| (NIL "Functions defined on streams with entries in one set.")) (|concat| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{concat(u)} returns the left-to-right concatentation of the streams in \\spad{u}. Note: \\spad{concat(u) = reduce(concat,u)}."))) NIL NIL -(-1069 A B) +(-1070 A B) ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|reduce| ((|#2| |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{reduce(b,f,u)},{} where \\spad{u} is a finite stream \\spad{[x0,x1,...,xn]},{} returns the value \\spad{r(n)} computed as follows: \\spad{r0 = f(x0,b), r1 = f(x1,r0),..., r(n) = f(xn,r(n-1))}.")) (|scan| (((|Stream| |#2|) |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{scan(b,h,[x0,x1,x2,...])} returns \\spad{[y0,y1,y2,...]},{} where \\spad{y0 = h(x0,b)},{} \\spad{y1 = h(x1,y0)},{}\\spad{...} \\spad{yn = h(xn,y(n-1))}.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|Stream| |#1|)) "\\spad{map(f,s)} returns a stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{s}. Note: \\spad{map(f,[x0,x1,x2,...]) = [f(x0),f(x1),f(x2),..]}."))) NIL NIL -(-1070 A B C) +(-1071 A B C) ((|constructor| (NIL "Functions defined on streams with entries in three sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|Stream| |#2|)) "\\spad{map(f,st1,st2)} returns the stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{st1} and \\spad{st2}. Note: \\spad{map(f,[x0,x1,x2,..],[y0,y1,y2,..]) = [f(x0,y0),f(x1,y1),..]}."))) NIL NIL -(-1071) +(-1072) ((|constructor| (NIL "This is the domain of character strings.")) (|string| (($ (|Identifier|)) "\\spad{string id} is the string representation of the identifier \\spad{id}") (($ (|DoubleFloat|)) "\\spad{string f} returns the decimal representation of \\spad{f} in a string") (($ (|Integer|)) "\\spad{string i} returns the decimal representation of \\spad{i} in a string"))) -((-3994 . T) (-3993 . T)) -((OR (-12 (|HasCategory| (-117) (QUOTE (-260 (-117)))) (|HasCategory| (-117) (QUOTE (-755)))) (-12 (|HasCategory| (-117) (QUOTE (-260 (-117)))) (|HasCategory| (-117) (QUOTE (-1012))))) (|HasCategory| (-117) (QUOTE (-551 (-771)))) (|HasCategory| (-117) (QUOTE (-552 (-472)))) (OR (|HasCategory| (-117) (QUOTE (-755))) (|HasCategory| (-117) (QUOTE (-1012)))) (|HasCategory| (-117) (QUOTE (-755))) (OR (|HasCategory| (-117) (QUOTE (-72))) (|HasCategory| (-117) (QUOTE (-755))) (|HasCategory| (-117) (QUOTE (-1012)))) (|HasCategory| (-483) (QUOTE (-755))) (|HasCategory| (-117) (QUOTE (-1012))) (|HasCategory| (-117) (QUOTE (-72))) (-12 (|HasCategory| (-117) (QUOTE (-260 (-117)))) (|HasCategory| (-117) (QUOTE (-1012))))) -(-1072 |Entry|) +((-3995 . T) (-3994 . T)) +((OR (-12 (|HasCategory| (-117) (QUOTE (-260 (-117)))) (|HasCategory| (-117) (QUOTE (-756)))) (-12 (|HasCategory| (-117) (QUOTE (-260 (-117)))) (|HasCategory| (-117) (QUOTE (-1013))))) (|HasCategory| (-117) (QUOTE (-552 (-772)))) (|HasCategory| (-117) (QUOTE (-553 (-473)))) (OR (|HasCategory| (-117) (QUOTE (-756))) (|HasCategory| (-117) (QUOTE (-1013)))) (|HasCategory| (-117) (QUOTE (-756))) (OR (|HasCategory| (-117) (QUOTE (-72))) (|HasCategory| (-117) (QUOTE (-756))) (|HasCategory| (-117) (QUOTE (-1013)))) (|HasCategory| (-484) (QUOTE (-756))) (|HasCategory| (-117) (QUOTE (-1013))) (|HasCategory| (-117) (QUOTE (-72))) (-12 (|HasCategory| (-117) (QUOTE (-260 (-117)))) (|HasCategory| (-117) (QUOTE (-1013))))) +(-1073 |Entry|) ((|constructor| (NIL "This domain provides tables where the keys are strings. A specialized hash function for strings is used."))) -((-3993 . T) (-3994 . T)) -((-12 (|HasCategory| (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (QUOTE (|:| -3858 (-1071))) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|)) (QUOTE (-1012)))) (OR (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|)) (QUOTE (-1012)))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|)) (QUOTE (-1012)))) (OR (|HasCategory| (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|)) (QUOTE (-551 (-771)))) (|HasCategory| |#1| (QUOTE (-551 (-771))))) (|HasCategory| (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|)) (QUOTE (-552 (-472)))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|)) (QUOTE (-1012))) (|HasCategory| (-1071) (QUOTE (-755))) (|HasCategory| |#1| (QUOTE (-1012))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|)) (QUOTE (-72)))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-551 (-771)))) (|HasCategory| (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|)) (QUOTE (-551 (-771)))) (|HasCategory| (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|)) (QUOTE (-72)))) -(-1073 A) +((-3994 . T) (-3995 . T)) +((-12 (|HasCategory| (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (QUOTE (|:| -3859 (-1072))) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (QUOTE (-1013)))) (OR (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (QUOTE (-1013)))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (QUOTE (-1013)))) (OR (|HasCategory| (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-552 (-772))))) (|HasCategory| (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (QUOTE (-553 (-473)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (QUOTE (-1013))) (|HasCategory| (-1072) (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1013))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (QUOTE (-72)))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (QUOTE (-552 (-772)))) (|HasCategory| (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (QUOTE (-72)))) +(-1074 A) ((|constructor| (NIL "StreamTaylorSeriesOperations implements Taylor series arithmetic,{} where a Taylor series is represented by a stream of its coefficients.")) (|power| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{power(a,f)} returns the power series \\spad{f} raised to the power \\spad{a}.")) (|lazyGintegrate| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyGintegrate(f,r,g)} is used for fixed point computations.")) (|mapdiv| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapdiv([a0,a1,..],[b0,b1,..])} returns \\spad{[a0/b0,a1/b1,..]}.")) (|powern| (((|Stream| |#1|) (|Fraction| (|Integer|)) (|Stream| |#1|)) "\\spad{powern(r,f)} raises power series \\spad{f} to the power \\spad{r}.")) (|nlde| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{nlde(u)} solves a first order non-linear differential equation described by \\spad{u} of the form \\spad{[[b<0,0>,b<0,1>,...],[b<1,0>,b<1,1>,.],...]}. the differential equation has the form \\spad{y' = sum(i=0 to infinity,j=0 to infinity,b<i,j>*(x**i)*(y**j))}.")) (|lazyIntegrate| (((|Stream| |#1|) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyIntegrate(r,f)} is a local function used for fixed point computations.")) (|integrate| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{integrate(r,a)} returns the integral of the power series \\spad{a} with respect to the power series variableintegration where \\spad{r} denotes the constant of integration. Thus \\spad{integrate(a,[a0,a1,a2,...]) = [a,a0,a1/2,a2/3,...]}.")) (|invmultisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{invmultisect(a,b,st)} substitutes \\spad{x**((a+b)*n)} for \\spad{x**n} and multiplies by \\spad{x**b}.")) (|multisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{multisect(a,b,st)} selects the coefficients of \\spad{x**((a+b)*n+a)},{} and changes them to \\spad{x**n}.")) (|generalLambert| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),a,d)} returns \\spad{f(x**a) + f(x**(a + d)) + f(x**(a + 2 d)) + ...}. \\spad{f(x)} should have zero constant coefficient and \\spad{a} and \\spad{d} should be positive.")) (|evenlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenlambert(st)} computes \\spad{f(x**2) + f(x**4) + f(x**6) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1,{} then \\spad{prod(f(x**(2*n)),n=1..infinity) = exp(evenlambert(log(f(x))))}.")) (|oddlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddlambert(st)} computes \\spad{f(x) + f(x**3) + f(x**5) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f}(\\spad{x}) is a power series with constant coefficient 1 then \\spad{prod(f(x**(2*n-1)),n=1..infinity) = exp(oddlambert(log(f(x))))}.")) (|lambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lambert(st)} computes \\spad{f(x) + f(x**2) + f(x**3) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1 then \\spad{prod(f(x**n),n = 1..infinity) = exp(lambert(log(f(x))))}.")) (|addiag| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{addiag(x)} performs diagonal addition of a stream of streams. if \\spad{x} = \\spad{[[a<0,0>,a<0,1>,..],[a<1,0>,a<1,1>,..],[a<2,0>,a<2,1>,..],..]} and \\spad{addiag(x) = [b<0,b<1>,...], then b<k> = sum(i+j=k,a<i,j>)}.")) (|revert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{revert(a)} computes the inverse of a power series \\spad{a} with respect to composition. the series should have constant coefficient 0 and first order coefficient should be invertible.")) (|lagrange| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lagrange(g)} produces the power series for \\spad{f} where \\spad{f} is implicitly defined as \\spad{f(z) = z*g(f(z))}.")) (|compose| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{compose(a,b)} composes the power series \\spad{a} with the power series \\spad{b}.")) (|eval| (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{eval(a,r)} returns a stream of partial sums of the power series \\spad{a} evaluated at the power series variable equal to \\spad{r}.")) (|coerce| (((|Stream| |#1|) |#1|) "\\spad{coerce(r)} converts a ring element \\spad{r} to a stream with one element.")) (|gderiv| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) (|Stream| |#1|)) "\\spad{gderiv(f,[a0,a1,a2,..])} returns \\spad{[f(0)*a0,f(1)*a1,f(2)*a2,..]}.")) (|deriv| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{deriv(a)} returns the derivative of the power series with respect to the power series variable. Thus \\spad{deriv([a0,a1,a2,...])} returns \\spad{[a1,2 a2,3 a3,...]}.")) (|mapmult| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapmult([a0,a1,..],[b0,b1,..])} returns \\spad{[a0*b0,a1*b1,..]}.")) (|int| (((|Stream| |#1|) |#1|) "\\spad{int(r)} returns [\\spad{r},{}\\spad{r+1},{}\\spad{r+2},{}...],{} where \\spad{r} is a ring element.")) (|oddintegers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{oddintegers(n)} returns \\spad{[n,n+2,n+4,...]}.")) (|integers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{integers(n)} returns \\spad{[n,n+1,n+2,...]}.")) (|monom| (((|Stream| |#1|) |#1| (|Integer|)) "\\spad{monom(deg,coef)} is a monomial of degree \\spad{deg} with coefficient \\spad{coef}.")) (|recip| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|)) "\\spad{recip(a)} returns the power series reciprocal of \\spad{a},{} or \"failed\" if not possible.")) (/ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a / b} returns the power series quotient of \\spad{a} by \\spad{b}. An error message is returned if \\spad{b} is not invertible. This function is used in fixed point computations.")) (|exquo| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|) (|Stream| |#1|)) "\\spad{exquo(a,b)} returns the power series quotient of \\spad{a} by \\spad{b},{} if the quotient exists,{} and \"failed\" otherwise")) (* (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{a * r} returns the power series scalar multiplication of \\spad{a} by r: \\spad{[a0,a1,...] * r = [a0 * r,a1 * r,...]}") (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{r * a} returns the power series scalar multiplication of \\spad{r} by \\spad{a}: \\spad{r * [a0,a1,...] = [r * a0,r * a1,...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a * b} returns the power series (Cauchy) product of \\spad{a} and b: \\spad{[a0,a1,...] * [b0,b1,...] = [c0,c1,...]} where \\spad{ck = sum(i + j = k,ai * bk)}.")) (- (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{- a} returns the power series negative of \\spad{a}: \\spad{- [a0,a1,...] = [- a0,- a1,...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a - b} returns the power series difference of \\spad{a} and \\spad{b}: \\spad{[a0,a1,..] - [b0,b1,..] = [a0 - b0,a1 - b1,..]}")) (+ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a + b} returns the power series sum of \\spad{a} and \\spad{b}: \\spad{[a0,a1,..] + [b0,b1,..] = [a0 + b0,a1 + b1,..]}"))) NIL -((|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-38 (-348 (-483)))))) -(-1074 |Coef|) +((|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-38 (-349 (-484)))))) +(-1075 |Coef|) ((|constructor| (NIL "StreamTranscendentalFunctions implements transcendental functions on Taylor series,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|sinhcosh| (((|Record| (|:| |sinh| (|Stream| |#1|)) (|:| |cosh| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sinhcosh(st)} returns a record containing the hyperbolic sine and cosine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (|sincos| (((|Record| (|:| |sin| (|Stream| |#1|)) (|:| |cos| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sincos(st)} returns a record containing the sine and cosine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}."))) NIL NIL -(-1075 |Coef|) +(-1076 |Coef|) ((|constructor| (NIL "StreamTranscendentalFunctionsNonCommutative implements transcendental functions on Taylor series over a non-commutative ring,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}."))) NIL NIL -(-1076 R UP) +(-1077 R UP) ((|constructor| (NIL "This package computes the subresultants of two polynomials which is needed for the `Lazard Rioboo' enhancement to Tragers integrations formula For efficiency reasons this has been rewritten to call Lionel Ducos package which is currently the best one. \\blankline")) (|primitivePart| ((|#2| |#2| |#1|) "\\spad{primitivePart(p, q)} reduces the coefficient of \\spad{p} modulo \\spad{q},{} takes the primitive part of the result,{} and ensures that the leading coefficient of that result is monic.")) (|subresultantVector| (((|PrimitiveArray| |#2|) |#2| |#2|) "\\spad{subresultantVector(p, q)} returns \\spad{[p0,...,pn]} where \\spad{pi} is the \\spad{i}-th subresultant of \\spad{p} and \\spad{q}. In particular,{} \\spad{p0 = resultant(p, q)}."))) NIL ((|HasCategory| |#1| (QUOTE (-258)))) -(-1077 |n| R) +(-1078 |n| R) ((|constructor| (NIL "This domain \\undocumented")) (|pointData| (((|List| (|Point| |#2|)) $) "\\spad{pointData(s)} returns the list of points from the point data field of the 3 dimensional subspace \\spad{s}.")) (|parent| (($ $) "\\spad{parent(s)} returns the subspace which is the parent of the indicated 3 dimensional subspace \\spad{s}. If \\spad{s} is the top level subspace an error message is returned.")) (|level| (((|NonNegativeInteger|) $) "\\spad{level(s)} returns a non negative integer which is the current level field of the indicated 3 dimensional subspace \\spad{s}.")) (|extractProperty| (((|SubSpaceComponentProperty|) $) "\\spad{extractProperty(s)} returns the property of domain \\spadtype{SubSpaceComponentProperty} of the indicated 3 dimensional subspace \\spad{s}.")) (|extractClosed| (((|Boolean|) $) "\\spad{extractClosed(s)} returns the \\spadtype{Boolean} value of the closed property for the indicated 3 dimensional subspace \\spad{s}. If the property is closed,{} \\spad{True} is returned,{} otherwise \\spad{False} is returned.")) (|extractIndex| (((|NonNegativeInteger|) $) "\\spad{extractIndex(s)} returns a non negative integer which is the current index of the 3 dimensional subspace \\spad{s}.")) (|extractPoint| (((|Point| |#2|) $) "\\spad{extractPoint(s)} returns the point which is given by the current index location into the point data field of the 3 dimensional subspace \\spad{s}.")) (|traverse| (($ $ (|List| (|NonNegativeInteger|))) "\\spad{traverse(s,li)} follows the branch list of the 3 dimensional subspace,{} \\spad{s},{} along the path dictated by the list of non negative integers,{} \\spad{li},{} which points to the component which has been traversed to. The subspace,{} \\spad{s},{} is returned,{} where \\spad{s} is now the subspace pointed to by \\spad{li}.")) (|defineProperty| (($ $ (|List| (|NonNegativeInteger|)) (|SubSpaceComponentProperty|)) "\\spad{defineProperty(s,li,p)} defines the component property in the 3 dimensional subspace,{} \\spad{s},{} to be that of \\spad{p},{} where \\spad{p} is of the domain \\spadtype{SubSpaceComponentProperty}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose property is being defined. The subspace,{} \\spad{s},{} is returned with the component property definition.")) (|closeComponent| (($ $ (|List| (|NonNegativeInteger|)) (|Boolean|)) "\\spad{closeComponent(s,li,b)} sets the property of the component in the 3 dimensional subspace,{} \\spad{s},{} to be closed if \\spad{b} is \\spad{true},{} or open if \\spad{b} is \\spad{false}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose closed property is to be set. The subspace,{} \\spad{s},{} is returned with the component property modification.")) (|modifyPoint| (($ $ (|NonNegativeInteger|) (|Point| |#2|)) "\\spad{modifyPoint(s,ind,p)} modifies the point referenced by the index location,{} \\spad{ind},{} by replacing it with the point,{} \\spad{p} in the 3 dimensional subspace,{} \\spad{s}. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{modifyPoint(s,li,i)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point indicated by the index location,{} \\spad{i}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{modifyPoint(s,li,p)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point,{} \\spad{p}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.")) (|addPointLast| (($ $ $ (|Point| |#2|) (|NonNegativeInteger|)) "\\spad{addPointLast(s,s2,li,p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. \\spad{s2} point to the end of the subspace \\spad{s}. \\spad{n} is the path in the \\spad{s2} component. The subspace \\spad{s} is returned with the additional point.")) (|addPoint2| (($ $ (|Point| |#2|)) "\\spad{addPoint2(s,p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The subspace \\spad{s} is returned with the additional point.")) (|addPoint| (((|NonNegativeInteger|) $ (|Point| |#2|)) "\\spad{addPoint(s,p)} adds the point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s},{} and returns the new total number of points in \\spad{s}.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{addPoint(s,li,i)} adds the 4 dimensional point indicated by the index location,{} \\spad{i},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It's length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{addPoint(s,li,p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It's length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.")) (|separate| (((|List| $) $) "\\spad{separate(s)} makes each of the components of the \\spadtype{SubSpace},{} \\spad{s},{} into a list of separate and distinct subspaces and returns the list.")) (|merge| (($ (|List| $)) "\\spad{merge(ls)} a list of subspaces,{} \\spad{ls},{} into one subspace.") (($ $ $) "\\spad{merge(s1,s2)} the subspaces \\spad{s1} and \\spad{s2} into a single subspace.")) (|deepCopy| (($ $) "\\spad{deepCopy(x)} \\undocumented")) (|shallowCopy| (($ $) "\\spad{shallowCopy(x)} \\undocumented")) (|numberOfChildren| (((|NonNegativeInteger|) $) "\\spad{numberOfChildren(x)} \\undocumented")) (|children| (((|List| $) $) "\\spad{children(x)} \\undocumented")) (|child| (($ $ (|NonNegativeInteger|)) "\\spad{child(x,n)} \\undocumented")) (|birth| (($ $) "\\spad{birth(x)} \\undocumented")) (|subspace| (($) "\\spad{subspace()} \\undocumented")) (|new| (($) "\\spad{new()} \\undocumented")) (|internal?| (((|Boolean|) $) "\\spad{internal?(x)} \\undocumented")) (|root?| (((|Boolean|) $) "\\spad{root?(x)} \\undocumented")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(x)} \\undocumented"))) NIL NIL -(-1078 S1 S2) +(-1079 S1 S2) ((|constructor| (NIL "This domain implements \"such that\" forms")) (|rhs| ((|#2| $) "\\spad{rhs(f)} returns the right side of \\spad{f}")) (|lhs| ((|#1| $) "\\spad{lhs(f)} returns the left side of \\spad{f}")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,t)} makes a form s:t"))) NIL NIL -(-1079) +(-1080) ((|constructor| (NIL "This domain represents the filter iterator syntax.")) (|predicate| (((|SpadAst|) $) "\\spad{predicate(e)} returns the syntax object for the predicate in the filter iterator syntax `e'."))) NIL NIL -(-1080 |Coef| |var| |cen|) +(-1081 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Laurent series in one variable \\indented{2}{\\spadtype{SparseUnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariateLaurentSeries(Integer,x,3)} represents Laurent} \\indented{2}{series in \\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series."))) -(((-3995 "*") OR (-2561 (|has| |#1| (-312)) (|has| (-1087 |#1| |#2| |#3|) (-739))) (|has| |#1| (-146)) (-2561 (|has| |#1| (-312)) (|has| (-1087 |#1| |#2| |#3|) (-820)))) (-3986 OR (-2561 (|has| |#1| (-312)) (|has| (-1087 |#1| |#2| |#3|) (-739))) (|has| |#1| (-494)) (-2561 (|has| |#1| (-312)) (|has| (-1087 |#1| |#2| |#3|) (-820)))) (-3991 |has| |#1| (-312)) (-3985 |has| |#1| (-312)) (-3987 . T) (-3988 . T) (-3990 . T)) -((|HasCategory| |#1| (QUOTE (-38 (-348 (-483))))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-494)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-739)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-120)))) (|HasCategory| |#1| (QUOTE (-120)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-808 (-1088))))) (-12 (|HasCategory| |#1| (QUOTE (-808 (-1088)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-483)) (|devaluate| |#1|)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-808 (-1088))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-810 (-1088))))) (-12 (|HasCategory| |#1| (QUOTE (-808 (-1088)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-483)) (|devaluate| |#1|)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-190)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-483)) (|devaluate| |#1|))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-190)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-189)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-483)) (|devaluate| |#1|))))) (|HasCategory| (-483) (QUOTE (-1024))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-494)))) (|HasCategory| |#1| (QUOTE (-312))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-820)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-949 (-1088))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-552 (-472))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-932)))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-494)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-739)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-739)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-755))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-949 (-483))))) (|HasCategory| |#1| (QUOTE (-38 (-348 (-483)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-949 (-483))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-1064)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1087 |#1| |#2| |#3|) (|%list| (QUOTE -241) (|%list| (QUOTE -1087) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (|%list| (QUOTE -1087) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1087 |#1| |#2| |#3|) (|%list| (QUOTE -260) (|%list| (QUOTE -1087) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1087 |#1| |#2| |#3|) (|%list| (QUOTE -454) (QUOTE (-1088)) (|%list| (QUOTE -1087) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-579 (-483))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-552 (-799 (-483)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-552 (-799 (-328)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-795 (-483))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-795 (-328))))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-483))))) (|HasSignature| |#1| (|%list| (QUOTE -3944) (|%list| (|devaluate| |#1|) (QUOTE (-1088)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-483))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-348 (-483))))) (|HasCategory| |#1| (QUOTE (-29 (-483)))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1113)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-348 (-483))))) (|HasSignature| |#1| (|%list| (QUOTE -3810) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1088))))) (|HasSignature| |#1| (|%list| (QUOTE -3080) (|%list| (|%list| (QUOTE -582) (QUOTE (-1088))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-482)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-258)))) (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-820))) (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-118))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-739)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-820)))) (|HasCategory| |#1| (QUOTE (-494)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-739)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-820)))) (|HasCategory| |#1| (QUOTE (-146)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-810 (-1088))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-189)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-755)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-120)))) (|HasCategory| |#1| (QUOTE (-120)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-820)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-118)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-820)))) (|HasCategory| |#1| (QUOTE (-118))))) -(-1081 R -3091) +(((-3996 "*") OR (-2562 (|has| |#1| (-312)) (|has| (-1088 |#1| |#2| |#3|) (-740))) (|has| |#1| (-146)) (-2562 (|has| |#1| (-312)) (|has| (-1088 |#1| |#2| |#3|) (-821)))) (-3987 OR (-2562 (|has| |#1| (-312)) (|has| (-1088 |#1| |#2| |#3|) (-740))) (|has| |#1| (-495)) (-2562 (|has| |#1| (-312)) (|has| (-1088 |#1| |#2| |#3|) (-821)))) (-3992 |has| |#1| (-312)) (-3986 |has| |#1| (-312)) (-3988 . T) (-3989 . T) (-3991 . T)) +((|HasCategory| |#1| (QUOTE (-38 (-349 (-484))))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-740)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-120)))) (|HasCategory| |#1| (QUOTE (-120)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-809 (-1089))))) (-12 (|HasCategory| |#1| (QUOTE (-809 (-1089)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-484)) (|devaluate| |#1|)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-809 (-1089))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-811 (-1089))))) (-12 (|HasCategory| |#1| (QUOTE (-809 (-1089)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-484)) (|devaluate| |#1|)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-190)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-484)) (|devaluate| |#1|))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-190)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-189)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-484)) (|devaluate| |#1|))))) (|HasCategory| (-484) (QUOTE (-1025))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-495)))) (|HasCategory| |#1| (QUOTE (-312))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-821)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-950 (-1089))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-553 (-473))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-933)))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-495)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-740)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-740)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-756))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-950 (-484))))) (|HasCategory| |#1| (QUOTE (-38 (-349 (-484)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-1065)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1088 |#1| |#2| |#3|) (|%list| (QUOTE -241) (|%list| (QUOTE -1088) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (|%list| (QUOTE -1088) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1088 |#1| |#2| |#3|) (|%list| (QUOTE -260) (|%list| (QUOTE -1088) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1088 |#1| |#2| |#3|) (|%list| (QUOTE -455) (QUOTE (-1089)) (|%list| (QUOTE -1088) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-580 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-553 (-800 (-484)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-553 (-800 (-329)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-796 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-796 (-329))))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-484))))) (|HasSignature| |#1| (|%list| (QUOTE -3945) (|%list| (|devaluate| |#1|) (QUOTE (-1089)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-484))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-349 (-484))))) (|HasCategory| |#1| (QUOTE (-29 (-484)))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1114)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-349 (-484))))) (|HasSignature| |#1| (|%list| (QUOTE -3811) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1089))))) (|HasSignature| |#1| (|%list| (QUOTE -3081) (|%list| (|%list| (QUOTE -583) (QUOTE (-1089))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-483)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-258)))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-821))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-118))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-740)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-821)))) (|HasCategory| |#1| (QUOTE (-495)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-740)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-821)))) (|HasCategory| |#1| (QUOTE (-146)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-811 (-1089))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-189)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-756)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-120)))) (|HasCategory| |#1| (QUOTE (-120)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-821)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-118)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-821)))) (|HasCategory| |#1| (QUOTE (-118))))) +(-1082 R -3092) ((|constructor| (NIL "computes sums of top-level expressions.")) (|sum| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{sum(f(n), n = a..b)} returns \\spad{f}(a) + \\spad{f}(\\spad{a+1}) + ... + \\spad{f}(\\spad{b}).") ((|#2| |#2| (|Symbol|)) "\\spad{sum(a(n), n)} returns A(\\spad{n}) such that A(\\spad{n+1}) - A(\\spad{n}) = a(\\spad{n})."))) NIL NIL -(-1082 R) +(-1083 R) ((|constructor| (NIL "Computes sums of rational functions.")) (|sum| (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sum(f(n), n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|SegmentBinding| (|Polynomial| |#1|))) "\\spad{sum(f(n), n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{sum(a(n), n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|Symbol|)) "\\spad{sum(a(n), n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}."))) NIL NIL -(-1083 R) +(-1084 R) ((|constructor| (NIL "This domain represents univariate polynomials over arbitrary (not necessarily commutative) coefficient rings. The variable is unspecified so that the variable displays as \\spad{?} on output. If it is necessary to specify the variable name,{} use type \\spadtype{UnivariatePolynomial}. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,var)} converts the SparseUnivariatePolynomial \\spad{p} to an output form (see \\spadtype{OutputForm}) printed as a polynomial in the output form variable."))) -(((-3995 "*") |has| |#1| (-146)) (-3986 |has| |#1| (-494)) (-3989 |has| |#1| (-312)) (-3991 |has| |#1| (-6 -3991)) (-3988 . T) (-3987 . T) (-3990 . T)) -((|HasCategory| |#1| (QUOTE (-820))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-494)))) (-12 (|HasCategory| |#1| (QUOTE (-795 (-328)))) (|HasCategory| (-993) (QUOTE (-795 (-328))))) (-12 (|HasCategory| |#1| (QUOTE (-795 (-483)))) (|HasCategory| (-993) (QUOTE (-795 (-483))))) (-12 (|HasCategory| |#1| (QUOTE (-552 (-799 (-328))))) (|HasCategory| (-993) (QUOTE (-552 (-799 (-328)))))) (-12 (|HasCategory| |#1| (QUOTE (-552 (-799 (-483))))) (|HasCategory| (-993) (QUOTE (-552 (-799 (-483)))))) (-12 (|HasCategory| |#1| (QUOTE (-552 (-472)))) (|HasCategory| (-993) (QUOTE (-552 (-472))))) (|HasCategory| |#1| (QUOTE (-579 (-483)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-348 (-483))))) (|HasCategory| |#1| (QUOTE (-949 (-483)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-348 (-483))))) (|HasCategory| |#1| (QUOTE (-949 (-348 (-483)))))) (|HasCategory| |#1| (QUOTE (-949 (-348 (-483))))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-390))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-820)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-390))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-820)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-390))) (|HasCategory| |#1| (QUOTE (-820)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-1064))) (|HasCategory| |#1| (QUOTE (-810 (-1088)))) (|HasCategory| |#1| (QUOTE (-808 (-1088)))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-190))) (|HasAttribute| |#1| (QUOTE -3991)) (|HasCategory| |#1| (QUOTE (-390))) (-12 (|HasCategory| |#1| (QUOTE (-820))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-820))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) -(-1084 R S) +(((-3996 "*") |has| |#1| (-146)) (-3987 |has| |#1| (-495)) (-3990 |has| |#1| (-312)) (-3992 |has| |#1| (-6 -3992)) (-3989 . T) (-3988 . T) (-3991 . T)) +((|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (-12 (|HasCategory| |#1| (QUOTE (-796 (-329)))) (|HasCategory| (-994) (QUOTE (-796 (-329))))) (-12 (|HasCategory| |#1| (QUOTE (-796 (-484)))) (|HasCategory| (-994) (QUOTE (-796 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-800 (-329))))) (|HasCategory| (-994) (QUOTE (-553 (-800 (-329)))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-800 (-484))))) (|HasCategory| (-994) (QUOTE (-553 (-800 (-484)))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-473)))) (|HasCategory| (-994) (QUOTE (-553 (-473))))) (|HasCategory| |#1| (QUOTE (-580 (-484)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-349 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-484)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-349 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-349 (-484)))))) (|HasCategory| |#1| (QUOTE (-950 (-349 (-484))))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-391))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-821)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-391))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-821)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-391))) (|HasCategory| |#1| (QUOTE (-821)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-1065))) (|HasCategory| |#1| (QUOTE (-811 (-1089)))) (|HasCategory| |#1| (QUOTE (-809 (-1089)))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-190))) (|HasAttribute| |#1| (QUOTE -3992)) (|HasCategory| |#1| (QUOTE (-391))) (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) +(-1085 R S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|SparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{map(func, poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly."))) NIL NIL -(-1085 E OV R P) +(-1086 E OV R P) ((|constructor| (NIL "\\indented{1}{SupFractionFactorize} contains the factor function for univariate polynomials over the quotient field of a ring \\spad{S} such that the package MultivariateFactorize works for \\spad{S}")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{squareFree(p)} returns the square-free factorization of the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}. Each factor has no repeated roots and the factors are pairwise relatively prime.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{factor(p)} factors the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}."))) NIL NIL -(-1086 |Coef| |var| |cen|) -((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers."))) -(((-3995 "*") |has| |#1| (-146)) (-3986 |has| |#1| (-494)) (-3991 |has| |#1| (-312)) (-3985 |has| |#1| (-312)) (-3987 . T) (-3988 . T) (-3990 . T)) -((|HasCategory| |#1| (QUOTE (-38 (-348 (-483))))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-494)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-808 (-1088)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -348) (QUOTE (-483))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -348) (QUOTE (-483))) (|devaluate| |#1|)))) (|HasCategory| (-348 (-483)) (QUOTE (-1024))) (|HasCategory| |#1| (QUOTE (-312))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-494)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-494)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -348) (QUOTE (-483)))))) (|HasSignature| |#1| (|%list| (QUOTE -3944) (|%list| (|devaluate| |#1|) (QUOTE (-1088)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -348) (QUOTE (-483)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-348 (-483))))) (|HasCategory| |#1| (QUOTE (-29 (-483)))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1113)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-348 (-483))))) (|HasSignature| |#1| (|%list| (QUOTE -3810) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1088))))) (|HasSignature| |#1| (|%list| (QUOTE -3080) (|%list| (|%list| (QUOTE -582) (QUOTE (-1088))) (|devaluate| |#1|))))))) (-1087 |Coef| |var| |cen|) +((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers."))) +(((-3996 "*") |has| |#1| (-146)) (-3987 |has| |#1| (-495)) (-3992 |has| |#1| (-312)) (-3986 |has| |#1| (-312)) (-3988 . T) (-3989 . T) (-3991 . T)) +((|HasCategory| |#1| (QUOTE (-38 (-349 (-484))))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-809 (-1089)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -349) (QUOTE (-484))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -349) (QUOTE (-484))) (|devaluate| |#1|)))) (|HasCategory| (-349 (-484)) (QUOTE (-1025))) (|HasCategory| |#1| (QUOTE (-312))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-495)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-495)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -349) (QUOTE (-484)))))) (|HasSignature| |#1| (|%list| (QUOTE -3945) (|%list| (|devaluate| |#1|) (QUOTE (-1089)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -349) (QUOTE (-484)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-349 (-484))))) (|HasCategory| |#1| (QUOTE (-29 (-484)))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1114)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-349 (-484))))) (|HasSignature| |#1| (|%list| (QUOTE -3811) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1089))))) (|HasSignature| |#1| (|%list| (QUOTE -3081) (|%list| (|%list| (QUOTE -583) (QUOTE (-1089))) (|devaluate| |#1|))))))) +(-1088 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Taylor series in one variable \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries} is a domain representing Taylor} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) -(((-3995 "*") |has| |#1| (-146)) (-3986 |has| |#1| (-494)) (-3987 . T) (-3988 . T) (-3990 . T)) -((|HasCategory| |#1| (QUOTE (-38 (-348 (-483))))) (|HasCategory| |#1| (QUOTE (-494))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-494)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-808 (-1088)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-693)) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-693)) (|devaluate| |#1|)))) (|HasCategory| (-693) (QUOTE (-1024))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-693))))) (|HasSignature| |#1| (|%list| (QUOTE -3944) (|%list| (|devaluate| |#1|) (QUOTE (-1088)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-693))))) (|HasCategory| |#1| (QUOTE (-312))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-348 (-483))))) (|HasCategory| |#1| (QUOTE (-29 (-483)))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1113)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-348 (-483))))) (|HasSignature| |#1| (|%list| (QUOTE -3810) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1088))))) (|HasSignature| |#1| (|%list| (QUOTE -3080) (|%list| (|%list| (QUOTE -582) (QUOTE (-1088))) (|devaluate| |#1|))))))) -(-1088) +(((-3996 "*") |has| |#1| (-146)) (-3987 |has| |#1| (-495)) (-3988 . T) (-3989 . T) (-3991 . T)) +((|HasCategory| |#1| (QUOTE (-38 (-349 (-484))))) (|HasCategory| |#1| (QUOTE (-495))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-809 (-1089)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-694)) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-694)) (|devaluate| |#1|)))) (|HasCategory| (-694) (QUOTE (-1025))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-694))))) (|HasSignature| |#1| (|%list| (QUOTE -3945) (|%list| (|devaluate| |#1|) (QUOTE (-1089)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-694))))) (|HasCategory| |#1| (QUOTE (-312))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-349 (-484))))) (|HasCategory| |#1| (QUOTE (-29 (-484)))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1114)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-349 (-484))))) (|HasSignature| |#1| (|%list| (QUOTE -3811) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1089))))) (|HasSignature| |#1| (|%list| (QUOTE -3081) (|%list| (|%list| (QUOTE -583) (QUOTE (-1089))) (|devaluate| |#1|))))))) +(-1089) ((|constructor| (NIL "Basic and scripted symbols.")) (|sample| (($) "\\spad{sample()} returns a sample of \\%")) (|list| (((|List| $) $) "\\spad{list(sy)} takes a scripted symbol and produces a list of the name followed by the scripts.")) (|string| (((|String|) $) "\\spad{string(s)} converts the symbol \\spad{s} to a string. Error: if the symbol is subscripted.")) (|elt| (($ $ (|List| (|OutputForm|))) "\\spad{elt(s,[a1,...,an])} or \\spad{s}([\\spad{a1},{}...,{}an]) returns \\spad{s} subscripted by \\spad{[a1,...,an]}.")) (|argscript| (($ $ (|List| (|OutputForm|))) "\\spad{argscript(s, [a1,...,an])} returns \\spad{s} arg-scripted by \\spad{[a1,...,an]}.")) (|superscript| (($ $ (|List| (|OutputForm|))) "\\spad{superscript(s, [a1,...,an])} returns \\spad{s} superscripted by \\spad{[a1,...,an]}.")) (|subscript| (($ $ (|List| (|OutputForm|))) "\\spad{subscript(s, [a1,...,an])} returns \\spad{s} subscripted by \\spad{[a1,...,an]}.")) (|script| (($ $ (|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|))))) "\\spad{script(s, [a,b,c,d,e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}.") (($ $ (|List| (|List| (|OutputForm|)))) "\\spad{script(s, [a,b,c,d,e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}. Omitted components are taken to be empty. For example,{} \\spad{script(s, [a,b,c])} is equivalent to \\spad{script(s,[a,b,c,[],[]])}.")) (|scripts| (((|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|)))) $) "\\spad{scripts(s)} returns all the scripts of \\spad{s}.")) (|scripted?| (((|Boolean|) $) "\\spad{scripted?(s)} is \\spad{true} if \\spad{s} has been given any scripts.")) (|name| (($ $) "\\spad{name(s)} returns \\spad{s} without its scripts.")) (|resetNew| (((|Void|)) "\\spad{resetNew()} resets the internals counters that new() and new(\\spad{s}) use to return distinct symbols every time.")) (|new| (($ $) "\\spad{new(s)} returns a new symbol whose name starts with \\%\\spad{s}.") (($) "\\spad{new()} returns a new symbol whose name starts with \\%."))) NIL NIL -(-1089 R) +(-1090 R) ((|constructor| (NIL "Computes all the symmetric functions in \\spad{n} variables.")) (|symFunc| (((|Vector| |#1|) |#1| (|PositiveInteger|)) "\\spad{symFunc(r, n)} returns the vector of the elementary symmetric functions in \\spad{[r,r,...,r]} \\spad{n} times.") (((|Vector| |#1|) (|List| |#1|)) "\\spad{symFunc([r1,...,rn])} returns the vector of the elementary symmetric functions in the \\spad{ri's}: \\spad{[r1 + ... + rn, r1 r2 + ... + r(n-1) rn, ..., r1 r2 ... rn]}."))) NIL NIL -(-1090 R) +(-1091 R) ((|constructor| (NIL "This domain implements symmetric polynomial"))) -(((-3995 "*") |has| |#1| (-146)) (-3986 |has| |#1| (-494)) (-3991 |has| |#1| (-6 -3991)) (-3987 . T) (-3988 . T) (-3990 . T)) -((|HasCategory| |#1| (QUOTE (-38 (-348 (-483))))) (|HasCategory| |#1| (QUOTE (-494))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-494)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (OR (|HasCategory| |#1| (QUOTE (-38 (-348 (-483))))) (|HasCategory| |#1| (QUOTE (-949 (-348 (-483)))))) (|HasCategory| |#1| (QUOTE (-949 (-348 (-483))))) (|HasCategory| |#1| (QUOTE (-949 (-483)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-390))) (-12 (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| (-883) (QUOTE (-104)))) (|HasAttribute| |#1| (QUOTE -3991))) -(-1091) +(((-3996 "*") |has| |#1| (-146)) (-3987 |has| |#1| (-495)) (-3992 |has| |#1| (-6 -3992)) (-3988 . T) (-3989 . T) (-3991 . T)) +((|HasCategory| |#1| (QUOTE (-38 (-349 (-484))))) (|HasCategory| |#1| (QUOTE (-495))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (OR (|HasCategory| |#1| (QUOTE (-38 (-349 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-349 (-484)))))) (|HasCategory| |#1| (QUOTE (-950 (-349 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-484)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-391))) (-12 (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| (-884) (QUOTE (-104)))) (|HasAttribute| |#1| (QUOTE -3992))) +(-1092) ((|constructor| (NIL "Creates and manipulates one global symbol table for FORTRAN code generation,{} containing details of types,{} dimensions,{} and argument lists.")) (|symbolTableOf| (((|SymbolTable|) (|Symbol|) $) "\\spad{symbolTableOf(f,tab)} returns the symbol table of \\spad{f}")) (|argumentListOf| (((|List| (|Symbol|)) (|Symbol|) $) "\\spad{argumentListOf(f,tab)} returns the argument list of \\spad{f}")) (|returnTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1="void")) (|Symbol|) $) "\\spad{returnTypeOf(f,tab)} returns the type of the object returned by \\spad{f}")) (|empty| (($) "\\spad{empty()} creates a new,{} empty symbol table.")) (|printTypes| (((|Void|) (|Symbol|)) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|printHeader| (((|Void|)) "\\spad{printHeader()} produces the FORTRAN header for the current subprogram in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|)) "\\spad{printHeader(f)} produces the FORTRAN header for subprogram \\spad{f} in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|) $) "\\spad{printHeader(f,tab)} produces the FORTRAN header for subprogram \\spad{f} in symbol table \\spad{tab} on the current FORTRAN output stream.")) (|returnType!| (((|Void|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#))) "\\spad{returnType!(t)} declares that the return type of he current subprogram in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#))) "\\spad{returnType!(f,t)} declares that the return type of subprogram \\spad{f} in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#)) $) "\\spad{returnType!(f,t,tab)} declares that the return type of subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{t}.")) (|argumentList!| (((|Void|) (|List| (|Symbol|))) "\\spad{argumentList!(l)} declares that the argument list for the current subprogram in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|))) "\\spad{argumentList!(f,l)} declares that the argument list for subprogram \\spad{f} in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|)) $) "\\spad{argumentList!(f,l,tab)} declares that the argument list for subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{l}.")) (|endSubProgram| (((|Symbol|)) "\\spad{endSubProgram()} asserts that we are no longer processing the current subprogram.")) (|currentSubProgram| (((|Symbol|)) "\\spad{currentSubProgram()} returns the name of the current subprogram being processed")) (|newSubProgram| (((|Void|) (|Symbol|)) "\\spad{newSubProgram(f)} asserts that from now on type declarations are part of subprogram \\spad{f}.")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|)) "\\spad{declare!(u,t,asp)} declares the parameter \\spad{u} to have type \\spad{t} in \\spad{asp}.") (((|FortranType|) (|Symbol|) (|FortranType|)) "\\spad{declare!(u,t)} declares the parameter \\spad{u} to have type \\spad{t} in the current level of the symbol table.") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,t,asp,tab)} declares the parameters \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.") (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,t,asp,tab)} declares the parameter \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.")) (|clearTheSymbolTable| (((|Void|) (|Symbol|)) "\\spad{clearTheSymbolTable(x)} removes the symbol \\spad{x} from the table") (((|Void|)) "\\spad{clearTheSymbolTable()} clears the current symbol table.")) (|showTheSymbolTable| (($) "\\spad{showTheSymbolTable()} returns the current symbol table."))) NIL NIL -(-1092) +(-1093) ((|constructor| (NIL "Create and manipulate a symbol table for generated FORTRAN code")) (|symbolTable| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|FortranType|))))) "\\spad{symbolTable(l)} creates a symbol table from the elements of \\spad{l}.")) (|printTypes| (((|Void|) $) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|newTypeLists| (((|SExpression|) $) "\\spad{newTypeLists(x)} \\undocumented")) (|typeLists| (((|List| (|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|))))))))) $) "\\spad{typeLists(tab)} returns a list of lists of types of objects in \\spad{tab}")) (|externalList| (((|List| (|Symbol|)) $) "\\spad{externalList(tab)} returns a list of all the external symbols in \\spad{tab}")) (|typeList| (((|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|)))))))) (|FortranScalarType|) $) "\\spad{typeList(t,tab)} returns a list of all the objects of type \\spad{t} in \\spad{tab}")) (|parametersOf| (((|List| (|Symbol|)) $) "\\spad{parametersOf(tab)} returns a list of all the symbols declared in \\spad{tab}")) (|fortranTypeOf| (((|FortranType|) (|Symbol|) $) "\\spad{fortranTypeOf(u,tab)} returns the type of \\spad{u} in \\spad{tab}")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) $) "\\spad{declare!(u,t,tab)} creates a new entry in \\spad{tab},{} declaring \\spad{u} to be of type \\spad{t}") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) $) "\\spad{declare!(l,t,tab)} creates new entrys in \\spad{tab},{} declaring each of \\spad{l} to be of type \\spad{t}")) (|empty| (($) "\\spad{empty()} returns a new,{} empty symbol table")) (|coerce| (((|Table| (|Symbol|) (|FortranType|)) $) "\\spad{coerce(x)} returns a table view of \\spad{x}"))) NIL NIL -(-1093) +(-1094) ((|constructor| (NIL "\\indented{1}{This domain provides a simple domain,{} general enough for} \\indented{2}{building complete representation of Spad programs as objects} \\indented{2}{of a term algebra built from ground terms of type integers,{} foats,{}} \\indented{2}{identifiers,{} and strings.} \\indented{2}{This domain differs from InputForm in that it represents} \\indented{2}{any entity in a Spad program,{} not just expressions.\\space{2}Furthermore,{}} \\indented{2}{while InputForm may contain atoms like vectors and other Lisp} \\indented{2}{objects,{} the Syntax domain is supposed to contain only that} \\indented{2}{initial algebra build from the primitives listed above.} Related Constructors: \\indented{2}{Integer,{} DoubleFloat,{} Identifier,{} String,{} SExpression.} See Also: SExpression,{} InputForm. The equality supported by this domain is structural.")) (|case| (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{x case String} is \\spad{true} if `x' really is a String") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{x case Identifier} is \\spad{true} if `x' really is an Identifier") (((|Boolean|) $ (|[\|\|]| (|DoubleFloat|))) "\\spad{x case DoubleFloat} is \\spad{true} if `x' really is a DoubleFloat") (((|Boolean|) $ (|[\|\|]| (|Integer|))) "\\spad{x case Integer} is \\spad{true} if `x' really is an Integer")) (|compound?| (((|Boolean|) $) "\\spad{compound? x} is \\spad{true} when `x' is not an atomic syntax.")) (|getOperands| (((|List| $) $) "\\spad{getOperands(x)} returns the list of operands to the operator in `x'.")) (|getOperator| (((|Union| (|Integer|) (|DoubleFloat|) (|Identifier|) (|String|) $) $) "\\spad{getOperator(x)} returns the operator,{} or tag,{} of the syntax `x'. The value returned is itself a syntax if `x' really is an application of a function symbol as opposed to being an atomic ground term.")) (|nil?| (((|Boolean|) $) "\\spad{nil?(s)} is \\spad{true} when `s' is a syntax for the constant nil.")) (|buildSyntax| (($ $ (|List| $)) "\\spad{buildSyntax(op, [a1, ..., an])} builds a syntax object for \\spad{op}(\\spad{a1},{}...,{}an).") (($ (|Identifier|) (|List| $)) "\\spad{buildSyntax(op, [a1, ..., an])} builds a syntax object for \\spad{op}(\\spad{a1},{}...,{}an).")) (|autoCoerce| (((|String|) $) "\\spad{autoCoerce(s)} forcibly extracts a string value from the syntax `s'; no check performed. To be called only at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(s)} forcibly extracts an identifier from the Syntax domain `s'; no check performed. To be called only at at the discretion of the compiler.") (((|DoubleFloat|) $) "\\spad{autoCoerce(s)} forcibly extracts a float value from the syntax `s'; no check performed. To be called only at the discretion of the compiler") (((|Integer|) $) "\\spad{autoCoerce(s)} forcibly extracts an integer value from the syntax `s'; no check performed. To be called only at the discretion of the compiler.")) (|coerce| (((|String|) $) "\\spad{coerce(s)} extracts a string value from the syntax `s'.") (((|Identifier|) $) "\\spad{coerce(s)} extracts an identifier from the syntax `s'.") (((|DoubleFloat|) $) "\\spad{coerce(s)} extracts a float value from the syntax `s'.") (((|Integer|) $) "\\spad{coerce(s)} extracts and integer value from the syntax `s'")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} converts an \\spad{s}-expression to Syntax. Note,{} when `s' is not an atom,{} it is expected that it designates a proper list,{} \\spadignore{e.g.} a sequence of cons cells ending with nil.") (((|SExpression|) $) "\\spad{convert(s)} returns the \\spad{s}-expression representation of a syntax."))) NIL NIL -(-1094 N) +(-1095 N) ((|constructor| (NIL "This domain implements sized (signed) integer datatypes parameterized by the precision (or width) of the underlying representation. The intent is that they map directly to the hosting hardware natural integer datatypes. Consequently,{} natural values for \\spad{N} are: 8,{} 16,{} 32,{} 64,{} etc. These datatypes are mostly useful for system programming tasks,{} \\spadignore{i.e.} interfacting with the hosting operating system,{} reading/writing external binary format files.")) (|sample| (($) "\\spad{sample} gives a sample datum of this type."))) NIL NIL -(-1095 N) +(-1096 N) ((|constructor| (NIL "This domain implements sized (unsigned) integer datatypes parameterized by the precision (or width) of the underlying representation. The intent is that they map directly to the hosting hardware natural integer datatypes. Consequently,{} natural values for \\spad{N} are: 8,{} 16,{} 32,{} 64,{} etc. These datatypes are mostly useful for system programming tasks,{} \\spadignore{i.e.} interfacting with the hosting operating system,{} reading/writing external binary format files.")) (|sample| (($) "\\spad{sample} gives a sample datum of type Byte.")) (|bitior| (($ $ $) "\\spad{bitior(x,y)} returns the bitwise `inclusive or' of `x' and `y'.")) (|bitand| (($ $ $) "\\spad{bitand(x,y)} returns the bitwise `and' of `x' and `y'."))) NIL NIL -(-1096) +(-1097) ((|constructor| (NIL "This domain is a datatype system-level pointer values."))) NIL NIL -(-1097 R) +(-1098 R) ((|triangularSystems| (((|List| (|List| (|Polynomial| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{triangularSystems(lf,lv)} solves the system of equations defined by \\spad{lf} with respect to the list of symbols \\spad{lv}; the system of equations is obtaining by equating to zero the list of rational functions \\spad{lf}. The output is a list of solutions where each solution is expressed as a \"reduced\" triangular system of polynomials.")) (|solve| (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} with respect to the unique variable appearing in \\spad{eq}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|))) "\\spad{solve(p)} finds the solution of a rational function \\spad{p} = 0 with respect to the unique variable appearing in \\spad{p}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{solve(eq,v)} finds the solutions of the equation \\spad{eq} with respect to the variable \\spad{v}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{solve(p,v)} solves the equation \\spad{p=0},{} where \\spad{p} is a rational function with respect to the variable \\spad{v}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{solve(le)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to all symbols appearing in \\spad{le}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(lp)} finds the solutions of the list \\spad{lp} of rational functions with respect to all symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{solve(le,lv)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to the list of symbols \\spad{lv}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{solve(lp,lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}."))) NIL NIL -(-1098) +(-1099) ((|constructor| (NIL "The package \\spadtype{System} provides information about the runtime system and its characteristics.")) (|loadNativeModule| (((|Void|) (|String|)) "\\spad{loadNativeModule(path)} loads the native modile designated by \\spadvar{\\spad{path}}.")) (|nativeModuleExtension| (((|String|)) "\\spad{nativeModuleExtension} is a string representation of a filename extension for native modules.")) (|hostByteOrder| (((|ByteOrder|)) "\\sapd{hostByteOrder}")) (|hostPlatform| (((|String|)) "\\spad{hostPlatform} is a string `triplet' description of the platform hosting the running OpenAxiom system.")) (|rootDirectory| (((|String|)) "\\spad{rootDirectory()} returns the pathname of the root directory for the running OpenAxiom system."))) NIL NIL -(-1099 S) +(-1100 S) ((|constructor| (NIL "TableauBumpers implements the Schenstead-Knuth correspondence between sequences and pairs of Young tableaux. The 2 Young tableaux are represented as a single tableau with pairs as components.")) (|mr| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| (|List| (|List| |#1|)))) "\\spad{mr(t)} is an auxiliary function which finds the position of the maximum element of a tableau \\spad{t} which is in the lowest row,{} producing a record of results")) (|maxrow| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| |#1|) (|List| (|List| (|List| |#1|))) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|)))) "\\spad{maxrow(a,b,c,d,e)} is an auxiliary function for mr")) (|inverse| (((|List| |#1|) (|List| |#1|)) "\\spad{inverse(ls)} forms the inverse of a sequence \\spad{ls}")) (|slex| (((|List| (|List| |#1|)) (|List| |#1|)) "\\spad{slex(ls)} sorts the argument sequence \\spad{ls},{} then zips (see \\spadfunFrom{map}{\\spad{ListFunctions3}}) the original argument sequence with the sorted result to a list of pairs")) (|lex| (((|List| (|List| |#1|)) (|List| (|List| |#1|))) "\\spad{lex(ls)} sorts a list of pairs to lexicographic order")) (|tab| (((|Tableau| (|List| |#1|)) (|List| |#1|)) "\\spad{tab(ls)} creates a tableau from \\spad{ls} by first creating a list of pairs using \\spadfunFrom{slex}{TableauBumpers},{} then creating a tableau using \\spadfunFrom{\\spad{tab1}}{TableauBumpers}.")) (|tab1| (((|List| (|List| (|List| |#1|))) (|List| (|List| |#1|))) "\\spad{tab1(lp)} creates a tableau from a list of pairs \\spad{lp}")) (|bat| (((|List| (|List| |#1|)) (|Tableau| (|List| |#1|))) "\\spad{bat(ls)} unbumps a tableau \\spad{ls}")) (|bat1| (((|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{bat1(llp)} unbumps a tableau \\spad{llp}. Operation \\spad{bat1} is the inverse of \\spad{tab1}.")) (|untab| (((|List| (|List| |#1|)) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{untab(lp,llp)} is an auxiliary function which unbumps a tableau \\spad{llp},{} using \\spad{lp} to accumulate pairs")) (|bumptab1| (((|List| (|List| (|List| |#1|))) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab1(pr,t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spadfun{<},{} returning a new tableau")) (|bumptab| (((|List| (|List| (|List| |#1|))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab(cf,pr,t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spad{cf},{} returning a new tableau")) (|bumprow| (((|Record| (|:| |fs| (|Boolean|)) (|:| |sd| (|List| |#1|)) (|:| |td| (|List| (|List| |#1|)))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| |#1|))) "\\spad{bumprow(cf,pr,r)} is an auxiliary function which bumps a row \\spad{r} with a pair \\spad{pr} using comparison function \\spad{cf},{} and returns a record"))) NIL NIL -(-1100 |Key| |Entry|) +(-1101 |Key| |Entry|) ((|constructor| (NIL "This is the general purpose table type. The keys are hashed to look up the entries. This creates a \\spadtype{HashTable} if equal for the Key domain is consistent with Lisp EQUAL otherwise an \\spadtype{AssociationList}"))) -((-3993 . T) (-3994 . T)) -((-12 (|HasCategory| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3858) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (QUOTE (-1012)))) (OR (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (QUOTE (-1012)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (QUOTE (-1012)))) (OR (|HasCategory| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (QUOTE (-551 (-771)))) (|HasCategory| |#2| (QUOTE (-551 (-771))))) (|HasCategory| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (QUOTE (-552 (-472)))) (-12 (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (QUOTE (-1012))) (|HasCategory| |#1| (QUOTE (-755))) (|HasCategory| |#2| (QUOTE (-1012))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-551 (-771)))) (|HasCategory| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (QUOTE (-551 (-771)))) (|HasCategory| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) -(-1101 S) +((-3994 . T) (-3995 . T)) +((-12 (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3859) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) (OR (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) (OR (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-552 (-772)))) (|HasCategory| |#2| (QUOTE (-552 (-772))))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-473)))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-1013))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-552 (-772)))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-552 (-772)))) (|HasCategory| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) +(-1102 S) ((|constructor| (NIL "\\indented{1}{The tableau domain is for printing Young tableaux,{} and} coercions to and from List List \\spad{S} where \\spad{S} is a set.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(t)} converts a tableau \\spad{t} to an output form.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists t} converts a tableau \\spad{t} to a list of lists.")) (|tableau| (($ (|List| (|List| |#1|))) "\\spad{tableau(ll)} converts a list of lists \\spad{ll} to a tableau."))) NIL NIL -(-1102 S) +(-1103 S) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: April 17,{} 2010 Date Last Modified: April 17,{} 2010")) (|operator| (($ |#1| (|Arity|)) "\\spad{operator(n,a)} returns an operator named \\spad{n} and with arity \\spad{a}."))) NIL NIL -(-1103 R) +(-1104 R) ((|constructor| (NIL "Expands tangents of sums and scalar products.")) (|tanNa| ((|#1| |#1| (|Integer|)) "\\spad{tanNa(a, n)} returns \\spad{f(a)} such that if \\spad{a = tan(u)} then \\spad{f(a) = tan(n * u)}.")) (|tanAn| (((|SparseUnivariatePolynomial| |#1|) |#1| (|PositiveInteger|)) "\\spad{tanAn(a, n)} returns \\spad{P(x)} such that if \\spad{a = tan(u)} then \\spad{P(tan(u/n)) = 0}.")) (|tanSum| ((|#1| (|List| |#1|)) "\\spad{tanSum([a1,...,an])} returns \\spad{f(a1,...,an)} such that if \\spad{ai = tan(ui)} then \\spad{f(a1,...,an) = tan(u1 + ... + un)}."))) NIL NIL -(-1104 S |Key| |Entry|) +(-1105 S |Key| |Entry|) ((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(fn,t1,t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#2|) (|:| |entry| |#3|)))) "\\spad{table([x,y,...,z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(t,k,e)} (also written \\axiom{\\spad{t}.\\spad{k} := \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}."))) NIL NIL -(-1105 |Key| |Entry|) +(-1106 |Key| |Entry|) ((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(fn,t1,t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) "\\spad{table([x,y,...,z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(t,k,e)} (also written \\axiom{\\spad{t}.\\spad{k} := \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}."))) -((-3994 . T)) +((-3995 . T)) NIL -(-1106 |Key| |Entry|) +(-1107 |Key| |Entry|) ((|constructor| (NIL "\\axiom{TabulatedComputationPackage(Key ,{}Entry)} provides some modest support for dealing with operations with type \\axiom{Key -> Entry}. The result of such operations can be stored and retrieved with this package by using a hash-table. The user does not need to worry about the management of this hash-table. However,{} onnly one hash-table is built by calling \\axiom{TabulatedComputationPackage(Key ,{}Entry)}.")) (|insert!| (((|Void|) |#1| |#2|) "\\axiom{insert!(\\spad{x},{}\\spad{y})} stores the item whose key is \\axiom{\\spad{x}} and whose entry is \\axiom{\\spad{y}}.")) (|extractIfCan| (((|Union| |#2| "failed") |#1|) "\\axiom{extractIfCan(\\spad{x})} searches the item whose key is \\axiom{\\spad{x}}.")) (|makingStats?| (((|Boolean|)) "\\axiom{makingStats?()} returns \\spad{true} iff the statisitics process is running.")) (|printingInfo?| (((|Boolean|)) "\\axiom{printingInfo?()} returns \\spad{true} iff messages are printed when manipulating items from the hash-table.")) (|usingTable?| (((|Boolean|)) "\\axiom{usingTable?()} returns \\spad{true} iff the hash-table is used")) (|clearTable!| (((|Void|)) "\\axiom{clearTable!()} clears the hash-table and assumes that it will no longer be used.")) (|printStats!| (((|Void|)) "\\axiom{printStats!()} prints the statistics.")) (|startStats!| (((|Void|) (|String|)) "\\axiom{startStats!(\\spad{x})} initializes the statisitics process and sets the comments to display when statistics are printed")) (|printInfo!| (((|Void|) (|String|) (|String|)) "\\axiom{printInfo!(\\spad{x},{}\\spad{y})} initializes the mesages to be printed when manipulating items from the hash-table. If a key is retrieved then \\axiom{\\spad{x}} is displayed. If an item is stored then \\axiom{\\spad{y}} is displayed.")) (|initTable!| (((|Void|)) "\\axiom{initTable!()} initializes the hash-table."))) NIL NIL -(-1107) +(-1108) ((|constructor| (NIL "\\spadtype{TexFormat} provides a coercion from \\spadtype{OutputForm} to \\TeX{} format. The particular dialect of \\TeX{} used is \\LaTeX{}. The basic object consists of three parts: a prologue,{} a tex part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{tex} and \\spadfun{epilogue} extract these parts,{} respectively. The main guts of the expression go into the tex part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain ``\\verb+\\[+'' and ``\\verb+\\]+'',{} respectively,{} so that the TeX section will be printed in LaTeX display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,strings)} sets the prologue section of a TeX form \\spad{t} to \\spad{strings}.")) (|setTex!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setTex!(t,strings)} sets the TeX section of a TeX form \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,strings)} sets the epilogue section of a TeX form \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a TeX form \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setTex!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|tex| (((|List| (|String|)) $) "\\spad{tex(t)} extracts the TeX section of a TeX form \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a TeX form \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,width)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|) (|OutputForm|)) "\\spad{convert(o,step,type)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number and \\spad{type}. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.") (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,step)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers."))) NIL NIL -(-1108 S) +(-1109 S) ((|constructor| (NIL "\\spadtype{TexFormat1} provides a utility coercion for changing to TeX format anything that has a coercion to the standard output format.")) (|coerce| (((|TexFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from a domain \\spad{S} to TeX format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to TeX format."))) NIL NIL -(-1109) +(-1110) ((|constructor| (NIL "This domain provides an implementation of text files. Text is stored in these files using the native character set of the computer.")) (|endOfFile?| (((|Boolean|) $) "\\spad{endOfFile?(f)} tests whether the file \\spad{f} is positioned after the end of all text. If the file is open for output,{} then this test is always \\spad{true}.")) (|readIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLineIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readLineIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLine!| (((|String|) $) "\\spad{readLine!(f)} returns a string of the contents of a line from the file \\spad{f}.")) (|writeLine!| (((|String|) $) "\\spad{writeLine!(f)} finishes the current line in the file \\spad{f}. An empty string is returned. The call \\spad{writeLine!(f)} is equivalent to \\spad{writeLine!(f,\"\")}.") (((|String|) $ (|String|)) "\\spad{writeLine!(f,s)} writes the contents of the string \\spad{s} and finishes the current line in the file \\spad{f}. The value of \\spad{s} is returned."))) NIL NIL -(-1110 R) +(-1111 R) ((|constructor| (NIL "Tools for the sign finding utilities.")) (|direction| (((|Integer|) (|String|)) "\\spad{direction(s)} \\undocumented")) (|nonQsign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{nonQsign(r)} \\undocumented")) (|sign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{sign(r)} \\undocumented"))) NIL NIL -(-1111) +(-1112) ((|constructor| (NIL "This package exports a function for making a \\spadtype{ThreeSpace}")) (|createThreeSpace| (((|ThreeSpace| (|DoubleFloat|))) "\\spad{createThreeSpace()} creates a \\spadtype{ThreeSpace(DoubleFloat)} object capable of holding point,{} curve,{} mesh components and any combination."))) NIL NIL -(-1112 S) +(-1113 S) ((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{pi()} returns the constant \\spad{pi}."))) NIL NIL -(-1113) +(-1114) ((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{pi()} returns the constant \\spad{pi}."))) NIL NIL -(-1114 S) -((|constructor| (NIL "\\spadtype{Tree(S)} is a basic domains of tree structures. Each tree is either empty or else is a {\\it node} consisting of a value and a list of (sub)trees.")) (|cyclicParents| (((|List| $) $) "\\spad{cyclicParents(t)} returns a list of cycles that are parents of \\spad{t}.")) (|cyclicEqual?| (((|Boolean|) $ $) "\\spad{cyclicEqual?(t1, t2)} tests of two cyclic trees have the same structure.")) (|cyclicEntries| (((|List| $) $) "\\spad{cyclicEntries(t)} returns a list of top-level cycles in tree \\spad{t}.")) (|cyclicCopy| (($ $) "\\spad{cyclicCopy(l)} makes a copy of a (possibly) cyclic tree \\spad{l}.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(t)} tests if \\spad{t} is a cyclic tree.")) (|tree| (($ |#1|) "\\spad{tree(nd)} creates a tree with value \\spad{nd},{} and no children") (($ (|List| |#1|)) "\\spad{tree(ls)} creates a tree from a list of elements of \\spad{s}.") (($ |#1| (|List| $)) "\\spad{tree(nd,ls)} creates a tree with value \\spad{nd},{} and children \\spad{ls}."))) -((-3994 . T) (-3993 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1012))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1012)))) (|HasCategory| |#1| (QUOTE (-551 (-771)))) (|HasCategory| |#1| (QUOTE (-72)))) (-1115 S) +((|constructor| (NIL "\\spadtype{Tree(S)} is a basic domains of tree structures. Each tree is either empty or else is a {\\it node} consisting of a value and a list of (sub)trees.")) (|cyclicParents| (((|List| $) $) "\\spad{cyclicParents(t)} returns a list of cycles that are parents of \\spad{t}.")) (|cyclicEqual?| (((|Boolean|) $ $) "\\spad{cyclicEqual?(t1, t2)} tests of two cyclic trees have the same structure.")) (|cyclicEntries| (((|List| $) $) "\\spad{cyclicEntries(t)} returns a list of top-level cycles in tree \\spad{t}.")) (|cyclicCopy| (($ $) "\\spad{cyclicCopy(l)} makes a copy of a (possibly) cyclic tree \\spad{l}.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(t)} tests if \\spad{t} is a cyclic tree.")) (|tree| (($ |#1|) "\\spad{tree(nd)} creates a tree with value \\spad{nd},{} and no children") (($ (|List| |#1|)) "\\spad{tree(ls)} creates a tree from a list of elements of \\spad{s}.") (($ |#1| (|List| $)) "\\spad{tree(nd,ls)} creates a tree with value \\spad{nd},{} and children \\spad{ls}."))) +((-3995 . T) (-3994 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1013))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-72)))) +(-1116 S) ((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}."))) NIL NIL -(-1116) +(-1117) ((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}."))) NIL NIL -(-1117 R -3091) +(-1118 R -3092) ((|constructor| (NIL "\\spadtype{TrigonometricManipulations} provides transformations from trigonometric functions to complex exponentials and logarithms,{} and back.")) (|complexForm| (((|Complex| |#2|) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f, imag f]}.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| ((|#2| |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| ((|#2| |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f, x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f, x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels."))) NIL NIL -(-1118 R |Row| |Col| M) +(-1119 R |Row| |Col| M) ((|constructor| (NIL "This package provides functions that compute \"fraction-free\" inverses of upper and lower triangular matrices over a integral domain. By \"fraction-free inverses\" we mean the following: given a matrix \\spad{B} with entries in \\spad{R} and an element \\spad{d} of \\spad{R} such that \\spad{d} * inv(\\spad{B}) also has entries in \\spad{R},{} we return \\spad{d} * inv(\\spad{B}). Thus,{} it is not necessary to pass to the quotient field in any of our computations.")) (|LowTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{LowTriBddDenomInv(B,d)} returns \\spad{M},{} where \\spad{B} is a non-singular lower triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")) (|UpTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{UpTriBddDenomInv(B,d)} returns \\spad{M},{} where \\spad{B} is a non-singular upper triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}."))) NIL NIL -(-1119 R -3091) +(-1120 R -3092) ((|constructor| (NIL "TranscendentalManipulations provides functions to simplify and expand expressions involving transcendental operators.")) (|expandTrigProducts| ((|#2| |#2|) "\\spad{expandTrigProducts(e)} replaces \\axiom{sin(\\spad{x})*sin(\\spad{y})} by \\spad{(cos(x-y)-cos(x+y))/2},{} \\axiom{cos(\\spad{x})*cos(\\spad{y})} by \\spad{(cos(x-y)+cos(x+y))/2},{} and \\axiom{sin(\\spad{x})*cos(\\spad{y})} by \\spad{(sin(x-y)+sin(x+y))/2}. Note that this operation uses the pattern matcher and so is relatively expensive. To avoid getting into an infinite loop the transformations are applied at most ten times.")) (|removeSinhSq| ((|#2| |#2|) "\\spad{removeSinhSq(f)} converts every \\spad{sinh(u)**2} appearing in \\spad{f} into \\spad{1 - cosh(x)**2},{} and also reduces higher powers of \\spad{sinh(u)} with that formula.")) (|removeCoshSq| ((|#2| |#2|) "\\spad{removeCoshSq(f)} converts every \\spad{cosh(u)**2} appearing in \\spad{f} into \\spad{1 - sinh(x)**2},{} and also reduces higher powers of \\spad{cosh(u)} with that formula.")) (|removeSinSq| ((|#2| |#2|) "\\spad{removeSinSq(f)} converts every \\spad{sin(u)**2} appearing in \\spad{f} into \\spad{1 - cos(x)**2},{} and also reduces higher powers of \\spad{sin(u)} with that formula.")) (|removeCosSq| ((|#2| |#2|) "\\spad{removeCosSq(f)} converts every \\spad{cos(u)**2} appearing in \\spad{f} into \\spad{1 - sin(x)**2},{} and also reduces higher powers of \\spad{cos(u)} with that formula.")) (|coth2tanh| ((|#2| |#2|) "\\spad{coth2tanh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{1/tanh(u)}.")) (|cot2tan| ((|#2| |#2|) "\\spad{cot2tan(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{1/tan(u)}.")) (|tanh2coth| ((|#2| |#2|) "\\spad{tanh2coth(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{1/coth(u)}.")) (|tan2cot| ((|#2| |#2|) "\\spad{tan2cot(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{1/cot(u)}.")) (|tanh2trigh| ((|#2| |#2|) "\\spad{tanh2trigh(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{sinh(u)/cosh(u)}.")) (|tan2trig| ((|#2| |#2|) "\\spad{tan2trig(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{sin(u)/cos(u)}.")) (|sinh2csch| ((|#2| |#2|) "\\spad{sinh2csch(f)} converts every \\spad{sinh(u)} appearing in \\spad{f} into \\spad{1/csch(u)}.")) (|sin2csc| ((|#2| |#2|) "\\spad{sin2csc(f)} converts every \\spad{sin(u)} appearing in \\spad{f} into \\spad{1/csc(u)}.")) (|sech2cosh| ((|#2| |#2|) "\\spad{sech2cosh(f)} converts every \\spad{sech(u)} appearing in \\spad{f} into \\spad{1/cosh(u)}.")) (|sec2cos| ((|#2| |#2|) "\\spad{sec2cos(f)} converts every \\spad{sec(u)} appearing in \\spad{f} into \\spad{1/cos(u)}.")) (|csch2sinh| ((|#2| |#2|) "\\spad{csch2sinh(f)} converts every \\spad{csch(u)} appearing in \\spad{f} into \\spad{1/sinh(u)}.")) (|csc2sin| ((|#2| |#2|) "\\spad{csc2sin(f)} converts every \\spad{csc(u)} appearing in \\spad{f} into \\spad{1/sin(u)}.")) (|coth2trigh| ((|#2| |#2|) "\\spad{coth2trigh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{cosh(u)/sinh(u)}.")) (|cot2trig| ((|#2| |#2|) "\\spad{cot2trig(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{cos(u)/sin(u)}.")) (|cosh2sech| ((|#2| |#2|) "\\spad{cosh2sech(f)} converts every \\spad{cosh(u)} appearing in \\spad{f} into \\spad{1/sech(u)}.")) (|cos2sec| ((|#2| |#2|) "\\spad{cos2sec(f)} converts every \\spad{cos(u)} appearing in \\spad{f} into \\spad{1/sec(u)}.")) (|expandLog| ((|#2| |#2|) "\\spad{expandLog(f)} converts every \\spad{log(a/b)} appearing in \\spad{f} into \\spad{log(a) - log(b)},{} and every \\spad{log(a*b)} into \\spad{log(a) + log(b)}..")) (|expandPower| ((|#2| |#2|) "\\spad{expandPower(f)} converts every power \\spad{(a/b)**c} appearing in \\spad{f} into \\spad{a**c * b**(-c)}.")) (|simplifyLog| ((|#2| |#2|) "\\spad{simplifyLog(f)} converts every \\spad{log(a) - log(b)} appearing in \\spad{f} into \\spad{log(a/b)},{} every \\spad{log(a) + log(b)} into \\spad{log(a*b)} and every \\spad{n*log(a)} into \\spad{log(a^n)}.")) (|simplifyExp| ((|#2| |#2|) "\\spad{simplifyExp(f)} converts every product \\spad{exp(a)*exp(b)} appearing in \\spad{f} into \\spad{exp(a+b)}.")) (|htrigs| ((|#2| |#2|) "\\spad{htrigs(f)} converts all the exponentials in \\spad{f} into hyperbolic sines and cosines.")) (|simplify| ((|#2| |#2|) "\\spad{simplify(f)} performs the following simplifications on f:\\begin{items} \\item 1. rewrites trigs and hyperbolic trigs in terms of \\spad{sin} ,{}\\spad{cos},{} \\spad{sinh},{} \\spad{cosh}. \\item 2. rewrites \\spad{sin**2} and \\spad{sinh**2} in terms of \\spad{cos} and \\spad{cosh},{} \\item 3. rewrites \\spad{exp(a)*exp(b)} as \\spad{exp(a+b)}. \\item 4. rewrites \\spad{(a**(1/n))**m * (a**(1/s))**t} as a single power of a single radical of \\spad{a}. \\end{items}")) (|expand| ((|#2| |#2|) "\\spad{expand(f)} performs the following expansions on f:\\begin{items} \\item 1. logs of products are expanded into sums of logs,{} \\item 2. trigonometric and hyperbolic trigonometric functions of sums are expanded into sums of products of trigonometric and hyperbolic trigonometric functions. \\item 3. formal powers of the form \\spad{(a/b)**c} are expanded into \\spad{a**c * b**(-c)}. \\end{items}"))) NIL -((-12 (|HasCategory| |#1| (|%list| (QUOTE -552) (|%list| (QUOTE -799) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -795) (|devaluate| |#1|))) (|HasCategory| |#2| (|%list| (QUOTE -552) (|%list| (QUOTE -799) (|devaluate| |#1|)))) (|HasCategory| |#2| (|%list| (QUOTE -795) (|devaluate| |#1|))))) -(-1120 |Coef|) +((-12 (|HasCategory| |#1| (|%list| (QUOTE -553) (|%list| (QUOTE -800) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -796) (|devaluate| |#1|))) (|HasCategory| |#2| (|%list| (QUOTE -553) (|%list| (QUOTE -800) (|devaluate| |#1|)))) (|HasCategory| |#2| (|%list| (QUOTE -796) (|devaluate| |#1|))))) +(-1121 |Coef|) ((|constructor| (NIL "\\spadtype{TaylorSeries} is a general multivariate Taylor series domain over the ring Coef and with variables of type Symbol.")) (|fintegrate| (($ (|Mapping| $) (|Symbol|) |#1|) "\\spad{fintegrate(f,v,c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ (|Symbol|) |#1|) "\\spad{integrate(s,v,c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(s)} regroups terms of \\spad{s} by total degree \\indented{1}{and forms a series.}") (($ (|Symbol|)) "\\spad{coerce(s)} converts a variable to a Taylor series")) (|coefficient| (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{coefficient(s, n)} gives the terms of total degree \\spad{n}."))) -(((-3995 "*") |has| |#1| (-146)) (-3986 |has| |#1| (-494)) (-3988 . T) (-3987 . T) (-3990 . T)) -((|HasCategory| |#1| (QUOTE (-38 (-348 (-483))))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-494)))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-312)))) -(-1121 S R E V P) +(((-3996 "*") |has| |#1| (-146)) (-3987 |has| |#1| (-495)) (-3989 . T) (-3988 . T) (-3991 . T)) +((|HasCategory| |#1| (QUOTE (-38 (-349 (-484))))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-312)))) +(-1122 S R E V P) ((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < Xn}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}Xn]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(ts)} returns \\axiom{size()\\$\\spad{V}} minus \\axiom{\\#ts}.")) (|extend| (($ $ |#5|) "\\axiom{extend(ts,{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{ts},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#5|) "\\axiom{extendIfCan(ts,{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{ts},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#5| "failed") $ |#4|) "\\axiom{select(ts,{}\\spad{v})} returns the polynomial of \\axiom{ts} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#4| $) "\\axiom{algebraic?(\\spad{v},{}ts)} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{ts}.")) (|algebraicVariables| (((|List| |#4|) $) "\\axiom{algebraicVariables(ts)} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{ts}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(ts)} returns the polynomials of \\axiom{ts} with smaller main variable than \\axiom{mvar(ts)} if \\axiom{ts} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#5| "failed") $) "\\axiom{last(ts)} returns the polynomial of \\axiom{ts} with smallest main variable if \\axiom{ts} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#5| "failed") $) "\\axiom{first(ts)} returns the polynomial of \\axiom{ts} with greatest main variable if \\axiom{ts} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#5|)))) (|List| |#5|)) "\\axiom{zeroSetSplitIntoTriangularSystems(lp)} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[tsn,{}qsn]]} such that the zero set of \\axiom{lp} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{ts} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#5|)) "\\axiom{zeroSetSplit(lp)} returns a list \\axiom{lts} of triangular sets such that the zero set of \\axiom{lp} is the union of the closures of the regular zero sets of the members of \\axiom{lts}.")) (|reduceByQuasiMonic| ((|#5| |#5| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}ts)} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(ts)).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(ts)} returns the subset of \\axiom{ts} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#5| |#5| $) "\\axiom{removeZero(\\spad{p},{}ts)} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{ts} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#5| |#5| $) "\\axiom{initiallyReduce(\\spad{p},{}ts)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}ts)} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}.")) (|headReduce| ((|#5| |#5| $) "\\axiom{headReduce(\\spad{p},{}ts)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}ts)} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}.")) (|stronglyReduce| ((|#5| |#5| $) "\\axiom{stronglyReduce(\\spad{p},{}ts)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}ts)} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}.")) (|rewriteSetWithReduction| (((|List| |#5|) (|List| |#5|) $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{rewriteSetWithReduction(lp,{}ts,{}redOp,{}redOp?)} returns a list \\axiom{lq} of polynomials such that \\axiom{[reduce(\\spad{p},{}ts,{}redOp,{}redOp?) for \\spad{p} in lp]} and \\axiom{lp} have the same zeros inside the regular zero set of \\axiom{ts}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{lq} and every polynomial \\axiom{\\spad{t}} in \\axiom{ts} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{lp} and a product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = f*q + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#5| |#5| $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduce(\\spad{p},{}ts,{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{ts} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{ts} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = f*q + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#5| (|List| |#5|))) "\\axiom{autoReduced?(ts,{}redOp?)} returns \\spad{true} iff every element of \\axiom{ts} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#5| $) "\\axiom{initiallyReduced?(\\spad{p},{}ts)} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{ts} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{headReduced?(\\spad{p},{}ts)} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ts}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(ts)} returns \\spad{true} iff every element of \\axiom{ts} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{ts}.") (((|Boolean|) |#5| $) "\\axiom{stronglyReduced?(\\spad{p},{}ts)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ts}.")) (|reduced?| (((|Boolean|) |#5| $ (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduced?(\\spad{p},{}ts,{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{ts} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(ts)} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{ts} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(ts,{}mvar(\\spad{p}))}.") (((|Boolean|) |#5| $) "\\axiom{normalized?(\\spad{p},{}ts)} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{ts}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#5|)) (|:| |open| (|List| |#5|))) $) "\\axiom{quasiComponent(ts)} returns \\axiom{[lp,{}lq]} where \\axiom{lp} is the list of the members of \\axiom{ts} and \\axiom{lq}is \\axiom{initials(ts)}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(ts)} returns the product of main degrees of the members of \\axiom{ts}.")) (|initials| (((|List| |#5|) $) "\\axiom{initials(ts)} returns the list of the non-constant initials of the members of \\axiom{ts}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(ps,{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(qs,{}redOp?)} where \\axiom{qs} consists of the polynomials of \\axiom{ps} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(ps,{}redOp?)} returns \\axiom{[bs,{}ts]} where \\axiom{concat(bs,{}ts)} is \\axiom{ps} and \\axiom{bs} is a basic set in Wu Wen Tsun sense of \\axiom{ps} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{ps},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense."))) NIL -((|HasCategory| |#4| (QUOTE (-318)))) -(-1122 R E V P) +((|HasCategory| |#4| (QUOTE (-319)))) +(-1123 R E V P) ((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < Xn}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}Xn]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(ts)} returns \\axiom{size()\\$\\spad{V}} minus \\axiom{\\#ts}.")) (|extend| (($ $ |#4|) "\\axiom{extend(ts,{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{ts},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#4|) "\\axiom{extendIfCan(ts,{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{ts},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#4| "failed") $ |#3|) "\\axiom{select(ts,{}\\spad{v})} returns the polynomial of \\axiom{ts} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#3| $) "\\axiom{algebraic?(\\spad{v},{}ts)} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{ts}.")) (|algebraicVariables| (((|List| |#3|) $) "\\axiom{algebraicVariables(ts)} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{ts}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(ts)} returns the polynomials of \\axiom{ts} with smaller main variable than \\axiom{mvar(ts)} if \\axiom{ts} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#4| "failed") $) "\\axiom{last(ts)} returns the polynomial of \\axiom{ts} with smallest main variable if \\axiom{ts} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#4| "failed") $) "\\axiom{first(ts)} returns the polynomial of \\axiom{ts} with greatest main variable if \\axiom{ts} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#4|)))) (|List| |#4|)) "\\axiom{zeroSetSplitIntoTriangularSystems(lp)} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[tsn,{}qsn]]} such that the zero set of \\axiom{lp} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{ts} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#4|)) "\\axiom{zeroSetSplit(lp)} returns a list \\axiom{lts} of triangular sets such that the zero set of \\axiom{lp} is the union of the closures of the regular zero sets of the members of \\axiom{lts}.")) (|reduceByQuasiMonic| ((|#4| |#4| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}ts)} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(ts)).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(ts)} returns the subset of \\axiom{ts} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#4| |#4| $) "\\axiom{removeZero(\\spad{p},{}ts)} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{ts} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#4| |#4| $) "\\axiom{initiallyReduce(\\spad{p},{}ts)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}ts)} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}.")) (|headReduce| ((|#4| |#4| $) "\\axiom{headReduce(\\spad{p},{}ts)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}ts)} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}.")) (|stronglyReduce| ((|#4| |#4| $) "\\axiom{stronglyReduce(\\spad{p},{}ts)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}ts)} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}.")) (|rewriteSetWithReduction| (((|List| |#4|) (|List| |#4|) $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{rewriteSetWithReduction(lp,{}ts,{}redOp,{}redOp?)} returns a list \\axiom{lq} of polynomials such that \\axiom{[reduce(\\spad{p},{}ts,{}redOp,{}redOp?) for \\spad{p} in lp]} and \\axiom{lp} have the same zeros inside the regular zero set of \\axiom{ts}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{lq} and every polynomial \\axiom{\\spad{t}} in \\axiom{ts} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{lp} and a product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = f*q + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#4| |#4| $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduce(\\spad{p},{}ts,{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{ts} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{ts} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = f*q + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#4| (|List| |#4|))) "\\axiom{autoReduced?(ts,{}redOp?)} returns \\spad{true} iff every element of \\axiom{ts} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#4| $) "\\axiom{initiallyReduced?(\\spad{p},{}ts)} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{ts} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{headReduced?(\\spad{p},{}ts)} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ts}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(ts)} returns \\spad{true} iff every element of \\axiom{ts} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{ts}.") (((|Boolean|) |#4| $) "\\axiom{stronglyReduced?(\\spad{p},{}ts)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ts}.")) (|reduced?| (((|Boolean|) |#4| $ (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduced?(\\spad{p},{}ts,{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{ts} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(ts)} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{ts} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(ts,{}mvar(\\spad{p}))}.") (((|Boolean|) |#4| $) "\\axiom{normalized?(\\spad{p},{}ts)} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{ts}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#4|)) (|:| |open| (|List| |#4|))) $) "\\axiom{quasiComponent(ts)} returns \\axiom{[lp,{}lq]} where \\axiom{lp} is the list of the members of \\axiom{ts} and \\axiom{lq}is \\axiom{initials(ts)}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(ts)} returns the product of main degrees of the members of \\axiom{ts}.")) (|initials| (((|List| |#4|) $) "\\axiom{initials(ts)} returns the list of the non-constant initials of the members of \\axiom{ts}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(ps,{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(qs,{}redOp?)} where \\axiom{qs} consists of the polynomials of \\axiom{ps} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(ps,{}redOp?)} returns \\axiom{[bs,{}ts]} where \\axiom{concat(bs,{}ts)} is \\axiom{ps} and \\axiom{bs} is a basic set in Wu Wen Tsun sense of \\axiom{ps} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{ps},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense."))) -((-3994 . T) (-3993 . T)) +((-3995 . T) (-3994 . T)) NIL -(-1123 |Curve|) +(-1124 |Curve|) ((|constructor| (NIL "\\indented{2}{Package for constructing tubes around 3-dimensional parametric curves.} Domain of tubes around 3-dimensional parametric curves.")) (|tube| (($ |#1| (|List| (|List| (|Point| (|DoubleFloat|)))) (|Boolean|)) "\\spad{tube(c,ll,b)} creates a tube of the domain \\spadtype{TubePlot} from a space curve \\spad{c} of the category \\spadtype{PlottableSpaceCurveCategory},{} a list of lists of points (loops) \\spad{ll} and a boolean \\spad{b} which if \\spad{true} indicates a closed tube,{} or if \\spad{false} an open tube.")) (|setClosed| (((|Boolean|) $ (|Boolean|)) "\\spad{setClosed(t,b)} declares the given tube plot \\spad{t} to be closed if \\spad{b} is \\spad{true},{} or if \\spad{b} is \\spad{false},{} \\spad{t} is set to be open.")) (|open?| (((|Boolean|) $) "\\spad{open?(t)} tests whether the given tube plot \\spad{t} is open.")) (|closed?| (((|Boolean|) $) "\\spad{closed?(t)} tests whether the given tube plot \\spad{t} is closed.")) (|listLoops| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listLoops(t)} returns the list of lists of points,{} or the 'loops',{} of the given tube plot \\spad{t}.")) (|getCurve| ((|#1| $) "\\spad{getCurve(t)} returns the \\spadtype{PlottableSpaceCurveCategory} representing the parametric curve of the given tube plot \\spad{t}."))) NIL NIL -(-1124) +(-1125) ((|constructor| (NIL "Tools for constructing tubes around 3-dimensional parametric curves.")) (|loopPoints| (((|List| (|Point| (|DoubleFloat|))) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|List| (|List| (|DoubleFloat|)))) "\\spad{loopPoints(p,n,b,r,lls)} creates and returns a list of points which form the loop with radius \\spad{r},{} around the center point indicated by the point \\spad{p},{} with the principal normal vector of the space curve at point \\spad{p} given by the point(vector) \\spad{n},{} and the binormal vector given by the point(vector) \\spad{b},{} and a list of lists,{} \\spad{lls},{} which is the \\spadfun{cosSinInfo} of the number of points defining the loop.")) (|cosSinInfo| (((|List| (|List| (|DoubleFloat|))) (|Integer|)) "\\spad{cosSinInfo(n)} returns the list of lists of values for \\spad{n},{} in the form: \\spad{[[cos(n - 1) a,sin(n - 1) a],...,[cos 2 a,sin 2 a],[cos a,sin a]]} where \\spad{a = 2 pi/n}. Note: \\spad{n} should be greater than 2.")) (|unitVector| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{unitVector(p)} creates the unit vector of the point \\spad{p} and returns the result as a point. Note: \\spad{unitVector(p) = p/|p|}.")) (|cross| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{cross(p,q)} computes the cross product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and keeping the color of the first point \\spad{p}. The result is returned as a point.")) (|dot| (((|DoubleFloat|) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{dot(p,q)} computes the dot product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and returns the resulting \\spadtype{DoubleFloat}.")) (- (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p - q} computes and returns a point whose coordinates are the differences of the coordinates of two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (+ (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p + q} computes and returns a point whose coordinates are the sums of the coordinates of the two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (* (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|Point| (|DoubleFloat|))) "\\spad{s * p} returns a point whose coordinates are the scalar multiple of the point \\spad{p} by the scalar \\spad{s},{} preserving the color,{} or fourth coordinate,{} of \\spad{p}.")) (|point| (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{point(x1,x2,x3,c)} creates and returns a point from the three specified coordinates \\spad{x1},{} \\spad{x2},{} \\spad{x3},{} and also a fourth coordinate,{} \\spad{c},{} which is generally used to specify the color of the point."))) NIL NIL -(-1125 S) +(-1126 S) ((|constructor| (NIL "\\indented{1}{This domain is used to interface with the interpreter's notion} of comma-delimited sequences of values.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the number of elements in tuple \\spad{x}")) (|select| ((|#1| $ (|NonNegativeInteger|)) "\\spad{select(x,n)} returns the \\spad{n}-th element of tuple \\spad{x}. tuples are 0-based"))) NIL -((|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (QUOTE (-551 (-771))))) -(-1126 -3091) +((|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-552 (-772))))) +(-1127 -3092) ((|constructor| (NIL "A basic package for the factorization of bivariate polynomials over a finite field. The functions here represent the base step for the multivariate factorizer.")) (|twoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) (|Integer|)) "\\spad{twoFactor(p,n)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}. Also,{} \\spad{p} is assumed primitive and square-free and \\spad{n} is the degree of the inner variable of \\spad{p} (maximum of the degrees of the coefficients of \\spad{p}).")) (|generalSqFr| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalSqFr(p)} returns the square-free factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")) (|generalTwoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalTwoFactor(p)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}."))) NIL NIL -(-1127) +(-1128) ((|constructor| (NIL "The fundamental Type."))) NIL NIL -(-1128) +(-1129) ((|constructor| (NIL "This domain represents a type AST."))) NIL NIL -(-1129 S) +(-1130 S) ((|constructor| (NIL "Provides functions to force a partial ordering on any set.")) (|more?| (((|Boolean|) |#1| |#1|) "\\spad{more?(a, b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and uses the ordering on \\spad{S} if \\spad{a} and \\spad{b} are not comparable in the partial ordering.")) (|userOrdered?| (((|Boolean|)) "\\spad{userOrdered?()} tests if the partial ordering induced by \\spadfunFrom{setOrder}{UserDefinedPartialOrdering} is not empty.")) (|largest| ((|#1| (|List| |#1|)) "\\spad{largest l} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by the ordering on \\spad{S}.") ((|#1| (|List| |#1|) (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{largest(l, fn)} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by fn.")) (|less?| (((|Boolean|) |#1| |#1| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{less?(a, b, fn)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and returns \\spad{fn(a, b)} if \\spad{a} and \\spad{b} are not comparable in that ordering.") (((|Union| (|Boolean|) "failed") |#1| |#1|) "\\spad{less?(a, b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder.")) (|getOrder| (((|Record| (|:| |low| (|List| |#1|)) (|:| |high| (|List| |#1|)))) "\\spad{getOrder()} returns \\spad{[[b1,...,bm], [a1,...,an]]} such that the partial ordering on \\spad{S} was given by \\spad{setOrder([b1,...,bm],[a1,...,an])}.")) (|setOrder| (((|Void|) (|List| |#1|) (|List| |#1|)) "\\spad{setOrder([b1,...,bm], [a1,...,an])} defines a partial ordering on \\spad{S} given by: \\indented{3}{(1)\\space{2}\\spad{b1 < b2 < ... < bm < a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{bj < c < ai}\\space{2}for \\spad{c} not among the \\spad{ai}'s and bj's.} \\indented{3}{(3)\\space{2}undefined on \\spad{(c,d)} if neither is among the \\spad{ai}'s,{}bj's.}") (((|Void|) (|List| |#1|)) "\\spad{setOrder([a1,...,an])} defines a partial ordering on \\spad{S} given by: \\indented{3}{(1)\\space{2}\\spad{a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{b < ai\\space{3}for i = 1..n} and \\spad{b} not among the \\spad{ai}'s.} \\indented{3}{(3)\\space{2}undefined on \\spad{(b, c)} if neither is among the \\spad{ai}'s.}"))) NIL -((|HasCategory| |#1| (QUOTE (-755)))) -(-1130) +((|HasCategory| |#1| (QUOTE (-756)))) +(-1131) ((|constructor| (NIL "This packages provides functions to allow the user to select the ordering on the variables and operators for displaying polynomials,{} fractions and expressions. The ordering affects the display only and not the computations.")) (|resetVariableOrder| (((|Void|)) "\\spad{resetVariableOrder()} cancels any previous use of setVariableOrder and returns to the default system ordering.")) (|getVariableOrder| (((|Record| (|:| |high| (|List| (|Symbol|))) (|:| |low| (|List| (|Symbol|))))) "\\spad{getVariableOrder()} returns \\spad{[[b1,...,bm], [a1,...,an]]} such that the ordering on the variables was given by \\spad{setVariableOrder([b1,...,bm], [a1,...,an])}.")) (|setVariableOrder| (((|Void|) (|List| (|Symbol|)) (|List| (|Symbol|))) "\\spad{setVariableOrder([b1,...,bm], [a1,...,an])} defines an ordering on the variables given by \\spad{b1 > b2 > ... > bm >} other variables \\spad{> a1 > a2 > ... > an}.") (((|Void|) (|List| (|Symbol|))) "\\spad{setVariableOrder([a1,...,an])} defines an ordering on the variables given by \\spad{a1 > a2 > ... > an > other variables}."))) NIL NIL -(-1131 S) +(-1132 S) ((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element."))) NIL NIL -(-1132) +(-1133) ((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element."))) -((-3986 . T) ((-3995 "*") . T) (-3987 . T) (-3988 . T) (-3990 . T)) +((-3987 . T) ((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T)) NIL -(-1133) +(-1134) ((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 16 bits."))) NIL NIL -(-1134) +(-1135) ((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 32 bits."))) NIL NIL -(-1135) +(-1136) ((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 64 bits."))) NIL NIL -(-1136) +(-1137) ((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 8 bits."))) NIL NIL -(-1137 |Coef| |var| |cen|) +(-1138 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Laurent series in one variable \\indented{2}{\\spadtype{UnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariateLaurentSeries(Integer,x,3)} represents Laurent series in} \\indented{2}{\\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series."))) -(((-3995 "*") OR (-2561 (|has| |#1| (-312)) (|has| (-1167 |#1| |#2| |#3|) (-739))) (|has| |#1| (-146)) (-2561 (|has| |#1| (-312)) (|has| (-1167 |#1| |#2| |#3|) (-820)))) (-3986 OR (-2561 (|has| |#1| (-312)) (|has| (-1167 |#1| |#2| |#3|) (-739))) (|has| |#1| (-494)) (-2561 (|has| |#1| (-312)) (|has| (-1167 |#1| |#2| |#3|) (-820)))) (-3991 |has| |#1| (-312)) (-3985 |has| |#1| (-312)) (-3987 . T) (-3988 . T) (-3990 . T)) -((|HasCategory| |#1| (QUOTE (-38 (-348 (-483))))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-494)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-120)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-739)))) (|HasCategory| |#1| (QUOTE (-120)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-808 (-1088))))) (-12 (|HasCategory| |#1| (QUOTE (-808 (-1088)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-483)) (|devaluate| |#1|)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-808 (-1088))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-810 (-1088))))) (-12 (|HasCategory| |#1| (QUOTE (-808 (-1088)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-483)) (|devaluate| |#1|)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-190)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-483)) (|devaluate| |#1|))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-190)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-189)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-483)) (|devaluate| |#1|))))) (|HasCategory| (-483) (QUOTE (-1024))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-494)))) (|HasCategory| |#1| (QUOTE (-312))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-820)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-949 (-1088))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-552 (-472))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-932)))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-494)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-739)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-739)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-755))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-949 (-483))))) (|HasCategory| |#1| (QUOTE (-38 (-348 (-483)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-949 (-483))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-1064)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1167 |#1| |#2| |#3|) (|%list| (QUOTE -241) (|%list| (QUOTE -1167) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (|%list| (QUOTE -1167) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1167 |#1| |#2| |#3|) (|%list| (QUOTE -260) (|%list| (QUOTE -1167) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1167 |#1| |#2| |#3|) (|%list| (QUOTE -454) (QUOTE (-1088)) (|%list| (QUOTE -1167) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-579 (-483))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-552 (-799 (-483)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-552 (-799 (-328)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-795 (-483))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-795 (-328))))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-483))))) (|HasSignature| |#1| (|%list| (QUOTE -3944) (|%list| (|devaluate| |#1|) (QUOTE (-1088)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-483))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-348 (-483))))) (|HasCategory| |#1| (QUOTE (-29 (-483)))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1113)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-348 (-483))))) (|HasSignature| |#1| (|%list| (QUOTE -3810) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1088))))) (|HasSignature| |#1| (|%list| (QUOTE -3080) (|%list| (|%list| (QUOTE -582) (QUOTE (-1088))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-482)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-258)))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-820))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-118))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-820)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-739)))) (|HasCategory| |#1| (QUOTE (-494)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-820)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-739)))) (|HasCategory| |#1| (QUOTE (-146)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-810 (-1088))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-189)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-755)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-120)))) (|HasCategory| |#1| (QUOTE (-120)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-820)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-118)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-820)))) (|HasCategory| |#1| (QUOTE (-118))))) -(-1138 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) +(((-3996 "*") OR (-2562 (|has| |#1| (-312)) (|has| (-1168 |#1| |#2| |#3|) (-740))) (|has| |#1| (-146)) (-2562 (|has| |#1| (-312)) (|has| (-1168 |#1| |#2| |#3|) (-821)))) (-3987 OR (-2562 (|has| |#1| (-312)) (|has| (-1168 |#1| |#2| |#3|) (-740))) (|has| |#1| (-495)) (-2562 (|has| |#1| (-312)) (|has| (-1168 |#1| |#2| |#3|) (-821)))) (-3992 |has| |#1| (-312)) (-3986 |has| |#1| (-312)) (-3988 . T) (-3989 . T) (-3991 . T)) +((|HasCategory| |#1| (QUOTE (-38 (-349 (-484))))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-120)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-740)))) (|HasCategory| |#1| (QUOTE (-120)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-809 (-1089))))) (-12 (|HasCategory| |#1| (QUOTE (-809 (-1089)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-484)) (|devaluate| |#1|)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-809 (-1089))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-811 (-1089))))) (-12 (|HasCategory| |#1| (QUOTE (-809 (-1089)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-484)) (|devaluate| |#1|)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-190)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-484)) (|devaluate| |#1|))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-190)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-189)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-484)) (|devaluate| |#1|))))) (|HasCategory| (-484) (QUOTE (-1025))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-495)))) (|HasCategory| |#1| (QUOTE (-312))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-821)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-950 (-1089))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-553 (-473))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-933)))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-495)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-740)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-740)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-756))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-950 (-484))))) (|HasCategory| |#1| (QUOTE (-38 (-349 (-484)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-1065)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1168 |#1| |#2| |#3|) (|%list| (QUOTE -241) (|%list| (QUOTE -1168) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (|%list| (QUOTE -1168) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1168 |#1| |#2| |#3|) (|%list| (QUOTE -260) (|%list| (QUOTE -1168) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1168 |#1| |#2| |#3|) (|%list| (QUOTE -455) (QUOTE (-1089)) (|%list| (QUOTE -1168) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-580 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-553 (-800 (-484)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-553 (-800 (-329)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-796 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-796 (-329))))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-484))))) (|HasSignature| |#1| (|%list| (QUOTE -3945) (|%list| (|devaluate| |#1|) (QUOTE (-1089)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-484))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-349 (-484))))) (|HasCategory| |#1| (QUOTE (-29 (-484)))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1114)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-349 (-484))))) (|HasSignature| |#1| (|%list| (QUOTE -3811) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1089))))) (|HasSignature| |#1| (|%list| (QUOTE -3081) (|%list| (|%list| (QUOTE -583) (QUOTE (-1089))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-483)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-258)))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-821))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-118))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-821)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-740)))) (|HasCategory| |#1| (QUOTE (-495)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-821)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-740)))) (|HasCategory| |#1| (QUOTE (-146)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-811 (-1089))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-189)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-756)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-120)))) (|HasCategory| |#1| (QUOTE (-120)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-821)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-118)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-821)))) (|HasCategory| |#1| (QUOTE (-118))))) +(-1139 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) ((|constructor| (NIL "Mapping package for univariate Laurent series \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Laurent series.}")) (|map| (((|UnivariateLaurentSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariateLaurentSeries| |#1| |#3| |#5|)) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of the Laurent series \\spad{g(x)}."))) NIL NIL -(-1139 |Coef|) +(-1140 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateLaurentSeriesCategory} is the category of Laurent series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|rationalFunction| (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|) (|Integer|)) "\\spad{rationalFunction(f,k1,k2)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|)) "\\spad{rationalFunction(f,k)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree <= \\spad{k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = n0..infinity,a[n] * x**n)) = sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Puiseux series are represented by a Laurent series and an exponent.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) -(((-3995 "*") |has| |#1| (-146)) (-3986 |has| |#1| (-494)) (-3991 |has| |#1| (-312)) (-3985 |has| |#1| (-312)) (-3987 . T) (-3988 . T) (-3990 . T)) +(((-3996 "*") |has| |#1| (-146)) (-3987 |has| |#1| (-495)) (-3992 |has| |#1| (-312)) (-3986 |has| |#1| (-312)) (-3988 . T) (-3989 . T) (-3991 . T)) NIL -(-1140 S |Coef| UTS) +(-1141 S |Coef| UTS) ((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#3| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#3| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#3| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#3|) "\\spad{laurent(n,f(x))} returns \\spad{x**n * f(x)}."))) NIL ((|HasCategory| |#2| (QUOTE (-312)))) -(-1141 |Coef| UTS) +(-1142 |Coef| UTS) ((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#2| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#2| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#2| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#2|) "\\spad{laurent(n,f(x))} returns \\spad{x**n * f(x)}."))) -(((-3995 "*") |has| |#1| (-146)) (-3986 |has| |#1| (-494)) (-3991 |has| |#1| (-312)) (-3985 |has| |#1| (-312)) (-3987 . T) (-3988 . T) (-3990 . T)) +(((-3996 "*") |has| |#1| (-146)) (-3987 |has| |#1| (-495)) (-3992 |has| |#1| (-312)) (-3986 |has| |#1| (-312)) (-3988 . T) (-3989 . T) (-3991 . T)) NIL -(-1142 |Coef| UTS) +(-1143 |Coef| UTS) ((|constructor| (NIL "This package enables one to construct a univariate Laurent series domain from a univariate Taylor series domain. Univariate Laurent series are represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}."))) -(((-3995 "*") |has| |#1| (-146)) (-3986 |has| |#1| (-494)) (-3991 |has| |#1| (-312)) (-3985 |has| |#1| (-312)) (-3987 . T) (-3988 . T) (-3990 . T)) -((|HasCategory| |#1| (QUOTE (-38 (-348 (-483))))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-494)))) (OR (|HasCategory| |#1| (QUOTE (-118))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-118))))) (OR (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-120)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-739))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-808 (-1088))))) (-12 (|HasCategory| |#1| (QUOTE (-808 (-1088)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-483)) (|devaluate| |#1|)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-808 (-1088))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-810 (-1088))))) (-12 (|HasCategory| |#1| (QUOTE (-808 (-1088)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-483)) (|devaluate| |#1|)))))) (OR (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-483)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-190))))) (OR (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-483)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-190)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-189))))) (|HasCategory| (-483) (QUOTE (-1024))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-494)))) (|HasCategory| |#1| (QUOTE (-312))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-820)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-949 (-1088))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-552 (-472))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-932)))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-494)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-739)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-739)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-755))))) (OR (|HasCategory| |#1| (QUOTE (-38 (-348 (-483))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-949 (-483)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-949 (-483))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-1064)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (|%list| (QUOTE -241) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (|%list| (QUOTE -454) (QUOTE (-1088)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-579 (-483))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-552 (-799 (-483)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-552 (-799 (-328)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-795 (-483))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-795 (-328))))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-483))))) (|HasSignature| |#1| (|%list| (QUOTE -3944) (|%list| (|devaluate| |#1|) (QUOTE (-1088)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-483))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-348 (-483))))) (|HasCategory| |#1| (QUOTE (-29 (-483)))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1113)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-348 (-483))))) (|HasSignature| |#1| (|%list| (QUOTE -3810) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1088))))) (|HasSignature| |#1| (|%list| (QUOTE -3080) (|%list| (|%list| (QUOTE -582) (QUOTE (-1088))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-755)))) (|HasCategory| |#2| (QUOTE (-820))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-482)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-258)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-118))) (OR (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-483)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-189))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-810 (-1088))))) (-12 (|HasCategory| |#1| (QUOTE (-808 (-1088)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-483)) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-810 (-1088))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-189)))) (OR (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-120))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-820))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-820))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-118)))))) -(-1143 ZP) +(((-3996 "*") |has| |#1| (-146)) (-3987 |has| |#1| (-495)) (-3992 |has| |#1| (-312)) (-3986 |has| |#1| (-312)) (-3988 . T) (-3989 . T) (-3991 . T)) +((|HasCategory| |#1| (QUOTE (-38 (-349 (-484))))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (OR (|HasCategory| |#1| (QUOTE (-118))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-118))))) (OR (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-120)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-740))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-809 (-1089))))) (-12 (|HasCategory| |#1| (QUOTE (-809 (-1089)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-484)) (|devaluate| |#1|)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-809 (-1089))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-811 (-1089))))) (-12 (|HasCategory| |#1| (QUOTE (-809 (-1089)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-484)) (|devaluate| |#1|)))))) (OR (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-484)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-190))))) (OR (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-484)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-190)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-189))))) (|HasCategory| (-484) (QUOTE (-1025))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-495)))) (|HasCategory| |#1| (QUOTE (-312))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-821)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-950 (-1089))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-553 (-473))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-933)))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-495)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-740)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-740)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-756))))) (OR (|HasCategory| |#1| (QUOTE (-38 (-349 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-950 (-484)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-1065)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (|%list| (QUOTE -241) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (|%list| (QUOTE -455) (QUOTE (-1089)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-580 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-553 (-800 (-484)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-553 (-800 (-329)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-796 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-796 (-329))))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-484))))) (|HasSignature| |#1| (|%list| (QUOTE -3945) (|%list| (|devaluate| |#1|) (QUOTE (-1089)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-484))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-349 (-484))))) (|HasCategory| |#1| (QUOTE (-29 (-484)))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1114)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-349 (-484))))) (|HasSignature| |#1| (|%list| (QUOTE -3811) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1089))))) (|HasSignature| |#1| (|%list| (QUOTE -3081) (|%list| (|%list| (QUOTE -583) (QUOTE (-1089))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-756)))) (|HasCategory| |#2| (QUOTE (-821))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-483)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-258)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-118))) (OR (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-484)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-189))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-811 (-1089))))) (-12 (|HasCategory| |#1| (QUOTE (-809 (-1089)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-484)) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-811 (-1089))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-189)))) (OR (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-120))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-118)))))) +(-1144 ZP) ((|constructor| (NIL "Package for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" (HENSEL) the factorization over a finite field.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(m,flag)} returns the factorization of \\spad{m},{} FinalFact is a Record \\spad{s}.\\spad{t}. FinalFact.contp=content \\spad{m},{} FinalFact.factors=List of irreducible factors of \\spad{m} with exponent ,{} if \\spad{flag} =true the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(m)} returns the factorization of \\spad{m} square free polynomial")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(m)} returns the factorization of \\spad{m}"))) NIL NIL -(-1144 S) +(-1145 S) ((|constructor| (NIL "This domain provides segments which may be half open. That is,{} ranges of the form \\spad{a..} or \\spad{a..b}.")) (|hasHi| (((|Boolean|) $) "\\spad{hasHi(s)} tests whether the segment \\spad{s} has an upper bound.")) (|coerce| (($ (|Segment| |#1|)) "\\spad{coerce(x)} allows \\spadtype{Segment} values to be used as \\%.")) (|segment| (($ |#1|) "\\spad{segment(l)} is an alternate way to construct the segment \\spad{l..}.")) (SEGMENT (($ |#1|) "\\spad{l..} produces a half open segment,{} that is,{} one with no upper bound."))) NIL -((|HasCategory| |#1| (QUOTE (-754))) (|HasCategory| |#1| (QUOTE (-1012)))) -(-1145 R S) +((|HasCategory| |#1| (QUOTE (-755))) (|HasCategory| |#1| (QUOTE (-1013)))) +(-1146 R S) ((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,s)} expands the segment \\spad{s},{} applying \\spad{f} to each value.") (((|UniversalSegment| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,seg)} returns the new segment obtained by applying \\spad{f} to the endpoints of \\spad{seg}."))) NIL -((|HasCategory| |#1| (QUOTE (-754)))) -(-1146 |x| R) +((|HasCategory| |#1| (QUOTE (-755)))) +(-1147 |x| R) ((|constructor| (NIL "This domain represents univariate polynomials in some symbol over arbitrary (not necessarily commutative) coefficient rings. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#2| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}"))) -(((-3995 "*") |has| |#2| (-146)) (-3986 |has| |#2| (-494)) (-3989 |has| |#2| (-312)) (-3991 |has| |#2| (-6 -3991)) (-3988 . T) (-3987 . T) (-3990 . T)) -((|HasCategory| |#2| (QUOTE (-820))) (|HasCategory| |#2| (QUOTE (-494))) (|HasCategory| |#2| (QUOTE (-146))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-494)))) (-12 (|HasCategory| |#2| (QUOTE (-795 (-328)))) (|HasCategory| (-993) (QUOTE (-795 (-328))))) (-12 (|HasCategory| |#2| (QUOTE (-795 (-483)))) (|HasCategory| (-993) (QUOTE (-795 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-552 (-799 (-328))))) (|HasCategory| (-993) (QUOTE (-552 (-799 (-328)))))) (-12 (|HasCategory| |#2| (QUOTE (-552 (-799 (-483))))) (|HasCategory| (-993) (QUOTE (-552 (-799 (-483)))))) (-12 (|HasCategory| |#2| (QUOTE (-552 (-472)))) (|HasCategory| (-993) (QUOTE (-552 (-472))))) (|HasCategory| |#2| (QUOTE (-579 (-483)))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-38 (-348 (-483))))) (|HasCategory| |#2| (QUOTE (-949 (-483)))) (OR (|HasCategory| |#2| (QUOTE (-38 (-348 (-483))))) (|HasCategory| |#2| (QUOTE (-949 (-348 (-483)))))) (|HasCategory| |#2| (QUOTE (-949 (-348 (-483))))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-390))) (|HasCategory| |#2| (QUOTE (-494))) (|HasCategory| |#2| (QUOTE (-820)))) (OR (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-390))) (|HasCategory| |#2| (QUOTE (-494))) (|HasCategory| |#2| (QUOTE (-820)))) (OR (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-390))) (|HasCategory| |#2| (QUOTE (-820)))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (QUOTE (-810 (-1088)))) (|HasCategory| |#2| (QUOTE (-808 (-1088)))) (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-190))) (|HasAttribute| |#2| (QUOTE -3991)) (|HasCategory| |#2| (QUOTE (-390))) (-12 (|HasCategory| |#2| (QUOTE (-820))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-820))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#2| (QUOTE (-118))))) -(-1147 |x| R |y| S) +(((-3996 "*") |has| |#2| (-146)) (-3987 |has| |#2| (-495)) (-3990 |has| |#2| (-312)) (-3992 |has| |#2| (-6 -3992)) (-3989 . T) (-3988 . T) (-3991 . T)) +((|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-146))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-495)))) (-12 (|HasCategory| |#2| (QUOTE (-796 (-329)))) (|HasCategory| (-994) (QUOTE (-796 (-329))))) (-12 (|HasCategory| |#2| (QUOTE (-796 (-484)))) (|HasCategory| (-994) (QUOTE (-796 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-553 (-800 (-329))))) (|HasCategory| (-994) (QUOTE (-553 (-800 (-329)))))) (-12 (|HasCategory| |#2| (QUOTE (-553 (-800 (-484))))) (|HasCategory| (-994) (QUOTE (-553 (-800 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-553 (-473)))) (|HasCategory| (-994) (QUOTE (-553 (-473))))) (|HasCategory| |#2| (QUOTE (-580 (-484)))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-38 (-349 (-484))))) (|HasCategory| |#2| (QUOTE (-950 (-484)))) (OR (|HasCategory| |#2| (QUOTE (-38 (-349 (-484))))) (|HasCategory| |#2| (QUOTE (-950 (-349 (-484)))))) (|HasCategory| |#2| (QUOTE (-950 (-349 (-484))))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-391))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-821)))) (OR (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-391))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-821)))) (OR (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-391))) (|HasCategory| |#2| (QUOTE (-821)))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-1065))) (|HasCategory| |#2| (QUOTE (-811 (-1089)))) (|HasCategory| |#2| (QUOTE (-809 (-1089)))) (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-190))) (|HasAttribute| |#2| (QUOTE -3992)) (|HasCategory| |#2| (QUOTE (-391))) (-12 (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#2| (QUOTE (-118))))) +(-1148 |x| R |y| S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from \\spadtype{UnivariatePolynomial}(\\spad{x},{}\\spad{R}) to \\spadtype{UnivariatePolynomial}(\\spad{y},{}\\spad{S}). Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|UnivariatePolynomial| |#3| |#4|) (|Mapping| |#4| |#2|) (|UnivariatePolynomial| |#1| |#2|)) "\\spad{map(func, poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly."))) NIL NIL -(-1148 R Q UP) +(-1149 R Q UP) ((|constructor| (NIL "UnivariatePolynomialCommonDenominator provides functions to compute the common denominator of the coefficients of univariate polynomials over the quotient field of a gcd domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator(q)} returns \\spad{[p, d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the coefficients of \\spad{q}."))) NIL NIL -(-1149 R UP) +(-1150 R UP) ((|constructor| (NIL "UnivariatePolynomialDecompositionPackage implements functional decomposition of univariate polynomial with coefficients in an \\spad{IntegralDomain} of \\spad{CharacteristicZero}.")) (|monicCompleteDecompose| (((|List| |#2|) |#2|) "\\spad{monicCompleteDecompose(f)} returns a list of factors of \\spad{f} for the functional decomposition ([ \\spad{f1},{} ...,{} fn ] means \\spad{f} = \\spad{f1} \\spad{o} ... \\spad{o} fn).")) (|monicDecomposeIfCan| (((|Union| (|Record| (|:| |left| |#2|) (|:| |right| |#2|)) "failed") |#2|) "\\spad{monicDecomposeIfCan(f)} returns a functional decomposition of the monic polynomial \\spad{f} of \"failed\" if it has not found any.")) (|leftFactorIfCan| (((|Union| |#2| "failed") |#2| |#2|) "\\spad{leftFactorIfCan(f,h)} returns the left factor (\\spad{g} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of the functional decomposition of the polynomial \\spad{f} with given \\spad{h} or \\spad{\"failed\"} if \\spad{g} does not exist.")) (|rightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|) |#1|) "\\spad{rightFactorIfCan(f,d,c)} returns a candidate to be the right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} with leading coefficient \\spad{c} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate.")) (|monicRightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|)) "\\spad{monicRightFactorIfCan(f,d)} returns a candidate to be the monic right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate."))) NIL NIL -(-1150 R UP) +(-1151 R UP) ((|constructor| (NIL "UnivariatePolynomialDivisionPackage provides a division for non monic univarite polynomials with coefficients in an \\spad{IntegralDomain}.")) (|divideIfCan| (((|Union| (|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) "failed") |#2| |#2|) "\\spad{divideIfCan(f,g)} returns quotient and remainder of the division of \\spad{f} by \\spad{g} or \"failed\" if it has not succeeded."))) NIL NIL -(-1151 R U) +(-1152 R U) ((|constructor| (NIL "This package implements Karatsuba's trick for multiplying (large) univariate polynomials. It could be improved with a version doing the work on place and also with a special case for squares. We've done this in Basicmath,{} but we believe that this out of the scope of AXIOM.")) (|karatsuba| ((|#2| |#2| |#2| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{karatsuba(a,b,l,k)} returns \\spad{a*b} by applying Karatsuba's trick provided that both \\spad{a} and \\spad{b} have at least \\spad{l} terms and \\spad{k > 0} holds and by calling \\spad{noKaratsuba} otherwise. The other multiplications are performed by recursive calls with the same third argument and \\spad{k-1} as fourth argument.")) (|karatsubaOnce| ((|#2| |#2| |#2|) "\\spad{karatsuba(a,b)} returns \\spad{a*b} by applying Karatsuba's trick once. The other multiplications are performed by calling \\spad{*} from \\spad{U}.")) (|noKaratsuba| ((|#2| |#2| |#2|) "\\spad{noKaratsuba(a,b)} returns \\spad{a*b} without using Karatsuba's trick at all."))) NIL NIL -(-1152 S R) +(-1153 S R) ((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p, q)} returns \\spad{[a, b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#2|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,q)} returns \\spad{[c, q, r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f, q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p, q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,q)} computes the gcd of the polynomials \\spad{p} and \\spad{q} using the SubResultant GCD algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p, q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#2| (|Fraction| $) |#2|) "\\spad{elt(a,r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#2| $ $) "\\spad{resultant(p,q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#2| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) $) "\\spad{differentiate(p, d, x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where Dx is given by x',{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,n)} returns \\spad{p * monomial(1,n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,n)} returns \\spad{monicDivide(p,monomial(1,n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,n)} returns the same as \\spad{monicDivide(p,monomial(1,n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient, remainder]}. Error: if \\spad{q} isn't monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#2|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#2|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p, n)} returns \\spad{[a0,...,a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}."))) NIL -((|HasCategory| |#2| (QUOTE (-38 (-348 (-483))))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-390))) (|HasCategory| |#2| (QUOTE (-494))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-1064)))) -(-1153 R) +((|HasCategory| |#2| (QUOTE (-38 (-349 (-484))))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-391))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-1065)))) +(-1154 R) ((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p, q)} returns \\spad{[a, b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,q)} returns \\spad{[c, q, r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f, q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p, q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,q)} computes the gcd of the polynomials \\spad{p} and \\spad{q} using the SubResultant GCD algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p, q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#1| (|Fraction| $) |#1|) "\\spad{elt(a,r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#1| $ $) "\\spad{resultant(p,q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#1| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) $) "\\spad{differentiate(p, d, x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where Dx is given by x',{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,n)} returns \\spad{p * monomial(1,n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,n)} returns \\spad{monicDivide(p,monomial(1,n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,n)} returns the same as \\spad{monicDivide(p,monomial(1,n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient, remainder]}. Error: if \\spad{q} isn't monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#1|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#1|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p, n)} returns \\spad{[a0,...,a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}."))) -(((-3995 "*") |has| |#1| (-146)) (-3986 |has| |#1| (-494)) (-3989 |has| |#1| (-312)) (-3991 |has| |#1| (-6 -3991)) (-3988 . T) (-3987 . T) (-3990 . T)) +(((-3996 "*") |has| |#1| (-146)) (-3987 |has| |#1| (-495)) (-3990 |has| |#1| (-312)) (-3992 |has| |#1| (-6 -3992)) (-3989 . T) (-3988 . T) (-3991 . T)) NIL -(-1154 R PR S PS) +(-1155 R PR S PS) ((|constructor| (NIL "Mapping from polynomials over \\spad{R} to polynomials over \\spad{S} given a map from \\spad{R} to \\spad{S} assumed to send zero to zero.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f, p)} takes a function \\spad{f} from \\spad{R} to \\spad{S},{} and applies it to each (non-zero) coefficient of a polynomial \\spad{p} over \\spad{R},{} getting a new polynomial over \\spad{S}. Note: since the map is not applied to zero elements,{} it may map zero to zero."))) NIL NIL -(-1155 S |Coef| |Expon|) +(-1156 S |Coef| |Expon|) ((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#2|) $ |#2|) "\\spad{eval(f,a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#3|) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree <= \\spad{n} to be computed.")) (|approximate| ((|#2| $ |#3|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#3| |#3|) "\\spad{truncate(f,k1,k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#3|) "\\spad{truncate(f,k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#3| $ |#3|) "\\spad{order(f,n) = min(m,n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#3| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#2| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#3|) (|:| |c| |#2|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents."))) NIL -((|HasCategory| |#2| (QUOTE (-808 (-1088)))) (|HasSignature| |#2| (|%list| (QUOTE *) (|%list| (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1024))) (|HasSignature| |#2| (|%list| (QUOTE **) (|%list| (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (|%list| (QUOTE -3944) (|%list| (|devaluate| |#2|) (QUOTE (-1088)))))) -(-1156 |Coef| |Expon|) +((|HasCategory| |#2| (QUOTE (-809 (-1089)))) (|HasSignature| |#2| (|%list| (QUOTE *) (|%list| (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1025))) (|HasSignature| |#2| (|%list| (QUOTE **) (|%list| (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (|%list| (QUOTE -3945) (|%list| (|devaluate| |#2|) (QUOTE (-1089)))))) +(-1157 |Coef| |Expon|) ((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#1|) $ |#1|) "\\spad{eval(f,a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#2|) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree <= \\spad{n} to be computed.")) (|approximate| ((|#1| $ |#2|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#2| |#2|) "\\spad{truncate(f,k1,k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#2|) "\\spad{truncate(f,k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#2| $ |#2|) "\\spad{order(f,n) = min(m,n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#2| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#1| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents."))) -(((-3995 "*") |has| |#1| (-146)) (-3986 |has| |#1| (-494)) (-3987 . T) (-3988 . T) (-3990 . T)) +(((-3996 "*") |has| |#1| (-146)) (-3987 |has| |#1| (-495)) (-3988 . T) (-3989 . T) (-3991 . T)) NIL -(-1157 RC P) +(-1158 RC P) ((|constructor| (NIL "This package provides for square-free decomposition of univariate polynomials over arbitrary rings,{} \\spadignore{i.e.} a partial factorization such that each factor is a product of irreducibles with multiplicity one and the factors are pairwise relatively prime. If the ring has characteristic zero,{} the result is guaranteed to satisfy this condition. If the ring is an infinite ring of finite characteristic,{} then it may not be possible to decide when polynomials contain factors which are \\spad{p}th powers. In this case,{} the flag associated with that polynomial is set to \"nil\" (meaning that that polynomials are not guaranteed to be square-free).")) (|BumInSepFFE| (((|Record| (|:| |flg| (|Union| #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|))) (|Record| (|:| |flg| (|Union| #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|)))) "\\spad{BumInSepFFE(f)} is a local function,{} exported only because it has multiple conditional definitions.")) (|squareFreePart| ((|#2| |#2|) "\\spad{squareFreePart(p)} returns a polynomial which has the same irreducible factors as the univariate polynomial \\spad{p},{} but each factor has multiplicity one.")) (|squareFree| (((|Factored| |#2|) |#2|) "\\spad{squareFree(p)} computes the square-free factorization of the univariate polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime.")) (|gcd| (($ $ $) "\\spad{gcd(p,q)} computes the greatest-common-divisor of \\spad{p} and \\spad{q}."))) NIL NIL -(-1158 |Coef| |var| |cen|) +(-1159 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Puiseux series in one variable \\indented{2}{\\spadtype{UnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux series in} \\indented{2}{\\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers."))) -(((-3995 "*") |has| |#1| (-146)) (-3986 |has| |#1| (-494)) (-3991 |has| |#1| (-312)) (-3985 |has| |#1| (-312)) (-3987 . T) (-3988 . T) (-3990 . T)) -((|HasCategory| |#1| (QUOTE (-38 (-348 (-483))))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-494)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-808 (-1088)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -348) (QUOTE (-483))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -348) (QUOTE (-483))) (|devaluate| |#1|)))) (|HasCategory| (-348 (-483)) (QUOTE (-1024))) (|HasCategory| |#1| (QUOTE (-312))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-494)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-494)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -348) (QUOTE (-483)))))) (|HasSignature| |#1| (|%list| (QUOTE -3944) (|%list| (|devaluate| |#1|) (QUOTE (-1088)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -348) (QUOTE (-483)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-348 (-483))))) (|HasCategory| |#1| (QUOTE (-29 (-483)))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1113)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-348 (-483))))) (|HasSignature| |#1| (|%list| (QUOTE -3810) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1088))))) (|HasSignature| |#1| (|%list| (QUOTE -3080) (|%list| (|%list| (QUOTE -582) (QUOTE (-1088))) (|devaluate| |#1|))))))) -(-1159 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) +(((-3996 "*") |has| |#1| (-146)) (-3987 |has| |#1| (-495)) (-3992 |has| |#1| (-312)) (-3986 |has| |#1| (-312)) (-3988 . T) (-3989 . T) (-3991 . T)) +((|HasCategory| |#1| (QUOTE (-38 (-349 (-484))))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-809 (-1089)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -349) (QUOTE (-484))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -349) (QUOTE (-484))) (|devaluate| |#1|)))) (|HasCategory| (-349 (-484)) (QUOTE (-1025))) (|HasCategory| |#1| (QUOTE (-312))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-495)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-495)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -349) (QUOTE (-484)))))) (|HasSignature| |#1| (|%list| (QUOTE -3945) (|%list| (|devaluate| |#1|) (QUOTE (-1089)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -349) (QUOTE (-484)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-349 (-484))))) (|HasCategory| |#1| (QUOTE (-29 (-484)))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1114)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-349 (-484))))) (|HasSignature| |#1| (|%list| (QUOTE -3811) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1089))))) (|HasSignature| |#1| (|%list| (QUOTE -3081) (|%list| (|%list| (QUOTE -583) (QUOTE (-1089))) (|devaluate| |#1|))))))) +(-1160 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) ((|constructor| (NIL "Mapping package for univariate Puiseux series. This package allows one to apply a function to the coefficients of a univariate Puiseux series.")) (|map| (((|UnivariatePuiseuxSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariatePuiseuxSeries| |#1| |#3| |#5|)) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of the Puiseux series \\spad{g(x)}."))) NIL NIL -(-1160 |Coef|) +(-1161 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariatePuiseuxSeriesCategory} is the category of Puiseux series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),var)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{var}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by rational numbers.")) (|multiplyExponents| (($ $ (|Fraction| (|Integer|))) "\\spad{multiplyExponents(f,r)} multiplies all exponents of the power series \\spad{f} by the positive rational number \\spad{r}.")) (|series| (($ (|NonNegativeInteger|) (|Stream| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#1|)))) "\\spad{series(n,st)} creates a series from a common denomiator and a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents and \\spad{n} should be a common denominator for the exponents in the stream of terms."))) -(((-3995 "*") |has| |#1| (-146)) (-3986 |has| |#1| (-494)) (-3991 |has| |#1| (-312)) (-3985 |has| |#1| (-312)) (-3987 . T) (-3988 . T) (-3990 . T)) +(((-3996 "*") |has| |#1| (-146)) (-3987 |has| |#1| (-495)) (-3992 |has| |#1| (-312)) (-3986 |has| |#1| (-312)) (-3988 . T) (-3989 . T) (-3991 . T)) NIL -(-1161 S |Coef| ULS) +(-1162 S |Coef| ULS) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#3| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#3| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#3| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#3|) "\\spad{puiseux(r,f(x))} returns \\spad{f(x^r)}."))) NIL NIL -(-1162 |Coef| ULS) +(-1163 |Coef| ULS) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#2| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#2| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#2| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#2|) "\\spad{puiseux(r,f(x))} returns \\spad{f(x^r)}."))) -(((-3995 "*") |has| |#1| (-146)) (-3986 |has| |#1| (-494)) (-3991 |has| |#1| (-312)) (-3985 |has| |#1| (-312)) (-3987 . T) (-3988 . T) (-3990 . T)) +(((-3996 "*") |has| |#1| (-146)) (-3987 |has| |#1| (-495)) (-3992 |has| |#1| (-312)) (-3986 |has| |#1| (-312)) (-3988 . T) (-3989 . T) (-3991 . T)) NIL -(-1163 |Coef| ULS) +(-1164 |Coef| ULS) ((|constructor| (NIL "This package enables one to construct a univariate Puiseux series domain from a univariate Laurent series domain. Univariate Puiseux series are represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}."))) -(((-3995 "*") |has| |#1| (-146)) (-3986 |has| |#1| (-494)) (-3991 |has| |#1| (-312)) (-3985 |has| |#1| (-312)) (-3987 . T) (-3988 . T) (-3990 . T)) -((|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-494)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-808 (-1088)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -348) (QUOTE (-483))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -348) (QUOTE (-483))) (|devaluate| |#1|)))) (|HasCategory| (-348 (-483)) (QUOTE (-1024))) (|HasCategory| |#1| (QUOTE (-312))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-494)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-494)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -348) (QUOTE (-483)))))) (|HasSignature| |#1| (|%list| (QUOTE -3944) (|%list| (|devaluate| |#1|) (QUOTE (-1088)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -348) (QUOTE (-483)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-348 (-483))))) (|HasCategory| |#1| (QUOTE (-29 (-483)))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1113)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-348 (-483))))) (|HasSignature| |#1| (|%list| (QUOTE -3810) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1088))))) (|HasSignature| |#1| (|%list| (QUOTE -3080) (|%list| (|%list| (QUOTE -582) (QUOTE (-1088))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (QUOTE (-38 (-348 (-483)))))) -(-1164 R FE |var| |cen|) +(((-3996 "*") |has| |#1| (-146)) (-3987 |has| |#1| (-495)) (-3992 |has| |#1| (-312)) (-3986 |has| |#1| (-312)) (-3988 . T) (-3989 . T) (-3991 . T)) +((|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-809 (-1089)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -349) (QUOTE (-484))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -349) (QUOTE (-484))) (|devaluate| |#1|)))) (|HasCategory| (-349 (-484)) (QUOTE (-1025))) (|HasCategory| |#1| (QUOTE (-312))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-495)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-495)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -349) (QUOTE (-484)))))) (|HasSignature| |#1| (|%list| (QUOTE -3945) (|%list| (|devaluate| |#1|) (QUOTE (-1089)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -349) (QUOTE (-484)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-349 (-484))))) (|HasCategory| |#1| (QUOTE (-29 (-484)))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1114)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-349 (-484))))) (|HasSignature| |#1| (|%list| (QUOTE -3811) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1089))))) (|HasSignature| |#1| (|%list| (QUOTE -3081) (|%list| (|%list| (QUOTE -583) (QUOTE (-1089))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (QUOTE (-38 (-349 (-484)))))) +(-1165 R FE |var| |cen|) ((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent functions with essential singularities. Objects in this domain are sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series. Thus,{} the elements of this domain are sums of expressions of the form \\spad{g(x) * exp(f(x))},{} where \\spad{g}(\\spad{x}) is a univariate Puiseux series and \\spad{f}(\\spad{x}) is a univariate Puiseux series with no terms of non-negative degree.")) (|dominantTerm| (((|Union| (|Record| (|:| |%term| (|Record| (|:| |%coef| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expon| (|ExponentialOfUnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expTerms| (|List| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#2|)))))) (|:| |%type| (|String|))) "failed") $) "\\spad{dominantTerm(f(var))} returns the term that dominates the limiting behavior of \\spad{f(var)} as \\spad{var -> cen+} together with a \\spadtype{String} which briefly describes that behavior. The value of the \\spadtype{String} will be \\spad{\"zero\"} (resp. \\spad{\"infinity\"}) if the term tends to zero (resp. infinity) exponentially and will \\spad{\"series\"} if the term is a Puiseux series.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> cen+,f(var))}."))) -(((-3995 "*") |has| (-1158 |#2| |#3| |#4|) (-146)) (-3986 |has| (-1158 |#2| |#3| |#4|) (-494)) (-3987 . T) (-3988 . T) (-3990 . T)) -((|HasCategory| (-1158 |#2| |#3| |#4|) (QUOTE (-38 (-348 (-483))))) (|HasCategory| (-1158 |#2| |#3| |#4|) (QUOTE (-118))) (|HasCategory| (-1158 |#2| |#3| |#4|) (QUOTE (-120))) (|HasCategory| (-1158 |#2| |#3| |#4|) (QUOTE (-146))) (OR (|HasCategory| (-1158 |#2| |#3| |#4|) (QUOTE (-38 (-348 (-483))))) (|HasCategory| (-1158 |#2| |#3| |#4|) (QUOTE (-949 (-348 (-483)))))) (|HasCategory| (-1158 |#2| |#3| |#4|) (QUOTE (-949 (-348 (-483))))) (|HasCategory| (-1158 |#2| |#3| |#4|) (QUOTE (-949 (-483)))) (|HasCategory| (-1158 |#2| |#3| |#4|) (QUOTE (-312))) (|HasCategory| (-1158 |#2| |#3| |#4|) (QUOTE (-390))) (|HasCategory| (-1158 |#2| |#3| |#4|) (QUOTE (-494)))) -(-1165 A S) +(((-3996 "*") |has| (-1159 |#2| |#3| |#4|) (-146)) (-3987 |has| (-1159 |#2| |#3| |#4|) (-495)) (-3988 . T) (-3989 . T) (-3991 . T)) +((|HasCategory| (-1159 |#2| |#3| |#4|) (QUOTE (-38 (-349 (-484))))) (|HasCategory| (-1159 |#2| |#3| |#4|) (QUOTE (-118))) (|HasCategory| (-1159 |#2| |#3| |#4|) (QUOTE (-120))) (|HasCategory| (-1159 |#2| |#3| |#4|) (QUOTE (-146))) (OR (|HasCategory| (-1159 |#2| |#3| |#4|) (QUOTE (-38 (-349 (-484))))) (|HasCategory| (-1159 |#2| |#3| |#4|) (QUOTE (-950 (-349 (-484)))))) (|HasCategory| (-1159 |#2| |#3| |#4|) (QUOTE (-950 (-349 (-484))))) (|HasCategory| (-1159 |#2| |#3| |#4|) (QUOTE (-950 (-484)))) (|HasCategory| (-1159 |#2| |#3| |#4|) (QUOTE (-312))) (|HasCategory| (-1159 |#2| |#3| |#4|) (QUOTE (-391))) (|HasCategory| (-1159 |#2| |#3| |#4|) (QUOTE (-495)))) +(-1166 A S) ((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#2| $ |#2|) "\\spad{setlast!(u,x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#2| $ "last" |#2|) "\\spad{setelt(u,\"last\",x)} (also written: \\axiom{\\spad{u}.last := \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,\"rest\",v)} (also written: \\axiom{\\spad{u}.rest := \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#2| $ "first" |#2|) "\\spad{setelt(u,\"first\",x)} (also written: \\axiom{\\spad{u}.first := \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#2| $ |#2|) "\\spad{setfirst!(u,x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#2|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#2| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#2| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} >= 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#2| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,n)} returns the \\axiom{\\spad{n}}th (\\spad{n} >= 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#2| $ "last") "\\spad{elt(u,\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#2| $ "first") "\\spad{elt(u,\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} >= 0}) elements of \\spad{u}.") ((|#2| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#2| $) "\\spad{concat(x,u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}."))) NIL -((|HasAttribute| |#1| (QUOTE -3994))) -(-1166 S) +((|HasAttribute| |#1| (QUOTE -3995))) +(-1167 S) ((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#1| $ |#1|) "\\spad{setlast!(u,x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#1| $ "last" |#1|) "\\spad{setelt(u,\"last\",x)} (also written: \\axiom{\\spad{u}.last := \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,\"rest\",v)} (also written: \\axiom{\\spad{u}.rest := \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#1| $ "first" |#1|) "\\spad{setelt(u,\"first\",x)} (also written: \\axiom{\\spad{u}.first := \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#1| $ |#1|) "\\spad{setfirst!(u,x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#1|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#1| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#1| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} >= 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#1| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,n)} returns the \\axiom{\\spad{n}}th (\\spad{n} >= 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#1| $ "last") "\\spad{elt(u,\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#1| $ "first") "\\spad{elt(u,\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} >= 0}) elements of \\spad{u}.") ((|#1| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#1| $) "\\spad{concat(x,u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}."))) NIL NIL -(-1167 |Coef| |var| |cen|) +(-1168 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Taylor series in one variable \\spadtype{UnivariateTaylorSeries} is a domain representing Taylor series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring,{} the power series variable,{} and the center of the power series expansion. For example,{} \\spadtype{UnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|invmultisect| (($ (|Integer|) (|Integer|) $) "\\spad{invmultisect(a,b,f(x))} substitutes \\spad{x^((a+b)*n)} \\indented{1}{for \\spad{x^n} and multiples by \\spad{x^b}.}")) (|multisect| (($ (|Integer|) (|Integer|) $) "\\spad{multisect(a,b,f(x))} selects the coefficients of \\indented{1}{\\spad{x^((a+b)*n+a)},{} and changes this monomial to \\spad{x^n}.}")) (|revert| (($ $) "\\spad{revert(f(x))} returns a Taylor series \\spad{g(x)} such that \\spad{f(g(x)) = g(f(x)) = x}. Series \\spad{f(x)} should have constant coefficient 0 and invertible 1st order coefficient.")) (|generalLambert| (($ $ (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),a,d)} returns \\spad{f(x^a) + f(x^(a + d)) + \\indented{1}{f(x^(a + 2 d)) + ... }. \\spad{f(x)} should have zero constant} \\indented{1}{coefficient and \\spad{a} and \\spad{d} should be positive.}")) (|evenlambert| (($ $) "\\spad{evenlambert(f(x))} returns \\spad{f(x^2) + f(x^4) + f(x^6) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n))) = exp(log(evenlambert(f(x))))}.}")) (|oddlambert| (($ $) "\\spad{oddlambert(f(x))} returns \\spad{f(x) + f(x^3) + f(x^5) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n-1)))=exp(log(oddlambert(f(x))))}.}")) (|lambert| (($ $) "\\spad{lambert(f(x))} returns \\spad{f(x) + f(x^2) + f(x^3) + ...}. \\indented{1}{This function is used for computing infinite products.} \\indented{1}{\\spad{f(x)} should have zero constant coefficient.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n = 1..infinity,f(x^n)) = exp(log(lambert(f(x))))}.}")) (|lagrange| (($ $) "\\spad{lagrange(g(x))} produces the Taylor series for \\spad{f(x)} \\indented{1}{where \\spad{f(x)} is implicitly defined as \\spad{f(x) = x*g(f(x))}.}")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) -(((-3995 "*") |has| |#1| (-146)) (-3986 |has| |#1| (-494)) (-3987 . T) (-3988 . T) (-3990 . T)) -((|HasCategory| |#1| (QUOTE (-38 (-348 (-483))))) (|HasCategory| |#1| (QUOTE (-494))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-494)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-808 (-1088)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-693)) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-693)) (|devaluate| |#1|)))) (|HasCategory| (-693) (QUOTE (-1024))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-693))))) (|HasSignature| |#1| (|%list| (QUOTE -3944) (|%list| (|devaluate| |#1|) (QUOTE (-1088)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-693))))) (|HasCategory| |#1| (QUOTE (-312))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-348 (-483))))) (|HasCategory| |#1| (QUOTE (-29 (-483)))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1113)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-348 (-483))))) (|HasSignature| |#1| (|%list| (QUOTE -3810) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1088))))) (|HasSignature| |#1| (|%list| (QUOTE -3080) (|%list| (|%list| (QUOTE -582) (QUOTE (-1088))) (|devaluate| |#1|))))))) -(-1168 |Coef1| |Coef2| UTS1 UTS2) +(((-3996 "*") |has| |#1| (-146)) (-3987 |has| |#1| (-495)) (-3988 . T) (-3989 . T) (-3991 . T)) +((|HasCategory| |#1| (QUOTE (-38 (-349 (-484))))) (|HasCategory| |#1| (QUOTE (-495))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-809 (-1089)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-694)) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-694)) (|devaluate| |#1|)))) (|HasCategory| (-694) (QUOTE (-1025))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-694))))) (|HasSignature| |#1| (|%list| (QUOTE -3945) (|%list| (|devaluate| |#1|) (QUOTE (-1089)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-694))))) (|HasCategory| |#1| (QUOTE (-312))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-349 (-484))))) (|HasCategory| |#1| (QUOTE (-29 (-484)))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1114)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-349 (-484))))) (|HasSignature| |#1| (|%list| (QUOTE -3811) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1089))))) (|HasSignature| |#1| (|%list| (QUOTE -3081) (|%list| (|%list| (QUOTE -583) (QUOTE (-1089))) (|devaluate| |#1|))))))) +(-1169 |Coef1| |Coef2| UTS1 UTS2) ((|constructor| (NIL "Mapping package for univariate Taylor series. \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Taylor series.}")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of \\indented{1}{the Taylor series \\spad{g(x)}.}"))) NIL NIL -(-1169 S |Coef|) +(-1170 S |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#2|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#2|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#2|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#2| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = 0..infinity,a[n] * x**n))} returns \\spad{sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#2|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,a1,a2,...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#2|)) "\\spad{series([a0,a1,a2,...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#2|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) NIL -((|HasCategory| |#2| (QUOTE (-29 (-483)))) (|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (QUOTE (-1113))) (|HasSignature| |#2| (|%list| (QUOTE -3080) (|%list| (|%list| (QUOTE -582) (QUOTE (-1088))) (|devaluate| |#2|)))) (|HasSignature| |#2| (|%list| (QUOTE -3810) (|%list| (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1088))))) (|HasCategory| |#2| (QUOTE (-38 (-348 (-483))))) (|HasCategory| |#2| (QUOTE (-312)))) -(-1170 |Coef|) +((|HasCategory| |#2| (QUOTE (-29 (-484)))) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1114))) (|HasSignature| |#2| (|%list| (QUOTE -3081) (|%list| (|%list| (QUOTE -583) (QUOTE (-1089))) (|devaluate| |#2|)))) (|HasSignature| |#2| (|%list| (QUOTE -3811) (|%list| (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1089))))) (|HasCategory| |#2| (QUOTE (-38 (-349 (-484))))) (|HasCategory| |#2| (QUOTE (-312)))) +(-1171 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#1|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = 0..infinity,a[n] * x**n))} returns \\spad{sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,a1,a2,...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#1|)) "\\spad{series([a0,a1,a2,...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) -(((-3995 "*") |has| |#1| (-146)) (-3986 |has| |#1| (-494)) (-3987 . T) (-3988 . T) (-3990 . T)) +(((-3996 "*") |has| |#1| (-146)) (-3987 |has| |#1| (-495)) (-3988 . T) (-3989 . T) (-3991 . T)) NIL -(-1171 |Coef| UTS) +(-1172 |Coef| UTS) ((|constructor| (NIL "\\indented{1}{This package provides Taylor series solutions to regular} linear or non-linear ordinary differential equations of arbitrary order.")) (|mpsode| (((|List| |#2|) (|List| |#1|) (|List| (|Mapping| |#2| (|List| |#2|)))) "\\spad{mpsode(r,f)} solves the system of differential equations \\spad{dy[i]/dx =f[i] [x,y[1],y[2],...,y[n]]},{} \\spad{y[i](a) = r[i]} for \\spad{i} in 1..\\spad{n}.")) (|ode| ((|#2| (|Mapping| |#2| (|List| |#2|)) (|List| |#1|)) "\\spad{ode(f,cl)} is the solution to \\spad{y<n>=f(y,y',..,y<n-1>)} such that \\spad{y<i>(a) = cl.i} for \\spad{i} in 1..\\spad{n}.")) (|ode2| ((|#2| (|Mapping| |#2| |#2| |#2|) |#1| |#1|) "\\spad{ode2(f,c0,c1)} is the solution to \\spad{y'' = f(y,y')} such that \\spad{y(a) = c0} and \\spad{y'(a) = c1}.")) (|ode1| ((|#2| (|Mapping| |#2| |#2|) |#1|) "\\spad{ode1(f,c)} is the solution to \\spad{y' = f(y)} such that \\spad{y(a) = c}.")) (|fixedPointExquo| ((|#2| |#2| |#2|) "\\spad{fixedPointExquo(f,g)} computes the exact quotient of \\spad{f} and \\spad{g} using a fixed point computation.")) (|stFuncN| (((|Mapping| (|Stream| |#1|) (|List| (|Stream| |#1|))) (|Mapping| |#2| (|List| |#2|))) "\\spad{stFuncN(f)} is a local function xported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc2| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2| |#2|)) "\\spad{stFunc2(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc1| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2|)) "\\spad{stFunc1(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user."))) NIL NIL -(-1172 -3091 UP L UTS) +(-1173 -3092 UP L UTS) ((|constructor| (NIL "\\spad{RUTSodetools} provides tools to interface with the series \\indented{1}{ODE solver when presented with linear ODEs.}")) (RF2UTS ((|#4| (|Fraction| |#2|)) "\\spad{RF2UTS(f)} converts \\spad{f} to a Taylor series.")) (LODO2FUN (((|Mapping| |#4| (|List| |#4|)) |#3|) "\\spad{LODO2FUN(op)} returns the function to pass to the series ODE solver in order to solve \\spad{op y = 0}.")) (UTS2UP ((|#2| |#4| (|NonNegativeInteger|)) "\\spad{UTS2UP(s, n)} converts the first \\spad{n} terms of \\spad{s} to a univariate polynomial.")) (UP2UTS ((|#4| |#2|) "\\spad{UP2UTS(p)} converts \\spad{p} to a Taylor series."))) NIL -((|HasCategory| |#1| (QUOTE (-494)))) -(-1173) +((|HasCategory| |#1| (QUOTE (-495)))) +(-1174) ((|constructor| (NIL "The category of domains that act like unions. UnionType,{} like Type or Category,{} acts mostly as a take that communicates `union-like' intended semantics to the compiler. A domain \\spad{D} that satifies UnionType should provide definitions for `case' operators,{} with corresponding `autoCoerce' operators."))) NIL NIL -(-1174 |sym|) +(-1175 |sym|) ((|constructor| (NIL "This domain implements variables")) (|variable| (((|Symbol|)) "\\spad{variable()} returns the symbol")) (|coerce| (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol"))) NIL NIL -(-1175 S R) +(-1176 S R) ((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#2| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#2| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#2|) $ $) "\\spad{outerProduct(u,v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})*v(\\spad{j}).")) (|dot| ((|#2| $ $) "\\spad{dot(x,y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length."))) NIL -((|HasCategory| |#2| (QUOTE (-914))) (|HasCategory| |#2| (QUOTE (-960))) (|HasCategory| |#2| (QUOTE (-662))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25)))) -(-1176 R) +((|HasCategory| |#2| (QUOTE (-915))) (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25)))) +(-1177 R) ((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#1| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#1| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#1|) $ $) "\\spad{outerProduct(u,v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})*v(\\spad{j}).")) (|dot| ((|#1| $ $) "\\spad{dot(x,y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#1|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#1| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length."))) -((-3994 . T) (-3993 . T)) +((-3995 . T) (-3994 . T)) NIL -(-1177 R) +(-1178 R) ((|constructor| (NIL "This type represents vector like objects with varying lengths and indexed by a finite segment of integers starting at 1.")) (|vector| (($ (|List| |#1|)) "\\spad{vector(l)} converts the list \\spad{l} to a vector."))) -((-3994 . T) (-3993 . T)) -((OR (-12 (|HasCategory| |#1| (QUOTE (-755))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-551 (-771)))) (|HasCategory| |#1| (QUOTE (-552 (-472)))) (OR (|HasCategory| |#1| (QUOTE (-755))) (|HasCategory| |#1| (QUOTE (-1012)))) (|HasCategory| |#1| (QUOTE (-755))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-755))) (|HasCategory| |#1| (QUOTE (-1012)))) (|HasCategory| (-483) (QUOTE (-755))) (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-662))) (|HasCategory| |#1| (QUOTE (-960))) (-12 (|HasCategory| |#1| (QUOTE (-914))) (|HasCategory| |#1| (QUOTE (-960)))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) -(-1178 A B) +((-3995 . T) (-3994 . T)) +((OR (-12 (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-553 (-473)))) (OR (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-756))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| (-484) (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-663))) (|HasCategory| |#1| (QUOTE (-961))) (-12 (|HasCategory| |#1| (QUOTE (-915))) (|HasCategory| |#1| (QUOTE (-961)))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) +(-1179 A B) ((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} vectors of elements of some type \\spad{A} and functions from \\spad{A} to another of type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a vector over \\spad{B}.")) (|map| (((|Union| (|Vector| |#2|) "failed") (|Mapping| (|Union| |#2| "failed") |#1|) (|Vector| |#1|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values or \\spad{\"failed\"}.") (((|Vector| |#2|) (|Mapping| |#2| |#1|) (|Vector| |#1|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{reduce(func,vec,ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if \\spad{vec} is empty.")) (|scan| (((|Vector| |#2|) (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{scan(func,vec,ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}."))) NIL NIL -(-1179) +(-1180) ((|constructor| (NIL "ViewportPackage provides functions for creating GraphImages and TwoDimensionalViewports from lists of lists of points.")) (|coerce| (((|TwoDimensionalViewport|) (|GraphImage|)) "\\spad{coerce(gi)} converts the indicated \\spadtype{GraphImage},{} \\spad{gi},{} into the \\spadtype{TwoDimensionalViewport} form.")) (|drawCurves| (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],[p1],...,[pn]],[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught pn,{} using the options specified in the list \\spad{options}.") (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],[p1],...,[pn]],ptColor,lineColor,ptSize,[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught pn,{} using the options specified in the list \\spad{options}. The point color is specified by \\spad{ptColor},{} the line color is specified by \\spad{lineColor},{} and the point size is specified by \\spad{ptSize}.")) (|graphCurves| (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],[p1],...,[pn]],[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught pn,{} using the options specified in the list \\spad{options}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{graphCurves([[p0],[p1],...,[pn]])} creates a \\spadtype{GraphImage} from the list of lists of points indicated by \\spad{p0} through pn.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],[p1],...,[pn]],ptColor,lineColor,ptSize,[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught pn,{} using the options specified in the list \\spad{options}. The graph point color is specified by \\spad{ptColor},{} the graph line color is specified by \\spad{lineColor},{} and the size of the points is specified by \\spad{ptSize}."))) NIL NIL -(-1180) +(-1181) ((|constructor| (NIL "TwoDimensionalViewport creates viewports to display graphs.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} returns the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport} as output of the domain \\spadtype{OutputForm}.")) (|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} back to their initial settings.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,s,lf)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,s,f)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,s)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,w,h)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|update| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{update(v,gr,n)} drops the graph \\spad{gr} in slot \\spad{n} of viewport \\spad{v}. The graph \\spad{gr} must have been transmitted already and acquired an integer key.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,x,y)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|show| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{show(v,n,s)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the graph if \\spad{s} is \"off\".")) (|translate| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{translate(v,n,dx,dy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} translated by \\spad{dx} in the \\spad{x}-coordinate direction from the center of the viewport,{} and by \\spad{dy} in the \\spad{y}-coordinate direction from the center. Setting \\spad{dx} and \\spad{dy} to \\spad{0} places the center of the graph at the center of the viewport.")) (|scale| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{scale(v,n,sx,sy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} scaled by the factor \\spad{sx} in the \\spad{x}-coordinate direction and by the factor \\spad{sy} in the \\spad{y}-coordinate direction.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,x,y,width,height)} sets the position of the upper left-hand corner of the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport2D} is executed again for \\spad{v}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and terminates the corresponding process ID.")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,s)} displays the control panel of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|connect| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{connect(v,n,s)} displays the lines connecting the graph points in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the lines if \\spad{s} is \"off\".")) (|region| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{region(v,n,s)} displays the bounding box of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the bounding box if \\spad{s} is \"off\".")) (|points| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{points(v,n,s)} displays the points of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the points if \\spad{s} is \"off\".")) (|units| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{units(v,n,c)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the units color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{units(v,n,s)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the units if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{axes(v,n,c)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the axes color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{axes(v,n,s)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|getGraph| (((|GraphImage|) $ (|PositiveInteger|)) "\\spad{getGraph(v,n)} returns the graph which is of the domain \\spadtype{GraphImage} which is located in graph field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of the domain \\spadtype{TwoDimensionalViewport}.")) (|putGraph| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{putGraph(v,gi,n)} sets the graph field indicated by \\spad{n},{} of the indicated two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to be the graph,{} \\spad{gi} of domain \\spadtype{GraphImage}. The contents of viewport,{} \\spad{v},{} will contain \\spad{gi} when the function \\spadfun{makeViewport2D} is called to create the an updated viewport \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,s)} changes the title which is shown in the two-dimensional viewport window,{} \\spad{v} of domain \\spadtype{TwoDimensionalViewport}.")) (|graphs| (((|Vector| (|Union| (|GraphImage|) "undefined")) $) "\\spad{graphs(v)} returns a vector,{} or list,{} which is a union of all the graphs,{} of the domain \\spadtype{GraphImage},{} which are allocated for the two-dimensional viewport,{} \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport}. Those graphs which have no data are labeled \"undefined\",{} otherwise their contents are shown.")) (|graphStates| (((|Vector| (|Record| (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)) (|:| |points| (|Integer|)) (|:| |connect| (|Integer|)) (|:| |spline| (|Integer|)) (|:| |axes| (|Integer|)) (|:| |axesColor| (|Palette|)) (|:| |units| (|Integer|)) (|:| |unitsColor| (|Palette|)) (|:| |showing| (|Integer|)))) $) "\\spad{graphStates(v)} returns and shows a listing of a record containing the current state of the characteristics of each of the ten graph records in the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|graphState| (((|Void|) $ (|PositiveInteger|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Palette|) (|Integer|) (|Palette|) (|Integer|)) "\\spad{graphState(v,num,sX,sY,dX,dY,pts,lns,box,axes,axesC,un,unC,cP)} sets the state of the characteristics for the graph indicated by \\spad{num} in the given two-dimensional viewport \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport},{} to the values given as parameters. The scaling of the graph in the \\spad{x} and \\spad{y} component directions is set to be \\spad{sX} and \\spad{sY}; the window translation in the \\spad{x} and \\spad{y} component directions is set to be \\spad{dX} and \\spad{dY}; The graph points,{} lines,{} bounding \\spad{box},{} \\spad{axes},{} or units will be shown in the viewport if their given parameters \\spad{pts},{} \\spad{lns},{} \\spad{box},{} \\spad{axes} or \\spad{un} are set to be \\spad{1},{} but will not be shown if they are set to \\spad{0}. The color of the \\spad{axes} and the color of the units are indicated by the palette colors \\spad{axesC} and \\spad{unC} respectively. To display the control panel when the viewport window is displayed,{} set \\spad{cP} to \\spad{1},{} otherwise set it to \\spad{0}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,lopt)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns \\spad{v} with it's draw options modified to be those which are indicated in the given list,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns a list containing the draw options from the domain \\spadtype{DrawOption} for \\spad{v}.")) (|makeViewport2D| (($ (|GraphImage|) (|List| (|DrawOption|))) "\\spad{makeViewport2D(gi,lopt)} creates and displays a viewport window of the domain \\spadtype{TwoDimensionalViewport} whose graph field is assigned to be the given graph,{} \\spad{gi},{} of domain \\spadtype{GraphImage},{} and whose options field is set to be the list of options,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (($ $) "\\spad{makeViewport2D(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport2D| (($) "\\spad{viewport2D()} returns an undefined two-dimensional viewport of the domain \\spadtype{TwoDimensionalViewport} whose contents are empty.")) (|getPickedPoints| (((|List| (|Point| (|DoubleFloat|))) $) "\\spad{getPickedPoints(x)} returns a list of small floats for the points the user interactively picked on the viewport for full integration into the system,{} some design issues need to be addressed: \\spadignore{e.g.} how to go through the GraphImage interface,{} how to default to graphs,{} etc."))) NIL NIL -(-1181) +(-1182) ((|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and terminates the corresponding process ID.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,s,lf)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,s,f)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,s)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v}.")) (|colorDef| (((|Void|) $ (|Color|) (|Color|)) "\\spad{colorDef(v,c1,c2)} sets the range of colors along the colormap so that the lower end of the colormap is defined by \\spad{c1} and the top end of the colormap is defined by \\spad{c2},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} back to their initial settings.")) (|intensity| (((|Void|) $ (|Float|)) "\\spad{intensity(v,i)} sets the intensity of the light source to \\spad{i},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|lighting| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{lighting(v,x,y,z)} sets the position of the light source to the coordinates \\spad{x},{} \\spad{y},{} and \\spad{z} and displays the graph for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|clipSurface| (((|Void|) $ (|String|)) "\\spad{clipSurface(v,s)} displays the graph with the specified clipping region removed if \\spad{s} is \"on\",{} or displays the graph without clipping implemented if \\spad{s} is \"off\",{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|showClipRegion| (((|Void|) $ (|String|)) "\\spad{showClipRegion(v,s)} displays the clipping region of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the region if \\spad{s} is \"off\".")) (|showRegion| (((|Void|) $ (|String|)) "\\spad{showRegion(v,s)} displays the bounding box of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the box if \\spad{s} is \"off\".")) (|hitherPlane| (((|Void|) $ (|Float|)) "\\spad{hitherPlane(v,h)} sets the hither clipping plane of the graph to \\spad{h},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|eyeDistance| (((|Void|) $ (|Float|)) "\\spad{eyeDistance(v,d)} sets the distance of the observer from the center of the graph to \\spad{d},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|perspective| (((|Void|) $ (|String|)) "\\spad{perspective(v,s)} displays the graph in perspective if \\spad{s} is \"on\",{} or does not display perspective if \\spad{s} is \"off\" for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|translate| (((|Void|) $ (|Float|) (|Float|)) "\\spad{translate(v,dx,dy)} sets the horizontal viewport offset to \\spad{dx} and the vertical viewport offset to \\spad{dy},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|zoom| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{zoom(v,sx,sy,sz)} sets the graph scaling factors for the \\spad{x}-coordinate axis to \\spad{sx},{} the \\spad{y}-coordinate axis to \\spad{sy} and the \\spad{z}-coordinate axis to \\spad{sz} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.") (((|Void|) $ (|Float|)) "\\spad{zoom(v,s)} sets the graph scaling factor to \\spad{s},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|rotate| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{rotate(v,th,phi)} rotates the graph to the longitudinal view angle \\spad{th} degrees and the latitudinal view angle \\spad{phi} degrees for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new rotation position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{rotate(v,th,phi)} rotates the graph to the longitudinal view angle \\spad{th} radians and the latitudinal view angle \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|drawStyle| (((|Void|) $ (|String|)) "\\spad{drawStyle(v,s)} displays the surface for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport} in the style of drawing indicated by \\spad{s}. If \\spad{s} is not a valid drawing style the style is wireframe by default. Possible styles are \\spad{\"shade\"},{} \\spad{\"solid\"} or \\spad{\"opaque\"},{} \\spad{\"smooth\"},{} and \\spad{\"wireMesh\"}.")) (|outlineRender| (((|Void|) $ (|String|)) "\\spad{outlineRender(v,s)} displays the polygon outline showing either triangularized surface or a quadrilateral surface outline depending on the whether the \\spadfun{diagonals} function has been set,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the polygon outline if \\spad{s} is \"off\".")) (|diagonals| (((|Void|) $ (|String|)) "\\spad{diagonals(v,s)} displays the diagonals of the polygon outline showing a triangularized surface instead of a quadrilateral surface outline,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the diagonals if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|String|)) "\\spad{axes(v,s)} displays the axes of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,s)} displays the control panel of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|viewpoint| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,rotx,roty,rotz)} sets the rotation about the \\spad{x}-axis to be \\spad{rotx} radians,{} sets the rotation about the \\spad{y}-axis to be \\spad{roty} radians,{} and sets the rotation about the \\spad{z}-axis to be \\spad{rotz} radians,{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and displays \\spad{v} with the new view position.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi)} sets the longitudinal view angle to \\spad{th} radians and the latitudinal view angle to \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Integer|) (|Integer|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi,s,dx,dy)} sets the longitudinal view angle to \\spad{th} degrees,{} the latitudinal view angle to \\spad{phi} degrees,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(v,viewpt)} sets the viewpoint for the viewport. The viewport record consists of the latitudal and longitudal angles,{} the zoom factor,{} the \\spad{X},{} \\spad{Y},{} and \\spad{Z} scales,{} and the \\spad{X} and \\spad{Y} displacements.") (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) $) "\\spad{viewpoint(v)} returns the current viewpoint setting of the given viewport,{} \\spad{v}. This function is useful in the situation where the user has created a viewport,{} proceeded to interact with it via the control panel and desires to save the values of the viewpoint as the default settings for another viewport to be created using the system.") (((|Void|) $ (|Float|) (|Float|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi,s,dx,dy)} sets the longitudinal view angle to \\spad{th} radians,{} the latitudinal view angle to \\spad{phi} radians,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,x,y,width,height)} sets the position of the upper left-hand corner of the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,s)} changes the title which is shown in the three-dimensional viewport window,{} \\spad{v} of domain \\spadtype{ThreeDimensionalViewport}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,w,h)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,x,y)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,lopt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and sets the draw options being used by \\spad{v} to those indicated in the list,{} \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and returns a list of all the draw options from the domain \\spad{DrawOption} which are being used by \\spad{v}.")) (|modifyPointData| (((|Void|) $ (|NonNegativeInteger|) (|Point| (|DoubleFloat|))) "\\spad{modifyPointData(v,ind,pt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} and places the data point,{} \\spad{pt} into the list of points database of \\spad{v} at the index location given by \\spad{ind}.")) (|subspace| (($ $ (|ThreeSpace| (|DoubleFloat|))) "\\spad{subspace(v,sp)} places the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} in the subspace \\spad{sp},{} which is of the domain \\spad{ThreeSpace}.") (((|ThreeSpace| (|DoubleFloat|)) $) "\\spad{subspace(v)} returns the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} as a subspace of the domain \\spad{ThreeSpace}.")) (|makeViewport3D| (($ (|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{makeViewport3D(sp,lopt)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose draw options are indicated by the list \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (($ (|ThreeSpace| (|DoubleFloat|)) (|String|)) "\\spad{makeViewport3D(sp,s)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose title is given by \\spad{s}.") (($ $) "\\spad{makeViewport3D(v)} takes the given three-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{ThreeDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport3D| (($) "\\spad{viewport3D()} returns an undefined three-dimensional viewport of the domain \\spadtype{ThreeDimensionalViewport} whose contents are empty.")) (|viewDeltaYDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaYDefault(dy)} sets the current default vertical offset from the center of the viewport window to be \\spad{dy} and returns \\spad{dy}.") (((|Float|)) "\\spad{viewDeltaYDefault()} returns the current default vertical offset from the center of the viewport window.")) (|viewDeltaXDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaXDefault(dx)} sets the current default horizontal offset from the center of the viewport window to be \\spad{dx} and returns \\spad{dx}.") (((|Float|)) "\\spad{viewDeltaXDefault()} returns the current default horizontal offset from the center of the viewport window.")) (|viewZoomDefault| (((|Float|) (|Float|)) "\\spad{viewZoomDefault(s)} sets the current default graph scaling value to \\spad{s} and returns \\spad{s}.") (((|Float|)) "\\spad{viewZoomDefault()} returns the current default graph scaling value.")) (|viewPhiDefault| (((|Float|) (|Float|)) "\\spad{viewPhiDefault(p)} sets the current default latitudinal view angle in radians to the value \\spad{p} and returns \\spad{p}.") (((|Float|)) "\\spad{viewPhiDefault()} returns the current default latitudinal view angle in radians.")) (|viewThetaDefault| (((|Float|) (|Float|)) "\\spad{viewThetaDefault(t)} sets the current default longitudinal view angle in radians to the value \\spad{t} and returns \\spad{t}.") (((|Float|)) "\\spad{viewThetaDefault()} returns the current default longitudinal view angle in radians."))) NIL NIL -(-1182) +(-1183) ((|constructor| (NIL "ViewportDefaultsPackage describes default and user definable values for graphics")) (|tubeRadiusDefault| (((|DoubleFloat|)) "\\spad{tubeRadiusDefault()} returns the radius used for a 3D tube plot.") (((|DoubleFloat|) (|Float|)) "\\spad{tubeRadiusDefault(r)} sets the default radius for a 3D tube plot to \\spad{r}.")) (|tubePointsDefault| (((|PositiveInteger|)) "\\spad{tubePointsDefault()} returns the number of points to be used when creating the circle to be used in creating a 3D tube plot.") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{tubePointsDefault(i)} sets the number of points to use when creating the circle to be used in creating a 3D tube plot to \\spad{i}.")) (|var2StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var2StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var2StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|var1StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var1StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var1StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|viewWriteAvailable| (((|List| (|String|))) "\\spad{viewWriteAvailable()} returns a list of available methods for writing,{} such as BITMAP,{} POSTSCRIPT,{} etc.")) (|viewWriteDefault| (((|List| (|String|)) (|List| (|String|))) "\\spad{viewWriteDefault(l)} sets the default list of things to write in a viewport data file to the strings in \\spad{l}; a viewAlone file is always genereated.") (((|List| (|String|))) "\\spad{viewWriteDefault()} returns the list of things to write in a viewport data file; a viewAlone file is always generated.")) (|viewDefaults| (((|Void|)) "\\spad{viewDefaults()} resets all the default graphics settings.")) (|viewSizeDefault| (((|List| (|PositiveInteger|)) (|List| (|PositiveInteger|))) "\\spad{viewSizeDefault([w,h])} sets the default viewport width to \\spad{w} and height to \\spad{h}.") (((|List| (|PositiveInteger|))) "\\spad{viewSizeDefault()} returns the default viewport width and height.")) (|viewPosDefault| (((|List| (|NonNegativeInteger|)) (|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault([x,y])} sets the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have th \\spad{X} and \\spad{Y} coordinates \\spad{x},{} \\spad{y}.") (((|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault()} returns the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have this \\spad{X} and \\spad{Y} coordinate.")) (|pointSizeDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{pointSizeDefault(i)} sets the default size of the points in a 2D viewport to \\spad{i}.") (((|PositiveInteger|)) "\\spad{pointSizeDefault()} returns the default size of the points in a 2D viewport.")) (|unitsColorDefault| (((|Palette|) (|Palette|)) "\\spad{unitsColorDefault(p)} sets the default color of the unit ticks in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{unitsColorDefault()} returns the default color of the unit ticks in a 2D viewport.")) (|axesColorDefault| (((|Palette|) (|Palette|)) "\\spad{axesColorDefault(p)} sets the default color of the axes in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{axesColorDefault()} returns the default color of the axes in a 2D viewport.")) (|lineColorDefault| (((|Palette|) (|Palette|)) "\\spad{lineColorDefault(p)} sets the default color of lines connecting points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{lineColorDefault()} returns the default color of lines connecting points in a 2D viewport.")) (|pointColorDefault| (((|Palette|) (|Palette|)) "\\spad{pointColorDefault(p)} sets the default color of points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{pointColorDefault()} returns the default color of points in a 2D viewport."))) NIL NIL -(-1183) +(-1184) ((|constructor| (NIL "This type is used when no value is needed,{} \\spadignore{e.g.} in the \\spad{then} part of a one armed \\spad{if}. All values can be coerced to type Void. Once a value has been coerced to Void,{} it cannot be recovered.")) (|void| (($) "\\spad{void()} produces a void object."))) NIL NIL -(-1184 A S) +(-1185 A S) ((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#2|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}."))) NIL NIL -(-1185 S) +(-1186 S) ((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#1|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}."))) -((-3988 . T) (-3987 . T)) +((-3989 . T) (-3988 . T)) NIL -(-1186 R) +(-1187 R) ((|constructor| (NIL "This package implements the Weierstrass preparation theorem \\spad{f} or multivariate power series. weierstrass(\\spad{v},{}\\spad{p}) where \\spad{v} is a variable,{} and \\spad{p} is a TaylorSeries(\\spad{R}) in which the terms of lowest degree \\spad{s} must include c*v**s where \\spad{c} is a constant,{}\\spad{s>0},{} is a list of TaylorSeries coefficients A[\\spad{i}] of the equivalent polynomial A = A[0] + A[1]*v + A[2]\\spad{*v**2} + ... + A[\\spad{s}-1]*v**(\\spad{s}-1) + v**s such that p=A*B ,{} \\spad{B} being a TaylorSeries of minimum degree 0")) (|qqq| (((|Mapping| (|Stream| (|TaylorSeries| |#1|)) (|Stream| (|TaylorSeries| |#1|))) (|NonNegativeInteger|) (|TaylorSeries| |#1|) (|Stream| (|TaylorSeries| |#1|))) "\\spad{qqq(n,s,st)} is used internally.")) (|weierstrass| (((|List| (|TaylorSeries| |#1|)) (|Symbol|) (|TaylorSeries| |#1|)) "\\spad{weierstrass(v,ts)} where \\spad{v} is a variable and \\spad{ts} is \\indented{1}{a TaylorSeries,{} impements the Weierstrass Preparation} \\indented{1}{Theorem. The result is a list of TaylorSeries that} \\indented{1}{are the coefficients of the equivalent series.}")) (|clikeUniv| (((|Mapping| (|SparseUnivariatePolynomial| (|Polynomial| |#1|)) (|Polynomial| |#1|)) (|Symbol|)) "\\spad{clikeUniv(v)} is used internally.")) (|sts2stst| (((|Stream| (|Stream| (|Polynomial| |#1|))) (|Symbol|) (|Stream| (|Polynomial| |#1|))) "\\spad{sts2stst(v,s)} is used internally.")) (|cfirst| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{cfirst n} is used internally.")) (|crest| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{crest n} is used internally."))) NIL NIL -(-1187 K R UP -3091) +(-1188 K R UP -3092) ((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a framed algebra over \\spad{R}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}."))) NIL NIL -(-1188) +(-1189) ((|constructor| (NIL "This domain represents the syntax of a `where' expression.")) (|qualifier| (((|SpadAst|) $) "\\spad{qualifier(e)} returns the qualifier of the expression `e'.")) (|mainExpression| (((|SpadAst|) $) "\\spad{mainExpression(e)} returns the main expression of the `where' expression `e'."))) NIL NIL -(-1189) +(-1190) ((|constructor| (NIL "This domain represents the `while' iterator syntax.")) (|condition| (((|SpadAst|) $) "\\spad{condition(i)} returns the condition of the while iterator `i'."))) NIL NIL -(-1190 R |VarSet| E P |vl| |wl| |wtlevel|) +(-1191 R |VarSet| E P |vl| |wl| |wtlevel|) ((|constructor| (NIL "This domain represents truncated weighted polynomials over a general (not necessarily commutative) polynomial type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} changes the weight level to the new value given: NB: previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)"))) -((-3988 |has| |#1| (-146)) (-3987 |has| |#1| (-146)) (-3990 . T)) +((-3989 |has| |#1| (-146)) (-3988 |has| |#1| (-146)) (-3991 . T)) ((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312)))) -(-1191 R E V P) +(-1192 R E V P) ((|constructor| (NIL "A domain constructor of the category \\axiomType{GeneralTriangularSet}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. The \\axiomOpFrom{construct}{WuWenTsunTriangularSet} operation does not check the previous requirement. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members. Furthermore,{} this domain exports operations dealing with the characteristic set method of Wu Wen Tsun and some optimizations mainly proposed by Dong Ming Wang.\\newline References : \\indented{1}{[1] \\spad{W}. \\spad{T}. WU \"A Zero Structure Theorem for polynomial equations solving\"} \\indented{6}{MM Research Preprints,{} 1987.} \\indented{1}{[2] \\spad{D}. \\spad{M}. WANG \"An implementation of the characteristic set method in Maple\"} \\indented{6}{Proc. \\spad{DISCO'92}. Bath,{} England.}")) (|characteristicSerie| (((|List| $) (|List| |#4|)) "\\axiom{characteristicSerie(ps)} returns the same as \\axiom{characteristicSerie(ps,{}initiallyReduced?,{}initiallyReduce)}.") (((|List| $) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSerie(ps,{}redOp?,{}redOp)} returns a list \\axiom{lts} of triangular sets such that the zero set of \\axiom{ps} is the union of the regular zero sets of the members of \\axiom{lts}. This is made by the Ritt and Wu Wen Tsun process applying the operation \\axiom{characteristicSet(ps,{}redOp?,{}redOp)} to compute characteristic sets in Wu Wen Tsun sense.")) (|characteristicSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{characteristicSet(ps)} returns the same as \\axiom{characteristicSet(ps,{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSet(ps,{}redOp?,{}redOp)} returns a non-contradictory characteristic set of \\axiom{ps} in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?} (using \\axiom{redOp} to reduce polynomials \\spad{w}.\\spad{r}.\\spad{t} a \\axiom{redOp?} basic set),{} if no non-zero constant polynomial appear during those reductions,{} else \\axiom{\"failed\"} is returned. The operations \\axiom{redOp} and \\axiom{redOp?} must satisfy the following conditions: \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} holds for every polynomials \\axiom{\\spad{p},{}\\spad{q}} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that we have \\axiom{init(\\spad{q})^e*p = f*q + redOp(\\spad{p},{}\\spad{q})}.")) (|medialSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{medial(ps)} returns the same as \\axiom{medialSet(ps,{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{medialSet(ps,{}redOp?,{}redOp)} returns \\axiom{bs} a basic set (in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?}) of some set generating the same ideal as \\axiom{ps} (with rank not higher than any basic set of \\axiom{ps}),{} if no non-zero constant polynomials appear during the computatioms,{} else \\axiom{\"failed\"} is returned. In the former case,{} \\axiom{bs} has to be understood as a candidate for being a characteristic set of \\axiom{ps}. In the original algorithm,{} \\axiom{bs} is simply a basic set of \\axiom{ps}."))) -((-3994 . T) (-3993 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1012))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (|HasCategory| |#4| (QUOTE (-552 (-472)))) (|HasCategory| |#4| (QUOTE (-1012))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#3| (QUOTE (-318))) (|HasCategory| |#4| (QUOTE (-551 (-771)))) (|HasCategory| |#4| (QUOTE (-72)))) -(-1192 R) +((-3995 . T) (-3994 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1013))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (|HasCategory| |#4| (QUOTE (-553 (-473)))) (|HasCategory| |#4| (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#3| (QUOTE (-319))) (|HasCategory| |#4| (QUOTE (-552 (-772)))) (|HasCategory| |#4| (QUOTE (-72)))) +(-1193 R) ((|constructor| (NIL "This is the category of algebras over non-commutative rings. It is used by constructors of non-commutative algebras such as: \\indented{4}{\\spadtype{XPolynomialRing}.} \\indented{4}{\\spadtype{XFreeAlgebra}} Author: Michel Petitot (petitot@lifl.fr)"))) -((-3987 . T) (-3988 . T) (-3990 . T)) +((-3988 . T) (-3989 . T) (-3991 . T)) NIL -(-1193 |vl| R) +(-1194 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables do not commute. The coefficient ring may be non-commutative too. However,{} coefficients and variables commute."))) -((-3990 . T) (-3986 |has| |#2| (-6 -3986)) (-3988 . T) (-3987 . T)) -((|HasCategory| |#2| (QUOTE (-146))) (|HasAttribute| |#2| (QUOTE -3986))) -(-1194 R |VarSet| XPOLY) +((-3991 . T) (-3987 |has| |#2| (-6 -3987)) (-3989 . T) (-3988 . T)) +((|HasCategory| |#2| (QUOTE (-146))) (|HasAttribute| |#2| (QUOTE -3987))) +(-1195 R |VarSet| XPOLY) ((|constructor| (NIL "This package provides computations of logarithms and exponentials for polynomials in non-commutative variables. \\newline Author: Michel Petitot (petitot@lifl.fr).")) (|Hausdorff| ((|#3| |#3| |#3| (|NonNegativeInteger|)) "\\axiom{Hausdorff(a,{}\\spad{b},{}\\spad{n})} returns log(exp(a)*exp(\\spad{b})) truncated at order \\axiom{\\spad{n}}.")) (|log| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{} \\spad{n})} returns the logarithm of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|exp| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{} \\spad{n})} returns the exponential of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}."))) NIL NIL -(-1195 S -3091) +(-1196 S -3092) ((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}."))) NIL -((|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120)))) -(-1196 -3091) +((|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120)))) +(-1197 -3092) ((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}."))) -((-3985 . T) (-3991 . T) (-3986 . T) ((-3995 "*") . T) (-3987 . T) (-3988 . T) (-3990 . T)) +((-3986 . T) (-3992 . T) (-3987 . T) ((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T)) NIL -(-1197 |vl| R) +(-1198 |vl| R) ((|constructor| (NIL "This category specifies opeations for polynomials and formal series with non-commutative variables.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables which appear in \\spad{x}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|sh| (($ $ (|NonNegativeInteger|)) "\\spad{sh(x,n)} returns the shuffle power of \\spad{x} to the \\spad{n}.") (($ $ $) "\\spad{sh(x,y)} returns the shuffle-product of \\spad{x} by \\spad{y}. This multiplication is associative and commutative.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(x)} is zero.")) (|constant| ((|#2| $) "\\spad{constant(x)} returns the constant term of \\spad{x}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(x)} returns \\spad{true} if \\spad{x} is constant.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} returns \\spad{v}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns \\spad{Sum(r_i mirror(w_i))} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} is a monomial")) (|monom| (($ (|OrderedFreeMonoid| |#1|) |#2|) "\\spad{monom(w,r)} returns the product of the word \\spad{w} by the coefficient \\spad{r}.")) (|rquo| (($ $ $) "\\spad{rquo(x,y)} returns the right simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{rquo(x,w)} returns the right simplification of \\spad{x} by \\spad{w}.") (($ $ |#1|) "\\spad{rquo(x,v)} returns the right simplification of \\spad{x} by the variable \\spad{v}.")) (|lquo| (($ $ $) "\\spad{lquo(x,y)} returns the left simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{lquo(x,w)} returns the left simplification of \\spad{x} by the word \\spad{w}.") (($ $ |#1|) "\\spad{lquo(x,v)} returns the left simplification of \\spad{x} by the variable \\spad{v}.")) (|coef| ((|#2| $ $) "\\spad{coef(x,y)} returns scalar product of \\spad{x} by \\spad{y},{} the set of words being regarded as an orthogonal basis.") ((|#2| $ (|OrderedFreeMonoid| |#1|)) "\\spad{coef(x,w)} returns the coefficient of the word \\spad{w} in \\spad{x}.")) (|mindegTerm| (((|Record| (|:| |k| (|OrderedFreeMonoid| |#1|)) (|:| |c| |#2|)) $) "\\spad{mindegTerm(x)} returns the term whose word is \\spad{mindeg(x)}.")) (|mindeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{mindeg(x)} returns the little word which appears in \\spad{x}. Error if \\spad{x=0}.")) (* (($ $ |#2|) "\\spad{x * r} returns the product of \\spad{x} by \\spad{r}. Usefull if \\spad{R} is a non-commutative Ring.") (($ |#1| $) "\\spad{v * x} returns the product of a variable \\spad{x} by \\spad{x}."))) -((-3986 |has| |#2| (-6 -3986)) (-3988 . T) (-3987 . T) (-3990 . T)) +((-3987 |has| |#2| (-6 -3987)) (-3989 . T) (-3988 . T) (-3991 . T)) NIL -(-1198 |VarSet| R) +(-1199 |VarSet| R) ((|constructor| (NIL "This domain constructor implements polynomials in non-commutative variables written in the Poincare-Birkhoff-Witt basis from the Lyndon basis. These polynomials can be used to compute Baker-Campbell-Hausdorff relations. \\newline Author: Michel Petitot (petitot@lifl.fr).")) (|log| (($ $ (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{}\\spad{n})} returns the logarithm of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|exp| (($ $ (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{}\\spad{n})} returns the exponential of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|product| (($ $ $ (|NonNegativeInteger|)) "\\axiom{product(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a*b} (truncated up to order \\axiom{\\spad{n}}).")) (|LiePolyIfCan| (((|Union| (|LiePolynomial| |#1| |#2|) "failed") $) "\\axiom{LiePolyIfCan(\\spad{p})} return \\axiom{\\spad{p}} if \\axiom{\\spad{p}} is a Lie polynomial.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a distributed polynomial.") (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}}."))) -((-3986 |has| |#2| (-6 -3986)) (-3988 . T) (-3987 . T) (-3990 . T)) -((|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-653 (-348 (-483))))) (|HasAttribute| |#2| (QUOTE -3986))) -(-1199 R) +((-3987 |has| |#2| (-6 -3987)) (-3989 . T) (-3988 . T) (-3991 . T)) +((|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-654 (-349 (-484))))) (|HasAttribute| |#2| (QUOTE -3987))) +(-1200 R) ((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose set of variables is \\spadtype{Symbol}. The representation is recursive. The coefficient ring may be non-commutative and the variables do not commute. However,{} coefficients and variables commute."))) -((-3986 |has| |#1| (-6 -3986)) (-3988 . T) (-3987 . T) (-3990 . T)) -((|HasCategory| |#1| (QUOTE (-146))) (|HasAttribute| |#1| (QUOTE -3986))) -(-1200 |vl| R) +((-3987 |has| |#1| (-6 -3987)) (-3989 . T) (-3988 . T) (-3991 . T)) +((|HasCategory| |#1| (QUOTE (-146))) (|HasAttribute| |#1| (QUOTE -3987))) +(-1201 |vl| R) ((|constructor| (NIL "The Category of polynomial rings with non-commutative variables. The coefficient ring may be non-commutative too. However coefficients commute with vaiables.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\spad{trunc(p,n)} returns the polynomial \\spad{p} truncated at order \\spad{n}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the degree of \\spad{p}. \\indented{1}{Note that the degree of a word is its length.}")) (|maxdeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{maxdeg(p)} returns the greatest leading word in the support of \\spad{p}."))) -((-3986 |has| |#2| (-6 -3986)) (-3988 . T) (-3987 . T) (-3990 . T)) +((-3987 |has| |#2| (-6 -3987)) (-3989 . T) (-3988 . T) (-3991 . T)) NIL -(-1201 R E) +(-1202 R E) ((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and words belonging to an arbitrary \\spadtype{OrderedMonoid}. This type is used,{} for instance,{} by the \\spadtype{XDistributedPolynomial} domain constructor where the Monoid is free.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (/ (($ $ |#1|) "\\spad{p/r} returns \\spad{p*(1/r)}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(p)} is zero.")) (|constant| ((|#1| $) "\\spad{constant(p)} return the constant term of \\spad{p}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests whether the polynomial \\spad{p} belongs to the coefficient ring.")) (|coef| ((|#1| $ |#2|) "\\spad{coef(p,e)} extracts the coefficient of the monomial \\spad{e}. Returns zero if \\spad{e} is not present.")) (|reductum| (($ $) "\\spad{reductum(p)} returns \\spad{p} minus its leading term. An error is produced if \\spad{p} is zero.")) (|mindeg| ((|#2| $) "\\spad{mindeg(p)} returns the smallest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|maxdeg| ((|#2| $) "\\spad{maxdeg(p)} returns the greatest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# p} returns the number of terms in \\spad{p}.")) (* (($ $ |#1|) "\\spad{p*r} returns the product of \\spad{p} by \\spad{r}."))) -((-3990 . T) (-3991 |has| |#1| (-6 -3991)) (-3986 |has| |#1| (-6 -3986)) (-3988 . T) (-3987 . T)) -((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasAttribute| |#1| (QUOTE -3990)) (|HasAttribute| |#1| (QUOTE -3991)) (|HasAttribute| |#1| (QUOTE -3986))) -(-1202 |VarSet| R) +((-3991 . T) (-3992 |has| |#1| (-6 -3992)) (-3987 |has| |#1| (-6 -3987)) (-3989 . T) (-3988 . T)) +((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasAttribute| |#1| (QUOTE -3991)) (|HasAttribute| |#1| (QUOTE -3992)) (|HasAttribute| |#1| (QUOTE -3987))) +(-1203 |VarSet| R) ((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose variables do not commute. The representation is recursive. The coefficient ring may be non-commutative. Coefficients and variables commute.")) (|RemainderList| (((|List| (|Record| (|:| |k| |#1|) (|:| |c| $))) $) "\\spad{RemainderList(p)} returns the regular part of \\spad{p} as a list of terms.")) (|unexpand| (($ (|XDistributedPolynomial| |#1| |#2|)) "\\spad{unexpand(p)} returns \\spad{p} in recursive form.")) (|expand| (((|XDistributedPolynomial| |#1| |#2|) $) "\\spad{expand(p)} returns \\spad{p} in distributed form."))) -((-3986 |has| |#2| (-6 -3986)) (-3988 . T) (-3987 . T) (-3990 . T)) -((|HasCategory| |#2| (QUOTE (-146))) (|HasAttribute| |#2| (QUOTE -3986))) -(-1203) +((-3987 |has| |#2| (-6 -3987)) (-3989 . T) (-3988 . T) (-3991 . T)) +((|HasCategory| |#2| (QUOTE (-146))) (|HasAttribute| |#2| (QUOTE -3987))) +(-1204) ((|constructor| (NIL "This domain provides representations of Young diagrams.")) (|shape| (((|Partition|) $) "\\spad{shape x} returns the partition shaping \\spad{x}.")) (|youngDiagram| (($ (|List| (|PositiveInteger|))) "\\spad{youngDiagram l} returns an object representing a Young diagram with shape given by the list of integers \\spad{l}"))) NIL NIL -(-1204 A) +(-1205 A) ((|constructor| (NIL "This package implements fixed-point computations on streams.")) (Y (((|List| (|Stream| |#1|)) (|Mapping| (|List| (|Stream| |#1|)) (|List| (|Stream| |#1|))) (|Integer|)) "\\spad{Y(g,n)} computes a fixed point of the function \\spad{g},{} where \\spad{g} takes a list of \\spad{n} streams and returns a list of \\spad{n} streams.") (((|Stream| |#1|) (|Mapping| (|Stream| |#1|) (|Stream| |#1|))) "\\spad{Y(f)} computes a fixed point of the function \\spad{f}."))) NIL NIL -(-1205 R |ls| |ls2|) +(-1206 R |ls| |ls2|) ((|constructor| (NIL "A package for computing symbolically the complex and real roots of zero-dimensional algebraic systems over the integer or rational numbers. Complex roots are given by means of univariate representations of irreducible regular chains. Real roots are given by means of tuples of coordinates lying in the \\spadtype{RealClosure} of the coefficient ring. This constructor takes three arguments. The first one \\spad{R} is the coefficient ring. The second one \\spad{ls} is the list of variables involved in the systems to solve. The third one must be \\spad{concat(ls,s)} where \\spad{s} is an additional symbol used for the univariate representations. WARNING: The third argument is not checked. All operations are based on triangular decompositions. The default is to compute these decompositions directly from the input system by using the \\spadtype{RegularChain} domain constructor. The lexTriangular algorithm can also be used for computing these decompositions (see the \\spadtype{LexTriangularPackage} package constructor). For that purpose,{} the operations \\axiomOpFrom{univariateSolve}{ZeroDimensionalSolvePackage},{} \\axiomOpFrom{realSolve}{ZeroDimensionalSolvePackage} and \\axiomOpFrom{positiveSolve}{ZeroDimensionalSolvePackage} admit an optional argument. \\newline Author: Marc Moreno Maza.")) (|convert| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) "\\spad{convert(st)} returns the members of \\spad{st}.") (((|SparseUnivariatePolynomial| (|RealClosure| (|Fraction| |#1|))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{convert(u)} converts \\spad{u}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) "\\spad{convert(q)} converts \\spad{q}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|Polynomial| |#1|)) "\\spad{convert(p)} converts \\spad{p}.") (((|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "\\spad{convert(q)} converts \\spad{q}.")) (|squareFree| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) (|RegularChain| |#1| |#2|)) "\\spad{squareFree(ts)} returns the square-free factorization of \\spad{ts}. Moreover,{} each factor is a Lazard triangular set and the decomposition is a Kalkbrener split of \\spad{ts},{} which is enough here for the matter of solving zero-dimensional algebraic systems. WARNING: \\spad{ts} is not checked to be zero-dimensional.")) (|positiveSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,false,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,info?,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{positiveSolve(lp,info?,lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are (real) strictly positive. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{positiveSolve(lp,info?,lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{positiveSolve(ts)} returns the points of the regular set of \\spad{ts} with (real) strictly positive coordinates.")) (|realSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{realSolve(lp)} returns the same as \\spad{realSolve(ts,false,false,false)}") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{realSolve(ts,info?)} returns the same as \\spad{realSolve(ts,info?,false,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,info?,check?)} returns the same as \\spad{realSolve(ts,info?,check?,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,info?,check?,lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are all real. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(lp,{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{realSolve(ts,info?,check?,lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{realSolve(ts)} returns the set of the points in the regular zero set of \\spad{ts} whose coordinates are all real. WARNING: For each set of coordinates given by \\spad{realSolve(ts)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.")) (|univariateSolve| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{univariateSolve(lp)} returns the same as \\spad{univariateSolve(lp,false,false,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{univariateSolve(lp,info?)} returns the same as \\spad{univariateSolve(lp,info?,false,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,info?,check?)} returns the same as \\spad{univariateSolve(lp,info?,check?,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,info?,check?,lextri?)} returns a univariate representation of the variety associated with \\spad{lp}. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|RegularChain| |#1| |#2|)) "\\spad{univariateSolve(ts)} returns a univariate representation of \\spad{ts}. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(lp,{}\\spad{true}).")) (|triangSolve| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|))) "\\spad{triangSolve(lp)} returns the same as \\spad{triangSolve(lp,false,false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{triangSolve(lp,info?)} returns the same as \\spad{triangSolve(lp,false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{triangSolve(lp,info?,lextri?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{\\spad{lp}} is not zero-dimensional then the result is only a decomposition of its zero-set in the sense of the closure (\\spad{w}.\\spad{r}.\\spad{t}. Zarisky topology). Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}(\\spad{lp},{}\\spad{true},{}\\spad{info?}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}."))) NIL NIL -(-1206 R) +(-1207 R) ((|constructor| (NIL "Test for linear dependence over the integers.")) (|solveLinearlyOverQ| (((|Union| (|Vector| (|Fraction| (|Integer|))) "failed") (|Vector| |#1|) |#1|) "\\spad{solveLinearlyOverQ([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such rational numbers \\spad{ci}'s exist.")) (|linearDependenceOverZ| (((|Union| (|Vector| (|Integer|)) "failed") (|Vector| |#1|)) "\\spad{linearlyDependenceOverZ([v1,...,vn])} returns \\spad{[c1,...,cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}'s are 0,{} \"failed\" if the \\spad{vi}'s are linearly independent over the integers.")) (|linearlyDependentOverZ?| (((|Boolean|) (|Vector| |#1|)) "\\spad{linearlyDependentOverZ?([v1,...,vn])} returns \\spad{true} if the \\spad{vi}'s are linearly dependent over the integers,{} \\spad{false} otherwise."))) NIL NIL -(-1207 |p|) +(-1208 |p|) ((|constructor| (NIL "IntegerMod(\\spad{n}) creates the ring of integers reduced modulo the integer \\spad{n}."))) -(((-3995 "*") . T) (-3987 . T) (-3988 . T) (-3990 . T)) +(((-3996 "*") . T) (-3988 . T) (-3989 . T) (-3991 . T)) NIL NIL NIL @@ -4776,4 +4780,4 @@ NIL NIL NIL NIL -((-3 NIL 1960106 1960111 1960116 1960121) (-2 NIL 1960086 1960091 1960096 1960101) (-1 NIL 1960066 1960071 1960076 1960081) (0 NIL 1960046 1960051 1960056 1960061) (-1207 "ZMOD.spad" 1959855 1959868 1959984 1960041) (-1206 "ZLINDEP.spad" 1958953 1958964 1959845 1959850) (-1205 "ZDSOLVE.spad" 1948914 1948936 1958943 1958948) (-1204 "YSTREAM.spad" 1948409 1948420 1948904 1948909) (-1203 "YDIAGRAM.spad" 1948043 1948052 1948399 1948404) (-1202 "XRPOLY.spad" 1947263 1947283 1947899 1947968) (-1201 "XPR.spad" 1945058 1945071 1946981 1947080) (-1200 "XPOLYC.spad" 1944377 1944393 1944984 1945053) (-1199 "XPOLY.spad" 1943932 1943943 1944233 1944302) (-1198 "XPBWPOLY.spad" 1942403 1942423 1943738 1943807) (-1197 "XFALG.spad" 1939451 1939467 1942329 1942398) (-1196 "XF.spad" 1937914 1937929 1939353 1939446) (-1195 "XF.spad" 1936357 1936374 1937798 1937803) (-1194 "XEXPPKG.spad" 1935616 1935642 1936347 1936352) (-1193 "XDPOLY.spad" 1935230 1935246 1935472 1935541) (-1192 "XALG.spad" 1934898 1934909 1935186 1935225) (-1191 "WUTSET.spad" 1930901 1930918 1934532 1934559) (-1190 "WP.spad" 1930108 1930152 1930759 1930826) (-1189 "WHILEAST.spad" 1929906 1929915 1930098 1930103) (-1188 "WHEREAST.spad" 1929577 1929586 1929896 1929901) (-1187 "WFFINTBS.spad" 1927240 1927262 1929567 1929572) (-1186 "WEIER.spad" 1925462 1925473 1927230 1927235) (-1185 "VSPACE.spad" 1925135 1925146 1925430 1925457) (-1184 "VSPACE.spad" 1924828 1924841 1925125 1925130) (-1183 "VOID.spad" 1924505 1924514 1924818 1924823) (-1182 "VIEWDEF.spad" 1919706 1919715 1924495 1924500) (-1181 "VIEW3D.spad" 1903667 1903676 1919696 1919701) (-1180 "VIEW2D.spad" 1891566 1891575 1903657 1903662) (-1179 "VIEW.spad" 1889286 1889295 1891556 1891561) (-1178 "VECTOR2.spad" 1887925 1887938 1889276 1889281) (-1177 "VECTOR.spad" 1886644 1886655 1886895 1886922) (-1176 "VECTCAT.spad" 1884556 1884567 1886612 1886639) (-1175 "VECTCAT.spad" 1882277 1882290 1884335 1884340) (-1174 "VARIABLE.spad" 1882057 1882072 1882267 1882272) (-1173 "UTYPE.spad" 1881701 1881710 1882047 1882052) (-1172 "UTSODETL.spad" 1880996 1881020 1881657 1881662) (-1171 "UTSODE.spad" 1879212 1879232 1880986 1880991) (-1170 "UTSCAT.spad" 1876691 1876707 1879110 1879207) (-1169 "UTSCAT.spad" 1873838 1873856 1876259 1876264) (-1168 "UTS2.spad" 1873433 1873468 1873828 1873833) (-1167 "UTS.spad" 1868445 1868473 1871965 1872062) (-1166 "URAGG.spad" 1863166 1863177 1868435 1868440) (-1165 "URAGG.spad" 1857851 1857864 1863122 1863127) (-1164 "UPXSSING.spad" 1855619 1855645 1857055 1857188) (-1163 "UPXSCONS.spad" 1853437 1853457 1853810 1853959) (-1162 "UPXSCCA.spad" 1852008 1852028 1853283 1853432) (-1161 "UPXSCCA.spad" 1850721 1850743 1851998 1852003) (-1160 "UPXSCAT.spad" 1849310 1849326 1850567 1850716) (-1159 "UPXS2.spad" 1848853 1848906 1849300 1849305) (-1158 "UPXS.spad" 1846208 1846236 1847044 1847193) (-1157 "UPSQFREE.spad" 1844623 1844637 1846198 1846203) (-1156 "UPSCAT.spad" 1842418 1842442 1844521 1844618) (-1155 "UPSCAT.spad" 1839914 1839940 1842019 1842024) (-1154 "UPOLYC2.spad" 1839385 1839404 1839904 1839909) (-1153 "UPOLYC.spad" 1834465 1834476 1839227 1839380) (-1152 "UPOLYC.spad" 1829463 1829476 1834227 1834232) (-1151 "UPMP.spad" 1828395 1828408 1829453 1829458) (-1150 "UPDIVP.spad" 1827960 1827974 1828385 1828390) (-1149 "UPDECOMP.spad" 1826221 1826235 1827950 1827955) (-1148 "UPCDEN.spad" 1825438 1825454 1826211 1826216) (-1147 "UP2.spad" 1824802 1824823 1825428 1825433) (-1146 "UP.spad" 1822272 1822287 1822659 1822812) (-1145 "UNISEG2.spad" 1821769 1821782 1822228 1822233) (-1144 "UNISEG.spad" 1821122 1821133 1821688 1821693) (-1143 "UNIFACT.spad" 1820225 1820237 1821112 1821117) (-1142 "ULSCONS.spad" 1814071 1814091 1814441 1814590) (-1141 "ULSCCAT.spad" 1811808 1811828 1813917 1814066) (-1140 "ULSCCAT.spad" 1809653 1809675 1811764 1811769) (-1139 "ULSCAT.spad" 1807893 1807909 1809499 1809648) (-1138 "ULS2.spad" 1807407 1807460 1807883 1807888) (-1137 "ULS.spad" 1799440 1799468 1800385 1800808) (-1136 "UINT8.spad" 1799317 1799326 1799430 1799435) (-1135 "UINT64.spad" 1799193 1799202 1799307 1799312) (-1134 "UINT32.spad" 1799069 1799078 1799183 1799188) (-1133 "UINT16.spad" 1798945 1798954 1799059 1799064) (-1132 "UFD.spad" 1798010 1798019 1798871 1798940) (-1131 "UFD.spad" 1797137 1797148 1798000 1798005) (-1130 "UDVO.spad" 1796018 1796027 1797127 1797132) (-1129 "UDPO.spad" 1793599 1793610 1795974 1795979) (-1128 "TYPEAST.spad" 1793518 1793527 1793589 1793594) (-1127 "TYPE.spad" 1793450 1793459 1793508 1793513) (-1126 "TWOFACT.spad" 1792102 1792117 1793440 1793445) (-1125 "TUPLE.spad" 1791609 1791620 1792014 1792019) (-1124 "TUBETOOL.spad" 1788476 1788485 1791599 1791604) (-1123 "TUBE.spad" 1787123 1787140 1788466 1788471) (-1122 "TSETCAT.spad" 1775194 1775211 1787091 1787118) (-1121 "TSETCAT.spad" 1763251 1763270 1775150 1775155) (-1120 "TS.spad" 1761879 1761895 1762845 1762942) (-1119 "TRMANIP.spad" 1756243 1756260 1761567 1761572) (-1118 "TRIMAT.spad" 1755206 1755231 1756233 1756238) (-1117 "TRIGMNIP.spad" 1753733 1753750 1755196 1755201) (-1116 "TRIGCAT.spad" 1753245 1753254 1753723 1753728) (-1115 "TRIGCAT.spad" 1752755 1752766 1753235 1753240) (-1114 "TREE.spad" 1751395 1751406 1752427 1752454) (-1113 "TRANFUN.spad" 1751234 1751243 1751385 1751390) (-1112 "TRANFUN.spad" 1751071 1751082 1751224 1751229) (-1111 "TOPSP.spad" 1750745 1750754 1751061 1751066) (-1110 "TOOLSIGN.spad" 1750408 1750419 1750735 1750740) (-1109 "TEXTFILE.spad" 1748969 1748978 1750398 1750403) (-1108 "TEX1.spad" 1748525 1748536 1748959 1748964) (-1107 "TEX.spad" 1745719 1745728 1748515 1748520) (-1106 "TBCMPPK.spad" 1743820 1743843 1745709 1745714) (-1105 "TBAGG.spad" 1742878 1742901 1743800 1743815) (-1104 "TBAGG.spad" 1741944 1741969 1742868 1742873) (-1103 "TANEXP.spad" 1741352 1741363 1741934 1741939) (-1102 "TALGOP.spad" 1741076 1741087 1741342 1741347) (-1101 "TABLEAU.spad" 1740557 1740568 1741066 1741071) (-1100 "TABLE.spad" 1738832 1738855 1739102 1739129) (-1099 "TABLBUMP.spad" 1735611 1735622 1738822 1738827) (-1098 "SYSTEM.spad" 1734839 1734848 1735601 1735606) (-1097 "SYSSOLP.spad" 1732322 1732333 1734829 1734834) (-1096 "SYSPTR.spad" 1732221 1732230 1732312 1732317) (-1095 "SYSNNI.spad" 1731444 1731455 1732211 1732216) (-1094 "SYSINT.spad" 1730848 1730859 1731434 1731439) (-1093 "SYNTAX.spad" 1727182 1727191 1730838 1730843) (-1092 "SYMTAB.spad" 1725250 1725259 1727172 1727177) (-1091 "SYMS.spad" 1721279 1721288 1725240 1725245) (-1090 "SYMPOLY.spad" 1720412 1720423 1720494 1720621) (-1089 "SYMFUNC.spad" 1719913 1719924 1720402 1720407) (-1088 "SYMBOL.spad" 1717408 1717417 1719903 1719908) (-1087 "SUTS.spad" 1714521 1714549 1715940 1716037) (-1086 "SUPXS.spad" 1711863 1711891 1712712 1712861) (-1085 "SUPFRACF.spad" 1710968 1710986 1711853 1711858) (-1084 "SUP2.spad" 1710360 1710373 1710958 1710963) (-1083 "SUP.spad" 1707444 1707455 1708217 1708370) (-1082 "SUMRF.spad" 1706418 1706429 1707434 1707439) (-1081 "SUMFS.spad" 1706047 1706064 1706408 1706413) (-1080 "SULS.spad" 1698067 1698095 1699025 1699448) (-1079 "syntax.spad" 1697836 1697845 1698057 1698062) (-1078 "SUCH.spad" 1697526 1697541 1697826 1697831) (-1077 "SUBSPACE.spad" 1689657 1689672 1697516 1697521) (-1076 "SUBRESP.spad" 1688827 1688841 1689613 1689618) (-1075 "STTFNC.spad" 1685295 1685311 1688817 1688822) (-1074 "STTF.spad" 1681394 1681410 1685285 1685290) (-1073 "STTAYLOR.spad" 1674071 1674082 1681301 1681306) (-1072 "STRTBL.spad" 1672458 1672475 1672607 1672634) (-1071 "STRING.spad" 1671326 1671335 1671711 1671738) (-1070 "STREAM3.spad" 1670899 1670914 1671316 1671321) (-1069 "STREAM2.spad" 1670027 1670040 1670889 1670894) (-1068 "STREAM1.spad" 1669733 1669744 1670017 1670022) (-1067 "STREAM.spad" 1666729 1666740 1669336 1669351) (-1066 "STINPROD.spad" 1665665 1665681 1666719 1666724) (-1065 "STEPAST.spad" 1664899 1664908 1665655 1665660) (-1064 "STEP.spad" 1664216 1664225 1664889 1664894) (-1063 "STBL.spad" 1662606 1662634 1662773 1662788) (-1062 "STAGG.spad" 1661305 1661316 1662596 1662601) (-1061 "STAGG.spad" 1660002 1660015 1661295 1661300) (-1060 "STACK.spad" 1659424 1659435 1659674 1659701) (-1059 "SRING.spad" 1659184 1659193 1659414 1659419) (-1058 "SREGSET.spad" 1656916 1656933 1658818 1658845) (-1057 "SRDCMPK.spad" 1655493 1655513 1656906 1656911) (-1056 "SRAGG.spad" 1650676 1650685 1655461 1655488) (-1055 "SRAGG.spad" 1645879 1645890 1650666 1650671) (-1054 "SQMATRIX.spad" 1643556 1643574 1644472 1644559) (-1053 "SPLTREE.spad" 1638298 1638311 1643094 1643121) (-1052 "SPLNODE.spad" 1634918 1634931 1638288 1638293) (-1051 "SPFCAT.spad" 1633727 1633736 1634908 1634913) (-1050 "SPECOUT.spad" 1632279 1632288 1633717 1633722) (-1049 "SPADXPT.spad" 1624370 1624379 1632269 1632274) (-1048 "spad-parser.spad" 1623835 1623844 1624360 1624365) (-1047 "SPADAST.spad" 1623536 1623545 1623825 1623830) (-1046 "SPACEC.spad" 1607751 1607762 1623526 1623531) (-1045 "SPACE3.spad" 1607527 1607538 1607741 1607746) (-1044 "SORTPAK.spad" 1607076 1607089 1607483 1607488) (-1043 "SOLVETRA.spad" 1604839 1604850 1607066 1607071) (-1042 "SOLVESER.spad" 1603295 1603306 1604829 1604834) (-1041 "SOLVERAD.spad" 1599321 1599332 1603285 1603290) (-1040 "SOLVEFOR.spad" 1597783 1597801 1599311 1599316) (-1039 "SNTSCAT.spad" 1597383 1597400 1597751 1597778) (-1038 "SMTS.spad" 1595700 1595726 1596977 1597074) (-1037 "SMP.spad" 1593508 1593528 1593898 1594025) (-1036 "SMITH.spad" 1592353 1592378 1593498 1593503) (-1035 "SMATCAT.spad" 1590471 1590501 1592297 1592348) (-1034 "SMATCAT.spad" 1588521 1588553 1590349 1590354) (-1033 "SKAGG.spad" 1587490 1587501 1588489 1588516) (-1032 "SINT.spad" 1586789 1586798 1587356 1587485) (-1031 "SIMPAN.spad" 1586517 1586526 1586779 1586784) (-1030 "SIGNRF.spad" 1585642 1585653 1586507 1586512) (-1029 "SIGNEF.spad" 1584928 1584945 1585632 1585637) (-1028 "syntax.spad" 1584345 1584354 1584918 1584923) (-1027 "SIG.spad" 1583707 1583716 1584335 1584340) (-1026 "SHP.spad" 1581651 1581666 1583663 1583668) (-1025 "SHDP.spad" 1571144 1571171 1571661 1571758) (-1024 "SGROUP.spad" 1570752 1570761 1571134 1571139) (-1023 "SGROUP.spad" 1570358 1570369 1570742 1570747) (-1022 "catdef.spad" 1570068 1570080 1570179 1570353) (-1021 "catdef.spad" 1569624 1569636 1569889 1570063) (-1020 "SGCF.spad" 1562763 1562772 1569614 1569619) (-1019 "SFRTCAT.spad" 1561709 1561726 1562731 1562758) (-1018 "SFRGCD.spad" 1560772 1560792 1561699 1561704) (-1017 "SFQCMPK.spad" 1555585 1555605 1560762 1560767) (-1016 "SEXOF.spad" 1555428 1555468 1555575 1555580) (-1015 "SEXCAT.spad" 1553256 1553296 1555418 1555423) (-1014 "SEX.spad" 1553148 1553157 1553246 1553251) (-1013 "SETMN.spad" 1551608 1551625 1553138 1553143) (-1012 "SETCAT.spad" 1551093 1551102 1551598 1551603) (-1011 "SETCAT.spad" 1550576 1550587 1551083 1551088) (-1010 "SETAGG.spad" 1547125 1547136 1550556 1550571) (-1009 "SETAGG.spad" 1543682 1543695 1547115 1547120) (-1008 "SET.spad" 1541991 1542002 1543088 1543127) (-1007 "syntax.spad" 1541694 1541703 1541981 1541986) (-1006 "SEGXCAT.spad" 1540850 1540863 1541684 1541689) (-1005 "SEGCAT.spad" 1539775 1539786 1540840 1540845) (-1004 "SEGBIND2.spad" 1539473 1539486 1539765 1539770) (-1003 "SEGBIND.spad" 1539231 1539242 1539420 1539425) (-1002 "SEGAST.spad" 1538961 1538970 1539221 1539226) (-1001 "SEG2.spad" 1538396 1538409 1538917 1538922) (-1000 "SEG.spad" 1538209 1538220 1538315 1538320) (-999 "SDVAR.spad" 1537486 1537496 1538199 1538204) (-998 "SDPOL.spad" 1535184 1535194 1535474 1535601) (-997 "SCPKG.spad" 1533274 1533284 1535174 1535179) (-996 "SCOPE.spad" 1532452 1532460 1533264 1533269) (-995 "SCACHE.spad" 1531149 1531159 1532442 1532447) (-994 "SASTCAT.spad" 1531059 1531067 1531139 1531144) (-993 "SAOS.spad" 1530932 1530940 1531049 1531054) (-992 "SAERFFC.spad" 1530646 1530665 1530922 1530927) (-991 "SAEFACT.spad" 1530348 1530367 1530636 1530641) (-990 "SAE.spad" 1527999 1528014 1528609 1528744) (-989 "RURPK.spad" 1525659 1525674 1527989 1527994) (-988 "RULESET.spad" 1525113 1525136 1525649 1525654) (-987 "RULECOLD.spad" 1524966 1524978 1525103 1525108) (-986 "RULE.spad" 1523215 1523238 1524956 1524961) (-985 "RTVALUE.spad" 1522951 1522959 1523205 1523210) (-984 "syntax.spad" 1522669 1522677 1522941 1522946) (-983 "RSETGCD.spad" 1519112 1519131 1522659 1522664) (-982 "RSETCAT.spad" 1509081 1509097 1519080 1519107) (-981 "RSETCAT.spad" 1499070 1499088 1509071 1509076) (-980 "RSDCMPK.spad" 1497571 1497590 1499060 1499065) (-979 "RRCC.spad" 1495956 1495985 1497561 1497566) (-978 "RRCC.spad" 1494339 1494370 1495946 1495951) (-977 "RPTAST.spad" 1494042 1494050 1494329 1494334) (-976 "RPOLCAT.spad" 1473547 1473561 1493910 1494037) (-975 "RPOLCAT.spad" 1452845 1452861 1473210 1473215) (-974 "ROMAN.spad" 1452174 1452182 1452711 1452840) (-973 "ROIRC.spad" 1451255 1451286 1452164 1452169) (-972 "RNS.spad" 1450232 1450240 1451157 1451250) (-971 "RNS.spad" 1449295 1449305 1450222 1450227) (-970 "RNGBIND.spad" 1448456 1448469 1449250 1449255) (-969 "RNG.spad" 1448065 1448073 1448446 1448451) (-968 "RNG.spad" 1447672 1447682 1448055 1448060) (-967 "RMODULE.spad" 1447454 1447464 1447662 1447667) (-966 "RMCAT2.spad" 1446875 1446931 1447444 1447449) (-965 "RMATRIX.spad" 1445685 1445703 1446027 1446066) (-964 "RMATCAT.spad" 1441265 1441295 1445641 1445680) (-963 "RMATCAT.spad" 1436735 1436767 1441113 1441118) (-962 "RLINSET.spad" 1436440 1436450 1436725 1436730) (-961 "RINTERP.spad" 1436329 1436348 1436430 1436435) (-960 "RING.spad" 1435800 1435808 1436309 1436324) (-959 "RING.spad" 1435279 1435289 1435790 1435795) (-958 "RIDIST.spad" 1434672 1434680 1435269 1435274) (-957 "RGCHAIN.spad" 1433227 1433242 1434120 1434147) (-956 "RGBCSPC.spad" 1433017 1433028 1433217 1433222) (-955 "RGBCMDL.spad" 1432580 1432591 1433007 1433012) (-954 "RFFACTOR.spad" 1432043 1432053 1432570 1432575) (-953 "RFFACT.spad" 1431779 1431790 1432033 1432038) (-952 "RFDIST.spad" 1430776 1430784 1431769 1431774) (-951 "RF.spad" 1428451 1428461 1430766 1430771) (-950 "RETSOL.spad" 1427871 1427883 1428441 1428446) (-949 "RETRACT.spad" 1427300 1427310 1427861 1427866) (-948 "RETRACT.spad" 1426727 1426739 1427290 1427295) (-947 "RETAST.spad" 1426540 1426548 1426717 1426722) (-946 "RESRING.spad" 1425888 1425934 1426478 1426535) (-945 "RESLATC.spad" 1425213 1425223 1425878 1425883) (-944 "REPSQ.spad" 1424945 1424955 1425203 1425208) (-943 "REPDB.spad" 1424653 1424663 1424935 1424940) (-942 "REP2.spad" 1414368 1414378 1424495 1424500) (-941 "REP1.spad" 1408589 1408599 1414318 1414323) (-940 "REP.spad" 1406144 1406152 1408579 1408584) (-939 "REGSET.spad" 1403970 1403986 1405778 1405805) (-938 "REF.spad" 1403489 1403499 1403960 1403965) (-937 "REDORDER.spad" 1402696 1402712 1403479 1403484) (-936 "RECLOS.spad" 1401593 1401612 1402296 1402389) (-935 "REALSOLV.spad" 1400734 1400742 1401583 1401588) (-934 "REAL0Q.spad" 1398033 1398047 1400724 1400729) (-933 "REAL0.spad" 1394878 1394892 1398023 1398028) (-932 "REAL.spad" 1394751 1394759 1394868 1394873) (-931 "RDUCEAST.spad" 1394473 1394481 1394741 1394746) (-930 "RDIV.spad" 1394129 1394153 1394463 1394468) (-929 "RDIST.spad" 1393697 1393707 1394119 1394124) (-928 "RDETRS.spad" 1392562 1392579 1393687 1393692) (-927 "RDETR.spad" 1390702 1390719 1392552 1392557) (-926 "RDEEFS.spad" 1389802 1389818 1390692 1390697) (-925 "RDEEF.spad" 1388813 1388829 1389792 1389797) (-924 "RCFIELD.spad" 1386032 1386040 1388715 1388808) (-923 "RCFIELD.spad" 1383337 1383347 1386022 1386027) (-922 "RCAGG.spad" 1381274 1381284 1383327 1383332) (-921 "RCAGG.spad" 1379138 1379150 1381193 1381198) (-920 "RATRET.spad" 1378499 1378509 1379128 1379133) (-919 "RATFACT.spad" 1378192 1378203 1378489 1378494) (-918 "RANDSRC.spad" 1377512 1377520 1378182 1378187) (-917 "RADUTIL.spad" 1377269 1377277 1377502 1377507) (-916 "RADIX.spad" 1374314 1374327 1375859 1375952) (-915 "RADFF.spad" 1372231 1372267 1372349 1372505) (-914 "RADCAT.spad" 1371827 1371835 1372221 1372226) (-913 "RADCAT.spad" 1371421 1371431 1371817 1371822) (-912 "QUEUE.spad" 1370835 1370845 1371093 1371120) (-911 "QUATCT2.spad" 1370456 1370474 1370825 1370830) (-910 "QUATCAT.spad" 1368627 1368637 1370386 1370451) (-909 "QUATCAT.spad" 1366563 1366575 1368324 1368329) (-908 "QUAT.spad" 1365170 1365180 1365512 1365577) (-907 "QUAGG.spad" 1364004 1364014 1365138 1365165) (-906 "QQUTAST.spad" 1363773 1363781 1363994 1363999) (-905 "QFORM.spad" 1363392 1363406 1363763 1363768) (-904 "QFCAT2.spad" 1363085 1363101 1363382 1363387) (-903 "QFCAT.spad" 1361788 1361798 1362987 1363080) (-902 "QFCAT.spad" 1360124 1360136 1361325 1361330) (-901 "QEQUAT.spad" 1359683 1359691 1360114 1360119) (-900 "QCMPACK.spad" 1354598 1354617 1359673 1359678) (-899 "QALGSET2.spad" 1352594 1352612 1354588 1354593) (-898 "QALGSET.spad" 1348699 1348731 1352508 1352513) (-897 "PWFFINTB.spad" 1346115 1346136 1348689 1348694) (-896 "PUSHVAR.spad" 1345454 1345473 1346105 1346110) (-895 "PTRANFN.spad" 1341590 1341600 1345444 1345449) (-894 "PTPACK.spad" 1338678 1338688 1341580 1341585) (-893 "PTFUNC2.spad" 1338501 1338515 1338668 1338673) (-892 "PTCAT.spad" 1337756 1337766 1338469 1338496) (-891 "PSQFR.spad" 1337071 1337095 1337746 1337751) (-890 "PSEUDLIN.spad" 1335957 1335967 1337061 1337066) (-889 "PSETPK.spad" 1322662 1322678 1335835 1335840) (-888 "PSETCAT.spad" 1317062 1317085 1322642 1322657) (-887 "PSETCAT.spad" 1311436 1311461 1317018 1317023) (-886 "PSCURVE.spad" 1310435 1310443 1311426 1311431) (-885 "PSCAT.spad" 1309218 1309247 1310333 1310430) (-884 "PSCAT.spad" 1308091 1308122 1309208 1309213) (-883 "PRTITION.spad" 1306789 1306797 1308081 1308086) (-882 "PRTDAST.spad" 1306508 1306516 1306779 1306784) (-881 "PRS.spad" 1296126 1296143 1306464 1306469) (-880 "PRQAGG.spad" 1295561 1295571 1296094 1296121) (-879 "PROPLOG.spad" 1295165 1295173 1295551 1295556) (-878 "PROPFUN2.spad" 1294788 1294801 1295155 1295160) (-877 "PROPFUN1.spad" 1294194 1294205 1294778 1294783) (-876 "PROPFRML.spad" 1292762 1292773 1294184 1294189) (-875 "PROPERTY.spad" 1292258 1292266 1292752 1292757) (-874 "PRODUCT.spad" 1289955 1289967 1290239 1290294) (-873 "PRINT.spad" 1289707 1289715 1289945 1289950) (-872 "PRIMES.spad" 1287968 1287978 1289697 1289702) (-871 "PRIMELT.spad" 1286089 1286103 1287958 1287963) (-870 "PRIMCAT.spad" 1285732 1285740 1286079 1286084) (-869 "PRIMARR2.spad" 1284499 1284511 1285722 1285727) (-868 "PRIMARR.spad" 1283554 1283564 1283724 1283751) (-867 "PREASSOC.spad" 1282936 1282948 1283544 1283549) (-866 "PR.spad" 1281454 1281466 1282153 1282280) (-865 "PPCURVE.spad" 1280591 1280599 1281444 1281449) (-864 "PORTNUM.spad" 1280382 1280390 1280581 1280586) (-863 "POLYROOT.spad" 1279231 1279253 1280338 1280343) (-862 "POLYLIFT.spad" 1278496 1278519 1279221 1279226) (-861 "POLYCATQ.spad" 1276622 1276644 1278486 1278491) (-860 "POLYCAT.spad" 1270124 1270145 1276490 1276617) (-859 "POLYCAT.spad" 1263146 1263169 1269514 1269519) (-858 "POLY2UP.spad" 1262598 1262612 1263136 1263141) (-857 "POLY2.spad" 1262195 1262207 1262588 1262593) (-856 "POLY.spad" 1259863 1259873 1260378 1260505) (-855 "POLUTIL.spad" 1258828 1258857 1259819 1259824) (-854 "POLTOPOL.spad" 1257576 1257591 1258818 1258823) (-853 "POINT.spad" 1256459 1256469 1256546 1256573) (-852 "PNTHEORY.spad" 1253161 1253169 1256449 1256454) (-851 "PMTOOLS.spad" 1251936 1251950 1253151 1253156) (-850 "PMSYM.spad" 1251485 1251495 1251926 1251931) (-849 "PMQFCAT.spad" 1251076 1251090 1251475 1251480) (-848 "PMPREDFS.spad" 1250538 1250560 1251066 1251071) (-847 "PMPRED.spad" 1250025 1250039 1250528 1250533) (-846 "PMPLCAT.spad" 1249102 1249120 1249954 1249959) (-845 "PMLSAGG.spad" 1248687 1248701 1249092 1249097) (-844 "PMKERNEL.spad" 1248266 1248278 1248677 1248682) (-843 "PMINS.spad" 1247846 1247856 1248256 1248261) (-842 "PMFS.spad" 1247423 1247441 1247836 1247841) (-841 "PMDOWN.spad" 1246713 1246727 1247413 1247418) (-840 "PMASSFS.spad" 1245688 1245704 1246703 1246708) (-839 "PMASS.spad" 1244706 1244714 1245678 1245683) (-838 "PLOTTOOL.spad" 1244486 1244494 1244696 1244701) (-837 "PLOT3D.spad" 1240950 1240958 1244476 1244481) (-836 "PLOT1.spad" 1240123 1240133 1240940 1240945) (-835 "PLOT.spad" 1235046 1235054 1240113 1240118) (-834 "PLEQN.spad" 1222448 1222475 1235036 1235041) (-833 "PINTERPA.spad" 1222232 1222248 1222438 1222443) (-832 "PINTERP.spad" 1221854 1221873 1222222 1222227) (-831 "PID.spad" 1220828 1220836 1221780 1221849) (-830 "PICOERCE.spad" 1220485 1220495 1220818 1220823) (-829 "PI.spad" 1220102 1220110 1220459 1220480) (-828 "PGROEB.spad" 1218711 1218725 1220092 1220097) (-827 "PGE.spad" 1210384 1210392 1218701 1218706) (-826 "PGCD.spad" 1209338 1209355 1210374 1210379) (-825 "PFRPAC.spad" 1208487 1208497 1209328 1209333) (-824 "PFR.spad" 1205190 1205200 1208389 1208482) (-823 "PFOTOOLS.spad" 1204448 1204464 1205180 1205185) (-822 "PFOQ.spad" 1203818 1203836 1204438 1204443) (-821 "PFO.spad" 1203237 1203264 1203808 1203813) (-820 "PFECAT.spad" 1200947 1200955 1203163 1203232) (-819 "PFECAT.spad" 1198685 1198695 1200903 1200908) (-818 "PFBRU.spad" 1196573 1196585 1198675 1198680) (-817 "PFBR.spad" 1194133 1194156 1196563 1196568) (-816 "PF.spad" 1193707 1193719 1193938 1194031) (-815 "PERMGRP.spad" 1188477 1188487 1193697 1193702) (-814 "PERMCAT.spad" 1187138 1187148 1188457 1188472) (-813 "PERMAN.spad" 1185694 1185708 1187128 1187133) (-812 "PERM.spad" 1181504 1181514 1185527 1185542) (-811 "PENDTREE.spad" 1180918 1180928 1181198 1181203) (-810 "PDSPC.spad" 1179731 1179741 1180908 1180913) (-809 "PDSPC.spad" 1178542 1178554 1179721 1179726) (-808 "PDRING.spad" 1178384 1178394 1178522 1178537) (-807 "PDMOD.spad" 1178200 1178212 1178352 1178379) (-806 "PDECOMP.spad" 1177670 1177687 1178190 1178195) (-805 "PDDOM.spad" 1177108 1177121 1177660 1177665) (-804 "PDDOM.spad" 1176544 1176559 1177098 1177103) (-803 "PCOMP.spad" 1176397 1176410 1176534 1176539) (-802 "PBWLB.spad" 1174995 1175012 1176387 1176392) (-801 "PATTERN2.spad" 1174733 1174745 1174985 1174990) (-800 "PATTERN1.spad" 1173077 1173093 1174723 1174728) (-799 "PATTERN.spad" 1167652 1167662 1173067 1173072) (-798 "PATRES2.spad" 1167324 1167338 1167642 1167647) (-797 "PATRES.spad" 1164907 1164919 1167314 1167319) (-796 "PATMATCH.spad" 1163148 1163179 1164659 1164664) (-795 "PATMAB.spad" 1162577 1162587 1163138 1163143) (-794 "PATLRES.spad" 1161663 1161677 1162567 1162572) (-793 "PATAB.spad" 1161427 1161437 1161653 1161658) (-792 "PARTPERM.spad" 1159483 1159491 1161417 1161422) (-791 "PARSURF.spad" 1158917 1158945 1159473 1159478) (-790 "PARSU2.spad" 1158714 1158730 1158907 1158912) (-789 "script-parser.spad" 1158234 1158242 1158704 1158709) (-788 "PARSCURV.spad" 1157668 1157696 1158224 1158229) (-787 "PARSC2.spad" 1157459 1157475 1157658 1157663) (-786 "PARPCURV.spad" 1156921 1156949 1157449 1157454) (-785 "PARPC2.spad" 1156712 1156728 1156911 1156916) (-784 "PARAMAST.spad" 1155840 1155848 1156702 1156707) (-783 "PAN2EXPR.spad" 1155252 1155260 1155830 1155835) (-782 "PALETTE.spad" 1154366 1154374 1155242 1155247) (-781 "PAIR.spad" 1153440 1153453 1154009 1154014) (-780 "PADICRC.spad" 1150845 1150863 1152008 1152101) (-779 "PADICRAT.spad" 1148905 1148917 1149118 1149211) (-778 "PADICCT.spad" 1147454 1147466 1148831 1148900) (-777 "PADIC.spad" 1147157 1147169 1147380 1147449) (-776 "PADEPAC.spad" 1145846 1145865 1147147 1147152) (-775 "PADE.spad" 1144598 1144614 1145836 1145841) (-774 "OWP.spad" 1143846 1143876 1144456 1144523) (-773 "OVERSET.spad" 1143419 1143427 1143836 1143841) (-772 "OVAR.spad" 1143200 1143223 1143409 1143414) (-771 "OUTFORM.spad" 1132608 1132616 1143190 1143195) (-770 "OUTBFILE.spad" 1132042 1132050 1132598 1132603) (-769 "OUTBCON.spad" 1131112 1131120 1132032 1132037) (-768 "OUTBCON.spad" 1130180 1130190 1131102 1131107) (-767 "OUT.spad" 1129298 1129306 1130170 1130175) (-766 "OSI.spad" 1128773 1128781 1129288 1129293) (-765 "OSGROUP.spad" 1128691 1128699 1128763 1128768) (-764 "ORTHPOL.spad" 1127202 1127212 1128634 1128639) (-763 "OREUP.spad" 1126696 1126724 1126923 1126962) (-762 "ORESUP.spad" 1126038 1126062 1126417 1126456) (-761 "OREPCTO.spad" 1123927 1123939 1125958 1125963) (-760 "OREPCAT.spad" 1118114 1118124 1123883 1123922) (-759 "OREPCAT.spad" 1112191 1112203 1117962 1117967) (-758 "ORDTYPE.spad" 1111428 1111436 1112181 1112186) (-757 "ORDTYPE.spad" 1110663 1110673 1111418 1111423) (-756 "ORDSTRCT.spad" 1110449 1110464 1110612 1110617) (-755 "ORDSET.spad" 1110149 1110157 1110439 1110444) (-754 "ORDRING.spad" 1109966 1109974 1110129 1110144) (-753 "ORDMON.spad" 1109821 1109829 1109956 1109961) (-752 "ORDFUNS.spad" 1108953 1108969 1109811 1109816) (-751 "ORDFIN.spad" 1108773 1108781 1108943 1108948) (-750 "ORDCOMP2.spad" 1108066 1108078 1108763 1108768) (-749 "ORDCOMP.spad" 1106592 1106602 1107674 1107703) (-748 "OPSIG.spad" 1106254 1106262 1106582 1106587) (-747 "OPQUERY.spad" 1105835 1105843 1106244 1106249) (-746 "OPERCAT.spad" 1105301 1105311 1105825 1105830) (-745 "OPERCAT.spad" 1104765 1104777 1105291 1105296) (-744 "OP.spad" 1104507 1104517 1104587 1104654) (-743 "ONECOMP2.spad" 1103931 1103943 1104497 1104502) (-742 "ONECOMP.spad" 1102737 1102747 1103539 1103568) (-741 "OMSAGG.spad" 1102525 1102535 1102693 1102732) (-740 "OMLO.spad" 1101958 1101970 1102411 1102450) (-739 "OINTDOM.spad" 1101721 1101729 1101884 1101953) (-738 "OFMONOID.spad" 1099860 1099870 1101677 1101682) (-737 "ODVAR.spad" 1099121 1099131 1099850 1099855) (-736 "ODR.spad" 1098765 1098791 1098933 1099082) (-735 "ODPOL.spad" 1096413 1096423 1096753 1096880) (-734 "ODP.spad" 1086050 1086070 1086423 1086520) (-733 "ODETOOLS.spad" 1084699 1084718 1086040 1086045) (-732 "ODESYS.spad" 1082393 1082410 1084689 1084694) (-731 "ODERTRIC.spad" 1078426 1078443 1082350 1082355) (-730 "ODERED.spad" 1077825 1077849 1078416 1078421) (-729 "ODERAT.spad" 1075458 1075475 1077815 1077820) (-728 "ODEPRRIC.spad" 1072551 1072573 1075448 1075453) (-727 "ODEPRIM.spad" 1069949 1069971 1072541 1072546) (-726 "ODEPAL.spad" 1069335 1069359 1069939 1069944) (-725 "ODEINT.spad" 1068770 1068786 1069325 1069330) (-724 "ODEEF.spad" 1064265 1064281 1068760 1068765) (-723 "ODECONST.spad" 1063810 1063828 1064255 1064260) (-722 "OCTCT2.spad" 1063451 1063469 1063800 1063805) (-721 "OCT.spad" 1061766 1061776 1062480 1062519) (-720 "OCAMON.spad" 1061614 1061622 1061756 1061761) (-719 "OC.spad" 1059410 1059420 1061570 1061609) (-718 "OC.spad" 1056945 1056957 1059107 1059112) (-717 "OASGP.spad" 1056760 1056768 1056935 1056940) (-716 "OAMONS.spad" 1056282 1056290 1056750 1056755) (-715 "OAMON.spad" 1056040 1056048 1056272 1056277) (-714 "OAMON.spad" 1055796 1055806 1056030 1056035) (-713 "OAGROUP.spad" 1055334 1055342 1055786 1055791) (-712 "OAGROUP.spad" 1054870 1054880 1055324 1055329) (-711 "NUMTUBE.spad" 1054461 1054477 1054860 1054865) (-710 "NUMQUAD.spad" 1042437 1042445 1054451 1054456) (-709 "NUMODE.spad" 1033789 1033797 1042427 1042432) (-708 "NUMFMT.spad" 1032629 1032637 1033779 1033784) (-707 "NUMERIC.spad" 1024744 1024754 1032435 1032440) (-706 "NTSCAT.spad" 1023252 1023268 1024712 1024739) (-705 "NTPOLFN.spad" 1022829 1022839 1023195 1023200) (-704 "NSUP2.spad" 1022221 1022233 1022819 1022824) (-703 "NSUP.spad" 1015658 1015668 1020078 1020231) (-702 "NSMP.spad" 1012570 1012589 1012862 1012989) (-701 "NREP.spad" 1010972 1010986 1012560 1012565) (-700 "NPCOEF.spad" 1010218 1010238 1010962 1010967) (-699 "NORMRETR.spad" 1009816 1009855 1010208 1010213) (-698 "NORMPK.spad" 1007758 1007777 1009806 1009811) (-697 "NORMMA.spad" 1007446 1007472 1007748 1007753) (-696 "NONE1.spad" 1007122 1007132 1007436 1007441) (-695 "NONE.spad" 1006863 1006871 1007112 1007117) (-694 "NODE1.spad" 1006350 1006366 1006853 1006858) (-693 "NNI.spad" 1005245 1005253 1006324 1006345) (-692 "NLINSOL.spad" 1003871 1003881 1005235 1005240) (-691 "NFINTBAS.spad" 1001431 1001448 1003861 1003866) (-690 "NETCLT.spad" 1001405 1001416 1001421 1001426) (-689 "NCODIV.spad" 999629 999645 1001395 1001400) (-688 "NCNTFRAC.spad" 999271 999285 999619 999624) (-687 "NCEP.spad" 997437 997451 999261 999266) (-686 "NASRING.spad" 997041 997049 997427 997432) (-685 "NASRING.spad" 996643 996653 997031 997036) (-684 "NARNG.spad" 996043 996051 996633 996638) (-683 "NARNG.spad" 995441 995451 996033 996038) (-682 "NAALG.spad" 995006 995016 995409 995436) (-681 "NAALG.spad" 994591 994603 994996 995001) (-680 "MULTSQFR.spad" 991549 991566 994581 994586) (-679 "MULTFACT.spad" 990932 990949 991539 991544) (-678 "MTSCAT.spad" 989026 989047 990830 990927) (-677 "MTHING.spad" 988685 988695 989016 989021) (-676 "MSYSCMD.spad" 988119 988127 988675 988680) (-675 "MSETAGG.spad" 987964 987974 988087 988114) (-674 "MSET.spad" 985910 985920 987658 987697) (-673 "MRING.spad" 982887 982899 985618 985685) (-672 "MRF2.spad" 982449 982463 982877 982882) (-671 "MRATFAC.spad" 981995 982012 982439 982444) (-670 "MPRFF.spad" 980035 980054 981985 981990) (-669 "MPOLY.spad" 977839 977854 978198 978325) (-668 "MPCPF.spad" 977103 977122 977829 977834) (-667 "MPC3.spad" 976920 976960 977093 977098) (-666 "MPC2.spad" 976574 976607 976910 976915) (-665 "MONOTOOL.spad" 974925 974942 976564 976569) (-664 "catdef.spad" 974358 974369 974579 974920) (-663 "catdef.spad" 973756 973767 974012 974353) (-662 "MONOID.spad" 973077 973085 973746 973751) (-661 "MONOID.spad" 972396 972406 973067 973072) (-660 "MONOGEN.spad" 971144 971157 972256 972391) (-659 "MONOGEN.spad" 969914 969929 971028 971033) (-658 "MONADWU.spad" 967994 968002 969904 969909) (-657 "MONADWU.spad" 966072 966082 967984 967989) (-656 "MONAD.spad" 965232 965240 966062 966067) (-655 "MONAD.spad" 964390 964400 965222 965227) (-654 "MOEBIUS.spad" 963126 963140 964370 964385) (-653 "MODULE.spad" 962996 963006 963094 963121) (-652 "MODULE.spad" 962886 962898 962986 962991) (-651 "MODRING.spad" 962221 962260 962866 962881) (-650 "MODOP.spad" 960878 960890 962043 962110) (-649 "MODMONOM.spad" 960609 960627 960868 960873) (-648 "MODMON.spad" 957679 957691 958394 958547) (-647 "MODFIELD.spad" 957041 957080 957581 957674) (-646 "MMLFORM.spad" 955901 955909 957031 957036) (-645 "MMAP.spad" 955643 955677 955891 955896) (-644 "MLO.spad" 954102 954112 955599 955638) (-643 "MLIFT.spad" 952714 952731 954092 954097) (-642 "MKUCFUNC.spad" 952249 952267 952704 952709) (-641 "MKRECORD.spad" 951837 951850 952239 952244) (-640 "MKFUNC.spad" 951244 951254 951827 951832) (-639 "MKFLCFN.spad" 950212 950222 951234 951239) (-638 "MKBCFUNC.spad" 949707 949725 950202 950207) (-637 "MHROWRED.spad" 948218 948228 949697 949702) (-636 "MFINFACT.spad" 947618 947640 948208 948213) (-635 "MESH.spad" 945413 945421 947608 947613) (-634 "MDDFACT.spad" 943632 943642 945403 945408) (-633 "MDAGG.spad" 942923 942933 943612 943627) (-632 "MCDEN.spad" 942133 942145 942913 942918) (-631 "MAYBE.spad" 941433 941444 942123 942128) (-630 "MATSTOR.spad" 938749 938759 941423 941428) (-629 "MATRIX.spad" 937528 937538 938012 938039) (-628 "MATLIN.spad" 934896 934920 937412 937417) (-627 "MATCAT2.spad" 934178 934226 934886 934891) (-626 "MATCAT.spad" 925874 925896 934146 934173) (-625 "MATCAT.spad" 917442 917466 925716 925721) (-624 "MAPPKG3.spad" 916357 916371 917432 917437) (-623 "MAPPKG2.spad" 915695 915707 916347 916352) (-622 "MAPPKG1.spad" 914523 914533 915685 915690) (-621 "MAPPAST.spad" 913862 913870 914513 914518) (-620 "MAPHACK3.spad" 913674 913688 913852 913857) (-619 "MAPHACK2.spad" 913443 913455 913664 913669) (-618 "MAPHACK1.spad" 913087 913097 913433 913438) (-617 "MAGMA.spad" 910893 910910 913077 913082) (-616 "MACROAST.spad" 910488 910496 910883 910888) (-615 "LZSTAGG.spad" 907742 907752 910478 910483) (-614 "LZSTAGG.spad" 904994 905006 907732 907737) (-613 "LWORD.spad" 901739 901756 904984 904989) (-612 "LSTAST.spad" 901523 901531 901729 901734) (-611 "LSQM.spad" 899801 899815 900195 900246) (-610 "LSPP.spad" 899336 899353 899791 899796) (-609 "LSMP1.spad" 897179 897193 899326 899331) (-608 "LSMP.spad" 896036 896064 897169 897174) (-607 "LSAGG.spad" 895705 895715 896004 896031) (-606 "LSAGG.spad" 895394 895406 895695 895700) (-605 "LPOLY.spad" 894356 894375 895250 895319) (-604 "LPEFRAC.spad" 893627 893637 894346 894351) (-603 "LOGIC.spad" 893229 893237 893617 893622) (-602 "LOGIC.spad" 892829 892839 893219 893224) (-601 "LODOOPS.spad" 891759 891771 892819 892824) (-600 "LODOF.spad" 890805 890822 891716 891721) (-599 "LODOCAT.spad" 889471 889481 890761 890800) (-598 "LODOCAT.spad" 888135 888147 889427 889432) (-597 "LODO2.spad" 887449 887461 887856 887895) (-596 "LODO1.spad" 886890 886900 887170 887209) (-595 "LODO.spad" 886315 886331 886611 886650) (-594 "LODEEF.spad" 885117 885135 886305 886310) (-593 "LO.spad" 884518 884532 885051 885078) (-592 "LNAGG.spad" 880705 880715 884508 884513) (-591 "LNAGG.spad" 876856 876868 880661 880666) (-590 "LMOPS.spad" 873624 873641 876846 876851) (-589 "LMODULE.spad" 873408 873418 873614 873619) (-588 "LMDICT.spad" 872789 872799 873037 873064) (-587 "LLINSET.spad" 872496 872506 872779 872784) (-586 "LITERAL.spad" 872402 872413 872486 872491) (-585 "LIST3.spad" 871713 871727 872392 872397) (-584 "LIST2MAP.spad" 868640 868652 871703 871708) (-583 "LIST2.spad" 867342 867354 868630 868635) (-582 "LIST.spad" 865224 865234 866567 866594) (-581 "LINSET.spad" 865003 865013 865214 865219) (-580 "LINFORM.spad" 864466 864478 864971 864998) (-579 "LINEXP.spad" 863209 863219 864456 864461) (-578 "LINELT.spad" 862580 862592 863092 863119) (-577 "LINDEP.spad" 861429 861441 862492 862497) (-576 "LINBASIS.spad" 861065 861080 861419 861424) (-575 "LIMITRF.spad" 859012 859022 861055 861060) (-574 "LIMITPS.spad" 857922 857935 859002 859007) (-573 "LIECAT.spad" 857406 857416 857848 857917) (-572 "LIECAT.spad" 856918 856930 857362 857367) (-571 "LIE.spad" 854922 854934 856196 856338) (-570 "LIB.spad" 853093 853101 853539 853554) (-569 "LGROBP.spad" 850446 850465 853083 853088) (-568 "LFCAT.spad" 849505 849513 850436 850441) (-567 "LF.spad" 848460 848476 849495 849500) (-566 "LEXTRIPK.spad" 844083 844098 848450 848455) (-565 "LEXP.spad" 842102 842129 844063 844078) (-564 "LETAST.spad" 841801 841809 842092 842097) (-563 "LEADCDET.spad" 840207 840224 841791 841796) (-562 "LAZM3PK.spad" 838951 838973 840197 840202) (-561 "LAUPOL.spad" 837618 837631 838518 838587) (-560 "LAPLACE.spad" 837201 837217 837608 837613) (-559 "LALG.spad" 836977 836987 837181 837196) (-558 "LALG.spad" 836761 836773 836967 836972) (-557 "LA.spad" 836201 836215 836683 836722) (-556 "KVTFROM.spad" 835944 835954 836191 836196) (-555 "KTVLOGIC.spad" 835488 835496 835934 835939) (-554 "KRCFROM.spad" 835234 835244 835478 835483) (-553 "KOVACIC.spad" 833965 833982 835224 835229) (-552 "KONVERT.spad" 833687 833697 833955 833960) (-551 "KOERCE.spad" 833424 833434 833677 833682) (-550 "KERNEL2.spad" 833127 833139 833414 833419) (-549 "KERNEL.spad" 831847 831857 832976 832981) (-548 "KDAGG.spad" 830956 830978 831827 831842) (-547 "KDAGG.spad" 830073 830097 830946 830951) (-546 "KAFILE.spad" 828963 828979 829198 829225) (-545 "JVMOP.spad" 828876 828884 828953 828958) (-544 "JVMMDACC.spad" 827930 827938 828866 828871) (-543 "JVMFDACC.spad" 827246 827254 827920 827925) (-542 "JVMCSTTG.spad" 825975 825983 827236 827241) (-541 "JVMCFACC.spad" 825421 825429 825965 825970) (-540 "JVMBCODE.spad" 825332 825340 825411 825416) (-539 "JORDAN.spad" 823149 823161 824610 824752) (-538 "JOINAST.spad" 822851 822859 823139 823144) (-537 "IXAGG.spad" 820984 821008 822841 822846) (-536 "IXAGG.spad" 818972 818998 820831 820836) (-535 "ITUPLE.spad" 818148 818158 818962 818967) (-534 "ITRIGMNP.spad" 816995 817014 818138 818143) (-533 "ITFUN3.spad" 816501 816515 816985 816990) (-532 "ITFUN2.spad" 816245 816257 816491 816496) (-531 "ITFORM.spad" 815600 815608 816235 816240) (-530 "ITAYLOR.spad" 813594 813609 815464 815561) (-529 "ISUPS.spad" 806043 806058 812580 812677) (-528 "ISUMP.spad" 805544 805560 806033 806038) (-527 "ISAST.spad" 805263 805271 805534 805539) (-526 "IRURPK.spad" 803980 803999 805253 805258) (-525 "IRSN.spad" 801984 801992 803970 803975) (-524 "IRRF2F.spad" 800477 800487 801940 801945) (-523 "IRREDFFX.spad" 800078 800089 800467 800472) (-522 "IROOT.spad" 798417 798427 800068 800073) (-521 "IRFORM.spad" 797741 797749 798407 798412) (-520 "IR2F.spad" 796955 796971 797731 797736) (-519 "IR2.spad" 795983 795999 796945 796950) (-518 "IR.spad" 793819 793833 795865 795892) (-517 "IPRNTPK.spad" 793579 793587 793809 793814) (-516 "IPF.spad" 793144 793156 793384 793477) (-515 "IPADIC.spad" 792913 792939 793070 793139) (-514 "IP4ADDR.spad" 792470 792478 792903 792908) (-513 "IOMODE.spad" 791992 792000 792460 792465) (-512 "IOBFILE.spad" 791377 791385 791982 791987) (-511 "IOBCON.spad" 791242 791250 791367 791372) (-510 "INVLAPLA.spad" 790891 790907 791232 791237) (-509 "INTTR.spad" 784285 784302 790881 790886) (-508 "INTTOOLS.spad" 782093 782109 783912 783917) (-507 "INTSLPE.spad" 781421 781429 782083 782088) (-506 "INTRVL.spad" 780987 780997 781335 781416) (-505 "INTRF.spad" 779419 779433 780977 780982) (-504 "INTRET.spad" 778851 778861 779409 779414) (-503 "INTRAT.spad" 777586 777603 778841 778846) (-502 "INTPM.spad" 776049 776065 777307 777312) (-501 "INTPAF.spad" 773925 773943 775978 775983) (-500 "INTHERTR.spad" 773199 773216 773915 773920) (-499 "INTHERAL.spad" 772869 772893 773189 773194) (-498 "INTHEORY.spad" 769308 769316 772859 772864) (-497 "INTG0.spad" 763072 763090 769237 769242) (-496 "INTFACT.spad" 762139 762149 763062 763067) (-495 "INTEF.spad" 760550 760566 762129 762134) (-494 "INTDOM.spad" 759173 759181 760476 760545) (-493 "INTDOM.spad" 757858 757868 759163 759168) (-492 "INTCAT.spad" 756125 756135 757772 757853) (-491 "INTBIT.spad" 755632 755640 756115 756120) (-490 "INTALG.spad" 754820 754847 755622 755627) (-489 "INTAF.spad" 754320 754336 754810 754815) (-488 "INTABL.spad" 752702 752733 752865 752892) (-487 "INT8.spad" 752582 752590 752692 752697) (-486 "INT64.spad" 752461 752469 752572 752577) (-485 "INT32.spad" 752340 752348 752451 752456) (-484 "INT16.spad" 752219 752227 752330 752335) (-483 "INT.spad" 751745 751753 752085 752214) (-482 "INS.spad" 749248 749256 751647 751740) (-481 "INS.spad" 746837 746847 749238 749243) (-480 "INPSIGN.spad" 746307 746320 746827 746832) (-479 "INPRODPF.spad" 745403 745422 746297 746302) (-478 "INPRODFF.spad" 744491 744515 745393 745398) (-477 "INNMFACT.spad" 743466 743483 744481 744486) (-476 "INMODGCD.spad" 742970 743000 743456 743461) (-475 "INFSP.spad" 741267 741289 742960 742965) (-474 "INFPROD0.spad" 740347 740366 741257 741262) (-473 "INFORM1.spad" 739972 739982 740337 740342) (-472 "INFORM.spad" 737183 737191 739962 739967) (-471 "INFINITY.spad" 736735 736743 737173 737178) (-470 "INETCLTS.spad" 736712 736720 736725 736730) (-469 "INEP.spad" 735258 735280 736702 736707) (-468 "INDE.spad" 734907 734924 735168 735173) (-467 "INCRMAPS.spad" 734344 734354 734897 734902) (-466 "INBFILE.spad" 733440 733448 734334 734339) (-465 "INBFF.spad" 729290 729301 733430 733435) (-464 "INBCON.spad" 727556 727564 729280 729285) (-463 "INBCON.spad" 725820 725830 727546 727551) (-462 "INAST.spad" 725481 725489 725810 725815) (-461 "IMPTAST.spad" 725189 725197 725471 725476) (-460 "IMATQF.spad" 724283 724327 725145 725150) (-459 "IMATLIN.spad" 722904 722928 724239 724244) (-458 "IFF.spad" 722317 722333 722588 722681) (-457 "IFAST.spad" 721931 721939 722307 722312) (-456 "IFARRAY.spad" 719458 719473 721156 721183) (-455 "IFAMON.spad" 719320 719337 719414 719419) (-454 "IEVALAB.spad" 718733 718745 719310 719315) (-453 "IEVALAB.spad" 718144 718158 718723 718728) (-452 "indexedp.spad" 717700 717712 718134 718139) (-451 "IDPOAMS.spad" 717378 717390 717612 717617) (-450 "IDPOAM.spad" 717020 717032 717290 717295) (-449 "IDPO.spad" 716434 716446 716932 716937) (-448 "IDPC.spad" 715149 715161 716424 716429) (-447 "IDPAM.spad" 714816 714828 715061 715066) (-446 "IDPAG.spad" 714485 714497 714728 714733) (-445 "IDENT.spad" 714137 714145 714475 714480) (-444 "catdef.spad" 713908 713919 714020 714132) (-443 "IDECOMP.spad" 711147 711165 713898 713903) (-442 "IDEAL.spad" 706109 706148 711095 711100) (-441 "ICDEN.spad" 705322 705338 706099 706104) (-440 "ICARD.spad" 704715 704723 705312 705317) (-439 "IBPTOOLS.spad" 703322 703339 704705 704710) (-438 "IBITS.spad" 702835 702848 702968 702995) (-437 "IBATOOL.spad" 699820 699839 702825 702830) (-436 "IBACHIN.spad" 698327 698342 699810 699815) (-435 "array2.spad" 697812 697834 697999 698026) (-434 "IARRAY1.spad" 696891 696906 697037 697064) (-433 "IAN.spad" 695273 695281 696722 696815) (-432 "IALGFACT.spad" 694884 694917 695263 695268) (-431 "HYPCAT.spad" 694308 694316 694874 694879) (-430 "HYPCAT.spad" 693730 693740 694298 694303) (-429 "HOSTNAME.spad" 693546 693554 693720 693725) (-428 "HOMOTOP.spad" 693289 693299 693536 693541) (-427 "HOAGG.spad" 690571 690581 693279 693284) (-426 "HOAGG.spad" 687603 687615 690313 690318) (-425 "HEXADEC.spad" 685828 685836 686193 686286) (-424 "HEUGCD.spad" 684919 684930 685818 685823) (-423 "HELLFDIV.spad" 684525 684549 684909 684914) (-422 "HEAP.spad" 683982 683992 684197 684224) (-421 "HEADAST.spad" 683523 683531 683972 683977) (-420 "HDP.spad" 673156 673172 673533 673630) (-419 "HDMP.spad" 670703 670718 671319 671446) (-418 "HB.spad" 668978 668986 670693 670698) (-417 "HASHTBL.spad" 667312 667343 667523 667550) (-416 "HASAST.spad" 667028 667036 667302 667307) (-415 "HACKPI.spad" 666519 666527 666930 667023) (-414 "GTSET.spad" 665446 665462 666153 666180) (-413 "GSTBL.spad" 663829 663864 664003 664018) (-412 "GSERIES.spad" 661201 661228 662020 662169) (-411 "GROUP.spad" 660474 660482 661181 661196) (-410 "GROUP.spad" 659755 659765 660464 660469) (-409 "GROEBSOL.spad" 658249 658270 659745 659750) (-408 "GRMOD.spad" 656830 656842 658239 658244) (-407 "GRMOD.spad" 655409 655423 656820 656825) (-406 "GRIMAGE.spad" 648322 648330 655399 655404) (-405 "GRDEF.spad" 646701 646709 648312 648317) (-404 "GRAY.spad" 645172 645180 646691 646696) (-403 "GRALG.spad" 644267 644279 645162 645167) (-402 "GRALG.spad" 643360 643374 644257 644262) (-401 "GPOLSET.spad" 642818 642841 643030 643057) (-400 "GOSPER.spad" 642095 642113 642808 642813) (-399 "GMODPOL.spad" 641243 641270 642063 642090) (-398 "GHENSEL.spad" 640326 640340 641233 641238) (-397 "GENUPS.spad" 636619 636632 640316 640321) (-396 "GENUFACT.spad" 636196 636206 636609 636614) (-395 "GENPGCD.spad" 635798 635815 636186 636191) (-394 "GENMFACT.spad" 635250 635269 635788 635793) (-393 "GENEEZ.spad" 633209 633222 635240 635245) (-392 "GDMP.spad" 630598 630615 631372 631499) (-391 "GCNAALG.spad" 624521 624548 630392 630459) (-390 "GCDDOM.spad" 623713 623721 624447 624516) (-389 "GCDDOM.spad" 622967 622977 623703 623708) (-388 "GBINTERN.spad" 618987 619025 622957 622962) (-387 "GBF.spad" 614770 614808 618977 618982) (-386 "GBEUCLID.spad" 612652 612690 614760 614765) (-385 "GB.spad" 610178 610216 612608 612613) (-384 "GAUSSFAC.spad" 609491 609499 610168 610173) (-383 "GALUTIL.spad" 607817 607827 609447 609452) (-382 "GALPOLYU.spad" 606271 606284 607807 607812) (-381 "GALFACTU.spad" 604484 604503 606261 606266) (-380 "GALFACT.spad" 594697 594708 604474 604479) (-379 "FUNDESC.spad" 594375 594383 594687 594692) (-378 "FUNCTION.spad" 594224 594236 594365 594370) (-377 "FT.spad" 592524 592532 594214 594219) (-376 "FSUPFACT.spad" 591438 591457 592474 592479) (-375 "FST.spad" 589524 589532 591428 591433) (-374 "FSRED.spad" 589004 589020 589514 589519) (-373 "FSPRMELT.spad" 587870 587886 588961 588966) (-372 "FSPECF.spad" 585961 585977 587860 587865) (-371 "FSINT.spad" 585621 585637 585951 585956) (-370 "FSERIES.spad" 584812 584824 585441 585540) (-369 "FSCINT.spad" 584129 584145 584802 584807) (-368 "FSAGG2.spad" 582864 582880 584119 584124) (-367 "FSAGG.spad" 581981 581991 582820 582859) (-366 "FSAGG.spad" 581060 581072 581901 581906) (-365 "FS2UPS.spad" 575575 575609 581050 581055) (-364 "FS2EXPXP.spad" 574716 574739 575565 575570) (-363 "FS2.spad" 574371 574387 574706 574711) (-362 "FS.spad" 568643 568653 574150 574366) (-361 "FS.spad" 562717 562729 568226 568231) (-360 "FRUTIL.spad" 561671 561681 562707 562712) (-359 "FRNAALG.spad" 556948 556958 561613 561666) (-358 "FRNAALG.spad" 552237 552249 556904 556909) (-357 "FRNAAF2.spad" 551685 551703 552227 552232) (-356 "FRMOD.spad" 551093 551123 551614 551619) (-355 "FRIDEAL2.spad" 550697 550729 551083 551088) (-354 "FRIDEAL.spad" 549922 549943 550677 550692) (-353 "FRETRCT.spad" 549441 549451 549912 549917) (-352 "FRETRCT.spad" 548867 548879 549340 549345) (-351 "FRAMALG.spad" 547247 547260 548823 548862) (-350 "FRAMALG.spad" 545659 545674 547237 547242) (-349 "FRAC2.spad" 545264 545276 545649 545654) (-348 "FRAC.spad" 543251 543261 543638 543811) (-347 "FR2.spad" 542587 542599 543241 543246) (-346 "FR.spad" 536375 536385 541648 541717) (-345 "FPS.spad" 533214 533222 536265 536370) (-344 "FPS.spad" 530081 530091 533134 533139) (-343 "FPC.spad" 529127 529135 529983 530076) (-342 "FPC.spad" 528259 528269 529117 529122) (-341 "FPATMAB.spad" 528021 528031 528249 528254) (-340 "FPARFRAC.spad" 526863 526880 528011 528016) (-339 "FORDER.spad" 526554 526578 526853 526858) (-338 "FNLA.spad" 525978 526000 526522 526549) (-337 "FNCAT.spad" 524573 524581 525968 525973) (-336 "FNAME.spad" 524465 524473 524563 524568) (-335 "FMONOID.spad" 524146 524156 524421 524426) (-334 "FMONCAT.spad" 521315 521325 524136 524141) (-333 "FMCAT.spad" 518991 519009 521283 521310) (-332 "FM1.spad" 518356 518368 518925 518952) (-331 "FM.spad" 517971 517983 518210 518237) (-330 "FLOATRP.spad" 515714 515728 517961 517966) (-329 "FLOATCP.spad" 513153 513167 515704 515709) (-328 "FLOAT.spad" 510244 510252 513019 513148) (-327 "FLINEXP.spad" 509966 509976 510234 510239) (-326 "FLINEXP.spad" 509645 509657 509915 509920) (-325 "FLASORT.spad" 508971 508983 509635 509640) (-324 "FLALG.spad" 506641 506660 508897 508966) (-323 "FLAGG2.spad" 505358 505374 506631 506636) (-322 "FLAGG.spad" 502424 502434 505338 505353) (-321 "FLAGG.spad" 499391 499403 502307 502312) (-320 "FINRALG.spad" 497476 497489 499347 499386) (-319 "FINRALG.spad" 495487 495502 497360 497365) (-318 "FINITE.spad" 494639 494647 495477 495482) (-317 "FINITE.spad" 493789 493799 494629 494634) (-316 "FINAALG.spad" 482974 482984 493731 493784) (-315 "FINAALG.spad" 472171 472183 482930 482935) (-314 "FILECAT.spad" 470705 470722 472161 472166) (-313 "FILE.spad" 470288 470298 470695 470700) (-312 "FIELD.spad" 469694 469702 470190 470283) (-311 "FIELD.spad" 469186 469196 469684 469689) (-310 "FGROUP.spad" 467849 467859 469166 469181) (-309 "FGLMICPK.spad" 466644 466659 467839 467844) (-308 "FFX.spad" 466030 466045 466363 466456) (-307 "FFSLPE.spad" 465541 465562 466020 466025) (-306 "FFPOLY2.spad" 464601 464618 465531 465536) (-305 "FFPOLY.spad" 455943 455954 464591 464596) (-304 "FFP.spad" 455351 455371 455662 455755) (-303 "FFNBX.spad" 453874 453894 455070 455163) (-302 "FFNBP.spad" 452398 452415 453593 453686) (-301 "FFNB.spad" 450866 450887 452082 452175) (-300 "FFINTBAS.spad" 448380 448399 450856 450861) (-299 "FFIELDC.spad" 445965 445973 448282 448375) (-298 "FFIELDC.spad" 443636 443646 445955 445960) (-297 "FFHOM.spad" 442408 442425 443626 443631) (-296 "FFF.spad" 439851 439862 442398 442403) (-295 "FFCGX.spad" 438709 438729 439570 439663) (-294 "FFCGP.spad" 437609 437629 438428 438521) (-293 "FFCG.spad" 436404 436425 437293 437386) (-292 "FFCAT2.spad" 436151 436191 436394 436399) (-291 "FFCAT.spad" 429316 429338 435990 436146) (-290 "FFCAT.spad" 422560 422584 429236 429241) (-289 "FF.spad" 422011 422027 422244 422337) (-288 "FEVALAB.spad" 421719 421729 422001 422006) (-287 "FEVALAB.spad" 421203 421215 421487 421492) (-286 "FDIVCAT.spad" 419299 419323 421193 421198) (-285 "FDIVCAT.spad" 417393 417419 419289 419294) (-284 "FDIV2.spad" 417049 417089 417383 417388) (-283 "FDIV.spad" 416507 416531 417039 417044) (-282 "FCTRDATA.spad" 415515 415523 416497 416502) (-281 "FCOMP.spad" 414894 414904 415505 415510) (-280 "FAXF.spad" 407929 407943 414796 414889) (-279 "FAXF.spad" 401016 401032 407885 407890) (-278 "FARRAY.spad" 399208 399218 400241 400268) (-277 "FAMR.spad" 397352 397364 399106 399203) (-276 "FAMR.spad" 395480 395494 397236 397241) (-275 "FAMONOID.spad" 395164 395174 395434 395439) (-274 "FAMONC.spad" 393484 393496 395154 395159) (-273 "FAGROUP.spad" 393124 393134 393380 393407) (-272 "FACUTIL.spad" 391336 391353 393114 393119) (-271 "FACTFUNC.spad" 390538 390548 391326 391331) (-270 "EXPUPXS.spad" 387430 387453 388729 388878) (-269 "EXPRTUBE.spad" 384718 384726 387420 387425) (-268 "EXPRODE.spad" 381886 381902 384708 384713) (-267 "EXPR2UPS.spad" 378008 378021 381876 381881) (-266 "EXPR2.spad" 377713 377725 377998 378003) (-265 "EXPR.spad" 373358 373368 374072 374359) (-264 "EXPEXPAN.spad" 370303 370328 370935 371028) (-263 "EXITAST.spad" 370039 370047 370293 370298) (-262 "EXIT.spad" 369710 369718 370029 370034) (-261 "EVALCYC.spad" 369170 369184 369700 369705) (-260 "EVALAB.spad" 368750 368760 369160 369165) (-259 "EVALAB.spad" 368328 368340 368740 368745) (-258 "EUCDOM.spad" 365918 365926 368254 368323) (-257 "EUCDOM.spad" 363570 363580 365908 365913) (-256 "ES2.spad" 363083 363099 363560 363565) (-255 "ES1.spad" 362653 362669 363073 363078) (-254 "ES.spad" 355524 355532 362643 362648) (-253 "ES.spad" 348316 348326 355437 355442) (-252 "ERROR.spad" 345643 345651 348306 348311) (-251 "EQTBL.spad" 343979 344001 344188 344215) (-250 "EQ2.spad" 343697 343709 343969 343974) (-249 "EQ.spad" 338603 338613 341398 341504) (-248 "EP.spad" 334929 334939 338593 338598) (-247 "ENV.spad" 333607 333615 334919 334924) (-246 "ENTIRER.spad" 333275 333283 333551 333602) (-245 "ENTIRER.spad" 332987 332997 333265 333270) (-244 "EMR.spad" 332275 332316 332913 332982) (-243 "ELTAGG.spad" 330529 330548 332265 332270) (-242 "ELTAGG.spad" 328747 328768 330485 330490) (-241 "ELTAB.spad" 328222 328235 328737 328742) (-240 "ELFUTS.spad" 327657 327676 328212 328217) (-239 "ELEMFUN.spad" 327346 327354 327647 327652) (-238 "ELEMFUN.spad" 327033 327043 327336 327341) (-237 "ELAGG.spad" 325004 325014 327013 327028) (-236 "ELAGG.spad" 322912 322924 324923 324928) (-235 "ELABOR.spad" 322258 322266 322902 322907) (-234 "ELABEXPR.spad" 321190 321198 322248 322253) (-233 "EFUPXS.spad" 317966 317996 321146 321151) (-232 "EFULS.spad" 314802 314825 317922 317927) (-231 "EFSTRUC.spad" 312817 312833 314792 314797) (-230 "EF.spad" 307593 307609 312807 312812) (-229 "EAB.spad" 305893 305901 307583 307588) (-228 "DVARCAT.spad" 302899 302909 305883 305888) (-227 "DVARCAT.spad" 299903 299915 302889 302894) (-226 "DSMP.spad" 297636 297650 297941 298068) (-225 "DSEXT.spad" 296938 296948 297626 297631) (-224 "DSEXT.spad" 296160 296172 296850 296855) (-223 "DROPT1.spad" 295825 295835 296150 296155) (-222 "DROPT0.spad" 290690 290698 295815 295820) (-221 "DROPT.spad" 284649 284657 290680 290685) (-220 "DRAWPT.spad" 282822 282830 284639 284644) (-219 "DRAWHACK.spad" 282130 282140 282812 282817) (-218 "DRAWCX.spad" 279608 279616 282120 282125) (-217 "DRAWCURV.spad" 279155 279170 279598 279603) (-216 "DRAWCFUN.spad" 268687 268695 279145 279150) (-215 "DRAW.spad" 261563 261576 268677 268682) (-214 "DQAGG.spad" 259741 259751 261531 261558) (-213 "DPOLCAT.spad" 255098 255114 259609 259736) (-212 "DPOLCAT.spad" 250541 250559 255054 255059) (-211 "DPMO.spad" 243244 243260 243382 243588) (-210 "DPMM.spad" 235960 235978 236085 236291) (-209 "DOMTMPLT.spad" 235731 235739 235950 235955) (-208 "DOMCTOR.spad" 235486 235494 235721 235726) (-207 "DOMAIN.spad" 234597 234605 235476 235481) (-206 "DMP.spad" 232190 232205 232760 232887) (-205 "DMEXT.spad" 232057 232067 232158 232185) (-204 "DLP.spad" 231417 231427 232047 232052) (-203 "DLIST.spad" 230038 230048 230642 230669) (-202 "DLAGG.spad" 228455 228465 230028 230033) (-201 "DIVRING.spad" 227997 228005 228399 228450) (-200 "DIVRING.spad" 227583 227593 227987 227992) (-199 "DISPLAY.spad" 225773 225781 227573 227578) (-198 "DIRPROD2.spad" 224591 224609 225763 225768) (-197 "DIRPROD.spad" 213961 213977 214601 214698) (-196 "DIRPCAT.spad" 213156 213172 213859 213956) (-195 "DIRPCAT.spad" 211977 211995 212682 212687) (-194 "DIOSP.spad" 210802 210810 211967 211972) (-193 "DIOPS.spad" 209798 209808 210782 210797) (-192 "DIOPS.spad" 208768 208780 209754 209759) (-191 "catdef.spad" 208626 208634 208758 208763) (-190 "DIFRING.spad" 208464 208472 208606 208621) (-189 "DIFFSPC.spad" 208043 208051 208454 208459) (-188 "DIFFSPC.spad" 207620 207630 208033 208038) (-187 "DIFFMOD.spad" 207109 207119 207588 207615) (-186 "DIFFDOM.spad" 206274 206285 207099 207104) (-185 "DIFFDOM.spad" 205437 205450 206264 206269) (-184 "DIFEXT.spad" 205256 205266 205417 205432) (-183 "DIAGG.spad" 204886 204896 205236 205251) (-182 "DIAGG.spad" 204524 204536 204876 204881) (-181 "DHMATRIX.spad" 202901 202911 204046 204073) (-180 "DFSFUN.spad" 196541 196549 202891 202896) (-179 "DFLOAT.spad" 193148 193156 196431 196536) (-178 "DFINTTLS.spad" 191379 191395 193138 193143) (-177 "DERHAM.spad" 189293 189325 191359 191374) (-176 "DEQUEUE.spad" 188682 188692 188965 188992) (-175 "DEGRED.spad" 188299 188313 188672 188677) (-174 "DEFINTRF.spad" 185881 185891 188289 188294) (-173 "DEFINTEF.spad" 184419 184435 185871 185876) (-172 "DEFAST.spad" 183803 183811 184409 184414) (-171 "DECIMAL.spad" 182032 182040 182393 182486) (-170 "DDFACT.spad" 179853 179870 182022 182027) (-169 "DBLRESP.spad" 179453 179477 179843 179848) (-168 "DBASIS.spad" 179079 179094 179443 179448) (-167 "DBASE.spad" 177743 177753 179069 179074) (-166 "DATAARY.spad" 177229 177242 177733 177738) (-165 "CYCLOTOM.spad" 176735 176743 177219 177224) (-164 "CYCLES.spad" 173527 173535 176725 176730) (-163 "CVMP.spad" 172944 172954 173517 173522) (-162 "CTRIGMNP.spad" 171444 171460 172934 172939) (-161 "CTORKIND.spad" 171047 171055 171434 171439) (-160 "CTORCAT.spad" 170288 170296 171037 171042) (-159 "CTORCAT.spad" 169527 169537 170278 170283) (-158 "CTORCALL.spad" 169116 169126 169517 169522) (-157 "CTOR.spad" 168807 168815 169106 169111) (-156 "CSTTOOLS.spad" 168052 168065 168797 168802) (-155 "CRFP.spad" 161824 161837 168042 168047) (-154 "CRCEAST.spad" 161544 161552 161814 161819) (-153 "CRAPACK.spad" 160611 160621 161534 161539) (-152 "CPMATCH.spad" 160112 160127 160533 160538) (-151 "CPIMA.spad" 159817 159836 160102 160107) (-150 "COORDSYS.spad" 154826 154836 159807 159812) (-149 "CONTOUR.spad" 154253 154261 154816 154821) (-148 "CONTFRAC.spad" 150003 150013 154155 154248) (-147 "CONDUIT.spad" 149761 149769 149993 149998) (-146 "COMRING.spad" 149435 149443 149699 149756) (-145 "COMPPROP.spad" 148953 148961 149425 149430) (-144 "COMPLPAT.spad" 148720 148735 148943 148948) (-143 "COMPLEX2.spad" 148435 148447 148710 148715) (-142 "COMPLEX.spad" 144141 144151 144385 144643) (-141 "COMPILER.spad" 143690 143698 144131 144136) (-140 "COMPFACT.spad" 143292 143306 143680 143685) (-139 "COMPCAT.spad" 141367 141377 143029 143287) (-138 "COMPCAT.spad" 139183 139195 140847 140852) (-137 "COMMUPC.spad" 138931 138949 139173 139178) (-136 "COMMONOP.spad" 138464 138472 138921 138926) (-135 "COMMAAST.spad" 138227 138235 138454 138459) (-134 "COMM.spad" 138038 138046 138217 138222) (-133 "COMBOPC.spad" 136961 136969 138028 138033) (-132 "COMBINAT.spad" 135728 135738 136951 136956) (-131 "COMBF.spad" 133150 133166 135718 135723) (-130 "COLOR.spad" 131987 131995 133140 133145) (-129 "COLONAST.spad" 131653 131661 131977 131982) (-128 "CMPLXRT.spad" 131364 131381 131643 131648) (-127 "CLLCTAST.spad" 131026 131034 131354 131359) (-126 "CLIP.spad" 127134 127142 131016 131021) (-125 "CLIF.spad" 125789 125805 127090 127129) (-124 "CLAGG.spad" 122326 122336 125779 125784) (-123 "CLAGG.spad" 118747 118759 122202 122207) (-122 "CINTSLPE.spad" 118102 118115 118737 118742) (-121 "CHVAR.spad" 116240 116262 118092 118097) (-120 "CHARZ.spad" 116155 116163 116220 116235) (-119 "CHARPOL.spad" 115681 115691 116145 116150) (-118 "CHARNZ.spad" 115443 115451 115661 115676) (-117 "CHAR.spad" 112811 112819 115433 115438) (-116 "CFCAT.spad" 112139 112147 112801 112806) (-115 "CDEN.spad" 111359 111373 112129 112134) (-114 "CCLASS.spad" 109539 109547 110801 110840) (-113 "CATEGORY.spad" 108613 108621 109529 109534) (-112 "CATCTOR.spad" 108504 108512 108603 108608) (-111 "CATAST.spad" 108130 108138 108494 108499) (-110 "CASEAST.spad" 107844 107852 108120 108125) (-109 "CARTEN2.spad" 107234 107261 107834 107839) (-108 "CARTEN.spad" 102986 103010 107224 107229) (-107 "CARD.spad" 100281 100289 102960 102981) (-106 "CAPSLAST.spad" 100063 100071 100271 100276) (-105 "CACHSET.spad" 99687 99695 100053 100058) (-104 "CABMON.spad" 99242 99250 99677 99682) (-103 "BYTEORD.spad" 98917 98925 99232 99237) (-102 "BYTEBUF.spad" 96884 96892 98170 98197) (-101 "BYTE.spad" 96359 96367 96874 96879) (-100 "BTREE.spad" 95497 95507 96031 96058) (-99 "BTOURN.spad" 94568 94577 95169 95196) (-98 "BTCAT.spad" 93961 93970 94536 94563) (-97 "BTCAT.spad" 93374 93385 93951 93956) (-96 "BTAGG.spad" 92841 92848 93342 93369) (-95 "BTAGG.spad" 92328 92337 92831 92836) (-94 "BSTREE.spad" 91135 91144 92000 92027) (-93 "BRILL.spad" 89341 89351 91125 91130) (-92 "BRAGG.spad" 88298 88307 89331 89336) (-91 "BRAGG.spad" 87219 87230 88254 88259) (-90 "BPADICRT.spad" 85279 85290 85525 85618) (-89 "BPADIC.spad" 84952 84963 85205 85274) (-88 "BOUNDZRO.spad" 84609 84625 84942 84947) (-87 "BOP1.spad" 82068 82077 84599 84604) (-86 "BOP.spad" 77211 77218 82058 82063) (-85 "BOOLEAN.spad" 76760 76767 77201 77206) (-84 "BOOLE.spad" 76411 76418 76750 76755) (-83 "BOOLE.spad" 76060 76069 76401 76406) (-82 "BMODULE.spad" 75773 75784 76028 76055) (-81 "BITS.spad" 75205 75212 75419 75446) (-80 "catdef.spad" 75088 75098 75195 75200) (-79 "catdef.spad" 74839 74849 75078 75083) (-78 "BINDING.spad" 74261 74268 74829 74834) (-77 "BINARY.spad" 72496 72503 72851 72944) (-76 "BGAGG.spad" 71702 71711 72476 72491) (-75 "BGAGG.spad" 70916 70927 71692 71697) (-74 "BEZOUT.spad" 70057 70083 70866 70871) (-73 "BBTREE.spad" 67000 67009 69729 69756) (-72 "BASTYPE.spad" 66500 66507 66990 66995) (-71 "BASTYPE.spad" 65998 66007 66490 66495) (-70 "BALFACT.spad" 65458 65470 65988 65993) (-69 "AUTOMOR.spad" 64909 64918 65438 65453) (-68 "ATTREG.spad" 61632 61639 64661 64904) (-67 "ATTRAST.spad" 61349 61356 61622 61627) (-66 "ATRIG.spad" 60819 60826 61339 61344) (-65 "ATRIG.spad" 60287 60296 60809 60814) (-64 "ASTCAT.spad" 60191 60198 60277 60282) (-63 "ASTCAT.spad" 60093 60102 60181 60186) (-62 "ASTACK.spad" 59497 59506 59765 59792) (-61 "ASSOCEQ.spad" 58331 58342 59453 59458) (-60 "ARRAY2.spad" 57854 57863 58003 58030) (-59 "ARRAY12.spad" 56567 56578 57844 57849) (-58 "ARRAY1.spad" 55446 55455 55792 55819) (-57 "ARR2CAT.spad" 51340 51361 55414 55441) (-56 "ARR2CAT.spad" 47254 47277 51330 51335) (-55 "ARITY.spad" 46626 46633 47244 47249) (-54 "APPRULE.spad" 45910 45932 46616 46621) (-53 "APPLYORE.spad" 45529 45542 45900 45905) (-52 "ANY1.spad" 44600 44609 45519 45524) (-51 "ANY.spad" 43451 43458 44590 44595) (-50 "ANTISYM.spad" 41896 41912 43431 43446) (-49 "ANON.spad" 41605 41612 41886 41891) (-48 "AN.spad" 40073 40080 41436 41529) (-47 "AMR.spad" 38258 38269 39971 40068) (-46 "AMR.spad" 36306 36319 38021 38026) (-45 "ALIST.spad" 33544 33565 33894 33921) (-44 "ALGSC.spad" 32679 32705 33416 33469) (-43 "ALGPKG.spad" 28462 28473 32635 32640) (-42 "ALGMFACT.spad" 27655 27669 28452 28457) (-41 "ALGMANIP.spad" 25156 25171 27499 27504) (-40 "ALGFF.spad" 22974 23001 23191 23347) (-39 "ALGFACT.spad" 22093 22103 22964 22969) (-38 "ALGEBRA.spad" 21926 21935 22049 22088) (-37 "ALGEBRA.spad" 21791 21802 21916 21921) (-36 "ALAGG.spad" 21303 21324 21759 21786) (-35 "AHYP.spad" 20684 20691 21293 21298) (-34 "AGG.spad" 19393 19400 20674 20679) (-33 "AGG.spad" 18066 18075 19349 19354) (-32 "AF.spad" 16511 16526 18015 18020) (-31 "ADDAST.spad" 16197 16204 16501 16506) (-30 "ACPLOT.spad" 15074 15081 16187 16192) (-29 "ACFS.spad" 12931 12940 14976 15069) (-28 "ACFS.spad" 10874 10885 12921 12926) (-27 "ACF.spad" 7628 7635 10776 10869) (-26 "ACF.spad" 4468 4477 7618 7623) (-25 "ABELSG.spad" 4009 4016 4458 4463) (-24 "ABELSG.spad" 3548 3557 3999 4004) (-23 "ABELMON.spad" 2976 2983 3538 3543) (-22 "ABELMON.spad" 2402 2411 2966 2971) (-21 "ABELGRP.spad" 2067 2074 2392 2397) (-20 "ABELGRP.spad" 1730 1739 2057 2062) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865))
\ No newline at end of file +((-3 NIL 1961936 1961941 1961946 1961951) (-2 NIL 1961916 1961921 1961926 1961931) (-1 NIL 1961896 1961901 1961906 1961911) (0 NIL 1961876 1961881 1961886 1961891) (-1208 "ZMOD.spad" 1961685 1961698 1961814 1961871) (-1207 "ZLINDEP.spad" 1960783 1960794 1961675 1961680) (-1206 "ZDSOLVE.spad" 1950744 1950766 1960773 1960778) (-1205 "YSTREAM.spad" 1950239 1950250 1950734 1950739) (-1204 "YDIAGRAM.spad" 1949873 1949882 1950229 1950234) (-1203 "XRPOLY.spad" 1949093 1949113 1949729 1949798) (-1202 "XPR.spad" 1946888 1946901 1948811 1948910) (-1201 "XPOLYC.spad" 1946207 1946223 1946814 1946883) (-1200 "XPOLY.spad" 1945762 1945773 1946063 1946132) (-1199 "XPBWPOLY.spad" 1944233 1944253 1945568 1945637) (-1198 "XFALG.spad" 1941281 1941297 1944159 1944228) (-1197 "XF.spad" 1939744 1939759 1941183 1941276) (-1196 "XF.spad" 1938187 1938204 1939628 1939633) (-1195 "XEXPPKG.spad" 1937446 1937472 1938177 1938182) (-1194 "XDPOLY.spad" 1937060 1937076 1937302 1937371) (-1193 "XALG.spad" 1936728 1936739 1937016 1937055) (-1192 "WUTSET.spad" 1932731 1932748 1936362 1936389) (-1191 "WP.spad" 1931938 1931982 1932589 1932656) (-1190 "WHILEAST.spad" 1931736 1931745 1931928 1931933) (-1189 "WHEREAST.spad" 1931407 1931416 1931726 1931731) (-1188 "WFFINTBS.spad" 1929070 1929092 1931397 1931402) (-1187 "WEIER.spad" 1927292 1927303 1929060 1929065) (-1186 "VSPACE.spad" 1926965 1926976 1927260 1927287) (-1185 "VSPACE.spad" 1926658 1926671 1926955 1926960) (-1184 "VOID.spad" 1926335 1926344 1926648 1926653) (-1183 "VIEWDEF.spad" 1921536 1921545 1926325 1926330) (-1182 "VIEW3D.spad" 1905497 1905506 1921526 1921531) (-1181 "VIEW2D.spad" 1893396 1893405 1905487 1905492) (-1180 "VIEW.spad" 1891116 1891125 1893386 1893391) (-1179 "VECTOR2.spad" 1889755 1889768 1891106 1891111) (-1178 "VECTOR.spad" 1888474 1888485 1888725 1888752) (-1177 "VECTCAT.spad" 1886386 1886397 1888442 1888469) (-1176 "VECTCAT.spad" 1884107 1884120 1886165 1886170) (-1175 "VARIABLE.spad" 1883887 1883902 1884097 1884102) (-1174 "UTYPE.spad" 1883531 1883540 1883877 1883882) (-1173 "UTSODETL.spad" 1882826 1882850 1883487 1883492) (-1172 "UTSODE.spad" 1881042 1881062 1882816 1882821) (-1171 "UTSCAT.spad" 1878521 1878537 1880940 1881037) (-1170 "UTSCAT.spad" 1875668 1875686 1878089 1878094) (-1169 "UTS2.spad" 1875263 1875298 1875658 1875663) (-1168 "UTS.spad" 1870275 1870303 1873795 1873892) (-1167 "URAGG.spad" 1864996 1865007 1870265 1870270) (-1166 "URAGG.spad" 1859681 1859694 1864952 1864957) (-1165 "UPXSSING.spad" 1857449 1857475 1858885 1859018) (-1164 "UPXSCONS.spad" 1855267 1855287 1855640 1855789) (-1163 "UPXSCCA.spad" 1853838 1853858 1855113 1855262) (-1162 "UPXSCCA.spad" 1852551 1852573 1853828 1853833) (-1161 "UPXSCAT.spad" 1851140 1851156 1852397 1852546) (-1160 "UPXS2.spad" 1850683 1850736 1851130 1851135) (-1159 "UPXS.spad" 1848038 1848066 1848874 1849023) (-1158 "UPSQFREE.spad" 1846453 1846467 1848028 1848033) (-1157 "UPSCAT.spad" 1844248 1844272 1846351 1846448) (-1156 "UPSCAT.spad" 1841744 1841770 1843849 1843854) (-1155 "UPOLYC2.spad" 1841215 1841234 1841734 1841739) (-1154 "UPOLYC.spad" 1836295 1836306 1841057 1841210) (-1153 "UPOLYC.spad" 1831293 1831306 1836057 1836062) (-1152 "UPMP.spad" 1830225 1830238 1831283 1831288) (-1151 "UPDIVP.spad" 1829790 1829804 1830215 1830220) (-1150 "UPDECOMP.spad" 1828051 1828065 1829780 1829785) (-1149 "UPCDEN.spad" 1827268 1827284 1828041 1828046) (-1148 "UP2.spad" 1826632 1826653 1827258 1827263) (-1147 "UP.spad" 1824102 1824117 1824489 1824642) (-1146 "UNISEG2.spad" 1823599 1823612 1824058 1824063) (-1145 "UNISEG.spad" 1822952 1822963 1823518 1823523) (-1144 "UNIFACT.spad" 1822055 1822067 1822942 1822947) (-1143 "ULSCONS.spad" 1815901 1815921 1816271 1816420) (-1142 "ULSCCAT.spad" 1813638 1813658 1815747 1815896) (-1141 "ULSCCAT.spad" 1811483 1811505 1813594 1813599) (-1140 "ULSCAT.spad" 1809723 1809739 1811329 1811478) (-1139 "ULS2.spad" 1809237 1809290 1809713 1809718) (-1138 "ULS.spad" 1801270 1801298 1802215 1802638) (-1137 "UINT8.spad" 1801147 1801156 1801260 1801265) (-1136 "UINT64.spad" 1801023 1801032 1801137 1801142) (-1135 "UINT32.spad" 1800899 1800908 1801013 1801018) (-1134 "UINT16.spad" 1800775 1800784 1800889 1800894) (-1133 "UFD.spad" 1799840 1799849 1800701 1800770) (-1132 "UFD.spad" 1798967 1798978 1799830 1799835) (-1131 "UDVO.spad" 1797848 1797857 1798957 1798962) (-1130 "UDPO.spad" 1795429 1795440 1797804 1797809) (-1129 "TYPEAST.spad" 1795348 1795357 1795419 1795424) (-1128 "TYPE.spad" 1795280 1795289 1795338 1795343) (-1127 "TWOFACT.spad" 1793932 1793947 1795270 1795275) (-1126 "TUPLE.spad" 1793439 1793450 1793844 1793849) (-1125 "TUBETOOL.spad" 1790306 1790315 1793429 1793434) (-1124 "TUBE.spad" 1788953 1788970 1790296 1790301) (-1123 "TSETCAT.spad" 1777024 1777041 1788921 1788948) (-1122 "TSETCAT.spad" 1765081 1765100 1776980 1776985) (-1121 "TS.spad" 1763709 1763725 1764675 1764772) (-1120 "TRMANIP.spad" 1758073 1758090 1763397 1763402) (-1119 "TRIMAT.spad" 1757036 1757061 1758063 1758068) (-1118 "TRIGMNIP.spad" 1755563 1755580 1757026 1757031) (-1117 "TRIGCAT.spad" 1755075 1755084 1755553 1755558) (-1116 "TRIGCAT.spad" 1754585 1754596 1755065 1755070) (-1115 "TREE.spad" 1753225 1753236 1754257 1754284) (-1114 "TRANFUN.spad" 1753064 1753073 1753215 1753220) (-1113 "TRANFUN.spad" 1752901 1752912 1753054 1753059) (-1112 "TOPSP.spad" 1752575 1752584 1752891 1752896) (-1111 "TOOLSIGN.spad" 1752238 1752249 1752565 1752570) (-1110 "TEXTFILE.spad" 1750799 1750808 1752228 1752233) (-1109 "TEX1.spad" 1750355 1750366 1750789 1750794) (-1108 "TEX.spad" 1747549 1747558 1750345 1750350) (-1107 "TBCMPPK.spad" 1745650 1745673 1747539 1747544) (-1106 "TBAGG.spad" 1744708 1744731 1745630 1745645) (-1105 "TBAGG.spad" 1743774 1743799 1744698 1744703) (-1104 "TANEXP.spad" 1743182 1743193 1743764 1743769) (-1103 "TALGOP.spad" 1742906 1742917 1743172 1743177) (-1102 "TABLEAU.spad" 1742387 1742398 1742896 1742901) (-1101 "TABLE.spad" 1740662 1740685 1740932 1740959) (-1100 "TABLBUMP.spad" 1737441 1737452 1740652 1740657) (-1099 "SYSTEM.spad" 1736669 1736678 1737431 1737436) (-1098 "SYSSOLP.spad" 1734152 1734163 1736659 1736664) (-1097 "SYSPTR.spad" 1734051 1734060 1734142 1734147) (-1096 "SYSNNI.spad" 1733274 1733285 1734041 1734046) (-1095 "SYSINT.spad" 1732678 1732689 1733264 1733269) (-1094 "SYNTAX.spad" 1729012 1729021 1732668 1732673) (-1093 "SYMTAB.spad" 1727080 1727089 1729002 1729007) (-1092 "SYMS.spad" 1723109 1723118 1727070 1727075) (-1091 "SYMPOLY.spad" 1722242 1722253 1722324 1722451) (-1090 "SYMFUNC.spad" 1721743 1721754 1722232 1722237) (-1089 "SYMBOL.spad" 1719238 1719247 1721733 1721738) (-1088 "SUTS.spad" 1716351 1716379 1717770 1717867) (-1087 "SUPXS.spad" 1713693 1713721 1714542 1714691) (-1086 "SUPFRACF.spad" 1712798 1712816 1713683 1713688) (-1085 "SUP2.spad" 1712190 1712203 1712788 1712793) (-1084 "SUP.spad" 1709274 1709285 1710047 1710200) (-1083 "SUMRF.spad" 1708248 1708259 1709264 1709269) (-1082 "SUMFS.spad" 1707877 1707894 1708238 1708243) (-1081 "SULS.spad" 1699897 1699925 1700855 1701278) (-1080 "syntax.spad" 1699666 1699675 1699887 1699892) (-1079 "SUCH.spad" 1699356 1699371 1699656 1699661) (-1078 "SUBSPACE.spad" 1691487 1691502 1699346 1699351) (-1077 "SUBRESP.spad" 1690657 1690671 1691443 1691448) (-1076 "STTFNC.spad" 1687125 1687141 1690647 1690652) (-1075 "STTF.spad" 1683224 1683240 1687115 1687120) (-1074 "STTAYLOR.spad" 1675901 1675912 1683131 1683136) (-1073 "STRTBL.spad" 1674288 1674305 1674437 1674464) (-1072 "STRING.spad" 1673156 1673165 1673541 1673568) (-1071 "STREAM3.spad" 1672729 1672744 1673146 1673151) (-1070 "STREAM2.spad" 1671857 1671870 1672719 1672724) (-1069 "STREAM1.spad" 1671563 1671574 1671847 1671852) (-1068 "STREAM.spad" 1668559 1668570 1671166 1671181) (-1067 "STINPROD.spad" 1667495 1667511 1668549 1668554) (-1066 "STEPAST.spad" 1666729 1666738 1667485 1667490) (-1065 "STEP.spad" 1666046 1666055 1666719 1666724) (-1064 "STBL.spad" 1664436 1664464 1664603 1664618) (-1063 "STAGG.spad" 1663135 1663146 1664426 1664431) (-1062 "STAGG.spad" 1661832 1661845 1663125 1663130) (-1061 "STACK.spad" 1661254 1661265 1661504 1661531) (-1060 "SRING.spad" 1661014 1661023 1661244 1661249) (-1059 "SREGSET.spad" 1658746 1658763 1660648 1660675) (-1058 "SRDCMPK.spad" 1657323 1657343 1658736 1658741) (-1057 "SRAGG.spad" 1652506 1652515 1657291 1657318) (-1056 "SRAGG.spad" 1647709 1647720 1652496 1652501) (-1055 "SQMATRIX.spad" 1645386 1645404 1646302 1646389) (-1054 "SPLTREE.spad" 1640128 1640141 1644924 1644951) (-1053 "SPLNODE.spad" 1636748 1636761 1640118 1640123) (-1052 "SPFCAT.spad" 1635557 1635566 1636738 1636743) (-1051 "SPECOUT.spad" 1634109 1634118 1635547 1635552) (-1050 "SPADXPT.spad" 1626200 1626209 1634099 1634104) (-1049 "spad-parser.spad" 1625665 1625674 1626190 1626195) (-1048 "SPADAST.spad" 1625366 1625375 1625655 1625660) (-1047 "SPACEC.spad" 1609581 1609592 1625356 1625361) (-1046 "SPACE3.spad" 1609357 1609368 1609571 1609576) (-1045 "SORTPAK.spad" 1608906 1608919 1609313 1609318) (-1044 "SOLVETRA.spad" 1606669 1606680 1608896 1608901) (-1043 "SOLVESER.spad" 1605125 1605136 1606659 1606664) (-1042 "SOLVERAD.spad" 1601151 1601162 1605115 1605120) (-1041 "SOLVEFOR.spad" 1599613 1599631 1601141 1601146) (-1040 "SNTSCAT.spad" 1599213 1599230 1599581 1599608) (-1039 "SMTS.spad" 1597530 1597556 1598807 1598904) (-1038 "SMP.spad" 1595338 1595358 1595728 1595855) (-1037 "SMITH.spad" 1594183 1594208 1595328 1595333) (-1036 "SMATCAT.spad" 1592301 1592331 1594127 1594178) (-1035 "SMATCAT.spad" 1590351 1590383 1592179 1592184) (-1034 "SKAGG.spad" 1589320 1589331 1590319 1590346) (-1033 "SINT.spad" 1588619 1588628 1589186 1589315) (-1032 "SIMPAN.spad" 1588347 1588356 1588609 1588614) (-1031 "SIGNRF.spad" 1587472 1587483 1588337 1588342) (-1030 "SIGNEF.spad" 1586758 1586775 1587462 1587467) (-1029 "syntax.spad" 1586175 1586184 1586748 1586753) (-1028 "SIG.spad" 1585537 1585546 1586165 1586170) (-1027 "SHP.spad" 1583481 1583496 1585493 1585498) (-1026 "SHDP.spad" 1572974 1573001 1573491 1573588) (-1025 "SGROUP.spad" 1572582 1572591 1572964 1572969) (-1024 "SGROUP.spad" 1572188 1572199 1572572 1572577) (-1023 "catdef.spad" 1571898 1571910 1572009 1572183) (-1022 "catdef.spad" 1571454 1571466 1571719 1571893) (-1021 "SGCF.spad" 1564593 1564602 1571444 1571449) (-1020 "SFRTCAT.spad" 1563539 1563556 1564561 1564588) (-1019 "SFRGCD.spad" 1562602 1562622 1563529 1563534) (-1018 "SFQCMPK.spad" 1557415 1557435 1562592 1562597) (-1017 "SEXOF.spad" 1557258 1557298 1557405 1557410) (-1016 "SEXCAT.spad" 1555086 1555126 1557248 1557253) (-1015 "SEX.spad" 1554978 1554987 1555076 1555081) (-1014 "SETMN.spad" 1553438 1553455 1554968 1554973) (-1013 "SETCAT.spad" 1552923 1552932 1553428 1553433) (-1012 "SETCAT.spad" 1552406 1552417 1552913 1552918) (-1011 "SETAGG.spad" 1548955 1548966 1552386 1552401) (-1010 "SETAGG.spad" 1545512 1545525 1548945 1548950) (-1009 "SET.spad" 1543821 1543832 1544918 1544957) (-1008 "syntax.spad" 1543524 1543533 1543811 1543816) (-1007 "SEGXCAT.spad" 1542680 1542693 1543514 1543519) (-1006 "SEGCAT.spad" 1541605 1541616 1542670 1542675) (-1005 "SEGBIND2.spad" 1541303 1541316 1541595 1541600) (-1004 "SEGBIND.spad" 1541061 1541072 1541250 1541255) (-1003 "SEGAST.spad" 1540791 1540800 1541051 1541056) (-1002 "SEG2.spad" 1540226 1540239 1540747 1540752) (-1001 "SEG.spad" 1540039 1540050 1540145 1540150) (-1000 "SDVAR.spad" 1539315 1539326 1540029 1540034) (-999 "SDPOL.spad" 1537008 1537018 1537298 1537425) (-998 "SCPKG.spad" 1535098 1535108 1536998 1537003) (-997 "SCOPE.spad" 1534276 1534284 1535088 1535093) (-996 "SCACHE.spad" 1532973 1532983 1534266 1534271) (-995 "SASTCAT.spad" 1532883 1532891 1532963 1532968) (-994 "SAOS.spad" 1532756 1532764 1532873 1532878) (-993 "SAERFFC.spad" 1532470 1532489 1532746 1532751) (-992 "SAEFACT.spad" 1532172 1532191 1532460 1532465) (-991 "SAE.spad" 1529823 1529838 1530433 1530568) (-990 "RURPK.spad" 1527483 1527498 1529813 1529818) (-989 "RULESET.spad" 1526937 1526960 1527473 1527478) (-988 "RULECOLD.spad" 1526790 1526802 1526927 1526932) (-987 "RULE.spad" 1525039 1525062 1526780 1526785) (-986 "RTVALUE.spad" 1524775 1524783 1525029 1525034) (-985 "syntax.spad" 1524493 1524501 1524765 1524770) (-984 "RSETGCD.spad" 1520936 1520955 1524483 1524488) (-983 "RSETCAT.spad" 1510905 1510921 1520904 1520931) (-982 "RSETCAT.spad" 1500894 1500912 1510895 1510900) (-981 "RSDCMPK.spad" 1499395 1499414 1500884 1500889) (-980 "RRCC.spad" 1497780 1497809 1499385 1499390) (-979 "RRCC.spad" 1496163 1496194 1497770 1497775) (-978 "RPTAST.spad" 1495866 1495874 1496153 1496158) (-977 "RPOLCAT.spad" 1475371 1475385 1495734 1495861) (-976 "RPOLCAT.spad" 1454669 1454685 1475034 1475039) (-975 "ROMAN.spad" 1453998 1454006 1454535 1454664) (-974 "ROIRC.spad" 1453079 1453110 1453988 1453993) (-973 "RNS.spad" 1452056 1452064 1452981 1453074) (-972 "RNS.spad" 1451119 1451129 1452046 1452051) (-971 "RNGBIND.spad" 1450280 1450293 1451074 1451079) (-970 "RNG.spad" 1449889 1449897 1450270 1450275) (-969 "RNG.spad" 1449496 1449506 1449879 1449884) (-968 "RMODULE.spad" 1449278 1449288 1449486 1449491) (-967 "RMCAT2.spad" 1448699 1448755 1449268 1449273) (-966 "RMATRIX.spad" 1447509 1447527 1447851 1447890) (-965 "RMATCAT.spad" 1443089 1443119 1447465 1447504) (-964 "RMATCAT.spad" 1438559 1438591 1442937 1442942) (-963 "RLINSET.spad" 1438264 1438274 1438549 1438554) (-962 "RINTERP.spad" 1438153 1438172 1438254 1438259) (-961 "RING.spad" 1437624 1437632 1438133 1438148) (-960 "RING.spad" 1437103 1437113 1437614 1437619) (-959 "RIDIST.spad" 1436496 1436504 1437093 1437098) (-958 "RGCHAIN.spad" 1435051 1435066 1435944 1435971) (-957 "RGBCSPC.spad" 1434841 1434852 1435041 1435046) (-956 "RGBCMDL.spad" 1434404 1434415 1434831 1434836) (-955 "RFFACTOR.spad" 1433867 1433877 1434394 1434399) (-954 "RFFACT.spad" 1433603 1433614 1433857 1433862) (-953 "RFDIST.spad" 1432600 1432608 1433593 1433598) (-952 "RF.spad" 1430275 1430285 1432590 1432595) (-951 "RETSOL.spad" 1429695 1429707 1430265 1430270) (-950 "RETRACT.spad" 1429124 1429134 1429685 1429690) (-949 "RETRACT.spad" 1428551 1428563 1429114 1429119) (-948 "RETAST.spad" 1428364 1428372 1428541 1428546) (-947 "RESRING.spad" 1427712 1427758 1428302 1428359) (-946 "RESLATC.spad" 1427037 1427047 1427702 1427707) (-945 "REPSQ.spad" 1426769 1426779 1427027 1427032) (-944 "REPDB.spad" 1426477 1426487 1426759 1426764) (-943 "REP2.spad" 1416192 1416202 1426319 1426324) (-942 "REP1.spad" 1410413 1410423 1416142 1416147) (-941 "REP.spad" 1407968 1407976 1410403 1410408) (-940 "REGSET.spad" 1405794 1405810 1407602 1407629) (-939 "REF.spad" 1405313 1405323 1405784 1405789) (-938 "REDORDER.spad" 1404520 1404536 1405303 1405308) (-937 "RECLOS.spad" 1403417 1403436 1404120 1404213) (-936 "REALSOLV.spad" 1402558 1402566 1403407 1403412) (-935 "REAL0Q.spad" 1399857 1399871 1402548 1402553) (-934 "REAL0.spad" 1396702 1396716 1399847 1399852) (-933 "REAL.spad" 1396575 1396583 1396692 1396697) (-932 "RDUCEAST.spad" 1396297 1396305 1396565 1396570) (-931 "RDIV.spad" 1395953 1395977 1396287 1396292) (-930 "RDIST.spad" 1395521 1395531 1395943 1395948) (-929 "RDETRS.spad" 1394386 1394403 1395511 1395516) (-928 "RDETR.spad" 1392526 1392543 1394376 1394381) (-927 "RDEEFS.spad" 1391626 1391642 1392516 1392521) (-926 "RDEEF.spad" 1390637 1390653 1391616 1391621) (-925 "RCFIELD.spad" 1387856 1387864 1390539 1390632) (-924 "RCFIELD.spad" 1385161 1385171 1387846 1387851) (-923 "RCAGG.spad" 1383098 1383108 1385151 1385156) (-922 "RCAGG.spad" 1380962 1380974 1383017 1383022) (-921 "RATRET.spad" 1380323 1380333 1380952 1380957) (-920 "RATFACT.spad" 1380016 1380027 1380313 1380318) (-919 "RANDSRC.spad" 1379336 1379344 1380006 1380011) (-918 "RADUTIL.spad" 1379093 1379101 1379326 1379331) (-917 "RADIX.spad" 1376138 1376151 1377683 1377776) (-916 "RADFF.spad" 1374055 1374091 1374173 1374329) (-915 "RADCAT.spad" 1373651 1373659 1374045 1374050) (-914 "RADCAT.spad" 1373245 1373255 1373641 1373646) (-913 "QUEUE.spad" 1372659 1372669 1372917 1372944) (-912 "QUATCT2.spad" 1372280 1372298 1372649 1372654) (-911 "QUATCAT.spad" 1370451 1370461 1372210 1372275) (-910 "QUATCAT.spad" 1368387 1368399 1370148 1370153) (-909 "QUAT.spad" 1366994 1367004 1367336 1367401) (-908 "QUAGG.spad" 1365828 1365838 1366962 1366989) (-907 "QQUTAST.spad" 1365597 1365605 1365818 1365823) (-906 "QFORM.spad" 1365216 1365230 1365587 1365592) (-905 "QFCAT2.spad" 1364909 1364925 1365206 1365211) (-904 "QFCAT.spad" 1363612 1363622 1364811 1364904) (-903 "QFCAT.spad" 1361948 1361960 1363149 1363154) (-902 "QEQUAT.spad" 1361507 1361515 1361938 1361943) (-901 "QCMPACK.spad" 1356422 1356441 1361497 1361502) (-900 "QALGSET2.spad" 1354418 1354436 1356412 1356417) (-899 "QALGSET.spad" 1350523 1350555 1354332 1354337) (-898 "PWFFINTB.spad" 1347939 1347960 1350513 1350518) (-897 "PUSHVAR.spad" 1347278 1347297 1347929 1347934) (-896 "PTRANFN.spad" 1343414 1343424 1347268 1347273) (-895 "PTPACK.spad" 1340502 1340512 1343404 1343409) (-894 "PTFUNC2.spad" 1340325 1340339 1340492 1340497) (-893 "PTCAT.spad" 1339580 1339590 1340293 1340320) (-892 "PSQFR.spad" 1338895 1338919 1339570 1339575) (-891 "PSEUDLIN.spad" 1337781 1337791 1338885 1338890) (-890 "PSETPK.spad" 1324486 1324502 1337659 1337664) (-889 "PSETCAT.spad" 1318886 1318909 1324466 1324481) (-888 "PSETCAT.spad" 1313260 1313285 1318842 1318847) (-887 "PSCURVE.spad" 1312259 1312267 1313250 1313255) (-886 "PSCAT.spad" 1311042 1311071 1312157 1312254) (-885 "PSCAT.spad" 1309915 1309946 1311032 1311037) (-884 "PRTITION.spad" 1308613 1308621 1309905 1309910) (-883 "PRTDAST.spad" 1308332 1308340 1308603 1308608) (-882 "PRS.spad" 1297950 1297967 1308288 1308293) (-881 "PRQAGG.spad" 1297385 1297395 1297918 1297945) (-880 "PROPLOG.spad" 1296989 1296997 1297375 1297380) (-879 "PROPFUN2.spad" 1296612 1296625 1296979 1296984) (-878 "PROPFUN1.spad" 1296018 1296029 1296602 1296607) (-877 "PROPFRML.spad" 1294586 1294597 1296008 1296013) (-876 "PROPERTY.spad" 1294082 1294090 1294576 1294581) (-875 "PRODUCT.spad" 1291779 1291791 1292063 1292118) (-874 "PRINT.spad" 1291531 1291539 1291769 1291774) (-873 "PRIMES.spad" 1289792 1289802 1291521 1291526) (-872 "PRIMELT.spad" 1287913 1287927 1289782 1289787) (-871 "PRIMCAT.spad" 1287556 1287564 1287903 1287908) (-870 "PRIMARR2.spad" 1286323 1286335 1287546 1287551) (-869 "PRIMARR.spad" 1285378 1285388 1285548 1285575) (-868 "PREASSOC.spad" 1284760 1284772 1285368 1285373) (-867 "PR.spad" 1283278 1283290 1283977 1284104) (-866 "PPCURVE.spad" 1282415 1282423 1283268 1283273) (-865 "PORTNUM.spad" 1282206 1282214 1282405 1282410) (-864 "POLYROOT.spad" 1281055 1281077 1282162 1282167) (-863 "POLYLIFT.spad" 1280320 1280343 1281045 1281050) (-862 "POLYCATQ.spad" 1278446 1278468 1280310 1280315) (-861 "POLYCAT.spad" 1271948 1271969 1278314 1278441) (-860 "POLYCAT.spad" 1264970 1264993 1271338 1271343) (-859 "POLY2UP.spad" 1264422 1264436 1264960 1264965) (-858 "POLY2.spad" 1264019 1264031 1264412 1264417) (-857 "POLY.spad" 1261687 1261697 1262202 1262329) (-856 "POLUTIL.spad" 1260652 1260681 1261643 1261648) (-855 "POLTOPOL.spad" 1259400 1259415 1260642 1260647) (-854 "POINT.spad" 1258283 1258293 1258370 1258397) (-853 "PNTHEORY.spad" 1254985 1254993 1258273 1258278) (-852 "PMTOOLS.spad" 1253760 1253774 1254975 1254980) (-851 "PMSYM.spad" 1253309 1253319 1253750 1253755) (-850 "PMQFCAT.spad" 1252900 1252914 1253299 1253304) (-849 "PMPREDFS.spad" 1252362 1252384 1252890 1252895) (-848 "PMPRED.spad" 1251849 1251863 1252352 1252357) (-847 "PMPLCAT.spad" 1250926 1250944 1251778 1251783) (-846 "PMLSAGG.spad" 1250511 1250525 1250916 1250921) (-845 "PMKERNEL.spad" 1250090 1250102 1250501 1250506) (-844 "PMINS.spad" 1249670 1249680 1250080 1250085) (-843 "PMFS.spad" 1249247 1249265 1249660 1249665) (-842 "PMDOWN.spad" 1248537 1248551 1249237 1249242) (-841 "PMASSFS.spad" 1247512 1247528 1248527 1248532) (-840 "PMASS.spad" 1246530 1246538 1247502 1247507) (-839 "PLOTTOOL.spad" 1246310 1246318 1246520 1246525) (-838 "PLOT3D.spad" 1242774 1242782 1246300 1246305) (-837 "PLOT1.spad" 1241947 1241957 1242764 1242769) (-836 "PLOT.spad" 1236870 1236878 1241937 1241942) (-835 "PLEQN.spad" 1224272 1224299 1236860 1236865) (-834 "PINTERPA.spad" 1224056 1224072 1224262 1224267) (-833 "PINTERP.spad" 1223678 1223697 1224046 1224051) (-832 "PID.spad" 1222652 1222660 1223604 1223673) (-831 "PICOERCE.spad" 1222309 1222319 1222642 1222647) (-830 "PI.spad" 1221926 1221934 1222283 1222304) (-829 "PGROEB.spad" 1220535 1220549 1221916 1221921) (-828 "PGE.spad" 1212208 1212216 1220525 1220530) (-827 "PGCD.spad" 1211162 1211179 1212198 1212203) (-826 "PFRPAC.spad" 1210311 1210321 1211152 1211157) (-825 "PFR.spad" 1207014 1207024 1210213 1210306) (-824 "PFOTOOLS.spad" 1206272 1206288 1207004 1207009) (-823 "PFOQ.spad" 1205642 1205660 1206262 1206267) (-822 "PFO.spad" 1205061 1205088 1205632 1205637) (-821 "PFECAT.spad" 1202771 1202779 1204987 1205056) (-820 "PFECAT.spad" 1200509 1200519 1202727 1202732) (-819 "PFBRU.spad" 1198397 1198409 1200499 1200504) (-818 "PFBR.spad" 1195957 1195980 1198387 1198392) (-817 "PF.spad" 1195531 1195543 1195762 1195855) (-816 "PERMGRP.spad" 1190301 1190311 1195521 1195526) (-815 "PERMCAT.spad" 1188962 1188972 1190281 1190296) (-814 "PERMAN.spad" 1187518 1187532 1188952 1188957) (-813 "PERM.spad" 1183328 1183338 1187351 1187366) (-812 "PENDTREE.spad" 1182742 1182752 1183022 1183027) (-811 "PDSPC.spad" 1181555 1181565 1182732 1182737) (-810 "PDSPC.spad" 1180366 1180378 1181545 1181550) (-809 "PDRING.spad" 1180208 1180218 1180346 1180361) (-808 "PDMOD.spad" 1180024 1180036 1180176 1180203) (-807 "PDECOMP.spad" 1179494 1179511 1180014 1180019) (-806 "PDDOM.spad" 1178932 1178945 1179484 1179489) (-805 "PDDOM.spad" 1178368 1178383 1178922 1178927) (-804 "PCOMP.spad" 1178221 1178234 1178358 1178363) (-803 "PBWLB.spad" 1176819 1176836 1178211 1178216) (-802 "PATTERN2.spad" 1176557 1176569 1176809 1176814) (-801 "PATTERN1.spad" 1174901 1174917 1176547 1176552) (-800 "PATTERN.spad" 1169476 1169486 1174891 1174896) (-799 "PATRES2.spad" 1169148 1169162 1169466 1169471) (-798 "PATRES.spad" 1166731 1166743 1169138 1169143) (-797 "PATMATCH.spad" 1164972 1165003 1166483 1166488) (-796 "PATMAB.spad" 1164401 1164411 1164962 1164967) (-795 "PATLRES.spad" 1163487 1163501 1164391 1164396) (-794 "PATAB.spad" 1163251 1163261 1163477 1163482) (-793 "PARTPERM.spad" 1161307 1161315 1163241 1163246) (-792 "PARSURF.spad" 1160741 1160769 1161297 1161302) (-791 "PARSU2.spad" 1160538 1160554 1160731 1160736) (-790 "script-parser.spad" 1160058 1160066 1160528 1160533) (-789 "PARSCURV.spad" 1159492 1159520 1160048 1160053) (-788 "PARSC2.spad" 1159283 1159299 1159482 1159487) (-787 "PARPCURV.spad" 1158745 1158773 1159273 1159278) (-786 "PARPC2.spad" 1158536 1158552 1158735 1158740) (-785 "PARAMAST.spad" 1157664 1157672 1158526 1158531) (-784 "PAN2EXPR.spad" 1157076 1157084 1157654 1157659) (-783 "PALETTE.spad" 1156190 1156198 1157066 1157071) (-782 "PAIR.spad" 1155264 1155277 1155833 1155838) (-781 "PADICRC.spad" 1152669 1152687 1153832 1153925) (-780 "PADICRAT.spad" 1150729 1150741 1150942 1151035) (-779 "PADICCT.spad" 1149278 1149290 1150655 1150724) (-778 "PADIC.spad" 1148981 1148993 1149204 1149273) (-777 "PADEPAC.spad" 1147670 1147689 1148971 1148976) (-776 "PADE.spad" 1146422 1146438 1147660 1147665) (-775 "OWP.spad" 1145670 1145700 1146280 1146347) (-774 "OVERSET.spad" 1145243 1145251 1145660 1145665) (-773 "OVAR.spad" 1145024 1145047 1145233 1145238) (-772 "OUTFORM.spad" 1134432 1134440 1145014 1145019) (-771 "OUTBFILE.spad" 1133866 1133874 1134422 1134427) (-770 "OUTBCON.spad" 1132936 1132944 1133856 1133861) (-769 "OUTBCON.spad" 1132004 1132014 1132926 1132931) (-768 "OUT.spad" 1131122 1131130 1131994 1131999) (-767 "OSI.spad" 1130597 1130605 1131112 1131117) (-766 "OSGROUP.spad" 1130515 1130523 1130587 1130592) (-765 "ORTHPOL.spad" 1129026 1129036 1130458 1130463) (-764 "OREUP.spad" 1128520 1128548 1128747 1128786) (-763 "ORESUP.spad" 1127862 1127886 1128241 1128280) (-762 "OREPCTO.spad" 1125751 1125763 1127782 1127787) (-761 "OREPCAT.spad" 1119938 1119948 1125707 1125746) (-760 "OREPCAT.spad" 1114015 1114027 1119786 1119791) (-759 "ORDTYPE.spad" 1113252 1113260 1114005 1114010) (-758 "ORDTYPE.spad" 1112487 1112497 1113242 1113247) (-757 "ORDSTRCT.spad" 1112273 1112288 1112436 1112441) (-756 "ORDSET.spad" 1111973 1111981 1112263 1112268) (-755 "ORDRING.spad" 1111790 1111798 1111953 1111968) (-754 "ORDMON.spad" 1111645 1111653 1111780 1111785) (-753 "ORDFUNS.spad" 1110777 1110793 1111635 1111640) (-752 "ORDFIN.spad" 1110597 1110605 1110767 1110772) (-751 "ORDCOMP2.spad" 1109890 1109902 1110587 1110592) (-750 "ORDCOMP.spad" 1108416 1108426 1109498 1109527) (-749 "OPSIG.spad" 1108078 1108086 1108406 1108411) (-748 "OPQUERY.spad" 1107659 1107667 1108068 1108073) (-747 "OPERCAT.spad" 1107125 1107135 1107649 1107654) (-746 "OPERCAT.spad" 1106589 1106601 1107115 1107120) (-745 "OP.spad" 1106331 1106341 1106411 1106478) (-744 "ONECOMP2.spad" 1105755 1105767 1106321 1106326) (-743 "ONECOMP.spad" 1104561 1104571 1105363 1105392) (-742 "OMSAGG.spad" 1104349 1104359 1104517 1104556) (-741 "OMLO.spad" 1103782 1103794 1104235 1104274) (-740 "OINTDOM.spad" 1103545 1103553 1103708 1103777) (-739 "OFMONOID.spad" 1101684 1101694 1103501 1103506) (-738 "ODVAR.spad" 1100945 1100955 1101674 1101679) (-737 "ODR.spad" 1100589 1100615 1100757 1100906) (-736 "ODPOL.spad" 1098237 1098247 1098577 1098704) (-735 "ODP.spad" 1087874 1087894 1088247 1088344) (-734 "ODETOOLS.spad" 1086523 1086542 1087864 1087869) (-733 "ODESYS.spad" 1084217 1084234 1086513 1086518) (-732 "ODERTRIC.spad" 1080250 1080267 1084174 1084179) (-731 "ODERED.spad" 1079649 1079673 1080240 1080245) (-730 "ODERAT.spad" 1077282 1077299 1079639 1079644) (-729 "ODEPRRIC.spad" 1074375 1074397 1077272 1077277) (-728 "ODEPRIM.spad" 1071773 1071795 1074365 1074370) (-727 "ODEPAL.spad" 1071159 1071183 1071763 1071768) (-726 "ODEINT.spad" 1070594 1070610 1071149 1071154) (-725 "ODEEF.spad" 1066089 1066105 1070584 1070589) (-724 "ODECONST.spad" 1065634 1065652 1066079 1066084) (-723 "OCTCT2.spad" 1065275 1065293 1065624 1065629) (-722 "OCT.spad" 1063590 1063600 1064304 1064343) (-721 "OCAMON.spad" 1063438 1063446 1063580 1063585) (-720 "OC.spad" 1061234 1061244 1063394 1063433) (-719 "OC.spad" 1058769 1058781 1060931 1060936) (-718 "OASGP.spad" 1058584 1058592 1058759 1058764) (-717 "OAMONS.spad" 1058106 1058114 1058574 1058579) (-716 "OAMON.spad" 1057864 1057872 1058096 1058101) (-715 "OAMON.spad" 1057620 1057630 1057854 1057859) (-714 "OAGROUP.spad" 1057158 1057166 1057610 1057615) (-713 "OAGROUP.spad" 1056694 1056704 1057148 1057153) (-712 "NUMTUBE.spad" 1056285 1056301 1056684 1056689) (-711 "NUMQUAD.spad" 1044261 1044269 1056275 1056280) (-710 "NUMODE.spad" 1035613 1035621 1044251 1044256) (-709 "NUMFMT.spad" 1034453 1034461 1035603 1035608) (-708 "NUMERIC.spad" 1026568 1026578 1034259 1034264) (-707 "NTSCAT.spad" 1025076 1025092 1026536 1026563) (-706 "NTPOLFN.spad" 1024653 1024663 1025019 1025024) (-705 "NSUP2.spad" 1024045 1024057 1024643 1024648) (-704 "NSUP.spad" 1017482 1017492 1021902 1022055) (-703 "NSMP.spad" 1014394 1014413 1014686 1014813) (-702 "NREP.spad" 1012796 1012810 1014384 1014389) (-701 "NPCOEF.spad" 1012042 1012062 1012786 1012791) (-700 "NORMRETR.spad" 1011640 1011679 1012032 1012037) (-699 "NORMPK.spad" 1009582 1009601 1011630 1011635) (-698 "NORMMA.spad" 1009270 1009296 1009572 1009577) (-697 "NONE1.spad" 1008946 1008956 1009260 1009265) (-696 "NONE.spad" 1008687 1008695 1008936 1008941) (-695 "NODE1.spad" 1008174 1008190 1008677 1008682) (-694 "NNI.spad" 1007069 1007077 1008148 1008169) (-693 "NLINSOL.spad" 1005695 1005705 1007059 1007064) (-692 "NFINTBAS.spad" 1003255 1003272 1005685 1005690) (-691 "NETCLT.spad" 1003229 1003240 1003245 1003250) (-690 "NCODIV.spad" 1001453 1001469 1003219 1003224) (-689 "NCNTFRAC.spad" 1001095 1001109 1001443 1001448) (-688 "NCEP.spad" 999261 999275 1001085 1001090) (-687 "NASRING.spad" 998865 998873 999251 999256) (-686 "NASRING.spad" 998467 998477 998855 998860) (-685 "NARNG.spad" 997867 997875 998457 998462) (-684 "NARNG.spad" 997265 997275 997857 997862) (-683 "NAALG.spad" 996830 996840 997233 997260) (-682 "NAALG.spad" 996415 996427 996820 996825) (-681 "MULTSQFR.spad" 993373 993390 996405 996410) (-680 "MULTFACT.spad" 992756 992773 993363 993368) (-679 "MTSCAT.spad" 990850 990871 992654 992751) (-678 "MTHING.spad" 990509 990519 990840 990845) (-677 "MSYSCMD.spad" 989943 989951 990499 990504) (-676 "MSETAGG.spad" 989788 989798 989911 989938) (-675 "MSET.spad" 987734 987744 989482 989521) (-674 "MRING.spad" 984711 984723 987442 987509) (-673 "MRF2.spad" 984273 984287 984701 984706) (-672 "MRATFAC.spad" 983819 983836 984263 984268) (-671 "MPRFF.spad" 981859 981878 983809 983814) (-670 "MPOLY.spad" 979663 979678 980022 980149) (-669 "MPCPF.spad" 978927 978946 979653 979658) (-668 "MPC3.spad" 978744 978784 978917 978922) (-667 "MPC2.spad" 978398 978431 978734 978739) (-666 "MONOTOOL.spad" 976749 976766 978388 978393) (-665 "catdef.spad" 976182 976193 976403 976744) (-664 "catdef.spad" 975580 975591 975836 976177) (-663 "MONOID.spad" 974901 974909 975570 975575) (-662 "MONOID.spad" 974220 974230 974891 974896) (-661 "MONOGEN.spad" 972968 972981 974080 974215) (-660 "MONOGEN.spad" 971738 971753 972852 972857) (-659 "MONADWU.spad" 969818 969826 971728 971733) (-658 "MONADWU.spad" 967896 967906 969808 969813) (-657 "MONAD.spad" 967056 967064 967886 967891) (-656 "MONAD.spad" 966214 966224 967046 967051) (-655 "MOEBIUS.spad" 964950 964964 966194 966209) (-654 "MODULE.spad" 964820 964830 964918 964945) (-653 "MODULE.spad" 964710 964722 964810 964815) (-652 "MODRING.spad" 964045 964084 964690 964705) (-651 "MODOP.spad" 962702 962714 963867 963934) (-650 "MODMONOM.spad" 962433 962451 962692 962697) (-649 "MODMON.spad" 959503 959515 960218 960371) (-648 "MODFIELD.spad" 958865 958904 959405 959498) (-647 "MMLFORM.spad" 957725 957733 958855 958860) (-646 "MMAP.spad" 957467 957501 957715 957720) (-645 "MLO.spad" 955926 955936 957423 957462) (-644 "MLIFT.spad" 954538 954555 955916 955921) (-643 "MKUCFUNC.spad" 954073 954091 954528 954533) (-642 "MKRECORD.spad" 953661 953674 954063 954068) (-641 "MKFUNC.spad" 953068 953078 953651 953656) (-640 "MKFLCFN.spad" 952036 952046 953058 953063) (-639 "MKBCFUNC.spad" 951531 951549 952026 952031) (-638 "MHROWRED.spad" 950042 950052 951521 951526) (-637 "MFINFACT.spad" 949442 949464 950032 950037) (-636 "MESH.spad" 947237 947245 949432 949437) (-635 "MDDFACT.spad" 945456 945466 947227 947232) (-634 "MDAGG.spad" 944747 944757 945436 945451) (-633 "MCDEN.spad" 943957 943969 944737 944742) (-632 "MAYBE.spad" 943257 943268 943947 943952) (-631 "MATSTOR.spad" 940573 940583 943247 943252) (-630 "MATRIX.spad" 939352 939362 939836 939863) (-629 "MATLIN.spad" 936720 936744 939236 939241) (-628 "MATCAT2.spad" 936002 936050 936710 936715) (-627 "MATCAT.spad" 927698 927720 935970 935997) (-626 "MATCAT.spad" 919266 919290 927540 927545) (-625 "MAPPKG3.spad" 918181 918195 919256 919261) (-624 "MAPPKG2.spad" 917519 917531 918171 918176) (-623 "MAPPKG1.spad" 916347 916357 917509 917514) (-622 "MAPPAST.spad" 915686 915694 916337 916342) (-621 "MAPHACK3.spad" 915498 915512 915676 915681) (-620 "MAPHACK2.spad" 915267 915279 915488 915493) (-619 "MAPHACK1.spad" 914911 914921 915257 915262) (-618 "MAGMA.spad" 912717 912734 914901 914906) (-617 "MACROAST.spad" 912312 912320 912707 912712) (-616 "LZSTAGG.spad" 909566 909576 912302 912307) (-615 "LZSTAGG.spad" 906818 906830 909556 909561) (-614 "LWORD.spad" 903563 903580 906808 906813) (-613 "LSTAST.spad" 903347 903355 903553 903558) (-612 "LSQM.spad" 901625 901639 902019 902070) (-611 "LSPP.spad" 901160 901177 901615 901620) (-610 "LSMP1.spad" 899003 899017 901150 901155) (-609 "LSMP.spad" 897860 897888 898993 898998) (-608 "LSAGG.spad" 897529 897539 897828 897855) (-607 "LSAGG.spad" 897218 897230 897519 897524) (-606 "LPOLY.spad" 896180 896199 897074 897143) (-605 "LPEFRAC.spad" 895451 895461 896170 896175) (-604 "LOGIC.spad" 895053 895061 895441 895446) (-603 "LOGIC.spad" 894653 894663 895043 895048) (-602 "LODOOPS.spad" 893583 893595 894643 894648) (-601 "LODOF.spad" 892629 892646 893540 893545) (-600 "LODOCAT.spad" 891295 891305 892585 892624) (-599 "LODOCAT.spad" 889959 889971 891251 891256) (-598 "LODO2.spad" 889273 889285 889680 889719) (-597 "LODO1.spad" 888714 888724 888994 889033) (-596 "LODO.spad" 888139 888155 888435 888474) (-595 "LODEEF.spad" 886941 886959 888129 888134) (-594 "LO.spad" 886342 886356 886875 886902) (-593 "LNAGG.spad" 882529 882539 886332 886337) (-592 "LNAGG.spad" 878680 878692 882485 882490) (-591 "LMOPS.spad" 875448 875465 878670 878675) (-590 "LMODULE.spad" 875232 875242 875438 875443) (-589 "LMDICT.spad" 874613 874623 874861 874888) (-588 "LLINSET.spad" 874320 874330 874603 874608) (-587 "LITERAL.spad" 874226 874237 874310 874315) (-586 "LIST3.spad" 873537 873551 874216 874221) (-585 "LIST2MAP.spad" 870464 870476 873527 873532) (-584 "LIST2.spad" 869166 869178 870454 870459) (-583 "LIST.spad" 867048 867058 868391 868418) (-582 "LINSET.spad" 866827 866837 867038 867043) (-581 "LINFORM.spad" 866290 866302 866795 866822) (-580 "LINEXP.spad" 865033 865043 866280 866285) (-579 "LINELT.spad" 864404 864416 864916 864943) (-578 "LINDEP.spad" 863253 863265 864316 864321) (-577 "LINBASIS.spad" 862889 862904 863243 863248) (-576 "LIMITRF.spad" 860836 860846 862879 862884) (-575 "LIMITPS.spad" 859746 859759 860826 860831) (-574 "LIECAT.spad" 859230 859240 859672 859741) (-573 "LIECAT.spad" 858742 858754 859186 859191) (-572 "LIE.spad" 856746 856758 858020 858162) (-571 "LIB.spad" 854917 854925 855363 855378) (-570 "LGROBP.spad" 852270 852289 854907 854912) (-569 "LFCAT.spad" 851329 851337 852260 852265) (-568 "LF.spad" 850284 850300 851319 851324) (-567 "LEXTRIPK.spad" 845907 845922 850274 850279) (-566 "LEXP.spad" 843926 843953 845887 845902) (-565 "LETAST.spad" 843625 843633 843916 843921) (-564 "LEADCDET.spad" 842031 842048 843615 843620) (-563 "LAZM3PK.spad" 840775 840797 842021 842026) (-562 "LAUPOL.spad" 839442 839455 840342 840411) (-561 "LAPLACE.spad" 839025 839041 839432 839437) (-560 "LALG.spad" 838801 838811 839005 839020) (-559 "LALG.spad" 838585 838597 838791 838796) (-558 "LA.spad" 838025 838039 838507 838546) (-557 "KVTFROM.spad" 837768 837778 838015 838020) (-556 "KTVLOGIC.spad" 837312 837320 837758 837763) (-555 "KRCFROM.spad" 837058 837068 837302 837307) (-554 "KOVACIC.spad" 835789 835806 837048 837053) (-553 "KONVERT.spad" 835511 835521 835779 835784) (-552 "KOERCE.spad" 835248 835258 835501 835506) (-551 "KERNEL2.spad" 834951 834963 835238 835243) (-550 "KERNEL.spad" 833671 833681 834800 834805) (-549 "KDAGG.spad" 832780 832802 833651 833666) (-548 "KDAGG.spad" 831897 831921 832770 832775) (-547 "KAFILE.spad" 830787 830803 831022 831049) (-546 "JVMOP.spad" 830700 830708 830777 830782) (-545 "JVMMDACC.spad" 829754 829762 830690 830695) (-544 "JVMFDACC.spad" 829070 829078 829744 829749) (-543 "JVMCSTTG.spad" 827799 827807 829060 829065) (-542 "JVMCFACC.spad" 827245 827253 827789 827794) (-541 "JVMBCODE.spad" 827156 827164 827235 827240) (-540 "JORDAN.spad" 824973 824985 826434 826576) (-539 "JOINAST.spad" 824675 824683 824963 824968) (-538 "IXAGG.spad" 822808 822832 824665 824670) (-537 "IXAGG.spad" 820796 820822 822655 822660) (-536 "ITUPLE.spad" 819972 819982 820786 820791) (-535 "ITRIGMNP.spad" 818819 818838 819962 819967) (-534 "ITFUN3.spad" 818325 818339 818809 818814) (-533 "ITFUN2.spad" 818069 818081 818315 818320) (-532 "ITFORM.spad" 817424 817432 818059 818064) (-531 "ITAYLOR.spad" 815418 815433 817288 817385) (-530 "ISUPS.spad" 807867 807882 814404 814501) (-529 "ISUMP.spad" 807368 807384 807857 807862) (-528 "ISAST.spad" 807087 807095 807358 807363) (-527 "IRURPK.spad" 805804 805823 807077 807082) (-526 "IRSN.spad" 803808 803816 805794 805799) (-525 "IRRF2F.spad" 802301 802311 803764 803769) (-524 "IRREDFFX.spad" 801902 801913 802291 802296) (-523 "IROOT.spad" 800241 800251 801892 801897) (-522 "IRFORM.spad" 799565 799573 800231 800236) (-521 "IR2F.spad" 798779 798795 799555 799560) (-520 "IR2.spad" 797807 797823 798769 798774) (-519 "IR.spad" 795643 795657 797689 797716) (-518 "IPRNTPK.spad" 795403 795411 795633 795638) (-517 "IPF.spad" 794968 794980 795208 795301) (-516 "IPADIC.spad" 794737 794763 794894 794963) (-515 "IP4ADDR.spad" 794294 794302 794727 794732) (-514 "IOMODE.spad" 793816 793824 794284 794289) (-513 "IOBFILE.spad" 793201 793209 793806 793811) (-512 "IOBCON.spad" 793066 793074 793191 793196) (-511 "INVLAPLA.spad" 792715 792731 793056 793061) (-510 "INTTR.spad" 786109 786126 792705 792710) (-509 "INTTOOLS.spad" 783917 783933 785736 785741) (-508 "INTSLPE.spad" 783245 783253 783907 783912) (-507 "INTRVL.spad" 782811 782821 783159 783240) (-506 "INTRF.spad" 781243 781257 782801 782806) (-505 "INTRET.spad" 780675 780685 781233 781238) (-504 "INTRAT.spad" 779410 779427 780665 780670) (-503 "INTPM.spad" 777873 777889 779131 779136) (-502 "INTPAF.spad" 775749 775767 777802 777807) (-501 "INTHERTR.spad" 775023 775040 775739 775744) (-500 "INTHERAL.spad" 774693 774717 775013 775018) (-499 "INTHEORY.spad" 771132 771140 774683 774688) (-498 "INTG0.spad" 764896 764914 771061 771066) (-497 "INTFACT.spad" 763963 763973 764886 764891) (-496 "INTEF.spad" 762374 762390 763953 763958) (-495 "INTDOM.spad" 760997 761005 762300 762369) (-494 "INTDOM.spad" 759682 759692 760987 760992) (-493 "INTCAT.spad" 757949 757959 759596 759677) (-492 "INTBIT.spad" 757456 757464 757939 757944) (-491 "INTALG.spad" 756644 756671 757446 757451) (-490 "INTAF.spad" 756144 756160 756634 756639) (-489 "INTABL.spad" 754526 754557 754689 754716) (-488 "INT8.spad" 754406 754414 754516 754521) (-487 "INT64.spad" 754285 754293 754396 754401) (-486 "INT32.spad" 754164 754172 754275 754280) (-485 "INT16.spad" 754043 754051 754154 754159) (-484 "INT.spad" 753569 753577 753909 754038) (-483 "INS.spad" 751072 751080 753471 753564) (-482 "INS.spad" 748661 748671 751062 751067) (-481 "INPSIGN.spad" 748131 748144 748651 748656) (-480 "INPRODPF.spad" 747227 747246 748121 748126) (-479 "INPRODFF.spad" 746315 746339 747217 747222) (-478 "INNMFACT.spad" 745290 745307 746305 746310) (-477 "INMODGCD.spad" 744794 744824 745280 745285) (-476 "INFSP.spad" 743091 743113 744784 744789) (-475 "INFPROD0.spad" 742171 742190 743081 743086) (-474 "INFORM1.spad" 741796 741806 742161 742166) (-473 "INFORM.spad" 739007 739015 741786 741791) (-472 "INFINITY.spad" 738559 738567 738997 739002) (-471 "INETCLTS.spad" 738536 738544 738549 738554) (-470 "INEP.spad" 737082 737104 738526 738531) (-469 "INDE.spad" 736731 736748 736992 736997) (-468 "INCRMAPS.spad" 736168 736178 736721 736726) (-467 "INBFILE.spad" 735264 735272 736158 736163) (-466 "INBFF.spad" 731114 731125 735254 735259) (-465 "INBCON.spad" 729380 729388 731104 731109) (-464 "INBCON.spad" 727644 727654 729370 729375) (-463 "INAST.spad" 727305 727313 727634 727639) (-462 "IMPTAST.spad" 727013 727021 727295 727300) (-461 "IMATQF.spad" 726107 726151 726969 726974) (-460 "IMATLIN.spad" 724728 724752 726063 726068) (-459 "IFF.spad" 724141 724157 724412 724505) (-458 "IFAST.spad" 723755 723763 724131 724136) (-457 "IFARRAY.spad" 721282 721297 722980 723007) (-456 "IFAMON.spad" 721144 721161 721238 721243) (-455 "IEVALAB.spad" 720557 720569 721134 721139) (-454 "IEVALAB.spad" 719968 719982 720547 720552) (-453 "indexedp.spad" 719524 719536 719958 719963) (-452 "IDPOAMS.spad" 719202 719214 719436 719441) (-451 "IDPOAM.spad" 718844 718856 719114 719119) (-450 "IDPO.spad" 718258 718270 718756 718761) (-449 "IDPC.spad" 716973 716985 718248 718253) (-448 "IDPAM.spad" 716640 716652 716885 716890) (-447 "IDPAG.spad" 716309 716321 716552 716557) (-446 "IDENT.spad" 715961 715969 716299 716304) (-445 "catdef.spad" 715732 715743 715844 715956) (-444 "IDECOMP.spad" 712971 712989 715722 715727) (-443 "IDEAL.spad" 707933 707972 712919 712924) (-442 "ICDEN.spad" 707146 707162 707923 707928) (-441 "ICARD.spad" 706539 706547 707136 707141) (-440 "IBPTOOLS.spad" 705146 705163 706529 706534) (-439 "IBITS.spad" 704659 704672 704792 704819) (-438 "IBATOOL.spad" 701644 701663 704649 704654) (-437 "IBACHIN.spad" 700151 700166 701634 701639) (-436 "array2.spad" 699636 699658 699823 699850) (-435 "IARRAY1.spad" 698715 698730 698861 698888) (-434 "IAN.spad" 697097 697105 698546 698639) (-433 "IALGFACT.spad" 696708 696741 697087 697092) (-432 "HYPCAT.spad" 696132 696140 696698 696703) (-431 "HYPCAT.spad" 695554 695564 696122 696127) (-430 "HOSTNAME.spad" 695370 695378 695544 695549) (-429 "HOMOTOP.spad" 695113 695123 695360 695365) (-428 "HOAGG.spad" 692395 692405 695103 695108) (-427 "HOAGG.spad" 689427 689439 692137 692142) (-426 "HEXADEC.spad" 687652 687660 688017 688110) (-425 "HEUGCD.spad" 686743 686754 687642 687647) (-424 "HELLFDIV.spad" 686349 686373 686733 686738) (-423 "HEAP.spad" 685806 685816 686021 686048) (-422 "HEADAST.spad" 685347 685355 685796 685801) (-421 "HDP.spad" 674980 674996 675357 675454) (-420 "HDMP.spad" 672527 672542 673143 673270) (-419 "HB.spad" 670802 670810 672517 672522) (-418 "HASHTBL.spad" 669136 669167 669347 669374) (-417 "HASAST.spad" 668852 668860 669126 669131) (-416 "HACKPI.spad" 668343 668351 668754 668847) (-415 "GTSET.spad" 667270 667286 667977 668004) (-414 "GSTBL.spad" 665653 665688 665827 665842) (-413 "GSERIES.spad" 663025 663052 663844 663993) (-412 "GROUP.spad" 662298 662306 663005 663020) (-411 "GROUP.spad" 661579 661589 662288 662293) (-410 "GROEBSOL.spad" 660073 660094 661569 661574) (-409 "GRMOD.spad" 658654 658666 660063 660068) (-408 "GRMOD.spad" 657233 657247 658644 658649) (-407 "GRIMAGE.spad" 650146 650154 657223 657228) (-406 "GRDEF.spad" 648525 648533 650136 650141) (-405 "GRAY.spad" 646996 647004 648515 648520) (-404 "GRALG.spad" 646091 646103 646986 646991) (-403 "GRALG.spad" 645184 645198 646081 646086) (-402 "GPOLSET.spad" 644642 644665 644854 644881) (-401 "GOSPER.spad" 643919 643937 644632 644637) (-400 "GMODPOL.spad" 643067 643094 643887 643914) (-399 "GHENSEL.spad" 642150 642164 643057 643062) (-398 "GENUPS.spad" 638443 638456 642140 642145) (-397 "GENUFACT.spad" 638020 638030 638433 638438) (-396 "GENPGCD.spad" 637622 637639 638010 638015) (-395 "GENMFACT.spad" 637074 637093 637612 637617) (-394 "GENEEZ.spad" 635033 635046 637064 637069) (-393 "GDMP.spad" 632422 632439 633196 633323) (-392 "GCNAALG.spad" 626345 626372 632216 632283) (-391 "GCDDOM.spad" 625537 625545 626271 626340) (-390 "GCDDOM.spad" 624791 624801 625527 625532) (-389 "GBINTERN.spad" 620811 620849 624781 624786) (-388 "GBF.spad" 616594 616632 620801 620806) (-387 "GBEUCLID.spad" 614476 614514 616584 616589) (-386 "GB.spad" 612002 612040 614432 614437) (-385 "GAUSSFAC.spad" 611315 611323 611992 611997) (-384 "GALUTIL.spad" 609641 609651 611271 611276) (-383 "GALPOLYU.spad" 608095 608108 609631 609636) (-382 "GALFACTU.spad" 606308 606327 608085 608090) (-381 "GALFACT.spad" 596521 596532 606298 606303) (-380 "FUNDESC.spad" 596199 596207 596511 596516) (-379 "FUNCTION.spad" 596048 596060 596189 596194) (-378 "FT.spad" 594348 594356 596038 596043) (-377 "FSUPFACT.spad" 593262 593281 594298 594303) (-376 "FST.spad" 591348 591356 593252 593257) (-375 "FSRED.spad" 590828 590844 591338 591343) (-374 "FSPRMELT.spad" 589694 589710 590785 590790) (-373 "FSPECF.spad" 587785 587801 589684 589689) (-372 "FSINT.spad" 587445 587461 587775 587780) (-371 "FSERIES.spad" 586636 586648 587265 587364) (-370 "FSCINT.spad" 585953 585969 586626 586631) (-369 "FSAGG2.spad" 584688 584704 585943 585948) (-368 "FSAGG.spad" 583805 583815 584644 584683) (-367 "FSAGG.spad" 582884 582896 583725 583730) (-366 "FS2UPS.spad" 577399 577433 582874 582879) (-365 "FS2EXPXP.spad" 576540 576563 577389 577394) (-364 "FS2.spad" 576195 576211 576530 576535) (-363 "FS.spad" 570467 570477 575974 576190) (-362 "FS.spad" 564541 564553 570050 570055) (-361 "FRUTIL.spad" 563495 563505 564531 564536) (-360 "FRNAALG.spad" 558772 558782 563437 563490) (-359 "FRNAALG.spad" 554061 554073 558728 558733) (-358 "FRNAAF2.spad" 553509 553527 554051 554056) (-357 "FRMOD.spad" 552917 552947 553438 553443) (-356 "FRIDEAL2.spad" 552521 552553 552907 552912) (-355 "FRIDEAL.spad" 551746 551767 552501 552516) (-354 "FRETRCT.spad" 551265 551275 551736 551741) (-353 "FRETRCT.spad" 550691 550703 551164 551169) (-352 "FRAMALG.spad" 549071 549084 550647 550686) (-351 "FRAMALG.spad" 547483 547498 549061 549066) (-350 "FRAC2.spad" 547088 547100 547473 547478) (-349 "FRAC.spad" 545075 545085 545462 545635) (-348 "FR2.spad" 544411 544423 545065 545070) (-347 "FR.spad" 538199 538209 543472 543541) (-346 "FPS.spad" 535038 535046 538089 538194) (-345 "FPS.spad" 531905 531915 534958 534963) (-344 "FPC.spad" 530951 530959 531807 531900) (-343 "FPC.spad" 530083 530093 530941 530946) (-342 "FPATMAB.spad" 529845 529855 530073 530078) (-341 "FPARFRAC.spad" 528687 528704 529835 529840) (-340 "FORDER.spad" 528378 528402 528677 528682) (-339 "FNLA.spad" 527802 527824 528346 528373) (-338 "FNCAT.spad" 526397 526405 527792 527797) (-337 "FNAME.spad" 526289 526297 526387 526392) (-336 "FMONOID.spad" 525970 525980 526245 526250) (-335 "FMONCAT.spad" 523139 523149 525960 525965) (-334 "FMCAT.spad" 520815 520833 523107 523134) (-333 "FM1.spad" 520180 520192 520749 520776) (-332 "FM.spad" 519795 519807 520034 520061) (-331 "FLOATRP.spad" 517538 517552 519785 519790) (-330 "FLOATCP.spad" 514977 514991 517528 517533) (-329 "FLOAT.spad" 512068 512076 514843 514972) (-328 "FLINEXP.spad" 511790 511800 512058 512063) (-327 "FLINEXP.spad" 511469 511481 511739 511744) (-326 "FLASORT.spad" 510795 510807 511459 511464) (-325 "FLALG.spad" 508465 508484 510721 510790) (-324 "FLAGG2.spad" 507182 507198 508455 508460) (-323 "FLAGG.spad" 504248 504258 507162 507177) (-322 "FLAGG.spad" 501215 501227 504131 504136) (-321 "FINRALG.spad" 499300 499313 501171 501210) (-320 "FINRALG.spad" 497311 497326 499184 499189) (-319 "FINITE.spad" 496463 496471 497301 497306) (-318 "FINITE.spad" 495613 495623 496453 496458) (-317 "aggcat.spad" 493789 493799 495603 495608) (-316 "FINAALG.spad" 482974 482984 493731 493784) (-315 "FINAALG.spad" 472171 472183 482930 482935) (-314 "FILECAT.spad" 470705 470722 472161 472166) (-313 "FILE.spad" 470288 470298 470695 470700) (-312 "FIELD.spad" 469694 469702 470190 470283) (-311 "FIELD.spad" 469186 469196 469684 469689) (-310 "FGROUP.spad" 467849 467859 469166 469181) (-309 "FGLMICPK.spad" 466644 466659 467839 467844) (-308 "FFX.spad" 466030 466045 466363 466456) (-307 "FFSLPE.spad" 465541 465562 466020 466025) (-306 "FFPOLY2.spad" 464601 464618 465531 465536) (-305 "FFPOLY.spad" 455943 455954 464591 464596) (-304 "FFP.spad" 455351 455371 455662 455755) (-303 "FFNBX.spad" 453874 453894 455070 455163) (-302 "FFNBP.spad" 452398 452415 453593 453686) (-301 "FFNB.spad" 450866 450887 452082 452175) (-300 "FFINTBAS.spad" 448380 448399 450856 450861) (-299 "FFIELDC.spad" 445965 445973 448282 448375) (-298 "FFIELDC.spad" 443636 443646 445955 445960) (-297 "FFHOM.spad" 442408 442425 443626 443631) (-296 "FFF.spad" 439851 439862 442398 442403) (-295 "FFCGX.spad" 438709 438729 439570 439663) (-294 "FFCGP.spad" 437609 437629 438428 438521) (-293 "FFCG.spad" 436404 436425 437293 437386) (-292 "FFCAT2.spad" 436151 436191 436394 436399) (-291 "FFCAT.spad" 429316 429338 435990 436146) (-290 "FFCAT.spad" 422560 422584 429236 429241) (-289 "FF.spad" 422011 422027 422244 422337) (-288 "FEVALAB.spad" 421719 421729 422001 422006) (-287 "FEVALAB.spad" 421203 421215 421487 421492) (-286 "FDIVCAT.spad" 419299 419323 421193 421198) (-285 "FDIVCAT.spad" 417393 417419 419289 419294) (-284 "FDIV2.spad" 417049 417089 417383 417388) (-283 "FDIV.spad" 416507 416531 417039 417044) (-282 "FCTRDATA.spad" 415515 415523 416497 416502) (-281 "FCOMP.spad" 414894 414904 415505 415510) (-280 "FAXF.spad" 407929 407943 414796 414889) (-279 "FAXF.spad" 401016 401032 407885 407890) (-278 "FARRAY.spad" 399208 399218 400241 400268) (-277 "FAMR.spad" 397352 397364 399106 399203) (-276 "FAMR.spad" 395480 395494 397236 397241) (-275 "FAMONOID.spad" 395164 395174 395434 395439) (-274 "FAMONC.spad" 393484 393496 395154 395159) (-273 "FAGROUP.spad" 393124 393134 393380 393407) (-272 "FACUTIL.spad" 391336 391353 393114 393119) (-271 "FACTFUNC.spad" 390538 390548 391326 391331) (-270 "EXPUPXS.spad" 387430 387453 388729 388878) (-269 "EXPRTUBE.spad" 384718 384726 387420 387425) (-268 "EXPRODE.spad" 381886 381902 384708 384713) (-267 "EXPR2UPS.spad" 378008 378021 381876 381881) (-266 "EXPR2.spad" 377713 377725 377998 378003) (-265 "EXPR.spad" 373358 373368 374072 374359) (-264 "EXPEXPAN.spad" 370303 370328 370935 371028) (-263 "EXITAST.spad" 370039 370047 370293 370298) (-262 "EXIT.spad" 369710 369718 370029 370034) (-261 "EVALCYC.spad" 369170 369184 369700 369705) (-260 "EVALAB.spad" 368750 368760 369160 369165) (-259 "EVALAB.spad" 368328 368340 368740 368745) (-258 "EUCDOM.spad" 365918 365926 368254 368323) (-257 "EUCDOM.spad" 363570 363580 365908 365913) (-256 "ES2.spad" 363083 363099 363560 363565) (-255 "ES1.spad" 362653 362669 363073 363078) (-254 "ES.spad" 355524 355532 362643 362648) (-253 "ES.spad" 348316 348326 355437 355442) (-252 "ERROR.spad" 345643 345651 348306 348311) (-251 "EQTBL.spad" 343979 344001 344188 344215) (-250 "EQ2.spad" 343697 343709 343969 343974) (-249 "EQ.spad" 338603 338613 341398 341504) (-248 "EP.spad" 334929 334939 338593 338598) (-247 "ENV.spad" 333607 333615 334919 334924) (-246 "ENTIRER.spad" 333275 333283 333551 333602) (-245 "ENTIRER.spad" 332987 332997 333265 333270) (-244 "EMR.spad" 332275 332316 332913 332982) (-243 "ELTAGG.spad" 330529 330548 332265 332270) (-242 "ELTAGG.spad" 328747 328768 330485 330490) (-241 "ELTAB.spad" 328222 328235 328737 328742) (-240 "ELFUTS.spad" 327657 327676 328212 328217) (-239 "ELEMFUN.spad" 327346 327354 327647 327652) (-238 "ELEMFUN.spad" 327033 327043 327336 327341) (-237 "ELAGG.spad" 325004 325014 327013 327028) (-236 "ELAGG.spad" 322912 322924 324923 324928) (-235 "ELABOR.spad" 322258 322266 322902 322907) (-234 "ELABEXPR.spad" 321190 321198 322248 322253) (-233 "EFUPXS.spad" 317966 317996 321146 321151) (-232 "EFULS.spad" 314802 314825 317922 317927) (-231 "EFSTRUC.spad" 312817 312833 314792 314797) (-230 "EF.spad" 307593 307609 312807 312812) (-229 "EAB.spad" 305893 305901 307583 307588) (-228 "DVARCAT.spad" 302899 302909 305883 305888) (-227 "DVARCAT.spad" 299903 299915 302889 302894) (-226 "DSMP.spad" 297636 297650 297941 298068) (-225 "DSEXT.spad" 296938 296948 297626 297631) (-224 "DSEXT.spad" 296160 296172 296850 296855) (-223 "DROPT1.spad" 295825 295835 296150 296155) (-222 "DROPT0.spad" 290690 290698 295815 295820) (-221 "DROPT.spad" 284649 284657 290680 290685) (-220 "DRAWPT.spad" 282822 282830 284639 284644) (-219 "DRAWHACK.spad" 282130 282140 282812 282817) (-218 "DRAWCX.spad" 279608 279616 282120 282125) (-217 "DRAWCURV.spad" 279155 279170 279598 279603) (-216 "DRAWCFUN.spad" 268687 268695 279145 279150) (-215 "DRAW.spad" 261563 261576 268677 268682) (-214 "DQAGG.spad" 259741 259751 261531 261558) (-213 "DPOLCAT.spad" 255098 255114 259609 259736) (-212 "DPOLCAT.spad" 250541 250559 255054 255059) (-211 "DPMO.spad" 243244 243260 243382 243588) (-210 "DPMM.spad" 235960 235978 236085 236291) (-209 "DOMTMPLT.spad" 235731 235739 235950 235955) (-208 "DOMCTOR.spad" 235486 235494 235721 235726) (-207 "DOMAIN.spad" 234597 234605 235476 235481) (-206 "DMP.spad" 232190 232205 232760 232887) (-205 "DMEXT.spad" 232057 232067 232158 232185) (-204 "DLP.spad" 231417 231427 232047 232052) (-203 "DLIST.spad" 230038 230048 230642 230669) (-202 "DLAGG.spad" 228455 228465 230028 230033) (-201 "DIVRING.spad" 227997 228005 228399 228450) (-200 "DIVRING.spad" 227583 227593 227987 227992) (-199 "DISPLAY.spad" 225773 225781 227573 227578) (-198 "DIRPROD2.spad" 224591 224609 225763 225768) (-197 "DIRPROD.spad" 213961 213977 214601 214698) (-196 "DIRPCAT.spad" 213156 213172 213859 213956) (-195 "DIRPCAT.spad" 211977 211995 212682 212687) (-194 "DIOSP.spad" 210802 210810 211967 211972) (-193 "DIOPS.spad" 209798 209808 210782 210797) (-192 "DIOPS.spad" 208768 208780 209754 209759) (-191 "catdef.spad" 208626 208634 208758 208763) (-190 "DIFRING.spad" 208464 208472 208606 208621) (-189 "DIFFSPC.spad" 208043 208051 208454 208459) (-188 "DIFFSPC.spad" 207620 207630 208033 208038) (-187 "DIFFMOD.spad" 207109 207119 207588 207615) (-186 "DIFFDOM.spad" 206274 206285 207099 207104) (-185 "DIFFDOM.spad" 205437 205450 206264 206269) (-184 "DIFEXT.spad" 205256 205266 205417 205432) (-183 "DIAGG.spad" 204886 204896 205236 205251) (-182 "DIAGG.spad" 204524 204536 204876 204881) (-181 "DHMATRIX.spad" 202901 202911 204046 204073) (-180 "DFSFUN.spad" 196541 196549 202891 202896) (-179 "DFLOAT.spad" 193148 193156 196431 196536) (-178 "DFINTTLS.spad" 191379 191395 193138 193143) (-177 "DERHAM.spad" 189293 189325 191359 191374) (-176 "DEQUEUE.spad" 188682 188692 188965 188992) (-175 "DEGRED.spad" 188299 188313 188672 188677) (-174 "DEFINTRF.spad" 185881 185891 188289 188294) (-173 "DEFINTEF.spad" 184419 184435 185871 185876) (-172 "DEFAST.spad" 183803 183811 184409 184414) (-171 "DECIMAL.spad" 182032 182040 182393 182486) (-170 "DDFACT.spad" 179853 179870 182022 182027) (-169 "DBLRESP.spad" 179453 179477 179843 179848) (-168 "DBASIS.spad" 179079 179094 179443 179448) (-167 "DBASE.spad" 177743 177753 179069 179074) (-166 "DATAARY.spad" 177229 177242 177733 177738) (-165 "CYCLOTOM.spad" 176735 176743 177219 177224) (-164 "CYCLES.spad" 173527 173535 176725 176730) (-163 "CVMP.spad" 172944 172954 173517 173522) (-162 "CTRIGMNP.spad" 171444 171460 172934 172939) (-161 "CTORKIND.spad" 171047 171055 171434 171439) (-160 "CTORCAT.spad" 170288 170296 171037 171042) (-159 "CTORCAT.spad" 169527 169537 170278 170283) (-158 "CTORCALL.spad" 169116 169126 169517 169522) (-157 "CTOR.spad" 168807 168815 169106 169111) (-156 "CSTTOOLS.spad" 168052 168065 168797 168802) (-155 "CRFP.spad" 161824 161837 168042 168047) (-154 "CRCEAST.spad" 161544 161552 161814 161819) (-153 "CRAPACK.spad" 160611 160621 161534 161539) (-152 "CPMATCH.spad" 160112 160127 160533 160538) (-151 "CPIMA.spad" 159817 159836 160102 160107) (-150 "COORDSYS.spad" 154826 154836 159807 159812) (-149 "CONTOUR.spad" 154253 154261 154816 154821) (-148 "CONTFRAC.spad" 150003 150013 154155 154248) (-147 "CONDUIT.spad" 149761 149769 149993 149998) (-146 "COMRING.spad" 149435 149443 149699 149756) (-145 "COMPPROP.spad" 148953 148961 149425 149430) (-144 "COMPLPAT.spad" 148720 148735 148943 148948) (-143 "COMPLEX2.spad" 148435 148447 148710 148715) (-142 "COMPLEX.spad" 144141 144151 144385 144643) (-141 "COMPILER.spad" 143690 143698 144131 144136) (-140 "COMPFACT.spad" 143292 143306 143680 143685) (-139 "COMPCAT.spad" 141367 141377 143029 143287) (-138 "COMPCAT.spad" 139183 139195 140847 140852) (-137 "COMMUPC.spad" 138931 138949 139173 139178) (-136 "COMMONOP.spad" 138464 138472 138921 138926) (-135 "COMMAAST.spad" 138227 138235 138454 138459) (-134 "COMM.spad" 138038 138046 138217 138222) (-133 "COMBOPC.spad" 136961 136969 138028 138033) (-132 "COMBINAT.spad" 135728 135738 136951 136956) (-131 "COMBF.spad" 133150 133166 135718 135723) (-130 "COLOR.spad" 131987 131995 133140 133145) (-129 "COLONAST.spad" 131653 131661 131977 131982) (-128 "CMPLXRT.spad" 131364 131381 131643 131648) (-127 "CLLCTAST.spad" 131026 131034 131354 131359) (-126 "CLIP.spad" 127134 127142 131016 131021) (-125 "CLIF.spad" 125789 125805 127090 127129) (-124 "CLAGG.spad" 122326 122336 125779 125784) (-123 "CLAGG.spad" 118747 118759 122202 122207) (-122 "CINTSLPE.spad" 118102 118115 118737 118742) (-121 "CHVAR.spad" 116240 116262 118092 118097) (-120 "CHARZ.spad" 116155 116163 116220 116235) (-119 "CHARPOL.spad" 115681 115691 116145 116150) (-118 "CHARNZ.spad" 115443 115451 115661 115676) (-117 "CHAR.spad" 112811 112819 115433 115438) (-116 "CFCAT.spad" 112139 112147 112801 112806) (-115 "CDEN.spad" 111359 111373 112129 112134) (-114 "CCLASS.spad" 109539 109547 110801 110840) (-113 "CATEGORY.spad" 108613 108621 109529 109534) (-112 "CATCTOR.spad" 108504 108512 108603 108608) (-111 "CATAST.spad" 108130 108138 108494 108499) (-110 "CASEAST.spad" 107844 107852 108120 108125) (-109 "CARTEN2.spad" 107234 107261 107834 107839) (-108 "CARTEN.spad" 102986 103010 107224 107229) (-107 "CARD.spad" 100281 100289 102960 102981) (-106 "CAPSLAST.spad" 100063 100071 100271 100276) (-105 "CACHSET.spad" 99687 99695 100053 100058) (-104 "CABMON.spad" 99242 99250 99677 99682) (-103 "BYTEORD.spad" 98917 98925 99232 99237) (-102 "BYTEBUF.spad" 96884 96892 98170 98197) (-101 "BYTE.spad" 96359 96367 96874 96879) (-100 "BTREE.spad" 95497 95507 96031 96058) (-99 "BTOURN.spad" 94568 94577 95169 95196) (-98 "BTCAT.spad" 93961 93970 94536 94563) (-97 "BTCAT.spad" 93374 93385 93951 93956) (-96 "BTAGG.spad" 92841 92848 93342 93369) (-95 "BTAGG.spad" 92328 92337 92831 92836) (-94 "BSTREE.spad" 91135 91144 92000 92027) (-93 "BRILL.spad" 89341 89351 91125 91130) (-92 "BRAGG.spad" 88298 88307 89331 89336) (-91 "BRAGG.spad" 87219 87230 88254 88259) (-90 "BPADICRT.spad" 85279 85290 85525 85618) (-89 "BPADIC.spad" 84952 84963 85205 85274) (-88 "BOUNDZRO.spad" 84609 84625 84942 84947) (-87 "BOP1.spad" 82068 82077 84599 84604) (-86 "BOP.spad" 77211 77218 82058 82063) (-85 "BOOLEAN.spad" 76760 76767 77201 77206) (-84 "BOOLE.spad" 76411 76418 76750 76755) (-83 "BOOLE.spad" 76060 76069 76401 76406) (-82 "BMODULE.spad" 75773 75784 76028 76055) (-81 "BITS.spad" 75205 75212 75419 75446) (-80 "catdef.spad" 75088 75098 75195 75200) (-79 "catdef.spad" 74839 74849 75078 75083) (-78 "BINDING.spad" 74261 74268 74829 74834) (-77 "BINARY.spad" 72496 72503 72851 72944) (-76 "BGAGG.spad" 71702 71711 72476 72491) (-75 "BGAGG.spad" 70916 70927 71692 71697) (-74 "BEZOUT.spad" 70057 70083 70866 70871) (-73 "BBTREE.spad" 67000 67009 69729 69756) (-72 "BASTYPE.spad" 66500 66507 66990 66995) (-71 "BASTYPE.spad" 65998 66007 66490 66495) (-70 "BALFACT.spad" 65458 65470 65988 65993) (-69 "AUTOMOR.spad" 64909 64918 65438 65453) (-68 "ATTREG.spad" 61632 61639 64661 64904) (-67 "ATTRAST.spad" 61349 61356 61622 61627) (-66 "ATRIG.spad" 60819 60826 61339 61344) (-65 "ATRIG.spad" 60287 60296 60809 60814) (-64 "ASTCAT.spad" 60191 60198 60277 60282) (-63 "ASTCAT.spad" 60093 60102 60181 60186) (-62 "ASTACK.spad" 59497 59506 59765 59792) (-61 "ASSOCEQ.spad" 58331 58342 59453 59458) (-60 "ARRAY2.spad" 57854 57863 58003 58030) (-59 "ARRAY12.spad" 56567 56578 57844 57849) (-58 "ARRAY1.spad" 55446 55455 55792 55819) (-57 "ARR2CAT.spad" 51340 51361 55414 55441) (-56 "ARR2CAT.spad" 47254 47277 51330 51335) (-55 "ARITY.spad" 46626 46633 47244 47249) (-54 "APPRULE.spad" 45910 45932 46616 46621) (-53 "APPLYORE.spad" 45529 45542 45900 45905) (-52 "ANY1.spad" 44600 44609 45519 45524) (-51 "ANY.spad" 43451 43458 44590 44595) (-50 "ANTISYM.spad" 41896 41912 43431 43446) (-49 "ANON.spad" 41605 41612 41886 41891) (-48 "AN.spad" 40073 40080 41436 41529) (-47 "AMR.spad" 38258 38269 39971 40068) (-46 "AMR.spad" 36306 36319 38021 38026) (-45 "ALIST.spad" 33544 33565 33894 33921) (-44 "ALGSC.spad" 32679 32705 33416 33469) (-43 "ALGPKG.spad" 28462 28473 32635 32640) (-42 "ALGMFACT.spad" 27655 27669 28452 28457) (-41 "ALGMANIP.spad" 25156 25171 27499 27504) (-40 "ALGFF.spad" 22974 23001 23191 23347) (-39 "ALGFACT.spad" 22093 22103 22964 22969) (-38 "ALGEBRA.spad" 21926 21935 22049 22088) (-37 "ALGEBRA.spad" 21791 21802 21916 21921) (-36 "ALAGG.spad" 21303 21324 21759 21786) (-35 "AHYP.spad" 20684 20691 21293 21298) (-34 "AGG.spad" 19393 19400 20674 20679) (-33 "AGG.spad" 18066 18075 19349 19354) (-32 "AF.spad" 16511 16526 18015 18020) (-31 "ADDAST.spad" 16197 16204 16501 16506) (-30 "ACPLOT.spad" 15074 15081 16187 16192) (-29 "ACFS.spad" 12931 12940 14976 15069) (-28 "ACFS.spad" 10874 10885 12921 12926) (-27 "ACF.spad" 7628 7635 10776 10869) (-26 "ACF.spad" 4468 4477 7618 7623) (-25 "ABELSG.spad" 4009 4016 4458 4463) (-24 "ABELSG.spad" 3548 3557 3999 4004) (-23 "ABELMON.spad" 2976 2983 3538 3543) (-22 "ABELMON.spad" 2402 2411 2966 2971) (-21 "ABELGRP.spad" 2067 2074 2392 2397) (-20 "ABELGRP.spad" 1730 1739 2057 2062) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865))
\ No newline at end of file diff --git a/src/share/algebra/category.daase b/src/share/algebra/category.daase index 45c0fee2..e5115451 100644 --- a/src/share/algebra/category.daase +++ b/src/share/algebra/category.daase @@ -1,279 +1,279 @@ -(198452 . 3577545201) -((((-771)) . T)) -((((-771)) . T)) -((((-771)) . T)) -((((-771)) . T)) -((((-771)) . T)) -((((-1093)) . T)) -((((-771)) . T) (((-1093)) . T)) -((((-1093)) . T)) -((((-348 |#2|) |#3|) . T)) -((((-348 (-483))) |has| (-348 |#2|) (-949 (-348 (-483)))) (((-483)) |has| (-348 |#2|) (-949 (-483))) (((-348 |#2|)) . T)) -((((-348 |#2|)) . T)) -((((-483)) |has| (-348 |#2|) (-579 (-483))) (((-348 |#2|)) . T)) -((((-348 |#2|)) . T)) -((((-348 |#2|) |#3|) . T)) -(|has| (-348 |#2|) (-120)) -((((-348 |#2|) |#3|) . T)) -(|has| (-348 |#2|) (-118)) -((((-348 |#2|)) . T) (((-348 (-483))) . T) (($) . T)) -((((-348 |#2|)) . T) (((-348 (-483))) . T) (($) . T)) -((((-348 |#2|)) . T) (((-348 (-483))) . T) (($) . T)) -(|has| (-348 |#2|) (-190)) -((($) OR (|has| (-348 |#2|) (-190)) (|has| (-348 |#2|) (-189)))) -(OR (|has| (-348 |#2|) (-190)) (|has| (-348 |#2|) (-189))) -((((-348 |#2|)) . T)) -((($ (-1088)) OR (|has| (-348 |#2|) (-808 (-1088))) (|has| (-348 |#2|) (-810 (-1088))))) -((((-1088)) OR (|has| (-348 |#2|) (-808 (-1088))) (|has| (-348 |#2|) (-810 (-1088))))) -((((-1088)) |has| (-348 |#2|) (-808 (-1088)))) -((((-348 |#2|)) . T)) +(198465 . 3577666333) +((((-772)) . T)) +((((-772)) . T)) +((((-772)) . T)) +((((-772)) . T)) +((((-772)) . T)) +((((-1094)) . T)) +((((-772)) . T) (((-1094)) . T)) +((((-1094)) . T)) +((((-349 |#2|) |#3|) . T)) +((((-349 (-484))) |has| (-349 |#2|) (-950 (-349 (-484)))) (((-484)) |has| (-349 |#2|) (-950 (-484))) (((-349 |#2|)) . T)) +((((-349 |#2|)) . T)) +((((-484)) |has| (-349 |#2|) (-580 (-484))) (((-349 |#2|)) . T)) +((((-349 |#2|)) . T)) +((((-349 |#2|) |#3|) . T)) +(|has| (-349 |#2|) (-120)) +((((-349 |#2|) |#3|) . T)) +(|has| (-349 |#2|) (-118)) +((((-349 |#2|)) . T) (((-349 (-484))) . T) (($) . T)) +((((-349 |#2|)) . T) (((-349 (-484))) . T) (($) . T)) +((((-349 |#2|)) . T) (((-349 (-484))) . T) (($) . T)) +(|has| (-349 |#2|) (-190)) +((($) OR (|has| (-349 |#2|) (-190)) (|has| (-349 |#2|) (-189)))) +(OR (|has| (-349 |#2|) (-190)) (|has| (-349 |#2|) (-189))) +((((-349 |#2|)) . T)) +((($ (-1089)) OR (|has| (-349 |#2|) (-809 (-1089))) (|has| (-349 |#2|) (-811 (-1089))))) +((((-1089)) OR (|has| (-349 |#2|) (-809 (-1089))) (|has| (-349 |#2|) (-811 (-1089))))) +((((-1089)) |has| (-349 |#2|) (-809 (-1089)))) +((((-349 |#2|)) . T)) (((|#3|) . T)) -((((-348 |#2|) (-348 |#2|)) . T) (((-348 (-483)) (-348 (-483))) . T) (($ $) . T)) -((((-348 |#2|)) . T) (((-348 (-483))) . T) (($) . T)) -((((-348 |#2|)) . T) (((-348 (-483))) . T) (($) . T)) -((((-771)) . T)) -((((-348 |#2|)) . T) (((-348 (-483))) . T) (((-483)) . T) (($) . T)) -((((-483)) |has| (-348 |#2|) (-579 (-483))) (((-348 |#2|)) . T) (((-348 (-483))) . T) (($) . T)) -((((-348 |#2|)) . T) (((-348 (-483))) . T) (($) . T) (((-483)) . T)) +((((-349 |#2|) (-349 |#2|)) . T) (((-349 (-484)) (-349 (-484))) . T) (($ $) . T)) +((((-349 |#2|)) . T) (((-349 (-484))) . T) (($) . T)) +((((-349 |#2|)) . T) (((-349 (-484))) . T) (($) . T)) +((((-772)) . T)) +((((-349 |#2|)) . T) (((-349 (-484))) . T) (((-484)) . T) (($) . T)) +((((-484)) |has| (-349 |#2|) (-580 (-484))) (((-349 |#2|)) . T) (((-349 (-484))) . T) (($) . T)) +((((-349 |#2|)) . T) (((-349 (-484))) . T) (($) . T) (((-484)) . T)) (((|#1| |#2| |#3|) . T)) -((((-483) |#1|) . T)) +((((-484) |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-1054 |#2| |#1|)) . T) ((|#1|) . T)) -((((-771)) . T)) -((((-1054 |#2| |#1|)) . T) ((|#1|) . T) (((-483)) . T)) +((((-1055 |#2| |#1|)) . T) ((|#1|) . T)) +((((-772)) . T)) +((((-1055 |#2| |#1|)) . T) ((|#1|) . T) (((-484)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) . T)) -((((-771)) . T)) -((((-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T)) +((((-772)) . T)) +((((-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T)) (((|#1| |#2|) . T)) -((((-483) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) . T) ((|#1| |#2|) . T)) -((((-483) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) . T) (((-1144 (-483)) $) . T) ((|#1| |#2|) . T)) -((((-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T)) -((((-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1012)))) -((((-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)))) ((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1012)))) -((((-483) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) . T) ((|#1| |#2|) . T)) +((((-484) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T) ((|#1| |#2|) . T)) +((((-484) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T) (((-1145 (-484)) $) . T) ((|#1| |#2|) . T)) +((((-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T)) +((((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013)))) +((((-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) ((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013)))) +((((-484) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T) ((|#1| |#2|) . T)) (((|#1| |#2|) . T)) ((($) . T)) -((((-142 (-328))) . T) (((-179)) . T) (((-328)) . T)) -((((-348 (-483))) . T) (((-483)) . T)) -((($) . T) (((-348 (-483))) . T)) -((($) . T) (((-483)) . T) (((-348 (-483))) . T)) -((((-483)) . T) (($) . T) (((-348 (-483))) . T)) -((($) . T) (((-348 (-483))) . T)) -((($) . T) (((-348 (-483))) . T)) -((((-348 (-483))) . T) (($) . T)) -((((-348 (-483))) . T) (($) . T)) -((((-348 (-483)) (-348 (-483))) . T) (($ $) . T)) -((($) . T)) -((($ $) . T) (((-549 $) $) . T)) -((((-348 (-483))) . T) (((-483)) . T) (((-549 $)) . T)) -((((-1037 (-483) (-549 $))) . T) (($) . T) (((-483)) . T) (((-348 (-483))) . T) (((-549 $)) . T)) -((((-771)) . T)) -((((-771)) . T)) -(((|#1|) . T)) -((((-771)) . T)) -(((|#1|) . T) (((-483)) . T) (($) . T)) +((((-142 (-329))) . T) (((-179)) . T) (((-329)) . T)) +((((-349 (-484))) . T) (((-484)) . T)) +((($) . T) (((-349 (-484))) . T)) +((($) . T) (((-484)) . T) (((-349 (-484))) . T)) +((((-484)) . T) (($) . T) (((-349 (-484))) . T)) +((($) . T) (((-349 (-484))) . T)) +((($) . T) (((-349 (-484))) . T)) +((((-349 (-484))) . T) (($) . T)) +((((-349 (-484))) . T) (($) . T)) +((((-349 (-484)) (-349 (-484))) . T) (($ $) . T)) +((($) . T)) +((($ $) . T) (((-550 $) $) . T)) +((((-349 (-484))) . T) (((-484)) . T) (((-550 $)) . T)) +((((-1038 (-484) (-550 $))) . T) (($) . T) (((-484)) . T) (((-349 (-484))) . T) (((-550 $)) . T)) +((((-772)) . T)) +((((-772)) . T)) +(((|#1|) . T)) +((((-772)) . T)) +(((|#1|) . T) (((-484)) . T) (($) . T)) (((|#1|) . T) (($) . T)) -(((|#1|) . T) (((-483)) . T)) +(((|#1|) . T) (((-484)) . T)) (((|#1|) . T)) -((((-771)) . T)) -((((-693)) . T)) -((((-693)) . T)) -((((-771)) . T)) +((((-772)) . T)) +((((-694)) . T)) +((((-694)) . T)) +((((-772)) . T)) (((|#1|) . T)) -(|has| |#1| (-755)) -(|has| |#1| (-755)) +(|has| |#1| (-756)) +(|has| |#1| (-756)) (((|#1|) . T)) -(OR (|has| |#1| (-72)) (|has| |#1| (-755)) (|has| |#1| (-1012))) -((((-771)) OR (|has| |#1| (-551 (-771))) (|has| |#1| (-755)) (|has| |#1| (-1012)))) -(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012)))) -(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012)))) -(OR (|has| |#1| (-755)) (|has| |#1| (-1012))) +(OR (|has| |#1| (-72)) (|has| |#1| (-756)) (|has| |#1| (-1013))) +((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-756)) (|has| |#1| (-1013)))) +(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013)))) +(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013)))) +(OR (|has| |#1| (-756)) (|has| |#1| (-1013))) (((|#1|) . T)) -((((-472)) |has| |#1| (-552 (-472)))) -((((-483) |#1|) . T)) -((((-1144 (-483)) $) . T) (((-483) |#1|) . T)) -((((-483) |#1|) . T)) +((((-473)) |has| |#1| (-553 (-473)))) +((((-484) |#1|) . T)) +((((-1145 (-484)) $) . T) (((-484) |#1|) . T)) +((((-484) |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-1012)) -(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012)))) -(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012)))) -((((-771)) OR (|has| |#1| (-551 (-771))) (|has| |#1| (-1012)))) -(OR (|has| |#1| (-72)) (|has| |#1| (-1012))) +(|has| |#1| (-1013)) +(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013)))) +(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013)))) +((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-1013)))) +(OR (|has| |#1| (-72)) (|has| |#1| (-1013))) (((|#1| (-58 |#1|) (-58 |#1|)) . T)) (((|#1|) . T)) -(OR (|has| |#1| (-72)) (|has| |#1| (-1012))) -((((-771)) OR (|has| |#1| (-551 (-771))) (|has| |#1| (-1012)))) -(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012)))) -(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012)))) -(|has| |#1| (-1012)) +(OR (|has| |#1| (-72)) (|has| |#1| (-1013))) +((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-1013)))) +(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013)))) +(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013)))) +(|has| |#1| (-1013)) (((|#1|) . T)) (((|#1|) . T)) -((((-1093)) . T)) -((((-771)) . T) (((-1093)) . T)) -((((-1093)) . T)) +((((-1094)) . T)) +((((-772)) . T) (((-1094)) . T)) +((((-1094)) . T)) (((|#1| |#1|) . T)) -((((-771)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(|has| |#1| (-1012)) -(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012)))) -(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012)))) -((((-771)) OR (|has| |#1| (-551 (-771))) (|has| |#1| (-1012)))) -(OR (|has| |#1| (-72)) (|has| |#1| (-1012))) -(((|#1|) . T)) -(((|#1|) . T)) -((((-916 2)) . T) (((-348 (-483))) . T) (((-771)) . T)) -((((-483)) . T)) -((((-483)) . T)) -((($) . T)) -((((-483)) . T) (($) . T) (((-348 (-483))) . T)) -((($) . T) (((-483)) . T) (((-348 (-483))) . T)) -((($) . T) (((-483)) . T) (((-348 (-483))) . T)) -((((-483)) . T) (($) . T) (((-348 (-483))) . T)) -((((-483)) . T) (($) . T) (((-348 (-483))) . T)) -((((-483)) . T) (((-348 (-483))) . T) (($) . T)) -((((-483)) . T) (((-348 (-483))) . T) (($) . T)) -((((-483) (-483)) . T) (((-348 (-483)) (-348 (-483))) . T) (($ $) . T)) -((((-483)) . T)) -((((-483)) . T)) -((((-483)) . T)) -((((-483)) . T)) -((((-483)) . T)) -((((-483)) . T)) -((((-472)) . T) (((-799 (-483))) . T) (((-328)) . T) (((-179)) . T)) -((((-348 (-483))) . T) (((-483)) . T)) -((((-483)) . T) (($) . T) (((-348 (-483))) . T)) -((((-483)) . T)) -((((-771)) . T)) -((((-771)) . T)) +((((-772)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(|has| |#1| (-1013)) +(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013)))) +(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013)))) +((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-1013)))) +(OR (|has| |#1| (-72)) (|has| |#1| (-1013))) +(((|#1|) . T)) +(((|#1|) . T)) +((((-917 2)) . T) (((-349 (-484))) . T) (((-772)) . T)) +((((-484)) . T)) +((((-484)) . T)) +((($) . T)) +((((-484)) . T) (($) . T) (((-349 (-484))) . T)) +((($) . T) (((-484)) . T) (((-349 (-484))) . T)) +((($) . T) (((-484)) . T) (((-349 (-484))) . T)) +((((-484)) . T) (($) . T) (((-349 (-484))) . T)) +((((-484)) . T) (($) . T) (((-349 (-484))) . T)) +((((-484)) . T) (((-349 (-484))) . T) (($) . T)) +((((-484)) . T) (((-349 (-484))) . T) (($) . T)) +((((-484) (-484)) . T) (((-349 (-484)) (-349 (-484))) . T) (($ $) . T)) +((((-484)) . T)) +((((-484)) . T)) +((((-484)) . T)) +((((-484)) . T)) +((((-484)) . T)) +((((-484)) . T)) +((((-473)) . T) (((-800 (-484))) . T) (((-329)) . T) (((-179)) . T)) +((((-349 (-484))) . T) (((-484)) . T)) +((((-484)) . T) (($) . T) (((-349 (-484))) . T)) +((((-484)) . T)) +((((-772)) . T)) +((((-772)) . T)) (((|#1| |#1| |#1|) . T)) (((|#1|) . T)) ((((-85)) . T)) ((((-85)) . T)) -((((-483) (-85)) . T)) -((((-483) (-85)) . T)) -((((-483) (-85)) . T) (((-1144 (-483)) $) . T)) -((((-472)) . T)) +((((-484) (-85)) . T)) +((((-484) (-85)) . T)) +((((-484) (-85)) . T) (((-1145 (-484)) $) . T)) +((((-473)) . T)) ((((-85)) . T)) -((((-771)) . T)) +((((-772)) . T)) ((((-85)) . T)) ((((-85)) . T)) -((((-472)) . T)) -((((-771)) . T)) -((((-1088)) . T)) -((((-771)) . T)) +((((-473)) . T)) +((((-772)) . T)) +((((-1089)) . T)) +((((-772)) . T)) ((($) . T)) -((((-771)) . T)) -((($) . T) (((-483)) . T)) +((((-772)) . T)) +((($) . T) (((-484)) . T)) ((($) . T)) ((($ $) . T)) ((($) . T)) ((($) . T)) ((($) . T)) ((($) . T)) -((((-483)) . T) (($) . T)) +((((-484)) . T) (($) . T)) (((|#1|) . T)) -((((-771)) . T)) +((((-772)) . T)) ((((-89 |#1|)) . T)) ((((-89 |#1|)) . T)) -((((-89 |#1|)) . T) (($) . T) (((-348 (-483))) . T)) -((($) . T) (((-483)) . T) (((-89 |#1|)) . T) (((-348 (-483))) . T)) -((((-89 |#1|)) . T) (($) . T) (((-348 (-483))) . T)) -((((-89 |#1|)) . T) (($) . T) (((-348 (-483))) . T)) -((((-89 |#1|)) . T) (((-348 (-483))) . T) (($) . T)) -((((-89 |#1|)) . T) (((-348 (-483))) . T) (($) . T)) -((((-89 |#1|) (-89 |#1|)) . T) (((-348 (-483)) (-348 (-483))) . T) (($ $) . T)) +((((-89 |#1|)) . T) (($) . T) (((-349 (-484))) . T)) +((($) . T) (((-484)) . T) (((-89 |#1|)) . T) (((-349 (-484))) . T)) +((((-89 |#1|)) . T) (($) . T) (((-349 (-484))) . T)) +((((-89 |#1|)) . T) (($) . T) (((-349 (-484))) . T)) +((((-89 |#1|)) . T) (((-349 (-484))) . T) (($) . T)) +((((-89 |#1|)) . T) (((-349 (-484))) . T) (($) . T)) +((((-89 |#1|) (-89 |#1|)) . T) (((-349 (-484)) (-349 (-484))) . T) (($ $) . T)) ((((-89 |#1|)) . T)) -((((-1088) (-89 |#1|)) |has| (-89 |#1|) (-454 (-1088) (-89 |#1|))) (((-89 |#1|) (-89 |#1|)) |has| (-89 |#1|) (-260 (-89 |#1|)))) +((((-1089) (-89 |#1|)) |has| (-89 |#1|) (-455 (-1089) (-89 |#1|))) (((-89 |#1|) (-89 |#1|)) |has| (-89 |#1|) (-260 (-89 |#1|)))) ((((-89 |#1|)) |has| (-89 |#1|) (-260 (-89 |#1|)))) ((((-89 |#1|) $) |has| (-89 |#1|) (-241 (-89 |#1|) (-89 |#1|)))) ((((-89 |#1|)) . T)) -((($) . T) (((-89 |#1|)) . T) (((-348 (-483))) . T)) +((($) . T) (((-89 |#1|)) . T) (((-349 (-484))) . T)) ((((-89 |#1|)) . T)) ((((-89 |#1|)) . T)) ((((-89 |#1|)) . T)) -((((-483)) . T) (((-89 |#1|)) . T) (($) . T) (((-348 (-483))) . T)) +((((-484)) . T) (((-89 |#1|)) . T) (($) . T) (((-349 (-484))) . T)) ((((-89 |#1|)) . T)) ((((-89 |#1|)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-1012)) -(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012)))) -(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012)))) -((((-771)) OR (|has| |#1| (-551 (-771))) (|has| |#1| (-1012)))) -(OR (|has| |#1| (-72)) (|has| |#1| (-1012))) +(|has| |#1| (-1013)) +(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013)))) +(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013)))) +((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-1013)))) +(OR (|has| |#1| (-72)) (|has| |#1| (-1013))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-1012)) -(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012)))) -(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012)))) -((((-771)) OR (|has| |#1| (-551 (-771))) (|has| |#1| (-1012)))) -(OR (|has| |#1| (-72)) (|has| |#1| (-1012))) +(|has| |#1| (-1013)) +(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013)))) +(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013)))) +((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-1013)))) +(OR (|has| |#1| (-72)) (|has| |#1| (-1013))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-1012)) -(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012)))) -(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012)))) -((((-771)) OR (|has| |#1| (-551 (-771))) (|has| |#1| (-1012)))) -(OR (|has| |#1| (-72)) (|has| |#1| (-1012))) +(|has| |#1| (-1013)) +(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013)))) +(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013)))) +((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-1013)))) +(OR (|has| |#1| (-72)) (|has| |#1| (-1013))) (((|#1|) . T)) (((|#1|) . T)) -((((-771)) . T)) +((((-772)) . T)) ((((-101)) . T)) ((((-101)) . T)) -((((-1071)) . T) (((-868 (-101))) . T) (((-771)) . T)) +((((-1072)) . T) (((-869 (-101))) . T) (((-772)) . T)) ((((-101)) . T)) -((((-483) (-101)) . T)) -((((-1144 (-483)) $) . T) (((-483) (-101)) . T)) -((((-483) (-101)) . T)) +((((-484) (-101)) . T)) +((((-1145 (-484)) $) . T) (((-484) (-101)) . T)) +((((-484) (-101)) . T)) ((((-101)) . T)) ((((-101)) . T)) -((((-771)) . T)) -((((-1093)) . T)) -((((-771)) . T) (((-1093)) . T)) -((((-1093)) . T)) -((((-693)) . T)) -((((-693)) . T)) -((((-771)) . T)) -((((-483) |#3|) . T)) -((((-483) (-693)) . T) ((|#3| (-693)) . T)) -((((-771)) . T)) +((((-772)) . T)) +((((-1094)) . T)) +((((-772)) . T) (((-1094)) . T)) +((((-1094)) . T)) +((((-694)) . T)) +((((-694)) . T)) +((((-772)) . T)) +((((-484) |#3|) . T)) +((((-484) (-694)) . T) ((|#3| (-694)) . T)) +((((-772)) . T)) (((|#3|) . T)) -((((-582 $)) . T) (((-582 |#3|)) . T) (((-1054 |#2| |#3|)) . T) (((-197 |#2| |#3|)) . T) ((|#3|) . T)) -(((|#3| (-693)) . T)) -((((-1093)) . T)) -((((-771)) . T) (((-1093)) . T)) -((((-1093)) . T)) -((((-1093)) . T)) -((((-771)) . T) (((-1093)) . T)) -((((-1093)) . T)) -((((-445)) . T)) -((((-157)) . T) (((-771)) . T)) -((((-771)) . T)) +((((-583 $)) . T) (((-583 |#3|)) . T) (((-1055 |#2| |#3|)) . T) (((-197 |#2| |#3|)) . T) ((|#3|) . T)) +(((|#3| (-694)) . T)) +((((-1094)) . T)) +((((-772)) . T) (((-1094)) . T)) +((((-1094)) . T)) +((((-1094)) . T)) +((((-772)) . T) (((-1094)) . T)) +((((-1094)) . T)) +((((-446)) . T)) +((((-157)) . T) (((-772)) . T)) +((((-772)) . T)) ((((-117)) . T)) ((((-117)) . T)) ((((-117)) . T)) @@ -281,9 +281,9 @@ ((((-117)) . T)) ((((-117)) . T)) ((((-117)) . T)) -((((-582 (-117))) . T) (((-1071)) . T)) -((((-771)) . T)) -((((-771)) . T)) +((((-583 (-117))) . T) (((-1072)) . T)) +((((-772)) . T)) +((((-772)) . T)) (((|#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) @@ -291,1335 +291,1335 @@ (((|#2|) . T)) (((|#2| |#2|) . T)) (((|#2|) . T)) -(((|#2|) . T) (((-483)) . T)) +(((|#2|) . T) (((-484)) . T)) (((|#2|) . T) (($) . T)) -((((-771)) . T)) -(((|#2|) . T) (($) . T) (((-483)) . T)) -((((-1093)) . T)) -((((-771)) . T) (((-1093)) . T)) -((((-1093)) . T)) -((((-1093)) . T)) -((((-771)) . T) (((-1093)) . T)) -((((-1093)) . T)) -((((-771)) . T)) -((((-771)) . T)) -((((-1093)) . T)) -((((-771)) . T) (((-1093)) . T)) -((((-1093)) . T)) +((((-772)) . T)) +(((|#2|) . T) (($) . T) (((-484)) . T)) +((((-1094)) . T)) +((((-772)) . T) (((-1094)) . T)) +((((-1094)) . T)) +((((-1094)) . T)) +((((-772)) . T) (((-1094)) . T)) +((((-1094)) . T)) +((((-772)) . T)) +((((-772)) . T)) +((((-1094)) . T)) +((((-772)) . T) (((-1094)) . T)) +((((-1094)) . T)) (OR (|has| |#1| (-118)) (|has| |#1| (-299))) -((((-771)) . T)) +((((-772)) . T)) (|has| |#1| (-120)) (((|#1|) . T)) -((((-1088)) |has| |#1| (-808 (-1088)))) -((((-1088)) OR (|has| |#1| (-808 (-1088))) (|has| |#1| (-810 (-1088))))) -((($ (-1088)) OR (|has| |#1| (-808 (-1088))) (|has| |#1| (-810 (-1088))))) +((((-1089)) |has| |#1| (-809 (-1089)))) +((((-1089)) OR (|has| |#1| (-809 (-1089))) (|has| |#1| (-811 (-1089))))) +((($ (-1089)) OR (|has| |#1| (-809 (-1089))) (|has| |#1| (-811 (-1089))))) (((|#1|) . T)) (OR (|has| |#1| (-190)) (|has| |#1| (-189)) (|has| |#1| (-299))) ((($) OR (|has| |#1| (-190)) (|has| |#1| (-189)) (|has| |#1| (-299)))) (OR (|has| |#1| (-190)) (|has| |#1| (-299))) (OR (|has| |#1| (-258)) (|has| |#1| (-312)) (|has| |#1| (-299))) (OR (|has| |#1| (-258)) (|has| |#1| (-312)) (|has| |#1| (-299))) -(OR (|has| |#1| (-258)) (|has| |#1| (-312)) (|has| |#1| (-299)) (|has| |#1| (-494))) -(OR (|has| |#1| (-258)) (|has| |#1| (-312)) (|has| |#1| (-299)) (|has| |#1| (-494))) +(OR (|has| |#1| (-258)) (|has| |#1| (-312)) (|has| |#1| (-299)) (|has| |#1| (-495))) +(OR (|has| |#1| (-258)) (|has| |#1| (-312)) (|has| |#1| (-299)) (|has| |#1| (-495))) (OR (|has| |#1| (-258)) (|has| |#1| (-312)) (|has| |#1| (-299))) (OR (|has| |#1| (-312)) (|has| |#1| (-299))) -(OR (-12 (|has| |#1| (-258)) (|has| |#1| (-820))) (|has| |#1| (-312)) (|has| |#1| (-299))) +(OR (-12 (|has| |#1| (-258)) (|has| |#1| (-821))) (|has| |#1| (-312)) (|has| |#1| (-299))) (OR (|has| |#1| (-312)) (|has| |#1| (-299))) (((|#1|) . T)) -((((-1088) |#1|) |has| |#1| (-454 (-1088) |#1|)) ((|#1| |#1|) |has| |#1| (-260 |#1|))) +((((-1089) |#1|) |has| |#1| (-455 (-1089) |#1|)) ((|#1| |#1|) |has| |#1| (-260 |#1|))) (((|#1|) |has| |#1| (-260 |#1|))) (((|#1| $) |has| |#1| (-241 |#1| |#1|))) (((|#1|) . T)) -((($) . T) (((-483)) . T) (((-348 (-483))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T)) -((($) . T) (((-348 (-483))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T) (((-483)) |has| |#1| (-579 (-483)))) -(((|#1|) . T) (((-483)) |has| |#1| (-579 (-483)))) -(((|#1|) . T)) -((((-483)) |has| |#1| (-795 (-483))) (((-328)) |has| |#1| (-795 (-328)))) -(((|#1|) . T)) -((((-483)) . T) (($) OR (|has| |#1| (-258)) (|has| |#1| (-312)) (|has| |#1| (-299)) (|has| |#1| (-494))) (((-348 (-483))) OR (|has| |#1| (-312)) (|has| |#1| (-299)) (|has| |#1| (-949 (-348 (-483))))) ((|#1|) . T)) -(((|#1|) . T) (((-483)) |has| |#1| (-949 (-483))) (((-348 (-483))) |has| |#1| (-949 (-348 (-483))))) -(((|#1| (-1083 |#1|)) . T)) -(((|#1| (-1083 |#1|)) . T)) -((($) OR (|has| |#1| (-258)) (|has| |#1| (-312)) (|has| |#1| (-299)) (|has| |#1| (-494))) (((-348 (-483))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T)) -((($) OR (|has| |#1| (-258)) (|has| |#1| (-312)) (|has| |#1| (-299)) (|has| |#1| (-494))) (((-348 (-483))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T)) -((($) . T) (((-348 (-483))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T)) -((($) . T) (((-348 (-483))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T)) -((($ $) . T) (((-348 (-483)) (-348 (-483))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1| |#1|) . T)) -((($) OR (|has| |#1| (-258)) (|has| |#1| (-312)) (|has| |#1| (-299)) (|has| |#1| (-494))) (((-348 (-483))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T)) -(((|#1| (-1083 |#1|)) . T)) +((($) . T) (((-484)) . T) (((-349 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T)) +((($) . T) (((-349 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T) (((-484)) |has| |#1| (-580 (-484)))) +(((|#1|) . T) (((-484)) |has| |#1| (-580 (-484)))) +(((|#1|) . T)) +((((-484)) |has| |#1| (-796 (-484))) (((-329)) |has| |#1| (-796 (-329)))) +(((|#1|) . T)) +((((-484)) . T) (($) OR (|has| |#1| (-258)) (|has| |#1| (-312)) (|has| |#1| (-299)) (|has| |#1| (-495))) (((-349 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-299)) (|has| |#1| (-950 (-349 (-484))))) ((|#1|) . T)) +(((|#1|) . T) (((-484)) |has| |#1| (-950 (-484))) (((-349 (-484))) |has| |#1| (-950 (-349 (-484))))) +(((|#1| (-1084 |#1|)) . T)) +(((|#1| (-1084 |#1|)) . T)) +((($) OR (|has| |#1| (-258)) (|has| |#1| (-312)) (|has| |#1| (-299)) (|has| |#1| (-495))) (((-349 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T)) +((($) OR (|has| |#1| (-258)) (|has| |#1| (-312)) (|has| |#1| (-299)) (|has| |#1| (-495))) (((-349 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T)) +((($) . T) (((-349 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T)) +((($) . T) (((-349 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T)) +((($ $) . T) (((-349 (-484)) (-349 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1| |#1|) . T)) +((($) OR (|has| |#1| (-258)) (|has| |#1| (-312)) (|has| |#1| (-299)) (|has| |#1| (-495))) (((-349 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T)) +(((|#1| (-1084 |#1|)) . T)) (|has| |#1| (-299)) (|has| |#1| (-299)) (|has| |#1| (-299)) -(OR (|has| |#1| (-318)) (|has| |#1| (-299))) -(((|#1|) . T)) -((((-142 (-179))) |has| |#1| (-932)) (((-142 (-328))) |has| |#1| (-932)) (((-472)) |has| |#1| (-552 (-472))) (((-1083 |#1|)) . T) (((-799 (-483))) |has| |#1| (-552 (-799 (-483)))) (((-799 (-328))) |has| |#1| (-552 (-799 (-328))))) -(-12 (|has| |#1| (-258)) (|has| |#1| (-820))) -(-12 (|has| |#1| (-914)) (|has| |#1| (-1113))) -(|has| |#1| (-1113)) -(|has| |#1| (-1113)) -(|has| |#1| (-1113)) -(|has| |#1| (-1113)) -(|has| |#1| (-1113)) -(|has| |#1| (-1113)) -(((|#1|) . T)) -((((-771)) . T)) -((((-348 (-483))) . T) (($) . T) (((-348 |#1|)) . T) ((|#1|) . T)) -((((-348 (-483))) . T) (($) . T) (((-348 |#1|)) . T) ((|#1|) . T)) -((((-771)) . T)) -((($) . T) (((-348 (-483))) . T) (((-348 |#1|)) . T) ((|#1|) . T)) -((($) . T) (((-348 (-483))) . T) (((-348 |#1|)) . T) ((|#1|) . T)) -((($ $) . T) (((-348 (-483)) (-348 (-483))) . T) (((-348 |#1|) (-348 |#1|)) . T) ((|#1| |#1|) . T)) -((((-348 (-483))) . T) (((-348 |#1|)) . T) ((|#1|) . T) (((-483)) . T) (($) . T)) -((((-348 (-483))) . T) (((-348 |#1|)) . T) ((|#1|) . T) (($) . T)) -((((-348 (-483))) . T) (($) . T) (((-348 |#1|)) . T) ((|#1|) . T) (((-483)) . T)) -((((-348 (-483))) . T) (($) . T) (((-348 |#1|)) . T) ((|#1|) . T)) -((((-771)) . T)) -((((-1093)) . T)) -((((-771)) . T) (((-1093)) . T)) -((((-1093)) . T)) -((((-445)) . T)) -((((-771)) . T)) -((((-771)) . T)) -((((-771)) . T)) -((((-771)) . T)) -((((-582 |#1|)) . T)) -((((-771)) . T)) -((((-771)) . T)) -((((-916 10)) . T) (((-348 (-483))) . T) (((-771)) . T)) -((((-483)) . T)) -((((-483)) . T)) -((($) . T)) -((((-483)) . T) (($) . T) (((-348 (-483))) . T)) -((($) . T) (((-483)) . T) (((-348 (-483))) . T)) -((($) . T) (((-483)) . T) (((-348 (-483))) . T)) -((((-483)) . T) (($) . T) (((-348 (-483))) . T)) -((((-483)) . T) (($) . T) (((-348 (-483))) . T)) -((((-483)) . T) (((-348 (-483))) . T) (($) . T)) -((((-483)) . T) (((-348 (-483))) . T) (($) . T)) -((((-483) (-483)) . T) (((-348 (-483)) (-348 (-483))) . T) (($ $) . T)) -((((-483)) . T)) -((((-483)) . T)) -((((-483)) . T)) -((((-483)) . T)) -((((-483)) . T)) -((((-483)) . T)) -((((-472)) . T) (((-799 (-483))) . T) (((-328)) . T) (((-179)) . T)) -((((-348 (-483))) . T) (((-483)) . T)) -((((-483)) . T) (($) . T) (((-348 (-483))) . T)) -((((-483)) . T)) -((((-1093)) . T)) -((((-771)) . T) (((-1093)) . T)) -((((-1093)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(|has| |#1| (-1012)) -(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012)))) -(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012)))) -((((-771)) OR (|has| |#1| (-551 (-771))) (|has| |#1| (-1012)))) -(OR (|has| |#1| (-72)) (|has| |#1| (-1012))) +(OR (|has| |#1| (-319)) (|has| |#1| (-299))) +(((|#1|) . T)) +((((-142 (-179))) |has| |#1| (-933)) (((-142 (-329))) |has| |#1| (-933)) (((-473)) |has| |#1| (-553 (-473))) (((-1084 |#1|)) . T) (((-800 (-484))) |has| |#1| (-553 (-800 (-484)))) (((-800 (-329))) |has| |#1| (-553 (-800 (-329))))) +(-12 (|has| |#1| (-258)) (|has| |#1| (-821))) +(-12 (|has| |#1| (-915)) (|has| |#1| (-1114))) +(|has| |#1| (-1114)) +(|has| |#1| (-1114)) +(|has| |#1| (-1114)) +(|has| |#1| (-1114)) +(|has| |#1| (-1114)) +(|has| |#1| (-1114)) +(((|#1|) . T)) +((((-772)) . T)) +((((-349 (-484))) . T) (($) . T) (((-349 |#1|)) . T) ((|#1|) . T)) +((((-349 (-484))) . T) (($) . T) (((-349 |#1|)) . T) ((|#1|) . T)) +((((-772)) . T)) +((($) . T) (((-349 (-484))) . T) (((-349 |#1|)) . T) ((|#1|) . T)) +((($) . T) (((-349 (-484))) . T) (((-349 |#1|)) . T) ((|#1|) . T)) +((($ $) . T) (((-349 (-484)) (-349 (-484))) . T) (((-349 |#1|) (-349 |#1|)) . T) ((|#1| |#1|) . T)) +((((-349 (-484))) . T) (((-349 |#1|)) . T) ((|#1|) . T) (((-484)) . T) (($) . T)) +((((-349 (-484))) . T) (((-349 |#1|)) . T) ((|#1|) . T) (($) . T)) +((((-349 (-484))) . T) (($) . T) (((-349 |#1|)) . T) ((|#1|) . T) (((-484)) . T)) +((((-349 (-484))) . T) (($) . T) (((-349 |#1|)) . T) ((|#1|) . T)) +((((-772)) . T)) +((((-1094)) . T)) +((((-772)) . T) (((-1094)) . T)) +((((-1094)) . T)) +((((-446)) . T)) +((((-772)) . T)) +((((-772)) . T)) +((((-772)) . T)) +((((-772)) . T)) +((((-583 |#1|)) . T)) +((((-772)) . T)) +((((-772)) . T)) +((((-917 10)) . T) (((-349 (-484))) . T) (((-772)) . T)) +((((-484)) . T)) +((((-484)) . T)) +((($) . T)) +((((-484)) . T) (($) . T) (((-349 (-484))) . T)) +((($) . T) (((-484)) . T) (((-349 (-484))) . T)) +((($) . T) (((-484)) . T) (((-349 (-484))) . T)) +((((-484)) . T) (($) . T) (((-349 (-484))) . T)) +((((-484)) . T) (($) . T) (((-349 (-484))) . T)) +((((-484)) . T) (((-349 (-484))) . T) (($) . T)) +((((-484)) . T) (((-349 (-484))) . T) (($) . T)) +((((-484) (-484)) . T) (((-349 (-484)) (-349 (-484))) . T) (($ $) . T)) +((((-484)) . T)) +((((-484)) . T)) +((((-484)) . T)) +((((-484)) . T)) +((((-484)) . T)) +((((-484)) . T)) +((((-473)) . T) (((-800 (-484))) . T) (((-329)) . T) (((-179)) . T)) +((((-349 (-484))) . T) (((-484)) . T)) +((((-484)) . T) (($) . T) (((-349 (-484))) . T)) +((((-484)) . T)) +((((-1094)) . T)) +((((-772)) . T) (((-1094)) . T)) +((((-1094)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(|has| |#1| (-1013)) +(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013)))) +(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013)))) +((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-1013)))) +(OR (|has| |#1| (-72)) (|has| |#1| (-1013))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) ((((-265 |#1|)) . T)) -((((-771)) . T)) -((((-265 |#1|)) . T) (((-483)) . T) (($) . T)) +((((-772)) . T)) +((((-265 |#1|)) . T) (((-484)) . T) (($) . T)) ((((-265 |#1|)) . T) (($) . T)) -((((-265 |#1|)) . T) (((-483)) . T)) +((((-265 |#1|)) . T) (((-484)) . T)) ((((-265 |#1|)) . T)) ((($) . T)) -((((-483)) . T) (((-348 (-483))) . T)) -((((-328)) . T)) -((($) . T) (((-348 (-483))) . T)) -((($) . T) (((-348 (-483))) . T)) -((($ $) . T) (((-348 (-483)) (-348 (-483))) . T)) -((((-348 (-483))) . T) (($) . T)) -((((-348 (-483))) . T) (($) . T)) -((((-348 (-483))) . T) (($) . T)) -((((-472)) . T) (((-179)) . T) (((-328)) . T) (((-799 (-328))) . T)) -((((-771)) . T)) -((((-348 (-483))) . T) (((-483)) . T) (($) . T)) -((((-348 (-483))) . T) (($) . T)) -((((-348 (-483))) . T) (($) . T) (((-483)) . T)) -(((|#1| (-1177 |#1|) (-1177 |#1|)) . T)) -(OR (|has| |#1| (-72)) (|has| |#1| (-1012))) -((((-771)) OR (|has| |#1| (-551 (-771))) (|has| |#1| (-1012)))) -(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012)))) -(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012)))) -(|has| |#1| (-1012)) -(((|#1|) . T)) -(((|#1| (-1177 |#1|) (-1177 |#1|)) . T)) -(OR (|has| |#2| (-21)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-960))) -(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-716)) (|has| |#2| (-960))) -(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-318)) (|has| |#2| (-662)) (|has| |#2| (-716)) (|has| |#2| (-755)) (|has| |#2| (-960)) (|has| |#2| (-1012))) -(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-72)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-318)) (|has| |#2| (-662)) (|has| |#2| (-716)) (|has| |#2| (-755)) (|has| |#2| (-960)) (|has| |#2| (-1012))) -(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-716)) (|has| |#2| (-960))) -(OR (|has| |#2| (-21)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-716)) (|has| |#2| (-960))) -(((|#2| |#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-960)))) -(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-662)) (|has| |#2| (-960)))) -(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-960)))) -((((-771)) OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-551 (-771))) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-318)) (|has| |#2| (-662)) (|has| |#2| (-716)) (|has| |#2| (-755)) (|has| |#2| (-960)) (|has| |#2| (-1012))) (((-1177 |#2|)) . T)) -(((|#2|) |has| |#2| (-960))) -((((-1088)) -12 (|has| |#2| (-808 (-1088))) (|has| |#2| (-960)))) -((((-1088)) OR (-12 (|has| |#2| (-808 (-1088))) (|has| |#2| (-960))) (-12 (|has| |#2| (-810 (-1088))) (|has| |#2| (-960))))) -((($ (-1088)) OR (-12 (|has| |#2| (-808 (-1088))) (|has| |#2| (-960))) (-12 (|has| |#2| (-810 (-1088))) (|has| |#2| (-960))))) -(((|#2|) |has| |#2| (-960))) -(OR (-12 (|has| |#2| (-190)) (|has| |#2| (-960))) (-12 (|has| |#2| (-189)) (|has| |#2| (-960)))) -((($) OR (-12 (|has| |#2| (-190)) (|has| |#2| (-960))) (-12 (|has| |#2| (-189)) (|has| |#2| (-960))))) -(|has| |#2| (-960)) -(|has| |#2| (-960)) -(|has| |#2| (-960)) -(|has| |#2| (-960)) -(|has| |#2| (-960)) -((((-483)) OR (|has| |#2| (-21)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-960))) ((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-662)) (|has| |#2| (-960))) (($) |has| |#2| (-960))) -(-12 (|has| |#2| (-190)) (|has| |#2| (-960))) -(|has| |#2| (-318)) -(((|#2|) |has| |#2| (-960))) -(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-960))) (($) |has| |#2| (-960)) (((-483)) -12 (|has| |#2| (-579 (-483))) (|has| |#2| (-960)))) -(((|#2|) |has| |#2| (-960)) (((-483)) -12 (|has| |#2| (-579 (-483))) (|has| |#2| (-960)))) -(((|#2|) |has| |#2| (-1012))) -((((-483)) OR (-12 (|has| |#2| (-949 (-483))) (|has| |#2| (-1012))) (|has| |#2| (-960))) ((|#2|) |has| |#2| (-1012)) (((-348 (-483))) -12 (|has| |#2| (-949 (-348 (-483)))) (|has| |#2| (-1012)))) -(((|#2|) |has| |#2| (-1012)) (((-483)) -12 (|has| |#2| (-949 (-483))) (|has| |#2| (-1012))) (((-348 (-483))) -12 (|has| |#2| (-949 (-348 (-483)))) (|has| |#2| (-1012)))) -((((-483) |#2|) . T)) -(((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1012)))) -(((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1012)))) -(((|#2|) . T)) -((((-483) |#2|) . T)) -((((-483) |#2|) . T)) -(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-662)))) +((((-484)) . T) (((-349 (-484))) . T)) +((((-329)) . T)) +((($) . T) (((-349 (-484))) . T)) +((($) . T) (((-349 (-484))) . T)) +((($ $) . T) (((-349 (-484)) (-349 (-484))) . T)) +((((-349 (-484))) . T) (($) . T)) +((((-349 (-484))) . T) (($) . T)) +((((-349 (-484))) . T) (($) . T)) +((((-473)) . T) (((-179)) . T) (((-329)) . T) (((-800 (-329))) . T)) +((((-772)) . T)) +((((-349 (-484))) . T) (((-484)) . T) (($) . T)) +((((-349 (-484))) . T) (($) . T)) +((((-349 (-484))) . T) (($) . T) (((-484)) . T)) +(((|#1| (-1178 |#1|) (-1178 |#1|)) . T)) +(OR (|has| |#1| (-72)) (|has| |#1| (-1013))) +((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-1013)))) +(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013)))) +(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013)))) +(|has| |#1| (-1013)) +(((|#1|) . T)) +(((|#1| (-1178 |#1|) (-1178 |#1|)) . T)) +(OR (|has| |#2| (-21)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-961))) +(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-717)) (|has| |#2| (-961))) +(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-319)) (|has| |#2| (-663)) (|has| |#2| (-717)) (|has| |#2| (-756)) (|has| |#2| (-961)) (|has| |#2| (-1013))) +(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-72)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-319)) (|has| |#2| (-663)) (|has| |#2| (-717)) (|has| |#2| (-756)) (|has| |#2| (-961)) (|has| |#2| (-1013))) +(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-717)) (|has| |#2| (-961))) +(OR (|has| |#2| (-21)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-717)) (|has| |#2| (-961))) +(((|#2| |#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-961)))) +(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-663)) (|has| |#2| (-961)))) +(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-961)))) +((((-772)) OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-552 (-772))) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-319)) (|has| |#2| (-663)) (|has| |#2| (-717)) (|has| |#2| (-756)) (|has| |#2| (-961)) (|has| |#2| (-1013))) (((-1178 |#2|)) . T)) +(((|#2|) |has| |#2| (-961))) +((((-1089)) -12 (|has| |#2| (-809 (-1089))) (|has| |#2| (-961)))) +((((-1089)) OR (-12 (|has| |#2| (-809 (-1089))) (|has| |#2| (-961))) (-12 (|has| |#2| (-811 (-1089))) (|has| |#2| (-961))))) +((($ (-1089)) OR (-12 (|has| |#2| (-809 (-1089))) (|has| |#2| (-961))) (-12 (|has| |#2| (-811 (-1089))) (|has| |#2| (-961))))) +(((|#2|) |has| |#2| (-961))) +(OR (-12 (|has| |#2| (-190)) (|has| |#2| (-961))) (-12 (|has| |#2| (-189)) (|has| |#2| (-961)))) +((($) OR (-12 (|has| |#2| (-190)) (|has| |#2| (-961))) (-12 (|has| |#2| (-189)) (|has| |#2| (-961))))) +(|has| |#2| (-961)) +(|has| |#2| (-961)) +(|has| |#2| (-961)) +(|has| |#2| (-961)) +(|has| |#2| (-961)) +((((-484)) OR (|has| |#2| (-21)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-961))) ((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-663)) (|has| |#2| (-961))) (($) |has| |#2| (-961))) +(-12 (|has| |#2| (-190)) (|has| |#2| (-961))) +(|has| |#2| (-319)) +(((|#2|) |has| |#2| (-961))) +(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-961))) (($) |has| |#2| (-961)) (((-484)) -12 (|has| |#2| (-580 (-484))) (|has| |#2| (-961)))) +(((|#2|) |has| |#2| (-961)) (((-484)) -12 (|has| |#2| (-580 (-484))) (|has| |#2| (-961)))) +(((|#2|) |has| |#2| (-1013))) +((((-484)) OR (-12 (|has| |#2| (-950 (-484))) (|has| |#2| (-1013))) (|has| |#2| (-961))) ((|#2|) |has| |#2| (-1013)) (((-349 (-484))) -12 (|has| |#2| (-950 (-349 (-484)))) (|has| |#2| (-1013)))) +(((|#2|) |has| |#2| (-1013)) (((-484)) -12 (|has| |#2| (-950 (-484))) (|has| |#2| (-1013))) (((-349 (-484))) -12 (|has| |#2| (-950 (-349 (-484)))) (|has| |#2| (-1013)))) +((((-484) |#2|) . T)) +(((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013)))) +(((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013)))) +(((|#2|) . T)) +((((-484) |#2|) . T)) +((((-484) |#2|) . T)) +(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-663)))) (((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)))) -(|has| |#2| (-716)) -(|has| |#2| (-716)) -(OR (|has| |#2| (-716)) (|has| |#2| (-755))) -(OR (|has| |#2| (-716)) (|has| |#2| (-755))) -(|has| |#2| (-716)) -(|has| |#2| (-716)) +(|has| |#2| (-717)) +(|has| |#2| (-717)) +(OR (|has| |#2| (-717)) (|has| |#2| (-756))) +(OR (|has| |#2| (-717)) (|has| |#2| (-756))) +(|has| |#2| (-717)) +(|has| |#2| (-717)) (((|#2|) |has| |#2| (-312))) (((|#1| |#2|) . T)) -((((-582 |#1|)) . T)) -((((-582 |#1|)) . T)) +((((-583 |#1|)) . T)) +((((-583 |#1|)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(OR (|has| |#1| (-72)) (|has| |#1| (-755)) (|has| |#1| (-1012))) -((((-582 |#1|)) . T) (((-771)) OR (|has| |#1| (-551 (-771))) (|has| |#1| (-755)) (|has| |#1| (-1012)))) -(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012)))) -(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012)))) -(OR (|has| |#1| (-755)) (|has| |#1| (-1012))) +(OR (|has| |#1| (-72)) (|has| |#1| (-756)) (|has| |#1| (-1013))) +((((-583 |#1|)) . T) (((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-756)) (|has| |#1| (-1013)))) +(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013)))) +(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013)))) +(OR (|has| |#1| (-756)) (|has| |#1| (-1013))) (((|#1|) . T)) -((((-472)) |has| |#1| (-552 (-472)))) -((((-483) |#1|) . T)) -((((-1144 (-483)) $) . T) (((-483) |#1|) . T)) -((((-483) |#1|) . T)) +((((-473)) |has| |#1| (-553 (-473)))) +((((-484) |#1|) . T)) +((((-1145 (-484)) $) . T) (((-484) |#1|) . T)) +((((-484) |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-755)) -(|has| |#1| (-755)) +(|has| |#1| (-756)) +(|has| |#1| (-756)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-472)) |has| |#2| (-552 (-472))) (((-799 (-328))) |has| |#2| (-552 (-799 (-328)))) (((-799 (-483))) |has| |#2| (-552 (-799 (-483))))) +((((-473)) |has| |#2| (-553 (-473))) (((-800 (-329))) |has| |#2| (-553 (-800 (-329)))) (((-800 (-484))) |has| |#2| (-553 (-800 (-484))))) ((($) . T)) -(((|#2| (-197 (-3955 |#1|) (-693))) . T)) +(((|#2| (-197 (-3956 |#1|) (-694))) . T)) (((|#2|) . T)) -((((-771)) . T)) -((($) . T) (((-483)) . T) (((-348 (-483))) |has| |#2| (-38 (-348 (-483)))) ((|#2|) . T)) +((((-772)) . T)) +((($) . T) (((-484)) . T) (((-349 (-484))) |has| |#2| (-38 (-349 (-484)))) ((|#2|) . T)) (|has| |#2| (-118)) (|has| |#2| (-120)) -(OR (|has| |#2| (-146)) (|has| |#2| (-390)) (|has| |#2| (-494)) (|has| |#2| (-820))) -((((-348 (-483))) |has| |#2| (-38 (-348 (-483)))) ((|#2|) . T) (($) OR (|has| |#2| (-146)) (|has| |#2| (-390)) (|has| |#2| (-494)) (|has| |#2| (-820)))) -((((-348 (-483))) |has| |#2| (-38 (-348 (-483)))) ((|#2|) . T) (($) OR (|has| |#2| (-146)) (|has| |#2| (-390)) (|has| |#2| (-494)) (|has| |#2| (-820)))) -((((-348 (-483)) (-348 (-483))) |has| |#2| (-38 (-348 (-483)))) ((|#2| |#2|) . T) (($ $) OR (|has| |#2| (-146)) (|has| |#2| (-390)) (|has| |#2| (-494)) (|has| |#2| (-820)))) -(OR (|has| |#2| (-390)) (|has| |#2| (-494)) (|has| |#2| (-820))) -(OR (|has| |#2| (-390)) (|has| |#2| (-494)) (|has| |#2| (-820))) -((((-348 (-483))) |has| |#2| (-38 (-348 (-483)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-390)) (|has| |#2| (-494)) (|has| |#2| (-820)))) -((((-348 (-483))) |has| |#2| (-38 (-348 (-483)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-390)) (|has| |#2| (-494)) (|has| |#2| (-820)))) -((((-348 (-483))) |has| |#2| (-38 (-348 (-483)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-390)) (|has| |#2| (-494)) (|has| |#2| (-820)))) -(((|#2| (-197 (-3955 |#1|) (-693))) . T)) -(((|#2|) . T)) -((($) . T) (((-348 (-483))) |has| |#2| (-38 (-348 (-483)))) ((|#2|) . T) (((-483)) |has| |#2| (-579 (-483)))) -(((|#2|) . T) (((-483)) |has| |#2| (-579 (-483)))) -(OR (|has| |#2| (-390)) (|has| |#2| (-820))) -((($ $) . T) (((-772 |#1|) $) . T) (((-772 |#1|) |#2|) . T)) -((((-772 |#1|)) . T)) -((($ (-772 |#1|)) . T)) -((((-772 |#1|)) . T)) -(|has| |#2| (-820)) -(|has| |#2| (-820)) -((((-348 (-483))) |has| |#2| (-949 (-348 (-483)))) (((-483)) |has| |#2| (-949 (-483))) ((|#2|) . T) (((-772 |#1|)) . T)) -((((-483)) . T) (((-348 (-483))) OR (|has| |#2| (-38 (-348 (-483)))) (|has| |#2| (-949 (-348 (-483))))) ((|#2|) . T) (($) OR (|has| |#2| (-390)) (|has| |#2| (-494)) (|has| |#2| (-820))) (((-772 |#1|)) . T)) -(((|#2| (-197 (-3955 |#1|) (-693)) (-772 |#1|)) . T)) -((((-771)) . T)) -((((-445)) . T)) -((((-157)) . T) (((-771)) . T)) -((((-693) (-1093)) . T)) -((((-771)) . T)) -(((|#4| |#4|) OR (|has| |#4| (-146)) (|has| |#4| (-312)) (|has| |#4| (-960)))) -(((|#4|) OR (|has| |#4| (-146)) (|has| |#4| (-312)) (|has| |#4| (-662)) (|has| |#4| (-960)))) -(((|#4|) OR (|has| |#4| (-146)) (|has| |#4| (-312)) (|has| |#4| (-960)))) -((((-771)) . T) (((-1177 |#4|)) . T)) -(((|#4|) |has| |#4| (-960))) -((((-1088)) -12 (|has| |#4| (-808 (-1088))) (|has| |#4| (-960)))) -((((-1088)) OR (-12 (|has| |#4| (-808 (-1088))) (|has| |#4| (-960))) (-12 (|has| |#4| (-810 (-1088))) (|has| |#4| (-960))))) -((($ (-1088)) OR (-12 (|has| |#4| (-808 (-1088))) (|has| |#4| (-960))) (-12 (|has| |#4| (-810 (-1088))) (|has| |#4| (-960))))) -(((|#4|) |has| |#4| (-960))) -(OR (-12 (|has| |#4| (-190)) (|has| |#4| (-960))) (-12 (|has| |#4| (-189)) (|has| |#4| (-960)))) -((($) OR (-12 (|has| |#4| (-190)) (|has| |#4| (-960))) (-12 (|has| |#4| (-189)) (|has| |#4| (-960))))) -(|has| |#4| (-960)) -(|has| |#4| (-960)) -(|has| |#4| (-960)) -(|has| |#4| (-960)) -(|has| |#4| (-960)) -(((|#3|) . T) ((|#2|) . T) (((-483)) . T) ((|#4|) OR (|has| |#4| (-146)) (|has| |#4| (-312)) (|has| |#4| (-662)) (|has| |#4| (-960))) (($) |has| |#4| (-960))) -(-12 (|has| |#4| (-190)) (|has| |#4| (-960))) -(|has| |#4| (-318)) -(((|#4|) |has| |#4| (-960))) -(((|#3|) . T) ((|#2|) . T) ((|#4|) OR (|has| |#4| (-146)) (|has| |#4| (-312)) (|has| |#4| (-960))) (($) |has| |#4| (-960)) (((-483)) -12 (|has| |#4| (-579 (-483))) (|has| |#4| (-960)))) -(((|#4|) |has| |#4| (-960)) (((-483)) -12 (|has| |#4| (-579 (-483))) (|has| |#4| (-960)))) -(((|#4|) |has| |#4| (-1012))) -((((-483)) OR (-12 (|has| |#4| (-949 (-483))) (|has| |#4| (-1012))) (|has| |#4| (-960))) ((|#4|) |has| |#4| (-1012)) (((-348 (-483))) -12 (|has| |#4| (-949 (-348 (-483)))) (|has| |#4| (-1012)))) -(((|#4|) |has| |#4| (-1012)) (((-483)) -12 (|has| |#4| (-949 (-483))) (|has| |#4| (-1012))) (((-348 (-483))) -12 (|has| |#4| (-949 (-348 (-483)))) (|has| |#4| (-1012)))) -((((-483) |#4|) . T)) -(((|#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1012)))) -(((|#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1012)))) +(OR (|has| |#2| (-146)) (|has| |#2| (-391)) (|has| |#2| (-495)) (|has| |#2| (-821))) +((((-349 (-484))) |has| |#2| (-38 (-349 (-484)))) ((|#2|) . T) (($) OR (|has| |#2| (-146)) (|has| |#2| (-391)) (|has| |#2| (-495)) (|has| |#2| (-821)))) +((((-349 (-484))) |has| |#2| (-38 (-349 (-484)))) ((|#2|) . T) (($) OR (|has| |#2| (-146)) (|has| |#2| (-391)) (|has| |#2| (-495)) (|has| |#2| (-821)))) +((((-349 (-484)) (-349 (-484))) |has| |#2| (-38 (-349 (-484)))) ((|#2| |#2|) . T) (($ $) OR (|has| |#2| (-146)) (|has| |#2| (-391)) (|has| |#2| (-495)) (|has| |#2| (-821)))) +(OR (|has| |#2| (-391)) (|has| |#2| (-495)) (|has| |#2| (-821))) +(OR (|has| |#2| (-391)) (|has| |#2| (-495)) (|has| |#2| (-821))) +((((-349 (-484))) |has| |#2| (-38 (-349 (-484)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-391)) (|has| |#2| (-495)) (|has| |#2| (-821)))) +((((-349 (-484))) |has| |#2| (-38 (-349 (-484)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-391)) (|has| |#2| (-495)) (|has| |#2| (-821)))) +((((-349 (-484))) |has| |#2| (-38 (-349 (-484)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-391)) (|has| |#2| (-495)) (|has| |#2| (-821)))) +(((|#2| (-197 (-3956 |#1|) (-694))) . T)) +(((|#2|) . T)) +((($) . T) (((-349 (-484))) |has| |#2| (-38 (-349 (-484)))) ((|#2|) . T) (((-484)) |has| |#2| (-580 (-484)))) +(((|#2|) . T) (((-484)) |has| |#2| (-580 (-484)))) +(OR (|has| |#2| (-391)) (|has| |#2| (-821))) +((($ $) . T) (((-773 |#1|) $) . T) (((-773 |#1|) |#2|) . T)) +((((-773 |#1|)) . T)) +((($ (-773 |#1|)) . T)) +((((-773 |#1|)) . T)) +(|has| |#2| (-821)) +(|has| |#2| (-821)) +((((-349 (-484))) |has| |#2| (-950 (-349 (-484)))) (((-484)) |has| |#2| (-950 (-484))) ((|#2|) . T) (((-773 |#1|)) . T)) +((((-484)) . T) (((-349 (-484))) OR (|has| |#2| (-38 (-349 (-484)))) (|has| |#2| (-950 (-349 (-484))))) ((|#2|) . T) (($) OR (|has| |#2| (-391)) (|has| |#2| (-495)) (|has| |#2| (-821))) (((-773 |#1|)) . T)) +(((|#2| (-197 (-3956 |#1|) (-694)) (-773 |#1|)) . T)) +((((-772)) . T)) +((((-446)) . T)) +((((-157)) . T) (((-772)) . T)) +((((-694) (-1094)) . T)) +((((-772)) . T)) +(((|#4| |#4|) OR (|has| |#4| (-146)) (|has| |#4| (-312)) (|has| |#4| (-961)))) +(((|#4|) OR (|has| |#4| (-146)) (|has| |#4| (-312)) (|has| |#4| (-663)) (|has| |#4| (-961)))) +(((|#4|) OR (|has| |#4| (-146)) (|has| |#4| (-312)) (|has| |#4| (-961)))) +((((-772)) . T) (((-1178 |#4|)) . T)) +(((|#4|) |has| |#4| (-961))) +((((-1089)) -12 (|has| |#4| (-809 (-1089))) (|has| |#4| (-961)))) +((((-1089)) OR (-12 (|has| |#4| (-809 (-1089))) (|has| |#4| (-961))) (-12 (|has| |#4| (-811 (-1089))) (|has| |#4| (-961))))) +((($ (-1089)) OR (-12 (|has| |#4| (-809 (-1089))) (|has| |#4| (-961))) (-12 (|has| |#4| (-811 (-1089))) (|has| |#4| (-961))))) +(((|#4|) |has| |#4| (-961))) +(OR (-12 (|has| |#4| (-190)) (|has| |#4| (-961))) (-12 (|has| |#4| (-189)) (|has| |#4| (-961)))) +((($) OR (-12 (|has| |#4| (-190)) (|has| |#4| (-961))) (-12 (|has| |#4| (-189)) (|has| |#4| (-961))))) +(|has| |#4| (-961)) +(|has| |#4| (-961)) +(|has| |#4| (-961)) +(|has| |#4| (-961)) +(|has| |#4| (-961)) +(((|#3|) . T) ((|#2|) . T) (((-484)) . T) ((|#4|) OR (|has| |#4| (-146)) (|has| |#4| (-312)) (|has| |#4| (-663)) (|has| |#4| (-961))) (($) |has| |#4| (-961))) +(-12 (|has| |#4| (-190)) (|has| |#4| (-961))) +(|has| |#4| (-319)) +(((|#4|) |has| |#4| (-961))) +(((|#3|) . T) ((|#2|) . T) ((|#4|) OR (|has| |#4| (-146)) (|has| |#4| (-312)) (|has| |#4| (-961))) (($) |has| |#4| (-961)) (((-484)) -12 (|has| |#4| (-580 (-484))) (|has| |#4| (-961)))) +(((|#4|) |has| |#4| (-961)) (((-484)) -12 (|has| |#4| (-580 (-484))) (|has| |#4| (-961)))) +(((|#4|) |has| |#4| (-1013))) +((((-484)) OR (-12 (|has| |#4| (-950 (-484))) (|has| |#4| (-1013))) (|has| |#4| (-961))) ((|#4|) |has| |#4| (-1013)) (((-349 (-484))) -12 (|has| |#4| (-950 (-349 (-484)))) (|has| |#4| (-1013)))) +(((|#4|) |has| |#4| (-1013)) (((-484)) -12 (|has| |#4| (-950 (-484))) (|has| |#4| (-1013))) (((-349 (-484))) -12 (|has| |#4| (-950 (-349 (-484)))) (|has| |#4| (-1013)))) +((((-484) |#4|) . T)) +(((|#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013)))) +(((|#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013)))) (((|#4|) . T)) -((((-483) |#4|) . T)) -((((-483) |#4|) . T)) -(((|#4|) OR (|has| |#4| (-146)) (|has| |#4| (-312)) (|has| |#4| (-662)))) +((((-484) |#4|) . T)) +((((-484) |#4|) . T)) +(((|#4|) OR (|has| |#4| (-146)) (|has| |#4| (-312)) (|has| |#4| (-663)))) (((|#4|) OR (|has| |#4| (-146)) (|has| |#4| (-312)))) -(|has| |#4| (-716)) -(|has| |#4| (-716)) -(OR (|has| |#4| (-716)) (|has| |#4| (-755))) -(OR (|has| |#4| (-716)) (|has| |#4| (-755))) -(|has| |#4| (-716)) -(|has| |#4| (-716)) +(|has| |#4| (-717)) +(|has| |#4| (-717)) +(OR (|has| |#4| (-717)) (|has| |#4| (-756))) +(OR (|has| |#4| (-717)) (|has| |#4| (-756))) +(|has| |#4| (-717)) +(|has| |#4| (-717)) (((|#4|) |has| |#4| (-312))) (((|#1| |#4|) . T)) -(((|#3| |#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-960)))) -(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-662)) (|has| |#3| (-960)))) -(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-960)))) -((((-771)) . T) (((-1177 |#3|)) . T)) -(((|#3|) |has| |#3| (-960))) -((((-1088)) -12 (|has| |#3| (-808 (-1088))) (|has| |#3| (-960)))) -((((-1088)) OR (-12 (|has| |#3| (-808 (-1088))) (|has| |#3| (-960))) (-12 (|has| |#3| (-810 (-1088))) (|has| |#3| (-960))))) -((($ (-1088)) OR (-12 (|has| |#3| (-808 (-1088))) (|has| |#3| (-960))) (-12 (|has| |#3| (-810 (-1088))) (|has| |#3| (-960))))) -(((|#3|) |has| |#3| (-960))) -(OR (-12 (|has| |#3| (-190)) (|has| |#3| (-960))) (-12 (|has| |#3| (-189)) (|has| |#3| (-960)))) -((($) OR (-12 (|has| |#3| (-190)) (|has| |#3| (-960))) (-12 (|has| |#3| (-189)) (|has| |#3| (-960))))) -(|has| |#3| (-960)) -(|has| |#3| (-960)) -(|has| |#3| (-960)) -(|has| |#3| (-960)) -(|has| |#3| (-960)) -(((|#2|) . T) (((-483)) . T) ((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-662)) (|has| |#3| (-960))) (($) |has| |#3| (-960))) -(-12 (|has| |#3| (-190)) (|has| |#3| (-960))) -(|has| |#3| (-318)) -(((|#3|) |has| |#3| (-960))) -(((|#2|) . T) ((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-960))) (($) |has| |#3| (-960)) (((-483)) -12 (|has| |#3| (-579 (-483))) (|has| |#3| (-960)))) -(((|#3|) |has| |#3| (-960)) (((-483)) -12 (|has| |#3| (-579 (-483))) (|has| |#3| (-960)))) -(((|#3|) |has| |#3| (-1012))) -((((-483)) OR (-12 (|has| |#3| (-949 (-483))) (|has| |#3| (-1012))) (|has| |#3| (-960))) ((|#3|) |has| |#3| (-1012)) (((-348 (-483))) -12 (|has| |#3| (-949 (-348 (-483)))) (|has| |#3| (-1012)))) -(((|#3|) |has| |#3| (-1012)) (((-483)) -12 (|has| |#3| (-949 (-483))) (|has| |#3| (-1012))) (((-348 (-483))) -12 (|has| |#3| (-949 (-348 (-483)))) (|has| |#3| (-1012)))) -((((-483) |#3|) . T)) -(((|#3|) -12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1012)))) -(((|#3| |#3|) -12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1012)))) +(((|#3| |#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-961)))) +(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-663)) (|has| |#3| (-961)))) +(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-961)))) +((((-772)) . T) (((-1178 |#3|)) . T)) +(((|#3|) |has| |#3| (-961))) +((((-1089)) -12 (|has| |#3| (-809 (-1089))) (|has| |#3| (-961)))) +((((-1089)) OR (-12 (|has| |#3| (-809 (-1089))) (|has| |#3| (-961))) (-12 (|has| |#3| (-811 (-1089))) (|has| |#3| (-961))))) +((($ (-1089)) OR (-12 (|has| |#3| (-809 (-1089))) (|has| |#3| (-961))) (-12 (|has| |#3| (-811 (-1089))) (|has| |#3| (-961))))) +(((|#3|) |has| |#3| (-961))) +(OR (-12 (|has| |#3| (-190)) (|has| |#3| (-961))) (-12 (|has| |#3| (-189)) (|has| |#3| (-961)))) +((($) OR (-12 (|has| |#3| (-190)) (|has| |#3| (-961))) (-12 (|has| |#3| (-189)) (|has| |#3| (-961))))) +(|has| |#3| (-961)) +(|has| |#3| (-961)) +(|has| |#3| (-961)) +(|has| |#3| (-961)) +(|has| |#3| (-961)) +(((|#2|) . T) (((-484)) . T) ((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-663)) (|has| |#3| (-961))) (($) |has| |#3| (-961))) +(-12 (|has| |#3| (-190)) (|has| |#3| (-961))) +(|has| |#3| (-319)) +(((|#3|) |has| |#3| (-961))) +(((|#2|) . T) ((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-961))) (($) |has| |#3| (-961)) (((-484)) -12 (|has| |#3| (-580 (-484))) (|has| |#3| (-961)))) +(((|#3|) |has| |#3| (-961)) (((-484)) -12 (|has| |#3| (-580 (-484))) (|has| |#3| (-961)))) +(((|#3|) |has| |#3| (-1013))) +((((-484)) OR (-12 (|has| |#3| (-950 (-484))) (|has| |#3| (-1013))) (|has| |#3| (-961))) ((|#3|) |has| |#3| (-1013)) (((-349 (-484))) -12 (|has| |#3| (-950 (-349 (-484)))) (|has| |#3| (-1013)))) +(((|#3|) |has| |#3| (-1013)) (((-484)) -12 (|has| |#3| (-950 (-484))) (|has| |#3| (-1013))) (((-349 (-484))) -12 (|has| |#3| (-950 (-349 (-484)))) (|has| |#3| (-1013)))) +((((-484) |#3|) . T)) +(((|#3|) -12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1013)))) +(((|#3| |#3|) -12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1013)))) (((|#3|) . T)) -((((-483) |#3|) . T)) -((((-483) |#3|) . T)) -(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-662)))) +((((-484) |#3|) . T)) +((((-484) |#3|) . T)) +(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-663)))) (((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)))) -(|has| |#3| (-716)) -(|has| |#3| (-716)) -(OR (|has| |#3| (-716)) (|has| |#3| (-755))) -(OR (|has| |#3| (-716)) (|has| |#3| (-755))) -(|has| |#3| (-716)) -(|has| |#3| (-716)) +(|has| |#3| (-717)) +(|has| |#3| (-717)) +(OR (|has| |#3| (-717)) (|has| |#3| (-756))) +(OR (|has| |#3| (-717)) (|has| |#3| (-756))) +(|has| |#3| (-717)) +(|has| |#3| (-717)) (((|#3|) |has| |#3| (-312))) (((|#1| |#3|) . T)) -((((-771)) . T)) +((((-772)) . T)) (((|#1|) . T)) (((|#1|) . T)) (OR (|has| |#1| (-190)) (|has| |#1| (-189))) ((($) OR (|has| |#1| (-190)) (|has| |#1| (-189)))) -((((-771)) . T)) +((((-772)) . T)) (|has| |#1| (-190)) ((($) . T)) -(((|#1| (-468 |#3|) |#3|) . T)) -(|has| |#1| (-820)) -(|has| |#1| (-820)) -((((-483)) -12 (|has| |#1| (-795 (-483))) (|has| |#3| (-795 (-483)))) (((-328)) -12 (|has| |#1| (-795 (-328))) (|has| |#3| (-795 (-328))))) -((((-1088)) OR (|has| |#1| (-808 (-1088))) (|has| |#1| (-810 (-1088)))) ((|#3|) . T)) -((($ (-1088)) OR (|has| |#1| (-808 (-1088))) (|has| |#1| (-810 (-1088)))) (($ |#3|) . T)) -((((-1088)) |has| |#1| (-808 (-1088))) ((|#3|) . T)) +(((|#1| (-469 |#3|) |#3|) . T)) +(|has| |#1| (-821)) +(|has| |#1| (-821)) +((((-484)) -12 (|has| |#1| (-796 (-484))) (|has| |#3| (-796 (-484)))) (((-329)) -12 (|has| |#1| (-796 (-329))) (|has| |#3| (-796 (-329))))) +((((-1089)) OR (|has| |#1| (-809 (-1089))) (|has| |#1| (-811 (-1089)))) ((|#3|) . T)) +((($ (-1089)) OR (|has| |#1| (-809 (-1089))) (|has| |#1| (-811 (-1089)))) (($ |#3|) . T)) +((((-1089)) |has| |#1| (-809 (-1089))) ((|#3|) . T)) ((($ $) . T) ((|#2| $) |has| |#1| (-190)) ((|#2| |#1|) |has| |#1| (-190)) ((|#3| |#1|) . T) ((|#3| $) . T)) -(OR (|has| |#1| (-390)) (|has| |#1| (-820))) -((((-483)) |has| |#1| (-579 (-483))) ((|#1|) . T)) +(OR (|has| |#1| (-391)) (|has| |#1| (-821))) +((((-484)) |has| |#1| (-580 (-484))) ((|#1|) . T)) (((|#1|) . T)) -(((|#1| (-468 |#3|)) . T)) -(OR (|has| |#1| (-390)) (|has| |#1| (-494)) (|has| |#1| (-820))) -(OR (|has| |#1| (-390)) (|has| |#1| (-494)) (|has| |#1| (-820))) -(OR (|has| |#1| (-146)) (|has| |#1| (-390)) (|has| |#1| (-494)) (|has| |#1| (-820))) +(((|#1| (-469 |#3|)) . T)) +(OR (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))) +(OR (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))) +(OR (|has| |#1| (-146)) (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))) (|has| |#1| (-120)) (|has| |#1| (-118)) -((($) OR (|has| |#1| (-390)) (|has| |#1| (-494)) (|has| |#1| (-820))) ((|#1|) |has| |#1| (-146)) (((-348 (-483))) |has| |#1| (-38 (-348 (-483))))) -((($) OR (|has| |#1| (-390)) (|has| |#1| (-494)) (|has| |#1| (-820))) ((|#1|) |has| |#1| (-146)) (((-348 (-483))) |has| |#1| (-38 (-348 (-483))))) -((($) . T) (((-483)) |has| |#1| (-579 (-483))) ((|#1|) . T) (((-348 (-483))) |has| |#1| (-38 (-348 (-483))))) -((((-483)) . T) (($) . T) ((|#1|) . T) (((-348 (-483))) |has| |#1| (-38 (-348 (-483))))) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-390)) (|has| |#1| (-494)) (|has| |#1| (-820))) ((|#1|) . T) (((-348 (-483))) |has| |#1| (-38 (-348 (-483))))) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-390)) (|has| |#1| (-494)) (|has| |#1| (-820))) ((|#1|) . T) (((-348 (-483))) |has| |#1| (-38 (-348 (-483))))) -((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-390)) (|has| |#1| (-494)) (|has| |#1| (-820))) ((|#1| |#1|) . T) (((-348 (-483)) (-348 (-483))) |has| |#1| (-38 (-348 (-483))))) -((($) OR (|has| |#1| (-390)) (|has| |#1| (-494)) (|has| |#1| (-820))) ((|#1|) |has| |#1| (-146)) (((-348 (-483))) |has| |#1| (-38 (-348 (-483))))) -(((|#1|) . T)) -(((|#1| (-468 |#3|)) . T)) -((((-799 (-483))) -12 (|has| |#1| (-552 (-799 (-483)))) (|has| |#3| (-552 (-799 (-483))))) (((-799 (-328))) -12 (|has| |#1| (-552 (-799 (-328)))) (|has| |#3| (-552 (-799 (-328))))) (((-472)) -12 (|has| |#1| (-552 (-472))) (|has| |#3| (-552 (-472))))) -((((-1037 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-483)) |has| |#1| (-949 (-483))) (((-348 (-483))) |has| |#1| (-949 (-348 (-483)))) ((|#2|) . T)) -((((-1037 |#1| |#2|)) . T) (((-483)) . T) ((|#3|) . T) (($) OR (|has| |#1| (-390)) (|has| |#1| (-494)) (|has| |#1| (-820))) ((|#1|) . T) (((-348 (-483))) OR (|has| |#1| (-38 (-348 (-483)))) (|has| |#1| (-949 (-348 (-483))))) ((|#2|) . T)) -(((|#1| |#2| |#3| (-468 |#3|)) . T)) -((((-771)) . T)) -((((-771)) . T)) -((((-771)) . T)) +((($) OR (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) |has| |#1| (-146)) (((-349 (-484))) |has| |#1| (-38 (-349 (-484))))) +((($) OR (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) |has| |#1| (-146)) (((-349 (-484))) |has| |#1| (-38 (-349 (-484))))) +((($) . T) (((-484)) |has| |#1| (-580 (-484))) ((|#1|) . T) (((-349 (-484))) |has| |#1| (-38 (-349 (-484))))) +((((-484)) . T) (($) . T) ((|#1|) . T) (((-349 (-484))) |has| |#1| (-38 (-349 (-484))))) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) . T) (((-349 (-484))) |has| |#1| (-38 (-349 (-484))))) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) . T) (((-349 (-484))) |has| |#1| (-38 (-349 (-484))))) +((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1| |#1|) . T) (((-349 (-484)) (-349 (-484))) |has| |#1| (-38 (-349 (-484))))) +((($) OR (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) |has| |#1| (-146)) (((-349 (-484))) |has| |#1| (-38 (-349 (-484))))) +(((|#1|) . T)) +(((|#1| (-469 |#3|)) . T)) +((((-800 (-484))) -12 (|has| |#1| (-553 (-800 (-484)))) (|has| |#3| (-553 (-800 (-484))))) (((-800 (-329))) -12 (|has| |#1| (-553 (-800 (-329)))) (|has| |#3| (-553 (-800 (-329))))) (((-473)) -12 (|has| |#1| (-553 (-473))) (|has| |#3| (-553 (-473))))) +((((-1038 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-484)) |has| |#1| (-950 (-484))) (((-349 (-484))) |has| |#1| (-950 (-349 (-484)))) ((|#2|) . T)) +((((-1038 |#1| |#2|)) . T) (((-484)) . T) ((|#3|) . T) (($) OR (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) . T) (((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-950 (-349 (-484))))) ((|#2|) . T)) +(((|#1| |#2| |#3| (-469 |#3|)) . T)) +((((-772)) . T)) +((((-772)) . T)) +((((-772)) . T)) (((|#2| |#2|) . T)) ((($) . T)) ((($) . T)) ((($) . T)) -((((-771)) . T)) -((($) . T) (((-483)) . T)) +((((-772)) . T)) +((($) . T) (((-484)) . T)) ((($) . T)) ((($) . T)) ((($ $) . T)) -((($) . T) (((-483)) . T)) +((($) . T) (((-484)) . T)) ((($) . T)) -((((-771)) . T)) +((((-772)) . T)) (((|#1|) |has| |#1| (-312))) -((((-1088)) |has| |#1| (-808 (-1088)))) -((($ (-1088)) |has| |#1| (-808 (-1088)))) -((((-1088)) |has| |#1| (-808 (-1088)))) +((((-1089)) |has| |#1| (-809 (-1089)))) +((($ (-1089)) |has| |#1| (-809 (-1089)))) +((((-1089)) |has| |#1| (-809 (-1089)))) (((|#1|) OR (|has| |#1| (-146)) (|has| |#1| (-312)))) (((|#1|) OR (|has| |#1| (-146)) (|has| |#1| (-312)))) -(((|#1|) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-960)))) -(((|#1|) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-960)))) -(((|#1| |#1|) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-960)))) -((((-483)) OR (|has| |#1| (-808 (-1088))) (|has| |#1| (-960)))) -(((|#1|) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-960))) (($) OR (|has| |#1| (-808 (-1088))) (|has| |#1| (-960)))) -(OR (|has| |#1| (-808 (-1088))) (|has| |#1| (-960))) -(OR (|has| |#1| (-808 (-1088))) (|has| |#1| (-960))) -(OR (|has| |#1| (-808 (-1088))) (|has| |#1| (-960))) -(|has| |#1| (-411)) -(OR (|has| |#1| (-411)) (|has| |#1| (-662)) (|has| |#1| (-808 (-1088))) (|has| |#1| (-960))) -(OR (|has| |#1| (-411)) (|has| |#1| (-662)) (|has| |#1| (-808 (-1088))) (|has| |#1| (-960)) (|has| |#1| (-1024))) -(OR (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-808 (-1088))) (|has| |#1| (-960))) -(OR (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-808 (-1088))) (|has| |#1| (-960))) -(((|#1|) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-960))) (($) OR (|has| |#1| (-808 (-1088))) (|has| |#1| (-960))) (((-483)) OR (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-808 (-1088))) (|has| |#1| (-960)))) -(OR (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-808 (-1088))) (|has| |#1| (-960))) -(OR (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-808 (-1088))) (|has| |#1| (-960))) -(OR (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-411)) (|has| |#1| (-662)) (|has| |#1| (-808 (-1088))) (|has| |#1| (-960)) (|has| |#1| (-1024)) (|has| |#1| (-1012))) -((((-85)) |has| |#1| (-1012)) (((-771)) OR (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-411)) (|has| |#1| (-662)) (|has| |#1| (-808 (-1088))) (|has| |#1| (-960)) (|has| |#1| (-1024)) (|has| |#1| (-1012)))) -(OR (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-411)) (|has| |#1| (-662)) (|has| |#1| (-808 (-1088))) (|has| |#1| (-960)) (|has| |#1| (-1024)) (|has| |#1| (-1012))) -((((-1088) |#1|) |has| |#1| (-454 (-1088) |#1|))) +(((|#1|) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-961)))) +(((|#1|) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-961)))) +(((|#1| |#1|) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-961)))) +((((-484)) OR (|has| |#1| (-809 (-1089))) (|has| |#1| (-961)))) +(((|#1|) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-961))) (($) OR (|has| |#1| (-809 (-1089))) (|has| |#1| (-961)))) +(OR (|has| |#1| (-809 (-1089))) (|has| |#1| (-961))) +(OR (|has| |#1| (-809 (-1089))) (|has| |#1| (-961))) +(OR (|has| |#1| (-809 (-1089))) (|has| |#1| (-961))) +(|has| |#1| (-412)) +(OR (|has| |#1| (-412)) (|has| |#1| (-663)) (|has| |#1| (-809 (-1089))) (|has| |#1| (-961))) +(OR (|has| |#1| (-412)) (|has| |#1| (-663)) (|has| |#1| (-809 (-1089))) (|has| |#1| (-961)) (|has| |#1| (-1025))) +(OR (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-809 (-1089))) (|has| |#1| (-961))) +(OR (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-809 (-1089))) (|has| |#1| (-961))) +(((|#1|) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-961))) (($) OR (|has| |#1| (-809 (-1089))) (|has| |#1| (-961))) (((-484)) OR (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-809 (-1089))) (|has| |#1| (-961)))) +(OR (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-809 (-1089))) (|has| |#1| (-961))) +(OR (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-809 (-1089))) (|has| |#1| (-961))) +(OR (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-412)) (|has| |#1| (-663)) (|has| |#1| (-809 (-1089))) (|has| |#1| (-961)) (|has| |#1| (-1025)) (|has| |#1| (-1013))) +((((-85)) |has| |#1| (-1013)) (((-772)) OR (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-412)) (|has| |#1| (-663)) (|has| |#1| (-809 (-1089))) (|has| |#1| (-961)) (|has| |#1| (-1025)) (|has| |#1| (-1013)))) +(OR (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-412)) (|has| |#1| (-663)) (|has| |#1| (-809 (-1089))) (|has| |#1| (-961)) (|has| |#1| (-1025)) (|has| |#1| (-1013))) +((((-1089) |#1|) |has| |#1| (-455 (-1089) |#1|))) (((|#1| |#2|) . T)) -((((-771)) . T)) +((((-772)) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) . T)) -(((|#2|) . T) (((-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1012))) (((-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))))) -(((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1012))) (((-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))))) -((((-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T)) +(((|#2|) . T) (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))))) +(((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))))) +((((-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T)) (((|#1| |#2|) . T)) -((((-771)) . T)) -((((-1093)) . T)) -((((-771)) . T) (((-1093)) . T)) -((((-1093)) . T)) -((((-771)) . T)) -(|has| (-1164 |#1| |#2| |#3| |#4|) (-118)) -(|has| (-1164 |#1| |#2| |#3| |#4|) (-120)) -((((-1164 |#1| |#2| |#3| |#4|)) . T)) -((((-1164 |#1| |#2| |#3| |#4|)) . T)) -((((-1164 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-348 (-483))) . T)) -((($) . T) (((-483)) . T) (((-1164 |#1| |#2| |#3| |#4|)) . T) (((-348 (-483))) . T)) -((((-1164 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-348 (-483))) . T)) -((((-1164 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-348 (-483))) . T)) -((((-1164 |#1| |#2| |#3| |#4|)) . T) (((-348 (-483))) . T) (($) . T)) -((((-1164 |#1| |#2| |#3| |#4|)) . T) (((-348 (-483))) . T) (($) . T)) -((((-1164 |#1| |#2| |#3| |#4|) (-1164 |#1| |#2| |#3| |#4|)) . T) (((-348 (-483)) (-348 (-483))) . T) (($ $) . T)) -((((-1164 |#1| |#2| |#3| |#4|)) . T)) -((((-1088) (-1164 |#1| |#2| |#3| |#4|)) |has| (-1164 |#1| |#2| |#3| |#4|) (-454 (-1088) (-1164 |#1| |#2| |#3| |#4|))) (((-1164 |#1| |#2| |#3| |#4|) (-1164 |#1| |#2| |#3| |#4|)) |has| (-1164 |#1| |#2| |#3| |#4|) (-260 (-1164 |#1| |#2| |#3| |#4|)))) -((((-1164 |#1| |#2| |#3| |#4|)) |has| (-1164 |#1| |#2| |#3| |#4|) (-260 (-1164 |#1| |#2| |#3| |#4|)))) -((((-1164 |#1| |#2| |#3| |#4|) $) |has| (-1164 |#1| |#2| |#3| |#4|) (-241 (-1164 |#1| |#2| |#3| |#4|) (-1164 |#1| |#2| |#3| |#4|)))) -((((-1164 |#1| |#2| |#3| |#4|)) . T)) -((($) . T) (((-1164 |#1| |#2| |#3| |#4|)) . T) (((-348 (-483))) . T)) -((((-1164 |#1| |#2| |#3| |#4|)) . T)) -((((-1164 |#1| |#2| |#3| |#4|)) . T)) -((((-1164 |#1| |#2| |#3| |#4|)) . T)) -((((-1158 |#2| |#3| |#4|)) . T) (((-483)) . T) (((-1164 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-348 (-483))) . T)) -((((-1158 |#2| |#3| |#4|)) . T) (((-1164 |#1| |#2| |#3| |#4|)) . T)) -((((-1164 |#1| |#2| |#3| |#4|)) . T)) -(|has| |#1| (-494)) -(|has| |#1| (-494)) -(|has| |#1| (-494)) -(|has| |#1| (-494)) -(|has| |#1| (-494)) -(|has| |#1| (-494)) -(|has| |#1| (-494)) -(|has| |#1| (-494)) -(|has| |#1| (-494)) -(|has| |#1| (-494)) -(|has| |#1| (-494)) -(|has| |#1| (-494)) -(|has| |#1| (-494)) -(((|#1|) |has| |#1| (-494))) -(OR (|has| |#1| (-21)) (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-494)) (|has| |#1| (-960))) -(OR (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-494)) (|has| |#1| (-960))) -((((-771)) . T)) -(OR (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-494)) (|has| |#1| (-960))) -(OR (|has| |#1| (-21)) (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-494)) (|has| |#1| (-960))) -(OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-494)) (|has| |#1| (-960))) -(OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-411)) (|has| |#1| (-494)) (|has| |#1| (-960)) (|has| |#1| (-1024))) -(OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-494)) (|has| |#1| (-960))) -(OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-411)) (|has| |#1| (-494)) (|has| |#1| (-960)) (|has| |#1| (-1024))) -(OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-494)) (|has| |#1| (-960))) +((((-772)) . T)) +((((-1094)) . T)) +((((-772)) . T) (((-1094)) . T)) +((((-1094)) . T)) +((((-772)) . T)) +(|has| (-1165 |#1| |#2| |#3| |#4|) (-118)) +(|has| (-1165 |#1| |#2| |#3| |#4|) (-120)) +((((-1165 |#1| |#2| |#3| |#4|)) . T)) +((((-1165 |#1| |#2| |#3| |#4|)) . T)) +((((-1165 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-349 (-484))) . T)) +((($) . T) (((-484)) . T) (((-1165 |#1| |#2| |#3| |#4|)) . T) (((-349 (-484))) . T)) +((((-1165 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-349 (-484))) . T)) +((((-1165 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-349 (-484))) . T)) +((((-1165 |#1| |#2| |#3| |#4|)) . T) (((-349 (-484))) . T) (($) . T)) +((((-1165 |#1| |#2| |#3| |#4|)) . T) (((-349 (-484))) . T) (($) . T)) +((((-1165 |#1| |#2| |#3| |#4|) (-1165 |#1| |#2| |#3| |#4|)) . T) (((-349 (-484)) (-349 (-484))) . T) (($ $) . T)) +((((-1165 |#1| |#2| |#3| |#4|)) . T)) +((((-1089) (-1165 |#1| |#2| |#3| |#4|)) |has| (-1165 |#1| |#2| |#3| |#4|) (-455 (-1089) (-1165 |#1| |#2| |#3| |#4|))) (((-1165 |#1| |#2| |#3| |#4|) (-1165 |#1| |#2| |#3| |#4|)) |has| (-1165 |#1| |#2| |#3| |#4|) (-260 (-1165 |#1| |#2| |#3| |#4|)))) +((((-1165 |#1| |#2| |#3| |#4|)) |has| (-1165 |#1| |#2| |#3| |#4|) (-260 (-1165 |#1| |#2| |#3| |#4|)))) +((((-1165 |#1| |#2| |#3| |#4|) $) |has| (-1165 |#1| |#2| |#3| |#4|) (-241 (-1165 |#1| |#2| |#3| |#4|) (-1165 |#1| |#2| |#3| |#4|)))) +((((-1165 |#1| |#2| |#3| |#4|)) . T)) +((($) . T) (((-1165 |#1| |#2| |#3| |#4|)) . T) (((-349 (-484))) . T)) +((((-1165 |#1| |#2| |#3| |#4|)) . T)) +((((-1165 |#1| |#2| |#3| |#4|)) . T)) +((((-1165 |#1| |#2| |#3| |#4|)) . T)) +((((-1159 |#2| |#3| |#4|)) . T) (((-484)) . T) (((-1165 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-349 (-484))) . T)) +((((-1159 |#2| |#3| |#4|)) . T) (((-1165 |#1| |#2| |#3| |#4|)) . T)) +((((-1165 |#1| |#2| |#3| |#4|)) . T)) +(|has| |#1| (-495)) +(|has| |#1| (-495)) +(|has| |#1| (-495)) +(|has| |#1| (-495)) +(|has| |#1| (-495)) +(|has| |#1| (-495)) +(|has| |#1| (-495)) +(|has| |#1| (-495)) +(|has| |#1| (-495)) +(|has| |#1| (-495)) +(|has| |#1| (-495)) +(|has| |#1| (-495)) +(|has| |#1| (-495)) +(((|#1|) |has| |#1| (-495))) +(OR (|has| |#1| (-21)) (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-495)) (|has| |#1| (-961))) +(OR (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-495)) (|has| |#1| (-961))) +((((-772)) . T)) +(OR (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-495)) (|has| |#1| (-961))) +(OR (|has| |#1| (-21)) (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-495)) (|has| |#1| (-961))) +(OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-495)) (|has| |#1| (-961))) +(OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-412)) (|has| |#1| (-495)) (|has| |#1| (-961)) (|has| |#1| (-1025))) +(OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-495)) (|has| |#1| (-961))) +(OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-412)) (|has| |#1| (-495)) (|has| |#1| (-961)) (|has| |#1| (-1025))) +(OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-495)) (|has| |#1| (-961))) (|has| |#1| (-118)) (|has| |#1| (-120)) -((((-549 $) $) . T) (($ $) . T)) -((($) . T)) -(|has| |#1| (-494)) -(|has| |#1| (-494)) -(|has| |#1| (-494)) -(|has| |#1| (-494)) -(|has| |#1| (-494)) -(|has| |#1| (-494)) -(|has| |#1| (-494)) -(((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-494)) (((-348 (-483))) |has| |#1| (-494))) -((((-483)) OR (|has| |#1| (-21)) (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-494)) (|has| |#1| (-960))) (($) OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-494)) (|has| |#1| (-960))) ((|#1|) OR (|has| |#1| (-146)) (|has| |#1| (-960))) (((-348 (-483))) |has| |#1| (-494))) -(((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-494)) (((-348 (-483))) |has| |#1| (-494))) -(((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-494)) (((-348 (-483))) |has| |#1| (-494))) -(|has| |#1| (-494)) -(((|#1|) |has| |#1| (-146)) (((-348 (-483))) |has| |#1| (-494)) (($) |has| |#1| (-494))) -(((|#1|) |has| |#1| (-146)) (((-348 (-483))) |has| |#1| (-494)) (($) |has| |#1| (-494))) -(((|#1| |#1|) |has| |#1| (-146)) (((-348 (-483)) (-348 (-483))) |has| |#1| (-494)) (($ $) |has| |#1| (-494))) -(|has| |#1| (-494)) -(((|#1|) |has| |#1| (-960))) -((($) OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-494)) (|has| |#1| (-960))) ((|#1|) OR (|has| |#1| (-146)) (|has| |#1| (-960))) (((-348 (-483))) |has| |#1| (-494)) (((-483)) -12 (|has| |#1| (-579 (-483))) (|has| |#1| (-960)))) -(((|#1|) |has| |#1| (-960)) (((-483)) -12 (|has| |#1| (-579 (-483))) (|has| |#1| (-960)))) -(((|#1|) . T)) -((((-483)) |has| |#1| (-795 (-483))) (((-328)) |has| |#1| (-795 (-328)))) -(((|#1|) . T)) -(|has| |#1| (-411)) -((((-1088)) |has| |#1| (-960))) -((($ (-1088)) |has| |#1| (-960))) -((((-1088)) |has| |#1| (-960))) -(((|#1|) . T)) -((((-472)) |has| |#1| (-552 (-472))) (((-799 (-483))) |has| |#1| (-552 (-799 (-483)))) (((-799 (-328))) |has| |#1| (-552 (-799 (-328))))) -((((-48)) -12 (|has| |#1| (-494)) (|has| |#1| (-949 (-483)))) (((-549 $)) . T) ((|#1|) . T) (((-483)) |has| |#1| (-949 (-483))) (((-348 (-483))) OR (-12 (|has| |#1| (-494)) (|has| |#1| (-949 (-483)))) (|has| |#1| (-949 (-348 (-483))))) (((-348 (-856 |#1|))) |has| |#1| (-494)) (((-856 |#1|)) |has| |#1| (-960)) (((-1088)) . T)) -((((-48)) -12 (|has| |#1| (-494)) (|has| |#1| (-949 (-483)))) (((-483)) OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-494)) (|has| |#1| (-949 (-483))) (|has| |#1| (-960))) ((|#1|) . T) (((-549 $)) . T) (($) |has| |#1| (-494)) (((-348 (-483))) OR (|has| |#1| (-494)) (|has| |#1| (-949 (-348 (-483))))) (((-348 (-856 |#1|))) |has| |#1| (-494)) (((-856 |#1|)) |has| |#1| (-960)) (((-1088)) . T)) +((((-550 $) $) . T) (($ $) . T)) +((($) . T)) +(|has| |#1| (-495)) +(|has| |#1| (-495)) +(|has| |#1| (-495)) +(|has| |#1| (-495)) +(|has| |#1| (-495)) +(|has| |#1| (-495)) +(|has| |#1| (-495)) +(((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-495)) (((-349 (-484))) |has| |#1| (-495))) +((((-484)) OR (|has| |#1| (-21)) (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-495)) (|has| |#1| (-961))) (($) OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-495)) (|has| |#1| (-961))) ((|#1|) OR (|has| |#1| (-146)) (|has| |#1| (-961))) (((-349 (-484))) |has| |#1| (-495))) +(((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-495)) (((-349 (-484))) |has| |#1| (-495))) +(((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-495)) (((-349 (-484))) |has| |#1| (-495))) +(|has| |#1| (-495)) +(((|#1|) |has| |#1| (-146)) (((-349 (-484))) |has| |#1| (-495)) (($) |has| |#1| (-495))) +(((|#1|) |has| |#1| (-146)) (((-349 (-484))) |has| |#1| (-495)) (($) |has| |#1| (-495))) +(((|#1| |#1|) |has| |#1| (-146)) (((-349 (-484)) (-349 (-484))) |has| |#1| (-495)) (($ $) |has| |#1| (-495))) +(|has| |#1| (-495)) +(((|#1|) |has| |#1| (-961))) +((($) OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-495)) (|has| |#1| (-961))) ((|#1|) OR (|has| |#1| (-146)) (|has| |#1| (-961))) (((-349 (-484))) |has| |#1| (-495)) (((-484)) -12 (|has| |#1| (-580 (-484))) (|has| |#1| (-961)))) +(((|#1|) |has| |#1| (-961)) (((-484)) -12 (|has| |#1| (-580 (-484))) (|has| |#1| (-961)))) +(((|#1|) . T)) +((((-484)) |has| |#1| (-796 (-484))) (((-329)) |has| |#1| (-796 (-329)))) +(((|#1|) . T)) +(|has| |#1| (-412)) +((((-1089)) |has| |#1| (-961))) +((($ (-1089)) |has| |#1| (-961))) +((((-1089)) |has| |#1| (-961))) +(((|#1|) . T)) +((((-473)) |has| |#1| (-553 (-473))) (((-800 (-484))) |has| |#1| (-553 (-800 (-484)))) (((-800 (-329))) |has| |#1| (-553 (-800 (-329))))) +((((-48)) -12 (|has| |#1| (-495)) (|has| |#1| (-950 (-484)))) (((-550 $)) . T) ((|#1|) . T) (((-484)) |has| |#1| (-950 (-484))) (((-349 (-484))) OR (-12 (|has| |#1| (-495)) (|has| |#1| (-950 (-484)))) (|has| |#1| (-950 (-349 (-484))))) (((-349 (-857 |#1|))) |has| |#1| (-495)) (((-857 |#1|)) |has| |#1| (-961)) (((-1089)) . T)) +((((-48)) -12 (|has| |#1| (-495)) (|has| |#1| (-950 (-484)))) (((-484)) OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-495)) (|has| |#1| (-950 (-484))) (|has| |#1| (-961))) ((|#1|) . T) (((-550 $)) . T) (($) |has| |#1| (-495)) (((-349 (-484))) OR (|has| |#1| (-495)) (|has| |#1| (-950 (-349 (-484))))) (((-349 (-857 |#1|))) |has| |#1| (-495)) (((-857 |#1|)) |has| |#1| (-961)) (((-1089)) . T)) (((|#1|) . T)) (|has| |#1| (-312)) (|has| |#1| (-312)) (|has| |#1| (-312)) -(OR (|has| |#1| (-312)) (|has| |#1| (-494))) -(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-494))) +(OR (|has| |#1| (-312)) (|has| |#1| (-495))) +(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-495))) (|has| |#1| (-312)) (|has| |#1| (-312)) -((((-771)) . T)) -(OR (|has| |#1| (-312)) (|has| |#1| (-494))) +((((-772)) . T)) +(OR (|has| |#1| (-312)) (|has| |#1| (-495))) (|has| |#1| (-312)) -(|has| |#1| (-38 (-348 (-483)))) -(|has| |#1| (-38 (-348 (-483)))) -(|has| |#1| (-38 (-348 (-483)))) -(|has| |#1| (-38 (-348 (-483)))) -(|has| |#1| (-38 (-348 (-483)))) -(|has| |#1| (-38 (-348 (-483)))) -(|has| |#1| (-38 (-348 (-483)))) -(((|#1| (-348 (-483))) . T)) -(((|#1| (-348 (-483))) . T)) +(|has| |#1| (-38 (-349 (-484)))) +(|has| |#1| (-38 (-349 (-484)))) +(|has| |#1| (-38 (-349 (-484)))) +(|has| |#1| (-38 (-349 (-484)))) +(|has| |#1| (-38 (-349 (-484)))) +(|has| |#1| (-38 (-349 (-484)))) +(|has| |#1| (-38 (-349 (-484)))) +(((|#1| (-349 (-484))) . T)) +(((|#1| (-349 (-484))) . T)) (|has| |#1| (-120)) (|has| |#1| (-118)) -((($) OR (|has| |#1| (-312)) (|has| |#1| (-494))) (((-483)) . T) (((-348 (-483))) OR (|has| |#1| (-38 (-348 (-483)))) (|has| |#1| (-312))) ((|#1|) |has| |#1| (-146))) -((($) OR (|has| |#1| (-312)) (|has| |#1| (-494))) (((-348 (-483))) OR (|has| |#1| (-38 (-348 (-483)))) (|has| |#1| (-312))) ((|#1|) |has| |#1| (-146))) -((($) OR (|has| |#1| (-312)) (|has| |#1| (-494))) (((-348 (-483))) OR (|has| |#1| (-38 (-348 (-483)))) (|has| |#1| (-312))) ((|#1|) |has| |#1| (-146))) -((($) . T) (((-348 (-483))) OR (|has| |#1| (-38 (-348 (-483)))) (|has| |#1| (-312))) ((|#1|) . T)) -((($) . T) (((-483)) . T) (((-348 (-483))) OR (|has| |#1| (-38 (-348 (-483)))) (|has| |#1| (-312))) ((|#1|) . T)) -((((-348 (-483))) OR (|has| |#1| (-38 (-348 (-483)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-494))) ((|#1|) . T)) -((((-348 (-483))) OR (|has| |#1| (-38 (-348 (-483)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-494))) ((|#1|) . T)) -((((-348 (-483)) (-348 (-483))) OR (|has| |#1| (-38 (-348 (-483)))) (|has| |#1| (-312))) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-494))) ((|#1| |#1|) . T)) -((($) OR (|has| |#1| (-312)) (|has| |#1| (-494))) (((-348 (-483))) OR (|has| |#1| (-38 (-348 (-483)))) (|has| |#1| (-312))) ((|#1|) |has| |#1| (-146))) -(((|#1| (-348 (-483)) (-993)) . T)) -((((-1088)) -12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-348 (-483)) |#1|))))) -((($ (-1088)) -12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-348 (-483)) |#1|))))) -((((-1088)) -12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-348 (-483)) |#1|))))) -((((-348 (-483)) |#1|) . T) (($ $) . T)) -(|has| |#1| (-15 * (|#1| (-348 (-483)) |#1|))) -((($) |has| |#1| (-15 * (|#1| (-348 (-483)) |#1|)))) -(|has| |#1| (-15 * (|#1| (-348 (-483)) |#1|))) -(((|#1|) . T)) -(|has| |#1| (-755)) -(|has| |#1| (-755)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1| (-483)) . T)) -((((-483) (-483)) . T)) -((((-483)) . T)) -((((-483)) . T)) -((((-483)) . T)) -((((-483)) . T)) -((((-483)) . T)) -((((-771)) . T)) -((((-483)) . T)) -((((-771)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1| (-693)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(|has| |#1| (-755)) -(|has| |#1| (-755)) -(((|#1|) . T)) -(OR (|has| |#1| (-72)) (|has| |#1| (-755)) (|has| |#1| (-1012))) -((((-771)) OR (|has| |#1| (-551 (-771))) (|has| |#1| (-755)) (|has| |#1| (-1012)))) -(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012)))) -(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012)))) -(OR (|has| |#1| (-755)) (|has| |#1| (-1012))) -(((|#1|) . T)) -((((-472)) |has| |#1| (-552 (-472)))) -((((-483) |#1|) . T)) -((((-1144 (-483)) $) . T) (((-483) |#1|) . T)) -((((-483) |#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-771)) . T)) -((((-771)) . T)) -((((-483)) . T)) -((((-771)) . T)) +((($) OR (|has| |#1| (-312)) (|has| |#1| (-495))) (((-484)) . T) (((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))) ((|#1|) |has| |#1| (-146))) +((($) OR (|has| |#1| (-312)) (|has| |#1| (-495))) (((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))) ((|#1|) |has| |#1| (-146))) +((($) OR (|has| |#1| (-312)) (|has| |#1| (-495))) (((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))) ((|#1|) |has| |#1| (-146))) +((($) . T) (((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))) ((|#1|) . T)) +((($) . T) (((-484)) . T) (((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))) ((|#1|) . T)) +((((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-495))) ((|#1|) . T)) +((((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-495))) ((|#1|) . T)) +((((-349 (-484)) (-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-495))) ((|#1| |#1|) . T)) +((($) OR (|has| |#1| (-312)) (|has| |#1| (-495))) (((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))) ((|#1|) |has| |#1| (-146))) +(((|#1| (-349 (-484)) (-994)) . T)) +((((-1089)) -12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|))))) +((($ (-1089)) -12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|))))) +((((-1089)) -12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|))))) +((((-349 (-484)) |#1|) . T) (($ $) . T)) +(|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|))) +((($) |has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))) +(|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|))) +(((|#1|) . T)) +(|has| |#1| (-756)) +(|has| |#1| (-756)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1| (-484)) . T)) +((((-484) (-484)) . T)) +((((-484)) . T)) +((((-484)) . T)) +((((-484)) . T)) +((((-484)) . T)) +((((-484)) . T)) +((((-772)) . T)) +((((-484)) . T)) +((((-772)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1| (-694)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(|has| |#1| (-756)) +(|has| |#1| (-756)) +(((|#1|) . T)) +(OR (|has| |#1| (-72)) (|has| |#1| (-756)) (|has| |#1| (-1013))) +((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-756)) (|has| |#1| (-1013)))) +(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013)))) +(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013)))) +(OR (|has| |#1| (-756)) (|has| |#1| (-1013))) +(((|#1|) . T)) +((((-473)) |has| |#1| (-553 (-473)))) +((((-484) |#1|) . T)) +((((-1145 (-484)) $) . T) (((-484) |#1|) . T)) +((((-484) |#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-772)) . T)) +((((-772)) . T)) +((((-484)) . T)) +((((-772)) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-816 |#1|)) . T)) -((((-816 |#1|)) . T)) -((((-816 |#1|)) . T)) -((((-816 |#1|)) . T) (($) . T) (((-348 (-483))) . T)) -((((-816 |#1|)) . T) (($) . T) (((-348 (-483))) . T)) -((((-816 |#1|) (-816 |#1|)) . T) (($ $) . T) (((-348 (-483)) (-348 (-483))) . T)) -((((-348 (-483))) . T) (($) . T)) -((((-816 |#1|)) . T) (((-348 (-483))) . T) (($) . T)) -((((-816 |#1|)) . T) (((-348 (-483))) . T) (($) . T)) -((((-771)) . T)) -((((-816 |#1|)) . T) (((-348 (-483))) . T) (((-483)) . T) (($) . T)) -((((-816 |#1|)) . T) (((-348 (-483))) . T) (($) . T)) -((((-816 |#1|)) . T) (((-348 (-483))) . T) (($) . T) (((-483)) . T)) +((((-817 |#1|)) . T)) +((((-817 |#1|)) . T)) +((((-817 |#1|)) . T)) +((((-817 |#1|)) . T) (($) . T) (((-349 (-484))) . T)) +((((-817 |#1|)) . T) (($) . T) (((-349 (-484))) . T)) +((((-817 |#1|) (-817 |#1|)) . T) (($ $) . T) (((-349 (-484)) (-349 (-484))) . T)) +((((-349 (-484))) . T) (($) . T)) +((((-817 |#1|)) . T) (((-349 (-484))) . T) (($) . T)) +((((-817 |#1|)) . T) (((-349 (-484))) . T) (($) . T)) +((((-772)) . T)) +((((-817 |#1|)) . T) (((-349 (-484))) . T) (((-484)) . T) (($) . T)) +((((-817 |#1|)) . T) (((-349 (-484))) . T) (($) . T)) +((((-817 |#1|)) . T) (((-349 (-484))) . T) (($) . T) (((-484)) . T)) (|has| $ (-120)) ((($) . T)) -((((-816 |#1|)) . T)) -((((-816 |#1|)) . T)) -((((-816 |#1|)) . T)) -((((-816 |#1|)) . T)) -((((-816 |#1|)) . T) (($) . T) (((-348 (-483))) . T)) -((((-816 |#1|)) . T) (($) . T) (((-348 (-483))) . T)) -((((-816 |#1|) (-816 |#1|)) . T) (($ $) . T) (((-348 (-483)) (-348 (-483))) . T)) -((((-348 (-483))) . T) (($) . T)) -((((-816 |#1|)) . T) (((-348 (-483))) . T) (($) . T)) -((((-816 |#1|)) . T) (((-348 (-483))) . T) (($) . T)) -((((-771)) . T)) -((((-816 |#1|)) . T) (((-348 (-483))) . T) (((-483)) . T) (($) . T)) -((((-816 |#1|)) . T) (((-348 (-483))) . T) (($) . T)) -((((-816 |#1|)) . T) (((-348 (-483))) . T) (($) . T) (((-483)) . T)) +((((-817 |#1|)) . T)) +((((-817 |#1|)) . T)) +((((-817 |#1|)) . T)) +((((-817 |#1|)) . T)) +((((-817 |#1|)) . T) (($) . T) (((-349 (-484))) . T)) +((((-817 |#1|)) . T) (($) . T) (((-349 (-484))) . T)) +((((-817 |#1|) (-817 |#1|)) . T) (($ $) . T) (((-349 (-484)) (-349 (-484))) . T)) +((((-349 (-484))) . T) (($) . T)) +((((-817 |#1|)) . T) (((-349 (-484))) . T) (($) . T)) +((((-817 |#1|)) . T) (((-349 (-484))) . T) (($) . T)) +((((-772)) . T)) +((((-817 |#1|)) . T) (((-349 (-484))) . T) (((-484)) . T) (($) . T)) +((((-817 |#1|)) . T) (((-349 (-484))) . T) (($) . T)) +((((-817 |#1|)) . T) (((-349 (-484))) . T) (($) . T) (((-484)) . T)) (|has| $ (-120)) ((($) . T)) -((((-816 |#1|)) . T)) +((((-817 |#1|)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(OR (|has| |#1| (-118)) (|has| |#1| (-318))) -(OR (|has| |#1| (-118)) (|has| |#1| (-318))) -(((|#1|) . T) (($) . T) (((-348 (-483))) . T)) -(((|#1|) . T) (($) . T) (((-348 (-483))) . T)) -(((|#1| |#1|) . T) (($ $) . T) (((-348 (-483)) (-348 (-483))) . T)) -((((-348 (-483))) . T) (($) . T)) -(((|#1|) . T) (((-348 (-483))) . T) (($) . T)) -(((|#1|) . T) (((-348 (-483))) . T) (($) . T)) -((((-771)) . T)) -(((|#1|) . T) (((-348 (-483))) . T) (((-483)) . T) (($) . T)) -(((|#1|) . T) (((-348 (-483))) . T) (($) . T)) -(((|#1|) . T) (((-348 (-483))) . T) (($) . T) (((-483)) . T)) +(OR (|has| |#1| (-118)) (|has| |#1| (-319))) +(OR (|has| |#1| (-118)) (|has| |#1| (-319))) +(((|#1|) . T) (($) . T) (((-349 (-484))) . T)) +(((|#1|) . T) (($) . T) (((-349 (-484))) . T)) +(((|#1| |#1|) . T) (($ $) . T) (((-349 (-484)) (-349 (-484))) . T)) +((((-349 (-484))) . T) (($) . T)) +(((|#1|) . T) (((-349 (-484))) . T) (($) . T)) +(((|#1|) . T) (((-349 (-484))) . T) (($) . T)) +((((-772)) . T)) +(((|#1|) . T) (((-349 (-484))) . T) (((-484)) . T) (($) . T)) +(((|#1|) . T) (((-349 (-484))) . T) (($) . T)) +(((|#1|) . T) (((-349 (-484))) . T) (($) . T) (((-484)) . T)) (|has| |#1| (-120)) -(|has| |#1| (-318)) -(|has| |#1| (-318)) -(|has| |#1| (-318)) -(|has| |#1| (-318)) -((($) |has| |#1| (-318))) -(|has| |#1| (-318)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(OR (|has| |#1| (-118)) (|has| |#1| (-318))) -(OR (|has| |#1| (-118)) (|has| |#1| (-318))) -(((|#1|) . T) (($) . T) (((-348 (-483))) . T)) -(((|#1|) . T) (($) . T) (((-348 (-483))) . T)) -(((|#1| |#1|) . T) (($ $) . T) (((-348 (-483)) (-348 (-483))) . T)) -((((-348 (-483))) . T) (($) . T)) -(((|#1|) . T) (((-348 (-483))) . T) (($) . T)) -(((|#1|) . T) (((-348 (-483))) . T) (($) . T)) -((((-771)) . T)) -(((|#1|) . T) (((-348 (-483))) . T) (((-483)) . T) (($) . T)) -(((|#1|) . T) (((-348 (-483))) . T) (($) . T)) -(((|#1|) . T) (((-348 (-483))) . T) (($) . T) (((-483)) . T)) +(|has| |#1| (-319)) +(|has| |#1| (-319)) +(|has| |#1| (-319)) +(|has| |#1| (-319)) +((($) |has| |#1| (-319))) +(|has| |#1| (-319)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(OR (|has| |#1| (-118)) (|has| |#1| (-319))) +(OR (|has| |#1| (-118)) (|has| |#1| (-319))) +(((|#1|) . T) (($) . T) (((-349 (-484))) . T)) +(((|#1|) . T) (($) . T) (((-349 (-484))) . T)) +(((|#1| |#1|) . T) (($ $) . T) (((-349 (-484)) (-349 (-484))) . T)) +((((-349 (-484))) . T) (($) . T)) +(((|#1|) . T) (((-349 (-484))) . T) (($) . T)) +(((|#1|) . T) (((-349 (-484))) . T) (($) . T)) +((((-772)) . T)) +(((|#1|) . T) (((-349 (-484))) . T) (((-484)) . T) (($) . T)) +(((|#1|) . T) (((-349 (-484))) . T) (($) . T)) +(((|#1|) . T) (((-349 (-484))) . T) (($) . T) (((-484)) . T)) (|has| |#1| (-120)) -(|has| |#1| (-318)) -(|has| |#1| (-318)) -(|has| |#1| (-318)) -(|has| |#1| (-318)) -((($) |has| |#1| (-318))) -(|has| |#1| (-318)) -(((|#1|) . T)) -((((-816 |#1|)) . T)) -((((-816 |#1|)) . T)) -((((-816 |#1|)) . T)) -((((-816 |#1|)) . T) (($) . T) (((-348 (-483))) . T)) -((((-816 |#1|)) . T) (($) . T) (((-348 (-483))) . T)) -((((-816 |#1|) (-816 |#1|)) . T) (($ $) . T) (((-348 (-483)) (-348 (-483))) . T)) -((((-348 (-483))) . T) (($) . T)) -((((-816 |#1|)) . T) (((-348 (-483))) . T) (($) . T)) -((((-816 |#1|)) . T) (((-348 (-483))) . T) (($) . T)) -((((-771)) . T)) -((((-816 |#1|)) . T) (((-348 (-483))) . T) (((-483)) . T) (($) . T)) -((((-816 |#1|)) . T) (((-348 (-483))) . T) (($) . T)) -((((-816 |#1|)) . T) (((-348 (-483))) . T) (($) . T) (((-483)) . T)) +(|has| |#1| (-319)) +(|has| |#1| (-319)) +(|has| |#1| (-319)) +(|has| |#1| (-319)) +((($) |has| |#1| (-319))) +(|has| |#1| (-319)) +(((|#1|) . T)) +((((-817 |#1|)) . T)) +((((-817 |#1|)) . T)) +((((-817 |#1|)) . T)) +((((-817 |#1|)) . T) (($) . T) (((-349 (-484))) . T)) +((((-817 |#1|)) . T) (($) . T) (((-349 (-484))) . T)) +((((-817 |#1|) (-817 |#1|)) . T) (($ $) . T) (((-349 (-484)) (-349 (-484))) . T)) +((((-349 (-484))) . T) (($) . T)) +((((-817 |#1|)) . T) (((-349 (-484))) . T) (($) . T)) +((((-817 |#1|)) . T) (((-349 (-484))) . T) (($) . T)) +((((-772)) . T)) +((((-817 |#1|)) . T) (((-349 (-484))) . T) (((-484)) . T) (($) . T)) +((((-817 |#1|)) . T) (((-349 (-484))) . T) (($) . T)) +((((-817 |#1|)) . T) (((-349 (-484))) . T) (($) . T) (((-484)) . T)) (|has| $ (-120)) ((($) . T)) -((((-816 |#1|)) . T)) +((((-817 |#1|)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(OR (|has| |#1| (-118)) (|has| |#1| (-318))) -(OR (|has| |#1| (-118)) (|has| |#1| (-318))) -(((|#1|) . T) (($) . T) (((-348 (-483))) . T)) -(((|#1|) . T) (($) . T) (((-348 (-483))) . T)) -(((|#1| |#1|) . T) (($ $) . T) (((-348 (-483)) (-348 (-483))) . T)) -((((-348 (-483))) . T) (($) . T)) -(((|#1|) . T) (((-348 (-483))) . T) (($) . T)) -(((|#1|) . T) (((-348 (-483))) . T) (($) . T)) -((((-771)) . T)) -(((|#1|) . T) (((-348 (-483))) . T) (((-483)) . T) (($) . T)) -(((|#1|) . T) (((-348 (-483))) . T) (($) . T)) -(((|#1|) . T) (((-348 (-483))) . T) (($) . T) (((-483)) . T)) +(OR (|has| |#1| (-118)) (|has| |#1| (-319))) +(OR (|has| |#1| (-118)) (|has| |#1| (-319))) +(((|#1|) . T) (($) . T) (((-349 (-484))) . T)) +(((|#1|) . T) (($) . T) (((-349 (-484))) . T)) +(((|#1| |#1|) . T) (($ $) . T) (((-349 (-484)) (-349 (-484))) . T)) +((((-349 (-484))) . T) (($) . T)) +(((|#1|) . T) (((-349 (-484))) . T) (($) . T)) +(((|#1|) . T) (((-349 (-484))) . T) (($) . T)) +((((-772)) . T)) +(((|#1|) . T) (((-349 (-484))) . T) (((-484)) . T) (($) . T)) +(((|#1|) . T) (((-349 (-484))) . T) (($) . T)) +(((|#1|) . T) (((-349 (-484))) . T) (($) . T) (((-484)) . T)) (|has| |#1| (-120)) -(|has| |#1| (-318)) -(|has| |#1| (-318)) -(|has| |#1| (-318)) -(|has| |#1| (-318)) -((($) |has| |#1| (-318))) -(|has| |#1| (-318)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(OR (|has| |#1| (-118)) (|has| |#1| (-318))) -(OR (|has| |#1| (-118)) (|has| |#1| (-318))) -(((|#1|) . T) (($) . T) (((-348 (-483))) . T)) -(((|#1|) . T) (($) . T) (((-348 (-483))) . T)) -(((|#1| |#1|) . T) (($ $) . T) (((-348 (-483)) (-348 (-483))) . T)) -((((-348 (-483))) . T) (($) . T)) -(((|#1|) . T) (((-348 (-483))) . T) (($) . T)) -(((|#1|) . T) (((-348 (-483))) . T) (($) . T)) -((((-771)) . T)) -(((|#1|) . T) (((-348 (-483))) . T) (((-483)) . T) (($) . T)) -(((|#1|) . T) (((-348 (-483))) . T) (($) . T)) -(((|#1|) . T) (((-348 (-483))) . T) (($) . T) (((-483)) . T)) +(|has| |#1| (-319)) +(|has| |#1| (-319)) +(|has| |#1| (-319)) +(|has| |#1| (-319)) +((($) |has| |#1| (-319))) +(|has| |#1| (-319)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(OR (|has| |#1| (-118)) (|has| |#1| (-319))) +(OR (|has| |#1| (-118)) (|has| |#1| (-319))) +(((|#1|) . T) (($) . T) (((-349 (-484))) . T)) +(((|#1|) . T) (($) . T) (((-349 (-484))) . T)) +(((|#1| |#1|) . T) (($ $) . T) (((-349 (-484)) (-349 (-484))) . T)) +((((-349 (-484))) . T) (($) . T)) +(((|#1|) . T) (((-349 (-484))) . T) (($) . T)) +(((|#1|) . T) (((-349 (-484))) . T) (($) . T)) +((((-772)) . T)) +(((|#1|) . T) (((-349 (-484))) . T) (((-484)) . T) (($) . T)) +(((|#1|) . T) (((-349 (-484))) . T) (($) . T)) +(((|#1|) . T) (((-349 (-484))) . T) (($) . T) (((-484)) . T)) (|has| |#1| (-120)) -(|has| |#1| (-318)) -(|has| |#1| (-318)) -(|has| |#1| (-318)) -(|has| |#1| (-318)) -((($) |has| |#1| (-318))) -(|has| |#1| (-318)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(OR (|has| |#1| (-118)) (|has| |#1| (-318))) -(OR (|has| |#1| (-118)) (|has| |#1| (-318))) -(((|#1|) . T) (($) . T) (((-348 (-483))) . T)) -(((|#1|) . T) (($) . T) (((-348 (-483))) . T)) -(((|#1| |#1|) . T) (($ $) . T) (((-348 (-483)) (-348 (-483))) . T)) -((((-348 (-483))) . T) (($) . T)) -(((|#1|) . T) (((-348 (-483))) . T) (($) . T)) -(((|#1|) . T) (((-348 (-483))) . T) (($) . T)) -((((-771)) . T)) -(((|#1|) . T) (((-348 (-483))) . T) (((-483)) . T) (($) . T)) -(((|#1|) . T) (((-348 (-483))) . T) (($) . T)) -(((|#1|) . T) (((-348 (-483))) . T) (($) . T) (((-483)) . T)) +(|has| |#1| (-319)) +(|has| |#1| (-319)) +(|has| |#1| (-319)) +(|has| |#1| (-319)) +((($) |has| |#1| (-319))) +(|has| |#1| (-319)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(OR (|has| |#1| (-118)) (|has| |#1| (-319))) +(OR (|has| |#1| (-118)) (|has| |#1| (-319))) +(((|#1|) . T) (($) . T) (((-349 (-484))) . T)) +(((|#1|) . T) (($) . T) (((-349 (-484))) . T)) +(((|#1| |#1|) . T) (($ $) . T) (((-349 (-484)) (-349 (-484))) . T)) +((((-349 (-484))) . T) (($) . T)) +(((|#1|) . T) (((-349 (-484))) . T) (($) . T)) +(((|#1|) . T) (((-349 (-484))) . T) (($) . T)) +((((-772)) . T)) +(((|#1|) . T) (((-349 (-484))) . T) (((-484)) . T) (($) . T)) +(((|#1|) . T) (((-349 (-484))) . T) (($) . T)) +(((|#1|) . T) (((-349 (-484))) . T) (($) . T) (((-484)) . T)) (|has| |#1| (-120)) -(|has| |#1| (-318)) -(|has| |#1| (-318)) -(|has| |#1| (-318)) -(|has| |#1| (-318)) -((($) |has| |#1| (-318))) -(|has| |#1| (-318)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(OR (|has| |#1| (-118)) (|has| |#1| (-318))) -(OR (|has| |#1| (-118)) (|has| |#1| (-318))) -(((|#1|) . T) (($) . T) (((-348 (-483))) . T)) -(((|#1|) . T) (($) . T) (((-348 (-483))) . T)) -(((|#1| |#1|) . T) (($ $) . T) (((-348 (-483)) (-348 (-483))) . T)) -((((-348 (-483))) . T) (($) . T)) -(((|#1|) . T) (((-348 (-483))) . T) (($) . T)) -(((|#1|) . T) (((-348 (-483))) . T) (($) . T)) -((((-771)) . T)) -(((|#1|) . T) (((-348 (-483))) . T) (((-483)) . T) (($) . T)) -(((|#1|) . T) (((-348 (-483))) . T) (($) . T)) -(((|#1|) . T) (((-348 (-483))) . T) (($) . T) (((-483)) . T)) +(|has| |#1| (-319)) +(|has| |#1| (-319)) +(|has| |#1| (-319)) +(|has| |#1| (-319)) +((($) |has| |#1| (-319))) +(|has| |#1| (-319)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(OR (|has| |#1| (-118)) (|has| |#1| (-319))) +(OR (|has| |#1| (-118)) (|has| |#1| (-319))) +(((|#1|) . T) (($) . T) (((-349 (-484))) . T)) +(((|#1|) . T) (($) . T) (((-349 (-484))) . T)) +(((|#1| |#1|) . T) (($ $) . T) (((-349 (-484)) (-349 (-484))) . T)) +((((-349 (-484))) . T) (($) . T)) +(((|#1|) . T) (((-349 (-484))) . T) (($) . T)) +(((|#1|) . T) (((-349 (-484))) . T) (($) . T)) +((((-772)) . T)) +(((|#1|) . T) (((-349 (-484))) . T) (((-484)) . T) (($) . T)) +(((|#1|) . T) (((-349 (-484))) . T) (($) . T)) +(((|#1|) . T) (((-349 (-484))) . T) (($) . T) (((-484)) . T)) (|has| |#1| (-120)) -(|has| |#1| (-318)) -(|has| |#1| (-318)) -(|has| |#1| (-318)) -(|has| |#1| (-318)) -((($) |has| |#1| (-318))) -(|has| |#1| (-318)) +(|has| |#1| (-319)) +(|has| |#1| (-319)) +(|has| |#1| (-319)) +(|has| |#1| (-319)) +((($) |has| |#1| (-319))) +(|has| |#1| (-319)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-771)) . T)) -((((-771)) . T)) -((((-336) |#1|) . T)) +((((-772)) . T)) +((((-772)) . T)) +((((-337) |#1|) . T)) ((((-179)) . T)) ((($) . T)) -((((-483)) . T) (((-348 (-483))) . T)) -((((-328)) . T)) -((($) . T) (((-348 (-483))) . T)) -((($) . T) (((-348 (-483))) . T)) -((($ $) . T) (((-348 (-483)) (-348 (-483))) . T)) -((((-348 (-483))) . T) (($) . T)) -((((-348 (-483))) . T) (($) . T)) -((((-348 (-483))) . T) (($) . T)) -((((-472)) . T) (((-1071)) . T) (((-179)) . T) (((-328)) . T) (((-799 (-328))) . T)) -((((-179)) . T) (((-771)) . T)) -((((-348 (-483))) . T) (((-483)) . T) (($) . T)) -((((-348 (-483))) . T) (($) . T)) -((((-348 (-483))) . T) (($) . T) (((-483)) . T)) +((((-484)) . T) (((-349 (-484))) . T)) +((((-329)) . T)) +((($) . T) (((-349 (-484))) . T)) +((($) . T) (((-349 (-484))) . T)) +((($ $) . T) (((-349 (-484)) (-349 (-484))) . T)) +((((-349 (-484))) . T) (($) . T)) +((((-349 (-484))) . T) (($) . T)) +((((-349 (-484))) . T) (($) . T)) +((((-473)) . T) (((-1072)) . T) (((-179)) . T) (((-329)) . T) (((-800 (-329))) . T)) +((((-179)) . T) (((-772)) . T)) +((((-349 (-484))) . T) (((-484)) . T) (($) . T)) +((((-349 (-484))) . T) (($) . T)) +((((-349 (-484))) . T) (($) . T) (((-484)) . T)) (((|#1|) |has| |#1| (-146))) (((|#1|) |has| |#1| (-146))) -((((-582 (-452 |#1| |#2|))) . T)) +((((-583 (-453 |#1| |#2|))) . T)) (((|#1| |#2|) . T)) (((|#1|) . T)) -((((-771)) . T)) -(((|#1|) . T) (((-483)) . T)) +((((-772)) . T)) +(((|#1|) . T) (((-484)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-771)) . T)) -((((-483)) . T) ((|#1|) . T)) +((((-772)) . T)) +((((-484)) . T) ((|#1|) . T)) (((|#1|) . T)) (((|#1|) |has| |#1| (-146))) (((|#1|) |has| |#1| (-146))) (((|#2|) . T)) (((|#2|) . T)) (((|#1| |#2|) . T)) -((((-771)) . T)) -(|has| |#1| (-755)) -(|has| |#1| (-755)) +((((-772)) . T)) +(|has| |#1| (-756)) +(|has| |#1| (-756)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-1071)) . T)) -((((-1071)) . T)) -((((-1071)) . T) (((-771)) . T)) +((((-1072)) . T)) +((((-1072)) . T)) +((((-1072)) . T) (((-772)) . T)) (((|#3|) . T)) (((|#3|) . T)) (((|#3|) . T)) -((((-771)) . T)) -(((|#3|) . T) (((-483)) . T)) +((((-772)) . T)) +(((|#3|) . T) (((-484)) . T)) (((|#3|) . T)) (((|#3|) . T)) (((|#3| |#3|) . T)) (((|#3|) . T)) -((((-348 |#2|)) . T)) +((((-349 |#2|)) . T)) ((($) . T)) -((((-771)) . T)) -(|has| |#1| (-1132)) -((((-472)) |has| |#1| (-552 (-472))) (((-179)) |has| |#1| (-932)) (((-328)) |has| |#1| (-932))) -(|has| |#1| (-932)) -(OR (|has| |#1| (-390)) (|has| |#1| (-1132))) -((((-348 (-483))) |has| |#1| (-949 (-348 (-483)))) (((-483)) |has| |#1| (-949 (-483))) ((|#1|) . T)) +((((-772)) . T)) +(|has| |#1| (-1133)) +((((-473)) |has| |#1| (-553 (-473))) (((-179)) |has| |#1| (-933)) (((-329)) |has| |#1| (-933))) +(|has| |#1| (-933)) +(OR (|has| |#1| (-391)) (|has| |#1| (-1133))) +((((-349 (-484))) |has| |#1| (-950 (-349 (-484)))) (((-484)) |has| |#1| (-950 (-484))) ((|#1|) . T)) (((|#1|) . T)) ((($ $) |has| |#1| (-241 $ $)) ((|#1| $) |has| |#1| (-241 |#1| |#1|))) ((($) |has| |#1| (-260 $)) ((|#1|) |has| |#1| (-260 |#1|))) -((((-1088) $) |has| |#1| (-454 (-1088) $)) (($ $) |has| |#1| (-260 $)) ((|#1| |#1|) |has| |#1| (-260 |#1|)) (((-1088) |#1|) |has| |#1| (-454 (-1088) |#1|))) +((((-1089) $) |has| |#1| (-455 (-1089) $)) (($ $) |has| |#1| (-260 $)) ((|#1| |#1|) |has| |#1| (-260 |#1|)) (((-1089) |#1|) |has| |#1| (-455 (-1089) |#1|))) (((|#1|) . T)) (|has| |#1| (-190)) ((($) OR (|has| |#1| (-190)) (|has| |#1| (-189)))) (OR (|has| |#1| (-190)) (|has| |#1| (-189))) (((|#1|) . T)) -((($ (-1088)) OR (|has| |#1| (-808 (-1088))) (|has| |#1| (-810 (-1088))))) -((((-1088)) OR (|has| |#1| (-808 (-1088))) (|has| |#1| (-810 (-1088))))) -((((-1088)) |has| |#1| (-808 (-1088)))) +((($ (-1089)) OR (|has| |#1| (-809 (-1089))) (|has| |#1| (-811 (-1089))))) +((((-1089)) OR (|has| |#1| (-809 (-1089))) (|has| |#1| (-811 (-1089))))) +((((-1089)) |has| |#1| (-809 (-1089)))) (((|#1|) . T)) (((|#1|) . T) (($) . T)) (((|#1| |#1|) . T) (($ $) . T)) (((|#1|) . T) (($) . T)) (((|#1|) . T) (($) . T)) -((((-771)) . T)) -(((|#1|) . T) (((-483)) . T) (($) . T)) +((((-772)) . T)) +(((|#1|) . T) (((-484)) . T) (($) . T)) (((|#1|) . T) (($) . T)) (((|#1|) . T) (($) . T)) (((|#1|) . T) (($) . T)) -((((-348 (-483))) |has| |#1| (-949 (-348 (-483)))) ((|#1|) . T) (((-483)) . T) (($) . T)) -((((-771)) . T)) +((((-349 (-484))) |has| |#1| (-950 (-349 (-484)))) ((|#1|) . T) (((-484)) . T) (($) . T)) +((((-772)) . T)) (|has| |#1| (-118)) -(OR (|has| |#1| (-120)) (|has| |#1| (-739))) +(OR (|has| |#1| (-120)) (|has| |#1| (-740))) (((|#1|) . T)) -((((-1088)) |has| |#1| (-808 (-1088)))) -((((-1088)) OR (|has| |#1| (-808 (-1088))) (|has| |#1| (-810 (-1088))))) -((($ (-1088)) OR (|has| |#1| (-808 (-1088))) (|has| |#1| (-810 (-1088))))) +((((-1089)) |has| |#1| (-809 (-1089)))) +((((-1089)) OR (|has| |#1| (-809 (-1089))) (|has| |#1| (-811 (-1089))))) +((($ (-1089)) OR (|has| |#1| (-809 (-1089))) (|has| |#1| (-811 (-1089))))) (((|#1|) . T)) (OR (|has| |#1| (-190)) (|has| |#1| (-189))) ((($) OR (|has| |#1| (-190)) (|has| |#1| (-189)))) (|has| |#1| (-190)) -(((|#1|) . T) (($) . T) (((-348 (-483))) . T)) -((($) . T) (((-483)) . T) ((|#1|) . T) (((-348 (-483))) . T)) -(((|#1|) . T) (($) . T) (((-348 (-483))) . T)) -(((|#1|) . T) (($) . T) (((-348 (-483))) . T)) -(((|#1|) . T) (((-348 (-483))) . T) (($) . T)) -(((|#1|) . T) (((-348 (-483))) . T) (($) . T)) -(((|#1| |#1|) . T) (((-348 (-483)) (-348 (-483))) . T) (($ $) . T)) -(((|#1|) . T)) -((((-1088) |#1|) |has| |#1| (-454 (-1088) |#1|)) ((|#1| |#1|) |has| |#1| (-260 |#1|))) +(((|#1|) . T) (($) . T) (((-349 (-484))) . T)) +((($) . T) (((-484)) . T) ((|#1|) . T) (((-349 (-484))) . T)) +(((|#1|) . T) (($) . T) (((-349 (-484))) . T)) +(((|#1|) . T) (($) . T) (((-349 (-484))) . T)) +(((|#1|) . T) (((-349 (-484))) . T) (($) . T)) +(((|#1|) . T) (((-349 (-484))) . T) (($) . T)) +(((|#1| |#1|) . T) (((-349 (-484)) (-349 (-484))) . T) (($ $) . T)) +(((|#1|) . T)) +((((-1089) |#1|) |has| |#1| (-455 (-1089) |#1|)) ((|#1| |#1|) |has| |#1| (-260 |#1|))) (((|#1|) |has| |#1| (-260 |#1|))) (((|#1| $) |has| |#1| (-241 |#1| |#1|))) (((|#1|) . T)) -((($) . T) ((|#1|) . T) (((-348 (-483))) . T) (((-483)) |has| |#1| (-579 (-483)))) -(((|#1|) . T) (((-483)) |has| |#1| (-579 (-483)))) +((($) . T) ((|#1|) . T) (((-349 (-484))) . T) (((-484)) |has| |#1| (-580 (-484)))) +(((|#1|) . T) (((-484)) |has| |#1| (-580 (-484)))) (((|#1|) . T)) -((((-483)) |has| |#1| (-795 (-483))) (((-328)) |has| |#1| (-795 (-328)))) -(|has| |#1| (-739)) -(|has| |#1| (-739)) -(|has| |#1| (-739)) -(OR (|has| |#1| (-739)) (|has| |#1| (-755))) -(OR (|has| |#1| (-739)) (|has| |#1| (-755))) -(|has| |#1| (-739)) -(|has| |#1| (-739)) -(|has| |#1| (-739)) +((((-484)) |has| |#1| (-796 (-484))) (((-329)) |has| |#1| (-796 (-329)))) +(|has| |#1| (-740)) +(|has| |#1| (-740)) +(|has| |#1| (-740)) +(OR (|has| |#1| (-740)) (|has| |#1| (-756))) +(OR (|has| |#1| (-740)) (|has| |#1| (-756))) +(|has| |#1| (-740)) +(|has| |#1| (-740)) +(|has| |#1| (-740)) (((|#1|) . T)) -(|has| |#1| (-820)) -(|has| |#1| (-932)) -((((-472)) |has| |#1| (-552 (-472))) (((-799 (-483))) |has| |#1| (-552 (-799 (-483)))) (((-799 (-328))) |has| |#1| (-552 (-799 (-328)))) (((-328)) |has| |#1| (-932)) (((-179)) |has| |#1| (-932))) -((((-483)) . T) ((|#1|) . T) (($) . T) (((-348 (-483))) . T) (((-1088)) |has| |#1| (-949 (-1088)))) -((((-348 (-483))) |has| |#1| (-949 (-483))) (((-483)) |has| |#1| (-949 (-483))) (((-1088)) |has| |#1| (-949 (-1088))) ((|#1|) . T)) -(|has| |#1| (-1064)) +(|has| |#1| (-821)) +(|has| |#1| (-933)) +((((-473)) |has| |#1| (-553 (-473))) (((-800 (-484))) |has| |#1| (-553 (-800 (-484)))) (((-800 (-329))) |has| |#1| (-553 (-800 (-329)))) (((-329)) |has| |#1| (-933)) (((-179)) |has| |#1| (-933))) +((((-484)) . T) ((|#1|) . T) (($) . T) (((-349 (-484))) . T) (((-1089)) |has| |#1| (-950 (-1089)))) +((((-349 (-484))) |has| |#1| (-950 (-484))) (((-484)) |has| |#1| (-950 (-484))) (((-1089)) |has| |#1| (-950 (-1089))) ((|#1|) . T)) +(|has| |#1| (-1065)) (((|#1|) . T)) -((((-771)) . T)) -((((-771)) . T)) +((((-772)) . T)) +((((-772)) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-771)) . T)) +((((-772)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) -(((|#1|) . T) (((-483)) . T) (($) . T)) +(((|#1|) . T) (((-484)) . T) (($) . T)) (((|#1|) . T) (($) . T)) -(((|#1|) . T) (((-483)) . T)) -(((|#1|) . T)) -((((-771)) . T)) -((((-771)) . T)) -((((-771)) . T)) -((((-771)) . T)) -((((-483) (-348 (-856 |#1|))) . T)) -((((-348 (-856 |#1|))) . T)) -((((-348 (-856 |#1|))) . T)) -((((-348 (-856 |#1|))) . T)) -((((-1054 |#2| (-348 (-856 |#1|)))) . T) (((-348 (-856 |#1|))) . T)) -((((-771)) . T)) -((((-1054 |#2| (-348 (-856 |#1|)))) . T) (((-348 (-856 |#1|))) . T) (((-483)) . T)) -((((-348 (-856 |#1|))) . T)) -((((-348 (-856 |#1|))) . T)) -((((-348 (-856 |#1|)) (-348 (-856 |#1|))) . T)) -((((-348 (-856 |#1|))) . T)) -((((-348 (-856 |#1|))) . T)) -((((-472)) |has| |#2| (-552 (-472))) (((-799 (-328))) |has| |#2| (-552 (-799 (-328)))) (((-799 (-483))) |has| |#2| (-552 (-799 (-483))))) +(((|#1|) . T) (((-484)) . T)) +(((|#1|) . T)) +((((-772)) . T)) +((((-772)) . T)) +((((-772)) . T)) +((((-772)) . T)) +((((-484) (-349 (-857 |#1|))) . T)) +((((-349 (-857 |#1|))) . T)) +((((-349 (-857 |#1|))) . T)) +((((-349 (-857 |#1|))) . T)) +((((-1055 |#2| (-349 (-857 |#1|)))) . T) (((-349 (-857 |#1|))) . T)) +((((-772)) . T)) +((((-1055 |#2| (-349 (-857 |#1|)))) . T) (((-349 (-857 |#1|))) . T) (((-484)) . T)) +((((-349 (-857 |#1|))) . T)) +((((-349 (-857 |#1|))) . T)) +((((-349 (-857 |#1|)) (-349 (-857 |#1|))) . T)) +((((-349 (-857 |#1|))) . T)) +((((-349 (-857 |#1|))) . T)) +((((-473)) |has| |#2| (-553 (-473))) (((-800 (-329))) |has| |#2| (-553 (-800 (-329)))) (((-800 (-484))) |has| |#2| (-553 (-800 (-484))))) ((($) . T)) (((|#2| |#3|) . T)) (((|#2|) . T)) -((((-771)) . T)) -((($) . T) (((-483)) . T) (((-348 (-483))) |has| |#2| (-38 (-348 (-483)))) ((|#2|) . T)) +((((-772)) . T)) +((($) . T) (((-484)) . T) (((-349 (-484))) |has| |#2| (-38 (-349 (-484)))) ((|#2|) . T)) (|has| |#2| (-118)) (|has| |#2| (-120)) -(OR (|has| |#2| (-146)) (|has| |#2| (-390)) (|has| |#2| (-494)) (|has| |#2| (-820))) -((((-348 (-483))) |has| |#2| (-38 (-348 (-483)))) ((|#2|) . T) (($) OR (|has| |#2| (-146)) (|has| |#2| (-390)) (|has| |#2| (-494)) (|has| |#2| (-820)))) -((((-348 (-483))) |has| |#2| (-38 (-348 (-483)))) ((|#2|) . T) (($) OR (|has| |#2| (-146)) (|has| |#2| (-390)) (|has| |#2| (-494)) (|has| |#2| (-820)))) -((((-348 (-483)) (-348 (-483))) |has| |#2| (-38 (-348 (-483)))) ((|#2| |#2|) . T) (($ $) OR (|has| |#2| (-146)) (|has| |#2| (-390)) (|has| |#2| (-494)) (|has| |#2| (-820)))) -(OR (|has| |#2| (-390)) (|has| |#2| (-494)) (|has| |#2| (-820))) -(OR (|has| |#2| (-390)) (|has| |#2| (-494)) (|has| |#2| (-820))) -((((-348 (-483))) |has| |#2| (-38 (-348 (-483)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-390)) (|has| |#2| (-494)) (|has| |#2| (-820)))) -((((-348 (-483))) |has| |#2| (-38 (-348 (-483)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-390)) (|has| |#2| (-494)) (|has| |#2| (-820)))) -((((-348 (-483))) |has| |#2| (-38 (-348 (-483)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-390)) (|has| |#2| (-494)) (|has| |#2| (-820)))) +(OR (|has| |#2| (-146)) (|has| |#2| (-391)) (|has| |#2| (-495)) (|has| |#2| (-821))) +((((-349 (-484))) |has| |#2| (-38 (-349 (-484)))) ((|#2|) . T) (($) OR (|has| |#2| (-146)) (|has| |#2| (-391)) (|has| |#2| (-495)) (|has| |#2| (-821)))) +((((-349 (-484))) |has| |#2| (-38 (-349 (-484)))) ((|#2|) . T) (($) OR (|has| |#2| (-146)) (|has| |#2| (-391)) (|has| |#2| (-495)) (|has| |#2| (-821)))) +((((-349 (-484)) (-349 (-484))) |has| |#2| (-38 (-349 (-484)))) ((|#2| |#2|) . T) (($ $) OR (|has| |#2| (-146)) (|has| |#2| (-391)) (|has| |#2| (-495)) (|has| |#2| (-821)))) +(OR (|has| |#2| (-391)) (|has| |#2| (-495)) (|has| |#2| (-821))) +(OR (|has| |#2| (-391)) (|has| |#2| (-495)) (|has| |#2| (-821))) +((((-349 (-484))) |has| |#2| (-38 (-349 (-484)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-391)) (|has| |#2| (-495)) (|has| |#2| (-821)))) +((((-349 (-484))) |has| |#2| (-38 (-349 (-484)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-391)) (|has| |#2| (-495)) (|has| |#2| (-821)))) +((((-349 (-484))) |has| |#2| (-38 (-349 (-484)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-391)) (|has| |#2| (-495)) (|has| |#2| (-821)))) (((|#2| |#3|) . T)) (((|#2|) . T)) -((($) . T) (((-348 (-483))) |has| |#2| (-38 (-348 (-483)))) ((|#2|) . T) (((-483)) |has| |#2| (-579 (-483)))) -(((|#2|) . T) (((-483)) |has| |#2| (-579 (-483)))) -(OR (|has| |#2| (-390)) (|has| |#2| (-820))) -((($ $) . T) (((-772 |#1|) $) . T) (((-772 |#1|) |#2|) . T)) -((((-772 |#1|)) . T)) -((($ (-772 |#1|)) . T)) -((((-772 |#1|)) . T)) -(|has| |#2| (-820)) -(|has| |#2| (-820)) -((((-348 (-483))) |has| |#2| (-949 (-348 (-483)))) (((-483)) |has| |#2| (-949 (-483))) ((|#2|) . T) (((-772 |#1|)) . T)) -((((-483)) . T) (((-348 (-483))) OR (|has| |#2| (-38 (-348 (-483)))) (|has| |#2| (-949 (-348 (-483))))) ((|#2|) . T) (($) OR (|has| |#2| (-390)) (|has| |#2| (-494)) (|has| |#2| (-820))) (((-772 |#1|)) . T)) -(((|#2| |#3| (-772 |#1|)) . T)) +((($) . T) (((-349 (-484))) |has| |#2| (-38 (-349 (-484)))) ((|#2|) . T) (((-484)) |has| |#2| (-580 (-484)))) +(((|#2|) . T) (((-484)) |has| |#2| (-580 (-484)))) +(OR (|has| |#2| (-391)) (|has| |#2| (-821))) +((($ $) . T) (((-773 |#1|) $) . T) (((-773 |#1|) |#2|) . T)) +((((-773 |#1|)) . T)) +((($ (-773 |#1|)) . T)) +((((-773 |#1|)) . T)) +(|has| |#2| (-821)) +(|has| |#2| (-821)) +((((-349 (-484))) |has| |#2| (-950 (-349 (-484)))) (((-484)) |has| |#2| (-950 (-484))) ((|#2|) . T) (((-773 |#1|)) . T)) +((((-484)) . T) (((-349 (-484))) OR (|has| |#2| (-38 (-349 (-484)))) (|has| |#2| (-950 (-349 (-484))))) ((|#2|) . T) (($) OR (|has| |#2| (-391)) (|has| |#2| (-495)) (|has| |#2| (-821))) (((-773 |#1|)) . T)) +(((|#2| |#3| (-773 |#1|)) . T)) (((|#2| |#2|) . T) ((|#6| |#6|) . T)) (((|#2|) . T) ((|#6|) . T)) (((|#2|) . T) ((|#6|) . T)) -((((-771)) . T)) -(((|#2|) . T) (((-483)) . T) ((|#6|) . T)) +((((-772)) . T)) +(((|#2|) . T) (((-484)) . T) ((|#6|) . T)) (((|#2|) . T) ((|#6|) . T)) (((|#2|) . T) ((|#6|) . T)) (((|#2|) . T) ((|#6|) . T)) (((|#4|) . T)) -((((-582 |#4|)) . T) (((-771)) . T)) -(((|#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1012)))) -(((|#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1012)))) +((((-583 |#4|)) . T) (((-772)) . T)) +(((|#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013)))) +(((|#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013)))) (((|#4|) . T)) -((((-472)) |has| |#4| (-552 (-472)))) +((((-473)) |has| |#4| (-553 (-473)))) (((|#1| |#2| |#3| |#4|) . T)) -((((-771)) . T)) +((((-772)) . T)) (|has| |#1| (-312)) (|has| |#1| (-312)) (|has| |#1| (-312)) -(OR (|has| |#1| (-312)) (|has| |#1| (-494))) -(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-494))) +(OR (|has| |#1| (-312)) (|has| |#1| (-495))) +(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-495))) (|has| |#1| (-312)) (|has| |#1| (-312)) -((((-771)) . T)) -(OR (|has| |#1| (-312)) (|has| |#1| (-494))) +((((-772)) . T)) +(OR (|has| |#1| (-312)) (|has| |#1| (-495))) (|has| |#1| (-312)) -(|has| |#1| (-38 (-348 (-483)))) -(|has| |#1| (-38 (-348 (-483)))) -(|has| |#1| (-38 (-348 (-483)))) -(|has| |#1| (-38 (-348 (-483)))) -(|has| |#1| (-38 (-348 (-483)))) -(|has| |#1| (-38 (-348 (-483)))) -(|has| |#1| (-38 (-348 (-483)))) -(((|#1| (-348 (-483))) . T)) -(((|#1| (-348 (-483))) . T)) +(|has| |#1| (-38 (-349 (-484)))) +(|has| |#1| (-38 (-349 (-484)))) +(|has| |#1| (-38 (-349 (-484)))) +(|has| |#1| (-38 (-349 (-484)))) +(|has| |#1| (-38 (-349 (-484)))) +(|has| |#1| (-38 (-349 (-484)))) +(|has| |#1| (-38 (-349 (-484)))) +(((|#1| (-349 (-484))) . T)) +(((|#1| (-349 (-484))) . T)) (|has| |#1| (-120)) (|has| |#1| (-118)) -((($) OR (|has| |#1| (-312)) (|has| |#1| (-494))) (((-483)) . T) (((-348 (-483))) OR (|has| |#1| (-38 (-348 (-483)))) (|has| |#1| (-312))) ((|#1|) |has| |#1| (-146))) -((($) OR (|has| |#1| (-312)) (|has| |#1| (-494))) (((-348 (-483))) OR (|has| |#1| (-38 (-348 (-483)))) (|has| |#1| (-312))) ((|#1|) |has| |#1| (-146))) -((($) OR (|has| |#1| (-312)) (|has| |#1| (-494))) (((-348 (-483))) OR (|has| |#1| (-38 (-348 (-483)))) (|has| |#1| (-312))) ((|#1|) |has| |#1| (-146))) -((($) . T) (((-348 (-483))) OR (|has| |#1| (-38 (-348 (-483)))) (|has| |#1| (-312))) ((|#1|) . T)) -((($) . T) (((-483)) . T) (((-348 (-483))) OR (|has| |#1| (-38 (-348 (-483)))) (|has| |#1| (-312))) ((|#1|) . T)) -((((-348 (-483))) OR (|has| |#1| (-38 (-348 (-483)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-494))) ((|#1|) . T)) -((((-348 (-483))) OR (|has| |#1| (-38 (-348 (-483)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-494))) ((|#1|) . T)) -((((-348 (-483)) (-348 (-483))) OR (|has| |#1| (-38 (-348 (-483)))) (|has| |#1| (-312))) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-494))) ((|#1| |#1|) . T)) -((($) OR (|has| |#1| (-312)) (|has| |#1| (-494))) (((-348 (-483))) OR (|has| |#1| (-38 (-348 (-483)))) (|has| |#1| (-312))) ((|#1|) |has| |#1| (-146))) -(((|#1| (-348 (-483)) (-993)) . T)) -((((-1088)) -12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-348 (-483)) |#1|))))) -((($ (-1174 |#2|)) . T) (($ (-1088)) -12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-348 (-483)) |#1|))))) -((((-1088)) -12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-348 (-483)) |#1|))))) -((((-348 (-483)) |#1|) . T) (($ $) . T)) -(|has| |#1| (-15 * (|#1| (-348 (-483)) |#1|))) -((($) |has| |#1| (-15 * (|#1| (-348 (-483)) |#1|)))) -(|has| |#1| (-15 * (|#1| (-348 (-483)) |#1|))) +((($) OR (|has| |#1| (-312)) (|has| |#1| (-495))) (((-484)) . T) (((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))) ((|#1|) |has| |#1| (-146))) +((($) OR (|has| |#1| (-312)) (|has| |#1| (-495))) (((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))) ((|#1|) |has| |#1| (-146))) +((($) OR (|has| |#1| (-312)) (|has| |#1| (-495))) (((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))) ((|#1|) |has| |#1| (-146))) +((($) . T) (((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))) ((|#1|) . T)) +((($) . T) (((-484)) . T) (((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))) ((|#1|) . T)) +((((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-495))) ((|#1|) . T)) +((((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-495))) ((|#1|) . T)) +((((-349 (-484)) (-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-495))) ((|#1| |#1|) . T)) +((($) OR (|has| |#1| (-312)) (|has| |#1| (-495))) (((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))) ((|#1|) |has| |#1| (-146))) +(((|#1| (-349 (-484)) (-994)) . T)) +((((-1089)) -12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|))))) +((($ (-1175 |#2|)) . T) (($ (-1089)) -12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|))))) +((((-1089)) -12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|))))) +((((-349 (-484)) |#1|) . T) (($ $) . T)) +(|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|))) +((($) |has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))) +(|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|))) (((|#1|) . T)) (((|#1| |#2|) . T)) -((((-771)) . T)) +((((-772)) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) . T)) -(((|#2|) . T) (((-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1012))) (((-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))))) -(((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1012))) (((-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))))) -((((-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T)) +(((|#2|) . T) (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))))) +(((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))))) +((((-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T)) (((|#1| |#2|) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-472)) |has| |#4| (-552 (-472)))) +((((-473)) |has| |#4| (-553 (-473)))) (((|#4|) . T)) -(((|#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1012)))) -(((|#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1012)))) +(((|#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013)))) +(((|#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013)))) (((|#4|) . T)) -((((-771)) . T) (((-582 |#4|)) . T)) +((((-772)) . T) (((-583 |#4|)) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-472)) . T) (((-348 (-1083 (-483)))) . T) (((-179)) . T) (((-328)) . T)) -((((-348 (-483))) . T) (((-483)) . T)) -((((-328)) . T) (((-179)) . T) (((-771)) . T)) -((($) . T) (((-348 (-483))) . T)) -((($) . T) (((-348 (-483))) . T)) -((($ $) . T) (((-348 (-483)) (-348 (-483))) . T)) -((((-348 (-483))) . T) (((-483)) . T) (($) . T)) -((((-348 (-483))) . T) (($) . T)) -((((-348 (-483))) . T) (($) . T)) -((((-348 (-483))) . T) (($) . T)) -((((-348 (-483))) . T) (($) . T)) -((((-348 (-483))) . T) (((-483)) . T) (($) . T)) -((((-1093)) . T)) -((((-771)) . T) (((-1093)) . T)) -((((-1093)) . T)) +((((-473)) . T) (((-349 (-1084 (-484)))) . T) (((-179)) . T) (((-329)) . T)) +((((-349 (-484))) . T) (((-484)) . T)) +((((-329)) . T) (((-179)) . T) (((-772)) . T)) +((($) . T) (((-349 (-484))) . T)) +((($) . T) (((-349 (-484))) . T)) +((($ $) . T) (((-349 (-484)) (-349 (-484))) . T)) +((((-349 (-484))) . T) (((-484)) . T) (($) . T)) +((((-349 (-484))) . T) (($) . T)) +((((-349 (-484))) . T) (($) . T)) +((((-349 (-484))) . T) (($) . T)) +((((-349 (-484))) . T) (($) . T)) +((((-349 (-484))) . T) (((-484)) . T) (($) . T)) +((((-1094)) . T)) +((((-772)) . T) (((-1094)) . T)) +((((-1094)) . T)) (((|#1| |#2|) . T)) -((((-771)) . T)) +((((-772)) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) . T)) -(((|#2|) . T) (((-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1012))) (((-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))))) -(((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1012))) (((-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))))) -((((-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T)) +(((|#2|) . T) (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))))) +(((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))))) +((((-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T)) (((|#1| |#2|) . T)) -((((-472)) |has| |#2| (-552 (-472))) (((-799 (-328))) |has| |#2| (-552 (-799 (-328)))) (((-799 (-483))) |has| |#2| (-552 (-799 (-483))))) +((((-473)) |has| |#2| (-553 (-473))) (((-800 (-329))) |has| |#2| (-553 (-800 (-329)))) (((-800 (-484))) |has| |#2| (-553 (-800 (-484))))) ((($) . T)) -(((|#2| (-420 (-3955 |#1|) (-693))) . T)) +(((|#2| (-421 (-3956 |#1|) (-694))) . T)) (((|#2|) . T)) -((((-771)) . T)) -((($) . T) (((-483)) . T) (((-348 (-483))) |has| |#2| (-38 (-348 (-483)))) ((|#2|) . T)) +((((-772)) . T)) +((($) . T) (((-484)) . T) (((-349 (-484))) |has| |#2| (-38 (-349 (-484)))) ((|#2|) . T)) (|has| |#2| (-118)) (|has| |#2| (-120)) -(OR (|has| |#2| (-146)) (|has| |#2| (-390)) (|has| |#2| (-494)) (|has| |#2| (-820))) -((((-348 (-483))) |has| |#2| (-38 (-348 (-483)))) ((|#2|) . T) (($) OR (|has| |#2| (-146)) (|has| |#2| (-390)) (|has| |#2| (-494)) (|has| |#2| (-820)))) -((((-348 (-483))) |has| |#2| (-38 (-348 (-483)))) ((|#2|) . T) (($) OR (|has| |#2| (-146)) (|has| |#2| (-390)) (|has| |#2| (-494)) (|has| |#2| (-820)))) -((((-348 (-483)) (-348 (-483))) |has| |#2| (-38 (-348 (-483)))) ((|#2| |#2|) . T) (($ $) OR (|has| |#2| (-146)) (|has| |#2| (-390)) (|has| |#2| (-494)) (|has| |#2| (-820)))) -(OR (|has| |#2| (-390)) (|has| |#2| (-494)) (|has| |#2| (-820))) -(OR (|has| |#2| (-390)) (|has| |#2| (-494)) (|has| |#2| (-820))) -((((-348 (-483))) |has| |#2| (-38 (-348 (-483)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-390)) (|has| |#2| (-494)) (|has| |#2| (-820)))) -((((-348 (-483))) |has| |#2| (-38 (-348 (-483)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-390)) (|has| |#2| (-494)) (|has| |#2| (-820)))) -((((-348 (-483))) |has| |#2| (-38 (-348 (-483)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-390)) (|has| |#2| (-494)) (|has| |#2| (-820)))) -(((|#2| (-420 (-3955 |#1|) (-693))) . T)) -(((|#2|) . T)) -((($) . T) (((-348 (-483))) |has| |#2| (-38 (-348 (-483)))) ((|#2|) . T) (((-483)) |has| |#2| (-579 (-483)))) -(((|#2|) . T) (((-483)) |has| |#2| (-579 (-483)))) -(OR (|has| |#2| (-390)) (|has| |#2| (-820))) -((($ $) . T) (((-772 |#1|) $) . T) (((-772 |#1|) |#2|) . T)) -((((-772 |#1|)) . T)) -((($ (-772 |#1|)) . T)) -((((-772 |#1|)) . T)) -(|has| |#2| (-820)) -(|has| |#2| (-820)) -((((-348 (-483))) |has| |#2| (-949 (-348 (-483)))) (((-483)) |has| |#2| (-949 (-483))) ((|#2|) . T) (((-772 |#1|)) . T)) -((((-483)) . T) (((-348 (-483))) OR (|has| |#2| (-38 (-348 (-483)))) (|has| |#2| (-949 (-348 (-483))))) ((|#2|) . T) (($) OR (|has| |#2| (-390)) (|has| |#2| (-494)) (|has| |#2| (-820))) (((-772 |#1|)) . T)) -(((|#2| (-420 (-3955 |#1|) (-693)) (-772 |#1|)) . T)) -(OR (|has| |#2| (-21)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-960))) -(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-716)) (|has| |#2| (-960))) -(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-318)) (|has| |#2| (-662)) (|has| |#2| (-716)) (|has| |#2| (-755)) (|has| |#2| (-960)) (|has| |#2| (-1012))) -(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-72)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-318)) (|has| |#2| (-662)) (|has| |#2| (-716)) (|has| |#2| (-755)) (|has| |#2| (-960)) (|has| |#2| (-1012))) -(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-716)) (|has| |#2| (-960))) -(OR (|has| |#2| (-21)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-716)) (|has| |#2| (-960))) -(((|#2| |#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-960)))) -(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-662)) (|has| |#2| (-960)))) -(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-960)))) -((((-771)) OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-551 (-771))) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-318)) (|has| |#2| (-662)) (|has| |#2| (-716)) (|has| |#2| (-755)) (|has| |#2| (-960)) (|has| |#2| (-1012))) (((-1177 |#2|)) . T)) -(((|#2|) |has| |#2| (-960))) -((((-1088)) -12 (|has| |#2| (-808 (-1088))) (|has| |#2| (-960)))) -((((-1088)) OR (-12 (|has| |#2| (-808 (-1088))) (|has| |#2| (-960))) (-12 (|has| |#2| (-810 (-1088))) (|has| |#2| (-960))))) -((($ (-1088)) OR (-12 (|has| |#2| (-808 (-1088))) (|has| |#2| (-960))) (-12 (|has| |#2| (-810 (-1088))) (|has| |#2| (-960))))) -(((|#2|) |has| |#2| (-960))) -(OR (-12 (|has| |#2| (-190)) (|has| |#2| (-960))) (-12 (|has| |#2| (-189)) (|has| |#2| (-960)))) -((($) OR (-12 (|has| |#2| (-190)) (|has| |#2| (-960))) (-12 (|has| |#2| (-189)) (|has| |#2| (-960))))) -(|has| |#2| (-960)) -(|has| |#2| (-960)) -(|has| |#2| (-960)) -(|has| |#2| (-960)) -(|has| |#2| (-960)) -((((-483)) OR (|has| |#2| (-21)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-960))) ((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-662)) (|has| |#2| (-960))) (($) |has| |#2| (-960))) -(-12 (|has| |#2| (-190)) (|has| |#2| (-960))) -(|has| |#2| (-318)) -(((|#2|) |has| |#2| (-960))) -(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-960))) (($) |has| |#2| (-960)) (((-483)) -12 (|has| |#2| (-579 (-483))) (|has| |#2| (-960)))) -(((|#2|) |has| |#2| (-960)) (((-483)) -12 (|has| |#2| (-579 (-483))) (|has| |#2| (-960)))) -(((|#2|) |has| |#2| (-1012))) -((((-483)) OR (-12 (|has| |#2| (-949 (-483))) (|has| |#2| (-1012))) (|has| |#2| (-960))) ((|#2|) |has| |#2| (-1012)) (((-348 (-483))) -12 (|has| |#2| (-949 (-348 (-483)))) (|has| |#2| (-1012)))) -(((|#2|) |has| |#2| (-1012)) (((-483)) -12 (|has| |#2| (-949 (-483))) (|has| |#2| (-1012))) (((-348 (-483))) -12 (|has| |#2| (-949 (-348 (-483)))) (|has| |#2| (-1012)))) -((((-483) |#2|) . T)) -(((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1012)))) -(((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1012)))) -(((|#2|) . T)) -((((-483) |#2|) . T)) -((((-483) |#2|) . T)) -(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-662)))) +(OR (|has| |#2| (-146)) (|has| |#2| (-391)) (|has| |#2| (-495)) (|has| |#2| (-821))) +((((-349 (-484))) |has| |#2| (-38 (-349 (-484)))) ((|#2|) . T) (($) OR (|has| |#2| (-146)) (|has| |#2| (-391)) (|has| |#2| (-495)) (|has| |#2| (-821)))) +((((-349 (-484))) |has| |#2| (-38 (-349 (-484)))) ((|#2|) . T) (($) OR (|has| |#2| (-146)) (|has| |#2| (-391)) (|has| |#2| (-495)) (|has| |#2| (-821)))) +((((-349 (-484)) (-349 (-484))) |has| |#2| (-38 (-349 (-484)))) ((|#2| |#2|) . T) (($ $) OR (|has| |#2| (-146)) (|has| |#2| (-391)) (|has| |#2| (-495)) (|has| |#2| (-821)))) +(OR (|has| |#2| (-391)) (|has| |#2| (-495)) (|has| |#2| (-821))) +(OR (|has| |#2| (-391)) (|has| |#2| (-495)) (|has| |#2| (-821))) +((((-349 (-484))) |has| |#2| (-38 (-349 (-484)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-391)) (|has| |#2| (-495)) (|has| |#2| (-821)))) +((((-349 (-484))) |has| |#2| (-38 (-349 (-484)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-391)) (|has| |#2| (-495)) (|has| |#2| (-821)))) +((((-349 (-484))) |has| |#2| (-38 (-349 (-484)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-391)) (|has| |#2| (-495)) (|has| |#2| (-821)))) +(((|#2| (-421 (-3956 |#1|) (-694))) . T)) +(((|#2|) . T)) +((($) . T) (((-349 (-484))) |has| |#2| (-38 (-349 (-484)))) ((|#2|) . T) (((-484)) |has| |#2| (-580 (-484)))) +(((|#2|) . T) (((-484)) |has| |#2| (-580 (-484)))) +(OR (|has| |#2| (-391)) (|has| |#2| (-821))) +((($ $) . T) (((-773 |#1|) $) . T) (((-773 |#1|) |#2|) . T)) +((((-773 |#1|)) . T)) +((($ (-773 |#1|)) . T)) +((((-773 |#1|)) . T)) +(|has| |#2| (-821)) +(|has| |#2| (-821)) +((((-349 (-484))) |has| |#2| (-950 (-349 (-484)))) (((-484)) |has| |#2| (-950 (-484))) ((|#2|) . T) (((-773 |#1|)) . T)) +((((-484)) . T) (((-349 (-484))) OR (|has| |#2| (-38 (-349 (-484)))) (|has| |#2| (-950 (-349 (-484))))) ((|#2|) . T) (($) OR (|has| |#2| (-391)) (|has| |#2| (-495)) (|has| |#2| (-821))) (((-773 |#1|)) . T)) +(((|#2| (-421 (-3956 |#1|) (-694)) (-773 |#1|)) . T)) +(OR (|has| |#2| (-21)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-961))) +(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-717)) (|has| |#2| (-961))) +(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-319)) (|has| |#2| (-663)) (|has| |#2| (-717)) (|has| |#2| (-756)) (|has| |#2| (-961)) (|has| |#2| (-1013))) +(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-72)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-319)) (|has| |#2| (-663)) (|has| |#2| (-717)) (|has| |#2| (-756)) (|has| |#2| (-961)) (|has| |#2| (-1013))) +(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-717)) (|has| |#2| (-961))) +(OR (|has| |#2| (-21)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-717)) (|has| |#2| (-961))) +(((|#2| |#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-961)))) +(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-663)) (|has| |#2| (-961)))) +(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-961)))) +((((-772)) OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-552 (-772))) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-319)) (|has| |#2| (-663)) (|has| |#2| (-717)) (|has| |#2| (-756)) (|has| |#2| (-961)) (|has| |#2| (-1013))) (((-1178 |#2|)) . T)) +(((|#2|) |has| |#2| (-961))) +((((-1089)) -12 (|has| |#2| (-809 (-1089))) (|has| |#2| (-961)))) +((((-1089)) OR (-12 (|has| |#2| (-809 (-1089))) (|has| |#2| (-961))) (-12 (|has| |#2| (-811 (-1089))) (|has| |#2| (-961))))) +((($ (-1089)) OR (-12 (|has| |#2| (-809 (-1089))) (|has| |#2| (-961))) (-12 (|has| |#2| (-811 (-1089))) (|has| |#2| (-961))))) +(((|#2|) |has| |#2| (-961))) +(OR (-12 (|has| |#2| (-190)) (|has| |#2| (-961))) (-12 (|has| |#2| (-189)) (|has| |#2| (-961)))) +((($) OR (-12 (|has| |#2| (-190)) (|has| |#2| (-961))) (-12 (|has| |#2| (-189)) (|has| |#2| (-961))))) +(|has| |#2| (-961)) +(|has| |#2| (-961)) +(|has| |#2| (-961)) +(|has| |#2| (-961)) +(|has| |#2| (-961)) +((((-484)) OR (|has| |#2| (-21)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-961))) ((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-663)) (|has| |#2| (-961))) (($) |has| |#2| (-961))) +(-12 (|has| |#2| (-190)) (|has| |#2| (-961))) +(|has| |#2| (-319)) +(((|#2|) |has| |#2| (-961))) +(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-961))) (($) |has| |#2| (-961)) (((-484)) -12 (|has| |#2| (-580 (-484))) (|has| |#2| (-961)))) +(((|#2|) |has| |#2| (-961)) (((-484)) -12 (|has| |#2| (-580 (-484))) (|has| |#2| (-961)))) +(((|#2|) |has| |#2| (-1013))) +((((-484)) OR (-12 (|has| |#2| (-950 (-484))) (|has| |#2| (-1013))) (|has| |#2| (-961))) ((|#2|) |has| |#2| (-1013)) (((-349 (-484))) -12 (|has| |#2| (-950 (-349 (-484)))) (|has| |#2| (-1013)))) +(((|#2|) |has| |#2| (-1013)) (((-484)) -12 (|has| |#2| (-950 (-484))) (|has| |#2| (-1013))) (((-349 (-484))) -12 (|has| |#2| (-950 (-349 (-484)))) (|has| |#2| (-1013)))) +((((-484) |#2|) . T)) +(((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013)))) +(((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013)))) +(((|#2|) . T)) +((((-484) |#2|) . T)) +((((-484) |#2|) . T)) +(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-663)))) (((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)))) -(|has| |#2| (-716)) -(|has| |#2| (-716)) -(OR (|has| |#2| (-716)) (|has| |#2| (-755))) -(OR (|has| |#2| (-716)) (|has| |#2| (-755))) -(|has| |#2| (-716)) -(|has| |#2| (-716)) +(|has| |#2| (-717)) +(|has| |#2| (-717)) +(OR (|has| |#2| (-717)) (|has| |#2| (-756))) +(OR (|has| |#2| (-717)) (|has| |#2| (-756))) +(|has| |#2| (-717)) +(|has| |#2| (-717)) (((|#2|) |has| |#2| (-312))) (((|#1| |#2|) . T)) -((((-1093)) . T)) -((((-771)) . T) (((-1093)) . T)) -((((-1093)) . T)) +((((-1094)) . T)) +((((-772)) . T) (((-1094)) . T)) +((((-1094)) . T)) (((|#1|) . T)) -(OR (|has| |#1| (-72)) (|has| |#1| (-1012))) -((((-771)) OR (|has| |#1| (-551 (-771))) (|has| |#1| (-1012)))) -(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012)))) -(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012)))) -(|has| |#1| (-1012)) +(OR (|has| |#1| (-72)) (|has| |#1| (-1013))) +((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-1013)))) +(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013)))) +(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013)))) +(|has| |#1| (-1013)) (((|#1|) . T)) (((|#1|) . T)) -((((-483)) . T)) -((((-771)) . T)) +((((-484)) . T)) +((((-772)) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-916 16)) . T) (((-348 (-483))) . T) (((-771)) . T)) -((((-483)) . T)) -((((-483)) . T)) -((($) . T)) -((((-483)) . T) (($) . T) (((-348 (-483))) . T)) -((($) . T) (((-483)) . T) (((-348 (-483))) . T)) -((($) . T) (((-483)) . T) (((-348 (-483))) . T)) -((((-483)) . T) (($) . T) (((-348 (-483))) . T)) -((((-483)) . T) (($) . T) (((-348 (-483))) . T)) -((((-483)) . T) (((-348 (-483))) . T) (($) . T)) -((((-483)) . T) (((-348 (-483))) . T) (($) . T)) -((((-483) (-483)) . T) (((-348 (-483)) (-348 (-483))) . T) (($ $) . T)) -((((-483)) . T)) -((((-483)) . T)) -((((-483)) . T)) -((((-483)) . T)) -((((-483)) . T)) -((((-483)) . T)) -((((-472)) . T) (((-799 (-483))) . T) (((-328)) . T) (((-179)) . T)) -((((-348 (-483))) . T) (((-483)) . T)) -((((-483)) . T) (($) . T) (((-348 (-483))) . T)) -((((-483)) . T)) -((((-1071)) . T) (((-771)) . T)) -((($) . T)) -((((-142 (-328))) . T) (((-179)) . T) (((-328)) . T)) -((((-348 (-483))) . T) (((-483)) . T)) -((($) . T) (((-348 (-483))) . T)) -((($) . T) (((-483)) . T) (((-348 (-483))) . T)) -((((-483)) . T) (($) . T) (((-348 (-483))) . T)) -((($) . T) (((-348 (-483))) . T)) -((($) . T) (((-348 (-483))) . T)) -((((-348 (-483))) . T) (($) . T)) -((((-348 (-483))) . T) (($) . T)) -((((-348 (-483)) (-348 (-483))) . T) (($ $) . T)) -((($) . T)) -((($ $) . T) (((-549 $) $) . T)) -((((-348 (-483))) . T) (((-483)) . T) (((-549 $)) . T)) -((((-1037 (-483) (-549 $))) . T) (($) . T) (((-483)) . T) (((-348 (-483))) . T) (((-549 $)) . T)) -((((-771)) . T)) -(((|#1|) . T)) -(|has| |#1| (-755)) -(|has| |#1| (-755)) -(((|#1|) . T)) -(OR (|has| |#1| (-72)) (|has| |#1| (-755)) (|has| |#1| (-1012))) -((((-771)) OR (|has| |#1| (-551 (-771))) (|has| |#1| (-755)) (|has| |#1| (-1012)))) -(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012)))) -(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012)))) -(OR (|has| |#1| (-755)) (|has| |#1| (-1012))) -(((|#1|) . T)) -((((-472)) |has| |#1| (-552 (-472)))) -((((-483) |#1|) . T)) -((((-1144 (-483)) $) . T) (((-483) |#1|) . T)) -((((-483) |#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(|has| |#1| (-1012)) -(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012)))) -(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012)))) -((((-771)) OR (|has| |#1| (-551 (-771))) (|has| |#1| (-1012)))) -(OR (|has| |#1| (-72)) (|has| |#1| (-1012))) +((((-917 16)) . T) (((-349 (-484))) . T) (((-772)) . T)) +((((-484)) . T)) +((((-484)) . T)) +((($) . T)) +((((-484)) . T) (($) . T) (((-349 (-484))) . T)) +((($) . T) (((-484)) . T) (((-349 (-484))) . T)) +((($) . T) (((-484)) . T) (((-349 (-484))) . T)) +((((-484)) . T) (($) . T) (((-349 (-484))) . T)) +((((-484)) . T) (($) . T) (((-349 (-484))) . T)) +((((-484)) . T) (((-349 (-484))) . T) (($) . T)) +((((-484)) . T) (((-349 (-484))) . T) (($) . T)) +((((-484) (-484)) . T) (((-349 (-484)) (-349 (-484))) . T) (($ $) . T)) +((((-484)) . T)) +((((-484)) . T)) +((((-484)) . T)) +((((-484)) . T)) +((((-484)) . T)) +((((-484)) . T)) +((((-473)) . T) (((-800 (-484))) . T) (((-329)) . T) (((-179)) . T)) +((((-349 (-484))) . T) (((-484)) . T)) +((((-484)) . T) (($) . T) (((-349 (-484))) . T)) +((((-484)) . T)) +((((-1072)) . T) (((-772)) . T)) +((($) . T)) +((((-142 (-329))) . T) (((-179)) . T) (((-329)) . T)) +((((-349 (-484))) . T) (((-484)) . T)) +((($) . T) (((-349 (-484))) . T)) +((($) . T) (((-484)) . T) (((-349 (-484))) . T)) +((((-484)) . T) (($) . T) (((-349 (-484))) . T)) +((($) . T) (((-349 (-484))) . T)) +((($) . T) (((-349 (-484))) . T)) +((((-349 (-484))) . T) (($) . T)) +((((-349 (-484))) . T) (($) . T)) +((((-349 (-484)) (-349 (-484))) . T) (($ $) . T)) +((($) . T)) +((($ $) . T) (((-550 $) $) . T)) +((((-349 (-484))) . T) (((-484)) . T) (((-550 $)) . T)) +((((-1038 (-484) (-550 $))) . T) (($) . T) (((-484)) . T) (((-349 (-484))) . T) (((-550 $)) . T)) +((((-772)) . T)) +(((|#1|) . T)) +(|has| |#1| (-756)) +(|has| |#1| (-756)) +(((|#1|) . T)) +(OR (|has| |#1| (-72)) (|has| |#1| (-756)) (|has| |#1| (-1013))) +((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-756)) (|has| |#1| (-1013)))) +(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013)))) +(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013)))) +(OR (|has| |#1| (-756)) (|has| |#1| (-1013))) +(((|#1|) . T)) +((((-473)) |has| |#1| (-553 (-473)))) +((((-484) |#1|) . T)) +((((-1145 (-484)) $) . T) (((-484) |#1|) . T)) +((((-484) |#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(|has| |#1| (-1013)) +(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013)))) +(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013)))) +((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-1013)))) +(OR (|has| |#1| (-72)) (|has| |#1| (-1013))) (((|#1| |#2| |#3|) . T)) ((((-85)) . T)) ((((-85)) . T)) -((((-483) (-85)) . T)) -((((-483) (-85)) . T)) -((((-483) (-85)) . T) (((-1144 (-483)) $) . T)) -((((-472)) . T)) +((((-484) (-85)) . T)) +((((-484) (-85)) . T)) +((((-484) (-85)) . T) (((-1145 (-484)) $) . T)) +((((-473)) . T)) ((((-85)) . T)) -((((-771)) . T)) +((((-772)) . T)) ((((-85)) . T)) ((((-85)) . T)) -((((-1071)) . T)) -((((-771)) . T)) -((((-771)) . T)) -((((-771)) . T)) -((((-582 (-452 |#1| |#2|))) . T)) +((((-1072)) . T)) +((((-772)) . T)) +((((-772)) . T)) +((((-772)) . T)) +((((-583 (-453 |#1| |#2|))) . T)) (((|#1| |#2|) . T)) -((((-771)) . T)) -((((-483)) . T)) -((((-582 (-452 |#1| |#2|))) . T)) +((((-772)) . T)) +((((-484)) . T)) +((((-583 (-453 |#1| |#2|))) . T)) (((|#1| |#2|) . T)) -((((-771)) . T)) -((((-582 (-452 |#1| |#2|))) . T)) -(-12 (|has| |#1| (-1012)) (|has| |#2| (-1012))) -((((-771)) -12 (|has| |#1| (-1012)) (|has| |#2| (-1012)))) +((((-772)) . T)) +((((-583 (-453 |#1| |#2|))) . T)) +(-12 (|has| |#1| (-1013)) (|has| |#2| (-1013))) +((((-772)) -12 (|has| |#1| (-1013)) (|has| |#2| (-1013)))) (((|#1| |#2|) . T)) -((((-582 (-452 |#1| |#2|))) . T)) +((((-583 (-453 |#1| |#2|))) . T)) (((|#1| |#2|) . T)) -((((-771)) . T)) -((((-582 (-452 |#1| |#2|))) . T)) +((((-772)) . T)) +((((-583 (-453 |#1| |#2|))) . T)) (((|#1| |#2|) . T)) -((((-771)) . T)) -((((-781 |#2| |#1|)) . T)) -((((-771)) . T)) +((((-772)) . T)) +((((-782 |#2| |#1|)) . T)) +((((-772)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#2|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-755)) -(|has| |#1| (-755)) -(((|#1|) . T)) -(OR (|has| |#1| (-72)) (|has| |#1| (-755)) (|has| |#1| (-1012))) -((((-771)) OR (|has| |#1| (-551 (-771))) (|has| |#1| (-755)) (|has| |#1| (-1012)))) -(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012)))) -(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012)))) -(OR (|has| |#1| (-755)) (|has| |#1| (-1012))) -(((|#1|) . T)) -((((-472)) |has| |#1| (-552 (-472)))) -((((-483) |#1|) . T)) -((((-1144 (-483)) $) . T) (((-483) |#1|) . T)) -((((-483) |#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-1093)) . T)) -((((-771)) . T) (((-1093)) . T)) -((((-1093)) . T)) -((((-516 |#1|)) . T)) -((((-516 |#1|)) . T)) -((((-516 |#1|)) . T)) -((((-516 |#1|)) . T) (($) . T) (((-348 (-483))) . T)) -((((-516 |#1|)) . T) (($) . T) (((-348 (-483))) . T)) -((((-516 |#1|) (-516 |#1|)) . T) (($ $) . T) (((-348 (-483)) (-348 (-483))) . T)) -((((-348 (-483))) . T) (($) . T)) -((((-516 |#1|)) . T) (((-348 (-483))) . T) (($) . T)) -((((-516 |#1|)) . T) (((-348 (-483))) . T) (($) . T)) -((((-771)) . T)) -((((-516 |#1|)) . T) (((-348 (-483))) . T) (((-483)) . T) (($) . T)) -((((-516 |#1|)) . T) (((-348 (-483))) . T) (($) . T)) -((((-516 |#1|)) . T) (((-348 (-483))) . T) (($) . T) (((-483)) . T)) +(|has| |#1| (-756)) +(|has| |#1| (-756)) +(((|#1|) . T)) +(OR (|has| |#1| (-72)) (|has| |#1| (-756)) (|has| |#1| (-1013))) +((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-756)) (|has| |#1| (-1013)))) +(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013)))) +(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013)))) +(OR (|has| |#1| (-756)) (|has| |#1| (-1013))) +(((|#1|) . T)) +((((-473)) |has| |#1| (-553 (-473)))) +((((-484) |#1|) . T)) +((((-1145 (-484)) $) . T) (((-484) |#1|) . T)) +((((-484) |#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-1094)) . T)) +((((-772)) . T) (((-1094)) . T)) +((((-1094)) . T)) +((((-517 |#1|)) . T)) +((((-517 |#1|)) . T)) +((((-517 |#1|)) . T)) +((((-517 |#1|)) . T) (($) . T) (((-349 (-484))) . T)) +((((-517 |#1|)) . T) (($) . T) (((-349 (-484))) . T)) +((((-517 |#1|) (-517 |#1|)) . T) (($ $) . T) (((-349 (-484)) (-349 (-484))) . T)) +((((-349 (-484))) . T) (($) . T)) +((((-517 |#1|)) . T) (((-349 (-484))) . T) (($) . T)) +((((-517 |#1|)) . T) (((-349 (-484))) . T) (($) . T)) +((((-772)) . T)) +((((-517 |#1|)) . T) (((-349 (-484))) . T) (((-484)) . T) (($) . T)) +((((-517 |#1|)) . T) (((-349 (-484))) . T) (($) . T)) +((((-517 |#1|)) . T) (((-349 (-484))) . T) (($) . T) (((-484)) . T)) (|has| $ (-120)) ((($) . T)) -((((-516 |#1|)) . T)) -((((-1093)) . T)) -((((-771)) . T) (((-1093)) . T)) -((((-1093)) . T)) -((((-1093)) . T)) -((((-771)) . T) (((-1093)) . T)) -((((-1093)) . T)) -((((-771)) . T)) -((((-582 (-452 (-693) |#1|))) . T)) -((((-693) |#1|) . T)) -((((-771)) . T)) -((((-771)) . T)) -((((-514)) . T)) -((((-1014)) . T)) -((((-582 $)) . T) (((-1071)) . T) (((-1088)) . T) (((-483)) . T) (((-179)) . T) (((-771)) . T)) -((((-483) $) . T) (((-582 (-483)) $) . T)) -((((-771)) . T)) -((((-1071) (-1088) (-483) (-179) (-771)) . T)) -((((-771)) . T)) -((($) . T) (((-483)) . T)) +((((-517 |#1|)) . T)) +((((-1094)) . T)) +((((-772)) . T) (((-1094)) . T)) +((((-1094)) . T)) +((((-1094)) . T)) +((((-772)) . T) (((-1094)) . T)) +((((-1094)) . T)) +((((-772)) . T)) +((((-583 (-453 (-694) |#1|))) . T)) +((((-694) |#1|) . T)) +((((-772)) . T)) +((((-772)) . T)) +((((-515)) . T)) +((((-1015)) . T)) +((((-583 $)) . T) (((-1072)) . T) (((-1089)) . T) (((-484)) . T) (((-179)) . T) (((-772)) . T)) +((((-484) $) . T) (((-583 (-484)) $) . T)) +((((-772)) . T)) +((((-1072) (-1089) (-484) (-179) (-772)) . T)) +((((-772)) . T)) +((($) . T) (((-484)) . T)) ((($) . T)) ((($) . T)) ((($ $) . T)) @@ -1627,199 +1627,199 @@ ((($) . T)) ((($) . T)) ((($) . T)) -((((-483)) . T) (($) . T)) -((((-483)) . T)) -((($) . T) (((-483)) . T)) -((((-483)) . T)) -((((-472)) . T) (((-483)) . T) (((-799 (-483))) . T) (((-328)) . T) (((-179)) . T)) -((((-483)) . T)) -((((-771)) . T)) -((((-771)) . T)) -((((-771)) . T)) -((((-771)) . T)) +((((-484)) . T) (($) . T)) +((((-484)) . T)) +((($) . T) (((-484)) . T)) +((((-484)) . T)) +((((-473)) . T) (((-484)) . T) (((-800 (-484))) . T) (((-329)) . T) (((-179)) . T)) +((((-484)) . T)) +((((-772)) . T)) +((((-772)) . T)) +((((-772)) . T)) +((((-772)) . T)) (((|#1| |#2|) . T)) -((((-771)) . T)) +((((-772)) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) . T)) -(((|#2|) . T) (((-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1012))) (((-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))))) -(((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1012))) (((-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))))) -((((-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T)) +(((|#2|) . T) (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))))) +(((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))))) +((((-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T)) (((|#1| |#2|) . T)) ((($) . T)) ((($ $) . T)) ((($) . T)) ((($) . T)) -((((-771)) . T)) -((((-483)) . T) (($) . T)) +((((-772)) . T)) +((((-484)) . T) (($) . T)) ((($) . T)) ((($) . T)) ((($) . T)) -((((-483)) . T) (($) . T)) -((((-483)) . T)) +((((-484)) . T) (($) . T)) +((((-484)) . T)) (((|#1|) . T)) -((((-771)) . T)) -((((-771)) . T)) -((((-771)) . T)) +((((-772)) . T)) +((((-772)) . T)) +((((-772)) . T)) ((($) . T)) -((((-771)) . T)) -((($) . T) (((-483)) . T)) +((((-772)) . T)) +((($) . T) (((-484)) . T)) ((($) . T)) ((($ $) . T)) ((($) . T)) ((($) . T)) ((($) . T)) ((($) . T)) -((((-483)) . T) (($) . T)) +((((-484)) . T) (($) . T)) (((|#1|) . T)) -((((-483)) . T)) +((((-484)) . T)) ((($) . T)) ((($) . T)) ((($) . T)) (|has| $ (-120)) ((($) . T)) -((((-771)) . T)) -((($) . T)) -((($) . T) (((-348 (-483))) . T)) -((($) . T) (((-483)) . T) (((-348 (-483))) . T)) -((($) . T) (((-348 (-483))) . T)) -((($) . T) (((-348 (-483))) . T)) -((($ $) . T) (((-348 (-483)) (-348 (-483))) . T)) -((((-348 (-483))) . T) (($) . T)) -((((-348 (-483))) . T) (($) . T)) -((((-348 (-483))) . T) (($) . T)) -((((-483)) . T) (((-348 (-483))) . T) (($) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-348 (-483)) (-348 (-483))) . T)) -((((-348 (-483))) . T)) -((((-348 (-483))) . T)) -((((-771)) . T)) -((((-483)) . T) (((-348 (-483))) . T)) -((((-348 (-483))) . T)) -((((-348 (-483))) . T)) -((((-348 (-483))) . T)) -((((-1093)) . T)) -((((-1093)) . T)) -((((-1093)) . T) (((-771)) . T)) -((((-1093)) . T)) -((((-771)) . T) (((-1093)) . T)) -((((-1093)) . T)) -(|has| |#1| (-15 * (|#1| (-483) |#1|))) -((((-771)) . T)) -((($) |has| |#1| (-15 * (|#1| (-483) |#1|)))) -(|has| |#1| (-15 * (|#1| (-483) |#1|))) -((($ $) . T) (((-483) |#1|) . T)) -((((-1088)) -12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|))))) -((($ (-1088)) -12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|))))) -((((-1088)) -12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|))))) -(((|#1| (-483) (-993)) . T)) -((($) . T) (((-483)) . T) (((-348 (-483))) |has| |#1| (-38 (-348 (-483)))) ((|#1|) . T)) -((($) . T) (((-348 (-483))) |has| |#1| (-38 (-348 (-483)))) ((|#1|) . T)) +((((-772)) . T)) +((($) . T)) +((($) . T) (((-349 (-484))) . T)) +((($) . T) (((-484)) . T) (((-349 (-484))) . T)) +((($) . T) (((-349 (-484))) . T)) +((($) . T) (((-349 (-484))) . T)) +((($ $) . T) (((-349 (-484)) (-349 (-484))) . T)) +((((-349 (-484))) . T) (($) . T)) +((((-349 (-484))) . T) (($) . T)) +((((-349 (-484))) . T) (($) . T)) +((((-484)) . T) (((-349 (-484))) . T) (($) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-349 (-484)) (-349 (-484))) . T)) +((((-349 (-484))) . T)) +((((-349 (-484))) . T)) +((((-772)) . T)) +((((-484)) . T) (((-349 (-484))) . T)) +((((-349 (-484))) . T)) +((((-349 (-484))) . T)) +((((-349 (-484))) . T)) +((((-1094)) . T)) +((((-1094)) . T)) +((((-1094)) . T) (((-772)) . T)) +((((-1094)) . T)) +((((-772)) . T) (((-1094)) . T)) +((((-1094)) . T)) +(|has| |#1| (-15 * (|#1| (-484) |#1|))) +((((-772)) . T)) +((($) |has| |#1| (-15 * (|#1| (-484) |#1|)))) +(|has| |#1| (-15 * (|#1| (-484) |#1|))) +((($ $) . T) (((-484) |#1|) . T)) +((((-1089)) -12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) +((($ (-1089)) -12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) +((((-1089)) -12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) +(((|#1| (-484) (-994)) . T)) +((($) . T) (((-484)) . T) (((-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((|#1|) . T)) +((($) . T) (((-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((|#1|) . T)) (|has| |#1| (-118)) (|has| |#1| (-120)) -(OR (|has| |#1| (-146)) (|has| |#1| (-494))) -((((-348 (-483))) |has| |#1| (-38 (-348 (-483)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-494)))) -((((-348 (-483))) |has| |#1| (-38 (-348 (-483)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-494)))) -((((-348 (-483)) (-348 (-483))) |has| |#1| (-38 (-348 (-483)))) ((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-494)))) -(|has| |#1| (-494)) -(|has| |#1| (-494)) -((((-483)) . T) (((-348 (-483))) |has| |#1| (-38 (-348 (-483)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-494))) -((((-348 (-483))) |has| |#1| (-38 (-348 (-483)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-494))) -((((-348 (-483))) |has| |#1| (-38 (-348 (-483)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-494))) -((((-348 (-483))) |has| |#1| (-38 (-348 (-483)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-494))) -(((|#1| (-483)) . T)) -(((|#1| (-483)) . T)) -((($) |has| |#1| (-494))) -((($) |has| |#1| (-494))) -((($) |has| |#1| (-494))) -(|has| |#1| (-494)) -(|has| |#1| (-494)) -(|has| |#1| (-494)) -((($) |has| |#1| (-494)) ((|#1|) . T)) -((($) |has| |#1| (-494)) ((|#1|) . T)) -((($ $) |has| |#1| (-494)) ((|#1| |#1|) . T)) -((($) |has| |#1| (-494)) (((-483)) . T)) +(OR (|has| |#1| (-146)) (|has| |#1| (-495))) +((((-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-495)))) +((((-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-495)))) +((((-349 (-484)) (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-495)))) +(|has| |#1| (-495)) +(|has| |#1| (-495)) +((((-484)) . T) (((-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-495))) +((((-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-495))) +((((-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-495))) +((((-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-495))) +(((|#1| (-484)) . T)) +(((|#1| (-484)) . T)) +((($) |has| |#1| (-495))) +((($) |has| |#1| (-495))) +((($) |has| |#1| (-495))) +(|has| |#1| (-495)) +(|has| |#1| (-495)) +(|has| |#1| (-495)) +((($) |has| |#1| (-495)) ((|#1|) . T)) +((($) |has| |#1| (-495)) ((|#1|) . T)) +((($ $) |has| |#1| (-495)) ((|#1| |#1|) . T)) +((($) |has| |#1| (-495)) (((-484)) . T)) (((|#1|) . T) (($) . T)) -((((-771)) . T)) -(((|#1|) . T) (($) . T) (((-483)) . T)) -((((-1093)) . T)) -((((-1093)) . T)) -((((-1093)) . T) (((-771)) . T)) -((((-771)) . T)) -((((-1093)) . T)) -((((-1128)) . T) (((-771)) . T) (((-1093)) . T)) -((((-1093)) . T)) -((((-483) |#1|) |has| |#2| (-359 |#1|))) -(((|#1|) OR (|has| |#2| (-316 |#1|)) (|has| |#2| (-359 |#1|)))) -(((|#1|) |has| |#2| (-359 |#1|))) +((((-772)) . T)) +(((|#1|) . T) (($) . T) (((-484)) . T)) +((((-1094)) . T)) +((((-1094)) . T)) +((((-1094)) . T) (((-772)) . T)) +((((-772)) . T)) +((((-1094)) . T)) +((((-1129)) . T) (((-772)) . T) (((-1094)) . T)) +((((-1094)) . T)) +((((-484) |#1|) |has| |#2| (-360 |#1|))) +(((|#1|) OR (|has| |#2| (-316 |#1|)) (|has| |#2| (-360 |#1|)))) +(((|#1|) |has| |#2| (-360 |#1|))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#2|) . T) (((-771)) . T)) -(((|#1|) . T) (((-483)) . T)) +(((|#2|) . T) (((-772)) . T)) +(((|#1|) . T) (((-484)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) ((((-101)) . T)) ((((-101)) . T)) -((((-101)) . T) (((-771)) . T)) -((((-771)) . T)) -((((-101)) . T) (((-771)) . T)) -((((-771)) . T)) -((((-771)) . T)) -((((-101)) . T) (((-540)) . T)) -((((-101)) . T) (((-540)) . T)) -((((-101)) . T) (((-540)) . T) (((-771)) . T)) -((((-1071) |#1|) . T)) -((((-1071) |#1|) . T)) -((((-1071) |#1|) . T)) -((((-1071) |#1|) . T)) -((((-2 (|:| -3858 (-1071)) (|:| |entry| |#1|))) . T)) -((((-2 (|:| -3858 (-1071)) (|:| |entry| |#1|))) . T)) -(((|#1|) . T) (((-2 (|:| -3858 (-1071)) (|:| |entry| |#1|))) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) (((-2 (|:| -3858 (-1071)) (|:| |entry| |#1|)) (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|))) |has| (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|))))) -(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) (((-2 (|:| -3858 (-1071)) (|:| |entry| |#1|))) |has| (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|))))) -((((-2 (|:| -3858 (-1071)) (|:| |entry| |#1|))) . T)) -((((-2 (|:| -3858 (-1071)) (|:| |entry| |#1|))) . T)) -((((-1071) |#1|) . T)) -((((-771)) . T)) -((((-336) (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|))) . T)) -((((-472)) |has| |#1| (-552 (-472))) (((-799 (-328))) |has| |#1| (-552 (-799 (-328)))) (((-799 (-483))) |has| |#1| (-552 (-799 (-483))))) -(((|#1|) . T)) -((((-771)) . T)) -((((-771)) . T)) -(|has| |#1| (-754)) -(|has| |#1| (-754)) -(|has| |#1| (-754)) -(|has| |#1| (-754)) -(|has| |#1| (-754)) -(|has| |#1| (-754)) -(|has| |#1| (-754)) -(|has| |#1| (-754)) -(((|#2|) . T)) -(((|#2|) . T)) -((((-771)) . T)) +((((-101)) . T) (((-772)) . T)) +((((-772)) . T)) +((((-101)) . T) (((-772)) . T)) +((((-772)) . T)) +((((-772)) . T)) +((((-101)) . T) (((-541)) . T)) +((((-101)) . T) (((-541)) . T)) +((((-101)) . T) (((-541)) . T) (((-772)) . T)) +((((-1072) |#1|) . T)) +((((-1072) |#1|) . T)) +((((-1072) |#1|) . T)) +((((-1072) |#1|) . T)) +((((-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))) . T)) +((((-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))) . T)) +(((|#1|) . T) (((-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) (((-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))) |has| (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))))) +(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) (((-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))) |has| (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))))) +((((-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))) . T)) +((((-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))) . T)) +((((-1072) |#1|) . T)) +((((-772)) . T)) +((((-337) (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))) . T)) +((((-473)) |has| |#1| (-553 (-473))) (((-800 (-329))) |has| |#1| (-553 (-800 (-329)))) (((-800 (-484))) |has| |#1| (-553 (-800 (-484))))) +(((|#1|) . T)) +((((-772)) . T)) +((((-772)) . T)) +(|has| |#1| (-755)) +(|has| |#1| (-755)) +(|has| |#1| (-755)) +(|has| |#1| (-755)) +(|has| |#1| (-755)) +(|has| |#1| (-755)) +(|has| |#1| (-755)) +(|has| |#1| (-755)) +(((|#2|) . T)) +(((|#2|) . T)) +((((-772)) . T)) (((|#2|) . T)) (((|#2|) . T)) (((|#2| |#2|) . T)) -(((|#2|) . T) (((-483)) . T) (($) . T)) +(((|#2|) . T) (((-484)) . T) (($) . T)) (((|#2|) . T) (($) . T)) -(((|#2|) . T) (((-483)) . T)) +(((|#2|) . T) (((-484)) . T)) (((|#2|) . T)) (|has| |#1| (-312)) (|has| |#1| (-312)) (|has| |#1| (-312)) (|has| |#1| (-118)) (|has| |#1| (-120)) -(((|#2|) . T) (((-348 (-483))) |has| |#1| (-949 (-348 (-483)))) (((-483)) |has| |#1| (-949 (-483))) ((|#1|) . T)) +(((|#2|) . T) (((-349 (-484))) |has| |#1| (-950 (-349 (-484)))) (((-484)) |has| |#1| (-950 (-484))) ((|#1|) . T)) (((|#1|) . T)) -((((-348 |#2|)) . T)) +((((-349 |#2|)) . T)) ((($) . T)) ((($ $) . T)) ((($) . T)) @@ -1827,290 +1827,290 @@ ((($) . T)) ((($) . T)) (|has| |#2| (-190)) -(((|#2|) . T) (((-348 (-483))) |has| |#1| (-949 (-348 (-483)))) ((|#1|) . T) (($) . T) (((-483)) . T)) +(((|#2|) . T) (((-349 (-484))) |has| |#1| (-950 (-349 (-484)))) ((|#1|) . T) (($) . T) (((-484)) . T)) ((($) . T)) -((((-771)) . T)) -((($) . T) (((-483)) . T)) +((((-772)) . T)) +((($) . T) (((-484)) . T)) ((($) OR (|has| |#2| (-190)) (|has| |#2| (-189)))) (OR (|has| |#2| (-190)) (|has| |#2| (-189))) (((|#2|) . T)) -((($ (-1088)) OR (|has| |#2| (-808 (-1088))) (|has| |#2| (-810 (-1088))))) -((((-1088)) OR (|has| |#2| (-808 (-1088))) (|has| |#2| (-810 (-1088))))) -((((-1088)) |has| |#2| (-808 (-1088)))) -(((|#2|) . T)) -((((-1093)) . T)) -((((-771)) . T) (((-1093)) . T)) -((((-1093)) . T)) -((((-771)) . T)) -((((-1071) (-51)) . T)) -((((-771)) . T)) -((((-1088) (-51)) . T) (((-1071) (-51)) . T)) -((((-1071) (-51)) . T)) -((((-1071) (-51)) . T)) -((((-2 (|:| -3858 (-1071)) (|:| |entry| (-51)))) . T)) -((((-2 (|:| -3858 (-1071)) (|:| |entry| (-51)))) . T)) -((((-51)) . T) (((-2 (|:| -3858 (-1071)) (|:| |entry| (-51)))) . T)) -((((-2 (|:| -3858 (-1071)) (|:| |entry| (-51))) (-2 (|:| -3858 (-1071)) (|:| |entry| (-51)))) |has| (-2 (|:| -3858 (-1071)) (|:| |entry| (-51))) (-260 (-2 (|:| -3858 (-1071)) (|:| |entry| (-51)))))) -((((-2 (|:| -3858 (-1071)) (|:| |entry| (-51)))) |has| (-2 (|:| -3858 (-1071)) (|:| |entry| (-51))) (-260 (-2 (|:| -3858 (-1071)) (|:| |entry| (-51)))))) -((((-2 (|:| -3858 (-1071)) (|:| |entry| (-51)))) . T)) -((((-2 (|:| -3858 (-1071)) (|:| |entry| (-51)))) . T)) -((((-1071) (-51)) . T)) -((((-483) |#1|) |has| |#2| (-359 |#1|))) -(((|#1|) OR (|has| |#2| (-316 |#1|)) (|has| |#2| (-359 |#1|)))) -(((|#1|) |has| |#2| (-359 |#1|))) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#2|) . T) (((-771)) . T)) -(((|#1|) . T) (((-483)) . T)) +((($ (-1089)) OR (|has| |#2| (-809 (-1089))) (|has| |#2| (-811 (-1089))))) +((((-1089)) OR (|has| |#2| (-809 (-1089))) (|has| |#2| (-811 (-1089))))) +((((-1089)) |has| |#2| (-809 (-1089)))) +(((|#2|) . T)) +((((-1094)) . T)) +((((-772)) . T) (((-1094)) . T)) +((((-1094)) . T)) +((((-772)) . T)) +((((-1072) (-51)) . T)) +((((-772)) . T)) +((((-1089) (-51)) . T) (((-1072) (-51)) . T)) +((((-1072) (-51)) . T)) +((((-1072) (-51)) . T)) +((((-2 (|:| -3859 (-1072)) (|:| |entry| (-51)))) . T)) +((((-2 (|:| -3859 (-1072)) (|:| |entry| (-51)))) . T)) +((((-51)) . T) (((-2 (|:| -3859 (-1072)) (|:| |entry| (-51)))) . T)) +((((-2 (|:| -3859 (-1072)) (|:| |entry| (-51))) (-2 (|:| -3859 (-1072)) (|:| |entry| (-51)))) |has| (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))) (-260 (-2 (|:| -3859 (-1072)) (|:| |entry| (-51)))))) +((((-2 (|:| -3859 (-1072)) (|:| |entry| (-51)))) |has| (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))) (-260 (-2 (|:| -3859 (-1072)) (|:| |entry| (-51)))))) +((((-2 (|:| -3859 (-1072)) (|:| |entry| (-51)))) . T)) +((((-2 (|:| -3859 (-1072)) (|:| |entry| (-51)))) . T)) +((((-1072) (-51)) . T)) +((((-484) |#1|) |has| |#2| (-360 |#1|))) +(((|#1|) OR (|has| |#2| (-316 |#1|)) (|has| |#2| (-360 |#1|)))) +(((|#1|) |has| |#2| (-360 |#1|))) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#2|) . T) (((-772)) . T)) +(((|#1|) . T) (((-484)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) -((((-772 |#1|)) . T)) -((((-771)) . T)) -((((-582 (-452 |#1| (-576 |#2|)))) . T)) -(((|#1| (-576 |#2|)) . T)) -((((-576 |#2|)) . T)) +((((-773 |#1|)) . T)) +((((-772)) . T)) +((((-583 (-453 |#1| (-577 |#2|)))) . T)) +(((|#1| (-577 |#2|)) . T)) +((((-577 |#2|)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-771)) . T)) -(((|#1|) . T) (((-483)) . T)) +((((-772)) . T)) +(((|#1|) . T) (((-484)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) -((((-578 |#1| |#2|) |#1|) . T)) +((((-579 |#1| |#2|) |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-771)) . T)) -(((|#1|) . T) (((-483)) . T)) +((((-772)) . T)) +(((|#1|) . T) (((-484)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(OR (|has| |#1| (-72)) (|has| |#1| (-755)) (|has| |#1| (-1012))) -((((-771)) OR (|has| |#1| (-551 (-771))) (|has| |#1| (-755)) (|has| |#1| (-1012)))) -(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012)))) -(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012)))) -(OR (|has| |#1| (-755)) (|has| |#1| (-1012))) +(OR (|has| |#1| (-72)) (|has| |#1| (-756)) (|has| |#1| (-1013))) +((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-756)) (|has| |#1| (-1013)))) +(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013)))) +(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013)))) +(OR (|has| |#1| (-756)) (|has| |#1| (-1013))) (((|#1|) . T)) -((((-472)) |has| |#1| (-552 (-472)))) -((((-483) |#1|) . T)) -((((-1144 (-483)) $) . T) (((-483) |#1|) . T)) -((((-483) |#1|) . T)) +((((-473)) |has| |#1| (-553 (-473)))) +((((-484) |#1|) . T)) +((((-1145 (-484)) $) . T) (((-484) |#1|) . T)) +((((-484) |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-755)) -(|has| |#1| (-755)) +(|has| |#1| (-756)) +(|has| |#1| (-756)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-1093)) . T)) -(((|#1|) . T) (((-771)) . T) (((-1093)) . T)) -((((-1093)) . T)) +((((-1094)) . T)) +(((|#1|) . T) (((-772)) . T) (((-1094)) . T)) +((((-1094)) . T)) (((|#1|) . T)) -((((-472)) |has| |#1| (-552 (-472)))) +((((-473)) |has| |#1| (-553 (-473)))) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-1012)) -(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012)))) -(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012)))) -((((-771)) OR (|has| |#1| (-551 (-771))) (|has| |#1| (-1012)))) -(OR (|has| |#1| (-72)) (|has| |#1| (-1012))) +(|has| |#1| (-1013)) +(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013)))) +(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013)))) +((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-1013)))) +(OR (|has| |#1| (-72)) (|has| |#1| (-1013))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-771)) . T)) -(|has| |#1| (-713)) -(|has| |#1| (-713)) -(|has| |#1| (-713)) -(|has| |#1| (-713)) -(|has| |#1| (-713)) -(|has| |#1| (-713)) +((((-772)) . T)) +(|has| |#1| (-714)) +(|has| |#1| (-714)) +(|has| |#1| (-714)) +(|has| |#1| (-714)) +(|has| |#1| (-714)) +(|has| |#1| (-714)) (((|#2| |#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) -((((-771)) . T)) -((((-483)) . T) ((|#2|) . T)) +((((-772)) . T)) +((((-484)) . T) ((|#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) -((((-348 (-483))) |has| |#1| (-949 (-348 (-483)))) (((-483)) |has| |#1| (-949 (-483))) ((|#1|) . T)) +((((-349 (-484))) |has| |#1| (-950 (-349 (-484)))) (((-484)) |has| |#1| (-950 (-484))) ((|#1|) . T)) (((|#1|) . T)) (((|#1|) |has| |#1| (-146))) (((|#1|) |has| |#1| (-146))) -((((-771)) . T)) +((((-772)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) -(((|#1|) . T) (((-483)) . T) (($) . T)) +(((|#1|) . T) (((-484)) . T) (($) . T)) (((|#1|) . T) (($) . T)) -((((-348 (-483))) |has| |#1| (-949 (-348 (-483)))) ((|#1|) . T) (((-483)) . T)) +((((-349 (-484))) |has| |#1| (-950 (-349 (-484)))) ((|#1|) . T) (((-484)) . T)) (((|#1|) |has| |#1| (-146))) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) -((((-348 (-483))) |has| |#1| (-949 (-348 (-483)))) (((-483)) |has| |#1| (-949 (-483))) ((|#1|) . T)) +((((-349 (-484))) |has| |#1| (-950 (-349 (-484)))) (((-484)) |has| |#1| (-950 (-484))) ((|#1|) . T)) (((|#1|) . T)) (((|#1|) |has| |#1| (-146))) (((|#1|) |has| |#1| (-146))) -((((-771)) . T)) +((((-772)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) -(((|#1|) . T) (((-483)) . T) (($) . T)) +(((|#1|) . T) (((-484)) . T) (($) . T)) (((|#1|) . T) (($) . T)) -((((-348 (-483))) |has| |#1| (-949 (-348 (-483)))) ((|#1|) . T) (((-483)) . T)) +((((-349 (-484))) |has| |#1| (-950 (-349 (-484)))) ((|#1|) . T) (((-484)) . T)) (((|#1|) |has| |#1| (-146))) (((|#1|) . T)) (((|#2| |#2|) . T) ((|#1| |#1|) . T)) (((|#1|) . T)) -((((-348 (-483))) |has| |#1| (-949 (-348 (-483)))) (((-483)) |has| |#1| (-949 (-483))) ((|#1|) . T)) +((((-349 (-484))) |has| |#1| (-950 (-349 (-484)))) (((-484)) |has| |#1| (-950 (-484))) ((|#1|) . T)) (((|#1|) . T)) (((|#1|) |has| |#1| (-146))) (((|#1|) |has| |#1| (-146))) -((((-771)) . T)) +((((-772)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) -(((|#1|) . T) (((-483)) . T) (($) . T)) +(((|#1|) . T) (((-484)) . T) (($) . T)) (((|#1|) . T) (($) . T)) -((((-348 (-483))) |has| |#1| (-949 (-348 (-483)))) ((|#1|) . T) (((-483)) . T)) +((((-349 (-484))) |has| |#1| (-950 (-349 (-484)))) ((|#1|) . T) (((-484)) . T)) (((|#1|) |has| |#1| (-146))) (((|#1|) . T)) -((((-613 |#1|)) . T)) -((((-613 |#1|)) . T)) -(((|#2| (-613 |#1|)) . T)) +((((-614 |#1|)) . T)) +((((-614 |#1|)) . T)) +(((|#2| (-614 |#1|)) . T)) (((|#2|) . T)) (((|#2| |#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) -((((-771)) . T)) -((((-483)) . T) ((|#2|) . T)) +((((-772)) . T)) +((((-484)) . T) ((|#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) (((|#1| |#2|) . T)) -((((-483) |#2|) . T)) +((((-484) |#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) -(((|#2|) |has| |#2| (-6 (-3995 "*")))) +(((|#2|) |has| |#2| (-6 (-3996 "*")))) (((|#2| |#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) -((((-629 |#2|)) . T) (((-771)) . T)) -((($) . T) (((-483)) . T) ((|#2|) . T)) +((((-630 |#2|)) . T) (((-772)) . T)) +((($) . T) (((-484)) . T) ((|#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) -((((-1088)) |has| |#2| (-808 (-1088)))) -((((-1088)) OR (|has| |#2| (-808 (-1088))) (|has| |#2| (-810 (-1088))))) -((($ (-1088)) OR (|has| |#2| (-808 (-1088))) (|has| |#2| (-810 (-1088))))) +((((-1089)) |has| |#2| (-809 (-1089)))) +((((-1089)) OR (|has| |#2| (-809 (-1089))) (|has| |#2| (-811 (-1089))))) +((($ (-1089)) OR (|has| |#2| (-809 (-1089))) (|has| |#2| (-811 (-1089))))) (((|#2|) . T)) (OR (|has| |#2| (-190)) (|has| |#2| (-189))) ((($) OR (|has| |#2| (-190)) (|has| |#2| (-189)))) (|has| |#2| (-190)) (((|#2|) . T)) -((($) . T) ((|#2|) . T) (((-483)) |has| |#2| (-579 (-483)))) -(((|#2|) . T) (((-483)) |has| |#2| (-579 (-483)))) +((($) . T) ((|#2|) . T) (((-484)) |has| |#2| (-580 (-484)))) +(((|#2|) . T) (((-484)) |has| |#2| (-580 (-484)))) (((|#2|) . T)) -((((-483)) . T) ((|#2|) . T) (((-348 (-483))) |has| |#2| (-949 (-348 (-483))))) -(((|#2|) . T) (((-483)) |has| |#2| (-949 (-483))) (((-348 (-483))) |has| |#2| (-949 (-348 (-483))))) +((((-484)) . T) ((|#2|) . T) (((-349 (-484))) |has| |#2| (-950 (-349 (-484))))) +(((|#2|) . T) (((-484)) |has| |#2| (-950 (-484))) (((-349 (-484))) |has| |#2| (-950 (-349 (-484))))) (((|#1| |#1| |#2| (-197 |#1| |#2|) (-197 |#1| |#2|)) . T)) -(((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1012)))) -(((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1012)))) +(((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013)))) +(((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013)))) (((|#2|) . T)) (((|#1| |#2| (-197 |#1| |#2|) (-197 |#1| |#2|)) . T)) -((((-1093)) . T)) -((((-771)) . T) (((-1093)) . T)) -((((-1093)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-771)) . T)) -((((-1093)) . T)) -((((-771)) . T) (((-1093)) . T)) -((((-1093)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-771)) . T)) -((((-1093)) . T)) -((((-1128)) . T) (((-771)) . T) (((-1093)) . T)) -((((-1093)) . T)) -((((-472)) |has| |#1| (-552 (-472)))) -(((|#1| (-1177 |#1|) (-1177 |#1|)) . T)) -(OR (|has| |#1| (-72)) (|has| |#1| (-1012))) -((((-771)) OR (|has| |#1| (-551 (-771))) (|has| |#1| (-1012)))) -(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012)))) -(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012)))) -(|has| |#1| (-1012)) -(((|#1|) . T)) -(((|#1| (-1177 |#1|) (-1177 |#1|)) . T)) -((((-771)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-771)) . T)) -((((-771)) . T)) -((($) . T) (((-348 (-483))) . T)) -((($) . T) (((-348 (-483))) . T)) -((($ $) . T) (((-348 (-483)) (-348 (-483))) . T)) -((((-348 (-483))) . T) (((-483)) . T) (($) . T)) -((((-348 (-483))) . T) (($) . T)) -((((-348 (-483))) . T) (($) . T)) -((((-348 (-483))) . T) (($) . T)) -((((-348 (-483))) . T) (($) . T)) -((((-348 (-483))) . T) (((-483)) . T) (($) . T)) -(|has| |#1| (-318)) -(((|#1|) . T)) -(((|#1|) . T)) -((($) . T)) -((((-771)) . T)) -((((-348 $) (-348 $)) |has| |#1| (-494)) (($ $) . T) ((|#1| |#1|) . T)) +((((-1094)) . T)) +((((-772)) . T) (((-1094)) . T)) +((((-1094)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-772)) . T)) +((((-1094)) . T)) +((((-772)) . T) (((-1094)) . T)) +((((-1094)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-772)) . T)) +((((-1094)) . T)) +((((-1129)) . T) (((-772)) . T) (((-1094)) . T)) +((((-1094)) . T)) +((((-473)) |has| |#1| (-553 (-473)))) +(((|#1| (-1178 |#1|) (-1178 |#1|)) . T)) +(OR (|has| |#1| (-72)) (|has| |#1| (-1013))) +((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-1013)))) +(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013)))) +(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013)))) +(|has| |#1| (-1013)) +(((|#1|) . T)) +(((|#1| (-1178 |#1|) (-1178 |#1|)) . T)) +((((-772)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-772)) . T)) +((((-772)) . T)) +((($) . T) (((-349 (-484))) . T)) +((($) . T) (((-349 (-484))) . T)) +((($ $) . T) (((-349 (-484)) (-349 (-484))) . T)) +((((-349 (-484))) . T) (((-484)) . T) (($) . T)) +((((-349 (-484))) . T) (($) . T)) +((((-349 (-484))) . T) (($) . T)) +((((-349 (-484))) . T) (($) . T)) +((((-349 (-484))) . T) (($) . T)) +((((-349 (-484))) . T) (((-484)) . T) (($) . T)) +(|has| |#1| (-319)) +(((|#1|) . T)) +(((|#1|) . T)) +((($) . T)) +((((-772)) . T)) +((((-349 $) (-349 $)) |has| |#1| (-495)) (($ $) . T) ((|#1| |#1|) . T)) (|has| |#1| (-312)) -(OR (|has| |#1| (-312)) (|has| |#1| (-390)) (|has| |#1| (-820))) -(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-390)) (|has| |#1| (-494)) (|has| |#1| (-820))) -(OR (|has| |#1| (-312)) (|has| |#1| (-390)) (|has| |#1| (-494)) (|has| |#1| (-820))) -(OR (|has| |#1| (-312)) (|has| |#1| (-390)) (|has| |#1| (-494)) (|has| |#1| (-820))) +(OR (|has| |#1| (-312)) (|has| |#1| (-391)) (|has| |#1| (-821))) +(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))) +(OR (|has| |#1| (-312)) (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))) +(OR (|has| |#1| (-312)) (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))) (|has| |#1| (-312)) -(((|#1| (-693) (-993)) . T)) -(|has| |#1| (-820)) -(|has| |#1| (-820)) -((((-1088)) OR (|has| |#1| (-808 (-1088))) (|has| |#1| (-810 (-1088)))) (((-993)) . T)) -((($ (-1088)) OR (|has| |#1| (-808 (-1088))) (|has| |#1| (-810 (-1088)))) (($ (-993)) . T)) -((((-1088)) |has| |#1| (-808 (-1088))) (((-993)) . T)) -((((-483)) |has| |#1| (-579 (-483))) ((|#1|) . T)) -(((|#1|) . T)) -(((|#1| (-693)) . T)) +(((|#1| (-694) (-994)) . T)) +(|has| |#1| (-821)) +(|has| |#1| (-821)) +((((-1089)) OR (|has| |#1| (-809 (-1089))) (|has| |#1| (-811 (-1089)))) (((-994)) . T)) +((($ (-1089)) OR (|has| |#1| (-809 (-1089))) (|has| |#1| (-811 (-1089)))) (($ (-994)) . T)) +((((-1089)) |has| |#1| (-809 (-1089))) (((-994)) . T)) +((((-484)) |has| |#1| (-580 (-484))) ((|#1|) . T)) +(((|#1|) . T)) +(((|#1| (-694)) . T)) (|has| |#1| (-120)) (|has| |#1| (-118)) -(((|#2|) . T) (((-483)) . T) (($) OR (|has| |#1| (-312)) (|has| |#1| (-390)) (|has| |#1| (-494)) (|has| |#1| (-820))) (((-993)) . T) ((|#1|) . T) (((-348 (-483))) OR (|has| |#1| (-38 (-348 (-483)))) (|has| |#1| (-949 (-348 (-483)))))) -((($) OR (|has| |#1| (-312)) (|has| |#1| (-390)) (|has| |#1| (-494)) (|has| |#1| (-820))) ((|#1|) |has| |#1| (-146)) (((-348 (-483))) |has| |#1| (-38 (-348 (-483))))) -((($) OR (|has| |#1| (-312)) (|has| |#1| (-390)) (|has| |#1| (-494)) (|has| |#1| (-820))) ((|#1|) |has| |#1| (-146)) (((-348 (-483))) |has| |#1| (-38 (-348 (-483))))) -((($) . T) (((-483)) |has| |#1| (-579 (-483))) ((|#1|) . T) (((-348 (-483))) |has| |#1| (-38 (-348 (-483))))) -((((-483)) . T) (($) . T) ((|#1|) . T) (((-348 (-483))) |has| |#1| (-38 (-348 (-483))))) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-390)) (|has| |#1| (-494)) (|has| |#1| (-820))) ((|#1|) . T) (((-348 (-483))) |has| |#1| (-38 (-348 (-483))))) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-390)) (|has| |#1| (-494)) (|has| |#1| (-820))) ((|#1|) . T) (((-348 (-483))) |has| |#1| (-38 (-348 (-483))))) -((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-390)) (|has| |#1| (-494)) (|has| |#1| (-820))) ((|#1| |#1|) . T) (((-348 (-483)) (-348 (-483))) |has| |#1| (-38 (-348 (-483))))) -((($) OR (|has| |#1| (-312)) (|has| |#1| (-390)) (|has| |#1| (-494)) (|has| |#1| (-820))) ((|#1|) |has| |#1| (-146)) (((-348 (-483))) |has| |#1| (-38 (-348 (-483))))) -(((|#1|) . T)) -((((-993)) . T) ((|#1|) . T) (((-483)) |has| |#1| (-949 (-483))) (((-348 (-483))) |has| |#1| (-949 (-348 (-483))))) -(((|#1| (-693)) . T)) -((((-993) |#1|) . T) (((-993) $) . T) (($ $) . T)) -((($) . T)) -(|has| |#1| (-1064)) -(((|#1|) . T)) -((((-2 (|:| -2399 |#1|) (|:| -2400 |#2|))) . T)) -((((-2 (|:| -2399 |#1|) (|:| -2400 |#2|))) . T)) -((((-2 (|:| -2399 |#1|) (|:| -2400 |#2|))) . T) (((-771)) . T)) +(((|#2|) . T) (((-484)) . T) (($) OR (|has| |#1| (-312)) (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))) (((-994)) . T) ((|#1|) . T) (((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-950 (-349 (-484)))))) +((($) OR (|has| |#1| (-312)) (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) |has| |#1| (-146)) (((-349 (-484))) |has| |#1| (-38 (-349 (-484))))) +((($) OR (|has| |#1| (-312)) (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) |has| |#1| (-146)) (((-349 (-484))) |has| |#1| (-38 (-349 (-484))))) +((($) . T) (((-484)) |has| |#1| (-580 (-484))) ((|#1|) . T) (((-349 (-484))) |has| |#1| (-38 (-349 (-484))))) +((((-484)) . T) (($) . T) ((|#1|) . T) (((-349 (-484))) |has| |#1| (-38 (-349 (-484))))) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) . T) (((-349 (-484))) |has| |#1| (-38 (-349 (-484))))) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) . T) (((-349 (-484))) |has| |#1| (-38 (-349 (-484))))) +((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1| |#1|) . T) (((-349 (-484)) (-349 (-484))) |has| |#1| (-38 (-349 (-484))))) +((($) OR (|has| |#1| (-312)) (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) |has| |#1| (-146)) (((-349 (-484))) |has| |#1| (-38 (-349 (-484))))) +(((|#1|) . T)) +((((-994)) . T) ((|#1|) . T) (((-484)) |has| |#1| (-950 (-484))) (((-349 (-484))) |has| |#1| (-950 (-349 (-484))))) +(((|#1| (-694)) . T)) +((((-994) |#1|) . T) (((-994) $) . T) (($ $) . T)) +((($) . T)) +(|has| |#1| (-1065)) +(((|#1|) . T)) +((((-2 (|:| -2400 |#1|) (|:| -2401 |#2|))) . T)) +((((-2 (|:| -2400 |#1|) (|:| -2401 |#2|))) . T)) +((((-2 (|:| -2400 |#1|) (|:| -2401 |#2|))) . T) (((-772)) . T)) (((|#1|) |has| |#1| (-146))) (((|#1|) |has| |#1| (-146))) (((|#1|) |has| |#1| (-146))) @@ -2121,52 +2121,52 @@ (|has| |#1| (-120)) (((|#2| |#2|) . T)) ((((-86)) . T) ((|#1|) . T)) -((((-86)) . T) ((|#1|) . T) (((-483)) . T)) +((((-86)) . T) ((|#1|) . T) (((-484)) . T)) (((|#1|) |has| |#1| (-146)) (($) . T)) -((((-771)) . T)) -(((|#1|) |has| |#1| (-146)) (($) . T) (((-483)) . T)) -((((-483)) . T)) +((((-772)) . T)) +(((|#1|) |has| |#1| (-146)) (($) . T) (((-484)) . T)) +((((-484)) . T)) ((($) . T)) -((((-771)) . T)) -((($) . T) (((-483)) . T)) -((((-771)) . T)) -((((-1021 |#1|)) . T) (((-771)) . T)) +((((-772)) . T)) +((($) . T) (((-484)) . T)) +((((-772)) . T)) +((((-1022 |#1|)) . T) (((-772)) . T)) (((|#1|) . T)) (((|#1| |#1| |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-472)) |has| |#2| (-552 (-472))) (((-799 (-328))) |has| |#2| (-552 (-799 (-328)))) (((-799 (-483))) |has| |#2| (-552 (-799 (-483))))) +((((-473)) |has| |#2| (-553 (-473))) (((-800 (-329))) |has| |#2| (-553 (-800 (-329)))) (((-800 (-484))) |has| |#2| (-553 (-800 (-484))))) ((($) . T)) -(((|#2| (-468 (-772 |#1|))) . T)) +(((|#2| (-469 (-773 |#1|))) . T)) (((|#2|) . T)) -((((-771)) . T)) -((($) . T) (((-483)) . T) (((-348 (-483))) |has| |#2| (-38 (-348 (-483)))) ((|#2|) . T)) +((((-772)) . T)) +((($) . T) (((-484)) . T) (((-349 (-484))) |has| |#2| (-38 (-349 (-484)))) ((|#2|) . T)) (|has| |#2| (-118)) (|has| |#2| (-120)) -(OR (|has| |#2| (-146)) (|has| |#2| (-390)) (|has| |#2| (-494)) (|has| |#2| (-820))) -((((-348 (-483))) |has| |#2| (-38 (-348 (-483)))) ((|#2|) . T) (($) OR (|has| |#2| (-146)) (|has| |#2| (-390)) (|has| |#2| (-494)) (|has| |#2| (-820)))) -((((-348 (-483))) |has| |#2| (-38 (-348 (-483)))) ((|#2|) . T) (($) OR (|has| |#2| (-146)) (|has| |#2| (-390)) (|has| |#2| (-494)) (|has| |#2| (-820)))) -((((-348 (-483)) (-348 (-483))) |has| |#2| (-38 (-348 (-483)))) ((|#2| |#2|) . T) (($ $) OR (|has| |#2| (-146)) (|has| |#2| (-390)) (|has| |#2| (-494)) (|has| |#2| (-820)))) -(OR (|has| |#2| (-390)) (|has| |#2| (-494)) (|has| |#2| (-820))) -(OR (|has| |#2| (-390)) (|has| |#2| (-494)) (|has| |#2| (-820))) -((((-348 (-483))) |has| |#2| (-38 (-348 (-483)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-390)) (|has| |#2| (-494)) (|has| |#2| (-820)))) -((((-348 (-483))) |has| |#2| (-38 (-348 (-483)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-390)) (|has| |#2| (-494)) (|has| |#2| (-820)))) -((((-348 (-483))) |has| |#2| (-38 (-348 (-483)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-390)) (|has| |#2| (-494)) (|has| |#2| (-820)))) -(((|#2| (-468 (-772 |#1|))) . T)) -(((|#2|) . T)) -((($) . T) (((-348 (-483))) |has| |#2| (-38 (-348 (-483)))) ((|#2|) . T) (((-483)) |has| |#2| (-579 (-483)))) -(((|#2|) . T) (((-483)) |has| |#2| (-579 (-483)))) -(OR (|has| |#2| (-390)) (|has| |#2| (-820))) -((($ $) . T) (((-772 |#1|) $) . T) (((-772 |#1|) |#2|) . T)) -((((-772 |#1|)) . T)) -((($ (-772 |#1|)) . T)) -((((-772 |#1|)) . T)) -(|has| |#2| (-820)) -(|has| |#2| (-820)) -((((-348 (-483))) |has| |#2| (-949 (-348 (-483)))) (((-483)) |has| |#2| (-949 (-483))) ((|#2|) . T) (((-772 |#1|)) . T)) -((((-483)) . T) (((-348 (-483))) OR (|has| |#2| (-38 (-348 (-483)))) (|has| |#2| (-949 (-348 (-483))))) ((|#2|) . T) (($) OR (|has| |#2| (-390)) (|has| |#2| (-494)) (|has| |#2| (-820))) (((-772 |#1|)) . T)) -(((|#2| (-468 (-772 |#1|)) (-772 |#1|)) . T)) -(-12 (|has| |#1| (-318)) (|has| |#2| (-318))) +(OR (|has| |#2| (-146)) (|has| |#2| (-391)) (|has| |#2| (-495)) (|has| |#2| (-821))) +((((-349 (-484))) |has| |#2| (-38 (-349 (-484)))) ((|#2|) . T) (($) OR (|has| |#2| (-146)) (|has| |#2| (-391)) (|has| |#2| (-495)) (|has| |#2| (-821)))) +((((-349 (-484))) |has| |#2| (-38 (-349 (-484)))) ((|#2|) . T) (($) OR (|has| |#2| (-146)) (|has| |#2| (-391)) (|has| |#2| (-495)) (|has| |#2| (-821)))) +((((-349 (-484)) (-349 (-484))) |has| |#2| (-38 (-349 (-484)))) ((|#2| |#2|) . T) (($ $) OR (|has| |#2| (-146)) (|has| |#2| (-391)) (|has| |#2| (-495)) (|has| |#2| (-821)))) +(OR (|has| |#2| (-391)) (|has| |#2| (-495)) (|has| |#2| (-821))) +(OR (|has| |#2| (-391)) (|has| |#2| (-495)) (|has| |#2| (-821))) +((((-349 (-484))) |has| |#2| (-38 (-349 (-484)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-391)) (|has| |#2| (-495)) (|has| |#2| (-821)))) +((((-349 (-484))) |has| |#2| (-38 (-349 (-484)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-391)) (|has| |#2| (-495)) (|has| |#2| (-821)))) +((((-349 (-484))) |has| |#2| (-38 (-349 (-484)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-391)) (|has| |#2| (-495)) (|has| |#2| (-821)))) +(((|#2| (-469 (-773 |#1|))) . T)) +(((|#2|) . T)) +((($) . T) (((-349 (-484))) |has| |#2| (-38 (-349 (-484)))) ((|#2|) . T) (((-484)) |has| |#2| (-580 (-484)))) +(((|#2|) . T) (((-484)) |has| |#2| (-580 (-484)))) +(OR (|has| |#2| (-391)) (|has| |#2| (-821))) +((($ $) . T) (((-773 |#1|) $) . T) (((-773 |#1|) |#2|) . T)) +((((-773 |#1|)) . T)) +((($ (-773 |#1|)) . T)) +((((-773 |#1|)) . T)) +(|has| |#2| (-821)) +(|has| |#2| (-821)) +((((-349 (-484))) |has| |#2| (-950 (-349 (-484)))) (((-484)) |has| |#2| (-950 (-484))) ((|#2|) . T) (((-773 |#1|)) . T)) +((((-484)) . T) (((-349 (-484))) OR (|has| |#2| (-38 (-349 (-484)))) (|has| |#2| (-950 (-349 (-484))))) ((|#2|) . T) (($) OR (|has| |#2| (-391)) (|has| |#2| (-495)) (|has| |#2| (-821))) (((-773 |#1|)) . T)) +(((|#2| (-469 (-773 |#1|)) (-773 |#1|)) . T)) +(-12 (|has| |#1| (-319)) (|has| |#2| (-319))) (((|#1|) |has| |#1| (-146))) (((|#1|) |has| |#1| (-146))) (((|#1|) |has| |#1| (-146))) @@ -2176,207 +2176,207 @@ (|has| |#1| (-118)) (|has| |#1| (-120)) (((|#1|) . T) ((|#2|) . T)) -(((|#1|) . T) ((|#2|) . T) (((-483)) . T)) +(((|#1|) . T) ((|#2|) . T) (((-484)) . T)) (((|#1|) |has| |#1| (-146)) (($) . T)) -((((-771)) . T)) -(((|#1|) |has| |#1| (-146)) (($) . T) (((-483)) . T)) +((((-772)) . T)) +(((|#1|) |has| |#1| (-146)) (($) . T) (((-484)) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-771)) . T)) -(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012)))) -(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012)))) +((((-772)) . T)) +(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013)))) +(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013)))) (((|#1|) . T)) (((|#1|) . T)) -((((-472)) |has| |#1| (-552 (-472)))) +((((-473)) |has| |#1| (-553 (-473)))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-771)) . T)) -((((-771)) . T)) -(((|#1| (-468 |#2|) |#2|) . T)) -(|has| |#1| (-820)) -(|has| |#1| (-820)) -((((-483)) -12 (|has| |#1| (-795 (-483))) (|has| |#2| (-795 (-483)))) (((-328)) -12 (|has| |#1| (-795 (-328))) (|has| |#2| (-795 (-328))))) +((((-772)) . T)) +((((-772)) . T)) +(((|#1| (-469 |#2|) |#2|) . T)) +(|has| |#1| (-821)) +(|has| |#1| (-821)) +((((-484)) -12 (|has| |#1| (-796 (-484))) (|has| |#2| (-796 (-484)))) (((-329)) -12 (|has| |#1| (-796 (-329))) (|has| |#2| (-796 (-329))))) (((|#2|) . T)) ((($ |#2|) . T)) (((|#2|) . T)) -(OR (|has| |#1| (-390)) (|has| |#1| (-820))) -((((-483)) |has| |#1| (-579 (-483))) ((|#1|) . T)) +(OR (|has| |#1| (-391)) (|has| |#1| (-821))) +((((-484)) |has| |#1| (-580 (-484))) ((|#1|) . T)) (((|#1|) . T)) -(((|#1| (-468 |#2|)) . T)) -(OR (|has| |#1| (-390)) (|has| |#1| (-494)) (|has| |#1| (-820))) -(OR (|has| |#1| (-390)) (|has| |#1| (-494)) (|has| |#1| (-820))) -(OR (|has| |#1| (-146)) (|has| |#1| (-390)) (|has| |#1| (-494)) (|has| |#1| (-820))) +(((|#1| (-469 |#2|)) . T)) +(OR (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))) +(OR (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))) +(OR (|has| |#1| (-146)) (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))) (|has| |#1| (-120)) (|has| |#1| (-118)) -((($) OR (|has| |#1| (-390)) (|has| |#1| (-494)) (|has| |#1| (-820))) ((|#1|) |has| |#1| (-146)) (((-348 (-483))) |has| |#1| (-38 (-348 (-483))))) -((($) OR (|has| |#1| (-390)) (|has| |#1| (-494)) (|has| |#1| (-820))) ((|#1|) |has| |#1| (-146)) (((-348 (-483))) |has| |#1| (-38 (-348 (-483))))) -((((-1037 |#1| |#2|)) . T) (((-856 |#1|)) |has| |#2| (-552 (-1088))) (((-771)) . T)) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-390)) (|has| |#1| (-494)) (|has| |#1| (-820))) ((|#1|) . T) (((-348 (-483))) |has| |#1| (-38 (-348 (-483))))) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-390)) (|has| |#1| (-494)) (|has| |#1| (-820))) ((|#1|) . T) (((-348 (-483))) |has| |#1| (-38 (-348 (-483))))) -((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-390)) (|has| |#1| (-494)) (|has| |#1| (-820))) ((|#1| |#1|) . T) (((-348 (-483)) (-348 (-483))) |has| |#1| (-38 (-348 (-483))))) -(((|#1|) . T) (((-348 (-483))) |has| |#1| (-38 (-348 (-483)))) (((-483)) . T) (($) . T)) -((((-483)) |has| |#1| (-579 (-483))) ((|#1|) . T) (((-348 (-483))) |has| |#1| (-38 (-348 (-483)))) (($) . T)) -((((-1037 |#1| |#2|)) . T) ((|#2|) . T) (($) OR (|has| |#1| (-390)) (|has| |#1| (-494)) (|has| |#1| (-820))) ((|#1|) . T) (((-348 (-483))) OR (|has| |#1| (-38 (-348 (-483)))) (|has| |#1| (-949 (-348 (-483))))) (((-483)) . T)) -((($) OR (|has| |#1| (-390)) (|has| |#1| (-494)) (|has| |#1| (-820))) ((|#1|) |has| |#1| (-146)) (((-348 (-483))) |has| |#1| (-38 (-348 (-483))))) -(((|#1|) . T)) -((((-1037 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-483)) |has| |#1| (-949 (-483))) (((-348 (-483))) |has| |#1| (-949 (-348 (-483))))) -(((|#1| (-468 |#2|)) . T)) +((($) OR (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) |has| |#1| (-146)) (((-349 (-484))) |has| |#1| (-38 (-349 (-484))))) +((($) OR (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) |has| |#1| (-146)) (((-349 (-484))) |has| |#1| (-38 (-349 (-484))))) +((((-1038 |#1| |#2|)) . T) (((-857 |#1|)) |has| |#2| (-553 (-1089))) (((-772)) . T)) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) . T) (((-349 (-484))) |has| |#1| (-38 (-349 (-484))))) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) . T) (((-349 (-484))) |has| |#1| (-38 (-349 (-484))))) +((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1| |#1|) . T) (((-349 (-484)) (-349 (-484))) |has| |#1| (-38 (-349 (-484))))) +(((|#1|) . T) (((-349 (-484))) |has| |#1| (-38 (-349 (-484)))) (((-484)) . T) (($) . T)) +((((-484)) |has| |#1| (-580 (-484))) ((|#1|) . T) (((-349 (-484))) |has| |#1| (-38 (-349 (-484)))) (($) . T)) +((((-1038 |#1| |#2|)) . T) ((|#2|) . T) (($) OR (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) . T) (((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-950 (-349 (-484))))) (((-484)) . T)) +((($) OR (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) |has| |#1| (-146)) (((-349 (-484))) |has| |#1| (-38 (-349 (-484))))) +(((|#1|) . T)) +((((-1038 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-484)) |has| |#1| (-950 (-484))) (((-349 (-484))) |has| |#1| (-950 (-349 (-484))))) +(((|#1| (-469 |#2|)) . T)) (((|#2| |#1|) . T) ((|#2| $) . T) (($ $) . T)) ((($) . T)) -((((-856 |#1|)) |has| |#2| (-552 (-1088))) (((-1071)) -12 (|has| |#1| (-949 (-483))) (|has| |#2| (-552 (-1088)))) (((-799 (-483))) -12 (|has| |#1| (-552 (-799 (-483)))) (|has| |#2| (-552 (-799 (-483))))) (((-799 (-328))) -12 (|has| |#1| (-552 (-799 (-328)))) (|has| |#2| (-552 (-799 (-328))))) (((-472)) -12 (|has| |#1| (-552 (-472))) (|has| |#2| (-552 (-472))))) -(((|#1| (-468 |#2|) |#2|) . T)) +((((-857 |#1|)) |has| |#2| (-553 (-1089))) (((-1072)) -12 (|has| |#1| (-950 (-484))) (|has| |#2| (-553 (-1089)))) (((-800 (-484))) -12 (|has| |#1| (-553 (-800 (-484)))) (|has| |#2| (-553 (-800 (-484))))) (((-800 (-329))) -12 (|has| |#1| (-553 (-800 (-329)))) (|has| |#2| (-553 (-800 (-329))))) (((-473)) -12 (|has| |#1| (-553 (-473))) (|has| |#2| (-553 (-473))))) +(((|#1| (-469 |#2|) |#2|) . T)) (((|#1|) . T)) (((|#1|) . T)) ((($) . T)) -((((-1083 |#1|)) . T) (((-771)) . T)) -((((-348 $) (-348 $)) |has| |#1| (-494)) (($ $) . T) ((|#1| |#1|) . T)) +((((-1084 |#1|)) . T) (((-772)) . T)) +((((-349 $) (-349 $)) |has| |#1| (-495)) (($ $) . T) ((|#1| |#1|) . T)) (|has| |#1| (-312)) -(OR (|has| |#1| (-312)) (|has| |#1| (-390)) (|has| |#1| (-820))) -(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-390)) (|has| |#1| (-494)) (|has| |#1| (-820))) -(OR (|has| |#1| (-312)) (|has| |#1| (-390)) (|has| |#1| (-494)) (|has| |#1| (-820))) -(OR (|has| |#1| (-312)) (|has| |#1| (-390)) (|has| |#1| (-494)) (|has| |#1| (-820))) +(OR (|has| |#1| (-312)) (|has| |#1| (-391)) (|has| |#1| (-821))) +(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))) +(OR (|has| |#1| (-312)) (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))) +(OR (|has| |#1| (-312)) (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))) (|has| |#1| (-312)) -(((|#1| (-693) (-993)) . T)) -(|has| |#1| (-820)) -(|has| |#1| (-820)) -((((-1088)) OR (|has| |#1| (-808 (-1088))) (|has| |#1| (-810 (-1088)))) (((-993)) . T)) -((($ (-1088)) OR (|has| |#1| (-808 (-1088))) (|has| |#1| (-810 (-1088)))) (($ (-993)) . T)) -((((-1088)) |has| |#1| (-808 (-1088))) (((-993)) . T)) -((((-483)) |has| |#1| (-579 (-483))) ((|#1|) . T)) -(((|#1|) . T)) -(((|#1| (-693)) . T)) +(((|#1| (-694) (-994)) . T)) +(|has| |#1| (-821)) +(|has| |#1| (-821)) +((((-1089)) OR (|has| |#1| (-809 (-1089))) (|has| |#1| (-811 (-1089)))) (((-994)) . T)) +((($ (-1089)) OR (|has| |#1| (-809 (-1089))) (|has| |#1| (-811 (-1089)))) (($ (-994)) . T)) +((((-1089)) |has| |#1| (-809 (-1089))) (((-994)) . T)) +((((-484)) |has| |#1| (-580 (-484))) ((|#1|) . T)) +(((|#1|) . T)) +(((|#1| (-694)) . T)) (|has| |#1| (-120)) (|has| |#1| (-118)) -((((-1083 |#1|)) . T) (((-483)) . T) (($) OR (|has| |#1| (-312)) (|has| |#1| (-390)) (|has| |#1| (-494)) (|has| |#1| (-820))) (((-993)) . T) ((|#1|) . T) (((-348 (-483))) OR (|has| |#1| (-38 (-348 (-483)))) (|has| |#1| (-949 (-348 (-483)))))) -((($) OR (|has| |#1| (-312)) (|has| |#1| (-390)) (|has| |#1| (-494)) (|has| |#1| (-820))) ((|#1|) |has| |#1| (-146)) (((-348 (-483))) |has| |#1| (-38 (-348 (-483))))) -((($) OR (|has| |#1| (-312)) (|has| |#1| (-390)) (|has| |#1| (-494)) (|has| |#1| (-820))) ((|#1|) |has| |#1| (-146)) (((-348 (-483))) |has| |#1| (-38 (-348 (-483))))) -((($) . T) (((-483)) |has| |#1| (-579 (-483))) ((|#1|) . T) (((-348 (-483))) |has| |#1| (-38 (-348 (-483))))) -((((-483)) . T) (($) . T) ((|#1|) . T) (((-348 (-483))) |has| |#1| (-38 (-348 (-483))))) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-390)) (|has| |#1| (-494)) (|has| |#1| (-820))) ((|#1|) . T) (((-348 (-483))) |has| |#1| (-38 (-348 (-483))))) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-390)) (|has| |#1| (-494)) (|has| |#1| (-820))) ((|#1|) . T) (((-348 (-483))) |has| |#1| (-38 (-348 (-483))))) -((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-390)) (|has| |#1| (-494)) (|has| |#1| (-820))) ((|#1| |#1|) . T) (((-348 (-483)) (-348 (-483))) |has| |#1| (-38 (-348 (-483))))) -((($) OR (|has| |#1| (-312)) (|has| |#1| (-390)) (|has| |#1| (-494)) (|has| |#1| (-820))) ((|#1|) |has| |#1| (-146)) (((-348 (-483))) |has| |#1| (-38 (-348 (-483))))) +((((-1084 |#1|)) . T) (((-484)) . T) (($) OR (|has| |#1| (-312)) (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))) (((-994)) . T) ((|#1|) . T) (((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-950 (-349 (-484)))))) +((($) OR (|has| |#1| (-312)) (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) |has| |#1| (-146)) (((-349 (-484))) |has| |#1| (-38 (-349 (-484))))) +((($) OR (|has| |#1| (-312)) (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) |has| |#1| (-146)) (((-349 (-484))) |has| |#1| (-38 (-349 (-484))))) +((($) . T) (((-484)) |has| |#1| (-580 (-484))) ((|#1|) . T) (((-349 (-484))) |has| |#1| (-38 (-349 (-484))))) +((((-484)) . T) (($) . T) ((|#1|) . T) (((-349 (-484))) |has| |#1| (-38 (-349 (-484))))) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) . T) (((-349 (-484))) |has| |#1| (-38 (-349 (-484))))) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) . T) (((-349 (-484))) |has| |#1| (-38 (-349 (-484))))) +((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1| |#1|) . T) (((-349 (-484)) (-349 (-484))) |has| |#1| (-38 (-349 (-484))))) +((($) OR (|has| |#1| (-312)) (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) |has| |#1| (-146)) (((-349 (-484))) |has| |#1| (-38 (-349 (-484))))) (((|#1|) . T)) -((((-1083 |#1|)) . T) (((-993)) . T) ((|#1|) . T) (((-483)) |has| |#1| (-949 (-483))) (((-348 (-483))) |has| |#1| (-949 (-348 (-483))))) -(((|#1| (-693)) . T)) -((((-993) |#1|) . T) (((-993) $) . T) (($ $) . T)) +((((-1084 |#1|)) . T) (((-994)) . T) ((|#1|) . T) (((-484)) |has| |#1| (-950 (-484))) (((-349 (-484))) |has| |#1| (-950 (-349 (-484))))) +(((|#1| (-694)) . T)) +((((-994) |#1|) . T) (((-994) $) . T) (($ $) . T)) ((($) . T)) -(|has| |#1| (-1064)) +(|has| |#1| (-1065)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-771)) . T)) -((($) . T) (((-483)) . T) ((|#1|) . T)) +((((-772)) . T)) +((($) . T) (((-484)) . T) ((|#1|) . T)) ((($) . T) ((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (|has| |#1| (-118)) (|has| |#1| (-120)) -((((-472)) |has| |#1| (-552 (-472)))) -(|has| |#1| (-318)) +((((-473)) |has| |#1| (-553 (-473)))) +(|has| |#1| (-319)) (((|#1|) . T)) -((((-1088) |#1|) |has| |#1| (-454 (-1088) |#1|)) ((|#1| |#1|) |has| |#1| (-260 |#1|))) +((((-1089) |#1|) |has| |#1| (-455 (-1089) |#1|)) ((|#1| |#1|) |has| |#1| (-260 |#1|))) (((|#1|) |has| |#1| (-260 |#1|))) (((|#1| $) |has| |#1| (-241 |#1| |#1|))) -((((-908 |#1|)) . T) ((|#1|) . T)) -((((-908 |#1|)) . T) (((-483)) . T) ((|#1|) . T) (((-348 (-483))) OR (|has| |#1| (-949 (-348 (-483)))) (|has| (-908 |#1|) (-949 (-348 (-483)))))) -((((-908 |#1|)) . T) ((|#1|) . T) (((-483)) OR (|has| |#1| (-949 (-483))) (|has| (-908 |#1|) (-949 (-483)))) (((-348 (-483))) OR (|has| |#1| (-949 (-348 (-483)))) (|has| (-908 |#1|) (-949 (-348 (-483)))))) -(|has| |#1| (-755)) -(|has| |#1| (-755)) -(((|#1|) . T)) -(OR (|has| |#2| (-21)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-960))) -(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-716)) (|has| |#2| (-960))) -(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-318)) (|has| |#2| (-662)) (|has| |#2| (-716)) (|has| |#2| (-755)) (|has| |#2| (-960)) (|has| |#2| (-1012))) -(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-72)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-318)) (|has| |#2| (-662)) (|has| |#2| (-716)) (|has| |#2| (-755)) (|has| |#2| (-960)) (|has| |#2| (-1012))) -(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-716)) (|has| |#2| (-960))) -(OR (|has| |#2| (-21)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-716)) (|has| |#2| (-960))) -(((|#2| |#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-960)))) -(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-662)) (|has| |#2| (-960)))) -(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-960)))) -((((-771)) OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-551 (-771))) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-318)) (|has| |#2| (-662)) (|has| |#2| (-716)) (|has| |#2| (-755)) (|has| |#2| (-960)) (|has| |#2| (-1012))) (((-1177 |#2|)) . T)) -(((|#2|) |has| |#2| (-960))) -((((-1088)) -12 (|has| |#2| (-808 (-1088))) (|has| |#2| (-960)))) -((((-1088)) OR (-12 (|has| |#2| (-808 (-1088))) (|has| |#2| (-960))) (-12 (|has| |#2| (-810 (-1088))) (|has| |#2| (-960))))) -((($ (-1088)) OR (-12 (|has| |#2| (-808 (-1088))) (|has| |#2| (-960))) (-12 (|has| |#2| (-810 (-1088))) (|has| |#2| (-960))))) -(((|#2|) |has| |#2| (-960))) -(OR (-12 (|has| |#2| (-190)) (|has| |#2| (-960))) (-12 (|has| |#2| (-189)) (|has| |#2| (-960)))) -((($) OR (-12 (|has| |#2| (-190)) (|has| |#2| (-960))) (-12 (|has| |#2| (-189)) (|has| |#2| (-960))))) -(|has| |#2| (-960)) -(|has| |#2| (-960)) -(|has| |#2| (-960)) -(|has| |#2| (-960)) -(|has| |#2| (-960)) -((((-483)) OR (|has| |#2| (-21)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-960))) ((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-662)) (|has| |#2| (-960))) (($) |has| |#2| (-960))) -(-12 (|has| |#2| (-190)) (|has| |#2| (-960))) -(|has| |#2| (-318)) -(((|#2|) |has| |#2| (-960))) -(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-960))) (($) |has| |#2| (-960)) (((-483)) -12 (|has| |#2| (-579 (-483))) (|has| |#2| (-960)))) -(((|#2|) |has| |#2| (-960)) (((-483)) -12 (|has| |#2| (-579 (-483))) (|has| |#2| (-960)))) -(((|#2|) |has| |#2| (-1012))) -((((-483)) OR (-12 (|has| |#2| (-949 (-483))) (|has| |#2| (-1012))) (|has| |#2| (-960))) ((|#2|) |has| |#2| (-1012)) (((-348 (-483))) -12 (|has| |#2| (-949 (-348 (-483)))) (|has| |#2| (-1012)))) -(((|#2|) |has| |#2| (-1012)) (((-483)) -12 (|has| |#2| (-949 (-483))) (|has| |#2| (-1012))) (((-348 (-483))) -12 (|has| |#2| (-949 (-348 (-483)))) (|has| |#2| (-1012)))) -((((-483) |#2|) . T)) -(((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1012)))) -(((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1012)))) -(((|#2|) . T)) -((((-483) |#2|) . T)) -((((-483) |#2|) . T)) -(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-662)))) +((((-909 |#1|)) . T) ((|#1|) . T)) +((((-909 |#1|)) . T) (((-484)) . T) ((|#1|) . T) (((-349 (-484))) OR (|has| |#1| (-950 (-349 (-484)))) (|has| (-909 |#1|) (-950 (-349 (-484)))))) +((((-909 |#1|)) . T) ((|#1|) . T) (((-484)) OR (|has| |#1| (-950 (-484))) (|has| (-909 |#1|) (-950 (-484)))) (((-349 (-484))) OR (|has| |#1| (-950 (-349 (-484)))) (|has| (-909 |#1|) (-950 (-349 (-484)))))) +(|has| |#1| (-756)) +(|has| |#1| (-756)) +(((|#1|) . T)) +(OR (|has| |#2| (-21)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-961))) +(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-717)) (|has| |#2| (-961))) +(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-319)) (|has| |#2| (-663)) (|has| |#2| (-717)) (|has| |#2| (-756)) (|has| |#2| (-961)) (|has| |#2| (-1013))) +(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-72)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-319)) (|has| |#2| (-663)) (|has| |#2| (-717)) (|has| |#2| (-756)) (|has| |#2| (-961)) (|has| |#2| (-1013))) +(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-717)) (|has| |#2| (-961))) +(OR (|has| |#2| (-21)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-717)) (|has| |#2| (-961))) +(((|#2| |#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-961)))) +(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-663)) (|has| |#2| (-961)))) +(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-961)))) +((((-772)) OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-552 (-772))) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-319)) (|has| |#2| (-663)) (|has| |#2| (-717)) (|has| |#2| (-756)) (|has| |#2| (-961)) (|has| |#2| (-1013))) (((-1178 |#2|)) . T)) +(((|#2|) |has| |#2| (-961))) +((((-1089)) -12 (|has| |#2| (-809 (-1089))) (|has| |#2| (-961)))) +((((-1089)) OR (-12 (|has| |#2| (-809 (-1089))) (|has| |#2| (-961))) (-12 (|has| |#2| (-811 (-1089))) (|has| |#2| (-961))))) +((($ (-1089)) OR (-12 (|has| |#2| (-809 (-1089))) (|has| |#2| (-961))) (-12 (|has| |#2| (-811 (-1089))) (|has| |#2| (-961))))) +(((|#2|) |has| |#2| (-961))) +(OR (-12 (|has| |#2| (-190)) (|has| |#2| (-961))) (-12 (|has| |#2| (-189)) (|has| |#2| (-961)))) +((($) OR (-12 (|has| |#2| (-190)) (|has| |#2| (-961))) (-12 (|has| |#2| (-189)) (|has| |#2| (-961))))) +(|has| |#2| (-961)) +(|has| |#2| (-961)) +(|has| |#2| (-961)) +(|has| |#2| (-961)) +(|has| |#2| (-961)) +((((-484)) OR (|has| |#2| (-21)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-961))) ((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-663)) (|has| |#2| (-961))) (($) |has| |#2| (-961))) +(-12 (|has| |#2| (-190)) (|has| |#2| (-961))) +(|has| |#2| (-319)) +(((|#2|) |has| |#2| (-961))) +(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-961))) (($) |has| |#2| (-961)) (((-484)) -12 (|has| |#2| (-580 (-484))) (|has| |#2| (-961)))) +(((|#2|) |has| |#2| (-961)) (((-484)) -12 (|has| |#2| (-580 (-484))) (|has| |#2| (-961)))) +(((|#2|) |has| |#2| (-1013))) +((((-484)) OR (-12 (|has| |#2| (-950 (-484))) (|has| |#2| (-1013))) (|has| |#2| (-961))) ((|#2|) |has| |#2| (-1013)) (((-349 (-484))) -12 (|has| |#2| (-950 (-349 (-484)))) (|has| |#2| (-1013)))) +(((|#2|) |has| |#2| (-1013)) (((-484)) -12 (|has| |#2| (-950 (-484))) (|has| |#2| (-1013))) (((-349 (-484))) -12 (|has| |#2| (-950 (-349 (-484)))) (|has| |#2| (-1013)))) +((((-484) |#2|) . T)) +(((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013)))) +(((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013)))) +(((|#2|) . T)) +((((-484) |#2|) . T)) +((((-484) |#2|) . T)) +(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-663)))) (((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)))) -(|has| |#2| (-716)) -(|has| |#2| (-716)) -(OR (|has| |#2| (-716)) (|has| |#2| (-755))) -(OR (|has| |#2| (-716)) (|has| |#2| (-755))) -(|has| |#2| (-716)) -(|has| |#2| (-716)) +(|has| |#2| (-717)) +(|has| |#2| (-717)) +(OR (|has| |#2| (-717)) (|has| |#2| (-756))) +(OR (|has| |#2| (-717)) (|has| |#2| (-756))) +(|has| |#2| (-717)) +(|has| |#2| (-717)) (((|#2|) |has| |#2| (-312))) (((|#1| |#2|) . T)) (((|#1|) . T)) (((|#1|) . T)) (OR (|has| |#1| (-190)) (|has| |#1| (-189))) ((($) OR (|has| |#1| (-190)) (|has| |#1| (-189)))) -((((-771)) . T)) +((((-772)) . T)) (|has| |#1| (-190)) ((($) . T)) -(((|#1| (-468 (-737 (-1088))) (-737 (-1088))) . T)) -(|has| |#1| (-820)) -(|has| |#1| (-820)) -((((-1088)) OR (|has| |#1| (-808 (-1088))) (|has| |#1| (-810 (-1088)))) (((-737 (-1088))) . T)) -((($ (-1088)) OR (|has| |#1| (-808 (-1088))) (|has| |#1| (-810 (-1088)))) (($ (-737 (-1088))) . T)) -((((-1088)) |has| |#1| (-808 (-1088))) (((-737 (-1088))) . T)) -((($ $) . T) (((-1088) $) |has| |#1| (-190)) (((-1088) |#1|) |has| |#1| (-190)) (((-737 (-1088)) |#1|) . T) (((-737 (-1088)) $) . T)) -(OR (|has| |#1| (-390)) (|has| |#1| (-820))) -((((-483)) |has| |#1| (-579 (-483))) ((|#1|) . T)) -(((|#1|) . T)) -(((|#1| (-468 (-737 (-1088)))) . T)) -(OR (|has| |#1| (-390)) (|has| |#1| (-494)) (|has| |#1| (-820))) -(OR (|has| |#1| (-390)) (|has| |#1| (-494)) (|has| |#1| (-820))) -(OR (|has| |#1| (-146)) (|has| |#1| (-390)) (|has| |#1| (-494)) (|has| |#1| (-820))) +(((|#1| (-469 (-738 (-1089))) (-738 (-1089))) . T)) +(|has| |#1| (-821)) +(|has| |#1| (-821)) +((((-1089)) OR (|has| |#1| (-809 (-1089))) (|has| |#1| (-811 (-1089)))) (((-738 (-1089))) . T)) +((($ (-1089)) OR (|has| |#1| (-809 (-1089))) (|has| |#1| (-811 (-1089)))) (($ (-738 (-1089))) . T)) +((((-1089)) |has| |#1| (-809 (-1089))) (((-738 (-1089))) . T)) +((($ $) . T) (((-1089) $) |has| |#1| (-190)) (((-1089) |#1|) |has| |#1| (-190)) (((-738 (-1089)) |#1|) . T) (((-738 (-1089)) $) . T)) +(OR (|has| |#1| (-391)) (|has| |#1| (-821))) +((((-484)) |has| |#1| (-580 (-484))) ((|#1|) . T)) +(((|#1|) . T)) +(((|#1| (-469 (-738 (-1089)))) . T)) +(OR (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))) +(OR (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))) +(OR (|has| |#1| (-146)) (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))) (|has| |#1| (-120)) (|has| |#1| (-118)) -((($) OR (|has| |#1| (-390)) (|has| |#1| (-494)) (|has| |#1| (-820))) ((|#1|) |has| |#1| (-146)) (((-348 (-483))) |has| |#1| (-38 (-348 (-483))))) -((($) OR (|has| |#1| (-390)) (|has| |#1| (-494)) (|has| |#1| (-820))) ((|#1|) |has| |#1| (-146)) (((-348 (-483))) |has| |#1| (-38 (-348 (-483))))) -((($) . T) (((-483)) |has| |#1| (-579 (-483))) ((|#1|) . T) (((-348 (-483))) |has| |#1| (-38 (-348 (-483))))) -((((-483)) . T) (($) . T) ((|#1|) . T) (((-348 (-483))) |has| |#1| (-38 (-348 (-483))))) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-390)) (|has| |#1| (-494)) (|has| |#1| (-820))) ((|#1|) . T) (((-348 (-483))) |has| |#1| (-38 (-348 (-483))))) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-390)) (|has| |#1| (-494)) (|has| |#1| (-820))) ((|#1|) . T) (((-348 (-483))) |has| |#1| (-38 (-348 (-483))))) -((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-390)) (|has| |#1| (-494)) (|has| |#1| (-820))) ((|#1| |#1|) . T) (((-348 (-483)) (-348 (-483))) |has| |#1| (-38 (-348 (-483))))) -((($) OR (|has| |#1| (-390)) (|has| |#1| (-494)) (|has| |#1| (-820))) ((|#1|) |has| |#1| (-146)) (((-348 (-483))) |has| |#1| (-38 (-348 (-483))))) -(((|#1|) . T)) -(((|#1| (-468 (-737 (-1088)))) . T)) -((((-1037 |#1| (-1088))) . T) (((-737 (-1088))) . T) ((|#1|) . T) (((-483)) |has| |#1| (-949 (-483))) (((-348 (-483))) |has| |#1| (-949 (-348 (-483)))) (((-1088)) . T)) -((((-1037 |#1| (-1088))) . T) (((-483)) . T) (((-737 (-1088))) . T) (($) OR (|has| |#1| (-390)) (|has| |#1| (-494)) (|has| |#1| (-820))) ((|#1|) . T) (((-348 (-483))) OR (|has| |#1| (-38 (-348 (-483)))) (|has| |#1| (-949 (-348 (-483))))) (((-1088)) . T)) -(((|#1| (-1088) (-737 (-1088)) (-468 (-737 (-1088)))) . T)) +((($) OR (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) |has| |#1| (-146)) (((-349 (-484))) |has| |#1| (-38 (-349 (-484))))) +((($) OR (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) |has| |#1| (-146)) (((-349 (-484))) |has| |#1| (-38 (-349 (-484))))) +((($) . T) (((-484)) |has| |#1| (-580 (-484))) ((|#1|) . T) (((-349 (-484))) |has| |#1| (-38 (-349 (-484))))) +((((-484)) . T) (($) . T) ((|#1|) . T) (((-349 (-484))) |has| |#1| (-38 (-349 (-484))))) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) . T) (((-349 (-484))) |has| |#1| (-38 (-349 (-484))))) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) . T) (((-349 (-484))) |has| |#1| (-38 (-349 (-484))))) +((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1| |#1|) . T) (((-349 (-484)) (-349 (-484))) |has| |#1| (-38 (-349 (-484))))) +((($) OR (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) |has| |#1| (-146)) (((-349 (-484))) |has| |#1| (-38 (-349 (-484))))) +(((|#1|) . T)) +(((|#1| (-469 (-738 (-1089)))) . T)) +((((-1038 |#1| (-1089))) . T) (((-738 (-1089))) . T) ((|#1|) . T) (((-484)) |has| |#1| (-950 (-484))) (((-349 (-484))) |has| |#1| (-950 (-349 (-484)))) (((-1089)) . T)) +((((-1038 |#1| (-1089))) . T) (((-484)) . T) (((-738 (-1089))) . T) (($) OR (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) . T) (((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-950 (-349 (-484))))) (((-1089)) . T)) +(((|#1| (-1089) (-738 (-1089)) (-469 (-738 (-1089)))) . T)) (|has| |#2| (-312)) (|has| |#2| (-312)) (|has| |#2| (-312)) (|has| |#2| (-312)) -((((-348 (-483))) |has| |#2| (-312)) (($) |has| |#2| (-312))) -((((-348 (-483))) |has| |#2| (-312)) (($) |has| |#2| (-312))) -((((-348 (-483))) |has| |#2| (-312)) (($) |has| |#2| (-312))) +((((-349 (-484))) |has| |#2| (-312)) (($) |has| |#2| (-312))) +((((-349 (-484))) |has| |#2| (-312)) (($) |has| |#2| (-312))) +((((-349 (-484))) |has| |#2| (-312)) (($) |has| |#2| (-312))) (|has| |#2| (-312)) (|has| |#2| (-312)) (|has| |#2| (-312)) @@ -2384,19 +2384,19 @@ (|has| |#2| (-312)) (((|#2|) . T)) ((($) . T)) -((((-348 (-483))) |has| |#2| (-312)) (($) |has| |#2| (-312)) ((|#2|) . T) (((-483)) . T)) -((((-348 (-483))) |has| |#2| (-312)) (($) . T)) -(((|#2|) . T) (((-771)) . T)) -((((-348 (-483))) |has| |#2| (-312)) (($) . T) (((-483)) . T)) -((((-348 (-483))) |has| |#2| (-312)) (($) . T)) -((((-348 (-483))) |has| |#2| (-312)) (($) . T)) -((((-348 (-483)) (-348 (-483))) |has| |#2| (-312)) (($ $) . T)) +((((-349 (-484))) |has| |#2| (-312)) (($) |has| |#2| (-312)) ((|#2|) . T) (((-484)) . T)) +((((-349 (-484))) |has| |#2| (-312)) (($) . T)) +(((|#2|) . T) (((-772)) . T)) +((((-349 (-484))) |has| |#2| (-312)) (($) . T) (((-484)) . T)) +((((-349 (-484))) |has| |#2| (-312)) (($) . T)) +((((-349 (-484))) |has| |#2| (-312)) (($) . T)) +((((-349 (-484)) (-349 (-484))) |has| |#2| (-312)) (($ $) . T)) ((($) . T)) -((((-771)) . T)) +((((-772)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-771)) . T)) +((((-772)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) @@ -2407,36 +2407,36 @@ (((|#2| |#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) -((((-771)) . T)) -((($) . T) (((-483)) . T) ((|#2|) . T)) +((((-772)) . T)) +((($) . T) (((-484)) . T) ((|#2|) . T)) ((($) . T) ((|#2|) . T)) (((|#2|) |has| |#2| (-146))) (((|#2|) |has| |#2| (-146))) -((((-483)) . T) ((|#2|) |has| |#2| (-146))) -(((|#2|) . T)) -(|has| |#1| (-754)) -((($) |has| |#1| (-754))) -(|has| |#1| (-754)) -(|has| |#1| (-754)) -(|has| |#1| (-754)) -(|has| |#1| (-754)) -(|has| |#1| (-754)) -(|has| |#1| (-754)) -(|has| |#1| (-754)) -(|has| |#1| (-754)) -(|has| |#1| (-754)) -(|has| |#1| (-754)) -(|has| |#1| (-754)) -(|has| |#1| (-754)) -(OR (|has| |#1| (-21)) (|has| |#1| (-754))) -(OR (|has| |#1| (-21)) (|has| |#1| (-754))) -(OR (|has| |#1| (-21)) (|has| |#1| (-754))) -((($) |has| |#1| (-754)) (((-483)) OR (|has| |#1| (-21)) (|has| |#1| (-754)))) -(OR (|has| |#1| (-21)) (|has| |#1| (-754))) -((((-348 (-483))) |has| |#1| (-949 (-348 (-483)))) (((-483)) |has| |#1| (-949 (-483))) ((|#1|) . T)) -((((-348 (-483))) |has| |#1| (-949 (-348 (-483)))) (((-483)) OR (|has| |#1| (-754)) (|has| |#1| (-949 (-483)))) ((|#1|) . T)) -(((|#1|) . T)) -((((-771)) . T)) +((((-484)) . T) ((|#2|) |has| |#2| (-146))) +(((|#2|) . T)) +(|has| |#1| (-755)) +((($) |has| |#1| (-755))) +(|has| |#1| (-755)) +(|has| |#1| (-755)) +(|has| |#1| (-755)) +(|has| |#1| (-755)) +(|has| |#1| (-755)) +(|has| |#1| (-755)) +(|has| |#1| (-755)) +(|has| |#1| (-755)) +(|has| |#1| (-755)) +(|has| |#1| (-755)) +(|has| |#1| (-755)) +(|has| |#1| (-755)) +(OR (|has| |#1| (-21)) (|has| |#1| (-755))) +(OR (|has| |#1| (-21)) (|has| |#1| (-755))) +(OR (|has| |#1| (-21)) (|has| |#1| (-755))) +((($) |has| |#1| (-755)) (((-484)) OR (|has| |#1| (-21)) (|has| |#1| (-755)))) +(OR (|has| |#1| (-21)) (|has| |#1| (-755))) +((((-349 (-484))) |has| |#1| (-950 (-349 (-484)))) (((-484)) |has| |#1| (-950 (-484))) ((|#1|) . T)) +((((-349 (-484))) |has| |#1| (-950 (-349 (-484)))) (((-484)) OR (|has| |#1| (-755)) (|has| |#1| (-950 (-484)))) ((|#1|) . T)) +(((|#1|) . T)) +((((-772)) . T)) (((|#1|) |has| |#1| (-146))) (((|#1|) |has| |#1| (-146))) (((|#1|) |has| |#1| (-146))) @@ -2447,451 +2447,451 @@ (|has| |#1| (-120)) (((|#1| |#1|) . T)) ((((-86)) . T) ((|#1|) . T)) -((((-86)) . T) ((|#1|) . T) (((-483)) . T)) +((((-86)) . T) ((|#1|) . T) (((-484)) . T)) (((|#1|) |has| |#1| (-146)) (($) . T)) -((((-771)) . T)) -(((|#1|) |has| |#1| (-146)) (($) . T) (((-483)) . T)) -((((-771)) . T)) -((((-445)) . T)) -(|has| |#1| (-754)) -((($) |has| |#1| (-754))) -(|has| |#1| (-754)) -(|has| |#1| (-754)) -(|has| |#1| (-754)) -(|has| |#1| (-754)) -(|has| |#1| (-754)) -(|has| |#1| (-754)) -(|has| |#1| (-754)) -(|has| |#1| (-754)) -(|has| |#1| (-754)) -(|has| |#1| (-754)) -(|has| |#1| (-754)) -(|has| |#1| (-754)) -(OR (|has| |#1| (-21)) (|has| |#1| (-754))) -(OR (|has| |#1| (-21)) (|has| |#1| (-754))) -(OR (|has| |#1| (-21)) (|has| |#1| (-754))) -((($) |has| |#1| (-754)) (((-483)) OR (|has| |#1| (-21)) (|has| |#1| (-754)))) -(OR (|has| |#1| (-21)) (|has| |#1| (-754))) -((((-348 (-483))) |has| |#1| (-949 (-348 (-483)))) (((-483)) |has| |#1| (-949 (-483))) ((|#1|) . T)) -((((-348 (-483))) |has| |#1| (-949 (-348 (-483)))) (((-483)) OR (|has| |#1| (-754)) (|has| |#1| (-949 (-483)))) ((|#1|) . T)) -(((|#1|) . T)) -((((-771)) . T)) -(((|#1|) . T)) -((((-771)) |has| |#1| (-551 (-771))) ((|#1|) . T)) +((((-772)) . T)) +(((|#1|) |has| |#1| (-146)) (($) . T) (((-484)) . T)) +((((-772)) . T)) +((((-446)) . T)) +(|has| |#1| (-755)) +((($) |has| |#1| (-755))) +(|has| |#1| (-755)) +(|has| |#1| (-755)) +(|has| |#1| (-755)) +(|has| |#1| (-755)) +(|has| |#1| (-755)) +(|has| |#1| (-755)) +(|has| |#1| (-755)) +(|has| |#1| (-755)) +(|has| |#1| (-755)) +(|has| |#1| (-755)) +(|has| |#1| (-755)) +(|has| |#1| (-755)) +(OR (|has| |#1| (-21)) (|has| |#1| (-755))) +(OR (|has| |#1| (-21)) (|has| |#1| (-755))) +(OR (|has| |#1| (-21)) (|has| |#1| (-755))) +((($) |has| |#1| (-755)) (((-484)) OR (|has| |#1| (-21)) (|has| |#1| (-755)))) +(OR (|has| |#1| (-21)) (|has| |#1| (-755))) +((((-349 (-484))) |has| |#1| (-950 (-349 (-484)))) (((-484)) |has| |#1| (-950 (-484))) ((|#1|) . T)) +((((-349 (-484))) |has| |#1| (-950 (-349 (-484)))) (((-484)) OR (|has| |#1| (-755)) (|has| |#1| (-950 (-484)))) ((|#1|) . T)) +(((|#1|) . T)) +((((-772)) . T)) +(((|#1|) . T)) +((((-772)) |has| |#1| (-552 (-772))) ((|#1|) . T)) (((|#1|) . T)) (((|#1|) |has| |#1| (-146))) (((|#1| |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-771)) . T)) -((($) . T) (((-483)) . T) ((|#1|) . T)) +((((-772)) . T)) +((($) . T) (((-484)) . T) ((|#1|) . T)) ((($) . T) ((|#1|) . T)) (((|#1|) |has| |#1| (-146))) (((|#1|) |has| |#1| (-146))) (((|#1|) . T)) -((((-483)) . T) ((|#1|) . T) (((-348 (-483))) |has| |#1| (-949 (-348 (-483))))) -(((|#1|) . T) (((-483)) |has| |#1| (-949 (-483))) (((-348 (-483))) |has| |#1| (-949 (-348 (-483))))) +((((-484)) . T) ((|#1|) . T) (((-349 (-484))) |has| |#1| (-950 (-349 (-484))))) +(((|#1|) . T) (((-484)) |has| |#1| (-950 (-484))) (((-349 (-484))) |has| |#1| (-950 (-349 (-484))))) (((|#1|) . T)) (((|#2|) |has| |#2| (-146))) (((|#2| |#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) -((((-771)) . T)) -((($) . T) (((-483)) . T) ((|#2|) . T)) +((((-772)) . T)) +((($) . T) (((-484)) . T) ((|#2|) . T)) ((($) . T) ((|#2|) . T)) (((|#2|) |has| |#2| (-146))) (((|#2|) |has| |#2| (-146))) (((|#2|) . T)) -((((-1174 |#1|)) . T) (((-483)) . T) ((|#2|) . T) (((-348 (-483))) |has| |#2| (-949 (-348 (-483))))) -(((|#2|) . T) (((-483)) |has| |#2| (-949 (-483))) (((-348 (-483))) |has| |#2| (-949 (-348 (-483))))) +((((-1175 |#1|)) . T) (((-484)) . T) ((|#2|) . T) (((-349 (-484))) |has| |#2| (-950 (-349 (-484))))) +(((|#2|) . T) (((-484)) |has| |#2| (-950 (-484))) (((-349 (-484))) |has| |#2| (-950 (-349 (-484))))) (((|#2|) . T)) -((((-771)) . T)) -((((-771)) . T)) -((((-771)) . T)) -((((-799 (-483))) . T) (((-799 (-328))) . T) (((-472)) . T) (((-1088)) . T)) -((((-771)) . T)) -((((-771)) . T)) +((((-772)) . T)) +((((-772)) . T)) +((((-772)) . T)) +((((-800 (-484))) . T) (((-800 (-329))) . T) (((-473)) . T) (((-1089)) . T)) +((((-772)) . T)) +((((-772)) . T)) (((|#1|) |has| |#1| (-146))) (((|#1|) |has| |#1| (-146))) (((|#1|) |has| |#1| (-146))) (((|#1|) |has| |#1| (-146))) (((|#1| |#1|) |has| |#1| (-146))) (((|#1|) |has| |#1| (-146))) -((((-856 |#1|)) . T)) -(((|#1|) |has| |#1| (-146)) (((-856 |#1|)) . T) (((-483)) . T)) +((((-857 |#1|)) . T)) +(((|#1|) |has| |#1| (-146)) (((-857 |#1|)) . T) (((-484)) . T)) (((|#1|) |has| |#1| (-146)) (($) . T)) -((((-856 |#1|)) . T) (((-771)) . T)) -(((|#1|) |has| |#1| (-146)) (($) . T) (((-483)) . T)) +((((-857 |#1|)) . T) (((-772)) . T)) +(((|#1|) |has| |#1| (-146)) (($) . T) (((-484)) . T)) ((($) . T)) -((((-771)) . T)) -((($) . T) (((-483)) . T)) +((((-772)) . T)) +((($) . T) (((-484)) . T)) ((($) . T)) ((($ $) . T)) ((($) . T)) ((($) . T)) ((($) . T)) ((($) . T)) -((((-483)) . T) (($) . T)) -(((|#1|) . T)) -((((-771)) . T)) -((((-777 |#1|)) . T)) -((((-777 |#1|)) . T)) -((((-777 |#1|)) . T) (($) . T) (((-348 (-483))) . T)) -((($) . T) (((-483)) . T) (((-777 |#1|)) . T) (((-348 (-483))) . T)) -((((-777 |#1|)) . T) (($) . T) (((-348 (-483))) . T)) -((((-777 |#1|)) . T) (($) . T) (((-348 (-483))) . T)) -((((-777 |#1|)) . T) (((-348 (-483))) . T) (($) . T)) -((((-777 |#1|)) . T) (((-348 (-483))) . T) (($) . T)) -((((-777 |#1|) (-777 |#1|)) . T) (((-348 (-483)) (-348 (-483))) . T) (($ $) . T)) -((((-777 |#1|)) . T)) -((((-1088) (-777 |#1|)) |has| (-777 |#1|) (-454 (-1088) (-777 |#1|))) (((-777 |#1|) (-777 |#1|)) |has| (-777 |#1|) (-260 (-777 |#1|)))) -((((-777 |#1|)) |has| (-777 |#1|) (-260 (-777 |#1|)))) -((((-777 |#1|) $) |has| (-777 |#1|) (-241 (-777 |#1|) (-777 |#1|)))) -((((-777 |#1|)) . T)) -((($) . T) (((-777 |#1|)) . T) (((-348 (-483))) . T)) -((((-777 |#1|)) . T)) -((((-777 |#1|)) . T)) -((((-777 |#1|)) . T)) -((((-483)) . T) (((-777 |#1|)) . T) (($) . T) (((-348 (-483))) . T)) -((((-777 |#1|)) . T)) -((((-777 |#1|)) . T)) -((((-771)) . T)) +((((-484)) . T) (($) . T)) +(((|#1|) . T)) +((((-772)) . T)) +((((-778 |#1|)) . T)) +((((-778 |#1|)) . T)) +((((-778 |#1|)) . T) (($) . T) (((-349 (-484))) . T)) +((($) . T) (((-484)) . T) (((-778 |#1|)) . T) (((-349 (-484))) . T)) +((((-778 |#1|)) . T) (($) . T) (((-349 (-484))) . T)) +((((-778 |#1|)) . T) (($) . T) (((-349 (-484))) . T)) +((((-778 |#1|)) . T) (((-349 (-484))) . T) (($) . T)) +((((-778 |#1|)) . T) (((-349 (-484))) . T) (($) . T)) +((((-778 |#1|) (-778 |#1|)) . T) (((-349 (-484)) (-349 (-484))) . T) (($ $) . T)) +((((-778 |#1|)) . T)) +((((-1089) (-778 |#1|)) |has| (-778 |#1|) (-455 (-1089) (-778 |#1|))) (((-778 |#1|) (-778 |#1|)) |has| (-778 |#1|) (-260 (-778 |#1|)))) +((((-778 |#1|)) |has| (-778 |#1|) (-260 (-778 |#1|)))) +((((-778 |#1|) $) |has| (-778 |#1|) (-241 (-778 |#1|) (-778 |#1|)))) +((((-778 |#1|)) . T)) +((($) . T) (((-778 |#1|)) . T) (((-349 (-484))) . T)) +((((-778 |#1|)) . T)) +((((-778 |#1|)) . T)) +((((-778 |#1|)) . T)) +((((-484)) . T) (((-778 |#1|)) . T) (($) . T) (((-349 (-484))) . T)) +((((-778 |#1|)) . T)) +((((-778 |#1|)) . T)) +((((-772)) . T)) (|has| |#2| (-118)) -(OR (|has| |#2| (-120)) (|has| |#2| (-739))) +(OR (|has| |#2| (-120)) (|has| |#2| (-740))) (((|#2|) . T)) -((((-1088)) |has| |#2| (-808 (-1088)))) -((((-1088)) OR (|has| |#2| (-808 (-1088))) (|has| |#2| (-810 (-1088))))) -((($ (-1088)) OR (|has| |#2| (-808 (-1088))) (|has| |#2| (-810 (-1088))))) +((((-1089)) |has| |#2| (-809 (-1089)))) +((((-1089)) OR (|has| |#2| (-809 (-1089))) (|has| |#2| (-811 (-1089))))) +((($ (-1089)) OR (|has| |#2| (-809 (-1089))) (|has| |#2| (-811 (-1089))))) (((|#2|) . T)) (OR (|has| |#2| (-190)) (|has| |#2| (-189))) ((($) OR (|has| |#2| (-190)) (|has| |#2| (-189)))) (|has| |#2| (-190)) -(((|#2|) . T) (($) . T) (((-348 (-483))) . T)) -((($) . T) (((-483)) . T) ((|#2|) . T) (((-348 (-483))) . T)) -(((|#2|) . T) (($) . T) (((-348 (-483))) . T)) -(((|#2|) . T) (($) . T) (((-348 (-483))) . T)) -(((|#2|) . T) (((-348 (-483))) . T) (($) . T)) -(((|#2|) . T) (((-348 (-483))) . T) (($) . T)) -(((|#2| |#2|) . T) (((-348 (-483)) (-348 (-483))) . T) (($ $) . T)) -(((|#2|) . T)) -((((-1088) |#2|) |has| |#2| (-454 (-1088) |#2|)) ((|#2| |#2|) |has| |#2| (-260 |#2|))) +(((|#2|) . T) (($) . T) (((-349 (-484))) . T)) +((($) . T) (((-484)) . T) ((|#2|) . T) (((-349 (-484))) . T)) +(((|#2|) . T) (($) . T) (((-349 (-484))) . T)) +(((|#2|) . T) (($) . T) (((-349 (-484))) . T)) +(((|#2|) . T) (((-349 (-484))) . T) (($) . T)) +(((|#2|) . T) (((-349 (-484))) . T) (($) . T)) +(((|#2| |#2|) . T) (((-349 (-484)) (-349 (-484))) . T) (($ $) . T)) +(((|#2|) . T)) +((((-1089) |#2|) |has| |#2| (-455 (-1089) |#2|)) ((|#2| |#2|) |has| |#2| (-260 |#2|))) (((|#2|) |has| |#2| (-260 |#2|))) (((|#2| $) |has| |#2| (-241 |#2| |#2|))) (((|#2|) . T)) -((($) . T) ((|#2|) . T) (((-348 (-483))) . T) (((-483)) |has| |#2| (-579 (-483)))) -(((|#2|) . T) (((-483)) |has| |#2| (-579 (-483)))) -(((|#2|) . T)) -((((-483)) |has| |#2| (-795 (-483))) (((-328)) |has| |#2| (-795 (-328)))) -(|has| |#2| (-739)) -(|has| |#2| (-739)) -(|has| |#2| (-739)) -(OR (|has| |#2| (-739)) (|has| |#2| (-755))) -(OR (|has| |#2| (-739)) (|has| |#2| (-755))) -(|has| |#2| (-739)) -(|has| |#2| (-739)) -(|has| |#2| (-739)) -(((|#2|) . T)) -(|has| |#2| (-820)) -(|has| |#2| (-932)) -((((-472)) |has| |#2| (-552 (-472))) (((-799 (-483))) |has| |#2| (-552 (-799 (-483)))) (((-799 (-328))) |has| |#2| (-552 (-799 (-328)))) (((-328)) |has| |#2| (-932)) (((-179)) |has| |#2| (-932))) -((((-483)) . T) ((|#2|) . T) (($) . T) (((-348 (-483))) . T) (((-1088)) |has| |#2| (-949 (-1088)))) -((((-348 (-483))) |has| |#2| (-949 (-483))) (((-483)) |has| |#2| (-949 (-483))) (((-1088)) |has| |#2| (-949 (-1088))) ((|#2|) . T)) -(|has| |#2| (-1064)) -(((|#2|) . T)) -(-12 (|has| |#1| (-1012)) (|has| |#2| (-1012))) -(-12 (|has| |#1| (-1012)) (|has| |#2| (-1012))) -((((-771)) OR (-12 (|has| |#1| (-551 (-771))) (|has| |#2| (-551 (-771)))) (-12 (|has| |#1| (-1012)) (|has| |#2| (-1012))))) +((($) . T) ((|#2|) . T) (((-349 (-484))) . T) (((-484)) |has| |#2| (-580 (-484)))) +(((|#2|) . T) (((-484)) |has| |#2| (-580 (-484)))) +(((|#2|) . T)) +((((-484)) |has| |#2| (-796 (-484))) (((-329)) |has| |#2| (-796 (-329)))) +(|has| |#2| (-740)) +(|has| |#2| (-740)) +(|has| |#2| (-740)) +(OR (|has| |#2| (-740)) (|has| |#2| (-756))) +(OR (|has| |#2| (-740)) (|has| |#2| (-756))) +(|has| |#2| (-740)) +(|has| |#2| (-740)) +(|has| |#2| (-740)) +(((|#2|) . T)) +(|has| |#2| (-821)) +(|has| |#2| (-933)) +((((-473)) |has| |#2| (-553 (-473))) (((-800 (-484))) |has| |#2| (-553 (-800 (-484)))) (((-800 (-329))) |has| |#2| (-553 (-800 (-329)))) (((-329)) |has| |#2| (-933)) (((-179)) |has| |#2| (-933))) +((((-484)) . T) ((|#2|) . T) (($) . T) (((-349 (-484))) . T) (((-1089)) |has| |#2| (-950 (-1089)))) +((((-349 (-484))) |has| |#2| (-950 (-484))) (((-484)) |has| |#2| (-950 (-484))) (((-1089)) |has| |#2| (-950 (-1089))) ((|#2|) . T)) +(|has| |#2| (-1065)) +(((|#2|) . T)) +(-12 (|has| |#1| (-1013)) (|has| |#2| (-1013))) +(-12 (|has| |#1| (-1013)) (|has| |#2| (-1013))) +((((-772)) OR (-12 (|has| |#1| (-552 (-772))) (|has| |#2| (-552 (-772)))) (-12 (|has| |#1| (-1013)) (|has| |#2| (-1013))))) ((((-130)) . T)) -((((-771)) . T)) -((((-1093)) . T)) -((((-771)) . T) (((-1093)) . T)) -((((-1093)) . T)) -((((-771)) . T)) -((((-771)) . T)) -((((-1088)) . T) ((|#1|) . T)) -((((-1088)) . T) ((|#1|) . T)) -((((-771)) . T)) -((((-613 |#1|)) . T)) -((((-613 |#1|)) . T)) -((((-771)) . T)) -(((|#1|) . T)) -(OR (|has| |#1| (-72)) (|has| |#1| (-1012))) -((((-1114 |#1|)) . T) (((-771)) OR (|has| |#1| (-551 (-771))) (|has| |#1| (-1012)))) -(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012)))) -(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012)))) -(|has| |#1| (-1012)) +((((-772)) . T)) +((((-1094)) . T)) +((((-772)) . T) (((-1094)) . T)) +((((-1094)) . T)) +((((-772)) . T)) +((((-772)) . T)) +((((-1089)) . T) ((|#1|) . T)) +((((-1089)) . T) ((|#1|) . T)) +((((-772)) . T)) +((((-614 |#1|)) . T)) +((((-614 |#1|)) . T)) +((((-772)) . T)) +(((|#1|) . T)) +(OR (|has| |#1| (-72)) (|has| |#1| (-1013))) +((((-1115 |#1|)) . T) (((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-1013)))) +(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013)))) +(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013)))) +(|has| |#1| (-1013)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) -((((-771)) . T)) -(OR (|has| |#1| (-318)) (|has| |#1| (-755))) -(OR (|has| |#1| (-318)) (|has| |#1| (-755))) +((((-772)) . T)) +(OR (|has| |#1| (-319)) (|has| |#1| (-756))) +(OR (|has| |#1| (-319)) (|has| |#1| (-756))) (((|#1|) . T)) -((((-771)) . T)) -((((-483)) . T)) +((((-772)) . T)) +((((-484)) . T)) ((($) . T)) ((($) . T)) ((($) . T)) (|has| $ (-120)) ((($) . T)) -((((-771)) . T)) -((($) . T)) -((($) . T) (((-348 (-483))) . T)) -((($) . T) (((-483)) . T) (((-348 (-483))) . T)) -((($) . T) (((-348 (-483))) . T)) -((($) . T) (((-348 (-483))) . T)) -((($ $) . T) (((-348 (-483)) (-348 (-483))) . T)) -((((-348 (-483))) . T) (($) . T)) -((((-348 (-483))) . T) (($) . T)) -((((-348 (-483))) . T) (($) . T)) -((((-483)) . T) (((-348 (-483))) . T) (($) . T)) -((((-771)) . T)) -(((|#1|) . T) (($) . T) (((-348 (-483))) . T)) -(((|#1|) . T) (($) . T) (((-348 (-483))) . T)) -(((|#1| |#1|) . T) (($ $) . T) (((-348 (-483)) (-348 (-483))) . T)) -(((|#1|) . T) (((-348 (-483))) . T) (((-483)) . T) (($) . T)) -(((|#1|) . T) (((-348 (-483))) . T) (($) . T)) -(((|#1|) . T) (((-348 (-483))) . T) (($) . T)) -(((|#1|) . T) (((-348 (-483))) . T) (($) . T)) -(((|#1|) . T) (((-348 (-483))) . T) (($) . T)) -(((|#1|) . T) (((-348 (-483))) . T) (((-483)) . T) (($) . T)) -((((-771)) . T)) -((((-771)) . T)) -((((-771)) . T)) -((((-582 |#1|)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(|has| |#1| (-755)) -(|has| |#1| (-755)) -(((|#1|) . T)) -(OR (|has| |#1| (-72)) (|has| |#1| (-755)) (|has| |#1| (-1012))) -((((-771)) OR (|has| |#1| (-551 (-771))) (|has| |#1| (-755)) (|has| |#1| (-1012)))) -(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012)))) -(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012)))) -(OR (|has| |#1| (-755)) (|has| |#1| (-1012))) -(((|#1|) . T)) -((((-472)) |has| |#1| (-552 (-472)))) -((((-483) |#1|) . T)) -((((-1144 (-483)) $) . T) (((-483) |#1|) . T)) -((((-483) |#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-472)) |has| |#1| (-552 (-472))) (((-799 (-328))) |has| |#1| (-552 (-799 (-328)))) (((-799 (-483))) |has| |#1| (-552 (-799 (-483))))) -((($) . T)) -(((|#1| (-468 (-1088))) . T)) -(((|#1|) . T)) -((((-771)) . T)) -((($) . T) (((-483)) . T) (((-348 (-483))) |has| |#1| (-38 (-348 (-483)))) ((|#1|) . T)) +((((-772)) . T)) +((($) . T)) +((($) . T) (((-349 (-484))) . T)) +((($) . T) (((-484)) . T) (((-349 (-484))) . T)) +((($) . T) (((-349 (-484))) . T)) +((($) . T) (((-349 (-484))) . T)) +((($ $) . T) (((-349 (-484)) (-349 (-484))) . T)) +((((-349 (-484))) . T) (($) . T)) +((((-349 (-484))) . T) (($) . T)) +((((-349 (-484))) . T) (($) . T)) +((((-484)) . T) (((-349 (-484))) . T) (($) . T)) +((((-772)) . T)) +(((|#1|) . T) (($) . T) (((-349 (-484))) . T)) +(((|#1|) . T) (($) . T) (((-349 (-484))) . T)) +(((|#1| |#1|) . T) (($ $) . T) (((-349 (-484)) (-349 (-484))) . T)) +(((|#1|) . T) (((-349 (-484))) . T) (((-484)) . T) (($) . T)) +(((|#1|) . T) (((-349 (-484))) . T) (($) . T)) +(((|#1|) . T) (((-349 (-484))) . T) (($) . T)) +(((|#1|) . T) (((-349 (-484))) . T) (($) . T)) +(((|#1|) . T) (((-349 (-484))) . T) (($) . T)) +(((|#1|) . T) (((-349 (-484))) . T) (((-484)) . T) (($) . T)) +((((-772)) . T)) +((((-772)) . T)) +((((-772)) . T)) +((((-583 |#1|)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(|has| |#1| (-756)) +(|has| |#1| (-756)) +(((|#1|) . T)) +(OR (|has| |#1| (-72)) (|has| |#1| (-756)) (|has| |#1| (-1013))) +((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-756)) (|has| |#1| (-1013)))) +(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013)))) +(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013)))) +(OR (|has| |#1| (-756)) (|has| |#1| (-1013))) +(((|#1|) . T)) +((((-473)) |has| |#1| (-553 (-473)))) +((((-484) |#1|) . T)) +((((-1145 (-484)) $) . T) (((-484) |#1|) . T)) +((((-484) |#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-473)) |has| |#1| (-553 (-473))) (((-800 (-329))) |has| |#1| (-553 (-800 (-329)))) (((-800 (-484))) |has| |#1| (-553 (-800 (-484))))) +((($) . T)) +(((|#1| (-469 (-1089))) . T)) +(((|#1|) . T)) +((((-772)) . T)) +((($) . T) (((-484)) . T) (((-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((|#1|) . T)) (|has| |#1| (-118)) (|has| |#1| (-120)) -(OR (|has| |#1| (-146)) (|has| |#1| (-390)) (|has| |#1| (-494)) (|has| |#1| (-820))) -((((-348 (-483))) |has| |#1| (-38 (-348 (-483)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-390)) (|has| |#1| (-494)) (|has| |#1| (-820)))) -((((-348 (-483))) |has| |#1| (-38 (-348 (-483)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-390)) (|has| |#1| (-494)) (|has| |#1| (-820)))) -((((-348 (-483)) (-348 (-483))) |has| |#1| (-38 (-348 (-483)))) ((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-390)) (|has| |#1| (-494)) (|has| |#1| (-820)))) -(OR (|has| |#1| (-390)) (|has| |#1| (-494)) (|has| |#1| (-820))) -(OR (|has| |#1| (-390)) (|has| |#1| (-494)) (|has| |#1| (-820))) -((((-348 (-483))) |has| |#1| (-38 (-348 (-483)))) ((|#1|) |has| |#1| (-146)) (($) OR (|has| |#1| (-390)) (|has| |#1| (-494)) (|has| |#1| (-820)))) -((((-348 (-483))) |has| |#1| (-38 (-348 (-483)))) ((|#1|) |has| |#1| (-146)) (($) OR (|has| |#1| (-390)) (|has| |#1| (-494)) (|has| |#1| (-820)))) -((((-348 (-483))) |has| |#1| (-38 (-348 (-483)))) ((|#1|) |has| |#1| (-146)) (($) OR (|has| |#1| (-390)) (|has| |#1| (-494)) (|has| |#1| (-820)))) -(((|#1| (-468 (-1088))) . T)) -(((|#1|) . T)) -((($) . T) (((-348 (-483))) |has| |#1| (-38 (-348 (-483)))) ((|#1|) . T) (((-483)) |has| |#1| (-579 (-483)))) -(((|#1|) . T) (((-483)) |has| |#1| (-579 (-483)))) -(OR (|has| |#1| (-390)) (|has| |#1| (-820))) -((($ $) . T) (((-1088) $) . T) (((-1088) |#1|) . T)) -((((-1088)) . T)) -((($ (-1088)) . T)) -((((-1088)) . T)) -((((-328)) |has| |#1| (-795 (-328))) (((-483)) |has| |#1| (-795 (-483)))) -(|has| |#1| (-820)) -(|has| |#1| (-820)) -((((-348 (-483))) |has| |#1| (-949 (-348 (-483)))) (((-483)) |has| |#1| (-949 (-483))) ((|#1|) . T) (((-1088)) . T)) -((((-483)) . T) (((-348 (-483))) OR (|has| |#1| (-38 (-348 (-483)))) (|has| |#1| (-949 (-348 (-483))))) ((|#1|) . T) (($) OR (|has| |#1| (-390)) (|has| |#1| (-494)) (|has| |#1| (-820))) (((-1088)) . T)) -(((|#1| (-468 (-1088)) (-1088)) . T)) -((((-1032)) . T) (((-771)) . T)) +(OR (|has| |#1| (-146)) (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))) +((((-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821)))) +((((-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821)))) +((((-349 (-484)) (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821)))) +(OR (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))) +(OR (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))) +((((-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((|#1|) |has| |#1| (-146)) (($) OR (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821)))) +((((-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((|#1|) |has| |#1| (-146)) (($) OR (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821)))) +((((-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((|#1|) |has| |#1| (-146)) (($) OR (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821)))) +(((|#1| (-469 (-1089))) . T)) +(((|#1|) . T)) +((($) . T) (((-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((|#1|) . T) (((-484)) |has| |#1| (-580 (-484)))) +(((|#1|) . T) (((-484)) |has| |#1| (-580 (-484)))) +(OR (|has| |#1| (-391)) (|has| |#1| (-821))) +((($ $) . T) (((-1089) $) . T) (((-1089) |#1|) . T)) +((((-1089)) . T)) +((($ (-1089)) . T)) +((((-1089)) . T)) +((((-329)) |has| |#1| (-796 (-329))) (((-484)) |has| |#1| (-796 (-484)))) +(|has| |#1| (-821)) +(|has| |#1| (-821)) +((((-349 (-484))) |has| |#1| (-950 (-349 (-484)))) (((-484)) |has| |#1| (-950 (-484))) ((|#1|) . T) (((-1089)) . T)) +((((-484)) . T) (((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-950 (-349 (-484))))) ((|#1|) . T) (($) OR (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))) (((-1089)) . T)) +(((|#1| (-469 (-1089)) (-1089)) . T)) +((((-1033)) . T) (((-772)) . T)) (((|#1| |#2|) . T)) -(|has| |#1| (-494)) -(|has| |#1| (-494)) -(OR (|has| |#1| (-146)) (|has| |#1| (-494))) +(|has| |#1| (-495)) +(|has| |#1| (-495)) +(OR (|has| |#1| (-146)) (|has| |#1| (-495))) (|has| |#1| (-120)) (|has| |#1| (-118)) -((($) |has| |#1| (-494)) ((|#1|) |has| |#1| (-146)) (((-348 (-483))) |has| |#1| (-38 (-348 (-483))))) -((($) |has| |#1| (-494)) ((|#1|) |has| |#1| (-146)) (((-348 (-483))) |has| |#1| (-38 (-348 (-483))))) -((((-771)) . T)) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-494))) ((|#1|) . T) (((-348 (-483))) |has| |#1| (-38 (-348 (-483))))) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-494))) ((|#1|) . T) (((-348 (-483))) |has| |#1| (-38 (-348 (-483))))) -((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-494))) ((|#1| |#1|) . T) (((-348 (-483)) (-348 (-483))) |has| |#1| (-38 (-348 (-483))))) -(((|#1|) . T) (((-348 (-483))) |has| |#1| (-38 (-348 (-483)))) (((-483)) . T) (($) . T)) -(((|#1|) . T) (((-348 (-483))) |has| |#1| (-38 (-348 (-483)))) (($) . T)) -((($) |has| |#1| (-494)) ((|#1|) . T) (((-348 (-483))) OR (|has| |#1| (-38 (-348 (-483)))) (|has| |#1| (-949 (-348 (-483))))) (((-483)) . T)) -((($) |has| |#1| (-494)) ((|#1|) |has| |#1| (-146)) (((-348 (-483))) |has| |#1| (-38 (-348 (-483))))) -(((|#1|) . T)) -(((|#1|) . T) (((-483)) |has| |#1| (-949 (-483))) (((-348 (-483))) |has| |#1| (-949 (-348 (-483))))) +((($) |has| |#1| (-495)) ((|#1|) |has| |#1| (-146)) (((-349 (-484))) |has| |#1| (-38 (-349 (-484))))) +((($) |has| |#1| (-495)) ((|#1|) |has| |#1| (-146)) (((-349 (-484))) |has| |#1| (-38 (-349 (-484))))) +((((-772)) . T)) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-495))) ((|#1|) . T) (((-349 (-484))) |has| |#1| (-38 (-349 (-484))))) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-495))) ((|#1|) . T) (((-349 (-484))) |has| |#1| (-38 (-349 (-484))))) +((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-495))) ((|#1| |#1|) . T) (((-349 (-484)) (-349 (-484))) |has| |#1| (-38 (-349 (-484))))) +(((|#1|) . T) (((-349 (-484))) |has| |#1| (-38 (-349 (-484)))) (((-484)) . T) (($) . T)) +(((|#1|) . T) (((-349 (-484))) |has| |#1| (-38 (-349 (-484)))) (($) . T)) +((($) |has| |#1| (-495)) ((|#1|) . T) (((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-950 (-349 (-484))))) (((-484)) . T)) +((($) |has| |#1| (-495)) ((|#1|) |has| |#1| (-146)) (((-349 (-484))) |has| |#1| (-38 (-349 (-484))))) +(((|#1|) . T)) +(((|#1|) . T) (((-484)) |has| |#1| (-950 (-484))) (((-349 (-484))) |has| |#1| (-950 (-349 (-484))))) (((|#1| |#2|) . T)) (((|#1|) . T)) -(|has| |#1| (-755)) -(|has| |#1| (-755)) +(|has| |#1| (-756)) +(|has| |#1| (-756)) +(((|#1|) . T)) +(OR (|has| |#1| (-72)) (|has| |#1| (-756)) (|has| |#1| (-1013))) +((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-756)) (|has| |#1| (-1013)))) +(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013)))) +(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013)))) +(OR (|has| |#1| (-756)) (|has| |#1| (-1013))) (((|#1|) . T)) -(OR (|has| |#1| (-72)) (|has| |#1| (-755)) (|has| |#1| (-1012))) -((((-771)) OR (|has| |#1| (-551 (-771))) (|has| |#1| (-755)) (|has| |#1| (-1012)))) -(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012)))) -(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012)))) -(OR (|has| |#1| (-755)) (|has| |#1| (-1012))) -(((|#1|) . T)) -((((-472)) |has| |#1| (-552 (-472)))) -((((-483) |#1|) . T)) -((((-1144 (-483)) $) . T) (((-483) |#1|) . T)) -((((-483) |#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(-12 (|has| |#1| (-716)) (|has| |#2| (-716))) -(-12 (|has| |#1| (-716)) (|has| |#2| (-716))) -(OR (-12 (|has| |#1| (-716)) (|has| |#2| (-716))) (-12 (|has| |#1| (-755)) (|has| |#2| (-755)))) -(OR (-12 (|has| |#1| (-716)) (|has| |#2| (-716))) (-12 (|has| |#1| (-755)) (|has| |#2| (-755)))) -(-12 (|has| |#1| (-716)) (|has| |#2| (-716))) -(-12 (|has| |#1| (-716)) (|has| |#2| (-716))) -((((-483)) -12 (|has| |#1| (-21)) (|has| |#2| (-21)))) +((((-473)) |has| |#1| (-553 (-473)))) +((((-484) |#1|) . T)) +((((-1145 (-484)) $) . T) (((-484) |#1|) . T)) +((((-484) |#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(-12 (|has| |#1| (-717)) (|has| |#2| (-717))) +(-12 (|has| |#1| (-717)) (|has| |#2| (-717))) +(OR (-12 (|has| |#1| (-717)) (|has| |#2| (-717))) (-12 (|has| |#1| (-756)) (|has| |#2| (-756)))) +(OR (-12 (|has| |#1| (-717)) (|has| |#2| (-717))) (-12 (|has| |#1| (-756)) (|has| |#2| (-756)))) +(-12 (|has| |#1| (-717)) (|has| |#2| (-717))) +(-12 (|has| |#1| (-717)) (|has| |#2| (-717))) +((((-484)) -12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) -(-12 (|has| |#1| (-411)) (|has| |#2| (-411))) -(OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-716)) (|has| |#2| (-716)))) -(OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-716)) (|has| |#2| (-716)))) -(OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-716)) (|has| |#2| (-716)))) -(OR (-12 (|has| |#1| (-411)) (|has| |#2| (-411))) (-12 (|has| |#1| (-662)) (|has| |#2| (-662)))) -(OR (-12 (|has| |#1| (-411)) (|has| |#2| (-411))) (-12 (|has| |#1| (-662)) (|has| |#2| (-662)))) -(-12 (|has| |#1| (-318)) (|has| |#2| (-318))) -((((-771)) . T)) -((((-771)) . T)) -(((|#1|) . T)) -((((-771)) . T)) -((((-1093)) . T)) -((((-771)) . T) (((-1093)) . T)) -((((-1093)) . T)) -((((-582 (-829))) . T) (((-771)) . T)) -((((-771)) . T)) -((((-771)) . T)) +(-12 (|has| |#1| (-412)) (|has| |#2| (-412))) +(OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-717)) (|has| |#2| (-717)))) +(OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-717)) (|has| |#2| (-717)))) +(OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-717)) (|has| |#2| (-717)))) +(OR (-12 (|has| |#1| (-412)) (|has| |#2| (-412))) (-12 (|has| |#1| (-663)) (|has| |#2| (-663)))) +(OR (-12 (|has| |#1| (-412)) (|has| |#2| (-412))) (-12 (|has| |#1| (-663)) (|has| |#2| (-663)))) +(-12 (|has| |#1| (-319)) (|has| |#2| (-319))) +((((-772)) . T)) +((((-772)) . T)) +(((|#1|) . T)) +((((-772)) . T)) +((((-1094)) . T)) +((((-772)) . T) (((-1094)) . T)) +((((-1094)) . T)) +((((-583 (-830))) . T) (((-772)) . T)) +((((-772)) . T)) +((((-772)) . T)) ((((-197 |#1| |#2|) |#2|) . T)) -((((-771)) . T)) -((((-483)) . T)) -((((-1093)) . T)) -((((-771)) . T) (((-1093)) . T)) -((((-1093)) . T)) -((((-771)) . T)) +((((-772)) . T)) +((((-484)) . T)) +((((-1094)) . T)) +((((-772)) . T) (((-1094)) . T)) +((((-1094)) . T)) +((((-772)) . T)) (|has| |#1| (-118)) (|has| |#1| (-120)) -((((-472)) |has| |#1| (-552 (-472)))) +((((-473)) |has| |#1| (-553 (-473)))) (((|#1|) . T)) -((((-1088)) |has| |#1| (-808 (-1088)))) -((((-1088)) OR (|has| |#1| (-808 (-1088))) (|has| |#1| (-810 (-1088))))) -((($ (-1088)) OR (|has| |#1| (-808 (-1088))) (|has| |#1| (-810 (-1088))))) +((((-1089)) |has| |#1| (-809 (-1089)))) +((((-1089)) OR (|has| |#1| (-809 (-1089))) (|has| |#1| (-811 (-1089))))) +((($ (-1089)) OR (|has| |#1| (-809 (-1089))) (|has| |#1| (-811 (-1089))))) (((|#1|) . T)) (OR (|has| |#1| (-190)) (|has| |#1| (-189))) ((($) OR (|has| |#1| (-190)) (|has| |#1| (-189)))) (|has| |#1| (-190)) (|has| |#1| (-312)) (OR (|has| |#1| (-246)) (|has| |#1| (-312))) -((((-483)) . T) ((|#1|) . T) (((-348 (-483))) OR (|has| |#1| (-312)) (|has| |#1| (-949 (-348 (-483)))))) -(((|#1|) . T) (((-348 (-483))) |has| |#1| (-312))) -(((|#1|) . T) (((-348 (-483))) |has| |#1| (-312))) -((($) . T) (((-483)) . T) ((|#1|) . T) (((-348 (-483))) |has| |#1| (-312))) -(((|#1|) . T) (($) OR (|has| |#1| (-246)) (|has| |#1| (-312))) (((-348 (-483))) |has| |#1| (-312))) -(((|#1|) . T) (($) OR (|has| |#1| (-246)) (|has| |#1| (-312))) (((-348 (-483))) |has| |#1| (-312))) -(((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-246)) (|has| |#1| (-312))) (((-348 (-483)) (-348 (-483))) |has| |#1| (-312))) -(((|#1|) . T) (((-348 (-483))) |has| |#1| (-312))) -(((|#1|) . T)) -((((-1088) |#1|) |has| |#1| (-454 (-1088) |#1|)) ((|#1| |#1|) |has| |#1| (-260 |#1|))) +((((-484)) . T) ((|#1|) . T) (((-349 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-950 (-349 (-484)))))) +(((|#1|) . T) (((-349 (-484))) |has| |#1| (-312))) +(((|#1|) . T) (((-349 (-484))) |has| |#1| (-312))) +((($) . T) (((-484)) . T) ((|#1|) . T) (((-349 (-484))) |has| |#1| (-312))) +(((|#1|) . T) (($) OR (|has| |#1| (-246)) (|has| |#1| (-312))) (((-349 (-484))) |has| |#1| (-312))) +(((|#1|) . T) (($) OR (|has| |#1| (-246)) (|has| |#1| (-312))) (((-349 (-484))) |has| |#1| (-312))) +(((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-246)) (|has| |#1| (-312))) (((-349 (-484)) (-349 (-484))) |has| |#1| (-312))) +(((|#1|) . T) (((-349 (-484))) |has| |#1| (-312))) +(((|#1|) . T)) +((((-1089) |#1|) |has| |#1| (-455 (-1089) |#1|)) ((|#1| |#1|) |has| |#1| (-260 |#1|))) (((|#1|) |has| |#1| (-260 |#1|))) (((|#1| $) |has| |#1| (-241 |#1| |#1|))) (((|#1|) . T)) -((($) . T) ((|#1|) . T) (((-348 (-483))) |has| |#1| (-312)) (((-483)) |has| |#1| (-579 (-483)))) -(((|#1|) . T) (((-483)) |has| |#1| (-579 (-483)))) -(((|#1|) . T)) -(((|#1|) . T) (((-483)) |has| |#1| (-949 (-483))) (((-348 (-483))) |has| |#1| (-949 (-348 (-483))))) -(|has| |#1| (-755)) -(|has| |#1| (-755)) -(((|#1|) . T)) -(((|#1|) . T)) -(OR (|has| |#1| (-72)) (|has| |#1| (-1012))) -((((-771)) OR (|has| |#1| (-551 (-771))) (|has| |#1| (-1012)))) -(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012)))) -(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012)))) -(|has| |#1| (-1012)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-348 |#2|) |#3|) . T)) -((((-348 (-483))) |has| (-348 |#2|) (-949 (-348 (-483)))) (((-483)) |has| (-348 |#2|) (-949 (-483))) (((-348 |#2|)) . T)) -((((-348 |#2|)) . T)) -((((-483)) |has| (-348 |#2|) (-579 (-483))) (((-348 |#2|)) . T)) -((((-348 |#2|)) . T)) -((((-348 |#2|) |#3|) . T)) -(|has| (-348 |#2|) (-120)) -((((-348 |#2|) |#3|) . T)) -(|has| (-348 |#2|) (-118)) -((((-348 |#2|)) . T) (((-348 (-483))) . T) (($) . T)) -((((-348 |#2|)) . T) (((-348 (-483))) . T) (($) . T)) -((((-348 |#2|)) . T) (((-348 (-483))) . T) (($) . T)) -(|has| (-348 |#2|) (-190)) -((($) OR (|has| (-348 |#2|) (-190)) (|has| (-348 |#2|) (-189)))) -(OR (|has| (-348 |#2|) (-190)) (|has| (-348 |#2|) (-189))) -((((-348 |#2|)) . T)) -((($ (-1088)) OR (|has| (-348 |#2|) (-808 (-1088))) (|has| (-348 |#2|) (-810 (-1088))))) -((((-1088)) OR (|has| (-348 |#2|) (-808 (-1088))) (|has| (-348 |#2|) (-810 (-1088))))) -((((-1088)) |has| (-348 |#2|) (-808 (-1088)))) -((((-348 |#2|)) . T)) +((($) . T) ((|#1|) . T) (((-349 (-484))) |has| |#1| (-312)) (((-484)) |has| |#1| (-580 (-484)))) +(((|#1|) . T) (((-484)) |has| |#1| (-580 (-484)))) +(((|#1|) . T)) +(((|#1|) . T) (((-484)) |has| |#1| (-950 (-484))) (((-349 (-484))) |has| |#1| (-950 (-349 (-484))))) +(|has| |#1| (-756)) +(|has| |#1| (-756)) +(((|#1|) . T)) +(((|#1|) . T)) +(OR (|has| |#1| (-72)) (|has| |#1| (-1013))) +((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-1013)))) +(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013)))) +(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013)))) +(|has| |#1| (-1013)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-349 |#2|) |#3|) . T)) +((((-349 (-484))) |has| (-349 |#2|) (-950 (-349 (-484)))) (((-484)) |has| (-349 |#2|) (-950 (-484))) (((-349 |#2|)) . T)) +((((-349 |#2|)) . T)) +((((-484)) |has| (-349 |#2|) (-580 (-484))) (((-349 |#2|)) . T)) +((((-349 |#2|)) . T)) +((((-349 |#2|) |#3|) . T)) +(|has| (-349 |#2|) (-120)) +((((-349 |#2|) |#3|) . T)) +(|has| (-349 |#2|) (-118)) +((((-349 |#2|)) . T) (((-349 (-484))) . T) (($) . T)) +((((-349 |#2|)) . T) (((-349 (-484))) . T) (($) . T)) +((((-349 |#2|)) . T) (((-349 (-484))) . T) (($) . T)) +(|has| (-349 |#2|) (-190)) +((($) OR (|has| (-349 |#2|) (-190)) (|has| (-349 |#2|) (-189)))) +(OR (|has| (-349 |#2|) (-190)) (|has| (-349 |#2|) (-189))) +((((-349 |#2|)) . T)) +((($ (-1089)) OR (|has| (-349 |#2|) (-809 (-1089))) (|has| (-349 |#2|) (-811 (-1089))))) +((((-1089)) OR (|has| (-349 |#2|) (-809 (-1089))) (|has| (-349 |#2|) (-811 (-1089))))) +((((-1089)) |has| (-349 |#2|) (-809 (-1089)))) +((((-349 |#2|)) . T)) (((|#3|) . T)) -((((-348 |#2|) (-348 |#2|)) . T) (((-348 (-483)) (-348 (-483))) . T) (($ $) . T)) -((((-348 |#2|)) . T) (((-348 (-483))) . T) (($) . T)) -((((-348 |#2|)) . T) (((-348 (-483))) . T) (($) . T)) -((((-771)) . T)) -((((-348 |#2|)) . T) (((-348 (-483))) . T) (((-483)) . T) (($) . T)) -((((-483)) |has| (-348 |#2|) (-579 (-483))) (((-348 |#2|)) . T) (((-348 (-483))) . T) (($) . T)) -((((-348 |#2|)) . T) (((-348 (-483))) . T) (($) . T) (((-483)) . T)) +((((-349 |#2|) (-349 |#2|)) . T) (((-349 (-484)) (-349 (-484))) . T) (($ $) . T)) +((((-349 |#2|)) . T) (((-349 (-484))) . T) (($) . T)) +((((-349 |#2|)) . T) (((-349 (-484))) . T) (($) . T)) +((((-772)) . T)) +((((-349 |#2|)) . T) (((-349 (-484))) . T) (((-484)) . T) (($) . T)) +((((-484)) |has| (-349 |#2|) (-580 (-484))) (((-349 |#2|)) . T) (((-349 (-484))) . T) (($) . T)) +((((-349 |#2|)) . T) (((-349 (-484))) . T) (($) . T) (((-484)) . T)) (((|#1| |#2| |#3|) . T)) -((((-348 (-483))) . T) (((-771)) . T)) -((((-483)) . T)) -((((-483)) . T)) -((($) . T)) -((((-483)) . T) (($) . T) (((-348 (-483))) . T)) -((($) . T) (((-483)) . T) (((-348 (-483))) . T)) -((($) . T) (((-483)) . T) (((-348 (-483))) . T)) -((((-483)) . T) (($) . T) (((-348 (-483))) . T)) -((((-483)) . T) (($) . T) (((-348 (-483))) . T)) -((((-483)) . T) (((-348 (-483))) . T) (($) . T)) -((((-483)) . T) (((-348 (-483))) . T) (($) . T)) -((((-483) (-483)) . T) (((-348 (-483)) (-348 (-483))) . T) (($ $) . T)) -((((-483)) . T)) -((((-483)) . T)) -((((-483)) . T)) -((((-483)) . T)) -((((-483)) . T)) -((((-483)) . T)) -((((-472)) . T) (((-799 (-483))) . T) (((-328)) . T) (((-179)) . T)) -((((-348 (-483))) . T) (((-483)) . T)) -((((-483)) . T) (($) . T) (((-348 (-483))) . T)) -((((-483)) . T)) -((((-1093)) . T)) -((((-771)) . T) (((-1093)) . T)) -((((-1093)) . T)) -((((-771)) . T)) -(((|#1|) . T) (($) . T) (((-483)) . T) (((-348 (-483))) . T)) -(((|#1|) . T) (($) . T) (((-348 (-483))) . T) (((-483)) . T)) -(((|#1|) . T) (((-348 (-483))) . T) (((-483)) . T) (($) . T)) -(((|#1|) . T) (((-348 (-483))) . T) (((-483)) . T) (($) . T)) -(((|#1| |#1|) . T) (((-348 (-483)) (-348 (-483))) . T) (((-483) (-483)) . T) (($ $) . T)) -(((|#1|) . T) (((-483)) . T) (((-348 (-483))) . T) (($) . T)) -(((|#1|) . T) (((-348 (-483))) . T) (((-483)) . T) (($) . T)) -(((|#1|) . T) (((-348 (-483))) . T) (((-483)) . T) (($) . T)) -(((|#1|) . T) (((-348 (-483))) . T) (((-483)) . T) (($) . T)) -(((|#1|) . T) (((-348 (-483))) . T)) -(((|#1|) . T) (((-483)) OR (|has| |#1| (-949 (-483))) (|has| (-348 (-483)) (-949 (-483)))) (((-348 (-483))) . T)) -((((-771)) . T)) +((((-349 (-484))) . T) (((-772)) . T)) +((((-484)) . T)) +((((-484)) . T)) +((($) . T)) +((((-484)) . T) (($) . T) (((-349 (-484))) . T)) +((($) . T) (((-484)) . T) (((-349 (-484))) . T)) +((($) . T) (((-484)) . T) (((-349 (-484))) . T)) +((((-484)) . T) (($) . T) (((-349 (-484))) . T)) +((((-484)) . T) (($) . T) (((-349 (-484))) . T)) +((((-484)) . T) (((-349 (-484))) . T) (($) . T)) +((((-484)) . T) (((-349 (-484))) . T) (($) . T)) +((((-484) (-484)) . T) (((-349 (-484)) (-349 (-484))) . T) (($ $) . T)) +((((-484)) . T)) +((((-484)) . T)) +((((-484)) . T)) +((((-484)) . T)) +((((-484)) . T)) +((((-484)) . T)) +((((-473)) . T) (((-800 (-484))) . T) (((-329)) . T) (((-179)) . T)) +((((-349 (-484))) . T) (((-484)) . T)) +((((-484)) . T) (($) . T) (((-349 (-484))) . T)) +((((-484)) . T)) +((((-1094)) . T)) +((((-772)) . T) (((-1094)) . T)) +((((-1094)) . T)) +((((-772)) . T)) +(((|#1|) . T) (($) . T) (((-484)) . T) (((-349 (-484))) . T)) +(((|#1|) . T) (($) . T) (((-349 (-484))) . T) (((-484)) . T)) +(((|#1|) . T) (((-349 (-484))) . T) (((-484)) . T) (($) . T)) +(((|#1|) . T) (((-349 (-484))) . T) (((-484)) . T) (($) . T)) +(((|#1| |#1|) . T) (((-349 (-484)) (-349 (-484))) . T) (((-484) (-484)) . T) (($ $) . T)) +(((|#1|) . T) (((-484)) . T) (((-349 (-484))) . T) (($) . T)) +(((|#1|) . T) (((-349 (-484))) . T) (((-484)) . T) (($) . T)) +(((|#1|) . T) (((-349 (-484))) . T) (((-484)) . T) (($) . T)) +(((|#1|) . T) (((-349 (-484))) . T) (((-484)) . T) (($) . T)) +(((|#1|) . T) (((-349 (-484))) . T)) +(((|#1|) . T) (((-484)) OR (|has| |#1| (-950 (-484))) (|has| (-349 (-484)) (-950 (-484)))) (((-349 (-484))) . T)) +((((-772)) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#4|) . T)) -((((-582 |#4|)) . T) (((-771)) . T)) -(((|#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1012)))) -(((|#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1012)))) +((((-583 |#4|)) . T) (((-772)) . T)) +(((|#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013)))) +(((|#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013)))) (((|#4|) . T)) -((((-472)) |has| |#4| (-552 (-472)))) +((((-473)) |has| |#4| (-553 (-473)))) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1|) . T)) @@ -2900,44 +2900,44 @@ (((|#1| |#1|) . T) (($ $) . T)) (((|#1|) . T) (($) . T)) (((|#1|) . T) (($) . T)) -((((-771)) . T)) -(((|#1|) . T) (((-483)) . T) (($) . T)) +((((-772)) . T)) +(((|#1|) . T) (((-484)) . T) (($) . T)) (((|#1|) . T) (($) . T)) -(((|#1|) . T) (((-483)) . T)) -((((-1093)) . T)) -((((-771)) . T) (((-1093)) . T)) -((((-1093)) . T)) -(((|#1| (-468 (-772 |#2|)) (-772 |#2|) (-702 |#1| (-772 |#2|))) . T)) -((((-702 |#1| (-772 |#2|))) . T)) -((((-582 (-702 |#1| (-772 |#2|)))) . T) (((-771)) . T)) -((((-702 |#1| (-772 |#2|))) |has| (-702 |#1| (-772 |#2|)) (-260 (-702 |#1| (-772 |#2|))))) -((((-702 |#1| (-772 |#2|)) (-702 |#1| (-772 |#2|))) |has| (-702 |#1| (-772 |#2|)) (-260 (-702 |#1| (-772 |#2|))))) -((((-702 |#1| (-772 |#2|))) . T)) -((((-472)) |has| (-702 |#1| (-772 |#2|)) (-552 (-472)))) -(((|#1| (-468 (-772 |#2|)) (-772 |#2|) (-702 |#1| (-772 |#2|))) . T)) -(((|#1| (-468 (-772 |#2|)) (-772 |#2|) (-702 |#1| (-772 |#2|))) . T)) -((((-472)) |has| |#3| (-552 (-472)))) +(((|#1|) . T) (((-484)) . T)) +((((-1094)) . T)) +((((-772)) . T) (((-1094)) . T)) +((((-1094)) . T)) +(((|#1| (-469 (-773 |#2|)) (-773 |#2|) (-703 |#1| (-773 |#2|))) . T)) +((((-703 |#1| (-773 |#2|))) . T)) +((((-583 (-703 |#1| (-773 |#2|)))) . T) (((-772)) . T)) +((((-703 |#1| (-773 |#2|))) |has| (-703 |#1| (-773 |#2|)) (-260 (-703 |#1| (-773 |#2|))))) +((((-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|))) |has| (-703 |#1| (-773 |#2|)) (-260 (-703 |#1| (-773 |#2|))))) +((((-703 |#1| (-773 |#2|))) . T)) +((((-473)) |has| (-703 |#1| (-773 |#2|)) (-553 (-473)))) +(((|#1| (-469 (-773 |#2|)) (-773 |#2|) (-703 |#1| (-773 |#2|))) . T)) +(((|#1| (-469 (-773 |#2|)) (-773 |#2|) (-703 |#1| (-773 |#2|))) . T)) +((((-473)) |has| |#3| (-553 (-473)))) (((|#3|) |has| |#3| (-312))) (((|#3| |#3|) . T)) (((|#3|) . T)) (((|#3|) . T)) -((((-629 |#3|)) . T) (((-771)) . T)) -((((-483)) . T) ((|#3|) . T)) +((((-630 |#3|)) . T) (((-772)) . T)) +((((-484)) . T) ((|#3|) . T)) (((|#3|) . T)) (((|#3|) . T)) -(((|#3| |#3|) -12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1012)))) -(((|#3|) -12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1012)))) +(((|#3| |#3|) -12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1013)))) +(((|#3|) -12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1013)))) (((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)))) (((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)))) (((|#1| |#2| |#3| (-197 |#2| |#3|) (-197 |#1| |#3|)) . T)) -(|has| |#1| (-1012)) -((((-771)) |has| |#1| (-1012))) -(|has| |#1| (-1012)) -((((-771)) . T)) +(|has| |#1| (-1013)) +((((-772)) |has| |#1| (-1013))) +(|has| |#1| (-1013)) +((((-772)) . T)) (((|#1| |#2|) . T)) -((((-1088)) . T)) -((((-771)) . T)) -((($) . T) (((-483)) . T)) +((((-1089)) . T)) +((((-772)) . T)) +((($) . T) (((-484)) . T)) ((($) . T)) ((($) . T)) ((($ $) . T)) @@ -2945,31 +2945,31 @@ ((($) . T)) ((($) . T)) ((($) . T)) -((((-483)) . T) (($) . T)) -((((-483)) . T)) -((($) . T) (((-483)) . T)) -((((-483)) . T)) -((((-472)) . T) (((-483)) . T) (((-799 (-483))) . T) (((-328)) . T) (((-179)) . T)) -((((-483)) . T)) -((((-1093)) . T)) -((((-771)) . T) (((-1093)) . T)) -((((-1093)) . T)) -((((-1093)) . T)) -((((-771)) . T) (((-1093)) . T)) -((((-1093)) . T)) +((((-484)) . T) (($) . T)) +((((-484)) . T)) +((($) . T) (((-484)) . T)) +((((-484)) . T)) +((((-473)) . T) (((-484)) . T) (((-800 (-484))) . T) (((-329)) . T) (((-179)) . T)) +((((-484)) . T)) +((((-1094)) . T)) +((((-772)) . T) (((-1094)) . T)) +((((-1094)) . T)) +((((-1094)) . T)) +((((-772)) . T) (((-1094)) . T)) +((((-1094)) . T)) ((((-249 |#3|)) . T)) ((((-249 |#3|)) . T)) (((|#3| |#3|) . T)) -((((-771)) . T)) -((((-771)) . T)) +((((-772)) . T)) +((((-772)) . T)) (((|#3| |#3|) . T)) -((((-771)) . T)) -((((-771)) . T)) +((((-772)) . T)) +((((-772)) . T)) (((|#2|) . T)) (((|#1|) |has| |#1| (-312))) -((((-1088)) -12 (|has| |#1| (-312)) (|has| |#1| (-808 (-1088))))) -((((-1088)) OR (-12 (|has| |#1| (-312)) (|has| |#1| (-808 (-1088)))) (-12 (|has| |#1| (-312)) (|has| |#1| (-810 (-1088)))))) -((($ (-1088)) OR (-12 (|has| |#1| (-312)) (|has| |#1| (-808 (-1088)))) (-12 (|has| |#1| (-312)) (|has| |#1| (-810 (-1088)))))) +((((-1089)) -12 (|has| |#1| (-312)) (|has| |#1| (-809 (-1089))))) +((((-1089)) OR (-12 (|has| |#1| (-312)) (|has| |#1| (-809 (-1089)))) (-12 (|has| |#1| (-312)) (|has| |#1| (-811 (-1089)))))) +((($ (-1089)) OR (-12 (|has| |#1| (-312)) (|has| |#1| (-809 (-1089)))) (-12 (|has| |#1| (-312)) (|has| |#1| (-811 (-1089)))))) (((|#1|) |has| |#1| (-312))) (OR (-12 (|has| |#1| (-190)) (|has| |#1| (-312))) (-12 (|has| |#1| (-189)) (|has| |#1| (-312))) (|has| |#1| (-299))) ((($) OR (-12 (|has| |#1| (-190)) (|has| |#1| (-312))) (-12 (|has| |#1| (-189)) (|has| |#1| (-312))) (|has| |#1| (-299)))) @@ -2982,167 +2982,167 @@ (OR (|has| |#1| (-312)) (|has| |#1| (-299))) (OR (|has| |#1| (-312)) (|has| |#1| (-299))) (OR (|has| |#1| (-312)) (|has| |#1| (-299))) -(OR (|has| |#1| (-318)) (|has| |#1| (-299))) +(OR (|has| |#1| (-319)) (|has| |#1| (-299))) (|has| |#1| (-299)) (|has| |#1| (-299)) (OR (|has| |#1| (-118)) (|has| |#1| (-299))) (|has| |#1| (-299)) (((|#1| |#2|) . T)) -((($) OR (|has| |#1| (-312)) (|has| |#1| (-299))) (((-348 (-483))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T)) -((($ $) . T) (((-348 (-483)) (-348 (-483))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1| |#1|) . T)) -((($) . T) (((-348 (-483))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T)) -((($) . T) (((-348 (-483))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T)) -((($) . T) (((-483)) . T) (((-348 (-483))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T)) -((($) OR (|has| |#1| (-312)) (|has| |#1| (-299))) (((-348 (-483))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T)) -((($) OR (|has| |#1| (-312)) (|has| |#1| (-299))) (((-348 (-483))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T)) -((((-483)) . T) (($) OR (|has| |#1| (-312)) (|has| |#1| (-299))) (((-348 (-483))) OR (|has| |#1| (-312)) (|has| |#1| (-299)) (|has| |#1| (-949 (-348 (-483))))) ((|#1|) . T)) +((($) OR (|has| |#1| (-312)) (|has| |#1| (-299))) (((-349 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T)) +((($ $) . T) (((-349 (-484)) (-349 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1| |#1|) . T)) +((($) . T) (((-349 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T)) +((($) . T) (((-349 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T)) +((($) . T) (((-484)) . T) (((-349 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T)) +((($) OR (|has| |#1| (-312)) (|has| |#1| (-299))) (((-349 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T)) +((($) OR (|has| |#1| (-312)) (|has| |#1| (-299))) (((-349 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T)) +((((-484)) . T) (($) OR (|has| |#1| (-312)) (|has| |#1| (-299))) (((-349 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-299)) (|has| |#1| (-950 (-349 (-484))))) ((|#1|) . T)) (|has| |#1| (-120)) (((|#1| |#2|) . T)) (((|#1|) . T)) -((($) . T) (((-348 (-483))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T) (((-483)) |has| |#1| (-579 (-483)))) -(((|#1|) . T) (((-483)) |has| |#1| (-579 (-483)))) +((($) . T) (((-349 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T) (((-484)) |has| |#1| (-580 (-484)))) +(((|#1|) . T) (((-484)) |has| |#1| (-580 (-484)))) (((|#1|) . T)) -(((|#1|) . T) (((-483)) |has| |#1| (-949 (-483))) (((-348 (-483))) |has| |#1| (-949 (-348 (-483))))) +(((|#1|) . T) (((-484)) |has| |#1| (-950 (-484))) (((-349 (-484))) |has| |#1| (-950 (-349 (-484))))) (((|#1| |#2|) . T)) -((((-1088)) . T)) -((((-771)) . T)) -((((-771)) . T)) +((((-1089)) . T)) +((((-772)) . T)) +((((-772)) . T)) (((|#1|) . T)) (((|#1|) . T)) (OR (|has| |#1| (-190)) (|has| |#1| (-189))) ((($) OR (|has| |#1| (-190)) (|has| |#1| (-189)))) -((((-771)) . T)) +((((-772)) . T)) (|has| |#1| (-190)) ((($) . T)) -(((|#1| (-468 (-999 (-1088))) (-999 (-1088))) . T)) -(|has| |#1| (-820)) -(|has| |#1| (-820)) -((((-1088)) OR (|has| |#1| (-808 (-1088))) (|has| |#1| (-810 (-1088)))) (((-999 (-1088))) . T)) -((($ (-1088)) OR (|has| |#1| (-808 (-1088))) (|has| |#1| (-810 (-1088)))) (($ (-999 (-1088))) . T)) -((((-1088)) |has| |#1| (-808 (-1088))) (((-999 (-1088))) . T)) -((($ $) . T) (((-1088) $) |has| |#1| (-190)) (((-1088) |#1|) |has| |#1| (-190)) (((-999 (-1088)) |#1|) . T) (((-999 (-1088)) $) . T)) -(OR (|has| |#1| (-390)) (|has| |#1| (-820))) -((((-483)) |has| |#1| (-579 (-483))) ((|#1|) . T)) -(((|#1|) . T)) -(((|#1| (-468 (-999 (-1088)))) . T)) -(OR (|has| |#1| (-390)) (|has| |#1| (-494)) (|has| |#1| (-820))) -(OR (|has| |#1| (-390)) (|has| |#1| (-494)) (|has| |#1| (-820))) -(OR (|has| |#1| (-146)) (|has| |#1| (-390)) (|has| |#1| (-494)) (|has| |#1| (-820))) +(((|#1| (-469 (-1000 (-1089))) (-1000 (-1089))) . T)) +(|has| |#1| (-821)) +(|has| |#1| (-821)) +((((-1089)) OR (|has| |#1| (-809 (-1089))) (|has| |#1| (-811 (-1089)))) (((-1000 (-1089))) . T)) +((($ (-1089)) OR (|has| |#1| (-809 (-1089))) (|has| |#1| (-811 (-1089)))) (($ (-1000 (-1089))) . T)) +((((-1089)) |has| |#1| (-809 (-1089))) (((-1000 (-1089))) . T)) +((($ $) . T) (((-1089) $) |has| |#1| (-190)) (((-1089) |#1|) |has| |#1| (-190)) (((-1000 (-1089)) |#1|) . T) (((-1000 (-1089)) $) . T)) +(OR (|has| |#1| (-391)) (|has| |#1| (-821))) +((((-484)) |has| |#1| (-580 (-484))) ((|#1|) . T)) +(((|#1|) . T)) +(((|#1| (-469 (-1000 (-1089)))) . T)) +(OR (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))) +(OR (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))) +(OR (|has| |#1| (-146)) (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))) (|has| |#1| (-120)) (|has| |#1| (-118)) -((($) OR (|has| |#1| (-390)) (|has| |#1| (-494)) (|has| |#1| (-820))) ((|#1|) |has| |#1| (-146)) (((-348 (-483))) |has| |#1| (-38 (-348 (-483))))) -((($) OR (|has| |#1| (-390)) (|has| |#1| (-494)) (|has| |#1| (-820))) ((|#1|) |has| |#1| (-146)) (((-348 (-483))) |has| |#1| (-38 (-348 (-483))))) -((($) . T) (((-483)) |has| |#1| (-579 (-483))) ((|#1|) . T) (((-348 (-483))) |has| |#1| (-38 (-348 (-483))))) -((((-483)) . T) (($) . T) ((|#1|) . T) (((-348 (-483))) |has| |#1| (-38 (-348 (-483))))) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-390)) (|has| |#1| (-494)) (|has| |#1| (-820))) ((|#1|) . T) (((-348 (-483))) |has| |#1| (-38 (-348 (-483))))) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-390)) (|has| |#1| (-494)) (|has| |#1| (-820))) ((|#1|) . T) (((-348 (-483))) |has| |#1| (-38 (-348 (-483))))) -((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-390)) (|has| |#1| (-494)) (|has| |#1| (-820))) ((|#1| |#1|) . T) (((-348 (-483)) (-348 (-483))) |has| |#1| (-38 (-348 (-483))))) -((($) OR (|has| |#1| (-390)) (|has| |#1| (-494)) (|has| |#1| (-820))) ((|#1|) |has| |#1| (-146)) (((-348 (-483))) |has| |#1| (-38 (-348 (-483))))) +((($) OR (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) |has| |#1| (-146)) (((-349 (-484))) |has| |#1| (-38 (-349 (-484))))) +((($) OR (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) |has| |#1| (-146)) (((-349 (-484))) |has| |#1| (-38 (-349 (-484))))) +((($) . T) (((-484)) |has| |#1| (-580 (-484))) ((|#1|) . T) (((-349 (-484))) |has| |#1| (-38 (-349 (-484))))) +((((-484)) . T) (($) . T) ((|#1|) . T) (((-349 (-484))) |has| |#1| (-38 (-349 (-484))))) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) . T) (((-349 (-484))) |has| |#1| (-38 (-349 (-484))))) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) . T) (((-349 (-484))) |has| |#1| (-38 (-349 (-484))))) +((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1| |#1|) . T) (((-349 (-484)) (-349 (-484))) |has| |#1| (-38 (-349 (-484))))) +((($) OR (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) |has| |#1| (-146)) (((-349 (-484))) |has| |#1| (-38 (-349 (-484))))) (((|#1|) . T)) -(((|#1| (-468 (-999 (-1088)))) . T)) -((((-1037 |#1| (-1088))) . T) (((-999 (-1088))) . T) ((|#1|) . T) (((-483)) |has| |#1| (-949 (-483))) (((-348 (-483))) |has| |#1| (-949 (-348 (-483)))) (((-1088)) . T)) -((((-1037 |#1| (-1088))) . T) (((-483)) . T) (((-999 (-1088))) . T) (($) OR (|has| |#1| (-390)) (|has| |#1| (-494)) (|has| |#1| (-820))) ((|#1|) . T) (((-348 (-483))) OR (|has| |#1| (-38 (-348 (-483)))) (|has| |#1| (-949 (-348 (-483))))) (((-1088)) . T)) -(((|#1| (-1088) (-999 (-1088)) (-468 (-999 (-1088)))) . T)) +(((|#1| (-469 (-1000 (-1089)))) . T)) +((((-1038 |#1| (-1089))) . T) (((-1000 (-1089))) . T) ((|#1|) . T) (((-484)) |has| |#1| (-950 (-484))) (((-349 (-484))) |has| |#1| (-950 (-349 (-484)))) (((-1089)) . T)) +((((-1038 |#1| (-1089))) . T) (((-484)) . T) (((-1000 (-1089))) . T) (($) OR (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) . T) (((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-950 (-349 (-484))))) (((-1089)) . T)) +(((|#1| (-1089) (-1000 (-1089)) (-469 (-1000 (-1089)))) . T)) ((($) . T)) -((((-771)) . T)) +((((-772)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#1| (-582 |#1|)) |has| |#1| (-754))) -(|has| |#1| (-1012)) -(|has| |#1| (-1012)) -(|has| |#1| (-1012)) -((((-771)) |has| |#1| (-1012))) -(|has| |#1| (-1012)) +(((|#1| (-583 |#1|)) |has| |#1| (-755))) +(|has| |#1| (-1013)) +(|has| |#1| (-1013)) +(|has| |#1| (-1013)) +((((-772)) |has| |#1| (-1013))) +(|has| |#1| (-1013)) (((|#1|) . T)) (((|#1|) . T)) -((((-1093)) . T)) -((((-771)) . T) (((-1093)) . T)) -((((-1093)) . T)) -(|has| (-1000 |#1|) (-1012)) -((((-771)) |has| (-1000 |#1|) (-1012))) -(|has| (-1000 |#1|) (-1012)) -((((-1093)) . T)) -((((-771)) . T) (((-1093)) . T)) -((((-1093)) . T)) +((((-1094)) . T)) +((((-772)) . T) (((-1094)) . T)) +((((-1094)) . T)) +(|has| (-1001 |#1|) (-1013)) +((((-772)) |has| (-1001 |#1|) (-1013))) +(|has| (-1001 |#1|) (-1013)) +((((-1094)) . T)) +((((-772)) . T) (((-1094)) . T)) +((((-1094)) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-771)) . T)) -(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012)))) -(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012)))) +((((-772)) . T)) +(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013)))) +(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013)))) (((|#1|) . T)) (((|#1|) . T)) -((((-472)) |has| |#1| (-552 (-472)))) +((((-473)) |has| |#1| (-553 (-473)))) (((|#1|) . T)) -(|has| |#1| (-318)) +(|has| |#1| (-319)) (((|#1|) . T)) (((|#1|) . T)) -((((-771)) . T)) -((((-582 $)) . T) (((-1071)) . T) (((-1088)) . T) (((-483)) . T) (((-179)) . T) (((-771)) . T)) -((((-483) $) . T) (((-582 (-483)) $) . T)) -((((-771)) . T)) -((((-1071) (-1088) (-483) (-179) (-771)) . T)) -((((-582 $)) . T) ((|#1|) . T) ((|#2|) . T) ((|#3|) . T) ((|#4|) . T) ((|#5|) . T)) -((((-483) $) . T) (((-582 (-483)) $) . T)) -((((-771)) . T)) +((((-772)) . T)) +((((-583 $)) . T) (((-1072)) . T) (((-1089)) . T) (((-484)) . T) (((-179)) . T) (((-772)) . T)) +((((-484) $) . T) (((-583 (-484)) $) . T)) +((((-772)) . T)) +((((-1072) (-1089) (-484) (-179) (-772)) . T)) +((((-583 $)) . T) ((|#1|) . T) ((|#2|) . T) ((|#3|) . T) ((|#4|) . T) ((|#5|) . T)) +((((-484) $) . T) (((-583 (-484)) $) . T)) +((((-772)) . T)) (((|#1| |#2| |#3| |#4| |#5|) . T)) -((((-771)) . T)) +((((-772)) . T)) (((|#1|) . T)) (((|#1| |#1| |#1|) . T)) (((|#1|) . T)) -(OR (|has| |#3| (-21)) (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-960))) -(OR (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-104)) (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-716)) (|has| |#3| (-960))) -(OR (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-104)) (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-318)) (|has| |#3| (-662)) (|has| |#3| (-716)) (|has| |#3| (-755)) (|has| |#3| (-960)) (|has| |#3| (-1012))) -(OR (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-72)) (|has| |#3| (-104)) (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-318)) (|has| |#3| (-662)) (|has| |#3| (-716)) (|has| |#3| (-755)) (|has| |#3| (-960)) (|has| |#3| (-1012))) -(OR (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-104)) (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-716)) (|has| |#3| (-960))) -(OR (|has| |#3| (-21)) (|has| |#3| (-104)) (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-716)) (|has| |#3| (-960))) -(((|#3| |#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-960)))) -(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-662)) (|has| |#3| (-960)))) -(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-960)))) -((((-771)) OR (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-104)) (|has| |#3| (-551 (-771))) (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-318)) (|has| |#3| (-662)) (|has| |#3| (-716)) (|has| |#3| (-755)) (|has| |#3| (-960)) (|has| |#3| (-1012))) (((-1177 |#3|)) . T)) -(((|#3|) |has| |#3| (-960))) -((((-1088)) -12 (|has| |#3| (-808 (-1088))) (|has| |#3| (-960)))) -((((-1088)) OR (-12 (|has| |#3| (-808 (-1088))) (|has| |#3| (-960))) (-12 (|has| |#3| (-810 (-1088))) (|has| |#3| (-960))))) -((($ (-1088)) OR (-12 (|has| |#3| (-808 (-1088))) (|has| |#3| (-960))) (-12 (|has| |#3| (-810 (-1088))) (|has| |#3| (-960))))) -(((|#3|) |has| |#3| (-960))) -(OR (-12 (|has| |#3| (-190)) (|has| |#3| (-960))) (-12 (|has| |#3| (-189)) (|has| |#3| (-960)))) -((($) OR (-12 (|has| |#3| (-190)) (|has| |#3| (-960))) (-12 (|has| |#3| (-189)) (|has| |#3| (-960))))) -(|has| |#3| (-960)) -(|has| |#3| (-960)) -(|has| |#3| (-960)) -(|has| |#3| (-960)) -(|has| |#3| (-960)) -((((-483)) OR (|has| |#3| (-21)) (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-960))) ((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-662)) (|has| |#3| (-960))) (($) |has| |#3| (-960))) -(-12 (|has| |#3| (-190)) (|has| |#3| (-960))) -(|has| |#3| (-318)) -(((|#3|) |has| |#3| (-960))) -(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-960))) (($) |has| |#3| (-960)) (((-483)) -12 (|has| |#3| (-579 (-483))) (|has| |#3| (-960)))) -(((|#3|) |has| |#3| (-960)) (((-483)) -12 (|has| |#3| (-579 (-483))) (|has| |#3| (-960)))) -(((|#3|) |has| |#3| (-1012))) -((((-483)) OR (-12 (|has| |#3| (-949 (-483))) (|has| |#3| (-1012))) (|has| |#3| (-960))) ((|#3|) |has| |#3| (-1012)) (((-348 (-483))) -12 (|has| |#3| (-949 (-348 (-483)))) (|has| |#3| (-1012)))) -(((|#3|) |has| |#3| (-1012)) (((-483)) -12 (|has| |#3| (-949 (-483))) (|has| |#3| (-1012))) (((-348 (-483))) -12 (|has| |#3| (-949 (-348 (-483)))) (|has| |#3| (-1012)))) -((((-483) |#3|) . T)) -(((|#3|) -12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1012)))) -(((|#3| |#3|) -12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1012)))) +(OR (|has| |#3| (-21)) (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-961))) +(OR (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-104)) (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-717)) (|has| |#3| (-961))) +(OR (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-104)) (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-319)) (|has| |#3| (-663)) (|has| |#3| (-717)) (|has| |#3| (-756)) (|has| |#3| (-961)) (|has| |#3| (-1013))) +(OR (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-72)) (|has| |#3| (-104)) (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-319)) (|has| |#3| (-663)) (|has| |#3| (-717)) (|has| |#3| (-756)) (|has| |#3| (-961)) (|has| |#3| (-1013))) +(OR (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-104)) (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-717)) (|has| |#3| (-961))) +(OR (|has| |#3| (-21)) (|has| |#3| (-104)) (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-717)) (|has| |#3| (-961))) +(((|#3| |#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-961)))) +(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-663)) (|has| |#3| (-961)))) +(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-961)))) +((((-772)) OR (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-104)) (|has| |#3| (-552 (-772))) (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-319)) (|has| |#3| (-663)) (|has| |#3| (-717)) (|has| |#3| (-756)) (|has| |#3| (-961)) (|has| |#3| (-1013))) (((-1178 |#3|)) . T)) +(((|#3|) |has| |#3| (-961))) +((((-1089)) -12 (|has| |#3| (-809 (-1089))) (|has| |#3| (-961)))) +((((-1089)) OR (-12 (|has| |#3| (-809 (-1089))) (|has| |#3| (-961))) (-12 (|has| |#3| (-811 (-1089))) (|has| |#3| (-961))))) +((($ (-1089)) OR (-12 (|has| |#3| (-809 (-1089))) (|has| |#3| (-961))) (-12 (|has| |#3| (-811 (-1089))) (|has| |#3| (-961))))) +(((|#3|) |has| |#3| (-961))) +(OR (-12 (|has| |#3| (-190)) (|has| |#3| (-961))) (-12 (|has| |#3| (-189)) (|has| |#3| (-961)))) +((($) OR (-12 (|has| |#3| (-190)) (|has| |#3| (-961))) (-12 (|has| |#3| (-189)) (|has| |#3| (-961))))) +(|has| |#3| (-961)) +(|has| |#3| (-961)) +(|has| |#3| (-961)) +(|has| |#3| (-961)) +(|has| |#3| (-961)) +((((-484)) OR (|has| |#3| (-21)) (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-961))) ((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-663)) (|has| |#3| (-961))) (($) |has| |#3| (-961))) +(-12 (|has| |#3| (-190)) (|has| |#3| (-961))) +(|has| |#3| (-319)) +(((|#3|) |has| |#3| (-961))) +(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-961))) (($) |has| |#3| (-961)) (((-484)) -12 (|has| |#3| (-580 (-484))) (|has| |#3| (-961)))) +(((|#3|) |has| |#3| (-961)) (((-484)) -12 (|has| |#3| (-580 (-484))) (|has| |#3| (-961)))) +(((|#3|) |has| |#3| (-1013))) +((((-484)) OR (-12 (|has| |#3| (-950 (-484))) (|has| |#3| (-1013))) (|has| |#3| (-961))) ((|#3|) |has| |#3| (-1013)) (((-349 (-484))) -12 (|has| |#3| (-950 (-349 (-484)))) (|has| |#3| (-1013)))) +(((|#3|) |has| |#3| (-1013)) (((-484)) -12 (|has| |#3| (-950 (-484))) (|has| |#3| (-1013))) (((-349 (-484))) -12 (|has| |#3| (-950 (-349 (-484)))) (|has| |#3| (-1013)))) +((((-484) |#3|) . T)) +(((|#3|) -12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1013)))) +(((|#3| |#3|) -12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1013)))) (((|#3|) . T)) -((((-483) |#3|) . T)) -((((-483) |#3|) . T)) -(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-662)))) +((((-484) |#3|) . T)) +((((-484) |#3|) . T)) +(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-663)))) (((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)))) -(|has| |#3| (-716)) -(|has| |#3| (-716)) -(OR (|has| |#3| (-716)) (|has| |#3| (-755))) -(OR (|has| |#3| (-716)) (|has| |#3| (-755))) -(|has| |#3| (-716)) -(|has| |#3| (-716)) +(|has| |#3| (-717)) +(|has| |#3| (-717)) +(OR (|has| |#3| (-717)) (|has| |#3| (-756))) +(OR (|has| |#3| (-717)) (|has| |#3| (-756))) +(|has| |#3| (-717)) +(|has| |#3| (-717)) (((|#3|) |has| |#3| (-312))) (((|#1| |#3|) . T)) -((((-771)) . T)) -((((-1093)) . T)) -((((-771)) . T) (((-1093)) . T)) -((((-1093)) . T)) -((((-771)) . T)) -((($) . T) (((-483)) . T)) +((((-772)) . T)) +((((-1094)) . T)) +((((-772)) . T) (((-1094)) . T)) +((((-1094)) . T)) +((((-772)) . T)) +((($) . T) (((-484)) . T)) ((($) . T)) ((($) . T)) ((($ $) . T)) @@ -3150,775 +3150,775 @@ ((($) . T)) ((($) . T)) ((($) . T)) -((((-483)) . T) (($) . T)) -((((-483)) . T)) -((($) . T) (((-483)) . T)) -((((-483)) . T)) -((((-472)) . T) (((-483)) . T) (((-799 (-483))) . T) (((-328)) . T) (((-179)) . T)) -((((-483)) . T)) -((((-472)) -12 (|has| |#1| (-552 (-472))) (|has| |#2| (-552 (-472)))) (((-799 (-328))) -12 (|has| |#1| (-552 (-799 (-328)))) (|has| |#2| (-552 (-799 (-328))))) (((-799 (-483))) -12 (|has| |#1| (-552 (-799 (-483)))) (|has| |#2| (-552 (-799 (-483)))))) +((((-484)) . T) (($) . T)) +((((-484)) . T)) +((($) . T) (((-484)) . T)) +((((-484)) . T)) +((((-473)) . T) (((-484)) . T) (((-800 (-484))) . T) (((-329)) . T) (((-179)) . T)) +((((-484)) . T)) +((((-473)) -12 (|has| |#1| (-553 (-473))) (|has| |#2| (-553 (-473)))) (((-800 (-329))) -12 (|has| |#1| (-553 (-800 (-329)))) (|has| |#2| (-553 (-800 (-329))))) (((-800 (-484))) -12 (|has| |#1| (-553 (-800 (-484)))) (|has| |#2| (-553 (-800 (-484)))))) ((($) . T)) -(((|#1| (-468 |#2|)) . T)) +(((|#1| (-469 |#2|)) . T)) (((|#1|) . T)) -((((-771)) . T)) -((($) . T) (((-483)) . T) (((-348 (-483))) |has| |#1| (-38 (-348 (-483)))) ((|#1|) . T)) +((((-772)) . T)) +((($) . T) (((-484)) . T) (((-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((|#1|) . T)) (|has| |#1| (-118)) (|has| |#1| (-120)) -(OR (|has| |#1| (-146)) (|has| |#1| (-390)) (|has| |#1| (-494)) (|has| |#1| (-820))) -((((-348 (-483))) |has| |#1| (-38 (-348 (-483)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-390)) (|has| |#1| (-494)) (|has| |#1| (-820)))) -((((-348 (-483))) |has| |#1| (-38 (-348 (-483)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-390)) (|has| |#1| (-494)) (|has| |#1| (-820)))) -((((-348 (-483)) (-348 (-483))) |has| |#1| (-38 (-348 (-483)))) ((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-390)) (|has| |#1| (-494)) (|has| |#1| (-820)))) -(OR (|has| |#1| (-390)) (|has| |#1| (-494)) (|has| |#1| (-820))) -(OR (|has| |#1| (-390)) (|has| |#1| (-494)) (|has| |#1| (-820))) -((((-348 (-483))) |has| |#1| (-38 (-348 (-483)))) ((|#1|) |has| |#1| (-146)) (($) OR (|has| |#1| (-390)) (|has| |#1| (-494)) (|has| |#1| (-820)))) -((((-348 (-483))) |has| |#1| (-38 (-348 (-483)))) ((|#1|) |has| |#1| (-146)) (($) OR (|has| |#1| (-390)) (|has| |#1| (-494)) (|has| |#1| (-820)))) -((((-348 (-483))) |has| |#1| (-38 (-348 (-483)))) ((|#1|) |has| |#1| (-146)) (($) OR (|has| |#1| (-390)) (|has| |#1| (-494)) (|has| |#1| (-820)))) -(((|#1| (-468 |#2|)) . T)) -(((|#1|) . T)) -((($) . T) (((-348 (-483))) |has| |#1| (-38 (-348 (-483)))) ((|#1|) . T) (((-483)) |has| |#1| (-579 (-483)))) -(((|#1|) . T) (((-483)) |has| |#1| (-579 (-483)))) -(OR (|has| |#1| (-390)) (|has| |#1| (-820))) +(OR (|has| |#1| (-146)) (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))) +((((-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821)))) +((((-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821)))) +((((-349 (-484)) (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821)))) +(OR (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))) +(OR (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))) +((((-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((|#1|) |has| |#1| (-146)) (($) OR (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821)))) +((((-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((|#1|) |has| |#1| (-146)) (($) OR (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821)))) +((((-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((|#1|) |has| |#1| (-146)) (($) OR (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821)))) +(((|#1| (-469 |#2|)) . T)) +(((|#1|) . T)) +((($) . T) (((-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((|#1|) . T) (((-484)) |has| |#1| (-580 (-484)))) +(((|#1|) . T) (((-484)) |has| |#1| (-580 (-484)))) +(OR (|has| |#1| (-391)) (|has| |#1| (-821))) ((($ $) . T) ((|#2| $) . T) ((|#2| |#1|) . T)) (((|#2|) . T)) ((($ |#2|) . T)) (((|#2|) . T)) -((((-328)) -12 (|has| |#1| (-795 (-328))) (|has| |#2| (-795 (-328)))) (((-483)) -12 (|has| |#1| (-795 (-483))) (|has| |#2| (-795 (-483))))) -(|has| |#1| (-820)) -(|has| |#1| (-820)) -((((-348 (-483))) |has| |#1| (-949 (-348 (-483)))) (((-483)) |has| |#1| (-949 (-483))) ((|#1|) . T) ((|#2|) . T)) -((((-483)) . T) (((-348 (-483))) OR (|has| |#1| (-38 (-348 (-483)))) (|has| |#1| (-949 (-348 (-483))))) ((|#1|) . T) (($) OR (|has| |#1| (-390)) (|has| |#1| (-494)) (|has| |#1| (-820))) ((|#2|) . T)) -(((|#1| (-468 |#2|) |#2|) . T)) +((((-329)) -12 (|has| |#1| (-796 (-329))) (|has| |#2| (-796 (-329)))) (((-484)) -12 (|has| |#1| (-796 (-484))) (|has| |#2| (-796 (-484))))) +(|has| |#1| (-821)) +(|has| |#1| (-821)) +((((-349 (-484))) |has| |#1| (-950 (-349 (-484)))) (((-484)) |has| |#1| (-950 (-484))) ((|#1|) . T) ((|#2|) . T)) +((((-484)) . T) (((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-950 (-349 (-484))))) ((|#1|) . T) (($) OR (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#2|) . T)) +(((|#1| (-469 |#2|) |#2|) . T)) ((($) . T)) ((($ $) . T) ((|#2| $) . T)) (((|#2|) . T)) -((((-771)) . T)) +((((-772)) . T)) ((($ |#2|) . T)) (((|#2|) . T)) -(((|#1| (-468 |#2|) |#2|) . T)) -((($) . T) (((-483)) . T) (((-348 (-483))) |has| |#1| (-38 (-348 (-483)))) ((|#1|) . T)) -((($) . T) (((-348 (-483))) |has| |#1| (-38 (-348 (-483)))) ((|#1|) . T)) +(((|#1| (-469 |#2|) |#2|) . T)) +((($) . T) (((-484)) . T) (((-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((|#1|) . T)) +((($) . T) (((-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((|#1|) . T)) (|has| |#1| (-118)) (|has| |#1| (-120)) -(OR (|has| |#1| (-146)) (|has| |#1| (-494))) -((((-348 (-483))) |has| |#1| (-38 (-348 (-483)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-494)))) -((((-348 (-483))) |has| |#1| (-38 (-348 (-483)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-494)))) -((((-348 (-483)) (-348 (-483))) |has| |#1| (-38 (-348 (-483)))) ((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-494)))) -(|has| |#1| (-494)) -(|has| |#1| (-494)) -((((-483)) . T) (((-348 (-483))) |has| |#1| (-38 (-348 (-483)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-494))) -((((-348 (-483))) |has| |#1| (-38 (-348 (-483)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-494))) -((((-348 (-483))) |has| |#1| (-38 (-348 (-483)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-494))) -((((-348 (-483))) |has| |#1| (-38 (-348 (-483)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-494))) -(((|#1| (-468 |#2|)) . T)) -(|has| |#1| (-38 (-348 (-483)))) -(|has| |#1| (-38 (-348 (-483)))) -(|has| |#1| (-38 (-348 (-483)))) -(|has| |#1| (-38 (-348 (-483)))) -(|has| |#1| (-38 (-348 (-483)))) -(|has| |#1| (-38 (-348 (-483)))) -(|has| |#1| (-38 (-348 (-483)))) +(OR (|has| |#1| (-146)) (|has| |#1| (-495))) +((((-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-495)))) +((((-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-495)))) +((((-349 (-484)) (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-495)))) +(|has| |#1| (-495)) +(|has| |#1| (-495)) +((((-484)) . T) (((-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-495))) +((((-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-495))) +((((-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-495))) +((((-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-495))) +(((|#1| (-469 |#2|)) . T)) +(|has| |#1| (-38 (-349 (-484)))) +(|has| |#1| (-38 (-349 (-484)))) +(|has| |#1| (-38 (-349 (-484)))) +(|has| |#1| (-38 (-349 (-484)))) +(|has| |#1| (-38 (-349 (-484)))) +(|has| |#1| (-38 (-349 (-484)))) +(|has| |#1| (-38 (-349 (-484)))) (((|#1| |#2|) . T)) -((((-771)) . T)) -(((|#1|) . T)) -((((-1093)) . T)) -((((-1093)) . T)) -((((-1093)) . T) (((-771)) . T)) -((((-771)) . T)) -((((-1052 |#1| |#2|)) . T)) -((((-1052 |#1| |#2|) (-1052 |#1| |#2|)) |has| (-1052 |#1| |#2|) (-260 (-1052 |#1| |#2|)))) -((((-1052 |#1| |#2|)) |has| (-1052 |#1| |#2|) (-260 (-1052 |#1| |#2|)))) -((((-771)) . T)) -((((-1052 |#1| |#2|)) . T)) -((((-472)) |has| |#2| (-552 (-472)))) -(((|#2|) |has| |#2| (-6 (-3995 "*")))) +((((-772)) . T)) +(((|#1|) . T)) +((((-1094)) . T)) +((((-1094)) . T)) +((((-1094)) . T) (((-772)) . T)) +((((-772)) . T)) +((((-1053 |#1| |#2|)) . T)) +((((-1053 |#1| |#2|) (-1053 |#1| |#2|)) |has| (-1053 |#1| |#2|) (-260 (-1053 |#1| |#2|)))) +((((-1053 |#1| |#2|)) |has| (-1053 |#1| |#2|) (-260 (-1053 |#1| |#2|)))) +((((-772)) . T)) +((((-1053 |#1| |#2|)) . T)) +((((-473)) |has| |#2| (-553 (-473)))) +(((|#2|) |has| |#2| (-6 (-3996 "*")))) (((|#2| |#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) -((((-629 |#2|)) . T) (((-771)) . T)) -((($) . T) (((-483)) . T) ((|#2|) . T)) -(((|#2|) OR (|has| |#2| (-6 (-3995 "*"))) (|has| |#2| (-146)))) -(((|#2|) OR (|has| |#2| (-6 (-3995 "*"))) (|has| |#2| (-146)))) +((((-630 |#2|)) . T) (((-772)) . T)) +((($) . T) (((-484)) . T) ((|#2|) . T)) +(((|#2|) OR (|has| |#2| (-6 (-3996 "*"))) (|has| |#2| (-146)))) +(((|#2|) OR (|has| |#2| (-6 (-3996 "*"))) (|has| |#2| (-146)))) (((|#2|) . T)) -((((-1088)) |has| |#2| (-808 (-1088)))) -((((-1088)) OR (|has| |#2| (-808 (-1088))) (|has| |#2| (-810 (-1088))))) -((($ (-1088)) OR (|has| |#2| (-808 (-1088))) (|has| |#2| (-810 (-1088))))) +((((-1089)) |has| |#2| (-809 (-1089)))) +((((-1089)) OR (|has| |#2| (-809 (-1089))) (|has| |#2| (-811 (-1089))))) +((($ (-1089)) OR (|has| |#2| (-809 (-1089))) (|has| |#2| (-811 (-1089))))) (((|#2|) . T)) (OR (|has| |#2| (-190)) (|has| |#2| (-189))) ((($) OR (|has| |#2| (-190)) (|has| |#2| (-189)))) (|has| |#2| (-190)) (((|#2|) . T)) -((($) . T) ((|#2|) . T) (((-483)) |has| |#2| (-579 (-483)))) -(((|#2|) . T) (((-483)) |has| |#2| (-579 (-483)))) +((($) . T) ((|#2|) . T) (((-484)) |has| |#2| (-580 (-484)))) +(((|#2|) . T) (((-484)) |has| |#2| (-580 (-484)))) (((|#2|) . T)) -((((-483)) . T) ((|#2|) . T) (((-348 (-483))) |has| |#2| (-949 (-348 (-483))))) -(((|#2|) . T) (((-483)) |has| |#2| (-949 (-483))) (((-348 (-483))) |has| |#2| (-949 (-348 (-483))))) +((((-484)) . T) ((|#2|) . T) (((-349 (-484))) |has| |#2| (-950 (-349 (-484))))) +(((|#2|) . T) (((-484)) |has| |#2| (-950 (-484))) (((-349 (-484))) |has| |#2| (-950 (-349 (-484))))) (((|#1| |#1| |#2| (-197 |#1| |#2|) (-197 |#1| |#2|)) . T)) -(((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1012)))) -(((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1012)))) +(((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013)))) +(((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013)))) (((|#2|) . T)) (((|#1| |#2| (-197 |#1| |#2|) (-197 |#1| |#2|)) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-472)) |has| |#4| (-552 (-472)))) +((((-473)) |has| |#4| (-553 (-473)))) (((|#4|) . T)) -(((|#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1012)))) -(((|#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1012)))) +(((|#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013)))) +(((|#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013)))) (((|#4|) . T)) -((((-771)) . T) (((-582 |#4|)) . T)) +((((-772)) . T) (((-583 |#4|)) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1|) . T)) -(OR (|has| |#1| (-72)) (|has| |#1| (-1012))) -((((-771)) OR (|has| |#1| (-551 (-771))) (|has| |#1| (-1012)))) -(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012)))) -(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012)))) -(|has| |#1| (-1012)) +(OR (|has| |#1| (-72)) (|has| |#1| (-1013))) +((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-1013)))) +(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013)))) +(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013)))) +(|has| |#1| (-1013)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#2|) . T)) -((((-771)) . T)) +((((-772)) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) . T)) -(((|#2|) . T) (((-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1012))) (((-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))))) -(((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1012))) (((-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))))) -((((-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T)) +(((|#2|) . T) (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))))) +(((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))))) +((((-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T)) (((|#1| |#2|) . T)) -((((-1093)) . T)) -((((-771)) . T) (((-1093)) . T)) -((((-1093)) . T)) -((((-582 |#1|)) . T)) +((((-1094)) . T)) +((((-772)) . T) (((-1094)) . T)) +((((-1094)) . T)) +((((-583 |#1|)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(OR (|has| |#1| (-72)) (|has| |#1| (-1012))) -((((-771)) OR (|has| |#1| (-551 (-771))) (|has| |#1| (-1012)))) -(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012)))) -(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012)))) -(|has| |#1| (-1012)) +(OR (|has| |#1| (-72)) (|has| |#1| (-1013))) +((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-1013)))) +(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013)))) +(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013)))) +(|has| |#1| (-1013)) (((|#1|) . T)) -((((-472)) |has| |#1| (-552 (-472)))) -((((-483) |#1|) . T)) -((((-1144 (-483)) $) . T) (((-483) |#1|) . T)) -((((-483) |#1|) . T)) +((((-473)) |has| |#1| (-553 (-473)))) +((((-484) |#1|) . T)) +((((-1145 (-484)) $) . T) (((-484) |#1|) . T)) +((((-484) |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) ((((-117)) . T)) ((((-117)) . T)) -((((-483) (-117)) . T)) -((((-483) (-117)) . T)) -((((-483) (-117)) . T) (((-1144 (-483)) $) . T)) +((((-484) (-117)) . T)) +((((-484) (-117)) . T)) +((((-484) (-117)) . T) (((-1145 (-484)) $) . T)) ((((-117)) . T)) -((((-771)) . T)) +((((-772)) . T)) ((((-117)) . T)) ((((-117)) . T)) -((((-1071) |#1|) . T)) -((((-771)) . T)) -((((-1071) |#1|) . T)) -((((-1071) |#1|) . T)) -((((-1071) |#1|) . T)) -((((-2 (|:| -3858 (-1071)) (|:| |entry| |#1|))) . T)) -((((-2 (|:| -3858 (-1071)) (|:| |entry| |#1|))) . T)) -(((|#1|) . T) (((-2 (|:| -3858 (-1071)) (|:| |entry| |#1|))) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) (((-2 (|:| -3858 (-1071)) (|:| |entry| |#1|)) (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|))) |has| (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|))))) -(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) (((-2 (|:| -3858 (-1071)) (|:| |entry| |#1|))) |has| (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|))))) -((((-2 (|:| -3858 (-1071)) (|:| |entry| |#1|))) . T)) -((((-2 (|:| -3858 (-1071)) (|:| |entry| |#1|))) . T)) -((((-1071) |#1|) . T)) -((((-771)) . T)) -((((-771)) . T)) -((((-1093)) . T)) -((((-771)) . T) (((-1093)) . T)) -((((-1093)) . T)) -((((-1087 |#1| |#2| |#3|)) |has| |#1| (-312))) -((((-1087 |#1| |#2| |#3|)) . T)) -((((-1087 |#1| |#2| |#3|)) |has| |#1| (-312))) -((((-1087 |#1| |#2| |#3|)) |has| |#1| (-312))) -((((-1087 |#1| |#2| |#3|)) |has| |#1| (-312))) -((((-1087 |#1| |#2| |#3|)) |has| |#1| (-312))) -((((-1087 |#1| |#2| |#3|)) -12 (|has| |#1| (-312)) (|has| (-1087 |#1| |#2| |#3|) (-260 (-1087 |#1| |#2| |#3|))))) -((((-1087 |#1| |#2| |#3|) (-1087 |#1| |#2| |#3|)) -12 (|has| |#1| (-312)) (|has| (-1087 |#1| |#2| |#3|) (-260 (-1087 |#1| |#2| |#3|)))) (((-1088) (-1087 |#1| |#2| |#3|)) -12 (|has| |#1| (-312)) (|has| (-1087 |#1| |#2| |#3|) (-454 (-1088) (-1087 |#1| |#2| |#3|))))) -((((-1087 |#1| |#2| |#3|)) |has| |#1| (-312))) +((((-1072) |#1|) . T)) +((((-772)) . T)) +((((-1072) |#1|) . T)) +((((-1072) |#1|) . T)) +((((-1072) |#1|) . T)) +((((-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))) . T)) +((((-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))) . T)) +(((|#1|) . T) (((-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) (((-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))) |has| (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))))) +(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) (((-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))) |has| (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))))) +((((-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))) . T)) +((((-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))) . T)) +((((-1072) |#1|) . T)) +((((-772)) . T)) +((((-772)) . T)) +((((-1094)) . T)) +((((-772)) . T) (((-1094)) . T)) +((((-1094)) . T)) +((((-1088 |#1| |#2| |#3|)) |has| |#1| (-312))) +((((-1088 |#1| |#2| |#3|)) . T)) +((((-1088 |#1| |#2| |#3|)) |has| |#1| (-312))) +((((-1088 |#1| |#2| |#3|)) |has| |#1| (-312))) +((((-1088 |#1| |#2| |#3|)) |has| |#1| (-312))) +((((-1088 |#1| |#2| |#3|)) |has| |#1| (-312))) +((((-1088 |#1| |#2| |#3|)) -12 (|has| |#1| (-312)) (|has| (-1088 |#1| |#2| |#3|) (-260 (-1088 |#1| |#2| |#3|))))) +((((-1088 |#1| |#2| |#3|) (-1088 |#1| |#2| |#3|)) -12 (|has| |#1| (-312)) (|has| (-1088 |#1| |#2| |#3|) (-260 (-1088 |#1| |#2| |#3|)))) (((-1089) (-1088 |#1| |#2| |#3|)) -12 (|has| |#1| (-312)) (|has| (-1088 |#1| |#2| |#3|) (-455 (-1089) (-1088 |#1| |#2| |#3|))))) +((((-1088 |#1| |#2| |#3|)) |has| |#1| (-312))) (|has| |#1| (-312)) -(OR (|has| |#1| (-312)) (|has| |#1| (-494))) +(OR (|has| |#1| (-312)) (|has| |#1| (-495))) (|has| |#1| (-312)) (|has| |#1| (-312)) -(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-494))) -(OR (|has| |#1| (-312)) (|has| |#1| (-494))) +(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-495))) +(OR (|has| |#1| (-312)) (|has| |#1| (-495))) (|has| |#1| (-312)) (|has| |#1| (-312)) (|has| |#1| (-312)) -(OR (-12 (|has| |#1| (-312)) (|has| (-1087 |#1| |#2| |#3|) (-190))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) -((($) OR (-12 (|has| |#1| (-312)) (|has| (-1087 |#1| |#2| |#3|) (-190))) (-12 (|has| |#1| (-312)) (|has| (-1087 |#1| |#2| |#3|) (-189))) (|has| |#1| (-15 * (|#1| (-483) |#1|))))) -(OR (-12 (|has| |#1| (-312)) (|has| (-1087 |#1| |#2| |#3|) (-190))) (-12 (|has| |#1| (-312)) (|has| (-1087 |#1| |#2| |#3|) (-189))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) -((((-1087 |#1| |#2| |#3|)) |has| |#1| (-312))) -((($ (-1174 |#2|)) . T) (($ (-1088)) OR (-12 (|has| |#1| (-312)) (|has| (-1087 |#1| |#2| |#3|) (-808 (-1088)))) (-12 (|has| |#1| (-312)) (|has| (-1087 |#1| |#2| |#3|) (-810 (-1088)))) (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))))) -((((-1088)) OR (-12 (|has| |#1| (-312)) (|has| (-1087 |#1| |#2| |#3|) (-808 (-1088)))) (-12 (|has| |#1| (-312)) (|has| (-1087 |#1| |#2| |#3|) (-810 (-1088)))) (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))))) -((((-1088)) OR (-12 (|has| |#1| (-312)) (|has| (-1087 |#1| |#2| |#3|) (-808 (-1088)))) (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))))) -((((-1087 |#1| |#2| |#3|)) |has| |#1| (-312))) -(OR (|has| |#1| (-120)) (-12 (|has| |#1| (-312)) (|has| (-1087 |#1| |#2| |#3|) (-120)))) -(OR (|has| |#1| (-118)) (-12 (|has| |#1| (-312)) (|has| (-1087 |#1| |#2| |#3|) (-118)))) -((((-771)) . T)) -(((|#1|) . T)) -((((-1087 |#1| |#2| |#3|) $) -12 (|has| |#1| (-312)) (|has| (-1087 |#1| |#2| |#3|) (-241 (-1087 |#1| |#2| |#3|) (-1087 |#1| |#2| |#3|)))) (($ $) . T) (((-483) |#1|) . T)) -(((|#1| (-483) (-993)) . T)) -((((-348 (-483))) OR (|has| |#1| (-38 (-348 (-483)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-494))) (((-1087 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1|) |has| |#1| (-146))) -((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-494))) (((-348 (-483)) (-348 (-483))) OR (|has| |#1| (-38 (-348 (-483)))) (|has| |#1| (-312))) (((-1087 |#1| |#2| |#3|) (-1087 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1| |#1|) . T)) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-494))) (((-348 (-483))) OR (|has| |#1| (-38 (-348 (-483)))) (|has| |#1| (-312))) (((-1087 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1|) . T)) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-494))) (((-348 (-483))) OR (|has| |#1| (-38 (-348 (-483)))) (|has| |#1| (-312))) (((-1087 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1|) . T)) -((((-348 (-483))) OR (|has| |#1| (-38 (-348 (-483)))) (|has| |#1| (-312))) (((-1087 |#1| |#2| |#3|)) |has| |#1| (-312)) (((-483)) . T) (($) . T) ((|#1|) . T)) -((((-348 (-483))) OR (|has| |#1| (-38 (-348 (-483)))) (|has| |#1| (-312))) (((-1087 |#1| |#2| |#3|)) |has| |#1| (-312)) (($) . T) ((|#1|) . T)) -((((-348 (-483))) OR (|has| |#1| (-38 (-348 (-483)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-494))) (((-1087 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1|) |has| |#1| (-146))) -((((-348 (-483))) OR (|has| |#1| (-38 (-348 (-483)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-494))) (((-1087 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1|) |has| |#1| (-146))) -((((-1087 |#1| |#2| |#3|)) . T) (((-348 (-483))) OR (|has| |#1| (-38 (-348 (-483)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-494))) (((-483)) . T) ((|#1|) |has| |#1| (-146))) -(((|#1| (-483)) . T)) -(((|#1| (-483)) . T)) -(|has| |#1| (-38 (-348 (-483)))) -(|has| |#1| (-38 (-348 (-483)))) -(|has| |#1| (-38 (-348 (-483)))) -(|has| |#1| (-38 (-348 (-483)))) -(|has| |#1| (-38 (-348 (-483)))) -(|has| |#1| (-38 (-348 (-483)))) -(|has| |#1| (-38 (-348 (-483)))) -(((|#1| (-1087 |#1| |#2| |#3|)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((($) . T)) -((((-771)) . T)) -((((-348 $) (-348 $)) |has| |#1| (-494)) (($ $) . T) ((|#1| |#1|) . T)) +(OR (-12 (|has| |#1| (-312)) (|has| (-1088 |#1| |#2| |#3|) (-190))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) +((($) OR (-12 (|has| |#1| (-312)) (|has| (-1088 |#1| |#2| |#3|) (-190))) (-12 (|has| |#1| (-312)) (|has| (-1088 |#1| |#2| |#3|) (-189))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) +(OR (-12 (|has| |#1| (-312)) (|has| (-1088 |#1| |#2| |#3|) (-190))) (-12 (|has| |#1| (-312)) (|has| (-1088 |#1| |#2| |#3|) (-189))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) +((((-1088 |#1| |#2| |#3|)) |has| |#1| (-312))) +((($ (-1175 |#2|)) . T) (($ (-1089)) OR (-12 (|has| |#1| (-312)) (|has| (-1088 |#1| |#2| |#3|) (-809 (-1089)))) (-12 (|has| |#1| (-312)) (|has| (-1088 |#1| |#2| |#3|) (-811 (-1089)))) (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))))) +((((-1089)) OR (-12 (|has| |#1| (-312)) (|has| (-1088 |#1| |#2| |#3|) (-809 (-1089)))) (-12 (|has| |#1| (-312)) (|has| (-1088 |#1| |#2| |#3|) (-811 (-1089)))) (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))))) +((((-1089)) OR (-12 (|has| |#1| (-312)) (|has| (-1088 |#1| |#2| |#3|) (-809 (-1089)))) (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))))) +((((-1088 |#1| |#2| |#3|)) |has| |#1| (-312))) +(OR (|has| |#1| (-120)) (-12 (|has| |#1| (-312)) (|has| (-1088 |#1| |#2| |#3|) (-120)))) +(OR (|has| |#1| (-118)) (-12 (|has| |#1| (-312)) (|has| (-1088 |#1| |#2| |#3|) (-118)))) +((((-772)) . T)) +(((|#1|) . T)) +((((-1088 |#1| |#2| |#3|) $) -12 (|has| |#1| (-312)) (|has| (-1088 |#1| |#2| |#3|) (-241 (-1088 |#1| |#2| |#3|) (-1088 |#1| |#2| |#3|)))) (($ $) . T) (((-484) |#1|) . T)) +(((|#1| (-484) (-994)) . T)) +((((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-495))) (((-1088 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1|) |has| |#1| (-146))) +((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-495))) (((-349 (-484)) (-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))) (((-1088 |#1| |#2| |#3|) (-1088 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1| |#1|) . T)) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-495))) (((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))) (((-1088 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1|) . T)) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-495))) (((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))) (((-1088 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1|) . T)) +((((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))) (((-1088 |#1| |#2| |#3|)) |has| |#1| (-312)) (((-484)) . T) (($) . T) ((|#1|) . T)) +((((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))) (((-1088 |#1| |#2| |#3|)) |has| |#1| (-312)) (($) . T) ((|#1|) . T)) +((((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-495))) (((-1088 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1|) |has| |#1| (-146))) +((((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-495))) (((-1088 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1|) |has| |#1| (-146))) +((((-1088 |#1| |#2| |#3|)) . T) (((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-495))) (((-484)) . T) ((|#1|) |has| |#1| (-146))) +(((|#1| (-484)) . T)) +(((|#1| (-484)) . T)) +(|has| |#1| (-38 (-349 (-484)))) +(|has| |#1| (-38 (-349 (-484)))) +(|has| |#1| (-38 (-349 (-484)))) +(|has| |#1| (-38 (-349 (-484)))) +(|has| |#1| (-38 (-349 (-484)))) +(|has| |#1| (-38 (-349 (-484)))) +(|has| |#1| (-38 (-349 (-484)))) +(((|#1| (-1088 |#1| |#2| |#3|)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((($) . T)) +((((-772)) . T)) +((((-349 $) (-349 $)) |has| |#1| (-495)) (($ $) . T) ((|#1| |#1|) . T)) (|has| |#1| (-312)) -(OR (|has| |#1| (-312)) (|has| |#1| (-390)) (|has| |#1| (-820))) -(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-390)) (|has| |#1| (-494)) (|has| |#1| (-820))) -(OR (|has| |#1| (-312)) (|has| |#1| (-390)) (|has| |#1| (-494)) (|has| |#1| (-820))) -(OR (|has| |#1| (-312)) (|has| |#1| (-390)) (|has| |#1| (-494)) (|has| |#1| (-820))) +(OR (|has| |#1| (-312)) (|has| |#1| (-391)) (|has| |#1| (-821))) +(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))) +(OR (|has| |#1| (-312)) (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))) +(OR (|has| |#1| (-312)) (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))) (|has| |#1| (-312)) -(((|#1| (-693) (-993)) . T)) -(|has| |#1| (-820)) -(|has| |#1| (-820)) -((((-1088)) OR (|has| |#1| (-808 (-1088))) (|has| |#1| (-810 (-1088)))) (((-993)) . T)) -((($ (-1088)) OR (|has| |#1| (-808 (-1088))) (|has| |#1| (-810 (-1088)))) (($ (-993)) . T)) -((((-1088)) |has| |#1| (-808 (-1088))) (((-993)) . T)) -((((-483)) |has| |#1| (-579 (-483))) ((|#1|) . T)) -(((|#1|) . T)) -(((|#1| (-693)) . T)) +(((|#1| (-694) (-994)) . T)) +(|has| |#1| (-821)) +(|has| |#1| (-821)) +((((-1089)) OR (|has| |#1| (-809 (-1089))) (|has| |#1| (-811 (-1089)))) (((-994)) . T)) +((($ (-1089)) OR (|has| |#1| (-809 (-1089))) (|has| |#1| (-811 (-1089)))) (($ (-994)) . T)) +((((-1089)) |has| |#1| (-809 (-1089))) (((-994)) . T)) +((((-484)) |has| |#1| (-580 (-484))) ((|#1|) . T)) +(((|#1|) . T)) +(((|#1| (-694)) . T)) (|has| |#1| (-120)) (|has| |#1| (-118)) -((((-483)) . T) (($) OR (|has| |#1| (-312)) (|has| |#1| (-390)) (|has| |#1| (-494)) (|has| |#1| (-820))) (((-993)) . T) ((|#1|) . T) (((-348 (-483))) OR (|has| |#1| (-38 (-348 (-483)))) (|has| |#1| (-949 (-348 (-483)))))) -((($) OR (|has| |#1| (-312)) (|has| |#1| (-390)) (|has| |#1| (-494)) (|has| |#1| (-820))) ((|#1|) |has| |#1| (-146)) (((-348 (-483))) |has| |#1| (-38 (-348 (-483))))) -((($) OR (|has| |#1| (-312)) (|has| |#1| (-390)) (|has| |#1| (-494)) (|has| |#1| (-820))) ((|#1|) |has| |#1| (-146)) (((-348 (-483))) |has| |#1| (-38 (-348 (-483))))) -((($) . T) (((-483)) |has| |#1| (-579 (-483))) ((|#1|) . T) (((-348 (-483))) |has| |#1| (-38 (-348 (-483))))) -((((-483)) . T) (($) . T) ((|#1|) . T) (((-348 (-483))) |has| |#1| (-38 (-348 (-483))))) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-390)) (|has| |#1| (-494)) (|has| |#1| (-820))) ((|#1|) . T) (((-348 (-483))) |has| |#1| (-38 (-348 (-483))))) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-390)) (|has| |#1| (-494)) (|has| |#1| (-820))) ((|#1|) . T) (((-348 (-483))) |has| |#1| (-38 (-348 (-483))))) -((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-390)) (|has| |#1| (-494)) (|has| |#1| (-820))) ((|#1| |#1|) . T) (((-348 (-483)) (-348 (-483))) |has| |#1| (-38 (-348 (-483))))) -((($) OR (|has| |#1| (-312)) (|has| |#1| (-390)) (|has| |#1| (-494)) (|has| |#1| (-820))) ((|#1|) |has| |#1| (-146)) (((-348 (-483))) |has| |#1| (-38 (-348 (-483))))) -(((|#1|) . T)) -((((-993)) . T) ((|#1|) . T) (((-483)) |has| |#1| (-949 (-483))) (((-348 (-483))) |has| |#1| (-949 (-348 (-483))))) -(((|#1| (-693)) . T)) -((((-993) |#1|) . T) (((-993) $) . T) (($ $) . T)) -((($) . T)) -(|has| |#1| (-1064)) -(((|#1|) . T)) -((((-1087 |#1| |#2| |#3|)) . T) (((-1080 |#1| |#2| |#3|)) . T)) -(((|#1|) . T)) -(|has| |#1| (-15 * (|#1| (-348 (-483)) |#1|))) -((($) |has| |#1| (-15 * (|#1| (-348 (-483)) |#1|)))) -(|has| |#1| (-15 * (|#1| (-348 (-483)) |#1|))) -((($ $) . T) (((-348 (-483)) |#1|) . T)) -((((-1088)) -12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-348 (-483)) |#1|))))) -((($ (-1174 |#2|)) . T) (($ (-1088)) -12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-348 (-483)) |#1|))))) -((((-1088)) -12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-348 (-483)) |#1|))))) -(((|#1| (-348 (-483)) (-993)) . T)) +((((-484)) . T) (($) OR (|has| |#1| (-312)) (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))) (((-994)) . T) ((|#1|) . T) (((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-950 (-349 (-484)))))) +((($) OR (|has| |#1| (-312)) (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) |has| |#1| (-146)) (((-349 (-484))) |has| |#1| (-38 (-349 (-484))))) +((($) OR (|has| |#1| (-312)) (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) |has| |#1| (-146)) (((-349 (-484))) |has| |#1| (-38 (-349 (-484))))) +((($) . T) (((-484)) |has| |#1| (-580 (-484))) ((|#1|) . T) (((-349 (-484))) |has| |#1| (-38 (-349 (-484))))) +((((-484)) . T) (($) . T) ((|#1|) . T) (((-349 (-484))) |has| |#1| (-38 (-349 (-484))))) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) . T) (((-349 (-484))) |has| |#1| (-38 (-349 (-484))))) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) . T) (((-349 (-484))) |has| |#1| (-38 (-349 (-484))))) +((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1| |#1|) . T) (((-349 (-484)) (-349 (-484))) |has| |#1| (-38 (-349 (-484))))) +((($) OR (|has| |#1| (-312)) (|has| |#1| (-391)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) |has| |#1| (-146)) (((-349 (-484))) |has| |#1| (-38 (-349 (-484))))) +(((|#1|) . T)) +((((-994)) . T) ((|#1|) . T) (((-484)) |has| |#1| (-950 (-484))) (((-349 (-484))) |has| |#1| (-950 (-349 (-484))))) +(((|#1| (-694)) . T)) +((((-994) |#1|) . T) (((-994) $) . T) (($ $) . T)) +((($) . T)) +(|has| |#1| (-1065)) +(((|#1|) . T)) +((((-1088 |#1| |#2| |#3|)) . T) (((-1081 |#1| |#2| |#3|)) . T)) +(((|#1|) . T)) +(|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|))) +((($) |has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))) +(|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|))) +((($ $) . T) (((-349 (-484)) |#1|) . T)) +((((-1089)) -12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|))))) +((($ (-1175 |#2|)) . T) (($ (-1089)) -12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|))))) +((((-1089)) -12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|))))) +(((|#1| (-349 (-484)) (-994)) . T)) (|has| |#1| (-118)) (|has| |#1| (-120)) -(((|#1| (-348 (-483))) . T)) -(((|#1| (-348 (-483))) . T)) -(|has| |#1| (-38 (-348 (-483)))) -(|has| |#1| (-38 (-348 (-483)))) -(|has| |#1| (-38 (-348 (-483)))) -(|has| |#1| (-38 (-348 (-483)))) -(|has| |#1| (-38 (-348 (-483)))) -(|has| |#1| (-38 (-348 (-483)))) -(|has| |#1| (-38 (-348 (-483)))) +(((|#1| (-349 (-484))) . T)) +(((|#1| (-349 (-484))) . T)) +(|has| |#1| (-38 (-349 (-484)))) +(|has| |#1| (-38 (-349 (-484)))) +(|has| |#1| (-38 (-349 (-484)))) +(|has| |#1| (-38 (-349 (-484)))) +(|has| |#1| (-38 (-349 (-484)))) +(|has| |#1| (-38 (-349 (-484)))) +(|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312)) -(OR (|has| |#1| (-312)) (|has| |#1| (-494))) -((((-771)) . T)) -(((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-494))) (((-348 (-483))) OR (|has| |#1| (-38 (-348 (-483)))) (|has| |#1| (-312)))) -(((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-494))) (((-348 (-483))) OR (|has| |#1| (-38 (-348 (-483)))) (|has| |#1| (-312)))) -(((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-494))) (((-348 (-483)) (-348 (-483))) OR (|has| |#1| (-38 (-348 (-483)))) (|has| |#1| (-312)))) -(((|#1|) . T) (((-348 (-483))) OR (|has| |#1| (-38 (-348 (-483)))) (|has| |#1| (-312))) (((-483)) . T) (($) . T)) -(((|#1|) . T) (((-348 (-483))) OR (|has| |#1| (-38 (-348 (-483)))) (|has| |#1| (-312))) (($) . T)) +(OR (|has| |#1| (-312)) (|has| |#1| (-495))) +((((-772)) . T)) +(((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-495))) (((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312)))) +(((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-495))) (((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312)))) +(((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-495))) (((-349 (-484)) (-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312)))) +(((|#1|) . T) (((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))) (((-484)) . T) (($) . T)) +(((|#1|) . T) (((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))) (($) . T)) (|has| |#1| (-312)) (|has| |#1| (-312)) -(((|#1|) |has| |#1| (-146)) (((-348 (-483))) OR (|has| |#1| (-38 (-348 (-483)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-494)))) -(((|#1|) |has| |#1| (-146)) (((-348 (-483))) OR (|has| |#1| (-38 (-348 (-483)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-494)))) -(((|#1|) |has| |#1| (-146)) (((-348 (-483))) OR (|has| |#1| (-38 (-348 (-483)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-494)))) -((((-1174 |#2|)) . T) (((-1087 |#1| |#2| |#3|)) . T) (((-1080 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-146)) (((-348 (-483))) OR (|has| |#1| (-38 (-348 (-483)))) (|has| |#1| (-312))) (((-483)) . T) (($) OR (|has| |#1| (-312)) (|has| |#1| (-494)))) -(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-494))) -(OR (|has| |#1| (-312)) (|has| |#1| (-494))) +(((|#1|) |has| |#1| (-146)) (((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-495)))) +(((|#1|) |has| |#1| (-146)) (((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-495)))) +(((|#1|) |has| |#1| (-146)) (((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-495)))) +((((-1175 |#2|)) . T) (((-1088 |#1| |#2| |#3|)) . T) (((-1081 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-146)) (((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))) (((-484)) . T) (($) OR (|has| |#1| (-312)) (|has| |#1| (-495)))) +(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-495))) +(OR (|has| |#1| (-312)) (|has| |#1| (-495))) (|has| |#1| (-312)) (|has| |#1| (-312)) (|has| |#1| (-312)) -(((|#1| (-1080 |#1| |#2| |#3|)) . T)) -(|has| |#1| (-38 (-348 (-483)))) -(|has| |#1| (-38 (-348 (-483)))) -(|has| |#1| (-38 (-348 (-483)))) -(|has| |#1| (-38 (-348 (-483)))) -(|has| |#1| (-38 (-348 (-483)))) -(|has| |#1| (-38 (-348 (-483)))) -(|has| |#1| (-38 (-348 (-483)))) -(((|#1| (-693)) . T)) -(((|#1| (-693)) . T)) -(|has| |#1| (-494)) -(|has| |#1| (-494)) -(OR (|has| |#1| (-146)) (|has| |#1| (-494))) +(((|#1| (-1081 |#1| |#2| |#3|)) . T)) +(|has| |#1| (-38 (-349 (-484)))) +(|has| |#1| (-38 (-349 (-484)))) +(|has| |#1| (-38 (-349 (-484)))) +(|has| |#1| (-38 (-349 (-484)))) +(|has| |#1| (-38 (-349 (-484)))) +(|has| |#1| (-38 (-349 (-484)))) +(|has| |#1| (-38 (-349 (-484)))) +(((|#1| (-694)) . T)) +(((|#1| (-694)) . T)) +(|has| |#1| (-495)) +(|has| |#1| (-495)) +(OR (|has| |#1| (-146)) (|has| |#1| (-495))) (|has| |#1| (-120)) (|has| |#1| (-118)) -((($) |has| |#1| (-494)) ((|#1|) |has| |#1| (-146)) (((-348 (-483))) |has| |#1| (-38 (-348 (-483))))) -((($) |has| |#1| (-494)) ((|#1|) |has| |#1| (-146)) (((-348 (-483))) |has| |#1| (-38 (-348 (-483))))) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-494))) ((|#1|) . T) (((-348 (-483))) |has| |#1| (-38 (-348 (-483))))) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-494))) ((|#1|) . T) (((-348 (-483))) |has| |#1| (-38 (-348 (-483))))) -((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-494))) ((|#1| |#1|) . T) (((-348 (-483)) (-348 (-483))) |has| |#1| (-38 (-348 (-483))))) -((($) |has| |#1| (-494)) ((|#1|) |has| |#1| (-146)) (((-348 (-483))) |has| |#1| (-38 (-348 (-483))))) -(((|#1| (-693) (-993)) . T)) -((((-1088)) -12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-693) |#1|))))) -((($ (-1174 |#2|)) . T) (($ (-1088)) -12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-693) |#1|))))) -((((-1088)) -12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-693) |#1|))))) -((((-693) |#1|) . T) (($ $) . T)) -(|has| |#1| (-15 * (|#1| (-693) |#1|))) -((($) |has| |#1| (-15 * (|#1| (-693) |#1|)))) -((((-771)) . T)) -(((|#1|) . T) (((-348 (-483))) |has| |#1| (-38 (-348 (-483)))) (((-483)) . T) (($) . T)) -(((|#1|) . T) (((-348 (-483))) |has| |#1| (-38 (-348 (-483)))) (($) . T)) -((($) |has| |#1| (-494)) ((|#1|) |has| |#1| (-146)) (((-348 (-483))) |has| |#1| (-38 (-348 (-483)))) (((-483)) . T)) -(|has| |#1| (-15 * (|#1| (-693) |#1|))) -(((|#1|) . T)) -((((-328)) . T) (((-483)) . T)) -((((-445)) . T)) -((((-445)) . T) (((-1071)) . T)) -((((-799 (-328))) . T) (((-799 (-483))) . T) (((-1088)) . T) (((-472)) . T)) -((((-771)) . T)) -(((|#1| (-883)) . T)) -(|has| |#1| (-494)) -(|has| |#1| (-494)) -(OR (|has| |#1| (-146)) (|has| |#1| (-494))) +((($) |has| |#1| (-495)) ((|#1|) |has| |#1| (-146)) (((-349 (-484))) |has| |#1| (-38 (-349 (-484))))) +((($) |has| |#1| (-495)) ((|#1|) |has| |#1| (-146)) (((-349 (-484))) |has| |#1| (-38 (-349 (-484))))) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-495))) ((|#1|) . T) (((-349 (-484))) |has| |#1| (-38 (-349 (-484))))) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-495))) ((|#1|) . T) (((-349 (-484))) |has| |#1| (-38 (-349 (-484))))) +((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-495))) ((|#1| |#1|) . T) (((-349 (-484)) (-349 (-484))) |has| |#1| (-38 (-349 (-484))))) +((($) |has| |#1| (-495)) ((|#1|) |has| |#1| (-146)) (((-349 (-484))) |has| |#1| (-38 (-349 (-484))))) +(((|#1| (-694) (-994)) . T)) +((((-1089)) -12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-694) |#1|))))) +((($ (-1175 |#2|)) . T) (($ (-1089)) -12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-694) |#1|))))) +((((-1089)) -12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-694) |#1|))))) +((((-694) |#1|) . T) (($ $) . T)) +(|has| |#1| (-15 * (|#1| (-694) |#1|))) +((($) |has| |#1| (-15 * (|#1| (-694) |#1|)))) +((((-772)) . T)) +(((|#1|) . T) (((-349 (-484))) |has| |#1| (-38 (-349 (-484)))) (((-484)) . T) (($) . T)) +(((|#1|) . T) (((-349 (-484))) |has| |#1| (-38 (-349 (-484)))) (($) . T)) +((($) |has| |#1| (-495)) ((|#1|) |has| |#1| (-146)) (((-349 (-484))) |has| |#1| (-38 (-349 (-484)))) (((-484)) . T)) +(|has| |#1| (-15 * (|#1| (-694) |#1|))) +(((|#1|) . T)) +((((-329)) . T) (((-484)) . T)) +((((-446)) . T)) +((((-446)) . T) (((-1072)) . T)) +((((-800 (-329))) . T) (((-800 (-484))) . T) (((-1089)) . T) (((-473)) . T)) +((((-772)) . T)) +(((|#1| (-884)) . T)) +(|has| |#1| (-495)) +(|has| |#1| (-495)) +(OR (|has| |#1| (-146)) (|has| |#1| (-495))) (|has| |#1| (-120)) (|has| |#1| (-118)) -((($) |has| |#1| (-494)) ((|#1|) |has| |#1| (-146)) (((-348 (-483))) |has| |#1| (-38 (-348 (-483))))) -((($) |has| |#1| (-494)) ((|#1|) |has| |#1| (-146)) (((-348 (-483))) |has| |#1| (-38 (-348 (-483))))) -((((-771)) . T)) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-494))) ((|#1|) . T) (((-348 (-483))) |has| |#1| (-38 (-348 (-483))))) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-494))) ((|#1|) . T) (((-348 (-483))) |has| |#1| (-38 (-348 (-483))))) -((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-494))) ((|#1| |#1|) . T) (((-348 (-483)) (-348 (-483))) |has| |#1| (-38 (-348 (-483))))) -(((|#1|) . T) (((-348 (-483))) |has| |#1| (-38 (-348 (-483)))) (((-483)) . T) (($) . T)) -(((|#1|) . T) (((-348 (-483))) |has| |#1| (-38 (-348 (-483)))) (($) . T)) -((($) |has| |#1| (-494)) ((|#1|) . T) (((-348 (-483))) OR (|has| |#1| (-38 (-348 (-483)))) (|has| |#1| (-949 (-348 (-483))))) (((-483)) . T)) -((($) |has| |#1| (-494)) ((|#1|) |has| |#1| (-146)) (((-348 (-483))) |has| |#1| (-38 (-348 (-483))))) -(((|#1|) . T)) -(((|#1|) . T) (((-483)) |has| |#1| (-949 (-483))) (((-348 (-483))) |has| |#1| (-949 (-348 (-483))))) -(((|#1| (-883)) . T)) -((((-771)) . T)) -((((-771)) . T)) -((((-1071)) . T) (((-445)) . T) (((-179)) . T) (((-483)) . T)) -((((-1071)) . T) (((-445)) . T) (((-179)) . T) (((-483)) . T)) -((((-472)) . T) (((-771)) . T)) -((((-771)) . T)) -((((-771)) . T)) -((((-771)) . T)) +((($) |has| |#1| (-495)) ((|#1|) |has| |#1| (-146)) (((-349 (-484))) |has| |#1| (-38 (-349 (-484))))) +((($) |has| |#1| (-495)) ((|#1|) |has| |#1| (-146)) (((-349 (-484))) |has| |#1| (-38 (-349 (-484))))) +((((-772)) . T)) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-495))) ((|#1|) . T) (((-349 (-484))) |has| |#1| (-38 (-349 (-484))))) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-495))) ((|#1|) . T) (((-349 (-484))) |has| |#1| (-38 (-349 (-484))))) +((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-495))) ((|#1| |#1|) . T) (((-349 (-484)) (-349 (-484))) |has| |#1| (-38 (-349 (-484))))) +(((|#1|) . T) (((-349 (-484))) |has| |#1| (-38 (-349 (-484)))) (((-484)) . T) (($) . T)) +(((|#1|) . T) (((-349 (-484))) |has| |#1| (-38 (-349 (-484)))) (($) . T)) +((($) |has| |#1| (-495)) ((|#1|) . T) (((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-950 (-349 (-484))))) (((-484)) . T)) +((($) |has| |#1| (-495)) ((|#1|) |has| |#1| (-146)) (((-349 (-484))) |has| |#1| (-38 (-349 (-484))))) +(((|#1|) . T)) +(((|#1|) . T) (((-484)) |has| |#1| (-950 (-484))) (((-349 (-484))) |has| |#1| (-950 (-349 (-484))))) +(((|#1| (-884)) . T)) +((((-772)) . T)) +((((-772)) . T)) +((((-1072)) . T) (((-446)) . T) (((-179)) . T) (((-484)) . T)) +((((-1072)) . T) (((-446)) . T) (((-179)) . T) (((-484)) . T)) +((((-473)) . T) (((-772)) . T)) +((((-772)) . T)) +((((-772)) . T)) +((((-772)) . T)) (((|#1| |#2|) . T)) -((((-771)) . T)) +((((-772)) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) . T)) -(((|#2|) . T) (((-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1012))) (((-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))))) -(((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1012))) (((-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))))) -((((-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T)) +(((|#2|) . T) (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))))) +(((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))))) +((((-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T)) (((|#1| |#2|) . T)) -((((-771)) . T)) -(((|#1|) . T)) -((((-771)) . T)) -((((-771)) . T)) -((((-771)) . T)) -((((-336) (-1071)) . T)) -(((|#1|) . T)) -(|has| |#1| (-1012)) -(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012)))) -(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012)))) -((((-771)) OR (|has| |#1| (-551 (-771))) (|has| |#1| (-1012)))) -(OR (|has| |#1| (-72)) (|has| |#1| (-1012))) -(((|#1|) . T)) -((($) . T)) -((($ $) . T) (((-1088) $) . T)) -((((-1088)) . T)) -((((-771)) . T)) -((($ (-1088)) . T)) -((((-1088)) . T)) -(((|#1| (-468 (-1088)) (-1088)) . T)) -((($) . T) (((-483)) . T) (((-348 (-483))) |has| |#1| (-38 (-348 (-483)))) ((|#1|) . T)) -((($) . T) (((-348 (-483))) |has| |#1| (-38 (-348 (-483)))) ((|#1|) . T)) +((((-772)) . T)) +(((|#1|) . T)) +((((-772)) . T)) +((((-772)) . T)) +((((-772)) . T)) +((((-337) (-1072)) . T)) +(((|#1|) . T)) +(|has| |#1| (-1013)) +(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013)))) +(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013)))) +((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-1013)))) +(OR (|has| |#1| (-72)) (|has| |#1| (-1013))) +(((|#1|) . T)) +((($) . T)) +((($ $) . T) (((-1089) $) . T)) +((((-1089)) . T)) +((((-772)) . T)) +((($ (-1089)) . T)) +((((-1089)) . T)) +(((|#1| (-469 (-1089)) (-1089)) . T)) +((($) . T) (((-484)) . T) (((-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((|#1|) . T)) +((($) . T) (((-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((|#1|) . T)) (|has| |#1| (-118)) (|has| |#1| (-120)) -(OR (|has| |#1| (-146)) (|has| |#1| (-494))) -((((-348 (-483))) |has| |#1| (-38 (-348 (-483)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-494)))) -((((-348 (-483))) |has| |#1| (-38 (-348 (-483)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-494)))) -((((-348 (-483)) (-348 (-483))) |has| |#1| (-38 (-348 (-483)))) ((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-494)))) -(|has| |#1| (-494)) -(|has| |#1| (-494)) -((((-483)) . T) (((-348 (-483))) |has| |#1| (-38 (-348 (-483)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-494))) -((((-348 (-483))) |has| |#1| (-38 (-348 (-483)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-494))) -((((-348 (-483))) |has| |#1| (-38 (-348 (-483)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-494))) -((((-348 (-483))) |has| |#1| (-38 (-348 (-483)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-494))) -(((|#1| (-468 (-1088))) . T)) -(|has| |#1| (-38 (-348 (-483)))) -(|has| |#1| (-38 (-348 (-483)))) -(|has| |#1| (-38 (-348 (-483)))) -(|has| |#1| (-38 (-348 (-483)))) -(|has| |#1| (-38 (-348 (-483)))) -(|has| |#1| (-38 (-348 (-483)))) -(|has| |#1| (-38 (-348 (-483)))) -(((|#1| (-1088)) . T)) -(|has| |#1| (-1012)) -(|has| |#1| (-1012)) -(|has| |#1| (-1012)) -(|has| |#1| (-1012)) -((((-868 |#1|)) . T)) -((((-771)) |has| |#1| (-551 (-771))) (((-868 |#1|)) . T)) -((((-868 |#1|)) . T)) -((((-1093)) . T)) -((((-771)) . T) (((-1093)) . T)) -((((-1093)) . T)) -((((-771)) . T)) -((((-771)) . T)) -((((-771)) . T)) -((((-771)) . T)) -((((-1167 |#1| |#2| |#3|)) |has| |#1| (-312))) -((((-1167 |#1| |#2| |#3|)) . T)) -((((-1167 |#1| |#2| |#3|)) |has| |#1| (-312))) -((((-1167 |#1| |#2| |#3|)) |has| |#1| (-312))) -((((-1167 |#1| |#2| |#3|)) |has| |#1| (-312))) -((((-1167 |#1| |#2| |#3|)) |has| |#1| (-312))) -((((-1167 |#1| |#2| |#3|)) -12 (|has| |#1| (-312)) (|has| (-1167 |#1| |#2| |#3|) (-260 (-1167 |#1| |#2| |#3|))))) -((((-1167 |#1| |#2| |#3|) (-1167 |#1| |#2| |#3|)) -12 (|has| |#1| (-312)) (|has| (-1167 |#1| |#2| |#3|) (-260 (-1167 |#1| |#2| |#3|)))) (((-1088) (-1167 |#1| |#2| |#3|)) -12 (|has| |#1| (-312)) (|has| (-1167 |#1| |#2| |#3|) (-454 (-1088) (-1167 |#1| |#2| |#3|))))) -((((-1167 |#1| |#2| |#3|)) |has| |#1| (-312))) +(OR (|has| |#1| (-146)) (|has| |#1| (-495))) +((((-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-495)))) +((((-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-495)))) +((((-349 (-484)) (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-495)))) +(|has| |#1| (-495)) +(|has| |#1| (-495)) +((((-484)) . T) (((-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-495))) +((((-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-495))) +((((-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-495))) +((((-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-495))) +(((|#1| (-469 (-1089))) . T)) +(|has| |#1| (-38 (-349 (-484)))) +(|has| |#1| (-38 (-349 (-484)))) +(|has| |#1| (-38 (-349 (-484)))) +(|has| |#1| (-38 (-349 (-484)))) +(|has| |#1| (-38 (-349 (-484)))) +(|has| |#1| (-38 (-349 (-484)))) +(|has| |#1| (-38 (-349 (-484)))) +(((|#1| (-1089)) . T)) +(|has| |#1| (-1013)) +(|has| |#1| (-1013)) +(|has| |#1| (-1013)) +(|has| |#1| (-1013)) +((((-869 |#1|)) . T)) +((((-772)) |has| |#1| (-552 (-772))) (((-869 |#1|)) . T)) +((((-869 |#1|)) . T)) +((((-1094)) . T)) +((((-772)) . T) (((-1094)) . T)) +((((-1094)) . T)) +((((-772)) . T)) +((((-772)) . T)) +((((-772)) . T)) +((((-772)) . T)) +((((-1168 |#1| |#2| |#3|)) |has| |#1| (-312))) +((((-1168 |#1| |#2| |#3|)) . T)) +((((-1168 |#1| |#2| |#3|)) |has| |#1| (-312))) +((((-1168 |#1| |#2| |#3|)) |has| |#1| (-312))) +((((-1168 |#1| |#2| |#3|)) |has| |#1| (-312))) +((((-1168 |#1| |#2| |#3|)) |has| |#1| (-312))) +((((-1168 |#1| |#2| |#3|)) -12 (|has| |#1| (-312)) (|has| (-1168 |#1| |#2| |#3|) (-260 (-1168 |#1| |#2| |#3|))))) +((((-1168 |#1| |#2| |#3|) (-1168 |#1| |#2| |#3|)) -12 (|has| |#1| (-312)) (|has| (-1168 |#1| |#2| |#3|) (-260 (-1168 |#1| |#2| |#3|)))) (((-1089) (-1168 |#1| |#2| |#3|)) -12 (|has| |#1| (-312)) (|has| (-1168 |#1| |#2| |#3|) (-455 (-1089) (-1168 |#1| |#2| |#3|))))) +((((-1168 |#1| |#2| |#3|)) |has| |#1| (-312))) (|has| |#1| (-312)) -(OR (|has| |#1| (-312)) (|has| |#1| (-494))) +(OR (|has| |#1| (-312)) (|has| |#1| (-495))) (|has| |#1| (-312)) (|has| |#1| (-312)) -(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-494))) -(OR (|has| |#1| (-312)) (|has| |#1| (-494))) +(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-495))) +(OR (|has| |#1| (-312)) (|has| |#1| (-495))) (|has| |#1| (-312)) (|has| |#1| (-312)) (|has| |#1| (-312)) -(OR (-12 (|has| |#1| (-312)) (|has| (-1167 |#1| |#2| |#3|) (-190))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) -((($) OR (-12 (|has| |#1| (-312)) (|has| (-1167 |#1| |#2| |#3|) (-190))) (-12 (|has| |#1| (-312)) (|has| (-1167 |#1| |#2| |#3|) (-189))) (|has| |#1| (-15 * (|#1| (-483) |#1|))))) -(OR (-12 (|has| |#1| (-312)) (|has| (-1167 |#1| |#2| |#3|) (-190))) (-12 (|has| |#1| (-312)) (|has| (-1167 |#1| |#2| |#3|) (-189))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) -((((-1167 |#1| |#2| |#3|)) |has| |#1| (-312))) -((($ (-1174 |#2|)) . T) (($ (-1088)) OR (-12 (|has| |#1| (-312)) (|has| (-1167 |#1| |#2| |#3|) (-808 (-1088)))) (-12 (|has| |#1| (-312)) (|has| (-1167 |#1| |#2| |#3|) (-810 (-1088)))) (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))))) -((((-1088)) OR (-12 (|has| |#1| (-312)) (|has| (-1167 |#1| |#2| |#3|) (-808 (-1088)))) (-12 (|has| |#1| (-312)) (|has| (-1167 |#1| |#2| |#3|) (-810 (-1088)))) (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))))) -((((-1088)) OR (-12 (|has| |#1| (-312)) (|has| (-1167 |#1| |#2| |#3|) (-808 (-1088)))) (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))))) -((((-1167 |#1| |#2| |#3|)) |has| |#1| (-312))) -(OR (|has| |#1| (-120)) (-12 (|has| |#1| (-312)) (|has| (-1167 |#1| |#2| |#3|) (-120)))) -(OR (|has| |#1| (-118)) (-12 (|has| |#1| (-312)) (|has| (-1167 |#1| |#2| |#3|) (-118)))) -((((-771)) . T)) -(((|#1|) . T)) -((((-1167 |#1| |#2| |#3|) $) -12 (|has| |#1| (-312)) (|has| (-1167 |#1| |#2| |#3|) (-241 (-1167 |#1| |#2| |#3|) (-1167 |#1| |#2| |#3|)))) (($ $) . T) (((-483) |#1|) . T)) -(((|#1| (-483) (-993)) . T)) -((((-348 (-483))) OR (|has| |#1| (-38 (-348 (-483)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-494))) (((-1167 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1|) |has| |#1| (-146))) -((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-494))) (((-348 (-483)) (-348 (-483))) OR (|has| |#1| (-38 (-348 (-483)))) (|has| |#1| (-312))) (((-1167 |#1| |#2| |#3|) (-1167 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1| |#1|) . T)) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-494))) (((-348 (-483))) OR (|has| |#1| (-38 (-348 (-483)))) (|has| |#1| (-312))) (((-1167 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1|) . T)) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-494))) (((-348 (-483))) OR (|has| |#1| (-38 (-348 (-483)))) (|has| |#1| (-312))) (((-1167 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1|) . T)) -((((-348 (-483))) OR (|has| |#1| (-38 (-348 (-483)))) (|has| |#1| (-312))) (((-1167 |#1| |#2| |#3|)) |has| |#1| (-312)) (((-483)) . T) (($) . T) ((|#1|) . T)) -((((-348 (-483))) OR (|has| |#1| (-38 (-348 (-483)))) (|has| |#1| (-312))) (((-1167 |#1| |#2| |#3|)) |has| |#1| (-312)) (($) . T) ((|#1|) . T)) -((((-348 (-483))) OR (|has| |#1| (-38 (-348 (-483)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-494))) (((-1167 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1|) |has| |#1| (-146))) -((((-348 (-483))) OR (|has| |#1| (-38 (-348 (-483)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-494))) (((-1167 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1|) |has| |#1| (-146))) -((((-1167 |#1| |#2| |#3|)) . T) (((-348 (-483))) OR (|has| |#1| (-38 (-348 (-483)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-494))) (((-483)) . T) ((|#1|) |has| |#1| (-146))) -(((|#1| (-483)) . T)) -(((|#1| (-483)) . T)) -(|has| |#1| (-38 (-348 (-483)))) -(|has| |#1| (-38 (-348 (-483)))) -(|has| |#1| (-38 (-348 (-483)))) -(|has| |#1| (-38 (-348 (-483)))) -(|has| |#1| (-38 (-348 (-483)))) -(|has| |#1| (-38 (-348 (-483)))) -(|has| |#1| (-38 (-348 (-483)))) -(((|#1| (-1167 |#1| |#2| |#3|)) . T)) +(OR (-12 (|has| |#1| (-312)) (|has| (-1168 |#1| |#2| |#3|) (-190))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) +((($) OR (-12 (|has| |#1| (-312)) (|has| (-1168 |#1| |#2| |#3|) (-190))) (-12 (|has| |#1| (-312)) (|has| (-1168 |#1| |#2| |#3|) (-189))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) +(OR (-12 (|has| |#1| (-312)) (|has| (-1168 |#1| |#2| |#3|) (-190))) (-12 (|has| |#1| (-312)) (|has| (-1168 |#1| |#2| |#3|) (-189))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) +((((-1168 |#1| |#2| |#3|)) |has| |#1| (-312))) +((($ (-1175 |#2|)) . T) (($ (-1089)) OR (-12 (|has| |#1| (-312)) (|has| (-1168 |#1| |#2| |#3|) (-809 (-1089)))) (-12 (|has| |#1| (-312)) (|has| (-1168 |#1| |#2| |#3|) (-811 (-1089)))) (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))))) +((((-1089)) OR (-12 (|has| |#1| (-312)) (|has| (-1168 |#1| |#2| |#3|) (-809 (-1089)))) (-12 (|has| |#1| (-312)) (|has| (-1168 |#1| |#2| |#3|) (-811 (-1089)))) (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))))) +((((-1089)) OR (-12 (|has| |#1| (-312)) (|has| (-1168 |#1| |#2| |#3|) (-809 (-1089)))) (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))))) +((((-1168 |#1| |#2| |#3|)) |has| |#1| (-312))) +(OR (|has| |#1| (-120)) (-12 (|has| |#1| (-312)) (|has| (-1168 |#1| |#2| |#3|) (-120)))) +(OR (|has| |#1| (-118)) (-12 (|has| |#1| (-312)) (|has| (-1168 |#1| |#2| |#3|) (-118)))) +((((-772)) . T)) +(((|#1|) . T)) +((((-1168 |#1| |#2| |#3|) $) -12 (|has| |#1| (-312)) (|has| (-1168 |#1| |#2| |#3|) (-241 (-1168 |#1| |#2| |#3|) (-1168 |#1| |#2| |#3|)))) (($ $) . T) (((-484) |#1|) . T)) +(((|#1| (-484) (-994)) . T)) +((((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-495))) (((-1168 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1|) |has| |#1| (-146))) +((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-495))) (((-349 (-484)) (-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))) (((-1168 |#1| |#2| |#3|) (-1168 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1| |#1|) . T)) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-495))) (((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))) (((-1168 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1|) . T)) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-495))) (((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))) (((-1168 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1|) . T)) +((((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))) (((-1168 |#1| |#2| |#3|)) |has| |#1| (-312)) (((-484)) . T) (($) . T) ((|#1|) . T)) +((((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))) (((-1168 |#1| |#2| |#3|)) |has| |#1| (-312)) (($) . T) ((|#1|) . T)) +((((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-495))) (((-1168 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1|) |has| |#1| (-146))) +((((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-495))) (((-1168 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1|) |has| |#1| (-146))) +((((-1168 |#1| |#2| |#3|)) . T) (((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-495))) (((-484)) . T) ((|#1|) |has| |#1| (-146))) +(((|#1| (-484)) . T)) +(((|#1| (-484)) . T)) +(|has| |#1| (-38 (-349 (-484)))) +(|has| |#1| (-38 (-349 (-484)))) +(|has| |#1| (-38 (-349 (-484)))) +(|has| |#1| (-38 (-349 (-484)))) +(|has| |#1| (-38 (-349 (-484)))) +(|has| |#1| (-38 (-349 (-484)))) +(|has| |#1| (-38 (-349 (-484)))) +(((|#1| (-1168 |#1| |#2| |#3|)) . T)) (((|#2|) |has| |#1| (-312))) -(-12 (|has| |#1| (-312)) (|has| |#2| (-1064))) -(((|#2|) . T) (((-1088)) -12 (|has| |#1| (-312)) (|has| |#2| (-949 (-1088)))) (((-483)) -12 (|has| |#1| (-312)) (|has| |#2| (-949 (-483)))) (((-348 (-483))) -12 (|has| |#1| (-312)) (|has| |#2| (-949 (-483))))) -(-12 (|has| |#1| (-312)) (|has| |#2| (-932))) -(-12 (|has| |#1| (-312)) (|has| |#2| (-820))) +(-12 (|has| |#1| (-312)) (|has| |#2| (-1065))) +(((|#2|) . T) (((-1089)) -12 (|has| |#1| (-312)) (|has| |#2| (-950 (-1089)))) (((-484)) -12 (|has| |#1| (-312)) (|has| |#2| (-950 (-484)))) (((-349 (-484))) -12 (|has| |#1| (-312)) (|has| |#2| (-950 (-484))))) +(-12 (|has| |#1| (-312)) (|has| |#2| (-933))) +(-12 (|has| |#1| (-312)) (|has| |#2| (-821))) (((|#2|) |has| |#1| (-312))) -(-12 (|has| |#1| (-312)) (|has| |#2| (-739))) -(-12 (|has| |#1| (-312)) (|has| |#2| (-739))) -(-12 (|has| |#1| (-312)) (|has| |#2| (-739))) -(OR (-12 (|has| |#1| (-312)) (|has| |#2| (-739))) (-12 (|has| |#1| (-312)) (|has| |#2| (-755)))) -(OR (-12 (|has| |#1| (-312)) (|has| |#2| (-739))) (-12 (|has| |#1| (-312)) (|has| |#2| (-755)))) -(-12 (|has| |#1| (-312)) (|has| |#2| (-739))) -(-12 (|has| |#1| (-312)) (|has| |#2| (-739))) -(-12 (|has| |#1| (-312)) (|has| |#2| (-739))) -((((-328)) -12 (|has| |#1| (-312)) (|has| |#2| (-795 (-328)))) (((-483)) -12 (|has| |#1| (-312)) (|has| |#2| (-795 (-483))))) +(-12 (|has| |#1| (-312)) (|has| |#2| (-740))) +(-12 (|has| |#1| (-312)) (|has| |#2| (-740))) +(-12 (|has| |#1| (-312)) (|has| |#2| (-740))) +(OR (-12 (|has| |#1| (-312)) (|has| |#2| (-740))) (-12 (|has| |#1| (-312)) (|has| |#2| (-756)))) +(OR (-12 (|has| |#1| (-312)) (|has| |#2| (-740))) (-12 (|has| |#1| (-312)) (|has| |#2| (-756)))) +(-12 (|has| |#1| (-312)) (|has| |#2| (-740))) +(-12 (|has| |#1| (-312)) (|has| |#2| (-740))) +(-12 (|has| |#1| (-312)) (|has| |#2| (-740))) +((((-329)) -12 (|has| |#1| (-312)) (|has| |#2| (-796 (-329)))) (((-484)) -12 (|has| |#1| (-312)) (|has| |#2| (-796 (-484))))) (((|#2|) |has| |#1| (-312))) -((((-483)) -12 (|has| |#1| (-312)) (|has| |#2| (-579 (-483)))) ((|#2|) |has| |#1| (-312))) +((((-484)) -12 (|has| |#1| (-312)) (|has| |#2| (-580 (-484)))) ((|#2|) |has| |#1| (-312))) (((|#2|) |has| |#1| (-312))) (((|#2|) -12 (|has| |#1| (-312)) (|has| |#2| (-260 |#2|)))) -(((|#2| |#2|) -12 (|has| |#1| (-312)) (|has| |#2| (-260 |#2|))) (((-1088) |#2|) -12 (|has| |#1| (-312)) (|has| |#2| (-454 (-1088) |#2|)))) +(((|#2| |#2|) -12 (|has| |#1| (-312)) (|has| |#2| (-260 |#2|))) (((-1089) |#2|) -12 (|has| |#1| (-312)) (|has| |#2| (-455 (-1089) |#2|)))) (((|#2|) |has| |#1| (-312))) (|has| |#1| (-312)) -(OR (|has| |#1| (-312)) (|has| |#1| (-494))) +(OR (|has| |#1| (-312)) (|has| |#1| (-495))) (|has| |#1| (-312)) (|has| |#1| (-312)) -(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-494))) -(OR (|has| |#1| (-312)) (|has| |#1| (-494))) +(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-495))) +(OR (|has| |#1| (-312)) (|has| |#1| (-495))) (|has| |#1| (-312)) (|has| |#1| (-312)) (|has| |#1| (-312)) -(OR (-12 (|has| |#1| (-312)) (|has| |#2| (-190))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) -((($) OR (-12 (|has| |#1| (-312)) (|has| |#2| (-190))) (-12 (|has| |#1| (-312)) (|has| |#2| (-189))) (|has| |#1| (-15 * (|#1| (-483) |#1|))))) -(OR (-12 (|has| |#1| (-312)) (|has| |#2| (-190))) (-12 (|has| |#1| (-312)) (|has| |#2| (-189))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) +(OR (-12 (|has| |#1| (-312)) (|has| |#2| (-190))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) +((($) OR (-12 (|has| |#1| (-312)) (|has| |#2| (-190))) (-12 (|has| |#1| (-312)) (|has| |#2| (-189))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) +(OR (-12 (|has| |#1| (-312)) (|has| |#2| (-190))) (-12 (|has| |#1| (-312)) (|has| |#2| (-189))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) (((|#2|) |has| |#1| (-312))) -((($ (-1088)) OR (-12 (|has| |#1| (-312)) (|has| |#2| (-808 (-1088)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-810 (-1088)))) (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))))) -((((-1088)) OR (-12 (|has| |#1| (-312)) (|has| |#2| (-808 (-1088)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-810 (-1088)))) (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))))) -((((-1088)) OR (-12 (|has| |#1| (-312)) (|has| |#2| (-808 (-1088)))) (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))))) +((($ (-1089)) OR (-12 (|has| |#1| (-312)) (|has| |#2| (-809 (-1089)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-811 (-1089)))) (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))))) +((((-1089)) OR (-12 (|has| |#1| (-312)) (|has| |#2| (-809 (-1089)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-811 (-1089)))) (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))))) +((((-1089)) OR (-12 (|has| |#1| (-312)) (|has| |#2| (-809 (-1089)))) (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))))) (((|#2|) |has| |#1| (-312))) -((((-179)) -12 (|has| |#1| (-312)) (|has| |#2| (-932))) (((-328)) -12 (|has| |#1| (-312)) (|has| |#2| (-932))) (((-799 (-328))) -12 (|has| |#1| (-312)) (|has| |#2| (-552 (-799 (-328))))) (((-799 (-483))) -12 (|has| |#1| (-312)) (|has| |#2| (-552 (-799 (-483))))) (((-472)) -12 (|has| |#1| (-312)) (|has| |#2| (-552 (-472))))) -(OR (|has| |#1| (-120)) (-12 (|has| |#1| (-312)) (|has| |#2| (-120))) (-12 (|has| |#1| (-312)) (|has| |#2| (-739)))) +((((-179)) -12 (|has| |#1| (-312)) (|has| |#2| (-933))) (((-329)) -12 (|has| |#1| (-312)) (|has| |#2| (-933))) (((-800 (-329))) -12 (|has| |#1| (-312)) (|has| |#2| (-553 (-800 (-329))))) (((-800 (-484))) -12 (|has| |#1| (-312)) (|has| |#2| (-553 (-800 (-484))))) (((-473)) -12 (|has| |#1| (-312)) (|has| |#2| (-553 (-473))))) +(OR (|has| |#1| (-120)) (-12 (|has| |#1| (-312)) (|has| |#2| (-120))) (-12 (|has| |#1| (-312)) (|has| |#2| (-740)))) (OR (|has| |#1| (-118)) (-12 (|has| |#1| (-312)) (|has| |#2| (-118)))) -((((-771)) . T)) -(((|#1|) . T)) -(((|#2| $) -12 (|has| |#1| (-312)) (|has| |#2| (-241 |#2| |#2|))) (($ $) . T) (((-483) |#1|) . T)) -(((|#1| (-483) (-993)) . T)) -((((-348 (-483))) OR (|has| |#1| (-38 (-348 (-483)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-494))) ((|#2|) |has| |#1| (-312)) ((|#1|) |has| |#1| (-146))) -((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-494))) (((-348 (-483)) (-348 (-483))) OR (|has| |#1| (-38 (-348 (-483)))) (|has| |#1| (-312))) ((|#2| |#2|) |has| |#1| (-312)) ((|#1| |#1|) . T)) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-494))) (((-348 (-483))) OR (|has| |#1| (-38 (-348 (-483)))) (|has| |#1| (-312))) ((|#2|) |has| |#1| (-312)) ((|#1|) . T)) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-494))) (((-348 (-483))) OR (|has| |#1| (-38 (-348 (-483)))) (|has| |#1| (-312))) ((|#2|) |has| |#1| (-312)) ((|#1|) . T)) -((((-348 (-483))) OR (|has| |#1| (-38 (-348 (-483)))) (|has| |#1| (-312))) ((|#2|) |has| |#1| (-312)) (((-483)) . T) (($) . T) ((|#1|) . T)) -((((-483)) -12 (|has| |#1| (-312)) (|has| |#2| (-579 (-483)))) (((-348 (-483))) OR (|has| |#1| (-38 (-348 (-483)))) (|has| |#1| (-312))) ((|#2|) |has| |#1| (-312)) (($) . T) ((|#1|) . T)) -((((-348 (-483))) OR (|has| |#1| (-38 (-348 (-483)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-494))) ((|#2|) |has| |#1| (-312)) ((|#1|) |has| |#1| (-146))) -((((-348 (-483))) OR (|has| |#1| (-38 (-348 (-483)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-494))) ((|#2|) |has| |#1| (-312)) ((|#1|) |has| |#1| (-146))) -(((|#2|) . T) (((-1088)) -12 (|has| |#1| (-312)) (|has| |#2| (-949 (-1088)))) (((-348 (-483))) OR (|has| |#1| (-38 (-348 (-483)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-494))) (((-483)) . T) ((|#1|) |has| |#1| (-146))) -(((|#1| (-483)) . T)) -(((|#1| (-483)) . T)) -(|has| |#1| (-38 (-348 (-483)))) -(|has| |#1| (-38 (-348 (-483)))) -(|has| |#1| (-38 (-348 (-483)))) -(|has| |#1| (-38 (-348 (-483)))) -(|has| |#1| (-38 (-348 (-483)))) -(|has| |#1| (-38 (-348 (-483)))) -(|has| |#1| (-38 (-348 (-483)))) +((((-772)) . T)) +(((|#1|) . T)) +(((|#2| $) -12 (|has| |#1| (-312)) (|has| |#2| (-241 |#2| |#2|))) (($ $) . T) (((-484) |#1|) . T)) +(((|#1| (-484) (-994)) . T)) +((((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-495))) ((|#2|) |has| |#1| (-312)) ((|#1|) |has| |#1| (-146))) +((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-495))) (((-349 (-484)) (-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))) ((|#2| |#2|) |has| |#1| (-312)) ((|#1| |#1|) . T)) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-495))) (((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))) ((|#2|) |has| |#1| (-312)) ((|#1|) . T)) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-495))) (((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))) ((|#2|) |has| |#1| (-312)) ((|#1|) . T)) +((((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))) ((|#2|) |has| |#1| (-312)) (((-484)) . T) (($) . T) ((|#1|) . T)) +((((-484)) -12 (|has| |#1| (-312)) (|has| |#2| (-580 (-484)))) (((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))) ((|#2|) |has| |#1| (-312)) (($) . T) ((|#1|) . T)) +((((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-495))) ((|#2|) |has| |#1| (-312)) ((|#1|) |has| |#1| (-146))) +((((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-495))) ((|#2|) |has| |#1| (-312)) ((|#1|) |has| |#1| (-146))) +(((|#2|) . T) (((-1089)) -12 (|has| |#1| (-312)) (|has| |#2| (-950 (-1089)))) (((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-495))) (((-484)) . T) ((|#1|) |has| |#1| (-146))) +(((|#1| (-484)) . T)) +(((|#1| (-484)) . T)) +(|has| |#1| (-38 (-349 (-484)))) +(|has| |#1| (-38 (-349 (-484)))) +(|has| |#1| (-38 (-349 (-484)))) +(|has| |#1| (-38 (-349 (-484)))) +(|has| |#1| (-38 (-349 (-484)))) +(|has| |#1| (-38 (-349 (-484)))) +(|has| |#1| (-38 (-349 (-484)))) (((|#1| |#2|) . T)) -(((|#1| (-1067 |#1|)) |has| |#1| (-754))) -(|has| |#1| (-1012)) -(|has| |#1| (-1012)) -(|has| |#1| (-1012)) -((((-771)) |has| |#1| (-1012))) -(|has| |#1| (-1012)) +(((|#1| (-1068 |#1|)) |has| |#1| (-755))) +(|has| |#1| (-1013)) +(|has| |#1| (-1013)) +(|has| |#1| (-1013)) +((((-772)) |has| |#1| (-1013))) +(|has| |#1| (-1013)) (((|#1|) . T)) (((|#1|) . T)) (((|#2|) . T)) (((|#2|) . T)) ((($) . T)) -((((-771)) . T)) -((((-348 $) (-348 $)) |has| |#2| (-494)) (($ $) . T) ((|#2| |#2|) . T)) +((((-772)) . T)) +((((-349 $) (-349 $)) |has| |#2| (-495)) (($ $) . T) ((|#2| |#2|) . T)) (|has| |#2| (-312)) -(OR (|has| |#2| (-312)) (|has| |#2| (-390)) (|has| |#2| (-820))) -(OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-390)) (|has| |#2| (-494)) (|has| |#2| (-820))) -(OR (|has| |#2| (-312)) (|has| |#2| (-390)) (|has| |#2| (-494)) (|has| |#2| (-820))) -(OR (|has| |#2| (-312)) (|has| |#2| (-390)) (|has| |#2| (-494)) (|has| |#2| (-820))) +(OR (|has| |#2| (-312)) (|has| |#2| (-391)) (|has| |#2| (-821))) +(OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-391)) (|has| |#2| (-495)) (|has| |#2| (-821))) +(OR (|has| |#2| (-312)) (|has| |#2| (-391)) (|has| |#2| (-495)) (|has| |#2| (-821))) +(OR (|has| |#2| (-312)) (|has| |#2| (-391)) (|has| |#2| (-495)) (|has| |#2| (-821))) (|has| |#2| (-312)) -(((|#2| (-693) (-993)) . T)) -(|has| |#2| (-820)) -(|has| |#2| (-820)) -((((-1088)) OR (|has| |#2| (-808 (-1088))) (|has| |#2| (-810 (-1088)))) (((-993)) . T)) -((($ (-1088)) OR (|has| |#2| (-808 (-1088))) (|has| |#2| (-810 (-1088)))) (($ (-993)) . T)) -((((-1088)) |has| |#2| (-808 (-1088))) (((-993)) . T)) -((((-483)) |has| |#2| (-579 (-483))) ((|#2|) . T)) -(((|#2|) . T)) -(((|#2| (-693)) . T)) +(((|#2| (-694) (-994)) . T)) +(|has| |#2| (-821)) +(|has| |#2| (-821)) +((((-1089)) OR (|has| |#2| (-809 (-1089))) (|has| |#2| (-811 (-1089)))) (((-994)) . T)) +((($ (-1089)) OR (|has| |#2| (-809 (-1089))) (|has| |#2| (-811 (-1089)))) (($ (-994)) . T)) +((((-1089)) |has| |#2| (-809 (-1089))) (((-994)) . T)) +((((-484)) |has| |#2| (-580 (-484))) ((|#2|) . T)) +(((|#2|) . T)) +(((|#2| (-694)) . T)) (|has| |#2| (-120)) (|has| |#2| (-118)) -((((-1174 |#1|)) . T) (((-483)) . T) (($) OR (|has| |#2| (-312)) (|has| |#2| (-390)) (|has| |#2| (-494)) (|has| |#2| (-820))) (((-993)) . T) ((|#2|) . T) (((-348 (-483))) OR (|has| |#2| (-38 (-348 (-483)))) (|has| |#2| (-949 (-348 (-483)))))) -((($) OR (|has| |#2| (-312)) (|has| |#2| (-390)) (|has| |#2| (-494)) (|has| |#2| (-820))) ((|#2|) |has| |#2| (-146)) (((-348 (-483))) |has| |#2| (-38 (-348 (-483))))) -((($) OR (|has| |#2| (-312)) (|has| |#2| (-390)) (|has| |#2| (-494)) (|has| |#2| (-820))) ((|#2|) |has| |#2| (-146)) (((-348 (-483))) |has| |#2| (-38 (-348 (-483))))) -((($) . T) (((-483)) |has| |#2| (-579 (-483))) ((|#2|) . T) (((-348 (-483))) |has| |#2| (-38 (-348 (-483))))) -((((-483)) . T) (($) . T) ((|#2|) . T) (((-348 (-483))) |has| |#2| (-38 (-348 (-483))))) -((($) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-390)) (|has| |#2| (-494)) (|has| |#2| (-820))) ((|#2|) . T) (((-348 (-483))) |has| |#2| (-38 (-348 (-483))))) -((($) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-390)) (|has| |#2| (-494)) (|has| |#2| (-820))) ((|#2|) . T) (((-348 (-483))) |has| |#2| (-38 (-348 (-483))))) -((($ $) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-390)) (|has| |#2| (-494)) (|has| |#2| (-820))) ((|#2| |#2|) . T) (((-348 (-483)) (-348 (-483))) |has| |#2| (-38 (-348 (-483))))) -((($) OR (|has| |#2| (-312)) (|has| |#2| (-390)) (|has| |#2| (-494)) (|has| |#2| (-820))) ((|#2|) |has| |#2| (-146)) (((-348 (-483))) |has| |#2| (-38 (-348 (-483))))) -(((|#2|) . T)) -((((-993)) . T) ((|#2|) . T) (((-483)) |has| |#2| (-949 (-483))) (((-348 (-483))) |has| |#2| (-949 (-348 (-483))))) -(((|#2| (-693)) . T)) -((((-993) |#2|) . T) (((-993) $) . T) (($ $) . T)) -((($) . T)) -(|has| |#2| (-1064)) -(((|#2|) . T)) -((((-1167 |#1| |#2| |#3|)) . T) (((-1137 |#1| |#2| |#3|)) . T)) -(((|#1|) . T)) -(|has| |#1| (-15 * (|#1| (-348 (-483)) |#1|))) -((($) |has| |#1| (-15 * (|#1| (-348 (-483)) |#1|)))) -(|has| |#1| (-15 * (|#1| (-348 (-483)) |#1|))) -((($ $) . T) (((-348 (-483)) |#1|) . T)) -((((-1088)) -12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-348 (-483)) |#1|))))) -((($ (-1174 |#2|)) . T) (($ (-1088)) -12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-348 (-483)) |#1|))))) -((((-1088)) -12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-348 (-483)) |#1|))))) -(((|#1| (-348 (-483)) (-993)) . T)) +((((-1175 |#1|)) . T) (((-484)) . T) (($) OR (|has| |#2| (-312)) (|has| |#2| (-391)) (|has| |#2| (-495)) (|has| |#2| (-821))) (((-994)) . T) ((|#2|) . T) (((-349 (-484))) OR (|has| |#2| (-38 (-349 (-484)))) (|has| |#2| (-950 (-349 (-484)))))) +((($) OR (|has| |#2| (-312)) (|has| |#2| (-391)) (|has| |#2| (-495)) (|has| |#2| (-821))) ((|#2|) |has| |#2| (-146)) (((-349 (-484))) |has| |#2| (-38 (-349 (-484))))) +((($) OR (|has| |#2| (-312)) (|has| |#2| (-391)) (|has| |#2| (-495)) (|has| |#2| (-821))) ((|#2|) |has| |#2| (-146)) (((-349 (-484))) |has| |#2| (-38 (-349 (-484))))) +((($) . T) (((-484)) |has| |#2| (-580 (-484))) ((|#2|) . T) (((-349 (-484))) |has| |#2| (-38 (-349 (-484))))) +((((-484)) . T) (($) . T) ((|#2|) . T) (((-349 (-484))) |has| |#2| (-38 (-349 (-484))))) +((($) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-391)) (|has| |#2| (-495)) (|has| |#2| (-821))) ((|#2|) . T) (((-349 (-484))) |has| |#2| (-38 (-349 (-484))))) +((($) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-391)) (|has| |#2| (-495)) (|has| |#2| (-821))) ((|#2|) . T) (((-349 (-484))) |has| |#2| (-38 (-349 (-484))))) +((($ $) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-391)) (|has| |#2| (-495)) (|has| |#2| (-821))) ((|#2| |#2|) . T) (((-349 (-484)) (-349 (-484))) |has| |#2| (-38 (-349 (-484))))) +((($) OR (|has| |#2| (-312)) (|has| |#2| (-391)) (|has| |#2| (-495)) (|has| |#2| (-821))) ((|#2|) |has| |#2| (-146)) (((-349 (-484))) |has| |#2| (-38 (-349 (-484))))) +(((|#2|) . T)) +((((-994)) . T) ((|#2|) . T) (((-484)) |has| |#2| (-950 (-484))) (((-349 (-484))) |has| |#2| (-950 (-349 (-484))))) +(((|#2| (-694)) . T)) +((((-994) |#2|) . T) (((-994) $) . T) (($ $) . T)) +((($) . T)) +(|has| |#2| (-1065)) +(((|#2|) . T)) +((((-1168 |#1| |#2| |#3|)) . T) (((-1138 |#1| |#2| |#3|)) . T)) +(((|#1|) . T)) +(|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|))) +((($) |has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))) +(|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|))) +((($ $) . T) (((-349 (-484)) |#1|) . T)) +((((-1089)) -12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|))))) +((($ (-1175 |#2|)) . T) (($ (-1089)) -12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|))))) +((((-1089)) -12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|))))) +(((|#1| (-349 (-484)) (-994)) . T)) (|has| |#1| (-118)) (|has| |#1| (-120)) -(((|#1| (-348 (-483))) . T)) -(((|#1| (-348 (-483))) . T)) -(|has| |#1| (-38 (-348 (-483)))) -(|has| |#1| (-38 (-348 (-483)))) -(|has| |#1| (-38 (-348 (-483)))) -(|has| |#1| (-38 (-348 (-483)))) -(|has| |#1| (-38 (-348 (-483)))) -(|has| |#1| (-38 (-348 (-483)))) -(|has| |#1| (-38 (-348 (-483)))) +(((|#1| (-349 (-484))) . T)) +(((|#1| (-349 (-484))) . T)) +(|has| |#1| (-38 (-349 (-484)))) +(|has| |#1| (-38 (-349 (-484)))) +(|has| |#1| (-38 (-349 (-484)))) +(|has| |#1| (-38 (-349 (-484)))) +(|has| |#1| (-38 (-349 (-484)))) +(|has| |#1| (-38 (-349 (-484)))) +(|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312)) -(OR (|has| |#1| (-312)) (|has| |#1| (-494))) -((((-771)) . T)) -(((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-494))) (((-348 (-483))) OR (|has| |#1| (-38 (-348 (-483)))) (|has| |#1| (-312)))) -(((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-494))) (((-348 (-483))) OR (|has| |#1| (-38 (-348 (-483)))) (|has| |#1| (-312)))) -(((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-494))) (((-348 (-483)) (-348 (-483))) OR (|has| |#1| (-38 (-348 (-483)))) (|has| |#1| (-312)))) -(((|#1|) . T) (((-348 (-483))) OR (|has| |#1| (-38 (-348 (-483)))) (|has| |#1| (-312))) (((-483)) . T) (($) . T)) -(((|#1|) . T) (((-348 (-483))) OR (|has| |#1| (-38 (-348 (-483)))) (|has| |#1| (-312))) (($) . T)) +(OR (|has| |#1| (-312)) (|has| |#1| (-495))) +((((-772)) . T)) +(((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-495))) (((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312)))) +(((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-495))) (((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312)))) +(((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-495))) (((-349 (-484)) (-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312)))) +(((|#1|) . T) (((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))) (((-484)) . T) (($) . T)) +(((|#1|) . T) (((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))) (($) . T)) (|has| |#1| (-312)) (|has| |#1| (-312)) -(((|#1|) |has| |#1| (-146)) (((-348 (-483))) OR (|has| |#1| (-38 (-348 (-483)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-494)))) -(((|#1|) |has| |#1| (-146)) (((-348 (-483))) OR (|has| |#1| (-38 (-348 (-483)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-494)))) -(((|#1|) |has| |#1| (-146)) (((-348 (-483))) OR (|has| |#1| (-38 (-348 (-483)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-494)))) -((((-1174 |#2|)) . T) (((-1167 |#1| |#2| |#3|)) . T) (((-1137 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-146)) (((-348 (-483))) OR (|has| |#1| (-38 (-348 (-483)))) (|has| |#1| (-312))) (((-483)) . T) (($) OR (|has| |#1| (-312)) (|has| |#1| (-494)))) -(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-494))) -(OR (|has| |#1| (-312)) (|has| |#1| (-494))) +(((|#1|) |has| |#1| (-146)) (((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-495)))) +(((|#1|) |has| |#1| (-146)) (((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-495)))) +(((|#1|) |has| |#1| (-146)) (((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-495)))) +((((-1175 |#2|)) . T) (((-1168 |#1| |#2| |#3|)) . T) (((-1138 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-146)) (((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))) (((-484)) . T) (($) OR (|has| |#1| (-312)) (|has| |#1| (-495)))) +(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-495))) +(OR (|has| |#1| (-312)) (|has| |#1| (-495))) (|has| |#1| (-312)) (|has| |#1| (-312)) (|has| |#1| (-312)) -(((|#1| (-1137 |#1| |#2| |#3|)) . T)) +(((|#1| (-1138 |#1| |#2| |#3|)) . T)) (((|#2|) . T)) (((|#1|) . T)) -(|has| |#1| (-15 * (|#1| (-348 (-483)) |#1|))) -((($) |has| |#1| (-15 * (|#1| (-348 (-483)) |#1|)))) -(|has| |#1| (-15 * (|#1| (-348 (-483)) |#1|))) -((($ $) . T) (((-348 (-483)) |#1|) . T)) -((((-1088)) -12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-348 (-483)) |#1|))))) -((($ (-1088)) -12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-348 (-483)) |#1|))))) -((((-1088)) -12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-348 (-483)) |#1|))))) -(((|#1| (-348 (-483)) (-993)) . T)) +(|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|))) +((($) |has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))) +(|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|))) +((($ $) . T) (((-349 (-484)) |#1|) . T)) +((((-1089)) -12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|))))) +((($ (-1089)) -12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|))))) +((((-1089)) -12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|))))) +(((|#1| (-349 (-484)) (-994)) . T)) (|has| |#1| (-118)) (|has| |#1| (-120)) -(((|#1| (-348 (-483))) . T)) -(((|#1| (-348 (-483))) . T)) -(|has| |#1| (-38 (-348 (-483)))) -(|has| |#1| (-38 (-348 (-483)))) -(|has| |#1| (-38 (-348 (-483)))) -(|has| |#1| (-38 (-348 (-483)))) -(|has| |#1| (-38 (-348 (-483)))) -(|has| |#1| (-38 (-348 (-483)))) -(|has| |#1| (-38 (-348 (-483)))) +(((|#1| (-349 (-484))) . T)) +(((|#1| (-349 (-484))) . T)) +(|has| |#1| (-38 (-349 (-484)))) +(|has| |#1| (-38 (-349 (-484)))) +(|has| |#1| (-38 (-349 (-484)))) +(|has| |#1| (-38 (-349 (-484)))) +(|has| |#1| (-38 (-349 (-484)))) +(|has| |#1| (-38 (-349 (-484)))) +(|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312)) -(OR (|has| |#1| (-312)) (|has| |#1| (-494))) -((((-771)) . T)) -(((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-494))) (((-348 (-483))) OR (|has| |#1| (-38 (-348 (-483)))) (|has| |#1| (-312)))) -(((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-494))) (((-348 (-483))) OR (|has| |#1| (-38 (-348 (-483)))) (|has| |#1| (-312)))) -(((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-494))) (((-348 (-483)) (-348 (-483))) OR (|has| |#1| (-38 (-348 (-483)))) (|has| |#1| (-312)))) -(((|#1|) . T) (((-348 (-483))) OR (|has| |#1| (-38 (-348 (-483)))) (|has| |#1| (-312))) (((-483)) . T) (($) . T)) -(((|#1|) . T) (((-348 (-483))) OR (|has| |#1| (-38 (-348 (-483)))) (|has| |#1| (-312))) (($) . T)) +(OR (|has| |#1| (-312)) (|has| |#1| (-495))) +((((-772)) . T)) +(((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-495))) (((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312)))) +(((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-495))) (((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312)))) +(((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-495))) (((-349 (-484)) (-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312)))) +(((|#1|) . T) (((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))) (((-484)) . T) (($) . T)) +(((|#1|) . T) (((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))) (($) . T)) (|has| |#1| (-312)) (|has| |#1| (-312)) -(((|#1|) |has| |#1| (-146)) (((-348 (-483))) OR (|has| |#1| (-38 (-348 (-483)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-494)))) -(((|#1|) |has| |#1| (-146)) (((-348 (-483))) OR (|has| |#1| (-38 (-348 (-483)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-494)))) -(((|#1|) |has| |#1| (-146)) (((-348 (-483))) OR (|has| |#1| (-38 (-348 (-483)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-494)))) -(((|#2|) . T) ((|#1|) |has| |#1| (-146)) (((-348 (-483))) OR (|has| |#1| (-38 (-348 (-483)))) (|has| |#1| (-312))) (((-483)) . T) (($) OR (|has| |#1| (-312)) (|has| |#1| (-494)))) -(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-494))) -(OR (|has| |#1| (-312)) (|has| |#1| (-494))) +(((|#1|) |has| |#1| (-146)) (((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-495)))) +(((|#1|) |has| |#1| (-146)) (((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-495)))) +(((|#1|) |has| |#1| (-146)) (((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-495)))) +(((|#2|) . T) ((|#1|) |has| |#1| (-146)) (((-349 (-484))) OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-312))) (((-484)) . T) (($) OR (|has| |#1| (-312)) (|has| |#1| (-495)))) +(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-495))) +(OR (|has| |#1| (-312)) (|has| |#1| (-495))) (|has| |#1| (-312)) (|has| |#1| (-312)) (|has| |#1| (-312)) (((|#1| |#2|) . T)) -((((-1158 |#2| |#3| |#4|) (-270 |#2| |#3| |#4|)) . T)) -(|has| (-1158 |#2| |#3| |#4|) (-120)) -(|has| (-1158 |#2| |#3| |#4|) (-118)) -((($) . T) (((-1158 |#2| |#3| |#4|)) |has| (-1158 |#2| |#3| |#4|) (-146)) (((-348 (-483))) |has| (-1158 |#2| |#3| |#4|) (-38 (-348 (-483))))) -((($) . T) (((-1158 |#2| |#3| |#4|)) |has| (-1158 |#2| |#3| |#4|) (-146)) (((-348 (-483))) |has| (-1158 |#2| |#3| |#4|) (-38 (-348 (-483))))) -((((-771)) . T)) -((($) . T) (((-1158 |#2| |#3| |#4|)) . T) (((-348 (-483))) |has| (-1158 |#2| |#3| |#4|) (-38 (-348 (-483))))) -((($) . T) (((-1158 |#2| |#3| |#4|)) . T) (((-348 (-483))) |has| (-1158 |#2| |#3| |#4|) (-38 (-348 (-483))))) -((($ $) . T) (((-1158 |#2| |#3| |#4|) (-1158 |#2| |#3| |#4|)) . T) (((-348 (-483)) (-348 (-483))) |has| (-1158 |#2| |#3| |#4|) (-38 (-348 (-483))))) -((((-1158 |#2| |#3| |#4|)) . T) (((-348 (-483))) |has| (-1158 |#2| |#3| |#4|) (-38 (-348 (-483)))) (((-483)) . T) (($) . T)) -((((-1158 |#2| |#3| |#4|)) . T) (((-348 (-483))) |has| (-1158 |#2| |#3| |#4|) (-38 (-348 (-483)))) (($) . T)) -((($) . T) (((-1158 |#2| |#3| |#4|)) . T) (((-348 (-483))) |has| (-1158 |#2| |#3| |#4|) (-38 (-348 (-483)))) (((-483)) . T)) -((($) . T) (((-1158 |#2| |#3| |#4|)) |has| (-1158 |#2| |#3| |#4|) (-146)) (((-348 (-483))) |has| (-1158 |#2| |#3| |#4|) (-38 (-348 (-483))))) -((((-1158 |#2| |#3| |#4|)) . T)) -((((-1158 |#2| |#3| |#4|)) . T)) -((((-1158 |#2| |#3| |#4|) (-270 |#2| |#3| |#4|)) . T)) -(|has| |#1| (-38 (-348 (-483)))) -(|has| |#1| (-38 (-348 (-483)))) -(|has| |#1| (-38 (-348 (-483)))) -(|has| |#1| (-38 (-348 (-483)))) -(|has| |#1| (-38 (-348 (-483)))) -(|has| |#1| (-38 (-348 (-483)))) -(|has| |#1| (-38 (-348 (-483)))) -(((|#1| (-693)) . T)) -(((|#1| (-693)) . T)) -(|has| |#1| (-494)) -(|has| |#1| (-494)) -(OR (|has| |#1| (-146)) (|has| |#1| (-494))) +((((-1159 |#2| |#3| |#4|) (-270 |#2| |#3| |#4|)) . T)) +(|has| (-1159 |#2| |#3| |#4|) (-120)) +(|has| (-1159 |#2| |#3| |#4|) (-118)) +((($) . T) (((-1159 |#2| |#3| |#4|)) |has| (-1159 |#2| |#3| |#4|) (-146)) (((-349 (-484))) |has| (-1159 |#2| |#3| |#4|) (-38 (-349 (-484))))) +((($) . T) (((-1159 |#2| |#3| |#4|)) |has| (-1159 |#2| |#3| |#4|) (-146)) (((-349 (-484))) |has| (-1159 |#2| |#3| |#4|) (-38 (-349 (-484))))) +((((-772)) . T)) +((($) . T) (((-1159 |#2| |#3| |#4|)) . T) (((-349 (-484))) |has| (-1159 |#2| |#3| |#4|) (-38 (-349 (-484))))) +((($) . T) (((-1159 |#2| |#3| |#4|)) . T) (((-349 (-484))) |has| (-1159 |#2| |#3| |#4|) (-38 (-349 (-484))))) +((($ $) . T) (((-1159 |#2| |#3| |#4|) (-1159 |#2| |#3| |#4|)) . T) (((-349 (-484)) (-349 (-484))) |has| (-1159 |#2| |#3| |#4|) (-38 (-349 (-484))))) +((((-1159 |#2| |#3| |#4|)) . T) (((-349 (-484))) |has| (-1159 |#2| |#3| |#4|) (-38 (-349 (-484)))) (((-484)) . T) (($) . T)) +((((-1159 |#2| |#3| |#4|)) . T) (((-349 (-484))) |has| (-1159 |#2| |#3| |#4|) (-38 (-349 (-484)))) (($) . T)) +((($) . T) (((-1159 |#2| |#3| |#4|)) . T) (((-349 (-484))) |has| (-1159 |#2| |#3| |#4|) (-38 (-349 (-484)))) (((-484)) . T)) +((($) . T) (((-1159 |#2| |#3| |#4|)) |has| (-1159 |#2| |#3| |#4|) (-146)) (((-349 (-484))) |has| (-1159 |#2| |#3| |#4|) (-38 (-349 (-484))))) +((((-1159 |#2| |#3| |#4|)) . T)) +((((-1159 |#2| |#3| |#4|)) . T)) +((((-1159 |#2| |#3| |#4|) (-270 |#2| |#3| |#4|)) . T)) +(|has| |#1| (-38 (-349 (-484)))) +(|has| |#1| (-38 (-349 (-484)))) +(|has| |#1| (-38 (-349 (-484)))) +(|has| |#1| (-38 (-349 (-484)))) +(|has| |#1| (-38 (-349 (-484)))) +(|has| |#1| (-38 (-349 (-484)))) +(|has| |#1| (-38 (-349 (-484)))) +(((|#1| (-694)) . T)) +(((|#1| (-694)) . T)) +(|has| |#1| (-495)) +(|has| |#1| (-495)) +(OR (|has| |#1| (-146)) (|has| |#1| (-495))) (|has| |#1| (-120)) (|has| |#1| (-118)) -((($) |has| |#1| (-494)) ((|#1|) |has| |#1| (-146)) (((-348 (-483))) |has| |#1| (-38 (-348 (-483))))) -((($) |has| |#1| (-494)) ((|#1|) |has| |#1| (-146)) (((-348 (-483))) |has| |#1| (-38 (-348 (-483))))) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-494))) ((|#1|) . T) (((-348 (-483))) |has| |#1| (-38 (-348 (-483))))) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-494))) ((|#1|) . T) (((-348 (-483))) |has| |#1| (-38 (-348 (-483))))) -((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-494))) ((|#1| |#1|) . T) (((-348 (-483)) (-348 (-483))) |has| |#1| (-38 (-348 (-483))))) -((($) |has| |#1| (-494)) ((|#1|) |has| |#1| (-146)) (((-348 (-483))) |has| |#1| (-38 (-348 (-483))))) -(((|#1| (-693) (-993)) . T)) -((((-1088)) -12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-693) |#1|))))) -((($ (-1174 |#2|)) . T) (($ (-1088)) -12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-693) |#1|))))) -((((-1088)) -12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-693) |#1|))))) -((((-693) |#1|) . T) (($ $) . T)) -(|has| |#1| (-15 * (|#1| (-693) |#1|))) -((($) |has| |#1| (-15 * (|#1| (-693) |#1|)))) -((((-771)) . T)) -(((|#1|) . T) (((-348 (-483))) |has| |#1| (-38 (-348 (-483)))) (((-483)) . T) (($) . T)) -(((|#1|) . T) (((-348 (-483))) |has| |#1| (-38 (-348 (-483)))) (($) . T)) -((($) |has| |#1| (-494)) ((|#1|) |has| |#1| (-146)) (((-348 (-483))) |has| |#1| (-38 (-348 (-483)))) (((-483)) . T)) -(|has| |#1| (-15 * (|#1| (-693) |#1|))) -(((|#1|) . T)) -((((-1088)) . T) (((-771)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-483) |#1|) . T)) -((((-483) |#1|) . T)) -((((-483) |#1|) . T) (((-1144 (-483)) $) . T)) -((((-472)) |has| |#1| (-552 (-472)))) -(((|#1|) . T)) -(OR (|has| |#1| (-755)) (|has| |#1| (-1012))) -(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012)))) -(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012)))) -((((-771)) OR (|has| |#1| (-551 (-771))) (|has| |#1| (-755)) (|has| |#1| (-1012)))) -(OR (|has| |#1| (-72)) (|has| |#1| (-755)) (|has| |#1| (-1012))) -(((|#1|) . T)) -(|has| |#1| (-755)) -(|has| |#1| (-755)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-771)) . T)) -((((-771)) . T)) -((((-771)) . T)) -((((-1093)) . T)) -((((-771)) . T) (((-1093)) . T)) -((((-1093)) . T)) -((((-1093)) . T)) -((((-771)) . T) (((-1093)) . T)) -((((-1093)) . T)) +((($) |has| |#1| (-495)) ((|#1|) |has| |#1| (-146)) (((-349 (-484))) |has| |#1| (-38 (-349 (-484))))) +((($) |has| |#1| (-495)) ((|#1|) |has| |#1| (-146)) (((-349 (-484))) |has| |#1| (-38 (-349 (-484))))) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-495))) ((|#1|) . T) (((-349 (-484))) |has| |#1| (-38 (-349 (-484))))) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-495))) ((|#1|) . T) (((-349 (-484))) |has| |#1| (-38 (-349 (-484))))) +((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-495))) ((|#1| |#1|) . T) (((-349 (-484)) (-349 (-484))) |has| |#1| (-38 (-349 (-484))))) +((($) |has| |#1| (-495)) ((|#1|) |has| |#1| (-146)) (((-349 (-484))) |has| |#1| (-38 (-349 (-484))))) +(((|#1| (-694) (-994)) . T)) +((((-1089)) -12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-694) |#1|))))) +((($ (-1175 |#2|)) . T) (($ (-1089)) -12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-694) |#1|))))) +((((-1089)) -12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-694) |#1|))))) +((((-694) |#1|) . T) (($ $) . T)) +(|has| |#1| (-15 * (|#1| (-694) |#1|))) +((($) |has| |#1| (-15 * (|#1| (-694) |#1|)))) +((((-772)) . T)) +(((|#1|) . T) (((-349 (-484))) |has| |#1| (-38 (-349 (-484)))) (((-484)) . T) (($) . T)) +(((|#1|) . T) (((-349 (-484))) |has| |#1| (-38 (-349 (-484)))) (($) . T)) +((($) |has| |#1| (-495)) ((|#1|) |has| |#1| (-146)) (((-349 (-484))) |has| |#1| (-38 (-349 (-484)))) (((-484)) . T)) +(|has| |#1| (-15 * (|#1| (-694) |#1|))) +(((|#1|) . T)) +((((-1089)) . T) (((-772)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-484) |#1|) . T)) +((((-484) |#1|) . T)) +((((-484) |#1|) . T) (((-1145 (-484)) $) . T)) +((((-473)) |has| |#1| (-553 (-473)))) +(((|#1|) . T)) +(OR (|has| |#1| (-756)) (|has| |#1| (-1013))) +(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013)))) +(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013)))) +((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-756)) (|has| |#1| (-1013)))) +(OR (|has| |#1| (-72)) (|has| |#1| (-756)) (|has| |#1| (-1013))) +(((|#1|) . T)) +(|has| |#1| (-756)) +(|has| |#1| (-756)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-772)) . T)) +((((-772)) . T)) +((((-772)) . T)) +((((-1094)) . T)) +((((-772)) . T) (((-1094)) . T)) +((((-1094)) . T)) +((((-1094)) . T)) +((((-772)) . T) (((-1094)) . T)) +((((-1094)) . T)) (((|#1|) |has| |#1| (-146))) (((|#1|) |has| |#1| (-146))) (((|#1|) |has| |#1| (-146))) @@ -3926,17 +3926,17 @@ (((|#1| |#1|) |has| |#1| (-146))) (((|#1|) |has| |#1| (-146))) (((|#4|) . T)) -(((|#1|) |has| |#1| (-146)) ((|#4|) . T) (((-483)) . T)) +(((|#1|) |has| |#1| (-146)) ((|#4|) . T) (((-484)) . T)) (((|#1|) |has| |#1| (-146)) (($) . T)) -(((|#4|) . T) (((-771)) . T)) -(((|#1|) |has| |#1| (-146)) (($) . T) (((-483)) . T)) +(((|#4|) . T) (((-772)) . T)) +(((|#1|) |has| |#1| (-146)) (($) . T) (((-484)) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-472)) |has| |#4| (-552 (-472)))) +((((-473)) |has| |#4| (-553 (-473)))) (((|#4|) . T)) -(((|#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1012)))) -(((|#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1012)))) +(((|#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013)))) +(((|#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013)))) (((|#4|) . T)) -((((-771)) . T) (((-582 |#4|)) . T)) +((((-772)) . T) (((-583 |#4|)) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2|) . T)) (((|#2|) |has| |#2| (-146))) @@ -3945,15 +3945,15 @@ (((|#2| |#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) -((((-771)) . T)) -((($) . T) (((-483)) . T) ((|#2|) . T)) +((((-772)) . T)) +((($) . T) (((-484)) . T) ((|#2|) . T)) ((($) . T) ((|#2|) . T)) (((|#2|) |has| |#2| (-146))) (((|#2|) |has| |#2| (-146))) -((((-738 |#1|)) . T)) -(((|#2|) . T) (((-483)) . T) (((-738 |#1|)) . T)) -(((|#2| (-738 |#1|)) . T)) -(((|#2| (-802 |#1|)) . T)) +((((-739 |#1|)) . T)) +(((|#2|) . T) (((-484)) . T) (((-739 |#1|)) . T)) +(((|#2| (-739 |#1|)) . T)) +(((|#2| (-803 |#1|)) . T)) (((|#1| |#2|) . T)) (((|#2|) |has| |#2| (-146))) (((|#2| |#2|) . T)) @@ -3963,12 +3963,12 @@ (((|#2|) |has| |#2| (-146))) (((|#2|) . T)) (((|#2|) . T) (($) . T)) -((((-771)) . T)) -(((|#2|) . T) (($) . T) (((-483)) . T)) -((((-802 |#1|)) . T) ((|#2|) . T) (((-483)) . T) (((-738 |#1|)) . T)) -((((-802 |#1|)) . T) (((-738 |#1|)) . T)) +((((-772)) . T)) +(((|#2|) . T) (($) . T) (((-484)) . T)) +((((-803 |#1|)) . T) ((|#2|) . T) (((-484)) . T) (((-739 |#1|)) . T)) +((((-803 |#1|)) . T) (((-739 |#1|)) . T)) (((|#1| |#2|) . T)) -((((-1088) |#1|) . T)) +((((-1089) |#1|) . T)) (((|#1|) |has| |#1| (-146))) (((|#1| |#1|) . T)) (((|#1|) . T)) @@ -3977,11 +3977,11 @@ (((|#1|) |has| |#1| (-146))) (((|#1|) . T)) (((|#1|) . T) (($) . T)) -((((-771)) . T)) -(((|#1|) . T) (($) . T) (((-483)) . T)) -(((|#1|) . T) (((-483)) . T) (((-738 (-1088))) . T)) -((((-738 (-1088))) . T)) -((((-1088) |#1|) . T)) +((((-772)) . T)) +(((|#1|) . T) (($) . T) (((-484)) . T)) +(((|#1|) . T) (((-484)) . T) (((-739 (-1089))) . T)) +((((-739 (-1089))) . T)) +((((-1089) |#1|) . T)) (((|#2|) . T)) (((|#1| |#2|) . T)) (((|#1|) |has| |#1| (-146))) @@ -3991,10 +3991,10 @@ (((|#1|) |has| |#1| (-146))) (((|#1|) |has| |#1| (-146))) (((|#1|) . T)) -(((|#2|) . T) ((|#1|) . T) (((-483)) . T)) +(((|#2|) . T) ((|#1|) . T) (((-484)) . T)) (((|#1|) . T) (($) . T)) -((((-771)) . T)) -(((|#1|) . T) (($) . T) (((-483)) . T)) +((((-772)) . T)) +(((|#1|) . T) (($) . T) (((-484)) . T)) (((|#1| |#2|) . T)) (((|#2|) |has| |#2| (-146))) (((|#2| |#2|) . T)) @@ -4004,20 +4004,20 @@ (((|#2|) |has| |#2| (-146))) (((|#2|) . T)) (((|#2|) . T) (($) . T)) -((((-771)) . T)) -(((|#2|) . T) (($) . T) (((-483)) . T)) -(((|#2|) . T) (((-483)) . T) (((-738 |#1|)) . T)) -((((-738 |#1|)) . T)) +((((-772)) . T)) +(((|#2|) . T) (($) . T) (((-484)) . T)) +(((|#2|) . T) (((-484)) . T) (((-739 |#1|)) . T)) +((((-739 |#1|)) . T)) (((|#1| |#2|) . T)) -((((-883)) . T)) -((((-883)) . T)) -((((-883)) . T) (((-771)) . T)) -((((-483)) . T)) +((((-884)) . T)) +((((-884)) . T)) +((((-884)) . T) (((-772)) . T)) +((((-484)) . T)) ((($ $) . T)) ((($) . T)) ((($) . T)) -((((-771)) . T)) -((((-483)) . T) (($) . T)) +((((-772)) . T)) +((((-484)) . T) (($) . T)) ((($) . T)) -((((-483)) . T)) -(((-1207 . -146) T) ((-1207 . -554) 198434) ((-1207 . -969) T) ((-1207 . -1024) T) ((-1207 . -1059) T) ((-1207 . -662) T) ((-1207 . -960) T) ((-1207 . -589) 198421) ((-1207 . -587) 198393) ((-1207 . -104) T) ((-1207 . -25) T) ((-1207 . -72) T) ((-1207 . -13) T) ((-1207 . -1127) T) ((-1207 . -551) 198375) ((-1207 . -1012) T) ((-1207 . -23) T) ((-1207 . -21) T) ((-1207 . -967) 198362) ((-1207 . -962) 198349) ((-1207 . -82) 198334) ((-1207 . -318) T) ((-1207 . -552) 198316) ((-1207 . -1064) T) ((-1203 . -1012) T) ((-1203 . -551) 198283) ((-1203 . -1127) T) ((-1203 . -13) T) ((-1203 . -72) T) ((-1203 . -428) 198265) ((-1203 . -554) 198247) ((-1202 . -1200) 198226) ((-1202 . -949) 198203) ((-1202 . -554) 198152) ((-1202 . -960) T) ((-1202 . -662) T) ((-1202 . -1059) T) ((-1202 . -1024) T) ((-1202 . -969) T) ((-1202 . -21) T) ((-1202 . -587) 198111) ((-1202 . -23) T) ((-1202 . -1012) T) ((-1202 . -551) 198093) ((-1202 . -1127) T) ((-1202 . -13) T) ((-1202 . -72) T) ((-1202 . -25) T) ((-1202 . -104) T) ((-1202 . -589) 198067) ((-1202 . -1192) 198051) ((-1202 . -653) 198021) ((-1202 . -581) 197991) ((-1202 . -967) 197975) ((-1202 . -962) 197959) ((-1202 . -82) 197938) ((-1202 . -38) 197908) ((-1202 . -1197) 197887) ((-1201 . -960) T) ((-1201 . -662) T) ((-1201 . -1059) T) ((-1201 . -1024) T) ((-1201 . -969) T) ((-1201 . -21) T) ((-1201 . -587) 197846) ((-1201 . -23) T) ((-1201 . -1012) T) ((-1201 . -551) 197828) ((-1201 . -1127) T) ((-1201 . -13) T) ((-1201 . -72) T) ((-1201 . -25) T) ((-1201 . -104) T) ((-1201 . -589) 197802) ((-1201 . -554) 197758) ((-1201 . -1192) 197742) ((-1201 . -653) 197712) ((-1201 . -581) 197682) ((-1201 . -967) 197666) ((-1201 . -962) 197650) ((-1201 . -82) 197629) ((-1201 . -38) 197599) ((-1201 . -333) 197578) ((-1201 . -949) 197562) ((-1199 . -1200) 197538) ((-1199 . -949) 197512) ((-1199 . -554) 197458) ((-1199 . -960) T) ((-1199 . -662) T) ((-1199 . -1059) T) ((-1199 . -1024) T) ((-1199 . -969) T) ((-1199 . -21) T) ((-1199 . -587) 197417) ((-1199 . -23) T) ((-1199 . -1012) T) ((-1199 . -551) 197399) ((-1199 . -1127) T) ((-1199 . -13) T) ((-1199 . -72) T) ((-1199 . -25) T) ((-1199 . -104) T) ((-1199 . -589) 197373) ((-1199 . -1192) 197357) ((-1199 . -653) 197327) ((-1199 . -581) 197297) ((-1199 . -967) 197281) ((-1199 . -962) 197265) ((-1199 . -82) 197244) ((-1199 . -38) 197214) ((-1199 . -1197) 197190) ((-1198 . -1200) 197169) ((-1198 . -949) 197126) ((-1198 . -554) 197055) ((-1198 . -960) T) ((-1198 . -662) T) ((-1198 . -1059) T) ((-1198 . -1024) T) ((-1198 . -969) T) ((-1198 . -21) T) ((-1198 . -587) 197014) ((-1198 . -23) T) ((-1198 . -1012) T) ((-1198 . -551) 196996) ((-1198 . -1127) T) ((-1198 . -13) T) ((-1198 . -72) T) ((-1198 . -25) T) ((-1198 . -104) T) ((-1198 . -589) 196970) ((-1198 . -1192) 196954) ((-1198 . -653) 196924) ((-1198 . -581) 196894) ((-1198 . -967) 196878) ((-1198 . -962) 196862) ((-1198 . -82) 196841) ((-1198 . -38) 196811) ((-1198 . -1197) 196790) ((-1198 . -333) 196762) ((-1193 . -333) 196734) ((-1193 . -554) 196683) ((-1193 . -949) 196660) ((-1193 . -581) 196630) ((-1193 . -653) 196600) ((-1193 . -589) 196574) ((-1193 . -587) 196533) ((-1193 . -104) T) ((-1193 . -25) T) ((-1193 . -72) T) ((-1193 . -13) T) ((-1193 . -1127) T) ((-1193 . -551) 196515) ((-1193 . -1012) T) ((-1193 . -23) T) ((-1193 . -21) T) ((-1193 . -967) 196499) ((-1193 . -962) 196483) ((-1193 . -82) 196462) ((-1193 . -1200) 196441) ((-1193 . -960) T) ((-1193 . -662) T) ((-1193 . -1059) T) ((-1193 . -1024) T) ((-1193 . -969) T) ((-1193 . -1192) 196425) ((-1193 . -38) 196395) ((-1193 . -1197) 196374) ((-1191 . -1122) 196343) ((-1191 . -551) 196305) ((-1191 . -124) 196289) ((-1191 . -34) T) ((-1191 . -13) T) ((-1191 . -1127) T) ((-1191 . -72) T) ((-1191 . -260) 196227) ((-1191 . -454) 196160) ((-1191 . -1012) T) ((-1191 . -427) 196144) ((-1191 . -552) 196105) ((-1191 . -888) 196074) ((-1190 . -960) T) ((-1190 . -662) T) ((-1190 . -1059) T) ((-1190 . -1024) T) ((-1190 . -969) T) ((-1190 . -21) T) ((-1190 . -587) 196019) ((-1190 . -23) T) ((-1190 . -1012) T) ((-1190 . -551) 195988) ((-1190 . -1127) T) ((-1190 . -13) T) ((-1190 . -72) T) ((-1190 . -25) T) ((-1190 . -104) T) ((-1190 . -589) 195948) ((-1190 . -554) 195890) ((-1190 . -428) 195874) ((-1190 . -38) 195844) ((-1190 . -82) 195809) ((-1190 . -962) 195779) ((-1190 . -967) 195749) ((-1190 . -581) 195719) ((-1190 . -653) 195689) ((-1189 . -994) T) ((-1189 . -428) 195670) ((-1189 . -551) 195636) ((-1189 . -554) 195617) ((-1189 . -1012) T) ((-1189 . -1127) T) ((-1189 . -13) T) ((-1189 . -72) T) ((-1189 . -64) T) ((-1188 . -994) T) ((-1188 . -428) 195598) ((-1188 . -551) 195564) ((-1188 . -554) 195545) ((-1188 . -1012) T) ((-1188 . -1127) T) ((-1188 . -13) T) ((-1188 . -72) T) ((-1188 . -64) T) ((-1183 . -551) 195527) ((-1181 . -1012) T) ((-1181 . -551) 195509) ((-1181 . -1127) T) ((-1181 . -13) T) ((-1181 . -72) T) ((-1180 . -1012) T) ((-1180 . -551) 195491) ((-1180 . -1127) T) ((-1180 . -13) T) ((-1180 . -72) T) ((-1177 . -1176) 195475) ((-1177 . -322) 195459) ((-1177 . -758) 195438) ((-1177 . -755) 195417) ((-1177 . -124) 195401) ((-1177 . -34) T) ((-1177 . -13) T) ((-1177 . -1127) T) ((-1177 . -72) 195335) ((-1177 . -551) 195250) ((-1177 . -260) 195188) ((-1177 . -454) 195121) ((-1177 . -1012) 195074) ((-1177 . -427) 195058) ((-1177 . -552) 195019) ((-1177 . -241) 194971) ((-1177 . -537) 194948) ((-1177 . -243) 194925) ((-1177 . -592) 194909) ((-1177 . -19) 194893) ((-1174 . -1012) T) ((-1174 . -551) 194859) ((-1174 . -1127) T) ((-1174 . -13) T) ((-1174 . -72) T) ((-1167 . -1170) 194843) ((-1167 . -190) 194802) ((-1167 . -554) 194684) ((-1167 . -589) 194609) ((-1167 . -587) 194519) ((-1167 . -104) T) ((-1167 . -25) T) ((-1167 . -72) T) ((-1167 . -551) 194501) ((-1167 . -1012) T) ((-1167 . -23) T) ((-1167 . -21) T) ((-1167 . -969) T) ((-1167 . -1024) T) ((-1167 . -1059) T) ((-1167 . -662) T) ((-1167 . -960) T) ((-1167 . -186) 194454) ((-1167 . -13) T) ((-1167 . -1127) T) ((-1167 . -189) 194413) ((-1167 . -241) 194378) ((-1167 . -808) 194291) ((-1167 . -805) 194179) ((-1167 . -810) 194092) ((-1167 . -885) 194062) ((-1167 . -38) 193959) ((-1167 . -82) 193824) ((-1167 . -962) 193710) ((-1167 . -967) 193596) ((-1167 . -581) 193493) ((-1167 . -653) 193390) ((-1167 . -118) 193369) ((-1167 . -120) 193348) ((-1167 . -146) 193302) ((-1167 . -494) 193281) ((-1167 . -246) 193260) ((-1167 . -47) 193237) ((-1167 . -1156) 193214) ((-1167 . -35) 193180) ((-1167 . -66) 193146) ((-1167 . -239) 193112) ((-1167 . -431) 193078) ((-1167 . -1116) 193044) ((-1167 . -1113) 193010) ((-1167 . -914) 192976) ((-1164 . -277) 192920) ((-1164 . -949) 192886) ((-1164 . -353) 192852) ((-1164 . -38) 192709) ((-1164 . -554) 192583) ((-1164 . -589) 192472) ((-1164 . -587) 192346) ((-1164 . -969) T) ((-1164 . -1024) T) ((-1164 . -1059) T) ((-1164 . -662) T) ((-1164 . -960) T) ((-1164 . -82) 192196) ((-1164 . -962) 192085) ((-1164 . -967) 191974) ((-1164 . -21) T) ((-1164 . -23) T) ((-1164 . -1012) T) ((-1164 . -551) 191956) ((-1164 . -1127) T) ((-1164 . -13) T) ((-1164 . -72) T) ((-1164 . -25) T) ((-1164 . -104) T) ((-1164 . -581) 191813) ((-1164 . -653) 191670) ((-1164 . -118) 191631) ((-1164 . -120) 191592) ((-1164 . -146) T) ((-1164 . -494) T) ((-1164 . -246) T) ((-1164 . -47) 191536) ((-1163 . -1162) 191515) ((-1163 . -312) 191494) ((-1163 . -1132) 191473) ((-1163 . -831) 191452) ((-1163 . -494) 191406) ((-1163 . -146) 191340) ((-1163 . -554) 191159) ((-1163 . -653) 191006) ((-1163 . -581) 190853) ((-1163 . -38) 190700) ((-1163 . -390) 190679) ((-1163 . -258) 190658) ((-1163 . -589) 190558) ((-1163 . -587) 190443) ((-1163 . -969) T) ((-1163 . -1024) T) ((-1163 . -1059) T) ((-1163 . -662) T) ((-1163 . -960) T) ((-1163 . -82) 190263) ((-1163 . -962) 190104) ((-1163 . -967) 189945) ((-1163 . -21) T) ((-1163 . -23) T) ((-1163 . -1012) T) ((-1163 . -551) 189927) ((-1163 . -1127) T) ((-1163 . -13) T) ((-1163 . -72) T) ((-1163 . -25) T) ((-1163 . -104) T) ((-1163 . -246) 189881) ((-1163 . -201) 189860) ((-1163 . -914) 189826) ((-1163 . -1113) 189792) ((-1163 . -1116) 189758) ((-1163 . -431) 189724) ((-1163 . -239) 189690) ((-1163 . -66) 189656) ((-1163 . -35) 189622) ((-1163 . -1156) 189592) ((-1163 . -47) 189562) ((-1163 . -120) 189541) ((-1163 . -118) 189520) ((-1163 . -885) 189483) ((-1163 . -810) 189389) ((-1163 . -805) 189293) ((-1163 . -808) 189199) ((-1163 . -241) 189157) ((-1163 . -189) 189109) ((-1163 . -186) 189055) ((-1163 . -190) 189007) ((-1163 . -1160) 188991) ((-1163 . -949) 188975) ((-1158 . -1162) 188936) ((-1158 . -312) 188915) ((-1158 . -1132) 188894) ((-1158 . -831) 188873) ((-1158 . -494) 188827) ((-1158 . -146) 188761) ((-1158 . -554) 188510) ((-1158 . -653) 188357) ((-1158 . -581) 188204) ((-1158 . -38) 188051) ((-1158 . -390) 188030) ((-1158 . -258) 188009) ((-1158 . -589) 187909) ((-1158 . -587) 187794) ((-1158 . -969) T) ((-1158 . -1024) T) ((-1158 . -1059) T) ((-1158 . -662) T) ((-1158 . -960) T) ((-1158 . -82) 187614) ((-1158 . -962) 187455) ((-1158 . -967) 187296) ((-1158 . -21) T) ((-1158 . -23) T) ((-1158 . -1012) T) ((-1158 . -551) 187278) ((-1158 . -1127) T) ((-1158 . -13) T) ((-1158 . -72) T) ((-1158 . -25) T) ((-1158 . -104) T) ((-1158 . -246) 187232) ((-1158 . -201) 187211) ((-1158 . -914) 187177) ((-1158 . -1113) 187143) ((-1158 . -1116) 187109) ((-1158 . -431) 187075) ((-1158 . -239) 187041) ((-1158 . -66) 187007) ((-1158 . -35) 186973) ((-1158 . -1156) 186943) ((-1158 . -47) 186913) ((-1158 . -120) 186892) ((-1158 . -118) 186871) ((-1158 . -885) 186834) ((-1158 . -810) 186740) ((-1158 . -805) 186621) ((-1158 . -808) 186527) ((-1158 . -241) 186485) ((-1158 . -189) 186437) ((-1158 . -186) 186383) ((-1158 . -190) 186335) ((-1158 . -1160) 186319) ((-1158 . -949) 186254) ((-1146 . -1153) 186238) ((-1146 . -1064) 186216) ((-1146 . -552) NIL) ((-1146 . -260) 186203) ((-1146 . -454) 186151) ((-1146 . -277) 186128) ((-1146 . -949) 186011) ((-1146 . -353) 185995) ((-1146 . -38) 185827) ((-1146 . -82) 185632) ((-1146 . -962) 185458) ((-1146 . -967) 185284) ((-1146 . -587) 185194) ((-1146 . -589) 185083) ((-1146 . -581) 184915) ((-1146 . -653) 184747) ((-1146 . -554) 184503) ((-1146 . -118) 184482) ((-1146 . -120) 184461) ((-1146 . -47) 184438) ((-1146 . -327) 184422) ((-1146 . -579) 184370) ((-1146 . -808) 184314) ((-1146 . -805) 184221) ((-1146 . -810) 184132) ((-1146 . -795) NIL) ((-1146 . -820) 184111) ((-1146 . -1132) 184090) ((-1146 . -860) 184060) ((-1146 . -831) 184039) ((-1146 . -494) 183953) ((-1146 . -246) 183867) ((-1146 . -146) 183761) ((-1146 . -390) 183695) ((-1146 . -258) 183674) ((-1146 . -241) 183601) ((-1146 . -190) T) ((-1146 . -104) T) ((-1146 . -25) T) ((-1146 . -72) T) ((-1146 . -551) 183583) ((-1146 . -1012) T) ((-1146 . -23) T) ((-1146 . -21) T) ((-1146 . -969) T) ((-1146 . -1024) T) ((-1146 . -1059) T) ((-1146 . -662) T) ((-1146 . -960) T) ((-1146 . -186) 183570) ((-1146 . -13) T) ((-1146 . -1127) T) ((-1146 . -189) T) ((-1146 . -225) 183554) ((-1146 . -184) 183538) ((-1144 . -1005) 183522) ((-1144 . -556) 183506) ((-1144 . -1012) 183484) ((-1144 . -551) 183451) ((-1144 . -1127) 183429) ((-1144 . -13) 183407) ((-1144 . -72) 183385) ((-1144 . -1006) 183342) ((-1142 . -1141) 183321) ((-1142 . -914) 183287) ((-1142 . -1113) 183253) ((-1142 . -1116) 183219) ((-1142 . -431) 183185) ((-1142 . -239) 183151) ((-1142 . -66) 183117) ((-1142 . -35) 183083) ((-1142 . -1156) 183060) ((-1142 . -47) 183037) ((-1142 . -554) 182792) ((-1142 . -653) 182612) ((-1142 . -581) 182432) ((-1142 . -589) 182243) ((-1142 . -587) 182101) ((-1142 . -967) 181915) ((-1142 . -962) 181729) ((-1142 . -82) 181517) ((-1142 . -38) 181337) ((-1142 . -885) 181307) ((-1142 . -241) 181207) ((-1142 . -1139) 181191) ((-1142 . -969) T) ((-1142 . -1024) T) ((-1142 . -1059) T) ((-1142 . -662) T) ((-1142 . -960) T) ((-1142 . -21) T) ((-1142 . -23) T) ((-1142 . -1012) T) ((-1142 . -551) 181173) ((-1142 . -1127) T) ((-1142 . -13) T) ((-1142 . -72) T) ((-1142 . -25) T) ((-1142 . -104) T) ((-1142 . -118) 181101) ((-1142 . -120) 180983) ((-1142 . -552) 180656) ((-1142 . -184) 180626) ((-1142 . -808) 180480) ((-1142 . -810) 180280) ((-1142 . -805) 180078) ((-1142 . -225) 180048) ((-1142 . -189) 179910) ((-1142 . -186) 179766) ((-1142 . -190) 179674) ((-1142 . -312) 179653) ((-1142 . -1132) 179632) ((-1142 . -831) 179611) ((-1142 . -494) 179565) ((-1142 . -146) 179499) ((-1142 . -390) 179478) ((-1142 . -258) 179457) ((-1142 . -246) 179411) ((-1142 . -201) 179390) ((-1142 . -288) 179360) ((-1142 . -454) 179220) ((-1142 . -260) 179159) ((-1142 . -327) 179129) ((-1142 . -579) 179037) ((-1142 . -341) 179007) ((-1142 . -795) 178880) ((-1142 . -739) 178833) ((-1142 . -713) 178786) ((-1142 . -715) 178739) ((-1142 . -755) 178641) ((-1142 . -758) 178543) ((-1142 . -717) 178496) ((-1142 . -720) 178449) ((-1142 . -754) 178402) ((-1142 . -793) 178372) ((-1142 . -820) 178325) ((-1142 . -932) 178278) ((-1142 . -949) 178067) ((-1142 . -1064) 178019) ((-1142 . -903) 177989) ((-1137 . -1141) 177950) ((-1137 . -914) 177916) ((-1137 . -1113) 177882) ((-1137 . -1116) 177848) ((-1137 . -431) 177814) ((-1137 . -239) 177780) ((-1137 . -66) 177746) ((-1137 . -35) 177712) ((-1137 . -1156) 177689) ((-1137 . -47) 177666) ((-1137 . -554) 177467) ((-1137 . -653) 177269) ((-1137 . -581) 177071) ((-1137 . -589) 176926) ((-1137 . -587) 176766) ((-1137 . -967) 176562) ((-1137 . -962) 176358) ((-1137 . -82) 176110) ((-1137 . -38) 175912) ((-1137 . -885) 175882) ((-1137 . -241) 175710) ((-1137 . -1139) 175694) ((-1137 . -969) T) ((-1137 . -1024) T) ((-1137 . -1059) T) ((-1137 . -662) T) ((-1137 . -960) T) ((-1137 . -21) T) ((-1137 . -23) T) ((-1137 . -1012) T) ((-1137 . -551) 175676) ((-1137 . -1127) T) ((-1137 . -13) T) ((-1137 . -72) T) ((-1137 . -25) T) ((-1137 . -104) T) ((-1137 . -118) 175586) ((-1137 . -120) 175496) ((-1137 . -552) NIL) ((-1137 . -184) 175448) ((-1137 . -808) 175284) ((-1137 . -810) 175048) ((-1137 . -805) 174787) ((-1137 . -225) 174739) ((-1137 . -189) 174565) ((-1137 . -186) 174385) ((-1137 . -190) 174275) ((-1137 . -312) 174254) ((-1137 . -1132) 174233) ((-1137 . -831) 174212) ((-1137 . -494) 174166) ((-1137 . -146) 174100) ((-1137 . -390) 174079) ((-1137 . -258) 174058) ((-1137 . -246) 174012) ((-1137 . -201) 173991) ((-1137 . -288) 173943) ((-1137 . -454) 173677) ((-1137 . -260) 173562) ((-1137 . -327) 173514) ((-1137 . -579) 173466) ((-1137 . -341) 173418) ((-1137 . -795) NIL) ((-1137 . -739) NIL) ((-1137 . -713) NIL) ((-1137 . -715) NIL) ((-1137 . -755) NIL) ((-1137 . -758) NIL) ((-1137 . -717) NIL) ((-1137 . -720) NIL) ((-1137 . -754) NIL) ((-1137 . -793) 173370) ((-1137 . -820) NIL) ((-1137 . -932) NIL) ((-1137 . -949) 173336) ((-1137 . -1064) NIL) ((-1137 . -903) 173288) ((-1136 . -751) T) ((-1136 . -758) T) ((-1136 . -755) T) ((-1136 . -1012) T) ((-1136 . -551) 173270) ((-1136 . -1127) T) ((-1136 . -13) T) ((-1136 . -72) T) ((-1136 . -318) T) ((-1136 . -603) T) ((-1135 . -751) T) ((-1135 . -758) T) ((-1135 . -755) T) ((-1135 . -1012) T) ((-1135 . -551) 173252) ((-1135 . -1127) T) ((-1135 . -13) T) ((-1135 . -72) T) ((-1135 . -318) T) ((-1135 . -603) T) ((-1134 . -751) T) ((-1134 . -758) T) ((-1134 . -755) T) ((-1134 . -1012) T) ((-1134 . -551) 173234) ((-1134 . -1127) T) ((-1134 . -13) T) ((-1134 . -72) T) ((-1134 . -318) T) ((-1134 . -603) T) ((-1133 . -751) T) ((-1133 . -758) T) ((-1133 . -755) T) ((-1133 . -1012) T) ((-1133 . -551) 173216) ((-1133 . -1127) T) ((-1133 . -13) T) ((-1133 . -72) T) ((-1133 . -318) T) ((-1133 . -603) T) ((-1128 . -994) T) ((-1128 . -428) 173197) ((-1128 . -551) 173163) ((-1128 . -554) 173144) ((-1128 . -1012) T) ((-1128 . -1127) T) ((-1128 . -13) T) ((-1128 . -72) T) ((-1128 . -64) T) ((-1125 . -428) 173121) ((-1125 . -551) 173062) ((-1125 . -554) 173039) ((-1125 . -1012) 173017) ((-1125 . -1127) 172995) ((-1125 . -13) 172973) ((-1125 . -72) 172951) ((-1120 . -678) 172927) ((-1120 . -35) 172893) ((-1120 . -66) 172859) ((-1120 . -239) 172825) ((-1120 . -431) 172791) ((-1120 . -1116) 172757) ((-1120 . -1113) 172723) ((-1120 . -914) 172689) ((-1120 . -47) 172658) ((-1120 . -38) 172555) ((-1120 . -581) 172452) ((-1120 . -653) 172349) ((-1120 . -554) 172231) ((-1120 . -246) 172210) ((-1120 . -494) 172189) ((-1120 . -82) 172054) ((-1120 . -962) 171940) ((-1120 . -967) 171826) ((-1120 . -146) 171780) ((-1120 . -120) 171759) ((-1120 . -118) 171738) ((-1120 . -589) 171663) ((-1120 . -587) 171573) ((-1120 . -885) 171534) ((-1120 . -810) 171515) ((-1120 . -1127) T) ((-1120 . -13) T) ((-1120 . -805) 171494) ((-1120 . -960) T) ((-1120 . -662) T) ((-1120 . -1059) T) ((-1120 . -1024) T) ((-1120 . -969) T) ((-1120 . -21) T) ((-1120 . -23) T) ((-1120 . -1012) T) ((-1120 . -551) 171476) ((-1120 . -72) T) ((-1120 . -25) T) ((-1120 . -104) T) ((-1120 . -808) 171457) ((-1120 . -454) 171424) ((-1120 . -260) 171411) ((-1114 . -922) 171395) ((-1114 . -34) T) ((-1114 . -13) T) ((-1114 . -1127) T) ((-1114 . -72) 171349) ((-1114 . -551) 171284) ((-1114 . -260) 171222) ((-1114 . -454) 171155) ((-1114 . -1012) 171133) ((-1114 . -427) 171117) ((-1109 . -314) 171091) ((-1109 . -72) T) ((-1109 . -13) T) ((-1109 . -1127) T) ((-1109 . -551) 171073) ((-1109 . -1012) T) ((-1107 . -1012) T) ((-1107 . -551) 171055) ((-1107 . -1127) T) ((-1107 . -13) T) ((-1107 . -72) T) ((-1107 . -554) 171037) ((-1102 . -746) 171021) ((-1102 . -72) T) ((-1102 . -13) T) ((-1102 . -1127) T) ((-1102 . -551) 171003) ((-1102 . -1012) T) ((-1100 . -1105) 170982) ((-1100 . -183) 170930) ((-1100 . -76) 170878) ((-1100 . -260) 170676) ((-1100 . -454) 170428) ((-1100 . -427) 170363) ((-1100 . -124) 170311) ((-1100 . -552) NIL) ((-1100 . -193) 170259) ((-1100 . -548) 170238) ((-1100 . -243) 170217) ((-1100 . -1127) T) ((-1100 . -13) T) ((-1100 . -241) 170196) ((-1100 . -1012) T) ((-1100 . -551) 170178) ((-1100 . -72) T) ((-1100 . -34) T) ((-1100 . -537) 170157) ((-1096 . -1012) T) ((-1096 . -551) 170139) ((-1096 . -1127) T) ((-1096 . -13) T) ((-1096 . -72) T) ((-1095 . -751) T) ((-1095 . -758) T) ((-1095 . -755) T) ((-1095 . -1012) T) ((-1095 . -551) 170121) ((-1095 . -1127) T) ((-1095 . -13) T) ((-1095 . -72) T) ((-1095 . -318) T) ((-1095 . -603) T) ((-1094 . -751) T) ((-1094 . -758) T) ((-1094 . -755) T) ((-1094 . -1012) T) ((-1094 . -551) 170103) ((-1094 . -1127) T) ((-1094 . -13) T) ((-1094 . -72) T) ((-1094 . -318) T) ((-1093 . -1173) T) ((-1093 . -1012) T) ((-1093 . -551) 170070) ((-1093 . -1127) T) ((-1093 . -13) T) ((-1093 . -72) T) ((-1093 . -949) 170006) ((-1093 . -554) 169942) ((-1092 . -551) 169924) ((-1091 . -551) 169906) ((-1090 . -277) 169883) ((-1090 . -949) 169781) ((-1090 . -353) 169765) ((-1090 . -38) 169662) ((-1090 . -554) 169519) ((-1090 . -589) 169444) ((-1090 . -587) 169354) ((-1090 . -969) T) ((-1090 . -1024) T) ((-1090 . -1059) T) ((-1090 . -662) T) ((-1090 . -960) T) ((-1090 . -82) 169219) ((-1090 . -962) 169105) ((-1090 . -967) 168991) ((-1090 . -21) T) ((-1090 . -23) T) ((-1090 . -1012) T) ((-1090 . -551) 168973) ((-1090 . -1127) T) ((-1090 . -13) T) ((-1090 . -72) T) ((-1090 . -25) T) ((-1090 . -104) T) ((-1090 . -581) 168870) ((-1090 . -653) 168767) ((-1090 . -118) 168746) ((-1090 . -120) 168725) ((-1090 . -146) 168679) ((-1090 . -494) 168658) ((-1090 . -246) 168637) ((-1090 . -47) 168614) ((-1088 . -755) T) ((-1088 . -551) 168596) ((-1088 . -1012) T) ((-1088 . -72) T) ((-1088 . -13) T) ((-1088 . -1127) T) ((-1088 . -758) T) ((-1088 . -552) 168518) ((-1088 . -554) 168484) ((-1088 . -949) 168466) ((-1088 . -795) 168433) ((-1087 . -1170) 168417) ((-1087 . -190) 168376) ((-1087 . -554) 168258) ((-1087 . -589) 168183) ((-1087 . -587) 168093) ((-1087 . -104) T) ((-1087 . -25) T) ((-1087 . -72) T) ((-1087 . -551) 168075) ((-1087 . -1012) T) ((-1087 . -23) T) ((-1087 . -21) T) ((-1087 . -969) T) ((-1087 . -1024) T) ((-1087 . -1059) T) ((-1087 . -662) T) ((-1087 . -960) T) ((-1087 . -186) 168028) ((-1087 . -13) T) ((-1087 . -1127) T) ((-1087 . -189) 167987) ((-1087 . -241) 167952) ((-1087 . -808) 167865) ((-1087 . -805) 167753) ((-1087 . -810) 167666) ((-1087 . -885) 167636) ((-1087 . -38) 167533) ((-1087 . -82) 167398) ((-1087 . -962) 167284) ((-1087 . -967) 167170) ((-1087 . -581) 167067) ((-1087 . -653) 166964) ((-1087 . -118) 166943) ((-1087 . -120) 166922) ((-1087 . -146) 166876) ((-1087 . -494) 166855) ((-1087 . -246) 166834) ((-1087 . -47) 166811) ((-1087 . -1156) 166788) ((-1087 . -35) 166754) ((-1087 . -66) 166720) ((-1087 . -239) 166686) ((-1087 . -431) 166652) ((-1087 . -1116) 166618) ((-1087 . -1113) 166584) ((-1087 . -914) 166550) ((-1086 . -1162) 166511) ((-1086 . -312) 166490) ((-1086 . -1132) 166469) ((-1086 . -831) 166448) ((-1086 . -494) 166402) ((-1086 . -146) 166336) ((-1086 . -554) 166085) ((-1086 . -653) 165932) ((-1086 . -581) 165779) ((-1086 . -38) 165626) ((-1086 . -390) 165605) ((-1086 . -258) 165584) ((-1086 . -589) 165484) ((-1086 . -587) 165369) ((-1086 . -969) T) ((-1086 . -1024) T) ((-1086 . -1059) T) ((-1086 . -662) T) ((-1086 . -960) T) ((-1086 . -82) 165189) ((-1086 . -962) 165030) ((-1086 . -967) 164871) ((-1086 . -21) T) ((-1086 . -23) T) ((-1086 . -1012) T) ((-1086 . -551) 164853) ((-1086 . -1127) T) ((-1086 . -13) T) ((-1086 . -72) T) ((-1086 . -25) T) ((-1086 . -104) T) ((-1086 . -246) 164807) ((-1086 . -201) 164786) ((-1086 . -914) 164752) ((-1086 . -1113) 164718) ((-1086 . -1116) 164684) ((-1086 . -431) 164650) ((-1086 . -239) 164616) ((-1086 . -66) 164582) ((-1086 . -35) 164548) ((-1086 . -1156) 164518) ((-1086 . -47) 164488) ((-1086 . -120) 164467) ((-1086 . -118) 164446) ((-1086 . -885) 164409) ((-1086 . -810) 164315) ((-1086 . -805) 164196) ((-1086 . -808) 164102) ((-1086 . -241) 164060) ((-1086 . -189) 164012) ((-1086 . -186) 163958) ((-1086 . -190) 163910) ((-1086 . -1160) 163894) ((-1086 . -949) 163829) ((-1083 . -1153) 163813) ((-1083 . -1064) 163791) ((-1083 . -552) NIL) ((-1083 . -260) 163778) ((-1083 . -454) 163726) ((-1083 . -277) 163703) ((-1083 . -949) 163586) ((-1083 . -353) 163570) ((-1083 . -38) 163402) ((-1083 . -82) 163207) ((-1083 . -962) 163033) ((-1083 . -967) 162859) ((-1083 . -587) 162769) ((-1083 . -589) 162658) ((-1083 . -581) 162490) ((-1083 . -653) 162322) ((-1083 . -554) 162099) ((-1083 . -118) 162078) ((-1083 . -120) 162057) ((-1083 . -47) 162034) ((-1083 . -327) 162018) ((-1083 . -579) 161966) ((-1083 . -808) 161910) ((-1083 . -805) 161817) ((-1083 . -810) 161728) ((-1083 . -795) NIL) ((-1083 . -820) 161707) ((-1083 . -1132) 161686) ((-1083 . -860) 161656) ((-1083 . -831) 161635) ((-1083 . -494) 161549) ((-1083 . -246) 161463) ((-1083 . -146) 161357) ((-1083 . -390) 161291) ((-1083 . -258) 161270) ((-1083 . -241) 161197) ((-1083 . -190) T) ((-1083 . -104) T) ((-1083 . -25) T) ((-1083 . -72) T) ((-1083 . -551) 161179) ((-1083 . -1012) T) ((-1083 . -23) T) ((-1083 . -21) T) ((-1083 . -969) T) ((-1083 . -1024) T) ((-1083 . -1059) T) ((-1083 . -662) T) ((-1083 . -960) T) ((-1083 . -186) 161166) ((-1083 . -13) T) ((-1083 . -1127) T) ((-1083 . -189) T) ((-1083 . -225) 161150) ((-1083 . -184) 161134) ((-1080 . -1141) 161095) ((-1080 . -914) 161061) ((-1080 . -1113) 161027) ((-1080 . -1116) 160993) ((-1080 . -431) 160959) ((-1080 . -239) 160925) ((-1080 . -66) 160891) ((-1080 . -35) 160857) ((-1080 . -1156) 160834) ((-1080 . -47) 160811) ((-1080 . -554) 160612) ((-1080 . -653) 160414) ((-1080 . -581) 160216) ((-1080 . -589) 160071) ((-1080 . -587) 159911) ((-1080 . -967) 159707) ((-1080 . -962) 159503) ((-1080 . -82) 159255) ((-1080 . -38) 159057) ((-1080 . -885) 159027) ((-1080 . -241) 158855) ((-1080 . -1139) 158839) ((-1080 . -969) T) ((-1080 . -1024) T) ((-1080 . -1059) T) ((-1080 . -662) T) ((-1080 . -960) T) ((-1080 . -21) T) ((-1080 . -23) T) ((-1080 . -1012) T) ((-1080 . -551) 158821) ((-1080 . -1127) T) ((-1080 . -13) T) ((-1080 . -72) T) ((-1080 . -25) T) ((-1080 . -104) T) ((-1080 . -118) 158731) ((-1080 . -120) 158641) ((-1080 . -552) NIL) ((-1080 . -184) 158593) ((-1080 . -808) 158429) ((-1080 . -810) 158193) ((-1080 . -805) 157932) ((-1080 . -225) 157884) ((-1080 . -189) 157710) ((-1080 . -186) 157530) ((-1080 . -190) 157420) ((-1080 . -312) 157399) ((-1080 . -1132) 157378) ((-1080 . -831) 157357) ((-1080 . -494) 157311) ((-1080 . -146) 157245) ((-1080 . -390) 157224) ((-1080 . -258) 157203) ((-1080 . -246) 157157) ((-1080 . -201) 157136) ((-1080 . -288) 157088) ((-1080 . -454) 156822) ((-1080 . -260) 156707) ((-1080 . -327) 156659) ((-1080 . -579) 156611) ((-1080 . -341) 156563) ((-1080 . -795) NIL) ((-1080 . -739) NIL) ((-1080 . -713) NIL) ((-1080 . -715) NIL) ((-1080 . -755) NIL) ((-1080 . -758) NIL) ((-1080 . -717) NIL) ((-1080 . -720) NIL) ((-1080 . -754) NIL) ((-1080 . -793) 156515) ((-1080 . -820) NIL) ((-1080 . -932) NIL) ((-1080 . -949) 156481) ((-1080 . -1064) NIL) ((-1080 . -903) 156433) ((-1079 . -994) T) ((-1079 . -428) 156414) ((-1079 . -551) 156380) ((-1079 . -554) 156361) ((-1079 . -1012) T) ((-1079 . -1127) T) ((-1079 . -13) T) ((-1079 . -72) T) ((-1079 . -64) T) ((-1078 . -1012) T) ((-1078 . -551) 156343) ((-1078 . -1127) T) ((-1078 . -13) T) ((-1078 . -72) T) ((-1077 . -1012) T) ((-1077 . -551) 156325) ((-1077 . -1127) T) ((-1077 . -13) T) ((-1077 . -72) T) ((-1072 . -1105) 156301) ((-1072 . -183) 156246) ((-1072 . -76) 156191) ((-1072 . -260) 155980) ((-1072 . -454) 155720) ((-1072 . -427) 155652) ((-1072 . -124) 155597) ((-1072 . -552) NIL) ((-1072 . -193) 155542) ((-1072 . -548) 155518) ((-1072 . -243) 155494) ((-1072 . -1127) T) ((-1072 . -13) T) ((-1072 . -241) 155470) ((-1072 . -1012) T) ((-1072 . -551) 155452) ((-1072 . -72) T) ((-1072 . -34) T) ((-1072 . -537) 155428) ((-1071 . -1056) T) ((-1071 . -322) 155410) ((-1071 . -758) T) ((-1071 . -755) T) ((-1071 . -124) 155392) ((-1071 . -34) T) ((-1071 . -13) T) ((-1071 . -1127) T) ((-1071 . -72) T) ((-1071 . -551) 155374) ((-1071 . -260) NIL) ((-1071 . -454) NIL) ((-1071 . -1012) T) ((-1071 . -427) 155356) ((-1071 . -552) NIL) ((-1071 . -241) 155306) ((-1071 . -537) 155281) ((-1071 . -243) 155256) ((-1071 . -592) 155238) ((-1071 . -19) 155220) ((-1067 . -615) 155204) ((-1067 . -592) 155188) ((-1067 . -243) 155165) ((-1067 . -241) 155117) ((-1067 . -537) 155094) ((-1067 . -552) 155055) ((-1067 . -427) 155039) ((-1067 . -1012) 155017) ((-1067 . -454) 154950) ((-1067 . -260) 154888) ((-1067 . -551) 154823) ((-1067 . -72) 154777) ((-1067 . -1127) T) ((-1067 . -13) T) ((-1067 . -34) T) ((-1067 . -124) 154761) ((-1067 . -1166) 154745) ((-1067 . -922) 154729) ((-1067 . -1062) 154713) ((-1067 . -554) 154690) ((-1065 . -994) T) ((-1065 . -428) 154671) ((-1065 . -551) 154637) ((-1065 . -554) 154618) ((-1065 . -1012) T) ((-1065 . -1127) T) ((-1065 . -13) T) ((-1065 . -72) T) ((-1065 . -64) T) ((-1063 . -1105) 154597) ((-1063 . -183) 154545) ((-1063 . -76) 154493) ((-1063 . -260) 154291) ((-1063 . -454) 154043) ((-1063 . -427) 153978) ((-1063 . -124) 153926) ((-1063 . -552) NIL) ((-1063 . -193) 153874) ((-1063 . -548) 153853) ((-1063 . -243) 153832) ((-1063 . -1127) T) ((-1063 . -13) T) ((-1063 . -241) 153811) ((-1063 . -1012) T) ((-1063 . -551) 153793) ((-1063 . -72) T) ((-1063 . -34) T) ((-1063 . -537) 153772) ((-1060 . -1033) 153756) ((-1060 . -427) 153740) ((-1060 . -1012) 153718) ((-1060 . -454) 153651) ((-1060 . -260) 153589) ((-1060 . -551) 153524) ((-1060 . -72) 153478) ((-1060 . -1127) T) ((-1060 . -13) T) ((-1060 . -34) T) ((-1060 . -76) 153462) ((-1058 . -1019) 153431) ((-1058 . -1122) 153400) ((-1058 . -551) 153362) ((-1058 . -124) 153346) ((-1058 . -34) T) ((-1058 . -13) T) ((-1058 . -1127) T) ((-1058 . -72) T) ((-1058 . -260) 153284) ((-1058 . -454) 153217) ((-1058 . -1012) T) ((-1058 . -427) 153201) ((-1058 . -552) 153162) ((-1058 . -888) 153131) ((-1058 . -982) 153100) ((-1054 . -1035) 153045) ((-1054 . -427) 153029) ((-1054 . -454) 152962) ((-1054 . -260) 152900) ((-1054 . -34) T) ((-1054 . -964) 152840) ((-1054 . -949) 152738) ((-1054 . -554) 152657) ((-1054 . -353) 152641) ((-1054 . -579) 152589) ((-1054 . -589) 152527) ((-1054 . -327) 152511) ((-1054 . -190) 152490) ((-1054 . -186) 152438) ((-1054 . -189) 152392) ((-1054 . -225) 152376) ((-1054 . -805) 152300) ((-1054 . -810) 152226) ((-1054 . -808) 152185) ((-1054 . -184) 152169) ((-1054 . -653) 152104) ((-1054 . -581) 152039) ((-1054 . -587) 151998) ((-1054 . -104) T) ((-1054 . -25) T) ((-1054 . -72) T) ((-1054 . -13) T) ((-1054 . -1127) T) ((-1054 . -551) 151960) ((-1054 . -1012) T) ((-1054 . -23) T) ((-1054 . -21) T) ((-1054 . -967) 151944) ((-1054 . -962) 151928) ((-1054 . -82) 151907) ((-1054 . -960) T) ((-1054 . -662) T) ((-1054 . -1059) T) ((-1054 . -1024) T) ((-1054 . -969) T) ((-1054 . -38) 151867) ((-1054 . -552) 151828) ((-1053 . -922) 151799) ((-1053 . -34) T) ((-1053 . -13) T) ((-1053 . -1127) T) ((-1053 . -72) T) ((-1053 . -551) 151781) ((-1053 . -260) 151707) ((-1053 . -454) 151615) ((-1053 . -1012) T) ((-1053 . -427) 151586) ((-1052 . -1012) T) ((-1052 . -551) 151568) ((-1052 . -1127) T) ((-1052 . -13) T) ((-1052 . -72) T) ((-1047 . -1049) T) ((-1047 . -1173) T) ((-1047 . -64) T) ((-1047 . -72) T) ((-1047 . -13) T) ((-1047 . -1127) T) ((-1047 . -551) 151534) ((-1047 . -1012) T) ((-1047 . -554) 151515) ((-1047 . -428) 151496) ((-1047 . -994) T) ((-1045 . -1046) 151480) ((-1045 . -72) T) ((-1045 . -13) T) ((-1045 . -1127) T) ((-1045 . -551) 151462) ((-1045 . -1012) T) ((-1038 . -678) 151441) ((-1038 . -35) 151407) ((-1038 . -66) 151373) ((-1038 . -239) 151339) ((-1038 . -431) 151305) ((-1038 . -1116) 151271) ((-1038 . -1113) 151237) ((-1038 . -914) 151203) ((-1038 . -47) 151175) ((-1038 . -38) 151072) ((-1038 . -581) 150969) ((-1038 . -653) 150866) ((-1038 . -554) 150748) ((-1038 . -246) 150727) ((-1038 . -494) 150706) ((-1038 . -82) 150571) ((-1038 . -962) 150457) ((-1038 . -967) 150343) ((-1038 . -146) 150297) ((-1038 . -120) 150276) ((-1038 . -118) 150255) ((-1038 . -589) 150180) ((-1038 . -587) 150090) ((-1038 . -885) 150057) ((-1038 . -810) 150041) ((-1038 . -1127) T) ((-1038 . -13) T) ((-1038 . -805) 150023) ((-1038 . -960) T) ((-1038 . -662) T) ((-1038 . -1059) T) ((-1038 . -1024) T) ((-1038 . -969) T) ((-1038 . -21) T) ((-1038 . -23) T) ((-1038 . -1012) T) ((-1038 . -551) 150005) ((-1038 . -72) T) ((-1038 . -25) T) ((-1038 . -104) T) ((-1038 . -808) 149989) ((-1038 . -454) 149959) ((-1038 . -260) 149946) ((-1037 . -860) 149913) ((-1037 . -554) 149712) ((-1037 . -949) 149597) ((-1037 . -1132) 149576) ((-1037 . -820) 149555) ((-1037 . -795) 149414) ((-1037 . -810) 149398) ((-1037 . -805) 149380) ((-1037 . -808) 149364) ((-1037 . -454) 149316) ((-1037 . -390) 149270) ((-1037 . -579) 149218) ((-1037 . -589) 149107) ((-1037 . -327) 149091) ((-1037 . -47) 149063) ((-1037 . -38) 148915) ((-1037 . -581) 148767) ((-1037 . -653) 148619) ((-1037 . -246) 148553) ((-1037 . -494) 148487) ((-1037 . -82) 148312) ((-1037 . -962) 148158) ((-1037 . -967) 148004) ((-1037 . -146) 147918) ((-1037 . -120) 147897) ((-1037 . -118) 147876) ((-1037 . -587) 147786) ((-1037 . -104) T) ((-1037 . -25) T) ((-1037 . -72) T) ((-1037 . -13) T) ((-1037 . -1127) T) ((-1037 . -551) 147768) ((-1037 . -1012) T) ((-1037 . -23) T) ((-1037 . -21) T) ((-1037 . -960) T) ((-1037 . -662) T) ((-1037 . -1059) T) ((-1037 . -1024) T) ((-1037 . -969) T) ((-1037 . -353) 147752) ((-1037 . -277) 147724) ((-1037 . -260) 147711) ((-1037 . -552) 147459) ((-1032 . -482) T) ((-1032 . -1132) T) ((-1032 . -1064) T) ((-1032 . -949) 147441) ((-1032 . -552) 147356) ((-1032 . -932) T) ((-1032 . -795) 147338) ((-1032 . -754) T) ((-1032 . -720) T) ((-1032 . -717) T) ((-1032 . -758) T) ((-1032 . -755) T) ((-1032 . -715) T) ((-1032 . -713) T) ((-1032 . -739) T) ((-1032 . -589) 147310) ((-1032 . -579) 147292) ((-1032 . -831) T) ((-1032 . -494) T) ((-1032 . -246) T) ((-1032 . -146) T) ((-1032 . -554) 147264) ((-1032 . -653) 147251) ((-1032 . -581) 147238) ((-1032 . -967) 147225) ((-1032 . -962) 147212) ((-1032 . -82) 147197) ((-1032 . -38) 147184) ((-1032 . -390) T) ((-1032 . -258) T) ((-1032 . -189) T) ((-1032 . -186) 147171) ((-1032 . -190) T) ((-1032 . -116) T) ((-1032 . -960) T) ((-1032 . -662) T) ((-1032 . -1059) T) ((-1032 . -1024) T) ((-1032 . -969) T) ((-1032 . -21) T) ((-1032 . -587) 147143) ((-1032 . -23) T) ((-1032 . -1012) T) ((-1032 . -551) 147125) ((-1032 . -1127) T) ((-1032 . -13) T) ((-1032 . -72) T) ((-1032 . -25) T) ((-1032 . -104) T) ((-1032 . -120) T) ((-1032 . -751) T) ((-1032 . -318) T) ((-1032 . -84) T) ((-1032 . -603) T) ((-1028 . -994) T) ((-1028 . -428) 147106) ((-1028 . -551) 147072) ((-1028 . -554) 147053) ((-1028 . -1012) T) ((-1028 . -1127) T) ((-1028 . -13) T) ((-1028 . -72) T) ((-1028 . -64) T) ((-1027 . -1012) T) ((-1027 . -551) 147035) ((-1027 . -1127) T) ((-1027 . -13) T) ((-1027 . -72) T) ((-1025 . -196) 147014) ((-1025 . -1185) 146984) ((-1025 . -720) 146963) ((-1025 . -717) 146942) ((-1025 . -758) 146896) ((-1025 . -755) 146850) ((-1025 . -715) 146829) ((-1025 . -716) 146808) ((-1025 . -653) 146753) ((-1025 . -581) 146678) ((-1025 . -243) 146655) ((-1025 . -241) 146632) ((-1025 . -427) 146616) ((-1025 . -454) 146549) ((-1025 . -260) 146487) ((-1025 . -34) T) ((-1025 . -537) 146464) ((-1025 . -949) 146293) ((-1025 . -554) 146097) ((-1025 . -353) 146066) ((-1025 . -579) 145974) ((-1025 . -589) 145813) ((-1025 . -327) 145783) ((-1025 . -318) 145762) ((-1025 . -190) 145715) ((-1025 . -587) 145503) ((-1025 . -969) 145482) ((-1025 . -1024) 145461) ((-1025 . -1059) 145440) ((-1025 . -662) 145419) ((-1025 . -960) 145398) ((-1025 . -186) 145294) ((-1025 . -189) 145196) ((-1025 . -225) 145166) ((-1025 . -805) 145038) ((-1025 . -810) 144912) ((-1025 . -808) 144845) ((-1025 . -184) 144815) ((-1025 . -551) 144512) ((-1025 . -967) 144437) ((-1025 . -962) 144342) ((-1025 . -82) 144262) ((-1025 . -104) 144137) ((-1025 . -25) 143974) ((-1025 . -72) 143711) ((-1025 . -13) T) ((-1025 . -1127) T) ((-1025 . -1012) 143467) ((-1025 . -23) 143323) ((-1025 . -21) 143238) ((-1021 . -1022) 143222) ((-1021 . |MappingCategory|) 143196) ((-1021 . -1127) T) ((-1021 . -80) 143180) ((-1021 . -1012) T) ((-1021 . -551) 143162) ((-1021 . -13) T) ((-1021 . -72) T) ((-1016 . -1015) 143126) ((-1016 . -72) T) ((-1016 . -551) 143108) ((-1016 . -1012) T) ((-1016 . -241) 143064) ((-1016 . -1127) T) ((-1016 . -13) T) ((-1016 . -556) 142979) ((-1014 . -1015) 142931) ((-1014 . -72) T) ((-1014 . -551) 142913) ((-1014 . -1012) T) ((-1014 . -241) 142869) ((-1014 . -1127) T) ((-1014 . -13) T) ((-1014 . -556) 142772) ((-1013 . -318) T) ((-1013 . -72) T) ((-1013 . -13) T) ((-1013 . -1127) T) ((-1013 . -551) 142754) ((-1013 . -1012) T) ((-1008 . -367) 142738) ((-1008 . -1010) 142722) ((-1008 . -318) 142701) ((-1008 . -193) 142685) ((-1008 . -552) 142646) ((-1008 . -124) 142630) ((-1008 . -427) 142614) ((-1008 . -1012) T) ((-1008 . -454) 142547) ((-1008 . -260) 142485) ((-1008 . -551) 142467) ((-1008 . -72) T) ((-1008 . -1127) T) ((-1008 . -13) T) ((-1008 . -34) T) ((-1008 . -76) 142451) ((-1008 . -183) 142435) ((-1007 . -994) T) ((-1007 . -428) 142416) ((-1007 . -551) 142382) ((-1007 . -554) 142363) ((-1007 . -1012) T) ((-1007 . -1127) T) ((-1007 . -13) T) ((-1007 . -72) T) ((-1007 . -64) T) ((-1003 . -1127) T) ((-1003 . -13) T) ((-1003 . -1012) 142333) ((-1003 . -551) 142292) ((-1003 . -72) 142262) ((-1002 . -994) T) ((-1002 . -428) 142243) ((-1002 . -551) 142209) ((-1002 . -554) 142190) ((-1002 . -1012) T) ((-1002 . -1127) T) ((-1002 . -13) T) ((-1002 . -72) T) ((-1002 . -64) T) ((-1000 . -1005) 142174) ((-1000 . -556) 142158) ((-1000 . -1012) 142136) ((-1000 . -551) 142103) ((-1000 . -1127) 142081) ((-1000 . -13) 142059) ((-1000 . -72) 142037) ((-1000 . -1006) 141995) ((-999 . -228) 141979) ((-999 . -554) 141963) ((-999 . -949) 141947) ((-999 . -758) T) ((-999 . -72) T) ((-999 . -1012) T) ((-999 . -551) 141929) ((-999 . -755) T) ((-999 . -186) 141916) ((-999 . -13) T) ((-999 . -1127) T) ((-999 . -189) T) ((-998 . -213) 141855) ((-998 . -554) 141599) ((-998 . -949) 141429) ((-998 . -552) NIL) ((-998 . -277) 141391) ((-998 . -353) 141375) ((-998 . -38) 141227) ((-998 . -82) 141052) ((-998 . -962) 140898) ((-998 . -967) 140744) ((-998 . -587) 140654) ((-998 . -589) 140543) ((-998 . -581) 140395) ((-998 . -653) 140247) ((-998 . -118) 140226) ((-998 . -120) 140205) ((-998 . -146) 140119) ((-998 . -494) 140053) ((-998 . -246) 139987) ((-998 . -47) 139949) ((-998 . -327) 139933) ((-998 . -579) 139881) ((-998 . -390) 139835) ((-998 . -454) 139700) ((-998 . -808) 139636) ((-998 . -805) 139535) ((-998 . -810) 139438) ((-998 . -795) NIL) ((-998 . -820) 139417) ((-998 . -1132) 139396) ((-998 . -860) 139343) ((-998 . -260) 139330) ((-998 . -190) 139309) ((-998 . -104) T) ((-998 . -25) T) ((-998 . -72) T) ((-998 . -551) 139291) ((-998 . -1012) T) ((-998 . -23) T) ((-998 . -21) T) ((-998 . -969) T) ((-998 . -1024) T) ((-998 . -1059) T) ((-998 . -662) T) ((-998 . -960) T) ((-998 . -186) 139239) ((-998 . -13) T) ((-998 . -1127) T) ((-998 . -189) 139193) ((-998 . -225) 139177) ((-998 . -184) 139161) ((-996 . -551) 139143) ((-993 . -755) T) ((-993 . -551) 139125) ((-993 . -1012) T) ((-993 . -72) T) ((-993 . -13) T) ((-993 . -1127) T) ((-993 . -758) T) ((-993 . -552) 139106) ((-990 . -660) 139085) ((-990 . -949) 138983) ((-990 . -353) 138967) ((-990 . -579) 138915) ((-990 . -589) 138792) ((-990 . -327) 138776) ((-990 . -320) 138755) ((-990 . -120) 138734) ((-990 . -554) 138559) ((-990 . -653) 138433) ((-990 . -581) 138307) ((-990 . -587) 138205) ((-990 . -967) 138118) ((-990 . -962) 138031) ((-990 . -82) 137923) ((-990 . -38) 137797) ((-990 . -351) 137776) ((-990 . -343) 137755) ((-990 . -118) 137709) ((-990 . -1064) 137688) ((-990 . -299) 137667) ((-990 . -318) 137621) ((-990 . -201) 137575) ((-990 . -246) 137529) ((-990 . -258) 137483) ((-990 . -390) 137437) ((-990 . -494) 137391) ((-990 . -831) 137345) ((-990 . -1132) 137299) ((-990 . -312) 137253) ((-990 . -190) 137181) ((-990 . -186) 137057) ((-990 . -189) 136939) ((-990 . -225) 136909) ((-990 . -805) 136781) ((-990 . -810) 136655) ((-990 . -808) 136588) ((-990 . -184) 136558) ((-990 . -552) 136542) ((-990 . -21) T) ((-990 . -23) T) ((-990 . -1012) T) ((-990 . -551) 136524) ((-990 . -1127) T) ((-990 . -13) T) ((-990 . -72) T) ((-990 . -25) T) ((-990 . -104) T) ((-990 . -960) T) ((-990 . -662) T) ((-990 . -1059) T) ((-990 . -1024) T) ((-990 . -969) T) ((-990 . -146) T) ((-988 . -1012) T) ((-988 . -551) 136506) ((-988 . -1127) T) ((-988 . -13) T) ((-988 . -72) T) ((-988 . -241) 136485) ((-987 . -1012) T) ((-987 . -551) 136467) ((-987 . -1127) T) ((-987 . -13) T) ((-987 . -72) T) ((-986 . -1012) T) ((-986 . -551) 136449) ((-986 . -1127) T) ((-986 . -13) T) ((-986 . -72) T) ((-986 . -241) 136428) ((-986 . -949) 136405) ((-986 . -554) 136382) ((-985 . -1127) T) ((-985 . -13) T) ((-984 . -994) T) ((-984 . -428) 136363) ((-984 . -551) 136329) ((-984 . -554) 136310) ((-984 . -1012) T) ((-984 . -1127) T) ((-984 . -13) T) ((-984 . -72) T) ((-984 . -64) T) ((-977 . -994) T) ((-977 . -428) 136291) ((-977 . -551) 136257) ((-977 . -554) 136238) ((-977 . -1012) T) ((-977 . -1127) T) ((-977 . -13) T) ((-977 . -72) T) ((-977 . -64) T) ((-974 . -482) T) ((-974 . -1132) T) ((-974 . -1064) T) ((-974 . -949) 136220) ((-974 . -552) 136135) ((-974 . -932) T) ((-974 . -795) 136117) ((-974 . -754) T) ((-974 . -720) T) ((-974 . -717) T) ((-974 . -758) T) ((-974 . -755) T) ((-974 . -715) T) ((-974 . -713) T) ((-974 . -739) T) ((-974 . -589) 136089) ((-974 . -579) 136071) ((-974 . -831) T) ((-974 . -494) T) ((-974 . -246) T) ((-974 . -146) T) ((-974 . -554) 136043) ((-974 . -653) 136030) ((-974 . -581) 136017) ((-974 . -967) 136004) ((-974 . -962) 135991) ((-974 . -82) 135976) ((-974 . -38) 135963) ((-974 . -390) T) ((-974 . -258) T) ((-974 . -189) T) ((-974 . -186) 135950) ((-974 . -190) T) ((-974 . -116) T) ((-974 . -960) T) ((-974 . -662) T) ((-974 . -1059) T) ((-974 . -1024) T) ((-974 . -969) T) ((-974 . -21) T) ((-974 . -587) 135922) ((-974 . -23) T) ((-974 . -1012) T) ((-974 . -551) 135904) ((-974 . -1127) T) ((-974 . -13) T) ((-974 . -72) T) ((-974 . -25) T) ((-974 . -104) T) ((-974 . -120) T) ((-974 . -556) 135885) ((-973 . -979) 135864) ((-973 . -72) T) ((-973 . -13) T) ((-973 . -1127) T) ((-973 . -551) 135846) ((-973 . -1012) T) ((-970 . -1127) T) ((-970 . -13) T) ((-970 . -1012) 135824) ((-970 . -551) 135791) ((-970 . -72) 135769) ((-965 . -964) 135709) ((-965 . -581) 135654) ((-965 . -653) 135599) ((-965 . -34) T) ((-965 . -260) 135537) ((-965 . -454) 135470) ((-965 . -427) 135454) ((-965 . -589) 135438) ((-965 . -587) 135407) ((-965 . -104) T) ((-965 . -25) T) ((-965 . -72) T) ((-965 . -13) T) ((-965 . -1127) T) ((-965 . -551) 135369) ((-965 . -1012) T) ((-965 . -23) T) ((-965 . -21) T) ((-965 . -967) 135353) ((-965 . -962) 135337) ((-965 . -82) 135316) ((-965 . -1185) 135286) ((-965 . -552) 135247) ((-957 . -982) 135176) ((-957 . -888) 135105) ((-957 . -552) 135047) ((-957 . -427) 135012) ((-957 . -1012) T) ((-957 . -454) 134896) ((-957 . -260) 134804) ((-957 . -551) 134747) ((-957 . -72) T) ((-957 . -1127) T) ((-957 . -13) T) ((-957 . -34) T) ((-957 . -124) 134712) ((-957 . -1122) 134641) ((-947 . -994) T) ((-947 . -428) 134622) ((-947 . -551) 134588) ((-947 . -554) 134569) ((-947 . -1012) T) ((-947 . -1127) T) ((-947 . -13) T) ((-947 . -72) T) ((-947 . -64) T) ((-946 . -146) T) ((-946 . -554) 134538) ((-946 . -969) T) ((-946 . -1024) T) ((-946 . -1059) T) ((-946 . -662) T) ((-946 . -960) T) ((-946 . -589) 134512) ((-946 . -587) 134471) ((-946 . -104) T) ((-946 . -25) T) ((-946 . -72) T) ((-946 . -13) T) ((-946 . -1127) T) ((-946 . -551) 134453) ((-946 . -1012) T) ((-946 . -23) T) ((-946 . -21) T) ((-946 . -967) 134427) ((-946 . -962) 134401) ((-946 . -82) 134368) ((-946 . -38) 134352) ((-946 . -581) 134336) ((-946 . -653) 134320) ((-939 . -982) 134289) ((-939 . -888) 134258) ((-939 . -552) 134219) ((-939 . -427) 134203) ((-939 . -1012) T) ((-939 . -454) 134136) ((-939 . -260) 134074) ((-939 . -551) 134036) ((-939 . -72) T) ((-939 . -1127) T) ((-939 . -13) T) ((-939 . -34) T) ((-939 . -124) 134020) ((-939 . -1122) 133989) ((-938 . -1012) T) ((-938 . -551) 133971) ((-938 . -1127) T) ((-938 . -13) T) ((-938 . -72) T) ((-936 . -924) T) ((-936 . -914) T) ((-936 . -713) T) ((-936 . -715) T) ((-936 . -755) T) ((-936 . -758) T) ((-936 . -717) T) ((-936 . -720) T) ((-936 . -754) T) ((-936 . -949) 133856) ((-936 . -353) 133818) ((-936 . -201) T) ((-936 . -246) T) ((-936 . -258) T) ((-936 . -390) T) ((-936 . -38) 133755) ((-936 . -581) 133692) ((-936 . -653) 133629) ((-936 . -554) 133566) ((-936 . -494) T) ((-936 . -831) T) ((-936 . -1132) T) ((-936 . -312) T) ((-936 . -82) 133475) ((-936 . -962) 133412) ((-936 . -967) 133349) ((-936 . -146) T) ((-936 . -120) T) ((-936 . -589) 133286) ((-936 . -587) 133223) ((-936 . -104) T) ((-936 . -25) T) ((-936 . -72) T) ((-936 . -13) T) ((-936 . -1127) T) ((-936 . -551) 133205) ((-936 . -1012) T) ((-936 . -23) T) ((-936 . -21) T) ((-936 . -960) T) ((-936 . -662) T) ((-936 . -1059) T) ((-936 . -1024) T) ((-936 . -969) T) ((-931 . -994) T) ((-931 . -428) 133186) ((-931 . -551) 133152) ((-931 . -554) 133133) ((-931 . -1012) T) ((-931 . -1127) T) ((-931 . -13) T) ((-931 . -72) T) ((-931 . -64) T) ((-916 . -903) 133115) ((-916 . -1064) T) ((-916 . -554) 133065) ((-916 . -949) 133025) ((-916 . -552) 132955) ((-916 . -932) T) ((-916 . -820) NIL) ((-916 . -793) 132937) ((-916 . -754) T) ((-916 . -720) T) ((-916 . -717) T) ((-916 . -758) T) ((-916 . -755) T) ((-916 . -715) T) ((-916 . -713) T) ((-916 . -739) T) ((-916 . -795) 132919) ((-916 . -341) 132901) ((-916 . -579) 132883) ((-916 . -327) 132865) ((-916 . -241) NIL) ((-916 . -260) NIL) ((-916 . -454) NIL) ((-916 . -288) 132847) ((-916 . -201) T) ((-916 . -82) 132774) ((-916 . -962) 132724) ((-916 . -967) 132674) ((-916 . -246) T) ((-916 . -653) 132624) ((-916 . -581) 132574) ((-916 . -589) 132524) ((-916 . -587) 132474) ((-916 . -38) 132424) ((-916 . -258) T) ((-916 . -390) T) ((-916 . -146) T) ((-916 . -494) T) ((-916 . -831) T) ((-916 . -1132) T) ((-916 . -312) T) ((-916 . -190) T) ((-916 . -186) 132411) ((-916 . -189) T) ((-916 . -225) 132393) ((-916 . -805) NIL) ((-916 . -810) NIL) ((-916 . -808) NIL) ((-916 . -184) 132375) ((-916 . -120) T) ((-916 . -118) NIL) ((-916 . -104) T) ((-916 . -25) T) ((-916 . -72) T) ((-916 . -13) T) ((-916 . -1127) T) ((-916 . -551) 132335) ((-916 . -1012) T) ((-916 . -23) T) ((-916 . -21) T) ((-916 . -960) T) ((-916 . -662) T) ((-916 . -1059) T) ((-916 . -1024) T) ((-916 . -969) T) ((-915 . -291) 132309) ((-915 . -146) T) ((-915 . -554) 132239) ((-915 . -969) T) ((-915 . -1024) T) ((-915 . -1059) T) ((-915 . -662) T) ((-915 . -960) T) ((-915 . -589) 132141) ((-915 . -587) 132071) ((-915 . -104) T) ((-915 . -25) T) ((-915 . -72) T) ((-915 . -13) T) ((-915 . -1127) T) ((-915 . -551) 132053) ((-915 . -1012) T) ((-915 . -23) T) ((-915 . -21) T) ((-915 . -967) 131998) ((-915 . -962) 131943) ((-915 . -82) 131860) ((-915 . -552) 131844) ((-915 . -184) 131821) ((-915 . -808) 131773) ((-915 . -810) 131685) ((-915 . -805) 131595) ((-915 . -225) 131572) ((-915 . -189) 131512) ((-915 . -186) 131446) ((-915 . -190) 131418) ((-915 . -312) T) ((-915 . -1132) T) ((-915 . -831) T) ((-915 . -494) T) ((-915 . -653) 131363) ((-915 . -581) 131308) ((-915 . -38) 131253) ((-915 . -390) T) ((-915 . -258) T) ((-915 . -246) T) ((-915 . -201) T) ((-915 . -318) NIL) ((-915 . -299) NIL) ((-915 . -1064) NIL) ((-915 . -118) 131225) ((-915 . -343) NIL) ((-915 . -351) 131197) ((-915 . -120) 131169) ((-915 . -320) 131141) ((-915 . -327) 131118) ((-915 . -579) 131052) ((-915 . -353) 131029) ((-915 . -949) 130906) ((-915 . -660) 130878) ((-912 . -907) 130862) ((-912 . -427) 130846) ((-912 . -1012) 130824) ((-912 . -454) 130757) ((-912 . -260) 130695) ((-912 . -551) 130630) ((-912 . -72) 130584) ((-912 . -1127) T) ((-912 . -13) T) ((-912 . -34) T) ((-912 . -76) 130568) ((-908 . -910) 130552) ((-908 . -758) 130531) ((-908 . -755) 130510) ((-908 . -949) 130408) ((-908 . -353) 130392) ((-908 . -579) 130340) ((-908 . -589) 130242) ((-908 . -327) 130226) ((-908 . -241) 130184) ((-908 . -260) 130149) ((-908 . -454) 130061) ((-908 . -288) 130045) ((-908 . -38) 129993) ((-908 . -82) 129871) ((-908 . -962) 129770) ((-908 . -967) 129669) ((-908 . -587) 129592) ((-908 . -581) 129540) ((-908 . -653) 129488) ((-908 . -554) 129382) ((-908 . -246) 129336) ((-908 . -201) 129315) ((-908 . -190) 129294) ((-908 . -186) 129242) ((-908 . -189) 129196) ((-908 . -225) 129180) ((-908 . -805) 129104) ((-908 . -810) 129030) ((-908 . -808) 128989) ((-908 . -184) 128973) ((-908 . -552) 128934) ((-908 . -120) 128913) ((-908 . -118) 128892) ((-908 . -104) T) ((-908 . -25) T) ((-908 . -72) T) ((-908 . -13) T) ((-908 . -1127) T) ((-908 . -551) 128874) ((-908 . -1012) T) ((-908 . -23) T) ((-908 . -21) T) ((-908 . -960) T) ((-908 . -662) T) ((-908 . -1059) T) ((-908 . -1024) T) ((-908 . -969) T) ((-906 . -994) T) ((-906 . -428) 128855) ((-906 . -551) 128821) ((-906 . -554) 128802) ((-906 . -1012) T) ((-906 . -1127) T) ((-906 . -13) T) ((-906 . -72) T) ((-906 . -64) T) ((-905 . -21) T) ((-905 . -587) 128784) ((-905 . -23) T) ((-905 . -1012) T) ((-905 . -551) 128766) ((-905 . -1127) T) ((-905 . -13) T) ((-905 . -72) T) ((-905 . -25) T) ((-905 . -104) T) ((-905 . -241) 128733) ((-901 . -551) 128715) ((-898 . -1012) T) ((-898 . -551) 128697) ((-898 . -1127) T) ((-898 . -13) T) ((-898 . -72) T) ((-883 . -720) T) ((-883 . -717) T) ((-883 . -758) T) ((-883 . -755) T) ((-883 . -715) T) ((-883 . -23) T) ((-883 . -1012) T) ((-883 . -551) 128657) ((-883 . -1127) T) ((-883 . -13) T) ((-883 . -72) T) ((-883 . -25) T) ((-883 . -104) T) ((-882 . -994) T) ((-882 . -428) 128638) ((-882 . -551) 128604) ((-882 . -554) 128585) ((-882 . -1012) T) ((-882 . -1127) T) ((-882 . -13) T) ((-882 . -72) T) ((-882 . -64) T) ((-876 . -879) T) ((-876 . -72) T) ((-876 . -551) 128567) ((-876 . -1012) T) ((-876 . -603) T) ((-876 . -13) T) ((-876 . -1127) T) ((-876 . -84) T) ((-876 . -554) 128551) ((-875 . -551) 128533) ((-874 . -1012) T) ((-874 . -551) 128515) ((-874 . -1127) T) ((-874 . -13) T) ((-874 . -72) T) ((-874 . -318) 128468) ((-874 . -662) 128370) ((-874 . -1024) 128272) ((-874 . -23) 128086) ((-874 . -25) 127900) ((-874 . -104) 127758) ((-874 . -411) 127711) ((-874 . -21) 127666) ((-874 . -587) 127610) ((-874 . -716) 127563) ((-874 . -715) 127516) ((-874 . -755) 127418) ((-874 . -758) 127320) ((-874 . -717) 127273) ((-874 . -720) 127226) ((-868 . -19) 127210) ((-868 . -592) 127194) ((-868 . -243) 127171) ((-868 . -241) 127123) ((-868 . -537) 127100) ((-868 . -552) 127061) ((-868 . -427) 127045) ((-868 . -1012) 126998) ((-868 . -454) 126931) ((-868 . -260) 126869) ((-868 . -551) 126784) ((-868 . -72) 126718) ((-868 . -1127) T) ((-868 . -13) T) ((-868 . -34) T) ((-868 . -124) 126702) ((-868 . -755) 126681) ((-868 . -758) 126660) ((-868 . -322) 126644) ((-866 . -277) 126623) ((-866 . -949) 126521) ((-866 . -353) 126505) ((-866 . -38) 126402) ((-866 . -554) 126259) ((-866 . -589) 126184) ((-866 . -587) 126094) ((-866 . -969) T) ((-866 . -1024) T) ((-866 . -1059) T) ((-866 . -662) T) ((-866 . -960) T) ((-866 . -82) 125959) ((-866 . -962) 125845) ((-866 . -967) 125731) ((-866 . -21) T) ((-866 . -23) T) ((-866 . -1012) T) ((-866 . -551) 125713) ((-866 . -1127) T) ((-866 . -13) T) ((-866 . -72) T) ((-866 . -25) T) ((-866 . -104) T) ((-866 . -581) 125610) ((-866 . -653) 125507) ((-866 . -118) 125486) ((-866 . -120) 125465) ((-866 . -146) 125419) ((-866 . -494) 125398) ((-866 . -246) 125377) ((-866 . -47) 125356) ((-864 . -1012) T) ((-864 . -551) 125322) ((-864 . -1127) T) ((-864 . -13) T) ((-864 . -72) T) ((-856 . -860) 125283) ((-856 . -554) 125079) ((-856 . -949) 124961) ((-856 . -1132) 124940) ((-856 . -820) 124919) ((-856 . -795) 124844) ((-856 . -810) 124825) ((-856 . -805) 124804) ((-856 . -808) 124785) ((-856 . -454) 124731) ((-856 . -390) 124685) ((-856 . -579) 124633) ((-856 . -589) 124522) ((-856 . -327) 124506) ((-856 . -47) 124475) ((-856 . -38) 124327) ((-856 . -581) 124179) ((-856 . -653) 124031) ((-856 . -246) 123965) ((-856 . -494) 123899) ((-856 . -82) 123724) ((-856 . -962) 123570) ((-856 . -967) 123416) ((-856 . -146) 123330) ((-856 . -120) 123309) ((-856 . -118) 123288) ((-856 . -587) 123198) ((-856 . -104) T) ((-856 . -25) T) ((-856 . -72) T) ((-856 . -13) T) ((-856 . -1127) T) ((-856 . -551) 123180) ((-856 . -1012) T) ((-856 . -23) T) ((-856 . -21) T) ((-856 . -960) T) ((-856 . -662) T) ((-856 . -1059) T) ((-856 . -1024) T) ((-856 . -969) T) ((-856 . -353) 123164) ((-856 . -277) 123133) ((-856 . -260) 123120) ((-856 . -552) 122981) ((-853 . -892) 122965) ((-853 . -19) 122949) ((-853 . -592) 122933) ((-853 . -243) 122910) ((-853 . -241) 122862) ((-853 . -537) 122839) ((-853 . -552) 122800) ((-853 . -427) 122784) ((-853 . -1012) 122737) ((-853 . -454) 122670) ((-853 . -260) 122608) ((-853 . -551) 122523) ((-853 . -72) 122457) ((-853 . -1127) T) ((-853 . -13) T) ((-853 . -34) T) ((-853 . -124) 122441) ((-853 . -755) 122420) ((-853 . -758) 122399) ((-853 . -322) 122383) ((-853 . -1176) 122367) ((-853 . -556) 122344) ((-837 . -886) T) ((-837 . -551) 122326) ((-835 . -865) T) ((-835 . -551) 122308) ((-829 . -717) T) ((-829 . -758) T) ((-829 . -755) T) ((-829 . -1012) T) ((-829 . -551) 122290) ((-829 . -1127) T) ((-829 . -13) T) ((-829 . -72) T) ((-829 . -25) T) ((-829 . -662) T) ((-829 . -1024) T) ((-824 . -312) T) ((-824 . -1132) T) ((-824 . -831) T) ((-824 . -494) T) ((-824 . -146) T) ((-824 . -554) 122227) ((-824 . -653) 122179) ((-824 . -581) 122131) ((-824 . -38) 122083) ((-824 . -390) T) ((-824 . -258) T) ((-824 . -589) 122035) ((-824 . -587) 121972) ((-824 . -969) T) ((-824 . -1024) T) ((-824 . -1059) T) ((-824 . -662) T) ((-824 . -960) T) ((-824 . -82) 121903) ((-824 . -962) 121855) ((-824 . -967) 121807) ((-824 . -21) T) ((-824 . -23) T) ((-824 . -1012) T) ((-824 . -551) 121789) ((-824 . -1127) T) ((-824 . -13) T) ((-824 . -72) T) ((-824 . -25) T) ((-824 . -104) T) ((-824 . -246) T) ((-824 . -201) T) ((-816 . -299) T) ((-816 . -1064) T) ((-816 . -318) T) ((-816 . -118) T) ((-816 . -312) T) ((-816 . -1132) T) ((-816 . -831) T) ((-816 . -494) T) ((-816 . -146) T) ((-816 . -554) 121739) ((-816 . -653) 121704) ((-816 . -581) 121669) ((-816 . -38) 121634) ((-816 . -390) T) ((-816 . -258) T) ((-816 . -82) 121583) ((-816 . -962) 121548) ((-816 . -967) 121513) ((-816 . -587) 121463) ((-816 . -589) 121428) ((-816 . -246) T) ((-816 . -201) T) ((-816 . -343) T) ((-816 . -189) T) ((-816 . -1127) T) ((-816 . -13) T) ((-816 . -186) 121415) ((-816 . -960) T) ((-816 . -662) T) ((-816 . -1059) T) ((-816 . -1024) T) ((-816 . -969) T) ((-816 . -21) T) ((-816 . -23) T) ((-816 . -1012) T) ((-816 . -551) 121397) ((-816 . -72) T) ((-816 . -25) T) ((-816 . -104) T) ((-816 . -190) T) ((-816 . -280) 121384) ((-816 . -120) 121366) ((-816 . -949) 121353) ((-816 . -1185) 121340) ((-816 . -1196) 121327) ((-816 . -552) 121309) ((-815 . -1012) T) ((-815 . -551) 121291) ((-815 . -1127) T) ((-815 . -13) T) ((-815 . -72) T) ((-812 . -814) 121275) ((-812 . -758) 121229) ((-812 . -755) 121183) ((-812 . -662) T) ((-812 . -1012) T) ((-812 . -551) 121165) ((-812 . -72) T) ((-812 . -1024) T) ((-812 . -411) T) ((-812 . -1127) T) ((-812 . -13) T) ((-812 . -241) 121144) ((-811 . -92) 121128) ((-811 . -427) 121112) ((-811 . -1012) 121090) ((-811 . -454) 121023) ((-811 . -260) 120961) ((-811 . -551) 120875) ((-811 . -72) 120829) ((-811 . -1127) T) ((-811 . -13) T) ((-811 . -34) T) ((-811 . -922) 120813) ((-802 . -755) T) ((-802 . -551) 120795) ((-802 . -1012) T) ((-802 . -72) T) ((-802 . -13) T) ((-802 . -1127) T) ((-802 . -758) T) ((-802 . -949) 120772) ((-802 . -554) 120749) ((-799 . -1012) T) ((-799 . -551) 120731) ((-799 . -1127) T) ((-799 . -13) T) ((-799 . -72) T) ((-799 . -949) 120699) ((-799 . -554) 120667) ((-797 . -1012) T) ((-797 . -551) 120649) ((-797 . -1127) T) ((-797 . -13) T) ((-797 . -72) T) ((-794 . -1012) T) ((-794 . -551) 120631) ((-794 . -1127) T) ((-794 . -13) T) ((-794 . -72) T) ((-784 . -994) T) ((-784 . -428) 120612) ((-784 . -551) 120578) ((-784 . -554) 120559) ((-784 . -1012) T) ((-784 . -1127) T) ((-784 . -13) T) ((-784 . -72) T) ((-784 . -64) T) ((-784 . -1173) T) ((-782 . -1012) T) ((-782 . -551) 120541) ((-782 . -1127) T) ((-782 . -13) T) ((-782 . -72) T) ((-782 . -554) 120523) ((-781 . -1127) T) ((-781 . -13) T) ((-781 . -551) 120398) ((-781 . -1012) 120349) ((-781 . -72) 120300) ((-780 . -903) 120284) ((-780 . -1064) 120262) ((-780 . -949) 120129) ((-780 . -554) 120028) ((-780 . -552) 119831) ((-780 . -932) 119810) ((-780 . -820) 119789) ((-780 . -793) 119773) ((-780 . -754) 119752) ((-780 . -720) 119731) ((-780 . -717) 119710) ((-780 . -758) 119664) ((-780 . -755) 119618) ((-780 . -715) 119597) ((-780 . -713) 119576) ((-780 . -739) 119555) ((-780 . -795) 119480) ((-780 . -341) 119464) ((-780 . -579) 119412) ((-780 . -589) 119328) ((-780 . -327) 119312) ((-780 . -241) 119270) ((-780 . -260) 119235) ((-780 . -454) 119147) ((-780 . -288) 119131) ((-780 . -201) T) ((-780 . -82) 119062) ((-780 . -962) 119014) ((-780 . -967) 118966) ((-780 . -246) T) ((-780 . -653) 118918) ((-780 . -581) 118870) ((-780 . -587) 118807) ((-780 . -38) 118759) ((-780 . -258) T) ((-780 . -390) T) ((-780 . -146) T) ((-780 . -494) T) ((-780 . -831) T) ((-780 . -1132) T) ((-780 . -312) T) ((-780 . -190) 118738) ((-780 . -186) 118686) ((-780 . -189) 118640) ((-780 . -225) 118624) ((-780 . -805) 118548) ((-780 . -810) 118474) ((-780 . -808) 118433) ((-780 . -184) 118417) ((-780 . -120) 118371) ((-780 . -118) 118350) ((-780 . -104) T) ((-780 . -25) T) ((-780 . -72) T) ((-780 . -13) T) ((-780 . -1127) T) ((-780 . -551) 118332) ((-780 . -1012) T) ((-780 . -23) T) ((-780 . -21) T) ((-780 . -960) T) ((-780 . -662) T) ((-780 . -1059) T) ((-780 . -1024) T) ((-780 . -969) T) ((-779 . -903) 118309) ((-779 . -1064) NIL) ((-779 . -949) 118286) ((-779 . -554) 118216) ((-779 . -552) NIL) ((-779 . -932) NIL) ((-779 . -820) NIL) ((-779 . -793) 118193) ((-779 . -754) NIL) ((-779 . -720) NIL) ((-779 . -717) NIL) ((-779 . -758) NIL) ((-779 . -755) NIL) ((-779 . -715) NIL) ((-779 . -713) NIL) ((-779 . -739) NIL) ((-779 . -795) NIL) ((-779 . -341) 118170) ((-779 . -579) 118147) ((-779 . -589) 118092) ((-779 . -327) 118069) ((-779 . -241) 117999) ((-779 . -260) 117943) ((-779 . -454) 117806) ((-779 . -288) 117783) ((-779 . -201) T) ((-779 . -82) 117700) ((-779 . -962) 117645) ((-779 . -967) 117590) ((-779 . -246) T) ((-779 . -653) 117535) ((-779 . -581) 117480) ((-779 . -587) 117410) ((-779 . -38) 117355) ((-779 . -258) T) ((-779 . -390) T) ((-779 . -146) T) ((-779 . -494) T) ((-779 . -831) T) ((-779 . -1132) T) ((-779 . -312) T) ((-779 . -190) NIL) ((-779 . -186) NIL) ((-779 . -189) NIL) ((-779 . -225) 117332) ((-779 . -805) NIL) ((-779 . -810) NIL) ((-779 . -808) NIL) ((-779 . -184) 117309) ((-779 . -120) T) ((-779 . -118) NIL) ((-779 . -104) T) ((-779 . -25) T) ((-779 . -72) T) ((-779 . -13) T) ((-779 . -1127) T) ((-779 . -551) 117291) ((-779 . -1012) T) ((-779 . -23) T) ((-779 . -21) T) ((-779 . -960) T) ((-779 . -662) T) ((-779 . -1059) T) ((-779 . -1024) T) ((-779 . -969) T) ((-777 . -778) 117275) ((-777 . -831) T) ((-777 . -494) T) ((-777 . -246) T) ((-777 . -146) T) ((-777 . -554) 117247) ((-777 . -653) 117234) ((-777 . -581) 117221) ((-777 . -967) 117208) ((-777 . -962) 117195) ((-777 . -82) 117180) ((-777 . -38) 117167) ((-777 . -390) T) ((-777 . -258) T) ((-777 . -960) T) ((-777 . -662) T) ((-777 . -1059) T) ((-777 . -1024) T) ((-777 . -969) T) ((-777 . -21) T) ((-777 . -587) 117139) ((-777 . -23) T) ((-777 . -1012) T) ((-777 . -551) 117121) ((-777 . -1127) T) ((-777 . -13) T) ((-777 . -72) T) ((-777 . -25) T) ((-777 . -104) T) ((-777 . -589) 117108) ((-777 . -120) T) ((-774 . -960) T) ((-774 . -662) T) ((-774 . -1059) T) ((-774 . -1024) T) ((-774 . -969) T) ((-774 . -21) T) ((-774 . -587) 117053) ((-774 . -23) T) ((-774 . -1012) T) ((-774 . -551) 117015) ((-774 . -1127) T) ((-774 . -13) T) ((-774 . -72) T) ((-774 . -25) T) ((-774 . -104) T) ((-774 . -589) 116975) ((-774 . -554) 116910) ((-774 . -428) 116887) ((-774 . -38) 116857) ((-774 . -82) 116822) ((-774 . -962) 116792) ((-774 . -967) 116762) ((-774 . -581) 116732) ((-774 . -653) 116702) ((-773 . -1012) T) ((-773 . -551) 116684) ((-773 . -1127) T) ((-773 . -13) T) ((-773 . -72) T) ((-772 . -751) T) ((-772 . -758) T) ((-772 . -755) T) ((-772 . -1012) T) ((-772 . -551) 116666) ((-772 . -1127) T) ((-772 . -13) T) ((-772 . -72) T) ((-772 . -318) T) ((-772 . -552) 116588) ((-771 . -1012) T) ((-771 . -551) 116570) ((-771 . -1127) T) ((-771 . -13) T) ((-771 . -72) T) ((-770 . -769) T) ((-770 . -147) T) ((-770 . -551) 116552) ((-766 . -755) T) ((-766 . -551) 116534) ((-766 . -1012) T) ((-766 . -72) T) ((-766 . -13) T) ((-766 . -1127) T) ((-766 . -758) T) ((-763 . -760) 116518) ((-763 . -949) 116416) ((-763 . -554) 116314) ((-763 . -353) 116298) ((-763 . -653) 116268) ((-763 . -581) 116238) ((-763 . -589) 116212) ((-763 . -587) 116171) ((-763 . -104) T) ((-763 . -25) T) ((-763 . -72) T) ((-763 . -13) T) ((-763 . -1127) T) ((-763 . -551) 116153) ((-763 . -1012) T) ((-763 . -23) T) ((-763 . -21) T) ((-763 . -967) 116137) ((-763 . -962) 116121) ((-763 . -82) 116100) ((-763 . -960) T) ((-763 . -662) T) ((-763 . -1059) T) ((-763 . -1024) T) ((-763 . -969) T) ((-763 . -38) 116070) ((-762 . -760) 116054) ((-762 . -949) 115952) ((-762 . -554) 115871) ((-762 . -353) 115855) ((-762 . -653) 115825) ((-762 . -581) 115795) ((-762 . -589) 115769) ((-762 . -587) 115728) ((-762 . -104) T) ((-762 . -25) T) ((-762 . -72) T) ((-762 . -13) T) ((-762 . -1127) T) ((-762 . -551) 115710) ((-762 . -1012) T) ((-762 . -23) T) ((-762 . -21) T) ((-762 . -967) 115694) ((-762 . -962) 115678) ((-762 . -82) 115657) ((-762 . -960) T) ((-762 . -662) T) ((-762 . -1059) T) ((-762 . -1024) T) ((-762 . -969) T) ((-762 . -38) 115627) ((-756 . -758) T) ((-756 . -1127) T) ((-756 . -13) T) ((-756 . -72) T) ((-756 . -428) 115611) ((-756 . -551) 115559) ((-756 . -554) 115543) ((-749 . -1012) T) ((-749 . -551) 115525) ((-749 . -1127) T) ((-749 . -13) T) ((-749 . -72) T) ((-749 . -353) 115509) ((-749 . -554) 115382) ((-749 . -949) 115280) ((-749 . -21) 115235) ((-749 . -587) 115155) ((-749 . -23) 115110) ((-749 . -25) 115065) ((-749 . -104) 115020) ((-749 . -754) 114999) ((-749 . -720) 114978) ((-749 . -717) 114957) ((-749 . -758) 114936) ((-749 . -755) 114915) ((-749 . -715) 114894) ((-749 . -713) 114873) ((-749 . -960) 114852) ((-749 . -662) 114831) ((-749 . -1059) 114810) ((-749 . -1024) 114789) ((-749 . -969) 114768) ((-749 . -589) 114741) ((-749 . -120) 114720) ((-748 . -746) 114702) ((-748 . -72) T) ((-748 . -13) T) ((-748 . -1127) T) ((-748 . -551) 114684) ((-748 . -1012) T) ((-744 . -960) T) ((-744 . -662) T) ((-744 . -1059) T) ((-744 . -1024) T) ((-744 . -969) T) ((-744 . -21) T) ((-744 . -587) 114629) ((-744 . -23) T) ((-744 . -1012) T) ((-744 . -551) 114611) ((-744 . -1127) T) ((-744 . -13) T) ((-744 . -72) T) ((-744 . -25) T) ((-744 . -104) T) ((-744 . -589) 114571) ((-744 . -554) 114526) ((-744 . -949) 114496) ((-744 . -241) 114475) ((-744 . -120) 114454) ((-744 . -118) 114433) ((-744 . -38) 114403) ((-744 . -82) 114368) ((-744 . -962) 114338) ((-744 . -967) 114308) ((-744 . -581) 114278) ((-744 . -653) 114248) ((-742 . -1012) T) ((-742 . -551) 114230) ((-742 . -1127) T) ((-742 . -13) T) ((-742 . -72) T) ((-742 . -353) 114214) ((-742 . -554) 114087) ((-742 . -949) 113985) ((-742 . -21) 113940) ((-742 . -587) 113860) ((-742 . -23) 113815) ((-742 . -25) 113770) ((-742 . -104) 113725) ((-742 . -754) 113704) ((-742 . -720) 113683) ((-742 . -717) 113662) ((-742 . -758) 113641) ((-742 . -755) 113620) ((-742 . -715) 113599) ((-742 . -713) 113578) ((-742 . -960) 113557) ((-742 . -662) 113536) ((-742 . -1059) 113515) ((-742 . -1024) 113494) ((-742 . -969) 113473) ((-742 . -589) 113446) ((-742 . -120) 113425) ((-740 . -644) 113409) ((-740 . -554) 113364) ((-740 . -653) 113334) ((-740 . -581) 113304) ((-740 . -589) 113278) ((-740 . -587) 113237) ((-740 . -104) T) ((-740 . -25) T) ((-740 . -72) T) ((-740 . -13) T) ((-740 . -1127) T) ((-740 . -551) 113219) ((-740 . -1012) T) ((-740 . -23) T) ((-740 . -21) T) ((-740 . -967) 113203) ((-740 . -962) 113187) ((-740 . -82) 113166) ((-740 . -960) T) ((-740 . -662) T) ((-740 . -1059) T) ((-740 . -1024) T) ((-740 . -969) T) ((-740 . -38) 113136) ((-740 . -190) 113115) ((-740 . -186) 113088) ((-740 . -189) 113067) ((-738 . -334) 113051) ((-738 . -554) 113035) ((-738 . -949) 113019) ((-738 . -758) T) ((-738 . -755) T) ((-738 . -1024) T) ((-738 . -72) T) ((-738 . -13) T) ((-738 . -1127) T) ((-738 . -551) 113001) ((-738 . -1012) T) ((-738 . -662) T) ((-738 . -753) T) ((-738 . -765) T) ((-737 . -228) 112985) ((-737 . -554) 112969) ((-737 . -949) 112953) ((-737 . -758) T) ((-737 . -72) T) ((-737 . -1012) T) ((-737 . -551) 112935) ((-737 . -755) T) ((-737 . -186) 112922) ((-737 . -13) T) ((-737 . -1127) T) ((-737 . -189) T) ((-736 . -82) 112857) ((-736 . -962) 112808) ((-736 . -967) 112759) ((-736 . -21) T) ((-736 . -587) 112695) ((-736 . -23) T) ((-736 . -1012) T) ((-736 . -551) 112664) ((-736 . -1127) T) ((-736 . -13) T) ((-736 . -72) T) ((-736 . -25) T) ((-736 . -104) T) ((-736 . -589) 112615) ((-736 . -190) T) ((-736 . -554) 112524) ((-736 . -969) T) ((-736 . -1024) T) ((-736 . -1059) T) ((-736 . -662) T) ((-736 . -960) T) ((-736 . -186) 112511) ((-736 . -189) T) ((-736 . -428) 112495) ((-736 . -312) 112474) ((-736 . -1132) 112453) ((-736 . -831) 112432) ((-736 . -494) 112411) ((-736 . -146) 112390) ((-736 . -653) 112327) ((-736 . -581) 112264) ((-736 . -38) 112201) ((-736 . -390) 112180) ((-736 . -258) 112159) ((-736 . -246) 112138) ((-736 . -201) 112117) ((-735 . -213) 112056) ((-735 . -554) 111800) ((-735 . -949) 111630) ((-735 . -552) NIL) ((-735 . -277) 111592) ((-735 . -353) 111576) ((-735 . -38) 111428) ((-735 . -82) 111253) ((-735 . -962) 111099) ((-735 . -967) 110945) ((-735 . -587) 110855) ((-735 . -589) 110744) ((-735 . -581) 110596) ((-735 . -653) 110448) ((-735 . -118) 110427) ((-735 . -120) 110406) ((-735 . -146) 110320) ((-735 . -494) 110254) ((-735 . -246) 110188) ((-735 . -47) 110150) ((-735 . -327) 110134) ((-735 . -579) 110082) ((-735 . -390) 110036) ((-735 . -454) 109901) ((-735 . -808) 109837) ((-735 . -805) 109736) ((-735 . -810) 109639) ((-735 . -795) NIL) ((-735 . -820) 109618) ((-735 . -1132) 109597) ((-735 . -860) 109544) ((-735 . -260) 109531) ((-735 . -190) 109510) ((-735 . -104) T) ((-735 . -25) T) ((-735 . -72) T) ((-735 . -551) 109492) ((-735 . -1012) T) ((-735 . -23) T) ((-735 . -21) T) ((-735 . -969) T) ((-735 . -1024) T) ((-735 . -1059) T) ((-735 . -662) T) ((-735 . -960) T) ((-735 . -186) 109440) ((-735 . -13) T) ((-735 . -1127) T) ((-735 . -189) 109394) ((-735 . -225) 109378) ((-735 . -184) 109362) ((-734 . -196) 109341) ((-734 . -1185) 109311) ((-734 . -720) 109290) ((-734 . -717) 109269) ((-734 . -758) 109223) ((-734 . -755) 109177) ((-734 . -715) 109156) ((-734 . -716) 109135) ((-734 . -653) 109080) ((-734 . -581) 109005) ((-734 . -243) 108982) ((-734 . -241) 108959) ((-734 . -427) 108943) ((-734 . -454) 108876) ((-734 . -260) 108814) ((-734 . -34) T) ((-734 . -537) 108791) ((-734 . -949) 108620) ((-734 . -554) 108424) ((-734 . -353) 108393) ((-734 . -579) 108301) ((-734 . -589) 108140) ((-734 . -327) 108110) ((-734 . -318) 108089) ((-734 . -190) 108042) ((-734 . -587) 107830) ((-734 . -969) 107809) ((-734 . -1024) 107788) ((-734 . -1059) 107767) ((-734 . -662) 107746) ((-734 . -960) 107725) ((-734 . -186) 107621) ((-734 . -189) 107523) ((-734 . -225) 107493) ((-734 . -805) 107365) ((-734 . -810) 107239) ((-734 . -808) 107172) ((-734 . -184) 107142) ((-734 . -551) 106839) ((-734 . -967) 106764) ((-734 . -962) 106669) ((-734 . -82) 106589) ((-734 . -104) 106464) ((-734 . -25) 106301) ((-734 . -72) 106038) ((-734 . -13) T) ((-734 . -1127) T) ((-734 . -1012) 105794) ((-734 . -23) 105650) ((-734 . -21) 105565) ((-721 . -719) 105549) ((-721 . -758) 105528) ((-721 . -755) 105507) ((-721 . -949) 105300) ((-721 . -554) 105153) ((-721 . -353) 105117) ((-721 . -241) 105075) ((-721 . -260) 105040) ((-721 . -454) 104952) ((-721 . -288) 104936) ((-721 . -318) 104915) ((-721 . -552) 104876) ((-721 . -120) 104855) ((-721 . -118) 104834) ((-721 . -653) 104818) ((-721 . -581) 104802) ((-721 . -589) 104776) ((-721 . -587) 104735) ((-721 . -104) T) ((-721 . -25) T) ((-721 . -72) T) ((-721 . -13) T) ((-721 . -1127) T) ((-721 . -551) 104717) ((-721 . -1012) T) ((-721 . -23) T) ((-721 . -21) T) ((-721 . -967) 104701) ((-721 . -962) 104685) ((-721 . -82) 104664) ((-721 . -960) T) ((-721 . -662) T) ((-721 . -1059) T) ((-721 . -1024) T) ((-721 . -969) T) ((-721 . -38) 104648) ((-703 . -1153) 104632) ((-703 . -1064) 104610) ((-703 . -552) NIL) ((-703 . -260) 104597) ((-703 . -454) 104545) ((-703 . -277) 104522) ((-703 . -949) 104384) ((-703 . -353) 104368) ((-703 . -38) 104200) ((-703 . -82) 104005) ((-703 . -962) 103831) ((-703 . -967) 103657) ((-703 . -587) 103567) ((-703 . -589) 103456) ((-703 . -581) 103288) ((-703 . -653) 103120) ((-703 . -554) 102876) ((-703 . -118) 102855) ((-703 . -120) 102834) ((-703 . -47) 102811) ((-703 . -327) 102795) ((-703 . -579) 102743) ((-703 . -808) 102687) ((-703 . -805) 102594) ((-703 . -810) 102505) ((-703 . -795) NIL) ((-703 . -820) 102484) ((-703 . -1132) 102463) ((-703 . -860) 102433) ((-703 . -831) 102412) ((-703 . -494) 102326) ((-703 . -246) 102240) ((-703 . -146) 102134) ((-703 . -390) 102068) ((-703 . -258) 102047) ((-703 . -241) 101974) ((-703 . -190) T) ((-703 . -104) T) ((-703 . -25) T) ((-703 . -72) T) ((-703 . -551) 101935) ((-703 . -1012) T) ((-703 . -23) T) ((-703 . -21) T) ((-703 . -969) T) ((-703 . -1024) T) ((-703 . -1059) T) ((-703 . -662) T) ((-703 . -960) T) ((-703 . -186) 101922) ((-703 . -13) T) ((-703 . -1127) T) ((-703 . -189) T) ((-703 . -225) 101906) ((-703 . -184) 101890) ((-702 . -976) 101857) ((-702 . -552) 101492) ((-702 . -260) 101479) ((-702 . -454) 101431) ((-702 . -277) 101403) ((-702 . -949) 101262) ((-702 . -353) 101246) ((-702 . -38) 101098) ((-702 . -554) 100871) ((-702 . -589) 100760) ((-702 . -587) 100670) ((-702 . -969) T) ((-702 . -1024) T) ((-702 . -1059) T) ((-702 . -662) T) ((-702 . -960) T) ((-702 . -82) 100495) ((-702 . -962) 100341) ((-702 . -967) 100187) ((-702 . -21) T) ((-702 . -23) T) ((-702 . -1012) T) ((-702 . -551) 100101) ((-702 . -1127) T) ((-702 . -13) T) ((-702 . -72) T) ((-702 . -25) T) ((-702 . -104) T) ((-702 . -581) 99953) ((-702 . -653) 99805) ((-702 . -118) 99784) ((-702 . -120) 99763) ((-702 . -146) 99677) ((-702 . -494) 99611) ((-702 . -246) 99545) ((-702 . -47) 99517) ((-702 . -327) 99501) ((-702 . -579) 99449) ((-702 . -390) 99403) ((-702 . -808) 99387) ((-702 . -805) 99369) ((-702 . -810) 99353) ((-702 . -795) 99212) ((-702 . -820) 99191) ((-702 . -1132) 99170) ((-702 . -860) 99137) ((-695 . -1012) T) ((-695 . -551) 99119) ((-695 . -1127) T) ((-695 . -13) T) ((-695 . -72) T) ((-693 . -716) T) ((-693 . -104) T) ((-693 . -25) T) ((-693 . -72) T) ((-693 . -13) T) ((-693 . -1127) T) ((-693 . -551) 99101) ((-693 . -1012) T) ((-693 . -23) T) ((-693 . -715) T) ((-693 . -755) T) ((-693 . -758) T) ((-693 . -717) T) ((-693 . -720) T) ((-693 . -662) T) ((-693 . -1024) T) ((-674 . -675) 99085) ((-674 . -1010) 99069) ((-674 . -193) 99053) ((-674 . -552) 99014) ((-674 . -124) 98998) ((-674 . -427) 98982) ((-674 . -1012) T) ((-674 . -454) 98915) ((-674 . -260) 98853) ((-674 . -551) 98835) ((-674 . -72) T) ((-674 . -1127) T) ((-674 . -13) T) ((-674 . -34) T) ((-674 . -76) 98819) ((-674 . -633) 98803) ((-673 . -960) T) ((-673 . -662) T) ((-673 . -1059) T) ((-673 . -1024) T) ((-673 . -969) T) ((-673 . -21) T) ((-673 . -587) 98748) ((-673 . -23) T) ((-673 . -1012) T) ((-673 . -551) 98730) ((-673 . -1127) T) ((-673 . -13) T) ((-673 . -72) T) ((-673 . -25) T) ((-673 . -104) T) ((-673 . -589) 98690) ((-673 . -554) 98646) ((-673 . -949) 98617) ((-673 . -120) 98596) ((-673 . -118) 98575) ((-673 . -38) 98545) ((-673 . -82) 98510) ((-673 . -962) 98480) ((-673 . -967) 98450) ((-673 . -581) 98420) ((-673 . -653) 98390) ((-673 . -318) 98343) ((-669 . -860) 98296) ((-669 . -554) 98088) ((-669 . -949) 97966) ((-669 . -1132) 97945) ((-669 . -820) 97924) ((-669 . -795) NIL) ((-669 . -810) 97901) ((-669 . -805) 97876) ((-669 . -808) 97853) ((-669 . -454) 97791) ((-669 . -390) 97745) ((-669 . -579) 97693) ((-669 . -589) 97582) ((-669 . -327) 97566) ((-669 . -47) 97531) ((-669 . -38) 97383) ((-669 . -581) 97235) ((-669 . -653) 97087) ((-669 . -246) 97021) ((-669 . -494) 96955) ((-669 . -82) 96780) ((-669 . -962) 96626) ((-669 . -967) 96472) ((-669 . -146) 96386) ((-669 . -120) 96365) ((-669 . -118) 96344) ((-669 . -587) 96254) ((-669 . -104) T) ((-669 . -25) T) ((-669 . -72) T) ((-669 . -13) T) ((-669 . -1127) T) ((-669 . -551) 96236) ((-669 . -1012) T) ((-669 . -23) T) ((-669 . -21) T) ((-669 . -960) T) ((-669 . -662) T) ((-669 . -1059) T) ((-669 . -1024) T) ((-669 . -969) T) ((-669 . -353) 96220) ((-669 . -277) 96185) ((-669 . -260) 96172) ((-669 . -552) 96033) ((-663 . -664) 96017) ((-663 . -80) 96001) ((-663 . -1127) T) ((-663 . |MappingCategory|) 95975) ((-663 . -1022) 95959) ((-663 . -1012) T) ((-663 . -551) 95920) ((-663 . -13) T) ((-663 . -72) T) ((-654 . -411) T) ((-654 . -1024) T) ((-654 . -72) T) ((-654 . -13) T) ((-654 . -1127) T) ((-654 . -551) 95902) ((-654 . -1012) T) ((-654 . -662) T) ((-651 . -960) T) ((-651 . -662) T) ((-651 . -1059) T) ((-651 . -1024) T) ((-651 . -969) T) ((-651 . -21) T) ((-651 . -587) 95874) ((-651 . -23) T) ((-651 . -1012) T) ((-651 . -551) 95856) ((-651 . -1127) T) ((-651 . -13) T) ((-651 . -72) T) ((-651 . -25) T) ((-651 . -104) T) ((-651 . -589) 95843) ((-651 . -554) 95825) ((-650 . -960) T) ((-650 . -662) T) ((-650 . -1059) T) ((-650 . -1024) T) ((-650 . -969) T) ((-650 . -21) T) ((-650 . -587) 95770) ((-650 . -23) T) ((-650 . -1012) T) ((-650 . -551) 95752) ((-650 . -1127) T) ((-650 . -13) T) ((-650 . -72) T) ((-650 . -25) T) ((-650 . -104) T) ((-650 . -589) 95712) ((-650 . -554) 95667) ((-650 . -949) 95637) ((-650 . -241) 95616) ((-650 . -120) 95595) ((-650 . -118) 95574) ((-650 . -38) 95544) ((-650 . -82) 95509) ((-650 . -962) 95479) ((-650 . -967) 95449) ((-650 . -581) 95419) ((-650 . -653) 95389) ((-649 . -755) T) ((-649 . -551) 95324) ((-649 . -1012) T) ((-649 . -72) T) ((-649 . -13) T) ((-649 . -1127) T) ((-649 . -758) T) ((-649 . -428) 95274) ((-649 . -554) 95224) ((-648 . -1153) 95208) ((-648 . -1064) 95186) ((-648 . -552) NIL) ((-648 . -260) 95173) ((-648 . -454) 95121) ((-648 . -277) 95098) ((-648 . -949) 94981) ((-648 . -353) 94965) ((-648 . -38) 94797) ((-648 . -82) 94602) ((-648 . -962) 94428) ((-648 . -967) 94254) ((-648 . -587) 94164) ((-648 . -589) 94053) ((-648 . -581) 93885) ((-648 . -653) 93717) ((-648 . -554) 93481) ((-648 . -118) 93460) ((-648 . -120) 93439) ((-648 . -47) 93416) ((-648 . -327) 93400) ((-648 . -579) 93348) ((-648 . -808) 93292) ((-648 . -805) 93199) ((-648 . -810) 93110) ((-648 . -795) NIL) ((-648 . -820) 93089) ((-648 . -1132) 93068) ((-648 . -860) 93038) ((-648 . -831) 93017) ((-648 . -494) 92931) ((-648 . -246) 92845) ((-648 . -146) 92739) ((-648 . -390) 92673) ((-648 . -258) 92652) ((-648 . -241) 92579) ((-648 . -190) T) ((-648 . -104) T) ((-648 . -25) T) ((-648 . -72) T) ((-648 . -551) 92561) ((-648 . -1012) T) ((-648 . -23) T) ((-648 . -21) T) ((-648 . -969) T) ((-648 . -1024) T) ((-648 . -1059) T) ((-648 . -662) T) ((-648 . -960) T) ((-648 . -186) 92548) ((-648 . -13) T) ((-648 . -1127) T) ((-648 . -189) T) ((-648 . -225) 92532) ((-648 . -184) 92516) ((-648 . -318) 92495) ((-647 . -312) T) ((-647 . -1132) T) ((-647 . -831) T) ((-647 . -494) T) ((-647 . -146) T) ((-647 . -554) 92445) ((-647 . -653) 92410) ((-647 . -581) 92375) ((-647 . -38) 92340) ((-647 . -390) T) ((-647 . -258) T) ((-647 . -589) 92305) ((-647 . -587) 92255) ((-647 . -969) T) ((-647 . -1024) T) ((-647 . -1059) T) ((-647 . -662) T) ((-647 . -960) T) ((-647 . -82) 92204) ((-647 . -962) 92169) ((-647 . -967) 92134) ((-647 . -21) T) ((-647 . -23) T) ((-647 . -1012) T) ((-647 . -551) 92116) ((-647 . -1127) T) ((-647 . -13) T) ((-647 . -72) T) ((-647 . -25) T) ((-647 . -104) T) ((-647 . -246) T) ((-647 . -201) T) ((-646 . -1012) T) ((-646 . -551) 92098) ((-646 . -1127) T) ((-646 . -13) T) ((-646 . -72) T) ((-631 . -1173) T) ((-631 . -949) 92082) ((-631 . -554) 92066) ((-631 . -551) 92048) ((-629 . -626) 92006) ((-629 . -427) 91990) ((-629 . -1012) 91968) ((-629 . -454) 91901) ((-629 . -260) 91839) ((-629 . -551) 91774) ((-629 . -72) 91728) ((-629 . -1127) T) ((-629 . -13) T) ((-629 . -34) T) ((-629 . -57) 91686) ((-629 . -552) 91647) ((-621 . -994) T) ((-621 . -428) 91628) ((-621 . -551) 91578) ((-621 . -554) 91559) ((-621 . -1012) T) ((-621 . -1127) T) ((-621 . -13) T) ((-621 . -72) T) ((-621 . -64) T) ((-617 . -755) T) ((-617 . -551) 91541) ((-617 . -1012) T) ((-617 . -72) T) ((-617 . -13) T) ((-617 . -1127) T) ((-617 . -758) T) ((-617 . -949) 91525) ((-617 . -554) 91509) ((-616 . -994) T) ((-616 . -428) 91490) ((-616 . -551) 91456) ((-616 . -554) 91437) ((-616 . -1012) T) ((-616 . -1127) T) ((-616 . -13) T) ((-616 . -72) T) ((-616 . -64) T) ((-613 . -755) T) ((-613 . -551) 91419) ((-613 . -1012) T) ((-613 . -72) T) ((-613 . -13) T) ((-613 . -1127) T) ((-613 . -758) T) ((-613 . -949) 91403) ((-613 . -554) 91387) ((-612 . -994) T) ((-612 . -428) 91368) ((-612 . -551) 91334) ((-612 . -554) 91315) ((-612 . -1012) T) ((-612 . -1127) T) ((-612 . -13) T) ((-612 . -72) T) ((-612 . -64) T) ((-611 . -1035) 91260) ((-611 . -427) 91244) ((-611 . -454) 91177) ((-611 . -260) 91115) ((-611 . -34) T) ((-611 . -964) 91055) ((-611 . -949) 90953) ((-611 . -554) 90872) ((-611 . -353) 90856) ((-611 . -579) 90804) ((-611 . -589) 90742) ((-611 . -327) 90726) ((-611 . -190) 90705) ((-611 . -186) 90653) ((-611 . -189) 90607) ((-611 . -225) 90591) ((-611 . -805) 90515) ((-611 . -810) 90441) ((-611 . -808) 90400) ((-611 . -184) 90384) ((-611 . -653) 90368) ((-611 . -581) 90352) ((-611 . -587) 90311) ((-611 . -104) T) ((-611 . -25) T) ((-611 . -72) T) ((-611 . -13) T) ((-611 . -1127) T) ((-611 . -551) 90273) ((-611 . -1012) T) ((-611 . -23) T) ((-611 . -21) T) ((-611 . -967) 90257) ((-611 . -962) 90241) ((-611 . -82) 90220) ((-611 . -960) T) ((-611 . -662) T) ((-611 . -1059) T) ((-611 . -1024) T) ((-611 . -969) T) ((-611 . -38) 90180) ((-611 . -359) 90164) ((-611 . -682) 90148) ((-611 . -656) T) ((-611 . -684) T) ((-611 . -316) 90132) ((-611 . -241) 90109) ((-605 . -324) 90088) ((-605 . -653) 90072) ((-605 . -581) 90056) ((-605 . -589) 90040) ((-605 . -587) 90009) ((-605 . -104) T) ((-605 . -25) T) ((-605 . -72) T) ((-605 . -13) T) ((-605 . -1127) T) ((-605 . -551) 89991) ((-605 . -1012) T) ((-605 . -23) T) ((-605 . -21) T) ((-605 . -967) 89975) ((-605 . -962) 89959) ((-605 . -82) 89938) ((-605 . -573) 89922) ((-605 . -333) 89894) ((-605 . -554) 89871) ((-605 . -949) 89848) ((-597 . -599) 89832) ((-597 . -38) 89802) ((-597 . -554) 89721) ((-597 . -589) 89695) ((-597 . -587) 89654) ((-597 . -969) T) ((-597 . -1024) T) ((-597 . -1059) T) ((-597 . -662) T) ((-597 . -960) T) ((-597 . -82) 89633) ((-597 . -962) 89617) ((-597 . -967) 89601) ((-597 . -21) T) ((-597 . -23) T) ((-597 . -1012) T) ((-597 . -551) 89583) ((-597 . -72) T) ((-597 . -25) T) ((-597 . -104) T) ((-597 . -581) 89553) ((-597 . -653) 89523) ((-597 . -353) 89507) ((-597 . -949) 89405) ((-597 . -760) 89389) ((-597 . -1127) T) ((-597 . -13) T) ((-597 . -241) 89350) ((-596 . -599) 89334) ((-596 . -38) 89304) ((-596 . -554) 89223) ((-596 . -589) 89197) ((-596 . -587) 89156) ((-596 . -969) T) ((-596 . -1024) T) ((-596 . -1059) T) ((-596 . -662) T) ((-596 . -960) T) ((-596 . -82) 89135) ((-596 . -962) 89119) ((-596 . -967) 89103) ((-596 . -21) T) ((-596 . -23) T) ((-596 . -1012) T) ((-596 . -551) 89085) ((-596 . -72) T) ((-596 . -25) T) ((-596 . -104) T) ((-596 . -581) 89055) ((-596 . -653) 89025) ((-596 . -353) 89009) ((-596 . -949) 88907) ((-596 . -760) 88891) ((-596 . -1127) T) ((-596 . -13) T) ((-596 . -241) 88870) ((-595 . -599) 88854) ((-595 . -38) 88824) ((-595 . -554) 88743) ((-595 . -589) 88717) ((-595 . -587) 88676) ((-595 . -969) T) ((-595 . -1024) T) ((-595 . -1059) T) ((-595 . -662) T) ((-595 . -960) T) ((-595 . -82) 88655) ((-595 . -962) 88639) ((-595 . -967) 88623) ((-595 . -21) T) ((-595 . -23) T) ((-595 . -1012) T) ((-595 . -551) 88605) ((-595 . -72) T) ((-595 . -25) T) ((-595 . -104) T) ((-595 . -581) 88575) ((-595 . -653) 88545) ((-595 . -353) 88529) ((-595 . -949) 88427) ((-595 . -760) 88411) ((-595 . -1127) T) ((-595 . -13) T) ((-595 . -241) 88390) ((-593 . -653) 88374) ((-593 . -581) 88358) ((-593 . -589) 88342) ((-593 . -587) 88311) ((-593 . -104) T) ((-593 . -25) T) ((-593 . -72) T) ((-593 . -13) T) ((-593 . -1127) T) ((-593 . -551) 88293) ((-593 . -1012) T) ((-593 . -23) T) ((-593 . -21) T) ((-593 . -967) 88277) ((-593 . -962) 88261) ((-593 . -82) 88240) ((-593 . -713) 88219) ((-593 . -715) 88198) ((-593 . -755) 88177) ((-593 . -758) 88156) ((-593 . -717) 88135) ((-593 . -720) 88114) ((-590 . -1012) T) ((-590 . -551) 88096) ((-590 . -1127) T) ((-590 . -13) T) ((-590 . -72) T) ((-590 . -949) 88080) ((-590 . -554) 88064) ((-588 . -633) 88048) ((-588 . -76) 88032) ((-588 . -34) T) ((-588 . -13) T) ((-588 . -1127) T) ((-588 . -72) 87986) ((-588 . -551) 87921) ((-588 . -260) 87859) ((-588 . -454) 87792) ((-588 . -1012) 87770) ((-588 . -427) 87754) ((-588 . -124) 87738) ((-588 . -552) 87699) ((-588 . -193) 87683) ((-586 . -994) T) ((-586 . -428) 87664) ((-586 . -551) 87617) ((-586 . -554) 87598) ((-586 . -1012) T) ((-586 . -1127) T) ((-586 . -13) T) ((-586 . -72) T) ((-586 . -64) T) ((-582 . -607) 87582) ((-582 . -1166) 87566) ((-582 . -922) 87550) ((-582 . -1062) 87534) ((-582 . -755) 87513) ((-582 . -758) 87492) ((-582 . -322) 87476) ((-582 . -592) 87460) ((-582 . -243) 87437) ((-582 . -241) 87389) ((-582 . -537) 87366) ((-582 . -552) 87327) ((-582 . -427) 87311) ((-582 . -1012) 87264) ((-582 . -454) 87197) ((-582 . -260) 87135) ((-582 . -551) 87050) ((-582 . -72) 86984) ((-582 . -1127) T) ((-582 . -13) T) ((-582 . -34) T) ((-582 . -124) 86968) ((-582 . -237) 86952) ((-580 . -1185) 86936) ((-580 . -82) 86915) ((-580 . -962) 86899) ((-580 . -967) 86883) ((-580 . -21) T) ((-580 . -587) 86852) ((-580 . -23) T) ((-580 . -1012) T) ((-580 . -551) 86834) ((-580 . -1127) T) ((-580 . -13) T) ((-580 . -72) T) ((-580 . -25) T) ((-580 . -104) T) ((-580 . -589) 86818) ((-580 . -581) 86802) ((-580 . -653) 86786) ((-580 . -241) 86753) ((-578 . -1185) 86737) ((-578 . -82) 86716) ((-578 . -962) 86700) ((-578 . -967) 86684) ((-578 . -21) T) ((-578 . -587) 86653) ((-578 . -23) T) ((-578 . -1012) T) ((-578 . -551) 86635) ((-578 . -1127) T) ((-578 . -13) T) ((-578 . -72) T) ((-578 . -25) T) ((-578 . -104) T) ((-578 . -589) 86619) ((-578 . -581) 86603) ((-578 . -653) 86587) ((-578 . -554) 86564) ((-578 . -448) 86536) ((-578 . -556) 86494) ((-576 . -751) T) ((-576 . -758) T) ((-576 . -755) T) ((-576 . -1012) T) ((-576 . -551) 86476) ((-576 . -1127) T) ((-576 . -13) T) ((-576 . -72) T) ((-576 . -318) T) ((-576 . -554) 86453) ((-571 . -682) 86437) ((-571 . -656) T) ((-571 . -684) T) ((-571 . -82) 86416) ((-571 . -962) 86400) ((-571 . -967) 86384) ((-571 . -21) T) ((-571 . -587) 86353) ((-571 . -23) T) ((-571 . -1012) T) ((-571 . -551) 86322) ((-571 . -1127) T) ((-571 . -13) T) ((-571 . -72) T) ((-571 . -25) T) ((-571 . -104) T) ((-571 . -589) 86306) ((-571 . -581) 86290) ((-571 . -653) 86274) ((-571 . -359) 86239) ((-571 . -316) 86174) ((-571 . -241) 86132) ((-570 . -1105) 86107) ((-570 . -183) 86051) ((-570 . -76) 85995) ((-570 . -260) 85840) ((-570 . -454) 85640) ((-570 . -427) 85570) ((-570 . -124) 85514) ((-570 . -552) NIL) ((-570 . -193) 85458) ((-570 . -548) 85433) ((-570 . -243) 85408) ((-570 . -1127) T) ((-570 . -13) T) ((-570 . -241) 85361) ((-570 . -1012) T) ((-570 . -551) 85343) ((-570 . -72) T) ((-570 . -34) T) ((-570 . -537) 85318) ((-565 . -411) T) ((-565 . -1024) T) ((-565 . -72) T) ((-565 . -13) T) ((-565 . -1127) T) ((-565 . -551) 85300) ((-565 . -1012) T) ((-565 . -662) T) ((-564 . -994) T) ((-564 . -428) 85281) ((-564 . -551) 85247) ((-564 . -554) 85228) ((-564 . -1012) T) ((-564 . -1127) T) ((-564 . -13) T) ((-564 . -72) T) ((-564 . -64) T) ((-561 . -184) 85212) ((-561 . -808) 85171) ((-561 . -810) 85097) ((-561 . -805) 85021) ((-561 . -225) 85005) ((-561 . -189) 84959) ((-561 . -1127) T) ((-561 . -13) T) ((-561 . -186) 84907) ((-561 . -960) T) ((-561 . -662) T) ((-561 . -1059) T) ((-561 . -1024) T) ((-561 . -969) T) ((-561 . -21) T) ((-561 . -587) 84879) ((-561 . -23) T) ((-561 . -1012) T) ((-561 . -551) 84861) ((-561 . -72) T) ((-561 . -25) T) ((-561 . -104) T) ((-561 . -589) 84848) ((-561 . -554) 84744) ((-561 . -190) 84723) ((-561 . -494) T) ((-561 . -246) T) ((-561 . -146) T) ((-561 . -653) 84710) ((-561 . -581) 84697) ((-561 . -967) 84684) ((-561 . -962) 84671) ((-561 . -82) 84656) ((-561 . -38) 84643) ((-561 . -552) 84620) ((-561 . -353) 84604) ((-561 . -949) 84489) ((-561 . -120) 84468) ((-561 . -118) 84447) ((-561 . -258) 84426) ((-561 . -390) 84405) ((-561 . -831) 84384) ((-557 . -38) 84368) ((-557 . -554) 84337) ((-557 . -589) 84311) ((-557 . -587) 84270) ((-557 . -969) T) ((-557 . -1024) T) ((-557 . -1059) T) ((-557 . -662) T) ((-557 . -960) T) ((-557 . -82) 84249) ((-557 . -962) 84233) ((-557 . -967) 84217) ((-557 . -21) T) ((-557 . -23) T) ((-557 . -1012) T) ((-557 . -551) 84199) ((-557 . -1127) T) ((-557 . -13) T) ((-557 . -72) T) ((-557 . -25) T) ((-557 . -104) T) ((-557 . -581) 84183) ((-557 . -653) 84167) ((-557 . -754) 84146) ((-557 . -720) 84125) ((-557 . -717) 84104) ((-557 . -758) 84083) ((-557 . -755) 84062) ((-557 . -715) 84041) ((-557 . -713) 84020) ((-557 . -120) 83999) ((-555 . -879) T) ((-555 . -72) T) ((-555 . -551) 83981) ((-555 . -1012) T) ((-555 . -603) T) ((-555 . -13) T) ((-555 . -1127) T) ((-555 . -84) T) ((-555 . -318) T) ((-549 . -105) T) ((-549 . -72) T) ((-549 . -13) T) ((-549 . -1127) T) ((-549 . -551) 83963) ((-549 . -1012) T) ((-549 . -755) T) ((-549 . -758) T) ((-549 . -793) 83947) ((-549 . -552) 83808) ((-546 . -314) 83746) ((-546 . -72) T) ((-546 . -13) T) ((-546 . -1127) T) ((-546 . -551) 83728) ((-546 . -1012) T) ((-546 . -1105) 83704) ((-546 . -183) 83649) ((-546 . -76) 83594) ((-546 . -260) 83383) ((-546 . -454) 83123) ((-546 . -427) 83055) ((-546 . -124) 83000) ((-546 . -552) NIL) ((-546 . -193) 82945) ((-546 . -548) 82921) ((-546 . -243) 82897) ((-546 . -241) 82873) ((-546 . -34) T) ((-546 . -537) 82849) ((-545 . -1012) T) ((-545 . -551) 82801) ((-545 . -1127) T) ((-545 . -13) T) ((-545 . -72) T) ((-545 . -428) 82768) ((-545 . -554) 82735) ((-544 . -1012) T) ((-544 . -551) 82717) ((-544 . -1127) T) ((-544 . -13) T) ((-544 . -72) T) ((-544 . -603) T) ((-543 . -1012) T) ((-543 . -551) 82699) ((-543 . -1127) T) ((-543 . -13) T) ((-543 . -72) T) ((-543 . -603) T) ((-542 . -1012) T) ((-542 . -551) 82666) ((-542 . -1127) T) ((-542 . -13) T) ((-542 . -72) T) ((-541 . -1012) T) ((-541 . -551) 82648) ((-541 . -1127) T) ((-541 . -13) T) ((-541 . -72) T) ((-541 . -603) T) ((-540 . -1012) T) ((-540 . -551) 82615) ((-540 . -1127) T) ((-540 . -13) T) ((-540 . -72) T) ((-540 . -428) 82597) ((-540 . -554) 82579) ((-539 . -682) 82563) ((-539 . -656) T) ((-539 . -684) T) ((-539 . -82) 82542) ((-539 . -962) 82526) ((-539 . -967) 82510) ((-539 . -21) T) ((-539 . -587) 82479) ((-539 . -23) T) ((-539 . -1012) T) ((-539 . -551) 82448) ((-539 . -1127) T) ((-539 . -13) T) ((-539 . -72) T) ((-539 . -25) T) ((-539 . -104) T) ((-539 . -589) 82432) ((-539 . -581) 82416) ((-539 . -653) 82400) ((-539 . -359) 82365) ((-539 . -316) 82300) ((-539 . -241) 82258) ((-538 . -994) T) ((-538 . -428) 82239) ((-538 . -551) 82189) ((-538 . -554) 82170) ((-538 . -1012) T) ((-538 . -1127) T) ((-538 . -13) T) ((-538 . -72) T) ((-538 . -64) T) ((-535 . -551) 82152) ((-531 . -1012) T) ((-531 . -551) 82118) ((-531 . -1127) T) ((-531 . -13) T) ((-531 . -72) T) ((-531 . -428) 82099) ((-531 . -554) 82080) ((-530 . -960) T) ((-530 . -662) T) ((-530 . -1059) T) ((-530 . -1024) T) ((-530 . -969) T) ((-530 . -21) T) ((-530 . -587) 82039) ((-530 . -23) T) ((-530 . -1012) T) ((-530 . -551) 82021) ((-530 . -1127) T) ((-530 . -13) T) ((-530 . -72) T) ((-530 . -25) T) ((-530 . -104) T) ((-530 . -589) 81995) ((-530 . -554) 81953) ((-530 . -82) 81906) ((-530 . -962) 81866) ((-530 . -967) 81826) ((-530 . -494) 81805) ((-530 . -246) 81784) ((-530 . -146) 81763) ((-530 . -653) 81736) ((-530 . -581) 81709) ((-530 . -38) 81682) ((-529 . -1156) 81659) ((-529 . -47) 81636) ((-529 . -38) 81533) ((-529 . -581) 81430) ((-529 . -653) 81327) ((-529 . -554) 81209) ((-529 . -246) 81188) ((-529 . -494) 81167) ((-529 . -82) 81032) ((-529 . -962) 80918) ((-529 . -967) 80804) ((-529 . -146) 80758) ((-529 . -120) 80737) ((-529 . -118) 80716) ((-529 . -589) 80641) ((-529 . -587) 80551) ((-529 . -885) 80521) ((-529 . -810) 80434) ((-529 . -805) 80345) ((-529 . -808) 80258) ((-529 . -241) 80223) ((-529 . -189) 80182) ((-529 . -1127) T) ((-529 . -13) T) ((-529 . -186) 80135) ((-529 . -960) T) ((-529 . -662) T) ((-529 . -1059) T) ((-529 . -1024) T) ((-529 . -969) T) ((-529 . -21) T) ((-529 . -23) T) ((-529 . -1012) T) ((-529 . -551) 80117) ((-529 . -72) T) ((-529 . -25) T) ((-529 . -104) T) ((-529 . -190) 80076) ((-527 . -994) T) ((-527 . -428) 80057) ((-527 . -551) 80023) ((-527 . -554) 80004) ((-527 . -1012) T) ((-527 . -1127) T) ((-527 . -13) T) ((-527 . -72) T) ((-527 . -64) T) ((-521 . -1012) T) ((-521 . -551) 79970) ((-521 . -1127) T) ((-521 . -13) T) ((-521 . -72) T) ((-521 . -428) 79951) ((-521 . -554) 79932) ((-518 . -653) 79907) ((-518 . -581) 79882) ((-518 . -589) 79857) ((-518 . -587) 79817) ((-518 . -104) T) ((-518 . -25) T) ((-518 . -72) T) ((-518 . -13) T) ((-518 . -1127) T) ((-518 . -551) 79799) ((-518 . -1012) T) ((-518 . -23) T) ((-518 . -21) T) ((-518 . -967) 79774) ((-518 . -962) 79749) ((-518 . -82) 79710) ((-518 . -949) 79694) ((-518 . -554) 79678) ((-516 . -299) T) ((-516 . -1064) T) ((-516 . -318) T) ((-516 . -118) T) ((-516 . -312) T) ((-516 . -1132) T) ((-516 . -831) T) ((-516 . -494) T) ((-516 . -146) T) ((-516 . -554) 79628) ((-516 . -653) 79593) ((-516 . -581) 79558) ((-516 . -38) 79523) ((-516 . -390) T) ((-516 . -258) T) ((-516 . -82) 79472) ((-516 . -962) 79437) ((-516 . -967) 79402) ((-516 . -587) 79352) ((-516 . -589) 79317) ((-516 . -246) T) ((-516 . -201) T) ((-516 . -343) T) ((-516 . -189) T) ((-516 . -1127) T) ((-516 . -13) T) ((-516 . -186) 79304) ((-516 . -960) T) ((-516 . -662) T) ((-516 . -1059) T) ((-516 . -1024) T) ((-516 . -969) T) ((-516 . -21) T) ((-516 . -23) T) ((-516 . -1012) T) ((-516 . -551) 79286) ((-516 . -72) T) ((-516 . -25) T) ((-516 . -104) T) ((-516 . -190) T) ((-516 . -280) 79273) ((-516 . -120) 79255) ((-516 . -949) 79242) ((-516 . -1185) 79229) ((-516 . -1196) 79216) ((-516 . -552) 79198) ((-515 . -778) 79182) ((-515 . -831) T) ((-515 . -494) T) ((-515 . -246) T) ((-515 . -146) T) ((-515 . -554) 79154) ((-515 . -653) 79141) ((-515 . -581) 79128) ((-515 . -967) 79115) ((-515 . -962) 79102) ((-515 . -82) 79087) ((-515 . -38) 79074) ((-515 . -390) T) ((-515 . -258) T) ((-515 . -960) T) ((-515 . -662) T) ((-515 . -1059) T) ((-515 . -1024) T) ((-515 . -969) T) ((-515 . -21) T) ((-515 . -587) 79046) ((-515 . -23) T) ((-515 . -1012) T) ((-515 . -551) 79028) ((-515 . -1127) T) ((-515 . -13) T) ((-515 . -72) T) ((-515 . -25) T) ((-515 . -104) T) ((-515 . -589) 79015) ((-515 . -120) T) ((-514 . -1012) T) ((-514 . -551) 78997) ((-514 . -1127) T) ((-514 . -13) T) ((-514 . -72) T) ((-513 . -1012) T) ((-513 . -551) 78979) ((-513 . -1127) T) ((-513 . -13) T) ((-513 . -72) T) ((-512 . -511) T) ((-512 . -769) T) ((-512 . -147) T) ((-512 . -464) T) ((-512 . -551) 78961) ((-506 . -492) 78945) ((-506 . -35) T) ((-506 . -66) T) ((-506 . -239) T) ((-506 . -431) T) ((-506 . -1116) T) ((-506 . -1113) T) ((-506 . -949) 78927) ((-506 . -914) T) ((-506 . -758) T) ((-506 . -755) T) ((-506 . -494) T) ((-506 . -246) T) ((-506 . -146) T) ((-506 . -554) 78899) ((-506 . -653) 78886) ((-506 . -581) 78873) ((-506 . -589) 78860) ((-506 . -587) 78832) ((-506 . -104) T) ((-506 . -25) T) ((-506 . -72) T) ((-506 . -13) T) ((-506 . -1127) T) ((-506 . -551) 78814) ((-506 . -1012) T) ((-506 . -23) T) ((-506 . -21) T) ((-506 . -967) 78801) ((-506 . -962) 78788) ((-506 . -82) 78773) ((-506 . -960) T) ((-506 . -662) T) ((-506 . -1059) T) ((-506 . -1024) T) ((-506 . -969) T) ((-506 . -38) 78760) ((-506 . -390) T) ((-488 . -1105) 78739) ((-488 . -183) 78687) ((-488 . -76) 78635) ((-488 . -260) 78433) ((-488 . -454) 78185) ((-488 . -427) 78120) ((-488 . -124) 78068) ((-488 . -552) NIL) ((-488 . -193) 78016) ((-488 . -548) 77995) ((-488 . -243) 77974) ((-488 . -1127) T) ((-488 . -13) T) ((-488 . -241) 77953) ((-488 . -1012) T) ((-488 . -551) 77935) ((-488 . -72) T) ((-488 . -34) T) ((-488 . -537) 77914) ((-487 . -751) T) ((-487 . -758) T) ((-487 . -755) T) ((-487 . -1012) T) ((-487 . -551) 77896) ((-487 . -1127) T) ((-487 . -13) T) ((-487 . -72) T) ((-487 . -318) T) ((-486 . -751) T) ((-486 . -758) T) ((-486 . -755) T) ((-486 . -1012) T) ((-486 . -551) 77878) ((-486 . -1127) T) ((-486 . -13) T) ((-486 . -72) T) ((-486 . -318) T) ((-485 . -751) T) ((-485 . -758) T) ((-485 . -755) T) ((-485 . -1012) T) ((-485 . -551) 77860) ((-485 . -1127) T) ((-485 . -13) T) ((-485 . -72) T) ((-485 . -318) T) ((-484 . -751) T) ((-484 . -758) T) ((-484 . -755) T) ((-484 . -1012) T) ((-484 . -551) 77842) ((-484 . -1127) T) ((-484 . -13) T) ((-484 . -72) T) ((-484 . -318) T) ((-483 . -482) T) ((-483 . -1132) T) ((-483 . -1064) T) ((-483 . -949) 77824) ((-483 . -552) 77739) ((-483 . -932) T) ((-483 . -795) 77721) ((-483 . -754) T) ((-483 . -720) T) ((-483 . -717) T) ((-483 . -758) T) ((-483 . -755) T) ((-483 . -715) T) ((-483 . -713) T) ((-483 . -739) T) ((-483 . -589) 77693) ((-483 . -579) 77675) ((-483 . -831) T) ((-483 . -494) T) ((-483 . -246) T) ((-483 . -146) T) ((-483 . -554) 77647) ((-483 . -653) 77634) ((-483 . -581) 77621) ((-483 . -967) 77608) ((-483 . -962) 77595) ((-483 . -82) 77580) ((-483 . -38) 77567) ((-483 . -390) T) ((-483 . -258) T) ((-483 . -189) T) ((-483 . -186) 77554) ((-483 . -190) T) ((-483 . -116) T) ((-483 . -960) T) ((-483 . -662) T) ((-483 . -1059) T) ((-483 . -1024) T) ((-483 . -969) T) ((-483 . -21) T) ((-483 . -587) 77526) ((-483 . -23) T) ((-483 . -1012) T) ((-483 . -551) 77508) ((-483 . -1127) T) ((-483 . -13) T) ((-483 . -72) T) ((-483 . -25) T) ((-483 . -104) T) ((-483 . -120) T) ((-472 . -1015) 77460) ((-472 . -72) T) ((-472 . -551) 77442) ((-472 . -1012) T) ((-472 . -241) 77398) ((-472 . -1127) T) ((-472 . -13) T) ((-472 . -556) 77301) ((-472 . -552) 77282) ((-470 . -690) 77264) ((-470 . -464) T) ((-470 . -147) T) ((-470 . -769) T) ((-470 . -511) T) ((-470 . -551) 77246) ((-468 . -716) T) ((-468 . -104) T) ((-468 . -25) T) ((-468 . -72) T) ((-468 . -13) T) ((-468 . -1127) T) ((-468 . -551) 77228) ((-468 . -1012) T) ((-468 . -23) T) ((-468 . -715) T) ((-468 . -755) T) ((-468 . -758) T) ((-468 . -717) T) ((-468 . -720) T) ((-468 . -448) 77205) ((-468 . -556) 77168) ((-466 . -464) T) ((-466 . -147) T) ((-466 . -551) 77150) ((-462 . -994) T) ((-462 . -428) 77131) ((-462 . -551) 77097) ((-462 . -554) 77078) ((-462 . -1012) T) ((-462 . -1127) T) ((-462 . -13) T) ((-462 . -72) T) ((-462 . -64) T) ((-461 . -994) T) ((-461 . -428) 77059) ((-461 . -551) 77025) ((-461 . -554) 77006) ((-461 . -1012) T) ((-461 . -1127) T) ((-461 . -13) T) ((-461 . -72) T) ((-461 . -64) T) ((-458 . -280) 76983) ((-458 . -190) T) ((-458 . -186) 76970) ((-458 . -189) T) ((-458 . -318) T) ((-458 . -1064) T) ((-458 . -299) T) ((-458 . -120) 76952) ((-458 . -554) 76882) ((-458 . -589) 76827) ((-458 . -587) 76757) ((-458 . -104) T) ((-458 . -25) T) ((-458 . -72) T) ((-458 . -13) T) ((-458 . -1127) T) ((-458 . -551) 76739) ((-458 . -1012) T) ((-458 . -23) T) ((-458 . -21) T) ((-458 . -969) T) ((-458 . -1024) T) ((-458 . -1059) T) ((-458 . -662) T) ((-458 . -960) T) ((-458 . -312) T) ((-458 . -1132) T) ((-458 . -831) T) ((-458 . -494) T) ((-458 . -146) T) ((-458 . -653) 76684) ((-458 . -581) 76629) ((-458 . -38) 76594) ((-458 . -390) T) ((-458 . -258) T) ((-458 . -82) 76511) ((-458 . -962) 76456) ((-458 . -967) 76401) ((-458 . -246) T) ((-458 . -201) T) ((-458 . -343) T) ((-458 . -118) T) ((-458 . -949) 76378) ((-458 . -1185) 76355) ((-458 . -1196) 76332) ((-457 . -994) T) ((-457 . -428) 76313) ((-457 . -551) 76279) ((-457 . -554) 76260) ((-457 . -1012) T) ((-457 . -1127) T) ((-457 . -13) T) ((-457 . -72) T) ((-457 . -64) T) ((-456 . -19) 76244) ((-456 . -592) 76228) ((-456 . -243) 76205) ((-456 . -241) 76157) ((-456 . -537) 76134) ((-456 . -552) 76095) ((-456 . -427) 76079) ((-456 . -1012) 76032) ((-456 . -454) 75965) ((-456 . -260) 75903) ((-456 . -551) 75818) ((-456 . -72) 75752) ((-456 . -1127) T) ((-456 . -13) T) ((-456 . -34) T) ((-456 . -124) 75736) ((-456 . -755) 75715) ((-456 . -758) 75694) ((-456 . -322) 75678) ((-456 . -237) 75662) ((-455 . -274) 75641) ((-455 . -554) 75625) ((-455 . -949) 75609) ((-455 . -23) T) ((-455 . -1012) T) ((-455 . -551) 75591) ((-455 . -1127) T) ((-455 . -13) T) ((-455 . -72) T) ((-455 . -25) T) ((-455 . -104) T) ((-452 . -72) T) ((-452 . -13) T) ((-452 . -1127) T) ((-452 . -551) 75563) ((-451 . -716) T) ((-451 . -104) T) ((-451 . -25) T) ((-451 . -72) T) ((-451 . -13) T) ((-451 . -1127) T) ((-451 . -551) 75545) ((-451 . -1012) T) ((-451 . -23) T) ((-451 . -715) T) ((-451 . -755) T) ((-451 . -758) T) ((-451 . -717) T) ((-451 . -720) T) ((-451 . -448) 75524) ((-451 . -556) 75489) ((-450 . -715) T) ((-450 . -755) T) ((-450 . -758) T) ((-450 . -717) T) ((-450 . -25) T) ((-450 . -72) T) ((-450 . -13) T) ((-450 . -1127) T) ((-450 . -551) 75471) ((-450 . -1012) T) ((-450 . -23) T) ((-450 . -448) 75450) ((-450 . -556) 75415) ((-449 . -448) 75394) ((-449 . -551) 75334) ((-449 . -1012) 75285) ((-449 . -556) 75250) ((-449 . -1127) T) ((-449 . -13) T) ((-449 . -72) T) ((-447 . -23) T) ((-447 . -1012) T) ((-447 . -551) 75232) ((-447 . -1127) T) ((-447 . -13) T) ((-447 . -72) T) ((-447 . -25) T) ((-447 . -448) 75211) ((-447 . -556) 75176) ((-446 . -21) T) ((-446 . -587) 75158) ((-446 . -23) T) ((-446 . -1012) T) ((-446 . -551) 75140) ((-446 . -1127) T) ((-446 . -13) T) ((-446 . -72) T) ((-446 . -25) T) ((-446 . -104) T) ((-446 . -448) 75119) ((-446 . -556) 75084) ((-445 . -1012) T) ((-445 . -551) 75066) ((-445 . -1127) T) ((-445 . -13) T) ((-445 . -72) T) ((-442 . -1012) T) ((-442 . -551) 75048) ((-442 . -1127) T) ((-442 . -13) T) ((-442 . -72) T) ((-440 . -755) T) ((-440 . -551) 75030) ((-440 . -1012) T) ((-440 . -72) T) ((-440 . -13) T) ((-440 . -1127) T) ((-440 . -758) T) ((-440 . -554) 75011) ((-438 . -96) T) ((-438 . -322) 74994) ((-438 . -758) T) ((-438 . -755) T) ((-438 . -124) 74977) ((-438 . -34) T) ((-438 . -72) T) ((-438 . -551) 74959) ((-438 . -260) NIL) ((-438 . -454) NIL) ((-438 . -1012) T) ((-438 . -427) 74942) ((-438 . -552) 74924) ((-438 . -241) 74875) ((-438 . -537) 74851) ((-438 . -243) 74827) ((-438 . -592) 74810) ((-438 . -19) 74793) ((-438 . -603) T) ((-438 . -13) T) ((-438 . -1127) T) ((-438 . -84) T) ((-435 . -57) 74767) ((-435 . -34) T) ((-435 . -13) T) ((-435 . -1127) T) ((-435 . -72) 74721) ((-435 . -551) 74656) ((-435 . -260) 74594) ((-435 . -454) 74527) ((-435 . -1012) 74505) ((-435 . -427) 74489) ((-434 . -19) 74473) ((-434 . -592) 74457) ((-434 . -243) 74434) ((-434 . -241) 74386) ((-434 . -537) 74363) ((-434 . -552) 74324) ((-434 . -427) 74308) ((-434 . -1012) 74261) ((-434 . -454) 74194) ((-434 . -260) 74132) ((-434 . -551) 74047) ((-434 . -72) 73981) ((-434 . -1127) T) ((-434 . -13) T) ((-434 . -34) T) ((-434 . -124) 73965) ((-434 . -755) 73944) ((-434 . -758) 73923) ((-434 . -322) 73907) ((-433 . -254) T) ((-433 . -72) T) ((-433 . -13) T) ((-433 . -1127) T) ((-433 . -551) 73889) ((-433 . -1012) T) ((-433 . -554) 73790) ((-433 . -949) 73733) ((-433 . -454) 73699) ((-433 . -260) 73686) ((-433 . -27) T) ((-433 . -914) T) ((-433 . -201) T) ((-433 . -82) 73635) ((-433 . -962) 73600) ((-433 . -967) 73565) ((-433 . -246) T) ((-433 . -653) 73530) ((-433 . -581) 73495) ((-433 . -589) 73445) ((-433 . -587) 73395) ((-433 . -104) T) ((-433 . -25) T) ((-433 . -23) T) ((-433 . -21) T) ((-433 . -960) T) ((-433 . -662) T) ((-433 . -1059) T) ((-433 . -1024) T) ((-433 . -969) T) ((-433 . -38) 73360) ((-433 . -258) T) ((-433 . -390) T) ((-433 . -146) T) ((-433 . -494) T) ((-433 . -831) T) ((-433 . -1132) T) ((-433 . -312) T) ((-433 . -579) 73320) ((-433 . -932) T) ((-433 . -552) 73265) ((-433 . -120) T) ((-433 . -190) T) ((-433 . -186) 73252) ((-433 . -189) T) ((-429 . -1012) T) ((-429 . -551) 73218) ((-429 . -1127) T) ((-429 . -13) T) ((-429 . -72) T) ((-425 . -903) 73200) ((-425 . -1064) T) ((-425 . -554) 73150) ((-425 . -949) 73110) ((-425 . -552) 73040) ((-425 . -932) T) ((-425 . -820) NIL) ((-425 . -793) 73022) ((-425 . -754) T) ((-425 . -720) T) ((-425 . -717) T) ((-425 . -758) T) ((-425 . -755) T) ((-425 . -715) T) ((-425 . -713) T) ((-425 . -739) T) ((-425 . -795) 73004) ((-425 . -341) 72986) ((-425 . -579) 72968) ((-425 . -327) 72950) ((-425 . -241) NIL) ((-425 . -260) NIL) ((-425 . -454) NIL) ((-425 . -288) 72932) ((-425 . -201) T) ((-425 . -82) 72859) ((-425 . -962) 72809) ((-425 . -967) 72759) ((-425 . -246) T) ((-425 . -653) 72709) ((-425 . -581) 72659) ((-425 . -589) 72609) ((-425 . -587) 72559) ((-425 . -38) 72509) ((-425 . -258) T) ((-425 . -390) T) ((-425 . -146) T) ((-425 . -494) T) ((-425 . -831) T) ((-425 . -1132) T) ((-425 . -312) T) ((-425 . -190) T) ((-425 . -186) 72496) ((-425 . -189) T) ((-425 . -225) 72478) ((-425 . -805) NIL) ((-425 . -810) NIL) ((-425 . -808) NIL) ((-425 . -184) 72460) ((-425 . -120) T) ((-425 . -118) NIL) ((-425 . -104) T) ((-425 . -25) T) ((-425 . -72) T) ((-425 . -13) T) ((-425 . -1127) T) ((-425 . -551) 72402) ((-425 . -1012) T) ((-425 . -23) T) ((-425 . -21) T) ((-425 . -960) T) ((-425 . -662) T) ((-425 . -1059) T) ((-425 . -1024) T) ((-425 . -969) T) ((-423 . -286) 72371) ((-423 . -104) T) ((-423 . -25) T) ((-423 . -72) T) ((-423 . -13) T) ((-423 . -1127) T) ((-423 . -551) 72353) ((-423 . -1012) T) ((-423 . -23) T) ((-423 . -587) 72335) ((-423 . -21) T) ((-422 . -880) 72319) ((-422 . -427) 72303) ((-422 . -1012) 72281) ((-422 . -454) 72214) ((-422 . -260) 72152) ((-422 . -551) 72087) ((-422 . -72) 72041) ((-422 . -1127) T) ((-422 . -13) T) ((-422 . -34) T) ((-422 . -76) 72025) ((-421 . -994) T) ((-421 . -428) 72006) ((-421 . -551) 71972) ((-421 . -554) 71953) ((-421 . -1012) T) ((-421 . -1127) T) ((-421 . -13) T) ((-421 . -72) T) ((-421 . -64) T) ((-420 . -196) 71932) ((-420 . -1185) 71902) ((-420 . -720) 71881) ((-420 . -717) 71860) ((-420 . -758) 71814) ((-420 . -755) 71768) ((-420 . -715) 71747) ((-420 . -716) 71726) ((-420 . -653) 71671) ((-420 . -581) 71596) ((-420 . -243) 71573) ((-420 . -241) 71550) ((-420 . -427) 71534) ((-420 . -454) 71467) ((-420 . -260) 71405) ((-420 . -34) T) ((-420 . -537) 71382) ((-420 . -949) 71211) ((-420 . -554) 71015) ((-420 . -353) 70984) ((-420 . -579) 70892) ((-420 . -589) 70731) ((-420 . -327) 70701) ((-420 . -318) 70680) ((-420 . -190) 70633) ((-420 . -587) 70421) ((-420 . -969) 70400) ((-420 . -1024) 70379) ((-420 . -1059) 70358) ((-420 . -662) 70337) ((-420 . -960) 70316) ((-420 . -186) 70212) ((-420 . -189) 70114) ((-420 . -225) 70084) ((-420 . -805) 69956) ((-420 . -810) 69830) ((-420 . -808) 69763) ((-420 . -184) 69733) ((-420 . -551) 69430) ((-420 . -967) 69355) ((-420 . -962) 69260) ((-420 . -82) 69180) ((-420 . -104) 69055) ((-420 . -25) 68892) ((-420 . -72) 68629) ((-420 . -13) T) ((-420 . -1127) T) ((-420 . -1012) 68385) ((-420 . -23) 68241) ((-420 . -21) 68156) ((-419 . -860) 68101) ((-419 . -554) 67893) ((-419 . -949) 67771) ((-419 . -1132) 67750) ((-419 . -820) 67729) ((-419 . -795) NIL) ((-419 . -810) 67706) ((-419 . -805) 67681) ((-419 . -808) 67658) ((-419 . -454) 67596) ((-419 . -390) 67550) ((-419 . -579) 67498) ((-419 . -589) 67387) ((-419 . -327) 67371) ((-419 . -47) 67328) ((-419 . -38) 67180) ((-419 . -581) 67032) ((-419 . -653) 66884) ((-419 . -246) 66818) ((-419 . -494) 66752) ((-419 . -82) 66577) ((-419 . -962) 66423) ((-419 . -967) 66269) ((-419 . -146) 66183) ((-419 . -120) 66162) ((-419 . -118) 66141) ((-419 . -587) 66051) ((-419 . -104) T) ((-419 . -25) T) ((-419 . -72) T) ((-419 . -13) T) ((-419 . -1127) T) ((-419 . -551) 66033) ((-419 . -1012) T) ((-419 . -23) T) ((-419 . -21) T) ((-419 . -960) T) ((-419 . -662) T) ((-419 . -1059) T) ((-419 . -1024) T) ((-419 . -969) T) ((-419 . -353) 66017) ((-419 . -277) 65974) ((-419 . -260) 65961) ((-419 . -552) 65822) ((-417 . -1105) 65801) ((-417 . -183) 65749) ((-417 . -76) 65697) ((-417 . -260) 65495) ((-417 . -454) 65247) ((-417 . -427) 65182) ((-417 . -124) 65130) ((-417 . -552) NIL) ((-417 . -193) 65078) ((-417 . -548) 65057) ((-417 . -243) 65036) ((-417 . -1127) T) ((-417 . -13) T) ((-417 . -241) 65015) ((-417 . -1012) T) ((-417 . -551) 64997) ((-417 . -72) T) ((-417 . -34) T) ((-417 . -537) 64976) ((-416 . -994) T) ((-416 . -428) 64957) ((-416 . -551) 64923) ((-416 . -554) 64904) ((-416 . -1012) T) ((-416 . -1127) T) ((-416 . -13) T) ((-416 . -72) T) ((-416 . -64) T) ((-415 . -312) T) ((-415 . -1132) T) ((-415 . -831) T) ((-415 . -494) T) ((-415 . -146) T) ((-415 . -554) 64854) ((-415 . -653) 64819) ((-415 . -581) 64784) ((-415 . -38) 64749) ((-415 . -390) T) ((-415 . -258) T) ((-415 . -589) 64714) ((-415 . -587) 64664) ((-415 . -969) T) ((-415 . -1024) T) ((-415 . -1059) T) ((-415 . -662) T) ((-415 . -960) T) ((-415 . -82) 64613) ((-415 . -962) 64578) ((-415 . -967) 64543) ((-415 . -21) T) ((-415 . -23) T) ((-415 . -1012) T) ((-415 . -551) 64495) ((-415 . -1127) T) ((-415 . -13) T) ((-415 . -72) T) ((-415 . -25) T) ((-415 . -104) T) ((-415 . -246) T) ((-415 . -201) T) ((-415 . -120) T) ((-415 . -949) 64455) ((-415 . -932) T) ((-415 . -552) 64377) ((-414 . -1122) 64346) ((-414 . -551) 64308) ((-414 . -124) 64292) ((-414 . -34) T) ((-414 . -13) T) ((-414 . -1127) T) ((-414 . -72) T) ((-414 . -260) 64230) ((-414 . -454) 64163) ((-414 . -1012) T) ((-414 . -427) 64147) ((-414 . -552) 64108) ((-414 . -888) 64077) ((-413 . -1105) 64056) ((-413 . -183) 64004) ((-413 . -76) 63952) ((-413 . -260) 63750) ((-413 . -454) 63502) ((-413 . -427) 63437) ((-413 . -124) 63385) ((-413 . -552) NIL) ((-413 . -193) 63333) ((-413 . -548) 63312) ((-413 . -243) 63291) ((-413 . -1127) T) ((-413 . -13) T) ((-413 . -241) 63270) ((-413 . -1012) T) ((-413 . -551) 63252) ((-413 . -72) T) ((-413 . -34) T) ((-413 . -537) 63231) ((-412 . -1160) 63215) ((-412 . -190) 63167) ((-412 . -186) 63113) ((-412 . -189) 63065) ((-412 . -241) 63023) ((-412 . -808) 62929) ((-412 . -805) 62810) ((-412 . -810) 62716) ((-412 . -885) 62679) ((-412 . -38) 62526) ((-412 . -82) 62346) ((-412 . -962) 62187) ((-412 . -967) 62028) ((-412 . -587) 61913) ((-412 . -589) 61813) ((-412 . -581) 61660) ((-412 . -653) 61507) ((-412 . -554) 61339) ((-412 . -118) 61318) ((-412 . -120) 61297) ((-412 . -47) 61267) ((-412 . -1156) 61237) ((-412 . -35) 61203) ((-412 . -66) 61169) ((-412 . -239) 61135) ((-412 . -431) 61101) ((-412 . -1116) 61067) ((-412 . -1113) 61033) ((-412 . -914) 60999) ((-412 . -201) 60978) ((-412 . -246) 60932) ((-412 . -104) T) ((-412 . -25) T) ((-412 . -72) T) ((-412 . -13) T) ((-412 . -1127) T) ((-412 . -551) 60914) ((-412 . -1012) T) ((-412 . -23) T) ((-412 . -21) T) ((-412 . -960) T) ((-412 . -662) T) ((-412 . -1059) T) ((-412 . -1024) T) ((-412 . -969) T) ((-412 . -258) 60893) ((-412 . -390) 60872) ((-412 . -146) 60806) ((-412 . -494) 60760) ((-412 . -831) 60739) ((-412 . -1132) 60718) ((-412 . -312) 60697) ((-406 . -1012) T) ((-406 . -551) 60679) ((-406 . -1127) T) ((-406 . -13) T) ((-406 . -72) T) ((-401 . -888) 60648) ((-401 . -552) 60609) ((-401 . -427) 60593) ((-401 . -1012) T) ((-401 . -454) 60526) ((-401 . -260) 60464) ((-401 . -551) 60426) ((-401 . -72) T) ((-401 . -1127) T) ((-401 . -13) T) ((-401 . -34) T) ((-401 . -124) 60410) ((-399 . -653) 60381) ((-399 . -581) 60352) ((-399 . -589) 60323) ((-399 . -587) 60279) ((-399 . -104) T) ((-399 . -25) T) ((-399 . -72) T) ((-399 . -13) T) ((-399 . -1127) T) ((-399 . -551) 60261) ((-399 . -1012) T) ((-399 . -23) T) ((-399 . -21) T) ((-399 . -967) 60232) ((-399 . -962) 60203) ((-399 . -82) 60164) ((-392 . -860) 60131) ((-392 . -554) 59923) ((-392 . -949) 59801) ((-392 . -1132) 59780) ((-392 . -820) 59759) ((-392 . -795) NIL) ((-392 . -810) 59736) ((-392 . -805) 59711) ((-392 . -808) 59688) ((-392 . -454) 59626) ((-392 . -390) 59580) ((-392 . -579) 59528) ((-392 . -589) 59417) ((-392 . -327) 59401) ((-392 . -47) 59380) ((-392 . -38) 59232) ((-392 . -581) 59084) ((-392 . -653) 58936) ((-392 . -246) 58870) ((-392 . -494) 58804) ((-392 . -82) 58629) ((-392 . -962) 58475) ((-392 . -967) 58321) ((-392 . -146) 58235) ((-392 . -120) 58214) ((-392 . -118) 58193) ((-392 . -587) 58103) ((-392 . -104) T) ((-392 . -25) T) ((-392 . -72) T) ((-392 . -13) T) ((-392 . -1127) T) ((-392 . -551) 58085) ((-392 . -1012) T) ((-392 . -23) T) ((-392 . -21) T) ((-392 . -960) T) ((-392 . -662) T) ((-392 . -1059) T) ((-392 . -1024) T) ((-392 . -969) T) ((-392 . -353) 58069) ((-392 . -277) 58048) ((-392 . -260) 58035) ((-392 . -552) 57896) ((-391 . -359) 57866) ((-391 . -682) 57836) ((-391 . -656) T) ((-391 . -684) T) ((-391 . -82) 57787) ((-391 . -962) 57757) ((-391 . -967) 57727) ((-391 . -21) T) ((-391 . -587) 57642) ((-391 . -23) T) ((-391 . -1012) T) ((-391 . -551) 57624) ((-391 . -72) T) ((-391 . -25) T) ((-391 . -104) T) ((-391 . -589) 57554) ((-391 . -581) 57524) ((-391 . -653) 57494) ((-391 . -316) 57464) ((-391 . -1127) T) ((-391 . -13) T) ((-391 . -241) 57427) ((-379 . -1012) T) ((-379 . -551) 57409) ((-379 . -1127) T) ((-379 . -13) T) ((-379 . -72) T) ((-378 . -1012) T) ((-378 . -551) 57391) ((-378 . -1127) T) ((-378 . -13) T) ((-378 . -72) T) ((-377 . -1012) T) ((-377 . -551) 57373) ((-377 . -1127) T) ((-377 . -13) T) ((-377 . -72) T) ((-375 . -551) 57355) ((-370 . -38) 57339) ((-370 . -554) 57308) ((-370 . -589) 57282) ((-370 . -587) 57241) ((-370 . -969) T) ((-370 . -1024) T) ((-370 . -1059) T) ((-370 . -662) T) ((-370 . -960) T) ((-370 . -82) 57220) ((-370 . -962) 57204) ((-370 . -967) 57188) ((-370 . -21) T) ((-370 . -23) T) ((-370 . -1012) T) ((-370 . -551) 57170) ((-370 . -1127) T) ((-370 . -13) T) ((-370 . -72) T) ((-370 . -25) T) ((-370 . -104) T) ((-370 . -581) 57154) ((-370 . -653) 57138) ((-356 . -662) T) ((-356 . -1012) T) ((-356 . -551) 57120) ((-356 . -1127) T) ((-356 . -13) T) ((-356 . -72) T) ((-356 . -1024) T) ((-354 . -411) T) ((-354 . -1024) T) ((-354 . -72) T) ((-354 . -13) T) ((-354 . -1127) T) ((-354 . -551) 57102) ((-354 . -1012) T) ((-354 . -662) T) ((-348 . -903) 57086) ((-348 . -1064) 57064) ((-348 . -949) 56931) ((-348 . -554) 56830) ((-348 . -552) 56633) ((-348 . -932) 56612) ((-348 . -820) 56591) ((-348 . -793) 56575) ((-348 . -754) 56554) ((-348 . -720) 56533) ((-348 . -717) 56512) ((-348 . -758) 56466) ((-348 . -755) 56420) ((-348 . -715) 56399) ((-348 . -713) 56378) ((-348 . -739) 56357) ((-348 . -795) 56282) ((-348 . -341) 56266) ((-348 . -579) 56214) ((-348 . -589) 56130) ((-348 . -327) 56114) ((-348 . -241) 56072) ((-348 . -260) 56037) ((-348 . -454) 55949) ((-348 . -288) 55933) ((-348 . -201) T) ((-348 . -82) 55864) ((-348 . -962) 55816) ((-348 . -967) 55768) ((-348 . -246) T) ((-348 . -653) 55720) ((-348 . -581) 55672) ((-348 . -587) 55609) ((-348 . -38) 55561) ((-348 . -258) T) ((-348 . -390) T) ((-348 . -146) T) ((-348 . -494) T) ((-348 . -831) T) ((-348 . -1132) T) ((-348 . -312) T) ((-348 . -190) 55540) ((-348 . -186) 55488) ((-348 . -189) 55442) ((-348 . -225) 55426) ((-348 . -805) 55350) ((-348 . -810) 55276) ((-348 . -808) 55235) ((-348 . -184) 55219) ((-348 . -120) 55173) ((-348 . -118) 55152) ((-348 . -104) T) ((-348 . -25) T) ((-348 . -72) T) ((-348 . -13) T) ((-348 . -1127) T) ((-348 . -551) 55134) ((-348 . -1012) T) ((-348 . -23) T) ((-348 . -21) T) ((-348 . -960) T) ((-348 . -662) T) ((-348 . -1059) T) ((-348 . -1024) T) ((-348 . -969) T) ((-346 . -494) T) ((-346 . -246) T) ((-346 . -146) T) ((-346 . -554) 55043) ((-346 . -653) 55017) ((-346 . -581) 54991) ((-346 . -589) 54965) ((-346 . -587) 54924) ((-346 . -104) T) ((-346 . -25) T) ((-346 . -72) T) ((-346 . -13) T) ((-346 . -1127) T) ((-346 . -551) 54906) ((-346 . -1012) T) ((-346 . -23) T) ((-346 . -21) T) ((-346 . -967) 54880) ((-346 . -962) 54854) ((-346 . -82) 54821) ((-346 . -960) T) ((-346 . -662) T) ((-346 . -1059) T) ((-346 . -1024) T) ((-346 . -969) T) ((-346 . -38) 54795) ((-346 . -184) 54779) ((-346 . -808) 54738) ((-346 . -810) 54664) ((-346 . -805) 54588) ((-346 . -225) 54572) ((-346 . -189) 54526) ((-346 . -186) 54474) ((-346 . -190) 54453) ((-346 . -288) 54437) ((-346 . -454) 54279) ((-346 . -260) 54218) ((-346 . -241) 54146) ((-346 . -353) 54130) ((-346 . -949) 54028) ((-346 . -390) 53981) ((-346 . -932) 53960) ((-346 . -552) 53863) ((-346 . -1132) 53841) ((-340 . -1012) T) ((-340 . -551) 53823) ((-340 . -1127) T) ((-340 . -13) T) ((-340 . -72) T) ((-340 . -189) T) ((-340 . -186) 53810) ((-340 . -552) 53787) ((-338 . -682) 53771) ((-338 . -656) T) ((-338 . -684) T) ((-338 . -82) 53750) ((-338 . -962) 53734) ((-338 . -967) 53718) ((-338 . -21) T) ((-338 . -587) 53687) ((-338 . -23) T) ((-338 . -1012) T) ((-338 . -551) 53669) ((-338 . -1127) T) ((-338 . -13) T) ((-338 . -72) T) ((-338 . -25) T) ((-338 . -104) T) ((-338 . -589) 53653) ((-338 . -581) 53637) ((-338 . -653) 53621) ((-336 . -337) T) ((-336 . -72) T) ((-336 . -13) T) ((-336 . -1127) T) ((-336 . -551) 53587) ((-336 . -1012) T) ((-336 . -554) 53568) ((-336 . -428) 53549) ((-335 . -334) 53533) ((-335 . -554) 53517) ((-335 . -949) 53501) ((-335 . -758) 53480) ((-335 . -755) 53459) ((-335 . -1024) T) ((-335 . -72) T) ((-335 . -13) T) ((-335 . -1127) T) ((-335 . -551) 53441) ((-335 . -1012) T) ((-335 . -662) T) ((-332 . -333) 53420) ((-332 . -554) 53404) ((-332 . -949) 53388) ((-332 . -581) 53358) ((-332 . -653) 53328) ((-332 . -589) 53312) ((-332 . -587) 53281) ((-332 . -104) T) ((-332 . -25) T) ((-332 . -72) T) ((-332 . -13) T) ((-332 . -1127) T) ((-332 . -551) 53263) ((-332 . -1012) T) ((-332 . -23) T) ((-332 . -21) T) ((-332 . -967) 53247) ((-332 . -962) 53231) ((-332 . -82) 53210) ((-331 . -82) 53189) ((-331 . -962) 53173) ((-331 . -967) 53157) ((-331 . -21) T) ((-331 . -587) 53126) ((-331 . -23) T) ((-331 . -1012) T) ((-331 . -551) 53108) ((-331 . -1127) T) ((-331 . -13) T) ((-331 . -72) T) ((-331 . -25) T) ((-331 . -104) T) ((-331 . -589) 53092) ((-331 . -448) 53071) ((-331 . -556) 53036) ((-331 . -653) 53006) ((-331 . -581) 52976) ((-328 . -345) T) ((-328 . -120) T) ((-328 . -554) 52926) ((-328 . -589) 52891) ((-328 . -587) 52841) ((-328 . -104) T) ((-328 . -25) T) ((-328 . -72) T) ((-328 . -13) T) ((-328 . -1127) T) ((-328 . -551) 52808) ((-328 . -1012) T) ((-328 . -23) T) ((-328 . -21) T) ((-328 . -969) T) ((-328 . -1024) T) ((-328 . -1059) T) ((-328 . -662) T) ((-328 . -960) T) ((-328 . -552) 52722) ((-328 . -312) T) ((-328 . -1132) T) ((-328 . -831) T) ((-328 . -494) T) ((-328 . -146) T) ((-328 . -653) 52687) ((-328 . -581) 52652) ((-328 . -38) 52617) ((-328 . -390) T) ((-328 . -258) T) ((-328 . -82) 52566) ((-328 . -962) 52531) ((-328 . -967) 52496) ((-328 . -246) T) ((-328 . -201) T) ((-328 . -754) T) ((-328 . -720) T) ((-328 . -717) T) ((-328 . -758) T) ((-328 . -755) T) ((-328 . -715) T) ((-328 . -713) T) ((-328 . -795) 52478) ((-328 . -914) T) ((-328 . -932) T) ((-328 . -949) 52438) ((-328 . -972) T) ((-328 . -190) T) ((-328 . -186) 52425) ((-328 . -189) T) ((-328 . -1113) T) ((-328 . -1116) T) ((-328 . -431) T) ((-328 . -239) T) ((-328 . -66) T) ((-328 . -35) T) ((-328 . -556) 52407) ((-313 . -314) 52384) ((-313 . -72) T) ((-313 . -13) T) ((-313 . -1127) T) ((-313 . -551) 52366) ((-313 . -1012) T) ((-310 . -411) T) ((-310 . -1024) T) ((-310 . -72) T) ((-310 . -13) T) ((-310 . -1127) T) ((-310 . -551) 52348) ((-310 . -1012) T) ((-310 . -662) T) ((-310 . -949) 52332) ((-310 . -554) 52316) ((-308 . -280) 52300) ((-308 . -190) 52279) ((-308 . -186) 52252) ((-308 . -189) 52231) ((-308 . -318) 52210) ((-308 . -1064) 52189) ((-308 . -299) 52168) ((-308 . -120) 52147) ((-308 . -554) 52084) ((-308 . -589) 52036) ((-308 . -587) 51973) ((-308 . -104) T) ((-308 . -25) T) ((-308 . -72) T) ((-308 . -13) T) ((-308 . -1127) T) ((-308 . -551) 51955) ((-308 . -1012) T) ((-308 . -23) T) ((-308 . -21) T) ((-308 . -969) T) ((-308 . -1024) T) ((-308 . -1059) T) ((-308 . -662) T) ((-308 . -960) T) ((-308 . -312) T) ((-308 . -1132) T) ((-308 . -831) T) ((-308 . -494) T) ((-308 . -146) T) ((-308 . -653) 51907) ((-308 . -581) 51859) ((-308 . -38) 51824) ((-308 . -390) T) ((-308 . -258) T) ((-308 . -82) 51755) ((-308 . -962) 51707) ((-308 . -967) 51659) ((-308 . -246) T) ((-308 . -201) T) ((-308 . -343) 51613) ((-308 . -118) 51567) ((-308 . -949) 51551) ((-308 . -1185) 51535) ((-308 . -1196) 51519) ((-304 . -280) 51503) ((-304 . -190) 51482) ((-304 . -186) 51455) ((-304 . -189) 51434) ((-304 . -318) 51413) ((-304 . -1064) 51392) ((-304 . -299) 51371) ((-304 . -120) 51350) ((-304 . -554) 51287) ((-304 . -589) 51239) ((-304 . -587) 51176) ((-304 . -104) T) ((-304 . -25) T) ((-304 . -72) T) ((-304 . -13) T) ((-304 . -1127) T) ((-304 . -551) 51158) ((-304 . -1012) T) ((-304 . -23) T) ((-304 . -21) T) ((-304 . -969) T) ((-304 . -1024) T) ((-304 . -1059) T) ((-304 . -662) T) ((-304 . -960) T) ((-304 . -312) T) ((-304 . -1132) T) ((-304 . -831) T) ((-304 . -494) T) ((-304 . -146) T) ((-304 . -653) 51110) ((-304 . -581) 51062) ((-304 . -38) 51027) ((-304 . -390) T) ((-304 . -258) T) ((-304 . -82) 50958) ((-304 . -962) 50910) ((-304 . -967) 50862) ((-304 . -246) T) ((-304 . -201) T) ((-304 . -343) 50816) ((-304 . -118) 50770) ((-304 . -949) 50754) ((-304 . -1185) 50738) ((-304 . -1196) 50722) ((-303 . -280) 50706) ((-303 . -190) 50685) ((-303 . -186) 50658) ((-303 . -189) 50637) ((-303 . -318) 50616) ((-303 . -1064) 50595) ((-303 . -299) 50574) ((-303 . -120) 50553) ((-303 . -554) 50490) ((-303 . -589) 50442) ((-303 . -587) 50379) ((-303 . -104) T) ((-303 . -25) T) ((-303 . -72) T) ((-303 . -13) T) ((-303 . -1127) T) ((-303 . -551) 50361) ((-303 . -1012) T) ((-303 . -23) T) ((-303 . -21) T) ((-303 . -969) T) ((-303 . -1024) T) ((-303 . -1059) T) ((-303 . -662) T) ((-303 . -960) T) ((-303 . -312) T) ((-303 . -1132) T) ((-303 . -831) T) ((-303 . -494) T) ((-303 . -146) T) ((-303 . -653) 50313) ((-303 . -581) 50265) ((-303 . -38) 50230) ((-303 . -390) T) ((-303 . -258) T) ((-303 . -82) 50161) ((-303 . -962) 50113) ((-303 . -967) 50065) ((-303 . -246) T) ((-303 . -201) T) ((-303 . -343) 50019) ((-303 . -118) 49973) ((-303 . -949) 49957) ((-303 . -1185) 49941) ((-303 . -1196) 49925) ((-302 . -280) 49909) ((-302 . -190) 49888) ((-302 . -186) 49861) ((-302 . -189) 49840) ((-302 . -318) 49819) ((-302 . -1064) 49798) ((-302 . -299) 49777) ((-302 . -120) 49756) ((-302 . -554) 49693) ((-302 . -589) 49645) ((-302 . -587) 49582) ((-302 . -104) T) ((-302 . -25) T) ((-302 . -72) T) ((-302 . -13) T) ((-302 . -1127) T) ((-302 . -551) 49564) ((-302 . -1012) T) ((-302 . -23) T) ((-302 . -21) T) ((-302 . -969) T) ((-302 . -1024) T) ((-302 . -1059) T) ((-302 . -662) T) ((-302 . -960) T) ((-302 . -312) T) ((-302 . -1132) T) ((-302 . -831) T) ((-302 . -494) T) ((-302 . -146) T) ((-302 . -653) 49516) ((-302 . -581) 49468) ((-302 . -38) 49433) ((-302 . -390) T) ((-302 . -258) T) ((-302 . -82) 49364) ((-302 . -962) 49316) ((-302 . -967) 49268) ((-302 . -246) T) ((-302 . -201) T) ((-302 . -343) 49222) ((-302 . -118) 49176) ((-302 . -949) 49160) ((-302 . -1185) 49144) ((-302 . -1196) 49128) ((-301 . -280) 49105) ((-301 . -190) T) ((-301 . -186) 49092) ((-301 . -189) T) ((-301 . -318) T) ((-301 . -1064) T) ((-301 . -299) T) ((-301 . -120) 49074) ((-301 . -554) 49004) ((-301 . -589) 48949) ((-301 . -587) 48879) ((-301 . -104) T) ((-301 . -25) T) ((-301 . -72) T) ((-301 . -13) T) ((-301 . -1127) T) ((-301 . -551) 48861) ((-301 . -1012) T) ((-301 . -23) T) ((-301 . -21) T) ((-301 . -969) T) ((-301 . -1024) T) ((-301 . -1059) T) ((-301 . -662) T) ((-301 . -960) T) ((-301 . -312) T) ((-301 . -1132) T) ((-301 . -831) T) ((-301 . -494) T) ((-301 . -146) T) ((-301 . -653) 48806) ((-301 . -581) 48751) ((-301 . -38) 48716) ((-301 . -390) T) ((-301 . -258) T) ((-301 . -82) 48633) ((-301 . -962) 48578) ((-301 . -967) 48523) ((-301 . -246) T) ((-301 . -201) T) ((-301 . -343) T) ((-301 . -118) T) ((-301 . -949) 48500) ((-301 . -1185) 48477) ((-301 . -1196) 48454) ((-295 . -280) 48438) ((-295 . -190) 48417) ((-295 . -186) 48390) ((-295 . -189) 48369) ((-295 . -318) 48348) ((-295 . -1064) 48327) ((-295 . -299) 48306) ((-295 . -120) 48285) ((-295 . -554) 48222) ((-295 . -589) 48174) ((-295 . -587) 48111) ((-295 . -104) T) ((-295 . -25) T) ((-295 . -72) T) ((-295 . -13) T) ((-295 . -1127) T) ((-295 . -551) 48093) ((-295 . -1012) T) ((-295 . -23) T) ((-295 . -21) T) ((-295 . -969) T) ((-295 . -1024) T) ((-295 . -1059) T) ((-295 . -662) T) ((-295 . -960) T) ((-295 . -312) T) ((-295 . -1132) T) ((-295 . -831) T) ((-295 . -494) T) ((-295 . -146) T) ((-295 . -653) 48045) ((-295 . -581) 47997) ((-295 . -38) 47962) ((-295 . -390) T) ((-295 . -258) T) ((-295 . -82) 47893) ((-295 . -962) 47845) ((-295 . -967) 47797) ((-295 . -246) T) ((-295 . -201) T) ((-295 . -343) 47751) ((-295 . -118) 47705) ((-295 . -949) 47689) ((-295 . -1185) 47673) ((-295 . -1196) 47657) ((-294 . -280) 47641) ((-294 . -190) 47620) ((-294 . -186) 47593) ((-294 . -189) 47572) ((-294 . -318) 47551) ((-294 . -1064) 47530) ((-294 . -299) 47509) ((-294 . -120) 47488) ((-294 . -554) 47425) ((-294 . -589) 47377) ((-294 . -587) 47314) ((-294 . -104) T) ((-294 . -25) T) ((-294 . -72) T) ((-294 . -13) T) ((-294 . -1127) T) ((-294 . -551) 47296) ((-294 . -1012) T) ((-294 . -23) T) ((-294 . -21) T) ((-294 . -969) T) ((-294 . -1024) T) ((-294 . -1059) T) ((-294 . -662) T) ((-294 . -960) T) ((-294 . -312) T) ((-294 . -1132) T) ((-294 . -831) T) ((-294 . -494) T) ((-294 . -146) T) ((-294 . -653) 47248) ((-294 . -581) 47200) ((-294 . -38) 47165) ((-294 . -390) T) ((-294 . -258) T) ((-294 . -82) 47096) ((-294 . -962) 47048) ((-294 . -967) 47000) ((-294 . -246) T) ((-294 . -201) T) ((-294 . -343) 46954) ((-294 . -118) 46908) ((-294 . -949) 46892) ((-294 . -1185) 46876) ((-294 . -1196) 46860) ((-293 . -280) 46837) ((-293 . -190) T) ((-293 . -186) 46824) ((-293 . -189) T) ((-293 . -318) T) ((-293 . -1064) T) ((-293 . -299) T) ((-293 . -120) 46806) ((-293 . -554) 46736) ((-293 . -589) 46681) ((-293 . -587) 46611) ((-293 . -104) T) ((-293 . -25) T) ((-293 . -72) T) ((-293 . -13) T) ((-293 . -1127) T) ((-293 . -551) 46593) ((-293 . -1012) T) ((-293 . -23) T) ((-293 . -21) T) ((-293 . -969) T) ((-293 . -1024) T) ((-293 . -1059) T) ((-293 . -662) T) ((-293 . -960) T) ((-293 . -312) T) ((-293 . -1132) T) ((-293 . -831) T) ((-293 . -494) T) ((-293 . -146) T) ((-293 . -653) 46538) ((-293 . -581) 46483) ((-293 . -38) 46448) ((-293 . -390) T) ((-293 . -258) T) ((-293 . -82) 46365) ((-293 . -962) 46310) ((-293 . -967) 46255) ((-293 . -246) T) ((-293 . -201) T) ((-293 . -343) T) ((-293 . -118) T) ((-293 . -949) 46232) ((-293 . -1185) 46209) ((-293 . -1196) 46186) ((-289 . -280) 46163) ((-289 . -190) T) ((-289 . -186) 46150) ((-289 . -189) T) ((-289 . -318) T) ((-289 . -1064) T) ((-289 . -299) T) ((-289 . -120) 46132) ((-289 . -554) 46062) ((-289 . -589) 46007) ((-289 . -587) 45937) ((-289 . -104) T) ((-289 . -25) T) ((-289 . -72) T) ((-289 . -13) T) ((-289 . -1127) T) ((-289 . -551) 45919) ((-289 . -1012) T) ((-289 . -23) T) ((-289 . -21) T) ((-289 . -969) T) ((-289 . -1024) T) ((-289 . -1059) T) ((-289 . -662) T) ((-289 . -960) T) ((-289 . -312) T) ((-289 . -1132) T) ((-289 . -831) T) ((-289 . -494) T) ((-289 . -146) T) ((-289 . -653) 45864) ((-289 . -581) 45809) ((-289 . -38) 45774) ((-289 . -390) T) ((-289 . -258) T) ((-289 . -82) 45691) ((-289 . -962) 45636) ((-289 . -967) 45581) ((-289 . -246) T) ((-289 . -201) T) ((-289 . -343) T) ((-289 . -118) T) ((-289 . -949) 45558) ((-289 . -1185) 45535) ((-289 . -1196) 45512) ((-283 . -286) 45481) ((-283 . -104) T) ((-283 . -25) T) ((-283 . -72) T) ((-283 . -13) T) ((-283 . -1127) T) ((-283 . -551) 45463) ((-283 . -1012) T) ((-283 . -23) T) ((-283 . -587) 45445) ((-283 . -21) T) ((-282 . -1012) T) ((-282 . -551) 45427) ((-282 . -1127) T) ((-282 . -13) T) ((-282 . -72) T) ((-281 . -755) T) ((-281 . -551) 45409) ((-281 . -1012) T) ((-281 . -72) T) ((-281 . -13) T) ((-281 . -1127) T) ((-281 . -758) T) ((-278 . -19) 45393) ((-278 . -592) 45377) ((-278 . -243) 45354) ((-278 . -241) 45306) ((-278 . -537) 45283) ((-278 . -552) 45244) ((-278 . -427) 45228) ((-278 . -1012) 45181) ((-278 . -454) 45114) ((-278 . -260) 45052) ((-278 . -551) 44967) ((-278 . -72) 44901) ((-278 . -1127) T) ((-278 . -13) T) ((-278 . -34) T) ((-278 . -124) 44885) ((-278 . -755) 44864) ((-278 . -758) 44843) ((-278 . -322) 44827) ((-278 . -237) 44811) ((-275 . -274) 44788) ((-275 . -554) 44772) ((-275 . -949) 44756) ((-275 . -23) T) ((-275 . -1012) T) ((-275 . -551) 44738) ((-275 . -1127) T) ((-275 . -13) T) ((-275 . -72) T) ((-275 . -25) T) ((-275 . -104) T) ((-273 . -21) T) ((-273 . -587) 44720) ((-273 . -23) T) ((-273 . -1012) T) ((-273 . -551) 44702) ((-273 . -1127) T) ((-273 . -13) T) ((-273 . -72) T) ((-273 . -25) T) ((-273 . -104) T) ((-273 . -653) 44684) ((-273 . -581) 44666) ((-273 . -589) 44648) ((-273 . -967) 44630) ((-273 . -962) 44612) ((-273 . -82) 44587) ((-273 . -274) 44564) ((-273 . -554) 44548) ((-273 . -949) 44532) ((-273 . -755) 44511) ((-273 . -758) 44490) ((-270 . -1160) 44474) ((-270 . -190) 44426) ((-270 . -186) 44372) ((-270 . -189) 44324) ((-270 . -241) 44282) ((-270 . -808) 44188) ((-270 . -805) 44092) ((-270 . -810) 43998) ((-270 . -885) 43961) ((-270 . -38) 43808) ((-270 . -82) 43628) ((-270 . -962) 43469) ((-270 . -967) 43310) ((-270 . -587) 43195) ((-270 . -589) 43095) ((-270 . -581) 42942) ((-270 . -653) 42789) ((-270 . -554) 42621) ((-270 . -118) 42600) ((-270 . -120) 42579) ((-270 . -47) 42549) ((-270 . -1156) 42519) ((-270 . -35) 42485) ((-270 . -66) 42451) ((-270 . -239) 42417) ((-270 . -431) 42383) ((-270 . -1116) 42349) ((-270 . -1113) 42315) ((-270 . -914) 42281) ((-270 . -201) 42260) ((-270 . -246) 42214) ((-270 . -104) T) ((-270 . -25) T) ((-270 . -72) T) ((-270 . -13) T) ((-270 . -1127) T) ((-270 . -551) 42196) ((-270 . -1012) T) ((-270 . -23) T) ((-270 . -21) T) ((-270 . -960) T) ((-270 . -662) T) ((-270 . -1059) T) ((-270 . -1024) T) ((-270 . -969) T) ((-270 . -258) 42175) ((-270 . -390) 42154) ((-270 . -146) 42088) ((-270 . -494) 42042) ((-270 . -831) 42021) ((-270 . -1132) 42000) ((-270 . -312) 41979) ((-270 . -715) T) ((-270 . -755) T) ((-270 . -758) T) ((-270 . -717) T) ((-265 . -362) 41963) ((-265 . -554) 41538) ((-265 . -949) 41209) ((-265 . -552) 41070) ((-265 . -793) 41054) ((-265 . -810) 41021) ((-265 . -805) 40986) ((-265 . -808) 40953) ((-265 . -411) 40932) ((-265 . -353) 40916) ((-265 . -795) 40841) ((-265 . -341) 40825) ((-265 . -579) 40733) ((-265 . -589) 40471) ((-265 . -327) 40441) ((-265 . -201) 40420) ((-265 . -82) 40309) ((-265 . -962) 40219) ((-265 . -967) 40129) ((-265 . -246) 40108) ((-265 . -653) 40018) ((-265 . -581) 39928) ((-265 . -587) 39595) ((-265 . -38) 39505) ((-265 . -258) 39484) ((-265 . -390) 39463) ((-265 . -146) 39442) ((-265 . -494) 39421) ((-265 . -831) 39400) ((-265 . -1132) 39379) ((-265 . -312) 39358) ((-265 . -260) 39345) ((-265 . -454) 39311) ((-265 . -254) T) ((-265 . -120) 39290) ((-265 . -118) 39269) ((-265 . -960) 39163) ((-265 . -662) 39016) ((-265 . -1059) 38910) ((-265 . -1024) 38763) ((-265 . -969) 38657) ((-265 . -104) 38532) ((-265 . -25) 38388) ((-265 . -72) T) ((-265 . -13) T) ((-265 . -1127) T) ((-265 . -551) 38370) ((-265 . -1012) T) ((-265 . -23) 38226) ((-265 . -21) 38101) ((-265 . -29) 38071) ((-265 . -914) 38050) ((-265 . -27) 38029) ((-265 . -1113) 38008) ((-265 . -1116) 37987) ((-265 . -431) 37966) ((-265 . -239) 37945) ((-265 . -66) 37924) ((-265 . -35) 37903) ((-265 . -133) 37882) ((-265 . -116) 37861) ((-265 . -568) 37840) ((-265 . -870) 37819) ((-265 . -1051) 37798) ((-264 . -903) 37759) ((-264 . -1064) NIL) ((-264 . -949) 37689) ((-264 . -554) 37572) ((-264 . -552) NIL) ((-264 . -932) NIL) ((-264 . -820) NIL) ((-264 . -793) 37533) ((-264 . -754) NIL) ((-264 . -720) NIL) ((-264 . -717) NIL) ((-264 . -758) NIL) ((-264 . -755) NIL) ((-264 . -715) NIL) ((-264 . -713) NIL) ((-264 . -739) NIL) ((-264 . -795) NIL) ((-264 . -341) 37494) ((-264 . -579) 37455) ((-264 . -589) 37384) ((-264 . -327) 37345) ((-264 . -241) 37211) ((-264 . -260) 37107) ((-264 . -454) 36858) ((-264 . -288) 36819) ((-264 . -201) T) ((-264 . -82) 36704) ((-264 . -962) 36633) ((-264 . -967) 36562) ((-264 . -246) T) ((-264 . -653) 36491) ((-264 . -581) 36420) ((-264 . -587) 36334) ((-264 . -38) 36263) ((-264 . -258) T) ((-264 . -390) T) ((-264 . -146) T) ((-264 . -494) T) ((-264 . -831) T) ((-264 . -1132) T) ((-264 . -312) T) ((-264 . -190) NIL) ((-264 . -186) NIL) ((-264 . -189) NIL) ((-264 . -225) 36224) ((-264 . -805) NIL) ((-264 . -810) NIL) ((-264 . -808) NIL) ((-264 . -184) 36185) ((-264 . -120) 36141) ((-264 . -118) 36097) ((-264 . -104) T) ((-264 . -25) T) ((-264 . -72) T) ((-264 . -13) T) ((-264 . -1127) T) ((-264 . -551) 36079) ((-264 . -1012) T) ((-264 . -23) T) ((-264 . -21) T) ((-264 . -960) T) ((-264 . -662) T) ((-264 . -1059) T) ((-264 . -1024) T) ((-264 . -969) T) ((-263 . -994) T) ((-263 . -428) 36060) ((-263 . -551) 36026) ((-263 . -554) 36007) ((-263 . -1012) T) ((-263 . -1127) T) ((-263 . -13) T) ((-263 . -72) T) ((-263 . -64) T) ((-262 . -1012) T) ((-262 . -551) 35989) ((-262 . -1127) T) ((-262 . -13) T) ((-262 . -72) T) ((-251 . -1105) 35968) ((-251 . -183) 35916) ((-251 . -76) 35864) ((-251 . -260) 35662) ((-251 . -454) 35414) ((-251 . -427) 35349) ((-251 . -124) 35297) ((-251 . -552) NIL) ((-251 . -193) 35245) ((-251 . -548) 35224) ((-251 . -243) 35203) ((-251 . -1127) T) ((-251 . -13) T) ((-251 . -241) 35182) ((-251 . -1012) T) ((-251 . -551) 35164) ((-251 . -72) T) ((-251 . -34) T) ((-251 . -537) 35143) ((-249 . -1127) T) ((-249 . -13) T) ((-249 . -454) 35092) ((-249 . -1012) 34878) ((-249 . -551) 34624) ((-249 . -72) 34410) ((-249 . -25) 34278) ((-249 . -21) 34165) ((-249 . -587) 33912) ((-249 . -23) 33799) ((-249 . -104) 33686) ((-249 . -1024) 33571) ((-249 . -662) 33477) ((-249 . -411) 33456) ((-249 . -960) 33402) ((-249 . -1059) 33348) ((-249 . -969) 33294) ((-249 . -589) 33162) ((-249 . -554) 33097) ((-249 . -82) 33017) ((-249 . -962) 32942) ((-249 . -967) 32867) ((-249 . -653) 32812) ((-249 . -581) 32757) ((-249 . -808) 32716) ((-249 . -805) 32673) ((-249 . -810) 32632) ((-249 . -1185) 32602) ((-247 . -551) 32584) ((-244 . -258) T) ((-244 . -390) T) ((-244 . -38) 32571) ((-244 . -554) 32543) ((-244 . -969) T) ((-244 . -1024) T) ((-244 . -1059) T) ((-244 . -662) T) ((-244 . -960) T) ((-244 . -82) 32528) ((-244 . -962) 32515) ((-244 . -967) 32502) ((-244 . -21) T) ((-244 . -587) 32474) ((-244 . -23) T) ((-244 . -1012) T) ((-244 . -551) 32456) ((-244 . -1127) T) ((-244 . -13) T) ((-244 . -72) T) ((-244 . -25) T) ((-244 . -104) T) ((-244 . -589) 32443) ((-244 . -581) 32430) ((-244 . -653) 32417) ((-244 . -146) T) ((-244 . -246) T) ((-244 . -494) T) ((-244 . -831) T) ((-244 . -241) 32396) ((-235 . -551) 32378) ((-234 . -551) 32360) ((-229 . -755) T) ((-229 . -551) 32342) ((-229 . -1012) T) ((-229 . -72) T) ((-229 . -13) T) ((-229 . -1127) T) ((-229 . -758) T) ((-226 . -213) 32304) ((-226 . -554) 32064) ((-226 . -949) 31910) ((-226 . -552) 31658) ((-226 . -277) 31630) ((-226 . -353) 31614) ((-226 . -38) 31466) ((-226 . -82) 31291) ((-226 . -962) 31137) ((-226 . -967) 30983) ((-226 . -587) 30893) ((-226 . -589) 30782) ((-226 . -581) 30634) ((-226 . -653) 30486) ((-226 . -118) 30465) ((-226 . -120) 30444) ((-226 . -146) 30358) ((-226 . -494) 30292) ((-226 . -246) 30226) ((-226 . -47) 30198) ((-226 . -327) 30182) ((-226 . -579) 30130) ((-226 . -390) 30084) ((-226 . -454) 29975) ((-226 . -808) 29921) ((-226 . -805) 29830) ((-226 . -810) 29743) ((-226 . -795) 29602) ((-226 . -820) 29581) ((-226 . -1132) 29560) ((-226 . -860) 29527) ((-226 . -260) 29514) ((-226 . -190) 29493) ((-226 . -104) T) ((-226 . -25) T) ((-226 . -72) T) ((-226 . -551) 29475) ((-226 . -1012) T) ((-226 . -23) T) ((-226 . -21) T) ((-226 . -969) T) ((-226 . -1024) T) ((-226 . -1059) T) ((-226 . -662) T) ((-226 . -960) T) ((-226 . -186) 29423) ((-226 . -13) T) ((-226 . -1127) T) ((-226 . -189) 29377) ((-226 . -225) 29361) ((-226 . -184) 29345) ((-221 . -1012) T) ((-221 . -551) 29327) ((-221 . -1127) T) ((-221 . -13) T) ((-221 . -72) T) ((-211 . -196) 29306) ((-211 . -1185) 29276) ((-211 . -720) 29255) ((-211 . -717) 29234) ((-211 . -758) 29188) ((-211 . -755) 29142) ((-211 . -715) 29121) ((-211 . -716) 29100) ((-211 . -653) 29045) ((-211 . -581) 28970) ((-211 . -243) 28947) ((-211 . -241) 28924) ((-211 . -427) 28908) ((-211 . -454) 28841) ((-211 . -260) 28779) ((-211 . -34) T) ((-211 . -537) 28756) ((-211 . -949) 28585) ((-211 . -554) 28389) ((-211 . -353) 28358) ((-211 . -579) 28266) ((-211 . -589) 28092) ((-211 . -327) 28062) ((-211 . -318) 28041) ((-211 . -190) 27994) ((-211 . -587) 27847) ((-211 . -969) 27826) ((-211 . -1024) 27805) ((-211 . -1059) 27784) ((-211 . -662) 27763) ((-211 . -960) 27742) ((-211 . -186) 27638) ((-211 . -189) 27540) ((-211 . -225) 27510) ((-211 . -805) 27382) ((-211 . -810) 27256) ((-211 . -808) 27189) ((-211 . -184) 27159) ((-211 . -551) 27120) ((-211 . -967) 27045) ((-211 . -962) 26950) ((-211 . -82) 26870) ((-211 . -104) T) ((-211 . -25) T) ((-211 . -72) T) ((-211 . -13) T) ((-211 . -1127) T) ((-211 . -1012) T) ((-211 . -23) T) ((-211 . -21) T) ((-210 . -196) 26849) ((-210 . -1185) 26819) ((-210 . -720) 26798) ((-210 . -717) 26777) ((-210 . -758) 26731) ((-210 . -755) 26685) ((-210 . -715) 26664) ((-210 . -716) 26643) ((-210 . -653) 26588) ((-210 . -581) 26513) ((-210 . -243) 26490) ((-210 . -241) 26467) ((-210 . -427) 26451) ((-210 . -454) 26384) ((-210 . -260) 26322) ((-210 . -34) T) ((-210 . -537) 26299) ((-210 . -949) 26128) ((-210 . -554) 25932) ((-210 . -353) 25901) ((-210 . -579) 25809) ((-210 . -589) 25622) ((-210 . -327) 25592) ((-210 . -318) 25571) ((-210 . -190) 25524) ((-210 . -587) 25364) ((-210 . -969) 25343) ((-210 . -1024) 25322) ((-210 . -1059) 25301) ((-210 . -662) 25280) ((-210 . -960) 25259) ((-210 . -186) 25155) ((-210 . -189) 25057) ((-210 . -225) 25027) ((-210 . -805) 24899) ((-210 . -810) 24773) ((-210 . -808) 24706) ((-210 . -184) 24676) ((-210 . -551) 24637) ((-210 . -967) 24562) ((-210 . -962) 24467) ((-210 . -82) 24387) ((-210 . -104) T) ((-210 . -25) T) ((-210 . -72) T) ((-210 . -13) T) ((-210 . -1127) T) ((-210 . -1012) T) ((-210 . -23) T) ((-210 . -21) T) ((-209 . -1012) T) ((-209 . -551) 24369) ((-209 . -1127) T) ((-209 . -13) T) ((-209 . -72) T) ((-209 . -241) 24343) ((-208 . -160) T) ((-208 . -1012) T) ((-208 . -551) 24310) ((-208 . -1127) T) ((-208 . -13) T) ((-208 . -72) T) ((-208 . -746) 24292) ((-207 . -1012) T) ((-207 . -551) 24274) ((-207 . -1127) T) ((-207 . -13) T) ((-207 . -72) T) ((-206 . -860) 24219) ((-206 . -554) 24011) ((-206 . -949) 23889) ((-206 . -1132) 23868) ((-206 . -820) 23847) ((-206 . -795) NIL) ((-206 . -810) 23824) ((-206 . -805) 23799) ((-206 . -808) 23776) ((-206 . -454) 23714) ((-206 . -390) 23668) ((-206 . -579) 23616) ((-206 . -589) 23505) ((-206 . -327) 23489) ((-206 . -47) 23446) ((-206 . -38) 23298) ((-206 . -581) 23150) ((-206 . -653) 23002) ((-206 . -246) 22936) ((-206 . -494) 22870) ((-206 . -82) 22695) ((-206 . -962) 22541) ((-206 . -967) 22387) ((-206 . -146) 22301) ((-206 . -120) 22280) ((-206 . -118) 22259) ((-206 . -587) 22169) ((-206 . -104) T) ((-206 . -25) T) ((-206 . -72) T) ((-206 . -13) T) ((-206 . -1127) T) ((-206 . -551) 22151) ((-206 . -1012) T) ((-206 . -23) T) ((-206 . -21) T) ((-206 . -960) T) ((-206 . -662) T) ((-206 . -1059) T) ((-206 . -1024) T) ((-206 . -969) T) ((-206 . -353) 22135) ((-206 . -277) 22092) ((-206 . -260) 22079) ((-206 . -552) 21940) ((-203 . -607) 21924) ((-203 . -1166) 21908) ((-203 . -922) 21892) ((-203 . -1062) 21876) ((-203 . -755) 21855) ((-203 . -758) 21834) ((-203 . -322) 21818) ((-203 . -592) 21802) ((-203 . -243) 21779) ((-203 . -241) 21731) ((-203 . -537) 21708) ((-203 . -552) 21669) ((-203 . -427) 21653) ((-203 . -1012) 21606) ((-203 . -454) 21539) ((-203 . -260) 21477) ((-203 . -551) 21372) ((-203 . -72) 21306) ((-203 . -1127) T) ((-203 . -13) T) ((-203 . -34) T) ((-203 . -124) 21290) ((-203 . -237) 21274) ((-203 . -428) 21251) ((-203 . -554) 21228) ((-197 . -196) 21207) ((-197 . -1185) 21177) ((-197 . -720) 21156) ((-197 . -717) 21135) ((-197 . -758) 21089) ((-197 . -755) 21043) ((-197 . -715) 21022) ((-197 . -716) 21001) ((-197 . -653) 20946) ((-197 . -581) 20871) ((-197 . -243) 20848) ((-197 . -241) 20825) ((-197 . -427) 20809) ((-197 . -454) 20742) ((-197 . -260) 20680) ((-197 . -34) T) ((-197 . -537) 20657) ((-197 . -949) 20486) ((-197 . -554) 20290) ((-197 . -353) 20259) ((-197 . -579) 20167) ((-197 . -589) 20006) ((-197 . -327) 19976) ((-197 . -318) 19955) ((-197 . -190) 19908) ((-197 . -587) 19696) ((-197 . -969) 19675) ((-197 . -1024) 19654) ((-197 . -1059) 19633) ((-197 . -662) 19612) ((-197 . -960) 19591) ((-197 . -186) 19487) ((-197 . -189) 19389) ((-197 . -225) 19359) ((-197 . -805) 19231) ((-197 . -810) 19105) ((-197 . -808) 19038) ((-197 . -184) 19008) ((-197 . -551) 18705) ((-197 . -967) 18630) ((-197 . -962) 18535) ((-197 . -82) 18455) ((-197 . -104) 18330) ((-197 . -25) 18167) ((-197 . -72) 17904) ((-197 . -13) T) ((-197 . -1127) T) ((-197 . -1012) 17660) ((-197 . -23) 17516) ((-197 . -21) 17431) ((-181 . -626) 17389) ((-181 . -427) 17373) ((-181 . -1012) 17351) ((-181 . -454) 17284) ((-181 . -260) 17222) ((-181 . -551) 17157) ((-181 . -72) 17111) ((-181 . -1127) T) ((-181 . -13) T) ((-181 . -34) T) ((-181 . -57) 17069) ((-179 . -345) T) ((-179 . -120) T) ((-179 . -554) 17019) ((-179 . -589) 16984) ((-179 . -587) 16934) ((-179 . -104) T) ((-179 . -25) T) ((-179 . -72) T) ((-179 . -13) T) ((-179 . -1127) T) ((-179 . -551) 16916) ((-179 . -1012) T) ((-179 . -23) T) ((-179 . -21) T) ((-179 . -969) T) ((-179 . -1024) T) ((-179 . -1059) T) ((-179 . -662) T) ((-179 . -960) T) ((-179 . -552) 16846) ((-179 . -312) T) ((-179 . -1132) T) ((-179 . -831) T) ((-179 . -494) T) ((-179 . -146) T) ((-179 . -653) 16811) ((-179 . -581) 16776) ((-179 . -38) 16741) ((-179 . -390) T) ((-179 . -258) T) ((-179 . -82) 16690) ((-179 . -962) 16655) ((-179 . -967) 16620) ((-179 . -246) T) ((-179 . -201) T) ((-179 . -754) T) ((-179 . -720) T) ((-179 . -717) T) ((-179 . -758) T) ((-179 . -755) T) ((-179 . -715) T) ((-179 . -713) T) ((-179 . -795) 16602) ((-179 . -914) T) ((-179 . -932) T) ((-179 . -949) 16562) ((-179 . -972) T) ((-179 . -190) T) ((-179 . -186) 16549) ((-179 . -189) T) ((-179 . -1113) T) ((-179 . -1116) T) ((-179 . -431) T) ((-179 . -239) T) ((-179 . -66) T) ((-179 . -35) T) ((-177 . -559) 16526) ((-177 . -554) 16488) ((-177 . -589) 16455) ((-177 . -587) 16407) ((-177 . -969) T) ((-177 . -1024) T) ((-177 . -1059) T) ((-177 . -662) T) ((-177 . -960) T) ((-177 . -21) T) ((-177 . -23) T) ((-177 . -1012) T) ((-177 . -551) 16389) ((-177 . -1127) T) ((-177 . -13) T) ((-177 . -72) T) ((-177 . -25) T) ((-177 . -104) T) ((-177 . -949) 16366) ((-176 . -214) 16350) ((-176 . -1033) 16334) ((-176 . -76) 16318) ((-176 . -34) T) ((-176 . -13) T) ((-176 . -1127) T) ((-176 . -72) 16272) ((-176 . -551) 16207) ((-176 . -260) 16145) ((-176 . -454) 16078) ((-176 . -1012) 16056) ((-176 . -427) 16040) ((-176 . -907) 16024) ((-172 . -994) T) ((-172 . -428) 16005) ((-172 . -551) 15971) ((-172 . -554) 15952) ((-172 . -1012) T) ((-172 . -1127) T) ((-172 . -13) T) ((-172 . -72) T) ((-172 . -64) T) ((-171 . -903) 15934) ((-171 . -1064) T) ((-171 . -554) 15884) ((-171 . -949) 15844) ((-171 . -552) 15774) ((-171 . -932) T) ((-171 . -820) NIL) ((-171 . -793) 15756) ((-171 . -754) T) ((-171 . -720) T) ((-171 . -717) T) ((-171 . -758) T) ((-171 . -755) T) ((-171 . -715) T) ((-171 . -713) T) ((-171 . -739) T) ((-171 . -795) 15738) ((-171 . -341) 15720) ((-171 . -579) 15702) ((-171 . -327) 15684) ((-171 . -241) NIL) ((-171 . -260) NIL) ((-171 . -454) NIL) ((-171 . -288) 15666) ((-171 . -201) T) ((-171 . -82) 15593) ((-171 . -962) 15543) ((-171 . -967) 15493) ((-171 . -246) T) ((-171 . -653) 15443) ((-171 . -581) 15393) ((-171 . -589) 15343) ((-171 . -587) 15293) ((-171 . -38) 15243) ((-171 . -258) T) ((-171 . -390) T) ((-171 . -146) T) ((-171 . -494) T) ((-171 . -831) T) ((-171 . -1132) T) ((-171 . -312) T) ((-171 . -190) T) ((-171 . -186) 15230) ((-171 . -189) T) ((-171 . -225) 15212) ((-171 . -805) NIL) ((-171 . -810) NIL) ((-171 . -808) NIL) ((-171 . -184) 15194) ((-171 . -120) T) ((-171 . -118) NIL) ((-171 . -104) T) ((-171 . -25) T) ((-171 . -72) T) ((-171 . -13) T) ((-171 . -1127) T) ((-171 . -551) 15136) ((-171 . -1012) T) ((-171 . -23) T) ((-171 . -21) T) ((-171 . -960) T) ((-171 . -662) T) ((-171 . -1059) T) ((-171 . -1024) T) ((-171 . -969) T) ((-168 . -751) T) ((-168 . -758) T) ((-168 . -755) T) ((-168 . -1012) T) ((-168 . -551) 15118) ((-168 . -1127) T) ((-168 . -13) T) ((-168 . -72) T) ((-168 . -318) T) ((-167 . -1012) T) ((-167 . -551) 15100) ((-167 . -1127) T) ((-167 . -13) T) ((-167 . -72) T) ((-167 . -554) 15077) ((-166 . -1012) T) ((-166 . -551) 15059) ((-166 . -1127) T) ((-166 . -13) T) ((-166 . -72) T) ((-161 . -1012) T) ((-161 . -551) 15041) ((-161 . -1127) T) ((-161 . -13) T) ((-161 . -72) T) ((-158 . -1012) T) ((-158 . -551) 15023) ((-158 . -1127) T) ((-158 . -13) T) ((-158 . -72) T) ((-157 . -160) T) ((-157 . -1012) T) ((-157 . -551) 15005) ((-157 . -1127) T) ((-157 . -13) T) ((-157 . -72) T) ((-157 . -746) 14987) ((-154 . -994) T) ((-154 . -428) 14968) ((-154 . -551) 14934) ((-154 . -554) 14915) ((-154 . -1012) T) ((-154 . -1127) T) ((-154 . -13) T) ((-154 . -72) T) ((-154 . -64) T) ((-149 . -551) 14897) ((-148 . -38) 14829) ((-148 . -554) 14746) ((-148 . -589) 14678) ((-148 . -587) 14595) ((-148 . -969) T) ((-148 . -1024) T) ((-148 . -1059) T) ((-148 . -662) T) ((-148 . -960) T) ((-148 . -82) 14494) ((-148 . -962) 14426) ((-148 . -967) 14358) ((-148 . -21) T) ((-148 . -23) T) ((-148 . -1012) T) ((-148 . -551) 14340) ((-148 . -1127) T) ((-148 . -13) T) ((-148 . -72) T) ((-148 . -25) T) ((-148 . -104) T) ((-148 . -581) 14272) ((-148 . -653) 14204) ((-148 . -312) T) ((-148 . -1132) T) ((-148 . -831) T) ((-148 . -494) T) ((-148 . -146) T) ((-148 . -390) T) ((-148 . -258) T) ((-148 . -246) T) ((-148 . -201) T) ((-145 . -1012) T) ((-145 . -551) 14186) ((-145 . -1127) T) ((-145 . -13) T) ((-145 . -72) T) ((-142 . -139) 14170) ((-142 . -35) 14148) ((-142 . -66) 14126) ((-142 . -239) 14104) ((-142 . -431) 14082) ((-142 . -1116) 14060) ((-142 . -1113) 14038) ((-142 . -914) 13990) ((-142 . -820) 13943) ((-142 . -552) 13711) ((-142 . -793) 13695) ((-142 . -318) 13649) ((-142 . -299) 13628) ((-142 . -1064) 13607) ((-142 . -343) 13586) ((-142 . -351) 13557) ((-142 . -38) 13391) ((-142 . -82) 13283) ((-142 . -962) 13196) ((-142 . -967) 13109) ((-142 . -581) 12943) ((-142 . -653) 12777) ((-142 . -320) 12748) ((-142 . -660) 12719) ((-142 . -949) 12617) ((-142 . -554) 12402) ((-142 . -353) 12386) ((-142 . -795) 12311) ((-142 . -341) 12295) ((-142 . -579) 12243) ((-142 . -589) 12120) ((-142 . -587) 12018) ((-142 . -327) 12002) ((-142 . -241) 11960) ((-142 . -260) 11925) ((-142 . -454) 11837) ((-142 . -288) 11821) ((-142 . -201) 11775) ((-142 . -1132) 11683) ((-142 . -312) 11637) ((-142 . -831) 11571) ((-142 . -494) 11485) ((-142 . -246) 11399) ((-142 . -390) 11333) ((-142 . -258) 11267) ((-142 . -190) 11221) ((-142 . -186) 11149) ((-142 . -189) 11083) ((-142 . -225) 11067) ((-142 . -805) 10991) ((-142 . -810) 10917) ((-142 . -808) 10876) ((-142 . -184) 10860) ((-142 . -146) T) ((-142 . -120) 10839) ((-142 . -960) T) ((-142 . -662) T) ((-142 . -1059) T) ((-142 . -1024) T) ((-142 . -969) T) ((-142 . -21) T) ((-142 . -23) T) ((-142 . -1012) T) ((-142 . -551) 10821) ((-142 . -1127) T) ((-142 . -13) T) ((-142 . -72) T) ((-142 . -25) T) ((-142 . -104) T) ((-142 . -118) 10775) ((-135 . -994) T) ((-135 . -428) 10756) ((-135 . -551) 10722) ((-135 . -554) 10703) ((-135 . -1012) T) ((-135 . -1127) T) ((-135 . -13) T) ((-135 . -72) T) ((-135 . -64) T) ((-134 . -1012) T) ((-134 . -551) 10685) ((-134 . -1127) T) ((-134 . -13) T) ((-134 . -72) T) ((-130 . -25) T) ((-130 . -72) T) ((-130 . -13) T) ((-130 . -1127) T) ((-130 . -551) 10667) ((-130 . -1012) T) ((-129 . -994) T) ((-129 . -428) 10648) ((-129 . -551) 10614) ((-129 . -554) 10595) ((-129 . -1012) T) ((-129 . -1127) T) ((-129 . -13) T) ((-129 . -72) T) ((-129 . -64) T) ((-127 . -994) T) ((-127 . -428) 10576) ((-127 . -551) 10542) ((-127 . -554) 10523) ((-127 . -1012) T) ((-127 . -1127) T) ((-127 . -13) T) ((-127 . -72) T) ((-127 . -64) T) ((-125 . -960) T) ((-125 . -662) T) ((-125 . -1059) T) ((-125 . -1024) T) ((-125 . -969) T) ((-125 . -21) T) ((-125 . -587) 10482) ((-125 . -23) T) ((-125 . -1012) T) ((-125 . -551) 10464) ((-125 . -1127) T) ((-125 . -13) T) ((-125 . -72) T) ((-125 . -25) T) ((-125 . -104) T) ((-125 . -589) 10438) ((-125 . -554) 10407) ((-125 . -38) 10391) ((-125 . -82) 10370) ((-125 . -962) 10354) ((-125 . -967) 10338) ((-125 . -581) 10322) ((-125 . -653) 10306) ((-125 . -1185) 10290) ((-117 . -751) T) ((-117 . -758) T) ((-117 . -755) T) ((-117 . -1012) T) ((-117 . -551) 10272) ((-117 . -1127) T) ((-117 . -13) T) ((-117 . -72) T) ((-117 . -318) T) ((-114 . -1012) T) ((-114 . -551) 10254) ((-114 . -1127) T) ((-114 . -13) T) ((-114 . -72) T) ((-114 . -552) 10213) ((-114 . -367) 10195) ((-114 . -1010) 10177) ((-114 . -318) T) ((-114 . -193) 10159) ((-114 . -124) 10141) ((-114 . -427) 10123) ((-114 . -454) NIL) ((-114 . -260) NIL) ((-114 . -34) T) ((-114 . -76) 10105) ((-114 . -183) 10087) ((-113 . -551) 10069) ((-112 . -160) T) ((-112 . -1012) T) ((-112 . -551) 10036) ((-112 . -1127) T) ((-112 . -13) T) ((-112 . -72) T) ((-112 . -746) 10018) ((-111 . -994) T) ((-111 . -428) 9999) ((-111 . -551) 9965) ((-111 . -554) 9946) ((-111 . -1012) T) ((-111 . -1127) T) ((-111 . -13) T) ((-111 . -72) T) ((-111 . -64) T) ((-110 . -994) T) ((-110 . -428) 9927) ((-110 . -551) 9893) ((-110 . -554) 9874) ((-110 . -1012) T) ((-110 . -1127) T) ((-110 . -13) T) ((-110 . -72) T) ((-110 . -64) T) ((-108 . -403) 9851) ((-108 . -554) 9747) ((-108 . -949) 9731) ((-108 . -1012) T) ((-108 . -551) 9713) ((-108 . -1127) T) ((-108 . -13) T) ((-108 . -72) T) ((-108 . -408) 9668) ((-108 . -241) 9645) ((-107 . -755) T) ((-107 . -551) 9627) ((-107 . -1012) T) ((-107 . -72) T) ((-107 . -13) T) ((-107 . -1127) T) ((-107 . -758) T) ((-107 . -23) T) ((-107 . -25) T) ((-107 . -662) T) ((-107 . -1024) T) ((-107 . -949) 9609) ((-107 . -554) 9591) ((-106 . -994) T) ((-106 . -428) 9572) ((-106 . -551) 9538) ((-106 . -554) 9519) ((-106 . -1012) T) ((-106 . -1127) T) ((-106 . -13) T) ((-106 . -72) T) ((-106 . -64) T) ((-103 . -1012) T) ((-103 . -551) 9501) ((-103 . -1127) T) ((-103 . -13) T) ((-103 . -72) T) ((-102 . -19) 9483) ((-102 . -592) 9465) ((-102 . -243) 9440) ((-102 . -241) 9390) ((-102 . -537) 9365) ((-102 . -552) NIL) ((-102 . -427) 9347) ((-102 . -1012) T) ((-102 . -454) NIL) ((-102 . -260) NIL) ((-102 . -551) 9291) ((-102 . -72) T) ((-102 . -1127) T) ((-102 . -13) T) ((-102 . -34) T) ((-102 . -124) 9273) ((-102 . -755) T) ((-102 . -758) T) ((-102 . -322) 9255) ((-101 . -751) T) ((-101 . -758) T) ((-101 . -755) T) ((-101 . -1012) T) ((-101 . -551) 9237) ((-101 . -1127) T) ((-101 . -13) T) ((-101 . -72) T) ((-101 . -318) T) ((-101 . -603) T) ((-100 . -98) 9221) ((-100 . -922) 9205) ((-100 . -34) T) ((-100 . -13) T) ((-100 . -1127) T) ((-100 . -72) 9159) ((-100 . -551) 9094) ((-100 . -260) 9032) ((-100 . -454) 8965) ((-100 . -1012) 8943) ((-100 . -427) 8927) ((-100 . -92) 8911) ((-99 . -98) 8895) ((-99 . -922) 8879) ((-99 . -34) T) ((-99 . -13) T) ((-99 . -1127) T) ((-99 . -72) 8833) ((-99 . -551) 8768) ((-99 . -260) 8706) ((-99 . -454) 8639) ((-99 . -1012) 8617) ((-99 . -427) 8601) ((-99 . -92) 8585) ((-94 . -98) 8569) ((-94 . -922) 8553) ((-94 . -34) T) ((-94 . -13) T) ((-94 . -1127) T) ((-94 . -72) 8507) ((-94 . -551) 8442) ((-94 . -260) 8380) ((-94 . -454) 8313) ((-94 . -1012) 8291) ((-94 . -427) 8275) ((-94 . -92) 8259) ((-90 . -903) 8237) ((-90 . -1064) NIL) ((-90 . -949) 8215) ((-90 . -554) 8146) ((-90 . -552) NIL) ((-90 . -932) NIL) ((-90 . -820) NIL) ((-90 . -793) 8124) ((-90 . -754) NIL) ((-90 . -720) NIL) ((-90 . -717) NIL) ((-90 . -758) NIL) ((-90 . -755) NIL) ((-90 . -715) NIL) ((-90 . -713) NIL) ((-90 . -739) NIL) ((-90 . -795) NIL) ((-90 . -341) 8102) ((-90 . -579) 8080) ((-90 . -589) 8026) ((-90 . -327) 8004) ((-90 . -241) 7938) ((-90 . -260) 7885) ((-90 . -454) 7755) ((-90 . -288) 7733) ((-90 . -201) T) ((-90 . -82) 7652) ((-90 . -962) 7598) ((-90 . -967) 7544) ((-90 . -246) T) ((-90 . -653) 7490) ((-90 . -581) 7436) ((-90 . -587) 7367) ((-90 . -38) 7313) ((-90 . -258) T) ((-90 . -390) T) ((-90 . -146) T) ((-90 . -494) T) ((-90 . -831) T) ((-90 . -1132) T) ((-90 . -312) T) ((-90 . -190) NIL) ((-90 . -186) NIL) ((-90 . -189) NIL) ((-90 . -225) 7291) ((-90 . -805) NIL) ((-90 . -810) NIL) ((-90 . -808) NIL) ((-90 . -184) 7269) ((-90 . -120) T) ((-90 . -118) NIL) ((-90 . -104) T) ((-90 . -25) T) ((-90 . -72) T) ((-90 . -13) T) ((-90 . -1127) T) ((-90 . -551) 7251) ((-90 . -1012) T) ((-90 . -23) T) ((-90 . -21) T) ((-90 . -960) T) ((-90 . -662) T) ((-90 . -1059) T) ((-90 . -1024) T) ((-90 . -969) T) ((-89 . -778) 7235) ((-89 . -831) T) ((-89 . -494) T) ((-89 . -246) T) ((-89 . -146) T) ((-89 . -554) 7207) ((-89 . -653) 7194) ((-89 . -581) 7181) ((-89 . -967) 7168) ((-89 . -962) 7155) ((-89 . -82) 7140) ((-89 . -38) 7127) ((-89 . -390) T) ((-89 . -258) T) ((-89 . -960) T) ((-89 . -662) T) ((-89 . -1059) T) ((-89 . -1024) T) ((-89 . -969) T) ((-89 . -21) T) ((-89 . -587) 7099) ((-89 . -23) T) ((-89 . -1012) T) ((-89 . -551) 7081) ((-89 . -1127) T) ((-89 . -13) T) ((-89 . -72) T) ((-89 . -25) T) ((-89 . -104) T) ((-89 . -589) 7068) ((-89 . -120) T) ((-86 . -755) T) ((-86 . -551) 7050) ((-86 . -1012) T) ((-86 . -72) T) ((-86 . -13) T) ((-86 . -1127) T) ((-86 . -758) T) ((-86 . -746) 7031) ((-85 . -751) T) ((-85 . -758) T) ((-85 . -755) T) ((-85 . -1012) T) ((-85 . -551) 7013) ((-85 . -1127) T) ((-85 . -13) T) ((-85 . -72) T) ((-85 . -318) T) ((-85 . -879) T) ((-85 . -603) T) ((-85 . -84) T) ((-85 . -552) 6995) ((-81 . -96) T) ((-81 . -322) 6978) ((-81 . -758) T) ((-81 . -755) T) ((-81 . -124) 6961) ((-81 . -34) T) ((-81 . -72) T) ((-81 . -551) 6943) ((-81 . -260) NIL) ((-81 . -454) NIL) ((-81 . -1012) T) ((-81 . -427) 6926) ((-81 . -552) 6908) ((-81 . -241) 6859) ((-81 . -537) 6835) ((-81 . -243) 6811) ((-81 . -592) 6794) ((-81 . -19) 6777) ((-81 . -603) T) ((-81 . -13) T) ((-81 . -1127) T) ((-81 . -84) T) ((-79 . -80) 6761) ((-79 . -1127) T) ((-79 . |MappingCategory|) 6735) ((-79 . -1012) T) ((-79 . -551) 6717) ((-79 . -13) T) ((-79 . -72) T) ((-78 . -551) 6699) ((-77 . -903) 6681) ((-77 . -1064) T) ((-77 . -554) 6631) ((-77 . -949) 6591) ((-77 . -552) 6521) ((-77 . -932) T) ((-77 . -820) NIL) ((-77 . -793) 6503) ((-77 . -754) T) ((-77 . -720) T) ((-77 . -717) T) ((-77 . -758) T) ((-77 . -755) T) ((-77 . -715) T) ((-77 . -713) T) ((-77 . -739) T) ((-77 . -795) 6485) ((-77 . -341) 6467) ((-77 . -579) 6449) ((-77 . -327) 6431) ((-77 . -241) NIL) ((-77 . -260) NIL) ((-77 . -454) NIL) ((-77 . -288) 6413) ((-77 . -201) T) ((-77 . -82) 6340) ((-77 . -962) 6290) ((-77 . -967) 6240) ((-77 . -246) T) ((-77 . -653) 6190) ((-77 . -581) 6140) ((-77 . -589) 6090) ((-77 . -587) 6040) ((-77 . -38) 5990) ((-77 . -258) T) ((-77 . -390) T) ((-77 . -146) T) ((-77 . -494) T) ((-77 . -831) T) ((-77 . -1132) T) ((-77 . -312) T) ((-77 . -190) T) ((-77 . -186) 5977) ((-77 . -189) T) ((-77 . -225) 5959) ((-77 . -805) NIL) ((-77 . -810) NIL) ((-77 . -808) NIL) ((-77 . -184) 5941) ((-77 . -120) T) ((-77 . -118) NIL) ((-77 . -104) T) ((-77 . -25) T) ((-77 . -72) T) ((-77 . -13) T) ((-77 . -1127) T) ((-77 . -551) 5884) ((-77 . -1012) T) ((-77 . -23) T) ((-77 . -21) T) ((-77 . -960) T) ((-77 . -662) T) ((-77 . -1059) T) ((-77 . -1024) T) ((-77 . -969) T) ((-73 . -98) 5868) ((-73 . -922) 5852) ((-73 . -34) T) ((-73 . -13) T) ((-73 . -1127) T) ((-73 . -72) 5806) ((-73 . -551) 5741) ((-73 . -260) 5679) ((-73 . -454) 5612) ((-73 . -1012) 5590) ((-73 . -427) 5574) ((-73 . -92) 5558) ((-69 . -411) T) ((-69 . -1024) T) ((-69 . -72) T) ((-69 . -13) T) ((-69 . -1127) T) ((-69 . -551) 5540) ((-69 . -1012) T) ((-69 . -662) T) ((-69 . -241) 5519) ((-67 . -994) T) ((-67 . -428) 5500) ((-67 . -551) 5466) ((-67 . -554) 5447) ((-67 . -1012) T) ((-67 . -1127) T) ((-67 . -13) T) ((-67 . -72) T) ((-67 . -64) T) ((-62 . -1033) 5431) ((-62 . -427) 5415) ((-62 . -1012) 5393) ((-62 . -454) 5326) ((-62 . -260) 5264) ((-62 . -551) 5199) ((-62 . -72) 5153) ((-62 . -1127) T) ((-62 . -13) T) ((-62 . -34) T) ((-62 . -76) 5137) ((-60 . -57) 5099) ((-60 . -34) T) ((-60 . -13) T) ((-60 . -1127) T) ((-60 . -72) 5053) ((-60 . -551) 4988) ((-60 . -260) 4926) ((-60 . -454) 4859) ((-60 . -1012) 4837) ((-60 . -427) 4821) ((-58 . -19) 4805) ((-58 . -592) 4789) ((-58 . -243) 4766) ((-58 . -241) 4718) ((-58 . -537) 4695) ((-58 . -552) 4656) ((-58 . -427) 4640) ((-58 . -1012) 4593) ((-58 . -454) 4526) ((-58 . -260) 4464) ((-58 . -551) 4379) ((-58 . -72) 4313) ((-58 . -1127) T) ((-58 . -13) T) ((-58 . -34) T) ((-58 . -124) 4297) ((-58 . -755) 4276) ((-58 . -758) 4255) ((-58 . -322) 4239) ((-55 . -1012) T) ((-55 . -551) 4221) ((-55 . -1127) T) ((-55 . -13) T) ((-55 . -72) T) ((-55 . -949) 4203) ((-55 . -554) 4185) ((-51 . -1012) T) ((-51 . -551) 4167) ((-51 . -1127) T) ((-51 . -13) T) ((-51 . -72) T) ((-50 . -559) 4151) ((-50 . -554) 4120) ((-50 . -589) 4094) ((-50 . -587) 4053) ((-50 . -969) T) ((-50 . -1024) T) ((-50 . -1059) T) ((-50 . -662) T) ((-50 . -960) T) ((-50 . -21) T) ((-50 . -23) T) ((-50 . -1012) T) ((-50 . -551) 4035) ((-50 . -1127) T) ((-50 . -13) T) ((-50 . -72) T) ((-50 . -25) T) ((-50 . -104) T) ((-50 . -949) 4019) ((-49 . -1012) T) ((-49 . -551) 4001) ((-49 . -1127) T) ((-49 . -13) T) ((-49 . -72) T) ((-48 . -254) T) ((-48 . -72) T) ((-48 . -13) T) ((-48 . -1127) T) ((-48 . -551) 3983) ((-48 . -1012) T) ((-48 . -554) 3884) ((-48 . -949) 3827) ((-48 . -454) 3793) ((-48 . -260) 3780) ((-48 . -27) T) ((-48 . -914) T) ((-48 . -201) T) ((-48 . -82) 3729) ((-48 . -962) 3694) ((-48 . -967) 3659) ((-48 . -246) T) ((-48 . -653) 3624) ((-48 . -581) 3589) ((-48 . -589) 3539) ((-48 . -587) 3489) ((-48 . -104) T) ((-48 . -25) T) ((-48 . -23) T) ((-48 . -21) T) ((-48 . -960) T) ((-48 . -662) T) ((-48 . -1059) T) ((-48 . -1024) T) ((-48 . -969) T) ((-48 . -38) 3454) ((-48 . -258) T) ((-48 . -390) T) ((-48 . -146) T) ((-48 . -494) T) ((-48 . -831) T) ((-48 . -1132) T) ((-48 . -312) T) ((-48 . -579) 3414) ((-48 . -932) T) ((-48 . -552) 3359) ((-48 . -120) T) ((-48 . -190) T) ((-48 . -186) 3346) ((-48 . -189) T) ((-45 . -36) 3325) ((-45 . -537) 3248) ((-45 . -260) 3046) ((-45 . -454) 2798) ((-45 . -427) 2733) ((-45 . -241) 2631) ((-45 . -243) 2554) ((-45 . -548) 2533) ((-45 . -193) 2481) ((-45 . -76) 2429) ((-45 . -183) 2377) ((-45 . -1105) 2356) ((-45 . -237) 2304) ((-45 . -124) 2252) ((-45 . -34) T) ((-45 . -13) T) ((-45 . -1127) T) ((-45 . -72) T) ((-45 . -551) 2234) ((-45 . -1012) T) ((-45 . -552) NIL) ((-45 . -592) 2182) ((-45 . -322) 2130) ((-45 . -758) NIL) ((-45 . -755) NIL) ((-45 . -1062) 2078) ((-45 . -922) 2026) ((-45 . -1166) 1974) ((-45 . -607) 1922) ((-44 . -359) 1906) ((-44 . -682) 1890) ((-44 . -656) T) ((-44 . -684) T) ((-44 . -82) 1869) ((-44 . -962) 1853) ((-44 . -967) 1837) ((-44 . -21) T) ((-44 . -587) 1780) ((-44 . -23) T) ((-44 . -1012) T) ((-44 . -551) 1762) ((-44 . -72) T) ((-44 . -25) T) ((-44 . -104) T) ((-44 . -589) 1720) ((-44 . -581) 1704) ((-44 . -653) 1688) ((-44 . -316) 1672) ((-44 . -1127) T) ((-44 . -13) T) ((-44 . -241) 1649) ((-40 . -291) 1623) ((-40 . -146) T) ((-40 . -554) 1553) ((-40 . -969) T) ((-40 . -1024) T) ((-40 . -1059) T) ((-40 . -662) T) ((-40 . -960) T) ((-40 . -589) 1455) ((-40 . -587) 1385) ((-40 . -104) T) ((-40 . -25) T) ((-40 . -72) T) ((-40 . -13) T) ((-40 . -1127) T) ((-40 . -551) 1367) ((-40 . -1012) T) ((-40 . -23) T) ((-40 . -21) T) ((-40 . -967) 1312) ((-40 . -962) 1257) ((-40 . -82) 1174) ((-40 . -552) 1158) ((-40 . -184) 1135) ((-40 . -808) 1087) ((-40 . -810) 999) ((-40 . -805) 909) ((-40 . -225) 886) ((-40 . -189) 826) ((-40 . -186) 760) ((-40 . -190) 732) ((-40 . -312) T) ((-40 . -1132) T) ((-40 . -831) T) ((-40 . -494) T) ((-40 . -653) 677) ((-40 . -581) 622) ((-40 . -38) 567) ((-40 . -390) T) ((-40 . -258) T) ((-40 . -246) T) ((-40 . -201) T) ((-40 . -318) NIL) ((-40 . -299) NIL) ((-40 . -1064) NIL) ((-40 . -118) 539) ((-40 . -343) NIL) ((-40 . -351) 511) ((-40 . -120) 483) ((-40 . -320) 455) ((-40 . -327) 432) ((-40 . -579) 366) ((-40 . -353) 343) ((-40 . -949) 220) ((-40 . -660) 192) ((-31 . -994) T) ((-31 . -428) 173) ((-31 . -551) 139) ((-31 . -554) 120) ((-31 . -1012) T) ((-31 . -1127) T) ((-31 . -13) T) ((-31 . -72) T) ((-31 . -64) T) ((-30 . -865) T) ((-30 . -551) 102) ((0 . |EnumerationCategory|) T) ((0 . -551) 84) ((0 . -1012) T) ((0 . -72) T) ((0 . -1127) T) ((-2 . |RecordCategory|) T) ((-2 . -551) 66) ((-2 . -1012) T) ((-2 . -72) T) ((-2 . -1127) T) ((-3 . |UnionCategory|) T) ((-3 . -551) 48) ((-3 . -1012) T) ((-3 . -72) T) ((-3 . -1127) T) ((-1 . -1012) T) ((-1 . -551) 30) ((-1 . -1127) T) ((-1 . -13) T) ((-1 . -72) T))
\ No newline at end of file +((((-484)) . T)) +(((-1208 . -146) T) ((-1208 . -555) 198447) ((-1208 . -970) T) ((-1208 . -1025) T) ((-1208 . -1060) T) ((-1208 . -663) T) ((-1208 . -961) T) ((-1208 . -590) 198434) ((-1208 . -588) 198406) ((-1208 . -104) T) ((-1208 . -25) T) ((-1208 . -72) T) ((-1208 . -13) T) ((-1208 . -1128) T) ((-1208 . -552) 198388) ((-1208 . -1013) T) ((-1208 . -23) T) ((-1208 . -21) T) ((-1208 . -968) 198375) ((-1208 . -963) 198362) ((-1208 . -82) 198347) ((-1208 . -319) T) ((-1208 . -553) 198329) ((-1208 . -1065) T) ((-1204 . -1013) T) ((-1204 . -552) 198296) ((-1204 . -1128) T) ((-1204 . -13) T) ((-1204 . -72) T) ((-1204 . -429) 198278) ((-1204 . -555) 198260) ((-1203 . -1201) 198239) ((-1203 . -950) 198216) ((-1203 . -555) 198165) ((-1203 . -961) T) ((-1203 . -663) T) ((-1203 . -1060) T) ((-1203 . -1025) T) ((-1203 . -970) T) ((-1203 . -21) T) ((-1203 . -588) 198124) ((-1203 . -23) T) ((-1203 . -1013) T) ((-1203 . -552) 198106) ((-1203 . -1128) T) ((-1203 . -13) T) ((-1203 . -72) T) ((-1203 . -25) T) ((-1203 . -104) T) ((-1203 . -590) 198080) ((-1203 . -1193) 198064) ((-1203 . -654) 198034) ((-1203 . -582) 198004) ((-1203 . -968) 197988) ((-1203 . -963) 197972) ((-1203 . -82) 197951) ((-1203 . -38) 197921) ((-1203 . -1198) 197900) ((-1202 . -961) T) ((-1202 . -663) T) ((-1202 . -1060) T) ((-1202 . -1025) T) ((-1202 . -970) T) ((-1202 . -21) T) ((-1202 . -588) 197859) ((-1202 . -23) T) ((-1202 . -1013) T) ((-1202 . -552) 197841) ((-1202 . -1128) T) ((-1202 . -13) T) ((-1202 . -72) T) ((-1202 . -25) T) ((-1202 . -104) T) ((-1202 . -590) 197815) ((-1202 . -555) 197771) ((-1202 . -1193) 197755) ((-1202 . -654) 197725) ((-1202 . -582) 197695) ((-1202 . -968) 197679) ((-1202 . -963) 197663) ((-1202 . -82) 197642) ((-1202 . -38) 197612) ((-1202 . -334) 197591) ((-1202 . -950) 197575) ((-1200 . -1201) 197551) ((-1200 . -950) 197525) ((-1200 . -555) 197471) ((-1200 . -961) T) ((-1200 . -663) T) ((-1200 . -1060) T) ((-1200 . -1025) T) ((-1200 . -970) T) ((-1200 . -21) T) ((-1200 . -588) 197430) ((-1200 . -23) T) ((-1200 . -1013) T) ((-1200 . -552) 197412) ((-1200 . -1128) T) ((-1200 . -13) T) ((-1200 . -72) T) ((-1200 . -25) T) ((-1200 . -104) T) ((-1200 . -590) 197386) ((-1200 . -1193) 197370) ((-1200 . -654) 197340) ((-1200 . -582) 197310) ((-1200 . -968) 197294) ((-1200 . -963) 197278) ((-1200 . -82) 197257) ((-1200 . -38) 197227) ((-1200 . -1198) 197203) ((-1199 . -1201) 197182) ((-1199 . -950) 197139) ((-1199 . -555) 197068) ((-1199 . -961) T) ((-1199 . -663) T) ((-1199 . -1060) T) ((-1199 . -1025) T) ((-1199 . -970) T) ((-1199 . -21) T) ((-1199 . -588) 197027) ((-1199 . -23) T) ((-1199 . -1013) T) ((-1199 . -552) 197009) ((-1199 . -1128) T) ((-1199 . -13) T) ((-1199 . -72) T) ((-1199 . -25) T) ((-1199 . -104) T) ((-1199 . -590) 196983) ((-1199 . -1193) 196967) ((-1199 . -654) 196937) ((-1199 . -582) 196907) ((-1199 . -968) 196891) ((-1199 . -963) 196875) ((-1199 . -82) 196854) ((-1199 . -38) 196824) ((-1199 . -1198) 196803) ((-1199 . -334) 196775) ((-1194 . -334) 196747) ((-1194 . -555) 196696) ((-1194 . -950) 196673) ((-1194 . -582) 196643) ((-1194 . -654) 196613) ((-1194 . -590) 196587) ((-1194 . -588) 196546) ((-1194 . -104) T) ((-1194 . -25) T) ((-1194 . -72) T) ((-1194 . -13) T) ((-1194 . -1128) T) ((-1194 . -552) 196528) ((-1194 . -1013) T) ((-1194 . -23) T) ((-1194 . -21) T) ((-1194 . -968) 196512) ((-1194 . -963) 196496) ((-1194 . -82) 196475) ((-1194 . -1201) 196454) ((-1194 . -961) T) ((-1194 . -663) T) ((-1194 . -1060) T) ((-1194 . -1025) T) ((-1194 . -970) T) ((-1194 . -1193) 196438) ((-1194 . -38) 196408) ((-1194 . -1198) 196387) ((-1192 . -1123) 196356) ((-1192 . -552) 196318) ((-1192 . -124) 196302) ((-1192 . -34) T) ((-1192 . -13) T) ((-1192 . -1128) T) ((-1192 . -72) T) ((-1192 . -260) 196240) ((-1192 . -455) 196173) ((-1192 . -1013) T) ((-1192 . -428) 196157) ((-1192 . -553) 196118) ((-1192 . -889) 196087) ((-1191 . -961) T) ((-1191 . -663) T) ((-1191 . -1060) T) ((-1191 . -1025) T) ((-1191 . -970) T) ((-1191 . -21) T) ((-1191 . -588) 196032) ((-1191 . -23) T) ((-1191 . -1013) T) ((-1191 . -552) 196001) ((-1191 . -1128) T) ((-1191 . -13) T) ((-1191 . -72) T) ((-1191 . -25) T) ((-1191 . -104) T) ((-1191 . -590) 195961) ((-1191 . -555) 195903) ((-1191 . -429) 195887) ((-1191 . -38) 195857) ((-1191 . -82) 195822) ((-1191 . -963) 195792) ((-1191 . -968) 195762) ((-1191 . -582) 195732) ((-1191 . -654) 195702) ((-1190 . -995) T) ((-1190 . -429) 195683) ((-1190 . -552) 195649) ((-1190 . -555) 195630) ((-1190 . -1013) T) ((-1190 . -1128) T) ((-1190 . -13) T) ((-1190 . -72) T) ((-1190 . -64) T) ((-1189 . -995) T) ((-1189 . -429) 195611) ((-1189 . -552) 195577) ((-1189 . -555) 195558) ((-1189 . -1013) T) ((-1189 . -1128) T) ((-1189 . -13) T) ((-1189 . -72) T) ((-1189 . -64) T) ((-1184 . -552) 195540) ((-1182 . -1013) T) ((-1182 . -552) 195522) ((-1182 . -1128) T) ((-1182 . -13) T) ((-1182 . -72) T) ((-1181 . -1013) T) ((-1181 . -552) 195504) ((-1181 . -1128) T) ((-1181 . -13) T) ((-1181 . -72) T) ((-1178 . -1177) 195488) ((-1178 . -323) 195472) ((-1178 . -759) 195451) ((-1178 . -756) 195430) ((-1178 . -124) 195414) ((-1178 . -34) T) ((-1178 . -13) T) ((-1178 . -1128) T) ((-1178 . -72) 195348) ((-1178 . -552) 195263) ((-1178 . -260) 195201) ((-1178 . -455) 195134) ((-1178 . -1013) 195087) ((-1178 . -428) 195071) ((-1178 . -553) 195032) ((-1178 . -241) 194984) ((-1178 . -538) 194961) ((-1178 . -243) 194938) ((-1178 . -593) 194922) ((-1178 . -19) 194906) ((-1175 . -1013) T) ((-1175 . -552) 194872) ((-1175 . -1128) T) ((-1175 . -13) T) ((-1175 . -72) T) ((-1168 . -1171) 194856) ((-1168 . -190) 194815) ((-1168 . -555) 194697) ((-1168 . -590) 194622) ((-1168 . -588) 194532) ((-1168 . -104) T) ((-1168 . -25) T) ((-1168 . -72) T) ((-1168 . -552) 194514) ((-1168 . -1013) T) ((-1168 . -23) T) ((-1168 . -21) T) ((-1168 . -970) T) ((-1168 . -1025) T) ((-1168 . -1060) T) ((-1168 . -663) T) ((-1168 . -961) T) ((-1168 . -186) 194467) ((-1168 . -13) T) ((-1168 . -1128) T) ((-1168 . -189) 194426) ((-1168 . -241) 194391) ((-1168 . -809) 194304) ((-1168 . -806) 194192) ((-1168 . -811) 194105) ((-1168 . -886) 194075) ((-1168 . -38) 193972) ((-1168 . -82) 193837) ((-1168 . -963) 193723) ((-1168 . -968) 193609) ((-1168 . -582) 193506) ((-1168 . -654) 193403) ((-1168 . -118) 193382) ((-1168 . -120) 193361) ((-1168 . -146) 193315) ((-1168 . -495) 193294) ((-1168 . -246) 193273) ((-1168 . -47) 193250) ((-1168 . -1157) 193227) ((-1168 . -35) 193193) ((-1168 . -66) 193159) ((-1168 . -239) 193125) ((-1168 . -432) 193091) ((-1168 . -1117) 193057) ((-1168 . -1114) 193023) ((-1168 . -915) 192989) ((-1165 . -277) 192933) ((-1165 . -950) 192899) ((-1165 . -354) 192865) ((-1165 . -38) 192722) ((-1165 . -555) 192596) ((-1165 . -590) 192485) ((-1165 . -588) 192359) ((-1165 . -970) T) ((-1165 . -1025) T) ((-1165 . -1060) T) ((-1165 . -663) T) ((-1165 . -961) T) ((-1165 . -82) 192209) ((-1165 . -963) 192098) ((-1165 . -968) 191987) ((-1165 . -21) T) ((-1165 . -23) T) ((-1165 . -1013) T) ((-1165 . -552) 191969) ((-1165 . -1128) T) ((-1165 . -13) T) ((-1165 . -72) T) ((-1165 . -25) T) ((-1165 . -104) T) ((-1165 . -582) 191826) ((-1165 . -654) 191683) ((-1165 . -118) 191644) ((-1165 . -120) 191605) ((-1165 . -146) T) ((-1165 . -495) T) ((-1165 . -246) T) ((-1165 . -47) 191549) ((-1164 . -1163) 191528) ((-1164 . -312) 191507) ((-1164 . -1133) 191486) ((-1164 . -832) 191465) ((-1164 . -495) 191419) ((-1164 . -146) 191353) ((-1164 . -555) 191172) ((-1164 . -654) 191019) ((-1164 . -582) 190866) ((-1164 . -38) 190713) ((-1164 . -391) 190692) ((-1164 . -258) 190671) ((-1164 . -590) 190571) ((-1164 . -588) 190456) ((-1164 . -970) T) ((-1164 . -1025) T) ((-1164 . -1060) T) ((-1164 . -663) T) ((-1164 . -961) T) ((-1164 . -82) 190276) ((-1164 . -963) 190117) ((-1164 . -968) 189958) ((-1164 . -21) T) ((-1164 . -23) T) ((-1164 . -1013) T) ((-1164 . -552) 189940) ((-1164 . -1128) T) ((-1164 . -13) T) ((-1164 . -72) T) ((-1164 . -25) T) ((-1164 . -104) T) ((-1164 . -246) 189894) ((-1164 . -201) 189873) ((-1164 . -915) 189839) ((-1164 . -1114) 189805) ((-1164 . -1117) 189771) ((-1164 . -432) 189737) ((-1164 . -239) 189703) ((-1164 . -66) 189669) ((-1164 . -35) 189635) ((-1164 . -1157) 189605) ((-1164 . -47) 189575) ((-1164 . -120) 189554) ((-1164 . -118) 189533) ((-1164 . -886) 189496) ((-1164 . -811) 189402) ((-1164 . -806) 189306) ((-1164 . -809) 189212) ((-1164 . -241) 189170) ((-1164 . -189) 189122) ((-1164 . -186) 189068) ((-1164 . -190) 189020) ((-1164 . -1161) 189004) ((-1164 . -950) 188988) ((-1159 . -1163) 188949) ((-1159 . -312) 188928) ((-1159 . -1133) 188907) ((-1159 . -832) 188886) ((-1159 . -495) 188840) ((-1159 . -146) 188774) ((-1159 . -555) 188523) ((-1159 . -654) 188370) ((-1159 . -582) 188217) ((-1159 . -38) 188064) ((-1159 . -391) 188043) ((-1159 . -258) 188022) ((-1159 . -590) 187922) ((-1159 . -588) 187807) ((-1159 . -970) T) ((-1159 . -1025) T) ((-1159 . -1060) T) ((-1159 . -663) T) ((-1159 . -961) T) ((-1159 . -82) 187627) ((-1159 . -963) 187468) ((-1159 . -968) 187309) ((-1159 . -21) T) ((-1159 . -23) T) ((-1159 . -1013) T) ((-1159 . -552) 187291) ((-1159 . -1128) T) ((-1159 . -13) T) ((-1159 . -72) T) ((-1159 . -25) T) ((-1159 . -104) T) ((-1159 . -246) 187245) ((-1159 . -201) 187224) ((-1159 . -915) 187190) ((-1159 . -1114) 187156) ((-1159 . -1117) 187122) ((-1159 . -432) 187088) ((-1159 . -239) 187054) ((-1159 . -66) 187020) ((-1159 . -35) 186986) ((-1159 . -1157) 186956) ((-1159 . -47) 186926) ((-1159 . -120) 186905) ((-1159 . -118) 186884) ((-1159 . -886) 186847) ((-1159 . -811) 186753) ((-1159 . -806) 186634) ((-1159 . -809) 186540) ((-1159 . -241) 186498) ((-1159 . -189) 186450) ((-1159 . -186) 186396) ((-1159 . -190) 186348) ((-1159 . -1161) 186332) ((-1159 . -950) 186267) ((-1147 . -1154) 186251) ((-1147 . -1065) 186229) ((-1147 . -553) NIL) ((-1147 . -260) 186216) ((-1147 . -455) 186164) ((-1147 . -277) 186141) ((-1147 . -950) 186024) ((-1147 . -354) 186008) ((-1147 . -38) 185840) ((-1147 . -82) 185645) ((-1147 . -963) 185471) ((-1147 . -968) 185297) ((-1147 . -588) 185207) ((-1147 . -590) 185096) ((-1147 . -582) 184928) ((-1147 . -654) 184760) ((-1147 . -555) 184516) ((-1147 . -118) 184495) ((-1147 . -120) 184474) ((-1147 . -47) 184451) ((-1147 . -328) 184435) ((-1147 . -580) 184383) ((-1147 . -809) 184327) ((-1147 . -806) 184234) ((-1147 . -811) 184145) ((-1147 . -796) NIL) ((-1147 . -821) 184124) ((-1147 . -1133) 184103) ((-1147 . -861) 184073) ((-1147 . -832) 184052) ((-1147 . -495) 183966) ((-1147 . -246) 183880) ((-1147 . -146) 183774) ((-1147 . -391) 183708) ((-1147 . -258) 183687) ((-1147 . -241) 183614) ((-1147 . -190) T) ((-1147 . -104) T) ((-1147 . -25) T) ((-1147 . -72) T) ((-1147 . -552) 183596) ((-1147 . -1013) T) ((-1147 . -23) T) ((-1147 . -21) T) ((-1147 . -970) T) ((-1147 . -1025) T) ((-1147 . -1060) T) ((-1147 . -663) T) ((-1147 . -961) T) ((-1147 . -186) 183583) ((-1147 . -13) T) ((-1147 . -1128) T) ((-1147 . -189) T) ((-1147 . -225) 183567) ((-1147 . -184) 183551) ((-1145 . -1006) 183535) ((-1145 . -557) 183519) ((-1145 . -1013) 183497) ((-1145 . -552) 183464) ((-1145 . -1128) 183442) ((-1145 . -13) 183420) ((-1145 . -72) 183398) ((-1145 . -1007) 183355) ((-1143 . -1142) 183334) ((-1143 . -915) 183300) ((-1143 . -1114) 183266) ((-1143 . -1117) 183232) ((-1143 . -432) 183198) ((-1143 . -239) 183164) ((-1143 . -66) 183130) ((-1143 . -35) 183096) ((-1143 . -1157) 183073) ((-1143 . -47) 183050) ((-1143 . -555) 182805) ((-1143 . -654) 182625) ((-1143 . -582) 182445) ((-1143 . -590) 182256) ((-1143 . -588) 182114) ((-1143 . -968) 181928) ((-1143 . -963) 181742) ((-1143 . -82) 181530) ((-1143 . -38) 181350) ((-1143 . -886) 181320) ((-1143 . -241) 181220) ((-1143 . -1140) 181204) ((-1143 . -970) T) ((-1143 . -1025) T) ((-1143 . -1060) T) ((-1143 . -663) T) ((-1143 . -961) T) ((-1143 . -21) T) ((-1143 . -23) T) ((-1143 . -1013) T) ((-1143 . -552) 181186) ((-1143 . -1128) T) ((-1143 . -13) T) ((-1143 . -72) T) ((-1143 . -25) T) ((-1143 . -104) T) ((-1143 . -118) 181114) ((-1143 . -120) 180996) ((-1143 . -553) 180669) ((-1143 . -184) 180639) ((-1143 . -809) 180493) ((-1143 . -811) 180293) ((-1143 . -806) 180091) ((-1143 . -225) 180061) ((-1143 . -189) 179923) ((-1143 . -186) 179779) ((-1143 . -190) 179687) ((-1143 . -312) 179666) ((-1143 . -1133) 179645) ((-1143 . -832) 179624) ((-1143 . -495) 179578) ((-1143 . -146) 179512) ((-1143 . -391) 179491) ((-1143 . -258) 179470) ((-1143 . -246) 179424) ((-1143 . -201) 179403) ((-1143 . -288) 179373) ((-1143 . -455) 179233) ((-1143 . -260) 179172) ((-1143 . -328) 179142) ((-1143 . -580) 179050) ((-1143 . -342) 179020) ((-1143 . -796) 178893) ((-1143 . -740) 178846) ((-1143 . -714) 178799) ((-1143 . -716) 178752) ((-1143 . -756) 178654) ((-1143 . -759) 178556) ((-1143 . -718) 178509) ((-1143 . -721) 178462) ((-1143 . -755) 178415) ((-1143 . -794) 178385) ((-1143 . -821) 178338) ((-1143 . -933) 178291) ((-1143 . -950) 178080) ((-1143 . -1065) 178032) ((-1143 . -904) 178002) ((-1138 . -1142) 177963) ((-1138 . -915) 177929) ((-1138 . -1114) 177895) ((-1138 . -1117) 177861) ((-1138 . -432) 177827) ((-1138 . -239) 177793) ((-1138 . -66) 177759) ((-1138 . -35) 177725) ((-1138 . -1157) 177702) ((-1138 . -47) 177679) ((-1138 . -555) 177480) ((-1138 . -654) 177282) ((-1138 . -582) 177084) ((-1138 . -590) 176939) ((-1138 . -588) 176779) ((-1138 . -968) 176575) ((-1138 . -963) 176371) ((-1138 . -82) 176123) ((-1138 . -38) 175925) ((-1138 . -886) 175895) ((-1138 . -241) 175723) ((-1138 . -1140) 175707) ((-1138 . -970) T) ((-1138 . -1025) T) ((-1138 . -1060) T) ((-1138 . -663) T) ((-1138 . -961) T) ((-1138 . -21) T) ((-1138 . -23) T) ((-1138 . -1013) T) ((-1138 . -552) 175689) ((-1138 . -1128) T) ((-1138 . -13) T) ((-1138 . -72) T) ((-1138 . -25) T) ((-1138 . -104) T) ((-1138 . -118) 175599) ((-1138 . -120) 175509) ((-1138 . -553) NIL) ((-1138 . -184) 175461) ((-1138 . -809) 175297) ((-1138 . -811) 175061) ((-1138 . -806) 174800) ((-1138 . -225) 174752) ((-1138 . -189) 174578) ((-1138 . -186) 174398) ((-1138 . -190) 174288) ((-1138 . -312) 174267) ((-1138 . -1133) 174246) ((-1138 . -832) 174225) ((-1138 . -495) 174179) ((-1138 . -146) 174113) ((-1138 . -391) 174092) ((-1138 . -258) 174071) ((-1138 . -246) 174025) ((-1138 . -201) 174004) ((-1138 . -288) 173956) ((-1138 . -455) 173690) ((-1138 . -260) 173575) ((-1138 . -328) 173527) ((-1138 . -580) 173479) ((-1138 . -342) 173431) ((-1138 . -796) NIL) ((-1138 . -740) NIL) ((-1138 . -714) NIL) ((-1138 . -716) NIL) ((-1138 . -756) NIL) ((-1138 . -759) NIL) ((-1138 . -718) NIL) ((-1138 . -721) NIL) ((-1138 . -755) NIL) ((-1138 . -794) 173383) ((-1138 . -821) NIL) ((-1138 . -933) NIL) ((-1138 . -950) 173349) ((-1138 . -1065) NIL) ((-1138 . -904) 173301) ((-1137 . -752) T) ((-1137 . -759) T) ((-1137 . -756) T) ((-1137 . -1013) T) ((-1137 . -552) 173283) ((-1137 . -1128) T) ((-1137 . -13) T) ((-1137 . -72) T) ((-1137 . -319) T) ((-1137 . -604) T) ((-1136 . -752) T) ((-1136 . -759) T) ((-1136 . -756) T) ((-1136 . -1013) T) ((-1136 . -552) 173265) ((-1136 . -1128) T) ((-1136 . -13) T) ((-1136 . -72) T) ((-1136 . -319) T) ((-1136 . -604) T) ((-1135 . -752) T) ((-1135 . -759) T) ((-1135 . -756) T) ((-1135 . -1013) T) ((-1135 . -552) 173247) ((-1135 . -1128) T) ((-1135 . -13) T) ((-1135 . -72) T) ((-1135 . -319) T) ((-1135 . -604) T) ((-1134 . -752) T) ((-1134 . -759) T) ((-1134 . -756) T) ((-1134 . -1013) T) ((-1134 . -552) 173229) ((-1134 . -1128) T) ((-1134 . -13) T) ((-1134 . -72) T) ((-1134 . -319) T) ((-1134 . -604) T) ((-1129 . -995) T) ((-1129 . -429) 173210) ((-1129 . -552) 173176) ((-1129 . -555) 173157) ((-1129 . -1013) T) ((-1129 . -1128) T) ((-1129 . -13) T) ((-1129 . -72) T) ((-1129 . -64) T) ((-1126 . -429) 173134) ((-1126 . -552) 173075) ((-1126 . -555) 173052) ((-1126 . -1013) 173030) ((-1126 . -1128) 173008) ((-1126 . -13) 172986) ((-1126 . -72) 172964) ((-1121 . -679) 172940) ((-1121 . -35) 172906) ((-1121 . -66) 172872) ((-1121 . -239) 172838) ((-1121 . -432) 172804) ((-1121 . -1117) 172770) ((-1121 . -1114) 172736) ((-1121 . -915) 172702) ((-1121 . -47) 172671) ((-1121 . -38) 172568) ((-1121 . -582) 172465) ((-1121 . -654) 172362) ((-1121 . -555) 172244) ((-1121 . -246) 172223) ((-1121 . -495) 172202) ((-1121 . -82) 172067) ((-1121 . -963) 171953) ((-1121 . -968) 171839) ((-1121 . -146) 171793) ((-1121 . -120) 171772) ((-1121 . -118) 171751) ((-1121 . -590) 171676) ((-1121 . -588) 171586) ((-1121 . -886) 171547) ((-1121 . -811) 171528) ((-1121 . -1128) T) ((-1121 . -13) T) ((-1121 . -806) 171507) ((-1121 . -961) T) ((-1121 . -663) T) ((-1121 . -1060) T) ((-1121 . -1025) T) ((-1121 . -970) T) ((-1121 . -21) T) ((-1121 . -23) T) ((-1121 . -1013) T) ((-1121 . -552) 171489) ((-1121 . -72) T) ((-1121 . -25) T) ((-1121 . -104) T) ((-1121 . -809) 171470) ((-1121 . -455) 171437) ((-1121 . -260) 171424) ((-1115 . -923) 171408) ((-1115 . -34) T) ((-1115 . -13) T) ((-1115 . -1128) T) ((-1115 . -72) 171362) ((-1115 . -552) 171297) ((-1115 . -260) 171235) ((-1115 . -455) 171168) ((-1115 . -1013) 171146) ((-1115 . -428) 171130) ((-1110 . -314) 171104) ((-1110 . -72) T) ((-1110 . -13) T) ((-1110 . -1128) T) ((-1110 . -552) 171086) ((-1110 . -1013) T) ((-1108 . -1013) T) ((-1108 . -552) 171068) ((-1108 . -1128) T) ((-1108 . -13) T) ((-1108 . -72) T) ((-1108 . -555) 171050) ((-1103 . -747) 171034) ((-1103 . -72) T) ((-1103 . -13) T) ((-1103 . -1128) T) ((-1103 . -552) 171016) ((-1103 . -1013) T) ((-1101 . -1106) 170995) ((-1101 . -183) 170943) ((-1101 . -76) 170891) ((-1101 . -260) 170689) ((-1101 . -455) 170441) ((-1101 . -428) 170376) ((-1101 . -124) 170324) ((-1101 . -553) NIL) ((-1101 . -193) 170272) ((-1101 . -549) 170251) ((-1101 . -243) 170230) ((-1101 . -1128) T) ((-1101 . -13) T) ((-1101 . -241) 170209) ((-1101 . -1013) T) ((-1101 . -552) 170191) ((-1101 . -72) T) ((-1101 . -34) T) ((-1101 . -538) 170170) ((-1097 . -1013) T) ((-1097 . -552) 170152) ((-1097 . -1128) T) ((-1097 . -13) T) ((-1097 . -72) T) ((-1096 . -752) T) ((-1096 . -759) T) ((-1096 . -756) T) ((-1096 . -1013) T) ((-1096 . -552) 170134) ((-1096 . -1128) T) ((-1096 . -13) T) ((-1096 . -72) T) ((-1096 . -319) T) ((-1096 . -604) T) ((-1095 . -752) T) ((-1095 . -759) T) ((-1095 . -756) T) ((-1095 . -1013) T) ((-1095 . -552) 170116) ((-1095 . -1128) T) ((-1095 . -13) T) ((-1095 . -72) T) ((-1095 . -319) T) ((-1094 . -1174) T) ((-1094 . -1013) T) ((-1094 . -552) 170083) ((-1094 . -1128) T) ((-1094 . -13) T) ((-1094 . -72) T) ((-1094 . -950) 170019) ((-1094 . -555) 169955) ((-1093 . -552) 169937) ((-1092 . -552) 169919) ((-1091 . -277) 169896) ((-1091 . -950) 169794) ((-1091 . -354) 169778) ((-1091 . -38) 169675) ((-1091 . -555) 169532) ((-1091 . -590) 169457) ((-1091 . -588) 169367) ((-1091 . -970) T) ((-1091 . -1025) T) ((-1091 . -1060) T) ((-1091 . -663) T) ((-1091 . -961) T) ((-1091 . -82) 169232) ((-1091 . -963) 169118) ((-1091 . -968) 169004) ((-1091 . -21) T) ((-1091 . -23) T) ((-1091 . -1013) T) ((-1091 . -552) 168986) ((-1091 . -1128) T) ((-1091 . -13) T) ((-1091 . -72) T) ((-1091 . -25) T) ((-1091 . -104) T) ((-1091 . -582) 168883) ((-1091 . -654) 168780) ((-1091 . -118) 168759) ((-1091 . -120) 168738) ((-1091 . -146) 168692) ((-1091 . -495) 168671) ((-1091 . -246) 168650) ((-1091 . -47) 168627) ((-1089 . -756) T) ((-1089 . -552) 168609) ((-1089 . -1013) T) ((-1089 . -72) T) ((-1089 . -13) T) ((-1089 . -1128) T) ((-1089 . -759) T) ((-1089 . -553) 168531) ((-1089 . -555) 168497) ((-1089 . -950) 168479) ((-1089 . -796) 168446) ((-1088 . -1171) 168430) ((-1088 . -190) 168389) ((-1088 . -555) 168271) ((-1088 . -590) 168196) ((-1088 . -588) 168106) ((-1088 . -104) T) ((-1088 . -25) T) ((-1088 . -72) T) ((-1088 . -552) 168088) ((-1088 . -1013) T) ((-1088 . -23) T) ((-1088 . -21) T) ((-1088 . -970) T) ((-1088 . -1025) T) ((-1088 . -1060) T) ((-1088 . -663) T) ((-1088 . -961) T) ((-1088 . -186) 168041) ((-1088 . -13) T) ((-1088 . -1128) T) ((-1088 . -189) 168000) ((-1088 . -241) 167965) ((-1088 . -809) 167878) ((-1088 . -806) 167766) ((-1088 . -811) 167679) ((-1088 . -886) 167649) ((-1088 . -38) 167546) ((-1088 . -82) 167411) ((-1088 . -963) 167297) ((-1088 . -968) 167183) ((-1088 . -582) 167080) ((-1088 . -654) 166977) ((-1088 . -118) 166956) ((-1088 . -120) 166935) ((-1088 . -146) 166889) ((-1088 . -495) 166868) ((-1088 . -246) 166847) ((-1088 . -47) 166824) ((-1088 . -1157) 166801) ((-1088 . -35) 166767) ((-1088 . -66) 166733) ((-1088 . -239) 166699) ((-1088 . -432) 166665) ((-1088 . -1117) 166631) ((-1088 . -1114) 166597) ((-1088 . -915) 166563) ((-1087 . -1163) 166524) ((-1087 . -312) 166503) ((-1087 . -1133) 166482) ((-1087 . -832) 166461) ((-1087 . -495) 166415) ((-1087 . -146) 166349) ((-1087 . -555) 166098) ((-1087 . -654) 165945) ((-1087 . -582) 165792) ((-1087 . -38) 165639) ((-1087 . -391) 165618) ((-1087 . -258) 165597) ((-1087 . -590) 165497) ((-1087 . -588) 165382) ((-1087 . -970) T) ((-1087 . -1025) T) ((-1087 . -1060) T) ((-1087 . -663) T) ((-1087 . -961) T) ((-1087 . -82) 165202) ((-1087 . -963) 165043) ((-1087 . -968) 164884) ((-1087 . -21) T) ((-1087 . -23) T) ((-1087 . -1013) T) ((-1087 . -552) 164866) ((-1087 . -1128) T) ((-1087 . -13) T) ((-1087 . -72) T) ((-1087 . -25) T) ((-1087 . -104) T) ((-1087 . -246) 164820) ((-1087 . -201) 164799) ((-1087 . -915) 164765) ((-1087 . -1114) 164731) ((-1087 . -1117) 164697) ((-1087 . -432) 164663) ((-1087 . -239) 164629) ((-1087 . -66) 164595) ((-1087 . -35) 164561) ((-1087 . -1157) 164531) ((-1087 . -47) 164501) ((-1087 . -120) 164480) ((-1087 . -118) 164459) ((-1087 . -886) 164422) ((-1087 . -811) 164328) ((-1087 . -806) 164209) ((-1087 . -809) 164115) ((-1087 . -241) 164073) ((-1087 . -189) 164025) ((-1087 . -186) 163971) ((-1087 . -190) 163923) ((-1087 . -1161) 163907) ((-1087 . -950) 163842) ((-1084 . -1154) 163826) ((-1084 . -1065) 163804) ((-1084 . -553) NIL) ((-1084 . -260) 163791) ((-1084 . -455) 163739) ((-1084 . -277) 163716) ((-1084 . -950) 163599) ((-1084 . -354) 163583) ((-1084 . -38) 163415) ((-1084 . -82) 163220) ((-1084 . -963) 163046) ((-1084 . -968) 162872) ((-1084 . -588) 162782) ((-1084 . -590) 162671) ((-1084 . -582) 162503) ((-1084 . -654) 162335) ((-1084 . -555) 162112) ((-1084 . -118) 162091) ((-1084 . -120) 162070) ((-1084 . -47) 162047) ((-1084 . -328) 162031) ((-1084 . -580) 161979) ((-1084 . -809) 161923) ((-1084 . -806) 161830) ((-1084 . -811) 161741) ((-1084 . -796) NIL) ((-1084 . -821) 161720) ((-1084 . -1133) 161699) ((-1084 . -861) 161669) ((-1084 . -832) 161648) ((-1084 . -495) 161562) ((-1084 . -246) 161476) ((-1084 . -146) 161370) ((-1084 . -391) 161304) ((-1084 . -258) 161283) ((-1084 . -241) 161210) ((-1084 . -190) T) ((-1084 . -104) T) ((-1084 . -25) T) ((-1084 . -72) T) ((-1084 . -552) 161192) ((-1084 . -1013) T) ((-1084 . -23) T) ((-1084 . -21) T) ((-1084 . -970) T) ((-1084 . -1025) T) ((-1084 . -1060) T) ((-1084 . -663) T) ((-1084 . -961) T) ((-1084 . -186) 161179) ((-1084 . -13) T) ((-1084 . -1128) T) ((-1084 . -189) T) ((-1084 . -225) 161163) ((-1084 . -184) 161147) ((-1081 . -1142) 161108) ((-1081 . -915) 161074) ((-1081 . -1114) 161040) ((-1081 . -1117) 161006) ((-1081 . -432) 160972) ((-1081 . -239) 160938) ((-1081 . -66) 160904) ((-1081 . -35) 160870) ((-1081 . -1157) 160847) ((-1081 . -47) 160824) ((-1081 . -555) 160625) ((-1081 . -654) 160427) ((-1081 . -582) 160229) ((-1081 . -590) 160084) ((-1081 . -588) 159924) ((-1081 . -968) 159720) ((-1081 . -963) 159516) ((-1081 . -82) 159268) ((-1081 . -38) 159070) ((-1081 . -886) 159040) ((-1081 . -241) 158868) ((-1081 . -1140) 158852) ((-1081 . -970) T) ((-1081 . -1025) T) ((-1081 . -1060) T) ((-1081 . -663) T) ((-1081 . -961) T) ((-1081 . -21) T) ((-1081 . -23) T) ((-1081 . -1013) T) ((-1081 . -552) 158834) ((-1081 . -1128) T) ((-1081 . -13) T) ((-1081 . -72) T) ((-1081 . -25) T) ((-1081 . -104) T) ((-1081 . -118) 158744) ((-1081 . -120) 158654) ((-1081 . -553) NIL) ((-1081 . -184) 158606) ((-1081 . -809) 158442) ((-1081 . -811) 158206) ((-1081 . -806) 157945) ((-1081 . -225) 157897) ((-1081 . -189) 157723) ((-1081 . -186) 157543) ((-1081 . -190) 157433) ((-1081 . -312) 157412) ((-1081 . -1133) 157391) ((-1081 . -832) 157370) ((-1081 . -495) 157324) ((-1081 . -146) 157258) ((-1081 . -391) 157237) ((-1081 . -258) 157216) ((-1081 . -246) 157170) ((-1081 . -201) 157149) ((-1081 . -288) 157101) ((-1081 . -455) 156835) ((-1081 . -260) 156720) ((-1081 . -328) 156672) ((-1081 . -580) 156624) ((-1081 . -342) 156576) ((-1081 . -796) NIL) ((-1081 . -740) NIL) ((-1081 . -714) NIL) ((-1081 . -716) NIL) ((-1081 . -756) NIL) ((-1081 . -759) NIL) ((-1081 . -718) NIL) ((-1081 . -721) NIL) ((-1081 . -755) NIL) ((-1081 . -794) 156528) ((-1081 . -821) NIL) ((-1081 . -933) NIL) ((-1081 . -950) 156494) ((-1081 . -1065) NIL) ((-1081 . -904) 156446) ((-1080 . -995) T) ((-1080 . -429) 156427) ((-1080 . -552) 156393) ((-1080 . -555) 156374) ((-1080 . -1013) T) ((-1080 . -1128) T) ((-1080 . -13) T) ((-1080 . -72) T) ((-1080 . -64) T) ((-1079 . -1013) T) ((-1079 . -552) 156356) ((-1079 . -1128) T) ((-1079 . -13) T) ((-1079 . -72) T) ((-1078 . -1013) T) ((-1078 . -552) 156338) ((-1078 . -1128) T) ((-1078 . -13) T) ((-1078 . -72) T) ((-1073 . -1106) 156314) ((-1073 . -183) 156259) ((-1073 . -76) 156204) ((-1073 . -260) 155993) ((-1073 . -455) 155733) ((-1073 . -428) 155665) ((-1073 . -124) 155610) ((-1073 . -553) NIL) ((-1073 . -193) 155555) ((-1073 . -549) 155531) ((-1073 . -243) 155507) ((-1073 . -1128) T) ((-1073 . -13) T) ((-1073 . -241) 155483) ((-1073 . -1013) T) ((-1073 . -552) 155465) ((-1073 . -72) T) ((-1073 . -34) T) ((-1073 . -538) 155441) ((-1072 . -1057) T) ((-1072 . -323) 155423) ((-1072 . -759) T) ((-1072 . -756) T) ((-1072 . -124) 155405) ((-1072 . -34) T) ((-1072 . -13) T) ((-1072 . -1128) T) ((-1072 . -72) T) ((-1072 . -552) 155387) ((-1072 . -260) NIL) ((-1072 . -455) NIL) ((-1072 . -1013) T) ((-1072 . -428) 155369) ((-1072 . -553) NIL) ((-1072 . -241) 155319) ((-1072 . -538) 155294) ((-1072 . -243) 155269) ((-1072 . -593) 155251) ((-1072 . -19) 155233) ((-1068 . -616) 155217) ((-1068 . -593) 155201) ((-1068 . -243) 155178) ((-1068 . -241) 155130) ((-1068 . -538) 155107) ((-1068 . -553) 155068) ((-1068 . -428) 155052) ((-1068 . -1013) 155030) ((-1068 . -455) 154963) ((-1068 . -260) 154901) ((-1068 . -552) 154836) ((-1068 . -72) 154790) ((-1068 . -1128) T) ((-1068 . -13) T) ((-1068 . -34) T) ((-1068 . -124) 154774) ((-1068 . -1167) 154758) ((-1068 . -923) 154742) ((-1068 . -1063) 154726) ((-1068 . -555) 154703) ((-1066 . -995) T) ((-1066 . -429) 154684) ((-1066 . -552) 154650) ((-1066 . -555) 154631) ((-1066 . -1013) T) ((-1066 . -1128) T) ((-1066 . -13) T) ((-1066 . -72) T) ((-1066 . -64) T) ((-1064 . -1106) 154610) ((-1064 . -183) 154558) ((-1064 . -76) 154506) ((-1064 . -260) 154304) ((-1064 . -455) 154056) ((-1064 . -428) 153991) ((-1064 . -124) 153939) ((-1064 . -553) NIL) ((-1064 . -193) 153887) ((-1064 . -549) 153866) ((-1064 . -243) 153845) ((-1064 . -1128) T) ((-1064 . -13) T) ((-1064 . -241) 153824) ((-1064 . -1013) T) ((-1064 . -552) 153806) ((-1064 . -72) T) ((-1064 . -34) T) ((-1064 . -538) 153785) ((-1061 . -1034) 153769) ((-1061 . -428) 153753) ((-1061 . -1013) 153731) ((-1061 . -455) 153664) ((-1061 . -260) 153602) ((-1061 . -552) 153537) ((-1061 . -72) 153491) ((-1061 . -1128) T) ((-1061 . -13) T) ((-1061 . -34) T) ((-1061 . -76) 153475) ((-1059 . -1020) 153444) ((-1059 . -1123) 153413) ((-1059 . -552) 153375) ((-1059 . -124) 153359) ((-1059 . -34) T) ((-1059 . -13) T) ((-1059 . -1128) T) ((-1059 . -72) T) ((-1059 . -260) 153297) ((-1059 . -455) 153230) ((-1059 . -1013) T) ((-1059 . -428) 153214) ((-1059 . -553) 153175) ((-1059 . -889) 153144) ((-1059 . -983) 153113) ((-1055 . -1036) 153058) ((-1055 . -428) 153042) ((-1055 . -455) 152975) ((-1055 . -260) 152913) ((-1055 . -34) T) ((-1055 . -965) 152853) ((-1055 . -950) 152751) ((-1055 . -555) 152670) ((-1055 . -354) 152654) ((-1055 . -580) 152602) ((-1055 . -590) 152540) ((-1055 . -328) 152524) ((-1055 . -190) 152503) ((-1055 . -186) 152451) ((-1055 . -189) 152405) ((-1055 . -225) 152389) ((-1055 . -806) 152313) ((-1055 . -811) 152239) ((-1055 . -809) 152198) ((-1055 . -184) 152182) ((-1055 . -654) 152117) ((-1055 . -582) 152052) ((-1055 . -588) 152011) ((-1055 . -104) T) ((-1055 . -25) T) ((-1055 . -72) T) ((-1055 . -13) T) ((-1055 . -1128) T) ((-1055 . -552) 151973) ((-1055 . -1013) T) ((-1055 . -23) T) ((-1055 . -21) T) ((-1055 . -968) 151957) ((-1055 . -963) 151941) ((-1055 . -82) 151920) ((-1055 . -961) T) ((-1055 . -663) T) ((-1055 . -1060) T) ((-1055 . -1025) T) ((-1055 . -970) T) ((-1055 . -38) 151880) ((-1055 . -553) 151841) ((-1054 . -923) 151812) ((-1054 . -34) T) ((-1054 . -13) T) ((-1054 . -1128) T) ((-1054 . -72) T) ((-1054 . -552) 151794) ((-1054 . -260) 151720) ((-1054 . -455) 151628) ((-1054 . -1013) T) ((-1054 . -428) 151599) ((-1053 . -1013) T) ((-1053 . -552) 151581) ((-1053 . -1128) T) ((-1053 . -13) T) ((-1053 . -72) T) ((-1048 . -1050) T) ((-1048 . -1174) T) ((-1048 . -64) T) ((-1048 . -72) T) ((-1048 . -13) T) ((-1048 . -1128) T) ((-1048 . -552) 151547) ((-1048 . -1013) T) ((-1048 . -555) 151528) ((-1048 . -429) 151509) ((-1048 . -995) T) ((-1046 . -1047) 151493) ((-1046 . -72) T) ((-1046 . -13) T) ((-1046 . -1128) T) ((-1046 . -552) 151475) ((-1046 . -1013) T) ((-1039 . -679) 151454) ((-1039 . -35) 151420) ((-1039 . -66) 151386) ((-1039 . -239) 151352) ((-1039 . -432) 151318) ((-1039 . -1117) 151284) ((-1039 . -1114) 151250) ((-1039 . -915) 151216) ((-1039 . -47) 151188) ((-1039 . -38) 151085) ((-1039 . -582) 150982) ((-1039 . -654) 150879) ((-1039 . -555) 150761) ((-1039 . -246) 150740) ((-1039 . -495) 150719) ((-1039 . -82) 150584) ((-1039 . -963) 150470) ((-1039 . -968) 150356) ((-1039 . -146) 150310) ((-1039 . -120) 150289) ((-1039 . -118) 150268) ((-1039 . -590) 150193) ((-1039 . -588) 150103) ((-1039 . -886) 150070) ((-1039 . -811) 150054) ((-1039 . -1128) T) ((-1039 . -13) T) ((-1039 . -806) 150036) ((-1039 . -961) T) ((-1039 . -663) T) ((-1039 . -1060) T) ((-1039 . -1025) T) ((-1039 . -970) T) ((-1039 . -21) T) ((-1039 . -23) T) ((-1039 . -1013) T) ((-1039 . -552) 150018) ((-1039 . -72) T) ((-1039 . -25) T) ((-1039 . -104) T) ((-1039 . -809) 150002) ((-1039 . -455) 149972) ((-1039 . -260) 149959) ((-1038 . -861) 149926) ((-1038 . -555) 149725) ((-1038 . -950) 149610) ((-1038 . -1133) 149589) ((-1038 . -821) 149568) ((-1038 . -796) 149427) ((-1038 . -811) 149411) ((-1038 . -806) 149393) ((-1038 . -809) 149377) ((-1038 . -455) 149329) ((-1038 . -391) 149283) ((-1038 . -580) 149231) ((-1038 . -590) 149120) ((-1038 . -328) 149104) ((-1038 . -47) 149076) ((-1038 . -38) 148928) ((-1038 . -582) 148780) ((-1038 . -654) 148632) ((-1038 . -246) 148566) ((-1038 . -495) 148500) ((-1038 . -82) 148325) ((-1038 . -963) 148171) ((-1038 . -968) 148017) ((-1038 . -146) 147931) ((-1038 . -120) 147910) ((-1038 . -118) 147889) ((-1038 . -588) 147799) ((-1038 . -104) T) ((-1038 . -25) T) ((-1038 . -72) T) ((-1038 . -13) T) ((-1038 . -1128) T) ((-1038 . -552) 147781) ((-1038 . -1013) T) ((-1038 . -23) T) ((-1038 . -21) T) ((-1038 . -961) T) ((-1038 . -663) T) ((-1038 . -1060) T) ((-1038 . -1025) T) ((-1038 . -970) T) ((-1038 . -354) 147765) ((-1038 . -277) 147737) ((-1038 . -260) 147724) ((-1038 . -553) 147472) ((-1033 . -483) T) ((-1033 . -1133) T) ((-1033 . -1065) T) ((-1033 . -950) 147454) ((-1033 . -553) 147369) ((-1033 . -933) T) ((-1033 . -796) 147351) ((-1033 . -755) T) ((-1033 . -721) T) ((-1033 . -718) T) ((-1033 . -759) T) ((-1033 . -756) T) ((-1033 . -716) T) ((-1033 . -714) T) ((-1033 . -740) T) ((-1033 . -590) 147323) ((-1033 . -580) 147305) ((-1033 . -832) T) ((-1033 . -495) T) ((-1033 . -246) T) ((-1033 . -146) T) ((-1033 . -555) 147277) ((-1033 . -654) 147264) ((-1033 . -582) 147251) ((-1033 . -968) 147238) ((-1033 . -963) 147225) ((-1033 . -82) 147210) ((-1033 . -38) 147197) ((-1033 . -391) T) ((-1033 . -258) T) ((-1033 . -189) T) ((-1033 . -186) 147184) ((-1033 . -190) T) ((-1033 . -116) T) ((-1033 . -961) T) ((-1033 . -663) T) ((-1033 . -1060) T) ((-1033 . -1025) T) ((-1033 . -970) T) ((-1033 . -21) T) ((-1033 . -588) 147156) ((-1033 . -23) T) ((-1033 . -1013) T) ((-1033 . -552) 147138) ((-1033 . -1128) T) ((-1033 . -13) T) ((-1033 . -72) T) ((-1033 . -25) T) ((-1033 . -104) T) ((-1033 . -120) T) ((-1033 . -752) T) ((-1033 . -319) T) ((-1033 . -84) T) ((-1033 . -604) T) ((-1029 . -995) T) ((-1029 . -429) 147119) ((-1029 . -552) 147085) ((-1029 . -555) 147066) ((-1029 . -1013) T) ((-1029 . -1128) T) ((-1029 . -13) T) ((-1029 . -72) T) ((-1029 . -64) T) ((-1028 . -1013) T) ((-1028 . -552) 147048) ((-1028 . -1128) T) ((-1028 . -13) T) ((-1028 . -72) T) ((-1026 . -196) 147027) ((-1026 . -1186) 146997) ((-1026 . -721) 146976) ((-1026 . -718) 146955) ((-1026 . -759) 146909) ((-1026 . -756) 146863) ((-1026 . -716) 146842) ((-1026 . -717) 146821) ((-1026 . -654) 146766) ((-1026 . -582) 146691) ((-1026 . -243) 146668) ((-1026 . -241) 146645) ((-1026 . -428) 146629) ((-1026 . -455) 146562) ((-1026 . -260) 146500) ((-1026 . -34) T) ((-1026 . -538) 146477) ((-1026 . -950) 146306) ((-1026 . -555) 146110) ((-1026 . -354) 146079) ((-1026 . -580) 145987) ((-1026 . -590) 145826) ((-1026 . -328) 145796) ((-1026 . -319) 145775) ((-1026 . -190) 145728) ((-1026 . -588) 145516) ((-1026 . -970) 145495) ((-1026 . -1025) 145474) ((-1026 . -1060) 145453) ((-1026 . -663) 145432) ((-1026 . -961) 145411) ((-1026 . -186) 145307) ((-1026 . -189) 145209) ((-1026 . -225) 145179) ((-1026 . -806) 145051) ((-1026 . -811) 144925) ((-1026 . -809) 144858) ((-1026 . -184) 144828) ((-1026 . -552) 144525) ((-1026 . -968) 144450) ((-1026 . -963) 144355) ((-1026 . -82) 144275) ((-1026 . -104) 144150) ((-1026 . -25) 143987) ((-1026 . -72) 143724) ((-1026 . -13) T) ((-1026 . -1128) T) ((-1026 . -1013) 143480) ((-1026 . -23) 143336) ((-1026 . -21) 143251) ((-1022 . -1023) 143235) ((-1022 . |MappingCategory|) 143209) ((-1022 . -1128) T) ((-1022 . -80) 143193) ((-1022 . -1013) T) ((-1022 . -552) 143175) ((-1022 . -13) T) ((-1022 . -72) T) ((-1017 . -1016) 143139) ((-1017 . -72) T) ((-1017 . -552) 143121) ((-1017 . -1013) T) ((-1017 . -241) 143077) ((-1017 . -1128) T) ((-1017 . -13) T) ((-1017 . -557) 142992) ((-1015 . -1016) 142944) ((-1015 . -72) T) ((-1015 . -552) 142926) ((-1015 . -1013) T) ((-1015 . -241) 142882) ((-1015 . -1128) T) ((-1015 . -13) T) ((-1015 . -557) 142785) ((-1014 . -319) T) ((-1014 . -72) T) ((-1014 . -13) T) ((-1014 . -1128) T) ((-1014 . -552) 142767) ((-1014 . -1013) T) ((-1009 . -368) 142751) ((-1009 . -1011) 142735) ((-1009 . -319) 142714) ((-1009 . -193) 142698) ((-1009 . -553) 142659) ((-1009 . -124) 142643) ((-1009 . -428) 142627) ((-1009 . -1013) T) ((-1009 . -455) 142560) ((-1009 . -260) 142498) ((-1009 . -552) 142480) ((-1009 . -72) T) ((-1009 . -1128) T) ((-1009 . -13) T) ((-1009 . -34) T) ((-1009 . -76) 142464) ((-1009 . -183) 142448) ((-1008 . -995) T) ((-1008 . -429) 142429) ((-1008 . -552) 142395) ((-1008 . -555) 142376) ((-1008 . -1013) T) ((-1008 . -1128) T) ((-1008 . -13) T) ((-1008 . -72) T) ((-1008 . -64) T) ((-1004 . -1128) T) ((-1004 . -13) T) ((-1004 . -1013) 142346) ((-1004 . -552) 142305) ((-1004 . -72) 142275) ((-1003 . -995) T) ((-1003 . -429) 142256) ((-1003 . -552) 142222) ((-1003 . -555) 142203) ((-1003 . -1013) T) ((-1003 . -1128) T) ((-1003 . -13) T) ((-1003 . -72) T) ((-1003 . -64) T) ((-1001 . -1006) 142187) ((-1001 . -557) 142171) ((-1001 . -1013) 142149) ((-1001 . -552) 142116) ((-1001 . -1128) 142094) ((-1001 . -13) 142072) ((-1001 . -72) 142050) ((-1001 . -1007) 142008) ((-1000 . -228) 141992) ((-1000 . -555) 141976) ((-1000 . -950) 141960) ((-1000 . -759) T) ((-1000 . -72) T) ((-1000 . -1013) T) ((-1000 . -552) 141942) ((-1000 . -756) T) ((-1000 . -186) 141929) ((-1000 . -13) T) ((-1000 . -1128) T) ((-1000 . -189) T) ((-999 . -213) 141866) ((-999 . -555) 141609) ((-999 . -950) 141438) ((-999 . -553) NIL) ((-999 . -277) 141399) ((-999 . -354) 141383) ((-999 . -38) 141235) ((-999 . -82) 141060) ((-999 . -963) 140906) ((-999 . -968) 140752) ((-999 . -588) 140662) ((-999 . -590) 140551) ((-999 . -582) 140403) ((-999 . -654) 140255) ((-999 . -118) 140234) ((-999 . -120) 140213) ((-999 . -146) 140127) ((-999 . -495) 140061) ((-999 . -246) 139995) ((-999 . -47) 139956) ((-999 . -328) 139940) ((-999 . -580) 139888) ((-999 . -391) 139842) ((-999 . -455) 139705) ((-999 . -809) 139640) ((-999 . -806) 139538) ((-999 . -811) 139440) ((-999 . -796) NIL) ((-999 . -821) 139419) ((-999 . -1133) 139398) ((-999 . -861) 139343) ((-999 . -260) 139330) ((-999 . -190) 139309) ((-999 . -104) T) ((-999 . -25) T) ((-999 . -72) T) ((-999 . -552) 139291) ((-999 . -1013) T) ((-999 . -23) T) ((-999 . -21) T) ((-999 . -970) T) ((-999 . -1025) T) ((-999 . -1060) T) ((-999 . -663) T) ((-999 . -961) T) ((-999 . -186) 139239) ((-999 . -13) T) ((-999 . -1128) T) ((-999 . -189) 139193) ((-999 . -225) 139177) ((-999 . -184) 139161) ((-997 . -552) 139143) ((-994 . -756) T) ((-994 . -552) 139125) ((-994 . -1013) T) ((-994 . -72) T) ((-994 . -13) T) ((-994 . -1128) T) ((-994 . -759) T) ((-994 . -553) 139106) ((-991 . -661) 139085) ((-991 . -950) 138983) ((-991 . -354) 138967) ((-991 . -580) 138915) ((-991 . -590) 138792) ((-991 . -328) 138776) ((-991 . -321) 138755) ((-991 . -120) 138734) ((-991 . -555) 138559) ((-991 . -654) 138433) ((-991 . -582) 138307) ((-991 . -588) 138205) ((-991 . -968) 138118) ((-991 . -963) 138031) ((-991 . -82) 137923) ((-991 . -38) 137797) ((-991 . -352) 137776) ((-991 . -344) 137755) ((-991 . -118) 137709) ((-991 . -1065) 137688) ((-991 . -299) 137667) ((-991 . -319) 137621) ((-991 . -201) 137575) ((-991 . -246) 137529) ((-991 . -258) 137483) ((-991 . -391) 137437) ((-991 . -495) 137391) ((-991 . -832) 137345) ((-991 . -1133) 137299) ((-991 . -312) 137253) ((-991 . -190) 137181) ((-991 . -186) 137057) ((-991 . -189) 136939) ((-991 . -225) 136909) ((-991 . -806) 136781) ((-991 . -811) 136655) ((-991 . -809) 136588) ((-991 . -184) 136558) ((-991 . -553) 136542) ((-991 . -21) T) ((-991 . -23) T) ((-991 . -1013) T) ((-991 . -552) 136524) ((-991 . -1128) T) ((-991 . -13) T) ((-991 . -72) T) ((-991 . -25) T) ((-991 . -104) T) ((-991 . -961) T) ((-991 . -663) T) ((-991 . -1060) T) ((-991 . -1025) T) ((-991 . -970) T) ((-991 . -146) T) ((-989 . -1013) T) ((-989 . -552) 136506) ((-989 . -1128) T) ((-989 . -13) T) ((-989 . -72) T) ((-989 . -241) 136485) ((-988 . -1013) T) ((-988 . -552) 136467) ((-988 . -1128) T) ((-988 . -13) T) ((-988 . -72) T) ((-987 . -1013) T) ((-987 . -552) 136449) ((-987 . -1128) T) ((-987 . -13) T) ((-987 . -72) T) ((-987 . -241) 136428) ((-987 . -950) 136405) ((-987 . -555) 136382) ((-986 . -1128) T) ((-986 . -13) T) ((-985 . -995) T) ((-985 . -429) 136363) ((-985 . -552) 136329) ((-985 . -555) 136310) ((-985 . -1013) T) ((-985 . -1128) T) ((-985 . -13) T) ((-985 . -72) T) ((-985 . -64) T) ((-978 . -995) T) ((-978 . -429) 136291) ((-978 . -552) 136257) ((-978 . -555) 136238) ((-978 . -1013) T) ((-978 . -1128) T) ((-978 . -13) T) ((-978 . -72) T) ((-978 . -64) T) ((-975 . -483) T) ((-975 . -1133) T) ((-975 . -1065) T) ((-975 . -950) 136220) ((-975 . -553) 136135) ((-975 . -933) T) ((-975 . -796) 136117) ((-975 . -755) T) ((-975 . -721) T) ((-975 . -718) T) ((-975 . -759) T) ((-975 . -756) T) ((-975 . -716) T) ((-975 . -714) T) ((-975 . -740) T) ((-975 . -590) 136089) ((-975 . -580) 136071) ((-975 . -832) T) ((-975 . -495) T) ((-975 . -246) T) ((-975 . -146) T) ((-975 . -555) 136043) ((-975 . -654) 136030) ((-975 . -582) 136017) ((-975 . -968) 136004) ((-975 . -963) 135991) ((-975 . -82) 135976) ((-975 . -38) 135963) ((-975 . -391) T) ((-975 . -258) T) ((-975 . -189) T) ((-975 . -186) 135950) ((-975 . -190) T) ((-975 . -116) T) ((-975 . -961) T) ((-975 . -663) T) ((-975 . -1060) T) ((-975 . -1025) T) ((-975 . -970) T) ((-975 . -21) T) ((-975 . -588) 135922) ((-975 . -23) T) ((-975 . -1013) T) ((-975 . -552) 135904) ((-975 . -1128) T) ((-975 . -13) T) ((-975 . -72) T) ((-975 . -25) T) ((-975 . -104) T) ((-975 . -120) T) ((-975 . -557) 135885) ((-974 . -980) 135864) ((-974 . -72) T) ((-974 . -13) T) ((-974 . -1128) T) ((-974 . -552) 135846) ((-974 . -1013) T) ((-971 . -1128) T) ((-971 . -13) T) ((-971 . -1013) 135824) ((-971 . -552) 135791) ((-971 . -72) 135769) ((-966 . -965) 135709) ((-966 . -582) 135654) ((-966 . -654) 135599) ((-966 . -34) T) ((-966 . -260) 135537) ((-966 . -455) 135470) ((-966 . -428) 135454) ((-966 . -590) 135438) ((-966 . -588) 135407) ((-966 . -104) T) ((-966 . -25) T) ((-966 . -72) T) ((-966 . -13) T) ((-966 . -1128) T) ((-966 . -552) 135369) ((-966 . -1013) T) ((-966 . -23) T) ((-966 . -21) T) ((-966 . -968) 135353) ((-966 . -963) 135337) ((-966 . -82) 135316) ((-966 . -1186) 135286) ((-966 . -553) 135247) ((-958 . -983) 135176) ((-958 . -889) 135105) ((-958 . -553) 135047) ((-958 . -428) 135012) ((-958 . -1013) T) ((-958 . -455) 134896) ((-958 . -260) 134804) ((-958 . -552) 134747) ((-958 . -72) T) ((-958 . -1128) T) ((-958 . -13) T) ((-958 . -34) T) ((-958 . -124) 134712) ((-958 . -1123) 134641) ((-948 . -995) T) ((-948 . -429) 134622) ((-948 . -552) 134588) ((-948 . -555) 134569) ((-948 . -1013) T) ((-948 . -1128) T) ((-948 . -13) T) ((-948 . -72) T) ((-948 . -64) T) ((-947 . -146) T) ((-947 . -555) 134538) ((-947 . -970) T) ((-947 . -1025) T) ((-947 . -1060) T) ((-947 . -663) T) ((-947 . -961) T) ((-947 . -590) 134512) ((-947 . -588) 134471) ((-947 . -104) T) ((-947 . -25) T) ((-947 . -72) T) ((-947 . -13) T) ((-947 . -1128) T) ((-947 . -552) 134453) ((-947 . -1013) T) ((-947 . -23) T) ((-947 . -21) T) ((-947 . -968) 134427) ((-947 . -963) 134401) ((-947 . -82) 134368) ((-947 . -38) 134352) ((-947 . -582) 134336) ((-947 . -654) 134320) ((-940 . -983) 134289) ((-940 . -889) 134258) ((-940 . -553) 134219) ((-940 . -428) 134203) ((-940 . -1013) T) ((-940 . -455) 134136) ((-940 . -260) 134074) ((-940 . -552) 134036) ((-940 . -72) T) ((-940 . -1128) T) ((-940 . -13) T) ((-940 . -34) T) ((-940 . -124) 134020) ((-940 . -1123) 133989) ((-939 . -1013) T) ((-939 . -552) 133971) ((-939 . -1128) T) ((-939 . -13) T) ((-939 . -72) T) ((-937 . -925) T) ((-937 . -915) T) ((-937 . -714) T) ((-937 . -716) T) ((-937 . -756) T) ((-937 . -759) T) ((-937 . -718) T) ((-937 . -721) T) ((-937 . -755) T) ((-937 . -950) 133856) ((-937 . -354) 133818) ((-937 . -201) T) ((-937 . -246) T) ((-937 . -258) T) ((-937 . -391) T) ((-937 . -38) 133755) ((-937 . -582) 133692) ((-937 . -654) 133629) ((-937 . -555) 133566) ((-937 . -495) T) ((-937 . -832) T) ((-937 . -1133) T) ((-937 . -312) T) ((-937 . -82) 133475) ((-937 . -963) 133412) ((-937 . -968) 133349) ((-937 . -146) T) ((-937 . -120) T) ((-937 . -590) 133286) ((-937 . -588) 133223) ((-937 . -104) T) ((-937 . -25) T) ((-937 . -72) T) ((-937 . -13) T) ((-937 . -1128) T) ((-937 . -552) 133205) ((-937 . -1013) T) ((-937 . -23) T) ((-937 . -21) T) ((-937 . -961) T) ((-937 . -663) T) ((-937 . -1060) T) ((-937 . -1025) T) ((-937 . -970) T) ((-932 . -995) T) ((-932 . -429) 133186) ((-932 . -552) 133152) ((-932 . -555) 133133) ((-932 . -1013) T) ((-932 . -1128) T) ((-932 . -13) T) ((-932 . -72) T) ((-932 . -64) T) ((-917 . -904) 133115) ((-917 . -1065) T) ((-917 . -555) 133065) ((-917 . -950) 133025) ((-917 . -553) 132955) ((-917 . -933) T) ((-917 . -821) NIL) ((-917 . -794) 132937) ((-917 . -755) T) ((-917 . -721) T) ((-917 . -718) T) ((-917 . -759) T) ((-917 . -756) T) ((-917 . -716) T) ((-917 . -714) T) ((-917 . -740) T) ((-917 . -796) 132919) ((-917 . -342) 132901) ((-917 . -580) 132883) ((-917 . -328) 132865) ((-917 . -241) NIL) ((-917 . -260) NIL) ((-917 . -455) NIL) ((-917 . -288) 132847) ((-917 . -201) T) ((-917 . -82) 132774) ((-917 . -963) 132724) ((-917 . -968) 132674) ((-917 . -246) T) ((-917 . -654) 132624) ((-917 . -582) 132574) ((-917 . -590) 132524) ((-917 . -588) 132474) ((-917 . -38) 132424) ((-917 . -258) T) ((-917 . -391) T) ((-917 . -146) T) ((-917 . -495) T) ((-917 . -832) T) ((-917 . -1133) T) ((-917 . -312) T) ((-917 . -190) T) ((-917 . -186) 132411) ((-917 . -189) T) ((-917 . -225) 132393) ((-917 . -806) NIL) ((-917 . -811) NIL) ((-917 . -809) NIL) ((-917 . -184) 132375) ((-917 . -120) T) ((-917 . -118) NIL) ((-917 . -104) T) ((-917 . -25) T) ((-917 . -72) T) ((-917 . -13) T) ((-917 . -1128) T) ((-917 . -552) 132335) ((-917 . -1013) T) ((-917 . -23) T) ((-917 . -21) T) ((-917 . -961) T) ((-917 . -663) T) ((-917 . -1060) T) ((-917 . -1025) T) ((-917 . -970) T) ((-916 . -291) 132309) ((-916 . -146) T) ((-916 . -555) 132239) ((-916 . -970) T) ((-916 . -1025) T) ((-916 . -1060) T) ((-916 . -663) T) ((-916 . -961) T) ((-916 . -590) 132141) ((-916 . -588) 132071) ((-916 . -104) T) ((-916 . -25) T) ((-916 . -72) T) ((-916 . -13) T) ((-916 . -1128) T) ((-916 . -552) 132053) ((-916 . -1013) T) ((-916 . -23) T) ((-916 . -21) T) ((-916 . -968) 131998) ((-916 . -963) 131943) ((-916 . -82) 131860) ((-916 . -553) 131844) ((-916 . -184) 131821) ((-916 . -809) 131773) ((-916 . -811) 131685) ((-916 . -806) 131595) ((-916 . -225) 131572) ((-916 . -189) 131512) ((-916 . -186) 131446) ((-916 . -190) 131418) ((-916 . -312) T) ((-916 . -1133) T) ((-916 . -832) T) ((-916 . -495) T) ((-916 . -654) 131363) ((-916 . -582) 131308) ((-916 . -38) 131253) ((-916 . -391) T) ((-916 . -258) T) ((-916 . -246) T) ((-916 . -201) T) ((-916 . -319) NIL) ((-916 . -299) NIL) ((-916 . -1065) NIL) ((-916 . -118) 131225) ((-916 . -344) NIL) ((-916 . -352) 131197) ((-916 . -120) 131169) ((-916 . -321) 131141) ((-916 . -328) 131118) ((-916 . -580) 131052) ((-916 . -354) 131029) ((-916 . -950) 130906) ((-916 . -661) 130878) ((-913 . -908) 130862) ((-913 . -428) 130846) ((-913 . -1013) 130824) ((-913 . -455) 130757) ((-913 . -260) 130695) ((-913 . -552) 130630) ((-913 . -72) 130584) ((-913 . -1128) T) ((-913 . -13) T) ((-913 . -34) T) ((-913 . -76) 130568) ((-909 . -911) 130552) ((-909 . -759) 130531) ((-909 . -756) 130510) ((-909 . -950) 130408) ((-909 . -354) 130392) ((-909 . -580) 130340) ((-909 . -590) 130242) ((-909 . -328) 130226) ((-909 . -241) 130184) ((-909 . -260) 130149) ((-909 . -455) 130061) ((-909 . -288) 130045) ((-909 . -38) 129993) ((-909 . -82) 129871) ((-909 . -963) 129770) ((-909 . -968) 129669) ((-909 . -588) 129592) ((-909 . -582) 129540) ((-909 . -654) 129488) ((-909 . -555) 129382) ((-909 . -246) 129336) ((-909 . -201) 129315) ((-909 . -190) 129294) ((-909 . -186) 129242) ((-909 . -189) 129196) ((-909 . -225) 129180) ((-909 . -806) 129104) ((-909 . -811) 129030) ((-909 . -809) 128989) ((-909 . -184) 128973) ((-909 . -553) 128934) ((-909 . -120) 128913) ((-909 . -118) 128892) ((-909 . -104) T) ((-909 . -25) T) ((-909 . -72) T) ((-909 . -13) T) ((-909 . -1128) T) ((-909 . -552) 128874) ((-909 . -1013) T) ((-909 . -23) T) ((-909 . -21) T) ((-909 . -961) T) ((-909 . -663) T) ((-909 . -1060) T) ((-909 . -1025) T) ((-909 . -970) T) ((-907 . -995) T) ((-907 . -429) 128855) ((-907 . -552) 128821) ((-907 . -555) 128802) ((-907 . -1013) T) ((-907 . -1128) T) ((-907 . -13) T) ((-907 . -72) T) ((-907 . -64) T) ((-906 . -21) T) ((-906 . -588) 128784) ((-906 . -23) T) ((-906 . -1013) T) ((-906 . -552) 128766) ((-906 . -1128) T) ((-906 . -13) T) ((-906 . -72) T) ((-906 . -25) T) ((-906 . -104) T) ((-906 . -241) 128733) ((-902 . -552) 128715) ((-899 . -1013) T) ((-899 . -552) 128697) ((-899 . -1128) T) ((-899 . -13) T) ((-899 . -72) T) ((-884 . -721) T) ((-884 . -718) T) ((-884 . -759) T) ((-884 . -756) T) ((-884 . -716) T) ((-884 . -23) T) ((-884 . -1013) T) ((-884 . -552) 128657) ((-884 . -1128) T) ((-884 . -13) T) ((-884 . -72) T) ((-884 . -25) T) ((-884 . -104) T) ((-883 . -995) T) ((-883 . -429) 128638) ((-883 . -552) 128604) ((-883 . -555) 128585) ((-883 . -1013) T) ((-883 . -1128) T) ((-883 . -13) T) ((-883 . -72) T) ((-883 . -64) T) ((-877 . -880) T) ((-877 . -72) T) ((-877 . -552) 128567) ((-877 . -1013) T) ((-877 . -604) T) ((-877 . -13) T) ((-877 . -1128) T) ((-877 . -84) T) ((-877 . -555) 128551) ((-876 . -552) 128533) ((-875 . -1013) T) ((-875 . -552) 128515) ((-875 . -1128) T) ((-875 . -13) T) ((-875 . -72) T) ((-875 . -319) 128468) ((-875 . -663) 128370) ((-875 . -1025) 128272) ((-875 . -23) 128086) ((-875 . -25) 127900) ((-875 . -104) 127758) ((-875 . -412) 127711) ((-875 . -21) 127666) ((-875 . -588) 127610) ((-875 . -717) 127563) ((-875 . -716) 127516) ((-875 . -756) 127418) ((-875 . -759) 127320) ((-875 . -718) 127273) ((-875 . -721) 127226) ((-869 . -19) 127210) ((-869 . -593) 127194) ((-869 . -243) 127171) ((-869 . -241) 127123) ((-869 . -538) 127100) ((-869 . -553) 127061) ((-869 . -428) 127045) ((-869 . -1013) 126998) ((-869 . -455) 126931) ((-869 . -260) 126869) ((-869 . -552) 126784) ((-869 . -72) 126718) ((-869 . -1128) T) ((-869 . -13) T) ((-869 . -34) T) ((-869 . -124) 126702) ((-869 . -756) 126681) ((-869 . -759) 126660) ((-869 . -323) 126644) ((-867 . -277) 126623) ((-867 . -950) 126521) ((-867 . -354) 126505) ((-867 . -38) 126402) ((-867 . -555) 126259) ((-867 . -590) 126184) ((-867 . -588) 126094) ((-867 . -970) T) ((-867 . -1025) T) ((-867 . -1060) T) ((-867 . -663) T) ((-867 . -961) T) ((-867 . -82) 125959) ((-867 . -963) 125845) ((-867 . -968) 125731) ((-867 . -21) T) ((-867 . -23) T) ((-867 . -1013) T) ((-867 . -552) 125713) ((-867 . -1128) T) ((-867 . -13) T) ((-867 . -72) T) ((-867 . -25) T) ((-867 . -104) T) ((-867 . -582) 125610) ((-867 . -654) 125507) ((-867 . -118) 125486) ((-867 . -120) 125465) ((-867 . -146) 125419) ((-867 . -495) 125398) ((-867 . -246) 125377) ((-867 . -47) 125356) ((-865 . -1013) T) ((-865 . -552) 125322) ((-865 . -1128) T) ((-865 . -13) T) ((-865 . -72) T) ((-857 . -861) 125283) ((-857 . -555) 125079) ((-857 . -950) 124961) ((-857 . -1133) 124940) ((-857 . -821) 124919) ((-857 . -796) 124844) ((-857 . -811) 124825) ((-857 . -806) 124804) ((-857 . -809) 124785) ((-857 . -455) 124731) ((-857 . -391) 124685) ((-857 . -580) 124633) ((-857 . -590) 124522) ((-857 . -328) 124506) ((-857 . -47) 124475) ((-857 . -38) 124327) ((-857 . -582) 124179) ((-857 . -654) 124031) ((-857 . -246) 123965) ((-857 . -495) 123899) ((-857 . -82) 123724) ((-857 . -963) 123570) ((-857 . -968) 123416) ((-857 . -146) 123330) ((-857 . -120) 123309) ((-857 . -118) 123288) ((-857 . -588) 123198) ((-857 . -104) T) ((-857 . -25) T) ((-857 . -72) T) ((-857 . -13) T) ((-857 . -1128) T) ((-857 . -552) 123180) ((-857 . -1013) T) ((-857 . -23) T) ((-857 . -21) T) ((-857 . -961) T) ((-857 . -663) T) ((-857 . -1060) T) ((-857 . -1025) T) ((-857 . -970) T) ((-857 . -354) 123164) ((-857 . -277) 123133) ((-857 . -260) 123120) ((-857 . -553) 122981) ((-854 . -893) 122965) ((-854 . -19) 122949) ((-854 . -593) 122933) ((-854 . -243) 122910) ((-854 . -241) 122862) ((-854 . -538) 122839) ((-854 . -553) 122800) ((-854 . -428) 122784) ((-854 . -1013) 122737) ((-854 . -455) 122670) ((-854 . -260) 122608) ((-854 . -552) 122523) ((-854 . -72) 122457) ((-854 . -1128) T) ((-854 . -13) T) ((-854 . -34) T) ((-854 . -124) 122441) ((-854 . -756) 122420) ((-854 . -759) 122399) ((-854 . -323) 122383) ((-854 . -1177) 122367) ((-854 . -557) 122344) ((-838 . -887) T) ((-838 . -552) 122326) ((-836 . -866) T) ((-836 . -552) 122308) ((-830 . -718) T) ((-830 . -759) T) ((-830 . -756) T) ((-830 . -1013) T) ((-830 . -552) 122290) ((-830 . -1128) T) ((-830 . -13) T) ((-830 . -72) T) ((-830 . -25) T) ((-830 . -663) T) ((-830 . -1025) T) ((-825 . -312) T) ((-825 . -1133) T) ((-825 . -832) T) ((-825 . -495) T) ((-825 . -146) T) ((-825 . -555) 122227) ((-825 . -654) 122179) ((-825 . -582) 122131) ((-825 . -38) 122083) ((-825 . -391) T) ((-825 . -258) T) ((-825 . -590) 122035) ((-825 . -588) 121972) ((-825 . -970) T) ((-825 . -1025) T) ((-825 . -1060) T) ((-825 . -663) T) ((-825 . -961) T) ((-825 . -82) 121903) ((-825 . -963) 121855) ((-825 . -968) 121807) ((-825 . -21) T) ((-825 . -23) T) ((-825 . -1013) T) ((-825 . -552) 121789) ((-825 . -1128) T) ((-825 . -13) T) ((-825 . -72) T) ((-825 . -25) T) ((-825 . -104) T) ((-825 . -246) T) ((-825 . -201) T) ((-817 . -299) T) ((-817 . -1065) T) ((-817 . -319) T) ((-817 . -118) T) ((-817 . -312) T) ((-817 . -1133) T) ((-817 . -832) T) ((-817 . -495) T) ((-817 . -146) T) ((-817 . -555) 121739) ((-817 . -654) 121704) ((-817 . -582) 121669) ((-817 . -38) 121634) ((-817 . -391) T) ((-817 . -258) T) ((-817 . -82) 121583) ((-817 . -963) 121548) ((-817 . -968) 121513) ((-817 . -588) 121463) ((-817 . -590) 121428) ((-817 . -246) T) ((-817 . -201) T) ((-817 . -344) T) ((-817 . -189) T) ((-817 . -1128) T) ((-817 . -13) T) ((-817 . -186) 121415) ((-817 . -961) T) ((-817 . -663) T) ((-817 . -1060) T) ((-817 . -1025) T) ((-817 . -970) T) ((-817 . -21) T) ((-817 . -23) T) ((-817 . -1013) T) ((-817 . -552) 121397) ((-817 . -72) T) ((-817 . -25) T) ((-817 . -104) T) ((-817 . -190) T) ((-817 . -280) 121384) ((-817 . -120) 121366) ((-817 . -950) 121353) ((-817 . -1186) 121340) ((-817 . -1197) 121327) ((-817 . -553) 121309) ((-816 . -1013) T) ((-816 . -552) 121291) ((-816 . -1128) T) ((-816 . -13) T) ((-816 . -72) T) ((-813 . -815) 121275) ((-813 . -759) 121229) ((-813 . -756) 121183) ((-813 . -663) T) ((-813 . -1013) T) ((-813 . -552) 121165) ((-813 . -72) T) ((-813 . -1025) T) ((-813 . -412) T) ((-813 . -1128) T) ((-813 . -13) T) ((-813 . -241) 121144) ((-812 . -92) 121128) ((-812 . -428) 121112) ((-812 . -1013) 121090) ((-812 . -455) 121023) ((-812 . -260) 120961) ((-812 . -552) 120875) ((-812 . -72) 120829) ((-812 . -1128) T) ((-812 . -13) T) ((-812 . -34) T) ((-812 . -923) 120813) ((-803 . -756) T) ((-803 . -552) 120795) ((-803 . -1013) T) ((-803 . -72) T) ((-803 . -13) T) ((-803 . -1128) T) ((-803 . -759) T) ((-803 . -950) 120772) ((-803 . -555) 120749) ((-800 . -1013) T) ((-800 . -552) 120731) ((-800 . -1128) T) ((-800 . -13) T) ((-800 . -72) T) ((-800 . -950) 120699) ((-800 . -555) 120667) ((-798 . -1013) T) ((-798 . -552) 120649) ((-798 . -1128) T) ((-798 . -13) T) ((-798 . -72) T) ((-795 . -1013) T) ((-795 . -552) 120631) ((-795 . -1128) T) ((-795 . -13) T) ((-795 . -72) T) ((-785 . -995) T) ((-785 . -429) 120612) ((-785 . -552) 120578) ((-785 . -555) 120559) ((-785 . -1013) T) ((-785 . -1128) T) ((-785 . -13) T) ((-785 . -72) T) ((-785 . -64) T) ((-785 . -1174) T) ((-783 . -1013) T) ((-783 . -552) 120541) ((-783 . -1128) T) ((-783 . -13) T) ((-783 . -72) T) ((-783 . -555) 120523) ((-782 . -1128) T) ((-782 . -13) T) ((-782 . -552) 120398) ((-782 . -1013) 120349) ((-782 . -72) 120300) ((-781 . -904) 120284) ((-781 . -1065) 120262) ((-781 . -950) 120129) ((-781 . -555) 120028) ((-781 . -553) 119831) ((-781 . -933) 119810) ((-781 . -821) 119789) ((-781 . -794) 119773) ((-781 . -755) 119752) ((-781 . -721) 119731) ((-781 . -718) 119710) ((-781 . -759) 119664) ((-781 . -756) 119618) ((-781 . -716) 119597) ((-781 . -714) 119576) ((-781 . -740) 119555) ((-781 . -796) 119480) ((-781 . -342) 119464) ((-781 . -580) 119412) ((-781 . -590) 119328) ((-781 . -328) 119312) ((-781 . -241) 119270) ((-781 . -260) 119235) ((-781 . -455) 119147) ((-781 . -288) 119131) ((-781 . -201) T) ((-781 . -82) 119062) ((-781 . -963) 119014) ((-781 . -968) 118966) ((-781 . -246) T) ((-781 . -654) 118918) ((-781 . -582) 118870) ((-781 . -588) 118807) ((-781 . -38) 118759) ((-781 . -258) T) ((-781 . -391) T) ((-781 . -146) T) ((-781 . -495) T) ((-781 . -832) T) ((-781 . -1133) T) ((-781 . -312) T) ((-781 . -190) 118738) ((-781 . -186) 118686) ((-781 . -189) 118640) ((-781 . -225) 118624) ((-781 . -806) 118548) ((-781 . -811) 118474) ((-781 . -809) 118433) ((-781 . -184) 118417) ((-781 . -120) 118371) ((-781 . -118) 118350) ((-781 . -104) T) ((-781 . -25) T) ((-781 . -72) T) ((-781 . -13) T) ((-781 . -1128) T) ((-781 . -552) 118332) ((-781 . -1013) T) ((-781 . -23) T) ((-781 . -21) T) ((-781 . -961) T) ((-781 . -663) T) ((-781 . -1060) T) ((-781 . -1025) T) ((-781 . -970) T) ((-780 . -904) 118309) ((-780 . -1065) NIL) ((-780 . -950) 118286) ((-780 . -555) 118216) ((-780 . -553) NIL) ((-780 . -933) NIL) ((-780 . -821) NIL) ((-780 . -794) 118193) ((-780 . -755) NIL) ((-780 . -721) NIL) ((-780 . -718) NIL) ((-780 . -759) NIL) ((-780 . -756) NIL) ((-780 . -716) NIL) ((-780 . -714) NIL) ((-780 . -740) NIL) ((-780 . -796) NIL) ((-780 . -342) 118170) ((-780 . -580) 118147) ((-780 . -590) 118092) ((-780 . -328) 118069) ((-780 . -241) 117999) ((-780 . -260) 117943) ((-780 . -455) 117806) ((-780 . -288) 117783) ((-780 . -201) T) ((-780 . -82) 117700) ((-780 . -963) 117645) ((-780 . -968) 117590) ((-780 . -246) T) ((-780 . -654) 117535) ((-780 . -582) 117480) ((-780 . -588) 117410) ((-780 . -38) 117355) ((-780 . -258) T) ((-780 . -391) T) ((-780 . -146) T) ((-780 . -495) T) ((-780 . -832) T) ((-780 . -1133) T) ((-780 . -312) T) ((-780 . -190) NIL) ((-780 . -186) NIL) ((-780 . -189) NIL) ((-780 . -225) 117332) ((-780 . -806) NIL) ((-780 . -811) NIL) ((-780 . -809) NIL) ((-780 . -184) 117309) ((-780 . -120) T) ((-780 . -118) NIL) ((-780 . -104) T) ((-780 . -25) T) ((-780 . -72) T) ((-780 . -13) T) ((-780 . -1128) T) ((-780 . -552) 117291) ((-780 . -1013) T) ((-780 . -23) T) ((-780 . -21) T) ((-780 . -961) T) ((-780 . -663) T) ((-780 . -1060) T) ((-780 . -1025) T) ((-780 . -970) T) ((-778 . -779) 117275) ((-778 . -832) T) ((-778 . -495) T) ((-778 . -246) T) ((-778 . -146) T) ((-778 . -555) 117247) ((-778 . -654) 117234) ((-778 . -582) 117221) ((-778 . -968) 117208) ((-778 . -963) 117195) ((-778 . -82) 117180) ((-778 . -38) 117167) ((-778 . -391) T) ((-778 . -258) T) ((-778 . -961) T) ((-778 . -663) T) ((-778 . -1060) T) ((-778 . -1025) T) ((-778 . -970) T) ((-778 . -21) T) ((-778 . -588) 117139) ((-778 . -23) T) ((-778 . -1013) T) ((-778 . -552) 117121) ((-778 . -1128) T) ((-778 . -13) T) ((-778 . -72) T) ((-778 . -25) T) ((-778 . -104) T) ((-778 . -590) 117108) ((-778 . -120) T) ((-775 . -961) T) ((-775 . -663) T) ((-775 . -1060) T) ((-775 . -1025) T) ((-775 . -970) T) ((-775 . -21) T) ((-775 . -588) 117053) ((-775 . -23) T) ((-775 . -1013) T) ((-775 . -552) 117015) ((-775 . -1128) T) ((-775 . -13) T) ((-775 . -72) T) ((-775 . -25) T) ((-775 . -104) T) ((-775 . -590) 116975) ((-775 . -555) 116910) ((-775 . -429) 116887) ((-775 . -38) 116857) ((-775 . -82) 116822) ((-775 . -963) 116792) ((-775 . -968) 116762) ((-775 . -582) 116732) ((-775 . -654) 116702) ((-774 . -1013) T) ((-774 . -552) 116684) ((-774 . -1128) T) ((-774 . -13) T) ((-774 . -72) T) ((-773 . -752) T) ((-773 . -759) T) ((-773 . -756) T) ((-773 . -1013) T) ((-773 . -552) 116666) ((-773 . -1128) T) ((-773 . -13) T) ((-773 . -72) T) ((-773 . -319) T) ((-773 . -553) 116588) ((-772 . -1013) T) ((-772 . -552) 116570) ((-772 . -1128) T) ((-772 . -13) T) ((-772 . -72) T) ((-771 . -770) T) ((-771 . -147) T) ((-771 . -552) 116552) ((-767 . -756) T) ((-767 . -552) 116534) ((-767 . -1013) T) ((-767 . -72) T) ((-767 . -13) T) ((-767 . -1128) T) ((-767 . -759) T) ((-764 . -761) 116518) ((-764 . -950) 116416) ((-764 . -555) 116314) ((-764 . -354) 116298) ((-764 . -654) 116268) ((-764 . -582) 116238) ((-764 . -590) 116212) ((-764 . -588) 116171) ((-764 . -104) T) ((-764 . -25) T) ((-764 . -72) T) ((-764 . -13) T) ((-764 . -1128) T) ((-764 . -552) 116153) ((-764 . -1013) T) ((-764 . -23) T) ((-764 . -21) T) ((-764 . -968) 116137) ((-764 . -963) 116121) ((-764 . -82) 116100) ((-764 . -961) T) ((-764 . -663) T) ((-764 . -1060) T) ((-764 . -1025) T) ((-764 . -970) T) ((-764 . -38) 116070) ((-763 . -761) 116054) ((-763 . -950) 115952) ((-763 . -555) 115871) ((-763 . -354) 115855) ((-763 . -654) 115825) ((-763 . -582) 115795) ((-763 . -590) 115769) ((-763 . -588) 115728) ((-763 . -104) T) ((-763 . -25) T) ((-763 . -72) T) ((-763 . -13) T) ((-763 . -1128) T) ((-763 . -552) 115710) ((-763 . -1013) T) ((-763 . -23) T) ((-763 . -21) T) ((-763 . -968) 115694) ((-763 . -963) 115678) ((-763 . -82) 115657) ((-763 . -961) T) ((-763 . -663) T) ((-763 . -1060) T) ((-763 . -1025) T) ((-763 . -970) T) ((-763 . -38) 115627) ((-757 . -759) T) ((-757 . -1128) T) ((-757 . -13) T) ((-757 . -72) T) ((-757 . -429) 115611) ((-757 . -552) 115559) ((-757 . -555) 115543) ((-750 . -1013) T) ((-750 . -552) 115525) ((-750 . -1128) T) ((-750 . -13) T) ((-750 . -72) T) ((-750 . -354) 115509) ((-750 . -555) 115382) ((-750 . -950) 115280) ((-750 . -21) 115235) ((-750 . -588) 115155) ((-750 . -23) 115110) ((-750 . -25) 115065) ((-750 . -104) 115020) ((-750 . -755) 114999) ((-750 . -721) 114978) ((-750 . -718) 114957) ((-750 . -759) 114936) ((-750 . -756) 114915) ((-750 . -716) 114894) ((-750 . -714) 114873) ((-750 . -961) 114852) ((-750 . -663) 114831) ((-750 . -1060) 114810) ((-750 . -1025) 114789) ((-750 . -970) 114768) ((-750 . -590) 114741) ((-750 . -120) 114720) ((-749 . -747) 114702) ((-749 . -72) T) ((-749 . -13) T) ((-749 . -1128) T) ((-749 . -552) 114684) ((-749 . -1013) T) ((-745 . -961) T) ((-745 . -663) T) ((-745 . -1060) T) ((-745 . -1025) T) ((-745 . -970) T) ((-745 . -21) T) ((-745 . -588) 114629) ((-745 . -23) T) ((-745 . -1013) T) ((-745 . -552) 114611) ((-745 . -1128) T) ((-745 . -13) T) ((-745 . -72) T) ((-745 . -25) T) ((-745 . -104) T) ((-745 . -590) 114571) ((-745 . -555) 114526) ((-745 . -950) 114496) ((-745 . -241) 114475) ((-745 . -120) 114454) ((-745 . -118) 114433) ((-745 . -38) 114403) ((-745 . -82) 114368) ((-745 . -963) 114338) ((-745 . -968) 114308) ((-745 . -582) 114278) ((-745 . -654) 114248) ((-743 . -1013) T) ((-743 . -552) 114230) ((-743 . -1128) T) ((-743 . -13) T) ((-743 . -72) T) ((-743 . -354) 114214) ((-743 . -555) 114087) ((-743 . -950) 113985) ((-743 . -21) 113940) ((-743 . -588) 113860) ((-743 . -23) 113815) ((-743 . -25) 113770) ((-743 . -104) 113725) ((-743 . -755) 113704) ((-743 . -721) 113683) ((-743 . -718) 113662) ((-743 . -759) 113641) ((-743 . -756) 113620) ((-743 . -716) 113599) ((-743 . -714) 113578) ((-743 . -961) 113557) ((-743 . -663) 113536) ((-743 . -1060) 113515) ((-743 . -1025) 113494) ((-743 . -970) 113473) ((-743 . -590) 113446) ((-743 . -120) 113425) ((-741 . -645) 113409) ((-741 . -555) 113364) ((-741 . -654) 113334) ((-741 . -582) 113304) ((-741 . -590) 113278) ((-741 . -588) 113237) ((-741 . -104) T) ((-741 . -25) T) ((-741 . -72) T) ((-741 . -13) T) ((-741 . -1128) T) ((-741 . -552) 113219) ((-741 . -1013) T) ((-741 . -23) T) ((-741 . -21) T) ((-741 . -968) 113203) ((-741 . -963) 113187) ((-741 . -82) 113166) ((-741 . -961) T) ((-741 . -663) T) ((-741 . -1060) T) ((-741 . -1025) T) ((-741 . -970) T) ((-741 . -38) 113136) ((-741 . -190) 113115) ((-741 . -186) 113088) ((-741 . -189) 113067) ((-739 . -335) 113051) ((-739 . -555) 113035) ((-739 . -950) 113019) ((-739 . -759) T) ((-739 . -756) T) ((-739 . -1025) T) ((-739 . -72) T) ((-739 . -13) T) ((-739 . -1128) T) ((-739 . -552) 113001) ((-739 . -1013) T) ((-739 . -663) T) ((-739 . -754) T) ((-739 . -766) T) ((-738 . -228) 112985) ((-738 . -555) 112969) ((-738 . -950) 112953) ((-738 . -759) T) ((-738 . -72) T) ((-738 . -1013) T) ((-738 . -552) 112935) ((-738 . -756) T) ((-738 . -186) 112922) ((-738 . -13) T) ((-738 . -1128) T) ((-738 . -189) T) ((-737 . -82) 112857) ((-737 . -963) 112808) ((-737 . -968) 112759) ((-737 . -21) T) ((-737 . -588) 112695) ((-737 . -23) T) ((-737 . -1013) T) ((-737 . -552) 112664) ((-737 . -1128) T) ((-737 . -13) T) ((-737 . -72) T) ((-737 . -25) T) ((-737 . -104) T) ((-737 . -590) 112615) ((-737 . -190) T) ((-737 . -555) 112524) ((-737 . -970) T) ((-737 . -1025) T) ((-737 . -1060) T) ((-737 . -663) T) ((-737 . -961) T) ((-737 . -186) 112511) ((-737 . -189) T) ((-737 . -429) 112495) ((-737 . -312) 112474) ((-737 . -1133) 112453) ((-737 . -832) 112432) ((-737 . -495) 112411) ((-737 . -146) 112390) ((-737 . -654) 112327) ((-737 . -582) 112264) ((-737 . -38) 112201) ((-737 . -391) 112180) ((-737 . -258) 112159) ((-737 . -246) 112138) ((-737 . -201) 112117) ((-736 . -213) 112056) ((-736 . -555) 111800) ((-736 . -950) 111630) ((-736 . -553) NIL) ((-736 . -277) 111592) ((-736 . -354) 111576) ((-736 . -38) 111428) ((-736 . -82) 111253) ((-736 . -963) 111099) ((-736 . -968) 110945) ((-736 . -588) 110855) ((-736 . -590) 110744) ((-736 . -582) 110596) ((-736 . -654) 110448) ((-736 . -118) 110427) ((-736 . -120) 110406) ((-736 . -146) 110320) ((-736 . -495) 110254) ((-736 . -246) 110188) ((-736 . -47) 110150) ((-736 . -328) 110134) ((-736 . -580) 110082) ((-736 . -391) 110036) ((-736 . -455) 109901) ((-736 . -809) 109837) ((-736 . -806) 109736) ((-736 . -811) 109639) ((-736 . -796) NIL) ((-736 . -821) 109618) ((-736 . -1133) 109597) ((-736 . -861) 109544) ((-736 . -260) 109531) ((-736 . -190) 109510) ((-736 . -104) T) ((-736 . -25) T) ((-736 . -72) T) ((-736 . -552) 109492) ((-736 . -1013) T) ((-736 . -23) T) ((-736 . -21) T) ((-736 . -970) T) ((-736 . -1025) T) ((-736 . -1060) T) ((-736 . -663) T) ((-736 . -961) T) ((-736 . -186) 109440) ((-736 . -13) T) ((-736 . -1128) T) ((-736 . -189) 109394) ((-736 . -225) 109378) ((-736 . -184) 109362) ((-735 . -196) 109341) ((-735 . -1186) 109311) ((-735 . -721) 109290) ((-735 . -718) 109269) ((-735 . -759) 109223) ((-735 . -756) 109177) ((-735 . -716) 109156) ((-735 . -717) 109135) ((-735 . -654) 109080) ((-735 . -582) 109005) ((-735 . -243) 108982) ((-735 . -241) 108959) ((-735 . -428) 108943) ((-735 . -455) 108876) ((-735 . -260) 108814) ((-735 . -34) T) ((-735 . -538) 108791) ((-735 . -950) 108620) ((-735 . -555) 108424) ((-735 . -354) 108393) ((-735 . -580) 108301) ((-735 . -590) 108140) ((-735 . -328) 108110) ((-735 . -319) 108089) ((-735 . -190) 108042) ((-735 . -588) 107830) ((-735 . -970) 107809) ((-735 . -1025) 107788) ((-735 . -1060) 107767) ((-735 . -663) 107746) ((-735 . -961) 107725) ((-735 . -186) 107621) ((-735 . -189) 107523) ((-735 . -225) 107493) ((-735 . -806) 107365) ((-735 . -811) 107239) ((-735 . -809) 107172) ((-735 . -184) 107142) ((-735 . -552) 106839) ((-735 . -968) 106764) ((-735 . -963) 106669) ((-735 . -82) 106589) ((-735 . -104) 106464) ((-735 . -25) 106301) ((-735 . -72) 106038) ((-735 . -13) T) ((-735 . -1128) T) ((-735 . -1013) 105794) ((-735 . -23) 105650) ((-735 . -21) 105565) ((-722 . -720) 105549) ((-722 . -759) 105528) ((-722 . -756) 105507) ((-722 . -950) 105300) ((-722 . -555) 105153) ((-722 . -354) 105117) ((-722 . -241) 105075) ((-722 . -260) 105040) ((-722 . -455) 104952) ((-722 . -288) 104936) ((-722 . -319) 104915) ((-722 . -553) 104876) ((-722 . -120) 104855) ((-722 . -118) 104834) ((-722 . -654) 104818) ((-722 . -582) 104802) ((-722 . -590) 104776) ((-722 . -588) 104735) ((-722 . -104) T) ((-722 . -25) T) ((-722 . -72) T) ((-722 . -13) T) ((-722 . -1128) T) ((-722 . -552) 104717) ((-722 . -1013) T) ((-722 . -23) T) ((-722 . -21) T) ((-722 . -968) 104701) ((-722 . -963) 104685) ((-722 . -82) 104664) ((-722 . -961) T) ((-722 . -663) T) ((-722 . -1060) T) ((-722 . -1025) T) ((-722 . -970) T) ((-722 . -38) 104648) ((-704 . -1154) 104632) ((-704 . -1065) 104610) ((-704 . -553) NIL) ((-704 . -260) 104597) ((-704 . -455) 104545) ((-704 . -277) 104522) ((-704 . -950) 104384) ((-704 . -354) 104368) ((-704 . -38) 104200) ((-704 . -82) 104005) ((-704 . -963) 103831) ((-704 . -968) 103657) ((-704 . -588) 103567) ((-704 . -590) 103456) ((-704 . -582) 103288) ((-704 . -654) 103120) ((-704 . -555) 102876) ((-704 . -118) 102855) ((-704 . -120) 102834) ((-704 . -47) 102811) ((-704 . -328) 102795) ((-704 . -580) 102743) ((-704 . -809) 102687) ((-704 . -806) 102594) ((-704 . -811) 102505) ((-704 . -796) NIL) ((-704 . -821) 102484) ((-704 . -1133) 102463) ((-704 . -861) 102433) ((-704 . -832) 102412) ((-704 . -495) 102326) ((-704 . -246) 102240) ((-704 . -146) 102134) ((-704 . -391) 102068) ((-704 . -258) 102047) ((-704 . -241) 101974) ((-704 . -190) T) ((-704 . -104) T) ((-704 . -25) T) ((-704 . -72) T) ((-704 . -552) 101935) ((-704 . -1013) T) ((-704 . -23) T) ((-704 . -21) T) ((-704 . -970) T) ((-704 . -1025) T) ((-704 . -1060) T) ((-704 . -663) T) ((-704 . -961) T) ((-704 . -186) 101922) ((-704 . -13) T) ((-704 . -1128) T) ((-704 . -189) T) ((-704 . -225) 101906) ((-704 . -184) 101890) ((-703 . -977) 101857) ((-703 . -553) 101492) ((-703 . -260) 101479) ((-703 . -455) 101431) ((-703 . -277) 101403) ((-703 . -950) 101262) ((-703 . -354) 101246) ((-703 . -38) 101098) ((-703 . -555) 100871) ((-703 . -590) 100760) ((-703 . -588) 100670) ((-703 . -970) T) ((-703 . -1025) T) ((-703 . -1060) T) ((-703 . -663) T) ((-703 . -961) T) ((-703 . -82) 100495) ((-703 . -963) 100341) ((-703 . -968) 100187) ((-703 . -21) T) ((-703 . -23) T) ((-703 . -1013) T) ((-703 . -552) 100101) ((-703 . -1128) T) ((-703 . -13) T) ((-703 . -72) T) ((-703 . -25) T) ((-703 . -104) T) ((-703 . -582) 99953) ((-703 . -654) 99805) ((-703 . -118) 99784) ((-703 . -120) 99763) ((-703 . -146) 99677) ((-703 . -495) 99611) ((-703 . -246) 99545) ((-703 . -47) 99517) ((-703 . -328) 99501) ((-703 . -580) 99449) ((-703 . -391) 99403) ((-703 . -809) 99387) ((-703 . -806) 99369) ((-703 . -811) 99353) ((-703 . -796) 99212) ((-703 . -821) 99191) ((-703 . -1133) 99170) ((-703 . -861) 99137) ((-696 . -1013) T) ((-696 . -552) 99119) ((-696 . -1128) T) ((-696 . -13) T) ((-696 . -72) T) ((-694 . -717) T) ((-694 . -104) T) ((-694 . -25) T) ((-694 . -72) T) ((-694 . -13) T) ((-694 . -1128) T) ((-694 . -552) 99101) ((-694 . -1013) T) ((-694 . -23) T) ((-694 . -716) T) ((-694 . -756) T) ((-694 . -759) T) ((-694 . -718) T) ((-694 . -721) T) ((-694 . -663) T) ((-694 . -1025) T) ((-675 . -676) 99085) ((-675 . -1011) 99069) ((-675 . -193) 99053) ((-675 . -553) 99014) ((-675 . -124) 98998) ((-675 . -428) 98982) ((-675 . -1013) T) ((-675 . -455) 98915) ((-675 . -260) 98853) ((-675 . -552) 98835) ((-675 . -72) T) ((-675 . -1128) T) ((-675 . -13) T) ((-675 . -34) T) ((-675 . -76) 98819) ((-675 . -634) 98803) ((-674 . -961) T) ((-674 . -663) T) ((-674 . -1060) T) ((-674 . -1025) T) ((-674 . -970) T) ((-674 . -21) T) ((-674 . -588) 98748) ((-674 . -23) T) ((-674 . -1013) T) ((-674 . -552) 98730) ((-674 . -1128) T) ((-674 . -13) T) ((-674 . -72) T) ((-674 . -25) T) ((-674 . -104) T) ((-674 . -590) 98690) ((-674 . -555) 98646) ((-674 . -950) 98617) ((-674 . -120) 98596) ((-674 . -118) 98575) ((-674 . -38) 98545) ((-674 . -82) 98510) ((-674 . -963) 98480) ((-674 . -968) 98450) ((-674 . -582) 98420) ((-674 . -654) 98390) ((-674 . -319) 98343) ((-670 . -861) 98296) ((-670 . -555) 98088) ((-670 . -950) 97966) ((-670 . -1133) 97945) ((-670 . -821) 97924) ((-670 . -796) NIL) ((-670 . -811) 97901) ((-670 . -806) 97876) ((-670 . -809) 97853) ((-670 . -455) 97791) ((-670 . -391) 97745) ((-670 . -580) 97693) ((-670 . -590) 97582) ((-670 . -328) 97566) ((-670 . -47) 97531) ((-670 . -38) 97383) ((-670 . -582) 97235) ((-670 . -654) 97087) ((-670 . -246) 97021) ((-670 . -495) 96955) ((-670 . -82) 96780) ((-670 . -963) 96626) ((-670 . -968) 96472) ((-670 . -146) 96386) ((-670 . -120) 96365) ((-670 . -118) 96344) ((-670 . -588) 96254) ((-670 . -104) T) ((-670 . -25) T) ((-670 . -72) T) ((-670 . -13) T) ((-670 . -1128) T) ((-670 . -552) 96236) ((-670 . -1013) T) ((-670 . -23) T) ((-670 . -21) T) ((-670 . -961) T) ((-670 . -663) T) ((-670 . -1060) T) ((-670 . -1025) T) ((-670 . -970) T) ((-670 . -354) 96220) ((-670 . -277) 96185) ((-670 . -260) 96172) ((-670 . -553) 96033) ((-664 . -665) 96017) ((-664 . -80) 96001) ((-664 . -1128) T) ((-664 . |MappingCategory|) 95975) ((-664 . -1023) 95959) ((-664 . -1013) T) ((-664 . -552) 95920) ((-664 . -13) T) ((-664 . -72) T) ((-655 . -412) T) ((-655 . -1025) T) ((-655 . -72) T) ((-655 . -13) T) ((-655 . -1128) T) ((-655 . -552) 95902) ((-655 . -1013) T) ((-655 . -663) T) ((-652 . -961) T) ((-652 . -663) T) ((-652 . -1060) T) ((-652 . -1025) T) ((-652 . -970) T) ((-652 . -21) T) ((-652 . -588) 95874) ((-652 . -23) T) ((-652 . -1013) T) ((-652 . -552) 95856) ((-652 . -1128) T) ((-652 . -13) T) ((-652 . -72) T) ((-652 . -25) T) ((-652 . -104) T) ((-652 . -590) 95843) ((-652 . -555) 95825) ((-651 . -961) T) ((-651 . -663) T) ((-651 . -1060) T) ((-651 . -1025) T) ((-651 . -970) T) ((-651 . -21) T) ((-651 . -588) 95770) ((-651 . -23) T) ((-651 . -1013) T) ((-651 . -552) 95752) ((-651 . -1128) T) ((-651 . -13) T) ((-651 . -72) T) ((-651 . -25) T) ((-651 . -104) T) ((-651 . -590) 95712) ((-651 . -555) 95667) ((-651 . -950) 95637) ((-651 . -241) 95616) ((-651 . -120) 95595) ((-651 . -118) 95574) ((-651 . -38) 95544) ((-651 . -82) 95509) ((-651 . -963) 95479) ((-651 . -968) 95449) ((-651 . -582) 95419) ((-651 . -654) 95389) ((-650 . -756) T) ((-650 . -552) 95324) ((-650 . -1013) T) ((-650 . -72) T) ((-650 . -13) T) ((-650 . -1128) T) ((-650 . -759) T) ((-650 . -429) 95274) ((-650 . -555) 95224) ((-649 . -1154) 95208) ((-649 . -1065) 95186) ((-649 . -553) NIL) ((-649 . -260) 95173) ((-649 . -455) 95121) ((-649 . -277) 95098) ((-649 . -950) 94981) ((-649 . -354) 94965) ((-649 . -38) 94797) ((-649 . -82) 94602) ((-649 . -963) 94428) ((-649 . -968) 94254) ((-649 . -588) 94164) ((-649 . -590) 94053) ((-649 . -582) 93885) ((-649 . -654) 93717) ((-649 . -555) 93481) ((-649 . -118) 93460) ((-649 . -120) 93439) ((-649 . -47) 93416) ((-649 . -328) 93400) ((-649 . -580) 93348) ((-649 . -809) 93292) ((-649 . -806) 93199) ((-649 . -811) 93110) ((-649 . -796) NIL) ((-649 . -821) 93089) ((-649 . -1133) 93068) ((-649 . -861) 93038) ((-649 . -832) 93017) ((-649 . -495) 92931) ((-649 . -246) 92845) ((-649 . -146) 92739) ((-649 . -391) 92673) ((-649 . -258) 92652) ((-649 . -241) 92579) ((-649 . -190) T) ((-649 . -104) T) ((-649 . -25) T) ((-649 . -72) T) ((-649 . -552) 92561) ((-649 . -1013) T) ((-649 . -23) T) ((-649 . -21) T) ((-649 . -970) T) ((-649 . -1025) T) ((-649 . -1060) T) ((-649 . -663) T) ((-649 . -961) T) ((-649 . -186) 92548) ((-649 . -13) T) ((-649 . -1128) T) ((-649 . -189) T) ((-649 . -225) 92532) ((-649 . -184) 92516) ((-649 . -319) 92495) ((-648 . -312) T) ((-648 . -1133) T) ((-648 . -832) T) ((-648 . -495) T) ((-648 . -146) T) ((-648 . -555) 92445) ((-648 . -654) 92410) ((-648 . -582) 92375) ((-648 . -38) 92340) ((-648 . -391) T) ((-648 . -258) T) ((-648 . -590) 92305) ((-648 . -588) 92255) ((-648 . -970) T) ((-648 . -1025) T) ((-648 . -1060) T) ((-648 . -663) T) ((-648 . -961) T) ((-648 . -82) 92204) ((-648 . -963) 92169) ((-648 . -968) 92134) ((-648 . -21) T) ((-648 . -23) T) ((-648 . -1013) T) ((-648 . -552) 92116) ((-648 . -1128) T) ((-648 . -13) T) ((-648 . -72) T) ((-648 . -25) T) ((-648 . -104) T) ((-648 . -246) T) ((-648 . -201) T) ((-647 . -1013) T) ((-647 . -552) 92098) ((-647 . -1128) T) ((-647 . -13) T) ((-647 . -72) T) ((-632 . -1174) T) ((-632 . -950) 92082) ((-632 . -555) 92066) ((-632 . -552) 92048) ((-630 . -627) 92006) ((-630 . -428) 91990) ((-630 . -1013) 91968) ((-630 . -455) 91901) ((-630 . -260) 91839) ((-630 . -552) 91774) ((-630 . -72) 91728) ((-630 . -1128) T) ((-630 . -13) T) ((-630 . -34) T) ((-630 . -57) 91686) ((-630 . -553) 91647) ((-622 . -995) T) ((-622 . -429) 91628) ((-622 . -552) 91578) ((-622 . -555) 91559) ((-622 . -1013) T) ((-622 . -1128) T) ((-622 . -13) T) ((-622 . -72) T) ((-622 . -64) T) ((-618 . -756) T) ((-618 . -552) 91541) ((-618 . -1013) T) ((-618 . -72) T) ((-618 . -13) T) ((-618 . -1128) T) ((-618 . -759) T) ((-618 . -950) 91525) ((-618 . -555) 91509) ((-617 . -995) T) ((-617 . -429) 91490) ((-617 . -552) 91456) ((-617 . -555) 91437) ((-617 . -1013) T) ((-617 . -1128) T) ((-617 . -13) T) ((-617 . -72) T) ((-617 . -64) T) ((-614 . -756) T) ((-614 . -552) 91419) ((-614 . -1013) T) ((-614 . -72) T) ((-614 . -13) T) ((-614 . -1128) T) ((-614 . -759) T) ((-614 . -950) 91403) ((-614 . -555) 91387) ((-613 . -995) T) ((-613 . -429) 91368) ((-613 . -552) 91334) ((-613 . -555) 91315) ((-613 . -1013) T) ((-613 . -1128) T) ((-613 . -13) T) ((-613 . -72) T) ((-613 . -64) T) ((-612 . -1036) 91260) ((-612 . -428) 91244) ((-612 . -455) 91177) ((-612 . -260) 91115) ((-612 . -34) T) ((-612 . -965) 91055) ((-612 . -950) 90953) ((-612 . -555) 90872) ((-612 . -354) 90856) ((-612 . -580) 90804) ((-612 . -590) 90742) ((-612 . -328) 90726) ((-612 . -190) 90705) ((-612 . -186) 90653) ((-612 . -189) 90607) ((-612 . -225) 90591) ((-612 . -806) 90515) ((-612 . -811) 90441) ((-612 . -809) 90400) ((-612 . -184) 90384) ((-612 . -654) 90368) ((-612 . -582) 90352) ((-612 . -588) 90311) ((-612 . -104) T) ((-612 . -25) T) ((-612 . -72) T) ((-612 . -13) T) ((-612 . -1128) T) ((-612 . -552) 90273) ((-612 . -1013) T) ((-612 . -23) T) ((-612 . -21) T) ((-612 . -968) 90257) ((-612 . -963) 90241) ((-612 . -82) 90220) ((-612 . -961) T) ((-612 . -663) T) ((-612 . -1060) T) ((-612 . -1025) T) ((-612 . -970) T) ((-612 . -38) 90180) ((-612 . -360) 90164) ((-612 . -683) 90148) ((-612 . -657) T) ((-612 . -685) T) ((-612 . -316) 90132) ((-612 . -241) 90109) ((-606 . -325) 90088) ((-606 . -654) 90072) ((-606 . -582) 90056) ((-606 . -590) 90040) ((-606 . -588) 90009) ((-606 . -104) T) ((-606 . -25) T) ((-606 . -72) T) ((-606 . -13) T) ((-606 . -1128) T) ((-606 . -552) 89991) ((-606 . -1013) T) ((-606 . -23) T) ((-606 . -21) T) ((-606 . -968) 89975) ((-606 . -963) 89959) ((-606 . -82) 89938) ((-606 . -574) 89922) ((-606 . -334) 89894) ((-606 . -555) 89871) ((-606 . -950) 89848) ((-598 . -600) 89832) ((-598 . -38) 89802) ((-598 . -555) 89721) ((-598 . -590) 89695) ((-598 . -588) 89654) ((-598 . -970) T) ((-598 . -1025) T) ((-598 . -1060) T) ((-598 . -663) T) ((-598 . -961) T) ((-598 . -82) 89633) ((-598 . -963) 89617) ((-598 . -968) 89601) ((-598 . -21) T) ((-598 . -23) T) ((-598 . -1013) T) ((-598 . -552) 89583) ((-598 . -72) T) ((-598 . -25) T) ((-598 . -104) T) ((-598 . -582) 89553) ((-598 . -654) 89523) ((-598 . -354) 89507) ((-598 . -950) 89405) ((-598 . -761) 89389) ((-598 . -1128) T) ((-598 . -13) T) ((-598 . -241) 89350) ((-597 . -600) 89334) ((-597 . -38) 89304) ((-597 . -555) 89223) ((-597 . -590) 89197) ((-597 . -588) 89156) ((-597 . -970) T) ((-597 . -1025) T) ((-597 . -1060) T) ((-597 . -663) T) ((-597 . -961) T) ((-597 . -82) 89135) ((-597 . -963) 89119) ((-597 . -968) 89103) ((-597 . -21) T) ((-597 . -23) T) ((-597 . -1013) T) ((-597 . -552) 89085) ((-597 . -72) T) ((-597 . -25) T) ((-597 . -104) T) ((-597 . -582) 89055) ((-597 . -654) 89025) ((-597 . -354) 89009) ((-597 . -950) 88907) ((-597 . -761) 88891) ((-597 . -1128) T) ((-597 . -13) T) ((-597 . -241) 88870) ((-596 . -600) 88854) ((-596 . -38) 88824) ((-596 . -555) 88743) ((-596 . -590) 88717) ((-596 . -588) 88676) ((-596 . -970) T) ((-596 . -1025) T) ((-596 . -1060) T) ((-596 . -663) T) ((-596 . -961) T) ((-596 . -82) 88655) ((-596 . -963) 88639) ((-596 . -968) 88623) ((-596 . -21) T) ((-596 . -23) T) ((-596 . -1013) T) ((-596 . -552) 88605) ((-596 . -72) T) ((-596 . -25) T) ((-596 . -104) T) ((-596 . -582) 88575) ((-596 . -654) 88545) ((-596 . -354) 88529) ((-596 . -950) 88427) ((-596 . -761) 88411) ((-596 . -1128) T) ((-596 . -13) T) ((-596 . -241) 88390) ((-594 . -654) 88374) ((-594 . -582) 88358) ((-594 . -590) 88342) ((-594 . -588) 88311) ((-594 . -104) T) ((-594 . -25) T) ((-594 . -72) T) ((-594 . -13) T) ((-594 . -1128) T) ((-594 . -552) 88293) ((-594 . -1013) T) ((-594 . -23) T) ((-594 . -21) T) ((-594 . -968) 88277) ((-594 . -963) 88261) ((-594 . -82) 88240) ((-594 . -714) 88219) ((-594 . -716) 88198) ((-594 . -756) 88177) ((-594 . -759) 88156) ((-594 . -718) 88135) ((-594 . -721) 88114) ((-591 . -1013) T) ((-591 . -552) 88096) ((-591 . -1128) T) ((-591 . -13) T) ((-591 . -72) T) ((-591 . -950) 88080) ((-591 . -555) 88064) ((-589 . -634) 88048) ((-589 . -76) 88032) ((-589 . -34) T) ((-589 . -13) T) ((-589 . -1128) T) ((-589 . -72) 87986) ((-589 . -552) 87921) ((-589 . -260) 87859) ((-589 . -455) 87792) ((-589 . -1013) 87770) ((-589 . -428) 87754) ((-589 . -124) 87738) ((-589 . -553) 87699) ((-589 . -193) 87683) ((-587 . -995) T) ((-587 . -429) 87664) ((-587 . -552) 87617) ((-587 . -555) 87598) ((-587 . -1013) T) ((-587 . -1128) T) ((-587 . -13) T) ((-587 . -72) T) ((-587 . -64) T) ((-583 . -608) 87582) ((-583 . -1167) 87566) ((-583 . -923) 87550) ((-583 . -1063) 87534) ((-583 . -756) 87513) ((-583 . -759) 87492) ((-583 . -323) 87476) ((-583 . -593) 87460) ((-583 . -243) 87437) ((-583 . -241) 87389) ((-583 . -538) 87366) ((-583 . -553) 87327) ((-583 . -428) 87311) ((-583 . -1013) 87264) ((-583 . -455) 87197) ((-583 . -260) 87135) ((-583 . -552) 87050) ((-583 . -72) 86984) ((-583 . -1128) T) ((-583 . -13) T) ((-583 . -34) T) ((-583 . -124) 86968) ((-583 . -237) 86952) ((-581 . -1186) 86936) ((-581 . -82) 86915) ((-581 . -963) 86899) ((-581 . -968) 86883) ((-581 . -21) T) ((-581 . -588) 86852) ((-581 . -23) T) ((-581 . -1013) T) ((-581 . -552) 86834) ((-581 . -1128) T) ((-581 . -13) T) ((-581 . -72) T) ((-581 . -25) T) ((-581 . -104) T) ((-581 . -590) 86818) ((-581 . -582) 86802) ((-581 . -654) 86786) ((-581 . -241) 86753) ((-579 . -1186) 86737) ((-579 . -82) 86716) ((-579 . -963) 86700) ((-579 . -968) 86684) ((-579 . -21) T) ((-579 . -588) 86653) ((-579 . -23) T) ((-579 . -1013) T) ((-579 . -552) 86635) ((-579 . -1128) T) ((-579 . -13) T) ((-579 . -72) T) ((-579 . -25) T) ((-579 . -104) T) ((-579 . -590) 86619) ((-579 . -582) 86603) ((-579 . -654) 86587) ((-579 . -555) 86564) ((-579 . -449) 86536) ((-579 . -557) 86494) ((-577 . -752) T) ((-577 . -759) T) ((-577 . -756) T) ((-577 . -1013) T) ((-577 . -552) 86476) ((-577 . -1128) T) ((-577 . -13) T) ((-577 . -72) T) ((-577 . -319) T) ((-577 . -555) 86453) ((-572 . -683) 86437) ((-572 . -657) T) ((-572 . -685) T) ((-572 . -82) 86416) ((-572 . -963) 86400) ((-572 . -968) 86384) ((-572 . -21) T) ((-572 . -588) 86353) ((-572 . -23) T) ((-572 . -1013) T) ((-572 . -552) 86322) ((-572 . -1128) T) ((-572 . -13) T) ((-572 . -72) T) ((-572 . -25) T) ((-572 . -104) T) ((-572 . -590) 86306) ((-572 . -582) 86290) ((-572 . -654) 86274) ((-572 . -360) 86239) ((-572 . -316) 86174) ((-572 . -241) 86132) ((-571 . -1106) 86107) ((-571 . -183) 86051) ((-571 . -76) 85995) ((-571 . -260) 85840) ((-571 . -455) 85640) ((-571 . -428) 85570) ((-571 . -124) 85514) ((-571 . -553) NIL) ((-571 . -193) 85458) ((-571 . -549) 85433) ((-571 . -243) 85408) ((-571 . -1128) T) ((-571 . -13) T) ((-571 . -241) 85361) ((-571 . -1013) T) ((-571 . -552) 85343) ((-571 . -72) T) ((-571 . -34) T) ((-571 . -538) 85318) ((-566 . -412) T) ((-566 . -1025) T) ((-566 . -72) T) ((-566 . -13) T) ((-566 . -1128) T) ((-566 . -552) 85300) ((-566 . -1013) T) ((-566 . -663) T) ((-565 . -995) T) ((-565 . -429) 85281) ((-565 . -552) 85247) ((-565 . -555) 85228) ((-565 . -1013) T) ((-565 . -1128) T) ((-565 . -13) T) ((-565 . -72) T) ((-565 . -64) T) ((-562 . -184) 85212) ((-562 . -809) 85171) ((-562 . -811) 85097) ((-562 . -806) 85021) ((-562 . -225) 85005) ((-562 . -189) 84959) ((-562 . -1128) T) ((-562 . -13) T) ((-562 . -186) 84907) ((-562 . -961) T) ((-562 . -663) T) ((-562 . -1060) T) ((-562 . -1025) T) ((-562 . -970) T) ((-562 . -21) T) ((-562 . -588) 84879) ((-562 . -23) T) ((-562 . -1013) T) ((-562 . -552) 84861) ((-562 . -72) T) ((-562 . -25) T) ((-562 . -104) T) ((-562 . -590) 84848) ((-562 . -555) 84744) ((-562 . -190) 84723) ((-562 . -495) T) ((-562 . -246) T) ((-562 . -146) T) ((-562 . -654) 84710) ((-562 . -582) 84697) ((-562 . -968) 84684) ((-562 . -963) 84671) ((-562 . -82) 84656) ((-562 . -38) 84643) ((-562 . -553) 84620) ((-562 . -354) 84604) ((-562 . -950) 84489) ((-562 . -120) 84468) ((-562 . -118) 84447) ((-562 . -258) 84426) ((-562 . -391) 84405) ((-562 . -832) 84384) ((-558 . -38) 84368) ((-558 . -555) 84337) ((-558 . -590) 84311) ((-558 . -588) 84270) ((-558 . -970) T) ((-558 . -1025) T) ((-558 . -1060) T) ((-558 . -663) T) ((-558 . -961) T) ((-558 . -82) 84249) ((-558 . -963) 84233) ((-558 . -968) 84217) ((-558 . -21) T) ((-558 . -23) T) ((-558 . -1013) T) ((-558 . -552) 84199) ((-558 . -1128) T) ((-558 . -13) T) ((-558 . -72) T) ((-558 . -25) T) ((-558 . -104) T) ((-558 . -582) 84183) ((-558 . -654) 84167) ((-558 . -755) 84146) ((-558 . -721) 84125) ((-558 . -718) 84104) ((-558 . -759) 84083) ((-558 . -756) 84062) ((-558 . -716) 84041) ((-558 . -714) 84020) ((-558 . -120) 83999) ((-556 . -880) T) ((-556 . -72) T) ((-556 . -552) 83981) ((-556 . -1013) T) ((-556 . -604) T) ((-556 . -13) T) ((-556 . -1128) T) ((-556 . -84) T) ((-556 . -319) T) ((-550 . -105) T) ((-550 . -72) T) ((-550 . -13) T) ((-550 . -1128) T) ((-550 . -552) 83963) ((-550 . -1013) T) ((-550 . -756) T) ((-550 . -759) T) ((-550 . -794) 83947) ((-550 . -553) 83808) ((-547 . -314) 83746) ((-547 . -72) T) ((-547 . -13) T) ((-547 . -1128) T) ((-547 . -552) 83728) ((-547 . -1013) T) ((-547 . -1106) 83704) ((-547 . -183) 83649) ((-547 . -76) 83594) ((-547 . -260) 83383) ((-547 . -455) 83123) ((-547 . -428) 83055) ((-547 . -124) 83000) ((-547 . -553) NIL) ((-547 . -193) 82945) ((-547 . -549) 82921) ((-547 . -243) 82897) ((-547 . -241) 82873) ((-547 . -34) T) ((-547 . -538) 82849) ((-546 . -1013) T) ((-546 . -552) 82801) ((-546 . -1128) T) ((-546 . -13) T) ((-546 . -72) T) ((-546 . -429) 82768) ((-546 . -555) 82735) ((-545 . -1013) T) ((-545 . -552) 82717) ((-545 . -1128) T) ((-545 . -13) T) ((-545 . -72) T) ((-545 . -604) T) ((-544 . -1013) T) ((-544 . -552) 82699) ((-544 . -1128) T) ((-544 . -13) T) ((-544 . -72) T) ((-544 . -604) T) ((-543 . -1013) T) ((-543 . -552) 82666) ((-543 . -1128) T) ((-543 . -13) T) ((-543 . -72) T) ((-542 . -1013) T) ((-542 . -552) 82648) ((-542 . -1128) T) ((-542 . -13) T) ((-542 . -72) T) ((-542 . -604) T) ((-541 . -1013) T) ((-541 . -552) 82615) ((-541 . -1128) T) ((-541 . -13) T) ((-541 . -72) T) ((-541 . -429) 82597) ((-541 . -555) 82579) ((-540 . -683) 82563) ((-540 . -657) T) ((-540 . -685) T) ((-540 . -82) 82542) ((-540 . -963) 82526) ((-540 . -968) 82510) ((-540 . -21) T) ((-540 . -588) 82479) ((-540 . -23) T) ((-540 . -1013) T) ((-540 . -552) 82448) ((-540 . -1128) T) ((-540 . -13) T) ((-540 . -72) T) ((-540 . -25) T) ((-540 . -104) T) ((-540 . -590) 82432) ((-540 . -582) 82416) ((-540 . -654) 82400) ((-540 . -360) 82365) ((-540 . -316) 82300) ((-540 . -241) 82258) ((-539 . -995) T) ((-539 . -429) 82239) ((-539 . -552) 82189) ((-539 . -555) 82170) ((-539 . -1013) T) ((-539 . -1128) T) ((-539 . -13) T) ((-539 . -72) T) ((-539 . -64) T) ((-536 . -552) 82152) ((-532 . -1013) T) ((-532 . -552) 82118) ((-532 . -1128) T) ((-532 . -13) T) ((-532 . -72) T) ((-532 . -429) 82099) ((-532 . -555) 82080) ((-531 . -961) T) ((-531 . -663) T) ((-531 . -1060) T) ((-531 . -1025) T) ((-531 . -970) T) ((-531 . -21) T) ((-531 . -588) 82039) ((-531 . -23) T) ((-531 . -1013) T) ((-531 . -552) 82021) ((-531 . -1128) T) ((-531 . -13) T) ((-531 . -72) T) ((-531 . -25) T) ((-531 . -104) T) ((-531 . -590) 81995) ((-531 . -555) 81953) ((-531 . -82) 81906) ((-531 . -963) 81866) ((-531 . -968) 81826) ((-531 . -495) 81805) ((-531 . -246) 81784) ((-531 . -146) 81763) ((-531 . -654) 81736) ((-531 . -582) 81709) ((-531 . -38) 81682) ((-530 . -1157) 81659) ((-530 . -47) 81636) ((-530 . -38) 81533) ((-530 . -582) 81430) ((-530 . -654) 81327) ((-530 . -555) 81209) ((-530 . -246) 81188) ((-530 . -495) 81167) ((-530 . -82) 81032) ((-530 . -963) 80918) ((-530 . -968) 80804) ((-530 . -146) 80758) ((-530 . -120) 80737) ((-530 . -118) 80716) ((-530 . -590) 80641) ((-530 . -588) 80551) ((-530 . -886) 80521) ((-530 . -811) 80434) ((-530 . -806) 80345) ((-530 . -809) 80258) ((-530 . -241) 80223) ((-530 . -189) 80182) ((-530 . -1128) T) ((-530 . -13) T) ((-530 . -186) 80135) ((-530 . -961) T) ((-530 . -663) T) ((-530 . -1060) T) ((-530 . -1025) T) ((-530 . -970) T) ((-530 . -21) T) ((-530 . -23) T) ((-530 . -1013) T) ((-530 . -552) 80117) ((-530 . -72) T) ((-530 . -25) T) ((-530 . -104) T) ((-530 . -190) 80076) ((-528 . -995) T) ((-528 . -429) 80057) ((-528 . -552) 80023) ((-528 . -555) 80004) ((-528 . -1013) T) ((-528 . -1128) T) ((-528 . -13) T) ((-528 . -72) T) ((-528 . -64) T) ((-522 . -1013) T) ((-522 . -552) 79970) ((-522 . -1128) T) ((-522 . -13) T) ((-522 . -72) T) ((-522 . -429) 79951) ((-522 . -555) 79932) ((-519 . -654) 79907) ((-519 . -582) 79882) ((-519 . -590) 79857) ((-519 . -588) 79817) ((-519 . -104) T) ((-519 . -25) T) ((-519 . -72) T) ((-519 . -13) T) ((-519 . -1128) T) ((-519 . -552) 79799) ((-519 . -1013) T) ((-519 . -23) T) ((-519 . -21) T) ((-519 . -968) 79774) ((-519 . -963) 79749) ((-519 . -82) 79710) ((-519 . -950) 79694) ((-519 . -555) 79678) ((-517 . -299) T) ((-517 . -1065) T) ((-517 . -319) T) ((-517 . -118) T) ((-517 . -312) T) ((-517 . -1133) T) ((-517 . -832) T) ((-517 . -495) T) ((-517 . -146) T) ((-517 . -555) 79628) ((-517 . -654) 79593) ((-517 . -582) 79558) ((-517 . -38) 79523) ((-517 . -391) T) ((-517 . -258) T) ((-517 . -82) 79472) ((-517 . -963) 79437) ((-517 . -968) 79402) ((-517 . -588) 79352) ((-517 . -590) 79317) ((-517 . -246) T) ((-517 . -201) T) ((-517 . -344) T) ((-517 . -189) T) ((-517 . -1128) T) ((-517 . -13) T) ((-517 . -186) 79304) ((-517 . -961) T) ((-517 . -663) T) ((-517 . -1060) T) ((-517 . -1025) T) ((-517 . -970) T) ((-517 . -21) T) ((-517 . -23) T) ((-517 . -1013) T) ((-517 . -552) 79286) ((-517 . -72) T) ((-517 . -25) T) ((-517 . -104) T) ((-517 . -190) T) ((-517 . -280) 79273) ((-517 . -120) 79255) ((-517 . -950) 79242) ((-517 . -1186) 79229) ((-517 . -1197) 79216) ((-517 . -553) 79198) ((-516 . -779) 79182) ((-516 . -832) T) ((-516 . -495) T) ((-516 . -246) T) ((-516 . -146) T) ((-516 . -555) 79154) ((-516 . -654) 79141) ((-516 . -582) 79128) ((-516 . -968) 79115) ((-516 . -963) 79102) ((-516 . -82) 79087) ((-516 . -38) 79074) ((-516 . -391) T) ((-516 . -258) T) ((-516 . -961) T) ((-516 . -663) T) ((-516 . -1060) T) ((-516 . -1025) T) ((-516 . -970) T) ((-516 . -21) T) ((-516 . -588) 79046) ((-516 . -23) T) ((-516 . -1013) T) ((-516 . -552) 79028) ((-516 . -1128) T) ((-516 . -13) T) ((-516 . -72) T) ((-516 . -25) T) ((-516 . -104) T) ((-516 . -590) 79015) ((-516 . -120) T) ((-515 . -1013) T) ((-515 . -552) 78997) ((-515 . -1128) T) ((-515 . -13) T) ((-515 . -72) T) ((-514 . -1013) T) ((-514 . -552) 78979) ((-514 . -1128) T) ((-514 . -13) T) ((-514 . -72) T) ((-513 . -512) T) ((-513 . -770) T) ((-513 . -147) T) ((-513 . -465) T) ((-513 . -552) 78961) ((-507 . -493) 78945) ((-507 . -35) T) ((-507 . -66) T) ((-507 . -239) T) ((-507 . -432) T) ((-507 . -1117) T) ((-507 . -1114) T) ((-507 . -950) 78927) ((-507 . -915) T) ((-507 . -759) T) ((-507 . -756) T) ((-507 . -495) T) ((-507 . -246) T) ((-507 . -146) T) ((-507 . -555) 78899) ((-507 . -654) 78886) ((-507 . -582) 78873) ((-507 . -590) 78860) ((-507 . -588) 78832) ((-507 . -104) T) ((-507 . -25) T) ((-507 . -72) T) ((-507 . -13) T) ((-507 . -1128) T) ((-507 . -552) 78814) ((-507 . -1013) T) ((-507 . -23) T) ((-507 . -21) T) ((-507 . -968) 78801) ((-507 . -963) 78788) ((-507 . -82) 78773) ((-507 . -961) T) ((-507 . -663) T) ((-507 . -1060) T) ((-507 . -1025) T) ((-507 . -970) T) ((-507 . -38) 78760) ((-507 . -391) T) ((-489 . -1106) 78739) ((-489 . -183) 78687) ((-489 . -76) 78635) ((-489 . -260) 78433) ((-489 . -455) 78185) ((-489 . -428) 78120) ((-489 . -124) 78068) ((-489 . -553) NIL) ((-489 . -193) 78016) ((-489 . -549) 77995) ((-489 . -243) 77974) ((-489 . -1128) T) ((-489 . -13) T) ((-489 . -241) 77953) ((-489 . -1013) T) ((-489 . -552) 77935) ((-489 . -72) T) ((-489 . -34) T) ((-489 . -538) 77914) ((-488 . -752) T) ((-488 . -759) T) ((-488 . -756) T) ((-488 . -1013) T) ((-488 . -552) 77896) ((-488 . -1128) T) ((-488 . -13) T) ((-488 . -72) T) ((-488 . -319) T) ((-487 . -752) T) ((-487 . -759) T) ((-487 . -756) T) ((-487 . -1013) T) ((-487 . -552) 77878) ((-487 . -1128) T) ((-487 . -13) T) ((-487 . -72) T) ((-487 . -319) T) ((-486 . -752) T) ((-486 . -759) T) ((-486 . -756) T) ((-486 . -1013) T) ((-486 . -552) 77860) ((-486 . -1128) T) ((-486 . -13) T) ((-486 . -72) T) ((-486 . -319) T) ((-485 . -752) T) ((-485 . -759) T) ((-485 . -756) T) ((-485 . -1013) T) ((-485 . -552) 77842) ((-485 . -1128) T) ((-485 . -13) T) ((-485 . -72) T) ((-485 . -319) T) ((-484 . -483) T) ((-484 . -1133) T) ((-484 . -1065) T) ((-484 . -950) 77824) ((-484 . -553) 77739) ((-484 . -933) T) ((-484 . -796) 77721) ((-484 . -755) T) ((-484 . -721) T) ((-484 . -718) T) ((-484 . -759) T) ((-484 . -756) T) ((-484 . -716) T) ((-484 . -714) T) ((-484 . -740) T) ((-484 . -590) 77693) ((-484 . -580) 77675) ((-484 . -832) T) ((-484 . -495) T) ((-484 . -246) T) ((-484 . -146) T) ((-484 . -555) 77647) ((-484 . -654) 77634) ((-484 . -582) 77621) ((-484 . -968) 77608) ((-484 . -963) 77595) ((-484 . -82) 77580) ((-484 . -38) 77567) ((-484 . -391) T) ((-484 . -258) T) ((-484 . -189) T) ((-484 . -186) 77554) ((-484 . -190) T) ((-484 . -116) T) ((-484 . -961) T) ((-484 . -663) T) ((-484 . -1060) T) ((-484 . -1025) T) ((-484 . -970) T) ((-484 . -21) T) ((-484 . -588) 77526) ((-484 . -23) T) ((-484 . -1013) T) ((-484 . -552) 77508) ((-484 . -1128) T) ((-484 . -13) T) ((-484 . -72) T) ((-484 . -25) T) ((-484 . -104) T) ((-484 . -120) T) ((-473 . -1016) 77460) ((-473 . -72) T) ((-473 . -552) 77442) ((-473 . -1013) T) ((-473 . -241) 77398) ((-473 . -1128) T) ((-473 . -13) T) ((-473 . -557) 77301) ((-473 . -553) 77282) ((-471 . -691) 77264) ((-471 . -465) T) ((-471 . -147) T) ((-471 . -770) T) ((-471 . -512) T) ((-471 . -552) 77246) ((-469 . -717) T) ((-469 . -104) T) ((-469 . -25) T) ((-469 . -72) T) ((-469 . -13) T) ((-469 . -1128) T) ((-469 . -552) 77228) ((-469 . -1013) T) ((-469 . -23) T) ((-469 . -716) T) ((-469 . -756) T) ((-469 . -759) T) ((-469 . -718) T) ((-469 . -721) T) ((-469 . -449) 77205) ((-469 . -557) 77168) ((-467 . -465) T) ((-467 . -147) T) ((-467 . -552) 77150) ((-463 . -995) T) ((-463 . -429) 77131) ((-463 . -552) 77097) ((-463 . -555) 77078) ((-463 . -1013) T) ((-463 . -1128) T) ((-463 . -13) T) ((-463 . -72) T) ((-463 . -64) T) ((-462 . -995) T) ((-462 . -429) 77059) ((-462 . -552) 77025) ((-462 . -555) 77006) ((-462 . -1013) T) ((-462 . -1128) T) ((-462 . -13) T) ((-462 . -72) T) ((-462 . -64) T) ((-459 . -280) 76983) ((-459 . -190) T) ((-459 . -186) 76970) ((-459 . -189) T) ((-459 . -319) T) ((-459 . -1065) T) ((-459 . -299) T) ((-459 . -120) 76952) ((-459 . -555) 76882) ((-459 . -590) 76827) ((-459 . -588) 76757) ((-459 . -104) T) ((-459 . -25) T) ((-459 . -72) T) ((-459 . -13) T) ((-459 . -1128) T) ((-459 . -552) 76739) ((-459 . -1013) T) ((-459 . -23) T) ((-459 . -21) T) ((-459 . -970) T) ((-459 . -1025) T) ((-459 . -1060) T) ((-459 . -663) T) ((-459 . -961) T) ((-459 . -312) T) ((-459 . -1133) T) ((-459 . -832) T) ((-459 . -495) T) ((-459 . -146) T) ((-459 . -654) 76684) ((-459 . -582) 76629) ((-459 . -38) 76594) ((-459 . -391) T) ((-459 . -258) T) ((-459 . -82) 76511) ((-459 . -963) 76456) ((-459 . -968) 76401) ((-459 . -246) T) ((-459 . -201) T) ((-459 . -344) T) ((-459 . -118) T) ((-459 . -950) 76378) ((-459 . -1186) 76355) ((-459 . -1197) 76332) ((-458 . -995) T) ((-458 . -429) 76313) ((-458 . -552) 76279) ((-458 . -555) 76260) ((-458 . -1013) T) ((-458 . -1128) T) ((-458 . -13) T) ((-458 . -72) T) ((-458 . -64) T) ((-457 . -19) 76244) ((-457 . -593) 76228) ((-457 . -243) 76205) ((-457 . -241) 76157) ((-457 . -538) 76134) ((-457 . -553) 76095) ((-457 . -428) 76079) ((-457 . -1013) 76032) ((-457 . -455) 75965) ((-457 . -260) 75903) ((-457 . -552) 75818) ((-457 . -72) 75752) ((-457 . -1128) T) ((-457 . -13) T) ((-457 . -34) T) ((-457 . -124) 75736) ((-457 . -756) 75715) ((-457 . -759) 75694) ((-457 . -323) 75678) ((-457 . -237) 75662) ((-456 . -274) 75641) ((-456 . -555) 75625) ((-456 . -950) 75609) ((-456 . -23) T) ((-456 . -1013) T) ((-456 . -552) 75591) ((-456 . -1128) T) ((-456 . -13) T) ((-456 . -72) T) ((-456 . -25) T) ((-456 . -104) T) ((-453 . -72) T) ((-453 . -13) T) ((-453 . -1128) T) ((-453 . -552) 75563) ((-452 . -717) T) ((-452 . -104) T) ((-452 . -25) T) ((-452 . -72) T) ((-452 . -13) T) ((-452 . -1128) T) ((-452 . -552) 75545) ((-452 . -1013) T) ((-452 . -23) T) ((-452 . -716) T) ((-452 . -756) T) ((-452 . -759) T) ((-452 . -718) T) ((-452 . -721) T) ((-452 . -449) 75524) ((-452 . -557) 75489) ((-451 . -716) T) ((-451 . -756) T) ((-451 . -759) T) ((-451 . -718) T) ((-451 . -25) T) ((-451 . -72) T) ((-451 . -13) T) ((-451 . -1128) T) ((-451 . -552) 75471) ((-451 . -1013) T) ((-451 . -23) T) ((-451 . -449) 75450) ((-451 . -557) 75415) ((-450 . -449) 75394) ((-450 . -552) 75334) ((-450 . -1013) 75285) ((-450 . -557) 75250) ((-450 . -1128) T) ((-450 . -13) T) ((-450 . -72) T) ((-448 . -23) T) ((-448 . -1013) T) ((-448 . -552) 75232) ((-448 . -1128) T) ((-448 . -13) T) ((-448 . -72) T) ((-448 . -25) T) ((-448 . -449) 75211) ((-448 . -557) 75176) ((-447 . -21) T) ((-447 . -588) 75158) ((-447 . -23) T) ((-447 . -1013) T) ((-447 . -552) 75140) ((-447 . -1128) T) ((-447 . -13) T) ((-447 . -72) T) ((-447 . -25) T) ((-447 . -104) T) ((-447 . -449) 75119) ((-447 . -557) 75084) ((-446 . -1013) T) ((-446 . -552) 75066) ((-446 . -1128) T) ((-446 . -13) T) ((-446 . -72) T) ((-443 . -1013) T) ((-443 . -552) 75048) ((-443 . -1128) T) ((-443 . -13) T) ((-443 . -72) T) ((-441 . -756) T) ((-441 . -552) 75030) ((-441 . -1013) T) ((-441 . -72) T) ((-441 . -13) T) ((-441 . -1128) T) ((-441 . -759) T) ((-441 . -555) 75011) ((-439 . -96) T) ((-439 . -323) 74994) ((-439 . -759) T) ((-439 . -756) T) ((-439 . -124) 74977) ((-439 . -34) T) ((-439 . -72) T) ((-439 . -552) 74959) ((-439 . -260) NIL) ((-439 . -455) NIL) ((-439 . -1013) T) ((-439 . -428) 74942) ((-439 . -553) 74924) ((-439 . -241) 74875) ((-439 . -538) 74851) ((-439 . -243) 74827) ((-439 . -593) 74810) ((-439 . -19) 74793) ((-439 . -604) T) ((-439 . -13) T) ((-439 . -1128) T) ((-439 . -84) T) ((-436 . -57) 74767) ((-436 . -34) T) ((-436 . -13) T) ((-436 . -1128) T) ((-436 . -72) 74721) ((-436 . -552) 74656) ((-436 . -260) 74594) ((-436 . -455) 74527) ((-436 . -1013) 74505) ((-436 . -428) 74489) ((-435 . -19) 74473) ((-435 . -593) 74457) ((-435 . -243) 74434) ((-435 . -241) 74386) ((-435 . -538) 74363) ((-435 . -553) 74324) ((-435 . -428) 74308) ((-435 . -1013) 74261) ((-435 . -455) 74194) ((-435 . -260) 74132) ((-435 . -552) 74047) ((-435 . -72) 73981) ((-435 . -1128) T) ((-435 . -13) T) ((-435 . -34) T) ((-435 . -124) 73965) ((-435 . -756) 73944) ((-435 . -759) 73923) ((-435 . -323) 73907) ((-434 . -254) T) ((-434 . -72) T) ((-434 . -13) T) ((-434 . -1128) T) ((-434 . -552) 73889) ((-434 . -1013) T) ((-434 . -555) 73790) ((-434 . -950) 73733) ((-434 . -455) 73699) ((-434 . -260) 73686) ((-434 . -27) T) ((-434 . -915) T) ((-434 . -201) T) ((-434 . -82) 73635) ((-434 . -963) 73600) ((-434 . -968) 73565) ((-434 . -246) T) ((-434 . -654) 73530) ((-434 . -582) 73495) ((-434 . -590) 73445) ((-434 . -588) 73395) ((-434 . -104) T) ((-434 . -25) T) ((-434 . -23) T) ((-434 . -21) T) ((-434 . -961) T) ((-434 . -663) T) ((-434 . -1060) T) ((-434 . -1025) T) ((-434 . -970) T) ((-434 . -38) 73360) ((-434 . -258) T) ((-434 . -391) T) ((-434 . -146) T) ((-434 . -495) T) ((-434 . -832) T) ((-434 . -1133) T) ((-434 . -312) T) ((-434 . -580) 73320) ((-434 . -933) T) ((-434 . -553) 73265) ((-434 . -120) T) ((-434 . -190) T) ((-434 . -186) 73252) ((-434 . -189) T) ((-430 . -1013) T) ((-430 . -552) 73218) ((-430 . -1128) T) ((-430 . -13) T) ((-430 . -72) T) ((-426 . -904) 73200) ((-426 . -1065) T) ((-426 . -555) 73150) ((-426 . -950) 73110) ((-426 . -553) 73040) ((-426 . -933) T) ((-426 . -821) NIL) ((-426 . -794) 73022) ((-426 . -755) T) ((-426 . -721) T) ((-426 . -718) T) ((-426 . -759) T) ((-426 . -756) T) ((-426 . -716) T) ((-426 . -714) T) ((-426 . -740) T) ((-426 . -796) 73004) ((-426 . -342) 72986) ((-426 . -580) 72968) ((-426 . -328) 72950) ((-426 . -241) NIL) ((-426 . -260) NIL) ((-426 . -455) NIL) ((-426 . -288) 72932) ((-426 . -201) T) ((-426 . -82) 72859) ((-426 . -963) 72809) ((-426 . -968) 72759) ((-426 . -246) T) ((-426 . -654) 72709) ((-426 . -582) 72659) ((-426 . -590) 72609) ((-426 . -588) 72559) ((-426 . -38) 72509) ((-426 . -258) T) ((-426 . -391) T) ((-426 . -146) T) ((-426 . -495) T) ((-426 . -832) T) ((-426 . -1133) T) ((-426 . -312) T) ((-426 . -190) T) ((-426 . -186) 72496) ((-426 . -189) T) ((-426 . -225) 72478) ((-426 . -806) NIL) ((-426 . -811) NIL) ((-426 . -809) NIL) ((-426 . -184) 72460) ((-426 . -120) T) ((-426 . -118) NIL) ((-426 . -104) T) ((-426 . -25) T) ((-426 . -72) T) ((-426 . -13) T) ((-426 . -1128) T) ((-426 . -552) 72402) ((-426 . -1013) T) ((-426 . -23) T) ((-426 . -21) T) ((-426 . -961) T) ((-426 . -663) T) ((-426 . -1060) T) ((-426 . -1025) T) ((-426 . -970) T) ((-424 . -286) 72371) ((-424 . -104) T) ((-424 . -25) T) ((-424 . -72) T) ((-424 . -13) T) ((-424 . -1128) T) ((-424 . -552) 72353) ((-424 . -1013) T) ((-424 . -23) T) ((-424 . -588) 72335) ((-424 . -21) T) ((-423 . -881) 72319) ((-423 . -428) 72303) ((-423 . -1013) 72281) ((-423 . -455) 72214) ((-423 . -260) 72152) ((-423 . -552) 72087) ((-423 . -72) 72041) ((-423 . -1128) T) ((-423 . -13) T) ((-423 . -34) T) ((-423 . -76) 72025) ((-422 . -995) T) ((-422 . -429) 72006) ((-422 . -552) 71972) ((-422 . -555) 71953) ((-422 . -1013) T) ((-422 . -1128) T) ((-422 . -13) T) ((-422 . -72) T) ((-422 . -64) T) ((-421 . -196) 71932) ((-421 . -1186) 71902) ((-421 . -721) 71881) ((-421 . -718) 71860) ((-421 . -759) 71814) ((-421 . -756) 71768) ((-421 . -716) 71747) ((-421 . -717) 71726) ((-421 . -654) 71671) ((-421 . -582) 71596) ((-421 . -243) 71573) ((-421 . -241) 71550) ((-421 . -428) 71534) ((-421 . -455) 71467) ((-421 . -260) 71405) ((-421 . -34) T) ((-421 . -538) 71382) ((-421 . -950) 71211) ((-421 . -555) 71015) ((-421 . -354) 70984) ((-421 . -580) 70892) ((-421 . -590) 70731) ((-421 . -328) 70701) ((-421 . -319) 70680) ((-421 . -190) 70633) ((-421 . -588) 70421) ((-421 . -970) 70400) ((-421 . -1025) 70379) ((-421 . -1060) 70358) ((-421 . -663) 70337) ((-421 . -961) 70316) ((-421 . -186) 70212) ((-421 . -189) 70114) ((-421 . -225) 70084) ((-421 . -806) 69956) ((-421 . -811) 69830) ((-421 . -809) 69763) ((-421 . -184) 69733) ((-421 . -552) 69430) ((-421 . -968) 69355) ((-421 . -963) 69260) ((-421 . -82) 69180) ((-421 . -104) 69055) ((-421 . -25) 68892) ((-421 . -72) 68629) ((-421 . -13) T) ((-421 . -1128) T) ((-421 . -1013) 68385) ((-421 . -23) 68241) ((-421 . -21) 68156) ((-420 . -861) 68101) ((-420 . -555) 67893) ((-420 . -950) 67771) ((-420 . -1133) 67750) ((-420 . -821) 67729) ((-420 . -796) NIL) ((-420 . -811) 67706) ((-420 . -806) 67681) ((-420 . -809) 67658) ((-420 . -455) 67596) ((-420 . -391) 67550) ((-420 . -580) 67498) ((-420 . -590) 67387) ((-420 . -328) 67371) ((-420 . -47) 67328) ((-420 . -38) 67180) ((-420 . -582) 67032) ((-420 . -654) 66884) ((-420 . -246) 66818) ((-420 . -495) 66752) ((-420 . -82) 66577) ((-420 . -963) 66423) ((-420 . -968) 66269) ((-420 . -146) 66183) ((-420 . -120) 66162) ((-420 . -118) 66141) ((-420 . -588) 66051) ((-420 . -104) T) ((-420 . -25) T) ((-420 . -72) T) ((-420 . -13) T) ((-420 . -1128) T) ((-420 . -552) 66033) ((-420 . -1013) T) ((-420 . -23) T) ((-420 . -21) T) ((-420 . -961) T) ((-420 . -663) T) ((-420 . -1060) T) ((-420 . -1025) T) ((-420 . -970) T) ((-420 . -354) 66017) ((-420 . -277) 65974) ((-420 . -260) 65961) ((-420 . -553) 65822) ((-418 . -1106) 65801) ((-418 . -183) 65749) ((-418 . -76) 65697) ((-418 . -260) 65495) ((-418 . -455) 65247) ((-418 . -428) 65182) ((-418 . -124) 65130) ((-418 . -553) NIL) ((-418 . -193) 65078) ((-418 . -549) 65057) ((-418 . -243) 65036) ((-418 . -1128) T) ((-418 . -13) T) ((-418 . -241) 65015) ((-418 . -1013) T) ((-418 . -552) 64997) ((-418 . -72) T) ((-418 . -34) T) ((-418 . -538) 64976) ((-417 . -995) T) ((-417 . -429) 64957) ((-417 . -552) 64923) ((-417 . -555) 64904) ((-417 . -1013) T) ((-417 . -1128) T) ((-417 . -13) T) ((-417 . -72) T) ((-417 . -64) T) ((-416 . -312) T) ((-416 . -1133) T) ((-416 . -832) T) ((-416 . -495) T) ((-416 . -146) T) ((-416 . -555) 64854) ((-416 . -654) 64819) ((-416 . -582) 64784) ((-416 . -38) 64749) ((-416 . -391) T) ((-416 . -258) T) ((-416 . -590) 64714) ((-416 . -588) 64664) ((-416 . -970) T) ((-416 . -1025) T) ((-416 . -1060) T) ((-416 . -663) T) ((-416 . -961) T) ((-416 . -82) 64613) ((-416 . -963) 64578) ((-416 . -968) 64543) ((-416 . -21) T) ((-416 . -23) T) ((-416 . -1013) T) ((-416 . -552) 64495) ((-416 . -1128) T) ((-416 . -13) T) ((-416 . -72) T) ((-416 . -25) T) ((-416 . -104) T) ((-416 . -246) T) ((-416 . -201) T) ((-416 . -120) T) ((-416 . -950) 64455) ((-416 . -933) T) ((-416 . -553) 64377) ((-415 . -1123) 64346) ((-415 . -552) 64308) ((-415 . -124) 64292) ((-415 . -34) T) ((-415 . -13) T) ((-415 . -1128) T) ((-415 . -72) T) ((-415 . -260) 64230) ((-415 . -455) 64163) ((-415 . -1013) T) ((-415 . -428) 64147) ((-415 . -553) 64108) ((-415 . -889) 64077) ((-414 . -1106) 64056) ((-414 . -183) 64004) ((-414 . -76) 63952) ((-414 . -260) 63750) ((-414 . -455) 63502) ((-414 . -428) 63437) ((-414 . -124) 63385) ((-414 . -553) NIL) ((-414 . -193) 63333) ((-414 . -549) 63312) ((-414 . -243) 63291) ((-414 . -1128) T) ((-414 . -13) T) ((-414 . -241) 63270) ((-414 . -1013) T) ((-414 . -552) 63252) ((-414 . -72) T) ((-414 . -34) T) ((-414 . -538) 63231) ((-413 . -1161) 63215) ((-413 . -190) 63167) ((-413 . -186) 63113) ((-413 . -189) 63065) ((-413 . -241) 63023) ((-413 . -809) 62929) ((-413 . -806) 62810) ((-413 . -811) 62716) ((-413 . -886) 62679) ((-413 . -38) 62526) ((-413 . -82) 62346) ((-413 . -963) 62187) ((-413 . -968) 62028) ((-413 . -588) 61913) ((-413 . -590) 61813) ((-413 . -582) 61660) ((-413 . -654) 61507) ((-413 . -555) 61339) ((-413 . -118) 61318) ((-413 . -120) 61297) ((-413 . -47) 61267) ((-413 . -1157) 61237) ((-413 . -35) 61203) ((-413 . -66) 61169) ((-413 . -239) 61135) ((-413 . -432) 61101) ((-413 . -1117) 61067) ((-413 . -1114) 61033) ((-413 . -915) 60999) ((-413 . -201) 60978) ((-413 . -246) 60932) ((-413 . -104) T) ((-413 . -25) T) ((-413 . -72) T) ((-413 . -13) T) ((-413 . -1128) T) ((-413 . -552) 60914) ((-413 . -1013) T) ((-413 . -23) T) ((-413 . -21) T) ((-413 . -961) T) ((-413 . -663) T) ((-413 . -1060) T) ((-413 . -1025) T) ((-413 . -970) T) ((-413 . -258) 60893) ((-413 . -391) 60872) ((-413 . -146) 60806) ((-413 . -495) 60760) ((-413 . -832) 60739) ((-413 . -1133) 60718) ((-413 . -312) 60697) ((-407 . -1013) T) ((-407 . -552) 60679) ((-407 . -1128) T) ((-407 . -13) T) ((-407 . -72) T) ((-402 . -889) 60648) ((-402 . -553) 60609) ((-402 . -428) 60593) ((-402 . -1013) T) ((-402 . -455) 60526) ((-402 . -260) 60464) ((-402 . -552) 60426) ((-402 . -72) T) ((-402 . -1128) T) ((-402 . -13) T) ((-402 . -34) T) ((-402 . -124) 60410) ((-400 . -654) 60381) ((-400 . -582) 60352) ((-400 . -590) 60323) ((-400 . -588) 60279) ((-400 . -104) T) ((-400 . -25) T) ((-400 . -72) T) ((-400 . -13) T) ((-400 . -1128) T) ((-400 . -552) 60261) ((-400 . -1013) T) ((-400 . -23) T) ((-400 . -21) T) ((-400 . -968) 60232) ((-400 . -963) 60203) ((-400 . -82) 60164) ((-393 . -861) 60131) ((-393 . -555) 59923) ((-393 . -950) 59801) ((-393 . -1133) 59780) ((-393 . -821) 59759) ((-393 . -796) NIL) ((-393 . -811) 59736) ((-393 . -806) 59711) ((-393 . -809) 59688) ((-393 . -455) 59626) ((-393 . -391) 59580) ((-393 . -580) 59528) ((-393 . -590) 59417) ((-393 . -328) 59401) ((-393 . -47) 59380) ((-393 . -38) 59232) ((-393 . -582) 59084) ((-393 . -654) 58936) ((-393 . -246) 58870) ((-393 . -495) 58804) ((-393 . -82) 58629) ((-393 . -963) 58475) ((-393 . -968) 58321) ((-393 . -146) 58235) ((-393 . -120) 58214) ((-393 . -118) 58193) ((-393 . -588) 58103) ((-393 . -104) T) ((-393 . -25) T) ((-393 . -72) T) ((-393 . -13) T) ((-393 . -1128) T) ((-393 . -552) 58085) ((-393 . -1013) T) ((-393 . -23) T) ((-393 . -21) T) ((-393 . -961) T) ((-393 . -663) T) ((-393 . -1060) T) ((-393 . -1025) T) ((-393 . -970) T) ((-393 . -354) 58069) ((-393 . -277) 58048) ((-393 . -260) 58035) ((-393 . -553) 57896) ((-392 . -360) 57866) ((-392 . -683) 57836) ((-392 . -657) T) ((-392 . -685) T) ((-392 . -82) 57787) ((-392 . -963) 57757) ((-392 . -968) 57727) ((-392 . -21) T) ((-392 . -588) 57642) ((-392 . -23) T) ((-392 . -1013) T) ((-392 . -552) 57624) ((-392 . -72) T) ((-392 . -25) T) ((-392 . -104) T) ((-392 . -590) 57554) ((-392 . -582) 57524) ((-392 . -654) 57494) ((-392 . -316) 57464) ((-392 . -1128) T) ((-392 . -13) T) ((-392 . -241) 57427) ((-380 . -1013) T) ((-380 . -552) 57409) ((-380 . -1128) T) ((-380 . -13) T) ((-380 . -72) T) ((-379 . -1013) T) ((-379 . -552) 57391) ((-379 . -1128) T) ((-379 . -13) T) ((-379 . -72) T) ((-378 . -1013) T) ((-378 . -552) 57373) ((-378 . -1128) T) ((-378 . -13) T) ((-378 . -72) T) ((-376 . -552) 57355) ((-371 . -38) 57339) ((-371 . -555) 57308) ((-371 . -590) 57282) ((-371 . -588) 57241) ((-371 . -970) T) ((-371 . -1025) T) ((-371 . -1060) T) ((-371 . -663) T) ((-371 . -961) T) ((-371 . -82) 57220) ((-371 . -963) 57204) ((-371 . -968) 57188) ((-371 . -21) T) ((-371 . -23) T) ((-371 . -1013) T) ((-371 . -552) 57170) ((-371 . -1128) T) ((-371 . -13) T) ((-371 . -72) T) ((-371 . -25) T) ((-371 . -104) T) ((-371 . -582) 57154) ((-371 . -654) 57138) ((-357 . -663) T) ((-357 . -1013) T) ((-357 . -552) 57120) ((-357 . -1128) T) ((-357 . -13) T) ((-357 . -72) T) ((-357 . -1025) T) ((-355 . -412) T) ((-355 . -1025) T) ((-355 . -72) T) ((-355 . -13) T) ((-355 . -1128) T) ((-355 . -552) 57102) ((-355 . -1013) T) ((-355 . -663) T) ((-349 . -904) 57086) ((-349 . -1065) 57064) ((-349 . -950) 56931) ((-349 . -555) 56830) ((-349 . -553) 56633) ((-349 . -933) 56612) ((-349 . -821) 56591) ((-349 . -794) 56575) ((-349 . -755) 56554) ((-349 . -721) 56533) ((-349 . -718) 56512) ((-349 . -759) 56466) ((-349 . -756) 56420) ((-349 . -716) 56399) ((-349 . -714) 56378) ((-349 . -740) 56357) ((-349 . -796) 56282) ((-349 . -342) 56266) ((-349 . -580) 56214) ((-349 . -590) 56130) ((-349 . -328) 56114) ((-349 . -241) 56072) ((-349 . -260) 56037) ((-349 . -455) 55949) ((-349 . -288) 55933) ((-349 . -201) T) ((-349 . -82) 55864) ((-349 . -963) 55816) ((-349 . -968) 55768) ((-349 . -246) T) ((-349 . -654) 55720) ((-349 . -582) 55672) ((-349 . -588) 55609) ((-349 . -38) 55561) ((-349 . -258) T) ((-349 . -391) T) ((-349 . -146) T) ((-349 . -495) T) ((-349 . -832) T) ((-349 . -1133) T) ((-349 . -312) T) ((-349 . -190) 55540) ((-349 . -186) 55488) ((-349 . -189) 55442) ((-349 . -225) 55426) ((-349 . -806) 55350) ((-349 . -811) 55276) ((-349 . -809) 55235) ((-349 . -184) 55219) ((-349 . -120) 55173) ((-349 . -118) 55152) ((-349 . -104) T) ((-349 . -25) T) ((-349 . -72) T) ((-349 . -13) T) ((-349 . -1128) T) ((-349 . -552) 55134) ((-349 . -1013) T) ((-349 . -23) T) ((-349 . -21) T) ((-349 . -961) T) ((-349 . -663) T) ((-349 . -1060) T) ((-349 . -1025) T) ((-349 . -970) T) ((-347 . -495) T) ((-347 . -246) T) ((-347 . -146) T) ((-347 . -555) 55043) ((-347 . -654) 55017) ((-347 . -582) 54991) ((-347 . -590) 54965) ((-347 . -588) 54924) ((-347 . -104) T) ((-347 . -25) T) ((-347 . -72) T) ((-347 . -13) T) ((-347 . -1128) T) ((-347 . -552) 54906) ((-347 . -1013) T) ((-347 . -23) T) ((-347 . -21) T) ((-347 . -968) 54880) ((-347 . -963) 54854) ((-347 . -82) 54821) ((-347 . -961) T) ((-347 . -663) T) ((-347 . -1060) T) ((-347 . -1025) T) ((-347 . -970) T) ((-347 . -38) 54795) ((-347 . -184) 54779) ((-347 . -809) 54738) ((-347 . -811) 54664) ((-347 . -806) 54588) ((-347 . -225) 54572) ((-347 . -189) 54526) ((-347 . -186) 54474) ((-347 . -190) 54453) ((-347 . -288) 54437) ((-347 . -455) 54279) ((-347 . -260) 54218) ((-347 . -241) 54146) ((-347 . -354) 54130) ((-347 . -950) 54028) ((-347 . -391) 53981) ((-347 . -933) 53960) ((-347 . -553) 53863) ((-347 . -1133) 53841) ((-341 . -1013) T) ((-341 . -552) 53823) ((-341 . -1128) T) ((-341 . -13) T) ((-341 . -72) T) ((-341 . -189) T) ((-341 . -186) 53810) ((-341 . -553) 53787) ((-339 . -683) 53771) ((-339 . -657) T) ((-339 . -685) T) ((-339 . -82) 53750) ((-339 . -963) 53734) ((-339 . -968) 53718) ((-339 . -21) T) ((-339 . -588) 53687) ((-339 . -23) T) ((-339 . -1013) T) ((-339 . -552) 53669) ((-339 . -1128) T) ((-339 . -13) T) ((-339 . -72) T) ((-339 . -25) T) ((-339 . -104) T) ((-339 . -590) 53653) ((-339 . -582) 53637) ((-339 . -654) 53621) ((-337 . -338) T) ((-337 . -72) T) ((-337 . -13) T) ((-337 . -1128) T) ((-337 . -552) 53587) ((-337 . -1013) T) ((-337 . -555) 53568) ((-337 . -429) 53549) ((-336 . -335) 53533) ((-336 . -555) 53517) ((-336 . -950) 53501) ((-336 . -759) 53480) ((-336 . -756) 53459) ((-336 . -1025) T) ((-336 . -72) T) ((-336 . -13) T) ((-336 . -1128) T) ((-336 . -552) 53441) ((-336 . -1013) T) ((-336 . -663) T) ((-333 . -334) 53420) ((-333 . -555) 53404) ((-333 . -950) 53388) ((-333 . -582) 53358) ((-333 . -654) 53328) ((-333 . -590) 53312) ((-333 . -588) 53281) ((-333 . -104) T) ((-333 . -25) T) ((-333 . -72) T) ((-333 . -13) T) ((-333 . -1128) T) ((-333 . -552) 53263) ((-333 . -1013) T) ((-333 . -23) T) ((-333 . -21) T) ((-333 . -968) 53247) ((-333 . -963) 53231) ((-333 . -82) 53210) ((-332 . -82) 53189) ((-332 . -963) 53173) ((-332 . -968) 53157) ((-332 . -21) T) ((-332 . -588) 53126) ((-332 . -23) T) ((-332 . -1013) T) ((-332 . -552) 53108) ((-332 . -1128) T) ((-332 . -13) T) ((-332 . -72) T) ((-332 . -25) T) ((-332 . -104) T) ((-332 . -590) 53092) ((-332 . -449) 53071) ((-332 . -557) 53036) ((-332 . -654) 53006) ((-332 . -582) 52976) ((-329 . -346) T) ((-329 . -120) T) ((-329 . -555) 52926) ((-329 . -590) 52891) ((-329 . -588) 52841) ((-329 . -104) T) ((-329 . -25) T) ((-329 . -72) T) ((-329 . -13) T) ((-329 . -1128) T) ((-329 . -552) 52808) ((-329 . -1013) T) ((-329 . -23) T) ((-329 . -21) T) ((-329 . -970) T) ((-329 . -1025) T) ((-329 . -1060) T) ((-329 . -663) T) ((-329 . -961) T) ((-329 . -553) 52722) ((-329 . -312) T) ((-329 . -1133) T) ((-329 . -832) T) ((-329 . -495) T) ((-329 . -146) T) ((-329 . -654) 52687) ((-329 . -582) 52652) ((-329 . -38) 52617) ((-329 . -391) T) ((-329 . -258) T) ((-329 . -82) 52566) ((-329 . -963) 52531) ((-329 . -968) 52496) ((-329 . -246) T) ((-329 . -201) T) ((-329 . -755) T) ((-329 . -721) T) ((-329 . -718) T) ((-329 . -759) T) ((-329 . -756) T) ((-329 . -716) T) ((-329 . -714) T) ((-329 . -796) 52478) ((-329 . -915) T) ((-329 . -933) T) ((-329 . -950) 52438) ((-329 . -973) T) ((-329 . -190) T) ((-329 . -186) 52425) ((-329 . -189) T) ((-329 . -1114) T) ((-329 . -1117) T) ((-329 . -432) T) ((-329 . -239) T) ((-329 . -66) T) ((-329 . -35) T) ((-329 . -557) 52407) ((-313 . -314) 52384) ((-313 . -72) T) ((-313 . -13) T) ((-313 . -1128) T) ((-313 . -552) 52366) ((-313 . -1013) T) ((-310 . -412) T) ((-310 . -1025) T) ((-310 . -72) T) ((-310 . -13) T) ((-310 . -1128) T) ((-310 . -552) 52348) ((-310 . -1013) T) ((-310 . -663) T) ((-310 . -950) 52332) ((-310 . -555) 52316) ((-308 . -280) 52300) ((-308 . -190) 52279) ((-308 . -186) 52252) ((-308 . -189) 52231) ((-308 . -319) 52210) ((-308 . -1065) 52189) ((-308 . -299) 52168) ((-308 . -120) 52147) ((-308 . -555) 52084) ((-308 . -590) 52036) ((-308 . -588) 51973) ((-308 . -104) T) ((-308 . -25) T) ((-308 . -72) T) ((-308 . -13) T) ((-308 . -1128) T) ((-308 . -552) 51955) ((-308 . -1013) T) ((-308 . -23) T) ((-308 . -21) T) ((-308 . -970) T) ((-308 . -1025) T) ((-308 . -1060) T) ((-308 . -663) T) ((-308 . -961) T) ((-308 . -312) T) ((-308 . -1133) T) ((-308 . -832) T) ((-308 . -495) T) ((-308 . -146) T) ((-308 . -654) 51907) ((-308 . -582) 51859) ((-308 . -38) 51824) ((-308 . -391) T) ((-308 . -258) T) ((-308 . -82) 51755) ((-308 . -963) 51707) ((-308 . -968) 51659) ((-308 . -246) T) ((-308 . -201) T) ((-308 . -344) 51613) ((-308 . -118) 51567) ((-308 . -950) 51551) ((-308 . -1186) 51535) ((-308 . -1197) 51519) ((-304 . -280) 51503) ((-304 . -190) 51482) ((-304 . -186) 51455) ((-304 . -189) 51434) ((-304 . -319) 51413) ((-304 . -1065) 51392) ((-304 . -299) 51371) ((-304 . -120) 51350) ((-304 . -555) 51287) ((-304 . -590) 51239) ((-304 . -588) 51176) ((-304 . -104) T) ((-304 . -25) T) ((-304 . -72) T) ((-304 . -13) T) ((-304 . -1128) T) ((-304 . -552) 51158) ((-304 . -1013) T) ((-304 . -23) T) ((-304 . -21) T) ((-304 . -970) T) ((-304 . -1025) T) ((-304 . -1060) T) ((-304 . -663) T) ((-304 . -961) T) ((-304 . -312) T) ((-304 . -1133) T) ((-304 . -832) T) ((-304 . -495) T) ((-304 . -146) T) ((-304 . -654) 51110) ((-304 . -582) 51062) ((-304 . -38) 51027) ((-304 . -391) T) ((-304 . -258) T) ((-304 . -82) 50958) ((-304 . -963) 50910) ((-304 . -968) 50862) ((-304 . -246) T) ((-304 . -201) T) ((-304 . -344) 50816) ((-304 . -118) 50770) ((-304 . -950) 50754) ((-304 . -1186) 50738) ((-304 . -1197) 50722) ((-303 . -280) 50706) ((-303 . -190) 50685) ((-303 . -186) 50658) ((-303 . -189) 50637) ((-303 . -319) 50616) ((-303 . -1065) 50595) ((-303 . -299) 50574) ((-303 . -120) 50553) ((-303 . -555) 50490) ((-303 . -590) 50442) ((-303 . -588) 50379) ((-303 . -104) T) ((-303 . -25) T) ((-303 . -72) T) ((-303 . -13) T) ((-303 . -1128) T) ((-303 . -552) 50361) ((-303 . -1013) T) ((-303 . -23) T) ((-303 . -21) T) ((-303 . -970) T) ((-303 . -1025) T) ((-303 . -1060) T) ((-303 . -663) T) ((-303 . -961) T) ((-303 . -312) T) ((-303 . -1133) T) ((-303 . -832) T) ((-303 . -495) T) ((-303 . -146) T) ((-303 . -654) 50313) ((-303 . -582) 50265) ((-303 . -38) 50230) ((-303 . -391) T) ((-303 . -258) T) ((-303 . -82) 50161) ((-303 . -963) 50113) ((-303 . -968) 50065) ((-303 . -246) T) ((-303 . -201) T) ((-303 . -344) 50019) ((-303 . -118) 49973) ((-303 . -950) 49957) ((-303 . -1186) 49941) ((-303 . -1197) 49925) ((-302 . -280) 49909) ((-302 . -190) 49888) ((-302 . -186) 49861) ((-302 . -189) 49840) ((-302 . -319) 49819) ((-302 . -1065) 49798) ((-302 . -299) 49777) ((-302 . -120) 49756) ((-302 . -555) 49693) ((-302 . -590) 49645) ((-302 . -588) 49582) ((-302 . -104) T) ((-302 . -25) T) ((-302 . -72) T) ((-302 . -13) T) ((-302 . -1128) T) ((-302 . -552) 49564) ((-302 . -1013) T) ((-302 . -23) T) ((-302 . -21) T) ((-302 . -970) T) ((-302 . -1025) T) ((-302 . -1060) T) ((-302 . -663) T) ((-302 . -961) T) ((-302 . -312) T) ((-302 . -1133) T) ((-302 . -832) T) ((-302 . -495) T) ((-302 . -146) T) ((-302 . -654) 49516) ((-302 . -582) 49468) ((-302 . -38) 49433) ((-302 . -391) T) ((-302 . -258) T) ((-302 . -82) 49364) ((-302 . -963) 49316) ((-302 . -968) 49268) ((-302 . -246) T) ((-302 . -201) T) ((-302 . -344) 49222) ((-302 . -118) 49176) ((-302 . -950) 49160) ((-302 . -1186) 49144) ((-302 . -1197) 49128) ((-301 . -280) 49105) ((-301 . -190) T) ((-301 . -186) 49092) ((-301 . -189) T) ((-301 . -319) T) ((-301 . -1065) T) ((-301 . -299) T) ((-301 . -120) 49074) ((-301 . -555) 49004) ((-301 . -590) 48949) ((-301 . -588) 48879) ((-301 . -104) T) ((-301 . -25) T) ((-301 . -72) T) ((-301 . -13) T) ((-301 . -1128) T) ((-301 . -552) 48861) ((-301 . -1013) T) ((-301 . -23) T) ((-301 . -21) T) ((-301 . -970) T) ((-301 . -1025) T) ((-301 . -1060) T) ((-301 . -663) T) ((-301 . -961) T) ((-301 . -312) T) ((-301 . -1133) T) ((-301 . -832) T) ((-301 . -495) T) ((-301 . -146) T) ((-301 . -654) 48806) ((-301 . -582) 48751) ((-301 . -38) 48716) ((-301 . -391) T) ((-301 . -258) T) ((-301 . -82) 48633) ((-301 . -963) 48578) ((-301 . -968) 48523) ((-301 . -246) T) ((-301 . -201) T) ((-301 . -344) T) ((-301 . -118) T) ((-301 . -950) 48500) ((-301 . -1186) 48477) ((-301 . -1197) 48454) ((-295 . -280) 48438) ((-295 . -190) 48417) ((-295 . -186) 48390) ((-295 . -189) 48369) ((-295 . -319) 48348) ((-295 . -1065) 48327) ((-295 . -299) 48306) ((-295 . -120) 48285) ((-295 . -555) 48222) ((-295 . -590) 48174) ((-295 . -588) 48111) ((-295 . -104) T) ((-295 . -25) T) ((-295 . -72) T) ((-295 . -13) T) ((-295 . -1128) T) ((-295 . -552) 48093) ((-295 . -1013) T) ((-295 . -23) T) ((-295 . -21) T) ((-295 . -970) T) ((-295 . -1025) T) ((-295 . -1060) T) ((-295 . -663) T) ((-295 . -961) T) ((-295 . -312) T) ((-295 . -1133) T) ((-295 . -832) T) ((-295 . -495) T) ((-295 . -146) T) ((-295 . -654) 48045) ((-295 . -582) 47997) ((-295 . -38) 47962) ((-295 . -391) T) ((-295 . -258) T) ((-295 . -82) 47893) ((-295 . -963) 47845) ((-295 . -968) 47797) ((-295 . -246) T) ((-295 . -201) T) ((-295 . -344) 47751) ((-295 . -118) 47705) ((-295 . -950) 47689) ((-295 . -1186) 47673) ((-295 . -1197) 47657) ((-294 . -280) 47641) ((-294 . -190) 47620) ((-294 . -186) 47593) ((-294 . -189) 47572) ((-294 . -319) 47551) ((-294 . -1065) 47530) ((-294 . -299) 47509) ((-294 . -120) 47488) ((-294 . -555) 47425) ((-294 . -590) 47377) ((-294 . -588) 47314) ((-294 . -104) T) ((-294 . -25) T) ((-294 . -72) T) ((-294 . -13) T) ((-294 . -1128) T) ((-294 . -552) 47296) ((-294 . -1013) T) ((-294 . -23) T) ((-294 . -21) T) ((-294 . -970) T) ((-294 . -1025) T) ((-294 . -1060) T) ((-294 . -663) T) ((-294 . -961) T) ((-294 . -312) T) ((-294 . -1133) T) ((-294 . -832) T) ((-294 . -495) T) ((-294 . -146) T) ((-294 . -654) 47248) ((-294 . -582) 47200) ((-294 . -38) 47165) ((-294 . -391) T) ((-294 . -258) T) ((-294 . -82) 47096) ((-294 . -963) 47048) ((-294 . -968) 47000) ((-294 . -246) T) ((-294 . -201) T) ((-294 . -344) 46954) ((-294 . -118) 46908) ((-294 . -950) 46892) ((-294 . -1186) 46876) ((-294 . -1197) 46860) ((-293 . -280) 46837) ((-293 . -190) T) ((-293 . -186) 46824) ((-293 . -189) T) ((-293 . -319) T) ((-293 . -1065) T) ((-293 . -299) T) ((-293 . -120) 46806) ((-293 . -555) 46736) ((-293 . -590) 46681) ((-293 . -588) 46611) ((-293 . -104) T) ((-293 . -25) T) ((-293 . -72) T) ((-293 . -13) T) ((-293 . -1128) T) ((-293 . -552) 46593) ((-293 . -1013) T) ((-293 . -23) T) ((-293 . -21) T) ((-293 . -970) T) ((-293 . -1025) T) ((-293 . -1060) T) ((-293 . -663) T) ((-293 . -961) T) ((-293 . -312) T) ((-293 . -1133) T) ((-293 . -832) T) ((-293 . -495) T) ((-293 . -146) T) ((-293 . -654) 46538) ((-293 . -582) 46483) ((-293 . -38) 46448) ((-293 . -391) T) ((-293 . -258) T) ((-293 . -82) 46365) ((-293 . -963) 46310) ((-293 . -968) 46255) ((-293 . -246) T) ((-293 . -201) T) ((-293 . -344) T) ((-293 . -118) T) ((-293 . -950) 46232) ((-293 . -1186) 46209) ((-293 . -1197) 46186) ((-289 . -280) 46163) ((-289 . -190) T) ((-289 . -186) 46150) ((-289 . -189) T) ((-289 . -319) T) ((-289 . -1065) T) ((-289 . -299) T) ((-289 . -120) 46132) ((-289 . -555) 46062) ((-289 . -590) 46007) ((-289 . -588) 45937) ((-289 . -104) T) ((-289 . -25) T) ((-289 . -72) T) ((-289 . -13) T) ((-289 . -1128) T) ((-289 . -552) 45919) ((-289 . -1013) T) ((-289 . -23) T) ((-289 . -21) T) ((-289 . -970) T) ((-289 . -1025) T) ((-289 . -1060) T) ((-289 . -663) T) ((-289 . -961) T) ((-289 . -312) T) ((-289 . -1133) T) ((-289 . -832) T) ((-289 . -495) T) ((-289 . -146) T) ((-289 . -654) 45864) ((-289 . -582) 45809) ((-289 . -38) 45774) ((-289 . -391) T) ((-289 . -258) T) ((-289 . -82) 45691) ((-289 . -963) 45636) ((-289 . -968) 45581) ((-289 . -246) T) ((-289 . -201) T) ((-289 . -344) T) ((-289 . -118) T) ((-289 . -950) 45558) ((-289 . -1186) 45535) ((-289 . -1197) 45512) ((-283 . -286) 45481) ((-283 . -104) T) ((-283 . -25) T) ((-283 . -72) T) ((-283 . -13) T) ((-283 . -1128) T) ((-283 . -552) 45463) ((-283 . -1013) T) ((-283 . -23) T) ((-283 . -588) 45445) ((-283 . -21) T) ((-282 . -1013) T) ((-282 . -552) 45427) ((-282 . -1128) T) ((-282 . -13) T) ((-282 . -72) T) ((-281 . -756) T) ((-281 . -552) 45409) ((-281 . -1013) T) ((-281 . -72) T) ((-281 . -13) T) ((-281 . -1128) T) ((-281 . -759) T) ((-278 . -19) 45393) ((-278 . -593) 45377) ((-278 . -243) 45354) ((-278 . -241) 45306) ((-278 . -538) 45283) ((-278 . -553) 45244) ((-278 . -428) 45228) ((-278 . -1013) 45181) ((-278 . -455) 45114) ((-278 . -260) 45052) ((-278 . -552) 44967) ((-278 . -72) 44901) ((-278 . -1128) T) ((-278 . -13) T) ((-278 . -34) T) ((-278 . -124) 44885) ((-278 . -756) 44864) ((-278 . -759) 44843) ((-278 . -323) 44827) ((-278 . -237) 44811) ((-275 . -274) 44788) ((-275 . -555) 44772) ((-275 . -950) 44756) ((-275 . -23) T) ((-275 . -1013) T) ((-275 . -552) 44738) ((-275 . -1128) T) ((-275 . -13) T) ((-275 . -72) T) ((-275 . -25) T) ((-275 . -104) T) ((-273 . -21) T) ((-273 . -588) 44720) ((-273 . -23) T) ((-273 . -1013) T) ((-273 . -552) 44702) ((-273 . -1128) T) ((-273 . -13) T) ((-273 . -72) T) ((-273 . -25) T) ((-273 . -104) T) ((-273 . -654) 44684) ((-273 . -582) 44666) ((-273 . -590) 44648) ((-273 . -968) 44630) ((-273 . -963) 44612) ((-273 . -82) 44587) ((-273 . -274) 44564) ((-273 . -555) 44548) ((-273 . -950) 44532) ((-273 . -756) 44511) ((-273 . -759) 44490) ((-270 . -1161) 44474) ((-270 . -190) 44426) ((-270 . -186) 44372) ((-270 . -189) 44324) ((-270 . -241) 44282) ((-270 . -809) 44188) ((-270 . -806) 44092) ((-270 . -811) 43998) ((-270 . -886) 43961) ((-270 . -38) 43808) ((-270 . -82) 43628) ((-270 . -963) 43469) ((-270 . -968) 43310) ((-270 . -588) 43195) ((-270 . -590) 43095) ((-270 . -582) 42942) ((-270 . -654) 42789) ((-270 . -555) 42621) ((-270 . -118) 42600) ((-270 . -120) 42579) ((-270 . -47) 42549) ((-270 . -1157) 42519) ((-270 . -35) 42485) ((-270 . -66) 42451) ((-270 . -239) 42417) ((-270 . -432) 42383) ((-270 . -1117) 42349) ((-270 . -1114) 42315) ((-270 . -915) 42281) ((-270 . -201) 42260) ((-270 . -246) 42214) ((-270 . -104) T) ((-270 . -25) T) ((-270 . -72) T) ((-270 . -13) T) ((-270 . -1128) T) ((-270 . -552) 42196) ((-270 . -1013) T) ((-270 . -23) T) ((-270 . -21) T) ((-270 . -961) T) ((-270 . -663) T) ((-270 . -1060) T) ((-270 . -1025) T) ((-270 . -970) T) ((-270 . -258) 42175) ((-270 . -391) 42154) ((-270 . -146) 42088) ((-270 . -495) 42042) ((-270 . -832) 42021) ((-270 . -1133) 42000) ((-270 . -312) 41979) ((-270 . -716) T) ((-270 . -756) T) ((-270 . -759) T) ((-270 . -718) T) ((-265 . -363) 41963) ((-265 . -555) 41538) ((-265 . -950) 41209) ((-265 . -553) 41070) ((-265 . -794) 41054) ((-265 . -811) 41021) ((-265 . -806) 40986) ((-265 . -809) 40953) ((-265 . -412) 40932) ((-265 . -354) 40916) ((-265 . -796) 40841) ((-265 . -342) 40825) ((-265 . -580) 40733) ((-265 . -590) 40471) ((-265 . -328) 40441) ((-265 . -201) 40420) ((-265 . -82) 40309) ((-265 . -963) 40219) ((-265 . -968) 40129) ((-265 . -246) 40108) ((-265 . -654) 40018) ((-265 . -582) 39928) ((-265 . -588) 39595) ((-265 . -38) 39505) ((-265 . -258) 39484) ((-265 . -391) 39463) ((-265 . -146) 39442) ((-265 . -495) 39421) ((-265 . -832) 39400) ((-265 . -1133) 39379) ((-265 . -312) 39358) ((-265 . -260) 39345) ((-265 . -455) 39311) ((-265 . -254) T) ((-265 . -120) 39290) ((-265 . -118) 39269) ((-265 . -961) 39163) ((-265 . -663) 39016) ((-265 . -1060) 38910) ((-265 . -1025) 38763) ((-265 . -970) 38657) ((-265 . -104) 38532) ((-265 . -25) 38388) ((-265 . -72) T) ((-265 . -13) T) ((-265 . -1128) T) ((-265 . -552) 38370) ((-265 . -1013) T) ((-265 . -23) 38226) ((-265 . -21) 38101) ((-265 . -29) 38071) ((-265 . -915) 38050) ((-265 . -27) 38029) ((-265 . -1114) 38008) ((-265 . -1117) 37987) ((-265 . -432) 37966) ((-265 . -239) 37945) ((-265 . -66) 37924) ((-265 . -35) 37903) ((-265 . -133) 37882) ((-265 . -116) 37861) ((-265 . -569) 37840) ((-265 . -871) 37819) ((-265 . -1052) 37798) ((-264 . -904) 37759) ((-264 . -1065) NIL) ((-264 . -950) 37689) ((-264 . -555) 37572) ((-264 . -553) NIL) ((-264 . -933) NIL) ((-264 . -821) NIL) ((-264 . -794) 37533) ((-264 . -755) NIL) ((-264 . -721) NIL) ((-264 . -718) NIL) ((-264 . -759) NIL) ((-264 . -756) NIL) ((-264 . -716) NIL) ((-264 . -714) NIL) ((-264 . -740) NIL) ((-264 . -796) NIL) ((-264 . -342) 37494) ((-264 . -580) 37455) ((-264 . -590) 37384) ((-264 . -328) 37345) ((-264 . -241) 37211) ((-264 . -260) 37107) ((-264 . -455) 36858) ((-264 . -288) 36819) ((-264 . -201) T) ((-264 . -82) 36704) ((-264 . -963) 36633) ((-264 . -968) 36562) ((-264 . -246) T) ((-264 . -654) 36491) ((-264 . -582) 36420) ((-264 . -588) 36334) ((-264 . -38) 36263) ((-264 . -258) T) ((-264 . -391) T) ((-264 . -146) T) ((-264 . -495) T) ((-264 . -832) T) ((-264 . -1133) T) ((-264 . -312) T) ((-264 . -190) NIL) ((-264 . -186) NIL) ((-264 . -189) NIL) ((-264 . -225) 36224) ((-264 . -806) NIL) ((-264 . -811) NIL) ((-264 . -809) NIL) ((-264 . -184) 36185) ((-264 . -120) 36141) ((-264 . -118) 36097) ((-264 . -104) T) ((-264 . -25) T) ((-264 . -72) T) ((-264 . -13) T) ((-264 . -1128) T) ((-264 . -552) 36079) ((-264 . -1013) T) ((-264 . -23) T) ((-264 . -21) T) ((-264 . -961) T) ((-264 . -663) T) ((-264 . -1060) T) ((-264 . -1025) T) ((-264 . -970) T) ((-263 . -995) T) ((-263 . -429) 36060) ((-263 . -552) 36026) ((-263 . -555) 36007) ((-263 . -1013) T) ((-263 . -1128) T) ((-263 . -13) T) ((-263 . -72) T) ((-263 . -64) T) ((-262 . -1013) T) ((-262 . -552) 35989) ((-262 . -1128) T) ((-262 . -13) T) ((-262 . -72) T) ((-251 . -1106) 35968) ((-251 . -183) 35916) ((-251 . -76) 35864) ((-251 . -260) 35662) ((-251 . -455) 35414) ((-251 . -428) 35349) ((-251 . -124) 35297) ((-251 . -553) NIL) ((-251 . -193) 35245) ((-251 . -549) 35224) ((-251 . -243) 35203) ((-251 . -1128) T) ((-251 . -13) T) ((-251 . -241) 35182) ((-251 . -1013) T) ((-251 . -552) 35164) ((-251 . -72) T) ((-251 . -34) T) ((-251 . -538) 35143) ((-249 . -1128) T) ((-249 . -13) T) ((-249 . -455) 35092) ((-249 . -1013) 34878) ((-249 . -552) 34624) ((-249 . -72) 34410) ((-249 . -25) 34278) ((-249 . -21) 34165) ((-249 . -588) 33912) ((-249 . -23) 33799) ((-249 . -104) 33686) ((-249 . -1025) 33571) ((-249 . -663) 33477) ((-249 . -412) 33456) ((-249 . -961) 33402) ((-249 . -1060) 33348) ((-249 . -970) 33294) ((-249 . -590) 33162) ((-249 . -555) 33097) ((-249 . -82) 33017) ((-249 . -963) 32942) ((-249 . -968) 32867) ((-249 . -654) 32812) ((-249 . -582) 32757) ((-249 . -809) 32716) ((-249 . -806) 32673) ((-249 . -811) 32632) ((-249 . -1186) 32602) ((-247 . -552) 32584) ((-244 . -258) T) ((-244 . -391) T) ((-244 . -38) 32571) ((-244 . -555) 32543) ((-244 . -970) T) ((-244 . -1025) T) ((-244 . -1060) T) ((-244 . -663) T) ((-244 . -961) T) ((-244 . -82) 32528) ((-244 . -963) 32515) ((-244 . -968) 32502) ((-244 . -21) T) ((-244 . -588) 32474) ((-244 . -23) T) ((-244 . -1013) T) ((-244 . -552) 32456) ((-244 . -1128) T) ((-244 . -13) T) ((-244 . -72) T) ((-244 . -25) T) ((-244 . -104) T) ((-244 . -590) 32443) ((-244 . -582) 32430) ((-244 . -654) 32417) ((-244 . -146) T) ((-244 . -246) T) ((-244 . -495) T) ((-244 . -832) T) ((-244 . -241) 32396) ((-235 . -552) 32378) ((-234 . -552) 32360) ((-229 . -756) T) ((-229 . -552) 32342) ((-229 . -1013) T) ((-229 . -72) T) ((-229 . -13) T) ((-229 . -1128) T) ((-229 . -759) T) ((-226 . -213) 32304) ((-226 . -555) 32064) ((-226 . -950) 31910) ((-226 . -553) 31658) ((-226 . -277) 31630) ((-226 . -354) 31614) ((-226 . -38) 31466) ((-226 . -82) 31291) ((-226 . -963) 31137) ((-226 . -968) 30983) ((-226 . -588) 30893) ((-226 . -590) 30782) ((-226 . -582) 30634) ((-226 . -654) 30486) ((-226 . -118) 30465) ((-226 . -120) 30444) ((-226 . -146) 30358) ((-226 . -495) 30292) ((-226 . -246) 30226) ((-226 . -47) 30198) ((-226 . -328) 30182) ((-226 . -580) 30130) ((-226 . -391) 30084) ((-226 . -455) 29975) ((-226 . -809) 29921) ((-226 . -806) 29830) ((-226 . -811) 29743) ((-226 . -796) 29602) ((-226 . -821) 29581) ((-226 . -1133) 29560) ((-226 . -861) 29527) ((-226 . -260) 29514) ((-226 . -190) 29493) ((-226 . -104) T) ((-226 . -25) T) ((-226 . -72) T) ((-226 . -552) 29475) ((-226 . -1013) T) ((-226 . -23) T) ((-226 . -21) T) ((-226 . -970) T) ((-226 . -1025) T) ((-226 . -1060) T) ((-226 . -663) T) ((-226 . -961) T) ((-226 . -186) 29423) ((-226 . -13) T) ((-226 . -1128) T) ((-226 . -189) 29377) ((-226 . -225) 29361) ((-226 . -184) 29345) ((-221 . -1013) T) ((-221 . -552) 29327) ((-221 . -1128) T) ((-221 . -13) T) ((-221 . -72) T) ((-211 . -196) 29306) ((-211 . -1186) 29276) ((-211 . -721) 29255) ((-211 . -718) 29234) ((-211 . -759) 29188) ((-211 . -756) 29142) ((-211 . -716) 29121) ((-211 . -717) 29100) ((-211 . -654) 29045) ((-211 . -582) 28970) ((-211 . -243) 28947) ((-211 . -241) 28924) ((-211 . -428) 28908) ((-211 . -455) 28841) ((-211 . -260) 28779) ((-211 . -34) T) ((-211 . -538) 28756) ((-211 . -950) 28585) ((-211 . -555) 28389) ((-211 . -354) 28358) ((-211 . -580) 28266) ((-211 . -590) 28092) ((-211 . -328) 28062) ((-211 . -319) 28041) ((-211 . -190) 27994) ((-211 . -588) 27847) ((-211 . -970) 27826) ((-211 . -1025) 27805) ((-211 . -1060) 27784) ((-211 . -663) 27763) ((-211 . -961) 27742) ((-211 . -186) 27638) ((-211 . -189) 27540) ((-211 . -225) 27510) ((-211 . -806) 27382) ((-211 . -811) 27256) ((-211 . -809) 27189) ((-211 . -184) 27159) ((-211 . -552) 27120) ((-211 . -968) 27045) ((-211 . -963) 26950) ((-211 . -82) 26870) ((-211 . -104) T) ((-211 . -25) T) ((-211 . -72) T) ((-211 . -13) T) ((-211 . -1128) T) ((-211 . -1013) T) ((-211 . -23) T) ((-211 . -21) T) ((-210 . -196) 26849) ((-210 . -1186) 26819) ((-210 . -721) 26798) ((-210 . -718) 26777) ((-210 . -759) 26731) ((-210 . -756) 26685) ((-210 . -716) 26664) ((-210 . -717) 26643) ((-210 . -654) 26588) ((-210 . -582) 26513) ((-210 . -243) 26490) ((-210 . -241) 26467) ((-210 . -428) 26451) ((-210 . -455) 26384) ((-210 . -260) 26322) ((-210 . -34) T) ((-210 . -538) 26299) ((-210 . -950) 26128) ((-210 . -555) 25932) ((-210 . -354) 25901) ((-210 . -580) 25809) ((-210 . -590) 25622) ((-210 . -328) 25592) ((-210 . -319) 25571) ((-210 . -190) 25524) ((-210 . -588) 25364) ((-210 . -970) 25343) ((-210 . -1025) 25322) ((-210 . -1060) 25301) ((-210 . -663) 25280) ((-210 . -961) 25259) ((-210 . -186) 25155) ((-210 . -189) 25057) ((-210 . -225) 25027) ((-210 . -806) 24899) ((-210 . -811) 24773) ((-210 . -809) 24706) ((-210 . -184) 24676) ((-210 . -552) 24637) ((-210 . -968) 24562) ((-210 . -963) 24467) ((-210 . -82) 24387) ((-210 . -104) T) ((-210 . -25) T) ((-210 . -72) T) ((-210 . -13) T) ((-210 . -1128) T) ((-210 . -1013) T) ((-210 . -23) T) ((-210 . -21) T) ((-209 . -1013) T) ((-209 . -552) 24369) ((-209 . -1128) T) ((-209 . -13) T) ((-209 . -72) T) ((-209 . -241) 24343) ((-208 . -160) T) ((-208 . -1013) T) ((-208 . -552) 24310) ((-208 . -1128) T) ((-208 . -13) T) ((-208 . -72) T) ((-208 . -747) 24292) ((-207 . -1013) T) ((-207 . -552) 24274) ((-207 . -1128) T) ((-207 . -13) T) ((-207 . -72) T) ((-206 . -861) 24219) ((-206 . -555) 24011) ((-206 . -950) 23889) ((-206 . -1133) 23868) ((-206 . -821) 23847) ((-206 . -796) NIL) ((-206 . -811) 23824) ((-206 . -806) 23799) ((-206 . -809) 23776) ((-206 . -455) 23714) ((-206 . -391) 23668) ((-206 . -580) 23616) ((-206 . -590) 23505) ((-206 . -328) 23489) ((-206 . -47) 23446) ((-206 . -38) 23298) ((-206 . -582) 23150) ((-206 . -654) 23002) ((-206 . -246) 22936) ((-206 . -495) 22870) ((-206 . -82) 22695) ((-206 . -963) 22541) ((-206 . -968) 22387) ((-206 . -146) 22301) ((-206 . -120) 22280) ((-206 . -118) 22259) ((-206 . -588) 22169) ((-206 . -104) T) ((-206 . -25) T) ((-206 . -72) T) ((-206 . -13) T) ((-206 . -1128) T) ((-206 . -552) 22151) ((-206 . -1013) T) ((-206 . -23) T) ((-206 . -21) T) ((-206 . -961) T) ((-206 . -663) T) ((-206 . -1060) T) ((-206 . -1025) T) ((-206 . -970) T) ((-206 . -354) 22135) ((-206 . -277) 22092) ((-206 . -260) 22079) ((-206 . -553) 21940) ((-203 . -608) 21924) ((-203 . -1167) 21908) ((-203 . -923) 21892) ((-203 . -1063) 21876) ((-203 . -756) 21855) ((-203 . -759) 21834) ((-203 . -323) 21818) ((-203 . -593) 21802) ((-203 . -243) 21779) ((-203 . -241) 21731) ((-203 . -538) 21708) ((-203 . -553) 21669) ((-203 . -428) 21653) ((-203 . -1013) 21606) ((-203 . -455) 21539) ((-203 . -260) 21477) ((-203 . -552) 21372) ((-203 . -72) 21306) ((-203 . -1128) T) ((-203 . -13) T) ((-203 . -34) T) ((-203 . -124) 21290) ((-203 . -237) 21274) ((-203 . -429) 21251) ((-203 . -555) 21228) ((-197 . -196) 21207) ((-197 . -1186) 21177) ((-197 . -721) 21156) ((-197 . -718) 21135) ((-197 . -759) 21089) ((-197 . -756) 21043) ((-197 . -716) 21022) ((-197 . -717) 21001) ((-197 . -654) 20946) ((-197 . -582) 20871) ((-197 . -243) 20848) ((-197 . -241) 20825) ((-197 . -428) 20809) ((-197 . -455) 20742) ((-197 . -260) 20680) ((-197 . -34) T) ((-197 . -538) 20657) ((-197 . -950) 20486) ((-197 . -555) 20290) ((-197 . -354) 20259) ((-197 . -580) 20167) ((-197 . -590) 20006) ((-197 . -328) 19976) ((-197 . -319) 19955) ((-197 . -190) 19908) ((-197 . -588) 19696) ((-197 . -970) 19675) ((-197 . -1025) 19654) ((-197 . -1060) 19633) ((-197 . -663) 19612) ((-197 . -961) 19591) ((-197 . -186) 19487) ((-197 . -189) 19389) ((-197 . -225) 19359) ((-197 . -806) 19231) ((-197 . -811) 19105) ((-197 . -809) 19038) ((-197 . -184) 19008) ((-197 . -552) 18705) ((-197 . -968) 18630) ((-197 . -963) 18535) ((-197 . -82) 18455) ((-197 . -104) 18330) ((-197 . -25) 18167) ((-197 . -72) 17904) ((-197 . -13) T) ((-197 . -1128) T) ((-197 . -1013) 17660) ((-197 . -23) 17516) ((-197 . -21) 17431) ((-181 . -627) 17389) ((-181 . -428) 17373) ((-181 . -1013) 17351) ((-181 . -455) 17284) ((-181 . -260) 17222) ((-181 . -552) 17157) ((-181 . -72) 17111) ((-181 . -1128) T) ((-181 . -13) T) ((-181 . -34) T) ((-181 . -57) 17069) ((-179 . -346) T) ((-179 . -120) T) ((-179 . -555) 17019) ((-179 . -590) 16984) ((-179 . -588) 16934) ((-179 . -104) T) ((-179 . -25) T) ((-179 . -72) T) ((-179 . -13) T) ((-179 . -1128) T) ((-179 . -552) 16916) ((-179 . -1013) T) ((-179 . -23) T) ((-179 . -21) T) ((-179 . -970) T) ((-179 . -1025) T) ((-179 . -1060) T) ((-179 . -663) T) ((-179 . -961) T) ((-179 . -553) 16846) ((-179 . -312) T) ((-179 . -1133) T) ((-179 . -832) T) ((-179 . -495) T) ((-179 . -146) T) ((-179 . -654) 16811) ((-179 . -582) 16776) ((-179 . -38) 16741) ((-179 . -391) T) ((-179 . -258) T) ((-179 . -82) 16690) ((-179 . -963) 16655) ((-179 . -968) 16620) ((-179 . -246) T) ((-179 . -201) T) ((-179 . -755) T) ((-179 . -721) T) ((-179 . -718) T) ((-179 . -759) T) ((-179 . -756) T) ((-179 . -716) T) ((-179 . -714) T) ((-179 . -796) 16602) ((-179 . -915) T) ((-179 . -933) T) ((-179 . -950) 16562) ((-179 . -973) T) ((-179 . -190) T) ((-179 . -186) 16549) ((-179 . -189) T) ((-179 . -1114) T) ((-179 . -1117) T) ((-179 . -432) T) ((-179 . -239) T) ((-179 . -66) T) ((-179 . -35) T) ((-177 . -560) 16526) ((-177 . -555) 16488) ((-177 . -590) 16455) ((-177 . -588) 16407) ((-177 . -970) T) ((-177 . -1025) T) ((-177 . -1060) T) ((-177 . -663) T) ((-177 . -961) T) ((-177 . -21) T) ((-177 . -23) T) ((-177 . -1013) T) ((-177 . -552) 16389) ((-177 . -1128) T) ((-177 . -13) T) ((-177 . -72) T) ((-177 . -25) T) ((-177 . -104) T) ((-177 . -950) 16366) ((-176 . -214) 16350) ((-176 . -1034) 16334) ((-176 . -76) 16318) ((-176 . -34) T) ((-176 . -13) T) ((-176 . -1128) T) ((-176 . -72) 16272) ((-176 . -552) 16207) ((-176 . -260) 16145) ((-176 . -455) 16078) ((-176 . -1013) 16056) ((-176 . -428) 16040) ((-176 . -908) 16024) ((-172 . -995) T) ((-172 . -429) 16005) ((-172 . -552) 15971) ((-172 . -555) 15952) ((-172 . -1013) T) ((-172 . -1128) T) ((-172 . -13) T) ((-172 . -72) T) ((-172 . -64) T) ((-171 . -904) 15934) ((-171 . -1065) T) ((-171 . -555) 15884) ((-171 . -950) 15844) ((-171 . -553) 15774) ((-171 . -933) T) ((-171 . -821) NIL) ((-171 . -794) 15756) ((-171 . -755) T) ((-171 . -721) T) ((-171 . -718) T) ((-171 . -759) T) ((-171 . -756) T) ((-171 . -716) T) ((-171 . -714) T) ((-171 . -740) T) ((-171 . -796) 15738) ((-171 . -342) 15720) ((-171 . -580) 15702) ((-171 . -328) 15684) ((-171 . -241) NIL) ((-171 . -260) NIL) ((-171 . -455) NIL) ((-171 . -288) 15666) ((-171 . -201) T) ((-171 . -82) 15593) ((-171 . -963) 15543) ((-171 . -968) 15493) ((-171 . -246) T) ((-171 . -654) 15443) ((-171 . -582) 15393) ((-171 . -590) 15343) ((-171 . -588) 15293) ((-171 . -38) 15243) ((-171 . -258) T) ((-171 . -391) T) ((-171 . -146) T) ((-171 . -495) T) ((-171 . -832) T) ((-171 . -1133) T) ((-171 . -312) T) ((-171 . -190) T) ((-171 . -186) 15230) ((-171 . -189) T) ((-171 . -225) 15212) ((-171 . -806) NIL) ((-171 . -811) NIL) ((-171 . -809) NIL) ((-171 . -184) 15194) ((-171 . -120) T) ((-171 . -118) NIL) ((-171 . -104) T) ((-171 . -25) T) ((-171 . -72) T) ((-171 . -13) T) ((-171 . -1128) T) ((-171 . -552) 15136) ((-171 . -1013) T) ((-171 . -23) T) ((-171 . -21) T) ((-171 . -961) T) ((-171 . -663) T) ((-171 . -1060) T) ((-171 . -1025) T) ((-171 . -970) T) ((-168 . -752) T) ((-168 . -759) T) ((-168 . -756) T) ((-168 . -1013) T) ((-168 . -552) 15118) ((-168 . -1128) T) ((-168 . -13) T) ((-168 . -72) T) ((-168 . -319) T) ((-167 . -1013) T) ((-167 . -552) 15100) ((-167 . -1128) T) ((-167 . -13) T) ((-167 . -72) T) ((-167 . -555) 15077) ((-166 . -1013) T) ((-166 . -552) 15059) ((-166 . -1128) T) ((-166 . -13) T) ((-166 . -72) T) ((-161 . -1013) T) ((-161 . -552) 15041) ((-161 . -1128) T) ((-161 . -13) T) ((-161 . -72) T) ((-158 . -1013) T) ((-158 . -552) 15023) ((-158 . -1128) T) ((-158 . -13) T) ((-158 . -72) T) ((-157 . -160) T) ((-157 . -1013) T) ((-157 . -552) 15005) ((-157 . -1128) T) ((-157 . -13) T) ((-157 . -72) T) ((-157 . -747) 14987) ((-154 . -995) T) ((-154 . -429) 14968) ((-154 . -552) 14934) ((-154 . -555) 14915) ((-154 . -1013) T) ((-154 . -1128) T) ((-154 . -13) T) ((-154 . -72) T) ((-154 . -64) T) ((-149 . -552) 14897) ((-148 . -38) 14829) ((-148 . -555) 14746) ((-148 . -590) 14678) ((-148 . -588) 14595) ((-148 . -970) T) ((-148 . -1025) T) ((-148 . -1060) T) ((-148 . -663) T) ((-148 . -961) T) ((-148 . -82) 14494) ((-148 . -963) 14426) ((-148 . -968) 14358) ((-148 . -21) T) ((-148 . -23) T) ((-148 . -1013) T) ((-148 . -552) 14340) ((-148 . -1128) T) ((-148 . -13) T) ((-148 . -72) T) ((-148 . -25) T) ((-148 . -104) T) ((-148 . -582) 14272) ((-148 . -654) 14204) ((-148 . -312) T) ((-148 . -1133) T) ((-148 . -832) T) ((-148 . -495) T) ((-148 . -146) T) ((-148 . -391) T) ((-148 . -258) T) ((-148 . -246) T) ((-148 . -201) T) ((-145 . -1013) T) ((-145 . -552) 14186) ((-145 . -1128) T) ((-145 . -13) T) ((-145 . -72) T) ((-142 . -139) 14170) ((-142 . -35) 14148) ((-142 . -66) 14126) ((-142 . -239) 14104) ((-142 . -432) 14082) ((-142 . -1117) 14060) ((-142 . -1114) 14038) ((-142 . -915) 13990) ((-142 . -821) 13943) ((-142 . -553) 13711) ((-142 . -794) 13695) ((-142 . -319) 13649) ((-142 . -299) 13628) ((-142 . -1065) 13607) ((-142 . -344) 13586) ((-142 . -352) 13557) ((-142 . -38) 13391) ((-142 . -82) 13283) ((-142 . -963) 13196) ((-142 . -968) 13109) ((-142 . -582) 12943) ((-142 . -654) 12777) ((-142 . -321) 12748) ((-142 . -661) 12719) ((-142 . -950) 12617) ((-142 . -555) 12402) ((-142 . -354) 12386) ((-142 . -796) 12311) ((-142 . -342) 12295) ((-142 . -580) 12243) ((-142 . -590) 12120) ((-142 . -588) 12018) ((-142 . -328) 12002) ((-142 . -241) 11960) ((-142 . -260) 11925) ((-142 . -455) 11837) ((-142 . -288) 11821) ((-142 . -201) 11775) ((-142 . -1133) 11683) ((-142 . -312) 11637) ((-142 . -832) 11571) ((-142 . -495) 11485) ((-142 . -246) 11399) ((-142 . -391) 11333) ((-142 . -258) 11267) ((-142 . -190) 11221) ((-142 . -186) 11149) ((-142 . -189) 11083) ((-142 . -225) 11067) ((-142 . -806) 10991) ((-142 . -811) 10917) ((-142 . -809) 10876) ((-142 . -184) 10860) ((-142 . -146) T) ((-142 . -120) 10839) ((-142 . -961) T) ((-142 . -663) T) ((-142 . -1060) T) ((-142 . -1025) T) ((-142 . -970) T) ((-142 . -21) T) ((-142 . -23) T) ((-142 . -1013) T) ((-142 . -552) 10821) ((-142 . -1128) T) ((-142 . -13) T) ((-142 . -72) T) ((-142 . -25) T) ((-142 . -104) T) ((-142 . -118) 10775) ((-135 . -995) T) ((-135 . -429) 10756) ((-135 . -552) 10722) ((-135 . -555) 10703) ((-135 . -1013) T) ((-135 . -1128) T) ((-135 . -13) T) ((-135 . -72) T) ((-135 . -64) T) ((-134 . -1013) T) ((-134 . -552) 10685) ((-134 . -1128) T) ((-134 . -13) T) ((-134 . -72) T) ((-130 . -25) T) ((-130 . -72) T) ((-130 . -13) T) ((-130 . -1128) T) ((-130 . -552) 10667) ((-130 . -1013) T) ((-129 . -995) T) ((-129 . -429) 10648) ((-129 . -552) 10614) ((-129 . -555) 10595) ((-129 . -1013) T) ((-129 . -1128) T) ((-129 . -13) T) ((-129 . -72) T) ((-129 . -64) T) ((-127 . -995) T) ((-127 . -429) 10576) ((-127 . -552) 10542) ((-127 . -555) 10523) ((-127 . -1013) T) ((-127 . -1128) T) ((-127 . -13) T) ((-127 . -72) T) ((-127 . -64) T) ((-125 . -961) T) ((-125 . -663) T) ((-125 . -1060) T) ((-125 . -1025) T) ((-125 . -970) T) ((-125 . -21) T) ((-125 . -588) 10482) ((-125 . -23) T) ((-125 . -1013) T) ((-125 . -552) 10464) ((-125 . -1128) T) ((-125 . -13) T) ((-125 . -72) T) ((-125 . -25) T) ((-125 . -104) T) ((-125 . -590) 10438) ((-125 . -555) 10407) ((-125 . -38) 10391) ((-125 . -82) 10370) ((-125 . -963) 10354) ((-125 . -968) 10338) ((-125 . -582) 10322) ((-125 . -654) 10306) ((-125 . -1186) 10290) ((-117 . -752) T) ((-117 . -759) T) ((-117 . -756) T) ((-117 . -1013) T) ((-117 . -552) 10272) ((-117 . -1128) T) ((-117 . -13) T) ((-117 . -72) T) ((-117 . -319) T) ((-114 . -1013) T) ((-114 . -552) 10254) ((-114 . -1128) T) ((-114 . -13) T) ((-114 . -72) T) ((-114 . -553) 10213) ((-114 . -368) 10195) ((-114 . -1011) 10177) ((-114 . -319) T) ((-114 . -193) 10159) ((-114 . -124) 10141) ((-114 . -428) 10123) ((-114 . -455) NIL) ((-114 . -260) NIL) ((-114 . -34) T) ((-114 . -76) 10105) ((-114 . -183) 10087) ((-113 . -552) 10069) ((-112 . -160) T) ((-112 . -1013) T) ((-112 . -552) 10036) ((-112 . -1128) T) ((-112 . -13) T) ((-112 . -72) T) ((-112 . -747) 10018) ((-111 . -995) T) ((-111 . -429) 9999) ((-111 . -552) 9965) ((-111 . -555) 9946) ((-111 . -1013) T) ((-111 . -1128) T) ((-111 . -13) T) ((-111 . -72) T) ((-111 . -64) T) ((-110 . -995) T) ((-110 . -429) 9927) ((-110 . -552) 9893) ((-110 . -555) 9874) ((-110 . -1013) T) ((-110 . -1128) T) ((-110 . -13) T) ((-110 . -72) T) ((-110 . -64) T) ((-108 . -404) 9851) ((-108 . -555) 9747) ((-108 . -950) 9731) ((-108 . -1013) T) ((-108 . -552) 9713) ((-108 . -1128) T) ((-108 . -13) T) ((-108 . -72) T) ((-108 . -409) 9668) ((-108 . -241) 9645) ((-107 . -756) T) ((-107 . -552) 9627) ((-107 . -1013) T) ((-107 . -72) T) ((-107 . -13) T) ((-107 . -1128) T) ((-107 . -759) T) ((-107 . -23) T) ((-107 . -25) T) ((-107 . -663) T) ((-107 . -1025) T) ((-107 . -950) 9609) ((-107 . -555) 9591) ((-106 . -995) T) ((-106 . -429) 9572) ((-106 . -552) 9538) ((-106 . -555) 9519) ((-106 . -1013) T) ((-106 . -1128) T) ((-106 . -13) T) ((-106 . -72) T) ((-106 . -64) T) ((-103 . -1013) T) ((-103 . -552) 9501) ((-103 . -1128) T) ((-103 . -13) T) ((-103 . -72) T) ((-102 . -19) 9483) ((-102 . -593) 9465) ((-102 . -243) 9440) ((-102 . -241) 9390) ((-102 . -538) 9365) ((-102 . -553) NIL) ((-102 . -428) 9347) ((-102 . -1013) T) ((-102 . -455) NIL) ((-102 . -260) NIL) ((-102 . -552) 9291) ((-102 . -72) T) ((-102 . -1128) T) ((-102 . -13) T) ((-102 . -34) T) ((-102 . -124) 9273) ((-102 . -756) T) ((-102 . -759) T) ((-102 . -323) 9255) ((-101 . -752) T) ((-101 . -759) T) ((-101 . -756) T) ((-101 . -1013) T) ((-101 . -552) 9237) ((-101 . -1128) T) ((-101 . -13) T) ((-101 . -72) T) ((-101 . -319) T) ((-101 . -604) T) ((-100 . -98) 9221) ((-100 . -923) 9205) ((-100 . -34) T) ((-100 . -13) T) ((-100 . -1128) T) ((-100 . -72) 9159) ((-100 . -552) 9094) ((-100 . -260) 9032) ((-100 . -455) 8965) ((-100 . -1013) 8943) ((-100 . -428) 8927) ((-100 . -92) 8911) ((-99 . -98) 8895) ((-99 . -923) 8879) ((-99 . -34) T) ((-99 . -13) T) ((-99 . -1128) T) ((-99 . -72) 8833) ((-99 . -552) 8768) ((-99 . -260) 8706) ((-99 . -455) 8639) ((-99 . -1013) 8617) ((-99 . -428) 8601) ((-99 . -92) 8585) ((-94 . -98) 8569) ((-94 . -923) 8553) ((-94 . -34) T) ((-94 . -13) T) ((-94 . -1128) T) ((-94 . -72) 8507) ((-94 . -552) 8442) ((-94 . -260) 8380) ((-94 . -455) 8313) ((-94 . -1013) 8291) ((-94 . -428) 8275) ((-94 . -92) 8259) ((-90 . -904) 8237) ((-90 . -1065) NIL) ((-90 . -950) 8215) ((-90 . -555) 8146) ((-90 . -553) NIL) ((-90 . -933) NIL) ((-90 . -821) NIL) ((-90 . -794) 8124) ((-90 . -755) NIL) ((-90 . -721) NIL) ((-90 . -718) NIL) ((-90 . -759) NIL) ((-90 . -756) NIL) ((-90 . -716) NIL) ((-90 . -714) NIL) ((-90 . -740) NIL) ((-90 . -796) NIL) ((-90 . -342) 8102) ((-90 . -580) 8080) ((-90 . -590) 8026) ((-90 . -328) 8004) ((-90 . -241) 7938) ((-90 . -260) 7885) ((-90 . -455) 7755) ((-90 . -288) 7733) ((-90 . -201) T) ((-90 . -82) 7652) ((-90 . -963) 7598) ((-90 . -968) 7544) ((-90 . -246) T) ((-90 . -654) 7490) ((-90 . -582) 7436) ((-90 . -588) 7367) ((-90 . -38) 7313) ((-90 . -258) T) ((-90 . -391) T) ((-90 . -146) T) ((-90 . -495) T) ((-90 . -832) T) ((-90 . -1133) T) ((-90 . -312) T) ((-90 . -190) NIL) ((-90 . -186) NIL) ((-90 . -189) NIL) ((-90 . -225) 7291) ((-90 . -806) NIL) ((-90 . -811) NIL) ((-90 . -809) NIL) ((-90 . -184) 7269) ((-90 . -120) T) ((-90 . -118) NIL) ((-90 . -104) T) ((-90 . -25) T) ((-90 . -72) T) ((-90 . -13) T) ((-90 . -1128) T) ((-90 . -552) 7251) ((-90 . -1013) T) ((-90 . -23) T) ((-90 . -21) T) ((-90 . -961) T) ((-90 . -663) T) ((-90 . -1060) T) ((-90 . -1025) T) ((-90 . -970) T) ((-89 . -779) 7235) ((-89 . -832) T) ((-89 . -495) T) ((-89 . -246) T) ((-89 . -146) T) ((-89 . -555) 7207) ((-89 . -654) 7194) ((-89 . -582) 7181) ((-89 . -968) 7168) ((-89 . -963) 7155) ((-89 . -82) 7140) ((-89 . -38) 7127) ((-89 . -391) T) ((-89 . -258) T) ((-89 . -961) T) ((-89 . -663) T) ((-89 . -1060) T) ((-89 . -1025) T) ((-89 . -970) T) ((-89 . -21) T) ((-89 . -588) 7099) ((-89 . -23) T) ((-89 . -1013) T) ((-89 . -552) 7081) ((-89 . -1128) T) ((-89 . -13) T) ((-89 . -72) T) ((-89 . -25) T) ((-89 . -104) T) ((-89 . -590) 7068) ((-89 . -120) T) ((-86 . -756) T) ((-86 . -552) 7050) ((-86 . -1013) T) ((-86 . -72) T) ((-86 . -13) T) ((-86 . -1128) T) ((-86 . -759) T) ((-86 . -747) 7031) ((-85 . -752) T) ((-85 . -759) T) ((-85 . -756) T) ((-85 . -1013) T) ((-85 . -552) 7013) ((-85 . -1128) T) ((-85 . -13) T) ((-85 . -72) T) ((-85 . -319) T) ((-85 . -880) T) ((-85 . -604) T) ((-85 . -84) T) ((-85 . -553) 6995) ((-81 . -96) T) ((-81 . -323) 6978) ((-81 . -759) T) ((-81 . -756) T) ((-81 . -124) 6961) ((-81 . -34) T) ((-81 . -72) T) ((-81 . -552) 6943) ((-81 . -260) NIL) ((-81 . -455) NIL) ((-81 . -1013) T) ((-81 . -428) 6926) ((-81 . -553) 6908) ((-81 . -241) 6859) ((-81 . -538) 6835) ((-81 . -243) 6811) ((-81 . -593) 6794) ((-81 . -19) 6777) ((-81 . -604) T) ((-81 . -13) T) ((-81 . -1128) T) ((-81 . -84) T) ((-79 . -80) 6761) ((-79 . -1128) T) ((-79 . |MappingCategory|) 6735) ((-79 . -1013) T) ((-79 . -552) 6717) ((-79 . -13) T) ((-79 . -72) T) ((-78 . -552) 6699) ((-77 . -904) 6681) ((-77 . -1065) T) ((-77 . -555) 6631) ((-77 . -950) 6591) ((-77 . -553) 6521) ((-77 . -933) T) ((-77 . -821) NIL) ((-77 . -794) 6503) ((-77 . -755) T) ((-77 . -721) T) ((-77 . -718) T) ((-77 . -759) T) ((-77 . -756) T) ((-77 . -716) T) ((-77 . -714) T) ((-77 . -740) T) ((-77 . -796) 6485) ((-77 . -342) 6467) ((-77 . -580) 6449) ((-77 . -328) 6431) ((-77 . -241) NIL) ((-77 . -260) NIL) ((-77 . -455) NIL) ((-77 . -288) 6413) ((-77 . -201) T) ((-77 . -82) 6340) ((-77 . -963) 6290) ((-77 . -968) 6240) ((-77 . -246) T) ((-77 . -654) 6190) ((-77 . -582) 6140) ((-77 . -590) 6090) ((-77 . -588) 6040) ((-77 . -38) 5990) ((-77 . -258) T) ((-77 . -391) T) ((-77 . -146) T) ((-77 . -495) T) ((-77 . -832) T) ((-77 . -1133) T) ((-77 . -312) T) ((-77 . -190) T) ((-77 . -186) 5977) ((-77 . -189) T) ((-77 . -225) 5959) ((-77 . -806) NIL) ((-77 . -811) NIL) ((-77 . -809) NIL) ((-77 . -184) 5941) ((-77 . -120) T) ((-77 . -118) NIL) ((-77 . -104) T) ((-77 . -25) T) ((-77 . -72) T) ((-77 . -13) T) ((-77 . -1128) T) ((-77 . -552) 5884) ((-77 . -1013) T) ((-77 . -23) T) ((-77 . -21) T) ((-77 . -961) T) ((-77 . -663) T) ((-77 . -1060) T) ((-77 . -1025) T) ((-77 . -970) T) ((-73 . -98) 5868) ((-73 . -923) 5852) ((-73 . -34) T) ((-73 . -13) T) ((-73 . -1128) T) ((-73 . -72) 5806) ((-73 . -552) 5741) ((-73 . -260) 5679) ((-73 . -455) 5612) ((-73 . -1013) 5590) ((-73 . -428) 5574) ((-73 . -92) 5558) ((-69 . -412) T) ((-69 . -1025) T) ((-69 . -72) T) ((-69 . -13) T) ((-69 . -1128) T) ((-69 . -552) 5540) ((-69 . -1013) T) ((-69 . -663) T) ((-69 . -241) 5519) ((-67 . -995) T) ((-67 . -429) 5500) ((-67 . -552) 5466) ((-67 . -555) 5447) ((-67 . -1013) T) ((-67 . -1128) T) ((-67 . -13) T) ((-67 . -72) T) ((-67 . -64) T) ((-62 . -1034) 5431) ((-62 . -428) 5415) ((-62 . -1013) 5393) ((-62 . -455) 5326) ((-62 . -260) 5264) ((-62 . -552) 5199) ((-62 . -72) 5153) ((-62 . -1128) T) ((-62 . -13) T) ((-62 . -34) T) ((-62 . -76) 5137) ((-60 . -57) 5099) ((-60 . -34) T) ((-60 . -13) T) ((-60 . -1128) T) ((-60 . -72) 5053) ((-60 . -552) 4988) ((-60 . -260) 4926) ((-60 . -455) 4859) ((-60 . -1013) 4837) ((-60 . -428) 4821) ((-58 . -19) 4805) ((-58 . -593) 4789) ((-58 . -243) 4766) ((-58 . -241) 4718) ((-58 . -538) 4695) ((-58 . -553) 4656) ((-58 . -428) 4640) ((-58 . -1013) 4593) ((-58 . -455) 4526) ((-58 . -260) 4464) ((-58 . -552) 4379) ((-58 . -72) 4313) ((-58 . -1128) T) ((-58 . -13) T) ((-58 . -34) T) ((-58 . -124) 4297) ((-58 . -756) 4276) ((-58 . -759) 4255) ((-58 . -323) 4239) ((-55 . -1013) T) ((-55 . -552) 4221) ((-55 . -1128) T) ((-55 . -13) T) ((-55 . -72) T) ((-55 . -950) 4203) ((-55 . -555) 4185) ((-51 . -1013) T) ((-51 . -552) 4167) ((-51 . -1128) T) ((-51 . -13) T) ((-51 . -72) T) ((-50 . -560) 4151) ((-50 . -555) 4120) ((-50 . -590) 4094) ((-50 . -588) 4053) ((-50 . -970) T) ((-50 . -1025) T) ((-50 . -1060) T) ((-50 . -663) T) ((-50 . -961) T) ((-50 . -21) T) ((-50 . -23) T) ((-50 . -1013) T) ((-50 . -552) 4035) ((-50 . -1128) T) ((-50 . -13) T) ((-50 . -72) T) ((-50 . -25) T) ((-50 . -104) T) ((-50 . -950) 4019) ((-49 . -1013) T) ((-49 . -552) 4001) ((-49 . -1128) T) ((-49 . -13) T) ((-49 . -72) T) ((-48 . -254) T) ((-48 . -72) T) ((-48 . -13) T) ((-48 . -1128) T) ((-48 . -552) 3983) ((-48 . -1013) T) ((-48 . -555) 3884) ((-48 . -950) 3827) ((-48 . -455) 3793) ((-48 . -260) 3780) ((-48 . -27) T) ((-48 . -915) T) ((-48 . -201) T) ((-48 . -82) 3729) ((-48 . -963) 3694) ((-48 . -968) 3659) ((-48 . -246) T) ((-48 . -654) 3624) ((-48 . -582) 3589) ((-48 . -590) 3539) ((-48 . -588) 3489) ((-48 . -104) T) ((-48 . -25) T) ((-48 . -23) T) ((-48 . -21) T) ((-48 . -961) T) ((-48 . -663) T) ((-48 . -1060) T) ((-48 . -1025) T) ((-48 . -970) T) ((-48 . -38) 3454) ((-48 . -258) T) ((-48 . -391) T) ((-48 . -146) T) ((-48 . -495) T) ((-48 . -832) T) ((-48 . -1133) T) ((-48 . -312) T) ((-48 . -580) 3414) ((-48 . -933) T) ((-48 . -553) 3359) ((-48 . -120) T) ((-48 . -190) T) ((-48 . -186) 3346) ((-48 . -189) T) ((-45 . -36) 3325) ((-45 . -538) 3248) ((-45 . -260) 3046) ((-45 . -455) 2798) ((-45 . -428) 2733) ((-45 . -241) 2631) ((-45 . -243) 2554) ((-45 . -549) 2533) ((-45 . -193) 2481) ((-45 . -76) 2429) ((-45 . -183) 2377) ((-45 . -1106) 2356) ((-45 . -237) 2304) ((-45 . -124) 2252) ((-45 . -34) T) ((-45 . -13) T) ((-45 . -1128) T) ((-45 . -72) T) ((-45 . -552) 2234) ((-45 . -1013) T) ((-45 . -553) NIL) ((-45 . -593) 2182) ((-45 . -323) 2130) ((-45 . -759) NIL) ((-45 . -756) NIL) ((-45 . -1063) 2078) ((-45 . -923) 2026) ((-45 . -1167) 1974) ((-45 . -608) 1922) ((-44 . -360) 1906) ((-44 . -683) 1890) ((-44 . -657) T) ((-44 . -685) T) ((-44 . -82) 1869) ((-44 . -963) 1853) ((-44 . -968) 1837) ((-44 . -21) T) ((-44 . -588) 1780) ((-44 . -23) T) ((-44 . -1013) T) ((-44 . -552) 1762) ((-44 . -72) T) ((-44 . -25) T) ((-44 . -104) T) ((-44 . -590) 1720) ((-44 . -582) 1704) ((-44 . -654) 1688) ((-44 . -316) 1672) ((-44 . -1128) T) ((-44 . -13) T) ((-44 . -241) 1649) ((-40 . -291) 1623) ((-40 . -146) T) ((-40 . -555) 1553) ((-40 . -970) T) ((-40 . -1025) T) ((-40 . -1060) T) ((-40 . -663) T) ((-40 . -961) T) ((-40 . -590) 1455) ((-40 . -588) 1385) ((-40 . -104) T) ((-40 . -25) T) ((-40 . -72) T) ((-40 . -13) T) ((-40 . -1128) T) ((-40 . -552) 1367) ((-40 . -1013) T) ((-40 . -23) T) ((-40 . -21) T) ((-40 . -968) 1312) ((-40 . -963) 1257) ((-40 . -82) 1174) ((-40 . -553) 1158) ((-40 . -184) 1135) ((-40 . -809) 1087) ((-40 . -811) 999) ((-40 . -806) 909) ((-40 . -225) 886) ((-40 . -189) 826) ((-40 . -186) 760) ((-40 . -190) 732) ((-40 . -312) T) ((-40 . -1133) T) ((-40 . -832) T) ((-40 . -495) T) ((-40 . -654) 677) ((-40 . -582) 622) ((-40 . -38) 567) ((-40 . -391) T) ((-40 . -258) T) ((-40 . -246) T) ((-40 . -201) T) ((-40 . -319) NIL) ((-40 . -299) NIL) ((-40 . -1065) NIL) ((-40 . -118) 539) ((-40 . -344) NIL) ((-40 . -352) 511) ((-40 . -120) 483) ((-40 . -321) 455) ((-40 . -328) 432) ((-40 . -580) 366) ((-40 . -354) 343) ((-40 . -950) 220) ((-40 . -661) 192) ((-31 . -995) T) ((-31 . -429) 173) ((-31 . -552) 139) ((-31 . -555) 120) ((-31 . -1013) T) ((-31 . -1128) T) ((-31 . -13) T) ((-31 . -72) T) ((-31 . -64) T) ((-30 . -866) T) ((-30 . -552) 102) ((0 . |EnumerationCategory|) T) ((0 . -552) 84) ((0 . -1013) T) ((0 . -72) T) ((0 . -1128) T) ((-2 . |RecordCategory|) T) ((-2 . -552) 66) ((-2 . -1013) T) ((-2 . -72) T) ((-2 . -1128) T) ((-3 . |UnionCategory|) T) ((-3 . -552) 48) ((-3 . -1013) T) ((-3 . -72) T) ((-3 . -1128) T) ((-1 . -1013) T) ((-1 . -552) 30) ((-1 . -1128) T) ((-1 . -13) T) ((-1 . -72) T))
\ No newline at end of file diff --git a/src/share/algebra/compress.daase b/src/share/algebra/compress.daase index c13a83a2..469090b4 100644 --- a/src/share/algebra/compress.daase +++ b/src/share/algebra/compress.daase @@ -1,6 +1,6 @@ -(30 . 3577545197) -(3996 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain| +(30 . 3577666330) +(3997 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain| ATTRIBUTE |package| |domain| |category| CATEGORY |nobranch| AND |Join| |ofType| SIGNATURE "failed" "algebra" |OneDimensionalArrayAggregate&| |OneDimensionalArrayAggregate| |AbelianGroup&| |AbelianGroup| |AbelianMonoid&| @@ -98,19 +98,20 @@ |FiniteFieldPolynomialPackage| |FiniteFieldPolynomialPackage2| |FiniteFieldSolveLinearPolynomialEquation| |FiniteFieldExtension| |FGLMIfCanPackage| |FreeGroup| |Field&| |Field| |File| |FileCategory| - |FiniteRankNonAssociativeAlgebra&| |FiniteRankNonAssociativeAlgebra| |Finite&| - |Finite| |FiniteRankAlgebra&| |FiniteRankAlgebra| |FiniteLinearAggregate&| - |FiniteLinearAggregate| |FiniteLinearAggregateFunctions2| |FreeLieAlgebra| - |FiniteLinearAggregateSort| |FullyLinearlyExplicitRingOver&| - |FullyLinearlyExplicitRingOver| |Float| |FloatingComplexPackage| - |FloatingRealPackage| |FreeModule| |FreeModule1| |FreeModuleCat| - |FreeMonoidCategory| |FreeMonoid| |FileName| |FileNameCategory| - |FreeNilpotentLie| |FindOrderFinite| |FullPartialFractionExpansion| - |FullyPatternMatchable| |FieldOfPrimeCharacteristic&| - |FieldOfPrimeCharacteristic| |FloatingPointSystem&| |FloatingPointSystem| - |Factored| |FactoredFunctions2| |Fraction| |FractionFunctions2| - |FramedAlgebra&| |FramedAlgebra| |FullyRetractableTo&| |FullyRetractableTo| - |FractionalIdeal| |FractionalIdealFunctions2| |FramedModule| + |FiniteRankNonAssociativeAlgebra&| |FiniteRankNonAssociativeAlgebra| + |FiniteAggregate| |Finite&| |Finite| |FiniteRankAlgebra&| |FiniteRankAlgebra| + |FiniteLinearAggregate&| |FiniteLinearAggregate| + |FiniteLinearAggregateFunctions2| |FreeLieAlgebra| |FiniteLinearAggregateSort| + |FullyLinearlyExplicitRingOver&| |FullyLinearlyExplicitRingOver| |Float| + |FloatingComplexPackage| |FloatingRealPackage| |FreeModule| |FreeModule1| + |FreeModuleCat| |FreeMonoidCategory| |FreeMonoid| |FileName| + |FileNameCategory| |FreeNilpotentLie| |FindOrderFinite| + |FullPartialFractionExpansion| |FullyPatternMatchable| + |FieldOfPrimeCharacteristic&| |FieldOfPrimeCharacteristic| + |FloatingPointSystem&| |FloatingPointSystem| |Factored| |FactoredFunctions2| + |Fraction| |FractionFunctions2| |FramedAlgebra&| |FramedAlgebra| + |FullyRetractableTo&| |FullyRetractableTo| |FractionalIdeal| + |FractionalIdealFunctions2| |FramedModule| |FramedNonAssociativeAlgebraFunctions2| |FramedNonAssociativeAlgebra&| |FramedNonAssociativeAlgebra| |FactoredFunctionUtilities| |FunctionSpace&| |FunctionSpace| |FunctionSpaceFunctions2| diff --git a/src/share/algebra/interp.daase b/src/share/algebra/interp.daase index e427ef94..ec690a56 100644 --- a/src/share/algebra/interp.daase +++ b/src/share/algebra/interp.daase @@ -1,4039 +1,4044 @@ -(2809135 . 3577545205) -((-1730 (((-85) (-1 (-85) |#2| |#2|) $) 86 T ELT) (((-85) $) NIL T ELT)) (-1728 (($ (-1 (-85) |#2| |#2|) $) 18 T ELT) (($ $) NIL T ELT)) (-3786 ((|#2| $ (-483) |#2|) NIL T ELT) ((|#2| $ (-1144 (-483)) |#2|) 44 T ELT)) (-2296 (($ $) 80 T ELT)) (-3840 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 52 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 50 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $) 49 T ELT)) (-3417 (((-483) (-1 (-85) |#2|) $) 27 T ELT) (((-483) |#2| $) NIL T ELT) (((-483) |#2| $ (-483)) 96 T ELT)) (-2888 (((-582 |#2|) $) 13 T ELT)) (-3516 (($ (-1 (-85) |#2| |#2|) $ $) 64 T ELT) (($ $ $) NIL T ELT)) (-1947 (($ (-1 |#2| |#2|) $) 37 T ELT)) (-3956 (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 60 T ELT)) (-2303 (($ |#2| $ (-483)) NIL T ELT) (($ $ $ (-483)) 67 T ELT)) (-1352 (((-3 |#2| "failed") (-1 (-85) |#2|) $) 29 T ELT)) (-1945 (((-85) (-1 (-85) |#2|) $) 23 T ELT)) (-3798 ((|#2| $ (-483) |#2|) NIL T ELT) ((|#2| $ (-483)) NIL T ELT) (($ $ (-1144 (-483))) 66 T ELT)) (-2304 (($ $ (-483)) 76 T ELT) (($ $ (-1144 (-483))) 75 T ELT)) (-1944 (((-693) (-1 (-85) |#2|) $) 34 T ELT) (((-693) |#2| $) NIL T ELT)) (-1729 (($ $ $ (-483)) 69 T ELT)) (-3398 (($ $) 68 T ELT)) (-3528 (($ (-582 |#2|)) 73 T ELT)) (-3800 (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (($ $ $) 87 T ELT) (($ (-582 $)) 85 T ELT)) (-3944 (((-771) $) 92 T ELT)) (-1946 (((-85) (-1 (-85) |#2|) $) 22 T ELT)) (-3055 (((-85) $ $) 95 T ELT)) (-2684 (((-85) $ $) 99 T ELT))) -(((-18 |#1| |#2|) (-10 -7 (-15 -3055 ((-85) |#1| |#1|)) (-15 -3944 ((-771) |#1|)) (-15 -2684 ((-85) |#1| |#1|)) (-15 -1728 (|#1| |#1|)) (-15 -1728 (|#1| (-1 (-85) |#2| |#2|) |#1|)) (-15 -2296 (|#1| |#1|)) (-15 -1729 (|#1| |#1| |#1| (-483))) (-15 -1730 ((-85) |#1|)) (-15 -3516 (|#1| |#1| |#1|)) (-15 -3417 ((-483) |#2| |#1| (-483))) (-15 -3417 ((-483) |#2| |#1|)) (-15 -3417 ((-483) (-1 (-85) |#2|) |#1|)) (-15 -1730 ((-85) (-1 (-85) |#2| |#2|) |#1|)) (-15 -3516 (|#1| (-1 (-85) |#2| |#2|) |#1| |#1|)) (-15 -3786 (|#2| |#1| (-1144 (-483)) |#2|)) (-15 -2303 (|#1| |#1| |#1| (-483))) (-15 -2303 (|#1| |#2| |#1| (-483))) (-15 -2304 (|#1| |#1| (-1144 (-483)))) (-15 -2304 (|#1| |#1| (-483))) (-15 -3956 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3800 (|#1| (-582 |#1|))) (-15 -3800 (|#1| |#1| |#1|)) (-15 -3800 (|#1| |#2| |#1|)) (-15 -3800 (|#1| |#1| |#2|)) (-15 -3798 (|#1| |#1| (-1144 (-483)))) (-15 -3528 (|#1| (-582 |#2|))) (-15 -1352 ((-3 |#2| "failed") (-1 (-85) |#2|) |#1|)) (-15 -3840 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3840 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3840 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3798 (|#2| |#1| (-483))) (-15 -3798 (|#2| |#1| (-483) |#2|)) (-15 -3786 (|#2| |#1| (-483) |#2|)) (-15 -1944 ((-693) |#2| |#1|)) (-15 -2888 ((-582 |#2|) |#1|)) (-15 -1944 ((-693) (-1 (-85) |#2|) |#1|)) (-15 -1945 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -1946 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -1947 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3956 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3398 (|#1| |#1|))) (-19 |#2|) (-1127)) (T -18)) +(2811729 . 3577666338) +((-1731 (((-85) (-1 (-85) |#2| |#2|) $) 86 T ELT) (((-85) $) NIL T ELT)) (-1729 (($ (-1 (-85) |#2| |#2|) $) 18 T ELT) (($ $) NIL T ELT)) (-3787 ((|#2| $ (-484) |#2|) NIL T ELT) ((|#2| $ (-1145 (-484)) |#2|) 44 T ELT)) (-2297 (($ $) 80 T ELT)) (-3841 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 52 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 50 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $) 49 T ELT)) (-3418 (((-484) (-1 (-85) |#2|) $) 27 T ELT) (((-484) |#2| $) NIL T ELT) (((-484) |#2| $ (-484)) 96 T ELT)) (-2889 (((-583 |#2|) $) 13 T ELT)) (-3517 (($ (-1 (-85) |#2| |#2|) $ $) 64 T ELT) (($ $ $) NIL T ELT)) (-1948 (($ (-1 |#2| |#2|) $) 37 T ELT)) (-3957 (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 60 T ELT)) (-2304 (($ |#2| $ (-484)) NIL T ELT) (($ $ $ (-484)) 67 T ELT)) (-1353 (((-3 |#2| "failed") (-1 (-85) |#2|) $) 29 T ELT)) (-1946 (((-85) (-1 (-85) |#2|) $) 23 T ELT)) (-3799 ((|#2| $ (-484) |#2|) NIL T ELT) ((|#2| $ (-484)) NIL T ELT) (($ $ (-1145 (-484))) 66 T ELT)) (-2305 (($ $ (-484)) 76 T ELT) (($ $ (-1145 (-484))) 75 T ELT)) (-1945 (((-694) (-1 (-85) |#2|) $) 34 T ELT) (((-694) |#2| $) NIL T ELT)) (-1730 (($ $ $ (-484)) 69 T ELT)) (-3399 (($ $) 68 T ELT)) (-3529 (($ (-583 |#2|)) 73 T ELT)) (-3801 (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (($ $ $) 87 T ELT) (($ (-583 $)) 85 T ELT)) (-3945 (((-772) $) 92 T ELT)) (-1947 (((-85) (-1 (-85) |#2|) $) 22 T ELT)) (-3056 (((-85) $ $) 95 T ELT)) (-2685 (((-85) $ $) 99 T ELT))) +(((-18 |#1| |#2|) (-10 -7 (-15 -3056 ((-85) |#1| |#1|)) (-15 -3945 ((-772) |#1|)) (-15 -2685 ((-85) |#1| |#1|)) (-15 -1729 (|#1| |#1|)) (-15 -1729 (|#1| (-1 (-85) |#2| |#2|) |#1|)) (-15 -2297 (|#1| |#1|)) (-15 -1730 (|#1| |#1| |#1| (-484))) (-15 -1731 ((-85) |#1|)) (-15 -3517 (|#1| |#1| |#1|)) (-15 -3418 ((-484) |#2| |#1| (-484))) (-15 -3418 ((-484) |#2| |#1|)) (-15 -3418 ((-484) (-1 (-85) |#2|) |#1|)) (-15 -1731 ((-85) (-1 (-85) |#2| |#2|) |#1|)) (-15 -3517 (|#1| (-1 (-85) |#2| |#2|) |#1| |#1|)) (-15 -3787 (|#2| |#1| (-1145 (-484)) |#2|)) (-15 -2304 (|#1| |#1| |#1| (-484))) (-15 -2304 (|#1| |#2| |#1| (-484))) (-15 -2305 (|#1| |#1| (-1145 (-484)))) (-15 -2305 (|#1| |#1| (-484))) (-15 -3957 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3801 (|#1| (-583 |#1|))) (-15 -3801 (|#1| |#1| |#1|)) (-15 -3801 (|#1| |#2| |#1|)) (-15 -3801 (|#1| |#1| |#2|)) (-15 -3799 (|#1| |#1| (-1145 (-484)))) (-15 -3529 (|#1| (-583 |#2|))) (-15 -1353 ((-3 |#2| "failed") (-1 (-85) |#2|) |#1|)) (-15 -3841 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3841 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3841 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3799 (|#2| |#1| (-484))) (-15 -3799 (|#2| |#1| (-484) |#2|)) (-15 -3787 (|#2| |#1| (-484) |#2|)) (-15 -1945 ((-694) |#2| |#1|)) (-15 -2889 ((-583 |#2|) |#1|)) (-15 -1945 ((-694) (-1 (-85) |#2|) |#1|)) (-15 -1946 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -1947 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -1948 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3957 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3399 (|#1| |#1|))) (-19 |#2|) (-1128)) (T -18)) NIL -((-2567 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-2197 (((-1183) $ (-483) (-483)) 44 (|has| $ (-6 -3994)) ELT)) (-1730 (((-85) (-1 (-85) |#1| |#1|) $) 107 T ELT) (((-85) $) 101 (|has| |#1| (-755)) ELT)) (-1728 (($ (-1 (-85) |#1| |#1|) $) 98 (|has| $ (-6 -3994)) ELT) (($ $) 97 (-12 (|has| |#1| (-755)) (|has| $ (-6 -3994))) ELT)) (-2908 (($ (-1 (-85) |#1| |#1|) $) 108 T ELT) (($ $) 102 (|has| |#1| (-755)) ELT)) (-3786 ((|#1| $ (-483) |#1|) 56 (|has| $ (-6 -3994)) ELT) ((|#1| $ (-1144 (-483)) |#1|) 64 (|has| $ (-6 -3994)) ELT)) (-3708 (($ (-1 (-85) |#1|) $) 81 (|has| $ (-6 -3993)) ELT)) (-3722 (($) 7 T CONST)) (-2296 (($ $) 99 (|has| $ (-6 -3994)) ELT)) (-2297 (($ $) 109 T ELT)) (-1351 (($ $) 84 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3993))) ELT)) (-3404 (($ |#1| $) 83 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3993))) ELT) (($ (-1 (-85) |#1|) $) 80 (|has| $ (-6 -3993)) ELT)) (-3840 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3993))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -3993)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -3993)) ELT)) (-1574 ((|#1| $ (-483) |#1|) 57 (|has| $ (-6 -3994)) ELT)) (-3111 ((|#1| $ (-483)) 55 T ELT)) (-3417 (((-483) (-1 (-85) |#1|) $) 106 T ELT) (((-483) |#1| $) 105 (|has| |#1| (-1012)) ELT) (((-483) |#1| $ (-483)) 104 (|has| |#1| (-1012)) ELT)) (-2888 (((-582 |#1|) $) 30 (|has| $ (-6 -3993)) ELT)) (-3612 (($ (-693) |#1|) 74 T ELT)) (-2199 (((-483) $) 47 (|has| (-483) (-755)) ELT)) (-2530 (($ $ $) 91 (|has| |#1| (-755)) ELT)) (-3516 (($ (-1 (-85) |#1| |#1|) $ $) 110 T ELT) (($ $ $) 103 (|has| |#1| (-755)) ELT)) (-2607 (((-582 |#1|) $) 29 (|has| $ (-6 -3993)) ELT)) (-3244 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3993))) ELT)) (-2200 (((-483) $) 48 (|has| (-483) (-755)) ELT)) (-2856 (($ $ $) 92 (|has| |#1| (-755)) ELT)) (-1947 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3994)) ELT)) (-3956 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-3241 (((-1071) $) 22 (|has| |#1| (-1012)) ELT)) (-2303 (($ |#1| $ (-483)) 66 T ELT) (($ $ $ (-483)) 65 T ELT)) (-2202 (((-582 (-483)) $) 50 T ELT)) (-2203 (((-85) (-483) $) 51 T ELT)) (-3242 (((-1032) $) 21 (|has| |#1| (-1012)) ELT)) (-3799 ((|#1| $) 46 (|has| (-483) (-755)) ELT)) (-1352 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 77 T ELT)) (-2198 (($ $ |#1|) 45 (|has| $ (-6 -3994)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3993)) ELT)) (-3766 (($ $ (-582 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-582 |#1|) (-582 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT)) (-1220 (((-85) $ $) 11 T ELT)) (-2201 (((-85) |#1| $) 49 (-12 (|has| $ (-6 -3993)) (|has| |#1| (-1012))) ELT)) (-2204 (((-582 |#1|) $) 52 T ELT)) (-3401 (((-85) $) 8 T ELT)) (-3563 (($) 9 T ELT)) (-3798 ((|#1| $ (-483) |#1|) 54 T ELT) ((|#1| $ (-483)) 53 T ELT) (($ $ (-1144 (-483))) 75 T ELT)) (-2304 (($ $ (-483)) 68 T ELT) (($ $ (-1144 (-483))) 67 T ELT)) (-1944 (((-693) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3993)) ELT) (((-693) |#1| $) 28 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3993))) ELT)) (-1729 (($ $ $ (-483)) 100 (|has| $ (-6 -3994)) ELT)) (-3398 (($ $) 10 T ELT)) (-3970 (((-472) $) 85 (|has| |#1| (-552 (-472))) ELT)) (-3528 (($ (-582 |#1|)) 76 T ELT)) (-3800 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-582 $)) 70 T ELT)) (-3944 (((-771) $) 17 (|has| |#1| (-551 (-771))) ELT)) (-1263 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3993)) ELT)) (-2565 (((-85) $ $) 93 (|has| |#1| (-755)) ELT)) (-2566 (((-85) $ $) 95 (|has| |#1| (-755)) ELT)) (-3055 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-2683 (((-85) $ $) 94 (|has| |#1| (-755)) ELT)) (-2684 (((-85) $ $) 96 (|has| |#1| (-755)) ELT)) (-3955 (((-693) $) 6 (|has| $ (-6 -3993)) ELT))) -(((-19 |#1|) (-113) (-1127)) (T -19)) +((-2568 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-2198 (((-1184) $ (-484) (-484)) 44 (|has| $ (-6 -3995)) ELT)) (-1731 (((-85) (-1 (-85) |#1| |#1|) $) 107 T ELT) (((-85) $) 101 (|has| |#1| (-756)) ELT)) (-1729 (($ (-1 (-85) |#1| |#1|) $) 98 (|has| $ (-6 -3995)) ELT) (($ $) 97 (-12 (|has| |#1| (-756)) (|has| $ (-6 -3995))) ELT)) (-2909 (($ (-1 (-85) |#1| |#1|) $) 108 T ELT) (($ $) 102 (|has| |#1| (-756)) ELT)) (-3787 ((|#1| $ (-484) |#1|) 56 (|has| $ (-6 -3995)) ELT) ((|#1| $ (-1145 (-484)) |#1|) 64 (|has| $ (-6 -3995)) ELT)) (-3709 (($ (-1 (-85) |#1|) $) 81 (|has| $ (-6 -3994)) ELT)) (-3723 (($) 7 T CONST)) (-2297 (($ $) 99 (|has| $ (-6 -3995)) ELT)) (-2298 (($ $) 109 T ELT)) (-1352 (($ $) 84 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-3405 (($ |#1| $) 83 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT) (($ (-1 (-85) |#1|) $) 80 (|has| $ (-6 -3994)) ELT)) (-3841 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -3994)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -3994)) ELT)) (-1575 ((|#1| $ (-484) |#1|) 57 (|has| $ (-6 -3995)) ELT)) (-3112 ((|#1| $ (-484)) 55 T ELT)) (-3418 (((-484) (-1 (-85) |#1|) $) 106 T ELT) (((-484) |#1| $) 105 (|has| |#1| (-1013)) ELT) (((-484) |#1| $ (-484)) 104 (|has| |#1| (-1013)) ELT)) (-2889 (((-583 |#1|) $) 30 (|has| $ (-6 -3994)) ELT)) (-3613 (($ (-694) |#1|) 74 T ELT)) (-2200 (((-484) $) 47 (|has| (-484) (-756)) ELT)) (-2531 (($ $ $) 91 (|has| |#1| (-756)) ELT)) (-3517 (($ (-1 (-85) |#1| |#1|) $ $) 110 T ELT) (($ $ $) 103 (|has| |#1| (-756)) ELT)) (-2608 (((-583 |#1|) $) 29 (|has| $ (-6 -3994)) ELT)) (-3245 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-2201 (((-484) $) 48 (|has| (-484) (-756)) ELT)) (-2857 (($ $ $) 92 (|has| |#1| (-756)) ELT)) (-1948 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-3242 (((-1072) $) 22 (|has| |#1| (-1013)) ELT)) (-2304 (($ |#1| $ (-484)) 66 T ELT) (($ $ $ (-484)) 65 T ELT)) (-2203 (((-583 (-484)) $) 50 T ELT)) (-2204 (((-85) (-484) $) 51 T ELT)) (-3243 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-3800 ((|#1| $) 46 (|has| (-484) (-756)) ELT)) (-1353 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 77 T ELT)) (-2199 (($ $ |#1|) 45 (|has| $ (-6 -3995)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3994)) ELT)) (-3767 (($ $ (-583 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1221 (((-85) $ $) 11 T ELT)) (-2202 (((-85) |#1| $) 49 (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-2205 (((-583 |#1|) $) 52 T ELT)) (-3402 (((-85) $) 8 T ELT)) (-3564 (($) 9 T ELT)) (-3799 ((|#1| $ (-484) |#1|) 54 T ELT) ((|#1| $ (-484)) 53 T ELT) (($ $ (-1145 (-484))) 75 T ELT)) (-2305 (($ $ (-484)) 68 T ELT) (($ $ (-1145 (-484))) 67 T ELT)) (-1945 (((-694) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3994)) ELT) (((-694) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-1730 (($ $ $ (-484)) 100 (|has| $ (-6 -3995)) ELT)) (-3399 (($ $) 10 T ELT)) (-3971 (((-473) $) 85 (|has| |#1| (-553 (-473))) ELT)) (-3529 (($ (-583 |#1|)) 76 T ELT)) (-3801 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-583 $)) 70 T ELT)) (-3945 (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-1264 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3994)) ELT)) (-2566 (((-85) $ $) 93 (|has| |#1| (-756)) ELT)) (-2567 (((-85) $ $) 95 (|has| |#1| (-756)) ELT)) (-3056 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-2684 (((-85) $ $) 94 (|has| |#1| (-756)) ELT)) (-2685 (((-85) $ $) 96 (|has| |#1| (-756)) ELT)) (-3956 (((-694) $) 6 (|has| $ (-6 -3994)) ELT))) +(((-19 |#1|) (-113) (-1128)) (T -19)) NIL -(-13 (-322 |t#1|) (-10 -7 (-6 -3994))) -(((-34) . T) ((-72) OR (|has| |#1| (-1012)) (|has| |#1| (-755)) (|has| |#1| (-72))) ((-551 (-771)) OR (|has| |#1| (-1012)) (|has| |#1| (-755)) (|has| |#1| (-551 (-771)))) ((-124 |#1|) . T) ((-552 (-472)) |has| |#1| (-552 (-472))) ((-241 (-483) |#1|) . T) ((-241 (-1144 (-483)) $) . T) ((-243 (-483) |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ((-322 |#1|) . T) ((-427 |#1|) . T) ((-537 (-483) |#1|) . T) ((-454 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ((-13) . T) ((-592 |#1|) . T) ((-755) |has| |#1| (-755)) ((-758) |has| |#1| (-755)) ((-1012) OR (|has| |#1| (-1012)) (|has| |#1| (-755))) ((-1127) . T)) -((-1310 (((-3 $ "failed") $ $) 12 T ELT)) (-1212 (((-85) $ $) 27 T ELT)) (-3835 (($ $) NIL T ELT) (($ $ $) 9 T ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) 16 T ELT) (($ (-483) $) 25 T ELT))) -(((-20 |#1|) (-10 -7 (-15 -3835 (|#1| |#1| |#1|)) (-15 -3835 (|#1| |#1|)) (-15 * (|#1| (-483) |#1|)) (-15 -1310 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1212 ((-85) |#1| |#1|)) (-15 * (|#1| (-693) |#1|)) (-15 * (|#1| (-829) |#1|))) (-21)) (T -20)) +(-13 (-323 |t#1|) (-10 -7 (-6 -3995))) +(((-34) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-756)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1013)) (|has| |#1| (-756)) (|has| |#1| (-552 (-772)))) ((-124 |#1|) . T) ((-553 (-473)) |has| |#1| (-553 (-473))) ((-241 (-484) |#1|) . T) ((-241 (-1145 (-484)) $) . T) ((-243 (-484) |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-323 |#1|) . T) ((-428 |#1|) . T) ((-538 (-484) |#1|) . T) ((-455 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-593 |#1|) . T) ((-756) |has| |#1| (-756)) ((-759) |has| |#1| (-756)) ((-1013) OR (|has| |#1| (-1013)) (|has| |#1| (-756))) ((-1128) . T)) +((-1311 (((-3 $ "failed") $ $) 12 T ELT)) (-1213 (((-85) $ $) 27 T ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) 9 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) 16 T ELT) (($ (-484) $) 25 T ELT))) +(((-20 |#1|) (-10 -7 (-15 -3836 (|#1| |#1| |#1|)) (-15 -3836 (|#1| |#1|)) (-15 * (|#1| (-484) |#1|)) (-15 -1311 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1213 ((-85) |#1| |#1|)) (-15 * (|#1| (-694) |#1|)) (-15 * (|#1| (-830) |#1|))) (-21)) (T -20)) NIL -((-2567 (((-85) $ $) 7 T ELT)) (-3187 (((-85) $) 22 T ELT)) (-1310 (((-3 $ "failed") $ $) 26 T ELT)) (-3722 (($) 23 T CONST)) (-1212 (((-85) $ $) 20 T ELT)) (-3241 (((-1071) $) 11 T ELT)) (-3242 (((-1032) $) 12 T ELT)) (-3944 (((-771) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2659 (($) 24 T CONST)) (-3055 (((-85) $ $) 8 T ELT)) (-3835 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3837 (($ $ $) 18 T ELT)) (* (($ (-829) $) 17 T ELT) (($ (-693) $) 21 T ELT) (($ (-483) $) 30 T ELT))) +((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3723 (($) 23 T CONST)) (-1213 (((-85) $ $) 20 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3945 (((-772) $) 13 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-2660 (($) 24 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT))) (((-21) (-113)) (T -21)) -((-3835 (*1 *1 *1) (-4 *1 (-21))) (-3835 (*1 *1 *1 *1) (-4 *1 (-21)))) -(-13 (-104) (-587 (-483)) (-10 -8 (-15 -3835 ($ $)) (-15 -3835 ($ $ $)))) -(((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-551 (-771)) . T) ((-13) . T) ((-587 (-483)) . T) ((-1012) . T) ((-1127) . T)) -((-3187 (((-85) $) 10 T ELT)) (-3722 (($) 15 T CONST)) (-1212 (((-85) $ $) 22 T ELT)) (* (($ (-829) $) 14 T ELT) (($ (-693) $) 19 T ELT))) -(((-22 |#1|) (-10 -7 (-15 -1212 ((-85) |#1| |#1|)) (-15 * (|#1| (-693) |#1|)) (-15 -3187 ((-85) |#1|)) (-15 -3722 (|#1|) -3950) (-15 * (|#1| (-829) |#1|))) (-23)) (T -22)) +((-3836 (*1 *1 *1) (-4 *1 (-21))) (-3836 (*1 *1 *1 *1) (-4 *1 (-21)))) +(-13 (-104) (-588 (-484)) (-10 -8 (-15 -3836 ($ $)) (-15 -3836 ($ $ $)))) +(((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-1013) . T) ((-1128) . T)) +((-3188 (((-85) $) 10 T ELT)) (-3723 (($) 15 T CONST)) (-1213 (((-85) $ $) 22 T ELT)) (* (($ (-830) $) 14 T ELT) (($ (-694) $) 19 T ELT))) +(((-22 |#1|) (-10 -7 (-15 -1213 ((-85) |#1| |#1|)) (-15 * (|#1| (-694) |#1|)) (-15 -3188 ((-85) |#1|)) (-15 -3723 (|#1|) -3951) (-15 * (|#1| (-830) |#1|))) (-23)) (T -22)) NIL -((-2567 (((-85) $ $) 7 T ELT)) (-3187 (((-85) $) 22 T ELT)) (-3722 (($) 23 T CONST)) (-1212 (((-85) $ $) 20 T ELT)) (-3241 (((-1071) $) 11 T ELT)) (-3242 (((-1032) $) 12 T ELT)) (-3944 (((-771) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2659 (($) 24 T CONST)) (-3055 (((-85) $ $) 8 T ELT)) (-3837 (($ $ $) 18 T ELT)) (* (($ (-829) $) 17 T ELT) (($ (-693) $) 21 T ELT))) +((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-3723 (($) 23 T CONST)) (-1213 (((-85) $ $) 20 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3945 (((-772) $) 13 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-2660 (($) 24 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3838 (($ $ $) 18 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT))) (((-23) (-113)) (T -23)) -((-2659 (*1 *1) (-4 *1 (-23))) (-3722 (*1 *1) (-4 *1 (-23))) (-3187 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-85)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-693)))) (-1212 (*1 *2 *1 *1) (-12 (-4 *1 (-23)) (-5 *2 (-85))))) -(-13 (-25) (-10 -8 (-15 -2659 ($) -3950) (-15 -3722 ($) -3950) (-15 -3187 ((-85) $)) (-15 * ($ (-693) $)) (-15 -1212 ((-85) $ $)))) -(((-25) . T) ((-72) . T) ((-551 (-771)) . T) ((-13) . T) ((-1012) . T) ((-1127) . T)) -((* (($ (-829) $) 10 T ELT))) -(((-24 |#1|) (-10 -7 (-15 * (|#1| (-829) |#1|))) (-25)) (T -24)) +((-2660 (*1 *1) (-4 *1 (-23))) (-3723 (*1 *1) (-4 *1 (-23))) (-3188 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-85)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-694)))) (-1213 (*1 *2 *1 *1) (-12 (-4 *1 (-23)) (-5 *2 (-85))))) +(-13 (-25) (-10 -8 (-15 -2660 ($) -3951) (-15 -3723 ($) -3951) (-15 -3188 ((-85) $)) (-15 * ($ (-694) $)) (-15 -1213 ((-85) $ $)))) +(((-25) . T) ((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-1013) . T) ((-1128) . T)) +((* (($ (-830) $) 10 T ELT))) +(((-24 |#1|) (-10 -7 (-15 * (|#1| (-830) |#1|))) (-25)) (T -24)) NIL -((-2567 (((-85) $ $) 7 T ELT)) (-3241 (((-1071) $) 11 T ELT)) (-3242 (((-1032) $) 12 T ELT)) (-3944 (((-771) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-3055 (((-85) $ $) 8 T ELT)) (-3837 (($ $ $) 18 T ELT)) (* (($ (-829) $) 17 T ELT))) +((-2568 (((-85) $ $) 7 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3945 (((-772) $) 13 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-3838 (($ $ $) 18 T ELT)) (* (($ (-830) $) 17 T ELT))) (((-25) (-113)) (T -25)) -((-3837 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-829))))) -(-13 (-1012) (-10 -8 (-15 -3837 ($ $ $)) (-15 * ($ (-829) $)))) -(((-72) . T) ((-551 (-771)) . T) ((-13) . T) ((-1012) . T) ((-1127) . T)) -((-1213 (((-582 $) (-856 $)) 32 T ELT) (((-582 $) (-1083 $)) 16 T ELT) (((-582 $) (-1083 $) (-1088)) 20 T ELT)) (-1214 (($ (-856 $)) 30 T ELT) (($ (-1083 $)) 11 T ELT) (($ (-1083 $) (-1088)) 60 T ELT)) (-1215 (((-582 $) (-856 $)) 33 T ELT) (((-582 $) (-1083 $)) 18 T ELT) (((-582 $) (-1083 $) (-1088)) 19 T ELT)) (-3182 (($ (-856 $)) 31 T ELT) (($ (-1083 $)) 13 T ELT) (($ (-1083 $) (-1088)) NIL T ELT))) -(((-26 |#1|) (-10 -7 (-15 -1213 ((-582 |#1|) (-1083 |#1|) (-1088))) (-15 -1213 ((-582 |#1|) (-1083 |#1|))) (-15 -1213 ((-582 |#1|) (-856 |#1|))) (-15 -1214 (|#1| (-1083 |#1|) (-1088))) (-15 -1214 (|#1| (-1083 |#1|))) (-15 -1214 (|#1| (-856 |#1|))) (-15 -1215 ((-582 |#1|) (-1083 |#1|) (-1088))) (-15 -1215 ((-582 |#1|) (-1083 |#1|))) (-15 -1215 ((-582 |#1|) (-856 |#1|))) (-15 -3182 (|#1| (-1083 |#1|) (-1088))) (-15 -3182 (|#1| (-1083 |#1|))) (-15 -3182 (|#1| (-856 |#1|)))) (-27)) (T -26)) +((-3838 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-830))))) +(-13 (-1013) (-10 -8 (-15 -3838 ($ $ $)) (-15 * ($ (-830) $)))) +(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-1013) . T) ((-1128) . T)) +((-1214 (((-583 $) (-857 $)) 32 T ELT) (((-583 $) (-1084 $)) 16 T ELT) (((-583 $) (-1084 $) (-1089)) 20 T ELT)) (-1215 (($ (-857 $)) 30 T ELT) (($ (-1084 $)) 11 T ELT) (($ (-1084 $) (-1089)) 60 T ELT)) (-1216 (((-583 $) (-857 $)) 33 T ELT) (((-583 $) (-1084 $)) 18 T ELT) (((-583 $) (-1084 $) (-1089)) 19 T ELT)) (-3183 (($ (-857 $)) 31 T ELT) (($ (-1084 $)) 13 T ELT) (($ (-1084 $) (-1089)) NIL T ELT))) +(((-26 |#1|) (-10 -7 (-15 -1214 ((-583 |#1|) (-1084 |#1|) (-1089))) (-15 -1214 ((-583 |#1|) (-1084 |#1|))) (-15 -1214 ((-583 |#1|) (-857 |#1|))) (-15 -1215 (|#1| (-1084 |#1|) (-1089))) (-15 -1215 (|#1| (-1084 |#1|))) (-15 -1215 (|#1| (-857 |#1|))) (-15 -1216 ((-583 |#1|) (-1084 |#1|) (-1089))) (-15 -1216 ((-583 |#1|) (-1084 |#1|))) (-15 -1216 ((-583 |#1|) (-857 |#1|))) (-15 -3183 (|#1| (-1084 |#1|) (-1089))) (-15 -3183 (|#1| (-1084 |#1|))) (-15 -3183 (|#1| (-857 |#1|)))) (-27)) (T -26)) NIL -((-2567 (((-85) $ $) 7 T ELT)) (-1213 (((-582 $) (-856 $)) 98 T ELT) (((-582 $) (-1083 $)) 97 T ELT) (((-582 $) (-1083 $) (-1088)) 96 T ELT)) (-1214 (($ (-856 $)) 101 T ELT) (($ (-1083 $)) 100 T ELT) (($ (-1083 $) (-1088)) 99 T ELT)) (-3187 (((-85) $) 22 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3980 $) (|:| |associate| $)) $) 55 T ELT)) (-2062 (($ $) 54 T ELT)) (-2060 (((-85) $) 52 T ELT)) (-1310 (((-3 $ "failed") $ $) 26 T ELT)) (-3773 (($ $) 91 T ELT)) (-3969 (((-346 $) $) 90 T ELT)) (-3036 (($ $) 110 T ELT)) (-1606 (((-85) $ $) 75 T ELT)) (-3722 (($) 23 T CONST)) (-1215 (((-582 $) (-856 $)) 104 T ELT) (((-582 $) (-1083 $)) 103 T ELT) (((-582 $) (-1083 $) (-1088)) 102 T ELT)) (-3182 (($ (-856 $)) 107 T ELT) (($ (-1083 $)) 106 T ELT) (($ (-1083 $) (-1088)) 105 T ELT)) (-2563 (($ $ $) 71 T ELT)) (-3465 (((-3 $ "failed") $) 42 T ELT)) (-2562 (($ $ $) 72 T ELT)) (-2740 (((-2 (|:| -3952 (-582 $)) (|:| -2408 $)) (-582 $)) 66 T ELT)) (-3721 (((-85) $) 89 T ELT)) (-1212 (((-85) $ $) 20 T ELT)) (-2409 (((-85) $) 44 T ELT)) (-3010 (($ $ (-483)) 109 T ELT)) (-1603 (((-3 (-582 $) #1="failed") (-582 $) $) 68 T ELT)) (-1889 (($ $ $) 60 T ELT) (($ (-582 $)) 59 T ELT)) (-3241 (((-1071) $) 11 T ELT)) (-2483 (($ $) 88 T ELT)) (-3242 (((-1032) $) 12 T ELT)) (-2707 (((-1083 $) (-1083 $) (-1083 $)) 58 T ELT)) (-3143 (($ $ $) 62 T ELT) (($ (-582 $)) 61 T ELT)) (-3730 (((-346 $) $) 92 T ELT)) (-1604 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 69 T ELT)) (-3464 (((-3 $ "failed") $ $) 56 T ELT)) (-2739 (((-631 (-582 $)) (-582 $) $) 65 T ELT)) (-1605 (((-693) $) 74 T ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) 73 T ELT)) (-3944 (((-771) $) 13 T ELT) (($ (-483)) 41 T ELT) (($ $) 57 T ELT) (($ (-348 (-483))) 84 T ELT)) (-3125 (((-693)) 40 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-2061 (((-85) $ $) 53 T ELT)) (-3124 (((-85) $ $) 33 T ELT)) (-2659 (($) 24 T CONST)) (-2665 (($) 45 T CONST)) (-3055 (((-85) $ $) 8 T ELT)) (-3947 (($ $ $) 83 T ELT)) (-3835 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3837 (($ $ $) 18 T ELT)) (** (($ $ (-829)) 35 T ELT) (($ $ (-693)) 43 T ELT) (($ $ (-483)) 87 T ELT) (($ $ (-348 (-483))) 108 T ELT)) (* (($ (-829) $) 17 T ELT) (($ (-693) $) 21 T ELT) (($ (-483) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-348 (-483))) 86 T ELT) (($ (-348 (-483)) $) 85 T ELT))) +((-2568 (((-85) $ $) 7 T ELT)) (-1214 (((-583 $) (-857 $)) 98 T ELT) (((-583 $) (-1084 $)) 97 T ELT) (((-583 $) (-1084 $) (-1089)) 96 T ELT)) (-1215 (($ (-857 $)) 101 T ELT) (($ (-1084 $)) 100 T ELT) (($ (-1084 $) (-1089)) 99 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) 55 T ELT)) (-2063 (($ $) 54 T ELT)) (-2061 (((-85) $) 52 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3774 (($ $) 91 T ELT)) (-3970 (((-347 $) $) 90 T ELT)) (-3037 (($ $) 110 T ELT)) (-1607 (((-85) $ $) 75 T ELT)) (-3723 (($) 23 T CONST)) (-1216 (((-583 $) (-857 $)) 104 T ELT) (((-583 $) (-1084 $)) 103 T ELT) (((-583 $) (-1084 $) (-1089)) 102 T ELT)) (-3183 (($ (-857 $)) 107 T ELT) (($ (-1084 $)) 106 T ELT) (($ (-1084 $) (-1089)) 105 T ELT)) (-2564 (($ $ $) 71 T ELT)) (-3466 (((-3 $ "failed") $) 42 T ELT)) (-2563 (($ $ $) 72 T ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) 66 T ELT)) (-3722 (((-85) $) 89 T ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3011 (($ $ (-484)) 109 T ELT)) (-1604 (((-3 (-583 $) #1="failed") (-583 $) $) 68 T ELT)) (-1890 (($ $ $) 60 T ELT) (($ (-583 $)) 59 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-2484 (($ $) 88 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) 58 T ELT)) (-3144 (($ $ $) 62 T ELT) (($ (-583 $)) 61 T ELT)) (-3731 (((-347 $) $) 92 T ELT)) (-1605 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 69 T ELT)) (-3465 (((-3 $ "failed") $ $) 56 T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) 65 T ELT)) (-1606 (((-694) $) 74 T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 73 T ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ $) 57 T ELT) (($ (-349 (-484))) 84 T ELT)) (-3126 (((-694)) 40 T CONST)) (-1264 (((-85) $ $) 6 T ELT)) (-2062 (((-85) $ $) 53 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3948 (($ $ $) 83 T ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT) (($ $ (-484)) 87 T ELT) (($ $ (-349 (-484))) 108 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-349 (-484))) 86 T ELT) (($ (-349 (-484)) $) 85 T ELT))) (((-27) (-113)) (T -27)) -((-3182 (*1 *1 *2) (-12 (-5 *2 (-856 *1)) (-4 *1 (-27)))) (-3182 (*1 *1 *2) (-12 (-5 *2 (-1083 *1)) (-4 *1 (-27)))) (-3182 (*1 *1 *2 *3) (-12 (-5 *2 (-1083 *1)) (-5 *3 (-1088)) (-4 *1 (-27)))) (-1215 (*1 *2 *3) (-12 (-5 *3 (-856 *1)) (-4 *1 (-27)) (-5 *2 (-582 *1)))) (-1215 (*1 *2 *3) (-12 (-5 *3 (-1083 *1)) (-4 *1 (-27)) (-5 *2 (-582 *1)))) (-1215 (*1 *2 *3 *4) (-12 (-5 *3 (-1083 *1)) (-5 *4 (-1088)) (-4 *1 (-27)) (-5 *2 (-582 *1)))) (-1214 (*1 *1 *2) (-12 (-5 *2 (-856 *1)) (-4 *1 (-27)))) (-1214 (*1 *1 *2) (-12 (-5 *2 (-1083 *1)) (-4 *1 (-27)))) (-1214 (*1 *1 *2 *3) (-12 (-5 *2 (-1083 *1)) (-5 *3 (-1088)) (-4 *1 (-27)))) (-1213 (*1 *2 *3) (-12 (-5 *3 (-856 *1)) (-4 *1 (-27)) (-5 *2 (-582 *1)))) (-1213 (*1 *2 *3) (-12 (-5 *3 (-1083 *1)) (-4 *1 (-27)) (-5 *2 (-582 *1)))) (-1213 (*1 *2 *3 *4) (-12 (-5 *3 (-1083 *1)) (-5 *4 (-1088)) (-4 *1 (-27)) (-5 *2 (-582 *1))))) -(-13 (-312) (-914) (-10 -8 (-15 -3182 ($ (-856 $))) (-15 -3182 ($ (-1083 $))) (-15 -3182 ($ (-1083 $) (-1088))) (-15 -1215 ((-582 $) (-856 $))) (-15 -1215 ((-582 $) (-1083 $))) (-15 -1215 ((-582 $) (-1083 $) (-1088))) (-15 -1214 ($ (-856 $))) (-15 -1214 ($ (-1083 $))) (-15 -1214 ($ (-1083 $) (-1088))) (-15 -1213 ((-582 $) (-856 $))) (-15 -1213 ((-582 $) (-1083 $))) (-15 -1213 ((-582 $) (-1083 $) (-1088))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-348 (-483))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-348 (-483)) (-348 (-483))) . T) ((-82 $ $) . T) ((-104) . T) ((-554 (-348 (-483))) . T) ((-554 (-483)) . T) ((-554 $) . T) ((-551 (-771)) . T) ((-146) . T) ((-201) . T) ((-246) . T) ((-258) . T) ((-312) . T) ((-390) . T) ((-494) . T) ((-13) . T) ((-587 (-348 (-483))) . T) ((-587 (-483)) . T) ((-587 $) . T) ((-589 (-348 (-483))) . T) ((-589 $) . T) ((-581 (-348 (-483))) . T) ((-581 $) . T) ((-653 (-348 (-483))) . T) ((-653 $) . T) ((-662) . T) ((-831) . T) ((-914) . T) ((-962 (-348 (-483))) . T) ((-962 $) . T) ((-967 (-348 (-483))) . T) ((-967 $) . T) ((-960) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T) ((-1132) . T)) -((-1213 (((-582 $) (-856 $)) NIL T ELT) (((-582 $) (-1083 $)) NIL T ELT) (((-582 $) (-1083 $) (-1088)) 54 T ELT) (((-582 $) $) 22 T ELT) (((-582 $) $ (-1088)) 45 T ELT)) (-1214 (($ (-856 $)) NIL T ELT) (($ (-1083 $)) NIL T ELT) (($ (-1083 $) (-1088)) 56 T ELT) (($ $) 20 T ELT) (($ $ (-1088)) 39 T ELT)) (-1215 (((-582 $) (-856 $)) NIL T ELT) (((-582 $) (-1083 $)) NIL T ELT) (((-582 $) (-1083 $) (-1088)) 52 T ELT) (((-582 $) $) 18 T ELT) (((-582 $) $ (-1088)) 47 T ELT)) (-3182 (($ (-856 $)) NIL T ELT) (($ (-1083 $)) NIL T ELT) (($ (-1083 $) (-1088)) NIL T ELT) (($ $) 15 T ELT) (($ $ (-1088)) 41 T ELT))) -(((-28 |#1| |#2|) (-10 -7 (-15 -1213 ((-582 |#1|) |#1| (-1088))) (-15 -1214 (|#1| |#1| (-1088))) (-15 -1213 ((-582 |#1|) |#1|)) (-15 -1214 (|#1| |#1|)) (-15 -1215 ((-582 |#1|) |#1| (-1088))) (-15 -3182 (|#1| |#1| (-1088))) (-15 -1215 ((-582 |#1|) |#1|)) (-15 -3182 (|#1| |#1|)) (-15 -1213 ((-582 |#1|) (-1083 |#1|) (-1088))) (-15 -1213 ((-582 |#1|) (-1083 |#1|))) (-15 -1213 ((-582 |#1|) (-856 |#1|))) (-15 -1214 (|#1| (-1083 |#1|) (-1088))) (-15 -1214 (|#1| (-1083 |#1|))) (-15 -1214 (|#1| (-856 |#1|))) (-15 -1215 ((-582 |#1|) (-1083 |#1|) (-1088))) (-15 -1215 ((-582 |#1|) (-1083 |#1|))) (-15 -1215 ((-582 |#1|) (-856 |#1|))) (-15 -3182 (|#1| (-1083 |#1|) (-1088))) (-15 -3182 (|#1| (-1083 |#1|))) (-15 -3182 (|#1| (-856 |#1|)))) (-29 |#2|) (-494)) (T -28)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-1213 (((-582 $) (-856 $)) 98 T ELT) (((-582 $) (-1083 $)) 97 T ELT) (((-582 $) (-1083 $) (-1088)) 96 T ELT) (((-582 $) $) 148 T ELT) (((-582 $) $ (-1088)) 146 T ELT)) (-1214 (($ (-856 $)) 101 T ELT) (($ (-1083 $)) 100 T ELT) (($ (-1083 $) (-1088)) 99 T ELT) (($ $) 149 T ELT) (($ $ (-1088)) 147 T ELT)) (-3187 (((-85) $) 22 T ELT)) (-3080 (((-582 (-1088)) $) 217 T ELT)) (-3082 (((-348 (-1083 $)) $ (-549 $)) 249 (|has| |#1| (-494)) ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3980 $) (|:| |associate| $)) $) 55 T ELT)) (-2062 (($ $) 54 T ELT)) (-2060 (((-85) $) 52 T ELT)) (-1598 (((-582 (-549 $)) $) 180 T ELT)) (-1310 (((-3 $ "failed") $ $) 26 T ELT)) (-1602 (($ $ (-582 (-549 $)) (-582 $)) 170 T ELT) (($ $ (-582 (-249 $))) 169 T ELT) (($ $ (-249 $)) 168 T ELT)) (-3773 (($ $) 91 T ELT)) (-3969 (((-346 $) $) 90 T ELT)) (-3036 (($ $) 110 T ELT)) (-1606 (((-85) $ $) 75 T ELT)) (-3722 (($) 23 T CONST)) (-1215 (((-582 $) (-856 $)) 104 T ELT) (((-582 $) (-1083 $)) 103 T ELT) (((-582 $) (-1083 $) (-1088)) 102 T ELT) (((-582 $) $) 152 T ELT) (((-582 $) $ (-1088)) 150 T ELT)) (-3182 (($ (-856 $)) 107 T ELT) (($ (-1083 $)) 106 T ELT) (($ (-1083 $) (-1088)) 105 T ELT) (($ $) 153 T ELT) (($ $ (-1088)) 151 T ELT)) (-3156 (((-3 (-856 |#1|) #1="failed") $) 268 (|has| |#1| (-960)) ELT) (((-3 (-348 (-856 |#1|)) #1#) $) 251 (|has| |#1| (-494)) ELT) (((-3 |#1| #1#) $) 213 T ELT) (((-3 (-483) #1#) $) 210 (|has| |#1| (-949 (-483))) ELT) (((-3 (-1088) #1#) $) 204 T ELT) (((-3 (-549 $) #1#) $) 155 T ELT) (((-3 (-348 (-483)) #1#) $) 143 (OR (-12 (|has| |#1| (-949 (-483))) (|has| |#1| (-494))) (|has| |#1| (-949 (-348 (-483))))) ELT)) (-3155 (((-856 |#1|) $) 267 (|has| |#1| (-960)) ELT) (((-348 (-856 |#1|)) $) 250 (|has| |#1| (-494)) ELT) ((|#1| $) 212 T ELT) (((-483) $) 211 (|has| |#1| (-949 (-483))) ELT) (((-1088) $) 203 T ELT) (((-549 $) $) 154 T ELT) (((-348 (-483)) $) 144 (OR (-12 (|has| |#1| (-949 (-483))) (|has| |#1| (-494))) (|has| |#1| (-949 (-348 (-483))))) ELT)) (-2563 (($ $ $) 71 T ELT)) (-2278 (((-629 |#1|) (-629 $)) 256 (|has| |#1| (-960)) ELT) (((-2 (|:| |mat| (-629 |#1|)) (|:| |vec| (-1177 |#1|))) (-629 $) (-1177 $)) 255 (|has| |#1| (-960)) ELT) (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-629 $) (-1177 $)) 142 (OR (-2561 (|has| |#1| (-960)) (|has| |#1| (-579 (-483)))) (-2561 (|has| |#1| (-579 (-483))) (|has| |#1| (-960)))) ELT) (((-629 (-483)) (-629 $)) 141 (OR (-2561 (|has| |#1| (-960)) (|has| |#1| (-579 (-483)))) (-2561 (|has| |#1| (-579 (-483))) (|has| |#1| (-960)))) ELT)) (-3465 (((-3 $ "failed") $) 42 T ELT)) (-2562 (($ $ $) 72 T ELT)) (-2740 (((-2 (|:| -3952 (-582 $)) (|:| -2408 $)) (-582 $)) 66 T ELT)) (-3721 (((-85) $) 89 T ELT)) (-2795 (((-797 (-328) $) $ (-799 (-328)) (-797 (-328) $)) 209 (|has| |#1| (-795 (-328))) ELT) (((-797 (-483) $) $ (-799 (-483)) (-797 (-483) $)) 208 (|has| |#1| (-795 (-483))) ELT)) (-2572 (($ (-582 $)) 174 T ELT) (($ $) 173 T ELT)) (-1212 (((-85) $ $) 20 T ELT)) (-1597 (((-582 (-86)) $) 181 T ELT)) (-3593 (((-86) (-86)) 182 T ELT)) (-2409 (((-85) $) 44 T ELT)) (-2672 (((-85) $) 202 (|has| $ (-949 (-483))) ELT)) (-2995 (($ $) 234 (|has| |#1| (-960)) ELT)) (-2997 (((-1037 |#1| (-549 $)) $) 233 (|has| |#1| (-960)) ELT)) (-3010 (($ $ (-483)) 109 T ELT)) (-1603 (((-3 (-582 $) #2="failed") (-582 $) $) 68 T ELT)) (-1595 (((-1083 $) (-549 $)) 199 (|has| $ (-960)) ELT)) (-3956 (($ (-1 $ $) (-549 $)) 188 T ELT)) (-1600 (((-3 (-549 $) "failed") $) 178 T ELT)) (-2279 (((-629 |#1|) (-1177 $)) 258 (|has| |#1| (-960)) ELT) (((-2 (|:| |mat| (-629 |#1|)) (|:| |vec| (-1177 |#1|))) (-1177 $) $) 257 (|has| |#1| (-960)) ELT) (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) 140 (OR (-2561 (|has| |#1| (-960)) (|has| |#1| (-579 (-483)))) (-2561 (|has| |#1| (-579 (-483))) (|has| |#1| (-960)))) ELT) (((-629 (-483)) (-1177 $)) 139 (OR (-2561 (|has| |#1| (-960)) (|has| |#1| (-579 (-483)))) (-2561 (|has| |#1| (-579 (-483))) (|has| |#1| (-960)))) ELT)) (-1889 (($ $ $) 60 T ELT) (($ (-582 $)) 59 T ELT)) (-3241 (((-1071) $) 11 T ELT)) (-1599 (((-582 (-549 $)) $) 179 T ELT)) (-2234 (($ (-86) (-582 $)) 187 T ELT) (($ (-86) $) 186 T ELT)) (-2822 (((-3 (-582 $) #3="failed") $) 228 (|has| |#1| (-1024)) ELT)) (-2824 (((-3 (-2 (|:| |val| $) (|:| -2400 (-483))) #3#) $) 237 (|has| |#1| (-960)) ELT)) (-2821 (((-3 (-582 $) #3#) $) 230 (|has| |#1| (-25)) ELT)) (-1792 (((-3 (-2 (|:| -3952 (-483)) (|:| |var| (-549 $))) #3#) $) 231 (|has| |#1| (-25)) ELT)) (-2823 (((-3 (-2 (|:| |var| (-549 $)) (|:| -2400 (-483))) #3#) $ (-1088)) 236 (|has| |#1| (-960)) ELT) (((-3 (-2 (|:| |var| (-549 $)) (|:| -2400 (-483))) #3#) $ (-86)) 235 (|has| |#1| (-960)) ELT) (((-3 (-2 (|:| |var| (-549 $)) (|:| -2400 (-483))) #3#) $) 229 (|has| |#1| (-1024)) ELT)) (-2632 (((-85) $ (-1088)) 185 T ELT) (((-85) $ (-86)) 184 T ELT)) (-2483 (($ $) 88 T ELT)) (-2602 (((-693) $) 177 T ELT)) (-3242 (((-1032) $) 12 T ELT)) (-1795 (((-85) $) 215 T ELT)) (-1794 ((|#1| $) 216 T ELT)) (-2707 (((-1083 $) (-1083 $) (-1083 $)) 58 T ELT)) (-3143 (($ $ $) 62 T ELT) (($ (-582 $)) 61 T ELT)) (-1596 (((-85) $ (-1088)) 190 T ELT) (((-85) $ $) 189 T ELT)) (-3730 (((-346 $) $) 92 T ELT)) (-1604 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 69 T ELT)) (-3464 (((-3 $ "failed") $ $) 56 T ELT)) (-2739 (((-631 (-582 $)) (-582 $) $) 65 T ELT)) (-2673 (((-85) $) 201 (|has| $ (-949 (-483))) ELT)) (-3766 (($ $ (-1088) (-693) (-1 $ $)) 241 (|has| |#1| (-960)) ELT) (($ $ (-1088) (-693) (-1 $ (-582 $))) 240 (|has| |#1| (-960)) ELT) (($ $ (-582 (-1088)) (-582 (-693)) (-582 (-1 $ (-582 $)))) 239 (|has| |#1| (-960)) ELT) (($ $ (-582 (-1088)) (-582 (-693)) (-582 (-1 $ $))) 238 (|has| |#1| (-960)) ELT) (($ $ (-582 (-86)) (-582 $) (-1088)) 227 (|has| |#1| (-552 (-472))) ELT) (($ $ (-86) $ (-1088)) 226 (|has| |#1| (-552 (-472))) ELT) (($ $) 225 (|has| |#1| (-552 (-472))) ELT) (($ $ (-582 (-1088))) 224 (|has| |#1| (-552 (-472))) ELT) (($ $ (-1088)) 223 (|has| |#1| (-552 (-472))) ELT) (($ $ (-86) (-1 $ $)) 198 T ELT) (($ $ (-86) (-1 $ (-582 $))) 197 T ELT) (($ $ (-582 (-86)) (-582 (-1 $ (-582 $)))) 196 T ELT) (($ $ (-582 (-86)) (-582 (-1 $ $))) 195 T ELT) (($ $ (-1088) (-1 $ $)) 194 T ELT) (($ $ (-1088) (-1 $ (-582 $))) 193 T ELT) (($ $ (-582 (-1088)) (-582 (-1 $ (-582 $)))) 192 T ELT) (($ $ (-582 (-1088)) (-582 (-1 $ $))) 191 T ELT) (($ $ (-582 $) (-582 $)) 162 T ELT) (($ $ $ $) 161 T ELT) (($ $ (-249 $)) 160 T ELT) (($ $ (-582 (-249 $))) 159 T ELT) (($ $ (-582 (-549 $)) (-582 $)) 158 T ELT) (($ $ (-549 $) $) 157 T ELT)) (-1605 (((-693) $) 74 T ELT)) (-3798 (($ (-86) (-582 $)) 167 T ELT) (($ (-86) $ $ $ $) 166 T ELT) (($ (-86) $ $ $) 165 T ELT) (($ (-86) $ $) 164 T ELT) (($ (-86) $) 163 T ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) 73 T ELT)) (-1601 (($ $ $) 176 T ELT) (($ $) 175 T ELT)) (-3756 (($ $ (-582 (-1088)) (-582 (-693))) 263 (|has| |#1| (-960)) ELT) (($ $ (-1088) (-693)) 262 (|has| |#1| (-960)) ELT) (($ $ (-582 (-1088))) 261 (|has| |#1| (-960)) ELT) (($ $ (-1088)) 259 (|has| |#1| (-960)) ELT)) (-2994 (($ $) 244 (|has| |#1| (-494)) ELT)) (-2996 (((-1037 |#1| (-549 $)) $) 243 (|has| |#1| (-494)) ELT)) (-3184 (($ $) 200 (|has| $ (-960)) ELT)) (-3970 (((-472) $) 272 (|has| |#1| (-552 (-472))) ELT) (($ (-346 $)) 242 (|has| |#1| (-494)) ELT) (((-799 (-328)) $) 207 (|has| |#1| (-552 (-799 (-328)))) ELT) (((-799 (-483)) $) 206 (|has| |#1| (-552 (-799 (-483)))) ELT)) (-3008 (($ $ $) 271 (|has| |#1| (-411)) ELT)) (-2434 (($ $ $) 270 (|has| |#1| (-411)) ELT)) (-3944 (((-771) $) 13 T ELT) (($ (-483)) 41 T ELT) (($ $) 57 T ELT) (($ (-348 (-483))) 84 T ELT) (($ (-856 |#1|)) 269 (|has| |#1| (-960)) ELT) (($ (-348 (-856 |#1|))) 252 (|has| |#1| (-494)) ELT) (($ (-348 (-856 (-348 |#1|)))) 248 (|has| |#1| (-494)) ELT) (($ (-856 (-348 |#1|))) 247 (|has| |#1| (-494)) ELT) (($ (-348 |#1|)) 246 (|has| |#1| (-494)) ELT) (($ (-1037 |#1| (-549 $))) 232 (|has| |#1| (-960)) ELT) (($ |#1|) 214 T ELT) (($ (-1088)) 205 T ELT) (($ (-549 $)) 156 T ELT)) (-2701 (((-631 $) $) 254 (|has| |#1| (-118)) ELT)) (-3125 (((-693)) 40 T CONST)) (-2589 (($ (-582 $)) 172 T ELT) (($ $) 171 T ELT)) (-2253 (((-85) (-86)) 183 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2061 (((-85) $ $) 53 T ELT)) (-1793 (($ (-1088) (-582 $)) 222 T ELT) (($ (-1088) $ $ $ $) 221 T ELT) (($ (-1088) $ $ $) 220 T ELT) (($ (-1088) $ $) 219 T ELT) (($ (-1088) $) 218 T ELT)) (-3124 (((-85) $ $) 33 T ELT)) (-2659 (($) 24 T CONST)) (-2665 (($) 45 T CONST)) (-2668 (($ $ (-582 (-1088)) (-582 (-693))) 266 (|has| |#1| (-960)) ELT) (($ $ (-1088) (-693)) 265 (|has| |#1| (-960)) ELT) (($ $ (-582 (-1088))) 264 (|has| |#1| (-960)) ELT) (($ $ (-1088)) 260 (|has| |#1| (-960)) ELT)) (-3055 (((-85) $ $) 8 T ELT)) (-3947 (($ $ $) 83 T ELT) (($ (-1037 |#1| (-549 $)) (-1037 |#1| (-549 $))) 245 (|has| |#1| (-494)) ELT)) (-3835 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3837 (($ $ $) 18 T ELT)) (** (($ $ (-829)) 35 T ELT) (($ $ (-693)) 43 T ELT) (($ $ (-483)) 87 T ELT) (($ $ (-348 (-483))) 108 T ELT)) (* (($ (-829) $) 17 T ELT) (($ (-693) $) 21 T ELT) (($ (-483) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-348 (-483))) 86 T ELT) (($ (-348 (-483)) $) 85 T ELT) (($ $ |#1|) 253 (|has| |#1| (-146)) ELT) (($ |#1| $) 145 (|has| |#1| (-960)) ELT))) -(((-29 |#1|) (-113) (-494)) (T -29)) -((-3182 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-494)))) (-1215 (*1 *2 *1) (-12 (-4 *3 (-494)) (-5 *2 (-582 *1)) (-4 *1 (-29 *3)))) (-3182 (*1 *1 *1 *2) (-12 (-5 *2 (-1088)) (-4 *1 (-29 *3)) (-4 *3 (-494)))) (-1215 (*1 *2 *1 *3) (-12 (-5 *3 (-1088)) (-4 *4 (-494)) (-5 *2 (-582 *1)) (-4 *1 (-29 *4)))) (-1214 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-494)))) (-1213 (*1 *2 *1) (-12 (-4 *3 (-494)) (-5 *2 (-582 *1)) (-4 *1 (-29 *3)))) (-1214 (*1 *1 *1 *2) (-12 (-5 *2 (-1088)) (-4 *1 (-29 *3)) (-4 *3 (-494)))) (-1213 (*1 *2 *1 *3) (-12 (-5 *3 (-1088)) (-4 *4 (-494)) (-5 *2 (-582 *1)) (-4 *1 (-29 *4))))) -(-13 (-27) (-362 |t#1|) (-10 -8 (-15 -3182 ($ $)) (-15 -1215 ((-582 $) $)) (-15 -3182 ($ $ (-1088))) (-15 -1215 ((-582 $) $ (-1088))) (-15 -1214 ($ $)) (-15 -1213 ((-582 $) $)) (-15 -1214 ($ $ (-1088))) (-15 -1213 ((-582 $) $ (-1088))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-348 (-483))) . T) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) . T) ((-27) . T) ((-72) . T) ((-82 (-348 (-483)) (-348 (-483))) . T) ((-82 |#1| |#1|) |has| |#1| (-146)) ((-82 $ $) . T) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-554 (-348 (-483))) . T) ((-554 (-348 (-856 |#1|))) |has| |#1| (-494)) ((-554 (-483)) . T) ((-554 (-549 $)) . T) ((-554 (-856 |#1|)) |has| |#1| (-960)) ((-554 (-1088)) . T) ((-554 |#1|) . T) ((-554 $) . T) ((-551 (-771)) . T) ((-146) . T) ((-552 (-472)) |has| |#1| (-552 (-472))) ((-552 (-799 (-328))) |has| |#1| (-552 (-799 (-328)))) ((-552 (-799 (-483))) |has| |#1| (-552 (-799 (-483)))) ((-201) . T) ((-246) . T) ((-258) . T) ((-260 $) . T) ((-254) . T) ((-312) . T) ((-327 |#1|) |has| |#1| (-960)) ((-341 |#1|) . T) ((-353 |#1|) . T) ((-362 |#1|) . T) ((-390) . T) ((-411) |has| |#1| (-411)) ((-454 (-549 $) $) . T) ((-454 $ $) . T) ((-494) . T) ((-13) . T) ((-587 (-348 (-483))) . T) ((-587 (-483)) . T) ((-587 |#1|) OR (|has| |#1| (-960)) (|has| |#1| (-146))) ((-587 $) . T) ((-589 (-348 (-483))) . T) ((-589 (-483)) -12 (|has| |#1| (-579 (-483))) (|has| |#1| (-960))) ((-589 |#1|) OR (|has| |#1| (-960)) (|has| |#1| (-146))) ((-589 $) . T) ((-581 (-348 (-483))) . T) ((-581 |#1|) |has| |#1| (-146)) ((-581 $) . T) ((-579 (-483)) -12 (|has| |#1| (-579 (-483))) (|has| |#1| (-960))) ((-579 |#1|) |has| |#1| (-960)) ((-653 (-348 (-483))) . T) ((-653 |#1|) |has| |#1| (-146)) ((-653 $) . T) ((-662) . T) ((-805 $ (-1088)) |has| |#1| (-960)) ((-808 (-1088)) |has| |#1| (-960)) ((-810 (-1088)) |has| |#1| (-960)) ((-795 (-328)) |has| |#1| (-795 (-328))) ((-795 (-483)) |has| |#1| (-795 (-483))) ((-793 |#1|) . T) ((-831) . T) ((-914) . T) ((-949 (-348 (-483))) OR (|has| |#1| (-949 (-348 (-483)))) (-12 (|has| |#1| (-494)) (|has| |#1| (-949 (-483))))) ((-949 (-348 (-856 |#1|))) |has| |#1| (-494)) ((-949 (-483)) |has| |#1| (-949 (-483))) ((-949 (-549 $)) . T) ((-949 (-856 |#1|)) |has| |#1| (-960)) ((-949 (-1088)) . T) ((-949 |#1|) . T) ((-962 (-348 (-483))) . T) ((-962 |#1|) |has| |#1| (-146)) ((-962 $) . T) ((-967 (-348 (-483))) . T) ((-967 |#1|) |has| |#1| (-146)) ((-967 $) . T) ((-960) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T) ((-1132) . T)) -((-2895 (((-1000 (-179)) $) NIL T ELT)) (-2896 (((-1000 (-179)) $) NIL T ELT)) (-3133 (($ $ (-179)) 164 T ELT)) (-1216 (($ (-856 (-483)) (-1088) (-1088) (-1000 (-348 (-483))) (-1000 (-348 (-483)))) 103 T ELT)) (-2897 (((-582 (-582 (-853 (-179)))) $) 181 T ELT)) (-3944 (((-771) $) 195 T ELT))) -(((-30) (-13 (-865) (-10 -8 (-15 -1216 ($ (-856 (-483)) (-1088) (-1088) (-1000 (-348 (-483))) (-1000 (-348 (-483))))) (-15 -3133 ($ $ (-179)))))) (T -30)) -((-1216 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-856 (-483))) (-5 *3 (-1088)) (-5 *4 (-1000 (-348 (-483)))) (-5 *1 (-30)))) (-3133 (*1 *1 *1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-30))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3944 (((-771) $) 18 T ELT) (($ (-1093)) NIL T ELT) (((-1093) $) NIL T ELT)) (-3232 (((-1047) $) 12 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2693 (((-1047) $) 10 T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-31) (-13 (-994) (-10 -8 (-15 -2693 ((-1047) $)) (-15 -3232 ((-1047) $))))) (T -31)) -((-2693 (*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-31)))) (-3232 (*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-31))))) -((-3182 ((|#2| (-1083 |#2|) (-1088)) 39 T ELT)) (-3593 (((-86) (-86)) 53 T ELT)) (-1595 (((-1083 |#2|) (-549 |#2|)) 148 (|has| |#1| (-949 (-483))) ELT)) (-1219 ((|#2| |#1| (-483)) 120 (|has| |#1| (-949 (-483))) ELT)) (-1217 ((|#2| (-1083 |#2|) |#2|) 29 T ELT)) (-1218 (((-771) (-582 |#2|)) 87 T ELT)) (-3184 ((|#2| |#2|) 143 (|has| |#1| (-949 (-483))) ELT)) (-2253 (((-85) (-86)) 17 T ELT)) (** ((|#2| |#2| (-348 (-483))) 96 (|has| |#1| (-949 (-483))) ELT))) -(((-32 |#1| |#2|) (-10 -7 (-15 -3182 (|#2| (-1083 |#2|) (-1088))) (-15 -3593 ((-86) (-86))) (-15 -2253 ((-85) (-86))) (-15 -1217 (|#2| (-1083 |#2|) |#2|)) (-15 -1218 ((-771) (-582 |#2|))) (IF (|has| |#1| (-949 (-483))) (PROGN (-15 ** (|#2| |#2| (-348 (-483)))) (-15 -1595 ((-1083 |#2|) (-549 |#2|))) (-15 -3184 (|#2| |#2|)) (-15 -1219 (|#2| |#1| (-483)))) |%noBranch|)) (-494) (-362 |#1|)) (T -32)) -((-1219 (*1 *2 *3 *4) (-12 (-5 *4 (-483)) (-4 *2 (-362 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-949 *4)) (-4 *3 (-494)))) (-3184 (*1 *2 *2) (-12 (-4 *3 (-949 (-483))) (-4 *3 (-494)) (-5 *1 (-32 *3 *2)) (-4 *2 (-362 *3)))) (-1595 (*1 *2 *3) (-12 (-5 *3 (-549 *5)) (-4 *5 (-362 *4)) (-4 *4 (-949 (-483))) (-4 *4 (-494)) (-5 *2 (-1083 *5)) (-5 *1 (-32 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-348 (-483))) (-4 *4 (-949 (-483))) (-4 *4 (-494)) (-5 *1 (-32 *4 *2)) (-4 *2 (-362 *4)))) (-1218 (*1 *2 *3) (-12 (-5 *3 (-582 *5)) (-4 *5 (-362 *4)) (-4 *4 (-494)) (-5 *2 (-771)) (-5 *1 (-32 *4 *5)))) (-1217 (*1 *2 *3 *2) (-12 (-5 *3 (-1083 *2)) (-4 *2 (-362 *4)) (-4 *4 (-494)) (-5 *1 (-32 *4 *2)))) (-2253 (*1 *2 *3) (-12 (-5 *3 (-86)) (-4 *4 (-494)) (-5 *2 (-85)) (-5 *1 (-32 *4 *5)) (-4 *5 (-362 *4)))) (-3593 (*1 *2 *2) (-12 (-5 *2 (-86)) (-4 *3 (-494)) (-5 *1 (-32 *3 *4)) (-4 *4 (-362 *3)))) (-3182 (*1 *2 *3 *4) (-12 (-5 *3 (-1083 *2)) (-5 *4 (-1088)) (-4 *2 (-362 *5)) (-5 *1 (-32 *5 *2)) (-4 *5 (-494))))) -((-3722 (($) 10 T CONST)) (-1220 (((-85) $ $) 8 T ELT)) (-3401 (((-85) $) 15 T ELT))) -(((-33 |#1|) (-10 -7 (-15 -3722 (|#1|) -3950) (-15 -3401 ((-85) |#1|)) (-15 -1220 ((-85) |#1| |#1|))) (-34)) (T -33)) -NIL -((-3722 (($) 7 T CONST)) (-1220 (((-85) $ $) 11 T ELT)) (-3401 (((-85) $) 8 T ELT)) (-3563 (($) 9 T ELT)) (-3398 (($ $) 10 T ELT)) (-3955 (((-693) $) 6 (|has| $ (-6 -3993)) ELT))) +((-3183 (*1 *1 *2) (-12 (-5 *2 (-857 *1)) (-4 *1 (-27)))) (-3183 (*1 *1 *2) (-12 (-5 *2 (-1084 *1)) (-4 *1 (-27)))) (-3183 (*1 *1 *2 *3) (-12 (-5 *2 (-1084 *1)) (-5 *3 (-1089)) (-4 *1 (-27)))) (-1216 (*1 *2 *3) (-12 (-5 *3 (-857 *1)) (-4 *1 (-27)) (-5 *2 (-583 *1)))) (-1216 (*1 *2 *3) (-12 (-5 *3 (-1084 *1)) (-4 *1 (-27)) (-5 *2 (-583 *1)))) (-1216 (*1 *2 *3 *4) (-12 (-5 *3 (-1084 *1)) (-5 *4 (-1089)) (-4 *1 (-27)) (-5 *2 (-583 *1)))) (-1215 (*1 *1 *2) (-12 (-5 *2 (-857 *1)) (-4 *1 (-27)))) (-1215 (*1 *1 *2) (-12 (-5 *2 (-1084 *1)) (-4 *1 (-27)))) (-1215 (*1 *1 *2 *3) (-12 (-5 *2 (-1084 *1)) (-5 *3 (-1089)) (-4 *1 (-27)))) (-1214 (*1 *2 *3) (-12 (-5 *3 (-857 *1)) (-4 *1 (-27)) (-5 *2 (-583 *1)))) (-1214 (*1 *2 *3) (-12 (-5 *3 (-1084 *1)) (-4 *1 (-27)) (-5 *2 (-583 *1)))) (-1214 (*1 *2 *3 *4) (-12 (-5 *3 (-1084 *1)) (-5 *4 (-1089)) (-4 *1 (-27)) (-5 *2 (-583 *1))))) +(-13 (-312) (-915) (-10 -8 (-15 -3183 ($ (-857 $))) (-15 -3183 ($ (-1084 $))) (-15 -3183 ($ (-1084 $) (-1089))) (-15 -1216 ((-583 $) (-857 $))) (-15 -1216 ((-583 $) (-1084 $))) (-15 -1216 ((-583 $) (-1084 $) (-1089))) (-15 -1215 ($ (-857 $))) (-15 -1215 ($ (-1084 $))) (-15 -1215 ($ (-1084 $) (-1089))) (-15 -1214 ((-583 $) (-857 $))) (-15 -1214 ((-583 $) (-1084 $))) (-15 -1214 ((-583 $) (-1084 $) (-1089))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-349 (-484))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-349 (-484)) (-349 (-484))) . T) ((-82 $ $) . T) ((-104) . T) ((-555 (-349 (-484))) . T) ((-555 (-484)) . T) ((-555 $) . T) ((-552 (-772)) . T) ((-146) . T) ((-201) . T) ((-246) . T) ((-258) . T) ((-312) . T) ((-391) . T) ((-495) . T) ((-13) . T) ((-588 (-349 (-484))) . T) ((-588 (-484)) . T) ((-588 $) . T) ((-590 (-349 (-484))) . T) ((-590 $) . T) ((-582 (-349 (-484))) . T) ((-582 $) . T) ((-654 (-349 (-484))) . T) ((-654 $) . T) ((-663) . T) ((-832) . T) ((-915) . T) ((-963 (-349 (-484))) . T) ((-963 $) . T) ((-968 (-349 (-484))) . T) ((-968 $) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T) ((-1133) . T)) +((-1214 (((-583 $) (-857 $)) NIL T ELT) (((-583 $) (-1084 $)) NIL T ELT) (((-583 $) (-1084 $) (-1089)) 54 T ELT) (((-583 $) $) 22 T ELT) (((-583 $) $ (-1089)) 45 T ELT)) (-1215 (($ (-857 $)) NIL T ELT) (($ (-1084 $)) NIL T ELT) (($ (-1084 $) (-1089)) 56 T ELT) (($ $) 20 T ELT) (($ $ (-1089)) 39 T ELT)) (-1216 (((-583 $) (-857 $)) NIL T ELT) (((-583 $) (-1084 $)) NIL T ELT) (((-583 $) (-1084 $) (-1089)) 52 T ELT) (((-583 $) $) 18 T ELT) (((-583 $) $ (-1089)) 47 T ELT)) (-3183 (($ (-857 $)) NIL T ELT) (($ (-1084 $)) NIL T ELT) (($ (-1084 $) (-1089)) NIL T ELT) (($ $) 15 T ELT) (($ $ (-1089)) 41 T ELT))) +(((-28 |#1| |#2|) (-10 -7 (-15 -1214 ((-583 |#1|) |#1| (-1089))) (-15 -1215 (|#1| |#1| (-1089))) (-15 -1214 ((-583 |#1|) |#1|)) (-15 -1215 (|#1| |#1|)) (-15 -1216 ((-583 |#1|) |#1| (-1089))) (-15 -3183 (|#1| |#1| (-1089))) (-15 -1216 ((-583 |#1|) |#1|)) (-15 -3183 (|#1| |#1|)) (-15 -1214 ((-583 |#1|) (-1084 |#1|) (-1089))) (-15 -1214 ((-583 |#1|) (-1084 |#1|))) (-15 -1214 ((-583 |#1|) (-857 |#1|))) (-15 -1215 (|#1| (-1084 |#1|) (-1089))) (-15 -1215 (|#1| (-1084 |#1|))) (-15 -1215 (|#1| (-857 |#1|))) (-15 -1216 ((-583 |#1|) (-1084 |#1|) (-1089))) (-15 -1216 ((-583 |#1|) (-1084 |#1|))) (-15 -1216 ((-583 |#1|) (-857 |#1|))) (-15 -3183 (|#1| (-1084 |#1|) (-1089))) (-15 -3183 (|#1| (-1084 |#1|))) (-15 -3183 (|#1| (-857 |#1|)))) (-29 |#2|) (-495)) (T -28)) +NIL +((-2568 (((-85) $ $) 7 T ELT)) (-1214 (((-583 $) (-857 $)) 98 T ELT) (((-583 $) (-1084 $)) 97 T ELT) (((-583 $) (-1084 $) (-1089)) 96 T ELT) (((-583 $) $) 148 T ELT) (((-583 $) $ (-1089)) 146 T ELT)) (-1215 (($ (-857 $)) 101 T ELT) (($ (-1084 $)) 100 T ELT) (($ (-1084 $) (-1089)) 99 T ELT) (($ $) 149 T ELT) (($ $ (-1089)) 147 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-3081 (((-583 (-1089)) $) 217 T ELT)) (-3083 (((-349 (-1084 $)) $ (-550 $)) 249 (|has| |#1| (-495)) ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) 55 T ELT)) (-2063 (($ $) 54 T ELT)) (-2061 (((-85) $) 52 T ELT)) (-1599 (((-583 (-550 $)) $) 180 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-1603 (($ $ (-583 (-550 $)) (-583 $)) 170 T ELT) (($ $ (-583 (-249 $))) 169 T ELT) (($ $ (-249 $)) 168 T ELT)) (-3774 (($ $) 91 T ELT)) (-3970 (((-347 $) $) 90 T ELT)) (-3037 (($ $) 110 T ELT)) (-1607 (((-85) $ $) 75 T ELT)) (-3723 (($) 23 T CONST)) (-1216 (((-583 $) (-857 $)) 104 T ELT) (((-583 $) (-1084 $)) 103 T ELT) (((-583 $) (-1084 $) (-1089)) 102 T ELT) (((-583 $) $) 152 T ELT) (((-583 $) $ (-1089)) 150 T ELT)) (-3183 (($ (-857 $)) 107 T ELT) (($ (-1084 $)) 106 T ELT) (($ (-1084 $) (-1089)) 105 T ELT) (($ $) 153 T ELT) (($ $ (-1089)) 151 T ELT)) (-3157 (((-3 (-857 |#1|) #1="failed") $) 268 (|has| |#1| (-961)) ELT) (((-3 (-349 (-857 |#1|)) #1#) $) 251 (|has| |#1| (-495)) ELT) (((-3 |#1| #1#) $) 213 T ELT) (((-3 (-484) #1#) $) 210 (|has| |#1| (-950 (-484))) ELT) (((-3 (-1089) #1#) $) 204 T ELT) (((-3 (-550 $) #1#) $) 155 T ELT) (((-3 (-349 (-484)) #1#) $) 143 (OR (-12 (|has| |#1| (-950 (-484))) (|has| |#1| (-495))) (|has| |#1| (-950 (-349 (-484))))) ELT)) (-3156 (((-857 |#1|) $) 267 (|has| |#1| (-961)) ELT) (((-349 (-857 |#1|)) $) 250 (|has| |#1| (-495)) ELT) ((|#1| $) 212 T ELT) (((-484) $) 211 (|has| |#1| (-950 (-484))) ELT) (((-1089) $) 203 T ELT) (((-550 $) $) 154 T ELT) (((-349 (-484)) $) 144 (OR (-12 (|has| |#1| (-950 (-484))) (|has| |#1| (-495))) (|has| |#1| (-950 (-349 (-484))))) ELT)) (-2564 (($ $ $) 71 T ELT)) (-2279 (((-630 |#1|) (-630 $)) 256 (|has| |#1| (-961)) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1178 |#1|))) (-630 $) (-1178 $)) 255 (|has| |#1| (-961)) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) 142 (OR (-2562 (|has| |#1| (-961)) (|has| |#1| (-580 (-484)))) (-2562 (|has| |#1| (-580 (-484))) (|has| |#1| (-961)))) ELT) (((-630 (-484)) (-630 $)) 141 (OR (-2562 (|has| |#1| (-961)) (|has| |#1| (-580 (-484)))) (-2562 (|has| |#1| (-580 (-484))) (|has| |#1| (-961)))) ELT)) (-3466 (((-3 $ "failed") $) 42 T ELT)) (-2563 (($ $ $) 72 T ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) 66 T ELT)) (-3722 (((-85) $) 89 T ELT)) (-2796 (((-798 (-329) $) $ (-800 (-329)) (-798 (-329) $)) 209 (|has| |#1| (-796 (-329))) ELT) (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) 208 (|has| |#1| (-796 (-484))) ELT)) (-2573 (($ (-583 $)) 174 T ELT) (($ $) 173 T ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-1598 (((-583 (-86)) $) 181 T ELT)) (-3594 (((-86) (-86)) 182 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-2673 (((-85) $) 202 (|has| $ (-950 (-484))) ELT)) (-2996 (($ $) 234 (|has| |#1| (-961)) ELT)) (-2998 (((-1038 |#1| (-550 $)) $) 233 (|has| |#1| (-961)) ELT)) (-3011 (($ $ (-484)) 109 T ELT)) (-1604 (((-3 (-583 $) #2="failed") (-583 $) $) 68 T ELT)) (-1596 (((-1084 $) (-550 $)) 199 (|has| $ (-961)) ELT)) (-3957 (($ (-1 $ $) (-550 $)) 188 T ELT)) (-1601 (((-3 (-550 $) "failed") $) 178 T ELT)) (-2280 (((-630 |#1|) (-1178 $)) 258 (|has| |#1| (-961)) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1178 |#1|))) (-1178 $) $) 257 (|has| |#1| (-961)) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) 140 (OR (-2562 (|has| |#1| (-961)) (|has| |#1| (-580 (-484)))) (-2562 (|has| |#1| (-580 (-484))) (|has| |#1| (-961)))) ELT) (((-630 (-484)) (-1178 $)) 139 (OR (-2562 (|has| |#1| (-961)) (|has| |#1| (-580 (-484)))) (-2562 (|has| |#1| (-580 (-484))) (|has| |#1| (-961)))) ELT)) (-1890 (($ $ $) 60 T ELT) (($ (-583 $)) 59 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-1600 (((-583 (-550 $)) $) 179 T ELT)) (-2235 (($ (-86) (-583 $)) 187 T ELT) (($ (-86) $) 186 T ELT)) (-2823 (((-3 (-583 $) #3="failed") $) 228 (|has| |#1| (-1025)) ELT)) (-2825 (((-3 (-2 (|:| |val| $) (|:| -2401 (-484))) #3#) $) 237 (|has| |#1| (-961)) ELT)) (-2822 (((-3 (-583 $) #3#) $) 230 (|has| |#1| (-25)) ELT)) (-1793 (((-3 (-2 (|:| -3953 (-484)) (|:| |var| (-550 $))) #3#) $) 231 (|has| |#1| (-25)) ELT)) (-2824 (((-3 (-2 (|:| |var| (-550 $)) (|:| -2401 (-484))) #3#) $ (-1089)) 236 (|has| |#1| (-961)) ELT) (((-3 (-2 (|:| |var| (-550 $)) (|:| -2401 (-484))) #3#) $ (-86)) 235 (|has| |#1| (-961)) ELT) (((-3 (-2 (|:| |var| (-550 $)) (|:| -2401 (-484))) #3#) $) 229 (|has| |#1| (-1025)) ELT)) (-2633 (((-85) $ (-1089)) 185 T ELT) (((-85) $ (-86)) 184 T ELT)) (-2484 (($ $) 88 T ELT)) (-2603 (((-694) $) 177 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-1796 (((-85) $) 215 T ELT)) (-1795 ((|#1| $) 216 T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) 58 T ELT)) (-3144 (($ $ $) 62 T ELT) (($ (-583 $)) 61 T ELT)) (-1597 (((-85) $ (-1089)) 190 T ELT) (((-85) $ $) 189 T ELT)) (-3731 (((-347 $) $) 92 T ELT)) (-1605 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 69 T ELT)) (-3465 (((-3 $ "failed") $ $) 56 T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) 65 T ELT)) (-2674 (((-85) $) 201 (|has| $ (-950 (-484))) ELT)) (-3767 (($ $ (-1089) (-694) (-1 $ $)) 241 (|has| |#1| (-961)) ELT) (($ $ (-1089) (-694) (-1 $ (-583 $))) 240 (|has| |#1| (-961)) ELT) (($ $ (-583 (-1089)) (-583 (-694)) (-583 (-1 $ (-583 $)))) 239 (|has| |#1| (-961)) ELT) (($ $ (-583 (-1089)) (-583 (-694)) (-583 (-1 $ $))) 238 (|has| |#1| (-961)) ELT) (($ $ (-583 (-86)) (-583 $) (-1089)) 227 (|has| |#1| (-553 (-473))) ELT) (($ $ (-86) $ (-1089)) 226 (|has| |#1| (-553 (-473))) ELT) (($ $) 225 (|has| |#1| (-553 (-473))) ELT) (($ $ (-583 (-1089))) 224 (|has| |#1| (-553 (-473))) ELT) (($ $ (-1089)) 223 (|has| |#1| (-553 (-473))) ELT) (($ $ (-86) (-1 $ $)) 198 T ELT) (($ $ (-86) (-1 $ (-583 $))) 197 T ELT) (($ $ (-583 (-86)) (-583 (-1 $ (-583 $)))) 196 T ELT) (($ $ (-583 (-86)) (-583 (-1 $ $))) 195 T ELT) (($ $ (-1089) (-1 $ $)) 194 T ELT) (($ $ (-1089) (-1 $ (-583 $))) 193 T ELT) (($ $ (-583 (-1089)) (-583 (-1 $ (-583 $)))) 192 T ELT) (($ $ (-583 (-1089)) (-583 (-1 $ $))) 191 T ELT) (($ $ (-583 $) (-583 $)) 162 T ELT) (($ $ $ $) 161 T ELT) (($ $ (-249 $)) 160 T ELT) (($ $ (-583 (-249 $))) 159 T ELT) (($ $ (-583 (-550 $)) (-583 $)) 158 T ELT) (($ $ (-550 $) $) 157 T ELT)) (-1606 (((-694) $) 74 T ELT)) (-3799 (($ (-86) (-583 $)) 167 T ELT) (($ (-86) $ $ $ $) 166 T ELT) (($ (-86) $ $ $) 165 T ELT) (($ (-86) $ $) 164 T ELT) (($ (-86) $) 163 T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 73 T ELT)) (-1602 (($ $ $) 176 T ELT) (($ $) 175 T ELT)) (-3757 (($ $ (-583 (-1089)) (-583 (-694))) 263 (|has| |#1| (-961)) ELT) (($ $ (-1089) (-694)) 262 (|has| |#1| (-961)) ELT) (($ $ (-583 (-1089))) 261 (|has| |#1| (-961)) ELT) (($ $ (-1089)) 259 (|has| |#1| (-961)) ELT)) (-2995 (($ $) 244 (|has| |#1| (-495)) ELT)) (-2997 (((-1038 |#1| (-550 $)) $) 243 (|has| |#1| (-495)) ELT)) (-3185 (($ $) 200 (|has| $ (-961)) ELT)) (-3971 (((-473) $) 272 (|has| |#1| (-553 (-473))) ELT) (($ (-347 $)) 242 (|has| |#1| (-495)) ELT) (((-800 (-329)) $) 207 (|has| |#1| (-553 (-800 (-329)))) ELT) (((-800 (-484)) $) 206 (|has| |#1| (-553 (-800 (-484)))) ELT)) (-3009 (($ $ $) 271 (|has| |#1| (-412)) ELT)) (-2435 (($ $ $) 270 (|has| |#1| (-412)) ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ $) 57 T ELT) (($ (-349 (-484))) 84 T ELT) (($ (-857 |#1|)) 269 (|has| |#1| (-961)) ELT) (($ (-349 (-857 |#1|))) 252 (|has| |#1| (-495)) ELT) (($ (-349 (-857 (-349 |#1|)))) 248 (|has| |#1| (-495)) ELT) (($ (-857 (-349 |#1|))) 247 (|has| |#1| (-495)) ELT) (($ (-349 |#1|)) 246 (|has| |#1| (-495)) ELT) (($ (-1038 |#1| (-550 $))) 232 (|has| |#1| (-961)) ELT) (($ |#1|) 214 T ELT) (($ (-1089)) 205 T ELT) (($ (-550 $)) 156 T ELT)) (-2702 (((-632 $) $) 254 (|has| |#1| (-118)) ELT)) (-3126 (((-694)) 40 T CONST)) (-2590 (($ (-583 $)) 172 T ELT) (($ $) 171 T ELT)) (-2254 (((-85) (-86)) 183 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-2062 (((-85) $ $) 53 T ELT)) (-1794 (($ (-1089) (-583 $)) 222 T ELT) (($ (-1089) $ $ $ $) 221 T ELT) (($ (-1089) $ $ $) 220 T ELT) (($ (-1089) $ $) 219 T ELT) (($ (-1089) $) 218 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-2669 (($ $ (-583 (-1089)) (-583 (-694))) 266 (|has| |#1| (-961)) ELT) (($ $ (-1089) (-694)) 265 (|has| |#1| (-961)) ELT) (($ $ (-583 (-1089))) 264 (|has| |#1| (-961)) ELT) (($ $ (-1089)) 260 (|has| |#1| (-961)) ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-3948 (($ $ $) 83 T ELT) (($ (-1038 |#1| (-550 $)) (-1038 |#1| (-550 $))) 245 (|has| |#1| (-495)) ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT) (($ $ (-484)) 87 T ELT) (($ $ (-349 (-484))) 108 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-349 (-484))) 86 T ELT) (($ (-349 (-484)) $) 85 T ELT) (($ $ |#1|) 253 (|has| |#1| (-146)) ELT) (($ |#1| $) 145 (|has| |#1| (-961)) ELT))) +(((-29 |#1|) (-113) (-495)) (T -29)) +((-3183 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-495)))) (-1216 (*1 *2 *1) (-12 (-4 *3 (-495)) (-5 *2 (-583 *1)) (-4 *1 (-29 *3)))) (-3183 (*1 *1 *1 *2) (-12 (-5 *2 (-1089)) (-4 *1 (-29 *3)) (-4 *3 (-495)))) (-1216 (*1 *2 *1 *3) (-12 (-5 *3 (-1089)) (-4 *4 (-495)) (-5 *2 (-583 *1)) (-4 *1 (-29 *4)))) (-1215 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-495)))) (-1214 (*1 *2 *1) (-12 (-4 *3 (-495)) (-5 *2 (-583 *1)) (-4 *1 (-29 *3)))) (-1215 (*1 *1 *1 *2) (-12 (-5 *2 (-1089)) (-4 *1 (-29 *3)) (-4 *3 (-495)))) (-1214 (*1 *2 *1 *3) (-12 (-5 *3 (-1089)) (-4 *4 (-495)) (-5 *2 (-583 *1)) (-4 *1 (-29 *4))))) +(-13 (-27) (-363 |t#1|) (-10 -8 (-15 -3183 ($ $)) (-15 -1216 ((-583 $) $)) (-15 -3183 ($ $ (-1089))) (-15 -1216 ((-583 $) $ (-1089))) (-15 -1215 ($ $)) (-15 -1214 ((-583 $) $)) (-15 -1215 ($ $ (-1089))) (-15 -1214 ((-583 $) $ (-1089))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-349 (-484))) . T) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) . T) ((-27) . T) ((-72) . T) ((-82 (-349 (-484)) (-349 (-484))) . T) ((-82 |#1| |#1|) |has| |#1| (-146)) ((-82 $ $) . T) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-555 (-349 (-484))) . T) ((-555 (-349 (-857 |#1|))) |has| |#1| (-495)) ((-555 (-484)) . T) ((-555 (-550 $)) . T) ((-555 (-857 |#1|)) |has| |#1| (-961)) ((-555 (-1089)) . T) ((-555 |#1|) . T) ((-555 $) . T) ((-552 (-772)) . T) ((-146) . T) ((-553 (-473)) |has| |#1| (-553 (-473))) ((-553 (-800 (-329))) |has| |#1| (-553 (-800 (-329)))) ((-553 (-800 (-484))) |has| |#1| (-553 (-800 (-484)))) ((-201) . T) ((-246) . T) ((-258) . T) ((-260 $) . T) ((-254) . T) ((-312) . T) ((-328 |#1|) |has| |#1| (-961)) ((-342 |#1|) . T) ((-354 |#1|) . T) ((-363 |#1|) . T) ((-391) . T) ((-412) |has| |#1| (-412)) ((-455 (-550 $) $) . T) ((-455 $ $) . T) ((-495) . T) ((-13) . T) ((-588 (-349 (-484))) . T) ((-588 (-484)) . T) ((-588 |#1|) OR (|has| |#1| (-961)) (|has| |#1| (-146))) ((-588 $) . T) ((-590 (-349 (-484))) . T) ((-590 (-484)) -12 (|has| |#1| (-580 (-484))) (|has| |#1| (-961))) ((-590 |#1|) OR (|has| |#1| (-961)) (|has| |#1| (-146))) ((-590 $) . T) ((-582 (-349 (-484))) . T) ((-582 |#1|) |has| |#1| (-146)) ((-582 $) . T) ((-580 (-484)) -12 (|has| |#1| (-580 (-484))) (|has| |#1| (-961))) ((-580 |#1|) |has| |#1| (-961)) ((-654 (-349 (-484))) . T) ((-654 |#1|) |has| |#1| (-146)) ((-654 $) . T) ((-663) . T) ((-806 $ (-1089)) |has| |#1| (-961)) ((-809 (-1089)) |has| |#1| (-961)) ((-811 (-1089)) |has| |#1| (-961)) ((-796 (-329)) |has| |#1| (-796 (-329))) ((-796 (-484)) |has| |#1| (-796 (-484))) ((-794 |#1|) . T) ((-832) . T) ((-915) . T) ((-950 (-349 (-484))) OR (|has| |#1| (-950 (-349 (-484)))) (-12 (|has| |#1| (-495)) (|has| |#1| (-950 (-484))))) ((-950 (-349 (-857 |#1|))) |has| |#1| (-495)) ((-950 (-484)) |has| |#1| (-950 (-484))) ((-950 (-550 $)) . T) ((-950 (-857 |#1|)) |has| |#1| (-961)) ((-950 (-1089)) . T) ((-950 |#1|) . T) ((-963 (-349 (-484))) . T) ((-963 |#1|) |has| |#1| (-146)) ((-963 $) . T) ((-968 (-349 (-484))) . T) ((-968 |#1|) |has| |#1| (-146)) ((-968 $) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T) ((-1133) . T)) +((-2896 (((-1001 (-179)) $) NIL T ELT)) (-2897 (((-1001 (-179)) $) NIL T ELT)) (-3134 (($ $ (-179)) 164 T ELT)) (-1217 (($ (-857 (-484)) (-1089) (-1089) (-1001 (-349 (-484))) (-1001 (-349 (-484)))) 103 T ELT)) (-2898 (((-583 (-583 (-854 (-179)))) $) 181 T ELT)) (-3945 (((-772) $) 195 T ELT))) +(((-30) (-13 (-866) (-10 -8 (-15 -1217 ($ (-857 (-484)) (-1089) (-1089) (-1001 (-349 (-484))) (-1001 (-349 (-484))))) (-15 -3134 ($ $ (-179)))))) (T -30)) +((-1217 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-857 (-484))) (-5 *3 (-1089)) (-5 *4 (-1001 (-349 (-484)))) (-5 *1 (-30)))) (-3134 (*1 *1 *1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-30))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) 18 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-3233 (((-1048) $) 12 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2694 (((-1048) $) 10 T ELT)) (-3056 (((-85) $ $) NIL T ELT))) +(((-31) (-13 (-995) (-10 -8 (-15 -2694 ((-1048) $)) (-15 -3233 ((-1048) $))))) (T -31)) +((-2694 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-31)))) (-3233 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-31))))) +((-3183 ((|#2| (-1084 |#2|) (-1089)) 39 T ELT)) (-3594 (((-86) (-86)) 53 T ELT)) (-1596 (((-1084 |#2|) (-550 |#2|)) 148 (|has| |#1| (-950 (-484))) ELT)) (-1220 ((|#2| |#1| (-484)) 120 (|has| |#1| (-950 (-484))) ELT)) (-1218 ((|#2| (-1084 |#2|) |#2|) 29 T ELT)) (-1219 (((-772) (-583 |#2|)) 87 T ELT)) (-3185 ((|#2| |#2|) 143 (|has| |#1| (-950 (-484))) ELT)) (-2254 (((-85) (-86)) 17 T ELT)) (** ((|#2| |#2| (-349 (-484))) 96 (|has| |#1| (-950 (-484))) ELT))) +(((-32 |#1| |#2|) (-10 -7 (-15 -3183 (|#2| (-1084 |#2|) (-1089))) (-15 -3594 ((-86) (-86))) (-15 -2254 ((-85) (-86))) (-15 -1218 (|#2| (-1084 |#2|) |#2|)) (-15 -1219 ((-772) (-583 |#2|))) (IF (|has| |#1| (-950 (-484))) (PROGN (-15 ** (|#2| |#2| (-349 (-484)))) (-15 -1596 ((-1084 |#2|) (-550 |#2|))) (-15 -3185 (|#2| |#2|)) (-15 -1220 (|#2| |#1| (-484)))) |%noBranch|)) (-495) (-363 |#1|)) (T -32)) +((-1220 (*1 *2 *3 *4) (-12 (-5 *4 (-484)) (-4 *2 (-363 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-950 *4)) (-4 *3 (-495)))) (-3185 (*1 *2 *2) (-12 (-4 *3 (-950 (-484))) (-4 *3 (-495)) (-5 *1 (-32 *3 *2)) (-4 *2 (-363 *3)))) (-1596 (*1 *2 *3) (-12 (-5 *3 (-550 *5)) (-4 *5 (-363 *4)) (-4 *4 (-950 (-484))) (-4 *4 (-495)) (-5 *2 (-1084 *5)) (-5 *1 (-32 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-349 (-484))) (-4 *4 (-950 (-484))) (-4 *4 (-495)) (-5 *1 (-32 *4 *2)) (-4 *2 (-363 *4)))) (-1219 (*1 *2 *3) (-12 (-5 *3 (-583 *5)) (-4 *5 (-363 *4)) (-4 *4 (-495)) (-5 *2 (-772)) (-5 *1 (-32 *4 *5)))) (-1218 (*1 *2 *3 *2) (-12 (-5 *3 (-1084 *2)) (-4 *2 (-363 *4)) (-4 *4 (-495)) (-5 *1 (-32 *4 *2)))) (-2254 (*1 *2 *3) (-12 (-5 *3 (-86)) (-4 *4 (-495)) (-5 *2 (-85)) (-5 *1 (-32 *4 *5)) (-4 *5 (-363 *4)))) (-3594 (*1 *2 *2) (-12 (-5 *2 (-86)) (-4 *3 (-495)) (-5 *1 (-32 *3 *4)) (-4 *4 (-363 *3)))) (-3183 (*1 *2 *3 *4) (-12 (-5 *3 (-1084 *2)) (-5 *4 (-1089)) (-4 *2 (-363 *5)) (-5 *1 (-32 *5 *2)) (-4 *5 (-495))))) +((-3723 (($) 10 T CONST)) (-1221 (((-85) $ $) 8 T ELT)) (-3402 (((-85) $) 15 T ELT))) +(((-33 |#1|) (-10 -7 (-15 -3723 (|#1|) -3951) (-15 -3402 ((-85) |#1|)) (-15 -1221 ((-85) |#1| |#1|))) (-34)) (T -33)) +NIL +((-3723 (($) 7 T CONST)) (-1221 (((-85) $ $) 11 T ELT)) (-3402 (((-85) $) 8 T ELT)) (-3564 (($) 9 T ELT)) (-3399 (($ $) 10 T ELT)) (-3956 (((-694) $) 6 (|has| $ (-6 -3994)) ELT))) (((-34) (-113)) (T -34)) -((-1220 (*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-85)))) (-3398 (*1 *1 *1) (-4 *1 (-34))) (-3563 (*1 *1) (-4 *1 (-34))) (-3401 (*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-85)))) (-3722 (*1 *1) (-4 *1 (-34))) (-3955 (*1 *2 *1) (-12 (|has| *1 (-6 -3993)) (-4 *1 (-34)) (-5 *2 (-693))))) -(-13 (-1127) (-10 -8 (-15 -1220 ((-85) $ $)) (-15 -3398 ($ $)) (-15 -3563 ($)) (-15 -3401 ((-85) $)) (-15 -3722 ($) -3950) (IF (|has| $ (-6 -3993)) (-15 -3955 ((-693) $)) |%noBranch|))) -(((-13) . T) ((-1127) . T)) -((-3496 (($ $) 11 T ELT)) (-3494 (($ $) 10 T ELT)) (-3498 (($ $) 9 T ELT)) (-3499 (($ $) 8 T ELT)) (-3497 (($ $) 7 T ELT)) (-3495 (($ $) 6 T ELT))) +((-1221 (*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-85)))) (-3399 (*1 *1 *1) (-4 *1 (-34))) (-3564 (*1 *1) (-4 *1 (-34))) (-3402 (*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-85)))) (-3723 (*1 *1) (-4 *1 (-34))) (-3956 (*1 *2 *1) (-12 (|has| *1 (-6 -3994)) (-4 *1 (-34)) (-5 *2 (-694))))) +(-13 (-1128) (-10 -8 (-15 -1221 ((-85) $ $)) (-15 -3399 ($ $)) (-15 -3564 ($)) (-15 -3402 ((-85) $)) (-15 -3723 ($) -3951) (IF (|has| $ (-6 -3994)) (-15 -3956 ((-694) $)) |%noBranch|))) +(((-13) . T) ((-1128) . T)) +((-3497 (($ $) 11 T ELT)) (-3495 (($ $) 10 T ELT)) (-3499 (($ $) 9 T ELT)) (-3500 (($ $) 8 T ELT)) (-3498 (($ $) 7 T ELT)) (-3496 (($ $) 6 T ELT))) (((-35) (-113)) (T -35)) -((-3496 (*1 *1 *1) (-4 *1 (-35))) (-3494 (*1 *1 *1) (-4 *1 (-35))) (-3498 (*1 *1 *1) (-4 *1 (-35))) (-3499 (*1 *1 *1) (-4 *1 (-35))) (-3497 (*1 *1 *1) (-4 *1 (-35))) (-3495 (*1 *1 *1) (-4 *1 (-35)))) -(-13 (-10 -8 (-15 -3495 ($ $)) (-15 -3497 ($ $)) (-15 -3499 ($ $)) (-15 -3498 ($ $)) (-15 -3494 ($ $)) (-15 -3496 ($ $)))) -((-2567 (((-85) $ $) 19 (OR (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72)) (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-3400 (((-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $) 133 T ELT)) (-3793 (((-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $) 156 T ELT)) (-3795 (($ $) 154 T ELT)) (-3597 (($) 77 T ELT) (($ (-582 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)))) 76 T ELT)) (-2197 (((-1183) $ |#1| |#1|) 104 (|has| $ (-6 -3994)) ELT) (((-1183) $ (-483) (-483)) 186 (|has| $ (-6 -3994)) ELT)) (-3783 (($ $ (-483)) 167 (|has| $ (-6 -3994)) ELT)) (-1730 (((-85) (-1 (-85) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) 220 T ELT) (((-85) $) 214 (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-755)) ELT)) (-1728 (($ (-1 (-85) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) 211 (|has| $ (-6 -3994)) ELT) (($ $) 210 (-12 (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-755)) (|has| $ (-6 -3994))) ELT)) (-2908 (($ (-1 (-85) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) 221 T ELT) (($ $) 215 (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-755)) ELT)) (-3440 (((-85) $ (-693)) 203 T ELT)) (-3024 (((-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) 142 (|has| $ (-6 -3994)) ELT)) (-3785 (($ $ $) 163 (|has| $ (-6 -3994)) ELT)) (-3784 (((-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) 165 (|has| $ (-6 -3994)) ELT)) (-3787 (((-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) 161 (|has| $ (-6 -3994)) ELT)) (-3786 ((|#2| $ |#1| |#2|) 78 T ELT) (((-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $ (-483) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) 197 (|has| $ (-6 -3994)) ELT) (((-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $ (-1144 (-483)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) 168 (|has| $ (-6 -3994)) ELT) (((-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $ #1="last" (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) 166 (|has| $ (-6 -3994)) ELT) (($ $ #2="rest" $) 164 (|has| $ (-6 -3994)) ELT) (((-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $ #3="first" (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) 162 (|has| $ (-6 -3994)) ELT) (((-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $ #4="value" (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) 141 (|has| $ (-6 -3994)) ELT)) (-3025 (($ $ (-582 $)) 140 (|has| $ (-6 -3994)) ELT)) (-1568 (($ (-1 (-85) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) 49 (|has| $ (-6 -3993)) ELT) (($ (-1 (-85) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) 227 T ELT)) (-3708 (($ (-1 (-85) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) 59 (|has| $ (-6 -3993)) ELT) (($ (-1 (-85) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) 183 (|has| $ (-6 -3993)) ELT)) (-3794 (((-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $) 155 T ELT)) (-2230 (((-3 |#2| #5="failed") |#1| $) 65 T ELT)) (-3722 (($) 7 T CONST)) (-2296 (($ $) 212 (|has| $ (-6 -3994)) ELT)) (-2297 (($ $) 222 T ELT)) (-3797 (($ $ (-693)) 150 T ELT) (($ $) 148 T ELT)) (-2367 (($ $) 225 (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012)) ELT)) (-1351 (($ $) 62 (OR (-12 (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| $ (-6 -3993))) (-12 (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| $ (-6 -3993)))) ELT)) (-3403 (($ (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $) 51 (|has| $ (-6 -3993)) ELT) (($ (-1 (-85) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) 50 (|has| $ (-6 -3993)) ELT) (((-3 |#2| #5#) |#1| $) 66 T ELT) (($ (-1 (-85) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) 231 T ELT) (($ (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $) 226 (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012)) ELT)) (-3404 (($ (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $) 61 (-12 (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| $ (-6 -3993))) ELT) (($ (-1 (-85) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) 58 (|has| $ (-6 -3993)) ELT) (($ (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $) 185 (-12 (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| $ (-6 -3993))) ELT) (($ (-1 (-85) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) 182 (|has| $ (-6 -3993)) ELT)) (-3840 (((-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) 60 (-12 (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| $ (-6 -3993))) ELT) (((-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) 57 (|has| $ (-6 -3993)) ELT) (((-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) 56 (|has| $ (-6 -3993)) ELT) (((-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) 184 (-12 (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| $ (-6 -3993))) ELT) (((-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) 181 (|has| $ (-6 -3993)) ELT) (((-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) 180 (|has| $ (-6 -3993)) ELT)) (-1574 ((|#2| $ |#1| |#2|) 92 (|has| $ (-6 -3994)) ELT) (((-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $ (-483) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) 198 (|has| $ (-6 -3994)) ELT)) (-3111 ((|#2| $ |#1|) 93 T ELT) (((-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $ (-483)) 196 T ELT)) (-3441 (((-85) $) 200 T ELT)) (-3417 (((-483) (-1 (-85) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) 219 T ELT) (((-483) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $) 218 (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012)) ELT) (((-483) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $ (-483)) 217 (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012)) ELT)) (-2888 (((-582 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) 30 (|has| $ (-6 -3993)) ELT) (((-582 |#2|) $) 84 (|has| $ (-6 -3993)) ELT) (((-582 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) 122 (|has| $ (-6 -3993)) ELT)) (-3030 (((-582 $) $) 131 T ELT)) (-3026 (((-85) $ $) 139 (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012)) ELT)) (-3612 (($ (-693) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) 176 T ELT)) (-3717 (((-85) $ (-693)) 202 T ELT)) (-2199 ((|#1| $) 101 (|has| |#1| (-755)) ELT) (((-483) $) 188 (|has| (-483) (-755)) ELT)) (-2530 (($ $ $) 204 (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-755)) ELT)) (-2855 (($ (-1 (-85) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $ $) 228 T ELT) (($ $ $) 224 (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-755)) ELT)) (-3516 (($ (-1 (-85) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $ $) 223 T ELT) (($ $ $) 216 (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-755)) ELT)) (-2607 (((-582 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) 29 (|has| $ (-6 -3993)) ELT) (((-582 |#2|) $) 85 (|has| $ (-6 -3993)) ELT) (((-582 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) 123 (|has| $ (-6 -3993)) ELT)) (-3244 (((-85) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $) 27 (-12 (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| $ (-6 -3993))) ELT) (((-85) |#2| $) 87 (-12 (|has| |#2| (-1012)) (|has| $ (-6 -3993))) ELT) (((-85) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $) 125 (-12 (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| $ (-6 -3993))) ELT)) (-2200 ((|#1| $) 100 (|has| |#1| (-755)) ELT) (((-483) $) 189 (|has| (-483) (-755)) ELT)) (-2856 (($ $ $) 205 (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-755)) ELT)) (-1947 (($ (-1 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) 34 (|has| $ (-6 -3994)) ELT) (($ (-1 |#2| |#2|) $) 80 (|has| $ (-6 -3994)) ELT) (($ (-1 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) 118 (|has| $ (-6 -3994)) ELT)) (-3956 (($ (-1 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) 35 T ELT) (($ (-1 |#2| |#2|) $) 79 T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 75 T ELT) (($ (-1 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $ $) 173 T ELT) (($ (-1 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) 117 T ELT)) (-3532 (($ (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) 236 T ELT)) (-3714 (((-85) $ (-693)) 201 T ELT)) (-3029 (((-582 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) 136 T ELT)) (-3525 (((-85) $) 132 T ELT)) (-3241 (((-1071) $) 22 (OR (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| |#2| (-1012)) (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012))) ELT)) (-3796 (($ $ (-693)) 153 T ELT) (((-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $) 151 T ELT)) (-2231 (((-582 |#1|) $) 67 T ELT)) (-2232 (((-85) |#1| $) 68 T ELT)) (-1272 (((-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $) 43 T ELT)) (-3607 (($ (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $) 44 T ELT) (($ (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $ (-483)) 230 T ELT) (($ $ $ (-483)) 229 T ELT)) (-2303 (($ (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $ (-483)) 170 T ELT) (($ $ $ (-483)) 169 T ELT)) (-2202 (((-582 |#1|) $) 98 T ELT) (((-582 (-483)) $) 191 T ELT)) (-2203 (((-85) |#1| $) 97 T ELT) (((-85) (-483) $) 192 T ELT)) (-3242 (((-1032) $) 21 (OR (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| |#2| (-1012)) (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012))) ELT)) (-3799 ((|#2| $) 102 (|has| |#1| (-755)) ELT) (($ $ (-693)) 147 T ELT) (((-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $) 145 T ELT)) (-1352 (((-3 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) #6="failed") (-1 (-85) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) 55 T ELT) (((-3 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) #6#) (-1 (-85) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) 179 T ELT)) (-2198 (($ $ |#2|) 103 (|has| $ (-6 -3994)) ELT) (($ $ (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) 187 (|has| $ (-6 -3994)) ELT)) (-1273 (((-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $) 45 T ELT)) (-3442 (((-85) $) 199 T ELT)) (-1945 (((-85) (-1 (-85) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) 32 (|has| $ (-6 -3993)) ELT) (((-85) (-1 (-85) |#2|) $) 82 (|has| $ (-6 -3993)) ELT) (((-85) (-1 (-85) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) 120 (|has| $ (-6 -3993)) ELT)) (-3766 (($ $ (-582 (-249 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))))) 26 (-12 (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-249 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)))) 25 (-12 (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) 24 (-12 (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-582 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) (-582 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)))) 23 (-12 (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-582 |#2|) (-582 |#2|)) 91 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ |#2| |#2|) 90 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ (-249 |#2|)) 89 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ (-582 (-249 |#2|))) 88 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ (-582 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) (-582 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)))) 129 (-12 (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) 128 (-12 (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-249 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)))) 127 (-12 (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-582 (-249 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))))) 126 (-12 (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012))) ELT)) (-1220 (((-85) $ $) 11 T ELT)) (-2201 (((-85) |#2| $) 99 (-12 (|has| $ (-6 -3993)) (|has| |#2| (-1012))) ELT) (((-85) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $) 190 (-12 (|has| $ (-6 -3993)) (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012))) ELT)) (-2204 (((-582 |#2|) $) 96 T ELT) (((-582 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) 193 T ELT)) (-3401 (((-85) $) 8 T ELT)) (-3563 (($) 9 T ELT)) (-3798 ((|#2| $ |#1|) 95 T ELT) ((|#2| $ |#1| |#2|) 94 T ELT) (((-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $ (-483) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) 195 T ELT) (((-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $ (-483)) 194 T ELT) (($ $ (-1144 (-483))) 177 T ELT) (((-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $ #1#) 152 T ELT) (($ $ #2#) 149 T ELT) (((-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $ #3#) 146 T ELT) (((-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $ #4#) 134 T ELT)) (-3028 (((-483) $ $) 137 T ELT)) (-1464 (($) 53 T ELT) (($ (-582 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)))) 52 T ELT)) (-1569 (($ $ (-483)) 233 T ELT) (($ $ (-1144 (-483))) 232 T ELT)) (-2304 (($ $ (-483)) 172 T ELT) (($ $ (-1144 (-483))) 171 T ELT)) (-3631 (((-85) $) 135 T ELT)) (-3790 (($ $) 159 T ELT)) (-3788 (($ $) 160 (|has| $ (-6 -3994)) ELT)) (-3791 (((-693) $) 158 T ELT)) (-3792 (($ $) 157 T ELT)) (-1944 (((-693) (-1 (-85) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) 31 (|has| $ (-6 -3993)) ELT) (((-693) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $) 28 (-12 (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| $ (-6 -3993))) ELT) (((-693) |#2| $) 86 (-12 (|has| |#2| (-1012)) (|has| $ (-6 -3993))) ELT) (((-693) (-1 (-85) |#2|) $) 83 (|has| $ (-6 -3993)) ELT) (((-693) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $) 124 (-12 (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| $ (-6 -3993))) ELT) (((-693) (-1 (-85) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) 121 (|has| $ (-6 -3993)) ELT)) (-1729 (($ $ $ (-483)) 213 (|has| $ (-6 -3994)) ELT)) (-3398 (($ $) 10 T ELT)) (-3970 (((-472) $) 63 (OR (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-552 (-472))) (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-552 (-472)))) ELT)) (-3528 (($ (-582 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)))) 54 T ELT) (($ (-582 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)))) 178 T ELT)) (-3789 (($ $ (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) 235 T ELT) (($ $ $) 234 T ELT)) (-3800 (($ $ (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) 175 T ELT) (($ (-582 $)) 174 T ELT) (($ (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $) 144 T ELT) (($ $ $) 143 T ELT)) (-3944 (((-771) $) 17 (OR (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-551 (-771))) (|has| |#2| (-551 (-771))) (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-551 (-771)))) ELT)) (-3520 (((-582 $) $) 130 T ELT)) (-3027 (((-85) $ $) 138 (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012)) ELT)) (-1263 (((-85) $ $) 20 (OR (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72)) (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-1274 (($ (-582 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)))) 46 T ELT)) (-1221 (((-3 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) "failed") |#1| $) 116 T ELT)) (-1946 (((-85) (-1 (-85) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) 33 (|has| $ (-6 -3993)) ELT) (((-85) (-1 (-85) |#2|) $) 81 (|has| $ (-6 -3993)) ELT) (((-85) (-1 (-85) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) 119 (|has| $ (-6 -3993)) ELT)) (-2565 (((-85) $ $) 206 (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-755)) ELT)) (-2566 (((-85) $ $) 208 (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-755)) ELT)) (-3055 (((-85) $ $) 18 (OR (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72)) (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-2683 (((-85) $ $) 207 (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-755)) ELT)) (-2684 (((-85) $ $) 209 (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-755)) ELT)) (-3955 (((-693) $) 6 (|has| $ (-6 -3993)) ELT))) -(((-36 |#1| |#2|) (-113) (-1012) (-1012)) (T -36)) -((-1221 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1012)) (-5 *2 (-2 (|:| -3858 *3) (|:| |entry| *4)))))) -(-13 (-1105 |t#1| |t#2|) (-607 (-2 (|:| -3858 |t#1|) (|:| |entry| |t#2|))) (-10 -8 (-15 -1221 ((-3 (-2 (|:| -3858 |t#1|) (|:| |entry| |t#2|)) "failed") |t#1| $)))) -(((-34) . T) ((-76 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) . T) ((-72) OR (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-755)) (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-1012)) (|has| |#2| (-72))) ((-551 (-771)) OR (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-755)) (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-551 (-771))) (|has| |#2| (-1012)) (|has| |#2| (-551 (-771)))) ((-124 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) . T) ((-552 (-472)) |has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-552 (-472))) ((-183 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) . T) ((-193 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) . T) ((-241 (-483) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) . T) ((-241 (-1144 (-483)) $) . T) ((-241 |#1| |#2|) . T) ((-243 (-483) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) . T) ((-243 |#1| |#2|) . T) ((-260 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012))) ((-260 |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1012))) ((-237 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) . T) ((-322 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) . T) ((-427 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) . T) ((-427 |#2|) . T) ((-537 (-483) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) . T) ((-537 |#1| |#2|) . T) ((-454 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012))) ((-454 |#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1012))) ((-13) . T) ((-548 |#1| |#2|) . T) ((-592 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) . T) ((-607 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) . T) ((-755) |has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-755)) ((-758) |has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-755)) ((-922 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) . T) ((-1012) OR (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-755)) (|has| |#2| (-1012))) ((-1062 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) . T) ((-1105 |#1| |#2|) . T) ((-1127) . T) ((-1166 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) . T)) -((-3944 (((-771) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ |#2|) 10 T ELT))) -(((-37 |#1| |#2|) (-10 -7 (-15 -3944 (|#1| |#2|)) (-15 -3944 (|#1| (-483))) (-15 -3944 ((-771) |#1|))) (-38 |#2|) (-146)) (T -37)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-3187 (((-85) $) 22 T ELT)) (-1310 (((-3 $ "failed") $ $) 26 T ELT)) (-3722 (($) 23 T CONST)) (-3465 (((-3 $ "failed") $) 42 T ELT)) (-1212 (((-85) $ $) 20 T ELT)) (-2409 (((-85) $) 44 T ELT)) (-3241 (((-1071) $) 11 T ELT)) (-3242 (((-1032) $) 12 T ELT)) (-3944 (((-771) $) 13 T ELT) (($ (-483)) 41 T ELT) (($ |#1|) 52 T ELT)) (-3125 (((-693)) 40 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-3124 (((-85) $ $) 33 T ELT)) (-2659 (($) 24 T CONST)) (-2665 (($) 45 T CONST)) (-3055 (((-85) $ $) 8 T ELT)) (-3835 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3837 (($ $ $) 18 T ELT)) (** (($ $ (-829)) 35 T ELT) (($ $ (-693)) 43 T ELT)) (* (($ (-829) $) 17 T ELT) (($ (-693) $) 21 T ELT) (($ (-483) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 54 T ELT) (($ |#1| $) 53 T ELT))) +((-3497 (*1 *1 *1) (-4 *1 (-35))) (-3495 (*1 *1 *1) (-4 *1 (-35))) (-3499 (*1 *1 *1) (-4 *1 (-35))) (-3500 (*1 *1 *1) (-4 *1 (-35))) (-3498 (*1 *1 *1) (-4 *1 (-35))) (-3496 (*1 *1 *1) (-4 *1 (-35)))) +(-13 (-10 -8 (-15 -3496 ($ $)) (-15 -3498 ($ $)) (-15 -3500 ($ $)) (-15 -3499 ($ $)) (-15 -3495 ($ $)) (-15 -3497 ($ $)))) +((-2568 (((-85) $ $) 19 (OR (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-3401 (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) 133 T ELT)) (-3794 (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) 156 T ELT)) (-3796 (($ $) 154 T ELT)) (-3598 (($) 77 T ELT) (($ (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) 76 T ELT)) (-2198 (((-1184) $ |#1| |#1|) 104 (|has| $ (-6 -3995)) ELT) (((-1184) $ (-484) (-484)) 186 (|has| $ (-6 -3995)) ELT)) (-3784 (($ $ (-484)) 167 (|has| $ (-6 -3995)) ELT)) (-1731 (((-85) (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 220 T ELT) (((-85) $) 214 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-756)) ELT)) (-1729 (($ (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 211 (|has| $ (-6 -3995)) ELT) (($ $) 210 (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-756)) (|has| $ (-6 -3995))) ELT)) (-2909 (($ (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 221 T ELT) (($ $) 215 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-756)) ELT)) (-3441 (((-85) $ (-694)) 203 T ELT)) (-3025 (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) 142 (|has| $ (-6 -3995)) ELT)) (-3786 (($ $ $) 163 (|has| $ (-6 -3995)) ELT)) (-3785 (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) 165 (|has| $ (-6 -3995)) ELT)) (-3788 (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) 161 (|has| $ (-6 -3995)) ELT)) (-3787 ((|#2| $ |#1| |#2|) 78 T ELT) (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $ (-484) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) 197 (|has| $ (-6 -3995)) ELT) (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $ (-1145 (-484)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) 168 (|has| $ (-6 -3995)) ELT) (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $ #1="last" (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) 166 (|has| $ (-6 -3995)) ELT) (($ $ #2="rest" $) 164 (|has| $ (-6 -3995)) ELT) (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $ #3="first" (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) 162 (|has| $ (-6 -3995)) ELT) (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $ #4="value" (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) 141 (|has| $ (-6 -3995)) ELT)) (-3026 (($ $ (-583 $)) 140 (|has| $ (-6 -3995)) ELT)) (-1569 (($ (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 49 (|has| $ (-6 -3994)) ELT) (($ (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 227 T ELT)) (-3709 (($ (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 59 (|has| $ (-6 -3994)) ELT) (($ (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 183 (|has| $ (-6 -3994)) ELT)) (-3795 (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) 155 T ELT)) (-2231 (((-3 |#2| #5="failed") |#1| $) 65 T ELT)) (-3723 (($) 7 T CONST)) (-2297 (($ $) 212 (|has| $ (-6 -3995)) ELT)) (-2298 (($ $) 222 T ELT)) (-3798 (($ $ (-694)) 150 T ELT) (($ $) 148 T ELT)) (-2368 (($ $) 225 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) ELT)) (-1352 (($ $) 62 (OR (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| $ (-6 -3994))) (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| $ (-6 -3994)))) ELT)) (-3404 (($ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) 51 (|has| $ (-6 -3994)) ELT) (($ (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 50 (|has| $ (-6 -3994)) ELT) (((-3 |#2| #5#) |#1| $) 66 T ELT) (($ (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 231 T ELT) (($ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) 226 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) ELT)) (-3405 (($ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) 61 (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| $ (-6 -3994))) ELT) (($ (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 58 (|has| $ (-6 -3994)) ELT) (($ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) 185 (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| $ (-6 -3994))) ELT) (($ (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 182 (|has| $ (-6 -3994)) ELT)) (-3841 (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) 60 (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| $ (-6 -3994))) ELT) (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) 57 (|has| $ (-6 -3994)) ELT) (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 56 (|has| $ (-6 -3994)) ELT) (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) 184 (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| $ (-6 -3994))) ELT) (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) 181 (|has| $ (-6 -3994)) ELT) (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 180 (|has| $ (-6 -3994)) ELT)) (-1575 ((|#2| $ |#1| |#2|) 92 (|has| $ (-6 -3995)) ELT) (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $ (-484) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) 198 (|has| $ (-6 -3995)) ELT)) (-3112 ((|#2| $ |#1|) 93 T ELT) (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $ (-484)) 196 T ELT)) (-3442 (((-85) $) 200 T ELT)) (-3418 (((-484) (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 219 T ELT) (((-484) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) 218 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) ELT) (((-484) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $ (-484)) 217 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) ELT)) (-2889 (((-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 30 (|has| $ (-6 -3994)) ELT) (((-583 |#2|) $) 84 (|has| $ (-6 -3994)) ELT) (((-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 122 (|has| $ (-6 -3994)) ELT)) (-3031 (((-583 $) $) 131 T ELT)) (-3027 (((-85) $ $) 139 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) ELT)) (-3613 (($ (-694) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) 176 T ELT)) (-3718 (((-85) $ (-694)) 202 T ELT)) (-2200 ((|#1| $) 101 (|has| |#1| (-756)) ELT) (((-484) $) 188 (|has| (-484) (-756)) ELT)) (-2531 (($ $ $) 204 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-756)) ELT)) (-2856 (($ (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $ $) 228 T ELT) (($ $ $) 224 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-756)) ELT)) (-3517 (($ (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $ $) 223 T ELT) (($ $ $) 216 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-756)) ELT)) (-2608 (((-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 29 (|has| $ (-6 -3994)) ELT) (((-583 |#2|) $) 85 (|has| $ (-6 -3994)) ELT) (((-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 123 (|has| $ (-6 -3994)) ELT)) (-3245 (((-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) 27 (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| $ (-6 -3994))) ELT) (((-85) |#2| $) 87 (-12 (|has| |#2| (-1013)) (|has| $ (-6 -3994))) ELT) (((-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) 125 (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| $ (-6 -3994))) ELT)) (-2201 ((|#1| $) 100 (|has| |#1| (-756)) ELT) (((-484) $) 189 (|has| (-484) (-756)) ELT)) (-2857 (($ $ $) 205 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-756)) ELT)) (-1948 (($ (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 34 (|has| $ (-6 -3995)) ELT) (($ (-1 |#2| |#2|) $) 80 (|has| $ (-6 -3995)) ELT) (($ (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 118 (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 35 T ELT) (($ (-1 |#2| |#2|) $) 79 T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 75 T ELT) (($ (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $ $) 173 T ELT) (($ (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 117 T ELT)) (-3533 (($ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) 236 T ELT)) (-3715 (((-85) $ (-694)) 201 T ELT)) (-3030 (((-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 136 T ELT)) (-3526 (((-85) $) 132 T ELT)) (-3242 (((-1072) $) 22 (OR (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| |#2| (-1013)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT)) (-3797 (($ $ (-694)) 153 T ELT) (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) 151 T ELT)) (-2232 (((-583 |#1|) $) 67 T ELT)) (-2233 (((-85) |#1| $) 68 T ELT)) (-1273 (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) 43 T ELT)) (-3608 (($ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) 44 T ELT) (($ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $ (-484)) 230 T ELT) (($ $ $ (-484)) 229 T ELT)) (-2304 (($ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $ (-484)) 170 T ELT) (($ $ $ (-484)) 169 T ELT)) (-2203 (((-583 |#1|) $) 98 T ELT) (((-583 (-484)) $) 191 T ELT)) (-2204 (((-85) |#1| $) 97 T ELT) (((-85) (-484) $) 192 T ELT)) (-3243 (((-1033) $) 21 (OR (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| |#2| (-1013)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT)) (-3800 ((|#2| $) 102 (|has| |#1| (-756)) ELT) (($ $ (-694)) 147 T ELT) (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) 145 T ELT)) (-1353 (((-3 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) #6="failed") (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 55 T ELT) (((-3 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) #6#) (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 179 T ELT)) (-2199 (($ $ |#2|) 103 (|has| $ (-6 -3995)) ELT) (($ $ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) 187 (|has| $ (-6 -3995)) ELT)) (-1274 (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) 45 T ELT)) (-3443 (((-85) $) 199 T ELT)) (-1946 (((-85) (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 32 (|has| $ (-6 -3994)) ELT) (((-85) (-1 (-85) |#2|) $) 82 (|has| $ (-6 -3994)) ELT) (((-85) (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 120 (|has| $ (-6 -3994)) ELT)) (-3767 (($ $ (-583 (-249 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))))) 26 (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-249 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) 25 (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) 24 (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) 23 (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-583 |#2|) (-583 |#2|)) 91 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ |#2| |#2|) 90 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-249 |#2|)) 89 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-583 (-249 |#2|))) 88 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) 129 (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) 128 (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-249 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) 127 (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-583 (-249 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))))) 126 (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT)) (-1221 (((-85) $ $) 11 T ELT)) (-2202 (((-85) |#2| $) 99 (-12 (|has| $ (-6 -3994)) (|has| |#2| (-1013))) ELT) (((-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) 190 (-12 (|has| $ (-6 -3994)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT)) (-2205 (((-583 |#2|) $) 96 T ELT) (((-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 193 T ELT)) (-3402 (((-85) $) 8 T ELT)) (-3564 (($) 9 T ELT)) (-3799 ((|#2| $ |#1|) 95 T ELT) ((|#2| $ |#1| |#2|) 94 T ELT) (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $ (-484) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) 195 T ELT) (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $ (-484)) 194 T ELT) (($ $ (-1145 (-484))) 177 T ELT) (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $ #1#) 152 T ELT) (($ $ #2#) 149 T ELT) (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $ #3#) 146 T ELT) (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $ #4#) 134 T ELT)) (-3029 (((-484) $ $) 137 T ELT)) (-1465 (($) 53 T ELT) (($ (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) 52 T ELT)) (-1570 (($ $ (-484)) 233 T ELT) (($ $ (-1145 (-484))) 232 T ELT)) (-2305 (($ $ (-484)) 172 T ELT) (($ $ (-1145 (-484))) 171 T ELT)) (-3632 (((-85) $) 135 T ELT)) (-3791 (($ $) 159 T ELT)) (-3789 (($ $) 160 (|has| $ (-6 -3995)) ELT)) (-3792 (((-694) $) 158 T ELT)) (-3793 (($ $) 157 T ELT)) (-1945 (((-694) (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 31 (|has| $ (-6 -3994)) ELT) (((-694) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) 28 (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| $ (-6 -3994))) ELT) (((-694) |#2| $) 86 (-12 (|has| |#2| (-1013)) (|has| $ (-6 -3994))) ELT) (((-694) (-1 (-85) |#2|) $) 83 (|has| $ (-6 -3994)) ELT) (((-694) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) 124 (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| $ (-6 -3994))) ELT) (((-694) (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 121 (|has| $ (-6 -3994)) ELT)) (-1730 (($ $ $ (-484)) 213 (|has| $ (-6 -3995)) ELT)) (-3399 (($ $) 10 T ELT)) (-3971 (((-473) $) 63 (OR (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-553 (-473))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-553 (-473)))) ELT)) (-3529 (($ (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) 54 T ELT) (($ (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) 178 T ELT)) (-3790 (($ $ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) 235 T ELT) (($ $ $) 234 T ELT)) (-3801 (($ $ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) 175 T ELT) (($ (-583 $)) 174 T ELT) (($ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) 144 T ELT) (($ $ $) 143 T ELT)) (-3945 (((-772) $) 17 (OR (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-552 (-772))) (|has| |#2| (-552 (-772))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-552 (-772)))) ELT)) (-3521 (((-583 $) $) 130 T ELT)) (-3028 (((-85) $ $) 138 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) ELT)) (-1264 (((-85) $ $) 20 (OR (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-1275 (($ (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) 46 T ELT)) (-1222 (((-3 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) "failed") |#1| $) 116 T ELT)) (-1947 (((-85) (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 33 (|has| $ (-6 -3994)) ELT) (((-85) (-1 (-85) |#2|) $) 81 (|has| $ (-6 -3994)) ELT) (((-85) (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 119 (|has| $ (-6 -3994)) ELT)) (-2566 (((-85) $ $) 206 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-756)) ELT)) (-2567 (((-85) $ $) 208 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-756)) ELT)) (-3056 (((-85) $ $) 18 (OR (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-2684 (((-85) $ $) 207 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-756)) ELT)) (-2685 (((-85) $ $) 209 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-756)) ELT)) (-3956 (((-694) $) 6 (|has| $ (-6 -3994)) ELT))) +(((-36 |#1| |#2|) (-113) (-1013) (-1013)) (T -36)) +((-1222 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-5 *2 (-2 (|:| -3859 *3) (|:| |entry| *4)))))) +(-13 (-1106 |t#1| |t#2|) (-608 (-2 (|:| -3859 |t#1|) (|:| |entry| |t#2|))) (-10 -8 (-15 -1222 ((-3 (-2 (|:| -3859 |t#1|) (|:| |entry| |t#2|)) "failed") |t#1| $)))) +(((-34) . T) ((-76 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T) ((-72) OR (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-756)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-1013)) (|has| |#2| (-72))) ((-552 (-772)) OR (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-756)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-552 (-772))) (|has| |#2| (-1013)) (|has| |#2| (-552 (-772)))) ((-124 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T) ((-553 (-473)) |has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-553 (-473))) ((-183 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T) ((-193 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T) ((-241 (-484) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T) ((-241 (-1145 (-484)) $) . T) ((-241 |#1| |#2|) . T) ((-243 (-484) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T) ((-243 |#1| |#2|) . T) ((-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ((-260 |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ((-237 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T) ((-323 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T) ((-428 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T) ((-428 |#2|) . T) ((-538 (-484) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T) ((-538 |#1| |#2|) . T) ((-455 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ((-455 |#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ((-13) . T) ((-549 |#1| |#2|) . T) ((-593 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T) ((-608 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T) ((-756) |has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-756)) ((-759) |has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-756)) ((-923 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T) ((-1013) OR (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-756)) (|has| |#2| (-1013))) ((-1063 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T) ((-1106 |#1| |#2|) . T) ((-1128) . T) ((-1167 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T)) +((-3945 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#2|) 10 T ELT))) +(((-37 |#1| |#2|) (-10 -7 (-15 -3945 (|#1| |#2|)) (-15 -3945 (|#1| (-484))) (-15 -3945 ((-772) |#1|))) (-38 |#2|) (-146)) (T -37)) +NIL +((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3723 (($) 23 T CONST)) (-3466 (((-3 $ "failed") $) 42 T ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ |#1|) 52 T ELT)) (-3126 (((-694)) 40 T CONST)) (-1264 (((-85) $ $) 6 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 54 T ELT) (($ |#1| $) 53 T ELT))) (((-38 |#1|) (-113) (-146)) (T -38)) NIL -(-13 (-960) (-653 |t#1|) (-554 |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-554 (-483)) . T) ((-554 |#1|) . T) ((-551 (-771)) . T) ((-13) . T) ((-587 (-483)) . T) ((-587 |#1|) . T) ((-587 $) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-581 |#1|) . T) ((-653 |#1|) . T) ((-662) . T) ((-962 |#1|) . T) ((-967 |#1|) . T) ((-960) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T)) -((-3416 (((-346 |#1|) |#1|) 41 T ELT)) (-3730 (((-346 |#1|) |#1|) 30 T ELT) (((-346 |#1|) |#1| (-582 (-48))) 33 T ELT)) (-1222 (((-85) |#1|) 59 T ELT))) -(((-39 |#1|) (-10 -7 (-15 -3730 ((-346 |#1|) |#1| (-582 (-48)))) (-15 -3730 ((-346 |#1|) |#1|)) (-15 -3416 ((-346 |#1|) |#1|)) (-15 -1222 ((-85) |#1|))) (-1153 (-48))) (T -39)) -((-1222 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-39 *3)) (-4 *3 (-1153 (-48))))) (-3416 (*1 *2 *3) (-12 (-5 *2 (-346 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1153 (-48))))) (-3730 (*1 *2 *3) (-12 (-5 *2 (-346 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1153 (-48))))) (-3730 (*1 *2 *3 *4) (-12 (-5 *4 (-582 (-48))) (-5 *2 (-346 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1153 (-48)))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3187 (((-85) $) NIL T ELT)) (-1645 (((-2 (|:| |num| (-1177 |#2|)) (|:| |den| |#2|)) $) NIL T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3980 $) (|:| |associate| $)) $) NIL (|has| (-348 |#2|) (-312)) ELT)) (-2062 (($ $) NIL (|has| (-348 |#2|) (-312)) ELT)) (-2060 (((-85) $) NIL (|has| (-348 |#2|) (-312)) ELT)) (-1780 (((-629 (-348 |#2|)) (-1177 $)) NIL T ELT) (((-629 (-348 |#2|))) NIL T ELT)) (-3328 (((-348 |#2|) $) NIL T ELT)) (-1673 (((-1100 (-829) (-693)) (-483)) NIL (|has| (-348 |#2|) (-299)) ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3773 (($ $) NIL (|has| (-348 |#2|) (-312)) ELT)) (-3969 (((-346 $) $) NIL (|has| (-348 |#2|) (-312)) ELT)) (-1606 (((-85) $ $) NIL (|has| (-348 |#2|) (-312)) ELT)) (-3135 (((-693)) NIL (|has| (-348 |#2|) (-318)) ELT)) (-1659 (((-85)) NIL T ELT)) (-1658 (((-85) |#1|) NIL T ELT) (((-85) |#2|) NIL T ELT)) (-3722 (($) NIL T CONST)) (-3156 (((-3 (-483) #1#) $) NIL (|has| (-348 |#2|) (-949 (-483))) ELT) (((-3 (-348 (-483)) #1#) $) NIL (|has| (-348 |#2|) (-949 (-348 (-483)))) ELT) (((-3 (-348 |#2|) #1#) $) NIL T ELT)) (-3155 (((-483) $) NIL (|has| (-348 |#2|) (-949 (-483))) ELT) (((-348 (-483)) $) NIL (|has| (-348 |#2|) (-949 (-348 (-483)))) ELT) (((-348 |#2|) $) NIL T ELT)) (-1790 (($ (-1177 (-348 |#2|)) (-1177 $)) NIL T ELT) (($ (-1177 (-348 |#2|))) 60 T ELT) (($ (-1177 |#2|) |#2|) 130 T ELT)) (-1671 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-348 |#2|) (-299)) ELT)) (-2563 (($ $ $) NIL (|has| (-348 |#2|) (-312)) ELT)) (-1779 (((-629 (-348 |#2|)) $ (-1177 $)) NIL T ELT) (((-629 (-348 |#2|)) $) NIL T ELT)) (-2278 (((-629 (-483)) (-629 $)) NIL (|has| (-348 |#2|) (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-629 $) (-1177 $)) NIL (|has| (-348 |#2|) (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 (-348 |#2|))) (|:| |vec| (-1177 (-348 |#2|)))) (-629 $) (-1177 $)) NIL T ELT) (((-629 (-348 |#2|)) (-629 $)) NIL T ELT)) (-1650 (((-1177 $) (-1177 $)) NIL T ELT)) (-3840 (($ |#3|) NIL T ELT) (((-3 $ #1#) (-348 |#3|)) NIL (|has| (-348 |#2|) (-312)) ELT)) (-3465 (((-3 $ #1#) $) NIL T ELT)) (-1637 (((-582 (-582 |#1|))) NIL (|has| |#1| (-318)) ELT)) (-1662 (((-85) |#1| |#1|) NIL T ELT)) (-3107 (((-829)) NIL T ELT)) (-2993 (($) NIL (|has| (-348 |#2|) (-318)) ELT)) (-1657 (((-85)) NIL T ELT)) (-1656 (((-85) |#1|) NIL T ELT) (((-85) |#2|) NIL T ELT)) (-2562 (($ $ $) NIL (|has| (-348 |#2|) (-312)) ELT)) (-2740 (((-2 (|:| -3952 (-582 $)) (|:| -2408 $)) (-582 $)) NIL (|has| (-348 |#2|) (-312)) ELT)) (-3501 (($ $) NIL T ELT)) (-2832 (($) NIL (|has| (-348 |#2|) (-299)) ELT)) (-1678 (((-85) $) NIL (|has| (-348 |#2|) (-299)) ELT)) (-1762 (($ $ (-693)) NIL (|has| (-348 |#2|) (-299)) ELT) (($ $) NIL (|has| (-348 |#2|) (-299)) ELT)) (-3721 (((-85) $) NIL (|has| (-348 |#2|) (-312)) ELT)) (-3770 (((-829) $) NIL (|has| (-348 |#2|) (-299)) ELT) (((-742 (-829)) $) NIL (|has| (-348 |#2|) (-299)) ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-2409 (((-85) $) NIL T ELT)) (-3375 (((-693)) NIL T ELT)) (-1651 (((-1177 $) (-1177 $)) 105 T ELT)) (-3131 (((-348 |#2|) $) NIL T ELT)) (-1638 (((-582 (-856 |#1|)) (-1088)) NIL (|has| |#1| (-312)) ELT)) (-3443 (((-631 $) $) NIL (|has| (-348 |#2|) (-299)) ELT)) (-1603 (((-3 (-582 $) #1#) (-582 $) $) NIL (|has| (-348 |#2|) (-312)) ELT)) (-2013 ((|#3| $) NIL (|has| (-348 |#2|) (-312)) ELT)) (-2009 (((-829) $) NIL (|has| (-348 |#2|) (-318)) ELT)) (-3078 ((|#3| $) NIL T ELT)) (-2279 (((-629 (-483)) (-1177 $)) NIL (|has| (-348 |#2|) (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL (|has| (-348 |#2|) (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 (-348 |#2|))) (|:| |vec| (-1177 (-348 |#2|)))) (-1177 $) $) NIL T ELT) (((-629 (-348 |#2|)) (-1177 $)) NIL T ELT)) (-1889 (($ (-582 $)) NIL (|has| (-348 |#2|) (-312)) ELT) (($ $ $) NIL (|has| (-348 |#2|) (-312)) ELT)) (-3241 (((-1071) $) NIL T ELT)) (-1223 (((-1183) (-693)) 83 T ELT)) (-1646 (((-629 (-348 |#2|))) 55 T ELT)) (-1648 (((-629 (-348 |#2|))) 48 T ELT)) (-2483 (($ $) NIL (|has| (-348 |#2|) (-312)) ELT)) (-1643 (($ (-1177 |#2|) |#2|) 131 T ELT)) (-1647 (((-629 (-348 |#2|))) 49 T ELT)) (-1649 (((-629 (-348 |#2|))) 47 T ELT)) (-1642 (((-2 (|:| |num| (-629 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 129 T ELT)) (-1644 (((-2 (|:| |num| (-1177 |#2|)) (|:| |den| |#2|)) $) 67 T ELT)) (-1655 (((-1177 $)) 46 T ELT)) (-3916 (((-1177 $)) 45 T ELT)) (-1654 (((-85) $) NIL T ELT)) (-1653 (((-85) $) NIL T ELT) (((-85) $ |#1|) NIL T ELT) (((-85) $ |#2|) NIL T ELT)) (-3444 (($) NIL (|has| (-348 |#2|) (-299)) CONST)) (-2399 (($ (-829)) NIL (|has| (-348 |#2|) (-318)) ELT)) (-1640 (((-3 |#2| #1#)) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-1664 (((-693)) NIL T ELT)) (-2408 (($) NIL T ELT)) (-2707 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| (-348 |#2|) (-312)) ELT)) (-3143 (($ (-582 $)) NIL (|has| (-348 |#2|) (-312)) ELT) (($ $ $) NIL (|has| (-348 |#2|) (-312)) ELT)) (-1674 (((-582 (-2 (|:| -3730 (-483)) (|:| -2400 (-483))))) NIL (|has| (-348 |#2|) (-299)) ELT)) (-3730 (((-346 $) $) NIL (|has| (-348 |#2|) (-312)) ELT)) (-1604 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| (-348 |#2|) (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL (|has| (-348 |#2|) (-312)) ELT)) (-3464 (((-3 $ #1#) $ $) NIL (|has| (-348 |#2|) (-312)) ELT)) (-2739 (((-631 (-582 $)) (-582 $) $) NIL (|has| (-348 |#2|) (-312)) ELT)) (-1605 (((-693) $) NIL (|has| (-348 |#2|) (-312)) ELT)) (-3798 ((|#1| $ |#1| |#1|) NIL T ELT)) (-1641 (((-3 |#2| #1#)) NIL T ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL (|has| (-348 |#2|) (-312)) ELT)) (-3755 (((-348 |#2|) (-1177 $)) NIL T ELT) (((-348 |#2|)) 43 T ELT)) (-1763 (((-693) $) NIL (|has| (-348 |#2|) (-299)) ELT) (((-3 (-693) #1#) $ $) NIL (|has| (-348 |#2|) (-299)) ELT)) (-3756 (($ $ (-1 (-348 |#2|) (-348 |#2|))) NIL (|has| (-348 |#2|) (-312)) ELT) (($ $ (-1 (-348 |#2|) (-348 |#2|)) (-693)) NIL (|has| (-348 |#2|) (-312)) ELT) (($ $ (-1 |#2| |#2|)) 125 T ELT) (($ $ (-582 (-1088)) (-582 (-693))) NIL (OR (-12 (|has| (-348 |#2|) (-312)) (|has| (-348 |#2|) (-808 (-1088)))) (-12 (|has| (-348 |#2|) (-312)) (|has| (-348 |#2|) (-810 (-1088))))) ELT) (($ $ (-1088) (-693)) NIL (OR (-12 (|has| (-348 |#2|) (-312)) (|has| (-348 |#2|) (-808 (-1088)))) (-12 (|has| (-348 |#2|) (-312)) (|has| (-348 |#2|) (-810 (-1088))))) ELT) (($ $ (-582 (-1088))) NIL (OR (-12 (|has| (-348 |#2|) (-312)) (|has| (-348 |#2|) (-808 (-1088)))) (-12 (|has| (-348 |#2|) (-312)) (|has| (-348 |#2|) (-810 (-1088))))) ELT) (($ $ (-1088)) NIL (OR (-12 (|has| (-348 |#2|) (-312)) (|has| (-348 |#2|) (-808 (-1088)))) (-12 (|has| (-348 |#2|) (-312)) (|has| (-348 |#2|) (-810 (-1088))))) ELT) (($ $ (-693)) NIL (OR (-12 (|has| (-348 |#2|) (-190)) (|has| (-348 |#2|) (-312))) (-12 (|has| (-348 |#2|) (-189)) (|has| (-348 |#2|) (-312))) (|has| (-348 |#2|) (-299))) ELT) (($ $) NIL (OR (-12 (|has| (-348 |#2|) (-190)) (|has| (-348 |#2|) (-312))) (-12 (|has| (-348 |#2|) (-189)) (|has| (-348 |#2|) (-312))) (|has| (-348 |#2|) (-299))) ELT)) (-2407 (((-629 (-348 |#2|)) (-1177 $) (-1 (-348 |#2|) (-348 |#2|))) NIL (|has| (-348 |#2|) (-312)) ELT)) (-3184 ((|#3|) 54 T ELT)) (-1672 (($) NIL (|has| (-348 |#2|) (-299)) ELT)) (-3223 (((-1177 (-348 |#2|)) $ (-1177 $)) NIL T ELT) (((-629 (-348 |#2|)) (-1177 $) (-1177 $)) NIL T ELT) (((-1177 (-348 |#2|)) $) 61 T ELT) (((-629 (-348 |#2|)) (-1177 $)) 106 T ELT)) (-3970 (((-1177 (-348 |#2|)) $) NIL T ELT) (($ (-1177 (-348 |#2|))) NIL T ELT) ((|#3| $) NIL T ELT) (($ |#3|) NIL T ELT)) (-2702 (((-3 (-1177 $) #1#) (-629 $)) NIL (|has| (-348 |#2|) (-299)) ELT)) (-1652 (((-1177 $) (-1177 $)) NIL T ELT)) (-3944 (((-771) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ (-348 |#2|)) NIL T ELT) (($ (-348 (-483))) NIL (OR (|has| (-348 |#2|) (-312)) (|has| (-348 |#2|) (-949 (-348 (-483))))) ELT) (($ $) NIL (|has| (-348 |#2|) (-312)) ELT)) (-2701 (($ $) NIL (|has| (-348 |#2|) (-299)) ELT) (((-631 $) $) NIL (|has| (-348 |#2|) (-118)) ELT)) (-2448 ((|#3| $) NIL T ELT)) (-3125 (((-693)) NIL T CONST)) (-1661 (((-85)) 41 T ELT)) (-1660 (((-85) |#1|) 53 T ELT) (((-85) |#2|) 137 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2011 (((-1177 $)) NIL T ELT)) (-2061 (((-85) $ $) NIL (|has| (-348 |#2|) (-312)) ELT)) (-3124 (((-85) $ $) NIL T ELT)) (-1639 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL T ELT)) (-1663 (((-85)) NIL T ELT)) (-2659 (($) 17 T CONST)) (-2665 (($) 27 T CONST)) (-2668 (($ $ (-1 (-348 |#2|) (-348 |#2|))) NIL (|has| (-348 |#2|) (-312)) ELT) (($ $ (-1 (-348 |#2|) (-348 |#2|)) (-693)) NIL (|has| (-348 |#2|) (-312)) ELT) (($ $ (-582 (-1088)) (-582 (-693))) NIL (OR (-12 (|has| (-348 |#2|) (-312)) (|has| (-348 |#2|) (-808 (-1088)))) (-12 (|has| (-348 |#2|) (-312)) (|has| (-348 |#2|) (-810 (-1088))))) ELT) (($ $ (-1088) (-693)) NIL (OR (-12 (|has| (-348 |#2|) (-312)) (|has| (-348 |#2|) (-808 (-1088)))) (-12 (|has| (-348 |#2|) (-312)) (|has| (-348 |#2|) (-810 (-1088))))) ELT) (($ $ (-582 (-1088))) NIL (OR (-12 (|has| (-348 |#2|) (-312)) (|has| (-348 |#2|) (-808 (-1088)))) (-12 (|has| (-348 |#2|) (-312)) (|has| (-348 |#2|) (-810 (-1088))))) ELT) (($ $ (-1088)) NIL (OR (-12 (|has| (-348 |#2|) (-312)) (|has| (-348 |#2|) (-808 (-1088)))) (-12 (|has| (-348 |#2|) (-312)) (|has| (-348 |#2|) (-810 (-1088))))) ELT) (($ $ (-693)) NIL (OR (-12 (|has| (-348 |#2|) (-190)) (|has| (-348 |#2|) (-312))) (-12 (|has| (-348 |#2|) (-189)) (|has| (-348 |#2|) (-312))) (|has| (-348 |#2|) (-299))) ELT) (($ $) NIL (OR (-12 (|has| (-348 |#2|) (-190)) (|has| (-348 |#2|) (-312))) (-12 (|has| (-348 |#2|) (-189)) (|has| (-348 |#2|) (-312))) (|has| (-348 |#2|) (-299))) ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-3947 (($ $ $) NIL (|has| (-348 |#2|) (-312)) ELT)) (-3835 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3837 (($ $ $) NIL T ELT)) (** (($ $ (-829)) NIL T ELT) (($ $ (-693)) NIL T ELT) (($ $ (-483)) NIL (|has| (-348 |#2|) (-312)) ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-348 |#2|)) NIL T ELT) (($ (-348 |#2|) $) NIL T ELT) (($ (-348 (-483)) $) NIL (|has| (-348 |#2|) (-312)) ELT) (($ $ (-348 (-483))) NIL (|has| (-348 |#2|) (-312)) ELT))) -(((-40 |#1| |#2| |#3| |#4|) (-13 (-291 |#1| |#2| |#3|) (-10 -7 (-15 -1223 ((-1183) (-693))))) (-312) (-1153 |#1|) (-1153 (-348 |#2|)) |#3|) (T -40)) -((-1223 (*1 *2 *3) (-12 (-5 *3 (-693)) (-4 *4 (-312)) (-4 *5 (-1153 *4)) (-5 *2 (-1183)) (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1153 (-348 *5))) (-14 *7 *6)))) -((-1224 ((|#2| |#2|) 47 T ELT)) (-1229 ((|#2| |#2|) 136 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-13 (-390) (-949 (-483))))) ELT)) (-1228 ((|#2| |#2|) 100 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-13 (-390) (-949 (-483))))) ELT)) (-1227 ((|#2| |#2|) 101 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-13 (-390) (-949 (-483))))) ELT)) (-1230 ((|#2| (-86) |#2| (-693)) 80 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-13 (-390) (-949 (-483))))) ELT)) (-1226 (((-1083 |#2|) |#2|) 44 T ELT)) (-1225 ((|#2| |#2| (-582 (-549 |#2|))) 18 T ELT) ((|#2| |#2| (-582 |#2|)) 20 T ELT) ((|#2| |#2| |#2|) 21 T ELT) ((|#2| |#2|) 16 T ELT))) -(((-41 |#1| |#2|) (-10 -7 (-15 -1224 (|#2| |#2|)) (-15 -1225 (|#2| |#2|)) (-15 -1225 (|#2| |#2| |#2|)) (-15 -1225 (|#2| |#2| (-582 |#2|))) (-15 -1225 (|#2| |#2| (-582 (-549 |#2|)))) (-15 -1226 ((-1083 |#2|) |#2|)) (IF (|has| |#1| (-13 (-390) (-949 (-483)))) (IF (|has| |#2| (-362 |#1|)) (PROGN (-15 -1227 (|#2| |#2|)) (-15 -1228 (|#2| |#2|)) (-15 -1229 (|#2| |#2|)) (-15 -1230 (|#2| (-86) |#2| (-693)))) |%noBranch|) |%noBranch|)) (-494) (-13 (-312) (-254) (-10 -8 (-15 -2997 ((-1037 |#1| (-549 $)) $)) (-15 -2996 ((-1037 |#1| (-549 $)) $)) (-15 -3944 ($ (-1037 |#1| (-549 $))))))) (T -41)) -((-1230 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-86)) (-5 *4 (-693)) (-4 *5 (-13 (-390) (-949 (-483)))) (-4 *5 (-494)) (-5 *1 (-41 *5 *2)) (-4 *2 (-362 *5)) (-4 *2 (-13 (-312) (-254) (-10 -8 (-15 -2997 ((-1037 *5 (-549 $)) $)) (-15 -2996 ((-1037 *5 (-549 $)) $)) (-15 -3944 ($ (-1037 *5 (-549 $))))))))) (-1229 (*1 *2 *2) (-12 (-4 *3 (-13 (-390) (-949 (-483)))) (-4 *3 (-494)) (-5 *1 (-41 *3 *2)) (-4 *2 (-362 *3)) (-4 *2 (-13 (-312) (-254) (-10 -8 (-15 -2997 ((-1037 *3 (-549 $)) $)) (-15 -2996 ((-1037 *3 (-549 $)) $)) (-15 -3944 ($ (-1037 *3 (-549 $))))))))) (-1228 (*1 *2 *2) (-12 (-4 *3 (-13 (-390) (-949 (-483)))) (-4 *3 (-494)) (-5 *1 (-41 *3 *2)) (-4 *2 (-362 *3)) (-4 *2 (-13 (-312) (-254) (-10 -8 (-15 -2997 ((-1037 *3 (-549 $)) $)) (-15 -2996 ((-1037 *3 (-549 $)) $)) (-15 -3944 ($ (-1037 *3 (-549 $))))))))) (-1227 (*1 *2 *2) (-12 (-4 *3 (-13 (-390) (-949 (-483)))) (-4 *3 (-494)) (-5 *1 (-41 *3 *2)) (-4 *2 (-362 *3)) (-4 *2 (-13 (-312) (-254) (-10 -8 (-15 -2997 ((-1037 *3 (-549 $)) $)) (-15 -2996 ((-1037 *3 (-549 $)) $)) (-15 -3944 ($ (-1037 *3 (-549 $))))))))) (-1226 (*1 *2 *3) (-12 (-4 *4 (-494)) (-5 *2 (-1083 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 (-13 (-312) (-254) (-10 -8 (-15 -2997 ((-1037 *4 (-549 $)) $)) (-15 -2996 ((-1037 *4 (-549 $)) $)) (-15 -3944 ($ (-1037 *4 (-549 $))))))))) (-1225 (*1 *2 *2 *3) (-12 (-5 *3 (-582 (-549 *2))) (-4 *2 (-13 (-312) (-254) (-10 -8 (-15 -2997 ((-1037 *4 (-549 $)) $)) (-15 -2996 ((-1037 *4 (-549 $)) $)) (-15 -3944 ($ (-1037 *4 (-549 $))))))) (-4 *4 (-494)) (-5 *1 (-41 *4 *2)))) (-1225 (*1 *2 *2 *3) (-12 (-5 *3 (-582 *2)) (-4 *2 (-13 (-312) (-254) (-10 -8 (-15 -2997 ((-1037 *4 (-549 $)) $)) (-15 -2996 ((-1037 *4 (-549 $)) $)) (-15 -3944 ($ (-1037 *4 (-549 $))))))) (-4 *4 (-494)) (-5 *1 (-41 *4 *2)))) (-1225 (*1 *2 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-312) (-254) (-10 -8 (-15 -2997 ((-1037 *3 (-549 $)) $)) (-15 -2996 ((-1037 *3 (-549 $)) $)) (-15 -3944 ($ (-1037 *3 (-549 $))))))))) (-1225 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-312) (-254) (-10 -8 (-15 -2997 ((-1037 *3 (-549 $)) $)) (-15 -2996 ((-1037 *3 (-549 $)) $)) (-15 -3944 ($ (-1037 *3 (-549 $))))))))) (-1224 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-312) (-254) (-10 -8 (-15 -2997 ((-1037 *3 (-549 $)) $)) (-15 -2996 ((-1037 *3 (-549 $)) $)) (-15 -3944 ($ (-1037 *3 (-549 $)))))))))) -((-3730 (((-346 (-1083 |#3|)) (-1083 |#3|) (-582 (-48))) 23 T ELT) (((-346 |#3|) |#3| (-582 (-48))) 19 T ELT))) -(((-42 |#1| |#2| |#3|) (-10 -7 (-15 -3730 ((-346 |#3|) |#3| (-582 (-48)))) (-15 -3730 ((-346 (-1083 |#3|)) (-1083 |#3|) (-582 (-48))))) (-755) (-716) (-860 (-48) |#2| |#1|)) (T -42)) -((-3730 (*1 *2 *3 *4) (-12 (-5 *4 (-582 (-48))) (-4 *5 (-755)) (-4 *6 (-716)) (-4 *7 (-860 (-48) *6 *5)) (-5 *2 (-346 (-1083 *7))) (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1083 *7)))) (-3730 (*1 *2 *3 *4) (-12 (-5 *4 (-582 (-48))) (-4 *5 (-755)) (-4 *6 (-716)) (-5 *2 (-346 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-860 (-48) *6 *5))))) -((-1234 (((-693) |#2|) 70 T ELT)) (-1232 (((-693) |#2|) 74 T ELT)) (-1247 (((-582 |#2|)) 37 T ELT)) (-1231 (((-693) |#2|) 73 T ELT)) (-1233 (((-693) |#2|) 69 T ELT)) (-1235 (((-693) |#2|) 72 T ELT)) (-1245 (((-582 (-629 |#1|))) 65 T ELT)) (-1240 (((-582 |#2|)) 60 T ELT)) (-1238 (((-582 |#2|) |#2|) 48 T ELT)) (-1242 (((-582 |#2|)) 62 T ELT)) (-1241 (((-582 |#2|)) 61 T ELT)) (-1244 (((-582 (-629 |#1|))) 53 T ELT)) (-1239 (((-582 |#2|)) 59 T ELT)) (-1237 (((-582 |#2|) |#2|) 47 T ELT)) (-1236 (((-582 |#2|)) 55 T ELT)) (-1246 (((-582 (-629 |#1|))) 66 T ELT)) (-1243 (((-582 |#2|)) 64 T ELT)) (-2011 (((-1177 |#2|) (-1177 |#2|)) 99 (|has| |#1| (-258)) ELT))) -(((-43 |#1| |#2|) (-10 -7 (-15 -1231 ((-693) |#2|)) (-15 -1232 ((-693) |#2|)) (-15 -1233 ((-693) |#2|)) (-15 -1234 ((-693) |#2|)) (-15 -1235 ((-693) |#2|)) (-15 -1236 ((-582 |#2|))) (-15 -1237 ((-582 |#2|) |#2|)) (-15 -1238 ((-582 |#2|) |#2|)) (-15 -1239 ((-582 |#2|))) (-15 -1240 ((-582 |#2|))) (-15 -1241 ((-582 |#2|))) (-15 -1242 ((-582 |#2|))) (-15 -1243 ((-582 |#2|))) (-15 -1244 ((-582 (-629 |#1|)))) (-15 -1245 ((-582 (-629 |#1|)))) (-15 -1246 ((-582 (-629 |#1|)))) (-15 -1247 ((-582 |#2|))) (IF (|has| |#1| (-258)) (-15 -2011 ((-1177 |#2|) (-1177 |#2|))) |%noBranch|)) (-494) (-359 |#1|)) (T -43)) -((-2011 (*1 *2 *2) (-12 (-5 *2 (-1177 *4)) (-4 *4 (-359 *3)) (-4 *3 (-258)) (-4 *3 (-494)) (-5 *1 (-43 *3 *4)))) (-1247 (*1 *2) (-12 (-4 *3 (-494)) (-5 *2 (-582 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-359 *3)))) (-1246 (*1 *2) (-12 (-4 *3 (-494)) (-5 *2 (-582 (-629 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-359 *3)))) (-1245 (*1 *2) (-12 (-4 *3 (-494)) (-5 *2 (-582 (-629 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-359 *3)))) (-1244 (*1 *2) (-12 (-4 *3 (-494)) (-5 *2 (-582 (-629 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-359 *3)))) (-1243 (*1 *2) (-12 (-4 *3 (-494)) (-5 *2 (-582 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-359 *3)))) (-1242 (*1 *2) (-12 (-4 *3 (-494)) (-5 *2 (-582 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-359 *3)))) (-1241 (*1 *2) (-12 (-4 *3 (-494)) (-5 *2 (-582 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-359 *3)))) (-1240 (*1 *2) (-12 (-4 *3 (-494)) (-5 *2 (-582 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-359 *3)))) (-1239 (*1 *2) (-12 (-4 *3 (-494)) (-5 *2 (-582 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-359 *3)))) (-1238 (*1 *2 *3) (-12 (-4 *4 (-494)) (-5 *2 (-582 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-359 *4)))) (-1237 (*1 *2 *3) (-12 (-4 *4 (-494)) (-5 *2 (-582 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-359 *4)))) (-1236 (*1 *2) (-12 (-4 *3 (-494)) (-5 *2 (-582 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-359 *3)))) (-1235 (*1 *2 *3) (-12 (-4 *4 (-494)) (-5 *2 (-693)) (-5 *1 (-43 *4 *3)) (-4 *3 (-359 *4)))) (-1234 (*1 *2 *3) (-12 (-4 *4 (-494)) (-5 *2 (-693)) (-5 *1 (-43 *4 *3)) (-4 *3 (-359 *4)))) (-1233 (*1 *2 *3) (-12 (-4 *4 (-494)) (-5 *2 (-693)) (-5 *1 (-43 *4 *3)) (-4 *3 (-359 *4)))) (-1232 (*1 *2 *3) (-12 (-4 *4 (-494)) (-5 *2 (-693)) (-5 *1 (-43 *4 *3)) (-4 *3 (-359 *4)))) (-1231 (*1 *2 *3) (-12 (-4 *4 (-494)) (-5 *2 (-693)) (-5 *1 (-43 *4 *3)) (-4 *3 (-359 *4))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3187 (((-85) $) NIL T ELT)) (-1770 (((-3 $ #1="failed")) NIL (|has| |#1| (-494)) ELT)) (-1310 (((-3 $ #1#) $ $) NIL T ELT)) (-3222 (((-1177 (-629 |#1|)) (-1177 $)) NIL T ELT) (((-1177 (-629 |#1|))) 24 T ELT)) (-1727 (((-1177 $)) 52 T ELT)) (-3722 (($) NIL T CONST)) (-1904 (((-3 (-2 (|:| |particular| $) (|:| -2011 (-582 $))) #1#)) NIL (|has| |#1| (-494)) ELT)) (-1701 (((-3 $ #1#)) NIL (|has| |#1| (-494)) ELT)) (-1786 (((-629 |#1|) (-1177 $)) NIL T ELT) (((-629 |#1|)) NIL T ELT)) (-1725 ((|#1| $) NIL T ELT)) (-1784 (((-629 |#1|) $ (-1177 $)) NIL T ELT) (((-629 |#1|) $) NIL T ELT)) (-2403 (((-3 $ #1#) $) NIL (|has| |#1| (-494)) ELT)) (-1898 (((-1083 (-856 |#1|))) NIL (|has| |#1| (-312)) ELT)) (-2406 (($ $ (-829)) NIL T ELT)) (-1723 ((|#1| $) NIL T ELT)) (-1703 (((-1083 |#1|) $) NIL (|has| |#1| (-494)) ELT)) (-1788 ((|#1| (-1177 $)) NIL T ELT) ((|#1|) NIL T ELT)) (-1721 (((-1083 |#1|) $) NIL T ELT)) (-1715 (((-85)) 99 T ELT)) (-1790 (($ (-1177 |#1|) (-1177 $)) NIL T ELT) (($ (-1177 |#1|)) NIL T ELT)) (-3465 (((-3 $ #1#) $) 14 (|has| |#1| (-494)) ELT)) (-3107 (((-829)) 53 T ELT)) (-1712 (((-85)) NIL T ELT)) (-2432 (($ $ (-829)) NIL T ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-1708 (((-85)) NIL T ELT)) (-1706 (((-85)) NIL T ELT)) (-1710 (((-85)) 101 T ELT)) (-1905 (((-3 (-2 (|:| |particular| $) (|:| -2011 (-582 $))) #1#)) NIL (|has| |#1| (-494)) ELT)) (-1702 (((-3 $ #1#)) NIL (|has| |#1| (-494)) ELT)) (-1787 (((-629 |#1|) (-1177 $)) NIL T ELT) (((-629 |#1|)) NIL T ELT)) (-1726 ((|#1| $) NIL T ELT)) (-1785 (((-629 |#1|) $ (-1177 $)) NIL T ELT) (((-629 |#1|) $) NIL T ELT)) (-2404 (((-3 $ #1#) $) NIL (|has| |#1| (-494)) ELT)) (-1902 (((-1083 (-856 |#1|))) NIL (|has| |#1| (-312)) ELT)) (-2405 (($ $ (-829)) NIL T ELT)) (-1724 ((|#1| $) NIL T ELT)) (-1704 (((-1083 |#1|) $) NIL (|has| |#1| (-494)) ELT)) (-1789 ((|#1| (-1177 $)) NIL T ELT) ((|#1|) NIL T ELT)) (-1722 (((-1083 |#1|) $) NIL T ELT)) (-1716 (((-85)) 98 T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-1707 (((-85)) 106 T ELT)) (-1709 (((-85)) 105 T ELT)) (-1711 (((-85)) 107 T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-1714 (((-85)) 100 T ELT)) (-3798 ((|#1| $ (-483)) 55 T ELT)) (-3223 (((-1177 |#1|) $ (-1177 $)) 48 T ELT) (((-629 |#1|) (-1177 $) (-1177 $)) NIL T ELT) (((-1177 |#1|) $) 28 T ELT) (((-629 |#1|) (-1177 $)) NIL T ELT)) (-3970 (((-1177 |#1|) $) NIL T ELT) (($ (-1177 |#1|)) NIL T ELT)) (-1890 (((-582 (-856 |#1|)) (-1177 $)) NIL T ELT) (((-582 (-856 |#1|))) NIL T ELT)) (-2434 (($ $ $) NIL T ELT)) (-1720 (((-85)) 95 T ELT)) (-3944 (((-771) $) 71 T ELT) (($ (-1177 |#1|)) 22 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2011 (((-1177 $)) 51 T ELT)) (-1705 (((-582 (-1177 |#1|))) NIL (|has| |#1| (-494)) ELT)) (-2435 (($ $ $ $) NIL T ELT)) (-1718 (((-85)) 91 T ELT)) (-2544 (($ (-629 |#1|) $) 18 T ELT)) (-2433 (($ $ $) NIL T ELT)) (-1719 (((-85)) 97 T ELT)) (-1717 (((-85)) 92 T ELT)) (-1713 (((-85)) 90 T ELT)) (-2659 (($) NIL T CONST)) (-3055 (((-85) $ $) NIL T ELT)) (-3835 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3837 (($ $ $) NIL T ELT)) (** (($ $ (-829)) NIL T ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) 80 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-1054 |#2| |#1|) $) 19 T ELT))) -(((-44 |#1| |#2| |#3| |#4|) (-13 (-359 |#1|) (-589 (-1054 |#2| |#1|)) (-10 -8 (-15 -3944 ($ (-1177 |#1|))))) (-312) (-829) (-582 (-1088)) (-1177 (-629 |#1|))) (T -44)) -((-3944 (*1 *1 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-312)) (-14 *6 (-1177 (-629 *3))) (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-829)) (-14 *5 (-582 (-1088)))))) -((-2567 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3400 (((-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3793 (((-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3795 (($ $) NIL T ELT)) (-3597 (($) NIL T ELT) (($ (-582 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2197 (((-1183) $ |#1| |#1|) NIL (|has| $ (-6 -3994)) ELT) (((-1183) $ (-483) (-483)) NIL (|has| $ (-6 -3994)) ELT)) (-3783 (($ $ (-483)) NIL (|has| $ (-6 -3994)) ELT)) (-1730 (((-85) (-1 (-85) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (((-85) $) NIL (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-755)) ELT)) (-1728 (($ (-1 (-85) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-755))) ELT)) (-2908 (($ (-1 (-85) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ $) NIL (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-755)) ELT)) (-3440 (((-85) $ (-693)) NIL T ELT)) (-3024 (((-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3994)) ELT)) (-3785 (($ $ $) 34 (|has| $ (-6 -3994)) ELT)) (-3784 (((-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3994)) ELT)) (-3787 (((-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) 36 (|has| $ (-6 -3994)) ELT)) (-3786 ((|#2| $ |#1| |#2|) 54 T ELT) (((-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $ (-483) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3994)) ELT) (((-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $ (-1144 (-483)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3994)) ELT) (((-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $ #1="last" (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3994)) ELT) (($ $ #2="rest" $) NIL (|has| $ (-6 -3994)) ELT) (((-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $ #3="first" (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3994)) ELT) (((-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $ #4="value" (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3994)) ELT)) (-3025 (($ $ (-582 $)) NIL (|has| $ (-6 -3994)) ELT)) (-1568 (($ (-1 (-85) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3993)) ELT) (($ (-1 (-85) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3708 (($ (-1 (-85) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3993)) ELT) (($ (-1 (-85) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3993)) ELT)) (-3794 (((-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2230 (((-3 |#2| #5="failed") |#1| $) 44 T ELT)) (-3722 (($) NIL T CONST)) (-2296 (($ $) NIL (|has| $ (-6 -3994)) ELT)) (-2297 (($ $) NIL T ELT)) (-3797 (($ $ (-693)) NIL T ELT) (($ $) 30 T ELT)) (-2367 (($ $) NIL (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012)) ELT)) (-1351 (($ $) NIL (-12 (|has| $ (-6 -3993)) (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012))) ELT)) (-3403 (($ (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-6 -3993)) ELT) (($ (-1 (-85) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3993)) ELT) (((-3 |#2| #5#) |#1| $) 57 T ELT) (($ (-1 (-85) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012)) ELT)) (-3404 (($ (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3993)) (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ (-1 (-85) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3993)) ELT) (($ (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3993)) (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ (-1 (-85) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3993)) ELT)) (-3840 (((-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -3993)) (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (((-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3993)) ELT) (((-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3993)) ELT) (((-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -3993)) (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (((-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3993)) ELT) (((-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3993)) ELT)) (-1574 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3994)) ELT) (((-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $ (-483) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3994)) ELT)) (-3111 ((|#2| $ |#1|) NIL T ELT) (((-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $ (-483)) NIL T ELT)) (-3441 (((-85) $) NIL T ELT)) (-3417 (((-483) (-1 (-85) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (((-483) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012)) ELT) (((-483) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $ (-483)) NIL (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012)) ELT)) (-2888 (((-582 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) 21 (|has| $ (-6 -3993)) ELT) (((-582 |#2|) $) NIL (|has| $ (-6 -3993)) ELT) (((-582 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) 21 (|has| $ (-6 -3993)) ELT)) (-3030 (((-582 $) $) NIL T ELT)) (-3026 (((-85) $ $) NIL (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012)) ELT)) (-3612 (($ (-693) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) NIL T ELT)) (-3717 (((-85) $ (-693)) NIL T ELT)) (-2199 ((|#1| $) NIL (|has| |#1| (-755)) ELT) (((-483) $) 39 (|has| (-483) (-755)) ELT)) (-2530 (($ $ $) NIL (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-755)) ELT)) (-2855 (($ (-1 (-85) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $ $) NIL T ELT) (($ $ $) NIL (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-755)) ELT)) (-3516 (($ (-1 (-85) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $ $) NIL T ELT) (($ $ $) NIL (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-755)) ELT)) (-2607 (((-582 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3993)) ELT) (((-582 |#2|) $) NIL (|has| $ (-6 -3993)) ELT) (((-582 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3993)) ELT)) (-3244 (((-85) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3993)) (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#2| (-1012))) ELT) (((-85) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3993)) (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012))) ELT)) (-2200 ((|#1| $) NIL (|has| |#1| (-755)) ELT) (((-483) $) 41 (|has| (-483) (-755)) ELT)) (-2856 (($ $ $) NIL (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-755)) ELT)) (-1947 (($ (-1 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3994)) ELT) (($ (-1 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT)) (-3956 (($ (-1 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT) (($ (-1 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $ $) NIL T ELT) (($ (-1 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3532 (($ (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) NIL T ELT)) (-3714 (((-85) $ (-693)) NIL T ELT)) (-3029 (((-582 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3525 (((-85) $) NIL T ELT)) (-3241 (((-1071) $) 50 (OR (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| |#2| (-1012))) ELT)) (-3796 (($ $ (-693)) NIL T ELT) (((-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2231 (((-582 |#1|) $) 23 T ELT)) (-2232 (((-85) |#1| $) NIL T ELT)) (-1272 (((-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3607 (($ (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $) NIL T ELT) (($ (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $ (-483)) NIL T ELT) (($ $ $ (-483)) NIL T ELT)) (-2303 (($ (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $ (-483)) NIL T ELT) (($ $ $ (-483)) NIL T ELT)) (-2202 (((-582 |#1|) $) NIL T ELT) (((-582 (-483)) $) NIL T ELT)) (-2203 (((-85) |#1| $) NIL T ELT) (((-85) (-483) $) NIL T ELT)) (-3242 (((-1032) $) NIL (OR (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| |#2| (-1012))) ELT)) (-3799 ((|#2| $) NIL (|has| |#1| (-755)) ELT) (($ $ (-693)) NIL T ELT) (((-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $) 28 T ELT)) (-1352 (((-3 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) #5#) (-1 (-85) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (((-3 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) #5#) (-1 (-85) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2198 (($ $ |#2|) NIL (|has| $ (-6 -3994)) ELT) (($ $ (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3994)) ELT)) (-1273 (((-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3442 (((-85) $) NIL T ELT)) (-1945 (((-85) (-1 (-85) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3993)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3993)) ELT) (((-85) (-1 (-85) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3993)) ELT)) (-3766 (($ $ (-582 (-249 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-249 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-582 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) (-582 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-582 |#2|) (-582 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ (-582 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ (-582 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) (-582 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-249 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-582 (-249 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-2201 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#2| (-1012))) ELT) (((-85) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3993)) (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012))) ELT)) (-2204 (((-582 |#2|) $) NIL T ELT) (((-582 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) 20 T ELT)) (-3401 (((-85) $) 19 T ELT)) (-3563 (($) 15 T ELT)) (-3798 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT) (((-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $ (-483) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) NIL T ELT) (((-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $ (-483)) NIL T ELT) (($ $ (-1144 (-483))) NIL T ELT) (((-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (((-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $ #3#) NIL T ELT) (((-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $ #4#) NIL T ELT)) (-3028 (((-483) $ $) NIL T ELT)) (-1464 (($) 14 T ELT) (($ (-582 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1569 (($ $ (-483)) NIL T ELT) (($ $ (-1144 (-483))) NIL T ELT)) (-2304 (($ $ (-483)) NIL T ELT) (($ $ (-1144 (-483))) NIL T ELT)) (-3631 (((-85) $) NIL T ELT)) (-3790 (($ $) NIL T ELT)) (-3788 (($ $) NIL (|has| $ (-6 -3994)) ELT)) (-3791 (((-693) $) NIL T ELT)) (-3792 (($ $) NIL T ELT)) (-1944 (((-693) (-1 (-85) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3993)) ELT) (((-693) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3993)) (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (((-693) |#2| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#2| (-1012))) ELT) (((-693) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3993)) ELT) (((-693) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3993)) (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (((-693) (-1 (-85) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3993)) ELT)) (-1729 (($ $ $ (-483)) NIL (|has| $ (-6 -3994)) ELT)) (-3398 (($ $) NIL T ELT)) (-3970 (((-472) $) NIL (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-552 (-472))) ELT)) (-3528 (($ (-582 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)))) NIL T ELT) (($ (-582 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3789 (($ $ (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) NIL T ELT) (($ $ $) NIL T ELT)) (-3800 (($ $ (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) NIL T ELT) (($ (-582 $)) NIL T ELT) (($ (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $) 32 T ELT) (($ $ $) NIL T ELT)) (-3944 (((-771) $) NIL (OR (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-551 (-771))) (|has| |#2| (-551 (-771)))) ELT)) (-3520 (((-582 $) $) NIL T ELT)) (-3027 (((-85) $ $) NIL (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012)) ELT)) (-1263 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1274 (($ (-582 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1221 (((-3 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) #5#) |#1| $) 52 T ELT)) (-1946 (((-85) (-1 (-85) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3993)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3993)) ELT) (((-85) (-1 (-85) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3993)) ELT)) (-2565 (((-85) $ $) NIL (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-755)) ELT)) (-2566 (((-85) $ $) NIL (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-755)) ELT)) (-3055 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-2683 (((-85) $ $) NIL (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-755)) ELT)) (-2684 (((-85) $ $) NIL (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-755)) ELT)) (-3955 (((-693) $) 26 (|has| $ (-6 -3993)) ELT))) -(((-45 |#1| |#2|) (-36 |#1| |#2|) (-1012) (-1012)) (T -45)) -NIL -((-3935 (((-85) $) 12 T ELT)) (-3956 (($ (-1 |#2| |#2|) $) 21 T ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (($ (-348 (-483)) $) 25 T ELT) (($ $ (-348 (-483))) NIL T ELT))) -(((-46 |#1| |#2| |#3|) (-10 -7 (-15 * (|#1| |#1| (-348 (-483)))) (-15 * (|#1| (-348 (-483)) |#1|)) (-15 -3935 ((-85) |#1|)) (-15 -3956 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-483) |#1|)) (-15 * (|#1| (-693) |#1|)) (-15 * (|#1| (-829) |#1|))) (-47 |#2| |#3|) (-960) (-715)) (T -46)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-3187 (((-85) $) 22 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3980 $) (|:| |associate| $)) $) 71 (|has| |#1| (-494)) ELT)) (-2062 (($ $) 72 (|has| |#1| (-494)) ELT)) (-2060 (((-85) $) 74 (|has| |#1| (-494)) ELT)) (-1310 (((-3 $ "failed") $ $) 26 T ELT)) (-3722 (($) 23 T CONST)) (-3957 (($ $) 80 T ELT)) (-3465 (((-3 $ "failed") $) 42 T ELT)) (-1212 (((-85) $ $) 20 T ELT)) (-2409 (((-85) $) 44 T ELT)) (-3935 (((-85) $) 82 T ELT)) (-2892 (($ |#1| |#2|) 81 T ELT)) (-3956 (($ (-1 |#1| |#1|) $) 83 T ELT)) (-2893 (($ $) 85 T ELT)) (-3173 ((|#1| $) 86 T ELT)) (-3241 (((-1071) $) 11 T ELT)) (-3242 (((-1032) $) 12 T ELT)) (-3464 (((-3 $ "failed") $ $) 70 (|has| |#1| (-494)) ELT)) (-3946 ((|#2| $) 84 T ELT)) (-3944 (((-771) $) 13 T ELT) (($ (-483)) 41 T ELT) (($ (-348 (-483))) 77 (|has| |#1| (-38 (-348 (-483)))) ELT) (($ $) 69 (|has| |#1| (-494)) ELT) (($ |#1|) 67 (|has| |#1| (-146)) ELT)) (-3675 ((|#1| $ |#2|) 79 T ELT)) (-2701 (((-631 $) $) 68 (|has| |#1| (-118)) ELT)) (-3125 (((-693)) 40 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-2061 (((-85) $ $) 73 (|has| |#1| (-494)) ELT)) (-3124 (((-85) $ $) 33 T ELT)) (-2659 (($) 24 T CONST)) (-2665 (($) 45 T CONST)) (-3055 (((-85) $ $) 8 T ELT)) (-3947 (($ $ |#1|) 78 (|has| |#1| (-312)) ELT)) (-3835 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3837 (($ $ $) 18 T ELT)) (** (($ $ (-829)) 35 T ELT) (($ $ (-693)) 43 T ELT)) (* (($ (-829) $) 17 T ELT) (($ (-693) $) 21 T ELT) (($ (-483) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 88 T ELT) (($ |#1| $) 87 T ELT) (($ (-348 (-483)) $) 76 (|has| |#1| (-38 (-348 (-483)))) ELT) (($ $ (-348 (-483))) 75 (|has| |#1| (-38 (-348 (-483)))) ELT))) -(((-47 |#1| |#2|) (-113) (-960) (-715)) (T -47)) -((-3173 (*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-715)) (-4 *2 (-960)))) (-2893 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-960)) (-4 *3 (-715)))) (-3946 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-960)) (-4 *2 (-715)))) (-3956 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-960)) (-4 *4 (-715)))) (-3935 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-960)) (-4 *4 (-715)) (-5 *2 (-85)))) (-2892 (*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-960)) (-4 *3 (-715)))) (-3957 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-960)) (-4 *3 (-715)))) (-3675 (*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-715)) (-4 *2 (-960)))) (-3947 (*1 *1 *1 *2) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-960)) (-4 *3 (-715)) (-4 *2 (-312))))) -(-13 (-960) (-82 |t#1| |t#1|) (-10 -8 (-15 -3173 (|t#1| $)) (-15 -2893 ($ $)) (-15 -3946 (|t#2| $)) (-15 -3956 ($ (-1 |t#1| |t#1|) $)) (-15 -3935 ((-85) $)) (-15 -2892 ($ |t#1| |t#2|)) (-15 -3957 ($ $)) (-15 -3675 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-312)) (-15 -3947 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-146)) (PROGN (-6 (-146)) (-6 (-38 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-494)) (-6 (-494)) |%noBranch|) (IF (|has| |t#1| (-38 (-348 (-483)))) (-6 (-38 (-348 (-483)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-348 (-483))) |has| |#1| (-38 (-348 (-483)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) |has| |#1| (-494)) ((-72) . T) ((-82 (-348 (-483)) (-348 (-483))) |has| |#1| (-38 (-348 (-483)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-494)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-554 (-348 (-483))) |has| |#1| (-38 (-348 (-483)))) ((-554 (-483)) . T) ((-554 |#1|) |has| |#1| (-146)) ((-554 $) |has| |#1| (-494)) ((-551 (-771)) . T) ((-146) OR (|has| |#1| (-494)) (|has| |#1| (-146))) ((-246) |has| |#1| (-494)) ((-494) |has| |#1| (-494)) ((-13) . T) ((-587 (-348 (-483))) |has| |#1| (-38 (-348 (-483)))) ((-587 (-483)) . T) ((-587 |#1|) . T) ((-587 $) . T) ((-589 (-348 (-483))) |has| |#1| (-38 (-348 (-483)))) ((-589 |#1|) . T) ((-589 $) . T) ((-581 (-348 (-483))) |has| |#1| (-38 (-348 (-483)))) ((-581 |#1|) |has| |#1| (-146)) ((-581 $) |has| |#1| (-494)) ((-653 (-348 (-483))) |has| |#1| (-38 (-348 (-483)))) ((-653 |#1|) |has| |#1| (-146)) ((-653 $) |has| |#1| (-494)) ((-662) . T) ((-962 (-348 (-483))) |has| |#1| (-38 (-348 (-483)))) ((-962 |#1|) . T) ((-962 $) OR (|has| |#1| (-494)) (|has| |#1| (-146))) ((-967 (-348 (-483))) |has| |#1| (-38 (-348 (-483)))) ((-967 |#1|) . T) ((-967 $) OR (|has| |#1| (-494)) (|has| |#1| (-146))) ((-960) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T)) -((-2567 (((-85) $ $) NIL T ELT)) (-1213 (((-582 $) (-1083 $) (-1088)) NIL T ELT) (((-582 $) (-1083 $)) NIL T ELT) (((-582 $) (-856 $)) NIL T ELT)) (-1214 (($ (-1083 $) (-1088)) NIL T ELT) (($ (-1083 $)) NIL T ELT) (($ (-856 $)) NIL T ELT)) (-3187 (((-85) $) 9 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3980 $) (|:| |associate| $)) $) NIL T ELT)) (-2062 (($ $) NIL T ELT)) (-2060 (((-85) $) NIL T ELT)) (-1598 (((-582 (-549 $)) $) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-1602 (($ $ (-249 $)) NIL T ELT) (($ $ (-582 (-249 $))) NIL T ELT) (($ $ (-582 (-549 $)) (-582 $)) NIL T ELT)) (-3773 (($ $) NIL T ELT)) (-3969 (((-346 $) $) NIL T ELT)) (-3036 (($ $) NIL T ELT)) (-1606 (((-85) $ $) NIL T ELT)) (-3722 (($) NIL T CONST)) (-1215 (((-582 $) (-1083 $) (-1088)) NIL T ELT) (((-582 $) (-1083 $)) NIL T ELT) (((-582 $) (-856 $)) NIL T ELT)) (-3182 (($ (-1083 $) (-1088)) NIL T ELT) (($ (-1083 $)) NIL T ELT) (($ (-856 $)) NIL T ELT)) (-3156 (((-3 (-549 $) #1#) $) NIL T ELT) (((-3 (-483) #1#) $) NIL T ELT) (((-3 (-348 (-483)) #1#) $) NIL T ELT)) (-3155 (((-549 $) $) NIL T ELT) (((-483) $) NIL T ELT) (((-348 (-483)) $) NIL T ELT)) (-2563 (($ $ $) NIL T ELT)) (-2278 (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-629 $) (-1177 $)) NIL T ELT) (((-629 (-483)) (-629 $)) NIL T ELT) (((-2 (|:| |mat| (-629 (-348 (-483)))) (|:| |vec| (-1177 (-348 (-483))))) (-629 $) (-1177 $)) NIL T ELT) (((-629 (-348 (-483))) (-629 $)) NIL T ELT)) (-3840 (($ $) NIL T ELT)) (-3465 (((-3 $ #1#) $) NIL T ELT)) (-2562 (($ $ $) NIL T ELT)) (-2740 (((-2 (|:| -3952 (-582 $)) (|:| -2408 $)) (-582 $)) NIL T ELT)) (-3721 (((-85) $) NIL T ELT)) (-2572 (($ $) NIL T ELT) (($ (-582 $)) NIL T ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-1597 (((-582 (-86)) $) NIL T ELT)) (-3593 (((-86) (-86)) NIL T ELT)) (-2409 (((-85) $) 11 T ELT)) (-2672 (((-85) $) NIL (|has| $ (-949 (-483))) ELT)) (-2997 (((-1037 (-483) (-549 $)) $) NIL T ELT)) (-3010 (($ $ (-483)) NIL T ELT)) (-3131 (((-1083 $) (-1083 $) (-549 $)) NIL T ELT) (((-1083 $) (-1083 $) (-582 (-549 $))) NIL T ELT) (($ $ (-549 $)) NIL T ELT) (($ $ (-582 (-549 $))) NIL T ELT)) (-1603 (((-3 (-582 $) #1#) (-582 $) $) NIL T ELT)) (-1595 (((-1083 $) (-549 $)) NIL (|has| $ (-960)) ELT)) (-3956 (($ (-1 $ $) (-549 $)) NIL T ELT)) (-1600 (((-3 (-549 $) #1#) $) NIL T ELT)) (-2279 (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL T ELT) (((-629 (-483)) (-1177 $)) NIL T ELT) (((-2 (|:| |mat| (-629 (-348 (-483)))) (|:| |vec| (-1177 (-348 (-483))))) (-1177 $) $) NIL T ELT) (((-629 (-348 (-483))) (-1177 $)) NIL T ELT)) (-1889 (($ (-582 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-1599 (((-582 (-549 $)) $) NIL T ELT)) (-2234 (($ (-86) $) NIL T ELT) (($ (-86) (-582 $)) NIL T ELT)) (-2632 (((-85) $ (-86)) NIL T ELT) (((-85) $ (-1088)) NIL T ELT)) (-2483 (($ $) NIL T ELT)) (-2602 (((-693) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-2707 (((-1083 $) (-1083 $) (-1083 $)) NIL T ELT)) (-3143 (($ (-582 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-1596 (((-85) $ $) NIL T ELT) (((-85) $ (-1088)) NIL T ELT)) (-3730 (((-346 $) $) NIL T ELT)) (-1604 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL T ELT)) (-3464 (((-3 $ #1#) $ $) NIL T ELT)) (-2739 (((-631 (-582 $)) (-582 $) $) NIL T ELT)) (-2673 (((-85) $) NIL (|has| $ (-949 (-483))) ELT)) (-3766 (($ $ (-549 $) $) NIL T ELT) (($ $ (-582 (-549 $)) (-582 $)) NIL T ELT) (($ $ (-582 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-582 $) (-582 $)) NIL T ELT) (($ $ (-582 (-1088)) (-582 (-1 $ $))) NIL T ELT) (($ $ (-582 (-1088)) (-582 (-1 $ (-582 $)))) NIL T ELT) (($ $ (-1088) (-1 $ (-582 $))) NIL T ELT) (($ $ (-1088) (-1 $ $)) NIL T ELT) (($ $ (-582 (-86)) (-582 (-1 $ $))) NIL T ELT) (($ $ (-582 (-86)) (-582 (-1 $ (-582 $)))) NIL T ELT) (($ $ (-86) (-1 $ (-582 $))) NIL T ELT) (($ $ (-86) (-1 $ $)) NIL T ELT)) (-1605 (((-693) $) NIL T ELT)) (-3798 (($ (-86) $) NIL T ELT) (($ (-86) $ $) NIL T ELT) (($ (-86) $ $ $) NIL T ELT) (($ (-86) $ $ $ $) NIL T ELT) (($ (-86) (-582 $)) NIL T ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL T ELT)) (-1601 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3756 (($ $) NIL T ELT) (($ $ (-693)) NIL T ELT)) (-2996 (((-1037 (-483) (-549 $)) $) NIL T ELT)) (-3184 (($ $) NIL (|has| $ (-960)) ELT)) (-3970 (((-328) $) NIL T ELT) (((-179) $) NIL T ELT) (((-142 (-328)) $) NIL T ELT)) (-3944 (((-771) $) NIL T ELT) (($ (-549 $)) NIL T ELT) (($ (-348 (-483))) NIL T ELT) (($ $) NIL T ELT) (($ (-483)) NIL T ELT) (($ (-1037 (-483) (-549 $))) NIL T ELT)) (-3125 (((-693)) NIL T CONST)) (-2589 (($ $) NIL T ELT) (($ (-582 $)) NIL T ELT)) (-2253 (((-85) (-86)) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2061 (((-85) $ $) NIL T ELT)) (-3124 (((-85) $ $) NIL T ELT)) (-2659 (($) 6 T CONST)) (-2665 (($) 10 T CONST)) (-2668 (($ $) NIL T ELT) (($ $ (-693)) NIL T ELT)) (-3055 (((-85) $ $) 13 T ELT)) (-3947 (($ $ $) NIL T ELT)) (-3835 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3837 (($ $ $) NIL T ELT)) (** (($ $ (-348 (-483))) NIL T ELT) (($ $ (-483)) NIL T ELT) (($ $ (-693)) NIL T ELT) (($ $ (-829)) NIL T ELT)) (* (($ (-348 (-483)) $) NIL T ELT) (($ $ (-348 (-483))) NIL T ELT) (($ $ $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-829) $) NIL T ELT))) -(((-48) (-13 (-254) (-27) (-949 (-483)) (-949 (-348 (-483))) (-579 (-483)) (-932) (-579 (-348 (-483))) (-120) (-552 (-142 (-328))) (-190) (-554 (-1037 (-483) (-549 $))) (-10 -8 (-15 -2997 ((-1037 (-483) (-549 $)) $)) (-15 -2996 ((-1037 (-483) (-549 $)) $)) (-15 -3840 ($ $)) (-15 -3131 ((-1083 $) (-1083 $) (-549 $))) (-15 -3131 ((-1083 $) (-1083 $) (-582 (-549 $)))) (-15 -3131 ($ $ (-549 $))) (-15 -3131 ($ $ (-582 (-549 $))))))) (T -48)) -((-2997 (*1 *2 *1) (-12 (-5 *2 (-1037 (-483) (-549 (-48)))) (-5 *1 (-48)))) (-2996 (*1 *2 *1) (-12 (-5 *2 (-1037 (-483) (-549 (-48)))) (-5 *1 (-48)))) (-3840 (*1 *1 *1) (-5 *1 (-48))) (-3131 (*1 *2 *2 *3) (-12 (-5 *2 (-1083 (-48))) (-5 *3 (-549 (-48))) (-5 *1 (-48)))) (-3131 (*1 *2 *2 *3) (-12 (-5 *2 (-1083 (-48))) (-5 *3 (-582 (-549 (-48)))) (-5 *1 (-48)))) (-3131 (*1 *1 *1 *2) (-12 (-5 *2 (-549 (-48))) (-5 *1 (-48)))) (-3131 (*1 *1 *1 *2) (-12 (-5 *2 (-582 (-549 (-48)))) (-5 *1 (-48))))) -((-2567 (((-85) $ $) NIL T ELT)) (-1936 (((-582 (-445)) $) 17 T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3944 (((-771) $) 7 T ELT)) (-3232 (((-1093) $) 18 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-49) (-13 (-1012) (-10 -8 (-15 -1936 ((-582 (-445)) $)) (-15 -3232 ((-1093) $))))) (T -49)) -((-1936 (*1 *2 *1) (-12 (-5 *2 (-582 (-445))) (-5 *1 (-49)))) (-3232 (*1 *2 *1) (-12 (-5 *2 (-1093)) (-5 *1 (-49))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3187 (((-85) $) 86 T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3722 (($) NIL T CONST)) (-2663 (((-85) $) 31 T ELT)) (-3156 (((-3 |#1| #1#) $) 34 T ELT)) (-3155 ((|#1| $) 35 T ELT)) (-3957 (($ $) 41 T ELT)) (-3465 (((-3 $ #1#) $) NIL T ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-2409 (((-85) $) NIL T ELT)) (-3956 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3173 ((|#1| $) 32 T ELT)) (-1453 (($ $) 75 T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-1452 (((-85) $) 44 T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-2408 (($ (-693)) 73 T ELT)) (-3941 (($ (-582 (-483))) 74 T ELT)) (-3946 (((-693) $) 45 T ELT)) (-3944 (((-771) $) 92 T ELT) (($ (-483)) 70 T ELT) (($ |#1|) 68 T ELT)) (-3675 ((|#1| $ $) 29 T ELT)) (-3125 (((-693)) 72 T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-3124 (((-85) $ $) NIL T ELT)) (-2659 (($) 46 T CONST)) (-2665 (($) 17 T CONST)) (-3055 (((-85) $ $) NIL T ELT)) (-3835 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3837 (($ $ $) 65 T ELT)) (** (($ $ (-829)) NIL T ELT) (($ $ (-693)) NIL T ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) 66 T ELT) (($ |#1| $) 59 T ELT))) -(((-50 |#1| |#2|) (-13 (-559 |#1|) (-949 |#1|) (-10 -8 (-15 -3173 (|#1| $)) (-15 -1453 ($ $)) (-15 -3957 ($ $)) (-15 -3675 (|#1| $ $)) (-15 -2408 ($ (-693))) (-15 -3941 ($ (-582 (-483)))) (-15 -1452 ((-85) $)) (-15 -2663 ((-85) $)) (-15 -3946 ((-693) $)) (-15 -3956 ($ (-1 |#1| |#1|) $)))) (-960) (-582 (-1088))) (T -50)) -((-3173 (*1 *2 *1) (-12 (-4 *2 (-960)) (-5 *1 (-50 *2 *3)) (-14 *3 (-582 (-1088))))) (-1453 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-960)) (-14 *3 (-582 (-1088))))) (-3957 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-960)) (-14 *3 (-582 (-1088))))) (-3675 (*1 *2 *1 *1) (-12 (-4 *2 (-960)) (-5 *1 (-50 *2 *3)) (-14 *3 (-582 (-1088))))) (-2408 (*1 *1 *2) (-12 (-5 *2 (-693)) (-5 *1 (-50 *3 *4)) (-4 *3 (-960)) (-14 *4 (-582 (-1088))))) (-3941 (*1 *1 *2) (-12 (-5 *2 (-582 (-483))) (-5 *1 (-50 *3 *4)) (-4 *3 (-960)) (-14 *4 (-582 (-1088))))) (-1452 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-50 *3 *4)) (-4 *3 (-960)) (-14 *4 (-582 (-1088))))) (-2663 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-50 *3 *4)) (-4 *3 (-960)) (-14 *4 (-582 (-1088))))) (-3946 (*1 *2 *1) (-12 (-5 *2 (-693)) (-5 *1 (-50 *3 *4)) (-4 *3 (-960)) (-14 *4 (-582 (-1088))))) (-3956 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-960)) (-5 *1 (-50 *3 *4)) (-14 *4 (-582 (-1088)))))) -((-2567 (((-85) $ $) NIL T ELT)) (-1248 (((-695) $) 8 T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-1249 (((-1014) $) 10 T ELT)) (-3944 (((-771) $) 15 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-1250 (($ (-1014) (-695)) 16 T ELT)) (-3055 (((-85) $ $) 12 T ELT))) -(((-51) (-13 (-1012) (-10 -8 (-15 -1250 ($ (-1014) (-695))) (-15 -1249 ((-1014) $)) (-15 -1248 ((-695) $))))) (T -51)) -((-1250 (*1 *1 *2 *3) (-12 (-5 *2 (-1014)) (-5 *3 (-695)) (-5 *1 (-51)))) (-1249 (*1 *2 *1) (-12 (-5 *2 (-1014)) (-5 *1 (-51)))) (-1248 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-51))))) -((-2663 (((-85) (-51)) 18 T ELT)) (-3156 (((-3 |#1| "failed") (-51)) 20 T ELT)) (-3155 ((|#1| (-51)) 21 T ELT)) (-3944 (((-51) |#1|) 14 T ELT))) -(((-52 |#1|) (-10 -7 (-15 -3944 ((-51) |#1|)) (-15 -3156 ((-3 |#1| "failed") (-51))) (-15 -2663 ((-85) (-51))) (-15 -3155 (|#1| (-51)))) (-1127)) (T -52)) -((-3155 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1127)))) (-2663 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *2 (-85)) (-5 *1 (-52 *4)) (-4 *4 (-1127)))) (-3156 (*1 *2 *3) (|partial| -12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1127)))) (-3944 (*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-52 *3)) (-4 *3 (-1127))))) -((-2544 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16 T ELT))) -(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -2544 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-960) (-589 |#1|) (-760 |#1|)) (T -53)) -((-2544 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-589 *5)) (-4 *5 (-960)) (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-760 *5))))) -((-1252 ((|#3| |#3| (-582 (-1088))) 44 T ELT)) (-1251 ((|#3| (-582 (-986 |#1| |#2| |#3|)) |#3| (-829)) 32 T ELT) ((|#3| (-582 (-986 |#1| |#2| |#3|)) |#3|) 31 T ELT))) -(((-54 |#1| |#2| |#3|) (-10 -7 (-15 -1251 (|#3| (-582 (-986 |#1| |#2| |#3|)) |#3|)) (-15 -1251 (|#3| (-582 (-986 |#1| |#2| |#3|)) |#3| (-829))) (-15 -1252 (|#3| |#3| (-582 (-1088))))) (-1012) (-13 (-960) (-795 |#1|) (-552 (-799 |#1|))) (-13 (-362 |#2|) (-795 |#1|) (-552 (-799 |#1|)))) (T -54)) -((-1252 (*1 *2 *2 *3) (-12 (-5 *3 (-582 (-1088))) (-4 *4 (-1012)) (-4 *5 (-13 (-960) (-795 *4) (-552 (-799 *4)))) (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-362 *5) (-795 *4) (-552 (-799 *4)))))) (-1251 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-582 (-986 *5 *6 *2))) (-5 *4 (-829)) (-4 *5 (-1012)) (-4 *6 (-13 (-960) (-795 *5) (-552 (-799 *5)))) (-4 *2 (-13 (-362 *6) (-795 *5) (-552 (-799 *5)))) (-5 *1 (-54 *5 *6 *2)))) (-1251 (*1 *2 *3 *2) (-12 (-5 *3 (-582 (-986 *4 *5 *2))) (-4 *4 (-1012)) (-4 *5 (-13 (-960) (-795 *4) (-552 (-799 *4)))) (-4 *2 (-13 (-362 *5) (-795 *4) (-552 (-799 *4)))) (-5 *1 (-54 *4 *5 *2))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3187 (((-85) $) 13 T ELT)) (-3156 (((-3 (-693) "failed") $) 31 T ELT)) (-3155 (((-693) $) NIL T ELT)) (-2409 (((-85) $) 15 T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3242 (((-1032) $) 17 T ELT)) (-3944 (((-771) $) 22 T ELT) (($ (-693)) 28 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-1253 (($) 10 T CONST)) (-3055 (((-85) $ $) 19 T ELT))) -(((-55) (-13 (-1012) (-949 (-693)) (-10 -8 (-15 -1253 ($) -3950) (-15 -3187 ((-85) $)) (-15 -2409 ((-85) $))))) (T -55)) -((-1253 (*1 *1) (-5 *1 (-55))) (-3187 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-55)))) (-2409 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-55))))) -((-1255 (($ $ (-483) |#3|) 46 T ELT)) (-1254 (($ $ (-483) |#4|) 50 T ELT)) (-2888 (((-582 |#2|) $) 41 T ELT)) (-3244 (((-85) |#2| $) 55 T ELT)) (-1945 (((-85) (-1 (-85) |#2|) $) 21 T ELT)) (-3798 ((|#2| $ (-483) (-483)) NIL T ELT) ((|#2| $ (-483) (-483) |#2|) 29 T ELT)) (-1944 (((-693) (-1 (-85) |#2|) $) 35 T ELT) (((-693) |#2| $) 57 T ELT)) (-3944 (((-771) $) 63 T ELT)) (-1946 (((-85) (-1 (-85) |#2|) $) 20 T ELT)) (-3055 (((-85) $ $) 54 T ELT)) (-3955 (((-693) $) 26 T ELT))) -(((-56 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3055 ((-85) |#1| |#1|)) (-15 -3944 ((-771) |#1|)) (-15 -1254 (|#1| |#1| (-483) |#4|)) (-15 -1255 (|#1| |#1| (-483) |#3|)) (-15 -3798 (|#2| |#1| (-483) (-483) |#2|)) (-15 -3798 (|#2| |#1| (-483) (-483))) (-15 -3244 ((-85) |#2| |#1|)) (-15 -1944 ((-693) |#2| |#1|)) (-15 -2888 ((-582 |#2|) |#1|)) (-15 -1944 ((-693) (-1 (-85) |#2|) |#1|)) (-15 -1945 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -1946 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -3955 ((-693) |#1|))) (-57 |#2| |#3| |#4|) (-1127) (-322 |#2|) (-322 |#2|)) (T -56)) -NIL -((-2567 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3786 ((|#1| $ (-483) (-483) |#1|) 48 T ELT)) (-1255 (($ $ (-483) |#2|) 46 T ELT)) (-1254 (($ $ (-483) |#3|) 45 T ELT)) (-3722 (($) 7 T CONST)) (-3110 ((|#2| $ (-483)) 50 T ELT)) (-1574 ((|#1| $ (-483) (-483) |#1|) 47 T ELT)) (-3111 ((|#1| $ (-483) (-483)) 52 T ELT)) (-2888 (((-582 |#1|) $) 30 (|has| $ (-6 -3993)) ELT)) (-3113 (((-693) $) 55 T ELT)) (-3612 (($ (-693) (-693) |#1|) 61 T ELT)) (-3112 (((-693) $) 54 T ELT)) (-3117 (((-483) $) 59 T ELT)) (-3115 (((-483) $) 57 T ELT)) (-2607 (((-582 |#1|) $) 29 (|has| $ (-6 -3993)) ELT)) (-3244 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3993))) ELT)) (-3116 (((-483) $) 58 T ELT)) (-3114 (((-483) $) 56 T ELT)) (-1947 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-3956 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 44 T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 43 T ELT)) (-3241 (((-1071) $) 22 (|has| |#1| (-1012)) ELT)) (-3242 (((-1032) $) 21 (|has| |#1| (-1012)) ELT)) (-2198 (($ $ |#1|) 60 T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3993)) ELT)) (-3766 (($ $ (-582 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-582 |#1|) (-582 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT)) (-1220 (((-85) $ $) 11 T ELT)) (-3401 (((-85) $) 8 T ELT)) (-3563 (($) 9 T ELT)) (-3798 ((|#1| $ (-483) (-483)) 53 T ELT) ((|#1| $ (-483) (-483) |#1|) 51 T ELT)) (-1944 (((-693) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3993)) ELT) (((-693) |#1| $) 28 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3993))) ELT)) (-3398 (($ $) 10 T ELT)) (-3109 ((|#3| $ (-483)) 49 T ELT)) (-3944 (((-771) $) 17 (|has| |#1| (-551 (-771))) ELT)) (-1263 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3993)) ELT)) (-3055 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3955 (((-693) $) 6 (|has| $ (-6 -3993)) ELT))) -(((-57 |#1| |#2| |#3|) (-113) (-1127) (-322 |t#1|) (-322 |t#1|)) (T -57)) -((-3956 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1127)) (-4 *4 (-322 *3)) (-4 *5 (-322 *3)))) (-3612 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-693)) (-4 *3 (-1127)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-322 *3)) (-4 *5 (-322 *3)))) (-2198 (*1 *1 *1 *2) (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1127)) (-4 *3 (-322 *2)) (-4 *4 (-322 *2)))) (-3117 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1127)) (-4 *4 (-322 *3)) (-4 *5 (-322 *3)) (-5 *2 (-483)))) (-3116 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1127)) (-4 *4 (-322 *3)) (-4 *5 (-322 *3)) (-5 *2 (-483)))) (-3115 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1127)) (-4 *4 (-322 *3)) (-4 *5 (-322 *3)) (-5 *2 (-483)))) (-3114 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1127)) (-4 *4 (-322 *3)) (-4 *5 (-322 *3)) (-5 *2 (-483)))) (-3113 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1127)) (-4 *4 (-322 *3)) (-4 *5 (-322 *3)) (-5 *2 (-693)))) (-3112 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1127)) (-4 *4 (-322 *3)) (-4 *5 (-322 *3)) (-5 *2 (-693)))) (-3798 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-483)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-322 *2)) (-4 *5 (-322 *2)) (-4 *2 (-1127)))) (-3111 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-483)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-322 *2)) (-4 *5 (-322 *2)) (-4 *2 (-1127)))) (-3798 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-483)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1127)) (-4 *4 (-322 *2)) (-4 *5 (-322 *2)))) (-3110 (*1 *2 *1 *3) (-12 (-5 *3 (-483)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1127)) (-4 *5 (-322 *4)) (-4 *2 (-322 *4)))) (-3109 (*1 *2 *1 *3) (-12 (-5 *3 (-483)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1127)) (-4 *5 (-322 *4)) (-4 *2 (-322 *4)))) (-3786 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-483)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1127)) (-4 *4 (-322 *2)) (-4 *5 (-322 *2)))) (-1574 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-483)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1127)) (-4 *4 (-322 *2)) (-4 *5 (-322 *2)))) (-1255 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-483)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1127)) (-4 *3 (-322 *4)) (-4 *5 (-322 *4)))) (-1254 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-483)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1127)) (-4 *5 (-322 *4)) (-4 *3 (-322 *4)))) (-1947 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1127)) (-4 *4 (-322 *3)) (-4 *5 (-322 *3)))) (-3956 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1127)) (-4 *4 (-322 *3)) (-4 *5 (-322 *3)))) (-3956 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1127)) (-4 *4 (-322 *3)) (-4 *5 (-322 *3))))) -(-13 (-427 |t#1|) (-10 -8 (-6 -3994) (-6 -3993) (-15 -3612 ($ (-693) (-693) |t#1|)) (-15 -2198 ($ $ |t#1|)) (-15 -3117 ((-483) $)) (-15 -3116 ((-483) $)) (-15 -3115 ((-483) $)) (-15 -3114 ((-483) $)) (-15 -3113 ((-693) $)) (-15 -3112 ((-693) $)) (-15 -3798 (|t#1| $ (-483) (-483))) (-15 -3111 (|t#1| $ (-483) (-483))) (-15 -3798 (|t#1| $ (-483) (-483) |t#1|)) (-15 -3110 (|t#2| $ (-483))) (-15 -3109 (|t#3| $ (-483))) (-15 -3786 (|t#1| $ (-483) (-483) |t#1|)) (-15 -1574 (|t#1| $ (-483) (-483) |t#1|)) (-15 -1255 ($ $ (-483) |t#2|)) (-15 -1254 ($ $ (-483) |t#3|)) (-15 -3956 ($ (-1 |t#1| |t#1|) $)) (-15 -1947 ($ (-1 |t#1| |t#1|) $)) (-15 -3956 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -3956 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|)))) -(((-34) . T) ((-72) OR (|has| |#1| (-1012)) (|has| |#1| (-72))) ((-551 (-771)) OR (|has| |#1| (-1012)) (|has| |#1| (-551 (-771)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ((-427 |#1|) . T) ((-454 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ((-13) . T) ((-1012) |has| |#1| (-1012)) ((-1127) . T)) -((-2567 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2197 (((-1183) $ (-483) (-483)) NIL (|has| $ (-6 -3994)) ELT)) (-1730 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-755)) ELT)) (-1728 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-6 -3994)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-755))) ELT)) (-2908 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-755)) ELT)) (-3786 ((|#1| $ (-483) |#1|) NIL (|has| $ (-6 -3994)) ELT) ((|#1| $ (-1144 (-483)) |#1|) NIL (|has| $ (-6 -3994)) ELT)) (-3708 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3722 (($) NIL T CONST)) (-2296 (($ $) NIL (|has| $ (-6 -3994)) ELT)) (-2297 (($ $) NIL T ELT)) (-1351 (($ $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#1| (-1012))) ELT)) (-3404 (($ |#1| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#1| (-1012))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3840 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3993)) (|has| |#1| (-1012))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3993)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-1574 ((|#1| $ (-483) |#1|) NIL (|has| $ (-6 -3994)) ELT)) (-3111 ((|#1| $ (-483)) NIL T ELT)) (-3417 (((-483) (-1 (-85) |#1|) $) NIL T ELT) (((-483) |#1| $) NIL (|has| |#1| (-1012)) ELT) (((-483) |#1| $ (-483)) NIL (|has| |#1| (-1012)) ELT)) (-2888 (((-582 |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-1256 (($ (-582 |#1|)) 11 T ELT) (($ (-693) |#1|) 14 T ELT)) (-3612 (($ (-693) |#1|) 13 T ELT)) (-2199 (((-483) $) NIL (|has| (-483) (-755)) ELT)) (-2530 (($ $ $) NIL (|has| |#1| (-755)) ELT)) (-3516 (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-755)) ELT)) (-2607 (((-582 |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3244 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#1| (-1012))) ELT)) (-2200 (((-483) $) NIL (|has| (-483) (-755)) ELT)) (-2856 (($ $ $) NIL (|has| |#1| (-755)) ELT)) (-1947 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3956 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3241 (((-1071) $) NIL (|has| |#1| (-1012)) ELT)) (-2303 (($ |#1| $ (-483)) NIL T ELT) (($ $ $ (-483)) NIL T ELT)) (-2202 (((-582 (-483)) $) NIL T ELT)) (-2203 (((-85) (-483) $) NIL T ELT)) (-3242 (((-1032) $) NIL (|has| |#1| (-1012)) ELT)) (-3799 ((|#1| $) NIL (|has| (-483) (-755)) ELT)) (-1352 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2198 (($ $ |#1|) NIL (|has| $ (-6 -3994)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3766 (($ $ (-582 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-582 |#1|) (-582 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-2201 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#1| (-1012))) ELT)) (-2204 (((-582 |#1|) $) NIL T ELT)) (-3401 (((-85) $) NIL T ELT)) (-3563 (($) NIL T ELT)) (-3798 ((|#1| $ (-483) |#1|) NIL T ELT) ((|#1| $ (-483)) NIL T ELT) (($ $ (-1144 (-483))) NIL T ELT)) (-2304 (($ $ (-483)) NIL T ELT) (($ $ (-1144 (-483))) NIL T ELT)) (-1944 (((-693) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3993)) ELT) (((-693) |#1| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#1| (-1012))) ELT)) (-1729 (($ $ $ (-483)) NIL (|has| $ (-6 -3994)) ELT)) (-3398 (($ $) NIL T ELT)) (-3970 (((-472) $) NIL (|has| |#1| (-552 (-472))) ELT)) (-3528 (($ (-582 |#1|)) 10 T ELT)) (-3800 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-582 $)) NIL T ELT)) (-3944 (((-771) $) NIL (|has| |#1| (-551 (-771))) ELT)) (-1263 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-2565 (((-85) $ $) NIL (|has| |#1| (-755)) ELT)) (-2566 (((-85) $ $) NIL (|has| |#1| (-755)) ELT)) (-3055 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2683 (((-85) $ $) NIL (|has| |#1| (-755)) ELT)) (-2684 (((-85) $ $) NIL (|has| |#1| (-755)) ELT)) (-3955 (((-693) $) NIL (|has| $ (-6 -3993)) ELT))) -(((-58 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -1256 ($ (-582 |#1|))) (-15 -1256 ($ (-693) |#1|)))) (-1127)) (T -58)) -((-1256 (*1 *1 *2) (-12 (-5 *2 (-582 *3)) (-4 *3 (-1127)) (-5 *1 (-58 *3)))) (-1256 (*1 *1 *2 *3) (-12 (-5 *2 (-693)) (-5 *1 (-58 *3)) (-4 *3 (-1127))))) -((-3839 (((-58 |#2|) (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|) 16 T ELT)) (-3840 ((|#2| (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|) 18 T ELT)) (-3956 (((-58 |#2|) (-1 |#2| |#1|) (-58 |#1|)) 13 T ELT))) -(((-59 |#1| |#2|) (-10 -7 (-15 -3839 ((-58 |#2|) (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -3840 (|#2| (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -3956 ((-58 |#2|) (-1 |#2| |#1|) (-58 |#1|)))) (-1127) (-1127)) (T -59)) -((-3956 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-58 *5)) (-4 *5 (-1127)) (-4 *6 (-1127)) (-5 *2 (-58 *6)) (-5 *1 (-59 *5 *6)))) (-3840 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-58 *5)) (-4 *5 (-1127)) (-4 *2 (-1127)) (-5 *1 (-59 *5 *2)))) (-3839 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-58 *6)) (-4 *6 (-1127)) (-4 *5 (-1127)) (-5 *2 (-58 *5)) (-5 *1 (-59 *6 *5))))) -((-2567 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3786 ((|#1| $ (-483) (-483) |#1|) NIL T ELT)) (-1255 (($ $ (-483) (-58 |#1|)) NIL T ELT)) (-1254 (($ $ (-483) (-58 |#1|)) NIL T ELT)) (-3722 (($) NIL T CONST)) (-3110 (((-58 |#1|) $ (-483)) NIL T ELT)) (-1574 ((|#1| $ (-483) (-483) |#1|) NIL T ELT)) (-3111 ((|#1| $ (-483) (-483)) NIL T ELT)) (-2888 (((-582 |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3113 (((-693) $) NIL T ELT)) (-3612 (($ (-693) (-693) |#1|) NIL T ELT)) (-3112 (((-693) $) NIL T ELT)) (-3117 (((-483) $) NIL T ELT)) (-3115 (((-483) $) NIL T ELT)) (-2607 (((-582 |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3244 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#1| (-1012))) ELT)) (-3116 (((-483) $) NIL T ELT)) (-3114 (((-483) $) NIL T ELT)) (-1947 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3956 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3241 (((-1071) $) NIL (|has| |#1| (-1012)) ELT)) (-3242 (((-1032) $) NIL (|has| |#1| (-1012)) ELT)) (-2198 (($ $ |#1|) NIL T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3766 (($ $ (-582 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-582 |#1|) (-582 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-3401 (((-85) $) NIL T ELT)) (-3563 (($) NIL T ELT)) (-3798 ((|#1| $ (-483) (-483)) NIL T ELT) ((|#1| $ (-483) (-483) |#1|) NIL T ELT)) (-1944 (((-693) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3993)) ELT) (((-693) |#1| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#1| (-1012))) ELT)) (-3398 (($ $) NIL T ELT)) (-3109 (((-58 |#1|) $ (-483)) NIL T ELT)) (-3944 (((-771) $) NIL (|has| |#1| (-551 (-771))) ELT)) (-1263 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3055 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3955 (((-693) $) NIL (|has| $ (-6 -3993)) ELT))) -(((-60 |#1|) (-57 |#1| (-58 |#1|) (-58 |#1|)) (-1127)) (T -60)) -NIL -((-1258 (((-1177 (-629 |#1|)) (-629 |#1|)) 61 T ELT)) (-1257 (((-2 (|:| |mat| (-629 |#1|)) (|:| |vec| (-1177 (-582 (-829))))) |#2| (-829)) 49 T ELT)) (-1259 (((-2 (|:| |minor| (-582 (-829))) (|:| -3265 |#2|) (|:| |minors| (-582 (-582 (-829)))) (|:| |ops| (-582 |#2|))) |#2| (-829)) 72 (|has| |#1| (-312)) ELT))) -(((-61 |#1| |#2|) (-10 -7 (-15 -1257 ((-2 (|:| |mat| (-629 |#1|)) (|:| |vec| (-1177 (-582 (-829))))) |#2| (-829))) (-15 -1258 ((-1177 (-629 |#1|)) (-629 |#1|))) (IF (|has| |#1| (-312)) (-15 -1259 ((-2 (|:| |minor| (-582 (-829))) (|:| -3265 |#2|) (|:| |minors| (-582 (-582 (-829)))) (|:| |ops| (-582 |#2|))) |#2| (-829))) |%noBranch|)) (-494) (-599 |#1|)) (T -61)) -((-1259 (*1 *2 *3 *4) (-12 (-4 *5 (-312)) (-4 *5 (-494)) (-5 *2 (-2 (|:| |minor| (-582 (-829))) (|:| -3265 *3) (|:| |minors| (-582 (-582 (-829)))) (|:| |ops| (-582 *3)))) (-5 *1 (-61 *5 *3)) (-5 *4 (-829)) (-4 *3 (-599 *5)))) (-1258 (*1 *2 *3) (-12 (-4 *4 (-494)) (-5 *2 (-1177 (-629 *4))) (-5 *1 (-61 *4 *5)) (-5 *3 (-629 *4)) (-4 *5 (-599 *4)))) (-1257 (*1 *2 *3 *4) (-12 (-4 *5 (-494)) (-5 *2 (-2 (|:| |mat| (-629 *5)) (|:| |vec| (-1177 (-582 (-829)))))) (-5 *1 (-61 *5 *3)) (-5 *4 (-829)) (-4 *3 (-599 *5))))) -((-2567 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3322 ((|#1| $) 42 T ELT)) (-3722 (($) NIL T CONST)) (-3324 ((|#1| |#1| $) 37 T ELT)) (-3323 ((|#1| $) 35 T ELT)) (-2888 (((-582 |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-2607 (((-582 |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3244 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#1| (-1012))) ELT)) (-1947 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3956 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3241 (((-1071) $) NIL (|has| |#1| (-1012)) ELT)) (-1272 ((|#1| $) NIL T ELT)) (-3607 (($ |#1| $) 38 T ELT)) (-3242 (((-1032) $) NIL (|has| |#1| (-1012)) ELT)) (-1273 ((|#1| $) 36 T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3766 (($ $ (-582 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-582 |#1|) (-582 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-3401 (((-85) $) 20 T ELT)) (-3563 (($) 46 T ELT)) (-3321 (((-693) $) 33 T ELT)) (-1944 (((-693) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3993)) ELT) (((-693) |#1| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#1| (-1012))) ELT)) (-3398 (($ $) 19 T ELT)) (-3944 (((-771) $) 32 (|has| |#1| (-551 (-771))) ELT)) (-1263 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1274 (($ (-582 |#1|)) NIL T ELT)) (-1260 (($ (-582 |#1|)) 44 T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3055 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-3955 (((-693) $) 14 (|has| $ (-6 -3993)) ELT))) -(((-62 |#1|) (-13 (-1033 |#1|) (-10 -8 (-15 -1260 ($ (-582 |#1|))))) (-1012)) (T -62)) -((-1260 (*1 *1 *2) (-12 (-5 *2 (-582 *3)) (-4 *3 (-1012)) (-5 *1 (-62 *3))))) -((-3944 (((-771) $) 13 T ELT) (($ (-1093)) 9 T ELT) (((-1093) $) 8 T ELT))) -(((-63 |#1|) (-10 -7 (-15 -3944 ((-1093) |#1|)) (-15 -3944 (|#1| (-1093))) (-15 -3944 ((-771) |#1|))) (-64)) (T -63)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-3241 (((-1071) $) 11 T ELT)) (-3242 (((-1032) $) 12 T ELT)) (-3944 (((-771) $) 13 T ELT) (($ (-1093)) 20 T ELT) (((-1093) $) 19 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-3055 (((-85) $ $) 8 T ELT))) +(-13 (-961) (-654 |t#1|) (-555 |t#1|)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-555 (-484)) . T) ((-555 |#1|) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-582 |#1|) . T) ((-654 |#1|) . T) ((-663) . T) ((-963 |#1|) . T) ((-968 |#1|) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T)) +((-3417 (((-347 |#1|) |#1|) 41 T ELT)) (-3731 (((-347 |#1|) |#1|) 30 T ELT) (((-347 |#1|) |#1| (-583 (-48))) 33 T ELT)) (-1223 (((-85) |#1|) 59 T ELT))) +(((-39 |#1|) (-10 -7 (-15 -3731 ((-347 |#1|) |#1| (-583 (-48)))) (-15 -3731 ((-347 |#1|) |#1|)) (-15 -3417 ((-347 |#1|) |#1|)) (-15 -1223 ((-85) |#1|))) (-1154 (-48))) (T -39)) +((-1223 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-39 *3)) (-4 *3 (-1154 (-48))))) (-3417 (*1 *2 *3) (-12 (-5 *2 (-347 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1154 (-48))))) (-3731 (*1 *2 *3) (-12 (-5 *2 (-347 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1154 (-48))))) (-3731 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-48))) (-5 *2 (-347 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1154 (-48)))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-1646 (((-2 (|:| |num| (-1178 |#2|)) (|:| |den| |#2|)) $) NIL T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL (|has| (-349 |#2|) (-312)) ELT)) (-2063 (($ $) NIL (|has| (-349 |#2|) (-312)) ELT)) (-2061 (((-85) $) NIL (|has| (-349 |#2|) (-312)) ELT)) (-1781 (((-630 (-349 |#2|)) (-1178 $)) NIL T ELT) (((-630 (-349 |#2|))) NIL T ELT)) (-3329 (((-349 |#2|) $) NIL T ELT)) (-1674 (((-1101 (-830) (-694)) (-484)) NIL (|has| (-349 |#2|) (-299)) ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3774 (($ $) NIL (|has| (-349 |#2|) (-312)) ELT)) (-3970 (((-347 $) $) NIL (|has| (-349 |#2|) (-312)) ELT)) (-1607 (((-85) $ $) NIL (|has| (-349 |#2|) (-312)) ELT)) (-3136 (((-694)) NIL (|has| (-349 |#2|) (-319)) ELT)) (-1660 (((-85)) NIL T ELT)) (-1659 (((-85) |#1|) NIL T ELT) (((-85) |#2|) NIL T ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 (-484) #1#) $) NIL (|has| (-349 |#2|) (-950 (-484))) ELT) (((-3 (-349 (-484)) #1#) $) NIL (|has| (-349 |#2|) (-950 (-349 (-484)))) ELT) (((-3 (-349 |#2|) #1#) $) NIL T ELT)) (-3156 (((-484) $) NIL (|has| (-349 |#2|) (-950 (-484))) ELT) (((-349 (-484)) $) NIL (|has| (-349 |#2|) (-950 (-349 (-484)))) ELT) (((-349 |#2|) $) NIL T ELT)) (-1791 (($ (-1178 (-349 |#2|)) (-1178 $)) NIL T ELT) (($ (-1178 (-349 |#2|))) 60 T ELT) (($ (-1178 |#2|) |#2|) 130 T ELT)) (-1672 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-349 |#2|) (-299)) ELT)) (-2564 (($ $ $) NIL (|has| (-349 |#2|) (-312)) ELT)) (-1780 (((-630 (-349 |#2|)) $ (-1178 $)) NIL T ELT) (((-630 (-349 |#2|)) $) NIL T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (|has| (-349 |#2|) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) NIL (|has| (-349 |#2|) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-349 |#2|))) (|:| |vec| (-1178 (-349 |#2|)))) (-630 $) (-1178 $)) NIL T ELT) (((-630 (-349 |#2|)) (-630 $)) NIL T ELT)) (-1651 (((-1178 $) (-1178 $)) NIL T ELT)) (-3841 (($ |#3|) NIL T ELT) (((-3 $ #1#) (-349 |#3|)) NIL (|has| (-349 |#2|) (-312)) ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-1638 (((-583 (-583 |#1|))) NIL (|has| |#1| (-319)) ELT)) (-1663 (((-85) |#1| |#1|) NIL T ELT)) (-3108 (((-830)) NIL T ELT)) (-2994 (($) NIL (|has| (-349 |#2|) (-319)) ELT)) (-1658 (((-85)) NIL T ELT)) (-1657 (((-85) |#1|) NIL T ELT) (((-85) |#2|) NIL T ELT)) (-2563 (($ $ $) NIL (|has| (-349 |#2|) (-312)) ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) NIL (|has| (-349 |#2|) (-312)) ELT)) (-3502 (($ $) NIL T ELT)) (-2833 (($) NIL (|has| (-349 |#2|) (-299)) ELT)) (-1679 (((-85) $) NIL (|has| (-349 |#2|) (-299)) ELT)) (-1763 (($ $ (-694)) NIL (|has| (-349 |#2|) (-299)) ELT) (($ $) NIL (|has| (-349 |#2|) (-299)) ELT)) (-3722 (((-85) $) NIL (|has| (-349 |#2|) (-312)) ELT)) (-3771 (((-830) $) NIL (|has| (-349 |#2|) (-299)) ELT) (((-743 (-830)) $) NIL (|has| (-349 |#2|) (-299)) ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-3376 (((-694)) NIL T ELT)) (-1652 (((-1178 $) (-1178 $)) 105 T ELT)) (-3132 (((-349 |#2|) $) NIL T ELT)) (-1639 (((-583 (-857 |#1|)) (-1089)) NIL (|has| |#1| (-312)) ELT)) (-3444 (((-632 $) $) NIL (|has| (-349 |#2|) (-299)) ELT)) (-1604 (((-3 (-583 $) #1#) (-583 $) $) NIL (|has| (-349 |#2|) (-312)) ELT)) (-2014 ((|#3| $) NIL (|has| (-349 |#2|) (-312)) ELT)) (-2010 (((-830) $) NIL (|has| (-349 |#2|) (-319)) ELT)) (-3079 ((|#3| $) NIL T ELT)) (-2280 (((-630 (-484)) (-1178 $)) NIL (|has| (-349 |#2|) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (|has| (-349 |#2|) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-349 |#2|))) (|:| |vec| (-1178 (-349 |#2|)))) (-1178 $) $) NIL T ELT) (((-630 (-349 |#2|)) (-1178 $)) NIL T ELT)) (-1890 (($ (-583 $)) NIL (|has| (-349 |#2|) (-312)) ELT) (($ $ $) NIL (|has| (-349 |#2|) (-312)) ELT)) (-3242 (((-1072) $) NIL T ELT)) (-1224 (((-1184) (-694)) 83 T ELT)) (-1647 (((-630 (-349 |#2|))) 55 T ELT)) (-1649 (((-630 (-349 |#2|))) 48 T ELT)) (-2484 (($ $) NIL (|has| (-349 |#2|) (-312)) ELT)) (-1644 (($ (-1178 |#2|) |#2|) 131 T ELT)) (-1648 (((-630 (-349 |#2|))) 49 T ELT)) (-1650 (((-630 (-349 |#2|))) 47 T ELT)) (-1643 (((-2 (|:| |num| (-630 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 129 T ELT)) (-1645 (((-2 (|:| |num| (-1178 |#2|)) (|:| |den| |#2|)) $) 67 T ELT)) (-1656 (((-1178 $)) 46 T ELT)) (-3917 (((-1178 $)) 45 T ELT)) (-1655 (((-85) $) NIL T ELT)) (-1654 (((-85) $) NIL T ELT) (((-85) $ |#1|) NIL T ELT) (((-85) $ |#2|) NIL T ELT)) (-3445 (($) NIL (|has| (-349 |#2|) (-299)) CONST)) (-2400 (($ (-830)) NIL (|has| (-349 |#2|) (-319)) ELT)) (-1641 (((-3 |#2| #1#)) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1665 (((-694)) NIL T ELT)) (-2409 (($) NIL T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) NIL (|has| (-349 |#2|) (-312)) ELT)) (-3144 (($ (-583 $)) NIL (|has| (-349 |#2|) (-312)) ELT) (($ $ $) NIL (|has| (-349 |#2|) (-312)) ELT)) (-1675 (((-583 (-2 (|:| -3731 (-484)) (|:| -2401 (-484))))) NIL (|has| (-349 |#2|) (-299)) ELT)) (-3731 (((-347 $) $) NIL (|has| (-349 |#2|) (-312)) ELT)) (-1605 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| (-349 |#2|) (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL (|has| (-349 |#2|) (-312)) ELT)) (-3465 (((-3 $ #1#) $ $) NIL (|has| (-349 |#2|) (-312)) ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL (|has| (-349 |#2|) (-312)) ELT)) (-1606 (((-694) $) NIL (|has| (-349 |#2|) (-312)) ELT)) (-3799 ((|#1| $ |#1| |#1|) NIL T ELT)) (-1642 (((-3 |#2| #1#)) NIL T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL (|has| (-349 |#2|) (-312)) ELT)) (-3756 (((-349 |#2|) (-1178 $)) NIL T ELT) (((-349 |#2|)) 43 T ELT)) (-1764 (((-694) $) NIL (|has| (-349 |#2|) (-299)) ELT) (((-3 (-694) #1#) $ $) NIL (|has| (-349 |#2|) (-299)) ELT)) (-3757 (($ $ (-1 (-349 |#2|) (-349 |#2|))) NIL (|has| (-349 |#2|) (-312)) ELT) (($ $ (-1 (-349 |#2|) (-349 |#2|)) (-694)) NIL (|has| (-349 |#2|) (-312)) ELT) (($ $ (-1 |#2| |#2|)) 125 T ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (OR (-12 (|has| (-349 |#2|) (-312)) (|has| (-349 |#2|) (-809 (-1089)))) (-12 (|has| (-349 |#2|) (-312)) (|has| (-349 |#2|) (-811 (-1089))))) ELT) (($ $ (-1089) (-694)) NIL (OR (-12 (|has| (-349 |#2|) (-312)) (|has| (-349 |#2|) (-809 (-1089)))) (-12 (|has| (-349 |#2|) (-312)) (|has| (-349 |#2|) (-811 (-1089))))) ELT) (($ $ (-583 (-1089))) NIL (OR (-12 (|has| (-349 |#2|) (-312)) (|has| (-349 |#2|) (-809 (-1089)))) (-12 (|has| (-349 |#2|) (-312)) (|has| (-349 |#2|) (-811 (-1089))))) ELT) (($ $ (-1089)) NIL (OR (-12 (|has| (-349 |#2|) (-312)) (|has| (-349 |#2|) (-809 (-1089)))) (-12 (|has| (-349 |#2|) (-312)) (|has| (-349 |#2|) (-811 (-1089))))) ELT) (($ $ (-694)) NIL (OR (-12 (|has| (-349 |#2|) (-190)) (|has| (-349 |#2|) (-312))) (-12 (|has| (-349 |#2|) (-189)) (|has| (-349 |#2|) (-312))) (|has| (-349 |#2|) (-299))) ELT) (($ $) NIL (OR (-12 (|has| (-349 |#2|) (-190)) (|has| (-349 |#2|) (-312))) (-12 (|has| (-349 |#2|) (-189)) (|has| (-349 |#2|) (-312))) (|has| (-349 |#2|) (-299))) ELT)) (-2408 (((-630 (-349 |#2|)) (-1178 $) (-1 (-349 |#2|) (-349 |#2|))) NIL (|has| (-349 |#2|) (-312)) ELT)) (-3185 ((|#3|) 54 T ELT)) (-1673 (($) NIL (|has| (-349 |#2|) (-299)) ELT)) (-3224 (((-1178 (-349 |#2|)) $ (-1178 $)) NIL T ELT) (((-630 (-349 |#2|)) (-1178 $) (-1178 $)) NIL T ELT) (((-1178 (-349 |#2|)) $) 61 T ELT) (((-630 (-349 |#2|)) (-1178 $)) 106 T ELT)) (-3971 (((-1178 (-349 |#2|)) $) NIL T ELT) (($ (-1178 (-349 |#2|))) NIL T ELT) ((|#3| $) NIL T ELT) (($ |#3|) NIL T ELT)) (-2703 (((-3 (-1178 $) #1#) (-630 $)) NIL (|has| (-349 |#2|) (-299)) ELT)) (-1653 (((-1178 $) (-1178 $)) NIL T ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ (-349 |#2|)) NIL T ELT) (($ (-349 (-484))) NIL (OR (|has| (-349 |#2|) (-312)) (|has| (-349 |#2|) (-950 (-349 (-484))))) ELT) (($ $) NIL (|has| (-349 |#2|) (-312)) ELT)) (-2702 (($ $) NIL (|has| (-349 |#2|) (-299)) ELT) (((-632 $) $) NIL (|has| (-349 |#2|) (-118)) ELT)) (-2449 ((|#3| $) NIL T ELT)) (-3126 (((-694)) NIL T CONST)) (-1662 (((-85)) 41 T ELT)) (-1661 (((-85) |#1|) 53 T ELT) (((-85) |#2|) 137 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2012 (((-1178 $)) NIL T ELT)) (-2062 (((-85) $ $) NIL (|has| (-349 |#2|) (-312)) ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-1640 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL T ELT)) (-1664 (((-85)) NIL T ELT)) (-2660 (($) 17 T CONST)) (-2666 (($) 27 T CONST)) (-2669 (($ $ (-1 (-349 |#2|) (-349 |#2|))) NIL (|has| (-349 |#2|) (-312)) ELT) (($ $ (-1 (-349 |#2|) (-349 |#2|)) (-694)) NIL (|has| (-349 |#2|) (-312)) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (OR (-12 (|has| (-349 |#2|) (-312)) (|has| (-349 |#2|) (-809 (-1089)))) (-12 (|has| (-349 |#2|) (-312)) (|has| (-349 |#2|) (-811 (-1089))))) ELT) (($ $ (-1089) (-694)) NIL (OR (-12 (|has| (-349 |#2|) (-312)) (|has| (-349 |#2|) (-809 (-1089)))) (-12 (|has| (-349 |#2|) (-312)) (|has| (-349 |#2|) (-811 (-1089))))) ELT) (($ $ (-583 (-1089))) NIL (OR (-12 (|has| (-349 |#2|) (-312)) (|has| (-349 |#2|) (-809 (-1089)))) (-12 (|has| (-349 |#2|) (-312)) (|has| (-349 |#2|) (-811 (-1089))))) ELT) (($ $ (-1089)) NIL (OR (-12 (|has| (-349 |#2|) (-312)) (|has| (-349 |#2|) (-809 (-1089)))) (-12 (|has| (-349 |#2|) (-312)) (|has| (-349 |#2|) (-811 (-1089))))) ELT) (($ $ (-694)) NIL (OR (-12 (|has| (-349 |#2|) (-190)) (|has| (-349 |#2|) (-312))) (-12 (|has| (-349 |#2|) (-189)) (|has| (-349 |#2|) (-312))) (|has| (-349 |#2|) (-299))) ELT) (($ $) NIL (OR (-12 (|has| (-349 |#2|) (-190)) (|has| (-349 |#2|) (-312))) (-12 (|has| (-349 |#2|) (-189)) (|has| (-349 |#2|) (-312))) (|has| (-349 |#2|) (-299))) ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3948 (($ $ $) NIL (|has| (-349 |#2|) (-312)) ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL (|has| (-349 |#2|) (-312)) ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-349 |#2|)) NIL T ELT) (($ (-349 |#2|) $) NIL T ELT) (($ (-349 (-484)) $) NIL (|has| (-349 |#2|) (-312)) ELT) (($ $ (-349 (-484))) NIL (|has| (-349 |#2|) (-312)) ELT))) +(((-40 |#1| |#2| |#3| |#4|) (-13 (-291 |#1| |#2| |#3|) (-10 -7 (-15 -1224 ((-1184) (-694))))) (-312) (-1154 |#1|) (-1154 (-349 |#2|)) |#3|) (T -40)) +((-1224 (*1 *2 *3) (-12 (-5 *3 (-694)) (-4 *4 (-312)) (-4 *5 (-1154 *4)) (-5 *2 (-1184)) (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1154 (-349 *5))) (-14 *7 *6)))) +((-1225 ((|#2| |#2|) 47 T ELT)) (-1230 ((|#2| |#2|) 136 (-12 (|has| |#2| (-363 |#1|)) (|has| |#1| (-13 (-391) (-950 (-484))))) ELT)) (-1229 ((|#2| |#2|) 100 (-12 (|has| |#2| (-363 |#1|)) (|has| |#1| (-13 (-391) (-950 (-484))))) ELT)) (-1228 ((|#2| |#2|) 101 (-12 (|has| |#2| (-363 |#1|)) (|has| |#1| (-13 (-391) (-950 (-484))))) ELT)) (-1231 ((|#2| (-86) |#2| (-694)) 80 (-12 (|has| |#2| (-363 |#1|)) (|has| |#1| (-13 (-391) (-950 (-484))))) ELT)) (-1227 (((-1084 |#2|) |#2|) 44 T ELT)) (-1226 ((|#2| |#2| (-583 (-550 |#2|))) 18 T ELT) ((|#2| |#2| (-583 |#2|)) 20 T ELT) ((|#2| |#2| |#2|) 21 T ELT) ((|#2| |#2|) 16 T ELT))) +(((-41 |#1| |#2|) (-10 -7 (-15 -1225 (|#2| |#2|)) (-15 -1226 (|#2| |#2|)) (-15 -1226 (|#2| |#2| |#2|)) (-15 -1226 (|#2| |#2| (-583 |#2|))) (-15 -1226 (|#2| |#2| (-583 (-550 |#2|)))) (-15 -1227 ((-1084 |#2|) |#2|)) (IF (|has| |#1| (-13 (-391) (-950 (-484)))) (IF (|has| |#2| (-363 |#1|)) (PROGN (-15 -1228 (|#2| |#2|)) (-15 -1229 (|#2| |#2|)) (-15 -1230 (|#2| |#2|)) (-15 -1231 (|#2| (-86) |#2| (-694)))) |%noBranch|) |%noBranch|)) (-495) (-13 (-312) (-254) (-10 -8 (-15 -2998 ((-1038 |#1| (-550 $)) $)) (-15 -2997 ((-1038 |#1| (-550 $)) $)) (-15 -3945 ($ (-1038 |#1| (-550 $))))))) (T -41)) +((-1231 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-86)) (-5 *4 (-694)) (-4 *5 (-13 (-391) (-950 (-484)))) (-4 *5 (-495)) (-5 *1 (-41 *5 *2)) (-4 *2 (-363 *5)) (-4 *2 (-13 (-312) (-254) (-10 -8 (-15 -2998 ((-1038 *5 (-550 $)) $)) (-15 -2997 ((-1038 *5 (-550 $)) $)) (-15 -3945 ($ (-1038 *5 (-550 $))))))))) (-1230 (*1 *2 *2) (-12 (-4 *3 (-13 (-391) (-950 (-484)))) (-4 *3 (-495)) (-5 *1 (-41 *3 *2)) (-4 *2 (-363 *3)) (-4 *2 (-13 (-312) (-254) (-10 -8 (-15 -2998 ((-1038 *3 (-550 $)) $)) (-15 -2997 ((-1038 *3 (-550 $)) $)) (-15 -3945 ($ (-1038 *3 (-550 $))))))))) (-1229 (*1 *2 *2) (-12 (-4 *3 (-13 (-391) (-950 (-484)))) (-4 *3 (-495)) (-5 *1 (-41 *3 *2)) (-4 *2 (-363 *3)) (-4 *2 (-13 (-312) (-254) (-10 -8 (-15 -2998 ((-1038 *3 (-550 $)) $)) (-15 -2997 ((-1038 *3 (-550 $)) $)) (-15 -3945 ($ (-1038 *3 (-550 $))))))))) (-1228 (*1 *2 *2) (-12 (-4 *3 (-13 (-391) (-950 (-484)))) (-4 *3 (-495)) (-5 *1 (-41 *3 *2)) (-4 *2 (-363 *3)) (-4 *2 (-13 (-312) (-254) (-10 -8 (-15 -2998 ((-1038 *3 (-550 $)) $)) (-15 -2997 ((-1038 *3 (-550 $)) $)) (-15 -3945 ($ (-1038 *3 (-550 $))))))))) (-1227 (*1 *2 *3) (-12 (-4 *4 (-495)) (-5 *2 (-1084 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 (-13 (-312) (-254) (-10 -8 (-15 -2998 ((-1038 *4 (-550 $)) $)) (-15 -2997 ((-1038 *4 (-550 $)) $)) (-15 -3945 ($ (-1038 *4 (-550 $))))))))) (-1226 (*1 *2 *2 *3) (-12 (-5 *3 (-583 (-550 *2))) (-4 *2 (-13 (-312) (-254) (-10 -8 (-15 -2998 ((-1038 *4 (-550 $)) $)) (-15 -2997 ((-1038 *4 (-550 $)) $)) (-15 -3945 ($ (-1038 *4 (-550 $))))))) (-4 *4 (-495)) (-5 *1 (-41 *4 *2)))) (-1226 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-13 (-312) (-254) (-10 -8 (-15 -2998 ((-1038 *4 (-550 $)) $)) (-15 -2997 ((-1038 *4 (-550 $)) $)) (-15 -3945 ($ (-1038 *4 (-550 $))))))) (-4 *4 (-495)) (-5 *1 (-41 *4 *2)))) (-1226 (*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-312) (-254) (-10 -8 (-15 -2998 ((-1038 *3 (-550 $)) $)) (-15 -2997 ((-1038 *3 (-550 $)) $)) (-15 -3945 ($ (-1038 *3 (-550 $))))))))) (-1226 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-312) (-254) (-10 -8 (-15 -2998 ((-1038 *3 (-550 $)) $)) (-15 -2997 ((-1038 *3 (-550 $)) $)) (-15 -3945 ($ (-1038 *3 (-550 $))))))))) (-1225 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-312) (-254) (-10 -8 (-15 -2998 ((-1038 *3 (-550 $)) $)) (-15 -2997 ((-1038 *3 (-550 $)) $)) (-15 -3945 ($ (-1038 *3 (-550 $)))))))))) +((-3731 (((-347 (-1084 |#3|)) (-1084 |#3|) (-583 (-48))) 23 T ELT) (((-347 |#3|) |#3| (-583 (-48))) 19 T ELT))) +(((-42 |#1| |#2| |#3|) (-10 -7 (-15 -3731 ((-347 |#3|) |#3| (-583 (-48)))) (-15 -3731 ((-347 (-1084 |#3|)) (-1084 |#3|) (-583 (-48))))) (-756) (-717) (-861 (-48) |#2| |#1|)) (T -42)) +((-3731 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-48))) (-4 *5 (-756)) (-4 *6 (-717)) (-4 *7 (-861 (-48) *6 *5)) (-5 *2 (-347 (-1084 *7))) (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1084 *7)))) (-3731 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-48))) (-4 *5 (-756)) (-4 *6 (-717)) (-5 *2 (-347 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-861 (-48) *6 *5))))) +((-1235 (((-694) |#2|) 70 T ELT)) (-1233 (((-694) |#2|) 74 T ELT)) (-1248 (((-583 |#2|)) 37 T ELT)) (-1232 (((-694) |#2|) 73 T ELT)) (-1234 (((-694) |#2|) 69 T ELT)) (-1236 (((-694) |#2|) 72 T ELT)) (-1246 (((-583 (-630 |#1|))) 65 T ELT)) (-1241 (((-583 |#2|)) 60 T ELT)) (-1239 (((-583 |#2|) |#2|) 48 T ELT)) (-1243 (((-583 |#2|)) 62 T ELT)) (-1242 (((-583 |#2|)) 61 T ELT)) (-1245 (((-583 (-630 |#1|))) 53 T ELT)) (-1240 (((-583 |#2|)) 59 T ELT)) (-1238 (((-583 |#2|) |#2|) 47 T ELT)) (-1237 (((-583 |#2|)) 55 T ELT)) (-1247 (((-583 (-630 |#1|))) 66 T ELT)) (-1244 (((-583 |#2|)) 64 T ELT)) (-2012 (((-1178 |#2|) (-1178 |#2|)) 99 (|has| |#1| (-258)) ELT))) +(((-43 |#1| |#2|) (-10 -7 (-15 -1232 ((-694) |#2|)) (-15 -1233 ((-694) |#2|)) (-15 -1234 ((-694) |#2|)) (-15 -1235 ((-694) |#2|)) (-15 -1236 ((-694) |#2|)) (-15 -1237 ((-583 |#2|))) (-15 -1238 ((-583 |#2|) |#2|)) (-15 -1239 ((-583 |#2|) |#2|)) (-15 -1240 ((-583 |#2|))) (-15 -1241 ((-583 |#2|))) (-15 -1242 ((-583 |#2|))) (-15 -1243 ((-583 |#2|))) (-15 -1244 ((-583 |#2|))) (-15 -1245 ((-583 (-630 |#1|)))) (-15 -1246 ((-583 (-630 |#1|)))) (-15 -1247 ((-583 (-630 |#1|)))) (-15 -1248 ((-583 |#2|))) (IF (|has| |#1| (-258)) (-15 -2012 ((-1178 |#2|) (-1178 |#2|))) |%noBranch|)) (-495) (-360 |#1|)) (T -43)) +((-2012 (*1 *2 *2) (-12 (-5 *2 (-1178 *4)) (-4 *4 (-360 *3)) (-4 *3 (-258)) (-4 *3 (-495)) (-5 *1 (-43 *3 *4)))) (-1248 (*1 *2) (-12 (-4 *3 (-495)) (-5 *2 (-583 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-360 *3)))) (-1247 (*1 *2) (-12 (-4 *3 (-495)) (-5 *2 (-583 (-630 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-360 *3)))) (-1246 (*1 *2) (-12 (-4 *3 (-495)) (-5 *2 (-583 (-630 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-360 *3)))) (-1245 (*1 *2) (-12 (-4 *3 (-495)) (-5 *2 (-583 (-630 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-360 *3)))) (-1244 (*1 *2) (-12 (-4 *3 (-495)) (-5 *2 (-583 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-360 *3)))) (-1243 (*1 *2) (-12 (-4 *3 (-495)) (-5 *2 (-583 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-360 *3)))) (-1242 (*1 *2) (-12 (-4 *3 (-495)) (-5 *2 (-583 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-360 *3)))) (-1241 (*1 *2) (-12 (-4 *3 (-495)) (-5 *2 (-583 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-360 *3)))) (-1240 (*1 *2) (-12 (-4 *3 (-495)) (-5 *2 (-583 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-360 *3)))) (-1239 (*1 *2 *3) (-12 (-4 *4 (-495)) (-5 *2 (-583 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-360 *4)))) (-1238 (*1 *2 *3) (-12 (-4 *4 (-495)) (-5 *2 (-583 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-360 *4)))) (-1237 (*1 *2) (-12 (-4 *3 (-495)) (-5 *2 (-583 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-360 *3)))) (-1236 (*1 *2 *3) (-12 (-4 *4 (-495)) (-5 *2 (-694)) (-5 *1 (-43 *4 *3)) (-4 *3 (-360 *4)))) (-1235 (*1 *2 *3) (-12 (-4 *4 (-495)) (-5 *2 (-694)) (-5 *1 (-43 *4 *3)) (-4 *3 (-360 *4)))) (-1234 (*1 *2 *3) (-12 (-4 *4 (-495)) (-5 *2 (-694)) (-5 *1 (-43 *4 *3)) (-4 *3 (-360 *4)))) (-1233 (*1 *2 *3) (-12 (-4 *4 (-495)) (-5 *2 (-694)) (-5 *1 (-43 *4 *3)) (-4 *3 (-360 *4)))) (-1232 (*1 *2 *3) (-12 (-4 *4 (-495)) (-5 *2 (-694)) (-5 *1 (-43 *4 *3)) (-4 *3 (-360 *4))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-1771 (((-3 $ #1="failed")) NIL (|has| |#1| (-495)) ELT)) (-1311 (((-3 $ #1#) $ $) NIL T ELT)) (-3223 (((-1178 (-630 |#1|)) (-1178 $)) NIL T ELT) (((-1178 (-630 |#1|))) 24 T ELT)) (-1728 (((-1178 $)) 52 T ELT)) (-3723 (($) NIL T CONST)) (-1905 (((-3 (-2 (|:| |particular| $) (|:| -2012 (-583 $))) #1#)) NIL (|has| |#1| (-495)) ELT)) (-1702 (((-3 $ #1#)) NIL (|has| |#1| (-495)) ELT)) (-1787 (((-630 |#1|) (-1178 $)) NIL T ELT) (((-630 |#1|)) NIL T ELT)) (-1726 ((|#1| $) NIL T ELT)) (-1785 (((-630 |#1|) $ (-1178 $)) NIL T ELT) (((-630 |#1|) $) NIL T ELT)) (-2404 (((-3 $ #1#) $) NIL (|has| |#1| (-495)) ELT)) (-1899 (((-1084 (-857 |#1|))) NIL (|has| |#1| (-312)) ELT)) (-2407 (($ $ (-830)) NIL T ELT)) (-1724 ((|#1| $) NIL T ELT)) (-1704 (((-1084 |#1|) $) NIL (|has| |#1| (-495)) ELT)) (-1789 ((|#1| (-1178 $)) NIL T ELT) ((|#1|) NIL T ELT)) (-1722 (((-1084 |#1|) $) NIL T ELT)) (-1716 (((-85)) 99 T ELT)) (-1791 (($ (-1178 |#1|) (-1178 $)) NIL T ELT) (($ (-1178 |#1|)) NIL T ELT)) (-3466 (((-3 $ #1#) $) 14 (|has| |#1| (-495)) ELT)) (-3108 (((-830)) 53 T ELT)) (-1713 (((-85)) NIL T ELT)) (-2433 (($ $ (-830)) NIL T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-1709 (((-85)) NIL T ELT)) (-1707 (((-85)) NIL T ELT)) (-1711 (((-85)) 101 T ELT)) (-1906 (((-3 (-2 (|:| |particular| $) (|:| -2012 (-583 $))) #1#)) NIL (|has| |#1| (-495)) ELT)) (-1703 (((-3 $ #1#)) NIL (|has| |#1| (-495)) ELT)) (-1788 (((-630 |#1|) (-1178 $)) NIL T ELT) (((-630 |#1|)) NIL T ELT)) (-1727 ((|#1| $) NIL T ELT)) (-1786 (((-630 |#1|) $ (-1178 $)) NIL T ELT) (((-630 |#1|) $) NIL T ELT)) (-2405 (((-3 $ #1#) $) NIL (|has| |#1| (-495)) ELT)) (-1903 (((-1084 (-857 |#1|))) NIL (|has| |#1| (-312)) ELT)) (-2406 (($ $ (-830)) NIL T ELT)) (-1725 ((|#1| $) NIL T ELT)) (-1705 (((-1084 |#1|) $) NIL (|has| |#1| (-495)) ELT)) (-1790 ((|#1| (-1178 $)) NIL T ELT) ((|#1|) NIL T ELT)) (-1723 (((-1084 |#1|) $) NIL T ELT)) (-1717 (((-85)) 98 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-1708 (((-85)) 106 T ELT)) (-1710 (((-85)) 105 T ELT)) (-1712 (((-85)) 107 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1715 (((-85)) 100 T ELT)) (-3799 ((|#1| $ (-484)) 55 T ELT)) (-3224 (((-1178 |#1|) $ (-1178 $)) 48 T ELT) (((-630 |#1|) (-1178 $) (-1178 $)) NIL T ELT) (((-1178 |#1|) $) 28 T ELT) (((-630 |#1|) (-1178 $)) NIL T ELT)) (-3971 (((-1178 |#1|) $) NIL T ELT) (($ (-1178 |#1|)) NIL T ELT)) (-1891 (((-583 (-857 |#1|)) (-1178 $)) NIL T ELT) (((-583 (-857 |#1|))) NIL T ELT)) (-2435 (($ $ $) NIL T ELT)) (-1721 (((-85)) 95 T ELT)) (-3945 (((-772) $) 71 T ELT) (($ (-1178 |#1|)) 22 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2012 (((-1178 $)) 51 T ELT)) (-1706 (((-583 (-1178 |#1|))) NIL (|has| |#1| (-495)) ELT)) (-2436 (($ $ $ $) NIL T ELT)) (-1719 (((-85)) 91 T ELT)) (-2545 (($ (-630 |#1|) $) 18 T ELT)) (-2434 (($ $ $) NIL T ELT)) (-1720 (((-85)) 97 T ELT)) (-1718 (((-85)) 92 T ELT)) (-1714 (((-85)) 90 T ELT)) (-2660 (($) NIL T CONST)) (-3056 (((-85) $ $) NIL T ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 80 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-1055 |#2| |#1|) $) 19 T ELT))) +(((-44 |#1| |#2| |#3| |#4|) (-13 (-360 |#1|) (-590 (-1055 |#2| |#1|)) (-10 -8 (-15 -3945 ($ (-1178 |#1|))))) (-312) (-830) (-583 (-1089)) (-1178 (-630 |#1|))) (T -44)) +((-3945 (*1 *1 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-312)) (-14 *6 (-1178 (-630 *3))) (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-830)) (-14 *5 (-583 (-1089)))))) +((-2568 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3401 (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3794 (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3796 (($ $) NIL T ELT)) (-3598 (($) NIL T ELT) (($ (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2198 (((-1184) $ |#1| |#1|) NIL (|has| $ (-6 -3995)) ELT) (((-1184) $ (-484) (-484)) NIL (|has| $ (-6 -3995)) ELT)) (-3784 (($ $ (-484)) NIL (|has| $ (-6 -3995)) ELT)) (-1731 (((-85) (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (((-85) $) NIL (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-756)) ELT)) (-1729 (($ (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3995)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-756))) ELT)) (-2909 (($ (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ $) NIL (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-756)) ELT)) (-3441 (((-85) $ (-694)) NIL T ELT)) (-3025 (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3995)) ELT)) (-3786 (($ $ $) 34 (|has| $ (-6 -3995)) ELT)) (-3785 (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3995)) ELT)) (-3788 (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) 36 (|has| $ (-6 -3995)) ELT)) (-3787 ((|#2| $ |#1| |#2|) 54 T ELT) (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $ (-484) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3995)) ELT) (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $ (-1145 (-484)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3995)) ELT) (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $ #1="last" (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3995)) ELT) (($ $ #2="rest" $) NIL (|has| $ (-6 -3995)) ELT) (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $ #3="first" (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3995)) ELT) (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $ #4="value" (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3995)) ELT)) (-3026 (($ $ (-583 $)) NIL (|has| $ (-6 -3995)) ELT)) (-1569 (($ (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT) (($ (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3709 (($ (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT) (($ (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT)) (-3795 (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2231 (((-3 |#2| #5="failed") |#1| $) 44 T ELT)) (-3723 (($) NIL T CONST)) (-2297 (($ $) NIL (|has| $ (-6 -3995)) ELT)) (-2298 (($ $) NIL T ELT)) (-3798 (($ $ (-694)) NIL T ELT) (($ $) 30 T ELT)) (-2368 (($ $) NIL (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) ELT)) (-1352 (($ $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT)) (-3404 (($ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-6 -3994)) ELT) (($ (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT) (((-3 |#2| #5#) |#1| $) 57 T ELT) (($ (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) ELT)) (-3405 (($ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT) (($ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT)) (-3841 (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -3994)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3994)) ELT) (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT) (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -3994)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3994)) ELT) (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT)) (-1575 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3995)) ELT) (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $ (-484) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3995)) ELT)) (-3112 ((|#2| $ |#1|) NIL T ELT) (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $ (-484)) NIL T ELT)) (-3442 (((-85) $) NIL T ELT)) (-3418 (((-484) (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (((-484) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) ELT) (((-484) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $ (-484)) NIL (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) ELT)) (-2889 (((-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 21 (|has| $ (-6 -3994)) ELT) (((-583 |#2|) $) NIL (|has| $ (-6 -3994)) ELT) (((-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 21 (|has| $ (-6 -3994)) ELT)) (-3031 (((-583 $) $) NIL T ELT)) (-3027 (((-85) $ $) NIL (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) ELT)) (-3613 (($ (-694) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) NIL T ELT)) (-3718 (((-85) $ (-694)) NIL T ELT)) (-2200 ((|#1| $) NIL (|has| |#1| (-756)) ELT) (((-484) $) 39 (|has| (-484) (-756)) ELT)) (-2531 (($ $ $) NIL (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-756)) ELT)) (-2856 (($ (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $ $) NIL T ELT) (($ $ $) NIL (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-756)) ELT)) (-3517 (($ (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $ $) NIL T ELT) (($ $ $) NIL (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-756)) ELT)) (-2608 (((-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT) (((-583 |#2|) $) NIL (|has| $ (-6 -3994)) ELT) (((-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT)) (-3245 (((-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#2| (-1013))) ELT) (((-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT)) (-2201 ((|#1| $) NIL (|has| |#1| (-756)) ELT) (((-484) $) 41 (|has| (-484) (-756)) ELT)) (-2857 (($ $ $) NIL (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-756)) ELT)) (-1948 (($ (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3995)) ELT) (($ (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT) (($ (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $ $) NIL T ELT) (($ (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3533 (($ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) NIL T ELT)) (-3715 (((-85) $ (-694)) NIL T ELT)) (-3030 (((-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3526 (((-85) $) NIL T ELT)) (-3242 (((-1072) $) 50 (OR (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| |#2| (-1013))) ELT)) (-3797 (($ $ (-694)) NIL T ELT) (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2232 (((-583 |#1|) $) 23 T ELT)) (-2233 (((-85) |#1| $) NIL T ELT)) (-1273 (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3608 (($ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL T ELT) (($ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $ (-484)) NIL T ELT) (($ $ $ (-484)) NIL T ELT)) (-2304 (($ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $ (-484)) NIL T ELT) (($ $ $ (-484)) NIL T ELT)) (-2203 (((-583 |#1|) $) NIL T ELT) (((-583 (-484)) $) NIL T ELT)) (-2204 (((-85) |#1| $) NIL T ELT) (((-85) (-484) $) NIL T ELT)) (-3243 (((-1033) $) NIL (OR (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| |#2| (-1013))) ELT)) (-3800 ((|#2| $) NIL (|has| |#1| (-756)) ELT) (($ $ (-694)) NIL T ELT) (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) 28 T ELT)) (-1353 (((-3 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) #5#) (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (((-3 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) #5#) (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2199 (($ $ |#2|) NIL (|has| $ (-6 -3995)) ELT) (($ $ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3995)) ELT)) (-1274 (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3443 (((-85) $) NIL T ELT)) (-1946 (((-85) (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3994)) ELT) (((-85) (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT)) (-3767 (($ $ (-583 (-249 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-249 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-583 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-249 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-583 (-249 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT)) (-1221 (((-85) $ $) NIL T ELT)) (-2202 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#2| (-1013))) ELT) (((-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT)) (-2205 (((-583 |#2|) $) NIL T ELT) (((-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 20 T ELT)) (-3402 (((-85) $) 19 T ELT)) (-3564 (($) 15 T ELT)) (-3799 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT) (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $ (-484) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) NIL T ELT) (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $ (-484)) NIL T ELT) (($ $ (-1145 (-484))) NIL T ELT) (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $ #3#) NIL T ELT) (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $ #4#) NIL T ELT)) (-3029 (((-484) $ $) NIL T ELT)) (-1465 (($) 14 T ELT) (($ (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1570 (($ $ (-484)) NIL T ELT) (($ $ (-1145 (-484))) NIL T ELT)) (-2305 (($ $ (-484)) NIL T ELT) (($ $ (-1145 (-484))) NIL T ELT)) (-3632 (((-85) $) NIL T ELT)) (-3791 (($ $) NIL T ELT)) (-3789 (($ $) NIL (|has| $ (-6 -3995)) ELT)) (-3792 (((-694) $) NIL T ELT)) (-3793 (($ $) NIL T ELT)) (-1945 (((-694) (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT) (((-694) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (((-694) |#2| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#2| (-1013))) ELT) (((-694) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3994)) ELT) (((-694) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (((-694) (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT)) (-1730 (($ $ $ (-484)) NIL (|has| $ (-6 -3995)) ELT)) (-3399 (($ $) NIL T ELT)) (-3971 (((-473) $) NIL (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-553 (-473))) ELT)) (-3529 (($ (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) NIL T ELT) (($ (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3790 (($ $ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) NIL T ELT) (($ $ $) NIL T ELT)) (-3801 (($ $ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) NIL T ELT) (($ (-583 $)) NIL T ELT) (($ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) 32 T ELT) (($ $ $) NIL T ELT)) (-3945 (((-772) $) NIL (OR (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-552 (-772))) (|has| |#2| (-552 (-772)))) ELT)) (-3521 (((-583 $) $) NIL T ELT)) (-3028 (((-85) $ $) NIL (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) ELT)) (-1264 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1275 (($ (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1222 (((-3 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) #5#) |#1| $) 52 T ELT)) (-1947 (((-85) (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3994)) ELT) (((-85) (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT)) (-2566 (((-85) $ $) NIL (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-756)) ELT)) (-2567 (((-85) $ $) NIL (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-756)) ELT)) (-3056 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-2684 (((-85) $ $) NIL (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-756)) ELT)) (-2685 (((-85) $ $) NIL (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-756)) ELT)) (-3956 (((-694) $) 26 (|has| $ (-6 -3994)) ELT))) +(((-45 |#1| |#2|) (-36 |#1| |#2|) (-1013) (-1013)) (T -45)) +NIL +((-3936 (((-85) $) 12 T ELT)) (-3957 (($ (-1 |#2| |#2|) $) 21 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (($ (-349 (-484)) $) 25 T ELT) (($ $ (-349 (-484))) NIL T ELT))) +(((-46 |#1| |#2| |#3|) (-10 -7 (-15 * (|#1| |#1| (-349 (-484)))) (-15 * (|#1| (-349 (-484)) |#1|)) (-15 -3936 ((-85) |#1|)) (-15 -3957 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-484) |#1|)) (-15 * (|#1| (-694) |#1|)) (-15 * (|#1| (-830) |#1|))) (-47 |#2| |#3|) (-961) (-716)) (T -46)) +NIL +((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) 71 (|has| |#1| (-495)) ELT)) (-2063 (($ $) 72 (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) 74 (|has| |#1| (-495)) ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3723 (($) 23 T CONST)) (-3958 (($ $) 80 T ELT)) (-3466 (((-3 $ "failed") $) 42 T ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3936 (((-85) $) 82 T ELT)) (-2893 (($ |#1| |#2|) 81 T ELT)) (-3957 (($ (-1 |#1| |#1|) $) 83 T ELT)) (-2894 (($ $) 85 T ELT)) (-3174 ((|#1| $) 86 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3465 (((-3 $ "failed") $ $) 70 (|has| |#1| (-495)) ELT)) (-3947 ((|#2| $) 84 T ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ (-349 (-484))) 77 (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $) 69 (|has| |#1| (-495)) ELT) (($ |#1|) 67 (|has| |#1| (-146)) ELT)) (-3676 ((|#1| $ |#2|) 79 T ELT)) (-2702 (((-632 $) $) 68 (|has| |#1| (-118)) ELT)) (-3126 (((-694)) 40 T CONST)) (-1264 (((-85) $ $) 6 T ELT)) (-2062 (((-85) $ $) 73 (|has| |#1| (-495)) ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3948 (($ $ |#1|) 78 (|has| |#1| (-312)) ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 88 T ELT) (($ |#1| $) 87 T ELT) (($ (-349 (-484)) $) 76 (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $ (-349 (-484))) 75 (|has| |#1| (-38 (-349 (-484)))) ELT))) +(((-47 |#1| |#2|) (-113) (-961) (-716)) (T -47)) +((-3174 (*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-716)) (-4 *2 (-961)))) (-2894 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-961)) (-4 *3 (-716)))) (-3947 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-961)) (-4 *2 (-716)))) (-3957 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716)))) (-3936 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716)) (-5 *2 (-85)))) (-2893 (*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-961)) (-4 *3 (-716)))) (-3958 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-961)) (-4 *3 (-716)))) (-3676 (*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-716)) (-4 *2 (-961)))) (-3948 (*1 *1 *1 *2) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-961)) (-4 *3 (-716)) (-4 *2 (-312))))) +(-13 (-961) (-82 |t#1| |t#1|) (-10 -8 (-15 -3174 (|t#1| $)) (-15 -2894 ($ $)) (-15 -3947 (|t#2| $)) (-15 -3957 ($ (-1 |t#1| |t#1|) $)) (-15 -3936 ((-85) $)) (-15 -2893 ($ |t#1| |t#2|)) (-15 -3958 ($ $)) (-15 -3676 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-312)) (-15 -3948 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-146)) (PROGN (-6 (-146)) (-6 (-38 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-495)) (-6 (-495)) |%noBranch|) (IF (|has| |t#1| (-38 (-349 (-484)))) (-6 (-38 (-349 (-484)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) |has| |#1| (-495)) ((-72) . T) ((-82 (-349 (-484)) (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-555 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-555 (-484)) . T) ((-555 |#1|) |has| |#1| (-146)) ((-555 $) |has| |#1| (-495)) ((-552 (-772)) . T) ((-146) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-246) |has| |#1| (-495)) ((-495) |has| |#1| (-495)) ((-13) . T) ((-588 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-590 |#1|) . T) ((-590 $) . T) ((-582 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-582 |#1|) |has| |#1| (-146)) ((-582 $) |has| |#1| (-495)) ((-654 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-654 |#1|) |has| |#1| (-146)) ((-654 $) |has| |#1| (-495)) ((-663) . T) ((-963 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-963 |#1|) . T) ((-963 $) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-968 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-968 |#1|) . T) ((-968 $) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T)) +((-2568 (((-85) $ $) NIL T ELT)) (-1214 (((-583 $) (-1084 $) (-1089)) NIL T ELT) (((-583 $) (-1084 $)) NIL T ELT) (((-583 $) (-857 $)) NIL T ELT)) (-1215 (($ (-1084 $) (-1089)) NIL T ELT) (($ (-1084 $)) NIL T ELT) (($ (-857 $)) NIL T ELT)) (-3188 (((-85) $) 9 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-1599 (((-583 (-550 $)) $) NIL T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-1603 (($ $ (-249 $)) NIL T ELT) (($ $ (-583 (-249 $))) NIL T ELT) (($ $ (-583 (-550 $)) (-583 $)) NIL T ELT)) (-3774 (($ $) NIL T ELT)) (-3970 (((-347 $) $) NIL T ELT)) (-3037 (($ $) NIL T ELT)) (-1607 (((-85) $ $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-1216 (((-583 $) (-1084 $) (-1089)) NIL T ELT) (((-583 $) (-1084 $)) NIL T ELT) (((-583 $) (-857 $)) NIL T ELT)) (-3183 (($ (-1084 $) (-1089)) NIL T ELT) (($ (-1084 $)) NIL T ELT) (($ (-857 $)) NIL T ELT)) (-3157 (((-3 (-550 $) #1#) $) NIL T ELT) (((-3 (-484) #1#) $) NIL T ELT) (((-3 (-349 (-484)) #1#) $) NIL T ELT)) (-3156 (((-550 $) $) NIL T ELT) (((-484) $) NIL T ELT) (((-349 (-484)) $) NIL T ELT)) (-2564 (($ $ $) NIL T ELT)) (-2279 (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) NIL T ELT) (((-630 (-484)) (-630 $)) NIL T ELT) (((-2 (|:| |mat| (-630 (-349 (-484)))) (|:| |vec| (-1178 (-349 (-484))))) (-630 $) (-1178 $)) NIL T ELT) (((-630 (-349 (-484))) (-630 $)) NIL T ELT)) (-3841 (($ $) NIL T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-2563 (($ $ $) NIL T ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-3722 (((-85) $) NIL T ELT)) (-2573 (($ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-1598 (((-583 (-86)) $) NIL T ELT)) (-3594 (((-86) (-86)) NIL T ELT)) (-2410 (((-85) $) 11 T ELT)) (-2673 (((-85) $) NIL (|has| $ (-950 (-484))) ELT)) (-2998 (((-1038 (-484) (-550 $)) $) NIL T ELT)) (-3011 (($ $ (-484)) NIL T ELT)) (-3132 (((-1084 $) (-1084 $) (-550 $)) NIL T ELT) (((-1084 $) (-1084 $) (-583 (-550 $))) NIL T ELT) (($ $ (-550 $)) NIL T ELT) (($ $ (-583 (-550 $))) NIL T ELT)) (-1604 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-1596 (((-1084 $) (-550 $)) NIL (|has| $ (-961)) ELT)) (-3957 (($ (-1 $ $) (-550 $)) NIL T ELT)) (-1601 (((-3 (-550 $) #1#) $) NIL T ELT)) (-2280 (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL T ELT) (((-630 (-484)) (-1178 $)) NIL T ELT) (((-2 (|:| |mat| (-630 (-349 (-484)))) (|:| |vec| (-1178 (-349 (-484))))) (-1178 $) $) NIL T ELT) (((-630 (-349 (-484))) (-1178 $)) NIL T ELT)) (-1890 (($ (-583 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-1600 (((-583 (-550 $)) $) NIL T ELT)) (-2235 (($ (-86) $) NIL T ELT) (($ (-86) (-583 $)) NIL T ELT)) (-2633 (((-85) $ (-86)) NIL T ELT) (((-85) $ (-1089)) NIL T ELT)) (-2484 (($ $) NIL T ELT)) (-2603 (((-694) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3144 (($ (-583 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-1597 (((-85) $ $) NIL T ELT) (((-85) $ (-1089)) NIL T ELT)) (-3731 (((-347 $) $) NIL T ELT)) (-1605 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT)) (-3465 (((-3 $ #1#) $ $) NIL T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-2674 (((-85) $) NIL (|has| $ (-950 (-484))) ELT)) (-3767 (($ $ (-550 $) $) NIL T ELT) (($ $ (-583 (-550 $)) (-583 $)) NIL T ELT) (($ $ (-583 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ (-583 (-1089)) (-583 (-1 $ $))) NIL T ELT) (($ $ (-583 (-1089)) (-583 (-1 $ (-583 $)))) NIL T ELT) (($ $ (-1089) (-1 $ (-583 $))) NIL T ELT) (($ $ (-1089) (-1 $ $)) NIL T ELT) (($ $ (-583 (-86)) (-583 (-1 $ $))) NIL T ELT) (($ $ (-583 (-86)) (-583 (-1 $ (-583 $)))) NIL T ELT) (($ $ (-86) (-1 $ (-583 $))) NIL T ELT) (($ $ (-86) (-1 $ $)) NIL T ELT)) (-1606 (((-694) $) NIL T ELT)) (-3799 (($ (-86) $) NIL T ELT) (($ (-86) $ $) NIL T ELT) (($ (-86) $ $ $) NIL T ELT) (($ (-86) $ $ $ $) NIL T ELT) (($ (-86) (-583 $)) NIL T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL T ELT)) (-1602 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3757 (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-2997 (((-1038 (-484) (-550 $)) $) NIL T ELT)) (-3185 (($ $) NIL (|has| $ (-961)) ELT)) (-3971 (((-329) $) NIL T ELT) (((-179) $) NIL T ELT) (((-142 (-329)) $) NIL T ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-550 $)) NIL T ELT) (($ (-349 (-484))) NIL T ELT) (($ $) NIL T ELT) (($ (-484)) NIL T ELT) (($ (-1038 (-484) (-550 $))) NIL T ELT)) (-3126 (((-694)) NIL T CONST)) (-2590 (($ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-2254 (((-85) (-86)) NIL T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) 6 T CONST)) (-2666 (($) 10 T CONST)) (-2669 (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-3056 (((-85) $ $) 13 T ELT)) (-3948 (($ $ $) NIL T ELT)) (-3836 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (** (($ $ (-349 (-484))) NIL T ELT) (($ $ (-484)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-830)) NIL T ELT)) (* (($ (-349 (-484)) $) NIL T ELT) (($ $ (-349 (-484))) NIL T ELT) (($ $ $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-830) $) NIL T ELT))) +(((-48) (-13 (-254) (-27) (-950 (-484)) (-950 (-349 (-484))) (-580 (-484)) (-933) (-580 (-349 (-484))) (-120) (-553 (-142 (-329))) (-190) (-555 (-1038 (-484) (-550 $))) (-10 -8 (-15 -2998 ((-1038 (-484) (-550 $)) $)) (-15 -2997 ((-1038 (-484) (-550 $)) $)) (-15 -3841 ($ $)) (-15 -3132 ((-1084 $) (-1084 $) (-550 $))) (-15 -3132 ((-1084 $) (-1084 $) (-583 (-550 $)))) (-15 -3132 ($ $ (-550 $))) (-15 -3132 ($ $ (-583 (-550 $))))))) (T -48)) +((-2998 (*1 *2 *1) (-12 (-5 *2 (-1038 (-484) (-550 (-48)))) (-5 *1 (-48)))) (-2997 (*1 *2 *1) (-12 (-5 *2 (-1038 (-484) (-550 (-48)))) (-5 *1 (-48)))) (-3841 (*1 *1 *1) (-5 *1 (-48))) (-3132 (*1 *2 *2 *3) (-12 (-5 *2 (-1084 (-48))) (-5 *3 (-550 (-48))) (-5 *1 (-48)))) (-3132 (*1 *2 *2 *3) (-12 (-5 *2 (-1084 (-48))) (-5 *3 (-583 (-550 (-48)))) (-5 *1 (-48)))) (-3132 (*1 *1 *1 *2) (-12 (-5 *2 (-550 (-48))) (-5 *1 (-48)))) (-3132 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-550 (-48)))) (-5 *1 (-48))))) +((-2568 (((-85) $ $) NIL T ELT)) (-1937 (((-583 (-446)) $) 17 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) 7 T ELT)) (-3233 (((-1094) $) 18 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT))) +(((-49) (-13 (-1013) (-10 -8 (-15 -1937 ((-583 (-446)) $)) (-15 -3233 ((-1094) $))))) (T -49)) +((-1937 (*1 *2 *1) (-12 (-5 *2 (-583 (-446))) (-5 *1 (-49)))) (-3233 (*1 *2 *1) (-12 (-5 *2 (-1094)) (-5 *1 (-49))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) 86 T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-2664 (((-85) $) 31 T ELT)) (-3157 (((-3 |#1| #1#) $) 34 T ELT)) (-3156 ((|#1| $) 35 T ELT)) (-3958 (($ $) 41 T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3174 ((|#1| $) 32 T ELT)) (-1454 (($ $) 75 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-1453 (((-85) $) 44 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2409 (($ (-694)) 73 T ELT)) (-3942 (($ (-583 (-484))) 74 T ELT)) (-3947 (((-694) $) 45 T ELT)) (-3945 (((-772) $) 92 T ELT) (($ (-484)) 70 T ELT) (($ |#1|) 68 T ELT)) (-3676 ((|#1| $ $) 29 T ELT)) (-3126 (((-694)) 72 T CONST)) (-1264 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) 46 T CONST)) (-2666 (($) 17 T CONST)) (-3056 (((-85) $ $) NIL T ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) 65 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 66 T ELT) (($ |#1| $) 59 T ELT))) +(((-50 |#1| |#2|) (-13 (-560 |#1|) (-950 |#1|) (-10 -8 (-15 -3174 (|#1| $)) (-15 -1454 ($ $)) (-15 -3958 ($ $)) (-15 -3676 (|#1| $ $)) (-15 -2409 ($ (-694))) (-15 -3942 ($ (-583 (-484)))) (-15 -1453 ((-85) $)) (-15 -2664 ((-85) $)) (-15 -3947 ((-694) $)) (-15 -3957 ($ (-1 |#1| |#1|) $)))) (-961) (-583 (-1089))) (T -50)) +((-3174 (*1 *2 *1) (-12 (-4 *2 (-961)) (-5 *1 (-50 *2 *3)) (-14 *3 (-583 (-1089))))) (-1454 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-961)) (-14 *3 (-583 (-1089))))) (-3958 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-961)) (-14 *3 (-583 (-1089))))) (-3676 (*1 *2 *1 *1) (-12 (-4 *2 (-961)) (-5 *1 (-50 *2 *3)) (-14 *3 (-583 (-1089))))) (-2409 (*1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-50 *3 *4)) (-4 *3 (-961)) (-14 *4 (-583 (-1089))))) (-3942 (*1 *1 *2) (-12 (-5 *2 (-583 (-484))) (-5 *1 (-50 *3 *4)) (-4 *3 (-961)) (-14 *4 (-583 (-1089))))) (-1453 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-50 *3 *4)) (-4 *3 (-961)) (-14 *4 (-583 (-1089))))) (-2664 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-50 *3 *4)) (-4 *3 (-961)) (-14 *4 (-583 (-1089))))) (-3947 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-50 *3 *4)) (-4 *3 (-961)) (-14 *4 (-583 (-1089))))) (-3957 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-50 *3 *4)) (-14 *4 (-583 (-1089)))))) +((-2568 (((-85) $ $) NIL T ELT)) (-1249 (((-696) $) 8 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1250 (((-1015) $) 10 T ELT)) (-3945 (((-772) $) 15 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-1251 (($ (-1015) (-696)) 16 T ELT)) (-3056 (((-85) $ $) 12 T ELT))) +(((-51) (-13 (-1013) (-10 -8 (-15 -1251 ($ (-1015) (-696))) (-15 -1250 ((-1015) $)) (-15 -1249 ((-696) $))))) (T -51)) +((-1251 (*1 *1 *2 *3) (-12 (-5 *2 (-1015)) (-5 *3 (-696)) (-5 *1 (-51)))) (-1250 (*1 *2 *1) (-12 (-5 *2 (-1015)) (-5 *1 (-51)))) (-1249 (*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-51))))) +((-2664 (((-85) (-51)) 18 T ELT)) (-3157 (((-3 |#1| "failed") (-51)) 20 T ELT)) (-3156 ((|#1| (-51)) 21 T ELT)) (-3945 (((-51) |#1|) 14 T ELT))) +(((-52 |#1|) (-10 -7 (-15 -3945 ((-51) |#1|)) (-15 -3157 ((-3 |#1| "failed") (-51))) (-15 -2664 ((-85) (-51))) (-15 -3156 (|#1| (-51)))) (-1128)) (T -52)) +((-3156 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1128)))) (-2664 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *2 (-85)) (-5 *1 (-52 *4)) (-4 *4 (-1128)))) (-3157 (*1 *2 *3) (|partial| -12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1128)))) (-3945 (*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-52 *3)) (-4 *3 (-1128))))) +((-2545 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16 T ELT))) +(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -2545 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-961) (-590 |#1|) (-761 |#1|)) (T -53)) +((-2545 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-590 *5)) (-4 *5 (-961)) (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-761 *5))))) +((-1253 ((|#3| |#3| (-583 (-1089))) 44 T ELT)) (-1252 ((|#3| (-583 (-987 |#1| |#2| |#3|)) |#3| (-830)) 32 T ELT) ((|#3| (-583 (-987 |#1| |#2| |#3|)) |#3|) 31 T ELT))) +(((-54 |#1| |#2| |#3|) (-10 -7 (-15 -1252 (|#3| (-583 (-987 |#1| |#2| |#3|)) |#3|)) (-15 -1252 (|#3| (-583 (-987 |#1| |#2| |#3|)) |#3| (-830))) (-15 -1253 (|#3| |#3| (-583 (-1089))))) (-1013) (-13 (-961) (-796 |#1|) (-553 (-800 |#1|))) (-13 (-363 |#2|) (-796 |#1|) (-553 (-800 |#1|)))) (T -54)) +((-1253 (*1 *2 *2 *3) (-12 (-5 *3 (-583 (-1089))) (-4 *4 (-1013)) (-4 *5 (-13 (-961) (-796 *4) (-553 (-800 *4)))) (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-363 *5) (-796 *4) (-553 (-800 *4)))))) (-1252 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-583 (-987 *5 *6 *2))) (-5 *4 (-830)) (-4 *5 (-1013)) (-4 *6 (-13 (-961) (-796 *5) (-553 (-800 *5)))) (-4 *2 (-13 (-363 *6) (-796 *5) (-553 (-800 *5)))) (-5 *1 (-54 *5 *6 *2)))) (-1252 (*1 *2 *3 *2) (-12 (-5 *3 (-583 (-987 *4 *5 *2))) (-4 *4 (-1013)) (-4 *5 (-13 (-961) (-796 *4) (-553 (-800 *4)))) (-4 *2 (-13 (-363 *5) (-796 *4) (-553 (-800 *4)))) (-5 *1 (-54 *4 *5 *2))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) 13 T ELT)) (-3157 (((-3 (-694) "failed") $) 31 T ELT)) (-3156 (((-694) $) NIL T ELT)) (-2410 (((-85) $) 15 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) 17 T ELT)) (-3945 (((-772) $) 22 T ELT) (($ (-694)) 28 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-1254 (($) 10 T CONST)) (-3056 (((-85) $ $) 19 T ELT))) +(((-55) (-13 (-1013) (-950 (-694)) (-10 -8 (-15 -1254 ($) -3951) (-15 -3188 ((-85) $)) (-15 -2410 ((-85) $))))) (T -55)) +((-1254 (*1 *1) (-5 *1 (-55))) (-3188 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-55)))) (-2410 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-55))))) +((-1256 (($ $ (-484) |#3|) 46 T ELT)) (-1255 (($ $ (-484) |#4|) 50 T ELT)) (-2889 (((-583 |#2|) $) 41 T ELT)) (-3245 (((-85) |#2| $) 55 T ELT)) (-1946 (((-85) (-1 (-85) |#2|) $) 21 T ELT)) (-3799 ((|#2| $ (-484) (-484)) NIL T ELT) ((|#2| $ (-484) (-484) |#2|) 29 T ELT)) (-1945 (((-694) (-1 (-85) |#2|) $) 35 T ELT) (((-694) |#2| $) 57 T ELT)) (-3945 (((-772) $) 63 T ELT)) (-1947 (((-85) (-1 (-85) |#2|) $) 20 T ELT)) (-3056 (((-85) $ $) 54 T ELT)) (-3956 (((-694) $) 26 T ELT))) +(((-56 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3056 ((-85) |#1| |#1|)) (-15 -3945 ((-772) |#1|)) (-15 -1255 (|#1| |#1| (-484) |#4|)) (-15 -1256 (|#1| |#1| (-484) |#3|)) (-15 -3799 (|#2| |#1| (-484) (-484) |#2|)) (-15 -3799 (|#2| |#1| (-484) (-484))) (-15 -3245 ((-85) |#2| |#1|)) (-15 -1945 ((-694) |#2| |#1|)) (-15 -2889 ((-583 |#2|) |#1|)) (-15 -1945 ((-694) (-1 (-85) |#2|) |#1|)) (-15 -1946 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -1947 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -3956 ((-694) |#1|))) (-57 |#2| |#3| |#4|) (-1128) (-323 |#2|) (-323 |#2|)) (T -56)) +NIL +((-2568 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3787 ((|#1| $ (-484) (-484) |#1|) 48 T ELT)) (-1256 (($ $ (-484) |#2|) 46 T ELT)) (-1255 (($ $ (-484) |#3|) 45 T ELT)) (-3723 (($) 7 T CONST)) (-3111 ((|#2| $ (-484)) 50 T ELT)) (-1575 ((|#1| $ (-484) (-484) |#1|) 47 T ELT)) (-3112 ((|#1| $ (-484) (-484)) 52 T ELT)) (-2889 (((-583 |#1|) $) 30 (|has| $ (-6 -3994)) ELT)) (-3114 (((-694) $) 55 T ELT)) (-3613 (($ (-694) (-694) |#1|) 61 T ELT)) (-3113 (((-694) $) 54 T ELT)) (-3118 (((-484) $) 59 T ELT)) (-3116 (((-484) $) 57 T ELT)) (-2608 (((-583 |#1|) $) 29 (|has| $ (-6 -3994)) ELT)) (-3245 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-3117 (((-484) $) 58 T ELT)) (-3115 (((-484) $) 56 T ELT)) (-1948 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-3957 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 44 T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 43 T ELT)) (-3242 (((-1072) $) 22 (|has| |#1| (-1013)) ELT)) (-3243 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-2199 (($ $ |#1|) 60 T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3994)) ELT)) (-3767 (($ $ (-583 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1221 (((-85) $ $) 11 T ELT)) (-3402 (((-85) $) 8 T ELT)) (-3564 (($) 9 T ELT)) (-3799 ((|#1| $ (-484) (-484)) 53 T ELT) ((|#1| $ (-484) (-484) |#1|) 51 T ELT)) (-1945 (((-694) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3994)) ELT) (((-694) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-3399 (($ $) 10 T ELT)) (-3110 ((|#3| $ (-484)) 49 T ELT)) (-3945 (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-1264 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3994)) ELT)) (-3056 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3956 (((-694) $) 6 (|has| $ (-6 -3994)) ELT))) +(((-57 |#1| |#2| |#3|) (-113) (-1128) (-323 |t#1|) (-323 |t#1|)) (T -57)) +((-3957 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1128)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)))) (-3613 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-694)) (-4 *3 (-1128)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)))) (-2199 (*1 *1 *1 *2) (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1128)) (-4 *3 (-323 *2)) (-4 *4 (-323 *2)))) (-3118 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1128)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)) (-5 *2 (-484)))) (-3117 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1128)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)) (-5 *2 (-484)))) (-3116 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1128)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)) (-5 *2 (-484)))) (-3115 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1128)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)) (-5 *2 (-484)))) (-3114 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1128)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)) (-5 *2 (-694)))) (-3113 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1128)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)) (-5 *2 (-694)))) (-3799 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-484)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-323 *2)) (-4 *5 (-323 *2)) (-4 *2 (-1128)))) (-3112 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-484)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-323 *2)) (-4 *5 (-323 *2)) (-4 *2 (-1128)))) (-3799 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-484)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1128)) (-4 *4 (-323 *2)) (-4 *5 (-323 *2)))) (-3111 (*1 *2 *1 *3) (-12 (-5 *3 (-484)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1128)) (-4 *5 (-323 *4)) (-4 *2 (-323 *4)))) (-3110 (*1 *2 *1 *3) (-12 (-5 *3 (-484)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1128)) (-4 *5 (-323 *4)) (-4 *2 (-323 *4)))) (-3787 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-484)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1128)) (-4 *4 (-323 *2)) (-4 *5 (-323 *2)))) (-1575 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-484)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1128)) (-4 *4 (-323 *2)) (-4 *5 (-323 *2)))) (-1256 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-484)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1128)) (-4 *3 (-323 *4)) (-4 *5 (-323 *4)))) (-1255 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-484)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1128)) (-4 *5 (-323 *4)) (-4 *3 (-323 *4)))) (-1948 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1128)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)))) (-3957 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1128)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)))) (-3957 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1128)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3))))) +(-13 (-428 |t#1|) (-10 -8 (-6 -3995) (-6 -3994) (-15 -3613 ($ (-694) (-694) |t#1|)) (-15 -2199 ($ $ |t#1|)) (-15 -3118 ((-484) $)) (-15 -3117 ((-484) $)) (-15 -3116 ((-484) $)) (-15 -3115 ((-484) $)) (-15 -3114 ((-694) $)) (-15 -3113 ((-694) $)) (-15 -3799 (|t#1| $ (-484) (-484))) (-15 -3112 (|t#1| $ (-484) (-484))) (-15 -3799 (|t#1| $ (-484) (-484) |t#1|)) (-15 -3111 (|t#2| $ (-484))) (-15 -3110 (|t#3| $ (-484))) (-15 -3787 (|t#1| $ (-484) (-484) |t#1|)) (-15 -1575 (|t#1| $ (-484) (-484) |t#1|)) (-15 -1256 ($ $ (-484) |t#2|)) (-15 -1255 ($ $ (-484) |t#3|)) (-15 -3957 ($ (-1 |t#1| |t#1|) $)) (-15 -1948 ($ (-1 |t#1| |t#1|) $)) (-15 -3957 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -3957 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|)))) +(((-34) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1013)) (|has| |#1| (-552 (-772)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-428 |#1|) . T) ((-455 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-1013) |has| |#1| (-1013)) ((-1128) . T)) +((-2568 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2198 (((-1184) $ (-484) (-484)) NIL (|has| $ (-6 -3995)) ELT)) (-1731 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-756)) ELT)) (-1729 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-6 -3995)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-756))) ELT)) (-2909 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-756)) ELT)) (-3787 ((|#1| $ (-484) |#1|) NIL (|has| $ (-6 -3995)) ELT) ((|#1| $ (-1145 (-484)) |#1|) NIL (|has| $ (-6 -3995)) ELT)) (-3709 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3723 (($) NIL T CONST)) (-2297 (($ $) NIL (|has| $ (-6 -3995)) ELT)) (-2298 (($ $) NIL T ELT)) (-1352 (($ $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-3405 (($ |#1| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3841 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3994)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-1575 ((|#1| $ (-484) |#1|) NIL (|has| $ (-6 -3995)) ELT)) (-3112 ((|#1| $ (-484)) NIL T ELT)) (-3418 (((-484) (-1 (-85) |#1|) $) NIL T ELT) (((-484) |#1| $) NIL (|has| |#1| (-1013)) ELT) (((-484) |#1| $ (-484)) NIL (|has| |#1| (-1013)) ELT)) (-2889 (((-583 |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-1257 (($ (-583 |#1|)) 11 T ELT) (($ (-694) |#1|) 14 T ELT)) (-3613 (($ (-694) |#1|) 13 T ELT)) (-2200 (((-484) $) NIL (|has| (-484) (-756)) ELT)) (-2531 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-3517 (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2608 (((-583 |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3245 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-2201 (((-484) $) NIL (|has| (-484) (-756)) ELT)) (-2857 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-1948 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3242 (((-1072) $) NIL (|has| |#1| (-1013)) ELT)) (-2304 (($ |#1| $ (-484)) NIL T ELT) (($ $ $ (-484)) NIL T ELT)) (-2203 (((-583 (-484)) $) NIL T ELT)) (-2204 (((-85) (-484) $) NIL T ELT)) (-3243 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-3800 ((|#1| $) NIL (|has| (-484) (-756)) ELT)) (-1353 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2199 (($ $ |#1|) NIL (|has| $ (-6 -3995)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3767 (($ $ (-583 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1221 (((-85) $ $) NIL T ELT)) (-2202 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-2205 (((-583 |#1|) $) NIL T ELT)) (-3402 (((-85) $) NIL T ELT)) (-3564 (($) NIL T ELT)) (-3799 ((|#1| $ (-484) |#1|) NIL T ELT) ((|#1| $ (-484)) NIL T ELT) (($ $ (-1145 (-484))) NIL T ELT)) (-2305 (($ $ (-484)) NIL T ELT) (($ $ (-1145 (-484))) NIL T ELT)) (-1945 (((-694) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT) (((-694) |#1| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-1730 (($ $ $ (-484)) NIL (|has| $ (-6 -3995)) ELT)) (-3399 (($ $) NIL T ELT)) (-3971 (((-473) $) NIL (|has| |#1| (-553 (-473))) ELT)) (-3529 (($ (-583 |#1|)) 10 T ELT)) (-3801 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3945 (((-772) $) NIL (|has| |#1| (-552 (-772))) ELT)) (-1264 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-2566 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2567 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3056 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2684 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2685 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3956 (((-694) $) NIL (|has| $ (-6 -3994)) ELT))) +(((-58 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -1257 ($ (-583 |#1|))) (-15 -1257 ($ (-694) |#1|)))) (-1128)) (T -58)) +((-1257 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1128)) (-5 *1 (-58 *3)))) (-1257 (*1 *1 *2 *3) (-12 (-5 *2 (-694)) (-5 *1 (-58 *3)) (-4 *3 (-1128))))) +((-3840 (((-58 |#2|) (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|) 16 T ELT)) (-3841 ((|#2| (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|) 18 T ELT)) (-3957 (((-58 |#2|) (-1 |#2| |#1|) (-58 |#1|)) 13 T ELT))) +(((-59 |#1| |#2|) (-10 -7 (-15 -3840 ((-58 |#2|) (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -3841 (|#2| (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -3957 ((-58 |#2|) (-1 |#2| |#1|) (-58 |#1|)))) (-1128) (-1128)) (T -59)) +((-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-58 *5)) (-4 *5 (-1128)) (-4 *6 (-1128)) (-5 *2 (-58 *6)) (-5 *1 (-59 *5 *6)))) (-3841 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-58 *5)) (-4 *5 (-1128)) (-4 *2 (-1128)) (-5 *1 (-59 *5 *2)))) (-3840 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-58 *6)) (-4 *6 (-1128)) (-4 *5 (-1128)) (-5 *2 (-58 *5)) (-5 *1 (-59 *6 *5))))) +((-2568 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3787 ((|#1| $ (-484) (-484) |#1|) NIL T ELT)) (-1256 (($ $ (-484) (-58 |#1|)) NIL T ELT)) (-1255 (($ $ (-484) (-58 |#1|)) NIL T ELT)) (-3723 (($) NIL T CONST)) (-3111 (((-58 |#1|) $ (-484)) NIL T ELT)) (-1575 ((|#1| $ (-484) (-484) |#1|) NIL T ELT)) (-3112 ((|#1| $ (-484) (-484)) NIL T ELT)) (-2889 (((-583 |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3114 (((-694) $) NIL T ELT)) (-3613 (($ (-694) (-694) |#1|) NIL T ELT)) (-3113 (((-694) $) NIL T ELT)) (-3118 (((-484) $) NIL T ELT)) (-3116 (((-484) $) NIL T ELT)) (-2608 (((-583 |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3245 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-3117 (((-484) $) NIL T ELT)) (-3115 (((-484) $) NIL T ELT)) (-1948 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3242 (((-1072) $) NIL (|has| |#1| (-1013)) ELT)) (-3243 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-2199 (($ $ |#1|) NIL T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3767 (($ $ (-583 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1221 (((-85) $ $) NIL T ELT)) (-3402 (((-85) $) NIL T ELT)) (-3564 (($) NIL T ELT)) (-3799 ((|#1| $ (-484) (-484)) NIL T ELT) ((|#1| $ (-484) (-484) |#1|) NIL T ELT)) (-1945 (((-694) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT) (((-694) |#1| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-3399 (($ $) NIL T ELT)) (-3110 (((-58 |#1|) $ (-484)) NIL T ELT)) (-3945 (((-772) $) NIL (|has| |#1| (-552 (-772))) ELT)) (-1264 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3056 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3956 (((-694) $) NIL (|has| $ (-6 -3994)) ELT))) +(((-60 |#1|) (-57 |#1| (-58 |#1|) (-58 |#1|)) (-1128)) (T -60)) +NIL +((-1259 (((-1178 (-630 |#1|)) (-630 |#1|)) 61 T ELT)) (-1258 (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1178 (-583 (-830))))) |#2| (-830)) 49 T ELT)) (-1260 (((-2 (|:| |minor| (-583 (-830))) (|:| -3266 |#2|) (|:| |minors| (-583 (-583 (-830)))) (|:| |ops| (-583 |#2|))) |#2| (-830)) 72 (|has| |#1| (-312)) ELT))) +(((-61 |#1| |#2|) (-10 -7 (-15 -1258 ((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1178 (-583 (-830))))) |#2| (-830))) (-15 -1259 ((-1178 (-630 |#1|)) (-630 |#1|))) (IF (|has| |#1| (-312)) (-15 -1260 ((-2 (|:| |minor| (-583 (-830))) (|:| -3266 |#2|) (|:| |minors| (-583 (-583 (-830)))) (|:| |ops| (-583 |#2|))) |#2| (-830))) |%noBranch|)) (-495) (-600 |#1|)) (T -61)) +((-1260 (*1 *2 *3 *4) (-12 (-4 *5 (-312)) (-4 *5 (-495)) (-5 *2 (-2 (|:| |minor| (-583 (-830))) (|:| -3266 *3) (|:| |minors| (-583 (-583 (-830)))) (|:| |ops| (-583 *3)))) (-5 *1 (-61 *5 *3)) (-5 *4 (-830)) (-4 *3 (-600 *5)))) (-1259 (*1 *2 *3) (-12 (-4 *4 (-495)) (-5 *2 (-1178 (-630 *4))) (-5 *1 (-61 *4 *5)) (-5 *3 (-630 *4)) (-4 *5 (-600 *4)))) (-1258 (*1 *2 *3 *4) (-12 (-4 *5 (-495)) (-5 *2 (-2 (|:| |mat| (-630 *5)) (|:| |vec| (-1178 (-583 (-830)))))) (-5 *1 (-61 *5 *3)) (-5 *4 (-830)) (-4 *3 (-600 *5))))) +((-2568 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3323 ((|#1| $) 42 T ELT)) (-3723 (($) NIL T CONST)) (-3325 ((|#1| |#1| $) 37 T ELT)) (-3324 ((|#1| $) 35 T ELT)) (-2889 (((-583 |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-2608 (((-583 |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3245 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-1948 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3242 (((-1072) $) NIL (|has| |#1| (-1013)) ELT)) (-1273 ((|#1| $) NIL T ELT)) (-3608 (($ |#1| $) 38 T ELT)) (-3243 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-1274 ((|#1| $) 36 T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3767 (($ $ (-583 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1221 (((-85) $ $) NIL T ELT)) (-3402 (((-85) $) 20 T ELT)) (-3564 (($) 46 T ELT)) (-3322 (((-694) $) 33 T ELT)) (-1945 (((-694) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT) (((-694) |#1| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-3399 (($ $) 19 T ELT)) (-3945 (((-772) $) 32 (|has| |#1| (-552 (-772))) ELT)) (-1264 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1275 (($ (-583 |#1|)) NIL T ELT)) (-1261 (($ (-583 |#1|)) 44 T ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3056 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-3956 (((-694) $) 14 (|has| $ (-6 -3994)) ELT))) +(((-62 |#1|) (-13 (-1034 |#1|) (-10 -8 (-15 -1261 ($ (-583 |#1|))))) (-1013)) (T -62)) +((-1261 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1013)) (-5 *1 (-62 *3))))) +((-3945 (((-772) $) 13 T ELT) (($ (-1094)) 9 T ELT) (((-1094) $) 8 T ELT))) +(((-63 |#1|) (-10 -7 (-15 -3945 ((-1094) |#1|)) (-15 -3945 (|#1| (-1094))) (-15 -3945 ((-772) |#1|))) (-64)) (T -63)) +NIL +((-2568 (((-85) $ $) 7 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-1094)) 20 T ELT) (((-1094) $) 19 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-3056 (((-85) $ $) 8 T ELT))) (((-64) (-113)) (T -64)) NIL -(-13 (-1012) (-428 (-1093))) -(((-72) . T) ((-554 (-1093)) . T) ((-551 (-771)) . T) ((-551 (-1093)) . T) ((-428 (-1093)) . T) ((-13) . T) ((-1012) . T) ((-1127) . T)) -((-3486 (($ $) 10 T ELT)) (-3487 (($ $) 12 T ELT))) -(((-65 |#1|) (-10 -7 (-15 -3487 (|#1| |#1|)) (-15 -3486 (|#1| |#1|))) (-66)) (T -65)) +(-13 (-1013) (-429 (-1094))) +(((-72) . T) ((-555 (-1094)) . T) ((-552 (-772)) . T) ((-552 (-1094)) . T) ((-429 (-1094)) . T) ((-13) . T) ((-1013) . T) ((-1128) . T)) +((-3487 (($ $) 10 T ELT)) (-3488 (($ $) 12 T ELT))) +(((-65 |#1|) (-10 -7 (-15 -3488 (|#1| |#1|)) (-15 -3487 (|#1| |#1|))) (-66)) (T -65)) NIL -((-3484 (($ $) 11 T ELT)) (-3482 (($ $) 10 T ELT)) (-3486 (($ $) 9 T ELT)) (-3487 (($ $) 8 T ELT)) (-3485 (($ $) 7 T ELT)) (-3483 (($ $) 6 T ELT))) +((-3485 (($ $) 11 T ELT)) (-3483 (($ $) 10 T ELT)) (-3487 (($ $) 9 T ELT)) (-3488 (($ $) 8 T ELT)) (-3486 (($ $) 7 T ELT)) (-3484 (($ $) 6 T ELT))) (((-66) (-113)) (T -66)) -((-3484 (*1 *1 *1) (-4 *1 (-66))) (-3482 (*1 *1 *1) (-4 *1 (-66))) (-3486 (*1 *1 *1) (-4 *1 (-66))) (-3487 (*1 *1 *1) (-4 *1 (-66))) (-3485 (*1 *1 *1) (-4 *1 (-66))) (-3483 (*1 *1 *1) (-4 *1 (-66)))) -(-13 (-10 -8 (-15 -3483 ($ $)) (-15 -3485 ($ $)) (-15 -3487 ($ $)) (-15 -3486 ($ $)) (-15 -3482 ($ $)) (-15 -3484 ($ $)))) -((-2567 (((-85) $ $) NIL T ELT)) (-3540 (((-1047) $) 11 T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3944 (((-771) $) 17 T ELT) (($ (-1093)) NIL T ELT) (((-1093) $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-67) (-13 (-994) (-10 -8 (-15 -3540 ((-1047) $))))) (T -67)) -((-3540 (*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-67))))) +((-3485 (*1 *1 *1) (-4 *1 (-66))) (-3483 (*1 *1 *1) (-4 *1 (-66))) (-3487 (*1 *1 *1) (-4 *1 (-66))) (-3488 (*1 *1 *1) (-4 *1 (-66))) (-3486 (*1 *1 *1) (-4 *1 (-66))) (-3484 (*1 *1 *1) (-4 *1 (-66)))) +(-13 (-10 -8 (-15 -3484 ($ $)) (-15 -3486 ($ $)) (-15 -3488 ($ $)) (-15 -3487 ($ $)) (-15 -3483 ($ $)) (-15 -3485 ($ $)))) +((-2568 (((-85) $ $) NIL T ELT)) (-3541 (((-1048) $) 11 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) 17 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT))) +(((-67) (-13 (-995) (-10 -8 (-15 -3541 ((-1048) $))))) (T -67)) +((-3541 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-67))))) NIL (((-68) (-113)) (T -68)) NIL -(-13 (-10 -7 (-6 -3993) (-6 (-3995 "*")) (-6 -3994) (-6 -3990) (-6 -3988) (-6 -3987) (-6 -3986) (-6 -3991) (-6 -3985) (-6 -3984) (-6 -3983) (-6 -3982) (-6 -3981) (-6 -3989) (-6 -3992) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -3980))) -((-2567 (((-85) $ $) NIL T ELT)) (-3722 (($) NIL T CONST)) (-3465 (((-3 $ "failed") $) NIL T ELT)) (-2409 (((-85) $) NIL T ELT)) (-1261 (($ (-1 |#1| |#1|)) 27 T ELT) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 26 T ELT) (($ (-1 |#1| |#1| (-483))) 24 T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-2483 (($ $) 16 T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3798 ((|#1| $ |#1|) 13 T ELT)) (-3008 (($ $ $) NIL T ELT)) (-2434 (($ $ $) NIL T ELT)) (-3944 (((-771) $) 22 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2665 (($) 8 T CONST)) (-3055 (((-85) $ $) 10 T ELT)) (-3947 (($ $ $) NIL T ELT)) (** (($ $ (-829)) 30 T ELT) (($ $ (-693)) NIL T ELT) (($ $ (-483)) 18 T ELT)) (* (($ $ $) 31 T ELT))) -(((-69 |#1|) (-13 (-411) (-241 |#1| |#1|) (-10 -8 (-15 -1261 ($ (-1 |#1| |#1|))) (-15 -1261 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -1261 ($ (-1 |#1| |#1| (-483)))))) (-960)) (T -69)) -((-1261 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-960)) (-5 *1 (-69 *3)))) (-1261 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-960)) (-5 *1 (-69 *3)))) (-1261 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-483))) (-4 *3 (-960)) (-5 *1 (-69 *3))))) -((-1262 (((-346 |#2|) |#2| (-582 |#2|)) 10 T ELT) (((-346 |#2|) |#2| |#2|) 11 T ELT))) -(((-70 |#1| |#2|) (-10 -7 (-15 -1262 ((-346 |#2|) |#2| |#2|)) (-15 -1262 ((-346 |#2|) |#2| (-582 |#2|)))) (-13 (-390) (-120)) (-1153 |#1|)) (T -70)) -((-1262 (*1 *2 *3 *4) (-12 (-5 *4 (-582 *3)) (-4 *3 (-1153 *5)) (-4 *5 (-13 (-390) (-120))) (-5 *2 (-346 *3)) (-5 *1 (-70 *5 *3)))) (-1262 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-390) (-120))) (-5 *2 (-346 *3)) (-5 *1 (-70 *4 *3)) (-4 *3 (-1153 *4))))) -((-2567 (((-85) $ $) 13 T ELT)) (-1263 (((-85) $ $) 14 T ELT)) (-3055 (((-85) $ $) 11 T ELT))) -(((-71 |#1|) (-10 -7 (-15 -1263 ((-85) |#1| |#1|)) (-15 -2567 ((-85) |#1| |#1|)) (-15 -3055 ((-85) |#1| |#1|))) (-72)) (T -71)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-3055 (((-85) $ $) 8 T ELT))) +(-13 (-10 -7 (-6 -3994) (-6 (-3996 "*")) (-6 -3995) (-6 -3991) (-6 -3989) (-6 -3988) (-6 -3987) (-6 -3992) (-6 -3986) (-6 -3985) (-6 -3984) (-6 -3983) (-6 -3982) (-6 -3990) (-6 -3993) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -3981))) +((-2568 (((-85) $ $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-3466 (((-3 $ "failed") $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-1262 (($ (-1 |#1| |#1|)) 27 T ELT) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 26 T ELT) (($ (-1 |#1| |#1| (-484))) 24 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2484 (($ $) 16 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3799 ((|#1| $ |#1|) 13 T ELT)) (-3009 (($ $ $) NIL T ELT)) (-2435 (($ $ $) NIL T ELT)) (-3945 (((-772) $) 22 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2666 (($) 8 T CONST)) (-3056 (((-85) $ $) 10 T ELT)) (-3948 (($ $ $) NIL T ELT)) (** (($ $ (-830)) 30 T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) 18 T ELT)) (* (($ $ $) 31 T ELT))) +(((-69 |#1|) (-13 (-412) (-241 |#1| |#1|) (-10 -8 (-15 -1262 ($ (-1 |#1| |#1|))) (-15 -1262 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -1262 ($ (-1 |#1| |#1| (-484)))))) (-961)) (T -69)) +((-1262 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-69 *3)))) (-1262 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-69 *3)))) (-1262 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-484))) (-4 *3 (-961)) (-5 *1 (-69 *3))))) +((-1263 (((-347 |#2|) |#2| (-583 |#2|)) 10 T ELT) (((-347 |#2|) |#2| |#2|) 11 T ELT))) +(((-70 |#1| |#2|) (-10 -7 (-15 -1263 ((-347 |#2|) |#2| |#2|)) (-15 -1263 ((-347 |#2|) |#2| (-583 |#2|)))) (-13 (-391) (-120)) (-1154 |#1|)) (T -70)) +((-1263 (*1 *2 *3 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-1154 *5)) (-4 *5 (-13 (-391) (-120))) (-5 *2 (-347 *3)) (-5 *1 (-70 *5 *3)))) (-1263 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-391) (-120))) (-5 *2 (-347 *3)) (-5 *1 (-70 *4 *3)) (-4 *3 (-1154 *4))))) +((-2568 (((-85) $ $) 13 T ELT)) (-1264 (((-85) $ $) 14 T ELT)) (-3056 (((-85) $ $) 11 T ELT))) +(((-71 |#1|) (-10 -7 (-15 -1264 ((-85) |#1| |#1|)) (-15 -2568 ((-85) |#1| |#1|)) (-15 -3056 ((-85) |#1| |#1|))) (-72)) (T -71)) +NIL +((-2568 (((-85) $ $) 7 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-3056 (((-85) $ $) 8 T ELT))) (((-72) (-113)) (T -72)) -((-3055 (*1 *2 *1 *1) (-12 (-4 *1 (-72)) (-5 *2 (-85)))) (-2567 (*1 *2 *1 *1) (-12 (-4 *1 (-72)) (-5 *2 (-85)))) (-1263 (*1 *2 *1 *1) (-12 (-4 *1 (-72)) (-5 *2 (-85))))) -(-13 (-1127) (-10 -8 (-15 -3055 ((-85) $ $)) (-15 -2567 ((-85) $ $)) (-15 -1263 ((-85) $ $)))) -(((-13) . T) ((-1127) . T)) -((-2567 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3400 ((|#1| $) NIL T ELT)) (-3024 ((|#1| $ |#1|) 24 (|has| $ (-6 -3994)) ELT)) (-1291 (($ $ $) NIL (|has| $ (-6 -3994)) ELT)) (-1292 (($ $ $) NIL (|has| $ (-6 -3994)) ELT)) (-1266 (($ $ (-582 |#1|)) 30 T ELT)) (-3786 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3994)) ELT) (($ $ #2="left" $) NIL (|has| $ (-6 -3994)) ELT) (($ $ #3="right" $) NIL (|has| $ (-6 -3994)) ELT)) (-3025 (($ $ (-582 $)) NIL (|has| $ (-6 -3994)) ELT)) (-3722 (($) NIL T CONST)) (-3136 (($ $) 12 T ELT)) (-2888 (((-582 |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3030 (((-582 $) $) NIL T ELT)) (-3026 (((-85) $ $) NIL (|has| |#1| (-1012)) ELT)) (-1300 (($ $ |#1| $) 32 T ELT)) (-2607 (((-582 |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3244 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#1| (-1012))) ELT)) (-1265 ((|#1| $ (-1 |#1| |#1| |#1|)) 40 T ELT) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 45 T ELT)) (-1264 (($ $ |#1| (-1 |#1| |#1| |#1|)) 46 T ELT) (($ $ |#1| (-1 (-582 |#1|) |#1| |#1| |#1|)) 49 T ELT)) (-1947 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3956 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3137 (($ $) 11 T ELT)) (-3029 (((-582 |#1|) $) NIL T ELT)) (-3525 (((-85) $) 13 T ELT)) (-3241 (((-1071) $) NIL (|has| |#1| (-1012)) ELT)) (-3242 (((-1032) $) NIL (|has| |#1| (-1012)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3766 (($ $ (-582 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-582 |#1|) (-582 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-3401 (((-85) $) 9 T ELT)) (-3563 (($) 31 T ELT)) (-3798 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3028 (((-483) $ $) NIL T ELT)) (-3631 (((-85) $) NIL T ELT)) (-1944 (((-693) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3993)) ELT) (((-693) |#1| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#1| (-1012))) ELT)) (-3398 (($ $) NIL T ELT)) (-3944 (((-771) $) NIL (|has| |#1| (-551 (-771))) ELT)) (-3520 (((-582 $) $) NIL T ELT)) (-3027 (((-85) $ $) NIL (|has| |#1| (-1012)) ELT)) (-1263 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1267 (($ (-693) |#1|) 33 T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3055 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3955 (((-693) $) NIL (|has| $ (-6 -3993)) ELT))) -(((-73 |#1|) (-13 (-98 |#1|) (-10 -8 (-6 -3993) (-6 -3994) (-15 -1267 ($ (-693) |#1|)) (-15 -1266 ($ $ (-582 |#1|))) (-15 -1265 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -1265 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -1264 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -1264 ($ $ |#1| (-1 (-582 |#1|) |#1| |#1| |#1|))))) (-1012)) (T -73)) -((-1267 (*1 *1 *2 *3) (-12 (-5 *2 (-693)) (-5 *1 (-73 *3)) (-4 *3 (-1012)))) (-1266 (*1 *1 *1 *2) (-12 (-5 *2 (-582 *3)) (-4 *3 (-1012)) (-5 *1 (-73 *3)))) (-1265 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-73 *2)) (-4 *2 (-1012)))) (-1265 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1012)) (-5 *1 (-73 *3)))) (-1264 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1012)) (-5 *1 (-73 *2)))) (-1264 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-582 *2) *2 *2 *2)) (-4 *2 (-1012)) (-5 *1 (-73 *2))))) -((-1268 ((|#3| |#2| |#2|) 34 T ELT)) (-1270 ((|#1| |#2| |#2|) 46 (|has| |#1| (-6 (-3995 #1="*"))) ELT)) (-1269 ((|#3| |#2| |#2|) 36 T ELT)) (-1271 ((|#1| |#2|) 53 (|has| |#1| (-6 (-3995 #1#))) ELT))) -(((-74 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1268 (|#3| |#2| |#2|)) (-15 -1269 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-3995 "*"))) (PROGN (-15 -1270 (|#1| |#2| |#2|)) (-15 -1271 (|#1| |#2|))) |%noBranch|)) (-960) (-1153 |#1|) (-626 |#1| |#4| |#5|) (-322 |#1|) (-322 |#1|)) (T -74)) -((-1271 (*1 *2 *3) (-12 (|has| *2 (-6 (-3995 #1="*"))) (-4 *5 (-322 *2)) (-4 *6 (-322 *2)) (-4 *2 (-960)) (-5 *1 (-74 *2 *3 *4 *5 *6)) (-4 *3 (-1153 *2)) (-4 *4 (-626 *2 *5 *6)))) (-1270 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-3995 #1#))) (-4 *5 (-322 *2)) (-4 *6 (-322 *2)) (-4 *2 (-960)) (-5 *1 (-74 *2 *3 *4 *5 *6)) (-4 *3 (-1153 *2)) (-4 *4 (-626 *2 *5 *6)))) (-1269 (*1 *2 *3 *3) (-12 (-4 *4 (-960)) (-4 *2 (-626 *4 *5 *6)) (-5 *1 (-74 *4 *3 *2 *5 *6)) (-4 *3 (-1153 *4)) (-4 *5 (-322 *4)) (-4 *6 (-322 *4)))) (-1268 (*1 *2 *3 *3) (-12 (-4 *4 (-960)) (-4 *2 (-626 *4 *5 *6)) (-5 *1 (-74 *4 *3 *2 *5 *6)) (-4 *3 (-1153 *4)) (-4 *5 (-322 *4)) (-4 *6 (-322 *4))))) -((-1274 (($ (-582 |#2|)) 11 T ELT))) -(((-75 |#1| |#2|) (-10 -7 (-15 -1274 (|#1| (-582 |#2|)))) (-76 |#2|) (-1127)) (T -75)) -NIL -((-2567 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3722 (($) 7 T CONST)) (-2888 (((-582 |#1|) $) 30 (|has| $ (-6 -3993)) ELT)) (-2607 (((-582 |#1|) $) 29 (|has| $ (-6 -3993)) ELT)) (-3244 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3993))) ELT)) (-1947 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3994)) ELT)) (-3956 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3241 (((-1071) $) 22 (|has| |#1| (-1012)) ELT)) (-1272 ((|#1| $) 43 T ELT)) (-3607 (($ |#1| $) 44 T ELT)) (-3242 (((-1032) $) 21 (|has| |#1| (-1012)) ELT)) (-1273 ((|#1| $) 45 T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3993)) ELT)) (-3766 (($ $ (-582 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-582 |#1|) (-582 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT)) (-1220 (((-85) $ $) 11 T ELT)) (-3401 (((-85) $) 8 T ELT)) (-3563 (($) 9 T ELT)) (-1944 (((-693) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3993)) ELT) (((-693) |#1| $) 28 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3993))) ELT)) (-3398 (($ $) 10 T ELT)) (-3944 (((-771) $) 17 (|has| |#1| (-551 (-771))) ELT)) (-1263 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1274 (($ (-582 |#1|)) 46 T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3993)) ELT)) (-3055 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3955 (((-693) $) 6 (|has| $ (-6 -3993)) ELT))) -(((-76 |#1|) (-113) (-1127)) (T -76)) -((-1274 (*1 *1 *2) (-12 (-5 *2 (-582 *3)) (-4 *3 (-1127)) (-4 *1 (-76 *3)))) (-1273 (*1 *2 *1) (-12 (-4 *1 (-76 *2)) (-4 *2 (-1127)))) (-3607 (*1 *1 *2 *1) (-12 (-4 *1 (-76 *2)) (-4 *2 (-1127)))) (-1272 (*1 *2 *1) (-12 (-4 *1 (-76 *2)) (-4 *2 (-1127))))) -(-13 (-427 |t#1|) (-10 -8 (-6 -3994) (-15 -1274 ($ (-582 |t#1|))) (-15 -1273 (|t#1| $)) (-15 -3607 ($ |t#1| $)) (-15 -1272 (|t#1| $)))) -(((-34) . T) ((-72) OR (|has| |#1| (-1012)) (|has| |#1| (-72))) ((-551 (-771)) OR (|has| |#1| (-1012)) (|has| |#1| (-551 (-771)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ((-427 |#1|) . T) ((-454 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ((-13) . T) ((-1012) |has| |#1| (-1012)) ((-1127) . T)) -((-2567 (((-85) $ $) NIL T ELT)) (-3187 (((-85) $) NIL T ELT)) (-3128 (((-483) $) NIL (|has| (-483) (-258)) ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3980 $) (|:| |associate| $)) $) NIL T ELT)) (-2062 (($ $) NIL T ELT)) (-2060 (((-85) $) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2706 (((-346 (-1083 $)) (-1083 $)) NIL (|has| (-483) (-820)) ELT)) (-3773 (($ $) NIL T ELT)) (-3969 (((-346 $) $) NIL T ELT)) (-2703 (((-3 (-582 (-1083 $)) #1#) (-582 (-1083 $)) (-1083 $)) NIL (|has| (-483) (-820)) ELT)) (-1606 (((-85) $ $) NIL T ELT)) (-3621 (((-483) $) NIL (|has| (-483) (-739)) ELT)) (-3722 (($) NIL T CONST)) (-3156 (((-3 (-483) #1#) $) NIL T ELT) (((-3 (-1088) #1#) $) NIL (|has| (-483) (-949 (-1088))) ELT) (((-3 (-348 (-483)) #1#) $) NIL (|has| (-483) (-949 (-483))) ELT) (((-3 (-483) #1#) $) NIL (|has| (-483) (-949 (-483))) ELT)) (-3155 (((-483) $) NIL T ELT) (((-1088) $) NIL (|has| (-483) (-949 (-1088))) ELT) (((-348 (-483)) $) NIL (|has| (-483) (-949 (-483))) ELT) (((-483) $) NIL (|has| (-483) (-949 (-483))) ELT)) (-2563 (($ $ $) NIL T ELT)) (-2278 (((-629 (-483)) (-629 $)) NIL (|has| (-483) (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-629 $) (-1177 $)) NIL (|has| (-483) (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-629 $) (-1177 $)) NIL T ELT) (((-629 (-483)) (-629 $)) NIL T ELT)) (-3465 (((-3 $ #1#) $) NIL T ELT)) (-2993 (($) NIL (|has| (-483) (-482)) ELT)) (-2562 (($ $ $) NIL T ELT)) (-2740 (((-2 (|:| -3952 (-582 $)) (|:| -2408 $)) (-582 $)) NIL T ELT)) (-3721 (((-85) $) NIL T ELT)) (-3185 (((-85) $) NIL (|has| (-483) (-739)) ELT)) (-2795 (((-797 (-483) $) $ (-799 (-483)) (-797 (-483) $)) NIL (|has| (-483) (-795 (-483))) ELT) (((-797 (-328) $) $ (-799 (-328)) (-797 (-328) $)) NIL (|has| (-483) (-795 (-328))) ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-2409 (((-85) $) NIL T ELT)) (-2995 (($ $) NIL T ELT)) (-2997 (((-483) $) NIL T ELT)) (-3443 (((-631 $) $) NIL (|has| (-483) (-1064)) ELT)) (-3186 (((-85) $) NIL (|has| (-483) (-739)) ELT)) (-1603 (((-3 (-582 $) #1#) (-582 $) $) NIL T ELT)) (-2530 (($ $ $) NIL (|has| (-483) (-755)) ELT)) (-2856 (($ $ $) NIL (|has| (-483) (-755)) ELT)) (-3956 (($ (-1 (-483) (-483)) $) NIL T ELT)) (-2279 (((-629 (-483)) (-1177 $)) NIL (|has| (-483) (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL (|has| (-483) (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL T ELT) (((-629 (-483)) (-1177 $)) NIL T ELT)) (-1889 (($ $ $) NIL T ELT) (($ (-582 $)) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-2483 (($ $) NIL T ELT)) (-3444 (($) NIL (|has| (-483) (-1064)) CONST)) (-3242 (((-1032) $) NIL T ELT)) (-2707 (((-1083 $) (-1083 $) (-1083 $)) NIL T ELT)) (-3143 (($ $ $) NIL T ELT) (($ (-582 $)) NIL T ELT)) (-3127 (($ $) NIL (|has| (-483) (-258)) ELT) (((-348 (-483)) $) NIL T ELT)) (-3129 (((-483) $) NIL (|has| (-483) (-482)) ELT)) (-2704 (((-346 (-1083 $)) (-1083 $)) NIL (|has| (-483) (-820)) ELT)) (-2705 (((-346 (-1083 $)) (-1083 $)) NIL (|has| (-483) (-820)) ELT)) (-3730 (((-346 $) $) NIL T ELT)) (-1604 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3464 (((-3 $ #1#) $ $) NIL T ELT)) (-2739 (((-631 (-582 $)) (-582 $) $) NIL T ELT)) (-3766 (($ $ (-582 (-483)) (-582 (-483))) NIL (|has| (-483) (-260 (-483))) ELT) (($ $ (-483) (-483)) NIL (|has| (-483) (-260 (-483))) ELT) (($ $ (-249 (-483))) NIL (|has| (-483) (-260 (-483))) ELT) (($ $ (-582 (-249 (-483)))) NIL (|has| (-483) (-260 (-483))) ELT) (($ $ (-582 (-1088)) (-582 (-483))) NIL (|has| (-483) (-454 (-1088) (-483))) ELT) (($ $ (-1088) (-483)) NIL (|has| (-483) (-454 (-1088) (-483))) ELT)) (-1605 (((-693) $) NIL T ELT)) (-3798 (($ $ (-483)) NIL (|has| (-483) (-241 (-483) (-483))) ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL T ELT)) (-3756 (($ $ (-1 (-483) (-483))) NIL T ELT) (($ $ (-1 (-483) (-483)) (-693)) NIL T ELT) (($ $ (-1088)) NIL (|has| (-483) (-810 (-1088))) ELT) (($ $ (-582 (-1088))) NIL (|has| (-483) (-810 (-1088))) ELT) (($ $ (-1088) (-693)) NIL (|has| (-483) (-810 (-1088))) ELT) (($ $ (-582 (-1088)) (-582 (-693))) NIL (|has| (-483) (-810 (-1088))) ELT) (($ $) NIL (|has| (-483) (-189)) ELT) (($ $ (-693)) NIL (|has| (-483) (-189)) ELT)) (-2994 (($ $) NIL T ELT)) (-2996 (((-483) $) NIL T ELT)) (-3970 (((-799 (-483)) $) NIL (|has| (-483) (-552 (-799 (-483)))) ELT) (((-799 (-328)) $) NIL (|has| (-483) (-552 (-799 (-328)))) ELT) (((-472) $) NIL (|has| (-483) (-552 (-472))) ELT) (((-328) $) NIL (|has| (-483) (-932)) ELT) (((-179) $) NIL (|has| (-483) (-932)) ELT)) (-2702 (((-3 (-1177 $) #1#) (-629 $)) NIL (-12 (|has| $ (-118)) (|has| (-483) (-820))) ELT)) (-3944 (((-771) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ $) NIL T ELT) (($ (-348 (-483))) 8 T ELT) (($ (-483)) NIL T ELT) (($ (-1088)) NIL (|has| (-483) (-949 (-1088))) ELT) (((-348 (-483)) $) NIL T ELT) (((-916 2) $) 10 T ELT)) (-2701 (((-631 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-483) (-820))) (|has| (-483) (-118))) ELT)) (-3125 (((-693)) NIL T CONST)) (-3130 (((-483) $) NIL (|has| (-483) (-482)) ELT)) (-2028 (($ (-348 (-483))) 9 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2061 (((-85) $ $) NIL T ELT)) (-3124 (((-85) $ $) NIL T ELT)) (-3381 (($ $) NIL (|has| (-483) (-739)) ELT)) (-2659 (($) NIL T CONST)) (-2665 (($) NIL T CONST)) (-2668 (($ $ (-1 (-483) (-483))) NIL T ELT) (($ $ (-1 (-483) (-483)) (-693)) NIL T ELT) (($ $ (-1088)) NIL (|has| (-483) (-810 (-1088))) ELT) (($ $ (-582 (-1088))) NIL (|has| (-483) (-810 (-1088))) ELT) (($ $ (-1088) (-693)) NIL (|has| (-483) (-810 (-1088))) ELT) (($ $ (-582 (-1088)) (-582 (-693))) NIL (|has| (-483) (-810 (-1088))) ELT) (($ $) NIL (|has| (-483) (-189)) ELT) (($ $ (-693)) NIL (|has| (-483) (-189)) ELT)) (-2565 (((-85) $ $) NIL (|has| (-483) (-755)) ELT)) (-2566 (((-85) $ $) NIL (|has| (-483) (-755)) ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-2683 (((-85) $ $) NIL (|has| (-483) (-755)) ELT)) (-2684 (((-85) $ $) NIL (|has| (-483) (-755)) ELT)) (-3947 (($ $ $) NIL T ELT) (($ (-483) (-483)) NIL T ELT)) (-3835 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3837 (($ $ $) NIL T ELT)) (** (($ $ (-829)) NIL T ELT) (($ $ (-693)) NIL T ELT) (($ $ (-483)) NIL T ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-348 (-483))) NIL T ELT) (($ (-348 (-483)) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ (-483)) NIL T ELT))) -(((-77) (-13 (-903 (-483)) (-551 (-348 (-483))) (-551 (-916 2)) (-10 -8 (-15 -3127 ((-348 (-483)) $)) (-15 -2028 ($ (-348 (-483))))))) (T -77)) -((-3127 (*1 *2 *1) (-12 (-5 *2 (-348 (-483))) (-5 *1 (-77)))) (-2028 (*1 *1 *2) (-12 (-5 *2 (-348 (-483))) (-5 *1 (-77))))) -((-1286 (((-582 (-875)) $) 14 T ELT)) (-3540 (((-445) $) 12 T ELT)) (-3944 (((-771) $) 21 T ELT)) (-1275 (($ (-445) (-582 (-875))) 16 T ELT))) -(((-78) (-13 (-551 (-771)) (-10 -8 (-15 -3540 ((-445) $)) (-15 -1286 ((-582 (-875)) $)) (-15 -1275 ($ (-445) (-582 (-875))))))) (T -78)) -((-3540 (*1 *2 *1) (-12 (-5 *2 (-445)) (-5 *1 (-78)))) (-1286 (*1 *2 *1) (-12 (-5 *2 (-582 (-875))) (-5 *1 (-78)))) (-1275 (*1 *1 *2 *3) (-12 (-5 *2 (-445)) (-5 *3 (-582 (-875))) (-5 *1 (-78))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3798 ((|#1| $ |#1| |#1|) 8 T ELT)) (-3944 (((-771) $) NIL T ELT)) (-1276 (($ (-1 |#1| |#1| |#1|)) 7 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-79 |#1|) (-13 (-80 |#1|) (-1012) (-10 -8 (-15 -1276 ($ (-1 |#1| |#1| |#1|))))) (-1127)) (T -79)) -((-1276 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *3 (-1127)) (-5 *1 (-79 *3))))) -((-3798 ((|#1| $ |#1| |#1|) 6 T ELT))) -(((-80 |#1|) (-113) (-1127)) (T -80)) +((-3056 (*1 *2 *1 *1) (-12 (-4 *1 (-72)) (-5 *2 (-85)))) (-2568 (*1 *2 *1 *1) (-12 (-4 *1 (-72)) (-5 *2 (-85)))) (-1264 (*1 *2 *1 *1) (-12 (-4 *1 (-72)) (-5 *2 (-85))))) +(-13 (-1128) (-10 -8 (-15 -3056 ((-85) $ $)) (-15 -2568 ((-85) $ $)) (-15 -1264 ((-85) $ $)))) +(((-13) . T) ((-1128) . T)) +((-2568 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3401 ((|#1| $) NIL T ELT)) (-3025 ((|#1| $ |#1|) 24 (|has| $ (-6 -3995)) ELT)) (-1292 (($ $ $) NIL (|has| $ (-6 -3995)) ELT)) (-1293 (($ $ $) NIL (|has| $ (-6 -3995)) ELT)) (-1267 (($ $ (-583 |#1|)) 30 T ELT)) (-3787 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3995)) ELT) (($ $ #2="left" $) NIL (|has| $ (-6 -3995)) ELT) (($ $ #3="right" $) NIL (|has| $ (-6 -3995)) ELT)) (-3026 (($ $ (-583 $)) NIL (|has| $ (-6 -3995)) ELT)) (-3723 (($) NIL T CONST)) (-3137 (($ $) 12 T ELT)) (-2889 (((-583 |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3031 (((-583 $) $) NIL T ELT)) (-3027 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-1301 (($ $ |#1| $) 32 T ELT)) (-2608 (((-583 |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3245 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-1266 ((|#1| $ (-1 |#1| |#1| |#1|)) 40 T ELT) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 45 T ELT)) (-1265 (($ $ |#1| (-1 |#1| |#1| |#1|)) 46 T ELT) (($ $ |#1| (-1 (-583 |#1|) |#1| |#1| |#1|)) 49 T ELT)) (-1948 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3138 (($ $) 11 T ELT)) (-3030 (((-583 |#1|) $) NIL T ELT)) (-3526 (((-85) $) 13 T ELT)) (-3242 (((-1072) $) NIL (|has| |#1| (-1013)) ELT)) (-3243 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3767 (($ $ (-583 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1221 (((-85) $ $) NIL T ELT)) (-3402 (((-85) $) 9 T ELT)) (-3564 (($) 31 T ELT)) (-3799 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3029 (((-484) $ $) NIL T ELT)) (-3632 (((-85) $) NIL T ELT)) (-1945 (((-694) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT) (((-694) |#1| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-3399 (($ $) NIL T ELT)) (-3945 (((-772) $) NIL (|has| |#1| (-552 (-772))) ELT)) (-3521 (((-583 $) $) NIL T ELT)) (-3028 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-1264 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1268 (($ (-694) |#1|) 33 T ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3056 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3956 (((-694) $) NIL (|has| $ (-6 -3994)) ELT))) +(((-73 |#1|) (-13 (-98 |#1|) (-10 -8 (-6 -3994) (-6 -3995) (-15 -1268 ($ (-694) |#1|)) (-15 -1267 ($ $ (-583 |#1|))) (-15 -1266 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -1266 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -1265 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -1265 ($ $ |#1| (-1 (-583 |#1|) |#1| |#1| |#1|))))) (-1013)) (T -73)) +((-1268 (*1 *1 *2 *3) (-12 (-5 *2 (-694)) (-5 *1 (-73 *3)) (-4 *3 (-1013)))) (-1267 (*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1013)) (-5 *1 (-73 *3)))) (-1266 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-73 *2)) (-4 *2 (-1013)))) (-1266 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1013)) (-5 *1 (-73 *3)))) (-1265 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1013)) (-5 *1 (-73 *2)))) (-1265 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-583 *2) *2 *2 *2)) (-4 *2 (-1013)) (-5 *1 (-73 *2))))) +((-1269 ((|#3| |#2| |#2|) 34 T ELT)) (-1271 ((|#1| |#2| |#2|) 46 (|has| |#1| (-6 (-3996 #1="*"))) ELT)) (-1270 ((|#3| |#2| |#2|) 36 T ELT)) (-1272 ((|#1| |#2|) 53 (|has| |#1| (-6 (-3996 #1#))) ELT))) +(((-74 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1269 (|#3| |#2| |#2|)) (-15 -1270 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-3996 "*"))) (PROGN (-15 -1271 (|#1| |#2| |#2|)) (-15 -1272 (|#1| |#2|))) |%noBranch|)) (-961) (-1154 |#1|) (-627 |#1| |#4| |#5|) (-323 |#1|) (-323 |#1|)) (T -74)) +((-1272 (*1 *2 *3) (-12 (|has| *2 (-6 (-3996 #1="*"))) (-4 *5 (-323 *2)) (-4 *6 (-323 *2)) (-4 *2 (-961)) (-5 *1 (-74 *2 *3 *4 *5 *6)) (-4 *3 (-1154 *2)) (-4 *4 (-627 *2 *5 *6)))) (-1271 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-3996 #1#))) (-4 *5 (-323 *2)) (-4 *6 (-323 *2)) (-4 *2 (-961)) (-5 *1 (-74 *2 *3 *4 *5 *6)) (-4 *3 (-1154 *2)) (-4 *4 (-627 *2 *5 *6)))) (-1270 (*1 *2 *3 *3) (-12 (-4 *4 (-961)) (-4 *2 (-627 *4 *5 *6)) (-5 *1 (-74 *4 *3 *2 *5 *6)) (-4 *3 (-1154 *4)) (-4 *5 (-323 *4)) (-4 *6 (-323 *4)))) (-1269 (*1 *2 *3 *3) (-12 (-4 *4 (-961)) (-4 *2 (-627 *4 *5 *6)) (-5 *1 (-74 *4 *3 *2 *5 *6)) (-4 *3 (-1154 *4)) (-4 *5 (-323 *4)) (-4 *6 (-323 *4))))) +((-1275 (($ (-583 |#2|)) 11 T ELT))) +(((-75 |#1| |#2|) (-10 -7 (-15 -1275 (|#1| (-583 |#2|)))) (-76 |#2|) (-1128)) (T -75)) +NIL +((-2568 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3723 (($) 7 T CONST)) (-2889 (((-583 |#1|) $) 30 (|has| $ (-6 -3994)) ELT)) (-2608 (((-583 |#1|) $) 29 (|has| $ (-6 -3994)) ELT)) (-3245 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-1948 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3242 (((-1072) $) 22 (|has| |#1| (-1013)) ELT)) (-1273 ((|#1| $) 43 T ELT)) (-3608 (($ |#1| $) 44 T ELT)) (-3243 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-1274 ((|#1| $) 45 T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3994)) ELT)) (-3767 (($ $ (-583 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1221 (((-85) $ $) 11 T ELT)) (-3402 (((-85) $) 8 T ELT)) (-3564 (($) 9 T ELT)) (-1945 (((-694) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3994)) ELT) (((-694) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-3399 (($ $) 10 T ELT)) (-3945 (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-1264 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1275 (($ (-583 |#1|)) 46 T ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3994)) ELT)) (-3056 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3956 (((-694) $) 6 (|has| $ (-6 -3994)) ELT))) +(((-76 |#1|) (-113) (-1128)) (T -76)) +((-1275 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1128)) (-4 *1 (-76 *3)))) (-1274 (*1 *2 *1) (-12 (-4 *1 (-76 *2)) (-4 *2 (-1128)))) (-3608 (*1 *1 *2 *1) (-12 (-4 *1 (-76 *2)) (-4 *2 (-1128)))) (-1273 (*1 *2 *1) (-12 (-4 *1 (-76 *2)) (-4 *2 (-1128))))) +(-13 (-428 |t#1|) (-10 -8 (-6 -3995) (-15 -1275 ($ (-583 |t#1|))) (-15 -1274 (|t#1| $)) (-15 -3608 ($ |t#1| $)) (-15 -1273 (|t#1| $)))) +(((-34) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1013)) (|has| |#1| (-552 (-772)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-428 |#1|) . T) ((-455 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-1013) |has| |#1| (-1013)) ((-1128) . T)) +((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-3129 (((-484) $) NIL (|has| (-484) (-258)) ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2707 (((-347 (-1084 $)) (-1084 $)) NIL (|has| (-484) (-821)) ELT)) (-3774 (($ $) NIL T ELT)) (-3970 (((-347 $) $) NIL T ELT)) (-2704 (((-3 (-583 (-1084 $)) #1#) (-583 (-1084 $)) (-1084 $)) NIL (|has| (-484) (-821)) ELT)) (-1607 (((-85) $ $) NIL T ELT)) (-3622 (((-484) $) NIL (|has| (-484) (-740)) ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 (-484) #1#) $) NIL T ELT) (((-3 (-1089) #1#) $) NIL (|has| (-484) (-950 (-1089))) ELT) (((-3 (-349 (-484)) #1#) $) NIL (|has| (-484) (-950 (-484))) ELT) (((-3 (-484) #1#) $) NIL (|has| (-484) (-950 (-484))) ELT)) (-3156 (((-484) $) NIL T ELT) (((-1089) $) NIL (|has| (-484) (-950 (-1089))) ELT) (((-349 (-484)) $) NIL (|has| (-484) (-950 (-484))) ELT) (((-484) $) NIL (|has| (-484) (-950 (-484))) ELT)) (-2564 (($ $ $) NIL T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (|has| (-484) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) NIL (|has| (-484) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) NIL T ELT) (((-630 (-484)) (-630 $)) NIL T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-2994 (($) NIL (|has| (-484) (-483)) ELT)) (-2563 (($ $ $) NIL T ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-3722 (((-85) $) NIL T ELT)) (-3186 (((-85) $) NIL (|has| (-484) (-740)) ELT)) (-2796 (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) NIL (|has| (-484) (-796 (-484))) ELT) (((-798 (-329) $) $ (-800 (-329)) (-798 (-329) $)) NIL (|has| (-484) (-796 (-329))) ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2996 (($ $) NIL T ELT)) (-2998 (((-484) $) NIL T ELT)) (-3444 (((-632 $) $) NIL (|has| (-484) (-1065)) ELT)) (-3187 (((-85) $) NIL (|has| (-484) (-740)) ELT)) (-1604 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2531 (($ $ $) NIL (|has| (-484) (-756)) ELT)) (-2857 (($ $ $) NIL (|has| (-484) (-756)) ELT)) (-3957 (($ (-1 (-484) (-484)) $) NIL T ELT)) (-2280 (((-630 (-484)) (-1178 $)) NIL (|has| (-484) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (|has| (-484) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL T ELT) (((-630 (-484)) (-1178 $)) NIL T ELT)) (-1890 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2484 (($ $) NIL T ELT)) (-3445 (($) NIL (|has| (-484) (-1065)) CONST)) (-3243 (((-1033) $) NIL T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3144 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3128 (($ $) NIL (|has| (-484) (-258)) ELT) (((-349 (-484)) $) NIL T ELT)) (-3130 (((-484) $) NIL (|has| (-484) (-483)) ELT)) (-2705 (((-347 (-1084 $)) (-1084 $)) NIL (|has| (-484) (-821)) ELT)) (-2706 (((-347 (-1084 $)) (-1084 $)) NIL (|has| (-484) (-821)) ELT)) (-3731 (((-347 $) $) NIL T ELT)) (-1605 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3465 (((-3 $ #1#) $ $) NIL T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-3767 (($ $ (-583 (-484)) (-583 (-484))) NIL (|has| (-484) (-260 (-484))) ELT) (($ $ (-484) (-484)) NIL (|has| (-484) (-260 (-484))) ELT) (($ $ (-249 (-484))) NIL (|has| (-484) (-260 (-484))) ELT) (($ $ (-583 (-249 (-484)))) NIL (|has| (-484) (-260 (-484))) ELT) (($ $ (-583 (-1089)) (-583 (-484))) NIL (|has| (-484) (-455 (-1089) (-484))) ELT) (($ $ (-1089) (-484)) NIL (|has| (-484) (-455 (-1089) (-484))) ELT)) (-1606 (((-694) $) NIL T ELT)) (-3799 (($ $ (-484)) NIL (|has| (-484) (-241 (-484) (-484))) ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL T ELT)) (-3757 (($ $ (-1 (-484) (-484))) NIL T ELT) (($ $ (-1 (-484) (-484)) (-694)) NIL T ELT) (($ $ (-1089)) NIL (|has| (-484) (-811 (-1089))) ELT) (($ $ (-583 (-1089))) NIL (|has| (-484) (-811 (-1089))) ELT) (($ $ (-1089) (-694)) NIL (|has| (-484) (-811 (-1089))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (|has| (-484) (-811 (-1089))) ELT) (($ $) NIL (|has| (-484) (-189)) ELT) (($ $ (-694)) NIL (|has| (-484) (-189)) ELT)) (-2995 (($ $) NIL T ELT)) (-2997 (((-484) $) NIL T ELT)) (-3971 (((-800 (-484)) $) NIL (|has| (-484) (-553 (-800 (-484)))) ELT) (((-800 (-329)) $) NIL (|has| (-484) (-553 (-800 (-329)))) ELT) (((-473) $) NIL (|has| (-484) (-553 (-473))) ELT) (((-329) $) NIL (|has| (-484) (-933)) ELT) (((-179) $) NIL (|has| (-484) (-933)) ELT)) (-2703 (((-3 (-1178 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| (-484) (-821))) ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-349 (-484))) 8 T ELT) (($ (-484)) NIL T ELT) (($ (-1089)) NIL (|has| (-484) (-950 (-1089))) ELT) (((-349 (-484)) $) NIL T ELT) (((-917 2) $) 10 T ELT)) (-2702 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-484) (-821))) (|has| (-484) (-118))) ELT)) (-3126 (((-694)) NIL T CONST)) (-3131 (((-484) $) NIL (|has| (-484) (-483)) ELT)) (-2029 (($ (-349 (-484))) 9 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-3382 (($ $) NIL (|has| (-484) (-740)) ELT)) (-2660 (($) NIL T CONST)) (-2666 (($) NIL T CONST)) (-2669 (($ $ (-1 (-484) (-484))) NIL T ELT) (($ $ (-1 (-484) (-484)) (-694)) NIL T ELT) (($ $ (-1089)) NIL (|has| (-484) (-811 (-1089))) ELT) (($ $ (-583 (-1089))) NIL (|has| (-484) (-811 (-1089))) ELT) (($ $ (-1089) (-694)) NIL (|has| (-484) (-811 (-1089))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (|has| (-484) (-811 (-1089))) ELT) (($ $) NIL (|has| (-484) (-189)) ELT) (($ $ (-694)) NIL (|has| (-484) (-189)) ELT)) (-2566 (((-85) $ $) NIL (|has| (-484) (-756)) ELT)) (-2567 (((-85) $ $) NIL (|has| (-484) (-756)) ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL (|has| (-484) (-756)) ELT)) (-2685 (((-85) $ $) NIL (|has| (-484) (-756)) ELT)) (-3948 (($ $ $) NIL T ELT) (($ (-484) (-484)) NIL T ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-349 (-484))) NIL T ELT) (($ (-349 (-484)) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ (-484)) NIL T ELT))) +(((-77) (-13 (-904 (-484)) (-552 (-349 (-484))) (-552 (-917 2)) (-10 -8 (-15 -3128 ((-349 (-484)) $)) (-15 -2029 ($ (-349 (-484))))))) (T -77)) +((-3128 (*1 *2 *1) (-12 (-5 *2 (-349 (-484))) (-5 *1 (-77)))) (-2029 (*1 *1 *2) (-12 (-5 *2 (-349 (-484))) (-5 *1 (-77))))) +((-1287 (((-583 (-876)) $) 14 T ELT)) (-3541 (((-446) $) 12 T ELT)) (-3945 (((-772) $) 21 T ELT)) (-1276 (($ (-446) (-583 (-876))) 16 T ELT))) +(((-78) (-13 (-552 (-772)) (-10 -8 (-15 -3541 ((-446) $)) (-15 -1287 ((-583 (-876)) $)) (-15 -1276 ($ (-446) (-583 (-876))))))) (T -78)) +((-3541 (*1 *2 *1) (-12 (-5 *2 (-446)) (-5 *1 (-78)))) (-1287 (*1 *2 *1) (-12 (-5 *2 (-583 (-876))) (-5 *1 (-78)))) (-1276 (*1 *1 *2 *3) (-12 (-5 *2 (-446)) (-5 *3 (-583 (-876))) (-5 *1 (-78))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3799 ((|#1| $ |#1| |#1|) 8 T ELT)) (-3945 (((-772) $) NIL T ELT)) (-1277 (($ (-1 |#1| |#1| |#1|)) 7 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT))) +(((-79 |#1|) (-13 (-80 |#1|) (-1013) (-10 -8 (-15 -1277 ($ (-1 |#1| |#1| |#1|))))) (-1128)) (T -79)) +((-1277 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *3 (-1128)) (-5 *1 (-79 *3))))) +((-3799 ((|#1| $ |#1| |#1|) 6 T ELT))) +(((-80 |#1|) (-113) (-1128)) (T -80)) NIL (-13 (|MappingCategory| |t#1| |t#1| |t#1|)) -(((|MappingCategory| |#1| |#1| |#1|) . T) ((-1127) . T)) -((-2567 (((-85) $ $) NIL T ELT)) (-2312 (($ $) NIL T ELT)) (-3320 (($ $ $) NIL T ELT)) (-2197 (((-1183) $ (-483) (-483)) NIL (|has| $ (-6 -3994)) ELT)) (-1730 (((-85) $) NIL (|has| (-85) (-755)) ELT) (((-85) (-1 (-85) (-85) (-85)) $) NIL T ELT)) (-1728 (($ $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-85) (-755))) ELT) (($ (-1 (-85) (-85) (-85)) $) NIL (|has| $ (-6 -3994)) ELT)) (-2908 (($ $) NIL (|has| (-85) (-755)) ELT) (($ (-1 (-85) (-85) (-85)) $) NIL T ELT)) (-3786 (((-85) $ (-1144 (-483)) (-85)) NIL (|has| $ (-6 -3994)) ELT) (((-85) $ (-483) (-85)) NIL (|has| $ (-6 -3994)) ELT)) (-3708 (($ (-1 (-85) (-85)) $) NIL (|has| $ (-6 -3993)) ELT)) (-3722 (($) NIL T CONST)) (-2296 (($ $) NIL (|has| $ (-6 -3994)) ELT)) (-2297 (($ $) NIL T ELT)) (-1351 (($ $) NIL (-12 (|has| $ (-6 -3993)) (|has| (-85) (-1012))) ELT)) (-3404 (($ (-1 (-85) (-85)) $) NIL (|has| $ (-6 -3993)) ELT) (($ (-85) $) NIL (-12 (|has| $ (-6 -3993)) (|has| (-85) (-1012))) ELT)) (-3840 (((-85) (-1 (-85) (-85) (-85)) $) NIL (|has| $ (-6 -3993)) ELT) (((-85) (-1 (-85) (-85) (-85)) $ (-85)) NIL (|has| $ (-6 -3993)) ELT) (((-85) (-1 (-85) (-85) (-85)) $ (-85) (-85)) NIL (-12 (|has| $ (-6 -3993)) (|has| (-85) (-1012))) ELT)) (-1574 (((-85) $ (-483) (-85)) NIL (|has| $ (-6 -3994)) ELT)) (-3111 (((-85) $ (-483)) NIL T ELT)) (-3417 (((-483) (-85) $ (-483)) NIL (|has| (-85) (-1012)) ELT) (((-483) (-85) $) NIL (|has| (-85) (-1012)) ELT) (((-483) (-1 (-85) (-85)) $) NIL T ELT)) (-2888 (((-582 (-85)) $) NIL (|has| $ (-6 -3993)) ELT)) (-2560 (($ $ $) NIL T ELT)) (-2559 (($ $) NIL T ELT)) (-1298 (($ $ $) NIL T ELT)) (-3612 (($ (-693) (-85)) 10 T ELT)) (-1299 (($ $ $) NIL T ELT)) (-2199 (((-483) $) NIL (|has| (-483) (-755)) ELT)) (-2530 (($ $ $) NIL T ELT)) (-3516 (($ $ $) NIL (|has| (-85) (-755)) ELT) (($ (-1 (-85) (-85) (-85)) $ $) NIL T ELT)) (-2607 (((-582 (-85)) $) NIL (|has| $ (-6 -3993)) ELT)) (-3244 (((-85) (-85) $) NIL (-12 (|has| $ (-6 -3993)) (|has| (-85) (-1012))) ELT)) (-2200 (((-483) $) NIL (|has| (-483) (-755)) ELT)) (-2856 (($ $ $) NIL T ELT)) (-1947 (($ (-1 (-85) (-85)) $) NIL (|has| $ (-6 -3994)) ELT)) (-3956 (($ (-1 (-85) (-85) (-85)) $ $) NIL T ELT) (($ (-1 (-85) (-85)) $) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-2303 (($ $ $ (-483)) NIL T ELT) (($ (-85) $ (-483)) NIL T ELT)) (-2202 (((-582 (-483)) $) NIL T ELT)) (-2203 (((-85) (-483) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3799 (((-85) $) NIL (|has| (-483) (-755)) ELT)) (-1352 (((-3 (-85) "failed") (-1 (-85) (-85)) $) NIL T ELT)) (-2198 (($ $ (-85)) NIL (|has| $ (-6 -3994)) ELT)) (-1945 (((-85) (-1 (-85) (-85)) $) NIL (|has| $ (-6 -3993)) ELT)) (-3766 (($ $ (-582 (-85)) (-582 (-85))) NIL (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1012))) ELT) (($ $ (-85) (-85)) NIL (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1012))) ELT) (($ $ (-249 (-85))) NIL (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1012))) ELT) (($ $ (-582 (-249 (-85)))) NIL (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1012))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-2201 (((-85) (-85) $) NIL (-12 (|has| $ (-6 -3993)) (|has| (-85) (-1012))) ELT)) (-2204 (((-582 (-85)) $) NIL T ELT)) (-3401 (((-85) $) NIL T ELT)) (-3563 (($) NIL T ELT)) (-3798 (($ $ (-1144 (-483))) NIL T ELT) (((-85) $ (-483)) NIL T ELT) (((-85) $ (-483) (-85)) NIL T ELT)) (-2304 (($ $ (-1144 (-483))) NIL T ELT) (($ $ (-483)) NIL T ELT)) (-1944 (((-693) (-85) $) NIL (-12 (|has| $ (-6 -3993)) (|has| (-85) (-1012))) ELT) (((-693) (-1 (-85) (-85)) $) NIL (|has| $ (-6 -3993)) ELT)) (-1729 (($ $ $ (-483)) NIL (|has| $ (-6 -3994)) ELT)) (-3398 (($ $) NIL T ELT)) (-3970 (((-472) $) NIL (|has| (-85) (-552 (-472))) ELT)) (-3528 (($ (-582 (-85))) NIL T ELT)) (-3800 (($ (-582 $)) NIL T ELT) (($ $ $) NIL T ELT) (($ (-85) $) NIL T ELT) (($ $ (-85)) NIL T ELT)) (-3944 (((-771) $) NIL T ELT)) (-1767 (($ (-693) (-85)) 11 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-1946 (((-85) (-1 (-85) (-85)) $) NIL (|has| $ (-6 -3993)) ELT)) (-2561 (($ $ $) NIL T ELT)) (-2310 (($ $ $) NIL T ELT)) (-2565 (((-85) $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-2683 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2311 (($ $ $) NIL T ELT)) (-3955 (((-693) $) NIL (|has| $ (-6 -3993)) ELT))) -(((-81) (-13 (-96) (-10 -8 (-15 -1767 ($ (-693) (-85)))))) (T -81)) -((-1767 (*1 *1 *2 *3) (-12 (-5 *2 (-693)) (-5 *3 (-85)) (-5 *1 (-81))))) -((-2567 (((-85) $ $) 7 T ELT)) (-3187 (((-85) $) 22 T ELT)) (-1310 (((-3 $ "failed") $ $) 26 T ELT)) (-3722 (($) 23 T CONST)) (-1212 (((-85) $ $) 20 T ELT)) (-3241 (((-1071) $) 11 T ELT)) (-3242 (((-1032) $) 12 T ELT)) (-3944 (((-771) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2659 (($) 24 T CONST)) (-3055 (((-85) $ $) 8 T ELT)) (-3835 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3837 (($ $ $) 18 T ELT)) (* (($ (-829) $) 17 T ELT) (($ (-693) $) 21 T ELT) (($ (-483) $) 30 T ELT) (($ |#1| $) 33 T ELT) (($ $ |#2|) 37 T ELT))) -(((-82 |#1| |#2|) (-113) (-960) (-960)) (T -82)) -NIL -(-13 (-589 |t#1|) (-967 |t#2|) (-10 -7 (-6 -3988) (-6 -3987))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-551 (-771)) . T) ((-13) . T) ((-587 (-483)) . T) ((-587 |#1|) . T) ((-589 |#1|) . T) ((-962 |#2|) . T) ((-967 |#2|) . T) ((-1012) . T) ((-1127) . T)) -((-2560 (($ $ $) 12 T ELT)) (-2559 (($ $) 8 T ELT)) (-2561 (($ $ $) 10 T ELT))) -(((-83 |#1|) (-10 -7 (-15 -2560 (|#1| |#1| |#1|)) (-15 -2561 (|#1| |#1| |#1|)) (-15 -2559 (|#1| |#1|))) (-84)) (T -83)) -NIL -((-2312 (($ $) 8 T ELT)) (-2560 (($ $ $) 9 T ELT)) (-2559 (($ $) 11 T ELT)) (-2561 (($ $ $) 10 T ELT)) (-2310 (($ $ $) 6 T ELT)) (-2311 (($ $ $) 7 T ELT))) +(((|MappingCategory| |#1| |#1| |#1|) . T) ((-1128) . T)) +((-2568 (((-85) $ $) NIL T ELT)) (-2313 (($ $) NIL T ELT)) (-3321 (($ $ $) NIL T ELT)) (-2198 (((-1184) $ (-484) (-484)) NIL (|has| $ (-6 -3995)) ELT)) (-1731 (((-85) $) NIL (|has| (-85) (-756)) ELT) (((-85) (-1 (-85) (-85) (-85)) $) NIL T ELT)) (-1729 (($ $) NIL (-12 (|has| $ (-6 -3995)) (|has| (-85) (-756))) ELT) (($ (-1 (-85) (-85) (-85)) $) NIL (|has| $ (-6 -3995)) ELT)) (-2909 (($ $) NIL (|has| (-85) (-756)) ELT) (($ (-1 (-85) (-85) (-85)) $) NIL T ELT)) (-3787 (((-85) $ (-1145 (-484)) (-85)) NIL (|has| $ (-6 -3995)) ELT) (((-85) $ (-484) (-85)) NIL (|has| $ (-6 -3995)) ELT)) (-3709 (($ (-1 (-85) (-85)) $) NIL (|has| $ (-6 -3994)) ELT)) (-3723 (($) NIL T CONST)) (-2297 (($ $) NIL (|has| $ (-6 -3995)) ELT)) (-2298 (($ $) NIL T ELT)) (-1352 (($ $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-85) (-1013))) ELT)) (-3405 (($ (-1 (-85) (-85)) $) NIL (|has| $ (-6 -3994)) ELT) (($ (-85) $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-85) (-1013))) ELT)) (-3841 (((-85) (-1 (-85) (-85) (-85)) $) NIL (|has| $ (-6 -3994)) ELT) (((-85) (-1 (-85) (-85) (-85)) $ (-85)) NIL (|has| $ (-6 -3994)) ELT) (((-85) (-1 (-85) (-85) (-85)) $ (-85) (-85)) NIL (-12 (|has| $ (-6 -3994)) (|has| (-85) (-1013))) ELT)) (-1575 (((-85) $ (-484) (-85)) NIL (|has| $ (-6 -3995)) ELT)) (-3112 (((-85) $ (-484)) NIL T ELT)) (-3418 (((-484) (-85) $ (-484)) NIL (|has| (-85) (-1013)) ELT) (((-484) (-85) $) NIL (|has| (-85) (-1013)) ELT) (((-484) (-1 (-85) (-85)) $) NIL T ELT)) (-2889 (((-583 (-85)) $) NIL (|has| $ (-6 -3994)) ELT)) (-2561 (($ $ $) NIL T ELT)) (-2560 (($ $) NIL T ELT)) (-1299 (($ $ $) NIL T ELT)) (-3613 (($ (-694) (-85)) 10 T ELT)) (-1300 (($ $ $) NIL T ELT)) (-2200 (((-484) $) NIL (|has| (-484) (-756)) ELT)) (-2531 (($ $ $) NIL T ELT)) (-3517 (($ $ $) NIL (|has| (-85) (-756)) ELT) (($ (-1 (-85) (-85) (-85)) $ $) NIL T ELT)) (-2608 (((-583 (-85)) $) NIL (|has| $ (-6 -3994)) ELT)) (-3245 (((-85) (-85) $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-85) (-1013))) ELT)) (-2201 (((-484) $) NIL (|has| (-484) (-756)) ELT)) (-2857 (($ $ $) NIL T ELT)) (-1948 (($ (-1 (-85) (-85)) $) NIL (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 (-85) (-85) (-85)) $ $) NIL T ELT) (($ (-1 (-85) (-85)) $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2304 (($ $ $ (-484)) NIL T ELT) (($ (-85) $ (-484)) NIL T ELT)) (-2203 (((-583 (-484)) $) NIL T ELT)) (-2204 (((-85) (-484) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3800 (((-85) $) NIL (|has| (-484) (-756)) ELT)) (-1353 (((-3 (-85) "failed") (-1 (-85) (-85)) $) NIL T ELT)) (-2199 (($ $ (-85)) NIL (|has| $ (-6 -3995)) ELT)) (-1946 (((-85) (-1 (-85) (-85)) $) NIL (|has| $ (-6 -3994)) ELT)) (-3767 (($ $ (-583 (-85)) (-583 (-85))) NIL (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1013))) ELT) (($ $ (-85) (-85)) NIL (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1013))) ELT) (($ $ (-249 (-85))) NIL (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1013))) ELT) (($ $ (-583 (-249 (-85)))) NIL (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1013))) ELT)) (-1221 (((-85) $ $) NIL T ELT)) (-2202 (((-85) (-85) $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-85) (-1013))) ELT)) (-2205 (((-583 (-85)) $) NIL T ELT)) (-3402 (((-85) $) NIL T ELT)) (-3564 (($) NIL T ELT)) (-3799 (($ $ (-1145 (-484))) NIL T ELT) (((-85) $ (-484)) NIL T ELT) (((-85) $ (-484) (-85)) NIL T ELT)) (-2305 (($ $ (-1145 (-484))) NIL T ELT) (($ $ (-484)) NIL T ELT)) (-1945 (((-694) (-85) $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-85) (-1013))) ELT) (((-694) (-1 (-85) (-85)) $) NIL (|has| $ (-6 -3994)) ELT)) (-1730 (($ $ $ (-484)) NIL (|has| $ (-6 -3995)) ELT)) (-3399 (($ $) NIL T ELT)) (-3971 (((-473) $) NIL (|has| (-85) (-553 (-473))) ELT)) (-3529 (($ (-583 (-85))) NIL T ELT)) (-3801 (($ (-583 $)) NIL T ELT) (($ $ $) NIL T ELT) (($ (-85) $) NIL T ELT) (($ $ (-85)) NIL T ELT)) (-3945 (((-772) $) NIL T ELT)) (-1768 (($ (-694) (-85)) 11 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-1947 (((-85) (-1 (-85) (-85)) $) NIL (|has| $ (-6 -3994)) ELT)) (-2562 (($ $ $) NIL T ELT)) (-2311 (($ $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2312 (($ $ $) NIL T ELT)) (-3956 (((-694) $) NIL (|has| $ (-6 -3994)) ELT))) +(((-81) (-13 (-96) (-10 -8 (-15 -1768 ($ (-694) (-85)))))) (T -81)) +((-1768 (*1 *1 *2 *3) (-12 (-5 *2 (-694)) (-5 *3 (-85)) (-5 *1 (-81))))) +((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3723 (($) 23 T CONST)) (-1213 (((-85) $ $) 20 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3945 (((-772) $) 13 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-2660 (($) 24 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ |#1| $) 33 T ELT) (($ $ |#2|) 37 T ELT))) +(((-82 |#1| |#2|) (-113) (-961) (-961)) (T -82)) +NIL +(-13 (-590 |t#1|) (-968 |t#2|) (-10 -7 (-6 -3989) (-6 -3988))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-590 |#1|) . T) ((-963 |#2|) . T) ((-968 |#2|) . T) ((-1013) . T) ((-1128) . T)) +((-2561 (($ $ $) 12 T ELT)) (-2560 (($ $) 8 T ELT)) (-2562 (($ $ $) 10 T ELT))) +(((-83 |#1|) (-10 -7 (-15 -2561 (|#1| |#1| |#1|)) (-15 -2562 (|#1| |#1| |#1|)) (-15 -2560 (|#1| |#1|))) (-84)) (T -83)) +NIL +((-2313 (($ $) 8 T ELT)) (-2561 (($ $ $) 9 T ELT)) (-2560 (($ $) 11 T ELT)) (-2562 (($ $ $) 10 T ELT)) (-2311 (($ $ $) 6 T ELT)) (-2312 (($ $ $) 7 T ELT))) (((-84) (-113)) (T -84)) -((-2559 (*1 *1 *1) (-4 *1 (-84))) (-2561 (*1 *1 *1 *1) (-4 *1 (-84))) (-2560 (*1 *1 *1 *1) (-4 *1 (-84)))) -(-13 (-603) (-10 -8 (-15 -2559 ($ $)) (-15 -2561 ($ $ $)) (-15 -2560 ($ $ $)))) -(((-13) . T) ((-603) . T) ((-1127) . T)) -((-2567 (((-85) $ $) NIL T ELT)) (-2312 (($ $) 9 T ELT)) (-3320 (($ $ $) 14 T ELT)) (-2854 (($) 6 T CONST)) (-3135 (((-693)) 23 T ELT)) (-2993 (($) 31 T ELT)) (-2560 (($ $ $) 12 T ELT)) (-2559 (($ $) 8 T ELT)) (-1298 (($ $ $) 15 T ELT)) (-1299 (($ $ $) 16 T ELT)) (-2530 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2856 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2009 (((-829) $) 29 T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-2399 (($ (-829)) 27 T ELT)) (-2852 (($ $ $) 19 T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-2853 (($) 7 T CONST)) (-2851 (($ $ $) 20 T ELT)) (-3970 (((-472) $) 33 T ELT)) (-3944 (((-771) $) 35 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2561 (($ $ $) 10 T ELT)) (-2310 (($ $ $) 13 T ELT)) (-2565 (((-85) $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) 18 T ELT)) (-2683 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) 21 T ELT)) (-2311 (($ $ $) 11 T ELT))) -(((-85) (-13 (-751) (-879) (-552 (-472)) (-10 -8 (-15 -3320 ($ $ $)) (-15 -1299 ($ $ $)) (-15 -1298 ($ $ $))))) (T -85)) -((-3320 (*1 *1 *1 *1) (-5 *1 (-85))) (-1299 (*1 *1 *1 *1) (-5 *1 (-85))) (-1298 (*1 *1 *1 *1) (-5 *1 (-85)))) -((-2567 (((-85) $ $) NIL T ELT)) (-1520 (((-693) $) 92 T ELT) (($ $ (-693)) 38 T ELT)) (-1284 (((-85) $) 42 T ELT)) (-1278 (($ $ (-1071) (-695)) 59 T ELT) (($ $ (-445) (-695)) 34 T ELT)) (-1277 (($ $ (-45 (-1071) (-695))) 16 T ELT)) (-2840 (((-3 (-695) "failed") $ (-1071)) 27 T ELT) (((-631 (-695)) $ (-445)) 33 T ELT)) (-1286 (((-45 (-1071) (-695)) $) 15 T ELT)) (-3593 (($ (-1088)) 20 T ELT) (($ (-1088) (-693)) 23 T ELT) (($ (-1088) (-55)) 24 T ELT)) (-1285 (((-85) $) 40 T ELT)) (-1283 (((-85) $) 44 T ELT)) (-3540 (((-1088) $) 8 T ELT)) (-2530 (($ $ $) NIL T ELT)) (-2856 (($ $ $) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-2632 (((-85) $ (-1088)) 11 T ELT)) (-2127 (($ $ (-1 (-472) (-582 (-472)))) 65 T ELT) (((-631 (-1 (-472) (-582 (-472)))) $) 69 T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-1280 (((-85) $ (-445)) 37 T ELT)) (-1282 (($ $ (-1 (-85) $ $)) 46 T ELT)) (-3615 (((-631 (-1 (-771) (-582 (-771)))) $) 67 T ELT) (($ $ (-1 (-771) (-582 (-771)))) 52 T ELT) (($ $ (-1 (-771) (-771))) 54 T ELT)) (-1279 (($ $ (-1071)) 56 T ELT) (($ $ (-445)) 57 T ELT)) (-3398 (($ $) 75 T ELT)) (-1281 (($ $ (-1 (-85) $ $)) 47 T ELT)) (-3944 (((-771) $) 61 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2791 (($ $ (-445)) 35 T ELT)) (-2520 (((-55) $) 70 T ELT)) (-2565 (((-85) $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) 88 T ELT)) (-2683 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) 104 T ELT))) -(((-86) (-13 (-755) (-746 (-1088)) (-10 -8 (-15 -1286 ((-45 (-1071) (-695)) $)) (-15 -3398 ($ $)) (-15 -3593 ($ (-1088))) (-15 -3593 ($ (-1088) (-693))) (-15 -3593 ($ (-1088) (-55))) (-15 -1285 ((-85) $)) (-15 -1284 ((-85) $)) (-15 -1283 ((-85) $)) (-15 -1520 ((-693) $)) (-15 -1520 ($ $ (-693))) (-15 -1282 ($ $ (-1 (-85) $ $))) (-15 -1281 ($ $ (-1 (-85) $ $))) (-15 -3615 ((-631 (-1 (-771) (-582 (-771)))) $)) (-15 -3615 ($ $ (-1 (-771) (-582 (-771))))) (-15 -3615 ($ $ (-1 (-771) (-771)))) (-15 -2127 ($ $ (-1 (-472) (-582 (-472))))) (-15 -2127 ((-631 (-1 (-472) (-582 (-472)))) $)) (-15 -1280 ((-85) $ (-445))) (-15 -2791 ($ $ (-445))) (-15 -1279 ($ $ (-1071))) (-15 -1279 ($ $ (-445))) (-15 -2840 ((-3 (-695) "failed") $ (-1071))) (-15 -2840 ((-631 (-695)) $ (-445))) (-15 -1278 ($ $ (-1071) (-695))) (-15 -1278 ($ $ (-445) (-695))) (-15 -1277 ($ $ (-45 (-1071) (-695))))))) (T -86)) -((-1286 (*1 *2 *1) (-12 (-5 *2 (-45 (-1071) (-695))) (-5 *1 (-86)))) (-3398 (*1 *1 *1) (-5 *1 (-86))) (-3593 (*1 *1 *2) (-12 (-5 *2 (-1088)) (-5 *1 (-86)))) (-3593 (*1 *1 *2 *3) (-12 (-5 *2 (-1088)) (-5 *3 (-693)) (-5 *1 (-86)))) (-3593 (*1 *1 *2 *3) (-12 (-5 *2 (-1088)) (-5 *3 (-55)) (-5 *1 (-86)))) (-1285 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-86)))) (-1284 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-86)))) (-1283 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-86)))) (-1520 (*1 *2 *1) (-12 (-5 *2 (-693)) (-5 *1 (-86)))) (-1520 (*1 *1 *1 *2) (-12 (-5 *2 (-693)) (-5 *1 (-86)))) (-1282 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-85) (-86) (-86))) (-5 *1 (-86)))) (-1281 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-85) (-86) (-86))) (-5 *1 (-86)))) (-3615 (*1 *2 *1) (-12 (-5 *2 (-631 (-1 (-771) (-582 (-771))))) (-5 *1 (-86)))) (-3615 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-771) (-582 (-771)))) (-5 *1 (-86)))) (-3615 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-771) (-771))) (-5 *1 (-86)))) (-2127 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-472) (-582 (-472)))) (-5 *1 (-86)))) (-2127 (*1 *2 *1) (-12 (-5 *2 (-631 (-1 (-472) (-582 (-472))))) (-5 *1 (-86)))) (-1280 (*1 *2 *1 *3) (-12 (-5 *3 (-445)) (-5 *2 (-85)) (-5 *1 (-86)))) (-2791 (*1 *1 *1 *2) (-12 (-5 *2 (-445)) (-5 *1 (-86)))) (-1279 (*1 *1 *1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-86)))) (-1279 (*1 *1 *1 *2) (-12 (-5 *2 (-445)) (-5 *1 (-86)))) (-2840 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1071)) (-5 *2 (-695)) (-5 *1 (-86)))) (-2840 (*1 *2 *1 *3) (-12 (-5 *3 (-445)) (-5 *2 (-631 (-695))) (-5 *1 (-86)))) (-1278 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1071)) (-5 *3 (-695)) (-5 *1 (-86)))) (-1278 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-445)) (-5 *3 (-695)) (-5 *1 (-86)))) (-1277 (*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1071) (-695))) (-5 *1 (-86))))) -((-2517 (((-3 (-1 |#1| (-582 |#1|)) #1="failed") (-86)) 23 T ELT) (((-86) (-86) (-1 |#1| |#1|)) 13 T ELT) (((-86) (-86) (-1 |#1| (-582 |#1|))) 11 T ELT) (((-3 |#1| #1#) (-86) (-582 |#1|)) 25 T ELT)) (-1287 (((-3 (-582 (-1 |#1| (-582 |#1|))) #1#) (-86)) 29 T ELT) (((-86) (-86) (-1 |#1| |#1|)) 33 T ELT) (((-86) (-86) (-582 (-1 |#1| (-582 |#1|)))) 30 T ELT)) (-1288 (((-86) |#1|) 63 T ELT)) (-1289 (((-3 |#1| #1#) (-86)) 58 T ELT))) -(((-87 |#1|) (-10 -7 (-15 -2517 ((-3 |#1| #1="failed") (-86) (-582 |#1|))) (-15 -2517 ((-86) (-86) (-1 |#1| (-582 |#1|)))) (-15 -2517 ((-86) (-86) (-1 |#1| |#1|))) (-15 -2517 ((-3 (-1 |#1| (-582 |#1|)) #1#) (-86))) (-15 -1287 ((-86) (-86) (-582 (-1 |#1| (-582 |#1|))))) (-15 -1287 ((-86) (-86) (-1 |#1| |#1|))) (-15 -1287 ((-3 (-582 (-1 |#1| (-582 |#1|))) #1#) (-86))) (-15 -1288 ((-86) |#1|)) (-15 -1289 ((-3 |#1| #1#) (-86)))) (-1012)) (T -87)) -((-1289 (*1 *2 *3) (|partial| -12 (-5 *3 (-86)) (-5 *1 (-87 *2)) (-4 *2 (-1012)))) (-1288 (*1 *2 *3) (-12 (-5 *2 (-86)) (-5 *1 (-87 *3)) (-4 *3 (-1012)))) (-1287 (*1 *2 *3) (|partial| -12 (-5 *3 (-86)) (-5 *2 (-582 (-1 *4 (-582 *4)))) (-5 *1 (-87 *4)) (-4 *4 (-1012)))) (-1287 (*1 *2 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1012)) (-5 *1 (-87 *4)))) (-1287 (*1 *2 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-582 (-1 *4 (-582 *4)))) (-4 *4 (-1012)) (-5 *1 (-87 *4)))) (-2517 (*1 *2 *3) (|partial| -12 (-5 *3 (-86)) (-5 *2 (-1 *4 (-582 *4))) (-5 *1 (-87 *4)) (-4 *4 (-1012)))) (-2517 (*1 *2 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1012)) (-5 *1 (-87 *4)))) (-2517 (*1 *2 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-1 *4 (-582 *4))) (-4 *4 (-1012)) (-5 *1 (-87 *4)))) (-2517 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-86)) (-5 *4 (-582 *2)) (-5 *1 (-87 *2)) (-4 *2 (-1012))))) -((-1290 (((-483) |#2|) 41 T ELT))) -(((-88 |#1| |#2|) (-10 -7 (-15 -1290 ((-483) |#2|))) (-13 (-312) (-949 (-348 (-483)))) (-1153 |#1|)) (T -88)) -((-1290 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-949 (-348 *2)))) (-5 *2 (-483)) (-5 *1 (-88 *4 *3)) (-4 *3 (-1153 *4))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3187 (((-85) $) NIL T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3980 $) (|:| |associate| $)) $) NIL T ELT)) (-2062 (($ $) NIL T ELT)) (-2060 (((-85) $) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3036 (($ $ (-483)) NIL T ELT)) (-1606 (((-85) $ $) NIL T ELT)) (-3722 (($) NIL T CONST)) (-2610 (($ (-1083 (-483)) (-483)) NIL T ELT)) (-2563 (($ $ $) NIL T ELT)) (-3465 (((-3 $ #1#) $) NIL T ELT)) (-2611 (($ $) NIL T ELT)) (-2562 (($ $ $) NIL T ELT)) (-2740 (((-2 (|:| -3952 (-582 $)) (|:| -2408 $)) (-582 $)) NIL T ELT)) (-3770 (((-693) $) NIL T ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-2409 (((-85) $) NIL T ELT)) (-1603 (((-3 (-582 $) #1#) (-582 $) $) NIL T ELT)) (-2613 (((-483)) NIL T ELT)) (-2612 (((-483) $) NIL T ELT)) (-1889 (($ $ $) NIL T ELT) (($ (-582 $)) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-2707 (((-1083 $) (-1083 $) (-1083 $)) NIL T ELT)) (-3143 (($ $ $) NIL T ELT) (($ (-582 $)) NIL T ELT)) (-1604 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3767 (($ $ (-483)) NIL T ELT)) (-3464 (((-3 $ #1#) $ $) NIL T ELT)) (-2739 (((-631 (-582 $)) (-582 $) $) NIL T ELT)) (-1605 (((-693) $) NIL T ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL T ELT)) (-2614 (((-1067 (-483)) $) NIL T ELT)) (-2890 (($ $) NIL T ELT)) (-3944 (((-771) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ $) NIL T ELT)) (-3125 (((-693)) NIL T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-2061 (((-85) $ $) NIL T ELT)) (-3768 (((-483) $ (-483)) NIL T ELT)) (-3124 (((-85) $ $) NIL T ELT)) (-2659 (($) NIL T CONST)) (-2665 (($) NIL T CONST)) (-3055 (((-85) $ $) NIL T ELT)) (-3835 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3837 (($ $ $) NIL T ELT)) (** (($ $ (-829)) NIL T ELT) (($ $ (-693)) NIL T ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT))) -(((-89 |#1|) (-778 |#1|) (-483)) (T -89)) -NIL -((-2567 (((-85) $ $) NIL T ELT)) (-3187 (((-85) $) NIL T ELT)) (-3128 (((-89 |#1|) $) NIL (|has| (-89 |#1|) (-258)) ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3980 $) (|:| |associate| $)) $) NIL T ELT)) (-2062 (($ $) NIL T ELT)) (-2060 (((-85) $) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2706 (((-346 (-1083 $)) (-1083 $)) NIL (|has| (-89 |#1|) (-820)) ELT)) (-3773 (($ $) NIL T ELT)) (-3969 (((-346 $) $) NIL T ELT)) (-2703 (((-3 (-582 (-1083 $)) #1#) (-582 (-1083 $)) (-1083 $)) NIL (|has| (-89 |#1|) (-820)) ELT)) (-1606 (((-85) $ $) NIL T ELT)) (-3621 (((-483) $) NIL (|has| (-89 |#1|) (-739)) ELT)) (-3722 (($) NIL T CONST)) (-3156 (((-3 (-89 |#1|) #1#) $) NIL T ELT) (((-3 (-1088) #1#) $) NIL (|has| (-89 |#1|) (-949 (-1088))) ELT) (((-3 (-348 (-483)) #1#) $) NIL (|has| (-89 |#1|) (-949 (-483))) ELT) (((-3 (-483) #1#) $) NIL (|has| (-89 |#1|) (-949 (-483))) ELT)) (-3155 (((-89 |#1|) $) NIL T ELT) (((-1088) $) NIL (|has| (-89 |#1|) (-949 (-1088))) ELT) (((-348 (-483)) $) NIL (|has| (-89 |#1|) (-949 (-483))) ELT) (((-483) $) NIL (|has| (-89 |#1|) (-949 (-483))) ELT)) (-3728 (($ $) NIL T ELT) (($ (-483) $) NIL T ELT)) (-2563 (($ $ $) NIL T ELT)) (-2278 (((-629 (-483)) (-629 $)) NIL (|has| (-89 |#1|) (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-629 $) (-1177 $)) NIL (|has| (-89 |#1|) (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 (-89 |#1|))) (|:| |vec| (-1177 (-89 |#1|)))) (-629 $) (-1177 $)) NIL T ELT) (((-629 (-89 |#1|)) (-629 $)) NIL T ELT)) (-3465 (((-3 $ #1#) $) NIL T ELT)) (-2993 (($) NIL (|has| (-89 |#1|) (-482)) ELT)) (-2562 (($ $ $) NIL T ELT)) (-2740 (((-2 (|:| -3952 (-582 $)) (|:| -2408 $)) (-582 $)) NIL T ELT)) (-3721 (((-85) $) NIL T ELT)) (-3185 (((-85) $) NIL (|has| (-89 |#1|) (-739)) ELT)) (-2795 (((-797 (-483) $) $ (-799 (-483)) (-797 (-483) $)) NIL (|has| (-89 |#1|) (-795 (-483))) ELT) (((-797 (-328) $) $ (-799 (-328)) (-797 (-328) $)) NIL (|has| (-89 |#1|) (-795 (-328))) ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-2409 (((-85) $) NIL T ELT)) (-2995 (($ $) NIL T ELT)) (-2997 (((-89 |#1|) $) NIL T ELT)) (-3443 (((-631 $) $) NIL (|has| (-89 |#1|) (-1064)) ELT)) (-3186 (((-85) $) NIL (|has| (-89 |#1|) (-739)) ELT)) (-1603 (((-3 (-582 $) #1#) (-582 $) $) NIL T ELT)) (-2530 (($ $ $) NIL (|has| (-89 |#1|) (-755)) ELT)) (-2856 (($ $ $) NIL (|has| (-89 |#1|) (-755)) ELT)) (-3956 (($ (-1 (-89 |#1|) (-89 |#1|)) $) NIL T ELT)) (-2279 (((-629 (-483)) (-1177 $)) NIL (|has| (-89 |#1|) (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL (|has| (-89 |#1|) (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 (-89 |#1|))) (|:| |vec| (-1177 (-89 |#1|)))) (-1177 $) $) NIL T ELT) (((-629 (-89 |#1|)) (-1177 $)) NIL T ELT)) (-1889 (($ $ $) NIL T ELT) (($ (-582 $)) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-2483 (($ $) NIL T ELT)) (-3444 (($) NIL (|has| (-89 |#1|) (-1064)) CONST)) (-3242 (((-1032) $) NIL T ELT)) (-2707 (((-1083 $) (-1083 $) (-1083 $)) NIL T ELT)) (-3143 (($ $ $) NIL T ELT) (($ (-582 $)) NIL T ELT)) (-3127 (($ $) NIL (|has| (-89 |#1|) (-258)) ELT)) (-3129 (((-89 |#1|) $) NIL (|has| (-89 |#1|) (-482)) ELT)) (-2704 (((-346 (-1083 $)) (-1083 $)) NIL (|has| (-89 |#1|) (-820)) ELT)) (-2705 (((-346 (-1083 $)) (-1083 $)) NIL (|has| (-89 |#1|) (-820)) ELT)) (-3730 (((-346 $) $) NIL T ELT)) (-1604 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3464 (((-3 $ #1#) $ $) NIL T ELT)) (-2739 (((-631 (-582 $)) (-582 $) $) NIL T ELT)) (-3766 (($ $ (-582 (-89 |#1|)) (-582 (-89 |#1|))) NIL (|has| (-89 |#1|) (-260 (-89 |#1|))) ELT) (($ $ (-89 |#1|) (-89 |#1|)) NIL (|has| (-89 |#1|) (-260 (-89 |#1|))) ELT) (($ $ (-249 (-89 |#1|))) NIL (|has| (-89 |#1|) (-260 (-89 |#1|))) ELT) (($ $ (-582 (-249 (-89 |#1|)))) NIL (|has| (-89 |#1|) (-260 (-89 |#1|))) ELT) (($ $ (-582 (-1088)) (-582 (-89 |#1|))) NIL (|has| (-89 |#1|) (-454 (-1088) (-89 |#1|))) ELT) (($ $ (-1088) (-89 |#1|)) NIL (|has| (-89 |#1|) (-454 (-1088) (-89 |#1|))) ELT)) (-1605 (((-693) $) NIL T ELT)) (-3798 (($ $ (-89 |#1|)) NIL (|has| (-89 |#1|) (-241 (-89 |#1|) (-89 |#1|))) ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL T ELT)) (-3756 (($ $ (-1 (-89 |#1|) (-89 |#1|))) NIL T ELT) (($ $ (-1 (-89 |#1|) (-89 |#1|)) (-693)) NIL T ELT) (($ $ (-1088)) NIL (|has| (-89 |#1|) (-810 (-1088))) ELT) (($ $ (-582 (-1088))) NIL (|has| (-89 |#1|) (-810 (-1088))) ELT) (($ $ (-1088) (-693)) NIL (|has| (-89 |#1|) (-810 (-1088))) ELT) (($ $ (-582 (-1088)) (-582 (-693))) NIL (|has| (-89 |#1|) (-810 (-1088))) ELT) (($ $) NIL (|has| (-89 |#1|) (-189)) ELT) (($ $ (-693)) NIL (|has| (-89 |#1|) (-189)) ELT)) (-2994 (($ $) NIL T ELT)) (-2996 (((-89 |#1|) $) NIL T ELT)) (-3970 (((-799 (-483)) $) NIL (|has| (-89 |#1|) (-552 (-799 (-483)))) ELT) (((-799 (-328)) $) NIL (|has| (-89 |#1|) (-552 (-799 (-328)))) ELT) (((-472) $) NIL (|has| (-89 |#1|) (-552 (-472))) ELT) (((-328) $) NIL (|has| (-89 |#1|) (-932)) ELT) (((-179) $) NIL (|has| (-89 |#1|) (-932)) ELT)) (-2615 (((-148 (-348 (-483))) $) NIL T ELT)) (-2702 (((-3 (-1177 $) #1#) (-629 $)) NIL (-12 (|has| $ (-118)) (|has| (-89 |#1|) (-820))) ELT)) (-3944 (((-771) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ $) NIL T ELT) (($ (-348 (-483))) NIL T ELT) (($ (-89 |#1|)) NIL T ELT) (($ (-1088)) NIL (|has| (-89 |#1|) (-949 (-1088))) ELT)) (-2701 (((-631 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-89 |#1|) (-820))) (|has| (-89 |#1|) (-118))) ELT)) (-3125 (((-693)) NIL T CONST)) (-3130 (((-89 |#1|) $) NIL (|has| (-89 |#1|) (-482)) ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2061 (((-85) $ $) NIL T ELT)) (-3768 (((-348 (-483)) $ (-483)) NIL T ELT)) (-3124 (((-85) $ $) NIL T ELT)) (-3381 (($ $) NIL (|has| (-89 |#1|) (-739)) ELT)) (-2659 (($) NIL T CONST)) (-2665 (($) NIL T CONST)) (-2668 (($ $ (-1 (-89 |#1|) (-89 |#1|))) NIL T ELT) (($ $ (-1 (-89 |#1|) (-89 |#1|)) (-693)) NIL T ELT) (($ $ (-1088)) NIL (|has| (-89 |#1|) (-810 (-1088))) ELT) (($ $ (-582 (-1088))) NIL (|has| (-89 |#1|) (-810 (-1088))) ELT) (($ $ (-1088) (-693)) NIL (|has| (-89 |#1|) (-810 (-1088))) ELT) (($ $ (-582 (-1088)) (-582 (-693))) NIL (|has| (-89 |#1|) (-810 (-1088))) ELT) (($ $) NIL (|has| (-89 |#1|) (-189)) ELT) (($ $ (-693)) NIL (|has| (-89 |#1|) (-189)) ELT)) (-2565 (((-85) $ $) NIL (|has| (-89 |#1|) (-755)) ELT)) (-2566 (((-85) $ $) NIL (|has| (-89 |#1|) (-755)) ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-2683 (((-85) $ $) NIL (|has| (-89 |#1|) (-755)) ELT)) (-2684 (((-85) $ $) NIL (|has| (-89 |#1|) (-755)) ELT)) (-3947 (($ $ $) NIL T ELT) (($ (-89 |#1|) (-89 |#1|)) NIL T ELT)) (-3835 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3837 (($ $ $) NIL T ELT)) (** (($ $ (-829)) NIL T ELT) (($ $ (-693)) NIL T ELT) (($ $ (-483)) NIL T ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-348 (-483))) NIL T ELT) (($ (-348 (-483)) $) NIL T ELT) (($ (-89 |#1|) $) NIL T ELT) (($ $ (-89 |#1|)) NIL T ELT))) -(((-90 |#1|) (-13 (-903 (-89 |#1|)) (-10 -8 (-15 -3768 ((-348 (-483)) $ (-483))) (-15 -2615 ((-148 (-348 (-483))) $)) (-15 -3728 ($ $)) (-15 -3728 ($ (-483) $)))) (-483)) (T -90)) -((-3768 (*1 *2 *1 *3) (-12 (-5 *2 (-348 (-483))) (-5 *1 (-90 *4)) (-14 *4 *3) (-5 *3 (-483)))) (-2615 (*1 *2 *1) (-12 (-5 *2 (-148 (-348 (-483)))) (-5 *1 (-90 *3)) (-14 *3 (-483)))) (-3728 (*1 *1 *1) (-12 (-5 *1 (-90 *2)) (-14 *2 (-483)))) (-3728 (*1 *1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-90 *3)) (-14 *3 *2)))) -((-3786 ((|#2| $ #1="value" |#2|) NIL T ELT) (($ $ #2="left" $) 61 T ELT) (($ $ #3="right" $) 63 T ELT)) (-3030 (((-582 $) $) 31 T ELT)) (-3026 (((-85) $ $) 36 T ELT)) (-3244 (((-85) |#2| $) 40 T ELT)) (-3029 (((-582 |#2|) $) 25 T ELT)) (-3525 (((-85) $) 18 T ELT)) (-3798 ((|#2| $ #1#) NIL T ELT) (($ $ #2#) 10 T ELT) (($ $ #3#) 13 T ELT)) (-3631 (((-85) $) 57 T ELT)) (-3944 (((-771) $) 47 T ELT)) (-3520 (((-582 $) $) 32 T ELT)) (-3055 (((-85) $ $) 38 T ELT)) (-3955 (((-693) $) 50 T ELT))) -(((-91 |#1| |#2|) (-10 -7 (-15 -3055 ((-85) |#1| |#1|)) (-15 -3944 ((-771) |#1|)) (-15 -3786 (|#1| |#1| #1="right" |#1|)) (-15 -3786 (|#1| |#1| #2="left" |#1|)) (-15 -3798 (|#1| |#1| #1#)) (-15 -3798 (|#1| |#1| #2#)) (-15 -3786 (|#2| |#1| #3="value" |#2|)) (-15 -3026 ((-85) |#1| |#1|)) (-15 -3029 ((-582 |#2|) |#1|)) (-15 -3631 ((-85) |#1|)) (-15 -3798 (|#2| |#1| #3#)) (-15 -3525 ((-85) |#1|)) (-15 -3030 ((-582 |#1|) |#1|)) (-15 -3520 ((-582 |#1|) |#1|)) (-15 -3244 ((-85) |#2| |#1|)) (-15 -3955 ((-693) |#1|))) (-92 |#2|) (-1127)) (T -91)) -NIL -((-2567 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3400 ((|#1| $) 52 T ELT)) (-3024 ((|#1| $ |#1|) 43 (|has| $ (-6 -3994)) ELT)) (-1291 (($ $ $) 58 (|has| $ (-6 -3994)) ELT)) (-1292 (($ $ $) 60 (|has| $ (-6 -3994)) ELT)) (-3786 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -3994)) ELT) (($ $ "left" $) 61 (|has| $ (-6 -3994)) ELT) (($ $ "right" $) 59 (|has| $ (-6 -3994)) ELT)) (-3025 (($ $ (-582 $)) 45 (|has| $ (-6 -3994)) ELT)) (-3722 (($) 7 T CONST)) (-3136 (($ $) 63 T ELT)) (-2888 (((-582 |#1|) $) 30 (|has| $ (-6 -3993)) ELT)) (-3030 (((-582 $) $) 54 T ELT)) (-3026 (((-85) $ $) 46 (|has| |#1| (-1012)) ELT)) (-2607 (((-582 |#1|) $) 29 (|has| $ (-6 -3993)) ELT)) (-3244 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3993))) ELT)) (-1947 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3994)) ELT)) (-3956 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3137 (($ $) 65 T ELT)) (-3029 (((-582 |#1|) $) 49 T ELT)) (-3525 (((-85) $) 53 T ELT)) (-3241 (((-1071) $) 22 (|has| |#1| (-1012)) ELT)) (-3242 (((-1032) $) 21 (|has| |#1| (-1012)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3993)) ELT)) (-3766 (($ $ (-582 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-582 |#1|) (-582 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT)) (-1220 (((-85) $ $) 11 T ELT)) (-3401 (((-85) $) 8 T ELT)) (-3563 (($) 9 T ELT)) (-3798 ((|#1| $ #1#) 51 T ELT) (($ $ "left") 64 T ELT) (($ $ "right") 62 T ELT)) (-3028 (((-483) $ $) 48 T ELT)) (-3631 (((-85) $) 50 T ELT)) (-1944 (((-693) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3993)) ELT) (((-693) |#1| $) 28 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3993))) ELT)) (-3398 (($ $) 10 T ELT)) (-3944 (((-771) $) 17 (|has| |#1| (-551 (-771))) ELT)) (-3520 (((-582 $) $) 55 T ELT)) (-3027 (((-85) $ $) 47 (|has| |#1| (-1012)) ELT)) (-1263 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3993)) ELT)) (-3055 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3955 (((-693) $) 6 (|has| $ (-6 -3993)) ELT))) -(((-92 |#1|) (-113) (-1127)) (T -92)) -((-3137 (*1 *1 *1) (-12 (-4 *1 (-92 *2)) (-4 *2 (-1127)))) (-3798 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-92 *3)) (-4 *3 (-1127)))) (-3136 (*1 *1 *1) (-12 (-4 *1 (-92 *2)) (-4 *2 (-1127)))) (-3798 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-92 *3)) (-4 *3 (-1127)))) (-3786 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -3994)) (-4 *1 (-92 *3)) (-4 *3 (-1127)))) (-1292 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -3994)) (-4 *1 (-92 *2)) (-4 *2 (-1127)))) (-3786 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -3994)) (-4 *1 (-92 *3)) (-4 *3 (-1127)))) (-1291 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -3994)) (-4 *1 (-92 *2)) (-4 *2 (-1127))))) -(-13 (-922 |t#1|) (-10 -8 (-15 -3137 ($ $)) (-15 -3798 ($ $ "left")) (-15 -3136 ($ $)) (-15 -3798 ($ $ "right")) (IF (|has| $ (-6 -3994)) (PROGN (-15 -3786 ($ $ "left" $)) (-15 -1292 ($ $ $)) (-15 -3786 ($ $ "right" $)) (-15 -1291 ($ $ $))) |%noBranch|))) -(((-34) . T) ((-72) OR (|has| |#1| (-1012)) (|has| |#1| (-72))) ((-551 (-771)) OR (|has| |#1| (-1012)) (|has| |#1| (-551 (-771)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ((-427 |#1|) . T) ((-454 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ((-13) . T) ((-922 |#1|) . T) ((-1012) |has| |#1| (-1012)) ((-1127) . T)) -((-1295 (((-85) |#1|) 29 T ELT)) (-1294 (((-693) (-693)) 28 T ELT) (((-693)) 27 T ELT)) (-1293 (((-85) |#1| (-85)) 30 T ELT) (((-85) |#1|) 31 T ELT))) -(((-93 |#1|) (-10 -7 (-15 -1293 ((-85) |#1|)) (-15 -1293 ((-85) |#1| (-85))) (-15 -1294 ((-693))) (-15 -1294 ((-693) (-693))) (-15 -1295 ((-85) |#1|))) (-1153 (-483))) (T -93)) -((-1295 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-93 *3)) (-4 *3 (-1153 (-483))))) (-1294 (*1 *2 *2) (-12 (-5 *2 (-693)) (-5 *1 (-93 *3)) (-4 *3 (-1153 (-483))))) (-1294 (*1 *2) (-12 (-5 *2 (-693)) (-5 *1 (-93 *3)) (-4 *3 (-1153 (-483))))) (-1293 (*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *1 (-93 *3)) (-4 *3 (-1153 (-483))))) (-1293 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-93 *3)) (-4 *3 (-1153 (-483)))))) -((-2567 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3400 ((|#1| $) 18 T ELT)) (-3416 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 26 T ELT)) (-3024 ((|#1| $ |#1|) NIL (|has| $ (-6 -3994)) ELT)) (-1291 (($ $ $) 21 (|has| $ (-6 -3994)) ELT)) (-1292 (($ $ $) 23 (|has| $ (-6 -3994)) ELT)) (-3786 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3994)) ELT) (($ $ #2="left" $) NIL (|has| $ (-6 -3994)) ELT) (($ $ #3="right" $) NIL (|has| $ (-6 -3994)) ELT)) (-3025 (($ $ (-582 $)) NIL (|has| $ (-6 -3994)) ELT)) (-3722 (($) NIL T CONST)) (-3136 (($ $) 20 T ELT)) (-2888 (((-582 |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3030 (((-582 $) $) NIL T ELT)) (-3026 (((-85) $ $) NIL (|has| |#1| (-1012)) ELT)) (-1300 (($ $ |#1| $) 27 T ELT)) (-2607 (((-582 |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3244 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#1| (-1012))) ELT)) (-1947 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3956 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3137 (($ $) 22 T ELT)) (-3029 (((-582 |#1|) $) NIL T ELT)) (-3525 (((-85) $) NIL T ELT)) (-3241 (((-1071) $) NIL (|has| |#1| (-1012)) ELT)) (-1296 (($ |#1| $) 28 T ELT)) (-3607 (($ |#1| $) 15 T ELT)) (-3242 (((-1032) $) NIL (|has| |#1| (-1012)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3766 (($ $ (-582 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-582 |#1|) (-582 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-3401 (((-85) $) 17 T ELT)) (-3563 (($) 11 T ELT)) (-3798 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3028 (((-483) $ $) NIL T ELT)) (-3631 (((-85) $) NIL T ELT)) (-1944 (((-693) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3993)) ELT) (((-693) |#1| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#1| (-1012))) ELT)) (-3398 (($ $) NIL T ELT)) (-3944 (((-771) $) NIL (|has| |#1| (-551 (-771))) ELT)) (-3520 (((-582 $) $) NIL T ELT)) (-3027 (((-85) $ $) NIL (|has| |#1| (-1012)) ELT)) (-1297 (($ (-582 |#1|)) 16 T ELT)) (-1263 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3055 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3955 (((-693) $) NIL (|has| $ (-6 -3993)) ELT))) -(((-94 |#1|) (-13 (-98 |#1|) (-10 -8 (-6 -3994) (-6 -3993) (-15 -1297 ($ (-582 |#1|))) (-15 -3607 ($ |#1| $)) (-15 -1296 ($ |#1| $)) (-15 -3416 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-755)) (T -94)) -((-1297 (*1 *1 *2) (-12 (-5 *2 (-582 *3)) (-4 *3 (-755)) (-5 *1 (-94 *3)))) (-3607 (*1 *1 *2 *1) (-12 (-5 *1 (-94 *2)) (-4 *2 (-755)))) (-1296 (*1 *1 *2 *1) (-12 (-5 *1 (-94 *2)) (-4 *2 (-755)))) (-3416 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-94 *3)) (|:| |greater| (-94 *3)))) (-5 *1 (-94 *3)) (-4 *3 (-755))))) -((-2312 (($ $) 13 T ELT)) (-2559 (($ $) 11 T ELT)) (-1298 (($ $ $) 23 T ELT)) (-1299 (($ $ $) 21 T ELT)) (-2310 (($ $ $) 19 T ELT)) (-2311 (($ $ $) 17 T ELT))) -(((-95 |#1|) (-10 -7 (-15 -1298 (|#1| |#1| |#1|)) (-15 -1299 (|#1| |#1| |#1|)) (-15 -2312 (|#1| |#1|)) (-15 -2311 (|#1| |#1| |#1|)) (-15 -2310 (|#1| |#1| |#1|)) (-15 -2559 (|#1| |#1|))) (-96)) (T -95)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-2312 (($ $) 103 T ELT)) (-3320 (($ $ $) 31 T ELT)) (-2197 (((-1183) $ (-483) (-483)) 66 (|has| $ (-6 -3994)) ELT)) (-1730 (((-85) $) 98 (|has| (-85) (-755)) ELT) (((-85) (-1 (-85) (-85) (-85)) $) 92 T ELT)) (-1728 (($ $) 102 (-12 (|has| (-85) (-755)) (|has| $ (-6 -3994))) ELT) (($ (-1 (-85) (-85) (-85)) $) 101 (|has| $ (-6 -3994)) ELT)) (-2908 (($ $) 97 (|has| (-85) (-755)) ELT) (($ (-1 (-85) (-85) (-85)) $) 91 T ELT)) (-3786 (((-85) $ (-1144 (-483)) (-85)) 88 (|has| $ (-6 -3994)) ELT) (((-85) $ (-483) (-85)) 54 (|has| $ (-6 -3994)) ELT)) (-3708 (($ (-1 (-85) (-85)) $) 71 (|has| $ (-6 -3993)) ELT)) (-3722 (($) 38 T CONST)) (-2296 (($ $) 100 (|has| $ (-6 -3994)) ELT)) (-2297 (($ $) 90 T ELT)) (-1351 (($ $) 68 (-12 (|has| (-85) (-1012)) (|has| $ (-6 -3993))) ELT)) (-3404 (($ (-1 (-85) (-85)) $) 72 (|has| $ (-6 -3993)) ELT) (($ (-85) $) 69 (-12 (|has| (-85) (-1012)) (|has| $ (-6 -3993))) ELT)) (-3840 (((-85) (-1 (-85) (-85) (-85)) $) 74 (|has| $ (-6 -3993)) ELT) (((-85) (-1 (-85) (-85) (-85)) $ (-85)) 73 (|has| $ (-6 -3993)) ELT) (((-85) (-1 (-85) (-85) (-85)) $ (-85) (-85)) 70 (-12 (|has| (-85) (-1012)) (|has| $ (-6 -3993))) ELT)) (-1574 (((-85) $ (-483) (-85)) 53 (|has| $ (-6 -3994)) ELT)) (-3111 (((-85) $ (-483)) 55 T ELT)) (-3417 (((-483) (-85) $ (-483)) 95 (|has| (-85) (-1012)) ELT) (((-483) (-85) $) 94 (|has| (-85) (-1012)) ELT) (((-483) (-1 (-85) (-85)) $) 93 T ELT)) (-2888 (((-582 (-85)) $) 45 (|has| $ (-6 -3993)) ELT)) (-2560 (($ $ $) 108 T ELT)) (-2559 (($ $) 106 T ELT)) (-1298 (($ $ $) 32 T ELT)) (-3612 (($ (-693) (-85)) 78 T ELT)) (-1299 (($ $ $) 33 T ELT)) (-2199 (((-483) $) 63 (|has| (-483) (-755)) ELT)) (-2530 (($ $ $) 23 T ELT)) (-3516 (($ $ $) 96 (|has| (-85) (-755)) ELT) (($ (-1 (-85) (-85) (-85)) $ $) 89 T ELT)) (-2607 (((-582 (-85)) $) 46 (|has| $ (-6 -3993)) ELT)) (-3244 (((-85) (-85) $) 48 (-12 (|has| (-85) (-1012)) (|has| $ (-6 -3993))) ELT)) (-2200 (((-483) $) 62 (|has| (-483) (-755)) ELT)) (-2856 (($ $ $) 22 T ELT)) (-1947 (($ (-1 (-85) (-85)) $) 41 (|has| $ (-6 -3994)) ELT)) (-3956 (($ (-1 (-85) (-85) (-85)) $ $) 83 T ELT) (($ (-1 (-85) (-85)) $) 40 T ELT)) (-3241 (((-1071) $) 11 T ELT)) (-2303 (($ $ $ (-483)) 87 T ELT) (($ (-85) $ (-483)) 86 T ELT)) (-2202 (((-582 (-483)) $) 60 T ELT)) (-2203 (((-85) (-483) $) 59 T ELT)) (-3242 (((-1032) $) 12 T ELT)) (-3799 (((-85) $) 64 (|has| (-483) (-755)) ELT)) (-1352 (((-3 (-85) "failed") (-1 (-85) (-85)) $) 75 T ELT)) (-2198 (($ $ (-85)) 65 (|has| $ (-6 -3994)) ELT)) (-1945 (((-85) (-1 (-85) (-85)) $) 43 (|has| $ (-6 -3993)) ELT)) (-3766 (($ $ (-582 (-85)) (-582 (-85))) 52 (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1012))) ELT) (($ $ (-85) (-85)) 51 (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1012))) ELT) (($ $ (-249 (-85))) 50 (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1012))) ELT) (($ $ (-582 (-249 (-85)))) 49 (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1012))) ELT)) (-1220 (((-85) $ $) 34 T ELT)) (-2201 (((-85) (-85) $) 61 (-12 (|has| $ (-6 -3993)) (|has| (-85) (-1012))) ELT)) (-2204 (((-582 (-85)) $) 58 T ELT)) (-3401 (((-85) $) 37 T ELT)) (-3563 (($) 36 T ELT)) (-3798 (($ $ (-1144 (-483))) 77 T ELT) (((-85) $ (-483)) 57 T ELT) (((-85) $ (-483) (-85)) 56 T ELT)) (-2304 (($ $ (-1144 (-483))) 85 T ELT) (($ $ (-483)) 84 T ELT)) (-1944 (((-693) (-85) $) 47 (-12 (|has| (-85) (-1012)) (|has| $ (-6 -3993))) ELT) (((-693) (-1 (-85) (-85)) $) 44 (|has| $ (-6 -3993)) ELT)) (-1729 (($ $ $ (-483)) 99 (|has| $ (-6 -3994)) ELT)) (-3398 (($ $) 35 T ELT)) (-3970 (((-472) $) 67 (|has| (-85) (-552 (-472))) ELT)) (-3528 (($ (-582 (-85))) 76 T ELT)) (-3800 (($ (-582 $)) 82 T ELT) (($ $ $) 81 T ELT) (($ (-85) $) 80 T ELT) (($ $ (-85)) 79 T ELT)) (-3944 (((-771) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-1946 (((-85) (-1 (-85) (-85)) $) 42 (|has| $ (-6 -3993)) ELT)) (-2561 (($ $ $) 107 T ELT)) (-2310 (($ $ $) 105 T ELT)) (-2565 (((-85) $ $) 21 T ELT)) (-2566 (((-85) $ $) 19 T ELT)) (-3055 (((-85) $ $) 8 T ELT)) (-2683 (((-85) $ $) 20 T ELT)) (-2684 (((-85) $ $) 18 T ELT)) (-2311 (($ $ $) 104 T ELT)) (-3955 (((-693) $) 39 (|has| $ (-6 -3993)) ELT))) +((-2560 (*1 *1 *1) (-4 *1 (-84))) (-2562 (*1 *1 *1 *1) (-4 *1 (-84))) (-2561 (*1 *1 *1 *1) (-4 *1 (-84)))) +(-13 (-604) (-10 -8 (-15 -2560 ($ $)) (-15 -2562 ($ $ $)) (-15 -2561 ($ $ $)))) +(((-13) . T) ((-604) . T) ((-1128) . T)) +((-2568 (((-85) $ $) NIL T ELT)) (-2313 (($ $) 9 T ELT)) (-3321 (($ $ $) 14 T ELT)) (-2855 (($) 6 T CONST)) (-3136 (((-694)) 23 T ELT)) (-2994 (($) 31 T ELT)) (-2561 (($ $ $) 12 T ELT)) (-2560 (($ $) 8 T ELT)) (-1299 (($ $ $) 15 T ELT)) (-1300 (($ $ $) 16 T ELT)) (-2531 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2857 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2010 (((-830) $) 29 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2400 (($ (-830)) 27 T ELT)) (-2853 (($ $ $) 19 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2854 (($) 7 T CONST)) (-2852 (($ $ $) 20 T ELT)) (-3971 (((-473) $) 33 T ELT)) (-3945 (((-772) $) 35 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2562 (($ $ $) 10 T ELT)) (-2311 (($ $ $) 13 T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 18 T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) 21 T ELT)) (-2312 (($ $ $) 11 T ELT))) +(((-85) (-13 (-752) (-880) (-553 (-473)) (-10 -8 (-15 -3321 ($ $ $)) (-15 -1300 ($ $ $)) (-15 -1299 ($ $ $))))) (T -85)) +((-3321 (*1 *1 *1 *1) (-5 *1 (-85))) (-1300 (*1 *1 *1 *1) (-5 *1 (-85))) (-1299 (*1 *1 *1 *1) (-5 *1 (-85)))) +((-2568 (((-85) $ $) NIL T ELT)) (-1521 (((-694) $) 92 T ELT) (($ $ (-694)) 38 T ELT)) (-1285 (((-85) $) 42 T ELT)) (-1279 (($ $ (-1072) (-696)) 59 T ELT) (($ $ (-446) (-696)) 34 T ELT)) (-1278 (($ $ (-45 (-1072) (-696))) 16 T ELT)) (-2841 (((-3 (-696) "failed") $ (-1072)) 27 T ELT) (((-632 (-696)) $ (-446)) 33 T ELT)) (-1287 (((-45 (-1072) (-696)) $) 15 T ELT)) (-3594 (($ (-1089)) 20 T ELT) (($ (-1089) (-694)) 23 T ELT) (($ (-1089) (-55)) 24 T ELT)) (-1286 (((-85) $) 40 T ELT)) (-1284 (((-85) $) 44 T ELT)) (-3541 (((-1089) $) 8 T ELT)) (-2531 (($ $ $) NIL T ELT)) (-2857 (($ $ $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2633 (((-85) $ (-1089)) 11 T ELT)) (-2128 (($ $ (-1 (-473) (-583 (-473)))) 65 T ELT) (((-632 (-1 (-473) (-583 (-473)))) $) 69 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1281 (((-85) $ (-446)) 37 T ELT)) (-1283 (($ $ (-1 (-85) $ $)) 46 T ELT)) (-3616 (((-632 (-1 (-772) (-583 (-772)))) $) 67 T ELT) (($ $ (-1 (-772) (-583 (-772)))) 52 T ELT) (($ $ (-1 (-772) (-772))) 54 T ELT)) (-1280 (($ $ (-1072)) 56 T ELT) (($ $ (-446)) 57 T ELT)) (-3399 (($ $) 75 T ELT)) (-1282 (($ $ (-1 (-85) $ $)) 47 T ELT)) (-3945 (((-772) $) 61 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2792 (($ $ (-446)) 35 T ELT)) (-2521 (((-55) $) 70 T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 88 T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) 104 T ELT))) +(((-86) (-13 (-756) (-747 (-1089)) (-10 -8 (-15 -1287 ((-45 (-1072) (-696)) $)) (-15 -3399 ($ $)) (-15 -3594 ($ (-1089))) (-15 -3594 ($ (-1089) (-694))) (-15 -3594 ($ (-1089) (-55))) (-15 -1286 ((-85) $)) (-15 -1285 ((-85) $)) (-15 -1284 ((-85) $)) (-15 -1521 ((-694) $)) (-15 -1521 ($ $ (-694))) (-15 -1283 ($ $ (-1 (-85) $ $))) (-15 -1282 ($ $ (-1 (-85) $ $))) (-15 -3616 ((-632 (-1 (-772) (-583 (-772)))) $)) (-15 -3616 ($ $ (-1 (-772) (-583 (-772))))) (-15 -3616 ($ $ (-1 (-772) (-772)))) (-15 -2128 ($ $ (-1 (-473) (-583 (-473))))) (-15 -2128 ((-632 (-1 (-473) (-583 (-473)))) $)) (-15 -1281 ((-85) $ (-446))) (-15 -2792 ($ $ (-446))) (-15 -1280 ($ $ (-1072))) (-15 -1280 ($ $ (-446))) (-15 -2841 ((-3 (-696) "failed") $ (-1072))) (-15 -2841 ((-632 (-696)) $ (-446))) (-15 -1279 ($ $ (-1072) (-696))) (-15 -1279 ($ $ (-446) (-696))) (-15 -1278 ($ $ (-45 (-1072) (-696))))))) (T -86)) +((-1287 (*1 *2 *1) (-12 (-5 *2 (-45 (-1072) (-696))) (-5 *1 (-86)))) (-3399 (*1 *1 *1) (-5 *1 (-86))) (-3594 (*1 *1 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-86)))) (-3594 (*1 *1 *2 *3) (-12 (-5 *2 (-1089)) (-5 *3 (-694)) (-5 *1 (-86)))) (-3594 (*1 *1 *2 *3) (-12 (-5 *2 (-1089)) (-5 *3 (-55)) (-5 *1 (-86)))) (-1286 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-86)))) (-1285 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-86)))) (-1284 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-86)))) (-1521 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-86)))) (-1521 (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-86)))) (-1283 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-85) (-86) (-86))) (-5 *1 (-86)))) (-1282 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-85) (-86) (-86))) (-5 *1 (-86)))) (-3616 (*1 *2 *1) (-12 (-5 *2 (-632 (-1 (-772) (-583 (-772))))) (-5 *1 (-86)))) (-3616 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-772) (-583 (-772)))) (-5 *1 (-86)))) (-3616 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-772) (-772))) (-5 *1 (-86)))) (-2128 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-473) (-583 (-473)))) (-5 *1 (-86)))) (-2128 (*1 *2 *1) (-12 (-5 *2 (-632 (-1 (-473) (-583 (-473))))) (-5 *1 (-86)))) (-1281 (*1 *2 *1 *3) (-12 (-5 *3 (-446)) (-5 *2 (-85)) (-5 *1 (-86)))) (-2792 (*1 *1 *1 *2) (-12 (-5 *2 (-446)) (-5 *1 (-86)))) (-1280 (*1 *1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-86)))) (-1280 (*1 *1 *1 *2) (-12 (-5 *2 (-446)) (-5 *1 (-86)))) (-2841 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1072)) (-5 *2 (-696)) (-5 *1 (-86)))) (-2841 (*1 *2 *1 *3) (-12 (-5 *3 (-446)) (-5 *2 (-632 (-696))) (-5 *1 (-86)))) (-1279 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1072)) (-5 *3 (-696)) (-5 *1 (-86)))) (-1279 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-446)) (-5 *3 (-696)) (-5 *1 (-86)))) (-1278 (*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1072) (-696))) (-5 *1 (-86))))) +((-2518 (((-3 (-1 |#1| (-583 |#1|)) #1="failed") (-86)) 23 T ELT) (((-86) (-86) (-1 |#1| |#1|)) 13 T ELT) (((-86) (-86) (-1 |#1| (-583 |#1|))) 11 T ELT) (((-3 |#1| #1#) (-86) (-583 |#1|)) 25 T ELT)) (-1288 (((-3 (-583 (-1 |#1| (-583 |#1|))) #1#) (-86)) 29 T ELT) (((-86) (-86) (-1 |#1| |#1|)) 33 T ELT) (((-86) (-86) (-583 (-1 |#1| (-583 |#1|)))) 30 T ELT)) (-1289 (((-86) |#1|) 63 T ELT)) (-1290 (((-3 |#1| #1#) (-86)) 58 T ELT))) +(((-87 |#1|) (-10 -7 (-15 -2518 ((-3 |#1| #1="failed") (-86) (-583 |#1|))) (-15 -2518 ((-86) (-86) (-1 |#1| (-583 |#1|)))) (-15 -2518 ((-86) (-86) (-1 |#1| |#1|))) (-15 -2518 ((-3 (-1 |#1| (-583 |#1|)) #1#) (-86))) (-15 -1288 ((-86) (-86) (-583 (-1 |#1| (-583 |#1|))))) (-15 -1288 ((-86) (-86) (-1 |#1| |#1|))) (-15 -1288 ((-3 (-583 (-1 |#1| (-583 |#1|))) #1#) (-86))) (-15 -1289 ((-86) |#1|)) (-15 -1290 ((-3 |#1| #1#) (-86)))) (-1013)) (T -87)) +((-1290 (*1 *2 *3) (|partial| -12 (-5 *3 (-86)) (-5 *1 (-87 *2)) (-4 *2 (-1013)))) (-1289 (*1 *2 *3) (-12 (-5 *2 (-86)) (-5 *1 (-87 *3)) (-4 *3 (-1013)))) (-1288 (*1 *2 *3) (|partial| -12 (-5 *3 (-86)) (-5 *2 (-583 (-1 *4 (-583 *4)))) (-5 *1 (-87 *4)) (-4 *4 (-1013)))) (-1288 (*1 *2 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1013)) (-5 *1 (-87 *4)))) (-1288 (*1 *2 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-583 (-1 *4 (-583 *4)))) (-4 *4 (-1013)) (-5 *1 (-87 *4)))) (-2518 (*1 *2 *3) (|partial| -12 (-5 *3 (-86)) (-5 *2 (-1 *4 (-583 *4))) (-5 *1 (-87 *4)) (-4 *4 (-1013)))) (-2518 (*1 *2 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1013)) (-5 *1 (-87 *4)))) (-2518 (*1 *2 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-1 *4 (-583 *4))) (-4 *4 (-1013)) (-5 *1 (-87 *4)))) (-2518 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-86)) (-5 *4 (-583 *2)) (-5 *1 (-87 *2)) (-4 *2 (-1013))))) +((-1291 (((-484) |#2|) 41 T ELT))) +(((-88 |#1| |#2|) (-10 -7 (-15 -1291 ((-484) |#2|))) (-13 (-312) (-950 (-349 (-484)))) (-1154 |#1|)) (T -88)) +((-1291 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-950 (-349 *2)))) (-5 *2 (-484)) (-5 *1 (-88 *4 *3)) (-4 *3 (-1154 *4))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3037 (($ $ (-484)) NIL T ELT)) (-1607 (((-85) $ $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-2611 (($ (-1084 (-484)) (-484)) NIL T ELT)) (-2564 (($ $ $) NIL T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-2612 (($ $) NIL T ELT)) (-2563 (($ $ $) NIL T ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-3771 (((-694) $) NIL T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-1604 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2614 (((-484)) NIL T ELT)) (-2613 (((-484) $) NIL T ELT)) (-1890 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3144 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-1605 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3768 (($ $ (-484)) NIL T ELT)) (-3465 (((-3 $ #1#) $ $) NIL T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-1606 (((-694) $) NIL T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL T ELT)) (-2615 (((-1068 (-484)) $) NIL T ELT)) (-2891 (($ $) NIL T ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT)) (-3126 (((-694)) NIL T CONST)) (-1264 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3769 (((-484) $ (-484)) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) NIL T CONST)) (-2666 (($) NIL T CONST)) (-3056 (((-85) $ $) NIL T ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT))) +(((-89 |#1|) (-779 |#1|) (-484)) (T -89)) +NIL +((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-3129 (((-89 |#1|) $) NIL (|has| (-89 |#1|) (-258)) ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2707 (((-347 (-1084 $)) (-1084 $)) NIL (|has| (-89 |#1|) (-821)) ELT)) (-3774 (($ $) NIL T ELT)) (-3970 (((-347 $) $) NIL T ELT)) (-2704 (((-3 (-583 (-1084 $)) #1#) (-583 (-1084 $)) (-1084 $)) NIL (|has| (-89 |#1|) (-821)) ELT)) (-1607 (((-85) $ $) NIL T ELT)) (-3622 (((-484) $) NIL (|has| (-89 |#1|) (-740)) ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 (-89 |#1|) #1#) $) NIL T ELT) (((-3 (-1089) #1#) $) NIL (|has| (-89 |#1|) (-950 (-1089))) ELT) (((-3 (-349 (-484)) #1#) $) NIL (|has| (-89 |#1|) (-950 (-484))) ELT) (((-3 (-484) #1#) $) NIL (|has| (-89 |#1|) (-950 (-484))) ELT)) (-3156 (((-89 |#1|) $) NIL T ELT) (((-1089) $) NIL (|has| (-89 |#1|) (-950 (-1089))) ELT) (((-349 (-484)) $) NIL (|has| (-89 |#1|) (-950 (-484))) ELT) (((-484) $) NIL (|has| (-89 |#1|) (-950 (-484))) ELT)) (-3729 (($ $) NIL T ELT) (($ (-484) $) NIL T ELT)) (-2564 (($ $ $) NIL T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (|has| (-89 |#1|) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) NIL (|has| (-89 |#1|) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-89 |#1|))) (|:| |vec| (-1178 (-89 |#1|)))) (-630 $) (-1178 $)) NIL T ELT) (((-630 (-89 |#1|)) (-630 $)) NIL T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-2994 (($) NIL (|has| (-89 |#1|) (-483)) ELT)) (-2563 (($ $ $) NIL T ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-3722 (((-85) $) NIL T ELT)) (-3186 (((-85) $) NIL (|has| (-89 |#1|) (-740)) ELT)) (-2796 (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) NIL (|has| (-89 |#1|) (-796 (-484))) ELT) (((-798 (-329) $) $ (-800 (-329)) (-798 (-329) $)) NIL (|has| (-89 |#1|) (-796 (-329))) ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2996 (($ $) NIL T ELT)) (-2998 (((-89 |#1|) $) NIL T ELT)) (-3444 (((-632 $) $) NIL (|has| (-89 |#1|) (-1065)) ELT)) (-3187 (((-85) $) NIL (|has| (-89 |#1|) (-740)) ELT)) (-1604 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2531 (($ $ $) NIL (|has| (-89 |#1|) (-756)) ELT)) (-2857 (($ $ $) NIL (|has| (-89 |#1|) (-756)) ELT)) (-3957 (($ (-1 (-89 |#1|) (-89 |#1|)) $) NIL T ELT)) (-2280 (((-630 (-484)) (-1178 $)) NIL (|has| (-89 |#1|) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (|has| (-89 |#1|) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-89 |#1|))) (|:| |vec| (-1178 (-89 |#1|)))) (-1178 $) $) NIL T ELT) (((-630 (-89 |#1|)) (-1178 $)) NIL T ELT)) (-1890 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2484 (($ $) NIL T ELT)) (-3445 (($) NIL (|has| (-89 |#1|) (-1065)) CONST)) (-3243 (((-1033) $) NIL T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3144 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3128 (($ $) NIL (|has| (-89 |#1|) (-258)) ELT)) (-3130 (((-89 |#1|) $) NIL (|has| (-89 |#1|) (-483)) ELT)) (-2705 (((-347 (-1084 $)) (-1084 $)) NIL (|has| (-89 |#1|) (-821)) ELT)) (-2706 (((-347 (-1084 $)) (-1084 $)) NIL (|has| (-89 |#1|) (-821)) ELT)) (-3731 (((-347 $) $) NIL T ELT)) (-1605 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3465 (((-3 $ #1#) $ $) NIL T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-3767 (($ $ (-583 (-89 |#1|)) (-583 (-89 |#1|))) NIL (|has| (-89 |#1|) (-260 (-89 |#1|))) ELT) (($ $ (-89 |#1|) (-89 |#1|)) NIL (|has| (-89 |#1|) (-260 (-89 |#1|))) ELT) (($ $ (-249 (-89 |#1|))) NIL (|has| (-89 |#1|) (-260 (-89 |#1|))) ELT) (($ $ (-583 (-249 (-89 |#1|)))) NIL (|has| (-89 |#1|) (-260 (-89 |#1|))) ELT) (($ $ (-583 (-1089)) (-583 (-89 |#1|))) NIL (|has| (-89 |#1|) (-455 (-1089) (-89 |#1|))) ELT) (($ $ (-1089) (-89 |#1|)) NIL (|has| (-89 |#1|) (-455 (-1089) (-89 |#1|))) ELT)) (-1606 (((-694) $) NIL T ELT)) (-3799 (($ $ (-89 |#1|)) NIL (|has| (-89 |#1|) (-241 (-89 |#1|) (-89 |#1|))) ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL T ELT)) (-3757 (($ $ (-1 (-89 |#1|) (-89 |#1|))) NIL T ELT) (($ $ (-1 (-89 |#1|) (-89 |#1|)) (-694)) NIL T ELT) (($ $ (-1089)) NIL (|has| (-89 |#1|) (-811 (-1089))) ELT) (($ $ (-583 (-1089))) NIL (|has| (-89 |#1|) (-811 (-1089))) ELT) (($ $ (-1089) (-694)) NIL (|has| (-89 |#1|) (-811 (-1089))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (|has| (-89 |#1|) (-811 (-1089))) ELT) (($ $) NIL (|has| (-89 |#1|) (-189)) ELT) (($ $ (-694)) NIL (|has| (-89 |#1|) (-189)) ELT)) (-2995 (($ $) NIL T ELT)) (-2997 (((-89 |#1|) $) NIL T ELT)) (-3971 (((-800 (-484)) $) NIL (|has| (-89 |#1|) (-553 (-800 (-484)))) ELT) (((-800 (-329)) $) NIL (|has| (-89 |#1|) (-553 (-800 (-329)))) ELT) (((-473) $) NIL (|has| (-89 |#1|) (-553 (-473))) ELT) (((-329) $) NIL (|has| (-89 |#1|) (-933)) ELT) (((-179) $) NIL (|has| (-89 |#1|) (-933)) ELT)) (-2616 (((-148 (-349 (-484))) $) NIL T ELT)) (-2703 (((-3 (-1178 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| (-89 |#1|) (-821))) ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-349 (-484))) NIL T ELT) (($ (-89 |#1|)) NIL T ELT) (($ (-1089)) NIL (|has| (-89 |#1|) (-950 (-1089))) ELT)) (-2702 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-89 |#1|) (-821))) (|has| (-89 |#1|) (-118))) ELT)) (-3126 (((-694)) NIL T CONST)) (-3131 (((-89 |#1|) $) NIL (|has| (-89 |#1|) (-483)) ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3769 (((-349 (-484)) $ (-484)) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-3382 (($ $) NIL (|has| (-89 |#1|) (-740)) ELT)) (-2660 (($) NIL T CONST)) (-2666 (($) NIL T CONST)) (-2669 (($ $ (-1 (-89 |#1|) (-89 |#1|))) NIL T ELT) (($ $ (-1 (-89 |#1|) (-89 |#1|)) (-694)) NIL T ELT) (($ $ (-1089)) NIL (|has| (-89 |#1|) (-811 (-1089))) ELT) (($ $ (-583 (-1089))) NIL (|has| (-89 |#1|) (-811 (-1089))) ELT) (($ $ (-1089) (-694)) NIL (|has| (-89 |#1|) (-811 (-1089))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (|has| (-89 |#1|) (-811 (-1089))) ELT) (($ $) NIL (|has| (-89 |#1|) (-189)) ELT) (($ $ (-694)) NIL (|has| (-89 |#1|) (-189)) ELT)) (-2566 (((-85) $ $) NIL (|has| (-89 |#1|) (-756)) ELT)) (-2567 (((-85) $ $) NIL (|has| (-89 |#1|) (-756)) ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL (|has| (-89 |#1|) (-756)) ELT)) (-2685 (((-85) $ $) NIL (|has| (-89 |#1|) (-756)) ELT)) (-3948 (($ $ $) NIL T ELT) (($ (-89 |#1|) (-89 |#1|)) NIL T ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-349 (-484))) NIL T ELT) (($ (-349 (-484)) $) NIL T ELT) (($ (-89 |#1|) $) NIL T ELT) (($ $ (-89 |#1|)) NIL T ELT))) +(((-90 |#1|) (-13 (-904 (-89 |#1|)) (-10 -8 (-15 -3769 ((-349 (-484)) $ (-484))) (-15 -2616 ((-148 (-349 (-484))) $)) (-15 -3729 ($ $)) (-15 -3729 ($ (-484) $)))) (-484)) (T -90)) +((-3769 (*1 *2 *1 *3) (-12 (-5 *2 (-349 (-484))) (-5 *1 (-90 *4)) (-14 *4 *3) (-5 *3 (-484)))) (-2616 (*1 *2 *1) (-12 (-5 *2 (-148 (-349 (-484)))) (-5 *1 (-90 *3)) (-14 *3 (-484)))) (-3729 (*1 *1 *1) (-12 (-5 *1 (-90 *2)) (-14 *2 (-484)))) (-3729 (*1 *1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-90 *3)) (-14 *3 *2)))) +((-3787 ((|#2| $ #1="value" |#2|) NIL T ELT) (($ $ #2="left" $) 61 T ELT) (($ $ #3="right" $) 63 T ELT)) (-3031 (((-583 $) $) 31 T ELT)) (-3027 (((-85) $ $) 36 T ELT)) (-3245 (((-85) |#2| $) 40 T ELT)) (-3030 (((-583 |#2|) $) 25 T ELT)) (-3526 (((-85) $) 18 T ELT)) (-3799 ((|#2| $ #1#) NIL T ELT) (($ $ #2#) 10 T ELT) (($ $ #3#) 13 T ELT)) (-3632 (((-85) $) 57 T ELT)) (-3945 (((-772) $) 47 T ELT)) (-3521 (((-583 $) $) 32 T ELT)) (-3056 (((-85) $ $) 38 T ELT)) (-3956 (((-694) $) 50 T ELT))) +(((-91 |#1| |#2|) (-10 -7 (-15 -3056 ((-85) |#1| |#1|)) (-15 -3945 ((-772) |#1|)) (-15 -3787 (|#1| |#1| #1="right" |#1|)) (-15 -3787 (|#1| |#1| #2="left" |#1|)) (-15 -3799 (|#1| |#1| #1#)) (-15 -3799 (|#1| |#1| #2#)) (-15 -3787 (|#2| |#1| #3="value" |#2|)) (-15 -3027 ((-85) |#1| |#1|)) (-15 -3030 ((-583 |#2|) |#1|)) (-15 -3632 ((-85) |#1|)) (-15 -3799 (|#2| |#1| #3#)) (-15 -3526 ((-85) |#1|)) (-15 -3031 ((-583 |#1|) |#1|)) (-15 -3521 ((-583 |#1|) |#1|)) (-15 -3245 ((-85) |#2| |#1|)) (-15 -3956 ((-694) |#1|))) (-92 |#2|) (-1128)) (T -91)) +NIL +((-2568 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3401 ((|#1| $) 52 T ELT)) (-3025 ((|#1| $ |#1|) 43 (|has| $ (-6 -3995)) ELT)) (-1292 (($ $ $) 58 (|has| $ (-6 -3995)) ELT)) (-1293 (($ $ $) 60 (|has| $ (-6 -3995)) ELT)) (-3787 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -3995)) ELT) (($ $ "left" $) 61 (|has| $ (-6 -3995)) ELT) (($ $ "right" $) 59 (|has| $ (-6 -3995)) ELT)) (-3026 (($ $ (-583 $)) 45 (|has| $ (-6 -3995)) ELT)) (-3723 (($) 7 T CONST)) (-3137 (($ $) 63 T ELT)) (-2889 (((-583 |#1|) $) 30 (|has| $ (-6 -3994)) ELT)) (-3031 (((-583 $) $) 54 T ELT)) (-3027 (((-85) $ $) 46 (|has| |#1| (-1013)) ELT)) (-2608 (((-583 |#1|) $) 29 (|has| $ (-6 -3994)) ELT)) (-3245 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-1948 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3138 (($ $) 65 T ELT)) (-3030 (((-583 |#1|) $) 49 T ELT)) (-3526 (((-85) $) 53 T ELT)) (-3242 (((-1072) $) 22 (|has| |#1| (-1013)) ELT)) (-3243 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3994)) ELT)) (-3767 (($ $ (-583 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1221 (((-85) $ $) 11 T ELT)) (-3402 (((-85) $) 8 T ELT)) (-3564 (($) 9 T ELT)) (-3799 ((|#1| $ #1#) 51 T ELT) (($ $ "left") 64 T ELT) (($ $ "right") 62 T ELT)) (-3029 (((-484) $ $) 48 T ELT)) (-3632 (((-85) $) 50 T ELT)) (-1945 (((-694) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3994)) ELT) (((-694) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-3399 (($ $) 10 T ELT)) (-3945 (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-3521 (((-583 $) $) 55 T ELT)) (-3028 (((-85) $ $) 47 (|has| |#1| (-1013)) ELT)) (-1264 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3994)) ELT)) (-3056 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3956 (((-694) $) 6 (|has| $ (-6 -3994)) ELT))) +(((-92 |#1|) (-113) (-1128)) (T -92)) +((-3138 (*1 *1 *1) (-12 (-4 *1 (-92 *2)) (-4 *2 (-1128)))) (-3799 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-92 *3)) (-4 *3 (-1128)))) (-3137 (*1 *1 *1) (-12 (-4 *1 (-92 *2)) (-4 *2 (-1128)))) (-3799 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-92 *3)) (-4 *3 (-1128)))) (-3787 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -3995)) (-4 *1 (-92 *3)) (-4 *3 (-1128)))) (-1293 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -3995)) (-4 *1 (-92 *2)) (-4 *2 (-1128)))) (-3787 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -3995)) (-4 *1 (-92 *3)) (-4 *3 (-1128)))) (-1292 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -3995)) (-4 *1 (-92 *2)) (-4 *2 (-1128))))) +(-13 (-923 |t#1|) (-10 -8 (-15 -3138 ($ $)) (-15 -3799 ($ $ "left")) (-15 -3137 ($ $)) (-15 -3799 ($ $ "right")) (IF (|has| $ (-6 -3995)) (PROGN (-15 -3787 ($ $ "left" $)) (-15 -1293 ($ $ $)) (-15 -3787 ($ $ "right" $)) (-15 -1292 ($ $ $))) |%noBranch|))) +(((-34) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1013)) (|has| |#1| (-552 (-772)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-428 |#1|) . T) ((-455 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-923 |#1|) . T) ((-1013) |has| |#1| (-1013)) ((-1128) . T)) +((-1296 (((-85) |#1|) 29 T ELT)) (-1295 (((-694) (-694)) 28 T ELT) (((-694)) 27 T ELT)) (-1294 (((-85) |#1| (-85)) 30 T ELT) (((-85) |#1|) 31 T ELT))) +(((-93 |#1|) (-10 -7 (-15 -1294 ((-85) |#1|)) (-15 -1294 ((-85) |#1| (-85))) (-15 -1295 ((-694))) (-15 -1295 ((-694) (-694))) (-15 -1296 ((-85) |#1|))) (-1154 (-484))) (T -93)) +((-1296 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-93 *3)) (-4 *3 (-1154 (-484))))) (-1295 (*1 *2 *2) (-12 (-5 *2 (-694)) (-5 *1 (-93 *3)) (-4 *3 (-1154 (-484))))) (-1295 (*1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-93 *3)) (-4 *3 (-1154 (-484))))) (-1294 (*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *1 (-93 *3)) (-4 *3 (-1154 (-484))))) (-1294 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-93 *3)) (-4 *3 (-1154 (-484)))))) +((-2568 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3401 ((|#1| $) 18 T ELT)) (-3417 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 26 T ELT)) (-3025 ((|#1| $ |#1|) NIL (|has| $ (-6 -3995)) ELT)) (-1292 (($ $ $) 21 (|has| $ (-6 -3995)) ELT)) (-1293 (($ $ $) 23 (|has| $ (-6 -3995)) ELT)) (-3787 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3995)) ELT) (($ $ #2="left" $) NIL (|has| $ (-6 -3995)) ELT) (($ $ #3="right" $) NIL (|has| $ (-6 -3995)) ELT)) (-3026 (($ $ (-583 $)) NIL (|has| $ (-6 -3995)) ELT)) (-3723 (($) NIL T CONST)) (-3137 (($ $) 20 T ELT)) (-2889 (((-583 |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3031 (((-583 $) $) NIL T ELT)) (-3027 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-1301 (($ $ |#1| $) 27 T ELT)) (-2608 (((-583 |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3245 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-1948 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3138 (($ $) 22 T ELT)) (-3030 (((-583 |#1|) $) NIL T ELT)) (-3526 (((-85) $) NIL T ELT)) (-3242 (((-1072) $) NIL (|has| |#1| (-1013)) ELT)) (-1297 (($ |#1| $) 28 T ELT)) (-3608 (($ |#1| $) 15 T ELT)) (-3243 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3767 (($ $ (-583 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1221 (((-85) $ $) NIL T ELT)) (-3402 (((-85) $) 17 T ELT)) (-3564 (($) 11 T ELT)) (-3799 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3029 (((-484) $ $) NIL T ELT)) (-3632 (((-85) $) NIL T ELT)) (-1945 (((-694) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT) (((-694) |#1| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-3399 (($ $) NIL T ELT)) (-3945 (((-772) $) NIL (|has| |#1| (-552 (-772))) ELT)) (-3521 (((-583 $) $) NIL T ELT)) (-3028 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-1298 (($ (-583 |#1|)) 16 T ELT)) (-1264 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3056 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3956 (((-694) $) NIL (|has| $ (-6 -3994)) ELT))) +(((-94 |#1|) (-13 (-98 |#1|) (-10 -8 (-6 -3995) (-6 -3994) (-15 -1298 ($ (-583 |#1|))) (-15 -3608 ($ |#1| $)) (-15 -1297 ($ |#1| $)) (-15 -3417 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-756)) (T -94)) +((-1298 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-756)) (-5 *1 (-94 *3)))) (-3608 (*1 *1 *2 *1) (-12 (-5 *1 (-94 *2)) (-4 *2 (-756)))) (-1297 (*1 *1 *2 *1) (-12 (-5 *1 (-94 *2)) (-4 *2 (-756)))) (-3417 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-94 *3)) (|:| |greater| (-94 *3)))) (-5 *1 (-94 *3)) (-4 *3 (-756))))) +((-2313 (($ $) 13 T ELT)) (-2560 (($ $) 11 T ELT)) (-1299 (($ $ $) 23 T ELT)) (-1300 (($ $ $) 21 T ELT)) (-2311 (($ $ $) 19 T ELT)) (-2312 (($ $ $) 17 T ELT))) +(((-95 |#1|) (-10 -7 (-15 -1299 (|#1| |#1| |#1|)) (-15 -1300 (|#1| |#1| |#1|)) (-15 -2313 (|#1| |#1|)) (-15 -2312 (|#1| |#1| |#1|)) (-15 -2311 (|#1| |#1| |#1|)) (-15 -2560 (|#1| |#1|))) (-96)) (T -95)) +NIL +((-2568 (((-85) $ $) 7 T ELT)) (-2313 (($ $) 103 T ELT)) (-3321 (($ $ $) 31 T ELT)) (-2198 (((-1184) $ (-484) (-484)) 66 (|has| $ (-6 -3995)) ELT)) (-1731 (((-85) $) 98 (|has| (-85) (-756)) ELT) (((-85) (-1 (-85) (-85) (-85)) $) 92 T ELT)) (-1729 (($ $) 102 (-12 (|has| (-85) (-756)) (|has| $ (-6 -3995))) ELT) (($ (-1 (-85) (-85) (-85)) $) 101 (|has| $ (-6 -3995)) ELT)) (-2909 (($ $) 97 (|has| (-85) (-756)) ELT) (($ (-1 (-85) (-85) (-85)) $) 91 T ELT)) (-3787 (((-85) $ (-1145 (-484)) (-85)) 88 (|has| $ (-6 -3995)) ELT) (((-85) $ (-484) (-85)) 54 (|has| $ (-6 -3995)) ELT)) (-3709 (($ (-1 (-85) (-85)) $) 71 (|has| $ (-6 -3994)) ELT)) (-3723 (($) 38 T CONST)) (-2297 (($ $) 100 (|has| $ (-6 -3995)) ELT)) (-2298 (($ $) 90 T ELT)) (-1352 (($ $) 68 (-12 (|has| (-85) (-1013)) (|has| $ (-6 -3994))) ELT)) (-3405 (($ (-1 (-85) (-85)) $) 72 (|has| $ (-6 -3994)) ELT) (($ (-85) $) 69 (-12 (|has| (-85) (-1013)) (|has| $ (-6 -3994))) ELT)) (-3841 (((-85) (-1 (-85) (-85) (-85)) $) 74 (|has| $ (-6 -3994)) ELT) (((-85) (-1 (-85) (-85) (-85)) $ (-85)) 73 (|has| $ (-6 -3994)) ELT) (((-85) (-1 (-85) (-85) (-85)) $ (-85) (-85)) 70 (-12 (|has| (-85) (-1013)) (|has| $ (-6 -3994))) ELT)) (-1575 (((-85) $ (-484) (-85)) 53 (|has| $ (-6 -3995)) ELT)) (-3112 (((-85) $ (-484)) 55 T ELT)) (-3418 (((-484) (-85) $ (-484)) 95 (|has| (-85) (-1013)) ELT) (((-484) (-85) $) 94 (|has| (-85) (-1013)) ELT) (((-484) (-1 (-85) (-85)) $) 93 T ELT)) (-2889 (((-583 (-85)) $) 45 (|has| $ (-6 -3994)) ELT)) (-2561 (($ $ $) 108 T ELT)) (-2560 (($ $) 106 T ELT)) (-1299 (($ $ $) 32 T ELT)) (-3613 (($ (-694) (-85)) 78 T ELT)) (-1300 (($ $ $) 33 T ELT)) (-2200 (((-484) $) 63 (|has| (-484) (-756)) ELT)) (-2531 (($ $ $) 23 T ELT)) (-3517 (($ $ $) 96 (|has| (-85) (-756)) ELT) (($ (-1 (-85) (-85) (-85)) $ $) 89 T ELT)) (-2608 (((-583 (-85)) $) 46 (|has| $ (-6 -3994)) ELT)) (-3245 (((-85) (-85) $) 48 (-12 (|has| (-85) (-1013)) (|has| $ (-6 -3994))) ELT)) (-2201 (((-484) $) 62 (|has| (-484) (-756)) ELT)) (-2857 (($ $ $) 22 T ELT)) (-1948 (($ (-1 (-85) (-85)) $) 41 (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 (-85) (-85) (-85)) $ $) 83 T ELT) (($ (-1 (-85) (-85)) $) 40 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-2304 (($ $ $ (-484)) 87 T ELT) (($ (-85) $ (-484)) 86 T ELT)) (-2203 (((-583 (-484)) $) 60 T ELT)) (-2204 (((-85) (-484) $) 59 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3800 (((-85) $) 64 (|has| (-484) (-756)) ELT)) (-1353 (((-3 (-85) "failed") (-1 (-85) (-85)) $) 75 T ELT)) (-2199 (($ $ (-85)) 65 (|has| $ (-6 -3995)) ELT)) (-1946 (((-85) (-1 (-85) (-85)) $) 43 (|has| $ (-6 -3994)) ELT)) (-3767 (($ $ (-583 (-85)) (-583 (-85))) 52 (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1013))) ELT) (($ $ (-85) (-85)) 51 (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1013))) ELT) (($ $ (-249 (-85))) 50 (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1013))) ELT) (($ $ (-583 (-249 (-85)))) 49 (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1013))) ELT)) (-1221 (((-85) $ $) 34 T ELT)) (-2202 (((-85) (-85) $) 61 (-12 (|has| $ (-6 -3994)) (|has| (-85) (-1013))) ELT)) (-2205 (((-583 (-85)) $) 58 T ELT)) (-3402 (((-85) $) 37 T ELT)) (-3564 (($) 36 T ELT)) (-3799 (($ $ (-1145 (-484))) 77 T ELT) (((-85) $ (-484)) 57 T ELT) (((-85) $ (-484) (-85)) 56 T ELT)) (-2305 (($ $ (-1145 (-484))) 85 T ELT) (($ $ (-484)) 84 T ELT)) (-1945 (((-694) (-85) $) 47 (-12 (|has| (-85) (-1013)) (|has| $ (-6 -3994))) ELT) (((-694) (-1 (-85) (-85)) $) 44 (|has| $ (-6 -3994)) ELT)) (-1730 (($ $ $ (-484)) 99 (|has| $ (-6 -3995)) ELT)) (-3399 (($ $) 35 T ELT)) (-3971 (((-473) $) 67 (|has| (-85) (-553 (-473))) ELT)) (-3529 (($ (-583 (-85))) 76 T ELT)) (-3801 (($ (-583 $)) 82 T ELT) (($ $ $) 81 T ELT) (($ (-85) $) 80 T ELT) (($ $ (-85)) 79 T ELT)) (-3945 (((-772) $) 13 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-1947 (((-85) (-1 (-85) (-85)) $) 42 (|has| $ (-6 -3994)) ELT)) (-2562 (($ $ $) 107 T ELT)) (-2311 (($ $ $) 105 T ELT)) (-2566 (((-85) $ $) 21 T ELT)) (-2567 (((-85) $ $) 19 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-2684 (((-85) $ $) 20 T ELT)) (-2685 (((-85) $ $) 18 T ELT)) (-2312 (($ $ $) 104 T ELT)) (-3956 (((-694) $) 39 (|has| $ (-6 -3994)) ELT))) (((-96) (-113)) (T -96)) -((-1299 (*1 *1 *1 *1) (-4 *1 (-96))) (-1298 (*1 *1 *1 *1) (-4 *1 (-96))) (-3320 (*1 *1 *1 *1) (-4 *1 (-96)))) -(-13 (-755) (-84) (-603) (-19 (-85)) (-10 -8 (-15 -1299 ($ $ $)) (-15 -1298 ($ $ $)) (-15 -3320 ($ $ $)))) -(((-34) . T) ((-72) . T) ((-84) . T) ((-551 (-771)) . T) ((-124 (-85)) . T) ((-552 (-472)) |has| (-85) (-552 (-472))) ((-241 (-483) (-85)) . T) ((-241 (-1144 (-483)) $) . T) ((-243 (-483) (-85)) . T) ((-260 (-85)) -12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1012))) ((-322 (-85)) . T) ((-427 (-85)) . T) ((-537 (-483) (-85)) . T) ((-454 (-85) (-85)) -12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1012))) ((-13) . T) ((-592 (-85)) . T) ((-603) . T) ((-19 (-85)) . T) ((-755) . T) ((-758) . T) ((-1012) . T) ((-1127) . T)) -((-1947 (($ (-1 |#2| |#2|) $) 22 T ELT)) (-3398 (($ $) 16 T ELT)) (-3955 (((-693) $) 25 T ELT))) -(((-97 |#1| |#2|) (-10 -7 (-15 -1947 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3955 ((-693) |#1|)) (-15 -3398 (|#1| |#1|))) (-98 |#2|) (-1012)) (T -97)) -NIL -((-2567 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3400 ((|#1| $) 52 T ELT)) (-3024 ((|#1| $ |#1|) 43 (|has| $ (-6 -3994)) ELT)) (-1291 (($ $ $) 58 (|has| $ (-6 -3994)) ELT)) (-1292 (($ $ $) 60 (|has| $ (-6 -3994)) ELT)) (-3786 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -3994)) ELT) (($ $ #2="left" $) 61 (|has| $ (-6 -3994)) ELT) (($ $ #3="right" $) 59 (|has| $ (-6 -3994)) ELT)) (-3025 (($ $ (-582 $)) 45 (|has| $ (-6 -3994)) ELT)) (-3722 (($) 7 T CONST)) (-3136 (($ $) 63 T ELT)) (-2888 (((-582 |#1|) $) 30 (|has| $ (-6 -3993)) ELT)) (-3030 (((-582 $) $) 54 T ELT)) (-3026 (((-85) $ $) 46 (|has| |#1| (-1012)) ELT)) (-1300 (($ $ |#1| $) 66 T ELT)) (-2607 (((-582 |#1|) $) 29 (|has| $ (-6 -3993)) ELT)) (-3244 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3993))) ELT)) (-1947 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3994)) ELT)) (-3956 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3137 (($ $) 65 T ELT)) (-3029 (((-582 |#1|) $) 49 T ELT)) (-3525 (((-85) $) 53 T ELT)) (-3241 (((-1071) $) 22 (|has| |#1| (-1012)) ELT)) (-3242 (((-1032) $) 21 (|has| |#1| (-1012)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3993)) ELT)) (-3766 (($ $ (-582 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-582 |#1|) (-582 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT)) (-1220 (((-85) $ $) 11 T ELT)) (-3401 (((-85) $) 8 T ELT)) (-3563 (($) 9 T ELT)) (-3798 ((|#1| $ #1#) 51 T ELT) (($ $ #2#) 64 T ELT) (($ $ #3#) 62 T ELT)) (-3028 (((-483) $ $) 48 T ELT)) (-3631 (((-85) $) 50 T ELT)) (-1944 (((-693) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3993)) ELT) (((-693) |#1| $) 28 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3993))) ELT)) (-3398 (($ $) 10 T ELT)) (-3944 (((-771) $) 17 (|has| |#1| (-551 (-771))) ELT)) (-3520 (((-582 $) $) 55 T ELT)) (-3027 (((-85) $ $) 47 (|has| |#1| (-1012)) ELT)) (-1263 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3993)) ELT)) (-3055 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3955 (((-693) $) 6 (|has| $ (-6 -3993)) ELT))) -(((-98 |#1|) (-113) (-1012)) (T -98)) -((-1300 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-98 *2)) (-4 *2 (-1012))))) -(-13 (-92 |t#1|) (-10 -8 (-6 -3994) (-6 -3993) (-15 -1300 ($ $ |t#1| $)))) -(((-34) . T) ((-72) OR (|has| |#1| (-1012)) (|has| |#1| (-72))) ((-92 |#1|) . T) ((-551 (-771)) OR (|has| |#1| (-1012)) (|has| |#1| (-551 (-771)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ((-427 |#1|) . T) ((-454 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ((-13) . T) ((-922 |#1|) . T) ((-1012) |has| |#1| (-1012)) ((-1127) . T)) -((-2567 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3400 ((|#1| $) 18 T ELT)) (-3024 ((|#1| $ |#1|) 22 (|has| $ (-6 -3994)) ELT)) (-1291 (($ $ $) 23 (|has| $ (-6 -3994)) ELT)) (-1292 (($ $ $) 21 (|has| $ (-6 -3994)) ELT)) (-3786 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3994)) ELT) (($ $ #2="left" $) NIL (|has| $ (-6 -3994)) ELT) (($ $ #3="right" $) NIL (|has| $ (-6 -3994)) ELT)) (-3025 (($ $ (-582 $)) NIL (|has| $ (-6 -3994)) ELT)) (-3722 (($) NIL T CONST)) (-3136 (($ $) 24 T ELT)) (-2888 (((-582 |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3030 (((-582 $) $) NIL T ELT)) (-3026 (((-85) $ $) NIL (|has| |#1| (-1012)) ELT)) (-1300 (($ $ |#1| $) NIL T ELT)) (-2607 (((-582 |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3244 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#1| (-1012))) ELT)) (-1947 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3956 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3137 (($ $) NIL T ELT)) (-3029 (((-582 |#1|) $) NIL T ELT)) (-3525 (((-85) $) NIL T ELT)) (-3241 (((-1071) $) NIL (|has| |#1| (-1012)) ELT)) (-3607 (($ |#1| $) 15 T ELT)) (-3242 (((-1032) $) NIL (|has| |#1| (-1012)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3766 (($ $ (-582 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-582 |#1|) (-582 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-3401 (((-85) $) 17 T ELT)) (-3563 (($) 11 T ELT)) (-3798 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3028 (((-483) $ $) NIL T ELT)) (-3631 (((-85) $) NIL T ELT)) (-1944 (((-693) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3993)) ELT) (((-693) |#1| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#1| (-1012))) ELT)) (-3398 (($ $) 20 T ELT)) (-3944 (((-771) $) NIL (|has| |#1| (-551 (-771))) ELT)) (-3520 (((-582 $) $) NIL T ELT)) (-3027 (((-85) $ $) NIL (|has| |#1| (-1012)) ELT)) (-1301 (($ (-582 |#1|)) 16 T ELT)) (-1263 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3055 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3955 (((-693) $) NIL (|has| $ (-6 -3993)) ELT))) -(((-99 |#1|) (-13 (-98 |#1|) (-10 -8 (-6 -3994) (-15 -1301 ($ (-582 |#1|))) (-15 -3607 ($ |#1| $)))) (-755)) (T -99)) -((-1301 (*1 *1 *2) (-12 (-5 *2 (-582 *3)) (-4 *3 (-755)) (-5 *1 (-99 *3)))) (-3607 (*1 *1 *2 *1) (-12 (-5 *1 (-99 *2)) (-4 *2 (-755))))) -((-2567 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3400 ((|#1| $) 31 T ELT)) (-3024 ((|#1| $ |#1|) 33 (|has| $ (-6 -3994)) ELT)) (-1291 (($ $ $) 37 (|has| $ (-6 -3994)) ELT)) (-1292 (($ $ $) 35 (|has| $ (-6 -3994)) ELT)) (-3786 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3994)) ELT) (($ $ #2="left" $) NIL (|has| $ (-6 -3994)) ELT) (($ $ #3="right" $) NIL (|has| $ (-6 -3994)) ELT)) (-3025 (($ $ (-582 $)) NIL (|has| $ (-6 -3994)) ELT)) (-3722 (($) NIL T CONST)) (-3136 (($ $) 24 T ELT)) (-2888 (((-582 |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3030 (((-582 $) $) NIL T ELT)) (-3026 (((-85) $ $) NIL (|has| |#1| (-1012)) ELT)) (-1300 (($ $ |#1| $) 17 T ELT)) (-2607 (((-582 |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3244 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#1| (-1012))) ELT)) (-1947 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3956 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3137 (($ $) 23 T ELT)) (-3029 (((-582 |#1|) $) NIL T ELT)) (-3525 (((-85) $) 26 T ELT)) (-3241 (((-1071) $) NIL (|has| |#1| (-1012)) ELT)) (-3242 (((-1032) $) NIL (|has| |#1| (-1012)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3766 (($ $ (-582 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-582 |#1|) (-582 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-3401 (((-85) $) 21 T ELT)) (-3563 (($) 13 T ELT)) (-3798 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3028 (((-483) $ $) NIL T ELT)) (-3631 (((-85) $) NIL T ELT)) (-1944 (((-693) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3993)) ELT) (((-693) |#1| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#1| (-1012))) ELT)) (-3398 (($ $) NIL T ELT)) (-3944 (((-771) $) NIL (|has| |#1| (-551 (-771))) ELT)) (-3520 (((-582 $) $) NIL T ELT)) (-3027 (((-85) $ $) NIL (|has| |#1| (-1012)) ELT)) (-1302 (($ |#1|) 19 T ELT) (($ $ |#1| $) 18 T ELT)) (-1263 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3055 (((-85) $ $) 12 (|has| |#1| (-72)) ELT)) (-3955 (((-693) $) NIL (|has| $ (-6 -3993)) ELT))) -(((-100 |#1|) (-13 (-98 |#1|) (-10 -8 (-15 -1302 ($ |#1|)) (-15 -1302 ($ $ |#1| $)))) (-1012)) (T -100)) -((-1302 (*1 *1 *2) (-12 (-5 *1 (-100 *2)) (-4 *2 (-1012)))) (-1302 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-100 *2)) (-4 *2 (-1012))))) -((-2567 (((-85) $ $) NIL T ELT)) (-2312 (($ $) 32 T ELT)) (-3135 (((-693)) 17 T ELT)) (-3722 (($) 9 T CONST)) (-2993 (($) 27 T ELT)) (-2530 (($ $ $) NIL T ELT) (($) 15 T CONST)) (-2856 (($ $ $) NIL T ELT) (($) 16 T CONST)) (-2009 (((-829) $) 25 T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-2399 (($ (-829)) 23 T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3944 (((-771) $) NIL T ELT)) (-1303 (($ (-693)) 8 T ELT)) (-3723 (($ $ $) 29 T ELT)) (-3724 (($ $ $) 28 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2310 (($ $ $) 31 T ELT)) (-2565 (((-85) $ $) 14 T ELT)) (-2566 (((-85) $ $) 12 T ELT)) (-3055 (((-85) $ $) 10 T ELT)) (-2683 (((-85) $ $) 13 T ELT)) (-2684 (((-85) $ $) 11 T ELT)) (-2311 (($ $ $) 30 T ELT))) -(((-101) (-13 (-751) (-603) (-10 -8 (-15 -1303 ($ (-693))) (-15 -3724 ($ $ $)) (-15 -3723 ($ $ $)) (-15 -3722 ($) -3950)))) (T -101)) -((-1303 (*1 *1 *2) (-12 (-5 *2 (-693)) (-5 *1 (-101)))) (-3724 (*1 *1 *1 *1) (-5 *1 (-101))) (-3723 (*1 *1 *1 *1) (-5 *1 (-101))) (-3722 (*1 *1) (-5 *1 (-101)))) -((-693) (|%ilt| |#1| 256)) -((-2567 (((-85) $ $) NIL (|has| (-101) (-72)) ELT)) (-2197 (((-1183) $ (-483) (-483)) NIL (|has| $ (-6 -3994)) ELT)) (-1730 (((-85) (-1 (-85) (-101) (-101)) $) NIL T ELT) (((-85) $) NIL (|has| (-101) (-755)) ELT)) (-1728 (($ (-1 (-85) (-101) (-101)) $) NIL (|has| $ (-6 -3994)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-101) (-755))) ELT)) (-2908 (($ (-1 (-85) (-101) (-101)) $) NIL T ELT) (($ $) NIL (|has| (-101) (-755)) ELT)) (-3786 (((-101) $ (-483) (-101)) 26 (|has| $ (-6 -3994)) ELT) (((-101) $ (-1144 (-483)) (-101)) NIL (|has| $ (-6 -3994)) ELT)) (-1304 (((-693) $ (-693)) 35 T ELT)) (-3708 (($ (-1 (-85) (-101)) $) NIL (|has| $ (-6 -3993)) ELT)) (-3722 (($) NIL T CONST)) (-2296 (($ $) NIL (|has| $ (-6 -3994)) ELT)) (-2297 (($ $) NIL T ELT)) (-1351 (($ $) NIL (-12 (|has| $ (-6 -3993)) (|has| (-101) (-1012))) ELT)) (-3404 (($ (-101) $) NIL (-12 (|has| $ (-6 -3993)) (|has| (-101) (-1012))) ELT) (($ (-1 (-85) (-101)) $) NIL (|has| $ (-6 -3993)) ELT)) (-3840 (((-101) (-1 (-101) (-101) (-101)) $ (-101) (-101)) NIL (-12 (|has| $ (-6 -3993)) (|has| (-101) (-1012))) ELT) (((-101) (-1 (-101) (-101) (-101)) $ (-101)) NIL (|has| $ (-6 -3993)) ELT) (((-101) (-1 (-101) (-101) (-101)) $) NIL (|has| $ (-6 -3993)) ELT)) (-1574 (((-101) $ (-483) (-101)) 25 (|has| $ (-6 -3994)) ELT)) (-3111 (((-101) $ (-483)) 20 T ELT)) (-3417 (((-483) (-1 (-85) (-101)) $) NIL T ELT) (((-483) (-101) $) NIL (|has| (-101) (-1012)) ELT) (((-483) (-101) $ (-483)) NIL (|has| (-101) (-1012)) ELT)) (-2888 (((-582 (-101)) $) NIL (|has| $ (-6 -3993)) ELT)) (-3612 (($ (-693) (-101)) 14 T ELT)) (-2199 (((-483) $) 27 (|has| (-483) (-755)) ELT)) (-2530 (($ $ $) NIL (|has| (-101) (-755)) ELT)) (-3516 (($ (-1 (-85) (-101) (-101)) $ $) NIL T ELT) (($ $ $) NIL (|has| (-101) (-755)) ELT)) (-2607 (((-582 (-101)) $) NIL (|has| $ (-6 -3993)) ELT)) (-3244 (((-85) (-101) $) NIL (-12 (|has| $ (-6 -3993)) (|has| (-101) (-1012))) ELT)) (-2200 (((-483) $) 30 (|has| (-483) (-755)) ELT)) (-2856 (($ $ $) NIL (|has| (-101) (-755)) ELT)) (-1947 (($ (-1 (-101) (-101)) $) NIL (|has| $ (-6 -3994)) ELT)) (-3956 (($ (-1 (-101) (-101)) $) NIL T ELT) (($ (-1 (-101) (-101) (-101)) $ $) NIL T ELT)) (-3241 (((-1071) $) NIL (|has| (-101) (-1012)) ELT)) (-2303 (($ (-101) $ (-483)) NIL T ELT) (($ $ $ (-483)) NIL T ELT)) (-2202 (((-582 (-483)) $) NIL T ELT)) (-2203 (((-85) (-483) $) NIL T ELT)) (-3242 (((-1032) $) NIL (|has| (-101) (-1012)) ELT)) (-3799 (((-101) $) NIL (|has| (-483) (-755)) ELT)) (-1352 (((-3 (-101) "failed") (-1 (-85) (-101)) $) NIL T ELT)) (-2198 (($ $ (-101)) NIL (|has| $ (-6 -3994)) ELT)) (-1945 (((-85) (-1 (-85) (-101)) $) NIL (|has| $ (-6 -3993)) ELT)) (-3766 (($ $ (-582 (-249 (-101)))) NIL (-12 (|has| (-101) (-260 (-101))) (|has| (-101) (-1012))) ELT) (($ $ (-249 (-101))) NIL (-12 (|has| (-101) (-260 (-101))) (|has| (-101) (-1012))) ELT) (($ $ (-101) (-101)) NIL (-12 (|has| (-101) (-260 (-101))) (|has| (-101) (-1012))) ELT) (($ $ (-582 (-101)) (-582 (-101))) NIL (-12 (|has| (-101) (-260 (-101))) (|has| (-101) (-1012))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-2201 (((-85) (-101) $) NIL (-12 (|has| $ (-6 -3993)) (|has| (-101) (-1012))) ELT)) (-2204 (((-582 (-101)) $) NIL T ELT)) (-3401 (((-85) $) NIL T ELT)) (-3563 (($) 12 T ELT)) (-3798 (((-101) $ (-483) (-101)) NIL T ELT) (((-101) $ (-483)) 23 T ELT) (($ $ (-1144 (-483))) NIL T ELT)) (-2304 (($ $ (-483)) NIL T ELT) (($ $ (-1144 (-483))) NIL T ELT)) (-1944 (((-693) (-1 (-85) (-101)) $) NIL (|has| $ (-6 -3993)) ELT) (((-693) (-101) $) NIL (-12 (|has| $ (-6 -3993)) (|has| (-101) (-1012))) ELT)) (-1729 (($ $ $ (-483)) NIL (|has| $ (-6 -3994)) ELT)) (-3398 (($ $) NIL T ELT)) (-3970 (((-472) $) NIL (|has| (-101) (-552 (-472))) ELT)) (-3528 (($ (-582 (-101))) 41 T ELT)) (-3800 (($ $ (-101)) NIL T ELT) (($ (-101) $) NIL T ELT) (($ $ $) 45 T ELT) (($ (-582 $)) NIL T ELT)) (-3944 (((-868 (-101)) $) 36 T ELT) (((-1071) $) 38 T ELT) (((-771) $) NIL (|has| (-101) (-551 (-771))) ELT)) (-1305 (((-693) $) 18 T ELT)) (-1306 (($ (-693)) 8 T ELT)) (-1263 (((-85) $ $) NIL (|has| (-101) (-72)) ELT)) (-1946 (((-85) (-1 (-85) (-101)) $) NIL (|has| $ (-6 -3993)) ELT)) (-2565 (((-85) $ $) NIL (|has| (-101) (-755)) ELT)) (-2566 (((-85) $ $) NIL (|has| (-101) (-755)) ELT)) (-3055 (((-85) $ $) 33 (|has| (-101) (-72)) ELT)) (-2683 (((-85) $ $) NIL (|has| (-101) (-755)) ELT)) (-2684 (((-85) $ $) NIL (|has| (-101) (-755)) ELT)) (-3955 (((-693) $) 15 (|has| $ (-6 -3993)) ELT))) -(((-102) (-13 (-19 (-101)) (-551 (-868 (-101))) (-551 (-1071)) (-10 -8 (-15 -1306 ($ (-693))) (-15 -1305 ((-693) $)) (-15 -1304 ((-693) $ (-693))) (-6 -3993)))) (T -102)) -((-1306 (*1 *1 *2) (-12 (-5 *2 (-693)) (-5 *1 (-102)))) (-1305 (*1 *2 *1) (-12 (-5 *2 (-693)) (-5 *1 (-102)))) (-1304 (*1 *2 *1 *2) (-12 (-5 *2 (-693)) (-5 *1 (-102))))) -((-2567 (((-85) $ $) NIL T ELT)) (-1307 (($) 6 T CONST)) (-1309 (($) 7 T CONST)) (-3241 (((-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3944 (((-771) $) 14 T ELT)) (-1308 (($) 8 T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) 10 T ELT))) -(((-103) (-13 (-1012) (-10 -8 (-15 -1309 ($) -3950) (-15 -1308 ($) -3950) (-15 -1307 ($) -3950)))) (T -103)) -((-1309 (*1 *1) (-5 *1 (-103))) (-1308 (*1 *1) (-5 *1 (-103))) (-1307 (*1 *1) (-5 *1 (-103)))) -((-2567 (((-85) $ $) 7 T ELT)) (-3187 (((-85) $) 22 T ELT)) (-1310 (((-3 $ "failed") $ $) 26 T ELT)) (-3722 (($) 23 T CONST)) (-1212 (((-85) $ $) 20 T ELT)) (-3241 (((-1071) $) 11 T ELT)) (-3242 (((-1032) $) 12 T ELT)) (-3944 (((-771) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2659 (($) 24 T CONST)) (-3055 (((-85) $ $) 8 T ELT)) (-3837 (($ $ $) 18 T ELT)) (* (($ (-829) $) 17 T ELT) (($ (-693) $) 21 T ELT))) +((-1300 (*1 *1 *1 *1) (-4 *1 (-96))) (-1299 (*1 *1 *1 *1) (-4 *1 (-96))) (-3321 (*1 *1 *1 *1) (-4 *1 (-96)))) +(-13 (-756) (-84) (-604) (-19 (-85)) (-10 -8 (-15 -1300 ($ $ $)) (-15 -1299 ($ $ $)) (-15 -3321 ($ $ $)))) +(((-34) . T) ((-72) . T) ((-84) . T) ((-552 (-772)) . T) ((-124 (-85)) . T) ((-553 (-473)) |has| (-85) (-553 (-473))) ((-241 (-484) (-85)) . T) ((-241 (-1145 (-484)) $) . T) ((-243 (-484) (-85)) . T) ((-260 (-85)) -12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1013))) ((-323 (-85)) . T) ((-428 (-85)) . T) ((-538 (-484) (-85)) . T) ((-455 (-85) (-85)) -12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1013))) ((-13) . T) ((-593 (-85)) . T) ((-604) . T) ((-19 (-85)) . T) ((-756) . T) ((-759) . T) ((-1013) . T) ((-1128) . T)) +((-1948 (($ (-1 |#2| |#2|) $) 22 T ELT)) (-3399 (($ $) 16 T ELT)) (-3956 (((-694) $) 25 T ELT))) +(((-97 |#1| |#2|) (-10 -7 (-15 -1948 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3956 ((-694) |#1|)) (-15 -3399 (|#1| |#1|))) (-98 |#2|) (-1013)) (T -97)) +NIL +((-2568 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3401 ((|#1| $) 52 T ELT)) (-3025 ((|#1| $ |#1|) 43 (|has| $ (-6 -3995)) ELT)) (-1292 (($ $ $) 58 (|has| $ (-6 -3995)) ELT)) (-1293 (($ $ $) 60 (|has| $ (-6 -3995)) ELT)) (-3787 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -3995)) ELT) (($ $ #2="left" $) 61 (|has| $ (-6 -3995)) ELT) (($ $ #3="right" $) 59 (|has| $ (-6 -3995)) ELT)) (-3026 (($ $ (-583 $)) 45 (|has| $ (-6 -3995)) ELT)) (-3723 (($) 7 T CONST)) (-3137 (($ $) 63 T ELT)) (-2889 (((-583 |#1|) $) 30 (|has| $ (-6 -3994)) ELT)) (-3031 (((-583 $) $) 54 T ELT)) (-3027 (((-85) $ $) 46 (|has| |#1| (-1013)) ELT)) (-1301 (($ $ |#1| $) 66 T ELT)) (-2608 (((-583 |#1|) $) 29 (|has| $ (-6 -3994)) ELT)) (-3245 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-1948 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3138 (($ $) 65 T ELT)) (-3030 (((-583 |#1|) $) 49 T ELT)) (-3526 (((-85) $) 53 T ELT)) (-3242 (((-1072) $) 22 (|has| |#1| (-1013)) ELT)) (-3243 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3994)) ELT)) (-3767 (($ $ (-583 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1221 (((-85) $ $) 11 T ELT)) (-3402 (((-85) $) 8 T ELT)) (-3564 (($) 9 T ELT)) (-3799 ((|#1| $ #1#) 51 T ELT) (($ $ #2#) 64 T ELT) (($ $ #3#) 62 T ELT)) (-3029 (((-484) $ $) 48 T ELT)) (-3632 (((-85) $) 50 T ELT)) (-1945 (((-694) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3994)) ELT) (((-694) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-3399 (($ $) 10 T ELT)) (-3945 (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-3521 (((-583 $) $) 55 T ELT)) (-3028 (((-85) $ $) 47 (|has| |#1| (-1013)) ELT)) (-1264 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3994)) ELT)) (-3056 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3956 (((-694) $) 6 (|has| $ (-6 -3994)) ELT))) +(((-98 |#1|) (-113) (-1013)) (T -98)) +((-1301 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-98 *2)) (-4 *2 (-1013))))) +(-13 (-92 |t#1|) (-10 -8 (-6 -3995) (-6 -3994) (-15 -1301 ($ $ |t#1| $)))) +(((-34) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-92 |#1|) . T) ((-552 (-772)) OR (|has| |#1| (-1013)) (|has| |#1| (-552 (-772)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-428 |#1|) . T) ((-455 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-923 |#1|) . T) ((-1013) |has| |#1| (-1013)) ((-1128) . T)) +((-2568 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3401 ((|#1| $) 18 T ELT)) (-3025 ((|#1| $ |#1|) 22 (|has| $ (-6 -3995)) ELT)) (-1292 (($ $ $) 23 (|has| $ (-6 -3995)) ELT)) (-1293 (($ $ $) 21 (|has| $ (-6 -3995)) ELT)) (-3787 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3995)) ELT) (($ $ #2="left" $) NIL (|has| $ (-6 -3995)) ELT) (($ $ #3="right" $) NIL (|has| $ (-6 -3995)) ELT)) (-3026 (($ $ (-583 $)) NIL (|has| $ (-6 -3995)) ELT)) (-3723 (($) NIL T CONST)) (-3137 (($ $) 24 T ELT)) (-2889 (((-583 |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3031 (((-583 $) $) NIL T ELT)) (-3027 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-1301 (($ $ |#1| $) NIL T ELT)) (-2608 (((-583 |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3245 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-1948 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3138 (($ $) NIL T ELT)) (-3030 (((-583 |#1|) $) NIL T ELT)) (-3526 (((-85) $) NIL T ELT)) (-3242 (((-1072) $) NIL (|has| |#1| (-1013)) ELT)) (-3608 (($ |#1| $) 15 T ELT)) (-3243 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3767 (($ $ (-583 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1221 (((-85) $ $) NIL T ELT)) (-3402 (((-85) $) 17 T ELT)) (-3564 (($) 11 T ELT)) (-3799 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3029 (((-484) $ $) NIL T ELT)) (-3632 (((-85) $) NIL T ELT)) (-1945 (((-694) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT) (((-694) |#1| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-3399 (($ $) 20 T ELT)) (-3945 (((-772) $) NIL (|has| |#1| (-552 (-772))) ELT)) (-3521 (((-583 $) $) NIL T ELT)) (-3028 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-1302 (($ (-583 |#1|)) 16 T ELT)) (-1264 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3056 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3956 (((-694) $) NIL (|has| $ (-6 -3994)) ELT))) +(((-99 |#1|) (-13 (-98 |#1|) (-10 -8 (-6 -3995) (-15 -1302 ($ (-583 |#1|))) (-15 -3608 ($ |#1| $)))) (-756)) (T -99)) +((-1302 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-756)) (-5 *1 (-99 *3)))) (-3608 (*1 *1 *2 *1) (-12 (-5 *1 (-99 *2)) (-4 *2 (-756))))) +((-2568 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3401 ((|#1| $) 31 T ELT)) (-3025 ((|#1| $ |#1|) 33 (|has| $ (-6 -3995)) ELT)) (-1292 (($ $ $) 37 (|has| $ (-6 -3995)) ELT)) (-1293 (($ $ $) 35 (|has| $ (-6 -3995)) ELT)) (-3787 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3995)) ELT) (($ $ #2="left" $) NIL (|has| $ (-6 -3995)) ELT) (($ $ #3="right" $) NIL (|has| $ (-6 -3995)) ELT)) (-3026 (($ $ (-583 $)) NIL (|has| $ (-6 -3995)) ELT)) (-3723 (($) NIL T CONST)) (-3137 (($ $) 24 T ELT)) (-2889 (((-583 |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3031 (((-583 $) $) NIL T ELT)) (-3027 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-1301 (($ $ |#1| $) 17 T ELT)) (-2608 (((-583 |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3245 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-1948 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3138 (($ $) 23 T ELT)) (-3030 (((-583 |#1|) $) NIL T ELT)) (-3526 (((-85) $) 26 T ELT)) (-3242 (((-1072) $) NIL (|has| |#1| (-1013)) ELT)) (-3243 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3767 (($ $ (-583 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1221 (((-85) $ $) NIL T ELT)) (-3402 (((-85) $) 21 T ELT)) (-3564 (($) 13 T ELT)) (-3799 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3029 (((-484) $ $) NIL T ELT)) (-3632 (((-85) $) NIL T ELT)) (-1945 (((-694) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT) (((-694) |#1| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-3399 (($ $) NIL T ELT)) (-3945 (((-772) $) NIL (|has| |#1| (-552 (-772))) ELT)) (-3521 (((-583 $) $) NIL T ELT)) (-3028 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-1303 (($ |#1|) 19 T ELT) (($ $ |#1| $) 18 T ELT)) (-1264 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3056 (((-85) $ $) 12 (|has| |#1| (-72)) ELT)) (-3956 (((-694) $) NIL (|has| $ (-6 -3994)) ELT))) +(((-100 |#1|) (-13 (-98 |#1|) (-10 -8 (-15 -1303 ($ |#1|)) (-15 -1303 ($ $ |#1| $)))) (-1013)) (T -100)) +((-1303 (*1 *1 *2) (-12 (-5 *1 (-100 *2)) (-4 *2 (-1013)))) (-1303 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-100 *2)) (-4 *2 (-1013))))) +((-2568 (((-85) $ $) NIL T ELT)) (-2313 (($ $) 32 T ELT)) (-3136 (((-694)) 17 T ELT)) (-3723 (($) 9 T CONST)) (-2994 (($) 27 T ELT)) (-2531 (($ $ $) NIL T ELT) (($) 15 T CONST)) (-2857 (($ $ $) NIL T ELT) (($) 16 T CONST)) (-2010 (((-830) $) 25 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2400 (($ (-830)) 23 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) NIL T ELT)) (-1304 (($ (-694)) 8 T ELT)) (-3724 (($ $ $) 29 T ELT)) (-3725 (($ $ $) 28 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2311 (($ $ $) 31 T ELT)) (-2566 (((-85) $ $) 14 T ELT)) (-2567 (((-85) $ $) 12 T ELT)) (-3056 (((-85) $ $) 10 T ELT)) (-2684 (((-85) $ $) 13 T ELT)) (-2685 (((-85) $ $) 11 T ELT)) (-2312 (($ $ $) 30 T ELT))) +(((-101) (-13 (-752) (-604) (-10 -8 (-15 -1304 ($ (-694))) (-15 -3725 ($ $ $)) (-15 -3724 ($ $ $)) (-15 -3723 ($) -3951)))) (T -101)) +((-1304 (*1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-101)))) (-3725 (*1 *1 *1 *1) (-5 *1 (-101))) (-3724 (*1 *1 *1 *1) (-5 *1 (-101))) (-3723 (*1 *1) (-5 *1 (-101)))) +((-694) (|%ilt| |#1| 256)) +((-2568 (((-85) $ $) NIL (|has| (-101) (-72)) ELT)) (-2198 (((-1184) $ (-484) (-484)) NIL (|has| $ (-6 -3995)) ELT)) (-1731 (((-85) (-1 (-85) (-101) (-101)) $) NIL T ELT) (((-85) $) NIL (|has| (-101) (-756)) ELT)) (-1729 (($ (-1 (-85) (-101) (-101)) $) NIL (|has| $ (-6 -3995)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3995)) (|has| (-101) (-756))) ELT)) (-2909 (($ (-1 (-85) (-101) (-101)) $) NIL T ELT) (($ $) NIL (|has| (-101) (-756)) ELT)) (-3787 (((-101) $ (-484) (-101)) 26 (|has| $ (-6 -3995)) ELT) (((-101) $ (-1145 (-484)) (-101)) NIL (|has| $ (-6 -3995)) ELT)) (-1305 (((-694) $ (-694)) 35 T ELT)) (-3709 (($ (-1 (-85) (-101)) $) NIL (|has| $ (-6 -3994)) ELT)) (-3723 (($) NIL T CONST)) (-2297 (($ $) NIL (|has| $ (-6 -3995)) ELT)) (-2298 (($ $) NIL T ELT)) (-1352 (($ $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-101) (-1013))) ELT)) (-3405 (($ (-101) $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-101) (-1013))) ELT) (($ (-1 (-85) (-101)) $) NIL (|has| $ (-6 -3994)) ELT)) (-3841 (((-101) (-1 (-101) (-101) (-101)) $ (-101) (-101)) NIL (-12 (|has| $ (-6 -3994)) (|has| (-101) (-1013))) ELT) (((-101) (-1 (-101) (-101) (-101)) $ (-101)) NIL (|has| $ (-6 -3994)) ELT) (((-101) (-1 (-101) (-101) (-101)) $) NIL (|has| $ (-6 -3994)) ELT)) (-1575 (((-101) $ (-484) (-101)) 25 (|has| $ (-6 -3995)) ELT)) (-3112 (((-101) $ (-484)) 20 T ELT)) (-3418 (((-484) (-1 (-85) (-101)) $) NIL T ELT) (((-484) (-101) $) NIL (|has| (-101) (-1013)) ELT) (((-484) (-101) $ (-484)) NIL (|has| (-101) (-1013)) ELT)) (-2889 (((-583 (-101)) $) NIL (|has| $ (-6 -3994)) ELT)) (-3613 (($ (-694) (-101)) 14 T ELT)) (-2200 (((-484) $) 27 (|has| (-484) (-756)) ELT)) (-2531 (($ $ $) NIL (|has| (-101) (-756)) ELT)) (-3517 (($ (-1 (-85) (-101) (-101)) $ $) NIL T ELT) (($ $ $) NIL (|has| (-101) (-756)) ELT)) (-2608 (((-583 (-101)) $) NIL (|has| $ (-6 -3994)) ELT)) (-3245 (((-85) (-101) $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-101) (-1013))) ELT)) (-2201 (((-484) $) 30 (|has| (-484) (-756)) ELT)) (-2857 (($ $ $) NIL (|has| (-101) (-756)) ELT)) (-1948 (($ (-1 (-101) (-101)) $) NIL (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 (-101) (-101)) $) NIL T ELT) (($ (-1 (-101) (-101) (-101)) $ $) NIL T ELT)) (-3242 (((-1072) $) NIL (|has| (-101) (-1013)) ELT)) (-2304 (($ (-101) $ (-484)) NIL T ELT) (($ $ $ (-484)) NIL T ELT)) (-2203 (((-583 (-484)) $) NIL T ELT)) (-2204 (((-85) (-484) $) NIL T ELT)) (-3243 (((-1033) $) NIL (|has| (-101) (-1013)) ELT)) (-3800 (((-101) $) NIL (|has| (-484) (-756)) ELT)) (-1353 (((-3 (-101) "failed") (-1 (-85) (-101)) $) NIL T ELT)) (-2199 (($ $ (-101)) NIL (|has| $ (-6 -3995)) ELT)) (-1946 (((-85) (-1 (-85) (-101)) $) NIL (|has| $ (-6 -3994)) ELT)) (-3767 (($ $ (-583 (-249 (-101)))) NIL (-12 (|has| (-101) (-260 (-101))) (|has| (-101) (-1013))) ELT) (($ $ (-249 (-101))) NIL (-12 (|has| (-101) (-260 (-101))) (|has| (-101) (-1013))) ELT) (($ $ (-101) (-101)) NIL (-12 (|has| (-101) (-260 (-101))) (|has| (-101) (-1013))) ELT) (($ $ (-583 (-101)) (-583 (-101))) NIL (-12 (|has| (-101) (-260 (-101))) (|has| (-101) (-1013))) ELT)) (-1221 (((-85) $ $) NIL T ELT)) (-2202 (((-85) (-101) $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-101) (-1013))) ELT)) (-2205 (((-583 (-101)) $) NIL T ELT)) (-3402 (((-85) $) NIL T ELT)) (-3564 (($) 12 T ELT)) (-3799 (((-101) $ (-484) (-101)) NIL T ELT) (((-101) $ (-484)) 23 T ELT) (($ $ (-1145 (-484))) NIL T ELT)) (-2305 (($ $ (-484)) NIL T ELT) (($ $ (-1145 (-484))) NIL T ELT)) (-1945 (((-694) (-1 (-85) (-101)) $) NIL (|has| $ (-6 -3994)) ELT) (((-694) (-101) $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-101) (-1013))) ELT)) (-1730 (($ $ $ (-484)) NIL (|has| $ (-6 -3995)) ELT)) (-3399 (($ $) NIL T ELT)) (-3971 (((-473) $) NIL (|has| (-101) (-553 (-473))) ELT)) (-3529 (($ (-583 (-101))) 41 T ELT)) (-3801 (($ $ (-101)) NIL T ELT) (($ (-101) $) NIL T ELT) (($ $ $) 45 T ELT) (($ (-583 $)) NIL T ELT)) (-3945 (((-869 (-101)) $) 36 T ELT) (((-1072) $) 38 T ELT) (((-772) $) NIL (|has| (-101) (-552 (-772))) ELT)) (-1306 (((-694) $) 18 T ELT)) (-1307 (($ (-694)) 8 T ELT)) (-1264 (((-85) $ $) NIL (|has| (-101) (-72)) ELT)) (-1947 (((-85) (-1 (-85) (-101)) $) NIL (|has| $ (-6 -3994)) ELT)) (-2566 (((-85) $ $) NIL (|has| (-101) (-756)) ELT)) (-2567 (((-85) $ $) NIL (|has| (-101) (-756)) ELT)) (-3056 (((-85) $ $) 33 (|has| (-101) (-72)) ELT)) (-2684 (((-85) $ $) NIL (|has| (-101) (-756)) ELT)) (-2685 (((-85) $ $) NIL (|has| (-101) (-756)) ELT)) (-3956 (((-694) $) 15 (|has| $ (-6 -3994)) ELT))) +(((-102) (-13 (-19 (-101)) (-552 (-869 (-101))) (-552 (-1072)) (-10 -8 (-15 -1307 ($ (-694))) (-15 -1306 ((-694) $)) (-15 -1305 ((-694) $ (-694))) (-6 -3994)))) (T -102)) +((-1307 (*1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-102)))) (-1306 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-102)))) (-1305 (*1 *2 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-102))))) +((-2568 (((-85) $ $) NIL T ELT)) (-1308 (($) 6 T CONST)) (-1310 (($) 7 T CONST)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) 14 T ELT)) (-1309 (($) 8 T CONST)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 10 T ELT))) +(((-103) (-13 (-1013) (-10 -8 (-15 -1310 ($) -3951) (-15 -1309 ($) -3951) (-15 -1308 ($) -3951)))) (T -103)) +((-1310 (*1 *1) (-5 *1 (-103))) (-1309 (*1 *1) (-5 *1 (-103))) (-1308 (*1 *1) (-5 *1 (-103)))) +((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3723 (($) 23 T CONST)) (-1213 (((-85) $ $) 20 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3945 (((-772) $) 13 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-2660 (($) 24 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3838 (($ $ $) 18 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT))) (((-104) (-113)) (T -104)) -((-1310 (*1 *1 *1 *1) (|partial| -4 *1 (-104)))) -(-13 (-23) (-10 -8 (-15 -1310 ((-3 $ "failed") $ $)))) -(((-23) . T) ((-25) . T) ((-72) . T) ((-551 (-771)) . T) ((-13) . T) ((-1012) . T) ((-1127) . T)) -((-2567 (((-85) $ $) 7 T ELT)) (-1311 (((-1183) $ (-693)) 17 T ELT)) (-3417 (((-693) $) 18 T ELT)) (-3241 (((-1071) $) 11 T ELT)) (-3242 (((-1032) $) 12 T ELT)) (-3944 (((-771) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-3055 (((-85) $ $) 8 T ELT))) +((-1311 (*1 *1 *1 *1) (|partial| -4 *1 (-104)))) +(-13 (-23) (-10 -8 (-15 -1311 ((-3 $ "failed") $ $)))) +(((-23) . T) ((-25) . T) ((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-1013) . T) ((-1128) . T)) +((-2568 (((-85) $ $) 7 T ELT)) (-1312 (((-1184) $ (-694)) 17 T ELT)) (-3418 (((-694) $) 18 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3945 (((-772) $) 13 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-3056 (((-85) $ $) 8 T ELT))) (((-105) (-113)) (T -105)) -((-3417 (*1 *2 *1) (-12 (-4 *1 (-105)) (-5 *2 (-693)))) (-1311 (*1 *2 *1 *3) (-12 (-4 *1 (-105)) (-5 *3 (-693)) (-5 *2 (-1183))))) -(-13 (-1012) (-10 -8 (-15 -3417 ((-693) $)) (-15 -1311 ((-1183) $ (-693))))) -(((-72) . T) ((-551 (-771)) . T) ((-13) . T) ((-1012) . T) ((-1127) . T)) -((-2567 (((-85) $ $) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3944 (((-771) $) 18 T ELT) (($ (-1093)) NIL T ELT) (((-1093) $) NIL T ELT)) (-3232 (((-582 (-1047)) $) 12 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-106) (-13 (-994) (-10 -8 (-15 -3232 ((-582 (-1047)) $))))) (T -106)) -((-3232 (*1 *2 *1) (-12 (-5 *2 (-582 (-1047))) (-5 *1 (-106))))) -((-2567 (((-85) $ $) 49 T ELT)) (-3187 (((-85) $) NIL T ELT)) (-3722 (($) NIL T CONST)) (-3156 (((-3 (-693) #1="failed") $) 60 T ELT)) (-3155 (((-693) $) 58 T ELT)) (-3465 (((-3 $ #1#) $) NIL T ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-2409 (((-85) $) NIL T ELT)) (-2530 (($ $ $) NIL T ELT)) (-2856 (($ $ $) 37 T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-1313 (((-85)) 61 T ELT)) (-1312 (((-85) (-85)) 63 T ELT)) (-2524 (((-85) $) 30 T ELT)) (-1314 (((-85) $) 57 T ELT)) (-3944 (((-771) $) 28 T ELT) (($ (-693)) 20 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2659 (($) 18 T CONST)) (-2665 (($) 19 T CONST)) (-1315 (($ (-693)) 21 T ELT)) (-2565 (((-85) $ $) NIL T ELT)) (-2566 (((-85) $ $) 40 T ELT)) (-3055 (((-85) $ $) 32 T ELT)) (-2683 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) 35 T ELT)) (-3835 (((-3 $ #1#) $ $) 42 T ELT)) (-3837 (($ $ $) 38 T ELT)) (** (($ $ (-693)) NIL T ELT) (($ $ (-829)) NIL T ELT) (($ $ $) 56 T ELT)) (* (($ (-693) $) 48 T ELT) (($ (-829) $) NIL T ELT) (($ $ $) 45 T ELT))) -(((-107) (-13 (-755) (-23) (-662) (-949 (-693)) (-10 -8 (-6 (-3995 "*")) (-15 -3835 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -1315 ($ (-693))) (-15 -2524 ((-85) $)) (-15 -1314 ((-85) $)) (-15 -1313 ((-85))) (-15 -1312 ((-85) (-85)))))) (T -107)) -((-3835 (*1 *1 *1 *1) (|partial| -5 *1 (-107))) (** (*1 *1 *1 *1) (-5 *1 (-107))) (-1315 (*1 *1 *2) (-12 (-5 *2 (-693)) (-5 *1 (-107)))) (-2524 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-107)))) (-1314 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-107)))) (-1313 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-107)))) (-1312 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-107))))) -((-2567 (((-85) $ $) NIL T ELT)) (-1316 (($ (-582 |#3|)) 63 T ELT)) (-3412 (($ $) 125 T ELT) (($ $ (-483) (-483)) 124 T ELT)) (-3722 (($) 17 T ELT)) (-3156 (((-3 |#3| "failed") $) 86 T ELT)) (-3155 ((|#3| $) NIL T ELT)) (-1320 (($ $ (-582 (-483))) 126 T ELT)) (-1317 (((-582 |#3|) $) 58 T ELT)) (-3107 (((-693) $) 68 T ELT)) (-3942 (($ $ $) 120 T ELT)) (-1318 (($) 67 T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-1319 (($) 16 T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3798 ((|#3| $ (-483)) 72 T ELT) ((|#3| $) 71 T ELT) ((|#3| $ (-483) (-483)) 73 T ELT) ((|#3| $ (-483) (-483) (-483)) 74 T ELT) ((|#3| $ (-483) (-483) (-483) (-483)) 75 T ELT) ((|#3| $ (-582 (-483))) 76 T ELT)) (-3946 (((-693) $) 69 T ELT)) (-1980 (($ $ (-483) $ (-483)) 121 T ELT) (($ $ (-483) (-483)) 123 T ELT)) (-3944 (((-771) $) 94 T ELT) (($ |#3|) 95 T ELT) (($ (-197 |#2| |#3|)) 102 T ELT) (($ (-1054 |#2| |#3|)) 105 T ELT) (($ (-582 |#3|)) 77 T ELT) (($ (-582 $)) 83 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2659 (($) 96 T CONST)) (-2665 (($) 97 T CONST)) (-3055 (((-85) $ $) 107 T ELT)) (-3835 (($ $) 113 T ELT) (($ $ $) 111 T ELT)) (-3837 (($ $ $) 109 T ELT)) (* (($ |#3| $) 118 T ELT) (($ $ |#3|) 119 T ELT) (($ $ (-483)) 116 T ELT) (($ (-483) $) 115 T ELT) (($ $ $) 122 T ELT))) -(((-108 |#1| |#2| |#3|) (-13 (-403 |#3| (-693)) (-408 (-483) (-693)) (-241 (-483) |#3|) (-554 (-197 |#2| |#3|)) (-554 (-1054 |#2| |#3|)) (-554 (-582 |#3|)) (-554 (-582 $)) (-10 -8 (-15 -3107 ((-693) $)) (-15 -3798 (|#3| $)) (-15 -3798 (|#3| $ (-483) (-483))) (-15 -3798 (|#3| $ (-483) (-483) (-483))) (-15 -3798 (|#3| $ (-483) (-483) (-483) (-483))) (-15 -3798 (|#3| $ (-582 (-483)))) (-15 -3942 ($ $ $)) (-15 * ($ $ $)) (-15 -1980 ($ $ (-483) $ (-483))) (-15 -1980 ($ $ (-483) (-483))) (-15 -3412 ($ $)) (-15 -3412 ($ $ (-483) (-483))) (-15 -1320 ($ $ (-582 (-483)))) (-15 -1319 ($)) (-15 -1318 ($)) (-15 -1317 ((-582 |#3|) $)) (-15 -1316 ($ (-582 |#3|))) (-15 -3722 ($)))) (-483) (-693) (-146)) (T -108)) -((-3942 (*1 *1 *1 *1) (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-483)) (-14 *3 (-693)) (-4 *4 (-146)))) (-3107 (*1 *2 *1) (-12 (-5 *2 (-693)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-483)) (-14 *4 *2) (-4 *5 (-146)))) (-3798 (*1 *2 *1) (-12 (-4 *2 (-146)) (-5 *1 (-108 *3 *4 *2)) (-14 *3 (-483)) (-14 *4 (-693)))) (-3798 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-483)) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-693)))) (-3798 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-483)) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-693)))) (-3798 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-483)) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-693)))) (-3798 (*1 *2 *1 *3) (-12 (-5 *3 (-582 (-483))) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 (-483)) (-14 *5 (-693)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-483)) (-14 *3 (-693)) (-4 *4 (-146)))) (-1980 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-693)) (-4 *5 (-146)))) (-1980 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-693)) (-4 *5 (-146)))) (-3412 (*1 *1 *1) (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-483)) (-14 *3 (-693)) (-4 *4 (-146)))) (-3412 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-693)) (-4 *5 (-146)))) (-1320 (*1 *1 *1 *2) (-12 (-5 *2 (-582 (-483))) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-483)) (-14 *4 (-693)) (-4 *5 (-146)))) (-1319 (*1 *1) (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-483)) (-14 *3 (-693)) (-4 *4 (-146)))) (-1318 (*1 *1) (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-483)) (-14 *3 (-693)) (-4 *4 (-146)))) (-1317 (*1 *2 *1) (-12 (-5 *2 (-582 *5)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-483)) (-14 *4 (-693)) (-4 *5 (-146)))) (-1316 (*1 *1 *2) (-12 (-5 *2 (-582 *5)) (-4 *5 (-146)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-483)) (-14 *4 (-693)))) (-3722 (*1 *1) (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-483)) (-14 *3 (-693)) (-4 *4 (-146))))) -((-2414 (((-108 |#1| |#2| |#4|) (-582 |#4|) (-108 |#1| |#2| |#3|)) 14 T ELT)) (-3956 (((-108 |#1| |#2| |#4|) (-1 |#4| |#3|) (-108 |#1| |#2| |#3|)) 18 T ELT))) -(((-109 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2414 ((-108 |#1| |#2| |#4|) (-582 |#4|) (-108 |#1| |#2| |#3|))) (-15 -3956 ((-108 |#1| |#2| |#4|) (-1 |#4| |#3|) (-108 |#1| |#2| |#3|)))) (-483) (-693) (-146) (-146)) (T -109)) -((-3956 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-108 *5 *6 *7)) (-14 *5 (-483)) (-14 *6 (-693)) (-4 *7 (-146)) (-4 *8 (-146)) (-5 *2 (-108 *5 *6 *8)) (-5 *1 (-109 *5 *6 *7 *8)))) (-2414 (*1 *2 *3 *4) (-12 (-5 *3 (-582 *8)) (-5 *4 (-108 *5 *6 *7)) (-14 *5 (-483)) (-14 *6 (-693)) (-4 *7 (-146)) (-4 *8 (-146)) (-5 *2 (-108 *5 *6 *8)) (-5 *1 (-109 *5 *6 *7 *8))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3526 (((-1047) $) 12 T ELT)) (-3527 (((-1047) $) 10 T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3944 (((-771) $) 18 T ELT) (($ (-1093)) NIL T ELT) (((-1093) $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-110) (-13 (-994) (-10 -8 (-15 -3527 ((-1047) $)) (-15 -3526 ((-1047) $))))) (T -110)) -((-3527 (*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-110)))) (-3526 (*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-110))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-1424 (((-161) $) 11 T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3944 (((-771) $) 20 T ELT) (($ (-1093)) NIL T ELT) (((-1093) $) NIL T ELT)) (-3232 (((-582 (-1047)) $) 13 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-111) (-13 (-994) (-10 -8 (-15 -1424 ((-161) $)) (-15 -3232 ((-582 (-1047)) $))))) (T -111)) -((-1424 (*1 *2 *1) (-12 (-5 *2 (-161)) (-5 *1 (-111)))) (-3232 (*1 *2 *1) (-12 (-5 *2 (-582 (-1047))) (-5 *1 (-111))))) -((-2567 (((-85) $ $) NIL T ELT)) (-1422 (((-582 (-773)) $) NIL T ELT)) (-3540 (((-445) $) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-1424 (((-161) $) NIL T ELT)) (-2632 (((-85) $ (-445)) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-1423 (((-582 (-85)) $) NIL T ELT)) (-3944 (((-771) $) NIL T ELT) (((-157) $) 6 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2520 (((-55) $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-112) (-13 (-160) (-551 (-157)))) (T -112)) -NIL -((-1322 (((-582 (-158 (-112))) $) 13 T ELT)) (-1321 (((-582 (-158 (-112))) $) 14 T ELT)) (-1323 (((-582 (-748)) $) 10 T ELT)) (-1480 (((-112) $) 7 T ELT)) (-3944 (((-771) $) 16 T ELT))) -(((-113) (-13 (-551 (-771)) (-10 -8 (-15 -1480 ((-112) $)) (-15 -1323 ((-582 (-748)) $)) (-15 -1322 ((-582 (-158 (-112))) $)) (-15 -1321 ((-582 (-158 (-112))) $))))) (T -113)) -((-1480 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-113)))) (-1323 (*1 *2 *1) (-12 (-5 *2 (-582 (-748))) (-5 *1 (-113)))) (-1322 (*1 *2 *1) (-12 (-5 *2 (-582 (-158 (-112)))) (-5 *1 (-113)))) (-1321 (*1 *2 *1) (-12 (-5 *2 (-582 (-158 (-112)))) (-5 *1 (-113))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3425 (($) 17 T CONST)) (-1800 (($) NIL (|has| (-117) (-318)) ELT)) (-3233 (($ $ $) 19 T ELT) (($ $ (-117)) NIL T ELT) (($ (-117) $) NIL T ELT)) (-3235 (($ $ $) NIL T ELT)) (-3234 (((-85) $ $) NIL T ELT)) (-3135 (((-693)) NIL (|has| (-117) (-318)) ELT)) (-3238 (($) NIL T ELT) (($ (-582 (-117))) NIL T ELT)) (-1568 (($ (-1 (-85) (-117)) $) NIL (|has| $ (-6 -3993)) ELT)) (-3708 (($ (-1 (-85) (-117)) $) NIL (|has| $ (-6 -3993)) ELT)) (-3722 (($) NIL T CONST)) (-1351 (($ $) NIL (-12 (|has| $ (-6 -3993)) (|has| (-117) (-1012))) ELT)) (-3403 (($ (-1 (-85) (-117)) $) NIL (|has| $ (-6 -3993)) ELT) (($ (-117) $) 56 (|has| $ (-6 -3993)) ELT)) (-3404 (($ (-1 (-85) (-117)) $) NIL (|has| $ (-6 -3993)) ELT) (($ (-117) $) NIL (-12 (|has| $ (-6 -3993)) (|has| (-117) (-1012))) ELT)) (-3840 (((-117) (-1 (-117) (-117) (-117)) $) NIL (|has| $ (-6 -3993)) ELT) (((-117) (-1 (-117) (-117) (-117)) $ (-117)) NIL (|has| $ (-6 -3993)) ELT) (((-117) (-1 (-117) (-117) (-117)) $ (-117) (-117)) NIL (-12 (|has| $ (-6 -3993)) (|has| (-117) (-1012))) ELT)) (-2993 (($) NIL (|has| (-117) (-318)) ELT)) (-2888 (((-582 (-117)) $) 65 (|has| $ (-6 -3993)) ELT)) (-3240 (((-85) $ $) NIL T ELT)) (-2530 (((-117) $) NIL (|has| (-117) (-755)) ELT)) (-2607 (((-582 (-117)) $) NIL (|has| $ (-6 -3993)) ELT)) (-3244 (((-85) (-117) $) 29 (-12 (|has| $ (-6 -3993)) (|has| (-117) (-1012))) ELT)) (-2856 (((-117) $) NIL (|has| (-117) (-755)) ELT)) (-1947 (($ (-1 (-117) (-117)) $) 64 (|has| $ (-6 -3994)) ELT)) (-3956 (($ (-1 (-117) (-117)) $) 60 T ELT)) (-3427 (($) 18 T CONST)) (-2009 (((-829) $) NIL (|has| (-117) (-318)) ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3237 (($ $ $) 32 T ELT)) (-1272 (((-117) $) 57 T ELT)) (-3607 (($ (-117) $) 55 T ELT)) (-2399 (($ (-829)) NIL (|has| (-117) (-318)) ELT)) (-1326 (($) 16 T CONST)) (-3242 (((-1032) $) NIL T ELT)) (-1352 (((-3 (-117) "failed") (-1 (-85) (-117)) $) NIL T ELT)) (-1273 (((-117) $) 58 T ELT)) (-1945 (((-85) (-1 (-85) (-117)) $) NIL (|has| $ (-6 -3993)) ELT)) (-3766 (($ $ (-582 (-117)) (-582 (-117))) NIL (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1012))) ELT) (($ $ (-117) (-117)) NIL (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1012))) ELT) (($ $ (-249 (-117))) NIL (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1012))) ELT) (($ $ (-582 (-249 (-117)))) NIL (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1012))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-3401 (((-85) $) NIL T ELT)) (-3563 (($) 53 T ELT)) (-1327 (($) 15 T CONST)) (-3236 (($ $ $) 34 T ELT) (($ $ (-117)) NIL T ELT)) (-1464 (($ (-582 (-117))) NIL T ELT) (($) NIL T ELT)) (-1944 (((-693) (-117) $) NIL (-12 (|has| $ (-6 -3993)) (|has| (-117) (-1012))) ELT) (((-693) (-1 (-85) (-117)) $) NIL (|has| $ (-6 -3993)) ELT)) (-3398 (($ $) NIL T ELT)) (-3970 (((-1071) $) 39 T ELT) (((-472) $) NIL (|has| (-117) (-552 (-472))) ELT) (((-582 (-117)) $) 37 T ELT)) (-3528 (($ (-582 (-117))) NIL T ELT)) (-1801 (($ $) 35 (|has| (-117) (-318)) ELT)) (-3944 (((-771) $) 51 T ELT)) (-1328 (($ (-1071)) 14 T ELT) (($ (-582 (-117))) 48 T ELT)) (-1802 (((-693) $) NIL T ELT)) (-3239 (($) 54 T ELT) (($ (-582 (-117))) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-1274 (($ (-582 (-117))) NIL T ELT)) (-1946 (((-85) (-1 (-85) (-117)) $) NIL (|has| $ (-6 -3993)) ELT)) (-1324 (($) 21 T CONST)) (-1325 (($) 20 T CONST)) (-3055 (((-85) $ $) 26 T ELT)) (-3955 (((-693) $) 52 (|has| $ (-6 -3993)) ELT))) -(((-114) (-13 (-1012) (-552 (-1071)) (-367 (-117)) (-552 (-582 (-117))) (-10 -8 (-15 -1328 ($ (-1071))) (-15 -1328 ($ (-582 (-117)))) (-15 -1327 ($) -3950) (-15 -1326 ($) -3950) (-15 -3425 ($) -3950) (-15 -3427 ($) -3950) (-15 -1325 ($) -3950) (-15 -1324 ($) -3950)))) (T -114)) -((-1328 (*1 *1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-114)))) (-1328 (*1 *1 *2) (-12 (-5 *2 (-582 (-117))) (-5 *1 (-114)))) (-1327 (*1 *1) (-5 *1 (-114))) (-1326 (*1 *1) (-5 *1 (-114))) (-3425 (*1 *1) (-5 *1 (-114))) (-3427 (*1 *1) (-5 *1 (-114))) (-1325 (*1 *1) (-5 *1 (-114))) (-1324 (*1 *1) (-5 *1 (-114)))) -((-3739 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17 T ELT)) (-3737 ((|#1| |#3|) 9 T ELT)) (-3738 ((|#3| |#3|) 15 T ELT))) -(((-115 |#1| |#2| |#3|) (-10 -7 (-15 -3737 (|#1| |#3|)) (-15 -3738 (|#3| |#3|)) (-15 -3739 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-494) (-903 |#1|) (-322 |#2|)) (T -115)) -((-3739 (*1 *2 *3) (-12 (-4 *4 (-494)) (-4 *5 (-903 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-115 *4 *5 *3)) (-4 *3 (-322 *5)))) (-3738 (*1 *2 *2) (-12 (-4 *3 (-494)) (-4 *4 (-903 *3)) (-5 *1 (-115 *3 *4 *2)) (-4 *2 (-322 *4)))) (-3737 (*1 *2 *3) (-12 (-4 *4 (-903 *2)) (-4 *2 (-494)) (-5 *1 (-115 *2 *4 *3)) (-4 *3 (-322 *4))))) -((-1367 (($ $ $) 8 T ELT)) (-1365 (($ $) 7 T ELT)) (-3100 (($ $ $) 6 T ELT))) +((-3418 (*1 *2 *1) (-12 (-4 *1 (-105)) (-5 *2 (-694)))) (-1312 (*1 *2 *1 *3) (-12 (-4 *1 (-105)) (-5 *3 (-694)) (-5 *2 (-1184))))) +(-13 (-1013) (-10 -8 (-15 -3418 ((-694) $)) (-15 -1312 ((-1184) $ (-694))))) +(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-1013) . T) ((-1128) . T)) +((-2568 (((-85) $ $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) 18 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-3233 (((-583 (-1048)) $) 12 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT))) +(((-106) (-13 (-995) (-10 -8 (-15 -3233 ((-583 (-1048)) $))))) (T -106)) +((-3233 (*1 *2 *1) (-12 (-5 *2 (-583 (-1048))) (-5 *1 (-106))))) +((-2568 (((-85) $ $) 49 T ELT)) (-3188 (((-85) $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 (-694) #1="failed") $) 60 T ELT)) (-3156 (((-694) $) 58 T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2531 (($ $ $) NIL T ELT)) (-2857 (($ $ $) 37 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1314 (((-85)) 61 T ELT)) (-1313 (((-85) (-85)) 63 T ELT)) (-2525 (((-85) $) 30 T ELT)) (-1315 (((-85) $) 57 T ELT)) (-3945 (((-772) $) 28 T ELT) (($ (-694)) 20 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2660 (($) 18 T CONST)) (-2666 (($) 19 T CONST)) (-1316 (($ (-694)) 21 T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) 40 T ELT)) (-3056 (((-85) $ $) 32 T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) 35 T ELT)) (-3836 (((-3 $ #1#) $ $) 42 T ELT)) (-3838 (($ $ $) 38 T ELT)) (** (($ $ (-694)) NIL T ELT) (($ $ (-830)) NIL T ELT) (($ $ $) 56 T ELT)) (* (($ (-694) $) 48 T ELT) (($ (-830) $) NIL T ELT) (($ $ $) 45 T ELT))) +(((-107) (-13 (-756) (-23) (-663) (-950 (-694)) (-10 -8 (-6 (-3996 "*")) (-15 -3836 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -1316 ($ (-694))) (-15 -2525 ((-85) $)) (-15 -1315 ((-85) $)) (-15 -1314 ((-85))) (-15 -1313 ((-85) (-85)))))) (T -107)) +((-3836 (*1 *1 *1 *1) (|partial| -5 *1 (-107))) (** (*1 *1 *1 *1) (-5 *1 (-107))) (-1316 (*1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-107)))) (-2525 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-107)))) (-1315 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-107)))) (-1314 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-107)))) (-1313 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-107))))) +((-2568 (((-85) $ $) NIL T ELT)) (-1317 (($ (-583 |#3|)) 63 T ELT)) (-3413 (($ $) 125 T ELT) (($ $ (-484) (-484)) 124 T ELT)) (-3723 (($) 17 T ELT)) (-3157 (((-3 |#3| "failed") $) 86 T ELT)) (-3156 ((|#3| $) NIL T ELT)) (-1321 (($ $ (-583 (-484))) 126 T ELT)) (-1318 (((-583 |#3|) $) 58 T ELT)) (-3108 (((-694) $) 68 T ELT)) (-3943 (($ $ $) 120 T ELT)) (-1319 (($) 67 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-1320 (($) 16 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3799 ((|#3| $ (-484)) 72 T ELT) ((|#3| $) 71 T ELT) ((|#3| $ (-484) (-484)) 73 T ELT) ((|#3| $ (-484) (-484) (-484)) 74 T ELT) ((|#3| $ (-484) (-484) (-484) (-484)) 75 T ELT) ((|#3| $ (-583 (-484))) 76 T ELT)) (-3947 (((-694) $) 69 T ELT)) (-1981 (($ $ (-484) $ (-484)) 121 T ELT) (($ $ (-484) (-484)) 123 T ELT)) (-3945 (((-772) $) 94 T ELT) (($ |#3|) 95 T ELT) (($ (-197 |#2| |#3|)) 102 T ELT) (($ (-1055 |#2| |#3|)) 105 T ELT) (($ (-583 |#3|)) 77 T ELT) (($ (-583 $)) 83 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2660 (($) 96 T CONST)) (-2666 (($) 97 T CONST)) (-3056 (((-85) $ $) 107 T ELT)) (-3836 (($ $) 113 T ELT) (($ $ $) 111 T ELT)) (-3838 (($ $ $) 109 T ELT)) (* (($ |#3| $) 118 T ELT) (($ $ |#3|) 119 T ELT) (($ $ (-484)) 116 T ELT) (($ (-484) $) 115 T ELT) (($ $ $) 122 T ELT))) +(((-108 |#1| |#2| |#3|) (-13 (-404 |#3| (-694)) (-409 (-484) (-694)) (-241 (-484) |#3|) (-555 (-197 |#2| |#3|)) (-555 (-1055 |#2| |#3|)) (-555 (-583 |#3|)) (-555 (-583 $)) (-10 -8 (-15 -3108 ((-694) $)) (-15 -3799 (|#3| $)) (-15 -3799 (|#3| $ (-484) (-484))) (-15 -3799 (|#3| $ (-484) (-484) (-484))) (-15 -3799 (|#3| $ (-484) (-484) (-484) (-484))) (-15 -3799 (|#3| $ (-583 (-484)))) (-15 -3943 ($ $ $)) (-15 * ($ $ $)) (-15 -1981 ($ $ (-484) $ (-484))) (-15 -1981 ($ $ (-484) (-484))) (-15 -3413 ($ $)) (-15 -3413 ($ $ (-484) (-484))) (-15 -1321 ($ $ (-583 (-484)))) (-15 -1320 ($)) (-15 -1319 ($)) (-15 -1318 ((-583 |#3|) $)) (-15 -1317 ($ (-583 |#3|))) (-15 -3723 ($)))) (-484) (-694) (-146)) (T -108)) +((-3943 (*1 *1 *1 *1) (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-484)) (-14 *3 (-694)) (-4 *4 (-146)))) (-3108 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-484)) (-14 *4 *2) (-4 *5 (-146)))) (-3799 (*1 *2 *1) (-12 (-4 *2 (-146)) (-5 *1 (-108 *3 *4 *2)) (-14 *3 (-484)) (-14 *4 (-694)))) (-3799 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-484)) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-694)))) (-3799 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-484)) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-694)))) (-3799 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-484)) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-694)))) (-3799 (*1 *2 *1 *3) (-12 (-5 *3 (-583 (-484))) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 (-484)) (-14 *5 (-694)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-484)) (-14 *3 (-694)) (-4 *4 (-146)))) (-1981 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-694)) (-4 *5 (-146)))) (-1981 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-694)) (-4 *5 (-146)))) (-3413 (*1 *1 *1) (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-484)) (-14 *3 (-694)) (-4 *4 (-146)))) (-3413 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-694)) (-4 *5 (-146)))) (-1321 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-484))) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-484)) (-14 *4 (-694)) (-4 *5 (-146)))) (-1320 (*1 *1) (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-484)) (-14 *3 (-694)) (-4 *4 (-146)))) (-1319 (*1 *1) (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-484)) (-14 *3 (-694)) (-4 *4 (-146)))) (-1318 (*1 *2 *1) (-12 (-5 *2 (-583 *5)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-484)) (-14 *4 (-694)) (-4 *5 (-146)))) (-1317 (*1 *1 *2) (-12 (-5 *2 (-583 *5)) (-4 *5 (-146)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-484)) (-14 *4 (-694)))) (-3723 (*1 *1) (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-484)) (-14 *3 (-694)) (-4 *4 (-146))))) +((-2415 (((-108 |#1| |#2| |#4|) (-583 |#4|) (-108 |#1| |#2| |#3|)) 14 T ELT)) (-3957 (((-108 |#1| |#2| |#4|) (-1 |#4| |#3|) (-108 |#1| |#2| |#3|)) 18 T ELT))) +(((-109 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2415 ((-108 |#1| |#2| |#4|) (-583 |#4|) (-108 |#1| |#2| |#3|))) (-15 -3957 ((-108 |#1| |#2| |#4|) (-1 |#4| |#3|) (-108 |#1| |#2| |#3|)))) (-484) (-694) (-146) (-146)) (T -109)) +((-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-108 *5 *6 *7)) (-14 *5 (-484)) (-14 *6 (-694)) (-4 *7 (-146)) (-4 *8 (-146)) (-5 *2 (-108 *5 *6 *8)) (-5 *1 (-109 *5 *6 *7 *8)))) (-2415 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-108 *5 *6 *7)) (-14 *5 (-484)) (-14 *6 (-694)) (-4 *7 (-146)) (-4 *8 (-146)) (-5 *2 (-108 *5 *6 *8)) (-5 *1 (-109 *5 *6 *7 *8))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3527 (((-1048) $) 12 T ELT)) (-3528 (((-1048) $) 10 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) 18 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT))) +(((-110) (-13 (-995) (-10 -8 (-15 -3528 ((-1048) $)) (-15 -3527 ((-1048) $))))) (T -110)) +((-3528 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-110)))) (-3527 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-110))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-1425 (((-161) $) 11 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) 20 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-3233 (((-583 (-1048)) $) 13 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT))) +(((-111) (-13 (-995) (-10 -8 (-15 -1425 ((-161) $)) (-15 -3233 ((-583 (-1048)) $))))) (T -111)) +((-1425 (*1 *2 *1) (-12 (-5 *2 (-161)) (-5 *1 (-111)))) (-3233 (*1 *2 *1) (-12 (-5 *2 (-583 (-1048))) (-5 *1 (-111))))) +((-2568 (((-85) $ $) NIL T ELT)) (-1423 (((-583 (-774)) $) NIL T ELT)) (-3541 (((-446) $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-1425 (((-161) $) NIL T ELT)) (-2633 (((-85) $ (-446)) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1424 (((-583 (-85)) $) NIL T ELT)) (-3945 (((-772) $) NIL T ELT) (((-157) $) 6 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2521 (((-55) $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT))) +(((-112) (-13 (-160) (-552 (-157)))) (T -112)) +NIL +((-1323 (((-583 (-158 (-112))) $) 13 T ELT)) (-1322 (((-583 (-158 (-112))) $) 14 T ELT)) (-1324 (((-583 (-749)) $) 10 T ELT)) (-1481 (((-112) $) 7 T ELT)) (-3945 (((-772) $) 16 T ELT))) +(((-113) (-13 (-552 (-772)) (-10 -8 (-15 -1481 ((-112) $)) (-15 -1324 ((-583 (-749)) $)) (-15 -1323 ((-583 (-158 (-112))) $)) (-15 -1322 ((-583 (-158 (-112))) $))))) (T -113)) +((-1481 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-113)))) (-1324 (*1 *2 *1) (-12 (-5 *2 (-583 (-749))) (-5 *1 (-113)))) (-1323 (*1 *2 *1) (-12 (-5 *2 (-583 (-158 (-112)))) (-5 *1 (-113)))) (-1322 (*1 *2 *1) (-12 (-5 *2 (-583 (-158 (-112)))) (-5 *1 (-113))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3426 (($) 17 T CONST)) (-1801 (($) NIL (|has| (-117) (-319)) ELT)) (-3234 (($ $ $) 19 T ELT) (($ $ (-117)) NIL T ELT) (($ (-117) $) NIL T ELT)) (-3236 (($ $ $) NIL T ELT)) (-3235 (((-85) $ $) NIL T ELT)) (-3136 (((-694)) NIL (|has| (-117) (-319)) ELT)) (-3239 (($) NIL T ELT) (($ (-583 (-117))) NIL T ELT)) (-1569 (($ (-1 (-85) (-117)) $) NIL (|has| $ (-6 -3994)) ELT)) (-3709 (($ (-1 (-85) (-117)) $) NIL (|has| $ (-6 -3994)) ELT)) (-3723 (($) NIL T CONST)) (-1352 (($ $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-117) (-1013))) ELT)) (-3404 (($ (-1 (-85) (-117)) $) NIL (|has| $ (-6 -3994)) ELT) (($ (-117) $) 56 (|has| $ (-6 -3994)) ELT)) (-3405 (($ (-1 (-85) (-117)) $) NIL (|has| $ (-6 -3994)) ELT) (($ (-117) $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-117) (-1013))) ELT)) (-3841 (((-117) (-1 (-117) (-117) (-117)) $) NIL (|has| $ (-6 -3994)) ELT) (((-117) (-1 (-117) (-117) (-117)) $ (-117)) NIL (|has| $ (-6 -3994)) ELT) (((-117) (-1 (-117) (-117) (-117)) $ (-117) (-117)) NIL (-12 (|has| $ (-6 -3994)) (|has| (-117) (-1013))) ELT)) (-2994 (($) NIL (|has| (-117) (-319)) ELT)) (-2889 (((-583 (-117)) $) 65 (|has| $ (-6 -3994)) ELT)) (-3241 (((-85) $ $) NIL T ELT)) (-2531 (((-117) $) NIL (|has| (-117) (-756)) ELT)) (-2608 (((-583 (-117)) $) NIL (|has| $ (-6 -3994)) ELT)) (-3245 (((-85) (-117) $) 29 (-12 (|has| $ (-6 -3994)) (|has| (-117) (-1013))) ELT)) (-2857 (((-117) $) NIL (|has| (-117) (-756)) ELT)) (-1948 (($ (-1 (-117) (-117)) $) 64 (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 (-117) (-117)) $) 60 T ELT)) (-3428 (($) 18 T CONST)) (-2010 (((-830) $) NIL (|has| (-117) (-319)) ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3238 (($ $ $) 32 T ELT)) (-1273 (((-117) $) 57 T ELT)) (-3608 (($ (-117) $) 55 T ELT)) (-2400 (($ (-830)) NIL (|has| (-117) (-319)) ELT)) (-1327 (($) 16 T CONST)) (-3243 (((-1033) $) NIL T ELT)) (-1353 (((-3 (-117) "failed") (-1 (-85) (-117)) $) NIL T ELT)) (-1274 (((-117) $) 58 T ELT)) (-1946 (((-85) (-1 (-85) (-117)) $) NIL (|has| $ (-6 -3994)) ELT)) (-3767 (($ $ (-583 (-117)) (-583 (-117))) NIL (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1013))) ELT) (($ $ (-117) (-117)) NIL (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1013))) ELT) (($ $ (-249 (-117))) NIL (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1013))) ELT) (($ $ (-583 (-249 (-117)))) NIL (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1013))) ELT)) (-1221 (((-85) $ $) NIL T ELT)) (-3402 (((-85) $) NIL T ELT)) (-3564 (($) 53 T ELT)) (-1328 (($) 15 T CONST)) (-3237 (($ $ $) 34 T ELT) (($ $ (-117)) NIL T ELT)) (-1465 (($ (-583 (-117))) NIL T ELT) (($) NIL T ELT)) (-1945 (((-694) (-117) $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-117) (-1013))) ELT) (((-694) (-1 (-85) (-117)) $) NIL (|has| $ (-6 -3994)) ELT)) (-3399 (($ $) NIL T ELT)) (-3971 (((-1072) $) 39 T ELT) (((-473) $) NIL (|has| (-117) (-553 (-473))) ELT) (((-583 (-117)) $) 37 T ELT)) (-3529 (($ (-583 (-117))) NIL T ELT)) (-1802 (($ $) 35 (|has| (-117) (-319)) ELT)) (-3945 (((-772) $) 51 T ELT)) (-1329 (($ (-1072)) 14 T ELT) (($ (-583 (-117))) 48 T ELT)) (-1803 (((-694) $) NIL T ELT)) (-3240 (($) 54 T ELT) (($ (-583 (-117))) NIL T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-1275 (($ (-583 (-117))) NIL T ELT)) (-1947 (((-85) (-1 (-85) (-117)) $) NIL (|has| $ (-6 -3994)) ELT)) (-1325 (($) 21 T CONST)) (-1326 (($) 20 T CONST)) (-3056 (((-85) $ $) 26 T ELT)) (-3956 (((-694) $) 52 (|has| $ (-6 -3994)) ELT))) +(((-114) (-13 (-1013) (-553 (-1072)) (-368 (-117)) (-553 (-583 (-117))) (-10 -8 (-15 -1329 ($ (-1072))) (-15 -1329 ($ (-583 (-117)))) (-15 -1328 ($) -3951) (-15 -1327 ($) -3951) (-15 -3426 ($) -3951) (-15 -3428 ($) -3951) (-15 -1326 ($) -3951) (-15 -1325 ($) -3951)))) (T -114)) +((-1329 (*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-114)))) (-1329 (*1 *1 *2) (-12 (-5 *2 (-583 (-117))) (-5 *1 (-114)))) (-1328 (*1 *1) (-5 *1 (-114))) (-1327 (*1 *1) (-5 *1 (-114))) (-3426 (*1 *1) (-5 *1 (-114))) (-3428 (*1 *1) (-5 *1 (-114))) (-1326 (*1 *1) (-5 *1 (-114))) (-1325 (*1 *1) (-5 *1 (-114)))) +((-3740 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17 T ELT)) (-3738 ((|#1| |#3|) 9 T ELT)) (-3739 ((|#3| |#3|) 15 T ELT))) +(((-115 |#1| |#2| |#3|) (-10 -7 (-15 -3738 (|#1| |#3|)) (-15 -3739 (|#3| |#3|)) (-15 -3740 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-495) (-904 |#1|) (-323 |#2|)) (T -115)) +((-3740 (*1 *2 *3) (-12 (-4 *4 (-495)) (-4 *5 (-904 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-115 *4 *5 *3)) (-4 *3 (-323 *5)))) (-3739 (*1 *2 *2) (-12 (-4 *3 (-495)) (-4 *4 (-904 *3)) (-5 *1 (-115 *3 *4 *2)) (-4 *2 (-323 *4)))) (-3738 (*1 *2 *3) (-12 (-4 *4 (-904 *2)) (-4 *2 (-495)) (-5 *1 (-115 *2 *4 *3)) (-4 *3 (-323 *4))))) +((-1368 (($ $ $) 8 T ELT)) (-1366 (($ $) 7 T ELT)) (-3101 (($ $ $) 6 T ELT))) (((-116) (-113)) (T -116)) -((-1367 (*1 *1 *1 *1) (-4 *1 (-116))) (-1365 (*1 *1 *1) (-4 *1 (-116))) (-3100 (*1 *1 *1 *1) (-4 *1 (-116)))) -(-13 (-10 -8 (-15 -3100 ($ $ $)) (-15 -1365 ($ $)) (-15 -1367 ($ $ $)))) -((-2567 (((-85) $ $) NIL T ELT)) (-1336 (($) 30 T CONST)) (-1331 (((-85) $) 42 T ELT)) (-3425 (($ $) 52 T ELT)) (-1343 (($) 23 T CONST)) (-1516 (($) 21 T CONST)) (-3135 (((-693)) 13 T ELT)) (-2993 (($) 20 T ELT)) (-2578 (($) 22 T CONST)) (-1345 (((-693) $) 17 T ELT)) (-1342 (($) 24 T CONST)) (-2530 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2856 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-1330 (((-85) $) 44 T ELT)) (-3427 (($ $) 53 T ELT)) (-2009 (((-829) $) 18 T ELT)) (-1340 (($) 26 T CONST)) (-3241 (((-1071) $) 50 T ELT)) (-2399 (($ (-829)) 16 T ELT)) (-1337 (($) 29 T CONST)) (-1333 (((-85) $) 40 T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-1339 (($) 27 T CONST)) (-1335 (($) 31 T CONST)) (-1334 (((-85) $) 38 T ELT)) (-3944 (((-771) $) 33 T ELT)) (-1344 (($ (-693)) 14 T ELT) (($ (-1071)) 51 T ELT)) (-1341 (($) 25 T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-1338 (($) 28 T CONST)) (-1329 (((-85) $) 48 T ELT)) (-1332 (((-85) $) 46 T ELT)) (-2565 (((-85) $ $) 11 T ELT)) (-2566 (((-85) $ $) 9 T ELT)) (-3055 (((-85) $ $) 7 T ELT)) (-2683 (((-85) $ $) 10 T ELT)) (-2684 (((-85) $ $) 8 T ELT))) -(((-117) (-13 (-751) (-10 -8 (-15 -1345 ((-693) $)) (-15 -1344 ($ (-693))) (-15 -1344 ($ (-1071))) (-15 -1516 ($) -3950) (-15 -2578 ($) -3950) (-15 -1343 ($) -3950) (-15 -1342 ($) -3950) (-15 -1341 ($) -3950) (-15 -1340 ($) -3950) (-15 -1339 ($) -3950) (-15 -1338 ($) -3950) (-15 -1337 ($) -3950) (-15 -1336 ($) -3950) (-15 -1335 ($) -3950) (-15 -3425 ($ $)) (-15 -3427 ($ $)) (-15 -1334 ((-85) $)) (-15 -1333 ((-85) $)) (-15 -1332 ((-85) $)) (-15 -1331 ((-85) $)) (-15 -1330 ((-85) $)) (-15 -1329 ((-85) $))))) (T -117)) -((-1345 (*1 *2 *1) (-12 (-5 *2 (-693)) (-5 *1 (-117)))) (-1344 (*1 *1 *2) (-12 (-5 *2 (-693)) (-5 *1 (-117)))) (-1344 (*1 *1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-117)))) (-1516 (*1 *1) (-5 *1 (-117))) (-2578 (*1 *1) (-5 *1 (-117))) (-1343 (*1 *1) (-5 *1 (-117))) (-1342 (*1 *1) (-5 *1 (-117))) (-1341 (*1 *1) (-5 *1 (-117))) (-1340 (*1 *1) (-5 *1 (-117))) (-1339 (*1 *1) (-5 *1 (-117))) (-1338 (*1 *1) (-5 *1 (-117))) (-1337 (*1 *1) (-5 *1 (-117))) (-1336 (*1 *1) (-5 *1 (-117))) (-1335 (*1 *1) (-5 *1 (-117))) (-3425 (*1 *1 *1) (-5 *1 (-117))) (-3427 (*1 *1 *1) (-5 *1 (-117))) (-1334 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117)))) (-1333 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117)))) (-1332 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117)))) (-1331 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117)))) (-1330 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117)))) (-1329 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117))))) -((-2567 (((-85) $ $) 7 T ELT)) (-3187 (((-85) $) 22 T ELT)) (-1310 (((-3 $ "failed") $ $) 26 T ELT)) (-3722 (($) 23 T CONST)) (-3465 (((-3 $ "failed") $) 42 T ELT)) (-1212 (((-85) $ $) 20 T ELT)) (-2409 (((-85) $) 44 T ELT)) (-3241 (((-1071) $) 11 T ELT)) (-3242 (((-1032) $) 12 T ELT)) (-3944 (((-771) $) 13 T ELT) (($ (-483)) 41 T ELT)) (-2701 (((-631 $) $) 47 T ELT)) (-3125 (((-693)) 40 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-3124 (((-85) $ $) 33 T ELT)) (-2659 (($) 24 T CONST)) (-2665 (($) 45 T CONST)) (-3055 (((-85) $ $) 8 T ELT)) (-3835 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3837 (($ $ $) 18 T ELT)) (** (($ $ (-829)) 35 T ELT) (($ $ (-693)) 43 T ELT)) (* (($ (-829) $) 17 T ELT) (($ (-693) $) 21 T ELT) (($ (-483) $) 30 T ELT) (($ $ $) 34 T ELT))) +((-1368 (*1 *1 *1 *1) (-4 *1 (-116))) (-1366 (*1 *1 *1) (-4 *1 (-116))) (-3101 (*1 *1 *1 *1) (-4 *1 (-116)))) +(-13 (-10 -8 (-15 -3101 ($ $ $)) (-15 -1366 ($ $)) (-15 -1368 ($ $ $)))) +((-2568 (((-85) $ $) NIL T ELT)) (-1337 (($) 30 T CONST)) (-1332 (((-85) $) 42 T ELT)) (-3426 (($ $) 52 T ELT)) (-1344 (($) 23 T CONST)) (-1517 (($) 21 T CONST)) (-3136 (((-694)) 13 T ELT)) (-2994 (($) 20 T ELT)) (-2579 (($) 22 T CONST)) (-1346 (((-694) $) 17 T ELT)) (-1343 (($) 24 T CONST)) (-2531 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2857 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-1331 (((-85) $) 44 T ELT)) (-3428 (($ $) 53 T ELT)) (-2010 (((-830) $) 18 T ELT)) (-1341 (($) 26 T CONST)) (-3242 (((-1072) $) 50 T ELT)) (-2400 (($ (-830)) 16 T ELT)) (-1338 (($) 29 T CONST)) (-1334 (((-85) $) 40 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1340 (($) 27 T CONST)) (-1336 (($) 31 T CONST)) (-1335 (((-85) $) 38 T ELT)) (-3945 (((-772) $) 33 T ELT)) (-1345 (($ (-694)) 14 T ELT) (($ (-1072)) 51 T ELT)) (-1342 (($) 25 T CONST)) (-1264 (((-85) $ $) NIL T ELT)) (-1339 (($) 28 T CONST)) (-1330 (((-85) $) 48 T ELT)) (-1333 (((-85) $) 46 T ELT)) (-2566 (((-85) $ $) 11 T ELT)) (-2567 (((-85) $ $) 9 T ELT)) (-3056 (((-85) $ $) 7 T ELT)) (-2684 (((-85) $ $) 10 T ELT)) (-2685 (((-85) $ $) 8 T ELT))) +(((-117) (-13 (-752) (-10 -8 (-15 -1346 ((-694) $)) (-15 -1345 ($ (-694))) (-15 -1345 ($ (-1072))) (-15 -1517 ($) -3951) (-15 -2579 ($) -3951) (-15 -1344 ($) -3951) (-15 -1343 ($) -3951) (-15 -1342 ($) -3951) (-15 -1341 ($) -3951) (-15 -1340 ($) -3951) (-15 -1339 ($) -3951) (-15 -1338 ($) -3951) (-15 -1337 ($) -3951) (-15 -1336 ($) -3951) (-15 -3426 ($ $)) (-15 -3428 ($ $)) (-15 -1335 ((-85) $)) (-15 -1334 ((-85) $)) (-15 -1333 ((-85) $)) (-15 -1332 ((-85) $)) (-15 -1331 ((-85) $)) (-15 -1330 ((-85) $))))) (T -117)) +((-1346 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-117)))) (-1345 (*1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-117)))) (-1345 (*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-117)))) (-1517 (*1 *1) (-5 *1 (-117))) (-2579 (*1 *1) (-5 *1 (-117))) (-1344 (*1 *1) (-5 *1 (-117))) (-1343 (*1 *1) (-5 *1 (-117))) (-1342 (*1 *1) (-5 *1 (-117))) (-1341 (*1 *1) (-5 *1 (-117))) (-1340 (*1 *1) (-5 *1 (-117))) (-1339 (*1 *1) (-5 *1 (-117))) (-1338 (*1 *1) (-5 *1 (-117))) (-1337 (*1 *1) (-5 *1 (-117))) (-1336 (*1 *1) (-5 *1 (-117))) (-3426 (*1 *1 *1) (-5 *1 (-117))) (-3428 (*1 *1 *1) (-5 *1 (-117))) (-1335 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117)))) (-1334 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117)))) (-1333 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117)))) (-1332 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117)))) (-1331 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117)))) (-1330 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117))))) +((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3723 (($) 23 T CONST)) (-3466 (((-3 $ "failed") $) 42 T ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT)) (-2702 (((-632 $) $) 47 T ELT)) (-3126 (((-694)) 40 T CONST)) (-1264 (((-85) $ $) 6 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT))) (((-118) (-113)) (T -118)) -((-2701 (*1 *2 *1) (-12 (-5 *2 (-631 *1)) (-4 *1 (-118))))) -(-13 (-960) (-10 -8 (-15 -2701 ((-631 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-554 (-483)) . T) ((-551 (-771)) . T) ((-13) . T) ((-587 (-483)) . T) ((-587 $) . T) ((-589 $) . T) ((-662) . T) ((-960) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T)) -((-2448 ((|#1| (-629 |#1|) |#1|) 19 T ELT))) -(((-119 |#1|) (-10 -7 (-15 -2448 (|#1| (-629 |#1|) |#1|))) (-146)) (T -119)) -((-2448 (*1 *2 *3 *2) (-12 (-5 *3 (-629 *2)) (-4 *2 (-146)) (-5 *1 (-119 *2))))) -((-2567 (((-85) $ $) 7 T ELT)) (-3187 (((-85) $) 22 T ELT)) (-1310 (((-3 $ "failed") $ $) 26 T ELT)) (-3722 (($) 23 T CONST)) (-3465 (((-3 $ "failed") $) 42 T ELT)) (-1212 (((-85) $ $) 20 T ELT)) (-2409 (((-85) $) 44 T ELT)) (-3241 (((-1071) $) 11 T ELT)) (-3242 (((-1032) $) 12 T ELT)) (-3944 (((-771) $) 13 T ELT) (($ (-483)) 41 T ELT)) (-3125 (((-693)) 40 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-3124 (((-85) $ $) 33 T ELT)) (-2659 (($) 24 T CONST)) (-2665 (($) 45 T CONST)) (-3055 (((-85) $ $) 8 T ELT)) (-3835 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3837 (($ $ $) 18 T ELT)) (** (($ $ (-829)) 35 T ELT) (($ $ (-693)) 43 T ELT)) (* (($ (-829) $) 17 T ELT) (($ (-693) $) 21 T ELT) (($ (-483) $) 30 T ELT) (($ $ $) 34 T ELT))) +((-2702 (*1 *2 *1) (-12 (-5 *2 (-632 *1)) (-4 *1 (-118))))) +(-13 (-961) (-10 -8 (-15 -2702 ((-632 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-555 (-484)) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 $) . T) ((-590 $) . T) ((-663) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T)) +((-2449 ((|#1| (-630 |#1|) |#1|) 19 T ELT))) +(((-119 |#1|) (-10 -7 (-15 -2449 (|#1| (-630 |#1|) |#1|))) (-146)) (T -119)) +((-2449 (*1 *2 *3 *2) (-12 (-5 *3 (-630 *2)) (-4 *2 (-146)) (-5 *1 (-119 *2))))) +((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3723 (($) 23 T CONST)) (-3466 (((-3 $ "failed") $) 42 T ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT)) (-3126 (((-694)) 40 T CONST)) (-1264 (((-85) $ $) 6 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT))) (((-120) (-113)) (T -120)) NIL -(-13 (-960)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-554 (-483)) . T) ((-551 (-771)) . T) ((-13) . T) ((-587 (-483)) . T) ((-587 $) . T) ((-589 $) . T) ((-662) . T) ((-960) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T)) -((-1348 (((-2 (|:| -2400 (-693)) (|:| -3952 (-348 |#2|)) (|:| |radicand| |#2|)) (-348 |#2|) (-693)) 76 T ELT)) (-1347 (((-3 (-2 (|:| |radicand| (-348 |#2|)) (|:| |deg| (-693))) "failed") |#3|) 56 T ELT)) (-1346 (((-2 (|:| -3952 (-348 |#2|)) (|:| |poly| |#3|)) |#3|) 41 T ELT)) (-1349 ((|#1| |#3| |#3|) 44 T ELT)) (-3766 ((|#3| |#3| (-348 |#2|) (-348 |#2|)) 20 T ELT)) (-1350 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-348 |#2|)) (|:| |c2| (-348 |#2|)) (|:| |deg| (-693))) |#3| |#3|) 53 T ELT))) -(((-121 |#1| |#2| |#3|) (-10 -7 (-15 -1346 ((-2 (|:| -3952 (-348 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -1347 ((-3 (-2 (|:| |radicand| (-348 |#2|)) (|:| |deg| (-693))) "failed") |#3|)) (-15 -1348 ((-2 (|:| -2400 (-693)) (|:| -3952 (-348 |#2|)) (|:| |radicand| |#2|)) (-348 |#2|) (-693))) (-15 -1349 (|#1| |#3| |#3|)) (-15 -3766 (|#3| |#3| (-348 |#2|) (-348 |#2|))) (-15 -1350 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-348 |#2|)) (|:| |c2| (-348 |#2|)) (|:| |deg| (-693))) |#3| |#3|))) (-1132) (-1153 |#1|) (-1153 (-348 |#2|))) (T -121)) -((-1350 (*1 *2 *3 *3) (-12 (-4 *4 (-1132)) (-4 *5 (-1153 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-348 *5)) (|:| |c2| (-348 *5)) (|:| |deg| (-693)))) (-5 *1 (-121 *4 *5 *3)) (-4 *3 (-1153 (-348 *5))))) (-3766 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-348 *5)) (-4 *4 (-1132)) (-4 *5 (-1153 *4)) (-5 *1 (-121 *4 *5 *2)) (-4 *2 (-1153 *3)))) (-1349 (*1 *2 *3 *3) (-12 (-4 *4 (-1153 *2)) (-4 *2 (-1132)) (-5 *1 (-121 *2 *4 *3)) (-4 *3 (-1153 (-348 *4))))) (-1348 (*1 *2 *3 *4) (-12 (-5 *3 (-348 *6)) (-4 *5 (-1132)) (-4 *6 (-1153 *5)) (-5 *2 (-2 (|:| -2400 (-693)) (|:| -3952 *3) (|:| |radicand| *6))) (-5 *1 (-121 *5 *6 *7)) (-5 *4 (-693)) (-4 *7 (-1153 *3)))) (-1347 (*1 *2 *3) (|partial| -12 (-4 *4 (-1132)) (-4 *5 (-1153 *4)) (-5 *2 (-2 (|:| |radicand| (-348 *5)) (|:| |deg| (-693)))) (-5 *1 (-121 *4 *5 *3)) (-4 *3 (-1153 (-348 *5))))) (-1346 (*1 *2 *3) (-12 (-4 *4 (-1132)) (-4 *5 (-1153 *4)) (-5 *2 (-2 (|:| -3952 (-348 *5)) (|:| |poly| *3))) (-5 *1 (-121 *4 *5 *3)) (-4 *3 (-1153 (-348 *5)))))) -((-2703 (((-3 (-582 (-1083 |#2|)) "failed") (-582 (-1083 |#2|)) (-1083 |#2|)) 35 T ELT))) -(((-122 |#1| |#2|) (-10 -7 (-15 -2703 ((-3 (-582 (-1083 |#2|)) "failed") (-582 (-1083 |#2|)) (-1083 |#2|)))) (-482) (-139 |#1|)) (T -122)) -((-2703 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-582 (-1083 *5))) (-5 *3 (-1083 *5)) (-4 *5 (-139 *4)) (-4 *4 (-482)) (-5 *1 (-122 *4 *5))))) -((-3708 (($ (-1 (-85) |#2|) $) 37 T ELT)) (-1351 (($ $) 44 T ELT)) (-3404 (($ (-1 (-85) |#2|) $) 35 T ELT) (($ |#2| $) 40 T ELT)) (-3840 ((|#2| (-1 |#2| |#2| |#2|) $) 30 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 32 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 42 T ELT)) (-1352 (((-3 |#2| "failed") (-1 (-85) |#2|) $) 27 T ELT)) (-1945 (((-85) (-1 (-85) |#2|) $) 24 T ELT)) (-1944 (((-693) (-1 (-85) |#2|) $) 18 T ELT) (((-693) |#2| $) NIL T ELT)) (-1946 (((-85) (-1 (-85) |#2|) $) 21 T ELT)) (-3955 (((-693) $) 12 T ELT))) -(((-123 |#1| |#2|) (-10 -7 (-15 -1351 (|#1| |#1|)) (-15 -3404 (|#1| |#2| |#1|)) (-15 -3840 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3708 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3404 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3840 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3840 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1352 ((-3 |#2| "failed") (-1 (-85) |#2|) |#1|)) (-15 -1944 ((-693) |#2| |#1|)) (-15 -1944 ((-693) (-1 (-85) |#2|) |#1|)) (-15 -1945 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -1946 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -3955 ((-693) |#1|))) (-124 |#2|) (-1127)) (T -123)) -NIL -((-2567 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3708 (($ (-1 (-85) |#1|) $) 48 (|has| $ (-6 -3993)) ELT)) (-3722 (($) 7 T CONST)) (-1351 (($ $) 45 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3993))) ELT)) (-3404 (($ (-1 (-85) |#1|) $) 49 (|has| $ (-6 -3993)) ELT) (($ |#1| $) 46 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3993))) ELT)) (-3840 ((|#1| (-1 |#1| |#1| |#1|) $) 51 (|has| $ (-6 -3993)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 50 (|has| $ (-6 -3993)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 47 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3993))) ELT)) (-2888 (((-582 |#1|) $) 30 (|has| $ (-6 -3993)) ELT)) (-2607 (((-582 |#1|) $) 29 (|has| $ (-6 -3993)) ELT)) (-3244 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3993))) ELT)) (-1947 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3994)) ELT)) (-3956 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3241 (((-1071) $) 22 (|has| |#1| (-1012)) ELT)) (-3242 (((-1032) $) 21 (|has| |#1| (-1012)) ELT)) (-1352 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 52 T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3993)) ELT)) (-3766 (($ $ (-582 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-582 |#1|) (-582 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT)) (-1220 (((-85) $ $) 11 T ELT)) (-3401 (((-85) $) 8 T ELT)) (-3563 (($) 9 T ELT)) (-1944 (((-693) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3993)) ELT) (((-693) |#1| $) 28 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3993))) ELT)) (-3398 (($ $) 10 T ELT)) (-3970 (((-472) $) 44 (|has| |#1| (-552 (-472))) ELT)) (-3528 (($ (-582 |#1|)) 53 T ELT)) (-3944 (((-771) $) 17 (|has| |#1| (-551 (-771))) ELT)) (-1263 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3993)) ELT)) (-3055 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3955 (((-693) $) 6 (|has| $ (-6 -3993)) ELT))) -(((-124 |#1|) (-113) (-1127)) (T -124)) -((-3528 (*1 *1 *2) (-12 (-5 *2 (-582 *3)) (-4 *3 (-1127)) (-4 *1 (-124 *3)))) (-1352 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-85) *2)) (-4 *1 (-124 *2)) (-4 *2 (-1127)))) (-3840 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -3993)) (-4 *1 (-124 *2)) (-4 *2 (-1127)))) (-3840 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -3993)) (-4 *1 (-124 *2)) (-4 *2 (-1127)))) (-3404 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (|has| *1 (-6 -3993)) (-4 *1 (-124 *3)) (-4 *3 (-1127)))) (-3708 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (|has| *1 (-6 -3993)) (-4 *1 (-124 *3)) (-4 *3 (-1127)))) (-3840 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1012)) (|has| *1 (-6 -3993)) (-4 *1 (-124 *2)) (-4 *2 (-1127)))) (-3404 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -3993)) (-4 *1 (-124 *2)) (-4 *2 (-1127)) (-4 *2 (-1012)))) (-1351 (*1 *1 *1) (-12 (|has| *1 (-6 -3993)) (-4 *1 (-124 *2)) (-4 *2 (-1127)) (-4 *2 (-1012))))) -(-13 (-427 |t#1|) (-10 -8 (-15 -3528 ($ (-582 |t#1|))) (-15 -1352 ((-3 |t#1| "failed") (-1 (-85) |t#1|) $)) (IF (|has| $ (-6 -3993)) (PROGN (-15 -3840 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -3840 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -3404 ($ (-1 (-85) |t#1|) $)) (-15 -3708 ($ (-1 (-85) |t#1|) $)) (IF (|has| |t#1| (-1012)) (PROGN (-15 -3840 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -3404 ($ |t#1| $)) (-15 -1351 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-552 (-472))) (-6 (-552 (-472))) |%noBranch|))) -(((-34) . T) ((-72) OR (|has| |#1| (-1012)) (|has| |#1| (-72))) ((-551 (-771)) OR (|has| |#1| (-1012)) (|has| |#1| (-551 (-771)))) ((-552 (-472)) |has| |#1| (-552 (-472))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ((-427 |#1|) . T) ((-454 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ((-13) . T) ((-1012) |has| |#1| (-1012)) ((-1127) . T)) -((-2567 (((-85) $ $) NIL T ELT)) (-3187 (((-85) $) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3722 (($) NIL T CONST)) (-3465 (((-3 $ #1#) $) 113 T ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-2409 (((-85) $) NIL T ELT)) (-2892 (($ |#2| (-582 (-829))) 72 T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-1353 (($ (-829)) 58 T ELT)) (-3909 (((-107)) 23 T ELT)) (-3944 (((-771) $) 88 T ELT) (($ (-483)) 54 T ELT) (($ |#2|) 55 T ELT)) (-3675 ((|#2| $ (-582 (-829))) 75 T ELT)) (-3125 (((-693)) 20 T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-3124 (((-85) $ $) NIL T ELT)) (-2659 (($) 48 T CONST)) (-2665 (($) 52 T CONST)) (-3055 (((-85) $ $) 34 T ELT)) (-3947 (($ $ |#2|) NIL T ELT)) (-3835 (($ $) 43 T ELT) (($ $ $) 41 T ELT)) (-3837 (($ $ $) 39 T ELT)) (** (($ $ (-829)) NIL T ELT) (($ $ (-693)) NIL T ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-483) $) 45 T ELT) (($ $ $) 64 T ELT) (($ |#2| $) 47 T ELT) (($ $ |#2|) NIL T ELT))) -(((-125 |#1| |#2| |#3|) (-13 (-960) (-38 |#2|) (-1185 |#2|) (-10 -8 (-15 -1353 ($ (-829))) (-15 -2892 ($ |#2| (-582 (-829)))) (-15 -3675 (|#2| $ (-582 (-829)))) (-15 -3465 ((-3 $ "failed") $)))) (-829) (-312) (-905 |#1| |#2|)) (T -125)) -((-3465 (*1 *1 *1) (|partial| -12 (-5 *1 (-125 *2 *3 *4)) (-14 *2 (-829)) (-4 *3 (-312)) (-14 *4 (-905 *2 *3)))) (-1353 (*1 *1 *2) (-12 (-5 *2 (-829)) (-5 *1 (-125 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-312)) (-14 *5 (-905 *3 *4)))) (-2892 (*1 *1 *2 *3) (-12 (-5 *3 (-582 (-829))) (-5 *1 (-125 *4 *2 *5)) (-14 *4 (-829)) (-4 *2 (-312)) (-14 *5 (-905 *4 *2)))) (-3675 (*1 *2 *1 *3) (-12 (-5 *3 (-582 (-829))) (-4 *2 (-312)) (-5 *1 (-125 *4 *2 *5)) (-14 *4 (-829)) (-14 *5 (-905 *4 *2))))) -((-1355 (((-2 (|:| |brans| (-582 (-582 (-853 (-179))))) (|:| |xValues| (-1000 (-179))) (|:| |yValues| (-1000 (-179)))) (-582 (-582 (-853 (-179)))) (-179) (-179) (-179) (-179)) 59 T ELT)) (-1354 (((-2 (|:| |brans| (-582 (-582 (-853 (-179))))) (|:| |xValues| (-1000 (-179))) (|:| |yValues| (-1000 (-179)))) (-835) (-348 (-483)) (-348 (-483))) 95 T ELT) (((-2 (|:| |brans| (-582 (-582 (-853 (-179))))) (|:| |xValues| (-1000 (-179))) (|:| |yValues| (-1000 (-179)))) (-835)) 96 T ELT)) (-1508 (((-2 (|:| |brans| (-582 (-582 (-853 (-179))))) (|:| |xValues| (-1000 (-179))) (|:| |yValues| (-1000 (-179)))) (-582 (-582 (-853 (-179))))) 99 T ELT) (((-2 (|:| |brans| (-582 (-582 (-853 (-179))))) (|:| |xValues| (-1000 (-179))) (|:| |yValues| (-1000 (-179)))) (-582 (-853 (-179)))) 98 T ELT) (((-2 (|:| |brans| (-582 (-582 (-853 (-179))))) (|:| |xValues| (-1000 (-179))) (|:| |yValues| (-1000 (-179)))) (-835) (-348 (-483)) (-348 (-483))) 89 T ELT) (((-2 (|:| |brans| (-582 (-582 (-853 (-179))))) (|:| |xValues| (-1000 (-179))) (|:| |yValues| (-1000 (-179)))) (-835)) 90 T ELT))) -(((-126) (-10 -7 (-15 -1508 ((-2 (|:| |brans| (-582 (-582 (-853 (-179))))) (|:| |xValues| (-1000 (-179))) (|:| |yValues| (-1000 (-179)))) (-835))) (-15 -1508 ((-2 (|:| |brans| (-582 (-582 (-853 (-179))))) (|:| |xValues| (-1000 (-179))) (|:| |yValues| (-1000 (-179)))) (-835) (-348 (-483)) (-348 (-483)))) (-15 -1354 ((-2 (|:| |brans| (-582 (-582 (-853 (-179))))) (|:| |xValues| (-1000 (-179))) (|:| |yValues| (-1000 (-179)))) (-835))) (-15 -1354 ((-2 (|:| |brans| (-582 (-582 (-853 (-179))))) (|:| |xValues| (-1000 (-179))) (|:| |yValues| (-1000 (-179)))) (-835) (-348 (-483)) (-348 (-483)))) (-15 -1355 ((-2 (|:| |brans| (-582 (-582 (-853 (-179))))) (|:| |xValues| (-1000 (-179))) (|:| |yValues| (-1000 (-179)))) (-582 (-582 (-853 (-179)))) (-179) (-179) (-179) (-179))) (-15 -1508 ((-2 (|:| |brans| (-582 (-582 (-853 (-179))))) (|:| |xValues| (-1000 (-179))) (|:| |yValues| (-1000 (-179)))) (-582 (-853 (-179))))) (-15 -1508 ((-2 (|:| |brans| (-582 (-582 (-853 (-179))))) (|:| |xValues| (-1000 (-179))) (|:| |yValues| (-1000 (-179)))) (-582 (-582 (-853 (-179)))))))) (T -126)) -((-1508 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-582 (-582 (-853 (-179))))) (|:| |xValues| (-1000 (-179))) (|:| |yValues| (-1000 (-179))))) (-5 *1 (-126)) (-5 *3 (-582 (-582 (-853 (-179))))))) (-1508 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-582 (-582 (-853 (-179))))) (|:| |xValues| (-1000 (-179))) (|:| |yValues| (-1000 (-179))))) (-5 *1 (-126)) (-5 *3 (-582 (-853 (-179)))))) (-1355 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-179)) (-5 *2 (-2 (|:| |brans| (-582 (-582 (-853 *4)))) (|:| |xValues| (-1000 *4)) (|:| |yValues| (-1000 *4)))) (-5 *1 (-126)) (-5 *3 (-582 (-582 (-853 *4)))))) (-1354 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-835)) (-5 *4 (-348 (-483))) (-5 *2 (-2 (|:| |brans| (-582 (-582 (-853 (-179))))) (|:| |xValues| (-1000 (-179))) (|:| |yValues| (-1000 (-179))))) (-5 *1 (-126)))) (-1354 (*1 *2 *3) (-12 (-5 *3 (-835)) (-5 *2 (-2 (|:| |brans| (-582 (-582 (-853 (-179))))) (|:| |xValues| (-1000 (-179))) (|:| |yValues| (-1000 (-179))))) (-5 *1 (-126)))) (-1508 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-835)) (-5 *4 (-348 (-483))) (-5 *2 (-2 (|:| |brans| (-582 (-582 (-853 (-179))))) (|:| |xValues| (-1000 (-179))) (|:| |yValues| (-1000 (-179))))) (-5 *1 (-126)))) (-1508 (*1 *2 *3) (-12 (-5 *3 (-835)) (-5 *2 (-2 (|:| |brans| (-582 (-582 (-853 (-179))))) (|:| |xValues| (-1000 (-179))) (|:| |yValues| (-1000 (-179))))) (-5 *1 (-126))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3180 (((-582 (-1047)) $) 20 T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3944 (((-771) $) 27 T ELT) (($ (-1093)) NIL T ELT) (((-1093) $) NIL T ELT)) (-3232 (((-1047) $) 10 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-127) (-13 (-994) (-10 -8 (-15 -3180 ((-582 (-1047)) $)) (-15 -3232 ((-1047) $))))) (T -127)) -((-3180 (*1 *2 *1) (-12 (-5 *2 (-582 (-1047))) (-5 *1 (-127)))) (-3232 (*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-127))))) -((-1408 (((-582 (-142 |#2|)) |#1| |#2|) 50 T ELT))) -(((-128 |#1| |#2|) (-10 -7 (-15 -1408 ((-582 (-142 |#2|)) |#1| |#2|))) (-1153 (-142 (-483))) (-13 (-312) (-754))) (T -128)) -((-1408 (*1 *2 *3 *4) (-12 (-5 *2 (-582 (-142 *4))) (-5 *1 (-128 *3 *4)) (-4 *3 (-1153 (-142 (-483)))) (-4 *4 (-13 (-312) (-754)))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3526 (((-1128) $) 13 T ELT)) (-3527 (((-1047) $) 10 T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3944 (((-771) $) 20 T ELT) (($ (-1093)) NIL T ELT) (((-1093) $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-129) (-13 (-994) (-10 -8 (-15 -3527 ((-1047) $)) (-15 -3526 ((-1128) $))))) (T -129)) -((-3527 (*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-129)))) (-3526 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-129))))) -((-2567 (((-85) $ $) NIL T ELT)) (-1357 (($) 38 T ELT)) (-3097 (($) 37 T ELT)) (-1356 (((-829)) 43 T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-2955 (((-483) $) 41 T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3096 (($) 39 T ELT)) (-2954 (($ (-483)) 44 T ELT)) (-3944 (((-771) $) 50 T ELT)) (-3095 (($) 40 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) 35 T ELT)) (-3837 (($ $ $) 32 T ELT)) (* (($ (-829) $) 42 T ELT) (($ (-179) $) 11 T ELT))) -(((-130) (-13 (-25) (-10 -8 (-15 * ($ (-829) $)) (-15 * ($ (-179) $)) (-15 -3837 ($ $ $)) (-15 -3097 ($)) (-15 -1357 ($)) (-15 -3096 ($)) (-15 -3095 ($)) (-15 -2955 ((-483) $)) (-15 -1356 ((-829))) (-15 -2954 ($ (-483)))))) (T -130)) -((-3837 (*1 *1 *1 *1) (-5 *1 (-130))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-829)) (-5 *1 (-130)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-179)) (-5 *1 (-130)))) (-3097 (*1 *1) (-5 *1 (-130))) (-1357 (*1 *1) (-5 *1 (-130))) (-3096 (*1 *1) (-5 *1 (-130))) (-3095 (*1 *1) (-5 *1 (-130))) (-2955 (*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-130)))) (-1356 (*1 *2) (-12 (-5 *2 (-829)) (-5 *1 (-130)))) (-2954 (*1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-130))))) -((-1370 ((|#2| |#2| (-1003 |#2|)) 98 T ELT) ((|#2| |#2| (-1088)) 75 T ELT)) (-3942 ((|#2| |#2| (-1003 |#2|)) 97 T ELT) ((|#2| |#2| (-1088)) 74 T ELT)) (-1367 ((|#2| |#2| |#2|) 25 T ELT)) (-3593 (((-86) (-86)) 111 T ELT)) (-1364 ((|#2| (-582 |#2|)) 130 T ELT)) (-1361 ((|#2| (-582 |#2|)) 150 T ELT)) (-1360 ((|#2| (-582 |#2|)) 138 T ELT)) (-1358 ((|#2| |#2|) 136 T ELT)) (-1362 ((|#2| (-582 |#2|)) 124 T ELT)) (-1363 ((|#2| (-582 |#2|)) 125 T ELT)) (-1359 ((|#2| (-582 |#2|)) 148 T ELT)) (-1371 ((|#2| |#2| (-1088)) 63 T ELT) ((|#2| |#2|) 62 T ELT)) (-1365 ((|#2| |#2|) 21 T ELT)) (-3100 ((|#2| |#2| |#2|) 24 T ELT)) (-2253 (((-85) (-86)) 55 T ELT)) (** ((|#2| |#2| |#2|) 46 T ELT))) -(((-131 |#1| |#2|) (-10 -7 (-15 -2253 ((-85) (-86))) (-15 -3593 ((-86) (-86))) (-15 ** (|#2| |#2| |#2|)) (-15 -3100 (|#2| |#2| |#2|)) (-15 -1367 (|#2| |#2| |#2|)) (-15 -1365 (|#2| |#2|)) (-15 -1371 (|#2| |#2|)) (-15 -1371 (|#2| |#2| (-1088))) (-15 -1370 (|#2| |#2| (-1088))) (-15 -1370 (|#2| |#2| (-1003 |#2|))) (-15 -3942 (|#2| |#2| (-1088))) (-15 -3942 (|#2| |#2| (-1003 |#2|))) (-15 -1358 (|#2| |#2|)) (-15 -1359 (|#2| (-582 |#2|))) (-15 -1360 (|#2| (-582 |#2|))) (-15 -1361 (|#2| (-582 |#2|))) (-15 -1362 (|#2| (-582 |#2|))) (-15 -1363 (|#2| (-582 |#2|))) (-15 -1364 (|#2| (-582 |#2|)))) (-494) (-362 |#1|)) (T -131)) -((-1364 (*1 *2 *3) (-12 (-5 *3 (-582 *2)) (-4 *2 (-362 *4)) (-5 *1 (-131 *4 *2)) (-4 *4 (-494)))) (-1363 (*1 *2 *3) (-12 (-5 *3 (-582 *2)) (-4 *2 (-362 *4)) (-5 *1 (-131 *4 *2)) (-4 *4 (-494)))) (-1362 (*1 *2 *3) (-12 (-5 *3 (-582 *2)) (-4 *2 (-362 *4)) (-5 *1 (-131 *4 *2)) (-4 *4 (-494)))) (-1361 (*1 *2 *3) (-12 (-5 *3 (-582 *2)) (-4 *2 (-362 *4)) (-5 *1 (-131 *4 *2)) (-4 *4 (-494)))) (-1360 (*1 *2 *3) (-12 (-5 *3 (-582 *2)) (-4 *2 (-362 *4)) (-5 *1 (-131 *4 *2)) (-4 *4 (-494)))) (-1359 (*1 *2 *3) (-12 (-5 *3 (-582 *2)) (-4 *2 (-362 *4)) (-5 *1 (-131 *4 *2)) (-4 *4 (-494)))) (-1358 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-131 *3 *2)) (-4 *2 (-362 *3)))) (-3942 (*1 *2 *2 *3) (-12 (-5 *3 (-1003 *2)) (-4 *2 (-362 *4)) (-4 *4 (-494)) (-5 *1 (-131 *4 *2)))) (-3942 (*1 *2 *2 *3) (-12 (-5 *3 (-1088)) (-4 *4 (-494)) (-5 *1 (-131 *4 *2)) (-4 *2 (-362 *4)))) (-1370 (*1 *2 *2 *3) (-12 (-5 *3 (-1003 *2)) (-4 *2 (-362 *4)) (-4 *4 (-494)) (-5 *1 (-131 *4 *2)))) (-1370 (*1 *2 *2 *3) (-12 (-5 *3 (-1088)) (-4 *4 (-494)) (-5 *1 (-131 *4 *2)) (-4 *2 (-362 *4)))) (-1371 (*1 *2 *2 *3) (-12 (-5 *3 (-1088)) (-4 *4 (-494)) (-5 *1 (-131 *4 *2)) (-4 *2 (-362 *4)))) (-1371 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-131 *3 *2)) (-4 *2 (-362 *3)))) (-1365 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-131 *3 *2)) (-4 *2 (-362 *3)))) (-1367 (*1 *2 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-131 *3 *2)) (-4 *2 (-362 *3)))) (-3100 (*1 *2 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-131 *3 *2)) (-4 *2 (-362 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-131 *3 *2)) (-4 *2 (-362 *3)))) (-3593 (*1 *2 *2) (-12 (-5 *2 (-86)) (-4 *3 (-494)) (-5 *1 (-131 *3 *4)) (-4 *4 (-362 *3)))) (-2253 (*1 *2 *3) (-12 (-5 *3 (-86)) (-4 *4 (-494)) (-5 *2 (-85)) (-5 *1 (-131 *4 *5)) (-4 *5 (-362 *4))))) -((-1369 ((|#1| |#1| |#1|) 66 T ELT)) (-1368 ((|#1| |#1| |#1|) 63 T ELT)) (-1367 ((|#1| |#1| |#1|) 57 T ELT)) (-2889 ((|#1| |#1|) 43 T ELT)) (-1366 ((|#1| |#1| (-582 |#1|)) 55 T ELT)) (-1365 ((|#1| |#1|) 47 T ELT)) (-3100 ((|#1| |#1| |#1|) 51 T ELT))) -(((-132 |#1|) (-10 -7 (-15 -3100 (|#1| |#1| |#1|)) (-15 -1365 (|#1| |#1|)) (-15 -1366 (|#1| |#1| (-582 |#1|))) (-15 -2889 (|#1| |#1|)) (-15 -1367 (|#1| |#1| |#1|)) (-15 -1368 (|#1| |#1| |#1|)) (-15 -1369 (|#1| |#1| |#1|))) (-482)) (T -132)) -((-1369 (*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-482)))) (-1368 (*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-482)))) (-1367 (*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-482)))) (-2889 (*1 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-482)))) (-1366 (*1 *2 *2 *3) (-12 (-5 *3 (-582 *2)) (-4 *2 (-482)) (-5 *1 (-132 *2)))) (-1365 (*1 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-482)))) (-3100 (*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-482))))) -((-1370 (($ $ (-1088)) 12 T ELT) (($ $ (-1003 $)) 11 T ELT)) (-3942 (($ $ (-1088)) 10 T ELT) (($ $ (-1003 $)) 9 T ELT)) (-1367 (($ $ $) 8 T ELT)) (-1371 (($ $) 14 T ELT) (($ $ (-1088)) 13 T ELT)) (-1365 (($ $) 7 T ELT)) (-3100 (($ $ $) 6 T ELT))) +(-13 (-961)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-555 (-484)) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 $) . T) ((-590 $) . T) ((-663) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T)) +((-1349 (((-2 (|:| -2401 (-694)) (|:| -3953 (-349 |#2|)) (|:| |radicand| |#2|)) (-349 |#2|) (-694)) 76 T ELT)) (-1348 (((-3 (-2 (|:| |radicand| (-349 |#2|)) (|:| |deg| (-694))) "failed") |#3|) 56 T ELT)) (-1347 (((-2 (|:| -3953 (-349 |#2|)) (|:| |poly| |#3|)) |#3|) 41 T ELT)) (-1350 ((|#1| |#3| |#3|) 44 T ELT)) (-3767 ((|#3| |#3| (-349 |#2|) (-349 |#2|)) 20 T ELT)) (-1351 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-349 |#2|)) (|:| |c2| (-349 |#2|)) (|:| |deg| (-694))) |#3| |#3|) 53 T ELT))) +(((-121 |#1| |#2| |#3|) (-10 -7 (-15 -1347 ((-2 (|:| -3953 (-349 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -1348 ((-3 (-2 (|:| |radicand| (-349 |#2|)) (|:| |deg| (-694))) "failed") |#3|)) (-15 -1349 ((-2 (|:| -2401 (-694)) (|:| -3953 (-349 |#2|)) (|:| |radicand| |#2|)) (-349 |#2|) (-694))) (-15 -1350 (|#1| |#3| |#3|)) (-15 -3767 (|#3| |#3| (-349 |#2|) (-349 |#2|))) (-15 -1351 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-349 |#2|)) (|:| |c2| (-349 |#2|)) (|:| |deg| (-694))) |#3| |#3|))) (-1133) (-1154 |#1|) (-1154 (-349 |#2|))) (T -121)) +((-1351 (*1 *2 *3 *3) (-12 (-4 *4 (-1133)) (-4 *5 (-1154 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-349 *5)) (|:| |c2| (-349 *5)) (|:| |deg| (-694)))) (-5 *1 (-121 *4 *5 *3)) (-4 *3 (-1154 (-349 *5))))) (-3767 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-349 *5)) (-4 *4 (-1133)) (-4 *5 (-1154 *4)) (-5 *1 (-121 *4 *5 *2)) (-4 *2 (-1154 *3)))) (-1350 (*1 *2 *3 *3) (-12 (-4 *4 (-1154 *2)) (-4 *2 (-1133)) (-5 *1 (-121 *2 *4 *3)) (-4 *3 (-1154 (-349 *4))))) (-1349 (*1 *2 *3 *4) (-12 (-5 *3 (-349 *6)) (-4 *5 (-1133)) (-4 *6 (-1154 *5)) (-5 *2 (-2 (|:| -2401 (-694)) (|:| -3953 *3) (|:| |radicand| *6))) (-5 *1 (-121 *5 *6 *7)) (-5 *4 (-694)) (-4 *7 (-1154 *3)))) (-1348 (*1 *2 *3) (|partial| -12 (-4 *4 (-1133)) (-4 *5 (-1154 *4)) (-5 *2 (-2 (|:| |radicand| (-349 *5)) (|:| |deg| (-694)))) (-5 *1 (-121 *4 *5 *3)) (-4 *3 (-1154 (-349 *5))))) (-1347 (*1 *2 *3) (-12 (-4 *4 (-1133)) (-4 *5 (-1154 *4)) (-5 *2 (-2 (|:| -3953 (-349 *5)) (|:| |poly| *3))) (-5 *1 (-121 *4 *5 *3)) (-4 *3 (-1154 (-349 *5)))))) +((-2704 (((-3 (-583 (-1084 |#2|)) "failed") (-583 (-1084 |#2|)) (-1084 |#2|)) 35 T ELT))) +(((-122 |#1| |#2|) (-10 -7 (-15 -2704 ((-3 (-583 (-1084 |#2|)) "failed") (-583 (-1084 |#2|)) (-1084 |#2|)))) (-483) (-139 |#1|)) (T -122)) +((-2704 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-1084 *5))) (-5 *3 (-1084 *5)) (-4 *5 (-139 *4)) (-4 *4 (-483)) (-5 *1 (-122 *4 *5))))) +((-3709 (($ (-1 (-85) |#2|) $) 37 T ELT)) (-1352 (($ $) 44 T ELT)) (-3405 (($ (-1 (-85) |#2|) $) 35 T ELT) (($ |#2| $) 40 T ELT)) (-3841 ((|#2| (-1 |#2| |#2| |#2|) $) 30 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 32 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 42 T ELT)) (-1353 (((-3 |#2| "failed") (-1 (-85) |#2|) $) 27 T ELT)) (-1946 (((-85) (-1 (-85) |#2|) $) 24 T ELT)) (-1945 (((-694) (-1 (-85) |#2|) $) 18 T ELT) (((-694) |#2| $) NIL T ELT)) (-1947 (((-85) (-1 (-85) |#2|) $) 21 T ELT)) (-3956 (((-694) $) 12 T ELT))) +(((-123 |#1| |#2|) (-10 -7 (-15 -1352 (|#1| |#1|)) (-15 -3405 (|#1| |#2| |#1|)) (-15 -3841 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3709 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3405 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3841 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3841 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1353 ((-3 |#2| "failed") (-1 (-85) |#2|) |#1|)) (-15 -1945 ((-694) |#2| |#1|)) (-15 -1945 ((-694) (-1 (-85) |#2|) |#1|)) (-15 -1946 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -1947 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -3956 ((-694) |#1|))) (-124 |#2|) (-1128)) (T -123)) +NIL +((-2568 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3709 (($ (-1 (-85) |#1|) $) 48 (|has| $ (-6 -3994)) ELT)) (-3723 (($) 7 T CONST)) (-1352 (($ $) 45 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-3405 (($ (-1 (-85) |#1|) $) 49 (|has| $ (-6 -3994)) ELT) (($ |#1| $) 46 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-3841 ((|#1| (-1 |#1| |#1| |#1|) $) 51 (|has| $ (-6 -3994)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 50 (|has| $ (-6 -3994)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 47 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-2889 (((-583 |#1|) $) 30 (|has| $ (-6 -3994)) ELT)) (-2608 (((-583 |#1|) $) 29 (|has| $ (-6 -3994)) ELT)) (-3245 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-1948 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3242 (((-1072) $) 22 (|has| |#1| (-1013)) ELT)) (-3243 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-1353 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 52 T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3994)) ELT)) (-3767 (($ $ (-583 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1221 (((-85) $ $) 11 T ELT)) (-3402 (((-85) $) 8 T ELT)) (-3564 (($) 9 T ELT)) (-1945 (((-694) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3994)) ELT) (((-694) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-3399 (($ $) 10 T ELT)) (-3971 (((-473) $) 44 (|has| |#1| (-553 (-473))) ELT)) (-3529 (($ (-583 |#1|)) 53 T ELT)) (-3945 (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-1264 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3994)) ELT)) (-3056 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3956 (((-694) $) 6 (|has| $ (-6 -3994)) ELT))) +(((-124 |#1|) (-113) (-1128)) (T -124)) +((-3529 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1128)) (-4 *1 (-124 *3)))) (-1353 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-85) *2)) (-4 *1 (-124 *2)) (-4 *2 (-1128)))) (-3841 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -3994)) (-4 *1 (-124 *2)) (-4 *2 (-1128)))) (-3841 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -3994)) (-4 *1 (-124 *2)) (-4 *2 (-1128)))) (-3405 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (|has| *1 (-6 -3994)) (-4 *1 (-124 *3)) (-4 *3 (-1128)))) (-3709 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (|has| *1 (-6 -3994)) (-4 *1 (-124 *3)) (-4 *3 (-1128)))) (-3841 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1013)) (|has| *1 (-6 -3994)) (-4 *1 (-124 *2)) (-4 *2 (-1128)))) (-3405 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -3994)) (-4 *1 (-124 *2)) (-4 *2 (-1128)) (-4 *2 (-1013)))) (-1352 (*1 *1 *1) (-12 (|has| *1 (-6 -3994)) (-4 *1 (-124 *2)) (-4 *2 (-1128)) (-4 *2 (-1013))))) +(-13 (-428 |t#1|) (-10 -8 (-15 -3529 ($ (-583 |t#1|))) (-15 -1353 ((-3 |t#1| "failed") (-1 (-85) |t#1|) $)) (IF (|has| $ (-6 -3994)) (PROGN (-15 -3841 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -3841 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -3405 ($ (-1 (-85) |t#1|) $)) (-15 -3709 ($ (-1 (-85) |t#1|) $)) (IF (|has| |t#1| (-1013)) (PROGN (-15 -3841 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -3405 ($ |t#1| $)) (-15 -1352 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-553 (-473))) (-6 (-553 (-473))) |%noBranch|))) +(((-34) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1013)) (|has| |#1| (-552 (-772)))) ((-553 (-473)) |has| |#1| (-553 (-473))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-428 |#1|) . T) ((-455 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-1013) |has| |#1| (-1013)) ((-1128) . T)) +((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-3466 (((-3 $ #1#) $) 113 T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2893 (($ |#2| (-583 (-830))) 72 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1354 (($ (-830)) 58 T ELT)) (-3910 (((-107)) 23 T ELT)) (-3945 (((-772) $) 88 T ELT) (($ (-484)) 54 T ELT) (($ |#2|) 55 T ELT)) (-3676 ((|#2| $ (-583 (-830))) 75 T ELT)) (-3126 (((-694)) 20 T CONST)) (-1264 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) 48 T CONST)) (-2666 (($) 52 T CONST)) (-3056 (((-85) $ $) 34 T ELT)) (-3948 (($ $ |#2|) NIL T ELT)) (-3836 (($ $) 43 T ELT) (($ $ $) 41 T ELT)) (-3838 (($ $ $) 39 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 45 T ELT) (($ $ $) 64 T ELT) (($ |#2| $) 47 T ELT) (($ $ |#2|) NIL T ELT))) +(((-125 |#1| |#2| |#3|) (-13 (-961) (-38 |#2|) (-1186 |#2|) (-10 -8 (-15 -1354 ($ (-830))) (-15 -2893 ($ |#2| (-583 (-830)))) (-15 -3676 (|#2| $ (-583 (-830)))) (-15 -3466 ((-3 $ "failed") $)))) (-830) (-312) (-906 |#1| |#2|)) (T -125)) +((-3466 (*1 *1 *1) (|partial| -12 (-5 *1 (-125 *2 *3 *4)) (-14 *2 (-830)) (-4 *3 (-312)) (-14 *4 (-906 *2 *3)))) (-1354 (*1 *1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-125 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-312)) (-14 *5 (-906 *3 *4)))) (-2893 (*1 *1 *2 *3) (-12 (-5 *3 (-583 (-830))) (-5 *1 (-125 *4 *2 *5)) (-14 *4 (-830)) (-4 *2 (-312)) (-14 *5 (-906 *4 *2)))) (-3676 (*1 *2 *1 *3) (-12 (-5 *3 (-583 (-830))) (-4 *2 (-312)) (-5 *1 (-125 *4 *2 *5)) (-14 *4 (-830)) (-14 *5 (-906 *4 *2))))) +((-1356 (((-2 (|:| |brans| (-583 (-583 (-854 (-179))))) (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179)))) (-583 (-583 (-854 (-179)))) (-179) (-179) (-179) (-179)) 59 T ELT)) (-1355 (((-2 (|:| |brans| (-583 (-583 (-854 (-179))))) (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179)))) (-836) (-349 (-484)) (-349 (-484))) 95 T ELT) (((-2 (|:| |brans| (-583 (-583 (-854 (-179))))) (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179)))) (-836)) 96 T ELT)) (-1509 (((-2 (|:| |brans| (-583 (-583 (-854 (-179))))) (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179)))) (-583 (-583 (-854 (-179))))) 99 T ELT) (((-2 (|:| |brans| (-583 (-583 (-854 (-179))))) (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179)))) (-583 (-854 (-179)))) 98 T ELT) (((-2 (|:| |brans| (-583 (-583 (-854 (-179))))) (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179)))) (-836) (-349 (-484)) (-349 (-484))) 89 T ELT) (((-2 (|:| |brans| (-583 (-583 (-854 (-179))))) (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179)))) (-836)) 90 T ELT))) +(((-126) (-10 -7 (-15 -1509 ((-2 (|:| |brans| (-583 (-583 (-854 (-179))))) (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179)))) (-836))) (-15 -1509 ((-2 (|:| |brans| (-583 (-583 (-854 (-179))))) (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179)))) (-836) (-349 (-484)) (-349 (-484)))) (-15 -1355 ((-2 (|:| |brans| (-583 (-583 (-854 (-179))))) (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179)))) (-836))) (-15 -1355 ((-2 (|:| |brans| (-583 (-583 (-854 (-179))))) (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179)))) (-836) (-349 (-484)) (-349 (-484)))) (-15 -1356 ((-2 (|:| |brans| (-583 (-583 (-854 (-179))))) (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179)))) (-583 (-583 (-854 (-179)))) (-179) (-179) (-179) (-179))) (-15 -1509 ((-2 (|:| |brans| (-583 (-583 (-854 (-179))))) (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179)))) (-583 (-854 (-179))))) (-15 -1509 ((-2 (|:| |brans| (-583 (-583 (-854 (-179))))) (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179)))) (-583 (-583 (-854 (-179)))))))) (T -126)) +((-1509 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-583 (-583 (-854 (-179))))) (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179))))) (-5 *1 (-126)) (-5 *3 (-583 (-583 (-854 (-179))))))) (-1509 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-583 (-583 (-854 (-179))))) (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179))))) (-5 *1 (-126)) (-5 *3 (-583 (-854 (-179)))))) (-1356 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-179)) (-5 *2 (-2 (|:| |brans| (-583 (-583 (-854 *4)))) (|:| |xValues| (-1001 *4)) (|:| |yValues| (-1001 *4)))) (-5 *1 (-126)) (-5 *3 (-583 (-583 (-854 *4)))))) (-1355 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-836)) (-5 *4 (-349 (-484))) (-5 *2 (-2 (|:| |brans| (-583 (-583 (-854 (-179))))) (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179))))) (-5 *1 (-126)))) (-1355 (*1 *2 *3) (-12 (-5 *3 (-836)) (-5 *2 (-2 (|:| |brans| (-583 (-583 (-854 (-179))))) (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179))))) (-5 *1 (-126)))) (-1509 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-836)) (-5 *4 (-349 (-484))) (-5 *2 (-2 (|:| |brans| (-583 (-583 (-854 (-179))))) (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179))))) (-5 *1 (-126)))) (-1509 (*1 *2 *3) (-12 (-5 *3 (-836)) (-5 *2 (-2 (|:| |brans| (-583 (-583 (-854 (-179))))) (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179))))) (-5 *1 (-126))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3181 (((-583 (-1048)) $) 20 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) 27 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-3233 (((-1048) $) 10 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT))) +(((-127) (-13 (-995) (-10 -8 (-15 -3181 ((-583 (-1048)) $)) (-15 -3233 ((-1048) $))))) (T -127)) +((-3181 (*1 *2 *1) (-12 (-5 *2 (-583 (-1048))) (-5 *1 (-127)))) (-3233 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-127))))) +((-1409 (((-583 (-142 |#2|)) |#1| |#2|) 50 T ELT))) +(((-128 |#1| |#2|) (-10 -7 (-15 -1409 ((-583 (-142 |#2|)) |#1| |#2|))) (-1154 (-142 (-484))) (-13 (-312) (-755))) (T -128)) +((-1409 (*1 *2 *3 *4) (-12 (-5 *2 (-583 (-142 *4))) (-5 *1 (-128 *3 *4)) (-4 *3 (-1154 (-142 (-484)))) (-4 *4 (-13 (-312) (-755)))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3527 (((-1129) $) 13 T ELT)) (-3528 (((-1048) $) 10 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) 20 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT))) +(((-129) (-13 (-995) (-10 -8 (-15 -3528 ((-1048) $)) (-15 -3527 ((-1129) $))))) (T -129)) +((-3528 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-129)))) (-3527 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-129))))) +((-2568 (((-85) $ $) NIL T ELT)) (-1358 (($) 38 T ELT)) (-3098 (($) 37 T ELT)) (-1357 (((-830)) 43 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2956 (((-484) $) 41 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3097 (($) 39 T ELT)) (-2955 (($ (-484)) 44 T ELT)) (-3945 (((-772) $) 50 T ELT)) (-3096 (($) 40 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 35 T ELT)) (-3838 (($ $ $) 32 T ELT)) (* (($ (-830) $) 42 T ELT) (($ (-179) $) 11 T ELT))) +(((-130) (-13 (-25) (-10 -8 (-15 * ($ (-830) $)) (-15 * ($ (-179) $)) (-15 -3838 ($ $ $)) (-15 -3098 ($)) (-15 -1358 ($)) (-15 -3097 ($)) (-15 -3096 ($)) (-15 -2956 ((-484) $)) (-15 -1357 ((-830))) (-15 -2955 ($ (-484)))))) (T -130)) +((-3838 (*1 *1 *1 *1) (-5 *1 (-130))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-830)) (-5 *1 (-130)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-179)) (-5 *1 (-130)))) (-3098 (*1 *1) (-5 *1 (-130))) (-1358 (*1 *1) (-5 *1 (-130))) (-3097 (*1 *1) (-5 *1 (-130))) (-3096 (*1 *1) (-5 *1 (-130))) (-2956 (*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-130)))) (-1357 (*1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-130)))) (-2955 (*1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-130))))) +((-1371 ((|#2| |#2| (-1004 |#2|)) 98 T ELT) ((|#2| |#2| (-1089)) 75 T ELT)) (-3943 ((|#2| |#2| (-1004 |#2|)) 97 T ELT) ((|#2| |#2| (-1089)) 74 T ELT)) (-1368 ((|#2| |#2| |#2|) 25 T ELT)) (-3594 (((-86) (-86)) 111 T ELT)) (-1365 ((|#2| (-583 |#2|)) 130 T ELT)) (-1362 ((|#2| (-583 |#2|)) 150 T ELT)) (-1361 ((|#2| (-583 |#2|)) 138 T ELT)) (-1359 ((|#2| |#2|) 136 T ELT)) (-1363 ((|#2| (-583 |#2|)) 124 T ELT)) (-1364 ((|#2| (-583 |#2|)) 125 T ELT)) (-1360 ((|#2| (-583 |#2|)) 148 T ELT)) (-1372 ((|#2| |#2| (-1089)) 63 T ELT) ((|#2| |#2|) 62 T ELT)) (-1366 ((|#2| |#2|) 21 T ELT)) (-3101 ((|#2| |#2| |#2|) 24 T ELT)) (-2254 (((-85) (-86)) 55 T ELT)) (** ((|#2| |#2| |#2|) 46 T ELT))) +(((-131 |#1| |#2|) (-10 -7 (-15 -2254 ((-85) (-86))) (-15 -3594 ((-86) (-86))) (-15 ** (|#2| |#2| |#2|)) (-15 -3101 (|#2| |#2| |#2|)) (-15 -1368 (|#2| |#2| |#2|)) (-15 -1366 (|#2| |#2|)) (-15 -1372 (|#2| |#2|)) (-15 -1372 (|#2| |#2| (-1089))) (-15 -1371 (|#2| |#2| (-1089))) (-15 -1371 (|#2| |#2| (-1004 |#2|))) (-15 -3943 (|#2| |#2| (-1089))) (-15 -3943 (|#2| |#2| (-1004 |#2|))) (-15 -1359 (|#2| |#2|)) (-15 -1360 (|#2| (-583 |#2|))) (-15 -1361 (|#2| (-583 |#2|))) (-15 -1362 (|#2| (-583 |#2|))) (-15 -1363 (|#2| (-583 |#2|))) (-15 -1364 (|#2| (-583 |#2|))) (-15 -1365 (|#2| (-583 |#2|)))) (-495) (-363 |#1|)) (T -131)) +((-1365 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-363 *4)) (-5 *1 (-131 *4 *2)) (-4 *4 (-495)))) (-1364 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-363 *4)) (-5 *1 (-131 *4 *2)) (-4 *4 (-495)))) (-1363 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-363 *4)) (-5 *1 (-131 *4 *2)) (-4 *4 (-495)))) (-1362 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-363 *4)) (-5 *1 (-131 *4 *2)) (-4 *4 (-495)))) (-1361 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-363 *4)) (-5 *1 (-131 *4 *2)) (-4 *4 (-495)))) (-1360 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-363 *4)) (-5 *1 (-131 *4 *2)) (-4 *4 (-495)))) (-1359 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-131 *3 *2)) (-4 *2 (-363 *3)))) (-3943 (*1 *2 *2 *3) (-12 (-5 *3 (-1004 *2)) (-4 *2 (-363 *4)) (-4 *4 (-495)) (-5 *1 (-131 *4 *2)))) (-3943 (*1 *2 *2 *3) (-12 (-5 *3 (-1089)) (-4 *4 (-495)) (-5 *1 (-131 *4 *2)) (-4 *2 (-363 *4)))) (-1371 (*1 *2 *2 *3) (-12 (-5 *3 (-1004 *2)) (-4 *2 (-363 *4)) (-4 *4 (-495)) (-5 *1 (-131 *4 *2)))) (-1371 (*1 *2 *2 *3) (-12 (-5 *3 (-1089)) (-4 *4 (-495)) (-5 *1 (-131 *4 *2)) (-4 *2 (-363 *4)))) (-1372 (*1 *2 *2 *3) (-12 (-5 *3 (-1089)) (-4 *4 (-495)) (-5 *1 (-131 *4 *2)) (-4 *2 (-363 *4)))) (-1372 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-131 *3 *2)) (-4 *2 (-363 *3)))) (-1366 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-131 *3 *2)) (-4 *2 (-363 *3)))) (-1368 (*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-131 *3 *2)) (-4 *2 (-363 *3)))) (-3101 (*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-131 *3 *2)) (-4 *2 (-363 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-131 *3 *2)) (-4 *2 (-363 *3)))) (-3594 (*1 *2 *2) (-12 (-5 *2 (-86)) (-4 *3 (-495)) (-5 *1 (-131 *3 *4)) (-4 *4 (-363 *3)))) (-2254 (*1 *2 *3) (-12 (-5 *3 (-86)) (-4 *4 (-495)) (-5 *2 (-85)) (-5 *1 (-131 *4 *5)) (-4 *5 (-363 *4))))) +((-1370 ((|#1| |#1| |#1|) 66 T ELT)) (-1369 ((|#1| |#1| |#1|) 63 T ELT)) (-1368 ((|#1| |#1| |#1|) 57 T ELT)) (-2890 ((|#1| |#1|) 43 T ELT)) (-1367 ((|#1| |#1| (-583 |#1|)) 55 T ELT)) (-1366 ((|#1| |#1|) 47 T ELT)) (-3101 ((|#1| |#1| |#1|) 51 T ELT))) +(((-132 |#1|) (-10 -7 (-15 -3101 (|#1| |#1| |#1|)) (-15 -1366 (|#1| |#1|)) (-15 -1367 (|#1| |#1| (-583 |#1|))) (-15 -2890 (|#1| |#1|)) (-15 -1368 (|#1| |#1| |#1|)) (-15 -1369 (|#1| |#1| |#1|)) (-15 -1370 (|#1| |#1| |#1|))) (-483)) (T -132)) +((-1370 (*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-483)))) (-1369 (*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-483)))) (-1368 (*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-483)))) (-2890 (*1 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-483)))) (-1367 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-483)) (-5 *1 (-132 *2)))) (-1366 (*1 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-483)))) (-3101 (*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-483))))) +((-1371 (($ $ (-1089)) 12 T ELT) (($ $ (-1004 $)) 11 T ELT)) (-3943 (($ $ (-1089)) 10 T ELT) (($ $ (-1004 $)) 9 T ELT)) (-1368 (($ $ $) 8 T ELT)) (-1372 (($ $) 14 T ELT) (($ $ (-1089)) 13 T ELT)) (-1366 (($ $) 7 T ELT)) (-3101 (($ $ $) 6 T ELT))) (((-133) (-113)) (T -133)) -((-1371 (*1 *1 *1) (-4 *1 (-133))) (-1371 (*1 *1 *1 *2) (-12 (-4 *1 (-133)) (-5 *2 (-1088)))) (-1370 (*1 *1 *1 *2) (-12 (-4 *1 (-133)) (-5 *2 (-1088)))) (-1370 (*1 *1 *1 *2) (-12 (-5 *2 (-1003 *1)) (-4 *1 (-133)))) (-3942 (*1 *1 *1 *2) (-12 (-4 *1 (-133)) (-5 *2 (-1088)))) (-3942 (*1 *1 *1 *2) (-12 (-5 *2 (-1003 *1)) (-4 *1 (-133))))) -(-13 (-116) (-10 -8 (-15 -1371 ($ $)) (-15 -1371 ($ $ (-1088))) (-15 -1370 ($ $ (-1088))) (-15 -1370 ($ $ (-1003 $))) (-15 -3942 ($ $ (-1088))) (-15 -3942 ($ $ (-1003 $))))) +((-1372 (*1 *1 *1) (-4 *1 (-133))) (-1372 (*1 *1 *1 *2) (-12 (-4 *1 (-133)) (-5 *2 (-1089)))) (-1371 (*1 *1 *1 *2) (-12 (-4 *1 (-133)) (-5 *2 (-1089)))) (-1371 (*1 *1 *1 *2) (-12 (-5 *2 (-1004 *1)) (-4 *1 (-133)))) (-3943 (*1 *1 *1 *2) (-12 (-4 *1 (-133)) (-5 *2 (-1089)))) (-3943 (*1 *1 *1 *2) (-12 (-5 *2 (-1004 *1)) (-4 *1 (-133))))) +(-13 (-116) (-10 -8 (-15 -1372 ($ $)) (-15 -1372 ($ $ (-1089))) (-15 -1371 ($ $ (-1089))) (-15 -1371 ($ $ (-1004 $))) (-15 -3943 ($ $ (-1089))) (-15 -3943 ($ $ (-1004 $))))) (((-116) . T)) -((-2567 (((-85) $ $) NIL T ELT)) (-1372 (($ (-483)) 15 T ELT) (($ $ $) 16 T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3944 (((-771) $) 19 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) 11 T ELT))) -(((-134) (-13 (-1012) (-10 -8 (-15 -1372 ($ (-483))) (-15 -1372 ($ $ $))))) (T -134)) -((-1372 (*1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-134)))) (-1372 (*1 *1 *1 *1) (-5 *1 (-134)))) -((-2567 (((-85) $ $) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3944 (((-771) $) 16 T ELT) (($ (-1093)) NIL T ELT) (((-1093) $) NIL T ELT)) (-3232 (((-582 (-1047)) $) 10 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-135) (-13 (-994) (-10 -8 (-15 -3232 ((-582 (-1047)) $))))) (T -135)) -((-3232 (*1 *2 *1) (-12 (-5 *2 (-582 (-1047))) (-5 *1 (-135))))) -((-3593 (((-86) (-1088)) 103 T ELT))) -(((-136) (-10 -7 (-15 -3593 ((-86) (-1088))))) (T -136)) -((-3593 (*1 *2 *3) (-12 (-5 *3 (-1088)) (-5 *2 (-86)) (-5 *1 (-136))))) -((-1593 ((|#3| |#3|) 19 T ELT))) -(((-137 |#1| |#2| |#3|) (-10 -7 (-15 -1593 (|#3| |#3|))) (-960) (-1153 |#1|) (-1153 |#2|)) (T -137)) -((-1593 (*1 *2 *2) (-12 (-4 *3 (-960)) (-4 *4 (-1153 *3)) (-5 *1 (-137 *3 *4 *2)) (-4 *2 (-1153 *4))))) -((-2063 (((-2 (|:| -1770 $) (|:| -3980 $) (|:| |associate| $)) $) 222 T ELT)) (-3328 ((|#2| $) 102 T ELT)) (-3490 (($ $) 255 T ELT)) (-3637 (($ $) 249 T ELT)) (-2703 (((-3 (-582 (-1083 $)) #1="failed") (-582 (-1083 $)) (-1083 $)) 47 T ELT)) (-3488 (($ $) 253 T ELT)) (-3636 (($ $) 247 T ELT)) (-3156 (((-3 (-483) #1#) $) NIL T ELT) (((-3 (-348 (-483)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 146 T ELT)) (-3155 (((-483) $) NIL T ELT) (((-348 (-483)) $) NIL T ELT) ((|#2| $) 144 T ELT)) (-2563 (($ $ $) 228 T ELT)) (-2278 (((-629 (-483)) (-629 $)) NIL T ELT) (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-629 $) (-1177 $)) NIL T ELT) (((-2 (|:| |mat| (-629 |#2|)) (|:| |vec| (-1177 |#2|))) (-629 $) (-1177 $)) 160 T ELT) (((-629 |#2|) (-629 $)) 154 T ELT)) (-3840 (($ (-1083 |#2|)) 125 T ELT) (((-3 $ #1#) (-348 (-1083 |#2|))) NIL T ELT)) (-3465 (((-3 $ #1#) $) 213 T ELT)) (-3023 (((-3 (-348 (-483)) #1#) $) 203 T ELT)) (-3022 (((-85) $) 198 T ELT)) (-3021 (((-348 (-483)) $) 201 T ELT)) (-3107 (((-829)) 96 T ELT)) (-2562 (($ $ $) 230 T ELT)) (-1373 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 267 T ELT)) (-3625 (($) 244 T ELT)) (-2795 (((-797 (-483) $) $ (-799 (-483)) (-797 (-483) $)) 192 T ELT) (((-797 (-328) $) $ (-799 (-328)) (-797 (-328) $)) 197 T ELT)) (-3131 ((|#2| $) 100 T ELT)) (-2013 (((-1083 |#2|) $) 127 T ELT)) (-3956 (($ (-1 |#2| |#2|) $) 108 T ELT)) (-3940 (($ $) 246 T ELT)) (-3078 (((-1083 |#2|) $) 126 T ELT)) (-2483 (($ $) 206 T ELT)) (-1375 (($) 103 T ELT)) (-2704 (((-346 (-1083 $)) (-1083 $)) 95 T ELT)) (-2705 (((-346 (-1083 $)) (-1083 $)) 64 T ELT)) (-3464 (((-3 $ #1#) $ |#2|) 208 T ELT) (((-3 $ #1#) $ $) 211 T ELT)) (-3941 (($ $) 245 T ELT)) (-1605 (((-693) $) 225 T ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) 234 T ELT)) (-3755 ((|#2| (-1177 $)) NIL T ELT) ((|#2|) 98 T ELT)) (-3756 (($ $ (-1 |#2| |#2|)) 119 T ELT) (($ $ (-1 |#2| |#2|) (-693)) NIL T ELT) (($ $ (-582 (-1088)) (-582 (-693))) NIL T ELT) (($ $ (-1088) (-693)) NIL T ELT) (($ $ (-582 (-1088))) NIL T ELT) (($ $ (-1088)) NIL T ELT) (($ $ (-693)) NIL T ELT) (($ $) NIL T ELT)) (-3184 (((-1083 |#2|)) 120 T ELT)) (-3489 (($ $) 254 T ELT)) (-3632 (($ $) 248 T ELT)) (-3223 (((-1177 |#2|) $ (-1177 $)) 136 T ELT) (((-629 |#2|) (-1177 $) (-1177 $)) NIL T ELT) (((-1177 |#2|) $) 116 T ELT) (((-629 |#2|) (-1177 $)) NIL T ELT)) (-3970 (((-1177 |#2|) $) NIL T ELT) (($ (-1177 |#2|)) NIL T ELT) (((-1083 |#2|) $) NIL T ELT) (($ (-1083 |#2|)) NIL T ELT) (((-799 (-483)) $) 183 T ELT) (((-799 (-328)) $) 187 T ELT) (((-142 (-328)) $) 172 T ELT) (((-142 (-179)) $) 167 T ELT) (((-472) $) 179 T ELT)) (-3008 (($ $) 104 T ELT)) (-3944 (((-771) $) 143 T ELT) (($ (-483)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-348 (-483))) NIL T ELT) (($ $) NIL T ELT)) (-2448 (((-1083 |#2|) $) 32 T ELT)) (-3125 (((-693)) 106 T CONST)) (-1263 (((-85) $ $) 13 T ELT)) (-3496 (($ $) 258 T ELT)) (-3484 (($ $) 252 T ELT)) (-3494 (($ $) 256 T ELT)) (-3482 (($ $) 250 T ELT)) (-2235 ((|#2| $) 241 T ELT)) (-3495 (($ $) 257 T ELT)) (-3483 (($ $) 251 T ELT)) (-3381 (($ $) 162 T ELT)) (-3055 (((-85) $ $) 110 T ELT)) (-3835 (($ $) 112 T ELT) (($ $ $) NIL T ELT)) (-3837 (($ $ $) 111 T ELT)) (** (($ $ (-829)) NIL T ELT) (($ $ (-693)) NIL T ELT) (($ $ (-348 (-483))) 274 T ELT) (($ $ $) NIL T ELT) (($ $ (-483)) NIL T ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-483) $) 118 T ELT) (($ $ $) 147 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 114 T ELT) (($ (-348 (-483)) $) NIL T ELT) (($ $ (-348 (-483))) NIL T ELT))) -(((-138 |#1| |#2|) (-10 -7 (-15 -3756 (|#1| |#1|)) (-15 -3756 (|#1| |#1| (-693))) (-15 -3756 (|#1| |#1| (-1088))) (-15 -3756 (|#1| |#1| (-582 (-1088)))) (-15 -3756 (|#1| |#1| (-1088) (-693))) (-15 -3756 (|#1| |#1| (-582 (-1088)) (-582 (-693)))) (-15 -3944 (|#1| |#1|)) (-15 -3464 ((-3 |#1| #1="failed") |#1| |#1|)) (-15 -2063 ((-2 (|:| -1770 |#1|) (|:| -3980 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1605 ((-693) |#1|)) (-15 -2878 ((-2 (|:| -1971 |#1|) (|:| -2901 |#1|)) |#1| |#1|)) (-15 -2562 (|#1| |#1| |#1|)) (-15 -2563 (|#1| |#1| |#1|)) (-15 -2483 (|#1| |#1|)) (-15 ** (|#1| |#1| (-483))) (-15 * (|#1| |#1| (-348 (-483)))) (-15 * (|#1| (-348 (-483)) |#1|)) (-15 -3944 (|#1| (-348 (-483)))) (-15 -3970 ((-472) |#1|)) (-15 -3970 ((-142 (-179)) |#1|)) (-15 -3970 ((-142 (-328)) |#1|)) (-15 -3637 (|#1| |#1|)) (-15 -3636 (|#1| |#1|)) (-15 -3632 (|#1| |#1|)) (-15 -3483 (|#1| |#1|)) (-15 -3482 (|#1| |#1|)) (-15 -3484 (|#1| |#1|)) (-15 -3489 (|#1| |#1|)) (-15 -3488 (|#1| |#1|)) (-15 -3490 (|#1| |#1|)) (-15 -3495 (|#1| |#1|)) (-15 -3494 (|#1| |#1|)) (-15 -3496 (|#1| |#1|)) (-15 -3940 (|#1| |#1|)) (-15 -3941 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -3625 (|#1|)) (-15 ** (|#1| |#1| (-348 (-483)))) (-15 -2705 ((-346 (-1083 |#1|)) (-1083 |#1|))) (-15 -2704 ((-346 (-1083 |#1|)) (-1083 |#1|))) (-15 -2703 ((-3 (-582 (-1083 |#1|)) #1#) (-582 (-1083 |#1|)) (-1083 |#1|))) (-15 -3023 ((-3 (-348 (-483)) #1#) |#1|)) (-15 -3021 ((-348 (-483)) |#1|)) (-15 -3022 ((-85) |#1|)) (-15 -1373 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2235 (|#2| |#1|)) (-15 -3381 (|#1| |#1|)) (-15 -3464 ((-3 |#1| #1#) |#1| |#2|)) (-15 -3008 (|#1| |#1|)) (-15 -1375 (|#1|)) (-15 -3970 ((-799 (-328)) |#1|)) (-15 -3970 ((-799 (-483)) |#1|)) (-15 -2795 ((-797 (-328) |#1|) |#1| (-799 (-328)) (-797 (-328) |#1|))) (-15 -2795 ((-797 (-483) |#1|) |#1| (-799 (-483)) (-797 (-483) |#1|))) (-15 -3956 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3756 (|#1| |#1| (-1 |#2| |#2|) (-693))) (-15 -3756 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3840 ((-3 |#1| #1#) (-348 (-1083 |#2|)))) (-15 -3078 ((-1083 |#2|) |#1|)) (-15 -3970 (|#1| (-1083 |#2|))) (-15 -3840 (|#1| (-1083 |#2|))) (-15 -3184 ((-1083 |#2|))) (-15 -2278 ((-629 |#2|) (-629 |#1|))) (-15 -2278 ((-2 (|:| |mat| (-629 |#2|)) (|:| |vec| (-1177 |#2|))) (-629 |#1|) (-1177 |#1|))) (-15 -2278 ((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-629 |#1|) (-1177 |#1|))) (-15 -2278 ((-629 (-483)) (-629 |#1|))) (-15 -3156 ((-3 |#2| #1#) |#1|)) (-15 -3155 (|#2| |#1|)) (-15 -3155 ((-348 (-483)) |#1|)) (-15 -3156 ((-3 (-348 (-483)) #1#) |#1|)) (-15 -3155 ((-483) |#1|)) (-15 -3156 ((-3 (-483) #1#) |#1|)) (-15 -3970 ((-1083 |#2|) |#1|)) (-15 -3755 (|#2|)) (-15 -3970 (|#1| (-1177 |#2|))) (-15 -3970 ((-1177 |#2|) |#1|)) (-15 -3223 ((-629 |#2|) (-1177 |#1|))) (-15 -3223 ((-1177 |#2|) |#1|)) (-15 -2013 ((-1083 |#2|) |#1|)) (-15 -2448 ((-1083 |#2|) |#1|)) (-15 -3755 (|#2| (-1177 |#1|))) (-15 -3223 ((-629 |#2|) (-1177 |#1|) (-1177 |#1|))) (-15 -3223 ((-1177 |#2|) |#1| (-1177 |#1|))) (-15 -3131 (|#2| |#1|)) (-15 -3328 (|#2| |#1|)) (-15 -3107 ((-829))) (-15 -3944 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3125 ((-693)) -3950) (-15 -3944 (|#1| (-483))) (-15 -3465 ((-3 |#1| #1#) |#1|)) (-15 ** (|#1| |#1| (-693))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-829))) (-15 -3835 (|#1| |#1| |#1|)) (-15 -3835 (|#1| |#1|)) (-15 * (|#1| (-483) |#1|)) (-15 * (|#1| (-693) |#1|)) (-15 * (|#1| (-829) |#1|)) (-15 -3837 (|#1| |#1| |#1|)) (-15 -3944 ((-771) |#1|)) (-15 -1263 ((-85) |#1| |#1|)) (-15 -3055 ((-85) |#1| |#1|))) (-139 |#2|) (-146)) (T -138)) -((-3125 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-693)) (-5 *1 (-138 *3 *4)) (-4 *3 (-139 *4)))) (-3107 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-829)) (-5 *1 (-138 *3 *4)) (-4 *3 (-139 *4)))) (-3755 (*1 *2) (-12 (-4 *2 (-146)) (-5 *1 (-138 *3 *2)) (-4 *3 (-139 *2)))) (-3184 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-1083 *4)) (-5 *1 (-138 *3 *4)) (-4 *3 (-139 *4))))) -((-2567 (((-85) $ $) 7 T ELT)) (-3187 (((-85) $) 22 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3980 $) (|:| |associate| $)) $) 114 (OR (|has| |#1| (-494)) (-12 (|has| |#1| (-258)) (|has| |#1| (-820)))) ELT)) (-2062 (($ $) 115 (OR (|has| |#1| (-494)) (-12 (|has| |#1| (-258)) (|has| |#1| (-820)))) ELT)) (-2060 (((-85) $) 117 (OR (|has| |#1| (-494)) (-12 (|has| |#1| (-258)) (|has| |#1| (-820)))) ELT)) (-1780 (((-629 |#1|) (-1177 $)) 61 T ELT) (((-629 |#1|)) 77 T ELT)) (-3328 ((|#1| $) 67 T ELT)) (-3490 (($ $) 250 (|has| |#1| (-1113)) ELT)) (-3637 (($ $) 233 (|has| |#1| (-1113)) ELT)) (-1673 (((-1100 (-829) (-693)) (-483)) 167 (|has| |#1| (-299)) ELT)) (-1310 (((-3 $ "failed") $ $) 26 T ELT)) (-2706 (((-346 (-1083 $)) (-1083 $)) 264 (-12 (|has| |#1| (-258)) (|has| |#1| (-820))) ELT)) (-3773 (($ $) 134 (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-820))) (|has| |#1| (-312))) ELT)) (-3969 (((-346 $) $) 135 (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-820))) (|has| |#1| (-312))) ELT)) (-3036 (($ $) 263 (-12 (|has| |#1| (-914)) (|has| |#1| (-1113))) ELT)) (-2703 (((-3 (-582 (-1083 $)) "failed") (-582 (-1083 $)) (-1083 $)) 267 (-12 (|has| |#1| (-258)) (|has| |#1| (-820))) ELT)) (-1606 (((-85) $ $) 125 (|has| |#1| (-258)) ELT)) (-3135 (((-693)) 108 (|has| |#1| (-318)) ELT)) (-3488 (($ $) 249 (|has| |#1| (-1113)) ELT)) (-3636 (($ $) 234 (|has| |#1| (-1113)) ELT)) (-3492 (($ $) 248 (|has| |#1| (-1113)) ELT)) (-3635 (($ $) 235 (|has| |#1| (-1113)) ELT)) (-3722 (($) 23 T CONST)) (-3156 (((-3 (-483) #1="failed") $) 194 (|has| |#1| (-949 (-483))) ELT) (((-3 (-348 (-483)) #1#) $) 192 (|has| |#1| (-949 (-348 (-483)))) ELT) (((-3 |#1| #1#) $) 189 T ELT)) (-3155 (((-483) $) 193 (|has| |#1| (-949 (-483))) ELT) (((-348 (-483)) $) 191 (|has| |#1| (-949 (-348 (-483)))) ELT) ((|#1| $) 190 T ELT)) (-1790 (($ (-1177 |#1|) (-1177 $)) 63 T ELT) (($ (-1177 |#1|)) 80 T ELT)) (-1671 (((-3 "prime" "polynomial" "normal" "cyclic")) 173 (|has| |#1| (-299)) ELT)) (-2563 (($ $ $) 129 (|has| |#1| (-258)) ELT)) (-1779 (((-629 |#1|) $ (-1177 $)) 68 T ELT) (((-629 |#1|) $) 75 T ELT)) (-2278 (((-629 (-483)) (-629 $)) 186 (|has| |#1| (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-629 $) (-1177 $)) 185 (|has| |#1| (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 |#1|)) (|:| |vec| (-1177 |#1|))) (-629 $) (-1177 $)) 184 T ELT) (((-629 |#1|) (-629 $)) 183 T ELT)) (-3840 (($ (-1083 |#1|)) 178 T ELT) (((-3 $ "failed") (-348 (-1083 |#1|))) 175 (|has| |#1| (-312)) ELT)) (-3465 (((-3 $ "failed") $) 42 T ELT)) (-3641 ((|#1| $) 275 T ELT)) (-3023 (((-3 (-348 (-483)) "failed") $) 268 (|has| |#1| (-482)) ELT)) (-3022 (((-85) $) 270 (|has| |#1| (-482)) ELT)) (-3021 (((-348 (-483)) $) 269 (|has| |#1| (-482)) ELT)) (-3107 (((-829)) 69 T ELT)) (-2993 (($) 111 (|has| |#1| (-318)) ELT)) (-2562 (($ $ $) 128 (|has| |#1| (-258)) ELT)) (-2740 (((-2 (|:| -3952 (-582 $)) (|:| -2408 $)) (-582 $)) 123 (|has| |#1| (-258)) ELT)) (-2832 (($) 169 (|has| |#1| (-299)) ELT)) (-1678 (((-85) $) 170 (|has| |#1| (-299)) ELT)) (-1762 (($ $ (-693)) 161 (|has| |#1| (-299)) ELT) (($ $) 160 (|has| |#1| (-299)) ELT)) (-3721 (((-85) $) 136 (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-820))) (|has| |#1| (-312))) ELT)) (-1373 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 271 (-12 (|has| |#1| (-972)) (|has| |#1| (-1113))) ELT)) (-3625 (($) 260 (|has| |#1| (-1113)) ELT)) (-2795 (((-797 (-483) $) $ (-799 (-483)) (-797 (-483) $)) 283 (|has| |#1| (-795 (-483))) ELT) (((-797 (-328) $) $ (-799 (-328)) (-797 (-328) $)) 282 (|has| |#1| (-795 (-328))) ELT)) (-3770 (((-829) $) 172 (|has| |#1| (-299)) ELT) (((-742 (-829)) $) 158 (|has| |#1| (-299)) ELT)) (-1212 (((-85) $ $) 20 T ELT)) (-2409 (((-85) $) 44 T ELT)) (-3010 (($ $ (-483)) 262 (-12 (|has| |#1| (-914)) (|has| |#1| (-1113))) ELT)) (-3131 ((|#1| $) 66 T ELT)) (-3443 (((-631 $) $) 162 (|has| |#1| (-299)) ELT)) (-1603 (((-3 (-582 $) #2="failed") (-582 $) $) 132 (|has| |#1| (-258)) ELT)) (-2013 (((-1083 |#1|) $) 59 (|has| |#1| (-312)) ELT)) (-3956 (($ (-1 |#1| |#1|) $) 284 T ELT)) (-2009 (((-829) $) 110 (|has| |#1| (-318)) ELT)) (-3940 (($ $) 257 (|has| |#1| (-1113)) ELT)) (-3078 (((-1083 |#1|) $) 176 T ELT)) (-2279 (((-629 (-483)) (-1177 $)) 188 (|has| |#1| (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) 187 (|has| |#1| (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 |#1|)) (|:| |vec| (-1177 |#1|))) (-1177 $) $) 182 T ELT) (((-629 |#1|) (-1177 $)) 181 T ELT)) (-1889 (($ (-582 $)) 121 (OR (|has| |#1| (-258)) (-12 (|has| |#1| (-258)) (|has| |#1| (-820)))) ELT) (($ $ $) 120 (OR (|has| |#1| (-258)) (-12 (|has| |#1| (-258)) (|has| |#1| (-820)))) ELT)) (-3241 (((-1071) $) 11 T ELT)) (-2483 (($ $) 137 (|has| |#1| (-312)) ELT)) (-3444 (($) 163 (|has| |#1| (-299)) CONST)) (-2399 (($ (-829)) 109 (|has| |#1| (-318)) ELT)) (-1375 (($) 279 T ELT)) (-3642 ((|#1| $) 276 T ELT)) (-3242 (((-1032) $) 12 T ELT)) (-2408 (($) 180 T ELT)) (-2707 (((-1083 $) (-1083 $) (-1083 $)) 122 (OR (|has| |#1| (-258)) (-12 (|has| |#1| (-258)) (|has| |#1| (-820)))) ELT)) (-3143 (($ (-582 $)) 119 (OR (|has| |#1| (-258)) (-12 (|has| |#1| (-258)) (|has| |#1| (-820)))) ELT) (($ $ $) 118 (OR (|has| |#1| (-258)) (-12 (|has| |#1| (-258)) (|has| |#1| (-820)))) ELT)) (-1674 (((-582 (-2 (|:| -3730 (-483)) (|:| -2400 (-483))))) 166 (|has| |#1| (-299)) ELT)) (-2704 (((-346 (-1083 $)) (-1083 $)) 266 (-12 (|has| |#1| (-258)) (|has| |#1| (-820))) ELT)) (-2705 (((-346 (-1083 $)) (-1083 $)) 265 (-12 (|has| |#1| (-258)) (|has| |#1| (-820))) ELT)) (-3730 (((-346 $) $) 133 (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-820))) (|has| |#1| (-312))) ELT)) (-1604 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 131 (|has| |#1| (-258)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) 130 (|has| |#1| (-258)) ELT)) (-3464 (((-3 $ "failed") $ |#1|) 274 (|has| |#1| (-494)) ELT) (((-3 $ "failed") $ $) 113 (OR (|has| |#1| (-494)) (-12 (|has| |#1| (-258)) (|has| |#1| (-820)))) ELT)) (-2739 (((-631 (-582 $)) (-582 $) $) 124 (|has| |#1| (-258)) ELT)) (-3941 (($ $) 258 (|has| |#1| (-1113)) ELT)) (-3766 (($ $ (-582 |#1|) (-582 |#1|)) 290 (|has| |#1| (-260 |#1|)) ELT) (($ $ |#1| |#1|) 289 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-249 |#1|)) 288 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-582 (-249 |#1|))) 287 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-582 (-1088)) (-582 |#1|)) 286 (|has| |#1| (-454 (-1088) |#1|)) ELT) (($ $ (-1088) |#1|) 285 (|has| |#1| (-454 (-1088) |#1|)) ELT)) (-1605 (((-693) $) 126 (|has| |#1| (-258)) ELT)) (-3798 (($ $ |#1|) 291 (|has| |#1| (-241 |#1| |#1|)) ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) 127 (|has| |#1| (-258)) ELT)) (-3755 ((|#1| (-1177 $)) 62 T ELT) ((|#1|) 76 T ELT)) (-1763 (((-693) $) 171 (|has| |#1| (-299)) ELT) (((-3 (-693) "failed") $ $) 159 (|has| |#1| (-299)) ELT)) (-3756 (($ $ (-1 |#1| |#1|)) 145 T ELT) (($ $ (-1 |#1| |#1|) (-693)) 144 T ELT) (($ $ (-582 (-1088)) (-582 (-693))) 150 (OR (-2561 (|has| |#1| (-312)) (|has| |#1| (-810 (-1088)))) (-2561 (|has| |#1| (-312)) (|has| |#1| (-808 (-1088)))) (|has| |#1| (-810 (-1088)))) ELT) (($ $ (-1088) (-693)) 149 (OR (-2561 (|has| |#1| (-312)) (|has| |#1| (-810 (-1088)))) (-2561 (|has| |#1| (-312)) (|has| |#1| (-808 (-1088)))) (|has| |#1| (-810 (-1088)))) ELT) (($ $ (-582 (-1088))) 148 (OR (-2561 (|has| |#1| (-312)) (|has| |#1| (-810 (-1088)))) (-2561 (|has| |#1| (-312)) (|has| |#1| (-808 (-1088)))) (|has| |#1| (-810 (-1088)))) ELT) (($ $ (-1088)) 146 (OR (-2561 (|has| |#1| (-312)) (|has| |#1| (-810 (-1088)))) (-2561 (|has| |#1| (-312)) (|has| |#1| (-808 (-1088)))) (|has| |#1| (-810 (-1088)))) ELT) (($ $ (-693)) 156 (OR (-2561 (|has| |#1| (-312)) (|has| |#1| (-189))) (-2561 (|has| |#1| (-312)) (|has| |#1| (-190))) (|has| |#1| (-189)) (-2561 (|has| |#1| (-189)) (|has| |#1| (-312)))) ELT) (($ $) 154 (OR (-2561 (|has| |#1| (-312)) (|has| |#1| (-189))) (-2561 (|has| |#1| (-312)) (|has| |#1| (-190))) (|has| |#1| (-189)) (-2561 (|has| |#1| (-189)) (|has| |#1| (-312)))) ELT)) (-2407 (((-629 |#1|) (-1177 $) (-1 |#1| |#1|)) 174 (|has| |#1| (-312)) ELT)) (-3184 (((-1083 |#1|)) 179 T ELT)) (-3493 (($ $) 247 (|has| |#1| (-1113)) ELT)) (-3634 (($ $) 236 (|has| |#1| (-1113)) ELT)) (-1672 (($) 168 (|has| |#1| (-299)) ELT)) (-3491 (($ $) 246 (|has| |#1| (-1113)) ELT)) (-3633 (($ $) 237 (|has| |#1| (-1113)) ELT)) (-3489 (($ $) 245 (|has| |#1| (-1113)) ELT)) (-3632 (($ $) 238 (|has| |#1| (-1113)) ELT)) (-3223 (((-1177 |#1|) $ (-1177 $)) 65 T ELT) (((-629 |#1|) (-1177 $) (-1177 $)) 64 T ELT) (((-1177 |#1|) $) 82 T ELT) (((-629 |#1|) (-1177 $)) 81 T ELT)) (-3970 (((-1177 |#1|) $) 79 T ELT) (($ (-1177 |#1|)) 78 T ELT) (((-1083 |#1|) $) 195 T ELT) (($ (-1083 |#1|)) 177 T ELT) (((-799 (-483)) $) 281 (|has| |#1| (-552 (-799 (-483)))) ELT) (((-799 (-328)) $) 280 (|has| |#1| (-552 (-799 (-328)))) ELT) (((-142 (-328)) $) 232 (|has| |#1| (-932)) ELT) (((-142 (-179)) $) 231 (|has| |#1| (-932)) ELT) (((-472) $) 230 (|has| |#1| (-552 (-472))) ELT)) (-3008 (($ $) 278 T ELT)) (-2702 (((-3 (-1177 $) "failed") (-629 $)) 165 (OR (-2561 (|has| $ (-118)) (-12 (|has| |#1| (-258)) (|has| |#1| (-820)))) (|has| |#1| (-299))) ELT)) (-1374 (($ |#1| |#1|) 277 T ELT)) (-3944 (((-771) $) 13 T ELT) (($ (-483)) 41 T ELT) (($ |#1|) 52 T ELT) (($ (-348 (-483))) 107 (OR (|has| |#1| (-312)) (|has| |#1| (-949 (-348 (-483))))) ELT) (($ $) 112 (OR (|has| |#1| (-494)) (-12 (|has| |#1| (-258)) (|has| |#1| (-820)))) ELT)) (-2701 (($ $) 164 (|has| |#1| (-299)) ELT) (((-631 $) $) 58 (OR (-2561 (|has| $ (-118)) (-12 (|has| |#1| (-258)) (|has| |#1| (-820)))) (|has| |#1| (-118))) ELT)) (-2448 (((-1083 |#1|) $) 60 T ELT)) (-3125 (((-693)) 40 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-2011 (((-1177 $)) 83 T ELT)) (-3496 (($ $) 256 (|has| |#1| (-1113)) ELT)) (-3484 (($ $) 244 (|has| |#1| (-1113)) ELT)) (-2061 (((-85) $ $) 116 (OR (|has| |#1| (-494)) (-12 (|has| |#1| (-258)) (|has| |#1| (-820)))) ELT)) (-3494 (($ $) 255 (|has| |#1| (-1113)) ELT)) (-3482 (($ $) 243 (|has| |#1| (-1113)) ELT)) (-3498 (($ $) 254 (|has| |#1| (-1113)) ELT)) (-3486 (($ $) 242 (|has| |#1| (-1113)) ELT)) (-2235 ((|#1| $) 272 (|has| |#1| (-1113)) ELT)) (-3124 (((-85) $ $) 33 T ELT)) (-3499 (($ $) 253 (|has| |#1| (-1113)) ELT)) (-3487 (($ $) 241 (|has| |#1| (-1113)) ELT)) (-3497 (($ $) 252 (|has| |#1| (-1113)) ELT)) (-3485 (($ $) 240 (|has| |#1| (-1113)) ELT)) (-3495 (($ $) 251 (|has| |#1| (-1113)) ELT)) (-3483 (($ $) 239 (|has| |#1| (-1113)) ELT)) (-3381 (($ $) 273 (|has| |#1| (-972)) ELT)) (-2659 (($) 24 T CONST)) (-2665 (($) 45 T CONST)) (-2668 (($ $ (-1 |#1| |#1|)) 143 T ELT) (($ $ (-1 |#1| |#1|) (-693)) 142 T ELT) (($ $ (-582 (-1088)) (-582 (-693))) 153 (OR (-2561 (|has| |#1| (-312)) (|has| |#1| (-810 (-1088)))) (-2561 (|has| |#1| (-312)) (|has| |#1| (-808 (-1088)))) (|has| |#1| (-810 (-1088)))) ELT) (($ $ (-1088) (-693)) 152 (OR (-2561 (|has| |#1| (-312)) (|has| |#1| (-810 (-1088)))) (-2561 (|has| |#1| (-312)) (|has| |#1| (-808 (-1088)))) (|has| |#1| (-810 (-1088)))) ELT) (($ $ (-582 (-1088))) 151 (OR (-2561 (|has| |#1| (-312)) (|has| |#1| (-810 (-1088)))) (-2561 (|has| |#1| (-312)) (|has| |#1| (-808 (-1088)))) (|has| |#1| (-810 (-1088)))) ELT) (($ $ (-1088)) 147 (OR (-2561 (|has| |#1| (-312)) (|has| |#1| (-810 (-1088)))) (-2561 (|has| |#1| (-312)) (|has| |#1| (-808 (-1088)))) (|has| |#1| (-810 (-1088)))) ELT) (($ $ (-693)) 157 (OR (-2561 (|has| |#1| (-312)) (|has| |#1| (-189))) (-2561 (|has| |#1| (-312)) (|has| |#1| (-190))) (|has| |#1| (-189)) (-2561 (|has| |#1| (-189)) (|has| |#1| (-312)))) ELT) (($ $) 155 (OR (-2561 (|has| |#1| (-312)) (|has| |#1| (-189))) (-2561 (|has| |#1| (-312)) (|has| |#1| (-190))) (|has| |#1| (-189)) (-2561 (|has| |#1| (-189)) (|has| |#1| (-312)))) ELT)) (-3055 (((-85) $ $) 8 T ELT)) (-3947 (($ $ $) 141 (|has| |#1| (-312)) ELT)) (-3835 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3837 (($ $ $) 18 T ELT)) (** (($ $ (-829)) 35 T ELT) (($ $ (-693)) 43 T ELT) (($ $ (-348 (-483))) 261 (-12 (|has| |#1| (-914)) (|has| |#1| (-1113))) ELT) (($ $ $) 259 (|has| |#1| (-1113)) ELT) (($ $ (-483)) 138 (|has| |#1| (-312)) ELT)) (* (($ (-829) $) 17 T ELT) (($ (-693) $) 21 T ELT) (($ (-483) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 54 T ELT) (($ |#1| $) 53 T ELT) (($ (-348 (-483)) $) 140 (|has| |#1| (-312)) ELT) (($ $ (-348 (-483))) 139 (|has| |#1| (-312)) ELT))) +((-2568 (((-85) $ $) NIL T ELT)) (-1373 (($ (-484)) 15 T ELT) (($ $ $) 16 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) 19 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 11 T ELT))) +(((-134) (-13 (-1013) (-10 -8 (-15 -1373 ($ (-484))) (-15 -1373 ($ $ $))))) (T -134)) +((-1373 (*1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-134)))) (-1373 (*1 *1 *1 *1) (-5 *1 (-134)))) +((-2568 (((-85) $ $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) 16 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-3233 (((-583 (-1048)) $) 10 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT))) +(((-135) (-13 (-995) (-10 -8 (-15 -3233 ((-583 (-1048)) $))))) (T -135)) +((-3233 (*1 *2 *1) (-12 (-5 *2 (-583 (-1048))) (-5 *1 (-135))))) +((-3594 (((-86) (-1089)) 103 T ELT))) +(((-136) (-10 -7 (-15 -3594 ((-86) (-1089))))) (T -136)) +((-3594 (*1 *2 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-86)) (-5 *1 (-136))))) +((-1594 ((|#3| |#3|) 19 T ELT))) +(((-137 |#1| |#2| |#3|) (-10 -7 (-15 -1594 (|#3| |#3|))) (-961) (-1154 |#1|) (-1154 |#2|)) (T -137)) +((-1594 (*1 *2 *2) (-12 (-4 *3 (-961)) (-4 *4 (-1154 *3)) (-5 *1 (-137 *3 *4 *2)) (-4 *2 (-1154 *4))))) +((-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) 222 T ELT)) (-3329 ((|#2| $) 102 T ELT)) (-3491 (($ $) 255 T ELT)) (-3638 (($ $) 249 T ELT)) (-2704 (((-3 (-583 (-1084 $)) #1="failed") (-583 (-1084 $)) (-1084 $)) 47 T ELT)) (-3489 (($ $) 253 T ELT)) (-3637 (($ $) 247 T ELT)) (-3157 (((-3 (-484) #1#) $) NIL T ELT) (((-3 (-349 (-484)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 146 T ELT)) (-3156 (((-484) $) NIL T ELT) (((-349 (-484)) $) NIL T ELT) ((|#2| $) 144 T ELT)) (-2564 (($ $ $) 228 T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL T ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) NIL T ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1178 |#2|))) (-630 $) (-1178 $)) 160 T ELT) (((-630 |#2|) (-630 $)) 154 T ELT)) (-3841 (($ (-1084 |#2|)) 125 T ELT) (((-3 $ #1#) (-349 (-1084 |#2|))) NIL T ELT)) (-3466 (((-3 $ #1#) $) 213 T ELT)) (-3024 (((-3 (-349 (-484)) #1#) $) 203 T ELT)) (-3023 (((-85) $) 198 T ELT)) (-3022 (((-349 (-484)) $) 201 T ELT)) (-3108 (((-830)) 96 T ELT)) (-2563 (($ $ $) 230 T ELT)) (-1374 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 267 T ELT)) (-3626 (($) 244 T ELT)) (-2796 (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) 192 T ELT) (((-798 (-329) $) $ (-800 (-329)) (-798 (-329) $)) 197 T ELT)) (-3132 ((|#2| $) 100 T ELT)) (-2014 (((-1084 |#2|) $) 127 T ELT)) (-3957 (($ (-1 |#2| |#2|) $) 108 T ELT)) (-3941 (($ $) 246 T ELT)) (-3079 (((-1084 |#2|) $) 126 T ELT)) (-2484 (($ $) 206 T ELT)) (-1376 (($) 103 T ELT)) (-2705 (((-347 (-1084 $)) (-1084 $)) 95 T ELT)) (-2706 (((-347 (-1084 $)) (-1084 $)) 64 T ELT)) (-3465 (((-3 $ #1#) $ |#2|) 208 T ELT) (((-3 $ #1#) $ $) 211 T ELT)) (-3942 (($ $) 245 T ELT)) (-1606 (((-694) $) 225 T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 234 T ELT)) (-3756 ((|#2| (-1178 $)) NIL T ELT) ((|#2|) 98 T ELT)) (-3757 (($ $ (-1 |#2| |#2|)) 119 T ELT) (($ $ (-1 |#2| |#2|) (-694)) NIL T ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL T ELT) (($ $ (-1089) (-694)) NIL T ELT) (($ $ (-583 (-1089))) NIL T ELT) (($ $ (-1089)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $) NIL T ELT)) (-3185 (((-1084 |#2|)) 120 T ELT)) (-3490 (($ $) 254 T ELT)) (-3633 (($ $) 248 T ELT)) (-3224 (((-1178 |#2|) $ (-1178 $)) 136 T ELT) (((-630 |#2|) (-1178 $) (-1178 $)) NIL T ELT) (((-1178 |#2|) $) 116 T ELT) (((-630 |#2|) (-1178 $)) NIL T ELT)) (-3971 (((-1178 |#2|) $) NIL T ELT) (($ (-1178 |#2|)) NIL T ELT) (((-1084 |#2|) $) NIL T ELT) (($ (-1084 |#2|)) NIL T ELT) (((-800 (-484)) $) 183 T ELT) (((-800 (-329)) $) 187 T ELT) (((-142 (-329)) $) 172 T ELT) (((-142 (-179)) $) 167 T ELT) (((-473) $) 179 T ELT)) (-3009 (($ $) 104 T ELT)) (-3945 (((-772) $) 143 T ELT) (($ (-484)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-349 (-484))) NIL T ELT) (($ $) NIL T ELT)) (-2449 (((-1084 |#2|) $) 32 T ELT)) (-3126 (((-694)) 106 T CONST)) (-1264 (((-85) $ $) 13 T ELT)) (-3497 (($ $) 258 T ELT)) (-3485 (($ $) 252 T ELT)) (-3495 (($ $) 256 T ELT)) (-3483 (($ $) 250 T ELT)) (-2236 ((|#2| $) 241 T ELT)) (-3496 (($ $) 257 T ELT)) (-3484 (($ $) 251 T ELT)) (-3382 (($ $) 162 T ELT)) (-3056 (((-85) $ $) 110 T ELT)) (-3836 (($ $) 112 T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) 111 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-349 (-484))) 274 T ELT) (($ $ $) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 118 T ELT) (($ $ $) 147 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 114 T ELT) (($ (-349 (-484)) $) NIL T ELT) (($ $ (-349 (-484))) NIL T ELT))) +(((-138 |#1| |#2|) (-10 -7 (-15 -3757 (|#1| |#1|)) (-15 -3757 (|#1| |#1| (-694))) (-15 -3757 (|#1| |#1| (-1089))) (-15 -3757 (|#1| |#1| (-583 (-1089)))) (-15 -3757 (|#1| |#1| (-1089) (-694))) (-15 -3757 (|#1| |#1| (-583 (-1089)) (-583 (-694)))) (-15 -3945 (|#1| |#1|)) (-15 -3465 ((-3 |#1| #1="failed") |#1| |#1|)) (-15 -2064 ((-2 (|:| -1771 |#1|) (|:| -3981 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1606 ((-694) |#1|)) (-15 -2879 ((-2 (|:| -1972 |#1|) (|:| -2902 |#1|)) |#1| |#1|)) (-15 -2563 (|#1| |#1| |#1|)) (-15 -2564 (|#1| |#1| |#1|)) (-15 -2484 (|#1| |#1|)) (-15 ** (|#1| |#1| (-484))) (-15 * (|#1| |#1| (-349 (-484)))) (-15 * (|#1| (-349 (-484)) |#1|)) (-15 -3945 (|#1| (-349 (-484)))) (-15 -3971 ((-473) |#1|)) (-15 -3971 ((-142 (-179)) |#1|)) (-15 -3971 ((-142 (-329)) |#1|)) (-15 -3638 (|#1| |#1|)) (-15 -3637 (|#1| |#1|)) (-15 -3633 (|#1| |#1|)) (-15 -3484 (|#1| |#1|)) (-15 -3483 (|#1| |#1|)) (-15 -3485 (|#1| |#1|)) (-15 -3490 (|#1| |#1|)) (-15 -3489 (|#1| |#1|)) (-15 -3491 (|#1| |#1|)) (-15 -3496 (|#1| |#1|)) (-15 -3495 (|#1| |#1|)) (-15 -3497 (|#1| |#1|)) (-15 -3941 (|#1| |#1|)) (-15 -3942 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -3626 (|#1|)) (-15 ** (|#1| |#1| (-349 (-484)))) (-15 -2706 ((-347 (-1084 |#1|)) (-1084 |#1|))) (-15 -2705 ((-347 (-1084 |#1|)) (-1084 |#1|))) (-15 -2704 ((-3 (-583 (-1084 |#1|)) #1#) (-583 (-1084 |#1|)) (-1084 |#1|))) (-15 -3024 ((-3 (-349 (-484)) #1#) |#1|)) (-15 -3022 ((-349 (-484)) |#1|)) (-15 -3023 ((-85) |#1|)) (-15 -1374 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2236 (|#2| |#1|)) (-15 -3382 (|#1| |#1|)) (-15 -3465 ((-3 |#1| #1#) |#1| |#2|)) (-15 -3009 (|#1| |#1|)) (-15 -1376 (|#1|)) (-15 -3971 ((-800 (-329)) |#1|)) (-15 -3971 ((-800 (-484)) |#1|)) (-15 -2796 ((-798 (-329) |#1|) |#1| (-800 (-329)) (-798 (-329) |#1|))) (-15 -2796 ((-798 (-484) |#1|) |#1| (-800 (-484)) (-798 (-484) |#1|))) (-15 -3957 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3757 (|#1| |#1| (-1 |#2| |#2|) (-694))) (-15 -3757 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3841 ((-3 |#1| #1#) (-349 (-1084 |#2|)))) (-15 -3079 ((-1084 |#2|) |#1|)) (-15 -3971 (|#1| (-1084 |#2|))) (-15 -3841 (|#1| (-1084 |#2|))) (-15 -3185 ((-1084 |#2|))) (-15 -2279 ((-630 |#2|) (-630 |#1|))) (-15 -2279 ((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1178 |#2|))) (-630 |#1|) (-1178 |#1|))) (-15 -2279 ((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 |#1|) (-1178 |#1|))) (-15 -2279 ((-630 (-484)) (-630 |#1|))) (-15 -3157 ((-3 |#2| #1#) |#1|)) (-15 -3156 (|#2| |#1|)) (-15 -3156 ((-349 (-484)) |#1|)) (-15 -3157 ((-3 (-349 (-484)) #1#) |#1|)) (-15 -3156 ((-484) |#1|)) (-15 -3157 ((-3 (-484) #1#) |#1|)) (-15 -3971 ((-1084 |#2|) |#1|)) (-15 -3756 (|#2|)) (-15 -3971 (|#1| (-1178 |#2|))) (-15 -3971 ((-1178 |#2|) |#1|)) (-15 -3224 ((-630 |#2|) (-1178 |#1|))) (-15 -3224 ((-1178 |#2|) |#1|)) (-15 -2014 ((-1084 |#2|) |#1|)) (-15 -2449 ((-1084 |#2|) |#1|)) (-15 -3756 (|#2| (-1178 |#1|))) (-15 -3224 ((-630 |#2|) (-1178 |#1|) (-1178 |#1|))) (-15 -3224 ((-1178 |#2|) |#1| (-1178 |#1|))) (-15 -3132 (|#2| |#1|)) (-15 -3329 (|#2| |#1|)) (-15 -3108 ((-830))) (-15 -3945 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3126 ((-694)) -3951) (-15 -3945 (|#1| (-484))) (-15 -3466 ((-3 |#1| #1#) |#1|)) (-15 ** (|#1| |#1| (-694))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-830))) (-15 -3836 (|#1| |#1| |#1|)) (-15 -3836 (|#1| |#1|)) (-15 * (|#1| (-484) |#1|)) (-15 * (|#1| (-694) |#1|)) (-15 * (|#1| (-830) |#1|)) (-15 -3838 (|#1| |#1| |#1|)) (-15 -3945 ((-772) |#1|)) (-15 -1264 ((-85) |#1| |#1|)) (-15 -3056 ((-85) |#1| |#1|))) (-139 |#2|) (-146)) (T -138)) +((-3126 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-694)) (-5 *1 (-138 *3 *4)) (-4 *3 (-139 *4)))) (-3108 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-830)) (-5 *1 (-138 *3 *4)) (-4 *3 (-139 *4)))) (-3756 (*1 *2) (-12 (-4 *2 (-146)) (-5 *1 (-138 *3 *2)) (-4 *3 (-139 *2)))) (-3185 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-1084 *4)) (-5 *1 (-138 *3 *4)) (-4 *3 (-139 *4))))) +((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) 114 (OR (|has| |#1| (-495)) (-12 (|has| |#1| (-258)) (|has| |#1| (-821)))) ELT)) (-2063 (($ $) 115 (OR (|has| |#1| (-495)) (-12 (|has| |#1| (-258)) (|has| |#1| (-821)))) ELT)) (-2061 (((-85) $) 117 (OR (|has| |#1| (-495)) (-12 (|has| |#1| (-258)) (|has| |#1| (-821)))) ELT)) (-1781 (((-630 |#1|) (-1178 $)) 61 T ELT) (((-630 |#1|)) 77 T ELT)) (-3329 ((|#1| $) 67 T ELT)) (-3491 (($ $) 250 (|has| |#1| (-1114)) ELT)) (-3638 (($ $) 233 (|has| |#1| (-1114)) ELT)) (-1674 (((-1101 (-830) (-694)) (-484)) 167 (|has| |#1| (-299)) ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-2707 (((-347 (-1084 $)) (-1084 $)) 264 (-12 (|has| |#1| (-258)) (|has| |#1| (-821))) ELT)) (-3774 (($ $) 134 (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-821))) (|has| |#1| (-312))) ELT)) (-3970 (((-347 $) $) 135 (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-821))) (|has| |#1| (-312))) ELT)) (-3037 (($ $) 263 (-12 (|has| |#1| (-915)) (|has| |#1| (-1114))) ELT)) (-2704 (((-3 (-583 (-1084 $)) "failed") (-583 (-1084 $)) (-1084 $)) 267 (-12 (|has| |#1| (-258)) (|has| |#1| (-821))) ELT)) (-1607 (((-85) $ $) 125 (|has| |#1| (-258)) ELT)) (-3136 (((-694)) 108 (|has| |#1| (-319)) ELT)) (-3489 (($ $) 249 (|has| |#1| (-1114)) ELT)) (-3637 (($ $) 234 (|has| |#1| (-1114)) ELT)) (-3493 (($ $) 248 (|has| |#1| (-1114)) ELT)) (-3636 (($ $) 235 (|has| |#1| (-1114)) ELT)) (-3723 (($) 23 T CONST)) (-3157 (((-3 (-484) #1="failed") $) 194 (|has| |#1| (-950 (-484))) ELT) (((-3 (-349 (-484)) #1#) $) 192 (|has| |#1| (-950 (-349 (-484)))) ELT) (((-3 |#1| #1#) $) 189 T ELT)) (-3156 (((-484) $) 193 (|has| |#1| (-950 (-484))) ELT) (((-349 (-484)) $) 191 (|has| |#1| (-950 (-349 (-484)))) ELT) ((|#1| $) 190 T ELT)) (-1791 (($ (-1178 |#1|) (-1178 $)) 63 T ELT) (($ (-1178 |#1|)) 80 T ELT)) (-1672 (((-3 "prime" "polynomial" "normal" "cyclic")) 173 (|has| |#1| (-299)) ELT)) (-2564 (($ $ $) 129 (|has| |#1| (-258)) ELT)) (-1780 (((-630 |#1|) $ (-1178 $)) 68 T ELT) (((-630 |#1|) $) 75 T ELT)) (-2279 (((-630 (-484)) (-630 $)) 186 (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) 185 (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1178 |#1|))) (-630 $) (-1178 $)) 184 T ELT) (((-630 |#1|) (-630 $)) 183 T ELT)) (-3841 (($ (-1084 |#1|)) 178 T ELT) (((-3 $ "failed") (-349 (-1084 |#1|))) 175 (|has| |#1| (-312)) ELT)) (-3466 (((-3 $ "failed") $) 42 T ELT)) (-3642 ((|#1| $) 275 T ELT)) (-3024 (((-3 (-349 (-484)) "failed") $) 268 (|has| |#1| (-483)) ELT)) (-3023 (((-85) $) 270 (|has| |#1| (-483)) ELT)) (-3022 (((-349 (-484)) $) 269 (|has| |#1| (-483)) ELT)) (-3108 (((-830)) 69 T ELT)) (-2994 (($) 111 (|has| |#1| (-319)) ELT)) (-2563 (($ $ $) 128 (|has| |#1| (-258)) ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) 123 (|has| |#1| (-258)) ELT)) (-2833 (($) 169 (|has| |#1| (-299)) ELT)) (-1679 (((-85) $) 170 (|has| |#1| (-299)) ELT)) (-1763 (($ $ (-694)) 161 (|has| |#1| (-299)) ELT) (($ $) 160 (|has| |#1| (-299)) ELT)) (-3722 (((-85) $) 136 (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-821))) (|has| |#1| (-312))) ELT)) (-1374 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 271 (-12 (|has| |#1| (-973)) (|has| |#1| (-1114))) ELT)) (-3626 (($) 260 (|has| |#1| (-1114)) ELT)) (-2796 (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) 283 (|has| |#1| (-796 (-484))) ELT) (((-798 (-329) $) $ (-800 (-329)) (-798 (-329) $)) 282 (|has| |#1| (-796 (-329))) ELT)) (-3771 (((-830) $) 172 (|has| |#1| (-299)) ELT) (((-743 (-830)) $) 158 (|has| |#1| (-299)) ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3011 (($ $ (-484)) 262 (-12 (|has| |#1| (-915)) (|has| |#1| (-1114))) ELT)) (-3132 ((|#1| $) 66 T ELT)) (-3444 (((-632 $) $) 162 (|has| |#1| (-299)) ELT)) (-1604 (((-3 (-583 $) #2="failed") (-583 $) $) 132 (|has| |#1| (-258)) ELT)) (-2014 (((-1084 |#1|) $) 59 (|has| |#1| (-312)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) 284 T ELT)) (-2010 (((-830) $) 110 (|has| |#1| (-319)) ELT)) (-3941 (($ $) 257 (|has| |#1| (-1114)) ELT)) (-3079 (((-1084 |#1|) $) 176 T ELT)) (-2280 (((-630 (-484)) (-1178 $)) 188 (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) 187 (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1178 |#1|))) (-1178 $) $) 182 T ELT) (((-630 |#1|) (-1178 $)) 181 T ELT)) (-1890 (($ (-583 $)) 121 (OR (|has| |#1| (-258)) (-12 (|has| |#1| (-258)) (|has| |#1| (-821)))) ELT) (($ $ $) 120 (OR (|has| |#1| (-258)) (-12 (|has| |#1| (-258)) (|has| |#1| (-821)))) ELT)) (-3242 (((-1072) $) 11 T ELT)) (-2484 (($ $) 137 (|has| |#1| (-312)) ELT)) (-3445 (($) 163 (|has| |#1| (-299)) CONST)) (-2400 (($ (-830)) 109 (|has| |#1| (-319)) ELT)) (-1376 (($) 279 T ELT)) (-3643 ((|#1| $) 276 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-2409 (($) 180 T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) 122 (OR (|has| |#1| (-258)) (-12 (|has| |#1| (-258)) (|has| |#1| (-821)))) ELT)) (-3144 (($ (-583 $)) 119 (OR (|has| |#1| (-258)) (-12 (|has| |#1| (-258)) (|has| |#1| (-821)))) ELT) (($ $ $) 118 (OR (|has| |#1| (-258)) (-12 (|has| |#1| (-258)) (|has| |#1| (-821)))) ELT)) (-1675 (((-583 (-2 (|:| -3731 (-484)) (|:| -2401 (-484))))) 166 (|has| |#1| (-299)) ELT)) (-2705 (((-347 (-1084 $)) (-1084 $)) 266 (-12 (|has| |#1| (-258)) (|has| |#1| (-821))) ELT)) (-2706 (((-347 (-1084 $)) (-1084 $)) 265 (-12 (|has| |#1| (-258)) (|has| |#1| (-821))) ELT)) (-3731 (((-347 $) $) 133 (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-821))) (|has| |#1| (-312))) ELT)) (-1605 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 131 (|has| |#1| (-258)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) 130 (|has| |#1| (-258)) ELT)) (-3465 (((-3 $ "failed") $ |#1|) 274 (|has| |#1| (-495)) ELT) (((-3 $ "failed") $ $) 113 (OR (|has| |#1| (-495)) (-12 (|has| |#1| (-258)) (|has| |#1| (-821)))) ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) 124 (|has| |#1| (-258)) ELT)) (-3942 (($ $) 258 (|has| |#1| (-1114)) ELT)) (-3767 (($ $ (-583 |#1|) (-583 |#1|)) 290 (|has| |#1| (-260 |#1|)) ELT) (($ $ |#1| |#1|) 289 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-249 |#1|)) 288 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-583 (-249 |#1|))) 287 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-583 (-1089)) (-583 |#1|)) 286 (|has| |#1| (-455 (-1089) |#1|)) ELT) (($ $ (-1089) |#1|) 285 (|has| |#1| (-455 (-1089) |#1|)) ELT)) (-1606 (((-694) $) 126 (|has| |#1| (-258)) ELT)) (-3799 (($ $ |#1|) 291 (|has| |#1| (-241 |#1| |#1|)) ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 127 (|has| |#1| (-258)) ELT)) (-3756 ((|#1| (-1178 $)) 62 T ELT) ((|#1|) 76 T ELT)) (-1764 (((-694) $) 171 (|has| |#1| (-299)) ELT) (((-3 (-694) "failed") $ $) 159 (|has| |#1| (-299)) ELT)) (-3757 (($ $ (-1 |#1| |#1|)) 145 T ELT) (($ $ (-1 |#1| |#1|) (-694)) 144 T ELT) (($ $ (-583 (-1089)) (-583 (-694))) 150 (OR (-2562 (|has| |#1| (-312)) (|has| |#1| (-811 (-1089)))) (-2562 (|has| |#1| (-312)) (|has| |#1| (-809 (-1089)))) (|has| |#1| (-811 (-1089)))) ELT) (($ $ (-1089) (-694)) 149 (OR (-2562 (|has| |#1| (-312)) (|has| |#1| (-811 (-1089)))) (-2562 (|has| |#1| (-312)) (|has| |#1| (-809 (-1089)))) (|has| |#1| (-811 (-1089)))) ELT) (($ $ (-583 (-1089))) 148 (OR (-2562 (|has| |#1| (-312)) (|has| |#1| (-811 (-1089)))) (-2562 (|has| |#1| (-312)) (|has| |#1| (-809 (-1089)))) (|has| |#1| (-811 (-1089)))) ELT) (($ $ (-1089)) 146 (OR (-2562 (|has| |#1| (-312)) (|has| |#1| (-811 (-1089)))) (-2562 (|has| |#1| (-312)) (|has| |#1| (-809 (-1089)))) (|has| |#1| (-811 (-1089)))) ELT) (($ $ (-694)) 156 (OR (-2562 (|has| |#1| (-312)) (|has| |#1| (-189))) (-2562 (|has| |#1| (-312)) (|has| |#1| (-190))) (|has| |#1| (-189)) (-2562 (|has| |#1| (-189)) (|has| |#1| (-312)))) ELT) (($ $) 154 (OR (-2562 (|has| |#1| (-312)) (|has| |#1| (-189))) (-2562 (|has| |#1| (-312)) (|has| |#1| (-190))) (|has| |#1| (-189)) (-2562 (|has| |#1| (-189)) (|has| |#1| (-312)))) ELT)) (-2408 (((-630 |#1|) (-1178 $) (-1 |#1| |#1|)) 174 (|has| |#1| (-312)) ELT)) (-3185 (((-1084 |#1|)) 179 T ELT)) (-3494 (($ $) 247 (|has| |#1| (-1114)) ELT)) (-3635 (($ $) 236 (|has| |#1| (-1114)) ELT)) (-1673 (($) 168 (|has| |#1| (-299)) ELT)) (-3492 (($ $) 246 (|has| |#1| (-1114)) ELT)) (-3634 (($ $) 237 (|has| |#1| (-1114)) ELT)) (-3490 (($ $) 245 (|has| |#1| (-1114)) ELT)) (-3633 (($ $) 238 (|has| |#1| (-1114)) ELT)) (-3224 (((-1178 |#1|) $ (-1178 $)) 65 T ELT) (((-630 |#1|) (-1178 $) (-1178 $)) 64 T ELT) (((-1178 |#1|) $) 82 T ELT) (((-630 |#1|) (-1178 $)) 81 T ELT)) (-3971 (((-1178 |#1|) $) 79 T ELT) (($ (-1178 |#1|)) 78 T ELT) (((-1084 |#1|) $) 195 T ELT) (($ (-1084 |#1|)) 177 T ELT) (((-800 (-484)) $) 281 (|has| |#1| (-553 (-800 (-484)))) ELT) (((-800 (-329)) $) 280 (|has| |#1| (-553 (-800 (-329)))) ELT) (((-142 (-329)) $) 232 (|has| |#1| (-933)) ELT) (((-142 (-179)) $) 231 (|has| |#1| (-933)) ELT) (((-473) $) 230 (|has| |#1| (-553 (-473))) ELT)) (-3009 (($ $) 278 T ELT)) (-2703 (((-3 (-1178 $) "failed") (-630 $)) 165 (OR (-2562 (|has| $ (-118)) (-12 (|has| |#1| (-258)) (|has| |#1| (-821)))) (|has| |#1| (-299))) ELT)) (-1375 (($ |#1| |#1|) 277 T ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ |#1|) 52 T ELT) (($ (-349 (-484))) 107 (OR (|has| |#1| (-312)) (|has| |#1| (-950 (-349 (-484))))) ELT) (($ $) 112 (OR (|has| |#1| (-495)) (-12 (|has| |#1| (-258)) (|has| |#1| (-821)))) ELT)) (-2702 (($ $) 164 (|has| |#1| (-299)) ELT) (((-632 $) $) 58 (OR (-2562 (|has| $ (-118)) (-12 (|has| |#1| (-258)) (|has| |#1| (-821)))) (|has| |#1| (-118))) ELT)) (-2449 (((-1084 |#1|) $) 60 T ELT)) (-3126 (((-694)) 40 T CONST)) (-1264 (((-85) $ $) 6 T ELT)) (-2012 (((-1178 $)) 83 T ELT)) (-3497 (($ $) 256 (|has| |#1| (-1114)) ELT)) (-3485 (($ $) 244 (|has| |#1| (-1114)) ELT)) (-2062 (((-85) $ $) 116 (OR (|has| |#1| (-495)) (-12 (|has| |#1| (-258)) (|has| |#1| (-821)))) ELT)) (-3495 (($ $) 255 (|has| |#1| (-1114)) ELT)) (-3483 (($ $) 243 (|has| |#1| (-1114)) ELT)) (-3499 (($ $) 254 (|has| |#1| (-1114)) ELT)) (-3487 (($ $) 242 (|has| |#1| (-1114)) ELT)) (-2236 ((|#1| $) 272 (|has| |#1| (-1114)) ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-3500 (($ $) 253 (|has| |#1| (-1114)) ELT)) (-3488 (($ $) 241 (|has| |#1| (-1114)) ELT)) (-3498 (($ $) 252 (|has| |#1| (-1114)) ELT)) (-3486 (($ $) 240 (|has| |#1| (-1114)) ELT)) (-3496 (($ $) 251 (|has| |#1| (-1114)) ELT)) (-3484 (($ $) 239 (|has| |#1| (-1114)) ELT)) (-3382 (($ $) 273 (|has| |#1| (-973)) ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-2669 (($ $ (-1 |#1| |#1|)) 143 T ELT) (($ $ (-1 |#1| |#1|) (-694)) 142 T ELT) (($ $ (-583 (-1089)) (-583 (-694))) 153 (OR (-2562 (|has| |#1| (-312)) (|has| |#1| (-811 (-1089)))) (-2562 (|has| |#1| (-312)) (|has| |#1| (-809 (-1089)))) (|has| |#1| (-811 (-1089)))) ELT) (($ $ (-1089) (-694)) 152 (OR (-2562 (|has| |#1| (-312)) (|has| |#1| (-811 (-1089)))) (-2562 (|has| |#1| (-312)) (|has| |#1| (-809 (-1089)))) (|has| |#1| (-811 (-1089)))) ELT) (($ $ (-583 (-1089))) 151 (OR (-2562 (|has| |#1| (-312)) (|has| |#1| (-811 (-1089)))) (-2562 (|has| |#1| (-312)) (|has| |#1| (-809 (-1089)))) (|has| |#1| (-811 (-1089)))) ELT) (($ $ (-1089)) 147 (OR (-2562 (|has| |#1| (-312)) (|has| |#1| (-811 (-1089)))) (-2562 (|has| |#1| (-312)) (|has| |#1| (-809 (-1089)))) (|has| |#1| (-811 (-1089)))) ELT) (($ $ (-694)) 157 (OR (-2562 (|has| |#1| (-312)) (|has| |#1| (-189))) (-2562 (|has| |#1| (-312)) (|has| |#1| (-190))) (|has| |#1| (-189)) (-2562 (|has| |#1| (-189)) (|has| |#1| (-312)))) ELT) (($ $) 155 (OR (-2562 (|has| |#1| (-312)) (|has| |#1| (-189))) (-2562 (|has| |#1| (-312)) (|has| |#1| (-190))) (|has| |#1| (-189)) (-2562 (|has| |#1| (-189)) (|has| |#1| (-312)))) ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-3948 (($ $ $) 141 (|has| |#1| (-312)) ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT) (($ $ (-349 (-484))) 261 (-12 (|has| |#1| (-915)) (|has| |#1| (-1114))) ELT) (($ $ $) 259 (|has| |#1| (-1114)) ELT) (($ $ (-484)) 138 (|has| |#1| (-312)) ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 54 T ELT) (($ |#1| $) 53 T ELT) (($ (-349 (-484)) $) 140 (|has| |#1| (-312)) ELT) (($ $ (-349 (-484))) 139 (|has| |#1| (-312)) ELT))) (((-139 |#1|) (-113) (-146)) (T -139)) -((-3131 (*1 *2 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) (-1375 (*1 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) (-3008 (*1 *1 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) (-1374 (*1 *1 *2 *2) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) (-3642 (*1 *2 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) (-3641 (*1 *2 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) (-3464 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-139 *2)) (-4 *2 (-146)) (-4 *2 (-494)))) (-3381 (*1 *1 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)) (-4 *2 (-972)))) (-2235 (*1 *2 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)) (-4 *2 (-1113)))) (-1373 (*1 *2 *1) (-12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-972)) (-4 *3 (-1113)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-3022 (*1 *2 *1) (-12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-482)) (-5 *2 (-85)))) (-3021 (*1 *2 *1) (-12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-482)) (-5 *2 (-348 (-483))))) (-3023 (*1 *2 *1) (|partial| -12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-482)) (-5 *2 (-348 (-483)))))) -(-13 (-660 |t#1| (-1083 |t#1|)) (-353 |t#1|) (-184 |t#1|) (-288 |t#1|) (-341 |t#1|) (-793 |t#1|) (-327 |t#1|) (-146) (-10 -8 (-6 -1374) (-15 -1375 ($)) (-15 -3008 ($ $)) (-15 -1374 ($ |t#1| |t#1|)) (-15 -3642 (|t#1| $)) (-15 -3641 (|t#1| $)) (-15 -3131 (|t#1| $)) (IF (|has| |t#1| (-494)) (PROGN (-6 (-494)) (-15 -3464 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-258)) (-6 (-258)) |%noBranch|) (IF (|has| |t#1| (-6 -3992)) (-6 -3992) |%noBranch|) (IF (|has| |t#1| (-6 -3989)) (-6 -3989) |%noBranch|) (IF (|has| |t#1| (-312)) (-6 (-312)) |%noBranch|) (IF (|has| |t#1| (-552 (-472))) (-6 (-552 (-472))) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-932)) (PROGN (-6 (-552 (-142 (-179)))) (-6 (-552 (-142 (-328))))) |%noBranch|) (IF (|has| |t#1| (-972)) (-15 -3381 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1113)) (PROGN (-6 (-1113)) (-15 -2235 (|t#1| $)) (IF (|has| |t#1| (-914)) (-6 (-914)) |%noBranch|) (IF (|has| |t#1| (-972)) (-15 -1373 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-482)) (PROGN (-15 -3022 ((-85) $)) (-15 -3021 ((-348 (-483)) $)) (-15 -3023 ((-3 (-348 (-483)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-820)) (IF (|has| |t#1| (-258)) (-6 (-820)) |%noBranch|) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-348 (-483))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-38 |#1|) . T) ((-38 $) OR (|has| |#1| (-494)) (|has| |#1| (-299)) (|has| |#1| (-312)) (|has| |#1| (-258))) ((-35) |has| |#1| (-1113)) ((-66) |has| |#1| (-1113)) ((-72) . T) ((-82 (-348 (-483)) (-348 (-483))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-82 |#1| |#1|) . T) ((-82 $ $) . T) ((-104) . T) ((-118) OR (|has| |#1| (-299)) (|has| |#1| (-118))) ((-120) |has| |#1| (-120)) ((-554 (-348 (-483))) OR (|has| |#1| (-949 (-348 (-483)))) (|has| |#1| (-299)) (|has| |#1| (-312))) ((-554 (-483)) . T) ((-554 |#1|) . T) ((-554 $) OR (|has| |#1| (-494)) (|has| |#1| (-299)) (|has| |#1| (-312)) (|has| |#1| (-258))) ((-551 (-771)) . T) ((-146) . T) ((-552 (-142 (-179))) |has| |#1| (-932)) ((-552 (-142 (-328))) |has| |#1| (-932)) ((-552 (-472)) |has| |#1| (-552 (-472))) ((-552 (-799 (-328))) |has| |#1| (-552 (-799 (-328)))) ((-552 (-799 (-483))) |has| |#1| (-552 (-799 (-483)))) ((-552 (-1083 |#1|)) . T) ((-186 $) OR (|has| |#1| (-299)) (|has| |#1| (-189)) (|has| |#1| (-190))) ((-184 |#1|) . T) ((-190) OR (|has| |#1| (-299)) (|has| |#1| (-190))) ((-189) OR (|has| |#1| (-299)) (|has| |#1| (-189)) (|has| |#1| (-190))) ((-225 |#1|) . T) ((-201) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-239) |has| |#1| (-1113)) ((-241 |#1| $) |has| |#1| (-241 |#1| |#1|)) ((-246) OR (|has| |#1| (-494)) (|has| |#1| (-299)) (|has| |#1| (-312)) (|has| |#1| (-258))) ((-258) OR (|has| |#1| (-299)) (|has| |#1| (-312)) (|has| |#1| (-258))) ((-260 |#1|) |has| |#1| (-260 |#1|)) ((-312) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-343) |has| |#1| (-299)) ((-318) OR (|has| |#1| (-299)) (|has| |#1| (-318))) ((-299) |has| |#1| (-299)) ((-320 |#1| (-1083 |#1|)) . T) ((-351 |#1| (-1083 |#1|)) . T) ((-288 |#1|) . T) ((-327 |#1|) . T) ((-341 |#1|) . T) ((-353 |#1|) . T) ((-390) OR (|has| |#1| (-299)) (|has| |#1| (-312)) (|has| |#1| (-258))) ((-431) |has| |#1| (-1113)) ((-454 (-1088) |#1|) |has| |#1| (-454 (-1088) |#1|)) ((-454 |#1| |#1|) |has| |#1| (-260 |#1|)) ((-494) OR (|has| |#1| (-494)) (|has| |#1| (-299)) (|has| |#1| (-312)) (|has| |#1| (-258))) ((-13) . T) ((-587 (-348 (-483))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-587 (-483)) . T) ((-587 |#1|) . T) ((-587 $) . T) ((-589 (-348 (-483))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-589 (-483)) |has| |#1| (-579 (-483))) ((-589 |#1|) . T) ((-589 $) . T) ((-581 (-348 (-483))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-581 |#1|) . T) ((-581 $) OR (|has| |#1| (-494)) (|has| |#1| (-299)) (|has| |#1| (-312)) (|has| |#1| (-258))) ((-579 (-483)) |has| |#1| (-579 (-483))) ((-579 |#1|) . T) ((-653 (-348 (-483))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-653 |#1|) . T) ((-653 $) OR (|has| |#1| (-494)) (|has| |#1| (-299)) (|has| |#1| (-312)) (|has| |#1| (-258))) ((-660 |#1| (-1083 |#1|)) . T) ((-662) . T) ((-805 $ (-1088)) OR (|has| |#1| (-810 (-1088))) (|has| |#1| (-808 (-1088)))) ((-808 (-1088)) |has| |#1| (-808 (-1088))) ((-810 (-1088)) OR (|has| |#1| (-810 (-1088))) (|has| |#1| (-808 (-1088)))) ((-795 (-328)) |has| |#1| (-795 (-328))) ((-795 (-483)) |has| |#1| (-795 (-483))) ((-793 |#1|) . T) ((-820) -12 (|has| |#1| (-258)) (|has| |#1| (-820))) ((-831) OR (|has| |#1| (-299)) (|has| |#1| (-312)) (|has| |#1| (-258))) ((-914) -12 (|has| |#1| (-914)) (|has| |#1| (-1113))) ((-949 (-348 (-483))) |has| |#1| (-949 (-348 (-483)))) ((-949 (-483)) |has| |#1| (-949 (-483))) ((-949 |#1|) . T) ((-962 (-348 (-483))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-962 |#1|) . T) ((-962 $) . T) ((-967 (-348 (-483))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-967 |#1|) . T) ((-967 $) . T) ((-960) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1064) |has| |#1| (-299)) ((-1113) |has| |#1| (-1113)) ((-1116) |has| |#1| (-1113)) ((-1127) . T) ((-1132) OR (|has| |#1| (-299)) (|has| |#1| (-312)) (-12 (|has| |#1| (-258)) (|has| |#1| (-820))))) -((-3730 (((-346 |#2|) |#2|) 67 T ELT))) -(((-140 |#1| |#2|) (-10 -7 (-15 -3730 ((-346 |#2|) |#2|))) (-258) (-1153 (-142 |#1|))) (T -140)) -((-3730 (*1 *2 *3) (-12 (-4 *4 (-258)) (-5 *2 (-346 *3)) (-5 *1 (-140 *4 *3)) (-4 *3 (-1153 (-142 *4)))))) -((-1378 (((-1047) (-1047) (-247)) 8 T ELT)) (-1376 (((-582 (-631 (-235))) (-1071)) 81 T ELT)) (-1377 (((-631 (-235)) (-1047)) 76 T ELT))) -(((-141) (-13 (-1127) (-10 -7 (-15 -1378 ((-1047) (-1047) (-247))) (-15 -1377 ((-631 (-235)) (-1047))) (-15 -1376 ((-582 (-631 (-235))) (-1071)))))) (T -141)) -((-1378 (*1 *2 *2 *3) (-12 (-5 *2 (-1047)) (-5 *3 (-247)) (-5 *1 (-141)))) (-1377 (*1 *2 *3) (-12 (-5 *3 (-1047)) (-5 *2 (-631 (-235))) (-5 *1 (-141)))) (-1376 (*1 *2 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-582 (-631 (-235)))) (-5 *1 (-141))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3187 (((-85) $) 15 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3980 $) (|:| |associate| $)) $) NIL (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-820))) (|has| |#1| (-494))) ELT)) (-2062 (($ $) NIL (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-820))) (|has| |#1| (-494))) ELT)) (-2060 (((-85) $) NIL (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-820))) (|has| |#1| (-494))) ELT)) (-1780 (((-629 |#1|) (-1177 $)) NIL T ELT) (((-629 |#1|)) NIL T ELT)) (-3328 ((|#1| $) NIL T ELT)) (-3490 (($ $) NIL (|has| |#1| (-1113)) ELT)) (-3637 (($ $) NIL (|has| |#1| (-1113)) ELT)) (-1673 (((-1100 (-829) (-693)) (-483)) NIL (|has| |#1| (-299)) ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2706 (((-346 (-1083 $)) (-1083 $)) NIL (-12 (|has| |#1| (-258)) (|has| |#1| (-820))) ELT)) (-3773 (($ $) NIL (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-820))) (|has| |#1| (-312))) ELT)) (-3969 (((-346 $) $) NIL (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-820))) (|has| |#1| (-312))) ELT)) (-3036 (($ $) NIL (-12 (|has| |#1| (-914)) (|has| |#1| (-1113))) ELT)) (-2703 (((-3 (-582 (-1083 $)) #1#) (-582 (-1083 $)) (-1083 $)) NIL (-12 (|has| |#1| (-258)) (|has| |#1| (-820))) ELT)) (-1606 (((-85) $ $) NIL (|has| |#1| (-258)) ELT)) (-3135 (((-693)) NIL (|has| |#1| (-318)) ELT)) (-3488 (($ $) NIL (|has| |#1| (-1113)) ELT)) (-3636 (($ $) NIL (|has| |#1| (-1113)) ELT)) (-3492 (($ $) NIL (|has| |#1| (-1113)) ELT)) (-3635 (($ $) NIL (|has| |#1| (-1113)) ELT)) (-3722 (($) NIL T CONST)) (-3156 (((-3 (-483) #1#) $) NIL (|has| |#1| (-949 (-483))) ELT) (((-3 (-348 (-483)) #1#) $) NIL (|has| |#1| (-949 (-348 (-483)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3155 (((-483) $) NIL (|has| |#1| (-949 (-483))) ELT) (((-348 (-483)) $) NIL (|has| |#1| (-949 (-348 (-483)))) ELT) ((|#1| $) NIL T ELT)) (-1790 (($ (-1177 |#1|) (-1177 $)) NIL T ELT) (($ (-1177 |#1|)) NIL T ELT)) (-1671 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-299)) ELT)) (-2563 (($ $ $) NIL (|has| |#1| (-258)) ELT)) (-1779 (((-629 |#1|) $ (-1177 $)) NIL T ELT) (((-629 |#1|) $) NIL T ELT)) (-2278 (((-629 (-483)) (-629 $)) NIL (|has| |#1| (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-629 $) (-1177 $)) NIL (|has| |#1| (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 |#1|)) (|:| |vec| (-1177 |#1|))) (-629 $) (-1177 $)) NIL T ELT) (((-629 |#1|) (-629 $)) NIL T ELT)) (-3840 (($ (-1083 |#1|)) NIL T ELT) (((-3 $ #1#) (-348 (-1083 |#1|))) NIL (|has| |#1| (-312)) ELT)) (-3465 (((-3 $ #1#) $) NIL T ELT)) (-3641 ((|#1| $) 20 T ELT)) (-3023 (((-3 (-348 (-483)) #1#) $) NIL (|has| |#1| (-482)) ELT)) (-3022 (((-85) $) NIL (|has| |#1| (-482)) ELT)) (-3021 (((-348 (-483)) $) NIL (|has| |#1| (-482)) ELT)) (-3107 (((-829)) NIL T ELT)) (-2993 (($) NIL (|has| |#1| (-318)) ELT)) (-2562 (($ $ $) NIL (|has| |#1| (-258)) ELT)) (-2740 (((-2 (|:| -3952 (-582 $)) (|:| -2408 $)) (-582 $)) NIL (|has| |#1| (-258)) ELT)) (-2832 (($) NIL (|has| |#1| (-299)) ELT)) (-1678 (((-85) $) NIL (|has| |#1| (-299)) ELT)) (-1762 (($ $ (-693)) NIL (|has| |#1| (-299)) ELT) (($ $) NIL (|has| |#1| (-299)) ELT)) (-3721 (((-85) $) NIL (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-820))) (|has| |#1| (-312))) ELT)) (-1373 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-972)) (|has| |#1| (-1113))) ELT)) (-3625 (($) NIL (|has| |#1| (-1113)) ELT)) (-2795 (((-797 (-483) $) $ (-799 (-483)) (-797 (-483) $)) NIL (|has| |#1| (-795 (-483))) ELT) (((-797 (-328) $) $ (-799 (-328)) (-797 (-328) $)) NIL (|has| |#1| (-795 (-328))) ELT)) (-3770 (((-829) $) NIL (|has| |#1| (-299)) ELT) (((-742 (-829)) $) NIL (|has| |#1| (-299)) ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-2409 (((-85) $) 17 T ELT)) (-3010 (($ $ (-483)) NIL (-12 (|has| |#1| (-914)) (|has| |#1| (-1113))) ELT)) (-3131 ((|#1| $) 30 T ELT)) (-3443 (((-631 $) $) NIL (|has| |#1| (-299)) ELT)) (-1603 (((-3 (-582 $) #1#) (-582 $) $) NIL (|has| |#1| (-258)) ELT)) (-2013 (((-1083 |#1|) $) NIL (|has| |#1| (-312)) ELT)) (-3956 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2009 (((-829) $) NIL (|has| |#1| (-318)) ELT)) (-3940 (($ $) NIL (|has| |#1| (-1113)) ELT)) (-3078 (((-1083 |#1|) $) NIL T ELT)) (-2279 (((-629 (-483)) (-1177 $)) NIL (|has| |#1| (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL (|has| |#1| (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 |#1|)) (|:| |vec| (-1177 |#1|))) (-1177 $) $) NIL T ELT) (((-629 |#1|) (-1177 $)) NIL T ELT)) (-1889 (($ (-582 $)) NIL (|has| |#1| (-258)) ELT) (($ $ $) NIL (|has| |#1| (-258)) ELT)) (-3241 (((-1071) $) NIL T ELT)) (-2483 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3444 (($) NIL (|has| |#1| (-299)) CONST)) (-2399 (($ (-829)) NIL (|has| |#1| (-318)) ELT)) (-1375 (($) NIL T ELT)) (-3642 ((|#1| $) 21 T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-2408 (($) NIL T ELT)) (-2707 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#1| (-258)) ELT)) (-3143 (($ (-582 $)) NIL (|has| |#1| (-258)) ELT) (($ $ $) NIL (|has| |#1| (-258)) ELT)) (-1674 (((-582 (-2 (|:| -3730 (-483)) (|:| -2400 (-483))))) NIL (|has| |#1| (-299)) ELT)) (-2704 (((-346 (-1083 $)) (-1083 $)) NIL (-12 (|has| |#1| (-258)) (|has| |#1| (-820))) ELT)) (-2705 (((-346 (-1083 $)) (-1083 $)) NIL (-12 (|has| |#1| (-258)) (|has| |#1| (-820))) ELT)) (-3730 (((-346 $) $) NIL (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-820))) (|has| |#1| (-312))) ELT)) (-1604 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-258)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL (|has| |#1| (-258)) ELT)) (-3464 (((-3 $ #1#) $ |#1|) 28 (|has| |#1| (-494)) ELT) (((-3 $ #1#) $ $) 31 (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-820))) (|has| |#1| (-494))) ELT)) (-2739 (((-631 (-582 $)) (-582 $) $) NIL (|has| |#1| (-258)) ELT)) (-3941 (($ $) NIL (|has| |#1| (-1113)) ELT)) (-3766 (($ $ (-582 |#1|) (-582 |#1|)) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-249 |#1|)) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-582 (-249 |#1|))) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-582 (-1088)) (-582 |#1|)) NIL (|has| |#1| (-454 (-1088) |#1|)) ELT) (($ $ (-1088) |#1|) NIL (|has| |#1| (-454 (-1088) |#1|)) ELT)) (-1605 (((-693) $) NIL (|has| |#1| (-258)) ELT)) (-3798 (($ $ |#1|) NIL (|has| |#1| (-241 |#1| |#1|)) ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL (|has| |#1| (-258)) ELT)) (-3755 ((|#1| (-1177 $)) NIL T ELT) ((|#1|) NIL T ELT)) (-1763 (((-693) $) NIL (|has| |#1| (-299)) ELT) (((-3 (-693) #1#) $ $) NIL (|has| |#1| (-299)) ELT)) (-3756 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-693)) NIL T ELT) (($ $ (-582 (-1088)) (-582 (-693))) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#1| (-808 (-1088)))) (|has| |#1| (-810 (-1088)))) ELT) (($ $ (-1088) (-693)) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#1| (-808 (-1088)))) (|has| |#1| (-810 (-1088)))) ELT) (($ $ (-582 (-1088))) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#1| (-808 (-1088)))) (|has| |#1| (-810 (-1088)))) ELT) (($ $ (-1088)) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#1| (-808 (-1088)))) (|has| |#1| (-810 (-1088)))) ELT) (($ $ (-693)) NIL (OR (-12 (|has| |#1| (-190)) (|has| |#1| (-312))) (|has| |#1| (-189))) ELT) (($ $) NIL (OR (-12 (|has| |#1| (-190)) (|has| |#1| (-312))) (|has| |#1| (-189))) ELT)) (-2407 (((-629 |#1|) (-1177 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-312)) ELT)) (-3184 (((-1083 |#1|)) NIL T ELT)) (-3493 (($ $) NIL (|has| |#1| (-1113)) ELT)) (-3634 (($ $) NIL (|has| |#1| (-1113)) ELT)) (-1672 (($) NIL (|has| |#1| (-299)) ELT)) (-3491 (($ $) NIL (|has| |#1| (-1113)) ELT)) (-3633 (($ $) NIL (|has| |#1| (-1113)) ELT)) (-3489 (($ $) NIL (|has| |#1| (-1113)) ELT)) (-3632 (($ $) NIL (|has| |#1| (-1113)) ELT)) (-3223 (((-1177 |#1|) $ (-1177 $)) NIL T ELT) (((-629 |#1|) (-1177 $) (-1177 $)) NIL T ELT) (((-1177 |#1|) $) NIL T ELT) (((-629 |#1|) (-1177 $)) NIL T ELT)) (-3970 (((-1177 |#1|) $) NIL T ELT) (($ (-1177 |#1|)) NIL T ELT) (((-1083 |#1|) $) NIL T ELT) (($ (-1083 |#1|)) NIL T ELT) (((-799 (-483)) $) NIL (|has| |#1| (-552 (-799 (-483)))) ELT) (((-799 (-328)) $) NIL (|has| |#1| (-552 (-799 (-328)))) ELT) (((-142 (-328)) $) NIL (|has| |#1| (-932)) ELT) (((-142 (-179)) $) NIL (|has| |#1| (-932)) ELT) (((-472) $) NIL (|has| |#1| (-552 (-472))) ELT)) (-3008 (($ $) 29 T ELT)) (-2702 (((-3 (-1177 $) #1#) (-629 $)) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-258)) (|has| |#1| (-820))) (|has| |#1| (-299))) ELT)) (-1374 (($ |#1| |#1|) 19 T ELT)) (-3944 (((-771) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ |#1|) 18 T ELT) (($ (-348 (-483))) NIL (OR (|has| |#1| (-312)) (|has| |#1| (-949 (-348 (-483))))) ELT) (($ $) NIL (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-820))) (|has| |#1| (-494))) ELT)) (-2701 (($ $) NIL (|has| |#1| (-299)) ELT) (((-631 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-258)) (|has| |#1| (-820))) (|has| |#1| (-118))) ELT)) (-2448 (((-1083 |#1|) $) NIL T ELT)) (-3125 (((-693)) NIL T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-2011 (((-1177 $)) NIL T ELT)) (-3496 (($ $) NIL (|has| |#1| (-1113)) ELT)) (-3484 (($ $) NIL (|has| |#1| (-1113)) ELT)) (-2061 (((-85) $ $) NIL (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-820))) (|has| |#1| (-494))) ELT)) (-3494 (($ $) NIL (|has| |#1| (-1113)) ELT)) (-3482 (($ $) NIL (|has| |#1| (-1113)) ELT)) (-3498 (($ $) NIL (|has| |#1| (-1113)) ELT)) (-3486 (($ $) NIL (|has| |#1| (-1113)) ELT)) (-2235 ((|#1| $) NIL (|has| |#1| (-1113)) ELT)) (-3124 (((-85) $ $) NIL T ELT)) (-3499 (($ $) NIL (|has| |#1| (-1113)) ELT)) (-3487 (($ $) NIL (|has| |#1| (-1113)) ELT)) (-3497 (($ $) NIL (|has| |#1| (-1113)) ELT)) (-3485 (($ $) NIL (|has| |#1| (-1113)) ELT)) (-3495 (($ $) NIL (|has| |#1| (-1113)) ELT)) (-3483 (($ $) NIL (|has| |#1| (-1113)) ELT)) (-3381 (($ $) NIL (|has| |#1| (-972)) ELT)) (-2659 (($) 8 T CONST)) (-2665 (($) 10 T CONST)) (-2668 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-693)) NIL T ELT) (($ $ (-582 (-1088)) (-582 (-693))) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#1| (-808 (-1088)))) (|has| |#1| (-810 (-1088)))) ELT) (($ $ (-1088) (-693)) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#1| (-808 (-1088)))) (|has| |#1| (-810 (-1088)))) ELT) (($ $ (-582 (-1088))) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#1| (-808 (-1088)))) (|has| |#1| (-810 (-1088)))) ELT) (($ $ (-1088)) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#1| (-808 (-1088)))) (|has| |#1| (-810 (-1088)))) ELT) (($ $ (-693)) NIL (OR (-12 (|has| |#1| (-190)) (|has| |#1| (-312))) (|has| |#1| (-189))) ELT) (($ $) NIL (OR (-12 (|has| |#1| (-190)) (|has| |#1| (-312))) (|has| |#1| (-189))) ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-3947 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3835 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3837 (($ $ $) 23 T ELT)) (** (($ $ (-829)) NIL T ELT) (($ $ (-693)) NIL T ELT) (($ $ (-348 (-483))) NIL (-12 (|has| |#1| (-914)) (|has| |#1| (-1113))) ELT) (($ $ $) NIL (|has| |#1| (-1113)) ELT) (($ $ (-483)) NIL (|has| |#1| (-312)) ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) 26 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-348 (-483)) $) NIL (|has| |#1| (-312)) ELT) (($ $ (-348 (-483))) NIL (|has| |#1| (-312)) ELT))) +((-3132 (*1 *2 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) (-1376 (*1 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) (-3009 (*1 *1 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) (-1375 (*1 *1 *2 *2) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) (-3643 (*1 *2 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) (-3642 (*1 *2 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) (-3465 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-139 *2)) (-4 *2 (-146)) (-4 *2 (-495)))) (-3382 (*1 *1 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)) (-4 *2 (-973)))) (-2236 (*1 *2 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)) (-4 *2 (-1114)))) (-1374 (*1 *2 *1) (-12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-973)) (-4 *3 (-1114)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-3023 (*1 *2 *1) (-12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-483)) (-5 *2 (-85)))) (-3022 (*1 *2 *1) (-12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-483)) (-5 *2 (-349 (-484))))) (-3024 (*1 *2 *1) (|partial| -12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-483)) (-5 *2 (-349 (-484)))))) +(-13 (-661 |t#1| (-1084 |t#1|)) (-354 |t#1|) (-184 |t#1|) (-288 |t#1|) (-342 |t#1|) (-794 |t#1|) (-328 |t#1|) (-146) (-10 -8 (-6 -1375) (-15 -1376 ($)) (-15 -3009 ($ $)) (-15 -1375 ($ |t#1| |t#1|)) (-15 -3643 (|t#1| $)) (-15 -3642 (|t#1| $)) (-15 -3132 (|t#1| $)) (IF (|has| |t#1| (-495)) (PROGN (-6 (-495)) (-15 -3465 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-258)) (-6 (-258)) |%noBranch|) (IF (|has| |t#1| (-6 -3993)) (-6 -3993) |%noBranch|) (IF (|has| |t#1| (-6 -3990)) (-6 -3990) |%noBranch|) (IF (|has| |t#1| (-312)) (-6 (-312)) |%noBranch|) (IF (|has| |t#1| (-553 (-473))) (-6 (-553 (-473))) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-933)) (PROGN (-6 (-553 (-142 (-179)))) (-6 (-553 (-142 (-329))))) |%noBranch|) (IF (|has| |t#1| (-973)) (-15 -3382 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1114)) (PROGN (-6 (-1114)) (-15 -2236 (|t#1| $)) (IF (|has| |t#1| (-915)) (-6 (-915)) |%noBranch|) (IF (|has| |t#1| (-973)) (-15 -1374 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-483)) (PROGN (-15 -3023 ((-85) $)) (-15 -3022 ((-349 (-484)) $)) (-15 -3024 ((-3 (-349 (-484)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-821)) (IF (|has| |t#1| (-258)) (-6 (-821)) |%noBranch|) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-349 (-484))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-38 |#1|) . T) ((-38 $) OR (|has| |#1| (-495)) (|has| |#1| (-299)) (|has| |#1| (-312)) (|has| |#1| (-258))) ((-35) |has| |#1| (-1114)) ((-66) |has| |#1| (-1114)) ((-72) . T) ((-82 (-349 (-484)) (-349 (-484))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-82 |#1| |#1|) . T) ((-82 $ $) . T) ((-104) . T) ((-118) OR (|has| |#1| (-299)) (|has| |#1| (-118))) ((-120) |has| |#1| (-120)) ((-555 (-349 (-484))) OR (|has| |#1| (-950 (-349 (-484)))) (|has| |#1| (-299)) (|has| |#1| (-312))) ((-555 (-484)) . T) ((-555 |#1|) . T) ((-555 $) OR (|has| |#1| (-495)) (|has| |#1| (-299)) (|has| |#1| (-312)) (|has| |#1| (-258))) ((-552 (-772)) . T) ((-146) . T) ((-553 (-142 (-179))) |has| |#1| (-933)) ((-553 (-142 (-329))) |has| |#1| (-933)) ((-553 (-473)) |has| |#1| (-553 (-473))) ((-553 (-800 (-329))) |has| |#1| (-553 (-800 (-329)))) ((-553 (-800 (-484))) |has| |#1| (-553 (-800 (-484)))) ((-553 (-1084 |#1|)) . T) ((-186 $) OR (|has| |#1| (-299)) (|has| |#1| (-189)) (|has| |#1| (-190))) ((-184 |#1|) . T) ((-190) OR (|has| |#1| (-299)) (|has| |#1| (-190))) ((-189) OR (|has| |#1| (-299)) (|has| |#1| (-189)) (|has| |#1| (-190))) ((-225 |#1|) . T) ((-201) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-239) |has| |#1| (-1114)) ((-241 |#1| $) |has| |#1| (-241 |#1| |#1|)) ((-246) OR (|has| |#1| (-495)) (|has| |#1| (-299)) (|has| |#1| (-312)) (|has| |#1| (-258))) ((-258) OR (|has| |#1| (-299)) (|has| |#1| (-312)) (|has| |#1| (-258))) ((-260 |#1|) |has| |#1| (-260 |#1|)) ((-312) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-344) |has| |#1| (-299)) ((-319) OR (|has| |#1| (-299)) (|has| |#1| (-319))) ((-299) |has| |#1| (-299)) ((-321 |#1| (-1084 |#1|)) . T) ((-352 |#1| (-1084 |#1|)) . T) ((-288 |#1|) . T) ((-328 |#1|) . T) ((-342 |#1|) . T) ((-354 |#1|) . T) ((-391) OR (|has| |#1| (-299)) (|has| |#1| (-312)) (|has| |#1| (-258))) ((-432) |has| |#1| (-1114)) ((-455 (-1089) |#1|) |has| |#1| (-455 (-1089) |#1|)) ((-455 |#1| |#1|) |has| |#1| (-260 |#1|)) ((-495) OR (|has| |#1| (-495)) (|has| |#1| (-299)) (|has| |#1| (-312)) (|has| |#1| (-258))) ((-13) . T) ((-588 (-349 (-484))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 (-349 (-484))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-590 (-484)) |has| |#1| (-580 (-484))) ((-590 |#1|) . T) ((-590 $) . T) ((-582 (-349 (-484))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-582 |#1|) . T) ((-582 $) OR (|has| |#1| (-495)) (|has| |#1| (-299)) (|has| |#1| (-312)) (|has| |#1| (-258))) ((-580 (-484)) |has| |#1| (-580 (-484))) ((-580 |#1|) . T) ((-654 (-349 (-484))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-654 |#1|) . T) ((-654 $) OR (|has| |#1| (-495)) (|has| |#1| (-299)) (|has| |#1| (-312)) (|has| |#1| (-258))) ((-661 |#1| (-1084 |#1|)) . T) ((-663) . T) ((-806 $ (-1089)) OR (|has| |#1| (-811 (-1089))) (|has| |#1| (-809 (-1089)))) ((-809 (-1089)) |has| |#1| (-809 (-1089))) ((-811 (-1089)) OR (|has| |#1| (-811 (-1089))) (|has| |#1| (-809 (-1089)))) ((-796 (-329)) |has| |#1| (-796 (-329))) ((-796 (-484)) |has| |#1| (-796 (-484))) ((-794 |#1|) . T) ((-821) -12 (|has| |#1| (-258)) (|has| |#1| (-821))) ((-832) OR (|has| |#1| (-299)) (|has| |#1| (-312)) (|has| |#1| (-258))) ((-915) -12 (|has| |#1| (-915)) (|has| |#1| (-1114))) ((-950 (-349 (-484))) |has| |#1| (-950 (-349 (-484)))) ((-950 (-484)) |has| |#1| (-950 (-484))) ((-950 |#1|) . T) ((-963 (-349 (-484))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-963 |#1|) . T) ((-963 $) . T) ((-968 (-349 (-484))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-968 |#1|) . T) ((-968 $) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1065) |has| |#1| (-299)) ((-1114) |has| |#1| (-1114)) ((-1117) |has| |#1| (-1114)) ((-1128) . T) ((-1133) OR (|has| |#1| (-299)) (|has| |#1| (-312)) (-12 (|has| |#1| (-258)) (|has| |#1| (-821))))) +((-3731 (((-347 |#2|) |#2|) 67 T ELT))) +(((-140 |#1| |#2|) (-10 -7 (-15 -3731 ((-347 |#2|) |#2|))) (-258) (-1154 (-142 |#1|))) (T -140)) +((-3731 (*1 *2 *3) (-12 (-4 *4 (-258)) (-5 *2 (-347 *3)) (-5 *1 (-140 *4 *3)) (-4 *3 (-1154 (-142 *4)))))) +((-1379 (((-1048) (-1048) (-247)) 8 T ELT)) (-1377 (((-583 (-632 (-235))) (-1072)) 81 T ELT)) (-1378 (((-632 (-235)) (-1048)) 76 T ELT))) +(((-141) (-13 (-1128) (-10 -7 (-15 -1379 ((-1048) (-1048) (-247))) (-15 -1378 ((-632 (-235)) (-1048))) (-15 -1377 ((-583 (-632 (-235))) (-1072)))))) (T -141)) +((-1379 (*1 *2 *2 *3) (-12 (-5 *2 (-1048)) (-5 *3 (-247)) (-5 *1 (-141)))) (-1378 (*1 *2 *3) (-12 (-5 *3 (-1048)) (-5 *2 (-632 (-235))) (-5 *1 (-141)))) (-1377 (*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-583 (-632 (-235)))) (-5 *1 (-141))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) 15 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-821))) (|has| |#1| (-495))) ELT)) (-2063 (($ $) NIL (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-821))) (|has| |#1| (-495))) ELT)) (-2061 (((-85) $) NIL (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-821))) (|has| |#1| (-495))) ELT)) (-1781 (((-630 |#1|) (-1178 $)) NIL T ELT) (((-630 |#1|)) NIL T ELT)) (-3329 ((|#1| $) NIL T ELT)) (-3491 (($ $) NIL (|has| |#1| (-1114)) ELT)) (-3638 (($ $) NIL (|has| |#1| (-1114)) ELT)) (-1674 (((-1101 (-830) (-694)) (-484)) NIL (|has| |#1| (-299)) ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2707 (((-347 (-1084 $)) (-1084 $)) NIL (-12 (|has| |#1| (-258)) (|has| |#1| (-821))) ELT)) (-3774 (($ $) NIL (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-821))) (|has| |#1| (-312))) ELT)) (-3970 (((-347 $) $) NIL (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-821))) (|has| |#1| (-312))) ELT)) (-3037 (($ $) NIL (-12 (|has| |#1| (-915)) (|has| |#1| (-1114))) ELT)) (-2704 (((-3 (-583 (-1084 $)) #1#) (-583 (-1084 $)) (-1084 $)) NIL (-12 (|has| |#1| (-258)) (|has| |#1| (-821))) ELT)) (-1607 (((-85) $ $) NIL (|has| |#1| (-258)) ELT)) (-3136 (((-694)) NIL (|has| |#1| (-319)) ELT)) (-3489 (($ $) NIL (|has| |#1| (-1114)) ELT)) (-3637 (($ $) NIL (|has| |#1| (-1114)) ELT)) (-3493 (($ $) NIL (|has| |#1| (-1114)) ELT)) (-3636 (($ $) NIL (|has| |#1| (-1114)) ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 (-484) #1#) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-3 (-349 (-484)) #1#) $) NIL (|has| |#1| (-950 (-349 (-484)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3156 (((-484) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-349 (-484)) $) NIL (|has| |#1| (-950 (-349 (-484)))) ELT) ((|#1| $) NIL T ELT)) (-1791 (($ (-1178 |#1|) (-1178 $)) NIL T ELT) (($ (-1178 |#1|)) NIL T ELT)) (-1672 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-299)) ELT)) (-2564 (($ $ $) NIL (|has| |#1| (-258)) ELT)) (-1780 (((-630 |#1|) $ (-1178 $)) NIL T ELT) (((-630 |#1|) $) NIL T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1178 |#1|))) (-630 $) (-1178 $)) NIL T ELT) (((-630 |#1|) (-630 $)) NIL T ELT)) (-3841 (($ (-1084 |#1|)) NIL T ELT) (((-3 $ #1#) (-349 (-1084 |#1|))) NIL (|has| |#1| (-312)) ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-3642 ((|#1| $) 20 T ELT)) (-3024 (((-3 (-349 (-484)) #1#) $) NIL (|has| |#1| (-483)) ELT)) (-3023 (((-85) $) NIL (|has| |#1| (-483)) ELT)) (-3022 (((-349 (-484)) $) NIL (|has| |#1| (-483)) ELT)) (-3108 (((-830)) NIL T ELT)) (-2994 (($) NIL (|has| |#1| (-319)) ELT)) (-2563 (($ $ $) NIL (|has| |#1| (-258)) ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) NIL (|has| |#1| (-258)) ELT)) (-2833 (($) NIL (|has| |#1| (-299)) ELT)) (-1679 (((-85) $) NIL (|has| |#1| (-299)) ELT)) (-1763 (($ $ (-694)) NIL (|has| |#1| (-299)) ELT) (($ $) NIL (|has| |#1| (-299)) ELT)) (-3722 (((-85) $) NIL (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-821))) (|has| |#1| (-312))) ELT)) (-1374 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-973)) (|has| |#1| (-1114))) ELT)) (-3626 (($) NIL (|has| |#1| (-1114)) ELT)) (-2796 (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) NIL (|has| |#1| (-796 (-484))) ELT) (((-798 (-329) $) $ (-800 (-329)) (-798 (-329) $)) NIL (|has| |#1| (-796 (-329))) ELT)) (-3771 (((-830) $) NIL (|has| |#1| (-299)) ELT) (((-743 (-830)) $) NIL (|has| |#1| (-299)) ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) 17 T ELT)) (-3011 (($ $ (-484)) NIL (-12 (|has| |#1| (-915)) (|has| |#1| (-1114))) ELT)) (-3132 ((|#1| $) 30 T ELT)) (-3444 (((-632 $) $) NIL (|has| |#1| (-299)) ELT)) (-1604 (((-3 (-583 $) #1#) (-583 $) $) NIL (|has| |#1| (-258)) ELT)) (-2014 (((-1084 |#1|) $) NIL (|has| |#1| (-312)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2010 (((-830) $) NIL (|has| |#1| (-319)) ELT)) (-3941 (($ $) NIL (|has| |#1| (-1114)) ELT)) (-3079 (((-1084 |#1|) $) NIL T ELT)) (-2280 (((-630 (-484)) (-1178 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1178 |#1|))) (-1178 $) $) NIL T ELT) (((-630 |#1|) (-1178 $)) NIL T ELT)) (-1890 (($ (-583 $)) NIL (|has| |#1| (-258)) ELT) (($ $ $) NIL (|has| |#1| (-258)) ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2484 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3445 (($) NIL (|has| |#1| (-299)) CONST)) (-2400 (($ (-830)) NIL (|has| |#1| (-319)) ELT)) (-1376 (($) NIL T ELT)) (-3643 ((|#1| $) 21 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2409 (($) NIL T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) NIL (|has| |#1| (-258)) ELT)) (-3144 (($ (-583 $)) NIL (|has| |#1| (-258)) ELT) (($ $ $) NIL (|has| |#1| (-258)) ELT)) (-1675 (((-583 (-2 (|:| -3731 (-484)) (|:| -2401 (-484))))) NIL (|has| |#1| (-299)) ELT)) (-2705 (((-347 (-1084 $)) (-1084 $)) NIL (-12 (|has| |#1| (-258)) (|has| |#1| (-821))) ELT)) (-2706 (((-347 (-1084 $)) (-1084 $)) NIL (-12 (|has| |#1| (-258)) (|has| |#1| (-821))) ELT)) (-3731 (((-347 $) $) NIL (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-821))) (|has| |#1| (-312))) ELT)) (-1605 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-258)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL (|has| |#1| (-258)) ELT)) (-3465 (((-3 $ #1#) $ |#1|) 28 (|has| |#1| (-495)) ELT) (((-3 $ #1#) $ $) 31 (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-821))) (|has| |#1| (-495))) ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL (|has| |#1| (-258)) ELT)) (-3942 (($ $) NIL (|has| |#1| (-1114)) ELT)) (-3767 (($ $ (-583 |#1|) (-583 |#1|)) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-249 |#1|)) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-583 (-249 |#1|))) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-583 (-1089)) (-583 |#1|)) NIL (|has| |#1| (-455 (-1089) |#1|)) ELT) (($ $ (-1089) |#1|) NIL (|has| |#1| (-455 (-1089) |#1|)) ELT)) (-1606 (((-694) $) NIL (|has| |#1| (-258)) ELT)) (-3799 (($ $ |#1|) NIL (|has| |#1| (-241 |#1| |#1|)) ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL (|has| |#1| (-258)) ELT)) (-3756 ((|#1| (-1178 $)) NIL T ELT) ((|#1|) NIL T ELT)) (-1764 (((-694) $) NIL (|has| |#1| (-299)) ELT) (((-3 (-694) #1#) $ $) NIL (|has| |#1| (-299)) ELT)) (-3757 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL T ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#1| (-809 (-1089)))) (|has| |#1| (-811 (-1089)))) ELT) (($ $ (-1089) (-694)) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#1| (-809 (-1089)))) (|has| |#1| (-811 (-1089)))) ELT) (($ $ (-583 (-1089))) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#1| (-809 (-1089)))) (|has| |#1| (-811 (-1089)))) ELT) (($ $ (-1089)) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#1| (-809 (-1089)))) (|has| |#1| (-811 (-1089)))) ELT) (($ $ (-694)) NIL (OR (-12 (|has| |#1| (-190)) (|has| |#1| (-312))) (|has| |#1| (-189))) ELT) (($ $) NIL (OR (-12 (|has| |#1| (-190)) (|has| |#1| (-312))) (|has| |#1| (-189))) ELT)) (-2408 (((-630 |#1|) (-1178 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-312)) ELT)) (-3185 (((-1084 |#1|)) NIL T ELT)) (-3494 (($ $) NIL (|has| |#1| (-1114)) ELT)) (-3635 (($ $) NIL (|has| |#1| (-1114)) ELT)) (-1673 (($) NIL (|has| |#1| (-299)) ELT)) (-3492 (($ $) NIL (|has| |#1| (-1114)) ELT)) (-3634 (($ $) NIL (|has| |#1| (-1114)) ELT)) (-3490 (($ $) NIL (|has| |#1| (-1114)) ELT)) (-3633 (($ $) NIL (|has| |#1| (-1114)) ELT)) (-3224 (((-1178 |#1|) $ (-1178 $)) NIL T ELT) (((-630 |#1|) (-1178 $) (-1178 $)) NIL T ELT) (((-1178 |#1|) $) NIL T ELT) (((-630 |#1|) (-1178 $)) NIL T ELT)) (-3971 (((-1178 |#1|) $) NIL T ELT) (($ (-1178 |#1|)) NIL T ELT) (((-1084 |#1|) $) NIL T ELT) (($ (-1084 |#1|)) NIL T ELT) (((-800 (-484)) $) NIL (|has| |#1| (-553 (-800 (-484)))) ELT) (((-800 (-329)) $) NIL (|has| |#1| (-553 (-800 (-329)))) ELT) (((-142 (-329)) $) NIL (|has| |#1| (-933)) ELT) (((-142 (-179)) $) NIL (|has| |#1| (-933)) ELT) (((-473) $) NIL (|has| |#1| (-553 (-473))) ELT)) (-3009 (($ $) 29 T ELT)) (-2703 (((-3 (-1178 $) #1#) (-630 $)) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-258)) (|has| |#1| (-821))) (|has| |#1| (-299))) ELT)) (-1375 (($ |#1| |#1|) 19 T ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#1|) 18 T ELT) (($ (-349 (-484))) NIL (OR (|has| |#1| (-312)) (|has| |#1| (-950 (-349 (-484))))) ELT) (($ $) NIL (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-821))) (|has| |#1| (-495))) ELT)) (-2702 (($ $) NIL (|has| |#1| (-299)) ELT) (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-258)) (|has| |#1| (-821))) (|has| |#1| (-118))) ELT)) (-2449 (((-1084 |#1|) $) NIL T ELT)) (-3126 (((-694)) NIL T CONST)) (-1264 (((-85) $ $) NIL T ELT)) (-2012 (((-1178 $)) NIL T ELT)) (-3497 (($ $) NIL (|has| |#1| (-1114)) ELT)) (-3485 (($ $) NIL (|has| |#1| (-1114)) ELT)) (-2062 (((-85) $ $) NIL (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-821))) (|has| |#1| (-495))) ELT)) (-3495 (($ $) NIL (|has| |#1| (-1114)) ELT)) (-3483 (($ $) NIL (|has| |#1| (-1114)) ELT)) (-3499 (($ $) NIL (|has| |#1| (-1114)) ELT)) (-3487 (($ $) NIL (|has| |#1| (-1114)) ELT)) (-2236 ((|#1| $) NIL (|has| |#1| (-1114)) ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-3500 (($ $) NIL (|has| |#1| (-1114)) ELT)) (-3488 (($ $) NIL (|has| |#1| (-1114)) ELT)) (-3498 (($ $) NIL (|has| |#1| (-1114)) ELT)) (-3486 (($ $) NIL (|has| |#1| (-1114)) ELT)) (-3496 (($ $) NIL (|has| |#1| (-1114)) ELT)) (-3484 (($ $) NIL (|has| |#1| (-1114)) ELT)) (-3382 (($ $) NIL (|has| |#1| (-973)) ELT)) (-2660 (($) 8 T CONST)) (-2666 (($) 10 T CONST)) (-2669 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL T ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#1| (-809 (-1089)))) (|has| |#1| (-811 (-1089)))) ELT) (($ $ (-1089) (-694)) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#1| (-809 (-1089)))) (|has| |#1| (-811 (-1089)))) ELT) (($ $ (-583 (-1089))) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#1| (-809 (-1089)))) (|has| |#1| (-811 (-1089)))) ELT) (($ $ (-1089)) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#1| (-809 (-1089)))) (|has| |#1| (-811 (-1089)))) ELT) (($ $ (-694)) NIL (OR (-12 (|has| |#1| (-190)) (|has| |#1| (-312))) (|has| |#1| (-189))) ELT) (($ $) NIL (OR (-12 (|has| |#1| (-190)) (|has| |#1| (-312))) (|has| |#1| (-189))) ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3948 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) 23 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-349 (-484))) NIL (-12 (|has| |#1| (-915)) (|has| |#1| (-1114))) ELT) (($ $ $) NIL (|has| |#1| (-1114)) ELT) (($ $ (-484)) NIL (|has| |#1| (-312)) ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 26 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-349 (-484)) $) NIL (|has| |#1| (-312)) ELT) (($ $ (-349 (-484))) NIL (|has| |#1| (-312)) ELT))) (((-142 |#1|) (-139 |#1|) (-146)) (T -142)) NIL -((-3956 (((-142 |#2|) (-1 |#2| |#1|) (-142 |#1|)) 14 T ELT))) -(((-143 |#1| |#2|) (-10 -7 (-15 -3956 ((-142 |#2|) (-1 |#2| |#1|) (-142 |#1|)))) (-146) (-146)) (T -143)) -((-3956 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-142 *5)) (-4 *5 (-146)) (-4 *6 (-146)) (-5 *2 (-142 *6)) (-5 *1 (-143 *5 *6))))) -((-3970 (((-799 |#1|) |#3|) 22 T ELT))) -(((-144 |#1| |#2| |#3|) (-10 -7 (-15 -3970 ((-799 |#1|) |#3|))) (-1012) (-13 (-552 (-799 |#1|)) (-146)) (-139 |#2|)) (T -144)) -((-3970 (*1 *2 *3) (-12 (-4 *5 (-13 (-552 *2) (-146))) (-5 *2 (-799 *4)) (-5 *1 (-144 *4 *5 *3)) (-4 *4 (-1012)) (-4 *3 (-139 *5))))) -((-2567 (((-85) $ $) NIL T ELT)) (-1380 (((-85) $) 9 T ELT)) (-1379 (((-85) $ (-85)) 11 T ELT)) (-3612 (($) 13 T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3398 (($ $) 14 T ELT)) (-3944 (((-771) $) 18 T ELT)) (-3700 (((-85) $) 8 T ELT)) (-3859 (((-85) $ (-85)) 10 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-145) (-13 (-1012) (-10 -8 (-15 -3612 ($)) (-15 -3700 ((-85) $)) (-15 -1380 ((-85) $)) (-15 -3859 ((-85) $ (-85))) (-15 -1379 ((-85) $ (-85))) (-15 -3398 ($ $))))) (T -145)) -((-3612 (*1 *1) (-5 *1 (-145))) (-3700 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-145)))) (-1380 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-145)))) (-3859 (*1 *2 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-145)))) (-1379 (*1 *2 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-145)))) (-3398 (*1 *1 *1) (-5 *1 (-145)))) -((-2567 (((-85) $ $) 7 T ELT)) (-3187 (((-85) $) 22 T ELT)) (-1310 (((-3 $ "failed") $ $) 26 T ELT)) (-3722 (($) 23 T CONST)) (-3465 (((-3 $ "failed") $) 42 T ELT)) (-1212 (((-85) $ $) 20 T ELT)) (-2409 (((-85) $) 44 T ELT)) (-3241 (((-1071) $) 11 T ELT)) (-3242 (((-1032) $) 12 T ELT)) (-3944 (((-771) $) 13 T ELT) (($ (-483)) 41 T ELT)) (-3125 (((-693)) 40 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-3124 (((-85) $ $) 33 T ELT)) (-2659 (($) 24 T CONST)) (-2665 (($) 45 T CONST)) (-3055 (((-85) $ $) 8 T ELT)) (-3835 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3837 (($ $ $) 18 T ELT)) (** (($ $ (-829)) 35 T ELT) (($ $ (-693)) 43 T ELT)) (* (($ (-829) $) 17 T ELT) (($ (-693) $) 21 T ELT) (($ (-483) $) 30 T ELT) (($ $ $) 34 T ELT))) +((-3957 (((-142 |#2|) (-1 |#2| |#1|) (-142 |#1|)) 14 T ELT))) +(((-143 |#1| |#2|) (-10 -7 (-15 -3957 ((-142 |#2|) (-1 |#2| |#1|) (-142 |#1|)))) (-146) (-146)) (T -143)) +((-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-142 *5)) (-4 *5 (-146)) (-4 *6 (-146)) (-5 *2 (-142 *6)) (-5 *1 (-143 *5 *6))))) +((-3971 (((-800 |#1|) |#3|) 22 T ELT))) +(((-144 |#1| |#2| |#3|) (-10 -7 (-15 -3971 ((-800 |#1|) |#3|))) (-1013) (-13 (-553 (-800 |#1|)) (-146)) (-139 |#2|)) (T -144)) +((-3971 (*1 *2 *3) (-12 (-4 *5 (-13 (-553 *2) (-146))) (-5 *2 (-800 *4)) (-5 *1 (-144 *4 *5 *3)) (-4 *4 (-1013)) (-4 *3 (-139 *5))))) +((-2568 (((-85) $ $) NIL T ELT)) (-1381 (((-85) $) 9 T ELT)) (-1380 (((-85) $ (-85)) 11 T ELT)) (-3613 (($) 13 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3399 (($ $) 14 T ELT)) (-3945 (((-772) $) 18 T ELT)) (-3701 (((-85) $) 8 T ELT)) (-3860 (((-85) $ (-85)) 10 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT))) +(((-145) (-13 (-1013) (-10 -8 (-15 -3613 ($)) (-15 -3701 ((-85) $)) (-15 -1381 ((-85) $)) (-15 -3860 ((-85) $ (-85))) (-15 -1380 ((-85) $ (-85))) (-15 -3399 ($ $))))) (T -145)) +((-3613 (*1 *1) (-5 *1 (-145))) (-3701 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-145)))) (-1381 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-145)))) (-3860 (*1 *2 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-145)))) (-1380 (*1 *2 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-145)))) (-3399 (*1 *1 *1) (-5 *1 (-145)))) +((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3723 (($) 23 T CONST)) (-3466 (((-3 $ "failed") $) 42 T ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT)) (-3126 (((-694)) 40 T CONST)) (-1264 (((-85) $ $) 6 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT))) (((-146) (-113)) (T -146)) NIL -(-13 (-960) (-82 $ $) (-10 -7 (-6 (-3995 "*")))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-554 (-483)) . T) ((-551 (-771)) . T) ((-13) . T) ((-587 (-483)) . T) ((-587 $) . T) ((-589 $) . T) ((-662) . T) ((-962 $) . T) ((-967 $) . T) ((-960) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T)) -((-1698 (($ $) 6 T ELT))) +(-13 (-961) (-82 $ $) (-10 -7 (-6 (-3996 "*")))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-555 (-484)) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 $) . T) ((-590 $) . T) ((-663) . T) ((-963 $) . T) ((-968 $) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T)) +((-1699 (($ $) 6 T ELT))) (((-147) (-113)) (T -147)) -((-1698 (*1 *1 *1) (-4 *1 (-147)))) -(-13 (-10 -8 (-15 -1698 ($ $)))) -((-2567 (((-85) $ $) NIL T ELT)) (-3187 (((-85) $) NIL T ELT)) (-3128 ((|#1| $) 79 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3980 $) (|:| |associate| $)) $) NIL T ELT)) (-2062 (($ $) NIL T ELT)) (-2060 (((-85) $) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3773 (($ $) NIL T ELT)) (-3969 (((-346 $) $) NIL T ELT)) (-1606 (((-85) $ $) NIL T ELT)) (-3722 (($) NIL T CONST)) (-2563 (($ $ $) NIL T ELT)) (-1385 (($ $) 21 T ELT)) (-1389 (($ |#1| (-1067 |#1|)) 48 T ELT)) (-3465 (((-3 $ #1#) $) 123 T ELT)) (-2562 (($ $ $) NIL T ELT)) (-2740 (((-2 (|:| -3952 (-582 $)) (|:| -2408 $)) (-582 $)) NIL T ELT)) (-3721 (((-85) $) NIL T ELT)) (-1386 (((-1067 |#1|) $) 86 T ELT)) (-1388 (((-1067 |#1|) $) 83 T ELT)) (-1387 (((-1067 |#1|) $) 84 T ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-2409 (((-85) $) NIL T ELT)) (-1382 (((-1067 |#1|) $) 93 T ELT)) (-1603 (((-3 (-582 $) #1#) (-582 $) $) NIL T ELT)) (-1889 (($ (-582 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-2483 (($ $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-2707 (((-1083 $) (-1083 $) (-1083 $)) NIL T ELT)) (-3143 (($ (-582 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3730 (((-346 $) $) NIL T ELT)) (-1604 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL T ELT)) (-3767 (($ $ (-483)) 96 T ELT)) (-3464 (((-3 $ #1#) $ $) NIL T ELT)) (-2739 (((-631 (-582 $)) (-582 $) $) NIL T ELT)) (-1605 (((-693) $) NIL T ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL T ELT)) (-1381 (((-1067 |#1|) $) 94 T ELT)) (-1383 (((-1067 (-348 |#1|)) $) 14 T ELT)) (-2615 (($ (-348 |#1|)) 17 T ELT) (($ |#1| (-1067 |#1|) (-1067 |#1|)) 38 T ELT)) (-2890 (($ $) 98 T ELT)) (-3944 (((-771) $) 139 T ELT) (($ (-483)) 51 T ELT) (($ |#1|) 52 T ELT) (($ (-348 |#1|)) 36 T ELT) (($ (-348 (-483))) NIL T ELT) (($ $) NIL T ELT)) (-3125 (((-693)) 67 T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-2061 (((-85) $ $) NIL T ELT)) (-1384 (((-1067 (-348 |#1|)) $) 20 T ELT)) (-3124 (((-85) $ $) NIL T ELT)) (-2659 (($) 103 T CONST)) (-2665 (($) 28 T CONST)) (-3055 (((-85) $ $) 35 T ELT)) (-3947 (($ $ $) 121 T ELT)) (-3835 (($ $) 112 T ELT) (($ $ $) 109 T ELT)) (-3837 (($ $ $) 107 T ELT)) (** (($ $ (-829)) NIL T ELT) (($ $ (-693)) NIL T ELT) (($ $ (-483)) NIL T ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-483) $) 119 T ELT) (($ $ $) 114 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 116 T ELT) (($ (-348 |#1|) $) 117 T ELT) (($ $ (-348 |#1|)) NIL T ELT) (($ (-348 (-483)) $) NIL T ELT) (($ $ (-348 (-483))) NIL T ELT))) -(((-148 |#1|) (-13 (-38 |#1|) (-38 (-348 |#1|)) (-312) (-10 -8 (-15 -2615 ($ (-348 |#1|))) (-15 -2615 ($ |#1| (-1067 |#1|) (-1067 |#1|))) (-15 -1389 ($ |#1| (-1067 |#1|))) (-15 -1388 ((-1067 |#1|) $)) (-15 -1387 ((-1067 |#1|) $)) (-15 -1386 ((-1067 |#1|) $)) (-15 -3128 (|#1| $)) (-15 -1385 ($ $)) (-15 -1384 ((-1067 (-348 |#1|)) $)) (-15 -1383 ((-1067 (-348 |#1|)) $)) (-15 -1382 ((-1067 |#1|) $)) (-15 -1381 ((-1067 |#1|) $)) (-15 -3767 ($ $ (-483))) (-15 -2890 ($ $)))) (-258)) (T -148)) -((-2615 (*1 *1 *2) (-12 (-5 *2 (-348 *3)) (-4 *3 (-258)) (-5 *1 (-148 *3)))) (-2615 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1067 *2)) (-4 *2 (-258)) (-5 *1 (-148 *2)))) (-1389 (*1 *1 *2 *3) (-12 (-5 *3 (-1067 *2)) (-4 *2 (-258)) (-5 *1 (-148 *2)))) (-1388 (*1 *2 *1) (-12 (-5 *2 (-1067 *3)) (-5 *1 (-148 *3)) (-4 *3 (-258)))) (-1387 (*1 *2 *1) (-12 (-5 *2 (-1067 *3)) (-5 *1 (-148 *3)) (-4 *3 (-258)))) (-1386 (*1 *2 *1) (-12 (-5 *2 (-1067 *3)) (-5 *1 (-148 *3)) (-4 *3 (-258)))) (-3128 (*1 *2 *1) (-12 (-5 *1 (-148 *2)) (-4 *2 (-258)))) (-1385 (*1 *1 *1) (-12 (-5 *1 (-148 *2)) (-4 *2 (-258)))) (-1384 (*1 *2 *1) (-12 (-5 *2 (-1067 (-348 *3))) (-5 *1 (-148 *3)) (-4 *3 (-258)))) (-1383 (*1 *2 *1) (-12 (-5 *2 (-1067 (-348 *3))) (-5 *1 (-148 *3)) (-4 *3 (-258)))) (-1382 (*1 *2 *1) (-12 (-5 *2 (-1067 *3)) (-5 *1 (-148 *3)) (-4 *3 (-258)))) (-1381 (*1 *2 *1) (-12 (-5 *2 (-1067 *3)) (-5 *1 (-148 *3)) (-4 *3 (-258)))) (-3767 (*1 *1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-148 *3)) (-4 *3 (-258)))) (-2890 (*1 *1 *1) (-12 (-5 *1 (-148 *2)) (-4 *2 (-258))))) -((-1390 (($ (-78) $) 15 T ELT)) (-3220 (((-631 (-78)) (-445) $) 14 T ELT)) (-3944 (((-771) $) 18 T ELT)) (-1391 (((-582 (-78)) $) 8 T ELT))) -(((-149) (-13 (-551 (-771)) (-10 -8 (-15 -1391 ((-582 (-78)) $)) (-15 -1390 ($ (-78) $)) (-15 -3220 ((-631 (-78)) (-445) $))))) (T -149)) -((-1391 (*1 *2 *1) (-12 (-5 *2 (-582 (-78))) (-5 *1 (-149)))) (-1390 (*1 *1 *2 *1) (-12 (-5 *2 (-78)) (-5 *1 (-149)))) (-3220 (*1 *2 *3 *1) (-12 (-5 *3 (-445)) (-5 *2 (-631 (-78))) (-5 *1 (-149))))) -((-1404 (((-1 (-853 |#1|) (-853 |#1|)) |#1|) 38 T ELT)) (-1395 (((-853 |#1|) (-853 |#1|)) 22 T ELT)) (-1400 (((-1 (-853 |#1|) (-853 |#1|)) |#1|) 34 T ELT)) (-1393 (((-853 |#1|) (-853 |#1|)) 20 T ELT)) (-1398 (((-853 |#1|) (-853 |#1|)) 28 T ELT)) (-1397 (((-853 |#1|) (-853 |#1|)) 27 T ELT)) (-1396 (((-853 |#1|) (-853 |#1|)) 26 T ELT)) (-1401 (((-1 (-853 |#1|) (-853 |#1|)) |#1|) 35 T ELT)) (-1399 (((-1 (-853 |#1|) (-853 |#1|)) |#1|) 33 T ELT)) (-1641 (((-1 (-853 |#1|) (-853 |#1|)) |#1|) 32 T ELT)) (-1394 (((-853 |#1|) (-853 |#1|)) 21 T ELT)) (-1405 (((-1 (-853 |#1|) (-853 |#1|)) |#1| |#1|) 41 T ELT)) (-1392 (((-853 |#1|) (-853 |#1|)) 8 T ELT)) (-1403 (((-1 (-853 |#1|) (-853 |#1|)) |#1|) 37 T ELT)) (-1402 (((-1 (-853 |#1|) (-853 |#1|)) |#1|) 36 T ELT))) -(((-150 |#1|) (-10 -7 (-15 -1392 ((-853 |#1|) (-853 |#1|))) (-15 -1393 ((-853 |#1|) (-853 |#1|))) (-15 -1394 ((-853 |#1|) (-853 |#1|))) (-15 -1395 ((-853 |#1|) (-853 |#1|))) (-15 -1396 ((-853 |#1|) (-853 |#1|))) (-15 -1397 ((-853 |#1|) (-853 |#1|))) (-15 -1398 ((-853 |#1|) (-853 |#1|))) (-15 -1641 ((-1 (-853 |#1|) (-853 |#1|)) |#1|)) (-15 -1399 ((-1 (-853 |#1|) (-853 |#1|)) |#1|)) (-15 -1400 ((-1 (-853 |#1|) (-853 |#1|)) |#1|)) (-15 -1401 ((-1 (-853 |#1|) (-853 |#1|)) |#1|)) (-15 -1402 ((-1 (-853 |#1|) (-853 |#1|)) |#1|)) (-15 -1403 ((-1 (-853 |#1|) (-853 |#1|)) |#1|)) (-15 -1404 ((-1 (-853 |#1|) (-853 |#1|)) |#1|)) (-15 -1405 ((-1 (-853 |#1|) (-853 |#1|)) |#1| |#1|))) (-13 (-312) (-1113) (-914))) (T -150)) -((-1405 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-853 *3) (-853 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-312) (-1113) (-914))))) (-1404 (*1 *2 *3) (-12 (-5 *2 (-1 (-853 *3) (-853 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-312) (-1113) (-914))))) (-1403 (*1 *2 *3) (-12 (-5 *2 (-1 (-853 *3) (-853 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-312) (-1113) (-914))))) (-1402 (*1 *2 *3) (-12 (-5 *2 (-1 (-853 *3) (-853 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-312) (-1113) (-914))))) (-1401 (*1 *2 *3) (-12 (-5 *2 (-1 (-853 *3) (-853 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-312) (-1113) (-914))))) (-1400 (*1 *2 *3) (-12 (-5 *2 (-1 (-853 *3) (-853 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-312) (-1113) (-914))))) (-1399 (*1 *2 *3) (-12 (-5 *2 (-1 (-853 *3) (-853 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-312) (-1113) (-914))))) (-1641 (*1 *2 *3) (-12 (-5 *2 (-1 (-853 *3) (-853 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-312) (-1113) (-914))))) (-1398 (*1 *2 *2) (-12 (-5 *2 (-853 *3)) (-4 *3 (-13 (-312) (-1113) (-914))) (-5 *1 (-150 *3)))) (-1397 (*1 *2 *2) (-12 (-5 *2 (-853 *3)) (-4 *3 (-13 (-312) (-1113) (-914))) (-5 *1 (-150 *3)))) (-1396 (*1 *2 *2) (-12 (-5 *2 (-853 *3)) (-4 *3 (-13 (-312) (-1113) (-914))) (-5 *1 (-150 *3)))) (-1395 (*1 *2 *2) (-12 (-5 *2 (-853 *3)) (-4 *3 (-13 (-312) (-1113) (-914))) (-5 *1 (-150 *3)))) (-1394 (*1 *2 *2) (-12 (-5 *2 (-853 *3)) (-4 *3 (-13 (-312) (-1113) (-914))) (-5 *1 (-150 *3)))) (-1393 (*1 *2 *2) (-12 (-5 *2 (-853 *3)) (-4 *3 (-13 (-312) (-1113) (-914))) (-5 *1 (-150 *3)))) (-1392 (*1 *2 *2) (-12 (-5 *2 (-853 *3)) (-4 *3 (-13 (-312) (-1113) (-914))) (-5 *1 (-150 *3))))) -((-2448 ((|#2| |#3|) 28 T ELT))) -(((-151 |#1| |#2| |#3|) (-10 -7 (-15 -2448 (|#2| |#3|))) (-146) (-1153 |#1|) (-660 |#1| |#2|)) (T -151)) -((-2448 (*1 *2 *3) (-12 (-4 *4 (-146)) (-4 *2 (-1153 *4)) (-5 *1 (-151 *4 *2 *3)) (-4 *3 (-660 *4 *2))))) -((-2795 (((-797 |#1| |#3|) |#3| (-799 |#1|) (-797 |#1| |#3|)) 44 (|has| (-856 |#2|) (-795 |#1|)) ELT))) -(((-152 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-856 |#2|) (-795 |#1|)) (-15 -2795 ((-797 |#1| |#3|) |#3| (-799 |#1|) (-797 |#1| |#3|))) |%noBranch|)) (-1012) (-13 (-795 |#1|) (-146)) (-139 |#2|)) (T -152)) -((-2795 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-797 *5 *3)) (-5 *4 (-799 *5)) (-4 *5 (-1012)) (-4 *3 (-139 *6)) (-4 (-856 *6) (-795 *5)) (-4 *6 (-13 (-795 *5) (-146))) (-5 *1 (-152 *5 *6 *3))))) -((-1407 (((-582 |#1|) (-582 |#1|) |#1|) 41 T ELT)) (-1406 (((-582 |#1|) |#1| (-582 |#1|)) 20 T ELT)) (-2076 (((-582 |#1|) (-582 (-582 |#1|)) (-582 |#1|)) 36 T ELT) ((|#1| (-582 |#1|) (-582 |#1|)) 32 T ELT))) -(((-153 |#1|) (-10 -7 (-15 -1406 ((-582 |#1|) |#1| (-582 |#1|))) (-15 -2076 (|#1| (-582 |#1|) (-582 |#1|))) (-15 -2076 ((-582 |#1|) (-582 (-582 |#1|)) (-582 |#1|))) (-15 -1407 ((-582 |#1|) (-582 |#1|) |#1|))) (-258)) (T -153)) -((-1407 (*1 *2 *2 *3) (-12 (-5 *2 (-582 *3)) (-4 *3 (-258)) (-5 *1 (-153 *3)))) (-2076 (*1 *2 *3 *2) (-12 (-5 *3 (-582 (-582 *4))) (-5 *2 (-582 *4)) (-4 *4 (-258)) (-5 *1 (-153 *4)))) (-2076 (*1 *2 *3 *3) (-12 (-5 *3 (-582 *2)) (-5 *1 (-153 *2)) (-4 *2 (-258)))) (-1406 (*1 *2 *3 *2) (-12 (-5 *2 (-582 *3)) (-4 *3 (-258)) (-5 *1 (-153 *3))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3317 (((-1128) $) 14 T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3205 (((-1047) $) 11 T ELT)) (-3944 (((-771) $) 21 T ELT) (($ (-1093)) NIL T ELT) (((-1093) $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-154) (-13 (-994) (-10 -8 (-15 -3205 ((-1047) $)) (-15 -3317 ((-1128) $))))) (T -154)) -((-3205 (*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-154)))) (-3317 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-154))))) -((-1416 (((-2 (|:| |start| |#2|) (|:| -1777 (-346 |#2|))) |#2|) 66 T ELT)) (-1415 ((|#1| |#1|) 58 T ELT)) (-1414 (((-142 |#1|) |#2|) 94 T ELT)) (-1413 ((|#1| |#2|) 137 T ELT) ((|#1| |#2| |#1|) 90 T ELT)) (-1412 ((|#2| |#2|) 91 T ELT)) (-1411 (((-346 |#2|) |#2| |#1|) 119 T ELT) (((-346 |#2|) |#2| |#1| (-85)) 88 T ELT)) (-3131 ((|#1| |#2|) 118 T ELT)) (-1410 ((|#2| |#2|) 131 T ELT)) (-3730 (((-346 |#2|) |#2|) 154 T ELT) (((-346 |#2|) |#2| |#1|) 33 T ELT) (((-346 |#2|) |#2| |#1| (-85)) 153 T ELT)) (-1409 (((-582 (-2 (|:| -1777 (-582 |#2|)) (|:| -1594 |#1|))) |#2| |#2|) 152 T ELT) (((-582 (-2 (|:| -1777 (-582 |#2|)) (|:| -1594 |#1|))) |#2| |#2| (-85)) 82 T ELT)) (-1408 (((-582 (-142 |#1|)) |#2| |#1|) 42 T ELT) (((-582 (-142 |#1|)) |#2|) 43 T ELT))) -(((-155 |#1| |#2|) (-10 -7 (-15 -1408 ((-582 (-142 |#1|)) |#2|)) (-15 -1408 ((-582 (-142 |#1|)) |#2| |#1|)) (-15 -1409 ((-582 (-2 (|:| -1777 (-582 |#2|)) (|:| -1594 |#1|))) |#2| |#2| (-85))) (-15 -1409 ((-582 (-2 (|:| -1777 (-582 |#2|)) (|:| -1594 |#1|))) |#2| |#2|)) (-15 -3730 ((-346 |#2|) |#2| |#1| (-85))) (-15 -3730 ((-346 |#2|) |#2| |#1|)) (-15 -3730 ((-346 |#2|) |#2|)) (-15 -1410 (|#2| |#2|)) (-15 -3131 (|#1| |#2|)) (-15 -1411 ((-346 |#2|) |#2| |#1| (-85))) (-15 -1411 ((-346 |#2|) |#2| |#1|)) (-15 -1412 (|#2| |#2|)) (-15 -1413 (|#1| |#2| |#1|)) (-15 -1413 (|#1| |#2|)) (-15 -1414 ((-142 |#1|) |#2|)) (-15 -1415 (|#1| |#1|)) (-15 -1416 ((-2 (|:| |start| |#2|) (|:| -1777 (-346 |#2|))) |#2|))) (-13 (-312) (-754)) (-1153 (-142 |#1|))) (T -155)) -((-1416 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-754))) (-5 *2 (-2 (|:| |start| *3) (|:| -1777 (-346 *3)))) (-5 *1 (-155 *4 *3)) (-4 *3 (-1153 (-142 *4))))) (-1415 (*1 *2 *2) (-12 (-4 *2 (-13 (-312) (-754))) (-5 *1 (-155 *2 *3)) (-4 *3 (-1153 (-142 *2))))) (-1414 (*1 *2 *3) (-12 (-5 *2 (-142 *4)) (-5 *1 (-155 *4 *3)) (-4 *4 (-13 (-312) (-754))) (-4 *3 (-1153 *2)))) (-1413 (*1 *2 *3) (-12 (-4 *2 (-13 (-312) (-754))) (-5 *1 (-155 *2 *3)) (-4 *3 (-1153 (-142 *2))))) (-1413 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-312) (-754))) (-5 *1 (-155 *2 *3)) (-4 *3 (-1153 (-142 *2))))) (-1412 (*1 *2 *2) (-12 (-4 *3 (-13 (-312) (-754))) (-5 *1 (-155 *3 *2)) (-4 *2 (-1153 (-142 *3))))) (-1411 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-312) (-754))) (-5 *2 (-346 *3)) (-5 *1 (-155 *4 *3)) (-4 *3 (-1153 (-142 *4))))) (-1411 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-85)) (-4 *4 (-13 (-312) (-754))) (-5 *2 (-346 *3)) (-5 *1 (-155 *4 *3)) (-4 *3 (-1153 (-142 *4))))) (-3131 (*1 *2 *3) (-12 (-4 *2 (-13 (-312) (-754))) (-5 *1 (-155 *2 *3)) (-4 *3 (-1153 (-142 *2))))) (-1410 (*1 *2 *2) (-12 (-4 *3 (-13 (-312) (-754))) (-5 *1 (-155 *3 *2)) (-4 *2 (-1153 (-142 *3))))) (-3730 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-754))) (-5 *2 (-346 *3)) (-5 *1 (-155 *4 *3)) (-4 *3 (-1153 (-142 *4))))) (-3730 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-312) (-754))) (-5 *2 (-346 *3)) (-5 *1 (-155 *4 *3)) (-4 *3 (-1153 (-142 *4))))) (-3730 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-85)) (-4 *4 (-13 (-312) (-754))) (-5 *2 (-346 *3)) (-5 *1 (-155 *4 *3)) (-4 *3 (-1153 (-142 *4))))) (-1409 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-312) (-754))) (-5 *2 (-582 (-2 (|:| -1777 (-582 *3)) (|:| -1594 *4)))) (-5 *1 (-155 *4 *3)) (-4 *3 (-1153 (-142 *4))))) (-1409 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-312) (-754))) (-5 *2 (-582 (-2 (|:| -1777 (-582 *3)) (|:| -1594 *5)))) (-5 *1 (-155 *5 *3)) (-4 *3 (-1153 (-142 *5))))) (-1408 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-312) (-754))) (-5 *2 (-582 (-142 *4))) (-5 *1 (-155 *4 *3)) (-4 *3 (-1153 (-142 *4))))) (-1408 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-754))) (-5 *2 (-582 (-142 *4))) (-5 *1 (-155 *4 *3)) (-4 *3 (-1153 (-142 *4)))))) -((-1417 (((-3 |#2| "failed") |#2|) 16 T ELT)) (-1418 (((-693) |#2|) 18 T ELT)) (-1419 ((|#2| |#2| |#2|) 20 T ELT))) -(((-156 |#1| |#2|) (-10 -7 (-15 -1417 ((-3 |#2| "failed") |#2|)) (-15 -1418 ((-693) |#2|)) (-15 -1419 (|#2| |#2| |#2|))) (-1127) (-615 |#1|)) (T -156)) -((-1419 (*1 *2 *2 *2) (-12 (-4 *3 (-1127)) (-5 *1 (-156 *3 *2)) (-4 *2 (-615 *3)))) (-1418 (*1 *2 *3) (-12 (-4 *4 (-1127)) (-5 *2 (-693)) (-5 *1 (-156 *4 *3)) (-4 *3 (-615 *4)))) (-1417 (*1 *2 *2) (|partial| -12 (-4 *3 (-1127)) (-5 *1 (-156 *3 *2)) (-4 *2 (-615 *3))))) -((-2567 (((-85) $ $) NIL T ELT)) (-1422 (((-582 (-773)) $) NIL T ELT)) (-3540 (((-445) $) 8 T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-1424 (((-161) $) 10 T ELT)) (-2632 (((-85) $ (-445)) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-1420 (((-631 $) (-445)) 17 T ELT)) (-1423 (((-582 (-85)) $) NIL T ELT)) (-3944 (((-771) $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2520 (((-55) $) 12 T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-157) (-13 (-160) (-10 -8 (-15 -1420 ((-631 $) (-445)))))) (T -157)) -((-1420 (*1 *2 *3) (-12 (-5 *3 (-445)) (-5 *2 (-631 (-157))) (-5 *1 (-157))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-1480 ((|#1| $) 7 T ELT)) (-3944 (((-771) $) 14 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-1421 (((-582 (-1093)) $) 10 T ELT)) (-3055 (((-85) $ $) 12 T ELT))) -(((-158 |#1|) (-13 (-1012) (-10 -8 (-15 -1480 (|#1| $)) (-15 -1421 ((-582 (-1093)) $)))) (-160)) (T -158)) -((-1480 (*1 *2 *1) (-12 (-5 *1 (-158 *2)) (-4 *2 (-160)))) (-1421 (*1 *2 *1) (-12 (-5 *2 (-582 (-1093))) (-5 *1 (-158 *3)) (-4 *3 (-160))))) -((-1422 (((-582 (-773)) $) 16 T ELT)) (-1424 (((-161) $) 8 T ELT)) (-1423 (((-582 (-85)) $) 13 T ELT)) (-2520 (((-55) $) 10 T ELT))) -(((-159 |#1|) (-10 -7 (-15 -1422 ((-582 (-773)) |#1|)) (-15 -1423 ((-582 (-85)) |#1|)) (-15 -1424 ((-161) |#1|)) (-15 -2520 ((-55) |#1|))) (-160)) (T -159)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-1422 (((-582 (-773)) $) 22 T ELT)) (-3540 (((-445) $) 19 T ELT)) (-3241 (((-1071) $) 11 T ELT)) (-1424 (((-161) $) 24 T ELT)) (-2632 (((-85) $ (-445)) 17 T ELT)) (-3242 (((-1032) $) 12 T ELT)) (-1423 (((-582 (-85)) $) 23 T ELT)) (-3944 (((-771) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2520 (((-55) $) 18 T ELT)) (-3055 (((-85) $ $) 8 T ELT))) +((-1699 (*1 *1 *1) (-4 *1 (-147)))) +(-13 (-10 -8 (-15 -1699 ($ $)))) +((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-3129 ((|#1| $) 79 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3774 (($ $) NIL T ELT)) (-3970 (((-347 $) $) NIL T ELT)) (-1607 (((-85) $ $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-2564 (($ $ $) NIL T ELT)) (-1386 (($ $) 21 T ELT)) (-1390 (($ |#1| (-1068 |#1|)) 48 T ELT)) (-3466 (((-3 $ #1#) $) 123 T ELT)) (-2563 (($ $ $) NIL T ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-3722 (((-85) $) NIL T ELT)) (-1387 (((-1068 |#1|) $) 86 T ELT)) (-1389 (((-1068 |#1|) $) 83 T ELT)) (-1388 (((-1068 |#1|) $) 84 T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-1383 (((-1068 |#1|) $) 93 T ELT)) (-1604 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-1890 (($ (-583 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2484 (($ $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3144 (($ (-583 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3731 (((-347 $) $) NIL T ELT)) (-1605 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT)) (-3768 (($ $ (-484)) 96 T ELT)) (-3465 (((-3 $ #1#) $ $) NIL T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-1606 (((-694) $) NIL T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL T ELT)) (-1382 (((-1068 |#1|) $) 94 T ELT)) (-1384 (((-1068 (-349 |#1|)) $) 14 T ELT)) (-2616 (($ (-349 |#1|)) 17 T ELT) (($ |#1| (-1068 |#1|) (-1068 |#1|)) 38 T ELT)) (-2891 (($ $) 98 T ELT)) (-3945 (((-772) $) 139 T ELT) (($ (-484)) 51 T ELT) (($ |#1|) 52 T ELT) (($ (-349 |#1|)) 36 T ELT) (($ (-349 (-484))) NIL T ELT) (($ $) NIL T ELT)) (-3126 (((-694)) 67 T CONST)) (-1264 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-1385 (((-1068 (-349 |#1|)) $) 20 T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) 103 T CONST)) (-2666 (($) 28 T CONST)) (-3056 (((-85) $ $) 35 T ELT)) (-3948 (($ $ $) 121 T ELT)) (-3836 (($ $) 112 T ELT) (($ $ $) 109 T ELT)) (-3838 (($ $ $) 107 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 119 T ELT) (($ $ $) 114 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 116 T ELT) (($ (-349 |#1|) $) 117 T ELT) (($ $ (-349 |#1|)) NIL T ELT) (($ (-349 (-484)) $) NIL T ELT) (($ $ (-349 (-484))) NIL T ELT))) +(((-148 |#1|) (-13 (-38 |#1|) (-38 (-349 |#1|)) (-312) (-10 -8 (-15 -2616 ($ (-349 |#1|))) (-15 -2616 ($ |#1| (-1068 |#1|) (-1068 |#1|))) (-15 -1390 ($ |#1| (-1068 |#1|))) (-15 -1389 ((-1068 |#1|) $)) (-15 -1388 ((-1068 |#1|) $)) (-15 -1387 ((-1068 |#1|) $)) (-15 -3129 (|#1| $)) (-15 -1386 ($ $)) (-15 -1385 ((-1068 (-349 |#1|)) $)) (-15 -1384 ((-1068 (-349 |#1|)) $)) (-15 -1383 ((-1068 |#1|) $)) (-15 -1382 ((-1068 |#1|) $)) (-15 -3768 ($ $ (-484))) (-15 -2891 ($ $)))) (-258)) (T -148)) +((-2616 (*1 *1 *2) (-12 (-5 *2 (-349 *3)) (-4 *3 (-258)) (-5 *1 (-148 *3)))) (-2616 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1068 *2)) (-4 *2 (-258)) (-5 *1 (-148 *2)))) (-1390 (*1 *1 *2 *3) (-12 (-5 *3 (-1068 *2)) (-4 *2 (-258)) (-5 *1 (-148 *2)))) (-1389 (*1 *2 *1) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-148 *3)) (-4 *3 (-258)))) (-1388 (*1 *2 *1) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-148 *3)) (-4 *3 (-258)))) (-1387 (*1 *2 *1) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-148 *3)) (-4 *3 (-258)))) (-3129 (*1 *2 *1) (-12 (-5 *1 (-148 *2)) (-4 *2 (-258)))) (-1386 (*1 *1 *1) (-12 (-5 *1 (-148 *2)) (-4 *2 (-258)))) (-1385 (*1 *2 *1) (-12 (-5 *2 (-1068 (-349 *3))) (-5 *1 (-148 *3)) (-4 *3 (-258)))) (-1384 (*1 *2 *1) (-12 (-5 *2 (-1068 (-349 *3))) (-5 *1 (-148 *3)) (-4 *3 (-258)))) (-1383 (*1 *2 *1) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-148 *3)) (-4 *3 (-258)))) (-1382 (*1 *2 *1) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-148 *3)) (-4 *3 (-258)))) (-3768 (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-148 *3)) (-4 *3 (-258)))) (-2891 (*1 *1 *1) (-12 (-5 *1 (-148 *2)) (-4 *2 (-258))))) +((-1391 (($ (-78) $) 15 T ELT)) (-3221 (((-632 (-78)) (-446) $) 14 T ELT)) (-3945 (((-772) $) 18 T ELT)) (-1392 (((-583 (-78)) $) 8 T ELT))) +(((-149) (-13 (-552 (-772)) (-10 -8 (-15 -1392 ((-583 (-78)) $)) (-15 -1391 ($ (-78) $)) (-15 -3221 ((-632 (-78)) (-446) $))))) (T -149)) +((-1392 (*1 *2 *1) (-12 (-5 *2 (-583 (-78))) (-5 *1 (-149)))) (-1391 (*1 *1 *2 *1) (-12 (-5 *2 (-78)) (-5 *1 (-149)))) (-3221 (*1 *2 *3 *1) (-12 (-5 *3 (-446)) (-5 *2 (-632 (-78))) (-5 *1 (-149))))) +((-1405 (((-1 (-854 |#1|) (-854 |#1|)) |#1|) 38 T ELT)) (-1396 (((-854 |#1|) (-854 |#1|)) 22 T ELT)) (-1401 (((-1 (-854 |#1|) (-854 |#1|)) |#1|) 34 T ELT)) (-1394 (((-854 |#1|) (-854 |#1|)) 20 T ELT)) (-1399 (((-854 |#1|) (-854 |#1|)) 28 T ELT)) (-1398 (((-854 |#1|) (-854 |#1|)) 27 T ELT)) (-1397 (((-854 |#1|) (-854 |#1|)) 26 T ELT)) (-1402 (((-1 (-854 |#1|) (-854 |#1|)) |#1|) 35 T ELT)) (-1400 (((-1 (-854 |#1|) (-854 |#1|)) |#1|) 33 T ELT)) (-1642 (((-1 (-854 |#1|) (-854 |#1|)) |#1|) 32 T ELT)) (-1395 (((-854 |#1|) (-854 |#1|)) 21 T ELT)) (-1406 (((-1 (-854 |#1|) (-854 |#1|)) |#1| |#1|) 41 T ELT)) (-1393 (((-854 |#1|) (-854 |#1|)) 8 T ELT)) (-1404 (((-1 (-854 |#1|) (-854 |#1|)) |#1|) 37 T ELT)) (-1403 (((-1 (-854 |#1|) (-854 |#1|)) |#1|) 36 T ELT))) +(((-150 |#1|) (-10 -7 (-15 -1393 ((-854 |#1|) (-854 |#1|))) (-15 -1394 ((-854 |#1|) (-854 |#1|))) (-15 -1395 ((-854 |#1|) (-854 |#1|))) (-15 -1396 ((-854 |#1|) (-854 |#1|))) (-15 -1397 ((-854 |#1|) (-854 |#1|))) (-15 -1398 ((-854 |#1|) (-854 |#1|))) (-15 -1399 ((-854 |#1|) (-854 |#1|))) (-15 -1642 ((-1 (-854 |#1|) (-854 |#1|)) |#1|)) (-15 -1400 ((-1 (-854 |#1|) (-854 |#1|)) |#1|)) (-15 -1401 ((-1 (-854 |#1|) (-854 |#1|)) |#1|)) (-15 -1402 ((-1 (-854 |#1|) (-854 |#1|)) |#1|)) (-15 -1403 ((-1 (-854 |#1|) (-854 |#1|)) |#1|)) (-15 -1404 ((-1 (-854 |#1|) (-854 |#1|)) |#1|)) (-15 -1405 ((-1 (-854 |#1|) (-854 |#1|)) |#1|)) (-15 -1406 ((-1 (-854 |#1|) (-854 |#1|)) |#1| |#1|))) (-13 (-312) (-1114) (-915))) (T -150)) +((-1406 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-854 *3) (-854 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-312) (-1114) (-915))))) (-1405 (*1 *2 *3) (-12 (-5 *2 (-1 (-854 *3) (-854 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-312) (-1114) (-915))))) (-1404 (*1 *2 *3) (-12 (-5 *2 (-1 (-854 *3) (-854 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-312) (-1114) (-915))))) (-1403 (*1 *2 *3) (-12 (-5 *2 (-1 (-854 *3) (-854 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-312) (-1114) (-915))))) (-1402 (*1 *2 *3) (-12 (-5 *2 (-1 (-854 *3) (-854 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-312) (-1114) (-915))))) (-1401 (*1 *2 *3) (-12 (-5 *2 (-1 (-854 *3) (-854 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-312) (-1114) (-915))))) (-1400 (*1 *2 *3) (-12 (-5 *2 (-1 (-854 *3) (-854 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-312) (-1114) (-915))))) (-1642 (*1 *2 *3) (-12 (-5 *2 (-1 (-854 *3) (-854 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-312) (-1114) (-915))))) (-1399 (*1 *2 *2) (-12 (-5 *2 (-854 *3)) (-4 *3 (-13 (-312) (-1114) (-915))) (-5 *1 (-150 *3)))) (-1398 (*1 *2 *2) (-12 (-5 *2 (-854 *3)) (-4 *3 (-13 (-312) (-1114) (-915))) (-5 *1 (-150 *3)))) (-1397 (*1 *2 *2) (-12 (-5 *2 (-854 *3)) (-4 *3 (-13 (-312) (-1114) (-915))) (-5 *1 (-150 *3)))) (-1396 (*1 *2 *2) (-12 (-5 *2 (-854 *3)) (-4 *3 (-13 (-312) (-1114) (-915))) (-5 *1 (-150 *3)))) (-1395 (*1 *2 *2) (-12 (-5 *2 (-854 *3)) (-4 *3 (-13 (-312) (-1114) (-915))) (-5 *1 (-150 *3)))) (-1394 (*1 *2 *2) (-12 (-5 *2 (-854 *3)) (-4 *3 (-13 (-312) (-1114) (-915))) (-5 *1 (-150 *3)))) (-1393 (*1 *2 *2) (-12 (-5 *2 (-854 *3)) (-4 *3 (-13 (-312) (-1114) (-915))) (-5 *1 (-150 *3))))) +((-2449 ((|#2| |#3|) 28 T ELT))) +(((-151 |#1| |#2| |#3|) (-10 -7 (-15 -2449 (|#2| |#3|))) (-146) (-1154 |#1|) (-661 |#1| |#2|)) (T -151)) +((-2449 (*1 *2 *3) (-12 (-4 *4 (-146)) (-4 *2 (-1154 *4)) (-5 *1 (-151 *4 *2 *3)) (-4 *3 (-661 *4 *2))))) +((-2796 (((-798 |#1| |#3|) |#3| (-800 |#1|) (-798 |#1| |#3|)) 44 (|has| (-857 |#2|) (-796 |#1|)) ELT))) +(((-152 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-857 |#2|) (-796 |#1|)) (-15 -2796 ((-798 |#1| |#3|) |#3| (-800 |#1|) (-798 |#1| |#3|))) |%noBranch|)) (-1013) (-13 (-796 |#1|) (-146)) (-139 |#2|)) (T -152)) +((-2796 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-798 *5 *3)) (-5 *4 (-800 *5)) (-4 *5 (-1013)) (-4 *3 (-139 *6)) (-4 (-857 *6) (-796 *5)) (-4 *6 (-13 (-796 *5) (-146))) (-5 *1 (-152 *5 *6 *3))))) +((-1408 (((-583 |#1|) (-583 |#1|) |#1|) 41 T ELT)) (-1407 (((-583 |#1|) |#1| (-583 |#1|)) 20 T ELT)) (-2077 (((-583 |#1|) (-583 (-583 |#1|)) (-583 |#1|)) 36 T ELT) ((|#1| (-583 |#1|) (-583 |#1|)) 32 T ELT))) +(((-153 |#1|) (-10 -7 (-15 -1407 ((-583 |#1|) |#1| (-583 |#1|))) (-15 -2077 (|#1| (-583 |#1|) (-583 |#1|))) (-15 -2077 ((-583 |#1|) (-583 (-583 |#1|)) (-583 |#1|))) (-15 -1408 ((-583 |#1|) (-583 |#1|) |#1|))) (-258)) (T -153)) +((-1408 (*1 *2 *2 *3) (-12 (-5 *2 (-583 *3)) (-4 *3 (-258)) (-5 *1 (-153 *3)))) (-2077 (*1 *2 *3 *2) (-12 (-5 *3 (-583 (-583 *4))) (-5 *2 (-583 *4)) (-4 *4 (-258)) (-5 *1 (-153 *4)))) (-2077 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *2)) (-5 *1 (-153 *2)) (-4 *2 (-258)))) (-1407 (*1 *2 *3 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-258)) (-5 *1 (-153 *3))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3318 (((-1129) $) 14 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3206 (((-1048) $) 11 T ELT)) (-3945 (((-772) $) 21 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT))) +(((-154) (-13 (-995) (-10 -8 (-15 -3206 ((-1048) $)) (-15 -3318 ((-1129) $))))) (T -154)) +((-3206 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-154)))) (-3318 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-154))))) +((-1417 (((-2 (|:| |start| |#2|) (|:| -1778 (-347 |#2|))) |#2|) 66 T ELT)) (-1416 ((|#1| |#1|) 58 T ELT)) (-1415 (((-142 |#1|) |#2|) 94 T ELT)) (-1414 ((|#1| |#2|) 137 T ELT) ((|#1| |#2| |#1|) 90 T ELT)) (-1413 ((|#2| |#2|) 91 T ELT)) (-1412 (((-347 |#2|) |#2| |#1|) 119 T ELT) (((-347 |#2|) |#2| |#1| (-85)) 88 T ELT)) (-3132 ((|#1| |#2|) 118 T ELT)) (-1411 ((|#2| |#2|) 131 T ELT)) (-3731 (((-347 |#2|) |#2|) 154 T ELT) (((-347 |#2|) |#2| |#1|) 33 T ELT) (((-347 |#2|) |#2| |#1| (-85)) 153 T ELT)) (-1410 (((-583 (-2 (|:| -1778 (-583 |#2|)) (|:| -1595 |#1|))) |#2| |#2|) 152 T ELT) (((-583 (-2 (|:| -1778 (-583 |#2|)) (|:| -1595 |#1|))) |#2| |#2| (-85)) 82 T ELT)) (-1409 (((-583 (-142 |#1|)) |#2| |#1|) 42 T ELT) (((-583 (-142 |#1|)) |#2|) 43 T ELT))) +(((-155 |#1| |#2|) (-10 -7 (-15 -1409 ((-583 (-142 |#1|)) |#2|)) (-15 -1409 ((-583 (-142 |#1|)) |#2| |#1|)) (-15 -1410 ((-583 (-2 (|:| -1778 (-583 |#2|)) (|:| -1595 |#1|))) |#2| |#2| (-85))) (-15 -1410 ((-583 (-2 (|:| -1778 (-583 |#2|)) (|:| -1595 |#1|))) |#2| |#2|)) (-15 -3731 ((-347 |#2|) |#2| |#1| (-85))) (-15 -3731 ((-347 |#2|) |#2| |#1|)) (-15 -3731 ((-347 |#2|) |#2|)) (-15 -1411 (|#2| |#2|)) (-15 -3132 (|#1| |#2|)) (-15 -1412 ((-347 |#2|) |#2| |#1| (-85))) (-15 -1412 ((-347 |#2|) |#2| |#1|)) (-15 -1413 (|#2| |#2|)) (-15 -1414 (|#1| |#2| |#1|)) (-15 -1414 (|#1| |#2|)) (-15 -1415 ((-142 |#1|) |#2|)) (-15 -1416 (|#1| |#1|)) (-15 -1417 ((-2 (|:| |start| |#2|) (|:| -1778 (-347 |#2|))) |#2|))) (-13 (-312) (-755)) (-1154 (-142 |#1|))) (T -155)) +((-1417 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-755))) (-5 *2 (-2 (|:| |start| *3) (|:| -1778 (-347 *3)))) (-5 *1 (-155 *4 *3)) (-4 *3 (-1154 (-142 *4))))) (-1416 (*1 *2 *2) (-12 (-4 *2 (-13 (-312) (-755))) (-5 *1 (-155 *2 *3)) (-4 *3 (-1154 (-142 *2))))) (-1415 (*1 *2 *3) (-12 (-5 *2 (-142 *4)) (-5 *1 (-155 *4 *3)) (-4 *4 (-13 (-312) (-755))) (-4 *3 (-1154 *2)))) (-1414 (*1 *2 *3) (-12 (-4 *2 (-13 (-312) (-755))) (-5 *1 (-155 *2 *3)) (-4 *3 (-1154 (-142 *2))))) (-1414 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-312) (-755))) (-5 *1 (-155 *2 *3)) (-4 *3 (-1154 (-142 *2))))) (-1413 (*1 *2 *2) (-12 (-4 *3 (-13 (-312) (-755))) (-5 *1 (-155 *3 *2)) (-4 *2 (-1154 (-142 *3))))) (-1412 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-312) (-755))) (-5 *2 (-347 *3)) (-5 *1 (-155 *4 *3)) (-4 *3 (-1154 (-142 *4))))) (-1412 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-85)) (-4 *4 (-13 (-312) (-755))) (-5 *2 (-347 *3)) (-5 *1 (-155 *4 *3)) (-4 *3 (-1154 (-142 *4))))) (-3132 (*1 *2 *3) (-12 (-4 *2 (-13 (-312) (-755))) (-5 *1 (-155 *2 *3)) (-4 *3 (-1154 (-142 *2))))) (-1411 (*1 *2 *2) (-12 (-4 *3 (-13 (-312) (-755))) (-5 *1 (-155 *3 *2)) (-4 *2 (-1154 (-142 *3))))) (-3731 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-755))) (-5 *2 (-347 *3)) (-5 *1 (-155 *4 *3)) (-4 *3 (-1154 (-142 *4))))) (-3731 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-312) (-755))) (-5 *2 (-347 *3)) (-5 *1 (-155 *4 *3)) (-4 *3 (-1154 (-142 *4))))) (-3731 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-85)) (-4 *4 (-13 (-312) (-755))) (-5 *2 (-347 *3)) (-5 *1 (-155 *4 *3)) (-4 *3 (-1154 (-142 *4))))) (-1410 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-312) (-755))) (-5 *2 (-583 (-2 (|:| -1778 (-583 *3)) (|:| -1595 *4)))) (-5 *1 (-155 *4 *3)) (-4 *3 (-1154 (-142 *4))))) (-1410 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-312) (-755))) (-5 *2 (-583 (-2 (|:| -1778 (-583 *3)) (|:| -1595 *5)))) (-5 *1 (-155 *5 *3)) (-4 *3 (-1154 (-142 *5))))) (-1409 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-312) (-755))) (-5 *2 (-583 (-142 *4))) (-5 *1 (-155 *4 *3)) (-4 *3 (-1154 (-142 *4))))) (-1409 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-755))) (-5 *2 (-583 (-142 *4))) (-5 *1 (-155 *4 *3)) (-4 *3 (-1154 (-142 *4)))))) +((-1418 (((-3 |#2| "failed") |#2|) 16 T ELT)) (-1419 (((-694) |#2|) 18 T ELT)) (-1420 ((|#2| |#2| |#2|) 20 T ELT))) +(((-156 |#1| |#2|) (-10 -7 (-15 -1418 ((-3 |#2| "failed") |#2|)) (-15 -1419 ((-694) |#2|)) (-15 -1420 (|#2| |#2| |#2|))) (-1128) (-616 |#1|)) (T -156)) +((-1420 (*1 *2 *2 *2) (-12 (-4 *3 (-1128)) (-5 *1 (-156 *3 *2)) (-4 *2 (-616 *3)))) (-1419 (*1 *2 *3) (-12 (-4 *4 (-1128)) (-5 *2 (-694)) (-5 *1 (-156 *4 *3)) (-4 *3 (-616 *4)))) (-1418 (*1 *2 *2) (|partial| -12 (-4 *3 (-1128)) (-5 *1 (-156 *3 *2)) (-4 *2 (-616 *3))))) +((-2568 (((-85) $ $) NIL T ELT)) (-1423 (((-583 (-774)) $) NIL T ELT)) (-3541 (((-446) $) 8 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-1425 (((-161) $) 10 T ELT)) (-2633 (((-85) $ (-446)) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1421 (((-632 $) (-446)) 17 T ELT)) (-1424 (((-583 (-85)) $) NIL T ELT)) (-3945 (((-772) $) NIL T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2521 (((-55) $) 12 T ELT)) (-3056 (((-85) $ $) NIL T ELT))) +(((-157) (-13 (-160) (-10 -8 (-15 -1421 ((-632 $) (-446)))))) (T -157)) +((-1421 (*1 *2 *3) (-12 (-5 *3 (-446)) (-5 *2 (-632 (-157))) (-5 *1 (-157))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1481 ((|#1| $) 7 T ELT)) (-3945 (((-772) $) 14 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-1422 (((-583 (-1094)) $) 10 T ELT)) (-3056 (((-85) $ $) 12 T ELT))) +(((-158 |#1|) (-13 (-1013) (-10 -8 (-15 -1481 (|#1| $)) (-15 -1422 ((-583 (-1094)) $)))) (-160)) (T -158)) +((-1481 (*1 *2 *1) (-12 (-5 *1 (-158 *2)) (-4 *2 (-160)))) (-1422 (*1 *2 *1) (-12 (-5 *2 (-583 (-1094))) (-5 *1 (-158 *3)) (-4 *3 (-160))))) +((-1423 (((-583 (-774)) $) 16 T ELT)) (-1425 (((-161) $) 8 T ELT)) (-1424 (((-583 (-85)) $) 13 T ELT)) (-2521 (((-55) $) 10 T ELT))) +(((-159 |#1|) (-10 -7 (-15 -1423 ((-583 (-774)) |#1|)) (-15 -1424 ((-583 (-85)) |#1|)) (-15 -1425 ((-161) |#1|)) (-15 -2521 ((-55) |#1|))) (-160)) (T -159)) +NIL +((-2568 (((-85) $ $) 7 T ELT)) (-1423 (((-583 (-774)) $) 22 T ELT)) (-3541 (((-446) $) 19 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-1425 (((-161) $) 24 T ELT)) (-2633 (((-85) $ (-446)) 17 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-1424 (((-583 (-85)) $) 23 T ELT)) (-3945 (((-772) $) 13 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-2521 (((-55) $) 18 T ELT)) (-3056 (((-85) $ $) 8 T ELT))) (((-160) (-113)) (T -160)) -((-1424 (*1 *2 *1) (-12 (-4 *1 (-160)) (-5 *2 (-161)))) (-1423 (*1 *2 *1) (-12 (-4 *1 (-160)) (-5 *2 (-582 (-85))))) (-1422 (*1 *2 *1) (-12 (-4 *1 (-160)) (-5 *2 (-582 (-773)))))) -(-13 (-746 (-445)) (-10 -8 (-15 -1424 ((-161) $)) (-15 -1423 ((-582 (-85)) $)) (-15 -1422 ((-582 (-773)) $)))) -(((-72) . T) ((-551 (-771)) . T) ((-13) . T) ((-746 (-445)) . T) ((-1012) . T) ((-1127) . T)) -((-2567 (((-85) $ $) NIL T ELT)) (-7 (($) 8 T CONST)) (-3241 (((-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-8 (($) 7 T CONST)) (-3944 (((-771) $) 12 T ELT)) (-9 (($) 6 T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) 10 T ELT))) -(((-161) (-13 (-1012) (-10 -8 (-15 -9 ($) -3950) (-15 -8 ($) -3950) (-15 -7 ($) -3950)))) (T -161)) +((-1425 (*1 *2 *1) (-12 (-4 *1 (-160)) (-5 *2 (-161)))) (-1424 (*1 *2 *1) (-12 (-4 *1 (-160)) (-5 *2 (-583 (-85))))) (-1423 (*1 *2 *1) (-12 (-4 *1 (-160)) (-5 *2 (-583 (-774)))))) +(-13 (-747 (-446)) (-10 -8 (-15 -1425 ((-161) $)) (-15 -1424 ((-583 (-85)) $)) (-15 -1423 ((-583 (-774)) $)))) +(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-747 (-446)) . T) ((-1013) . T) ((-1128) . T)) +((-2568 (((-85) $ $) NIL T ELT)) (-7 (($) 8 T CONST)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-8 (($) 7 T CONST)) (-3945 (((-772) $) 12 T ELT)) (-9 (($) 6 T CONST)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 10 T ELT))) +(((-161) (-13 (-1013) (-10 -8 (-15 -9 ($) -3951) (-15 -8 ($) -3951) (-15 -7 ($) -3951)))) (T -161)) ((-9 (*1 *1) (-5 *1 (-161))) (-8 (*1 *1) (-5 *1 (-161))) (-7 (*1 *1) (-5 *1 (-161)))) -((-3640 ((|#2| |#2|) 28 T ELT)) (-3643 (((-85) |#2|) 19 T ELT)) (-3641 (((-265 |#1|) |#2|) 12 T ELT)) (-3642 (((-265 |#1|) |#2|) 14 T ELT)) (-3638 ((|#2| |#2| (-1088)) 69 T ELT) ((|#2| |#2|) 70 T ELT)) (-3644 (((-142 (-265 |#1|)) |#2|) 10 T ELT)) (-3639 ((|#2| |#2| (-1088)) 66 T ELT) ((|#2| |#2|) 60 T ELT))) -(((-162 |#1| |#2|) (-10 -7 (-15 -3638 (|#2| |#2|)) (-15 -3638 (|#2| |#2| (-1088))) (-15 -3639 (|#2| |#2|)) (-15 -3639 (|#2| |#2| (-1088))) (-15 -3641 ((-265 |#1|) |#2|)) (-15 -3642 ((-265 |#1|) |#2|)) (-15 -3643 ((-85) |#2|)) (-15 -3640 (|#2| |#2|)) (-15 -3644 ((-142 (-265 |#1|)) |#2|))) (-13 (-494) (-949 (-483))) (-13 (-27) (-1113) (-362 (-142 |#1|)))) (T -162)) -((-3644 (*1 *2 *3) (-12 (-4 *4 (-13 (-494) (-949 (-483)))) (-5 *2 (-142 (-265 *4))) (-5 *1 (-162 *4 *3)) (-4 *3 (-13 (-27) (-1113) (-362 (-142 *4)))))) (-3640 (*1 *2 *2) (-12 (-4 *3 (-13 (-494) (-949 (-483)))) (-5 *1 (-162 *3 *2)) (-4 *2 (-13 (-27) (-1113) (-362 (-142 *3)))))) (-3643 (*1 *2 *3) (-12 (-4 *4 (-13 (-494) (-949 (-483)))) (-5 *2 (-85)) (-5 *1 (-162 *4 *3)) (-4 *3 (-13 (-27) (-1113) (-362 (-142 *4)))))) (-3642 (*1 *2 *3) (-12 (-4 *4 (-13 (-494) (-949 (-483)))) (-5 *2 (-265 *4)) (-5 *1 (-162 *4 *3)) (-4 *3 (-13 (-27) (-1113) (-362 (-142 *4)))))) (-3641 (*1 *2 *3) (-12 (-4 *4 (-13 (-494) (-949 (-483)))) (-5 *2 (-265 *4)) (-5 *1 (-162 *4 *3)) (-4 *3 (-13 (-27) (-1113) (-362 (-142 *4)))))) (-3639 (*1 *2 *2 *3) (-12 (-5 *3 (-1088)) (-4 *4 (-13 (-494) (-949 (-483)))) (-5 *1 (-162 *4 *2)) (-4 *2 (-13 (-27) (-1113) (-362 (-142 *4)))))) (-3639 (*1 *2 *2) (-12 (-4 *3 (-13 (-494) (-949 (-483)))) (-5 *1 (-162 *3 *2)) (-4 *2 (-13 (-27) (-1113) (-362 (-142 *3)))))) (-3638 (*1 *2 *2 *3) (-12 (-5 *3 (-1088)) (-4 *4 (-13 (-494) (-949 (-483)))) (-5 *1 (-162 *4 *2)) (-4 *2 (-13 (-27) (-1113) (-362 (-142 *4)))))) (-3638 (*1 *2 *2) (-12 (-4 *3 (-13 (-494) (-949 (-483)))) (-5 *1 (-162 *3 *2)) (-4 *2 (-13 (-27) (-1113) (-362 (-142 *3))))))) -((-1428 (((-1177 (-629 (-856 |#1|))) (-1177 (-629 |#1|))) 26 T ELT)) (-3944 (((-1177 (-629 (-348 (-856 |#1|)))) (-1177 (-629 |#1|))) 37 T ELT))) -(((-163 |#1|) (-10 -7 (-15 -1428 ((-1177 (-629 (-856 |#1|))) (-1177 (-629 |#1|)))) (-15 -3944 ((-1177 (-629 (-348 (-856 |#1|)))) (-1177 (-629 |#1|))))) (-146)) (T -163)) -((-3944 (*1 *2 *3) (-12 (-5 *3 (-1177 (-629 *4))) (-4 *4 (-146)) (-5 *2 (-1177 (-629 (-348 (-856 *4))))) (-5 *1 (-163 *4)))) (-1428 (*1 *2 *3) (-12 (-5 *3 (-1177 (-629 *4))) (-4 *4 (-146)) (-5 *2 (-1177 (-629 (-856 *4)))) (-5 *1 (-163 *4))))) -((-1436 (((-1090 (-348 (-483))) (-1090 (-348 (-483))) (-1090 (-348 (-483)))) 93 T ELT)) (-1438 (((-1090 (-348 (-483))) (-582 (-483)) (-582 (-483))) 106 T ELT)) (-1429 (((-1090 (-348 (-483))) (-829)) 54 T ELT)) (-3852 (((-1090 (-348 (-483))) (-829)) 79 T ELT)) (-3766 (((-348 (-483)) (-1090 (-348 (-483)))) 89 T ELT)) (-1430 (((-1090 (-348 (-483))) (-829)) 37 T ELT)) (-1433 (((-1090 (-348 (-483))) (-829)) 66 T ELT)) (-1432 (((-1090 (-348 (-483))) (-829)) 61 T ELT)) (-1435 (((-1090 (-348 (-483))) (-1090 (-348 (-483))) (-1090 (-348 (-483)))) 87 T ELT)) (-2890 (((-1090 (-348 (-483))) (-829)) 29 T ELT)) (-1434 (((-348 (-483)) (-1090 (-348 (-483))) (-1090 (-348 (-483)))) 91 T ELT)) (-1431 (((-1090 (-348 (-483))) (-829)) 35 T ELT)) (-1437 (((-1090 (-348 (-483))) (-582 (-829))) 100 T ELT))) -(((-164) (-10 -7 (-15 -2890 ((-1090 (-348 (-483))) (-829))) (-15 -1429 ((-1090 (-348 (-483))) (-829))) (-15 -1430 ((-1090 (-348 (-483))) (-829))) (-15 -1431 ((-1090 (-348 (-483))) (-829))) (-15 -1432 ((-1090 (-348 (-483))) (-829))) (-15 -1433 ((-1090 (-348 (-483))) (-829))) (-15 -3852 ((-1090 (-348 (-483))) (-829))) (-15 -1434 ((-348 (-483)) (-1090 (-348 (-483))) (-1090 (-348 (-483))))) (-15 -1435 ((-1090 (-348 (-483))) (-1090 (-348 (-483))) (-1090 (-348 (-483))))) (-15 -3766 ((-348 (-483)) (-1090 (-348 (-483))))) (-15 -1436 ((-1090 (-348 (-483))) (-1090 (-348 (-483))) (-1090 (-348 (-483))))) (-15 -1437 ((-1090 (-348 (-483))) (-582 (-829)))) (-15 -1438 ((-1090 (-348 (-483))) (-582 (-483)) (-582 (-483)))))) (T -164)) -((-1438 (*1 *2 *3 *3) (-12 (-5 *3 (-582 (-483))) (-5 *2 (-1090 (-348 (-483)))) (-5 *1 (-164)))) (-1437 (*1 *2 *3) (-12 (-5 *3 (-582 (-829))) (-5 *2 (-1090 (-348 (-483)))) (-5 *1 (-164)))) (-1436 (*1 *2 *2 *2) (-12 (-5 *2 (-1090 (-348 (-483)))) (-5 *1 (-164)))) (-3766 (*1 *2 *3) (-12 (-5 *3 (-1090 (-348 (-483)))) (-5 *2 (-348 (-483))) (-5 *1 (-164)))) (-1435 (*1 *2 *2 *2) (-12 (-5 *2 (-1090 (-348 (-483)))) (-5 *1 (-164)))) (-1434 (*1 *2 *3 *3) (-12 (-5 *3 (-1090 (-348 (-483)))) (-5 *2 (-348 (-483))) (-5 *1 (-164)))) (-3852 (*1 *2 *3) (-12 (-5 *3 (-829)) (-5 *2 (-1090 (-348 (-483)))) (-5 *1 (-164)))) (-1433 (*1 *2 *3) (-12 (-5 *3 (-829)) (-5 *2 (-1090 (-348 (-483)))) (-5 *1 (-164)))) (-1432 (*1 *2 *3) (-12 (-5 *3 (-829)) (-5 *2 (-1090 (-348 (-483)))) (-5 *1 (-164)))) (-1431 (*1 *2 *3) (-12 (-5 *3 (-829)) (-5 *2 (-1090 (-348 (-483)))) (-5 *1 (-164)))) (-1430 (*1 *2 *3) (-12 (-5 *3 (-829)) (-5 *2 (-1090 (-348 (-483)))) (-5 *1 (-164)))) (-1429 (*1 *2 *3) (-12 (-5 *3 (-829)) (-5 *2 (-1090 (-348 (-483)))) (-5 *1 (-164)))) (-2890 (*1 *2 *3) (-12 (-5 *3 (-829)) (-5 *2 (-1090 (-348 (-483)))) (-5 *1 (-164))))) -((-1440 (((-346 (-1083 (-483))) (-483)) 38 T ELT)) (-1439 (((-582 (-1083 (-483))) (-483)) 33 T ELT)) (-2800 (((-1083 (-483)) (-483)) 28 T ELT))) -(((-165) (-10 -7 (-15 -1439 ((-582 (-1083 (-483))) (-483))) (-15 -2800 ((-1083 (-483)) (-483))) (-15 -1440 ((-346 (-1083 (-483))) (-483))))) (T -165)) -((-1440 (*1 *2 *3) (-12 (-5 *2 (-346 (-1083 (-483)))) (-5 *1 (-165)) (-5 *3 (-483)))) (-2800 (*1 *2 *3) (-12 (-5 *2 (-1083 (-483))) (-5 *1 (-165)) (-5 *3 (-483)))) (-1439 (*1 *2 *3) (-12 (-5 *2 (-582 (-1083 (-483)))) (-5 *1 (-165)) (-5 *3 (-483))))) -((-2567 (((-85) $ $) NIL T ELT)) (-1441 ((|#2| $ (-693) |#2|) 11 T ELT)) (-3111 ((|#2| $ (-693)) 10 T ELT)) (-3612 (($) 8 T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3944 (((-771) $) 23 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) 13 T ELT))) -(((-166 |#1| |#2|) (-13 (-1012) (-10 -8 (-15 -3612 ($)) (-15 -3111 (|#2| $ (-693))) (-15 -1441 (|#2| $ (-693) |#2|)))) (-829) (-1012)) (T -166)) -((-3612 (*1 *1) (-12 (-5 *1 (-166 *2 *3)) (-14 *2 (-829)) (-4 *3 (-1012)))) (-3111 (*1 *2 *1 *3) (-12 (-5 *3 (-693)) (-4 *2 (-1012)) (-5 *1 (-166 *4 *2)) (-14 *4 (-829)))) (-1441 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-693)) (-5 *1 (-166 *4 *2)) (-14 *4 (-829)) (-4 *2 (-1012))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-1962 (((-1183) $) 36 T ELT) (((-1183) $ (-829) (-829)) 40 T ELT)) (-3798 (($ $ (-901)) 19 T ELT) (((-203 (-1071)) $ (-1088)) 15 T ELT)) (-3615 (((-1183) $) 34 T ELT)) (-3944 (((-771) $) 31 T ELT) (($ (-582 |#1|)) 8 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-3835 (($ $ $) 26 T ELT)) (-3837 (($ $ $) 22 T ELT))) -(((-167 |#1|) (-13 (-1012) (-554 (-582 |#1|)) (-10 -8 (-15 -3798 ($ $ (-901))) (-15 -3798 ((-203 (-1071)) $ (-1088))) (-15 -3837 ($ $ $)) (-15 -3835 ($ $ $)) (-15 -3615 ((-1183) $)) (-15 -1962 ((-1183) $)) (-15 -1962 ((-1183) $ (-829) (-829))))) (-13 (-755) (-10 -8 (-15 -3798 ((-1071) $ (-1088))) (-15 -3615 ((-1183) $)) (-15 -1962 ((-1183) $))))) (T -167)) -((-3798 (*1 *1 *1 *2) (-12 (-5 *2 (-901)) (-5 *1 (-167 *3)) (-4 *3 (-13 (-755) (-10 -8 (-15 -3798 ((-1071) $ (-1088))) (-15 -3615 ((-1183) $)) (-15 -1962 ((-1183) $))))))) (-3798 (*1 *2 *1 *3) (-12 (-5 *3 (-1088)) (-5 *2 (-203 (-1071))) (-5 *1 (-167 *4)) (-4 *4 (-13 (-755) (-10 -8 (-15 -3798 ((-1071) $ *3)) (-15 -3615 ((-1183) $)) (-15 -1962 ((-1183) $))))))) (-3837 (*1 *1 *1 *1) (-12 (-5 *1 (-167 *2)) (-4 *2 (-13 (-755) (-10 -8 (-15 -3798 ((-1071) $ (-1088))) (-15 -3615 ((-1183) $)) (-15 -1962 ((-1183) $))))))) (-3835 (*1 *1 *1 *1) (-12 (-5 *1 (-167 *2)) (-4 *2 (-13 (-755) (-10 -8 (-15 -3798 ((-1071) $ (-1088))) (-15 -3615 ((-1183) $)) (-15 -1962 ((-1183) $))))))) (-3615 (*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-167 *3)) (-4 *3 (-13 (-755) (-10 -8 (-15 -3798 ((-1071) $ (-1088))) (-15 -3615 (*2 $)) (-15 -1962 (*2 $))))))) (-1962 (*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-167 *3)) (-4 *3 (-13 (-755) (-10 -8 (-15 -3798 ((-1071) $ (-1088))) (-15 -3615 (*2 $)) (-15 -1962 (*2 $))))))) (-1962 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-829)) (-5 *2 (-1183)) (-5 *1 (-167 *4)) (-4 *4 (-13 (-755) (-10 -8 (-15 -3798 ((-1071) $ (-1088))) (-15 -3615 (*2 $)) (-15 -1962 (*2 $)))))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3135 (((-693)) NIL T ELT)) (-2993 (($) NIL T ELT)) (-2530 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2856 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2009 (((-829) $) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-2399 (($ (-829)) 10 T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-2850 (($ (-576 |#1|)) 11 T ELT)) (-3944 (((-771) $) 18 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2565 (((-85) $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-2683 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL T ELT))) -(((-168 |#1|) (-13 (-751) (-10 -8 (-15 -2850 ($ (-576 |#1|))))) (-582 (-1088))) (T -168)) -((-2850 (*1 *1 *2) (-12 (-5 *2 (-576 *3)) (-14 *3 (-582 (-1088))) (-5 *1 (-168 *3))))) -((-1442 ((|#2| |#4| (-1 |#2| |#2|)) 49 T ELT))) -(((-169 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1442 (|#2| |#4| (-1 |#2| |#2|)))) (-312) (-1153 |#1|) (-1153 (-348 |#2|)) (-291 |#1| |#2| |#3|)) (T -169)) -((-1442 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-312)) (-4 *6 (-1153 (-348 *2))) (-4 *2 (-1153 *5)) (-5 *1 (-169 *5 *2 *6 *3)) (-4 *3 (-291 *5 *2 *6))))) -((-1446 ((|#2| |#2| (-693) |#2|) 55 T ELT)) (-1445 ((|#2| |#2| (-693) |#2|) 51 T ELT)) (-2370 (((-582 |#2|) (-582 (-2 (|:| |deg| (-693)) (|:| -2574 |#2|)))) 79 T ELT)) (-1444 (((-582 (-2 (|:| |deg| (-693)) (|:| -2574 |#2|))) |#2|) 72 T ELT)) (-1447 (((-85) |#2|) 70 T ELT)) (-3731 (((-346 |#2|) |#2|) 92 T ELT)) (-3730 (((-346 |#2|) |#2|) 91 T ELT)) (-2371 ((|#2| |#2| (-693) |#2|) 49 T ELT)) (-1443 (((-2 (|:| |cont| |#1|) (|:| -1777 (-582 (-2 (|:| |irr| |#2|) (|:| -2394 (-483)))))) |#2| (-85)) 86 T ELT))) -(((-170 |#1| |#2|) (-10 -7 (-15 -3730 ((-346 |#2|) |#2|)) (-15 -3731 ((-346 |#2|) |#2|)) (-15 -1443 ((-2 (|:| |cont| |#1|) (|:| -1777 (-582 (-2 (|:| |irr| |#2|) (|:| -2394 (-483)))))) |#2| (-85))) (-15 -1444 ((-582 (-2 (|:| |deg| (-693)) (|:| -2574 |#2|))) |#2|)) (-15 -2370 ((-582 |#2|) (-582 (-2 (|:| |deg| (-693)) (|:| -2574 |#2|))))) (-15 -2371 (|#2| |#2| (-693) |#2|)) (-15 -1445 (|#2| |#2| (-693) |#2|)) (-15 -1446 (|#2| |#2| (-693) |#2|)) (-15 -1447 ((-85) |#2|))) (-299) (-1153 |#1|)) (T -170)) -((-1447 (*1 *2 *3) (-12 (-4 *4 (-299)) (-5 *2 (-85)) (-5 *1 (-170 *4 *3)) (-4 *3 (-1153 *4)))) (-1446 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-693)) (-4 *4 (-299)) (-5 *1 (-170 *4 *2)) (-4 *2 (-1153 *4)))) (-1445 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-693)) (-4 *4 (-299)) (-5 *1 (-170 *4 *2)) (-4 *2 (-1153 *4)))) (-2371 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-693)) (-4 *4 (-299)) (-5 *1 (-170 *4 *2)) (-4 *2 (-1153 *4)))) (-2370 (*1 *2 *3) (-12 (-5 *3 (-582 (-2 (|:| |deg| (-693)) (|:| -2574 *5)))) (-4 *5 (-1153 *4)) (-4 *4 (-299)) (-5 *2 (-582 *5)) (-5 *1 (-170 *4 *5)))) (-1444 (*1 *2 *3) (-12 (-4 *4 (-299)) (-5 *2 (-582 (-2 (|:| |deg| (-693)) (|:| -2574 *3)))) (-5 *1 (-170 *4 *3)) (-4 *3 (-1153 *4)))) (-1443 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-299)) (-5 *2 (-2 (|:| |cont| *5) (|:| -1777 (-582 (-2 (|:| |irr| *3) (|:| -2394 (-483))))))) (-5 *1 (-170 *5 *3)) (-4 *3 (-1153 *5)))) (-3731 (*1 *2 *3) (-12 (-4 *4 (-299)) (-5 *2 (-346 *3)) (-5 *1 (-170 *4 *3)) (-4 *3 (-1153 *4)))) (-3730 (*1 *2 *3) (-12 (-4 *4 (-299)) (-5 *2 (-346 *3)) (-5 *1 (-170 *4 *3)) (-4 *3 (-1153 *4))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3187 (((-85) $) NIL T ELT)) (-3128 (((-483) $) NIL (|has| (-483) (-258)) ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3980 $) (|:| |associate| $)) $) NIL T ELT)) (-2062 (($ $) NIL T ELT)) (-2060 (((-85) $) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2706 (((-346 (-1083 $)) (-1083 $)) NIL (|has| (-483) (-820)) ELT)) (-3773 (($ $) NIL T ELT)) (-3969 (((-346 $) $) NIL T ELT)) (-2703 (((-3 (-582 (-1083 $)) #1#) (-582 (-1083 $)) (-1083 $)) NIL (|has| (-483) (-820)) ELT)) (-1606 (((-85) $ $) NIL T ELT)) (-3621 (((-483) $) NIL (|has| (-483) (-739)) ELT)) (-3722 (($) NIL T CONST)) (-3156 (((-3 (-483) #1#) $) NIL T ELT) (((-3 (-1088) #1#) $) NIL (|has| (-483) (-949 (-1088))) ELT) (((-3 (-348 (-483)) #1#) $) NIL (|has| (-483) (-949 (-483))) ELT) (((-3 (-483) #1#) $) NIL (|has| (-483) (-949 (-483))) ELT)) (-3155 (((-483) $) NIL T ELT) (((-1088) $) NIL (|has| (-483) (-949 (-1088))) ELT) (((-348 (-483)) $) NIL (|has| (-483) (-949 (-483))) ELT) (((-483) $) NIL (|has| (-483) (-949 (-483))) ELT)) (-2563 (($ $ $) NIL T ELT)) (-2278 (((-629 (-483)) (-629 $)) NIL (|has| (-483) (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-629 $) (-1177 $)) NIL (|has| (-483) (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-629 $) (-1177 $)) NIL T ELT) (((-629 (-483)) (-629 $)) NIL T ELT)) (-3465 (((-3 $ #1#) $) NIL T ELT)) (-2993 (($) NIL (|has| (-483) (-482)) ELT)) (-2562 (($ $ $) NIL T ELT)) (-2740 (((-2 (|:| -3952 (-582 $)) (|:| -2408 $)) (-582 $)) NIL T ELT)) (-3721 (((-85) $) NIL T ELT)) (-3185 (((-85) $) NIL (|has| (-483) (-739)) ELT)) (-2795 (((-797 (-483) $) $ (-799 (-483)) (-797 (-483) $)) NIL (|has| (-483) (-795 (-483))) ELT) (((-797 (-328) $) $ (-799 (-328)) (-797 (-328) $)) NIL (|has| (-483) (-795 (-328))) ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-2409 (((-85) $) NIL T ELT)) (-2995 (($ $) NIL T ELT)) (-2997 (((-483) $) NIL T ELT)) (-3443 (((-631 $) $) NIL (|has| (-483) (-1064)) ELT)) (-3186 (((-85) $) NIL (|has| (-483) (-739)) ELT)) (-1603 (((-3 (-582 $) #1#) (-582 $) $) NIL T ELT)) (-2530 (($ $ $) NIL (|has| (-483) (-755)) ELT)) (-2856 (($ $ $) NIL (|has| (-483) (-755)) ELT)) (-3956 (($ (-1 (-483) (-483)) $) NIL T ELT)) (-2279 (((-629 (-483)) (-1177 $)) NIL (|has| (-483) (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL (|has| (-483) (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL T ELT) (((-629 (-483)) (-1177 $)) NIL T ELT)) (-1889 (($ $ $) NIL T ELT) (($ (-582 $)) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-2483 (($ $) NIL T ELT)) (-3444 (($) NIL (|has| (-483) (-1064)) CONST)) (-3242 (((-1032) $) NIL T ELT)) (-2707 (((-1083 $) (-1083 $) (-1083 $)) NIL T ELT)) (-3143 (($ $ $) NIL T ELT) (($ (-582 $)) NIL T ELT)) (-3127 (($ $) NIL (|has| (-483) (-258)) ELT) (((-348 (-483)) $) NIL T ELT)) (-3129 (((-483) $) NIL (|has| (-483) (-482)) ELT)) (-2704 (((-346 (-1083 $)) (-1083 $)) NIL (|has| (-483) (-820)) ELT)) (-2705 (((-346 (-1083 $)) (-1083 $)) NIL (|has| (-483) (-820)) ELT)) (-3730 (((-346 $) $) NIL T ELT)) (-1604 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3464 (((-3 $ #1#) $ $) NIL T ELT)) (-2739 (((-631 (-582 $)) (-582 $) $) NIL T ELT)) (-3766 (($ $ (-582 (-483)) (-582 (-483))) NIL (|has| (-483) (-260 (-483))) ELT) (($ $ (-483) (-483)) NIL (|has| (-483) (-260 (-483))) ELT) (($ $ (-249 (-483))) NIL (|has| (-483) (-260 (-483))) ELT) (($ $ (-582 (-249 (-483)))) NIL (|has| (-483) (-260 (-483))) ELT) (($ $ (-582 (-1088)) (-582 (-483))) NIL (|has| (-483) (-454 (-1088) (-483))) ELT) (($ $ (-1088) (-483)) NIL (|has| (-483) (-454 (-1088) (-483))) ELT)) (-1605 (((-693) $) NIL T ELT)) (-3798 (($ $ (-483)) NIL (|has| (-483) (-241 (-483) (-483))) ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL T ELT)) (-3756 (($ $ (-1 (-483) (-483))) NIL T ELT) (($ $ (-1 (-483) (-483)) (-693)) NIL T ELT) (($ $ (-1088)) NIL (|has| (-483) (-810 (-1088))) ELT) (($ $ (-582 (-1088))) NIL (|has| (-483) (-810 (-1088))) ELT) (($ $ (-1088) (-693)) NIL (|has| (-483) (-810 (-1088))) ELT) (($ $ (-582 (-1088)) (-582 (-693))) NIL (|has| (-483) (-810 (-1088))) ELT) (($ $) NIL (|has| (-483) (-189)) ELT) (($ $ (-693)) NIL (|has| (-483) (-189)) ELT)) (-2994 (($ $) NIL T ELT)) (-2996 (((-483) $) NIL T ELT)) (-1448 (($ (-348 (-483))) 9 T ELT)) (-3970 (((-799 (-483)) $) NIL (|has| (-483) (-552 (-799 (-483)))) ELT) (((-799 (-328)) $) NIL (|has| (-483) (-552 (-799 (-328)))) ELT) (((-472) $) NIL (|has| (-483) (-552 (-472))) ELT) (((-328) $) NIL (|has| (-483) (-932)) ELT) (((-179) $) NIL (|has| (-483) (-932)) ELT)) (-2702 (((-3 (-1177 $) #1#) (-629 $)) NIL (-12 (|has| $ (-118)) (|has| (-483) (-820))) ELT)) (-3944 (((-771) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ $) NIL T ELT) (($ (-348 (-483))) 8 T ELT) (($ (-483)) NIL T ELT) (($ (-1088)) NIL (|has| (-483) (-949 (-1088))) ELT) (((-348 (-483)) $) NIL T ELT) (((-916 10) $) 10 T ELT)) (-2701 (((-631 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-483) (-820))) (|has| (-483) (-118))) ELT)) (-3125 (((-693)) NIL T CONST)) (-3130 (((-483) $) NIL (|has| (-483) (-482)) ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2061 (((-85) $ $) NIL T ELT)) (-3124 (((-85) $ $) NIL T ELT)) (-3381 (($ $) NIL (|has| (-483) (-739)) ELT)) (-2659 (($) NIL T CONST)) (-2665 (($) NIL T CONST)) (-2668 (($ $ (-1 (-483) (-483))) NIL T ELT) (($ $ (-1 (-483) (-483)) (-693)) NIL T ELT) (($ $ (-1088)) NIL (|has| (-483) (-810 (-1088))) ELT) (($ $ (-582 (-1088))) NIL (|has| (-483) (-810 (-1088))) ELT) (($ $ (-1088) (-693)) NIL (|has| (-483) (-810 (-1088))) ELT) (($ $ (-582 (-1088)) (-582 (-693))) NIL (|has| (-483) (-810 (-1088))) ELT) (($ $) NIL (|has| (-483) (-189)) ELT) (($ $ (-693)) NIL (|has| (-483) (-189)) ELT)) (-2565 (((-85) $ $) NIL (|has| (-483) (-755)) ELT)) (-2566 (((-85) $ $) NIL (|has| (-483) (-755)) ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-2683 (((-85) $ $) NIL (|has| (-483) (-755)) ELT)) (-2684 (((-85) $ $) NIL (|has| (-483) (-755)) ELT)) (-3947 (($ $ $) NIL T ELT) (($ (-483) (-483)) NIL T ELT)) (-3835 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3837 (($ $ $) NIL T ELT)) (** (($ $ (-829)) NIL T ELT) (($ $ (-693)) NIL T ELT) (($ $ (-483)) NIL T ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-348 (-483))) NIL T ELT) (($ (-348 (-483)) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ (-483)) NIL T ELT))) -(((-171) (-13 (-903 (-483)) (-551 (-348 (-483))) (-551 (-916 10)) (-10 -8 (-15 -3127 ((-348 (-483)) $)) (-15 -1448 ($ (-348 (-483))))))) (T -171)) -((-3127 (*1 *2 *1) (-12 (-5 *2 (-348 (-483))) (-5 *1 (-171)))) (-1448 (*1 *1 *2) (-12 (-5 *2 (-348 (-483))) (-5 *1 (-171))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3318 (((-1027) $) 14 T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3177 (((-421) $) 11 T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3944 (((-771) $) 24 T ELT) (($ (-1093)) NIL T ELT) (((-1093) $) NIL T ELT)) (-3232 (((-1047) $) 16 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-172) (-13 (-994) (-10 -8 (-15 -3177 ((-421) $)) (-15 -3318 ((-1027) $)) (-15 -3232 ((-1047) $))))) (T -172)) -((-3177 (*1 *2 *1) (-12 (-5 *2 (-421)) (-5 *1 (-172)))) (-3318 (*1 *2 *1) (-12 (-5 *2 (-1027)) (-5 *1 (-172)))) (-3232 (*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-172))))) -((-3810 (((-3 (|:| |f1| (-749 |#2|)) (|:| |f2| (-582 (-749 |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (-1003 (-749 |#2|)) (-1071)) 29 T ELT) (((-3 (|:| |f1| (-749 |#2|)) (|:| |f2| (-582 (-749 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1003 (-749 |#2|))) 25 T ELT)) (-1449 (((-3 (|:| |f1| (-749 |#2|)) (|:| |f2| (-582 (-749 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1088) (-749 |#2|) (-749 |#2|) (-85)) 17 T ELT))) -(((-173 |#1| |#2|) (-10 -7 (-15 -3810 ((-3 (|:| |f1| (-749 |#2|)) (|:| |f2| (-582 (-749 |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (-1003 (-749 |#2|)))) (-15 -3810 ((-3 (|:| |f1| (-749 |#2|)) (|:| |f2| (-582 (-749 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1003 (-749 |#2|)) (-1071))) (-15 -1449 ((-3 (|:| |f1| (-749 |#2|)) (|:| |f2| (-582 (-749 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1088) (-749 |#2|) (-749 |#2|) (-85)))) (-13 (-258) (-120) (-949 (-483)) (-579 (-483))) (-13 (-1113) (-870) (-29 |#1|))) (T -173)) -((-1449 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1088)) (-5 *6 (-85)) (-4 *7 (-13 (-258) (-120) (-949 (-483)) (-579 (-483)))) (-4 *3 (-13 (-1113) (-870) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-749 *3)) (|:| |f2| (-582 (-749 *3))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole"))) (-5 *1 (-173 *7 *3)) (-5 *5 (-749 *3)))) (-3810 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1003 (-749 *3))) (-5 *5 (-1071)) (-4 *3 (-13 (-1113) (-870) (-29 *6))) (-4 *6 (-13 (-258) (-120) (-949 (-483)) (-579 (-483)))) (-5 *2 (-3 (|:| |f1| (-749 *3)) (|:| |f2| (-582 (-749 *3))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-173 *6 *3)))) (-3810 (*1 *2 *3 *4) (-12 (-5 *4 (-1003 (-749 *3))) (-4 *3 (-13 (-1113) (-870) (-29 *5))) (-4 *5 (-13 (-258) (-120) (-949 (-483)) (-579 (-483)))) (-5 *2 (-3 (|:| |f1| (-749 *3)) (|:| |f2| (-582 (-749 *3))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-173 *5 *3))))) -((-3810 (((-3 (|:| |f1| (-749 (-265 |#1|))) (|:| |f2| (-582 (-749 (-265 |#1|)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) (-348 (-856 |#1|)) (-1003 (-749 (-348 (-856 |#1|)))) (-1071)) 49 T ELT) (((-3 (|:| |f1| (-749 (-265 |#1|))) (|:| |f2| (-582 (-749 (-265 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-348 (-856 |#1|)) (-1003 (-749 (-348 (-856 |#1|))))) 46 T ELT) (((-3 (|:| |f1| (-749 (-265 |#1|))) (|:| |f2| (-582 (-749 (-265 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-348 (-856 |#1|)) (-1003 (-749 (-265 |#1|))) (-1071)) 50 T ELT) (((-3 (|:| |f1| (-749 (-265 |#1|))) (|:| |f2| (-582 (-749 (-265 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-348 (-856 |#1|)) (-1003 (-749 (-265 |#1|)))) 22 T ELT))) -(((-174 |#1|) (-10 -7 (-15 -3810 ((-3 (|:| |f1| (-749 (-265 |#1|))) (|:| |f2| (-582 (-749 (-265 |#1|)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) (-348 (-856 |#1|)) (-1003 (-749 (-265 |#1|))))) (-15 -3810 ((-3 (|:| |f1| (-749 (-265 |#1|))) (|:| |f2| (-582 (-749 (-265 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-348 (-856 |#1|)) (-1003 (-749 (-265 |#1|))) (-1071))) (-15 -3810 ((-3 (|:| |f1| (-749 (-265 |#1|))) (|:| |f2| (-582 (-749 (-265 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-348 (-856 |#1|)) (-1003 (-749 (-348 (-856 |#1|)))))) (-15 -3810 ((-3 (|:| |f1| (-749 (-265 |#1|))) (|:| |f2| (-582 (-749 (-265 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-348 (-856 |#1|)) (-1003 (-749 (-348 (-856 |#1|)))) (-1071)))) (-13 (-258) (-120) (-949 (-483)) (-579 (-483)))) (T -174)) -((-3810 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1003 (-749 (-348 (-856 *6))))) (-5 *5 (-1071)) (-5 *3 (-348 (-856 *6))) (-4 *6 (-13 (-258) (-120) (-949 (-483)) (-579 (-483)))) (-5 *2 (-3 (|:| |f1| (-749 (-265 *6))) (|:| |f2| (-582 (-749 (-265 *6)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole"))) (-5 *1 (-174 *6)))) (-3810 (*1 *2 *3 *4) (-12 (-5 *4 (-1003 (-749 (-348 (-856 *5))))) (-5 *3 (-348 (-856 *5))) (-4 *5 (-13 (-258) (-120) (-949 (-483)) (-579 (-483)))) (-5 *2 (-3 (|:| |f1| (-749 (-265 *5))) (|:| |f2| (-582 (-749 (-265 *5)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-174 *5)))) (-3810 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-348 (-856 *6))) (-5 *4 (-1003 (-749 (-265 *6)))) (-5 *5 (-1071)) (-4 *6 (-13 (-258) (-120) (-949 (-483)) (-579 (-483)))) (-5 *2 (-3 (|:| |f1| (-749 (-265 *6))) (|:| |f2| (-582 (-749 (-265 *6)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-174 *6)))) (-3810 (*1 *2 *3 *4) (-12 (-5 *3 (-348 (-856 *5))) (-5 *4 (-1003 (-749 (-265 *5)))) (-4 *5 (-13 (-258) (-120) (-949 (-483)) (-579 (-483)))) (-5 *2 (-3 (|:| |f1| (-749 (-265 *5))) (|:| |f2| (-582 (-749 (-265 *5)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-174 *5))))) -((-3840 (((-2 (|:| -2003 (-1083 |#1|)) (|:| |deg| (-829))) (-1083 |#1|)) 26 T ELT)) (-3961 (((-582 (-265 |#2|)) (-265 |#2|) (-829)) 51 T ELT))) -(((-175 |#1| |#2|) (-10 -7 (-15 -3840 ((-2 (|:| -2003 (-1083 |#1|)) (|:| |deg| (-829))) (-1083 |#1|))) (-15 -3961 ((-582 (-265 |#2|)) (-265 |#2|) (-829)))) (-960) (-494)) (T -175)) -((-3961 (*1 *2 *3 *4) (-12 (-5 *4 (-829)) (-4 *6 (-494)) (-5 *2 (-582 (-265 *6))) (-5 *1 (-175 *5 *6)) (-5 *3 (-265 *6)) (-4 *5 (-960)))) (-3840 (*1 *2 *3) (-12 (-4 *4 (-960)) (-5 *2 (-2 (|:| -2003 (-1083 *4)) (|:| |deg| (-829)))) (-5 *1 (-175 *4 *5)) (-5 *3 (-1083 *4)) (-4 *5 (-494))))) -((-2567 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1493 ((|#1| $) NIL T ELT)) (-3322 ((|#1| $) 31 T ELT)) (-3722 (($) NIL T CONST)) (-3001 (($ $) NIL T ELT)) (-2296 (($ $) 40 T ELT)) (-3324 ((|#1| |#1| $) NIL T ELT)) (-3323 ((|#1| $) NIL T ELT)) (-2888 (((-582 |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-2607 (((-582 |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3244 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#1| (-1012))) ELT)) (-1947 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3956 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3831 (((-693) $) NIL T ELT)) (-3241 (((-1071) $) NIL (|has| |#1| (-1012)) ELT)) (-1272 ((|#1| $) NIL T ELT)) (-1491 ((|#1| |#1| $) 36 T ELT)) (-1490 ((|#1| |#1| $) 38 T ELT)) (-3607 (($ |#1| $) NIL T ELT)) (-2602 (((-693) $) 34 T ELT)) (-3242 (((-1032) $) NIL (|has| |#1| (-1012)) ELT)) (-3000 ((|#1| $) NIL T ELT)) (-1489 ((|#1| $) 32 T ELT)) (-1488 ((|#1| $) 30 T ELT)) (-1273 ((|#1| $) NIL T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3766 (($ $ (-582 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-582 |#1|) (-582 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-3003 ((|#1| |#1| $) NIL T ELT)) (-3401 (((-85) $) 9 T ELT)) (-3563 (($) NIL T ELT)) (-3002 ((|#1| $) NIL T ELT)) (-1494 (($) NIL T ELT) (($ (-582 |#1|)) 17 T ELT)) (-3321 (((-693) $) NIL T ELT)) (-1944 (((-693) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3993)) ELT) (((-693) |#1| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#1| (-1012))) ELT)) (-3398 (($ $) NIL T ELT)) (-3944 (((-771) $) NIL (|has| |#1| (-551 (-771))) ELT)) (-1492 ((|#1| $) 14 T ELT)) (-1263 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1274 (($ (-582 |#1|)) NIL T ELT)) (-2999 ((|#1| $) NIL T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3055 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3955 (((-693) $) NIL (|has| $ (-6 -3993)) ELT))) -(((-176 |#1|) (-13 (-214 |#1|) (-10 -8 (-15 -1494 ($ (-582 |#1|))))) (-1012)) (T -176)) -((-1494 (*1 *1 *2) (-12 (-5 *2 (-582 *3)) (-4 *3 (-1012)) (-5 *1 (-176 *3))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3187 (((-85) $) NIL T ELT)) (-1451 (($ (-265 |#1|)) 24 T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3722 (($) NIL T CONST)) (-2663 (((-85) $) NIL T ELT)) (-3156 (((-3 (-265 |#1|) #1#) $) NIL T ELT)) (-3155 (((-265 |#1|) $) NIL T ELT)) (-3957 (($ $) 32 T ELT)) (-3465 (((-3 $ #1#) $) NIL T ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-2409 (((-85) $) NIL T ELT)) (-3956 (($ (-1 (-265 |#1|) (-265 |#1|)) $) NIL T ELT)) (-3173 (((-265 |#1|) $) NIL T ELT)) (-1453 (($ $) 31 T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-1452 (((-85) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-2408 (($ (-693)) NIL T ELT)) (-1450 (($ $) 33 T ELT)) (-3946 (((-483) $) NIL T ELT)) (-3944 (((-771) $) 65 T ELT) (($ (-483)) NIL T ELT) (($ (-265 |#1|)) NIL T ELT)) (-3675 (((-265 |#1|) $ $) NIL T ELT)) (-3125 (((-693)) NIL T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-3124 (((-85) $ $) NIL T ELT)) (-2659 (($) 26 T CONST)) (-2665 (($) NIL T CONST)) (-3055 (((-85) $ $) 29 T ELT)) (-3835 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3837 (($ $ $) 20 T ELT)) (** (($ $ (-829)) NIL T ELT) (($ $ (-693)) NIL T ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) 25 T ELT) (($ (-265 |#1|) $) 19 T ELT))) -(((-177 |#1| |#2|) (-13 (-559 (-265 |#1|)) (-949 (-265 |#1|)) (-10 -8 (-15 -3173 ((-265 |#1|) $)) (-15 -1453 ($ $)) (-15 -3957 ($ $)) (-15 -3675 ((-265 |#1|) $ $)) (-15 -2408 ($ (-693))) (-15 -1452 ((-85) $)) (-15 -2663 ((-85) $)) (-15 -3946 ((-483) $)) (-15 -3956 ($ (-1 (-265 |#1|) (-265 |#1|)) $)) (-15 -1451 ($ (-265 |#1|))) (-15 -1450 ($ $)))) (-13 (-960) (-755)) (-582 (-1088))) (T -177)) -((-3173 (*1 *2 *1) (-12 (-5 *2 (-265 *3)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-960) (-755))) (-14 *4 (-582 (-1088))))) (-1453 (*1 *1 *1) (-12 (-5 *1 (-177 *2 *3)) (-4 *2 (-13 (-960) (-755))) (-14 *3 (-582 (-1088))))) (-3957 (*1 *1 *1) (-12 (-5 *1 (-177 *2 *3)) (-4 *2 (-13 (-960) (-755))) (-14 *3 (-582 (-1088))))) (-3675 (*1 *2 *1 *1) (-12 (-5 *2 (-265 *3)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-960) (-755))) (-14 *4 (-582 (-1088))))) (-2408 (*1 *1 *2) (-12 (-5 *2 (-693)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-960) (-755))) (-14 *4 (-582 (-1088))))) (-1452 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-960) (-755))) (-14 *4 (-582 (-1088))))) (-2663 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-960) (-755))) (-14 *4 (-582 (-1088))))) (-3946 (*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-960) (-755))) (-14 *4 (-582 (-1088))))) (-3956 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-265 *3) (-265 *3))) (-4 *3 (-13 (-960) (-755))) (-5 *1 (-177 *3 *4)) (-14 *4 (-582 (-1088))))) (-1451 (*1 *1 *2) (-12 (-5 *2 (-265 *3)) (-4 *3 (-13 (-960) (-755))) (-5 *1 (-177 *3 *4)) (-14 *4 (-582 (-1088))))) (-1450 (*1 *1 *1) (-12 (-5 *1 (-177 *2 *3)) (-4 *2 (-13 (-960) (-755))) (-14 *3 (-582 (-1088)))))) -((-1454 (((-85) (-1071)) 26 T ELT)) (-1455 (((-3 (-749 |#2|) #1="failed") (-549 |#2|) |#2| (-749 |#2|) (-749 |#2|) (-85)) 35 T ELT)) (-1456 (((-3 (-85) #1#) (-1083 |#2|) (-749 |#2|) (-749 |#2|) (-85)) 83 T ELT) (((-3 (-85) #1#) (-856 |#1|) (-1088) (-749 |#2|) (-749 |#2|) (-85)) 84 T ELT))) -(((-178 |#1| |#2|) (-10 -7 (-15 -1454 ((-85) (-1071))) (-15 -1455 ((-3 (-749 |#2|) #1="failed") (-549 |#2|) |#2| (-749 |#2|) (-749 |#2|) (-85))) (-15 -1456 ((-3 (-85) #1#) (-856 |#1|) (-1088) (-749 |#2|) (-749 |#2|) (-85))) (-15 -1456 ((-3 (-85) #1#) (-1083 |#2|) (-749 |#2|) (-749 |#2|) (-85)))) (-13 (-390) (-949 (-483)) (-579 (-483))) (-13 (-1113) (-29 |#1|))) (T -178)) -((-1456 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-85)) (-5 *3 (-1083 *6)) (-5 *4 (-749 *6)) (-4 *6 (-13 (-1113) (-29 *5))) (-4 *5 (-13 (-390) (-949 (-483)) (-579 (-483)))) (-5 *1 (-178 *5 *6)))) (-1456 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-85)) (-5 *3 (-856 *6)) (-5 *4 (-1088)) (-5 *5 (-749 *7)) (-4 *6 (-13 (-390) (-949 (-483)) (-579 (-483)))) (-4 *7 (-13 (-1113) (-29 *6))) (-5 *1 (-178 *6 *7)))) (-1455 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-749 *4)) (-5 *3 (-549 *4)) (-5 *5 (-85)) (-4 *4 (-13 (-1113) (-29 *6))) (-4 *6 (-13 (-390) (-949 (-483)) (-579 (-483)))) (-5 *1 (-178 *6 *4)))) (-1454 (*1 *2 *3) (-12 (-5 *3 (-1071)) (-4 *4 (-13 (-390) (-949 (-483)) (-579 (-483)))) (-5 *2 (-85)) (-5 *1 (-178 *4 *5)) (-4 *5 (-13 (-1113) (-29 *4)))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3187 (((-85) $) 86 T ELT)) (-3128 (((-483) $) 18 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3980 $) (|:| |associate| $)) $) NIL T ELT)) (-2062 (($ $) NIL T ELT)) (-2060 (((-85) $) NIL T ELT)) (-3769 (($ $) NIL T ELT)) (-3490 (($ $) 73 T ELT)) (-3637 (($ $) 61 T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3773 (($ $) NIL T ELT)) (-3969 (((-346 $) $) NIL T ELT)) (-3036 (($ $) 52 T ELT)) (-1606 (((-85) $ $) NIL T ELT)) (-3488 (($ $) 71 T ELT)) (-3636 (($ $) 59 T ELT)) (-3621 (((-483) $) 83 T ELT)) (-3492 (($ $) 76 T ELT)) (-3635 (($ $) 63 T ELT)) (-3722 (($) NIL T CONST)) (-3126 (($ $) NIL T ELT)) (-3156 (((-3 (-483) #1#) $) 116 T ELT) (((-3 (-348 (-483)) #1#) $) 113 T ELT)) (-3155 (((-483) $) 114 T ELT) (((-348 (-483)) $) 111 T ELT)) (-2563 (($ $ $) NIL T ELT)) (-3465 (((-3 $ #1#) $) 91 T ELT)) (-1742 (((-348 (-483)) $ (-693)) 106 T ELT) (((-348 (-483)) $ (-693) (-693)) 105 T ELT)) (-2562 (($ $ $) NIL T ELT)) (-2740 (((-2 (|:| -3952 (-582 $)) (|:| -2408 $)) (-582 $)) NIL T ELT)) (-3721 (((-85) $) NIL T ELT)) (-1766 (((-829)) 12 T ELT) (((-829) (-829)) NIL (|has| $ (-6 -3984)) ELT)) (-3185 (((-85) $) 107 T ELT)) (-3625 (($) 31 T ELT)) (-2795 (((-797 (-328) $) $ (-799 (-328)) (-797 (-328) $)) NIL T ELT)) (-3770 (((-483) $) 25 T ELT)) (-1212 (((-85) $ $) 141 T ELT)) (-2409 (((-85) $) 87 T ELT)) (-3010 (($ $ (-483)) NIL T ELT)) (-3131 (($ $) NIL T ELT)) (-3186 (((-85) $) 85 T ELT)) (-1457 (((-85) $) 140 T ELT)) (-1603 (((-3 (-582 $) #1#) (-582 $) $) NIL T ELT)) (-2530 (($ $ $) 49 T ELT) (($) 21 (-12 (-2559 (|has| $ (-6 -3976))) (-2559 (|has| $ (-6 -3984)))) ELT)) (-2856 (($ $ $) 48 T ELT) (($) 20 (-12 (-2559 (|has| $ (-6 -3976))) (-2559 (|has| $ (-6 -3984)))) ELT)) (-1768 (((-483) $) 10 T ELT)) (-1741 (($ $) 16 T ELT)) (-1740 (($ $) 53 T ELT)) (-3940 (($ $) 58 T ELT)) (-1889 (($ $ $) NIL T ELT) (($ (-582 $)) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-2483 (($ $) NIL T ELT)) (-1765 (((-829) (-483)) NIL (|has| $ (-6 -3984)) ELT)) (-3242 (((-1032) $) 89 T ELT)) (-2707 (((-1083 $) (-1083 $) (-1083 $)) NIL T ELT)) (-3143 (($ $ $) NIL T ELT) (($ (-582 $)) NIL T ELT)) (-3127 (($ $) NIL T ELT)) (-3129 (($ $) NIL T ELT)) (-3253 (($ (-483) (-483)) NIL T ELT) (($ (-483) (-483) (-829)) 98 T ELT)) (-3730 (((-346 $) $) NIL T ELT)) (-1604 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3464 (((-3 $ #1#) $ $) NIL T ELT)) (-2739 (((-631 (-582 $)) (-582 $) $) NIL T ELT)) (-2400 (((-483) $) 11 T ELT)) (-1739 (($) 30 T ELT)) (-3941 (($ $) 57 T ELT)) (-1605 (((-693) $) NIL T ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL T ELT)) (-2614 (((-829)) NIL T ELT) (((-829) (-829)) NIL (|has| $ (-6 -3984)) ELT)) (-3756 (($ $) 92 T ELT) (($ $ (-693)) NIL T ELT)) (-1764 (((-829) (-483)) NIL (|has| $ (-6 -3984)) ELT)) (-3493 (($ $) 74 T ELT)) (-3634 (($ $) 64 T ELT)) (-3491 (($ $) 75 T ELT)) (-3633 (($ $) 62 T ELT)) (-3489 (($ $) 72 T ELT)) (-3632 (($ $) 60 T ELT)) (-3970 (((-328) $) 102 T ELT) (((-179) $) 99 T ELT) (((-799 (-328)) $) NIL T ELT) (((-472) $) 38 T ELT)) (-3944 (((-771) $) 35 T ELT) (($ (-483)) 56 T ELT) (($ $) NIL T ELT) (($ (-348 (-483))) NIL T ELT) (($ (-483)) 56 T ELT) (($ (-348 (-483))) NIL T ELT)) (-3125 (((-693)) NIL T CONST)) (-3130 (($ $) NIL T ELT)) (-1767 (((-829)) 19 T ELT) (((-829) (-829)) NIL (|has| $ (-6 -3984)) ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2693 (((-829)) 7 T ELT)) (-3496 (($ $) 79 T ELT)) (-3484 (($ $) 67 T ELT) (($ $ $) 109 T ELT)) (-2061 (((-85) $ $) NIL T ELT)) (-3494 (($ $) 77 T ELT)) (-3482 (($ $) 65 T ELT)) (-3498 (($ $) 82 T ELT)) (-3486 (($ $) 70 T ELT)) (-3124 (((-85) $ $) 143 T ELT)) (-3499 (($ $) 80 T ELT)) (-3487 (($ $) 68 T ELT)) (-3497 (($ $) 81 T ELT)) (-3485 (($ $) 69 T ELT)) (-3495 (($ $) 78 T ELT)) (-3483 (($ $) 66 T ELT)) (-3381 (($ $) 108 T ELT)) (-2659 (($) 27 T CONST)) (-2665 (($) 28 T CONST)) (-3385 (($ $) 95 T ELT)) (-2668 (($ $) NIL T ELT) (($ $ (-693)) NIL T ELT)) (-3382 (($ $ $) 97 T ELT)) (-2565 (((-85) $ $) 42 T ELT)) (-2566 (((-85) $ $) 40 T ELT)) (-3055 (((-85) $ $) 50 T ELT)) (-2683 (((-85) $ $) 41 T ELT)) (-2684 (((-85) $ $) 39 T ELT)) (-3947 (($ $ $) 29 T ELT) (($ $ (-483)) 51 T ELT)) (-3835 (($ $) 43 T ELT) (($ $ $) 45 T ELT)) (-3837 (($ $ $) 44 T ELT)) (** (($ $ (-829)) NIL T ELT) (($ $ (-693)) NIL T ELT) (($ $ (-483)) 54 T ELT) (($ $ (-348 (-483))) 139 T ELT) (($ $ $) 55 T ELT)) (* (($ (-829) $) 17 T ELT) (($ (-693) $) NIL T ELT) (($ (-483) $) 47 T ELT) (($ $ $) 46 T ELT) (($ $ (-348 (-483))) NIL T ELT) (($ (-348 (-483)) $) NIL T ELT))) -(((-179) (-13 (-345) (-190) (-1113) (-552 (-472)) (-10 -8 (-15 -3947 ($ $ (-483))) (-15 ** ($ $ $)) (-15 -1739 ($)) (-15 -1741 ($ $)) (-15 -1740 ($ $)) (-15 -3484 ($ $ $)) (-15 -3385 ($ $)) (-15 -3382 ($ $ $)) (-15 -1742 ((-348 (-483)) $ (-693))) (-15 -1742 ((-348 (-483)) $ (-693) (-693))) (-15 -1457 ((-85) $))))) (T -179)) -((** (*1 *1 *1 *1) (-5 *1 (-179))) (-3947 (*1 *1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-179)))) (-1739 (*1 *1) (-5 *1 (-179))) (-1741 (*1 *1 *1) (-5 *1 (-179))) (-1740 (*1 *1 *1) (-5 *1 (-179))) (-3484 (*1 *1 *1 *1) (-5 *1 (-179))) (-3385 (*1 *1 *1) (-5 *1 (-179))) (-3382 (*1 *1 *1 *1) (-5 *1 (-179))) (-1742 (*1 *2 *1 *3) (-12 (-5 *3 (-693)) (-5 *2 (-348 (-483))) (-5 *1 (-179)))) (-1742 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-693)) (-5 *2 (-348 (-483))) (-5 *1 (-179)))) (-1457 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-179))))) -((-3384 (((-142 (-179)) (-693) (-142 (-179))) 11 T ELT) (((-179) (-693) (-179)) 12 T ELT)) (-1458 (((-142 (-179)) (-142 (-179))) 13 T ELT) (((-179) (-179)) 14 T ELT)) (-1459 (((-142 (-179)) (-142 (-179)) (-142 (-179))) 19 T ELT) (((-179) (-179) (-179)) 22 T ELT)) (-3383 (((-142 (-179)) (-142 (-179))) 27 T ELT) (((-179) (-179)) 26 T ELT)) (-3387 (((-142 (-179)) (-142 (-179)) (-142 (-179))) 57 T ELT) (((-179) (-179) (-179)) 49 T ELT)) (-3389 (((-142 (-179)) (-142 (-179)) (-142 (-179))) 62 T ELT) (((-179) (-179) (-179)) 60 T ELT)) (-3386 (((-142 (-179)) (-142 (-179)) (-142 (-179))) 15 T ELT) (((-179) (-179) (-179)) 16 T ELT)) (-3388 (((-142 (-179)) (-142 (-179)) (-142 (-179))) 17 T ELT) (((-179) (-179) (-179)) 18 T ELT)) (-3391 (((-142 (-179)) (-142 (-179))) 74 T ELT) (((-179) (-179)) 73 T ELT)) (-3390 (((-179) (-179)) 68 T ELT) (((-142 (-179)) (-142 (-179))) 72 T ELT)) (-3385 (((-142 (-179)) (-142 (-179))) 8 T ELT) (((-179) (-179)) 9 T ELT)) (-3382 (((-142 (-179)) (-142 (-179)) (-142 (-179))) 35 T ELT) (((-179) (-179) (-179)) 31 T ELT))) -(((-180) (-10 -7 (-15 -3385 ((-179) (-179))) (-15 -3385 ((-142 (-179)) (-142 (-179)))) (-15 -3382 ((-179) (-179) (-179))) (-15 -3382 ((-142 (-179)) (-142 (-179)) (-142 (-179)))) (-15 -1458 ((-179) (-179))) (-15 -1458 ((-142 (-179)) (-142 (-179)))) (-15 -3383 ((-179) (-179))) (-15 -3383 ((-142 (-179)) (-142 (-179)))) (-15 -3384 ((-179) (-693) (-179))) (-15 -3384 ((-142 (-179)) (-693) (-142 (-179)))) (-15 -3386 ((-179) (-179) (-179))) (-15 -3386 ((-142 (-179)) (-142 (-179)) (-142 (-179)))) (-15 -3387 ((-179) (-179) (-179))) (-15 -3387 ((-142 (-179)) (-142 (-179)) (-142 (-179)))) (-15 -3388 ((-179) (-179) (-179))) (-15 -3388 ((-142 (-179)) (-142 (-179)) (-142 (-179)))) (-15 -3389 ((-179) (-179) (-179))) (-15 -3389 ((-142 (-179)) (-142 (-179)) (-142 (-179)))) (-15 -3390 ((-142 (-179)) (-142 (-179)))) (-15 -3390 ((-179) (-179))) (-15 -3391 ((-179) (-179))) (-15 -3391 ((-142 (-179)) (-142 (-179)))) (-15 -1459 ((-179) (-179) (-179))) (-15 -1459 ((-142 (-179)) (-142 (-179)) (-142 (-179)))))) (T -180)) -((-1459 (*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-1459 (*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3391 (*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3391 (*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3390 (*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3390 (*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3389 (*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3389 (*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3388 (*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3388 (*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3387 (*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3387 (*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3386 (*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3386 (*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3384 (*1 *2 *3 *2) (-12 (-5 *2 (-142 (-179))) (-5 *3 (-693)) (-5 *1 (-180)))) (-3384 (*1 *2 *3 *2) (-12 (-5 *2 (-179)) (-5 *3 (-693)) (-5 *1 (-180)))) (-3383 (*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3383 (*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-1458 (*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-1458 (*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3382 (*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3382 (*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3385 (*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3385 (*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180))))) -((-2567 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3836 (($ (-693) (-693)) NIL T ELT)) (-2349 (($ $ $) NIL T ELT)) (-3412 (($ (-1177 |#1|)) NIL T ELT) (($ $) NIL T ELT)) (-3871 (($ |#1| |#1| |#1|) 33 T ELT)) (-3119 (((-85) $) NIL T ELT)) (-2348 (($ $ (-483) (-483)) NIL T ELT)) (-2347 (($ $ (-483) (-483)) NIL T ELT)) (-2346 (($ $ (-483) (-483) (-483) (-483)) NIL T ELT)) (-2351 (($ $) NIL T ELT)) (-3121 (((-85) $) NIL T ELT)) (-2345 (($ $ (-483) (-483) $) NIL T ELT)) (-3786 ((|#1| $ (-483) (-483) |#1|) NIL T ELT) (($ $ (-582 (-483)) (-582 (-483)) $) NIL T ELT)) (-1255 (($ $ (-483) (-1177 |#1|)) NIL T ELT)) (-1254 (($ $ (-483) (-1177 |#1|)) NIL T ELT)) (-3845 (($ |#1| |#1| |#1|) 32 T ELT)) (-3331 (($ (-693) |#1|) NIL T ELT)) (-3722 (($) NIL T CONST)) (-3108 (($ $) NIL (|has| |#1| (-258)) ELT)) (-3110 (((-1177 |#1|) $ (-483)) NIL T ELT)) (-1460 (($ |#1|) 31 T ELT)) (-1461 (($ |#1|) 30 T ELT)) (-1462 (($ |#1|) 29 T ELT)) (-3107 (((-693) $) NIL (|has| |#1| (-494)) ELT)) (-1574 ((|#1| $ (-483) (-483) |#1|) NIL T ELT)) (-3111 ((|#1| $ (-483) (-483)) NIL T ELT)) (-2888 (((-582 |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3106 (((-693) $) NIL (|has| |#1| (-494)) ELT)) (-3105 (((-582 (-1177 |#1|)) $) NIL (|has| |#1| (-494)) ELT)) (-3113 (((-693) $) NIL T ELT)) (-3612 (($ (-693) (-693) |#1|) NIL T ELT)) (-3112 (((-693) $) NIL T ELT)) (-3325 ((|#1| $) NIL (|has| |#1| (-6 (-3995 #1="*"))) ELT)) (-3117 (((-483) $) NIL T ELT)) (-3115 (((-483) $) NIL T ELT)) (-2607 (((-582 |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3244 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#1| (-1012))) ELT)) (-3116 (((-483) $) NIL T ELT)) (-3114 (((-483) $) NIL T ELT)) (-3122 (($ (-582 (-582 |#1|))) 11 T ELT) (($ (-693) (-693) (-1 |#1| (-483) (-483))) NIL T ELT)) (-1947 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3956 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3592 (((-582 (-582 |#1|)) $) NIL T ELT)) (-3241 (((-1071) $) NIL (|has| |#1| (-1012)) ELT)) (-3588 (((-3 $ #2="failed") $) NIL (|has| |#1| (-312)) ELT)) (-1463 (($) 12 T ELT)) (-2350 (($ $ $) NIL T ELT)) (-3242 (((-1032) $) NIL (|has| |#1| (-1012)) ELT)) (-2198 (($ $ |#1|) NIL T ELT)) (-3464 (((-3 $ #2#) $ |#1|) NIL (|has| |#1| (-494)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3766 (($ $ (-582 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-582 |#1|) (-582 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-3401 (((-85) $) NIL T ELT)) (-3563 (($) NIL T ELT)) (-3798 ((|#1| $ (-483) (-483)) NIL T ELT) ((|#1| $ (-483) (-483) |#1|) NIL T ELT) (($ $ (-582 (-483)) (-582 (-483))) NIL T ELT)) (-3330 (($ (-582 |#1|)) NIL T ELT) (($ (-582 $)) NIL T ELT)) (-3120 (((-85) $) NIL T ELT)) (-3326 ((|#1| $) NIL (|has| |#1| (-6 (-3995 #1#))) ELT)) (-1944 (((-693) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3993)) ELT) (((-693) |#1| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#1| (-1012))) ELT)) (-3398 (($ $) NIL T ELT)) (-3109 (((-1177 |#1|) $ (-483)) NIL T ELT)) (-3944 (($ (-1177 |#1|)) NIL T ELT) (((-771) $) NIL (|has| |#1| (-551 (-771))) ELT)) (-1263 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3118 (((-85) $) NIL T ELT)) (-3055 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3947 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3835 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3837 (($ $ $) NIL T ELT)) (** (($ $ (-693)) NIL T ELT) (($ $ (-483)) NIL (|has| |#1| (-312)) ELT)) (* (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ (-483) $) NIL T ELT) (((-1177 |#1|) $ (-1177 |#1|)) 15 T ELT) (((-1177 |#1|) (-1177 |#1|) $) NIL T ELT) (((-853 |#1|) $ (-853 |#1|)) 21 T ELT)) (-3955 (((-693) $) NIL (|has| $ (-6 -3993)) ELT))) -(((-181 |#1|) (-13 (-626 |#1| (-1177 |#1|) (-1177 |#1|)) (-10 -8 (-15 * ((-853 |#1|) $ (-853 |#1|))) (-15 -1463 ($)) (-15 -1462 ($ |#1|)) (-15 -1461 ($ |#1|)) (-15 -1460 ($ |#1|)) (-15 -3845 ($ |#1| |#1| |#1|)) (-15 -3871 ($ |#1| |#1| |#1|)))) (-13 (-312) (-1113))) (T -181)) -((* (*1 *2 *1 *2) (-12 (-5 *2 (-853 *3)) (-4 *3 (-13 (-312) (-1113))) (-5 *1 (-181 *3)))) (-1463 (*1 *1) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1113))))) (-1462 (*1 *1 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1113))))) (-1461 (*1 *1 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1113))))) (-1460 (*1 *1 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1113))))) (-3845 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1113))))) (-3871 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1113)))))) -((-1568 (($ (-1 (-85) |#2|) $) 16 T ELT)) (-3403 (($ |#2| $) NIL T ELT) (($ (-1 (-85) |#2|) $) 28 T ELT)) (-1464 (($) NIL T ELT) (($ (-582 |#2|)) 11 T ELT)) (-3055 (((-85) $ $) 26 T ELT))) -(((-182 |#1| |#2|) (-10 -7 (-15 -3055 ((-85) |#1| |#1|)) (-15 -1568 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3403 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3403 (|#1| |#2| |#1|)) (-15 -1464 (|#1| (-582 |#2|))) (-15 -1464 (|#1|))) (-183 |#2|) (-1012)) (T -182)) -NIL -((-2567 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-1568 (($ (-1 (-85) |#1|) $) 49 (|has| $ (-6 -3993)) ELT)) (-3708 (($ (-1 (-85) |#1|) $) 59 (|has| $ (-6 -3993)) ELT)) (-3722 (($) 7 T CONST)) (-1351 (($ $) 62 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3993))) ELT)) (-3403 (($ |#1| $) 51 (|has| $ (-6 -3993)) ELT) (($ (-1 (-85) |#1|) $) 50 (|has| $ (-6 -3993)) ELT)) (-3404 (($ |#1| $) 61 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3993))) ELT) (($ (-1 (-85) |#1|) $) 58 (|has| $ (-6 -3993)) ELT)) (-3840 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3993))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -3993)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -3993)) ELT)) (-2888 (((-582 |#1|) $) 30 (|has| $ (-6 -3993)) ELT)) (-2607 (((-582 |#1|) $) 29 (|has| $ (-6 -3993)) ELT)) (-3244 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3993))) ELT)) (-1947 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3994)) ELT)) (-3956 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3241 (((-1071) $) 22 (|has| |#1| (-1012)) ELT)) (-1272 ((|#1| $) 43 T ELT)) (-3607 (($ |#1| $) 44 T ELT)) (-3242 (((-1032) $) 21 (|has| |#1| (-1012)) ELT)) (-1352 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 55 T ELT)) (-1273 ((|#1| $) 45 T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3993)) ELT)) (-3766 (($ $ (-582 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-582 |#1|) (-582 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT)) (-1220 (((-85) $ $) 11 T ELT)) (-3401 (((-85) $) 8 T ELT)) (-3563 (($) 9 T ELT)) (-1464 (($) 53 T ELT) (($ (-582 |#1|)) 52 T ELT)) (-1944 (((-693) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3993)) ELT) (((-693) |#1| $) 28 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3993))) ELT)) (-3398 (($ $) 10 T ELT)) (-3970 (((-472) $) 63 (|has| |#1| (-552 (-472))) ELT)) (-3528 (($ (-582 |#1|)) 54 T ELT)) (-3944 (((-771) $) 17 (|has| |#1| (-551 (-771))) ELT)) (-1263 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1274 (($ (-582 |#1|)) 46 T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3993)) ELT)) (-3055 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3955 (((-693) $) 6 (|has| $ (-6 -3993)) ELT))) -(((-183 |#1|) (-113) (-1012)) (T -183)) +((-3641 ((|#2| |#2|) 28 T ELT)) (-3644 (((-85) |#2|) 19 T ELT)) (-3642 (((-265 |#1|) |#2|) 12 T ELT)) (-3643 (((-265 |#1|) |#2|) 14 T ELT)) (-3639 ((|#2| |#2| (-1089)) 69 T ELT) ((|#2| |#2|) 70 T ELT)) (-3645 (((-142 (-265 |#1|)) |#2|) 10 T ELT)) (-3640 ((|#2| |#2| (-1089)) 66 T ELT) ((|#2| |#2|) 60 T ELT))) +(((-162 |#1| |#2|) (-10 -7 (-15 -3639 (|#2| |#2|)) (-15 -3639 (|#2| |#2| (-1089))) (-15 -3640 (|#2| |#2|)) (-15 -3640 (|#2| |#2| (-1089))) (-15 -3642 ((-265 |#1|) |#2|)) (-15 -3643 ((-265 |#1|) |#2|)) (-15 -3644 ((-85) |#2|)) (-15 -3641 (|#2| |#2|)) (-15 -3645 ((-142 (-265 |#1|)) |#2|))) (-13 (-495) (-950 (-484))) (-13 (-27) (-1114) (-363 (-142 |#1|)))) (T -162)) +((-3645 (*1 *2 *3) (-12 (-4 *4 (-13 (-495) (-950 (-484)))) (-5 *2 (-142 (-265 *4))) (-5 *1 (-162 *4 *3)) (-4 *3 (-13 (-27) (-1114) (-363 (-142 *4)))))) (-3641 (*1 *2 *2) (-12 (-4 *3 (-13 (-495) (-950 (-484)))) (-5 *1 (-162 *3 *2)) (-4 *2 (-13 (-27) (-1114) (-363 (-142 *3)))))) (-3644 (*1 *2 *3) (-12 (-4 *4 (-13 (-495) (-950 (-484)))) (-5 *2 (-85)) (-5 *1 (-162 *4 *3)) (-4 *3 (-13 (-27) (-1114) (-363 (-142 *4)))))) (-3643 (*1 *2 *3) (-12 (-4 *4 (-13 (-495) (-950 (-484)))) (-5 *2 (-265 *4)) (-5 *1 (-162 *4 *3)) (-4 *3 (-13 (-27) (-1114) (-363 (-142 *4)))))) (-3642 (*1 *2 *3) (-12 (-4 *4 (-13 (-495) (-950 (-484)))) (-5 *2 (-265 *4)) (-5 *1 (-162 *4 *3)) (-4 *3 (-13 (-27) (-1114) (-363 (-142 *4)))))) (-3640 (*1 *2 *2 *3) (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-495) (-950 (-484)))) (-5 *1 (-162 *4 *2)) (-4 *2 (-13 (-27) (-1114) (-363 (-142 *4)))))) (-3640 (*1 *2 *2) (-12 (-4 *3 (-13 (-495) (-950 (-484)))) (-5 *1 (-162 *3 *2)) (-4 *2 (-13 (-27) (-1114) (-363 (-142 *3)))))) (-3639 (*1 *2 *2 *3) (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-495) (-950 (-484)))) (-5 *1 (-162 *4 *2)) (-4 *2 (-13 (-27) (-1114) (-363 (-142 *4)))))) (-3639 (*1 *2 *2) (-12 (-4 *3 (-13 (-495) (-950 (-484)))) (-5 *1 (-162 *3 *2)) (-4 *2 (-13 (-27) (-1114) (-363 (-142 *3))))))) +((-1429 (((-1178 (-630 (-857 |#1|))) (-1178 (-630 |#1|))) 26 T ELT)) (-3945 (((-1178 (-630 (-349 (-857 |#1|)))) (-1178 (-630 |#1|))) 37 T ELT))) +(((-163 |#1|) (-10 -7 (-15 -1429 ((-1178 (-630 (-857 |#1|))) (-1178 (-630 |#1|)))) (-15 -3945 ((-1178 (-630 (-349 (-857 |#1|)))) (-1178 (-630 |#1|))))) (-146)) (T -163)) +((-3945 (*1 *2 *3) (-12 (-5 *3 (-1178 (-630 *4))) (-4 *4 (-146)) (-5 *2 (-1178 (-630 (-349 (-857 *4))))) (-5 *1 (-163 *4)))) (-1429 (*1 *2 *3) (-12 (-5 *3 (-1178 (-630 *4))) (-4 *4 (-146)) (-5 *2 (-1178 (-630 (-857 *4)))) (-5 *1 (-163 *4))))) +((-1437 (((-1091 (-349 (-484))) (-1091 (-349 (-484))) (-1091 (-349 (-484)))) 93 T ELT)) (-1439 (((-1091 (-349 (-484))) (-583 (-484)) (-583 (-484))) 106 T ELT)) (-1430 (((-1091 (-349 (-484))) (-830)) 54 T ELT)) (-3853 (((-1091 (-349 (-484))) (-830)) 79 T ELT)) (-3767 (((-349 (-484)) (-1091 (-349 (-484)))) 89 T ELT)) (-1431 (((-1091 (-349 (-484))) (-830)) 37 T ELT)) (-1434 (((-1091 (-349 (-484))) (-830)) 66 T ELT)) (-1433 (((-1091 (-349 (-484))) (-830)) 61 T ELT)) (-1436 (((-1091 (-349 (-484))) (-1091 (-349 (-484))) (-1091 (-349 (-484)))) 87 T ELT)) (-2891 (((-1091 (-349 (-484))) (-830)) 29 T ELT)) (-1435 (((-349 (-484)) (-1091 (-349 (-484))) (-1091 (-349 (-484)))) 91 T ELT)) (-1432 (((-1091 (-349 (-484))) (-830)) 35 T ELT)) (-1438 (((-1091 (-349 (-484))) (-583 (-830))) 100 T ELT))) +(((-164) (-10 -7 (-15 -2891 ((-1091 (-349 (-484))) (-830))) (-15 -1430 ((-1091 (-349 (-484))) (-830))) (-15 -1431 ((-1091 (-349 (-484))) (-830))) (-15 -1432 ((-1091 (-349 (-484))) (-830))) (-15 -1433 ((-1091 (-349 (-484))) (-830))) (-15 -1434 ((-1091 (-349 (-484))) (-830))) (-15 -3853 ((-1091 (-349 (-484))) (-830))) (-15 -1435 ((-349 (-484)) (-1091 (-349 (-484))) (-1091 (-349 (-484))))) (-15 -1436 ((-1091 (-349 (-484))) (-1091 (-349 (-484))) (-1091 (-349 (-484))))) (-15 -3767 ((-349 (-484)) (-1091 (-349 (-484))))) (-15 -1437 ((-1091 (-349 (-484))) (-1091 (-349 (-484))) (-1091 (-349 (-484))))) (-15 -1438 ((-1091 (-349 (-484))) (-583 (-830)))) (-15 -1439 ((-1091 (-349 (-484))) (-583 (-484)) (-583 (-484)))))) (T -164)) +((-1439 (*1 *2 *3 *3) (-12 (-5 *3 (-583 (-484))) (-5 *2 (-1091 (-349 (-484)))) (-5 *1 (-164)))) (-1438 (*1 *2 *3) (-12 (-5 *3 (-583 (-830))) (-5 *2 (-1091 (-349 (-484)))) (-5 *1 (-164)))) (-1437 (*1 *2 *2 *2) (-12 (-5 *2 (-1091 (-349 (-484)))) (-5 *1 (-164)))) (-3767 (*1 *2 *3) (-12 (-5 *3 (-1091 (-349 (-484)))) (-5 *2 (-349 (-484))) (-5 *1 (-164)))) (-1436 (*1 *2 *2 *2) (-12 (-5 *2 (-1091 (-349 (-484)))) (-5 *1 (-164)))) (-1435 (*1 *2 *3 *3) (-12 (-5 *3 (-1091 (-349 (-484)))) (-5 *2 (-349 (-484))) (-5 *1 (-164)))) (-3853 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1091 (-349 (-484)))) (-5 *1 (-164)))) (-1434 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1091 (-349 (-484)))) (-5 *1 (-164)))) (-1433 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1091 (-349 (-484)))) (-5 *1 (-164)))) (-1432 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1091 (-349 (-484)))) (-5 *1 (-164)))) (-1431 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1091 (-349 (-484)))) (-5 *1 (-164)))) (-1430 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1091 (-349 (-484)))) (-5 *1 (-164)))) (-2891 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1091 (-349 (-484)))) (-5 *1 (-164))))) +((-1441 (((-347 (-1084 (-484))) (-484)) 38 T ELT)) (-1440 (((-583 (-1084 (-484))) (-484)) 33 T ELT)) (-2801 (((-1084 (-484)) (-484)) 28 T ELT))) +(((-165) (-10 -7 (-15 -1440 ((-583 (-1084 (-484))) (-484))) (-15 -2801 ((-1084 (-484)) (-484))) (-15 -1441 ((-347 (-1084 (-484))) (-484))))) (T -165)) +((-1441 (*1 *2 *3) (-12 (-5 *2 (-347 (-1084 (-484)))) (-5 *1 (-165)) (-5 *3 (-484)))) (-2801 (*1 *2 *3) (-12 (-5 *2 (-1084 (-484))) (-5 *1 (-165)) (-5 *3 (-484)))) (-1440 (*1 *2 *3) (-12 (-5 *2 (-583 (-1084 (-484)))) (-5 *1 (-165)) (-5 *3 (-484))))) +((-2568 (((-85) $ $) NIL T ELT)) (-1442 ((|#2| $ (-694) |#2|) 11 T ELT)) (-3112 ((|#2| $ (-694)) 10 T ELT)) (-3613 (($) 8 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) 23 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 13 T ELT))) +(((-166 |#1| |#2|) (-13 (-1013) (-10 -8 (-15 -3613 ($)) (-15 -3112 (|#2| $ (-694))) (-15 -1442 (|#2| $ (-694) |#2|)))) (-830) (-1013)) (T -166)) +((-3613 (*1 *1) (-12 (-5 *1 (-166 *2 *3)) (-14 *2 (-830)) (-4 *3 (-1013)))) (-3112 (*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-4 *2 (-1013)) (-5 *1 (-166 *4 *2)) (-14 *4 (-830)))) (-1442 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-694)) (-5 *1 (-166 *4 *2)) (-14 *4 (-830)) (-4 *2 (-1013))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1963 (((-1184) $) 36 T ELT) (((-1184) $ (-830) (-830)) 40 T ELT)) (-3799 (($ $ (-902)) 19 T ELT) (((-203 (-1072)) $ (-1089)) 15 T ELT)) (-3616 (((-1184) $) 34 T ELT)) (-3945 (((-772) $) 31 T ELT) (($ (-583 |#1|)) 8 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3836 (($ $ $) 26 T ELT)) (-3838 (($ $ $) 22 T ELT))) +(((-167 |#1|) (-13 (-1013) (-555 (-583 |#1|)) (-10 -8 (-15 -3799 ($ $ (-902))) (-15 -3799 ((-203 (-1072)) $ (-1089))) (-15 -3838 ($ $ $)) (-15 -3836 ($ $ $)) (-15 -3616 ((-1184) $)) (-15 -1963 ((-1184) $)) (-15 -1963 ((-1184) $ (-830) (-830))))) (-13 (-756) (-10 -8 (-15 -3799 ((-1072) $ (-1089))) (-15 -3616 ((-1184) $)) (-15 -1963 ((-1184) $))))) (T -167)) +((-3799 (*1 *1 *1 *2) (-12 (-5 *2 (-902)) (-5 *1 (-167 *3)) (-4 *3 (-13 (-756) (-10 -8 (-15 -3799 ((-1072) $ (-1089))) (-15 -3616 ((-1184) $)) (-15 -1963 ((-1184) $))))))) (-3799 (*1 *2 *1 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-203 (-1072))) (-5 *1 (-167 *4)) (-4 *4 (-13 (-756) (-10 -8 (-15 -3799 ((-1072) $ *3)) (-15 -3616 ((-1184) $)) (-15 -1963 ((-1184) $))))))) (-3838 (*1 *1 *1 *1) (-12 (-5 *1 (-167 *2)) (-4 *2 (-13 (-756) (-10 -8 (-15 -3799 ((-1072) $ (-1089))) (-15 -3616 ((-1184) $)) (-15 -1963 ((-1184) $))))))) (-3836 (*1 *1 *1 *1) (-12 (-5 *1 (-167 *2)) (-4 *2 (-13 (-756) (-10 -8 (-15 -3799 ((-1072) $ (-1089))) (-15 -3616 ((-1184) $)) (-15 -1963 ((-1184) $))))))) (-3616 (*1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-167 *3)) (-4 *3 (-13 (-756) (-10 -8 (-15 -3799 ((-1072) $ (-1089))) (-15 -3616 (*2 $)) (-15 -1963 (*2 $))))))) (-1963 (*1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-167 *3)) (-4 *3 (-13 (-756) (-10 -8 (-15 -3799 ((-1072) $ (-1089))) (-15 -3616 (*2 $)) (-15 -1963 (*2 $))))))) (-1963 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1184)) (-5 *1 (-167 *4)) (-4 *4 (-13 (-756) (-10 -8 (-15 -3799 ((-1072) $ (-1089))) (-15 -3616 (*2 $)) (-15 -1963 (*2 $)))))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3136 (((-694)) NIL T ELT)) (-2994 (($) NIL T ELT)) (-2531 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2857 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2010 (((-830) $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2400 (($ (-830)) 10 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2851 (($ (-577 |#1|)) 11 T ELT)) (-3945 (((-772) $) 18 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT))) +(((-168 |#1|) (-13 (-752) (-10 -8 (-15 -2851 ($ (-577 |#1|))))) (-583 (-1089))) (T -168)) +((-2851 (*1 *1 *2) (-12 (-5 *2 (-577 *3)) (-14 *3 (-583 (-1089))) (-5 *1 (-168 *3))))) +((-1443 ((|#2| |#4| (-1 |#2| |#2|)) 49 T ELT))) +(((-169 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1443 (|#2| |#4| (-1 |#2| |#2|)))) (-312) (-1154 |#1|) (-1154 (-349 |#2|)) (-291 |#1| |#2| |#3|)) (T -169)) +((-1443 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-312)) (-4 *6 (-1154 (-349 *2))) (-4 *2 (-1154 *5)) (-5 *1 (-169 *5 *2 *6 *3)) (-4 *3 (-291 *5 *2 *6))))) +((-1447 ((|#2| |#2| (-694) |#2|) 55 T ELT)) (-1446 ((|#2| |#2| (-694) |#2|) 51 T ELT)) (-2371 (((-583 |#2|) (-583 (-2 (|:| |deg| (-694)) (|:| -2575 |#2|)))) 79 T ELT)) (-1445 (((-583 (-2 (|:| |deg| (-694)) (|:| -2575 |#2|))) |#2|) 72 T ELT)) (-1448 (((-85) |#2|) 70 T ELT)) (-3732 (((-347 |#2|) |#2|) 92 T ELT)) (-3731 (((-347 |#2|) |#2|) 91 T ELT)) (-2372 ((|#2| |#2| (-694) |#2|) 49 T ELT)) (-1444 (((-2 (|:| |cont| |#1|) (|:| -1778 (-583 (-2 (|:| |irr| |#2|) (|:| -2395 (-484)))))) |#2| (-85)) 86 T ELT))) +(((-170 |#1| |#2|) (-10 -7 (-15 -3731 ((-347 |#2|) |#2|)) (-15 -3732 ((-347 |#2|) |#2|)) (-15 -1444 ((-2 (|:| |cont| |#1|) (|:| -1778 (-583 (-2 (|:| |irr| |#2|) (|:| -2395 (-484)))))) |#2| (-85))) (-15 -1445 ((-583 (-2 (|:| |deg| (-694)) (|:| -2575 |#2|))) |#2|)) (-15 -2371 ((-583 |#2|) (-583 (-2 (|:| |deg| (-694)) (|:| -2575 |#2|))))) (-15 -2372 (|#2| |#2| (-694) |#2|)) (-15 -1446 (|#2| |#2| (-694) |#2|)) (-15 -1447 (|#2| |#2| (-694) |#2|)) (-15 -1448 ((-85) |#2|))) (-299) (-1154 |#1|)) (T -170)) +((-1448 (*1 *2 *3) (-12 (-4 *4 (-299)) (-5 *2 (-85)) (-5 *1 (-170 *4 *3)) (-4 *3 (-1154 *4)))) (-1447 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-694)) (-4 *4 (-299)) (-5 *1 (-170 *4 *2)) (-4 *2 (-1154 *4)))) (-1446 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-694)) (-4 *4 (-299)) (-5 *1 (-170 *4 *2)) (-4 *2 (-1154 *4)))) (-2372 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-694)) (-4 *4 (-299)) (-5 *1 (-170 *4 *2)) (-4 *2 (-1154 *4)))) (-2371 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| |deg| (-694)) (|:| -2575 *5)))) (-4 *5 (-1154 *4)) (-4 *4 (-299)) (-5 *2 (-583 *5)) (-5 *1 (-170 *4 *5)))) (-1445 (*1 *2 *3) (-12 (-4 *4 (-299)) (-5 *2 (-583 (-2 (|:| |deg| (-694)) (|:| -2575 *3)))) (-5 *1 (-170 *4 *3)) (-4 *3 (-1154 *4)))) (-1444 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-299)) (-5 *2 (-2 (|:| |cont| *5) (|:| -1778 (-583 (-2 (|:| |irr| *3) (|:| -2395 (-484))))))) (-5 *1 (-170 *5 *3)) (-4 *3 (-1154 *5)))) (-3732 (*1 *2 *3) (-12 (-4 *4 (-299)) (-5 *2 (-347 *3)) (-5 *1 (-170 *4 *3)) (-4 *3 (-1154 *4)))) (-3731 (*1 *2 *3) (-12 (-4 *4 (-299)) (-5 *2 (-347 *3)) (-5 *1 (-170 *4 *3)) (-4 *3 (-1154 *4))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-3129 (((-484) $) NIL (|has| (-484) (-258)) ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2707 (((-347 (-1084 $)) (-1084 $)) NIL (|has| (-484) (-821)) ELT)) (-3774 (($ $) NIL T ELT)) (-3970 (((-347 $) $) NIL T ELT)) (-2704 (((-3 (-583 (-1084 $)) #1#) (-583 (-1084 $)) (-1084 $)) NIL (|has| (-484) (-821)) ELT)) (-1607 (((-85) $ $) NIL T ELT)) (-3622 (((-484) $) NIL (|has| (-484) (-740)) ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 (-484) #1#) $) NIL T ELT) (((-3 (-1089) #1#) $) NIL (|has| (-484) (-950 (-1089))) ELT) (((-3 (-349 (-484)) #1#) $) NIL (|has| (-484) (-950 (-484))) ELT) (((-3 (-484) #1#) $) NIL (|has| (-484) (-950 (-484))) ELT)) (-3156 (((-484) $) NIL T ELT) (((-1089) $) NIL (|has| (-484) (-950 (-1089))) ELT) (((-349 (-484)) $) NIL (|has| (-484) (-950 (-484))) ELT) (((-484) $) NIL (|has| (-484) (-950 (-484))) ELT)) (-2564 (($ $ $) NIL T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (|has| (-484) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) NIL (|has| (-484) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) NIL T ELT) (((-630 (-484)) (-630 $)) NIL T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-2994 (($) NIL (|has| (-484) (-483)) ELT)) (-2563 (($ $ $) NIL T ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-3722 (((-85) $) NIL T ELT)) (-3186 (((-85) $) NIL (|has| (-484) (-740)) ELT)) (-2796 (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) NIL (|has| (-484) (-796 (-484))) ELT) (((-798 (-329) $) $ (-800 (-329)) (-798 (-329) $)) NIL (|has| (-484) (-796 (-329))) ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2996 (($ $) NIL T ELT)) (-2998 (((-484) $) NIL T ELT)) (-3444 (((-632 $) $) NIL (|has| (-484) (-1065)) ELT)) (-3187 (((-85) $) NIL (|has| (-484) (-740)) ELT)) (-1604 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2531 (($ $ $) NIL (|has| (-484) (-756)) ELT)) (-2857 (($ $ $) NIL (|has| (-484) (-756)) ELT)) (-3957 (($ (-1 (-484) (-484)) $) NIL T ELT)) (-2280 (((-630 (-484)) (-1178 $)) NIL (|has| (-484) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (|has| (-484) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL T ELT) (((-630 (-484)) (-1178 $)) NIL T ELT)) (-1890 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2484 (($ $) NIL T ELT)) (-3445 (($) NIL (|has| (-484) (-1065)) CONST)) (-3243 (((-1033) $) NIL T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3144 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3128 (($ $) NIL (|has| (-484) (-258)) ELT) (((-349 (-484)) $) NIL T ELT)) (-3130 (((-484) $) NIL (|has| (-484) (-483)) ELT)) (-2705 (((-347 (-1084 $)) (-1084 $)) NIL (|has| (-484) (-821)) ELT)) (-2706 (((-347 (-1084 $)) (-1084 $)) NIL (|has| (-484) (-821)) ELT)) (-3731 (((-347 $) $) NIL T ELT)) (-1605 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3465 (((-3 $ #1#) $ $) NIL T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-3767 (($ $ (-583 (-484)) (-583 (-484))) NIL (|has| (-484) (-260 (-484))) ELT) (($ $ (-484) (-484)) NIL (|has| (-484) (-260 (-484))) ELT) (($ $ (-249 (-484))) NIL (|has| (-484) (-260 (-484))) ELT) (($ $ (-583 (-249 (-484)))) NIL (|has| (-484) (-260 (-484))) ELT) (($ $ (-583 (-1089)) (-583 (-484))) NIL (|has| (-484) (-455 (-1089) (-484))) ELT) (($ $ (-1089) (-484)) NIL (|has| (-484) (-455 (-1089) (-484))) ELT)) (-1606 (((-694) $) NIL T ELT)) (-3799 (($ $ (-484)) NIL (|has| (-484) (-241 (-484) (-484))) ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL T ELT)) (-3757 (($ $ (-1 (-484) (-484))) NIL T ELT) (($ $ (-1 (-484) (-484)) (-694)) NIL T ELT) (($ $ (-1089)) NIL (|has| (-484) (-811 (-1089))) ELT) (($ $ (-583 (-1089))) NIL (|has| (-484) (-811 (-1089))) ELT) (($ $ (-1089) (-694)) NIL (|has| (-484) (-811 (-1089))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (|has| (-484) (-811 (-1089))) ELT) (($ $) NIL (|has| (-484) (-189)) ELT) (($ $ (-694)) NIL (|has| (-484) (-189)) ELT)) (-2995 (($ $) NIL T ELT)) (-2997 (((-484) $) NIL T ELT)) (-1449 (($ (-349 (-484))) 9 T ELT)) (-3971 (((-800 (-484)) $) NIL (|has| (-484) (-553 (-800 (-484)))) ELT) (((-800 (-329)) $) NIL (|has| (-484) (-553 (-800 (-329)))) ELT) (((-473) $) NIL (|has| (-484) (-553 (-473))) ELT) (((-329) $) NIL (|has| (-484) (-933)) ELT) (((-179) $) NIL (|has| (-484) (-933)) ELT)) (-2703 (((-3 (-1178 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| (-484) (-821))) ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-349 (-484))) 8 T ELT) (($ (-484)) NIL T ELT) (($ (-1089)) NIL (|has| (-484) (-950 (-1089))) ELT) (((-349 (-484)) $) NIL T ELT) (((-917 10) $) 10 T ELT)) (-2702 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-484) (-821))) (|has| (-484) (-118))) ELT)) (-3126 (((-694)) NIL T CONST)) (-3131 (((-484) $) NIL (|has| (-484) (-483)) ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-3382 (($ $) NIL (|has| (-484) (-740)) ELT)) (-2660 (($) NIL T CONST)) (-2666 (($) NIL T CONST)) (-2669 (($ $ (-1 (-484) (-484))) NIL T ELT) (($ $ (-1 (-484) (-484)) (-694)) NIL T ELT) (($ $ (-1089)) NIL (|has| (-484) (-811 (-1089))) ELT) (($ $ (-583 (-1089))) NIL (|has| (-484) (-811 (-1089))) ELT) (($ $ (-1089) (-694)) NIL (|has| (-484) (-811 (-1089))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (|has| (-484) (-811 (-1089))) ELT) (($ $) NIL (|has| (-484) (-189)) ELT) (($ $ (-694)) NIL (|has| (-484) (-189)) ELT)) (-2566 (((-85) $ $) NIL (|has| (-484) (-756)) ELT)) (-2567 (((-85) $ $) NIL (|has| (-484) (-756)) ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL (|has| (-484) (-756)) ELT)) (-2685 (((-85) $ $) NIL (|has| (-484) (-756)) ELT)) (-3948 (($ $ $) NIL T ELT) (($ (-484) (-484)) NIL T ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-349 (-484))) NIL T ELT) (($ (-349 (-484)) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ (-484)) NIL T ELT))) +(((-171) (-13 (-904 (-484)) (-552 (-349 (-484))) (-552 (-917 10)) (-10 -8 (-15 -3128 ((-349 (-484)) $)) (-15 -1449 ($ (-349 (-484))))))) (T -171)) +((-3128 (*1 *2 *1) (-12 (-5 *2 (-349 (-484))) (-5 *1 (-171)))) (-1449 (*1 *1 *2) (-12 (-5 *2 (-349 (-484))) (-5 *1 (-171))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3319 (((-1028) $) 14 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3178 (((-422) $) 11 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) 24 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-3233 (((-1048) $) 16 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT))) +(((-172) (-13 (-995) (-10 -8 (-15 -3178 ((-422) $)) (-15 -3319 ((-1028) $)) (-15 -3233 ((-1048) $))))) (T -172)) +((-3178 (*1 *2 *1) (-12 (-5 *2 (-422)) (-5 *1 (-172)))) (-3319 (*1 *2 *1) (-12 (-5 *2 (-1028)) (-5 *1 (-172)))) (-3233 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-172))))) +((-3811 (((-3 (|:| |f1| (-750 |#2|)) (|:| |f2| (-583 (-750 |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (-1004 (-750 |#2|)) (-1072)) 29 T ELT) (((-3 (|:| |f1| (-750 |#2|)) (|:| |f2| (-583 (-750 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1004 (-750 |#2|))) 25 T ELT)) (-1450 (((-3 (|:| |f1| (-750 |#2|)) (|:| |f2| (-583 (-750 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1089) (-750 |#2|) (-750 |#2|) (-85)) 17 T ELT))) +(((-173 |#1| |#2|) (-10 -7 (-15 -3811 ((-3 (|:| |f1| (-750 |#2|)) (|:| |f2| (-583 (-750 |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (-1004 (-750 |#2|)))) (-15 -3811 ((-3 (|:| |f1| (-750 |#2|)) (|:| |f2| (-583 (-750 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1004 (-750 |#2|)) (-1072))) (-15 -1450 ((-3 (|:| |f1| (-750 |#2|)) (|:| |f2| (-583 (-750 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1089) (-750 |#2|) (-750 |#2|) (-85)))) (-13 (-258) (-120) (-950 (-484)) (-580 (-484))) (-13 (-1114) (-871) (-29 |#1|))) (T -173)) +((-1450 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1089)) (-5 *6 (-85)) (-4 *7 (-13 (-258) (-120) (-950 (-484)) (-580 (-484)))) (-4 *3 (-13 (-1114) (-871) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-750 *3)) (|:| |f2| (-583 (-750 *3))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole"))) (-5 *1 (-173 *7 *3)) (-5 *5 (-750 *3)))) (-3811 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1004 (-750 *3))) (-5 *5 (-1072)) (-4 *3 (-13 (-1114) (-871) (-29 *6))) (-4 *6 (-13 (-258) (-120) (-950 (-484)) (-580 (-484)))) (-5 *2 (-3 (|:| |f1| (-750 *3)) (|:| |f2| (-583 (-750 *3))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-173 *6 *3)))) (-3811 (*1 *2 *3 *4) (-12 (-5 *4 (-1004 (-750 *3))) (-4 *3 (-13 (-1114) (-871) (-29 *5))) (-4 *5 (-13 (-258) (-120) (-950 (-484)) (-580 (-484)))) (-5 *2 (-3 (|:| |f1| (-750 *3)) (|:| |f2| (-583 (-750 *3))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-173 *5 *3))))) +((-3811 (((-3 (|:| |f1| (-750 (-265 |#1|))) (|:| |f2| (-583 (-750 (-265 |#1|)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) (-349 (-857 |#1|)) (-1004 (-750 (-349 (-857 |#1|)))) (-1072)) 49 T ELT) (((-3 (|:| |f1| (-750 (-265 |#1|))) (|:| |f2| (-583 (-750 (-265 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-349 (-857 |#1|)) (-1004 (-750 (-349 (-857 |#1|))))) 46 T ELT) (((-3 (|:| |f1| (-750 (-265 |#1|))) (|:| |f2| (-583 (-750 (-265 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-349 (-857 |#1|)) (-1004 (-750 (-265 |#1|))) (-1072)) 50 T ELT) (((-3 (|:| |f1| (-750 (-265 |#1|))) (|:| |f2| (-583 (-750 (-265 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-349 (-857 |#1|)) (-1004 (-750 (-265 |#1|)))) 22 T ELT))) +(((-174 |#1|) (-10 -7 (-15 -3811 ((-3 (|:| |f1| (-750 (-265 |#1|))) (|:| |f2| (-583 (-750 (-265 |#1|)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) (-349 (-857 |#1|)) (-1004 (-750 (-265 |#1|))))) (-15 -3811 ((-3 (|:| |f1| (-750 (-265 |#1|))) (|:| |f2| (-583 (-750 (-265 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-349 (-857 |#1|)) (-1004 (-750 (-265 |#1|))) (-1072))) (-15 -3811 ((-3 (|:| |f1| (-750 (-265 |#1|))) (|:| |f2| (-583 (-750 (-265 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-349 (-857 |#1|)) (-1004 (-750 (-349 (-857 |#1|)))))) (-15 -3811 ((-3 (|:| |f1| (-750 (-265 |#1|))) (|:| |f2| (-583 (-750 (-265 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-349 (-857 |#1|)) (-1004 (-750 (-349 (-857 |#1|)))) (-1072)))) (-13 (-258) (-120) (-950 (-484)) (-580 (-484)))) (T -174)) +((-3811 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1004 (-750 (-349 (-857 *6))))) (-5 *5 (-1072)) (-5 *3 (-349 (-857 *6))) (-4 *6 (-13 (-258) (-120) (-950 (-484)) (-580 (-484)))) (-5 *2 (-3 (|:| |f1| (-750 (-265 *6))) (|:| |f2| (-583 (-750 (-265 *6)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole"))) (-5 *1 (-174 *6)))) (-3811 (*1 *2 *3 *4) (-12 (-5 *4 (-1004 (-750 (-349 (-857 *5))))) (-5 *3 (-349 (-857 *5))) (-4 *5 (-13 (-258) (-120) (-950 (-484)) (-580 (-484)))) (-5 *2 (-3 (|:| |f1| (-750 (-265 *5))) (|:| |f2| (-583 (-750 (-265 *5)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-174 *5)))) (-3811 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-349 (-857 *6))) (-5 *4 (-1004 (-750 (-265 *6)))) (-5 *5 (-1072)) (-4 *6 (-13 (-258) (-120) (-950 (-484)) (-580 (-484)))) (-5 *2 (-3 (|:| |f1| (-750 (-265 *6))) (|:| |f2| (-583 (-750 (-265 *6)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-174 *6)))) (-3811 (*1 *2 *3 *4) (-12 (-5 *3 (-349 (-857 *5))) (-5 *4 (-1004 (-750 (-265 *5)))) (-4 *5 (-13 (-258) (-120) (-950 (-484)) (-580 (-484)))) (-5 *2 (-3 (|:| |f1| (-750 (-265 *5))) (|:| |f2| (-583 (-750 (-265 *5)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-174 *5))))) +((-3841 (((-2 (|:| -2004 (-1084 |#1|)) (|:| |deg| (-830))) (-1084 |#1|)) 26 T ELT)) (-3962 (((-583 (-265 |#2|)) (-265 |#2|) (-830)) 51 T ELT))) +(((-175 |#1| |#2|) (-10 -7 (-15 -3841 ((-2 (|:| -2004 (-1084 |#1|)) (|:| |deg| (-830))) (-1084 |#1|))) (-15 -3962 ((-583 (-265 |#2|)) (-265 |#2|) (-830)))) (-961) (-495)) (T -175)) +((-3962 (*1 *2 *3 *4) (-12 (-5 *4 (-830)) (-4 *6 (-495)) (-5 *2 (-583 (-265 *6))) (-5 *1 (-175 *5 *6)) (-5 *3 (-265 *6)) (-4 *5 (-961)))) (-3841 (*1 *2 *3) (-12 (-4 *4 (-961)) (-5 *2 (-2 (|:| -2004 (-1084 *4)) (|:| |deg| (-830)))) (-5 *1 (-175 *4 *5)) (-5 *3 (-1084 *4)) (-4 *5 (-495))))) +((-2568 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1494 ((|#1| $) NIL T ELT)) (-3323 ((|#1| $) 31 T ELT)) (-3723 (($) NIL T CONST)) (-3002 (($ $) NIL T ELT)) (-2297 (($ $) 40 T ELT)) (-3325 ((|#1| |#1| $) NIL T ELT)) (-3324 ((|#1| $) NIL T ELT)) (-2889 (((-583 |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-2608 (((-583 |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3245 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-1948 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3832 (((-694) $) NIL T ELT)) (-3242 (((-1072) $) NIL (|has| |#1| (-1013)) ELT)) (-1273 ((|#1| $) NIL T ELT)) (-1492 ((|#1| |#1| $) 36 T ELT)) (-1491 ((|#1| |#1| $) 38 T ELT)) (-3608 (($ |#1| $) NIL T ELT)) (-2603 (((-694) $) 34 T ELT)) (-3243 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-3001 ((|#1| $) NIL T ELT)) (-1490 ((|#1| $) 32 T ELT)) (-1489 ((|#1| $) 30 T ELT)) (-1274 ((|#1| $) NIL T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3767 (($ $ (-583 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1221 (((-85) $ $) NIL T ELT)) (-3004 ((|#1| |#1| $) NIL T ELT)) (-3402 (((-85) $) 9 T ELT)) (-3564 (($) NIL T ELT)) (-3003 ((|#1| $) NIL T ELT)) (-1495 (($) NIL T ELT) (($ (-583 |#1|)) 17 T ELT)) (-3322 (((-694) $) NIL T ELT)) (-1945 (((-694) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT) (((-694) |#1| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-3399 (($ $) NIL T ELT)) (-3945 (((-772) $) NIL (|has| |#1| (-552 (-772))) ELT)) (-1493 ((|#1| $) 14 T ELT)) (-1264 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1275 (($ (-583 |#1|)) NIL T ELT)) (-3000 ((|#1| $) NIL T ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3056 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3956 (((-694) $) NIL (|has| $ (-6 -3994)) ELT))) +(((-176 |#1|) (-13 (-214 |#1|) (-10 -8 (-15 -1495 ($ (-583 |#1|))))) (-1013)) (T -176)) +((-1495 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1013)) (-5 *1 (-176 *3))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-1452 (($ (-265 |#1|)) 24 T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-2664 (((-85) $) NIL T ELT)) (-3157 (((-3 (-265 |#1|) #1#) $) NIL T ELT)) (-3156 (((-265 |#1|) $) NIL T ELT)) (-3958 (($ $) 32 T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-3957 (($ (-1 (-265 |#1|) (-265 |#1|)) $) NIL T ELT)) (-3174 (((-265 |#1|) $) NIL T ELT)) (-1454 (($ $) 31 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-1453 (((-85) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2409 (($ (-694)) NIL T ELT)) (-1451 (($ $) 33 T ELT)) (-3947 (((-484) $) NIL T ELT)) (-3945 (((-772) $) 65 T ELT) (($ (-484)) NIL T ELT) (($ (-265 |#1|)) NIL T ELT)) (-3676 (((-265 |#1|) $ $) NIL T ELT)) (-3126 (((-694)) NIL T CONST)) (-1264 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) 26 T CONST)) (-2666 (($) NIL T CONST)) (-3056 (((-85) $ $) 29 T ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) 20 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 25 T ELT) (($ (-265 |#1|) $) 19 T ELT))) +(((-177 |#1| |#2|) (-13 (-560 (-265 |#1|)) (-950 (-265 |#1|)) (-10 -8 (-15 -3174 ((-265 |#1|) $)) (-15 -1454 ($ $)) (-15 -3958 ($ $)) (-15 -3676 ((-265 |#1|) $ $)) (-15 -2409 ($ (-694))) (-15 -1453 ((-85) $)) (-15 -2664 ((-85) $)) (-15 -3947 ((-484) $)) (-15 -3957 ($ (-1 (-265 |#1|) (-265 |#1|)) $)) (-15 -1452 ($ (-265 |#1|))) (-15 -1451 ($ $)))) (-13 (-961) (-756)) (-583 (-1089))) (T -177)) +((-3174 (*1 *2 *1) (-12 (-5 *2 (-265 *3)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-961) (-756))) (-14 *4 (-583 (-1089))))) (-1454 (*1 *1 *1) (-12 (-5 *1 (-177 *2 *3)) (-4 *2 (-13 (-961) (-756))) (-14 *3 (-583 (-1089))))) (-3958 (*1 *1 *1) (-12 (-5 *1 (-177 *2 *3)) (-4 *2 (-13 (-961) (-756))) (-14 *3 (-583 (-1089))))) (-3676 (*1 *2 *1 *1) (-12 (-5 *2 (-265 *3)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-961) (-756))) (-14 *4 (-583 (-1089))))) (-2409 (*1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-961) (-756))) (-14 *4 (-583 (-1089))))) (-1453 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-961) (-756))) (-14 *4 (-583 (-1089))))) (-2664 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-961) (-756))) (-14 *4 (-583 (-1089))))) (-3947 (*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-961) (-756))) (-14 *4 (-583 (-1089))))) (-3957 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-265 *3) (-265 *3))) (-4 *3 (-13 (-961) (-756))) (-5 *1 (-177 *3 *4)) (-14 *4 (-583 (-1089))))) (-1452 (*1 *1 *2) (-12 (-5 *2 (-265 *3)) (-4 *3 (-13 (-961) (-756))) (-5 *1 (-177 *3 *4)) (-14 *4 (-583 (-1089))))) (-1451 (*1 *1 *1) (-12 (-5 *1 (-177 *2 *3)) (-4 *2 (-13 (-961) (-756))) (-14 *3 (-583 (-1089)))))) +((-1455 (((-85) (-1072)) 26 T ELT)) (-1456 (((-3 (-750 |#2|) #1="failed") (-550 |#2|) |#2| (-750 |#2|) (-750 |#2|) (-85)) 35 T ELT)) (-1457 (((-3 (-85) #1#) (-1084 |#2|) (-750 |#2|) (-750 |#2|) (-85)) 83 T ELT) (((-3 (-85) #1#) (-857 |#1|) (-1089) (-750 |#2|) (-750 |#2|) (-85)) 84 T ELT))) +(((-178 |#1| |#2|) (-10 -7 (-15 -1455 ((-85) (-1072))) (-15 -1456 ((-3 (-750 |#2|) #1="failed") (-550 |#2|) |#2| (-750 |#2|) (-750 |#2|) (-85))) (-15 -1457 ((-3 (-85) #1#) (-857 |#1|) (-1089) (-750 |#2|) (-750 |#2|) (-85))) (-15 -1457 ((-3 (-85) #1#) (-1084 |#2|) (-750 |#2|) (-750 |#2|) (-85)))) (-13 (-391) (-950 (-484)) (-580 (-484))) (-13 (-1114) (-29 |#1|))) (T -178)) +((-1457 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-85)) (-5 *3 (-1084 *6)) (-5 *4 (-750 *6)) (-4 *6 (-13 (-1114) (-29 *5))) (-4 *5 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *1 (-178 *5 *6)))) (-1457 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-85)) (-5 *3 (-857 *6)) (-5 *4 (-1089)) (-5 *5 (-750 *7)) (-4 *6 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-4 *7 (-13 (-1114) (-29 *6))) (-5 *1 (-178 *6 *7)))) (-1456 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-750 *4)) (-5 *3 (-550 *4)) (-5 *5 (-85)) (-4 *4 (-13 (-1114) (-29 *6))) (-4 *6 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *1 (-178 *6 *4)))) (-1455 (*1 *2 *3) (-12 (-5 *3 (-1072)) (-4 *4 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *2 (-85)) (-5 *1 (-178 *4 *5)) (-4 *5 (-13 (-1114) (-29 *4)))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) 86 T ELT)) (-3129 (((-484) $) 18 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-3770 (($ $) NIL T ELT)) (-3491 (($ $) 73 T ELT)) (-3638 (($ $) 61 T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3774 (($ $) NIL T ELT)) (-3970 (((-347 $) $) NIL T ELT)) (-3037 (($ $) 52 T ELT)) (-1607 (((-85) $ $) NIL T ELT)) (-3489 (($ $) 71 T ELT)) (-3637 (($ $) 59 T ELT)) (-3622 (((-484) $) 83 T ELT)) (-3493 (($ $) 76 T ELT)) (-3636 (($ $) 63 T ELT)) (-3723 (($) NIL T CONST)) (-3127 (($ $) NIL T ELT)) (-3157 (((-3 (-484) #1#) $) 116 T ELT) (((-3 (-349 (-484)) #1#) $) 113 T ELT)) (-3156 (((-484) $) 114 T ELT) (((-349 (-484)) $) 111 T ELT)) (-2564 (($ $ $) NIL T ELT)) (-3466 (((-3 $ #1#) $) 91 T ELT)) (-1743 (((-349 (-484)) $ (-694)) 106 T ELT) (((-349 (-484)) $ (-694) (-694)) 105 T ELT)) (-2563 (($ $ $) NIL T ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-3722 (((-85) $) NIL T ELT)) (-1767 (((-830)) 12 T ELT) (((-830) (-830)) NIL (|has| $ (-6 -3985)) ELT)) (-3186 (((-85) $) 107 T ELT)) (-3626 (($) 31 T ELT)) (-2796 (((-798 (-329) $) $ (-800 (-329)) (-798 (-329) $)) NIL T ELT)) (-3771 (((-484) $) 25 T ELT)) (-1213 (((-85) $ $) 141 T ELT)) (-2410 (((-85) $) 87 T ELT)) (-3011 (($ $ (-484)) NIL T ELT)) (-3132 (($ $) NIL T ELT)) (-3187 (((-85) $) 85 T ELT)) (-1458 (((-85) $) 140 T ELT)) (-1604 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2531 (($ $ $) 49 T ELT) (($) 21 (-12 (-2560 (|has| $ (-6 -3977))) (-2560 (|has| $ (-6 -3985)))) ELT)) (-2857 (($ $ $) 48 T ELT) (($) 20 (-12 (-2560 (|has| $ (-6 -3977))) (-2560 (|has| $ (-6 -3985)))) ELT)) (-1769 (((-484) $) 10 T ELT)) (-1742 (($ $) 16 T ELT)) (-1741 (($ $) 53 T ELT)) (-3941 (($ $) 58 T ELT)) (-1890 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2484 (($ $) NIL T ELT)) (-1766 (((-830) (-484)) NIL (|has| $ (-6 -3985)) ELT)) (-3243 (((-1033) $) 89 T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3144 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3128 (($ $) NIL T ELT)) (-3130 (($ $) NIL T ELT)) (-3254 (($ (-484) (-484)) NIL T ELT) (($ (-484) (-484) (-830)) 98 T ELT)) (-3731 (((-347 $) $) NIL T ELT)) (-1605 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3465 (((-3 $ #1#) $ $) NIL T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-2401 (((-484) $) 11 T ELT)) (-1740 (($) 30 T ELT)) (-3942 (($ $) 57 T ELT)) (-1606 (((-694) $) NIL T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL T ELT)) (-2615 (((-830)) NIL T ELT) (((-830) (-830)) NIL (|has| $ (-6 -3985)) ELT)) (-3757 (($ $) 92 T ELT) (($ $ (-694)) NIL T ELT)) (-1765 (((-830) (-484)) NIL (|has| $ (-6 -3985)) ELT)) (-3494 (($ $) 74 T ELT)) (-3635 (($ $) 64 T ELT)) (-3492 (($ $) 75 T ELT)) (-3634 (($ $) 62 T ELT)) (-3490 (($ $) 72 T ELT)) (-3633 (($ $) 60 T ELT)) (-3971 (((-329) $) 102 T ELT) (((-179) $) 99 T ELT) (((-800 (-329)) $) NIL T ELT) (((-473) $) 38 T ELT)) (-3945 (((-772) $) 35 T ELT) (($ (-484)) 56 T ELT) (($ $) NIL T ELT) (($ (-349 (-484))) NIL T ELT) (($ (-484)) 56 T ELT) (($ (-349 (-484))) NIL T ELT)) (-3126 (((-694)) NIL T CONST)) (-3131 (($ $) NIL T ELT)) (-1768 (((-830)) 19 T ELT) (((-830) (-830)) NIL (|has| $ (-6 -3985)) ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2694 (((-830)) 7 T ELT)) (-3497 (($ $) 79 T ELT)) (-3485 (($ $) 67 T ELT) (($ $ $) 109 T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3495 (($ $) 77 T ELT)) (-3483 (($ $) 65 T ELT)) (-3499 (($ $) 82 T ELT)) (-3487 (($ $) 70 T ELT)) (-3125 (((-85) $ $) 143 T ELT)) (-3500 (($ $) 80 T ELT)) (-3488 (($ $) 68 T ELT)) (-3498 (($ $) 81 T ELT)) (-3486 (($ $) 69 T ELT)) (-3496 (($ $) 78 T ELT)) (-3484 (($ $) 66 T ELT)) (-3382 (($ $) 108 T ELT)) (-2660 (($) 27 T CONST)) (-2666 (($) 28 T CONST)) (-3386 (($ $) 95 T ELT)) (-2669 (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-3383 (($ $ $) 97 T ELT)) (-2566 (((-85) $ $) 42 T ELT)) (-2567 (((-85) $ $) 40 T ELT)) (-3056 (((-85) $ $) 50 T ELT)) (-2684 (((-85) $ $) 41 T ELT)) (-2685 (((-85) $ $) 39 T ELT)) (-3948 (($ $ $) 29 T ELT) (($ $ (-484)) 51 T ELT)) (-3836 (($ $) 43 T ELT) (($ $ $) 45 T ELT)) (-3838 (($ $ $) 44 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) 54 T ELT) (($ $ (-349 (-484))) 139 T ELT) (($ $ $) 55 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 47 T ELT) (($ $ $) 46 T ELT) (($ $ (-349 (-484))) NIL T ELT) (($ (-349 (-484)) $) NIL T ELT))) +(((-179) (-13 (-346) (-190) (-1114) (-553 (-473)) (-10 -8 (-15 -3948 ($ $ (-484))) (-15 ** ($ $ $)) (-15 -1740 ($)) (-15 -1742 ($ $)) (-15 -1741 ($ $)) (-15 -3485 ($ $ $)) (-15 -3386 ($ $)) (-15 -3383 ($ $ $)) (-15 -1743 ((-349 (-484)) $ (-694))) (-15 -1743 ((-349 (-484)) $ (-694) (-694))) (-15 -1458 ((-85) $))))) (T -179)) +((** (*1 *1 *1 *1) (-5 *1 (-179))) (-3948 (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-179)))) (-1740 (*1 *1) (-5 *1 (-179))) (-1742 (*1 *1 *1) (-5 *1 (-179))) (-1741 (*1 *1 *1) (-5 *1 (-179))) (-3485 (*1 *1 *1 *1) (-5 *1 (-179))) (-3386 (*1 *1 *1) (-5 *1 (-179))) (-3383 (*1 *1 *1 *1) (-5 *1 (-179))) (-1743 (*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-5 *2 (-349 (-484))) (-5 *1 (-179)))) (-1743 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-694)) (-5 *2 (-349 (-484))) (-5 *1 (-179)))) (-1458 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-179))))) +((-3385 (((-142 (-179)) (-694) (-142 (-179))) 11 T ELT) (((-179) (-694) (-179)) 12 T ELT)) (-1459 (((-142 (-179)) (-142 (-179))) 13 T ELT) (((-179) (-179)) 14 T ELT)) (-1460 (((-142 (-179)) (-142 (-179)) (-142 (-179))) 19 T ELT) (((-179) (-179) (-179)) 22 T ELT)) (-3384 (((-142 (-179)) (-142 (-179))) 27 T ELT) (((-179) (-179)) 26 T ELT)) (-3388 (((-142 (-179)) (-142 (-179)) (-142 (-179))) 57 T ELT) (((-179) (-179) (-179)) 49 T ELT)) (-3390 (((-142 (-179)) (-142 (-179)) (-142 (-179))) 62 T ELT) (((-179) (-179) (-179)) 60 T ELT)) (-3387 (((-142 (-179)) (-142 (-179)) (-142 (-179))) 15 T ELT) (((-179) (-179) (-179)) 16 T ELT)) (-3389 (((-142 (-179)) (-142 (-179)) (-142 (-179))) 17 T ELT) (((-179) (-179) (-179)) 18 T ELT)) (-3392 (((-142 (-179)) (-142 (-179))) 74 T ELT) (((-179) (-179)) 73 T ELT)) (-3391 (((-179) (-179)) 68 T ELT) (((-142 (-179)) (-142 (-179))) 72 T ELT)) (-3386 (((-142 (-179)) (-142 (-179))) 8 T ELT) (((-179) (-179)) 9 T ELT)) (-3383 (((-142 (-179)) (-142 (-179)) (-142 (-179))) 35 T ELT) (((-179) (-179) (-179)) 31 T ELT))) +(((-180) (-10 -7 (-15 -3386 ((-179) (-179))) (-15 -3386 ((-142 (-179)) (-142 (-179)))) (-15 -3383 ((-179) (-179) (-179))) (-15 -3383 ((-142 (-179)) (-142 (-179)) (-142 (-179)))) (-15 -1459 ((-179) (-179))) (-15 -1459 ((-142 (-179)) (-142 (-179)))) (-15 -3384 ((-179) (-179))) (-15 -3384 ((-142 (-179)) (-142 (-179)))) (-15 -3385 ((-179) (-694) (-179))) (-15 -3385 ((-142 (-179)) (-694) (-142 (-179)))) (-15 -3387 ((-179) (-179) (-179))) (-15 -3387 ((-142 (-179)) (-142 (-179)) (-142 (-179)))) (-15 -3388 ((-179) (-179) (-179))) (-15 -3388 ((-142 (-179)) (-142 (-179)) (-142 (-179)))) (-15 -3389 ((-179) (-179) (-179))) (-15 -3389 ((-142 (-179)) (-142 (-179)) (-142 (-179)))) (-15 -3390 ((-179) (-179) (-179))) (-15 -3390 ((-142 (-179)) (-142 (-179)) (-142 (-179)))) (-15 -3391 ((-142 (-179)) (-142 (-179)))) (-15 -3391 ((-179) (-179))) (-15 -3392 ((-179) (-179))) (-15 -3392 ((-142 (-179)) (-142 (-179)))) (-15 -1460 ((-179) (-179) (-179))) (-15 -1460 ((-142 (-179)) (-142 (-179)) (-142 (-179)))))) (T -180)) +((-1460 (*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-1460 (*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3392 (*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3392 (*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3391 (*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3391 (*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3390 (*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3390 (*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3389 (*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3389 (*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3388 (*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3388 (*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3387 (*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3387 (*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3385 (*1 *2 *3 *2) (-12 (-5 *2 (-142 (-179))) (-5 *3 (-694)) (-5 *1 (-180)))) (-3385 (*1 *2 *3 *2) (-12 (-5 *2 (-179)) (-5 *3 (-694)) (-5 *1 (-180)))) (-3384 (*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3384 (*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-1459 (*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-1459 (*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3383 (*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3383 (*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3386 (*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3386 (*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180))))) +((-2568 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3837 (($ (-694) (-694)) NIL T ELT)) (-2350 (($ $ $) NIL T ELT)) (-3413 (($ (-1178 |#1|)) NIL T ELT) (($ $) NIL T ELT)) (-3872 (($ |#1| |#1| |#1|) 33 T ELT)) (-3120 (((-85) $) NIL T ELT)) (-2349 (($ $ (-484) (-484)) NIL T ELT)) (-2348 (($ $ (-484) (-484)) NIL T ELT)) (-2347 (($ $ (-484) (-484) (-484) (-484)) NIL T ELT)) (-2352 (($ $) NIL T ELT)) (-3122 (((-85) $) NIL T ELT)) (-2346 (($ $ (-484) (-484) $) NIL T ELT)) (-3787 ((|#1| $ (-484) (-484) |#1|) NIL T ELT) (($ $ (-583 (-484)) (-583 (-484)) $) NIL T ELT)) (-1256 (($ $ (-484) (-1178 |#1|)) NIL T ELT)) (-1255 (($ $ (-484) (-1178 |#1|)) NIL T ELT)) (-3846 (($ |#1| |#1| |#1|) 32 T ELT)) (-3332 (($ (-694) |#1|) NIL T ELT)) (-3723 (($) NIL T CONST)) (-3109 (($ $) NIL (|has| |#1| (-258)) ELT)) (-3111 (((-1178 |#1|) $ (-484)) NIL T ELT)) (-1461 (($ |#1|) 31 T ELT)) (-1462 (($ |#1|) 30 T ELT)) (-1463 (($ |#1|) 29 T ELT)) (-3108 (((-694) $) NIL (|has| |#1| (-495)) ELT)) (-1575 ((|#1| $ (-484) (-484) |#1|) NIL T ELT)) (-3112 ((|#1| $ (-484) (-484)) NIL T ELT)) (-2889 (((-583 |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3107 (((-694) $) NIL (|has| |#1| (-495)) ELT)) (-3106 (((-583 (-1178 |#1|)) $) NIL (|has| |#1| (-495)) ELT)) (-3114 (((-694) $) NIL T ELT)) (-3613 (($ (-694) (-694) |#1|) NIL T ELT)) (-3113 (((-694) $) NIL T ELT)) (-3326 ((|#1| $) NIL (|has| |#1| (-6 (-3996 #1="*"))) ELT)) (-3118 (((-484) $) NIL T ELT)) (-3116 (((-484) $) NIL T ELT)) (-2608 (((-583 |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3245 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-3117 (((-484) $) NIL T ELT)) (-3115 (((-484) $) NIL T ELT)) (-3123 (($ (-583 (-583 |#1|))) 11 T ELT) (($ (-694) (-694) (-1 |#1| (-484) (-484))) NIL T ELT)) (-1948 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3593 (((-583 (-583 |#1|)) $) NIL T ELT)) (-3242 (((-1072) $) NIL (|has| |#1| (-1013)) ELT)) (-3589 (((-3 $ #2="failed") $) NIL (|has| |#1| (-312)) ELT)) (-1464 (($) 12 T ELT)) (-2351 (($ $ $) NIL T ELT)) (-3243 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-2199 (($ $ |#1|) NIL T ELT)) (-3465 (((-3 $ #2#) $ |#1|) NIL (|has| |#1| (-495)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3767 (($ $ (-583 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1221 (((-85) $ $) NIL T ELT)) (-3402 (((-85) $) NIL T ELT)) (-3564 (($) NIL T ELT)) (-3799 ((|#1| $ (-484) (-484)) NIL T ELT) ((|#1| $ (-484) (-484) |#1|) NIL T ELT) (($ $ (-583 (-484)) (-583 (-484))) NIL T ELT)) (-3331 (($ (-583 |#1|)) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3121 (((-85) $) NIL T ELT)) (-3327 ((|#1| $) NIL (|has| |#1| (-6 (-3996 #1#))) ELT)) (-1945 (((-694) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT) (((-694) |#1| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-3399 (($ $) NIL T ELT)) (-3110 (((-1178 |#1|) $ (-484)) NIL T ELT)) (-3945 (($ (-1178 |#1|)) NIL T ELT) (((-772) $) NIL (|has| |#1| (-552 (-772))) ELT)) (-1264 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3119 (((-85) $) NIL T ELT)) (-3056 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3948 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3836 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (** (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL (|has| |#1| (-312)) ELT)) (* (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ (-484) $) NIL T ELT) (((-1178 |#1|) $ (-1178 |#1|)) 15 T ELT) (((-1178 |#1|) (-1178 |#1|) $) NIL T ELT) (((-854 |#1|) $ (-854 |#1|)) 21 T ELT)) (-3956 (((-694) $) NIL (|has| $ (-6 -3994)) ELT))) +(((-181 |#1|) (-13 (-627 |#1| (-1178 |#1|) (-1178 |#1|)) (-10 -8 (-15 * ((-854 |#1|) $ (-854 |#1|))) (-15 -1464 ($)) (-15 -1463 ($ |#1|)) (-15 -1462 ($ |#1|)) (-15 -1461 ($ |#1|)) (-15 -3846 ($ |#1| |#1| |#1|)) (-15 -3872 ($ |#1| |#1| |#1|)))) (-13 (-312) (-1114))) (T -181)) +((* (*1 *2 *1 *2) (-12 (-5 *2 (-854 *3)) (-4 *3 (-13 (-312) (-1114))) (-5 *1 (-181 *3)))) (-1464 (*1 *1) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1114))))) (-1463 (*1 *1 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1114))))) (-1462 (*1 *1 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1114))))) (-1461 (*1 *1 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1114))))) (-3846 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1114))))) (-3872 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1114)))))) +((-1569 (($ (-1 (-85) |#2|) $) 16 T ELT)) (-3404 (($ |#2| $) NIL T ELT) (($ (-1 (-85) |#2|) $) 28 T ELT)) (-1465 (($) NIL T ELT) (($ (-583 |#2|)) 11 T ELT)) (-3056 (((-85) $ $) 26 T ELT))) +(((-182 |#1| |#2|) (-10 -7 (-15 -3056 ((-85) |#1| |#1|)) (-15 -1569 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3404 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3404 (|#1| |#2| |#1|)) (-15 -1465 (|#1| (-583 |#2|))) (-15 -1465 (|#1|))) (-183 |#2|) (-1013)) (T -182)) +NIL +((-2568 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-1569 (($ (-1 (-85) |#1|) $) 49 (|has| $ (-6 -3994)) ELT)) (-3709 (($ (-1 (-85) |#1|) $) 59 (|has| $ (-6 -3994)) ELT)) (-3723 (($) 7 T CONST)) (-1352 (($ $) 62 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-3404 (($ |#1| $) 51 (|has| $ (-6 -3994)) ELT) (($ (-1 (-85) |#1|) $) 50 (|has| $ (-6 -3994)) ELT)) (-3405 (($ |#1| $) 61 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT) (($ (-1 (-85) |#1|) $) 58 (|has| $ (-6 -3994)) ELT)) (-3841 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -3994)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -3994)) ELT)) (-2889 (((-583 |#1|) $) 30 (|has| $ (-6 -3994)) ELT)) (-2608 (((-583 |#1|) $) 29 (|has| $ (-6 -3994)) ELT)) (-3245 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-1948 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3242 (((-1072) $) 22 (|has| |#1| (-1013)) ELT)) (-1273 ((|#1| $) 43 T ELT)) (-3608 (($ |#1| $) 44 T ELT)) (-3243 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-1353 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 55 T ELT)) (-1274 ((|#1| $) 45 T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3994)) ELT)) (-3767 (($ $ (-583 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1221 (((-85) $ $) 11 T ELT)) (-3402 (((-85) $) 8 T ELT)) (-3564 (($) 9 T ELT)) (-1465 (($) 53 T ELT) (($ (-583 |#1|)) 52 T ELT)) (-1945 (((-694) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3994)) ELT) (((-694) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-3399 (($ $) 10 T ELT)) (-3971 (((-473) $) 63 (|has| |#1| (-553 (-473))) ELT)) (-3529 (($ (-583 |#1|)) 54 T ELT)) (-3945 (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-1264 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1275 (($ (-583 |#1|)) 46 T ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3994)) ELT)) (-3056 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3956 (((-694) $) 6 (|has| $ (-6 -3994)) ELT))) +(((-183 |#1|) (-113) (-1013)) (T -183)) NIL (-13 (-193 |t#1|)) -(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1012)) (|has| |#1| (-72))) ((-551 (-771)) OR (|has| |#1| (-1012)) (|has| |#1| (-551 (-771)))) ((-124 |#1|) . T) ((-552 (-472)) |has| |#1| (-552 (-472))) ((-193 |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ((-427 |#1|) . T) ((-454 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ((-13) . T) ((-1012) |has| |#1| (-1012)) ((-1127) . T)) -((-2567 (((-85) $ $) 7 T ELT)) (-3187 (((-85) $) 22 T ELT)) (-1310 (((-3 $ "failed") $ $) 26 T ELT)) (-3722 (($) 23 T CONST)) (-3465 (((-3 $ "failed") $) 42 T ELT)) (-1212 (((-85) $ $) 20 T ELT)) (-2409 (((-85) $) 44 T ELT)) (-3241 (((-1071) $) 11 T ELT)) (-3242 (((-1032) $) 12 T ELT)) (-3756 (($ $ (-1 |#1| |#1|) (-693)) 65 T ELT) (($ $ (-1 |#1| |#1|)) 64 T ELT) (($ $ (-1088)) 63 (|has| |#1| (-810 (-1088))) ELT) (($ $ (-582 (-1088))) 61 (|has| |#1| (-810 (-1088))) ELT) (($ $ (-1088) (-693)) 60 (|has| |#1| (-810 (-1088))) ELT) (($ $ (-582 (-1088)) (-582 (-693))) 59 (|has| |#1| (-810 (-1088))) ELT) (($ $) 55 (|has| |#1| (-189)) ELT) (($ $ (-693)) 53 (|has| |#1| (-189)) ELT)) (-3944 (((-771) $) 13 T ELT) (($ (-483)) 41 T ELT)) (-3125 (((-693)) 40 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-3124 (((-85) $ $) 33 T ELT)) (-2659 (($) 24 T CONST)) (-2665 (($) 45 T CONST)) (-2668 (($ $ (-1 |#1| |#1|) (-693)) 67 T ELT) (($ $ (-1 |#1| |#1|)) 66 T ELT) (($ $ (-1088)) 62 (|has| |#1| (-810 (-1088))) ELT) (($ $ (-582 (-1088))) 58 (|has| |#1| (-810 (-1088))) ELT) (($ $ (-1088) (-693)) 57 (|has| |#1| (-810 (-1088))) ELT) (($ $ (-582 (-1088)) (-582 (-693))) 56 (|has| |#1| (-810 (-1088))) ELT) (($ $) 54 (|has| |#1| (-189)) ELT) (($ $ (-693)) 52 (|has| |#1| (-189)) ELT)) (-3055 (((-85) $ $) 8 T ELT)) (-3835 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3837 (($ $ $) 18 T ELT)) (** (($ $ (-829)) 35 T ELT) (($ $ (-693)) 43 T ELT)) (* (($ (-829) $) 17 T ELT) (($ (-693) $) 21 T ELT) (($ (-483) $) 30 T ELT) (($ $ $) 34 T ELT))) -(((-184 |#1|) (-113) (-960)) (T -184)) -NIL -(-13 (-960) (-225 |t#1|) (-10 -7 (IF (|has| |t#1| (-190)) (-6 (-190)) |%noBranch|) (IF (|has| |t#1| (-808 (-1088))) (-6 (-808 (-1088))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-554 (-483)) . T) ((-551 (-771)) . T) ((-186 $) OR (|has| |#1| (-189)) (|has| |#1| (-190))) ((-190) |has| |#1| (-190)) ((-189) OR (|has| |#1| (-189)) (|has| |#1| (-190))) ((-225 |#1|) . T) ((-13) . T) ((-587 (-483)) . T) ((-587 $) . T) ((-589 $) . T) ((-662) . T) ((-805 $ (-1088)) OR (|has| |#1| (-810 (-1088))) (|has| |#1| (-808 (-1088)))) ((-808 (-1088)) |has| |#1| (-808 (-1088))) ((-810 (-1088)) OR (|has| |#1| (-810 (-1088))) (|has| |#1| (-808 (-1088)))) ((-960) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T)) -((-2668 ((|#2| $) 9 T ELT))) -(((-185 |#1| |#2|) (-10 -7 (-15 -2668 (|#2| |#1|))) (-186 |#2|) (-1127)) (T -185)) -NIL -((-3756 ((|#1| $) 7 T ELT)) (-2668 ((|#1| $) 6 T ELT))) -(((-186 |#1|) (-113) (-1127)) (T -186)) -((-3756 (*1 *2 *1) (-12 (-4 *1 (-186 *2)) (-4 *2 (-1127)))) (-2668 (*1 *2 *1) (-12 (-4 *1 (-186 *2)) (-4 *2 (-1127))))) -(-13 (-1127) (-10 -8 (-15 -3756 (|t#1| $)) (-15 -2668 (|t#1| $)))) -(((-13) . T) ((-1127) . T)) -((-2567 (((-85) $ $) 7 T ELT)) (-3187 (((-85) $) 22 T ELT)) (-1310 (((-3 $ "failed") $ $) 26 T ELT)) (-3722 (($) 23 T CONST)) (-1212 (((-85) $ $) 20 T ELT)) (-3241 (((-1071) $) 11 T ELT)) (-3242 (((-1032) $) 12 T ELT)) (-3756 (($ $ (-693)) 43 T ELT) (($ $) 41 T ELT)) (-3944 (((-771) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2659 (($) 24 T CONST)) (-2668 (($ $ (-693)) 44 T ELT) (($ $) 42 T ELT)) (-3055 (((-85) $ $) 8 T ELT)) (-3835 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3837 (($ $ $) 18 T ELT)) (* (($ (-829) $) 17 T ELT) (($ (-693) $) 21 T ELT) (($ (-483) $) 30 T ELT) (($ |#1| $) 33 T ELT) (($ $ |#1|) 37 T ELT))) -(((-187 |#1|) (-113) (-960)) (T -187)) -NIL -(-13 (-82 |t#1| |t#1|) (-189) (-10 -7 (IF (|has| |t#1| (-146)) (-6 (-653 |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-551 (-771)) . T) ((-186 $) . T) ((-189) . T) ((-13) . T) ((-587 (-483)) . T) ((-587 |#1|) . T) ((-589 |#1|) . T) ((-581 |#1|) |has| |#1| (-146)) ((-653 |#1|) |has| |#1| (-146)) ((-962 |#1|) . T) ((-967 |#1|) . T) ((-1012) . T) ((-1127) . T)) -((-3756 (($ $) NIL T ELT) (($ $ (-693)) 9 T ELT)) (-2668 (($ $) NIL T ELT) (($ $ (-693)) 11 T ELT))) -(((-188 |#1|) (-10 -7 (-15 -2668 (|#1| |#1| (-693))) (-15 -3756 (|#1| |#1| (-693))) (-15 -2668 (|#1| |#1|)) (-15 -3756 (|#1| |#1|))) (-189)) (T -188)) -NIL -((-3756 (($ $) 7 T ELT) (($ $ (-693)) 10 T ELT)) (-2668 (($ $) 6 T ELT) (($ $ (-693)) 9 T ELT))) +(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1013)) (|has| |#1| (-552 (-772)))) ((-124 |#1|) . T) ((-553 (-473)) |has| |#1| (-553 (-473))) ((-193 |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-428 |#1|) . T) ((-455 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-1013) |has| |#1| (-1013)) ((-1128) . T)) +((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3723 (($) 23 T CONST)) (-3466 (((-3 $ "failed") $) 42 T ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3757 (($ $ (-1 |#1| |#1|) (-694)) 65 T ELT) (($ $ (-1 |#1| |#1|)) 64 T ELT) (($ $ (-1089)) 63 (|has| |#1| (-811 (-1089))) ELT) (($ $ (-583 (-1089))) 61 (|has| |#1| (-811 (-1089))) ELT) (($ $ (-1089) (-694)) 60 (|has| |#1| (-811 (-1089))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) 59 (|has| |#1| (-811 (-1089))) ELT) (($ $) 55 (|has| |#1| (-189)) ELT) (($ $ (-694)) 53 (|has| |#1| (-189)) ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT)) (-3126 (((-694)) 40 T CONST)) (-1264 (((-85) $ $) 6 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-2669 (($ $ (-1 |#1| |#1|) (-694)) 67 T ELT) (($ $ (-1 |#1| |#1|)) 66 T ELT) (($ $ (-1089)) 62 (|has| |#1| (-811 (-1089))) ELT) (($ $ (-583 (-1089))) 58 (|has| |#1| (-811 (-1089))) ELT) (($ $ (-1089) (-694)) 57 (|has| |#1| (-811 (-1089))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) 56 (|has| |#1| (-811 (-1089))) ELT) (($ $) 54 (|has| |#1| (-189)) ELT) (($ $ (-694)) 52 (|has| |#1| (-189)) ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT))) +(((-184 |#1|) (-113) (-961)) (T -184)) +NIL +(-13 (-961) (-225 |t#1|) (-10 -7 (IF (|has| |t#1| (-190)) (-6 (-190)) |%noBranch|) (IF (|has| |t#1| (-809 (-1089))) (-6 (-809 (-1089))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-555 (-484)) . T) ((-552 (-772)) . T) ((-186 $) OR (|has| |#1| (-189)) (|has| |#1| (-190))) ((-190) |has| |#1| (-190)) ((-189) OR (|has| |#1| (-189)) (|has| |#1| (-190))) ((-225 |#1|) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 $) . T) ((-590 $) . T) ((-663) . T) ((-806 $ (-1089)) OR (|has| |#1| (-811 (-1089))) (|has| |#1| (-809 (-1089)))) ((-809 (-1089)) |has| |#1| (-809 (-1089))) ((-811 (-1089)) OR (|has| |#1| (-811 (-1089))) (|has| |#1| (-809 (-1089)))) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T)) +((-2669 ((|#2| $) 9 T ELT))) +(((-185 |#1| |#2|) (-10 -7 (-15 -2669 (|#2| |#1|))) (-186 |#2|) (-1128)) (T -185)) +NIL +((-3757 ((|#1| $) 7 T ELT)) (-2669 ((|#1| $) 6 T ELT))) +(((-186 |#1|) (-113) (-1128)) (T -186)) +((-3757 (*1 *2 *1) (-12 (-4 *1 (-186 *2)) (-4 *2 (-1128)))) (-2669 (*1 *2 *1) (-12 (-4 *1 (-186 *2)) (-4 *2 (-1128))))) +(-13 (-1128) (-10 -8 (-15 -3757 (|t#1| $)) (-15 -2669 (|t#1| $)))) +(((-13) . T) ((-1128) . T)) +((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3723 (($) 23 T CONST)) (-1213 (((-85) $ $) 20 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3757 (($ $ (-694)) 43 T ELT) (($ $) 41 T ELT)) (-3945 (((-772) $) 13 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-2660 (($) 24 T CONST)) (-2669 (($ $ (-694)) 44 T ELT) (($ $) 42 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ |#1| $) 33 T ELT) (($ $ |#1|) 37 T ELT))) +(((-187 |#1|) (-113) (-961)) (T -187)) +NIL +(-13 (-82 |t#1| |t#1|) (-189) (-10 -7 (IF (|has| |t#1| (-146)) (-6 (-654 |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-552 (-772)) . T) ((-186 $) . T) ((-189) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-590 |#1|) . T) ((-582 |#1|) |has| |#1| (-146)) ((-654 |#1|) |has| |#1| (-146)) ((-963 |#1|) . T) ((-968 |#1|) . T) ((-1013) . T) ((-1128) . T)) +((-3757 (($ $) NIL T ELT) (($ $ (-694)) 9 T ELT)) (-2669 (($ $) NIL T ELT) (($ $ (-694)) 11 T ELT))) +(((-188 |#1|) (-10 -7 (-15 -2669 (|#1| |#1| (-694))) (-15 -3757 (|#1| |#1| (-694))) (-15 -2669 (|#1| |#1|)) (-15 -3757 (|#1| |#1|))) (-189)) (T -188)) +NIL +((-3757 (($ $) 7 T ELT) (($ $ (-694)) 10 T ELT)) (-2669 (($ $) 6 T ELT) (($ $ (-694)) 9 T ELT))) (((-189) (-113)) (T -189)) -((-3756 (*1 *1 *1 *2) (-12 (-4 *1 (-189)) (-5 *2 (-693)))) (-2668 (*1 *1 *1 *2) (-12 (-4 *1 (-189)) (-5 *2 (-693))))) -(-13 (-186 $) (-10 -8 (-15 -3756 ($ $ (-693))) (-15 -2668 ($ $ (-693))))) -(((-186 $) . T) ((-13) . T) ((-1127) . T)) -((-2567 (((-85) $ $) 7 T ELT)) (-3187 (((-85) $) 22 T ELT)) (-1310 (((-3 $ "failed") $ $) 26 T ELT)) (-3722 (($) 23 T CONST)) (-3465 (((-3 $ "failed") $) 42 T ELT)) (-1212 (((-85) $ $) 20 T ELT)) (-2409 (((-85) $) 44 T ELT)) (-3241 (((-1071) $) 11 T ELT)) (-3242 (((-1032) $) 12 T ELT)) (-3756 (($ $ (-693)) 50 T ELT) (($ $) 48 T ELT)) (-3944 (((-771) $) 13 T ELT) (($ (-483)) 41 T ELT)) (-3125 (((-693)) 40 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-3124 (((-85) $ $) 33 T ELT)) (-2659 (($) 24 T CONST)) (-2665 (($) 45 T CONST)) (-2668 (($ $ (-693)) 51 T ELT) (($ $) 49 T ELT)) (-3055 (((-85) $ $) 8 T ELT)) (-3835 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3837 (($ $ $) 18 T ELT)) (** (($ $ (-829)) 35 T ELT) (($ $ (-693)) 43 T ELT)) (* (($ (-829) $) 17 T ELT) (($ (-693) $) 21 T ELT) (($ (-483) $) 30 T ELT) (($ $ $) 34 T ELT))) +((-3757 (*1 *1 *1 *2) (-12 (-4 *1 (-189)) (-5 *2 (-694)))) (-2669 (*1 *1 *1 *2) (-12 (-4 *1 (-189)) (-5 *2 (-694))))) +(-13 (-186 $) (-10 -8 (-15 -3757 ($ $ (-694))) (-15 -2669 ($ $ (-694))))) +(((-186 $) . T) ((-13) . T) ((-1128) . T)) +((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3723 (($) 23 T CONST)) (-3466 (((-3 $ "failed") $) 42 T ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3757 (($ $ (-694)) 50 T ELT) (($ $) 48 T ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT)) (-3126 (((-694)) 40 T CONST)) (-1264 (((-85) $ $) 6 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-2669 (($ $ (-694)) 51 T ELT) (($ $) 49 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT))) (((-190) (-113)) (T -190)) NIL -(-13 (-960) (-189)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-554 (-483)) . T) ((-551 (-771)) . T) ((-186 $) . T) ((-189) . T) ((-13) . T) ((-587 (-483)) . T) ((-587 $) . T) ((-589 $) . T) ((-662) . T) ((-960) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T)) -((-2567 (((-85) $ $) 7 T ELT)) (-3187 (((-85) $) 31 T ELT)) (-3722 (($) 30 T CONST)) (-3465 (((-3 $ "failed") $) 36 T ELT)) (-3185 (((-85) $) 28 T ELT)) (-1212 (((-85) $ $) 33 T ELT)) (-2409 (((-85) $) 38 T ELT)) (-2530 (($ $ $) 23 T ELT)) (-2856 (($ $ $) 22 T ELT)) (-3241 (((-1071) $) 11 T ELT)) (-3242 (((-1032) $) 12 T ELT)) (-3944 (((-771) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2659 (($) 29 T CONST)) (-2665 (($) 39 T CONST)) (-2565 (((-85) $ $) 21 T ELT)) (-2566 (((-85) $ $) 19 T ELT)) (-3055 (((-85) $ $) 8 T ELT)) (-2683 (((-85) $ $) 20 T ELT)) (-2684 (((-85) $ $) 18 T ELT)) (-3837 (($ $ $) 25 T ELT)) (** (($ $ (-829)) 40 T ELT) (($ $ (-693)) 37 T ELT)) (* (($ (-829) $) 26 T ELT) (($ (-693) $) 32 T ELT) (($ $ $) 41 T ELT))) +(-13 (-961) (-189)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-555 (-484)) . T) ((-552 (-772)) . T) ((-186 $) . T) ((-189) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 $) . T) ((-590 $) . T) ((-663) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T)) +((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 31 T ELT)) (-3723 (($) 30 T CONST)) (-3466 (((-3 $ "failed") $) 36 T ELT)) (-3186 (((-85) $) 28 T ELT)) (-1213 (((-85) $ $) 33 T ELT)) (-2410 (((-85) $) 38 T ELT)) (-2531 (($ $ $) 23 T ELT)) (-2857 (($ $ $) 22 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3945 (((-772) $) 13 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-2660 (($) 29 T CONST)) (-2666 (($) 39 T CONST)) (-2566 (((-85) $ $) 21 T ELT)) (-2567 (((-85) $ $) 19 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-2684 (((-85) $ $) 20 T ELT)) (-2685 (((-85) $ $) 18 T ELT)) (-3838 (($ $ $) 25 T ELT)) (** (($ $ (-830)) 40 T ELT) (($ $ (-694)) 37 T ELT)) (* (($ (-830) $) 26 T ELT) (($ (-694) $) 32 T ELT) (($ $ $) 41 T ELT))) (((-191) (-113)) (T -191)) NIL -(-13 (-715) (-1059)) -(((-23) . T) ((-25) . T) ((-72) . T) ((-551 (-771)) . T) ((-13) . T) ((-662) . T) ((-715) . T) ((-717) . T) ((-755) . T) ((-758) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T)) -((-1464 (($) 12 T ELT) (($ (-582 |#2|)) NIL T ELT)) (-3398 (($ $) 14 T ELT)) (-3528 (($ (-582 |#2|)) 10 T ELT)) (-3944 (((-771) $) 21 T ELT))) -(((-192 |#1| |#2|) (-10 -7 (-15 -3944 ((-771) |#1|)) (-15 -1464 (|#1| (-582 |#2|))) (-15 -1464 (|#1|)) (-15 -3528 (|#1| (-582 |#2|))) (-15 -3398 (|#1| |#1|))) (-193 |#2|) (-1012)) (T -192)) -NIL -((-2567 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-1568 (($ (-1 (-85) |#1|) $) 49 (|has| $ (-6 -3993)) ELT)) (-3708 (($ (-1 (-85) |#1|) $) 59 (|has| $ (-6 -3993)) ELT)) (-3722 (($) 7 T CONST)) (-1351 (($ $) 62 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3993))) ELT)) (-3403 (($ |#1| $) 51 (|has| $ (-6 -3993)) ELT) (($ (-1 (-85) |#1|) $) 50 (|has| $ (-6 -3993)) ELT)) (-3404 (($ |#1| $) 61 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3993))) ELT) (($ (-1 (-85) |#1|) $) 58 (|has| $ (-6 -3993)) ELT)) (-3840 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3993))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -3993)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -3993)) ELT)) (-2888 (((-582 |#1|) $) 30 (|has| $ (-6 -3993)) ELT)) (-2607 (((-582 |#1|) $) 29 (|has| $ (-6 -3993)) ELT)) (-3244 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3993))) ELT)) (-1947 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3994)) ELT)) (-3956 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3241 (((-1071) $) 22 (|has| |#1| (-1012)) ELT)) (-1272 ((|#1| $) 43 T ELT)) (-3607 (($ |#1| $) 44 T ELT)) (-3242 (((-1032) $) 21 (|has| |#1| (-1012)) ELT)) (-1352 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 55 T ELT)) (-1273 ((|#1| $) 45 T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3993)) ELT)) (-3766 (($ $ (-582 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-582 |#1|) (-582 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT)) (-1220 (((-85) $ $) 11 T ELT)) (-3401 (((-85) $) 8 T ELT)) (-3563 (($) 9 T ELT)) (-1464 (($) 53 T ELT) (($ (-582 |#1|)) 52 T ELT)) (-1944 (((-693) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3993)) ELT) (((-693) |#1| $) 28 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3993))) ELT)) (-3398 (($ $) 10 T ELT)) (-3970 (((-472) $) 63 (|has| |#1| (-552 (-472))) ELT)) (-3528 (($ (-582 |#1|)) 54 T ELT)) (-3944 (((-771) $) 17 (|has| |#1| (-551 (-771))) ELT)) (-1263 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1274 (($ (-582 |#1|)) 46 T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3993)) ELT)) (-3055 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3955 (((-693) $) 6 (|has| $ (-6 -3993)) ELT))) -(((-193 |#1|) (-113) (-1012)) (T -193)) -((-1464 (*1 *1) (-12 (-4 *1 (-193 *2)) (-4 *2 (-1012)))) (-1464 (*1 *1 *2) (-12 (-5 *2 (-582 *3)) (-4 *3 (-1012)) (-4 *1 (-193 *3)))) (-3403 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -3993)) (-4 *1 (-193 *2)) (-4 *2 (-1012)))) (-3403 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (|has| *1 (-6 -3993)) (-4 *1 (-193 *3)) (-4 *3 (-1012)))) (-1568 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (|has| *1 (-6 -3993)) (-4 *1 (-193 *3)) (-4 *3 (-1012))))) -(-13 (-76 |t#1|) (-124 |t#1|) (-10 -8 (-15 -1464 ($)) (-15 -1464 ($ (-582 |t#1|))) (IF (|has| $ (-6 -3993)) (PROGN (-15 -3403 ($ |t#1| $)) (-15 -3403 ($ (-1 (-85) |t#1|) $)) (-15 -1568 ($ (-1 (-85) |t#1|) $))) |%noBranch|))) -(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1012)) (|has| |#1| (-72))) ((-551 (-771)) OR (|has| |#1| (-1012)) (|has| |#1| (-551 (-771)))) ((-124 |#1|) . T) ((-552 (-472)) |has| |#1| (-552 (-472))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ((-427 |#1|) . T) ((-454 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ((-13) . T) ((-1012) |has| |#1| (-1012)) ((-1127) . T)) -((-1465 (((-2 (|:| |varOrder| (-582 (-1088))) (|:| |inhom| (-3 (-582 (-1177 (-693))) "failed")) (|:| |hom| (-582 (-1177 (-693))))) (-249 (-856 (-483)))) 42 T ELT))) -(((-194) (-10 -7 (-15 -1465 ((-2 (|:| |varOrder| (-582 (-1088))) (|:| |inhom| (-3 (-582 (-1177 (-693))) "failed")) (|:| |hom| (-582 (-1177 (-693))))) (-249 (-856 (-483))))))) (T -194)) -((-1465 (*1 *2 *3) (-12 (-5 *3 (-249 (-856 (-483)))) (-5 *2 (-2 (|:| |varOrder| (-582 (-1088))) (|:| |inhom| (-3 (-582 (-1177 (-693))) "failed")) (|:| |hom| (-582 (-1177 (-693)))))) (-5 *1 (-194))))) -((-3135 (((-693)) 56 T ELT)) (-2278 (((-2 (|:| |mat| (-629 |#3|)) (|:| |vec| (-1177 |#3|))) (-629 $) (-1177 $)) 53 T ELT) (((-629 |#3|) (-629 $)) 44 T ELT) (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-629 $) (-1177 $)) NIL T ELT) (((-629 (-483)) (-629 $)) NIL T ELT)) (-3909 (((-107)) 62 T ELT)) (-3756 (($ $ (-1 |#3| |#3|)) 18 T ELT) (($ $ (-1 |#3| |#3|) (-693)) NIL T ELT) (($ $ (-582 (-1088)) (-582 (-693))) NIL T ELT) (($ $ (-1088) (-693)) NIL T ELT) (($ $ (-582 (-1088))) NIL T ELT) (($ $ (-1088)) NIL T ELT) (($ $ (-693)) NIL T ELT) (($ $) NIL T ELT)) (-3944 (((-1177 |#3|) $) NIL T ELT) (($ |#3|) NIL T ELT) (((-771) $) NIL T ELT) (($ (-483)) 12 T ELT) (($ (-348 (-483))) NIL T ELT)) (-3125 (((-693)) 15 T CONST)) (-3947 (($ $ |#3|) 59 T ELT))) -(((-195 |#1| |#2| |#3|) (-10 -7 (-15 -3944 (|#1| (-348 (-483)))) (-15 -3944 (|#1| (-483))) (-15 -3756 (|#1| |#1|)) (-15 -3756 (|#1| |#1| (-693))) (-15 -3756 (|#1| |#1| (-1088))) (-15 -3756 (|#1| |#1| (-582 (-1088)))) (-15 -3756 (|#1| |#1| (-1088) (-693))) (-15 -3756 (|#1| |#1| (-582 (-1088)) (-582 (-693)))) (-15 -3944 ((-771) |#1|)) (-15 -3125 ((-693)) -3950) (-15 -2278 ((-629 (-483)) (-629 |#1|))) (-15 -2278 ((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-629 |#1|) (-1177 |#1|))) (-15 -3944 (|#1| |#3|)) (-15 -3756 (|#1| |#1| (-1 |#3| |#3|) (-693))) (-15 -3756 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2278 ((-629 |#3|) (-629 |#1|))) (-15 -2278 ((-2 (|:| |mat| (-629 |#3|)) (|:| |vec| (-1177 |#3|))) (-629 |#1|) (-1177 |#1|))) (-15 -3135 ((-693))) (-15 -3947 (|#1| |#1| |#3|)) (-15 -3909 ((-107))) (-15 -3944 ((-1177 |#3|) |#1|))) (-196 |#2| |#3|) (-693) (-1127)) (T -195)) -((-3909 (*1 *2) (-12 (-14 *4 (-693)) (-4 *5 (-1127)) (-5 *2 (-107)) (-5 *1 (-195 *3 *4 *5)) (-4 *3 (-196 *4 *5)))) (-3135 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1127)) (-5 *2 (-693)) (-5 *1 (-195 *3 *4 *5)) (-4 *3 (-196 *4 *5)))) (-3125 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1127)) (-5 *2 (-693)) (-5 *1 (-195 *3 *4 *5)) (-4 *3 (-196 *4 *5))))) -((-2567 (((-85) $ $) 19 (|has| |#2| (-72)) ELT)) (-3187 (((-85) $) 80 (|has| |#2| (-23)) ELT)) (-3705 (($ (-829)) 136 (|has| |#2| (-960)) ELT)) (-2197 (((-1183) $ (-483) (-483)) 44 (|has| $ (-6 -3994)) ELT)) (-2482 (($ $ $) 132 (|has| |#2| (-716)) ELT)) (-1310 (((-3 $ "failed") $ $) 83 (|has| |#2| (-104)) ELT)) (-3135 (((-693)) 121 (|has| |#2| (-318)) ELT)) (-3786 ((|#2| $ (-483) |#2|) 56 (|has| $ (-6 -3994)) ELT)) (-3722 (($) 7 T CONST)) (-3156 (((-3 (-483) #1="failed") $) 75 (-2561 (|has| |#2| (-949 (-483))) (|has| |#2| (-1012))) ELT) (((-3 (-348 (-483)) #1#) $) 72 (-2561 (|has| |#2| (-949 (-348 (-483)))) (|has| |#2| (-1012))) ELT) (((-3 |#2| #1#) $) 69 (|has| |#2| (-1012)) ELT)) (-3155 (((-483) $) 74 (-2561 (|has| |#2| (-949 (-483))) (|has| |#2| (-1012))) ELT) (((-348 (-483)) $) 71 (-2561 (|has| |#2| (-949 (-348 (-483)))) (|has| |#2| (-1012))) ELT) ((|#2| $) 70 (|has| |#2| (-1012)) ELT)) (-2278 (((-629 (-483)) (-629 $)) 118 (-2561 (|has| |#2| (-579 (-483))) (|has| |#2| (-960))) ELT) (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-629 $) (-1177 $)) 117 (-2561 (|has| |#2| (-579 (-483))) (|has| |#2| (-960))) ELT) (((-2 (|:| |mat| (-629 |#2|)) (|:| |vec| (-1177 |#2|))) (-629 $) (-1177 $)) 116 (|has| |#2| (-960)) ELT) (((-629 |#2|) (-629 $)) 115 (|has| |#2| (-960)) ELT)) (-3465 (((-3 $ "failed") $) 95 (|has| |#2| (-960)) ELT)) (-2993 (($) 124 (|has| |#2| (-318)) ELT)) (-1574 ((|#2| $ (-483) |#2|) 57 (|has| $ (-6 -3994)) ELT)) (-3111 ((|#2| $ (-483)) 55 T ELT)) (-3185 (((-85) $) 131 (|has| |#2| (-716)) ELT)) (-2888 (((-582 |#2|) $) 30 (|has| $ (-6 -3993)) ELT)) (-1212 (((-85) $ $) 82 (|has| |#2| (-23)) ELT)) (-2409 (((-85) $) 93 (|has| |#2| (-960)) ELT)) (-2199 (((-483) $) 47 (|has| (-483) (-755)) ELT)) (-2530 (($ $ $) 125 (|has| |#2| (-755)) ELT)) (-2607 (((-582 |#2|) $) 29 (|has| $ (-6 -3993)) ELT)) (-3244 (((-85) |#2| $) 27 (-12 (|has| |#2| (-1012)) (|has| $ (-6 -3993))) ELT)) (-2200 (((-483) $) 48 (|has| (-483) (-755)) ELT)) (-2856 (($ $ $) 126 (|has| |#2| (-755)) ELT)) (-1947 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -3994)) ELT)) (-3956 (($ (-1 |#2| |#2|) $) 35 T ELT)) (-2009 (((-829) $) 123 (|has| |#2| (-318)) ELT)) (-2279 (((-629 (-483)) (-1177 $)) 120 (-2561 (|has| |#2| (-579 (-483))) (|has| |#2| (-960))) ELT) (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) 119 (-2561 (|has| |#2| (-579 (-483))) (|has| |#2| (-960))) ELT) (((-2 (|:| |mat| (-629 |#2|)) (|:| |vec| (-1177 |#2|))) (-1177 $) $) 114 (|has| |#2| (-960)) ELT) (((-629 |#2|) (-1177 $)) 113 (|has| |#2| (-960)) ELT)) (-3241 (((-1071) $) 22 (|has| |#2| (-1012)) ELT)) (-2202 (((-582 (-483)) $) 50 T ELT)) (-2203 (((-85) (-483) $) 51 T ELT)) (-2399 (($ (-829)) 122 (|has| |#2| (-318)) ELT)) (-3242 (((-1032) $) 21 (|has| |#2| (-1012)) ELT)) (-3799 ((|#2| $) 46 (|has| (-483) (-755)) ELT)) (-2198 (($ $ |#2|) 45 (|has| $ (-6 -3994)) ELT)) (-1945 (((-85) (-1 (-85) |#2|) $) 32 (|has| $ (-6 -3993)) ELT)) (-3766 (($ $ (-582 (-249 |#2|))) 26 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ (-249 |#2|)) 25 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ (-582 |#2|) (-582 |#2|)) 23 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1012))) ELT)) (-1220 (((-85) $ $) 11 T ELT)) (-2201 (((-85) |#2| $) 49 (-12 (|has| $ (-6 -3993)) (|has| |#2| (-1012))) ELT)) (-2204 (((-582 |#2|) $) 52 T ELT)) (-3401 (((-85) $) 8 T ELT)) (-3563 (($) 9 T ELT)) (-3798 ((|#2| $ (-483) |#2|) 54 T ELT) ((|#2| $ (-483)) 53 T ELT)) (-3834 ((|#2| $ $) 135 (|has| |#2| (-960)) ELT)) (-1466 (($ (-1177 |#2|)) 137 T ELT)) (-3909 (((-107)) 134 (|has| |#2| (-312)) ELT)) (-3756 (($ $ (-693)) 111 (-2561 (|has| |#2| (-189)) (|has| |#2| (-960))) ELT) (($ $) 109 (-2561 (|has| |#2| (-189)) (|has| |#2| (-960))) ELT) (($ $ (-582 (-1088)) (-582 (-693))) 105 (-2561 (|has| |#2| (-810 (-1088))) (|has| |#2| (-960))) ELT) (($ $ (-1088) (-693)) 104 (-2561 (|has| |#2| (-810 (-1088))) (|has| |#2| (-960))) ELT) (($ $ (-582 (-1088))) 103 (-2561 (|has| |#2| (-810 (-1088))) (|has| |#2| (-960))) ELT) (($ $ (-1088)) 101 (-2561 (|has| |#2| (-810 (-1088))) (|has| |#2| (-960))) ELT) (($ $ (-1 |#2| |#2|)) 100 (|has| |#2| (-960)) ELT) (($ $ (-1 |#2| |#2|) (-693)) 99 (|has| |#2| (-960)) ELT)) (-1944 (((-693) (-1 (-85) |#2|) $) 31 (|has| $ (-6 -3993)) ELT) (((-693) |#2| $) 28 (-12 (|has| |#2| (-1012)) (|has| $ (-6 -3993))) ELT)) (-3398 (($ $) 10 T ELT)) (-3944 (((-1177 |#2|) $) 138 T ELT) (($ (-483)) 76 (OR (-2561 (|has| |#2| (-949 (-483))) (|has| |#2| (-1012))) (|has| |#2| (-960))) ELT) (($ (-348 (-483))) 73 (-2561 (|has| |#2| (-949 (-348 (-483)))) (|has| |#2| (-1012))) ELT) (($ |#2|) 68 (|has| |#2| (-1012)) ELT) (((-771) $) 17 (|has| |#2| (-551 (-771))) ELT)) (-3125 (((-693)) 96 (|has| |#2| (-960)) CONST)) (-1263 (((-85) $ $) 20 (|has| |#2| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#2|) $) 33 (|has| $ (-6 -3993)) ELT)) (-3124 (((-85) $ $) 91 (|has| |#2| (-960)) ELT)) (-2659 (($) 79 (|has| |#2| (-23)) CONST)) (-2665 (($) 92 (|has| |#2| (-960)) CONST)) (-2668 (($ $ (-693)) 112 (-2561 (|has| |#2| (-189)) (|has| |#2| (-960))) ELT) (($ $) 110 (-2561 (|has| |#2| (-189)) (|has| |#2| (-960))) ELT) (($ $ (-582 (-1088)) (-582 (-693))) 108 (-2561 (|has| |#2| (-810 (-1088))) (|has| |#2| (-960))) ELT) (($ $ (-1088) (-693)) 107 (-2561 (|has| |#2| (-810 (-1088))) (|has| |#2| (-960))) ELT) (($ $ (-582 (-1088))) 106 (-2561 (|has| |#2| (-810 (-1088))) (|has| |#2| (-960))) ELT) (($ $ (-1088)) 102 (-2561 (|has| |#2| (-810 (-1088))) (|has| |#2| (-960))) ELT) (($ $ (-1 |#2| |#2|)) 98 (|has| |#2| (-960)) ELT) (($ $ (-1 |#2| |#2|) (-693)) 97 (|has| |#2| (-960)) ELT)) (-2565 (((-85) $ $) 127 (|has| |#2| (-755)) ELT)) (-2566 (((-85) $ $) 129 (|has| |#2| (-755)) ELT)) (-3055 (((-85) $ $) 18 (|has| |#2| (-72)) ELT)) (-2683 (((-85) $ $) 128 (|has| |#2| (-755)) ELT)) (-2684 (((-85) $ $) 130 (|has| |#2| (-755)) ELT)) (-3947 (($ $ |#2|) 133 (|has| |#2| (-312)) ELT)) (-3835 (($ $ $) 86 (|has| |#2| (-21)) ELT) (($ $) 85 (|has| |#2| (-21)) ELT)) (-3837 (($ $ $) 77 (|has| |#2| (-25)) ELT)) (** (($ $ (-693)) 94 (|has| |#2| (-960)) ELT) (($ $ (-829)) 89 (|has| |#2| (-960)) ELT)) (* (($ $ $) 90 (|has| |#2| (-960)) ELT) (($ $ |#2|) 88 (|has| |#2| (-662)) ELT) (($ |#2| $) 87 (|has| |#2| (-662)) ELT) (($ (-483) $) 84 (|has| |#2| (-21)) ELT) (($ (-693) $) 81 (|has| |#2| (-23)) ELT) (($ (-829) $) 78 (|has| |#2| (-25)) ELT)) (-3955 (((-693) $) 6 (|has| $ (-6 -3993)) ELT))) -(((-196 |#1| |#2|) (-113) (-693) (-1127)) (T -196)) -((-1466 (*1 *1 *2) (-12 (-5 *2 (-1177 *4)) (-4 *4 (-1127)) (-4 *1 (-196 *3 *4)))) (-3705 (*1 *1 *2) (-12 (-5 *2 (-829)) (-4 *1 (-196 *3 *4)) (-4 *4 (-960)) (-4 *4 (-1127)))) (-3834 (*1 *2 *1 *1) (-12 (-4 *1 (-196 *3 *2)) (-4 *2 (-1127)) (-4 *2 (-960))))) -(-13 (-537 (-483) |t#2|) (-551 (-1177 |t#2|)) (-10 -8 (-6 -3993) (-15 -1466 ($ (-1177 |t#2|))) (IF (|has| |t#2| (-1012)) (-6 (-353 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-960)) (PROGN (-6 (-82 |t#2| |t#2|)) (-6 (-184 |t#2|)) (-6 (-327 |t#2|)) (-15 -3705 ($ (-829))) (-15 -3834 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-104)) (-6 (-104)) |%noBranch|) (IF (|has| |t#2| (-23)) (-6 (-23)) |%noBranch|) (IF (|has| |t#2| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#2| (-662)) (-6 (-581 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-318)) (-6 (-318)) |%noBranch|) (IF (|has| |t#2| (-146)) (-6 (-653 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-6 -3990)) (-6 -3990) |%noBranch|) (IF (|has| |t#2| (-755)) (-6 (-755)) |%noBranch|) (IF (|has| |t#2| (-716)) (-6 (-716)) |%noBranch|) (IF (|has| |t#2| (-312)) (-6 (-1185 |t#2|)) |%noBranch|))) -(((-21) OR (|has| |#2| (-960)) (|has| |#2| (-312)) (|has| |#2| (-146)) (|has| |#2| (-21))) ((-23) OR (|has| |#2| (-960)) (|has| |#2| (-716)) (|has| |#2| (-312)) (|has| |#2| (-146)) (|has| |#2| (-104)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-25) OR (|has| |#2| (-960)) (|has| |#2| (-716)) (|has| |#2| (-312)) (|has| |#2| (-146)) (|has| |#2| (-104)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-34) . T) ((-72) OR (|has| |#2| (-1012)) (|has| |#2| (-960)) (|has| |#2| (-755)) (|has| |#2| (-716)) (|has| |#2| (-662)) (|has| |#2| (-318)) (|has| |#2| (-312)) (|has| |#2| (-146)) (|has| |#2| (-104)) (|has| |#2| (-72)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-82 |#2| |#2|) OR (|has| |#2| (-960)) (|has| |#2| (-312)) (|has| |#2| (-146))) ((-104) OR (|has| |#2| (-960)) (|has| |#2| (-716)) (|has| |#2| (-312)) (|has| |#2| (-146)) (|has| |#2| (-104)) (|has| |#2| (-21))) ((-554 (-348 (-483))) -12 (|has| |#2| (-949 (-348 (-483)))) (|has| |#2| (-1012))) ((-554 (-483)) OR (|has| |#2| (-960)) (-12 (|has| |#2| (-949 (-483))) (|has| |#2| (-1012)))) ((-554 |#2|) |has| |#2| (-1012)) ((-551 (-771)) OR (|has| |#2| (-1012)) (|has| |#2| (-960)) (|has| |#2| (-755)) (|has| |#2| (-716)) (|has| |#2| (-662)) (|has| |#2| (-318)) (|has| |#2| (-312)) (|has| |#2| (-146)) (|has| |#2| (-551 (-771))) (|has| |#2| (-104)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-551 (-1177 |#2|)) . T) ((-186 $) OR (-12 (|has| |#2| (-189)) (|has| |#2| (-960))) (-12 (|has| |#2| (-190)) (|has| |#2| (-960)))) ((-184 |#2|) |has| |#2| (-960)) ((-190) -12 (|has| |#2| (-190)) (|has| |#2| (-960))) ((-189) OR (-12 (|has| |#2| (-189)) (|has| |#2| (-960))) (-12 (|has| |#2| (-190)) (|has| |#2| (-960)))) ((-225 |#2|) |has| |#2| (-960)) ((-241 (-483) |#2|) . T) ((-243 (-483) |#2|) . T) ((-260 |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1012))) ((-318) |has| |#2| (-318)) ((-327 |#2|) |has| |#2| (-960)) ((-353 |#2|) |has| |#2| (-1012)) ((-427 |#2|) . T) ((-537 (-483) |#2|) . T) ((-454 |#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1012))) ((-13) . T) ((-587 (-483)) OR (|has| |#2| (-960)) (|has| |#2| (-312)) (|has| |#2| (-146)) (|has| |#2| (-21))) ((-587 |#2|) OR (|has| |#2| (-960)) (|has| |#2| (-662)) (|has| |#2| (-312)) (|has| |#2| (-146))) ((-587 $) |has| |#2| (-960)) ((-589 (-483)) -12 (|has| |#2| (-579 (-483))) (|has| |#2| (-960))) ((-589 |#2|) OR (|has| |#2| (-960)) (|has| |#2| (-312)) (|has| |#2| (-146))) ((-589 $) |has| |#2| (-960)) ((-581 |#2|) OR (|has| |#2| (-662)) (|has| |#2| (-312)) (|has| |#2| (-146))) ((-579 (-483)) -12 (|has| |#2| (-579 (-483))) (|has| |#2| (-960))) ((-579 |#2|) |has| |#2| (-960)) ((-653 |#2|) OR (|has| |#2| (-312)) (|has| |#2| (-146))) ((-662) |has| |#2| (-960)) ((-715) |has| |#2| (-716)) ((-716) |has| |#2| (-716)) ((-717) |has| |#2| (-716)) ((-720) |has| |#2| (-716)) ((-755) OR (|has| |#2| (-755)) (|has| |#2| (-716))) ((-758) OR (|has| |#2| (-755)) (|has| |#2| (-716))) ((-805 $ (-1088)) OR (-12 (|has| |#2| (-810 (-1088))) (|has| |#2| (-960))) (-12 (|has| |#2| (-808 (-1088))) (|has| |#2| (-960)))) ((-808 (-1088)) -12 (|has| |#2| (-808 (-1088))) (|has| |#2| (-960))) ((-810 (-1088)) OR (-12 (|has| |#2| (-810 (-1088))) (|has| |#2| (-960))) (-12 (|has| |#2| (-808 (-1088))) (|has| |#2| (-960)))) ((-949 (-348 (-483))) -12 (|has| |#2| (-949 (-348 (-483)))) (|has| |#2| (-1012))) ((-949 (-483)) -12 (|has| |#2| (-949 (-483))) (|has| |#2| (-1012))) ((-949 |#2|) |has| |#2| (-1012)) ((-962 |#2|) OR (|has| |#2| (-960)) (|has| |#2| (-662)) (|has| |#2| (-312)) (|has| |#2| (-146))) ((-967 |#2|) OR (|has| |#2| (-960)) (|has| |#2| (-312)) (|has| |#2| (-146))) ((-960) |has| |#2| (-960)) ((-969) |has| |#2| (-960)) ((-1024) |has| |#2| (-960)) ((-1059) |has| |#2| (-960)) ((-1012) OR (|has| |#2| (-1012)) (|has| |#2| (-960)) (|has| |#2| (-755)) (|has| |#2| (-716)) (|has| |#2| (-662)) (|has| |#2| (-318)) (|has| |#2| (-312)) (|has| |#2| (-146)) (|has| |#2| (-104)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-1127) . T) ((-1185 |#2|) |has| |#2| (-312))) -((-2567 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-3187 (((-85) $) NIL (|has| |#2| (-23)) ELT)) (-3705 (($ (-829)) 63 (|has| |#2| (-960)) ELT)) (-2197 (((-1183) $ (-483) (-483)) NIL (|has| $ (-6 -3994)) ELT)) (-2482 (($ $ $) 69 (|has| |#2| (-716)) ELT)) (-1310 (((-3 $ #1="failed") $ $) 54 (|has| |#2| (-104)) ELT)) (-3135 (((-693)) NIL (|has| |#2| (-318)) ELT)) (-3786 ((|#2| $ (-483) |#2|) NIL (|has| $ (-6 -3994)) ELT)) (-3722 (($) NIL T CONST)) (-3156 (((-3 (-483) #1#) $) NIL (-12 (|has| |#2| (-949 (-483))) (|has| |#2| (-1012))) ELT) (((-3 (-348 (-483)) #1#) $) NIL (-12 (|has| |#2| (-949 (-348 (-483)))) (|has| |#2| (-1012))) ELT) (((-3 |#2| #1#) $) 31 (|has| |#2| (-1012)) ELT)) (-3155 (((-483) $) NIL (-12 (|has| |#2| (-949 (-483))) (|has| |#2| (-1012))) ELT) (((-348 (-483)) $) NIL (-12 (|has| |#2| (-949 (-348 (-483)))) (|has| |#2| (-1012))) ELT) ((|#2| $) 29 (|has| |#2| (-1012)) ELT)) (-2278 (((-629 (-483)) (-629 $)) NIL (-12 (|has| |#2| (-579 (-483))) (|has| |#2| (-960))) ELT) (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-629 $) (-1177 $)) NIL (-12 (|has| |#2| (-579 (-483))) (|has| |#2| (-960))) ELT) (((-2 (|:| |mat| (-629 |#2|)) (|:| |vec| (-1177 |#2|))) (-629 $) (-1177 $)) NIL (|has| |#2| (-960)) ELT) (((-629 |#2|) (-629 $)) NIL (|has| |#2| (-960)) ELT)) (-3465 (((-3 $ #1#) $) 59 (|has| |#2| (-960)) ELT)) (-2993 (($) NIL (|has| |#2| (-318)) ELT)) (-1574 ((|#2| $ (-483) |#2|) NIL (|has| $ (-6 -3994)) ELT)) (-3111 ((|#2| $ (-483)) 57 T ELT)) (-3185 (((-85) $) NIL (|has| |#2| (-716)) ELT)) (-2888 (((-582 |#2|) $) 14 (|has| $ (-6 -3993)) ELT)) (-1212 (((-85) $ $) NIL (|has| |#2| (-23)) ELT)) (-2409 (((-85) $) NIL (|has| |#2| (-960)) ELT)) (-2199 (((-483) $) 20 (|has| (-483) (-755)) ELT)) (-2530 (($ $ $) NIL (|has| |#2| (-755)) ELT)) (-2607 (((-582 |#2|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3244 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#2| (-1012))) ELT)) (-2200 (((-483) $) NIL (|has| (-483) (-755)) ELT)) (-2856 (($ $ $) NIL (|has| |#2| (-755)) ELT)) (-1947 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3956 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2009 (((-829) $) NIL (|has| |#2| (-318)) ELT)) (-2279 (((-629 (-483)) (-1177 $)) NIL (-12 (|has| |#2| (-579 (-483))) (|has| |#2| (-960))) ELT) (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL (-12 (|has| |#2| (-579 (-483))) (|has| |#2| (-960))) ELT) (((-2 (|:| |mat| (-629 |#2|)) (|:| |vec| (-1177 |#2|))) (-1177 $) $) NIL (|has| |#2| (-960)) ELT) (((-629 |#2|) (-1177 $)) NIL (|has| |#2| (-960)) ELT)) (-3241 (((-1071) $) NIL (|has| |#2| (-1012)) ELT)) (-2202 (((-582 (-483)) $) NIL T ELT)) (-2203 (((-85) (-483) $) NIL T ELT)) (-2399 (($ (-829)) NIL (|has| |#2| (-318)) ELT)) (-3242 (((-1032) $) NIL (|has| |#2| (-1012)) ELT)) (-3799 ((|#2| $) NIL (|has| (-483) (-755)) ELT)) (-2198 (($ $ |#2|) NIL (|has| $ (-6 -3994)) ELT)) (-1945 (((-85) (-1 (-85) |#2|) $) 24 (|has| $ (-6 -3993)) ELT)) (-3766 (($ $ (-582 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ (-582 |#2|) (-582 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1012))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-2201 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#2| (-1012))) ELT)) (-2204 (((-582 |#2|) $) NIL T ELT)) (-3401 (((-85) $) NIL T ELT)) (-3563 (($) NIL T ELT)) (-3798 ((|#2| $ (-483) |#2|) NIL T ELT) ((|#2| $ (-483)) 21 T ELT)) (-3834 ((|#2| $ $) NIL (|has| |#2| (-960)) ELT)) (-1466 (($ (-1177 |#2|)) 18 T ELT)) (-3909 (((-107)) NIL (|has| |#2| (-312)) ELT)) (-3756 (($ $ (-693)) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-960))) ELT) (($ $) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-960))) ELT) (($ $ (-582 (-1088)) (-582 (-693))) NIL (-12 (|has| |#2| (-810 (-1088))) (|has| |#2| (-960))) ELT) (($ $ (-1088) (-693)) NIL (-12 (|has| |#2| (-810 (-1088))) (|has| |#2| (-960))) ELT) (($ $ (-582 (-1088))) NIL (-12 (|has| |#2| (-810 (-1088))) (|has| |#2| (-960))) ELT) (($ $ (-1088)) NIL (-12 (|has| |#2| (-810 (-1088))) (|has| |#2| (-960))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-960)) ELT) (($ $ (-1 |#2| |#2|) (-693)) NIL (|has| |#2| (-960)) ELT)) (-1944 (((-693) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3993)) ELT) (((-693) |#2| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#2| (-1012))) ELT)) (-3398 (($ $) NIL T ELT)) (-3944 (((-1177 |#2|) $) 9 T ELT) (($ (-483)) NIL (OR (-12 (|has| |#2| (-949 (-483))) (|has| |#2| (-1012))) (|has| |#2| (-960))) ELT) (($ (-348 (-483))) NIL (-12 (|has| |#2| (-949 (-348 (-483)))) (|has| |#2| (-1012))) ELT) (($ |#2|) 12 (|has| |#2| (-1012)) ELT) (((-771) $) NIL (|has| |#2| (-551 (-771))) ELT)) (-3125 (((-693)) NIL (|has| |#2| (-960)) CONST)) (-1263 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3124 (((-85) $ $) NIL (|has| |#2| (-960)) ELT)) (-2659 (($) 37 (|has| |#2| (-23)) CONST)) (-2665 (($) 41 (|has| |#2| (-960)) CONST)) (-2668 (($ $ (-693)) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-960))) ELT) (($ $) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-960))) ELT) (($ $ (-582 (-1088)) (-582 (-693))) NIL (-12 (|has| |#2| (-810 (-1088))) (|has| |#2| (-960))) ELT) (($ $ (-1088) (-693)) NIL (-12 (|has| |#2| (-810 (-1088))) (|has| |#2| (-960))) ELT) (($ $ (-582 (-1088))) NIL (-12 (|has| |#2| (-810 (-1088))) (|has| |#2| (-960))) ELT) (($ $ (-1088)) NIL (-12 (|has| |#2| (-810 (-1088))) (|has| |#2| (-960))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-960)) ELT) (($ $ (-1 |#2| |#2|) (-693)) NIL (|has| |#2| (-960)) ELT)) (-2565 (((-85) $ $) NIL (|has| |#2| (-755)) ELT)) (-2566 (((-85) $ $) NIL (|has| |#2| (-755)) ELT)) (-3055 (((-85) $ $) 28 (|has| |#2| (-72)) ELT)) (-2683 (((-85) $ $) NIL (|has| |#2| (-755)) ELT)) (-2684 (((-85) $ $) 67 (|has| |#2| (-755)) ELT)) (-3947 (($ $ |#2|) NIL (|has| |#2| (-312)) ELT)) (-3835 (($ $ $) NIL (|has| |#2| (-21)) ELT) (($ $) NIL (|has| |#2| (-21)) ELT)) (-3837 (($ $ $) 35 (|has| |#2| (-25)) ELT)) (** (($ $ (-693)) NIL (|has| |#2| (-960)) ELT) (($ $ (-829)) NIL (|has| |#2| (-960)) ELT)) (* (($ $ $) 47 (|has| |#2| (-960)) ELT) (($ $ |#2|) 45 (|has| |#2| (-662)) ELT) (($ |#2| $) 46 (|has| |#2| (-662)) ELT) (($ (-483) $) NIL (|has| |#2| (-21)) ELT) (($ (-693) $) NIL (|has| |#2| (-23)) ELT) (($ (-829) $) NIL (|has| |#2| (-25)) ELT)) (-3955 (((-693) $) NIL (|has| $ (-6 -3993)) ELT))) -(((-197 |#1| |#2|) (-196 |#1| |#2|) (-693) (-1127)) (T -197)) -NIL -((-3839 (((-197 |#1| |#3|) (-1 |#3| |#2| |#3|) (-197 |#1| |#2|) |#3|) 21 T ELT)) (-3840 ((|#3| (-1 |#3| |#2| |#3|) (-197 |#1| |#2|) |#3|) 23 T ELT)) (-3956 (((-197 |#1| |#3|) (-1 |#3| |#2|) (-197 |#1| |#2|)) 18 T ELT))) -(((-198 |#1| |#2| |#3|) (-10 -7 (-15 -3839 ((-197 |#1| |#3|) (-1 |#3| |#2| |#3|) (-197 |#1| |#2|) |#3|)) (-15 -3840 (|#3| (-1 |#3| |#2| |#3|) (-197 |#1| |#2|) |#3|)) (-15 -3956 ((-197 |#1| |#3|) (-1 |#3| |#2|) (-197 |#1| |#2|)))) (-693) (-1127) (-1127)) (T -198)) -((-3956 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-197 *5 *6)) (-14 *5 (-693)) (-4 *6 (-1127)) (-4 *7 (-1127)) (-5 *2 (-197 *5 *7)) (-5 *1 (-198 *5 *6 *7)))) (-3840 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-197 *5 *6)) (-14 *5 (-693)) (-4 *6 (-1127)) (-4 *2 (-1127)) (-5 *1 (-198 *5 *6 *2)))) (-3839 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-197 *6 *7)) (-14 *6 (-693)) (-4 *7 (-1127)) (-4 *5 (-1127)) (-5 *2 (-197 *6 *5)) (-5 *1 (-198 *6 *7 *5))))) -((-1470 (((-483) (-582 (-1071))) 36 T ELT) (((-483) (-1071)) 29 T ELT)) (-1469 (((-1183) (-582 (-1071))) 40 T ELT) (((-1183) (-1071)) 39 T ELT)) (-1467 (((-1071)) 16 T ELT)) (-1468 (((-1071) (-483) (-1071)) 23 T ELT)) (-3771 (((-582 (-1071)) (-582 (-1071)) (-483) (-1071)) 37 T ELT) (((-1071) (-1071) (-483) (-1071)) 35 T ELT)) (-2619 (((-582 (-1071)) (-582 (-1071))) 15 T ELT) (((-582 (-1071)) (-1071)) 11 T ELT))) -(((-199) (-10 -7 (-15 -2619 ((-582 (-1071)) (-1071))) (-15 -2619 ((-582 (-1071)) (-582 (-1071)))) (-15 -1467 ((-1071))) (-15 -1468 ((-1071) (-483) (-1071))) (-15 -3771 ((-1071) (-1071) (-483) (-1071))) (-15 -3771 ((-582 (-1071)) (-582 (-1071)) (-483) (-1071))) (-15 -1469 ((-1183) (-1071))) (-15 -1469 ((-1183) (-582 (-1071)))) (-15 -1470 ((-483) (-1071))) (-15 -1470 ((-483) (-582 (-1071)))))) (T -199)) -((-1470 (*1 *2 *3) (-12 (-5 *3 (-582 (-1071))) (-5 *2 (-483)) (-5 *1 (-199)))) (-1470 (*1 *2 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-483)) (-5 *1 (-199)))) (-1469 (*1 *2 *3) (-12 (-5 *3 (-582 (-1071))) (-5 *2 (-1183)) (-5 *1 (-199)))) (-1469 (*1 *2 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-1183)) (-5 *1 (-199)))) (-3771 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-582 (-1071))) (-5 *3 (-483)) (-5 *4 (-1071)) (-5 *1 (-199)))) (-3771 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1071)) (-5 *3 (-483)) (-5 *1 (-199)))) (-1468 (*1 *2 *3 *2) (-12 (-5 *2 (-1071)) (-5 *3 (-483)) (-5 *1 (-199)))) (-1467 (*1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-199)))) (-2619 (*1 *2 *2) (-12 (-5 *2 (-582 (-1071))) (-5 *1 (-199)))) (-2619 (*1 *2 *3) (-12 (-5 *2 (-582 (-1071))) (-5 *1 (-199)) (-5 *3 (-1071))))) -((** (($ $ (-829)) NIL T ELT) (($ $ (-693)) NIL T ELT) (($ $ (-483)) 18 T ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-348 (-483)) $) 25 T ELT) (($ $ (-348 (-483))) NIL T ELT))) -(((-200 |#1|) (-10 -7 (-15 ** (|#1| |#1| (-483))) (-15 * (|#1| |#1| (-348 (-483)))) (-15 * (|#1| (-348 (-483)) |#1|)) (-15 ** (|#1| |#1| (-693))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-829))) (-15 * (|#1| (-483) |#1|)) (-15 * (|#1| (-693) |#1|)) (-15 * (|#1| (-829) |#1|))) (-201)) (T -200)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-3187 (((-85) $) 22 T ELT)) (-1310 (((-3 $ "failed") $ $) 26 T ELT)) (-3722 (($) 23 T CONST)) (-3465 (((-3 $ "failed") $) 42 T ELT)) (-1212 (((-85) $ $) 20 T ELT)) (-2409 (((-85) $) 44 T ELT)) (-3241 (((-1071) $) 11 T ELT)) (-2483 (($ $) 55 T ELT)) (-3242 (((-1032) $) 12 T ELT)) (-3944 (((-771) $) 13 T ELT) (($ (-483)) 41 T ELT) (($ (-348 (-483))) 59 T ELT)) (-3125 (((-693)) 40 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-3124 (((-85) $ $) 33 T ELT)) (-2659 (($) 24 T CONST)) (-2665 (($) 45 T CONST)) (-3055 (((-85) $ $) 8 T ELT)) (-3835 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3837 (($ $ $) 18 T ELT)) (** (($ $ (-829)) 35 T ELT) (($ $ (-693)) 43 T ELT) (($ $ (-483)) 56 T ELT)) (* (($ (-829) $) 17 T ELT) (($ (-693) $) 21 T ELT) (($ (-483) $) 30 T ELT) (($ $ $) 34 T ELT) (($ (-348 (-483)) $) 58 T ELT) (($ $ (-348 (-483))) 57 T ELT))) +(-13 (-716) (-1060)) +(((-23) . T) ((-25) . T) ((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-663) . T) ((-716) . T) ((-718) . T) ((-756) . T) ((-759) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T)) +((-1465 (($) 12 T ELT) (($ (-583 |#2|)) NIL T ELT)) (-3399 (($ $) 14 T ELT)) (-3529 (($ (-583 |#2|)) 10 T ELT)) (-3945 (((-772) $) 21 T ELT))) +(((-192 |#1| |#2|) (-10 -7 (-15 -3945 ((-772) |#1|)) (-15 -1465 (|#1| (-583 |#2|))) (-15 -1465 (|#1|)) (-15 -3529 (|#1| (-583 |#2|))) (-15 -3399 (|#1| |#1|))) (-193 |#2|) (-1013)) (T -192)) +NIL +((-2568 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-1569 (($ (-1 (-85) |#1|) $) 49 (|has| $ (-6 -3994)) ELT)) (-3709 (($ (-1 (-85) |#1|) $) 59 (|has| $ (-6 -3994)) ELT)) (-3723 (($) 7 T CONST)) (-1352 (($ $) 62 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-3404 (($ |#1| $) 51 (|has| $ (-6 -3994)) ELT) (($ (-1 (-85) |#1|) $) 50 (|has| $ (-6 -3994)) ELT)) (-3405 (($ |#1| $) 61 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT) (($ (-1 (-85) |#1|) $) 58 (|has| $ (-6 -3994)) ELT)) (-3841 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -3994)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -3994)) ELT)) (-2889 (((-583 |#1|) $) 30 (|has| $ (-6 -3994)) ELT)) (-2608 (((-583 |#1|) $) 29 (|has| $ (-6 -3994)) ELT)) (-3245 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-1948 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3242 (((-1072) $) 22 (|has| |#1| (-1013)) ELT)) (-1273 ((|#1| $) 43 T ELT)) (-3608 (($ |#1| $) 44 T ELT)) (-3243 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-1353 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 55 T ELT)) (-1274 ((|#1| $) 45 T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3994)) ELT)) (-3767 (($ $ (-583 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1221 (((-85) $ $) 11 T ELT)) (-3402 (((-85) $) 8 T ELT)) (-3564 (($) 9 T ELT)) (-1465 (($) 53 T ELT) (($ (-583 |#1|)) 52 T ELT)) (-1945 (((-694) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3994)) ELT) (((-694) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-3399 (($ $) 10 T ELT)) (-3971 (((-473) $) 63 (|has| |#1| (-553 (-473))) ELT)) (-3529 (($ (-583 |#1|)) 54 T ELT)) (-3945 (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-1264 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1275 (($ (-583 |#1|)) 46 T ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3994)) ELT)) (-3056 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3956 (((-694) $) 6 (|has| $ (-6 -3994)) ELT))) +(((-193 |#1|) (-113) (-1013)) (T -193)) +((-1465 (*1 *1) (-12 (-4 *1 (-193 *2)) (-4 *2 (-1013)))) (-1465 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1013)) (-4 *1 (-193 *3)))) (-3404 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -3994)) (-4 *1 (-193 *2)) (-4 *2 (-1013)))) (-3404 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (|has| *1 (-6 -3994)) (-4 *1 (-193 *3)) (-4 *3 (-1013)))) (-1569 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (|has| *1 (-6 -3994)) (-4 *1 (-193 *3)) (-4 *3 (-1013))))) +(-13 (-76 |t#1|) (-124 |t#1|) (-10 -8 (-15 -1465 ($)) (-15 -1465 ($ (-583 |t#1|))) (IF (|has| $ (-6 -3994)) (PROGN (-15 -3404 ($ |t#1| $)) (-15 -3404 ($ (-1 (-85) |t#1|) $)) (-15 -1569 ($ (-1 (-85) |t#1|) $))) |%noBranch|))) +(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1013)) (|has| |#1| (-552 (-772)))) ((-124 |#1|) . T) ((-553 (-473)) |has| |#1| (-553 (-473))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-428 |#1|) . T) ((-455 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-1013) |has| |#1| (-1013)) ((-1128) . T)) +((-1466 (((-2 (|:| |varOrder| (-583 (-1089))) (|:| |inhom| (-3 (-583 (-1178 (-694))) "failed")) (|:| |hom| (-583 (-1178 (-694))))) (-249 (-857 (-484)))) 42 T ELT))) +(((-194) (-10 -7 (-15 -1466 ((-2 (|:| |varOrder| (-583 (-1089))) (|:| |inhom| (-3 (-583 (-1178 (-694))) "failed")) (|:| |hom| (-583 (-1178 (-694))))) (-249 (-857 (-484))))))) (T -194)) +((-1466 (*1 *2 *3) (-12 (-5 *3 (-249 (-857 (-484)))) (-5 *2 (-2 (|:| |varOrder| (-583 (-1089))) (|:| |inhom| (-3 (-583 (-1178 (-694))) "failed")) (|:| |hom| (-583 (-1178 (-694)))))) (-5 *1 (-194))))) +((-3136 (((-694)) 56 T ELT)) (-2279 (((-2 (|:| |mat| (-630 |#3|)) (|:| |vec| (-1178 |#3|))) (-630 $) (-1178 $)) 53 T ELT) (((-630 |#3|) (-630 $)) 44 T ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) NIL T ELT) (((-630 (-484)) (-630 $)) NIL T ELT)) (-3910 (((-107)) 62 T ELT)) (-3757 (($ $ (-1 |#3| |#3|)) 18 T ELT) (($ $ (-1 |#3| |#3|) (-694)) NIL T ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL T ELT) (($ $ (-1089) (-694)) NIL T ELT) (($ $ (-583 (-1089))) NIL T ELT) (($ $ (-1089)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $) NIL T ELT)) (-3945 (((-1178 |#3|) $) NIL T ELT) (($ |#3|) NIL T ELT) (((-772) $) NIL T ELT) (($ (-484)) 12 T ELT) (($ (-349 (-484))) NIL T ELT)) (-3126 (((-694)) 15 T CONST)) (-3948 (($ $ |#3|) 59 T ELT))) +(((-195 |#1| |#2| |#3|) (-10 -7 (-15 -3945 (|#1| (-349 (-484)))) (-15 -3945 (|#1| (-484))) (-15 -3757 (|#1| |#1|)) (-15 -3757 (|#1| |#1| (-694))) (-15 -3757 (|#1| |#1| (-1089))) (-15 -3757 (|#1| |#1| (-583 (-1089)))) (-15 -3757 (|#1| |#1| (-1089) (-694))) (-15 -3757 (|#1| |#1| (-583 (-1089)) (-583 (-694)))) (-15 -3945 ((-772) |#1|)) (-15 -3126 ((-694)) -3951) (-15 -2279 ((-630 (-484)) (-630 |#1|))) (-15 -2279 ((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 |#1|) (-1178 |#1|))) (-15 -3945 (|#1| |#3|)) (-15 -3757 (|#1| |#1| (-1 |#3| |#3|) (-694))) (-15 -3757 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2279 ((-630 |#3|) (-630 |#1|))) (-15 -2279 ((-2 (|:| |mat| (-630 |#3|)) (|:| |vec| (-1178 |#3|))) (-630 |#1|) (-1178 |#1|))) (-15 -3136 ((-694))) (-15 -3948 (|#1| |#1| |#3|)) (-15 -3910 ((-107))) (-15 -3945 ((-1178 |#3|) |#1|))) (-196 |#2| |#3|) (-694) (-1128)) (T -195)) +((-3910 (*1 *2) (-12 (-14 *4 (-694)) (-4 *5 (-1128)) (-5 *2 (-107)) (-5 *1 (-195 *3 *4 *5)) (-4 *3 (-196 *4 *5)))) (-3136 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1128)) (-5 *2 (-694)) (-5 *1 (-195 *3 *4 *5)) (-4 *3 (-196 *4 *5)))) (-3126 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1128)) (-5 *2 (-694)) (-5 *1 (-195 *3 *4 *5)) (-4 *3 (-196 *4 *5))))) +((-2568 (((-85) $ $) 19 (|has| |#2| (-72)) ELT)) (-3188 (((-85) $) 80 (|has| |#2| (-23)) ELT)) (-3706 (($ (-830)) 136 (|has| |#2| (-961)) ELT)) (-2198 (((-1184) $ (-484) (-484)) 44 (|has| $ (-6 -3995)) ELT)) (-2483 (($ $ $) 132 (|has| |#2| (-717)) ELT)) (-1311 (((-3 $ "failed") $ $) 83 (|has| |#2| (-104)) ELT)) (-3136 (((-694)) 121 (|has| |#2| (-319)) ELT)) (-3787 ((|#2| $ (-484) |#2|) 56 (|has| $ (-6 -3995)) ELT)) (-3723 (($) 7 T CONST)) (-3157 (((-3 (-484) #1="failed") $) 75 (-2562 (|has| |#2| (-950 (-484))) (|has| |#2| (-1013))) ELT) (((-3 (-349 (-484)) #1#) $) 72 (-2562 (|has| |#2| (-950 (-349 (-484)))) (|has| |#2| (-1013))) ELT) (((-3 |#2| #1#) $) 69 (|has| |#2| (-1013)) ELT)) (-3156 (((-484) $) 74 (-2562 (|has| |#2| (-950 (-484))) (|has| |#2| (-1013))) ELT) (((-349 (-484)) $) 71 (-2562 (|has| |#2| (-950 (-349 (-484)))) (|has| |#2| (-1013))) ELT) ((|#2| $) 70 (|has| |#2| (-1013)) ELT)) (-2279 (((-630 (-484)) (-630 $)) 118 (-2562 (|has| |#2| (-580 (-484))) (|has| |#2| (-961))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) 117 (-2562 (|has| |#2| (-580 (-484))) (|has| |#2| (-961))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1178 |#2|))) (-630 $) (-1178 $)) 116 (|has| |#2| (-961)) ELT) (((-630 |#2|) (-630 $)) 115 (|has| |#2| (-961)) ELT)) (-3466 (((-3 $ "failed") $) 95 (|has| |#2| (-961)) ELT)) (-2994 (($) 124 (|has| |#2| (-319)) ELT)) (-1575 ((|#2| $ (-484) |#2|) 57 (|has| $ (-6 -3995)) ELT)) (-3112 ((|#2| $ (-484)) 55 T ELT)) (-3186 (((-85) $) 131 (|has| |#2| (-717)) ELT)) (-2889 (((-583 |#2|) $) 30 (|has| $ (-6 -3994)) ELT)) (-1213 (((-85) $ $) 82 (|has| |#2| (-23)) ELT)) (-2410 (((-85) $) 93 (|has| |#2| (-961)) ELT)) (-2200 (((-484) $) 47 (|has| (-484) (-756)) ELT)) (-2531 (($ $ $) 125 (|has| |#2| (-756)) ELT)) (-2608 (((-583 |#2|) $) 29 (|has| $ (-6 -3994)) ELT)) (-3245 (((-85) |#2| $) 27 (-12 (|has| |#2| (-1013)) (|has| $ (-6 -3994))) ELT)) (-2201 (((-484) $) 48 (|has| (-484) (-756)) ELT)) (-2857 (($ $ $) 126 (|has| |#2| (-756)) ELT)) (-1948 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#2| |#2|) $) 35 T ELT)) (-2010 (((-830) $) 123 (|has| |#2| (-319)) ELT)) (-2280 (((-630 (-484)) (-1178 $)) 120 (-2562 (|has| |#2| (-580 (-484))) (|has| |#2| (-961))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) 119 (-2562 (|has| |#2| (-580 (-484))) (|has| |#2| (-961))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1178 |#2|))) (-1178 $) $) 114 (|has| |#2| (-961)) ELT) (((-630 |#2|) (-1178 $)) 113 (|has| |#2| (-961)) ELT)) (-3242 (((-1072) $) 22 (|has| |#2| (-1013)) ELT)) (-2203 (((-583 (-484)) $) 50 T ELT)) (-2204 (((-85) (-484) $) 51 T ELT)) (-2400 (($ (-830)) 122 (|has| |#2| (-319)) ELT)) (-3243 (((-1033) $) 21 (|has| |#2| (-1013)) ELT)) (-3800 ((|#2| $) 46 (|has| (-484) (-756)) ELT)) (-2199 (($ $ |#2|) 45 (|has| $ (-6 -3995)) ELT)) (-1946 (((-85) (-1 (-85) |#2|) $) 32 (|has| $ (-6 -3994)) ELT)) (-3767 (($ $ (-583 (-249 |#2|))) 26 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-249 |#2|)) 25 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-583 |#2|) (-583 |#2|)) 23 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT)) (-1221 (((-85) $ $) 11 T ELT)) (-2202 (((-85) |#2| $) 49 (-12 (|has| $ (-6 -3994)) (|has| |#2| (-1013))) ELT)) (-2205 (((-583 |#2|) $) 52 T ELT)) (-3402 (((-85) $) 8 T ELT)) (-3564 (($) 9 T ELT)) (-3799 ((|#2| $ (-484) |#2|) 54 T ELT) ((|#2| $ (-484)) 53 T ELT)) (-3835 ((|#2| $ $) 135 (|has| |#2| (-961)) ELT)) (-1467 (($ (-1178 |#2|)) 137 T ELT)) (-3910 (((-107)) 134 (|has| |#2| (-312)) ELT)) (-3757 (($ $ (-694)) 111 (-2562 (|has| |#2| (-189)) (|has| |#2| (-961))) ELT) (($ $) 109 (-2562 (|has| |#2| (-189)) (|has| |#2| (-961))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) 105 (-2562 (|has| |#2| (-811 (-1089))) (|has| |#2| (-961))) ELT) (($ $ (-1089) (-694)) 104 (-2562 (|has| |#2| (-811 (-1089))) (|has| |#2| (-961))) ELT) (($ $ (-583 (-1089))) 103 (-2562 (|has| |#2| (-811 (-1089))) (|has| |#2| (-961))) ELT) (($ $ (-1089)) 101 (-2562 (|has| |#2| (-811 (-1089))) (|has| |#2| (-961))) ELT) (($ $ (-1 |#2| |#2|)) 100 (|has| |#2| (-961)) ELT) (($ $ (-1 |#2| |#2|) (-694)) 99 (|has| |#2| (-961)) ELT)) (-1945 (((-694) (-1 (-85) |#2|) $) 31 (|has| $ (-6 -3994)) ELT) (((-694) |#2| $) 28 (-12 (|has| |#2| (-1013)) (|has| $ (-6 -3994))) ELT)) (-3399 (($ $) 10 T ELT)) (-3945 (((-1178 |#2|) $) 138 T ELT) (($ (-484)) 76 (OR (-2562 (|has| |#2| (-950 (-484))) (|has| |#2| (-1013))) (|has| |#2| (-961))) ELT) (($ (-349 (-484))) 73 (-2562 (|has| |#2| (-950 (-349 (-484)))) (|has| |#2| (-1013))) ELT) (($ |#2|) 68 (|has| |#2| (-1013)) ELT) (((-772) $) 17 (|has| |#2| (-552 (-772))) ELT)) (-3126 (((-694)) 96 (|has| |#2| (-961)) CONST)) (-1264 (((-85) $ $) 20 (|has| |#2| (-72)) ELT)) (-1947 (((-85) (-1 (-85) |#2|) $) 33 (|has| $ (-6 -3994)) ELT)) (-3125 (((-85) $ $) 91 (|has| |#2| (-961)) ELT)) (-2660 (($) 79 (|has| |#2| (-23)) CONST)) (-2666 (($) 92 (|has| |#2| (-961)) CONST)) (-2669 (($ $ (-694)) 112 (-2562 (|has| |#2| (-189)) (|has| |#2| (-961))) ELT) (($ $) 110 (-2562 (|has| |#2| (-189)) (|has| |#2| (-961))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) 108 (-2562 (|has| |#2| (-811 (-1089))) (|has| |#2| (-961))) ELT) (($ $ (-1089) (-694)) 107 (-2562 (|has| |#2| (-811 (-1089))) (|has| |#2| (-961))) ELT) (($ $ (-583 (-1089))) 106 (-2562 (|has| |#2| (-811 (-1089))) (|has| |#2| (-961))) ELT) (($ $ (-1089)) 102 (-2562 (|has| |#2| (-811 (-1089))) (|has| |#2| (-961))) ELT) (($ $ (-1 |#2| |#2|)) 98 (|has| |#2| (-961)) ELT) (($ $ (-1 |#2| |#2|) (-694)) 97 (|has| |#2| (-961)) ELT)) (-2566 (((-85) $ $) 127 (|has| |#2| (-756)) ELT)) (-2567 (((-85) $ $) 129 (|has| |#2| (-756)) ELT)) (-3056 (((-85) $ $) 18 (|has| |#2| (-72)) ELT)) (-2684 (((-85) $ $) 128 (|has| |#2| (-756)) ELT)) (-2685 (((-85) $ $) 130 (|has| |#2| (-756)) ELT)) (-3948 (($ $ |#2|) 133 (|has| |#2| (-312)) ELT)) (-3836 (($ $ $) 86 (|has| |#2| (-21)) ELT) (($ $) 85 (|has| |#2| (-21)) ELT)) (-3838 (($ $ $) 77 (|has| |#2| (-25)) ELT)) (** (($ $ (-694)) 94 (|has| |#2| (-961)) ELT) (($ $ (-830)) 89 (|has| |#2| (-961)) ELT)) (* (($ $ $) 90 (|has| |#2| (-961)) ELT) (($ $ |#2|) 88 (|has| |#2| (-663)) ELT) (($ |#2| $) 87 (|has| |#2| (-663)) ELT) (($ (-484) $) 84 (|has| |#2| (-21)) ELT) (($ (-694) $) 81 (|has| |#2| (-23)) ELT) (($ (-830) $) 78 (|has| |#2| (-25)) ELT)) (-3956 (((-694) $) 6 (|has| $ (-6 -3994)) ELT))) +(((-196 |#1| |#2|) (-113) (-694) (-1128)) (T -196)) +((-1467 (*1 *1 *2) (-12 (-5 *2 (-1178 *4)) (-4 *4 (-1128)) (-4 *1 (-196 *3 *4)))) (-3706 (*1 *1 *2) (-12 (-5 *2 (-830)) (-4 *1 (-196 *3 *4)) (-4 *4 (-961)) (-4 *4 (-1128)))) (-3835 (*1 *2 *1 *1) (-12 (-4 *1 (-196 *3 *2)) (-4 *2 (-1128)) (-4 *2 (-961))))) +(-13 (-538 (-484) |t#2|) (-552 (-1178 |t#2|)) (-10 -8 (-6 -3994) (-15 -1467 ($ (-1178 |t#2|))) (IF (|has| |t#2| (-1013)) (-6 (-354 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-961)) (PROGN (-6 (-82 |t#2| |t#2|)) (-6 (-184 |t#2|)) (-6 (-328 |t#2|)) (-15 -3706 ($ (-830))) (-15 -3835 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-104)) (-6 (-104)) |%noBranch|) (IF (|has| |t#2| (-23)) (-6 (-23)) |%noBranch|) (IF (|has| |t#2| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#2| (-663)) (-6 (-582 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-319)) (-6 (-319)) |%noBranch|) (IF (|has| |t#2| (-146)) (-6 (-654 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-6 -3991)) (-6 -3991) |%noBranch|) (IF (|has| |t#2| (-756)) (-6 (-756)) |%noBranch|) (IF (|has| |t#2| (-717)) (-6 (-717)) |%noBranch|) (IF (|has| |t#2| (-312)) (-6 (-1186 |t#2|)) |%noBranch|))) +(((-21) OR (|has| |#2| (-961)) (|has| |#2| (-312)) (|has| |#2| (-146)) (|has| |#2| (-21))) ((-23) OR (|has| |#2| (-961)) (|has| |#2| (-717)) (|has| |#2| (-312)) (|has| |#2| (-146)) (|has| |#2| (-104)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-25) OR (|has| |#2| (-961)) (|has| |#2| (-717)) (|has| |#2| (-312)) (|has| |#2| (-146)) (|has| |#2| (-104)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-34) . T) ((-72) OR (|has| |#2| (-1013)) (|has| |#2| (-961)) (|has| |#2| (-756)) (|has| |#2| (-717)) (|has| |#2| (-663)) (|has| |#2| (-319)) (|has| |#2| (-312)) (|has| |#2| (-146)) (|has| |#2| (-104)) (|has| |#2| (-72)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-82 |#2| |#2|) OR (|has| |#2| (-961)) (|has| |#2| (-312)) (|has| |#2| (-146))) ((-104) OR (|has| |#2| (-961)) (|has| |#2| (-717)) (|has| |#2| (-312)) (|has| |#2| (-146)) (|has| |#2| (-104)) (|has| |#2| (-21))) ((-555 (-349 (-484))) -12 (|has| |#2| (-950 (-349 (-484)))) (|has| |#2| (-1013))) ((-555 (-484)) OR (|has| |#2| (-961)) (-12 (|has| |#2| (-950 (-484))) (|has| |#2| (-1013)))) ((-555 |#2|) |has| |#2| (-1013)) ((-552 (-772)) OR (|has| |#2| (-1013)) (|has| |#2| (-961)) (|has| |#2| (-756)) (|has| |#2| (-717)) (|has| |#2| (-663)) (|has| |#2| (-319)) (|has| |#2| (-312)) (|has| |#2| (-146)) (|has| |#2| (-552 (-772))) (|has| |#2| (-104)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-552 (-1178 |#2|)) . T) ((-186 $) OR (-12 (|has| |#2| (-189)) (|has| |#2| (-961))) (-12 (|has| |#2| (-190)) (|has| |#2| (-961)))) ((-184 |#2|) |has| |#2| (-961)) ((-190) -12 (|has| |#2| (-190)) (|has| |#2| (-961))) ((-189) OR (-12 (|has| |#2| (-189)) (|has| |#2| (-961))) (-12 (|has| |#2| (-190)) (|has| |#2| (-961)))) ((-225 |#2|) |has| |#2| (-961)) ((-241 (-484) |#2|) . T) ((-243 (-484) |#2|) . T) ((-260 |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ((-319) |has| |#2| (-319)) ((-328 |#2|) |has| |#2| (-961)) ((-354 |#2|) |has| |#2| (-1013)) ((-428 |#2|) . T) ((-538 (-484) |#2|) . T) ((-455 |#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ((-13) . T) ((-588 (-484)) OR (|has| |#2| (-961)) (|has| |#2| (-312)) (|has| |#2| (-146)) (|has| |#2| (-21))) ((-588 |#2|) OR (|has| |#2| (-961)) (|has| |#2| (-663)) (|has| |#2| (-312)) (|has| |#2| (-146))) ((-588 $) |has| |#2| (-961)) ((-590 (-484)) -12 (|has| |#2| (-580 (-484))) (|has| |#2| (-961))) ((-590 |#2|) OR (|has| |#2| (-961)) (|has| |#2| (-312)) (|has| |#2| (-146))) ((-590 $) |has| |#2| (-961)) ((-582 |#2|) OR (|has| |#2| (-663)) (|has| |#2| (-312)) (|has| |#2| (-146))) ((-580 (-484)) -12 (|has| |#2| (-580 (-484))) (|has| |#2| (-961))) ((-580 |#2|) |has| |#2| (-961)) ((-654 |#2|) OR (|has| |#2| (-312)) (|has| |#2| (-146))) ((-663) |has| |#2| (-961)) ((-716) |has| |#2| (-717)) ((-717) |has| |#2| (-717)) ((-718) |has| |#2| (-717)) ((-721) |has| |#2| (-717)) ((-756) OR (|has| |#2| (-756)) (|has| |#2| (-717))) ((-759) OR (|has| |#2| (-756)) (|has| |#2| (-717))) ((-806 $ (-1089)) OR (-12 (|has| |#2| (-811 (-1089))) (|has| |#2| (-961))) (-12 (|has| |#2| (-809 (-1089))) (|has| |#2| (-961)))) ((-809 (-1089)) -12 (|has| |#2| (-809 (-1089))) (|has| |#2| (-961))) ((-811 (-1089)) OR (-12 (|has| |#2| (-811 (-1089))) (|has| |#2| (-961))) (-12 (|has| |#2| (-809 (-1089))) (|has| |#2| (-961)))) ((-950 (-349 (-484))) -12 (|has| |#2| (-950 (-349 (-484)))) (|has| |#2| (-1013))) ((-950 (-484)) -12 (|has| |#2| (-950 (-484))) (|has| |#2| (-1013))) ((-950 |#2|) |has| |#2| (-1013)) ((-963 |#2|) OR (|has| |#2| (-961)) (|has| |#2| (-663)) (|has| |#2| (-312)) (|has| |#2| (-146))) ((-968 |#2|) OR (|has| |#2| (-961)) (|has| |#2| (-312)) (|has| |#2| (-146))) ((-961) |has| |#2| (-961)) ((-970) |has| |#2| (-961)) ((-1025) |has| |#2| (-961)) ((-1060) |has| |#2| (-961)) ((-1013) OR (|has| |#2| (-1013)) (|has| |#2| (-961)) (|has| |#2| (-756)) (|has| |#2| (-717)) (|has| |#2| (-663)) (|has| |#2| (-319)) (|has| |#2| (-312)) (|has| |#2| (-146)) (|has| |#2| (-104)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-1128) . T) ((-1186 |#2|) |has| |#2| (-312))) +((-2568 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-3188 (((-85) $) NIL (|has| |#2| (-23)) ELT)) (-3706 (($ (-830)) 63 (|has| |#2| (-961)) ELT)) (-2198 (((-1184) $ (-484) (-484)) NIL (|has| $ (-6 -3995)) ELT)) (-2483 (($ $ $) 69 (|has| |#2| (-717)) ELT)) (-1311 (((-3 $ #1="failed") $ $) 54 (|has| |#2| (-104)) ELT)) (-3136 (((-694)) NIL (|has| |#2| (-319)) ELT)) (-3787 ((|#2| $ (-484) |#2|) NIL (|has| $ (-6 -3995)) ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 (-484) #1#) $) NIL (-12 (|has| |#2| (-950 (-484))) (|has| |#2| (-1013))) ELT) (((-3 (-349 (-484)) #1#) $) NIL (-12 (|has| |#2| (-950 (-349 (-484)))) (|has| |#2| (-1013))) ELT) (((-3 |#2| #1#) $) 31 (|has| |#2| (-1013)) ELT)) (-3156 (((-484) $) NIL (-12 (|has| |#2| (-950 (-484))) (|has| |#2| (-1013))) ELT) (((-349 (-484)) $) NIL (-12 (|has| |#2| (-950 (-349 (-484)))) (|has| |#2| (-1013))) ELT) ((|#2| $) 29 (|has| |#2| (-1013)) ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (-12 (|has| |#2| (-580 (-484))) (|has| |#2| (-961))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) NIL (-12 (|has| |#2| (-580 (-484))) (|has| |#2| (-961))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1178 |#2|))) (-630 $) (-1178 $)) NIL (|has| |#2| (-961)) ELT) (((-630 |#2|) (-630 $)) NIL (|has| |#2| (-961)) ELT)) (-3466 (((-3 $ #1#) $) 59 (|has| |#2| (-961)) ELT)) (-2994 (($) NIL (|has| |#2| (-319)) ELT)) (-1575 ((|#2| $ (-484) |#2|) NIL (|has| $ (-6 -3995)) ELT)) (-3112 ((|#2| $ (-484)) 57 T ELT)) (-3186 (((-85) $) NIL (|has| |#2| (-717)) ELT)) (-2889 (((-583 |#2|) $) 14 (|has| $ (-6 -3994)) ELT)) (-1213 (((-85) $ $) NIL (|has| |#2| (-23)) ELT)) (-2410 (((-85) $) NIL (|has| |#2| (-961)) ELT)) (-2200 (((-484) $) 20 (|has| (-484) (-756)) ELT)) (-2531 (($ $ $) NIL (|has| |#2| (-756)) ELT)) (-2608 (((-583 |#2|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3245 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#2| (-1013))) ELT)) (-2201 (((-484) $) NIL (|has| (-484) (-756)) ELT)) (-2857 (($ $ $) NIL (|has| |#2| (-756)) ELT)) (-1948 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2010 (((-830) $) NIL (|has| |#2| (-319)) ELT)) (-2280 (((-630 (-484)) (-1178 $)) NIL (-12 (|has| |#2| (-580 (-484))) (|has| |#2| (-961))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (-12 (|has| |#2| (-580 (-484))) (|has| |#2| (-961))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1178 |#2|))) (-1178 $) $) NIL (|has| |#2| (-961)) ELT) (((-630 |#2|) (-1178 $)) NIL (|has| |#2| (-961)) ELT)) (-3242 (((-1072) $) NIL (|has| |#2| (-1013)) ELT)) (-2203 (((-583 (-484)) $) NIL T ELT)) (-2204 (((-85) (-484) $) NIL T ELT)) (-2400 (($ (-830)) NIL (|has| |#2| (-319)) ELT)) (-3243 (((-1033) $) NIL (|has| |#2| (-1013)) ELT)) (-3800 ((|#2| $) NIL (|has| (-484) (-756)) ELT)) (-2199 (($ $ |#2|) NIL (|has| $ (-6 -3995)) ELT)) (-1946 (((-85) (-1 (-85) |#2|) $) 24 (|has| $ (-6 -3994)) ELT)) (-3767 (($ $ (-583 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT)) (-1221 (((-85) $ $) NIL T ELT)) (-2202 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#2| (-1013))) ELT)) (-2205 (((-583 |#2|) $) NIL T ELT)) (-3402 (((-85) $) NIL T ELT)) (-3564 (($) NIL T ELT)) (-3799 ((|#2| $ (-484) |#2|) NIL T ELT) ((|#2| $ (-484)) 21 T ELT)) (-3835 ((|#2| $ $) NIL (|has| |#2| (-961)) ELT)) (-1467 (($ (-1178 |#2|)) 18 T ELT)) (-3910 (((-107)) NIL (|has| |#2| (-312)) ELT)) (-3757 (($ $ (-694)) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-961))) ELT) (($ $) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-961))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (-12 (|has| |#2| (-811 (-1089))) (|has| |#2| (-961))) ELT) (($ $ (-1089) (-694)) NIL (-12 (|has| |#2| (-811 (-1089))) (|has| |#2| (-961))) ELT) (($ $ (-583 (-1089))) NIL (-12 (|has| |#2| (-811 (-1089))) (|has| |#2| (-961))) ELT) (($ $ (-1089)) NIL (-12 (|has| |#2| (-811 (-1089))) (|has| |#2| (-961))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-961)) ELT) (($ $ (-1 |#2| |#2|) (-694)) NIL (|has| |#2| (-961)) ELT)) (-1945 (((-694) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3994)) ELT) (((-694) |#2| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#2| (-1013))) ELT)) (-3399 (($ $) NIL T ELT)) (-3945 (((-1178 |#2|) $) 9 T ELT) (($ (-484)) NIL (OR (-12 (|has| |#2| (-950 (-484))) (|has| |#2| (-1013))) (|has| |#2| (-961))) ELT) (($ (-349 (-484))) NIL (-12 (|has| |#2| (-950 (-349 (-484)))) (|has| |#2| (-1013))) ELT) (($ |#2|) 12 (|has| |#2| (-1013)) ELT) (((-772) $) NIL (|has| |#2| (-552 (-772))) ELT)) (-3126 (((-694)) NIL (|has| |#2| (-961)) CONST)) (-1264 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-1947 (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3125 (((-85) $ $) NIL (|has| |#2| (-961)) ELT)) (-2660 (($) 37 (|has| |#2| (-23)) CONST)) (-2666 (($) 41 (|has| |#2| (-961)) CONST)) (-2669 (($ $ (-694)) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-961))) ELT) (($ $) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-961))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (-12 (|has| |#2| (-811 (-1089))) (|has| |#2| (-961))) ELT) (($ $ (-1089) (-694)) NIL (-12 (|has| |#2| (-811 (-1089))) (|has| |#2| (-961))) ELT) (($ $ (-583 (-1089))) NIL (-12 (|has| |#2| (-811 (-1089))) (|has| |#2| (-961))) ELT) (($ $ (-1089)) NIL (-12 (|has| |#2| (-811 (-1089))) (|has| |#2| (-961))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-961)) ELT) (($ $ (-1 |#2| |#2|) (-694)) NIL (|has| |#2| (-961)) ELT)) (-2566 (((-85) $ $) NIL (|has| |#2| (-756)) ELT)) (-2567 (((-85) $ $) NIL (|has| |#2| (-756)) ELT)) (-3056 (((-85) $ $) 28 (|has| |#2| (-72)) ELT)) (-2684 (((-85) $ $) NIL (|has| |#2| (-756)) ELT)) (-2685 (((-85) $ $) 67 (|has| |#2| (-756)) ELT)) (-3948 (($ $ |#2|) NIL (|has| |#2| (-312)) ELT)) (-3836 (($ $ $) NIL (|has| |#2| (-21)) ELT) (($ $) NIL (|has| |#2| (-21)) ELT)) (-3838 (($ $ $) 35 (|has| |#2| (-25)) ELT)) (** (($ $ (-694)) NIL (|has| |#2| (-961)) ELT) (($ $ (-830)) NIL (|has| |#2| (-961)) ELT)) (* (($ $ $) 47 (|has| |#2| (-961)) ELT) (($ $ |#2|) 45 (|has| |#2| (-663)) ELT) (($ |#2| $) 46 (|has| |#2| (-663)) ELT) (($ (-484) $) NIL (|has| |#2| (-21)) ELT) (($ (-694) $) NIL (|has| |#2| (-23)) ELT) (($ (-830) $) NIL (|has| |#2| (-25)) ELT)) (-3956 (((-694) $) NIL (|has| $ (-6 -3994)) ELT))) +(((-197 |#1| |#2|) (-196 |#1| |#2|) (-694) (-1128)) (T -197)) +NIL +((-3840 (((-197 |#1| |#3|) (-1 |#3| |#2| |#3|) (-197 |#1| |#2|) |#3|) 21 T ELT)) (-3841 ((|#3| (-1 |#3| |#2| |#3|) (-197 |#1| |#2|) |#3|) 23 T ELT)) (-3957 (((-197 |#1| |#3|) (-1 |#3| |#2|) (-197 |#1| |#2|)) 18 T ELT))) +(((-198 |#1| |#2| |#3|) (-10 -7 (-15 -3840 ((-197 |#1| |#3|) (-1 |#3| |#2| |#3|) (-197 |#1| |#2|) |#3|)) (-15 -3841 (|#3| (-1 |#3| |#2| |#3|) (-197 |#1| |#2|) |#3|)) (-15 -3957 ((-197 |#1| |#3|) (-1 |#3| |#2|) (-197 |#1| |#2|)))) (-694) (-1128) (-1128)) (T -198)) +((-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-197 *5 *6)) (-14 *5 (-694)) (-4 *6 (-1128)) (-4 *7 (-1128)) (-5 *2 (-197 *5 *7)) (-5 *1 (-198 *5 *6 *7)))) (-3841 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-197 *5 *6)) (-14 *5 (-694)) (-4 *6 (-1128)) (-4 *2 (-1128)) (-5 *1 (-198 *5 *6 *2)))) (-3840 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-197 *6 *7)) (-14 *6 (-694)) (-4 *7 (-1128)) (-4 *5 (-1128)) (-5 *2 (-197 *6 *5)) (-5 *1 (-198 *6 *7 *5))))) +((-1471 (((-484) (-583 (-1072))) 36 T ELT) (((-484) (-1072)) 29 T ELT)) (-1470 (((-1184) (-583 (-1072))) 40 T ELT) (((-1184) (-1072)) 39 T ELT)) (-1468 (((-1072)) 16 T ELT)) (-1469 (((-1072) (-484) (-1072)) 23 T ELT)) (-3772 (((-583 (-1072)) (-583 (-1072)) (-484) (-1072)) 37 T ELT) (((-1072) (-1072) (-484) (-1072)) 35 T ELT)) (-2620 (((-583 (-1072)) (-583 (-1072))) 15 T ELT) (((-583 (-1072)) (-1072)) 11 T ELT))) +(((-199) (-10 -7 (-15 -2620 ((-583 (-1072)) (-1072))) (-15 -2620 ((-583 (-1072)) (-583 (-1072)))) (-15 -1468 ((-1072))) (-15 -1469 ((-1072) (-484) (-1072))) (-15 -3772 ((-1072) (-1072) (-484) (-1072))) (-15 -3772 ((-583 (-1072)) (-583 (-1072)) (-484) (-1072))) (-15 -1470 ((-1184) (-1072))) (-15 -1470 ((-1184) (-583 (-1072)))) (-15 -1471 ((-484) (-1072))) (-15 -1471 ((-484) (-583 (-1072)))))) (T -199)) +((-1471 (*1 *2 *3) (-12 (-5 *3 (-583 (-1072))) (-5 *2 (-484)) (-5 *1 (-199)))) (-1471 (*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-484)) (-5 *1 (-199)))) (-1470 (*1 *2 *3) (-12 (-5 *3 (-583 (-1072))) (-5 *2 (-1184)) (-5 *1 (-199)))) (-1470 (*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-199)))) (-3772 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-583 (-1072))) (-5 *3 (-484)) (-5 *4 (-1072)) (-5 *1 (-199)))) (-3772 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1072)) (-5 *3 (-484)) (-5 *1 (-199)))) (-1469 (*1 *2 *3 *2) (-12 (-5 *2 (-1072)) (-5 *3 (-484)) (-5 *1 (-199)))) (-1468 (*1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-199)))) (-2620 (*1 *2 *2) (-12 (-5 *2 (-583 (-1072))) (-5 *1 (-199)))) (-2620 (*1 *2 *3) (-12 (-5 *2 (-583 (-1072))) (-5 *1 (-199)) (-5 *3 (-1072))))) +((** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) 18 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-349 (-484)) $) 25 T ELT) (($ $ (-349 (-484))) NIL T ELT))) +(((-200 |#1|) (-10 -7 (-15 ** (|#1| |#1| (-484))) (-15 * (|#1| |#1| (-349 (-484)))) (-15 * (|#1| (-349 (-484)) |#1|)) (-15 ** (|#1| |#1| (-694))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-830))) (-15 * (|#1| (-484) |#1|)) (-15 * (|#1| (-694) |#1|)) (-15 * (|#1| (-830) |#1|))) (-201)) (T -200)) +NIL +((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3723 (($) 23 T CONST)) (-3466 (((-3 $ "failed") $) 42 T ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-2484 (($ $) 55 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ (-349 (-484))) 59 T ELT)) (-3126 (((-694)) 40 T CONST)) (-1264 (((-85) $ $) 6 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT) (($ $ (-484)) 56 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ (-349 (-484)) $) 58 T ELT) (($ $ (-349 (-484))) 57 T ELT))) (((-201) (-113)) (T -201)) -((** (*1 *1 *1 *2) (-12 (-4 *1 (-201)) (-5 *2 (-483)))) (-2483 (*1 *1 *1) (-4 *1 (-201)))) -(-13 (-246) (-38 (-348 (-483))) (-10 -8 (-15 ** ($ $ (-483))) (-15 -2483 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-348 (-483))) . T) ((-72) . T) ((-82 (-348 (-483)) (-348 (-483))) . T) ((-82 $ $) . T) ((-104) . T) ((-554 (-348 (-483))) . T) ((-554 (-483)) . T) ((-551 (-771)) . T) ((-246) . T) ((-13) . T) ((-587 (-348 (-483))) . T) ((-587 (-483)) . T) ((-587 $) . T) ((-589 (-348 (-483))) . T) ((-589 $) . T) ((-581 (-348 (-483))) . T) ((-653 (-348 (-483))) . T) ((-662) . T) ((-962 (-348 (-483))) . T) ((-962 $) . T) ((-967 (-348 (-483))) . T) ((-967 $) . T) ((-960) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T)) -((-2567 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3400 ((|#1| $) 52 T ELT)) (-3795 (($ $) 63 T ELT)) (-3024 ((|#1| $ |#1|) 43 (|has| $ (-6 -3994)) ELT)) (-1472 (($ $ $) 59 (|has| $ (-6 -3994)) ELT)) (-1471 (($ $ $) 58 (|has| $ (-6 -3994)) ELT)) (-3786 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -3994)) ELT)) (-3025 (($ $ (-582 $)) 45 (|has| $ (-6 -3994)) ELT)) (-3722 (($) 7 T CONST)) (-1474 (($ $) 62 T ELT)) (-2888 (((-582 |#1|) $) 30 (|has| $ (-6 -3993)) ELT)) (-3030 (((-582 $) $) 54 T ELT)) (-3026 (((-85) $ $) 46 (|has| |#1| (-1012)) ELT)) (-1473 (($ $) 61 T ELT)) (-2607 (((-582 |#1|) $) 29 (|has| $ (-6 -3993)) ELT)) (-3244 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3993))) ELT)) (-1947 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3994)) ELT)) (-3956 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3029 (((-582 |#1|) $) 49 T ELT)) (-3525 (((-85) $) 53 T ELT)) (-3241 (((-1071) $) 22 (|has| |#1| (-1012)) ELT)) (-3796 ((|#1| $) 65 T ELT)) (-3177 (($ $) 64 T ELT)) (-3242 (((-1032) $) 21 (|has| |#1| (-1012)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3993)) ELT)) (-3766 (($ $ (-582 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-582 |#1|) (-582 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT)) (-1220 (((-85) $ $) 11 T ELT)) (-3401 (((-85) $) 8 T ELT)) (-3563 (($) 9 T ELT)) (-3798 ((|#1| $ #1#) 51 T ELT)) (-3028 (((-483) $ $) 48 T ELT)) (-3631 (((-85) $) 50 T ELT)) (-1944 (((-693) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3993)) ELT) (((-693) |#1| $) 28 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3993))) ELT)) (-3398 (($ $) 10 T ELT)) (-3789 (($ $ $) 60 (|has| $ (-6 -3994)) ELT)) (-3944 (((-771) $) 17 (|has| |#1| (-551 (-771))) ELT)) (-3520 (((-582 $) $) 55 T ELT)) (-3027 (((-85) $ $) 47 (|has| |#1| (-1012)) ELT)) (-1263 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3993)) ELT)) (-3055 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3955 (((-693) $) 6 (|has| $ (-6 -3993)) ELT))) -(((-202 |#1|) (-113) (-1127)) (T -202)) -((-3796 (*1 *2 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1127)))) (-3177 (*1 *1 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1127)))) (-3795 (*1 *1 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1127)))) (-1474 (*1 *1 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1127)))) (-1473 (*1 *1 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1127)))) (-3789 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -3994)) (-4 *1 (-202 *2)) (-4 *2 (-1127)))) (-1472 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -3994)) (-4 *1 (-202 *2)) (-4 *2 (-1127)))) (-1471 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -3994)) (-4 *1 (-202 *2)) (-4 *2 (-1127))))) -(-13 (-922 |t#1|) (-10 -8 (-15 -3796 (|t#1| $)) (-15 -3177 ($ $)) (-15 -3795 ($ $)) (-15 -1474 ($ $)) (-15 -1473 ($ $)) (IF (|has| $ (-6 -3994)) (PROGN (-15 -3789 ($ $ $)) (-15 -1472 ($ $ $)) (-15 -1471 ($ $ $))) |%noBranch|))) -(((-34) . T) ((-72) OR (|has| |#1| (-1012)) (|has| |#1| (-72))) ((-551 (-771)) OR (|has| |#1| (-1012)) (|has| |#1| (-551 (-771)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ((-427 |#1|) . T) ((-454 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ((-13) . T) ((-922 |#1|) . T) ((-1012) |has| |#1| (-1012)) ((-1127) . T)) -((-2567 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3400 ((|#1| $) NIL T ELT)) (-3793 ((|#1| $) NIL T ELT)) (-3795 (($ $) NIL T ELT)) (-2197 (((-1183) $ (-483) (-483)) NIL (|has| $ (-6 -3994)) ELT)) (-3783 (($ $ (-483)) NIL (|has| $ (-6 -3994)) ELT)) (-1730 (((-85) $) NIL (|has| |#1| (-755)) ELT) (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT)) (-1728 (($ $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-755))) ELT) (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-2908 (($ $) 10 (|has| |#1| (-755)) ELT) (($ (-1 (-85) |#1| |#1|) $) NIL T ELT)) (-3440 (((-85) $ (-693)) NIL T ELT)) (-3024 ((|#1| $ |#1|) NIL (|has| $ (-6 -3994)) ELT)) (-3785 (($ $ $) NIL (|has| $ (-6 -3994)) ELT)) (-3784 ((|#1| $ |#1|) NIL (|has| $ (-6 -3994)) ELT)) (-3787 ((|#1| $ |#1|) NIL (|has| $ (-6 -3994)) ELT)) (-3786 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3994)) ELT) ((|#1| $ #2="first" |#1|) NIL (|has| $ (-6 -3994)) ELT) (($ $ #3="rest" $) NIL (|has| $ (-6 -3994)) ELT) ((|#1| $ #4="last" |#1|) NIL (|has| $ (-6 -3994)) ELT) ((|#1| $ (-1144 (-483)) |#1|) NIL (|has| $ (-6 -3994)) ELT) ((|#1| $ (-483) |#1|) NIL (|has| $ (-6 -3994)) ELT)) (-3025 (($ $ (-582 $)) NIL (|has| $ (-6 -3994)) ELT)) (-1568 (($ (-1 (-85) |#1|) $) NIL T ELT)) (-3708 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3794 ((|#1| $) NIL T ELT)) (-3722 (($) NIL T CONST)) (-2296 (($ $) NIL (|has| $ (-6 -3994)) ELT)) (-2297 (($ $) NIL T ELT)) (-3797 (($ $) NIL T ELT) (($ $ (-693)) NIL T ELT)) (-2367 (($ $) NIL (|has| |#1| (-1012)) ELT)) (-1351 (($ $) 7 (-12 (|has| $ (-6 -3993)) (|has| |#1| (-1012))) ELT)) (-3403 (($ |#1| $) NIL (|has| |#1| (-1012)) ELT) (($ (-1 (-85) |#1|) $) NIL T ELT)) (-3404 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3993)) ELT) (($ |#1| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#1| (-1012))) ELT)) (-3840 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3993)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3993)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3993)) (|has| |#1| (-1012))) ELT)) (-1574 ((|#1| $ (-483) |#1|) NIL (|has| $ (-6 -3994)) ELT)) (-3111 ((|#1| $ (-483)) NIL T ELT)) (-3441 (((-85) $) NIL T ELT)) (-3417 (((-483) |#1| $ (-483)) NIL (|has| |#1| (-1012)) ELT) (((-483) |#1| $) NIL (|has| |#1| (-1012)) ELT) (((-483) (-1 (-85) |#1|) $) NIL T ELT)) (-2888 (((-582 |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3030 (((-582 $) $) NIL T ELT)) (-3026 (((-85) $ $) NIL (|has| |#1| (-1012)) ELT)) (-3612 (($ (-693) |#1|) NIL T ELT)) (-3717 (((-85) $ (-693)) NIL T ELT)) (-2199 (((-483) $) NIL (|has| (-483) (-755)) ELT)) (-2530 (($ $ $) NIL (|has| |#1| (-755)) ELT)) (-2855 (($ $ $) NIL (|has| |#1| (-755)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT)) (-3516 (($ $ $) NIL (|has| |#1| (-755)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT)) (-2607 (((-582 |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3244 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#1| (-1012))) ELT)) (-2200 (((-483) $) NIL (|has| (-483) (-755)) ELT)) (-2856 (($ $ $) NIL (|has| |#1| (-755)) ELT)) (-1947 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3956 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3532 (($ |#1|) NIL T ELT)) (-3714 (((-85) $ (-693)) NIL T ELT)) (-3029 (((-582 |#1|) $) NIL T ELT)) (-3525 (((-85) $) NIL T ELT)) (-3241 (((-1071) $) NIL (|has| |#1| (-1012)) ELT)) (-3796 ((|#1| $) NIL T ELT) (($ $ (-693)) NIL T ELT)) (-3607 (($ $ $ (-483)) NIL T ELT) (($ |#1| $ (-483)) NIL T ELT)) (-2303 (($ $ $ (-483)) NIL T ELT) (($ |#1| $ (-483)) NIL T ELT)) (-2202 (((-582 (-483)) $) NIL T ELT)) (-2203 (((-85) (-483) $) NIL T ELT)) (-3242 (((-1032) $) NIL (|has| |#1| (-1012)) ELT)) (-3799 ((|#1| $) NIL T ELT) (($ $ (-693)) NIL T ELT)) (-1352 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2198 (($ $ |#1|) NIL (|has| $ (-6 -3994)) ELT)) (-3442 (((-85) $) NIL T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3766 (($ $ (-582 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-582 |#1|) (-582 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-2201 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#1| (-1012))) ELT)) (-2204 (((-582 |#1|) $) NIL T ELT)) (-3401 (((-85) $) NIL T ELT)) (-3563 (($) NIL T ELT)) (-3798 ((|#1| $ #1#) NIL T ELT) ((|#1| $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT) ((|#1| $ #4#) NIL T ELT) (($ $ (-1144 (-483))) NIL T ELT) ((|#1| $ (-483)) NIL T ELT) ((|#1| $ (-483) |#1|) NIL T ELT) (($ $ "unique") 9 T ELT) (($ $ "sort") 12 T ELT) (((-693) $ "count") 16 T ELT)) (-3028 (((-483) $ $) NIL T ELT)) (-1569 (($ $ (-1144 (-483))) NIL T ELT) (($ $ (-483)) NIL T ELT)) (-2304 (($ $ (-1144 (-483))) NIL T ELT) (($ $ (-483)) NIL T ELT)) (-1475 (($ (-582 |#1|)) 22 T ELT)) (-3631 (((-85) $) NIL T ELT)) (-3790 (($ $) NIL T ELT)) (-3788 (($ $) NIL (|has| $ (-6 -3994)) ELT)) (-3791 (((-693) $) NIL T ELT)) (-3792 (($ $) NIL T ELT)) (-1944 (((-693) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3993)) ELT) (((-693) |#1| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#1| (-1012))) ELT)) (-1729 (($ $ $ (-483)) NIL (|has| $ (-6 -3994)) ELT)) (-3398 (($ $) NIL T ELT)) (-3970 (((-472) $) NIL (|has| |#1| (-552 (-472))) ELT)) (-3528 (($ (-582 |#1|)) NIL T ELT)) (-3789 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3800 (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-582 $)) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3944 (($ (-582 |#1|)) 17 T ELT) (((-582 |#1|) $) 18 T ELT) (((-771) $) 21 (|has| |#1| (-551 (-771))) ELT)) (-3520 (((-582 $) $) NIL T ELT)) (-3027 (((-85) $ $) NIL (|has| |#1| (-1012)) ELT)) (-1263 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-2565 (((-85) $ $) NIL (|has| |#1| (-755)) ELT)) (-2566 (((-85) $ $) NIL (|has| |#1| (-755)) ELT)) (-3055 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2683 (((-85) $ $) NIL (|has| |#1| (-755)) ELT)) (-2684 (((-85) $ $) NIL (|has| |#1| (-755)) ELT)) (-3955 (((-693) $) 14 (|has| $ (-6 -3993)) ELT))) -(((-203 |#1|) (-13 (-607 |#1|) (-428 (-582 |#1|)) (-10 -8 (-15 -1475 ($ (-582 |#1|))) (-15 -3798 ($ $ "unique")) (-15 -3798 ($ $ "sort")) (-15 -3798 ((-693) $ "count")))) (-755)) (T -203)) -((-1475 (*1 *1 *2) (-12 (-5 *2 (-582 *3)) (-4 *3 (-755)) (-5 *1 (-203 *3)))) (-3798 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-203 *3)) (-4 *3 (-755)))) (-3798 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-203 *3)) (-4 *3 (-755)))) (-3798 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-693)) (-5 *1 (-203 *4)) (-4 *4 (-755))))) -((-1476 (((-3 (-693) "failed") |#1| |#1| (-693)) 40 T ELT))) -(((-204 |#1|) (-10 -7 (-15 -1476 ((-3 (-693) "failed") |#1| |#1| (-693)))) (-13 (-662) (-318) (-10 -7 (-15 ** (|#1| |#1| (-483)))))) (T -204)) -((-1476 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-693)) (-4 *3 (-13 (-662) (-318) (-10 -7 (-15 ** (*3 *3 (-483)))))) (-5 *1 (-204 *3))))) -((-2567 (((-85) $ $) 7 T ELT)) (-3187 (((-85) $) 22 T ELT)) (-1310 (((-3 $ "failed") $ $) 26 T ELT)) (-3722 (($) 23 T CONST)) (-1212 (((-85) $ $) 20 T ELT)) (-3241 (((-1071) $) 11 T ELT)) (-3242 (((-1032) $) 12 T ELT)) (-3756 (($ $) 60 (|has| |#1| (-189)) ELT) (($ $ (-693)) 58 (|has| |#1| (-189)) ELT) (($ $ (-1088)) 56 (|has| |#1| (-810 (-1088))) ELT) (($ $ (-582 (-1088))) 54 (|has| |#1| (-810 (-1088))) ELT) (($ $ (-1088) (-693)) 53 (|has| |#1| (-810 (-1088))) ELT) (($ $ (-582 (-1088)) (-582 (-693))) 52 (|has| |#1| (-810 (-1088))) ELT) (($ $ (-1 |#1| |#1|) (-693)) 46 T ELT) (($ $ (-1 |#1| |#1|)) 45 T ELT)) (-3944 (((-771) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2659 (($) 24 T CONST)) (-2668 (($ $) 59 (|has| |#1| (-189)) ELT) (($ $ (-693)) 57 (|has| |#1| (-189)) ELT) (($ $ (-1088)) 55 (|has| |#1| (-810 (-1088))) ELT) (($ $ (-582 (-1088))) 51 (|has| |#1| (-810 (-1088))) ELT) (($ $ (-1088) (-693)) 50 (|has| |#1| (-810 (-1088))) ELT) (($ $ (-582 (-1088)) (-582 (-693))) 49 (|has| |#1| (-810 (-1088))) ELT) (($ $ (-1 |#1| |#1|) (-693)) 48 T ELT) (($ $ (-1 |#1| |#1|)) 47 T ELT)) (-3055 (((-85) $ $) 8 T ELT)) (-3835 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3837 (($ $ $) 18 T ELT)) (* (($ (-829) $) 17 T ELT) (($ (-693) $) 21 T ELT) (($ (-483) $) 30 T ELT) (($ |#1| $) 33 T ELT) (($ $ |#1|) 37 T ELT))) -(((-205 |#1|) (-113) (-960)) (T -205)) -NIL -(-13 (-82 |t#1| |t#1|) (-225 |t#1|) (-10 -7 (IF (|has| |t#1| (-189)) (-6 (-187 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-810 (-1088))) (-6 (-807 |t#1| (-1088))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-551 (-771)) . T) ((-186 $) |has| |#1| (-189)) ((-187 |#1|) |has| |#1| (-189)) ((-189) |has| |#1| (-189)) ((-225 |#1|) . T) ((-13) . T) ((-587 (-483)) . T) ((-587 |#1|) . T) ((-589 |#1|) . T) ((-581 |#1|) OR (-12 (|has| |#1| (-146)) (|has| |#1| (-810 (-1088)))) (-12 (|has| |#1| (-146)) (|has| |#1| (-189)))) ((-653 |#1|) OR (-12 (|has| |#1| (-146)) (|has| |#1| (-810 (-1088)))) (-12 (|has| |#1| (-146)) (|has| |#1| (-189)))) ((-805 $ (-1088)) |has| |#1| (-810 (-1088))) ((-807 |#1| (-1088)) |has| |#1| (-810 (-1088))) ((-810 (-1088)) |has| |#1| (-810 (-1088))) ((-962 |#1|) . T) ((-967 |#1|) . T) ((-1012) . T) ((-1127) . T)) -((-2567 (((-85) $ $) NIL T ELT)) (-3187 (((-85) $) NIL T ELT)) (-3080 (((-582 (-772 |#1|)) $) NIL T ELT)) (-3082 (((-1083 $) $ (-772 |#1|)) NIL T ELT) (((-1083 |#2|) $) NIL T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3980 $) (|:| |associate| $)) $) NIL (|has| |#2| (-494)) ELT)) (-2062 (($ $) NIL (|has| |#2| (-494)) ELT)) (-2060 (((-85) $) NIL (|has| |#2| (-494)) ELT)) (-2818 (((-693) $) NIL T ELT) (((-693) $ (-582 (-772 |#1|))) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2706 (((-346 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-820)) ELT)) (-3773 (($ $) NIL (|has| |#2| (-390)) ELT)) (-3969 (((-346 $) $) NIL (|has| |#2| (-390)) ELT)) (-2703 (((-3 (-582 (-1083 $)) #1#) (-582 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-820)) ELT)) (-3722 (($) NIL T CONST)) (-3156 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-348 (-483)) #1#) $) NIL (|has| |#2| (-949 (-348 (-483)))) ELT) (((-3 (-483) #1#) $) NIL (|has| |#2| (-949 (-483))) ELT) (((-3 (-772 |#1|) #1#) $) NIL T ELT)) (-3155 ((|#2| $) NIL T ELT) (((-348 (-483)) $) NIL (|has| |#2| (-949 (-348 (-483)))) ELT) (((-483) $) NIL (|has| |#2| (-949 (-483))) ELT) (((-772 |#1|) $) NIL T ELT)) (-3754 (($ $ $ (-772 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-1935 (($ $ (-582 (-483))) NIL T ELT)) (-3957 (($ $) NIL T ELT)) (-2278 (((-629 (-483)) (-629 $)) NIL (|has| |#2| (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-629 $) (-1177 $)) NIL (|has| |#2| (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 |#2|)) (|:| |vec| (-1177 |#2|))) (-629 $) (-1177 $)) NIL T ELT) (((-629 |#2|) (-629 $)) NIL T ELT)) (-3465 (((-3 $ #1#) $) NIL T ELT)) (-3501 (($ $) NIL (|has| |#2| (-390)) ELT) (($ $ (-772 |#1|)) NIL (|has| |#2| (-390)) ELT)) (-2817 (((-582 $) $) NIL T ELT)) (-3721 (((-85) $) NIL (|has| |#2| (-820)) ELT)) (-1622 (($ $ |#2| (-197 (-3955 |#1|) (-693)) $) NIL T ELT)) (-2795 (((-797 (-328) $) $ (-799 (-328)) (-797 (-328) $)) NIL (-12 (|has| (-772 |#1|) (-795 (-328))) (|has| |#2| (-795 (-328)))) ELT) (((-797 (-483) $) $ (-799 (-483)) (-797 (-483) $)) NIL (-12 (|has| (-772 |#1|) (-795 (-483))) (|has| |#2| (-795 (-483)))) ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-2409 (((-85) $) NIL T ELT)) (-2419 (((-693) $) NIL T ELT)) (-3083 (($ (-1083 |#2|) (-772 |#1|)) NIL T ELT) (($ (-1083 $) (-772 |#1|)) NIL T ELT)) (-2820 (((-582 $) $) NIL T ELT)) (-3935 (((-85) $) NIL T ELT)) (-2892 (($ |#2| (-197 (-3955 |#1|) (-693))) NIL T ELT) (($ $ (-772 |#1|) (-693)) NIL T ELT) (($ $ (-582 (-772 |#1|)) (-582 (-693))) NIL T ELT)) (-3761 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $ (-772 |#1|)) NIL T ELT)) (-2819 (((-197 (-3955 |#1|) (-693)) $) NIL T ELT) (((-693) $ (-772 |#1|)) NIL T ELT) (((-582 (-693)) $ (-582 (-772 |#1|))) NIL T ELT)) (-1623 (($ (-1 (-197 (-3955 |#1|) (-693)) (-197 (-3955 |#1|) (-693))) $) NIL T ELT)) (-3956 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3081 (((-3 (-772 |#1|) #1#) $) NIL T ELT)) (-2279 (((-629 (-483)) (-1177 $)) NIL (|has| |#2| (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL (|has| |#2| (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 |#2|)) (|:| |vec| (-1177 |#2|))) (-1177 $) $) NIL T ELT) (((-629 |#2|) (-1177 $)) NIL T ELT)) (-2893 (($ $) NIL T ELT)) (-3173 ((|#2| $) NIL T ELT)) (-1889 (($ (-582 $)) NIL (|has| |#2| (-390)) ELT) (($ $ $) NIL (|has| |#2| (-390)) ELT)) (-3241 (((-1071) $) NIL T ELT)) (-2822 (((-3 (-582 $) #1#) $) NIL T ELT)) (-2821 (((-3 (-582 $) #1#) $) NIL T ELT)) (-2823 (((-3 (-2 (|:| |var| (-772 |#1|)) (|:| -2400 (-693))) #1#) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-1795 (((-85) $) NIL T ELT)) (-1794 ((|#2| $) NIL T ELT)) (-2707 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#2| (-390)) ELT)) (-3143 (($ (-582 $)) NIL (|has| |#2| (-390)) ELT) (($ $ $) NIL (|has| |#2| (-390)) ELT)) (-2704 (((-346 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-820)) ELT)) (-2705 (((-346 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-820)) ELT)) (-3730 (((-346 $) $) NIL (|has| |#2| (-820)) ELT)) (-3464 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-494)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-494)) ELT)) (-3766 (($ $ (-582 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-582 $) (-582 $)) NIL T ELT) (($ $ (-772 |#1|) |#2|) NIL T ELT) (($ $ (-582 (-772 |#1|)) (-582 |#2|)) NIL T ELT) (($ $ (-772 |#1|) $) NIL T ELT) (($ $ (-582 (-772 |#1|)) (-582 $)) NIL T ELT)) (-3755 (($ $ (-772 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-3756 (($ $ (-582 (-772 |#1|)) (-582 (-693))) NIL T ELT) (($ $ (-772 |#1|) (-693)) NIL T ELT) (($ $ (-582 (-772 |#1|))) NIL T ELT) (($ $ (-772 |#1|)) NIL T ELT)) (-3946 (((-197 (-3955 |#1|) (-693)) $) NIL T ELT) (((-693) $ (-772 |#1|)) NIL T ELT) (((-582 (-693)) $ (-582 (-772 |#1|))) NIL T ELT)) (-3970 (((-799 (-328)) $) NIL (-12 (|has| (-772 |#1|) (-552 (-799 (-328)))) (|has| |#2| (-552 (-799 (-328))))) ELT) (((-799 (-483)) $) NIL (-12 (|has| (-772 |#1|) (-552 (-799 (-483)))) (|has| |#2| (-552 (-799 (-483))))) ELT) (((-472) $) NIL (-12 (|has| (-772 |#1|) (-552 (-472))) (|has| |#2| (-552 (-472)))) ELT)) (-2816 ((|#2| $) NIL (|has| |#2| (-390)) ELT) (($ $ (-772 |#1|)) NIL (|has| |#2| (-390)) ELT)) (-2702 (((-3 (-1177 $) #1#) (-629 $)) NIL (-12 (|has| $ (-118)) (|has| |#2| (-820))) ELT)) (-3944 (((-771) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-772 |#1|)) NIL T ELT) (($ (-348 (-483))) NIL (OR (|has| |#2| (-38 (-348 (-483)))) (|has| |#2| (-949 (-348 (-483))))) ELT) (($ $) NIL (|has| |#2| (-494)) ELT)) (-3815 (((-582 |#2|) $) NIL T ELT)) (-3675 ((|#2| $ (-197 (-3955 |#1|) (-693))) NIL T ELT) (($ $ (-772 |#1|) (-693)) NIL T ELT) (($ $ (-582 (-772 |#1|)) (-582 (-693))) NIL T ELT)) (-2701 (((-631 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#2| (-820))) (|has| |#2| (-118))) ELT)) (-3125 (((-693)) NIL T CONST)) (-1621 (($ $ $ (-693)) NIL (|has| |#2| (-146)) ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2061 (((-85) $ $) NIL (|has| |#2| (-494)) ELT)) (-3124 (((-85) $ $) NIL T ELT)) (-2659 (($) NIL T CONST)) (-2665 (($) NIL T CONST)) (-2668 (($ $ (-582 (-772 |#1|)) (-582 (-693))) NIL T ELT) (($ $ (-772 |#1|) (-693)) NIL T ELT) (($ $ (-582 (-772 |#1|))) NIL T ELT) (($ $ (-772 |#1|)) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-3947 (($ $ |#2|) NIL (|has| |#2| (-312)) ELT)) (-3835 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3837 (($ $ $) NIL T ELT)) (** (($ $ (-829)) NIL T ELT) (($ $ (-693)) NIL T ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-348 (-483))) NIL (|has| |#2| (-38 (-348 (-483)))) ELT) (($ (-348 (-483)) $) NIL (|has| |#2| (-38 (-348 (-483)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT))) -(((-206 |#1| |#2|) (-13 (-860 |#2| (-197 (-3955 |#1|) (-693)) (-772 |#1|)) (-10 -8 (-15 -1935 ($ $ (-582 (-483)))))) (-582 (-1088)) (-960)) (T -206)) -((-1935 (*1 *1 *1 *2) (-12 (-5 *2 (-582 (-483))) (-5 *1 (-206 *3 *4)) (-14 *3 (-582 (-1088))) (-4 *4 (-960))))) -((-2567 (((-85) $ $) NIL T ELT)) (-1477 (((-1183) $) 17 T ELT)) (-1479 (((-158 (-208)) $) 11 T ELT)) (-1478 (($ (-158 (-208))) 12 T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-1480 (((-208) $) 7 T ELT)) (-3944 (((-771) $) 9 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) 15 T ELT))) -(((-207) (-13 (-1012) (-10 -8 (-15 -1480 ((-208) $)) (-15 -1479 ((-158 (-208)) $)) (-15 -1478 ($ (-158 (-208)))) (-15 -1477 ((-1183) $))))) (T -207)) -((-1480 (*1 *2 *1) (-12 (-5 *2 (-208)) (-5 *1 (-207)))) (-1479 (*1 *2 *1) (-12 (-5 *2 (-158 (-208))) (-5 *1 (-207)))) (-1478 (*1 *1 *2) (-12 (-5 *2 (-158 (-208))) (-5 *1 (-207)))) (-1477 (*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-207))))) -((-2567 (((-85) $ $) NIL T ELT)) (-1422 (((-582 (-773)) $) NIL T ELT)) (-3540 (((-445) $) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-1424 (((-161) $) NIL T ELT)) (-2632 (((-85) $ (-445)) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-1481 (((-282) $) 7 T ELT)) (-1423 (((-582 (-85)) $) NIL T ELT)) (-3944 (((-771) $) NIL T ELT) (((-157) $) 8 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2520 (((-55) $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-208) (-13 (-160) (-551 (-157)) (-10 -8 (-15 -1481 ((-282) $))))) (T -208)) -((-1481 (*1 *2 *1) (-12 (-5 *2 (-282)) (-5 *1 (-208))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3798 (((-1093) $ (-693)) 14 T ELT)) (-3944 (((-771) $) 20 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) 17 T ELT)) (-3955 (((-693) $) 11 T ELT))) -(((-209) (-13 (-1012) (-241 (-693) (-1093)) (-10 -8 (-15 -3955 ((-693) $))))) (T -209)) -((-3955 (*1 *2 *1) (-12 (-5 *2 (-693)) (-5 *1 (-209))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3187 (((-85) $) NIL T ELT)) (-3705 (($ (-829)) NIL (|has| |#4| (-960)) ELT)) (-2197 (((-1183) $ (-483) (-483)) NIL (|has| $ (-6 -3994)) ELT)) (-2482 (($ $ $) NIL (|has| |#4| (-716)) ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3135 (((-693)) NIL (|has| |#4| (-318)) ELT)) (-3786 ((|#4| $ (-483) |#4|) NIL (|has| $ (-6 -3994)) ELT)) (-3722 (($) NIL T CONST)) (-3156 (((-3 |#4| #1#) $) NIL (|has| |#4| (-1012)) ELT) (((-3 (-483) #1#) $) NIL (-12 (|has| |#4| (-949 (-483))) (|has| |#4| (-1012))) ELT) (((-3 (-348 (-483)) #1#) $) NIL (-12 (|has| |#4| (-949 (-348 (-483)))) (|has| |#4| (-1012))) ELT)) (-3155 ((|#4| $) NIL (|has| |#4| (-1012)) ELT) (((-483) $) NIL (-12 (|has| |#4| (-949 (-483))) (|has| |#4| (-1012))) ELT) (((-348 (-483)) $) NIL (-12 (|has| |#4| (-949 (-348 (-483)))) (|has| |#4| (-1012))) ELT)) (-2278 (((-2 (|:| |mat| (-629 |#4|)) (|:| |vec| (-1177 |#4|))) (-629 $) (-1177 $)) NIL (|has| |#4| (-960)) ELT) (((-629 |#4|) (-629 $)) NIL (|has| |#4| (-960)) ELT) (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-629 $) (-1177 $)) NIL (-12 (|has| |#4| (-579 (-483))) (|has| |#4| (-960))) ELT) (((-629 (-483)) (-629 $)) NIL (-12 (|has| |#4| (-579 (-483))) (|has| |#4| (-960))) ELT)) (-3465 (((-3 $ #1#) $) NIL (|has| |#4| (-960)) ELT)) (-2993 (($) NIL (|has| |#4| (-318)) ELT)) (-1574 ((|#4| $ (-483) |#4|) NIL (|has| $ (-6 -3994)) ELT)) (-3111 ((|#4| $ (-483)) NIL T ELT)) (-3185 (((-85) $) NIL (|has| |#4| (-716)) ELT)) (-2888 (((-582 |#4|) $) NIL (|has| $ (-6 -3993)) ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-2409 (((-85) $) NIL (|has| |#4| (-960)) ELT)) (-2199 (((-483) $) NIL (|has| (-483) (-755)) ELT)) (-2530 (($ $ $) NIL (|has| |#4| (-755)) ELT)) (-2607 (((-582 |#4|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3244 (((-85) |#4| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#4| (-1012))) ELT)) (-2200 (((-483) $) NIL (|has| (-483) (-755)) ELT)) (-2856 (($ $ $) NIL (|has| |#4| (-755)) ELT)) (-1947 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3956 (($ (-1 |#4| |#4|) $) NIL T ELT)) (-2009 (((-829) $) NIL (|has| |#4| (-318)) ELT)) (-2279 (((-2 (|:| |mat| (-629 |#4|)) (|:| |vec| (-1177 |#4|))) (-1177 $) $) NIL (|has| |#4| (-960)) ELT) (((-629 |#4|) (-1177 $)) NIL (|has| |#4| (-960)) ELT) (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL (-12 (|has| |#4| (-579 (-483))) (|has| |#4| (-960))) ELT) (((-629 (-483)) (-1177 $)) NIL (-12 (|has| |#4| (-579 (-483))) (|has| |#4| (-960))) ELT)) (-3241 (((-1071) $) NIL T ELT)) (-2202 (((-582 (-483)) $) NIL T ELT)) (-2203 (((-85) (-483) $) NIL T ELT)) (-2399 (($ (-829)) NIL (|has| |#4| (-318)) ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3799 ((|#4| $) NIL (|has| (-483) (-755)) ELT)) (-2198 (($ $ |#4|) NIL (|has| $ (-6 -3994)) ELT)) (-1945 (((-85) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3766 (($ $ (-582 (-249 |#4|))) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1012))) ELT) (($ $ (-249 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1012))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1012))) ELT) (($ $ (-582 |#4|) (-582 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1012))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-2201 (((-85) |#4| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#4| (-1012))) ELT)) (-2204 (((-582 |#4|) $) NIL T ELT)) (-3401 (((-85) $) NIL T ELT)) (-3563 (($) NIL T ELT)) (-3798 ((|#4| $ (-483) |#4|) NIL T ELT) ((|#4| $ (-483)) 12 T ELT)) (-3834 ((|#4| $ $) NIL (|has| |#4| (-960)) ELT)) (-1466 (($ (-1177 |#4|)) NIL T ELT)) (-3909 (((-107)) NIL (|has| |#4| (-312)) ELT)) (-3756 (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-960)) ELT) (($ $ (-1 |#4| |#4|) (-693)) NIL (|has| |#4| (-960)) ELT) (($ $ (-582 (-1088)) (-582 (-693))) NIL (OR (-12 (|has| |#4| (-808 (-1088))) (|has| |#4| (-960))) (-12 (|has| |#4| (-810 (-1088))) (|has| |#4| (-960)))) ELT) (($ $ (-1088) (-693)) NIL (OR (-12 (|has| |#4| (-808 (-1088))) (|has| |#4| (-960))) (-12 (|has| |#4| (-810 (-1088))) (|has| |#4| (-960)))) ELT) (($ $ (-582 (-1088))) NIL (OR (-12 (|has| |#4| (-808 (-1088))) (|has| |#4| (-960))) (-12 (|has| |#4| (-810 (-1088))) (|has| |#4| (-960)))) ELT) (($ $ (-1088)) NIL (OR (-12 (|has| |#4| (-808 (-1088))) (|has| |#4| (-960))) (-12 (|has| |#4| (-810 (-1088))) (|has| |#4| (-960)))) ELT) (($ $ (-693)) NIL (OR (-12 (|has| |#4| (-190)) (|has| |#4| (-960))) (-12 (|has| |#4| (-189)) (|has| |#4| (-960)))) ELT) (($ $) NIL (OR (-12 (|has| |#4| (-190)) (|has| |#4| (-960))) (-12 (|has| |#4| (-189)) (|has| |#4| (-960)))) ELT)) (-1944 (((-693) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3993)) ELT) (((-693) |#4| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#4| (-1012))) ELT)) (-3398 (($ $) NIL T ELT)) (-3944 (((-1177 |#4|) $) NIL T ELT) (($ |#4|) NIL (|has| |#4| (-1012)) ELT) (((-771) $) NIL T ELT) (($ (-483)) NIL (OR (-12 (|has| |#4| (-949 (-483))) (|has| |#4| (-1012))) (|has| |#4| (-960))) ELT) (($ (-348 (-483))) NIL (-12 (|has| |#4| (-949 (-348 (-483)))) (|has| |#4| (-1012))) ELT)) (-3125 (((-693)) NIL (|has| |#4| (-960)) CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-1946 (((-85) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3124 (((-85) $ $) NIL (|has| |#4| (-960)) ELT)) (-2659 (($) NIL T CONST)) (-2665 (($) NIL (|has| |#4| (-960)) CONST)) (-2668 (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-960)) ELT) (($ $ (-1 |#4| |#4|) (-693)) NIL (|has| |#4| (-960)) ELT) (($ $ (-582 (-1088)) (-582 (-693))) NIL (OR (-12 (|has| |#4| (-808 (-1088))) (|has| |#4| (-960))) (-12 (|has| |#4| (-810 (-1088))) (|has| |#4| (-960)))) ELT) (($ $ (-1088) (-693)) NIL (OR (-12 (|has| |#4| (-808 (-1088))) (|has| |#4| (-960))) (-12 (|has| |#4| (-810 (-1088))) (|has| |#4| (-960)))) ELT) (($ $ (-582 (-1088))) NIL (OR (-12 (|has| |#4| (-808 (-1088))) (|has| |#4| (-960))) (-12 (|has| |#4| (-810 (-1088))) (|has| |#4| (-960)))) ELT) (($ $ (-1088)) NIL (OR (-12 (|has| |#4| (-808 (-1088))) (|has| |#4| (-960))) (-12 (|has| |#4| (-810 (-1088))) (|has| |#4| (-960)))) ELT) (($ $ (-693)) NIL (OR (-12 (|has| |#4| (-190)) (|has| |#4| (-960))) (-12 (|has| |#4| (-189)) (|has| |#4| (-960)))) ELT) (($ $) NIL (OR (-12 (|has| |#4| (-190)) (|has| |#4| (-960))) (-12 (|has| |#4| (-189)) (|has| |#4| (-960)))) ELT)) (-2565 (((-85) $ $) NIL (|has| |#4| (-755)) ELT)) (-2566 (((-85) $ $) NIL (|has| |#4| (-755)) ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-2683 (((-85) $ $) NIL (|has| |#4| (-755)) ELT)) (-2684 (((-85) $ $) NIL (|has| |#4| (-755)) ELT)) (-3947 (($ $ |#4|) NIL (|has| |#4| (-312)) ELT)) (-3835 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3837 (($ $ $) NIL T ELT)) (** (($ $ (-693)) NIL (|has| |#4| (-960)) ELT) (($ $ (-829)) NIL (|has| |#4| (-960)) ELT)) (* (($ |#2| $) 14 T ELT) (($ (-483) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-829) $) NIL T ELT) (($ |#3| $) 18 T ELT) (($ $ |#4|) NIL (|has| |#4| (-662)) ELT) (($ |#4| $) NIL (|has| |#4| (-662)) ELT) (($ $ $) NIL (|has| |#4| (-960)) ELT)) (-3955 (((-693) $) NIL (|has| $ (-6 -3993)) ELT))) -(((-210 |#1| |#2| |#3| |#4|) (-13 (-196 |#1| |#4|) (-589 |#2|) (-589 |#3|)) (-829) (-960) (-1035 |#1| |#2| (-197 |#1| |#2|) (-197 |#1| |#2|)) (-589 |#2|)) (T -210)) -NIL -((-2567 (((-85) $ $) NIL T ELT)) (-3187 (((-85) $) NIL T ELT)) (-3705 (($ (-829)) NIL (|has| |#3| (-960)) ELT)) (-2197 (((-1183) $ (-483) (-483)) NIL (|has| $ (-6 -3994)) ELT)) (-2482 (($ $ $) NIL (|has| |#3| (-716)) ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3135 (((-693)) NIL (|has| |#3| (-318)) ELT)) (-3786 ((|#3| $ (-483) |#3|) NIL (|has| $ (-6 -3994)) ELT)) (-3722 (($) NIL T CONST)) (-3156 (((-3 |#3| #1#) $) NIL (|has| |#3| (-1012)) ELT) (((-3 (-483) #1#) $) NIL (-12 (|has| |#3| (-949 (-483))) (|has| |#3| (-1012))) ELT) (((-3 (-348 (-483)) #1#) $) NIL (-12 (|has| |#3| (-949 (-348 (-483)))) (|has| |#3| (-1012))) ELT)) (-3155 ((|#3| $) NIL (|has| |#3| (-1012)) ELT) (((-483) $) NIL (-12 (|has| |#3| (-949 (-483))) (|has| |#3| (-1012))) ELT) (((-348 (-483)) $) NIL (-12 (|has| |#3| (-949 (-348 (-483)))) (|has| |#3| (-1012))) ELT)) (-2278 (((-2 (|:| |mat| (-629 |#3|)) (|:| |vec| (-1177 |#3|))) (-629 $) (-1177 $)) NIL (|has| |#3| (-960)) ELT) (((-629 |#3|) (-629 $)) NIL (|has| |#3| (-960)) ELT) (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-629 $) (-1177 $)) NIL (-12 (|has| |#3| (-579 (-483))) (|has| |#3| (-960))) ELT) (((-629 (-483)) (-629 $)) NIL (-12 (|has| |#3| (-579 (-483))) (|has| |#3| (-960))) ELT)) (-3465 (((-3 $ #1#) $) NIL (|has| |#3| (-960)) ELT)) (-2993 (($) NIL (|has| |#3| (-318)) ELT)) (-1574 ((|#3| $ (-483) |#3|) NIL (|has| $ (-6 -3994)) ELT)) (-3111 ((|#3| $ (-483)) NIL T ELT)) (-3185 (((-85) $) NIL (|has| |#3| (-716)) ELT)) (-2888 (((-582 |#3|) $) NIL (|has| $ (-6 -3993)) ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-2409 (((-85) $) NIL (|has| |#3| (-960)) ELT)) (-2199 (((-483) $) NIL (|has| (-483) (-755)) ELT)) (-2530 (($ $ $) NIL (|has| |#3| (-755)) ELT)) (-2607 (((-582 |#3|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3244 (((-85) |#3| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#3| (-1012))) ELT)) (-2200 (((-483) $) NIL (|has| (-483) (-755)) ELT)) (-2856 (($ $ $) NIL (|has| |#3| (-755)) ELT)) (-1947 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3956 (($ (-1 |#3| |#3|) $) NIL T ELT)) (-2009 (((-829) $) NIL (|has| |#3| (-318)) ELT)) (-2279 (((-2 (|:| |mat| (-629 |#3|)) (|:| |vec| (-1177 |#3|))) (-1177 $) $) NIL (|has| |#3| (-960)) ELT) (((-629 |#3|) (-1177 $)) NIL (|has| |#3| (-960)) ELT) (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL (-12 (|has| |#3| (-579 (-483))) (|has| |#3| (-960))) ELT) (((-629 (-483)) (-1177 $)) NIL (-12 (|has| |#3| (-579 (-483))) (|has| |#3| (-960))) ELT)) (-3241 (((-1071) $) NIL T ELT)) (-2202 (((-582 (-483)) $) NIL T ELT)) (-2203 (((-85) (-483) $) NIL T ELT)) (-2399 (($ (-829)) NIL (|has| |#3| (-318)) ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3799 ((|#3| $) NIL (|has| (-483) (-755)) ELT)) (-2198 (($ $ |#3|) NIL (|has| $ (-6 -3994)) ELT)) (-1945 (((-85) (-1 (-85) |#3|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3766 (($ $ (-582 (-249 |#3|))) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1012))) ELT) (($ $ (-249 |#3|)) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1012))) ELT) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1012))) ELT) (($ $ (-582 |#3|) (-582 |#3|)) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1012))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-2201 (((-85) |#3| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#3| (-1012))) ELT)) (-2204 (((-582 |#3|) $) NIL T ELT)) (-3401 (((-85) $) NIL T ELT)) (-3563 (($) NIL T ELT)) (-3798 ((|#3| $ (-483) |#3|) NIL T ELT) ((|#3| $ (-483)) 11 T ELT)) (-3834 ((|#3| $ $) NIL (|has| |#3| (-960)) ELT)) (-1466 (($ (-1177 |#3|)) NIL T ELT)) (-3909 (((-107)) NIL (|has| |#3| (-312)) ELT)) (-3756 (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-960)) ELT) (($ $ (-1 |#3| |#3|) (-693)) NIL (|has| |#3| (-960)) ELT) (($ $ (-582 (-1088)) (-582 (-693))) NIL (OR (-12 (|has| |#3| (-808 (-1088))) (|has| |#3| (-960))) (-12 (|has| |#3| (-810 (-1088))) (|has| |#3| (-960)))) ELT) (($ $ (-1088) (-693)) NIL (OR (-12 (|has| |#3| (-808 (-1088))) (|has| |#3| (-960))) (-12 (|has| |#3| (-810 (-1088))) (|has| |#3| (-960)))) ELT) (($ $ (-582 (-1088))) NIL (OR (-12 (|has| |#3| (-808 (-1088))) (|has| |#3| (-960))) (-12 (|has| |#3| (-810 (-1088))) (|has| |#3| (-960)))) ELT) (($ $ (-1088)) NIL (OR (-12 (|has| |#3| (-808 (-1088))) (|has| |#3| (-960))) (-12 (|has| |#3| (-810 (-1088))) (|has| |#3| (-960)))) ELT) (($ $ (-693)) NIL (OR (-12 (|has| |#3| (-190)) (|has| |#3| (-960))) (-12 (|has| |#3| (-189)) (|has| |#3| (-960)))) ELT) (($ $) NIL (OR (-12 (|has| |#3| (-190)) (|has| |#3| (-960))) (-12 (|has| |#3| (-189)) (|has| |#3| (-960)))) ELT)) (-1944 (((-693) (-1 (-85) |#3|) $) NIL (|has| $ (-6 -3993)) ELT) (((-693) |#3| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#3| (-1012))) ELT)) (-3398 (($ $) NIL T ELT)) (-3944 (((-1177 |#3|) $) NIL T ELT) (($ |#3|) NIL (|has| |#3| (-1012)) ELT) (((-771) $) NIL T ELT) (($ (-483)) NIL (OR (-12 (|has| |#3| (-949 (-483))) (|has| |#3| (-1012))) (|has| |#3| (-960))) ELT) (($ (-348 (-483))) NIL (-12 (|has| |#3| (-949 (-348 (-483)))) (|has| |#3| (-1012))) ELT)) (-3125 (((-693)) NIL (|has| |#3| (-960)) CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-1946 (((-85) (-1 (-85) |#3|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3124 (((-85) $ $) NIL (|has| |#3| (-960)) ELT)) (-2659 (($) NIL T CONST)) (-2665 (($) NIL (|has| |#3| (-960)) CONST)) (-2668 (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-960)) ELT) (($ $ (-1 |#3| |#3|) (-693)) NIL (|has| |#3| (-960)) ELT) (($ $ (-582 (-1088)) (-582 (-693))) NIL (OR (-12 (|has| |#3| (-808 (-1088))) (|has| |#3| (-960))) (-12 (|has| |#3| (-810 (-1088))) (|has| |#3| (-960)))) ELT) (($ $ (-1088) (-693)) NIL (OR (-12 (|has| |#3| (-808 (-1088))) (|has| |#3| (-960))) (-12 (|has| |#3| (-810 (-1088))) (|has| |#3| (-960)))) ELT) (($ $ (-582 (-1088))) NIL (OR (-12 (|has| |#3| (-808 (-1088))) (|has| |#3| (-960))) (-12 (|has| |#3| (-810 (-1088))) (|has| |#3| (-960)))) ELT) (($ $ (-1088)) NIL (OR (-12 (|has| |#3| (-808 (-1088))) (|has| |#3| (-960))) (-12 (|has| |#3| (-810 (-1088))) (|has| |#3| (-960)))) ELT) (($ $ (-693)) NIL (OR (-12 (|has| |#3| (-190)) (|has| |#3| (-960))) (-12 (|has| |#3| (-189)) (|has| |#3| (-960)))) ELT) (($ $) NIL (OR (-12 (|has| |#3| (-190)) (|has| |#3| (-960))) (-12 (|has| |#3| (-189)) (|has| |#3| (-960)))) ELT)) (-2565 (((-85) $ $) NIL (|has| |#3| (-755)) ELT)) (-2566 (((-85) $ $) NIL (|has| |#3| (-755)) ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-2683 (((-85) $ $) NIL (|has| |#3| (-755)) ELT)) (-2684 (((-85) $ $) NIL (|has| |#3| (-755)) ELT)) (-3947 (($ $ |#3|) NIL (|has| |#3| (-312)) ELT)) (-3835 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3837 (($ $ $) NIL T ELT)) (** (($ $ (-693)) NIL (|has| |#3| (-960)) ELT) (($ $ (-829)) NIL (|has| |#3| (-960)) ELT)) (* (($ |#2| $) 13 T ELT) (($ (-483) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-829) $) NIL T ELT) (($ $ |#3|) NIL (|has| |#3| (-662)) ELT) (($ |#3| $) NIL (|has| |#3| (-662)) ELT) (($ $ $) NIL (|has| |#3| (-960)) ELT)) (-3955 (((-693) $) NIL (|has| $ (-6 -3993)) ELT))) -(((-211 |#1| |#2| |#3|) (-13 (-196 |#1| |#3|) (-589 |#2|)) (-693) (-960) (-589 |#2|)) (T -211)) -NIL -((-1486 (((-582 (-693)) $) 56 T ELT) (((-582 (-693)) $ |#3|) 59 T ELT)) (-1520 (((-693) $) 58 T ELT) (((-693) $ |#3|) 61 T ELT)) (-1482 (($ $) 76 T ELT)) (-3156 (((-3 |#2| #1="failed") $) NIL T ELT) (((-3 (-348 (-483)) #1#) $) NIL T ELT) (((-3 (-483) #1#) $) NIL T ELT) (((-3 |#4| #1#) $) NIL T ELT) (((-3 |#3| #1#) $) 83 T ELT)) (-3770 (((-693) $ |#3|) 43 T ELT) (((-693) $) 38 T ELT)) (-1521 (((-1 $ (-693)) |#3|) 15 T ELT) (((-1 $ (-693)) $) 88 T ELT)) (-1484 ((|#4| $) 69 T ELT)) (-1485 (((-85) $) 67 T ELT)) (-1483 (($ $) 75 T ELT)) (-3766 (($ $ (-582 (-249 $))) 111 T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-582 $) (-582 $)) NIL T ELT) (($ $ |#4| |#2|) NIL T ELT) (($ $ (-582 |#4|) (-582 |#2|)) NIL T ELT) (($ $ |#4| $) NIL T ELT) (($ $ (-582 |#4|) (-582 $)) NIL T ELT) (($ $ |#3| $) NIL T ELT) (($ $ (-582 |#3|) (-582 $)) 103 T ELT) (($ $ |#3| |#2|) NIL T ELT) (($ $ (-582 |#3|) (-582 |#2|)) 97 T ELT)) (-3756 (($ $ (-582 |#4|) (-582 (-693))) NIL T ELT) (($ $ |#4| (-693)) NIL T ELT) (($ $ (-582 |#4|)) NIL T ELT) (($ $ |#4|) NIL T ELT) (($ $ (-1 |#2| |#2|)) 32 T ELT) (($ $ (-1 |#2| |#2|) (-693)) NIL T ELT) (($ $ (-1088)) NIL T ELT) (($ $ (-582 (-1088))) NIL T ELT) (($ $ (-1088) (-693)) NIL T ELT) (($ $ (-582 (-1088)) (-582 (-693))) NIL T ELT) (($ $) NIL T ELT) (($ $ (-693)) NIL T ELT)) (-1487 (((-582 |#3|) $) 86 T ELT)) (-3946 ((|#5| $) NIL T ELT) (((-693) $ |#4|) NIL T ELT) (((-582 (-693)) $ (-582 |#4|)) NIL T ELT) (((-693) $ |#3|) 49 T ELT)) (-3944 (((-771) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ |#2|) NIL T ELT) (($ |#4|) NIL T ELT) (($ |#3|) 78 T ELT) (($ (-348 (-483))) NIL T ELT) (($ $) NIL T ELT))) -(((-212 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3756 (|#1| |#1| (-693))) (-15 -3756 (|#1| |#1|)) (-15 -3756 (|#1| |#1| (-582 (-1088)) (-582 (-693)))) (-15 -3756 (|#1| |#1| (-1088) (-693))) (-15 -3756 (|#1| |#1| (-582 (-1088)))) (-15 -3756 (|#1| |#1| (-1088))) (-15 -3944 (|#1| |#1|)) (-15 -3944 (|#1| (-348 (-483)))) (-15 -3766 (|#1| |#1| (-582 |#3|) (-582 |#2|))) (-15 -3766 (|#1| |#1| |#3| |#2|)) (-15 -3766 (|#1| |#1| (-582 |#3|) (-582 |#1|))) (-15 -3766 (|#1| |#1| |#3| |#1|)) (-15 -1521 ((-1 |#1| (-693)) |#1|)) (-15 -1482 (|#1| |#1|)) (-15 -1483 (|#1| |#1|)) (-15 -1484 (|#4| |#1|)) (-15 -1485 ((-85) |#1|)) (-15 -1520 ((-693) |#1| |#3|)) (-15 -1486 ((-582 (-693)) |#1| |#3|)) (-15 -1520 ((-693) |#1|)) (-15 -1486 ((-582 (-693)) |#1|)) (-15 -3946 ((-693) |#1| |#3|)) (-15 -3770 ((-693) |#1|)) (-15 -3770 ((-693) |#1| |#3|)) (-15 -1487 ((-582 |#3|) |#1|)) (-15 -1521 ((-1 |#1| (-693)) |#3|)) (-15 -3944 (|#1| |#3|)) (-15 -3156 ((-3 |#3| #1="failed") |#1|)) (-15 -3756 (|#1| |#1| (-1 |#2| |#2|) (-693))) (-15 -3756 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3946 ((-582 (-693)) |#1| (-582 |#4|))) (-15 -3946 ((-693) |#1| |#4|)) (-15 -3944 (|#1| |#4|)) (-15 -3156 ((-3 |#4| #1#) |#1|)) (-15 -3766 (|#1| |#1| (-582 |#4|) (-582 |#1|))) (-15 -3766 (|#1| |#1| |#4| |#1|)) (-15 -3766 (|#1| |#1| (-582 |#4|) (-582 |#2|))) (-15 -3766 (|#1| |#1| |#4| |#2|)) (-15 -3766 (|#1| |#1| (-582 |#1|) (-582 |#1|))) (-15 -3766 (|#1| |#1| |#1| |#1|)) (-15 -3766 (|#1| |#1| (-249 |#1|))) (-15 -3766 (|#1| |#1| (-582 (-249 |#1|)))) (-15 -3946 (|#5| |#1|)) (-15 -3156 ((-3 (-483) #1#) |#1|)) (-15 -3156 ((-3 (-348 (-483)) #1#) |#1|)) (-15 -3156 ((-3 |#2| #1#) |#1|)) (-15 -3944 (|#1| |#2|)) (-15 -3756 (|#1| |#1| |#4|)) (-15 -3756 (|#1| |#1| (-582 |#4|))) (-15 -3756 (|#1| |#1| |#4| (-693))) (-15 -3756 (|#1| |#1| (-582 |#4|) (-582 (-693)))) (-15 -3944 (|#1| (-483))) (-15 -3944 ((-771) |#1|))) (-213 |#2| |#3| |#4| |#5|) (-960) (-755) (-228 |#3|) (-716)) (T -212)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-3187 (((-85) $) 22 T ELT)) (-1486 (((-582 (-693)) $) 251 T ELT) (((-582 (-693)) $ |#2|) 249 T ELT)) (-1520 (((-693) $) 250 T ELT) (((-693) $ |#2|) 248 T ELT)) (-3080 (((-582 |#3|) $) 123 T ELT)) (-3082 (((-1083 $) $ |#3|) 138 T ELT) (((-1083 |#1|) $) 137 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3980 $) (|:| |associate| $)) $) 100 (|has| |#1| (-494)) ELT)) (-2062 (($ $) 101 (|has| |#1| (-494)) ELT)) (-2060 (((-85) $) 103 (|has| |#1| (-494)) ELT)) (-2818 (((-693) $) 125 T ELT) (((-693) $ (-582 |#3|)) 124 T ELT)) (-1310 (((-3 $ "failed") $ $) 26 T ELT)) (-2706 (((-346 (-1083 $)) (-1083 $)) 113 (|has| |#1| (-820)) ELT)) (-3773 (($ $) 111 (|has| |#1| (-390)) ELT)) (-3969 (((-346 $) $) 110 (|has| |#1| (-390)) ELT)) (-2703 (((-3 (-582 (-1083 $)) #1="failed") (-582 (-1083 $)) (-1083 $)) 116 (|has| |#1| (-820)) ELT)) (-1482 (($ $) 244 T ELT)) (-3722 (($) 23 T CONST)) (-3156 (((-3 |#1| #2="failed") $) 181 T ELT) (((-3 (-348 (-483)) #2#) $) 178 (|has| |#1| (-949 (-348 (-483)))) ELT) (((-3 (-483) #2#) $) 176 (|has| |#1| (-949 (-483))) ELT) (((-3 |#3| #2#) $) 153 T ELT) (((-3 |#2| #2#) $) 258 T ELT)) (-3155 ((|#1| $) 180 T ELT) (((-348 (-483)) $) 179 (|has| |#1| (-949 (-348 (-483)))) ELT) (((-483) $) 177 (|has| |#1| (-949 (-483))) ELT) ((|#3| $) 154 T ELT) ((|#2| $) 259 T ELT)) (-3754 (($ $ $ |#3|) 121 (|has| |#1| (-146)) ELT)) (-3957 (($ $) 171 T ELT)) (-2278 (((-629 (-483)) (-629 $)) 149 (|has| |#1| (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-629 $) (-1177 $)) 148 (|has| |#1| (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 |#1|)) (|:| |vec| (-1177 |#1|))) (-629 $) (-1177 $)) 147 T ELT) (((-629 |#1|) (-629 $)) 146 T ELT)) (-3465 (((-3 $ "failed") $) 42 T ELT)) (-3501 (($ $) 193 (|has| |#1| (-390)) ELT) (($ $ |#3|) 118 (|has| |#1| (-390)) ELT)) (-2817 (((-582 $) $) 122 T ELT)) (-3721 (((-85) $) 109 (|has| |#1| (-820)) ELT)) (-1622 (($ $ |#1| |#4| $) 189 T ELT)) (-2795 (((-797 (-328) $) $ (-799 (-328)) (-797 (-328) $)) 97 (-12 (|has| |#3| (-795 (-328))) (|has| |#1| (-795 (-328)))) ELT) (((-797 (-483) $) $ (-799 (-483)) (-797 (-483) $)) 96 (-12 (|has| |#3| (-795 (-483))) (|has| |#1| (-795 (-483)))) ELT)) (-3770 (((-693) $ |#2|) 254 T ELT) (((-693) $) 253 T ELT)) (-1212 (((-85) $ $) 20 T ELT)) (-2409 (((-85) $) 44 T ELT)) (-2419 (((-693) $) 186 T ELT)) (-3083 (($ (-1083 |#1|) |#3|) 130 T ELT) (($ (-1083 $) |#3|) 129 T ELT)) (-2820 (((-582 $) $) 139 T ELT)) (-3935 (((-85) $) 169 T ELT)) (-2892 (($ |#1| |#4|) 170 T ELT) (($ $ |#3| (-693)) 132 T ELT) (($ $ (-582 |#3|) (-582 (-693))) 131 T ELT)) (-3761 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $ |#3|) 133 T ELT)) (-2819 ((|#4| $) 187 T ELT) (((-693) $ |#3|) 135 T ELT) (((-582 (-693)) $ (-582 |#3|)) 134 T ELT)) (-1623 (($ (-1 |#4| |#4|) $) 188 T ELT)) (-3956 (($ (-1 |#1| |#1|) $) 168 T ELT)) (-1521 (((-1 $ (-693)) |#2|) 256 T ELT) (((-1 $ (-693)) $) 243 (|has| |#1| (-190)) ELT)) (-3081 (((-3 |#3| #3="failed") $) 136 T ELT)) (-2279 (((-629 (-483)) (-1177 $)) 151 (|has| |#1| (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) 150 (|has| |#1| (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 |#1|)) (|:| |vec| (-1177 |#1|))) (-1177 $) $) 145 T ELT) (((-629 |#1|) (-1177 $)) 144 T ELT)) (-2893 (($ $) 166 T ELT)) (-3173 ((|#1| $) 165 T ELT)) (-1484 ((|#3| $) 246 T ELT)) (-1889 (($ (-582 $)) 107 (|has| |#1| (-390)) ELT) (($ $ $) 106 (|has| |#1| (-390)) ELT)) (-3241 (((-1071) $) 11 T ELT)) (-1485 (((-85) $) 247 T ELT)) (-2822 (((-3 (-582 $) #3#) $) 127 T ELT)) (-2821 (((-3 (-582 $) #3#) $) 128 T ELT)) (-2823 (((-3 (-2 (|:| |var| |#3|) (|:| -2400 (-693))) #3#) $) 126 T ELT)) (-1483 (($ $) 245 T ELT)) (-3242 (((-1032) $) 12 T ELT)) (-1795 (((-85) $) 183 T ELT)) (-1794 ((|#1| $) 184 T ELT)) (-2707 (((-1083 $) (-1083 $) (-1083 $)) 108 (|has| |#1| (-390)) ELT)) (-3143 (($ (-582 $)) 105 (|has| |#1| (-390)) ELT) (($ $ $) 104 (|has| |#1| (-390)) ELT)) (-2704 (((-346 (-1083 $)) (-1083 $)) 115 (|has| |#1| (-820)) ELT)) (-2705 (((-346 (-1083 $)) (-1083 $)) 114 (|has| |#1| (-820)) ELT)) (-3730 (((-346 $) $) 112 (|has| |#1| (-820)) ELT)) (-3464 (((-3 $ "failed") $ |#1|) 191 (|has| |#1| (-494)) ELT) (((-3 $ "failed") $ $) 99 (|has| |#1| (-494)) ELT)) (-3766 (($ $ (-582 (-249 $))) 162 T ELT) (($ $ (-249 $)) 161 T ELT) (($ $ $ $) 160 T ELT) (($ $ (-582 $) (-582 $)) 159 T ELT) (($ $ |#3| |#1|) 158 T ELT) (($ $ (-582 |#3|) (-582 |#1|)) 157 T ELT) (($ $ |#3| $) 156 T ELT) (($ $ (-582 |#3|) (-582 $)) 155 T ELT) (($ $ |#2| $) 242 (|has| |#1| (-190)) ELT) (($ $ (-582 |#2|) (-582 $)) 241 (|has| |#1| (-190)) ELT) (($ $ |#2| |#1|) 240 (|has| |#1| (-190)) ELT) (($ $ (-582 |#2|) (-582 |#1|)) 239 (|has| |#1| (-190)) ELT)) (-3755 (($ $ |#3|) 120 (|has| |#1| (-146)) ELT)) (-3756 (($ $ (-582 |#3|) (-582 (-693))) 52 T ELT) (($ $ |#3| (-693)) 51 T ELT) (($ $ (-582 |#3|)) 50 T ELT) (($ $ |#3|) 48 T ELT) (($ $ (-1 |#1| |#1|)) 263 T ELT) (($ $ (-1 |#1| |#1|) (-693)) 262 T ELT) (($ $) 238 (|has| |#1| (-189)) ELT) (($ $ (-693)) 236 (|has| |#1| (-189)) ELT) (($ $ (-1088)) 234 (|has| |#1| (-810 (-1088))) ELT) (($ $ (-582 (-1088))) 232 (|has| |#1| (-810 (-1088))) ELT) (($ $ (-1088) (-693)) 231 (|has| |#1| (-810 (-1088))) ELT) (($ $ (-582 (-1088)) (-582 (-693))) 230 (|has| |#1| (-810 (-1088))) ELT)) (-1487 (((-582 |#2|) $) 255 T ELT)) (-3946 ((|#4| $) 167 T ELT) (((-693) $ |#3|) 143 T ELT) (((-582 (-693)) $ (-582 |#3|)) 142 T ELT) (((-693) $ |#2|) 252 T ELT)) (-3970 (((-799 (-328)) $) 95 (-12 (|has| |#3| (-552 (-799 (-328)))) (|has| |#1| (-552 (-799 (-328))))) ELT) (((-799 (-483)) $) 94 (-12 (|has| |#3| (-552 (-799 (-483)))) (|has| |#1| (-552 (-799 (-483))))) ELT) (((-472) $) 93 (-12 (|has| |#3| (-552 (-472))) (|has| |#1| (-552 (-472)))) ELT)) (-2816 ((|#1| $) 192 (|has| |#1| (-390)) ELT) (($ $ |#3|) 119 (|has| |#1| (-390)) ELT)) (-2702 (((-3 (-1177 $) #1#) (-629 $)) 117 (-2561 (|has| $ (-118)) (|has| |#1| (-820))) ELT)) (-3944 (((-771) $) 13 T ELT) (($ (-483)) 41 T ELT) (($ |#1|) 182 T ELT) (($ |#3|) 152 T ELT) (($ |#2|) 257 T ELT) (($ (-348 (-483))) 91 (OR (|has| |#1| (-949 (-348 (-483)))) (|has| |#1| (-38 (-348 (-483))))) ELT) (($ $) 98 (|has| |#1| (-494)) ELT)) (-3815 (((-582 |#1|) $) 185 T ELT)) (-3675 ((|#1| $ |#4|) 172 T ELT) (($ $ |#3| (-693)) 141 T ELT) (($ $ (-582 |#3|) (-582 (-693))) 140 T ELT)) (-2701 (((-631 $) $) 92 (OR (-2561 (|has| $ (-118)) (|has| |#1| (-820))) (|has| |#1| (-118))) ELT)) (-3125 (((-693)) 40 T CONST)) (-1621 (($ $ $ (-693)) 190 (|has| |#1| (-146)) ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2061 (((-85) $ $) 102 (|has| |#1| (-494)) ELT)) (-3124 (((-85) $ $) 33 T ELT)) (-2659 (($) 24 T CONST)) (-2665 (($) 45 T CONST)) (-2668 (($ $ (-582 |#3|) (-582 (-693))) 55 T ELT) (($ $ |#3| (-693)) 54 T ELT) (($ $ (-582 |#3|)) 53 T ELT) (($ $ |#3|) 49 T ELT) (($ $ (-1 |#1| |#1|)) 261 T ELT) (($ $ (-1 |#1| |#1|) (-693)) 260 T ELT) (($ $) 237 (|has| |#1| (-189)) ELT) (($ $ (-693)) 235 (|has| |#1| (-189)) ELT) (($ $ (-1088)) 233 (|has| |#1| (-810 (-1088))) ELT) (($ $ (-582 (-1088))) 229 (|has| |#1| (-810 (-1088))) ELT) (($ $ (-1088) (-693)) 228 (|has| |#1| (-810 (-1088))) ELT) (($ $ (-582 (-1088)) (-582 (-693))) 227 (|has| |#1| (-810 (-1088))) ELT)) (-3055 (((-85) $ $) 8 T ELT)) (-3947 (($ $ |#1|) 173 (|has| |#1| (-312)) ELT)) (-3835 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3837 (($ $ $) 18 T ELT)) (** (($ $ (-829)) 35 T ELT) (($ $ (-693)) 43 T ELT)) (* (($ (-829) $) 17 T ELT) (($ (-693) $) 21 T ELT) (($ (-483) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-348 (-483))) 175 (|has| |#1| (-38 (-348 (-483)))) ELT) (($ (-348 (-483)) $) 174 (|has| |#1| (-38 (-348 (-483)))) ELT) (($ |#1| $) 164 T ELT) (($ $ |#1|) 163 T ELT))) -(((-213 |#1| |#2| |#3| |#4|) (-113) (-960) (-755) (-228 |t#2|) (-716)) (T -213)) -((-1521 (*1 *2 *3) (-12 (-4 *4 (-960)) (-4 *3 (-755)) (-4 *5 (-228 *3)) (-4 *6 (-716)) (-5 *2 (-1 *1 (-693))) (-4 *1 (-213 *4 *3 *5 *6)))) (-1487 (*1 *2 *1) (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-960)) (-4 *4 (-755)) (-4 *5 (-228 *4)) (-4 *6 (-716)) (-5 *2 (-582 *4)))) (-3770 (*1 *2 *1 *3) (-12 (-4 *1 (-213 *4 *3 *5 *6)) (-4 *4 (-960)) (-4 *3 (-755)) (-4 *5 (-228 *3)) (-4 *6 (-716)) (-5 *2 (-693)))) (-3770 (*1 *2 *1) (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-960)) (-4 *4 (-755)) (-4 *5 (-228 *4)) (-4 *6 (-716)) (-5 *2 (-693)))) (-3946 (*1 *2 *1 *3) (-12 (-4 *1 (-213 *4 *3 *5 *6)) (-4 *4 (-960)) (-4 *3 (-755)) (-4 *5 (-228 *3)) (-4 *6 (-716)) (-5 *2 (-693)))) (-1486 (*1 *2 *1) (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-960)) (-4 *4 (-755)) (-4 *5 (-228 *4)) (-4 *6 (-716)) (-5 *2 (-582 (-693))))) (-1520 (*1 *2 *1) (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-960)) (-4 *4 (-755)) (-4 *5 (-228 *4)) (-4 *6 (-716)) (-5 *2 (-693)))) (-1486 (*1 *2 *1 *3) (-12 (-4 *1 (-213 *4 *3 *5 *6)) (-4 *4 (-960)) (-4 *3 (-755)) (-4 *5 (-228 *3)) (-4 *6 (-716)) (-5 *2 (-582 (-693))))) (-1520 (*1 *2 *1 *3) (-12 (-4 *1 (-213 *4 *3 *5 *6)) (-4 *4 (-960)) (-4 *3 (-755)) (-4 *5 (-228 *3)) (-4 *6 (-716)) (-5 *2 (-693)))) (-1485 (*1 *2 *1) (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-960)) (-4 *4 (-755)) (-4 *5 (-228 *4)) (-4 *6 (-716)) (-5 *2 (-85)))) (-1484 (*1 *2 *1) (-12 (-4 *1 (-213 *3 *4 *2 *5)) (-4 *3 (-960)) (-4 *4 (-755)) (-4 *5 (-716)) (-4 *2 (-228 *4)))) (-1483 (*1 *1 *1) (-12 (-4 *1 (-213 *2 *3 *4 *5)) (-4 *2 (-960)) (-4 *3 (-755)) (-4 *4 (-228 *3)) (-4 *5 (-716)))) (-1482 (*1 *1 *1) (-12 (-4 *1 (-213 *2 *3 *4 *5)) (-4 *2 (-960)) (-4 *3 (-755)) (-4 *4 (-228 *3)) (-4 *5 (-716)))) (-1521 (*1 *2 *1) (-12 (-4 *3 (-190)) (-4 *3 (-960)) (-4 *4 (-755)) (-4 *5 (-228 *4)) (-4 *6 (-716)) (-5 *2 (-1 *1 (-693))) (-4 *1 (-213 *3 *4 *5 *6))))) -(-13 (-860 |t#1| |t#4| |t#3|) (-184 |t#1|) (-949 |t#2|) (-10 -8 (-15 -1521 ((-1 $ (-693)) |t#2|)) (-15 -1487 ((-582 |t#2|) $)) (-15 -3770 ((-693) $ |t#2|)) (-15 -3770 ((-693) $)) (-15 -3946 ((-693) $ |t#2|)) (-15 -1486 ((-582 (-693)) $)) (-15 -1520 ((-693) $)) (-15 -1486 ((-582 (-693)) $ |t#2|)) (-15 -1520 ((-693) $ |t#2|)) (-15 -1485 ((-85) $)) (-15 -1484 (|t#3| $)) (-15 -1483 ($ $)) (-15 -1482 ($ $)) (IF (|has| |t#1| (-190)) (PROGN (-6 (-454 |t#2| |t#1|)) (-6 (-454 |t#2| $)) (-6 (-260 $)) (-15 -1521 ((-1 $ (-693)) $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#4|) . T) ((-25) . T) ((-38 (-348 (-483))) |has| |#1| (-38 (-348 (-483)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) OR (|has| |#1| (-820)) (|has| |#1| (-494)) (|has| |#1| (-390))) ((-72) . T) ((-82 (-348 (-483)) (-348 (-483))) |has| |#1| (-38 (-348 (-483)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-820)) (|has| |#1| (-494)) (|has| |#1| (-390)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-554 (-348 (-483))) OR (|has| |#1| (-949 (-348 (-483)))) (|has| |#1| (-38 (-348 (-483))))) ((-554 (-483)) . T) ((-554 |#1|) . T) ((-554 |#2|) . T) ((-554 |#3|) . T) ((-554 $) OR (|has| |#1| (-820)) (|has| |#1| (-494)) (|has| |#1| (-390))) ((-551 (-771)) . T) ((-146) OR (|has| |#1| (-820)) (|has| |#1| (-494)) (|has| |#1| (-390)) (|has| |#1| (-146))) ((-552 (-472)) -12 (|has| |#1| (-552 (-472))) (|has| |#3| (-552 (-472)))) ((-552 (-799 (-328))) -12 (|has| |#1| (-552 (-799 (-328)))) (|has| |#3| (-552 (-799 (-328))))) ((-552 (-799 (-483))) -12 (|has| |#1| (-552 (-799 (-483)))) (|has| |#3| (-552 (-799 (-483))))) ((-186 $) OR (|has| |#1| (-189)) (|has| |#1| (-190))) ((-184 |#1|) . T) ((-190) |has| |#1| (-190)) ((-189) OR (|has| |#1| (-189)) (|has| |#1| (-190))) ((-225 |#1|) . T) ((-246) OR (|has| |#1| (-820)) (|has| |#1| (-494)) (|has| |#1| (-390))) ((-260 $) . T) ((-277 |#1| |#4|) . T) ((-327 |#1|) . T) ((-353 |#1|) . T) ((-390) OR (|has| |#1| (-820)) (|has| |#1| (-390))) ((-454 |#2| |#1|) |has| |#1| (-190)) ((-454 |#2| $) |has| |#1| (-190)) ((-454 |#3| |#1|) . T) ((-454 |#3| $) . T) ((-454 $ $) . T) ((-494) OR (|has| |#1| (-820)) (|has| |#1| (-494)) (|has| |#1| (-390))) ((-13) . T) ((-587 (-348 (-483))) |has| |#1| (-38 (-348 (-483)))) ((-587 (-483)) . T) ((-587 |#1|) . T) ((-587 $) . T) ((-589 (-348 (-483))) |has| |#1| (-38 (-348 (-483)))) ((-589 (-483)) |has| |#1| (-579 (-483))) ((-589 |#1|) . T) ((-589 $) . T) ((-581 (-348 (-483))) |has| |#1| (-38 (-348 (-483)))) ((-581 |#1|) |has| |#1| (-146)) ((-581 $) OR (|has| |#1| (-820)) (|has| |#1| (-494)) (|has| |#1| (-390))) ((-579 (-483)) |has| |#1| (-579 (-483))) ((-579 |#1|) . T) ((-653 (-348 (-483))) |has| |#1| (-38 (-348 (-483)))) ((-653 |#1|) |has| |#1| (-146)) ((-653 $) OR (|has| |#1| (-820)) (|has| |#1| (-494)) (|has| |#1| (-390))) ((-662) . T) ((-805 $ (-1088)) OR (|has| |#1| (-810 (-1088))) (|has| |#1| (-808 (-1088)))) ((-805 $ |#3|) . T) ((-808 (-1088)) |has| |#1| (-808 (-1088))) ((-808 |#3|) . T) ((-810 (-1088)) OR (|has| |#1| (-810 (-1088))) (|has| |#1| (-808 (-1088)))) ((-810 |#3|) . T) ((-795 (-328)) -12 (|has| |#1| (-795 (-328))) (|has| |#3| (-795 (-328)))) ((-795 (-483)) -12 (|has| |#1| (-795 (-483))) (|has| |#3| (-795 (-483)))) ((-860 |#1| |#4| |#3|) . T) ((-820) |has| |#1| (-820)) ((-949 (-348 (-483))) |has| |#1| (-949 (-348 (-483)))) ((-949 (-483)) |has| |#1| (-949 (-483))) ((-949 |#1|) . T) ((-949 |#2|) . T) ((-949 |#3|) . T) ((-962 (-348 (-483))) |has| |#1| (-38 (-348 (-483)))) ((-962 |#1|) . T) ((-962 $) OR (|has| |#1| (-820)) (|has| |#1| (-494)) (|has| |#1| (-390)) (|has| |#1| (-146))) ((-967 (-348 (-483))) |has| |#1| (-38 (-348 (-483)))) ((-967 |#1|) . T) ((-967 $) OR (|has| |#1| (-820)) (|has| |#1| (-494)) (|has| |#1| (-390)) (|has| |#1| (-146))) ((-960) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T) ((-1132) |has| |#1| (-820))) -((-2567 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-1493 ((|#1| $) 58 T ELT)) (-3322 ((|#1| $) 48 T ELT)) (-3722 (($) 7 T CONST)) (-3001 (($ $) 64 T ELT)) (-2296 (($ $) 52 T ELT)) (-3324 ((|#1| |#1| $) 50 T ELT)) (-3323 ((|#1| $) 49 T ELT)) (-2888 (((-582 |#1|) $) 30 (|has| $ (-6 -3993)) ELT)) (-2607 (((-582 |#1|) $) 29 (|has| $ (-6 -3993)) ELT)) (-3244 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3993))) ELT)) (-1947 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3994)) ELT)) (-3956 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3831 (((-693) $) 65 T ELT)) (-3241 (((-1071) $) 22 (|has| |#1| (-1012)) ELT)) (-1272 ((|#1| $) 43 T ELT)) (-1491 ((|#1| |#1| $) 56 T ELT)) (-1490 ((|#1| |#1| $) 55 T ELT)) (-3607 (($ |#1| $) 44 T ELT)) (-2602 (((-693) $) 59 T ELT)) (-3242 (((-1032) $) 21 (|has| |#1| (-1012)) ELT)) (-3000 ((|#1| $) 66 T ELT)) (-1489 ((|#1| $) 54 T ELT)) (-1488 ((|#1| $) 53 T ELT)) (-1273 ((|#1| $) 45 T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3993)) ELT)) (-3766 (($ $ (-582 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-582 |#1|) (-582 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT)) (-1220 (((-85) $ $) 11 T ELT)) (-3003 ((|#1| |#1| $) 62 T ELT)) (-3401 (((-85) $) 8 T ELT)) (-3563 (($) 9 T ELT)) (-3002 ((|#1| $) 63 T ELT)) (-1494 (($) 61 T ELT) (($ (-582 |#1|)) 60 T ELT)) (-3321 (((-693) $) 47 T ELT)) (-1944 (((-693) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3993)) ELT) (((-693) |#1| $) 28 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3993))) ELT)) (-3398 (($ $) 10 T ELT)) (-3944 (((-771) $) 17 (|has| |#1| (-551 (-771))) ELT)) (-1492 ((|#1| $) 57 T ELT)) (-1263 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1274 (($ (-582 |#1|)) 46 T ELT)) (-2999 ((|#1| $) 67 T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3993)) ELT)) (-3055 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3955 (((-693) $) 6 (|has| $ (-6 -3993)) ELT))) -(((-214 |#1|) (-113) (-1127)) (T -214)) -((-1494 (*1 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1127)))) (-1494 (*1 *1 *2) (-12 (-5 *2 (-582 *3)) (-4 *3 (-1127)) (-4 *1 (-214 *3)))) (-2602 (*1 *2 *1) (-12 (-4 *1 (-214 *3)) (-4 *3 (-1127)) (-5 *2 (-693)))) (-1493 (*1 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1127)))) (-1492 (*1 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1127)))) (-1491 (*1 *2 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1127)))) (-1490 (*1 *2 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1127)))) (-1489 (*1 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1127)))) (-1488 (*1 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1127)))) (-2296 (*1 *1 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1127))))) -(-13 (-1033 |t#1|) (-907 |t#1|) (-10 -8 (-15 -1494 ($)) (-15 -1494 ($ (-582 |t#1|))) (-15 -2602 ((-693) $)) (-15 -1493 (|t#1| $)) (-15 -1492 (|t#1| $)) (-15 -1491 (|t#1| |t#1| $)) (-15 -1490 (|t#1| |t#1| $)) (-15 -1489 (|t#1| $)) (-15 -1488 (|t#1| $)) (-15 -2296 ($ $)))) -(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1012)) (|has| |#1| (-72))) ((-551 (-771)) OR (|has| |#1| (-1012)) (|has| |#1| (-551 (-771)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ((-427 |#1|) . T) ((-454 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ((-13) . T) ((-907 |#1|) . T) ((-1012) |has| |#1| (-1012)) ((-1033 |#1|) . T) ((-1127) . T)) -((-1495 (((-1045 (-179)) (-791 |#1|) (-1003 (-328)) (-1003 (-328))) 75 T ELT) (((-1045 (-179)) (-791 |#1|) (-1003 (-328)) (-1003 (-328)) (-582 (-221))) 74 T ELT) (((-1045 (-179)) |#1| (-1003 (-328)) (-1003 (-328))) 65 T ELT) (((-1045 (-179)) |#1| (-1003 (-328)) (-1003 (-328)) (-582 (-221))) 64 T ELT) (((-1045 (-179)) (-788 |#1|) (-1003 (-328))) 56 T ELT) (((-1045 (-179)) (-788 |#1|) (-1003 (-328)) (-582 (-221))) 55 T ELT)) (-1502 (((-1181) (-791 |#1|) (-1003 (-328)) (-1003 (-328))) 78 T ELT) (((-1181) (-791 |#1|) (-1003 (-328)) (-1003 (-328)) (-582 (-221))) 77 T ELT) (((-1181) |#1| (-1003 (-328)) (-1003 (-328))) 68 T ELT) (((-1181) |#1| (-1003 (-328)) (-1003 (-328)) (-582 (-221))) 67 T ELT) (((-1181) (-788 |#1|) (-1003 (-328))) 60 T ELT) (((-1181) (-788 |#1|) (-1003 (-328)) (-582 (-221))) 59 T ELT) (((-1180) (-786 |#1|) (-1003 (-328))) 47 T ELT) (((-1180) (-786 |#1|) (-1003 (-328)) (-582 (-221))) 46 T ELT) (((-1180) |#1| (-1003 (-328))) 38 T ELT) (((-1180) |#1| (-1003 (-328)) (-582 (-221))) 36 T ELT))) -(((-215 |#1|) (-10 -7 (-15 -1502 ((-1180) |#1| (-1003 (-328)) (-582 (-221)))) (-15 -1502 ((-1180) |#1| (-1003 (-328)))) (-15 -1502 ((-1180) (-786 |#1|) (-1003 (-328)) (-582 (-221)))) (-15 -1502 ((-1180) (-786 |#1|) (-1003 (-328)))) (-15 -1502 ((-1181) (-788 |#1|) (-1003 (-328)) (-582 (-221)))) (-15 -1502 ((-1181) (-788 |#1|) (-1003 (-328)))) (-15 -1495 ((-1045 (-179)) (-788 |#1|) (-1003 (-328)) (-582 (-221)))) (-15 -1495 ((-1045 (-179)) (-788 |#1|) (-1003 (-328)))) (-15 -1502 ((-1181) |#1| (-1003 (-328)) (-1003 (-328)) (-582 (-221)))) (-15 -1502 ((-1181) |#1| (-1003 (-328)) (-1003 (-328)))) (-15 -1495 ((-1045 (-179)) |#1| (-1003 (-328)) (-1003 (-328)) (-582 (-221)))) (-15 -1495 ((-1045 (-179)) |#1| (-1003 (-328)) (-1003 (-328)))) (-15 -1502 ((-1181) (-791 |#1|) (-1003 (-328)) (-1003 (-328)) (-582 (-221)))) (-15 -1502 ((-1181) (-791 |#1|) (-1003 (-328)) (-1003 (-328)))) (-15 -1495 ((-1045 (-179)) (-791 |#1|) (-1003 (-328)) (-1003 (-328)) (-582 (-221)))) (-15 -1495 ((-1045 (-179)) (-791 |#1|) (-1003 (-328)) (-1003 (-328))))) (-13 (-552 (-472)) (-1012))) (T -215)) -((-1495 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-791 *5)) (-5 *4 (-1003 (-328))) (-4 *5 (-13 (-552 (-472)) (-1012))) (-5 *2 (-1045 (-179))) (-5 *1 (-215 *5)))) (-1495 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-791 *6)) (-5 *4 (-1003 (-328))) (-5 *5 (-582 (-221))) (-4 *6 (-13 (-552 (-472)) (-1012))) (-5 *2 (-1045 (-179))) (-5 *1 (-215 *6)))) (-1502 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-791 *5)) (-5 *4 (-1003 (-328))) (-4 *5 (-13 (-552 (-472)) (-1012))) (-5 *2 (-1181)) (-5 *1 (-215 *5)))) (-1502 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-791 *6)) (-5 *4 (-1003 (-328))) (-5 *5 (-582 (-221))) (-4 *6 (-13 (-552 (-472)) (-1012))) (-5 *2 (-1181)) (-5 *1 (-215 *6)))) (-1495 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1003 (-328))) (-5 *2 (-1045 (-179))) (-5 *1 (-215 *3)) (-4 *3 (-13 (-552 (-472)) (-1012))))) (-1495 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1003 (-328))) (-5 *5 (-582 (-221))) (-5 *2 (-1045 (-179))) (-5 *1 (-215 *3)) (-4 *3 (-13 (-552 (-472)) (-1012))))) (-1502 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1003 (-328))) (-5 *2 (-1181)) (-5 *1 (-215 *3)) (-4 *3 (-13 (-552 (-472)) (-1012))))) (-1502 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1003 (-328))) (-5 *5 (-582 (-221))) (-5 *2 (-1181)) (-5 *1 (-215 *3)) (-4 *3 (-13 (-552 (-472)) (-1012))))) (-1495 (*1 *2 *3 *4) (-12 (-5 *3 (-788 *5)) (-5 *4 (-1003 (-328))) (-4 *5 (-13 (-552 (-472)) (-1012))) (-5 *2 (-1045 (-179))) (-5 *1 (-215 *5)))) (-1495 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-788 *6)) (-5 *4 (-1003 (-328))) (-5 *5 (-582 (-221))) (-4 *6 (-13 (-552 (-472)) (-1012))) (-5 *2 (-1045 (-179))) (-5 *1 (-215 *6)))) (-1502 (*1 *2 *3 *4) (-12 (-5 *3 (-788 *5)) (-5 *4 (-1003 (-328))) (-4 *5 (-13 (-552 (-472)) (-1012))) (-5 *2 (-1181)) (-5 *1 (-215 *5)))) (-1502 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-788 *6)) (-5 *4 (-1003 (-328))) (-5 *5 (-582 (-221))) (-4 *6 (-13 (-552 (-472)) (-1012))) (-5 *2 (-1181)) (-5 *1 (-215 *6)))) (-1502 (*1 *2 *3 *4) (-12 (-5 *3 (-786 *5)) (-5 *4 (-1003 (-328))) (-4 *5 (-13 (-552 (-472)) (-1012))) (-5 *2 (-1180)) (-5 *1 (-215 *5)))) (-1502 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-786 *6)) (-5 *4 (-1003 (-328))) (-5 *5 (-582 (-221))) (-4 *6 (-13 (-552 (-472)) (-1012))) (-5 *2 (-1180)) (-5 *1 (-215 *6)))) (-1502 (*1 *2 *3 *4) (-12 (-5 *4 (-1003 (-328))) (-5 *2 (-1180)) (-5 *1 (-215 *3)) (-4 *3 (-13 (-552 (-472)) (-1012))))) (-1502 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1003 (-328))) (-5 *5 (-582 (-221))) (-5 *2 (-1180)) (-5 *1 (-215 *3)) (-4 *3 (-13 (-552 (-472)) (-1012)))))) -((-1496 (((-1 (-853 (-179)) (-179) (-179)) (-1 (-853 (-179)) (-179) (-179)) (-1 (-179) (-179) (-179) (-179))) 158 T ELT)) (-1495 (((-1045 (-179)) (-791 (-1 (-179) (-179) (-179))) (-1000 (-328)) (-1000 (-328))) 178 T ELT) (((-1045 (-179)) (-791 (-1 (-179) (-179) (-179))) (-1000 (-328)) (-1000 (-328)) (-582 (-221))) 176 T ELT) (((-1045 (-179)) (-1 (-853 (-179)) (-179) (-179)) (-1000 (-328)) (-1000 (-328))) 181 T ELT) (((-1045 (-179)) (-1 (-853 (-179)) (-179) (-179)) (-1000 (-328)) (-1000 (-328)) (-582 (-221))) 177 T ELT) (((-1045 (-179)) (-1 (-179) (-179) (-179)) (-1000 (-328)) (-1000 (-328))) 169 T ELT) (((-1045 (-179)) (-1 (-179) (-179) (-179)) (-1000 (-328)) (-1000 (-328)) (-582 (-221))) 168 T ELT) (((-1045 (-179)) (-1 (-853 (-179)) (-179)) (-1000 (-328))) 150 T ELT) (((-1045 (-179)) (-1 (-853 (-179)) (-179)) (-1000 (-328)) (-582 (-221))) 148 T ELT) (((-1045 (-179)) (-788 (-1 (-179) (-179))) (-1000 (-328))) 149 T ELT) (((-1045 (-179)) (-788 (-1 (-179) (-179))) (-1000 (-328)) (-582 (-221))) 146 T ELT)) (-1502 (((-1181) (-791 (-1 (-179) (-179) (-179))) (-1000 (-328)) (-1000 (-328))) 180 T ELT) (((-1181) (-791 (-1 (-179) (-179) (-179))) (-1000 (-328)) (-1000 (-328)) (-582 (-221))) 179 T ELT) (((-1181) (-1 (-853 (-179)) (-179) (-179)) (-1000 (-328)) (-1000 (-328))) 183 T ELT) (((-1181) (-1 (-853 (-179)) (-179) (-179)) (-1000 (-328)) (-1000 (-328)) (-582 (-221))) 182 T ELT) (((-1181) (-1 (-179) (-179) (-179)) (-1000 (-328)) (-1000 (-328))) 171 T ELT) (((-1181) (-1 (-179) (-179) (-179)) (-1000 (-328)) (-1000 (-328)) (-582 (-221))) 170 T ELT) (((-1181) (-1 (-853 (-179)) (-179)) (-1000 (-328))) 156 T ELT) (((-1181) (-1 (-853 (-179)) (-179)) (-1000 (-328)) (-582 (-221))) 155 T ELT) (((-1181) (-788 (-1 (-179) (-179))) (-1000 (-328))) 154 T ELT) (((-1181) (-788 (-1 (-179) (-179))) (-1000 (-328)) (-582 (-221))) 153 T ELT) (((-1180) (-786 (-1 (-179) (-179))) (-1000 (-328))) 118 T ELT) (((-1180) (-786 (-1 (-179) (-179))) (-1000 (-328)) (-582 (-221))) 117 T ELT) (((-1180) (-1 (-179) (-179)) (-1000 (-328))) 112 T ELT) (((-1180) (-1 (-179) (-179)) (-1000 (-328)) (-582 (-221))) 110 T ELT))) -(((-216) (-10 -7 (-15 -1502 ((-1180) (-1 (-179) (-179)) (-1000 (-328)) (-582 (-221)))) (-15 -1502 ((-1180) (-1 (-179) (-179)) (-1000 (-328)))) (-15 -1502 ((-1180) (-786 (-1 (-179) (-179))) (-1000 (-328)) (-582 (-221)))) (-15 -1502 ((-1180) (-786 (-1 (-179) (-179))) (-1000 (-328)))) (-15 -1502 ((-1181) (-788 (-1 (-179) (-179))) (-1000 (-328)) (-582 (-221)))) (-15 -1502 ((-1181) (-788 (-1 (-179) (-179))) (-1000 (-328)))) (-15 -1502 ((-1181) (-1 (-853 (-179)) (-179)) (-1000 (-328)) (-582 (-221)))) (-15 -1502 ((-1181) (-1 (-853 (-179)) (-179)) (-1000 (-328)))) (-15 -1495 ((-1045 (-179)) (-788 (-1 (-179) (-179))) (-1000 (-328)) (-582 (-221)))) (-15 -1495 ((-1045 (-179)) (-788 (-1 (-179) (-179))) (-1000 (-328)))) (-15 -1495 ((-1045 (-179)) (-1 (-853 (-179)) (-179)) (-1000 (-328)) (-582 (-221)))) (-15 -1495 ((-1045 (-179)) (-1 (-853 (-179)) (-179)) (-1000 (-328)))) (-15 -1502 ((-1181) (-1 (-179) (-179) (-179)) (-1000 (-328)) (-1000 (-328)) (-582 (-221)))) (-15 -1502 ((-1181) (-1 (-179) (-179) (-179)) (-1000 (-328)) (-1000 (-328)))) (-15 -1495 ((-1045 (-179)) (-1 (-179) (-179) (-179)) (-1000 (-328)) (-1000 (-328)) (-582 (-221)))) (-15 -1495 ((-1045 (-179)) (-1 (-179) (-179) (-179)) (-1000 (-328)) (-1000 (-328)))) (-15 -1502 ((-1181) (-1 (-853 (-179)) (-179) (-179)) (-1000 (-328)) (-1000 (-328)) (-582 (-221)))) (-15 -1502 ((-1181) (-1 (-853 (-179)) (-179) (-179)) (-1000 (-328)) (-1000 (-328)))) (-15 -1495 ((-1045 (-179)) (-1 (-853 (-179)) (-179) (-179)) (-1000 (-328)) (-1000 (-328)) (-582 (-221)))) (-15 -1495 ((-1045 (-179)) (-1 (-853 (-179)) (-179) (-179)) (-1000 (-328)) (-1000 (-328)))) (-15 -1502 ((-1181) (-791 (-1 (-179) (-179) (-179))) (-1000 (-328)) (-1000 (-328)) (-582 (-221)))) (-15 -1502 ((-1181) (-791 (-1 (-179) (-179) (-179))) (-1000 (-328)) (-1000 (-328)))) (-15 -1495 ((-1045 (-179)) (-791 (-1 (-179) (-179) (-179))) (-1000 (-328)) (-1000 (-328)) (-582 (-221)))) (-15 -1495 ((-1045 (-179)) (-791 (-1 (-179) (-179) (-179))) (-1000 (-328)) (-1000 (-328)))) (-15 -1496 ((-1 (-853 (-179)) (-179) (-179)) (-1 (-853 (-179)) (-179) (-179)) (-1 (-179) (-179) (-179) (-179)))))) (T -216)) -((-1496 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-853 (-179)) (-179) (-179))) (-5 *3 (-1 (-179) (-179) (-179) (-179))) (-5 *1 (-216)))) (-1495 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-791 (-1 (-179) (-179) (-179)))) (-5 *4 (-1000 (-328))) (-5 *2 (-1045 (-179))) (-5 *1 (-216)))) (-1495 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-791 (-1 (-179) (-179) (-179)))) (-5 *4 (-1000 (-328))) (-5 *5 (-582 (-221))) (-5 *2 (-1045 (-179))) (-5 *1 (-216)))) (-1502 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-791 (-1 (-179) (-179) (-179)))) (-5 *4 (-1000 (-328))) (-5 *2 (-1181)) (-5 *1 (-216)))) (-1502 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-791 (-1 (-179) (-179) (-179)))) (-5 *4 (-1000 (-328))) (-5 *5 (-582 (-221))) (-5 *2 (-1181)) (-5 *1 (-216)))) (-1495 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-853 (-179)) (-179) (-179))) (-5 *4 (-1000 (-328))) (-5 *2 (-1045 (-179))) (-5 *1 (-216)))) (-1495 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-853 (-179)) (-179) (-179))) (-5 *4 (-1000 (-328))) (-5 *5 (-582 (-221))) (-5 *2 (-1045 (-179))) (-5 *1 (-216)))) (-1502 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-853 (-179)) (-179) (-179))) (-5 *4 (-1000 (-328))) (-5 *2 (-1181)) (-5 *1 (-216)))) (-1502 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-853 (-179)) (-179) (-179))) (-5 *4 (-1000 (-328))) (-5 *5 (-582 (-221))) (-5 *2 (-1181)) (-5 *1 (-216)))) (-1495 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1000 (-328))) (-5 *2 (-1045 (-179))) (-5 *1 (-216)))) (-1495 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1000 (-328))) (-5 *5 (-582 (-221))) (-5 *2 (-1045 (-179))) (-5 *1 (-216)))) (-1502 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1000 (-328))) (-5 *2 (-1181)) (-5 *1 (-216)))) (-1502 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1000 (-328))) (-5 *5 (-582 (-221))) (-5 *2 (-1181)) (-5 *1 (-216)))) (-1495 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-853 (-179)) (-179))) (-5 *4 (-1000 (-328))) (-5 *2 (-1045 (-179))) (-5 *1 (-216)))) (-1495 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-853 (-179)) (-179))) (-5 *4 (-1000 (-328))) (-5 *5 (-582 (-221))) (-5 *2 (-1045 (-179))) (-5 *1 (-216)))) (-1495 (*1 *2 *3 *4) (-12 (-5 *3 (-788 (-1 (-179) (-179)))) (-5 *4 (-1000 (-328))) (-5 *2 (-1045 (-179))) (-5 *1 (-216)))) (-1495 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-788 (-1 (-179) (-179)))) (-5 *4 (-1000 (-328))) (-5 *5 (-582 (-221))) (-5 *2 (-1045 (-179))) (-5 *1 (-216)))) (-1502 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-853 (-179)) (-179))) (-5 *4 (-1000 (-328))) (-5 *2 (-1181)) (-5 *1 (-216)))) (-1502 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-853 (-179)) (-179))) (-5 *4 (-1000 (-328))) (-5 *5 (-582 (-221))) (-5 *2 (-1181)) (-5 *1 (-216)))) (-1502 (*1 *2 *3 *4) (-12 (-5 *3 (-788 (-1 (-179) (-179)))) (-5 *4 (-1000 (-328))) (-5 *2 (-1181)) (-5 *1 (-216)))) (-1502 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-788 (-1 (-179) (-179)))) (-5 *4 (-1000 (-328))) (-5 *5 (-582 (-221))) (-5 *2 (-1181)) (-5 *1 (-216)))) (-1502 (*1 *2 *3 *4) (-12 (-5 *3 (-786 (-1 (-179) (-179)))) (-5 *4 (-1000 (-328))) (-5 *2 (-1180)) (-5 *1 (-216)))) (-1502 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-786 (-1 (-179) (-179)))) (-5 *4 (-1000 (-328))) (-5 *5 (-582 (-221))) (-5 *2 (-1180)) (-5 *1 (-216)))) (-1502 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-179) (-179))) (-5 *4 (-1000 (-328))) (-5 *2 (-1180)) (-5 *1 (-216)))) (-1502 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-179) (-179))) (-5 *4 (-1000 (-328))) (-5 *5 (-582 (-221))) (-5 *2 (-1180)) (-5 *1 (-216))))) -((-1502 (((-1180) (-249 |#2|) (-1088) (-1088) (-582 (-221))) 102 T ELT))) -(((-217 |#1| |#2|) (-10 -7 (-15 -1502 ((-1180) (-249 |#2|) (-1088) (-1088) (-582 (-221))))) (-13 (-494) (-755) (-949 (-483))) (-362 |#1|)) (T -217)) -((-1502 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-249 *7)) (-5 *4 (-1088)) (-5 *5 (-582 (-221))) (-4 *7 (-362 *6)) (-4 *6 (-13 (-494) (-755) (-949 (-483)))) (-5 *2 (-1180)) (-5 *1 (-217 *6 *7))))) -((-1499 (((-483) (-483)) 71 T ELT)) (-1500 (((-483) (-483)) 72 T ELT)) (-1501 (((-179) (-179)) 73 T ELT)) (-1498 (((-1181) (-1 (-142 (-179)) (-142 (-179))) (-1000 (-179)) (-1000 (-179))) 70 T ELT)) (-1497 (((-1181) (-1 (-142 (-179)) (-142 (-179))) (-1000 (-179)) (-1000 (-179)) (-85)) 68 T ELT))) -(((-218) (-10 -7 (-15 -1497 ((-1181) (-1 (-142 (-179)) (-142 (-179))) (-1000 (-179)) (-1000 (-179)) (-85))) (-15 -1498 ((-1181) (-1 (-142 (-179)) (-142 (-179))) (-1000 (-179)) (-1000 (-179)))) (-15 -1499 ((-483) (-483))) (-15 -1500 ((-483) (-483))) (-15 -1501 ((-179) (-179))))) (T -218)) -((-1501 (*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-218)))) (-1500 (*1 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-218)))) (-1499 (*1 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-218)))) (-1498 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-142 (-179)) (-142 (-179)))) (-5 *4 (-1000 (-179))) (-5 *2 (-1181)) (-5 *1 (-218)))) (-1497 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-142 (-179)) (-142 (-179)))) (-5 *4 (-1000 (-179))) (-5 *5 (-85)) (-5 *2 (-1181)) (-5 *1 (-218))))) -((-3944 (((-1003 (-328)) (-1003 (-265 |#1|))) 16 T ELT))) -(((-219 |#1|) (-10 -7 (-15 -3944 ((-1003 (-328)) (-1003 (-265 |#1|))))) (-13 (-755) (-494) (-552 (-328)))) (T -219)) -((-3944 (*1 *2 *3) (-12 (-5 *3 (-1003 (-265 *4))) (-4 *4 (-13 (-755) (-494) (-552 (-328)))) (-5 *2 (-1003 (-328))) (-5 *1 (-219 *4))))) -((-1502 (((-1181) (-582 (-179)) (-582 (-179)) (-582 (-179)) (-582 (-221))) 23 T ELT) (((-1181) (-582 (-179)) (-582 (-179)) (-582 (-179))) 24 T ELT) (((-1180) (-582 (-853 (-179))) (-582 (-221))) 16 T ELT) (((-1180) (-582 (-853 (-179)))) 17 T ELT) (((-1180) (-582 (-179)) (-582 (-179)) (-582 (-221))) 20 T ELT) (((-1180) (-582 (-179)) (-582 (-179))) 21 T ELT))) -(((-220) (-10 -7 (-15 -1502 ((-1180) (-582 (-179)) (-582 (-179)))) (-15 -1502 ((-1180) (-582 (-179)) (-582 (-179)) (-582 (-221)))) (-15 -1502 ((-1180) (-582 (-853 (-179))))) (-15 -1502 ((-1180) (-582 (-853 (-179))) (-582 (-221)))) (-15 -1502 ((-1181) (-582 (-179)) (-582 (-179)) (-582 (-179)))) (-15 -1502 ((-1181) (-582 (-179)) (-582 (-179)) (-582 (-179)) (-582 (-221)))))) (T -220)) -((-1502 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-582 (-179))) (-5 *4 (-582 (-221))) (-5 *2 (-1181)) (-5 *1 (-220)))) (-1502 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-582 (-179))) (-5 *2 (-1181)) (-5 *1 (-220)))) (-1502 (*1 *2 *3 *4) (-12 (-5 *3 (-582 (-853 (-179)))) (-5 *4 (-582 (-221))) (-5 *2 (-1180)) (-5 *1 (-220)))) (-1502 (*1 *2 *3) (-12 (-5 *3 (-582 (-853 (-179)))) (-5 *2 (-1180)) (-5 *1 (-220)))) (-1502 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-582 (-179))) (-5 *4 (-582 (-221))) (-5 *2 (-1180)) (-5 *1 (-220)))) (-1502 (*1 *2 *3 *3) (-12 (-5 *3 (-582 (-179))) (-5 *2 (-1180)) (-5 *1 (-220))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3879 (($ (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3845 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) 24 T ELT)) (-1515 (($ (-829)) 81 T ELT)) (-1514 (($ (-829)) 80 T ELT)) (-1770 (($ (-582 (-328))) 87 T ELT)) (-1518 (($ (-328)) 66 T ELT)) (-1517 (($ (-829)) 82 T ELT)) (-1511 (($ (-85)) 33 T ELT)) (-3881 (($ (-1071)) 28 T ELT)) (-1510 (($ (-1071)) 29 T ELT)) (-1516 (($ (-1045 (-179))) 76 T ELT)) (-1926 (($ (-582 (-1000 (-328)))) 72 T ELT)) (-1504 (($ (-582 (-1000 (-328)))) 68 T ELT) (($ (-582 (-1000 (-348 (-483))))) 71 T ELT)) (-1507 (($ (-328)) 38 T ELT) (($ (-782)) 42 T ELT)) (-1503 (((-85) (-582 $) (-1088)) 100 T ELT)) (-1519 (((-3 (-51) "failed") (-582 $) (-1088)) 102 T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-1506 (($ (-328)) 43 T ELT) (($ (-782)) 44 T ELT)) (-3223 (($ (-1 (-853 (-179)) (-853 (-179)))) 65 T ELT)) (-2265 (($ (-1 (-853 (-179)) (-853 (-179)))) 83 T ELT)) (-1505 (($ (-1 (-179) (-179))) 48 T ELT) (($ (-1 (-179) (-179) (-179))) 52 T ELT) (($ (-1 (-179) (-179) (-179) (-179))) 56 T ELT)) (-3944 (((-771) $) 93 T ELT)) (-1508 (($ (-85)) 34 T ELT) (($ (-582 (-1000 (-328)))) 60 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-1921 (($ (-85)) 35 T ELT)) (-3055 (((-85) $ $) 97 T ELT))) -(((-221) (-13 (-1012) (-10 -8 (-15 -1921 ($ (-85))) (-15 -1508 ($ (-85))) (-15 -3879 ($ (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3845 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179))))) (-15 -3881 ($ (-1071))) (-15 -1510 ($ (-1071))) (-15 -1511 ($ (-85))) (-15 -1508 ($ (-582 (-1000 (-328))))) (-15 -3223 ($ (-1 (-853 (-179)) (-853 (-179))))) (-15 -1507 ($ (-328))) (-15 -1507 ($ (-782))) (-15 -1506 ($ (-328))) (-15 -1506 ($ (-782))) (-15 -1505 ($ (-1 (-179) (-179)))) (-15 -1505 ($ (-1 (-179) (-179) (-179)))) (-15 -1505 ($ (-1 (-179) (-179) (-179) (-179)))) (-15 -1518 ($ (-328))) (-15 -1504 ($ (-582 (-1000 (-328))))) (-15 -1504 ($ (-582 (-1000 (-348 (-483)))))) (-15 -1926 ($ (-582 (-1000 (-328))))) (-15 -1516 ($ (-1045 (-179)))) (-15 -1514 ($ (-829))) (-15 -1515 ($ (-829))) (-15 -1517 ($ (-829))) (-15 -2265 ($ (-1 (-853 (-179)) (-853 (-179))))) (-15 -1770 ($ (-582 (-328)))) (-15 -1519 ((-3 (-51) "failed") (-582 $) (-1088))) (-15 -1503 ((-85) (-582 $) (-1088)))))) (T -221)) -((-1921 (*1 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-221)))) (-1508 (*1 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-221)))) (-3879 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3845 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) (-5 *1 (-221)))) (-3881 (*1 *1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-221)))) (-1510 (*1 *1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-221)))) (-1511 (*1 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-221)))) (-1508 (*1 *1 *2) (-12 (-5 *2 (-582 (-1000 (-328)))) (-5 *1 (-221)))) (-3223 (*1 *1 *2) (-12 (-5 *2 (-1 (-853 (-179)) (-853 (-179)))) (-5 *1 (-221)))) (-1507 (*1 *1 *2) (-12 (-5 *2 (-328)) (-5 *1 (-221)))) (-1507 (*1 *1 *2) (-12 (-5 *2 (-782)) (-5 *1 (-221)))) (-1506 (*1 *1 *2) (-12 (-5 *2 (-328)) (-5 *1 (-221)))) (-1506 (*1 *1 *2) (-12 (-5 *2 (-782)) (-5 *1 (-221)))) (-1505 (*1 *1 *2) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *1 (-221)))) (-1505 (*1 *1 *2) (-12 (-5 *2 (-1 (-179) (-179) (-179))) (-5 *1 (-221)))) (-1505 (*1 *1 *2) (-12 (-5 *2 (-1 (-179) (-179) (-179) (-179))) (-5 *1 (-221)))) (-1518 (*1 *1 *2) (-12 (-5 *2 (-328)) (-5 *1 (-221)))) (-1504 (*1 *1 *2) (-12 (-5 *2 (-582 (-1000 (-328)))) (-5 *1 (-221)))) (-1504 (*1 *1 *2) (-12 (-5 *2 (-582 (-1000 (-348 (-483))))) (-5 *1 (-221)))) (-1926 (*1 *1 *2) (-12 (-5 *2 (-582 (-1000 (-328)))) (-5 *1 (-221)))) (-1516 (*1 *1 *2) (-12 (-5 *2 (-1045 (-179))) (-5 *1 (-221)))) (-1514 (*1 *1 *2) (-12 (-5 *2 (-829)) (-5 *1 (-221)))) (-1515 (*1 *1 *2) (-12 (-5 *2 (-829)) (-5 *1 (-221)))) (-1517 (*1 *1 *2) (-12 (-5 *2 (-829)) (-5 *1 (-221)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-1 (-853 (-179)) (-853 (-179)))) (-5 *1 (-221)))) (-1770 (*1 *1 *2) (-12 (-5 *2 (-582 (-328))) (-5 *1 (-221)))) (-1519 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-582 (-221))) (-5 *4 (-1088)) (-5 *2 (-51)) (-5 *1 (-221)))) (-1503 (*1 *2 *3 *4) (-12 (-5 *3 (-582 (-221))) (-5 *4 (-1088)) (-5 *2 (-85)) (-5 *1 (-221))))) -((-3879 (((-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3845 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179))) (-582 (-221)) (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3845 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) 25 T ELT)) (-1515 (((-829) (-582 (-221)) (-829)) 52 T ELT)) (-1514 (((-829) (-582 (-221)) (-829)) 51 T ELT)) (-3849 (((-582 (-328)) (-582 (-221)) (-582 (-328))) 68 T ELT)) (-1518 (((-328) (-582 (-221)) (-328)) 57 T ELT)) (-1517 (((-829) (-582 (-221)) (-829)) 53 T ELT)) (-1511 (((-85) (-582 (-221)) (-85)) 27 T ELT)) (-3881 (((-1071) (-582 (-221)) (-1071)) 19 T ELT)) (-1510 (((-1071) (-582 (-221)) (-1071)) 26 T ELT)) (-1516 (((-1045 (-179)) (-582 (-221))) 46 T ELT)) (-1926 (((-582 (-1000 (-328))) (-582 (-221)) (-582 (-1000 (-328)))) 40 T ELT)) (-1512 (((-782) (-582 (-221)) (-782)) 32 T ELT)) (-1513 (((-782) (-582 (-221)) (-782)) 33 T ELT)) (-2265 (((-1 (-853 (-179)) (-853 (-179))) (-582 (-221)) (-1 (-853 (-179)) (-853 (-179)))) 63 T ELT)) (-1509 (((-85) (-582 (-221)) (-85)) 14 T ELT)) (-1921 (((-85) (-582 (-221)) (-85)) 13 T ELT))) -(((-222) (-10 -7 (-15 -1921 ((-85) (-582 (-221)) (-85))) (-15 -1509 ((-85) (-582 (-221)) (-85))) (-15 -3879 ((-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3845 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179))) (-582 (-221)) (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3845 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179))))) (-15 -3881 ((-1071) (-582 (-221)) (-1071))) (-15 -1510 ((-1071) (-582 (-221)) (-1071))) (-15 -1511 ((-85) (-582 (-221)) (-85))) (-15 -1512 ((-782) (-582 (-221)) (-782))) (-15 -1513 ((-782) (-582 (-221)) (-782))) (-15 -1926 ((-582 (-1000 (-328))) (-582 (-221)) (-582 (-1000 (-328))))) (-15 -1514 ((-829) (-582 (-221)) (-829))) (-15 -1515 ((-829) (-582 (-221)) (-829))) (-15 -1516 ((-1045 (-179)) (-582 (-221)))) (-15 -1517 ((-829) (-582 (-221)) (-829))) (-15 -1518 ((-328) (-582 (-221)) (-328))) (-15 -2265 ((-1 (-853 (-179)) (-853 (-179))) (-582 (-221)) (-1 (-853 (-179)) (-853 (-179))))) (-15 -3849 ((-582 (-328)) (-582 (-221)) (-582 (-328)))))) (T -222)) -((-3849 (*1 *2 *3 *2) (-12 (-5 *2 (-582 (-328))) (-5 *3 (-582 (-221))) (-5 *1 (-222)))) (-2265 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-853 (-179)) (-853 (-179)))) (-5 *3 (-582 (-221))) (-5 *1 (-222)))) (-1518 (*1 *2 *3 *2) (-12 (-5 *2 (-328)) (-5 *3 (-582 (-221))) (-5 *1 (-222)))) (-1517 (*1 *2 *3 *2) (-12 (-5 *2 (-829)) (-5 *3 (-582 (-221))) (-5 *1 (-222)))) (-1516 (*1 *2 *3) (-12 (-5 *3 (-582 (-221))) (-5 *2 (-1045 (-179))) (-5 *1 (-222)))) (-1515 (*1 *2 *3 *2) (-12 (-5 *2 (-829)) (-5 *3 (-582 (-221))) (-5 *1 (-222)))) (-1514 (*1 *2 *3 *2) (-12 (-5 *2 (-829)) (-5 *3 (-582 (-221))) (-5 *1 (-222)))) (-1926 (*1 *2 *3 *2) (-12 (-5 *2 (-582 (-1000 (-328)))) (-5 *3 (-582 (-221))) (-5 *1 (-222)))) (-1513 (*1 *2 *3 *2) (-12 (-5 *2 (-782)) (-5 *3 (-582 (-221))) (-5 *1 (-222)))) (-1512 (*1 *2 *3 *2) (-12 (-5 *2 (-782)) (-5 *3 (-582 (-221))) (-5 *1 (-222)))) (-1511 (*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *3 (-582 (-221))) (-5 *1 (-222)))) (-1510 (*1 *2 *3 *2) (-12 (-5 *2 (-1071)) (-5 *3 (-582 (-221))) (-5 *1 (-222)))) (-3881 (*1 *2 *3 *2) (-12 (-5 *2 (-1071)) (-5 *3 (-582 (-221))) (-5 *1 (-222)))) (-3879 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3845 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) (-5 *3 (-582 (-221))) (-5 *1 (-222)))) (-1509 (*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *3 (-582 (-221))) (-5 *1 (-222)))) (-1921 (*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *3 (-582 (-221))) (-5 *1 (-222))))) -((-1519 (((-3 |#1| "failed") (-582 (-221)) (-1088)) 17 T ELT))) -(((-223 |#1|) (-10 -7 (-15 -1519 ((-3 |#1| "failed") (-582 (-221)) (-1088)))) (-1127)) (T -223)) -((-1519 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-582 (-221))) (-5 *4 (-1088)) (-5 *1 (-223 *2)) (-4 *2 (-1127))))) -((-3756 (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-693)) 11 T ELT) (($ $ (-582 (-1088)) (-582 (-693))) NIL T ELT) (($ $ (-1088) (-693)) NIL T ELT) (($ $ (-582 (-1088))) NIL T ELT) (($ $ (-1088)) 19 T ELT) (($ $ (-693)) NIL T ELT) (($ $) 16 T ELT)) (-2668 (($ $ (-1 |#2| |#2|)) 12 T ELT) (($ $ (-1 |#2| |#2|) (-693)) 14 T ELT) (($ $ (-582 (-1088)) (-582 (-693))) NIL T ELT) (($ $ (-1088) (-693)) NIL T ELT) (($ $ (-582 (-1088))) NIL T ELT) (($ $ (-1088)) NIL T ELT) (($ $ (-693)) NIL T ELT) (($ $) NIL T ELT))) -(((-224 |#1| |#2|) (-10 -7 (-15 -3756 (|#1| |#1|)) (-15 -2668 (|#1| |#1|)) (-15 -3756 (|#1| |#1| (-693))) (-15 -2668 (|#1| |#1| (-693))) (-15 -3756 (|#1| |#1| (-1088))) (-15 -2668 (|#1| |#1| (-1088))) (-15 -3756 (|#1| |#1| (-582 (-1088)))) (-15 -3756 (|#1| |#1| (-1088) (-693))) (-15 -3756 (|#1| |#1| (-582 (-1088)) (-582 (-693)))) (-15 -2668 (|#1| |#1| (-582 (-1088)))) (-15 -2668 (|#1| |#1| (-1088) (-693))) (-15 -2668 (|#1| |#1| (-582 (-1088)) (-582 (-693)))) (-15 -2668 (|#1| |#1| (-1 |#2| |#2|) (-693))) (-15 -2668 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3756 (|#1| |#1| (-1 |#2| |#2|) (-693))) (-15 -3756 (|#1| |#1| (-1 |#2| |#2|)))) (-225 |#2|) (-1127)) (T -224)) -NIL -((-3756 (($ $ (-1 |#1| |#1|)) 23 T ELT) (($ $ (-1 |#1| |#1|) (-693)) 22 T ELT) (($ $ (-582 (-1088)) (-582 (-693))) 16 (|has| |#1| (-810 (-1088))) ELT) (($ $ (-1088) (-693)) 15 (|has| |#1| (-810 (-1088))) ELT) (($ $ (-582 (-1088))) 14 (|has| |#1| (-810 (-1088))) ELT) (($ $ (-1088)) 12 (|has| |#1| (-810 (-1088))) ELT) (($ $ (-693)) 10 (|has| |#1| (-189)) ELT) (($ $) 8 (|has| |#1| (-189)) ELT)) (-2668 (($ $ (-1 |#1| |#1|)) 21 T ELT) (($ $ (-1 |#1| |#1|) (-693)) 20 T ELT) (($ $ (-582 (-1088)) (-582 (-693))) 19 (|has| |#1| (-810 (-1088))) ELT) (($ $ (-1088) (-693)) 18 (|has| |#1| (-810 (-1088))) ELT) (($ $ (-582 (-1088))) 17 (|has| |#1| (-810 (-1088))) ELT) (($ $ (-1088)) 13 (|has| |#1| (-810 (-1088))) ELT) (($ $ (-693)) 11 (|has| |#1| (-189)) ELT) (($ $) 9 (|has| |#1| (-189)) ELT))) -(((-225 |#1|) (-113) (-1127)) (T -225)) -((-3756 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-225 *3)) (-4 *3 (-1127)))) (-3756 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-693)) (-4 *1 (-225 *4)) (-4 *4 (-1127)))) (-2668 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-225 *3)) (-4 *3 (-1127)))) (-2668 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-693)) (-4 *1 (-225 *4)) (-4 *4 (-1127))))) -(-13 (-1127) (-10 -8 (-15 -3756 ($ $ (-1 |t#1| |t#1|))) (-15 -3756 ($ $ (-1 |t#1| |t#1|) (-693))) (-15 -2668 ($ $ (-1 |t#1| |t#1|))) (-15 -2668 ($ $ (-1 |t#1| |t#1|) (-693))) (IF (|has| |t#1| (-189)) (-6 (-189)) |%noBranch|) (IF (|has| |t#1| (-810 (-1088))) (-6 (-810 (-1088))) |%noBranch|))) -(((-186 $) |has| |#1| (-189)) ((-189) |has| |#1| (-189)) ((-13) . T) ((-805 $ (-1088)) |has| |#1| (-810 (-1088))) ((-810 (-1088)) |has| |#1| (-810 (-1088))) ((-1127) . T)) -((-2567 (((-85) $ $) NIL T ELT)) (-3187 (((-85) $) NIL T ELT)) (-1486 (((-582 (-693)) $) NIL T ELT) (((-582 (-693)) $ |#2|) NIL T ELT)) (-1520 (((-693) $) NIL T ELT) (((-693) $ |#2|) NIL T ELT)) (-3080 (((-582 |#3|) $) NIL T ELT)) (-3082 (((-1083 $) $ |#3|) NIL T ELT) (((-1083 |#1|) $) NIL T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3980 $) (|:| |associate| $)) $) NIL (|has| |#1| (-494)) ELT)) (-2062 (($ $) NIL (|has| |#1| (-494)) ELT)) (-2060 (((-85) $) NIL (|has| |#1| (-494)) ELT)) (-2818 (((-693) $) NIL T ELT) (((-693) $ (-582 |#3|)) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2706 (((-346 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-820)) ELT)) (-3773 (($ $) NIL (|has| |#1| (-390)) ELT)) (-3969 (((-346 $) $) NIL (|has| |#1| (-390)) ELT)) (-2703 (((-3 (-582 (-1083 $)) #1#) (-582 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-820)) ELT)) (-1482 (($ $) NIL T ELT)) (-3722 (($) NIL T CONST)) (-3156 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-348 (-483)) #1#) $) NIL (|has| |#1| (-949 (-348 (-483)))) ELT) (((-3 (-483) #1#) $) NIL (|has| |#1| (-949 (-483))) ELT) (((-3 |#3| #1#) $) NIL T ELT) (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-1037 |#1| |#2|) #1#) $) 23 T ELT)) (-3155 ((|#1| $) NIL T ELT) (((-348 (-483)) $) NIL (|has| |#1| (-949 (-348 (-483)))) ELT) (((-483) $) NIL (|has| |#1| (-949 (-483))) ELT) ((|#3| $) NIL T ELT) ((|#2| $) NIL T ELT) (((-1037 |#1| |#2|) $) NIL T ELT)) (-3754 (($ $ $ |#3|) NIL (|has| |#1| (-146)) ELT)) (-3957 (($ $) NIL T ELT)) (-2278 (((-629 (-483)) (-629 $)) NIL (|has| |#1| (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-629 $) (-1177 $)) NIL (|has| |#1| (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 |#1|)) (|:| |vec| (-1177 |#1|))) (-629 $) (-1177 $)) NIL T ELT) (((-629 |#1|) (-629 $)) NIL T ELT)) (-3465 (((-3 $ #1#) $) NIL T ELT)) (-3501 (($ $) NIL (|has| |#1| (-390)) ELT) (($ $ |#3|) NIL (|has| |#1| (-390)) ELT)) (-2817 (((-582 $) $) NIL T ELT)) (-3721 (((-85) $) NIL (|has| |#1| (-820)) ELT)) (-1622 (($ $ |#1| (-468 |#3|) $) NIL T ELT)) (-2795 (((-797 (-328) $) $ (-799 (-328)) (-797 (-328) $)) NIL (-12 (|has| |#1| (-795 (-328))) (|has| |#3| (-795 (-328)))) ELT) (((-797 (-483) $) $ (-799 (-483)) (-797 (-483) $)) NIL (-12 (|has| |#1| (-795 (-483))) (|has| |#3| (-795 (-483)))) ELT)) (-3770 (((-693) $ |#2|) NIL T ELT) (((-693) $) 10 T ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-2409 (((-85) $) NIL T ELT)) (-2419 (((-693) $) NIL T ELT)) (-3083 (($ (-1083 |#1|) |#3|) NIL T ELT) (($ (-1083 $) |#3|) NIL T ELT)) (-2820 (((-582 $) $) NIL T ELT)) (-3935 (((-85) $) NIL T ELT)) (-2892 (($ |#1| (-468 |#3|)) NIL T ELT) (($ $ |#3| (-693)) NIL T ELT) (($ $ (-582 |#3|) (-582 (-693))) NIL T ELT)) (-3761 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $ |#3|) NIL T ELT)) (-2819 (((-468 |#3|) $) NIL T ELT) (((-693) $ |#3|) NIL T ELT) (((-582 (-693)) $ (-582 |#3|)) NIL T ELT)) (-1623 (($ (-1 (-468 |#3|) (-468 |#3|)) $) NIL T ELT)) (-3956 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1521 (((-1 $ (-693)) |#2|) NIL T ELT) (((-1 $ (-693)) $) NIL (|has| |#1| (-190)) ELT)) (-3081 (((-3 |#3| #1#) $) NIL T ELT)) (-2279 (((-629 (-483)) (-1177 $)) NIL (|has| |#1| (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL (|has| |#1| (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 |#1|)) (|:| |vec| (-1177 |#1|))) (-1177 $) $) NIL T ELT) (((-629 |#1|) (-1177 $)) NIL T ELT)) (-2893 (($ $) NIL T ELT)) (-3173 ((|#1| $) NIL T ELT)) (-1484 ((|#3| $) NIL T ELT)) (-1889 (($ (-582 $)) NIL (|has| |#1| (-390)) ELT) (($ $ $) NIL (|has| |#1| (-390)) ELT)) (-3241 (((-1071) $) NIL T ELT)) (-1485 (((-85) $) NIL T ELT)) (-2822 (((-3 (-582 $) #1#) $) NIL T ELT)) (-2821 (((-3 (-582 $) #1#) $) NIL T ELT)) (-2823 (((-3 (-2 (|:| |var| |#3|) (|:| -2400 (-693))) #1#) $) NIL T ELT)) (-1483 (($ $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-1795 (((-85) $) NIL T ELT)) (-1794 ((|#1| $) NIL T ELT)) (-2707 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#1| (-390)) ELT)) (-3143 (($ (-582 $)) NIL (|has| |#1| (-390)) ELT) (($ $ $) NIL (|has| |#1| (-390)) ELT)) (-2704 (((-346 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-820)) ELT)) (-2705 (((-346 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-820)) ELT)) (-3730 (((-346 $) $) NIL (|has| |#1| (-820)) ELT)) (-3464 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-494)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-494)) ELT)) (-3766 (($ $ (-582 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-582 $) (-582 $)) NIL T ELT) (($ $ |#3| |#1|) NIL T ELT) (($ $ (-582 |#3|) (-582 |#1|)) NIL T ELT) (($ $ |#3| $) NIL T ELT) (($ $ (-582 |#3|) (-582 $)) NIL T ELT) (($ $ |#2| $) NIL (|has| |#1| (-190)) ELT) (($ $ (-582 |#2|) (-582 $)) NIL (|has| |#1| (-190)) ELT) (($ $ |#2| |#1|) NIL (|has| |#1| (-190)) ELT) (($ $ (-582 |#2|) (-582 |#1|)) NIL (|has| |#1| (-190)) ELT)) (-3755 (($ $ |#3|) NIL (|has| |#1| (-146)) ELT)) (-3756 (($ $ (-582 |#3|) (-582 (-693))) NIL T ELT) (($ $ |#3| (-693)) NIL T ELT) (($ $ (-582 |#3|)) NIL T ELT) (($ $ |#3|) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-693)) NIL T ELT) (($ $ (-1088)) NIL (|has| |#1| (-810 (-1088))) ELT) (($ $ (-582 (-1088))) NIL (|has| |#1| (-810 (-1088))) ELT) (($ $ (-1088) (-693)) NIL (|has| |#1| (-810 (-1088))) ELT) (($ $ (-582 (-1088)) (-582 (-693))) NIL (|has| |#1| (-810 (-1088))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-693)) NIL (|has| |#1| (-189)) ELT)) (-1487 (((-582 |#2|) $) NIL T ELT)) (-3946 (((-468 |#3|) $) NIL T ELT) (((-693) $ |#3|) NIL T ELT) (((-582 (-693)) $ (-582 |#3|)) NIL T ELT) (((-693) $ |#2|) NIL T ELT)) (-3970 (((-799 (-328)) $) NIL (-12 (|has| |#1| (-552 (-799 (-328)))) (|has| |#3| (-552 (-799 (-328))))) ELT) (((-799 (-483)) $) NIL (-12 (|has| |#1| (-552 (-799 (-483)))) (|has| |#3| (-552 (-799 (-483))))) ELT) (((-472) $) NIL (-12 (|has| |#1| (-552 (-472))) (|has| |#3| (-552 (-472)))) ELT)) (-2816 ((|#1| $) NIL (|has| |#1| (-390)) ELT) (($ $ |#3|) NIL (|has| |#1| (-390)) ELT)) (-2702 (((-3 (-1177 $) #1#) (-629 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-820))) ELT)) (-3944 (((-771) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ |#1|) 26 T ELT) (($ |#3|) 25 T ELT) (($ |#2|) NIL T ELT) (($ (-1037 |#1| |#2|)) 32 T ELT) (($ (-348 (-483))) NIL (OR (|has| |#1| (-38 (-348 (-483)))) (|has| |#1| (-949 (-348 (-483))))) ELT) (($ $) NIL (|has| |#1| (-494)) ELT)) (-3815 (((-582 |#1|) $) NIL T ELT)) (-3675 ((|#1| $ (-468 |#3|)) NIL T ELT) (($ $ |#3| (-693)) NIL T ELT) (($ $ (-582 |#3|) (-582 (-693))) NIL T ELT)) (-2701 (((-631 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-820))) (|has| |#1| (-118))) ELT)) (-3125 (((-693)) NIL T CONST)) (-1621 (($ $ $ (-693)) NIL (|has| |#1| (-146)) ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2061 (((-85) $ $) NIL (|has| |#1| (-494)) ELT)) (-3124 (((-85) $ $) NIL T ELT)) (-2659 (($) NIL T CONST)) (-2665 (($) NIL T CONST)) (-2668 (($ $ (-582 |#3|) (-582 (-693))) NIL T ELT) (($ $ |#3| (-693)) NIL T ELT) (($ $ (-582 |#3|)) NIL T ELT) (($ $ |#3|) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-693)) NIL T ELT) (($ $ (-1088)) NIL (|has| |#1| (-810 (-1088))) ELT) (($ $ (-582 (-1088))) NIL (|has| |#1| (-810 (-1088))) ELT) (($ $ (-1088) (-693)) NIL (|has| |#1| (-810 (-1088))) ELT) (($ $ (-582 (-1088)) (-582 (-693))) NIL (|has| |#1| (-810 (-1088))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-693)) NIL (|has| |#1| (-189)) ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-3947 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3835 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3837 (($ $ $) NIL T ELT)) (** (($ $ (-829)) NIL T ELT) (($ $ (-693)) NIL T ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-348 (-483))) NIL (|has| |#1| (-38 (-348 (-483)))) ELT) (($ (-348 (-483)) $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) -(((-226 |#1| |#2| |#3|) (-13 (-213 |#1| |#2| |#3| (-468 |#3|)) (-949 (-1037 |#1| |#2|))) (-960) (-755) (-228 |#2|)) (T -226)) -NIL -((-1520 (((-693) $) 37 T ELT)) (-3156 (((-3 |#2| "failed") $) 22 T ELT)) (-3155 ((|#2| $) 33 T ELT)) (-3756 (($ $ (-693)) 18 T ELT) (($ $) 14 T ELT)) (-3944 (((-771) $) 32 T ELT) (($ |#2|) 11 T ELT)) (-3055 (((-85) $ $) 26 T ELT)) (-2684 (((-85) $ $) 36 T ELT))) -(((-227 |#1| |#2|) (-10 -7 (-15 -1520 ((-693) |#1|)) (-15 -3944 (|#1| |#2|)) (-15 -3156 ((-3 |#2| "failed") |#1|)) (-15 -3155 (|#2| |#1|)) (-15 -3756 (|#1| |#1|)) (-15 -3756 (|#1| |#1| (-693))) (-15 -2684 ((-85) |#1| |#1|)) (-15 -3944 ((-771) |#1|)) (-15 -3055 ((-85) |#1| |#1|))) (-228 |#2|) (-755)) (T -227)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-1520 (((-693) $) 26 T ELT)) (-3829 ((|#1| $) 27 T ELT)) (-3156 (((-3 |#1| "failed") $) 31 T ELT)) (-3155 ((|#1| $) 32 T ELT)) (-3770 (((-693) $) 28 T ELT)) (-2530 (($ $ $) 23 T ELT)) (-2856 (($ $ $) 22 T ELT)) (-1521 (($ |#1| (-693)) 29 T ELT)) (-3241 (((-1071) $) 11 T ELT)) (-3242 (((-1032) $) 12 T ELT)) (-3756 (($ $ (-693)) 35 T ELT) (($ $) 33 T ELT)) (-3944 (((-771) $) 13 T ELT) (($ |#1|) 30 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2668 (($ $ (-693)) 36 T ELT) (($ $) 34 T ELT)) (-2565 (((-85) $ $) 21 T ELT)) (-2566 (((-85) $ $) 19 T ELT)) (-3055 (((-85) $ $) 8 T ELT)) (-2683 (((-85) $ $) 20 T ELT)) (-2684 (((-85) $ $) 18 T ELT))) -(((-228 |#1|) (-113) (-755)) (T -228)) -((-1521 (*1 *1 *2 *3) (-12 (-5 *3 (-693)) (-4 *1 (-228 *2)) (-4 *2 (-755)))) (-3770 (*1 *2 *1) (-12 (-4 *1 (-228 *3)) (-4 *3 (-755)) (-5 *2 (-693)))) (-3829 (*1 *2 *1) (-12 (-4 *1 (-228 *2)) (-4 *2 (-755)))) (-1520 (*1 *2 *1) (-12 (-4 *1 (-228 *3)) (-4 *3 (-755)) (-5 *2 (-693))))) -(-13 (-755) (-189) (-949 |t#1|) (-10 -8 (-15 -1521 ($ |t#1| (-693))) (-15 -3770 ((-693) $)) (-15 -3829 (|t#1| $)) (-15 -1520 ((-693) $)))) -(((-72) . T) ((-554 |#1|) . T) ((-551 (-771)) . T) ((-186 $) . T) ((-189) . T) ((-13) . T) ((-755) . T) ((-758) . T) ((-949 |#1|) . T) ((-1012) . T) ((-1127) . T)) -((-2567 (((-85) $ $) NIL T ELT)) (-2530 (($ $ $) NIL T ELT)) (-2856 (($ $ $) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-1523 (((-582 (-483)) $) 28 T ELT)) (-3946 (((-693) $) 26 T ELT)) (-3944 (((-771) $) 32 T ELT) (($ (-582 (-483))) 22 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-1522 (($ (-693)) 29 T ELT)) (-2565 (((-85) $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) 11 T ELT)) (-2683 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) 18 T ELT))) -(((-229) (-13 (-755) (-10 -8 (-15 -3944 ($ (-582 (-483)))) (-15 -3946 ((-693) $)) (-15 -1523 ((-582 (-483)) $)) (-15 -1522 ($ (-693)))))) (T -229)) -((-3944 (*1 *1 *2) (-12 (-5 *2 (-582 (-483))) (-5 *1 (-229)))) (-3946 (*1 *2 *1) (-12 (-5 *2 (-693)) (-5 *1 (-229)))) (-1523 (*1 *2 *1) (-12 (-5 *2 (-582 (-483))) (-5 *1 (-229)))) (-1522 (*1 *1 *2) (-12 (-5 *2 (-693)) (-5 *1 (-229))))) -((-3490 ((|#2| |#2|) 77 T ELT)) (-3637 ((|#2| |#2|) 65 T ELT)) (-1552 (((-3 |#2| "failed") |#2| (-582 (-2 (|:| |func| |#2|) (|:| |pole| (-85))))) 123 T ELT)) (-3488 ((|#2| |#2|) 75 T ELT)) (-3636 ((|#2| |#2|) 63 T ELT)) (-3492 ((|#2| |#2|) 79 T ELT)) (-3635 ((|#2| |#2|) 67 T ELT)) (-3625 ((|#2|) 46 T ELT)) (-3593 (((-86) (-86)) 97 T ELT)) (-3940 ((|#2| |#2|) 61 T ELT)) (-1553 (((-85) |#2|) 146 T ELT)) (-1542 ((|#2| |#2|) 193 T ELT)) (-1530 ((|#2| |#2|) 169 T ELT)) (-1525 ((|#2|) 59 T ELT)) (-1524 ((|#2|) 58 T ELT)) (-1540 ((|#2| |#2|) 189 T ELT)) (-1528 ((|#2| |#2|) 165 T ELT)) (-1544 ((|#2| |#2|) 197 T ELT)) (-1532 ((|#2| |#2|) 173 T ELT)) (-1527 ((|#2| |#2|) 161 T ELT)) (-1526 ((|#2| |#2|) 163 T ELT)) (-1545 ((|#2| |#2|) 199 T ELT)) (-1533 ((|#2| |#2|) 175 T ELT)) (-1543 ((|#2| |#2|) 195 T ELT)) (-1531 ((|#2| |#2|) 171 T ELT)) (-1541 ((|#2| |#2|) 191 T ELT)) (-1529 ((|#2| |#2|) 167 T ELT)) (-1548 ((|#2| |#2|) 205 T ELT)) (-1536 ((|#2| |#2|) 181 T ELT)) (-1546 ((|#2| |#2|) 201 T ELT)) (-1534 ((|#2| |#2|) 177 T ELT)) (-1550 ((|#2| |#2|) 209 T ELT)) (-1538 ((|#2| |#2|) 185 T ELT)) (-1551 ((|#2| |#2|) 211 T ELT)) (-1539 ((|#2| |#2|) 187 T ELT)) (-1549 ((|#2| |#2|) 207 T ELT)) (-1537 ((|#2| |#2|) 183 T ELT)) (-1547 ((|#2| |#2|) 203 T ELT)) (-1535 ((|#2| |#2|) 179 T ELT)) (-3941 ((|#2| |#2|) 62 T ELT)) (-3493 ((|#2| |#2|) 80 T ELT)) (-3634 ((|#2| |#2|) 68 T ELT)) (-3491 ((|#2| |#2|) 78 T ELT)) (-3633 ((|#2| |#2|) 66 T ELT)) (-3489 ((|#2| |#2|) 76 T ELT)) (-3632 ((|#2| |#2|) 64 T ELT)) (-2253 (((-85) (-86)) 95 T ELT)) (-3496 ((|#2| |#2|) 83 T ELT)) (-3484 ((|#2| |#2|) 71 T ELT)) (-3494 ((|#2| |#2|) 81 T ELT)) (-3482 ((|#2| |#2|) 69 T ELT)) (-3498 ((|#2| |#2|) 85 T ELT)) (-3486 ((|#2| |#2|) 73 T ELT)) (-3499 ((|#2| |#2|) 86 T ELT)) (-3487 ((|#2| |#2|) 74 T ELT)) (-3497 ((|#2| |#2|) 84 T ELT)) (-3485 ((|#2| |#2|) 72 T ELT)) (-3495 ((|#2| |#2|) 82 T ELT)) (-3483 ((|#2| |#2|) 70 T ELT))) -(((-230 |#1| |#2|) (-10 -7 (-15 -3941 (|#2| |#2|)) (-15 -3940 (|#2| |#2|)) (-15 -3636 (|#2| |#2|)) (-15 -3632 (|#2| |#2|)) (-15 -3637 (|#2| |#2|)) (-15 -3633 (|#2| |#2|)) (-15 -3635 (|#2| |#2|)) (-15 -3634 (|#2| |#2|)) (-15 -3482 (|#2| |#2|)) (-15 -3483 (|#2| |#2|)) (-15 -3484 (|#2| |#2|)) (-15 -3485 (|#2| |#2|)) (-15 -3486 (|#2| |#2|)) (-15 -3487 (|#2| |#2|)) (-15 -3488 (|#2| |#2|)) (-15 -3489 (|#2| |#2|)) (-15 -3490 (|#2| |#2|)) (-15 -3491 (|#2| |#2|)) (-15 -3492 (|#2| |#2|)) (-15 -3493 (|#2| |#2|)) (-15 -3494 (|#2| |#2|)) (-15 -3495 (|#2| |#2|)) (-15 -3496 (|#2| |#2|)) (-15 -3497 (|#2| |#2|)) (-15 -3498 (|#2| |#2|)) (-15 -3499 (|#2| |#2|)) (-15 -3625 (|#2|)) (-15 -2253 ((-85) (-86))) (-15 -3593 ((-86) (-86))) (-15 -1524 (|#2|)) (-15 -1525 (|#2|)) (-15 -1526 (|#2| |#2|)) (-15 -1527 (|#2| |#2|)) (-15 -1528 (|#2| |#2|)) (-15 -1529 (|#2| |#2|)) (-15 -1530 (|#2| |#2|)) (-15 -1531 (|#2| |#2|)) (-15 -1532 (|#2| |#2|)) (-15 -1533 (|#2| |#2|)) (-15 -1534 (|#2| |#2|)) (-15 -1535 (|#2| |#2|)) (-15 -1536 (|#2| |#2|)) (-15 -1537 (|#2| |#2|)) (-15 -1538 (|#2| |#2|)) (-15 -1539 (|#2| |#2|)) (-15 -1540 (|#2| |#2|)) (-15 -1541 (|#2| |#2|)) (-15 -1542 (|#2| |#2|)) (-15 -1543 (|#2| |#2|)) (-15 -1544 (|#2| |#2|)) (-15 -1545 (|#2| |#2|)) (-15 -1546 (|#2| |#2|)) (-15 -1547 (|#2| |#2|)) (-15 -1548 (|#2| |#2|)) (-15 -1549 (|#2| |#2|)) (-15 -1550 (|#2| |#2|)) (-15 -1551 (|#2| |#2|)) (-15 -1552 ((-3 |#2| "failed") |#2| (-582 (-2 (|:| |func| |#2|) (|:| |pole| (-85)))))) (-15 -1553 ((-85) |#2|))) (-494) (-13 (-362 |#1|) (-914))) (T -230)) -((-1553 (*1 *2 *3) (-12 (-4 *4 (-494)) (-5 *2 (-85)) (-5 *1 (-230 *4 *3)) (-4 *3 (-13 (-362 *4) (-914))))) (-1552 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-582 (-2 (|:| |func| *2) (|:| |pole| (-85))))) (-4 *2 (-13 (-362 *4) (-914))) (-4 *4 (-494)) (-5 *1 (-230 *4 *2)))) (-1551 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-914))))) (-1550 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-914))))) (-1549 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-914))))) (-1548 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-914))))) (-1547 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-914))))) (-1546 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-914))))) (-1545 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-914))))) (-1544 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-914))))) (-1543 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-914))))) (-1542 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-914))))) (-1541 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-914))))) (-1540 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-914))))) (-1539 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-914))))) (-1538 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-914))))) (-1537 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-914))))) (-1536 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-914))))) (-1535 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-914))))) (-1534 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-914))))) (-1533 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-914))))) (-1532 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-914))))) (-1531 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-914))))) (-1530 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-914))))) (-1529 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-914))))) (-1528 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-914))))) (-1527 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-914))))) (-1526 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-914))))) (-1525 (*1 *2) (-12 (-4 *2 (-13 (-362 *3) (-914))) (-5 *1 (-230 *3 *2)) (-4 *3 (-494)))) (-1524 (*1 *2) (-12 (-4 *2 (-13 (-362 *3) (-914))) (-5 *1 (-230 *3 *2)) (-4 *3 (-494)))) (-3593 (*1 *2 *2) (-12 (-5 *2 (-86)) (-4 *3 (-494)) (-5 *1 (-230 *3 *4)) (-4 *4 (-13 (-362 *3) (-914))))) (-2253 (*1 *2 *3) (-12 (-5 *3 (-86)) (-4 *4 (-494)) (-5 *2 (-85)) (-5 *1 (-230 *4 *5)) (-4 *5 (-13 (-362 *4) (-914))))) (-3625 (*1 *2) (-12 (-4 *2 (-13 (-362 *3) (-914))) (-5 *1 (-230 *3 *2)) (-4 *3 (-494)))) (-3499 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-914))))) (-3498 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-914))))) (-3497 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-914))))) (-3496 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-914))))) (-3495 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-914))))) (-3494 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-914))))) (-3493 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-914))))) (-3492 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-914))))) (-3491 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-914))))) (-3490 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-914))))) (-3489 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-914))))) (-3488 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-914))))) (-3487 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-914))))) (-3486 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-914))))) (-3485 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-914))))) (-3484 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-914))))) (-3483 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-914))))) (-3482 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-914))))) (-3634 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-914))))) (-3635 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-914))))) (-3633 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-914))))) (-3637 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-914))))) (-3632 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-914))))) (-3636 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-914))))) (-3940 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-914))))) (-3941 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-914)))))) -((-1556 (((-3 |#2| "failed") (-582 (-549 |#2|)) |#2| (-1088)) 151 T ELT)) (-1558 ((|#2| (-348 (-483)) |#2|) 49 T ELT)) (-1557 ((|#2| |#2| (-549 |#2|)) 144 T ELT)) (-1554 (((-2 (|:| |func| |#2|) (|:| |kers| (-582 (-549 |#2|))) (|:| |vals| (-582 |#2|))) |#2| (-1088)) 143 T ELT)) (-1555 ((|#2| |#2| (-1088)) 20 T ELT) ((|#2| |#2|) 23 T ELT)) (-2442 ((|#2| |#2| (-1088)) 157 T ELT) ((|#2| |#2|) 155 T ELT))) -(((-231 |#1| |#2|) (-10 -7 (-15 -2442 (|#2| |#2|)) (-15 -2442 (|#2| |#2| (-1088))) (-15 -1554 ((-2 (|:| |func| |#2|) (|:| |kers| (-582 (-549 |#2|))) (|:| |vals| (-582 |#2|))) |#2| (-1088))) (-15 -1555 (|#2| |#2|)) (-15 -1555 (|#2| |#2| (-1088))) (-15 -1556 ((-3 |#2| "failed") (-582 (-549 |#2|)) |#2| (-1088))) (-15 -1557 (|#2| |#2| (-549 |#2|))) (-15 -1558 (|#2| (-348 (-483)) |#2|))) (-13 (-494) (-949 (-483)) (-579 (-483))) (-13 (-27) (-1113) (-362 |#1|))) (T -231)) -((-1558 (*1 *2 *3 *2) (-12 (-5 *3 (-348 (-483))) (-4 *4 (-13 (-494) (-949 (-483)) (-579 (-483)))) (-5 *1 (-231 *4 *2)) (-4 *2 (-13 (-27) (-1113) (-362 *4))))) (-1557 (*1 *2 *2 *3) (-12 (-5 *3 (-549 *2)) (-4 *2 (-13 (-27) (-1113) (-362 *4))) (-4 *4 (-13 (-494) (-949 (-483)) (-579 (-483)))) (-5 *1 (-231 *4 *2)))) (-1556 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-582 (-549 *2))) (-5 *4 (-1088)) (-4 *2 (-13 (-27) (-1113) (-362 *5))) (-4 *5 (-13 (-494) (-949 (-483)) (-579 (-483)))) (-5 *1 (-231 *5 *2)))) (-1555 (*1 *2 *2 *3) (-12 (-5 *3 (-1088)) (-4 *4 (-13 (-494) (-949 (-483)) (-579 (-483)))) (-5 *1 (-231 *4 *2)) (-4 *2 (-13 (-27) (-1113) (-362 *4))))) (-1555 (*1 *2 *2) (-12 (-4 *3 (-13 (-494) (-949 (-483)) (-579 (-483)))) (-5 *1 (-231 *3 *2)) (-4 *2 (-13 (-27) (-1113) (-362 *3))))) (-1554 (*1 *2 *3 *4) (-12 (-5 *4 (-1088)) (-4 *5 (-13 (-494) (-949 (-483)) (-579 (-483)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-582 (-549 *3))) (|:| |vals| (-582 *3)))) (-5 *1 (-231 *5 *3)) (-4 *3 (-13 (-27) (-1113) (-362 *5))))) (-2442 (*1 *2 *2 *3) (-12 (-5 *3 (-1088)) (-4 *4 (-13 (-494) (-949 (-483)) (-579 (-483)))) (-5 *1 (-231 *4 *2)) (-4 *2 (-13 (-27) (-1113) (-362 *4))))) (-2442 (*1 *2 *2) (-12 (-4 *3 (-13 (-494) (-949 (-483)) (-579 (-483)))) (-5 *1 (-231 *3 *2)) (-4 *2 (-13 (-27) (-1113) (-362 *3)))))) -((-2974 (((-3 |#3| #1="failed") |#3|) 120 T ELT)) (-3490 ((|#3| |#3|) 142 T ELT)) (-2962 (((-3 |#3| #1#) |#3|) 89 T ELT)) (-3637 ((|#3| |#3|) 132 T ELT)) (-2972 (((-3 |#3| #1#) |#3|) 65 T ELT)) (-3488 ((|#3| |#3|) 140 T ELT)) (-2960 (((-3 |#3| #1#) |#3|) 53 T ELT)) (-3636 ((|#3| |#3|) 130 T ELT)) (-2976 (((-3 |#3| #1#) |#3|) 122 T ELT)) (-3492 ((|#3| |#3|) 144 T ELT)) (-2964 (((-3 |#3| #1#) |#3|) 91 T ELT)) (-3635 ((|#3| |#3|) 134 T ELT)) (-2957 (((-3 |#3| #1#) |#3| (-693)) 41 T ELT)) (-2959 (((-3 |#3| #1#) |#3|) 81 T ELT)) (-3940 ((|#3| |#3|) 129 T ELT)) (-2958 (((-3 |#3| #1#) |#3|) 51 T ELT)) (-3941 ((|#3| |#3|) 128 T ELT)) (-2977 (((-3 |#3| #1#) |#3|) 123 T ELT)) (-3493 ((|#3| |#3|) 145 T ELT)) (-2965 (((-3 |#3| #1#) |#3|) 92 T ELT)) (-3634 ((|#3| |#3|) 135 T ELT)) (-2975 (((-3 |#3| #1#) |#3|) 121 T ELT)) (-3491 ((|#3| |#3|) 143 T ELT)) (-2963 (((-3 |#3| #1#) |#3|) 90 T ELT)) (-3633 ((|#3| |#3|) 133 T ELT)) (-2973 (((-3 |#3| #1#) |#3|) 67 T ELT)) (-3489 ((|#3| |#3|) 141 T ELT)) (-2961 (((-3 |#3| #1#) |#3|) 55 T ELT)) (-3632 ((|#3| |#3|) 131 T ELT)) (-2980 (((-3 |#3| #1#) |#3|) 73 T ELT)) (-3496 ((|#3| |#3|) 148 T ELT)) (-2968 (((-3 |#3| #1#) |#3|) 114 T ELT)) (-3484 ((|#3| |#3|) 152 T ELT)) (-2978 (((-3 |#3| #1#) |#3|) 69 T ELT)) (-3494 ((|#3| |#3|) 146 T ELT)) (-2966 (((-3 |#3| #1#) |#3|) 57 T ELT)) (-3482 ((|#3| |#3|) 136 T ELT)) (-2982 (((-3 |#3| #1#) |#3|) 77 T ELT)) (-3498 ((|#3| |#3|) 150 T ELT)) (-2970 (((-3 |#3| #1#) |#3|) 61 T ELT)) (-3486 ((|#3| |#3|) 138 T ELT)) (-2983 (((-3 |#3| #1#) |#3|) 79 T ELT)) (-3499 ((|#3| |#3|) 151 T ELT)) (-2971 (((-3 |#3| #1#) |#3|) 63 T ELT)) (-3487 ((|#3| |#3|) 139 T ELT)) (-2981 (((-3 |#3| #1#) |#3|) 75 T ELT)) (-3497 ((|#3| |#3|) 149 T ELT)) (-2969 (((-3 |#3| #1#) |#3|) 117 T ELT)) (-3485 ((|#3| |#3|) 153 T ELT)) (-2979 (((-3 |#3| #1#) |#3|) 71 T ELT)) (-3495 ((|#3| |#3|) 147 T ELT)) (-2967 (((-3 |#3| #1#) |#3|) 59 T ELT)) (-3483 ((|#3| |#3|) 137 T ELT)) (** ((|#3| |#3| (-348 (-483))) 47 (|has| |#1| (-312)) ELT))) -(((-232 |#1| |#2| |#3|) (-13 (-895 |#3|) (-10 -7 (IF (|has| |#1| (-312)) (-15 ** (|#3| |#3| (-348 (-483)))) |%noBranch|) (-15 -3941 (|#3| |#3|)) (-15 -3940 (|#3| |#3|)) (-15 -3636 (|#3| |#3|)) (-15 -3632 (|#3| |#3|)) (-15 -3637 (|#3| |#3|)) (-15 -3633 (|#3| |#3|)) (-15 -3635 (|#3| |#3|)) (-15 -3634 (|#3| |#3|)) (-15 -3482 (|#3| |#3|)) (-15 -3483 (|#3| |#3|)) (-15 -3484 (|#3| |#3|)) (-15 -3485 (|#3| |#3|)) (-15 -3486 (|#3| |#3|)) (-15 -3487 (|#3| |#3|)) (-15 -3488 (|#3| |#3|)) (-15 -3489 (|#3| |#3|)) (-15 -3490 (|#3| |#3|)) (-15 -3491 (|#3| |#3|)) (-15 -3492 (|#3| |#3|)) (-15 -3493 (|#3| |#3|)) (-15 -3494 (|#3| |#3|)) (-15 -3495 (|#3| |#3|)) (-15 -3496 (|#3| |#3|)) (-15 -3497 (|#3| |#3|)) (-15 -3498 (|#3| |#3|)) (-15 -3499 (|#3| |#3|)))) (-38 (-348 (-483))) (-1170 |#1|) (-1141 |#1| |#2|)) (T -232)) -((** (*1 *2 *2 *3) (-12 (-5 *3 (-348 (-483))) (-4 *4 (-312)) (-4 *4 (-38 *3)) (-4 *5 (-1170 *4)) (-5 *1 (-232 *4 *5 *2)) (-4 *2 (-1141 *4 *5)))) (-3941 (*1 *2 *2) (-12 (-4 *3 (-38 (-348 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1141 *3 *4)))) (-3940 (*1 *2 *2) (-12 (-4 *3 (-38 (-348 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1141 *3 *4)))) (-3636 (*1 *2 *2) (-12 (-4 *3 (-38 (-348 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1141 *3 *4)))) (-3632 (*1 *2 *2) (-12 (-4 *3 (-38 (-348 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1141 *3 *4)))) (-3637 (*1 *2 *2) (-12 (-4 *3 (-38 (-348 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1141 *3 *4)))) (-3633 (*1 *2 *2) (-12 (-4 *3 (-38 (-348 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1141 *3 *4)))) (-3635 (*1 *2 *2) (-12 (-4 *3 (-38 (-348 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1141 *3 *4)))) (-3634 (*1 *2 *2) (-12 (-4 *3 (-38 (-348 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1141 *3 *4)))) (-3482 (*1 *2 *2) (-12 (-4 *3 (-38 (-348 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1141 *3 *4)))) (-3483 (*1 *2 *2) (-12 (-4 *3 (-38 (-348 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1141 *3 *4)))) (-3484 (*1 *2 *2) (-12 (-4 *3 (-38 (-348 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1141 *3 *4)))) (-3485 (*1 *2 *2) (-12 (-4 *3 (-38 (-348 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1141 *3 *4)))) (-3486 (*1 *2 *2) (-12 (-4 *3 (-38 (-348 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1141 *3 *4)))) (-3487 (*1 *2 *2) (-12 (-4 *3 (-38 (-348 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1141 *3 *4)))) (-3488 (*1 *2 *2) (-12 (-4 *3 (-38 (-348 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1141 *3 *4)))) (-3489 (*1 *2 *2) (-12 (-4 *3 (-38 (-348 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1141 *3 *4)))) (-3490 (*1 *2 *2) (-12 (-4 *3 (-38 (-348 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1141 *3 *4)))) (-3491 (*1 *2 *2) (-12 (-4 *3 (-38 (-348 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1141 *3 *4)))) (-3492 (*1 *2 *2) (-12 (-4 *3 (-38 (-348 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1141 *3 *4)))) (-3493 (*1 *2 *2) (-12 (-4 *3 (-38 (-348 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1141 *3 *4)))) (-3494 (*1 *2 *2) (-12 (-4 *3 (-38 (-348 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1141 *3 *4)))) (-3495 (*1 *2 *2) (-12 (-4 *3 (-38 (-348 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1141 *3 *4)))) (-3496 (*1 *2 *2) (-12 (-4 *3 (-38 (-348 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1141 *3 *4)))) (-3497 (*1 *2 *2) (-12 (-4 *3 (-38 (-348 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1141 *3 *4)))) (-3498 (*1 *2 *2) (-12 (-4 *3 (-38 (-348 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1141 *3 *4)))) (-3499 (*1 *2 *2) (-12 (-4 *3 (-38 (-348 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1141 *3 *4))))) -((-2974 (((-3 |#3| #1="failed") |#3|) 70 T ELT)) (-3490 ((|#3| |#3|) 137 T ELT)) (-2962 (((-3 |#3| #1#) |#3|) 54 T ELT)) (-3637 ((|#3| |#3|) 125 T ELT)) (-2972 (((-3 |#3| #1#) |#3|) 66 T ELT)) (-3488 ((|#3| |#3|) 135 T ELT)) (-2960 (((-3 |#3| #1#) |#3|) 50 T ELT)) (-3636 ((|#3| |#3|) 123 T ELT)) (-2976 (((-3 |#3| #1#) |#3|) 74 T ELT)) (-3492 ((|#3| |#3|) 139 T ELT)) (-2964 (((-3 |#3| #1#) |#3|) 58 T ELT)) (-3635 ((|#3| |#3|) 127 T ELT)) (-2957 (((-3 |#3| #1#) |#3| (-693)) 38 T ELT)) (-2959 (((-3 |#3| #1#) |#3|) 48 T ELT)) (-3940 ((|#3| |#3|) 111 T ELT)) (-2958 (((-3 |#3| #1#) |#3|) 46 T ELT)) (-3941 ((|#3| |#3|) 122 T ELT)) (-2977 (((-3 |#3| #1#) |#3|) 76 T ELT)) (-3493 ((|#3| |#3|) 140 T ELT)) (-2965 (((-3 |#3| #1#) |#3|) 60 T ELT)) (-3634 ((|#3| |#3|) 128 T ELT)) (-2975 (((-3 |#3| #1#) |#3|) 72 T ELT)) (-3491 ((|#3| |#3|) 138 T ELT)) (-2963 (((-3 |#3| #1#) |#3|) 56 T ELT)) (-3633 ((|#3| |#3|) 126 T ELT)) (-2973 (((-3 |#3| #1#) |#3|) 68 T ELT)) (-3489 ((|#3| |#3|) 136 T ELT)) (-2961 (((-3 |#3| #1#) |#3|) 52 T ELT)) (-3632 ((|#3| |#3|) 124 T ELT)) (-2980 (((-3 |#3| #1#) |#3|) 78 T ELT)) (-3496 ((|#3| |#3|) 143 T ELT)) (-2968 (((-3 |#3| #1#) |#3|) 62 T ELT)) (-3484 ((|#3| |#3|) 131 T ELT)) (-2978 (((-3 |#3| #1#) |#3|) 112 T ELT)) (-3494 ((|#3| |#3|) 141 T ELT)) (-2966 (((-3 |#3| #1#) |#3|) 100 T ELT)) (-3482 ((|#3| |#3|) 129 T ELT)) (-2982 (((-3 |#3| #1#) |#3|) 116 T ELT)) (-3498 ((|#3| |#3|) 145 T ELT)) (-2970 (((-3 |#3| #1#) |#3|) 107 T ELT)) (-3486 ((|#3| |#3|) 133 T ELT)) (-2983 (((-3 |#3| #1#) |#3|) 117 T ELT)) (-3499 ((|#3| |#3|) 146 T ELT)) (-2971 (((-3 |#3| #1#) |#3|) 109 T ELT)) (-3487 ((|#3| |#3|) 134 T ELT)) (-2981 (((-3 |#3| #1#) |#3|) 80 T ELT)) (-3497 ((|#3| |#3|) 144 T ELT)) (-2969 (((-3 |#3| #1#) |#3|) 64 T ELT)) (-3485 ((|#3| |#3|) 132 T ELT)) (-2979 (((-3 |#3| #1#) |#3|) 113 T ELT)) (-3495 ((|#3| |#3|) 142 T ELT)) (-2967 (((-3 |#3| #1#) |#3|) 103 T ELT)) (-3483 ((|#3| |#3|) 130 T ELT)) (** ((|#3| |#3| (-348 (-483))) 44 (|has| |#1| (-312)) ELT))) -(((-233 |#1| |#2| |#3| |#4|) (-13 (-895 |#3|) (-10 -7 (IF (|has| |#1| (-312)) (-15 ** (|#3| |#3| (-348 (-483)))) |%noBranch|) (-15 -3941 (|#3| |#3|)) (-15 -3940 (|#3| |#3|)) (-15 -3636 (|#3| |#3|)) (-15 -3632 (|#3| |#3|)) (-15 -3637 (|#3| |#3|)) (-15 -3633 (|#3| |#3|)) (-15 -3635 (|#3| |#3|)) (-15 -3634 (|#3| |#3|)) (-15 -3482 (|#3| |#3|)) (-15 -3483 (|#3| |#3|)) (-15 -3484 (|#3| |#3|)) (-15 -3485 (|#3| |#3|)) (-15 -3486 (|#3| |#3|)) (-15 -3487 (|#3| |#3|)) (-15 -3488 (|#3| |#3|)) (-15 -3489 (|#3| |#3|)) (-15 -3490 (|#3| |#3|)) (-15 -3491 (|#3| |#3|)) (-15 -3492 (|#3| |#3|)) (-15 -3493 (|#3| |#3|)) (-15 -3494 (|#3| |#3|)) (-15 -3495 (|#3| |#3|)) (-15 -3496 (|#3| |#3|)) (-15 -3497 (|#3| |#3|)) (-15 -3498 (|#3| |#3|)) (-15 -3499 (|#3| |#3|)))) (-38 (-348 (-483))) (-1139 |#1|) (-1162 |#1| |#2|) (-895 |#2|)) (T -233)) -((** (*1 *2 *2 *3) (-12 (-5 *3 (-348 (-483))) (-4 *4 (-312)) (-4 *4 (-38 *3)) (-4 *5 (-1139 *4)) (-5 *1 (-233 *4 *5 *2 *6)) (-4 *2 (-1162 *4 *5)) (-4 *6 (-895 *5)))) (-3941 (*1 *2 *2) (-12 (-4 *3 (-38 (-348 (-483)))) (-4 *4 (-1139 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-895 *4)))) (-3940 (*1 *2 *2) (-12 (-4 *3 (-38 (-348 (-483)))) (-4 *4 (-1139 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-895 *4)))) (-3636 (*1 *2 *2) (-12 (-4 *3 (-38 (-348 (-483)))) (-4 *4 (-1139 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-895 *4)))) (-3632 (*1 *2 *2) (-12 (-4 *3 (-38 (-348 (-483)))) (-4 *4 (-1139 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-895 *4)))) (-3637 (*1 *2 *2) (-12 (-4 *3 (-38 (-348 (-483)))) (-4 *4 (-1139 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-895 *4)))) (-3633 (*1 *2 *2) (-12 (-4 *3 (-38 (-348 (-483)))) (-4 *4 (-1139 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-895 *4)))) (-3635 (*1 *2 *2) (-12 (-4 *3 (-38 (-348 (-483)))) (-4 *4 (-1139 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-895 *4)))) (-3634 (*1 *2 *2) (-12 (-4 *3 (-38 (-348 (-483)))) (-4 *4 (-1139 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-895 *4)))) (-3482 (*1 *2 *2) (-12 (-4 *3 (-38 (-348 (-483)))) (-4 *4 (-1139 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-895 *4)))) (-3483 (*1 *2 *2) (-12 (-4 *3 (-38 (-348 (-483)))) (-4 *4 (-1139 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-895 *4)))) (-3484 (*1 *2 *2) (-12 (-4 *3 (-38 (-348 (-483)))) (-4 *4 (-1139 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-895 *4)))) (-3485 (*1 *2 *2) (-12 (-4 *3 (-38 (-348 (-483)))) (-4 *4 (-1139 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-895 *4)))) (-3486 (*1 *2 *2) (-12 (-4 *3 (-38 (-348 (-483)))) (-4 *4 (-1139 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-895 *4)))) (-3487 (*1 *2 *2) (-12 (-4 *3 (-38 (-348 (-483)))) (-4 *4 (-1139 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-895 *4)))) (-3488 (*1 *2 *2) (-12 (-4 *3 (-38 (-348 (-483)))) (-4 *4 (-1139 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-895 *4)))) (-3489 (*1 *2 *2) (-12 (-4 *3 (-38 (-348 (-483)))) (-4 *4 (-1139 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-895 *4)))) (-3490 (*1 *2 *2) (-12 (-4 *3 (-38 (-348 (-483)))) (-4 *4 (-1139 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-895 *4)))) (-3491 (*1 *2 *2) (-12 (-4 *3 (-38 (-348 (-483)))) (-4 *4 (-1139 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-895 *4)))) (-3492 (*1 *2 *2) (-12 (-4 *3 (-38 (-348 (-483)))) (-4 *4 (-1139 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-895 *4)))) (-3493 (*1 *2 *2) (-12 (-4 *3 (-38 (-348 (-483)))) (-4 *4 (-1139 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-895 *4)))) (-3494 (*1 *2 *2) (-12 (-4 *3 (-38 (-348 (-483)))) (-4 *4 (-1139 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-895 *4)))) (-3495 (*1 *2 *2) (-12 (-4 *3 (-38 (-348 (-483)))) (-4 *4 (-1139 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-895 *4)))) (-3496 (*1 *2 *2) (-12 (-4 *3 (-38 (-348 (-483)))) (-4 *4 (-1139 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-895 *4)))) (-3497 (*1 *2 *2) (-12 (-4 *3 (-38 (-348 (-483)))) (-4 *4 (-1139 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-895 *4)))) (-3498 (*1 *2 *2) (-12 (-4 *3 (-38 (-348 (-483)))) (-4 *4 (-1139 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-895 *4)))) (-3499 (*1 *2 *2) (-12 (-4 *3 (-38 (-348 (-483)))) (-4 *4 (-1139 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-895 *4))))) -((-1561 (((-85) $) 20 T ELT)) (-1563 (((-1093) $) 9 T ELT)) (-3567 (((-3 (-445) #1="failed") $) 15 T ELT)) (-3566 (((-3 (-582 $) #1#) $) NIL T ELT)) (-1560 (((-3 (-445) #1#) $) 21 T ELT)) (-1562 (((-3 (-1014) #1#) $) 19 T ELT)) (-3951 (((-85) $) 17 T ELT)) (-3944 (((-771) $) NIL T ELT)) (-1559 (((-85) $) 10 T ELT))) -(((-234) (-13 (-551 (-771)) (-10 -8 (-15 -1563 ((-1093) $)) (-15 -3951 ((-85) $)) (-15 -1562 ((-3 (-1014) #1="failed") $)) (-15 -1561 ((-85) $)) (-15 -1560 ((-3 (-445) #1#) $)) (-15 -1559 ((-85) $)) (-15 -3567 ((-3 (-445) #1#) $)) (-15 -3566 ((-3 (-582 $) #1#) $))))) (T -234)) -((-1563 (*1 *2 *1) (-12 (-5 *2 (-1093)) (-5 *1 (-234)))) (-3951 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-234)))) (-1562 (*1 *2 *1) (|partial| -12 (-5 *2 (-1014)) (-5 *1 (-234)))) (-1561 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-234)))) (-1560 (*1 *2 *1) (|partial| -12 (-5 *2 (-445)) (-5 *1 (-234)))) (-1559 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-234)))) (-3567 (*1 *2 *1) (|partial| -12 (-5 *2 (-445)) (-5 *1 (-234)))) (-3566 (*1 *2 *1) (|partial| -12 (-5 *2 (-582 (-234))) (-5 *1 (-234))))) -((-1565 (((-531) $) 10 T ELT)) (-1566 (((-521) $) 8 T ELT)) (-1564 (((-247) $) 12 T ELT)) (-1567 (($ (-521) (-531) (-247)) NIL T ELT)) (-3944 (((-771) $) 19 T ELT))) -(((-235) (-13 (-551 (-771)) (-10 -8 (-15 -1567 ($ (-521) (-531) (-247))) (-15 -1566 ((-521) $)) (-15 -1565 ((-531) $)) (-15 -1564 ((-247) $))))) (T -235)) -((-1567 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-521)) (-5 *3 (-531)) (-5 *4 (-247)) (-5 *1 (-235)))) (-1566 (*1 *2 *1) (-12 (-5 *2 (-521)) (-5 *1 (-235)))) (-1565 (*1 *2 *1) (-12 (-5 *2 (-531)) (-5 *1 (-235)))) (-1564 (*1 *2 *1) (-12 (-5 *2 (-247)) (-5 *1 (-235))))) -((-3708 (($ (-1 (-85) |#2|) $) 24 T ELT)) (-1351 (($ $) 38 T ELT)) (-3403 (($ (-1 (-85) |#2|) $) NIL T ELT) (($ |#2| $) 36 T ELT)) (-3404 (($ |#2| $) 34 T ELT) (($ (-1 (-85) |#2|) $) 18 T ELT)) (-2855 (($ (-1 (-85) |#2| |#2|) $ $) NIL T ELT) (($ $ $) 42 T ELT)) (-2303 (($ |#2| $ (-483)) 20 T ELT) (($ $ $ (-483)) 22 T ELT)) (-2304 (($ $ (-483)) 11 T ELT) (($ $ (-1144 (-483))) 14 T ELT)) (-3789 (($ $ |#2|) 32 T ELT) (($ $ $) NIL T ELT)) (-3800 (($ $ |#2|) 31 T ELT) (($ |#2| $) NIL T ELT) (($ $ $) 26 T ELT) (($ (-582 $)) NIL T ELT))) -(((-236 |#1| |#2|) (-10 -7 (-15 -2855 (|#1| |#1| |#1|)) (-15 -3403 (|#1| |#2| |#1|)) (-15 -2855 (|#1| (-1 (-85) |#2| |#2|) |#1| |#1|)) (-15 -3403 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3789 (|#1| |#1| |#1|)) (-15 -3789 (|#1| |#1| |#2|)) (-15 -2303 (|#1| |#1| |#1| (-483))) (-15 -2303 (|#1| |#2| |#1| (-483))) (-15 -2304 (|#1| |#1| (-1144 (-483)))) (-15 -2304 (|#1| |#1| (-483))) (-15 -3800 (|#1| (-582 |#1|))) (-15 -3800 (|#1| |#1| |#1|)) (-15 -3800 (|#1| |#2| |#1|)) (-15 -3800 (|#1| |#1| |#2|)) (-15 -3404 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3708 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3404 (|#1| |#2| |#1|)) (-15 -1351 (|#1| |#1|))) (-237 |#2|) (-1127)) (T -236)) -NIL -((-2567 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-2197 (((-1183) $ (-483) (-483)) 44 (|has| $ (-6 -3994)) ELT)) (-3786 ((|#1| $ (-483) |#1|) 56 (|has| $ (-6 -3994)) ELT) ((|#1| $ (-1144 (-483)) |#1|) 64 (|has| $ (-6 -3994)) ELT)) (-1568 (($ (-1 (-85) |#1|) $) 94 T ELT)) (-3708 (($ (-1 (-85) |#1|) $) 81 (|has| $ (-6 -3993)) ELT)) (-3722 (($) 7 T CONST)) (-2367 (($ $) 92 (|has| |#1| (-1012)) ELT)) (-1351 (($ $) 84 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3993))) ELT)) (-3403 (($ (-1 (-85) |#1|) $) 98 T ELT) (($ |#1| $) 93 (|has| |#1| (-1012)) ELT)) (-3404 (($ |#1| $) 83 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3993))) ELT) (($ (-1 (-85) |#1|) $) 80 (|has| $ (-6 -3993)) ELT)) (-3840 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3993))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -3993)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -3993)) ELT)) (-1574 ((|#1| $ (-483) |#1|) 57 (|has| $ (-6 -3994)) ELT)) (-3111 ((|#1| $ (-483)) 55 T ELT)) (-2888 (((-582 |#1|) $) 30 (|has| $ (-6 -3993)) ELT)) (-3612 (($ (-693) |#1|) 74 T ELT)) (-2199 (((-483) $) 47 (|has| (-483) (-755)) ELT)) (-2855 (($ (-1 (-85) |#1| |#1|) $ $) 95 T ELT) (($ $ $) 91 (|has| |#1| (-755)) ELT)) (-2607 (((-582 |#1|) $) 29 (|has| $ (-6 -3993)) ELT)) (-3244 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3993))) ELT)) (-2200 (((-483) $) 48 (|has| (-483) (-755)) ELT)) (-1947 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3994)) ELT)) (-3956 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-3241 (((-1071) $) 22 (|has| |#1| (-1012)) ELT)) (-3607 (($ |#1| $ (-483)) 97 T ELT) (($ $ $ (-483)) 96 T ELT)) (-2303 (($ |#1| $ (-483)) 66 T ELT) (($ $ $ (-483)) 65 T ELT)) (-2202 (((-582 (-483)) $) 50 T ELT)) (-2203 (((-85) (-483) $) 51 T ELT)) (-3242 (((-1032) $) 21 (|has| |#1| (-1012)) ELT)) (-3799 ((|#1| $) 46 (|has| (-483) (-755)) ELT)) (-1352 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 77 T ELT)) (-2198 (($ $ |#1|) 45 (|has| $ (-6 -3994)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3993)) ELT)) (-3766 (($ $ (-582 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-582 |#1|) (-582 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT)) (-1220 (((-85) $ $) 11 T ELT)) (-2201 (((-85) |#1| $) 49 (-12 (|has| $ (-6 -3993)) (|has| |#1| (-1012))) ELT)) (-2204 (((-582 |#1|) $) 52 T ELT)) (-3401 (((-85) $) 8 T ELT)) (-3563 (($) 9 T ELT)) (-3798 ((|#1| $ (-483) |#1|) 54 T ELT) ((|#1| $ (-483)) 53 T ELT) (($ $ (-1144 (-483))) 75 T ELT)) (-1569 (($ $ (-483)) 100 T ELT) (($ $ (-1144 (-483))) 99 T ELT)) (-2304 (($ $ (-483)) 68 T ELT) (($ $ (-1144 (-483))) 67 T ELT)) (-1944 (((-693) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3993)) ELT) (((-693) |#1| $) 28 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3993))) ELT)) (-3398 (($ $) 10 T ELT)) (-3970 (((-472) $) 85 (|has| |#1| (-552 (-472))) ELT)) (-3528 (($ (-582 |#1|)) 76 T ELT)) (-3789 (($ $ |#1|) 102 T ELT) (($ $ $) 101 T ELT)) (-3800 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-582 $)) 70 T ELT)) (-3944 (((-771) $) 17 (|has| |#1| (-551 (-771))) ELT)) (-1263 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3993)) ELT)) (-3055 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3955 (((-693) $) 6 (|has| $ (-6 -3993)) ELT))) -(((-237 |#1|) (-113) (-1127)) (T -237)) -((-3789 (*1 *1 *1 *2) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1127)))) (-3789 (*1 *1 *1 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1127)))) (-1569 (*1 *1 *1 *2) (-12 (-5 *2 (-483)) (-4 *1 (-237 *3)) (-4 *3 (-1127)))) (-1569 (*1 *1 *1 *2) (-12 (-5 *2 (-1144 (-483))) (-4 *1 (-237 *3)) (-4 *3 (-1127)))) (-3403 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-237 *3)) (-4 *3 (-1127)))) (-3607 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-483)) (-4 *1 (-237 *2)) (-4 *2 (-1127)))) (-3607 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-483)) (-4 *1 (-237 *3)) (-4 *3 (-1127)))) (-2855 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-85) *3 *3)) (-4 *1 (-237 *3)) (-4 *3 (-1127)))) (-1568 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-237 *3)) (-4 *3 (-1127)))) (-3403 (*1 *1 *2 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1127)) (-4 *2 (-1012)))) (-2367 (*1 *1 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1127)) (-4 *2 (-1012)))) (-2855 (*1 *1 *1 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1127)) (-4 *2 (-755))))) -(-13 (-592 |t#1|) (-10 -8 (-6 -3994) (-15 -3789 ($ $ |t#1|)) (-15 -3789 ($ $ $)) (-15 -1569 ($ $ (-483))) (-15 -1569 ($ $ (-1144 (-483)))) (-15 -3403 ($ (-1 (-85) |t#1|) $)) (-15 -3607 ($ |t#1| $ (-483))) (-15 -3607 ($ $ $ (-483))) (-15 -2855 ($ (-1 (-85) |t#1| |t#1|) $ $)) (-15 -1568 ($ (-1 (-85) |t#1|) $)) (IF (|has| |t#1| (-1012)) (PROGN (-15 -3403 ($ |t#1| $)) (-15 -2367 ($ $))) |%noBranch|) (IF (|has| |t#1| (-755)) (-15 -2855 ($ $ $)) |%noBranch|))) -(((-34) . T) ((-72) OR (|has| |#1| (-1012)) (|has| |#1| (-72))) ((-551 (-771)) OR (|has| |#1| (-1012)) (|has| |#1| (-551 (-771)))) ((-124 |#1|) . T) ((-552 (-472)) |has| |#1| (-552 (-472))) ((-241 (-483) |#1|) . T) ((-241 (-1144 (-483)) $) . T) ((-243 (-483) |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ((-427 |#1|) . T) ((-537 (-483) |#1|) . T) ((-454 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ((-13) . T) ((-592 |#1|) . T) ((-1012) |has| |#1| (-1012)) ((-1127) . T)) +((** (*1 *1 *1 *2) (-12 (-4 *1 (-201)) (-5 *2 (-484)))) (-2484 (*1 *1 *1) (-4 *1 (-201)))) +(-13 (-246) (-38 (-349 (-484))) (-10 -8 (-15 ** ($ $ (-484))) (-15 -2484 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-349 (-484))) . T) ((-72) . T) ((-82 (-349 (-484)) (-349 (-484))) . T) ((-82 $ $) . T) ((-104) . T) ((-555 (-349 (-484))) . T) ((-555 (-484)) . T) ((-552 (-772)) . T) ((-246) . T) ((-13) . T) ((-588 (-349 (-484))) . T) ((-588 (-484)) . T) ((-588 $) . T) ((-590 (-349 (-484))) . T) ((-590 $) . T) ((-582 (-349 (-484))) . T) ((-654 (-349 (-484))) . T) ((-663) . T) ((-963 (-349 (-484))) . T) ((-963 $) . T) ((-968 (-349 (-484))) . T) ((-968 $) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T)) +((-2568 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3401 ((|#1| $) 52 T ELT)) (-3796 (($ $) 63 T ELT)) (-3025 ((|#1| $ |#1|) 43 (|has| $ (-6 -3995)) ELT)) (-1473 (($ $ $) 59 (|has| $ (-6 -3995)) ELT)) (-1472 (($ $ $) 58 (|has| $ (-6 -3995)) ELT)) (-3787 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -3995)) ELT)) (-3026 (($ $ (-583 $)) 45 (|has| $ (-6 -3995)) ELT)) (-3723 (($) 7 T CONST)) (-1475 (($ $) 62 T ELT)) (-2889 (((-583 |#1|) $) 30 (|has| $ (-6 -3994)) ELT)) (-3031 (((-583 $) $) 54 T ELT)) (-3027 (((-85) $ $) 46 (|has| |#1| (-1013)) ELT)) (-1474 (($ $) 61 T ELT)) (-2608 (((-583 |#1|) $) 29 (|has| $ (-6 -3994)) ELT)) (-3245 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-1948 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3030 (((-583 |#1|) $) 49 T ELT)) (-3526 (((-85) $) 53 T ELT)) (-3242 (((-1072) $) 22 (|has| |#1| (-1013)) ELT)) (-3797 ((|#1| $) 65 T ELT)) (-3178 (($ $) 64 T ELT)) (-3243 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3994)) ELT)) (-3767 (($ $ (-583 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1221 (((-85) $ $) 11 T ELT)) (-3402 (((-85) $) 8 T ELT)) (-3564 (($) 9 T ELT)) (-3799 ((|#1| $ #1#) 51 T ELT)) (-3029 (((-484) $ $) 48 T ELT)) (-3632 (((-85) $) 50 T ELT)) (-1945 (((-694) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3994)) ELT) (((-694) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-3399 (($ $) 10 T ELT)) (-3790 (($ $ $) 60 (|has| $ (-6 -3995)) ELT)) (-3945 (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-3521 (((-583 $) $) 55 T ELT)) (-3028 (((-85) $ $) 47 (|has| |#1| (-1013)) ELT)) (-1264 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3994)) ELT)) (-3056 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3956 (((-694) $) 6 (|has| $ (-6 -3994)) ELT))) +(((-202 |#1|) (-113) (-1128)) (T -202)) +((-3797 (*1 *2 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1128)))) (-3178 (*1 *1 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1128)))) (-3796 (*1 *1 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1128)))) (-1475 (*1 *1 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1128)))) (-1474 (*1 *1 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1128)))) (-3790 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -3995)) (-4 *1 (-202 *2)) (-4 *2 (-1128)))) (-1473 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -3995)) (-4 *1 (-202 *2)) (-4 *2 (-1128)))) (-1472 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -3995)) (-4 *1 (-202 *2)) (-4 *2 (-1128))))) +(-13 (-923 |t#1|) (-10 -8 (-15 -3797 (|t#1| $)) (-15 -3178 ($ $)) (-15 -3796 ($ $)) (-15 -1475 ($ $)) (-15 -1474 ($ $)) (IF (|has| $ (-6 -3995)) (PROGN (-15 -3790 ($ $ $)) (-15 -1473 ($ $ $)) (-15 -1472 ($ $ $))) |%noBranch|))) +(((-34) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1013)) (|has| |#1| (-552 (-772)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-428 |#1|) . T) ((-455 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-923 |#1|) . T) ((-1013) |has| |#1| (-1013)) ((-1128) . T)) +((-2568 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3401 ((|#1| $) NIL T ELT)) (-3794 ((|#1| $) NIL T ELT)) (-3796 (($ $) NIL T ELT)) (-2198 (((-1184) $ (-484) (-484)) NIL (|has| $ (-6 -3995)) ELT)) (-3784 (($ $ (-484)) NIL (|has| $ (-6 -3995)) ELT)) (-1731 (((-85) $) NIL (|has| |#1| (-756)) ELT) (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT)) (-1729 (($ $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-756))) ELT) (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-2909 (($ $) 10 (|has| |#1| (-756)) ELT) (($ (-1 (-85) |#1| |#1|) $) NIL T ELT)) (-3441 (((-85) $ (-694)) NIL T ELT)) (-3025 ((|#1| $ |#1|) NIL (|has| $ (-6 -3995)) ELT)) (-3786 (($ $ $) NIL (|has| $ (-6 -3995)) ELT)) (-3785 ((|#1| $ |#1|) NIL (|has| $ (-6 -3995)) ELT)) (-3788 ((|#1| $ |#1|) NIL (|has| $ (-6 -3995)) ELT)) (-3787 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3995)) ELT) ((|#1| $ #2="first" |#1|) NIL (|has| $ (-6 -3995)) ELT) (($ $ #3="rest" $) NIL (|has| $ (-6 -3995)) ELT) ((|#1| $ #4="last" |#1|) NIL (|has| $ (-6 -3995)) ELT) ((|#1| $ (-1145 (-484)) |#1|) NIL (|has| $ (-6 -3995)) ELT) ((|#1| $ (-484) |#1|) NIL (|has| $ (-6 -3995)) ELT)) (-3026 (($ $ (-583 $)) NIL (|has| $ (-6 -3995)) ELT)) (-1569 (($ (-1 (-85) |#1|) $) NIL T ELT)) (-3709 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3795 ((|#1| $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-2297 (($ $) NIL (|has| $ (-6 -3995)) ELT)) (-2298 (($ $) NIL T ELT)) (-3798 (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-2368 (($ $) NIL (|has| |#1| (-1013)) ELT)) (-1352 (($ $) 7 (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-3404 (($ |#1| $) NIL (|has| |#1| (-1013)) ELT) (($ (-1 (-85) |#1|) $) NIL T ELT)) (-3405 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT) (($ |#1| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-3841 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3994)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3994)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-1575 ((|#1| $ (-484) |#1|) NIL (|has| $ (-6 -3995)) ELT)) (-3112 ((|#1| $ (-484)) NIL T ELT)) (-3442 (((-85) $) NIL T ELT)) (-3418 (((-484) |#1| $ (-484)) NIL (|has| |#1| (-1013)) ELT) (((-484) |#1| $) NIL (|has| |#1| (-1013)) ELT) (((-484) (-1 (-85) |#1|) $) NIL T ELT)) (-2889 (((-583 |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3031 (((-583 $) $) NIL T ELT)) (-3027 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-3613 (($ (-694) |#1|) NIL T ELT)) (-3718 (((-85) $ (-694)) NIL T ELT)) (-2200 (((-484) $) NIL (|has| (-484) (-756)) ELT)) (-2531 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2856 (($ $ $) NIL (|has| |#1| (-756)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT)) (-3517 (($ $ $) NIL (|has| |#1| (-756)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT)) (-2608 (((-583 |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3245 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-2201 (((-484) $) NIL (|has| (-484) (-756)) ELT)) (-2857 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-1948 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3533 (($ |#1|) NIL T ELT)) (-3715 (((-85) $ (-694)) NIL T ELT)) (-3030 (((-583 |#1|) $) NIL T ELT)) (-3526 (((-85) $) NIL T ELT)) (-3242 (((-1072) $) NIL (|has| |#1| (-1013)) ELT)) (-3797 ((|#1| $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-3608 (($ $ $ (-484)) NIL T ELT) (($ |#1| $ (-484)) NIL T ELT)) (-2304 (($ $ $ (-484)) NIL T ELT) (($ |#1| $ (-484)) NIL T ELT)) (-2203 (((-583 (-484)) $) NIL T ELT)) (-2204 (((-85) (-484) $) NIL T ELT)) (-3243 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-3800 ((|#1| $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-1353 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2199 (($ $ |#1|) NIL (|has| $ (-6 -3995)) ELT)) (-3443 (((-85) $) NIL T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3767 (($ $ (-583 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1221 (((-85) $ $) NIL T ELT)) (-2202 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-2205 (((-583 |#1|) $) NIL T ELT)) (-3402 (((-85) $) NIL T ELT)) (-3564 (($) NIL T ELT)) (-3799 ((|#1| $ #1#) NIL T ELT) ((|#1| $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT) ((|#1| $ #4#) NIL T ELT) (($ $ (-1145 (-484))) NIL T ELT) ((|#1| $ (-484)) NIL T ELT) ((|#1| $ (-484) |#1|) NIL T ELT) (($ $ "unique") 9 T ELT) (($ $ "sort") 12 T ELT) (((-694) $ "count") 16 T ELT)) (-3029 (((-484) $ $) NIL T ELT)) (-1570 (($ $ (-1145 (-484))) NIL T ELT) (($ $ (-484)) NIL T ELT)) (-2305 (($ $ (-1145 (-484))) NIL T ELT) (($ $ (-484)) NIL T ELT)) (-1476 (($ (-583 |#1|)) 22 T ELT)) (-3632 (((-85) $) NIL T ELT)) (-3791 (($ $) NIL T ELT)) (-3789 (($ $) NIL (|has| $ (-6 -3995)) ELT)) (-3792 (((-694) $) NIL T ELT)) (-3793 (($ $) NIL T ELT)) (-1945 (((-694) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT) (((-694) |#1| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-1730 (($ $ $ (-484)) NIL (|has| $ (-6 -3995)) ELT)) (-3399 (($ $) NIL T ELT)) (-3971 (((-473) $) NIL (|has| |#1| (-553 (-473))) ELT)) (-3529 (($ (-583 |#1|)) NIL T ELT)) (-3790 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3801 (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-583 $)) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3945 (($ (-583 |#1|)) 17 T ELT) (((-583 |#1|) $) 18 T ELT) (((-772) $) 21 (|has| |#1| (-552 (-772))) ELT)) (-3521 (((-583 $) $) NIL T ELT)) (-3028 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-1264 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-2566 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2567 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3056 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2684 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2685 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3956 (((-694) $) 14 (|has| $ (-6 -3994)) ELT))) +(((-203 |#1|) (-13 (-608 |#1|) (-429 (-583 |#1|)) (-10 -8 (-15 -1476 ($ (-583 |#1|))) (-15 -3799 ($ $ "unique")) (-15 -3799 ($ $ "sort")) (-15 -3799 ((-694) $ "count")))) (-756)) (T -203)) +((-1476 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-756)) (-5 *1 (-203 *3)))) (-3799 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-203 *3)) (-4 *3 (-756)))) (-3799 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-203 *3)) (-4 *3 (-756)))) (-3799 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-694)) (-5 *1 (-203 *4)) (-4 *4 (-756))))) +((-1477 (((-3 (-694) "failed") |#1| |#1| (-694)) 40 T ELT))) +(((-204 |#1|) (-10 -7 (-15 -1477 ((-3 (-694) "failed") |#1| |#1| (-694)))) (-13 (-663) (-319) (-10 -7 (-15 ** (|#1| |#1| (-484)))))) (T -204)) +((-1477 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-694)) (-4 *3 (-13 (-663) (-319) (-10 -7 (-15 ** (*3 *3 (-484)))))) (-5 *1 (-204 *3))))) +((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3723 (($) 23 T CONST)) (-1213 (((-85) $ $) 20 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3757 (($ $) 60 (|has| |#1| (-189)) ELT) (($ $ (-694)) 58 (|has| |#1| (-189)) ELT) (($ $ (-1089)) 56 (|has| |#1| (-811 (-1089))) ELT) (($ $ (-583 (-1089))) 54 (|has| |#1| (-811 (-1089))) ELT) (($ $ (-1089) (-694)) 53 (|has| |#1| (-811 (-1089))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) 52 (|has| |#1| (-811 (-1089))) ELT) (($ $ (-1 |#1| |#1|) (-694)) 46 T ELT) (($ $ (-1 |#1| |#1|)) 45 T ELT)) (-3945 (((-772) $) 13 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-2660 (($) 24 T CONST)) (-2669 (($ $) 59 (|has| |#1| (-189)) ELT) (($ $ (-694)) 57 (|has| |#1| (-189)) ELT) (($ $ (-1089)) 55 (|has| |#1| (-811 (-1089))) ELT) (($ $ (-583 (-1089))) 51 (|has| |#1| (-811 (-1089))) ELT) (($ $ (-1089) (-694)) 50 (|has| |#1| (-811 (-1089))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) 49 (|has| |#1| (-811 (-1089))) ELT) (($ $ (-1 |#1| |#1|) (-694)) 48 T ELT) (($ $ (-1 |#1| |#1|)) 47 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ |#1| $) 33 T ELT) (($ $ |#1|) 37 T ELT))) +(((-205 |#1|) (-113) (-961)) (T -205)) +NIL +(-13 (-82 |t#1| |t#1|) (-225 |t#1|) (-10 -7 (IF (|has| |t#1| (-189)) (-6 (-187 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-811 (-1089))) (-6 (-808 |t#1| (-1089))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-552 (-772)) . T) ((-186 $) |has| |#1| (-189)) ((-187 |#1|) |has| |#1| (-189)) ((-189) |has| |#1| (-189)) ((-225 |#1|) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-590 |#1|) . T) ((-582 |#1|) OR (-12 (|has| |#1| (-146)) (|has| |#1| (-811 (-1089)))) (-12 (|has| |#1| (-146)) (|has| |#1| (-189)))) ((-654 |#1|) OR (-12 (|has| |#1| (-146)) (|has| |#1| (-811 (-1089)))) (-12 (|has| |#1| (-146)) (|has| |#1| (-189)))) ((-806 $ (-1089)) |has| |#1| (-811 (-1089))) ((-808 |#1| (-1089)) |has| |#1| (-811 (-1089))) ((-811 (-1089)) |has| |#1| (-811 (-1089))) ((-963 |#1|) . T) ((-968 |#1|) . T) ((-1013) . T) ((-1128) . T)) +((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-3081 (((-583 (-773 |#1|)) $) NIL T ELT)) (-3083 (((-1084 $) $ (-773 |#1|)) NIL T ELT) (((-1084 |#2|) $) NIL T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL (|has| |#2| (-495)) ELT)) (-2063 (($ $) NIL (|has| |#2| (-495)) ELT)) (-2061 (((-85) $) NIL (|has| |#2| (-495)) ELT)) (-2819 (((-694) $) NIL T ELT) (((-694) $ (-583 (-773 |#1|))) NIL T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2707 (((-347 (-1084 $)) (-1084 $)) NIL (|has| |#2| (-821)) ELT)) (-3774 (($ $) NIL (|has| |#2| (-391)) ELT)) (-3970 (((-347 $) $) NIL (|has| |#2| (-391)) ELT)) (-2704 (((-3 (-583 (-1084 $)) #1#) (-583 (-1084 $)) (-1084 $)) NIL (|has| |#2| (-821)) ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-349 (-484)) #1#) $) NIL (|has| |#2| (-950 (-349 (-484)))) ELT) (((-3 (-484) #1#) $) NIL (|has| |#2| (-950 (-484))) ELT) (((-3 (-773 |#1|) #1#) $) NIL T ELT)) (-3156 ((|#2| $) NIL T ELT) (((-349 (-484)) $) NIL (|has| |#2| (-950 (-349 (-484)))) ELT) (((-484) $) NIL (|has| |#2| (-950 (-484))) ELT) (((-773 |#1|) $) NIL T ELT)) (-3755 (($ $ $ (-773 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-1936 (($ $ (-583 (-484))) NIL T ELT)) (-3958 (($ $) NIL T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) NIL (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1178 |#2|))) (-630 $) (-1178 $)) NIL T ELT) (((-630 |#2|) (-630 $)) NIL T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-3502 (($ $) NIL (|has| |#2| (-391)) ELT) (($ $ (-773 |#1|)) NIL (|has| |#2| (-391)) ELT)) (-2818 (((-583 $) $) NIL T ELT)) (-3722 (((-85) $) NIL (|has| |#2| (-821)) ELT)) (-1623 (($ $ |#2| (-197 (-3956 |#1|) (-694)) $) NIL T ELT)) (-2796 (((-798 (-329) $) $ (-800 (-329)) (-798 (-329) $)) NIL (-12 (|has| (-773 |#1|) (-796 (-329))) (|has| |#2| (-796 (-329)))) ELT) (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) NIL (-12 (|has| (-773 |#1|) (-796 (-484))) (|has| |#2| (-796 (-484)))) ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2420 (((-694) $) NIL T ELT)) (-3084 (($ (-1084 |#2|) (-773 |#1|)) NIL T ELT) (($ (-1084 $) (-773 |#1|)) NIL T ELT)) (-2821 (((-583 $) $) NIL T ELT)) (-3936 (((-85) $) NIL T ELT)) (-2893 (($ |#2| (-197 (-3956 |#1|) (-694))) NIL T ELT) (($ $ (-773 |#1|) (-694)) NIL T ELT) (($ $ (-583 (-773 |#1|)) (-583 (-694))) NIL T ELT)) (-3762 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $ (-773 |#1|)) NIL T ELT)) (-2820 (((-197 (-3956 |#1|) (-694)) $) NIL T ELT) (((-694) $ (-773 |#1|)) NIL T ELT) (((-583 (-694)) $ (-583 (-773 |#1|))) NIL T ELT)) (-1624 (($ (-1 (-197 (-3956 |#1|) (-694)) (-197 (-3956 |#1|) (-694))) $) NIL T ELT)) (-3957 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3082 (((-3 (-773 |#1|) #1#) $) NIL T ELT)) (-2280 (((-630 (-484)) (-1178 $)) NIL (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1178 |#2|))) (-1178 $) $) NIL T ELT) (((-630 |#2|) (-1178 $)) NIL T ELT)) (-2894 (($ $) NIL T ELT)) (-3174 ((|#2| $) NIL T ELT)) (-1890 (($ (-583 $)) NIL (|has| |#2| (-391)) ELT) (($ $ $) NIL (|has| |#2| (-391)) ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2823 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2822 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2824 (((-3 (-2 (|:| |var| (-773 |#1|)) (|:| -2401 (-694))) #1#) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1796 (((-85) $) NIL T ELT)) (-1795 ((|#2| $) NIL T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) NIL (|has| |#2| (-391)) ELT)) (-3144 (($ (-583 $)) NIL (|has| |#2| (-391)) ELT) (($ $ $) NIL (|has| |#2| (-391)) ELT)) (-2705 (((-347 (-1084 $)) (-1084 $)) NIL (|has| |#2| (-821)) ELT)) (-2706 (((-347 (-1084 $)) (-1084 $)) NIL (|has| |#2| (-821)) ELT)) (-3731 (((-347 $) $) NIL (|has| |#2| (-821)) ELT)) (-3465 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-495)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-495)) ELT)) (-3767 (($ $ (-583 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ (-773 |#1|) |#2|) NIL T ELT) (($ $ (-583 (-773 |#1|)) (-583 |#2|)) NIL T ELT) (($ $ (-773 |#1|) $) NIL T ELT) (($ $ (-583 (-773 |#1|)) (-583 $)) NIL T ELT)) (-3756 (($ $ (-773 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-3757 (($ $ (-583 (-773 |#1|)) (-583 (-694))) NIL T ELT) (($ $ (-773 |#1|) (-694)) NIL T ELT) (($ $ (-583 (-773 |#1|))) NIL T ELT) (($ $ (-773 |#1|)) NIL T ELT)) (-3947 (((-197 (-3956 |#1|) (-694)) $) NIL T ELT) (((-694) $ (-773 |#1|)) NIL T ELT) (((-583 (-694)) $ (-583 (-773 |#1|))) NIL T ELT)) (-3971 (((-800 (-329)) $) NIL (-12 (|has| (-773 |#1|) (-553 (-800 (-329)))) (|has| |#2| (-553 (-800 (-329))))) ELT) (((-800 (-484)) $) NIL (-12 (|has| (-773 |#1|) (-553 (-800 (-484)))) (|has| |#2| (-553 (-800 (-484))))) ELT) (((-473) $) NIL (-12 (|has| (-773 |#1|) (-553 (-473))) (|has| |#2| (-553 (-473)))) ELT)) (-2817 ((|#2| $) NIL (|has| |#2| (-391)) ELT) (($ $ (-773 |#1|)) NIL (|has| |#2| (-391)) ELT)) (-2703 (((-3 (-1178 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| |#2| (-821))) ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-773 |#1|)) NIL T ELT) (($ (-349 (-484))) NIL (OR (|has| |#2| (-38 (-349 (-484)))) (|has| |#2| (-950 (-349 (-484))))) ELT) (($ $) NIL (|has| |#2| (-495)) ELT)) (-3816 (((-583 |#2|) $) NIL T ELT)) (-3676 ((|#2| $ (-197 (-3956 |#1|) (-694))) NIL T ELT) (($ $ (-773 |#1|) (-694)) NIL T ELT) (($ $ (-583 (-773 |#1|)) (-583 (-694))) NIL T ELT)) (-2702 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#2| (-821))) (|has| |#2| (-118))) ELT)) (-3126 (((-694)) NIL T CONST)) (-1622 (($ $ $ (-694)) NIL (|has| |#2| (-146)) ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL (|has| |#2| (-495)) ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) NIL T CONST)) (-2666 (($) NIL T CONST)) (-2669 (($ $ (-583 (-773 |#1|)) (-583 (-694))) NIL T ELT) (($ $ (-773 |#1|) (-694)) NIL T ELT) (($ $ (-583 (-773 |#1|))) NIL T ELT) (($ $ (-773 |#1|)) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3948 (($ $ |#2|) NIL (|has| |#2| (-312)) ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-349 (-484))) NIL (|has| |#2| (-38 (-349 (-484)))) ELT) (($ (-349 (-484)) $) NIL (|has| |#2| (-38 (-349 (-484)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT))) +(((-206 |#1| |#2|) (-13 (-861 |#2| (-197 (-3956 |#1|) (-694)) (-773 |#1|)) (-10 -8 (-15 -1936 ($ $ (-583 (-484)))))) (-583 (-1089)) (-961)) (T -206)) +((-1936 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-484))) (-5 *1 (-206 *3 *4)) (-14 *3 (-583 (-1089))) (-4 *4 (-961))))) +((-2568 (((-85) $ $) NIL T ELT)) (-1478 (((-1184) $) 17 T ELT)) (-1480 (((-158 (-208)) $) 11 T ELT)) (-1479 (($ (-158 (-208))) 12 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1481 (((-208) $) 7 T ELT)) (-3945 (((-772) $) 9 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 15 T ELT))) +(((-207) (-13 (-1013) (-10 -8 (-15 -1481 ((-208) $)) (-15 -1480 ((-158 (-208)) $)) (-15 -1479 ($ (-158 (-208)))) (-15 -1478 ((-1184) $))))) (T -207)) +((-1481 (*1 *2 *1) (-12 (-5 *2 (-208)) (-5 *1 (-207)))) (-1480 (*1 *2 *1) (-12 (-5 *2 (-158 (-208))) (-5 *1 (-207)))) (-1479 (*1 *1 *2) (-12 (-5 *2 (-158 (-208))) (-5 *1 (-207)))) (-1478 (*1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-207))))) +((-2568 (((-85) $ $) NIL T ELT)) (-1423 (((-583 (-774)) $) NIL T ELT)) (-3541 (((-446) $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-1425 (((-161) $) NIL T ELT)) (-2633 (((-85) $ (-446)) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1482 (((-282) $) 7 T ELT)) (-1424 (((-583 (-85)) $) NIL T ELT)) (-3945 (((-772) $) NIL T ELT) (((-157) $) 8 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2521 (((-55) $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT))) +(((-208) (-13 (-160) (-552 (-157)) (-10 -8 (-15 -1482 ((-282) $))))) (T -208)) +((-1482 (*1 *2 *1) (-12 (-5 *2 (-282)) (-5 *1 (-208))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3799 (((-1094) $ (-694)) 14 T ELT)) (-3945 (((-772) $) 20 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 17 T ELT)) (-3956 (((-694) $) 11 T ELT))) +(((-209) (-13 (-1013) (-241 (-694) (-1094)) (-10 -8 (-15 -3956 ((-694) $))))) (T -209)) +((-3956 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-209))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-3706 (($ (-830)) NIL (|has| |#4| (-961)) ELT)) (-2198 (((-1184) $ (-484) (-484)) NIL (|has| $ (-6 -3995)) ELT)) (-2483 (($ $ $) NIL (|has| |#4| (-717)) ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3136 (((-694)) NIL (|has| |#4| (-319)) ELT)) (-3787 ((|#4| $ (-484) |#4|) NIL (|has| $ (-6 -3995)) ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 |#4| #1#) $) NIL (|has| |#4| (-1013)) ELT) (((-3 (-484) #1#) $) NIL (-12 (|has| |#4| (-950 (-484))) (|has| |#4| (-1013))) ELT) (((-3 (-349 (-484)) #1#) $) NIL (-12 (|has| |#4| (-950 (-349 (-484)))) (|has| |#4| (-1013))) ELT)) (-3156 ((|#4| $) NIL (|has| |#4| (-1013)) ELT) (((-484) $) NIL (-12 (|has| |#4| (-950 (-484))) (|has| |#4| (-1013))) ELT) (((-349 (-484)) $) NIL (-12 (|has| |#4| (-950 (-349 (-484)))) (|has| |#4| (-1013))) ELT)) (-2279 (((-2 (|:| |mat| (-630 |#4|)) (|:| |vec| (-1178 |#4|))) (-630 $) (-1178 $)) NIL (|has| |#4| (-961)) ELT) (((-630 |#4|) (-630 $)) NIL (|has| |#4| (-961)) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) NIL (-12 (|has| |#4| (-580 (-484))) (|has| |#4| (-961))) ELT) (((-630 (-484)) (-630 $)) NIL (-12 (|has| |#4| (-580 (-484))) (|has| |#4| (-961))) ELT)) (-3466 (((-3 $ #1#) $) NIL (|has| |#4| (-961)) ELT)) (-2994 (($) NIL (|has| |#4| (-319)) ELT)) (-1575 ((|#4| $ (-484) |#4|) NIL (|has| $ (-6 -3995)) ELT)) (-3112 ((|#4| $ (-484)) NIL T ELT)) (-3186 (((-85) $) NIL (|has| |#4| (-717)) ELT)) (-2889 (((-583 |#4|) $) NIL (|has| $ (-6 -3994)) ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL (|has| |#4| (-961)) ELT)) (-2200 (((-484) $) NIL (|has| (-484) (-756)) ELT)) (-2531 (($ $ $) NIL (|has| |#4| (-756)) ELT)) (-2608 (((-583 |#4|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3245 (((-85) |#4| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#4| (-1013))) ELT)) (-2201 (((-484) $) NIL (|has| (-484) (-756)) ELT)) (-2857 (($ $ $) NIL (|has| |#4| (-756)) ELT)) (-1948 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#4| |#4|) $) NIL T ELT)) (-2010 (((-830) $) NIL (|has| |#4| (-319)) ELT)) (-2280 (((-2 (|:| |mat| (-630 |#4|)) (|:| |vec| (-1178 |#4|))) (-1178 $) $) NIL (|has| |#4| (-961)) ELT) (((-630 |#4|) (-1178 $)) NIL (|has| |#4| (-961)) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (-12 (|has| |#4| (-580 (-484))) (|has| |#4| (-961))) ELT) (((-630 (-484)) (-1178 $)) NIL (-12 (|has| |#4| (-580 (-484))) (|has| |#4| (-961))) ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2203 (((-583 (-484)) $) NIL T ELT)) (-2204 (((-85) (-484) $) NIL T ELT)) (-2400 (($ (-830)) NIL (|has| |#4| (-319)) ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3800 ((|#4| $) NIL (|has| (-484) (-756)) ELT)) (-2199 (($ $ |#4|) NIL (|has| $ (-6 -3995)) ELT)) (-1946 (((-85) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3767 (($ $ (-583 (-249 |#4|))) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-249 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-583 |#4|) (-583 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT)) (-1221 (((-85) $ $) NIL T ELT)) (-2202 (((-85) |#4| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#4| (-1013))) ELT)) (-2205 (((-583 |#4|) $) NIL T ELT)) (-3402 (((-85) $) NIL T ELT)) (-3564 (($) NIL T ELT)) (-3799 ((|#4| $ (-484) |#4|) NIL T ELT) ((|#4| $ (-484)) 12 T ELT)) (-3835 ((|#4| $ $) NIL (|has| |#4| (-961)) ELT)) (-1467 (($ (-1178 |#4|)) NIL T ELT)) (-3910 (((-107)) NIL (|has| |#4| (-312)) ELT)) (-3757 (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-961)) ELT) (($ $ (-1 |#4| |#4|) (-694)) NIL (|has| |#4| (-961)) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (OR (-12 (|has| |#4| (-809 (-1089))) (|has| |#4| (-961))) (-12 (|has| |#4| (-811 (-1089))) (|has| |#4| (-961)))) ELT) (($ $ (-1089) (-694)) NIL (OR (-12 (|has| |#4| (-809 (-1089))) (|has| |#4| (-961))) (-12 (|has| |#4| (-811 (-1089))) (|has| |#4| (-961)))) ELT) (($ $ (-583 (-1089))) NIL (OR (-12 (|has| |#4| (-809 (-1089))) (|has| |#4| (-961))) (-12 (|has| |#4| (-811 (-1089))) (|has| |#4| (-961)))) ELT) (($ $ (-1089)) NIL (OR (-12 (|has| |#4| (-809 (-1089))) (|has| |#4| (-961))) (-12 (|has| |#4| (-811 (-1089))) (|has| |#4| (-961)))) ELT) (($ $ (-694)) NIL (OR (-12 (|has| |#4| (-190)) (|has| |#4| (-961))) (-12 (|has| |#4| (-189)) (|has| |#4| (-961)))) ELT) (($ $) NIL (OR (-12 (|has| |#4| (-190)) (|has| |#4| (-961))) (-12 (|has| |#4| (-189)) (|has| |#4| (-961)))) ELT)) (-1945 (((-694) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3994)) ELT) (((-694) |#4| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#4| (-1013))) ELT)) (-3399 (($ $) NIL T ELT)) (-3945 (((-1178 |#4|) $) NIL T ELT) (($ |#4|) NIL (|has| |#4| (-1013)) ELT) (((-772) $) NIL T ELT) (($ (-484)) NIL (OR (-12 (|has| |#4| (-950 (-484))) (|has| |#4| (-1013))) (|has| |#4| (-961))) ELT) (($ (-349 (-484))) NIL (-12 (|has| |#4| (-950 (-349 (-484)))) (|has| |#4| (-1013))) ELT)) (-3126 (((-694)) NIL (|has| |#4| (-961)) CONST)) (-1264 (((-85) $ $) NIL T ELT)) (-1947 (((-85) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3125 (((-85) $ $) NIL (|has| |#4| (-961)) ELT)) (-2660 (($) NIL T CONST)) (-2666 (($) NIL (|has| |#4| (-961)) CONST)) (-2669 (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-961)) ELT) (($ $ (-1 |#4| |#4|) (-694)) NIL (|has| |#4| (-961)) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (OR (-12 (|has| |#4| (-809 (-1089))) (|has| |#4| (-961))) (-12 (|has| |#4| (-811 (-1089))) (|has| |#4| (-961)))) ELT) (($ $ (-1089) (-694)) NIL (OR (-12 (|has| |#4| (-809 (-1089))) (|has| |#4| (-961))) (-12 (|has| |#4| (-811 (-1089))) (|has| |#4| (-961)))) ELT) (($ $ (-583 (-1089))) NIL (OR (-12 (|has| |#4| (-809 (-1089))) (|has| |#4| (-961))) (-12 (|has| |#4| (-811 (-1089))) (|has| |#4| (-961)))) ELT) (($ $ (-1089)) NIL (OR (-12 (|has| |#4| (-809 (-1089))) (|has| |#4| (-961))) (-12 (|has| |#4| (-811 (-1089))) (|has| |#4| (-961)))) ELT) (($ $ (-694)) NIL (OR (-12 (|has| |#4| (-190)) (|has| |#4| (-961))) (-12 (|has| |#4| (-189)) (|has| |#4| (-961)))) ELT) (($ $) NIL (OR (-12 (|has| |#4| (-190)) (|has| |#4| (-961))) (-12 (|has| |#4| (-189)) (|has| |#4| (-961)))) ELT)) (-2566 (((-85) $ $) NIL (|has| |#4| (-756)) ELT)) (-2567 (((-85) $ $) NIL (|has| |#4| (-756)) ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL (|has| |#4| (-756)) ELT)) (-2685 (((-85) $ $) NIL (|has| |#4| (-756)) ELT)) (-3948 (($ $ |#4|) NIL (|has| |#4| (-312)) ELT)) (-3836 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (** (($ $ (-694)) NIL (|has| |#4| (-961)) ELT) (($ $ (-830)) NIL (|has| |#4| (-961)) ELT)) (* (($ |#2| $) 14 T ELT) (($ (-484) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-830) $) NIL T ELT) (($ |#3| $) 18 T ELT) (($ $ |#4|) NIL (|has| |#4| (-663)) ELT) (($ |#4| $) NIL (|has| |#4| (-663)) ELT) (($ $ $) NIL (|has| |#4| (-961)) ELT)) (-3956 (((-694) $) NIL (|has| $ (-6 -3994)) ELT))) +(((-210 |#1| |#2| |#3| |#4|) (-13 (-196 |#1| |#4|) (-590 |#2|) (-590 |#3|)) (-830) (-961) (-1036 |#1| |#2| (-197 |#1| |#2|) (-197 |#1| |#2|)) (-590 |#2|)) (T -210)) +NIL +((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-3706 (($ (-830)) NIL (|has| |#3| (-961)) ELT)) (-2198 (((-1184) $ (-484) (-484)) NIL (|has| $ (-6 -3995)) ELT)) (-2483 (($ $ $) NIL (|has| |#3| (-717)) ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3136 (((-694)) NIL (|has| |#3| (-319)) ELT)) (-3787 ((|#3| $ (-484) |#3|) NIL (|has| $ (-6 -3995)) ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 |#3| #1#) $) NIL (|has| |#3| (-1013)) ELT) (((-3 (-484) #1#) $) NIL (-12 (|has| |#3| (-950 (-484))) (|has| |#3| (-1013))) ELT) (((-3 (-349 (-484)) #1#) $) NIL (-12 (|has| |#3| (-950 (-349 (-484)))) (|has| |#3| (-1013))) ELT)) (-3156 ((|#3| $) NIL (|has| |#3| (-1013)) ELT) (((-484) $) NIL (-12 (|has| |#3| (-950 (-484))) (|has| |#3| (-1013))) ELT) (((-349 (-484)) $) NIL (-12 (|has| |#3| (-950 (-349 (-484)))) (|has| |#3| (-1013))) ELT)) (-2279 (((-2 (|:| |mat| (-630 |#3|)) (|:| |vec| (-1178 |#3|))) (-630 $) (-1178 $)) NIL (|has| |#3| (-961)) ELT) (((-630 |#3|) (-630 $)) NIL (|has| |#3| (-961)) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) NIL (-12 (|has| |#3| (-580 (-484))) (|has| |#3| (-961))) ELT) (((-630 (-484)) (-630 $)) NIL (-12 (|has| |#3| (-580 (-484))) (|has| |#3| (-961))) ELT)) (-3466 (((-3 $ #1#) $) NIL (|has| |#3| (-961)) ELT)) (-2994 (($) NIL (|has| |#3| (-319)) ELT)) (-1575 ((|#3| $ (-484) |#3|) NIL (|has| $ (-6 -3995)) ELT)) (-3112 ((|#3| $ (-484)) NIL T ELT)) (-3186 (((-85) $) NIL (|has| |#3| (-717)) ELT)) (-2889 (((-583 |#3|) $) NIL (|has| $ (-6 -3994)) ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL (|has| |#3| (-961)) ELT)) (-2200 (((-484) $) NIL (|has| (-484) (-756)) ELT)) (-2531 (($ $ $) NIL (|has| |#3| (-756)) ELT)) (-2608 (((-583 |#3|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3245 (((-85) |#3| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#3| (-1013))) ELT)) (-2201 (((-484) $) NIL (|has| (-484) (-756)) ELT)) (-2857 (($ $ $) NIL (|has| |#3| (-756)) ELT)) (-1948 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#3| |#3|) $) NIL T ELT)) (-2010 (((-830) $) NIL (|has| |#3| (-319)) ELT)) (-2280 (((-2 (|:| |mat| (-630 |#3|)) (|:| |vec| (-1178 |#3|))) (-1178 $) $) NIL (|has| |#3| (-961)) ELT) (((-630 |#3|) (-1178 $)) NIL (|has| |#3| (-961)) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (-12 (|has| |#3| (-580 (-484))) (|has| |#3| (-961))) ELT) (((-630 (-484)) (-1178 $)) NIL (-12 (|has| |#3| (-580 (-484))) (|has| |#3| (-961))) ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2203 (((-583 (-484)) $) NIL T ELT)) (-2204 (((-85) (-484) $) NIL T ELT)) (-2400 (($ (-830)) NIL (|has| |#3| (-319)) ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3800 ((|#3| $) NIL (|has| (-484) (-756)) ELT)) (-2199 (($ $ |#3|) NIL (|has| $ (-6 -3995)) ELT)) (-1946 (((-85) (-1 (-85) |#3|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3767 (($ $ (-583 (-249 |#3|))) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1013))) ELT) (($ $ (-249 |#3|)) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1013))) ELT) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1013))) ELT) (($ $ (-583 |#3|) (-583 |#3|)) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1013))) ELT)) (-1221 (((-85) $ $) NIL T ELT)) (-2202 (((-85) |#3| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#3| (-1013))) ELT)) (-2205 (((-583 |#3|) $) NIL T ELT)) (-3402 (((-85) $) NIL T ELT)) (-3564 (($) NIL T ELT)) (-3799 ((|#3| $ (-484) |#3|) NIL T ELT) ((|#3| $ (-484)) 11 T ELT)) (-3835 ((|#3| $ $) NIL (|has| |#3| (-961)) ELT)) (-1467 (($ (-1178 |#3|)) NIL T ELT)) (-3910 (((-107)) NIL (|has| |#3| (-312)) ELT)) (-3757 (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-961)) ELT) (($ $ (-1 |#3| |#3|) (-694)) NIL (|has| |#3| (-961)) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (OR (-12 (|has| |#3| (-809 (-1089))) (|has| |#3| (-961))) (-12 (|has| |#3| (-811 (-1089))) (|has| |#3| (-961)))) ELT) (($ $ (-1089) (-694)) NIL (OR (-12 (|has| |#3| (-809 (-1089))) (|has| |#3| (-961))) (-12 (|has| |#3| (-811 (-1089))) (|has| |#3| (-961)))) ELT) (($ $ (-583 (-1089))) NIL (OR (-12 (|has| |#3| (-809 (-1089))) (|has| |#3| (-961))) (-12 (|has| |#3| (-811 (-1089))) (|has| |#3| (-961)))) ELT) (($ $ (-1089)) NIL (OR (-12 (|has| |#3| (-809 (-1089))) (|has| |#3| (-961))) (-12 (|has| |#3| (-811 (-1089))) (|has| |#3| (-961)))) ELT) (($ $ (-694)) NIL (OR (-12 (|has| |#3| (-190)) (|has| |#3| (-961))) (-12 (|has| |#3| (-189)) (|has| |#3| (-961)))) ELT) (($ $) NIL (OR (-12 (|has| |#3| (-190)) (|has| |#3| (-961))) (-12 (|has| |#3| (-189)) (|has| |#3| (-961)))) ELT)) (-1945 (((-694) (-1 (-85) |#3|) $) NIL (|has| $ (-6 -3994)) ELT) (((-694) |#3| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#3| (-1013))) ELT)) (-3399 (($ $) NIL T ELT)) (-3945 (((-1178 |#3|) $) NIL T ELT) (($ |#3|) NIL (|has| |#3| (-1013)) ELT) (((-772) $) NIL T ELT) (($ (-484)) NIL (OR (-12 (|has| |#3| (-950 (-484))) (|has| |#3| (-1013))) (|has| |#3| (-961))) ELT) (($ (-349 (-484))) NIL (-12 (|has| |#3| (-950 (-349 (-484)))) (|has| |#3| (-1013))) ELT)) (-3126 (((-694)) NIL (|has| |#3| (-961)) CONST)) (-1264 (((-85) $ $) NIL T ELT)) (-1947 (((-85) (-1 (-85) |#3|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3125 (((-85) $ $) NIL (|has| |#3| (-961)) ELT)) (-2660 (($) NIL T CONST)) (-2666 (($) NIL (|has| |#3| (-961)) CONST)) (-2669 (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-961)) ELT) (($ $ (-1 |#3| |#3|) (-694)) NIL (|has| |#3| (-961)) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (OR (-12 (|has| |#3| (-809 (-1089))) (|has| |#3| (-961))) (-12 (|has| |#3| (-811 (-1089))) (|has| |#3| (-961)))) ELT) (($ $ (-1089) (-694)) NIL (OR (-12 (|has| |#3| (-809 (-1089))) (|has| |#3| (-961))) (-12 (|has| |#3| (-811 (-1089))) (|has| |#3| (-961)))) ELT) (($ $ (-583 (-1089))) NIL (OR (-12 (|has| |#3| (-809 (-1089))) (|has| |#3| (-961))) (-12 (|has| |#3| (-811 (-1089))) (|has| |#3| (-961)))) ELT) (($ $ (-1089)) NIL (OR (-12 (|has| |#3| (-809 (-1089))) (|has| |#3| (-961))) (-12 (|has| |#3| (-811 (-1089))) (|has| |#3| (-961)))) ELT) (($ $ (-694)) NIL (OR (-12 (|has| |#3| (-190)) (|has| |#3| (-961))) (-12 (|has| |#3| (-189)) (|has| |#3| (-961)))) ELT) (($ $) NIL (OR (-12 (|has| |#3| (-190)) (|has| |#3| (-961))) (-12 (|has| |#3| (-189)) (|has| |#3| (-961)))) ELT)) (-2566 (((-85) $ $) NIL (|has| |#3| (-756)) ELT)) (-2567 (((-85) $ $) NIL (|has| |#3| (-756)) ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL (|has| |#3| (-756)) ELT)) (-2685 (((-85) $ $) NIL (|has| |#3| (-756)) ELT)) (-3948 (($ $ |#3|) NIL (|has| |#3| (-312)) ELT)) (-3836 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (** (($ $ (-694)) NIL (|has| |#3| (-961)) ELT) (($ $ (-830)) NIL (|has| |#3| (-961)) ELT)) (* (($ |#2| $) 13 T ELT) (($ (-484) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-830) $) NIL T ELT) (($ $ |#3|) NIL (|has| |#3| (-663)) ELT) (($ |#3| $) NIL (|has| |#3| (-663)) ELT) (($ $ $) NIL (|has| |#3| (-961)) ELT)) (-3956 (((-694) $) NIL (|has| $ (-6 -3994)) ELT))) +(((-211 |#1| |#2| |#3|) (-13 (-196 |#1| |#3|) (-590 |#2|)) (-694) (-961) (-590 |#2|)) (T -211)) +NIL +((-1487 (((-583 (-694)) $) 56 T ELT) (((-583 (-694)) $ |#3|) 59 T ELT)) (-1521 (((-694) $) 58 T ELT) (((-694) $ |#3|) 61 T ELT)) (-1483 (($ $) 76 T ELT)) (-3157 (((-3 |#2| #1="failed") $) NIL T ELT) (((-3 (-349 (-484)) #1#) $) NIL T ELT) (((-3 (-484) #1#) $) NIL T ELT) (((-3 |#4| #1#) $) NIL T ELT) (((-3 |#3| #1#) $) 83 T ELT)) (-3771 (((-694) $ |#3|) 43 T ELT) (((-694) $) 38 T ELT)) (-1522 (((-1 $ (-694)) |#3|) 15 T ELT) (((-1 $ (-694)) $) 88 T ELT)) (-1485 ((|#4| $) 69 T ELT)) (-1486 (((-85) $) 67 T ELT)) (-1484 (($ $) 75 T ELT)) (-3767 (($ $ (-583 (-249 $))) 111 T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ |#4| |#2|) NIL T ELT) (($ $ (-583 |#4|) (-583 |#2|)) NIL T ELT) (($ $ |#4| $) NIL T ELT) (($ $ (-583 |#4|) (-583 $)) NIL T ELT) (($ $ |#3| $) NIL T ELT) (($ $ (-583 |#3|) (-583 $)) 103 T ELT) (($ $ |#3| |#2|) NIL T ELT) (($ $ (-583 |#3|) (-583 |#2|)) 97 T ELT)) (-3757 (($ $ (-583 |#4|) (-583 (-694))) NIL T ELT) (($ $ |#4| (-694)) NIL T ELT) (($ $ (-583 |#4|)) NIL T ELT) (($ $ |#4|) NIL T ELT) (($ $ (-1 |#2| |#2|)) 32 T ELT) (($ $ (-1 |#2| |#2|) (-694)) NIL T ELT) (($ $ (-1089)) NIL T ELT) (($ $ (-583 (-1089))) NIL T ELT) (($ $ (-1089) (-694)) NIL T ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL T ELT) (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-1488 (((-583 |#3|) $) 86 T ELT)) (-3947 ((|#5| $) NIL T ELT) (((-694) $ |#4|) NIL T ELT) (((-583 (-694)) $ (-583 |#4|)) NIL T ELT) (((-694) $ |#3|) 49 T ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#2|) NIL T ELT) (($ |#4|) NIL T ELT) (($ |#3|) 78 T ELT) (($ (-349 (-484))) NIL T ELT) (($ $) NIL T ELT))) +(((-212 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3757 (|#1| |#1| (-694))) (-15 -3757 (|#1| |#1|)) (-15 -3757 (|#1| |#1| (-583 (-1089)) (-583 (-694)))) (-15 -3757 (|#1| |#1| (-1089) (-694))) (-15 -3757 (|#1| |#1| (-583 (-1089)))) (-15 -3757 (|#1| |#1| (-1089))) (-15 -3945 (|#1| |#1|)) (-15 -3945 (|#1| (-349 (-484)))) (-15 -3767 (|#1| |#1| (-583 |#3|) (-583 |#2|))) (-15 -3767 (|#1| |#1| |#3| |#2|)) (-15 -3767 (|#1| |#1| (-583 |#3|) (-583 |#1|))) (-15 -3767 (|#1| |#1| |#3| |#1|)) (-15 -1522 ((-1 |#1| (-694)) |#1|)) (-15 -1483 (|#1| |#1|)) (-15 -1484 (|#1| |#1|)) (-15 -1485 (|#4| |#1|)) (-15 -1486 ((-85) |#1|)) (-15 -1521 ((-694) |#1| |#3|)) (-15 -1487 ((-583 (-694)) |#1| |#3|)) (-15 -1521 ((-694) |#1|)) (-15 -1487 ((-583 (-694)) |#1|)) (-15 -3947 ((-694) |#1| |#3|)) (-15 -3771 ((-694) |#1|)) (-15 -3771 ((-694) |#1| |#3|)) (-15 -1488 ((-583 |#3|) |#1|)) (-15 -1522 ((-1 |#1| (-694)) |#3|)) (-15 -3945 (|#1| |#3|)) (-15 -3157 ((-3 |#3| #1="failed") |#1|)) (-15 -3757 (|#1| |#1| (-1 |#2| |#2|) (-694))) (-15 -3757 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3947 ((-583 (-694)) |#1| (-583 |#4|))) (-15 -3947 ((-694) |#1| |#4|)) (-15 -3945 (|#1| |#4|)) (-15 -3157 ((-3 |#4| #1#) |#1|)) (-15 -3767 (|#1| |#1| (-583 |#4|) (-583 |#1|))) (-15 -3767 (|#1| |#1| |#4| |#1|)) (-15 -3767 (|#1| |#1| (-583 |#4|) (-583 |#2|))) (-15 -3767 (|#1| |#1| |#4| |#2|)) (-15 -3767 (|#1| |#1| (-583 |#1|) (-583 |#1|))) (-15 -3767 (|#1| |#1| |#1| |#1|)) (-15 -3767 (|#1| |#1| (-249 |#1|))) (-15 -3767 (|#1| |#1| (-583 (-249 |#1|)))) (-15 -3947 (|#5| |#1|)) (-15 -3157 ((-3 (-484) #1#) |#1|)) (-15 -3157 ((-3 (-349 (-484)) #1#) |#1|)) (-15 -3157 ((-3 |#2| #1#) |#1|)) (-15 -3945 (|#1| |#2|)) (-15 -3757 (|#1| |#1| |#4|)) (-15 -3757 (|#1| |#1| (-583 |#4|))) (-15 -3757 (|#1| |#1| |#4| (-694))) (-15 -3757 (|#1| |#1| (-583 |#4|) (-583 (-694)))) (-15 -3945 (|#1| (-484))) (-15 -3945 ((-772) |#1|))) (-213 |#2| |#3| |#4| |#5|) (-961) (-756) (-228 |#3|) (-717)) (T -212)) +NIL +((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-1487 (((-583 (-694)) $) 251 T ELT) (((-583 (-694)) $ |#2|) 249 T ELT)) (-1521 (((-694) $) 250 T ELT) (((-694) $ |#2|) 248 T ELT)) (-3081 (((-583 |#3|) $) 123 T ELT)) (-3083 (((-1084 $) $ |#3|) 138 T ELT) (((-1084 |#1|) $) 137 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) 100 (|has| |#1| (-495)) ELT)) (-2063 (($ $) 101 (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) 103 (|has| |#1| (-495)) ELT)) (-2819 (((-694) $) 125 T ELT) (((-694) $ (-583 |#3|)) 124 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-2707 (((-347 (-1084 $)) (-1084 $)) 113 (|has| |#1| (-821)) ELT)) (-3774 (($ $) 111 (|has| |#1| (-391)) ELT)) (-3970 (((-347 $) $) 110 (|has| |#1| (-391)) ELT)) (-2704 (((-3 (-583 (-1084 $)) #1="failed") (-583 (-1084 $)) (-1084 $)) 116 (|has| |#1| (-821)) ELT)) (-1483 (($ $) 244 T ELT)) (-3723 (($) 23 T CONST)) (-3157 (((-3 |#1| #2="failed") $) 181 T ELT) (((-3 (-349 (-484)) #2#) $) 178 (|has| |#1| (-950 (-349 (-484)))) ELT) (((-3 (-484) #2#) $) 176 (|has| |#1| (-950 (-484))) ELT) (((-3 |#3| #2#) $) 153 T ELT) (((-3 |#2| #2#) $) 258 T ELT)) (-3156 ((|#1| $) 180 T ELT) (((-349 (-484)) $) 179 (|has| |#1| (-950 (-349 (-484)))) ELT) (((-484) $) 177 (|has| |#1| (-950 (-484))) ELT) ((|#3| $) 154 T ELT) ((|#2| $) 259 T ELT)) (-3755 (($ $ $ |#3|) 121 (|has| |#1| (-146)) ELT)) (-3958 (($ $) 171 T ELT)) (-2279 (((-630 (-484)) (-630 $)) 149 (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) 148 (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1178 |#1|))) (-630 $) (-1178 $)) 147 T ELT) (((-630 |#1|) (-630 $)) 146 T ELT)) (-3466 (((-3 $ "failed") $) 42 T ELT)) (-3502 (($ $) 193 (|has| |#1| (-391)) ELT) (($ $ |#3|) 118 (|has| |#1| (-391)) ELT)) (-2818 (((-583 $) $) 122 T ELT)) (-3722 (((-85) $) 109 (|has| |#1| (-821)) ELT)) (-1623 (($ $ |#1| |#4| $) 189 T ELT)) (-2796 (((-798 (-329) $) $ (-800 (-329)) (-798 (-329) $)) 97 (-12 (|has| |#3| (-796 (-329))) (|has| |#1| (-796 (-329)))) ELT) (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) 96 (-12 (|has| |#3| (-796 (-484))) (|has| |#1| (-796 (-484)))) ELT)) (-3771 (((-694) $ |#2|) 254 T ELT) (((-694) $) 253 T ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-2420 (((-694) $) 186 T ELT)) (-3084 (($ (-1084 |#1|) |#3|) 130 T ELT) (($ (-1084 $) |#3|) 129 T ELT)) (-2821 (((-583 $) $) 139 T ELT)) (-3936 (((-85) $) 169 T ELT)) (-2893 (($ |#1| |#4|) 170 T ELT) (($ $ |#3| (-694)) 132 T ELT) (($ $ (-583 |#3|) (-583 (-694))) 131 T ELT)) (-3762 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $ |#3|) 133 T ELT)) (-2820 ((|#4| $) 187 T ELT) (((-694) $ |#3|) 135 T ELT) (((-583 (-694)) $ (-583 |#3|)) 134 T ELT)) (-1624 (($ (-1 |#4| |#4|) $) 188 T ELT)) (-3957 (($ (-1 |#1| |#1|) $) 168 T ELT)) (-1522 (((-1 $ (-694)) |#2|) 256 T ELT) (((-1 $ (-694)) $) 243 (|has| |#1| (-190)) ELT)) (-3082 (((-3 |#3| #3="failed") $) 136 T ELT)) (-2280 (((-630 (-484)) (-1178 $)) 151 (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) 150 (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1178 |#1|))) (-1178 $) $) 145 T ELT) (((-630 |#1|) (-1178 $)) 144 T ELT)) (-2894 (($ $) 166 T ELT)) (-3174 ((|#1| $) 165 T ELT)) (-1485 ((|#3| $) 246 T ELT)) (-1890 (($ (-583 $)) 107 (|has| |#1| (-391)) ELT) (($ $ $) 106 (|has| |#1| (-391)) ELT)) (-3242 (((-1072) $) 11 T ELT)) (-1486 (((-85) $) 247 T ELT)) (-2823 (((-3 (-583 $) #3#) $) 127 T ELT)) (-2822 (((-3 (-583 $) #3#) $) 128 T ELT)) (-2824 (((-3 (-2 (|:| |var| |#3|) (|:| -2401 (-694))) #3#) $) 126 T ELT)) (-1484 (($ $) 245 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-1796 (((-85) $) 183 T ELT)) (-1795 ((|#1| $) 184 T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) 108 (|has| |#1| (-391)) ELT)) (-3144 (($ (-583 $)) 105 (|has| |#1| (-391)) ELT) (($ $ $) 104 (|has| |#1| (-391)) ELT)) (-2705 (((-347 (-1084 $)) (-1084 $)) 115 (|has| |#1| (-821)) ELT)) (-2706 (((-347 (-1084 $)) (-1084 $)) 114 (|has| |#1| (-821)) ELT)) (-3731 (((-347 $) $) 112 (|has| |#1| (-821)) ELT)) (-3465 (((-3 $ "failed") $ |#1|) 191 (|has| |#1| (-495)) ELT) (((-3 $ "failed") $ $) 99 (|has| |#1| (-495)) ELT)) (-3767 (($ $ (-583 (-249 $))) 162 T ELT) (($ $ (-249 $)) 161 T ELT) (($ $ $ $) 160 T ELT) (($ $ (-583 $) (-583 $)) 159 T ELT) (($ $ |#3| |#1|) 158 T ELT) (($ $ (-583 |#3|) (-583 |#1|)) 157 T ELT) (($ $ |#3| $) 156 T ELT) (($ $ (-583 |#3|) (-583 $)) 155 T ELT) (($ $ |#2| $) 242 (|has| |#1| (-190)) ELT) (($ $ (-583 |#2|) (-583 $)) 241 (|has| |#1| (-190)) ELT) (($ $ |#2| |#1|) 240 (|has| |#1| (-190)) ELT) (($ $ (-583 |#2|) (-583 |#1|)) 239 (|has| |#1| (-190)) ELT)) (-3756 (($ $ |#3|) 120 (|has| |#1| (-146)) ELT)) (-3757 (($ $ (-583 |#3|) (-583 (-694))) 52 T ELT) (($ $ |#3| (-694)) 51 T ELT) (($ $ (-583 |#3|)) 50 T ELT) (($ $ |#3|) 48 T ELT) (($ $ (-1 |#1| |#1|)) 263 T ELT) (($ $ (-1 |#1| |#1|) (-694)) 262 T ELT) (($ $) 238 (|has| |#1| (-189)) ELT) (($ $ (-694)) 236 (|has| |#1| (-189)) ELT) (($ $ (-1089)) 234 (|has| |#1| (-811 (-1089))) ELT) (($ $ (-583 (-1089))) 232 (|has| |#1| (-811 (-1089))) ELT) (($ $ (-1089) (-694)) 231 (|has| |#1| (-811 (-1089))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) 230 (|has| |#1| (-811 (-1089))) ELT)) (-1488 (((-583 |#2|) $) 255 T ELT)) (-3947 ((|#4| $) 167 T ELT) (((-694) $ |#3|) 143 T ELT) (((-583 (-694)) $ (-583 |#3|)) 142 T ELT) (((-694) $ |#2|) 252 T ELT)) (-3971 (((-800 (-329)) $) 95 (-12 (|has| |#3| (-553 (-800 (-329)))) (|has| |#1| (-553 (-800 (-329))))) ELT) (((-800 (-484)) $) 94 (-12 (|has| |#3| (-553 (-800 (-484)))) (|has| |#1| (-553 (-800 (-484))))) ELT) (((-473) $) 93 (-12 (|has| |#3| (-553 (-473))) (|has| |#1| (-553 (-473)))) ELT)) (-2817 ((|#1| $) 192 (|has| |#1| (-391)) ELT) (($ $ |#3|) 119 (|has| |#1| (-391)) ELT)) (-2703 (((-3 (-1178 $) #1#) (-630 $)) 117 (-2562 (|has| $ (-118)) (|has| |#1| (-821))) ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ |#1|) 182 T ELT) (($ |#3|) 152 T ELT) (($ |#2|) 257 T ELT) (($ (-349 (-484))) 91 (OR (|has| |#1| (-950 (-349 (-484)))) (|has| |#1| (-38 (-349 (-484))))) ELT) (($ $) 98 (|has| |#1| (-495)) ELT)) (-3816 (((-583 |#1|) $) 185 T ELT)) (-3676 ((|#1| $ |#4|) 172 T ELT) (($ $ |#3| (-694)) 141 T ELT) (($ $ (-583 |#3|) (-583 (-694))) 140 T ELT)) (-2702 (((-632 $) $) 92 (OR (-2562 (|has| $ (-118)) (|has| |#1| (-821))) (|has| |#1| (-118))) ELT)) (-3126 (((-694)) 40 T CONST)) (-1622 (($ $ $ (-694)) 190 (|has| |#1| (-146)) ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-2062 (((-85) $ $) 102 (|has| |#1| (-495)) ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-2669 (($ $ (-583 |#3|) (-583 (-694))) 55 T ELT) (($ $ |#3| (-694)) 54 T ELT) (($ $ (-583 |#3|)) 53 T ELT) (($ $ |#3|) 49 T ELT) (($ $ (-1 |#1| |#1|)) 261 T ELT) (($ $ (-1 |#1| |#1|) (-694)) 260 T ELT) (($ $) 237 (|has| |#1| (-189)) ELT) (($ $ (-694)) 235 (|has| |#1| (-189)) ELT) (($ $ (-1089)) 233 (|has| |#1| (-811 (-1089))) ELT) (($ $ (-583 (-1089))) 229 (|has| |#1| (-811 (-1089))) ELT) (($ $ (-1089) (-694)) 228 (|has| |#1| (-811 (-1089))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) 227 (|has| |#1| (-811 (-1089))) ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-3948 (($ $ |#1|) 173 (|has| |#1| (-312)) ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-349 (-484))) 175 (|has| |#1| (-38 (-349 (-484)))) ELT) (($ (-349 (-484)) $) 174 (|has| |#1| (-38 (-349 (-484)))) ELT) (($ |#1| $) 164 T ELT) (($ $ |#1|) 163 T ELT))) +(((-213 |#1| |#2| |#3| |#4|) (-113) (-961) (-756) (-228 |t#2|) (-717)) (T -213)) +((-1522 (*1 *2 *3) (-12 (-4 *4 (-961)) (-4 *3 (-756)) (-4 *5 (-228 *3)) (-4 *6 (-717)) (-5 *2 (-1 *1 (-694))) (-4 *1 (-213 *4 *3 *5 *6)))) (-1488 (*1 *2 *1) (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-756)) (-4 *5 (-228 *4)) (-4 *6 (-717)) (-5 *2 (-583 *4)))) (-3771 (*1 *2 *1 *3) (-12 (-4 *1 (-213 *4 *3 *5 *6)) (-4 *4 (-961)) (-4 *3 (-756)) (-4 *5 (-228 *3)) (-4 *6 (-717)) (-5 *2 (-694)))) (-3771 (*1 *2 *1) (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-756)) (-4 *5 (-228 *4)) (-4 *6 (-717)) (-5 *2 (-694)))) (-3947 (*1 *2 *1 *3) (-12 (-4 *1 (-213 *4 *3 *5 *6)) (-4 *4 (-961)) (-4 *3 (-756)) (-4 *5 (-228 *3)) (-4 *6 (-717)) (-5 *2 (-694)))) (-1487 (*1 *2 *1) (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-756)) (-4 *5 (-228 *4)) (-4 *6 (-717)) (-5 *2 (-583 (-694))))) (-1521 (*1 *2 *1) (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-756)) (-4 *5 (-228 *4)) (-4 *6 (-717)) (-5 *2 (-694)))) (-1487 (*1 *2 *1 *3) (-12 (-4 *1 (-213 *4 *3 *5 *6)) (-4 *4 (-961)) (-4 *3 (-756)) (-4 *5 (-228 *3)) (-4 *6 (-717)) (-5 *2 (-583 (-694))))) (-1521 (*1 *2 *1 *3) (-12 (-4 *1 (-213 *4 *3 *5 *6)) (-4 *4 (-961)) (-4 *3 (-756)) (-4 *5 (-228 *3)) (-4 *6 (-717)) (-5 *2 (-694)))) (-1486 (*1 *2 *1) (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-756)) (-4 *5 (-228 *4)) (-4 *6 (-717)) (-5 *2 (-85)))) (-1485 (*1 *2 *1) (-12 (-4 *1 (-213 *3 *4 *2 *5)) (-4 *3 (-961)) (-4 *4 (-756)) (-4 *5 (-717)) (-4 *2 (-228 *4)))) (-1484 (*1 *1 *1) (-12 (-4 *1 (-213 *2 *3 *4 *5)) (-4 *2 (-961)) (-4 *3 (-756)) (-4 *4 (-228 *3)) (-4 *5 (-717)))) (-1483 (*1 *1 *1) (-12 (-4 *1 (-213 *2 *3 *4 *5)) (-4 *2 (-961)) (-4 *3 (-756)) (-4 *4 (-228 *3)) (-4 *5 (-717)))) (-1522 (*1 *2 *1) (-12 (-4 *3 (-190)) (-4 *3 (-961)) (-4 *4 (-756)) (-4 *5 (-228 *4)) (-4 *6 (-717)) (-5 *2 (-1 *1 (-694))) (-4 *1 (-213 *3 *4 *5 *6))))) +(-13 (-861 |t#1| |t#4| |t#3|) (-184 |t#1|) (-950 |t#2|) (-10 -8 (-15 -1522 ((-1 $ (-694)) |t#2|)) (-15 -1488 ((-583 |t#2|) $)) (-15 -3771 ((-694) $ |t#2|)) (-15 -3771 ((-694) $)) (-15 -3947 ((-694) $ |t#2|)) (-15 -1487 ((-583 (-694)) $)) (-15 -1521 ((-694) $)) (-15 -1487 ((-583 (-694)) $ |t#2|)) (-15 -1521 ((-694) $ |t#2|)) (-15 -1486 ((-85) $)) (-15 -1485 (|t#3| $)) (-15 -1484 ($ $)) (-15 -1483 ($ $)) (IF (|has| |t#1| (-190)) (PROGN (-6 (-455 |t#2| |t#1|)) (-6 (-455 |t#2| $)) (-6 (-260 $)) (-15 -1522 ((-1 $ (-694)) $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#4|) . T) ((-25) . T) ((-38 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-391))) ((-72) . T) ((-82 (-349 (-484)) (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-391)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-555 (-349 (-484))) OR (|has| |#1| (-950 (-349 (-484)))) (|has| |#1| (-38 (-349 (-484))))) ((-555 (-484)) . T) ((-555 |#1|) . T) ((-555 |#2|) . T) ((-555 |#3|) . T) ((-555 $) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-391))) ((-552 (-772)) . T) ((-146) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-391)) (|has| |#1| (-146))) ((-553 (-473)) -12 (|has| |#1| (-553 (-473))) (|has| |#3| (-553 (-473)))) ((-553 (-800 (-329))) -12 (|has| |#1| (-553 (-800 (-329)))) (|has| |#3| (-553 (-800 (-329))))) ((-553 (-800 (-484))) -12 (|has| |#1| (-553 (-800 (-484)))) (|has| |#3| (-553 (-800 (-484))))) ((-186 $) OR (|has| |#1| (-189)) (|has| |#1| (-190))) ((-184 |#1|) . T) ((-190) |has| |#1| (-190)) ((-189) OR (|has| |#1| (-189)) (|has| |#1| (-190))) ((-225 |#1|) . T) ((-246) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-391))) ((-260 $) . T) ((-277 |#1| |#4|) . T) ((-328 |#1|) . T) ((-354 |#1|) . T) ((-391) OR (|has| |#1| (-821)) (|has| |#1| (-391))) ((-455 |#2| |#1|) |has| |#1| (-190)) ((-455 |#2| $) |has| |#1| (-190)) ((-455 |#3| |#1|) . T) ((-455 |#3| $) . T) ((-455 $ $) . T) ((-495) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-391))) ((-13) . T) ((-588 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-590 (-484)) |has| |#1| (-580 (-484))) ((-590 |#1|) . T) ((-590 $) . T) ((-582 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-582 |#1|) |has| |#1| (-146)) ((-582 $) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-391))) ((-580 (-484)) |has| |#1| (-580 (-484))) ((-580 |#1|) . T) ((-654 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-654 |#1|) |has| |#1| (-146)) ((-654 $) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-391))) ((-663) . T) ((-806 $ (-1089)) OR (|has| |#1| (-811 (-1089))) (|has| |#1| (-809 (-1089)))) ((-806 $ |#3|) . T) ((-809 (-1089)) |has| |#1| (-809 (-1089))) ((-809 |#3|) . T) ((-811 (-1089)) OR (|has| |#1| (-811 (-1089))) (|has| |#1| (-809 (-1089)))) ((-811 |#3|) . T) ((-796 (-329)) -12 (|has| |#1| (-796 (-329))) (|has| |#3| (-796 (-329)))) ((-796 (-484)) -12 (|has| |#1| (-796 (-484))) (|has| |#3| (-796 (-484)))) ((-861 |#1| |#4| |#3|) . T) ((-821) |has| |#1| (-821)) ((-950 (-349 (-484))) |has| |#1| (-950 (-349 (-484)))) ((-950 (-484)) |has| |#1| (-950 (-484))) ((-950 |#1|) . T) ((-950 |#2|) . T) ((-950 |#3|) . T) ((-963 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-963 |#1|) . T) ((-963 $) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-391)) (|has| |#1| (-146))) ((-968 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-968 |#1|) . T) ((-968 $) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-391)) (|has| |#1| (-146))) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T) ((-1133) |has| |#1| (-821))) +((-2568 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-1494 ((|#1| $) 58 T ELT)) (-3323 ((|#1| $) 48 T ELT)) (-3723 (($) 7 T CONST)) (-3002 (($ $) 64 T ELT)) (-2297 (($ $) 52 T ELT)) (-3325 ((|#1| |#1| $) 50 T ELT)) (-3324 ((|#1| $) 49 T ELT)) (-2889 (((-583 |#1|) $) 30 (|has| $ (-6 -3994)) ELT)) (-2608 (((-583 |#1|) $) 29 (|has| $ (-6 -3994)) ELT)) (-3245 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-1948 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3832 (((-694) $) 65 T ELT)) (-3242 (((-1072) $) 22 (|has| |#1| (-1013)) ELT)) (-1273 ((|#1| $) 43 T ELT)) (-1492 ((|#1| |#1| $) 56 T ELT)) (-1491 ((|#1| |#1| $) 55 T ELT)) (-3608 (($ |#1| $) 44 T ELT)) (-2603 (((-694) $) 59 T ELT)) (-3243 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-3001 ((|#1| $) 66 T ELT)) (-1490 ((|#1| $) 54 T ELT)) (-1489 ((|#1| $) 53 T ELT)) (-1274 ((|#1| $) 45 T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3994)) ELT)) (-3767 (($ $ (-583 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1221 (((-85) $ $) 11 T ELT)) (-3004 ((|#1| |#1| $) 62 T ELT)) (-3402 (((-85) $) 8 T ELT)) (-3564 (($) 9 T ELT)) (-3003 ((|#1| $) 63 T ELT)) (-1495 (($) 61 T ELT) (($ (-583 |#1|)) 60 T ELT)) (-3322 (((-694) $) 47 T ELT)) (-1945 (((-694) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3994)) ELT) (((-694) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-3399 (($ $) 10 T ELT)) (-3945 (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-1493 ((|#1| $) 57 T ELT)) (-1264 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1275 (($ (-583 |#1|)) 46 T ELT)) (-3000 ((|#1| $) 67 T ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3994)) ELT)) (-3056 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3956 (((-694) $) 6 (|has| $ (-6 -3994)) ELT))) +(((-214 |#1|) (-113) (-1128)) (T -214)) +((-1495 (*1 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1128)))) (-1495 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1128)) (-4 *1 (-214 *3)))) (-2603 (*1 *2 *1) (-12 (-4 *1 (-214 *3)) (-4 *3 (-1128)) (-5 *2 (-694)))) (-1494 (*1 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1128)))) (-1493 (*1 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1128)))) (-1492 (*1 *2 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1128)))) (-1491 (*1 *2 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1128)))) (-1490 (*1 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1128)))) (-1489 (*1 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1128)))) (-2297 (*1 *1 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1128))))) +(-13 (-1034 |t#1|) (-908 |t#1|) (-10 -8 (-15 -1495 ($)) (-15 -1495 ($ (-583 |t#1|))) (-15 -2603 ((-694) $)) (-15 -1494 (|t#1| $)) (-15 -1493 (|t#1| $)) (-15 -1492 (|t#1| |t#1| $)) (-15 -1491 (|t#1| |t#1| $)) (-15 -1490 (|t#1| $)) (-15 -1489 (|t#1| $)) (-15 -2297 ($ $)))) +(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1013)) (|has| |#1| (-552 (-772)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-428 |#1|) . T) ((-455 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-908 |#1|) . T) ((-1013) |has| |#1| (-1013)) ((-1034 |#1|) . T) ((-1128) . T)) +((-1496 (((-1046 (-179)) (-792 |#1|) (-1004 (-329)) (-1004 (-329))) 75 T ELT) (((-1046 (-179)) (-792 |#1|) (-1004 (-329)) (-1004 (-329)) (-583 (-221))) 74 T ELT) (((-1046 (-179)) |#1| (-1004 (-329)) (-1004 (-329))) 65 T ELT) (((-1046 (-179)) |#1| (-1004 (-329)) (-1004 (-329)) (-583 (-221))) 64 T ELT) (((-1046 (-179)) (-789 |#1|) (-1004 (-329))) 56 T ELT) (((-1046 (-179)) (-789 |#1|) (-1004 (-329)) (-583 (-221))) 55 T ELT)) (-1503 (((-1182) (-792 |#1|) (-1004 (-329)) (-1004 (-329))) 78 T ELT) (((-1182) (-792 |#1|) (-1004 (-329)) (-1004 (-329)) (-583 (-221))) 77 T ELT) (((-1182) |#1| (-1004 (-329)) (-1004 (-329))) 68 T ELT) (((-1182) |#1| (-1004 (-329)) (-1004 (-329)) (-583 (-221))) 67 T ELT) (((-1182) (-789 |#1|) (-1004 (-329))) 60 T ELT) (((-1182) (-789 |#1|) (-1004 (-329)) (-583 (-221))) 59 T ELT) (((-1181) (-787 |#1|) (-1004 (-329))) 47 T ELT) (((-1181) (-787 |#1|) (-1004 (-329)) (-583 (-221))) 46 T ELT) (((-1181) |#1| (-1004 (-329))) 38 T ELT) (((-1181) |#1| (-1004 (-329)) (-583 (-221))) 36 T ELT))) +(((-215 |#1|) (-10 -7 (-15 -1503 ((-1181) |#1| (-1004 (-329)) (-583 (-221)))) (-15 -1503 ((-1181) |#1| (-1004 (-329)))) (-15 -1503 ((-1181) (-787 |#1|) (-1004 (-329)) (-583 (-221)))) (-15 -1503 ((-1181) (-787 |#1|) (-1004 (-329)))) (-15 -1503 ((-1182) (-789 |#1|) (-1004 (-329)) (-583 (-221)))) (-15 -1503 ((-1182) (-789 |#1|) (-1004 (-329)))) (-15 -1496 ((-1046 (-179)) (-789 |#1|) (-1004 (-329)) (-583 (-221)))) (-15 -1496 ((-1046 (-179)) (-789 |#1|) (-1004 (-329)))) (-15 -1503 ((-1182) |#1| (-1004 (-329)) (-1004 (-329)) (-583 (-221)))) (-15 -1503 ((-1182) |#1| (-1004 (-329)) (-1004 (-329)))) (-15 -1496 ((-1046 (-179)) |#1| (-1004 (-329)) (-1004 (-329)) (-583 (-221)))) (-15 -1496 ((-1046 (-179)) |#1| (-1004 (-329)) (-1004 (-329)))) (-15 -1503 ((-1182) (-792 |#1|) (-1004 (-329)) (-1004 (-329)) (-583 (-221)))) (-15 -1503 ((-1182) (-792 |#1|) (-1004 (-329)) (-1004 (-329)))) (-15 -1496 ((-1046 (-179)) (-792 |#1|) (-1004 (-329)) (-1004 (-329)) (-583 (-221)))) (-15 -1496 ((-1046 (-179)) (-792 |#1|) (-1004 (-329)) (-1004 (-329))))) (-13 (-553 (-473)) (-1013))) (T -215)) +((-1496 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-792 *5)) (-5 *4 (-1004 (-329))) (-4 *5 (-13 (-553 (-473)) (-1013))) (-5 *2 (-1046 (-179))) (-5 *1 (-215 *5)))) (-1496 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-792 *6)) (-5 *4 (-1004 (-329))) (-5 *5 (-583 (-221))) (-4 *6 (-13 (-553 (-473)) (-1013))) (-5 *2 (-1046 (-179))) (-5 *1 (-215 *6)))) (-1503 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-792 *5)) (-5 *4 (-1004 (-329))) (-4 *5 (-13 (-553 (-473)) (-1013))) (-5 *2 (-1182)) (-5 *1 (-215 *5)))) (-1503 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-792 *6)) (-5 *4 (-1004 (-329))) (-5 *5 (-583 (-221))) (-4 *6 (-13 (-553 (-473)) (-1013))) (-5 *2 (-1182)) (-5 *1 (-215 *6)))) (-1496 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1004 (-329))) (-5 *2 (-1046 (-179))) (-5 *1 (-215 *3)) (-4 *3 (-13 (-553 (-473)) (-1013))))) (-1496 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1004 (-329))) (-5 *5 (-583 (-221))) (-5 *2 (-1046 (-179))) (-5 *1 (-215 *3)) (-4 *3 (-13 (-553 (-473)) (-1013))))) (-1503 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1004 (-329))) (-5 *2 (-1182)) (-5 *1 (-215 *3)) (-4 *3 (-13 (-553 (-473)) (-1013))))) (-1503 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1004 (-329))) (-5 *5 (-583 (-221))) (-5 *2 (-1182)) (-5 *1 (-215 *3)) (-4 *3 (-13 (-553 (-473)) (-1013))))) (-1496 (*1 *2 *3 *4) (-12 (-5 *3 (-789 *5)) (-5 *4 (-1004 (-329))) (-4 *5 (-13 (-553 (-473)) (-1013))) (-5 *2 (-1046 (-179))) (-5 *1 (-215 *5)))) (-1496 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-789 *6)) (-5 *4 (-1004 (-329))) (-5 *5 (-583 (-221))) (-4 *6 (-13 (-553 (-473)) (-1013))) (-5 *2 (-1046 (-179))) (-5 *1 (-215 *6)))) (-1503 (*1 *2 *3 *4) (-12 (-5 *3 (-789 *5)) (-5 *4 (-1004 (-329))) (-4 *5 (-13 (-553 (-473)) (-1013))) (-5 *2 (-1182)) (-5 *1 (-215 *5)))) (-1503 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-789 *6)) (-5 *4 (-1004 (-329))) (-5 *5 (-583 (-221))) (-4 *6 (-13 (-553 (-473)) (-1013))) (-5 *2 (-1182)) (-5 *1 (-215 *6)))) (-1503 (*1 *2 *3 *4) (-12 (-5 *3 (-787 *5)) (-5 *4 (-1004 (-329))) (-4 *5 (-13 (-553 (-473)) (-1013))) (-5 *2 (-1181)) (-5 *1 (-215 *5)))) (-1503 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-787 *6)) (-5 *4 (-1004 (-329))) (-5 *5 (-583 (-221))) (-4 *6 (-13 (-553 (-473)) (-1013))) (-5 *2 (-1181)) (-5 *1 (-215 *6)))) (-1503 (*1 *2 *3 *4) (-12 (-5 *4 (-1004 (-329))) (-5 *2 (-1181)) (-5 *1 (-215 *3)) (-4 *3 (-13 (-553 (-473)) (-1013))))) (-1503 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1004 (-329))) (-5 *5 (-583 (-221))) (-5 *2 (-1181)) (-5 *1 (-215 *3)) (-4 *3 (-13 (-553 (-473)) (-1013)))))) +((-1497 (((-1 (-854 (-179)) (-179) (-179)) (-1 (-854 (-179)) (-179) (-179)) (-1 (-179) (-179) (-179) (-179))) 158 T ELT)) (-1496 (((-1046 (-179)) (-792 (-1 (-179) (-179) (-179))) (-1001 (-329)) (-1001 (-329))) 178 T ELT) (((-1046 (-179)) (-792 (-1 (-179) (-179) (-179))) (-1001 (-329)) (-1001 (-329)) (-583 (-221))) 176 T ELT) (((-1046 (-179)) (-1 (-854 (-179)) (-179) (-179)) (-1001 (-329)) (-1001 (-329))) 181 T ELT) (((-1046 (-179)) (-1 (-854 (-179)) (-179) (-179)) (-1001 (-329)) (-1001 (-329)) (-583 (-221))) 177 T ELT) (((-1046 (-179)) (-1 (-179) (-179) (-179)) (-1001 (-329)) (-1001 (-329))) 169 T ELT) (((-1046 (-179)) (-1 (-179) (-179) (-179)) (-1001 (-329)) (-1001 (-329)) (-583 (-221))) 168 T ELT) (((-1046 (-179)) (-1 (-854 (-179)) (-179)) (-1001 (-329))) 150 T ELT) (((-1046 (-179)) (-1 (-854 (-179)) (-179)) (-1001 (-329)) (-583 (-221))) 148 T ELT) (((-1046 (-179)) (-789 (-1 (-179) (-179))) (-1001 (-329))) 149 T ELT) (((-1046 (-179)) (-789 (-1 (-179) (-179))) (-1001 (-329)) (-583 (-221))) 146 T ELT)) (-1503 (((-1182) (-792 (-1 (-179) (-179) (-179))) (-1001 (-329)) (-1001 (-329))) 180 T ELT) (((-1182) (-792 (-1 (-179) (-179) (-179))) (-1001 (-329)) (-1001 (-329)) (-583 (-221))) 179 T ELT) (((-1182) (-1 (-854 (-179)) (-179) (-179)) (-1001 (-329)) (-1001 (-329))) 183 T ELT) (((-1182) (-1 (-854 (-179)) (-179) (-179)) (-1001 (-329)) (-1001 (-329)) (-583 (-221))) 182 T ELT) (((-1182) (-1 (-179) (-179) (-179)) (-1001 (-329)) (-1001 (-329))) 171 T ELT) (((-1182) (-1 (-179) (-179) (-179)) (-1001 (-329)) (-1001 (-329)) (-583 (-221))) 170 T ELT) (((-1182) (-1 (-854 (-179)) (-179)) (-1001 (-329))) 156 T ELT) (((-1182) (-1 (-854 (-179)) (-179)) (-1001 (-329)) (-583 (-221))) 155 T ELT) (((-1182) (-789 (-1 (-179) (-179))) (-1001 (-329))) 154 T ELT) (((-1182) (-789 (-1 (-179) (-179))) (-1001 (-329)) (-583 (-221))) 153 T ELT) (((-1181) (-787 (-1 (-179) (-179))) (-1001 (-329))) 118 T ELT) (((-1181) (-787 (-1 (-179) (-179))) (-1001 (-329)) (-583 (-221))) 117 T ELT) (((-1181) (-1 (-179) (-179)) (-1001 (-329))) 112 T ELT) (((-1181) (-1 (-179) (-179)) (-1001 (-329)) (-583 (-221))) 110 T ELT))) +(((-216) (-10 -7 (-15 -1503 ((-1181) (-1 (-179) (-179)) (-1001 (-329)) (-583 (-221)))) (-15 -1503 ((-1181) (-1 (-179) (-179)) (-1001 (-329)))) (-15 -1503 ((-1181) (-787 (-1 (-179) (-179))) (-1001 (-329)) (-583 (-221)))) (-15 -1503 ((-1181) (-787 (-1 (-179) (-179))) (-1001 (-329)))) (-15 -1503 ((-1182) (-789 (-1 (-179) (-179))) (-1001 (-329)) (-583 (-221)))) (-15 -1503 ((-1182) (-789 (-1 (-179) (-179))) (-1001 (-329)))) (-15 -1503 ((-1182) (-1 (-854 (-179)) (-179)) (-1001 (-329)) (-583 (-221)))) (-15 -1503 ((-1182) (-1 (-854 (-179)) (-179)) (-1001 (-329)))) (-15 -1496 ((-1046 (-179)) (-789 (-1 (-179) (-179))) (-1001 (-329)) (-583 (-221)))) (-15 -1496 ((-1046 (-179)) (-789 (-1 (-179) (-179))) (-1001 (-329)))) (-15 -1496 ((-1046 (-179)) (-1 (-854 (-179)) (-179)) (-1001 (-329)) (-583 (-221)))) (-15 -1496 ((-1046 (-179)) (-1 (-854 (-179)) (-179)) (-1001 (-329)))) (-15 -1503 ((-1182) (-1 (-179) (-179) (-179)) (-1001 (-329)) (-1001 (-329)) (-583 (-221)))) (-15 -1503 ((-1182) (-1 (-179) (-179) (-179)) (-1001 (-329)) (-1001 (-329)))) (-15 -1496 ((-1046 (-179)) (-1 (-179) (-179) (-179)) (-1001 (-329)) (-1001 (-329)) (-583 (-221)))) (-15 -1496 ((-1046 (-179)) (-1 (-179) (-179) (-179)) (-1001 (-329)) (-1001 (-329)))) (-15 -1503 ((-1182) (-1 (-854 (-179)) (-179) (-179)) (-1001 (-329)) (-1001 (-329)) (-583 (-221)))) (-15 -1503 ((-1182) (-1 (-854 (-179)) (-179) (-179)) (-1001 (-329)) (-1001 (-329)))) (-15 -1496 ((-1046 (-179)) (-1 (-854 (-179)) (-179) (-179)) (-1001 (-329)) (-1001 (-329)) (-583 (-221)))) (-15 -1496 ((-1046 (-179)) (-1 (-854 (-179)) (-179) (-179)) (-1001 (-329)) (-1001 (-329)))) (-15 -1503 ((-1182) (-792 (-1 (-179) (-179) (-179))) (-1001 (-329)) (-1001 (-329)) (-583 (-221)))) (-15 -1503 ((-1182) (-792 (-1 (-179) (-179) (-179))) (-1001 (-329)) (-1001 (-329)))) (-15 -1496 ((-1046 (-179)) (-792 (-1 (-179) (-179) (-179))) (-1001 (-329)) (-1001 (-329)) (-583 (-221)))) (-15 -1496 ((-1046 (-179)) (-792 (-1 (-179) (-179) (-179))) (-1001 (-329)) (-1001 (-329)))) (-15 -1497 ((-1 (-854 (-179)) (-179) (-179)) (-1 (-854 (-179)) (-179) (-179)) (-1 (-179) (-179) (-179) (-179)))))) (T -216)) +((-1497 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-854 (-179)) (-179) (-179))) (-5 *3 (-1 (-179) (-179) (-179) (-179))) (-5 *1 (-216)))) (-1496 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-792 (-1 (-179) (-179) (-179)))) (-5 *4 (-1001 (-329))) (-5 *2 (-1046 (-179))) (-5 *1 (-216)))) (-1496 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-792 (-1 (-179) (-179) (-179)))) (-5 *4 (-1001 (-329))) (-5 *5 (-583 (-221))) (-5 *2 (-1046 (-179))) (-5 *1 (-216)))) (-1503 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-792 (-1 (-179) (-179) (-179)))) (-5 *4 (-1001 (-329))) (-5 *2 (-1182)) (-5 *1 (-216)))) (-1503 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-792 (-1 (-179) (-179) (-179)))) (-5 *4 (-1001 (-329))) (-5 *5 (-583 (-221))) (-5 *2 (-1182)) (-5 *1 (-216)))) (-1496 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-854 (-179)) (-179) (-179))) (-5 *4 (-1001 (-329))) (-5 *2 (-1046 (-179))) (-5 *1 (-216)))) (-1496 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-854 (-179)) (-179) (-179))) (-5 *4 (-1001 (-329))) (-5 *5 (-583 (-221))) (-5 *2 (-1046 (-179))) (-5 *1 (-216)))) (-1503 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-854 (-179)) (-179) (-179))) (-5 *4 (-1001 (-329))) (-5 *2 (-1182)) (-5 *1 (-216)))) (-1503 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-854 (-179)) (-179) (-179))) (-5 *4 (-1001 (-329))) (-5 *5 (-583 (-221))) (-5 *2 (-1182)) (-5 *1 (-216)))) (-1496 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1001 (-329))) (-5 *2 (-1046 (-179))) (-5 *1 (-216)))) (-1496 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1001 (-329))) (-5 *5 (-583 (-221))) (-5 *2 (-1046 (-179))) (-5 *1 (-216)))) (-1503 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1001 (-329))) (-5 *2 (-1182)) (-5 *1 (-216)))) (-1503 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1001 (-329))) (-5 *5 (-583 (-221))) (-5 *2 (-1182)) (-5 *1 (-216)))) (-1496 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-854 (-179)) (-179))) (-5 *4 (-1001 (-329))) (-5 *2 (-1046 (-179))) (-5 *1 (-216)))) (-1496 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-854 (-179)) (-179))) (-5 *4 (-1001 (-329))) (-5 *5 (-583 (-221))) (-5 *2 (-1046 (-179))) (-5 *1 (-216)))) (-1496 (*1 *2 *3 *4) (-12 (-5 *3 (-789 (-1 (-179) (-179)))) (-5 *4 (-1001 (-329))) (-5 *2 (-1046 (-179))) (-5 *1 (-216)))) (-1496 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-789 (-1 (-179) (-179)))) (-5 *4 (-1001 (-329))) (-5 *5 (-583 (-221))) (-5 *2 (-1046 (-179))) (-5 *1 (-216)))) (-1503 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-854 (-179)) (-179))) (-5 *4 (-1001 (-329))) (-5 *2 (-1182)) (-5 *1 (-216)))) (-1503 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-854 (-179)) (-179))) (-5 *4 (-1001 (-329))) (-5 *5 (-583 (-221))) (-5 *2 (-1182)) (-5 *1 (-216)))) (-1503 (*1 *2 *3 *4) (-12 (-5 *3 (-789 (-1 (-179) (-179)))) (-5 *4 (-1001 (-329))) (-5 *2 (-1182)) (-5 *1 (-216)))) (-1503 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-789 (-1 (-179) (-179)))) (-5 *4 (-1001 (-329))) (-5 *5 (-583 (-221))) (-5 *2 (-1182)) (-5 *1 (-216)))) (-1503 (*1 *2 *3 *4) (-12 (-5 *3 (-787 (-1 (-179) (-179)))) (-5 *4 (-1001 (-329))) (-5 *2 (-1181)) (-5 *1 (-216)))) (-1503 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-787 (-1 (-179) (-179)))) (-5 *4 (-1001 (-329))) (-5 *5 (-583 (-221))) (-5 *2 (-1181)) (-5 *1 (-216)))) (-1503 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-179) (-179))) (-5 *4 (-1001 (-329))) (-5 *2 (-1181)) (-5 *1 (-216)))) (-1503 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-179) (-179))) (-5 *4 (-1001 (-329))) (-5 *5 (-583 (-221))) (-5 *2 (-1181)) (-5 *1 (-216))))) +((-1503 (((-1181) (-249 |#2|) (-1089) (-1089) (-583 (-221))) 102 T ELT))) +(((-217 |#1| |#2|) (-10 -7 (-15 -1503 ((-1181) (-249 |#2|) (-1089) (-1089) (-583 (-221))))) (-13 (-495) (-756) (-950 (-484))) (-363 |#1|)) (T -217)) +((-1503 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-249 *7)) (-5 *4 (-1089)) (-5 *5 (-583 (-221))) (-4 *7 (-363 *6)) (-4 *6 (-13 (-495) (-756) (-950 (-484)))) (-5 *2 (-1181)) (-5 *1 (-217 *6 *7))))) +((-1500 (((-484) (-484)) 71 T ELT)) (-1501 (((-484) (-484)) 72 T ELT)) (-1502 (((-179) (-179)) 73 T ELT)) (-1499 (((-1182) (-1 (-142 (-179)) (-142 (-179))) (-1001 (-179)) (-1001 (-179))) 70 T ELT)) (-1498 (((-1182) (-1 (-142 (-179)) (-142 (-179))) (-1001 (-179)) (-1001 (-179)) (-85)) 68 T ELT))) +(((-218) (-10 -7 (-15 -1498 ((-1182) (-1 (-142 (-179)) (-142 (-179))) (-1001 (-179)) (-1001 (-179)) (-85))) (-15 -1499 ((-1182) (-1 (-142 (-179)) (-142 (-179))) (-1001 (-179)) (-1001 (-179)))) (-15 -1500 ((-484) (-484))) (-15 -1501 ((-484) (-484))) (-15 -1502 ((-179) (-179))))) (T -218)) +((-1502 (*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-218)))) (-1501 (*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-218)))) (-1500 (*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-218)))) (-1499 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-142 (-179)) (-142 (-179)))) (-5 *4 (-1001 (-179))) (-5 *2 (-1182)) (-5 *1 (-218)))) (-1498 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-142 (-179)) (-142 (-179)))) (-5 *4 (-1001 (-179))) (-5 *5 (-85)) (-5 *2 (-1182)) (-5 *1 (-218))))) +((-3945 (((-1004 (-329)) (-1004 (-265 |#1|))) 16 T ELT))) +(((-219 |#1|) (-10 -7 (-15 -3945 ((-1004 (-329)) (-1004 (-265 |#1|))))) (-13 (-756) (-495) (-553 (-329)))) (T -219)) +((-3945 (*1 *2 *3) (-12 (-5 *3 (-1004 (-265 *4))) (-4 *4 (-13 (-756) (-495) (-553 (-329)))) (-5 *2 (-1004 (-329))) (-5 *1 (-219 *4))))) +((-1503 (((-1182) (-583 (-179)) (-583 (-179)) (-583 (-179)) (-583 (-221))) 23 T ELT) (((-1182) (-583 (-179)) (-583 (-179)) (-583 (-179))) 24 T ELT) (((-1181) (-583 (-854 (-179))) (-583 (-221))) 16 T ELT) (((-1181) (-583 (-854 (-179)))) 17 T ELT) (((-1181) (-583 (-179)) (-583 (-179)) (-583 (-221))) 20 T ELT) (((-1181) (-583 (-179)) (-583 (-179))) 21 T ELT))) +(((-220) (-10 -7 (-15 -1503 ((-1181) (-583 (-179)) (-583 (-179)))) (-15 -1503 ((-1181) (-583 (-179)) (-583 (-179)) (-583 (-221)))) (-15 -1503 ((-1181) (-583 (-854 (-179))))) (-15 -1503 ((-1181) (-583 (-854 (-179))) (-583 (-221)))) (-15 -1503 ((-1182) (-583 (-179)) (-583 (-179)) (-583 (-179)))) (-15 -1503 ((-1182) (-583 (-179)) (-583 (-179)) (-583 (-179)) (-583 (-221)))))) (T -220)) +((-1503 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-583 (-179))) (-5 *4 (-583 (-221))) (-5 *2 (-1182)) (-5 *1 (-220)))) (-1503 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-583 (-179))) (-5 *2 (-1182)) (-5 *1 (-220)))) (-1503 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-854 (-179)))) (-5 *4 (-583 (-221))) (-5 *2 (-1181)) (-5 *1 (-220)))) (-1503 (*1 *2 *3) (-12 (-5 *3 (-583 (-854 (-179)))) (-5 *2 (-1181)) (-5 *1 (-220)))) (-1503 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-583 (-179))) (-5 *4 (-583 (-221))) (-5 *2 (-1181)) (-5 *1 (-220)))) (-1503 (*1 *2 *3 *3) (-12 (-5 *3 (-583 (-179))) (-5 *2 (-1181)) (-5 *1 (-220))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3880 (($ (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3846 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) 24 T ELT)) (-1516 (($ (-830)) 81 T ELT)) (-1515 (($ (-830)) 80 T ELT)) (-1771 (($ (-583 (-329))) 87 T ELT)) (-1519 (($ (-329)) 66 T ELT)) (-1518 (($ (-830)) 82 T ELT)) (-1512 (($ (-85)) 33 T ELT)) (-3882 (($ (-1072)) 28 T ELT)) (-1511 (($ (-1072)) 29 T ELT)) (-1517 (($ (-1046 (-179))) 76 T ELT)) (-1927 (($ (-583 (-1001 (-329)))) 72 T ELT)) (-1505 (($ (-583 (-1001 (-329)))) 68 T ELT) (($ (-583 (-1001 (-349 (-484))))) 71 T ELT)) (-1508 (($ (-329)) 38 T ELT) (($ (-783)) 42 T ELT)) (-1504 (((-85) (-583 $) (-1089)) 100 T ELT)) (-1520 (((-3 (-51) "failed") (-583 $) (-1089)) 102 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1507 (($ (-329)) 43 T ELT) (($ (-783)) 44 T ELT)) (-3224 (($ (-1 (-854 (-179)) (-854 (-179)))) 65 T ELT)) (-2266 (($ (-1 (-854 (-179)) (-854 (-179)))) 83 T ELT)) (-1506 (($ (-1 (-179) (-179))) 48 T ELT) (($ (-1 (-179) (-179) (-179))) 52 T ELT) (($ (-1 (-179) (-179) (-179) (-179))) 56 T ELT)) (-3945 (((-772) $) 93 T ELT)) (-1509 (($ (-85)) 34 T ELT) (($ (-583 (-1001 (-329)))) 60 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-1922 (($ (-85)) 35 T ELT)) (-3056 (((-85) $ $) 97 T ELT))) +(((-221) (-13 (-1013) (-10 -8 (-15 -1922 ($ (-85))) (-15 -1509 ($ (-85))) (-15 -3880 ($ (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3846 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179))))) (-15 -3882 ($ (-1072))) (-15 -1511 ($ (-1072))) (-15 -1512 ($ (-85))) (-15 -1509 ($ (-583 (-1001 (-329))))) (-15 -3224 ($ (-1 (-854 (-179)) (-854 (-179))))) (-15 -1508 ($ (-329))) (-15 -1508 ($ (-783))) (-15 -1507 ($ (-329))) (-15 -1507 ($ (-783))) (-15 -1506 ($ (-1 (-179) (-179)))) (-15 -1506 ($ (-1 (-179) (-179) (-179)))) (-15 -1506 ($ (-1 (-179) (-179) (-179) (-179)))) (-15 -1519 ($ (-329))) (-15 -1505 ($ (-583 (-1001 (-329))))) (-15 -1505 ($ (-583 (-1001 (-349 (-484)))))) (-15 -1927 ($ (-583 (-1001 (-329))))) (-15 -1517 ($ (-1046 (-179)))) (-15 -1515 ($ (-830))) (-15 -1516 ($ (-830))) (-15 -1518 ($ (-830))) (-15 -2266 ($ (-1 (-854 (-179)) (-854 (-179))))) (-15 -1771 ($ (-583 (-329)))) (-15 -1520 ((-3 (-51) "failed") (-583 $) (-1089))) (-15 -1504 ((-85) (-583 $) (-1089)))))) (T -221)) +((-1922 (*1 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-221)))) (-1509 (*1 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-221)))) (-3880 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3846 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) (-5 *1 (-221)))) (-3882 (*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-221)))) (-1511 (*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-221)))) (-1512 (*1 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-221)))) (-1509 (*1 *1 *2) (-12 (-5 *2 (-583 (-1001 (-329)))) (-5 *1 (-221)))) (-3224 (*1 *1 *2) (-12 (-5 *2 (-1 (-854 (-179)) (-854 (-179)))) (-5 *1 (-221)))) (-1508 (*1 *1 *2) (-12 (-5 *2 (-329)) (-5 *1 (-221)))) (-1508 (*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-221)))) (-1507 (*1 *1 *2) (-12 (-5 *2 (-329)) (-5 *1 (-221)))) (-1507 (*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-221)))) (-1506 (*1 *1 *2) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *1 (-221)))) (-1506 (*1 *1 *2) (-12 (-5 *2 (-1 (-179) (-179) (-179))) (-5 *1 (-221)))) (-1506 (*1 *1 *2) (-12 (-5 *2 (-1 (-179) (-179) (-179) (-179))) (-5 *1 (-221)))) (-1519 (*1 *1 *2) (-12 (-5 *2 (-329)) (-5 *1 (-221)))) (-1505 (*1 *1 *2) (-12 (-5 *2 (-583 (-1001 (-329)))) (-5 *1 (-221)))) (-1505 (*1 *1 *2) (-12 (-5 *2 (-583 (-1001 (-349 (-484))))) (-5 *1 (-221)))) (-1927 (*1 *1 *2) (-12 (-5 *2 (-583 (-1001 (-329)))) (-5 *1 (-221)))) (-1517 (*1 *1 *2) (-12 (-5 *2 (-1046 (-179))) (-5 *1 (-221)))) (-1515 (*1 *1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-221)))) (-1516 (*1 *1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-221)))) (-1518 (*1 *1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-221)))) (-2266 (*1 *1 *2) (-12 (-5 *2 (-1 (-854 (-179)) (-854 (-179)))) (-5 *1 (-221)))) (-1771 (*1 *1 *2) (-12 (-5 *2 (-583 (-329))) (-5 *1 (-221)))) (-1520 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-583 (-221))) (-5 *4 (-1089)) (-5 *2 (-51)) (-5 *1 (-221)))) (-1504 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-221))) (-5 *4 (-1089)) (-5 *2 (-85)) (-5 *1 (-221))))) +((-3880 (((-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3846 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179))) (-583 (-221)) (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3846 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) 25 T ELT)) (-1516 (((-830) (-583 (-221)) (-830)) 52 T ELT)) (-1515 (((-830) (-583 (-221)) (-830)) 51 T ELT)) (-3850 (((-583 (-329)) (-583 (-221)) (-583 (-329))) 68 T ELT)) (-1519 (((-329) (-583 (-221)) (-329)) 57 T ELT)) (-1518 (((-830) (-583 (-221)) (-830)) 53 T ELT)) (-1512 (((-85) (-583 (-221)) (-85)) 27 T ELT)) (-3882 (((-1072) (-583 (-221)) (-1072)) 19 T ELT)) (-1511 (((-1072) (-583 (-221)) (-1072)) 26 T ELT)) (-1517 (((-1046 (-179)) (-583 (-221))) 46 T ELT)) (-1927 (((-583 (-1001 (-329))) (-583 (-221)) (-583 (-1001 (-329)))) 40 T ELT)) (-1513 (((-783) (-583 (-221)) (-783)) 32 T ELT)) (-1514 (((-783) (-583 (-221)) (-783)) 33 T ELT)) (-2266 (((-1 (-854 (-179)) (-854 (-179))) (-583 (-221)) (-1 (-854 (-179)) (-854 (-179)))) 63 T ELT)) (-1510 (((-85) (-583 (-221)) (-85)) 14 T ELT)) (-1922 (((-85) (-583 (-221)) (-85)) 13 T ELT))) +(((-222) (-10 -7 (-15 -1922 ((-85) (-583 (-221)) (-85))) (-15 -1510 ((-85) (-583 (-221)) (-85))) (-15 -3880 ((-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3846 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179))) (-583 (-221)) (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3846 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179))))) (-15 -3882 ((-1072) (-583 (-221)) (-1072))) (-15 -1511 ((-1072) (-583 (-221)) (-1072))) (-15 -1512 ((-85) (-583 (-221)) (-85))) (-15 -1513 ((-783) (-583 (-221)) (-783))) (-15 -1514 ((-783) (-583 (-221)) (-783))) (-15 -1927 ((-583 (-1001 (-329))) (-583 (-221)) (-583 (-1001 (-329))))) (-15 -1515 ((-830) (-583 (-221)) (-830))) (-15 -1516 ((-830) (-583 (-221)) (-830))) (-15 -1517 ((-1046 (-179)) (-583 (-221)))) (-15 -1518 ((-830) (-583 (-221)) (-830))) (-15 -1519 ((-329) (-583 (-221)) (-329))) (-15 -2266 ((-1 (-854 (-179)) (-854 (-179))) (-583 (-221)) (-1 (-854 (-179)) (-854 (-179))))) (-15 -3850 ((-583 (-329)) (-583 (-221)) (-583 (-329)))))) (T -222)) +((-3850 (*1 *2 *3 *2) (-12 (-5 *2 (-583 (-329))) (-5 *3 (-583 (-221))) (-5 *1 (-222)))) (-2266 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-854 (-179)) (-854 (-179)))) (-5 *3 (-583 (-221))) (-5 *1 (-222)))) (-1519 (*1 *2 *3 *2) (-12 (-5 *2 (-329)) (-5 *3 (-583 (-221))) (-5 *1 (-222)))) (-1518 (*1 *2 *3 *2) (-12 (-5 *2 (-830)) (-5 *3 (-583 (-221))) (-5 *1 (-222)))) (-1517 (*1 *2 *3) (-12 (-5 *3 (-583 (-221))) (-5 *2 (-1046 (-179))) (-5 *1 (-222)))) (-1516 (*1 *2 *3 *2) (-12 (-5 *2 (-830)) (-5 *3 (-583 (-221))) (-5 *1 (-222)))) (-1515 (*1 *2 *3 *2) (-12 (-5 *2 (-830)) (-5 *3 (-583 (-221))) (-5 *1 (-222)))) (-1927 (*1 *2 *3 *2) (-12 (-5 *2 (-583 (-1001 (-329)))) (-5 *3 (-583 (-221))) (-5 *1 (-222)))) (-1514 (*1 *2 *3 *2) (-12 (-5 *2 (-783)) (-5 *3 (-583 (-221))) (-5 *1 (-222)))) (-1513 (*1 *2 *3 *2) (-12 (-5 *2 (-783)) (-5 *3 (-583 (-221))) (-5 *1 (-222)))) (-1512 (*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *3 (-583 (-221))) (-5 *1 (-222)))) (-1511 (*1 *2 *3 *2) (-12 (-5 *2 (-1072)) (-5 *3 (-583 (-221))) (-5 *1 (-222)))) (-3882 (*1 *2 *3 *2) (-12 (-5 *2 (-1072)) (-5 *3 (-583 (-221))) (-5 *1 (-222)))) (-3880 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3846 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) (-5 *3 (-583 (-221))) (-5 *1 (-222)))) (-1510 (*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *3 (-583 (-221))) (-5 *1 (-222)))) (-1922 (*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *3 (-583 (-221))) (-5 *1 (-222))))) +((-1520 (((-3 |#1| "failed") (-583 (-221)) (-1089)) 17 T ELT))) +(((-223 |#1|) (-10 -7 (-15 -1520 ((-3 |#1| "failed") (-583 (-221)) (-1089)))) (-1128)) (T -223)) +((-1520 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-583 (-221))) (-5 *4 (-1089)) (-5 *1 (-223 *2)) (-4 *2 (-1128))))) +((-3757 (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-694)) 11 T ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL T ELT) (($ $ (-1089) (-694)) NIL T ELT) (($ $ (-583 (-1089))) NIL T ELT) (($ $ (-1089)) 19 T ELT) (($ $ (-694)) NIL T ELT) (($ $) 16 T ELT)) (-2669 (($ $ (-1 |#2| |#2|)) 12 T ELT) (($ $ (-1 |#2| |#2|) (-694)) 14 T ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL T ELT) (($ $ (-1089) (-694)) NIL T ELT) (($ $ (-583 (-1089))) NIL T ELT) (($ $ (-1089)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $) NIL T ELT))) +(((-224 |#1| |#2|) (-10 -7 (-15 -3757 (|#1| |#1|)) (-15 -2669 (|#1| |#1|)) (-15 -3757 (|#1| |#1| (-694))) (-15 -2669 (|#1| |#1| (-694))) (-15 -3757 (|#1| |#1| (-1089))) (-15 -2669 (|#1| |#1| (-1089))) (-15 -3757 (|#1| |#1| (-583 (-1089)))) (-15 -3757 (|#1| |#1| (-1089) (-694))) (-15 -3757 (|#1| |#1| (-583 (-1089)) (-583 (-694)))) (-15 -2669 (|#1| |#1| (-583 (-1089)))) (-15 -2669 (|#1| |#1| (-1089) (-694))) (-15 -2669 (|#1| |#1| (-583 (-1089)) (-583 (-694)))) (-15 -2669 (|#1| |#1| (-1 |#2| |#2|) (-694))) (-15 -2669 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3757 (|#1| |#1| (-1 |#2| |#2|) (-694))) (-15 -3757 (|#1| |#1| (-1 |#2| |#2|)))) (-225 |#2|) (-1128)) (T -224)) +NIL +((-3757 (($ $ (-1 |#1| |#1|)) 23 T ELT) (($ $ (-1 |#1| |#1|) (-694)) 22 T ELT) (($ $ (-583 (-1089)) (-583 (-694))) 16 (|has| |#1| (-811 (-1089))) ELT) (($ $ (-1089) (-694)) 15 (|has| |#1| (-811 (-1089))) ELT) (($ $ (-583 (-1089))) 14 (|has| |#1| (-811 (-1089))) ELT) (($ $ (-1089)) 12 (|has| |#1| (-811 (-1089))) ELT) (($ $ (-694)) 10 (|has| |#1| (-189)) ELT) (($ $) 8 (|has| |#1| (-189)) ELT)) (-2669 (($ $ (-1 |#1| |#1|)) 21 T ELT) (($ $ (-1 |#1| |#1|) (-694)) 20 T ELT) (($ $ (-583 (-1089)) (-583 (-694))) 19 (|has| |#1| (-811 (-1089))) ELT) (($ $ (-1089) (-694)) 18 (|has| |#1| (-811 (-1089))) ELT) (($ $ (-583 (-1089))) 17 (|has| |#1| (-811 (-1089))) ELT) (($ $ (-1089)) 13 (|has| |#1| (-811 (-1089))) ELT) (($ $ (-694)) 11 (|has| |#1| (-189)) ELT) (($ $) 9 (|has| |#1| (-189)) ELT))) +(((-225 |#1|) (-113) (-1128)) (T -225)) +((-3757 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-225 *3)) (-4 *3 (-1128)))) (-3757 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-694)) (-4 *1 (-225 *4)) (-4 *4 (-1128)))) (-2669 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-225 *3)) (-4 *3 (-1128)))) (-2669 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-694)) (-4 *1 (-225 *4)) (-4 *4 (-1128))))) +(-13 (-1128) (-10 -8 (-15 -3757 ($ $ (-1 |t#1| |t#1|))) (-15 -3757 ($ $ (-1 |t#1| |t#1|) (-694))) (-15 -2669 ($ $ (-1 |t#1| |t#1|))) (-15 -2669 ($ $ (-1 |t#1| |t#1|) (-694))) (IF (|has| |t#1| (-189)) (-6 (-189)) |%noBranch|) (IF (|has| |t#1| (-811 (-1089))) (-6 (-811 (-1089))) |%noBranch|))) +(((-186 $) |has| |#1| (-189)) ((-189) |has| |#1| (-189)) ((-13) . T) ((-806 $ (-1089)) |has| |#1| (-811 (-1089))) ((-811 (-1089)) |has| |#1| (-811 (-1089))) ((-1128) . T)) +((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-1487 (((-583 (-694)) $) NIL T ELT) (((-583 (-694)) $ |#2|) NIL T ELT)) (-1521 (((-694) $) NIL T ELT) (((-694) $ |#2|) NIL T ELT)) (-3081 (((-583 |#3|) $) NIL T ELT)) (-3083 (((-1084 $) $ |#3|) NIL T ELT) (((-1084 |#1|) $) NIL T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2063 (($ $) NIL (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-2819 (((-694) $) NIL T ELT) (((-694) $ (-583 |#3|)) NIL T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2707 (((-347 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-821)) ELT)) (-3774 (($ $) NIL (|has| |#1| (-391)) ELT)) (-3970 (((-347 $) $) NIL (|has| |#1| (-391)) ELT)) (-2704 (((-3 (-583 (-1084 $)) #1#) (-583 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-821)) ELT)) (-1483 (($ $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-349 (-484)) #1#) $) NIL (|has| |#1| (-950 (-349 (-484)))) ELT) (((-3 (-484) #1#) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-3 |#3| #1#) $) NIL T ELT) (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-1038 |#1| |#2|) #1#) $) 23 T ELT)) (-3156 ((|#1| $) NIL T ELT) (((-349 (-484)) $) NIL (|has| |#1| (-950 (-349 (-484)))) ELT) (((-484) $) NIL (|has| |#1| (-950 (-484))) ELT) ((|#3| $) NIL T ELT) ((|#2| $) NIL T ELT) (((-1038 |#1| |#2|) $) NIL T ELT)) (-3755 (($ $ $ |#3|) NIL (|has| |#1| (-146)) ELT)) (-3958 (($ $) NIL T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1178 |#1|))) (-630 $) (-1178 $)) NIL T ELT) (((-630 |#1|) (-630 $)) NIL T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-3502 (($ $) NIL (|has| |#1| (-391)) ELT) (($ $ |#3|) NIL (|has| |#1| (-391)) ELT)) (-2818 (((-583 $) $) NIL T ELT)) (-3722 (((-85) $) NIL (|has| |#1| (-821)) ELT)) (-1623 (($ $ |#1| (-469 |#3|) $) NIL T ELT)) (-2796 (((-798 (-329) $) $ (-800 (-329)) (-798 (-329) $)) NIL (-12 (|has| |#1| (-796 (-329))) (|has| |#3| (-796 (-329)))) ELT) (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) NIL (-12 (|has| |#1| (-796 (-484))) (|has| |#3| (-796 (-484)))) ELT)) (-3771 (((-694) $ |#2|) NIL T ELT) (((-694) $) 10 T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2420 (((-694) $) NIL T ELT)) (-3084 (($ (-1084 |#1|) |#3|) NIL T ELT) (($ (-1084 $) |#3|) NIL T ELT)) (-2821 (((-583 $) $) NIL T ELT)) (-3936 (((-85) $) NIL T ELT)) (-2893 (($ |#1| (-469 |#3|)) NIL T ELT) (($ $ |#3| (-694)) NIL T ELT) (($ $ (-583 |#3|) (-583 (-694))) NIL T ELT)) (-3762 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $ |#3|) NIL T ELT)) (-2820 (((-469 |#3|) $) NIL T ELT) (((-694) $ |#3|) NIL T ELT) (((-583 (-694)) $ (-583 |#3|)) NIL T ELT)) (-1624 (($ (-1 (-469 |#3|) (-469 |#3|)) $) NIL T ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1522 (((-1 $ (-694)) |#2|) NIL T ELT) (((-1 $ (-694)) $) NIL (|has| |#1| (-190)) ELT)) (-3082 (((-3 |#3| #1#) $) NIL T ELT)) (-2280 (((-630 (-484)) (-1178 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1178 |#1|))) (-1178 $) $) NIL T ELT) (((-630 |#1|) (-1178 $)) NIL T ELT)) (-2894 (($ $) NIL T ELT)) (-3174 ((|#1| $) NIL T ELT)) (-1485 ((|#3| $) NIL T ELT)) (-1890 (($ (-583 $)) NIL (|has| |#1| (-391)) ELT) (($ $ $) NIL (|has| |#1| (-391)) ELT)) (-3242 (((-1072) $) NIL T ELT)) (-1486 (((-85) $) NIL T ELT)) (-2823 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2822 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2824 (((-3 (-2 (|:| |var| |#3|) (|:| -2401 (-694))) #1#) $) NIL T ELT)) (-1484 (($ $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1796 (((-85) $) NIL T ELT)) (-1795 ((|#1| $) NIL T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) NIL (|has| |#1| (-391)) ELT)) (-3144 (($ (-583 $)) NIL (|has| |#1| (-391)) ELT) (($ $ $) NIL (|has| |#1| (-391)) ELT)) (-2705 (((-347 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-821)) ELT)) (-2706 (((-347 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-821)) ELT)) (-3731 (((-347 $) $) NIL (|has| |#1| (-821)) ELT)) (-3465 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-495)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-495)) ELT)) (-3767 (($ $ (-583 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ |#3| |#1|) NIL T ELT) (($ $ (-583 |#3|) (-583 |#1|)) NIL T ELT) (($ $ |#3| $) NIL T ELT) (($ $ (-583 |#3|) (-583 $)) NIL T ELT) (($ $ |#2| $) NIL (|has| |#1| (-190)) ELT) (($ $ (-583 |#2|) (-583 $)) NIL (|has| |#1| (-190)) ELT) (($ $ |#2| |#1|) NIL (|has| |#1| (-190)) ELT) (($ $ (-583 |#2|) (-583 |#1|)) NIL (|has| |#1| (-190)) ELT)) (-3756 (($ $ |#3|) NIL (|has| |#1| (-146)) ELT)) (-3757 (($ $ (-583 |#3|) (-583 (-694))) NIL T ELT) (($ $ |#3| (-694)) NIL T ELT) (($ $ (-583 |#3|)) NIL T ELT) (($ $ |#3|) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL T ELT) (($ $ (-1089)) NIL (|has| |#1| (-811 (-1089))) ELT) (($ $ (-583 (-1089))) NIL (|has| |#1| (-811 (-1089))) ELT) (($ $ (-1089) (-694)) NIL (|has| |#1| (-811 (-1089))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (|has| |#1| (-811 (-1089))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-694)) NIL (|has| |#1| (-189)) ELT)) (-1488 (((-583 |#2|) $) NIL T ELT)) (-3947 (((-469 |#3|) $) NIL T ELT) (((-694) $ |#3|) NIL T ELT) (((-583 (-694)) $ (-583 |#3|)) NIL T ELT) (((-694) $ |#2|) NIL T ELT)) (-3971 (((-800 (-329)) $) NIL (-12 (|has| |#1| (-553 (-800 (-329)))) (|has| |#3| (-553 (-800 (-329))))) ELT) (((-800 (-484)) $) NIL (-12 (|has| |#1| (-553 (-800 (-484)))) (|has| |#3| (-553 (-800 (-484))))) ELT) (((-473) $) NIL (-12 (|has| |#1| (-553 (-473))) (|has| |#3| (-553 (-473)))) ELT)) (-2817 ((|#1| $) NIL (|has| |#1| (-391)) ELT) (($ $ |#3|) NIL (|has| |#1| (-391)) ELT)) (-2703 (((-3 (-1178 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-821))) ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#1|) 26 T ELT) (($ |#3|) 25 T ELT) (($ |#2|) NIL T ELT) (($ (-1038 |#1| |#2|)) 32 T ELT) (($ (-349 (-484))) NIL (OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-950 (-349 (-484))))) ELT) (($ $) NIL (|has| |#1| (-495)) ELT)) (-3816 (((-583 |#1|) $) NIL T ELT)) (-3676 ((|#1| $ (-469 |#3|)) NIL T ELT) (($ $ |#3| (-694)) NIL T ELT) (($ $ (-583 |#3|) (-583 (-694))) NIL T ELT)) (-2702 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-821))) (|has| |#1| (-118))) ELT)) (-3126 (((-694)) NIL T CONST)) (-1622 (($ $ $ (-694)) NIL (|has| |#1| (-146)) ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) NIL T CONST)) (-2666 (($) NIL T CONST)) (-2669 (($ $ (-583 |#3|) (-583 (-694))) NIL T ELT) (($ $ |#3| (-694)) NIL T ELT) (($ $ (-583 |#3|)) NIL T ELT) (($ $ |#3|) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL T ELT) (($ $ (-1089)) NIL (|has| |#1| (-811 (-1089))) ELT) (($ $ (-583 (-1089))) NIL (|has| |#1| (-811 (-1089))) ELT) (($ $ (-1089) (-694)) NIL (|has| |#1| (-811 (-1089))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (|has| |#1| (-811 (-1089))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-694)) NIL (|has| |#1| (-189)) ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3948 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-349 (-484))) NIL (|has| |#1| (-38 (-349 (-484)))) ELT) (($ (-349 (-484)) $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) +(((-226 |#1| |#2| |#3|) (-13 (-213 |#1| |#2| |#3| (-469 |#3|)) (-950 (-1038 |#1| |#2|))) (-961) (-756) (-228 |#2|)) (T -226)) +NIL +((-1521 (((-694) $) 37 T ELT)) (-3157 (((-3 |#2| "failed") $) 22 T ELT)) (-3156 ((|#2| $) 33 T ELT)) (-3757 (($ $ (-694)) 18 T ELT) (($ $) 14 T ELT)) (-3945 (((-772) $) 32 T ELT) (($ |#2|) 11 T ELT)) (-3056 (((-85) $ $) 26 T ELT)) (-2685 (((-85) $ $) 36 T ELT))) +(((-227 |#1| |#2|) (-10 -7 (-15 -1521 ((-694) |#1|)) (-15 -3945 (|#1| |#2|)) (-15 -3157 ((-3 |#2| "failed") |#1|)) (-15 -3156 (|#2| |#1|)) (-15 -3757 (|#1| |#1|)) (-15 -3757 (|#1| |#1| (-694))) (-15 -2685 ((-85) |#1| |#1|)) (-15 -3945 ((-772) |#1|)) (-15 -3056 ((-85) |#1| |#1|))) (-228 |#2|) (-756)) (T -227)) +NIL +((-2568 (((-85) $ $) 7 T ELT)) (-1521 (((-694) $) 26 T ELT)) (-3830 ((|#1| $) 27 T ELT)) (-3157 (((-3 |#1| "failed") $) 31 T ELT)) (-3156 ((|#1| $) 32 T ELT)) (-3771 (((-694) $) 28 T ELT)) (-2531 (($ $ $) 23 T ELT)) (-2857 (($ $ $) 22 T ELT)) (-1522 (($ |#1| (-694)) 29 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3757 (($ $ (-694)) 35 T ELT) (($ $) 33 T ELT)) (-3945 (((-772) $) 13 T ELT) (($ |#1|) 30 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-2669 (($ $ (-694)) 36 T ELT) (($ $) 34 T ELT)) (-2566 (((-85) $ $) 21 T ELT)) (-2567 (((-85) $ $) 19 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-2684 (((-85) $ $) 20 T ELT)) (-2685 (((-85) $ $) 18 T ELT))) +(((-228 |#1|) (-113) (-756)) (T -228)) +((-1522 (*1 *1 *2 *3) (-12 (-5 *3 (-694)) (-4 *1 (-228 *2)) (-4 *2 (-756)))) (-3771 (*1 *2 *1) (-12 (-4 *1 (-228 *3)) (-4 *3 (-756)) (-5 *2 (-694)))) (-3830 (*1 *2 *1) (-12 (-4 *1 (-228 *2)) (-4 *2 (-756)))) (-1521 (*1 *2 *1) (-12 (-4 *1 (-228 *3)) (-4 *3 (-756)) (-5 *2 (-694))))) +(-13 (-756) (-189) (-950 |t#1|) (-10 -8 (-15 -1522 ($ |t#1| (-694))) (-15 -3771 ((-694) $)) (-15 -3830 (|t#1| $)) (-15 -1521 ((-694) $)))) +(((-72) . T) ((-555 |#1|) . T) ((-552 (-772)) . T) ((-186 $) . T) ((-189) . T) ((-13) . T) ((-756) . T) ((-759) . T) ((-950 |#1|) . T) ((-1013) . T) ((-1128) . T)) +((-2568 (((-85) $ $) NIL T ELT)) (-2531 (($ $ $) NIL T ELT)) (-2857 (($ $ $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1524 (((-583 (-484)) $) 28 T ELT)) (-3947 (((-694) $) 26 T ELT)) (-3945 (((-772) $) 32 T ELT) (($ (-583 (-484))) 22 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-1523 (($ (-694)) 29 T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 11 T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) 18 T ELT))) +(((-229) (-13 (-756) (-10 -8 (-15 -3945 ($ (-583 (-484)))) (-15 -3947 ((-694) $)) (-15 -1524 ((-583 (-484)) $)) (-15 -1523 ($ (-694)))))) (T -229)) +((-3945 (*1 *1 *2) (-12 (-5 *2 (-583 (-484))) (-5 *1 (-229)))) (-3947 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-229)))) (-1524 (*1 *2 *1) (-12 (-5 *2 (-583 (-484))) (-5 *1 (-229)))) (-1523 (*1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-229))))) +((-3491 ((|#2| |#2|) 77 T ELT)) (-3638 ((|#2| |#2|) 65 T ELT)) (-1553 (((-3 |#2| "failed") |#2| (-583 (-2 (|:| |func| |#2|) (|:| |pole| (-85))))) 123 T ELT)) (-3489 ((|#2| |#2|) 75 T ELT)) (-3637 ((|#2| |#2|) 63 T ELT)) (-3493 ((|#2| |#2|) 79 T ELT)) (-3636 ((|#2| |#2|) 67 T ELT)) (-3626 ((|#2|) 46 T ELT)) (-3594 (((-86) (-86)) 97 T ELT)) (-3941 ((|#2| |#2|) 61 T ELT)) (-1554 (((-85) |#2|) 146 T ELT)) (-1543 ((|#2| |#2|) 193 T ELT)) (-1531 ((|#2| |#2|) 169 T ELT)) (-1526 ((|#2|) 59 T ELT)) (-1525 ((|#2|) 58 T ELT)) (-1541 ((|#2| |#2|) 189 T ELT)) (-1529 ((|#2| |#2|) 165 T ELT)) (-1545 ((|#2| |#2|) 197 T ELT)) (-1533 ((|#2| |#2|) 173 T ELT)) (-1528 ((|#2| |#2|) 161 T ELT)) (-1527 ((|#2| |#2|) 163 T ELT)) (-1546 ((|#2| |#2|) 199 T ELT)) (-1534 ((|#2| |#2|) 175 T ELT)) (-1544 ((|#2| |#2|) 195 T ELT)) (-1532 ((|#2| |#2|) 171 T ELT)) (-1542 ((|#2| |#2|) 191 T ELT)) (-1530 ((|#2| |#2|) 167 T ELT)) (-1549 ((|#2| |#2|) 205 T ELT)) (-1537 ((|#2| |#2|) 181 T ELT)) (-1547 ((|#2| |#2|) 201 T ELT)) (-1535 ((|#2| |#2|) 177 T ELT)) (-1551 ((|#2| |#2|) 209 T ELT)) (-1539 ((|#2| |#2|) 185 T ELT)) (-1552 ((|#2| |#2|) 211 T ELT)) (-1540 ((|#2| |#2|) 187 T ELT)) (-1550 ((|#2| |#2|) 207 T ELT)) (-1538 ((|#2| |#2|) 183 T ELT)) (-1548 ((|#2| |#2|) 203 T ELT)) (-1536 ((|#2| |#2|) 179 T ELT)) (-3942 ((|#2| |#2|) 62 T ELT)) (-3494 ((|#2| |#2|) 80 T ELT)) (-3635 ((|#2| |#2|) 68 T ELT)) (-3492 ((|#2| |#2|) 78 T ELT)) (-3634 ((|#2| |#2|) 66 T ELT)) (-3490 ((|#2| |#2|) 76 T ELT)) (-3633 ((|#2| |#2|) 64 T ELT)) (-2254 (((-85) (-86)) 95 T ELT)) (-3497 ((|#2| |#2|) 83 T ELT)) (-3485 ((|#2| |#2|) 71 T ELT)) (-3495 ((|#2| |#2|) 81 T ELT)) (-3483 ((|#2| |#2|) 69 T ELT)) (-3499 ((|#2| |#2|) 85 T ELT)) (-3487 ((|#2| |#2|) 73 T ELT)) (-3500 ((|#2| |#2|) 86 T ELT)) (-3488 ((|#2| |#2|) 74 T ELT)) (-3498 ((|#2| |#2|) 84 T ELT)) (-3486 ((|#2| |#2|) 72 T ELT)) (-3496 ((|#2| |#2|) 82 T ELT)) (-3484 ((|#2| |#2|) 70 T ELT))) +(((-230 |#1| |#2|) (-10 -7 (-15 -3942 (|#2| |#2|)) (-15 -3941 (|#2| |#2|)) (-15 -3637 (|#2| |#2|)) (-15 -3633 (|#2| |#2|)) (-15 -3638 (|#2| |#2|)) (-15 -3634 (|#2| |#2|)) (-15 -3636 (|#2| |#2|)) (-15 -3635 (|#2| |#2|)) (-15 -3483 (|#2| |#2|)) (-15 -3484 (|#2| |#2|)) (-15 -3485 (|#2| |#2|)) (-15 -3486 (|#2| |#2|)) (-15 -3487 (|#2| |#2|)) (-15 -3488 (|#2| |#2|)) (-15 -3489 (|#2| |#2|)) (-15 -3490 (|#2| |#2|)) (-15 -3491 (|#2| |#2|)) (-15 -3492 (|#2| |#2|)) (-15 -3493 (|#2| |#2|)) (-15 -3494 (|#2| |#2|)) (-15 -3495 (|#2| |#2|)) (-15 -3496 (|#2| |#2|)) (-15 -3497 (|#2| |#2|)) (-15 -3498 (|#2| |#2|)) (-15 -3499 (|#2| |#2|)) (-15 -3500 (|#2| |#2|)) (-15 -3626 (|#2|)) (-15 -2254 ((-85) (-86))) (-15 -3594 ((-86) (-86))) (-15 -1525 (|#2|)) (-15 -1526 (|#2|)) (-15 -1527 (|#2| |#2|)) (-15 -1528 (|#2| |#2|)) (-15 -1529 (|#2| |#2|)) (-15 -1530 (|#2| |#2|)) (-15 -1531 (|#2| |#2|)) (-15 -1532 (|#2| |#2|)) (-15 -1533 (|#2| |#2|)) (-15 -1534 (|#2| |#2|)) (-15 -1535 (|#2| |#2|)) (-15 -1536 (|#2| |#2|)) (-15 -1537 (|#2| |#2|)) (-15 -1538 (|#2| |#2|)) (-15 -1539 (|#2| |#2|)) (-15 -1540 (|#2| |#2|)) (-15 -1541 (|#2| |#2|)) (-15 -1542 (|#2| |#2|)) (-15 -1543 (|#2| |#2|)) (-15 -1544 (|#2| |#2|)) (-15 -1545 (|#2| |#2|)) (-15 -1546 (|#2| |#2|)) (-15 -1547 (|#2| |#2|)) (-15 -1548 (|#2| |#2|)) (-15 -1549 (|#2| |#2|)) (-15 -1550 (|#2| |#2|)) (-15 -1551 (|#2| |#2|)) (-15 -1552 (|#2| |#2|)) (-15 -1553 ((-3 |#2| "failed") |#2| (-583 (-2 (|:| |func| |#2|) (|:| |pole| (-85)))))) (-15 -1554 ((-85) |#2|))) (-495) (-13 (-363 |#1|) (-915))) (T -230)) +((-1554 (*1 *2 *3) (-12 (-4 *4 (-495)) (-5 *2 (-85)) (-5 *1 (-230 *4 *3)) (-4 *3 (-13 (-363 *4) (-915))))) (-1553 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-583 (-2 (|:| |func| *2) (|:| |pole| (-85))))) (-4 *2 (-13 (-363 *4) (-915))) (-4 *4 (-495)) (-5 *1 (-230 *4 *2)))) (-1552 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))) (-1551 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))) (-1550 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))) (-1549 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))) (-1548 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))) (-1547 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))) (-1546 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))) (-1545 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))) (-1544 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))) (-1543 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))) (-1542 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))) (-1541 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))) (-1540 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))) (-1539 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))) (-1538 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))) (-1537 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))) (-1536 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))) (-1535 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))) (-1534 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))) (-1533 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))) (-1532 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))) (-1531 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))) (-1530 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))) (-1529 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))) (-1528 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))) (-1527 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))) (-1526 (*1 *2) (-12 (-4 *2 (-13 (-363 *3) (-915))) (-5 *1 (-230 *3 *2)) (-4 *3 (-495)))) (-1525 (*1 *2) (-12 (-4 *2 (-13 (-363 *3) (-915))) (-5 *1 (-230 *3 *2)) (-4 *3 (-495)))) (-3594 (*1 *2 *2) (-12 (-5 *2 (-86)) (-4 *3 (-495)) (-5 *1 (-230 *3 *4)) (-4 *4 (-13 (-363 *3) (-915))))) (-2254 (*1 *2 *3) (-12 (-5 *3 (-86)) (-4 *4 (-495)) (-5 *2 (-85)) (-5 *1 (-230 *4 *5)) (-4 *5 (-13 (-363 *4) (-915))))) (-3626 (*1 *2) (-12 (-4 *2 (-13 (-363 *3) (-915))) (-5 *1 (-230 *3 *2)) (-4 *3 (-495)))) (-3500 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))) (-3499 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))) (-3498 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))) (-3497 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))) (-3496 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))) (-3495 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))) (-3494 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))) (-3493 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))) (-3492 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))) (-3491 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))) (-3490 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))) (-3489 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))) (-3488 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))) (-3487 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))) (-3486 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))) (-3485 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))) (-3484 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))) (-3483 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))) (-3635 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))) (-3636 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))) (-3634 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))) (-3638 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))) (-3633 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))) (-3637 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))) (-3941 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))) (-3942 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915)))))) +((-1557 (((-3 |#2| "failed") (-583 (-550 |#2|)) |#2| (-1089)) 151 T ELT)) (-1559 ((|#2| (-349 (-484)) |#2|) 49 T ELT)) (-1558 ((|#2| |#2| (-550 |#2|)) 144 T ELT)) (-1555 (((-2 (|:| |func| |#2|) (|:| |kers| (-583 (-550 |#2|))) (|:| |vals| (-583 |#2|))) |#2| (-1089)) 143 T ELT)) (-1556 ((|#2| |#2| (-1089)) 20 T ELT) ((|#2| |#2|) 23 T ELT)) (-2443 ((|#2| |#2| (-1089)) 157 T ELT) ((|#2| |#2|) 155 T ELT))) +(((-231 |#1| |#2|) (-10 -7 (-15 -2443 (|#2| |#2|)) (-15 -2443 (|#2| |#2| (-1089))) (-15 -1555 ((-2 (|:| |func| |#2|) (|:| |kers| (-583 (-550 |#2|))) (|:| |vals| (-583 |#2|))) |#2| (-1089))) (-15 -1556 (|#2| |#2|)) (-15 -1556 (|#2| |#2| (-1089))) (-15 -1557 ((-3 |#2| "failed") (-583 (-550 |#2|)) |#2| (-1089))) (-15 -1558 (|#2| |#2| (-550 |#2|))) (-15 -1559 (|#2| (-349 (-484)) |#2|))) (-13 (-495) (-950 (-484)) (-580 (-484))) (-13 (-27) (-1114) (-363 |#1|))) (T -231)) +((-1559 (*1 *2 *3 *2) (-12 (-5 *3 (-349 (-484))) (-4 *4 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *1 (-231 *4 *2)) (-4 *2 (-13 (-27) (-1114) (-363 *4))))) (-1558 (*1 *2 *2 *3) (-12 (-5 *3 (-550 *2)) (-4 *2 (-13 (-27) (-1114) (-363 *4))) (-4 *4 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *1 (-231 *4 *2)))) (-1557 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-583 (-550 *2))) (-5 *4 (-1089)) (-4 *2 (-13 (-27) (-1114) (-363 *5))) (-4 *5 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *1 (-231 *5 *2)))) (-1556 (*1 *2 *2 *3) (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *1 (-231 *4 *2)) (-4 *2 (-13 (-27) (-1114) (-363 *4))))) (-1556 (*1 *2 *2) (-12 (-4 *3 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *1 (-231 *3 *2)) (-4 *2 (-13 (-27) (-1114) (-363 *3))))) (-1555 (*1 *2 *3 *4) (-12 (-5 *4 (-1089)) (-4 *5 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-583 (-550 *3))) (|:| |vals| (-583 *3)))) (-5 *1 (-231 *5 *3)) (-4 *3 (-13 (-27) (-1114) (-363 *5))))) (-2443 (*1 *2 *2 *3) (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *1 (-231 *4 *2)) (-4 *2 (-13 (-27) (-1114) (-363 *4))))) (-2443 (*1 *2 *2) (-12 (-4 *3 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *1 (-231 *3 *2)) (-4 *2 (-13 (-27) (-1114) (-363 *3)))))) +((-2975 (((-3 |#3| #1="failed") |#3|) 120 T ELT)) (-3491 ((|#3| |#3|) 142 T ELT)) (-2963 (((-3 |#3| #1#) |#3|) 89 T ELT)) (-3638 ((|#3| |#3|) 132 T ELT)) (-2973 (((-3 |#3| #1#) |#3|) 65 T ELT)) (-3489 ((|#3| |#3|) 140 T ELT)) (-2961 (((-3 |#3| #1#) |#3|) 53 T ELT)) (-3637 ((|#3| |#3|) 130 T ELT)) (-2977 (((-3 |#3| #1#) |#3|) 122 T ELT)) (-3493 ((|#3| |#3|) 144 T ELT)) (-2965 (((-3 |#3| #1#) |#3|) 91 T ELT)) (-3636 ((|#3| |#3|) 134 T ELT)) (-2958 (((-3 |#3| #1#) |#3| (-694)) 41 T ELT)) (-2960 (((-3 |#3| #1#) |#3|) 81 T ELT)) (-3941 ((|#3| |#3|) 129 T ELT)) (-2959 (((-3 |#3| #1#) |#3|) 51 T ELT)) (-3942 ((|#3| |#3|) 128 T ELT)) (-2978 (((-3 |#3| #1#) |#3|) 123 T ELT)) (-3494 ((|#3| |#3|) 145 T ELT)) (-2966 (((-3 |#3| #1#) |#3|) 92 T ELT)) (-3635 ((|#3| |#3|) 135 T ELT)) (-2976 (((-3 |#3| #1#) |#3|) 121 T ELT)) (-3492 ((|#3| |#3|) 143 T ELT)) (-2964 (((-3 |#3| #1#) |#3|) 90 T ELT)) (-3634 ((|#3| |#3|) 133 T ELT)) (-2974 (((-3 |#3| #1#) |#3|) 67 T ELT)) (-3490 ((|#3| |#3|) 141 T ELT)) (-2962 (((-3 |#3| #1#) |#3|) 55 T ELT)) (-3633 ((|#3| |#3|) 131 T ELT)) (-2981 (((-3 |#3| #1#) |#3|) 73 T ELT)) (-3497 ((|#3| |#3|) 148 T ELT)) (-2969 (((-3 |#3| #1#) |#3|) 114 T ELT)) (-3485 ((|#3| |#3|) 152 T ELT)) (-2979 (((-3 |#3| #1#) |#3|) 69 T ELT)) (-3495 ((|#3| |#3|) 146 T ELT)) (-2967 (((-3 |#3| #1#) |#3|) 57 T ELT)) (-3483 ((|#3| |#3|) 136 T ELT)) (-2983 (((-3 |#3| #1#) |#3|) 77 T ELT)) (-3499 ((|#3| |#3|) 150 T ELT)) (-2971 (((-3 |#3| #1#) |#3|) 61 T ELT)) (-3487 ((|#3| |#3|) 138 T ELT)) (-2984 (((-3 |#3| #1#) |#3|) 79 T ELT)) (-3500 ((|#3| |#3|) 151 T ELT)) (-2972 (((-3 |#3| #1#) |#3|) 63 T ELT)) (-3488 ((|#3| |#3|) 139 T ELT)) (-2982 (((-3 |#3| #1#) |#3|) 75 T ELT)) (-3498 ((|#3| |#3|) 149 T ELT)) (-2970 (((-3 |#3| #1#) |#3|) 117 T ELT)) (-3486 ((|#3| |#3|) 153 T ELT)) (-2980 (((-3 |#3| #1#) |#3|) 71 T ELT)) (-3496 ((|#3| |#3|) 147 T ELT)) (-2968 (((-3 |#3| #1#) |#3|) 59 T ELT)) (-3484 ((|#3| |#3|) 137 T ELT)) (** ((|#3| |#3| (-349 (-484))) 47 (|has| |#1| (-312)) ELT))) +(((-232 |#1| |#2| |#3|) (-13 (-896 |#3|) (-10 -7 (IF (|has| |#1| (-312)) (-15 ** (|#3| |#3| (-349 (-484)))) |%noBranch|) (-15 -3942 (|#3| |#3|)) (-15 -3941 (|#3| |#3|)) (-15 -3637 (|#3| |#3|)) (-15 -3633 (|#3| |#3|)) (-15 -3638 (|#3| |#3|)) (-15 -3634 (|#3| |#3|)) (-15 -3636 (|#3| |#3|)) (-15 -3635 (|#3| |#3|)) (-15 -3483 (|#3| |#3|)) (-15 -3484 (|#3| |#3|)) (-15 -3485 (|#3| |#3|)) (-15 -3486 (|#3| |#3|)) (-15 -3487 (|#3| |#3|)) (-15 -3488 (|#3| |#3|)) (-15 -3489 (|#3| |#3|)) (-15 -3490 (|#3| |#3|)) (-15 -3491 (|#3| |#3|)) (-15 -3492 (|#3| |#3|)) (-15 -3493 (|#3| |#3|)) (-15 -3494 (|#3| |#3|)) (-15 -3495 (|#3| |#3|)) (-15 -3496 (|#3| |#3|)) (-15 -3497 (|#3| |#3|)) (-15 -3498 (|#3| |#3|)) (-15 -3499 (|#3| |#3|)) (-15 -3500 (|#3| |#3|)))) (-38 (-349 (-484))) (-1171 |#1|) (-1142 |#1| |#2|)) (T -232)) +((** (*1 *2 *2 *3) (-12 (-5 *3 (-349 (-484))) (-4 *4 (-312)) (-4 *4 (-38 *3)) (-4 *5 (-1171 *4)) (-5 *1 (-232 *4 *5 *2)) (-4 *2 (-1142 *4 *5)))) (-3942 (*1 *2 *2) (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1142 *3 *4)))) (-3941 (*1 *2 *2) (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1142 *3 *4)))) (-3637 (*1 *2 *2) (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1142 *3 *4)))) (-3633 (*1 *2 *2) (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1142 *3 *4)))) (-3638 (*1 *2 *2) (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1142 *3 *4)))) (-3634 (*1 *2 *2) (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1142 *3 *4)))) (-3636 (*1 *2 *2) (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1142 *3 *4)))) (-3635 (*1 *2 *2) (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1142 *3 *4)))) (-3483 (*1 *2 *2) (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1142 *3 *4)))) (-3484 (*1 *2 *2) (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1142 *3 *4)))) (-3485 (*1 *2 *2) (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1142 *3 *4)))) (-3486 (*1 *2 *2) (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1142 *3 *4)))) (-3487 (*1 *2 *2) (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1142 *3 *4)))) (-3488 (*1 *2 *2) (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1142 *3 *4)))) (-3489 (*1 *2 *2) (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1142 *3 *4)))) (-3490 (*1 *2 *2) (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1142 *3 *4)))) (-3491 (*1 *2 *2) (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1142 *3 *4)))) (-3492 (*1 *2 *2) (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1142 *3 *4)))) (-3493 (*1 *2 *2) (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1142 *3 *4)))) (-3494 (*1 *2 *2) (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1142 *3 *4)))) (-3495 (*1 *2 *2) (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1142 *3 *4)))) (-3496 (*1 *2 *2) (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1142 *3 *4)))) (-3497 (*1 *2 *2) (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1142 *3 *4)))) (-3498 (*1 *2 *2) (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1142 *3 *4)))) (-3499 (*1 *2 *2) (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1142 *3 *4)))) (-3500 (*1 *2 *2) (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1142 *3 *4))))) +((-2975 (((-3 |#3| #1="failed") |#3|) 70 T ELT)) (-3491 ((|#3| |#3|) 137 T ELT)) (-2963 (((-3 |#3| #1#) |#3|) 54 T ELT)) (-3638 ((|#3| |#3|) 125 T ELT)) (-2973 (((-3 |#3| #1#) |#3|) 66 T ELT)) (-3489 ((|#3| |#3|) 135 T ELT)) (-2961 (((-3 |#3| #1#) |#3|) 50 T ELT)) (-3637 ((|#3| |#3|) 123 T ELT)) (-2977 (((-3 |#3| #1#) |#3|) 74 T ELT)) (-3493 ((|#3| |#3|) 139 T ELT)) (-2965 (((-3 |#3| #1#) |#3|) 58 T ELT)) (-3636 ((|#3| |#3|) 127 T ELT)) (-2958 (((-3 |#3| #1#) |#3| (-694)) 38 T ELT)) (-2960 (((-3 |#3| #1#) |#3|) 48 T ELT)) (-3941 ((|#3| |#3|) 111 T ELT)) (-2959 (((-3 |#3| #1#) |#3|) 46 T ELT)) (-3942 ((|#3| |#3|) 122 T ELT)) (-2978 (((-3 |#3| #1#) |#3|) 76 T ELT)) (-3494 ((|#3| |#3|) 140 T ELT)) (-2966 (((-3 |#3| #1#) |#3|) 60 T ELT)) (-3635 ((|#3| |#3|) 128 T ELT)) (-2976 (((-3 |#3| #1#) |#3|) 72 T ELT)) (-3492 ((|#3| |#3|) 138 T ELT)) (-2964 (((-3 |#3| #1#) |#3|) 56 T ELT)) (-3634 ((|#3| |#3|) 126 T ELT)) (-2974 (((-3 |#3| #1#) |#3|) 68 T ELT)) (-3490 ((|#3| |#3|) 136 T ELT)) (-2962 (((-3 |#3| #1#) |#3|) 52 T ELT)) (-3633 ((|#3| |#3|) 124 T ELT)) (-2981 (((-3 |#3| #1#) |#3|) 78 T ELT)) (-3497 ((|#3| |#3|) 143 T ELT)) (-2969 (((-3 |#3| #1#) |#3|) 62 T ELT)) (-3485 ((|#3| |#3|) 131 T ELT)) (-2979 (((-3 |#3| #1#) |#3|) 112 T ELT)) (-3495 ((|#3| |#3|) 141 T ELT)) (-2967 (((-3 |#3| #1#) |#3|) 100 T ELT)) (-3483 ((|#3| |#3|) 129 T ELT)) (-2983 (((-3 |#3| #1#) |#3|) 116 T ELT)) (-3499 ((|#3| |#3|) 145 T ELT)) (-2971 (((-3 |#3| #1#) |#3|) 107 T ELT)) (-3487 ((|#3| |#3|) 133 T ELT)) (-2984 (((-3 |#3| #1#) |#3|) 117 T ELT)) (-3500 ((|#3| |#3|) 146 T ELT)) (-2972 (((-3 |#3| #1#) |#3|) 109 T ELT)) (-3488 ((|#3| |#3|) 134 T ELT)) (-2982 (((-3 |#3| #1#) |#3|) 80 T ELT)) (-3498 ((|#3| |#3|) 144 T ELT)) (-2970 (((-3 |#3| #1#) |#3|) 64 T ELT)) (-3486 ((|#3| |#3|) 132 T ELT)) (-2980 (((-3 |#3| #1#) |#3|) 113 T ELT)) (-3496 ((|#3| |#3|) 142 T ELT)) (-2968 (((-3 |#3| #1#) |#3|) 103 T ELT)) (-3484 ((|#3| |#3|) 130 T ELT)) (** ((|#3| |#3| (-349 (-484))) 44 (|has| |#1| (-312)) ELT))) +(((-233 |#1| |#2| |#3| |#4|) (-13 (-896 |#3|) (-10 -7 (IF (|has| |#1| (-312)) (-15 ** (|#3| |#3| (-349 (-484)))) |%noBranch|) (-15 -3942 (|#3| |#3|)) (-15 -3941 (|#3| |#3|)) (-15 -3637 (|#3| |#3|)) (-15 -3633 (|#3| |#3|)) (-15 -3638 (|#3| |#3|)) (-15 -3634 (|#3| |#3|)) (-15 -3636 (|#3| |#3|)) (-15 -3635 (|#3| |#3|)) (-15 -3483 (|#3| |#3|)) (-15 -3484 (|#3| |#3|)) (-15 -3485 (|#3| |#3|)) (-15 -3486 (|#3| |#3|)) (-15 -3487 (|#3| |#3|)) (-15 -3488 (|#3| |#3|)) (-15 -3489 (|#3| |#3|)) (-15 -3490 (|#3| |#3|)) (-15 -3491 (|#3| |#3|)) (-15 -3492 (|#3| |#3|)) (-15 -3493 (|#3| |#3|)) (-15 -3494 (|#3| |#3|)) (-15 -3495 (|#3| |#3|)) (-15 -3496 (|#3| |#3|)) (-15 -3497 (|#3| |#3|)) (-15 -3498 (|#3| |#3|)) (-15 -3499 (|#3| |#3|)) (-15 -3500 (|#3| |#3|)))) (-38 (-349 (-484))) (-1140 |#1|) (-1163 |#1| |#2|) (-896 |#2|)) (T -233)) +((** (*1 *2 *2 *3) (-12 (-5 *3 (-349 (-484))) (-4 *4 (-312)) (-4 *4 (-38 *3)) (-4 *5 (-1140 *4)) (-5 *1 (-233 *4 *5 *2 *6)) (-4 *2 (-1163 *4 *5)) (-4 *6 (-896 *5)))) (-3942 (*1 *2 *2) (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1140 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-896 *4)))) (-3941 (*1 *2 *2) (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1140 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-896 *4)))) (-3637 (*1 *2 *2) (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1140 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-896 *4)))) (-3633 (*1 *2 *2) (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1140 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-896 *4)))) (-3638 (*1 *2 *2) (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1140 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-896 *4)))) (-3634 (*1 *2 *2) (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1140 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-896 *4)))) (-3636 (*1 *2 *2) (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1140 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-896 *4)))) (-3635 (*1 *2 *2) (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1140 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-896 *4)))) (-3483 (*1 *2 *2) (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1140 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-896 *4)))) (-3484 (*1 *2 *2) (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1140 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-896 *4)))) (-3485 (*1 *2 *2) (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1140 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-896 *4)))) (-3486 (*1 *2 *2) (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1140 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-896 *4)))) (-3487 (*1 *2 *2) (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1140 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-896 *4)))) (-3488 (*1 *2 *2) (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1140 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-896 *4)))) (-3489 (*1 *2 *2) (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1140 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-896 *4)))) (-3490 (*1 *2 *2) (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1140 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-896 *4)))) (-3491 (*1 *2 *2) (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1140 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-896 *4)))) (-3492 (*1 *2 *2) (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1140 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-896 *4)))) (-3493 (*1 *2 *2) (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1140 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-896 *4)))) (-3494 (*1 *2 *2) (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1140 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-896 *4)))) (-3495 (*1 *2 *2) (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1140 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-896 *4)))) (-3496 (*1 *2 *2) (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1140 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-896 *4)))) (-3497 (*1 *2 *2) (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1140 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-896 *4)))) (-3498 (*1 *2 *2) (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1140 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-896 *4)))) (-3499 (*1 *2 *2) (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1140 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-896 *4)))) (-3500 (*1 *2 *2) (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1140 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-896 *4))))) +((-1562 (((-85) $) 20 T ELT)) (-1564 (((-1094) $) 9 T ELT)) (-3568 (((-3 (-446) #1="failed") $) 15 T ELT)) (-3567 (((-3 (-583 $) #1#) $) NIL T ELT)) (-1561 (((-3 (-446) #1#) $) 21 T ELT)) (-1563 (((-3 (-1015) #1#) $) 19 T ELT)) (-3952 (((-85) $) 17 T ELT)) (-3945 (((-772) $) NIL T ELT)) (-1560 (((-85) $) 10 T ELT))) +(((-234) (-13 (-552 (-772)) (-10 -8 (-15 -1564 ((-1094) $)) (-15 -3952 ((-85) $)) (-15 -1563 ((-3 (-1015) #1="failed") $)) (-15 -1562 ((-85) $)) (-15 -1561 ((-3 (-446) #1#) $)) (-15 -1560 ((-85) $)) (-15 -3568 ((-3 (-446) #1#) $)) (-15 -3567 ((-3 (-583 $) #1#) $))))) (T -234)) +((-1564 (*1 *2 *1) (-12 (-5 *2 (-1094)) (-5 *1 (-234)))) (-3952 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-234)))) (-1563 (*1 *2 *1) (|partial| -12 (-5 *2 (-1015)) (-5 *1 (-234)))) (-1562 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-234)))) (-1561 (*1 *2 *1) (|partial| -12 (-5 *2 (-446)) (-5 *1 (-234)))) (-1560 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-234)))) (-3568 (*1 *2 *1) (|partial| -12 (-5 *2 (-446)) (-5 *1 (-234)))) (-3567 (*1 *2 *1) (|partial| -12 (-5 *2 (-583 (-234))) (-5 *1 (-234))))) +((-1566 (((-532) $) 10 T ELT)) (-1567 (((-522) $) 8 T ELT)) (-1565 (((-247) $) 12 T ELT)) (-1568 (($ (-522) (-532) (-247)) NIL T ELT)) (-3945 (((-772) $) 19 T ELT))) +(((-235) (-13 (-552 (-772)) (-10 -8 (-15 -1568 ($ (-522) (-532) (-247))) (-15 -1567 ((-522) $)) (-15 -1566 ((-532) $)) (-15 -1565 ((-247) $))))) (T -235)) +((-1568 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-522)) (-5 *3 (-532)) (-5 *4 (-247)) (-5 *1 (-235)))) (-1567 (*1 *2 *1) (-12 (-5 *2 (-522)) (-5 *1 (-235)))) (-1566 (*1 *2 *1) (-12 (-5 *2 (-532)) (-5 *1 (-235)))) (-1565 (*1 *2 *1) (-12 (-5 *2 (-247)) (-5 *1 (-235))))) +((-3709 (($ (-1 (-85) |#2|) $) 24 T ELT)) (-1352 (($ $) 38 T ELT)) (-3404 (($ (-1 (-85) |#2|) $) NIL T ELT) (($ |#2| $) 36 T ELT)) (-3405 (($ |#2| $) 34 T ELT) (($ (-1 (-85) |#2|) $) 18 T ELT)) (-2856 (($ (-1 (-85) |#2| |#2|) $ $) NIL T ELT) (($ $ $) 42 T ELT)) (-2304 (($ |#2| $ (-484)) 20 T ELT) (($ $ $ (-484)) 22 T ELT)) (-2305 (($ $ (-484)) 11 T ELT) (($ $ (-1145 (-484))) 14 T ELT)) (-3790 (($ $ |#2|) 32 T ELT) (($ $ $) NIL T ELT)) (-3801 (($ $ |#2|) 31 T ELT) (($ |#2| $) NIL T ELT) (($ $ $) 26 T ELT) (($ (-583 $)) NIL T ELT))) +(((-236 |#1| |#2|) (-10 -7 (-15 -2856 (|#1| |#1| |#1|)) (-15 -3404 (|#1| |#2| |#1|)) (-15 -2856 (|#1| (-1 (-85) |#2| |#2|) |#1| |#1|)) (-15 -3404 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3790 (|#1| |#1| |#1|)) (-15 -3790 (|#1| |#1| |#2|)) (-15 -2304 (|#1| |#1| |#1| (-484))) (-15 -2304 (|#1| |#2| |#1| (-484))) (-15 -2305 (|#1| |#1| (-1145 (-484)))) (-15 -2305 (|#1| |#1| (-484))) (-15 -3801 (|#1| (-583 |#1|))) (-15 -3801 (|#1| |#1| |#1|)) (-15 -3801 (|#1| |#2| |#1|)) (-15 -3801 (|#1| |#1| |#2|)) (-15 -3405 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3709 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3405 (|#1| |#2| |#1|)) (-15 -1352 (|#1| |#1|))) (-237 |#2|) (-1128)) (T -236)) +NIL +((-2568 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-2198 (((-1184) $ (-484) (-484)) 44 (|has| $ (-6 -3995)) ELT)) (-3787 ((|#1| $ (-484) |#1|) 56 (|has| $ (-6 -3995)) ELT) ((|#1| $ (-1145 (-484)) |#1|) 64 (|has| $ (-6 -3995)) ELT)) (-1569 (($ (-1 (-85) |#1|) $) 94 T ELT)) (-3709 (($ (-1 (-85) |#1|) $) 81 (|has| $ (-6 -3994)) ELT)) (-3723 (($) 7 T CONST)) (-2368 (($ $) 92 (|has| |#1| (-1013)) ELT)) (-1352 (($ $) 84 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-3404 (($ (-1 (-85) |#1|) $) 98 T ELT) (($ |#1| $) 93 (|has| |#1| (-1013)) ELT)) (-3405 (($ |#1| $) 83 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT) (($ (-1 (-85) |#1|) $) 80 (|has| $ (-6 -3994)) ELT)) (-3841 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -3994)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -3994)) ELT)) (-1575 ((|#1| $ (-484) |#1|) 57 (|has| $ (-6 -3995)) ELT)) (-3112 ((|#1| $ (-484)) 55 T ELT)) (-2889 (((-583 |#1|) $) 30 (|has| $ (-6 -3994)) ELT)) (-3613 (($ (-694) |#1|) 74 T ELT)) (-2200 (((-484) $) 47 (|has| (-484) (-756)) ELT)) (-2856 (($ (-1 (-85) |#1| |#1|) $ $) 95 T ELT) (($ $ $) 91 (|has| |#1| (-756)) ELT)) (-2608 (((-583 |#1|) $) 29 (|has| $ (-6 -3994)) ELT)) (-3245 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-2201 (((-484) $) 48 (|has| (-484) (-756)) ELT)) (-1948 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-3242 (((-1072) $) 22 (|has| |#1| (-1013)) ELT)) (-3608 (($ |#1| $ (-484)) 97 T ELT) (($ $ $ (-484)) 96 T ELT)) (-2304 (($ |#1| $ (-484)) 66 T ELT) (($ $ $ (-484)) 65 T ELT)) (-2203 (((-583 (-484)) $) 50 T ELT)) (-2204 (((-85) (-484) $) 51 T ELT)) (-3243 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-3800 ((|#1| $) 46 (|has| (-484) (-756)) ELT)) (-1353 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 77 T ELT)) (-2199 (($ $ |#1|) 45 (|has| $ (-6 -3995)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3994)) ELT)) (-3767 (($ $ (-583 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1221 (((-85) $ $) 11 T ELT)) (-2202 (((-85) |#1| $) 49 (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-2205 (((-583 |#1|) $) 52 T ELT)) (-3402 (((-85) $) 8 T ELT)) (-3564 (($) 9 T ELT)) (-3799 ((|#1| $ (-484) |#1|) 54 T ELT) ((|#1| $ (-484)) 53 T ELT) (($ $ (-1145 (-484))) 75 T ELT)) (-1570 (($ $ (-484)) 100 T ELT) (($ $ (-1145 (-484))) 99 T ELT)) (-2305 (($ $ (-484)) 68 T ELT) (($ $ (-1145 (-484))) 67 T ELT)) (-1945 (((-694) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3994)) ELT) (((-694) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-3399 (($ $) 10 T ELT)) (-3971 (((-473) $) 85 (|has| |#1| (-553 (-473))) ELT)) (-3529 (($ (-583 |#1|)) 76 T ELT)) (-3790 (($ $ |#1|) 102 T ELT) (($ $ $) 101 T ELT)) (-3801 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-583 $)) 70 T ELT)) (-3945 (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-1264 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3994)) ELT)) (-3056 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3956 (((-694) $) 6 (|has| $ (-6 -3994)) ELT))) +(((-237 |#1|) (-113) (-1128)) (T -237)) +((-3790 (*1 *1 *1 *2) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1128)))) (-3790 (*1 *1 *1 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1128)))) (-1570 (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-4 *1 (-237 *3)) (-4 *3 (-1128)))) (-1570 (*1 *1 *1 *2) (-12 (-5 *2 (-1145 (-484))) (-4 *1 (-237 *3)) (-4 *3 (-1128)))) (-3404 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-237 *3)) (-4 *3 (-1128)))) (-3608 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-484)) (-4 *1 (-237 *2)) (-4 *2 (-1128)))) (-3608 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-484)) (-4 *1 (-237 *3)) (-4 *3 (-1128)))) (-2856 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-85) *3 *3)) (-4 *1 (-237 *3)) (-4 *3 (-1128)))) (-1569 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-237 *3)) (-4 *3 (-1128)))) (-3404 (*1 *1 *2 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1128)) (-4 *2 (-1013)))) (-2368 (*1 *1 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1128)) (-4 *2 (-1013)))) (-2856 (*1 *1 *1 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1128)) (-4 *2 (-756))))) +(-13 (-593 |t#1|) (-10 -8 (-6 -3995) (-15 -3790 ($ $ |t#1|)) (-15 -3790 ($ $ $)) (-15 -1570 ($ $ (-484))) (-15 -1570 ($ $ (-1145 (-484)))) (-15 -3404 ($ (-1 (-85) |t#1|) $)) (-15 -3608 ($ |t#1| $ (-484))) (-15 -3608 ($ $ $ (-484))) (-15 -2856 ($ (-1 (-85) |t#1| |t#1|) $ $)) (-15 -1569 ($ (-1 (-85) |t#1|) $)) (IF (|has| |t#1| (-1013)) (PROGN (-15 -3404 ($ |t#1| $)) (-15 -2368 ($ $))) |%noBranch|) (IF (|has| |t#1| (-756)) (-15 -2856 ($ $ $)) |%noBranch|))) +(((-34) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1013)) (|has| |#1| (-552 (-772)))) ((-124 |#1|) . T) ((-553 (-473)) |has| |#1| (-553 (-473))) ((-241 (-484) |#1|) . T) ((-241 (-1145 (-484)) $) . T) ((-243 (-484) |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-428 |#1|) . T) ((-538 (-484) |#1|) . T) ((-455 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-593 |#1|) . T) ((-1013) |has| |#1| (-1013)) ((-1128) . T)) ((** (($ $ $) 10 T ELT))) (((-238 |#1|) (-10 -7 (-15 ** (|#1| |#1| |#1|))) (-239)) (T -238)) NIL -((-3940 (($ $) 6 T ELT)) (-3941 (($ $) 7 T ELT)) (** (($ $ $) 8 T ELT))) +((-3941 (($ $) 6 T ELT)) (-3942 (($ $) 7 T ELT)) (** (($ $ $) 8 T ELT))) (((-239) (-113)) (T -239)) -((** (*1 *1 *1 *1) (-4 *1 (-239))) (-3941 (*1 *1 *1) (-4 *1 (-239))) (-3940 (*1 *1 *1) (-4 *1 (-239)))) -(-13 (-10 -8 (-15 -3940 ($ $)) (-15 -3941 ($ $)) (-15 ** ($ $ $)))) -((-1573 (((-582 (-1067 |#1|)) (-1067 |#1|) |#1|) 35 T ELT)) (-1570 ((|#2| |#2| |#1|) 39 T ELT)) (-1572 ((|#2| |#2| |#1|) 41 T ELT)) (-1571 ((|#2| |#2| |#1|) 40 T ELT))) -(((-240 |#1| |#2|) (-10 -7 (-15 -1570 (|#2| |#2| |#1|)) (-15 -1571 (|#2| |#2| |#1|)) (-15 -1572 (|#2| |#2| |#1|)) (-15 -1573 ((-582 (-1067 |#1|)) (-1067 |#1|) |#1|))) (-312) (-1170 |#1|)) (T -240)) -((-1573 (*1 *2 *3 *4) (-12 (-4 *4 (-312)) (-5 *2 (-582 (-1067 *4))) (-5 *1 (-240 *4 *5)) (-5 *3 (-1067 *4)) (-4 *5 (-1170 *4)))) (-1572 (*1 *2 *2 *3) (-12 (-4 *3 (-312)) (-5 *1 (-240 *3 *2)) (-4 *2 (-1170 *3)))) (-1571 (*1 *2 *2 *3) (-12 (-4 *3 (-312)) (-5 *1 (-240 *3 *2)) (-4 *2 (-1170 *3)))) (-1570 (*1 *2 *2 *3) (-12 (-4 *3 (-312)) (-5 *1 (-240 *3 *2)) (-4 *2 (-1170 *3))))) -((-3798 ((|#2| $ |#1|) 6 T ELT))) -(((-241 |#1| |#2|) (-113) (-1127) (-1127)) (T -241)) -((-3798 (*1 *2 *1 *3) (-12 (-4 *1 (-241 *3 *2)) (-4 *3 (-1127)) (-4 *2 (-1127))))) -(-13 (-1127) (-10 -8 (-15 -3798 (|t#2| $ |t#1|)))) -(((-13) . T) ((-1127) . T)) -((-1574 ((|#3| $ |#2| |#3|) 12 T ELT)) (-3111 ((|#3| $ |#2|) 10 T ELT))) -(((-242 |#1| |#2| |#3|) (-10 -7 (-15 -1574 (|#3| |#1| |#2| |#3|)) (-15 -3111 (|#3| |#1| |#2|))) (-243 |#2| |#3|) (-1012) (-1127)) (T -242)) -NIL -((-3786 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -3994)) ELT)) (-1574 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -3994)) ELT)) (-3111 ((|#2| $ |#1|) 11 T ELT)) (-3798 ((|#2| $ |#1|) 6 T ELT) ((|#2| $ |#1| |#2|) 12 T ELT))) -(((-243 |#1| |#2|) (-113) (-1012) (-1127)) (T -243)) -((-3798 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-243 *3 *2)) (-4 *3 (-1012)) (-4 *2 (-1127)))) (-3111 (*1 *2 *1 *3) (-12 (-4 *1 (-243 *3 *2)) (-4 *3 (-1012)) (-4 *2 (-1127)))) (-3786 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -3994)) (-4 *1 (-243 *3 *2)) (-4 *3 (-1012)) (-4 *2 (-1127)))) (-1574 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -3994)) (-4 *1 (-243 *3 *2)) (-4 *3 (-1012)) (-4 *2 (-1127))))) -(-13 (-241 |t#1| |t#2|) (-10 -8 (-15 -3798 (|t#2| $ |t#1| |t#2|)) (-15 -3111 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -3994)) (PROGN (-15 -3786 (|t#2| $ |t#1| |t#2|)) (-15 -1574 (|t#2| $ |t#1| |t#2|))) |%noBranch|))) -(((-241 |#1| |#2|) . T) ((-13) . T) ((-1127) . T)) -((-2567 (((-85) $ $) NIL T ELT)) (-3187 (((-85) $) 37 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3980 $) (|:| |associate| $)) $) 44 T ELT)) (-2062 (($ $) 41 T ELT)) (-2060 (((-85) $) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-1606 (((-85) $ $) NIL T ELT)) (-3722 (($) NIL T CONST)) (-2563 (($ $ $) 35 T ELT)) (-3840 (($ |#2| |#3|) 18 T ELT)) (-3465 (((-3 $ #1#) $) NIL T ELT)) (-2562 (($ $ $) NIL T ELT)) (-2740 (((-2 (|:| -3952 (-582 $)) (|:| -2408 $)) (-582 $)) NIL T ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-2409 (((-85) $) NIL T ELT)) (-1603 (((-3 (-582 $) #1#) (-582 $) $) NIL T ELT)) (-2613 ((|#3| $) NIL T ELT)) (-1889 (($ $ $) NIL T ELT) (($ (-582 $)) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-2483 (($ $) 19 T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-2707 (((-1083 $) (-1083 $) (-1083 $)) NIL T ELT)) (-3143 (($ $ $) NIL T ELT) (($ (-582 $)) NIL T ELT)) (-1604 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3464 (((-3 $ #1#) $ $) NIL T ELT)) (-2739 (((-631 (-582 $)) (-582 $) $) NIL T ELT)) (-2401 (((-3 $ #1#) $ $) NIL T ELT)) (-1605 (((-693) $) 36 T ELT)) (-3798 ((|#2| $ |#2|) 46 T ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) 23 T ELT)) (-3944 (((-771) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ $) NIL T ELT) ((|#2| $) NIL T ELT)) (-3125 (((-693)) NIL T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-2061 (((-85) $ $) NIL T ELT)) (-3124 (((-85) $ $) NIL T ELT)) (-2659 (($) 31 T CONST)) (-2665 (($) 39 T CONST)) (-3055 (((-85) $ $) NIL T ELT)) (-3835 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3837 (($ $ $) NIL T ELT)) (** (($ $ (-829)) NIL T ELT) (($ $ (-693)) NIL T ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) 40 T ELT))) -(((-244 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-258) (-241 |#2| |#2|) (-10 -8 (-15 -2613 (|#3| $)) (-15 -3944 (|#2| $)) (-15 -3840 ($ |#2| |#3|)) (-15 -2401 ((-3 $ #1="failed") $ $)) (-15 -3465 ((-3 $ #1#) $)) (-15 -2483 ($ $)))) (-146) (-1153 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| #1#) |#3| |#3|) (-1 (-3 |#2| #1#) |#2| |#2| |#3|)) (T -244)) -((-3465 (*1 *1 *1) (|partial| -12 (-4 *2 (-146)) (-5 *1 (-244 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1153 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1="failed") *4 *4)) (-14 *7 (-1 (-3 *3 #2="failed") *3 *3 *4)))) (-2613 (*1 *2 *1) (-12 (-4 *3 (-146)) (-4 *2 (-23)) (-5 *1 (-244 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1153 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 #1#) *2 *2)) (-14 *7 (-1 (-3 *4 #2#) *4 *4 *2)))) (-3944 (*1 *2 *1) (-12 (-4 *2 (-1153 *3)) (-5 *1 (-244 *3 *2 *4 *5 *6 *7)) (-4 *3 (-146)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *2 #2#) *2 *2 *4)))) (-3840 (*1 *1 *2 *3) (-12 (-4 *4 (-146)) (-5 *1 (-244 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1153 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 #1#) *3 *3)) (-14 *7 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2401 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-146)) (-5 *1 (-244 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1153 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *3 #2#) *3 *3 *4)))) (-2483 (*1 *1 *1) (-12 (-4 *2 (-146)) (-5 *1 (-244 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1153 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *3 #2#) *3 *3 *4))))) -((-3124 (((-85) $ $) 10 T ELT))) -(((-245 |#1|) (-10 -7 (-15 -3124 ((-85) |#1| |#1|))) (-246)) (T -245)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-3187 (((-85) $) 22 T ELT)) (-1310 (((-3 $ "failed") $ $) 26 T ELT)) (-3722 (($) 23 T CONST)) (-3465 (((-3 $ "failed") $) 42 T ELT)) (-1212 (((-85) $ $) 20 T ELT)) (-2409 (((-85) $) 44 T ELT)) (-3241 (((-1071) $) 11 T ELT)) (-3242 (((-1032) $) 12 T ELT)) (-3944 (((-771) $) 13 T ELT) (($ (-483)) 41 T ELT)) (-3125 (((-693)) 40 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-3124 (((-85) $ $) 33 T ELT)) (-2659 (($) 24 T CONST)) (-2665 (($) 45 T CONST)) (-3055 (((-85) $ $) 8 T ELT)) (-3835 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3837 (($ $ $) 18 T ELT)) (** (($ $ (-829)) 35 T ELT) (($ $ (-693)) 43 T ELT)) (* (($ (-829) $) 17 T ELT) (($ (-693) $) 21 T ELT) (($ (-483) $) 30 T ELT) (($ $ $) 34 T ELT))) +((** (*1 *1 *1 *1) (-4 *1 (-239))) (-3942 (*1 *1 *1) (-4 *1 (-239))) (-3941 (*1 *1 *1) (-4 *1 (-239)))) +(-13 (-10 -8 (-15 -3941 ($ $)) (-15 -3942 ($ $)) (-15 ** ($ $ $)))) +((-1574 (((-583 (-1068 |#1|)) (-1068 |#1|) |#1|) 35 T ELT)) (-1571 ((|#2| |#2| |#1|) 39 T ELT)) (-1573 ((|#2| |#2| |#1|) 41 T ELT)) (-1572 ((|#2| |#2| |#1|) 40 T ELT))) +(((-240 |#1| |#2|) (-10 -7 (-15 -1571 (|#2| |#2| |#1|)) (-15 -1572 (|#2| |#2| |#1|)) (-15 -1573 (|#2| |#2| |#1|)) (-15 -1574 ((-583 (-1068 |#1|)) (-1068 |#1|) |#1|))) (-312) (-1171 |#1|)) (T -240)) +((-1574 (*1 *2 *3 *4) (-12 (-4 *4 (-312)) (-5 *2 (-583 (-1068 *4))) (-5 *1 (-240 *4 *5)) (-5 *3 (-1068 *4)) (-4 *5 (-1171 *4)))) (-1573 (*1 *2 *2 *3) (-12 (-4 *3 (-312)) (-5 *1 (-240 *3 *2)) (-4 *2 (-1171 *3)))) (-1572 (*1 *2 *2 *3) (-12 (-4 *3 (-312)) (-5 *1 (-240 *3 *2)) (-4 *2 (-1171 *3)))) (-1571 (*1 *2 *2 *3) (-12 (-4 *3 (-312)) (-5 *1 (-240 *3 *2)) (-4 *2 (-1171 *3))))) +((-3799 ((|#2| $ |#1|) 6 T ELT))) +(((-241 |#1| |#2|) (-113) (-1128) (-1128)) (T -241)) +((-3799 (*1 *2 *1 *3) (-12 (-4 *1 (-241 *3 *2)) (-4 *3 (-1128)) (-4 *2 (-1128))))) +(-13 (-1128) (-10 -8 (-15 -3799 (|t#2| $ |t#1|)))) +(((-13) . T) ((-1128) . T)) +((-1575 ((|#3| $ |#2| |#3|) 12 T ELT)) (-3112 ((|#3| $ |#2|) 10 T ELT))) +(((-242 |#1| |#2| |#3|) (-10 -7 (-15 -1575 (|#3| |#1| |#2| |#3|)) (-15 -3112 (|#3| |#1| |#2|))) (-243 |#2| |#3|) (-1013) (-1128)) (T -242)) +NIL +((-3787 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -3995)) ELT)) (-1575 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -3995)) ELT)) (-3112 ((|#2| $ |#1|) 11 T ELT)) (-3799 ((|#2| $ |#1|) 6 T ELT) ((|#2| $ |#1| |#2|) 12 T ELT))) +(((-243 |#1| |#2|) (-113) (-1013) (-1128)) (T -243)) +((-3799 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-243 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1128)))) (-3112 (*1 *2 *1 *3) (-12 (-4 *1 (-243 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1128)))) (-3787 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -3995)) (-4 *1 (-243 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1128)))) (-1575 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -3995)) (-4 *1 (-243 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1128))))) +(-13 (-241 |t#1| |t#2|) (-10 -8 (-15 -3799 (|t#2| $ |t#1| |t#2|)) (-15 -3112 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -3995)) (PROGN (-15 -3787 (|t#2| $ |t#1| |t#2|)) (-15 -1575 (|t#2| $ |t#1| |t#2|))) |%noBranch|))) +(((-241 |#1| |#2|) . T) ((-13) . T) ((-1128) . T)) +((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) 37 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) 44 T ELT)) (-2063 (($ $) 41 T ELT)) (-2061 (((-85) $) NIL T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-1607 (((-85) $ $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-2564 (($ $ $) 35 T ELT)) (-3841 (($ |#2| |#3|) 18 T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-2563 (($ $ $) NIL T ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-1604 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2614 ((|#3| $) NIL T ELT)) (-1890 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2484 (($ $) 19 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3144 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-1605 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3465 (((-3 $ #1#) $ $) NIL T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-2402 (((-3 $ #1#) $ $) NIL T ELT)) (-1606 (((-694) $) 36 T ELT)) (-3799 ((|#2| $ |#2|) 46 T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 23 T ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) ((|#2| $) NIL T ELT)) (-3126 (((-694)) NIL T CONST)) (-1264 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) 31 T CONST)) (-2666 (($) 39 T CONST)) (-3056 (((-85) $ $) NIL T ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 40 T ELT))) +(((-244 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-258) (-241 |#2| |#2|) (-10 -8 (-15 -2614 (|#3| $)) (-15 -3945 (|#2| $)) (-15 -3841 ($ |#2| |#3|)) (-15 -2402 ((-3 $ #1="failed") $ $)) (-15 -3466 ((-3 $ #1#) $)) (-15 -2484 ($ $)))) (-146) (-1154 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| #1#) |#3| |#3|) (-1 (-3 |#2| #1#) |#2| |#2| |#3|)) (T -244)) +((-3466 (*1 *1 *1) (|partial| -12 (-4 *2 (-146)) (-5 *1 (-244 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1154 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1="failed") *4 *4)) (-14 *7 (-1 (-3 *3 #2="failed") *3 *3 *4)))) (-2614 (*1 *2 *1) (-12 (-4 *3 (-146)) (-4 *2 (-23)) (-5 *1 (-244 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1154 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 #1#) *2 *2)) (-14 *7 (-1 (-3 *4 #2#) *4 *4 *2)))) (-3945 (*1 *2 *1) (-12 (-4 *2 (-1154 *3)) (-5 *1 (-244 *3 *2 *4 *5 *6 *7)) (-4 *3 (-146)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *2 #2#) *2 *2 *4)))) (-3841 (*1 *1 *2 *3) (-12 (-4 *4 (-146)) (-5 *1 (-244 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1154 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 #1#) *3 *3)) (-14 *7 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2402 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-146)) (-5 *1 (-244 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1154 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *3 #2#) *3 *3 *4)))) (-2484 (*1 *1 *1) (-12 (-4 *2 (-146)) (-5 *1 (-244 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1154 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *3 #2#) *3 *3 *4))))) +((-3125 (((-85) $ $) 10 T ELT))) +(((-245 |#1|) (-10 -7 (-15 -3125 ((-85) |#1| |#1|))) (-246)) (T -245)) +NIL +((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3723 (($) 23 T CONST)) (-3466 (((-3 $ "failed") $) 42 T ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT)) (-3126 (((-694)) 40 T CONST)) (-1264 (((-85) $ $) 6 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT))) (((-246) (-113)) (T -246)) NIL -(-13 (-960) (-82 $ $) (-10 -7 (-6 -3986))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-554 (-483)) . T) ((-551 (-771)) . T) ((-13) . T) ((-587 (-483)) . T) ((-587 $) . T) ((-589 $) . T) ((-662) . T) ((-962 $) . T) ((-967 $) . T) ((-960) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T)) -((-1582 (((-582 (-996)) $) 10 T ELT)) (-1580 (($ (-445) (-445) (-1014) $) 19 T ELT)) (-1578 (($ (-445) (-582 (-875)) $) 23 T ELT)) (-1576 (($) 25 T ELT)) (-1581 (((-631 (-1014)) (-445) (-445) $) 18 T ELT)) (-1579 (((-582 (-875)) (-445) $) 22 T ELT)) (-3563 (($) 7 T ELT)) (-1577 (($) 24 T ELT)) (-3944 (((-771) $) 29 T ELT)) (-1575 (($) 26 T ELT))) -(((-247) (-13 (-551 (-771)) (-10 -8 (-15 -3563 ($)) (-15 -1582 ((-582 (-996)) $)) (-15 -1581 ((-631 (-1014)) (-445) (-445) $)) (-15 -1580 ($ (-445) (-445) (-1014) $)) (-15 -1579 ((-582 (-875)) (-445) $)) (-15 -1578 ($ (-445) (-582 (-875)) $)) (-15 -1577 ($)) (-15 -1576 ($)) (-15 -1575 ($))))) (T -247)) -((-3563 (*1 *1) (-5 *1 (-247))) (-1582 (*1 *2 *1) (-12 (-5 *2 (-582 (-996))) (-5 *1 (-247)))) (-1581 (*1 *2 *3 *3 *1) (-12 (-5 *3 (-445)) (-5 *2 (-631 (-1014))) (-5 *1 (-247)))) (-1580 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-445)) (-5 *3 (-1014)) (-5 *1 (-247)))) (-1579 (*1 *2 *3 *1) (-12 (-5 *3 (-445)) (-5 *2 (-582 (-875))) (-5 *1 (-247)))) (-1578 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-445)) (-5 *3 (-582 (-875))) (-5 *1 (-247)))) (-1577 (*1 *1) (-5 *1 (-247))) (-1576 (*1 *1) (-5 *1 (-247))) (-1575 (*1 *1) (-5 *1 (-247)))) -((-1586 (((-582 (-2 (|:| |eigval| (-3 (-348 (-856 |#1|)) (-1078 (-1088) (-856 |#1|)))) (|:| |geneigvec| (-582 (-629 (-348 (-856 |#1|))))))) (-629 (-348 (-856 |#1|)))) 103 T ELT)) (-1585 (((-582 (-629 (-348 (-856 |#1|)))) (-2 (|:| |eigval| (-3 (-348 (-856 |#1|)) (-1078 (-1088) (-856 |#1|)))) (|:| |eigmult| (-693)) (|:| |eigvec| (-582 (-629 (-348 (-856 |#1|)))))) (-629 (-348 (-856 |#1|)))) 98 T ELT) (((-582 (-629 (-348 (-856 |#1|)))) (-3 (-348 (-856 |#1|)) (-1078 (-1088) (-856 |#1|))) (-629 (-348 (-856 |#1|))) (-693) (-693)) 42 T ELT)) (-1587 (((-582 (-2 (|:| |eigval| (-3 (-348 (-856 |#1|)) (-1078 (-1088) (-856 |#1|)))) (|:| |eigmult| (-693)) (|:| |eigvec| (-582 (-629 (-348 (-856 |#1|))))))) (-629 (-348 (-856 |#1|)))) 100 T ELT)) (-1584 (((-582 (-629 (-348 (-856 |#1|)))) (-3 (-348 (-856 |#1|)) (-1078 (-1088) (-856 |#1|))) (-629 (-348 (-856 |#1|)))) 76 T ELT)) (-1583 (((-582 (-3 (-348 (-856 |#1|)) (-1078 (-1088) (-856 |#1|)))) (-629 (-348 (-856 |#1|)))) 75 T ELT)) (-2448 (((-856 |#1|) (-629 (-348 (-856 |#1|)))) 56 T ELT) (((-856 |#1|) (-629 (-348 (-856 |#1|))) (-1088)) 57 T ELT))) -(((-248 |#1|) (-10 -7 (-15 -2448 ((-856 |#1|) (-629 (-348 (-856 |#1|))) (-1088))) (-15 -2448 ((-856 |#1|) (-629 (-348 (-856 |#1|))))) (-15 -1583 ((-582 (-3 (-348 (-856 |#1|)) (-1078 (-1088) (-856 |#1|)))) (-629 (-348 (-856 |#1|))))) (-15 -1584 ((-582 (-629 (-348 (-856 |#1|)))) (-3 (-348 (-856 |#1|)) (-1078 (-1088) (-856 |#1|))) (-629 (-348 (-856 |#1|))))) (-15 -1585 ((-582 (-629 (-348 (-856 |#1|)))) (-3 (-348 (-856 |#1|)) (-1078 (-1088) (-856 |#1|))) (-629 (-348 (-856 |#1|))) (-693) (-693))) (-15 -1585 ((-582 (-629 (-348 (-856 |#1|)))) (-2 (|:| |eigval| (-3 (-348 (-856 |#1|)) (-1078 (-1088) (-856 |#1|)))) (|:| |eigmult| (-693)) (|:| |eigvec| (-582 (-629 (-348 (-856 |#1|)))))) (-629 (-348 (-856 |#1|))))) (-15 -1586 ((-582 (-2 (|:| |eigval| (-3 (-348 (-856 |#1|)) (-1078 (-1088) (-856 |#1|)))) (|:| |geneigvec| (-582 (-629 (-348 (-856 |#1|))))))) (-629 (-348 (-856 |#1|))))) (-15 -1587 ((-582 (-2 (|:| |eigval| (-3 (-348 (-856 |#1|)) (-1078 (-1088) (-856 |#1|)))) (|:| |eigmult| (-693)) (|:| |eigvec| (-582 (-629 (-348 (-856 |#1|))))))) (-629 (-348 (-856 |#1|)))))) (-390)) (T -248)) -((-1587 (*1 *2 *3) (-12 (-4 *4 (-390)) (-5 *2 (-582 (-2 (|:| |eigval| (-3 (-348 (-856 *4)) (-1078 (-1088) (-856 *4)))) (|:| |eigmult| (-693)) (|:| |eigvec| (-582 (-629 (-348 (-856 *4)))))))) (-5 *1 (-248 *4)) (-5 *3 (-629 (-348 (-856 *4)))))) (-1586 (*1 *2 *3) (-12 (-4 *4 (-390)) (-5 *2 (-582 (-2 (|:| |eigval| (-3 (-348 (-856 *4)) (-1078 (-1088) (-856 *4)))) (|:| |geneigvec| (-582 (-629 (-348 (-856 *4)))))))) (-5 *1 (-248 *4)) (-5 *3 (-629 (-348 (-856 *4)))))) (-1585 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-348 (-856 *5)) (-1078 (-1088) (-856 *5)))) (|:| |eigmult| (-693)) (|:| |eigvec| (-582 *4)))) (-4 *5 (-390)) (-5 *2 (-582 (-629 (-348 (-856 *5))))) (-5 *1 (-248 *5)) (-5 *4 (-629 (-348 (-856 *5)))))) (-1585 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-348 (-856 *6)) (-1078 (-1088) (-856 *6)))) (-5 *5 (-693)) (-4 *6 (-390)) (-5 *2 (-582 (-629 (-348 (-856 *6))))) (-5 *1 (-248 *6)) (-5 *4 (-629 (-348 (-856 *6)))))) (-1584 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-348 (-856 *5)) (-1078 (-1088) (-856 *5)))) (-4 *5 (-390)) (-5 *2 (-582 (-629 (-348 (-856 *5))))) (-5 *1 (-248 *5)) (-5 *4 (-629 (-348 (-856 *5)))))) (-1583 (*1 *2 *3) (-12 (-5 *3 (-629 (-348 (-856 *4)))) (-4 *4 (-390)) (-5 *2 (-582 (-3 (-348 (-856 *4)) (-1078 (-1088) (-856 *4))))) (-5 *1 (-248 *4)))) (-2448 (*1 *2 *3) (-12 (-5 *3 (-629 (-348 (-856 *4)))) (-5 *2 (-856 *4)) (-5 *1 (-248 *4)) (-4 *4 (-390)))) (-2448 (*1 *2 *3 *4) (-12 (-5 *3 (-629 (-348 (-856 *5)))) (-5 *4 (-1088)) (-5 *2 (-856 *5)) (-5 *1 (-248 *5)) (-4 *5 (-390))))) -((-2567 (((-85) $ $) NIL (|has| |#1| (-1012)) ELT)) (-3187 (((-85) $) NIL (|has| |#1| (-21)) ELT)) (-1593 (($ $) 12 T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-21)) ELT)) (-1602 (($ $ $) 95 (|has| |#1| (-254)) ELT)) (-3722 (($) NIL (OR (|has| |#1| (-21)) (|has| |#1| (-662))) CONST)) (-1591 (($ $) 51 (|has| |#1| (-21)) ELT)) (-1589 (((-3 $ #1#) $) 62 (|has| |#1| (-662)) ELT)) (-3526 ((|#1| $) 11 T ELT)) (-3465 (((-3 $ #1#) $) 60 (|has| |#1| (-662)) ELT)) (-1212 (((-85) $ $) NIL (|has| |#1| (-21)) ELT)) (-2409 (((-85) $) NIL (|has| |#1| (-662)) ELT)) (-3956 (($ (-1 |#1| |#1|) $) 14 T ELT)) (-3527 ((|#1| $) 10 T ELT)) (-1592 (($ $) 50 (|has| |#1| (-21)) ELT)) (-1590 (((-3 $ #1#) $) 61 (|has| |#1| (-662)) ELT)) (-3241 (((-1071) $) NIL (|has| |#1| (-1012)) ELT)) (-2483 (($ $) 64 (OR (|has| |#1| (-312)) (|has| |#1| (-411))) ELT)) (-3242 (((-1032) $) NIL (|has| |#1| (-1012)) ELT)) (-1588 (((-582 $) $) 85 (|has| |#1| (-494)) ELT)) (-3766 (($ $ $) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-582 $)) 28 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-1088) |#1|) 17 (|has| |#1| (-454 (-1088) |#1|)) ELT) (($ $ (-582 (-1088)) (-582 |#1|)) 21 (|has| |#1| (-454 (-1088) |#1|)) ELT)) (-3225 (($ |#1| |#1|) 9 T ELT)) (-3909 (((-107)) 90 (|has| |#1| (-312)) ELT)) (-3756 (($ $ (-1088)) 87 (|has| |#1| (-808 (-1088))) ELT) (($ $ (-582 (-1088))) NIL (|has| |#1| (-808 (-1088))) ELT) (($ $ (-1088) (-693)) NIL (|has| |#1| (-808 (-1088))) ELT) (($ $ (-582 (-1088)) (-582 (-693))) NIL (|has| |#1| (-808 (-1088))) ELT)) (-3008 (($ $ $) NIL (|has| |#1| (-411)) ELT)) (-2434 (($ $ $) NIL (|has| |#1| (-411)) ELT)) (-3944 (($ (-483)) NIL (|has| |#1| (-960)) ELT) (((-85) $) 37 (|has| |#1| (-1012)) ELT) (((-771) $) 36 (|has| |#1| (-1012)) ELT)) (-3125 (((-693)) 67 (|has| |#1| (-960)) CONST)) (-1263 (((-85) $ $) NIL (|has| |#1| (-1012)) ELT)) (-3124 (((-85) $ $) NIL (|has| |#1| (-960)) ELT)) (-2659 (($) 47 (|has| |#1| (-21)) CONST)) (-2665 (($) 57 (|has| |#1| (-662)) CONST)) (-2668 (($ $ (-1088)) NIL (|has| |#1| (-808 (-1088))) ELT) (($ $ (-582 (-1088))) NIL (|has| |#1| (-808 (-1088))) ELT) (($ $ (-1088) (-693)) NIL (|has| |#1| (-808 (-1088))) ELT) (($ $ (-582 (-1088)) (-582 (-693))) NIL (|has| |#1| (-808 (-1088))) ELT)) (-3055 (($ |#1| |#1|) 8 T ELT) (((-85) $ $) 32 (|has| |#1| (-1012)) ELT)) (-3947 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT) (($ $ $) 92 (OR (|has| |#1| (-312)) (|has| |#1| (-411))) ELT)) (-3835 (($ |#1| $) 45 (|has| |#1| (-21)) ELT) (($ $ |#1|) 46 (|has| |#1| (-21)) ELT) (($ $ $) 44 (|has| |#1| (-21)) ELT) (($ $) 43 (|has| |#1| (-21)) ELT)) (-3837 (($ |#1| $) 40 (|has| |#1| (-25)) ELT) (($ $ |#1|) 41 (|has| |#1| (-25)) ELT) (($ $ $) 39 (|has| |#1| (-25)) ELT)) (** (($ $ (-483)) NIL (|has| |#1| (-411)) ELT) (($ $ (-693)) NIL (|has| |#1| (-662)) ELT) (($ $ (-829)) NIL (|has| |#1| (-1024)) ELT)) (* (($ $ |#1|) 55 (|has| |#1| (-1024)) ELT) (($ |#1| $) 54 (|has| |#1| (-1024)) ELT) (($ $ $) 53 (|has| |#1| (-1024)) ELT) (($ (-483) $) 70 (|has| |#1| (-21)) ELT) (($ (-693) $) NIL (|has| |#1| (-21)) ELT) (($ (-829) $) NIL (|has| |#1| (-25)) ELT))) -(((-249 |#1|) (-13 (-1127) (-10 -8 (-15 -3055 ($ |#1| |#1|)) (-15 -3225 ($ |#1| |#1|)) (-15 -1593 ($ $)) (-15 -3527 (|#1| $)) (-15 -3526 (|#1| $)) (-15 -3956 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-454 (-1088) |#1|)) (-6 (-454 (-1088) |#1|)) |%noBranch|) (IF (|has| |#1| (-1012)) (PROGN (-6 (-1012)) (-6 (-551 (-85))) (IF (|has| |#1| (-260 |#1|)) (PROGN (-15 -3766 ($ $ $)) (-15 -3766 ($ $ (-582 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -3837 ($ |#1| $)) (-15 -3837 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -1592 ($ $)) (-15 -1591 ($ $)) (-15 -3835 ($ |#1| $)) (-15 -3835 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1024)) (PROGN (-6 (-1024)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-662)) (PROGN (-6 (-662)) (-15 -1590 ((-3 $ #1="failed") $)) (-15 -1589 ((-3 $ #1#) $))) |%noBranch|) (IF (|has| |#1| (-411)) (PROGN (-6 (-411)) (-15 -1590 ((-3 $ #1#) $)) (-15 -1589 ((-3 $ #1#) $))) |%noBranch|) (IF (|has| |#1| (-960)) (PROGN (-6 (-960)) (-6 (-82 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-653 |#1|)) |%noBranch|) (IF (|has| |#1| (-494)) (-15 -1588 ((-582 $) $)) |%noBranch|) (IF (|has| |#1| (-808 (-1088))) (-6 (-808 (-1088))) |%noBranch|) (IF (|has| |#1| (-312)) (PROGN (-6 (-1185 |#1|)) (-15 -3947 ($ $ $)) (-15 -2483 ($ $))) |%noBranch|) (IF (|has| |#1| (-254)) (-15 -1602 ($ $ $)) |%noBranch|))) (-1127)) (T -249)) -((-3055 (*1 *1 *2 *2) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1127)))) (-3225 (*1 *1 *2 *2) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1127)))) (-1593 (*1 *1 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1127)))) (-3527 (*1 *2 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1127)))) (-3526 (*1 *2 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1127)))) (-3956 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1127)) (-5 *1 (-249 *3)))) (-3766 (*1 *1 *1 *1) (-12 (-4 *2 (-260 *2)) (-4 *2 (-1012)) (-4 *2 (-1127)) (-5 *1 (-249 *2)))) (-3766 (*1 *1 *1 *2) (-12 (-5 *2 (-582 (-249 *3))) (-4 *3 (-260 *3)) (-4 *3 (-1012)) (-4 *3 (-1127)) (-5 *1 (-249 *3)))) (-3837 (*1 *1 *2 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-25)) (-4 *2 (-1127)))) (-3837 (*1 *1 *1 *2) (-12 (-5 *1 (-249 *2)) (-4 *2 (-25)) (-4 *2 (-1127)))) (-1592 (*1 *1 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-21)) (-4 *2 (-1127)))) (-1591 (*1 *1 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-21)) (-4 *2 (-1127)))) (-3835 (*1 *1 *2 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-21)) (-4 *2 (-1127)))) (-3835 (*1 *1 *1 *2) (-12 (-5 *1 (-249 *2)) (-4 *2 (-21)) (-4 *2 (-1127)))) (-1590 (*1 *1 *1) (|partial| -12 (-5 *1 (-249 *2)) (-4 *2 (-662)) (-4 *2 (-1127)))) (-1589 (*1 *1 *1) (|partial| -12 (-5 *1 (-249 *2)) (-4 *2 (-662)) (-4 *2 (-1127)))) (-1588 (*1 *2 *1) (-12 (-5 *2 (-582 (-249 *3))) (-5 *1 (-249 *3)) (-4 *3 (-494)) (-4 *3 (-1127)))) (-1602 (*1 *1 *1 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-254)) (-4 *2 (-1127)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1024)) (-4 *2 (-1127)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1024)) (-4 *2 (-1127)))) (-3947 (*1 *1 *1 *1) (OR (-12 (-5 *1 (-249 *2)) (-4 *2 (-312)) (-4 *2 (-1127))) (-12 (-5 *1 (-249 *2)) (-4 *2 (-411)) (-4 *2 (-1127))))) (-2483 (*1 *1 *1) (OR (-12 (-5 *1 (-249 *2)) (-4 *2 (-312)) (-4 *2 (-1127))) (-12 (-5 *1 (-249 *2)) (-4 *2 (-411)) (-4 *2 (-1127)))))) -((-3956 (((-249 |#2|) (-1 |#2| |#1|) (-249 |#1|)) 14 T ELT))) -(((-250 |#1| |#2|) (-10 -7 (-15 -3956 ((-249 |#2|) (-1 |#2| |#1|) (-249 |#1|)))) (-1127) (-1127)) (T -250)) -((-3956 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-249 *5)) (-4 *5 (-1127)) (-4 *6 (-1127)) (-5 *2 (-249 *6)) (-5 *1 (-250 *5 *6))))) -((-2567 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3597 (($) NIL T ELT) (($ (-582 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2197 (((-1183) $ |#1| |#1|) NIL (|has| $ (-6 -3994)) ELT)) (-3786 ((|#2| $ |#1| |#2|) NIL T ELT)) (-1568 (($ (-1 (-85) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3993)) ELT)) (-3708 (($ (-1 (-85) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3993)) ELT)) (-2230 (((-3 |#2| #1="failed") |#1| $) NIL T ELT)) (-3722 (($) NIL T CONST)) (-1351 (($ $) NIL (-12 (|has| $ (-6 -3993)) (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012))) ELT)) (-3403 (($ (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-6 -3993)) ELT) (($ (-1 (-85) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3993)) ELT) (((-3 |#2| #1#) |#1| $) NIL T ELT)) (-3404 (($ (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3993)) (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ (-1 (-85) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3993)) ELT)) (-3840 (((-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -3993)) (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (((-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3993)) ELT) (((-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3993)) ELT)) (-1574 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3994)) ELT)) (-3111 ((|#2| $ |#1|) NIL T ELT)) (-2888 (((-582 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3993)) ELT) (((-582 |#2|) $) NIL (|has| $ (-6 -3993)) ELT)) (-2199 ((|#1| $) NIL (|has| |#1| (-755)) ELT)) (-2607 (((-582 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3993)) ELT) (((-582 |#2|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3244 (((-85) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3993)) (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#2| (-1012))) ELT)) (-2200 ((|#1| $) NIL (|has| |#1| (-755)) ELT)) (-1947 (($ (-1 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3956 (($ (-1 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3241 (((-1071) $) NIL (OR (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| |#2| (-1012))) ELT)) (-2231 (((-582 |#1|) $) NIL T ELT)) (-2232 (((-85) |#1| $) NIL T ELT)) (-1272 (((-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3607 (($ (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2202 (((-582 |#1|) $) NIL T ELT)) (-2203 (((-85) |#1| $) NIL T ELT)) (-3242 (((-1032) $) NIL (OR (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| |#2| (-1012))) ELT)) (-3799 ((|#2| $) NIL (|has| |#1| (-755)) ELT)) (-1352 (((-3 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-85) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2198 (($ $ |#2|) NIL (|has| $ (-6 -3994)) ELT)) (-1273 (((-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1945 (((-85) (-1 (-85) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3993)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3766 (($ $ (-582 (-249 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-249 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-582 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) (-582 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-582 |#2|) (-582 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ (-582 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1012))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-2201 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#2| (-1012))) ELT)) (-2204 (((-582 |#2|) $) NIL T ELT)) (-3401 (((-85) $) NIL T ELT)) (-3563 (($) NIL T ELT)) (-3798 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1464 (($) NIL T ELT) (($ (-582 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1944 (((-693) (-1 (-85) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3993)) ELT) (((-693) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3993)) (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (((-693) |#2| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#2| (-1012))) ELT) (((-693) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3398 (($ $) NIL T ELT)) (-3970 (((-472) $) NIL (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-552 (-472))) ELT)) (-3528 (($ (-582 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3944 (((-771) $) NIL (OR (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-551 (-771))) (|has| |#2| (-551 (-771)))) ELT)) (-1263 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1274 (($ (-582 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1946 (((-85) (-1 (-85) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3993)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3055 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3955 (((-693) $) NIL (|has| $ (-6 -3993)) ELT))) -(((-251 |#1| |#2|) (-13 (-1105 |#1| |#2|) (-10 -7 (-6 -3993))) (-1012) (-1012)) (T -251)) -NIL -((-1594 (((-262) (-1071) (-582 (-1071))) 17 T ELT) (((-262) (-1071) (-1071)) 16 T ELT) (((-262) (-582 (-1071))) 15 T ELT) (((-262) (-1071)) 14 T ELT))) -(((-252) (-10 -7 (-15 -1594 ((-262) (-1071))) (-15 -1594 ((-262) (-582 (-1071)))) (-15 -1594 ((-262) (-1071) (-1071))) (-15 -1594 ((-262) (-1071) (-582 (-1071)))))) (T -252)) -((-1594 (*1 *2 *3 *4) (-12 (-5 *4 (-582 (-1071))) (-5 *3 (-1071)) (-5 *2 (-262)) (-5 *1 (-252)))) (-1594 (*1 *2 *3 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-262)) (-5 *1 (-252)))) (-1594 (*1 *2 *3) (-12 (-5 *3 (-582 (-1071))) (-5 *2 (-262)) (-5 *1 (-252)))) (-1594 (*1 *2 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-262)) (-5 *1 (-252))))) -((-1598 (((-582 (-549 $)) $) 27 T ELT)) (-1602 (($ $ (-249 $)) 78 T ELT) (($ $ (-582 (-249 $))) 140 T ELT) (($ $ (-582 (-549 $)) (-582 $)) NIL T ELT)) (-3156 (((-3 (-549 $) #1="failed") $) 128 T ELT)) (-3155 (((-549 $) $) 127 T ELT)) (-2572 (($ $) 17 T ELT) (($ (-582 $)) 54 T ELT)) (-1597 (((-582 (-86)) $) 35 T ELT)) (-3593 (((-86) (-86)) 89 T ELT)) (-2672 (((-85) $) 151 T ELT)) (-3956 (($ (-1 $ $) (-549 $)) 87 T ELT)) (-1600 (((-3 (-549 $) #1#) $) 95 T ELT)) (-2234 (($ (-86) $) 59 T ELT) (($ (-86) (-582 $)) 111 T ELT)) (-2632 (((-85) $ (-86)) 133 T ELT) (((-85) $ (-1088)) 132 T ELT)) (-2602 (((-693) $) 44 T ELT)) (-1596 (((-85) $ $) 57 T ELT) (((-85) $ (-1088)) 49 T ELT)) (-2673 (((-85) $) 149 T ELT)) (-3766 (($ $ (-549 $) $) NIL T ELT) (($ $ (-582 (-549 $)) (-582 $)) NIL T ELT) (($ $ (-582 (-249 $))) 138 T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-582 $) (-582 $)) NIL T ELT) (($ $ (-582 (-1088)) (-582 (-1 $ $))) 81 T ELT) (($ $ (-582 (-1088)) (-582 (-1 $ (-582 $)))) NIL T ELT) (($ $ (-1088) (-1 $ (-582 $))) 67 T ELT) (($ $ (-1088) (-1 $ $)) 72 T ELT) (($ $ (-582 (-86)) (-582 (-1 $ $))) 80 T ELT) (($ $ (-582 (-86)) (-582 (-1 $ (-582 $)))) 83 T ELT) (($ $ (-86) (-1 $ (-582 $))) 68 T ELT) (($ $ (-86) (-1 $ $)) 74 T ELT)) (-3798 (($ (-86) $) 60 T ELT) (($ (-86) $ $) 61 T ELT) (($ (-86) $ $ $) 62 T ELT) (($ (-86) $ $ $ $) 63 T ELT) (($ (-86) (-582 $)) 124 T ELT)) (-1601 (($ $) 51 T ELT) (($ $ $) 136 T ELT)) (-2589 (($ $) 15 T ELT) (($ (-582 $)) 53 T ELT)) (-2253 (((-85) (-86)) 21 T ELT))) -(((-253 |#1|) (-10 -7 (-15 -2672 ((-85) |#1|)) (-15 -2673 ((-85) |#1|)) (-15 -3766 (|#1| |#1| (-86) (-1 |#1| |#1|))) (-15 -3766 (|#1| |#1| (-86) (-1 |#1| (-582 |#1|)))) (-15 -3766 (|#1| |#1| (-582 (-86)) (-582 (-1 |#1| (-582 |#1|))))) (-15 -3766 (|#1| |#1| (-582 (-86)) (-582 (-1 |#1| |#1|)))) (-15 -3766 (|#1| |#1| (-1088) (-1 |#1| |#1|))) (-15 -3766 (|#1| |#1| (-1088) (-1 |#1| (-582 |#1|)))) (-15 -3766 (|#1| |#1| (-582 (-1088)) (-582 (-1 |#1| (-582 |#1|))))) (-15 -3766 (|#1| |#1| (-582 (-1088)) (-582 (-1 |#1| |#1|)))) (-15 -1596 ((-85) |#1| (-1088))) (-15 -1596 ((-85) |#1| |#1|)) (-15 -3956 (|#1| (-1 |#1| |#1|) (-549 |#1|))) (-15 -2234 (|#1| (-86) (-582 |#1|))) (-15 -2234 (|#1| (-86) |#1|)) (-15 -2632 ((-85) |#1| (-1088))) (-15 -2632 ((-85) |#1| (-86))) (-15 -2253 ((-85) (-86))) (-15 -3593 ((-86) (-86))) (-15 -1597 ((-582 (-86)) |#1|)) (-15 -1598 ((-582 (-549 |#1|)) |#1|)) (-15 -1600 ((-3 (-549 |#1|) #1="failed") |#1|)) (-15 -2602 ((-693) |#1|)) (-15 -1601 (|#1| |#1| |#1|)) (-15 -1601 (|#1| |#1|)) (-15 -2572 (|#1| (-582 |#1|))) (-15 -2572 (|#1| |#1|)) (-15 -2589 (|#1| (-582 |#1|))) (-15 -2589 (|#1| |#1|)) (-15 -1602 (|#1| |#1| (-582 (-549 |#1|)) (-582 |#1|))) (-15 -1602 (|#1| |#1| (-582 (-249 |#1|)))) (-15 -1602 (|#1| |#1| (-249 |#1|))) (-15 -3798 (|#1| (-86) (-582 |#1|))) (-15 -3798 (|#1| (-86) |#1| |#1| |#1| |#1|)) (-15 -3798 (|#1| (-86) |#1| |#1| |#1|)) (-15 -3798 (|#1| (-86) |#1| |#1|)) (-15 -3798 (|#1| (-86) |#1|)) (-15 -3766 (|#1| |#1| (-582 |#1|) (-582 |#1|))) (-15 -3766 (|#1| |#1| |#1| |#1|)) (-15 -3766 (|#1| |#1| (-249 |#1|))) (-15 -3766 (|#1| |#1| (-582 (-249 |#1|)))) (-15 -3766 (|#1| |#1| (-582 (-549 |#1|)) (-582 |#1|))) (-15 -3766 (|#1| |#1| (-549 |#1|) |#1|)) (-15 -3156 ((-3 (-549 |#1|) #1#) |#1|)) (-15 -3155 ((-549 |#1|) |#1|))) (-254)) (T -253)) -((-3593 (*1 *2 *2) (-12 (-5 *2 (-86)) (-5 *1 (-253 *3)) (-4 *3 (-254)))) (-2253 (*1 *2 *3) (-12 (-5 *3 (-86)) (-5 *2 (-85)) (-5 *1 (-253 *4)) (-4 *4 (-254))))) -((-2567 (((-85) $ $) 7 T ELT)) (-1598 (((-582 (-549 $)) $) 42 T ELT)) (-1602 (($ $ (-249 $)) 54 T ELT) (($ $ (-582 (-249 $))) 53 T ELT) (($ $ (-582 (-549 $)) (-582 $)) 52 T ELT)) (-3156 (((-3 (-549 $) "failed") $) 67 T ELT)) (-3155 (((-549 $) $) 68 T ELT)) (-2572 (($ $) 49 T ELT) (($ (-582 $)) 48 T ELT)) (-1597 (((-582 (-86)) $) 41 T ELT)) (-3593 (((-86) (-86)) 40 T ELT)) (-2672 (((-85) $) 20 (|has| $ (-949 (-483))) ELT)) (-1595 (((-1083 $) (-549 $)) 23 (|has| $ (-960)) ELT)) (-3956 (($ (-1 $ $) (-549 $)) 34 T ELT)) (-1600 (((-3 (-549 $) "failed") $) 44 T ELT)) (-3241 (((-1071) $) 11 T ELT)) (-1599 (((-582 (-549 $)) $) 43 T ELT)) (-2234 (($ (-86) $) 36 T ELT) (($ (-86) (-582 $)) 35 T ELT)) (-2632 (((-85) $ (-86)) 38 T ELT) (((-85) $ (-1088)) 37 T ELT)) (-2602 (((-693) $) 45 T ELT)) (-3242 (((-1032) $) 12 T ELT)) (-1596 (((-85) $ $) 33 T ELT) (((-85) $ (-1088)) 32 T ELT)) (-2673 (((-85) $) 21 (|has| $ (-949 (-483))) ELT)) (-3766 (($ $ (-549 $) $) 65 T ELT) (($ $ (-582 (-549 $)) (-582 $)) 64 T ELT) (($ $ (-582 (-249 $))) 63 T ELT) (($ $ (-249 $)) 62 T ELT) (($ $ $ $) 61 T ELT) (($ $ (-582 $) (-582 $)) 60 T ELT) (($ $ (-582 (-1088)) (-582 (-1 $ $))) 31 T ELT) (($ $ (-582 (-1088)) (-582 (-1 $ (-582 $)))) 30 T ELT) (($ $ (-1088) (-1 $ (-582 $))) 29 T ELT) (($ $ (-1088) (-1 $ $)) 28 T ELT) (($ $ (-582 (-86)) (-582 (-1 $ $))) 27 T ELT) (($ $ (-582 (-86)) (-582 (-1 $ (-582 $)))) 26 T ELT) (($ $ (-86) (-1 $ (-582 $))) 25 T ELT) (($ $ (-86) (-1 $ $)) 24 T ELT)) (-3798 (($ (-86) $) 59 T ELT) (($ (-86) $ $) 58 T ELT) (($ (-86) $ $ $) 57 T ELT) (($ (-86) $ $ $ $) 56 T ELT) (($ (-86) (-582 $)) 55 T ELT)) (-1601 (($ $) 47 T ELT) (($ $ $) 46 T ELT)) (-3184 (($ $) 22 (|has| $ (-960)) ELT)) (-3944 (((-771) $) 13 T ELT) (($ (-549 $)) 66 T ELT)) (-2589 (($ $) 51 T ELT) (($ (-582 $)) 50 T ELT)) (-2253 (((-85) (-86)) 39 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-3055 (((-85) $ $) 8 T ELT))) +(-13 (-961) (-82 $ $) (-10 -7 (-6 -3987))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-555 (-484)) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 $) . T) ((-590 $) . T) ((-663) . T) ((-963 $) . T) ((-968 $) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T)) +((-1583 (((-583 (-997)) $) 10 T ELT)) (-1581 (($ (-446) (-446) (-1015) $) 19 T ELT)) (-1579 (($ (-446) (-583 (-876)) $) 23 T ELT)) (-1577 (($) 25 T ELT)) (-1582 (((-632 (-1015)) (-446) (-446) $) 18 T ELT)) (-1580 (((-583 (-876)) (-446) $) 22 T ELT)) (-3564 (($) 7 T ELT)) (-1578 (($) 24 T ELT)) (-3945 (((-772) $) 29 T ELT)) (-1576 (($) 26 T ELT))) +(((-247) (-13 (-552 (-772)) (-10 -8 (-15 -3564 ($)) (-15 -1583 ((-583 (-997)) $)) (-15 -1582 ((-632 (-1015)) (-446) (-446) $)) (-15 -1581 ($ (-446) (-446) (-1015) $)) (-15 -1580 ((-583 (-876)) (-446) $)) (-15 -1579 ($ (-446) (-583 (-876)) $)) (-15 -1578 ($)) (-15 -1577 ($)) (-15 -1576 ($))))) (T -247)) +((-3564 (*1 *1) (-5 *1 (-247))) (-1583 (*1 *2 *1) (-12 (-5 *2 (-583 (-997))) (-5 *1 (-247)))) (-1582 (*1 *2 *3 *3 *1) (-12 (-5 *3 (-446)) (-5 *2 (-632 (-1015))) (-5 *1 (-247)))) (-1581 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-446)) (-5 *3 (-1015)) (-5 *1 (-247)))) (-1580 (*1 *2 *3 *1) (-12 (-5 *3 (-446)) (-5 *2 (-583 (-876))) (-5 *1 (-247)))) (-1579 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-446)) (-5 *3 (-583 (-876))) (-5 *1 (-247)))) (-1578 (*1 *1) (-5 *1 (-247))) (-1577 (*1 *1) (-5 *1 (-247))) (-1576 (*1 *1) (-5 *1 (-247)))) +((-1587 (((-583 (-2 (|:| |eigval| (-3 (-349 (-857 |#1|)) (-1079 (-1089) (-857 |#1|)))) (|:| |geneigvec| (-583 (-630 (-349 (-857 |#1|))))))) (-630 (-349 (-857 |#1|)))) 103 T ELT)) (-1586 (((-583 (-630 (-349 (-857 |#1|)))) (-2 (|:| |eigval| (-3 (-349 (-857 |#1|)) (-1079 (-1089) (-857 |#1|)))) (|:| |eigmult| (-694)) (|:| |eigvec| (-583 (-630 (-349 (-857 |#1|)))))) (-630 (-349 (-857 |#1|)))) 98 T ELT) (((-583 (-630 (-349 (-857 |#1|)))) (-3 (-349 (-857 |#1|)) (-1079 (-1089) (-857 |#1|))) (-630 (-349 (-857 |#1|))) (-694) (-694)) 42 T ELT)) (-1588 (((-583 (-2 (|:| |eigval| (-3 (-349 (-857 |#1|)) (-1079 (-1089) (-857 |#1|)))) (|:| |eigmult| (-694)) (|:| |eigvec| (-583 (-630 (-349 (-857 |#1|))))))) (-630 (-349 (-857 |#1|)))) 100 T ELT)) (-1585 (((-583 (-630 (-349 (-857 |#1|)))) (-3 (-349 (-857 |#1|)) (-1079 (-1089) (-857 |#1|))) (-630 (-349 (-857 |#1|)))) 76 T ELT)) (-1584 (((-583 (-3 (-349 (-857 |#1|)) (-1079 (-1089) (-857 |#1|)))) (-630 (-349 (-857 |#1|)))) 75 T ELT)) (-2449 (((-857 |#1|) (-630 (-349 (-857 |#1|)))) 56 T ELT) (((-857 |#1|) (-630 (-349 (-857 |#1|))) (-1089)) 57 T ELT))) +(((-248 |#1|) (-10 -7 (-15 -2449 ((-857 |#1|) (-630 (-349 (-857 |#1|))) (-1089))) (-15 -2449 ((-857 |#1|) (-630 (-349 (-857 |#1|))))) (-15 -1584 ((-583 (-3 (-349 (-857 |#1|)) (-1079 (-1089) (-857 |#1|)))) (-630 (-349 (-857 |#1|))))) (-15 -1585 ((-583 (-630 (-349 (-857 |#1|)))) (-3 (-349 (-857 |#1|)) (-1079 (-1089) (-857 |#1|))) (-630 (-349 (-857 |#1|))))) (-15 -1586 ((-583 (-630 (-349 (-857 |#1|)))) (-3 (-349 (-857 |#1|)) (-1079 (-1089) (-857 |#1|))) (-630 (-349 (-857 |#1|))) (-694) (-694))) (-15 -1586 ((-583 (-630 (-349 (-857 |#1|)))) (-2 (|:| |eigval| (-3 (-349 (-857 |#1|)) (-1079 (-1089) (-857 |#1|)))) (|:| |eigmult| (-694)) (|:| |eigvec| (-583 (-630 (-349 (-857 |#1|)))))) (-630 (-349 (-857 |#1|))))) (-15 -1587 ((-583 (-2 (|:| |eigval| (-3 (-349 (-857 |#1|)) (-1079 (-1089) (-857 |#1|)))) (|:| |geneigvec| (-583 (-630 (-349 (-857 |#1|))))))) (-630 (-349 (-857 |#1|))))) (-15 -1588 ((-583 (-2 (|:| |eigval| (-3 (-349 (-857 |#1|)) (-1079 (-1089) (-857 |#1|)))) (|:| |eigmult| (-694)) (|:| |eigvec| (-583 (-630 (-349 (-857 |#1|))))))) (-630 (-349 (-857 |#1|)))))) (-391)) (T -248)) +((-1588 (*1 *2 *3) (-12 (-4 *4 (-391)) (-5 *2 (-583 (-2 (|:| |eigval| (-3 (-349 (-857 *4)) (-1079 (-1089) (-857 *4)))) (|:| |eigmult| (-694)) (|:| |eigvec| (-583 (-630 (-349 (-857 *4)))))))) (-5 *1 (-248 *4)) (-5 *3 (-630 (-349 (-857 *4)))))) (-1587 (*1 *2 *3) (-12 (-4 *4 (-391)) (-5 *2 (-583 (-2 (|:| |eigval| (-3 (-349 (-857 *4)) (-1079 (-1089) (-857 *4)))) (|:| |geneigvec| (-583 (-630 (-349 (-857 *4)))))))) (-5 *1 (-248 *4)) (-5 *3 (-630 (-349 (-857 *4)))))) (-1586 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-349 (-857 *5)) (-1079 (-1089) (-857 *5)))) (|:| |eigmult| (-694)) (|:| |eigvec| (-583 *4)))) (-4 *5 (-391)) (-5 *2 (-583 (-630 (-349 (-857 *5))))) (-5 *1 (-248 *5)) (-5 *4 (-630 (-349 (-857 *5)))))) (-1586 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-349 (-857 *6)) (-1079 (-1089) (-857 *6)))) (-5 *5 (-694)) (-4 *6 (-391)) (-5 *2 (-583 (-630 (-349 (-857 *6))))) (-5 *1 (-248 *6)) (-5 *4 (-630 (-349 (-857 *6)))))) (-1585 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-349 (-857 *5)) (-1079 (-1089) (-857 *5)))) (-4 *5 (-391)) (-5 *2 (-583 (-630 (-349 (-857 *5))))) (-5 *1 (-248 *5)) (-5 *4 (-630 (-349 (-857 *5)))))) (-1584 (*1 *2 *3) (-12 (-5 *3 (-630 (-349 (-857 *4)))) (-4 *4 (-391)) (-5 *2 (-583 (-3 (-349 (-857 *4)) (-1079 (-1089) (-857 *4))))) (-5 *1 (-248 *4)))) (-2449 (*1 *2 *3) (-12 (-5 *3 (-630 (-349 (-857 *4)))) (-5 *2 (-857 *4)) (-5 *1 (-248 *4)) (-4 *4 (-391)))) (-2449 (*1 *2 *3 *4) (-12 (-5 *3 (-630 (-349 (-857 *5)))) (-5 *4 (-1089)) (-5 *2 (-857 *5)) (-5 *1 (-248 *5)) (-4 *5 (-391))))) +((-2568 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-3188 (((-85) $) NIL (|has| |#1| (-21)) ELT)) (-1594 (($ $) 12 T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-21)) ELT)) (-1603 (($ $ $) 95 (|has| |#1| (-254)) ELT)) (-3723 (($) NIL (OR (|has| |#1| (-21)) (|has| |#1| (-663))) CONST)) (-1592 (($ $) 51 (|has| |#1| (-21)) ELT)) (-1590 (((-3 $ #1#) $) 62 (|has| |#1| (-663)) ELT)) (-3527 ((|#1| $) 11 T ELT)) (-3466 (((-3 $ #1#) $) 60 (|has| |#1| (-663)) ELT)) (-1213 (((-85) $ $) NIL (|has| |#1| (-21)) ELT)) (-2410 (((-85) $) NIL (|has| |#1| (-663)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) 14 T ELT)) (-3528 ((|#1| $) 10 T ELT)) (-1593 (($ $) 50 (|has| |#1| (-21)) ELT)) (-1591 (((-3 $ #1#) $) 61 (|has| |#1| (-663)) ELT)) (-3242 (((-1072) $) NIL (|has| |#1| (-1013)) ELT)) (-2484 (($ $) 64 (OR (|has| |#1| (-312)) (|has| |#1| (-412))) ELT)) (-3243 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-1589 (((-583 $) $) 85 (|has| |#1| (-495)) ELT)) (-3767 (($ $ $) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 $)) 28 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-1089) |#1|) 17 (|has| |#1| (-455 (-1089) |#1|)) ELT) (($ $ (-583 (-1089)) (-583 |#1|)) 21 (|has| |#1| (-455 (-1089) |#1|)) ELT)) (-3226 (($ |#1| |#1|) 9 T ELT)) (-3910 (((-107)) 90 (|has| |#1| (-312)) ELT)) (-3757 (($ $ (-1089)) 87 (|has| |#1| (-809 (-1089))) ELT) (($ $ (-583 (-1089))) NIL (|has| |#1| (-809 (-1089))) ELT) (($ $ (-1089) (-694)) NIL (|has| |#1| (-809 (-1089))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (|has| |#1| (-809 (-1089))) ELT)) (-3009 (($ $ $) NIL (|has| |#1| (-412)) ELT)) (-2435 (($ $ $) NIL (|has| |#1| (-412)) ELT)) (-3945 (($ (-484)) NIL (|has| |#1| (-961)) ELT) (((-85) $) 37 (|has| |#1| (-1013)) ELT) (((-772) $) 36 (|has| |#1| (-1013)) ELT)) (-3126 (((-694)) 67 (|has| |#1| (-961)) CONST)) (-1264 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-3125 (((-85) $ $) NIL (|has| |#1| (-961)) ELT)) (-2660 (($) 47 (|has| |#1| (-21)) CONST)) (-2666 (($) 57 (|has| |#1| (-663)) CONST)) (-2669 (($ $ (-1089)) NIL (|has| |#1| (-809 (-1089))) ELT) (($ $ (-583 (-1089))) NIL (|has| |#1| (-809 (-1089))) ELT) (($ $ (-1089) (-694)) NIL (|has| |#1| (-809 (-1089))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (|has| |#1| (-809 (-1089))) ELT)) (-3056 (($ |#1| |#1|) 8 T ELT) (((-85) $ $) 32 (|has| |#1| (-1013)) ELT)) (-3948 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT) (($ $ $) 92 (OR (|has| |#1| (-312)) (|has| |#1| (-412))) ELT)) (-3836 (($ |#1| $) 45 (|has| |#1| (-21)) ELT) (($ $ |#1|) 46 (|has| |#1| (-21)) ELT) (($ $ $) 44 (|has| |#1| (-21)) ELT) (($ $) 43 (|has| |#1| (-21)) ELT)) (-3838 (($ |#1| $) 40 (|has| |#1| (-25)) ELT) (($ $ |#1|) 41 (|has| |#1| (-25)) ELT) (($ $ $) 39 (|has| |#1| (-25)) ELT)) (** (($ $ (-484)) NIL (|has| |#1| (-412)) ELT) (($ $ (-694)) NIL (|has| |#1| (-663)) ELT) (($ $ (-830)) NIL (|has| |#1| (-1025)) ELT)) (* (($ $ |#1|) 55 (|has| |#1| (-1025)) ELT) (($ |#1| $) 54 (|has| |#1| (-1025)) ELT) (($ $ $) 53 (|has| |#1| (-1025)) ELT) (($ (-484) $) 70 (|has| |#1| (-21)) ELT) (($ (-694) $) NIL (|has| |#1| (-21)) ELT) (($ (-830) $) NIL (|has| |#1| (-25)) ELT))) +(((-249 |#1|) (-13 (-1128) (-10 -8 (-15 -3056 ($ |#1| |#1|)) (-15 -3226 ($ |#1| |#1|)) (-15 -1594 ($ $)) (-15 -3528 (|#1| $)) (-15 -3527 (|#1| $)) (-15 -3957 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-455 (-1089) |#1|)) (-6 (-455 (-1089) |#1|)) |%noBranch|) (IF (|has| |#1| (-1013)) (PROGN (-6 (-1013)) (-6 (-552 (-85))) (IF (|has| |#1| (-260 |#1|)) (PROGN (-15 -3767 ($ $ $)) (-15 -3767 ($ $ (-583 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -3838 ($ |#1| $)) (-15 -3838 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -1593 ($ $)) (-15 -1592 ($ $)) (-15 -3836 ($ |#1| $)) (-15 -3836 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1025)) (PROGN (-6 (-1025)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-663)) (PROGN (-6 (-663)) (-15 -1591 ((-3 $ #1="failed") $)) (-15 -1590 ((-3 $ #1#) $))) |%noBranch|) (IF (|has| |#1| (-412)) (PROGN (-6 (-412)) (-15 -1591 ((-3 $ #1#) $)) (-15 -1590 ((-3 $ #1#) $))) |%noBranch|) (IF (|has| |#1| (-961)) (PROGN (-6 (-961)) (-6 (-82 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-654 |#1|)) |%noBranch|) (IF (|has| |#1| (-495)) (-15 -1589 ((-583 $) $)) |%noBranch|) (IF (|has| |#1| (-809 (-1089))) (-6 (-809 (-1089))) |%noBranch|) (IF (|has| |#1| (-312)) (PROGN (-6 (-1186 |#1|)) (-15 -3948 ($ $ $)) (-15 -2484 ($ $))) |%noBranch|) (IF (|has| |#1| (-254)) (-15 -1603 ($ $ $)) |%noBranch|))) (-1128)) (T -249)) +((-3056 (*1 *1 *2 *2) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1128)))) (-3226 (*1 *1 *2 *2) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1128)))) (-1594 (*1 *1 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1128)))) (-3528 (*1 *2 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1128)))) (-3527 (*1 *2 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1128)))) (-3957 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1128)) (-5 *1 (-249 *3)))) (-3767 (*1 *1 *1 *1) (-12 (-4 *2 (-260 *2)) (-4 *2 (-1013)) (-4 *2 (-1128)) (-5 *1 (-249 *2)))) (-3767 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-249 *3))) (-4 *3 (-260 *3)) (-4 *3 (-1013)) (-4 *3 (-1128)) (-5 *1 (-249 *3)))) (-3838 (*1 *1 *2 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-25)) (-4 *2 (-1128)))) (-3838 (*1 *1 *1 *2) (-12 (-5 *1 (-249 *2)) (-4 *2 (-25)) (-4 *2 (-1128)))) (-1593 (*1 *1 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-21)) (-4 *2 (-1128)))) (-1592 (*1 *1 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-21)) (-4 *2 (-1128)))) (-3836 (*1 *1 *2 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-21)) (-4 *2 (-1128)))) (-3836 (*1 *1 *1 *2) (-12 (-5 *1 (-249 *2)) (-4 *2 (-21)) (-4 *2 (-1128)))) (-1591 (*1 *1 *1) (|partial| -12 (-5 *1 (-249 *2)) (-4 *2 (-663)) (-4 *2 (-1128)))) (-1590 (*1 *1 *1) (|partial| -12 (-5 *1 (-249 *2)) (-4 *2 (-663)) (-4 *2 (-1128)))) (-1589 (*1 *2 *1) (-12 (-5 *2 (-583 (-249 *3))) (-5 *1 (-249 *3)) (-4 *3 (-495)) (-4 *3 (-1128)))) (-1603 (*1 *1 *1 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-254)) (-4 *2 (-1128)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1025)) (-4 *2 (-1128)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1025)) (-4 *2 (-1128)))) (-3948 (*1 *1 *1 *1) (OR (-12 (-5 *1 (-249 *2)) (-4 *2 (-312)) (-4 *2 (-1128))) (-12 (-5 *1 (-249 *2)) (-4 *2 (-412)) (-4 *2 (-1128))))) (-2484 (*1 *1 *1) (OR (-12 (-5 *1 (-249 *2)) (-4 *2 (-312)) (-4 *2 (-1128))) (-12 (-5 *1 (-249 *2)) (-4 *2 (-412)) (-4 *2 (-1128)))))) +((-3957 (((-249 |#2|) (-1 |#2| |#1|) (-249 |#1|)) 14 T ELT))) +(((-250 |#1| |#2|) (-10 -7 (-15 -3957 ((-249 |#2|) (-1 |#2| |#1|) (-249 |#1|)))) (-1128) (-1128)) (T -250)) +((-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-249 *5)) (-4 *5 (-1128)) (-4 *6 (-1128)) (-5 *2 (-249 *6)) (-5 *1 (-250 *5 *6))))) +((-2568 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3598 (($) NIL T ELT) (($ (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2198 (((-1184) $ |#1| |#1|) NIL (|has| $ (-6 -3995)) ELT)) (-3787 ((|#2| $ |#1| |#2|) NIL T ELT)) (-1569 (($ (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT)) (-3709 (($ (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT)) (-2231 (((-3 |#2| #1="failed") |#1| $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-1352 (($ $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT)) (-3404 (($ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-6 -3994)) ELT) (($ (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT) (((-3 |#2| #1#) |#1| $) NIL T ELT)) (-3405 (($ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT)) (-3841 (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -3994)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3994)) ELT) (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT)) (-1575 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3995)) ELT)) (-3112 ((|#2| $ |#1|) NIL T ELT)) (-2889 (((-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT) (((-583 |#2|) $) NIL (|has| $ (-6 -3994)) ELT)) (-2200 ((|#1| $) NIL (|has| |#1| (-756)) ELT)) (-2608 (((-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT) (((-583 |#2|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3245 (((-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#2| (-1013))) ELT)) (-2201 ((|#1| $) NIL (|has| |#1| (-756)) ELT)) (-1948 (($ (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3242 (((-1072) $) NIL (OR (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| |#2| (-1013))) ELT)) (-2232 (((-583 |#1|) $) NIL T ELT)) (-2233 (((-85) |#1| $) NIL T ELT)) (-1273 (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3608 (($ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2203 (((-583 |#1|) $) NIL T ELT)) (-2204 (((-85) |#1| $) NIL T ELT)) (-3243 (((-1033) $) NIL (OR (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| |#2| (-1013))) ELT)) (-3800 ((|#2| $) NIL (|has| |#1| (-756)) ELT)) (-1353 (((-3 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2199 (($ $ |#2|) NIL (|has| $ (-6 -3995)) ELT)) (-1274 (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1946 (((-85) (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3767 (($ $ (-583 (-249 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-249 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-583 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT)) (-1221 (((-85) $ $) NIL T ELT)) (-2202 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#2| (-1013))) ELT)) (-2205 (((-583 |#2|) $) NIL T ELT)) (-3402 (((-85) $) NIL T ELT)) (-3564 (($) NIL T ELT)) (-3799 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1465 (($) NIL T ELT) (($ (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1945 (((-694) (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT) (((-694) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (((-694) |#2| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#2| (-1013))) ELT) (((-694) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3399 (($ $) NIL T ELT)) (-3971 (((-473) $) NIL (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-553 (-473))) ELT)) (-3529 (($ (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3945 (((-772) $) NIL (OR (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-552 (-772))) (|has| |#2| (-552 (-772)))) ELT)) (-1264 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1275 (($ (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1947 (((-85) (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3056 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3956 (((-694) $) NIL (|has| $ (-6 -3994)) ELT))) +(((-251 |#1| |#2|) (-13 (-1106 |#1| |#2|) (-10 -7 (-6 -3994))) (-1013) (-1013)) (T -251)) +NIL +((-1595 (((-262) (-1072) (-583 (-1072))) 17 T ELT) (((-262) (-1072) (-1072)) 16 T ELT) (((-262) (-583 (-1072))) 15 T ELT) (((-262) (-1072)) 14 T ELT))) +(((-252) (-10 -7 (-15 -1595 ((-262) (-1072))) (-15 -1595 ((-262) (-583 (-1072)))) (-15 -1595 ((-262) (-1072) (-1072))) (-15 -1595 ((-262) (-1072) (-583 (-1072)))))) (T -252)) +((-1595 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-1072))) (-5 *3 (-1072)) (-5 *2 (-262)) (-5 *1 (-252)))) (-1595 (*1 *2 *3 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-262)) (-5 *1 (-252)))) (-1595 (*1 *2 *3) (-12 (-5 *3 (-583 (-1072))) (-5 *2 (-262)) (-5 *1 (-252)))) (-1595 (*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-262)) (-5 *1 (-252))))) +((-1599 (((-583 (-550 $)) $) 27 T ELT)) (-1603 (($ $ (-249 $)) 78 T ELT) (($ $ (-583 (-249 $))) 140 T ELT) (($ $ (-583 (-550 $)) (-583 $)) NIL T ELT)) (-3157 (((-3 (-550 $) #1="failed") $) 128 T ELT)) (-3156 (((-550 $) $) 127 T ELT)) (-2573 (($ $) 17 T ELT) (($ (-583 $)) 54 T ELT)) (-1598 (((-583 (-86)) $) 35 T ELT)) (-3594 (((-86) (-86)) 89 T ELT)) (-2673 (((-85) $) 151 T ELT)) (-3957 (($ (-1 $ $) (-550 $)) 87 T ELT)) (-1601 (((-3 (-550 $) #1#) $) 95 T ELT)) (-2235 (($ (-86) $) 59 T ELT) (($ (-86) (-583 $)) 111 T ELT)) (-2633 (((-85) $ (-86)) 133 T ELT) (((-85) $ (-1089)) 132 T ELT)) (-2603 (((-694) $) 44 T ELT)) (-1597 (((-85) $ $) 57 T ELT) (((-85) $ (-1089)) 49 T ELT)) (-2674 (((-85) $) 149 T ELT)) (-3767 (($ $ (-550 $) $) NIL T ELT) (($ $ (-583 (-550 $)) (-583 $)) NIL T ELT) (($ $ (-583 (-249 $))) 138 T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ (-583 (-1089)) (-583 (-1 $ $))) 81 T ELT) (($ $ (-583 (-1089)) (-583 (-1 $ (-583 $)))) NIL T ELT) (($ $ (-1089) (-1 $ (-583 $))) 67 T ELT) (($ $ (-1089) (-1 $ $)) 72 T ELT) (($ $ (-583 (-86)) (-583 (-1 $ $))) 80 T ELT) (($ $ (-583 (-86)) (-583 (-1 $ (-583 $)))) 83 T ELT) (($ $ (-86) (-1 $ (-583 $))) 68 T ELT) (($ $ (-86) (-1 $ $)) 74 T ELT)) (-3799 (($ (-86) $) 60 T ELT) (($ (-86) $ $) 61 T ELT) (($ (-86) $ $ $) 62 T ELT) (($ (-86) $ $ $ $) 63 T ELT) (($ (-86) (-583 $)) 124 T ELT)) (-1602 (($ $) 51 T ELT) (($ $ $) 136 T ELT)) (-2590 (($ $) 15 T ELT) (($ (-583 $)) 53 T ELT)) (-2254 (((-85) (-86)) 21 T ELT))) +(((-253 |#1|) (-10 -7 (-15 -2673 ((-85) |#1|)) (-15 -2674 ((-85) |#1|)) (-15 -3767 (|#1| |#1| (-86) (-1 |#1| |#1|))) (-15 -3767 (|#1| |#1| (-86) (-1 |#1| (-583 |#1|)))) (-15 -3767 (|#1| |#1| (-583 (-86)) (-583 (-1 |#1| (-583 |#1|))))) (-15 -3767 (|#1| |#1| (-583 (-86)) (-583 (-1 |#1| |#1|)))) (-15 -3767 (|#1| |#1| (-1089) (-1 |#1| |#1|))) (-15 -3767 (|#1| |#1| (-1089) (-1 |#1| (-583 |#1|)))) (-15 -3767 (|#1| |#1| (-583 (-1089)) (-583 (-1 |#1| (-583 |#1|))))) (-15 -3767 (|#1| |#1| (-583 (-1089)) (-583 (-1 |#1| |#1|)))) (-15 -1597 ((-85) |#1| (-1089))) (-15 -1597 ((-85) |#1| |#1|)) (-15 -3957 (|#1| (-1 |#1| |#1|) (-550 |#1|))) (-15 -2235 (|#1| (-86) (-583 |#1|))) (-15 -2235 (|#1| (-86) |#1|)) (-15 -2633 ((-85) |#1| (-1089))) (-15 -2633 ((-85) |#1| (-86))) (-15 -2254 ((-85) (-86))) (-15 -3594 ((-86) (-86))) (-15 -1598 ((-583 (-86)) |#1|)) (-15 -1599 ((-583 (-550 |#1|)) |#1|)) (-15 -1601 ((-3 (-550 |#1|) #1="failed") |#1|)) (-15 -2603 ((-694) |#1|)) (-15 -1602 (|#1| |#1| |#1|)) (-15 -1602 (|#1| |#1|)) (-15 -2573 (|#1| (-583 |#1|))) (-15 -2573 (|#1| |#1|)) (-15 -2590 (|#1| (-583 |#1|))) (-15 -2590 (|#1| |#1|)) (-15 -1603 (|#1| |#1| (-583 (-550 |#1|)) (-583 |#1|))) (-15 -1603 (|#1| |#1| (-583 (-249 |#1|)))) (-15 -1603 (|#1| |#1| (-249 |#1|))) (-15 -3799 (|#1| (-86) (-583 |#1|))) (-15 -3799 (|#1| (-86) |#1| |#1| |#1| |#1|)) (-15 -3799 (|#1| (-86) |#1| |#1| |#1|)) (-15 -3799 (|#1| (-86) |#1| |#1|)) (-15 -3799 (|#1| (-86) |#1|)) (-15 -3767 (|#1| |#1| (-583 |#1|) (-583 |#1|))) (-15 -3767 (|#1| |#1| |#1| |#1|)) (-15 -3767 (|#1| |#1| (-249 |#1|))) (-15 -3767 (|#1| |#1| (-583 (-249 |#1|)))) (-15 -3767 (|#1| |#1| (-583 (-550 |#1|)) (-583 |#1|))) (-15 -3767 (|#1| |#1| (-550 |#1|) |#1|)) (-15 -3157 ((-3 (-550 |#1|) #1#) |#1|)) (-15 -3156 ((-550 |#1|) |#1|))) (-254)) (T -253)) +((-3594 (*1 *2 *2) (-12 (-5 *2 (-86)) (-5 *1 (-253 *3)) (-4 *3 (-254)))) (-2254 (*1 *2 *3) (-12 (-5 *3 (-86)) (-5 *2 (-85)) (-5 *1 (-253 *4)) (-4 *4 (-254))))) +((-2568 (((-85) $ $) 7 T ELT)) (-1599 (((-583 (-550 $)) $) 42 T ELT)) (-1603 (($ $ (-249 $)) 54 T ELT) (($ $ (-583 (-249 $))) 53 T ELT) (($ $ (-583 (-550 $)) (-583 $)) 52 T ELT)) (-3157 (((-3 (-550 $) "failed") $) 67 T ELT)) (-3156 (((-550 $) $) 68 T ELT)) (-2573 (($ $) 49 T ELT) (($ (-583 $)) 48 T ELT)) (-1598 (((-583 (-86)) $) 41 T ELT)) (-3594 (((-86) (-86)) 40 T ELT)) (-2673 (((-85) $) 20 (|has| $ (-950 (-484))) ELT)) (-1596 (((-1084 $) (-550 $)) 23 (|has| $ (-961)) ELT)) (-3957 (($ (-1 $ $) (-550 $)) 34 T ELT)) (-1601 (((-3 (-550 $) "failed") $) 44 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-1600 (((-583 (-550 $)) $) 43 T ELT)) (-2235 (($ (-86) $) 36 T ELT) (($ (-86) (-583 $)) 35 T ELT)) (-2633 (((-85) $ (-86)) 38 T ELT) (((-85) $ (-1089)) 37 T ELT)) (-2603 (((-694) $) 45 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-1597 (((-85) $ $) 33 T ELT) (((-85) $ (-1089)) 32 T ELT)) (-2674 (((-85) $) 21 (|has| $ (-950 (-484))) ELT)) (-3767 (($ $ (-550 $) $) 65 T ELT) (($ $ (-583 (-550 $)) (-583 $)) 64 T ELT) (($ $ (-583 (-249 $))) 63 T ELT) (($ $ (-249 $)) 62 T ELT) (($ $ $ $) 61 T ELT) (($ $ (-583 $) (-583 $)) 60 T ELT) (($ $ (-583 (-1089)) (-583 (-1 $ $))) 31 T ELT) (($ $ (-583 (-1089)) (-583 (-1 $ (-583 $)))) 30 T ELT) (($ $ (-1089) (-1 $ (-583 $))) 29 T ELT) (($ $ (-1089) (-1 $ $)) 28 T ELT) (($ $ (-583 (-86)) (-583 (-1 $ $))) 27 T ELT) (($ $ (-583 (-86)) (-583 (-1 $ (-583 $)))) 26 T ELT) (($ $ (-86) (-1 $ (-583 $))) 25 T ELT) (($ $ (-86) (-1 $ $)) 24 T ELT)) (-3799 (($ (-86) $) 59 T ELT) (($ (-86) $ $) 58 T ELT) (($ (-86) $ $ $) 57 T ELT) (($ (-86) $ $ $ $) 56 T ELT) (($ (-86) (-583 $)) 55 T ELT)) (-1602 (($ $) 47 T ELT) (($ $ $) 46 T ELT)) (-3185 (($ $) 22 (|has| $ (-961)) ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-550 $)) 66 T ELT)) (-2590 (($ $) 51 T ELT) (($ (-583 $)) 50 T ELT)) (-2254 (((-85) (-86)) 39 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-3056 (((-85) $ $) 8 T ELT))) (((-254) (-113)) (T -254)) -((-3798 (*1 *1 *2 *1) (-12 (-4 *1 (-254)) (-5 *2 (-86)))) (-3798 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-254)) (-5 *2 (-86)))) (-3798 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-254)) (-5 *2 (-86)))) (-3798 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-254)) (-5 *2 (-86)))) (-3798 (*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-582 *1)) (-4 *1 (-254)))) (-1602 (*1 *1 *1 *2) (-12 (-5 *2 (-249 *1)) (-4 *1 (-254)))) (-1602 (*1 *1 *1 *2) (-12 (-5 *2 (-582 (-249 *1))) (-4 *1 (-254)))) (-1602 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-582 (-549 *1))) (-5 *3 (-582 *1)) (-4 *1 (-254)))) (-2589 (*1 *1 *1) (-4 *1 (-254))) (-2589 (*1 *1 *2) (-12 (-5 *2 (-582 *1)) (-4 *1 (-254)))) (-2572 (*1 *1 *1) (-4 *1 (-254))) (-2572 (*1 *1 *2) (-12 (-5 *2 (-582 *1)) (-4 *1 (-254)))) (-1601 (*1 *1 *1) (-4 *1 (-254))) (-1601 (*1 *1 *1 *1) (-4 *1 (-254))) (-2602 (*1 *2 *1) (-12 (-4 *1 (-254)) (-5 *2 (-693)))) (-1600 (*1 *2 *1) (|partial| -12 (-5 *2 (-549 *1)) (-4 *1 (-254)))) (-1599 (*1 *2 *1) (-12 (-5 *2 (-582 (-549 *1))) (-4 *1 (-254)))) (-1598 (*1 *2 *1) (-12 (-5 *2 (-582 (-549 *1))) (-4 *1 (-254)))) (-1597 (*1 *2 *1) (-12 (-4 *1 (-254)) (-5 *2 (-582 (-86))))) (-3593 (*1 *2 *2) (-12 (-4 *1 (-254)) (-5 *2 (-86)))) (-2253 (*1 *2 *3) (-12 (-4 *1 (-254)) (-5 *3 (-86)) (-5 *2 (-85)))) (-2632 (*1 *2 *1 *3) (-12 (-4 *1 (-254)) (-5 *3 (-86)) (-5 *2 (-85)))) (-2632 (*1 *2 *1 *3) (-12 (-4 *1 (-254)) (-5 *3 (-1088)) (-5 *2 (-85)))) (-2234 (*1 *1 *2 *1) (-12 (-4 *1 (-254)) (-5 *2 (-86)))) (-2234 (*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-582 *1)) (-4 *1 (-254)))) (-3956 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-549 *1)) (-4 *1 (-254)))) (-1596 (*1 *2 *1 *1) (-12 (-4 *1 (-254)) (-5 *2 (-85)))) (-1596 (*1 *2 *1 *3) (-12 (-4 *1 (-254)) (-5 *3 (-1088)) (-5 *2 (-85)))) (-3766 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-582 (-1088))) (-5 *3 (-582 (-1 *1 *1))) (-4 *1 (-254)))) (-3766 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-582 (-1088))) (-5 *3 (-582 (-1 *1 (-582 *1)))) (-4 *1 (-254)))) (-3766 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1088)) (-5 *3 (-1 *1 (-582 *1))) (-4 *1 (-254)))) (-3766 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1088)) (-5 *3 (-1 *1 *1)) (-4 *1 (-254)))) (-3766 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-582 (-86))) (-5 *3 (-582 (-1 *1 *1))) (-4 *1 (-254)))) (-3766 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-582 (-86))) (-5 *3 (-582 (-1 *1 (-582 *1)))) (-4 *1 (-254)))) (-3766 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-1 *1 (-582 *1))) (-4 *1 (-254)))) (-3766 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-1 *1 *1)) (-4 *1 (-254)))) (-1595 (*1 *2 *3) (-12 (-5 *3 (-549 *1)) (-4 *1 (-960)) (-4 *1 (-254)) (-5 *2 (-1083 *1)))) (-3184 (*1 *1 *1) (-12 (-4 *1 (-960)) (-4 *1 (-254)))) (-2673 (*1 *2 *1) (-12 (-4 *1 (-949 (-483))) (-4 *1 (-254)) (-5 *2 (-85)))) (-2672 (*1 *2 *1) (-12 (-4 *1 (-949 (-483))) (-4 *1 (-254)) (-5 *2 (-85))))) -(-13 (-1012) (-949 (-549 $)) (-454 (-549 $) $) (-260 $) (-10 -8 (-15 -3798 ($ (-86) $)) (-15 -3798 ($ (-86) $ $)) (-15 -3798 ($ (-86) $ $ $)) (-15 -3798 ($ (-86) $ $ $ $)) (-15 -3798 ($ (-86) (-582 $))) (-15 -1602 ($ $ (-249 $))) (-15 -1602 ($ $ (-582 (-249 $)))) (-15 -1602 ($ $ (-582 (-549 $)) (-582 $))) (-15 -2589 ($ $)) (-15 -2589 ($ (-582 $))) (-15 -2572 ($ $)) (-15 -2572 ($ (-582 $))) (-15 -1601 ($ $)) (-15 -1601 ($ $ $)) (-15 -2602 ((-693) $)) (-15 -1600 ((-3 (-549 $) "failed") $)) (-15 -1599 ((-582 (-549 $)) $)) (-15 -1598 ((-582 (-549 $)) $)) (-15 -1597 ((-582 (-86)) $)) (-15 -3593 ((-86) (-86))) (-15 -2253 ((-85) (-86))) (-15 -2632 ((-85) $ (-86))) (-15 -2632 ((-85) $ (-1088))) (-15 -2234 ($ (-86) $)) (-15 -2234 ($ (-86) (-582 $))) (-15 -3956 ($ (-1 $ $) (-549 $))) (-15 -1596 ((-85) $ $)) (-15 -1596 ((-85) $ (-1088))) (-15 -3766 ($ $ (-582 (-1088)) (-582 (-1 $ $)))) (-15 -3766 ($ $ (-582 (-1088)) (-582 (-1 $ (-582 $))))) (-15 -3766 ($ $ (-1088) (-1 $ (-582 $)))) (-15 -3766 ($ $ (-1088) (-1 $ $))) (-15 -3766 ($ $ (-582 (-86)) (-582 (-1 $ $)))) (-15 -3766 ($ $ (-582 (-86)) (-582 (-1 $ (-582 $))))) (-15 -3766 ($ $ (-86) (-1 $ (-582 $)))) (-15 -3766 ($ $ (-86) (-1 $ $))) (IF (|has| $ (-960)) (PROGN (-15 -1595 ((-1083 $) (-549 $))) (-15 -3184 ($ $))) |%noBranch|) (IF (|has| $ (-949 (-483))) (PROGN (-15 -2673 ((-85) $)) (-15 -2672 ((-85) $))) |%noBranch|))) -(((-72) . T) ((-554 (-549 $)) . T) ((-551 (-771)) . T) ((-260 $) . T) ((-454 (-549 $) $) . T) ((-454 $ $) . T) ((-13) . T) ((-949 (-549 $)) . T) ((-1012) . T) ((-1127) . T)) -((-3956 ((|#2| (-1 |#2| |#1|) (-1071) (-549 |#1|)) 18 T ELT))) -(((-255 |#1| |#2|) (-10 -7 (-15 -3956 (|#2| (-1 |#2| |#1|) (-1071) (-549 |#1|)))) (-254) (-1127)) (T -255)) -((-3956 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1071)) (-5 *5 (-549 *6)) (-4 *6 (-254)) (-4 *2 (-1127)) (-5 *1 (-255 *6 *2))))) -((-3956 ((|#2| (-1 |#2| |#1|) (-549 |#1|)) 17 T ELT))) -(((-256 |#1| |#2|) (-10 -7 (-15 -3956 (|#2| (-1 |#2| |#1|) (-549 |#1|)))) (-254) (-254)) (T -256)) -((-3956 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-549 *5)) (-4 *5 (-254)) (-4 *2 (-254)) (-5 *1 (-256 *5 *2))))) -((-1606 (((-85) $ $) 14 T ELT)) (-2563 (($ $ $) 18 T ELT)) (-2562 (($ $ $) 17 T ELT)) (-2740 (((-2 (|:| -3952 (-582 $)) (|:| -2408 $)) (-582 $)) 50 T ELT)) (-1603 (((-3 (-582 $) #1="failed") (-582 $) $) 67 T ELT)) (-3143 (($ $ $) 25 T ELT) (($ (-582 $)) NIL T ELT)) (-1604 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) 35 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 40 T ELT)) (-3464 (((-3 $ #1#) $ $) 21 T ELT)) (-2739 (((-631 (-582 $)) (-582 $) $) 55 T ELT))) -(((-257 |#1|) (-10 -7 (-15 -1603 ((-3 (-582 |#1|) #1="failed") (-582 |#1|) |#1|)) (-15 -1604 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) #1#) |#1| |#1| |#1|)) (-15 -1604 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2408 |#1|)) |#1| |#1|)) (-15 -2563 (|#1| |#1| |#1|)) (-15 -2562 (|#1| |#1| |#1|)) (-15 -1606 ((-85) |#1| |#1|)) (-15 -2739 ((-631 (-582 |#1|)) (-582 |#1|) |#1|)) (-15 -2740 ((-2 (|:| -3952 (-582 |#1|)) (|:| -2408 |#1|)) (-582 |#1|))) (-15 -3143 (|#1| (-582 |#1|))) (-15 -3143 (|#1| |#1| |#1|)) (-15 -3464 ((-3 |#1| #1#) |#1| |#1|))) (-258)) (T -257)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-3187 (((-85) $) 22 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3980 $) (|:| |associate| $)) $) 55 T ELT)) (-2062 (($ $) 54 T ELT)) (-2060 (((-85) $) 52 T ELT)) (-1310 (((-3 $ "failed") $ $) 26 T ELT)) (-1606 (((-85) $ $) 75 T ELT)) (-3722 (($) 23 T CONST)) (-2563 (($ $ $) 71 T ELT)) (-3465 (((-3 $ "failed") $) 42 T ELT)) (-2562 (($ $ $) 72 T ELT)) (-2740 (((-2 (|:| -3952 (-582 $)) (|:| -2408 $)) (-582 $)) 66 T ELT)) (-1212 (((-85) $ $) 20 T ELT)) (-2409 (((-85) $) 44 T ELT)) (-1603 (((-3 (-582 $) "failed") (-582 $) $) 68 T ELT)) (-1889 (($ $ $) 60 T ELT) (($ (-582 $)) 59 T ELT)) (-3241 (((-1071) $) 11 T ELT)) (-3242 (((-1032) $) 12 T ELT)) (-2707 (((-1083 $) (-1083 $) (-1083 $)) 58 T ELT)) (-3143 (($ $ $) 62 T ELT) (($ (-582 $)) 61 T ELT)) (-1604 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 69 T ELT)) (-3464 (((-3 $ "failed") $ $) 56 T ELT)) (-2739 (((-631 (-582 $)) (-582 $) $) 65 T ELT)) (-1605 (((-693) $) 74 T ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) 73 T ELT)) (-3944 (((-771) $) 13 T ELT) (($ (-483)) 41 T ELT) (($ $) 57 T ELT)) (-3125 (((-693)) 40 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-2061 (((-85) $ $) 53 T ELT)) (-3124 (((-85) $ $) 33 T ELT)) (-2659 (($) 24 T CONST)) (-2665 (($) 45 T CONST)) (-3055 (((-85) $ $) 8 T ELT)) (-3835 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3837 (($ $ $) 18 T ELT)) (** (($ $ (-829)) 35 T ELT) (($ $ (-693)) 43 T ELT)) (* (($ (-829) $) 17 T ELT) (($ (-693) $) 21 T ELT) (($ (-483) $) 30 T ELT) (($ $ $) 34 T ELT))) +((-3799 (*1 *1 *2 *1) (-12 (-4 *1 (-254)) (-5 *2 (-86)))) (-3799 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-254)) (-5 *2 (-86)))) (-3799 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-254)) (-5 *2 (-86)))) (-3799 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-254)) (-5 *2 (-86)))) (-3799 (*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-583 *1)) (-4 *1 (-254)))) (-1603 (*1 *1 *1 *2) (-12 (-5 *2 (-249 *1)) (-4 *1 (-254)))) (-1603 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-249 *1))) (-4 *1 (-254)))) (-1603 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-550 *1))) (-5 *3 (-583 *1)) (-4 *1 (-254)))) (-2590 (*1 *1 *1) (-4 *1 (-254))) (-2590 (*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-254)))) (-2573 (*1 *1 *1) (-4 *1 (-254))) (-2573 (*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-254)))) (-1602 (*1 *1 *1) (-4 *1 (-254))) (-1602 (*1 *1 *1 *1) (-4 *1 (-254))) (-2603 (*1 *2 *1) (-12 (-4 *1 (-254)) (-5 *2 (-694)))) (-1601 (*1 *2 *1) (|partial| -12 (-5 *2 (-550 *1)) (-4 *1 (-254)))) (-1600 (*1 *2 *1) (-12 (-5 *2 (-583 (-550 *1))) (-4 *1 (-254)))) (-1599 (*1 *2 *1) (-12 (-5 *2 (-583 (-550 *1))) (-4 *1 (-254)))) (-1598 (*1 *2 *1) (-12 (-4 *1 (-254)) (-5 *2 (-583 (-86))))) (-3594 (*1 *2 *2) (-12 (-4 *1 (-254)) (-5 *2 (-86)))) (-2254 (*1 *2 *3) (-12 (-4 *1 (-254)) (-5 *3 (-86)) (-5 *2 (-85)))) (-2633 (*1 *2 *1 *3) (-12 (-4 *1 (-254)) (-5 *3 (-86)) (-5 *2 (-85)))) (-2633 (*1 *2 *1 *3) (-12 (-4 *1 (-254)) (-5 *3 (-1089)) (-5 *2 (-85)))) (-2235 (*1 *1 *2 *1) (-12 (-4 *1 (-254)) (-5 *2 (-86)))) (-2235 (*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-583 *1)) (-4 *1 (-254)))) (-3957 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-550 *1)) (-4 *1 (-254)))) (-1597 (*1 *2 *1 *1) (-12 (-4 *1 (-254)) (-5 *2 (-85)))) (-1597 (*1 *2 *1 *3) (-12 (-4 *1 (-254)) (-5 *3 (-1089)) (-5 *2 (-85)))) (-3767 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-1089))) (-5 *3 (-583 (-1 *1 *1))) (-4 *1 (-254)))) (-3767 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-1089))) (-5 *3 (-583 (-1 *1 (-583 *1)))) (-4 *1 (-254)))) (-3767 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1089)) (-5 *3 (-1 *1 (-583 *1))) (-4 *1 (-254)))) (-3767 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1089)) (-5 *3 (-1 *1 *1)) (-4 *1 (-254)))) (-3767 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-86))) (-5 *3 (-583 (-1 *1 *1))) (-4 *1 (-254)))) (-3767 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-86))) (-5 *3 (-583 (-1 *1 (-583 *1)))) (-4 *1 (-254)))) (-3767 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-1 *1 (-583 *1))) (-4 *1 (-254)))) (-3767 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-1 *1 *1)) (-4 *1 (-254)))) (-1596 (*1 *2 *3) (-12 (-5 *3 (-550 *1)) (-4 *1 (-961)) (-4 *1 (-254)) (-5 *2 (-1084 *1)))) (-3185 (*1 *1 *1) (-12 (-4 *1 (-961)) (-4 *1 (-254)))) (-2674 (*1 *2 *1) (-12 (-4 *1 (-950 (-484))) (-4 *1 (-254)) (-5 *2 (-85)))) (-2673 (*1 *2 *1) (-12 (-4 *1 (-950 (-484))) (-4 *1 (-254)) (-5 *2 (-85))))) +(-13 (-1013) (-950 (-550 $)) (-455 (-550 $) $) (-260 $) (-10 -8 (-15 -3799 ($ (-86) $)) (-15 -3799 ($ (-86) $ $)) (-15 -3799 ($ (-86) $ $ $)) (-15 -3799 ($ (-86) $ $ $ $)) (-15 -3799 ($ (-86) (-583 $))) (-15 -1603 ($ $ (-249 $))) (-15 -1603 ($ $ (-583 (-249 $)))) (-15 -1603 ($ $ (-583 (-550 $)) (-583 $))) (-15 -2590 ($ $)) (-15 -2590 ($ (-583 $))) (-15 -2573 ($ $)) (-15 -2573 ($ (-583 $))) (-15 -1602 ($ $)) (-15 -1602 ($ $ $)) (-15 -2603 ((-694) $)) (-15 -1601 ((-3 (-550 $) "failed") $)) (-15 -1600 ((-583 (-550 $)) $)) (-15 -1599 ((-583 (-550 $)) $)) (-15 -1598 ((-583 (-86)) $)) (-15 -3594 ((-86) (-86))) (-15 -2254 ((-85) (-86))) (-15 -2633 ((-85) $ (-86))) (-15 -2633 ((-85) $ (-1089))) (-15 -2235 ($ (-86) $)) (-15 -2235 ($ (-86) (-583 $))) (-15 -3957 ($ (-1 $ $) (-550 $))) (-15 -1597 ((-85) $ $)) (-15 -1597 ((-85) $ (-1089))) (-15 -3767 ($ $ (-583 (-1089)) (-583 (-1 $ $)))) (-15 -3767 ($ $ (-583 (-1089)) (-583 (-1 $ (-583 $))))) (-15 -3767 ($ $ (-1089) (-1 $ (-583 $)))) (-15 -3767 ($ $ (-1089) (-1 $ $))) (-15 -3767 ($ $ (-583 (-86)) (-583 (-1 $ $)))) (-15 -3767 ($ $ (-583 (-86)) (-583 (-1 $ (-583 $))))) (-15 -3767 ($ $ (-86) (-1 $ (-583 $)))) (-15 -3767 ($ $ (-86) (-1 $ $))) (IF (|has| $ (-961)) (PROGN (-15 -1596 ((-1084 $) (-550 $))) (-15 -3185 ($ $))) |%noBranch|) (IF (|has| $ (-950 (-484))) (PROGN (-15 -2674 ((-85) $)) (-15 -2673 ((-85) $))) |%noBranch|))) +(((-72) . T) ((-555 (-550 $)) . T) ((-552 (-772)) . T) ((-260 $) . T) ((-455 (-550 $) $) . T) ((-455 $ $) . T) ((-13) . T) ((-950 (-550 $)) . T) ((-1013) . T) ((-1128) . T)) +((-3957 ((|#2| (-1 |#2| |#1|) (-1072) (-550 |#1|)) 18 T ELT))) +(((-255 |#1| |#2|) (-10 -7 (-15 -3957 (|#2| (-1 |#2| |#1|) (-1072) (-550 |#1|)))) (-254) (-1128)) (T -255)) +((-3957 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1072)) (-5 *5 (-550 *6)) (-4 *6 (-254)) (-4 *2 (-1128)) (-5 *1 (-255 *6 *2))))) +((-3957 ((|#2| (-1 |#2| |#1|) (-550 |#1|)) 17 T ELT))) +(((-256 |#1| |#2|) (-10 -7 (-15 -3957 (|#2| (-1 |#2| |#1|) (-550 |#1|)))) (-254) (-254)) (T -256)) +((-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-550 *5)) (-4 *5 (-254)) (-4 *2 (-254)) (-5 *1 (-256 *5 *2))))) +((-1607 (((-85) $ $) 14 T ELT)) (-2564 (($ $ $) 18 T ELT)) (-2563 (($ $ $) 17 T ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) 50 T ELT)) (-1604 (((-3 (-583 $) #1="failed") (-583 $) $) 67 T ELT)) (-3144 (($ $ $) 25 T ELT) (($ (-583 $)) NIL T ELT)) (-1605 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) 35 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 40 T ELT)) (-3465 (((-3 $ #1#) $ $) 21 T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) 55 T ELT))) +(((-257 |#1|) (-10 -7 (-15 -1604 ((-3 (-583 |#1|) #1="failed") (-583 |#1|) |#1|)) (-15 -1605 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) #1#) |#1| |#1| |#1|)) (-15 -1605 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2409 |#1|)) |#1| |#1|)) (-15 -2564 (|#1| |#1| |#1|)) (-15 -2563 (|#1| |#1| |#1|)) (-15 -1607 ((-85) |#1| |#1|)) (-15 -2740 ((-632 (-583 |#1|)) (-583 |#1|) |#1|)) (-15 -2741 ((-2 (|:| -3953 (-583 |#1|)) (|:| -2409 |#1|)) (-583 |#1|))) (-15 -3144 (|#1| (-583 |#1|))) (-15 -3144 (|#1| |#1| |#1|)) (-15 -3465 ((-3 |#1| #1#) |#1| |#1|))) (-258)) (T -257)) +NIL +((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) 55 T ELT)) (-2063 (($ $) 54 T ELT)) (-2061 (((-85) $) 52 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-1607 (((-85) $ $) 75 T ELT)) (-3723 (($) 23 T CONST)) (-2564 (($ $ $) 71 T ELT)) (-3466 (((-3 $ "failed") $) 42 T ELT)) (-2563 (($ $ $) 72 T ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) 66 T ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-1604 (((-3 (-583 $) "failed") (-583 $) $) 68 T ELT)) (-1890 (($ $ $) 60 T ELT) (($ (-583 $)) 59 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) 58 T ELT)) (-3144 (($ $ $) 62 T ELT) (($ (-583 $)) 61 T ELT)) (-1605 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 69 T ELT)) (-3465 (((-3 $ "failed") $ $) 56 T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) 65 T ELT)) (-1606 (((-694) $) 74 T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 73 T ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ $) 57 T ELT)) (-3126 (((-694)) 40 T CONST)) (-1264 (((-85) $ $) 6 T ELT)) (-2062 (((-85) $ $) 53 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT))) (((-258) (-113)) (T -258)) -((-1606 (*1 *2 *1 *1) (-12 (-4 *1 (-258)) (-5 *2 (-85)))) (-1605 (*1 *2 *1) (-12 (-4 *1 (-258)) (-5 *2 (-693)))) (-2878 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1971 *1) (|:| -2901 *1))) (-4 *1 (-258)))) (-2562 (*1 *1 *1 *1) (-4 *1 (-258))) (-2563 (*1 *1 *1 *1) (-4 *1 (-258))) (-1604 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2408 *1))) (-4 *1 (-258)))) (-1604 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-258)))) (-1603 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-582 *1)) (-4 *1 (-258))))) -(-13 (-831) (-10 -8 (-15 -1606 ((-85) $ $)) (-15 -1605 ((-693) $)) (-15 -2878 ((-2 (|:| -1971 $) (|:| -2901 $)) $ $)) (-15 -2562 ($ $ $)) (-15 -2563 ($ $ $)) (-15 -1604 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $)) (-15 -1604 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -1603 ((-3 (-582 $) "failed") (-582 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-554 (-483)) . T) ((-554 $) . T) ((-551 (-771)) . T) ((-146) . T) ((-246) . T) ((-390) . T) ((-494) . T) ((-13) . T) ((-587 (-483)) . T) ((-587 $) . T) ((-589 $) . T) ((-581 $) . T) ((-653 $) . T) ((-662) . T) ((-831) . T) ((-962 $) . T) ((-967 $) . T) ((-960) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T)) -((-3766 (($ $ (-582 |#2|) (-582 |#2|)) 14 T ELT) (($ $ |#2| |#2|) NIL T ELT) (($ $ (-249 |#2|)) 11 T ELT) (($ $ (-582 (-249 |#2|))) NIL T ELT))) -(((-259 |#1| |#2|) (-10 -7 (-15 -3766 (|#1| |#1| (-582 (-249 |#2|)))) (-15 -3766 (|#1| |#1| (-249 |#2|))) (-15 -3766 (|#1| |#1| |#2| |#2|)) (-15 -3766 (|#1| |#1| (-582 |#2|) (-582 |#2|)))) (-260 |#2|) (-1012)) (T -259)) -NIL -((-3766 (($ $ (-582 |#1|) (-582 |#1|)) 7 T ELT) (($ $ |#1| |#1|) 6 T ELT) (($ $ (-249 |#1|)) 13 T ELT) (($ $ (-582 (-249 |#1|))) 12 T ELT))) -(((-260 |#1|) (-113) (-1012)) (T -260)) -((-3766 (*1 *1 *1 *2) (-12 (-5 *2 (-249 *3)) (-4 *1 (-260 *3)) (-4 *3 (-1012)))) (-3766 (*1 *1 *1 *2) (-12 (-5 *2 (-582 (-249 *3))) (-4 *1 (-260 *3)) (-4 *3 (-1012))))) -(-13 (-454 |t#1| |t#1|) (-10 -8 (-15 -3766 ($ $ (-249 |t#1|))) (-15 -3766 ($ $ (-582 (-249 |t#1|)))))) -(((-454 |#1| |#1|) . T)) -((-3766 ((|#1| (-1 |#1| (-483)) (-1090 (-348 (-483)))) 26 T ELT))) -(((-261 |#1|) (-10 -7 (-15 -3766 (|#1| (-1 |#1| (-483)) (-1090 (-348 (-483)))))) (-38 (-348 (-483)))) (T -261)) -((-3766 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-483))) (-5 *4 (-1090 (-348 (-483)))) (-5 *1 (-261 *2)) (-4 *2 (-38 (-348 (-483))))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3944 (((-771) $) 7 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) 9 T ELT))) -(((-262) (-1012)) (T -262)) -NIL -((-2567 (((-85) $ $) NIL T ELT)) (-3504 (((-483) $) 13 T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3205 (((-1047) $) 10 T ELT)) (-3944 (((-771) $) 20 T ELT) (($ (-1093)) NIL T ELT) (((-1093) $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-263) (-13 (-994) (-10 -8 (-15 -3205 ((-1047) $)) (-15 -3504 ((-483) $))))) (T -263)) -((-3205 (*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-263)))) (-3504 (*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-263))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3187 (((-85) $) 60 T ELT)) (-3128 (((-1164 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-258)) ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3980 $) (|:| |associate| $)) $) NIL T ELT)) (-2062 (($ $) NIL T ELT)) (-2060 (((-85) $) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2706 (((-346 (-1083 $)) (-1083 $)) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-820)) ELT)) (-3773 (($ $) NIL T ELT)) (-3969 (((-346 $) $) NIL T ELT)) (-2703 (((-3 (-582 (-1083 $)) #1#) (-582 (-1083 $)) (-1083 $)) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-820)) ELT)) (-1606 (((-85) $ $) NIL T ELT)) (-3621 (((-483) $) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-739)) ELT)) (-3722 (($) NIL T CONST)) (-3156 (((-3 (-1164 |#1| |#2| |#3| |#4|) #1#) $) NIL T ELT) (((-3 (-1088) #1#) $) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-949 (-1088))) ELT) (((-3 (-348 (-483)) #1#) $) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-949 (-483))) ELT) (((-3 (-483) #1#) $) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-949 (-483))) ELT) (((-3 (-1158 |#2| |#3| |#4|) #1#) $) 26 T ELT)) (-3155 (((-1164 |#1| |#2| |#3| |#4|) $) NIL T ELT) (((-1088) $) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-949 (-1088))) ELT) (((-348 (-483)) $) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-949 (-483))) ELT) (((-483) $) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-949 (-483))) ELT) (((-1158 |#2| |#3| |#4|) $) NIL T ELT)) (-2563 (($ $ $) NIL T ELT)) (-2278 (((-629 (-483)) (-629 $)) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-629 $) (-1177 $)) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 (-1164 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1177 (-1164 |#1| |#2| |#3| |#4|)))) (-629 $) (-1177 $)) NIL T ELT) (((-629 (-1164 |#1| |#2| |#3| |#4|)) (-629 $)) NIL T ELT)) (-3465 (((-3 $ #1#) $) NIL T ELT)) (-2993 (($) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-482)) ELT)) (-2562 (($ $ $) NIL T ELT)) (-2740 (((-2 (|:| -3952 (-582 $)) (|:| -2408 $)) (-582 $)) NIL T ELT)) (-3721 (((-85) $) NIL T ELT)) (-3185 (((-85) $) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-739)) ELT)) (-2795 (((-797 (-483) $) $ (-799 (-483)) (-797 (-483) $)) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-795 (-483))) ELT) (((-797 (-328) $) $ (-799 (-328)) (-797 (-328) $)) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-795 (-328))) ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-2409 (((-85) $) NIL T ELT)) (-2995 (($ $) NIL T ELT)) (-2997 (((-1164 |#1| |#2| |#3| |#4|) $) 22 T ELT)) (-3443 (((-631 $) $) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-1064)) ELT)) (-3186 (((-85) $) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-739)) ELT)) (-1603 (((-3 (-582 $) #1#) (-582 $) $) NIL T ELT)) (-2530 (($ $ $) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-755)) ELT)) (-2856 (($ $ $) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-755)) ELT)) (-3956 (($ (-1 (-1164 |#1| |#2| |#3| |#4|) (-1164 |#1| |#2| |#3| |#4|)) $) NIL T ELT)) (-3782 (((-3 (-749 |#2|) #1#) $) 80 T ELT)) (-2279 (((-629 (-483)) (-1177 $)) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 (-1164 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1177 (-1164 |#1| |#2| |#3| |#4|)))) (-1177 $) $) NIL T ELT) (((-629 (-1164 |#1| |#2| |#3| |#4|)) (-1177 $)) NIL T ELT)) (-1889 (($ $ $) NIL T ELT) (($ (-582 $)) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-2483 (($ $) NIL T ELT)) (-3444 (($) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-1064)) CONST)) (-3242 (((-1032) $) NIL T ELT)) (-2707 (((-1083 $) (-1083 $) (-1083 $)) NIL T ELT)) (-3143 (($ $ $) NIL T ELT) (($ (-582 $)) NIL T ELT)) (-3127 (($ $) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-258)) ELT)) (-3129 (((-1164 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-482)) ELT)) (-2704 (((-346 (-1083 $)) (-1083 $)) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-820)) ELT)) (-2705 (((-346 (-1083 $)) (-1083 $)) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-820)) ELT)) (-3730 (((-346 $) $) NIL T ELT)) (-1604 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3464 (((-3 $ #1#) $ $) NIL T ELT)) (-2739 (((-631 (-582 $)) (-582 $) $) NIL T ELT)) (-3766 (($ $ (-582 (-1164 |#1| |#2| |#3| |#4|)) (-582 (-1164 |#1| |#2| |#3| |#4|))) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-260 (-1164 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-1164 |#1| |#2| |#3| |#4|) (-1164 |#1| |#2| |#3| |#4|)) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-260 (-1164 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-249 (-1164 |#1| |#2| |#3| |#4|))) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-260 (-1164 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-582 (-249 (-1164 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-260 (-1164 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-582 (-1088)) (-582 (-1164 |#1| |#2| |#3| |#4|))) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-454 (-1088) (-1164 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-1088) (-1164 |#1| |#2| |#3| |#4|)) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-454 (-1088) (-1164 |#1| |#2| |#3| |#4|))) ELT)) (-1605 (((-693) $) NIL T ELT)) (-3798 (($ $ (-1164 |#1| |#2| |#3| |#4|)) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-241 (-1164 |#1| |#2| |#3| |#4|) (-1164 |#1| |#2| |#3| |#4|))) ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL T ELT)) (-3756 (($ $ (-1 (-1164 |#1| |#2| |#3| |#4|) (-1164 |#1| |#2| |#3| |#4|))) NIL T ELT) (($ $ (-1 (-1164 |#1| |#2| |#3| |#4|) (-1164 |#1| |#2| |#3| |#4|)) (-693)) NIL T ELT) (($ $ (-1088)) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-810 (-1088))) ELT) (($ $ (-582 (-1088))) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-810 (-1088))) ELT) (($ $ (-1088) (-693)) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-810 (-1088))) ELT) (($ $ (-582 (-1088)) (-582 (-693))) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-810 (-1088))) ELT) (($ $) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-189)) ELT) (($ $ (-693)) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-189)) ELT)) (-2994 (($ $) NIL T ELT)) (-2996 (((-1164 |#1| |#2| |#3| |#4|) $) 19 T ELT)) (-3970 (((-799 (-483)) $) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-552 (-799 (-483)))) ELT) (((-799 (-328)) $) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-552 (-799 (-328)))) ELT) (((-472) $) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-552 (-472))) ELT) (((-328) $) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-932)) ELT) (((-179) $) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-932)) ELT)) (-2702 (((-3 (-1177 $) #1#) (-629 $)) NIL (-12 (|has| $ (-118)) (|has| (-1164 |#1| |#2| |#3| |#4|) (-820))) ELT)) (-3944 (((-771) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ $) NIL T ELT) (($ (-348 (-483))) NIL T ELT) (($ (-1164 |#1| |#2| |#3| |#4|)) 30 T ELT) (($ (-1088)) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-949 (-1088))) ELT) (($ (-1158 |#2| |#3| |#4|)) 37 T ELT)) (-2701 (((-631 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-1164 |#1| |#2| |#3| |#4|) (-820))) (|has| (-1164 |#1| |#2| |#3| |#4|) (-118))) ELT)) (-3125 (((-693)) NIL T CONST)) (-3130 (((-1164 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-482)) ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2061 (((-85) $ $) NIL T ELT)) (-3124 (((-85) $ $) NIL T ELT)) (-3381 (($ $) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-739)) ELT)) (-2659 (($) NIL T CONST)) (-2665 (($) NIL T CONST)) (-2668 (($ $ (-1 (-1164 |#1| |#2| |#3| |#4|) (-1164 |#1| |#2| |#3| |#4|))) NIL T ELT) (($ $ (-1 (-1164 |#1| |#2| |#3| |#4|) (-1164 |#1| |#2| |#3| |#4|)) (-693)) NIL T ELT) (($ $ (-1088)) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-810 (-1088))) ELT) (($ $ (-582 (-1088))) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-810 (-1088))) ELT) (($ $ (-1088) (-693)) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-810 (-1088))) ELT) (($ $ (-582 (-1088)) (-582 (-693))) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-810 (-1088))) ELT) (($ $) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-189)) ELT) (($ $ (-693)) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-189)) ELT)) (-2565 (((-85) $ $) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-755)) ELT)) (-2566 (((-85) $ $) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-755)) ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-2683 (((-85) $ $) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-755)) ELT)) (-2684 (((-85) $ $) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-755)) ELT)) (-3947 (($ $ $) 35 T ELT) (($ (-1164 |#1| |#2| |#3| |#4|) (-1164 |#1| |#2| |#3| |#4|)) 32 T ELT)) (-3835 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3837 (($ $ $) NIL T ELT)) (** (($ $ (-829)) NIL T ELT) (($ $ (-693)) NIL T ELT) (($ $ (-483)) NIL T ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-348 (-483))) NIL T ELT) (($ (-348 (-483)) $) NIL T ELT) (($ (-1164 |#1| |#2| |#3| |#4|) $) 31 T ELT) (($ $ (-1164 |#1| |#2| |#3| |#4|)) NIL T ELT))) -(((-264 |#1| |#2| |#3| |#4|) (-13 (-903 (-1164 |#1| |#2| |#3| |#4|)) (-949 (-1158 |#2| |#3| |#4|)) (-10 -8 (-15 -3782 ((-3 (-749 |#2|) "failed") $)) (-15 -3944 ($ (-1158 |#2| |#3| |#4|))))) (-13 (-949 (-483)) (-579 (-483)) (-390)) (-13 (-27) (-1113) (-362 |#1|)) (-1088) |#2|) (T -264)) -((-3944 (*1 *1 *2) (-12 (-5 *2 (-1158 *4 *5 *6)) (-4 *4 (-13 (-27) (-1113) (-362 *3))) (-14 *5 (-1088)) (-14 *6 *4) (-4 *3 (-13 (-949 (-483)) (-579 (-483)) (-390))) (-5 *1 (-264 *3 *4 *5 *6)))) (-3782 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-949 (-483)) (-579 (-483)) (-390))) (-5 *2 (-749 *4)) (-5 *1 (-264 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1113) (-362 *3))) (-14 *5 (-1088)) (-14 *6 *4)))) -((-2567 (((-85) $ $) NIL T ELT)) (-1213 (((-582 $) $ (-1088)) NIL (|has| |#1| (-494)) ELT) (((-582 $) $) NIL (|has| |#1| (-494)) ELT) (((-582 $) (-1083 $) (-1088)) NIL (|has| |#1| (-494)) ELT) (((-582 $) (-1083 $)) NIL (|has| |#1| (-494)) ELT) (((-582 $) (-856 $)) NIL (|has| |#1| (-494)) ELT)) (-1214 (($ $ (-1088)) NIL (|has| |#1| (-494)) ELT) (($ $) NIL (|has| |#1| (-494)) ELT) (($ (-1083 $) (-1088)) NIL (|has| |#1| (-494)) ELT) (($ (-1083 $)) NIL (|has| |#1| (-494)) ELT) (($ (-856 $)) NIL (|has| |#1| (-494)) ELT)) (-3187 (((-85) $) 29 (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-579 (-483))) (|has| |#1| (-960)))) ELT)) (-3080 (((-582 (-1088)) $) 365 T ELT)) (-3082 (((-348 (-1083 $)) $ (-549 $)) NIL (|has| |#1| (-494)) ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3980 $) (|:| |associate| $)) $) NIL (|has| |#1| (-494)) ELT)) (-2062 (($ $) NIL (|has| |#1| (-494)) ELT)) (-2060 (((-85) $) NIL (|has| |#1| (-494)) ELT)) (-1598 (((-582 (-549 $)) $) NIL T ELT)) (-3490 (($ $) 170 (|has| |#1| (-494)) ELT)) (-3637 (($ $) 146 (|has| |#1| (-494)) ELT)) (-1370 (($ $ (-1003 $)) 231 (|has| |#1| (-494)) ELT) (($ $ (-1088)) 227 (|has| |#1| (-494)) ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL (OR (|has| |#1| (-21)) (-12 (|has| |#1| (-579 (-483))) (|has| |#1| (-960)))) ELT)) (-1602 (($ $ (-249 $)) NIL T ELT) (($ $ (-582 (-249 $))) 383 T ELT) (($ $ (-582 (-549 $)) (-582 $)) 438 T ELT)) (-2706 (((-346 (-1083 $)) (-1083 $)) 305 (-12 (|has| |#1| (-390)) (|has| |#1| (-494))) ELT)) (-3773 (($ $) NIL (|has| |#1| (-494)) ELT)) (-3969 (((-346 $) $) NIL (|has| |#1| (-494)) ELT)) (-3036 (($ $) NIL (|has| |#1| (-494)) ELT)) (-1606 (((-85) $ $) NIL (|has| |#1| (-494)) ELT)) (-3488 (($ $) 166 (|has| |#1| (-494)) ELT)) (-3636 (($ $) 142 (|has| |#1| (-494)) ELT)) (-1607 (($ $ (-483)) 68 (|has| |#1| (-494)) ELT)) (-3492 (($ $) 174 (|has| |#1| (-494)) ELT)) (-3635 (($ $) 150 (|has| |#1| (-494)) ELT)) (-3722 (($) NIL (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-579 (-483))) (|has| |#1| (-960))) (|has| |#1| (-1024))) CONST)) (-1215 (((-582 $) $ (-1088)) NIL (|has| |#1| (-494)) ELT) (((-582 $) $) NIL (|has| |#1| (-494)) ELT) (((-582 $) (-1083 $) (-1088)) NIL (|has| |#1| (-494)) ELT) (((-582 $) (-1083 $)) NIL (|has| |#1| (-494)) ELT) (((-582 $) (-856 $)) NIL (|has| |#1| (-494)) ELT)) (-3182 (($ $ (-1088)) NIL (|has| |#1| (-494)) ELT) (($ $) NIL (|has| |#1| (-494)) ELT) (($ (-1083 $) (-1088)) 133 (|has| |#1| (-494)) ELT) (($ (-1083 $)) NIL (|has| |#1| (-494)) ELT) (($ (-856 $)) NIL (|has| |#1| (-494)) ELT)) (-3156 (((-3 (-549 $) #1#) $) 18 T ELT) (((-3 (-1088) #1#) $) NIL T ELT) (((-3 |#1| #1#) $) 450 T ELT) (((-3 (-48) #1#) $) 333 (-12 (|has| |#1| (-494)) (|has| |#1| (-949 (-483)))) ELT) (((-3 (-483) #1#) $) NIL (|has| |#1| (-949 (-483))) ELT) (((-3 (-348 (-856 |#1|)) #1#) $) NIL (|has| |#1| (-494)) ELT) (((-3 (-856 |#1|) #1#) $) NIL (|has| |#1| (-960)) ELT) (((-3 (-348 (-483)) #1#) $) 48 (OR (-12 (|has| |#1| (-494)) (|has| |#1| (-949 (-483)))) (|has| |#1| (-949 (-348 (-483))))) ELT)) (-3155 (((-549 $) $) 12 T ELT) (((-1088) $) NIL T ELT) ((|#1| $) 429 T ELT) (((-48) $) NIL (-12 (|has| |#1| (-494)) (|has| |#1| (-949 (-483)))) ELT) (((-483) $) NIL (|has| |#1| (-949 (-483))) ELT) (((-348 (-856 |#1|)) $) NIL (|has| |#1| (-494)) ELT) (((-856 |#1|) $) NIL (|has| |#1| (-960)) ELT) (((-348 (-483)) $) 316 (OR (-12 (|has| |#1| (-494)) (|has| |#1| (-949 (-483)))) (|has| |#1| (-949 (-348 (-483))))) ELT)) (-2563 (($ $ $) NIL (|has| |#1| (-494)) ELT)) (-2278 (((-2 (|:| |mat| (-629 |#1|)) (|:| |vec| (-1177 |#1|))) (-629 $) (-1177 $)) 124 (|has| |#1| (-960)) ELT) (((-629 |#1|) (-629 $)) 114 (|has| |#1| (-960)) ELT) (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-629 $) (-1177 $)) NIL (-12 (|has| |#1| (-579 (-483))) (|has| |#1| (-960))) ELT) (((-629 (-483)) (-629 $)) NIL (-12 (|has| |#1| (-579 (-483))) (|has| |#1| (-960))) ELT)) (-3840 (($ $) 95 (|has| |#1| (-494)) ELT)) (-3465 (((-3 $ #1#) $) NIL (|has| |#1| (-1024)) ELT)) (-2562 (($ $ $) NIL (|has| |#1| (-494)) ELT)) (-3942 (($ $ (-1003 $)) 235 (|has| |#1| (-494)) ELT) (($ $ (-1088)) 233 (|has| |#1| (-494)) ELT)) (-2740 (((-2 (|:| -3952 (-582 $)) (|:| -2408 $)) (-582 $)) NIL (|has| |#1| (-494)) ELT)) (-3721 (((-85) $) NIL (|has| |#1| (-494)) ELT)) (-3384 (($ $ $) 201 (|has| |#1| (-494)) ELT)) (-3625 (($) 136 (|has| |#1| (-494)) ELT)) (-1367 (($ $ $) 221 (|has| |#1| (-494)) ELT)) (-2795 (((-797 (-483) $) $ (-799 (-483)) (-797 (-483) $)) 389 (|has| |#1| (-795 (-483))) ELT) (((-797 (-328) $) $ (-799 (-328)) (-797 (-328) $)) 396 (|has| |#1| (-795 (-328))) ELT)) (-2572 (($ $) NIL T ELT) (($ (-582 $)) NIL T ELT)) (-1212 (((-85) $ $) NIL (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-579 (-483))) (|has| |#1| (-960)))) ELT)) (-1597 (((-582 (-86)) $) NIL T ELT)) (-3593 (((-86) (-86)) 275 T ELT)) (-2409 (((-85) $) 27 (|has| |#1| (-1024)) ELT)) (-2672 (((-85) $) NIL (|has| $ (-949 (-483))) ELT)) (-2995 (($ $) 73 (|has| |#1| (-960)) ELT)) (-2997 (((-1037 |#1| (-549 $)) $) 90 (|has| |#1| (-960)) ELT)) (-1608 (((-85) $) 49 (|has| |#1| (-494)) ELT)) (-3010 (($ $ (-483)) NIL (|has| |#1| (-494)) ELT)) (-1603 (((-3 (-582 $) #1#) (-582 $) $) NIL (|has| |#1| (-494)) ELT)) (-1595 (((-1083 $) (-549 $)) 276 (|has| $ (-960)) ELT)) (-3956 (($ (-1 $ $) (-549 $)) 434 T ELT)) (-1600 (((-3 (-549 $) #1#) $) NIL T ELT)) (-3940 (($ $) 140 (|has| |#1| (-494)) ELT)) (-2256 (($ $) 246 (|has| |#1| (-494)) ELT)) (-2279 (((-2 (|:| |mat| (-629 |#1|)) (|:| |vec| (-1177 |#1|))) (-1177 $) $) NIL (|has| |#1| (-960)) ELT) (((-629 |#1|) (-1177 $)) NIL (|has| |#1| (-960)) ELT) (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL (-12 (|has| |#1| (-579 (-483))) (|has| |#1| (-960))) ELT) (((-629 (-483)) (-1177 $)) NIL (-12 (|has| |#1| (-579 (-483))) (|has| |#1| (-960))) ELT)) (-1889 (($ (-582 $)) NIL (|has| |#1| (-494)) ELT) (($ $ $) NIL (|has| |#1| (-494)) ELT)) (-3241 (((-1071) $) NIL T ELT)) (-1599 (((-582 (-549 $)) $) 51 T ELT)) (-2234 (($ (-86) $) NIL T ELT) (($ (-86) (-582 $)) 439 T ELT)) (-2822 (((-3 (-582 $) #1#) $) NIL (|has| |#1| (-1024)) ELT)) (-2824 (((-3 (-2 (|:| |val| $) (|:| -2400 (-483))) #1#) $) NIL (|has| |#1| (-960)) ELT)) (-2821 (((-3 (-582 $) #1#) $) 444 (|has| |#1| (-25)) ELT)) (-1792 (((-3 (-2 (|:| -3952 (-483)) (|:| |var| (-549 $))) #1#) $) 448 (|has| |#1| (-25)) ELT)) (-2823 (((-3 (-2 (|:| |var| (-549 $)) (|:| -2400 (-483))) #1#) $) NIL (|has| |#1| (-1024)) ELT) (((-3 (-2 (|:| |var| (-549 $)) (|:| -2400 (-483))) #1#) $ (-86)) NIL (|has| |#1| (-960)) ELT) (((-3 (-2 (|:| |var| (-549 $)) (|:| -2400 (-483))) #1#) $ (-1088)) NIL (|has| |#1| (-960)) ELT)) (-2632 (((-85) $ (-86)) NIL T ELT) (((-85) $ (-1088)) 53 T ELT)) (-2483 (($ $) NIL (OR (|has| |#1| (-411)) (|has| |#1| (-494))) ELT)) (-2831 (($ $ (-1088)) 250 (|has| |#1| (-494)) ELT) (($ $ (-1003 $)) 252 (|has| |#1| (-494)) ELT)) (-2602 (((-693) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-1795 (((-85) $) 45 T ELT)) (-1794 ((|#1| $) NIL T ELT)) (-2707 (((-1083 $) (-1083 $) (-1083 $)) 298 (|has| |#1| (-494)) ELT)) (-3143 (($ (-582 $)) NIL (|has| |#1| (-494)) ELT) (($ $ $) NIL (|has| |#1| (-494)) ELT)) (-1596 (((-85) $ $) NIL T ELT) (((-85) $ (-1088)) NIL T ELT)) (-1371 (($ $ (-1088)) 225 (|has| |#1| (-494)) ELT) (($ $) 223 (|has| |#1| (-494)) ELT)) (-1365 (($ $) 217 (|has| |#1| (-494)) ELT)) (-2705 (((-346 (-1083 $)) (-1083 $)) 303 (-12 (|has| |#1| (-390)) (|has| |#1| (-494))) ELT)) (-3730 (((-346 $) $) NIL (|has| |#1| (-494)) ELT)) (-1604 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-494)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL (|has| |#1| (-494)) ELT)) (-3464 (((-3 $ #1#) $ $) NIL (|has| |#1| (-494)) ELT)) (-2739 (((-631 (-582 $)) (-582 $) $) NIL (|has| |#1| (-494)) ELT)) (-3941 (($ $) 138 (|has| |#1| (-494)) ELT)) (-2673 (((-85) $) NIL (|has| $ (-949 (-483))) ELT)) (-3766 (($ $ (-549 $) $) NIL T ELT) (($ $ (-582 (-549 $)) (-582 $)) 433 T ELT) (($ $ (-582 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-582 $) (-582 $)) NIL T ELT) (($ $ (-582 (-1088)) (-582 (-1 $ $))) NIL T ELT) (($ $ (-582 (-1088)) (-582 (-1 $ (-582 $)))) NIL T ELT) (($ $ (-1088) (-1 $ (-582 $))) NIL T ELT) (($ $ (-1088) (-1 $ $)) NIL T ELT) (($ $ (-582 (-86)) (-582 (-1 $ $))) 376 T ELT) (($ $ (-582 (-86)) (-582 (-1 $ (-582 $)))) NIL T ELT) (($ $ (-86) (-1 $ (-582 $))) NIL T ELT) (($ $ (-86) (-1 $ $)) NIL T ELT) (($ $ (-1088)) NIL (|has| |#1| (-552 (-472))) ELT) (($ $ (-582 (-1088))) NIL (|has| |#1| (-552 (-472))) ELT) (($ $) NIL (|has| |#1| (-552 (-472))) ELT) (($ $ (-86) $ (-1088)) 363 (|has| |#1| (-552 (-472))) ELT) (($ $ (-582 (-86)) (-582 $) (-1088)) 362 (|has| |#1| (-552 (-472))) ELT) (($ $ (-582 (-1088)) (-582 (-693)) (-582 (-1 $ $))) NIL (|has| |#1| (-960)) ELT) (($ $ (-582 (-1088)) (-582 (-693)) (-582 (-1 $ (-582 $)))) NIL (|has| |#1| (-960)) ELT) (($ $ (-1088) (-693) (-1 $ (-582 $))) NIL (|has| |#1| (-960)) ELT) (($ $ (-1088) (-693) (-1 $ $)) NIL (|has| |#1| (-960)) ELT)) (-1605 (((-693) $) NIL (|has| |#1| (-494)) ELT)) (-2254 (($ $) 238 (|has| |#1| (-494)) ELT)) (-3798 (($ (-86) $) NIL T ELT) (($ (-86) $ $) NIL T ELT) (($ (-86) $ $ $) NIL T ELT) (($ (-86) $ $ $ $) NIL T ELT) (($ (-86) (-582 $)) NIL T ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL (|has| |#1| (-494)) ELT)) (-1601 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2255 (($ $) 248 (|has| |#1| (-494)) ELT)) (-3383 (($ $) 199 (|has| |#1| (-494)) ELT)) (-3756 (($ $ (-1088)) NIL (|has| |#1| (-960)) ELT) (($ $ (-582 (-1088))) NIL (|has| |#1| (-960)) ELT) (($ $ (-1088) (-693)) NIL (|has| |#1| (-960)) ELT) (($ $ (-582 (-1088)) (-582 (-693))) NIL (|has| |#1| (-960)) ELT)) (-2994 (($ $) 74 (|has| |#1| (-494)) ELT)) (-2996 (((-1037 |#1| (-549 $)) $) 92 (|has| |#1| (-494)) ELT)) (-3184 (($ $) 314 (|has| $ (-960)) ELT)) (-3493 (($ $) 176 (|has| |#1| (-494)) ELT)) (-3634 (($ $) 152 (|has| |#1| (-494)) ELT)) (-3491 (($ $) 172 (|has| |#1| (-494)) ELT)) (-3633 (($ $) 148 (|has| |#1| (-494)) ELT)) (-3489 (($ $) 168 (|has| |#1| (-494)) ELT)) (-3632 (($ $) 144 (|has| |#1| (-494)) ELT)) (-3970 (((-799 (-483)) $) NIL (|has| |#1| (-552 (-799 (-483)))) ELT) (((-799 (-328)) $) NIL (|has| |#1| (-552 (-799 (-328)))) ELT) (($ (-346 $)) NIL (|has| |#1| (-494)) ELT) (((-472) $) 360 (|has| |#1| (-552 (-472))) ELT)) (-3008 (($ $ $) NIL (|has| |#1| (-411)) ELT)) (-2434 (($ $ $) NIL (|has| |#1| (-411)) ELT)) (-3944 (((-771) $) 432 T ELT) (($ (-549 $)) 423 T ELT) (($ (-1088)) 378 T ELT) (($ |#1|) 334 T ELT) (($ $) NIL (|has| |#1| (-494)) ELT) (($ (-48)) 309 (-12 (|has| |#1| (-494)) (|has| |#1| (-949 (-483)))) ELT) (($ (-1037 |#1| (-549 $))) 94 (|has| |#1| (-960)) ELT) (($ (-348 |#1|)) NIL (|has| |#1| (-494)) ELT) (($ (-856 (-348 |#1|))) NIL (|has| |#1| (-494)) ELT) (($ (-348 (-856 (-348 |#1|)))) NIL (|has| |#1| (-494)) ELT) (($ (-348 (-856 |#1|))) NIL (|has| |#1| (-494)) ELT) (($ (-856 |#1|)) NIL (|has| |#1| (-960)) ELT) (($ (-483)) 36 (OR (|has| |#1| (-949 (-483))) (|has| |#1| (-960))) ELT) (($ (-348 (-483))) NIL (OR (|has| |#1| (-494)) (|has| |#1| (-949 (-348 (-483))))) ELT)) (-2701 (((-631 $) $) NIL (|has| |#1| (-118)) ELT)) (-3125 (((-693)) NIL (|has| |#1| (-960)) CONST)) (-2589 (($ $) NIL T ELT) (($ (-582 $)) NIL T ELT)) (-3100 (($ $ $) 219 (|has| |#1| (-494)) ELT)) (-3387 (($ $ $) 205 (|has| |#1| (-494)) ELT)) (-3389 (($ $ $) 209 (|has| |#1| (-494)) ELT)) (-3386 (($ $ $) 203 (|has| |#1| (-494)) ELT)) (-3388 (($ $ $) 207 (|has| |#1| (-494)) ELT)) (-2253 (((-85) (-86)) 10 T ELT)) (-1263 (((-85) $ $) 85 T ELT)) (-3496 (($ $) 182 (|has| |#1| (-494)) ELT)) (-3484 (($ $) 158 (|has| |#1| (-494)) ELT)) (-2061 (((-85) $ $) NIL (|has| |#1| (-494)) ELT)) (-3494 (($ $) 178 (|has| |#1| (-494)) ELT)) (-3482 (($ $) 154 (|has| |#1| (-494)) ELT)) (-3498 (($ $) 186 (|has| |#1| (-494)) ELT)) (-3486 (($ $) 162 (|has| |#1| (-494)) ELT)) (-1793 (($ (-1088) $) NIL T ELT) (($ (-1088) $ $) NIL T ELT) (($ (-1088) $ $ $) NIL T ELT) (($ (-1088) $ $ $ $) NIL T ELT) (($ (-1088) (-582 $)) NIL T ELT)) (-3124 (((-85) $ $) NIL (|has| |#1| (-960)) ELT)) (-3391 (($ $) 213 (|has| |#1| (-494)) ELT)) (-3390 (($ $) 211 (|has| |#1| (-494)) ELT)) (-3499 (($ $) 188 (|has| |#1| (-494)) ELT)) (-3487 (($ $) 164 (|has| |#1| (-494)) ELT)) (-3497 (($ $) 184 (|has| |#1| (-494)) ELT)) (-3485 (($ $) 160 (|has| |#1| (-494)) ELT)) (-3495 (($ $) 180 (|has| |#1| (-494)) ELT)) (-3483 (($ $) 156 (|has| |#1| (-494)) ELT)) (-3381 (($ $) 191 (|has| |#1| (-494)) ELT)) (-2659 (($) 23 (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-579 (-483))) (|has| |#1| (-960)))) CONST)) (-2258 (($ $) 242 (|has| |#1| (-494)) ELT)) (-2665 (($) 25 (|has| |#1| (-1024)) CONST)) (-3385 (($ $) 193 (|has| |#1| (-494)) ELT) (($ $ $) 195 (|has| |#1| (-494)) ELT)) (-2259 (($ $) 240 (|has| |#1| (-494)) ELT)) (-2668 (($ $ (-1088)) NIL (|has| |#1| (-960)) ELT) (($ $ (-582 (-1088))) NIL (|has| |#1| (-960)) ELT) (($ $ (-1088) (-693)) NIL (|has| |#1| (-960)) ELT) (($ $ (-582 (-1088)) (-582 (-693))) NIL (|has| |#1| (-960)) ELT)) (-2257 (($ $) 244 (|has| |#1| (-494)) ELT)) (-3382 (($ $ $) 197 (|has| |#1| (-494)) ELT)) (-3055 (((-85) $ $) 87 T ELT)) (-3947 (($ (-1037 |#1| (-549 $)) (-1037 |#1| (-549 $))) 105 (|has| |#1| (-494)) ELT) (($ $ $) 44 (OR (|has| |#1| (-411)) (|has| |#1| (-494))) ELT)) (-3835 (($ $ $) 42 (OR (|has| |#1| (-21)) (-12 (|has| |#1| (-579 (-483))) (|has| |#1| (-960)))) ELT) (($ $) 31 (OR (|has| |#1| (-21)) (-12 (|has| |#1| (-579 (-483))) (|has| |#1| (-960)))) ELT)) (-3837 (($ $ $) 40 (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-579 (-483))) (|has| |#1| (-960)))) ELT)) (** (($ $ $) 65 (|has| |#1| (-494)) ELT) (($ $ (-348 (-483))) 311 (|has| |#1| (-494)) ELT) (($ $ (-483)) 79 (OR (|has| |#1| (-411)) (|has| |#1| (-494))) ELT) (($ $ (-693)) 75 (|has| |#1| (-1024)) ELT) (($ $ (-829)) 83 (|has| |#1| (-1024)) ELT)) (* (($ (-348 (-483)) $) NIL (|has| |#1| (-494)) ELT) (($ $ (-348 (-483))) NIL (|has| |#1| (-494)) ELT) (($ $ |#1|) NIL (|has| |#1| (-146)) ELT) (($ |#1| $) NIL (|has| |#1| (-960)) ELT) (($ $ $) 38 (|has| |#1| (-1024)) ELT) (($ (-483) $) 34 (OR (|has| |#1| (-21)) (-12 (|has| |#1| (-579 (-483))) (|has| |#1| (-960)))) ELT) (($ (-693) $) NIL (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-579 (-483))) (|has| |#1| (-960)))) ELT) (($ (-829) $) NIL (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-579 (-483))) (|has| |#1| (-960)))) ELT))) -(((-265 |#1|) (-13 (-362 |#1|) (-10 -8 (IF (|has| |#1| (-494)) (PROGN (-6 (-29 |#1|)) (-6 (-1113)) (-6 (-133)) (-6 (-568)) (-6 (-1051)) (-15 -3840 ($ $)) (-15 -1608 ((-85) $)) (-15 -1607 ($ $ (-483))) (IF (|has| |#1| (-390)) (PROGN (-15 -2705 ((-346 (-1083 $)) (-1083 $))) (-15 -2706 ((-346 (-1083 $)) (-1083 $)))) |%noBranch|) (IF (|has| |#1| (-949 (-483))) (-6 (-949 (-48))) |%noBranch|)) |%noBranch|))) (-1012)) (T -265)) -((-3840 (*1 *1 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-494)) (-4 *2 (-1012)))) (-1608 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-265 *3)) (-4 *3 (-494)) (-4 *3 (-1012)))) (-1607 (*1 *1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-265 *3)) (-4 *3 (-494)) (-4 *3 (-1012)))) (-2705 (*1 *2 *3) (-12 (-5 *2 (-346 (-1083 *1))) (-5 *1 (-265 *4)) (-5 *3 (-1083 *1)) (-4 *4 (-390)) (-4 *4 (-494)) (-4 *4 (-1012)))) (-2706 (*1 *2 *3) (-12 (-5 *2 (-346 (-1083 *1))) (-5 *1 (-265 *4)) (-5 *3 (-1083 *1)) (-4 *4 (-390)) (-4 *4 (-494)) (-4 *4 (-1012))))) -((-3956 (((-265 |#2|) (-1 |#2| |#1|) (-265 |#1|)) 13 T ELT))) -(((-266 |#1| |#2|) (-10 -7 (-15 -3956 ((-265 |#2|) (-1 |#2| |#1|) (-265 |#1|)))) (-1012) (-1012)) (T -266)) -((-3956 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-265 *5)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-5 *2 (-265 *6)) (-5 *1 (-266 *5 *6))))) -((-3727 (((-51) |#2| (-249 |#2|) (-693)) 40 T ELT) (((-51) |#2| (-249 |#2|)) 32 T ELT) (((-51) |#2| (-693)) 35 T ELT) (((-51) |#2|) 33 T ELT) (((-51) (-1088)) 26 T ELT)) (-3816 (((-51) |#2| (-249 |#2|) (-348 (-483))) 59 T ELT) (((-51) |#2| (-249 |#2|)) 56 T ELT) (((-51) |#2| (-348 (-483))) 58 T ELT) (((-51) |#2|) 57 T ELT) (((-51) (-1088)) 55 T ELT)) (-3780 (((-51) |#2| (-249 |#2|) (-348 (-483))) 54 T ELT) (((-51) |#2| (-249 |#2|)) 51 T ELT) (((-51) |#2| (-348 (-483))) 53 T ELT) (((-51) |#2|) 52 T ELT) (((-51) (-1088)) 50 T ELT)) (-3777 (((-51) |#2| (-249 |#2|) (-483)) 47 T ELT) (((-51) |#2| (-249 |#2|)) 44 T ELT) (((-51) |#2| (-483)) 46 T ELT) (((-51) |#2|) 45 T ELT) (((-51) (-1088)) 43 T ELT))) -(((-267 |#1| |#2|) (-10 -7 (-15 -3727 ((-51) (-1088))) (-15 -3727 ((-51) |#2|)) (-15 -3727 ((-51) |#2| (-693))) (-15 -3727 ((-51) |#2| (-249 |#2|))) (-15 -3727 ((-51) |#2| (-249 |#2|) (-693))) (-15 -3777 ((-51) (-1088))) (-15 -3777 ((-51) |#2|)) (-15 -3777 ((-51) |#2| (-483))) (-15 -3777 ((-51) |#2| (-249 |#2|))) (-15 -3777 ((-51) |#2| (-249 |#2|) (-483))) (-15 -3780 ((-51) (-1088))) (-15 -3780 ((-51) |#2|)) (-15 -3780 ((-51) |#2| (-348 (-483)))) (-15 -3780 ((-51) |#2| (-249 |#2|))) (-15 -3780 ((-51) |#2| (-249 |#2|) (-348 (-483)))) (-15 -3816 ((-51) (-1088))) (-15 -3816 ((-51) |#2|)) (-15 -3816 ((-51) |#2| (-348 (-483)))) (-15 -3816 ((-51) |#2| (-249 |#2|))) (-15 -3816 ((-51) |#2| (-249 |#2|) (-348 (-483))))) (-13 (-390) (-949 (-483)) (-579 (-483))) (-13 (-27) (-1113) (-362 |#1|))) (T -267)) -((-3816 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-249 *3)) (-5 *5 (-348 (-483))) (-4 *3 (-13 (-27) (-1113) (-362 *6))) (-4 *6 (-13 (-390) (-949 (-483)) (-579 (-483)))) (-5 *2 (-51)) (-5 *1 (-267 *6 *3)))) (-3816 (*1 *2 *3 *4) (-12 (-5 *4 (-249 *3)) (-4 *3 (-13 (-27) (-1113) (-362 *5))) (-4 *5 (-13 (-390) (-949 (-483)) (-579 (-483)))) (-5 *2 (-51)) (-5 *1 (-267 *5 *3)))) (-3816 (*1 *2 *3 *4) (-12 (-5 *4 (-348 (-483))) (-4 *5 (-13 (-390) (-949 (-483)) (-579 (-483)))) (-5 *2 (-51)) (-5 *1 (-267 *5 *3)) (-4 *3 (-13 (-27) (-1113) (-362 *5))))) (-3816 (*1 *2 *3) (-12 (-4 *4 (-13 (-390) (-949 (-483)) (-579 (-483)))) (-5 *2 (-51)) (-5 *1 (-267 *4 *3)) (-4 *3 (-13 (-27) (-1113) (-362 *4))))) (-3816 (*1 *2 *3) (-12 (-5 *3 (-1088)) (-4 *4 (-13 (-390) (-949 (-483)) (-579 (-483)))) (-5 *2 (-51)) (-5 *1 (-267 *4 *5)) (-4 *5 (-13 (-27) (-1113) (-362 *4))))) (-3780 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-249 *3)) (-5 *5 (-348 (-483))) (-4 *3 (-13 (-27) (-1113) (-362 *6))) (-4 *6 (-13 (-390) (-949 (-483)) (-579 (-483)))) (-5 *2 (-51)) (-5 *1 (-267 *6 *3)))) (-3780 (*1 *2 *3 *4) (-12 (-5 *4 (-249 *3)) (-4 *3 (-13 (-27) (-1113) (-362 *5))) (-4 *5 (-13 (-390) (-949 (-483)) (-579 (-483)))) (-5 *2 (-51)) (-5 *1 (-267 *5 *3)))) (-3780 (*1 *2 *3 *4) (-12 (-5 *4 (-348 (-483))) (-4 *5 (-13 (-390) (-949 (-483)) (-579 (-483)))) (-5 *2 (-51)) (-5 *1 (-267 *5 *3)) (-4 *3 (-13 (-27) (-1113) (-362 *5))))) (-3780 (*1 *2 *3) (-12 (-4 *4 (-13 (-390) (-949 (-483)) (-579 (-483)))) (-5 *2 (-51)) (-5 *1 (-267 *4 *3)) (-4 *3 (-13 (-27) (-1113) (-362 *4))))) (-3780 (*1 *2 *3) (-12 (-5 *3 (-1088)) (-4 *4 (-13 (-390) (-949 (-483)) (-579 (-483)))) (-5 *2 (-51)) (-5 *1 (-267 *4 *5)) (-4 *5 (-13 (-27) (-1113) (-362 *4))))) (-3777 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-249 *3)) (-4 *3 (-13 (-27) (-1113) (-362 *6))) (-4 *6 (-13 (-390) (-949 *5) (-579 *5))) (-5 *5 (-483)) (-5 *2 (-51)) (-5 *1 (-267 *6 *3)))) (-3777 (*1 *2 *3 *4) (-12 (-5 *4 (-249 *3)) (-4 *3 (-13 (-27) (-1113) (-362 *5))) (-4 *5 (-13 (-390) (-949 (-483)) (-579 (-483)))) (-5 *2 (-51)) (-5 *1 (-267 *5 *3)))) (-3777 (*1 *2 *3 *4) (-12 (-5 *4 (-483)) (-4 *5 (-13 (-390) (-949 *4) (-579 *4))) (-5 *2 (-51)) (-5 *1 (-267 *5 *3)) (-4 *3 (-13 (-27) (-1113) (-362 *5))))) (-3777 (*1 *2 *3) (-12 (-4 *4 (-13 (-390) (-949 (-483)) (-579 (-483)))) (-5 *2 (-51)) (-5 *1 (-267 *4 *3)) (-4 *3 (-13 (-27) (-1113) (-362 *4))))) (-3777 (*1 *2 *3) (-12 (-5 *3 (-1088)) (-4 *4 (-13 (-390) (-949 (-483)) (-579 (-483)))) (-5 *2 (-51)) (-5 *1 (-267 *4 *5)) (-4 *5 (-13 (-27) (-1113) (-362 *4))))) (-3727 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-249 *3)) (-5 *5 (-693)) (-4 *3 (-13 (-27) (-1113) (-362 *6))) (-4 *6 (-13 (-390) (-949 (-483)) (-579 (-483)))) (-5 *2 (-51)) (-5 *1 (-267 *6 *3)))) (-3727 (*1 *2 *3 *4) (-12 (-5 *4 (-249 *3)) (-4 *3 (-13 (-27) (-1113) (-362 *5))) (-4 *5 (-13 (-390) (-949 (-483)) (-579 (-483)))) (-5 *2 (-51)) (-5 *1 (-267 *5 *3)))) (-3727 (*1 *2 *3 *4) (-12 (-5 *4 (-693)) (-4 *5 (-13 (-390) (-949 (-483)) (-579 (-483)))) (-5 *2 (-51)) (-5 *1 (-267 *5 *3)) (-4 *3 (-13 (-27) (-1113) (-362 *5))))) (-3727 (*1 *2 *3) (-12 (-4 *4 (-13 (-390) (-949 (-483)) (-579 (-483)))) (-5 *2 (-51)) (-5 *1 (-267 *4 *3)) (-4 *3 (-13 (-27) (-1113) (-362 *4))))) (-3727 (*1 *2 *3) (-12 (-5 *3 (-1088)) (-4 *4 (-13 (-390) (-949 (-483)) (-579 (-483)))) (-5 *2 (-51)) (-5 *1 (-267 *4 *5)) (-4 *5 (-13 (-27) (-1113) (-362 *4)))))) -((-1609 (((-51) |#2| (-86) (-249 |#2|) (-582 |#2|)) 89 T ELT) (((-51) |#2| (-86) (-249 |#2|) (-249 |#2|)) 85 T ELT) (((-51) |#2| (-86) (-249 |#2|) |#2|) 87 T ELT) (((-51) (-249 |#2|) (-86) (-249 |#2|) |#2|) 88 T ELT) (((-51) (-582 |#2|) (-582 (-86)) (-249 |#2|) (-582 (-249 |#2|))) 81 T ELT) (((-51) (-582 |#2|) (-582 (-86)) (-249 |#2|) (-582 |#2|)) 83 T ELT) (((-51) (-582 (-249 |#2|)) (-582 (-86)) (-249 |#2|) (-582 |#2|)) 84 T ELT) (((-51) (-582 (-249 |#2|)) (-582 (-86)) (-249 |#2|) (-582 (-249 |#2|))) 82 T ELT) (((-51) (-249 |#2|) (-86) (-249 |#2|) (-582 |#2|)) 90 T ELT) (((-51) (-249 |#2|) (-86) (-249 |#2|) (-249 |#2|)) 86 T ELT))) -(((-268 |#1| |#2|) (-10 -7 (-15 -1609 ((-51) (-249 |#2|) (-86) (-249 |#2|) (-249 |#2|))) (-15 -1609 ((-51) (-249 |#2|) (-86) (-249 |#2|) (-582 |#2|))) (-15 -1609 ((-51) (-582 (-249 |#2|)) (-582 (-86)) (-249 |#2|) (-582 (-249 |#2|)))) (-15 -1609 ((-51) (-582 (-249 |#2|)) (-582 (-86)) (-249 |#2|) (-582 |#2|))) (-15 -1609 ((-51) (-582 |#2|) (-582 (-86)) (-249 |#2|) (-582 |#2|))) (-15 -1609 ((-51) (-582 |#2|) (-582 (-86)) (-249 |#2|) (-582 (-249 |#2|)))) (-15 -1609 ((-51) (-249 |#2|) (-86) (-249 |#2|) |#2|)) (-15 -1609 ((-51) |#2| (-86) (-249 |#2|) |#2|)) (-15 -1609 ((-51) |#2| (-86) (-249 |#2|) (-249 |#2|))) (-15 -1609 ((-51) |#2| (-86) (-249 |#2|) (-582 |#2|)))) (-13 (-494) (-552 (-472))) (-362 |#1|)) (T -268)) -((-1609 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-86)) (-5 *5 (-249 *3)) (-5 *6 (-582 *3)) (-4 *3 (-362 *7)) (-4 *7 (-13 (-494) (-552 (-472)))) (-5 *2 (-51)) (-5 *1 (-268 *7 *3)))) (-1609 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-86)) (-5 *5 (-249 *3)) (-4 *3 (-362 *6)) (-4 *6 (-13 (-494) (-552 (-472)))) (-5 *2 (-51)) (-5 *1 (-268 *6 *3)))) (-1609 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-86)) (-5 *5 (-249 *3)) (-4 *3 (-362 *6)) (-4 *6 (-13 (-494) (-552 (-472)))) (-5 *2 (-51)) (-5 *1 (-268 *6 *3)))) (-1609 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-249 *5)) (-5 *4 (-86)) (-4 *5 (-362 *6)) (-4 *6 (-13 (-494) (-552 (-472)))) (-5 *2 (-51)) (-5 *1 (-268 *6 *5)))) (-1609 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-582 *8)) (-5 *4 (-582 (-86))) (-5 *6 (-582 (-249 *8))) (-4 *8 (-362 *7)) (-5 *5 (-249 *8)) (-4 *7 (-13 (-494) (-552 (-472)))) (-5 *2 (-51)) (-5 *1 (-268 *7 *8)))) (-1609 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-582 *7)) (-5 *4 (-582 (-86))) (-5 *5 (-249 *7)) (-4 *7 (-362 *6)) (-4 *6 (-13 (-494) (-552 (-472)))) (-5 *2 (-51)) (-5 *1 (-268 *6 *7)))) (-1609 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-582 (-249 *8))) (-5 *4 (-582 (-86))) (-5 *5 (-249 *8)) (-5 *6 (-582 *8)) (-4 *8 (-362 *7)) (-4 *7 (-13 (-494) (-552 (-472)))) (-5 *2 (-51)) (-5 *1 (-268 *7 *8)))) (-1609 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-582 (-249 *7))) (-5 *4 (-582 (-86))) (-5 *5 (-249 *7)) (-4 *7 (-362 *6)) (-4 *6 (-13 (-494) (-552 (-472)))) (-5 *2 (-51)) (-5 *1 (-268 *6 *7)))) (-1609 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-249 *7)) (-5 *4 (-86)) (-5 *5 (-582 *7)) (-4 *7 (-362 *6)) (-4 *6 (-13 (-494) (-552 (-472)))) (-5 *2 (-51)) (-5 *1 (-268 *6 *7)))) (-1609 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-249 *6)) (-5 *4 (-86)) (-4 *6 (-362 *5)) (-4 *5 (-13 (-494) (-552 (-472)))) (-5 *2 (-51)) (-5 *1 (-268 *5 *6))))) -((-1611 (((-1123 (-837)) (-265 (-483)) (-265 (-483)) (-265 (-483)) (-1 (-179) (-179)) (-1000 (-179)) (-179) (-483) (-1071)) 67 T ELT) (((-1123 (-837)) (-265 (-483)) (-265 (-483)) (-265 (-483)) (-1 (-179) (-179)) (-1000 (-179)) (-179) (-483)) 68 T ELT) (((-1123 (-837)) (-265 (-483)) (-265 (-483)) (-265 (-483)) (-1 (-179) (-179)) (-1000 (-179)) (-1 (-179) (-179)) (-483) (-1071)) 64 T ELT) (((-1123 (-837)) (-265 (-483)) (-265 (-483)) (-265 (-483)) (-1 (-179) (-179)) (-1000 (-179)) (-1 (-179) (-179)) (-483)) 65 T ELT)) (-1610 (((-1 (-179) (-179)) (-179)) 66 T ELT))) -(((-269) (-10 -7 (-15 -1610 ((-1 (-179) (-179)) (-179))) (-15 -1611 ((-1123 (-837)) (-265 (-483)) (-265 (-483)) (-265 (-483)) (-1 (-179) (-179)) (-1000 (-179)) (-1 (-179) (-179)) (-483))) (-15 -1611 ((-1123 (-837)) (-265 (-483)) (-265 (-483)) (-265 (-483)) (-1 (-179) (-179)) (-1000 (-179)) (-1 (-179) (-179)) (-483) (-1071))) (-15 -1611 ((-1123 (-837)) (-265 (-483)) (-265 (-483)) (-265 (-483)) (-1 (-179) (-179)) (-1000 (-179)) (-179) (-483))) (-15 -1611 ((-1123 (-837)) (-265 (-483)) (-265 (-483)) (-265 (-483)) (-1 (-179) (-179)) (-1000 (-179)) (-179) (-483) (-1071))))) (T -269)) -((-1611 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-265 (-483))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1000 (-179))) (-5 *6 (-179)) (-5 *7 (-483)) (-5 *8 (-1071)) (-5 *2 (-1123 (-837))) (-5 *1 (-269)))) (-1611 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-265 (-483))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1000 (-179))) (-5 *6 (-179)) (-5 *7 (-483)) (-5 *2 (-1123 (-837))) (-5 *1 (-269)))) (-1611 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-265 (-483))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1000 (-179))) (-5 *6 (-483)) (-5 *7 (-1071)) (-5 *2 (-1123 (-837))) (-5 *1 (-269)))) (-1611 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-265 (-483))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1000 (-179))) (-5 *6 (-483)) (-5 *2 (-1123 (-837))) (-5 *1 (-269)))) (-1610 (*1 *2 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *1 (-269)) (-5 *3 (-179))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3187 (((-85) $) 26 T ELT)) (-3080 (((-582 (-993)) $) NIL T ELT)) (-3829 (((-1088) $) NIL T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3980 $) (|:| |associate| $)) $) NIL (|has| |#1| (-494)) ELT)) (-2062 (($ $) NIL (|has| |#1| (-494)) ELT)) (-2060 (((-85) $) NIL (|has| |#1| (-494)) ELT)) (-3769 (($ $ (-348 (-483))) NIL T ELT) (($ $ (-348 (-483)) (-348 (-483))) NIL T ELT)) (-3772 (((-1067 (-2 (|:| |k| (-348 (-483))) (|:| |c| |#1|))) $) 20 T ELT)) (-3490 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3637 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3773 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3969 (((-346 $) $) NIL (|has| |#1| (-312)) ELT)) (-3036 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-1606 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3488 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3636 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3816 (($ (-693) (-1067 (-2 (|:| |k| (-348 (-483))) (|:| |c| |#1|)))) NIL T ELT)) (-3492 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3635 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3722 (($) NIL T CONST)) (-2563 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3957 (($ $) 36 T ELT)) (-3465 (((-3 $ #1#) $) NIL T ELT)) (-2562 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2740 (((-2 (|:| -3952 (-582 $)) (|:| -2408 $)) (-582 $)) NIL (|has| |#1| (-312)) ELT)) (-3721 (((-85) $) NIL (|has| |#1| (-312)) ELT)) (-3185 (((-85) $) NIL T ELT)) (-2891 (((-85) $) NIL T ELT)) (-3625 (($) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3770 (((-348 (-483)) $) NIL T ELT) (((-348 (-483)) $ (-348 (-483))) 16 T ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-2409 (((-85) $) NIL T ELT)) (-3010 (($ $ (-483)) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3775 (($ $ (-829)) NIL T ELT) (($ $ (-348 (-483))) NIL T ELT)) (-1603 (((-3 (-582 $) #1#) (-582 $) $) NIL (|has| |#1| (-312)) ELT)) (-3935 (((-85) $) NIL T ELT)) (-2892 (($ |#1| (-348 (-483))) NIL T ELT) (($ $ (-993) (-348 (-483))) NIL T ELT) (($ $ (-582 (-993)) (-582 (-348 (-483)))) NIL T ELT)) (-2530 (($ $ $) NIL T ELT)) (-2856 (($ $ $) NIL T ELT)) (-3956 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3940 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-2893 (($ $) NIL T ELT)) (-3173 ((|#1| $) NIL T ELT)) (-1889 (($ (-582 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3241 (((-1071) $) NIL T ELT)) (-2483 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3810 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT) (($ $ (-1088)) NIL (OR (-12 (|has| |#1| (-38 (-348 (-483)))) (|has| |#1| (-29 (-483))) (|has| |#1| (-870)) (|has| |#1| (-1113))) (-12 (|has| |#1| (-38 (-348 (-483)))) (|has| |#1| (-15 -3810 (|#1| |#1| (-1088)))) (|has| |#1| (-15 -3080 ((-582 (-1088)) |#1|))))) ELT)) (-3242 (((-1032) $) NIL T ELT)) (-2707 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#1| (-312)) ELT)) (-3143 (($ (-582 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3730 (((-346 $) $) NIL (|has| |#1| (-312)) ELT)) (-1604 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3767 (($ $ (-348 (-483))) NIL T ELT)) (-3464 (((-3 $ #1#) $ $) NIL (|has| |#1| (-494)) ELT)) (-2739 (((-631 (-582 $)) (-582 $) $) NIL (|has| |#1| (-312)) ELT)) (-1612 (((-348 (-483)) $) 17 T ELT)) (-3089 (($ (-1158 |#1| |#2| |#3|)) 11 T ELT)) (-2400 (((-1158 |#1| |#2| |#3|) $) 12 T ELT)) (-3941 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3766 (((-1067 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-348 (-483))))) ELT)) (-1605 (((-693) $) NIL (|has| |#1| (-312)) ELT)) (-3798 ((|#1| $ (-348 (-483))) NIL T ELT) (($ $ $) NIL (|has| (-348 (-483)) (-1024)) ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3756 (($ $ (-1088)) NIL (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-348 (-483)) |#1|)))) ELT) (($ $ (-582 (-1088))) NIL (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-348 (-483)) |#1|)))) ELT) (($ $ (-1088) (-693)) NIL (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-348 (-483)) |#1|)))) ELT) (($ $ (-582 (-1088)) (-582 (-693))) NIL (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-348 (-483)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-348 (-483)) |#1|))) ELT) (($ $ (-693)) NIL (|has| |#1| (-15 * (|#1| (-348 (-483)) |#1|))) ELT)) (-3946 (((-348 (-483)) $) NIL T ELT)) (-3493 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3634 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3491 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3633 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3489 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3632 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-2890 (($ $) 10 T ELT)) (-3944 (((-771) $) 42 T ELT) (($ (-483)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT) (($ (-348 (-483))) NIL (|has| |#1| (-38 (-348 (-483)))) ELT) (($ $) NIL (|has| |#1| (-494)) ELT)) (-3675 ((|#1| $ (-348 (-483))) 34 T ELT)) (-2701 (((-631 $) $) NIL (|has| |#1| (-118)) ELT)) (-3125 (((-693)) NIL T CONST)) (-3771 ((|#1| $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3496 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3484 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-2061 (((-85) $ $) NIL (|has| |#1| (-494)) ELT)) (-3494 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3482 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3498 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3486 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3768 ((|#1| $ (-348 (-483))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-348 (-483))))) (|has| |#1| (-15 -3944 (|#1| (-1088))))) ELT)) (-3124 (((-85) $ $) NIL T ELT)) (-3499 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3487 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3497 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3485 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3495 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3483 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-2659 (($) NIL T CONST)) (-2665 (($) NIL T CONST)) (-2668 (($ $ (-1088)) NIL (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-348 (-483)) |#1|)))) ELT) (($ $ (-582 (-1088))) NIL (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-348 (-483)) |#1|)))) ELT) (($ $ (-1088) (-693)) NIL (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-348 (-483)) |#1|)))) ELT) (($ $ (-582 (-1088)) (-582 (-693))) NIL (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-348 (-483)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-348 (-483)) |#1|))) ELT) (($ $ (-693)) NIL (|has| |#1| (-15 * (|#1| (-348 (-483)) |#1|))) ELT)) (-2565 (((-85) $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) 28 T ELT)) (-2683 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) 37 T ELT)) (-3947 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3835 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3837 (($ $ $) NIL T ELT)) (** (($ $ (-829)) NIL T ELT) (($ $ (-693)) NIL T ELT) (($ $ (-483)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT) (($ $ (-348 (-483))) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-348 (-483)) $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT) (($ $ (-348 (-483))) NIL (|has| |#1| (-38 (-348 (-483)))) ELT))) -(((-270 |#1| |#2| |#3|) (-13 (-1160 |#1|) (-715) (-10 -8 (-15 -3089 ($ (-1158 |#1| |#2| |#3|))) (-15 -2400 ((-1158 |#1| |#2| |#3|) $)) (-15 -1612 ((-348 (-483)) $)))) (-312) (-1088) |#1|) (T -270)) -((-3089 (*1 *1 *2) (-12 (-5 *2 (-1158 *3 *4 *5)) (-4 *3 (-312)) (-14 *4 (-1088)) (-14 *5 *3) (-5 *1 (-270 *3 *4 *5)))) (-2400 (*1 *2 *1) (-12 (-5 *2 (-1158 *3 *4 *5)) (-5 *1 (-270 *3 *4 *5)) (-4 *3 (-312)) (-14 *4 (-1088)) (-14 *5 *3))) (-1612 (*1 *2 *1) (-12 (-5 *2 (-348 (-483))) (-5 *1 (-270 *3 *4 *5)) (-4 *3 (-312)) (-14 *4 (-1088)) (-14 *5 *3)))) -((-3010 (((-2 (|:| -2400 (-693)) (|:| -3952 |#1|) (|:| |radicand| (-582 |#1|))) (-346 |#1|) (-693)) 35 T ELT)) (-3940 (((-582 (-2 (|:| -3952 (-693)) (|:| |logand| |#1|))) (-346 |#1|)) 40 T ELT))) -(((-271 |#1|) (-10 -7 (-15 -3010 ((-2 (|:| -2400 (-693)) (|:| -3952 |#1|) (|:| |radicand| (-582 |#1|))) (-346 |#1|) (-693))) (-15 -3940 ((-582 (-2 (|:| -3952 (-693)) (|:| |logand| |#1|))) (-346 |#1|)))) (-494)) (T -271)) -((-3940 (*1 *2 *3) (-12 (-5 *3 (-346 *4)) (-4 *4 (-494)) (-5 *2 (-582 (-2 (|:| -3952 (-693)) (|:| |logand| *4)))) (-5 *1 (-271 *4)))) (-3010 (*1 *2 *3 *4) (-12 (-5 *3 (-346 *5)) (-4 *5 (-494)) (-5 *2 (-2 (|:| -2400 (-693)) (|:| -3952 *5) (|:| |radicand| (-582 *5)))) (-5 *1 (-271 *5)) (-5 *4 (-693))))) -((-3080 (((-582 |#2|) (-1083 |#4|)) 45 T ELT)) (-1617 ((|#3| (-483)) 48 T ELT)) (-1615 (((-1083 |#4|) (-1083 |#3|)) 30 T ELT)) (-1616 (((-1083 |#4|) (-1083 |#4|) (-483)) 67 T ELT)) (-1614 (((-1083 |#3|) (-1083 |#4|)) 21 T ELT)) (-3946 (((-582 (-693)) (-1083 |#4|) (-582 |#2|)) 41 T ELT)) (-1613 (((-1083 |#3|) (-1083 |#4|) (-582 |#2|) (-582 |#3|)) 35 T ELT))) -(((-272 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1613 ((-1083 |#3|) (-1083 |#4|) (-582 |#2|) (-582 |#3|))) (-15 -3946 ((-582 (-693)) (-1083 |#4|) (-582 |#2|))) (-15 -3080 ((-582 |#2|) (-1083 |#4|))) (-15 -1614 ((-1083 |#3|) (-1083 |#4|))) (-15 -1615 ((-1083 |#4|) (-1083 |#3|))) (-15 -1616 ((-1083 |#4|) (-1083 |#4|) (-483))) (-15 -1617 (|#3| (-483)))) (-716) (-755) (-960) (-860 |#3| |#1| |#2|)) (T -272)) -((-1617 (*1 *2 *3) (-12 (-5 *3 (-483)) (-4 *4 (-716)) (-4 *5 (-755)) (-4 *2 (-960)) (-5 *1 (-272 *4 *5 *2 *6)) (-4 *6 (-860 *2 *4 *5)))) (-1616 (*1 *2 *2 *3) (-12 (-5 *2 (-1083 *7)) (-5 *3 (-483)) (-4 *7 (-860 *6 *4 *5)) (-4 *4 (-716)) (-4 *5 (-755)) (-4 *6 (-960)) (-5 *1 (-272 *4 *5 *6 *7)))) (-1615 (*1 *2 *3) (-12 (-5 *3 (-1083 *6)) (-4 *6 (-960)) (-4 *4 (-716)) (-4 *5 (-755)) (-5 *2 (-1083 *7)) (-5 *1 (-272 *4 *5 *6 *7)) (-4 *7 (-860 *6 *4 *5)))) (-1614 (*1 *2 *3) (-12 (-5 *3 (-1083 *7)) (-4 *7 (-860 *6 *4 *5)) (-4 *4 (-716)) (-4 *5 (-755)) (-4 *6 (-960)) (-5 *2 (-1083 *6)) (-5 *1 (-272 *4 *5 *6 *7)))) (-3080 (*1 *2 *3) (-12 (-5 *3 (-1083 *7)) (-4 *7 (-860 *6 *4 *5)) (-4 *4 (-716)) (-4 *5 (-755)) (-4 *6 (-960)) (-5 *2 (-582 *5)) (-5 *1 (-272 *4 *5 *6 *7)))) (-3946 (*1 *2 *3 *4) (-12 (-5 *3 (-1083 *8)) (-5 *4 (-582 *6)) (-4 *6 (-755)) (-4 *8 (-860 *7 *5 *6)) (-4 *5 (-716)) (-4 *7 (-960)) (-5 *2 (-582 (-693))) (-5 *1 (-272 *5 *6 *7 *8)))) (-1613 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1083 *9)) (-5 *4 (-582 *7)) (-5 *5 (-582 *8)) (-4 *7 (-755)) (-4 *8 (-960)) (-4 *9 (-860 *8 *6 *7)) (-4 *6 (-716)) (-5 *2 (-1083 *8)) (-5 *1 (-272 *6 *7 *8 *9))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3187 (((-85) $) 19 T ELT)) (-3772 (((-582 (-2 (|:| |gen| |#1|) (|:| -3941 (-483)))) $) 21 T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3135 (((-693) $) NIL T ELT)) (-3722 (($) NIL T CONST)) (-3156 (((-3 |#1| #1#) $) NIL T ELT)) (-3155 ((|#1| $) NIL T ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-2298 ((|#1| $ (-483)) NIL T ELT)) (-1620 (((-483) $ (-483)) NIL T ELT)) (-2530 (($ $ $) NIL (|has| |#1| (-755)) ELT)) (-2856 (($ $ $) NIL (|has| |#1| (-755)) ELT)) (-2289 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1619 (($ (-1 (-483) (-483)) $) 11 T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-1618 (($ $ $) NIL (|has| (-483) (-715)) ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3944 (((-771) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-3675 (((-483) |#1| $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2659 (($) NIL T CONST)) (-2565 (((-85) $ $) NIL (|has| |#1| (-755)) ELT)) (-2566 (((-85) $ $) NIL (|has| |#1| (-755)) ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-2683 (((-85) $ $) NIL (|has| |#1| (-755)) ELT)) (-2684 (((-85) $ $) 30 (|has| |#1| (-755)) ELT)) (-3835 (($ $) 12 T ELT) (($ $ $) 29 T ELT)) (-3837 (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ (-483)) NIL T ELT) (($ (-483) |#1|) 28 T ELT))) -(((-273 |#1|) (-13 (-21) (-653 (-483)) (-274 |#1| (-483)) (-10 -7 (IF (|has| |#1| (-755)) (-6 (-755)) |%noBranch|))) (-1012)) (T -273)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-3187 (((-85) $) 22 T ELT)) (-3772 (((-582 (-2 (|:| |gen| |#1|) (|:| -3941 |#2|))) $) 34 T ELT)) (-1310 (((-3 $ "failed") $ $) 26 T ELT)) (-3135 (((-693) $) 35 T ELT)) (-3722 (($) 23 T CONST)) (-3156 (((-3 |#1| "failed") $) 39 T ELT)) (-3155 ((|#1| $) 40 T ELT)) (-1212 (((-85) $ $) 20 T ELT)) (-2298 ((|#1| $ (-483)) 32 T ELT)) (-1620 ((|#2| $ (-483)) 33 T ELT)) (-2289 (($ (-1 |#1| |#1|) $) 29 T ELT)) (-1619 (($ (-1 |#2| |#2|) $) 30 T ELT)) (-3241 (((-1071) $) 11 T ELT)) (-1618 (($ $ $) 28 (|has| |#2| (-715)) ELT)) (-3242 (((-1032) $) 12 T ELT)) (-3944 (((-771) $) 13 T ELT) (($ |#1|) 38 T ELT)) (-3675 ((|#2| |#1| $) 31 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2659 (($) 24 T CONST)) (-3055 (((-85) $ $) 8 T ELT)) (-3837 (($ $ $) 18 T ELT) (($ |#1| $) 37 T ELT)) (* (($ (-829) $) 17 T ELT) (($ (-693) $) 21 T ELT) (($ |#2| |#1|) 36 T ELT))) -(((-274 |#1| |#2|) (-113) (-1012) (-104)) (T -274)) -((-3837 (*1 *1 *2 *1) (-12 (-4 *1 (-274 *2 *3)) (-4 *2 (-1012)) (-4 *3 (-104)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-274 *3 *2)) (-4 *3 (-1012)) (-4 *2 (-104)))) (-3135 (*1 *2 *1) (-12 (-4 *1 (-274 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-104)) (-5 *2 (-693)))) (-3772 (*1 *2 *1) (-12 (-4 *1 (-274 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-104)) (-5 *2 (-582 (-2 (|:| |gen| *3) (|:| -3941 *4)))))) (-1620 (*1 *2 *1 *3) (-12 (-5 *3 (-483)) (-4 *1 (-274 *4 *2)) (-4 *4 (-1012)) (-4 *2 (-104)))) (-2298 (*1 *2 *1 *3) (-12 (-5 *3 (-483)) (-4 *1 (-274 *2 *4)) (-4 *4 (-104)) (-4 *2 (-1012)))) (-3675 (*1 *2 *3 *1) (-12 (-4 *1 (-274 *3 *2)) (-4 *3 (-1012)) (-4 *2 (-104)))) (-1619 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-274 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-104)))) (-2289 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-274 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-104)))) (-1618 (*1 *1 *1 *1) (-12 (-4 *1 (-274 *2 *3)) (-4 *2 (-1012)) (-4 *3 (-104)) (-4 *3 (-715))))) -(-13 (-104) (-949 |t#1|) (-10 -8 (-15 -3837 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -3135 ((-693) $)) (-15 -3772 ((-582 (-2 (|:| |gen| |t#1|) (|:| -3941 |t#2|))) $)) (-15 -1620 (|t#2| $ (-483))) (-15 -2298 (|t#1| $ (-483))) (-15 -3675 (|t#2| |t#1| $)) (-15 -1619 ($ (-1 |t#2| |t#2|) $)) (-15 -2289 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-715)) (-15 -1618 ($ $ $)) |%noBranch|))) -(((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-554 |#1|) . T) ((-551 (-771)) . T) ((-13) . T) ((-949 |#1|) . T) ((-1012) . T) ((-1127) . T)) -((-2567 (((-85) $ $) NIL T ELT)) (-3187 (((-85) $) NIL T ELT)) (-3772 (((-582 (-2 (|:| |gen| |#1|) (|:| -3941 (-693)))) $) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3135 (((-693) $) NIL T ELT)) (-3722 (($) NIL T CONST)) (-3156 (((-3 |#1| #1#) $) NIL T ELT)) (-3155 ((|#1| $) NIL T ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-2298 ((|#1| $ (-483)) NIL T ELT)) (-1620 (((-693) $ (-483)) NIL T ELT)) (-2289 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1619 (($ (-1 (-693) (-693)) $) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-1618 (($ $ $) NIL (|has| (-693) (-715)) ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3944 (((-771) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-3675 (((-693) |#1| $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2659 (($) NIL T CONST)) (-3055 (((-85) $ $) NIL T ELT)) (-3837 (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-693) |#1|) NIL T ELT))) -(((-275 |#1|) (-274 |#1| (-693)) (-1012)) (T -275)) -NIL -((-3501 (($ $) 72 T ELT)) (-1622 (($ $ |#2| |#3| $) 14 T ELT)) (-1623 (($ (-1 |#3| |#3|) $) 51 T ELT)) (-1795 (((-85) $) 42 T ELT)) (-1794 ((|#2| $) 44 T ELT)) (-3464 (((-3 $ #1="failed") $ $) NIL T ELT) (((-3 $ #1#) $ |#2|) 64 T ELT)) (-2816 ((|#2| $) 68 T ELT)) (-3815 (((-582 |#2|) $) 56 T ELT)) (-1621 (($ $ $ (-693)) 37 T ELT)) (-3947 (($ $ |#2|) 60 T ELT))) -(((-276 |#1| |#2| |#3|) (-10 -7 (-15 -3501 (|#1| |#1|)) (-15 -2816 (|#2| |#1|)) (-15 -3464 ((-3 |#1| #1="failed") |#1| |#2|)) (-15 -1621 (|#1| |#1| |#1| (-693))) (-15 -1622 (|#1| |#1| |#2| |#3| |#1|)) (-15 -1623 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3815 ((-582 |#2|) |#1|)) (-15 -1794 (|#2| |#1|)) (-15 -1795 ((-85) |#1|)) (-15 -3464 ((-3 |#1| #1#) |#1| |#1|)) (-15 -3947 (|#1| |#1| |#2|))) (-277 |#2| |#3|) (-960) (-715)) (T -276)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-3187 (((-85) $) 22 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3980 $) (|:| |associate| $)) $) 71 (|has| |#1| (-494)) ELT)) (-2062 (($ $) 72 (|has| |#1| (-494)) ELT)) (-2060 (((-85) $) 74 (|has| |#1| (-494)) ELT)) (-1310 (((-3 $ "failed") $ $) 26 T ELT)) (-3722 (($) 23 T CONST)) (-3156 (((-3 (-483) #1="failed") $) 109 (|has| |#1| (-949 (-483))) ELT) (((-3 (-348 (-483)) #1#) $) 107 (|has| |#1| (-949 (-348 (-483)))) ELT) (((-3 |#1| #1#) $) 104 T ELT)) (-3155 (((-483) $) 108 (|has| |#1| (-949 (-483))) ELT) (((-348 (-483)) $) 106 (|has| |#1| (-949 (-348 (-483)))) ELT) ((|#1| $) 105 T ELT)) (-3957 (($ $) 80 T ELT)) (-3465 (((-3 $ "failed") $) 42 T ELT)) (-3501 (($ $) 93 (|has| |#1| (-390)) ELT)) (-1622 (($ $ |#1| |#2| $) 97 T ELT)) (-1212 (((-85) $ $) 20 T ELT)) (-2409 (((-85) $) 44 T ELT)) (-2419 (((-693) $) 100 T ELT)) (-3935 (((-85) $) 82 T ELT)) (-2892 (($ |#1| |#2|) 81 T ELT)) (-2819 ((|#2| $) 99 T ELT)) (-1623 (($ (-1 |#2| |#2|) $) 98 T ELT)) (-3956 (($ (-1 |#1| |#1|) $) 83 T ELT)) (-2893 (($ $) 85 T ELT)) (-3173 ((|#1| $) 86 T ELT)) (-3241 (((-1071) $) 11 T ELT)) (-3242 (((-1032) $) 12 T ELT)) (-1795 (((-85) $) 103 T ELT)) (-1794 ((|#1| $) 102 T ELT)) (-3464 (((-3 $ "failed") $ $) 70 (|has| |#1| (-494)) ELT) (((-3 $ "failed") $ |#1|) 95 (|has| |#1| (-494)) ELT)) (-3946 ((|#2| $) 84 T ELT)) (-2816 ((|#1| $) 94 (|has| |#1| (-390)) ELT)) (-3944 (((-771) $) 13 T ELT) (($ (-483)) 41 T ELT) (($ $) 69 (|has| |#1| (-494)) ELT) (($ |#1|) 67 T ELT) (($ (-348 (-483))) 77 (OR (|has| |#1| (-949 (-348 (-483)))) (|has| |#1| (-38 (-348 (-483))))) ELT)) (-3815 (((-582 |#1|) $) 101 T ELT)) (-3675 ((|#1| $ |#2|) 79 T ELT)) (-2701 (((-631 $) $) 68 (|has| |#1| (-118)) ELT)) (-3125 (((-693)) 40 T CONST)) (-1621 (($ $ $ (-693)) 96 (|has| |#1| (-146)) ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2061 (((-85) $ $) 73 (|has| |#1| (-494)) ELT)) (-3124 (((-85) $ $) 33 T ELT)) (-2659 (($) 24 T CONST)) (-2665 (($) 45 T CONST)) (-3055 (((-85) $ $) 8 T ELT)) (-3947 (($ $ |#1|) 78 (|has| |#1| (-312)) ELT)) (-3835 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3837 (($ $ $) 18 T ELT)) (** (($ $ (-829)) 35 T ELT) (($ $ (-693)) 43 T ELT)) (* (($ (-829) $) 17 T ELT) (($ (-693) $) 21 T ELT) (($ (-483) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 88 T ELT) (($ |#1| $) 87 T ELT) (($ (-348 (-483)) $) 76 (|has| |#1| (-38 (-348 (-483)))) ELT) (($ $ (-348 (-483))) 75 (|has| |#1| (-38 (-348 (-483)))) ELT))) -(((-277 |#1| |#2|) (-113) (-960) (-715)) (T -277)) -((-1795 (*1 *2 *1) (-12 (-4 *1 (-277 *3 *4)) (-4 *3 (-960)) (-4 *4 (-715)) (-5 *2 (-85)))) (-1794 (*1 *2 *1) (-12 (-4 *1 (-277 *2 *3)) (-4 *3 (-715)) (-4 *2 (-960)))) (-3815 (*1 *2 *1) (-12 (-4 *1 (-277 *3 *4)) (-4 *3 (-960)) (-4 *4 (-715)) (-5 *2 (-582 *3)))) (-2419 (*1 *2 *1) (-12 (-4 *1 (-277 *3 *4)) (-4 *3 (-960)) (-4 *4 (-715)) (-5 *2 (-693)))) (-2819 (*1 *2 *1) (-12 (-4 *1 (-277 *3 *2)) (-4 *3 (-960)) (-4 *2 (-715)))) (-1623 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-277 *3 *4)) (-4 *3 (-960)) (-4 *4 (-715)))) (-1622 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-277 *2 *3)) (-4 *2 (-960)) (-4 *3 (-715)))) (-1621 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-693)) (-4 *1 (-277 *3 *4)) (-4 *3 (-960)) (-4 *4 (-715)) (-4 *3 (-146)))) (-3464 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-277 *2 *3)) (-4 *2 (-960)) (-4 *3 (-715)) (-4 *2 (-494)))) (-2816 (*1 *2 *1) (-12 (-4 *1 (-277 *2 *3)) (-4 *3 (-715)) (-4 *2 (-960)) (-4 *2 (-390)))) (-3501 (*1 *1 *1) (-12 (-4 *1 (-277 *2 *3)) (-4 *2 (-960)) (-4 *3 (-715)) (-4 *2 (-390))))) -(-13 (-47 |t#1| |t#2|) (-353 |t#1|) (-10 -8 (-15 -1795 ((-85) $)) (-15 -1794 (|t#1| $)) (-15 -3815 ((-582 |t#1|) $)) (-15 -2419 ((-693) $)) (-15 -2819 (|t#2| $)) (-15 -1623 ($ (-1 |t#2| |t#2|) $)) (-15 -1622 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-146)) (-15 -1621 ($ $ $ (-693))) |%noBranch|) (IF (|has| |t#1| (-494)) (-15 -3464 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-390)) (PROGN (-15 -2816 (|t#1| $)) (-15 -3501 ($ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-348 (-483))) |has| |#1| (-38 (-348 (-483)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) |has| |#1| (-494)) ((-72) . T) ((-82 (-348 (-483)) (-348 (-483))) |has| |#1| (-38 (-348 (-483)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-494)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-554 (-348 (-483))) OR (|has| |#1| (-949 (-348 (-483)))) (|has| |#1| (-38 (-348 (-483))))) ((-554 (-483)) . T) ((-554 |#1|) . T) ((-554 $) |has| |#1| (-494)) ((-551 (-771)) . T) ((-146) OR (|has| |#1| (-494)) (|has| |#1| (-146))) ((-246) |has| |#1| (-494)) ((-353 |#1|) . T) ((-494) |has| |#1| (-494)) ((-13) . T) ((-587 (-348 (-483))) |has| |#1| (-38 (-348 (-483)))) ((-587 (-483)) . T) ((-587 |#1|) . T) ((-587 $) . T) ((-589 (-348 (-483))) |has| |#1| (-38 (-348 (-483)))) ((-589 |#1|) . T) ((-589 $) . T) ((-581 (-348 (-483))) |has| |#1| (-38 (-348 (-483)))) ((-581 |#1|) |has| |#1| (-146)) ((-581 $) |has| |#1| (-494)) ((-653 (-348 (-483))) |has| |#1| (-38 (-348 (-483)))) ((-653 |#1|) |has| |#1| (-146)) ((-653 $) |has| |#1| (-494)) ((-662) . T) ((-949 (-348 (-483))) |has| |#1| (-949 (-348 (-483)))) ((-949 (-483)) |has| |#1| (-949 (-483))) ((-949 |#1|) . T) ((-962 (-348 (-483))) |has| |#1| (-38 (-348 (-483)))) ((-962 |#1|) . T) ((-962 $) OR (|has| |#1| (-494)) (|has| |#1| (-146))) ((-967 (-348 (-483))) |has| |#1| (-38 (-348 (-483)))) ((-967 |#1|) . T) ((-967 $) OR (|has| |#1| (-494)) (|has| |#1| (-146))) ((-960) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T)) -((-2567 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2197 (((-1183) $ (-483) (-483)) NIL (|has| $ (-6 -3994)) ELT)) (-1730 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-755)) ELT)) (-1728 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-6 -3994)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-755))) ELT)) (-2908 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-755)) ELT)) (-1985 (((-85) (-85)) NIL T ELT)) (-3786 ((|#1| $ (-483) |#1|) NIL (|has| $ (-6 -3994)) ELT) ((|#1| $ (-1144 (-483)) |#1|) NIL (|has| $ (-6 -3994)) ELT)) (-1568 (($ (-1 (-85) |#1|) $) NIL T ELT)) (-3708 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3722 (($) NIL T CONST)) (-2296 (($ $) NIL (|has| $ (-6 -3994)) ELT)) (-2297 (($ $) NIL T ELT)) (-2367 (($ $) NIL (|has| |#1| (-1012)) ELT)) (-1351 (($ $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#1| (-1012))) ELT)) (-3403 (($ |#1| $) NIL (|has| |#1| (-1012)) ELT) (($ (-1 (-85) |#1|) $) NIL T ELT)) (-3404 (($ |#1| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#1| (-1012))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3840 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3993)) (|has| |#1| (-1012))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3993)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-1574 ((|#1| $ (-483) |#1|) NIL (|has| $ (-6 -3994)) ELT)) (-3111 ((|#1| $ (-483)) NIL T ELT)) (-3417 (((-483) (-1 (-85) |#1|) $) NIL T ELT) (((-483) |#1| $) NIL (|has| |#1| (-1012)) ELT) (((-483) |#1| $ (-483)) NIL (|has| |#1| (-1012)) ELT)) (-1986 (($ $ (-483)) NIL T ELT)) (-1987 (((-693) $) NIL T ELT)) (-2888 (((-582 |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3612 (($ (-693) |#1|) NIL T ELT)) (-2199 (((-483) $) NIL (|has| (-483) (-755)) ELT)) (-2530 (($ $ $) NIL (|has| |#1| (-755)) ELT)) (-2855 (($ $ $) NIL (|has| |#1| (-755)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT)) (-3516 (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-755)) ELT)) (-2607 (((-582 |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3244 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#1| (-1012))) ELT)) (-2200 (((-483) $) NIL (|has| (-483) (-755)) ELT)) (-2856 (($ $ $) NIL (|has| |#1| (-755)) ELT)) (-1947 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3956 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3241 (((-1071) $) NIL (|has| |#1| (-1012)) ELT)) (-3607 (($ $ $ (-483)) NIL T ELT) (($ |#1| $ (-483)) NIL T ELT)) (-2303 (($ |#1| $ (-483)) NIL T ELT) (($ $ $ (-483)) NIL T ELT)) (-2202 (((-582 (-483)) $) NIL T ELT)) (-2203 (((-85) (-483) $) NIL T ELT)) (-3242 (((-1032) $) NIL (|has| |#1| (-1012)) ELT)) (-1988 (($ (-582 |#1|)) NIL T ELT)) (-3799 ((|#1| $) NIL (|has| (-483) (-755)) ELT)) (-1352 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2198 (($ $ |#1|) NIL (|has| $ (-6 -3994)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3766 (($ $ (-582 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-582 |#1|) (-582 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-2201 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#1| (-1012))) ELT)) (-2204 (((-582 |#1|) $) NIL T ELT)) (-3401 (((-85) $) NIL T ELT)) (-3563 (($) NIL T ELT)) (-3798 ((|#1| $ (-483) |#1|) NIL T ELT) ((|#1| $ (-483)) NIL T ELT) (($ $ (-1144 (-483))) NIL T ELT)) (-1569 (($ $ (-1144 (-483))) NIL T ELT) (($ $ (-483)) NIL T ELT)) (-2304 (($ $ (-483)) NIL T ELT) (($ $ (-1144 (-483))) NIL T ELT)) (-1944 (((-693) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3993)) ELT) (((-693) |#1| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#1| (-1012))) ELT)) (-1729 (($ $ $ (-483)) NIL (|has| $ (-6 -3994)) ELT)) (-3398 (($ $) NIL T ELT)) (-3970 (((-472) $) NIL (|has| |#1| (-552 (-472))) ELT)) (-3528 (($ (-582 |#1|)) NIL T ELT)) (-3789 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3800 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-582 $)) NIL T ELT)) (-3944 (((-771) $) NIL (|has| |#1| (-551 (-771))) ELT)) (-1263 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-2565 (((-85) $ $) NIL (|has| |#1| (-755)) ELT)) (-2566 (((-85) $ $) NIL (|has| |#1| (-755)) ELT)) (-3055 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2683 (((-85) $ $) NIL (|has| |#1| (-755)) ELT)) (-2684 (((-85) $ $) NIL (|has| |#1| (-755)) ELT)) (-3955 (((-693) $) NIL (|has| $ (-6 -3993)) ELT))) -(((-278 |#1|) (-13 (-19 |#1|) (-237 |#1|) (-10 -8 (-15 -1988 ($ (-582 |#1|))) (-15 -1987 ((-693) $)) (-15 -1986 ($ $ (-483))) (-15 -1985 ((-85) (-85))))) (-1127)) (T -278)) -((-1988 (*1 *1 *2) (-12 (-5 *2 (-582 *3)) (-4 *3 (-1127)) (-5 *1 (-278 *3)))) (-1987 (*1 *2 *1) (-12 (-5 *2 (-693)) (-5 *1 (-278 *3)) (-4 *3 (-1127)))) (-1986 (*1 *1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-278 *3)) (-4 *3 (-1127)))) (-1985 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-278 *3)) (-4 *3 (-1127))))) -((-3930 (((-85) $) 47 T ELT)) (-3927 (((-693)) 23 T ELT)) (-3328 ((|#2| $) 51 T ELT) (($ $ (-829)) 123 T ELT)) (-3135 (((-693)) 124 T ELT)) (-1790 (($ (-1177 |#2|)) 20 T ELT)) (-2010 (((-85) $) 136 T ELT)) (-3131 ((|#2| $) 53 T ELT) (($ $ (-829)) 120 T ELT)) (-2013 (((-1083 |#2|) $) NIL T ELT) (((-1083 $) $ (-829)) 111 T ELT)) (-1625 (((-1083 |#2|) $) 95 T ELT)) (-1624 (((-1083 |#2|) $) 91 T ELT) (((-3 (-1083 |#2|) "failed") $ $) 88 T ELT)) (-1626 (($ $ (-1083 |#2|)) 58 T ELT)) (-3928 (((-742 (-829))) 30 T ELT) (((-829)) 48 T ELT)) (-3909 (((-107)) 27 T ELT)) (-3946 (((-742 (-829)) $) 32 T ELT) (((-829) $) 139 T ELT)) (-1627 (($) 130 T ELT)) (-3223 (((-1177 |#2|) $) NIL T ELT) (((-629 |#2|) (-1177 $)) 42 T ELT)) (-2701 (($ $) NIL T ELT) (((-631 $) $) 100 T ELT)) (-3931 (((-85) $) 45 T ELT))) -(((-279 |#1| |#2|) (-10 -7 (-15 -2701 ((-631 |#1|) |#1|)) (-15 -3135 ((-693))) (-15 -2701 (|#1| |#1|)) (-15 -1624 ((-3 (-1083 |#2|) "failed") |#1| |#1|)) (-15 -1624 ((-1083 |#2|) |#1|)) (-15 -1625 ((-1083 |#2|) |#1|)) (-15 -1626 (|#1| |#1| (-1083 |#2|))) (-15 -2010 ((-85) |#1|)) (-15 -1627 (|#1|)) (-15 -3328 (|#1| |#1| (-829))) (-15 -3131 (|#1| |#1| (-829))) (-15 -2013 ((-1083 |#1|) |#1| (-829))) (-15 -3328 (|#2| |#1|)) (-15 -3131 (|#2| |#1|)) (-15 -3946 ((-829) |#1|)) (-15 -3928 ((-829))) (-15 -2013 ((-1083 |#2|) |#1|)) (-15 -1790 (|#1| (-1177 |#2|))) (-15 -3223 ((-629 |#2|) (-1177 |#1|))) (-15 -3223 ((-1177 |#2|) |#1|)) (-15 -3927 ((-693))) (-15 -3928 ((-742 (-829)))) (-15 -3946 ((-742 (-829)) |#1|)) (-15 -3930 ((-85) |#1|)) (-15 -3931 ((-85) |#1|)) (-15 -3909 ((-107)))) (-280 |#2|) (-312)) (T -279)) -((-3909 (*1 *2) (-12 (-4 *4 (-312)) (-5 *2 (-107)) (-5 *1 (-279 *3 *4)) (-4 *3 (-280 *4)))) (-3928 (*1 *2) (-12 (-4 *4 (-312)) (-5 *2 (-742 (-829))) (-5 *1 (-279 *3 *4)) (-4 *3 (-280 *4)))) (-3927 (*1 *2) (-12 (-4 *4 (-312)) (-5 *2 (-693)) (-5 *1 (-279 *3 *4)) (-4 *3 (-280 *4)))) (-3928 (*1 *2) (-12 (-4 *4 (-312)) (-5 *2 (-829)) (-5 *1 (-279 *3 *4)) (-4 *3 (-280 *4)))) (-3135 (*1 *2) (-12 (-4 *4 (-312)) (-5 *2 (-693)) (-5 *1 (-279 *3 *4)) (-4 *3 (-280 *4))))) -((-2567 (((-85) $ $) 7 T ELT)) (-3187 (((-85) $) 22 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3980 $) (|:| |associate| $)) $) 55 T ELT)) (-2062 (($ $) 54 T ELT)) (-2060 (((-85) $) 52 T ELT)) (-3930 (((-85) $) 114 T ELT)) (-3927 (((-693)) 110 T ELT)) (-3328 ((|#1| $) 162 T ELT) (($ $ (-829)) 159 (|has| |#1| (-318)) ELT)) (-1673 (((-1100 (-829) (-693)) (-483)) 144 (|has| |#1| (-318)) ELT)) (-1310 (((-3 $ "failed") $ $) 26 T ELT)) (-3773 (($ $) 91 T ELT)) (-3969 (((-346 $) $) 90 T ELT)) (-1606 (((-85) $ $) 75 T ELT)) (-3135 (((-693)) 134 (|has| |#1| (-318)) ELT)) (-3722 (($) 23 T CONST)) (-3156 (((-3 |#1| "failed") $) 121 T ELT)) (-3155 ((|#1| $) 122 T ELT)) (-1790 (($ (-1177 |#1|)) 168 T ELT)) (-1671 (((-3 "prime" "polynomial" "normal" "cyclic")) 150 (|has| |#1| (-318)) ELT)) (-2563 (($ $ $) 71 T ELT)) (-3465 (((-3 $ "failed") $) 42 T ELT)) (-2993 (($) 131 (|has| |#1| (-318)) ELT)) (-2562 (($ $ $) 72 T ELT)) (-2740 (((-2 (|:| -3952 (-582 $)) (|:| -2408 $)) (-582 $)) 66 T ELT)) (-2832 (($) 146 (|has| |#1| (-318)) ELT)) (-1678 (((-85) $) 147 (|has| |#1| (-318)) ELT)) (-1762 (($ $ (-693)) 107 (OR (|has| |#1| (-118)) (|has| |#1| (-318))) ELT) (($ $) 106 (OR (|has| |#1| (-118)) (|has| |#1| (-318))) ELT)) (-3721 (((-85) $) 89 T ELT)) (-3770 (((-829) $) 149 (|has| |#1| (-318)) ELT) (((-742 (-829)) $) 104 (OR (|has| |#1| (-118)) (|has| |#1| (-318))) ELT)) (-1212 (((-85) $ $) 20 T ELT)) (-2409 (((-85) $) 44 T ELT)) (-2012 (($) 157 (|has| |#1| (-318)) ELT)) (-2010 (((-85) $) 156 (|has| |#1| (-318)) ELT)) (-3131 ((|#1| $) 163 T ELT) (($ $ (-829)) 160 (|has| |#1| (-318)) ELT)) (-3443 (((-631 $) $) 135 (|has| |#1| (-318)) ELT)) (-1603 (((-3 (-582 $) #1="failed") (-582 $) $) 68 T ELT)) (-2013 (((-1083 |#1|) $) 167 T ELT) (((-1083 $) $ (-829)) 161 (|has| |#1| (-318)) ELT)) (-2009 (((-829) $) 132 (|has| |#1| (-318)) ELT)) (-1625 (((-1083 |#1|) $) 153 (|has| |#1| (-318)) ELT)) (-1624 (((-1083 |#1|) $) 152 (|has| |#1| (-318)) ELT) (((-3 (-1083 |#1|) "failed") $ $) 151 (|has| |#1| (-318)) ELT)) (-1626 (($ $ (-1083 |#1|)) 154 (|has| |#1| (-318)) ELT)) (-1889 (($ $ $) 60 T ELT) (($ (-582 $)) 59 T ELT)) (-3241 (((-1071) $) 11 T ELT)) (-2483 (($ $) 88 T ELT)) (-3444 (($) 136 (|has| |#1| (-318)) CONST)) (-2399 (($ (-829)) 133 (|has| |#1| (-318)) ELT)) (-3929 (((-85) $) 113 T ELT)) (-3242 (((-1032) $) 12 T ELT)) (-2408 (($) 155 (|has| |#1| (-318)) ELT)) (-2707 (((-1083 $) (-1083 $) (-1083 $)) 58 T ELT)) (-3143 (($ $ $) 62 T ELT) (($ (-582 $)) 61 T ELT)) (-1674 (((-582 (-2 (|:| -3730 (-483)) (|:| -2400 (-483))))) 143 (|has| |#1| (-318)) ELT)) (-3730 (((-346 $) $) 92 T ELT)) (-3928 (((-742 (-829))) 111 T ELT) (((-829)) 165 T ELT)) (-1604 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 69 T ELT)) (-3464 (((-3 $ "failed") $ $) 56 T ELT)) (-2739 (((-631 (-582 $)) (-582 $) $) 65 T ELT)) (-1605 (((-693) $) 74 T ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) 73 T ELT)) (-1763 (((-693) $) 148 (|has| |#1| (-318)) ELT) (((-3 (-693) "failed") $ $) 105 (OR (|has| |#1| (-118)) (|has| |#1| (-318))) ELT)) (-3909 (((-107)) 119 T ELT)) (-3756 (($ $ (-693)) 139 (|has| |#1| (-318)) ELT) (($ $) 137 (|has| |#1| (-318)) ELT)) (-3946 (((-742 (-829)) $) 112 T ELT) (((-829) $) 164 T ELT)) (-3184 (((-1083 |#1|)) 166 T ELT)) (-1672 (($) 145 (|has| |#1| (-318)) ELT)) (-1627 (($) 158 (|has| |#1| (-318)) ELT)) (-3223 (((-1177 |#1|) $) 170 T ELT) (((-629 |#1|) (-1177 $)) 169 T ELT)) (-2702 (((-3 (-1177 $) "failed") (-629 $)) 142 (|has| |#1| (-318)) ELT)) (-3944 (((-771) $) 13 T ELT) (($ (-483)) 41 T ELT) (($ $) 57 T ELT) (($ (-348 (-483))) 84 T ELT) (($ |#1|) 120 T ELT)) (-2701 (($ $) 141 (|has| |#1| (-318)) ELT) (((-631 $) $) 103 (OR (|has| |#1| (-118)) (|has| |#1| (-318))) ELT)) (-3125 (((-693)) 40 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-2011 (((-1177 $)) 172 T ELT) (((-1177 $) (-829)) 171 T ELT)) (-2061 (((-85) $ $) 53 T ELT)) (-3124 (((-85) $ $) 33 T ELT)) (-3931 (((-85) $) 115 T ELT)) (-2659 (($) 24 T CONST)) (-2665 (($) 45 T CONST)) (-3926 (($ $) 109 (|has| |#1| (-318)) ELT) (($ $ (-693)) 108 (|has| |#1| (-318)) ELT)) (-2668 (($ $ (-693)) 140 (|has| |#1| (-318)) ELT) (($ $) 138 (|has| |#1| (-318)) ELT)) (-3055 (((-85) $ $) 8 T ELT)) (-3947 (($ $ $) 83 T ELT) (($ $ |#1|) 118 T ELT)) (-3835 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3837 (($ $ $) 18 T ELT)) (** (($ $ (-829)) 35 T ELT) (($ $ (-693)) 43 T ELT) (($ $ (-483)) 87 T ELT)) (* (($ (-829) $) 17 T ELT) (($ (-693) $) 21 T ELT) (($ (-483) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-348 (-483))) 86 T ELT) (($ (-348 (-483)) $) 85 T ELT) (($ $ |#1|) 117 T ELT) (($ |#1| $) 116 T ELT))) +((-1607 (*1 *2 *1 *1) (-12 (-4 *1 (-258)) (-5 *2 (-85)))) (-1606 (*1 *2 *1) (-12 (-4 *1 (-258)) (-5 *2 (-694)))) (-2879 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1972 *1) (|:| -2902 *1))) (-4 *1 (-258)))) (-2563 (*1 *1 *1 *1) (-4 *1 (-258))) (-2564 (*1 *1 *1 *1) (-4 *1 (-258))) (-1605 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2409 *1))) (-4 *1 (-258)))) (-1605 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-258)))) (-1604 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-583 *1)) (-4 *1 (-258))))) +(-13 (-832) (-10 -8 (-15 -1607 ((-85) $ $)) (-15 -1606 ((-694) $)) (-15 -2879 ((-2 (|:| -1972 $) (|:| -2902 $)) $ $)) (-15 -2563 ($ $ $)) (-15 -2564 ($ $ $)) (-15 -1605 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $)) (-15 -1605 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -1604 ((-3 (-583 $) "failed") (-583 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-555 (-484)) . T) ((-555 $) . T) ((-552 (-772)) . T) ((-146) . T) ((-246) . T) ((-391) . T) ((-495) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 $) . T) ((-590 $) . T) ((-582 $) . T) ((-654 $) . T) ((-663) . T) ((-832) . T) ((-963 $) . T) ((-968 $) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T)) +((-3767 (($ $ (-583 |#2|) (-583 |#2|)) 14 T ELT) (($ $ |#2| |#2|) NIL T ELT) (($ $ (-249 |#2|)) 11 T ELT) (($ $ (-583 (-249 |#2|))) NIL T ELT))) +(((-259 |#1| |#2|) (-10 -7 (-15 -3767 (|#1| |#1| (-583 (-249 |#2|)))) (-15 -3767 (|#1| |#1| (-249 |#2|))) (-15 -3767 (|#1| |#1| |#2| |#2|)) (-15 -3767 (|#1| |#1| (-583 |#2|) (-583 |#2|)))) (-260 |#2|) (-1013)) (T -259)) +NIL +((-3767 (($ $ (-583 |#1|) (-583 |#1|)) 7 T ELT) (($ $ |#1| |#1|) 6 T ELT) (($ $ (-249 |#1|)) 13 T ELT) (($ $ (-583 (-249 |#1|))) 12 T ELT))) +(((-260 |#1|) (-113) (-1013)) (T -260)) +((-3767 (*1 *1 *1 *2) (-12 (-5 *2 (-249 *3)) (-4 *1 (-260 *3)) (-4 *3 (-1013)))) (-3767 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-249 *3))) (-4 *1 (-260 *3)) (-4 *3 (-1013))))) +(-13 (-455 |t#1| |t#1|) (-10 -8 (-15 -3767 ($ $ (-249 |t#1|))) (-15 -3767 ($ $ (-583 (-249 |t#1|)))))) +(((-455 |#1| |#1|) . T)) +((-3767 ((|#1| (-1 |#1| (-484)) (-1091 (-349 (-484)))) 26 T ELT))) +(((-261 |#1|) (-10 -7 (-15 -3767 (|#1| (-1 |#1| (-484)) (-1091 (-349 (-484)))))) (-38 (-349 (-484)))) (T -261)) +((-3767 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-484))) (-5 *4 (-1091 (-349 (-484)))) (-5 *1 (-261 *2)) (-4 *2 (-38 (-349 (-484))))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) 7 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 9 T ELT))) +(((-262) (-1013)) (T -262)) +NIL +((-2568 (((-85) $ $) NIL T ELT)) (-3505 (((-484) $) 13 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3206 (((-1048) $) 10 T ELT)) (-3945 (((-772) $) 20 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT))) +(((-263) (-13 (-995) (-10 -8 (-15 -3206 ((-1048) $)) (-15 -3505 ((-484) $))))) (T -263)) +((-3206 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-263)))) (-3505 (*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-263))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) 60 T ELT)) (-3129 (((-1165 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-258)) ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2707 (((-347 (-1084 $)) (-1084 $)) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-821)) ELT)) (-3774 (($ $) NIL T ELT)) (-3970 (((-347 $) $) NIL T ELT)) (-2704 (((-3 (-583 (-1084 $)) #1#) (-583 (-1084 $)) (-1084 $)) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-821)) ELT)) (-1607 (((-85) $ $) NIL T ELT)) (-3622 (((-484) $) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-740)) ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 (-1165 |#1| |#2| |#3| |#4|) #1#) $) NIL T ELT) (((-3 (-1089) #1#) $) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-950 (-1089))) ELT) (((-3 (-349 (-484)) #1#) $) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-950 (-484))) ELT) (((-3 (-484) #1#) $) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-950 (-484))) ELT) (((-3 (-1159 |#2| |#3| |#4|) #1#) $) 26 T ELT)) (-3156 (((-1165 |#1| |#2| |#3| |#4|) $) NIL T ELT) (((-1089) $) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-950 (-1089))) ELT) (((-349 (-484)) $) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-950 (-484))) ELT) (((-484) $) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-950 (-484))) ELT) (((-1159 |#2| |#3| |#4|) $) NIL T ELT)) (-2564 (($ $ $) NIL T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-1165 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1178 (-1165 |#1| |#2| |#3| |#4|)))) (-630 $) (-1178 $)) NIL T ELT) (((-630 (-1165 |#1| |#2| |#3| |#4|)) (-630 $)) NIL T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-2994 (($) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-483)) ELT)) (-2563 (($ $ $) NIL T ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-3722 (((-85) $) NIL T ELT)) (-3186 (((-85) $) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-740)) ELT)) (-2796 (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-796 (-484))) ELT) (((-798 (-329) $) $ (-800 (-329)) (-798 (-329) $)) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-796 (-329))) ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2996 (($ $) NIL T ELT)) (-2998 (((-1165 |#1| |#2| |#3| |#4|) $) 22 T ELT)) (-3444 (((-632 $) $) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-1065)) ELT)) (-3187 (((-85) $) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-740)) ELT)) (-1604 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2531 (($ $ $) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-756)) ELT)) (-2857 (($ $ $) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-756)) ELT)) (-3957 (($ (-1 (-1165 |#1| |#2| |#3| |#4|) (-1165 |#1| |#2| |#3| |#4|)) $) NIL T ELT)) (-3783 (((-3 (-750 |#2|) #1#) $) 80 T ELT)) (-2280 (((-630 (-484)) (-1178 $)) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-1165 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1178 (-1165 |#1| |#2| |#3| |#4|)))) (-1178 $) $) NIL T ELT) (((-630 (-1165 |#1| |#2| |#3| |#4|)) (-1178 $)) NIL T ELT)) (-1890 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2484 (($ $) NIL T ELT)) (-3445 (($) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-1065)) CONST)) (-3243 (((-1033) $) NIL T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3144 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3128 (($ $) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-258)) ELT)) (-3130 (((-1165 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-483)) ELT)) (-2705 (((-347 (-1084 $)) (-1084 $)) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-821)) ELT)) (-2706 (((-347 (-1084 $)) (-1084 $)) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-821)) ELT)) (-3731 (((-347 $) $) NIL T ELT)) (-1605 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3465 (((-3 $ #1#) $ $) NIL T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-3767 (($ $ (-583 (-1165 |#1| |#2| |#3| |#4|)) (-583 (-1165 |#1| |#2| |#3| |#4|))) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-260 (-1165 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-1165 |#1| |#2| |#3| |#4|) (-1165 |#1| |#2| |#3| |#4|)) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-260 (-1165 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-249 (-1165 |#1| |#2| |#3| |#4|))) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-260 (-1165 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-583 (-249 (-1165 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-260 (-1165 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-583 (-1089)) (-583 (-1165 |#1| |#2| |#3| |#4|))) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-455 (-1089) (-1165 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-1089) (-1165 |#1| |#2| |#3| |#4|)) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-455 (-1089) (-1165 |#1| |#2| |#3| |#4|))) ELT)) (-1606 (((-694) $) NIL T ELT)) (-3799 (($ $ (-1165 |#1| |#2| |#3| |#4|)) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-241 (-1165 |#1| |#2| |#3| |#4|) (-1165 |#1| |#2| |#3| |#4|))) ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL T ELT)) (-3757 (($ $ (-1 (-1165 |#1| |#2| |#3| |#4|) (-1165 |#1| |#2| |#3| |#4|))) NIL T ELT) (($ $ (-1 (-1165 |#1| |#2| |#3| |#4|) (-1165 |#1| |#2| |#3| |#4|)) (-694)) NIL T ELT) (($ $ (-1089)) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-811 (-1089))) ELT) (($ $ (-583 (-1089))) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-811 (-1089))) ELT) (($ $ (-1089) (-694)) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-811 (-1089))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-811 (-1089))) ELT) (($ $) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-189)) ELT) (($ $ (-694)) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-189)) ELT)) (-2995 (($ $) NIL T ELT)) (-2997 (((-1165 |#1| |#2| |#3| |#4|) $) 19 T ELT)) (-3971 (((-800 (-484)) $) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-553 (-800 (-484)))) ELT) (((-800 (-329)) $) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-553 (-800 (-329)))) ELT) (((-473) $) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-553 (-473))) ELT) (((-329) $) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-933)) ELT) (((-179) $) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-933)) ELT)) (-2703 (((-3 (-1178 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| (-1165 |#1| |#2| |#3| |#4|) (-821))) ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-349 (-484))) NIL T ELT) (($ (-1165 |#1| |#2| |#3| |#4|)) 30 T ELT) (($ (-1089)) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-950 (-1089))) ELT) (($ (-1159 |#2| |#3| |#4|)) 37 T ELT)) (-2702 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-1165 |#1| |#2| |#3| |#4|) (-821))) (|has| (-1165 |#1| |#2| |#3| |#4|) (-118))) ELT)) (-3126 (((-694)) NIL T CONST)) (-3131 (((-1165 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-483)) ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-3382 (($ $) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-740)) ELT)) (-2660 (($) NIL T CONST)) (-2666 (($) NIL T CONST)) (-2669 (($ $ (-1 (-1165 |#1| |#2| |#3| |#4|) (-1165 |#1| |#2| |#3| |#4|))) NIL T ELT) (($ $ (-1 (-1165 |#1| |#2| |#3| |#4|) (-1165 |#1| |#2| |#3| |#4|)) (-694)) NIL T ELT) (($ $ (-1089)) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-811 (-1089))) ELT) (($ $ (-583 (-1089))) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-811 (-1089))) ELT) (($ $ (-1089) (-694)) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-811 (-1089))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-811 (-1089))) ELT) (($ $) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-189)) ELT) (($ $ (-694)) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-189)) ELT)) (-2566 (((-85) $ $) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-756)) ELT)) (-2567 (((-85) $ $) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-756)) ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-756)) ELT)) (-2685 (((-85) $ $) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-756)) ELT)) (-3948 (($ $ $) 35 T ELT) (($ (-1165 |#1| |#2| |#3| |#4|) (-1165 |#1| |#2| |#3| |#4|)) 32 T ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-349 (-484))) NIL T ELT) (($ (-349 (-484)) $) NIL T ELT) (($ (-1165 |#1| |#2| |#3| |#4|) $) 31 T ELT) (($ $ (-1165 |#1| |#2| |#3| |#4|)) NIL T ELT))) +(((-264 |#1| |#2| |#3| |#4|) (-13 (-904 (-1165 |#1| |#2| |#3| |#4|)) (-950 (-1159 |#2| |#3| |#4|)) (-10 -8 (-15 -3783 ((-3 (-750 |#2|) "failed") $)) (-15 -3945 ($ (-1159 |#2| |#3| |#4|))))) (-13 (-950 (-484)) (-580 (-484)) (-391)) (-13 (-27) (-1114) (-363 |#1|)) (-1089) |#2|) (T -264)) +((-3945 (*1 *1 *2) (-12 (-5 *2 (-1159 *4 *5 *6)) (-4 *4 (-13 (-27) (-1114) (-363 *3))) (-14 *5 (-1089)) (-14 *6 *4) (-4 *3 (-13 (-950 (-484)) (-580 (-484)) (-391))) (-5 *1 (-264 *3 *4 *5 *6)))) (-3783 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-950 (-484)) (-580 (-484)) (-391))) (-5 *2 (-750 *4)) (-5 *1 (-264 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1114) (-363 *3))) (-14 *5 (-1089)) (-14 *6 *4)))) +((-2568 (((-85) $ $) NIL T ELT)) (-1214 (((-583 $) $ (-1089)) NIL (|has| |#1| (-495)) ELT) (((-583 $) $) NIL (|has| |#1| (-495)) ELT) (((-583 $) (-1084 $) (-1089)) NIL (|has| |#1| (-495)) ELT) (((-583 $) (-1084 $)) NIL (|has| |#1| (-495)) ELT) (((-583 $) (-857 $)) NIL (|has| |#1| (-495)) ELT)) (-1215 (($ $ (-1089)) NIL (|has| |#1| (-495)) ELT) (($ $) NIL (|has| |#1| (-495)) ELT) (($ (-1084 $) (-1089)) NIL (|has| |#1| (-495)) ELT) (($ (-1084 $)) NIL (|has| |#1| (-495)) ELT) (($ (-857 $)) NIL (|has| |#1| (-495)) ELT)) (-3188 (((-85) $) 29 (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-580 (-484))) (|has| |#1| (-961)))) ELT)) (-3081 (((-583 (-1089)) $) 365 T ELT)) (-3083 (((-349 (-1084 $)) $ (-550 $)) NIL (|has| |#1| (-495)) ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2063 (($ $) NIL (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-1599 (((-583 (-550 $)) $) NIL T ELT)) (-3491 (($ $) 170 (|has| |#1| (-495)) ELT)) (-3638 (($ $) 146 (|has| |#1| (-495)) ELT)) (-1371 (($ $ (-1004 $)) 231 (|has| |#1| (-495)) ELT) (($ $ (-1089)) 227 (|has| |#1| (-495)) ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL (OR (|has| |#1| (-21)) (-12 (|has| |#1| (-580 (-484))) (|has| |#1| (-961)))) ELT)) (-1603 (($ $ (-249 $)) NIL T ELT) (($ $ (-583 (-249 $))) 383 T ELT) (($ $ (-583 (-550 $)) (-583 $)) 438 T ELT)) (-2707 (((-347 (-1084 $)) (-1084 $)) 305 (-12 (|has| |#1| (-391)) (|has| |#1| (-495))) ELT)) (-3774 (($ $) NIL (|has| |#1| (-495)) ELT)) (-3970 (((-347 $) $) NIL (|has| |#1| (-495)) ELT)) (-3037 (($ $) NIL (|has| |#1| (-495)) ELT)) (-1607 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-3489 (($ $) 166 (|has| |#1| (-495)) ELT)) (-3637 (($ $) 142 (|has| |#1| (-495)) ELT)) (-1608 (($ $ (-484)) 68 (|has| |#1| (-495)) ELT)) (-3493 (($ $) 174 (|has| |#1| (-495)) ELT)) (-3636 (($ $) 150 (|has| |#1| (-495)) ELT)) (-3723 (($) NIL (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-580 (-484))) (|has| |#1| (-961))) (|has| |#1| (-1025))) CONST)) (-1216 (((-583 $) $ (-1089)) NIL (|has| |#1| (-495)) ELT) (((-583 $) $) NIL (|has| |#1| (-495)) ELT) (((-583 $) (-1084 $) (-1089)) NIL (|has| |#1| (-495)) ELT) (((-583 $) (-1084 $)) NIL (|has| |#1| (-495)) ELT) (((-583 $) (-857 $)) NIL (|has| |#1| (-495)) ELT)) (-3183 (($ $ (-1089)) NIL (|has| |#1| (-495)) ELT) (($ $) NIL (|has| |#1| (-495)) ELT) (($ (-1084 $) (-1089)) 133 (|has| |#1| (-495)) ELT) (($ (-1084 $)) NIL (|has| |#1| (-495)) ELT) (($ (-857 $)) NIL (|has| |#1| (-495)) ELT)) (-3157 (((-3 (-550 $) #1#) $) 18 T ELT) (((-3 (-1089) #1#) $) NIL T ELT) (((-3 |#1| #1#) $) 450 T ELT) (((-3 (-48) #1#) $) 333 (-12 (|has| |#1| (-495)) (|has| |#1| (-950 (-484)))) ELT) (((-3 (-484) #1#) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-3 (-349 (-857 |#1|)) #1#) $) NIL (|has| |#1| (-495)) ELT) (((-3 (-857 |#1|) #1#) $) NIL (|has| |#1| (-961)) ELT) (((-3 (-349 (-484)) #1#) $) 48 (OR (-12 (|has| |#1| (-495)) (|has| |#1| (-950 (-484)))) (|has| |#1| (-950 (-349 (-484))))) ELT)) (-3156 (((-550 $) $) 12 T ELT) (((-1089) $) NIL T ELT) ((|#1| $) 429 T ELT) (((-48) $) NIL (-12 (|has| |#1| (-495)) (|has| |#1| (-950 (-484)))) ELT) (((-484) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-349 (-857 |#1|)) $) NIL (|has| |#1| (-495)) ELT) (((-857 |#1|) $) NIL (|has| |#1| (-961)) ELT) (((-349 (-484)) $) 316 (OR (-12 (|has| |#1| (-495)) (|has| |#1| (-950 (-484)))) (|has| |#1| (-950 (-349 (-484))))) ELT)) (-2564 (($ $ $) NIL (|has| |#1| (-495)) ELT)) (-2279 (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1178 |#1|))) (-630 $) (-1178 $)) 124 (|has| |#1| (-961)) ELT) (((-630 |#1|) (-630 $)) 114 (|has| |#1| (-961)) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) NIL (-12 (|has| |#1| (-580 (-484))) (|has| |#1| (-961))) ELT) (((-630 (-484)) (-630 $)) NIL (-12 (|has| |#1| (-580 (-484))) (|has| |#1| (-961))) ELT)) (-3841 (($ $) 95 (|has| |#1| (-495)) ELT)) (-3466 (((-3 $ #1#) $) NIL (|has| |#1| (-1025)) ELT)) (-2563 (($ $ $) NIL (|has| |#1| (-495)) ELT)) (-3943 (($ $ (-1004 $)) 235 (|has| |#1| (-495)) ELT) (($ $ (-1089)) 233 (|has| |#1| (-495)) ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) NIL (|has| |#1| (-495)) ELT)) (-3722 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-3385 (($ $ $) 201 (|has| |#1| (-495)) ELT)) (-3626 (($) 136 (|has| |#1| (-495)) ELT)) (-1368 (($ $ $) 221 (|has| |#1| (-495)) ELT)) (-2796 (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) 389 (|has| |#1| (-796 (-484))) ELT) (((-798 (-329) $) $ (-800 (-329)) (-798 (-329) $)) 396 (|has| |#1| (-796 (-329))) ELT)) (-2573 (($ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-1213 (((-85) $ $) NIL (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-580 (-484))) (|has| |#1| (-961)))) ELT)) (-1598 (((-583 (-86)) $) NIL T ELT)) (-3594 (((-86) (-86)) 275 T ELT)) (-2410 (((-85) $) 27 (|has| |#1| (-1025)) ELT)) (-2673 (((-85) $) NIL (|has| $ (-950 (-484))) ELT)) (-2996 (($ $) 73 (|has| |#1| (-961)) ELT)) (-2998 (((-1038 |#1| (-550 $)) $) 90 (|has| |#1| (-961)) ELT)) (-1609 (((-85) $) 49 (|has| |#1| (-495)) ELT)) (-3011 (($ $ (-484)) NIL (|has| |#1| (-495)) ELT)) (-1604 (((-3 (-583 $) #1#) (-583 $) $) NIL (|has| |#1| (-495)) ELT)) (-1596 (((-1084 $) (-550 $)) 276 (|has| $ (-961)) ELT)) (-3957 (($ (-1 $ $) (-550 $)) 434 T ELT)) (-1601 (((-3 (-550 $) #1#) $) NIL T ELT)) (-3941 (($ $) 140 (|has| |#1| (-495)) ELT)) (-2257 (($ $) 246 (|has| |#1| (-495)) ELT)) (-2280 (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1178 |#1|))) (-1178 $) $) NIL (|has| |#1| (-961)) ELT) (((-630 |#1|) (-1178 $)) NIL (|has| |#1| (-961)) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (-12 (|has| |#1| (-580 (-484))) (|has| |#1| (-961))) ELT) (((-630 (-484)) (-1178 $)) NIL (-12 (|has| |#1| (-580 (-484))) (|has| |#1| (-961))) ELT)) (-1890 (($ (-583 $)) NIL (|has| |#1| (-495)) ELT) (($ $ $) NIL (|has| |#1| (-495)) ELT)) (-3242 (((-1072) $) NIL T ELT)) (-1600 (((-583 (-550 $)) $) 51 T ELT)) (-2235 (($ (-86) $) NIL T ELT) (($ (-86) (-583 $)) 439 T ELT)) (-2823 (((-3 (-583 $) #1#) $) NIL (|has| |#1| (-1025)) ELT)) (-2825 (((-3 (-2 (|:| |val| $) (|:| -2401 (-484))) #1#) $) NIL (|has| |#1| (-961)) ELT)) (-2822 (((-3 (-583 $) #1#) $) 444 (|has| |#1| (-25)) ELT)) (-1793 (((-3 (-2 (|:| -3953 (-484)) (|:| |var| (-550 $))) #1#) $) 448 (|has| |#1| (-25)) ELT)) (-2824 (((-3 (-2 (|:| |var| (-550 $)) (|:| -2401 (-484))) #1#) $) NIL (|has| |#1| (-1025)) ELT) (((-3 (-2 (|:| |var| (-550 $)) (|:| -2401 (-484))) #1#) $ (-86)) NIL (|has| |#1| (-961)) ELT) (((-3 (-2 (|:| |var| (-550 $)) (|:| -2401 (-484))) #1#) $ (-1089)) NIL (|has| |#1| (-961)) ELT)) (-2633 (((-85) $ (-86)) NIL T ELT) (((-85) $ (-1089)) 53 T ELT)) (-2484 (($ $) NIL (OR (|has| |#1| (-412)) (|has| |#1| (-495))) ELT)) (-2832 (($ $ (-1089)) 250 (|has| |#1| (-495)) ELT) (($ $ (-1004 $)) 252 (|has| |#1| (-495)) ELT)) (-2603 (((-694) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1796 (((-85) $) 45 T ELT)) (-1795 ((|#1| $) NIL T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) 298 (|has| |#1| (-495)) ELT)) (-3144 (($ (-583 $)) NIL (|has| |#1| (-495)) ELT) (($ $ $) NIL (|has| |#1| (-495)) ELT)) (-1597 (((-85) $ $) NIL T ELT) (((-85) $ (-1089)) NIL T ELT)) (-1372 (($ $ (-1089)) 225 (|has| |#1| (-495)) ELT) (($ $) 223 (|has| |#1| (-495)) ELT)) (-1366 (($ $) 217 (|has| |#1| (-495)) ELT)) (-2706 (((-347 (-1084 $)) (-1084 $)) 303 (-12 (|has| |#1| (-391)) (|has| |#1| (-495))) ELT)) (-3731 (((-347 $) $) NIL (|has| |#1| (-495)) ELT)) (-1605 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-495)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL (|has| |#1| (-495)) ELT)) (-3465 (((-3 $ #1#) $ $) NIL (|has| |#1| (-495)) ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL (|has| |#1| (-495)) ELT)) (-3942 (($ $) 138 (|has| |#1| (-495)) ELT)) (-2674 (((-85) $) NIL (|has| $ (-950 (-484))) ELT)) (-3767 (($ $ (-550 $) $) NIL T ELT) (($ $ (-583 (-550 $)) (-583 $)) 433 T ELT) (($ $ (-583 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ (-583 (-1089)) (-583 (-1 $ $))) NIL T ELT) (($ $ (-583 (-1089)) (-583 (-1 $ (-583 $)))) NIL T ELT) (($ $ (-1089) (-1 $ (-583 $))) NIL T ELT) (($ $ (-1089) (-1 $ $)) NIL T ELT) (($ $ (-583 (-86)) (-583 (-1 $ $))) 376 T ELT) (($ $ (-583 (-86)) (-583 (-1 $ (-583 $)))) NIL T ELT) (($ $ (-86) (-1 $ (-583 $))) NIL T ELT) (($ $ (-86) (-1 $ $)) NIL T ELT) (($ $ (-1089)) NIL (|has| |#1| (-553 (-473))) ELT) (($ $ (-583 (-1089))) NIL (|has| |#1| (-553 (-473))) ELT) (($ $) NIL (|has| |#1| (-553 (-473))) ELT) (($ $ (-86) $ (-1089)) 363 (|has| |#1| (-553 (-473))) ELT) (($ $ (-583 (-86)) (-583 $) (-1089)) 362 (|has| |#1| (-553 (-473))) ELT) (($ $ (-583 (-1089)) (-583 (-694)) (-583 (-1 $ $))) NIL (|has| |#1| (-961)) ELT) (($ $ (-583 (-1089)) (-583 (-694)) (-583 (-1 $ (-583 $)))) NIL (|has| |#1| (-961)) ELT) (($ $ (-1089) (-694) (-1 $ (-583 $))) NIL (|has| |#1| (-961)) ELT) (($ $ (-1089) (-694) (-1 $ $)) NIL (|has| |#1| (-961)) ELT)) (-1606 (((-694) $) NIL (|has| |#1| (-495)) ELT)) (-2255 (($ $) 238 (|has| |#1| (-495)) ELT)) (-3799 (($ (-86) $) NIL T ELT) (($ (-86) $ $) NIL T ELT) (($ (-86) $ $ $) NIL T ELT) (($ (-86) $ $ $ $) NIL T ELT) (($ (-86) (-583 $)) NIL T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL (|has| |#1| (-495)) ELT)) (-1602 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2256 (($ $) 248 (|has| |#1| (-495)) ELT)) (-3384 (($ $) 199 (|has| |#1| (-495)) ELT)) (-3757 (($ $ (-1089)) NIL (|has| |#1| (-961)) ELT) (($ $ (-583 (-1089))) NIL (|has| |#1| (-961)) ELT) (($ $ (-1089) (-694)) NIL (|has| |#1| (-961)) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (|has| |#1| (-961)) ELT)) (-2995 (($ $) 74 (|has| |#1| (-495)) ELT)) (-2997 (((-1038 |#1| (-550 $)) $) 92 (|has| |#1| (-495)) ELT)) (-3185 (($ $) 314 (|has| $ (-961)) ELT)) (-3494 (($ $) 176 (|has| |#1| (-495)) ELT)) (-3635 (($ $) 152 (|has| |#1| (-495)) ELT)) (-3492 (($ $) 172 (|has| |#1| (-495)) ELT)) (-3634 (($ $) 148 (|has| |#1| (-495)) ELT)) (-3490 (($ $) 168 (|has| |#1| (-495)) ELT)) (-3633 (($ $) 144 (|has| |#1| (-495)) ELT)) (-3971 (((-800 (-484)) $) NIL (|has| |#1| (-553 (-800 (-484)))) ELT) (((-800 (-329)) $) NIL (|has| |#1| (-553 (-800 (-329)))) ELT) (($ (-347 $)) NIL (|has| |#1| (-495)) ELT) (((-473) $) 360 (|has| |#1| (-553 (-473))) ELT)) (-3009 (($ $ $) NIL (|has| |#1| (-412)) ELT)) (-2435 (($ $ $) NIL (|has| |#1| (-412)) ELT)) (-3945 (((-772) $) 432 T ELT) (($ (-550 $)) 423 T ELT) (($ (-1089)) 378 T ELT) (($ |#1|) 334 T ELT) (($ $) NIL (|has| |#1| (-495)) ELT) (($ (-48)) 309 (-12 (|has| |#1| (-495)) (|has| |#1| (-950 (-484)))) ELT) (($ (-1038 |#1| (-550 $))) 94 (|has| |#1| (-961)) ELT) (($ (-349 |#1|)) NIL (|has| |#1| (-495)) ELT) (($ (-857 (-349 |#1|))) NIL (|has| |#1| (-495)) ELT) (($ (-349 (-857 (-349 |#1|)))) NIL (|has| |#1| (-495)) ELT) (($ (-349 (-857 |#1|))) NIL (|has| |#1| (-495)) ELT) (($ (-857 |#1|)) NIL (|has| |#1| (-961)) ELT) (($ (-484)) 36 (OR (|has| |#1| (-950 (-484))) (|has| |#1| (-961))) ELT) (($ (-349 (-484))) NIL (OR (|has| |#1| (-495)) (|has| |#1| (-950 (-349 (-484))))) ELT)) (-2702 (((-632 $) $) NIL (|has| |#1| (-118)) ELT)) (-3126 (((-694)) NIL (|has| |#1| (-961)) CONST)) (-2590 (($ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3101 (($ $ $) 219 (|has| |#1| (-495)) ELT)) (-3388 (($ $ $) 205 (|has| |#1| (-495)) ELT)) (-3390 (($ $ $) 209 (|has| |#1| (-495)) ELT)) (-3387 (($ $ $) 203 (|has| |#1| (-495)) ELT)) (-3389 (($ $ $) 207 (|has| |#1| (-495)) ELT)) (-2254 (((-85) (-86)) 10 T ELT)) (-1264 (((-85) $ $) 85 T ELT)) (-3497 (($ $) 182 (|has| |#1| (-495)) ELT)) (-3485 (($ $) 158 (|has| |#1| (-495)) ELT)) (-2062 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-3495 (($ $) 178 (|has| |#1| (-495)) ELT)) (-3483 (($ $) 154 (|has| |#1| (-495)) ELT)) (-3499 (($ $) 186 (|has| |#1| (-495)) ELT)) (-3487 (($ $) 162 (|has| |#1| (-495)) ELT)) (-1794 (($ (-1089) $) NIL T ELT) (($ (-1089) $ $) NIL T ELT) (($ (-1089) $ $ $) NIL T ELT) (($ (-1089) $ $ $ $) NIL T ELT) (($ (-1089) (-583 $)) NIL T ELT)) (-3125 (((-85) $ $) NIL (|has| |#1| (-961)) ELT)) (-3392 (($ $) 213 (|has| |#1| (-495)) ELT)) (-3391 (($ $) 211 (|has| |#1| (-495)) ELT)) (-3500 (($ $) 188 (|has| |#1| (-495)) ELT)) (-3488 (($ $) 164 (|has| |#1| (-495)) ELT)) (-3498 (($ $) 184 (|has| |#1| (-495)) ELT)) (-3486 (($ $) 160 (|has| |#1| (-495)) ELT)) (-3496 (($ $) 180 (|has| |#1| (-495)) ELT)) (-3484 (($ $) 156 (|has| |#1| (-495)) ELT)) (-3382 (($ $) 191 (|has| |#1| (-495)) ELT)) (-2660 (($) 23 (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-580 (-484))) (|has| |#1| (-961)))) CONST)) (-2259 (($ $) 242 (|has| |#1| (-495)) ELT)) (-2666 (($) 25 (|has| |#1| (-1025)) CONST)) (-3386 (($ $) 193 (|has| |#1| (-495)) ELT) (($ $ $) 195 (|has| |#1| (-495)) ELT)) (-2260 (($ $) 240 (|has| |#1| (-495)) ELT)) (-2669 (($ $ (-1089)) NIL (|has| |#1| (-961)) ELT) (($ $ (-583 (-1089))) NIL (|has| |#1| (-961)) ELT) (($ $ (-1089) (-694)) NIL (|has| |#1| (-961)) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (|has| |#1| (-961)) ELT)) (-2258 (($ $) 244 (|has| |#1| (-495)) ELT)) (-3383 (($ $ $) 197 (|has| |#1| (-495)) ELT)) (-3056 (((-85) $ $) 87 T ELT)) (-3948 (($ (-1038 |#1| (-550 $)) (-1038 |#1| (-550 $))) 105 (|has| |#1| (-495)) ELT) (($ $ $) 44 (OR (|has| |#1| (-412)) (|has| |#1| (-495))) ELT)) (-3836 (($ $ $) 42 (OR (|has| |#1| (-21)) (-12 (|has| |#1| (-580 (-484))) (|has| |#1| (-961)))) ELT) (($ $) 31 (OR (|has| |#1| (-21)) (-12 (|has| |#1| (-580 (-484))) (|has| |#1| (-961)))) ELT)) (-3838 (($ $ $) 40 (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-580 (-484))) (|has| |#1| (-961)))) ELT)) (** (($ $ $) 65 (|has| |#1| (-495)) ELT) (($ $ (-349 (-484))) 311 (|has| |#1| (-495)) ELT) (($ $ (-484)) 79 (OR (|has| |#1| (-412)) (|has| |#1| (-495))) ELT) (($ $ (-694)) 75 (|has| |#1| (-1025)) ELT) (($ $ (-830)) 83 (|has| |#1| (-1025)) ELT)) (* (($ (-349 (-484)) $) NIL (|has| |#1| (-495)) ELT) (($ $ (-349 (-484))) NIL (|has| |#1| (-495)) ELT) (($ $ |#1|) NIL (|has| |#1| (-146)) ELT) (($ |#1| $) NIL (|has| |#1| (-961)) ELT) (($ $ $) 38 (|has| |#1| (-1025)) ELT) (($ (-484) $) 34 (OR (|has| |#1| (-21)) (-12 (|has| |#1| (-580 (-484))) (|has| |#1| (-961)))) ELT) (($ (-694) $) NIL (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-580 (-484))) (|has| |#1| (-961)))) ELT) (($ (-830) $) NIL (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-580 (-484))) (|has| |#1| (-961)))) ELT))) +(((-265 |#1|) (-13 (-363 |#1|) (-10 -8 (IF (|has| |#1| (-495)) (PROGN (-6 (-29 |#1|)) (-6 (-1114)) (-6 (-133)) (-6 (-569)) (-6 (-1052)) (-15 -3841 ($ $)) (-15 -1609 ((-85) $)) (-15 -1608 ($ $ (-484))) (IF (|has| |#1| (-391)) (PROGN (-15 -2706 ((-347 (-1084 $)) (-1084 $))) (-15 -2707 ((-347 (-1084 $)) (-1084 $)))) |%noBranch|) (IF (|has| |#1| (-950 (-484))) (-6 (-950 (-48))) |%noBranch|)) |%noBranch|))) (-1013)) (T -265)) +((-3841 (*1 *1 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-495)) (-4 *2 (-1013)))) (-1609 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-265 *3)) (-4 *3 (-495)) (-4 *3 (-1013)))) (-1608 (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-265 *3)) (-4 *3 (-495)) (-4 *3 (-1013)))) (-2706 (*1 *2 *3) (-12 (-5 *2 (-347 (-1084 *1))) (-5 *1 (-265 *4)) (-5 *3 (-1084 *1)) (-4 *4 (-391)) (-4 *4 (-495)) (-4 *4 (-1013)))) (-2707 (*1 *2 *3) (-12 (-5 *2 (-347 (-1084 *1))) (-5 *1 (-265 *4)) (-5 *3 (-1084 *1)) (-4 *4 (-391)) (-4 *4 (-495)) (-4 *4 (-1013))))) +((-3957 (((-265 |#2|) (-1 |#2| |#1|) (-265 |#1|)) 13 T ELT))) +(((-266 |#1| |#2|) (-10 -7 (-15 -3957 ((-265 |#2|) (-1 |#2| |#1|) (-265 |#1|)))) (-1013) (-1013)) (T -266)) +((-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-265 *5)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-5 *2 (-265 *6)) (-5 *1 (-266 *5 *6))))) +((-3728 (((-51) |#2| (-249 |#2|) (-694)) 40 T ELT) (((-51) |#2| (-249 |#2|)) 32 T ELT) (((-51) |#2| (-694)) 35 T ELT) (((-51) |#2|) 33 T ELT) (((-51) (-1089)) 26 T ELT)) (-3817 (((-51) |#2| (-249 |#2|) (-349 (-484))) 59 T ELT) (((-51) |#2| (-249 |#2|)) 56 T ELT) (((-51) |#2| (-349 (-484))) 58 T ELT) (((-51) |#2|) 57 T ELT) (((-51) (-1089)) 55 T ELT)) (-3781 (((-51) |#2| (-249 |#2|) (-349 (-484))) 54 T ELT) (((-51) |#2| (-249 |#2|)) 51 T ELT) (((-51) |#2| (-349 (-484))) 53 T ELT) (((-51) |#2|) 52 T ELT) (((-51) (-1089)) 50 T ELT)) (-3778 (((-51) |#2| (-249 |#2|) (-484)) 47 T ELT) (((-51) |#2| (-249 |#2|)) 44 T ELT) (((-51) |#2| (-484)) 46 T ELT) (((-51) |#2|) 45 T ELT) (((-51) (-1089)) 43 T ELT))) +(((-267 |#1| |#2|) (-10 -7 (-15 -3728 ((-51) (-1089))) (-15 -3728 ((-51) |#2|)) (-15 -3728 ((-51) |#2| (-694))) (-15 -3728 ((-51) |#2| (-249 |#2|))) (-15 -3728 ((-51) |#2| (-249 |#2|) (-694))) (-15 -3778 ((-51) (-1089))) (-15 -3778 ((-51) |#2|)) (-15 -3778 ((-51) |#2| (-484))) (-15 -3778 ((-51) |#2| (-249 |#2|))) (-15 -3778 ((-51) |#2| (-249 |#2|) (-484))) (-15 -3781 ((-51) (-1089))) (-15 -3781 ((-51) |#2|)) (-15 -3781 ((-51) |#2| (-349 (-484)))) (-15 -3781 ((-51) |#2| (-249 |#2|))) (-15 -3781 ((-51) |#2| (-249 |#2|) (-349 (-484)))) (-15 -3817 ((-51) (-1089))) (-15 -3817 ((-51) |#2|)) (-15 -3817 ((-51) |#2| (-349 (-484)))) (-15 -3817 ((-51) |#2| (-249 |#2|))) (-15 -3817 ((-51) |#2| (-249 |#2|) (-349 (-484))))) (-13 (-391) (-950 (-484)) (-580 (-484))) (-13 (-27) (-1114) (-363 |#1|))) (T -267)) +((-3817 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-249 *3)) (-5 *5 (-349 (-484))) (-4 *3 (-13 (-27) (-1114) (-363 *6))) (-4 *6 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-267 *6 *3)))) (-3817 (*1 *2 *3 *4) (-12 (-5 *4 (-249 *3)) (-4 *3 (-13 (-27) (-1114) (-363 *5))) (-4 *5 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-267 *5 *3)))) (-3817 (*1 *2 *3 *4) (-12 (-5 *4 (-349 (-484))) (-4 *5 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-267 *5 *3)) (-4 *3 (-13 (-27) (-1114) (-363 *5))))) (-3817 (*1 *2 *3) (-12 (-4 *4 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-267 *4 *3)) (-4 *3 (-13 (-27) (-1114) (-363 *4))))) (-3817 (*1 *2 *3) (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-267 *4 *5)) (-4 *5 (-13 (-27) (-1114) (-363 *4))))) (-3781 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-249 *3)) (-5 *5 (-349 (-484))) (-4 *3 (-13 (-27) (-1114) (-363 *6))) (-4 *6 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-267 *6 *3)))) (-3781 (*1 *2 *3 *4) (-12 (-5 *4 (-249 *3)) (-4 *3 (-13 (-27) (-1114) (-363 *5))) (-4 *5 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-267 *5 *3)))) (-3781 (*1 *2 *3 *4) (-12 (-5 *4 (-349 (-484))) (-4 *5 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-267 *5 *3)) (-4 *3 (-13 (-27) (-1114) (-363 *5))))) (-3781 (*1 *2 *3) (-12 (-4 *4 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-267 *4 *3)) (-4 *3 (-13 (-27) (-1114) (-363 *4))))) (-3781 (*1 *2 *3) (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-267 *4 *5)) (-4 *5 (-13 (-27) (-1114) (-363 *4))))) (-3778 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-249 *3)) (-4 *3 (-13 (-27) (-1114) (-363 *6))) (-4 *6 (-13 (-391) (-950 *5) (-580 *5))) (-5 *5 (-484)) (-5 *2 (-51)) (-5 *1 (-267 *6 *3)))) (-3778 (*1 *2 *3 *4) (-12 (-5 *4 (-249 *3)) (-4 *3 (-13 (-27) (-1114) (-363 *5))) (-4 *5 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-267 *5 *3)))) (-3778 (*1 *2 *3 *4) (-12 (-5 *4 (-484)) (-4 *5 (-13 (-391) (-950 *4) (-580 *4))) (-5 *2 (-51)) (-5 *1 (-267 *5 *3)) (-4 *3 (-13 (-27) (-1114) (-363 *5))))) (-3778 (*1 *2 *3) (-12 (-4 *4 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-267 *4 *3)) (-4 *3 (-13 (-27) (-1114) (-363 *4))))) (-3778 (*1 *2 *3) (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-267 *4 *5)) (-4 *5 (-13 (-27) (-1114) (-363 *4))))) (-3728 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-249 *3)) (-5 *5 (-694)) (-4 *3 (-13 (-27) (-1114) (-363 *6))) (-4 *6 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-267 *6 *3)))) (-3728 (*1 *2 *3 *4) (-12 (-5 *4 (-249 *3)) (-4 *3 (-13 (-27) (-1114) (-363 *5))) (-4 *5 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-267 *5 *3)))) (-3728 (*1 *2 *3 *4) (-12 (-5 *4 (-694)) (-4 *5 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-267 *5 *3)) (-4 *3 (-13 (-27) (-1114) (-363 *5))))) (-3728 (*1 *2 *3) (-12 (-4 *4 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-267 *4 *3)) (-4 *3 (-13 (-27) (-1114) (-363 *4))))) (-3728 (*1 *2 *3) (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-267 *4 *5)) (-4 *5 (-13 (-27) (-1114) (-363 *4)))))) +((-1610 (((-51) |#2| (-86) (-249 |#2|) (-583 |#2|)) 89 T ELT) (((-51) |#2| (-86) (-249 |#2|) (-249 |#2|)) 85 T ELT) (((-51) |#2| (-86) (-249 |#2|) |#2|) 87 T ELT) (((-51) (-249 |#2|) (-86) (-249 |#2|) |#2|) 88 T ELT) (((-51) (-583 |#2|) (-583 (-86)) (-249 |#2|) (-583 (-249 |#2|))) 81 T ELT) (((-51) (-583 |#2|) (-583 (-86)) (-249 |#2|) (-583 |#2|)) 83 T ELT) (((-51) (-583 (-249 |#2|)) (-583 (-86)) (-249 |#2|) (-583 |#2|)) 84 T ELT) (((-51) (-583 (-249 |#2|)) (-583 (-86)) (-249 |#2|) (-583 (-249 |#2|))) 82 T ELT) (((-51) (-249 |#2|) (-86) (-249 |#2|) (-583 |#2|)) 90 T ELT) (((-51) (-249 |#2|) (-86) (-249 |#2|) (-249 |#2|)) 86 T ELT))) +(((-268 |#1| |#2|) (-10 -7 (-15 -1610 ((-51) (-249 |#2|) (-86) (-249 |#2|) (-249 |#2|))) (-15 -1610 ((-51) (-249 |#2|) (-86) (-249 |#2|) (-583 |#2|))) (-15 -1610 ((-51) (-583 (-249 |#2|)) (-583 (-86)) (-249 |#2|) (-583 (-249 |#2|)))) (-15 -1610 ((-51) (-583 (-249 |#2|)) (-583 (-86)) (-249 |#2|) (-583 |#2|))) (-15 -1610 ((-51) (-583 |#2|) (-583 (-86)) (-249 |#2|) (-583 |#2|))) (-15 -1610 ((-51) (-583 |#2|) (-583 (-86)) (-249 |#2|) (-583 (-249 |#2|)))) (-15 -1610 ((-51) (-249 |#2|) (-86) (-249 |#2|) |#2|)) (-15 -1610 ((-51) |#2| (-86) (-249 |#2|) |#2|)) (-15 -1610 ((-51) |#2| (-86) (-249 |#2|) (-249 |#2|))) (-15 -1610 ((-51) |#2| (-86) (-249 |#2|) (-583 |#2|)))) (-13 (-495) (-553 (-473))) (-363 |#1|)) (T -268)) +((-1610 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-86)) (-5 *5 (-249 *3)) (-5 *6 (-583 *3)) (-4 *3 (-363 *7)) (-4 *7 (-13 (-495) (-553 (-473)))) (-5 *2 (-51)) (-5 *1 (-268 *7 *3)))) (-1610 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-86)) (-5 *5 (-249 *3)) (-4 *3 (-363 *6)) (-4 *6 (-13 (-495) (-553 (-473)))) (-5 *2 (-51)) (-5 *1 (-268 *6 *3)))) (-1610 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-86)) (-5 *5 (-249 *3)) (-4 *3 (-363 *6)) (-4 *6 (-13 (-495) (-553 (-473)))) (-5 *2 (-51)) (-5 *1 (-268 *6 *3)))) (-1610 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-249 *5)) (-5 *4 (-86)) (-4 *5 (-363 *6)) (-4 *6 (-13 (-495) (-553 (-473)))) (-5 *2 (-51)) (-5 *1 (-268 *6 *5)))) (-1610 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 (-86))) (-5 *6 (-583 (-249 *8))) (-4 *8 (-363 *7)) (-5 *5 (-249 *8)) (-4 *7 (-13 (-495) (-553 (-473)))) (-5 *2 (-51)) (-5 *1 (-268 *7 *8)))) (-1610 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-583 *7)) (-5 *4 (-583 (-86))) (-5 *5 (-249 *7)) (-4 *7 (-363 *6)) (-4 *6 (-13 (-495) (-553 (-473)))) (-5 *2 (-51)) (-5 *1 (-268 *6 *7)))) (-1610 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-583 (-249 *8))) (-5 *4 (-583 (-86))) (-5 *5 (-249 *8)) (-5 *6 (-583 *8)) (-4 *8 (-363 *7)) (-4 *7 (-13 (-495) (-553 (-473)))) (-5 *2 (-51)) (-5 *1 (-268 *7 *8)))) (-1610 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-583 (-249 *7))) (-5 *4 (-583 (-86))) (-5 *5 (-249 *7)) (-4 *7 (-363 *6)) (-4 *6 (-13 (-495) (-553 (-473)))) (-5 *2 (-51)) (-5 *1 (-268 *6 *7)))) (-1610 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-249 *7)) (-5 *4 (-86)) (-5 *5 (-583 *7)) (-4 *7 (-363 *6)) (-4 *6 (-13 (-495) (-553 (-473)))) (-5 *2 (-51)) (-5 *1 (-268 *6 *7)))) (-1610 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-249 *6)) (-5 *4 (-86)) (-4 *6 (-363 *5)) (-4 *5 (-13 (-495) (-553 (-473)))) (-5 *2 (-51)) (-5 *1 (-268 *5 *6))))) +((-1612 (((-1124 (-838)) (-265 (-484)) (-265 (-484)) (-265 (-484)) (-1 (-179) (-179)) (-1001 (-179)) (-179) (-484) (-1072)) 67 T ELT) (((-1124 (-838)) (-265 (-484)) (-265 (-484)) (-265 (-484)) (-1 (-179) (-179)) (-1001 (-179)) (-179) (-484)) 68 T ELT) (((-1124 (-838)) (-265 (-484)) (-265 (-484)) (-265 (-484)) (-1 (-179) (-179)) (-1001 (-179)) (-1 (-179) (-179)) (-484) (-1072)) 64 T ELT) (((-1124 (-838)) (-265 (-484)) (-265 (-484)) (-265 (-484)) (-1 (-179) (-179)) (-1001 (-179)) (-1 (-179) (-179)) (-484)) 65 T ELT)) (-1611 (((-1 (-179) (-179)) (-179)) 66 T ELT))) +(((-269) (-10 -7 (-15 -1611 ((-1 (-179) (-179)) (-179))) (-15 -1612 ((-1124 (-838)) (-265 (-484)) (-265 (-484)) (-265 (-484)) (-1 (-179) (-179)) (-1001 (-179)) (-1 (-179) (-179)) (-484))) (-15 -1612 ((-1124 (-838)) (-265 (-484)) (-265 (-484)) (-265 (-484)) (-1 (-179) (-179)) (-1001 (-179)) (-1 (-179) (-179)) (-484) (-1072))) (-15 -1612 ((-1124 (-838)) (-265 (-484)) (-265 (-484)) (-265 (-484)) (-1 (-179) (-179)) (-1001 (-179)) (-179) (-484))) (-15 -1612 ((-1124 (-838)) (-265 (-484)) (-265 (-484)) (-265 (-484)) (-1 (-179) (-179)) (-1001 (-179)) (-179) (-484) (-1072))))) (T -269)) +((-1612 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-265 (-484))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1001 (-179))) (-5 *6 (-179)) (-5 *7 (-484)) (-5 *8 (-1072)) (-5 *2 (-1124 (-838))) (-5 *1 (-269)))) (-1612 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-265 (-484))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1001 (-179))) (-5 *6 (-179)) (-5 *7 (-484)) (-5 *2 (-1124 (-838))) (-5 *1 (-269)))) (-1612 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-265 (-484))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1001 (-179))) (-5 *6 (-484)) (-5 *7 (-1072)) (-5 *2 (-1124 (-838))) (-5 *1 (-269)))) (-1612 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-265 (-484))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1001 (-179))) (-5 *6 (-484)) (-5 *2 (-1124 (-838))) (-5 *1 (-269)))) (-1611 (*1 *2 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *1 (-269)) (-5 *3 (-179))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) 26 T ELT)) (-3081 (((-583 (-994)) $) NIL T ELT)) (-3830 (((-1089) $) NIL T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2063 (($ $) NIL (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-3770 (($ $ (-349 (-484))) NIL T ELT) (($ $ (-349 (-484)) (-349 (-484))) NIL T ELT)) (-3773 (((-1068 (-2 (|:| |k| (-349 (-484))) (|:| |c| |#1|))) $) 20 T ELT)) (-3491 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3638 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3774 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3970 (((-347 $) $) NIL (|has| |#1| (-312)) ELT)) (-3037 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-1607 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3489 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3637 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3817 (($ (-694) (-1068 (-2 (|:| |k| (-349 (-484))) (|:| |c| |#1|)))) NIL T ELT)) (-3493 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3636 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3723 (($) NIL T CONST)) (-2564 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3958 (($ $) 36 T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-2563 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) NIL (|has| |#1| (-312)) ELT)) (-3722 (((-85) $) NIL (|has| |#1| (-312)) ELT)) (-3186 (((-85) $) NIL T ELT)) (-2892 (((-85) $) NIL T ELT)) (-3626 (($) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3771 (((-349 (-484)) $) NIL T ELT) (((-349 (-484)) $ (-349 (-484))) 16 T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-3011 (($ $ (-484)) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3776 (($ $ (-830)) NIL T ELT) (($ $ (-349 (-484))) NIL T ELT)) (-1604 (((-3 (-583 $) #1#) (-583 $) $) NIL (|has| |#1| (-312)) ELT)) (-3936 (((-85) $) NIL T ELT)) (-2893 (($ |#1| (-349 (-484))) NIL T ELT) (($ $ (-994) (-349 (-484))) NIL T ELT) (($ $ (-583 (-994)) (-583 (-349 (-484)))) NIL T ELT)) (-2531 (($ $ $) NIL T ELT)) (-2857 (($ $ $) NIL T ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3941 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2894 (($ $) NIL T ELT)) (-3174 ((|#1| $) NIL T ELT)) (-1890 (($ (-583 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2484 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3811 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $ (-1089)) NIL (OR (-12 (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-29 (-484))) (|has| |#1| (-871)) (|has| |#1| (-1114))) (-12 (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-15 -3811 (|#1| |#1| (-1089)))) (|has| |#1| (-15 -3081 ((-583 (-1089)) |#1|))))) ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) NIL (|has| |#1| (-312)) ELT)) (-3144 (($ (-583 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3731 (((-347 $) $) NIL (|has| |#1| (-312)) ELT)) (-1605 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3768 (($ $ (-349 (-484))) NIL T ELT)) (-3465 (((-3 $ #1#) $ $) NIL (|has| |#1| (-495)) ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL (|has| |#1| (-312)) ELT)) (-1613 (((-349 (-484)) $) 17 T ELT)) (-3090 (($ (-1159 |#1| |#2| |#3|)) 11 T ELT)) (-2401 (((-1159 |#1| |#2| |#3|) $) 12 T ELT)) (-3942 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3767 (((-1068 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-349 (-484))))) ELT)) (-1606 (((-694) $) NIL (|has| |#1| (-312)) ELT)) (-3799 ((|#1| $ (-349 (-484))) NIL T ELT) (($ $ $) NIL (|has| (-349 (-484)) (-1025)) ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3757 (($ $ (-1089)) NIL (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))) ELT) (($ $ (-583 (-1089))) NIL (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))) ELT) (($ $ (-1089) (-694)) NIL (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|))) ELT) (($ $ (-694)) NIL (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|))) ELT)) (-3947 (((-349 (-484)) $) NIL T ELT)) (-3494 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3635 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3492 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3634 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3490 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3633 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2891 (($ $) 10 T ELT)) (-3945 (((-772) $) 42 T ELT) (($ (-484)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT) (($ (-349 (-484))) NIL (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $) NIL (|has| |#1| (-495)) ELT)) (-3676 ((|#1| $ (-349 (-484))) 34 T ELT)) (-2702 (((-632 $) $) NIL (|has| |#1| (-118)) ELT)) (-3126 (((-694)) NIL T CONST)) (-3772 ((|#1| $) NIL T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3497 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3485 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2062 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-3495 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3483 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3499 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3487 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3769 ((|#1| $ (-349 (-484))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-349 (-484))))) (|has| |#1| (-15 -3945 (|#1| (-1089))))) ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-3500 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3488 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3498 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3486 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3496 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3484 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2660 (($) NIL T CONST)) (-2666 (($) NIL T CONST)) (-2669 (($ $ (-1089)) NIL (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))) ELT) (($ $ (-583 (-1089))) NIL (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))) ELT) (($ $ (-1089) (-694)) NIL (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|))) ELT) (($ $ (-694)) NIL (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|))) ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 28 T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) 37 T ELT)) (-3948 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $ (-349 (-484))) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-349 (-484)) $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $ (-349 (-484))) NIL (|has| |#1| (-38 (-349 (-484)))) ELT))) +(((-270 |#1| |#2| |#3|) (-13 (-1161 |#1|) (-716) (-10 -8 (-15 -3090 ($ (-1159 |#1| |#2| |#3|))) (-15 -2401 ((-1159 |#1| |#2| |#3|) $)) (-15 -1613 ((-349 (-484)) $)))) (-312) (-1089) |#1|) (T -270)) +((-3090 (*1 *1 *2) (-12 (-5 *2 (-1159 *3 *4 *5)) (-4 *3 (-312)) (-14 *4 (-1089)) (-14 *5 *3) (-5 *1 (-270 *3 *4 *5)))) (-2401 (*1 *2 *1) (-12 (-5 *2 (-1159 *3 *4 *5)) (-5 *1 (-270 *3 *4 *5)) (-4 *3 (-312)) (-14 *4 (-1089)) (-14 *5 *3))) (-1613 (*1 *2 *1) (-12 (-5 *2 (-349 (-484))) (-5 *1 (-270 *3 *4 *5)) (-4 *3 (-312)) (-14 *4 (-1089)) (-14 *5 *3)))) +((-3011 (((-2 (|:| -2401 (-694)) (|:| -3953 |#1|) (|:| |radicand| (-583 |#1|))) (-347 |#1|) (-694)) 35 T ELT)) (-3941 (((-583 (-2 (|:| -3953 (-694)) (|:| |logand| |#1|))) (-347 |#1|)) 40 T ELT))) +(((-271 |#1|) (-10 -7 (-15 -3011 ((-2 (|:| -2401 (-694)) (|:| -3953 |#1|) (|:| |radicand| (-583 |#1|))) (-347 |#1|) (-694))) (-15 -3941 ((-583 (-2 (|:| -3953 (-694)) (|:| |logand| |#1|))) (-347 |#1|)))) (-495)) (T -271)) +((-3941 (*1 *2 *3) (-12 (-5 *3 (-347 *4)) (-4 *4 (-495)) (-5 *2 (-583 (-2 (|:| -3953 (-694)) (|:| |logand| *4)))) (-5 *1 (-271 *4)))) (-3011 (*1 *2 *3 *4) (-12 (-5 *3 (-347 *5)) (-4 *5 (-495)) (-5 *2 (-2 (|:| -2401 (-694)) (|:| -3953 *5) (|:| |radicand| (-583 *5)))) (-5 *1 (-271 *5)) (-5 *4 (-694))))) +((-3081 (((-583 |#2|) (-1084 |#4|)) 45 T ELT)) (-1618 ((|#3| (-484)) 48 T ELT)) (-1616 (((-1084 |#4|) (-1084 |#3|)) 30 T ELT)) (-1617 (((-1084 |#4|) (-1084 |#4|) (-484)) 67 T ELT)) (-1615 (((-1084 |#3|) (-1084 |#4|)) 21 T ELT)) (-3947 (((-583 (-694)) (-1084 |#4|) (-583 |#2|)) 41 T ELT)) (-1614 (((-1084 |#3|) (-1084 |#4|) (-583 |#2|) (-583 |#3|)) 35 T ELT))) +(((-272 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1614 ((-1084 |#3|) (-1084 |#4|) (-583 |#2|) (-583 |#3|))) (-15 -3947 ((-583 (-694)) (-1084 |#4|) (-583 |#2|))) (-15 -3081 ((-583 |#2|) (-1084 |#4|))) (-15 -1615 ((-1084 |#3|) (-1084 |#4|))) (-15 -1616 ((-1084 |#4|) (-1084 |#3|))) (-15 -1617 ((-1084 |#4|) (-1084 |#4|) (-484))) (-15 -1618 (|#3| (-484)))) (-717) (-756) (-961) (-861 |#3| |#1| |#2|)) (T -272)) +((-1618 (*1 *2 *3) (-12 (-5 *3 (-484)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *2 (-961)) (-5 *1 (-272 *4 *5 *2 *6)) (-4 *6 (-861 *2 *4 *5)))) (-1617 (*1 *2 *2 *3) (-12 (-5 *2 (-1084 *7)) (-5 *3 (-484)) (-4 *7 (-861 *6 *4 *5)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-961)) (-5 *1 (-272 *4 *5 *6 *7)))) (-1616 (*1 *2 *3) (-12 (-5 *3 (-1084 *6)) (-4 *6 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-1084 *7)) (-5 *1 (-272 *4 *5 *6 *7)) (-4 *7 (-861 *6 *4 *5)))) (-1615 (*1 *2 *3) (-12 (-5 *3 (-1084 *7)) (-4 *7 (-861 *6 *4 *5)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-961)) (-5 *2 (-1084 *6)) (-5 *1 (-272 *4 *5 *6 *7)))) (-3081 (*1 *2 *3) (-12 (-5 *3 (-1084 *7)) (-4 *7 (-861 *6 *4 *5)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-961)) (-5 *2 (-583 *5)) (-5 *1 (-272 *4 *5 *6 *7)))) (-3947 (*1 *2 *3 *4) (-12 (-5 *3 (-1084 *8)) (-5 *4 (-583 *6)) (-4 *6 (-756)) (-4 *8 (-861 *7 *5 *6)) (-4 *5 (-717)) (-4 *7 (-961)) (-5 *2 (-583 (-694))) (-5 *1 (-272 *5 *6 *7 *8)))) (-1614 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1084 *9)) (-5 *4 (-583 *7)) (-5 *5 (-583 *8)) (-4 *7 (-756)) (-4 *8 (-961)) (-4 *9 (-861 *8 *6 *7)) (-4 *6 (-717)) (-5 *2 (-1084 *8)) (-5 *1 (-272 *6 *7 *8 *9))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) 19 T ELT)) (-3773 (((-583 (-2 (|:| |gen| |#1|) (|:| -3942 (-484)))) $) 21 T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3136 (((-694) $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 |#1| #1#) $) NIL T ELT)) (-3156 ((|#1| $) NIL T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2299 ((|#1| $ (-484)) NIL T ELT)) (-1621 (((-484) $ (-484)) NIL T ELT)) (-2531 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2857 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2290 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1620 (($ (-1 (-484) (-484)) $) 11 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-1619 (($ $ $) NIL (|has| (-484) (-716)) ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-3676 (((-484) |#1| $) NIL T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2660 (($) NIL T CONST)) (-2566 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2567 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2685 (((-85) $ $) 30 (|has| |#1| (-756)) ELT)) (-3836 (($ $) 12 T ELT) (($ $ $) 29 T ELT)) (-3838 (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ (-484)) NIL T ELT) (($ (-484) |#1|) 28 T ELT))) +(((-273 |#1|) (-13 (-21) (-654 (-484)) (-274 |#1| (-484)) (-10 -7 (IF (|has| |#1| (-756)) (-6 (-756)) |%noBranch|))) (-1013)) (T -273)) +NIL +((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-3773 (((-583 (-2 (|:| |gen| |#1|) (|:| -3942 |#2|))) $) 34 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3136 (((-694) $) 35 T ELT)) (-3723 (($) 23 T CONST)) (-3157 (((-3 |#1| "failed") $) 39 T ELT)) (-3156 ((|#1| $) 40 T ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2299 ((|#1| $ (-484)) 32 T ELT)) (-1621 ((|#2| $ (-484)) 33 T ELT)) (-2290 (($ (-1 |#1| |#1|) $) 29 T ELT)) (-1620 (($ (-1 |#2| |#2|) $) 30 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-1619 (($ $ $) 28 (|has| |#2| (-716)) ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3945 (((-772) $) 13 T ELT) (($ |#1|) 38 T ELT)) (-3676 ((|#2| |#1| $) 31 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-2660 (($) 24 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3838 (($ $ $) 18 T ELT) (($ |#1| $) 37 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ |#2| |#1|) 36 T ELT))) +(((-274 |#1| |#2|) (-113) (-1013) (-104)) (T -274)) +((-3838 (*1 *1 *2 *1) (-12 (-4 *1 (-274 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-104)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-274 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-104)))) (-3136 (*1 *2 *1) (-12 (-4 *1 (-274 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-104)) (-5 *2 (-694)))) (-3773 (*1 *2 *1) (-12 (-4 *1 (-274 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-104)) (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -3942 *4)))))) (-1621 (*1 *2 *1 *3) (-12 (-5 *3 (-484)) (-4 *1 (-274 *4 *2)) (-4 *4 (-1013)) (-4 *2 (-104)))) (-2299 (*1 *2 *1 *3) (-12 (-5 *3 (-484)) (-4 *1 (-274 *2 *4)) (-4 *4 (-104)) (-4 *2 (-1013)))) (-3676 (*1 *2 *3 *1) (-12 (-4 *1 (-274 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-104)))) (-1620 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-274 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-104)))) (-2290 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-274 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-104)))) (-1619 (*1 *1 *1 *1) (-12 (-4 *1 (-274 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-104)) (-4 *3 (-716))))) +(-13 (-104) (-950 |t#1|) (-10 -8 (-15 -3838 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -3136 ((-694) $)) (-15 -3773 ((-583 (-2 (|:| |gen| |t#1|) (|:| -3942 |t#2|))) $)) (-15 -1621 (|t#2| $ (-484))) (-15 -2299 (|t#1| $ (-484))) (-15 -3676 (|t#2| |t#1| $)) (-15 -1620 ($ (-1 |t#2| |t#2|) $)) (-15 -2290 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-716)) (-15 -1619 ($ $ $)) |%noBranch|))) +(((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-555 |#1|) . T) ((-552 (-772)) . T) ((-13) . T) ((-950 |#1|) . T) ((-1013) . T) ((-1128) . T)) +((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-3773 (((-583 (-2 (|:| |gen| |#1|) (|:| -3942 (-694)))) $) NIL T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3136 (((-694) $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 |#1| #1#) $) NIL T ELT)) (-3156 ((|#1| $) NIL T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2299 ((|#1| $ (-484)) NIL T ELT)) (-1621 (((-694) $ (-484)) NIL T ELT)) (-2290 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1620 (($ (-1 (-694) (-694)) $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-1619 (($ $ $) NIL (|has| (-694) (-716)) ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-3676 (((-694) |#1| $) NIL T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2660 (($) NIL T CONST)) (-3056 (((-85) $ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-694) |#1|) NIL T ELT))) +(((-275 |#1|) (-274 |#1| (-694)) (-1013)) (T -275)) +NIL +((-3502 (($ $) 72 T ELT)) (-1623 (($ $ |#2| |#3| $) 14 T ELT)) (-1624 (($ (-1 |#3| |#3|) $) 51 T ELT)) (-1796 (((-85) $) 42 T ELT)) (-1795 ((|#2| $) 44 T ELT)) (-3465 (((-3 $ #1="failed") $ $) NIL T ELT) (((-3 $ #1#) $ |#2|) 64 T ELT)) (-2817 ((|#2| $) 68 T ELT)) (-3816 (((-583 |#2|) $) 56 T ELT)) (-1622 (($ $ $ (-694)) 37 T ELT)) (-3948 (($ $ |#2|) 60 T ELT))) +(((-276 |#1| |#2| |#3|) (-10 -7 (-15 -3502 (|#1| |#1|)) (-15 -2817 (|#2| |#1|)) (-15 -3465 ((-3 |#1| #1="failed") |#1| |#2|)) (-15 -1622 (|#1| |#1| |#1| (-694))) (-15 -1623 (|#1| |#1| |#2| |#3| |#1|)) (-15 -1624 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3816 ((-583 |#2|) |#1|)) (-15 -1795 (|#2| |#1|)) (-15 -1796 ((-85) |#1|)) (-15 -3465 ((-3 |#1| #1#) |#1| |#1|)) (-15 -3948 (|#1| |#1| |#2|))) (-277 |#2| |#3|) (-961) (-716)) (T -276)) +NIL +((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) 71 (|has| |#1| (-495)) ELT)) (-2063 (($ $) 72 (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) 74 (|has| |#1| (-495)) ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3723 (($) 23 T CONST)) (-3157 (((-3 (-484) #1="failed") $) 109 (|has| |#1| (-950 (-484))) ELT) (((-3 (-349 (-484)) #1#) $) 107 (|has| |#1| (-950 (-349 (-484)))) ELT) (((-3 |#1| #1#) $) 104 T ELT)) (-3156 (((-484) $) 108 (|has| |#1| (-950 (-484))) ELT) (((-349 (-484)) $) 106 (|has| |#1| (-950 (-349 (-484)))) ELT) ((|#1| $) 105 T ELT)) (-3958 (($ $) 80 T ELT)) (-3466 (((-3 $ "failed") $) 42 T ELT)) (-3502 (($ $) 93 (|has| |#1| (-391)) ELT)) (-1623 (($ $ |#1| |#2| $) 97 T ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-2420 (((-694) $) 100 T ELT)) (-3936 (((-85) $) 82 T ELT)) (-2893 (($ |#1| |#2|) 81 T ELT)) (-2820 ((|#2| $) 99 T ELT)) (-1624 (($ (-1 |#2| |#2|) $) 98 T ELT)) (-3957 (($ (-1 |#1| |#1|) $) 83 T ELT)) (-2894 (($ $) 85 T ELT)) (-3174 ((|#1| $) 86 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-1796 (((-85) $) 103 T ELT)) (-1795 ((|#1| $) 102 T ELT)) (-3465 (((-3 $ "failed") $ $) 70 (|has| |#1| (-495)) ELT) (((-3 $ "failed") $ |#1|) 95 (|has| |#1| (-495)) ELT)) (-3947 ((|#2| $) 84 T ELT)) (-2817 ((|#1| $) 94 (|has| |#1| (-391)) ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ $) 69 (|has| |#1| (-495)) ELT) (($ |#1|) 67 T ELT) (($ (-349 (-484))) 77 (OR (|has| |#1| (-950 (-349 (-484)))) (|has| |#1| (-38 (-349 (-484))))) ELT)) (-3816 (((-583 |#1|) $) 101 T ELT)) (-3676 ((|#1| $ |#2|) 79 T ELT)) (-2702 (((-632 $) $) 68 (|has| |#1| (-118)) ELT)) (-3126 (((-694)) 40 T CONST)) (-1622 (($ $ $ (-694)) 96 (|has| |#1| (-146)) ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-2062 (((-85) $ $) 73 (|has| |#1| (-495)) ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3948 (($ $ |#1|) 78 (|has| |#1| (-312)) ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 88 T ELT) (($ |#1| $) 87 T ELT) (($ (-349 (-484)) $) 76 (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $ (-349 (-484))) 75 (|has| |#1| (-38 (-349 (-484)))) ELT))) +(((-277 |#1| |#2|) (-113) (-961) (-716)) (T -277)) +((-1796 (*1 *2 *1) (-12 (-4 *1 (-277 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716)) (-5 *2 (-85)))) (-1795 (*1 *2 *1) (-12 (-4 *1 (-277 *2 *3)) (-4 *3 (-716)) (-4 *2 (-961)))) (-3816 (*1 *2 *1) (-12 (-4 *1 (-277 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716)) (-5 *2 (-583 *3)))) (-2420 (*1 *2 *1) (-12 (-4 *1 (-277 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716)) (-5 *2 (-694)))) (-2820 (*1 *2 *1) (-12 (-4 *1 (-277 *3 *2)) (-4 *3 (-961)) (-4 *2 (-716)))) (-1624 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-277 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716)))) (-1623 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-277 *2 *3)) (-4 *2 (-961)) (-4 *3 (-716)))) (-1622 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-277 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716)) (-4 *3 (-146)))) (-3465 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-277 *2 *3)) (-4 *2 (-961)) (-4 *3 (-716)) (-4 *2 (-495)))) (-2817 (*1 *2 *1) (-12 (-4 *1 (-277 *2 *3)) (-4 *3 (-716)) (-4 *2 (-961)) (-4 *2 (-391)))) (-3502 (*1 *1 *1) (-12 (-4 *1 (-277 *2 *3)) (-4 *2 (-961)) (-4 *3 (-716)) (-4 *2 (-391))))) +(-13 (-47 |t#1| |t#2|) (-354 |t#1|) (-10 -8 (-15 -1796 ((-85) $)) (-15 -1795 (|t#1| $)) (-15 -3816 ((-583 |t#1|) $)) (-15 -2420 ((-694) $)) (-15 -2820 (|t#2| $)) (-15 -1624 ($ (-1 |t#2| |t#2|) $)) (-15 -1623 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-146)) (-15 -1622 ($ $ $ (-694))) |%noBranch|) (IF (|has| |t#1| (-495)) (-15 -3465 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-391)) (PROGN (-15 -2817 (|t#1| $)) (-15 -3502 ($ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) |has| |#1| (-495)) ((-72) . T) ((-82 (-349 (-484)) (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-555 (-349 (-484))) OR (|has| |#1| (-950 (-349 (-484)))) (|has| |#1| (-38 (-349 (-484))))) ((-555 (-484)) . T) ((-555 |#1|) . T) ((-555 $) |has| |#1| (-495)) ((-552 (-772)) . T) ((-146) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-246) |has| |#1| (-495)) ((-354 |#1|) . T) ((-495) |has| |#1| (-495)) ((-13) . T) ((-588 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-590 |#1|) . T) ((-590 $) . T) ((-582 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-582 |#1|) |has| |#1| (-146)) ((-582 $) |has| |#1| (-495)) ((-654 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-654 |#1|) |has| |#1| (-146)) ((-654 $) |has| |#1| (-495)) ((-663) . T) ((-950 (-349 (-484))) |has| |#1| (-950 (-349 (-484)))) ((-950 (-484)) |has| |#1| (-950 (-484))) ((-950 |#1|) . T) ((-963 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-963 |#1|) . T) ((-963 $) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-968 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-968 |#1|) . T) ((-968 $) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T)) +((-2568 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2198 (((-1184) $ (-484) (-484)) NIL (|has| $ (-6 -3995)) ELT)) (-1731 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-756)) ELT)) (-1729 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-6 -3995)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-756))) ELT)) (-2909 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-756)) ELT)) (-1986 (((-85) (-85)) NIL T ELT)) (-3787 ((|#1| $ (-484) |#1|) NIL (|has| $ (-6 -3995)) ELT) ((|#1| $ (-1145 (-484)) |#1|) NIL (|has| $ (-6 -3995)) ELT)) (-1569 (($ (-1 (-85) |#1|) $) NIL T ELT)) (-3709 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3723 (($) NIL T CONST)) (-2297 (($ $) NIL (|has| $ (-6 -3995)) ELT)) (-2298 (($ $) NIL T ELT)) (-2368 (($ $) NIL (|has| |#1| (-1013)) ELT)) (-1352 (($ $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-3404 (($ |#1| $) NIL (|has| |#1| (-1013)) ELT) (($ (-1 (-85) |#1|) $) NIL T ELT)) (-3405 (($ |#1| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3841 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3994)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-1575 ((|#1| $ (-484) |#1|) NIL (|has| $ (-6 -3995)) ELT)) (-3112 ((|#1| $ (-484)) NIL T ELT)) (-3418 (((-484) (-1 (-85) |#1|) $) NIL T ELT) (((-484) |#1| $) NIL (|has| |#1| (-1013)) ELT) (((-484) |#1| $ (-484)) NIL (|has| |#1| (-1013)) ELT)) (-1987 (($ $ (-484)) NIL T ELT)) (-1988 (((-694) $) NIL T ELT)) (-2889 (((-583 |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3613 (($ (-694) |#1|) NIL T ELT)) (-2200 (((-484) $) NIL (|has| (-484) (-756)) ELT)) (-2531 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2856 (($ $ $) NIL (|has| |#1| (-756)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT)) (-3517 (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2608 (((-583 |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3245 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-2201 (((-484) $) NIL (|has| (-484) (-756)) ELT)) (-2857 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-1948 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3242 (((-1072) $) NIL (|has| |#1| (-1013)) ELT)) (-3608 (($ $ $ (-484)) NIL T ELT) (($ |#1| $ (-484)) NIL T ELT)) (-2304 (($ |#1| $ (-484)) NIL T ELT) (($ $ $ (-484)) NIL T ELT)) (-2203 (((-583 (-484)) $) NIL T ELT)) (-2204 (((-85) (-484) $) NIL T ELT)) (-3243 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-1989 (($ (-583 |#1|)) NIL T ELT)) (-3800 ((|#1| $) NIL (|has| (-484) (-756)) ELT)) (-1353 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2199 (($ $ |#1|) NIL (|has| $ (-6 -3995)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3767 (($ $ (-583 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1221 (((-85) $ $) NIL T ELT)) (-2202 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-2205 (((-583 |#1|) $) NIL T ELT)) (-3402 (((-85) $) NIL T ELT)) (-3564 (($) NIL T ELT)) (-3799 ((|#1| $ (-484) |#1|) NIL T ELT) ((|#1| $ (-484)) NIL T ELT) (($ $ (-1145 (-484))) NIL T ELT)) (-1570 (($ $ (-1145 (-484))) NIL T ELT) (($ $ (-484)) NIL T ELT)) (-2305 (($ $ (-484)) NIL T ELT) (($ $ (-1145 (-484))) NIL T ELT)) (-1945 (((-694) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT) (((-694) |#1| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-1730 (($ $ $ (-484)) NIL (|has| $ (-6 -3995)) ELT)) (-3399 (($ $) NIL T ELT)) (-3971 (((-473) $) NIL (|has| |#1| (-553 (-473))) ELT)) (-3529 (($ (-583 |#1|)) NIL T ELT)) (-3790 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3801 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3945 (((-772) $) NIL (|has| |#1| (-552 (-772))) ELT)) (-1264 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-2566 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2567 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3056 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2684 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2685 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3956 (((-694) $) NIL (|has| $ (-6 -3994)) ELT))) +(((-278 |#1|) (-13 (-19 |#1|) (-237 |#1|) (-10 -8 (-15 -1989 ($ (-583 |#1|))) (-15 -1988 ((-694) $)) (-15 -1987 ($ $ (-484))) (-15 -1986 ((-85) (-85))))) (-1128)) (T -278)) +((-1989 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1128)) (-5 *1 (-278 *3)))) (-1988 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-278 *3)) (-4 *3 (-1128)))) (-1987 (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-278 *3)) (-4 *3 (-1128)))) (-1986 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-278 *3)) (-4 *3 (-1128))))) +((-3931 (((-85) $) 47 T ELT)) (-3928 (((-694)) 23 T ELT)) (-3329 ((|#2| $) 51 T ELT) (($ $ (-830)) 123 T ELT)) (-3136 (((-694)) 124 T ELT)) (-1791 (($ (-1178 |#2|)) 20 T ELT)) (-2011 (((-85) $) 136 T ELT)) (-3132 ((|#2| $) 53 T ELT) (($ $ (-830)) 120 T ELT)) (-2014 (((-1084 |#2|) $) NIL T ELT) (((-1084 $) $ (-830)) 111 T ELT)) (-1626 (((-1084 |#2|) $) 95 T ELT)) (-1625 (((-1084 |#2|) $) 91 T ELT) (((-3 (-1084 |#2|) "failed") $ $) 88 T ELT)) (-1627 (($ $ (-1084 |#2|)) 58 T ELT)) (-3929 (((-743 (-830))) 30 T ELT) (((-830)) 48 T ELT)) (-3910 (((-107)) 27 T ELT)) (-3947 (((-743 (-830)) $) 32 T ELT) (((-830) $) 139 T ELT)) (-1628 (($) 130 T ELT)) (-3224 (((-1178 |#2|) $) NIL T ELT) (((-630 |#2|) (-1178 $)) 42 T ELT)) (-2702 (($ $) NIL T ELT) (((-632 $) $) 100 T ELT)) (-3932 (((-85) $) 45 T ELT))) +(((-279 |#1| |#2|) (-10 -7 (-15 -2702 ((-632 |#1|) |#1|)) (-15 -3136 ((-694))) (-15 -2702 (|#1| |#1|)) (-15 -1625 ((-3 (-1084 |#2|) "failed") |#1| |#1|)) (-15 -1625 ((-1084 |#2|) |#1|)) (-15 -1626 ((-1084 |#2|) |#1|)) (-15 -1627 (|#1| |#1| (-1084 |#2|))) (-15 -2011 ((-85) |#1|)) (-15 -1628 (|#1|)) (-15 -3329 (|#1| |#1| (-830))) (-15 -3132 (|#1| |#1| (-830))) (-15 -2014 ((-1084 |#1|) |#1| (-830))) (-15 -3329 (|#2| |#1|)) (-15 -3132 (|#2| |#1|)) (-15 -3947 ((-830) |#1|)) (-15 -3929 ((-830))) (-15 -2014 ((-1084 |#2|) |#1|)) (-15 -1791 (|#1| (-1178 |#2|))) (-15 -3224 ((-630 |#2|) (-1178 |#1|))) (-15 -3224 ((-1178 |#2|) |#1|)) (-15 -3928 ((-694))) (-15 -3929 ((-743 (-830)))) (-15 -3947 ((-743 (-830)) |#1|)) (-15 -3931 ((-85) |#1|)) (-15 -3932 ((-85) |#1|)) (-15 -3910 ((-107)))) (-280 |#2|) (-312)) (T -279)) +((-3910 (*1 *2) (-12 (-4 *4 (-312)) (-5 *2 (-107)) (-5 *1 (-279 *3 *4)) (-4 *3 (-280 *4)))) (-3929 (*1 *2) (-12 (-4 *4 (-312)) (-5 *2 (-743 (-830))) (-5 *1 (-279 *3 *4)) (-4 *3 (-280 *4)))) (-3928 (*1 *2) (-12 (-4 *4 (-312)) (-5 *2 (-694)) (-5 *1 (-279 *3 *4)) (-4 *3 (-280 *4)))) (-3929 (*1 *2) (-12 (-4 *4 (-312)) (-5 *2 (-830)) (-5 *1 (-279 *3 *4)) (-4 *3 (-280 *4)))) (-3136 (*1 *2) (-12 (-4 *4 (-312)) (-5 *2 (-694)) (-5 *1 (-279 *3 *4)) (-4 *3 (-280 *4))))) +((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) 55 T ELT)) (-2063 (($ $) 54 T ELT)) (-2061 (((-85) $) 52 T ELT)) (-3931 (((-85) $) 114 T ELT)) (-3928 (((-694)) 110 T ELT)) (-3329 ((|#1| $) 162 T ELT) (($ $ (-830)) 159 (|has| |#1| (-319)) ELT)) (-1674 (((-1101 (-830) (-694)) (-484)) 144 (|has| |#1| (-319)) ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3774 (($ $) 91 T ELT)) (-3970 (((-347 $) $) 90 T ELT)) (-1607 (((-85) $ $) 75 T ELT)) (-3136 (((-694)) 134 (|has| |#1| (-319)) ELT)) (-3723 (($) 23 T CONST)) (-3157 (((-3 |#1| "failed") $) 121 T ELT)) (-3156 ((|#1| $) 122 T ELT)) (-1791 (($ (-1178 |#1|)) 168 T ELT)) (-1672 (((-3 "prime" "polynomial" "normal" "cyclic")) 150 (|has| |#1| (-319)) ELT)) (-2564 (($ $ $) 71 T ELT)) (-3466 (((-3 $ "failed") $) 42 T ELT)) (-2994 (($) 131 (|has| |#1| (-319)) ELT)) (-2563 (($ $ $) 72 T ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) 66 T ELT)) (-2833 (($) 146 (|has| |#1| (-319)) ELT)) (-1679 (((-85) $) 147 (|has| |#1| (-319)) ELT)) (-1763 (($ $ (-694)) 107 (OR (|has| |#1| (-118)) (|has| |#1| (-319))) ELT) (($ $) 106 (OR (|has| |#1| (-118)) (|has| |#1| (-319))) ELT)) (-3722 (((-85) $) 89 T ELT)) (-3771 (((-830) $) 149 (|has| |#1| (-319)) ELT) (((-743 (-830)) $) 104 (OR (|has| |#1| (-118)) (|has| |#1| (-319))) ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-2013 (($) 157 (|has| |#1| (-319)) ELT)) (-2011 (((-85) $) 156 (|has| |#1| (-319)) ELT)) (-3132 ((|#1| $) 163 T ELT) (($ $ (-830)) 160 (|has| |#1| (-319)) ELT)) (-3444 (((-632 $) $) 135 (|has| |#1| (-319)) ELT)) (-1604 (((-3 (-583 $) #1="failed") (-583 $) $) 68 T ELT)) (-2014 (((-1084 |#1|) $) 167 T ELT) (((-1084 $) $ (-830)) 161 (|has| |#1| (-319)) ELT)) (-2010 (((-830) $) 132 (|has| |#1| (-319)) ELT)) (-1626 (((-1084 |#1|) $) 153 (|has| |#1| (-319)) ELT)) (-1625 (((-1084 |#1|) $) 152 (|has| |#1| (-319)) ELT) (((-3 (-1084 |#1|) "failed") $ $) 151 (|has| |#1| (-319)) ELT)) (-1627 (($ $ (-1084 |#1|)) 154 (|has| |#1| (-319)) ELT)) (-1890 (($ $ $) 60 T ELT) (($ (-583 $)) 59 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-2484 (($ $) 88 T ELT)) (-3445 (($) 136 (|has| |#1| (-319)) CONST)) (-2400 (($ (-830)) 133 (|has| |#1| (-319)) ELT)) (-3930 (((-85) $) 113 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-2409 (($) 155 (|has| |#1| (-319)) ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) 58 T ELT)) (-3144 (($ $ $) 62 T ELT) (($ (-583 $)) 61 T ELT)) (-1675 (((-583 (-2 (|:| -3731 (-484)) (|:| -2401 (-484))))) 143 (|has| |#1| (-319)) ELT)) (-3731 (((-347 $) $) 92 T ELT)) (-3929 (((-743 (-830))) 111 T ELT) (((-830)) 165 T ELT)) (-1605 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 69 T ELT)) (-3465 (((-3 $ "failed") $ $) 56 T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) 65 T ELT)) (-1606 (((-694) $) 74 T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 73 T ELT)) (-1764 (((-694) $) 148 (|has| |#1| (-319)) ELT) (((-3 (-694) "failed") $ $) 105 (OR (|has| |#1| (-118)) (|has| |#1| (-319))) ELT)) (-3910 (((-107)) 119 T ELT)) (-3757 (($ $ (-694)) 139 (|has| |#1| (-319)) ELT) (($ $) 137 (|has| |#1| (-319)) ELT)) (-3947 (((-743 (-830)) $) 112 T ELT) (((-830) $) 164 T ELT)) (-3185 (((-1084 |#1|)) 166 T ELT)) (-1673 (($) 145 (|has| |#1| (-319)) ELT)) (-1628 (($) 158 (|has| |#1| (-319)) ELT)) (-3224 (((-1178 |#1|) $) 170 T ELT) (((-630 |#1|) (-1178 $)) 169 T ELT)) (-2703 (((-3 (-1178 $) "failed") (-630 $)) 142 (|has| |#1| (-319)) ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ $) 57 T ELT) (($ (-349 (-484))) 84 T ELT) (($ |#1|) 120 T ELT)) (-2702 (($ $) 141 (|has| |#1| (-319)) ELT) (((-632 $) $) 103 (OR (|has| |#1| (-118)) (|has| |#1| (-319))) ELT)) (-3126 (((-694)) 40 T CONST)) (-1264 (((-85) $ $) 6 T ELT)) (-2012 (((-1178 $)) 172 T ELT) (((-1178 $) (-830)) 171 T ELT)) (-2062 (((-85) $ $) 53 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-3932 (((-85) $) 115 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-3927 (($ $) 109 (|has| |#1| (-319)) ELT) (($ $ (-694)) 108 (|has| |#1| (-319)) ELT)) (-2669 (($ $ (-694)) 140 (|has| |#1| (-319)) ELT) (($ $) 138 (|has| |#1| (-319)) ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-3948 (($ $ $) 83 T ELT) (($ $ |#1|) 118 T ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT) (($ $ (-484)) 87 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-349 (-484))) 86 T ELT) (($ (-349 (-484)) $) 85 T ELT) (($ $ |#1|) 117 T ELT) (($ |#1| $) 116 T ELT))) (((-280 |#1|) (-113) (-312)) (T -280)) -((-2011 (*1 *2) (-12 (-4 *3 (-312)) (-5 *2 (-1177 *1)) (-4 *1 (-280 *3)))) (-2011 (*1 *2 *3) (-12 (-5 *3 (-829)) (-4 *4 (-312)) (-5 *2 (-1177 *1)) (-4 *1 (-280 *4)))) (-3223 (*1 *2 *1) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-5 *2 (-1177 *3)))) (-3223 (*1 *2 *3) (-12 (-5 *3 (-1177 *1)) (-4 *1 (-280 *4)) (-4 *4 (-312)) (-5 *2 (-629 *4)))) (-1790 (*1 *1 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-312)) (-4 *1 (-280 *3)))) (-2013 (*1 *2 *1) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-5 *2 (-1083 *3)))) (-3184 (*1 *2) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-5 *2 (-1083 *3)))) (-3928 (*1 *2) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-5 *2 (-829)))) (-3946 (*1 *2 *1) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-5 *2 (-829)))) (-3131 (*1 *2 *1) (-12 (-4 *1 (-280 *2)) (-4 *2 (-312)))) (-3328 (*1 *2 *1) (-12 (-4 *1 (-280 *2)) (-4 *2 (-312)))) (-2013 (*1 *2 *1 *3) (-12 (-5 *3 (-829)) (-4 *4 (-318)) (-4 *4 (-312)) (-5 *2 (-1083 *1)) (-4 *1 (-280 *4)))) (-3131 (*1 *1 *1 *2) (-12 (-5 *2 (-829)) (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-318)))) (-3328 (*1 *1 *1 *2) (-12 (-5 *2 (-829)) (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-318)))) (-1627 (*1 *1) (-12 (-4 *1 (-280 *2)) (-4 *2 (-318)) (-4 *2 (-312)))) (-2012 (*1 *1) (-12 (-4 *1 (-280 *2)) (-4 *2 (-318)) (-4 *2 (-312)))) (-2010 (*1 *2 *1) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-318)) (-5 *2 (-85)))) (-2408 (*1 *1) (-12 (-4 *1 (-280 *2)) (-4 *2 (-318)) (-4 *2 (-312)))) (-1626 (*1 *1 *1 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-318)) (-4 *1 (-280 *3)) (-4 *3 (-312)))) (-1625 (*1 *2 *1) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-318)) (-5 *2 (-1083 *3)))) (-1624 (*1 *2 *1) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-318)) (-5 *2 (-1083 *3)))) (-1624 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-318)) (-5 *2 (-1083 *3))))) -(-13 (-1196 |t#1|) (-949 |t#1|) (-10 -8 (-15 -2011 ((-1177 $))) (-15 -2011 ((-1177 $) (-829))) (-15 -3223 ((-1177 |t#1|) $)) (-15 -3223 ((-629 |t#1|) (-1177 $))) (-15 -1790 ($ (-1177 |t#1|))) (-15 -2013 ((-1083 |t#1|) $)) (-15 -3184 ((-1083 |t#1|))) (-15 -3928 ((-829))) (-15 -3946 ((-829) $)) (-15 -3131 (|t#1| $)) (-15 -3328 (|t#1| $)) (IF (|has| |t#1| (-318)) (PROGN (-6 (-299)) (-15 -2013 ((-1083 $) $ (-829))) (-15 -3131 ($ $ (-829))) (-15 -3328 ($ $ (-829))) (-15 -1627 ($)) (-15 -2012 ($)) (-15 -2010 ((-85) $)) (-15 -2408 ($)) (-15 -1626 ($ $ (-1083 |t#1|))) (-15 -1625 ((-1083 |t#1|) $)) (-15 -1624 ((-1083 |t#1|) $)) (-15 -1624 ((-3 (-1083 |t#1|) "failed") $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-348 (-483))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-348 (-483)) (-348 (-483))) . T) ((-82 |#1| |#1|) . T) ((-82 $ $) . T) ((-104) . T) ((-118) OR (|has| |#1| (-318)) (|has| |#1| (-118))) ((-120) |has| |#1| (-120)) ((-554 (-348 (-483))) . T) ((-554 (-483)) . T) ((-554 |#1|) . T) ((-554 $) . T) ((-551 (-771)) . T) ((-146) . T) ((-186 $) |has| |#1| (-318)) ((-190) |has| |#1| (-318)) ((-189) |has| |#1| (-318)) ((-201) . T) ((-246) . T) ((-258) . T) ((-1196 |#1|) . T) ((-312) . T) ((-343) OR (|has| |#1| (-318)) (|has| |#1| (-118))) ((-318) |has| |#1| (-318)) ((-299) |has| |#1| (-318)) ((-390) . T) ((-494) . T) ((-13) . T) ((-587 (-348 (-483))) . T) ((-587 (-483)) . T) ((-587 |#1|) . T) ((-587 $) . T) ((-589 (-348 (-483))) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-581 (-348 (-483))) . T) ((-581 |#1|) . T) ((-581 $) . T) ((-653 (-348 (-483))) . T) ((-653 |#1|) . T) ((-653 $) . T) ((-662) . T) ((-831) . T) ((-949 |#1|) . T) ((-962 (-348 (-483))) . T) ((-962 |#1|) . T) ((-962 $) . T) ((-967 (-348 (-483))) . T) ((-967 |#1|) . T) ((-967 $) . T) ((-960) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1064) |has| |#1| (-318)) ((-1127) . T) ((-1132) . T) ((-1185 |#1|) . T)) -((-2567 (((-85) $ $) NIL T ELT)) (-1628 (((-85) $) 13 T ELT)) (-3636 (($ |#1|) 10 T ELT)) (-2530 (($ $ $) NIL T ELT)) (-2856 (($ $ $) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3632 (($ |#1|) 12 T ELT)) (-3944 (((-771) $) 19 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2235 ((|#1| $) 14 T ELT)) (-2565 (((-85) $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-2683 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) 21 T ELT))) -(((-281 |#1|) (-13 (-755) (-10 -8 (-15 -3636 ($ |#1|)) (-15 -3632 ($ |#1|)) (-15 -1628 ((-85) $)) (-15 -2235 (|#1| $)))) (-755)) (T -281)) -((-3636 (*1 *1 *2) (-12 (-5 *1 (-281 *2)) (-4 *2 (-755)))) (-3632 (*1 *1 *2) (-12 (-5 *1 (-281 *2)) (-4 *2 (-755)))) (-1628 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-281 *3)) (-4 *3 (-755)))) (-2235 (*1 *2 *1) (-12 (-5 *1 (-281 *2)) (-4 *2 (-755))))) -((-2567 (((-85) $ $) NIL T ELT)) (-1629 (((-445) $) 20 T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-1630 (((-868 (-693)) $) 18 T ELT)) (-1632 (((-209) $) 7 T ELT)) (-3944 (((-771) $) 26 T ELT)) (-2205 (((-868 (-158 (-112))) $) 16 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-1631 (((-582 (-781 (-1093) (-693))) $) 12 T ELT)) (-3055 (((-85) $ $) 22 T ELT))) -(((-282) (-13 (-1012) (-10 -8 (-15 -1632 ((-209) $)) (-15 -1631 ((-582 (-781 (-1093) (-693))) $)) (-15 -1630 ((-868 (-693)) $)) (-15 -2205 ((-868 (-158 (-112))) $)) (-15 -1629 ((-445) $))))) (T -282)) -((-1632 (*1 *2 *1) (-12 (-5 *2 (-209)) (-5 *1 (-282)))) (-1631 (*1 *2 *1) (-12 (-5 *2 (-582 (-781 (-1093) (-693)))) (-5 *1 (-282)))) (-1630 (*1 *2 *1) (-12 (-5 *2 (-868 (-693))) (-5 *1 (-282)))) (-2205 (*1 *2 *1) (-12 (-5 *2 (-868 (-158 (-112)))) (-5 *1 (-282)))) (-1629 (*1 *2 *1) (-12 (-5 *2 (-445)) (-5 *1 (-282))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3187 (((-85) $) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3722 (($) NIL T CONST)) (-3840 (($ $) 34 T ELT)) (-1635 (((-85) $) NIL T ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-1633 (((-1177 |#4|) $) 133 T ELT)) (-1967 (((-354 |#2| (-348 |#2|) |#3| |#4|) $) 32 T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-2408 (((-3 |#4| #1#) $) 37 T ELT)) (-1634 (((-1177 |#4|) $) 125 T ELT)) (-1636 (($ (-354 |#2| (-348 |#2|) |#3| |#4|)) 42 T ELT) (($ |#4|) 44 T ELT) (($ |#1| |#1|) 46 T ELT) (($ |#1| |#1| (-483)) 48 T ELT) (($ |#4| |#2| |#2| |#2| |#1|) 50 T ELT)) (-3433 (((-2 (|:| -2335 (-354 |#2| (-348 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 40 T ELT)) (-3944 (((-771) $) 18 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2659 (($) 15 T CONST)) (-3055 (((-85) $ $) 21 T ELT)) (-3835 (($ $) 28 T ELT) (($ $ $) NIL T ELT)) (-3837 (($ $ $) 26 T ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-483) $) 24 T ELT))) -(((-283 |#1| |#2| |#3| |#4|) (-13 (-286 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1634 ((-1177 |#4|) $)) (-15 -1633 ((-1177 |#4|) $)))) (-312) (-1153 |#1|) (-1153 (-348 |#2|)) (-291 |#1| |#2| |#3|)) (T -283)) -((-1634 (*1 *2 *1) (-12 (-4 *3 (-312)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-348 *4))) (-5 *2 (-1177 *6)) (-5 *1 (-283 *3 *4 *5 *6)) (-4 *6 (-291 *3 *4 *5)))) (-1633 (*1 *2 *1) (-12 (-4 *3 (-312)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-348 *4))) (-5 *2 (-1177 *6)) (-5 *1 (-283 *3 *4 *5 *6)) (-4 *6 (-291 *3 *4 *5))))) -((-3956 (((-283 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-283 |#1| |#2| |#3| |#4|)) 33 T ELT))) -(((-284 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3956 ((-283 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-283 |#1| |#2| |#3| |#4|)))) (-312) (-1153 |#1|) (-1153 (-348 |#2|)) (-291 |#1| |#2| |#3|) (-312) (-1153 |#5|) (-1153 (-348 |#6|)) (-291 |#5| |#6| |#7|)) (T -284)) -((-3956 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-283 *5 *6 *7 *8)) (-4 *5 (-312)) (-4 *6 (-1153 *5)) (-4 *7 (-1153 (-348 *6))) (-4 *8 (-291 *5 *6 *7)) (-4 *9 (-312)) (-4 *10 (-1153 *9)) (-4 *11 (-1153 (-348 *10))) (-5 *2 (-283 *9 *10 *11 *12)) (-5 *1 (-284 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-291 *9 *10 *11))))) -((-1635 (((-85) $) 14 T ELT))) -(((-285 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1635 ((-85) |#1|))) (-286 |#2| |#3| |#4| |#5|) (-312) (-1153 |#2|) (-1153 (-348 |#3|)) (-291 |#2| |#3| |#4|)) (T -285)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-3187 (((-85) $) 22 T ELT)) (-1310 (((-3 $ "failed") $ $) 26 T ELT)) (-3722 (($) 23 T CONST)) (-3840 (($ $) 35 T ELT)) (-1635 (((-85) $) 34 T ELT)) (-1212 (((-85) $ $) 20 T ELT)) (-3241 (((-1071) $) 11 T ELT)) (-1967 (((-354 |#2| (-348 |#2|) |#3| |#4|) $) 41 T ELT)) (-3242 (((-1032) $) 12 T ELT)) (-2408 (((-3 |#4| "failed") $) 33 T ELT)) (-1636 (($ (-354 |#2| (-348 |#2|) |#3| |#4|)) 40 T ELT) (($ |#4|) 39 T ELT) (($ |#1| |#1|) 38 T ELT) (($ |#1| |#1| (-483)) 37 T ELT) (($ |#4| |#2| |#2| |#2| |#1|) 32 T ELT)) (-3433 (((-2 (|:| -2335 (-354 |#2| (-348 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 36 T ELT)) (-3944 (((-771) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2659 (($) 24 T CONST)) (-3055 (((-85) $ $) 8 T ELT)) (-3835 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3837 (($ $ $) 18 T ELT)) (* (($ (-829) $) 17 T ELT) (($ (-693) $) 21 T ELT) (($ (-483) $) 30 T ELT))) -(((-286 |#1| |#2| |#3| |#4|) (-113) (-312) (-1153 |t#1|) (-1153 (-348 |t#2|)) (-291 |t#1| |t#2| |t#3|)) (T -286)) -((-1967 (*1 *2 *1) (-12 (-4 *1 (-286 *3 *4 *5 *6)) (-4 *3 (-312)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-348 *4))) (-4 *6 (-291 *3 *4 *5)) (-5 *2 (-354 *4 (-348 *4) *5 *6)))) (-1636 (*1 *1 *2) (-12 (-5 *2 (-354 *4 (-348 *4) *5 *6)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-348 *4))) (-4 *6 (-291 *3 *4 *5)) (-4 *3 (-312)) (-4 *1 (-286 *3 *4 *5 *6)))) (-1636 (*1 *1 *2) (-12 (-4 *3 (-312)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-348 *4))) (-4 *1 (-286 *3 *4 *5 *2)) (-4 *2 (-291 *3 *4 *5)))) (-1636 (*1 *1 *2 *2) (-12 (-4 *2 (-312)) (-4 *3 (-1153 *2)) (-4 *4 (-1153 (-348 *3))) (-4 *1 (-286 *2 *3 *4 *5)) (-4 *5 (-291 *2 *3 *4)))) (-1636 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-483)) (-4 *2 (-312)) (-4 *4 (-1153 *2)) (-4 *5 (-1153 (-348 *4))) (-4 *1 (-286 *2 *4 *5 *6)) (-4 *6 (-291 *2 *4 *5)))) (-3433 (*1 *2 *1) (-12 (-4 *1 (-286 *3 *4 *5 *6)) (-4 *3 (-312)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-348 *4))) (-4 *6 (-291 *3 *4 *5)) (-5 *2 (-2 (|:| -2335 (-354 *4 (-348 *4) *5 *6)) (|:| |principalPart| *6))))) (-3840 (*1 *1 *1) (-12 (-4 *1 (-286 *2 *3 *4 *5)) (-4 *2 (-312)) (-4 *3 (-1153 *2)) (-4 *4 (-1153 (-348 *3))) (-4 *5 (-291 *2 *3 *4)))) (-1635 (*1 *2 *1) (-12 (-4 *1 (-286 *3 *4 *5 *6)) (-4 *3 (-312)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-348 *4))) (-4 *6 (-291 *3 *4 *5)) (-5 *2 (-85)))) (-2408 (*1 *2 *1) (|partial| -12 (-4 *1 (-286 *3 *4 *5 *2)) (-4 *3 (-312)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-348 *4))) (-4 *2 (-291 *3 *4 *5)))) (-1636 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-312)) (-4 *3 (-1153 *4)) (-4 *5 (-1153 (-348 *3))) (-4 *1 (-286 *4 *3 *5 *2)) (-4 *2 (-291 *4 *3 *5))))) -(-13 (-21) (-10 -8 (-15 -1967 ((-354 |t#2| (-348 |t#2|) |t#3| |t#4|) $)) (-15 -1636 ($ (-354 |t#2| (-348 |t#2|) |t#3| |t#4|))) (-15 -1636 ($ |t#4|)) (-15 -1636 ($ |t#1| |t#1|)) (-15 -1636 ($ |t#1| |t#1| (-483))) (-15 -3433 ((-2 (|:| -2335 (-354 |t#2| (-348 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -3840 ($ $)) (-15 -1635 ((-85) $)) (-15 -2408 ((-3 |t#4| "failed") $)) (-15 -1636 ($ |t#4| |t#2| |t#2| |t#2| |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-551 (-771)) . T) ((-13) . T) ((-587 (-483)) . T) ((-1012) . T) ((-1127) . T)) -((-3766 (($ $ (-1088) |#2|) NIL T ELT) (($ $ (-582 (-1088)) (-582 |#2|)) 20 T ELT) (($ $ (-582 (-249 |#2|))) 15 T ELT) (($ $ (-249 |#2|)) NIL T ELT) (($ $ |#2| |#2|) NIL T ELT) (($ $ (-582 |#2|) (-582 |#2|)) NIL T ELT)) (-3798 (($ $ |#2|) 11 T ELT))) -(((-287 |#1| |#2|) (-10 -7 (-15 -3798 (|#1| |#1| |#2|)) (-15 -3766 (|#1| |#1| (-582 |#2|) (-582 |#2|))) (-15 -3766 (|#1| |#1| |#2| |#2|)) (-15 -3766 (|#1| |#1| (-249 |#2|))) (-15 -3766 (|#1| |#1| (-582 (-249 |#2|)))) (-15 -3766 (|#1| |#1| (-582 (-1088)) (-582 |#2|))) (-15 -3766 (|#1| |#1| (-1088) |#2|))) (-288 |#2|) (-1012)) (T -287)) -NIL -((-3956 (($ (-1 |#1| |#1|) $) 6 T ELT)) (-3766 (($ $ (-1088) |#1|) 17 (|has| |#1| (-454 (-1088) |#1|)) ELT) (($ $ (-582 (-1088)) (-582 |#1|)) 16 (|has| |#1| (-454 (-1088) |#1|)) ELT) (($ $ (-582 (-249 |#1|))) 15 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-249 |#1|)) 14 (|has| |#1| (-260 |#1|)) ELT) (($ $ |#1| |#1|) 13 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-582 |#1|) (-582 |#1|)) 12 (|has| |#1| (-260 |#1|)) ELT)) (-3798 (($ $ |#1|) 11 (|has| |#1| (-241 |#1| |#1|)) ELT))) -(((-288 |#1|) (-113) (-1012)) (T -288)) -((-3956 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-288 *3)) (-4 *3 (-1012))))) -(-13 (-10 -8 (-15 -3956 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-241 |t#1| |t#1|)) (-6 (-241 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-260 |t#1|)) (-6 (-260 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-454 (-1088) |t#1|)) (-6 (-454 (-1088) |t#1|)) |%noBranch|))) -(((-241 |#1| $) |has| |#1| (-241 |#1| |#1|)) ((-260 |#1|) |has| |#1| (-260 |#1|)) ((-454 (-1088) |#1|) |has| |#1| (-454 (-1088) |#1|)) ((-454 |#1| |#1|) |has| |#1| (-260 |#1|)) ((-13) |has| |#1| (-241 |#1| |#1|)) ((-1127) |has| |#1| (-241 |#1| |#1|))) -((-2567 (((-85) $ $) NIL T ELT)) (-3187 (((-85) $) NIL T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3980 $) (|:| |associate| $)) $) NIL T ELT)) (-2062 (($ $) NIL T ELT)) (-2060 (((-85) $) NIL T ELT)) (-3930 (((-85) $) NIL T ELT)) (-3927 (((-693)) NIL T ELT)) (-3328 (((-816 |#1|) $) NIL T ELT) (($ $ (-829)) NIL (|has| (-816 |#1|) (-318)) ELT)) (-1673 (((-1100 (-829) (-693)) (-483)) NIL (|has| (-816 |#1|) (-318)) ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3773 (($ $) NIL T ELT)) (-3969 (((-346 $) $) NIL T ELT)) (-1606 (((-85) $ $) NIL T ELT)) (-3135 (((-693)) NIL (|has| (-816 |#1|) (-318)) ELT)) (-3722 (($) NIL T CONST)) (-3156 (((-3 (-816 |#1|) #1#) $) NIL T ELT)) (-3155 (((-816 |#1|) $) NIL T ELT)) (-1790 (($ (-1177 (-816 |#1|))) NIL T ELT)) (-1671 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-816 |#1|) (-318)) ELT)) (-2563 (($ $ $) NIL T ELT)) (-3465 (((-3 $ #1#) $) NIL T ELT)) (-2993 (($) NIL (|has| (-816 |#1|) (-318)) ELT)) (-2562 (($ $ $) NIL T ELT)) (-2740 (((-2 (|:| -3952 (-582 $)) (|:| -2408 $)) (-582 $)) NIL T ELT)) (-2832 (($) NIL (|has| (-816 |#1|) (-318)) ELT)) (-1678 (((-85) $) NIL (|has| (-816 |#1|) (-318)) ELT)) (-1762 (($ $ (-693)) NIL (OR (|has| (-816 |#1|) (-118)) (|has| (-816 |#1|) (-318))) ELT) (($ $) NIL (OR (|has| (-816 |#1|) (-118)) (|has| (-816 |#1|) (-318))) ELT)) (-3721 (((-85) $) NIL T ELT)) (-3770 (((-829) $) NIL (|has| (-816 |#1|) (-318)) ELT) (((-742 (-829)) $) NIL (OR (|has| (-816 |#1|) (-118)) (|has| (-816 |#1|) (-318))) ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-2409 (((-85) $) NIL T ELT)) (-2012 (($) NIL (|has| (-816 |#1|) (-318)) ELT)) (-2010 (((-85) $) NIL (|has| (-816 |#1|) (-318)) ELT)) (-3131 (((-816 |#1|) $) NIL T ELT) (($ $ (-829)) NIL (|has| (-816 |#1|) (-318)) ELT)) (-3443 (((-631 $) $) NIL (|has| (-816 |#1|) (-318)) ELT)) (-1603 (((-3 (-582 $) #1#) (-582 $) $) NIL T ELT)) (-2013 (((-1083 (-816 |#1|)) $) NIL T ELT) (((-1083 $) $ (-829)) NIL (|has| (-816 |#1|) (-318)) ELT)) (-2009 (((-829) $) NIL (|has| (-816 |#1|) (-318)) ELT)) (-1625 (((-1083 (-816 |#1|)) $) NIL (|has| (-816 |#1|) (-318)) ELT)) (-1624 (((-1083 (-816 |#1|)) $) NIL (|has| (-816 |#1|) (-318)) ELT) (((-3 (-1083 (-816 |#1|)) #1#) $ $) NIL (|has| (-816 |#1|) (-318)) ELT)) (-1626 (($ $ (-1083 (-816 |#1|))) NIL (|has| (-816 |#1|) (-318)) ELT)) (-1889 (($ $ $) NIL T ELT) (($ (-582 $)) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-2483 (($ $) NIL T ELT)) (-3444 (($) NIL (|has| (-816 |#1|) (-318)) CONST)) (-2399 (($ (-829)) NIL (|has| (-816 |#1|) (-318)) ELT)) (-3929 (((-85) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-2408 (($) NIL (|has| (-816 |#1|) (-318)) ELT)) (-2707 (((-1083 $) (-1083 $) (-1083 $)) NIL T ELT)) (-3143 (($ $ $) NIL T ELT) (($ (-582 $)) NIL T ELT)) (-1674 (((-582 (-2 (|:| -3730 (-483)) (|:| -2400 (-483))))) NIL (|has| (-816 |#1|) (-318)) ELT)) (-3730 (((-346 $) $) NIL T ELT)) (-3928 (((-742 (-829))) NIL T ELT) (((-829)) NIL T ELT)) (-1604 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3464 (((-3 $ #1#) $ $) NIL T ELT)) (-2739 (((-631 (-582 $)) (-582 $) $) NIL T ELT)) (-1605 (((-693) $) NIL T ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL T ELT)) (-1763 (((-693) $) NIL (|has| (-816 |#1|) (-318)) ELT) (((-3 (-693) #1#) $ $) NIL (OR (|has| (-816 |#1|) (-118)) (|has| (-816 |#1|) (-318))) ELT)) (-3909 (((-107)) NIL T ELT)) (-3756 (($ $ (-693)) NIL (|has| (-816 |#1|) (-318)) ELT) (($ $) NIL (|has| (-816 |#1|) (-318)) ELT)) (-3946 (((-742 (-829)) $) NIL T ELT) (((-829) $) NIL T ELT)) (-3184 (((-1083 (-816 |#1|))) NIL T ELT)) (-1672 (($) NIL (|has| (-816 |#1|) (-318)) ELT)) (-1627 (($) NIL (|has| (-816 |#1|) (-318)) ELT)) (-3223 (((-1177 (-816 |#1|)) $) NIL T ELT) (((-629 (-816 |#1|)) (-1177 $)) NIL T ELT)) (-2702 (((-3 (-1177 $) #1#) (-629 $)) NIL (|has| (-816 |#1|) (-318)) ELT)) (-3944 (((-771) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ $) NIL T ELT) (($ (-348 (-483))) NIL T ELT) (($ (-816 |#1|)) NIL T ELT)) (-2701 (($ $) NIL (|has| (-816 |#1|) (-318)) ELT) (((-631 $) $) NIL (OR (|has| (-816 |#1|) (-118)) (|has| (-816 |#1|) (-318))) ELT)) (-3125 (((-693)) NIL T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-2011 (((-1177 $)) NIL T ELT) (((-1177 $) (-829)) NIL T ELT)) (-2061 (((-85) $ $) NIL T ELT)) (-3124 (((-85) $ $) NIL T ELT)) (-3931 (((-85) $) NIL T ELT)) (-2659 (($) NIL T CONST)) (-2665 (($) NIL T CONST)) (-3926 (($ $) NIL (|has| (-816 |#1|) (-318)) ELT) (($ $ (-693)) NIL (|has| (-816 |#1|) (-318)) ELT)) (-2668 (($ $ (-693)) NIL (|has| (-816 |#1|) (-318)) ELT) (($ $) NIL (|has| (-816 |#1|) (-318)) ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-3947 (($ $ $) NIL T ELT) (($ $ (-816 |#1|)) NIL T ELT)) (-3835 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3837 (($ $ $) NIL T ELT)) (** (($ $ (-829)) NIL T ELT) (($ $ (-693)) NIL T ELT) (($ $ (-483)) NIL T ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-348 (-483))) NIL T ELT) (($ (-348 (-483)) $) NIL T ELT) (($ $ (-816 |#1|)) NIL T ELT) (($ (-816 |#1|) $) NIL T ELT))) -(((-289 |#1| |#2|) (-280 (-816 |#1|)) (-829) (-829)) (T -289)) -NIL -((-1645 (((-2 (|:| |num| (-1177 |#3|)) (|:| |den| |#3|)) $) 39 T ELT)) (-1790 (($ (-1177 (-348 |#3|)) (-1177 $)) NIL T ELT) (($ (-1177 (-348 |#3|))) NIL T ELT) (($ (-1177 |#3|) |#3|) 172 T ELT)) (-1650 (((-1177 $) (-1177 $)) 156 T ELT)) (-1637 (((-582 (-582 |#2|))) 126 T ELT)) (-1662 (((-85) |#2| |#2|) 76 T ELT)) (-3501 (($ $) 148 T ELT)) (-3375 (((-693)) 171 T ELT)) (-1651 (((-1177 $) (-1177 $)) 219 T ELT)) (-1638 (((-582 (-856 |#2|)) (-1088)) 115 T ELT)) (-1654 (((-85) $) 168 T ELT)) (-1653 (((-85) $) 27 T ELT) (((-85) $ |#2|) 31 T ELT) (((-85) $ |#3|) 223 T ELT)) (-1640 (((-3 |#3| #1="failed")) 52 T ELT)) (-1664 (((-693)) 183 T ELT)) (-3798 ((|#2| $ |#2| |#2|) 140 T ELT)) (-1641 (((-3 |#3| #1#)) 71 T ELT)) (-3756 (($ $ (-1 (-348 |#3|) (-348 |#3|))) NIL T ELT) (($ $ (-1 (-348 |#3|) (-348 |#3|)) (-693)) NIL T ELT) (($ $ (-1 |#3| |#3|)) 227 T ELT) (($ $ (-582 (-1088)) (-582 (-693))) NIL T ELT) (($ $ (-1088) (-693)) NIL T ELT) (($ $ (-582 (-1088))) NIL T ELT) (($ $ (-1088)) NIL T ELT) (($ $ (-693)) NIL T ELT) (($ $) NIL T ELT)) (-1652 (((-1177 $) (-1177 $)) 162 T ELT)) (-1639 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 68 T ELT)) (-1663 (((-85)) 34 T ELT))) -(((-290 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3756 (|#1| |#1|)) (-15 -3756 (|#1| |#1| (-693))) (-15 -3756 (|#1| |#1| (-1088))) (-15 -3756 (|#1| |#1| (-582 (-1088)))) (-15 -3756 (|#1| |#1| (-1088) (-693))) (-15 -3756 (|#1| |#1| (-582 (-1088)) (-582 (-693)))) (-15 -1637 ((-582 (-582 |#2|)))) (-15 -1638 ((-582 (-856 |#2|)) (-1088))) (-15 -1639 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -1640 ((-3 |#3| #1="failed"))) (-15 -1641 ((-3 |#3| #1#))) (-15 -3798 (|#2| |#1| |#2| |#2|)) (-15 -3501 (|#1| |#1|)) (-15 -3756 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1653 ((-85) |#1| |#3|)) (-15 -1653 ((-85) |#1| |#2|)) (-15 -1790 (|#1| (-1177 |#3|) |#3|)) (-15 -1645 ((-2 (|:| |num| (-1177 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -1650 ((-1177 |#1|) (-1177 |#1|))) (-15 -1651 ((-1177 |#1|) (-1177 |#1|))) (-15 -1652 ((-1177 |#1|) (-1177 |#1|))) (-15 -1653 ((-85) |#1|)) (-15 -1654 ((-85) |#1|)) (-15 -1662 ((-85) |#2| |#2|)) (-15 -1663 ((-85))) (-15 -1664 ((-693))) (-15 -3375 ((-693))) (-15 -3756 (|#1| |#1| (-1 (-348 |#3|) (-348 |#3|)) (-693))) (-15 -3756 (|#1| |#1| (-1 (-348 |#3|) (-348 |#3|)))) (-15 -1790 (|#1| (-1177 (-348 |#3|)))) (-15 -1790 (|#1| (-1177 (-348 |#3|)) (-1177 |#1|)))) (-291 |#2| |#3| |#4|) (-1132) (-1153 |#2|) (-1153 (-348 |#3|))) (T -290)) -((-3375 (*1 *2) (-12 (-4 *4 (-1132)) (-4 *5 (-1153 *4)) (-4 *6 (-1153 (-348 *5))) (-5 *2 (-693)) (-5 *1 (-290 *3 *4 *5 *6)) (-4 *3 (-291 *4 *5 *6)))) (-1664 (*1 *2) (-12 (-4 *4 (-1132)) (-4 *5 (-1153 *4)) (-4 *6 (-1153 (-348 *5))) (-5 *2 (-693)) (-5 *1 (-290 *3 *4 *5 *6)) (-4 *3 (-291 *4 *5 *6)))) (-1663 (*1 *2) (-12 (-4 *4 (-1132)) (-4 *5 (-1153 *4)) (-4 *6 (-1153 (-348 *5))) (-5 *2 (-85)) (-5 *1 (-290 *3 *4 *5 *6)) (-4 *3 (-291 *4 *5 *6)))) (-1662 (*1 *2 *3 *3) (-12 (-4 *3 (-1132)) (-4 *5 (-1153 *3)) (-4 *6 (-1153 (-348 *5))) (-5 *2 (-85)) (-5 *1 (-290 *4 *3 *5 *6)) (-4 *4 (-291 *3 *5 *6)))) (-1641 (*1 *2) (|partial| -12 (-4 *4 (-1132)) (-4 *5 (-1153 (-348 *2))) (-4 *2 (-1153 *4)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *3 (-291 *4 *2 *5)))) (-1640 (*1 *2) (|partial| -12 (-4 *4 (-1132)) (-4 *5 (-1153 (-348 *2))) (-4 *2 (-1153 *4)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *3 (-291 *4 *2 *5)))) (-1638 (*1 *2 *3) (-12 (-5 *3 (-1088)) (-4 *5 (-1132)) (-4 *6 (-1153 *5)) (-4 *7 (-1153 (-348 *6))) (-5 *2 (-582 (-856 *5))) (-5 *1 (-290 *4 *5 *6 *7)) (-4 *4 (-291 *5 *6 *7)))) (-1637 (*1 *2) (-12 (-4 *4 (-1132)) (-4 *5 (-1153 *4)) (-4 *6 (-1153 (-348 *5))) (-5 *2 (-582 (-582 *4))) (-5 *1 (-290 *3 *4 *5 *6)) (-4 *3 (-291 *4 *5 *6))))) -((-2567 (((-85) $ $) 7 T ELT)) (-3187 (((-85) $) 22 T ELT)) (-1645 (((-2 (|:| |num| (-1177 |#2|)) (|:| |den| |#2|)) $) 225 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3980 $) (|:| |associate| $)) $) 114 (|has| (-348 |#2|) (-312)) ELT)) (-2062 (($ $) 115 (|has| (-348 |#2|) (-312)) ELT)) (-2060 (((-85) $) 117 (|has| (-348 |#2|) (-312)) ELT)) (-1780 (((-629 (-348 |#2|)) (-1177 $)) 61 T ELT) (((-629 (-348 |#2|))) 77 T ELT)) (-3328 (((-348 |#2|) $) 67 T ELT)) (-1673 (((-1100 (-829) (-693)) (-483)) 167 (|has| (-348 |#2|) (-299)) ELT)) (-1310 (((-3 $ "failed") $ $) 26 T ELT)) (-3773 (($ $) 134 (|has| (-348 |#2|) (-312)) ELT)) (-3969 (((-346 $) $) 135 (|has| (-348 |#2|) (-312)) ELT)) (-1606 (((-85) $ $) 125 (|has| (-348 |#2|) (-312)) ELT)) (-3135 (((-693)) 108 (|has| (-348 |#2|) (-318)) ELT)) (-1659 (((-85)) 242 T ELT)) (-1658 (((-85) |#1|) 241 T ELT) (((-85) |#2|) 240 T ELT)) (-3722 (($) 23 T CONST)) (-3156 (((-3 (-483) #1="failed") $) 194 (|has| (-348 |#2|) (-949 (-483))) ELT) (((-3 (-348 (-483)) #1#) $) 192 (|has| (-348 |#2|) (-949 (-348 (-483)))) ELT) (((-3 (-348 |#2|) #1#) $) 189 T ELT)) (-3155 (((-483) $) 193 (|has| (-348 |#2|) (-949 (-483))) ELT) (((-348 (-483)) $) 191 (|has| (-348 |#2|) (-949 (-348 (-483)))) ELT) (((-348 |#2|) $) 190 T ELT)) (-1790 (($ (-1177 (-348 |#2|)) (-1177 $)) 63 T ELT) (($ (-1177 (-348 |#2|))) 80 T ELT) (($ (-1177 |#2|) |#2|) 224 T ELT)) (-1671 (((-3 "prime" "polynomial" "normal" "cyclic")) 173 (|has| (-348 |#2|) (-299)) ELT)) (-2563 (($ $ $) 129 (|has| (-348 |#2|) (-312)) ELT)) (-1779 (((-629 (-348 |#2|)) $ (-1177 $)) 68 T ELT) (((-629 (-348 |#2|)) $) 75 T ELT)) (-2278 (((-629 (-483)) (-629 $)) 186 (|has| (-348 |#2|) (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-629 $) (-1177 $)) 185 (|has| (-348 |#2|) (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 (-348 |#2|))) (|:| |vec| (-1177 (-348 |#2|)))) (-629 $) (-1177 $)) 184 T ELT) (((-629 (-348 |#2|)) (-629 $)) 183 T ELT)) (-1650 (((-1177 $) (-1177 $)) 230 T ELT)) (-3840 (($ |#3|) 178 T ELT) (((-3 $ "failed") (-348 |#3|)) 175 (|has| (-348 |#2|) (-312)) ELT)) (-3465 (((-3 $ "failed") $) 42 T ELT)) (-1637 (((-582 (-582 |#1|))) 211 (|has| |#1| (-318)) ELT)) (-1662 (((-85) |#1| |#1|) 246 T ELT)) (-3107 (((-829)) 69 T ELT)) (-2993 (($) 111 (|has| (-348 |#2|) (-318)) ELT)) (-1657 (((-85)) 239 T ELT)) (-1656 (((-85) |#1|) 238 T ELT) (((-85) |#2|) 237 T ELT)) (-2562 (($ $ $) 128 (|has| (-348 |#2|) (-312)) ELT)) (-2740 (((-2 (|:| -3952 (-582 $)) (|:| -2408 $)) (-582 $)) 123 (|has| (-348 |#2|) (-312)) ELT)) (-3501 (($ $) 217 T ELT)) (-2832 (($) 169 (|has| (-348 |#2|) (-299)) ELT)) (-1678 (((-85) $) 170 (|has| (-348 |#2|) (-299)) ELT)) (-1762 (($ $ (-693)) 161 (|has| (-348 |#2|) (-299)) ELT) (($ $) 160 (|has| (-348 |#2|) (-299)) ELT)) (-3721 (((-85) $) 136 (|has| (-348 |#2|) (-312)) ELT)) (-3770 (((-829) $) 172 (|has| (-348 |#2|) (-299)) ELT) (((-742 (-829)) $) 158 (|has| (-348 |#2|) (-299)) ELT)) (-1212 (((-85) $ $) 20 T ELT)) (-2409 (((-85) $) 44 T ELT)) (-3375 (((-693)) 249 T ELT)) (-1651 (((-1177 $) (-1177 $)) 231 T ELT)) (-3131 (((-348 |#2|) $) 66 T ELT)) (-1638 (((-582 (-856 |#1|)) (-1088)) 212 (|has| |#1| (-312)) ELT)) (-3443 (((-631 $) $) 162 (|has| (-348 |#2|) (-299)) ELT)) (-1603 (((-3 (-582 $) #2="failed") (-582 $) $) 132 (|has| (-348 |#2|) (-312)) ELT)) (-2013 ((|#3| $) 59 (|has| (-348 |#2|) (-312)) ELT)) (-2009 (((-829) $) 110 (|has| (-348 |#2|) (-318)) ELT)) (-3078 ((|#3| $) 176 T ELT)) (-2279 (((-629 (-483)) (-1177 $)) 188 (|has| (-348 |#2|) (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) 187 (|has| (-348 |#2|) (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 (-348 |#2|))) (|:| |vec| (-1177 (-348 |#2|)))) (-1177 $) $) 182 T ELT) (((-629 (-348 |#2|)) (-1177 $)) 181 T ELT)) (-1889 (($ (-582 $)) 121 (|has| (-348 |#2|) (-312)) ELT) (($ $ $) 120 (|has| (-348 |#2|) (-312)) ELT)) (-3241 (((-1071) $) 11 T ELT)) (-1646 (((-629 (-348 |#2|))) 226 T ELT)) (-1648 (((-629 (-348 |#2|))) 228 T ELT)) (-2483 (($ $) 137 (|has| (-348 |#2|) (-312)) ELT)) (-1643 (($ (-1177 |#2|) |#2|) 222 T ELT)) (-1647 (((-629 (-348 |#2|))) 227 T ELT)) (-1649 (((-629 (-348 |#2|))) 229 T ELT)) (-1642 (((-2 (|:| |num| (-629 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 221 T ELT)) (-1644 (((-2 (|:| |num| (-1177 |#2|)) (|:| |den| |#2|)) $) 223 T ELT)) (-1655 (((-1177 $)) 235 T ELT)) (-3916 (((-1177 $)) 236 T ELT)) (-1654 (((-85) $) 234 T ELT)) (-1653 (((-85) $) 233 T ELT) (((-85) $ |#1|) 220 T ELT) (((-85) $ |#2|) 219 T ELT)) (-3444 (($) 163 (|has| (-348 |#2|) (-299)) CONST)) (-2399 (($ (-829)) 109 (|has| (-348 |#2|) (-318)) ELT)) (-1640 (((-3 |#2| "failed")) 214 T ELT)) (-3242 (((-1032) $) 12 T ELT)) (-1664 (((-693)) 248 T ELT)) (-2408 (($) 180 T ELT)) (-2707 (((-1083 $) (-1083 $) (-1083 $)) 122 (|has| (-348 |#2|) (-312)) ELT)) (-3143 (($ (-582 $)) 119 (|has| (-348 |#2|) (-312)) ELT) (($ $ $) 118 (|has| (-348 |#2|) (-312)) ELT)) (-1674 (((-582 (-2 (|:| -3730 (-483)) (|:| -2400 (-483))))) 166 (|has| (-348 |#2|) (-299)) ELT)) (-3730 (((-346 $) $) 133 (|has| (-348 |#2|) (-312)) ELT)) (-1604 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 131 (|has| (-348 |#2|) (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) 130 (|has| (-348 |#2|) (-312)) ELT)) (-3464 (((-3 $ "failed") $ $) 113 (|has| (-348 |#2|) (-312)) ELT)) (-2739 (((-631 (-582 $)) (-582 $) $) 124 (|has| (-348 |#2|) (-312)) ELT)) (-1605 (((-693) $) 126 (|has| (-348 |#2|) (-312)) ELT)) (-3798 ((|#1| $ |#1| |#1|) 216 T ELT)) (-1641 (((-3 |#2| "failed")) 215 T ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) 127 (|has| (-348 |#2|) (-312)) ELT)) (-3755 (((-348 |#2|) (-1177 $)) 62 T ELT) (((-348 |#2|)) 76 T ELT)) (-1763 (((-693) $) 171 (|has| (-348 |#2|) (-299)) ELT) (((-3 (-693) "failed") $ $) 159 (|has| (-348 |#2|) (-299)) ELT)) (-3756 (($ $ (-1 (-348 |#2|) (-348 |#2|))) 145 (|has| (-348 |#2|) (-312)) ELT) (($ $ (-1 (-348 |#2|) (-348 |#2|)) (-693)) 144 (|has| (-348 |#2|) (-312)) ELT) (($ $ (-1 |#2| |#2|)) 218 T ELT) (($ $ (-582 (-1088)) (-582 (-693))) 150 (OR (-2561 (|has| (-348 |#2|) (-312)) (|has| (-348 |#2|) (-810 (-1088)))) (-2561 (|has| (-348 |#2|) (-312)) (|has| (-348 |#2|) (-808 (-1088)))) (-2561 (|has| (-348 |#2|) (-810 (-1088))) (|has| (-348 |#2|) (-312)))) ELT) (($ $ (-1088) (-693)) 149 (OR (-2561 (|has| (-348 |#2|) (-312)) (|has| (-348 |#2|) (-810 (-1088)))) (-2561 (|has| (-348 |#2|) (-312)) (|has| (-348 |#2|) (-808 (-1088)))) (-2561 (|has| (-348 |#2|) (-810 (-1088))) (|has| (-348 |#2|) (-312)))) ELT) (($ $ (-582 (-1088))) 148 (OR (-2561 (|has| (-348 |#2|) (-312)) (|has| (-348 |#2|) (-810 (-1088)))) (-2561 (|has| (-348 |#2|) (-312)) (|has| (-348 |#2|) (-808 (-1088)))) (-2561 (|has| (-348 |#2|) (-810 (-1088))) (|has| (-348 |#2|) (-312)))) ELT) (($ $ (-1088)) 146 (OR (-2561 (|has| (-348 |#2|) (-312)) (|has| (-348 |#2|) (-810 (-1088)))) (-2561 (|has| (-348 |#2|) (-312)) (|has| (-348 |#2|) (-808 (-1088)))) (-2561 (|has| (-348 |#2|) (-810 (-1088))) (|has| (-348 |#2|) (-312)))) ELT) (($ $ (-693)) 156 (OR (-2561 (|has| (-348 |#2|) (-312)) (|has| (-348 |#2|) (-189))) (-2561 (|has| (-348 |#2|) (-312)) (|has| (-348 |#2|) (-190))) (-2561 (|has| (-348 |#2|) (-189)) (|has| (-348 |#2|) (-312))) (|has| (-348 |#2|) (-299))) ELT) (($ $) 154 (OR (-2561 (|has| (-348 |#2|) (-312)) (|has| (-348 |#2|) (-189))) (-2561 (|has| (-348 |#2|) (-312)) (|has| (-348 |#2|) (-190))) (-2561 (|has| (-348 |#2|) (-189)) (|has| (-348 |#2|) (-312))) (|has| (-348 |#2|) (-299))) ELT)) (-2407 (((-629 (-348 |#2|)) (-1177 $) (-1 (-348 |#2|) (-348 |#2|))) 174 (|has| (-348 |#2|) (-312)) ELT)) (-3184 ((|#3|) 179 T ELT)) (-1672 (($) 168 (|has| (-348 |#2|) (-299)) ELT)) (-3223 (((-1177 (-348 |#2|)) $ (-1177 $)) 65 T ELT) (((-629 (-348 |#2|)) (-1177 $) (-1177 $)) 64 T ELT) (((-1177 (-348 |#2|)) $) 82 T ELT) (((-629 (-348 |#2|)) (-1177 $)) 81 T ELT)) (-3970 (((-1177 (-348 |#2|)) $) 79 T ELT) (($ (-1177 (-348 |#2|))) 78 T ELT) ((|#3| $) 195 T ELT) (($ |#3|) 177 T ELT)) (-2702 (((-3 (-1177 $) "failed") (-629 $)) 165 (|has| (-348 |#2|) (-299)) ELT)) (-1652 (((-1177 $) (-1177 $)) 232 T ELT)) (-3944 (((-771) $) 13 T ELT) (($ (-483)) 41 T ELT) (($ (-348 |#2|)) 52 T ELT) (($ (-348 (-483))) 107 (OR (|has| (-348 |#2|) (-312)) (|has| (-348 |#2|) (-949 (-348 (-483))))) ELT) (($ $) 112 (|has| (-348 |#2|) (-312)) ELT)) (-2701 (($ $) 164 (|has| (-348 |#2|) (-299)) ELT) (((-631 $) $) 58 (|has| (-348 |#2|) (-118)) ELT)) (-2448 ((|#3| $) 60 T ELT)) (-3125 (((-693)) 40 T CONST)) (-1661 (((-85)) 245 T ELT)) (-1660 (((-85) |#1|) 244 T ELT) (((-85) |#2|) 243 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2011 (((-1177 $)) 83 T ELT)) (-2061 (((-85) $ $) 116 (|has| (-348 |#2|) (-312)) ELT)) (-3124 (((-85) $ $) 33 T ELT)) (-1639 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 213 T ELT)) (-1663 (((-85)) 247 T ELT)) (-2659 (($) 24 T CONST)) (-2665 (($) 45 T CONST)) (-2668 (($ $ (-1 (-348 |#2|) (-348 |#2|))) 143 (|has| (-348 |#2|) (-312)) ELT) (($ $ (-1 (-348 |#2|) (-348 |#2|)) (-693)) 142 (|has| (-348 |#2|) (-312)) ELT) (($ $ (-582 (-1088)) (-582 (-693))) 153 (OR (-2561 (|has| (-348 |#2|) (-312)) (|has| (-348 |#2|) (-810 (-1088)))) (-2561 (|has| (-348 |#2|) (-312)) (|has| (-348 |#2|) (-808 (-1088)))) (-2561 (|has| (-348 |#2|) (-810 (-1088))) (|has| (-348 |#2|) (-312)))) ELT) (($ $ (-1088) (-693)) 152 (OR (-2561 (|has| (-348 |#2|) (-312)) (|has| (-348 |#2|) (-810 (-1088)))) (-2561 (|has| (-348 |#2|) (-312)) (|has| (-348 |#2|) (-808 (-1088)))) (-2561 (|has| (-348 |#2|) (-810 (-1088))) (|has| (-348 |#2|) (-312)))) ELT) (($ $ (-582 (-1088))) 151 (OR (-2561 (|has| (-348 |#2|) (-312)) (|has| (-348 |#2|) (-810 (-1088)))) (-2561 (|has| (-348 |#2|) (-312)) (|has| (-348 |#2|) (-808 (-1088)))) (-2561 (|has| (-348 |#2|) (-810 (-1088))) (|has| (-348 |#2|) (-312)))) ELT) (($ $ (-1088)) 147 (OR (-2561 (|has| (-348 |#2|) (-312)) (|has| (-348 |#2|) (-810 (-1088)))) (-2561 (|has| (-348 |#2|) (-312)) (|has| (-348 |#2|) (-808 (-1088)))) (-2561 (|has| (-348 |#2|) (-810 (-1088))) (|has| (-348 |#2|) (-312)))) ELT) (($ $ (-693)) 157 (OR (-2561 (|has| (-348 |#2|) (-312)) (|has| (-348 |#2|) (-189))) (-2561 (|has| (-348 |#2|) (-312)) (|has| (-348 |#2|) (-190))) (-2561 (|has| (-348 |#2|) (-189)) (|has| (-348 |#2|) (-312))) (|has| (-348 |#2|) (-299))) ELT) (($ $) 155 (OR (-2561 (|has| (-348 |#2|) (-312)) (|has| (-348 |#2|) (-189))) (-2561 (|has| (-348 |#2|) (-312)) (|has| (-348 |#2|) (-190))) (-2561 (|has| (-348 |#2|) (-189)) (|has| (-348 |#2|) (-312))) (|has| (-348 |#2|) (-299))) ELT)) (-3055 (((-85) $ $) 8 T ELT)) (-3947 (($ $ $) 141 (|has| (-348 |#2|) (-312)) ELT)) (-3835 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3837 (($ $ $) 18 T ELT)) (** (($ $ (-829)) 35 T ELT) (($ $ (-693)) 43 T ELT) (($ $ (-483)) 138 (|has| (-348 |#2|) (-312)) ELT)) (* (($ (-829) $) 17 T ELT) (($ (-693) $) 21 T ELT) (($ (-483) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-348 |#2|)) 54 T ELT) (($ (-348 |#2|) $) 53 T ELT) (($ (-348 (-483)) $) 140 (|has| (-348 |#2|) (-312)) ELT) (($ $ (-348 (-483))) 139 (|has| (-348 |#2|) (-312)) ELT))) -(((-291 |#1| |#2| |#3|) (-113) (-1132) (-1153 |t#1|) (-1153 (-348 |t#2|))) (T -291)) -((-3375 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-348 *4))) (-5 *2 (-693)))) (-1664 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-348 *4))) (-5 *2 (-693)))) (-1663 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-348 *4))) (-5 *2 (-85)))) (-1662 (*1 *2 *3 *3) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-348 *4))) (-5 *2 (-85)))) (-1661 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-348 *4))) (-5 *2 (-85)))) (-1660 (*1 *2 *3) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-348 *4))) (-5 *2 (-85)))) (-1660 (*1 *2 *3) (-12 (-4 *1 (-291 *4 *3 *5)) (-4 *4 (-1132)) (-4 *3 (-1153 *4)) (-4 *5 (-1153 (-348 *3))) (-5 *2 (-85)))) (-1659 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-348 *4))) (-5 *2 (-85)))) (-1658 (*1 *2 *3) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-348 *4))) (-5 *2 (-85)))) (-1658 (*1 *2 *3) (-12 (-4 *1 (-291 *4 *3 *5)) (-4 *4 (-1132)) (-4 *3 (-1153 *4)) (-4 *5 (-1153 (-348 *3))) (-5 *2 (-85)))) (-1657 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-348 *4))) (-5 *2 (-85)))) (-1656 (*1 *2 *3) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-348 *4))) (-5 *2 (-85)))) (-1656 (*1 *2 *3) (-12 (-4 *1 (-291 *4 *3 *5)) (-4 *4 (-1132)) (-4 *3 (-1153 *4)) (-4 *5 (-1153 (-348 *3))) (-5 *2 (-85)))) (-3916 (*1 *2) (-12 (-4 *3 (-1132)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-348 *4))) (-5 *2 (-1177 *1)) (-4 *1 (-291 *3 *4 *5)))) (-1655 (*1 *2) (-12 (-4 *3 (-1132)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-348 *4))) (-5 *2 (-1177 *1)) (-4 *1 (-291 *3 *4 *5)))) (-1654 (*1 *2 *1) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-348 *4))) (-5 *2 (-85)))) (-1653 (*1 *2 *1) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-348 *4))) (-5 *2 (-85)))) (-1652 (*1 *2 *2) (-12 (-5 *2 (-1177 *1)) (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-348 *4))))) (-1651 (*1 *2 *2) (-12 (-5 *2 (-1177 *1)) (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-348 *4))))) (-1650 (*1 *2 *2) (-12 (-5 *2 (-1177 *1)) (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-348 *4))))) (-1649 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-348 *4))) (-5 *2 (-629 (-348 *4))))) (-1648 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-348 *4))) (-5 *2 (-629 (-348 *4))))) (-1647 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-348 *4))) (-5 *2 (-629 (-348 *4))))) (-1646 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-348 *4))) (-5 *2 (-629 (-348 *4))))) (-1645 (*1 *2 *1) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-348 *4))) (-5 *2 (-2 (|:| |num| (-1177 *4)) (|:| |den| *4))))) (-1790 (*1 *1 *2 *3) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-1153 *4)) (-4 *4 (-1132)) (-4 *1 (-291 *4 *3 *5)) (-4 *5 (-1153 (-348 *3))))) (-1644 (*1 *2 *1) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-348 *4))) (-5 *2 (-2 (|:| |num| (-1177 *4)) (|:| |den| *4))))) (-1643 (*1 *1 *2 *3) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-1153 *4)) (-4 *4 (-1132)) (-4 *1 (-291 *4 *3 *5)) (-4 *5 (-1153 (-348 *3))))) (-1642 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-291 *4 *5 *6)) (-4 *4 (-1132)) (-4 *5 (-1153 *4)) (-4 *6 (-1153 (-348 *5))) (-5 *2 (-2 (|:| |num| (-629 *5)) (|:| |den| *5))))) (-1653 (*1 *2 *1 *3) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-348 *4))) (-5 *2 (-85)))) (-1653 (*1 *2 *1 *3) (-12 (-4 *1 (-291 *4 *3 *5)) (-4 *4 (-1132)) (-4 *3 (-1153 *4)) (-4 *5 (-1153 (-348 *3))) (-5 *2 (-85)))) (-3756 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-348 *4))))) (-3501 (*1 *1 *1) (-12 (-4 *1 (-291 *2 *3 *4)) (-4 *2 (-1132)) (-4 *3 (-1153 *2)) (-4 *4 (-1153 (-348 *3))))) (-3798 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-291 *2 *3 *4)) (-4 *2 (-1132)) (-4 *3 (-1153 *2)) (-4 *4 (-1153 (-348 *3))))) (-1641 (*1 *2) (|partial| -12 (-4 *1 (-291 *3 *2 *4)) (-4 *3 (-1132)) (-4 *4 (-1153 (-348 *2))) (-4 *2 (-1153 *3)))) (-1640 (*1 *2) (|partial| -12 (-4 *1 (-291 *3 *2 *4)) (-4 *3 (-1132)) (-4 *4 (-1153 (-348 *2))) (-4 *2 (-1153 *3)))) (-1639 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1153 *4)) (-4 *4 (-1132)) (-4 *6 (-1153 (-348 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-291 *4 *5 *6)))) (-1638 (*1 *2 *3) (-12 (-5 *3 (-1088)) (-4 *1 (-291 *4 *5 *6)) (-4 *4 (-1132)) (-4 *5 (-1153 *4)) (-4 *6 (-1153 (-348 *5))) (-4 *4 (-312)) (-5 *2 (-582 (-856 *4))))) (-1637 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-348 *4))) (-4 *3 (-318)) (-5 *2 (-582 (-582 *3)))))) -(-13 (-660 (-348 |t#2|) |t#3|) (-10 -8 (-15 -3375 ((-693))) (-15 -1664 ((-693))) (-15 -1663 ((-85))) (-15 -1662 ((-85) |t#1| |t#1|)) (-15 -1661 ((-85))) (-15 -1660 ((-85) |t#1|)) (-15 -1660 ((-85) |t#2|)) (-15 -1659 ((-85))) (-15 -1658 ((-85) |t#1|)) (-15 -1658 ((-85) |t#2|)) (-15 -1657 ((-85))) (-15 -1656 ((-85) |t#1|)) (-15 -1656 ((-85) |t#2|)) (-15 -3916 ((-1177 $))) (-15 -1655 ((-1177 $))) (-15 -1654 ((-85) $)) (-15 -1653 ((-85) $)) (-15 -1652 ((-1177 $) (-1177 $))) (-15 -1651 ((-1177 $) (-1177 $))) (-15 -1650 ((-1177 $) (-1177 $))) (-15 -1649 ((-629 (-348 |t#2|)))) (-15 -1648 ((-629 (-348 |t#2|)))) (-15 -1647 ((-629 (-348 |t#2|)))) (-15 -1646 ((-629 (-348 |t#2|)))) (-15 -1645 ((-2 (|:| |num| (-1177 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1790 ($ (-1177 |t#2|) |t#2|)) (-15 -1644 ((-2 (|:| |num| (-1177 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1643 ($ (-1177 |t#2|) |t#2|)) (-15 -1642 ((-2 (|:| |num| (-629 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -1653 ((-85) $ |t#1|)) (-15 -1653 ((-85) $ |t#2|)) (-15 -3756 ($ $ (-1 |t#2| |t#2|))) (-15 -3501 ($ $)) (-15 -3798 (|t#1| $ |t#1| |t#1|)) (-15 -1641 ((-3 |t#2| "failed"))) (-15 -1640 ((-3 |t#2| "failed"))) (-15 -1639 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-312)) (-15 -1638 ((-582 (-856 |t#1|)) (-1088))) |%noBranch|) (IF (|has| |t#1| (-318)) (-15 -1637 ((-582 (-582 |t#1|)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-348 (-483))) OR (|has| (-348 |#2|) (-299)) (|has| (-348 |#2|) (-312))) ((-38 (-348 |#2|)) . T) ((-38 $) OR (|has| (-348 |#2|) (-299)) (|has| (-348 |#2|) (-312))) ((-72) . T) ((-82 (-348 (-483)) (-348 (-483))) OR (|has| (-348 |#2|) (-299)) (|has| (-348 |#2|) (-312))) ((-82 (-348 |#2|) (-348 |#2|)) . T) ((-82 $ $) . T) ((-104) . T) ((-118) OR (|has| (-348 |#2|) (-299)) (|has| (-348 |#2|) (-118))) ((-120) |has| (-348 |#2|) (-120)) ((-554 (-348 (-483))) OR (|has| (-348 |#2|) (-949 (-348 (-483)))) (|has| (-348 |#2|) (-299)) (|has| (-348 |#2|) (-312))) ((-554 (-348 |#2|)) . T) ((-554 (-483)) . T) ((-554 $) OR (|has| (-348 |#2|) (-299)) (|has| (-348 |#2|) (-312))) ((-551 (-771)) . T) ((-146) . T) ((-552 |#3|) . T) ((-186 $) OR (|has| (-348 |#2|) (-299)) (-12 (|has| (-348 |#2|) (-189)) (|has| (-348 |#2|) (-312))) (-12 (|has| (-348 |#2|) (-190)) (|has| (-348 |#2|) (-312)))) ((-184 (-348 |#2|)) |has| (-348 |#2|) (-312)) ((-190) OR (|has| (-348 |#2|) (-299)) (-12 (|has| (-348 |#2|) (-190)) (|has| (-348 |#2|) (-312)))) ((-189) OR (|has| (-348 |#2|) (-299)) (-12 (|has| (-348 |#2|) (-189)) (|has| (-348 |#2|) (-312))) (-12 (|has| (-348 |#2|) (-190)) (|has| (-348 |#2|) (-312)))) ((-225 (-348 |#2|)) |has| (-348 |#2|) (-312)) ((-201) OR (|has| (-348 |#2|) (-299)) (|has| (-348 |#2|) (-312))) ((-246) OR (|has| (-348 |#2|) (-299)) (|has| (-348 |#2|) (-312))) ((-258) OR (|has| (-348 |#2|) (-299)) (|has| (-348 |#2|) (-312))) ((-312) OR (|has| (-348 |#2|) (-299)) (|has| (-348 |#2|) (-312))) ((-343) |has| (-348 |#2|) (-299)) ((-318) OR (|has| (-348 |#2|) (-299)) (|has| (-348 |#2|) (-318))) ((-299) |has| (-348 |#2|) (-299)) ((-320 (-348 |#2|) |#3|) . T) ((-351 (-348 |#2|) |#3|) . T) ((-327 (-348 |#2|)) . T) ((-353 (-348 |#2|)) . T) ((-390) OR (|has| (-348 |#2|) (-299)) (|has| (-348 |#2|) (-312))) ((-494) OR (|has| (-348 |#2|) (-299)) (|has| (-348 |#2|) (-312))) ((-13) . T) ((-587 (-348 (-483))) OR (|has| (-348 |#2|) (-299)) (|has| (-348 |#2|) (-312))) ((-587 (-348 |#2|)) . T) ((-587 (-483)) . T) ((-587 $) . T) ((-589 (-348 (-483))) OR (|has| (-348 |#2|) (-299)) (|has| (-348 |#2|) (-312))) ((-589 (-348 |#2|)) . T) ((-589 (-483)) |has| (-348 |#2|) (-579 (-483))) ((-589 $) . T) ((-581 (-348 (-483))) OR (|has| (-348 |#2|) (-299)) (|has| (-348 |#2|) (-312))) ((-581 (-348 |#2|)) . T) ((-581 $) OR (|has| (-348 |#2|) (-299)) (|has| (-348 |#2|) (-312))) ((-579 (-348 |#2|)) . T) ((-579 (-483)) |has| (-348 |#2|) (-579 (-483))) ((-653 (-348 (-483))) OR (|has| (-348 |#2|) (-299)) (|has| (-348 |#2|) (-312))) ((-653 (-348 |#2|)) . T) ((-653 $) OR (|has| (-348 |#2|) (-299)) (|has| (-348 |#2|) (-312))) ((-660 (-348 |#2|) |#3|) . T) ((-662) . T) ((-805 $ (-1088)) OR (-12 (|has| (-348 |#2|) (-312)) (|has| (-348 |#2|) (-810 (-1088)))) (-12 (|has| (-348 |#2|) (-312)) (|has| (-348 |#2|) (-808 (-1088))))) ((-808 (-1088)) -12 (|has| (-348 |#2|) (-312)) (|has| (-348 |#2|) (-808 (-1088)))) ((-810 (-1088)) OR (-12 (|has| (-348 |#2|) (-312)) (|has| (-348 |#2|) (-810 (-1088)))) (-12 (|has| (-348 |#2|) (-312)) (|has| (-348 |#2|) (-808 (-1088))))) ((-831) OR (|has| (-348 |#2|) (-299)) (|has| (-348 |#2|) (-312))) ((-949 (-348 (-483))) |has| (-348 |#2|) (-949 (-348 (-483)))) ((-949 (-348 |#2|)) . T) ((-949 (-483)) |has| (-348 |#2|) (-949 (-483))) ((-962 (-348 (-483))) OR (|has| (-348 |#2|) (-299)) (|has| (-348 |#2|) (-312))) ((-962 (-348 |#2|)) . T) ((-962 $) . T) ((-967 (-348 (-483))) OR (|has| (-348 |#2|) (-299)) (|has| (-348 |#2|) (-312))) ((-967 (-348 |#2|)) . T) ((-967 $) . T) ((-960) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1064) |has| (-348 |#2|) (-299)) ((-1127) . T) ((-1132) OR (|has| (-348 |#2|) (-299)) (|has| (-348 |#2|) (-312)))) -((-3956 ((|#8| (-1 |#5| |#1|) |#4|) 19 T ELT))) -(((-292 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3956 (|#8| (-1 |#5| |#1|) |#4|))) (-1132) (-1153 |#1|) (-1153 (-348 |#2|)) (-291 |#1| |#2| |#3|) (-1132) (-1153 |#5|) (-1153 (-348 |#6|)) (-291 |#5| |#6| |#7|)) (T -292)) -((-3956 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1132)) (-4 *8 (-1132)) (-4 *6 (-1153 *5)) (-4 *7 (-1153 (-348 *6))) (-4 *9 (-1153 *8)) (-4 *2 (-291 *8 *9 *10)) (-5 *1 (-292 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-291 *5 *6 *7)) (-4 *10 (-1153 (-348 *9)))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3187 (((-85) $) NIL T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3980 $) (|:| |associate| $)) $) NIL T ELT)) (-2062 (($ $) NIL T ELT)) (-2060 (((-85) $) NIL T ELT)) (-3930 (((-85) $) NIL T ELT)) (-3927 (((-693)) NIL T ELT)) (-3328 (((-816 |#1|) $) NIL T ELT) (($ $ (-829)) NIL (|has| (-816 |#1|) (-318)) ELT)) (-1673 (((-1100 (-829) (-693)) (-483)) NIL (|has| (-816 |#1|) (-318)) ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3773 (($ $) NIL T ELT)) (-3969 (((-346 $) $) NIL T ELT)) (-1606 (((-85) $ $) NIL T ELT)) (-3135 (((-693)) NIL (|has| (-816 |#1|) (-318)) ELT)) (-3722 (($) NIL T CONST)) (-3156 (((-3 (-816 |#1|) #1#) $) NIL T ELT)) (-3155 (((-816 |#1|) $) NIL T ELT)) (-1790 (($ (-1177 (-816 |#1|))) NIL T ELT)) (-1671 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-816 |#1|) (-318)) ELT)) (-2563 (($ $ $) NIL T ELT)) (-3465 (((-3 $ #1#) $) NIL T ELT)) (-2993 (($) NIL (|has| (-816 |#1|) (-318)) ELT)) (-2562 (($ $ $) NIL T ELT)) (-2740 (((-2 (|:| -3952 (-582 $)) (|:| -2408 $)) (-582 $)) NIL T ELT)) (-2832 (($) NIL (|has| (-816 |#1|) (-318)) ELT)) (-1678 (((-85) $) NIL (|has| (-816 |#1|) (-318)) ELT)) (-1762 (($ $ (-693)) NIL (OR (|has| (-816 |#1|) (-118)) (|has| (-816 |#1|) (-318))) ELT) (($ $) NIL (OR (|has| (-816 |#1|) (-118)) (|has| (-816 |#1|) (-318))) ELT)) (-3721 (((-85) $) NIL T ELT)) (-3770 (((-829) $) NIL (|has| (-816 |#1|) (-318)) ELT) (((-742 (-829)) $) NIL (OR (|has| (-816 |#1|) (-118)) (|has| (-816 |#1|) (-318))) ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-2409 (((-85) $) NIL T ELT)) (-2012 (($) NIL (|has| (-816 |#1|) (-318)) ELT)) (-2010 (((-85) $) NIL (|has| (-816 |#1|) (-318)) ELT)) (-3131 (((-816 |#1|) $) NIL T ELT) (($ $ (-829)) NIL (|has| (-816 |#1|) (-318)) ELT)) (-3443 (((-631 $) $) NIL (|has| (-816 |#1|) (-318)) ELT)) (-1603 (((-3 (-582 $) #1#) (-582 $) $) NIL T ELT)) (-2013 (((-1083 (-816 |#1|)) $) NIL T ELT) (((-1083 $) $ (-829)) NIL (|has| (-816 |#1|) (-318)) ELT)) (-2009 (((-829) $) NIL (|has| (-816 |#1|) (-318)) ELT)) (-1625 (((-1083 (-816 |#1|)) $) NIL (|has| (-816 |#1|) (-318)) ELT)) (-1624 (((-1083 (-816 |#1|)) $) NIL (|has| (-816 |#1|) (-318)) ELT) (((-3 (-1083 (-816 |#1|)) #1#) $ $) NIL (|has| (-816 |#1|) (-318)) ELT)) (-1626 (($ $ (-1083 (-816 |#1|))) NIL (|has| (-816 |#1|) (-318)) ELT)) (-1889 (($ $ $) NIL T ELT) (($ (-582 $)) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-2483 (($ $) NIL T ELT)) (-3444 (($) NIL (|has| (-816 |#1|) (-318)) CONST)) (-2399 (($ (-829)) NIL (|has| (-816 |#1|) (-318)) ELT)) (-3929 (((-85) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-1665 (((-868 (-1032))) NIL T ELT)) (-2408 (($) NIL (|has| (-816 |#1|) (-318)) ELT)) (-2707 (((-1083 $) (-1083 $) (-1083 $)) NIL T ELT)) (-3143 (($ $ $) NIL T ELT) (($ (-582 $)) NIL T ELT)) (-1674 (((-582 (-2 (|:| -3730 (-483)) (|:| -2400 (-483))))) NIL (|has| (-816 |#1|) (-318)) ELT)) (-3730 (((-346 $) $) NIL T ELT)) (-3928 (((-742 (-829))) NIL T ELT) (((-829)) NIL T ELT)) (-1604 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3464 (((-3 $ #1#) $ $) NIL T ELT)) (-2739 (((-631 (-582 $)) (-582 $) $) NIL T ELT)) (-1605 (((-693) $) NIL T ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL T ELT)) (-1763 (((-693) $) NIL (|has| (-816 |#1|) (-318)) ELT) (((-3 (-693) #1#) $ $) NIL (OR (|has| (-816 |#1|) (-118)) (|has| (-816 |#1|) (-318))) ELT)) (-3909 (((-107)) NIL T ELT)) (-3756 (($ $ (-693)) NIL (|has| (-816 |#1|) (-318)) ELT) (($ $) NIL (|has| (-816 |#1|) (-318)) ELT)) (-3946 (((-742 (-829)) $) NIL T ELT) (((-829) $) NIL T ELT)) (-3184 (((-1083 (-816 |#1|))) NIL T ELT)) (-1672 (($) NIL (|has| (-816 |#1|) (-318)) ELT)) (-1627 (($) NIL (|has| (-816 |#1|) (-318)) ELT)) (-3223 (((-1177 (-816 |#1|)) $) NIL T ELT) (((-629 (-816 |#1|)) (-1177 $)) NIL T ELT)) (-2702 (((-3 (-1177 $) #1#) (-629 $)) NIL (|has| (-816 |#1|) (-318)) ELT)) (-3944 (((-771) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ $) NIL T ELT) (($ (-348 (-483))) NIL T ELT) (($ (-816 |#1|)) NIL T ELT)) (-2701 (($ $) NIL (|has| (-816 |#1|) (-318)) ELT) (((-631 $) $) NIL (OR (|has| (-816 |#1|) (-118)) (|has| (-816 |#1|) (-318))) ELT)) (-3125 (((-693)) NIL T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-2011 (((-1177 $)) NIL T ELT) (((-1177 $) (-829)) NIL T ELT)) (-2061 (((-85) $ $) NIL T ELT)) (-3124 (((-85) $ $) NIL T ELT)) (-3931 (((-85) $) NIL T ELT)) (-2659 (($) NIL T CONST)) (-2665 (($) NIL T CONST)) (-3926 (($ $) NIL (|has| (-816 |#1|) (-318)) ELT) (($ $ (-693)) NIL (|has| (-816 |#1|) (-318)) ELT)) (-2668 (($ $ (-693)) NIL (|has| (-816 |#1|) (-318)) ELT) (($ $) NIL (|has| (-816 |#1|) (-318)) ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-3947 (($ $ $) NIL T ELT) (($ $ (-816 |#1|)) NIL T ELT)) (-3835 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3837 (($ $ $) NIL T ELT)) (** (($ $ (-829)) NIL T ELT) (($ $ (-693)) NIL T ELT) (($ $ (-483)) NIL T ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-348 (-483))) NIL T ELT) (($ (-348 (-483)) $) NIL T ELT) (($ $ (-816 |#1|)) NIL T ELT) (($ (-816 |#1|) $) NIL T ELT))) -(((-293 |#1| |#2|) (-13 (-280 (-816 |#1|)) (-10 -7 (-15 -1665 ((-868 (-1032)))))) (-829) (-829)) (T -293)) -((-1665 (*1 *2) (-12 (-5 *2 (-868 (-1032))) (-5 *1 (-293 *3 *4)) (-14 *3 (-829)) (-14 *4 (-829))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3187 (((-85) $) 58 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3980 $) (|:| |associate| $)) $) NIL T ELT)) (-2062 (($ $) NIL T ELT)) (-2060 (((-85) $) NIL T ELT)) (-3930 (((-85) $) NIL T ELT)) (-3927 (((-693)) NIL T ELT)) (-3328 ((|#1| $) NIL T ELT) (($ $ (-829)) NIL (|has| |#1| (-318)) ELT)) (-1673 (((-1100 (-829) (-693)) (-483)) 56 (|has| |#1| (-318)) ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3773 (($ $) NIL T ELT)) (-3969 (((-346 $) $) NIL T ELT)) (-1606 (((-85) $ $) NIL T ELT)) (-3135 (((-693)) NIL (|has| |#1| (-318)) ELT)) (-3722 (($) NIL T CONST)) (-3156 (((-3 |#1| #1#) $) 139 T ELT)) (-3155 ((|#1| $) 111 T ELT)) (-1790 (($ (-1177 |#1|)) 128 T ELT)) (-1671 (((-3 "prime" "polynomial" "normal" "cyclic")) 119 (|has| |#1| (-318)) ELT)) (-2563 (($ $ $) NIL T ELT)) (-3465 (((-3 $ #1#) $) NIL T ELT)) (-2993 (($) 122 (|has| |#1| (-318)) ELT)) (-2562 (($ $ $) NIL T ELT)) (-2740 (((-2 (|:| -3952 (-582 $)) (|:| -2408 $)) (-582 $)) NIL T ELT)) (-2832 (($) 155 (|has| |#1| (-318)) ELT)) (-1678 (((-85) $) 65 (|has| |#1| (-318)) ELT)) (-1762 (($ $ (-693)) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-318))) ELT) (($ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-318))) ELT)) (-3721 (((-85) $) NIL T ELT)) (-3770 (((-829) $) 60 (|has| |#1| (-318)) ELT) (((-742 (-829)) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-318))) ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-2409 (((-85) $) 62 T ELT)) (-2012 (($) 157 (|has| |#1| (-318)) ELT)) (-2010 (((-85) $) NIL (|has| |#1| (-318)) ELT)) (-3131 ((|#1| $) NIL T ELT) (($ $ (-829)) NIL (|has| |#1| (-318)) ELT)) (-3443 (((-631 $) $) NIL (|has| |#1| (-318)) ELT)) (-1603 (((-3 (-582 $) #1#) (-582 $) $) NIL T ELT)) (-2013 (((-1083 |#1|) $) 115 T ELT) (((-1083 $) $ (-829)) NIL (|has| |#1| (-318)) ELT)) (-2009 (((-829) $) 165 (|has| |#1| (-318)) ELT)) (-1625 (((-1083 |#1|) $) NIL (|has| |#1| (-318)) ELT)) (-1624 (((-1083 |#1|) $) NIL (|has| |#1| (-318)) ELT) (((-3 (-1083 |#1|) #1#) $ $) NIL (|has| |#1| (-318)) ELT)) (-1626 (($ $ (-1083 |#1|)) NIL (|has| |#1| (-318)) ELT)) (-1889 (($ $ $) NIL T ELT) (($ (-582 $)) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-2483 (($ $) 172 T ELT)) (-3444 (($) NIL (|has| |#1| (-318)) CONST)) (-2399 (($ (-829)) 94 (|has| |#1| (-318)) ELT)) (-3929 (((-85) $) 142 T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-1665 (((-868 (-1032))) 57 T ELT)) (-2408 (($) 153 (|has| |#1| (-318)) ELT)) (-2707 (((-1083 $) (-1083 $) (-1083 $)) NIL T ELT)) (-3143 (($ $ $) NIL T ELT) (($ (-582 $)) NIL T ELT)) (-1674 (((-582 (-2 (|:| -3730 (-483)) (|:| -2400 (-483))))) 117 (|has| |#1| (-318)) ELT)) (-3730 (((-346 $) $) NIL T ELT)) (-3928 (((-742 (-829))) 88 T ELT) (((-829)) 89 T ELT)) (-1604 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3464 (((-3 $ #1#) $ $) NIL T ELT)) (-2739 (((-631 (-582 $)) (-582 $) $) NIL T ELT)) (-1605 (((-693) $) NIL T ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL T ELT)) (-1763 (((-693) $) 156 (|has| |#1| (-318)) ELT) (((-3 (-693) #1#) $ $) 149 (OR (|has| |#1| (-118)) (|has| |#1| (-318))) ELT)) (-3909 (((-107)) NIL T ELT)) (-3756 (($ $ (-693)) NIL (|has| |#1| (-318)) ELT) (($ $) NIL (|has| |#1| (-318)) ELT)) (-3946 (((-742 (-829)) $) NIL T ELT) (((-829) $) NIL T ELT)) (-3184 (((-1083 |#1|)) 120 T ELT)) (-1672 (($) 154 (|has| |#1| (-318)) ELT)) (-1627 (($) 162 (|has| |#1| (-318)) ELT)) (-3223 (((-1177 |#1|) $) 76 T ELT) (((-629 |#1|) (-1177 $)) NIL T ELT)) (-2702 (((-3 (-1177 $) #1#) (-629 $)) NIL (|has| |#1| (-318)) ELT)) (-3944 (((-771) $) 168 T ELT) (($ (-483)) NIL T ELT) (($ $) NIL T ELT) (($ (-348 (-483))) NIL T ELT) (($ |#1|) 98 T ELT)) (-2701 (($ $) NIL (|has| |#1| (-318)) ELT) (((-631 $) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-318))) ELT)) (-3125 (((-693)) 150 T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-2011 (((-1177 $)) 141 T ELT) (((-1177 $) (-829)) 96 T ELT)) (-2061 (((-85) $ $) NIL T ELT)) (-3124 (((-85) $ $) NIL T ELT)) (-3931 (((-85) $) NIL T ELT)) (-2659 (($) 66 T CONST)) (-2665 (($) 101 T CONST)) (-3926 (($ $) 105 (|has| |#1| (-318)) ELT) (($ $ (-693)) NIL (|has| |#1| (-318)) ELT)) (-2668 (($ $ (-693)) NIL (|has| |#1| (-318)) ELT) (($ $) NIL (|has| |#1| (-318)) ELT)) (-3055 (((-85) $ $) 64 T ELT)) (-3947 (($ $ $) 170 T ELT) (($ $ |#1|) 171 T ELT)) (-3835 (($ $) 152 T ELT) (($ $ $) NIL T ELT)) (-3837 (($ $ $) 84 T ELT)) (** (($ $ (-829)) 174 T ELT) (($ $ (-693)) 175 T ELT) (($ $ (-483)) 173 T ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-483) $) 100 T ELT) (($ $ $) 99 T ELT) (($ $ (-348 (-483))) NIL T ELT) (($ (-348 (-483)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 169 T ELT))) -(((-294 |#1| |#2|) (-13 (-280 |#1|) (-10 -7 (-15 -1665 ((-868 (-1032)))))) (-299) (-1083 |#1|)) (T -294)) -((-1665 (*1 *2) (-12 (-5 *2 (-868 (-1032))) (-5 *1 (-294 *3 *4)) (-4 *3 (-299)) (-14 *4 (-1083 *3))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3187 (((-85) $) NIL T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3980 $) (|:| |associate| $)) $) NIL T ELT)) (-2062 (($ $) NIL T ELT)) (-2060 (((-85) $) NIL T ELT)) (-3930 (((-85) $) NIL T ELT)) (-3927 (((-693)) NIL T ELT)) (-3328 ((|#1| $) NIL T ELT) (($ $ (-829)) NIL (|has| |#1| (-318)) ELT)) (-1673 (((-1100 (-829) (-693)) (-483)) NIL (|has| |#1| (-318)) ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3773 (($ $) NIL T ELT)) (-3969 (((-346 $) $) NIL T ELT)) (-1606 (((-85) $ $) NIL T ELT)) (-3135 (((-693)) NIL (|has| |#1| (-318)) ELT)) (-3722 (($) NIL T CONST)) (-3156 (((-3 |#1| #1#) $) NIL T ELT)) (-3155 ((|#1| $) NIL T ELT)) (-1790 (($ (-1177 |#1|)) NIL T ELT)) (-1671 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-318)) ELT)) (-2563 (($ $ $) NIL T ELT)) (-3465 (((-3 $ #1#) $) NIL T ELT)) (-2993 (($) NIL (|has| |#1| (-318)) ELT)) (-2562 (($ $ $) NIL T ELT)) (-2740 (((-2 (|:| -3952 (-582 $)) (|:| -2408 $)) (-582 $)) NIL T ELT)) (-2832 (($) NIL (|has| |#1| (-318)) ELT)) (-1678 (((-85) $) NIL (|has| |#1| (-318)) ELT)) (-1762 (($ $ (-693)) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-318))) ELT) (($ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-318))) ELT)) (-3721 (((-85) $) NIL T ELT)) (-3770 (((-829) $) NIL (|has| |#1| (-318)) ELT) (((-742 (-829)) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-318))) ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-2409 (((-85) $) NIL T ELT)) (-2012 (($) NIL (|has| |#1| (-318)) ELT)) (-2010 (((-85) $) NIL (|has| |#1| (-318)) ELT)) (-3131 ((|#1| $) NIL T ELT) (($ $ (-829)) NIL (|has| |#1| (-318)) ELT)) (-3443 (((-631 $) $) NIL (|has| |#1| (-318)) ELT)) (-1603 (((-3 (-582 $) #1#) (-582 $) $) NIL T ELT)) (-2013 (((-1083 |#1|) $) NIL T ELT) (((-1083 $) $ (-829)) NIL (|has| |#1| (-318)) ELT)) (-2009 (((-829) $) NIL (|has| |#1| (-318)) ELT)) (-1625 (((-1083 |#1|) $) NIL (|has| |#1| (-318)) ELT)) (-1624 (((-1083 |#1|) $) NIL (|has| |#1| (-318)) ELT) (((-3 (-1083 |#1|) #1#) $ $) NIL (|has| |#1| (-318)) ELT)) (-1626 (($ $ (-1083 |#1|)) NIL (|has| |#1| (-318)) ELT)) (-1889 (($ $ $) NIL T ELT) (($ (-582 $)) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-2483 (($ $) NIL T ELT)) (-3444 (($) NIL (|has| |#1| (-318)) CONST)) (-2399 (($ (-829)) NIL (|has| |#1| (-318)) ELT)) (-3929 (((-85) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-1665 (((-868 (-1032))) NIL T ELT)) (-2408 (($) NIL (|has| |#1| (-318)) ELT)) (-2707 (((-1083 $) (-1083 $) (-1083 $)) NIL T ELT)) (-3143 (($ $ $) NIL T ELT) (($ (-582 $)) NIL T ELT)) (-1674 (((-582 (-2 (|:| -3730 (-483)) (|:| -2400 (-483))))) NIL (|has| |#1| (-318)) ELT)) (-3730 (((-346 $) $) NIL T ELT)) (-3928 (((-742 (-829))) NIL T ELT) (((-829)) NIL T ELT)) (-1604 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3464 (((-3 $ #1#) $ $) NIL T ELT)) (-2739 (((-631 (-582 $)) (-582 $) $) NIL T ELT)) (-1605 (((-693) $) NIL T ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL T ELT)) (-1763 (((-693) $) NIL (|has| |#1| (-318)) ELT) (((-3 (-693) #1#) $ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-318))) ELT)) (-3909 (((-107)) NIL T ELT)) (-3756 (($ $ (-693)) NIL (|has| |#1| (-318)) ELT) (($ $) NIL (|has| |#1| (-318)) ELT)) (-3946 (((-742 (-829)) $) NIL T ELT) (((-829) $) NIL T ELT)) (-3184 (((-1083 |#1|)) NIL T ELT)) (-1672 (($) NIL (|has| |#1| (-318)) ELT)) (-1627 (($) NIL (|has| |#1| (-318)) ELT)) (-3223 (((-1177 |#1|) $) NIL T ELT) (((-629 |#1|) (-1177 $)) NIL T ELT)) (-2702 (((-3 (-1177 $) #1#) (-629 $)) NIL (|has| |#1| (-318)) ELT)) (-3944 (((-771) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ $) NIL T ELT) (($ (-348 (-483))) NIL T ELT) (($ |#1|) NIL T ELT)) (-2701 (($ $) NIL (|has| |#1| (-318)) ELT) (((-631 $) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-318))) ELT)) (-3125 (((-693)) NIL T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-2011 (((-1177 $)) NIL T ELT) (((-1177 $) (-829)) NIL T ELT)) (-2061 (((-85) $ $) NIL T ELT)) (-3124 (((-85) $ $) NIL T ELT)) (-3931 (((-85) $) NIL T ELT)) (-2659 (($) NIL T CONST)) (-2665 (($) NIL T CONST)) (-3926 (($ $) NIL (|has| |#1| (-318)) ELT) (($ $ (-693)) NIL (|has| |#1| (-318)) ELT)) (-2668 (($ $ (-693)) NIL (|has| |#1| (-318)) ELT) (($ $) NIL (|has| |#1| (-318)) ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-3947 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3835 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3837 (($ $ $) NIL T ELT)) (** (($ $ (-829)) NIL T ELT) (($ $ (-693)) NIL T ELT) (($ $ (-483)) NIL T ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-348 (-483))) NIL T ELT) (($ (-348 (-483)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-295 |#1| |#2|) (-13 (-280 |#1|) (-10 -7 (-15 -1665 ((-868 (-1032)))))) (-299) (-829)) (T -295)) -((-1665 (*1 *2) (-12 (-5 *2 (-868 (-1032))) (-5 *1 (-295 *3 *4)) (-4 *3 (-299)) (-14 *4 (-829))))) -((-1675 (((-693) (-1177 (-582 (-2 (|:| -3400 |#1|) (|:| -2399 (-1032)))))) 61 T ELT)) (-1666 (((-868 (-1032)) (-1083 |#1|)) 112 T ELT)) (-1667 (((-1177 (-582 (-2 (|:| -3400 |#1|) (|:| -2399 (-1032))))) (-1083 |#1|)) 103 T ELT)) (-1668 (((-629 |#1|) (-1177 (-582 (-2 (|:| -3400 |#1|) (|:| -2399 (-1032)))))) 113 T ELT)) (-1669 (((-3 (-1177 (-582 (-2 (|:| -3400 |#1|) (|:| -2399 (-1032))))) "failed") (-829)) 13 T ELT)) (-1670 (((-3 (-1083 |#1|) (-1177 (-582 (-2 (|:| -3400 |#1|) (|:| -2399 (-1032)))))) (-829)) 18 T ELT))) -(((-296 |#1|) (-10 -7 (-15 -1666 ((-868 (-1032)) (-1083 |#1|))) (-15 -1667 ((-1177 (-582 (-2 (|:| -3400 |#1|) (|:| -2399 (-1032))))) (-1083 |#1|))) (-15 -1668 ((-629 |#1|) (-1177 (-582 (-2 (|:| -3400 |#1|) (|:| -2399 (-1032))))))) (-15 -1675 ((-693) (-1177 (-582 (-2 (|:| -3400 |#1|) (|:| -2399 (-1032))))))) (-15 -1669 ((-3 (-1177 (-582 (-2 (|:| -3400 |#1|) (|:| -2399 (-1032))))) "failed") (-829))) (-15 -1670 ((-3 (-1083 |#1|) (-1177 (-582 (-2 (|:| -3400 |#1|) (|:| -2399 (-1032)))))) (-829)))) (-299)) (T -296)) -((-1670 (*1 *2 *3) (-12 (-5 *3 (-829)) (-5 *2 (-3 (-1083 *4) (-1177 (-582 (-2 (|:| -3400 *4) (|:| -2399 (-1032))))))) (-5 *1 (-296 *4)) (-4 *4 (-299)))) (-1669 (*1 *2 *3) (|partial| -12 (-5 *3 (-829)) (-5 *2 (-1177 (-582 (-2 (|:| -3400 *4) (|:| -2399 (-1032)))))) (-5 *1 (-296 *4)) (-4 *4 (-299)))) (-1675 (*1 *2 *3) (-12 (-5 *3 (-1177 (-582 (-2 (|:| -3400 *4) (|:| -2399 (-1032)))))) (-4 *4 (-299)) (-5 *2 (-693)) (-5 *1 (-296 *4)))) (-1668 (*1 *2 *3) (-12 (-5 *3 (-1177 (-582 (-2 (|:| -3400 *4) (|:| -2399 (-1032)))))) (-4 *4 (-299)) (-5 *2 (-629 *4)) (-5 *1 (-296 *4)))) (-1667 (*1 *2 *3) (-12 (-5 *3 (-1083 *4)) (-4 *4 (-299)) (-5 *2 (-1177 (-582 (-2 (|:| -3400 *4) (|:| -2399 (-1032)))))) (-5 *1 (-296 *4)))) (-1666 (*1 *2 *3) (-12 (-5 *3 (-1083 *4)) (-4 *4 (-299)) (-5 *2 (-868 (-1032))) (-5 *1 (-296 *4))))) -((-3944 ((|#1| |#3|) 104 T ELT) ((|#3| |#1|) 87 T ELT))) -(((-297 |#1| |#2| |#3|) (-10 -7 (-15 -3944 (|#3| |#1|)) (-15 -3944 (|#1| |#3|))) (-280 |#2|) (-299) (-280 |#2|)) (T -297)) -((-3944 (*1 *2 *3) (-12 (-4 *4 (-299)) (-4 *2 (-280 *4)) (-5 *1 (-297 *2 *4 *3)) (-4 *3 (-280 *4)))) (-3944 (*1 *2 *3) (-12 (-4 *4 (-299)) (-4 *2 (-280 *4)) (-5 *1 (-297 *3 *4 *2)) (-4 *3 (-280 *4))))) -((-1678 (((-85) $) 65 T ELT)) (-3770 (((-742 (-829)) $) 26 T ELT) (((-829) $) 69 T ELT)) (-3443 (((-631 $) $) 21 T ELT)) (-3444 (($) 9 T CONST)) (-2707 (((-1083 $) (-1083 $) (-1083 $)) 120 T ELT)) (-1763 (((-3 (-693) #1="failed") $ $) 98 T ELT) (((-693) $) 84 T ELT)) (-3756 (($ $) 8 T ELT) (($ $ (-693)) NIL T ELT)) (-1672 (($) 58 T ELT)) (-2702 (((-3 (-1177 $) #1#) (-629 $)) 41 T ELT)) (-2701 (((-631 $) $) 50 T ELT) (($ $) 47 T ELT))) -(((-298 |#1|) (-10 -7 (-15 -3770 ((-829) |#1|)) (-15 -1763 ((-693) |#1|)) (-15 -1678 ((-85) |#1|)) (-15 -1672 (|#1|)) (-15 -2702 ((-3 (-1177 |#1|) #1="failed") (-629 |#1|))) (-15 -2701 (|#1| |#1|)) (-15 -3756 (|#1| |#1| (-693))) (-15 -3756 (|#1| |#1|)) (-15 -3444 (|#1|) -3950) (-15 -3443 ((-631 |#1|) |#1|)) (-15 -1763 ((-3 (-693) #1#) |#1| |#1|)) (-15 -3770 ((-742 (-829)) |#1|)) (-15 -2701 ((-631 |#1|) |#1|)) (-15 -2707 ((-1083 |#1|) (-1083 |#1|) (-1083 |#1|)))) (-299)) (T -298)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-3187 (((-85) $) 22 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3980 $) (|:| |associate| $)) $) 55 T ELT)) (-2062 (($ $) 54 T ELT)) (-2060 (((-85) $) 52 T ELT)) (-1673 (((-1100 (-829) (-693)) (-483)) 113 T ELT)) (-1310 (((-3 $ "failed") $ $) 26 T ELT)) (-3773 (($ $) 91 T ELT)) (-3969 (((-346 $) $) 90 T ELT)) (-1606 (((-85) $ $) 75 T ELT)) (-3135 (((-693)) 123 T ELT)) (-3722 (($) 23 T CONST)) (-1671 (((-3 "prime" "polynomial" "normal" "cyclic")) 107 T ELT)) (-2563 (($ $ $) 71 T ELT)) (-3465 (((-3 $ "failed") $) 42 T ELT)) (-2993 (($) 126 T ELT)) (-2562 (($ $ $) 72 T ELT)) (-2740 (((-2 (|:| -3952 (-582 $)) (|:| -2408 $)) (-582 $)) 66 T ELT)) (-2832 (($) 111 T ELT)) (-1678 (((-85) $) 110 T ELT)) (-1762 (($ $) 97 T ELT) (($ $ (-693)) 96 T ELT)) (-3721 (((-85) $) 89 T ELT)) (-3770 (((-742 (-829)) $) 99 T ELT) (((-829) $) 108 T ELT)) (-1212 (((-85) $ $) 20 T ELT)) (-2409 (((-85) $) 44 T ELT)) (-3443 (((-631 $) $) 122 T ELT)) (-1603 (((-3 (-582 $) #1="failed") (-582 $) $) 68 T ELT)) (-2009 (((-829) $) 125 T ELT)) (-1889 (($ $ $) 60 T ELT) (($ (-582 $)) 59 T ELT)) (-3241 (((-1071) $) 11 T ELT)) (-2483 (($ $) 88 T ELT)) (-3444 (($) 121 T CONST)) (-2399 (($ (-829)) 124 T ELT)) (-3242 (((-1032) $) 12 T ELT)) (-2707 (((-1083 $) (-1083 $) (-1083 $)) 58 T ELT)) (-3143 (($ $ $) 62 T ELT) (($ (-582 $)) 61 T ELT)) (-1674 (((-582 (-2 (|:| -3730 (-483)) (|:| -2400 (-483))))) 114 T ELT)) (-3730 (((-346 $) $) 92 T ELT)) (-1604 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 69 T ELT)) (-3464 (((-3 $ "failed") $ $) 56 T ELT)) (-2739 (((-631 (-582 $)) (-582 $) $) 65 T ELT)) (-1605 (((-693) $) 74 T ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) 73 T ELT)) (-1763 (((-3 (-693) "failed") $ $) 98 T ELT) (((-693) $) 109 T ELT)) (-3756 (($ $) 120 T ELT) (($ $ (-693)) 118 T ELT)) (-1672 (($) 112 T ELT)) (-2702 (((-3 (-1177 $) "failed") (-629 $)) 115 T ELT)) (-3944 (((-771) $) 13 T ELT) (($ (-483)) 41 T ELT) (($ $) 57 T ELT) (($ (-348 (-483))) 84 T ELT)) (-2701 (((-631 $) $) 100 T ELT) (($ $) 116 T ELT)) (-3125 (((-693)) 40 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-2061 (((-85) $ $) 53 T ELT)) (-3124 (((-85) $ $) 33 T ELT)) (-2659 (($) 24 T CONST)) (-2665 (($) 45 T CONST)) (-2668 (($ $) 119 T ELT) (($ $ (-693)) 117 T ELT)) (-3055 (((-85) $ $) 8 T ELT)) (-3947 (($ $ $) 83 T ELT)) (-3835 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3837 (($ $ $) 18 T ELT)) (** (($ $ (-829)) 35 T ELT) (($ $ (-693)) 43 T ELT) (($ $ (-483)) 87 T ELT)) (* (($ (-829) $) 17 T ELT) (($ (-693) $) 21 T ELT) (($ (-483) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-348 (-483))) 86 T ELT) (($ (-348 (-483)) $) 85 T ELT))) +((-2012 (*1 *2) (-12 (-4 *3 (-312)) (-5 *2 (-1178 *1)) (-4 *1 (-280 *3)))) (-2012 (*1 *2 *3) (-12 (-5 *3 (-830)) (-4 *4 (-312)) (-5 *2 (-1178 *1)) (-4 *1 (-280 *4)))) (-3224 (*1 *2 *1) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-5 *2 (-1178 *3)))) (-3224 (*1 *2 *3) (-12 (-5 *3 (-1178 *1)) (-4 *1 (-280 *4)) (-4 *4 (-312)) (-5 *2 (-630 *4)))) (-1791 (*1 *1 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-312)) (-4 *1 (-280 *3)))) (-2014 (*1 *2 *1) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-5 *2 (-1084 *3)))) (-3185 (*1 *2) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-5 *2 (-1084 *3)))) (-3929 (*1 *2) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-5 *2 (-830)))) (-3947 (*1 *2 *1) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-5 *2 (-830)))) (-3132 (*1 *2 *1) (-12 (-4 *1 (-280 *2)) (-4 *2 (-312)))) (-3329 (*1 *2 *1) (-12 (-4 *1 (-280 *2)) (-4 *2 (-312)))) (-2014 (*1 *2 *1 *3) (-12 (-5 *3 (-830)) (-4 *4 (-319)) (-4 *4 (-312)) (-5 *2 (-1084 *1)) (-4 *1 (-280 *4)))) (-3132 (*1 *1 *1 *2) (-12 (-5 *2 (-830)) (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-319)))) (-3329 (*1 *1 *1 *2) (-12 (-5 *2 (-830)) (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-319)))) (-1628 (*1 *1) (-12 (-4 *1 (-280 *2)) (-4 *2 (-319)) (-4 *2 (-312)))) (-2013 (*1 *1) (-12 (-4 *1 (-280 *2)) (-4 *2 (-319)) (-4 *2 (-312)))) (-2011 (*1 *2 *1) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-319)) (-5 *2 (-85)))) (-2409 (*1 *1) (-12 (-4 *1 (-280 *2)) (-4 *2 (-319)) (-4 *2 (-312)))) (-1627 (*1 *1 *1 *2) (-12 (-5 *2 (-1084 *3)) (-4 *3 (-319)) (-4 *1 (-280 *3)) (-4 *3 (-312)))) (-1626 (*1 *2 *1) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-319)) (-5 *2 (-1084 *3)))) (-1625 (*1 *2 *1) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-319)) (-5 *2 (-1084 *3)))) (-1625 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-319)) (-5 *2 (-1084 *3))))) +(-13 (-1197 |t#1|) (-950 |t#1|) (-10 -8 (-15 -2012 ((-1178 $))) (-15 -2012 ((-1178 $) (-830))) (-15 -3224 ((-1178 |t#1|) $)) (-15 -3224 ((-630 |t#1|) (-1178 $))) (-15 -1791 ($ (-1178 |t#1|))) (-15 -2014 ((-1084 |t#1|) $)) (-15 -3185 ((-1084 |t#1|))) (-15 -3929 ((-830))) (-15 -3947 ((-830) $)) (-15 -3132 (|t#1| $)) (-15 -3329 (|t#1| $)) (IF (|has| |t#1| (-319)) (PROGN (-6 (-299)) (-15 -2014 ((-1084 $) $ (-830))) (-15 -3132 ($ $ (-830))) (-15 -3329 ($ $ (-830))) (-15 -1628 ($)) (-15 -2013 ($)) (-15 -2011 ((-85) $)) (-15 -2409 ($)) (-15 -1627 ($ $ (-1084 |t#1|))) (-15 -1626 ((-1084 |t#1|) $)) (-15 -1625 ((-1084 |t#1|) $)) (-15 -1625 ((-3 (-1084 |t#1|) "failed") $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-349 (-484))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-349 (-484)) (-349 (-484))) . T) ((-82 |#1| |#1|) . T) ((-82 $ $) . T) ((-104) . T) ((-118) OR (|has| |#1| (-319)) (|has| |#1| (-118))) ((-120) |has| |#1| (-120)) ((-555 (-349 (-484))) . T) ((-555 (-484)) . T) ((-555 |#1|) . T) ((-555 $) . T) ((-552 (-772)) . T) ((-146) . T) ((-186 $) |has| |#1| (-319)) ((-190) |has| |#1| (-319)) ((-189) |has| |#1| (-319)) ((-201) . T) ((-246) . T) ((-258) . T) ((-1197 |#1|) . T) ((-312) . T) ((-344) OR (|has| |#1| (-319)) (|has| |#1| (-118))) ((-319) |has| |#1| (-319)) ((-299) |has| |#1| (-319)) ((-391) . T) ((-495) . T) ((-13) . T) ((-588 (-349 (-484))) . T) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 (-349 (-484))) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-582 (-349 (-484))) . T) ((-582 |#1|) . T) ((-582 $) . T) ((-654 (-349 (-484))) . T) ((-654 |#1|) . T) ((-654 $) . T) ((-663) . T) ((-832) . T) ((-950 |#1|) . T) ((-963 (-349 (-484))) . T) ((-963 |#1|) . T) ((-963 $) . T) ((-968 (-349 (-484))) . T) ((-968 |#1|) . T) ((-968 $) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1065) |has| |#1| (-319)) ((-1128) . T) ((-1133) . T) ((-1186 |#1|) . T)) +((-2568 (((-85) $ $) NIL T ELT)) (-1629 (((-85) $) 13 T ELT)) (-3637 (($ |#1|) 10 T ELT)) (-2531 (($ $ $) NIL T ELT)) (-2857 (($ $ $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3633 (($ |#1|) 12 T ELT)) (-3945 (((-772) $) 19 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2236 ((|#1| $) 14 T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) 21 T ELT))) +(((-281 |#1|) (-13 (-756) (-10 -8 (-15 -3637 ($ |#1|)) (-15 -3633 ($ |#1|)) (-15 -1629 ((-85) $)) (-15 -2236 (|#1| $)))) (-756)) (T -281)) +((-3637 (*1 *1 *2) (-12 (-5 *1 (-281 *2)) (-4 *2 (-756)))) (-3633 (*1 *1 *2) (-12 (-5 *1 (-281 *2)) (-4 *2 (-756)))) (-1629 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-281 *3)) (-4 *3 (-756)))) (-2236 (*1 *2 *1) (-12 (-5 *1 (-281 *2)) (-4 *2 (-756))))) +((-2568 (((-85) $ $) NIL T ELT)) (-1630 (((-446) $) 20 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1631 (((-869 (-694)) $) 18 T ELT)) (-1633 (((-209) $) 7 T ELT)) (-3945 (((-772) $) 26 T ELT)) (-2206 (((-869 (-158 (-112))) $) 16 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-1632 (((-583 (-782 (-1094) (-694))) $) 12 T ELT)) (-3056 (((-85) $ $) 22 T ELT))) +(((-282) (-13 (-1013) (-10 -8 (-15 -1633 ((-209) $)) (-15 -1632 ((-583 (-782 (-1094) (-694))) $)) (-15 -1631 ((-869 (-694)) $)) (-15 -2206 ((-869 (-158 (-112))) $)) (-15 -1630 ((-446) $))))) (T -282)) +((-1633 (*1 *2 *1) (-12 (-5 *2 (-209)) (-5 *1 (-282)))) (-1632 (*1 *2 *1) (-12 (-5 *2 (-583 (-782 (-1094) (-694)))) (-5 *1 (-282)))) (-1631 (*1 *2 *1) (-12 (-5 *2 (-869 (-694))) (-5 *1 (-282)))) (-2206 (*1 *2 *1) (-12 (-5 *2 (-869 (-158 (-112)))) (-5 *1 (-282)))) (-1630 (*1 *2 *1) (-12 (-5 *2 (-446)) (-5 *1 (-282))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-3841 (($ $) 34 T ELT)) (-1636 (((-85) $) NIL T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-1634 (((-1178 |#4|) $) 133 T ELT)) (-1968 (((-355 |#2| (-349 |#2|) |#3| |#4|) $) 32 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2409 (((-3 |#4| #1#) $) 37 T ELT)) (-1635 (((-1178 |#4|) $) 125 T ELT)) (-1637 (($ (-355 |#2| (-349 |#2|) |#3| |#4|)) 42 T ELT) (($ |#4|) 44 T ELT) (($ |#1| |#1|) 46 T ELT) (($ |#1| |#1| (-484)) 48 T ELT) (($ |#4| |#2| |#2| |#2| |#1|) 50 T ELT)) (-3434 (((-2 (|:| -2336 (-355 |#2| (-349 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 40 T ELT)) (-3945 (((-772) $) 18 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2660 (($) 15 T CONST)) (-3056 (((-85) $ $) 21 T ELT)) (-3836 (($ $) 28 T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) 26 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 24 T ELT))) +(((-283 |#1| |#2| |#3| |#4|) (-13 (-286 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1635 ((-1178 |#4|) $)) (-15 -1634 ((-1178 |#4|) $)))) (-312) (-1154 |#1|) (-1154 (-349 |#2|)) (-291 |#1| |#2| |#3|)) (T -283)) +((-1635 (*1 *2 *1) (-12 (-4 *3 (-312)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-349 *4))) (-5 *2 (-1178 *6)) (-5 *1 (-283 *3 *4 *5 *6)) (-4 *6 (-291 *3 *4 *5)))) (-1634 (*1 *2 *1) (-12 (-4 *3 (-312)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-349 *4))) (-5 *2 (-1178 *6)) (-5 *1 (-283 *3 *4 *5 *6)) (-4 *6 (-291 *3 *4 *5))))) +((-3957 (((-283 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-283 |#1| |#2| |#3| |#4|)) 33 T ELT))) +(((-284 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3957 ((-283 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-283 |#1| |#2| |#3| |#4|)))) (-312) (-1154 |#1|) (-1154 (-349 |#2|)) (-291 |#1| |#2| |#3|) (-312) (-1154 |#5|) (-1154 (-349 |#6|)) (-291 |#5| |#6| |#7|)) (T -284)) +((-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-283 *5 *6 *7 *8)) (-4 *5 (-312)) (-4 *6 (-1154 *5)) (-4 *7 (-1154 (-349 *6))) (-4 *8 (-291 *5 *6 *7)) (-4 *9 (-312)) (-4 *10 (-1154 *9)) (-4 *11 (-1154 (-349 *10))) (-5 *2 (-283 *9 *10 *11 *12)) (-5 *1 (-284 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-291 *9 *10 *11))))) +((-1636 (((-85) $) 14 T ELT))) +(((-285 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1636 ((-85) |#1|))) (-286 |#2| |#3| |#4| |#5|) (-312) (-1154 |#2|) (-1154 (-349 |#3|)) (-291 |#2| |#3| |#4|)) (T -285)) +NIL +((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3723 (($) 23 T CONST)) (-3841 (($ $) 35 T ELT)) (-1636 (((-85) $) 34 T ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-1968 (((-355 |#2| (-349 |#2|) |#3| |#4|) $) 41 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-2409 (((-3 |#4| "failed") $) 33 T ELT)) (-1637 (($ (-355 |#2| (-349 |#2|) |#3| |#4|)) 40 T ELT) (($ |#4|) 39 T ELT) (($ |#1| |#1|) 38 T ELT) (($ |#1| |#1| (-484)) 37 T ELT) (($ |#4| |#2| |#2| |#2| |#1|) 32 T ELT)) (-3434 (((-2 (|:| -2336 (-355 |#2| (-349 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 36 T ELT)) (-3945 (((-772) $) 13 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-2660 (($) 24 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT))) +(((-286 |#1| |#2| |#3| |#4|) (-113) (-312) (-1154 |t#1|) (-1154 (-349 |t#2|)) (-291 |t#1| |t#2| |t#3|)) (T -286)) +((-1968 (*1 *2 *1) (-12 (-4 *1 (-286 *3 *4 *5 *6)) (-4 *3 (-312)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-349 *4))) (-4 *6 (-291 *3 *4 *5)) (-5 *2 (-355 *4 (-349 *4) *5 *6)))) (-1637 (*1 *1 *2) (-12 (-5 *2 (-355 *4 (-349 *4) *5 *6)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-349 *4))) (-4 *6 (-291 *3 *4 *5)) (-4 *3 (-312)) (-4 *1 (-286 *3 *4 *5 *6)))) (-1637 (*1 *1 *2) (-12 (-4 *3 (-312)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-349 *4))) (-4 *1 (-286 *3 *4 *5 *2)) (-4 *2 (-291 *3 *4 *5)))) (-1637 (*1 *1 *2 *2) (-12 (-4 *2 (-312)) (-4 *3 (-1154 *2)) (-4 *4 (-1154 (-349 *3))) (-4 *1 (-286 *2 *3 *4 *5)) (-4 *5 (-291 *2 *3 *4)))) (-1637 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-484)) (-4 *2 (-312)) (-4 *4 (-1154 *2)) (-4 *5 (-1154 (-349 *4))) (-4 *1 (-286 *2 *4 *5 *6)) (-4 *6 (-291 *2 *4 *5)))) (-3434 (*1 *2 *1) (-12 (-4 *1 (-286 *3 *4 *5 *6)) (-4 *3 (-312)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-349 *4))) (-4 *6 (-291 *3 *4 *5)) (-5 *2 (-2 (|:| -2336 (-355 *4 (-349 *4) *5 *6)) (|:| |principalPart| *6))))) (-3841 (*1 *1 *1) (-12 (-4 *1 (-286 *2 *3 *4 *5)) (-4 *2 (-312)) (-4 *3 (-1154 *2)) (-4 *4 (-1154 (-349 *3))) (-4 *5 (-291 *2 *3 *4)))) (-1636 (*1 *2 *1) (-12 (-4 *1 (-286 *3 *4 *5 *6)) (-4 *3 (-312)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-349 *4))) (-4 *6 (-291 *3 *4 *5)) (-5 *2 (-85)))) (-2409 (*1 *2 *1) (|partial| -12 (-4 *1 (-286 *3 *4 *5 *2)) (-4 *3 (-312)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-349 *4))) (-4 *2 (-291 *3 *4 *5)))) (-1637 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-312)) (-4 *3 (-1154 *4)) (-4 *5 (-1154 (-349 *3))) (-4 *1 (-286 *4 *3 *5 *2)) (-4 *2 (-291 *4 *3 *5))))) +(-13 (-21) (-10 -8 (-15 -1968 ((-355 |t#2| (-349 |t#2|) |t#3| |t#4|) $)) (-15 -1637 ($ (-355 |t#2| (-349 |t#2|) |t#3| |t#4|))) (-15 -1637 ($ |t#4|)) (-15 -1637 ($ |t#1| |t#1|)) (-15 -1637 ($ |t#1| |t#1| (-484))) (-15 -3434 ((-2 (|:| -2336 (-355 |t#2| (-349 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -3841 ($ $)) (-15 -1636 ((-85) $)) (-15 -2409 ((-3 |t#4| "failed") $)) (-15 -1637 ($ |t#4| |t#2| |t#2| |t#2| |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-1013) . T) ((-1128) . T)) +((-3767 (($ $ (-1089) |#2|) NIL T ELT) (($ $ (-583 (-1089)) (-583 |#2|)) 20 T ELT) (($ $ (-583 (-249 |#2|))) 15 T ELT) (($ $ (-249 |#2|)) NIL T ELT) (($ $ |#2| |#2|) NIL T ELT) (($ $ (-583 |#2|) (-583 |#2|)) NIL T ELT)) (-3799 (($ $ |#2|) 11 T ELT))) +(((-287 |#1| |#2|) (-10 -7 (-15 -3799 (|#1| |#1| |#2|)) (-15 -3767 (|#1| |#1| (-583 |#2|) (-583 |#2|))) (-15 -3767 (|#1| |#1| |#2| |#2|)) (-15 -3767 (|#1| |#1| (-249 |#2|))) (-15 -3767 (|#1| |#1| (-583 (-249 |#2|)))) (-15 -3767 (|#1| |#1| (-583 (-1089)) (-583 |#2|))) (-15 -3767 (|#1| |#1| (-1089) |#2|))) (-288 |#2|) (-1013)) (T -287)) +NIL +((-3957 (($ (-1 |#1| |#1|) $) 6 T ELT)) (-3767 (($ $ (-1089) |#1|) 17 (|has| |#1| (-455 (-1089) |#1|)) ELT) (($ $ (-583 (-1089)) (-583 |#1|)) 16 (|has| |#1| (-455 (-1089) |#1|)) ELT) (($ $ (-583 (-249 |#1|))) 15 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-249 |#1|)) 14 (|has| |#1| (-260 |#1|)) ELT) (($ $ |#1| |#1|) 13 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 12 (|has| |#1| (-260 |#1|)) ELT)) (-3799 (($ $ |#1|) 11 (|has| |#1| (-241 |#1| |#1|)) ELT))) +(((-288 |#1|) (-113) (-1013)) (T -288)) +((-3957 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-288 *3)) (-4 *3 (-1013))))) +(-13 (-10 -8 (-15 -3957 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-241 |t#1| |t#1|)) (-6 (-241 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-260 |t#1|)) (-6 (-260 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-455 (-1089) |t#1|)) (-6 (-455 (-1089) |t#1|)) |%noBranch|))) +(((-241 |#1| $) |has| |#1| (-241 |#1| |#1|)) ((-260 |#1|) |has| |#1| (-260 |#1|)) ((-455 (-1089) |#1|) |has| |#1| (-455 (-1089) |#1|)) ((-455 |#1| |#1|) |has| |#1| (-260 |#1|)) ((-13) |has| |#1| (-241 |#1| |#1|)) ((-1128) |has| |#1| (-241 |#1| |#1|))) +((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-3931 (((-85) $) NIL T ELT)) (-3928 (((-694)) NIL T ELT)) (-3329 (((-817 |#1|) $) NIL T ELT) (($ $ (-830)) NIL (|has| (-817 |#1|) (-319)) ELT)) (-1674 (((-1101 (-830) (-694)) (-484)) NIL (|has| (-817 |#1|) (-319)) ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3774 (($ $) NIL T ELT)) (-3970 (((-347 $) $) NIL T ELT)) (-1607 (((-85) $ $) NIL T ELT)) (-3136 (((-694)) NIL (|has| (-817 |#1|) (-319)) ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 (-817 |#1|) #1#) $) NIL T ELT)) (-3156 (((-817 |#1|) $) NIL T ELT)) (-1791 (($ (-1178 (-817 |#1|))) NIL T ELT)) (-1672 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-817 |#1|) (-319)) ELT)) (-2564 (($ $ $) NIL T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-2994 (($) NIL (|has| (-817 |#1|) (-319)) ELT)) (-2563 (($ $ $) NIL T ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-2833 (($) NIL (|has| (-817 |#1|) (-319)) ELT)) (-1679 (((-85) $) NIL (|has| (-817 |#1|) (-319)) ELT)) (-1763 (($ $ (-694)) NIL (OR (|has| (-817 |#1|) (-118)) (|has| (-817 |#1|) (-319))) ELT) (($ $) NIL (OR (|has| (-817 |#1|) (-118)) (|has| (-817 |#1|) (-319))) ELT)) (-3722 (((-85) $) NIL T ELT)) (-3771 (((-830) $) NIL (|has| (-817 |#1|) (-319)) ELT) (((-743 (-830)) $) NIL (OR (|has| (-817 |#1|) (-118)) (|has| (-817 |#1|) (-319))) ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2013 (($) NIL (|has| (-817 |#1|) (-319)) ELT)) (-2011 (((-85) $) NIL (|has| (-817 |#1|) (-319)) ELT)) (-3132 (((-817 |#1|) $) NIL T ELT) (($ $ (-830)) NIL (|has| (-817 |#1|) (-319)) ELT)) (-3444 (((-632 $) $) NIL (|has| (-817 |#1|) (-319)) ELT)) (-1604 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2014 (((-1084 (-817 |#1|)) $) NIL T ELT) (((-1084 $) $ (-830)) NIL (|has| (-817 |#1|) (-319)) ELT)) (-2010 (((-830) $) NIL (|has| (-817 |#1|) (-319)) ELT)) (-1626 (((-1084 (-817 |#1|)) $) NIL (|has| (-817 |#1|) (-319)) ELT)) (-1625 (((-1084 (-817 |#1|)) $) NIL (|has| (-817 |#1|) (-319)) ELT) (((-3 (-1084 (-817 |#1|)) #1#) $ $) NIL (|has| (-817 |#1|) (-319)) ELT)) (-1627 (($ $ (-1084 (-817 |#1|))) NIL (|has| (-817 |#1|) (-319)) ELT)) (-1890 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2484 (($ $) NIL T ELT)) (-3445 (($) NIL (|has| (-817 |#1|) (-319)) CONST)) (-2400 (($ (-830)) NIL (|has| (-817 |#1|) (-319)) ELT)) (-3930 (((-85) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2409 (($) NIL (|has| (-817 |#1|) (-319)) ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3144 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-1675 (((-583 (-2 (|:| -3731 (-484)) (|:| -2401 (-484))))) NIL (|has| (-817 |#1|) (-319)) ELT)) (-3731 (((-347 $) $) NIL T ELT)) (-3929 (((-743 (-830))) NIL T ELT) (((-830)) NIL T ELT)) (-1605 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3465 (((-3 $ #1#) $ $) NIL T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-1606 (((-694) $) NIL T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL T ELT)) (-1764 (((-694) $) NIL (|has| (-817 |#1|) (-319)) ELT) (((-3 (-694) #1#) $ $) NIL (OR (|has| (-817 |#1|) (-118)) (|has| (-817 |#1|) (-319))) ELT)) (-3910 (((-107)) NIL T ELT)) (-3757 (($ $ (-694)) NIL (|has| (-817 |#1|) (-319)) ELT) (($ $) NIL (|has| (-817 |#1|) (-319)) ELT)) (-3947 (((-743 (-830)) $) NIL T ELT) (((-830) $) NIL T ELT)) (-3185 (((-1084 (-817 |#1|))) NIL T ELT)) (-1673 (($) NIL (|has| (-817 |#1|) (-319)) ELT)) (-1628 (($) NIL (|has| (-817 |#1|) (-319)) ELT)) (-3224 (((-1178 (-817 |#1|)) $) NIL T ELT) (((-630 (-817 |#1|)) (-1178 $)) NIL T ELT)) (-2703 (((-3 (-1178 $) #1#) (-630 $)) NIL (|has| (-817 |#1|) (-319)) ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-349 (-484))) NIL T ELT) (($ (-817 |#1|)) NIL T ELT)) (-2702 (($ $) NIL (|has| (-817 |#1|) (-319)) ELT) (((-632 $) $) NIL (OR (|has| (-817 |#1|) (-118)) (|has| (-817 |#1|) (-319))) ELT)) (-3126 (((-694)) NIL T CONST)) (-1264 (((-85) $ $) NIL T ELT)) (-2012 (((-1178 $)) NIL T ELT) (((-1178 $) (-830)) NIL T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-3932 (((-85) $) NIL T ELT)) (-2660 (($) NIL T CONST)) (-2666 (($) NIL T CONST)) (-3927 (($ $) NIL (|has| (-817 |#1|) (-319)) ELT) (($ $ (-694)) NIL (|has| (-817 |#1|) (-319)) ELT)) (-2669 (($ $ (-694)) NIL (|has| (-817 |#1|) (-319)) ELT) (($ $) NIL (|has| (-817 |#1|) (-319)) ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3948 (($ $ $) NIL T ELT) (($ $ (-817 |#1|)) NIL T ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-349 (-484))) NIL T ELT) (($ (-349 (-484)) $) NIL T ELT) (($ $ (-817 |#1|)) NIL T ELT) (($ (-817 |#1|) $) NIL T ELT))) +(((-289 |#1| |#2|) (-280 (-817 |#1|)) (-830) (-830)) (T -289)) +NIL +((-1646 (((-2 (|:| |num| (-1178 |#3|)) (|:| |den| |#3|)) $) 39 T ELT)) (-1791 (($ (-1178 (-349 |#3|)) (-1178 $)) NIL T ELT) (($ (-1178 (-349 |#3|))) NIL T ELT) (($ (-1178 |#3|) |#3|) 172 T ELT)) (-1651 (((-1178 $) (-1178 $)) 156 T ELT)) (-1638 (((-583 (-583 |#2|))) 126 T ELT)) (-1663 (((-85) |#2| |#2|) 76 T ELT)) (-3502 (($ $) 148 T ELT)) (-3376 (((-694)) 171 T ELT)) (-1652 (((-1178 $) (-1178 $)) 219 T ELT)) (-1639 (((-583 (-857 |#2|)) (-1089)) 115 T ELT)) (-1655 (((-85) $) 168 T ELT)) (-1654 (((-85) $) 27 T ELT) (((-85) $ |#2|) 31 T ELT) (((-85) $ |#3|) 223 T ELT)) (-1641 (((-3 |#3| #1="failed")) 52 T ELT)) (-1665 (((-694)) 183 T ELT)) (-3799 ((|#2| $ |#2| |#2|) 140 T ELT)) (-1642 (((-3 |#3| #1#)) 71 T ELT)) (-3757 (($ $ (-1 (-349 |#3|) (-349 |#3|))) NIL T ELT) (($ $ (-1 (-349 |#3|) (-349 |#3|)) (-694)) NIL T ELT) (($ $ (-1 |#3| |#3|)) 227 T ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL T ELT) (($ $ (-1089) (-694)) NIL T ELT) (($ $ (-583 (-1089))) NIL T ELT) (($ $ (-1089)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $) NIL T ELT)) (-1653 (((-1178 $) (-1178 $)) 162 T ELT)) (-1640 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 68 T ELT)) (-1664 (((-85)) 34 T ELT))) +(((-290 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3757 (|#1| |#1|)) (-15 -3757 (|#1| |#1| (-694))) (-15 -3757 (|#1| |#1| (-1089))) (-15 -3757 (|#1| |#1| (-583 (-1089)))) (-15 -3757 (|#1| |#1| (-1089) (-694))) (-15 -3757 (|#1| |#1| (-583 (-1089)) (-583 (-694)))) (-15 -1638 ((-583 (-583 |#2|)))) (-15 -1639 ((-583 (-857 |#2|)) (-1089))) (-15 -1640 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -1641 ((-3 |#3| #1="failed"))) (-15 -1642 ((-3 |#3| #1#))) (-15 -3799 (|#2| |#1| |#2| |#2|)) (-15 -3502 (|#1| |#1|)) (-15 -3757 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1654 ((-85) |#1| |#3|)) (-15 -1654 ((-85) |#1| |#2|)) (-15 -1791 (|#1| (-1178 |#3|) |#3|)) (-15 -1646 ((-2 (|:| |num| (-1178 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -1651 ((-1178 |#1|) (-1178 |#1|))) (-15 -1652 ((-1178 |#1|) (-1178 |#1|))) (-15 -1653 ((-1178 |#1|) (-1178 |#1|))) (-15 -1654 ((-85) |#1|)) (-15 -1655 ((-85) |#1|)) (-15 -1663 ((-85) |#2| |#2|)) (-15 -1664 ((-85))) (-15 -1665 ((-694))) (-15 -3376 ((-694))) (-15 -3757 (|#1| |#1| (-1 (-349 |#3|) (-349 |#3|)) (-694))) (-15 -3757 (|#1| |#1| (-1 (-349 |#3|) (-349 |#3|)))) (-15 -1791 (|#1| (-1178 (-349 |#3|)))) (-15 -1791 (|#1| (-1178 (-349 |#3|)) (-1178 |#1|)))) (-291 |#2| |#3| |#4|) (-1133) (-1154 |#2|) (-1154 (-349 |#3|))) (T -290)) +((-3376 (*1 *2) (-12 (-4 *4 (-1133)) (-4 *5 (-1154 *4)) (-4 *6 (-1154 (-349 *5))) (-5 *2 (-694)) (-5 *1 (-290 *3 *4 *5 *6)) (-4 *3 (-291 *4 *5 *6)))) (-1665 (*1 *2) (-12 (-4 *4 (-1133)) (-4 *5 (-1154 *4)) (-4 *6 (-1154 (-349 *5))) (-5 *2 (-694)) (-5 *1 (-290 *3 *4 *5 *6)) (-4 *3 (-291 *4 *5 *6)))) (-1664 (*1 *2) (-12 (-4 *4 (-1133)) (-4 *5 (-1154 *4)) (-4 *6 (-1154 (-349 *5))) (-5 *2 (-85)) (-5 *1 (-290 *3 *4 *5 *6)) (-4 *3 (-291 *4 *5 *6)))) (-1663 (*1 *2 *3 *3) (-12 (-4 *3 (-1133)) (-4 *5 (-1154 *3)) (-4 *6 (-1154 (-349 *5))) (-5 *2 (-85)) (-5 *1 (-290 *4 *3 *5 *6)) (-4 *4 (-291 *3 *5 *6)))) (-1642 (*1 *2) (|partial| -12 (-4 *4 (-1133)) (-4 *5 (-1154 (-349 *2))) (-4 *2 (-1154 *4)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *3 (-291 *4 *2 *5)))) (-1641 (*1 *2) (|partial| -12 (-4 *4 (-1133)) (-4 *5 (-1154 (-349 *2))) (-4 *2 (-1154 *4)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *3 (-291 *4 *2 *5)))) (-1639 (*1 *2 *3) (-12 (-5 *3 (-1089)) (-4 *5 (-1133)) (-4 *6 (-1154 *5)) (-4 *7 (-1154 (-349 *6))) (-5 *2 (-583 (-857 *5))) (-5 *1 (-290 *4 *5 *6 *7)) (-4 *4 (-291 *5 *6 *7)))) (-1638 (*1 *2) (-12 (-4 *4 (-1133)) (-4 *5 (-1154 *4)) (-4 *6 (-1154 (-349 *5))) (-5 *2 (-583 (-583 *4))) (-5 *1 (-290 *3 *4 *5 *6)) (-4 *3 (-291 *4 *5 *6))))) +((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-1646 (((-2 (|:| |num| (-1178 |#2|)) (|:| |den| |#2|)) $) 225 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) 114 (|has| (-349 |#2|) (-312)) ELT)) (-2063 (($ $) 115 (|has| (-349 |#2|) (-312)) ELT)) (-2061 (((-85) $) 117 (|has| (-349 |#2|) (-312)) ELT)) (-1781 (((-630 (-349 |#2|)) (-1178 $)) 61 T ELT) (((-630 (-349 |#2|))) 77 T ELT)) (-3329 (((-349 |#2|) $) 67 T ELT)) (-1674 (((-1101 (-830) (-694)) (-484)) 167 (|has| (-349 |#2|) (-299)) ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3774 (($ $) 134 (|has| (-349 |#2|) (-312)) ELT)) (-3970 (((-347 $) $) 135 (|has| (-349 |#2|) (-312)) ELT)) (-1607 (((-85) $ $) 125 (|has| (-349 |#2|) (-312)) ELT)) (-3136 (((-694)) 108 (|has| (-349 |#2|) (-319)) ELT)) (-1660 (((-85)) 242 T ELT)) (-1659 (((-85) |#1|) 241 T ELT) (((-85) |#2|) 240 T ELT)) (-3723 (($) 23 T CONST)) (-3157 (((-3 (-484) #1="failed") $) 194 (|has| (-349 |#2|) (-950 (-484))) ELT) (((-3 (-349 (-484)) #1#) $) 192 (|has| (-349 |#2|) (-950 (-349 (-484)))) ELT) (((-3 (-349 |#2|) #1#) $) 189 T ELT)) (-3156 (((-484) $) 193 (|has| (-349 |#2|) (-950 (-484))) ELT) (((-349 (-484)) $) 191 (|has| (-349 |#2|) (-950 (-349 (-484)))) ELT) (((-349 |#2|) $) 190 T ELT)) (-1791 (($ (-1178 (-349 |#2|)) (-1178 $)) 63 T ELT) (($ (-1178 (-349 |#2|))) 80 T ELT) (($ (-1178 |#2|) |#2|) 224 T ELT)) (-1672 (((-3 "prime" "polynomial" "normal" "cyclic")) 173 (|has| (-349 |#2|) (-299)) ELT)) (-2564 (($ $ $) 129 (|has| (-349 |#2|) (-312)) ELT)) (-1780 (((-630 (-349 |#2|)) $ (-1178 $)) 68 T ELT) (((-630 (-349 |#2|)) $) 75 T ELT)) (-2279 (((-630 (-484)) (-630 $)) 186 (|has| (-349 |#2|) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) 185 (|has| (-349 |#2|) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-349 |#2|))) (|:| |vec| (-1178 (-349 |#2|)))) (-630 $) (-1178 $)) 184 T ELT) (((-630 (-349 |#2|)) (-630 $)) 183 T ELT)) (-1651 (((-1178 $) (-1178 $)) 230 T ELT)) (-3841 (($ |#3|) 178 T ELT) (((-3 $ "failed") (-349 |#3|)) 175 (|has| (-349 |#2|) (-312)) ELT)) (-3466 (((-3 $ "failed") $) 42 T ELT)) (-1638 (((-583 (-583 |#1|))) 211 (|has| |#1| (-319)) ELT)) (-1663 (((-85) |#1| |#1|) 246 T ELT)) (-3108 (((-830)) 69 T ELT)) (-2994 (($) 111 (|has| (-349 |#2|) (-319)) ELT)) (-1658 (((-85)) 239 T ELT)) (-1657 (((-85) |#1|) 238 T ELT) (((-85) |#2|) 237 T ELT)) (-2563 (($ $ $) 128 (|has| (-349 |#2|) (-312)) ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) 123 (|has| (-349 |#2|) (-312)) ELT)) (-3502 (($ $) 217 T ELT)) (-2833 (($) 169 (|has| (-349 |#2|) (-299)) ELT)) (-1679 (((-85) $) 170 (|has| (-349 |#2|) (-299)) ELT)) (-1763 (($ $ (-694)) 161 (|has| (-349 |#2|) (-299)) ELT) (($ $) 160 (|has| (-349 |#2|) (-299)) ELT)) (-3722 (((-85) $) 136 (|has| (-349 |#2|) (-312)) ELT)) (-3771 (((-830) $) 172 (|has| (-349 |#2|) (-299)) ELT) (((-743 (-830)) $) 158 (|has| (-349 |#2|) (-299)) ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3376 (((-694)) 249 T ELT)) (-1652 (((-1178 $) (-1178 $)) 231 T ELT)) (-3132 (((-349 |#2|) $) 66 T ELT)) (-1639 (((-583 (-857 |#1|)) (-1089)) 212 (|has| |#1| (-312)) ELT)) (-3444 (((-632 $) $) 162 (|has| (-349 |#2|) (-299)) ELT)) (-1604 (((-3 (-583 $) #2="failed") (-583 $) $) 132 (|has| (-349 |#2|) (-312)) ELT)) (-2014 ((|#3| $) 59 (|has| (-349 |#2|) (-312)) ELT)) (-2010 (((-830) $) 110 (|has| (-349 |#2|) (-319)) ELT)) (-3079 ((|#3| $) 176 T ELT)) (-2280 (((-630 (-484)) (-1178 $)) 188 (|has| (-349 |#2|) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) 187 (|has| (-349 |#2|) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-349 |#2|))) (|:| |vec| (-1178 (-349 |#2|)))) (-1178 $) $) 182 T ELT) (((-630 (-349 |#2|)) (-1178 $)) 181 T ELT)) (-1890 (($ (-583 $)) 121 (|has| (-349 |#2|) (-312)) ELT) (($ $ $) 120 (|has| (-349 |#2|) (-312)) ELT)) (-3242 (((-1072) $) 11 T ELT)) (-1647 (((-630 (-349 |#2|))) 226 T ELT)) (-1649 (((-630 (-349 |#2|))) 228 T ELT)) (-2484 (($ $) 137 (|has| (-349 |#2|) (-312)) ELT)) (-1644 (($ (-1178 |#2|) |#2|) 222 T ELT)) (-1648 (((-630 (-349 |#2|))) 227 T ELT)) (-1650 (((-630 (-349 |#2|))) 229 T ELT)) (-1643 (((-2 (|:| |num| (-630 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 221 T ELT)) (-1645 (((-2 (|:| |num| (-1178 |#2|)) (|:| |den| |#2|)) $) 223 T ELT)) (-1656 (((-1178 $)) 235 T ELT)) (-3917 (((-1178 $)) 236 T ELT)) (-1655 (((-85) $) 234 T ELT)) (-1654 (((-85) $) 233 T ELT) (((-85) $ |#1|) 220 T ELT) (((-85) $ |#2|) 219 T ELT)) (-3445 (($) 163 (|has| (-349 |#2|) (-299)) CONST)) (-2400 (($ (-830)) 109 (|has| (-349 |#2|) (-319)) ELT)) (-1641 (((-3 |#2| "failed")) 214 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-1665 (((-694)) 248 T ELT)) (-2409 (($) 180 T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) 122 (|has| (-349 |#2|) (-312)) ELT)) (-3144 (($ (-583 $)) 119 (|has| (-349 |#2|) (-312)) ELT) (($ $ $) 118 (|has| (-349 |#2|) (-312)) ELT)) (-1675 (((-583 (-2 (|:| -3731 (-484)) (|:| -2401 (-484))))) 166 (|has| (-349 |#2|) (-299)) ELT)) (-3731 (((-347 $) $) 133 (|has| (-349 |#2|) (-312)) ELT)) (-1605 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 131 (|has| (-349 |#2|) (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) 130 (|has| (-349 |#2|) (-312)) ELT)) (-3465 (((-3 $ "failed") $ $) 113 (|has| (-349 |#2|) (-312)) ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) 124 (|has| (-349 |#2|) (-312)) ELT)) (-1606 (((-694) $) 126 (|has| (-349 |#2|) (-312)) ELT)) (-3799 ((|#1| $ |#1| |#1|) 216 T ELT)) (-1642 (((-3 |#2| "failed")) 215 T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 127 (|has| (-349 |#2|) (-312)) ELT)) (-3756 (((-349 |#2|) (-1178 $)) 62 T ELT) (((-349 |#2|)) 76 T ELT)) (-1764 (((-694) $) 171 (|has| (-349 |#2|) (-299)) ELT) (((-3 (-694) "failed") $ $) 159 (|has| (-349 |#2|) (-299)) ELT)) (-3757 (($ $ (-1 (-349 |#2|) (-349 |#2|))) 145 (|has| (-349 |#2|) (-312)) ELT) (($ $ (-1 (-349 |#2|) (-349 |#2|)) (-694)) 144 (|has| (-349 |#2|) (-312)) ELT) (($ $ (-1 |#2| |#2|)) 218 T ELT) (($ $ (-583 (-1089)) (-583 (-694))) 150 (OR (-2562 (|has| (-349 |#2|) (-312)) (|has| (-349 |#2|) (-811 (-1089)))) (-2562 (|has| (-349 |#2|) (-312)) (|has| (-349 |#2|) (-809 (-1089)))) (-2562 (|has| (-349 |#2|) (-811 (-1089))) (|has| (-349 |#2|) (-312)))) ELT) (($ $ (-1089) (-694)) 149 (OR (-2562 (|has| (-349 |#2|) (-312)) (|has| (-349 |#2|) (-811 (-1089)))) (-2562 (|has| (-349 |#2|) (-312)) (|has| (-349 |#2|) (-809 (-1089)))) (-2562 (|has| (-349 |#2|) (-811 (-1089))) (|has| (-349 |#2|) (-312)))) ELT) (($ $ (-583 (-1089))) 148 (OR (-2562 (|has| (-349 |#2|) (-312)) (|has| (-349 |#2|) (-811 (-1089)))) (-2562 (|has| (-349 |#2|) (-312)) (|has| (-349 |#2|) (-809 (-1089)))) (-2562 (|has| (-349 |#2|) (-811 (-1089))) (|has| (-349 |#2|) (-312)))) ELT) (($ $ (-1089)) 146 (OR (-2562 (|has| (-349 |#2|) (-312)) (|has| (-349 |#2|) (-811 (-1089)))) (-2562 (|has| (-349 |#2|) (-312)) (|has| (-349 |#2|) (-809 (-1089)))) (-2562 (|has| (-349 |#2|) (-811 (-1089))) (|has| (-349 |#2|) (-312)))) ELT) (($ $ (-694)) 156 (OR (-2562 (|has| (-349 |#2|) (-312)) (|has| (-349 |#2|) (-189))) (-2562 (|has| (-349 |#2|) (-312)) (|has| (-349 |#2|) (-190))) (-2562 (|has| (-349 |#2|) (-189)) (|has| (-349 |#2|) (-312))) (|has| (-349 |#2|) (-299))) ELT) (($ $) 154 (OR (-2562 (|has| (-349 |#2|) (-312)) (|has| (-349 |#2|) (-189))) (-2562 (|has| (-349 |#2|) (-312)) (|has| (-349 |#2|) (-190))) (-2562 (|has| (-349 |#2|) (-189)) (|has| (-349 |#2|) (-312))) (|has| (-349 |#2|) (-299))) ELT)) (-2408 (((-630 (-349 |#2|)) (-1178 $) (-1 (-349 |#2|) (-349 |#2|))) 174 (|has| (-349 |#2|) (-312)) ELT)) (-3185 ((|#3|) 179 T ELT)) (-1673 (($) 168 (|has| (-349 |#2|) (-299)) ELT)) (-3224 (((-1178 (-349 |#2|)) $ (-1178 $)) 65 T ELT) (((-630 (-349 |#2|)) (-1178 $) (-1178 $)) 64 T ELT) (((-1178 (-349 |#2|)) $) 82 T ELT) (((-630 (-349 |#2|)) (-1178 $)) 81 T ELT)) (-3971 (((-1178 (-349 |#2|)) $) 79 T ELT) (($ (-1178 (-349 |#2|))) 78 T ELT) ((|#3| $) 195 T ELT) (($ |#3|) 177 T ELT)) (-2703 (((-3 (-1178 $) "failed") (-630 $)) 165 (|has| (-349 |#2|) (-299)) ELT)) (-1653 (((-1178 $) (-1178 $)) 232 T ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ (-349 |#2|)) 52 T ELT) (($ (-349 (-484))) 107 (OR (|has| (-349 |#2|) (-312)) (|has| (-349 |#2|) (-950 (-349 (-484))))) ELT) (($ $) 112 (|has| (-349 |#2|) (-312)) ELT)) (-2702 (($ $) 164 (|has| (-349 |#2|) (-299)) ELT) (((-632 $) $) 58 (|has| (-349 |#2|) (-118)) ELT)) (-2449 ((|#3| $) 60 T ELT)) (-3126 (((-694)) 40 T CONST)) (-1662 (((-85)) 245 T ELT)) (-1661 (((-85) |#1|) 244 T ELT) (((-85) |#2|) 243 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-2012 (((-1178 $)) 83 T ELT)) (-2062 (((-85) $ $) 116 (|has| (-349 |#2|) (-312)) ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-1640 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 213 T ELT)) (-1664 (((-85)) 247 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-2669 (($ $ (-1 (-349 |#2|) (-349 |#2|))) 143 (|has| (-349 |#2|) (-312)) ELT) (($ $ (-1 (-349 |#2|) (-349 |#2|)) (-694)) 142 (|has| (-349 |#2|) (-312)) ELT) (($ $ (-583 (-1089)) (-583 (-694))) 153 (OR (-2562 (|has| (-349 |#2|) (-312)) (|has| (-349 |#2|) (-811 (-1089)))) (-2562 (|has| (-349 |#2|) (-312)) (|has| (-349 |#2|) (-809 (-1089)))) (-2562 (|has| (-349 |#2|) (-811 (-1089))) (|has| (-349 |#2|) (-312)))) ELT) (($ $ (-1089) (-694)) 152 (OR (-2562 (|has| (-349 |#2|) (-312)) (|has| (-349 |#2|) (-811 (-1089)))) (-2562 (|has| (-349 |#2|) (-312)) (|has| (-349 |#2|) (-809 (-1089)))) (-2562 (|has| (-349 |#2|) (-811 (-1089))) (|has| (-349 |#2|) (-312)))) ELT) (($ $ (-583 (-1089))) 151 (OR (-2562 (|has| (-349 |#2|) (-312)) (|has| (-349 |#2|) (-811 (-1089)))) (-2562 (|has| (-349 |#2|) (-312)) (|has| (-349 |#2|) (-809 (-1089)))) (-2562 (|has| (-349 |#2|) (-811 (-1089))) (|has| (-349 |#2|) (-312)))) ELT) (($ $ (-1089)) 147 (OR (-2562 (|has| (-349 |#2|) (-312)) (|has| (-349 |#2|) (-811 (-1089)))) (-2562 (|has| (-349 |#2|) (-312)) (|has| (-349 |#2|) (-809 (-1089)))) (-2562 (|has| (-349 |#2|) (-811 (-1089))) (|has| (-349 |#2|) (-312)))) ELT) (($ $ (-694)) 157 (OR (-2562 (|has| (-349 |#2|) (-312)) (|has| (-349 |#2|) (-189))) (-2562 (|has| (-349 |#2|) (-312)) (|has| (-349 |#2|) (-190))) (-2562 (|has| (-349 |#2|) (-189)) (|has| (-349 |#2|) (-312))) (|has| (-349 |#2|) (-299))) ELT) (($ $) 155 (OR (-2562 (|has| (-349 |#2|) (-312)) (|has| (-349 |#2|) (-189))) (-2562 (|has| (-349 |#2|) (-312)) (|has| (-349 |#2|) (-190))) (-2562 (|has| (-349 |#2|) (-189)) (|has| (-349 |#2|) (-312))) (|has| (-349 |#2|) (-299))) ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-3948 (($ $ $) 141 (|has| (-349 |#2|) (-312)) ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT) (($ $ (-484)) 138 (|has| (-349 |#2|) (-312)) ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-349 |#2|)) 54 T ELT) (($ (-349 |#2|) $) 53 T ELT) (($ (-349 (-484)) $) 140 (|has| (-349 |#2|) (-312)) ELT) (($ $ (-349 (-484))) 139 (|has| (-349 |#2|) (-312)) ELT))) +(((-291 |#1| |#2| |#3|) (-113) (-1133) (-1154 |t#1|) (-1154 (-349 |t#2|))) (T -291)) +((-3376 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-349 *4))) (-5 *2 (-694)))) (-1665 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-349 *4))) (-5 *2 (-694)))) (-1664 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-349 *4))) (-5 *2 (-85)))) (-1663 (*1 *2 *3 *3) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-349 *4))) (-5 *2 (-85)))) (-1662 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-349 *4))) (-5 *2 (-85)))) (-1661 (*1 *2 *3) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-349 *4))) (-5 *2 (-85)))) (-1661 (*1 *2 *3) (-12 (-4 *1 (-291 *4 *3 *5)) (-4 *4 (-1133)) (-4 *3 (-1154 *4)) (-4 *5 (-1154 (-349 *3))) (-5 *2 (-85)))) (-1660 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-349 *4))) (-5 *2 (-85)))) (-1659 (*1 *2 *3) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-349 *4))) (-5 *2 (-85)))) (-1659 (*1 *2 *3) (-12 (-4 *1 (-291 *4 *3 *5)) (-4 *4 (-1133)) (-4 *3 (-1154 *4)) (-4 *5 (-1154 (-349 *3))) (-5 *2 (-85)))) (-1658 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-349 *4))) (-5 *2 (-85)))) (-1657 (*1 *2 *3) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-349 *4))) (-5 *2 (-85)))) (-1657 (*1 *2 *3) (-12 (-4 *1 (-291 *4 *3 *5)) (-4 *4 (-1133)) (-4 *3 (-1154 *4)) (-4 *5 (-1154 (-349 *3))) (-5 *2 (-85)))) (-3917 (*1 *2) (-12 (-4 *3 (-1133)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-349 *4))) (-5 *2 (-1178 *1)) (-4 *1 (-291 *3 *4 *5)))) (-1656 (*1 *2) (-12 (-4 *3 (-1133)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-349 *4))) (-5 *2 (-1178 *1)) (-4 *1 (-291 *3 *4 *5)))) (-1655 (*1 *2 *1) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-349 *4))) (-5 *2 (-85)))) (-1654 (*1 *2 *1) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-349 *4))) (-5 *2 (-85)))) (-1653 (*1 *2 *2) (-12 (-5 *2 (-1178 *1)) (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-349 *4))))) (-1652 (*1 *2 *2) (-12 (-5 *2 (-1178 *1)) (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-349 *4))))) (-1651 (*1 *2 *2) (-12 (-5 *2 (-1178 *1)) (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-349 *4))))) (-1650 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-349 *4))) (-5 *2 (-630 (-349 *4))))) (-1649 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-349 *4))) (-5 *2 (-630 (-349 *4))))) (-1648 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-349 *4))) (-5 *2 (-630 (-349 *4))))) (-1647 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-349 *4))) (-5 *2 (-630 (-349 *4))))) (-1646 (*1 *2 *1) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-349 *4))) (-5 *2 (-2 (|:| |num| (-1178 *4)) (|:| |den| *4))))) (-1791 (*1 *1 *2 *3) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1154 *4)) (-4 *4 (-1133)) (-4 *1 (-291 *4 *3 *5)) (-4 *5 (-1154 (-349 *3))))) (-1645 (*1 *2 *1) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-349 *4))) (-5 *2 (-2 (|:| |num| (-1178 *4)) (|:| |den| *4))))) (-1644 (*1 *1 *2 *3) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1154 *4)) (-4 *4 (-1133)) (-4 *1 (-291 *4 *3 *5)) (-4 *5 (-1154 (-349 *3))))) (-1643 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-291 *4 *5 *6)) (-4 *4 (-1133)) (-4 *5 (-1154 *4)) (-4 *6 (-1154 (-349 *5))) (-5 *2 (-2 (|:| |num| (-630 *5)) (|:| |den| *5))))) (-1654 (*1 *2 *1 *3) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-349 *4))) (-5 *2 (-85)))) (-1654 (*1 *2 *1 *3) (-12 (-4 *1 (-291 *4 *3 *5)) (-4 *4 (-1133)) (-4 *3 (-1154 *4)) (-4 *5 (-1154 (-349 *3))) (-5 *2 (-85)))) (-3757 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-349 *4))))) (-3502 (*1 *1 *1) (-12 (-4 *1 (-291 *2 *3 *4)) (-4 *2 (-1133)) (-4 *3 (-1154 *2)) (-4 *4 (-1154 (-349 *3))))) (-3799 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-291 *2 *3 *4)) (-4 *2 (-1133)) (-4 *3 (-1154 *2)) (-4 *4 (-1154 (-349 *3))))) (-1642 (*1 *2) (|partial| -12 (-4 *1 (-291 *3 *2 *4)) (-4 *3 (-1133)) (-4 *4 (-1154 (-349 *2))) (-4 *2 (-1154 *3)))) (-1641 (*1 *2) (|partial| -12 (-4 *1 (-291 *3 *2 *4)) (-4 *3 (-1133)) (-4 *4 (-1154 (-349 *2))) (-4 *2 (-1154 *3)))) (-1640 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1154 *4)) (-4 *4 (-1133)) (-4 *6 (-1154 (-349 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-291 *4 *5 *6)))) (-1639 (*1 *2 *3) (-12 (-5 *3 (-1089)) (-4 *1 (-291 *4 *5 *6)) (-4 *4 (-1133)) (-4 *5 (-1154 *4)) (-4 *6 (-1154 (-349 *5))) (-4 *4 (-312)) (-5 *2 (-583 (-857 *4))))) (-1638 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-349 *4))) (-4 *3 (-319)) (-5 *2 (-583 (-583 *3)))))) +(-13 (-661 (-349 |t#2|) |t#3|) (-10 -8 (-15 -3376 ((-694))) (-15 -1665 ((-694))) (-15 -1664 ((-85))) (-15 -1663 ((-85) |t#1| |t#1|)) (-15 -1662 ((-85))) (-15 -1661 ((-85) |t#1|)) (-15 -1661 ((-85) |t#2|)) (-15 -1660 ((-85))) (-15 -1659 ((-85) |t#1|)) (-15 -1659 ((-85) |t#2|)) (-15 -1658 ((-85))) (-15 -1657 ((-85) |t#1|)) (-15 -1657 ((-85) |t#2|)) (-15 -3917 ((-1178 $))) (-15 -1656 ((-1178 $))) (-15 -1655 ((-85) $)) (-15 -1654 ((-85) $)) (-15 -1653 ((-1178 $) (-1178 $))) (-15 -1652 ((-1178 $) (-1178 $))) (-15 -1651 ((-1178 $) (-1178 $))) (-15 -1650 ((-630 (-349 |t#2|)))) (-15 -1649 ((-630 (-349 |t#2|)))) (-15 -1648 ((-630 (-349 |t#2|)))) (-15 -1647 ((-630 (-349 |t#2|)))) (-15 -1646 ((-2 (|:| |num| (-1178 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1791 ($ (-1178 |t#2|) |t#2|)) (-15 -1645 ((-2 (|:| |num| (-1178 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1644 ($ (-1178 |t#2|) |t#2|)) (-15 -1643 ((-2 (|:| |num| (-630 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -1654 ((-85) $ |t#1|)) (-15 -1654 ((-85) $ |t#2|)) (-15 -3757 ($ $ (-1 |t#2| |t#2|))) (-15 -3502 ($ $)) (-15 -3799 (|t#1| $ |t#1| |t#1|)) (-15 -1642 ((-3 |t#2| "failed"))) (-15 -1641 ((-3 |t#2| "failed"))) (-15 -1640 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-312)) (-15 -1639 ((-583 (-857 |t#1|)) (-1089))) |%noBranch|) (IF (|has| |t#1| (-319)) (-15 -1638 ((-583 (-583 |t#1|)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-349 (-484))) OR (|has| (-349 |#2|) (-299)) (|has| (-349 |#2|) (-312))) ((-38 (-349 |#2|)) . T) ((-38 $) OR (|has| (-349 |#2|) (-299)) (|has| (-349 |#2|) (-312))) ((-72) . T) ((-82 (-349 (-484)) (-349 (-484))) OR (|has| (-349 |#2|) (-299)) (|has| (-349 |#2|) (-312))) ((-82 (-349 |#2|) (-349 |#2|)) . T) ((-82 $ $) . T) ((-104) . T) ((-118) OR (|has| (-349 |#2|) (-299)) (|has| (-349 |#2|) (-118))) ((-120) |has| (-349 |#2|) (-120)) ((-555 (-349 (-484))) OR (|has| (-349 |#2|) (-950 (-349 (-484)))) (|has| (-349 |#2|) (-299)) (|has| (-349 |#2|) (-312))) ((-555 (-349 |#2|)) . T) ((-555 (-484)) . T) ((-555 $) OR (|has| (-349 |#2|) (-299)) (|has| (-349 |#2|) (-312))) ((-552 (-772)) . T) ((-146) . T) ((-553 |#3|) . T) ((-186 $) OR (|has| (-349 |#2|) (-299)) (-12 (|has| (-349 |#2|) (-189)) (|has| (-349 |#2|) (-312))) (-12 (|has| (-349 |#2|) (-190)) (|has| (-349 |#2|) (-312)))) ((-184 (-349 |#2|)) |has| (-349 |#2|) (-312)) ((-190) OR (|has| (-349 |#2|) (-299)) (-12 (|has| (-349 |#2|) (-190)) (|has| (-349 |#2|) (-312)))) ((-189) OR (|has| (-349 |#2|) (-299)) (-12 (|has| (-349 |#2|) (-189)) (|has| (-349 |#2|) (-312))) (-12 (|has| (-349 |#2|) (-190)) (|has| (-349 |#2|) (-312)))) ((-225 (-349 |#2|)) |has| (-349 |#2|) (-312)) ((-201) OR (|has| (-349 |#2|) (-299)) (|has| (-349 |#2|) (-312))) ((-246) OR (|has| (-349 |#2|) (-299)) (|has| (-349 |#2|) (-312))) ((-258) OR (|has| (-349 |#2|) (-299)) (|has| (-349 |#2|) (-312))) ((-312) OR (|has| (-349 |#2|) (-299)) (|has| (-349 |#2|) (-312))) ((-344) |has| (-349 |#2|) (-299)) ((-319) OR (|has| (-349 |#2|) (-299)) (|has| (-349 |#2|) (-319))) ((-299) |has| (-349 |#2|) (-299)) ((-321 (-349 |#2|) |#3|) . T) ((-352 (-349 |#2|) |#3|) . T) ((-328 (-349 |#2|)) . T) ((-354 (-349 |#2|)) . T) ((-391) OR (|has| (-349 |#2|) (-299)) (|has| (-349 |#2|) (-312))) ((-495) OR (|has| (-349 |#2|) (-299)) (|has| (-349 |#2|) (-312))) ((-13) . T) ((-588 (-349 (-484))) OR (|has| (-349 |#2|) (-299)) (|has| (-349 |#2|) (-312))) ((-588 (-349 |#2|)) . T) ((-588 (-484)) . T) ((-588 $) . T) ((-590 (-349 (-484))) OR (|has| (-349 |#2|) (-299)) (|has| (-349 |#2|) (-312))) ((-590 (-349 |#2|)) . T) ((-590 (-484)) |has| (-349 |#2|) (-580 (-484))) ((-590 $) . T) ((-582 (-349 (-484))) OR (|has| (-349 |#2|) (-299)) (|has| (-349 |#2|) (-312))) ((-582 (-349 |#2|)) . T) ((-582 $) OR (|has| (-349 |#2|) (-299)) (|has| (-349 |#2|) (-312))) ((-580 (-349 |#2|)) . T) ((-580 (-484)) |has| (-349 |#2|) (-580 (-484))) ((-654 (-349 (-484))) OR (|has| (-349 |#2|) (-299)) (|has| (-349 |#2|) (-312))) ((-654 (-349 |#2|)) . T) ((-654 $) OR (|has| (-349 |#2|) (-299)) (|has| (-349 |#2|) (-312))) ((-661 (-349 |#2|) |#3|) . T) ((-663) . T) ((-806 $ (-1089)) OR (-12 (|has| (-349 |#2|) (-312)) (|has| (-349 |#2|) (-811 (-1089)))) (-12 (|has| (-349 |#2|) (-312)) (|has| (-349 |#2|) (-809 (-1089))))) ((-809 (-1089)) -12 (|has| (-349 |#2|) (-312)) (|has| (-349 |#2|) (-809 (-1089)))) ((-811 (-1089)) OR (-12 (|has| (-349 |#2|) (-312)) (|has| (-349 |#2|) (-811 (-1089)))) (-12 (|has| (-349 |#2|) (-312)) (|has| (-349 |#2|) (-809 (-1089))))) ((-832) OR (|has| (-349 |#2|) (-299)) (|has| (-349 |#2|) (-312))) ((-950 (-349 (-484))) |has| (-349 |#2|) (-950 (-349 (-484)))) ((-950 (-349 |#2|)) . T) ((-950 (-484)) |has| (-349 |#2|) (-950 (-484))) ((-963 (-349 (-484))) OR (|has| (-349 |#2|) (-299)) (|has| (-349 |#2|) (-312))) ((-963 (-349 |#2|)) . T) ((-963 $) . T) ((-968 (-349 (-484))) OR (|has| (-349 |#2|) (-299)) (|has| (-349 |#2|) (-312))) ((-968 (-349 |#2|)) . T) ((-968 $) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1065) |has| (-349 |#2|) (-299)) ((-1128) . T) ((-1133) OR (|has| (-349 |#2|) (-299)) (|has| (-349 |#2|) (-312)))) +((-3957 ((|#8| (-1 |#5| |#1|) |#4|) 19 T ELT))) +(((-292 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3957 (|#8| (-1 |#5| |#1|) |#4|))) (-1133) (-1154 |#1|) (-1154 (-349 |#2|)) (-291 |#1| |#2| |#3|) (-1133) (-1154 |#5|) (-1154 (-349 |#6|)) (-291 |#5| |#6| |#7|)) (T -292)) +((-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1133)) (-4 *8 (-1133)) (-4 *6 (-1154 *5)) (-4 *7 (-1154 (-349 *6))) (-4 *9 (-1154 *8)) (-4 *2 (-291 *8 *9 *10)) (-5 *1 (-292 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-291 *5 *6 *7)) (-4 *10 (-1154 (-349 *9)))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-3931 (((-85) $) NIL T ELT)) (-3928 (((-694)) NIL T ELT)) (-3329 (((-817 |#1|) $) NIL T ELT) (($ $ (-830)) NIL (|has| (-817 |#1|) (-319)) ELT)) (-1674 (((-1101 (-830) (-694)) (-484)) NIL (|has| (-817 |#1|) (-319)) ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3774 (($ $) NIL T ELT)) (-3970 (((-347 $) $) NIL T ELT)) (-1607 (((-85) $ $) NIL T ELT)) (-3136 (((-694)) NIL (|has| (-817 |#1|) (-319)) ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 (-817 |#1|) #1#) $) NIL T ELT)) (-3156 (((-817 |#1|) $) NIL T ELT)) (-1791 (($ (-1178 (-817 |#1|))) NIL T ELT)) (-1672 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-817 |#1|) (-319)) ELT)) (-2564 (($ $ $) NIL T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-2994 (($) NIL (|has| (-817 |#1|) (-319)) ELT)) (-2563 (($ $ $) NIL T ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-2833 (($) NIL (|has| (-817 |#1|) (-319)) ELT)) (-1679 (((-85) $) NIL (|has| (-817 |#1|) (-319)) ELT)) (-1763 (($ $ (-694)) NIL (OR (|has| (-817 |#1|) (-118)) (|has| (-817 |#1|) (-319))) ELT) (($ $) NIL (OR (|has| (-817 |#1|) (-118)) (|has| (-817 |#1|) (-319))) ELT)) (-3722 (((-85) $) NIL T ELT)) (-3771 (((-830) $) NIL (|has| (-817 |#1|) (-319)) ELT) (((-743 (-830)) $) NIL (OR (|has| (-817 |#1|) (-118)) (|has| (-817 |#1|) (-319))) ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2013 (($) NIL (|has| (-817 |#1|) (-319)) ELT)) (-2011 (((-85) $) NIL (|has| (-817 |#1|) (-319)) ELT)) (-3132 (((-817 |#1|) $) NIL T ELT) (($ $ (-830)) NIL (|has| (-817 |#1|) (-319)) ELT)) (-3444 (((-632 $) $) NIL (|has| (-817 |#1|) (-319)) ELT)) (-1604 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2014 (((-1084 (-817 |#1|)) $) NIL T ELT) (((-1084 $) $ (-830)) NIL (|has| (-817 |#1|) (-319)) ELT)) (-2010 (((-830) $) NIL (|has| (-817 |#1|) (-319)) ELT)) (-1626 (((-1084 (-817 |#1|)) $) NIL (|has| (-817 |#1|) (-319)) ELT)) (-1625 (((-1084 (-817 |#1|)) $) NIL (|has| (-817 |#1|) (-319)) ELT) (((-3 (-1084 (-817 |#1|)) #1#) $ $) NIL (|has| (-817 |#1|) (-319)) ELT)) (-1627 (($ $ (-1084 (-817 |#1|))) NIL (|has| (-817 |#1|) (-319)) ELT)) (-1890 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2484 (($ $) NIL T ELT)) (-3445 (($) NIL (|has| (-817 |#1|) (-319)) CONST)) (-2400 (($ (-830)) NIL (|has| (-817 |#1|) (-319)) ELT)) (-3930 (((-85) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1666 (((-869 (-1033))) NIL T ELT)) (-2409 (($) NIL (|has| (-817 |#1|) (-319)) ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3144 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-1675 (((-583 (-2 (|:| -3731 (-484)) (|:| -2401 (-484))))) NIL (|has| (-817 |#1|) (-319)) ELT)) (-3731 (((-347 $) $) NIL T ELT)) (-3929 (((-743 (-830))) NIL T ELT) (((-830)) NIL T ELT)) (-1605 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3465 (((-3 $ #1#) $ $) NIL T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-1606 (((-694) $) NIL T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL T ELT)) (-1764 (((-694) $) NIL (|has| (-817 |#1|) (-319)) ELT) (((-3 (-694) #1#) $ $) NIL (OR (|has| (-817 |#1|) (-118)) (|has| (-817 |#1|) (-319))) ELT)) (-3910 (((-107)) NIL T ELT)) (-3757 (($ $ (-694)) NIL (|has| (-817 |#1|) (-319)) ELT) (($ $) NIL (|has| (-817 |#1|) (-319)) ELT)) (-3947 (((-743 (-830)) $) NIL T ELT) (((-830) $) NIL T ELT)) (-3185 (((-1084 (-817 |#1|))) NIL T ELT)) (-1673 (($) NIL (|has| (-817 |#1|) (-319)) ELT)) (-1628 (($) NIL (|has| (-817 |#1|) (-319)) ELT)) (-3224 (((-1178 (-817 |#1|)) $) NIL T ELT) (((-630 (-817 |#1|)) (-1178 $)) NIL T ELT)) (-2703 (((-3 (-1178 $) #1#) (-630 $)) NIL (|has| (-817 |#1|) (-319)) ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-349 (-484))) NIL T ELT) (($ (-817 |#1|)) NIL T ELT)) (-2702 (($ $) NIL (|has| (-817 |#1|) (-319)) ELT) (((-632 $) $) NIL (OR (|has| (-817 |#1|) (-118)) (|has| (-817 |#1|) (-319))) ELT)) (-3126 (((-694)) NIL T CONST)) (-1264 (((-85) $ $) NIL T ELT)) (-2012 (((-1178 $)) NIL T ELT) (((-1178 $) (-830)) NIL T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-3932 (((-85) $) NIL T ELT)) (-2660 (($) NIL T CONST)) (-2666 (($) NIL T CONST)) (-3927 (($ $) NIL (|has| (-817 |#1|) (-319)) ELT) (($ $ (-694)) NIL (|has| (-817 |#1|) (-319)) ELT)) (-2669 (($ $ (-694)) NIL (|has| (-817 |#1|) (-319)) ELT) (($ $) NIL (|has| (-817 |#1|) (-319)) ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3948 (($ $ $) NIL T ELT) (($ $ (-817 |#1|)) NIL T ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-349 (-484))) NIL T ELT) (($ (-349 (-484)) $) NIL T ELT) (($ $ (-817 |#1|)) NIL T ELT) (($ (-817 |#1|) $) NIL T ELT))) +(((-293 |#1| |#2|) (-13 (-280 (-817 |#1|)) (-10 -7 (-15 -1666 ((-869 (-1033)))))) (-830) (-830)) (T -293)) +((-1666 (*1 *2) (-12 (-5 *2 (-869 (-1033))) (-5 *1 (-293 *3 *4)) (-14 *3 (-830)) (-14 *4 (-830))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) 58 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-3931 (((-85) $) NIL T ELT)) (-3928 (((-694)) NIL T ELT)) (-3329 ((|#1| $) NIL T ELT) (($ $ (-830)) NIL (|has| |#1| (-319)) ELT)) (-1674 (((-1101 (-830) (-694)) (-484)) 56 (|has| |#1| (-319)) ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3774 (($ $) NIL T ELT)) (-3970 (((-347 $) $) NIL T ELT)) (-1607 (((-85) $ $) NIL T ELT)) (-3136 (((-694)) NIL (|has| |#1| (-319)) ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 |#1| #1#) $) 139 T ELT)) (-3156 ((|#1| $) 111 T ELT)) (-1791 (($ (-1178 |#1|)) 128 T ELT)) (-1672 (((-3 "prime" "polynomial" "normal" "cyclic")) 119 (|has| |#1| (-319)) ELT)) (-2564 (($ $ $) NIL T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-2994 (($) 122 (|has| |#1| (-319)) ELT)) (-2563 (($ $ $) NIL T ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-2833 (($) 155 (|has| |#1| (-319)) ELT)) (-1679 (((-85) $) 65 (|has| |#1| (-319)) ELT)) (-1763 (($ $ (-694)) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-319))) ELT) (($ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-319))) ELT)) (-3722 (((-85) $) NIL T ELT)) (-3771 (((-830) $) 60 (|has| |#1| (-319)) ELT) (((-743 (-830)) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-319))) ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) 62 T ELT)) (-2013 (($) 157 (|has| |#1| (-319)) ELT)) (-2011 (((-85) $) NIL (|has| |#1| (-319)) ELT)) (-3132 ((|#1| $) NIL T ELT) (($ $ (-830)) NIL (|has| |#1| (-319)) ELT)) (-3444 (((-632 $) $) NIL (|has| |#1| (-319)) ELT)) (-1604 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2014 (((-1084 |#1|) $) 115 T ELT) (((-1084 $) $ (-830)) NIL (|has| |#1| (-319)) ELT)) (-2010 (((-830) $) 165 (|has| |#1| (-319)) ELT)) (-1626 (((-1084 |#1|) $) NIL (|has| |#1| (-319)) ELT)) (-1625 (((-1084 |#1|) $) NIL (|has| |#1| (-319)) ELT) (((-3 (-1084 |#1|) #1#) $ $) NIL (|has| |#1| (-319)) ELT)) (-1627 (($ $ (-1084 |#1|)) NIL (|has| |#1| (-319)) ELT)) (-1890 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2484 (($ $) 172 T ELT)) (-3445 (($) NIL (|has| |#1| (-319)) CONST)) (-2400 (($ (-830)) 94 (|has| |#1| (-319)) ELT)) (-3930 (((-85) $) 142 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1666 (((-869 (-1033))) 57 T ELT)) (-2409 (($) 153 (|has| |#1| (-319)) ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3144 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-1675 (((-583 (-2 (|:| -3731 (-484)) (|:| -2401 (-484))))) 117 (|has| |#1| (-319)) ELT)) (-3731 (((-347 $) $) NIL T ELT)) (-3929 (((-743 (-830))) 88 T ELT) (((-830)) 89 T ELT)) (-1605 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3465 (((-3 $ #1#) $ $) NIL T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-1606 (((-694) $) NIL T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL T ELT)) (-1764 (((-694) $) 156 (|has| |#1| (-319)) ELT) (((-3 (-694) #1#) $ $) 149 (OR (|has| |#1| (-118)) (|has| |#1| (-319))) ELT)) (-3910 (((-107)) NIL T ELT)) (-3757 (($ $ (-694)) NIL (|has| |#1| (-319)) ELT) (($ $) NIL (|has| |#1| (-319)) ELT)) (-3947 (((-743 (-830)) $) NIL T ELT) (((-830) $) NIL T ELT)) (-3185 (((-1084 |#1|)) 120 T ELT)) (-1673 (($) 154 (|has| |#1| (-319)) ELT)) (-1628 (($) 162 (|has| |#1| (-319)) ELT)) (-3224 (((-1178 |#1|) $) 76 T ELT) (((-630 |#1|) (-1178 $)) NIL T ELT)) (-2703 (((-3 (-1178 $) #1#) (-630 $)) NIL (|has| |#1| (-319)) ELT)) (-3945 (((-772) $) 168 T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-349 (-484))) NIL T ELT) (($ |#1|) 98 T ELT)) (-2702 (($ $) NIL (|has| |#1| (-319)) ELT) (((-632 $) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-319))) ELT)) (-3126 (((-694)) 150 T CONST)) (-1264 (((-85) $ $) NIL T ELT)) (-2012 (((-1178 $)) 141 T ELT) (((-1178 $) (-830)) 96 T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-3932 (((-85) $) NIL T ELT)) (-2660 (($) 66 T CONST)) (-2666 (($) 101 T CONST)) (-3927 (($ $) 105 (|has| |#1| (-319)) ELT) (($ $ (-694)) NIL (|has| |#1| (-319)) ELT)) (-2669 (($ $ (-694)) NIL (|has| |#1| (-319)) ELT) (($ $) NIL (|has| |#1| (-319)) ELT)) (-3056 (((-85) $ $) 64 T ELT)) (-3948 (($ $ $) 170 T ELT) (($ $ |#1|) 171 T ELT)) (-3836 (($ $) 152 T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) 84 T ELT)) (** (($ $ (-830)) 174 T ELT) (($ $ (-694)) 175 T ELT) (($ $ (-484)) 173 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 100 T ELT) (($ $ $) 99 T ELT) (($ $ (-349 (-484))) NIL T ELT) (($ (-349 (-484)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 169 T ELT))) +(((-294 |#1| |#2|) (-13 (-280 |#1|) (-10 -7 (-15 -1666 ((-869 (-1033)))))) (-299) (-1084 |#1|)) (T -294)) +((-1666 (*1 *2) (-12 (-5 *2 (-869 (-1033))) (-5 *1 (-294 *3 *4)) (-4 *3 (-299)) (-14 *4 (-1084 *3))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-3931 (((-85) $) NIL T ELT)) (-3928 (((-694)) NIL T ELT)) (-3329 ((|#1| $) NIL T ELT) (($ $ (-830)) NIL (|has| |#1| (-319)) ELT)) (-1674 (((-1101 (-830) (-694)) (-484)) NIL (|has| |#1| (-319)) ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3774 (($ $) NIL T ELT)) (-3970 (((-347 $) $) NIL T ELT)) (-1607 (((-85) $ $) NIL T ELT)) (-3136 (((-694)) NIL (|has| |#1| (-319)) ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 |#1| #1#) $) NIL T ELT)) (-3156 ((|#1| $) NIL T ELT)) (-1791 (($ (-1178 |#1|)) NIL T ELT)) (-1672 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-319)) ELT)) (-2564 (($ $ $) NIL T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-2994 (($) NIL (|has| |#1| (-319)) ELT)) (-2563 (($ $ $) NIL T ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-2833 (($) NIL (|has| |#1| (-319)) ELT)) (-1679 (((-85) $) NIL (|has| |#1| (-319)) ELT)) (-1763 (($ $ (-694)) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-319))) ELT) (($ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-319))) ELT)) (-3722 (((-85) $) NIL T ELT)) (-3771 (((-830) $) NIL (|has| |#1| (-319)) ELT) (((-743 (-830)) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-319))) ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2013 (($) NIL (|has| |#1| (-319)) ELT)) (-2011 (((-85) $) NIL (|has| |#1| (-319)) ELT)) (-3132 ((|#1| $) NIL T ELT) (($ $ (-830)) NIL (|has| |#1| (-319)) ELT)) (-3444 (((-632 $) $) NIL (|has| |#1| (-319)) ELT)) (-1604 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2014 (((-1084 |#1|) $) NIL T ELT) (((-1084 $) $ (-830)) NIL (|has| |#1| (-319)) ELT)) (-2010 (((-830) $) NIL (|has| |#1| (-319)) ELT)) (-1626 (((-1084 |#1|) $) NIL (|has| |#1| (-319)) ELT)) (-1625 (((-1084 |#1|) $) NIL (|has| |#1| (-319)) ELT) (((-3 (-1084 |#1|) #1#) $ $) NIL (|has| |#1| (-319)) ELT)) (-1627 (($ $ (-1084 |#1|)) NIL (|has| |#1| (-319)) ELT)) (-1890 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2484 (($ $) NIL T ELT)) (-3445 (($) NIL (|has| |#1| (-319)) CONST)) (-2400 (($ (-830)) NIL (|has| |#1| (-319)) ELT)) (-3930 (((-85) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1666 (((-869 (-1033))) NIL T ELT)) (-2409 (($) NIL (|has| |#1| (-319)) ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3144 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-1675 (((-583 (-2 (|:| -3731 (-484)) (|:| -2401 (-484))))) NIL (|has| |#1| (-319)) ELT)) (-3731 (((-347 $) $) NIL T ELT)) (-3929 (((-743 (-830))) NIL T ELT) (((-830)) NIL T ELT)) (-1605 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3465 (((-3 $ #1#) $ $) NIL T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-1606 (((-694) $) NIL T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL T ELT)) (-1764 (((-694) $) NIL (|has| |#1| (-319)) ELT) (((-3 (-694) #1#) $ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-319))) ELT)) (-3910 (((-107)) NIL T ELT)) (-3757 (($ $ (-694)) NIL (|has| |#1| (-319)) ELT) (($ $) NIL (|has| |#1| (-319)) ELT)) (-3947 (((-743 (-830)) $) NIL T ELT) (((-830) $) NIL T ELT)) (-3185 (((-1084 |#1|)) NIL T ELT)) (-1673 (($) NIL (|has| |#1| (-319)) ELT)) (-1628 (($) NIL (|has| |#1| (-319)) ELT)) (-3224 (((-1178 |#1|) $) NIL T ELT) (((-630 |#1|) (-1178 $)) NIL T ELT)) (-2703 (((-3 (-1178 $) #1#) (-630 $)) NIL (|has| |#1| (-319)) ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-349 (-484))) NIL T ELT) (($ |#1|) NIL T ELT)) (-2702 (($ $) NIL (|has| |#1| (-319)) ELT) (((-632 $) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-319))) ELT)) (-3126 (((-694)) NIL T CONST)) (-1264 (((-85) $ $) NIL T ELT)) (-2012 (((-1178 $)) NIL T ELT) (((-1178 $) (-830)) NIL T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-3932 (((-85) $) NIL T ELT)) (-2660 (($) NIL T CONST)) (-2666 (($) NIL T CONST)) (-3927 (($ $) NIL (|has| |#1| (-319)) ELT) (($ $ (-694)) NIL (|has| |#1| (-319)) ELT)) (-2669 (($ $ (-694)) NIL (|has| |#1| (-319)) ELT) (($ $) NIL (|has| |#1| (-319)) ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3948 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-349 (-484))) NIL T ELT) (($ (-349 (-484)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-295 |#1| |#2|) (-13 (-280 |#1|) (-10 -7 (-15 -1666 ((-869 (-1033)))))) (-299) (-830)) (T -295)) +((-1666 (*1 *2) (-12 (-5 *2 (-869 (-1033))) (-5 *1 (-295 *3 *4)) (-4 *3 (-299)) (-14 *4 (-830))))) +((-1676 (((-694) (-1178 (-583 (-2 (|:| -3401 |#1|) (|:| -2400 (-1033)))))) 61 T ELT)) (-1667 (((-869 (-1033)) (-1084 |#1|)) 112 T ELT)) (-1668 (((-1178 (-583 (-2 (|:| -3401 |#1|) (|:| -2400 (-1033))))) (-1084 |#1|)) 103 T ELT)) (-1669 (((-630 |#1|) (-1178 (-583 (-2 (|:| -3401 |#1|) (|:| -2400 (-1033)))))) 113 T ELT)) (-1670 (((-3 (-1178 (-583 (-2 (|:| -3401 |#1|) (|:| -2400 (-1033))))) "failed") (-830)) 13 T ELT)) (-1671 (((-3 (-1084 |#1|) (-1178 (-583 (-2 (|:| -3401 |#1|) (|:| -2400 (-1033)))))) (-830)) 18 T ELT))) +(((-296 |#1|) (-10 -7 (-15 -1667 ((-869 (-1033)) (-1084 |#1|))) (-15 -1668 ((-1178 (-583 (-2 (|:| -3401 |#1|) (|:| -2400 (-1033))))) (-1084 |#1|))) (-15 -1669 ((-630 |#1|) (-1178 (-583 (-2 (|:| -3401 |#1|) (|:| -2400 (-1033))))))) (-15 -1676 ((-694) (-1178 (-583 (-2 (|:| -3401 |#1|) (|:| -2400 (-1033))))))) (-15 -1670 ((-3 (-1178 (-583 (-2 (|:| -3401 |#1|) (|:| -2400 (-1033))))) "failed") (-830))) (-15 -1671 ((-3 (-1084 |#1|) (-1178 (-583 (-2 (|:| -3401 |#1|) (|:| -2400 (-1033)))))) (-830)))) (-299)) (T -296)) +((-1671 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-3 (-1084 *4) (-1178 (-583 (-2 (|:| -3401 *4) (|:| -2400 (-1033))))))) (-5 *1 (-296 *4)) (-4 *4 (-299)))) (-1670 (*1 *2 *3) (|partial| -12 (-5 *3 (-830)) (-5 *2 (-1178 (-583 (-2 (|:| -3401 *4) (|:| -2400 (-1033)))))) (-5 *1 (-296 *4)) (-4 *4 (-299)))) (-1676 (*1 *2 *3) (-12 (-5 *3 (-1178 (-583 (-2 (|:| -3401 *4) (|:| -2400 (-1033)))))) (-4 *4 (-299)) (-5 *2 (-694)) (-5 *1 (-296 *4)))) (-1669 (*1 *2 *3) (-12 (-5 *3 (-1178 (-583 (-2 (|:| -3401 *4) (|:| -2400 (-1033)))))) (-4 *4 (-299)) (-5 *2 (-630 *4)) (-5 *1 (-296 *4)))) (-1668 (*1 *2 *3) (-12 (-5 *3 (-1084 *4)) (-4 *4 (-299)) (-5 *2 (-1178 (-583 (-2 (|:| -3401 *4) (|:| -2400 (-1033)))))) (-5 *1 (-296 *4)))) (-1667 (*1 *2 *3) (-12 (-5 *3 (-1084 *4)) (-4 *4 (-299)) (-5 *2 (-869 (-1033))) (-5 *1 (-296 *4))))) +((-3945 ((|#1| |#3|) 104 T ELT) ((|#3| |#1|) 87 T ELT))) +(((-297 |#1| |#2| |#3|) (-10 -7 (-15 -3945 (|#3| |#1|)) (-15 -3945 (|#1| |#3|))) (-280 |#2|) (-299) (-280 |#2|)) (T -297)) +((-3945 (*1 *2 *3) (-12 (-4 *4 (-299)) (-4 *2 (-280 *4)) (-5 *1 (-297 *2 *4 *3)) (-4 *3 (-280 *4)))) (-3945 (*1 *2 *3) (-12 (-4 *4 (-299)) (-4 *2 (-280 *4)) (-5 *1 (-297 *3 *4 *2)) (-4 *3 (-280 *4))))) +((-1679 (((-85) $) 65 T ELT)) (-3771 (((-743 (-830)) $) 26 T ELT) (((-830) $) 69 T ELT)) (-3444 (((-632 $) $) 21 T ELT)) (-3445 (($) 9 T CONST)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) 120 T ELT)) (-1764 (((-3 (-694) #1="failed") $ $) 98 T ELT) (((-694) $) 84 T ELT)) (-3757 (($ $) 8 T ELT) (($ $ (-694)) NIL T ELT)) (-1673 (($) 58 T ELT)) (-2703 (((-3 (-1178 $) #1#) (-630 $)) 41 T ELT)) (-2702 (((-632 $) $) 50 T ELT) (($ $) 47 T ELT))) +(((-298 |#1|) (-10 -7 (-15 -3771 ((-830) |#1|)) (-15 -1764 ((-694) |#1|)) (-15 -1679 ((-85) |#1|)) (-15 -1673 (|#1|)) (-15 -2703 ((-3 (-1178 |#1|) #1="failed") (-630 |#1|))) (-15 -2702 (|#1| |#1|)) (-15 -3757 (|#1| |#1| (-694))) (-15 -3757 (|#1| |#1|)) (-15 -3445 (|#1|) -3951) (-15 -3444 ((-632 |#1|) |#1|)) (-15 -1764 ((-3 (-694) #1#) |#1| |#1|)) (-15 -3771 ((-743 (-830)) |#1|)) (-15 -2702 ((-632 |#1|) |#1|)) (-15 -2708 ((-1084 |#1|) (-1084 |#1|) (-1084 |#1|)))) (-299)) (T -298)) +NIL +((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) 55 T ELT)) (-2063 (($ $) 54 T ELT)) (-2061 (((-85) $) 52 T ELT)) (-1674 (((-1101 (-830) (-694)) (-484)) 113 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3774 (($ $) 91 T ELT)) (-3970 (((-347 $) $) 90 T ELT)) (-1607 (((-85) $ $) 75 T ELT)) (-3136 (((-694)) 123 T ELT)) (-3723 (($) 23 T CONST)) (-1672 (((-3 "prime" "polynomial" "normal" "cyclic")) 107 T ELT)) (-2564 (($ $ $) 71 T ELT)) (-3466 (((-3 $ "failed") $) 42 T ELT)) (-2994 (($) 126 T ELT)) (-2563 (($ $ $) 72 T ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) 66 T ELT)) (-2833 (($) 111 T ELT)) (-1679 (((-85) $) 110 T ELT)) (-1763 (($ $) 97 T ELT) (($ $ (-694)) 96 T ELT)) (-3722 (((-85) $) 89 T ELT)) (-3771 (((-743 (-830)) $) 99 T ELT) (((-830) $) 108 T ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3444 (((-632 $) $) 122 T ELT)) (-1604 (((-3 (-583 $) #1="failed") (-583 $) $) 68 T ELT)) (-2010 (((-830) $) 125 T ELT)) (-1890 (($ $ $) 60 T ELT) (($ (-583 $)) 59 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-2484 (($ $) 88 T ELT)) (-3445 (($) 121 T CONST)) (-2400 (($ (-830)) 124 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) 58 T ELT)) (-3144 (($ $ $) 62 T ELT) (($ (-583 $)) 61 T ELT)) (-1675 (((-583 (-2 (|:| -3731 (-484)) (|:| -2401 (-484))))) 114 T ELT)) (-3731 (((-347 $) $) 92 T ELT)) (-1605 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 69 T ELT)) (-3465 (((-3 $ "failed") $ $) 56 T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) 65 T ELT)) (-1606 (((-694) $) 74 T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 73 T ELT)) (-1764 (((-3 (-694) "failed") $ $) 98 T ELT) (((-694) $) 109 T ELT)) (-3757 (($ $) 120 T ELT) (($ $ (-694)) 118 T ELT)) (-1673 (($) 112 T ELT)) (-2703 (((-3 (-1178 $) "failed") (-630 $)) 115 T ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ $) 57 T ELT) (($ (-349 (-484))) 84 T ELT)) (-2702 (((-632 $) $) 100 T ELT) (($ $) 116 T ELT)) (-3126 (((-694)) 40 T CONST)) (-1264 (((-85) $ $) 6 T ELT)) (-2062 (((-85) $ $) 53 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-2669 (($ $) 119 T ELT) (($ $ (-694)) 117 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-3948 (($ $ $) 83 T ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT) (($ $ (-484)) 87 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-349 (-484))) 86 T ELT) (($ (-349 (-484)) $) 85 T ELT))) (((-299) (-113)) (T -299)) -((-2701 (*1 *1 *1) (-4 *1 (-299))) (-2702 (*1 *2 *3) (|partial| -12 (-5 *3 (-629 *1)) (-4 *1 (-299)) (-5 *2 (-1177 *1)))) (-1674 (*1 *2) (-12 (-4 *1 (-299)) (-5 *2 (-582 (-2 (|:| -3730 (-483)) (|:| -2400 (-483))))))) (-1673 (*1 *2 *3) (-12 (-4 *1 (-299)) (-5 *3 (-483)) (-5 *2 (-1100 (-829) (-693))))) (-1672 (*1 *1) (-4 *1 (-299))) (-2832 (*1 *1) (-4 *1 (-299))) (-1678 (*1 *2 *1) (-12 (-4 *1 (-299)) (-5 *2 (-85)))) (-1763 (*1 *2 *1) (-12 (-4 *1 (-299)) (-5 *2 (-693)))) (-3770 (*1 *2 *1) (-12 (-4 *1 (-299)) (-5 *2 (-829)))) (-1671 (*1 *2) (-12 (-4 *1 (-299)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) -(-13 (-343) (-318) (-1064) (-190) (-10 -8 (-15 -2701 ($ $)) (-15 -2702 ((-3 (-1177 $) "failed") (-629 $))) (-15 -1674 ((-582 (-2 (|:| -3730 (-483)) (|:| -2400 (-483)))))) (-15 -1673 ((-1100 (-829) (-693)) (-483))) (-15 -1672 ($)) (-15 -2832 ($)) (-15 -1678 ((-85) $)) (-15 -1763 ((-693) $)) (-15 -3770 ((-829) $)) (-15 -1671 ((-3 "prime" "polynomial" "normal" "cyclic"))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-348 (-483))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-348 (-483)) (-348 (-483))) . T) ((-82 $ $) . T) ((-104) . T) ((-118) . T) ((-554 (-348 (-483))) . T) ((-554 (-483)) . T) ((-554 $) . T) ((-551 (-771)) . T) ((-146) . T) ((-186 $) . T) ((-190) . T) ((-189) . T) ((-201) . T) ((-246) . T) ((-258) . T) ((-312) . T) ((-343) . T) ((-318) . T) ((-390) . T) ((-494) . T) ((-13) . T) ((-587 (-348 (-483))) . T) ((-587 (-483)) . T) ((-587 $) . T) ((-589 (-348 (-483))) . T) ((-589 $) . T) ((-581 (-348 (-483))) . T) ((-581 $) . T) ((-653 (-348 (-483))) . T) ((-653 $) . T) ((-662) . T) ((-831) . T) ((-962 (-348 (-483))) . T) ((-962 $) . T) ((-967 (-348 (-483))) . T) ((-967 $) . T) ((-960) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1064) . T) ((-1127) . T) ((-1132) . T)) -((-3917 (((-2 (|:| -2011 (-629 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-629 |#1|))) |#1|) 55 T ELT)) (-3916 (((-2 (|:| -2011 (-629 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-629 |#1|)))) 53 T ELT))) -(((-300 |#1| |#2| |#3|) (-10 -7 (-15 -3916 ((-2 (|:| -2011 (-629 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-629 |#1|))))) (-15 -3917 ((-2 (|:| -2011 (-629 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-629 |#1|))) |#1|))) (-13 (-258) (-10 -8 (-15 -3969 ((-346 $) $)))) (-1153 |#1|) (-351 |#1| |#2|)) (T -300)) -((-3917 (*1 *2 *3) (-12 (-4 *3 (-13 (-258) (-10 -8 (-15 -3969 ((-346 $) $))))) (-4 *4 (-1153 *3)) (-5 *2 (-2 (|:| -2011 (-629 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-629 *3)))) (-5 *1 (-300 *3 *4 *5)) (-4 *5 (-351 *3 *4)))) (-3916 (*1 *2) (-12 (-4 *3 (-13 (-258) (-10 -8 (-15 -3969 ((-346 $) $))))) (-4 *4 (-1153 *3)) (-5 *2 (-2 (|:| -2011 (-629 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-629 *3)))) (-5 *1 (-300 *3 *4 *5)) (-4 *5 (-351 *3 *4))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3187 (((-85) $) NIL T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3980 $) (|:| |associate| $)) $) NIL T ELT)) (-2062 (($ $) NIL T ELT)) (-2060 (((-85) $) NIL T ELT)) (-3930 (((-85) $) NIL T ELT)) (-3927 (((-693)) NIL T ELT)) (-3328 (((-816 |#1|) $) NIL T ELT) (($ $ (-829)) NIL (|has| (-816 |#1|) (-318)) ELT)) (-1673 (((-1100 (-829) (-693)) (-483)) NIL (|has| (-816 |#1|) (-318)) ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3773 (($ $) NIL T ELT)) (-3969 (((-346 $) $) NIL T ELT)) (-1675 (((-693)) NIL T ELT)) (-1606 (((-85) $ $) NIL T ELT)) (-3135 (((-693)) NIL (|has| (-816 |#1|) (-318)) ELT)) (-3722 (($) NIL T CONST)) (-3156 (((-3 (-816 |#1|) #1#) $) NIL T ELT)) (-3155 (((-816 |#1|) $) NIL T ELT)) (-1790 (($ (-1177 (-816 |#1|))) NIL T ELT)) (-1671 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-816 |#1|) (-318)) ELT)) (-2563 (($ $ $) NIL T ELT)) (-3465 (((-3 $ #1#) $) NIL T ELT)) (-2993 (($) NIL (|has| (-816 |#1|) (-318)) ELT)) (-2562 (($ $ $) NIL T ELT)) (-2740 (((-2 (|:| -3952 (-582 $)) (|:| -2408 $)) (-582 $)) NIL T ELT)) (-2832 (($) NIL (|has| (-816 |#1|) (-318)) ELT)) (-1678 (((-85) $) NIL (|has| (-816 |#1|) (-318)) ELT)) (-1762 (($ $ (-693)) NIL (OR (|has| (-816 |#1|) (-118)) (|has| (-816 |#1|) (-318))) ELT) (($ $) NIL (OR (|has| (-816 |#1|) (-118)) (|has| (-816 |#1|) (-318))) ELT)) (-3721 (((-85) $) NIL T ELT)) (-3770 (((-829) $) NIL (|has| (-816 |#1|) (-318)) ELT) (((-742 (-829)) $) NIL (OR (|has| (-816 |#1|) (-118)) (|has| (-816 |#1|) (-318))) ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-2409 (((-85) $) NIL T ELT)) (-2012 (($) NIL (|has| (-816 |#1|) (-318)) ELT)) (-2010 (((-85) $) NIL (|has| (-816 |#1|) (-318)) ELT)) (-3131 (((-816 |#1|) $) NIL T ELT) (($ $ (-829)) NIL (|has| (-816 |#1|) (-318)) ELT)) (-3443 (((-631 $) $) NIL (|has| (-816 |#1|) (-318)) ELT)) (-1603 (((-3 (-582 $) #1#) (-582 $) $) NIL T ELT)) (-2013 (((-1083 (-816 |#1|)) $) NIL T ELT) (((-1083 $) $ (-829)) NIL (|has| (-816 |#1|) (-318)) ELT)) (-2009 (((-829) $) NIL (|has| (-816 |#1|) (-318)) ELT)) (-1625 (((-1083 (-816 |#1|)) $) NIL (|has| (-816 |#1|) (-318)) ELT)) (-1624 (((-1083 (-816 |#1|)) $) NIL (|has| (-816 |#1|) (-318)) ELT) (((-3 (-1083 (-816 |#1|)) #1#) $ $) NIL (|has| (-816 |#1|) (-318)) ELT)) (-1626 (($ $ (-1083 (-816 |#1|))) NIL (|has| (-816 |#1|) (-318)) ELT)) (-1889 (($ $ $) NIL T ELT) (($ (-582 $)) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-2483 (($ $) NIL T ELT)) (-3444 (($) NIL (|has| (-816 |#1|) (-318)) CONST)) (-2399 (($ (-829)) NIL (|has| (-816 |#1|) (-318)) ELT)) (-3929 (((-85) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-1677 (((-1177 (-582 (-2 (|:| -3400 (-816 |#1|)) (|:| -2399 (-1032)))))) NIL T ELT)) (-1676 (((-629 (-816 |#1|))) NIL T ELT)) (-2408 (($) NIL (|has| (-816 |#1|) (-318)) ELT)) (-2707 (((-1083 $) (-1083 $) (-1083 $)) NIL T ELT)) (-3143 (($ $ $) NIL T ELT) (($ (-582 $)) NIL T ELT)) (-1674 (((-582 (-2 (|:| -3730 (-483)) (|:| -2400 (-483))))) NIL (|has| (-816 |#1|) (-318)) ELT)) (-3730 (((-346 $) $) NIL T ELT)) (-3928 (((-742 (-829))) NIL T ELT) (((-829)) NIL T ELT)) (-1604 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3464 (((-3 $ #1#) $ $) NIL T ELT)) (-2739 (((-631 (-582 $)) (-582 $) $) NIL T ELT)) (-1605 (((-693) $) NIL T ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL T ELT)) (-1763 (((-693) $) NIL (|has| (-816 |#1|) (-318)) ELT) (((-3 (-693) #1#) $ $) NIL (OR (|has| (-816 |#1|) (-118)) (|has| (-816 |#1|) (-318))) ELT)) (-3909 (((-107)) NIL T ELT)) (-3756 (($ $ (-693)) NIL (|has| (-816 |#1|) (-318)) ELT) (($ $) NIL (|has| (-816 |#1|) (-318)) ELT)) (-3946 (((-742 (-829)) $) NIL T ELT) (((-829) $) NIL T ELT)) (-3184 (((-1083 (-816 |#1|))) NIL T ELT)) (-1672 (($) NIL (|has| (-816 |#1|) (-318)) ELT)) (-1627 (($) NIL (|has| (-816 |#1|) (-318)) ELT)) (-3223 (((-1177 (-816 |#1|)) $) NIL T ELT) (((-629 (-816 |#1|)) (-1177 $)) NIL T ELT)) (-2702 (((-3 (-1177 $) #1#) (-629 $)) NIL (|has| (-816 |#1|) (-318)) ELT)) (-3944 (((-771) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ $) NIL T ELT) (($ (-348 (-483))) NIL T ELT) (($ (-816 |#1|)) NIL T ELT)) (-2701 (($ $) NIL (|has| (-816 |#1|) (-318)) ELT) (((-631 $) $) NIL (OR (|has| (-816 |#1|) (-118)) (|has| (-816 |#1|) (-318))) ELT)) (-3125 (((-693)) NIL T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-2011 (((-1177 $)) NIL T ELT) (((-1177 $) (-829)) NIL T ELT)) (-2061 (((-85) $ $) NIL T ELT)) (-3124 (((-85) $ $) NIL T ELT)) (-3931 (((-85) $) NIL T ELT)) (-2659 (($) NIL T CONST)) (-2665 (($) NIL T CONST)) (-3926 (($ $) NIL (|has| (-816 |#1|) (-318)) ELT) (($ $ (-693)) NIL (|has| (-816 |#1|) (-318)) ELT)) (-2668 (($ $ (-693)) NIL (|has| (-816 |#1|) (-318)) ELT) (($ $) NIL (|has| (-816 |#1|) (-318)) ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-3947 (($ $ $) NIL T ELT) (($ $ (-816 |#1|)) NIL T ELT)) (-3835 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3837 (($ $ $) NIL T ELT)) (** (($ $ (-829)) NIL T ELT) (($ $ (-693)) NIL T ELT) (($ $ (-483)) NIL T ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-348 (-483))) NIL T ELT) (($ (-348 (-483)) $) NIL T ELT) (($ $ (-816 |#1|)) NIL T ELT) (($ (-816 |#1|) $) NIL T ELT))) -(((-301 |#1| |#2|) (-13 (-280 (-816 |#1|)) (-10 -7 (-15 -1677 ((-1177 (-582 (-2 (|:| -3400 (-816 |#1|)) (|:| -2399 (-1032))))))) (-15 -1676 ((-629 (-816 |#1|)))) (-15 -1675 ((-693))))) (-829) (-829)) (T -301)) -((-1677 (*1 *2) (-12 (-5 *2 (-1177 (-582 (-2 (|:| -3400 (-816 *3)) (|:| -2399 (-1032)))))) (-5 *1 (-301 *3 *4)) (-14 *3 (-829)) (-14 *4 (-829)))) (-1676 (*1 *2) (-12 (-5 *2 (-629 (-816 *3))) (-5 *1 (-301 *3 *4)) (-14 *3 (-829)) (-14 *4 (-829)))) (-1675 (*1 *2) (-12 (-5 *2 (-693)) (-5 *1 (-301 *3 *4)) (-14 *3 (-829)) (-14 *4 (-829))))) -((-2567 (((-85) $ $) 72 T ELT)) (-3187 (((-85) $) 87 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3980 $) (|:| |associate| $)) $) NIL T ELT)) (-2062 (($ $) NIL T ELT)) (-2060 (((-85) $) NIL T ELT)) (-3930 (((-85) $) NIL T ELT)) (-3927 (((-693)) NIL T ELT)) (-3328 ((|#1| $) 105 T ELT) (($ $ (-829)) 103 (|has| |#1| (-318)) ELT)) (-1673 (((-1100 (-829) (-693)) (-483)) 168 (|has| |#1| (-318)) ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3773 (($ $) NIL T ELT)) (-3969 (((-346 $) $) NIL T ELT)) (-1675 (((-693)) 102 T ELT)) (-1606 (((-85) $ $) NIL T ELT)) (-3135 (((-693)) 185 (|has| |#1| (-318)) ELT)) (-3722 (($) NIL T CONST)) (-3156 (((-3 |#1| #1#) $) 126 T ELT)) (-3155 ((|#1| $) 104 T ELT)) (-1790 (($ (-1177 |#1|)) 70 T ELT)) (-1671 (((-3 "prime" "polynomial" "normal" "cyclic")) 211 (|has| |#1| (-318)) ELT)) (-2563 (($ $ $) NIL T ELT)) (-3465 (((-3 $ #1#) $) NIL T ELT)) (-2993 (($) 180 (|has| |#1| (-318)) ELT)) (-2562 (($ $ $) NIL T ELT)) (-2740 (((-2 (|:| -3952 (-582 $)) (|:| -2408 $)) (-582 $)) NIL T ELT)) (-2832 (($) 169 (|has| |#1| (-318)) ELT)) (-1678 (((-85) $) NIL (|has| |#1| (-318)) ELT)) (-1762 (($ $ (-693)) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-318))) ELT) (($ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-318))) ELT)) (-3721 (((-85) $) NIL T ELT)) (-3770 (((-829) $) NIL (|has| |#1| (-318)) ELT) (((-742 (-829)) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-318))) ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-2409 (((-85) $) NIL T ELT)) (-2012 (($) 112 (|has| |#1| (-318)) ELT)) (-2010 (((-85) $) 198 (|has| |#1| (-318)) ELT)) (-3131 ((|#1| $) 107 T ELT) (($ $ (-829)) 106 (|has| |#1| (-318)) ELT)) (-3443 (((-631 $) $) NIL (|has| |#1| (-318)) ELT)) (-1603 (((-3 (-582 $) #1#) (-582 $) $) NIL T ELT)) (-2013 (((-1083 |#1|) $) 212 T ELT) (((-1083 $) $ (-829)) NIL (|has| |#1| (-318)) ELT)) (-2009 (((-829) $) 146 (|has| |#1| (-318)) ELT)) (-1625 (((-1083 |#1|) $) 86 (|has| |#1| (-318)) ELT)) (-1624 (((-1083 |#1|) $) 83 (|has| |#1| (-318)) ELT) (((-3 (-1083 |#1|) #1#) $ $) 95 (|has| |#1| (-318)) ELT)) (-1626 (($ $ (-1083 |#1|)) 82 (|has| |#1| (-318)) ELT)) (-1889 (($ $ $) NIL T ELT) (($ (-582 $)) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-2483 (($ $) 216 T ELT)) (-3444 (($) NIL (|has| |#1| (-318)) CONST)) (-2399 (($ (-829)) 148 (|has| |#1| (-318)) ELT)) (-3929 (((-85) $) 122 T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-1677 (((-1177 (-582 (-2 (|:| -3400 |#1|) (|:| -2399 (-1032)))))) 96 T ELT)) (-1676 (((-629 |#1|)) 100 T ELT)) (-2408 (($) 109 (|has| |#1| (-318)) ELT)) (-2707 (((-1083 $) (-1083 $) (-1083 $)) NIL T ELT)) (-3143 (($ $ $) NIL T ELT) (($ (-582 $)) NIL T ELT)) (-1674 (((-582 (-2 (|:| -3730 (-483)) (|:| -2400 (-483))))) 171 (|has| |#1| (-318)) ELT)) (-3730 (((-346 $) $) NIL T ELT)) (-3928 (((-742 (-829))) NIL T ELT) (((-829)) 172 T ELT)) (-1604 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3464 (((-3 $ #1#) $ $) NIL T ELT)) (-2739 (((-631 (-582 $)) (-582 $) $) NIL T ELT)) (-1605 (((-693) $) NIL T ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL T ELT)) (-1763 (((-693) $) NIL (|has| |#1| (-318)) ELT) (((-3 (-693) #1#) $ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-318))) ELT)) (-3909 (((-107)) NIL T ELT)) (-3756 (($ $ (-693)) NIL (|has| |#1| (-318)) ELT) (($ $) NIL (|has| |#1| (-318)) ELT)) (-3946 (((-742 (-829)) $) NIL T ELT) (((-829) $) 74 T ELT)) (-3184 (((-1083 |#1|)) 173 T ELT)) (-1672 (($) 145 (|has| |#1| (-318)) ELT)) (-1627 (($) NIL (|has| |#1| (-318)) ELT)) (-3223 (((-1177 |#1|) $) 120 T ELT) (((-629 |#1|) (-1177 $)) NIL T ELT)) (-2702 (((-3 (-1177 $) #1#) (-629 $)) NIL (|has| |#1| (-318)) ELT)) (-3944 (((-771) $) 138 T ELT) (($ (-483)) NIL T ELT) (($ $) NIL T ELT) (($ (-348 (-483))) NIL T ELT) (($ |#1|) 69 T ELT)) (-2701 (($ $) NIL (|has| |#1| (-318)) ELT) (((-631 $) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-318))) ELT)) (-3125 (((-693)) 178 T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-2011 (((-1177 $)) 195 T ELT) (((-1177 $) (-829)) 115 T ELT)) (-2061 (((-85) $ $) NIL T ELT)) (-3124 (((-85) $ $) NIL T ELT)) (-3931 (((-85) $) NIL T ELT)) (-2659 (($) 184 T CONST)) (-2665 (($) 159 T CONST)) (-3926 (($ $) 121 (|has| |#1| (-318)) ELT) (($ $ (-693)) 113 (|has| |#1| (-318)) ELT)) (-2668 (($ $ (-693)) NIL (|has| |#1| (-318)) ELT) (($ $) NIL (|has| |#1| (-318)) ELT)) (-3055 (((-85) $ $) 206 T ELT)) (-3947 (($ $ $) 118 T ELT) (($ $ |#1|) 119 T ELT)) (-3835 (($ $) 200 T ELT) (($ $ $) 204 T ELT)) (-3837 (($ $ $) 202 T ELT)) (** (($ $ (-829)) NIL T ELT) (($ $ (-693)) NIL T ELT) (($ $ (-483)) 151 T ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-483) $) 209 T ELT) (($ $ $) 162 T ELT) (($ $ (-348 (-483))) NIL T ELT) (($ (-348 (-483)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 117 T ELT))) -(((-302 |#1| |#2|) (-13 (-280 |#1|) (-10 -7 (-15 -1677 ((-1177 (-582 (-2 (|:| -3400 |#1|) (|:| -2399 (-1032))))))) (-15 -1676 ((-629 |#1|))) (-15 -1675 ((-693))))) (-299) (-3 (-1083 |#1|) (-1177 (-582 (-2 (|:| -3400 |#1|) (|:| -2399 (-1032))))))) (T -302)) -((-1677 (*1 *2) (-12 (-5 *2 (-1177 (-582 (-2 (|:| -3400 *3) (|:| -2399 (-1032)))))) (-5 *1 (-302 *3 *4)) (-4 *3 (-299)) (-14 *4 (-3 (-1083 *3) *2)))) (-1676 (*1 *2) (-12 (-5 *2 (-629 *3)) (-5 *1 (-302 *3 *4)) (-4 *3 (-299)) (-14 *4 (-3 (-1083 *3) (-1177 (-582 (-2 (|:| -3400 *3) (|:| -2399 (-1032))))))))) (-1675 (*1 *2) (-12 (-5 *2 (-693)) (-5 *1 (-302 *3 *4)) (-4 *3 (-299)) (-14 *4 (-3 (-1083 *3) (-1177 (-582 (-2 (|:| -3400 *3) (|:| -2399 (-1032)))))))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3187 (((-85) $) NIL T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3980 $) (|:| |associate| $)) $) NIL T ELT)) (-2062 (($ $) NIL T ELT)) (-2060 (((-85) $) NIL T ELT)) (-3930 (((-85) $) NIL T ELT)) (-3927 (((-693)) NIL T ELT)) (-3328 ((|#1| $) NIL T ELT) (($ $ (-829)) NIL (|has| |#1| (-318)) ELT)) (-1673 (((-1100 (-829) (-693)) (-483)) NIL (|has| |#1| (-318)) ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3773 (($ $) NIL T ELT)) (-3969 (((-346 $) $) NIL T ELT)) (-1675 (((-693)) NIL T ELT)) (-1606 (((-85) $ $) NIL T ELT)) (-3135 (((-693)) NIL (|has| |#1| (-318)) ELT)) (-3722 (($) NIL T CONST)) (-3156 (((-3 |#1| #1#) $) NIL T ELT)) (-3155 ((|#1| $) NIL T ELT)) (-1790 (($ (-1177 |#1|)) NIL T ELT)) (-1671 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-318)) ELT)) (-2563 (($ $ $) NIL T ELT)) (-3465 (((-3 $ #1#) $) NIL T ELT)) (-2993 (($) NIL (|has| |#1| (-318)) ELT)) (-2562 (($ $ $) NIL T ELT)) (-2740 (((-2 (|:| -3952 (-582 $)) (|:| -2408 $)) (-582 $)) NIL T ELT)) (-2832 (($) NIL (|has| |#1| (-318)) ELT)) (-1678 (((-85) $) NIL (|has| |#1| (-318)) ELT)) (-1762 (($ $ (-693)) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-318))) ELT) (($ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-318))) ELT)) (-3721 (((-85) $) NIL T ELT)) (-3770 (((-829) $) NIL (|has| |#1| (-318)) ELT) (((-742 (-829)) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-318))) ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-2409 (((-85) $) NIL T ELT)) (-2012 (($) NIL (|has| |#1| (-318)) ELT)) (-2010 (((-85) $) NIL (|has| |#1| (-318)) ELT)) (-3131 ((|#1| $) NIL T ELT) (($ $ (-829)) NIL (|has| |#1| (-318)) ELT)) (-3443 (((-631 $) $) NIL (|has| |#1| (-318)) ELT)) (-1603 (((-3 (-582 $) #1#) (-582 $) $) NIL T ELT)) (-2013 (((-1083 |#1|) $) NIL T ELT) (((-1083 $) $ (-829)) NIL (|has| |#1| (-318)) ELT)) (-2009 (((-829) $) NIL (|has| |#1| (-318)) ELT)) (-1625 (((-1083 |#1|) $) NIL (|has| |#1| (-318)) ELT)) (-1624 (((-1083 |#1|) $) NIL (|has| |#1| (-318)) ELT) (((-3 (-1083 |#1|) #1#) $ $) NIL (|has| |#1| (-318)) ELT)) (-1626 (($ $ (-1083 |#1|)) NIL (|has| |#1| (-318)) ELT)) (-1889 (($ $ $) NIL T ELT) (($ (-582 $)) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-2483 (($ $) NIL T ELT)) (-3444 (($) NIL (|has| |#1| (-318)) CONST)) (-2399 (($ (-829)) NIL (|has| |#1| (-318)) ELT)) (-3929 (((-85) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-1677 (((-1177 (-582 (-2 (|:| -3400 |#1|) (|:| -2399 (-1032)))))) NIL T ELT)) (-1676 (((-629 |#1|)) NIL T ELT)) (-2408 (($) NIL (|has| |#1| (-318)) ELT)) (-2707 (((-1083 $) (-1083 $) (-1083 $)) NIL T ELT)) (-3143 (($ $ $) NIL T ELT) (($ (-582 $)) NIL T ELT)) (-1674 (((-582 (-2 (|:| -3730 (-483)) (|:| -2400 (-483))))) NIL (|has| |#1| (-318)) ELT)) (-3730 (((-346 $) $) NIL T ELT)) (-3928 (((-742 (-829))) NIL T ELT) (((-829)) NIL T ELT)) (-1604 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3464 (((-3 $ #1#) $ $) NIL T ELT)) (-2739 (((-631 (-582 $)) (-582 $) $) NIL T ELT)) (-1605 (((-693) $) NIL T ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL T ELT)) (-1763 (((-693) $) NIL (|has| |#1| (-318)) ELT) (((-3 (-693) #1#) $ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-318))) ELT)) (-3909 (((-107)) NIL T ELT)) (-3756 (($ $ (-693)) NIL (|has| |#1| (-318)) ELT) (($ $) NIL (|has| |#1| (-318)) ELT)) (-3946 (((-742 (-829)) $) NIL T ELT) (((-829) $) NIL T ELT)) (-3184 (((-1083 |#1|)) NIL T ELT)) (-1672 (($) NIL (|has| |#1| (-318)) ELT)) (-1627 (($) NIL (|has| |#1| (-318)) ELT)) (-3223 (((-1177 |#1|) $) NIL T ELT) (((-629 |#1|) (-1177 $)) NIL T ELT)) (-2702 (((-3 (-1177 $) #1#) (-629 $)) NIL (|has| |#1| (-318)) ELT)) (-3944 (((-771) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ $) NIL T ELT) (($ (-348 (-483))) NIL T ELT) (($ |#1|) NIL T ELT)) (-2701 (($ $) NIL (|has| |#1| (-318)) ELT) (((-631 $) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-318))) ELT)) (-3125 (((-693)) NIL T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-2011 (((-1177 $)) NIL T ELT) (((-1177 $) (-829)) NIL T ELT)) (-2061 (((-85) $ $) NIL T ELT)) (-3124 (((-85) $ $) NIL T ELT)) (-3931 (((-85) $) NIL T ELT)) (-2659 (($) NIL T CONST)) (-2665 (($) NIL T CONST)) (-3926 (($ $) NIL (|has| |#1| (-318)) ELT) (($ $ (-693)) NIL (|has| |#1| (-318)) ELT)) (-2668 (($ $ (-693)) NIL (|has| |#1| (-318)) ELT) (($ $) NIL (|has| |#1| (-318)) ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-3947 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3835 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3837 (($ $ $) NIL T ELT)) (** (($ $ (-829)) NIL T ELT) (($ $ (-693)) NIL T ELT) (($ $ (-483)) NIL T ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-348 (-483))) NIL T ELT) (($ (-348 (-483)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-303 |#1| |#2|) (-13 (-280 |#1|) (-10 -7 (-15 -1677 ((-1177 (-582 (-2 (|:| -3400 |#1|) (|:| -2399 (-1032))))))) (-15 -1676 ((-629 |#1|))) (-15 -1675 ((-693))))) (-299) (-829)) (T -303)) -((-1677 (*1 *2) (-12 (-5 *2 (-1177 (-582 (-2 (|:| -3400 *3) (|:| -2399 (-1032)))))) (-5 *1 (-303 *3 *4)) (-4 *3 (-299)) (-14 *4 (-829)))) (-1676 (*1 *2) (-12 (-5 *2 (-629 *3)) (-5 *1 (-303 *3 *4)) (-4 *3 (-299)) (-14 *4 (-829)))) (-1675 (*1 *2) (-12 (-5 *2 (-693)) (-5 *1 (-303 *3 *4)) (-4 *3 (-299)) (-14 *4 (-829))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3187 (((-85) $) NIL T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3980 $) (|:| |associate| $)) $) NIL T ELT)) (-2062 (($ $) NIL T ELT)) (-2060 (((-85) $) NIL T ELT)) (-3930 (((-85) $) NIL T ELT)) (-3927 (((-693)) NIL T ELT)) (-3328 ((|#1| $) NIL T ELT) (($ $ (-829)) NIL (|has| |#1| (-318)) ELT)) (-1673 (((-1100 (-829) (-693)) (-483)) 130 (|has| |#1| (-318)) ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3773 (($ $) NIL T ELT)) (-3969 (((-346 $) $) NIL T ELT)) (-1606 (((-85) $ $) NIL T ELT)) (-3135 (((-693)) 156 (|has| |#1| (-318)) ELT)) (-3722 (($) NIL T CONST)) (-3156 (((-3 |#1| #1#) $) 104 T ELT)) (-3155 ((|#1| $) 101 T ELT)) (-1790 (($ (-1177 |#1|)) 96 T ELT)) (-1671 (((-3 "prime" "polynomial" "normal" "cyclic")) 127 (|has| |#1| (-318)) ELT)) (-2563 (($ $ $) NIL T ELT)) (-3465 (((-3 $ #1#) $) NIL T ELT)) (-2993 (($) 93 (|has| |#1| (-318)) ELT)) (-2562 (($ $ $) NIL T ELT)) (-2740 (((-2 (|:| -3952 (-582 $)) (|:| -2408 $)) (-582 $)) NIL T ELT)) (-2832 (($) 52 (|has| |#1| (-318)) ELT)) (-1678 (((-85) $) NIL (|has| |#1| (-318)) ELT)) (-1762 (($ $ (-693)) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-318))) ELT) (($ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-318))) ELT)) (-3721 (((-85) $) NIL T ELT)) (-3770 (((-829) $) NIL (|has| |#1| (-318)) ELT) (((-742 (-829)) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-318))) ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-2409 (((-85) $) NIL T ELT)) (-2012 (($) 131 (|has| |#1| (-318)) ELT)) (-2010 (((-85) $) 85 (|has| |#1| (-318)) ELT)) (-3131 ((|#1| $) 48 T ELT) (($ $ (-829)) 53 (|has| |#1| (-318)) ELT)) (-3443 (((-631 $) $) NIL (|has| |#1| (-318)) ELT)) (-1603 (((-3 (-582 $) #1#) (-582 $) $) NIL T ELT)) (-2013 (((-1083 |#1|) $) 76 T ELT) (((-1083 $) $ (-829)) NIL (|has| |#1| (-318)) ELT)) (-2009 (((-829) $) 108 (|has| |#1| (-318)) ELT)) (-1625 (((-1083 |#1|) $) NIL (|has| |#1| (-318)) ELT)) (-1624 (((-1083 |#1|) $) NIL (|has| |#1| (-318)) ELT) (((-3 (-1083 |#1|) #1#) $ $) NIL (|has| |#1| (-318)) ELT)) (-1626 (($ $ (-1083 |#1|)) NIL (|has| |#1| (-318)) ELT)) (-1889 (($ $ $) NIL T ELT) (($ (-582 $)) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-2483 (($ $) NIL T ELT)) (-3444 (($) NIL (|has| |#1| (-318)) CONST)) (-2399 (($ (-829)) 106 (|has| |#1| (-318)) ELT)) (-3929 (((-85) $) 158 T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-2408 (($) 45 (|has| |#1| (-318)) ELT)) (-2707 (((-1083 $) (-1083 $) (-1083 $)) NIL T ELT)) (-3143 (($ $ $) NIL T ELT) (($ (-582 $)) NIL T ELT)) (-1674 (((-582 (-2 (|:| -3730 (-483)) (|:| -2400 (-483))))) 125 (|has| |#1| (-318)) ELT)) (-3730 (((-346 $) $) NIL T ELT)) (-3928 (((-742 (-829))) NIL T ELT) (((-829)) 155 T ELT)) (-1604 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3464 (((-3 $ #1#) $ $) NIL T ELT)) (-2739 (((-631 (-582 $)) (-582 $) $) NIL T ELT)) (-1605 (((-693) $) NIL T ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL T ELT)) (-1763 (((-693) $) NIL (|has| |#1| (-318)) ELT) (((-3 (-693) #1#) $ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-318))) ELT)) (-3909 (((-107)) NIL T ELT)) (-3756 (($ $ (-693)) NIL (|has| |#1| (-318)) ELT) (($ $) NIL (|has| |#1| (-318)) ELT)) (-3946 (((-742 (-829)) $) NIL T ELT) (((-829) $) 68 T ELT)) (-3184 (((-1083 |#1|)) 99 T ELT)) (-1672 (($) 136 (|has| |#1| (-318)) ELT)) (-1627 (($) NIL (|has| |#1| (-318)) ELT)) (-3223 (((-1177 |#1|) $) 64 T ELT) (((-629 |#1|) (-1177 $)) NIL T ELT)) (-2702 (((-3 (-1177 $) #1#) (-629 $)) NIL (|has| |#1| (-318)) ELT)) (-3944 (((-771) $) 154 T ELT) (($ (-483)) NIL T ELT) (($ $) NIL T ELT) (($ (-348 (-483))) NIL T ELT) (($ |#1|) 98 T ELT)) (-2701 (($ $) NIL (|has| |#1| (-318)) ELT) (((-631 $) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-318))) ELT)) (-3125 (((-693)) 160 T CONST)) (-1263 (((-85) $ $) 162 T ELT)) (-2011 (((-1177 $)) 120 T ELT) (((-1177 $) (-829)) 59 T ELT)) (-2061 (((-85) $ $) NIL T ELT)) (-3124 (((-85) $ $) NIL T ELT)) (-3931 (((-85) $) NIL T ELT)) (-2659 (($) 122 T CONST)) (-2665 (($) 40 T CONST)) (-3926 (($ $) 79 (|has| |#1| (-318)) ELT) (($ $ (-693)) NIL (|has| |#1| (-318)) ELT)) (-2668 (($ $ (-693)) NIL (|has| |#1| (-318)) ELT) (($ $) NIL (|has| |#1| (-318)) ELT)) (-3055 (((-85) $ $) 118 T ELT)) (-3947 (($ $ $) 110 T ELT) (($ $ |#1|) 111 T ELT)) (-3835 (($ $) 91 T ELT) (($ $ $) 116 T ELT)) (-3837 (($ $ $) 114 T ELT)) (** (($ $ (-829)) NIL T ELT) (($ $ (-693)) 54 T ELT) (($ $ (-483)) 139 T ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-483) $) 89 T ELT) (($ $ $) 66 T ELT) (($ $ (-348 (-483))) NIL T ELT) (($ (-348 (-483)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 87 T ELT))) -(((-304 |#1| |#2|) (-280 |#1|) (-299) (-1083 |#1|)) (T -304)) -NIL -((-1693 (((-868 (-1083 |#1|)) (-1083 |#1|)) 49 T ELT)) (-2993 (((-1083 |#1|) (-829) (-829)) 159 T ELT) (((-1083 |#1|) (-829)) 155 T ELT)) (-1678 (((-85) (-1083 |#1|)) 110 T ELT)) (-1680 (((-829) (-829)) 85 T ELT)) (-1681 (((-829) (-829)) 94 T ELT)) (-1679 (((-829) (-829)) 83 T ELT)) (-2010 (((-85) (-1083 |#1|)) 114 T ELT)) (-1688 (((-3 (-1083 |#1|) #1="failed") (-1083 |#1|)) 139 T ELT)) (-1691 (((-3 (-1083 |#1|) #1#) (-1083 |#1|)) 144 T ELT)) (-1690 (((-3 (-1083 |#1|) #1#) (-1083 |#1|)) 143 T ELT)) (-1689 (((-3 (-1083 |#1|) #1#) (-1083 |#1|)) 142 T ELT)) (-1687 (((-3 (-1083 |#1|) #1#) (-1083 |#1|)) 134 T ELT)) (-1692 (((-1083 |#1|) (-1083 |#1|)) 71 T ELT)) (-1683 (((-1083 |#1|) (-829)) 149 T ELT)) (-1686 (((-1083 |#1|) (-829)) 152 T ELT)) (-1685 (((-1083 |#1|) (-829)) 151 T ELT)) (-1684 (((-1083 |#1|) (-829)) 150 T ELT)) (-1682 (((-1083 |#1|) (-829)) 147 T ELT))) -(((-305 |#1|) (-10 -7 (-15 -1678 ((-85) (-1083 |#1|))) (-15 -2010 ((-85) (-1083 |#1|))) (-15 -1679 ((-829) (-829))) (-15 -1680 ((-829) (-829))) (-15 -1681 ((-829) (-829))) (-15 -1682 ((-1083 |#1|) (-829))) (-15 -1683 ((-1083 |#1|) (-829))) (-15 -1684 ((-1083 |#1|) (-829))) (-15 -1685 ((-1083 |#1|) (-829))) (-15 -1686 ((-1083 |#1|) (-829))) (-15 -1687 ((-3 (-1083 |#1|) #1="failed") (-1083 |#1|))) (-15 -1688 ((-3 (-1083 |#1|) #1#) (-1083 |#1|))) (-15 -1689 ((-3 (-1083 |#1|) #1#) (-1083 |#1|))) (-15 -1690 ((-3 (-1083 |#1|) #1#) (-1083 |#1|))) (-15 -1691 ((-3 (-1083 |#1|) #1#) (-1083 |#1|))) (-15 -2993 ((-1083 |#1|) (-829))) (-15 -2993 ((-1083 |#1|) (-829) (-829))) (-15 -1692 ((-1083 |#1|) (-1083 |#1|))) (-15 -1693 ((-868 (-1083 |#1|)) (-1083 |#1|)))) (-299)) (T -305)) -((-1693 (*1 *2 *3) (-12 (-4 *4 (-299)) (-5 *2 (-868 (-1083 *4))) (-5 *1 (-305 *4)) (-5 *3 (-1083 *4)))) (-1692 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3)))) (-2993 (*1 *2 *3 *3) (-12 (-5 *3 (-829)) (-5 *2 (-1083 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299)))) (-2993 (*1 *2 *3) (-12 (-5 *3 (-829)) (-5 *2 (-1083 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299)))) (-1691 (*1 *2 *2) (|partial| -12 (-5 *2 (-1083 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3)))) (-1690 (*1 *2 *2) (|partial| -12 (-5 *2 (-1083 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3)))) (-1689 (*1 *2 *2) (|partial| -12 (-5 *2 (-1083 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3)))) (-1688 (*1 *2 *2) (|partial| -12 (-5 *2 (-1083 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3)))) (-1687 (*1 *2 *2) (|partial| -12 (-5 *2 (-1083 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3)))) (-1686 (*1 *2 *3) (-12 (-5 *3 (-829)) (-5 *2 (-1083 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299)))) (-1685 (*1 *2 *3) (-12 (-5 *3 (-829)) (-5 *2 (-1083 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299)))) (-1684 (*1 *2 *3) (-12 (-5 *3 (-829)) (-5 *2 (-1083 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299)))) (-1683 (*1 *2 *3) (-12 (-5 *3 (-829)) (-5 *2 (-1083 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299)))) (-1682 (*1 *2 *3) (-12 (-5 *3 (-829)) (-5 *2 (-1083 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299)))) (-1681 (*1 *2 *2) (-12 (-5 *2 (-829)) (-5 *1 (-305 *3)) (-4 *3 (-299)))) (-1680 (*1 *2 *2) (-12 (-5 *2 (-829)) (-5 *1 (-305 *3)) (-4 *3 (-299)))) (-1679 (*1 *2 *2) (-12 (-5 *2 (-829)) (-5 *1 (-305 *3)) (-4 *3 (-299)))) (-2010 (*1 *2 *3) (-12 (-5 *3 (-1083 *4)) (-4 *4 (-299)) (-5 *2 (-85)) (-5 *1 (-305 *4)))) (-1678 (*1 *2 *3) (-12 (-5 *3 (-1083 *4)) (-4 *4 (-299)) (-5 *2 (-85)) (-5 *1 (-305 *4))))) -((-1694 ((|#1| (-1083 |#2|)) 60 T ELT))) -(((-306 |#1| |#2|) (-10 -7 (-15 -1694 (|#1| (-1083 |#2|)))) (-13 (-343) (-10 -7 (-15 -3944 (|#1| |#2|)) (-15 -2009 ((-829) |#1|)) (-15 -2011 ((-1177 |#1|) (-829))) (-15 -3926 (|#1| |#1|)))) (-299)) (T -306)) -((-1694 (*1 *2 *3) (-12 (-5 *3 (-1083 *4)) (-4 *4 (-299)) (-4 *2 (-13 (-343) (-10 -7 (-15 -3944 (*2 *4)) (-15 -2009 ((-829) *2)) (-15 -2011 ((-1177 *2) (-829))) (-15 -3926 (*2 *2))))) (-5 *1 (-306 *2 *4))))) -((-2703 (((-3 (-582 |#3|) "failed") (-582 |#3|) |#3|) 40 T ELT))) -(((-307 |#1| |#2| |#3|) (-10 -7 (-15 -2703 ((-3 (-582 |#3|) "failed") (-582 |#3|) |#3|))) (-299) (-1153 |#1|) (-1153 |#2|)) (T -307)) -((-2703 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-582 *3)) (-4 *3 (-1153 *5)) (-4 *5 (-1153 *4)) (-4 *4 (-299)) (-5 *1 (-307 *4 *5 *3))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3187 (((-85) $) NIL T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3980 $) (|:| |associate| $)) $) NIL T ELT)) (-2062 (($ $) NIL T ELT)) (-2060 (((-85) $) NIL T ELT)) (-3930 (((-85) $) NIL T ELT)) (-3927 (((-693)) NIL T ELT)) (-3328 ((|#1| $) NIL T ELT) (($ $ (-829)) NIL (|has| |#1| (-318)) ELT)) (-1673 (((-1100 (-829) (-693)) (-483)) NIL (|has| |#1| (-318)) ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3773 (($ $) NIL T ELT)) (-3969 (((-346 $) $) NIL T ELT)) (-1606 (((-85) $ $) NIL T ELT)) (-3135 (((-693)) NIL (|has| |#1| (-318)) ELT)) (-3722 (($) NIL T CONST)) (-3156 (((-3 |#1| #1#) $) NIL T ELT)) (-3155 ((|#1| $) NIL T ELT)) (-1790 (($ (-1177 |#1|)) NIL T ELT)) (-1671 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-318)) ELT)) (-2563 (($ $ $) NIL T ELT)) (-3465 (((-3 $ #1#) $) NIL T ELT)) (-2993 (($) NIL (|has| |#1| (-318)) ELT)) (-2562 (($ $ $) NIL T ELT)) (-2740 (((-2 (|:| -3952 (-582 $)) (|:| -2408 $)) (-582 $)) NIL T ELT)) (-2832 (($) NIL (|has| |#1| (-318)) ELT)) (-1678 (((-85) $) NIL (|has| |#1| (-318)) ELT)) (-1762 (($ $ (-693)) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-318))) ELT) (($ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-318))) ELT)) (-3721 (((-85) $) NIL T ELT)) (-3770 (((-829) $) NIL (|has| |#1| (-318)) ELT) (((-742 (-829)) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-318))) ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-2409 (((-85) $) NIL T ELT)) (-2012 (($) NIL (|has| |#1| (-318)) ELT)) (-2010 (((-85) $) NIL (|has| |#1| (-318)) ELT)) (-3131 ((|#1| $) NIL T ELT) (($ $ (-829)) NIL (|has| |#1| (-318)) ELT)) (-3443 (((-631 $) $) NIL (|has| |#1| (-318)) ELT)) (-1603 (((-3 (-582 $) #1#) (-582 $) $) NIL T ELT)) (-2013 (((-1083 |#1|) $) NIL T ELT) (((-1083 $) $ (-829)) NIL (|has| |#1| (-318)) ELT)) (-2009 (((-829) $) NIL (|has| |#1| (-318)) ELT)) (-1625 (((-1083 |#1|) $) NIL (|has| |#1| (-318)) ELT)) (-1624 (((-1083 |#1|) $) NIL (|has| |#1| (-318)) ELT) (((-3 (-1083 |#1|) #1#) $ $) NIL (|has| |#1| (-318)) ELT)) (-1626 (($ $ (-1083 |#1|)) NIL (|has| |#1| (-318)) ELT)) (-1889 (($ $ $) NIL T ELT) (($ (-582 $)) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-2483 (($ $) NIL T ELT)) (-3444 (($) NIL (|has| |#1| (-318)) CONST)) (-2399 (($ (-829)) NIL (|has| |#1| (-318)) ELT)) (-3929 (((-85) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-2408 (($) NIL (|has| |#1| (-318)) ELT)) (-2707 (((-1083 $) (-1083 $) (-1083 $)) NIL T ELT)) (-3143 (($ $ $) NIL T ELT) (($ (-582 $)) NIL T ELT)) (-1674 (((-582 (-2 (|:| -3730 (-483)) (|:| -2400 (-483))))) NIL (|has| |#1| (-318)) ELT)) (-3730 (((-346 $) $) NIL T ELT)) (-3928 (((-742 (-829))) NIL T ELT) (((-829)) NIL T ELT)) (-1604 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3464 (((-3 $ #1#) $ $) NIL T ELT)) (-2739 (((-631 (-582 $)) (-582 $) $) NIL T ELT)) (-1605 (((-693) $) NIL T ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL T ELT)) (-1763 (((-693) $) NIL (|has| |#1| (-318)) ELT) (((-3 (-693) #1#) $ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-318))) ELT)) (-3909 (((-107)) NIL T ELT)) (-3756 (($ $ (-693)) NIL (|has| |#1| (-318)) ELT) (($ $) NIL (|has| |#1| (-318)) ELT)) (-3946 (((-742 (-829)) $) NIL T ELT) (((-829) $) NIL T ELT)) (-3184 (((-1083 |#1|)) NIL T ELT)) (-1672 (($) NIL (|has| |#1| (-318)) ELT)) (-1627 (($) NIL (|has| |#1| (-318)) ELT)) (-3223 (((-1177 |#1|) $) NIL T ELT) (((-629 |#1|) (-1177 $)) NIL T ELT)) (-2702 (((-3 (-1177 $) #1#) (-629 $)) NIL (|has| |#1| (-318)) ELT)) (-3944 (((-771) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ $) NIL T ELT) (($ (-348 (-483))) NIL T ELT) (($ |#1|) NIL T ELT)) (-2701 (($ $) NIL (|has| |#1| (-318)) ELT) (((-631 $) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-318))) ELT)) (-3125 (((-693)) NIL T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-2011 (((-1177 $)) NIL T ELT) (((-1177 $) (-829)) NIL T ELT)) (-2061 (((-85) $ $) NIL T ELT)) (-3124 (((-85) $ $) NIL T ELT)) (-3931 (((-85) $) NIL T ELT)) (-2659 (($) NIL T CONST)) (-2665 (($) NIL T CONST)) (-3926 (($ $) NIL (|has| |#1| (-318)) ELT) (($ $ (-693)) NIL (|has| |#1| (-318)) ELT)) (-2668 (($ $ (-693)) NIL (|has| |#1| (-318)) ELT) (($ $) NIL (|has| |#1| (-318)) ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-3947 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3835 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3837 (($ $ $) NIL T ELT)) (** (($ $ (-829)) NIL T ELT) (($ $ (-693)) NIL T ELT) (($ $ (-483)) NIL T ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-348 (-483))) NIL T ELT) (($ (-348 (-483)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-308 |#1| |#2|) (-280 |#1|) (-299) (-829)) (T -308)) -NIL -((-2248 (((-85) (-582 (-856 |#1|))) 41 T ELT)) (-2250 (((-582 (-856 |#1|)) (-582 (-856 |#1|))) 53 T ELT)) (-2249 (((-3 (-582 (-856 |#1|)) "failed") (-582 (-856 |#1|))) 48 T ELT))) -(((-309 |#1| |#2|) (-10 -7 (-15 -2248 ((-85) (-582 (-856 |#1|)))) (-15 -2249 ((-3 (-582 (-856 |#1|)) "failed") (-582 (-856 |#1|)))) (-15 -2250 ((-582 (-856 |#1|)) (-582 (-856 |#1|))))) (-390) (-582 (-1088))) (T -309)) -((-2250 (*1 *2 *2) (-12 (-5 *2 (-582 (-856 *3))) (-4 *3 (-390)) (-5 *1 (-309 *3 *4)) (-14 *4 (-582 (-1088))))) (-2249 (*1 *2 *2) (|partial| -12 (-5 *2 (-582 (-856 *3))) (-4 *3 (-390)) (-5 *1 (-309 *3 *4)) (-14 *4 (-582 (-1088))))) (-2248 (*1 *2 *3) (-12 (-5 *3 (-582 (-856 *4))) (-4 *4 (-390)) (-5 *2 (-85)) (-5 *1 (-309 *4 *5)) (-14 *5 (-582 (-1088)))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3135 (((-693) $) NIL T ELT)) (-3722 (($) NIL T CONST)) (-3156 (((-3 |#1| #1="failed") $) NIL T ELT)) (-3155 ((|#1| $) NIL T ELT)) (-3465 (((-3 $ #1#) $) NIL T ELT)) (-2409 (((-85) $) 17 T ELT)) (-2298 ((|#1| $ (-483)) NIL T ELT)) (-2299 (((-483) $ (-483)) NIL T ELT)) (-2289 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-2290 (($ (-1 (-483) (-483)) $) 26 T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-2483 (($ $) 28 T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-1777 (((-582 (-2 (|:| |gen| |#1|) (|:| -3941 (-483)))) $) 30 T ELT)) (-3008 (($ $ $) NIL T ELT)) (-2434 (($ $ $) NIL T ELT)) (-3944 (((-771) $) 40 T ELT) (($ |#1|) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2665 (($) 7 T CONST)) (-3055 (((-85) $ $) NIL T ELT)) (-3947 (($ $ $) NIL T ELT)) (** (($ $ (-829)) NIL T ELT) (($ $ (-693)) NIL T ELT) (($ $ (-483)) NIL T ELT) (($ |#1| (-483)) 19 T ELT)) (* (($ $ $) 53 T ELT) (($ |#1| $) 23 T ELT) (($ $ |#1|) 21 T ELT))) -(((-310 |#1|) (-13 (-411) (-949 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-483))) (-15 -3135 ((-693) $)) (-15 -2299 ((-483) $ (-483))) (-15 -2298 (|#1| $ (-483))) (-15 -2290 ($ (-1 (-483) (-483)) $)) (-15 -2289 ($ (-1 |#1| |#1|) $)) (-15 -1777 ((-582 (-2 (|:| |gen| |#1|) (|:| -3941 (-483)))) $)))) (-1012)) (T -310)) -((* (*1 *1 *2 *1) (-12 (-5 *1 (-310 *2)) (-4 *2 (-1012)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-310 *2)) (-4 *2 (-1012)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-483)) (-5 *1 (-310 *2)) (-4 *2 (-1012)))) (-3135 (*1 *2 *1) (-12 (-5 *2 (-693)) (-5 *1 (-310 *3)) (-4 *3 (-1012)))) (-2299 (*1 *2 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-310 *3)) (-4 *3 (-1012)))) (-2298 (*1 *2 *1 *3) (-12 (-5 *3 (-483)) (-5 *1 (-310 *2)) (-4 *2 (-1012)))) (-2290 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-483) (-483))) (-5 *1 (-310 *3)) (-4 *3 (-1012)))) (-2289 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1012)) (-5 *1 (-310 *3)))) (-1777 (*1 *2 *1) (-12 (-5 *2 (-582 (-2 (|:| |gen| *3) (|:| -3941 (-483))))) (-5 *1 (-310 *3)) (-4 *3 (-1012))))) -((-2063 (((-2 (|:| -1770 $) (|:| -3980 $) (|:| |associate| $)) $) 13 T ELT)) (-2062 (($ $) 14 T ELT)) (-3969 (((-346 $) $) 31 T ELT)) (-3721 (((-85) $) 27 T ELT)) (-2483 (($ $) 19 T ELT)) (-3143 (($ $ $) 22 T ELT) (($ (-582 $)) NIL T ELT)) (-3730 (((-346 $) $) 32 T ELT)) (-3464 (((-3 $ "failed") $ $) 21 T ELT)) (-1605 (((-693) $) 25 T ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) 36 T ELT)) (-2061 (((-85) $ $) 16 T ELT)) (-3947 (($ $ $) 34 T ELT))) -(((-311 |#1|) (-10 -7 (-15 -3947 (|#1| |#1| |#1|)) (-15 -2483 (|#1| |#1|)) (-15 -3721 ((-85) |#1|)) (-15 -3969 ((-346 |#1|) |#1|)) (-15 -3730 ((-346 |#1|) |#1|)) (-15 -2878 ((-2 (|:| -1971 |#1|) (|:| -2901 |#1|)) |#1| |#1|)) (-15 -1605 ((-693) |#1|)) (-15 -3143 (|#1| (-582 |#1|))) (-15 -3143 (|#1| |#1| |#1|)) (-15 -2061 ((-85) |#1| |#1|)) (-15 -2062 (|#1| |#1|)) (-15 -2063 ((-2 (|:| -1770 |#1|) (|:| -3980 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3464 ((-3 |#1| "failed") |#1| |#1|))) (-312)) (T -311)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-3187 (((-85) $) 22 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3980 $) (|:| |associate| $)) $) 55 T ELT)) (-2062 (($ $) 54 T ELT)) (-2060 (((-85) $) 52 T ELT)) (-1310 (((-3 $ "failed") $ $) 26 T ELT)) (-3773 (($ $) 91 T ELT)) (-3969 (((-346 $) $) 90 T ELT)) (-1606 (((-85) $ $) 75 T ELT)) (-3722 (($) 23 T CONST)) (-2563 (($ $ $) 71 T ELT)) (-3465 (((-3 $ "failed") $) 42 T ELT)) (-2562 (($ $ $) 72 T ELT)) (-2740 (((-2 (|:| -3952 (-582 $)) (|:| -2408 $)) (-582 $)) 66 T ELT)) (-3721 (((-85) $) 89 T ELT)) (-1212 (((-85) $ $) 20 T ELT)) (-2409 (((-85) $) 44 T ELT)) (-1603 (((-3 (-582 $) #1="failed") (-582 $) $) 68 T ELT)) (-1889 (($ $ $) 60 T ELT) (($ (-582 $)) 59 T ELT)) (-3241 (((-1071) $) 11 T ELT)) (-2483 (($ $) 88 T ELT)) (-3242 (((-1032) $) 12 T ELT)) (-2707 (((-1083 $) (-1083 $) (-1083 $)) 58 T ELT)) (-3143 (($ $ $) 62 T ELT) (($ (-582 $)) 61 T ELT)) (-3730 (((-346 $) $) 92 T ELT)) (-1604 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 69 T ELT)) (-3464 (((-3 $ "failed") $ $) 56 T ELT)) (-2739 (((-631 (-582 $)) (-582 $) $) 65 T ELT)) (-1605 (((-693) $) 74 T ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) 73 T ELT)) (-3944 (((-771) $) 13 T ELT) (($ (-483)) 41 T ELT) (($ $) 57 T ELT) (($ (-348 (-483))) 84 T ELT)) (-3125 (((-693)) 40 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-2061 (((-85) $ $) 53 T ELT)) (-3124 (((-85) $ $) 33 T ELT)) (-2659 (($) 24 T CONST)) (-2665 (($) 45 T CONST)) (-3055 (((-85) $ $) 8 T ELT)) (-3947 (($ $ $) 83 T ELT)) (-3835 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3837 (($ $ $) 18 T ELT)) (** (($ $ (-829)) 35 T ELT) (($ $ (-693)) 43 T ELT) (($ $ (-483)) 87 T ELT)) (* (($ (-829) $) 17 T ELT) (($ (-693) $) 21 T ELT) (($ (-483) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-348 (-483))) 86 T ELT) (($ (-348 (-483)) $) 85 T ELT))) +((-2702 (*1 *1 *1) (-4 *1 (-299))) (-2703 (*1 *2 *3) (|partial| -12 (-5 *3 (-630 *1)) (-4 *1 (-299)) (-5 *2 (-1178 *1)))) (-1675 (*1 *2) (-12 (-4 *1 (-299)) (-5 *2 (-583 (-2 (|:| -3731 (-484)) (|:| -2401 (-484))))))) (-1674 (*1 *2 *3) (-12 (-4 *1 (-299)) (-5 *3 (-484)) (-5 *2 (-1101 (-830) (-694))))) (-1673 (*1 *1) (-4 *1 (-299))) (-2833 (*1 *1) (-4 *1 (-299))) (-1679 (*1 *2 *1) (-12 (-4 *1 (-299)) (-5 *2 (-85)))) (-1764 (*1 *2 *1) (-12 (-4 *1 (-299)) (-5 *2 (-694)))) (-3771 (*1 *2 *1) (-12 (-4 *1 (-299)) (-5 *2 (-830)))) (-1672 (*1 *2) (-12 (-4 *1 (-299)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) +(-13 (-344) (-319) (-1065) (-190) (-10 -8 (-15 -2702 ($ $)) (-15 -2703 ((-3 (-1178 $) "failed") (-630 $))) (-15 -1675 ((-583 (-2 (|:| -3731 (-484)) (|:| -2401 (-484)))))) (-15 -1674 ((-1101 (-830) (-694)) (-484))) (-15 -1673 ($)) (-15 -2833 ($)) (-15 -1679 ((-85) $)) (-15 -1764 ((-694) $)) (-15 -3771 ((-830) $)) (-15 -1672 ((-3 "prime" "polynomial" "normal" "cyclic"))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-349 (-484))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-349 (-484)) (-349 (-484))) . T) ((-82 $ $) . T) ((-104) . T) ((-118) . T) ((-555 (-349 (-484))) . T) ((-555 (-484)) . T) ((-555 $) . T) ((-552 (-772)) . T) ((-146) . T) ((-186 $) . T) ((-190) . T) ((-189) . T) ((-201) . T) ((-246) . T) ((-258) . T) ((-312) . T) ((-344) . T) ((-319) . T) ((-391) . T) ((-495) . T) ((-13) . T) ((-588 (-349 (-484))) . T) ((-588 (-484)) . T) ((-588 $) . T) ((-590 (-349 (-484))) . T) ((-590 $) . T) ((-582 (-349 (-484))) . T) ((-582 $) . T) ((-654 (-349 (-484))) . T) ((-654 $) . T) ((-663) . T) ((-832) . T) ((-963 (-349 (-484))) . T) ((-963 $) . T) ((-968 (-349 (-484))) . T) ((-968 $) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1065) . T) ((-1128) . T) ((-1133) . T)) +((-3918 (((-2 (|:| -2012 (-630 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-630 |#1|))) |#1|) 55 T ELT)) (-3917 (((-2 (|:| -2012 (-630 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-630 |#1|)))) 53 T ELT))) +(((-300 |#1| |#2| |#3|) (-10 -7 (-15 -3917 ((-2 (|:| -2012 (-630 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-630 |#1|))))) (-15 -3918 ((-2 (|:| -2012 (-630 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-630 |#1|))) |#1|))) (-13 (-258) (-10 -8 (-15 -3970 ((-347 $) $)))) (-1154 |#1|) (-352 |#1| |#2|)) (T -300)) +((-3918 (*1 *2 *3) (-12 (-4 *3 (-13 (-258) (-10 -8 (-15 -3970 ((-347 $) $))))) (-4 *4 (-1154 *3)) (-5 *2 (-2 (|:| -2012 (-630 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-630 *3)))) (-5 *1 (-300 *3 *4 *5)) (-4 *5 (-352 *3 *4)))) (-3917 (*1 *2) (-12 (-4 *3 (-13 (-258) (-10 -8 (-15 -3970 ((-347 $) $))))) (-4 *4 (-1154 *3)) (-5 *2 (-2 (|:| -2012 (-630 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-630 *3)))) (-5 *1 (-300 *3 *4 *5)) (-4 *5 (-352 *3 *4))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-3931 (((-85) $) NIL T ELT)) (-3928 (((-694)) NIL T ELT)) (-3329 (((-817 |#1|) $) NIL T ELT) (($ $ (-830)) NIL (|has| (-817 |#1|) (-319)) ELT)) (-1674 (((-1101 (-830) (-694)) (-484)) NIL (|has| (-817 |#1|) (-319)) ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3774 (($ $) NIL T ELT)) (-3970 (((-347 $) $) NIL T ELT)) (-1676 (((-694)) NIL T ELT)) (-1607 (((-85) $ $) NIL T ELT)) (-3136 (((-694)) NIL (|has| (-817 |#1|) (-319)) ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 (-817 |#1|) #1#) $) NIL T ELT)) (-3156 (((-817 |#1|) $) NIL T ELT)) (-1791 (($ (-1178 (-817 |#1|))) NIL T ELT)) (-1672 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-817 |#1|) (-319)) ELT)) (-2564 (($ $ $) NIL T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-2994 (($) NIL (|has| (-817 |#1|) (-319)) ELT)) (-2563 (($ $ $) NIL T ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-2833 (($) NIL (|has| (-817 |#1|) (-319)) ELT)) (-1679 (((-85) $) NIL (|has| (-817 |#1|) (-319)) ELT)) (-1763 (($ $ (-694)) NIL (OR (|has| (-817 |#1|) (-118)) (|has| (-817 |#1|) (-319))) ELT) (($ $) NIL (OR (|has| (-817 |#1|) (-118)) (|has| (-817 |#1|) (-319))) ELT)) (-3722 (((-85) $) NIL T ELT)) (-3771 (((-830) $) NIL (|has| (-817 |#1|) (-319)) ELT) (((-743 (-830)) $) NIL (OR (|has| (-817 |#1|) (-118)) (|has| (-817 |#1|) (-319))) ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2013 (($) NIL (|has| (-817 |#1|) (-319)) ELT)) (-2011 (((-85) $) NIL (|has| (-817 |#1|) (-319)) ELT)) (-3132 (((-817 |#1|) $) NIL T ELT) (($ $ (-830)) NIL (|has| (-817 |#1|) (-319)) ELT)) (-3444 (((-632 $) $) NIL (|has| (-817 |#1|) (-319)) ELT)) (-1604 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2014 (((-1084 (-817 |#1|)) $) NIL T ELT) (((-1084 $) $ (-830)) NIL (|has| (-817 |#1|) (-319)) ELT)) (-2010 (((-830) $) NIL (|has| (-817 |#1|) (-319)) ELT)) (-1626 (((-1084 (-817 |#1|)) $) NIL (|has| (-817 |#1|) (-319)) ELT)) (-1625 (((-1084 (-817 |#1|)) $) NIL (|has| (-817 |#1|) (-319)) ELT) (((-3 (-1084 (-817 |#1|)) #1#) $ $) NIL (|has| (-817 |#1|) (-319)) ELT)) (-1627 (($ $ (-1084 (-817 |#1|))) NIL (|has| (-817 |#1|) (-319)) ELT)) (-1890 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2484 (($ $) NIL T ELT)) (-3445 (($) NIL (|has| (-817 |#1|) (-319)) CONST)) (-2400 (($ (-830)) NIL (|has| (-817 |#1|) (-319)) ELT)) (-3930 (((-85) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1678 (((-1178 (-583 (-2 (|:| -3401 (-817 |#1|)) (|:| -2400 (-1033)))))) NIL T ELT)) (-1677 (((-630 (-817 |#1|))) NIL T ELT)) (-2409 (($) NIL (|has| (-817 |#1|) (-319)) ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3144 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-1675 (((-583 (-2 (|:| -3731 (-484)) (|:| -2401 (-484))))) NIL (|has| (-817 |#1|) (-319)) ELT)) (-3731 (((-347 $) $) NIL T ELT)) (-3929 (((-743 (-830))) NIL T ELT) (((-830)) NIL T ELT)) (-1605 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3465 (((-3 $ #1#) $ $) NIL T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-1606 (((-694) $) NIL T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL T ELT)) (-1764 (((-694) $) NIL (|has| (-817 |#1|) (-319)) ELT) (((-3 (-694) #1#) $ $) NIL (OR (|has| (-817 |#1|) (-118)) (|has| (-817 |#1|) (-319))) ELT)) (-3910 (((-107)) NIL T ELT)) (-3757 (($ $ (-694)) NIL (|has| (-817 |#1|) (-319)) ELT) (($ $) NIL (|has| (-817 |#1|) (-319)) ELT)) (-3947 (((-743 (-830)) $) NIL T ELT) (((-830) $) NIL T ELT)) (-3185 (((-1084 (-817 |#1|))) NIL T ELT)) (-1673 (($) NIL (|has| (-817 |#1|) (-319)) ELT)) (-1628 (($) NIL (|has| (-817 |#1|) (-319)) ELT)) (-3224 (((-1178 (-817 |#1|)) $) NIL T ELT) (((-630 (-817 |#1|)) (-1178 $)) NIL T ELT)) (-2703 (((-3 (-1178 $) #1#) (-630 $)) NIL (|has| (-817 |#1|) (-319)) ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-349 (-484))) NIL T ELT) (($ (-817 |#1|)) NIL T ELT)) (-2702 (($ $) NIL (|has| (-817 |#1|) (-319)) ELT) (((-632 $) $) NIL (OR (|has| (-817 |#1|) (-118)) (|has| (-817 |#1|) (-319))) ELT)) (-3126 (((-694)) NIL T CONST)) (-1264 (((-85) $ $) NIL T ELT)) (-2012 (((-1178 $)) NIL T ELT) (((-1178 $) (-830)) NIL T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-3932 (((-85) $) NIL T ELT)) (-2660 (($) NIL T CONST)) (-2666 (($) NIL T CONST)) (-3927 (($ $) NIL (|has| (-817 |#1|) (-319)) ELT) (($ $ (-694)) NIL (|has| (-817 |#1|) (-319)) ELT)) (-2669 (($ $ (-694)) NIL (|has| (-817 |#1|) (-319)) ELT) (($ $) NIL (|has| (-817 |#1|) (-319)) ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3948 (($ $ $) NIL T ELT) (($ $ (-817 |#1|)) NIL T ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-349 (-484))) NIL T ELT) (($ (-349 (-484)) $) NIL T ELT) (($ $ (-817 |#1|)) NIL T ELT) (($ (-817 |#1|) $) NIL T ELT))) +(((-301 |#1| |#2|) (-13 (-280 (-817 |#1|)) (-10 -7 (-15 -1678 ((-1178 (-583 (-2 (|:| -3401 (-817 |#1|)) (|:| -2400 (-1033))))))) (-15 -1677 ((-630 (-817 |#1|)))) (-15 -1676 ((-694))))) (-830) (-830)) (T -301)) +((-1678 (*1 *2) (-12 (-5 *2 (-1178 (-583 (-2 (|:| -3401 (-817 *3)) (|:| -2400 (-1033)))))) (-5 *1 (-301 *3 *4)) (-14 *3 (-830)) (-14 *4 (-830)))) (-1677 (*1 *2) (-12 (-5 *2 (-630 (-817 *3))) (-5 *1 (-301 *3 *4)) (-14 *3 (-830)) (-14 *4 (-830)))) (-1676 (*1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-301 *3 *4)) (-14 *3 (-830)) (-14 *4 (-830))))) +((-2568 (((-85) $ $) 72 T ELT)) (-3188 (((-85) $) 87 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-3931 (((-85) $) NIL T ELT)) (-3928 (((-694)) NIL T ELT)) (-3329 ((|#1| $) 105 T ELT) (($ $ (-830)) 103 (|has| |#1| (-319)) ELT)) (-1674 (((-1101 (-830) (-694)) (-484)) 168 (|has| |#1| (-319)) ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3774 (($ $) NIL T ELT)) (-3970 (((-347 $) $) NIL T ELT)) (-1676 (((-694)) 102 T ELT)) (-1607 (((-85) $ $) NIL T ELT)) (-3136 (((-694)) 185 (|has| |#1| (-319)) ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 |#1| #1#) $) 126 T ELT)) (-3156 ((|#1| $) 104 T ELT)) (-1791 (($ (-1178 |#1|)) 70 T ELT)) (-1672 (((-3 "prime" "polynomial" "normal" "cyclic")) 211 (|has| |#1| (-319)) ELT)) (-2564 (($ $ $) NIL T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-2994 (($) 180 (|has| |#1| (-319)) ELT)) (-2563 (($ $ $) NIL T ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-2833 (($) 169 (|has| |#1| (-319)) ELT)) (-1679 (((-85) $) NIL (|has| |#1| (-319)) ELT)) (-1763 (($ $ (-694)) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-319))) ELT) (($ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-319))) ELT)) (-3722 (((-85) $) NIL T ELT)) (-3771 (((-830) $) NIL (|has| |#1| (-319)) ELT) (((-743 (-830)) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-319))) ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2013 (($) 112 (|has| |#1| (-319)) ELT)) (-2011 (((-85) $) 198 (|has| |#1| (-319)) ELT)) (-3132 ((|#1| $) 107 T ELT) (($ $ (-830)) 106 (|has| |#1| (-319)) ELT)) (-3444 (((-632 $) $) NIL (|has| |#1| (-319)) ELT)) (-1604 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2014 (((-1084 |#1|) $) 212 T ELT) (((-1084 $) $ (-830)) NIL (|has| |#1| (-319)) ELT)) (-2010 (((-830) $) 146 (|has| |#1| (-319)) ELT)) (-1626 (((-1084 |#1|) $) 86 (|has| |#1| (-319)) ELT)) (-1625 (((-1084 |#1|) $) 83 (|has| |#1| (-319)) ELT) (((-3 (-1084 |#1|) #1#) $ $) 95 (|has| |#1| (-319)) ELT)) (-1627 (($ $ (-1084 |#1|)) 82 (|has| |#1| (-319)) ELT)) (-1890 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2484 (($ $) 216 T ELT)) (-3445 (($) NIL (|has| |#1| (-319)) CONST)) (-2400 (($ (-830)) 148 (|has| |#1| (-319)) ELT)) (-3930 (((-85) $) 122 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1678 (((-1178 (-583 (-2 (|:| -3401 |#1|) (|:| -2400 (-1033)))))) 96 T ELT)) (-1677 (((-630 |#1|)) 100 T ELT)) (-2409 (($) 109 (|has| |#1| (-319)) ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3144 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-1675 (((-583 (-2 (|:| -3731 (-484)) (|:| -2401 (-484))))) 171 (|has| |#1| (-319)) ELT)) (-3731 (((-347 $) $) NIL T ELT)) (-3929 (((-743 (-830))) NIL T ELT) (((-830)) 172 T ELT)) (-1605 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3465 (((-3 $ #1#) $ $) NIL T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-1606 (((-694) $) NIL T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL T ELT)) (-1764 (((-694) $) NIL (|has| |#1| (-319)) ELT) (((-3 (-694) #1#) $ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-319))) ELT)) (-3910 (((-107)) NIL T ELT)) (-3757 (($ $ (-694)) NIL (|has| |#1| (-319)) ELT) (($ $) NIL (|has| |#1| (-319)) ELT)) (-3947 (((-743 (-830)) $) NIL T ELT) (((-830) $) 74 T ELT)) (-3185 (((-1084 |#1|)) 173 T ELT)) (-1673 (($) 145 (|has| |#1| (-319)) ELT)) (-1628 (($) NIL (|has| |#1| (-319)) ELT)) (-3224 (((-1178 |#1|) $) 120 T ELT) (((-630 |#1|) (-1178 $)) NIL T ELT)) (-2703 (((-3 (-1178 $) #1#) (-630 $)) NIL (|has| |#1| (-319)) ELT)) (-3945 (((-772) $) 138 T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-349 (-484))) NIL T ELT) (($ |#1|) 69 T ELT)) (-2702 (($ $) NIL (|has| |#1| (-319)) ELT) (((-632 $) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-319))) ELT)) (-3126 (((-694)) 178 T CONST)) (-1264 (((-85) $ $) NIL T ELT)) (-2012 (((-1178 $)) 195 T ELT) (((-1178 $) (-830)) 115 T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-3932 (((-85) $) NIL T ELT)) (-2660 (($) 184 T CONST)) (-2666 (($) 159 T CONST)) (-3927 (($ $) 121 (|has| |#1| (-319)) ELT) (($ $ (-694)) 113 (|has| |#1| (-319)) ELT)) (-2669 (($ $ (-694)) NIL (|has| |#1| (-319)) ELT) (($ $) NIL (|has| |#1| (-319)) ELT)) (-3056 (((-85) $ $) 206 T ELT)) (-3948 (($ $ $) 118 T ELT) (($ $ |#1|) 119 T ELT)) (-3836 (($ $) 200 T ELT) (($ $ $) 204 T ELT)) (-3838 (($ $ $) 202 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) 151 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 209 T ELT) (($ $ $) 162 T ELT) (($ $ (-349 (-484))) NIL T ELT) (($ (-349 (-484)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 117 T ELT))) +(((-302 |#1| |#2|) (-13 (-280 |#1|) (-10 -7 (-15 -1678 ((-1178 (-583 (-2 (|:| -3401 |#1|) (|:| -2400 (-1033))))))) (-15 -1677 ((-630 |#1|))) (-15 -1676 ((-694))))) (-299) (-3 (-1084 |#1|) (-1178 (-583 (-2 (|:| -3401 |#1|) (|:| -2400 (-1033))))))) (T -302)) +((-1678 (*1 *2) (-12 (-5 *2 (-1178 (-583 (-2 (|:| -3401 *3) (|:| -2400 (-1033)))))) (-5 *1 (-302 *3 *4)) (-4 *3 (-299)) (-14 *4 (-3 (-1084 *3) *2)))) (-1677 (*1 *2) (-12 (-5 *2 (-630 *3)) (-5 *1 (-302 *3 *4)) (-4 *3 (-299)) (-14 *4 (-3 (-1084 *3) (-1178 (-583 (-2 (|:| -3401 *3) (|:| -2400 (-1033))))))))) (-1676 (*1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-302 *3 *4)) (-4 *3 (-299)) (-14 *4 (-3 (-1084 *3) (-1178 (-583 (-2 (|:| -3401 *3) (|:| -2400 (-1033)))))))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-3931 (((-85) $) NIL T ELT)) (-3928 (((-694)) NIL T ELT)) (-3329 ((|#1| $) NIL T ELT) (($ $ (-830)) NIL (|has| |#1| (-319)) ELT)) (-1674 (((-1101 (-830) (-694)) (-484)) NIL (|has| |#1| (-319)) ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3774 (($ $) NIL T ELT)) (-3970 (((-347 $) $) NIL T ELT)) (-1676 (((-694)) NIL T ELT)) (-1607 (((-85) $ $) NIL T ELT)) (-3136 (((-694)) NIL (|has| |#1| (-319)) ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 |#1| #1#) $) NIL T ELT)) (-3156 ((|#1| $) NIL T ELT)) (-1791 (($ (-1178 |#1|)) NIL T ELT)) (-1672 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-319)) ELT)) (-2564 (($ $ $) NIL T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-2994 (($) NIL (|has| |#1| (-319)) ELT)) (-2563 (($ $ $) NIL T ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-2833 (($) NIL (|has| |#1| (-319)) ELT)) (-1679 (((-85) $) NIL (|has| |#1| (-319)) ELT)) (-1763 (($ $ (-694)) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-319))) ELT) (($ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-319))) ELT)) (-3722 (((-85) $) NIL T ELT)) (-3771 (((-830) $) NIL (|has| |#1| (-319)) ELT) (((-743 (-830)) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-319))) ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2013 (($) NIL (|has| |#1| (-319)) ELT)) (-2011 (((-85) $) NIL (|has| |#1| (-319)) ELT)) (-3132 ((|#1| $) NIL T ELT) (($ $ (-830)) NIL (|has| |#1| (-319)) ELT)) (-3444 (((-632 $) $) NIL (|has| |#1| (-319)) ELT)) (-1604 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2014 (((-1084 |#1|) $) NIL T ELT) (((-1084 $) $ (-830)) NIL (|has| |#1| (-319)) ELT)) (-2010 (((-830) $) NIL (|has| |#1| (-319)) ELT)) (-1626 (((-1084 |#1|) $) NIL (|has| |#1| (-319)) ELT)) (-1625 (((-1084 |#1|) $) NIL (|has| |#1| (-319)) ELT) (((-3 (-1084 |#1|) #1#) $ $) NIL (|has| |#1| (-319)) ELT)) (-1627 (($ $ (-1084 |#1|)) NIL (|has| |#1| (-319)) ELT)) (-1890 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2484 (($ $) NIL T ELT)) (-3445 (($) NIL (|has| |#1| (-319)) CONST)) (-2400 (($ (-830)) NIL (|has| |#1| (-319)) ELT)) (-3930 (((-85) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1678 (((-1178 (-583 (-2 (|:| -3401 |#1|) (|:| -2400 (-1033)))))) NIL T ELT)) (-1677 (((-630 |#1|)) NIL T ELT)) (-2409 (($) NIL (|has| |#1| (-319)) ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3144 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-1675 (((-583 (-2 (|:| -3731 (-484)) (|:| -2401 (-484))))) NIL (|has| |#1| (-319)) ELT)) (-3731 (((-347 $) $) NIL T ELT)) (-3929 (((-743 (-830))) NIL T ELT) (((-830)) NIL T ELT)) (-1605 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3465 (((-3 $ #1#) $ $) NIL T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-1606 (((-694) $) NIL T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL T ELT)) (-1764 (((-694) $) NIL (|has| |#1| (-319)) ELT) (((-3 (-694) #1#) $ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-319))) ELT)) (-3910 (((-107)) NIL T ELT)) (-3757 (($ $ (-694)) NIL (|has| |#1| (-319)) ELT) (($ $) NIL (|has| |#1| (-319)) ELT)) (-3947 (((-743 (-830)) $) NIL T ELT) (((-830) $) NIL T ELT)) (-3185 (((-1084 |#1|)) NIL T ELT)) (-1673 (($) NIL (|has| |#1| (-319)) ELT)) (-1628 (($) NIL (|has| |#1| (-319)) ELT)) (-3224 (((-1178 |#1|) $) NIL T ELT) (((-630 |#1|) (-1178 $)) NIL T ELT)) (-2703 (((-3 (-1178 $) #1#) (-630 $)) NIL (|has| |#1| (-319)) ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-349 (-484))) NIL T ELT) (($ |#1|) NIL T ELT)) (-2702 (($ $) NIL (|has| |#1| (-319)) ELT) (((-632 $) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-319))) ELT)) (-3126 (((-694)) NIL T CONST)) (-1264 (((-85) $ $) NIL T ELT)) (-2012 (((-1178 $)) NIL T ELT) (((-1178 $) (-830)) NIL T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-3932 (((-85) $) NIL T ELT)) (-2660 (($) NIL T CONST)) (-2666 (($) NIL T CONST)) (-3927 (($ $) NIL (|has| |#1| (-319)) ELT) (($ $ (-694)) NIL (|has| |#1| (-319)) ELT)) (-2669 (($ $ (-694)) NIL (|has| |#1| (-319)) ELT) (($ $) NIL (|has| |#1| (-319)) ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3948 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-349 (-484))) NIL T ELT) (($ (-349 (-484)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-303 |#1| |#2|) (-13 (-280 |#1|) (-10 -7 (-15 -1678 ((-1178 (-583 (-2 (|:| -3401 |#1|) (|:| -2400 (-1033))))))) (-15 -1677 ((-630 |#1|))) (-15 -1676 ((-694))))) (-299) (-830)) (T -303)) +((-1678 (*1 *2) (-12 (-5 *2 (-1178 (-583 (-2 (|:| -3401 *3) (|:| -2400 (-1033)))))) (-5 *1 (-303 *3 *4)) (-4 *3 (-299)) (-14 *4 (-830)))) (-1677 (*1 *2) (-12 (-5 *2 (-630 *3)) (-5 *1 (-303 *3 *4)) (-4 *3 (-299)) (-14 *4 (-830)))) (-1676 (*1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-303 *3 *4)) (-4 *3 (-299)) (-14 *4 (-830))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-3931 (((-85) $) NIL T ELT)) (-3928 (((-694)) NIL T ELT)) (-3329 ((|#1| $) NIL T ELT) (($ $ (-830)) NIL (|has| |#1| (-319)) ELT)) (-1674 (((-1101 (-830) (-694)) (-484)) 130 (|has| |#1| (-319)) ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3774 (($ $) NIL T ELT)) (-3970 (((-347 $) $) NIL T ELT)) (-1607 (((-85) $ $) NIL T ELT)) (-3136 (((-694)) 156 (|has| |#1| (-319)) ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 |#1| #1#) $) 104 T ELT)) (-3156 ((|#1| $) 101 T ELT)) (-1791 (($ (-1178 |#1|)) 96 T ELT)) (-1672 (((-3 "prime" "polynomial" "normal" "cyclic")) 127 (|has| |#1| (-319)) ELT)) (-2564 (($ $ $) NIL T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-2994 (($) 93 (|has| |#1| (-319)) ELT)) (-2563 (($ $ $) NIL T ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-2833 (($) 52 (|has| |#1| (-319)) ELT)) (-1679 (((-85) $) NIL (|has| |#1| (-319)) ELT)) (-1763 (($ $ (-694)) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-319))) ELT) (($ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-319))) ELT)) (-3722 (((-85) $) NIL T ELT)) (-3771 (((-830) $) NIL (|has| |#1| (-319)) ELT) (((-743 (-830)) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-319))) ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2013 (($) 131 (|has| |#1| (-319)) ELT)) (-2011 (((-85) $) 85 (|has| |#1| (-319)) ELT)) (-3132 ((|#1| $) 48 T ELT) (($ $ (-830)) 53 (|has| |#1| (-319)) ELT)) (-3444 (((-632 $) $) NIL (|has| |#1| (-319)) ELT)) (-1604 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2014 (((-1084 |#1|) $) 76 T ELT) (((-1084 $) $ (-830)) NIL (|has| |#1| (-319)) ELT)) (-2010 (((-830) $) 108 (|has| |#1| (-319)) ELT)) (-1626 (((-1084 |#1|) $) NIL (|has| |#1| (-319)) ELT)) (-1625 (((-1084 |#1|) $) NIL (|has| |#1| (-319)) ELT) (((-3 (-1084 |#1|) #1#) $ $) NIL (|has| |#1| (-319)) ELT)) (-1627 (($ $ (-1084 |#1|)) NIL (|has| |#1| (-319)) ELT)) (-1890 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2484 (($ $) NIL T ELT)) (-3445 (($) NIL (|has| |#1| (-319)) CONST)) (-2400 (($ (-830)) 106 (|has| |#1| (-319)) ELT)) (-3930 (((-85) $) 158 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2409 (($) 45 (|has| |#1| (-319)) ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3144 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-1675 (((-583 (-2 (|:| -3731 (-484)) (|:| -2401 (-484))))) 125 (|has| |#1| (-319)) ELT)) (-3731 (((-347 $) $) NIL T ELT)) (-3929 (((-743 (-830))) NIL T ELT) (((-830)) 155 T ELT)) (-1605 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3465 (((-3 $ #1#) $ $) NIL T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-1606 (((-694) $) NIL T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL T ELT)) (-1764 (((-694) $) NIL (|has| |#1| (-319)) ELT) (((-3 (-694) #1#) $ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-319))) ELT)) (-3910 (((-107)) NIL T ELT)) (-3757 (($ $ (-694)) NIL (|has| |#1| (-319)) ELT) (($ $) NIL (|has| |#1| (-319)) ELT)) (-3947 (((-743 (-830)) $) NIL T ELT) (((-830) $) 68 T ELT)) (-3185 (((-1084 |#1|)) 99 T ELT)) (-1673 (($) 136 (|has| |#1| (-319)) ELT)) (-1628 (($) NIL (|has| |#1| (-319)) ELT)) (-3224 (((-1178 |#1|) $) 64 T ELT) (((-630 |#1|) (-1178 $)) NIL T ELT)) (-2703 (((-3 (-1178 $) #1#) (-630 $)) NIL (|has| |#1| (-319)) ELT)) (-3945 (((-772) $) 154 T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-349 (-484))) NIL T ELT) (($ |#1|) 98 T ELT)) (-2702 (($ $) NIL (|has| |#1| (-319)) ELT) (((-632 $) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-319))) ELT)) (-3126 (((-694)) 160 T CONST)) (-1264 (((-85) $ $) 162 T ELT)) (-2012 (((-1178 $)) 120 T ELT) (((-1178 $) (-830)) 59 T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-3932 (((-85) $) NIL T ELT)) (-2660 (($) 122 T CONST)) (-2666 (($) 40 T CONST)) (-3927 (($ $) 79 (|has| |#1| (-319)) ELT) (($ $ (-694)) NIL (|has| |#1| (-319)) ELT)) (-2669 (($ $ (-694)) NIL (|has| |#1| (-319)) ELT) (($ $) NIL (|has| |#1| (-319)) ELT)) (-3056 (((-85) $ $) 118 T ELT)) (-3948 (($ $ $) 110 T ELT) (($ $ |#1|) 111 T ELT)) (-3836 (($ $) 91 T ELT) (($ $ $) 116 T ELT)) (-3838 (($ $ $) 114 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) 54 T ELT) (($ $ (-484)) 139 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 89 T ELT) (($ $ $) 66 T ELT) (($ $ (-349 (-484))) NIL T ELT) (($ (-349 (-484)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 87 T ELT))) +(((-304 |#1| |#2|) (-280 |#1|) (-299) (-1084 |#1|)) (T -304)) +NIL +((-1694 (((-869 (-1084 |#1|)) (-1084 |#1|)) 49 T ELT)) (-2994 (((-1084 |#1|) (-830) (-830)) 159 T ELT) (((-1084 |#1|) (-830)) 155 T ELT)) (-1679 (((-85) (-1084 |#1|)) 110 T ELT)) (-1681 (((-830) (-830)) 85 T ELT)) (-1682 (((-830) (-830)) 94 T ELT)) (-1680 (((-830) (-830)) 83 T ELT)) (-2011 (((-85) (-1084 |#1|)) 114 T ELT)) (-1689 (((-3 (-1084 |#1|) #1="failed") (-1084 |#1|)) 139 T ELT)) (-1692 (((-3 (-1084 |#1|) #1#) (-1084 |#1|)) 144 T ELT)) (-1691 (((-3 (-1084 |#1|) #1#) (-1084 |#1|)) 143 T ELT)) (-1690 (((-3 (-1084 |#1|) #1#) (-1084 |#1|)) 142 T ELT)) (-1688 (((-3 (-1084 |#1|) #1#) (-1084 |#1|)) 134 T ELT)) (-1693 (((-1084 |#1|) (-1084 |#1|)) 71 T ELT)) (-1684 (((-1084 |#1|) (-830)) 149 T ELT)) (-1687 (((-1084 |#1|) (-830)) 152 T ELT)) (-1686 (((-1084 |#1|) (-830)) 151 T ELT)) (-1685 (((-1084 |#1|) (-830)) 150 T ELT)) (-1683 (((-1084 |#1|) (-830)) 147 T ELT))) +(((-305 |#1|) (-10 -7 (-15 -1679 ((-85) (-1084 |#1|))) (-15 -2011 ((-85) (-1084 |#1|))) (-15 -1680 ((-830) (-830))) (-15 -1681 ((-830) (-830))) (-15 -1682 ((-830) (-830))) (-15 -1683 ((-1084 |#1|) (-830))) (-15 -1684 ((-1084 |#1|) (-830))) (-15 -1685 ((-1084 |#1|) (-830))) (-15 -1686 ((-1084 |#1|) (-830))) (-15 -1687 ((-1084 |#1|) (-830))) (-15 -1688 ((-3 (-1084 |#1|) #1="failed") (-1084 |#1|))) (-15 -1689 ((-3 (-1084 |#1|) #1#) (-1084 |#1|))) (-15 -1690 ((-3 (-1084 |#1|) #1#) (-1084 |#1|))) (-15 -1691 ((-3 (-1084 |#1|) #1#) (-1084 |#1|))) (-15 -1692 ((-3 (-1084 |#1|) #1#) (-1084 |#1|))) (-15 -2994 ((-1084 |#1|) (-830))) (-15 -2994 ((-1084 |#1|) (-830) (-830))) (-15 -1693 ((-1084 |#1|) (-1084 |#1|))) (-15 -1694 ((-869 (-1084 |#1|)) (-1084 |#1|)))) (-299)) (T -305)) +((-1694 (*1 *2 *3) (-12 (-4 *4 (-299)) (-5 *2 (-869 (-1084 *4))) (-5 *1 (-305 *4)) (-5 *3 (-1084 *4)))) (-1693 (*1 *2 *2) (-12 (-5 *2 (-1084 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3)))) (-2994 (*1 *2 *3 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1084 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299)))) (-2994 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1084 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299)))) (-1692 (*1 *2 *2) (|partial| -12 (-5 *2 (-1084 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3)))) (-1691 (*1 *2 *2) (|partial| -12 (-5 *2 (-1084 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3)))) (-1690 (*1 *2 *2) (|partial| -12 (-5 *2 (-1084 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3)))) (-1689 (*1 *2 *2) (|partial| -12 (-5 *2 (-1084 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3)))) (-1688 (*1 *2 *2) (|partial| -12 (-5 *2 (-1084 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3)))) (-1687 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1084 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299)))) (-1686 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1084 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299)))) (-1685 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1084 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299)))) (-1684 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1084 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299)))) (-1683 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1084 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299)))) (-1682 (*1 *2 *2) (-12 (-5 *2 (-830)) (-5 *1 (-305 *3)) (-4 *3 (-299)))) (-1681 (*1 *2 *2) (-12 (-5 *2 (-830)) (-5 *1 (-305 *3)) (-4 *3 (-299)))) (-1680 (*1 *2 *2) (-12 (-5 *2 (-830)) (-5 *1 (-305 *3)) (-4 *3 (-299)))) (-2011 (*1 *2 *3) (-12 (-5 *3 (-1084 *4)) (-4 *4 (-299)) (-5 *2 (-85)) (-5 *1 (-305 *4)))) (-1679 (*1 *2 *3) (-12 (-5 *3 (-1084 *4)) (-4 *4 (-299)) (-5 *2 (-85)) (-5 *1 (-305 *4))))) +((-1695 ((|#1| (-1084 |#2|)) 60 T ELT))) +(((-306 |#1| |#2|) (-10 -7 (-15 -1695 (|#1| (-1084 |#2|)))) (-13 (-344) (-10 -7 (-15 -3945 (|#1| |#2|)) (-15 -2010 ((-830) |#1|)) (-15 -2012 ((-1178 |#1|) (-830))) (-15 -3927 (|#1| |#1|)))) (-299)) (T -306)) +((-1695 (*1 *2 *3) (-12 (-5 *3 (-1084 *4)) (-4 *4 (-299)) (-4 *2 (-13 (-344) (-10 -7 (-15 -3945 (*2 *4)) (-15 -2010 ((-830) *2)) (-15 -2012 ((-1178 *2) (-830))) (-15 -3927 (*2 *2))))) (-5 *1 (-306 *2 *4))))) +((-2704 (((-3 (-583 |#3|) "failed") (-583 |#3|) |#3|) 40 T ELT))) +(((-307 |#1| |#2| |#3|) (-10 -7 (-15 -2704 ((-3 (-583 |#3|) "failed") (-583 |#3|) |#3|))) (-299) (-1154 |#1|) (-1154 |#2|)) (T -307)) +((-2704 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 *3)) (-4 *3 (-1154 *5)) (-4 *5 (-1154 *4)) (-4 *4 (-299)) (-5 *1 (-307 *4 *5 *3))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-3931 (((-85) $) NIL T ELT)) (-3928 (((-694)) NIL T ELT)) (-3329 ((|#1| $) NIL T ELT) (($ $ (-830)) NIL (|has| |#1| (-319)) ELT)) (-1674 (((-1101 (-830) (-694)) (-484)) NIL (|has| |#1| (-319)) ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3774 (($ $) NIL T ELT)) (-3970 (((-347 $) $) NIL T ELT)) (-1607 (((-85) $ $) NIL T ELT)) (-3136 (((-694)) NIL (|has| |#1| (-319)) ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 |#1| #1#) $) NIL T ELT)) (-3156 ((|#1| $) NIL T ELT)) (-1791 (($ (-1178 |#1|)) NIL T ELT)) (-1672 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-319)) ELT)) (-2564 (($ $ $) NIL T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-2994 (($) NIL (|has| |#1| (-319)) ELT)) (-2563 (($ $ $) NIL T ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-2833 (($) NIL (|has| |#1| (-319)) ELT)) (-1679 (((-85) $) NIL (|has| |#1| (-319)) ELT)) (-1763 (($ $ (-694)) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-319))) ELT) (($ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-319))) ELT)) (-3722 (((-85) $) NIL T ELT)) (-3771 (((-830) $) NIL (|has| |#1| (-319)) ELT) (((-743 (-830)) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-319))) ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2013 (($) NIL (|has| |#1| (-319)) ELT)) (-2011 (((-85) $) NIL (|has| |#1| (-319)) ELT)) (-3132 ((|#1| $) NIL T ELT) (($ $ (-830)) NIL (|has| |#1| (-319)) ELT)) (-3444 (((-632 $) $) NIL (|has| |#1| (-319)) ELT)) (-1604 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2014 (((-1084 |#1|) $) NIL T ELT) (((-1084 $) $ (-830)) NIL (|has| |#1| (-319)) ELT)) (-2010 (((-830) $) NIL (|has| |#1| (-319)) ELT)) (-1626 (((-1084 |#1|) $) NIL (|has| |#1| (-319)) ELT)) (-1625 (((-1084 |#1|) $) NIL (|has| |#1| (-319)) ELT) (((-3 (-1084 |#1|) #1#) $ $) NIL (|has| |#1| (-319)) ELT)) (-1627 (($ $ (-1084 |#1|)) NIL (|has| |#1| (-319)) ELT)) (-1890 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2484 (($ $) NIL T ELT)) (-3445 (($) NIL (|has| |#1| (-319)) CONST)) (-2400 (($ (-830)) NIL (|has| |#1| (-319)) ELT)) (-3930 (((-85) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2409 (($) NIL (|has| |#1| (-319)) ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3144 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-1675 (((-583 (-2 (|:| -3731 (-484)) (|:| -2401 (-484))))) NIL (|has| |#1| (-319)) ELT)) (-3731 (((-347 $) $) NIL T ELT)) (-3929 (((-743 (-830))) NIL T ELT) (((-830)) NIL T ELT)) (-1605 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3465 (((-3 $ #1#) $ $) NIL T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-1606 (((-694) $) NIL T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL T ELT)) (-1764 (((-694) $) NIL (|has| |#1| (-319)) ELT) (((-3 (-694) #1#) $ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-319))) ELT)) (-3910 (((-107)) NIL T ELT)) (-3757 (($ $ (-694)) NIL (|has| |#1| (-319)) ELT) (($ $) NIL (|has| |#1| (-319)) ELT)) (-3947 (((-743 (-830)) $) NIL T ELT) (((-830) $) NIL T ELT)) (-3185 (((-1084 |#1|)) NIL T ELT)) (-1673 (($) NIL (|has| |#1| (-319)) ELT)) (-1628 (($) NIL (|has| |#1| (-319)) ELT)) (-3224 (((-1178 |#1|) $) NIL T ELT) (((-630 |#1|) (-1178 $)) NIL T ELT)) (-2703 (((-3 (-1178 $) #1#) (-630 $)) NIL (|has| |#1| (-319)) ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-349 (-484))) NIL T ELT) (($ |#1|) NIL T ELT)) (-2702 (($ $) NIL (|has| |#1| (-319)) ELT) (((-632 $) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-319))) ELT)) (-3126 (((-694)) NIL T CONST)) (-1264 (((-85) $ $) NIL T ELT)) (-2012 (((-1178 $)) NIL T ELT) (((-1178 $) (-830)) NIL T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-3932 (((-85) $) NIL T ELT)) (-2660 (($) NIL T CONST)) (-2666 (($) NIL T CONST)) (-3927 (($ $) NIL (|has| |#1| (-319)) ELT) (($ $ (-694)) NIL (|has| |#1| (-319)) ELT)) (-2669 (($ $ (-694)) NIL (|has| |#1| (-319)) ELT) (($ $) NIL (|has| |#1| (-319)) ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3948 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-349 (-484))) NIL T ELT) (($ (-349 (-484)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-308 |#1| |#2|) (-280 |#1|) (-299) (-830)) (T -308)) +NIL +((-2249 (((-85) (-583 (-857 |#1|))) 41 T ELT)) (-2251 (((-583 (-857 |#1|)) (-583 (-857 |#1|))) 53 T ELT)) (-2250 (((-3 (-583 (-857 |#1|)) "failed") (-583 (-857 |#1|))) 48 T ELT))) +(((-309 |#1| |#2|) (-10 -7 (-15 -2249 ((-85) (-583 (-857 |#1|)))) (-15 -2250 ((-3 (-583 (-857 |#1|)) "failed") (-583 (-857 |#1|)))) (-15 -2251 ((-583 (-857 |#1|)) (-583 (-857 |#1|))))) (-391) (-583 (-1089))) (T -309)) +((-2251 (*1 *2 *2) (-12 (-5 *2 (-583 (-857 *3))) (-4 *3 (-391)) (-5 *1 (-309 *3 *4)) (-14 *4 (-583 (-1089))))) (-2250 (*1 *2 *2) (|partial| -12 (-5 *2 (-583 (-857 *3))) (-4 *3 (-391)) (-5 *1 (-309 *3 *4)) (-14 *4 (-583 (-1089))))) (-2249 (*1 *2 *3) (-12 (-5 *3 (-583 (-857 *4))) (-4 *4 (-391)) (-5 *2 (-85)) (-5 *1 (-309 *4 *5)) (-14 *5 (-583 (-1089)))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3136 (((-694) $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 |#1| #1="failed") $) NIL T ELT)) (-3156 ((|#1| $) NIL T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-2410 (((-85) $) 17 T ELT)) (-2299 ((|#1| $ (-484)) NIL T ELT)) (-2300 (((-484) $ (-484)) NIL T ELT)) (-2290 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-2291 (($ (-1 (-484) (-484)) $) 26 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2484 (($ $) 28 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1778 (((-583 (-2 (|:| |gen| |#1|) (|:| -3942 (-484)))) $) 30 T ELT)) (-3009 (($ $ $) NIL T ELT)) (-2435 (($ $ $) NIL T ELT)) (-3945 (((-772) $) 40 T ELT) (($ |#1|) NIL T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2666 (($) 7 T CONST)) (-3056 (((-85) $ $) NIL T ELT)) (-3948 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL T ELT) (($ |#1| (-484)) 19 T ELT)) (* (($ $ $) 53 T ELT) (($ |#1| $) 23 T ELT) (($ $ |#1|) 21 T ELT))) +(((-310 |#1|) (-13 (-412) (-950 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-484))) (-15 -3136 ((-694) $)) (-15 -2300 ((-484) $ (-484))) (-15 -2299 (|#1| $ (-484))) (-15 -2291 ($ (-1 (-484) (-484)) $)) (-15 -2290 ($ (-1 |#1| |#1|) $)) (-15 -1778 ((-583 (-2 (|:| |gen| |#1|) (|:| -3942 (-484)))) $)))) (-1013)) (T -310)) +((* (*1 *1 *2 *1) (-12 (-5 *1 (-310 *2)) (-4 *2 (-1013)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-310 *2)) (-4 *2 (-1013)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-484)) (-5 *1 (-310 *2)) (-4 *2 (-1013)))) (-3136 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-310 *3)) (-4 *3 (-1013)))) (-2300 (*1 *2 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-310 *3)) (-4 *3 (-1013)))) (-2299 (*1 *2 *1 *3) (-12 (-5 *3 (-484)) (-5 *1 (-310 *2)) (-4 *2 (-1013)))) (-2291 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-484) (-484))) (-5 *1 (-310 *3)) (-4 *3 (-1013)))) (-2290 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1013)) (-5 *1 (-310 *3)))) (-1778 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -3942 (-484))))) (-5 *1 (-310 *3)) (-4 *3 (-1013))))) +((-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) 13 T ELT)) (-2063 (($ $) 14 T ELT)) (-3970 (((-347 $) $) 31 T ELT)) (-3722 (((-85) $) 27 T ELT)) (-2484 (($ $) 19 T ELT)) (-3144 (($ $ $) 22 T ELT) (($ (-583 $)) NIL T ELT)) (-3731 (((-347 $) $) 32 T ELT)) (-3465 (((-3 $ "failed") $ $) 21 T ELT)) (-1606 (((-694) $) 25 T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 36 T ELT)) (-2062 (((-85) $ $) 16 T ELT)) (-3948 (($ $ $) 34 T ELT))) +(((-311 |#1|) (-10 -7 (-15 -3948 (|#1| |#1| |#1|)) (-15 -2484 (|#1| |#1|)) (-15 -3722 ((-85) |#1|)) (-15 -3970 ((-347 |#1|) |#1|)) (-15 -3731 ((-347 |#1|) |#1|)) (-15 -2879 ((-2 (|:| -1972 |#1|) (|:| -2902 |#1|)) |#1| |#1|)) (-15 -1606 ((-694) |#1|)) (-15 -3144 (|#1| (-583 |#1|))) (-15 -3144 (|#1| |#1| |#1|)) (-15 -2062 ((-85) |#1| |#1|)) (-15 -2063 (|#1| |#1|)) (-15 -2064 ((-2 (|:| -1771 |#1|) (|:| -3981 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3465 ((-3 |#1| "failed") |#1| |#1|))) (-312)) (T -311)) +NIL +((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) 55 T ELT)) (-2063 (($ $) 54 T ELT)) (-2061 (((-85) $) 52 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3774 (($ $) 91 T ELT)) (-3970 (((-347 $) $) 90 T ELT)) (-1607 (((-85) $ $) 75 T ELT)) (-3723 (($) 23 T CONST)) (-2564 (($ $ $) 71 T ELT)) (-3466 (((-3 $ "failed") $) 42 T ELT)) (-2563 (($ $ $) 72 T ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) 66 T ELT)) (-3722 (((-85) $) 89 T ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-1604 (((-3 (-583 $) #1="failed") (-583 $) $) 68 T ELT)) (-1890 (($ $ $) 60 T ELT) (($ (-583 $)) 59 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-2484 (($ $) 88 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) 58 T ELT)) (-3144 (($ $ $) 62 T ELT) (($ (-583 $)) 61 T ELT)) (-3731 (((-347 $) $) 92 T ELT)) (-1605 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 69 T ELT)) (-3465 (((-3 $ "failed") $ $) 56 T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) 65 T ELT)) (-1606 (((-694) $) 74 T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 73 T ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ $) 57 T ELT) (($ (-349 (-484))) 84 T ELT)) (-3126 (((-694)) 40 T CONST)) (-1264 (((-85) $ $) 6 T ELT)) (-2062 (((-85) $ $) 53 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3948 (($ $ $) 83 T ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT) (($ $ (-484)) 87 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-349 (-484))) 86 T ELT) (($ (-349 (-484)) $) 85 T ELT))) (((-312) (-113)) (T -312)) -((-3947 (*1 *1 *1 *1) (-4 *1 (-312)))) -(-13 (-258) (-1132) (-201) (-10 -8 (-15 -3947 ($ $ $)) (-6 -3991) (-6 -3985))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-348 (-483))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-348 (-483)) (-348 (-483))) . T) ((-82 $ $) . T) ((-104) . T) ((-554 (-348 (-483))) . T) ((-554 (-483)) . T) ((-554 $) . T) ((-551 (-771)) . T) ((-146) . T) ((-201) . T) ((-246) . T) ((-258) . T) ((-390) . T) ((-494) . T) ((-13) . T) ((-587 (-348 (-483))) . T) ((-587 (-483)) . T) ((-587 $) . T) ((-589 (-348 (-483))) . T) ((-589 $) . T) ((-581 (-348 (-483))) . T) ((-581 $) . T) ((-653 (-348 (-483))) . T) ((-653 $) . T) ((-662) . T) ((-831) . T) ((-962 (-348 (-483))) . T) ((-962 $) . T) ((-967 (-348 (-483))) . T) ((-967 $) . T) ((-960) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T) ((-1132) . T)) -((-2567 (((-85) $ $) NIL T ELT)) (-1695 ((|#1| $ |#1|) 35 T ELT)) (-1699 (($ $ (-1071)) 23 T ELT)) (-3617 (((-3 |#1| "failed") $) 34 T ELT)) (-1696 ((|#1| $) 32 T ELT)) (-1700 (($ (-336)) 22 T ELT) (($ (-336) (-1071)) 21 T ELT)) (-3540 (((-336) $) 25 T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-1697 (((-1071) $) 26 T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3944 (((-771) $) 20 T ELT)) (-1698 (($ $) 24 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) 19 T ELT))) -(((-313 |#1|) (-13 (-314 (-336) |#1|) (-10 -8 (-15 -3617 ((-3 |#1| "failed") $)))) (-1012)) (T -313)) -((-3617 (*1 *2 *1) (|partial| -12 (-5 *1 (-313 *2)) (-4 *2 (-1012))))) -((-2567 (((-85) $ $) 7 T ELT)) (-1695 ((|#2| $ |#2|) 17 T ELT)) (-1699 (($ $ (-1071)) 22 T ELT)) (-1696 ((|#2| $) 18 T ELT)) (-1700 (($ |#1|) 24 T ELT) (($ |#1| (-1071)) 23 T ELT)) (-3540 ((|#1| $) 20 T ELT)) (-3241 (((-1071) $) 11 T ELT)) (-1697 (((-1071) $) 19 T ELT)) (-3242 (((-1032) $) 12 T ELT)) (-3944 (((-771) $) 13 T ELT)) (-1698 (($ $) 21 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-3055 (((-85) $ $) 8 T ELT))) -(((-314 |#1| |#2|) (-113) (-1012) (-1012)) (T -314)) -((-1700 (*1 *1 *2) (-12 (-4 *1 (-314 *2 *3)) (-4 *2 (-1012)) (-4 *3 (-1012)))) (-1700 (*1 *1 *2 *3) (-12 (-5 *3 (-1071)) (-4 *1 (-314 *2 *4)) (-4 *2 (-1012)) (-4 *4 (-1012)))) (-1699 (*1 *1 *1 *2) (-12 (-5 *2 (-1071)) (-4 *1 (-314 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1012)))) (-1698 (*1 *1 *1) (-12 (-4 *1 (-314 *2 *3)) (-4 *2 (-1012)) (-4 *3 (-1012)))) (-3540 (*1 *2 *1) (-12 (-4 *1 (-314 *2 *3)) (-4 *3 (-1012)) (-4 *2 (-1012)))) (-1697 (*1 *2 *1) (-12 (-4 *1 (-314 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1012)) (-5 *2 (-1071)))) (-1696 (*1 *2 *1) (-12 (-4 *1 (-314 *3 *2)) (-4 *3 (-1012)) (-4 *2 (-1012)))) (-1695 (*1 *2 *1 *2) (-12 (-4 *1 (-314 *3 *2)) (-4 *3 (-1012)) (-4 *2 (-1012))))) -(-13 (-1012) (-10 -8 (-15 -1700 ($ |t#1|)) (-15 -1700 ($ |t#1| (-1071))) (-15 -1699 ($ $ (-1071))) (-15 -1698 ($ $)) (-15 -3540 (|t#1| $)) (-15 -1697 ((-1071) $)) (-15 -1696 (|t#2| $)) (-15 -1695 (|t#2| $ |t#2|)))) -(((-72) . T) ((-551 (-771)) . T) ((-13) . T) ((-1012) . T) ((-1127) . T)) -((-3222 (((-1177 (-629 |#2|)) (-1177 $)) 67 T ELT)) (-1786 (((-629 |#2|) (-1177 $)) 139 T ELT)) (-1725 ((|#2| $) 36 T ELT)) (-1784 (((-629 |#2|) $ (-1177 $)) 142 T ELT)) (-2403 (((-3 $ #1="failed") $) 89 T ELT)) (-1723 ((|#2| $) 39 T ELT)) (-1703 (((-1083 |#2|) $) 98 T ELT)) (-1788 ((|#2| (-1177 $)) 122 T ELT)) (-1721 (((-1083 |#2|) $) 32 T ELT)) (-1715 (((-85)) 116 T ELT)) (-1790 (($ (-1177 |#2|) (-1177 $)) 132 T ELT)) (-3465 (((-3 $ #1#) $) 93 T ELT)) (-1708 (((-85)) 111 T ELT)) (-1706 (((-85)) 106 T ELT)) (-1710 (((-85)) 58 T ELT)) (-1787 (((-629 |#2|) (-1177 $)) 137 T ELT)) (-1726 ((|#2| $) 35 T ELT)) (-1785 (((-629 |#2|) $ (-1177 $)) 141 T ELT)) (-2404 (((-3 $ #1#) $) 87 T ELT)) (-1724 ((|#2| $) 38 T ELT)) (-1704 (((-1083 |#2|) $) 97 T ELT)) (-1789 ((|#2| (-1177 $)) 120 T ELT)) (-1722 (((-1083 |#2|) $) 30 T ELT)) (-1716 (((-85)) 115 T ELT)) (-1707 (((-85)) 108 T ELT)) (-1709 (((-85)) 56 T ELT)) (-1711 (((-85)) 103 T ELT)) (-1714 (((-85)) 117 T ELT)) (-3223 (((-1177 |#2|) $ (-1177 $)) NIL T ELT) (((-629 |#2|) (-1177 $) (-1177 $)) 128 T ELT)) (-1720 (((-85)) 113 T ELT)) (-1705 (((-582 (-1177 |#2|))) 102 T ELT)) (-1718 (((-85)) 114 T ELT)) (-1719 (((-85)) 112 T ELT)) (-1717 (((-85)) 51 T ELT)) (-1713 (((-85)) 118 T ELT))) -(((-315 |#1| |#2|) (-10 -7 (-15 -1703 ((-1083 |#2|) |#1|)) (-15 -1704 ((-1083 |#2|) |#1|)) (-15 -1705 ((-582 (-1177 |#2|)))) (-15 -2403 ((-3 |#1| #1="failed") |#1|)) (-15 -2404 ((-3 |#1| #1#) |#1|)) (-15 -3465 ((-3 |#1| #1#) |#1|)) (-15 -1706 ((-85))) (-15 -1707 ((-85))) (-15 -1708 ((-85))) (-15 -1709 ((-85))) (-15 -1710 ((-85))) (-15 -1711 ((-85))) (-15 -1713 ((-85))) (-15 -1714 ((-85))) (-15 -1715 ((-85))) (-15 -1716 ((-85))) (-15 -1717 ((-85))) (-15 -1718 ((-85))) (-15 -1719 ((-85))) (-15 -1720 ((-85))) (-15 -1721 ((-1083 |#2|) |#1|)) (-15 -1722 ((-1083 |#2|) |#1|)) (-15 -1786 ((-629 |#2|) (-1177 |#1|))) (-15 -1787 ((-629 |#2|) (-1177 |#1|))) (-15 -1788 (|#2| (-1177 |#1|))) (-15 -1789 (|#2| (-1177 |#1|))) (-15 -1790 (|#1| (-1177 |#2|) (-1177 |#1|))) (-15 -3223 ((-629 |#2|) (-1177 |#1|) (-1177 |#1|))) (-15 -3223 ((-1177 |#2|) |#1| (-1177 |#1|))) (-15 -1723 (|#2| |#1|)) (-15 -1724 (|#2| |#1|)) (-15 -1725 (|#2| |#1|)) (-15 -1726 (|#2| |#1|)) (-15 -1784 ((-629 |#2|) |#1| (-1177 |#1|))) (-15 -1785 ((-629 |#2|) |#1| (-1177 |#1|))) (-15 -3222 ((-1177 (-629 |#2|)) (-1177 |#1|)))) (-316 |#2|) (-146)) (T -315)) -((-1720 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1719 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1718 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1717 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1716 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1715 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1714 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1713 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1711 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1710 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1709 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1708 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1707 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1706 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1705 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-582 (-1177 *4))) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4))))) -((-2567 (((-85) $ $) 7 T ELT)) (-3187 (((-85) $) 22 T ELT)) (-1770 (((-3 $ "failed")) 48 (|has| |#1| (-494)) ELT)) (-1310 (((-3 $ "failed") $ $) 26 T ELT)) (-3222 (((-1177 (-629 |#1|)) (-1177 $)) 89 T ELT)) (-1727 (((-1177 $)) 92 T ELT)) (-3722 (($) 23 T CONST)) (-1904 (((-3 (-2 (|:| |particular| $) (|:| -2011 (-582 $))) "failed")) 51 (|has| |#1| (-494)) ELT)) (-1701 (((-3 $ "failed")) 49 (|has| |#1| (-494)) ELT)) (-1786 (((-629 |#1|) (-1177 $)) 76 T ELT)) (-1725 ((|#1| $) 85 T ELT)) (-1784 (((-629 |#1|) $ (-1177 $)) 87 T ELT)) (-2403 (((-3 $ "failed") $) 56 (|has| |#1| (-494)) ELT)) (-2406 (($ $ (-829)) 37 T ELT)) (-1723 ((|#1| $) 83 T ELT)) (-1703 (((-1083 |#1|) $) 53 (|has| |#1| (-494)) ELT)) (-1788 ((|#1| (-1177 $)) 78 T ELT)) (-1721 (((-1083 |#1|) $) 74 T ELT)) (-1715 (((-85)) 68 T ELT)) (-1790 (($ (-1177 |#1|) (-1177 $)) 80 T ELT)) (-3465 (((-3 $ "failed") $) 58 (|has| |#1| (-494)) ELT)) (-3107 (((-829)) 91 T ELT)) (-1712 (((-85)) 65 T ELT)) (-2432 (($ $ (-829)) 44 T ELT)) (-1212 (((-85) $ $) 20 T ELT)) (-1708 (((-85)) 61 T ELT)) (-1706 (((-85)) 59 T ELT)) (-1710 (((-85)) 63 T ELT)) (-1905 (((-3 (-2 (|:| |particular| $) (|:| -2011 (-582 $))) "failed")) 52 (|has| |#1| (-494)) ELT)) (-1702 (((-3 $ "failed")) 50 (|has| |#1| (-494)) ELT)) (-1787 (((-629 |#1|) (-1177 $)) 77 T ELT)) (-1726 ((|#1| $) 86 T ELT)) (-1785 (((-629 |#1|) $ (-1177 $)) 88 T ELT)) (-2404 (((-3 $ "failed") $) 57 (|has| |#1| (-494)) ELT)) (-2405 (($ $ (-829)) 38 T ELT)) (-1724 ((|#1| $) 84 T ELT)) (-1704 (((-1083 |#1|) $) 54 (|has| |#1| (-494)) ELT)) (-1789 ((|#1| (-1177 $)) 79 T ELT)) (-1722 (((-1083 |#1|) $) 75 T ELT)) (-1716 (((-85)) 69 T ELT)) (-3241 (((-1071) $) 11 T ELT)) (-1707 (((-85)) 60 T ELT)) (-1709 (((-85)) 62 T ELT)) (-1711 (((-85)) 64 T ELT)) (-3242 (((-1032) $) 12 T ELT)) (-1714 (((-85)) 67 T ELT)) (-3223 (((-1177 |#1|) $ (-1177 $)) 82 T ELT) (((-629 |#1|) (-1177 $) (-1177 $)) 81 T ELT)) (-1890 (((-582 (-856 |#1|)) (-1177 $)) 90 T ELT)) (-2434 (($ $ $) 34 T ELT)) (-1720 (((-85)) 73 T ELT)) (-3944 (((-771) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-1705 (((-582 (-1177 |#1|))) 55 (|has| |#1| (-494)) ELT)) (-2435 (($ $ $ $) 35 T ELT)) (-1718 (((-85)) 71 T ELT)) (-2433 (($ $ $) 33 T ELT)) (-1719 (((-85)) 72 T ELT)) (-1717 (((-85)) 70 T ELT)) (-1713 (((-85)) 66 T ELT)) (-2659 (($) 24 T CONST)) (-3055 (((-85) $ $) 8 T ELT)) (-3835 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3837 (($ $ $) 18 T ELT)) (** (($ $ (-829)) 39 T ELT)) (* (($ (-829) $) 17 T ELT) (($ (-693) $) 21 T ELT) (($ (-483) $) 30 T ELT) (($ $ $) 36 T ELT) (($ $ |#1|) 46 T ELT) (($ |#1| $) 45 T ELT))) +((-3948 (*1 *1 *1 *1) (-4 *1 (-312)))) +(-13 (-258) (-1133) (-201) (-10 -8 (-15 -3948 ($ $ $)) (-6 -3992) (-6 -3986))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-349 (-484))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-349 (-484)) (-349 (-484))) . T) ((-82 $ $) . T) ((-104) . T) ((-555 (-349 (-484))) . T) ((-555 (-484)) . T) ((-555 $) . T) ((-552 (-772)) . T) ((-146) . T) ((-201) . T) ((-246) . T) ((-258) . T) ((-391) . T) ((-495) . T) ((-13) . T) ((-588 (-349 (-484))) . T) ((-588 (-484)) . T) ((-588 $) . T) ((-590 (-349 (-484))) . T) ((-590 $) . T) ((-582 (-349 (-484))) . T) ((-582 $) . T) ((-654 (-349 (-484))) . T) ((-654 $) . T) ((-663) . T) ((-832) . T) ((-963 (-349 (-484))) . T) ((-963 $) . T) ((-968 (-349 (-484))) . T) ((-968 $) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T) ((-1133) . T)) +((-2568 (((-85) $ $) NIL T ELT)) (-1696 ((|#1| $ |#1|) 35 T ELT)) (-1700 (($ $ (-1072)) 23 T ELT)) (-3618 (((-3 |#1| "failed") $) 34 T ELT)) (-1697 ((|#1| $) 32 T ELT)) (-1701 (($ (-337)) 22 T ELT) (($ (-337) (-1072)) 21 T ELT)) (-3541 (((-337) $) 25 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-1698 (((-1072) $) 26 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) 20 T ELT)) (-1699 (($ $) 24 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 19 T ELT))) +(((-313 |#1|) (-13 (-314 (-337) |#1|) (-10 -8 (-15 -3618 ((-3 |#1| "failed") $)))) (-1013)) (T -313)) +((-3618 (*1 *2 *1) (|partial| -12 (-5 *1 (-313 *2)) (-4 *2 (-1013))))) +((-2568 (((-85) $ $) 7 T ELT)) (-1696 ((|#2| $ |#2|) 17 T ELT)) (-1700 (($ $ (-1072)) 22 T ELT)) (-1697 ((|#2| $) 18 T ELT)) (-1701 (($ |#1|) 24 T ELT) (($ |#1| (-1072)) 23 T ELT)) (-3541 ((|#1| $) 20 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-1698 (((-1072) $) 19 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3945 (((-772) $) 13 T ELT)) (-1699 (($ $) 21 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-3056 (((-85) $ $) 8 T ELT))) +(((-314 |#1| |#2|) (-113) (-1013) (-1013)) (T -314)) +((-1701 (*1 *1 *2) (-12 (-4 *1 (-314 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013)))) (-1701 (*1 *1 *2 *3) (-12 (-5 *3 (-1072)) (-4 *1 (-314 *2 *4)) (-4 *2 (-1013)) (-4 *4 (-1013)))) (-1700 (*1 *1 *1 *2) (-12 (-5 *2 (-1072)) (-4 *1 (-314 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)))) (-1699 (*1 *1 *1) (-12 (-4 *1 (-314 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013)))) (-3541 (*1 *2 *1) (-12 (-4 *1 (-314 *2 *3)) (-4 *3 (-1013)) (-4 *2 (-1013)))) (-1698 (*1 *2 *1) (-12 (-4 *1 (-314 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-5 *2 (-1072)))) (-1697 (*1 *2 *1) (-12 (-4 *1 (-314 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1013)))) (-1696 (*1 *2 *1 *2) (-12 (-4 *1 (-314 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1013))))) +(-13 (-1013) (-10 -8 (-15 -1701 ($ |t#1|)) (-15 -1701 ($ |t#1| (-1072))) (-15 -1700 ($ $ (-1072))) (-15 -1699 ($ $)) (-15 -3541 (|t#1| $)) (-15 -1698 ((-1072) $)) (-15 -1697 (|t#2| $)) (-15 -1696 (|t#2| $ |t#2|)))) +(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-1013) . T) ((-1128) . T)) +((-3223 (((-1178 (-630 |#2|)) (-1178 $)) 67 T ELT)) (-1787 (((-630 |#2|) (-1178 $)) 139 T ELT)) (-1726 ((|#2| $) 36 T ELT)) (-1785 (((-630 |#2|) $ (-1178 $)) 142 T ELT)) (-2404 (((-3 $ #1="failed") $) 89 T ELT)) (-1724 ((|#2| $) 39 T ELT)) (-1704 (((-1084 |#2|) $) 98 T ELT)) (-1789 ((|#2| (-1178 $)) 122 T ELT)) (-1722 (((-1084 |#2|) $) 32 T ELT)) (-1716 (((-85)) 116 T ELT)) (-1791 (($ (-1178 |#2|) (-1178 $)) 132 T ELT)) (-3466 (((-3 $ #1#) $) 93 T ELT)) (-1709 (((-85)) 111 T ELT)) (-1707 (((-85)) 106 T ELT)) (-1711 (((-85)) 58 T ELT)) (-1788 (((-630 |#2|) (-1178 $)) 137 T ELT)) (-1727 ((|#2| $) 35 T ELT)) (-1786 (((-630 |#2|) $ (-1178 $)) 141 T ELT)) (-2405 (((-3 $ #1#) $) 87 T ELT)) (-1725 ((|#2| $) 38 T ELT)) (-1705 (((-1084 |#2|) $) 97 T ELT)) (-1790 ((|#2| (-1178 $)) 120 T ELT)) (-1723 (((-1084 |#2|) $) 30 T ELT)) (-1717 (((-85)) 115 T ELT)) (-1708 (((-85)) 108 T ELT)) (-1710 (((-85)) 56 T ELT)) (-1712 (((-85)) 103 T ELT)) (-1715 (((-85)) 117 T ELT)) (-3224 (((-1178 |#2|) $ (-1178 $)) NIL T ELT) (((-630 |#2|) (-1178 $) (-1178 $)) 128 T ELT)) (-1721 (((-85)) 113 T ELT)) (-1706 (((-583 (-1178 |#2|))) 102 T ELT)) (-1719 (((-85)) 114 T ELT)) (-1720 (((-85)) 112 T ELT)) (-1718 (((-85)) 51 T ELT)) (-1714 (((-85)) 118 T ELT))) +(((-315 |#1| |#2|) (-10 -7 (-15 -1704 ((-1084 |#2|) |#1|)) (-15 -1705 ((-1084 |#2|) |#1|)) (-15 -1706 ((-583 (-1178 |#2|)))) (-15 -2404 ((-3 |#1| #1="failed") |#1|)) (-15 -2405 ((-3 |#1| #1#) |#1|)) (-15 -3466 ((-3 |#1| #1#) |#1|)) (-15 -1707 ((-85))) (-15 -1708 ((-85))) (-15 -1709 ((-85))) (-15 -1710 ((-85))) (-15 -1711 ((-85))) (-15 -1712 ((-85))) (-15 -1714 ((-85))) (-15 -1715 ((-85))) (-15 -1716 ((-85))) (-15 -1717 ((-85))) (-15 -1718 ((-85))) (-15 -1719 ((-85))) (-15 -1720 ((-85))) (-15 -1721 ((-85))) (-15 -1722 ((-1084 |#2|) |#1|)) (-15 -1723 ((-1084 |#2|) |#1|)) (-15 -1787 ((-630 |#2|) (-1178 |#1|))) (-15 -1788 ((-630 |#2|) (-1178 |#1|))) (-15 -1789 (|#2| (-1178 |#1|))) (-15 -1790 (|#2| (-1178 |#1|))) (-15 -1791 (|#1| (-1178 |#2|) (-1178 |#1|))) (-15 -3224 ((-630 |#2|) (-1178 |#1|) (-1178 |#1|))) (-15 -3224 ((-1178 |#2|) |#1| (-1178 |#1|))) (-15 -1724 (|#2| |#1|)) (-15 -1725 (|#2| |#1|)) (-15 -1726 (|#2| |#1|)) (-15 -1727 (|#2| |#1|)) (-15 -1785 ((-630 |#2|) |#1| (-1178 |#1|))) (-15 -1786 ((-630 |#2|) |#1| (-1178 |#1|))) (-15 -3223 ((-1178 (-630 |#2|)) (-1178 |#1|)))) (-316 |#2|) (-146)) (T -315)) +((-1721 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1720 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1719 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1718 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1717 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1716 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1715 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1714 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1712 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1711 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1710 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1709 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1708 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1707 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1706 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-583 (-1178 *4))) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4))))) +((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-1771 (((-3 $ "failed")) 48 (|has| |#1| (-495)) ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3223 (((-1178 (-630 |#1|)) (-1178 $)) 89 T ELT)) (-1728 (((-1178 $)) 92 T ELT)) (-3723 (($) 23 T CONST)) (-1905 (((-3 (-2 (|:| |particular| $) (|:| -2012 (-583 $))) "failed")) 51 (|has| |#1| (-495)) ELT)) (-1702 (((-3 $ "failed")) 49 (|has| |#1| (-495)) ELT)) (-1787 (((-630 |#1|) (-1178 $)) 76 T ELT)) (-1726 ((|#1| $) 85 T ELT)) (-1785 (((-630 |#1|) $ (-1178 $)) 87 T ELT)) (-2404 (((-3 $ "failed") $) 56 (|has| |#1| (-495)) ELT)) (-2407 (($ $ (-830)) 37 T ELT)) (-1724 ((|#1| $) 83 T ELT)) (-1704 (((-1084 |#1|) $) 53 (|has| |#1| (-495)) ELT)) (-1789 ((|#1| (-1178 $)) 78 T ELT)) (-1722 (((-1084 |#1|) $) 74 T ELT)) (-1716 (((-85)) 68 T ELT)) (-1791 (($ (-1178 |#1|) (-1178 $)) 80 T ELT)) (-3466 (((-3 $ "failed") $) 58 (|has| |#1| (-495)) ELT)) (-3108 (((-830)) 91 T ELT)) (-1713 (((-85)) 65 T ELT)) (-2433 (($ $ (-830)) 44 T ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-1709 (((-85)) 61 T ELT)) (-1707 (((-85)) 59 T ELT)) (-1711 (((-85)) 63 T ELT)) (-1906 (((-3 (-2 (|:| |particular| $) (|:| -2012 (-583 $))) "failed")) 52 (|has| |#1| (-495)) ELT)) (-1703 (((-3 $ "failed")) 50 (|has| |#1| (-495)) ELT)) (-1788 (((-630 |#1|) (-1178 $)) 77 T ELT)) (-1727 ((|#1| $) 86 T ELT)) (-1786 (((-630 |#1|) $ (-1178 $)) 88 T ELT)) (-2405 (((-3 $ "failed") $) 57 (|has| |#1| (-495)) ELT)) (-2406 (($ $ (-830)) 38 T ELT)) (-1725 ((|#1| $) 84 T ELT)) (-1705 (((-1084 |#1|) $) 54 (|has| |#1| (-495)) ELT)) (-1790 ((|#1| (-1178 $)) 79 T ELT)) (-1723 (((-1084 |#1|) $) 75 T ELT)) (-1717 (((-85)) 69 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-1708 (((-85)) 60 T ELT)) (-1710 (((-85)) 62 T ELT)) (-1712 (((-85)) 64 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-1715 (((-85)) 67 T ELT)) (-3224 (((-1178 |#1|) $ (-1178 $)) 82 T ELT) (((-630 |#1|) (-1178 $) (-1178 $)) 81 T ELT)) (-1891 (((-583 (-857 |#1|)) (-1178 $)) 90 T ELT)) (-2435 (($ $ $) 34 T ELT)) (-1721 (((-85)) 73 T ELT)) (-3945 (((-772) $) 13 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-1706 (((-583 (-1178 |#1|))) 55 (|has| |#1| (-495)) ELT)) (-2436 (($ $ $ $) 35 T ELT)) (-1719 (((-85)) 71 T ELT)) (-2434 (($ $ $) 33 T ELT)) (-1720 (((-85)) 72 T ELT)) (-1718 (((-85)) 70 T ELT)) (-1714 (((-85)) 66 T ELT)) (-2660 (($) 24 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 39 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 36 T ELT) (($ $ |#1|) 46 T ELT) (($ |#1| $) 45 T ELT))) (((-316 |#1|) (-113) (-146)) (T -316)) -((-1727 (*1 *2) (-12 (-4 *3 (-146)) (-5 *2 (-1177 *1)) (-4 *1 (-316 *3)))) (-3107 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-829)))) (-1890 (*1 *2 *3) (-12 (-5 *3 (-1177 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-582 (-856 *4))))) (-3222 (*1 *2 *3) (-12 (-5 *3 (-1177 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-1177 (-629 *4))))) (-1785 (*1 *2 *1 *3) (-12 (-5 *3 (-1177 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-629 *4)))) (-1784 (*1 *2 *1 *3) (-12 (-5 *3 (-1177 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-629 *4)))) (-1726 (*1 *2 *1) (-12 (-4 *1 (-316 *2)) (-4 *2 (-146)))) (-1725 (*1 *2 *1) (-12 (-4 *1 (-316 *2)) (-4 *2 (-146)))) (-1724 (*1 *2 *1) (-12 (-4 *1 (-316 *2)) (-4 *2 (-146)))) (-1723 (*1 *2 *1) (-12 (-4 *1 (-316 *2)) (-4 *2 (-146)))) (-3223 (*1 *2 *1 *3) (-12 (-5 *3 (-1177 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-1177 *4)))) (-3223 (*1 *2 *3 *3) (-12 (-5 *3 (-1177 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-629 *4)))) (-1790 (*1 *1 *2 *3) (-12 (-5 *2 (-1177 *4)) (-5 *3 (-1177 *1)) (-4 *4 (-146)) (-4 *1 (-316 *4)))) (-1789 (*1 *2 *3) (-12 (-5 *3 (-1177 *1)) (-4 *1 (-316 *2)) (-4 *2 (-146)))) (-1788 (*1 *2 *3) (-12 (-5 *3 (-1177 *1)) (-4 *1 (-316 *2)) (-4 *2 (-146)))) (-1787 (*1 *2 *3) (-12 (-5 *3 (-1177 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-629 *4)))) (-1786 (*1 *2 *3) (-12 (-5 *3 (-1177 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-629 *4)))) (-1722 (*1 *2 *1) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-1083 *3)))) (-1721 (*1 *2 *1) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-1083 *3)))) (-1720 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1719 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1718 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1717 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1716 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1715 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1714 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1713 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1712 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1711 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1710 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1709 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1708 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1707 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1706 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-3465 (*1 *1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-146)) (-4 *2 (-494)))) (-2404 (*1 *1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-146)) (-4 *2 (-494)))) (-2403 (*1 *1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-146)) (-4 *2 (-494)))) (-1705 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-4 *3 (-494)) (-5 *2 (-582 (-1177 *3))))) (-1704 (*1 *2 *1) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-4 *3 (-494)) (-5 *2 (-1083 *3)))) (-1703 (*1 *2 *1) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-4 *3 (-494)) (-5 *2 (-1083 *3)))) (-1905 (*1 *2) (|partial| -12 (-4 *3 (-494)) (-4 *3 (-146)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2011 (-582 *1)))) (-4 *1 (-316 *3)))) (-1904 (*1 *2) (|partial| -12 (-4 *3 (-494)) (-4 *3 (-146)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2011 (-582 *1)))) (-4 *1 (-316 *3)))) (-1702 (*1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-494)) (-4 *2 (-146)))) (-1701 (*1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-494)) (-4 *2 (-146)))) (-1770 (*1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-494)) (-4 *2 (-146))))) -(-13 (-682 |t#1|) (-10 -8 (-15 -1727 ((-1177 $))) (-15 -3107 ((-829))) (-15 -1890 ((-582 (-856 |t#1|)) (-1177 $))) (-15 -3222 ((-1177 (-629 |t#1|)) (-1177 $))) (-15 -1785 ((-629 |t#1|) $ (-1177 $))) (-15 -1784 ((-629 |t#1|) $ (-1177 $))) (-15 -1726 (|t#1| $)) (-15 -1725 (|t#1| $)) (-15 -1724 (|t#1| $)) (-15 -1723 (|t#1| $)) (-15 -3223 ((-1177 |t#1|) $ (-1177 $))) (-15 -3223 ((-629 |t#1|) (-1177 $) (-1177 $))) (-15 -1790 ($ (-1177 |t#1|) (-1177 $))) (-15 -1789 (|t#1| (-1177 $))) (-15 -1788 (|t#1| (-1177 $))) (-15 -1787 ((-629 |t#1|) (-1177 $))) (-15 -1786 ((-629 |t#1|) (-1177 $))) (-15 -1722 ((-1083 |t#1|) $)) (-15 -1721 ((-1083 |t#1|) $)) (-15 -1720 ((-85))) (-15 -1719 ((-85))) (-15 -1718 ((-85))) (-15 -1717 ((-85))) (-15 -1716 ((-85))) (-15 -1715 ((-85))) (-15 -1714 ((-85))) (-15 -1713 ((-85))) (-15 -1712 ((-85))) (-15 -1711 ((-85))) (-15 -1710 ((-85))) (-15 -1709 ((-85))) (-15 -1708 ((-85))) (-15 -1707 ((-85))) (-15 -1706 ((-85))) (IF (|has| |t#1| (-494)) (PROGN (-15 -3465 ((-3 $ "failed") $)) (-15 -2404 ((-3 $ "failed") $)) (-15 -2403 ((-3 $ "failed") $)) (-15 -1705 ((-582 (-1177 |t#1|)))) (-15 -1704 ((-1083 |t#1|) $)) (-15 -1703 ((-1083 |t#1|) $)) (-15 -1905 ((-3 (-2 (|:| |particular| $) (|:| -2011 (-582 $))) "failed"))) (-15 -1904 ((-3 (-2 (|:| |particular| $) (|:| -2011 (-582 $))) "failed"))) (-15 -1702 ((-3 $ "failed"))) (-15 -1701 ((-3 $ "failed"))) (-15 -1770 ((-3 $ "failed"))) (-6 -3990)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-551 (-771)) . T) ((-13) . T) ((-587 (-483)) . T) ((-587 |#1|) . T) ((-589 |#1|) . T) ((-581 |#1|) . T) ((-653 |#1|) . T) ((-656) . T) ((-682 |#1|) . T) ((-684) . T) ((-962 |#1|) . T) ((-967 |#1|) . T) ((-1012) . T) ((-1127) . T)) -((-2993 (($) 15 T ELT))) -(((-317 |#1|) (-10 -7 (-15 -2993 (|#1|))) (-318)) (T -317)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-3135 (((-693)) 20 T ELT)) (-2993 (($) 17 T ELT)) (-2009 (((-829) $) 18 T ELT)) (-3241 (((-1071) $) 11 T ELT)) (-2399 (($ (-829)) 19 T ELT)) (-3242 (((-1032) $) 12 T ELT)) (-3944 (((-771) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-3055 (((-85) $ $) 8 T ELT))) -(((-318) (-113)) (T -318)) -((-3135 (*1 *2) (-12 (-4 *1 (-318)) (-5 *2 (-693)))) (-2399 (*1 *1 *2) (-12 (-5 *2 (-829)) (-4 *1 (-318)))) (-2009 (*1 *2 *1) (-12 (-4 *1 (-318)) (-5 *2 (-829)))) (-2993 (*1 *1) (-4 *1 (-318)))) -(-13 (-1012) (-10 -8 (-15 -3135 ((-693))) (-15 -2399 ($ (-829))) (-15 -2009 ((-829) $)) (-15 -2993 ($)))) -(((-72) . T) ((-551 (-771)) . T) ((-13) . T) ((-1012) . T) ((-1127) . T)) -((-1780 (((-629 |#2|) (-1177 $)) 45 T ELT)) (-1790 (($ (-1177 |#2|) (-1177 $)) 39 T ELT)) (-1779 (((-629 |#2|) $ (-1177 $)) 47 T ELT)) (-3755 ((|#2| (-1177 $)) 13 T ELT)) (-3223 (((-1177 |#2|) $ (-1177 $)) NIL T ELT) (((-629 |#2|) (-1177 $) (-1177 $)) 27 T ELT))) -(((-319 |#1| |#2| |#3|) (-10 -7 (-15 -1780 ((-629 |#2|) (-1177 |#1|))) (-15 -3755 (|#2| (-1177 |#1|))) (-15 -1790 (|#1| (-1177 |#2|) (-1177 |#1|))) (-15 -3223 ((-629 |#2|) (-1177 |#1|) (-1177 |#1|))) (-15 -3223 ((-1177 |#2|) |#1| (-1177 |#1|))) (-15 -1779 ((-629 |#2|) |#1| (-1177 |#1|)))) (-320 |#2| |#3|) (-146) (-1153 |#2|)) (T -319)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-3187 (((-85) $) 22 T ELT)) (-1780 (((-629 |#1|) (-1177 $)) 61 T ELT)) (-3328 ((|#1| $) 67 T ELT)) (-1310 (((-3 $ "failed") $ $) 26 T ELT)) (-3722 (($) 23 T CONST)) (-1790 (($ (-1177 |#1|) (-1177 $)) 63 T ELT)) (-1779 (((-629 |#1|) $ (-1177 $)) 68 T ELT)) (-3465 (((-3 $ "failed") $) 42 T ELT)) (-3107 (((-829)) 69 T ELT)) (-1212 (((-85) $ $) 20 T ELT)) (-2409 (((-85) $) 44 T ELT)) (-3131 ((|#1| $) 66 T ELT)) (-2013 ((|#2| $) 59 (|has| |#1| (-312)) ELT)) (-3241 (((-1071) $) 11 T ELT)) (-3242 (((-1032) $) 12 T ELT)) (-3755 ((|#1| (-1177 $)) 62 T ELT)) (-3223 (((-1177 |#1|) $ (-1177 $)) 65 T ELT) (((-629 |#1|) (-1177 $) (-1177 $)) 64 T ELT)) (-3944 (((-771) $) 13 T ELT) (($ (-483)) 41 T ELT) (($ |#1|) 52 T ELT)) (-2701 (((-631 $) $) 58 (|has| |#1| (-118)) ELT)) (-2448 ((|#2| $) 60 T ELT)) (-3125 (((-693)) 40 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-3124 (((-85) $ $) 33 T ELT)) (-2659 (($) 24 T CONST)) (-2665 (($) 45 T CONST)) (-3055 (((-85) $ $) 8 T ELT)) (-3835 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3837 (($ $ $) 18 T ELT)) (** (($ $ (-829)) 35 T ELT) (($ $ (-693)) 43 T ELT)) (* (($ (-829) $) 17 T ELT) (($ (-693) $) 21 T ELT) (($ (-483) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 54 T ELT) (($ |#1| $) 53 T ELT))) -(((-320 |#1| |#2|) (-113) (-146) (-1153 |t#1|)) (T -320)) -((-3107 (*1 *2) (-12 (-4 *1 (-320 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1153 *3)) (-5 *2 (-829)))) (-1779 (*1 *2 *1 *3) (-12 (-5 *3 (-1177 *1)) (-4 *1 (-320 *4 *5)) (-4 *4 (-146)) (-4 *5 (-1153 *4)) (-5 *2 (-629 *4)))) (-3328 (*1 *2 *1) (-12 (-4 *1 (-320 *2 *3)) (-4 *3 (-1153 *2)) (-4 *2 (-146)))) (-3131 (*1 *2 *1) (-12 (-4 *1 (-320 *2 *3)) (-4 *3 (-1153 *2)) (-4 *2 (-146)))) (-3223 (*1 *2 *1 *3) (-12 (-5 *3 (-1177 *1)) (-4 *1 (-320 *4 *5)) (-4 *4 (-146)) (-4 *5 (-1153 *4)) (-5 *2 (-1177 *4)))) (-3223 (*1 *2 *3 *3) (-12 (-5 *3 (-1177 *1)) (-4 *1 (-320 *4 *5)) (-4 *4 (-146)) (-4 *5 (-1153 *4)) (-5 *2 (-629 *4)))) (-1790 (*1 *1 *2 *3) (-12 (-5 *2 (-1177 *4)) (-5 *3 (-1177 *1)) (-4 *4 (-146)) (-4 *1 (-320 *4 *5)) (-4 *5 (-1153 *4)))) (-3755 (*1 *2 *3) (-12 (-5 *3 (-1177 *1)) (-4 *1 (-320 *2 *4)) (-4 *4 (-1153 *2)) (-4 *2 (-146)))) (-1780 (*1 *2 *3) (-12 (-5 *3 (-1177 *1)) (-4 *1 (-320 *4 *5)) (-4 *4 (-146)) (-4 *5 (-1153 *4)) (-5 *2 (-629 *4)))) (-2448 (*1 *2 *1) (-12 (-4 *1 (-320 *3 *2)) (-4 *3 (-146)) (-4 *2 (-1153 *3)))) (-2013 (*1 *2 *1) (-12 (-4 *1 (-320 *3 *2)) (-4 *3 (-146)) (-4 *3 (-312)) (-4 *2 (-1153 *3))))) -(-13 (-38 |t#1|) (-10 -8 (-15 -3107 ((-829))) (-15 -1779 ((-629 |t#1|) $ (-1177 $))) (-15 -3328 (|t#1| $)) (-15 -3131 (|t#1| $)) (-15 -3223 ((-1177 |t#1|) $ (-1177 $))) (-15 -3223 ((-629 |t#1|) (-1177 $) (-1177 $))) (-15 -1790 ($ (-1177 |t#1|) (-1177 $))) (-15 -3755 (|t#1| (-1177 $))) (-15 -1780 ((-629 |t#1|) (-1177 $))) (-15 -2448 (|t#2| $)) (IF (|has| |t#1| (-312)) (-15 -2013 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-554 (-483)) . T) ((-554 |#1|) . T) ((-551 (-771)) . T) ((-13) . T) ((-587 (-483)) . T) ((-587 |#1|) . T) ((-587 $) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-581 |#1|) . T) ((-653 |#1|) . T) ((-662) . T) ((-962 |#1|) . T) ((-967 |#1|) . T) ((-960) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T)) -((-1730 (((-85) (-1 (-85) |#2| |#2|) $) NIL T ELT) (((-85) $) 18 T ELT)) (-1728 (($ (-1 (-85) |#2| |#2|) $) NIL T ELT) (($ $) 28 T ELT)) (-2908 (($ (-1 (-85) |#2| |#2|) $) 27 T ELT) (($ $) 22 T ELT)) (-2297 (($ $) 25 T ELT)) (-3417 (((-483) (-1 (-85) |#2|) $) NIL T ELT) (((-483) |#2| $) 11 T ELT) (((-483) |#2| $ (-483)) NIL T ELT)) (-3516 (($ (-1 (-85) |#2| |#2|) $ $) NIL T ELT) (($ $ $) 20 T ELT))) -(((-321 |#1| |#2|) (-10 -7 (-15 -1728 (|#1| |#1|)) (-15 -1728 (|#1| (-1 (-85) |#2| |#2|) |#1|)) (-15 -1730 ((-85) |#1|)) (-15 -2908 (|#1| |#1|)) (-15 -3516 (|#1| |#1| |#1|)) (-15 -3417 ((-483) |#2| |#1| (-483))) (-15 -3417 ((-483) |#2| |#1|)) (-15 -3417 ((-483) (-1 (-85) |#2|) |#1|)) (-15 -1730 ((-85) (-1 (-85) |#2| |#2|) |#1|)) (-15 -2908 (|#1| (-1 (-85) |#2| |#2|) |#1|)) (-15 -2297 (|#1| |#1|)) (-15 -3516 (|#1| (-1 (-85) |#2| |#2|) |#1| |#1|))) (-322 |#2|) (-1127)) (T -321)) -NIL -((-2567 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-2197 (((-1183) $ (-483) (-483)) 44 (|has| $ (-6 -3994)) ELT)) (-1730 (((-85) (-1 (-85) |#1| |#1|) $) 107 T ELT) (((-85) $) 101 (|has| |#1| (-755)) ELT)) (-1728 (($ (-1 (-85) |#1| |#1|) $) 98 (|has| $ (-6 -3994)) ELT) (($ $) 97 (-12 (|has| |#1| (-755)) (|has| $ (-6 -3994))) ELT)) (-2908 (($ (-1 (-85) |#1| |#1|) $) 108 T ELT) (($ $) 102 (|has| |#1| (-755)) ELT)) (-3786 ((|#1| $ (-483) |#1|) 56 (|has| $ (-6 -3994)) ELT) ((|#1| $ (-1144 (-483)) |#1|) 64 (|has| $ (-6 -3994)) ELT)) (-3708 (($ (-1 (-85) |#1|) $) 81 (|has| $ (-6 -3993)) ELT)) (-3722 (($) 7 T CONST)) (-2296 (($ $) 99 (|has| $ (-6 -3994)) ELT)) (-2297 (($ $) 109 T ELT)) (-1351 (($ $) 84 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3993))) ELT)) (-3404 (($ |#1| $) 83 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3993))) ELT) (($ (-1 (-85) |#1|) $) 80 (|has| $ (-6 -3993)) ELT)) (-3840 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3993))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -3993)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -3993)) ELT)) (-1574 ((|#1| $ (-483) |#1|) 57 (|has| $ (-6 -3994)) ELT)) (-3111 ((|#1| $ (-483)) 55 T ELT)) (-3417 (((-483) (-1 (-85) |#1|) $) 106 T ELT) (((-483) |#1| $) 105 (|has| |#1| (-1012)) ELT) (((-483) |#1| $ (-483)) 104 (|has| |#1| (-1012)) ELT)) (-2888 (((-582 |#1|) $) 30 (|has| $ (-6 -3993)) ELT)) (-3612 (($ (-693) |#1|) 74 T ELT)) (-2199 (((-483) $) 47 (|has| (-483) (-755)) ELT)) (-2530 (($ $ $) 91 (|has| |#1| (-755)) ELT)) (-3516 (($ (-1 (-85) |#1| |#1|) $ $) 110 T ELT) (($ $ $) 103 (|has| |#1| (-755)) ELT)) (-2607 (((-582 |#1|) $) 29 (|has| $ (-6 -3993)) ELT)) (-3244 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3993))) ELT)) (-2200 (((-483) $) 48 (|has| (-483) (-755)) ELT)) (-2856 (($ $ $) 92 (|has| |#1| (-755)) ELT)) (-1947 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3994)) ELT)) (-3956 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-3241 (((-1071) $) 22 (|has| |#1| (-1012)) ELT)) (-2303 (($ |#1| $ (-483)) 66 T ELT) (($ $ $ (-483)) 65 T ELT)) (-2202 (((-582 (-483)) $) 50 T ELT)) (-2203 (((-85) (-483) $) 51 T ELT)) (-3242 (((-1032) $) 21 (|has| |#1| (-1012)) ELT)) (-3799 ((|#1| $) 46 (|has| (-483) (-755)) ELT)) (-1352 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 77 T ELT)) (-2198 (($ $ |#1|) 45 (|has| $ (-6 -3994)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3993)) ELT)) (-3766 (($ $ (-582 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-582 |#1|) (-582 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT)) (-1220 (((-85) $ $) 11 T ELT)) (-2201 (((-85) |#1| $) 49 (-12 (|has| $ (-6 -3993)) (|has| |#1| (-1012))) ELT)) (-2204 (((-582 |#1|) $) 52 T ELT)) (-3401 (((-85) $) 8 T ELT)) (-3563 (($) 9 T ELT)) (-3798 ((|#1| $ (-483) |#1|) 54 T ELT) ((|#1| $ (-483)) 53 T ELT) (($ $ (-1144 (-483))) 75 T ELT)) (-2304 (($ $ (-483)) 68 T ELT) (($ $ (-1144 (-483))) 67 T ELT)) (-1944 (((-693) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3993)) ELT) (((-693) |#1| $) 28 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3993))) ELT)) (-1729 (($ $ $ (-483)) 100 (|has| $ (-6 -3994)) ELT)) (-3398 (($ $) 10 T ELT)) (-3970 (((-472) $) 85 (|has| |#1| (-552 (-472))) ELT)) (-3528 (($ (-582 |#1|)) 76 T ELT)) (-3800 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-582 $)) 70 T ELT)) (-3944 (((-771) $) 17 (|has| |#1| (-551 (-771))) ELT)) (-1263 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3993)) ELT)) (-2565 (((-85) $ $) 93 (|has| |#1| (-755)) ELT)) (-2566 (((-85) $ $) 95 (|has| |#1| (-755)) ELT)) (-3055 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-2683 (((-85) $ $) 94 (|has| |#1| (-755)) ELT)) (-2684 (((-85) $ $) 96 (|has| |#1| (-755)) ELT)) (-3955 (((-693) $) 6 (|has| $ (-6 -3993)) ELT))) -(((-322 |#1|) (-113) (-1127)) (T -322)) -((-3516 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-85) *3 *3)) (-4 *1 (-322 *3)) (-4 *3 (-1127)))) (-2297 (*1 *1 *1) (-12 (-4 *1 (-322 *2)) (-4 *2 (-1127)))) (-2908 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3 *3)) (-4 *1 (-322 *3)) (-4 *3 (-1127)))) (-1730 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *1 (-322 *4)) (-4 *4 (-1127)) (-5 *2 (-85)))) (-3417 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-85) *4)) (-4 *1 (-322 *4)) (-4 *4 (-1127)) (-5 *2 (-483)))) (-3417 (*1 *2 *3 *1) (-12 (-4 *1 (-322 *3)) (-4 *3 (-1127)) (-4 *3 (-1012)) (-5 *2 (-483)))) (-3417 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-483)) (-4 *1 (-322 *3)) (-4 *3 (-1127)) (-4 *3 (-1012)))) (-3516 (*1 *1 *1 *1) (-12 (-4 *1 (-322 *2)) (-4 *2 (-1127)) (-4 *2 (-755)))) (-2908 (*1 *1 *1) (-12 (-4 *1 (-322 *2)) (-4 *2 (-1127)) (-4 *2 (-755)))) (-1730 (*1 *2 *1) (-12 (-4 *1 (-322 *3)) (-4 *3 (-1127)) (-4 *3 (-755)) (-5 *2 (-85)))) (-1729 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-483)) (|has| *1 (-6 -3994)) (-4 *1 (-322 *3)) (-4 *3 (-1127)))) (-2296 (*1 *1 *1) (-12 (|has| *1 (-6 -3994)) (-4 *1 (-322 *2)) (-4 *2 (-1127)))) (-1728 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3 *3)) (|has| *1 (-6 -3994)) (-4 *1 (-322 *3)) (-4 *3 (-1127)))) (-1728 (*1 *1 *1) (-12 (|has| *1 (-6 -3994)) (-4 *1 (-322 *2)) (-4 *2 (-1127)) (-4 *2 (-755))))) -(-13 (-592 |t#1|) (-10 -8 (-6 -3993) (-15 -3516 ($ (-1 (-85) |t#1| |t#1|) $ $)) (-15 -2297 ($ $)) (-15 -2908 ($ (-1 (-85) |t#1| |t#1|) $)) (-15 -1730 ((-85) (-1 (-85) |t#1| |t#1|) $)) (-15 -3417 ((-483) (-1 (-85) |t#1|) $)) (IF (|has| |t#1| (-1012)) (PROGN (-15 -3417 ((-483) |t#1| $)) (-15 -3417 ((-483) |t#1| $ (-483)))) |%noBranch|) (IF (|has| |t#1| (-755)) (PROGN (-6 (-755)) (-15 -3516 ($ $ $)) (-15 -2908 ($ $)) (-15 -1730 ((-85) $))) |%noBranch|) (IF (|has| $ (-6 -3994)) (PROGN (-15 -1729 ($ $ $ (-483))) (-15 -2296 ($ $)) (-15 -1728 ($ (-1 (-85) |t#1| |t#1|) $)) (IF (|has| |t#1| (-755)) (-15 -1728 ($ $)) |%noBranch|)) |%noBranch|))) -(((-34) . T) ((-72) OR (|has| |#1| (-1012)) (|has| |#1| (-755)) (|has| |#1| (-72))) ((-551 (-771)) OR (|has| |#1| (-1012)) (|has| |#1| (-755)) (|has| |#1| (-551 (-771)))) ((-124 |#1|) . T) ((-552 (-472)) |has| |#1| (-552 (-472))) ((-241 (-483) |#1|) . T) ((-241 (-1144 (-483)) $) . T) ((-243 (-483) |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ((-427 |#1|) . T) ((-537 (-483) |#1|) . T) ((-454 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ((-13) . T) ((-592 |#1|) . T) ((-755) |has| |#1| (-755)) ((-758) |has| |#1| (-755)) ((-1012) OR (|has| |#1| (-1012)) (|has| |#1| (-755))) ((-1127) . T)) -((-3839 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 25 T ELT)) (-3840 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 17 T ELT)) (-3956 ((|#4| (-1 |#3| |#1|) |#2|) 23 T ELT))) -(((-323 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3956 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3840 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3839 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1127) (-322 |#1|) (-1127) (-322 |#3|)) (T -323)) -((-3839 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1127)) (-4 *5 (-1127)) (-4 *2 (-322 *5)) (-5 *1 (-323 *6 *4 *5 *2)) (-4 *4 (-322 *6)))) (-3840 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1127)) (-4 *2 (-1127)) (-5 *1 (-323 *5 *4 *2 *6)) (-4 *4 (-322 *5)) (-4 *6 (-322 *2)))) (-3956 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1127)) (-4 *6 (-1127)) (-4 *2 (-322 *6)) (-5 *1 (-323 *5 *4 *6 *2)) (-4 *4 (-322 *5))))) -((-2567 (((-85) $ $) 7 T ELT)) (-3187 (((-85) $) 22 T ELT)) (-3932 (((-582 |#1|) $) 43 T ELT)) (-3945 (($ $ (-693)) 44 T ELT)) (-1310 (((-3 $ "failed") $ $) 26 T ELT)) (-3722 (($) 23 T CONST)) (-3937 (((-1202 |#1| |#2|) (-1202 |#1| |#2|) $) 47 T ELT)) (-1212 (((-85) $ $) 20 T ELT)) (-3934 (($ $) 45 T ELT)) (-3938 (((-1202 |#1| |#2|) (-1202 |#1| |#2|) $) 48 T ELT)) (-3241 (((-1071) $) 11 T ELT)) (-3242 (((-1032) $) 12 T ELT)) (-3766 (($ $ |#1| $) 42 T ELT) (($ $ (-582 |#1|) (-582 $)) 41 T ELT)) (-3946 (((-693) $) 49 T ELT)) (-3528 (($ $ $) 40 T ELT)) (-3944 (((-771) $) 13 T ELT) (($ |#1|) 52 T ELT) (((-1193 |#1| |#2|) $) 51 T ELT) (((-1202 |#1| |#2|) $) 50 T ELT)) (-3952 ((|#2| (-1202 |#1| |#2|) $) 53 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2659 (($) 24 T CONST)) (-1731 (($ (-613 |#1|)) 46 T ELT)) (-3055 (((-85) $ $) 8 T ELT)) (-3947 (($ $ |#2|) 39 (|has| |#2| (-312)) ELT)) (-3835 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3837 (($ $ $) 18 T ELT)) (* (($ (-829) $) 17 T ELT) (($ (-693) $) 21 T ELT) (($ (-483) $) 30 T ELT) (($ |#2| $) 33 T ELT) (($ $ |#2|) 37 T ELT))) -(((-324 |#1| |#2|) (-113) (-755) (-146)) (T -324)) -((-3952 (*1 *2 *3 *1) (-12 (-5 *3 (-1202 *4 *2)) (-4 *1 (-324 *4 *2)) (-4 *4 (-755)) (-4 *2 (-146)))) (-3944 (*1 *1 *2) (-12 (-4 *1 (-324 *2 *3)) (-4 *2 (-755)) (-4 *3 (-146)))) (-3944 (*1 *2 *1) (-12 (-4 *1 (-324 *3 *4)) (-4 *3 (-755)) (-4 *4 (-146)) (-5 *2 (-1193 *3 *4)))) (-3944 (*1 *2 *1) (-12 (-4 *1 (-324 *3 *4)) (-4 *3 (-755)) (-4 *4 (-146)) (-5 *2 (-1202 *3 *4)))) (-3946 (*1 *2 *1) (-12 (-4 *1 (-324 *3 *4)) (-4 *3 (-755)) (-4 *4 (-146)) (-5 *2 (-693)))) (-3938 (*1 *2 *2 *1) (-12 (-5 *2 (-1202 *3 *4)) (-4 *1 (-324 *3 *4)) (-4 *3 (-755)) (-4 *4 (-146)))) (-3937 (*1 *2 *2 *1) (-12 (-5 *2 (-1202 *3 *4)) (-4 *1 (-324 *3 *4)) (-4 *3 (-755)) (-4 *4 (-146)))) (-1731 (*1 *1 *2) (-12 (-5 *2 (-613 *3)) (-4 *3 (-755)) (-4 *1 (-324 *3 *4)) (-4 *4 (-146)))) (-3934 (*1 *1 *1) (-12 (-4 *1 (-324 *2 *3)) (-4 *2 (-755)) (-4 *3 (-146)))) (-3945 (*1 *1 *1 *2) (-12 (-5 *2 (-693)) (-4 *1 (-324 *3 *4)) (-4 *3 (-755)) (-4 *4 (-146)))) (-3932 (*1 *2 *1) (-12 (-4 *1 (-324 *3 *4)) (-4 *3 (-755)) (-4 *4 (-146)) (-5 *2 (-582 *3)))) (-3766 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-324 *2 *3)) (-4 *2 (-755)) (-4 *3 (-146)))) (-3766 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-582 *4)) (-5 *3 (-582 *1)) (-4 *1 (-324 *4 *5)) (-4 *4 (-755)) (-4 *5 (-146))))) -(-13 (-573 |t#2|) (-10 -8 (-15 -3952 (|t#2| (-1202 |t#1| |t#2|) $)) (-15 -3944 ($ |t#1|)) (-15 -3944 ((-1193 |t#1| |t#2|) $)) (-15 -3944 ((-1202 |t#1| |t#2|) $)) (-15 -3946 ((-693) $)) (-15 -3938 ((-1202 |t#1| |t#2|) (-1202 |t#1| |t#2|) $)) (-15 -3937 ((-1202 |t#1| |t#2|) (-1202 |t#1| |t#2|) $)) (-15 -1731 ($ (-613 |t#1|))) (-15 -3934 ($ $)) (-15 -3945 ($ $ (-693))) (-15 -3932 ((-582 |t#1|) $)) (-15 -3766 ($ $ |t#1| $)) (-15 -3766 ($ $ (-582 |t#1|) (-582 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#2| |#2|) . T) ((-104) . T) ((-551 (-771)) . T) ((-13) . T) ((-587 (-483)) . T) ((-587 |#2|) . T) ((-589 |#2|) . T) ((-573 |#2|) . T) ((-581 |#2|) . T) ((-653 |#2|) . T) ((-962 |#2|) . T) ((-967 |#2|) . T) ((-1012) . T) ((-1127) . T)) -((-1734 ((|#2| (-1 (-85) |#1| |#1|) |#2|) 40 T ELT)) (-1732 ((|#2| (-1 (-85) |#1| |#1|) |#2|) 13 T ELT)) (-1733 ((|#2| (-1 (-85) |#1| |#1|) |#2|) 33 T ELT))) -(((-325 |#1| |#2|) (-10 -7 (-15 -1732 (|#2| (-1 (-85) |#1| |#1|) |#2|)) (-15 -1733 (|#2| (-1 (-85) |#1| |#1|) |#2|)) (-15 -1734 (|#2| (-1 (-85) |#1| |#1|) |#2|))) (-1127) (-13 (-322 |#1|) (-10 -7 (-6 -3994)))) (T -325)) -((-1734 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1127)) (-5 *1 (-325 *4 *2)) (-4 *2 (-13 (-322 *4) (-10 -7 (-6 -3994)))))) (-1733 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1127)) (-5 *1 (-325 *4 *2)) (-4 *2 (-13 (-322 *4) (-10 -7 (-6 -3994)))))) (-1732 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1127)) (-5 *1 (-325 *4 *2)) (-4 *2 (-13 (-322 *4) (-10 -7 (-6 -3994))))))) -((-2278 (((-629 |#2|) (-629 $)) NIL T ELT) (((-2 (|:| |mat| (-629 |#2|)) (|:| |vec| (-1177 |#2|))) (-629 $) (-1177 $)) NIL T ELT) (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-629 $) (-1177 $)) 22 T ELT) (((-629 (-483)) (-629 $)) 14 T ELT))) -(((-326 |#1| |#2|) (-10 -7 (-15 -2278 ((-629 (-483)) (-629 |#1|))) (-15 -2278 ((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-629 |#1|) (-1177 |#1|))) (-15 -2278 ((-2 (|:| |mat| (-629 |#2|)) (|:| |vec| (-1177 |#2|))) (-629 |#1|) (-1177 |#1|))) (-15 -2278 ((-629 |#2|) (-629 |#1|)))) (-327 |#2|) (-960)) (T -326)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-3187 (((-85) $) 22 T ELT)) (-1310 (((-3 $ "failed") $ $) 26 T ELT)) (-3722 (($) 23 T CONST)) (-2278 (((-629 |#1|) (-629 $)) 36 T ELT) (((-2 (|:| |mat| (-629 |#1|)) (|:| |vec| (-1177 |#1|))) (-629 $) (-1177 $)) 35 T ELT) (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-629 $) (-1177 $)) 47 (|has| |#1| (-579 (-483))) ELT) (((-629 (-483)) (-629 $)) 46 (|has| |#1| (-579 (-483))) ELT)) (-1212 (((-85) $ $) 20 T ELT)) (-2279 (((-629 |#1|) (-1177 $)) 38 T ELT) (((-2 (|:| |mat| (-629 |#1|)) (|:| |vec| (-1177 |#1|))) (-1177 $) $) 37 T ELT) (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) 45 (|has| |#1| (-579 (-483))) ELT) (((-629 (-483)) (-1177 $)) 44 (|has| |#1| (-579 (-483))) ELT)) (-3241 (((-1071) $) 11 T ELT)) (-3242 (((-1032) $) 12 T ELT)) (-3944 (((-771) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2659 (($) 24 T CONST)) (-3055 (((-85) $ $) 8 T ELT)) (-3835 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3837 (($ $ $) 18 T ELT)) (* (($ (-829) $) 17 T ELT) (($ (-693) $) 21 T ELT) (($ (-483) $) 30 T ELT) (($ |#1| $) 33 T ELT))) -(((-327 |#1|) (-113) (-960)) (T -327)) -NIL -(-13 (-579 |t#1|) (-10 -7 (IF (|has| |t#1| (-579 (-483))) (-6 (-579 (-483))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-551 (-771)) . T) ((-13) . T) ((-587 (-483)) . T) ((-587 |#1|) . T) ((-589 (-483)) |has| |#1| (-579 (-483))) ((-589 |#1|) . T) ((-579 (-483)) |has| |#1| (-579 (-483))) ((-579 |#1|) . T) ((-1012) . T) ((-1127) . T)) -((-2567 (((-85) $ $) NIL T ELT)) (-3187 (((-85) $) 16 T ELT)) (-3128 (((-483) $) 44 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3980 $) (|:| |associate| $)) $) NIL T ELT)) (-2062 (($ $) NIL T ELT)) (-2060 (((-85) $) NIL T ELT)) (-3769 (($ $) 120 T ELT)) (-3490 (($ $) 81 T ELT)) (-3637 (($ $) 72 T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3773 (($ $) NIL T ELT)) (-3969 (((-346 $) $) NIL T ELT)) (-3036 (($ $) 28 T ELT)) (-1606 (((-85) $ $) NIL T ELT)) (-3488 (($ $) 79 T ELT)) (-3636 (($ $) 67 T ELT)) (-3621 (((-483) $) 60 T ELT)) (-2440 (($ $ (-483)) 55 T ELT)) (-3492 (($ $) NIL T ELT)) (-3635 (($ $) NIL T ELT)) (-3722 (($) NIL T CONST)) (-3126 (($ $) 122 T ELT)) (-3156 (((-3 (-483) #1#) $) 217 T ELT) (((-3 (-348 (-483)) #1#) $) 213 T ELT)) (-3155 (((-483) $) 215 T ELT) (((-348 (-483)) $) 211 T ELT)) (-2563 (($ $ $) NIL T ELT)) (-1743 (((-483) $ $) 110 T ELT)) (-3465 (((-3 $ #1#) $) 125 T ELT)) (-1742 (((-348 (-483)) $ (-693)) 218 T ELT) (((-348 (-483)) $ (-693) (-693)) 210 T ELT)) (-2562 (($ $ $) NIL T ELT)) (-2740 (((-2 (|:| -3952 (-582 $)) (|:| -2408 $)) (-582 $)) NIL T ELT)) (-3721 (((-85) $) NIL T ELT)) (-1766 (((-829)) 106 T ELT) (((-829) (-829)) 107 (|has| $ (-6 -3984)) ELT)) (-3185 (((-85) $) 38 T ELT)) (-3625 (($) 22 T ELT)) (-2795 (((-797 (-328) $) $ (-799 (-328)) (-797 (-328) $)) NIL T ELT)) (-1735 (((-1183) (-693)) 177 T ELT)) (-1736 (((-1183)) 182 T ELT) (((-1183) (-693)) 183 T ELT)) (-1738 (((-1183)) 184 T ELT) (((-1183) (-693)) 185 T ELT)) (-1737 (((-1183)) 180 T ELT) (((-1183) (-693)) 181 T ELT)) (-3770 (((-483) $) 50 T ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-2409 (((-85) $) 21 T ELT)) (-3010 (($ $ (-483)) NIL T ELT)) (-2442 (($ $) 32 T ELT)) (-3131 (($ $) NIL T ELT)) (-3186 (((-85) $) 18 T ELT)) (-1603 (((-3 (-582 $) #1#) (-582 $) $) NIL T ELT)) (-2530 (($ $ $) NIL T ELT) (($) NIL (-12 (-2559 (|has| $ (-6 -3976))) (-2559 (|has| $ (-6 -3984)))) ELT)) (-2856 (($ $ $) NIL T ELT) (($) NIL (-12 (-2559 (|has| $ (-6 -3976))) (-2559 (|has| $ (-6 -3984)))) ELT)) (-1768 (((-483) $) 112 T ELT)) (-1741 (($) 90 T ELT) (($ $) 97 T ELT)) (-1740 (($) 96 T ELT) (($ $) 98 T ELT)) (-3940 (($ $) 84 T ELT)) (-1889 (($ $ $) NIL T ELT) (($ (-582 $)) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-2483 (($ $) 127 T ELT)) (-1765 (((-829) (-483)) 27 (|has| $ (-6 -3984)) ELT)) (-3242 (((-1032) $) NIL T ELT)) (-2707 (((-1083 $) (-1083 $) (-1083 $)) NIL T ELT)) (-3143 (($ $ $) NIL T ELT) (($ (-582 $)) NIL T ELT)) (-3127 (($ $) 41 T ELT)) (-3129 (($ $) 119 T ELT)) (-3253 (($ (-483) (-483)) 115 T ELT) (($ (-483) (-483) (-829)) 116 T ELT)) (-3730 (((-346 $) $) NIL T ELT)) (-1604 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3464 (((-3 $ #1#) $ $) NIL T ELT)) (-2739 (((-631 (-582 $)) (-582 $) $) NIL T ELT)) (-2400 (((-483) $) 113 T ELT)) (-1739 (($) 99 T ELT)) (-3941 (($ $) 78 T ELT)) (-1605 (((-693) $) NIL T ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL T ELT)) (-2614 (((-829)) 108 T ELT) (((-829) (-829)) 109 (|has| $ (-6 -3984)) ELT)) (-3756 (($ $) 126 T ELT) (($ $ (-693)) NIL T ELT)) (-1764 (((-829) (-483)) 31 (|has| $ (-6 -3984)) ELT)) (-3493 (($ $) NIL T ELT)) (-3634 (($ $) NIL T ELT)) (-3491 (($ $) NIL T ELT)) (-3633 (($ $) NIL T ELT)) (-3489 (($ $) 80 T ELT)) (-3632 (($ $) 71 T ELT)) (-3970 (((-328) $) 202 T ELT) (((-179) $) 204 T ELT) (((-799 (-328)) $) NIL T ELT) (((-1071) $) 188 T ELT) (((-472) $) 200 T ELT) (($ (-179)) 209 T ELT)) (-3944 (((-771) $) 192 T ELT) (($ (-483)) 214 T ELT) (($ $) NIL T ELT) (($ (-348 (-483))) NIL T ELT) (($ (-483)) 214 T ELT) (($ (-348 (-483))) NIL T ELT) (((-179) $) 205 T ELT)) (-3125 (((-693)) NIL T CONST)) (-3130 (($ $) 121 T ELT)) (-1767 (((-829)) 42 T ELT) (((-829) (-829)) 62 (|has| $ (-6 -3984)) ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2693 (((-829)) 111 T ELT)) (-3496 (($ $) 87 T ELT)) (-3484 (($ $) 30 T ELT) (($ $ $) 40 T ELT)) (-2061 (((-85) $ $) NIL T ELT)) (-3494 (($ $) 85 T ELT)) (-3482 (($ $) 20 T ELT)) (-3498 (($ $) NIL T ELT)) (-3486 (($ $) NIL T ELT)) (-3124 (((-85) $ $) NIL T ELT)) (-3499 (($ $) NIL T ELT)) (-3487 (($ $) NIL T ELT)) (-3497 (($ $) NIL T ELT)) (-3485 (($ $) NIL T ELT)) (-3495 (($ $) 86 T ELT)) (-3483 (($ $) 33 T ELT)) (-3381 (($ $) 39 T ELT)) (-2659 (($) 17 T CONST)) (-2665 (($) 24 T CONST)) (-2668 (($ $) NIL T ELT) (($ $ (-693)) NIL T ELT)) (-2565 (((-85) $ $) 189 T ELT)) (-2566 (((-85) $ $) 26 T ELT)) (-3055 (((-85) $ $) 37 T ELT)) (-2683 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) 43 T ELT)) (-3947 (($ $ $) 29 T ELT) (($ $ (-483)) 23 T ELT)) (-3835 (($ $) 19 T ELT) (($ $ $) 34 T ELT)) (-3837 (($ $ $) 54 T ELT)) (** (($ $ (-829)) 65 T ELT) (($ $ (-693)) NIL T ELT) (($ $ (-483)) 91 T ELT) (($ $ (-348 (-483))) 137 T ELT) (($ $ $) 129 T ELT)) (* (($ (-829) $) 61 T ELT) (($ (-693) $) NIL T ELT) (($ (-483) $) 66 T ELT) (($ $ $) 53 T ELT) (($ $ (-348 (-483))) NIL T ELT) (($ (-348 (-483)) $) NIL T ELT))) -(((-328) (-13 (-345) (-190) (-552 (-1071)) (-551 (-179)) (-1113) (-552 (-472)) (-556 (-179)) (-10 -8 (-15 -3947 ($ $ (-483))) (-15 ** ($ $ $)) (-15 -2442 ($ $)) (-15 -1743 ((-483) $ $)) (-15 -2440 ($ $ (-483))) (-15 -1742 ((-348 (-483)) $ (-693))) (-15 -1742 ((-348 (-483)) $ (-693) (-693))) (-15 -1741 ($)) (-15 -1740 ($)) (-15 -1739 ($)) (-15 -3484 ($ $ $)) (-15 -1741 ($ $)) (-15 -1740 ($ $)) (-15 -1738 ((-1183))) (-15 -1738 ((-1183) (-693))) (-15 -1737 ((-1183))) (-15 -1737 ((-1183) (-693))) (-15 -1736 ((-1183))) (-15 -1736 ((-1183) (-693))) (-15 -1735 ((-1183) (-693))) (-6 -3984) (-6 -3976)))) (T -328)) -((** (*1 *1 *1 *1) (-5 *1 (-328))) (-3947 (*1 *1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-328)))) (-2442 (*1 *1 *1) (-5 *1 (-328))) (-1743 (*1 *2 *1 *1) (-12 (-5 *2 (-483)) (-5 *1 (-328)))) (-2440 (*1 *1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-328)))) (-1742 (*1 *2 *1 *3) (-12 (-5 *3 (-693)) (-5 *2 (-348 (-483))) (-5 *1 (-328)))) (-1742 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-693)) (-5 *2 (-348 (-483))) (-5 *1 (-328)))) (-1741 (*1 *1) (-5 *1 (-328))) (-1740 (*1 *1) (-5 *1 (-328))) (-1739 (*1 *1) (-5 *1 (-328))) (-3484 (*1 *1 *1 *1) (-5 *1 (-328))) (-1741 (*1 *1 *1) (-5 *1 (-328))) (-1740 (*1 *1 *1) (-5 *1 (-328))) (-1738 (*1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-328)))) (-1738 (*1 *2 *3) (-12 (-5 *3 (-693)) (-5 *2 (-1183)) (-5 *1 (-328)))) (-1737 (*1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-328)))) (-1737 (*1 *2 *3) (-12 (-5 *3 (-693)) (-5 *2 (-1183)) (-5 *1 (-328)))) (-1736 (*1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-328)))) (-1736 (*1 *2 *3) (-12 (-5 *3 (-693)) (-5 *2 (-1183)) (-5 *1 (-328)))) (-1735 (*1 *2 *3) (-12 (-5 *3 (-693)) (-5 *2 (-1183)) (-5 *1 (-328))))) -((-1744 (((-582 (-249 (-856 (-142 |#1|)))) (-249 (-348 (-856 (-142 (-483))))) |#1|) 52 T ELT) (((-582 (-249 (-856 (-142 |#1|)))) (-348 (-856 (-142 (-483)))) |#1|) 51 T ELT) (((-582 (-582 (-249 (-856 (-142 |#1|))))) (-582 (-249 (-348 (-856 (-142 (-483)))))) |#1|) 48 T ELT) (((-582 (-582 (-249 (-856 (-142 |#1|))))) (-582 (-348 (-856 (-142 (-483))))) |#1|) 42 T ELT)) (-1745 (((-582 (-582 (-142 |#1|))) (-582 (-348 (-856 (-142 (-483))))) (-582 (-1088)) |#1|) 30 T ELT) (((-582 (-142 |#1|)) (-348 (-856 (-142 (-483)))) |#1|) 18 T ELT))) -(((-329 |#1|) (-10 -7 (-15 -1744 ((-582 (-582 (-249 (-856 (-142 |#1|))))) (-582 (-348 (-856 (-142 (-483))))) |#1|)) (-15 -1744 ((-582 (-582 (-249 (-856 (-142 |#1|))))) (-582 (-249 (-348 (-856 (-142 (-483)))))) |#1|)) (-15 -1744 ((-582 (-249 (-856 (-142 |#1|)))) (-348 (-856 (-142 (-483)))) |#1|)) (-15 -1744 ((-582 (-249 (-856 (-142 |#1|)))) (-249 (-348 (-856 (-142 (-483))))) |#1|)) (-15 -1745 ((-582 (-142 |#1|)) (-348 (-856 (-142 (-483)))) |#1|)) (-15 -1745 ((-582 (-582 (-142 |#1|))) (-582 (-348 (-856 (-142 (-483))))) (-582 (-1088)) |#1|))) (-13 (-312) (-754))) (T -329)) -((-1745 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-582 (-348 (-856 (-142 (-483)))))) (-5 *4 (-582 (-1088))) (-5 *2 (-582 (-582 (-142 *5)))) (-5 *1 (-329 *5)) (-4 *5 (-13 (-312) (-754))))) (-1745 (*1 *2 *3 *4) (-12 (-5 *3 (-348 (-856 (-142 (-483))))) (-5 *2 (-582 (-142 *4))) (-5 *1 (-329 *4)) (-4 *4 (-13 (-312) (-754))))) (-1744 (*1 *2 *3 *4) (-12 (-5 *3 (-249 (-348 (-856 (-142 (-483)))))) (-5 *2 (-582 (-249 (-856 (-142 *4))))) (-5 *1 (-329 *4)) (-4 *4 (-13 (-312) (-754))))) (-1744 (*1 *2 *3 *4) (-12 (-5 *3 (-348 (-856 (-142 (-483))))) (-5 *2 (-582 (-249 (-856 (-142 *4))))) (-5 *1 (-329 *4)) (-4 *4 (-13 (-312) (-754))))) (-1744 (*1 *2 *3 *4) (-12 (-5 *3 (-582 (-249 (-348 (-856 (-142 (-483))))))) (-5 *2 (-582 (-582 (-249 (-856 (-142 *4)))))) (-5 *1 (-329 *4)) (-4 *4 (-13 (-312) (-754))))) (-1744 (*1 *2 *3 *4) (-12 (-5 *3 (-582 (-348 (-856 (-142 (-483)))))) (-5 *2 (-582 (-582 (-249 (-856 (-142 *4)))))) (-5 *1 (-329 *4)) (-4 *4 (-13 (-312) (-754)))))) -((-3571 (((-582 (-249 (-856 |#1|))) (-249 (-348 (-856 (-483)))) |#1|) 47 T ELT) (((-582 (-249 (-856 |#1|))) (-348 (-856 (-483))) |#1|) 46 T ELT) (((-582 (-582 (-249 (-856 |#1|)))) (-582 (-249 (-348 (-856 (-483))))) |#1|) 43 T ELT) (((-582 (-582 (-249 (-856 |#1|)))) (-582 (-348 (-856 (-483)))) |#1|) 37 T ELT)) (-1746 (((-582 |#1|) (-348 (-856 (-483))) |#1|) 20 T ELT) (((-582 (-582 |#1|)) (-582 (-348 (-856 (-483)))) (-582 (-1088)) |#1|) 30 T ELT))) -(((-330 |#1|) (-10 -7 (-15 -3571 ((-582 (-582 (-249 (-856 |#1|)))) (-582 (-348 (-856 (-483)))) |#1|)) (-15 -3571 ((-582 (-582 (-249 (-856 |#1|)))) (-582 (-249 (-348 (-856 (-483))))) |#1|)) (-15 -3571 ((-582 (-249 (-856 |#1|))) (-348 (-856 (-483))) |#1|)) (-15 -3571 ((-582 (-249 (-856 |#1|))) (-249 (-348 (-856 (-483)))) |#1|)) (-15 -1746 ((-582 (-582 |#1|)) (-582 (-348 (-856 (-483)))) (-582 (-1088)) |#1|)) (-15 -1746 ((-582 |#1|) (-348 (-856 (-483))) |#1|))) (-13 (-754) (-312))) (T -330)) -((-1746 (*1 *2 *3 *4) (-12 (-5 *3 (-348 (-856 (-483)))) (-5 *2 (-582 *4)) (-5 *1 (-330 *4)) (-4 *4 (-13 (-754) (-312))))) (-1746 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-582 (-348 (-856 (-483))))) (-5 *4 (-582 (-1088))) (-5 *2 (-582 (-582 *5))) (-5 *1 (-330 *5)) (-4 *5 (-13 (-754) (-312))))) (-3571 (*1 *2 *3 *4) (-12 (-5 *3 (-249 (-348 (-856 (-483))))) (-5 *2 (-582 (-249 (-856 *4)))) (-5 *1 (-330 *4)) (-4 *4 (-13 (-754) (-312))))) (-3571 (*1 *2 *3 *4) (-12 (-5 *3 (-348 (-856 (-483)))) (-5 *2 (-582 (-249 (-856 *4)))) (-5 *1 (-330 *4)) (-4 *4 (-13 (-754) (-312))))) (-3571 (*1 *2 *3 *4) (-12 (-5 *3 (-582 (-249 (-348 (-856 (-483)))))) (-5 *2 (-582 (-582 (-249 (-856 *4))))) (-5 *1 (-330 *4)) (-4 *4 (-13 (-754) (-312))))) (-3571 (*1 *2 *3 *4) (-12 (-5 *3 (-582 (-348 (-856 (-483))))) (-5 *2 (-582 (-582 (-249 (-856 *4))))) (-5 *1 (-330 *4)) (-4 *4 (-13 (-754) (-312)))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3187 (((-85) $) NIL T ELT)) (-3772 (((-582 (-452 |#1| |#2|)) $) NIL T ELT)) (-1310 (((-3 $ "failed") $ $) NIL T ELT)) (-3722 (($) NIL T CONST)) (-3957 (($ $) NIL T ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-2892 (($ |#1| |#2|) NIL T ELT)) (-3956 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1982 ((|#2| $) NIL T ELT)) (-3173 ((|#1| $) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3970 (($ (-582 (-452 |#1| |#2|))) NIL T ELT)) (-3944 (((-771) $) 34 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2659 (($) 12 T CONST)) (-3055 (((-85) $ $) NIL T ELT)) (-3835 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3837 (($ $ $) NIL T ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ |#1| $) 15 T ELT) (($ $ |#1|) 18 T ELT))) -(((-331 |#1| |#2|) (-13 (-82 |#1| |#1|) (-448 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-146)) (-6 (-653 |#1|)) |%noBranch|))) (-960) (-758)) (T -331)) -NIL -((-2567 (((-85) $ $) NIL T ELT)) (-3187 (((-85) $) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3722 (($) NIL T CONST)) (-3156 (((-3 |#2| #1#) $) 29 T ELT)) (-3155 ((|#2| $) 31 T ELT)) (-3957 (($ $) NIL T ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-2419 (((-693) $) 13 T ELT)) (-2820 (((-582 $) $) 23 T ELT)) (-3935 (((-85) $) NIL T ELT)) (-3936 (($ |#2| |#1|) 21 T ELT)) (-3956 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1747 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 17 T ELT)) (-2893 ((|#2| $) 18 T ELT)) (-3173 ((|#1| $) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3944 (((-771) $) 50 T ELT) (($ |#2|) 30 T ELT)) (-3815 (((-582 |#1|) $) 20 T ELT)) (-3675 ((|#1| $ |#2|) 54 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2659 (($) 32 T CONST)) (-2664 (((-582 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 14 T ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-3835 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3837 (($ $ $) NIL T ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ |#1| $) 35 T ELT) (($ $ |#1|) 36 T ELT) (($ |#1| |#2|) 38 T ELT) (($ |#2| |#1|) 39 T ELT))) -(((-332 |#1| |#2|) (-13 (-333 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-960) (-755)) (T -332)) -((* (*1 *1 *2 *3) (-12 (-5 *1 (-332 *3 *2)) (-4 *3 (-960)) (-4 *2 (-755))))) -((-2567 (((-85) $ $) 7 T ELT)) (-3187 (((-85) $) 22 T ELT)) (-1310 (((-3 $ "failed") $ $) 26 T ELT)) (-3722 (($) 23 T CONST)) (-3156 (((-3 |#2| "failed") $) 55 T ELT)) (-3155 ((|#2| $) 56 T ELT)) (-3957 (($ $) 41 T ELT)) (-1212 (((-85) $ $) 20 T ELT)) (-2419 (((-693) $) 45 T ELT)) (-2820 (((-582 $) $) 46 T ELT)) (-3935 (((-85) $) 49 T ELT)) (-3936 (($ |#2| |#1|) 50 T ELT)) (-3956 (($ (-1 |#1| |#1|) $) 51 T ELT)) (-1747 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 42 T ELT)) (-2893 ((|#2| $) 44 T ELT)) (-3173 ((|#1| $) 43 T ELT)) (-3241 (((-1071) $) 11 T ELT)) (-3242 (((-1032) $) 12 T ELT)) (-3944 (((-771) $) 13 T ELT) (($ |#2|) 54 T ELT)) (-3815 (((-582 |#1|) $) 47 T ELT)) (-3675 ((|#1| $ |#2|) 52 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2659 (($) 24 T CONST)) (-2664 (((-582 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 48 T ELT)) (-3055 (((-85) $ $) 8 T ELT)) (-3835 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3837 (($ $ $) 18 T ELT)) (* (($ (-829) $) 17 T ELT) (($ (-693) $) 21 T ELT) (($ (-483) $) 30 T ELT) (($ |#1| $) 33 T ELT) (($ $ |#1|) 37 T ELT) (($ |#1| |#2|) 53 T ELT))) -(((-333 |#1| |#2|) (-113) (-960) (-1012)) (T -333)) -((* (*1 *1 *2 *3) (-12 (-4 *1 (-333 *2 *3)) (-4 *2 (-960)) (-4 *3 (-1012)))) (-3675 (*1 *2 *1 *3) (-12 (-4 *1 (-333 *2 *3)) (-4 *3 (-1012)) (-4 *2 (-960)))) (-3956 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-333 *3 *4)) (-4 *3 (-960)) (-4 *4 (-1012)))) (-3936 (*1 *1 *2 *3) (-12 (-4 *1 (-333 *3 *2)) (-4 *3 (-960)) (-4 *2 (-1012)))) (-3935 (*1 *2 *1) (-12 (-4 *1 (-333 *3 *4)) (-4 *3 (-960)) (-4 *4 (-1012)) (-5 *2 (-85)))) (-2664 (*1 *2 *1) (-12 (-4 *1 (-333 *3 *4)) (-4 *3 (-960)) (-4 *4 (-1012)) (-5 *2 (-582 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-3815 (*1 *2 *1) (-12 (-4 *1 (-333 *3 *4)) (-4 *3 (-960)) (-4 *4 (-1012)) (-5 *2 (-582 *3)))) (-2820 (*1 *2 *1) (-12 (-4 *3 (-960)) (-4 *4 (-1012)) (-5 *2 (-582 *1)) (-4 *1 (-333 *3 *4)))) (-2419 (*1 *2 *1) (-12 (-4 *1 (-333 *3 *4)) (-4 *3 (-960)) (-4 *4 (-1012)) (-5 *2 (-693)))) (-2893 (*1 *2 *1) (-12 (-4 *1 (-333 *3 *2)) (-4 *3 (-960)) (-4 *2 (-1012)))) (-3173 (*1 *2 *1) (-12 (-4 *1 (-333 *2 *3)) (-4 *3 (-1012)) (-4 *2 (-960)))) (-1747 (*1 *2 *1) (-12 (-4 *1 (-333 *3 *4)) (-4 *3 (-960)) (-4 *4 (-1012)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-3957 (*1 *1 *1) (-12 (-4 *1 (-333 *2 *3)) (-4 *2 (-960)) (-4 *3 (-1012))))) -(-13 (-82 |t#1| |t#1|) (-949 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -3675 (|t#1| $ |t#2|)) (-15 -3956 ($ (-1 |t#1| |t#1|) $)) (-15 -3936 ($ |t#2| |t#1|)) (-15 -3935 ((-85) $)) (-15 -2664 ((-582 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -3815 ((-582 |t#1|) $)) (-15 -2820 ((-582 $) $)) (-15 -2419 ((-693) $)) (-15 -2893 (|t#2| $)) (-15 -3173 (|t#1| $)) (-15 -1747 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -3957 ($ $)) (IF (|has| |t#1| (-146)) (-6 (-653 |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-554 |#2|) . T) ((-551 (-771)) . T) ((-13) . T) ((-587 (-483)) . T) ((-587 |#1|) . T) ((-589 |#1|) . T) ((-581 |#1|) |has| |#1| (-146)) ((-653 |#1|) |has| |#1| (-146)) ((-949 |#2|) . T) ((-962 |#1|) . T) ((-967 |#1|) . T) ((-1012) . T) ((-1127) . T)) -((-2567 (((-85) $ $) 7 T ELT)) (-3135 (((-693) $) 40 T ELT)) (-3722 (($) 23 T CONST)) (-3937 (((-3 $ "failed") $ $) 43 T ELT)) (-3156 (((-3 |#1| "failed") $) 51 T ELT)) (-3155 ((|#1| $) 52 T ELT)) (-3465 (((-3 $ "failed") $) 20 T ELT)) (-1748 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 41 T ELT)) (-2409 (((-85) $) 22 T ELT)) (-2298 ((|#1| $ (-483)) 37 T ELT)) (-2299 (((-693) $ (-483)) 38 T ELT)) (-2530 (($ $ $) 29 (|has| |#1| (-755)) ELT)) (-2856 (($ $ $) 30 (|has| |#1| (-755)) ELT)) (-2289 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-2290 (($ (-1 (-693) (-693)) $) 36 T ELT)) (-3938 (((-3 $ "failed") $ $) 44 T ELT)) (-3241 (((-1071) $) 11 T ELT)) (-1749 (($ $ $) 45 T ELT)) (-1750 (($ $ $) 46 T ELT)) (-3242 (((-1032) $) 12 T ELT)) (-1777 (((-582 (-2 (|:| |gen| |#1|) (|:| -3941 (-693)))) $) 39 T ELT)) (-2878 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 42 T ELT)) (-3944 (((-771) $) 13 T ELT) (($ |#1|) 50 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2665 (($) 24 T CONST)) (-2565 (((-85) $ $) 31 (|has| |#1| (-755)) ELT)) (-2566 (((-85) $ $) 33 (|has| |#1| (-755)) ELT)) (-3055 (((-85) $ $) 8 T ELT)) (-2683 (((-85) $ $) 32 (|has| |#1| (-755)) ELT)) (-2684 (((-85) $ $) 34 (|has| |#1| (-755)) ELT)) (** (($ $ (-829)) 17 T ELT) (($ $ (-693)) 21 T ELT) (($ |#1| (-693)) 47 T ELT)) (* (($ $ $) 18 T ELT) (($ |#1| $) 49 T ELT) (($ $ |#1|) 48 T ELT))) -(((-334 |#1|) (-113) (-1012)) (T -334)) -((* (*1 *1 *2 *1) (-12 (-4 *1 (-334 *2)) (-4 *2 (-1012)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-334 *2)) (-4 *2 (-1012)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-693)) (-4 *1 (-334 *2)) (-4 *2 (-1012)))) (-1750 (*1 *1 *1 *1) (-12 (-4 *1 (-334 *2)) (-4 *2 (-1012)))) (-1749 (*1 *1 *1 *1) (-12 (-4 *1 (-334 *2)) (-4 *2 (-1012)))) (-3938 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-334 *2)) (-4 *2 (-1012)))) (-3937 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-334 *2)) (-4 *2 (-1012)))) (-2878 (*1 *2 *1 *1) (|partial| -12 (-4 *3 (-1012)) (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) (-4 *1 (-334 *3)))) (-1748 (*1 *2 *1 *1) (-12 (-4 *3 (-1012)) (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1))) (-4 *1 (-334 *3)))) (-3135 (*1 *2 *1) (-12 (-4 *1 (-334 *3)) (-4 *3 (-1012)) (-5 *2 (-693)))) (-1777 (*1 *2 *1) (-12 (-4 *1 (-334 *3)) (-4 *3 (-1012)) (-5 *2 (-582 (-2 (|:| |gen| *3) (|:| -3941 (-693))))))) (-2299 (*1 *2 *1 *3) (-12 (-5 *3 (-483)) (-4 *1 (-334 *4)) (-4 *4 (-1012)) (-5 *2 (-693)))) (-2298 (*1 *2 *1 *3) (-12 (-5 *3 (-483)) (-4 *1 (-334 *2)) (-4 *2 (-1012)))) (-2290 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-693) (-693))) (-4 *1 (-334 *3)) (-4 *3 (-1012)))) (-2289 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-334 *3)) (-4 *3 (-1012))))) -(-13 (-662) (-949 |t#1|) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 ** ($ |t#1| (-693))) (-15 -1750 ($ $ $)) (-15 -1749 ($ $ $)) (-15 -3938 ((-3 $ "failed") $ $)) (-15 -3937 ((-3 $ "failed") $ $)) (-15 -2878 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1748 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3135 ((-693) $)) (-15 -1777 ((-582 (-2 (|:| |gen| |t#1|) (|:| -3941 (-693)))) $)) (-15 -2299 ((-693) $ (-483))) (-15 -2298 (|t#1| $ (-483))) (-15 -2290 ($ (-1 (-693) (-693)) $)) (-15 -2289 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-755)) (-6 (-755)) |%noBranch|))) -(((-72) . T) ((-554 |#1|) . T) ((-551 (-771)) . T) ((-13) . T) ((-662) . T) ((-755) |has| |#1| (-755)) ((-758) |has| |#1| (-755)) ((-949 |#1|) . T) ((-1024) . T) ((-1012) . T) ((-1127) . T)) -((-2567 (((-85) $ $) NIL T ELT)) (-3135 (((-693) $) 74 T ELT)) (-3722 (($) NIL T CONST)) (-3937 (((-3 $ #1="failed") $ $) 77 T ELT)) (-3156 (((-3 |#1| #1#) $) NIL T ELT)) (-3155 ((|#1| $) NIL T ELT)) (-3465 (((-3 $ #1#) $) NIL T ELT)) (-1748 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 64 T ELT)) (-2409 (((-85) $) 17 T ELT)) (-2298 ((|#1| $ (-483)) NIL T ELT)) (-2299 (((-693) $ (-483)) NIL T ELT)) (-2530 (($ $ $) NIL (|has| |#1| (-755)) ELT)) (-2856 (($ $ $) NIL (|has| |#1| (-755)) ELT)) (-2289 (($ (-1 |#1| |#1|) $) 40 T ELT)) (-2290 (($ (-1 (-693) (-693)) $) 37 T ELT)) (-3938 (((-3 $ #1#) $ $) 60 T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-1749 (($ $ $) 28 T ELT)) (-1750 (($ $ $) 26 T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-1777 (((-582 (-2 (|:| |gen| |#1|) (|:| -3941 (-693)))) $) 34 T ELT)) (-2878 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) #1#) $ $) 70 T ELT)) (-3944 (((-771) $) 24 T ELT) (($ |#1|) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2665 (($) 7 T CONST)) (-2565 (((-85) $ $) NIL (|has| |#1| (-755)) ELT)) (-2566 (((-85) $ $) NIL (|has| |#1| (-755)) ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-2683 (((-85) $ $) NIL (|has| |#1| (-755)) ELT)) (-2684 (((-85) $ $) 83 (|has| |#1| (-755)) ELT)) (** (($ $ (-829)) NIL T ELT) (($ $ (-693)) NIL T ELT) (($ |#1| (-693)) 42 T ELT)) (* (($ $ $) 52 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 30 T ELT))) -(((-335 |#1|) (-334 |#1|) (-1012)) (T -335)) -NIL -((-2567 (((-85) $ $) NIL T ELT)) (-1751 (((-85) $) 25 T ELT)) (-1752 (((-85) $) 22 T ELT)) (-3612 (($ (-1071) (-1071) (-1071)) 26 T ELT)) (-3540 (((-1071) $) 16 T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-1756 (($ (-1071) (-1071) (-1071)) 14 T ELT)) (-1754 (((-1071) $) 17 T ELT)) (-1753 (((-85) $) 18 T ELT)) (-1755 (((-1071) $) 15 T ELT)) (-3944 (((-771) $) 12 T ELT) (($ (-1071)) 13 T ELT) (((-1071) $) 9 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) 7 T ELT))) -(((-336) (-337)) (T -336)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-1751 (((-85) $) 20 T ELT)) (-1752 (((-85) $) 21 T ELT)) (-3612 (($ (-1071) (-1071) (-1071)) 19 T ELT)) (-3540 (((-1071) $) 24 T ELT)) (-3241 (((-1071) $) 11 T ELT)) (-3242 (((-1032) $) 12 T ELT)) (-1756 (($ (-1071) (-1071) (-1071)) 26 T ELT)) (-1754 (((-1071) $) 23 T ELT)) (-1753 (((-85) $) 22 T ELT)) (-1755 (((-1071) $) 25 T ELT)) (-3944 (((-771) $) 13 T ELT) (($ (-1071)) 28 T ELT) (((-1071) $) 27 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-3055 (((-85) $ $) 8 T ELT))) -(((-337) (-113)) (T -337)) -((-1756 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1071)) (-4 *1 (-337)))) (-1755 (*1 *2 *1) (-12 (-4 *1 (-337)) (-5 *2 (-1071)))) (-3540 (*1 *2 *1) (-12 (-4 *1 (-337)) (-5 *2 (-1071)))) (-1754 (*1 *2 *1) (-12 (-4 *1 (-337)) (-5 *2 (-1071)))) (-1753 (*1 *2 *1) (-12 (-4 *1 (-337)) (-5 *2 (-85)))) (-1752 (*1 *2 *1) (-12 (-4 *1 (-337)) (-5 *2 (-85)))) (-1751 (*1 *2 *1) (-12 (-4 *1 (-337)) (-5 *2 (-85)))) (-3612 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1071)) (-4 *1 (-337))))) -(-13 (-1012) (-428 (-1071)) (-10 -8 (-15 -1756 ($ (-1071) (-1071) (-1071))) (-15 -1755 ((-1071) $)) (-15 -3540 ((-1071) $)) (-15 -1754 ((-1071) $)) (-15 -1753 ((-85) $)) (-15 -1752 ((-85) $)) (-15 -1751 ((-85) $)) (-15 -3612 ($ (-1071) (-1071) (-1071))))) -(((-72) . T) ((-554 (-1071)) . T) ((-551 (-771)) . T) ((-551 (-1071)) . T) ((-428 (-1071)) . T) ((-13) . T) ((-1012) . T) ((-1127) . T)) -((-2567 (((-85) $ $) NIL T ELT)) (-3187 (((-85) $) NIL T ELT)) (-1310 (((-3 $ "failed") $ $) NIL T ELT)) (-1757 (((-771) $) 64 T ELT)) (-3722 (($) NIL T CONST)) (-2406 (($ $ (-829)) NIL T ELT)) (-2432 (($ $ (-829)) NIL T ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-2405 (($ $ (-829)) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-2408 (($ (-693)) 38 T ELT)) (-3909 (((-693)) 18 T ELT)) (-1758 (((-771) $) 66 T ELT)) (-2434 (($ $ $) NIL T ELT)) (-3944 (((-771) $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2435 (($ $ $ $) NIL T ELT)) (-2433 (($ $ $) NIL T ELT)) (-2659 (($) 24 T CONST)) (-3055 (((-85) $ $) 41 T ELT)) (-3835 (($ $) 48 T ELT) (($ $ $) 50 T ELT)) (-3837 (($ $ $) 51 T ELT)) (** (($ $ (-829)) NIL T ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) 52 T ELT) (($ $ |#3|) NIL T ELT) (($ |#3| $) 47 T ELT))) -(((-338 |#1| |#2| |#3|) (-13 (-682 |#3|) (-10 -8 (-15 -3909 ((-693))) (-15 -1758 ((-771) $)) (-15 -1757 ((-771) $)) (-15 -2408 ($ (-693))))) (-693) (-693) (-146)) (T -338)) -((-3909 (*1 *2) (-12 (-5 *2 (-693)) (-5 *1 (-338 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-146)))) (-1758 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-338 *3 *4 *5)) (-14 *3 (-693)) (-14 *4 (-693)) (-4 *5 (-146)))) (-1757 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-338 *3 *4 *5)) (-14 *3 (-693)) (-14 *4 (-693)) (-4 *5 (-146)))) (-2408 (*1 *1 *2) (-12 (-5 *2 (-693)) (-5 *1 (-338 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-146))))) -((-3770 (((-693) (-283 |#1| |#2| |#3| |#4|)) 16 T ELT))) -(((-339 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3770 ((-693) (-283 |#1| |#2| |#3| |#4|)))) (-13 (-318) (-312)) (-1153 |#1|) (-1153 (-348 |#2|)) (-291 |#1| |#2| |#3|)) (T -339)) -((-3770 (*1 *2 *3) (-12 (-5 *3 (-283 *4 *5 *6 *7)) (-4 *4 (-13 (-318) (-312))) (-4 *5 (-1153 *4)) (-4 *6 (-1153 (-348 *5))) (-4 *7 (-291 *4 *5 *6)) (-5 *2 (-693)) (-5 *1 (-339 *4 *5 *6 *7))))) -((-2567 (((-85) $ $) NIL T ELT)) (-1760 ((|#2| $) 38 T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-1761 (($ (-348 |#2|)) 93 T ELT)) (-1759 (((-582 (-2 (|:| -2400 (-693)) (|:| -3771 |#2|) (|:| |num| |#2|))) $) 39 T ELT)) (-3756 (($ $ (-693)) 36 T ELT) (($ $) 34 T ELT)) (-3970 (((-348 |#2|) $) 49 T ELT)) (-3528 (($ (-582 (-2 (|:| -2400 (-693)) (|:| -3771 |#2|) (|:| |num| |#2|)))) 33 T ELT)) (-3944 (((-771) $) 131 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2668 (($ $ (-693)) 37 T ELT) (($ $) 35 T ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-3837 (($ |#2| $) 41 T ELT))) -(((-340 |#1| |#2|) (-13 (-1012) (-189) (-552 (-348 |#2|)) (-10 -8 (-15 -3837 ($ |#2| $)) (-15 -1761 ($ (-348 |#2|))) (-15 -1760 (|#2| $)) (-15 -1759 ((-582 (-2 (|:| -2400 (-693)) (|:| -3771 |#2|) (|:| |num| |#2|))) $)) (-15 -3528 ($ (-582 (-2 (|:| -2400 (-693)) (|:| -3771 |#2|) (|:| |num| |#2|))))))) (-13 (-312) (-120)) (-1153 |#1|)) (T -340)) -((-3837 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-312) (-120))) (-5 *1 (-340 *3 *2)) (-4 *2 (-1153 *3)))) (-1761 (*1 *1 *2) (-12 (-5 *2 (-348 *4)) (-4 *4 (-1153 *3)) (-4 *3 (-13 (-312) (-120))) (-5 *1 (-340 *3 *4)))) (-1760 (*1 *2 *1) (-12 (-4 *2 (-1153 *3)) (-5 *1 (-340 *3 *2)) (-4 *3 (-13 (-312) (-120))))) (-1759 (*1 *2 *1) (-12 (-4 *3 (-13 (-312) (-120))) (-5 *2 (-582 (-2 (|:| -2400 (-693)) (|:| -3771 *4) (|:| |num| *4)))) (-5 *1 (-340 *3 *4)) (-4 *4 (-1153 *3)))) (-3528 (*1 *1 *2) (-12 (-5 *2 (-582 (-2 (|:| -2400 (-693)) (|:| -3771 *4) (|:| |num| *4)))) (-4 *4 (-1153 *3)) (-4 *3 (-13 (-312) (-120))) (-5 *1 (-340 *3 *4))))) -((-2567 (((-85) $ $) 10 (OR (|has| |#1| (-795 (-483))) (|has| |#1| (-795 (-328)))) ELT)) (-2795 (((-797 (-328) $) $ (-799 (-328)) (-797 (-328) $)) 16 (|has| |#1| (-795 (-328))) ELT) (((-797 (-483) $) $ (-799 (-483)) (-797 (-483) $)) 15 (|has| |#1| (-795 (-483))) ELT)) (-3241 (((-1071) $) 14 (OR (|has| |#1| (-795 (-483))) (|has| |#1| (-795 (-328)))) ELT)) (-3242 (((-1032) $) 13 (OR (|has| |#1| (-795 (-483))) (|has| |#1| (-795 (-328)))) ELT)) (-3944 (((-771) $) 12 (OR (|has| |#1| (-795 (-483))) (|has| |#1| (-795 (-328)))) ELT)) (-1263 (((-85) $ $) 11 (OR (|has| |#1| (-795 (-483))) (|has| |#1| (-795 (-328)))) ELT)) (-3055 (((-85) $ $) 9 (OR (|has| |#1| (-795 (-483))) (|has| |#1| (-795 (-328)))) ELT))) -(((-341 |#1|) (-113) (-1127)) (T -341)) -NIL -(-13 (-1127) (-10 -7 (IF (|has| |t#1| (-795 (-483))) (-6 (-795 (-483))) |%noBranch|) (IF (|has| |t#1| (-795 (-328))) (-6 (-795 (-328))) |%noBranch|))) -(((-72) OR (|has| |#1| (-795 (-483))) (|has| |#1| (-795 (-328)))) ((-551 (-771)) OR (|has| |#1| (-795 (-483))) (|has| |#1| (-795 (-328)))) ((-13) . T) ((-795 (-328)) |has| |#1| (-795 (-328))) ((-795 (-483)) |has| |#1| (-795 (-483))) ((-1012) OR (|has| |#1| (-795 (-483))) (|has| |#1| (-795 (-328)))) ((-1127) . T)) -((-1762 (($ $) 10 T ELT) (($ $ (-693)) 12 T ELT))) -(((-342 |#1|) (-10 -7 (-15 -1762 (|#1| |#1| (-693))) (-15 -1762 (|#1| |#1|))) (-343)) (T -342)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-3187 (((-85) $) 22 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3980 $) (|:| |associate| $)) $) 55 T ELT)) (-2062 (($ $) 54 T ELT)) (-2060 (((-85) $) 52 T ELT)) (-1310 (((-3 $ "failed") $ $) 26 T ELT)) (-3773 (($ $) 91 T ELT)) (-3969 (((-346 $) $) 90 T ELT)) (-1606 (((-85) $ $) 75 T ELT)) (-3722 (($) 23 T CONST)) (-2563 (($ $ $) 71 T ELT)) (-3465 (((-3 $ "failed") $) 42 T ELT)) (-2562 (($ $ $) 72 T ELT)) (-2740 (((-2 (|:| -3952 (-582 $)) (|:| -2408 $)) (-582 $)) 66 T ELT)) (-1762 (($ $) 97 T ELT) (($ $ (-693)) 96 T ELT)) (-3721 (((-85) $) 89 T ELT)) (-3770 (((-742 (-829)) $) 99 T ELT)) (-1212 (((-85) $ $) 20 T ELT)) (-2409 (((-85) $) 44 T ELT)) (-1603 (((-3 (-582 $) #1="failed") (-582 $) $) 68 T ELT)) (-1889 (($ $ $) 60 T ELT) (($ (-582 $)) 59 T ELT)) (-3241 (((-1071) $) 11 T ELT)) (-2483 (($ $) 88 T ELT)) (-3242 (((-1032) $) 12 T ELT)) (-2707 (((-1083 $) (-1083 $) (-1083 $)) 58 T ELT)) (-3143 (($ $ $) 62 T ELT) (($ (-582 $)) 61 T ELT)) (-3730 (((-346 $) $) 92 T ELT)) (-1604 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 69 T ELT)) (-3464 (((-3 $ "failed") $ $) 56 T ELT)) (-2739 (((-631 (-582 $)) (-582 $) $) 65 T ELT)) (-1605 (((-693) $) 74 T ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) 73 T ELT)) (-1763 (((-3 (-693) "failed") $ $) 98 T ELT)) (-3944 (((-771) $) 13 T ELT) (($ (-483)) 41 T ELT) (($ $) 57 T ELT) (($ (-348 (-483))) 84 T ELT)) (-2701 (((-631 $) $) 100 T ELT)) (-3125 (((-693)) 40 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-2061 (((-85) $ $) 53 T ELT)) (-3124 (((-85) $ $) 33 T ELT)) (-2659 (($) 24 T CONST)) (-2665 (($) 45 T CONST)) (-3055 (((-85) $ $) 8 T ELT)) (-3947 (($ $ $) 83 T ELT)) (-3835 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3837 (($ $ $) 18 T ELT)) (** (($ $ (-829)) 35 T ELT) (($ $ (-693)) 43 T ELT) (($ $ (-483)) 87 T ELT)) (* (($ (-829) $) 17 T ELT) (($ (-693) $) 21 T ELT) (($ (-483) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-348 (-483))) 86 T ELT) (($ (-348 (-483)) $) 85 T ELT))) -(((-343) (-113)) (T -343)) -((-3770 (*1 *2 *1) (-12 (-4 *1 (-343)) (-5 *2 (-742 (-829))))) (-1763 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-343)) (-5 *2 (-693)))) (-1762 (*1 *1 *1) (-4 *1 (-343))) (-1762 (*1 *1 *1 *2) (-12 (-4 *1 (-343)) (-5 *2 (-693))))) -(-13 (-312) (-118) (-10 -8 (-15 -3770 ((-742 (-829)) $)) (-15 -1763 ((-3 (-693) "failed") $ $)) (-15 -1762 ($ $)) (-15 -1762 ($ $ (-693))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-348 (-483))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-348 (-483)) (-348 (-483))) . T) ((-82 $ $) . T) ((-104) . T) ((-118) . T) ((-554 (-348 (-483))) . T) ((-554 (-483)) . T) ((-554 $) . T) ((-551 (-771)) . T) ((-146) . T) ((-201) . T) ((-246) . T) ((-258) . T) ((-312) . T) ((-390) . T) ((-494) . T) ((-13) . T) ((-587 (-348 (-483))) . T) ((-587 (-483)) . T) ((-587 $) . T) ((-589 (-348 (-483))) . T) ((-589 $) . T) ((-581 (-348 (-483))) . T) ((-581 $) . T) ((-653 (-348 (-483))) . T) ((-653 $) . T) ((-662) . T) ((-831) . T) ((-962 (-348 (-483))) . T) ((-962 $) . T) ((-967 (-348 (-483))) . T) ((-967 $) . T) ((-960) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T) ((-1132) . T)) -((-3253 (($ (-483) (-483)) 11 T ELT) (($ (-483) (-483) (-829)) NIL T ELT)) (-2614 (((-829)) 19 T ELT) (((-829) (-829)) NIL T ELT))) -(((-344 |#1|) (-10 -7 (-15 -2614 ((-829) (-829))) (-15 -2614 ((-829))) (-15 -3253 (|#1| (-483) (-483) (-829))) (-15 -3253 (|#1| (-483) (-483)))) (-345)) (T -344)) -((-2614 (*1 *2) (-12 (-5 *2 (-829)) (-5 *1 (-344 *3)) (-4 *3 (-345)))) (-2614 (*1 *2 *2) (-12 (-5 *2 (-829)) (-5 *1 (-344 *3)) (-4 *3 (-345))))) -((-2567 (((-85) $ $) 7 T ELT)) (-3187 (((-85) $) 22 T ELT)) (-3128 (((-483) $) 108 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3980 $) (|:| |associate| $)) $) 55 T ELT)) (-2062 (($ $) 54 T ELT)) (-2060 (((-85) $) 52 T ELT)) (-3769 (($ $) 106 T ELT)) (-1310 (((-3 $ "failed") $ $) 26 T ELT)) (-3773 (($ $) 91 T ELT)) (-3969 (((-346 $) $) 90 T ELT)) (-3036 (($ $) 116 T ELT)) (-1606 (((-85) $ $) 75 T ELT)) (-3621 (((-483) $) 133 T ELT)) (-3722 (($) 23 T CONST)) (-3126 (($ $) 105 T ELT)) (-3156 (((-3 (-483) #1="failed") $) 121 T ELT) (((-3 (-348 (-483)) #1#) $) 118 T ELT)) (-3155 (((-483) $) 122 T ELT) (((-348 (-483)) $) 119 T ELT)) (-2563 (($ $ $) 71 T ELT)) (-3465 (((-3 $ "failed") $) 42 T ELT)) (-2562 (($ $ $) 72 T ELT)) (-2740 (((-2 (|:| -3952 (-582 $)) (|:| -2408 $)) (-582 $)) 66 T ELT)) (-3721 (((-85) $) 89 T ELT)) (-1766 (((-829)) 149 T ELT) (((-829) (-829)) 146 (|has| $ (-6 -3984)) ELT)) (-3185 (((-85) $) 131 T ELT)) (-2795 (((-797 (-328) $) $ (-799 (-328)) (-797 (-328) $)) 112 T ELT)) (-3770 (((-483) $) 155 T ELT)) (-1212 (((-85) $ $) 20 T ELT)) (-2409 (((-85) $) 44 T ELT)) (-3010 (($ $ (-483)) 115 T ELT)) (-3131 (($ $) 111 T ELT)) (-3186 (((-85) $) 132 T ELT)) (-1603 (((-3 (-582 $) #2="failed") (-582 $) $) 68 T ELT)) (-2530 (($ $ $) 125 T ELT) (($) 143 (-12 (-2559 (|has| $ (-6 -3984))) (-2559 (|has| $ (-6 -3976)))) ELT)) (-2856 (($ $ $) 126 T ELT) (($) 142 (-12 (-2559 (|has| $ (-6 -3984))) (-2559 (|has| $ (-6 -3976)))) ELT)) (-1768 (((-483) $) 152 T ELT)) (-1889 (($ $ $) 60 T ELT) (($ (-582 $)) 59 T ELT)) (-3241 (((-1071) $) 11 T ELT)) (-2483 (($ $) 88 T ELT)) (-1765 (((-829) (-483)) 145 (|has| $ (-6 -3984)) ELT)) (-3242 (((-1032) $) 12 T ELT)) (-2707 (((-1083 $) (-1083 $) (-1083 $)) 58 T ELT)) (-3143 (($ $ $) 62 T ELT) (($ (-582 $)) 61 T ELT)) (-3127 (($ $) 107 T ELT)) (-3129 (($ $) 109 T ELT)) (-3253 (($ (-483) (-483)) 157 T ELT) (($ (-483) (-483) (-829)) 156 T ELT)) (-3730 (((-346 $) $) 92 T ELT)) (-1604 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 69 T ELT)) (-3464 (((-3 $ "failed") $ $) 56 T ELT)) (-2739 (((-631 (-582 $)) (-582 $) $) 65 T ELT)) (-2400 (((-483) $) 153 T ELT)) (-1605 (((-693) $) 74 T ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) 73 T ELT)) (-2614 (((-829)) 150 T ELT) (((-829) (-829)) 147 (|has| $ (-6 -3984)) ELT)) (-1764 (((-829) (-483)) 144 (|has| $ (-6 -3984)) ELT)) (-3970 (((-328) $) 124 T ELT) (((-179) $) 123 T ELT) (((-799 (-328)) $) 113 T ELT)) (-3944 (((-771) $) 13 T ELT) (($ (-483)) 41 T ELT) (($ $) 57 T ELT) (($ (-348 (-483))) 84 T ELT) (($ (-483)) 120 T ELT) (($ (-348 (-483))) 117 T ELT)) (-3125 (((-693)) 40 T CONST)) (-3130 (($ $) 110 T ELT)) (-1767 (((-829)) 151 T ELT) (((-829) (-829)) 148 (|has| $ (-6 -3984)) ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2693 (((-829)) 154 T ELT)) (-2061 (((-85) $ $) 53 T ELT)) (-3124 (((-85) $ $) 33 T ELT)) (-3381 (($ $) 134 T ELT)) (-2659 (($) 24 T CONST)) (-2665 (($) 45 T CONST)) (-2565 (((-85) $ $) 127 T ELT)) (-2566 (((-85) $ $) 129 T ELT)) (-3055 (((-85) $ $) 8 T ELT)) (-2683 (((-85) $ $) 128 T ELT)) (-2684 (((-85) $ $) 130 T ELT)) (-3947 (($ $ $) 83 T ELT)) (-3835 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3837 (($ $ $) 18 T ELT)) (** (($ $ (-829)) 35 T ELT) (($ $ (-693)) 43 T ELT) (($ $ (-483)) 87 T ELT) (($ $ (-348 (-483))) 114 T ELT)) (* (($ (-829) $) 17 T ELT) (($ (-693) $) 21 T ELT) (($ (-483) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-348 (-483))) 86 T ELT) (($ (-348 (-483)) $) 85 T ELT))) -(((-345) (-113)) (T -345)) -((-3253 (*1 *1 *2 *2) (-12 (-5 *2 (-483)) (-4 *1 (-345)))) (-3253 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-483)) (-5 *3 (-829)) (-4 *1 (-345)))) (-3770 (*1 *2 *1) (-12 (-4 *1 (-345)) (-5 *2 (-483)))) (-2693 (*1 *2) (-12 (-4 *1 (-345)) (-5 *2 (-829)))) (-2400 (*1 *2 *1) (-12 (-4 *1 (-345)) (-5 *2 (-483)))) (-1768 (*1 *2 *1) (-12 (-4 *1 (-345)) (-5 *2 (-483)))) (-1767 (*1 *2) (-12 (-4 *1 (-345)) (-5 *2 (-829)))) (-2614 (*1 *2) (-12 (-4 *1 (-345)) (-5 *2 (-829)))) (-1766 (*1 *2) (-12 (-4 *1 (-345)) (-5 *2 (-829)))) (-1767 (*1 *2 *2) (-12 (-5 *2 (-829)) (|has| *1 (-6 -3984)) (-4 *1 (-345)))) (-2614 (*1 *2 *2) (-12 (-5 *2 (-829)) (|has| *1 (-6 -3984)) (-4 *1 (-345)))) (-1766 (*1 *2 *2) (-12 (-5 *2 (-829)) (|has| *1 (-6 -3984)) (-4 *1 (-345)))) (-1765 (*1 *2 *3) (-12 (-5 *3 (-483)) (|has| *1 (-6 -3984)) (-4 *1 (-345)) (-5 *2 (-829)))) (-1764 (*1 *2 *3) (-12 (-5 *3 (-483)) (|has| *1 (-6 -3984)) (-4 *1 (-345)) (-5 *2 (-829)))) (-2530 (*1 *1) (-12 (-4 *1 (-345)) (-2559 (|has| *1 (-6 -3984))) (-2559 (|has| *1 (-6 -3976))))) (-2856 (*1 *1) (-12 (-4 *1 (-345)) (-2559 (|has| *1 (-6 -3984))) (-2559 (|has| *1 (-6 -3976)))))) -(-13 (-972) (-10 -8 (-6 -3768) (-15 -3253 ($ (-483) (-483))) (-15 -3253 ($ (-483) (-483) (-829))) (-15 -3770 ((-483) $)) (-15 -2693 ((-829))) (-15 -2400 ((-483) $)) (-15 -1768 ((-483) $)) (-15 -1767 ((-829))) (-15 -2614 ((-829))) (-15 -1766 ((-829))) (IF (|has| $ (-6 -3984)) (PROGN (-15 -1767 ((-829) (-829))) (-15 -2614 ((-829) (-829))) (-15 -1766 ((-829) (-829))) (-15 -1765 ((-829) (-483))) (-15 -1764 ((-829) (-483)))) |%noBranch|) (IF (|has| $ (-6 -3976)) |%noBranch| (IF (|has| $ (-6 -3984)) |%noBranch| (PROGN (-15 -2530 ($)) (-15 -2856 ($))))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-348 (-483))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-348 (-483)) (-348 (-483))) . T) ((-82 $ $) . T) ((-104) . T) ((-120) . T) ((-554 (-348 (-483))) . T) ((-554 (-483)) . T) ((-554 $) . T) ((-551 (-771)) . T) ((-146) . T) ((-552 (-179)) . T) ((-552 (-328)) . T) ((-552 (-799 (-328))) . T) ((-201) . T) ((-246) . T) ((-258) . T) ((-312) . T) ((-390) . T) ((-494) . T) ((-13) . T) ((-587 (-348 (-483))) . T) ((-587 (-483)) . T) ((-587 $) . T) ((-589 (-348 (-483))) . T) ((-589 $) . T) ((-581 (-348 (-483))) . T) ((-581 $) . T) ((-653 (-348 (-483))) . T) ((-653 $) . T) ((-662) . T) ((-713) . T) ((-715) . T) ((-717) . T) ((-720) . T) ((-754) . T) ((-755) . T) ((-758) . T) ((-795 (-328)) . T) ((-831) . T) ((-914) . T) ((-932) . T) ((-972) . T) ((-949 (-348 (-483))) . T) ((-949 (-483)) . T) ((-962 (-348 (-483))) . T) ((-962 $) . T) ((-967 (-348 (-483))) . T) ((-967 $) . T) ((-960) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T) ((-1132) . T)) -((-2567 (((-85) $ $) NIL T ELT)) (-3187 (((-85) $) 59 T ELT)) (-1769 (($ $) 77 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3980 $) (|:| |associate| $)) $) 189 T ELT)) (-2062 (($ $) NIL T ELT)) (-2060 (((-85) $) 48 T ELT)) (-1770 ((|#1| $) 16 T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3773 (($ $) NIL (|has| |#1| (-1132)) ELT)) (-3969 (((-346 $) $) NIL (|has| |#1| (-1132)) ELT)) (-1772 (($ |#1| (-483)) 42 T ELT)) (-3722 (($) NIL T CONST)) (-3156 (((-3 (-483) #1#) $) NIL (|has| |#1| (-949 (-483))) ELT) (((-3 (-348 (-483)) #1#) $) NIL (|has| |#1| (-949 (-348 (-483)))) ELT) (((-3 |#1| #1#) $) 147 T ELT)) (-3155 (((-483) $) NIL (|has| |#1| (-949 (-483))) ELT) (((-348 (-483)) $) NIL (|has| |#1| (-949 (-348 (-483)))) ELT) ((|#1| $) 73 T ELT)) (-3465 (((-3 $ #1#) $) 163 T ELT)) (-3023 (((-3 (-348 (-483)) #1#) $) 84 (|has| |#1| (-482)) ELT)) (-3022 (((-85) $) 80 (|has| |#1| (-482)) ELT)) (-3021 (((-348 (-483)) $) 82 (|has| |#1| (-482)) ELT)) (-1773 (($ |#1| (-483)) 44 T ELT)) (-3721 (((-85) $) 209 (|has| |#1| (-1132)) ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-2409 (((-85) $) 61 T ELT)) (-1832 (((-693) $) 51 T ELT)) (-1774 (((-3 #2="nil" #3="sqfr" #4="irred" #5="prime") $ (-483)) 174 T ELT)) (-2298 ((|#1| $ (-483)) 173 T ELT)) (-1775 (((-483) $ (-483)) 172 T ELT)) (-1778 (($ |#1| (-483)) 41 T ELT)) (-3956 (($ (-1 |#1| |#1|) $) 182 T ELT)) (-1829 (($ |#1| (-582 (-2 (|:| |flg| (-3 #2# #3# #4# #5#)) (|:| |fctr| |#1|) (|:| |xpnt| (-483))))) 78 T ELT)) (-1889 (($ (-582 $)) NIL (|has| |#1| (-390)) ELT) (($ $ $) NIL (|has| |#1| (-390)) ELT)) (-3241 (((-1071) $) NIL T ELT)) (-1776 (($ |#1| (-483)) 43 T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-2707 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#1| (-390)) ELT)) (-3143 (($ (-582 $)) NIL (|has| |#1| (-390)) ELT) (($ $ $) 190 (|has| |#1| (-390)) ELT)) (-1771 (($ |#1| (-483) (-3 #2# #3# #4# #5#)) 40 T ELT)) (-1777 (((-582 (-2 (|:| -3730 |#1|) (|:| -2400 (-483)))) $) 72 T ELT)) (-1950 (((-582 (-2 (|:| |flg| (-3 #2# #3# #4# #5#)) (|:| |fctr| |#1|) (|:| |xpnt| (-483)))) $) 12 T ELT)) (-3730 (((-346 $) $) NIL (|has| |#1| (-1132)) ELT)) (-3464 (((-3 $ #1#) $ $) 175 T ELT)) (-2400 (((-483) $) 166 T ELT)) (-3961 ((|#1| $) 74 T ELT)) (-3766 (($ $ (-582 |#1|) (-582 |#1|)) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-249 |#1|)) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-582 (-249 |#1|))) 99 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-582 (-1088)) (-582 |#1|)) 105 (|has| |#1| (-454 (-1088) |#1|)) ELT) (($ $ (-1088) |#1|) NIL (|has| |#1| (-454 (-1088) |#1|)) ELT) (($ $ (-1088) $) NIL (|has| |#1| (-454 (-1088) $)) ELT) (($ $ (-582 (-1088)) (-582 $)) 106 (|has| |#1| (-454 (-1088) $)) ELT) (($ $ (-582 (-249 $))) 102 (|has| |#1| (-260 $)) ELT) (($ $ (-249 $)) NIL (|has| |#1| (-260 $)) ELT) (($ $ $ $) NIL (|has| |#1| (-260 $)) ELT) (($ $ (-582 $) (-582 $)) NIL (|has| |#1| (-260 $)) ELT)) (-3798 (($ $ |#1|) 91 (|has| |#1| (-241 |#1| |#1|)) ELT) (($ $ $) 92 (|has| |#1| (-241 $ $)) ELT)) (-3756 (($ $ (-1 |#1| |#1|)) 181 T ELT) (($ $ (-1 |#1| |#1|) (-693)) NIL T ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-693)) NIL (|has| |#1| (-189)) ELT) (($ $ (-1088)) NIL (|has| |#1| (-810 (-1088))) ELT) (($ $ (-582 (-1088))) NIL (|has| |#1| (-810 (-1088))) ELT) (($ $ (-1088) (-693)) NIL (|has| |#1| (-810 (-1088))) ELT) (($ $ (-582 (-1088)) (-582 (-693))) NIL (|has| |#1| (-810 (-1088))) ELT)) (-3970 (((-472) $) 39 (|has| |#1| (-552 (-472))) ELT) (((-328) $) 112 (|has| |#1| (-932)) ELT) (((-179) $) 118 (|has| |#1| (-932)) ELT)) (-3944 (((-771) $) 145 T ELT) (($ (-483)) 64 T ELT) (($ $) NIL T ELT) (($ |#1|) 63 T ELT) (($ (-348 (-483))) NIL (|has| |#1| (-949 (-348 (-483)))) ELT)) (-3125 (((-693)) 66 T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-2061 (((-85) $ $) NIL T ELT)) (-3124 (((-85) $ $) NIL T ELT)) (-2659 (($) 53 T CONST)) (-2665 (($) 52 T CONST)) (-2668 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-693)) NIL T ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-693)) NIL (|has| |#1| (-189)) ELT) (($ $ (-1088)) NIL (|has| |#1| (-810 (-1088))) ELT) (($ $ (-582 (-1088))) NIL (|has| |#1| (-810 (-1088))) ELT) (($ $ (-1088) (-693)) NIL (|has| |#1| (-810 (-1088))) ELT) (($ $ (-582 (-1088)) (-582 (-693))) NIL (|has| |#1| (-810 (-1088))) ELT)) (-3055 (((-85) $ $) 158 T ELT)) (-3835 (($ $) 160 T ELT) (($ $ $) NIL T ELT)) (-3837 (($ $ $) 179 T ELT)) (** (($ $ (-829)) NIL T ELT) (($ $ (-693)) 124 T ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-483) $) 68 T ELT) (($ $ $) 67 T ELT) (($ |#1| $) 69 T ELT) (($ $ |#1|) NIL T ELT))) -(((-346 |#1|) (-13 (-494) (-184 |#1|) (-38 |#1|) (-288 |#1|) (-353 |#1|) (-10 -8 (-15 -3961 (|#1| $)) (-15 -2400 ((-483) $)) (-15 -1829 ($ |#1| (-582 (-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-483)))))) (-15 -1950 ((-582 (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#1|) (|:| |xpnt| (-483)))) $)) (-15 -1778 ($ |#1| (-483))) (-15 -1777 ((-582 (-2 (|:| -3730 |#1|) (|:| -2400 (-483)))) $)) (-15 -1776 ($ |#1| (-483))) (-15 -1775 ((-483) $ (-483))) (-15 -2298 (|#1| $ (-483))) (-15 -1774 ((-3 #1# #2# #3# #4#) $ (-483))) (-15 -1832 ((-693) $)) (-15 -1773 ($ |#1| (-483))) (-15 -1772 ($ |#1| (-483))) (-15 -1771 ($ |#1| (-483) (-3 #1# #2# #3# #4#))) (-15 -1770 (|#1| $)) (-15 -1769 ($ $)) (-15 -3956 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-390)) (-6 (-390)) |%noBranch|) (IF (|has| |#1| (-932)) (-6 (-932)) |%noBranch|) (IF (|has| |#1| (-1132)) (-6 (-1132)) |%noBranch|) (IF (|has| |#1| (-552 (-472))) (-6 (-552 (-472))) |%noBranch|) (IF (|has| |#1| (-482)) (PROGN (-15 -3022 ((-85) $)) (-15 -3021 ((-348 (-483)) $)) (-15 -3023 ((-3 (-348 (-483)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-241 $ $)) (-6 (-241 $ $)) |%noBranch|) (IF (|has| |#1| (-260 $)) (-6 (-260 $)) |%noBranch|) (IF (|has| |#1| (-454 (-1088) $)) (-6 (-454 (-1088) $)) |%noBranch|))) (-494)) (T -346)) -((-3956 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-494)) (-5 *1 (-346 *3)))) (-3961 (*1 *2 *1) (-12 (-5 *1 (-346 *2)) (-4 *2 (-494)))) (-2400 (*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-346 *3)) (-4 *3 (-494)))) (-1829 (*1 *1 *2 *3) (-12 (-5 *3 (-582 (-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| *2) (|:| |xpnt| (-483))))) (-4 *2 (-494)) (-5 *1 (-346 *2)))) (-1950 (*1 *2 *1) (-12 (-5 *2 (-582 (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| *3) (|:| |xpnt| (-483))))) (-5 *1 (-346 *3)) (-4 *3 (-494)))) (-1778 (*1 *1 *2 *3) (-12 (-5 *3 (-483)) (-5 *1 (-346 *2)) (-4 *2 (-494)))) (-1777 (*1 *2 *1) (-12 (-5 *2 (-582 (-2 (|:| -3730 *3) (|:| -2400 (-483))))) (-5 *1 (-346 *3)) (-4 *3 (-494)))) (-1776 (*1 *1 *2 *3) (-12 (-5 *3 (-483)) (-5 *1 (-346 *2)) (-4 *2 (-494)))) (-1775 (*1 *2 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-346 *3)) (-4 *3 (-494)))) (-2298 (*1 *2 *1 *3) (-12 (-5 *3 (-483)) (-5 *1 (-346 *2)) (-4 *2 (-494)))) (-1774 (*1 *2 *1 *3) (-12 (-5 *3 (-483)) (-5 *2 (-3 #1# #2# #3# #4#)) (-5 *1 (-346 *4)) (-4 *4 (-494)))) (-1832 (*1 *2 *1) (-12 (-5 *2 (-693)) (-5 *1 (-346 *3)) (-4 *3 (-494)))) (-1773 (*1 *1 *2 *3) (-12 (-5 *3 (-483)) (-5 *1 (-346 *2)) (-4 *2 (-494)))) (-1772 (*1 *1 *2 *3) (-12 (-5 *3 (-483)) (-5 *1 (-346 *2)) (-4 *2 (-494)))) (-1771 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-483)) (-5 *4 (-3 #1# #2# #3# #4#)) (-5 *1 (-346 *2)) (-4 *2 (-494)))) (-1770 (*1 *2 *1) (-12 (-5 *1 (-346 *2)) (-4 *2 (-494)))) (-1769 (*1 *1 *1) (-12 (-5 *1 (-346 *2)) (-4 *2 (-494)))) (-3022 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-346 *3)) (-4 *3 (-482)) (-4 *3 (-494)))) (-3021 (*1 *2 *1) (-12 (-5 *2 (-348 (-483))) (-5 *1 (-346 *3)) (-4 *3 (-482)) (-4 *3 (-494)))) (-3023 (*1 *2 *1) (|partial| -12 (-5 *2 (-348 (-483))) (-5 *1 (-346 *3)) (-4 *3 (-482)) (-4 *3 (-494))))) -((-3956 (((-346 |#2|) (-1 |#2| |#1|) (-346 |#1|)) 20 T ELT))) -(((-347 |#1| |#2|) (-10 -7 (-15 -3956 ((-346 |#2|) (-1 |#2| |#1|) (-346 |#1|)))) (-494) (-494)) (T -347)) -((-3956 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-346 *5)) (-4 *5 (-494)) (-4 *6 (-494)) (-5 *2 (-346 *6)) (-5 *1 (-347 *5 *6))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3187 (((-85) $) 13 T ELT)) (-3128 ((|#1| $) 21 (|has| |#1| (-258)) ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3980 $) (|:| |associate| $)) $) NIL T ELT)) (-2062 (($ $) NIL T ELT)) (-2060 (((-85) $) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2706 (((-346 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-820)) ELT)) (-3773 (($ $) NIL T ELT)) (-3969 (((-346 $) $) NIL T ELT)) (-2703 (((-3 (-582 (-1083 $)) #1#) (-582 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-820)) ELT)) (-1606 (((-85) $ $) NIL T ELT)) (-3621 (((-483) $) NIL (|has| |#1| (-739)) ELT)) (-3722 (($) NIL T CONST)) (-3156 (((-3 |#1| #1#) $) 17 T ELT) (((-3 (-1088) #1#) $) NIL (|has| |#1| (-949 (-1088))) ELT) (((-3 (-348 (-483)) #1#) $) 54 (|has| |#1| (-949 (-483))) ELT) (((-3 (-483) #1#) $) NIL (|has| |#1| (-949 (-483))) ELT)) (-3155 ((|#1| $) 15 T ELT) (((-1088) $) NIL (|has| |#1| (-949 (-1088))) ELT) (((-348 (-483)) $) 51 (|has| |#1| (-949 (-483))) ELT) (((-483) $) NIL (|has| |#1| (-949 (-483))) ELT)) (-2563 (($ $ $) NIL T ELT)) (-2278 (((-629 (-483)) (-629 $)) NIL (|has| |#1| (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-629 $) (-1177 $)) NIL (|has| |#1| (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 |#1|)) (|:| |vec| (-1177 |#1|))) (-629 $) (-1177 $)) NIL T ELT) (((-629 |#1|) (-629 $)) NIL T ELT)) (-3465 (((-3 $ #1#) $) 32 T ELT)) (-2993 (($) NIL (|has| |#1| (-482)) ELT)) (-2562 (($ $ $) NIL T ELT)) (-2740 (((-2 (|:| -3952 (-582 $)) (|:| -2408 $)) (-582 $)) NIL T ELT)) (-3721 (((-85) $) NIL T ELT)) (-3185 (((-85) $) NIL (|has| |#1| (-739)) ELT)) (-2795 (((-797 (-483) $) $ (-799 (-483)) (-797 (-483) $)) NIL (|has| |#1| (-795 (-483))) ELT) (((-797 (-328) $) $ (-799 (-328)) (-797 (-328) $)) NIL (|has| |#1| (-795 (-328))) ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-2409 (((-85) $) 38 T ELT)) (-2995 (($ $) NIL T ELT)) (-2997 ((|#1| $) 55 T ELT)) (-3443 (((-631 $) $) NIL (|has| |#1| (-1064)) ELT)) (-3186 (((-85) $) 22 (|has| |#1| (-739)) ELT)) (-1603 (((-3 (-582 $) #1#) (-582 $) $) NIL T ELT)) (-2530 (($ $ $) NIL (|has| |#1| (-755)) ELT)) (-2856 (($ $ $) NIL (|has| |#1| (-755)) ELT)) (-3956 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2279 (((-629 (-483)) (-1177 $)) NIL (|has| |#1| (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL (|has| |#1| (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 |#1|)) (|:| |vec| (-1177 |#1|))) (-1177 $) $) NIL T ELT) (((-629 |#1|) (-1177 $)) NIL T ELT)) (-1889 (($ $ $) NIL T ELT) (($ (-582 $)) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-2483 (($ $) NIL T ELT)) (-3444 (($) NIL (|has| |#1| (-1064)) CONST)) (-3242 (((-1032) $) NIL T ELT)) (-2707 (((-1083 $) (-1083 $) (-1083 $)) 82 T ELT)) (-3143 (($ $ $) NIL T ELT) (($ (-582 $)) NIL T ELT)) (-3127 (($ $) NIL (|has| |#1| (-258)) ELT)) (-3129 ((|#1| $) 26 (|has| |#1| (-482)) ELT)) (-2704 (((-346 (-1083 $)) (-1083 $)) 133 (|has| |#1| (-820)) ELT)) (-2705 (((-346 (-1083 $)) (-1083 $)) 128 (|has| |#1| (-820)) ELT)) (-3730 (((-346 $) $) NIL T ELT)) (-1604 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3464 (((-3 $ #1#) $ $) NIL T ELT)) (-2739 (((-631 (-582 $)) (-582 $) $) NIL T ELT)) (-3766 (($ $ (-582 |#1|) (-582 |#1|)) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-249 |#1|)) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-582 (-249 |#1|))) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-582 (-1088)) (-582 |#1|)) NIL (|has| |#1| (-454 (-1088) |#1|)) ELT) (($ $ (-1088) |#1|) NIL (|has| |#1| (-454 (-1088) |#1|)) ELT)) (-1605 (((-693) $) NIL T ELT)) (-3798 (($ $ |#1|) NIL (|has| |#1| (-241 |#1| |#1|)) ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL T ELT)) (-3756 (($ $ (-1 |#1| |#1|)) 45 T ELT) (($ $ (-1 |#1| |#1|) (-693)) NIL T ELT) (($ $ (-1088)) NIL (|has| |#1| (-810 (-1088))) ELT) (($ $ (-582 (-1088))) NIL (|has| |#1| (-810 (-1088))) ELT) (($ $ (-1088) (-693)) NIL (|has| |#1| (-810 (-1088))) ELT) (($ $ (-582 (-1088)) (-582 (-693))) NIL (|has| |#1| (-810 (-1088))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-693)) NIL (|has| |#1| (-189)) ELT)) (-2994 (($ $) NIL T ELT)) (-2996 ((|#1| $) 57 T ELT)) (-3970 (((-799 (-483)) $) NIL (|has| |#1| (-552 (-799 (-483)))) ELT) (((-799 (-328)) $) NIL (|has| |#1| (-552 (-799 (-328)))) ELT) (((-472) $) NIL (|has| |#1| (-552 (-472))) ELT) (((-328) $) NIL (|has| |#1| (-932)) ELT) (((-179) $) NIL (|has| |#1| (-932)) ELT)) (-2702 (((-3 (-1177 $) #1#) (-629 $)) 112 (-12 (|has| $ (-118)) (|has| |#1| (-820))) ELT)) (-3944 (((-771) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ $) NIL T ELT) (($ (-348 (-483))) NIL T ELT) (($ |#1|) 10 T ELT) (($ (-1088)) NIL (|has| |#1| (-949 (-1088))) ELT)) (-2701 (((-631 $) $) 92 (OR (-12 (|has| $ (-118)) (|has| |#1| (-820))) (|has| |#1| (-118))) ELT)) (-3125 (((-693)) 93 T CONST)) (-3130 ((|#1| $) 24 (|has| |#1| (-482)) ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2061 (((-85) $ $) NIL T ELT)) (-3124 (((-85) $ $) NIL T ELT)) (-3381 (($ $) NIL (|has| |#1| (-739)) ELT)) (-2659 (($) 28 T CONST)) (-2665 (($) 8 T CONST)) (-2668 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-693)) NIL T ELT) (($ $ (-1088)) NIL (|has| |#1| (-810 (-1088))) ELT) (($ $ (-582 (-1088))) NIL (|has| |#1| (-810 (-1088))) ELT) (($ $ (-1088) (-693)) NIL (|has| |#1| (-810 (-1088))) ELT) (($ $ (-582 (-1088)) (-582 (-693))) NIL (|has| |#1| (-810 (-1088))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-693)) NIL (|has| |#1| (-189)) ELT)) (-2565 (((-85) $ $) NIL (|has| |#1| (-755)) ELT)) (-2566 (((-85) $ $) NIL (|has| |#1| (-755)) ELT)) (-3055 (((-85) $ $) 48 T ELT)) (-2683 (((-85) $ $) NIL (|has| |#1| (-755)) ELT)) (-2684 (((-85) $ $) NIL (|has| |#1| (-755)) ELT)) (-3947 (($ $ $) 123 T ELT) (($ |#1| |#1|) 34 T ELT)) (-3835 (($ $) 23 T ELT) (($ $ $) 37 T ELT)) (-3837 (($ $ $) 35 T ELT)) (** (($ $ (-829)) NIL T ELT) (($ $ (-693)) NIL T ELT) (($ $ (-483)) 122 T ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-483) $) 42 T ELT) (($ $ $) 39 T ELT) (($ $ (-348 (-483))) NIL T ELT) (($ (-348 (-483)) $) NIL T ELT) (($ |#1| $) 43 T ELT) (($ $ |#1|) 70 T ELT))) -(((-348 |#1|) (-13 (-903 |#1|) (-10 -7 (IF (|has| |#1| (-6 -3980)) (IF (|has| |#1| (-390)) (IF (|has| |#1| (-6 -3991)) (-6 -3980) |%noBranch|) |%noBranch|) |%noBranch|))) (-494)) (T -348)) -NIL -((-3956 (((-348 |#2|) (-1 |#2| |#1|) (-348 |#1|)) 13 T ELT))) -(((-349 |#1| |#2|) (-10 -7 (-15 -3956 ((-348 |#2|) (-1 |#2| |#1|) (-348 |#1|)))) (-494) (-494)) (T -349)) -((-3956 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-348 *5)) (-4 *5 (-494)) (-4 *6 (-494)) (-5 *2 (-348 *6)) (-5 *1 (-349 *5 *6))))) -((-1780 (((-629 |#2|) (-1177 $)) NIL T ELT) (((-629 |#2|)) 18 T ELT)) (-1790 (($ (-1177 |#2|) (-1177 $)) NIL T ELT) (($ (-1177 |#2|)) 24 T ELT)) (-1779 (((-629 |#2|) $ (-1177 $)) NIL T ELT) (((-629 |#2|) $) 40 T ELT)) (-2013 ((|#3| $) 69 T ELT)) (-3755 ((|#2| (-1177 $)) NIL T ELT) ((|#2|) 20 T ELT)) (-3223 (((-1177 |#2|) $ (-1177 $)) NIL T ELT) (((-629 |#2|) (-1177 $) (-1177 $)) NIL T ELT) (((-1177 |#2|) $) 22 T ELT) (((-629 |#2|) (-1177 $)) 38 T ELT)) (-3970 (((-1177 |#2|) $) 11 T ELT) (($ (-1177 |#2|)) 13 T ELT)) (-2448 ((|#3| $) 55 T ELT))) -(((-350 |#1| |#2| |#3|) (-10 -7 (-15 -1779 ((-629 |#2|) |#1|)) (-15 -3755 (|#2|)) (-15 -1780 ((-629 |#2|))) (-15 -3970 (|#1| (-1177 |#2|))) (-15 -3970 ((-1177 |#2|) |#1|)) (-15 -1790 (|#1| (-1177 |#2|))) (-15 -3223 ((-629 |#2|) (-1177 |#1|))) (-15 -3223 ((-1177 |#2|) |#1|)) (-15 -2013 (|#3| |#1|)) (-15 -2448 (|#3| |#1|)) (-15 -1780 ((-629 |#2|) (-1177 |#1|))) (-15 -3755 (|#2| (-1177 |#1|))) (-15 -1790 (|#1| (-1177 |#2|) (-1177 |#1|))) (-15 -3223 ((-629 |#2|) (-1177 |#1|) (-1177 |#1|))) (-15 -3223 ((-1177 |#2|) |#1| (-1177 |#1|))) (-15 -1779 ((-629 |#2|) |#1| (-1177 |#1|)))) (-351 |#2| |#3|) (-146) (-1153 |#2|)) (T -350)) -((-1780 (*1 *2) (-12 (-4 *4 (-146)) (-4 *5 (-1153 *4)) (-5 *2 (-629 *4)) (-5 *1 (-350 *3 *4 *5)) (-4 *3 (-351 *4 *5)))) (-3755 (*1 *2) (-12 (-4 *4 (-1153 *2)) (-4 *2 (-146)) (-5 *1 (-350 *3 *2 *4)) (-4 *3 (-351 *2 *4))))) -((-2567 (((-85) $ $) 7 T ELT)) (-3187 (((-85) $) 22 T ELT)) (-1780 (((-629 |#1|) (-1177 $)) 61 T ELT) (((-629 |#1|)) 77 T ELT)) (-3328 ((|#1| $) 67 T ELT)) (-1310 (((-3 $ "failed") $ $) 26 T ELT)) (-3722 (($) 23 T CONST)) (-1790 (($ (-1177 |#1|) (-1177 $)) 63 T ELT) (($ (-1177 |#1|)) 80 T ELT)) (-1779 (((-629 |#1|) $ (-1177 $)) 68 T ELT) (((-629 |#1|) $) 75 T ELT)) (-3465 (((-3 $ "failed") $) 42 T ELT)) (-3107 (((-829)) 69 T ELT)) (-1212 (((-85) $ $) 20 T ELT)) (-2409 (((-85) $) 44 T ELT)) (-3131 ((|#1| $) 66 T ELT)) (-2013 ((|#2| $) 59 (|has| |#1| (-312)) ELT)) (-3241 (((-1071) $) 11 T ELT)) (-3242 (((-1032) $) 12 T ELT)) (-3755 ((|#1| (-1177 $)) 62 T ELT) ((|#1|) 76 T ELT)) (-3223 (((-1177 |#1|) $ (-1177 $)) 65 T ELT) (((-629 |#1|) (-1177 $) (-1177 $)) 64 T ELT) (((-1177 |#1|) $) 82 T ELT) (((-629 |#1|) (-1177 $)) 81 T ELT)) (-3970 (((-1177 |#1|) $) 79 T ELT) (($ (-1177 |#1|)) 78 T ELT)) (-3944 (((-771) $) 13 T ELT) (($ (-483)) 41 T ELT) (($ |#1|) 52 T ELT)) (-2701 (((-631 $) $) 58 (|has| |#1| (-118)) ELT)) (-2448 ((|#2| $) 60 T ELT)) (-3125 (((-693)) 40 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-2011 (((-1177 $)) 83 T ELT)) (-3124 (((-85) $ $) 33 T ELT)) (-2659 (($) 24 T CONST)) (-2665 (($) 45 T CONST)) (-3055 (((-85) $ $) 8 T ELT)) (-3835 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3837 (($ $ $) 18 T ELT)) (** (($ $ (-829)) 35 T ELT) (($ $ (-693)) 43 T ELT)) (* (($ (-829) $) 17 T ELT) (($ (-693) $) 21 T ELT) (($ (-483) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 54 T ELT) (($ |#1| $) 53 T ELT))) -(((-351 |#1| |#2|) (-113) (-146) (-1153 |t#1|)) (T -351)) -((-2011 (*1 *2) (-12 (-4 *3 (-146)) (-4 *4 (-1153 *3)) (-5 *2 (-1177 *1)) (-4 *1 (-351 *3 *4)))) (-3223 (*1 *2 *1) (-12 (-4 *1 (-351 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1153 *3)) (-5 *2 (-1177 *3)))) (-3223 (*1 *2 *3) (-12 (-5 *3 (-1177 *1)) (-4 *1 (-351 *4 *5)) (-4 *4 (-146)) (-4 *5 (-1153 *4)) (-5 *2 (-629 *4)))) (-1790 (*1 *1 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-146)) (-4 *1 (-351 *3 *4)) (-4 *4 (-1153 *3)))) (-3970 (*1 *2 *1) (-12 (-4 *1 (-351 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1153 *3)) (-5 *2 (-1177 *3)))) (-3970 (*1 *1 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-146)) (-4 *1 (-351 *3 *4)) (-4 *4 (-1153 *3)))) (-1780 (*1 *2) (-12 (-4 *1 (-351 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1153 *3)) (-5 *2 (-629 *3)))) (-3755 (*1 *2) (-12 (-4 *1 (-351 *2 *3)) (-4 *3 (-1153 *2)) (-4 *2 (-146)))) (-1779 (*1 *2 *1) (-12 (-4 *1 (-351 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1153 *3)) (-5 *2 (-629 *3))))) -(-13 (-320 |t#1| |t#2|) (-10 -8 (-15 -2011 ((-1177 $))) (-15 -3223 ((-1177 |t#1|) $)) (-15 -3223 ((-629 |t#1|) (-1177 $))) (-15 -1790 ($ (-1177 |t#1|))) (-15 -3970 ((-1177 |t#1|) $)) (-15 -3970 ($ (-1177 |t#1|))) (-15 -1780 ((-629 |t#1|))) (-15 -3755 (|t#1|)) (-15 -1779 ((-629 |t#1|) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-554 (-483)) . T) ((-554 |#1|) . T) ((-551 (-771)) . T) ((-320 |#1| |#2|) . T) ((-13) . T) ((-587 (-483)) . T) ((-587 |#1|) . T) ((-587 $) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-581 |#1|) . T) ((-653 |#1|) . T) ((-662) . T) ((-962 |#1|) . T) ((-967 |#1|) . T) ((-960) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T)) -((-3156 (((-3 |#2| #1="failed") $) NIL T ELT) (((-3 (-348 (-483)) #1#) $) 27 T ELT) (((-3 (-483) #1#) $) 19 T ELT)) (-3155 ((|#2| $) NIL T ELT) (((-348 (-483)) $) 24 T ELT) (((-483) $) 14 T ELT)) (-3944 (($ |#2|) NIL T ELT) (($ (-348 (-483))) 22 T ELT) (($ (-483)) 11 T ELT))) -(((-352 |#1| |#2|) (-10 -7 (-15 -3944 (|#1| (-483))) (-15 -3156 ((-3 (-483) #1="failed") |#1|)) (-15 -3155 ((-483) |#1|)) (-15 -3944 (|#1| (-348 (-483)))) (-15 -3156 ((-3 (-348 (-483)) #1#) |#1|)) (-15 -3155 ((-348 (-483)) |#1|)) (-15 -3155 (|#2| |#1|)) (-15 -3156 ((-3 |#2| #1#) |#1|)) (-15 -3944 (|#1| |#2|))) (-353 |#2|) (-1127)) (T -352)) -NIL -((-3156 (((-3 |#1| #1="failed") $) 9 T ELT) (((-3 (-348 (-483)) #1#) $) 16 (|has| |#1| (-949 (-348 (-483)))) ELT) (((-3 (-483) #1#) $) 13 (|has| |#1| (-949 (-483))) ELT)) (-3155 ((|#1| $) 8 T ELT) (((-348 (-483)) $) 17 (|has| |#1| (-949 (-348 (-483)))) ELT) (((-483) $) 14 (|has| |#1| (-949 (-483))) ELT)) (-3944 (($ |#1|) 6 T ELT) (($ (-348 (-483))) 15 (|has| |#1| (-949 (-348 (-483)))) ELT) (($ (-483)) 12 (|has| |#1| (-949 (-483))) ELT))) -(((-353 |#1|) (-113) (-1127)) (T -353)) -NIL -(-13 (-949 |t#1|) (-10 -7 (IF (|has| |t#1| (-949 (-483))) (-6 (-949 (-483))) |%noBranch|) (IF (|has| |t#1| (-949 (-348 (-483)))) (-6 (-949 (-348 (-483)))) |%noBranch|))) -(((-554 (-348 (-483))) |has| |#1| (-949 (-348 (-483)))) ((-554 (-483)) |has| |#1| (-949 (-483))) ((-554 |#1|) . T) ((-949 (-348 (-483))) |has| |#1| (-949 (-348 (-483)))) ((-949 (-483)) |has| |#1| (-949 (-483))) ((-949 |#1|) . T)) -((-2567 (((-85) $ $) NIL T ELT)) (-3722 (($) NIL T CONST)) (-3465 (((-3 $ "failed") $) NIL T ELT)) (-1781 ((|#4| (-693) (-1177 |#4|)) 55 T ELT)) (-2409 (((-85) $) NIL T ELT)) (-2997 (((-1177 |#4|) $) 15 T ELT)) (-3131 ((|#2| $) 53 T ELT)) (-1782 (($ $) 156 T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-2483 (($ $) 103 T ELT)) (-1967 (($ (-1177 |#4|)) 102 T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-2996 ((|#1| $) 16 T ELT)) (-3008 (($ $ $) NIL T ELT)) (-2434 (($ $ $) NIL T ELT)) (-3944 (((-771) $) 147 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2011 (((-1177 |#4|) $) 140 T ELT)) (-2665 (($) 11 T CONST)) (-3055 (((-85) $ $) 39 T ELT)) (-3947 (($ $ $) NIL T ELT)) (** (($ $ (-829)) NIL T ELT) (($ $ (-693)) NIL T ELT) (($ $ (-483)) 133 T ELT)) (* (($ $ $) 130 T ELT))) -(((-354 |#1| |#2| |#3| |#4|) (-13 (-411) (-10 -8 (-15 -1967 ($ (-1177 |#4|))) (-15 -2011 ((-1177 |#4|) $)) (-15 -3131 (|#2| $)) (-15 -2997 ((-1177 |#4|) $)) (-15 -2996 (|#1| $)) (-15 -1782 ($ $)) (-15 -1781 (|#4| (-693) (-1177 |#4|))))) (-258) (-903 |#1|) (-1153 |#2|) (-13 (-351 |#2| |#3|) (-949 |#2|))) (T -354)) -((-1967 (*1 *1 *2) (-12 (-5 *2 (-1177 *6)) (-4 *6 (-13 (-351 *4 *5) (-949 *4))) (-4 *4 (-903 *3)) (-4 *5 (-1153 *4)) (-4 *3 (-258)) (-5 *1 (-354 *3 *4 *5 *6)))) (-2011 (*1 *2 *1) (-12 (-4 *3 (-258)) (-4 *4 (-903 *3)) (-4 *5 (-1153 *4)) (-5 *2 (-1177 *6)) (-5 *1 (-354 *3 *4 *5 *6)) (-4 *6 (-13 (-351 *4 *5) (-949 *4))))) (-3131 (*1 *2 *1) (-12 (-4 *4 (-1153 *2)) (-4 *2 (-903 *3)) (-5 *1 (-354 *3 *2 *4 *5)) (-4 *3 (-258)) (-4 *5 (-13 (-351 *2 *4) (-949 *2))))) (-2997 (*1 *2 *1) (-12 (-4 *3 (-258)) (-4 *4 (-903 *3)) (-4 *5 (-1153 *4)) (-5 *2 (-1177 *6)) (-5 *1 (-354 *3 *4 *5 *6)) (-4 *6 (-13 (-351 *4 *5) (-949 *4))))) (-2996 (*1 *2 *1) (-12 (-4 *3 (-903 *2)) (-4 *4 (-1153 *3)) (-4 *2 (-258)) (-5 *1 (-354 *2 *3 *4 *5)) (-4 *5 (-13 (-351 *3 *4) (-949 *3))))) (-1782 (*1 *1 *1) (-12 (-4 *2 (-258)) (-4 *3 (-903 *2)) (-4 *4 (-1153 *3)) (-5 *1 (-354 *2 *3 *4 *5)) (-4 *5 (-13 (-351 *3 *4) (-949 *3))))) (-1781 (*1 *2 *3 *4) (-12 (-5 *3 (-693)) (-5 *4 (-1177 *2)) (-4 *5 (-258)) (-4 *6 (-903 *5)) (-4 *2 (-13 (-351 *6 *7) (-949 *6))) (-5 *1 (-354 *5 *6 *7 *2)) (-4 *7 (-1153 *6))))) -((-3956 (((-354 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-354 |#1| |#2| |#3| |#4|)) 35 T ELT))) -(((-355 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3956 ((-354 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-354 |#1| |#2| |#3| |#4|)))) (-258) (-903 |#1|) (-1153 |#2|) (-13 (-351 |#2| |#3|) (-949 |#2|)) (-258) (-903 |#5|) (-1153 |#6|) (-13 (-351 |#6| |#7|) (-949 |#6|))) (T -355)) -((-3956 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-354 *5 *6 *7 *8)) (-4 *5 (-258)) (-4 *6 (-903 *5)) (-4 *7 (-1153 *6)) (-4 *8 (-13 (-351 *6 *7) (-949 *6))) (-4 *9 (-258)) (-4 *10 (-903 *9)) (-4 *11 (-1153 *10)) (-5 *2 (-354 *9 *10 *11 *12)) (-5 *1 (-355 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-351 *10 *11) (-949 *10)))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3722 (($) NIL T CONST)) (-3465 (((-3 $ "failed") $) NIL T ELT)) (-2409 (((-85) $) NIL T ELT)) (-3131 ((|#2| $) 69 T ELT)) (-1783 (($ (-1177 |#4|)) 27 T ELT) (($ (-354 |#1| |#2| |#3| |#4|)) 83 (|has| |#4| (-949 |#2|)) ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3944 (((-771) $) 37 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2011 (((-1177 |#4|) $) 28 T ELT)) (-2665 (($) 26 T CONST)) (-3055 (((-85) $ $) NIL T ELT)) (** (($ $ (-829)) NIL T ELT) (($ $ (-693)) NIL T ELT)) (* (($ $ $) 80 T ELT))) -(((-356 |#1| |#2| |#3| |#4| |#5|) (-13 (-662) (-10 -8 (-15 -2011 ((-1177 |#4|) $)) (-15 -3131 (|#2| $)) (-15 -1783 ($ (-1177 |#4|))) (IF (|has| |#4| (-949 |#2|)) (-15 -1783 ($ (-354 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-258) (-903 |#1|) (-1153 |#2|) (-351 |#2| |#3|) (-1177 |#4|)) (T -356)) -((-2011 (*1 *2 *1) (-12 (-4 *3 (-258)) (-4 *4 (-903 *3)) (-4 *5 (-1153 *4)) (-5 *2 (-1177 *6)) (-5 *1 (-356 *3 *4 *5 *6 *7)) (-4 *6 (-351 *4 *5)) (-14 *7 *2))) (-3131 (*1 *2 *1) (-12 (-4 *4 (-1153 *2)) (-4 *2 (-903 *3)) (-5 *1 (-356 *3 *2 *4 *5 *6)) (-4 *3 (-258)) (-4 *5 (-351 *2 *4)) (-14 *6 (-1177 *5)))) (-1783 (*1 *1 *2) (-12 (-5 *2 (-1177 *6)) (-4 *6 (-351 *4 *5)) (-4 *4 (-903 *3)) (-4 *5 (-1153 *4)) (-4 *3 (-258)) (-5 *1 (-356 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-1783 (*1 *1 *2) (-12 (-5 *2 (-354 *3 *4 *5 *6)) (-4 *6 (-949 *4)) (-4 *3 (-258)) (-4 *4 (-903 *3)) (-4 *5 (-1153 *4)) (-4 *6 (-351 *4 *5)) (-14 *7 (-1177 *6)) (-5 *1 (-356 *3 *4 *5 *6 *7))))) -((-3956 ((|#3| (-1 |#4| |#2|) |#1|) 29 T ELT))) -(((-357 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3956 (|#3| (-1 |#4| |#2|) |#1|))) (-359 |#2|) (-146) (-359 |#4|) (-146)) (T -357)) -((-3956 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-146)) (-4 *6 (-146)) (-4 *2 (-359 *6)) (-5 *1 (-357 *4 *5 *2 *6)) (-4 *4 (-359 *5))))) -((-1770 (((-3 $ #1="failed")) 99 T ELT)) (-3222 (((-1177 (-629 |#2|)) (-1177 $)) NIL T ELT) (((-1177 (-629 |#2|))) 104 T ELT)) (-1904 (((-3 (-2 (|:| |particular| $) (|:| -2011 (-582 $))) #1#)) 97 T ELT)) (-1701 (((-3 $ #1#)) 96 T ELT)) (-1786 (((-629 |#2|) (-1177 $)) NIL T ELT) (((-629 |#2|)) 115 T ELT)) (-1784 (((-629 |#2|) $ (-1177 $)) NIL T ELT) (((-629 |#2|) $) 123 T ELT)) (-1898 (((-1083 (-856 |#2|))) 64 T ELT)) (-1788 ((|#2| (-1177 $)) NIL T ELT) ((|#2|) 119 T ELT)) (-1790 (($ (-1177 |#2|) (-1177 $)) NIL T ELT) (($ (-1177 |#2|)) 125 T ELT)) (-1905 (((-3 (-2 (|:| |particular| $) (|:| -2011 (-582 $))) #1#)) 95 T ELT)) (-1702 (((-3 $ #1#)) 87 T ELT)) (-1787 (((-629 |#2|) (-1177 $)) NIL T ELT) (((-629 |#2|)) 113 T ELT)) (-1785 (((-629 |#2|) $ (-1177 $)) NIL T ELT) (((-629 |#2|) $) 121 T ELT)) (-1902 (((-1083 (-856 |#2|))) 63 T ELT)) (-1789 ((|#2| (-1177 $)) NIL T ELT) ((|#2|) 117 T ELT)) (-3223 (((-1177 |#2|) $ (-1177 $)) NIL T ELT) (((-629 |#2|) (-1177 $) (-1177 $)) NIL T ELT) (((-1177 |#2|) $) 124 T ELT) (((-629 |#2|) (-1177 $)) 133 T ELT)) (-3970 (((-1177 |#2|) $) 109 T ELT) (($ (-1177 |#2|)) 111 T ELT)) (-1890 (((-582 (-856 |#2|)) (-1177 $)) NIL T ELT) (((-582 (-856 |#2|))) 107 T ELT)) (-2544 (($ (-629 |#2|) $) 103 T ELT))) -(((-358 |#1| |#2|) (-10 -7 (-15 -2544 (|#1| (-629 |#2|) |#1|)) (-15 -1898 ((-1083 (-856 |#2|)))) (-15 -1902 ((-1083 (-856 |#2|)))) (-15 -1784 ((-629 |#2|) |#1|)) (-15 -1785 ((-629 |#2|) |#1|)) (-15 -1786 ((-629 |#2|))) (-15 -1787 ((-629 |#2|))) (-15 -1788 (|#2|)) (-15 -1789 (|#2|)) (-15 -3970 (|#1| (-1177 |#2|))) (-15 -3970 ((-1177 |#2|) |#1|)) (-15 -1790 (|#1| (-1177 |#2|))) (-15 -1890 ((-582 (-856 |#2|)))) (-15 -3222 ((-1177 (-629 |#2|)))) (-15 -3223 ((-629 |#2|) (-1177 |#1|))) (-15 -3223 ((-1177 |#2|) |#1|)) (-15 -1770 ((-3 |#1| #1="failed"))) (-15 -1701 ((-3 |#1| #1#))) (-15 -1702 ((-3 |#1| #1#))) (-15 -1904 ((-3 (-2 (|:| |particular| |#1|) (|:| -2011 (-582 |#1|))) #1#))) (-15 -1905 ((-3 (-2 (|:| |particular| |#1|) (|:| -2011 (-582 |#1|))) #1#))) (-15 -1786 ((-629 |#2|) (-1177 |#1|))) (-15 -1787 ((-629 |#2|) (-1177 |#1|))) (-15 -1788 (|#2| (-1177 |#1|))) (-15 -1789 (|#2| (-1177 |#1|))) (-15 -1790 (|#1| (-1177 |#2|) (-1177 |#1|))) (-15 -3223 ((-629 |#2|) (-1177 |#1|) (-1177 |#1|))) (-15 -3223 ((-1177 |#2|) |#1| (-1177 |#1|))) (-15 -1784 ((-629 |#2|) |#1| (-1177 |#1|))) (-15 -1785 ((-629 |#2|) |#1| (-1177 |#1|))) (-15 -3222 ((-1177 (-629 |#2|)) (-1177 |#1|))) (-15 -1890 ((-582 (-856 |#2|)) (-1177 |#1|)))) (-359 |#2|) (-146)) (T -358)) -((-3222 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-1177 (-629 *4))) (-5 *1 (-358 *3 *4)) (-4 *3 (-359 *4)))) (-1890 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-582 (-856 *4))) (-5 *1 (-358 *3 *4)) (-4 *3 (-359 *4)))) (-1789 (*1 *2) (-12 (-4 *2 (-146)) (-5 *1 (-358 *3 *2)) (-4 *3 (-359 *2)))) (-1788 (*1 *2) (-12 (-4 *2 (-146)) (-5 *1 (-358 *3 *2)) (-4 *3 (-359 *2)))) (-1787 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-629 *4)) (-5 *1 (-358 *3 *4)) (-4 *3 (-359 *4)))) (-1786 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-629 *4)) (-5 *1 (-358 *3 *4)) (-4 *3 (-359 *4)))) (-1902 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-1083 (-856 *4))) (-5 *1 (-358 *3 *4)) (-4 *3 (-359 *4)))) (-1898 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-1083 (-856 *4))) (-5 *1 (-358 *3 *4)) (-4 *3 (-359 *4))))) -((-2567 (((-85) $ $) 7 T ELT)) (-3187 (((-85) $) 22 T ELT)) (-1770 (((-3 $ #1="failed")) 48 (|has| |#1| (-494)) ELT)) (-1310 (((-3 $ "failed") $ $) 26 T ELT)) (-3222 (((-1177 (-629 |#1|)) (-1177 $)) 89 T ELT) (((-1177 (-629 |#1|))) 115 T ELT)) (-1727 (((-1177 $)) 92 T ELT)) (-3722 (($) 23 T CONST)) (-1904 (((-3 (-2 (|:| |particular| $) (|:| -2011 (-582 $))) #1#)) 51 (|has| |#1| (-494)) ELT)) (-1701 (((-3 $ #1#)) 49 (|has| |#1| (-494)) ELT)) (-1786 (((-629 |#1|) (-1177 $)) 76 T ELT) (((-629 |#1|)) 107 T ELT)) (-1725 ((|#1| $) 85 T ELT)) (-1784 (((-629 |#1|) $ (-1177 $)) 87 T ELT) (((-629 |#1|) $) 105 T ELT)) (-2403 (((-3 $ #1#) $) 56 (|has| |#1| (-494)) ELT)) (-1898 (((-1083 (-856 |#1|))) 103 (|has| |#1| (-312)) ELT)) (-2406 (($ $ (-829)) 37 T ELT)) (-1723 ((|#1| $) 83 T ELT)) (-1703 (((-1083 |#1|) $) 53 (|has| |#1| (-494)) ELT)) (-1788 ((|#1| (-1177 $)) 78 T ELT) ((|#1|) 109 T ELT)) (-1721 (((-1083 |#1|) $) 74 T ELT)) (-1715 (((-85)) 68 T ELT)) (-1790 (($ (-1177 |#1|) (-1177 $)) 80 T ELT) (($ (-1177 |#1|)) 113 T ELT)) (-3465 (((-3 $ #1#) $) 58 (|has| |#1| (-494)) ELT)) (-3107 (((-829)) 91 T ELT)) (-1712 (((-85)) 65 T ELT)) (-2432 (($ $ (-829)) 44 T ELT)) (-1212 (((-85) $ $) 20 T ELT)) (-1708 (((-85)) 61 T ELT)) (-1706 (((-85)) 59 T ELT)) (-1710 (((-85)) 63 T ELT)) (-1905 (((-3 (-2 (|:| |particular| $) (|:| -2011 (-582 $))) #1#)) 52 (|has| |#1| (-494)) ELT)) (-1702 (((-3 $ #1#)) 50 (|has| |#1| (-494)) ELT)) (-1787 (((-629 |#1|) (-1177 $)) 77 T ELT) (((-629 |#1|)) 108 T ELT)) (-1726 ((|#1| $) 86 T ELT)) (-1785 (((-629 |#1|) $ (-1177 $)) 88 T ELT) (((-629 |#1|) $) 106 T ELT)) (-2404 (((-3 $ #1#) $) 57 (|has| |#1| (-494)) ELT)) (-1902 (((-1083 (-856 |#1|))) 104 (|has| |#1| (-312)) ELT)) (-2405 (($ $ (-829)) 38 T ELT)) (-1724 ((|#1| $) 84 T ELT)) (-1704 (((-1083 |#1|) $) 54 (|has| |#1| (-494)) ELT)) (-1789 ((|#1| (-1177 $)) 79 T ELT) ((|#1|) 110 T ELT)) (-1722 (((-1083 |#1|) $) 75 T ELT)) (-1716 (((-85)) 69 T ELT)) (-3241 (((-1071) $) 11 T ELT)) (-1707 (((-85)) 60 T ELT)) (-1709 (((-85)) 62 T ELT)) (-1711 (((-85)) 64 T ELT)) (-3242 (((-1032) $) 12 T ELT)) (-1714 (((-85)) 67 T ELT)) (-3798 ((|#1| $ (-483)) 119 T ELT)) (-3223 (((-1177 |#1|) $ (-1177 $)) 82 T ELT) (((-629 |#1|) (-1177 $) (-1177 $)) 81 T ELT) (((-1177 |#1|) $) 117 T ELT) (((-629 |#1|) (-1177 $)) 116 T ELT)) (-3970 (((-1177 |#1|) $) 112 T ELT) (($ (-1177 |#1|)) 111 T ELT)) (-1890 (((-582 (-856 |#1|)) (-1177 $)) 90 T ELT) (((-582 (-856 |#1|))) 114 T ELT)) (-2434 (($ $ $) 34 T ELT)) (-1720 (((-85)) 73 T ELT)) (-3944 (((-771) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2011 (((-1177 $)) 118 T ELT)) (-1705 (((-582 (-1177 |#1|))) 55 (|has| |#1| (-494)) ELT)) (-2435 (($ $ $ $) 35 T ELT)) (-1718 (((-85)) 71 T ELT)) (-2544 (($ (-629 |#1|) $) 102 T ELT)) (-2433 (($ $ $) 33 T ELT)) (-1719 (((-85)) 72 T ELT)) (-1717 (((-85)) 70 T ELT)) (-1713 (((-85)) 66 T ELT)) (-2659 (($) 24 T CONST)) (-3055 (((-85) $ $) 8 T ELT)) (-3835 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3837 (($ $ $) 18 T ELT)) (** (($ $ (-829)) 39 T ELT)) (* (($ (-829) $) 17 T ELT) (($ (-693) $) 21 T ELT) (($ (-483) $) 30 T ELT) (($ $ $) 36 T ELT) (($ $ |#1|) 46 T ELT) (($ |#1| $) 45 T ELT))) -(((-359 |#1|) (-113) (-146)) (T -359)) -((-2011 (*1 *2) (-12 (-4 *3 (-146)) (-5 *2 (-1177 *1)) (-4 *1 (-359 *3)))) (-3223 (*1 *2 *1) (-12 (-4 *1 (-359 *3)) (-4 *3 (-146)) (-5 *2 (-1177 *3)))) (-3223 (*1 *2 *3) (-12 (-5 *3 (-1177 *1)) (-4 *1 (-359 *4)) (-4 *4 (-146)) (-5 *2 (-629 *4)))) (-3222 (*1 *2) (-12 (-4 *1 (-359 *3)) (-4 *3 (-146)) (-5 *2 (-1177 (-629 *3))))) (-1890 (*1 *2) (-12 (-4 *1 (-359 *3)) (-4 *3 (-146)) (-5 *2 (-582 (-856 *3))))) (-1790 (*1 *1 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-146)) (-4 *1 (-359 *3)))) (-3970 (*1 *2 *1) (-12 (-4 *1 (-359 *3)) (-4 *3 (-146)) (-5 *2 (-1177 *3)))) (-3970 (*1 *1 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-146)) (-4 *1 (-359 *3)))) (-1789 (*1 *2) (-12 (-4 *1 (-359 *2)) (-4 *2 (-146)))) (-1788 (*1 *2) (-12 (-4 *1 (-359 *2)) (-4 *2 (-146)))) (-1787 (*1 *2) (-12 (-4 *1 (-359 *3)) (-4 *3 (-146)) (-5 *2 (-629 *3)))) (-1786 (*1 *2) (-12 (-4 *1 (-359 *3)) (-4 *3 (-146)) (-5 *2 (-629 *3)))) (-1785 (*1 *2 *1) (-12 (-4 *1 (-359 *3)) (-4 *3 (-146)) (-5 *2 (-629 *3)))) (-1784 (*1 *2 *1) (-12 (-4 *1 (-359 *3)) (-4 *3 (-146)) (-5 *2 (-629 *3)))) (-1902 (*1 *2) (-12 (-4 *1 (-359 *3)) (-4 *3 (-146)) (-4 *3 (-312)) (-5 *2 (-1083 (-856 *3))))) (-1898 (*1 *2) (-12 (-4 *1 (-359 *3)) (-4 *3 (-146)) (-4 *3 (-312)) (-5 *2 (-1083 (-856 *3))))) (-2544 (*1 *1 *2 *1) (-12 (-5 *2 (-629 *3)) (-4 *1 (-359 *3)) (-4 *3 (-146))))) -(-13 (-316 |t#1|) (-241 (-483) |t#1|) (-10 -8 (-15 -2011 ((-1177 $))) (-15 -3223 ((-1177 |t#1|) $)) (-15 -3223 ((-629 |t#1|) (-1177 $))) (-15 -3222 ((-1177 (-629 |t#1|)))) (-15 -1890 ((-582 (-856 |t#1|)))) (-15 -1790 ($ (-1177 |t#1|))) (-15 -3970 ((-1177 |t#1|) $)) (-15 -3970 ($ (-1177 |t#1|))) (-15 -1789 (|t#1|)) (-15 -1788 (|t#1|)) (-15 -1787 ((-629 |t#1|))) (-15 -1786 ((-629 |t#1|))) (-15 -1785 ((-629 |t#1|) $)) (-15 -1784 ((-629 |t#1|) $)) (IF (|has| |t#1| (-312)) (PROGN (-15 -1902 ((-1083 (-856 |t#1|)))) (-15 -1898 ((-1083 (-856 |t#1|))))) |%noBranch|) (-15 -2544 ($ (-629 |t#1|) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-551 (-771)) . T) ((-241 (-483) |#1|) . T) ((-316 |#1|) . T) ((-13) . T) ((-587 (-483)) . T) ((-587 |#1|) . T) ((-589 |#1|) . T) ((-581 |#1|) . T) ((-653 |#1|) . T) ((-656) . T) ((-682 |#1|) . T) ((-684) . T) ((-962 |#1|) . T) ((-967 |#1|) . T) ((-1012) . T) ((-1127) . T)) -((-3133 (((-346 |#1|) (-346 |#1|) (-1 (-346 |#1|) |#1|)) 28 T ELT)) (-1791 (((-346 |#1|) (-346 |#1|) (-346 |#1|)) 17 T ELT))) -(((-360 |#1|) (-10 -7 (-15 -3133 ((-346 |#1|) (-346 |#1|) (-1 (-346 |#1|) |#1|))) (-15 -1791 ((-346 |#1|) (-346 |#1|) (-346 |#1|)))) (-494)) (T -360)) -((-1791 (*1 *2 *2 *2) (-12 (-5 *2 (-346 *3)) (-4 *3 (-494)) (-5 *1 (-360 *3)))) (-3133 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-346 *4) *4)) (-4 *4 (-494)) (-5 *2 (-346 *4)) (-5 *1 (-360 *4))))) -((-3080 (((-582 (-1088)) $) 81 T ELT)) (-3082 (((-348 (-1083 $)) $ (-549 $)) 313 T ELT)) (-1602 (($ $ (-249 $)) NIL T ELT) (($ $ (-582 (-249 $))) NIL T ELT) (($ $ (-582 (-549 $)) (-582 $)) 277 T ELT)) (-3156 (((-3 (-549 $) #1="failed") $) NIL T ELT) (((-3 (-1088) #1#) $) 84 T ELT) (((-3 (-483) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 273 T ELT) (((-3 (-348 (-856 |#2|)) #1#) $) 363 T ELT) (((-3 (-856 |#2|) #1#) $) 275 T ELT) (((-3 (-348 (-483)) #1#) $) NIL T ELT)) (-3155 (((-549 $) $) NIL T ELT) (((-1088) $) 28 T ELT) (((-483) $) NIL T ELT) ((|#2| $) 271 T ELT) (((-348 (-856 |#2|)) $) 345 T ELT) (((-856 |#2|) $) 272 T ELT) (((-348 (-483)) $) NIL T ELT)) (-3593 (((-86) (-86)) 47 T ELT)) (-2995 (($ $) 99 T ELT)) (-1600 (((-3 (-549 $) #1#) $) 268 T ELT)) (-1599 (((-582 (-549 $)) $) 269 T ELT)) (-2822 (((-3 (-582 $) #1#) $) 287 T ELT)) (-2824 (((-3 (-2 (|:| |val| $) (|:| -2400 (-483))) #1#) $) 294 T ELT)) (-2821 (((-3 (-582 $) #1#) $) 285 T ELT)) (-1792 (((-3 (-2 (|:| -3952 (-483)) (|:| |var| (-549 $))) #1#) $) 304 T ELT)) (-2823 (((-3 (-2 (|:| |var| (-549 $)) (|:| -2400 (-483))) #1#) $) 291 T ELT) (((-3 (-2 (|:| |var| (-549 $)) (|:| -2400 (-483))) #1#) $ (-86)) 255 T ELT) (((-3 (-2 (|:| |var| (-549 $)) (|:| -2400 (-483))) #1#) $ (-1088)) 257 T ELT)) (-1795 (((-85) $) 17 T ELT)) (-1794 ((|#2| $) 19 T ELT)) (-3766 (($ $ (-549 $) $) NIL T ELT) (($ $ (-582 (-549 $)) (-582 $)) 276 T ELT) (($ $ (-582 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-582 $) (-582 $)) NIL T ELT) (($ $ (-582 (-1088)) (-582 (-1 $ $))) NIL T ELT) (($ $ (-582 (-1088)) (-582 (-1 $ (-582 $)))) 109 T ELT) (($ $ (-1088) (-1 $ (-582 $))) NIL T ELT) (($ $ (-1088) (-1 $ $)) NIL T ELT) (($ $ (-582 (-86)) (-582 (-1 $ $))) NIL T ELT) (($ $ (-582 (-86)) (-582 (-1 $ (-582 $)))) NIL T ELT) (($ $ (-86) (-1 $ (-582 $))) NIL T ELT) (($ $ (-86) (-1 $ $)) NIL T ELT) (($ $ (-1088)) 62 T ELT) (($ $ (-582 (-1088))) 280 T ELT) (($ $) 281 T ELT) (($ $ (-86) $ (-1088)) 65 T ELT) (($ $ (-582 (-86)) (-582 $) (-1088)) 72 T ELT) (($ $ (-582 (-1088)) (-582 (-693)) (-582 (-1 $ $))) 120 T ELT) (($ $ (-582 (-1088)) (-582 (-693)) (-582 (-1 $ (-582 $)))) 282 T ELT) (($ $ (-1088) (-693) (-1 $ (-582 $))) 105 T ELT) (($ $ (-1088) (-693) (-1 $ $)) 104 T ELT)) (-3798 (($ (-86) $) NIL T ELT) (($ (-86) $ $) NIL T ELT) (($ (-86) $ $ $) NIL T ELT) (($ (-86) $ $ $ $) NIL T ELT) (($ (-86) (-582 $)) 119 T ELT)) (-3756 (($ $ (-1088)) 278 T ELT) (($ $ (-582 (-1088))) NIL T ELT) (($ $ (-1088) (-693)) NIL T ELT) (($ $ (-582 (-1088)) (-582 (-693))) NIL T ELT)) (-2994 (($ $) 324 T ELT)) (-3970 (((-799 (-483)) $) 297 T ELT) (((-799 (-328)) $) 301 T ELT) (($ (-346 $)) 359 T ELT) (((-472) $) NIL T ELT)) (-3944 (((-771) $) 279 T ELT) (($ (-549 $)) 93 T ELT) (($ (-1088)) 24 T ELT) (($ |#2|) NIL T ELT) (($ (-1037 |#2| (-549 $))) NIL T ELT) (($ (-348 |#2|)) 329 T ELT) (($ (-856 (-348 |#2|))) 368 T ELT) (($ (-348 (-856 (-348 |#2|)))) 341 T ELT) (($ (-348 (-856 |#2|))) 335 T ELT) (($ $) NIL T ELT) (($ (-856 |#2|)) 216 T ELT) (($ (-483)) NIL T ELT) (($ (-348 (-483))) 373 T ELT)) (-3125 (((-693)) 88 T CONST)) (-2253 (((-85) (-86)) 42 T ELT)) (-1793 (($ (-1088) $) 31 T ELT) (($ (-1088) $ $) 32 T ELT) (($ (-1088) $ $ $) 33 T ELT) (($ (-1088) $ $ $ $) 34 T ELT) (($ (-1088) (-582 $)) 39 T ELT)) (* (($ (-348 (-483)) $) NIL T ELT) (($ $ (-348 (-483))) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 306 T ELT) (($ $ $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-829) $) NIL T ELT))) -(((-361 |#1| |#2|) (-10 -7 (-15 * (|#1| (-829) |#1|)) (-15 * (|#1| (-693) |#1|)) (-15 * (|#1| (-483) |#1|)) (-15 -3944 (|#1| (-348 (-483)))) (-15 -3156 ((-3 (-348 (-483)) #1="failed") |#1|)) (-15 -3155 ((-348 (-483)) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3944 (|#1| (-483))) (-15 -3125 ((-693)) -3950) (-15 * (|#1| |#2| |#1|)) (-15 -3970 ((-472) |#1|)) (-15 -3944 (|#1| (-856 |#2|))) (-15 -3156 ((-3 (-856 |#2|) #1#) |#1|)) (-15 -3155 ((-856 |#2|) |#1|)) (-15 -3756 (|#1| |#1| (-582 (-1088)) (-582 (-693)))) (-15 -3756 (|#1| |#1| (-1088) (-693))) (-15 -3756 (|#1| |#1| (-582 (-1088)))) (-15 -3756 (|#1| |#1| (-1088))) (-15 * (|#1| |#1| |#2|)) (-15 -3944 (|#1| |#1|)) (-15 * (|#1| |#1| (-348 (-483)))) (-15 * (|#1| (-348 (-483)) |#1|)) (-15 -3944 (|#1| (-348 (-856 |#2|)))) (-15 -3156 ((-3 (-348 (-856 |#2|)) #1#) |#1|)) (-15 -3155 ((-348 (-856 |#2|)) |#1|)) (-15 -3082 ((-348 (-1083 |#1|)) |#1| (-549 |#1|))) (-15 -3944 (|#1| (-348 (-856 (-348 |#2|))))) (-15 -3944 (|#1| (-856 (-348 |#2|)))) (-15 -3944 (|#1| (-348 |#2|))) (-15 -2994 (|#1| |#1|)) (-15 -3970 (|#1| (-346 |#1|))) (-15 -3766 (|#1| |#1| (-1088) (-693) (-1 |#1| |#1|))) (-15 -3766 (|#1| |#1| (-1088) (-693) (-1 |#1| (-582 |#1|)))) (-15 -3766 (|#1| |#1| (-582 (-1088)) (-582 (-693)) (-582 (-1 |#1| (-582 |#1|))))) (-15 -3766 (|#1| |#1| (-582 (-1088)) (-582 (-693)) (-582 (-1 |#1| |#1|)))) (-15 -2824 ((-3 (-2 (|:| |val| |#1|) (|:| -2400 (-483))) #1#) |#1|)) (-15 -2823 ((-3 (-2 (|:| |var| (-549 |#1|)) (|:| -2400 (-483))) #1#) |#1| (-1088))) (-15 -2823 ((-3 (-2 (|:| |var| (-549 |#1|)) (|:| -2400 (-483))) #1#) |#1| (-86))) (-15 -2995 (|#1| |#1|)) (-15 -3944 (|#1| (-1037 |#2| (-549 |#1|)))) (-15 -1792 ((-3 (-2 (|:| -3952 (-483)) (|:| |var| (-549 |#1|))) #1#) |#1|)) (-15 -2821 ((-3 (-582 |#1|) #1#) |#1|)) (-15 -2823 ((-3 (-2 (|:| |var| (-549 |#1|)) (|:| -2400 (-483))) #1#) |#1|)) (-15 -2822 ((-3 (-582 |#1|) #1#) |#1|)) (-15 -3766 (|#1| |#1| (-582 (-86)) (-582 |#1|) (-1088))) (-15 -3766 (|#1| |#1| (-86) |#1| (-1088))) (-15 -3766 (|#1| |#1|)) (-15 -3766 (|#1| |#1| (-582 (-1088)))) (-15 -3766 (|#1| |#1| (-1088))) (-15 -1793 (|#1| (-1088) (-582 |#1|))) (-15 -1793 (|#1| (-1088) |#1| |#1| |#1| |#1|)) (-15 -1793 (|#1| (-1088) |#1| |#1| |#1|)) (-15 -1793 (|#1| (-1088) |#1| |#1|)) (-15 -1793 (|#1| (-1088) |#1|)) (-15 -3080 ((-582 (-1088)) |#1|)) (-15 -1794 (|#2| |#1|)) (-15 -1795 ((-85) |#1|)) (-15 -3944 (|#1| |#2|)) (-15 -3156 ((-3 |#2| #1#) |#1|)) (-15 -3155 (|#2| |#1|)) (-15 -3155 ((-483) |#1|)) (-15 -3156 ((-3 (-483) #1#) |#1|)) (-15 -3970 ((-799 (-328)) |#1|)) (-15 -3970 ((-799 (-483)) |#1|)) (-15 -3944 (|#1| (-1088))) (-15 -3156 ((-3 (-1088) #1#) |#1|)) (-15 -3155 ((-1088) |#1|)) (-15 -3766 (|#1| |#1| (-86) (-1 |#1| |#1|))) (-15 -3766 (|#1| |#1| (-86) (-1 |#1| (-582 |#1|)))) (-15 -3766 (|#1| |#1| (-582 (-86)) (-582 (-1 |#1| (-582 |#1|))))) (-15 -3766 (|#1| |#1| (-582 (-86)) (-582 (-1 |#1| |#1|)))) (-15 -3766 (|#1| |#1| (-1088) (-1 |#1| |#1|))) (-15 -3766 (|#1| |#1| (-1088) (-1 |#1| (-582 |#1|)))) (-15 -3766 (|#1| |#1| (-582 (-1088)) (-582 (-1 |#1| (-582 |#1|))))) (-15 -3766 (|#1| |#1| (-582 (-1088)) (-582 (-1 |#1| |#1|)))) (-15 -2253 ((-85) (-86))) (-15 -3593 ((-86) (-86))) (-15 -1599 ((-582 (-549 |#1|)) |#1|)) (-15 -1600 ((-3 (-549 |#1|) #1#) |#1|)) (-15 -1602 (|#1| |#1| (-582 (-549 |#1|)) (-582 |#1|))) (-15 -1602 (|#1| |#1| (-582 (-249 |#1|)))) (-15 -1602 (|#1| |#1| (-249 |#1|))) (-15 -3798 (|#1| (-86) (-582 |#1|))) (-15 -3798 (|#1| (-86) |#1| |#1| |#1| |#1|)) (-15 -3798 (|#1| (-86) |#1| |#1| |#1|)) (-15 -3798 (|#1| (-86) |#1| |#1|)) (-15 -3798 (|#1| (-86) |#1|)) (-15 -3766 (|#1| |#1| (-582 |#1|) (-582 |#1|))) (-15 -3766 (|#1| |#1| |#1| |#1|)) (-15 -3766 (|#1| |#1| (-249 |#1|))) (-15 -3766 (|#1| |#1| (-582 (-249 |#1|)))) (-15 -3766 (|#1| |#1| (-582 (-549 |#1|)) (-582 |#1|))) (-15 -3766 (|#1| |#1| (-549 |#1|) |#1|)) (-15 -3944 (|#1| (-549 |#1|))) (-15 -3156 ((-3 (-549 |#1|) #1#) |#1|)) (-15 -3155 ((-549 |#1|) |#1|)) (-15 -3944 ((-771) |#1|))) (-362 |#2|) (-1012)) (T -361)) -((-3593 (*1 *2 *2) (-12 (-5 *2 (-86)) (-4 *4 (-1012)) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4)))) (-2253 (*1 *2 *3) (-12 (-5 *3 (-86)) (-4 *5 (-1012)) (-5 *2 (-85)) (-5 *1 (-361 *4 *5)) (-4 *4 (-362 *5)))) (-3125 (*1 *2) (-12 (-4 *4 (-1012)) (-5 *2 (-693)) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4))))) -((-2567 (((-85) $ $) 7 T ELT)) (-3187 (((-85) $) 129 (|has| |#1| (-25)) ELT)) (-3080 (((-582 (-1088)) $) 222 T ELT)) (-3082 (((-348 (-1083 $)) $ (-549 $)) 190 (|has| |#1| (-494)) ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3980 $) (|:| |associate| $)) $) 162 (|has| |#1| (-494)) ELT)) (-2062 (($ $) 163 (|has| |#1| (-494)) ELT)) (-2060 (((-85) $) 165 (|has| |#1| (-494)) ELT)) (-1598 (((-582 (-549 $)) $) 42 T ELT)) (-1310 (((-3 $ "failed") $ $) 132 (|has| |#1| (-21)) ELT)) (-1602 (($ $ (-249 $)) 54 T ELT) (($ $ (-582 (-249 $))) 53 T ELT) (($ $ (-582 (-549 $)) (-582 $)) 52 T ELT)) (-3773 (($ $) 182 (|has| |#1| (-494)) ELT)) (-3969 (((-346 $) $) 183 (|has| |#1| (-494)) ELT)) (-1606 (((-85) $ $) 173 (|has| |#1| (-494)) ELT)) (-3722 (($) 117 (OR (|has| |#1| (-1024)) (|has| |#1| (-25))) CONST)) (-3156 (((-3 (-549 $) #1="failed") $) 67 T ELT) (((-3 (-1088) #1#) $) 235 T ELT) (((-3 (-483) #1#) $) 229 (|has| |#1| (-949 (-483))) ELT) (((-3 |#1| #1#) $) 226 T ELT) (((-3 (-348 (-856 |#1|)) #1#) $) 188 (|has| |#1| (-494)) ELT) (((-3 (-856 |#1|) #1#) $) 137 (|has| |#1| (-960)) ELT) (((-3 (-348 (-483)) #1#) $) 111 (OR (-12 (|has| |#1| (-949 (-483))) (|has| |#1| (-494))) (|has| |#1| (-949 (-348 (-483))))) ELT)) (-3155 (((-549 $) $) 68 T ELT) (((-1088) $) 236 T ELT) (((-483) $) 228 (|has| |#1| (-949 (-483))) ELT) ((|#1| $) 227 T ELT) (((-348 (-856 |#1|)) $) 189 (|has| |#1| (-494)) ELT) (((-856 |#1|) $) 138 (|has| |#1| (-960)) ELT) (((-348 (-483)) $) 112 (OR (-12 (|has| |#1| (-949 (-483))) (|has| |#1| (-494))) (|has| |#1| (-949 (-348 (-483))))) ELT)) (-2563 (($ $ $) 177 (|has| |#1| (-494)) ELT)) (-2278 (((-629 (-483)) (-629 $)) 155 (-2561 (|has| |#1| (-579 (-483))) (|has| |#1| (-960))) ELT) (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-629 $) (-1177 $)) 154 (-2561 (|has| |#1| (-579 (-483))) (|has| |#1| (-960))) ELT) (((-2 (|:| |mat| (-629 |#1|)) (|:| |vec| (-1177 |#1|))) (-629 $) (-1177 $)) 153 (|has| |#1| (-960)) ELT) (((-629 |#1|) (-629 $)) 152 (|has| |#1| (-960)) ELT)) (-3465 (((-3 $ "failed") $) 119 (|has| |#1| (-1024)) ELT)) (-2562 (($ $ $) 176 (|has| |#1| (-494)) ELT)) (-2740 (((-2 (|:| -3952 (-582 $)) (|:| -2408 $)) (-582 $)) 171 (|has| |#1| (-494)) ELT)) (-3721 (((-85) $) 184 (|has| |#1| (-494)) ELT)) (-2795 (((-797 (-483) $) $ (-799 (-483)) (-797 (-483) $)) 231 (|has| |#1| (-795 (-483))) ELT) (((-797 (-328) $) $ (-799 (-328)) (-797 (-328) $)) 230 (|has| |#1| (-795 (-328))) ELT)) (-2572 (($ $) 49 T ELT) (($ (-582 $)) 48 T ELT)) (-1212 (((-85) $ $) 131 (|has| |#1| (-25)) ELT)) (-1597 (((-582 (-86)) $) 41 T ELT)) (-3593 (((-86) (-86)) 40 T ELT)) (-2409 (((-85) $) 118 (|has| |#1| (-1024)) ELT)) (-2672 (((-85) $) 20 (|has| $ (-949 (-483))) ELT)) (-2995 (($ $) 205 (|has| |#1| (-960)) ELT)) (-2997 (((-1037 |#1| (-549 $)) $) 206 (|has| |#1| (-960)) ELT)) (-1603 (((-3 (-582 $) #2="failed") (-582 $) $) 180 (|has| |#1| (-494)) ELT)) (-1595 (((-1083 $) (-549 $)) 23 (|has| $ (-960)) ELT)) (-3956 (($ (-1 $ $) (-549 $)) 34 T ELT)) (-1600 (((-3 (-549 $) "failed") $) 44 T ELT)) (-2279 (((-629 (-483)) (-1177 $)) 157 (-2561 (|has| |#1| (-579 (-483))) (|has| |#1| (-960))) ELT) (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) 156 (-2561 (|has| |#1| (-579 (-483))) (|has| |#1| (-960))) ELT) (((-2 (|:| |mat| (-629 |#1|)) (|:| |vec| (-1177 |#1|))) (-1177 $) $) 151 (|has| |#1| (-960)) ELT) (((-629 |#1|) (-1177 $)) 150 (|has| |#1| (-960)) ELT)) (-1889 (($ (-582 $)) 169 (|has| |#1| (-494)) ELT) (($ $ $) 168 (|has| |#1| (-494)) ELT)) (-3241 (((-1071) $) 11 T ELT)) (-1599 (((-582 (-549 $)) $) 43 T ELT)) (-2234 (($ (-86) $) 36 T ELT) (($ (-86) (-582 $)) 35 T ELT)) (-2822 (((-3 (-582 $) "failed") $) 211 (|has| |#1| (-1024)) ELT)) (-2824 (((-3 (-2 (|:| |val| $) (|:| -2400 (-483))) "failed") $) 202 (|has| |#1| (-960)) ELT)) (-2821 (((-3 (-582 $) "failed") $) 209 (|has| |#1| (-25)) ELT)) (-1792 (((-3 (-2 (|:| -3952 (-483)) (|:| |var| (-549 $))) "failed") $) 208 (|has| |#1| (-25)) ELT)) (-2823 (((-3 (-2 (|:| |var| (-549 $)) (|:| -2400 (-483))) "failed") $) 210 (|has| |#1| (-1024)) ELT) (((-3 (-2 (|:| |var| (-549 $)) (|:| -2400 (-483))) "failed") $ (-86)) 204 (|has| |#1| (-960)) ELT) (((-3 (-2 (|:| |var| (-549 $)) (|:| -2400 (-483))) "failed") $ (-1088)) 203 (|has| |#1| (-960)) ELT)) (-2632 (((-85) $ (-86)) 38 T ELT) (((-85) $ (-1088)) 37 T ELT)) (-2483 (($ $) 121 (OR (|has| |#1| (-411)) (|has| |#1| (-494))) ELT)) (-2602 (((-693) $) 45 T ELT)) (-3242 (((-1032) $) 12 T ELT)) (-1795 (((-85) $) 224 T ELT)) (-1794 ((|#1| $) 223 T ELT)) (-2707 (((-1083 $) (-1083 $) (-1083 $)) 170 (|has| |#1| (-494)) ELT)) (-3143 (($ (-582 $)) 167 (|has| |#1| (-494)) ELT) (($ $ $) 166 (|has| |#1| (-494)) ELT)) (-1596 (((-85) $ $) 33 T ELT) (((-85) $ (-1088)) 32 T ELT)) (-3730 (((-346 $) $) 181 (|has| |#1| (-494)) ELT)) (-1604 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 179 (|has| |#1| (-494)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) 178 (|has| |#1| (-494)) ELT)) (-3464 (((-3 $ "failed") $ $) 161 (|has| |#1| (-494)) ELT)) (-2739 (((-631 (-582 $)) (-582 $) $) 172 (|has| |#1| (-494)) ELT)) (-2673 (((-85) $) 21 (|has| $ (-949 (-483))) ELT)) (-3766 (($ $ (-549 $) $) 65 T ELT) (($ $ (-582 (-549 $)) (-582 $)) 64 T ELT) (($ $ (-582 (-249 $))) 63 T ELT) (($ $ (-249 $)) 62 T ELT) (($ $ $ $) 61 T ELT) (($ $ (-582 $) (-582 $)) 60 T ELT) (($ $ (-582 (-1088)) (-582 (-1 $ $))) 31 T ELT) (($ $ (-582 (-1088)) (-582 (-1 $ (-582 $)))) 30 T ELT) (($ $ (-1088) (-1 $ (-582 $))) 29 T ELT) (($ $ (-1088) (-1 $ $)) 28 T ELT) (($ $ (-582 (-86)) (-582 (-1 $ $))) 27 T ELT) (($ $ (-582 (-86)) (-582 (-1 $ (-582 $)))) 26 T ELT) (($ $ (-86) (-1 $ (-582 $))) 25 T ELT) (($ $ (-86) (-1 $ $)) 24 T ELT) (($ $ (-1088)) 216 (|has| |#1| (-552 (-472))) ELT) (($ $ (-582 (-1088))) 215 (|has| |#1| (-552 (-472))) ELT) (($ $) 214 (|has| |#1| (-552 (-472))) ELT) (($ $ (-86) $ (-1088)) 213 (|has| |#1| (-552 (-472))) ELT) (($ $ (-582 (-86)) (-582 $) (-1088)) 212 (|has| |#1| (-552 (-472))) ELT) (($ $ (-582 (-1088)) (-582 (-693)) (-582 (-1 $ $))) 201 (|has| |#1| (-960)) ELT) (($ $ (-582 (-1088)) (-582 (-693)) (-582 (-1 $ (-582 $)))) 200 (|has| |#1| (-960)) ELT) (($ $ (-1088) (-693) (-1 $ (-582 $))) 199 (|has| |#1| (-960)) ELT) (($ $ (-1088) (-693) (-1 $ $)) 198 (|has| |#1| (-960)) ELT)) (-1605 (((-693) $) 174 (|has| |#1| (-494)) ELT)) (-3798 (($ (-86) $) 59 T ELT) (($ (-86) $ $) 58 T ELT) (($ (-86) $ $ $) 57 T ELT) (($ (-86) $ $ $ $) 56 T ELT) (($ (-86) (-582 $)) 55 T ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) 175 (|has| |#1| (-494)) ELT)) (-1601 (($ $) 47 T ELT) (($ $ $) 46 T ELT)) (-3756 (($ $ (-1088)) 148 (|has| |#1| (-960)) ELT) (($ $ (-582 (-1088))) 146 (|has| |#1| (-960)) ELT) (($ $ (-1088) (-693)) 145 (|has| |#1| (-960)) ELT) (($ $ (-582 (-1088)) (-582 (-693))) 144 (|has| |#1| (-960)) ELT)) (-2994 (($ $) 195 (|has| |#1| (-494)) ELT)) (-2996 (((-1037 |#1| (-549 $)) $) 196 (|has| |#1| (-494)) ELT)) (-3184 (($ $) 22 (|has| $ (-960)) ELT)) (-3970 (((-799 (-483)) $) 233 (|has| |#1| (-552 (-799 (-483)))) ELT) (((-799 (-328)) $) 232 (|has| |#1| (-552 (-799 (-328)))) ELT) (($ (-346 $)) 197 (|has| |#1| (-494)) ELT) (((-472) $) 113 (|has| |#1| (-552 (-472))) ELT)) (-3008 (($ $ $) 124 (|has| |#1| (-411)) ELT)) (-2434 (($ $ $) 125 (|has| |#1| (-411)) ELT)) (-3944 (((-771) $) 13 T ELT) (($ (-549 $)) 66 T ELT) (($ (-1088)) 234 T ELT) (($ |#1|) 225 T ELT) (($ (-1037 |#1| (-549 $))) 207 (|has| |#1| (-960)) ELT) (($ (-348 |#1|)) 193 (|has| |#1| (-494)) ELT) (($ (-856 (-348 |#1|))) 192 (|has| |#1| (-494)) ELT) (($ (-348 (-856 (-348 |#1|)))) 191 (|has| |#1| (-494)) ELT) (($ (-348 (-856 |#1|))) 187 (|has| |#1| (-494)) ELT) (($ $) 160 (|has| |#1| (-494)) ELT) (($ (-856 |#1|)) 136 (|has| |#1| (-960)) ELT) (($ (-348 (-483))) 110 (OR (|has| |#1| (-494)) (-12 (|has| |#1| (-949 (-483))) (|has| |#1| (-494))) (|has| |#1| (-949 (-348 (-483))))) ELT) (($ (-483)) 109 (OR (|has| |#1| (-960)) (|has| |#1| (-949 (-483)))) ELT)) (-2701 (((-631 $) $) 158 (|has| |#1| (-118)) ELT)) (-3125 (((-693)) 140 (|has| |#1| (-960)) CONST)) (-2589 (($ $) 51 T ELT) (($ (-582 $)) 50 T ELT)) (-2253 (((-85) (-86)) 39 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2061 (((-85) $ $) 164 (|has| |#1| (-494)) ELT)) (-1793 (($ (-1088) $) 221 T ELT) (($ (-1088) $ $) 220 T ELT) (($ (-1088) $ $ $) 219 T ELT) (($ (-1088) $ $ $ $) 218 T ELT) (($ (-1088) (-582 $)) 217 T ELT)) (-3124 (((-85) $ $) 139 (|has| |#1| (-960)) ELT)) (-2659 (($) 128 (|has| |#1| (-25)) CONST)) (-2665 (($) 116 (|has| |#1| (-1024)) CONST)) (-2668 (($ $ (-1088)) 147 (|has| |#1| (-960)) ELT) (($ $ (-582 (-1088))) 143 (|has| |#1| (-960)) ELT) (($ $ (-1088) (-693)) 142 (|has| |#1| (-960)) ELT) (($ $ (-582 (-1088)) (-582 (-693))) 141 (|has| |#1| (-960)) ELT)) (-3055 (((-85) $ $) 8 T ELT)) (-3947 (($ (-1037 |#1| (-549 $)) (-1037 |#1| (-549 $))) 194 (|has| |#1| (-494)) ELT) (($ $ $) 122 (OR (|has| |#1| (-411)) (|has| |#1| (-494))) ELT)) (-3835 (($ $ $) 135 (|has| |#1| (-21)) ELT) (($ $) 134 (|has| |#1| (-21)) ELT)) (-3837 (($ $ $) 126 (|has| |#1| (-25)) ELT)) (** (($ $ (-483)) 123 (OR (|has| |#1| (-411)) (|has| |#1| (-494))) ELT) (($ $ (-693)) 120 (|has| |#1| (-1024)) ELT) (($ $ (-829)) 115 (|has| |#1| (-1024)) ELT)) (* (($ (-348 (-483)) $) 186 (|has| |#1| (-494)) ELT) (($ $ (-348 (-483))) 185 (|has| |#1| (-494)) ELT) (($ $ |#1|) 159 (|has| |#1| (-146)) ELT) (($ |#1| $) 149 (|has| |#1| (-960)) ELT) (($ (-483) $) 133 (|has| |#1| (-21)) ELT) (($ (-693) $) 130 (|has| |#1| (-25)) ELT) (($ (-829) $) 127 (|has| |#1| (-25)) ELT) (($ $ $) 114 (|has| |#1| (-1024)) ELT))) -(((-362 |#1|) (-113) (-1012)) (T -362)) -((-1795 (*1 *2 *1) (-12 (-4 *1 (-362 *3)) (-4 *3 (-1012)) (-5 *2 (-85)))) (-1794 (*1 *2 *1) (-12 (-4 *1 (-362 *2)) (-4 *2 (-1012)))) (-3080 (*1 *2 *1) (-12 (-4 *1 (-362 *3)) (-4 *3 (-1012)) (-5 *2 (-582 (-1088))))) (-1793 (*1 *1 *2 *1) (-12 (-5 *2 (-1088)) (-4 *1 (-362 *3)) (-4 *3 (-1012)))) (-1793 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1088)) (-4 *1 (-362 *3)) (-4 *3 (-1012)))) (-1793 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1088)) (-4 *1 (-362 *3)) (-4 *3 (-1012)))) (-1793 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1088)) (-4 *1 (-362 *3)) (-4 *3 (-1012)))) (-1793 (*1 *1 *2 *3) (-12 (-5 *2 (-1088)) (-5 *3 (-582 *1)) (-4 *1 (-362 *4)) (-4 *4 (-1012)))) (-3766 (*1 *1 *1 *2) (-12 (-5 *2 (-1088)) (-4 *1 (-362 *3)) (-4 *3 (-1012)) (-4 *3 (-552 (-472))))) (-3766 (*1 *1 *1 *2) (-12 (-5 *2 (-582 (-1088))) (-4 *1 (-362 *3)) (-4 *3 (-1012)) (-4 *3 (-552 (-472))))) (-3766 (*1 *1 *1) (-12 (-4 *1 (-362 *2)) (-4 *2 (-1012)) (-4 *2 (-552 (-472))))) (-3766 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-86)) (-5 *3 (-1088)) (-4 *1 (-362 *4)) (-4 *4 (-1012)) (-4 *4 (-552 (-472))))) (-3766 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-582 (-86))) (-5 *3 (-582 *1)) (-5 *4 (-1088)) (-4 *1 (-362 *5)) (-4 *5 (-1012)) (-4 *5 (-552 (-472))))) (-2822 (*1 *2 *1) (|partial| -12 (-4 *3 (-1024)) (-4 *3 (-1012)) (-5 *2 (-582 *1)) (-4 *1 (-362 *3)))) (-2823 (*1 *2 *1) (|partial| -12 (-4 *3 (-1024)) (-4 *3 (-1012)) (-5 *2 (-2 (|:| |var| (-549 *1)) (|:| -2400 (-483)))) (-4 *1 (-362 *3)))) (-2821 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1012)) (-5 *2 (-582 *1)) (-4 *1 (-362 *3)))) (-1792 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1012)) (-5 *2 (-2 (|:| -3952 (-483)) (|:| |var| (-549 *1)))) (-4 *1 (-362 *3)))) (-3944 (*1 *1 *2) (-12 (-5 *2 (-1037 *3 (-549 *1))) (-4 *3 (-960)) (-4 *3 (-1012)) (-4 *1 (-362 *3)))) (-2997 (*1 *2 *1) (-12 (-4 *3 (-960)) (-4 *3 (-1012)) (-5 *2 (-1037 *3 (-549 *1))) (-4 *1 (-362 *3)))) (-2995 (*1 *1 *1) (-12 (-4 *1 (-362 *2)) (-4 *2 (-1012)) (-4 *2 (-960)))) (-2823 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-86)) (-4 *4 (-960)) (-4 *4 (-1012)) (-5 *2 (-2 (|:| |var| (-549 *1)) (|:| -2400 (-483)))) (-4 *1 (-362 *4)))) (-2823 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1088)) (-4 *4 (-960)) (-4 *4 (-1012)) (-5 *2 (-2 (|:| |var| (-549 *1)) (|:| -2400 (-483)))) (-4 *1 (-362 *4)))) (-2824 (*1 *2 *1) (|partial| -12 (-4 *3 (-960)) (-4 *3 (-1012)) (-5 *2 (-2 (|:| |val| *1) (|:| -2400 (-483)))) (-4 *1 (-362 *3)))) (-3766 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-582 (-1088))) (-5 *3 (-582 (-693))) (-5 *4 (-582 (-1 *1 *1))) (-4 *1 (-362 *5)) (-4 *5 (-1012)) (-4 *5 (-960)))) (-3766 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-582 (-1088))) (-5 *3 (-582 (-693))) (-5 *4 (-582 (-1 *1 (-582 *1)))) (-4 *1 (-362 *5)) (-4 *5 (-1012)) (-4 *5 (-960)))) (-3766 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1088)) (-5 *3 (-693)) (-5 *4 (-1 *1 (-582 *1))) (-4 *1 (-362 *5)) (-4 *5 (-1012)) (-4 *5 (-960)))) (-3766 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1088)) (-5 *3 (-693)) (-5 *4 (-1 *1 *1)) (-4 *1 (-362 *5)) (-4 *5 (-1012)) (-4 *5 (-960)))) (-3970 (*1 *1 *2) (-12 (-5 *2 (-346 *1)) (-4 *1 (-362 *3)) (-4 *3 (-494)) (-4 *3 (-1012)))) (-2996 (*1 *2 *1) (-12 (-4 *3 (-494)) (-4 *3 (-1012)) (-5 *2 (-1037 *3 (-549 *1))) (-4 *1 (-362 *3)))) (-2994 (*1 *1 *1) (-12 (-4 *1 (-362 *2)) (-4 *2 (-1012)) (-4 *2 (-494)))) (-3947 (*1 *1 *2 *2) (-12 (-5 *2 (-1037 *3 (-549 *1))) (-4 *3 (-494)) (-4 *3 (-1012)) (-4 *1 (-362 *3)))) (-3944 (*1 *1 *2) (-12 (-5 *2 (-348 *3)) (-4 *3 (-494)) (-4 *3 (-1012)) (-4 *1 (-362 *3)))) (-3944 (*1 *1 *2) (-12 (-5 *2 (-856 (-348 *3))) (-4 *3 (-494)) (-4 *3 (-1012)) (-4 *1 (-362 *3)))) (-3944 (*1 *1 *2) (-12 (-5 *2 (-348 (-856 (-348 *3)))) (-4 *3 (-494)) (-4 *3 (-1012)) (-4 *1 (-362 *3)))) (-3082 (*1 *2 *1 *3) (-12 (-5 *3 (-549 *1)) (-4 *1 (-362 *4)) (-4 *4 (-1012)) (-4 *4 (-494)) (-5 *2 (-348 (-1083 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-693)) (-4 *1 (-362 *3)) (-4 *3 (-1012)) (-4 *3 (-1024))))) -(-13 (-254) (-949 (-1088)) (-793 |t#1|) (-341 |t#1|) (-353 |t#1|) (-10 -8 (-15 -1795 ((-85) $)) (-15 -1794 (|t#1| $)) (-15 -3080 ((-582 (-1088)) $)) (-15 -1793 ($ (-1088) $)) (-15 -1793 ($ (-1088) $ $)) (-15 -1793 ($ (-1088) $ $ $)) (-15 -1793 ($ (-1088) $ $ $ $)) (-15 -1793 ($ (-1088) (-582 $))) (IF (|has| |t#1| (-552 (-472))) (PROGN (-6 (-552 (-472))) (-15 -3766 ($ $ (-1088))) (-15 -3766 ($ $ (-582 (-1088)))) (-15 -3766 ($ $)) (-15 -3766 ($ $ (-86) $ (-1088))) (-15 -3766 ($ $ (-582 (-86)) (-582 $) (-1088)))) |%noBranch|) (IF (|has| |t#1| (-1024)) (PROGN (-6 (-662)) (-15 ** ($ $ (-693))) (-15 -2822 ((-3 (-582 $) "failed") $)) (-15 -2823 ((-3 (-2 (|:| |var| (-549 $)) (|:| -2400 (-483))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-411)) (-6 (-411)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -2821 ((-3 (-582 $) "failed") $)) (-15 -1792 ((-3 (-2 (|:| -3952 (-483)) (|:| |var| (-549 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-960)) (PROGN (-6 (-960)) (-6 (-949 (-856 |t#1|))) (-6 (-808 (-1088))) (-6 (-327 |t#1|)) (-15 -3944 ($ (-1037 |t#1| (-549 $)))) (-15 -2997 ((-1037 |t#1| (-549 $)) $)) (-15 -2995 ($ $)) (-15 -2823 ((-3 (-2 (|:| |var| (-549 $)) (|:| -2400 (-483))) "failed") $ (-86))) (-15 -2823 ((-3 (-2 (|:| |var| (-549 $)) (|:| -2400 (-483))) "failed") $ (-1088))) (-15 -2824 ((-3 (-2 (|:| |val| $) (|:| -2400 (-483))) "failed") $)) (-15 -3766 ($ $ (-582 (-1088)) (-582 (-693)) (-582 (-1 $ $)))) (-15 -3766 ($ $ (-582 (-1088)) (-582 (-693)) (-582 (-1 $ (-582 $))))) (-15 -3766 ($ $ (-1088) (-693) (-1 $ (-582 $)))) (-15 -3766 ($ $ (-1088) (-693) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-494)) (PROGN (-6 (-312)) (-6 (-949 (-348 (-856 |t#1|)))) (-15 -3970 ($ (-346 $))) (-15 -2996 ((-1037 |t#1| (-549 $)) $)) (-15 -2994 ($ $)) (-15 -3947 ($ (-1037 |t#1| (-549 $)) (-1037 |t#1| (-549 $)))) (-15 -3944 ($ (-348 |t#1|))) (-15 -3944 ($ (-856 (-348 |t#1|)))) (-15 -3944 ($ (-348 (-856 (-348 |t#1|))))) (-15 -3082 ((-348 (-1083 $)) $ (-549 $))) (IF (|has| |t#1| (-949 (-483))) (-6 (-949 (-348 (-483)))) |%noBranch|)) |%noBranch|))) -(((-21) OR (|has| |#1| (-960)) (|has| |#1| (-494)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118)) (|has| |#1| (-21))) ((-23) OR (|has| |#1| (-960)) (|has| |#1| (-494)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) OR (|has| |#1| (-960)) (|has| |#1| (-494)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-38 (-348 (-483))) |has| |#1| (-494)) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) |has| |#1| (-494)) ((-72) . T) ((-82 (-348 (-483)) (-348 (-483))) |has| |#1| (-494)) ((-82 |#1| |#1|) |has| |#1| (-146)) ((-82 $ $) |has| |#1| (-494)) ((-104) OR (|has| |#1| (-960)) (|has| |#1| (-494)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118)) (|has| |#1| (-21))) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-554 (-348 (-483))) OR (|has| |#1| (-949 (-348 (-483)))) (|has| |#1| (-494))) ((-554 (-348 (-856 |#1|))) |has| |#1| (-494)) ((-554 (-483)) OR (|has| |#1| (-960)) (|has| |#1| (-949 (-483))) (|has| |#1| (-494)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-554 (-549 $)) . T) ((-554 (-856 |#1|)) |has| |#1| (-960)) ((-554 (-1088)) . T) ((-554 |#1|) . T) ((-554 $) |has| |#1| (-494)) ((-551 (-771)) . T) ((-146) |has| |#1| (-494)) ((-552 (-472)) |has| |#1| (-552 (-472))) ((-552 (-799 (-328))) |has| |#1| (-552 (-799 (-328)))) ((-552 (-799 (-483))) |has| |#1| (-552 (-799 (-483)))) ((-201) |has| |#1| (-494)) ((-246) |has| |#1| (-494)) ((-258) |has| |#1| (-494)) ((-260 $) . T) ((-254) . T) ((-312) |has| |#1| (-494)) ((-327 |#1|) |has| |#1| (-960)) ((-341 |#1|) . T) ((-353 |#1|) . T) ((-390) |has| |#1| (-494)) ((-411) |has| |#1| (-411)) ((-454 (-549 $) $) . T) ((-454 $ $) . T) ((-494) |has| |#1| (-494)) ((-13) . T) ((-587 (-348 (-483))) |has| |#1| (-494)) ((-587 (-483)) OR (|has| |#1| (-960)) (|has| |#1| (-494)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118)) (|has| |#1| (-21))) ((-587 |#1|) OR (|has| |#1| (-960)) (|has| |#1| (-146))) ((-587 $) OR (|has| |#1| (-960)) (|has| |#1| (-494)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-589 (-348 (-483))) |has| |#1| (-494)) ((-589 (-483)) -12 (|has| |#1| (-579 (-483))) (|has| |#1| (-960))) ((-589 |#1|) OR (|has| |#1| (-960)) (|has| |#1| (-146))) ((-589 $) OR (|has| |#1| (-960)) (|has| |#1| (-494)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-581 (-348 (-483))) |has| |#1| (-494)) ((-581 |#1|) |has| |#1| (-146)) ((-581 $) |has| |#1| (-494)) ((-579 (-483)) -12 (|has| |#1| (-579 (-483))) (|has| |#1| (-960))) ((-579 |#1|) |has| |#1| (-960)) ((-653 (-348 (-483))) |has| |#1| (-494)) ((-653 |#1|) |has| |#1| (-146)) ((-653 $) |has| |#1| (-494)) ((-662) OR (|has| |#1| (-1024)) (|has| |#1| (-960)) (|has| |#1| (-494)) (|has| |#1| (-411)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-805 $ (-1088)) |has| |#1| (-960)) ((-808 (-1088)) |has| |#1| (-960)) ((-810 (-1088)) |has| |#1| (-960)) ((-795 (-328)) |has| |#1| (-795 (-328))) ((-795 (-483)) |has| |#1| (-795 (-483))) ((-793 |#1|) . T) ((-831) |has| |#1| (-494)) ((-949 (-348 (-483))) OR (|has| |#1| (-949 (-348 (-483)))) (-12 (|has| |#1| (-494)) (|has| |#1| (-949 (-483))))) ((-949 (-348 (-856 |#1|))) |has| |#1| (-494)) ((-949 (-483)) |has| |#1| (-949 (-483))) ((-949 (-549 $)) . T) ((-949 (-856 |#1|)) |has| |#1| (-960)) ((-949 (-1088)) . T) ((-949 |#1|) . T) ((-962 (-348 (-483))) |has| |#1| (-494)) ((-962 |#1|) |has| |#1| (-146)) ((-962 $) |has| |#1| (-494)) ((-967 (-348 (-483))) |has| |#1| (-494)) ((-967 |#1|) |has| |#1| (-146)) ((-967 $) |has| |#1| (-494)) ((-960) OR (|has| |#1| (-960)) (|has| |#1| (-494)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-969) OR (|has| |#1| (-960)) (|has| |#1| (-494)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-1024) OR (|has| |#1| (-1024)) (|has| |#1| (-960)) (|has| |#1| (-494)) (|has| |#1| (-411)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-1059) OR (|has| |#1| (-960)) (|has| |#1| (-494)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-1012) . T) ((-1127) . T) ((-1132) |has| |#1| (-494))) -((-3956 ((|#4| (-1 |#3| |#1|) |#2|) 11 T ELT))) -(((-363 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3956 (|#4| (-1 |#3| |#1|) |#2|))) (-960) (-362 |#1|) (-960) (-362 |#3|)) (T -363)) -((-3956 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-960)) (-4 *6 (-960)) (-4 *2 (-362 *6)) (-5 *1 (-363 *5 *4 *6 *2)) (-4 *4 (-362 *5))))) -((-1799 ((|#2| |#2|) 182 T ELT)) (-1796 (((-3 (|:| |%expansion| (-264 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1071)) (|:| |prob| (-1071))))) |#2| (-85)) 60 T ELT))) -(((-364 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1796 ((-3 (|:| |%expansion| (-264 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1071)) (|:| |prob| (-1071))))) |#2| (-85))) (-15 -1799 (|#2| |#2|))) (-13 (-390) (-949 (-483)) (-579 (-483))) (-13 (-27) (-1113) (-362 |#1|)) (-1088) |#2|) (T -364)) -((-1799 (*1 *2 *2) (-12 (-4 *3 (-13 (-390) (-949 (-483)) (-579 (-483)))) (-5 *1 (-364 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1113) (-362 *3))) (-14 *4 (-1088)) (-14 *5 *2))) (-1796 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-390) (-949 (-483)) (-579 (-483)))) (-5 *2 (-3 (|:| |%expansion| (-264 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1071)) (|:| |prob| (-1071)))))) (-5 *1 (-364 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1113) (-362 *5))) (-14 *6 (-1088)) (-14 *7 *3)))) -((-1799 ((|#2| |#2|) 105 T ELT)) (-1797 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1071)) (|:| |prob| (-1071))))) |#2| (-85) (-1071)) 52 T ELT)) (-1798 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1071)) (|:| |prob| (-1071))))) |#2| (-85) (-1071)) 169 T ELT))) -(((-365 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1797 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1071)) (|:| |prob| (-1071))))) |#2| (-85) (-1071))) (-15 -1798 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1071)) (|:| |prob| (-1071))))) |#2| (-85) (-1071))) (-15 -1799 (|#2| |#2|))) (-13 (-390) (-949 (-483)) (-579 (-483))) (-13 (-27) (-1113) (-362 |#1|) (-10 -8 (-15 -3944 ($ |#3|)))) (-754) (-13 (-1156 |#2| |#3|) (-312) (-1113) (-10 -8 (-15 -3756 ($ $)) (-15 -3810 ($ $)))) (-895 |#4|) (-1088)) (T -365)) -((-1799 (*1 *2 *2) (-12 (-4 *3 (-13 (-390) (-949 (-483)) (-579 (-483)))) (-4 *2 (-13 (-27) (-1113) (-362 *3) (-10 -8 (-15 -3944 ($ *4))))) (-4 *4 (-754)) (-4 *5 (-13 (-1156 *2 *4) (-312) (-1113) (-10 -8 (-15 -3756 ($ $)) (-15 -3810 ($ $))))) (-5 *1 (-365 *3 *2 *4 *5 *6 *7)) (-4 *6 (-895 *5)) (-14 *7 (-1088)))) (-1798 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-85)) (-4 *6 (-13 (-390) (-949 (-483)) (-579 (-483)))) (-4 *3 (-13 (-27) (-1113) (-362 *6) (-10 -8 (-15 -3944 ($ *7))))) (-4 *7 (-754)) (-4 *8 (-13 (-1156 *3 *7) (-312) (-1113) (-10 -8 (-15 -3756 ($ $)) (-15 -3810 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1071)) (|:| |prob| (-1071)))))) (-5 *1 (-365 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1071)) (-4 *9 (-895 *8)) (-14 *10 (-1088)))) (-1797 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-85)) (-4 *6 (-13 (-390) (-949 (-483)) (-579 (-483)))) (-4 *3 (-13 (-27) (-1113) (-362 *6) (-10 -8 (-15 -3944 ($ *7))))) (-4 *7 (-754)) (-4 *8 (-13 (-1156 *3 *7) (-312) (-1113) (-10 -8 (-15 -3756 ($ $)) (-15 -3810 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1071)) (|:| |prob| (-1071)))))) (-5 *1 (-365 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1071)) (-4 *9 (-895 *8)) (-14 *10 (-1088))))) -((-1800 (($) 51 T ELT)) (-3233 (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ $ $) 47 T ELT)) (-3235 (($ $ $) 46 T ELT)) (-3234 (((-85) $ $) 35 T ELT)) (-3135 (((-693)) 55 T ELT)) (-3238 (($ (-582 |#2|)) 23 T ELT) (($) NIL T ELT)) (-2993 (($) 66 T ELT)) (-3240 (((-85) $ $) 15 T ELT)) (-2530 ((|#2| $) 77 T ELT)) (-2856 ((|#2| $) 75 T ELT)) (-2009 (((-829) $) 70 T ELT)) (-3237 (($ $ $) 42 T ELT)) (-2399 (($ (-829)) 60 T ELT)) (-3236 (($ $ |#2|) NIL T ELT) (($ $ $) 45 T ELT)) (-1944 (((-693) (-1 (-85) |#2|) $) NIL T ELT) (((-693) |#2| $) 31 T ELT)) (-3528 (($ (-582 |#2|)) 27 T ELT)) (-1801 (($ $) 53 T ELT)) (-3944 (((-771) $) 40 T ELT)) (-1802 (((-693) $) 24 T ELT)) (-3239 (($ (-582 |#2|)) 22 T ELT) (($) NIL T ELT)) (-3055 (((-85) $ $) 19 T ELT))) -(((-366 |#1| |#2|) (-10 -7 (-15 -3135 ((-693))) (-15 -2399 (|#1| (-829))) (-15 -2009 ((-829) |#1|)) (-15 -2993 (|#1|)) (-15 -2530 (|#2| |#1|)) (-15 -2856 (|#2| |#1|)) (-15 -1800 (|#1|)) (-15 -1801 (|#1| |#1|)) (-15 -1802 ((-693) |#1|)) (-15 -3055 ((-85) |#1| |#1|)) (-15 -3944 ((-771) |#1|)) (-15 -3240 ((-85) |#1| |#1|)) (-15 -3239 (|#1|)) (-15 -3239 (|#1| (-582 |#2|))) (-15 -3238 (|#1|)) (-15 -3238 (|#1| (-582 |#2|))) (-15 -3237 (|#1| |#1| |#1|)) (-15 -3236 (|#1| |#1| |#1|)) (-15 -3236 (|#1| |#1| |#2|)) (-15 -3235 (|#1| |#1| |#1|)) (-15 -3234 ((-85) |#1| |#1|)) (-15 -3233 (|#1| |#1| |#1|)) (-15 -3233 (|#1| |#1| |#2|)) (-15 -3233 (|#1| |#2| |#1|)) (-15 -3528 (|#1| (-582 |#2|))) (-15 -1944 ((-693) |#2| |#1|)) (-15 -1944 ((-693) (-1 (-85) |#2|) |#1|))) (-367 |#2|) (-1012)) (T -366)) -((-3135 (*1 *2) (-12 (-4 *4 (-1012)) (-5 *2 (-693)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4))))) -((-2567 (((-85) $ $) 19 T ELT)) (-1800 (($) 71 (|has| |#1| (-318)) ELT)) (-3233 (($ |#1| $) 86 T ELT) (($ $ |#1|) 85 T ELT) (($ $ $) 84 T ELT)) (-3235 (($ $ $) 82 T ELT)) (-3234 (((-85) $ $) 83 T ELT)) (-3135 (((-693)) 65 (|has| |#1| (-318)) ELT)) (-3238 (($ (-582 |#1|)) 78 T ELT) (($) 77 T ELT)) (-1568 (($ (-1 (-85) |#1|) $) 49 (|has| $ (-6 -3993)) ELT)) (-3708 (($ (-1 (-85) |#1|) $) 59 (|has| $ (-6 -3993)) ELT)) (-3722 (($) 7 T CONST)) (-1351 (($ $) 62 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3993))) ELT)) (-3403 (($ |#1| $) 51 (|has| $ (-6 -3993)) ELT) (($ (-1 (-85) |#1|) $) 50 (|has| $ (-6 -3993)) ELT)) (-3404 (($ |#1| $) 61 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3993))) ELT) (($ (-1 (-85) |#1|) $) 58 (|has| $ (-6 -3993)) ELT)) (-3840 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3993))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -3993)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -3993)) ELT)) (-2993 (($) 68 (|has| |#1| (-318)) ELT)) (-2888 (((-582 |#1|) $) 30 (|has| $ (-6 -3993)) ELT)) (-3240 (((-85) $ $) 74 T ELT)) (-2530 ((|#1| $) 69 (|has| |#1| (-755)) ELT)) (-2607 (((-582 |#1|) $) 29 (|has| $ (-6 -3993)) ELT)) (-3244 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3993))) ELT)) (-2856 ((|#1| $) 70 (|has| |#1| (-755)) ELT)) (-1947 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3994)) ELT)) (-3956 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-2009 (((-829) $) 67 (|has| |#1| (-318)) ELT)) (-3241 (((-1071) $) 22 T ELT)) (-3237 (($ $ $) 79 T ELT)) (-1272 ((|#1| $) 43 T ELT)) (-3607 (($ |#1| $) 44 T ELT)) (-2399 (($ (-829)) 66 (|has| |#1| (-318)) ELT)) (-3242 (((-1032) $) 21 T ELT)) (-1352 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 55 T ELT)) (-1273 ((|#1| $) 45 T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3993)) ELT)) (-3766 (($ $ (-582 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-582 |#1|) (-582 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT)) (-1220 (((-85) $ $) 11 T ELT)) (-3401 (((-85) $) 8 T ELT)) (-3563 (($) 9 T ELT)) (-3236 (($ $ |#1|) 81 T ELT) (($ $ $) 80 T ELT)) (-1464 (($) 53 T ELT) (($ (-582 |#1|)) 52 T ELT)) (-1944 (((-693) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3993)) ELT) (((-693) |#1| $) 28 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3993))) ELT)) (-3398 (($ $) 10 T ELT)) (-3970 (((-472) $) 63 (|has| |#1| (-552 (-472))) ELT)) (-3528 (($ (-582 |#1|)) 54 T ELT)) (-1801 (($ $) 72 (|has| |#1| (-318)) ELT)) (-3944 (((-771) $) 17 T ELT)) (-1802 (((-693) $) 73 T ELT)) (-3239 (($ (-582 |#1|)) 76 T ELT) (($) 75 T ELT)) (-1263 (((-85) $ $) 20 T ELT)) (-1274 (($ (-582 |#1|)) 46 T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3993)) ELT)) (-3055 (((-85) $ $) 18 T ELT)) (-3955 (((-693) $) 6 (|has| $ (-6 -3993)) ELT))) -(((-367 |#1|) (-113) (-1012)) (T -367)) -((-1802 (*1 *2 *1) (-12 (-4 *1 (-367 *3)) (-4 *3 (-1012)) (-5 *2 (-693)))) (-1801 (*1 *1 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-1012)) (-4 *2 (-318)))) (-1800 (*1 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-318)) (-4 *2 (-1012)))) (-2856 (*1 *2 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-1012)) (-4 *2 (-755)))) (-2530 (*1 *2 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-1012)) (-4 *2 (-755))))) -(-13 (-183 |t#1|) (-1010 |t#1|) (-10 -8 (-6 -3993) (-15 -1802 ((-693) $)) (IF (|has| |t#1| (-318)) (PROGN (-6 (-318)) (-15 -1801 ($ $)) (-15 -1800 ($))) |%noBranch|) (IF (|has| |t#1| (-755)) (PROGN (-15 -2856 (|t#1| $)) (-15 -2530 (|t#1| $))) |%noBranch|))) -(((-34) . T) ((-76 |#1|) . T) ((-72) . T) ((-551 (-771)) . T) ((-124 |#1|) . T) ((-552 (-472)) |has| |#1| (-552 (-472))) ((-183 |#1|) . T) ((-193 |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ((-318) |has| |#1| (-318)) ((-427 |#1|) . T) ((-454 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ((-13) . T) ((-1010 |#1|) . T) ((-1012) . T) ((-1127) . T)) -((-3839 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22 T ELT)) (-3840 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20 T ELT)) (-3956 ((|#4| (-1 |#3| |#1|) |#2|) 17 T ELT))) -(((-368 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3956 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3840 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3839 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1012) (-367 |#1|) (-1012) (-367 |#3|)) (T -368)) -((-3839 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1012)) (-4 *5 (-1012)) (-4 *2 (-367 *5)) (-5 *1 (-368 *6 *4 *5 *2)) (-4 *4 (-367 *6)))) (-3840 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1012)) (-4 *2 (-1012)) (-5 *1 (-368 *5 *4 *2 *6)) (-4 *4 (-367 *5)) (-4 *6 (-367 *2)))) (-3956 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *2 (-367 *6)) (-5 *1 (-368 *5 *4 *6 *2)) (-4 *4 (-367 *5))))) -((-1803 (((-518 |#2|) |#2| (-1088)) 36 T ELT)) (-2099 (((-518 |#2|) |#2| (-1088)) 21 T ELT)) (-2148 ((|#2| |#2| (-1088)) 26 T ELT))) -(((-369 |#1| |#2|) (-10 -7 (-15 -2099 ((-518 |#2|) |#2| (-1088))) (-15 -1803 ((-518 |#2|) |#2| (-1088))) (-15 -2148 (|#2| |#2| (-1088)))) (-13 (-258) (-120) (-949 (-483)) (-579 (-483))) (-13 (-1113) (-29 |#1|))) (T -369)) -((-2148 (*1 *2 *2 *3) (-12 (-5 *3 (-1088)) (-4 *4 (-13 (-258) (-120) (-949 (-483)) (-579 (-483)))) (-5 *1 (-369 *4 *2)) (-4 *2 (-13 (-1113) (-29 *4))))) (-1803 (*1 *2 *3 *4) (-12 (-5 *4 (-1088)) (-4 *5 (-13 (-258) (-120) (-949 (-483)) (-579 (-483)))) (-5 *2 (-518 *3)) (-5 *1 (-369 *5 *3)) (-4 *3 (-13 (-1113) (-29 *5))))) (-2099 (*1 *2 *3 *4) (-12 (-5 *4 (-1088)) (-4 *5 (-13 (-258) (-120) (-949 (-483)) (-579 (-483)))) (-5 *2 (-518 *3)) (-5 *1 (-369 *5 *3)) (-4 *3 (-13 (-1113) (-29 *5)))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3187 (((-85) $) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3722 (($) NIL T CONST)) (-3465 (((-3 $ #1#) $) NIL T ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-2409 (((-85) $) NIL T ELT)) (-1805 (($ |#2| |#1|) 37 T ELT)) (-1804 (($ |#2| |#1|) 35 T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3944 (((-771) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-281 |#2|)) 25 T ELT)) (-3125 (((-693)) NIL T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-3124 (((-85) $ $) NIL T ELT)) (-2659 (($) 10 T CONST)) (-2665 (($) 16 T CONST)) (-3055 (((-85) $ $) NIL T ELT)) (-3835 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3837 (($ $ $) 36 T ELT)) (** (($ $ (-829)) NIL T ELT) (($ $ (-693)) NIL T ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) 40 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-370 |#1| |#2|) (-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -3980)) (IF (|has| |#1| (-6 -3980)) (-6 -3980) |%noBranch|) |%noBranch|) (-15 -3944 ($ |#1|)) (-15 -3944 ($ (-281 |#2|))) (-15 -1805 ($ |#2| |#1|)) (-15 -1804 ($ |#2| |#1|)))) (-13 (-146) (-38 (-348 (-483)))) (-13 (-755) (-21))) (T -370)) -((-3944 (*1 *1 *2) (-12 (-5 *1 (-370 *2 *3)) (-4 *2 (-13 (-146) (-38 (-348 (-483))))) (-4 *3 (-13 (-755) (-21))))) (-3944 (*1 *1 *2) (-12 (-5 *2 (-281 *4)) (-4 *4 (-13 (-755) (-21))) (-5 *1 (-370 *3 *4)) (-4 *3 (-13 (-146) (-38 (-348 (-483))))))) (-1805 (*1 *1 *2 *3) (-12 (-5 *1 (-370 *3 *2)) (-4 *3 (-13 (-146) (-38 (-348 (-483))))) (-4 *2 (-13 (-755) (-21))))) (-1804 (*1 *1 *2 *3) (-12 (-5 *1 (-370 *3 *2)) (-4 *3 (-13 (-146) (-38 (-348 (-483))))) (-4 *2 (-13 (-755) (-21)))))) -((-3810 (((-3 |#2| (-582 |#2|)) |#2| (-1088)) 115 T ELT))) -(((-371 |#1| |#2|) (-10 -7 (-15 -3810 ((-3 |#2| (-582 |#2|)) |#2| (-1088)))) (-13 (-258) (-120) (-949 (-483)) (-579 (-483))) (-13 (-1113) (-870) (-29 |#1|))) (T -371)) -((-3810 (*1 *2 *3 *4) (-12 (-5 *4 (-1088)) (-4 *5 (-13 (-258) (-120) (-949 (-483)) (-579 (-483)))) (-5 *2 (-3 *3 (-582 *3))) (-5 *1 (-371 *5 *3)) (-4 *3 (-13 (-1113) (-870) (-29 *5)))))) -((-3384 ((|#2| |#2| |#2|) 31 T ELT)) (-3593 (((-86) (-86)) 43 T ELT)) (-1807 ((|#2| |#2|) 63 T ELT)) (-1806 ((|#2| |#2|) 66 T ELT)) (-3383 ((|#2| |#2|) 30 T ELT)) (-3387 ((|#2| |#2| |#2|) 33 T ELT)) (-3389 ((|#2| |#2| |#2|) 35 T ELT)) (-3386 ((|#2| |#2| |#2|) 32 T ELT)) (-3388 ((|#2| |#2| |#2|) 34 T ELT)) (-2253 (((-85) (-86)) 41 T ELT)) (-3391 ((|#2| |#2|) 37 T ELT)) (-3390 ((|#2| |#2|) 36 T ELT)) (-3381 ((|#2| |#2|) 25 T ELT)) (-3385 ((|#2| |#2| |#2|) 28 T ELT) ((|#2| |#2|) 26 T ELT)) (-3382 ((|#2| |#2| |#2|) 29 T ELT))) -(((-372 |#1| |#2|) (-10 -7 (-15 -2253 ((-85) (-86))) (-15 -3593 ((-86) (-86))) (-15 -3381 (|#2| |#2|)) (-15 -3385 (|#2| |#2|)) (-15 -3385 (|#2| |#2| |#2|)) (-15 -3382 (|#2| |#2| |#2|)) (-15 -3383 (|#2| |#2|)) (-15 -3384 (|#2| |#2| |#2|)) (-15 -3386 (|#2| |#2| |#2|)) (-15 -3387 (|#2| |#2| |#2|)) (-15 -3388 (|#2| |#2| |#2|)) (-15 -3389 (|#2| |#2| |#2|)) (-15 -3390 (|#2| |#2|)) (-15 -3391 (|#2| |#2|)) (-15 -1806 (|#2| |#2|)) (-15 -1807 (|#2| |#2|))) (-494) (-362 |#1|)) (T -372)) -((-1807 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-372 *3 *2)) (-4 *2 (-362 *3)))) (-1806 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-372 *3 *2)) (-4 *2 (-362 *3)))) (-3391 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-372 *3 *2)) (-4 *2 (-362 *3)))) (-3390 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-372 *3 *2)) (-4 *2 (-362 *3)))) (-3389 (*1 *2 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-372 *3 *2)) (-4 *2 (-362 *3)))) (-3388 (*1 *2 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-372 *3 *2)) (-4 *2 (-362 *3)))) (-3387 (*1 *2 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-372 *3 *2)) (-4 *2 (-362 *3)))) (-3386 (*1 *2 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-372 *3 *2)) (-4 *2 (-362 *3)))) (-3384 (*1 *2 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-372 *3 *2)) (-4 *2 (-362 *3)))) (-3383 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-372 *3 *2)) (-4 *2 (-362 *3)))) (-3382 (*1 *2 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-372 *3 *2)) (-4 *2 (-362 *3)))) (-3385 (*1 *2 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-372 *3 *2)) (-4 *2 (-362 *3)))) (-3385 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-372 *3 *2)) (-4 *2 (-362 *3)))) (-3381 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-372 *3 *2)) (-4 *2 (-362 *3)))) (-3593 (*1 *2 *2) (-12 (-5 *2 (-86)) (-4 *3 (-494)) (-5 *1 (-372 *3 *4)) (-4 *4 (-362 *3)))) (-2253 (*1 *2 *3) (-12 (-5 *3 (-86)) (-4 *4 (-494)) (-5 *2 (-85)) (-5 *1 (-372 *4 *5)) (-4 *5 (-362 *4))))) -((-2832 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1083 |#2|)) (|:| |pol2| (-1083 |#2|)) (|:| |prim| (-1083 |#2|))) |#2| |#2|) 103 (|has| |#2| (-27)) ELT) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-582 (-1083 |#2|))) (|:| |prim| (-1083 |#2|))) (-582 |#2|)) 65 T ELT))) -(((-373 |#1| |#2|) (-10 -7 (-15 -2832 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-582 (-1083 |#2|))) (|:| |prim| (-1083 |#2|))) (-582 |#2|))) (IF (|has| |#2| (-27)) (-15 -2832 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1083 |#2|)) (|:| |pol2| (-1083 |#2|)) (|:| |prim| (-1083 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-494) (-120)) (-362 |#1|)) (T -373)) -((-2832 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-494) (-120))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1083 *3)) (|:| |pol2| (-1083 *3)) (|:| |prim| (-1083 *3)))) (-5 *1 (-373 *4 *3)) (-4 *3 (-27)) (-4 *3 (-362 *4)))) (-2832 (*1 *2 *3) (-12 (-5 *3 (-582 *5)) (-4 *5 (-362 *4)) (-4 *4 (-13 (-494) (-120))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-582 (-1083 *5))) (|:| |prim| (-1083 *5)))) (-5 *1 (-373 *4 *5))))) -((-1809 (((-1183)) 18 T ELT)) (-1808 (((-1083 (-348 (-483))) |#2| (-549 |#2|)) 40 T ELT) (((-348 (-483)) |#2|) 27 T ELT))) -(((-374 |#1| |#2|) (-10 -7 (-15 -1808 ((-348 (-483)) |#2|)) (-15 -1808 ((-1083 (-348 (-483))) |#2| (-549 |#2|))) (-15 -1809 ((-1183)))) (-13 (-494) (-949 (-483))) (-362 |#1|)) (T -374)) -((-1809 (*1 *2) (-12 (-4 *3 (-13 (-494) (-949 (-483)))) (-5 *2 (-1183)) (-5 *1 (-374 *3 *4)) (-4 *4 (-362 *3)))) (-1808 (*1 *2 *3 *4) (-12 (-5 *4 (-549 *3)) (-4 *3 (-362 *5)) (-4 *5 (-13 (-494) (-949 (-483)))) (-5 *2 (-1083 (-348 (-483)))) (-5 *1 (-374 *5 *3)))) (-1808 (*1 *2 *3) (-12 (-4 *4 (-13 (-494) (-949 (-483)))) (-5 *2 (-348 (-483))) (-5 *1 (-374 *4 *3)) (-4 *3 (-362 *4))))) -((-3643 (((-85) $) 33 T ELT)) (-1810 (((-85) $) 35 T ELT)) (-3258 (((-85) $) 36 T ELT)) (-1812 (((-85) $) 39 T ELT)) (-1814 (((-85) $) 34 T ELT)) (-1813 (((-85) $) 38 T ELT)) (-3944 (((-771) $) 20 T ELT) (($ (-1071)) 32 T ELT) (($ (-1088)) 30 T ELT) (((-1088) $) 24 T ELT) (((-1014) $) 23 T ELT)) (-1811 (((-85) $) 37 T ELT)) (-3055 (((-85) $ $) 17 T ELT))) -(((-375) (-13 (-551 (-771)) (-10 -8 (-15 -3944 ($ (-1071))) (-15 -3944 ($ (-1088))) (-15 -3944 ((-1088) $)) (-15 -3944 ((-1014) $)) (-15 -3643 ((-85) $)) (-15 -1814 ((-85) $)) (-15 -3258 ((-85) $)) (-15 -1813 ((-85) $)) (-15 -1812 ((-85) $)) (-15 -1811 ((-85) $)) (-15 -1810 ((-85) $)) (-15 -3055 ((-85) $ $))))) (T -375)) -((-3944 (*1 *1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-375)))) (-3944 (*1 *1 *2) (-12 (-5 *2 (-1088)) (-5 *1 (-375)))) (-3944 (*1 *2 *1) (-12 (-5 *2 (-1088)) (-5 *1 (-375)))) (-3944 (*1 *2 *1) (-12 (-5 *2 (-1014)) (-5 *1 (-375)))) (-3643 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-375)))) (-1814 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-375)))) (-3258 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-375)))) (-1813 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-375)))) (-1812 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-375)))) (-1811 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-375)))) (-1810 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-375)))) (-3055 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-375))))) -((-1816 (((-3 (-346 (-1083 (-348 (-483)))) #1="failed") |#3|) 71 T ELT)) (-1815 (((-346 |#3|) |#3|) 34 T ELT)) (-1818 (((-3 (-346 (-1083 (-48))) #1#) |#3|) 29 (|has| |#2| (-949 (-48))) ELT)) (-1817 (((-3 (|:| |overq| (-1083 (-348 (-483)))) (|:| |overan| (-1083 (-48))) (|:| -2638 (-85))) |#3|) 37 T ELT))) -(((-376 |#1| |#2| |#3|) (-10 -7 (-15 -1815 ((-346 |#3|) |#3|)) (-15 -1816 ((-3 (-346 (-1083 (-348 (-483)))) #1="failed") |#3|)) (-15 -1817 ((-3 (|:| |overq| (-1083 (-348 (-483)))) (|:| |overan| (-1083 (-48))) (|:| -2638 (-85))) |#3|)) (IF (|has| |#2| (-949 (-48))) (-15 -1818 ((-3 (-346 (-1083 (-48))) #1#) |#3|)) |%noBranch|)) (-13 (-494) (-949 (-483))) (-362 |#1|) (-1153 |#2|)) (T -376)) -((-1818 (*1 *2 *3) (|partial| -12 (-4 *5 (-949 (-48))) (-4 *4 (-13 (-494) (-949 (-483)))) (-4 *5 (-362 *4)) (-5 *2 (-346 (-1083 (-48)))) (-5 *1 (-376 *4 *5 *3)) (-4 *3 (-1153 *5)))) (-1817 (*1 *2 *3) (-12 (-4 *4 (-13 (-494) (-949 (-483)))) (-4 *5 (-362 *4)) (-5 *2 (-3 (|:| |overq| (-1083 (-348 (-483)))) (|:| |overan| (-1083 (-48))) (|:| -2638 (-85)))) (-5 *1 (-376 *4 *5 *3)) (-4 *3 (-1153 *5)))) (-1816 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-494) (-949 (-483)))) (-4 *5 (-362 *4)) (-5 *2 (-346 (-1083 (-348 (-483))))) (-5 *1 (-376 *4 *5 *3)) (-4 *3 (-1153 *5)))) (-1815 (*1 *2 *3) (-12 (-4 *4 (-13 (-494) (-949 (-483)))) (-4 *5 (-362 *4)) (-5 *2 (-346 *3)) (-5 *1 (-376 *4 *5 *3)) (-4 *3 (-1153 *5))))) -((-2567 (((-85) $ $) NIL T ELT)) (-1828 (((-3 (|:| |fst| (-375)) (|:| -3908 #1="void")) $) 11 T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-1825 (($) 35 T ELT)) (-1822 (($) 41 T ELT)) (-1823 (($) 37 T ELT)) (-1820 (($) 39 T ELT)) (-1824 (($) 36 T ELT)) (-1821 (($) 38 T ELT)) (-1819 (($) 40 T ELT)) (-1826 (((-85) $) 8 T ELT)) (-1827 (((-582 (-856 (-483))) $) 19 T ELT)) (-3528 (($ (-3 (|:| |fst| (-375)) (|:| -3908 #1#)) (-582 (-1088)) (-85)) 29 T ELT) (($ (-3 (|:| |fst| (-375)) (|:| -3908 #1#)) (-582 (-856 (-483))) (-85)) 30 T ELT)) (-3944 (((-771) $) 24 T ELT) (($ (-375)) 32 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-377) (-13 (-1012) (-10 -8 (-15 -3944 ($ (-375))) (-15 -1828 ((-3 (|:| |fst| (-375)) (|:| -3908 #1="void")) $)) (-15 -1827 ((-582 (-856 (-483))) $)) (-15 -1826 ((-85) $)) (-15 -3528 ($ (-3 (|:| |fst| (-375)) (|:| -3908 #1#)) (-582 (-1088)) (-85))) (-15 -3528 ($ (-3 (|:| |fst| (-375)) (|:| -3908 #1#)) (-582 (-856 (-483))) (-85))) (-15 -1825 ($)) (-15 -1824 ($)) (-15 -1823 ($)) (-15 -1822 ($)) (-15 -1821 ($)) (-15 -1820 ($)) (-15 -1819 ($))))) (T -377)) -((-3944 (*1 *1 *2) (-12 (-5 *2 (-375)) (-5 *1 (-377)))) (-1828 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-375)) (|:| -3908 #1="void"))) (-5 *1 (-377)))) (-1827 (*1 *2 *1) (-12 (-5 *2 (-582 (-856 (-483)))) (-5 *1 (-377)))) (-1826 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-377)))) (-3528 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-375)) (|:| -3908 #1#))) (-5 *3 (-582 (-1088))) (-5 *4 (-85)) (-5 *1 (-377)))) (-3528 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-375)) (|:| -3908 #1#))) (-5 *3 (-582 (-856 (-483)))) (-5 *4 (-85)) (-5 *1 (-377)))) (-1825 (*1 *1) (-5 *1 (-377))) (-1824 (*1 *1) (-5 *1 (-377))) (-1823 (*1 *1) (-5 *1 (-377))) (-1822 (*1 *1) (-5 *1 (-377))) (-1821 (*1 *1) (-5 *1 (-377))) (-1820 (*1 *1) (-5 *1 (-377))) (-1819 (*1 *1) (-5 *1 (-377)))) -((-2567 (((-85) $ $) NIL T ELT)) (-3540 (((-1088) $) 8 T ELT)) (-3241 (((-1071) $) 17 T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3944 (((-771) $) 11 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) 14 T ELT))) -(((-378 |#1|) (-13 (-1012) (-10 -8 (-15 -3540 ((-1088) $)))) (-1088)) (T -378)) -((-3540 (*1 *2 *1) (-12 (-5 *2 (-1088)) (-5 *1 (-378 *3)) (-14 *3 *2)))) -((-2567 (((-85) $ $) NIL T ELT)) (-3318 (((-1027) $) 7 T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3944 (((-771) $) 13 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) 9 T ELT))) -(((-379) (-13 (-1012) (-10 -8 (-15 -3318 ((-1027) $))))) (T -379)) -((-3318 (*1 *2 *1) (-12 (-5 *2 (-1027)) (-5 *1 (-379))))) -((-1834 (((-85)) 18 T ELT)) (-1835 (((-85) (-85)) 19 T ELT)) (-1836 (((-85)) 14 T ELT)) (-1837 (((-85) (-85)) 15 T ELT)) (-1839 (((-85)) 16 T ELT)) (-1840 (((-85) (-85)) 17 T ELT)) (-1831 (((-829) (-829)) 22 T ELT) (((-829)) 21 T ELT)) (-1832 (((-693) (-582 (-2 (|:| -3730 |#1|) (|:| -3946 (-483))))) 52 T ELT)) (-1830 (((-829) (-829)) 24 T ELT) (((-829)) 23 T ELT)) (-1833 (((-2 (|:| -2577 (-483)) (|:| -1777 (-582 |#1|))) |#1|) 94 T ELT)) (-1829 (((-346 |#1|) (-2 (|:| |contp| (-483)) (|:| -1777 (-582 (-2 (|:| |irr| |#1|) (|:| -2394 (-483))))))) 176 T ELT)) (-3732 (((-2 (|:| |contp| (-483)) (|:| -1777 (-582 (-2 (|:| |irr| |#1|) (|:| -2394 (-483)))))) |#1| (-85)) 209 T ELT)) (-3731 (((-346 |#1|) |#1| (-693) (-693)) 224 T ELT) (((-346 |#1|) |#1| (-582 (-693)) (-693)) 221 T ELT) (((-346 |#1|) |#1| (-582 (-693))) 223 T ELT) (((-346 |#1|) |#1| (-693)) 222 T ELT) (((-346 |#1|) |#1|) 220 T ELT)) (-1851 (((-3 |#1| #1="failed") (-829) |#1| (-582 (-693)) (-693) (-85)) 226 T ELT) (((-3 |#1| #1#) (-829) |#1| (-582 (-693)) (-693)) 227 T ELT) (((-3 |#1| #1#) (-829) |#1| (-582 (-693))) 229 T ELT) (((-3 |#1| #1#) (-829) |#1| (-693)) 228 T ELT) (((-3 |#1| #1#) (-829) |#1|) 230 T ELT)) (-3730 (((-346 |#1|) |#1| (-693) (-693)) 219 T ELT) (((-346 |#1|) |#1| (-582 (-693)) (-693)) 215 T ELT) (((-346 |#1|) |#1| (-582 (-693))) 217 T ELT) (((-346 |#1|) |#1| (-693)) 216 T ELT) (((-346 |#1|) |#1|) 214 T ELT)) (-1838 (((-85) |#1|) 43 T ELT)) (-1850 (((-674 (-693)) (-582 (-2 (|:| -3730 |#1|) (|:| -3946 (-483))))) 99 T ELT)) (-1841 (((-2 (|:| |contp| (-483)) (|:| -1777 (-582 (-2 (|:| |irr| |#1|) (|:| -2394 (-483)))))) |#1| (-85) (-1008 (-693)) (-693)) 213 T ELT))) -(((-380 |#1|) (-10 -7 (-15 -1829 ((-346 |#1|) (-2 (|:| |contp| (-483)) (|:| -1777 (-582 (-2 (|:| |irr| |#1|) (|:| -2394 (-483)))))))) (-15 -1850 ((-674 (-693)) (-582 (-2 (|:| -3730 |#1|) (|:| -3946 (-483)))))) (-15 -1830 ((-829))) (-15 -1830 ((-829) (-829))) (-15 -1831 ((-829))) (-15 -1831 ((-829) (-829))) (-15 -1832 ((-693) (-582 (-2 (|:| -3730 |#1|) (|:| -3946 (-483)))))) (-15 -1833 ((-2 (|:| -2577 (-483)) (|:| -1777 (-582 |#1|))) |#1|)) (-15 -1834 ((-85))) (-15 -1835 ((-85) (-85))) (-15 -1836 ((-85))) (-15 -1837 ((-85) (-85))) (-15 -1838 ((-85) |#1|)) (-15 -1839 ((-85))) (-15 -1840 ((-85) (-85))) (-15 -3730 ((-346 |#1|) |#1|)) (-15 -3730 ((-346 |#1|) |#1| (-693))) (-15 -3730 ((-346 |#1|) |#1| (-582 (-693)))) (-15 -3730 ((-346 |#1|) |#1| (-582 (-693)) (-693))) (-15 -3730 ((-346 |#1|) |#1| (-693) (-693))) (-15 -3731 ((-346 |#1|) |#1|)) (-15 -3731 ((-346 |#1|) |#1| (-693))) (-15 -3731 ((-346 |#1|) |#1| (-582 (-693)))) (-15 -3731 ((-346 |#1|) |#1| (-582 (-693)) (-693))) (-15 -3731 ((-346 |#1|) |#1| (-693) (-693))) (-15 -1851 ((-3 |#1| #1="failed") (-829) |#1|)) (-15 -1851 ((-3 |#1| #1#) (-829) |#1| (-693))) (-15 -1851 ((-3 |#1| #1#) (-829) |#1| (-582 (-693)))) (-15 -1851 ((-3 |#1| #1#) (-829) |#1| (-582 (-693)) (-693))) (-15 -1851 ((-3 |#1| #1#) (-829) |#1| (-582 (-693)) (-693) (-85))) (-15 -3732 ((-2 (|:| |contp| (-483)) (|:| -1777 (-582 (-2 (|:| |irr| |#1|) (|:| -2394 (-483)))))) |#1| (-85))) (-15 -1841 ((-2 (|:| |contp| (-483)) (|:| -1777 (-582 (-2 (|:| |irr| |#1|) (|:| -2394 (-483)))))) |#1| (-85) (-1008 (-693)) (-693)))) (-1153 (-483))) (T -380)) -((-1841 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-85)) (-5 *5 (-1008 (-693))) (-5 *6 (-693)) (-5 *2 (-2 (|:| |contp| (-483)) (|:| -1777 (-582 (-2 (|:| |irr| *3) (|:| -2394 (-483))))))) (-5 *1 (-380 *3)) (-4 *3 (-1153 (-483))))) (-3732 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-5 *2 (-2 (|:| |contp| (-483)) (|:| -1777 (-582 (-2 (|:| |irr| *3) (|:| -2394 (-483))))))) (-5 *1 (-380 *3)) (-4 *3 (-1153 (-483))))) (-1851 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-829)) (-5 *4 (-582 (-693))) (-5 *5 (-693)) (-5 *6 (-85)) (-5 *1 (-380 *2)) (-4 *2 (-1153 (-483))))) (-1851 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-829)) (-5 *4 (-582 (-693))) (-5 *5 (-693)) (-5 *1 (-380 *2)) (-4 *2 (-1153 (-483))))) (-1851 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-829)) (-5 *4 (-582 (-693))) (-5 *1 (-380 *2)) (-4 *2 (-1153 (-483))))) (-1851 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-829)) (-5 *4 (-693)) (-5 *1 (-380 *2)) (-4 *2 (-1153 (-483))))) (-1851 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-829)) (-5 *1 (-380 *2)) (-4 *2 (-1153 (-483))))) (-3731 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-693)) (-5 *2 (-346 *3)) (-5 *1 (-380 *3)) (-4 *3 (-1153 (-483))))) (-3731 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-582 (-693))) (-5 *5 (-693)) (-5 *2 (-346 *3)) (-5 *1 (-380 *3)) (-4 *3 (-1153 (-483))))) (-3731 (*1 *2 *3 *4) (-12 (-5 *4 (-582 (-693))) (-5 *2 (-346 *3)) (-5 *1 (-380 *3)) (-4 *3 (-1153 (-483))))) (-3731 (*1 *2 *3 *4) (-12 (-5 *4 (-693)) (-5 *2 (-346 *3)) (-5 *1 (-380 *3)) (-4 *3 (-1153 (-483))))) (-3731 (*1 *2 *3) (-12 (-5 *2 (-346 *3)) (-5 *1 (-380 *3)) (-4 *3 (-1153 (-483))))) (-3730 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-693)) (-5 *2 (-346 *3)) (-5 *1 (-380 *3)) (-4 *3 (-1153 (-483))))) (-3730 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-582 (-693))) (-5 *5 (-693)) (-5 *2 (-346 *3)) (-5 *1 (-380 *3)) (-4 *3 (-1153 (-483))))) (-3730 (*1 *2 *3 *4) (-12 (-5 *4 (-582 (-693))) (-5 *2 (-346 *3)) (-5 *1 (-380 *3)) (-4 *3 (-1153 (-483))))) (-3730 (*1 *2 *3 *4) (-12 (-5 *4 (-693)) (-5 *2 (-346 *3)) (-5 *1 (-380 *3)) (-4 *3 (-1153 (-483))))) (-3730 (*1 *2 *3) (-12 (-5 *2 (-346 *3)) (-5 *1 (-380 *3)) (-4 *3 (-1153 (-483))))) (-1840 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-380 *3)) (-4 *3 (-1153 (-483))))) (-1839 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-380 *3)) (-4 *3 (-1153 (-483))))) (-1838 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-380 *3)) (-4 *3 (-1153 (-483))))) (-1837 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-380 *3)) (-4 *3 (-1153 (-483))))) (-1836 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-380 *3)) (-4 *3 (-1153 (-483))))) (-1835 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-380 *3)) (-4 *3 (-1153 (-483))))) (-1834 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-380 *3)) (-4 *3 (-1153 (-483))))) (-1833 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2577 (-483)) (|:| -1777 (-582 *3)))) (-5 *1 (-380 *3)) (-4 *3 (-1153 (-483))))) (-1832 (*1 *2 *3) (-12 (-5 *3 (-582 (-2 (|:| -3730 *4) (|:| -3946 (-483))))) (-4 *4 (-1153 (-483))) (-5 *2 (-693)) (-5 *1 (-380 *4)))) (-1831 (*1 *2 *2) (-12 (-5 *2 (-829)) (-5 *1 (-380 *3)) (-4 *3 (-1153 (-483))))) (-1831 (*1 *2) (-12 (-5 *2 (-829)) (-5 *1 (-380 *3)) (-4 *3 (-1153 (-483))))) (-1830 (*1 *2 *2) (-12 (-5 *2 (-829)) (-5 *1 (-380 *3)) (-4 *3 (-1153 (-483))))) (-1830 (*1 *2) (-12 (-5 *2 (-829)) (-5 *1 (-380 *3)) (-4 *3 (-1153 (-483))))) (-1850 (*1 *2 *3) (-12 (-5 *3 (-582 (-2 (|:| -3730 *4) (|:| -3946 (-483))))) (-4 *4 (-1153 (-483))) (-5 *2 (-674 (-693))) (-5 *1 (-380 *4)))) (-1829 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-483)) (|:| -1777 (-582 (-2 (|:| |irr| *4) (|:| -2394 (-483))))))) (-4 *4 (-1153 (-483))) (-5 *2 (-346 *4)) (-5 *1 (-380 *4))))) -((-1845 (((-483) |#2|) 52 T ELT) (((-483) |#2| (-693)) 51 T ELT)) (-1844 (((-483) |#2|) 64 T ELT)) (-1846 ((|#3| |#2|) 26 T ELT)) (-3131 ((|#3| |#2| (-829)) 15 T ELT)) (-3831 ((|#3| |#2|) 16 T ELT)) (-1847 ((|#3| |#2|) 9 T ELT)) (-2602 ((|#3| |#2|) 10 T ELT)) (-1843 ((|#3| |#2| (-829)) 71 T ELT) ((|#3| |#2|) 34 T ELT)) (-1842 (((-483) |#2|) 66 T ELT))) -(((-381 |#1| |#2| |#3|) (-10 -7 (-15 -1842 ((-483) |#2|)) (-15 -1843 (|#3| |#2|)) (-15 -1843 (|#3| |#2| (-829))) (-15 -1844 ((-483) |#2|)) (-15 -1845 ((-483) |#2| (-693))) (-15 -1845 ((-483) |#2|)) (-15 -3131 (|#3| |#2| (-829))) (-15 -1846 (|#3| |#2|)) (-15 -1847 (|#3| |#2|)) (-15 -2602 (|#3| |#2|)) (-15 -3831 (|#3| |#2|))) (-960) (-1153 |#1|) (-13 (-345) (-949 |#1|) (-312) (-1113) (-239))) (T -381)) -((-3831 (*1 *2 *3) (-12 (-4 *4 (-960)) (-4 *2 (-13 (-345) (-949 *4) (-312) (-1113) (-239))) (-5 *1 (-381 *4 *3 *2)) (-4 *3 (-1153 *4)))) (-2602 (*1 *2 *3) (-12 (-4 *4 (-960)) (-4 *2 (-13 (-345) (-949 *4) (-312) (-1113) (-239))) (-5 *1 (-381 *4 *3 *2)) (-4 *3 (-1153 *4)))) (-1847 (*1 *2 *3) (-12 (-4 *4 (-960)) (-4 *2 (-13 (-345) (-949 *4) (-312) (-1113) (-239))) (-5 *1 (-381 *4 *3 *2)) (-4 *3 (-1153 *4)))) (-1846 (*1 *2 *3) (-12 (-4 *4 (-960)) (-4 *2 (-13 (-345) (-949 *4) (-312) (-1113) (-239))) (-5 *1 (-381 *4 *3 *2)) (-4 *3 (-1153 *4)))) (-3131 (*1 *2 *3 *4) (-12 (-5 *4 (-829)) (-4 *5 (-960)) (-4 *2 (-13 (-345) (-949 *5) (-312) (-1113) (-239))) (-5 *1 (-381 *5 *3 *2)) (-4 *3 (-1153 *5)))) (-1845 (*1 *2 *3) (-12 (-4 *4 (-960)) (-5 *2 (-483)) (-5 *1 (-381 *4 *3 *5)) (-4 *3 (-1153 *4)) (-4 *5 (-13 (-345) (-949 *4) (-312) (-1113) (-239))))) (-1845 (*1 *2 *3 *4) (-12 (-5 *4 (-693)) (-4 *5 (-960)) (-5 *2 (-483)) (-5 *1 (-381 *5 *3 *6)) (-4 *3 (-1153 *5)) (-4 *6 (-13 (-345) (-949 *5) (-312) (-1113) (-239))))) (-1844 (*1 *2 *3) (-12 (-4 *4 (-960)) (-5 *2 (-483)) (-5 *1 (-381 *4 *3 *5)) (-4 *3 (-1153 *4)) (-4 *5 (-13 (-345) (-949 *4) (-312) (-1113) (-239))))) (-1843 (*1 *2 *3 *4) (-12 (-5 *4 (-829)) (-4 *5 (-960)) (-4 *2 (-13 (-345) (-949 *5) (-312) (-1113) (-239))) (-5 *1 (-381 *5 *3 *2)) (-4 *3 (-1153 *5)))) (-1843 (*1 *2 *3) (-12 (-4 *4 (-960)) (-4 *2 (-13 (-345) (-949 *4) (-312) (-1113) (-239))) (-5 *1 (-381 *4 *3 *2)) (-4 *3 (-1153 *4)))) (-1842 (*1 *2 *3) (-12 (-4 *4 (-960)) (-5 *2 (-483)) (-5 *1 (-381 *4 *3 *5)) (-4 *3 (-1153 *4)) (-4 *5 (-13 (-345) (-949 *4) (-312) (-1113) (-239)))))) -((-3352 ((|#2| (-1177 |#1|)) 42 T ELT)) (-1849 ((|#2| |#2| |#1|) 58 T ELT)) (-1848 ((|#2| |#2| |#1|) 49 T ELT)) (-2297 ((|#2| |#2|) 44 T ELT)) (-3172 (((-85) |#2|) 32 T ELT)) (-1852 (((-582 |#2|) (-829) (-346 |#2|)) 21 T ELT)) (-1851 ((|#2| (-829) (-346 |#2|)) 25 T ELT)) (-1850 (((-674 (-693)) (-346 |#2|)) 29 T ELT))) -(((-382 |#1| |#2|) (-10 -7 (-15 -3172 ((-85) |#2|)) (-15 -3352 (|#2| (-1177 |#1|))) (-15 -2297 (|#2| |#2|)) (-15 -1848 (|#2| |#2| |#1|)) (-15 -1849 (|#2| |#2| |#1|)) (-15 -1850 ((-674 (-693)) (-346 |#2|))) (-15 -1851 (|#2| (-829) (-346 |#2|))) (-15 -1852 ((-582 |#2|) (-829) (-346 |#2|)))) (-960) (-1153 |#1|)) (T -382)) -((-1852 (*1 *2 *3 *4) (-12 (-5 *3 (-829)) (-5 *4 (-346 *6)) (-4 *6 (-1153 *5)) (-4 *5 (-960)) (-5 *2 (-582 *6)) (-5 *1 (-382 *5 *6)))) (-1851 (*1 *2 *3 *4) (-12 (-5 *3 (-829)) (-5 *4 (-346 *2)) (-4 *2 (-1153 *5)) (-5 *1 (-382 *5 *2)) (-4 *5 (-960)))) (-1850 (*1 *2 *3) (-12 (-5 *3 (-346 *5)) (-4 *5 (-1153 *4)) (-4 *4 (-960)) (-5 *2 (-674 (-693))) (-5 *1 (-382 *4 *5)))) (-1849 (*1 *2 *2 *3) (-12 (-4 *3 (-960)) (-5 *1 (-382 *3 *2)) (-4 *2 (-1153 *3)))) (-1848 (*1 *2 *2 *3) (-12 (-4 *3 (-960)) (-5 *1 (-382 *3 *2)) (-4 *2 (-1153 *3)))) (-2297 (*1 *2 *2) (-12 (-4 *3 (-960)) (-5 *1 (-382 *3 *2)) (-4 *2 (-1153 *3)))) (-3352 (*1 *2 *3) (-12 (-5 *3 (-1177 *4)) (-4 *4 (-960)) (-4 *2 (-1153 *4)) (-5 *1 (-382 *4 *2)))) (-3172 (*1 *2 *3) (-12 (-4 *4 (-960)) (-5 *2 (-85)) (-5 *1 (-382 *4 *3)) (-4 *3 (-1153 *4))))) -((-1855 (((-693)) 59 T ELT)) (-1859 (((-693)) 29 (|has| |#1| (-345)) ELT) (((-693) (-693)) 28 (|has| |#1| (-345)) ELT)) (-1858 (((-483) |#1|) 25 (|has| |#1| (-345)) ELT)) (-1857 (((-483) |#1|) 27 (|has| |#1| (-345)) ELT)) (-1854 (((-693)) 58 T ELT) (((-693) (-693)) 57 T ELT)) (-1853 ((|#1| (-693) (-483)) 37 T ELT)) (-1856 (((-1183)) 61 T ELT))) -(((-383 |#1|) (-10 -7 (-15 -1853 (|#1| (-693) (-483))) (-15 -1854 ((-693) (-693))) (-15 -1854 ((-693))) (-15 -1855 ((-693))) (-15 -1856 ((-1183))) (IF (|has| |#1| (-345)) (PROGN (-15 -1857 ((-483) |#1|)) (-15 -1858 ((-483) |#1|)) (-15 -1859 ((-693) (-693))) (-15 -1859 ((-693)))) |%noBranch|)) (-960)) (T -383)) -((-1859 (*1 *2) (-12 (-5 *2 (-693)) (-5 *1 (-383 *3)) (-4 *3 (-345)) (-4 *3 (-960)))) (-1859 (*1 *2 *2) (-12 (-5 *2 (-693)) (-5 *1 (-383 *3)) (-4 *3 (-345)) (-4 *3 (-960)))) (-1858 (*1 *2 *3) (-12 (-5 *2 (-483)) (-5 *1 (-383 *3)) (-4 *3 (-345)) (-4 *3 (-960)))) (-1857 (*1 *2 *3) (-12 (-5 *2 (-483)) (-5 *1 (-383 *3)) (-4 *3 (-345)) (-4 *3 (-960)))) (-1856 (*1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-383 *3)) (-4 *3 (-960)))) (-1855 (*1 *2) (-12 (-5 *2 (-693)) (-5 *1 (-383 *3)) (-4 *3 (-960)))) (-1854 (*1 *2) (-12 (-5 *2 (-693)) (-5 *1 (-383 *3)) (-4 *3 (-960)))) (-1854 (*1 *2 *2) (-12 (-5 *2 (-693)) (-5 *1 (-383 *3)) (-4 *3 (-960)))) (-1853 (*1 *2 *3 *4) (-12 (-5 *3 (-693)) (-5 *4 (-483)) (-5 *1 (-383 *2)) (-4 *2 (-960))))) -((-1860 (((-582 (-483)) (-483)) 76 T ELT)) (-3721 (((-85) (-142 (-483))) 84 T ELT)) (-3730 (((-346 (-142 (-483))) (-142 (-483))) 75 T ELT))) -(((-384) (-10 -7 (-15 -3730 ((-346 (-142 (-483))) (-142 (-483)))) (-15 -1860 ((-582 (-483)) (-483))) (-15 -3721 ((-85) (-142 (-483)))))) (T -384)) -((-3721 (*1 *2 *3) (-12 (-5 *3 (-142 (-483))) (-5 *2 (-85)) (-5 *1 (-384)))) (-1860 (*1 *2 *3) (-12 (-5 *2 (-582 (-483))) (-5 *1 (-384)) (-5 *3 (-483)))) (-3730 (*1 *2 *3) (-12 (-5 *2 (-346 (-142 (-483)))) (-5 *1 (-384)) (-5 *3 (-142 (-483)))))) -((-2945 ((|#4| |#4| (-582 |#4|)) 20 (|has| |#1| (-312)) ELT)) (-2250 (((-582 |#4|) (-582 |#4|) (-1071) (-1071)) 46 T ELT) (((-582 |#4|) (-582 |#4|) (-1071)) 45 T ELT) (((-582 |#4|) (-582 |#4|)) 34 T ELT))) -(((-385 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2250 ((-582 |#4|) (-582 |#4|))) (-15 -2250 ((-582 |#4|) (-582 |#4|) (-1071))) (-15 -2250 ((-582 |#4|) (-582 |#4|) (-1071) (-1071))) (IF (|has| |#1| (-312)) (-15 -2945 (|#4| |#4| (-582 |#4|))) |%noBranch|)) (-390) (-716) (-755) (-860 |#1| |#2| |#3|)) (T -385)) -((-2945 (*1 *2 *2 *3) (-12 (-5 *3 (-582 *2)) (-4 *2 (-860 *4 *5 *6)) (-4 *4 (-312)) (-4 *4 (-390)) (-4 *5 (-716)) (-4 *6 (-755)) (-5 *1 (-385 *4 *5 *6 *2)))) (-2250 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-582 *7)) (-5 *3 (-1071)) (-4 *7 (-860 *4 *5 *6)) (-4 *4 (-390)) (-4 *5 (-716)) (-4 *6 (-755)) (-5 *1 (-385 *4 *5 *6 *7)))) (-2250 (*1 *2 *2 *3) (-12 (-5 *2 (-582 *7)) (-5 *3 (-1071)) (-4 *7 (-860 *4 *5 *6)) (-4 *4 (-390)) (-4 *5 (-716)) (-4 *6 (-755)) (-5 *1 (-385 *4 *5 *6 *7)))) (-2250 (*1 *2 *2) (-12 (-5 *2 (-582 *6)) (-4 *6 (-860 *3 *4 *5)) (-4 *3 (-390)) (-4 *4 (-716)) (-4 *5 (-755)) (-5 *1 (-385 *3 *4 *5 *6))))) -((-1861 ((|#4| |#4| (-582 |#4|)) 82 T ELT)) (-1862 (((-582 |#4|) (-582 |#4|) (-1071) (-1071)) 22 T ELT) (((-582 |#4|) (-582 |#4|) (-1071)) 21 T ELT) (((-582 |#4|) (-582 |#4|)) 13 T ELT))) -(((-386 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1861 (|#4| |#4| (-582 |#4|))) (-15 -1862 ((-582 |#4|) (-582 |#4|))) (-15 -1862 ((-582 |#4|) (-582 |#4|) (-1071))) (-15 -1862 ((-582 |#4|) (-582 |#4|) (-1071) (-1071)))) (-258) (-716) (-755) (-860 |#1| |#2| |#3|)) (T -386)) -((-1862 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-582 *7)) (-5 *3 (-1071)) (-4 *7 (-860 *4 *5 *6)) (-4 *4 (-258)) (-4 *5 (-716)) (-4 *6 (-755)) (-5 *1 (-386 *4 *5 *6 *7)))) (-1862 (*1 *2 *2 *3) (-12 (-5 *2 (-582 *7)) (-5 *3 (-1071)) (-4 *7 (-860 *4 *5 *6)) (-4 *4 (-258)) (-4 *5 (-716)) (-4 *6 (-755)) (-5 *1 (-386 *4 *5 *6 *7)))) (-1862 (*1 *2 *2) (-12 (-5 *2 (-582 *6)) (-4 *6 (-860 *3 *4 *5)) (-4 *3 (-258)) (-4 *4 (-716)) (-4 *5 (-755)) (-5 *1 (-386 *3 *4 *5 *6)))) (-1861 (*1 *2 *2 *3) (-12 (-5 *3 (-582 *2)) (-4 *2 (-860 *4 *5 *6)) (-4 *4 (-258)) (-4 *5 (-716)) (-4 *6 (-755)) (-5 *1 (-386 *4 *5 *6 *2))))) -((-1864 (((-582 (-582 |#4|)) (-582 |#4|) (-85)) 90 T ELT) (((-582 (-582 |#4|)) (-582 |#4|)) 89 T ELT) (((-582 (-582 |#4|)) (-582 |#4|) (-582 |#4|) (-85)) 83 T ELT) (((-582 (-582 |#4|)) (-582 |#4|) (-582 |#4|)) 84 T ELT)) (-1863 (((-582 (-582 |#4|)) (-582 |#4|) (-85)) 56 T ELT) (((-582 (-582 |#4|)) (-582 |#4|)) 78 T ELT))) -(((-387 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1863 ((-582 (-582 |#4|)) (-582 |#4|))) (-15 -1863 ((-582 (-582 |#4|)) (-582 |#4|) (-85))) (-15 -1864 ((-582 (-582 |#4|)) (-582 |#4|) (-582 |#4|))) (-15 -1864 ((-582 (-582 |#4|)) (-582 |#4|) (-582 |#4|) (-85))) (-15 -1864 ((-582 (-582 |#4|)) (-582 |#4|))) (-15 -1864 ((-582 (-582 |#4|)) (-582 |#4|) (-85)))) (-13 (-258) (-120)) (-716) (-755) (-860 |#1| |#2| |#3|)) (T -387)) -((-1864 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-716)) (-4 *7 (-755)) (-4 *8 (-860 *5 *6 *7)) (-5 *2 (-582 (-582 *8))) (-5 *1 (-387 *5 *6 *7 *8)) (-5 *3 (-582 *8)))) (-1864 (*1 *2 *3) (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-716)) (-4 *6 (-755)) (-4 *7 (-860 *4 *5 *6)) (-5 *2 (-582 (-582 *7))) (-5 *1 (-387 *4 *5 *6 *7)) (-5 *3 (-582 *7)))) (-1864 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-716)) (-4 *7 (-755)) (-4 *8 (-860 *5 *6 *7)) (-5 *2 (-582 (-582 *8))) (-5 *1 (-387 *5 *6 *7 *8)) (-5 *3 (-582 *8)))) (-1864 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-716)) (-4 *6 (-755)) (-4 *7 (-860 *4 *5 *6)) (-5 *2 (-582 (-582 *7))) (-5 *1 (-387 *4 *5 *6 *7)) (-5 *3 (-582 *7)))) (-1863 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-716)) (-4 *7 (-755)) (-4 *8 (-860 *5 *6 *7)) (-5 *2 (-582 (-582 *8))) (-5 *1 (-387 *5 *6 *7 *8)) (-5 *3 (-582 *8)))) (-1863 (*1 *2 *3) (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-716)) (-4 *6 (-755)) (-4 *7 (-860 *4 *5 *6)) (-5 *2 (-582 (-582 *7))) (-5 *1 (-387 *4 *5 *6 *7)) (-5 *3 (-582 *7))))) -((-1888 (((-693) |#4|) 12 T ELT)) (-1876 (((-582 (-2 (|:| |totdeg| (-693)) (|:| -2003 |#4|))) |#4| (-693) (-582 (-2 (|:| |totdeg| (-693)) (|:| -2003 |#4|)))) 39 T ELT)) (-1878 (((-582 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-693)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-582 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-693)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-582 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-693)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 49 T ELT)) (-1877 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-693)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 52 T ELT)) (-1866 ((|#4| |#4| (-582 |#4|)) 54 T ELT)) (-1874 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-582 |#4|)) 96 T ELT)) (-1881 (((-1183) |#4|) 59 T ELT)) (-1884 (((-1183) (-582 |#4|)) 69 T ELT)) (-1882 (((-483) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-693)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-483) (-483) (-483)) 66 T ELT)) (-1885 (((-1183) (-483)) 110 T ELT)) (-1879 (((-582 |#4|) (-582 |#4|)) 104 T ELT)) (-1887 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-693)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-693)) (|:| -2003 |#4|)) |#4| (-693)) 31 T ELT)) (-1880 (((-483) |#4|) 109 T ELT)) (-1875 ((|#4| |#4|) 37 T ELT)) (-1867 (((-582 |#4|) (-582 |#4|) (-483) (-483)) 74 T ELT)) (-1883 (((-483) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-693)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-483) (-483) (-483) (-483)) 123 T ELT)) (-1886 (((-85) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-693)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-693)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 20 T ELT)) (-1868 (((-85) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-693)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 78 T ELT)) (-1873 (((-582 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-693)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-582 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-693)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 76 T ELT)) (-1872 (((-582 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-693)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-582 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-693)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 47 T ELT)) (-1869 (((-85) |#2| |#2|) 75 T ELT)) (-1871 (((-582 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-693)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-582 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-693)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 48 T ELT)) (-1870 (((-85) |#2| |#2| |#2| |#2|) 80 T ELT)) (-1865 ((|#4| |#4| (-582 |#4|)) 97 T ELT))) -(((-388 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1865 (|#4| |#4| (-582 |#4|))) (-15 -1866 (|#4| |#4| (-582 |#4|))) (-15 -1867 ((-582 |#4|) (-582 |#4|) (-483) (-483))) (-15 -1868 ((-85) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-693)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1869 ((-85) |#2| |#2|)) (-15 -1870 ((-85) |#2| |#2| |#2| |#2|)) (-15 -1871 ((-582 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-693)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-582 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-693)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1872 ((-582 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-693)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-582 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-693)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1873 ((-582 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-693)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-582 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-693)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1874 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-582 |#4|))) (-15 -1875 (|#4| |#4|)) (-15 -1876 ((-582 (-2 (|:| |totdeg| (-693)) (|:| -2003 |#4|))) |#4| (-693) (-582 (-2 (|:| |totdeg| (-693)) (|:| -2003 |#4|))))) (-15 -1877 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-693)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1878 ((-582 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-693)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-582 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-693)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-582 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-693)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1879 ((-582 |#4|) (-582 |#4|))) (-15 -1880 ((-483) |#4|)) (-15 -1881 ((-1183) |#4|)) (-15 -1882 ((-483) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-693)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-483) (-483) (-483))) (-15 -1883 ((-483) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-693)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-483) (-483) (-483) (-483))) (-15 -1884 ((-1183) (-582 |#4|))) (-15 -1885 ((-1183) (-483))) (-15 -1886 ((-85) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-693)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-693)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1887 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-693)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-693)) (|:| -2003 |#4|)) |#4| (-693))) (-15 -1888 ((-693) |#4|))) (-390) (-716) (-755) (-860 |#1| |#2| |#3|)) (T -388)) -((-1888 (*1 *2 *3) (-12 (-4 *4 (-390)) (-4 *5 (-716)) (-4 *6 (-755)) (-5 *2 (-693)) (-5 *1 (-388 *4 *5 *6 *3)) (-4 *3 (-860 *4 *5 *6)))) (-1887 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-693)) (|:| -2003 *4))) (-5 *5 (-693)) (-4 *4 (-860 *6 *7 *8)) (-4 *6 (-390)) (-4 *7 (-716)) (-4 *8 (-755)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-388 *6 *7 *8 *4)))) (-1886 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-693)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-716)) (-4 *7 (-860 *4 *5 *6)) (-4 *4 (-390)) (-4 *6 (-755)) (-5 *2 (-85)) (-5 *1 (-388 *4 *5 *6 *7)))) (-1885 (*1 *2 *3) (-12 (-5 *3 (-483)) (-4 *4 (-390)) (-4 *5 (-716)) (-4 *6 (-755)) (-5 *2 (-1183)) (-5 *1 (-388 *4 *5 *6 *7)) (-4 *7 (-860 *4 *5 *6)))) (-1884 (*1 *2 *3) (-12 (-5 *3 (-582 *7)) (-4 *7 (-860 *4 *5 *6)) (-4 *4 (-390)) (-4 *5 (-716)) (-4 *6 (-755)) (-5 *2 (-1183)) (-5 *1 (-388 *4 *5 *6 *7)))) (-1883 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-483)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-693)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-716)) (-4 *4 (-860 *5 *6 *7)) (-4 *5 (-390)) (-4 *7 (-755)) (-5 *1 (-388 *5 *6 *7 *4)))) (-1882 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-483)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-693)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-716)) (-4 *4 (-860 *5 *6 *7)) (-4 *5 (-390)) (-4 *7 (-755)) (-5 *1 (-388 *5 *6 *7 *4)))) (-1881 (*1 *2 *3) (-12 (-4 *4 (-390)) (-4 *5 (-716)) (-4 *6 (-755)) (-5 *2 (-1183)) (-5 *1 (-388 *4 *5 *6 *3)) (-4 *3 (-860 *4 *5 *6)))) (-1880 (*1 *2 *3) (-12 (-4 *4 (-390)) (-4 *5 (-716)) (-4 *6 (-755)) (-5 *2 (-483)) (-5 *1 (-388 *4 *5 *6 *3)) (-4 *3 (-860 *4 *5 *6)))) (-1879 (*1 *2 *2) (-12 (-5 *2 (-582 *6)) (-4 *6 (-860 *3 *4 *5)) (-4 *3 (-390)) (-4 *4 (-716)) (-4 *5 (-755)) (-5 *1 (-388 *3 *4 *5 *6)))) (-1878 (*1 *2 *2 *2) (-12 (-5 *2 (-582 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-693)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-716)) (-4 *6 (-860 *3 *4 *5)) (-4 *3 (-390)) (-4 *5 (-755)) (-5 *1 (-388 *3 *4 *5 *6)))) (-1877 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-693)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-716)) (-4 *2 (-860 *4 *5 *6)) (-5 *1 (-388 *4 *5 *6 *2)) (-4 *4 (-390)) (-4 *6 (-755)))) (-1876 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-582 (-2 (|:| |totdeg| (-693)) (|:| -2003 *3)))) (-5 *4 (-693)) (-4 *3 (-860 *5 *6 *7)) (-4 *5 (-390)) (-4 *6 (-716)) (-4 *7 (-755)) (-5 *1 (-388 *5 *6 *7 *3)))) (-1875 (*1 *2 *2) (-12 (-4 *3 (-390)) (-4 *4 (-716)) (-4 *5 (-755)) (-5 *1 (-388 *3 *4 *5 *2)) (-4 *2 (-860 *3 *4 *5)))) (-1874 (*1 *2 *3 *4) (-12 (-5 *4 (-582 *3)) (-4 *3 (-860 *5 *6 *7)) (-4 *5 (-390)) (-4 *6 (-716)) (-4 *7 (-755)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-388 *5 *6 *7 *3)))) (-1873 (*1 *2 *3 *2) (-12 (-5 *2 (-582 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-693)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-716)) (-4 *6 (-860 *4 *3 *5)) (-4 *4 (-390)) (-4 *5 (-755)) (-5 *1 (-388 *4 *3 *5 *6)))) (-1872 (*1 *2 *2) (-12 (-5 *2 (-582 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-693)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-716)) (-4 *6 (-860 *3 *4 *5)) (-4 *3 (-390)) (-4 *5 (-755)) (-5 *1 (-388 *3 *4 *5 *6)))) (-1871 (*1 *2 *3 *2) (-12 (-5 *2 (-582 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-693)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-716)) (-4 *3 (-860 *4 *5 *6)) (-4 *4 (-390)) (-4 *6 (-755)) (-5 *1 (-388 *4 *5 *6 *3)))) (-1870 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-390)) (-4 *3 (-716)) (-4 *5 (-755)) (-5 *2 (-85)) (-5 *1 (-388 *4 *3 *5 *6)) (-4 *6 (-860 *4 *3 *5)))) (-1869 (*1 *2 *3 *3) (-12 (-4 *4 (-390)) (-4 *3 (-716)) (-4 *5 (-755)) (-5 *2 (-85)) (-5 *1 (-388 *4 *3 *5 *6)) (-4 *6 (-860 *4 *3 *5)))) (-1868 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-693)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-716)) (-4 *7 (-860 *4 *5 *6)) (-4 *4 (-390)) (-4 *6 (-755)) (-5 *2 (-85)) (-5 *1 (-388 *4 *5 *6 *7)))) (-1867 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-582 *7)) (-5 *3 (-483)) (-4 *7 (-860 *4 *5 *6)) (-4 *4 (-390)) (-4 *5 (-716)) (-4 *6 (-755)) (-5 *1 (-388 *4 *5 *6 *7)))) (-1866 (*1 *2 *2 *3) (-12 (-5 *3 (-582 *2)) (-4 *2 (-860 *4 *5 *6)) (-4 *4 (-390)) (-4 *5 (-716)) (-4 *6 (-755)) (-5 *1 (-388 *4 *5 *6 *2)))) (-1865 (*1 *2 *2 *3) (-12 (-5 *3 (-582 *2)) (-4 *2 (-860 *4 *5 *6)) (-4 *4 (-390)) (-4 *5 (-716)) (-4 *6 (-755)) (-5 *1 (-388 *4 *5 *6 *2))))) -((-1889 (($ $ $) 14 T ELT) (($ (-582 $)) 21 T ELT)) (-2707 (((-1083 $) (-1083 $) (-1083 $)) 45 T ELT)) (-3143 (($ $ $) NIL T ELT) (($ (-582 $)) 22 T ELT))) -(((-389 |#1|) (-10 -7 (-15 -2707 ((-1083 |#1|) (-1083 |#1|) (-1083 |#1|))) (-15 -1889 (|#1| (-582 |#1|))) (-15 -1889 (|#1| |#1| |#1|)) (-15 -3143 (|#1| (-582 |#1|))) (-15 -3143 (|#1| |#1| |#1|))) (-390)) (T -389)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-3187 (((-85) $) 22 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3980 $) (|:| |associate| $)) $) 55 T ELT)) (-2062 (($ $) 54 T ELT)) (-2060 (((-85) $) 52 T ELT)) (-1310 (((-3 $ "failed") $ $) 26 T ELT)) (-3722 (($) 23 T CONST)) (-3465 (((-3 $ "failed") $) 42 T ELT)) (-1212 (((-85) $ $) 20 T ELT)) (-2409 (((-85) $) 44 T ELT)) (-1889 (($ $ $) 60 T ELT) (($ (-582 $)) 59 T ELT)) (-3241 (((-1071) $) 11 T ELT)) (-3242 (((-1032) $) 12 T ELT)) (-2707 (((-1083 $) (-1083 $) (-1083 $)) 58 T ELT)) (-3143 (($ $ $) 62 T ELT) (($ (-582 $)) 61 T ELT)) (-3464 (((-3 $ "failed") $ $) 56 T ELT)) (-3944 (((-771) $) 13 T ELT) (($ (-483)) 41 T ELT) (($ $) 57 T ELT)) (-3125 (((-693)) 40 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-2061 (((-85) $ $) 53 T ELT)) (-3124 (((-85) $ $) 33 T ELT)) (-2659 (($) 24 T CONST)) (-2665 (($) 45 T CONST)) (-3055 (((-85) $ $) 8 T ELT)) (-3835 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3837 (($ $ $) 18 T ELT)) (** (($ $ (-829)) 35 T ELT) (($ $ (-693)) 43 T ELT)) (* (($ (-829) $) 17 T ELT) (($ (-693) $) 21 T ELT) (($ (-483) $) 30 T ELT) (($ $ $) 34 T ELT))) -(((-390) (-113)) (T -390)) -((-3143 (*1 *1 *1 *1) (-4 *1 (-390))) (-3143 (*1 *1 *2) (-12 (-5 *2 (-582 *1)) (-4 *1 (-390)))) (-1889 (*1 *1 *1 *1) (-4 *1 (-390))) (-1889 (*1 *1 *2) (-12 (-5 *2 (-582 *1)) (-4 *1 (-390)))) (-2707 (*1 *2 *2 *2) (-12 (-5 *2 (-1083 *1)) (-4 *1 (-390))))) -(-13 (-494) (-10 -8 (-15 -3143 ($ $ $)) (-15 -3143 ($ (-582 $))) (-15 -1889 ($ $ $)) (-15 -1889 ($ (-582 $))) (-15 -2707 ((-1083 $) (-1083 $) (-1083 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-554 (-483)) . T) ((-554 $) . T) ((-551 (-771)) . T) ((-146) . T) ((-246) . T) ((-494) . T) ((-13) . T) ((-587 (-483)) . T) ((-587 $) . T) ((-589 $) . T) ((-581 $) . T) ((-653 $) . T) ((-662) . T) ((-962 $) . T) ((-967 $) . T) ((-960) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T)) -((-2567 (((-85) $ $) NIL T ELT)) (-3187 (((-85) $) NIL T ELT)) (-1770 (((-3 $ #1="failed")) NIL (|has| (-348 (-856 |#1|)) (-494)) ELT)) (-1310 (((-3 $ #1#) $ $) NIL T ELT)) (-3222 (((-1177 (-629 (-348 (-856 |#1|)))) (-1177 $)) NIL T ELT) (((-1177 (-629 (-348 (-856 |#1|))))) NIL T ELT)) (-1727 (((-1177 $)) NIL T ELT)) (-3722 (($) NIL T CONST)) (-1904 (((-3 (-2 (|:| |particular| $) (|:| -2011 (-582 $))) #1#)) NIL T ELT)) (-1701 (((-3 $ #1#)) NIL (|has| (-348 (-856 |#1|)) (-494)) ELT)) (-1786 (((-629 (-348 (-856 |#1|))) (-1177 $)) NIL T ELT) (((-629 (-348 (-856 |#1|)))) NIL T ELT)) (-1725 (((-348 (-856 |#1|)) $) NIL T ELT)) (-1784 (((-629 (-348 (-856 |#1|))) $ (-1177 $)) NIL T ELT) (((-629 (-348 (-856 |#1|))) $) NIL T ELT)) (-2403 (((-3 $ #1#) $) NIL (|has| (-348 (-856 |#1|)) (-494)) ELT)) (-1898 (((-1083 (-856 (-348 (-856 |#1|))))) NIL (|has| (-348 (-856 |#1|)) (-312)) ELT) (((-1083 (-348 (-856 |#1|)))) 89 (|has| |#1| (-494)) ELT)) (-2406 (($ $ (-829)) NIL T ELT)) (-1723 (((-348 (-856 |#1|)) $) NIL T ELT)) (-1703 (((-1083 (-348 (-856 |#1|))) $) 87 (|has| (-348 (-856 |#1|)) (-494)) ELT)) (-1788 (((-348 (-856 |#1|)) (-1177 $)) NIL T ELT) (((-348 (-856 |#1|))) NIL T ELT)) (-1721 (((-1083 (-348 (-856 |#1|))) $) NIL T ELT)) (-1715 (((-85)) NIL T ELT)) (-1790 (($ (-1177 (-348 (-856 |#1|))) (-1177 $)) 111 T ELT) (($ (-1177 (-348 (-856 |#1|)))) NIL T ELT)) (-3465 (((-3 $ #1#) $) NIL (|has| (-348 (-856 |#1|)) (-494)) ELT)) (-3107 (((-829)) NIL T ELT)) (-1712 (((-85)) NIL T ELT)) (-2432 (($ $ (-829)) NIL T ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-1708 (((-85)) NIL T ELT)) (-1706 (((-85)) NIL T ELT)) (-1710 (((-85)) NIL T ELT)) (-1905 (((-3 (-2 (|:| |particular| $) (|:| -2011 (-582 $))) #1#)) NIL T ELT)) (-1702 (((-3 $ #1#)) NIL (|has| (-348 (-856 |#1|)) (-494)) ELT)) (-1787 (((-629 (-348 (-856 |#1|))) (-1177 $)) NIL T ELT) (((-629 (-348 (-856 |#1|)))) NIL T ELT)) (-1726 (((-348 (-856 |#1|)) $) NIL T ELT)) (-1785 (((-629 (-348 (-856 |#1|))) $ (-1177 $)) NIL T ELT) (((-629 (-348 (-856 |#1|))) $) NIL T ELT)) (-2404 (((-3 $ #1#) $) NIL (|has| (-348 (-856 |#1|)) (-494)) ELT)) (-1902 (((-1083 (-856 (-348 (-856 |#1|))))) NIL (|has| (-348 (-856 |#1|)) (-312)) ELT) (((-1083 (-348 (-856 |#1|)))) 88 (|has| |#1| (-494)) ELT)) (-2405 (($ $ (-829)) NIL T ELT)) (-1724 (((-348 (-856 |#1|)) $) NIL T ELT)) (-1704 (((-1083 (-348 (-856 |#1|))) $) 84 (|has| (-348 (-856 |#1|)) (-494)) ELT)) (-1789 (((-348 (-856 |#1|)) (-1177 $)) NIL T ELT) (((-348 (-856 |#1|))) NIL T ELT)) (-1722 (((-1083 (-348 (-856 |#1|))) $) NIL T ELT)) (-1716 (((-85)) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-1707 (((-85)) NIL T ELT)) (-1709 (((-85)) NIL T ELT)) (-1711 (((-85)) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-1892 (((-348 (-856 |#1|)) $ $) 75 (|has| |#1| (-494)) ELT)) (-1896 (((-348 (-856 |#1|)) $) 74 (|has| |#1| (-494)) ELT)) (-1895 (((-348 (-856 |#1|)) $) 101 (|has| |#1| (-494)) ELT)) (-1897 (((-1083 (-348 (-856 |#1|))) $) 93 (|has| |#1| (-494)) ELT)) (-1891 (((-348 (-856 |#1|))) 76 (|has| |#1| (-494)) ELT)) (-1894 (((-348 (-856 |#1|)) $ $) 64 (|has| |#1| (-494)) ELT)) (-1900 (((-348 (-856 |#1|)) $) 63 (|has| |#1| (-494)) ELT)) (-1899 (((-348 (-856 |#1|)) $) 100 (|has| |#1| (-494)) ELT)) (-1901 (((-1083 (-348 (-856 |#1|))) $) 92 (|has| |#1| (-494)) ELT)) (-1893 (((-348 (-856 |#1|))) 73 (|has| |#1| (-494)) ELT)) (-1903 (($) 107 T ELT) (($ (-1088)) 115 T ELT) (($ (-1177 (-1088))) 114 T ELT) (($ (-1177 $)) 102 T ELT) (($ (-1088) (-1177 $)) 113 T ELT) (($ (-1177 (-1088)) (-1177 $)) 112 T ELT)) (-1714 (((-85)) NIL T ELT)) (-3798 (((-348 (-856 |#1|)) $ (-483)) NIL T ELT)) (-3223 (((-1177 (-348 (-856 |#1|))) $ (-1177 $)) 104 T ELT) (((-629 (-348 (-856 |#1|))) (-1177 $) (-1177 $)) NIL T ELT) (((-1177 (-348 (-856 |#1|))) $) 44 T ELT) (((-629 (-348 (-856 |#1|))) (-1177 $)) NIL T ELT)) (-3970 (((-1177 (-348 (-856 |#1|))) $) NIL T ELT) (($ (-1177 (-348 (-856 |#1|)))) 41 T ELT)) (-1890 (((-582 (-856 (-348 (-856 |#1|)))) (-1177 $)) NIL T ELT) (((-582 (-856 (-348 (-856 |#1|))))) NIL T ELT) (((-582 (-856 |#1|)) (-1177 $)) 105 (|has| |#1| (-494)) ELT) (((-582 (-856 |#1|))) 106 (|has| |#1| (-494)) ELT)) (-2434 (($ $ $) NIL T ELT)) (-1720 (((-85)) NIL T ELT)) (-3944 (((-771) $) NIL T ELT) (($ (-1177 (-348 (-856 |#1|)))) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2011 (((-1177 $)) 66 T ELT)) (-1705 (((-582 (-1177 (-348 (-856 |#1|))))) NIL (|has| (-348 (-856 |#1|)) (-494)) ELT)) (-2435 (($ $ $ $) NIL T ELT)) (-1718 (((-85)) NIL T ELT)) (-2544 (($ (-629 (-348 (-856 |#1|))) $) NIL T ELT)) (-2433 (($ $ $) NIL T ELT)) (-1719 (((-85)) NIL T ELT)) (-1717 (((-85)) NIL T ELT)) (-1713 (((-85)) NIL T ELT)) (-2659 (($) NIL T CONST)) (-3055 (((-85) $ $) NIL T ELT)) (-3835 (($ $) NIL T ELT) (($ $ $) 103 T ELT)) (-3837 (($ $ $) NIL T ELT)) (** (($ $ (-829)) NIL T ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) 62 T ELT) (($ $ (-348 (-856 |#1|))) NIL T ELT) (($ (-348 (-856 |#1|)) $) NIL T ELT) (($ (-1054 |#2| (-348 (-856 |#1|))) $) NIL T ELT))) -(((-391 |#1| |#2| |#3| |#4|) (-13 (-359 (-348 (-856 |#1|))) (-589 (-1054 |#2| (-348 (-856 |#1|)))) (-10 -8 (-15 -3944 ($ (-1177 (-348 (-856 |#1|))))) (-15 -1905 ((-3 (-2 (|:| |particular| $) (|:| -2011 (-582 $))) #1="failed"))) (-15 -1904 ((-3 (-2 (|:| |particular| $) (|:| -2011 (-582 $))) #1#))) (-15 -1903 ($)) (-15 -1903 ($ (-1088))) (-15 -1903 ($ (-1177 (-1088)))) (-15 -1903 ($ (-1177 $))) (-15 -1903 ($ (-1088) (-1177 $))) (-15 -1903 ($ (-1177 (-1088)) (-1177 $))) (IF (|has| |#1| (-494)) (PROGN (-15 -1902 ((-1083 (-348 (-856 |#1|))))) (-15 -1901 ((-1083 (-348 (-856 |#1|))) $)) (-15 -1900 ((-348 (-856 |#1|)) $)) (-15 -1899 ((-348 (-856 |#1|)) $)) (-15 -1898 ((-1083 (-348 (-856 |#1|))))) (-15 -1897 ((-1083 (-348 (-856 |#1|))) $)) (-15 -1896 ((-348 (-856 |#1|)) $)) (-15 -1895 ((-348 (-856 |#1|)) $)) (-15 -1894 ((-348 (-856 |#1|)) $ $)) (-15 -1893 ((-348 (-856 |#1|)))) (-15 -1892 ((-348 (-856 |#1|)) $ $)) (-15 -1891 ((-348 (-856 |#1|)))) (-15 -1890 ((-582 (-856 |#1|)) (-1177 $))) (-15 -1890 ((-582 (-856 |#1|))))) |%noBranch|))) (-146) (-829) (-582 (-1088)) (-1177 (-629 |#1|))) (T -391)) -((-3944 (*1 *1 *2) (-12 (-5 *2 (-1177 (-348 (-856 *3)))) (-4 *3 (-146)) (-14 *6 (-1177 (-629 *3))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *4 (-829)) (-14 *5 (-582 (-1088))))) (-1905 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-391 *3 *4 *5 *6)) (|:| -2011 (-582 (-391 *3 *4 *5 *6))))) (-5 *1 (-391 *3 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-829)) (-14 *5 (-582 (-1088))) (-14 *6 (-1177 (-629 *3))))) (-1904 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-391 *3 *4 *5 *6)) (|:| -2011 (-582 (-391 *3 *4 *5 *6))))) (-5 *1 (-391 *3 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-829)) (-14 *5 (-582 (-1088))) (-14 *6 (-1177 (-629 *3))))) (-1903 (*1 *1) (-12 (-5 *1 (-391 *2 *3 *4 *5)) (-4 *2 (-146)) (-14 *3 (-829)) (-14 *4 (-582 (-1088))) (-14 *5 (-1177 (-629 *2))))) (-1903 (*1 *1 *2) (-12 (-5 *2 (-1088)) (-5 *1 (-391 *3 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-829)) (-14 *5 (-582 *2)) (-14 *6 (-1177 (-629 *3))))) (-1903 (*1 *1 *2) (-12 (-5 *2 (-1177 (-1088))) (-5 *1 (-391 *3 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-829)) (-14 *5 (-582 (-1088))) (-14 *6 (-1177 (-629 *3))))) (-1903 (*1 *1 *2) (-12 (-5 *2 (-1177 (-391 *3 *4 *5 *6))) (-5 *1 (-391 *3 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-829)) (-14 *5 (-582 (-1088))) (-14 *6 (-1177 (-629 *3))))) (-1903 (*1 *1 *2 *3) (-12 (-5 *2 (-1088)) (-5 *3 (-1177 (-391 *4 *5 *6 *7))) (-5 *1 (-391 *4 *5 *6 *7)) (-4 *4 (-146)) (-14 *5 (-829)) (-14 *6 (-582 *2)) (-14 *7 (-1177 (-629 *4))))) (-1903 (*1 *1 *2 *3) (-12 (-5 *2 (-1177 (-1088))) (-5 *3 (-1177 (-391 *4 *5 *6 *7))) (-5 *1 (-391 *4 *5 *6 *7)) (-4 *4 (-146)) (-14 *5 (-829)) (-14 *6 (-582 (-1088))) (-14 *7 (-1177 (-629 *4))))) (-1902 (*1 *2) (-12 (-5 *2 (-1083 (-348 (-856 *3)))) (-5 *1 (-391 *3 *4 *5 *6)) (-4 *3 (-494)) (-4 *3 (-146)) (-14 *4 (-829)) (-14 *5 (-582 (-1088))) (-14 *6 (-1177 (-629 *3))))) (-1901 (*1 *2 *1) (-12 (-5 *2 (-1083 (-348 (-856 *3)))) (-5 *1 (-391 *3 *4 *5 *6)) (-4 *3 (-494)) (-4 *3 (-146)) (-14 *4 (-829)) (-14 *5 (-582 (-1088))) (-14 *6 (-1177 (-629 *3))))) (-1900 (*1 *2 *1) (-12 (-5 *2 (-348 (-856 *3))) (-5 *1 (-391 *3 *4 *5 *6)) (-4 *3 (-494)) (-4 *3 (-146)) (-14 *4 (-829)) (-14 *5 (-582 (-1088))) (-14 *6 (-1177 (-629 *3))))) (-1899 (*1 *2 *1) (-12 (-5 *2 (-348 (-856 *3))) (-5 *1 (-391 *3 *4 *5 *6)) (-4 *3 (-494)) (-4 *3 (-146)) (-14 *4 (-829)) (-14 *5 (-582 (-1088))) (-14 *6 (-1177 (-629 *3))))) (-1898 (*1 *2) (-12 (-5 *2 (-1083 (-348 (-856 *3)))) (-5 *1 (-391 *3 *4 *5 *6)) (-4 *3 (-494)) (-4 *3 (-146)) (-14 *4 (-829)) (-14 *5 (-582 (-1088))) (-14 *6 (-1177 (-629 *3))))) (-1897 (*1 *2 *1) (-12 (-5 *2 (-1083 (-348 (-856 *3)))) (-5 *1 (-391 *3 *4 *5 *6)) (-4 *3 (-494)) (-4 *3 (-146)) (-14 *4 (-829)) (-14 *5 (-582 (-1088))) (-14 *6 (-1177 (-629 *3))))) (-1896 (*1 *2 *1) (-12 (-5 *2 (-348 (-856 *3))) (-5 *1 (-391 *3 *4 *5 *6)) (-4 *3 (-494)) (-4 *3 (-146)) (-14 *4 (-829)) (-14 *5 (-582 (-1088))) (-14 *6 (-1177 (-629 *3))))) (-1895 (*1 *2 *1) (-12 (-5 *2 (-348 (-856 *3))) (-5 *1 (-391 *3 *4 *5 *6)) (-4 *3 (-494)) (-4 *3 (-146)) (-14 *4 (-829)) (-14 *5 (-582 (-1088))) (-14 *6 (-1177 (-629 *3))))) (-1894 (*1 *2 *1 *1) (-12 (-5 *2 (-348 (-856 *3))) (-5 *1 (-391 *3 *4 *5 *6)) (-4 *3 (-494)) (-4 *3 (-146)) (-14 *4 (-829)) (-14 *5 (-582 (-1088))) (-14 *6 (-1177 (-629 *3))))) (-1893 (*1 *2) (-12 (-5 *2 (-348 (-856 *3))) (-5 *1 (-391 *3 *4 *5 *6)) (-4 *3 (-494)) (-4 *3 (-146)) (-14 *4 (-829)) (-14 *5 (-582 (-1088))) (-14 *6 (-1177 (-629 *3))))) (-1892 (*1 *2 *1 *1) (-12 (-5 *2 (-348 (-856 *3))) (-5 *1 (-391 *3 *4 *5 *6)) (-4 *3 (-494)) (-4 *3 (-146)) (-14 *4 (-829)) (-14 *5 (-582 (-1088))) (-14 *6 (-1177 (-629 *3))))) (-1891 (*1 *2) (-12 (-5 *2 (-348 (-856 *3))) (-5 *1 (-391 *3 *4 *5 *6)) (-4 *3 (-494)) (-4 *3 (-146)) (-14 *4 (-829)) (-14 *5 (-582 (-1088))) (-14 *6 (-1177 (-629 *3))))) (-1890 (*1 *2 *3) (-12 (-5 *3 (-1177 (-391 *4 *5 *6 *7))) (-5 *2 (-582 (-856 *4))) (-5 *1 (-391 *4 *5 *6 *7)) (-4 *4 (-494)) (-4 *4 (-146)) (-14 *5 (-829)) (-14 *6 (-582 (-1088))) (-14 *7 (-1177 (-629 *4))))) (-1890 (*1 *2) (-12 (-5 *2 (-582 (-856 *3))) (-5 *1 (-391 *3 *4 *5 *6)) (-4 *3 (-494)) (-4 *3 (-146)) (-14 *4 (-829)) (-14 *5 (-582 (-1088))) (-14 *6 (-1177 (-629 *3)))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3187 (((-85) $) 19 T ELT)) (-3080 (((-582 (-772 |#1|)) $) 88 T ELT)) (-3082 (((-1083 $) $ (-772 |#1|)) 53 T ELT) (((-1083 |#2|) $) 140 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3980 $) (|:| |associate| $)) $) NIL (|has| |#2| (-494)) ELT)) (-2062 (($ $) NIL (|has| |#2| (-494)) ELT)) (-2060 (((-85) $) NIL (|has| |#2| (-494)) ELT)) (-2818 (((-693) $) 28 T ELT) (((-693) $ (-582 (-772 |#1|))) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2706 (((-346 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-820)) ELT)) (-3773 (($ $) NIL (|has| |#2| (-390)) ELT)) (-3969 (((-346 $) $) NIL (|has| |#2| (-390)) ELT)) (-2703 (((-3 (-582 (-1083 $)) #1#) (-582 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-820)) ELT)) (-3722 (($) NIL T CONST)) (-3156 (((-3 |#2| #1#) $) 51 T ELT) (((-3 (-348 (-483)) #1#) $) NIL (|has| |#2| (-949 (-348 (-483)))) ELT) (((-3 (-483) #1#) $) NIL (|has| |#2| (-949 (-483))) ELT) (((-3 (-772 |#1|) #1#) $) NIL T ELT)) (-3155 ((|#2| $) 49 T ELT) (((-348 (-483)) $) NIL (|has| |#2| (-949 (-348 (-483)))) ELT) (((-483) $) NIL (|has| |#2| (-949 (-483))) ELT) (((-772 |#1|) $) NIL T ELT)) (-3754 (($ $ $ (-772 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-1935 (($ $ (-582 (-483))) 95 T ELT)) (-3957 (($ $) 81 T ELT)) (-2278 (((-629 (-483)) (-629 $)) NIL (|has| |#2| (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-629 $) (-1177 $)) NIL (|has| |#2| (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 |#2|)) (|:| |vec| (-1177 |#2|))) (-629 $) (-1177 $)) NIL T ELT) (((-629 |#2|) (-629 $)) NIL T ELT)) (-3465 (((-3 $ #1#) $) NIL T ELT)) (-3501 (($ $) NIL (|has| |#2| (-390)) ELT) (($ $ (-772 |#1|)) NIL (|has| |#2| (-390)) ELT)) (-2817 (((-582 $) $) NIL T ELT)) (-3721 (((-85) $) NIL (|has| |#2| (-820)) ELT)) (-1622 (($ $ |#2| |#3| $) NIL T ELT)) (-2795 (((-797 (-328) $) $ (-799 (-328)) (-797 (-328) $)) NIL (-12 (|has| (-772 |#1|) (-795 (-328))) (|has| |#2| (-795 (-328)))) ELT) (((-797 (-483) $) $ (-799 (-483)) (-797 (-483) $)) NIL (-12 (|has| (-772 |#1|) (-795 (-483))) (|has| |#2| (-795 (-483)))) ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-2409 (((-85) $) NIL T ELT)) (-2419 (((-693) $) 66 T ELT)) (-3083 (($ (-1083 |#2|) (-772 |#1|)) 145 T ELT) (($ (-1083 $) (-772 |#1|)) 59 T ELT)) (-2820 (((-582 $) $) NIL T ELT)) (-3935 (((-85) $) 69 T ELT)) (-2892 (($ |#2| |#3|) 36 T ELT) (($ $ (-772 |#1|) (-693)) 38 T ELT) (($ $ (-582 (-772 |#1|)) (-582 (-693))) NIL T ELT)) (-3761 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $ (-772 |#1|)) NIL T ELT)) (-2819 ((|#3| $) NIL T ELT) (((-693) $ (-772 |#1|)) 57 T ELT) (((-582 (-693)) $ (-582 (-772 |#1|))) 64 T ELT)) (-1623 (($ (-1 |#3| |#3|) $) NIL T ELT)) (-3956 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3081 (((-3 (-772 |#1|) #1#) $) 46 T ELT)) (-2279 (((-629 (-483)) (-1177 $)) NIL (|has| |#2| (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL (|has| |#2| (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 |#2|)) (|:| |vec| (-1177 |#2|))) (-1177 $) $) NIL T ELT) (((-629 |#2|) (-1177 $)) NIL T ELT)) (-2893 (($ $) NIL T ELT)) (-3173 ((|#2| $) 48 T ELT)) (-1889 (($ (-582 $)) NIL (|has| |#2| (-390)) ELT) (($ $ $) NIL (|has| |#2| (-390)) ELT)) (-3241 (((-1071) $) NIL T ELT)) (-2822 (((-3 (-582 $) #1#) $) NIL T ELT)) (-2821 (((-3 (-582 $) #1#) $) NIL T ELT)) (-2823 (((-3 (-2 (|:| |var| (-772 |#1|)) (|:| -2400 (-693))) #1#) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-1795 (((-85) $) 47 T ELT)) (-1794 ((|#2| $) 138 T ELT)) (-2707 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#2| (-390)) ELT)) (-3143 (($ (-582 $)) NIL (|has| |#2| (-390)) ELT) (($ $ $) 151 (|has| |#2| (-390)) ELT)) (-2704 (((-346 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-820)) ELT)) (-2705 (((-346 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-820)) ELT)) (-3730 (((-346 $) $) NIL (|has| |#2| (-820)) ELT)) (-3464 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-494)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-494)) ELT)) (-3766 (($ $ (-582 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-582 $) (-582 $)) NIL T ELT) (($ $ (-772 |#1|) |#2|) 102 T ELT) (($ $ (-582 (-772 |#1|)) (-582 |#2|)) 108 T ELT) (($ $ (-772 |#1|) $) 100 T ELT) (($ $ (-582 (-772 |#1|)) (-582 $)) 126 T ELT)) (-3755 (($ $ (-772 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-3756 (($ $ (-582 (-772 |#1|)) (-582 (-693))) NIL T ELT) (($ $ (-772 |#1|) (-693)) NIL T ELT) (($ $ (-582 (-772 |#1|))) NIL T ELT) (($ $ (-772 |#1|)) 60 T ELT)) (-3946 ((|#3| $) 80 T ELT) (((-693) $ (-772 |#1|)) 43 T ELT) (((-582 (-693)) $ (-582 (-772 |#1|))) 63 T ELT)) (-3970 (((-799 (-328)) $) NIL (-12 (|has| (-772 |#1|) (-552 (-799 (-328)))) (|has| |#2| (-552 (-799 (-328))))) ELT) (((-799 (-483)) $) NIL (-12 (|has| (-772 |#1|) (-552 (-799 (-483)))) (|has| |#2| (-552 (-799 (-483))))) ELT) (((-472) $) NIL (-12 (|has| (-772 |#1|) (-552 (-472))) (|has| |#2| (-552 (-472)))) ELT)) (-2816 ((|#2| $) 147 (|has| |#2| (-390)) ELT) (($ $ (-772 |#1|)) NIL (|has| |#2| (-390)) ELT)) (-2702 (((-3 (-1177 $) #1#) (-629 $)) NIL (-12 (|has| $ (-118)) (|has| |#2| (-820))) ELT)) (-3944 (((-771) $) 175 T ELT) (($ (-483)) NIL T ELT) (($ |#2|) 101 T ELT) (($ (-772 |#1|)) 40 T ELT) (($ (-348 (-483))) NIL (OR (|has| |#2| (-38 (-348 (-483)))) (|has| |#2| (-949 (-348 (-483))))) ELT) (($ $) NIL (|has| |#2| (-494)) ELT)) (-3815 (((-582 |#2|) $) NIL T ELT)) (-3675 ((|#2| $ |#3|) NIL T ELT) (($ $ (-772 |#1|) (-693)) NIL T ELT) (($ $ (-582 (-772 |#1|)) (-582 (-693))) NIL T ELT)) (-2701 (((-631 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#2| (-820))) (|has| |#2| (-118))) ELT)) (-3125 (((-693)) NIL T CONST)) (-1621 (($ $ $ (-693)) NIL (|has| |#2| (-146)) ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2061 (((-85) $ $) NIL (|has| |#2| (-494)) ELT)) (-3124 (((-85) $ $) NIL T ELT)) (-2659 (($) 23 T CONST)) (-2665 (($) 32 T CONST)) (-2668 (($ $ (-582 (-772 |#1|)) (-582 (-693))) NIL T ELT) (($ $ (-772 |#1|) (-693)) NIL T ELT) (($ $ (-582 (-772 |#1|))) NIL T ELT) (($ $ (-772 |#1|)) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-3947 (($ $ |#2|) 77 (|has| |#2| (-312)) ELT)) (-3835 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3837 (($ $ $) 133 T ELT)) (** (($ $ (-829)) NIL T ELT) (($ $ (-693)) 131 T ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) 37 T ELT) (($ $ (-348 (-483))) NIL (|has| |#2| (-38 (-348 (-483)))) ELT) (($ (-348 (-483)) $) NIL (|has| |#2| (-38 (-348 (-483)))) ELT) (($ |#2| $) 76 T ELT) (($ $ |#2|) NIL T ELT))) -(((-392 |#1| |#2| |#3|) (-13 (-860 |#2| |#3| (-772 |#1|)) (-10 -8 (-15 -1935 ($ $ (-582 (-483)))))) (-582 (-1088)) (-960) (-196 (-3955 |#1|) (-693))) (T -392)) -((-1935 (*1 *1 *1 *2) (-12 (-5 *2 (-582 (-483))) (-14 *3 (-582 (-1088))) (-5 *1 (-392 *3 *4 *5)) (-4 *4 (-960)) (-4 *5 (-196 (-3955 *3) (-693)))))) -((-1909 (((-85) |#1| (-582 |#2|)) 90 T ELT)) (-1907 (((-3 (-1177 (-582 |#2|)) #1="failed") (-693) |#1| (-582 |#2|)) 99 T ELT)) (-1908 (((-3 (-582 |#2|) #1#) |#2| |#1| (-1177 (-582 |#2|))) 101 T ELT)) (-2036 ((|#2| |#2| |#1|) 35 T ELT)) (-1906 (((-693) |#2| (-582 |#2|)) 26 T ELT))) -(((-393 |#1| |#2|) (-10 -7 (-15 -2036 (|#2| |#2| |#1|)) (-15 -1906 ((-693) |#2| (-582 |#2|))) (-15 -1907 ((-3 (-1177 (-582 |#2|)) #1="failed") (-693) |#1| (-582 |#2|))) (-15 -1908 ((-3 (-582 |#2|) #1#) |#2| |#1| (-1177 (-582 |#2|)))) (-15 -1909 ((-85) |#1| (-582 |#2|)))) (-258) (-1153 |#1|)) (T -393)) -((-1909 (*1 *2 *3 *4) (-12 (-5 *4 (-582 *5)) (-4 *5 (-1153 *3)) (-4 *3 (-258)) (-5 *2 (-85)) (-5 *1 (-393 *3 *5)))) (-1908 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1177 (-582 *3))) (-4 *4 (-258)) (-5 *2 (-582 *3)) (-5 *1 (-393 *4 *3)) (-4 *3 (-1153 *4)))) (-1907 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-693)) (-4 *4 (-258)) (-4 *6 (-1153 *4)) (-5 *2 (-1177 (-582 *6))) (-5 *1 (-393 *4 *6)) (-5 *5 (-582 *6)))) (-1906 (*1 *2 *3 *4) (-12 (-5 *4 (-582 *3)) (-4 *3 (-1153 *5)) (-4 *5 (-258)) (-5 *2 (-693)) (-5 *1 (-393 *5 *3)))) (-2036 (*1 *2 *2 *3) (-12 (-4 *3 (-258)) (-5 *1 (-393 *3 *2)) (-4 *2 (-1153 *3))))) -((-3730 (((-346 |#5|) |#5|) 24 T ELT))) -(((-394 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3730 ((-346 |#5|) |#5|))) (-13 (-755) (-10 -8 (-15 -3970 ((-1088) $)) (-15 -3829 ((-3 $ "failed") (-1088))))) (-716) (-494) (-494) (-860 |#4| |#2| |#1|)) (T -394)) -((-3730 (*1 *2 *3) (-12 (-4 *4 (-13 (-755) (-10 -8 (-15 -3970 ((-1088) $)) (-15 -3829 ((-3 $ "failed") (-1088)))))) (-4 *5 (-716)) (-4 *7 (-494)) (-5 *2 (-346 *3)) (-5 *1 (-394 *4 *5 *6 *7 *3)) (-4 *6 (-494)) (-4 *3 (-860 *7 *5 *4))))) -((-2699 ((|#3|) 43 T ELT)) (-2707 (((-1083 |#4|) (-1083 |#4|) (-1083 |#4|)) 34 T ELT))) -(((-395 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2707 ((-1083 |#4|) (-1083 |#4|) (-1083 |#4|))) (-15 -2699 (|#3|))) (-716) (-755) (-820) (-860 |#3| |#1| |#2|)) (T -395)) -((-2699 (*1 *2) (-12 (-4 *3 (-716)) (-4 *4 (-755)) (-4 *2 (-820)) (-5 *1 (-395 *3 *4 *2 *5)) (-4 *5 (-860 *2 *3 *4)))) (-2707 (*1 *2 *2 *2) (-12 (-5 *2 (-1083 *6)) (-4 *6 (-860 *5 *3 *4)) (-4 *3 (-716)) (-4 *4 (-755)) (-4 *5 (-820)) (-5 *1 (-395 *3 *4 *5 *6))))) -((-3730 (((-346 (-1083 |#1|)) (-1083 |#1|)) 43 T ELT))) -(((-396 |#1|) (-10 -7 (-15 -3730 ((-346 (-1083 |#1|)) (-1083 |#1|)))) (-258)) (T -396)) -((-3730 (*1 *2 *3) (-12 (-4 *4 (-258)) (-5 *2 (-346 (-1083 *4))) (-5 *1 (-396 *4)) (-5 *3 (-1083 *4))))) -((-3727 (((-51) |#2| (-1088) (-249 |#2|) (-1144 (-693))) 44 T ELT) (((-51) (-1 |#2| (-483)) (-249 |#2|) (-1144 (-693))) 43 T ELT) (((-51) |#2| (-1088) (-249 |#2|)) 36 T ELT) (((-51) (-1 |#2| (-483)) (-249 |#2|)) 29 T ELT)) (-3816 (((-51) |#2| (-1088) (-249 |#2|) (-1144 (-348 (-483))) (-348 (-483))) 88 T ELT) (((-51) (-1 |#2| (-348 (-483))) (-249 |#2|) (-1144 (-348 (-483))) (-348 (-483))) 87 T ELT) (((-51) |#2| (-1088) (-249 |#2|) (-1144 (-483))) 86 T ELT) (((-51) (-1 |#2| (-483)) (-249 |#2|) (-1144 (-483))) 85 T ELT) (((-51) |#2| (-1088) (-249 |#2|)) 80 T ELT) (((-51) (-1 |#2| (-483)) (-249 |#2|)) 79 T ELT)) (-3780 (((-51) |#2| (-1088) (-249 |#2|) (-1144 (-348 (-483))) (-348 (-483))) 74 T ELT) (((-51) (-1 |#2| (-348 (-483))) (-249 |#2|) (-1144 (-348 (-483))) (-348 (-483))) 72 T ELT)) (-3777 (((-51) |#2| (-1088) (-249 |#2|) (-1144 (-483))) 51 T ELT) (((-51) (-1 |#2| (-483)) (-249 |#2|) (-1144 (-483))) 50 T ELT))) -(((-397 |#1| |#2|) (-10 -7 (-15 -3727 ((-51) (-1 |#2| (-483)) (-249 |#2|))) (-15 -3727 ((-51) |#2| (-1088) (-249 |#2|))) (-15 -3727 ((-51) (-1 |#2| (-483)) (-249 |#2|) (-1144 (-693)))) (-15 -3727 ((-51) |#2| (-1088) (-249 |#2|) (-1144 (-693)))) (-15 -3777 ((-51) (-1 |#2| (-483)) (-249 |#2|) (-1144 (-483)))) (-15 -3777 ((-51) |#2| (-1088) (-249 |#2|) (-1144 (-483)))) (-15 -3780 ((-51) (-1 |#2| (-348 (-483))) (-249 |#2|) (-1144 (-348 (-483))) (-348 (-483)))) (-15 -3780 ((-51) |#2| (-1088) (-249 |#2|) (-1144 (-348 (-483))) (-348 (-483)))) (-15 -3816 ((-51) (-1 |#2| (-483)) (-249 |#2|))) (-15 -3816 ((-51) |#2| (-1088) (-249 |#2|))) (-15 -3816 ((-51) (-1 |#2| (-483)) (-249 |#2|) (-1144 (-483)))) (-15 -3816 ((-51) |#2| (-1088) (-249 |#2|) (-1144 (-483)))) (-15 -3816 ((-51) (-1 |#2| (-348 (-483))) (-249 |#2|) (-1144 (-348 (-483))) (-348 (-483)))) (-15 -3816 ((-51) |#2| (-1088) (-249 |#2|) (-1144 (-348 (-483))) (-348 (-483))))) (-13 (-494) (-949 (-483)) (-579 (-483))) (-13 (-27) (-1113) (-362 |#1|))) (T -397)) -((-3816 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1088)) (-5 *5 (-249 *3)) (-5 *6 (-1144 (-348 (-483)))) (-5 *7 (-348 (-483))) (-4 *3 (-13 (-27) (-1113) (-362 *8))) (-4 *8 (-13 (-494) (-949 (-483)) (-579 (-483)))) (-5 *2 (-51)) (-5 *1 (-397 *8 *3)))) (-3816 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-348 (-483)))) (-5 *4 (-249 *8)) (-5 *5 (-1144 (-348 (-483)))) (-5 *6 (-348 (-483))) (-4 *8 (-13 (-27) (-1113) (-362 *7))) (-4 *7 (-13 (-494) (-949 (-483)) (-579 (-483)))) (-5 *2 (-51)) (-5 *1 (-397 *7 *8)))) (-3816 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1088)) (-5 *5 (-249 *3)) (-5 *6 (-1144 (-483))) (-4 *3 (-13 (-27) (-1113) (-362 *7))) (-4 *7 (-13 (-494) (-949 (-483)) (-579 (-483)))) (-5 *2 (-51)) (-5 *1 (-397 *7 *3)))) (-3816 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-483))) (-5 *4 (-249 *7)) (-5 *5 (-1144 (-483))) (-4 *7 (-13 (-27) (-1113) (-362 *6))) (-4 *6 (-13 (-494) (-949 (-483)) (-579 (-483)))) (-5 *2 (-51)) (-5 *1 (-397 *6 *7)))) (-3816 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1088)) (-5 *5 (-249 *3)) (-4 *3 (-13 (-27) (-1113) (-362 *6))) (-4 *6 (-13 (-494) (-949 (-483)) (-579 (-483)))) (-5 *2 (-51)) (-5 *1 (-397 *6 *3)))) (-3816 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-483))) (-5 *4 (-249 *6)) (-4 *6 (-13 (-27) (-1113) (-362 *5))) (-4 *5 (-13 (-494) (-949 (-483)) (-579 (-483)))) (-5 *2 (-51)) (-5 *1 (-397 *5 *6)))) (-3780 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1088)) (-5 *5 (-249 *3)) (-5 *6 (-1144 (-348 (-483)))) (-5 *7 (-348 (-483))) (-4 *3 (-13 (-27) (-1113) (-362 *8))) (-4 *8 (-13 (-494) (-949 (-483)) (-579 (-483)))) (-5 *2 (-51)) (-5 *1 (-397 *8 *3)))) (-3780 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-348 (-483)))) (-5 *4 (-249 *8)) (-5 *5 (-1144 (-348 (-483)))) (-5 *6 (-348 (-483))) (-4 *8 (-13 (-27) (-1113) (-362 *7))) (-4 *7 (-13 (-494) (-949 (-483)) (-579 (-483)))) (-5 *2 (-51)) (-5 *1 (-397 *7 *8)))) (-3777 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1088)) (-5 *5 (-249 *3)) (-5 *6 (-1144 (-483))) (-4 *3 (-13 (-27) (-1113) (-362 *7))) (-4 *7 (-13 (-494) (-949 (-483)) (-579 (-483)))) (-5 *2 (-51)) (-5 *1 (-397 *7 *3)))) (-3777 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-483))) (-5 *4 (-249 *7)) (-5 *5 (-1144 (-483))) (-4 *7 (-13 (-27) (-1113) (-362 *6))) (-4 *6 (-13 (-494) (-949 (-483)) (-579 (-483)))) (-5 *2 (-51)) (-5 *1 (-397 *6 *7)))) (-3727 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1088)) (-5 *5 (-249 *3)) (-5 *6 (-1144 (-693))) (-4 *3 (-13 (-27) (-1113) (-362 *7))) (-4 *7 (-13 (-494) (-949 (-483)) (-579 (-483)))) (-5 *2 (-51)) (-5 *1 (-397 *7 *3)))) (-3727 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-483))) (-5 *4 (-249 *7)) (-5 *5 (-1144 (-693))) (-4 *7 (-13 (-27) (-1113) (-362 *6))) (-4 *6 (-13 (-494) (-949 (-483)) (-579 (-483)))) (-5 *2 (-51)) (-5 *1 (-397 *6 *7)))) (-3727 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1088)) (-5 *5 (-249 *3)) (-4 *3 (-13 (-27) (-1113) (-362 *6))) (-4 *6 (-13 (-494) (-949 (-483)) (-579 (-483)))) (-5 *2 (-51)) (-5 *1 (-397 *6 *3)))) (-3727 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-483))) (-5 *4 (-249 *6)) (-4 *6 (-13 (-27) (-1113) (-362 *5))) (-4 *5 (-13 (-494) (-949 (-483)) (-579 (-483)))) (-5 *2 (-51)) (-5 *1 (-397 *5 *6))))) -((-2036 ((|#2| |#2| |#1|) 15 T ELT)) (-1911 (((-582 |#2|) |#2| (-582 |#2|) |#1| (-829)) 82 T ELT)) (-1910 (((-2 (|:| |plist| (-582 |#2|)) (|:| |modulo| |#1|)) |#2| (-582 |#2|) |#1| (-829)) 71 T ELT))) -(((-398 |#1| |#2|) (-10 -7 (-15 -1910 ((-2 (|:| |plist| (-582 |#2|)) (|:| |modulo| |#1|)) |#2| (-582 |#2|) |#1| (-829))) (-15 -1911 ((-582 |#2|) |#2| (-582 |#2|) |#1| (-829))) (-15 -2036 (|#2| |#2| |#1|))) (-258) (-1153 |#1|)) (T -398)) -((-2036 (*1 *2 *2 *3) (-12 (-4 *3 (-258)) (-5 *1 (-398 *3 *2)) (-4 *2 (-1153 *3)))) (-1911 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-582 *3)) (-5 *5 (-829)) (-4 *3 (-1153 *4)) (-4 *4 (-258)) (-5 *1 (-398 *4 *3)))) (-1910 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-829)) (-4 *5 (-258)) (-4 *3 (-1153 *5)) (-5 *2 (-2 (|:| |plist| (-582 *3)) (|:| |modulo| *5))) (-5 *1 (-398 *5 *3)) (-5 *4 (-582 *3))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3187 (((-85) $) 28 T ELT)) (-3705 (($ |#3|) 25 T ELT)) (-1310 (((-3 $ "failed") $ $) NIL T ELT)) (-3722 (($) NIL T CONST)) (-3957 (($ $) 32 T ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-1912 (($ |#2| |#4| $) 33 T ELT)) (-2892 (($ |#2| (-649 |#3| |#4| |#5|)) 24 T ELT)) (-2893 (((-649 |#3| |#4| |#5|) $) 15 T ELT)) (-1914 ((|#3| $) 19 T ELT)) (-1915 ((|#4| $) 17 T ELT)) (-3173 ((|#2| $) 29 T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3944 (((-771) $) NIL T ELT)) (-1913 (($ |#2| |#3| |#4|) 26 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2659 (($) 36 T CONST)) (-3055 (((-85) $ $) NIL T ELT)) (-3835 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3837 (($ $ $) 34 T ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ |#6| $) 40 T ELT) (($ $ |#6|) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT))) -(((-399 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-653 |#6|) (-653 |#2|) (-10 -8 (-15 -3173 (|#2| $)) (-15 -2893 ((-649 |#3| |#4| |#5|) $)) (-15 -1915 (|#4| $)) (-15 -1914 (|#3| $)) (-15 -3957 ($ $)) (-15 -2892 ($ |#2| (-649 |#3| |#4| |#5|))) (-15 -3705 ($ |#3|)) (-15 -1913 ($ |#2| |#3| |#4|)) (-15 -1912 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-582 (-1088)) (-146) (-755) (-196 (-3955 |#1|) (-693)) (-1 (-85) (-2 (|:| -2399 |#3|) (|:| -2400 |#4|)) (-2 (|:| -2399 |#3|) (|:| -2400 |#4|))) (-860 |#2| |#4| (-772 |#1|))) (T -399)) -((* (*1 *1 *2 *1) (-12 (-14 *3 (-582 (-1088))) (-4 *4 (-146)) (-4 *6 (-196 (-3955 *3) (-693))) (-14 *7 (-1 (-85) (-2 (|:| -2399 *5) (|:| -2400 *6)) (-2 (|:| -2399 *5) (|:| -2400 *6)))) (-5 *1 (-399 *3 *4 *5 *6 *7 *2)) (-4 *5 (-755)) (-4 *2 (-860 *4 *6 (-772 *3))))) (-3173 (*1 *2 *1) (-12 (-14 *3 (-582 (-1088))) (-4 *5 (-196 (-3955 *3) (-693))) (-14 *6 (-1 (-85) (-2 (|:| -2399 *4) (|:| -2400 *5)) (-2 (|:| -2399 *4) (|:| -2400 *5)))) (-4 *2 (-146)) (-5 *1 (-399 *3 *2 *4 *5 *6 *7)) (-4 *4 (-755)) (-4 *7 (-860 *2 *5 (-772 *3))))) (-2893 (*1 *2 *1) (-12 (-14 *3 (-582 (-1088))) (-4 *4 (-146)) (-4 *6 (-196 (-3955 *3) (-693))) (-14 *7 (-1 (-85) (-2 (|:| -2399 *5) (|:| -2400 *6)) (-2 (|:| -2399 *5) (|:| -2400 *6)))) (-5 *2 (-649 *5 *6 *7)) (-5 *1 (-399 *3 *4 *5 *6 *7 *8)) (-4 *5 (-755)) (-4 *8 (-860 *4 *6 (-772 *3))))) (-1915 (*1 *2 *1) (-12 (-14 *3 (-582 (-1088))) (-4 *4 (-146)) (-14 *6 (-1 (-85) (-2 (|:| -2399 *5) (|:| -2400 *2)) (-2 (|:| -2399 *5) (|:| -2400 *2)))) (-4 *2 (-196 (-3955 *3) (-693))) (-5 *1 (-399 *3 *4 *5 *2 *6 *7)) (-4 *5 (-755)) (-4 *7 (-860 *4 *2 (-772 *3))))) (-1914 (*1 *2 *1) (-12 (-14 *3 (-582 (-1088))) (-4 *4 (-146)) (-4 *5 (-196 (-3955 *3) (-693))) (-14 *6 (-1 (-85) (-2 (|:| -2399 *2) (|:| -2400 *5)) (-2 (|:| -2399 *2) (|:| -2400 *5)))) (-4 *2 (-755)) (-5 *1 (-399 *3 *4 *2 *5 *6 *7)) (-4 *7 (-860 *4 *5 (-772 *3))))) (-3957 (*1 *1 *1) (-12 (-14 *2 (-582 (-1088))) (-4 *3 (-146)) (-4 *5 (-196 (-3955 *2) (-693))) (-14 *6 (-1 (-85) (-2 (|:| -2399 *4) (|:| -2400 *5)) (-2 (|:| -2399 *4) (|:| -2400 *5)))) (-5 *1 (-399 *2 *3 *4 *5 *6 *7)) (-4 *4 (-755)) (-4 *7 (-860 *3 *5 (-772 *2))))) (-2892 (*1 *1 *2 *3) (-12 (-5 *3 (-649 *5 *6 *7)) (-4 *5 (-755)) (-4 *6 (-196 (-3955 *4) (-693))) (-14 *7 (-1 (-85) (-2 (|:| -2399 *5) (|:| -2400 *6)) (-2 (|:| -2399 *5) (|:| -2400 *6)))) (-14 *4 (-582 (-1088))) (-4 *2 (-146)) (-5 *1 (-399 *4 *2 *5 *6 *7 *8)) (-4 *8 (-860 *2 *6 (-772 *4))))) (-3705 (*1 *1 *2) (-12 (-14 *3 (-582 (-1088))) (-4 *4 (-146)) (-4 *5 (-196 (-3955 *3) (-693))) (-14 *6 (-1 (-85) (-2 (|:| -2399 *2) (|:| -2400 *5)) (-2 (|:| -2399 *2) (|:| -2400 *5)))) (-5 *1 (-399 *3 *4 *2 *5 *6 *7)) (-4 *2 (-755)) (-4 *7 (-860 *4 *5 (-772 *3))))) (-1913 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-582 (-1088))) (-4 *2 (-146)) (-4 *4 (-196 (-3955 *5) (-693))) (-14 *6 (-1 (-85) (-2 (|:| -2399 *3) (|:| -2400 *4)) (-2 (|:| -2399 *3) (|:| -2400 *4)))) (-5 *1 (-399 *5 *2 *3 *4 *6 *7)) (-4 *3 (-755)) (-4 *7 (-860 *2 *4 (-772 *5))))) (-1912 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-582 (-1088))) (-4 *2 (-146)) (-4 *3 (-196 (-3955 *4) (-693))) (-14 *6 (-1 (-85) (-2 (|:| -2399 *5) (|:| -2400 *3)) (-2 (|:| -2399 *5) (|:| -2400 *3)))) (-5 *1 (-399 *4 *2 *5 *3 *6 *7)) (-4 *5 (-755)) (-4 *7 (-860 *2 *3 (-772 *4)))))) -((-1916 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 39 T ELT))) -(((-400 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1916 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-716) (-755) (-494) (-860 |#3| |#1| |#2|) (-13 (-949 (-348 (-483))) (-312) (-10 -8 (-15 -3944 ($ |#4|)) (-15 -2997 (|#4| $)) (-15 -2996 (|#4| $))))) (T -400)) -((-1916 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-755)) (-4 *5 (-716)) (-4 *6 (-494)) (-4 *7 (-860 *6 *5 *3)) (-5 *1 (-400 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-949 (-348 (-483))) (-312) (-10 -8 (-15 -3944 ($ *7)) (-15 -2997 (*7 $)) (-15 -2996 (*7 $)))))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3080 (((-582 |#3|) $) 41 T ELT)) (-2907 (((-85) $) NIL T ELT)) (-2898 (((-85) $) NIL (|has| |#1| (-494)) ELT)) (-2908 (((-2 (|:| |under| $) (|:| -3129 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3708 (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3722 (($) NIL T CONST)) (-2903 (((-85) $) NIL (|has| |#1| (-494)) ELT)) (-2905 (((-85) $ $) NIL (|has| |#1| (-494)) ELT)) (-2904 (((-85) $ $) NIL (|has| |#1| (-494)) ELT)) (-2906 (((-85) $) NIL (|has| |#1| (-494)) ELT)) (-2899 (((-582 |#4|) (-582 |#4|) $) NIL (|has| |#1| (-494)) ELT)) (-2900 (((-582 |#4|) (-582 |#4|) $) NIL (|has| |#1| (-494)) ELT)) (-3156 (((-3 $ #1="failed") (-582 |#4|)) 49 T ELT)) (-3155 (($ (-582 |#4|)) NIL T ELT)) (-1351 (($ $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#4| (-1012))) ELT)) (-3404 (($ |#4| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#4| (-1012))) ELT) (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3993)) ELT)) (-2901 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-494)) ELT)) (-3840 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -3993)) (|has| |#4| (-1012))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -3993)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -3993)) ELT)) (-2888 (((-582 |#4|) $) 18 (|has| $ (-6 -3993)) ELT)) (-3179 ((|#3| $) 47 T ELT)) (-2607 (((-582 |#4|) $) 14 (|has| $ (-6 -3993)) ELT)) (-3244 (((-85) |#4| $) 26 (-12 (|has| $ (-6 -3993)) (|has| |#4| (-1012))) ELT)) (-1947 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -3994)) ELT)) (-3956 (($ (-1 |#4| |#4|) $) 21 T ELT)) (-2913 (((-582 |#3|) $) NIL T ELT)) (-2912 (((-85) |#3| $) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-2902 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-494)) ELT)) (-3242 (((-1032) $) NIL T ELT)) (-1352 (((-3 |#4| #1#) (-1 (-85) |#4|) $) NIL T ELT)) (-1945 (((-85) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3766 (($ $ (-582 |#4|) (-582 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1012))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1012))) ELT) (($ $ (-249 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1012))) ELT) (($ $ (-582 (-249 |#4|))) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1012))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-3401 (((-85) $) 39 T ELT)) (-3563 (($) 17 T ELT)) (-1944 (((-693) |#4| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#4| (-1012))) ELT) (((-693) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3398 (($ $) 16 T ELT)) (-3970 (((-472) $) NIL (|has| |#4| (-552 (-472))) ELT) (($ (-582 |#4|)) 51 T ELT)) (-3528 (($ (-582 |#4|)) 13 T ELT)) (-2909 (($ $ |#3|) NIL T ELT)) (-2911 (($ $ |#3|) NIL T ELT)) (-2910 (($ $ |#3|) NIL T ELT)) (-3944 (((-771) $) 38 T ELT) (((-582 |#4|) $) 50 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-1946 (((-85) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3055 (((-85) $ $) 30 T ELT)) (-3955 (((-693) $) NIL (|has| $ (-6 -3993)) ELT))) -(((-401 |#1| |#2| |#3| |#4|) (-13 (-888 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3970 ($ (-582 |#4|))) (-6 -3993) (-6 -3994))) (-960) (-716) (-755) (-976 |#1| |#2| |#3|)) (T -401)) -((-3970 (*1 *1 *2) (-12 (-5 *2 (-582 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-960)) (-4 *4 (-716)) (-4 *5 (-755)) (-5 *1 (-401 *3 *4 *5 *6))))) -((-2659 (($) 11 T CONST)) (-2665 (($) 13 T CONST)) (* (($ |#2| $) 15 T ELT) (($ $ |#2|) 16 T ELT))) -(((-402 |#1| |#2| |#3|) (-10 -7 (-15 -2665 (|#1|) -3950) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2659 (|#1|) -3950)) (-403 |#2| |#3|) (-146) (-23)) (T -402)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-3156 (((-3 |#1| "failed") $) 30 T ELT)) (-3155 ((|#1| $) 31 T ELT)) (-3942 (($ $ $) 27 T ELT)) (-3241 (((-1071) $) 11 T ELT)) (-3242 (((-1032) $) 12 T ELT)) (-3946 ((|#2| $) 23 T ELT)) (-3944 (((-771) $) 13 T ELT) (($ |#1|) 29 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2659 (($) 22 T CONST)) (-2665 (($) 28 T CONST)) (-3055 (((-85) $ $) 8 T ELT)) (-3835 (($ $) 19 T ELT) (($ $ $) 17 T ELT)) (-3837 (($ $ $) 18 T ELT)) (* (($ |#1| $) 21 T ELT) (($ $ |#1|) 20 T ELT))) -(((-403 |#1| |#2|) (-113) (-146) (-23)) (T -403)) -((-2665 (*1 *1) (-12 (-4 *1 (-403 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) (-3942 (*1 *1 *1 *1) (-12 (-4 *1 (-403 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23))))) -(-13 (-408 |t#1| |t#2|) (-949 |t#1|) (-10 -8 (-15 -2665 ($) -3950) (-15 -3942 ($ $ $)))) -(((-72) . T) ((-554 |#1|) . T) ((-551 (-771)) . T) ((-408 |#1| |#2|) . T) ((-13) . T) ((-949 |#1|) . T) ((-1012) . T) ((-1127) . T)) -((-1917 (((-1177 (-1177 (-483))) (-1177 (-1177 (-483))) (-829)) 26 T ELT)) (-1918 (((-1177 (-1177 (-483))) (-829)) 21 T ELT))) -(((-404) (-10 -7 (-15 -1917 ((-1177 (-1177 (-483))) (-1177 (-1177 (-483))) (-829))) (-15 -1918 ((-1177 (-1177 (-483))) (-829))))) (T -404)) -((-1918 (*1 *2 *3) (-12 (-5 *3 (-829)) (-5 *2 (-1177 (-1177 (-483)))) (-5 *1 (-404)))) (-1917 (*1 *2 *2 *3) (-12 (-5 *2 (-1177 (-1177 (-483)))) (-5 *3 (-829)) (-5 *1 (-404))))) -((-2769 (((-483) (-483)) 32 T ELT) (((-483)) 24 T ELT)) (-2773 (((-483) (-483)) 28 T ELT) (((-483)) 20 T ELT)) (-2771 (((-483) (-483)) 30 T ELT) (((-483)) 22 T ELT)) (-1920 (((-85) (-85)) 14 T ELT) (((-85)) 12 T ELT)) (-1919 (((-85) (-85)) 13 T ELT) (((-85)) 11 T ELT)) (-1921 (((-85) (-85)) 26 T ELT) (((-85)) 17 T ELT))) -(((-405) (-10 -7 (-15 -1919 ((-85))) (-15 -1920 ((-85))) (-15 -1919 ((-85) (-85))) (-15 -1920 ((-85) (-85))) (-15 -1921 ((-85))) (-15 -2771 ((-483))) (-15 -2773 ((-483))) (-15 -2769 ((-483))) (-15 -1921 ((-85) (-85))) (-15 -2771 ((-483) (-483))) (-15 -2773 ((-483) (-483))) (-15 -2769 ((-483) (-483))))) (T -405)) -((-2769 (*1 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-405)))) (-2773 (*1 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-405)))) (-2771 (*1 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-405)))) (-1921 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-405)))) (-2769 (*1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-405)))) (-2773 (*1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-405)))) (-2771 (*1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-405)))) (-1921 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-405)))) (-1920 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-405)))) (-1919 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-405)))) (-1920 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-405)))) (-1919 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-405))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3849 (((-582 (-328)) $) 34 T ELT) (((-582 (-328)) $ (-582 (-328))) 145 T ELT)) (-1926 (((-582 (-1000 (-328))) $) 16 T ELT) (((-582 (-1000 (-328))) $ (-582 (-1000 (-328)))) 142 T ELT)) (-1923 (((-582 (-582 (-853 (-179)))) (-582 (-582 (-853 (-179)))) (-582 (-782))) 58 T ELT)) (-1927 (((-582 (-582 (-853 (-179)))) $) 137 T ELT)) (-3704 (((-1183) $ (-853 (-179)) (-782)) 162 T ELT)) (-1928 (($ $) 136 T ELT) (($ (-582 (-582 (-853 (-179))))) 148 T ELT) (($ (-582 (-582 (-853 (-179)))) (-582 (-782)) (-582 (-782)) (-582 (-829))) 147 T ELT) (($ (-582 (-582 (-853 (-179)))) (-582 (-782)) (-582 (-782)) (-582 (-829)) (-582 (-221))) 149 T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3858 (((-483) $) 110 T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-1929 (($) 146 T ELT)) (-1922 (((-582 (-179)) (-582 (-582 (-853 (-179))))) 89 T ELT)) (-1925 (((-1183) $ (-582 (-853 (-179))) (-782) (-782) (-829)) 154 T ELT) (((-1183) $ (-853 (-179))) 156 T ELT) (((-1183) $ (-853 (-179)) (-782) (-782) (-829)) 155 T ELT)) (-3944 (((-771) $) 168 T ELT) (($ (-582 (-582 (-853 (-179))))) 163 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-1924 (((-1183) $ (-853 (-179))) 161 T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-406) (-13 (-1012) (-10 -8 (-15 -1929 ($)) (-15 -1928 ($ $)) (-15 -1928 ($ (-582 (-582 (-853 (-179)))))) (-15 -1928 ($ (-582 (-582 (-853 (-179)))) (-582 (-782)) (-582 (-782)) (-582 (-829)))) (-15 -1928 ($ (-582 (-582 (-853 (-179)))) (-582 (-782)) (-582 (-782)) (-582 (-829)) (-582 (-221)))) (-15 -1927 ((-582 (-582 (-853 (-179)))) $)) (-15 -3858 ((-483) $)) (-15 -1926 ((-582 (-1000 (-328))) $)) (-15 -1926 ((-582 (-1000 (-328))) $ (-582 (-1000 (-328))))) (-15 -3849 ((-582 (-328)) $)) (-15 -3849 ((-582 (-328)) $ (-582 (-328)))) (-15 -1925 ((-1183) $ (-582 (-853 (-179))) (-782) (-782) (-829))) (-15 -1925 ((-1183) $ (-853 (-179)))) (-15 -1925 ((-1183) $ (-853 (-179)) (-782) (-782) (-829))) (-15 -1924 ((-1183) $ (-853 (-179)))) (-15 -3704 ((-1183) $ (-853 (-179)) (-782))) (-15 -3944 ($ (-582 (-582 (-853 (-179)))))) (-15 -3944 ((-771) $)) (-15 -1923 ((-582 (-582 (-853 (-179)))) (-582 (-582 (-853 (-179)))) (-582 (-782)))) (-15 -1922 ((-582 (-179)) (-582 (-582 (-853 (-179))))))))) (T -406)) -((-3944 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-406)))) (-1929 (*1 *1) (-5 *1 (-406))) (-1928 (*1 *1 *1) (-5 *1 (-406))) (-1928 (*1 *1 *2) (-12 (-5 *2 (-582 (-582 (-853 (-179))))) (-5 *1 (-406)))) (-1928 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-582 (-582 (-853 (-179))))) (-5 *3 (-582 (-782))) (-5 *4 (-582 (-829))) (-5 *1 (-406)))) (-1928 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-582 (-582 (-853 (-179))))) (-5 *3 (-582 (-782))) (-5 *4 (-582 (-829))) (-5 *5 (-582 (-221))) (-5 *1 (-406)))) (-1927 (*1 *2 *1) (-12 (-5 *2 (-582 (-582 (-853 (-179))))) (-5 *1 (-406)))) (-3858 (*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-406)))) (-1926 (*1 *2 *1) (-12 (-5 *2 (-582 (-1000 (-328)))) (-5 *1 (-406)))) (-1926 (*1 *2 *1 *2) (-12 (-5 *2 (-582 (-1000 (-328)))) (-5 *1 (-406)))) (-3849 (*1 *2 *1) (-12 (-5 *2 (-582 (-328))) (-5 *1 (-406)))) (-3849 (*1 *2 *1 *2) (-12 (-5 *2 (-582 (-328))) (-5 *1 (-406)))) (-1925 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-582 (-853 (-179)))) (-5 *4 (-782)) (-5 *5 (-829)) (-5 *2 (-1183)) (-5 *1 (-406)))) (-1925 (*1 *2 *1 *3) (-12 (-5 *3 (-853 (-179))) (-5 *2 (-1183)) (-5 *1 (-406)))) (-1925 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-853 (-179))) (-5 *4 (-782)) (-5 *5 (-829)) (-5 *2 (-1183)) (-5 *1 (-406)))) (-1924 (*1 *2 *1 *3) (-12 (-5 *3 (-853 (-179))) (-5 *2 (-1183)) (-5 *1 (-406)))) (-3704 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-853 (-179))) (-5 *4 (-782)) (-5 *2 (-1183)) (-5 *1 (-406)))) (-3944 (*1 *1 *2) (-12 (-5 *2 (-582 (-582 (-853 (-179))))) (-5 *1 (-406)))) (-1923 (*1 *2 *2 *3) (-12 (-5 *2 (-582 (-582 (-853 (-179))))) (-5 *3 (-582 (-782))) (-5 *1 (-406)))) (-1922 (*1 *2 *3) (-12 (-5 *3 (-582 (-582 (-853 (-179))))) (-5 *2 (-582 (-179))) (-5 *1 (-406))))) -((-3835 (($ $) NIL T ELT) (($ $ $) 11 T ELT))) -(((-407 |#1| |#2| |#3|) (-10 -7 (-15 -3835 (|#1| |#1| |#1|)) (-15 -3835 (|#1| |#1|))) (-408 |#2| |#3|) (-146) (-23)) (T -407)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-3241 (((-1071) $) 11 T ELT)) (-3242 (((-1032) $) 12 T ELT)) (-3946 ((|#2| $) 23 T ELT)) (-3944 (((-771) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2659 (($) 22 T CONST)) (-3055 (((-85) $ $) 8 T ELT)) (-3835 (($ $) 19 T ELT) (($ $ $) 17 T ELT)) (-3837 (($ $ $) 18 T ELT)) (* (($ |#1| $) 21 T ELT) (($ $ |#1|) 20 T ELT))) -(((-408 |#1| |#2|) (-113) (-146) (-23)) (T -408)) -((-3946 (*1 *2 *1) (-12 (-4 *1 (-408 *3 *2)) (-4 *3 (-146)) (-4 *2 (-23)))) (-2659 (*1 *1) (-12 (-4 *1 (-408 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-408 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-408 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) (-3835 (*1 *1 *1) (-12 (-4 *1 (-408 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) (-3837 (*1 *1 *1 *1) (-12 (-4 *1 (-408 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) (-3835 (*1 *1 *1 *1) (-12 (-4 *1 (-408 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23))))) -(-13 (-1012) (-10 -8 (-15 -3946 (|t#2| $)) (-15 -2659 ($) -3950) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -3835 ($ $)) (-15 -3837 ($ $ $)) (-15 -3835 ($ $ $)))) -(((-72) . T) ((-551 (-771)) . T) ((-13) . T) ((-1012) . T) ((-1127) . T)) -((-1931 (((-3 (-582 (-419 |#1| |#2|)) "failed") (-582 (-419 |#1| |#2|)) (-582 (-772 |#1|))) 135 T ELT)) (-1930 (((-582 (-582 (-206 |#1| |#2|))) (-582 (-206 |#1| |#2|)) (-582 (-772 |#1|))) 132 T ELT)) (-1932 (((-2 (|:| |dpolys| (-582 (-206 |#1| |#2|))) (|:| |coords| (-582 (-483)))) (-582 (-206 |#1| |#2|)) (-582 (-772 |#1|))) 87 T ELT))) -(((-409 |#1| |#2| |#3|) (-10 -7 (-15 -1930 ((-582 (-582 (-206 |#1| |#2|))) (-582 (-206 |#1| |#2|)) (-582 (-772 |#1|)))) (-15 -1931 ((-3 (-582 (-419 |#1| |#2|)) "failed") (-582 (-419 |#1| |#2|)) (-582 (-772 |#1|)))) (-15 -1932 ((-2 (|:| |dpolys| (-582 (-206 |#1| |#2|))) (|:| |coords| (-582 (-483)))) (-582 (-206 |#1| |#2|)) (-582 (-772 |#1|))))) (-582 (-1088)) (-390) (-390)) (T -409)) -((-1932 (*1 *2 *3 *4) (-12 (-5 *4 (-582 (-772 *5))) (-14 *5 (-582 (-1088))) (-4 *6 (-390)) (-5 *2 (-2 (|:| |dpolys| (-582 (-206 *5 *6))) (|:| |coords| (-582 (-483))))) (-5 *1 (-409 *5 *6 *7)) (-5 *3 (-582 (-206 *5 *6))) (-4 *7 (-390)))) (-1931 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-582 (-419 *4 *5))) (-5 *3 (-582 (-772 *4))) (-14 *4 (-582 (-1088))) (-4 *5 (-390)) (-5 *1 (-409 *4 *5 *6)) (-4 *6 (-390)))) (-1930 (*1 *2 *3 *4) (-12 (-5 *4 (-582 (-772 *5))) (-14 *5 (-582 (-1088))) (-4 *6 (-390)) (-5 *2 (-582 (-582 (-206 *5 *6)))) (-5 *1 (-409 *5 *6 *7)) (-5 *3 (-582 (-206 *5 *6))) (-4 *7 (-390))))) -((-3465 (((-3 $ "failed") $) 11 T ELT)) (-3008 (($ $ $) 22 T ELT)) (-2434 (($ $ $) 23 T ELT)) (-3947 (($ $ $) 9 T ELT)) (** (($ $ (-829)) NIL T ELT) (($ $ (-693)) NIL T ELT) (($ $ (-483)) 21 T ELT))) -(((-410 |#1|) (-10 -7 (-15 -2434 (|#1| |#1| |#1|)) (-15 -3008 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-483))) (-15 -3947 (|#1| |#1| |#1|)) (-15 -3465 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-693))) (-15 ** (|#1| |#1| (-829)))) (-411)) (T -410)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-3722 (($) 23 T CONST)) (-3465 (((-3 $ "failed") $) 20 T ELT)) (-2409 (((-85) $) 22 T ELT)) (-3241 (((-1071) $) 11 T ELT)) (-2483 (($ $) 30 T ELT)) (-3242 (((-1032) $) 12 T ELT)) (-3008 (($ $ $) 27 T ELT)) (-2434 (($ $ $) 26 T ELT)) (-3944 (((-771) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2665 (($) 24 T CONST)) (-3055 (((-85) $ $) 8 T ELT)) (-3947 (($ $ $) 29 T ELT)) (** (($ $ (-829)) 17 T ELT) (($ $ (-693)) 21 T ELT) (($ $ (-483)) 28 T ELT)) (* (($ $ $) 18 T ELT))) -(((-411) (-113)) (T -411)) -((-2483 (*1 *1 *1) (-4 *1 (-411))) (-3947 (*1 *1 *1 *1) (-4 *1 (-411))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-411)) (-5 *2 (-483)))) (-3008 (*1 *1 *1 *1) (-4 *1 (-411))) (-2434 (*1 *1 *1 *1) (-4 *1 (-411)))) -(-13 (-662) (-10 -8 (-15 -2483 ($ $)) (-15 -3947 ($ $ $)) (-15 ** ($ $ (-483))) (-6 -3990) (-15 -3008 ($ $ $)) (-15 -2434 ($ $ $)))) -(((-72) . T) ((-551 (-771)) . T) ((-13) . T) ((-662) . T) ((-1024) . T) ((-1012) . T) ((-1127) . T)) -((-2567 (((-85) $ $) NIL T ELT)) (-3187 (((-85) $) NIL T ELT)) (-3080 (((-582 (-993)) $) NIL T ELT)) (-3829 (((-1088) $) 18 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3980 $) (|:| |associate| $)) $) NIL (|has| |#1| (-494)) ELT)) (-2062 (($ $) NIL (|has| |#1| (-494)) ELT)) (-2060 (((-85) $) NIL (|has| |#1| (-494)) ELT)) (-3769 (($ $ (-348 (-483))) NIL T ELT) (($ $ (-348 (-483)) (-348 (-483))) NIL T ELT)) (-3772 (((-1067 (-2 (|:| |k| (-348 (-483))) (|:| |c| |#1|))) $) NIL T ELT)) (-3490 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3637 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3773 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3969 (((-346 $) $) NIL (|has| |#1| (-312)) ELT)) (-3036 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-1606 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3488 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3636 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3816 (($ (-693) (-1067 (-2 (|:| |k| (-348 (-483))) (|:| |c| |#1|)))) NIL T ELT)) (-3492 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3635 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3722 (($) NIL T CONST)) (-2563 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3957 (($ $) NIL T ELT)) (-3465 (((-3 $ #1#) $) NIL T ELT)) (-2562 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2740 (((-2 (|:| -3952 (-582 $)) (|:| -2408 $)) (-582 $)) NIL (|has| |#1| (-312)) ELT)) (-3721 (((-85) $) NIL (|has| |#1| (-312)) ELT)) (-2891 (((-85) $) NIL T ELT)) (-3625 (($) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3770 (((-348 (-483)) $) NIL T ELT) (((-348 (-483)) $ (-348 (-483))) NIL T ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-2409 (((-85) $) NIL T ELT)) (-3010 (($ $ (-483)) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3775 (($ $ (-829)) NIL T ELT) (($ $ (-348 (-483))) NIL T ELT)) (-1603 (((-3 (-582 $) #1#) (-582 $) $) NIL (|has| |#1| (-312)) ELT)) (-3935 (((-85) $) NIL T ELT)) (-2892 (($ |#1| (-348 (-483))) NIL T ELT) (($ $ (-993) (-348 (-483))) NIL T ELT) (($ $ (-582 (-993)) (-582 (-348 (-483)))) NIL T ELT)) (-3956 (($ (-1 |#1| |#1|) $) 25 T ELT)) (-3940 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-2893 (($ $) NIL T ELT)) (-3173 ((|#1| $) NIL T ELT)) (-1889 (($ (-582 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3241 (((-1071) $) NIL T ELT)) (-2483 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3810 (($ $) 29 (|has| |#1| (-38 (-348 (-483)))) ELT) (($ $ (-1088)) 35 (OR (-12 (|has| |#1| (-38 (-348 (-483)))) (|has| |#1| (-29 (-483))) (|has| |#1| (-870)) (|has| |#1| (-1113))) (-12 (|has| |#1| (-38 (-348 (-483)))) (|has| |#1| (-15 -3810 (|#1| |#1| (-1088)))) (|has| |#1| (-15 -3080 ((-582 (-1088)) |#1|))))) ELT) (($ $ (-1174 |#2|)) 30 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3242 (((-1032) $) NIL T ELT)) (-2707 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#1| (-312)) ELT)) (-3143 (($ (-582 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3730 (((-346 $) $) NIL (|has| |#1| (-312)) ELT)) (-1604 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3767 (($ $ (-348 (-483))) NIL T ELT)) (-3464 (((-3 $ #1#) $ $) NIL (|has| |#1| (-494)) ELT)) (-2739 (((-631 (-582 $)) (-582 $) $) NIL (|has| |#1| (-312)) ELT)) (-3941 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3766 (((-1067 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-348 (-483))))) ELT)) (-1605 (((-693) $) NIL (|has| |#1| (-312)) ELT)) (-3798 ((|#1| $ (-348 (-483))) NIL T ELT) (($ $ $) NIL (|has| (-348 (-483)) (-1024)) ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3756 (($ $ (-1088)) 28 (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-348 (-483)) |#1|)))) ELT) (($ $ (-582 (-1088))) NIL (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-348 (-483)) |#1|)))) ELT) (($ $ (-1088) (-693)) NIL (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-348 (-483)) |#1|)))) ELT) (($ $ (-582 (-1088)) (-582 (-693))) NIL (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-348 (-483)) |#1|)))) ELT) (($ $) 14 (|has| |#1| (-15 * (|#1| (-348 (-483)) |#1|))) ELT) (($ $ (-693)) NIL (|has| |#1| (-15 * (|#1| (-348 (-483)) |#1|))) ELT) (($ $ (-1174 |#2|)) 16 T ELT)) (-3946 (((-348 (-483)) $) NIL T ELT)) (-3493 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3634 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3491 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3633 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3489 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3632 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-2890 (($ $) NIL T ELT)) (-3944 (((-771) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT) (($ (-1174 |#2|)) NIL T ELT) (($ (-1158 |#1| |#2| |#3|)) 9 T ELT) (($ (-348 (-483))) NIL (|has| |#1| (-38 (-348 (-483)))) ELT) (($ $) NIL (|has| |#1| (-494)) ELT)) (-3675 ((|#1| $ (-348 (-483))) NIL T ELT)) (-2701 (((-631 $) $) NIL (|has| |#1| (-118)) ELT)) (-3125 (((-693)) NIL T CONST)) (-3771 ((|#1| $) 21 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3496 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3484 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-2061 (((-85) $ $) NIL (|has| |#1| (-494)) ELT)) (-3494 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3482 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3498 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3486 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3768 ((|#1| $ (-348 (-483))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-348 (-483))))) (|has| |#1| (-15 -3944 (|#1| (-1088))))) ELT)) (-3124 (((-85) $ $) NIL T ELT)) (-3499 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3487 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3497 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3485 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3495 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3483 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-2659 (($) NIL T CONST)) (-2665 (($) NIL T CONST)) (-2668 (($ $ (-1088)) NIL (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-348 (-483)) |#1|)))) ELT) (($ $ (-582 (-1088))) NIL (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-348 (-483)) |#1|)))) ELT) (($ $ (-1088) (-693)) NIL (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-348 (-483)) |#1|)))) ELT) (($ $ (-582 (-1088)) (-582 (-693))) NIL (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-348 (-483)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-348 (-483)) |#1|))) ELT) (($ $ (-693)) NIL (|has| |#1| (-15 * (|#1| (-348 (-483)) |#1|))) ELT) (($ $ (-1174 |#2|)) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-3947 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3835 (($ $) NIL T ELT) (($ $ $) 27 T ELT)) (-3837 (($ $ $) NIL T ELT)) (** (($ $ (-829)) NIL T ELT) (($ $ (-693)) NIL T ELT) (($ $ (-483)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT) (($ $ (-348 (-483))) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 26 T ELT) (($ (-348 (-483)) $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT) (($ $ (-348 (-483))) NIL (|has| |#1| (-38 (-348 (-483)))) ELT))) -(((-412 |#1| |#2| |#3|) (-13 (-1160 |#1|) (-805 $ (-1174 |#2|)) (-10 -8 (-15 -3944 ($ (-1174 |#2|))) (-15 -3944 ($ (-1158 |#1| |#2| |#3|))) (IF (|has| |#1| (-38 (-348 (-483)))) (-15 -3810 ($ $ (-1174 |#2|))) |%noBranch|))) (-960) (-1088) |#1|) (T -412)) -((-3944 (*1 *1 *2) (-12 (-5 *2 (-1174 *4)) (-14 *4 (-1088)) (-5 *1 (-412 *3 *4 *5)) (-4 *3 (-960)) (-14 *5 *3))) (-3944 (*1 *1 *2) (-12 (-5 *2 (-1158 *3 *4 *5)) (-4 *3 (-960)) (-14 *4 (-1088)) (-14 *5 *3) (-5 *1 (-412 *3 *4 *5)))) (-3810 (*1 *1 *1 *2) (-12 (-5 *2 (-1174 *4)) (-14 *4 (-1088)) (-5 *1 (-412 *3 *4 *5)) (-4 *3 (-38 (-348 (-483)))) (-4 *3 (-960)) (-14 *5 *3)))) -((-2567 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3597 (($) NIL T ELT) (($ (-582 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2197 (((-1183) $ |#1| |#1|) NIL (|has| $ (-6 -3994)) ELT)) (-3786 ((|#2| $ |#1| |#2|) 18 T ELT)) (-1568 (($ (-1 (-85) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3993)) ELT)) (-3708 (($ (-1 (-85) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3993)) ELT)) (-2230 (((-3 |#2| #1="failed") |#1| $) 19 T ELT)) (-3722 (($) NIL T CONST)) (-1351 (($ $) NIL (-12 (|has| $ (-6 -3993)) (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012))) ELT)) (-3403 (($ (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-6 -3993)) ELT) (($ (-1 (-85) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3993)) ELT) (((-3 |#2| #1#) |#1| $) 16 T ELT)) (-3404 (($ (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3993)) (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ (-1 (-85) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3993)) ELT)) (-3840 (((-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -3993)) (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (((-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3993)) ELT) (((-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3993)) ELT)) (-1574 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3994)) ELT)) (-3111 ((|#2| $ |#1|) NIL T ELT)) (-2888 (((-582 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3993)) ELT) (((-582 |#2|) $) NIL (|has| $ (-6 -3993)) ELT)) (-2199 ((|#1| $) NIL (|has| |#1| (-755)) ELT)) (-2607 (((-582 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3993)) ELT) (((-582 |#2|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3244 (((-85) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3993)) (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#2| (-1012))) ELT)) (-2200 ((|#1| $) NIL (|has| |#1| (-755)) ELT)) (-1947 (($ (-1 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3956 (($ (-1 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3241 (((-1071) $) NIL (OR (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| |#2| (-1012))) ELT)) (-2231 (((-582 |#1|) $) NIL T ELT)) (-2232 (((-85) |#1| $) NIL T ELT)) (-1272 (((-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3607 (($ (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2202 (((-582 |#1|) $) NIL T ELT)) (-2203 (((-85) |#1| $) NIL T ELT)) (-3242 (((-1032) $) NIL (OR (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| |#2| (-1012))) ELT)) (-3799 ((|#2| $) NIL (|has| |#1| (-755)) ELT)) (-1352 (((-3 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-85) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2198 (($ $ |#2|) NIL (|has| $ (-6 -3994)) ELT)) (-1273 (((-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1945 (((-85) (-1 (-85) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3993)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3766 (($ $ (-582 (-249 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-249 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-582 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) (-582 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-582 |#2|) (-582 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ (-582 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1012))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-2201 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#2| (-1012))) ELT)) (-2204 (((-582 |#2|) $) NIL T ELT)) (-3401 (((-85) $) NIL T ELT)) (-3563 (($) NIL T ELT)) (-3798 ((|#2| $ |#1|) 13 T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1464 (($) NIL T ELT) (($ (-582 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1944 (((-693) (-1 (-85) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3993)) ELT) (((-693) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3993)) (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (((-693) |#2| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#2| (-1012))) ELT) (((-693) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3398 (($ $) NIL T ELT)) (-3970 (((-472) $) NIL (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-552 (-472))) ELT)) (-3528 (($ (-582 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3944 (((-771) $) NIL (OR (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-551 (-771))) (|has| |#2| (-551 (-771)))) ELT)) (-1263 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1274 (($ (-582 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1946 (((-85) (-1 (-85) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3993)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3055 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3955 (((-693) $) NIL (|has| $ (-6 -3993)) ELT))) -(((-413 |#1| |#2| |#3| |#4|) (-1105 |#1| |#2|) (-1012) (-1012) (-1105 |#1| |#2|) |#2|) (T -413)) -NIL -((-2567 (((-85) $ $) NIL T ELT)) (-3679 (((-582 (-2 (|:| -3859 $) (|:| -1700 (-582 |#4|)))) (-582 |#4|)) NIL T ELT)) (-3680 (((-582 $) (-582 |#4|)) NIL T ELT)) (-3080 (((-582 |#3|) $) NIL T ELT)) (-2907 (((-85) $) NIL T ELT)) (-2898 (((-85) $) NIL (|has| |#1| (-494)) ELT)) (-3691 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3686 ((|#4| |#4| $) NIL T ELT)) (-2908 (((-2 (|:| |under| $) (|:| -3129 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3708 (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3993)) ELT) (((-3 |#4| #1="failed") $ |#3|) NIL T ELT)) (-3722 (($) NIL T CONST)) (-2903 (((-85) $) 29 (|has| |#1| (-494)) ELT)) (-2905 (((-85) $ $) NIL (|has| |#1| (-494)) ELT)) (-2904 (((-85) $ $) NIL (|has| |#1| (-494)) ELT)) (-2906 (((-85) $) NIL (|has| |#1| (-494)) ELT)) (-3687 (((-582 |#4|) (-582 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-2899 (((-582 |#4|) (-582 |#4|) $) NIL (|has| |#1| (-494)) ELT)) (-2900 (((-582 |#4|) (-582 |#4|) $) NIL (|has| |#1| (-494)) ELT)) (-3156 (((-3 $ #1#) (-582 |#4|)) NIL T ELT)) (-3155 (($ (-582 |#4|)) NIL T ELT)) (-3797 (((-3 $ #1#) $) 45 T ELT)) (-3683 ((|#4| |#4| $) NIL T ELT)) (-1351 (($ $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#4| (-1012))) ELT)) (-3404 (($ |#4| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#4| (-1012))) ELT) (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3993)) ELT)) (-2901 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-494)) ELT)) (-3692 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3681 ((|#4| |#4| $) NIL T ELT)) (-3840 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -3993)) (|has| |#4| (-1012))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -3993)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -3993)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3694 (((-2 (|:| -3859 (-582 |#4|)) (|:| -1700 (-582 |#4|))) $) NIL T ELT)) (-2888 (((-582 |#4|) $) 18 (|has| $ (-6 -3993)) ELT)) (-3693 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3179 ((|#3| $) 38 T ELT)) (-2607 (((-582 |#4|) $) 19 (|has| $ (-6 -3993)) ELT)) (-3244 (((-85) |#4| $) 27 (-12 (|has| $ (-6 -3993)) (|has| |#4| (-1012))) ELT)) (-1947 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -3994)) ELT)) (-3956 (($ (-1 |#4| |#4|) $) 23 T ELT)) (-2913 (((-582 |#3|) $) NIL T ELT)) (-2912 (((-85) |#3| $) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3796 (((-3 |#4| #1#) $) 42 T ELT)) (-3695 (((-582 |#4|) $) NIL T ELT)) (-3689 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3684 ((|#4| |#4| $) NIL T ELT)) (-3697 (((-85) $ $) NIL T ELT)) (-2902 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-494)) ELT)) (-3690 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3685 ((|#4| |#4| $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3799 (((-3 |#4| #1#) $) 40 T ELT)) (-1352 (((-3 |#4| #1#) (-1 (-85) |#4|) $) NIL T ELT)) (-3677 (((-3 $ #1#) $ |#4|) 55 T ELT)) (-3767 (($ $ |#4|) NIL T ELT)) (-1945 (((-85) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3766 (($ $ (-582 |#4|) (-582 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1012))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1012))) ELT) (($ $ (-249 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1012))) ELT) (($ $ (-582 (-249 |#4|))) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1012))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-3401 (((-85) $) 17 T ELT)) (-3563 (($) 14 T ELT)) (-3946 (((-693) $) NIL T ELT)) (-1944 (((-693) |#4| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#4| (-1012))) ELT) (((-693) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3398 (($ $) 13 T ELT)) (-3970 (((-472) $) NIL (|has| |#4| (-552 (-472))) ELT)) (-3528 (($ (-582 |#4|)) 22 T ELT)) (-2909 (($ $ |#3|) 49 T ELT)) (-2911 (($ $ |#3|) 51 T ELT)) (-3682 (($ $) NIL T ELT)) (-2910 (($ $ |#3|) NIL T ELT)) (-3944 (((-771) $) 35 T ELT) (((-582 |#4|) $) 46 T ELT)) (-3676 (((-693) $) NIL (|has| |#3| (-318)) ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3696 (((-3 (-2 (|:| |bas| $) (|:| -3322 (-582 |#4|))) #1#) (-582 |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3322 (-582 |#4|))) #1#) (-582 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3688 (((-85) $ (-1 (-85) |#4| (-582 |#4|))) NIL T ELT)) (-1946 (((-85) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3678 (((-582 |#3|) $) NIL T ELT)) (-3931 (((-85) |#3| $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-3955 (((-693) $) NIL (|has| $ (-6 -3993)) ELT))) -(((-414 |#1| |#2| |#3| |#4|) (-1122 |#1| |#2| |#3| |#4|) (-494) (-716) (-755) (-976 |#1| |#2| |#3|)) (T -414)) -NIL -((-2567 (((-85) $ $) NIL T ELT)) (-3187 (((-85) $) NIL T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3980 $) (|:| |associate| $)) $) NIL T ELT)) (-2062 (($ $) NIL T ELT)) (-2060 (((-85) $) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3773 (($ $) NIL T ELT)) (-3969 (((-346 $) $) NIL T ELT)) (-1606 (((-85) $ $) NIL T ELT)) (-3722 (($) NIL T CONST)) (-3156 (((-3 (-483) #1#) $) NIL T ELT) (((-3 (-348 (-483)) #1#) $) NIL T ELT)) (-3155 (((-483) $) NIL T ELT) (((-348 (-483)) $) NIL T ELT)) (-2563 (($ $ $) NIL T ELT)) (-3465 (((-3 $ #1#) $) NIL T ELT)) (-2562 (($ $ $) NIL T ELT)) (-2740 (((-2 (|:| -3952 (-582 $)) (|:| -2408 $)) (-582 $)) NIL T ELT)) (-3721 (((-85) $) NIL T ELT)) (-3625 (($) 17 T ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-2409 (((-85) $) NIL T ELT)) (-1603 (((-3 (-582 $) #1#) (-582 $) $) NIL T ELT)) (-1889 (($ $ $) NIL T ELT) (($ (-582 $)) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-2483 (($ $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-2707 (((-1083 $) (-1083 $) (-1083 $)) NIL T ELT)) (-3143 (($ $ $) NIL T ELT) (($ (-582 $)) NIL T ELT)) (-3730 (((-346 $) $) NIL T ELT)) (-1604 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3464 (((-3 $ #1#) $ $) NIL T ELT)) (-2739 (((-631 (-582 $)) (-582 $) $) NIL T ELT)) (-1605 (((-693) $) NIL T ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL T ELT)) (-3970 (((-328) $) 21 T ELT) (((-179) $) 24 T ELT) (((-348 (-1083 (-483))) $) 18 T ELT) (((-472) $) 53 T ELT)) (-3944 (((-771) $) 51 T ELT) (($ (-483)) NIL T ELT) (($ $) NIL T ELT) (($ (-348 (-483))) NIL T ELT) (((-179) $) 23 T ELT) (((-328) $) 20 T ELT)) (-3125 (((-693)) NIL T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-2061 (((-85) $ $) NIL T ELT)) (-3124 (((-85) $ $) NIL T ELT)) (-2659 (($) 37 T CONST)) (-2665 (($) 8 T CONST)) (-3055 (((-85) $ $) NIL T ELT)) (-3947 (($ $ $) NIL T ELT)) (-3835 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3837 (($ $ $) NIL T ELT)) (** (($ $ (-829)) NIL T ELT) (($ $ (-693)) NIL T ELT) (($ $ (-483)) NIL T ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-348 (-483))) NIL T ELT) (($ (-348 (-483)) $) NIL T ELT))) -(((-415) (-13 (-312) (-120) (-949 (-483)) (-949 (-348 (-483))) (-932) (-551 (-179)) (-551 (-328)) (-552 (-348 (-1083 (-483)))) (-552 (-472)) (-10 -8 (-15 -3625 ($))))) (T -415)) -((-3625 (*1 *1) (-5 *1 (-415)))) -((-2567 (((-85) $ $) NIL T ELT)) (-3526 (((-1047) $) 12 T ELT)) (-3527 (((-1047) $) 10 T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3944 (((-771) $) 18 T ELT) (($ (-1093)) NIL T ELT) (((-1093) $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-416) (-13 (-994) (-10 -8 (-15 -3527 ((-1047) $)) (-15 -3526 ((-1047) $))))) (T -416)) -((-3527 (*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-416)))) (-3526 (*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-416))))) -((-2567 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3597 (($) NIL T ELT) (($ (-582 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2197 (((-1183) $ |#1| |#1|) NIL (|has| $ (-6 -3994)) ELT)) (-3786 ((|#2| $ |#1| |#2|) 16 T ELT)) (-1568 (($ (-1 (-85) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3993)) ELT)) (-3708 (($ (-1 (-85) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3993)) ELT)) (-2230 (((-3 |#2| #1="failed") |#1| $) 20 T ELT)) (-3722 (($) NIL T CONST)) (-1351 (($ $) NIL (-12 (|has| $ (-6 -3993)) (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012))) ELT)) (-3403 (($ (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-6 -3993)) ELT) (($ (-1 (-85) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3993)) ELT) (((-3 |#2| #1#) |#1| $) 18 T ELT)) (-3404 (($ (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3993)) (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ (-1 (-85) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3993)) ELT)) (-3840 (((-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -3993)) (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (((-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3993)) ELT) (((-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3993)) ELT)) (-1574 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3994)) ELT)) (-3111 ((|#2| $ |#1|) NIL T ELT)) (-2888 (((-582 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3993)) ELT) (((-582 |#2|) $) NIL (|has| $ (-6 -3993)) ELT)) (-2199 ((|#1| $) NIL (|has| |#1| (-755)) ELT)) (-2607 (((-582 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3993)) ELT) (((-582 |#2|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3244 (((-85) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3993)) (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#2| (-1012))) ELT)) (-2200 ((|#1| $) NIL (|has| |#1| (-755)) ELT)) (-1947 (($ (-1 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3956 (($ (-1 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3241 (((-1071) $) NIL (OR (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| |#2| (-1012))) ELT)) (-2231 (((-582 |#1|) $) 13 T ELT)) (-2232 (((-85) |#1| $) NIL T ELT)) (-1272 (((-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3607 (($ (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2202 (((-582 |#1|) $) NIL T ELT)) (-2203 (((-85) |#1| $) NIL T ELT)) (-3242 (((-1032) $) NIL (OR (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| |#2| (-1012))) ELT)) (-3799 ((|#2| $) NIL (|has| |#1| (-755)) ELT)) (-1352 (((-3 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-85) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2198 (($ $ |#2|) NIL (|has| $ (-6 -3994)) ELT)) (-1273 (((-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1945 (((-85) (-1 (-85) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3993)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3766 (($ $ (-582 (-249 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-249 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-582 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) (-582 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-582 |#2|) (-582 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ (-582 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1012))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-2201 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#2| (-1012))) ELT)) (-2204 (((-582 |#2|) $) NIL T ELT)) (-3401 (((-85) $) NIL T ELT)) (-3563 (($) 19 T ELT)) (-3798 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1464 (($) NIL T ELT) (($ (-582 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1944 (((-693) (-1 (-85) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3993)) ELT) (((-693) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3993)) (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (((-693) |#2| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#2| (-1012))) ELT) (((-693) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3398 (($ $) NIL T ELT)) (-3970 (((-472) $) NIL (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-552 (-472))) ELT)) (-3528 (($ (-582 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3944 (((-771) $) NIL (OR (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-551 (-771))) (|has| |#2| (-551 (-771)))) ELT)) (-1263 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1274 (($ (-582 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1946 (((-85) (-1 (-85) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3993)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3055 (((-85) $ $) 11 (OR (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3955 (((-693) $) 15 (|has| $ (-6 -3993)) ELT))) -(((-417 |#1| |#2| |#3|) (-13 (-1105 |#1| |#2|) (-10 -7 (-6 -3993))) (-1012) (-1012) (-1071)) (T -417)) -NIL -((-1933 (((-483) (-483) (-483)) 19 T ELT)) (-1934 (((-85) (-483) (-483) (-483) (-483)) 28 T ELT)) (-3455 (((-1177 (-582 (-483))) (-693) (-693)) 42 T ELT))) -(((-418) (-10 -7 (-15 -1933 ((-483) (-483) (-483))) (-15 -1934 ((-85) (-483) (-483) (-483) (-483))) (-15 -3455 ((-1177 (-582 (-483))) (-693) (-693))))) (T -418)) -((-3455 (*1 *2 *3 *3) (-12 (-5 *3 (-693)) (-5 *2 (-1177 (-582 (-483)))) (-5 *1 (-418)))) (-1934 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-483)) (-5 *2 (-85)) (-5 *1 (-418)))) (-1933 (*1 *2 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-418))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3187 (((-85) $) NIL T ELT)) (-3080 (((-582 (-772 |#1|)) $) NIL T ELT)) (-3082 (((-1083 $) $ (-772 |#1|)) NIL T ELT) (((-1083 |#2|) $) NIL T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3980 $) (|:| |associate| $)) $) NIL (|has| |#2| (-494)) ELT)) (-2062 (($ $) NIL (|has| |#2| (-494)) ELT)) (-2060 (((-85) $) NIL (|has| |#2| (-494)) ELT)) (-2818 (((-693) $) NIL T ELT) (((-693) $ (-582 (-772 |#1|))) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2706 (((-346 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-820)) ELT)) (-3773 (($ $) NIL (|has| |#2| (-390)) ELT)) (-3969 (((-346 $) $) NIL (|has| |#2| (-390)) ELT)) (-2703 (((-3 (-582 (-1083 $)) #1#) (-582 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-820)) ELT)) (-3722 (($) NIL T CONST)) (-3156 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-348 (-483)) #1#) $) NIL (|has| |#2| (-949 (-348 (-483)))) ELT) (((-3 (-483) #1#) $) NIL (|has| |#2| (-949 (-483))) ELT) (((-3 (-772 |#1|) #1#) $) NIL T ELT)) (-3155 ((|#2| $) NIL T ELT) (((-348 (-483)) $) NIL (|has| |#2| (-949 (-348 (-483)))) ELT) (((-483) $) NIL (|has| |#2| (-949 (-483))) ELT) (((-772 |#1|) $) NIL T ELT)) (-3754 (($ $ $ (-772 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-1935 (($ $ (-582 (-483))) NIL T ELT)) (-3957 (($ $) NIL T ELT)) (-2278 (((-629 (-483)) (-629 $)) NIL (|has| |#2| (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-629 $) (-1177 $)) NIL (|has| |#2| (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 |#2|)) (|:| |vec| (-1177 |#2|))) (-629 $) (-1177 $)) NIL T ELT) (((-629 |#2|) (-629 $)) NIL T ELT)) (-3465 (((-3 $ #1#) $) NIL T ELT)) (-3501 (($ $) NIL (|has| |#2| (-390)) ELT) (($ $ (-772 |#1|)) NIL (|has| |#2| (-390)) ELT)) (-2817 (((-582 $) $) NIL T ELT)) (-3721 (((-85) $) NIL (|has| |#2| (-820)) ELT)) (-1622 (($ $ |#2| (-420 (-3955 |#1|) (-693)) $) NIL T ELT)) (-2795 (((-797 (-328) $) $ (-799 (-328)) (-797 (-328) $)) NIL (-12 (|has| (-772 |#1|) (-795 (-328))) (|has| |#2| (-795 (-328)))) ELT) (((-797 (-483) $) $ (-799 (-483)) (-797 (-483) $)) NIL (-12 (|has| (-772 |#1|) (-795 (-483))) (|has| |#2| (-795 (-483)))) ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-2409 (((-85) $) NIL T ELT)) (-2419 (((-693) $) NIL T ELT)) (-3083 (($ (-1083 |#2|) (-772 |#1|)) NIL T ELT) (($ (-1083 $) (-772 |#1|)) NIL T ELT)) (-2820 (((-582 $) $) NIL T ELT)) (-3935 (((-85) $) NIL T ELT)) (-2892 (($ |#2| (-420 (-3955 |#1|) (-693))) NIL T ELT) (($ $ (-772 |#1|) (-693)) NIL T ELT) (($ $ (-582 (-772 |#1|)) (-582 (-693))) NIL T ELT)) (-3761 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $ (-772 |#1|)) NIL T ELT)) (-2819 (((-420 (-3955 |#1|) (-693)) $) NIL T ELT) (((-693) $ (-772 |#1|)) NIL T ELT) (((-582 (-693)) $ (-582 (-772 |#1|))) NIL T ELT)) (-1623 (($ (-1 (-420 (-3955 |#1|) (-693)) (-420 (-3955 |#1|) (-693))) $) NIL T ELT)) (-3956 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3081 (((-3 (-772 |#1|) #1#) $) NIL T ELT)) (-2279 (((-629 (-483)) (-1177 $)) NIL (|has| |#2| (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL (|has| |#2| (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 |#2|)) (|:| |vec| (-1177 |#2|))) (-1177 $) $) NIL T ELT) (((-629 |#2|) (-1177 $)) NIL T ELT)) (-2893 (($ $) NIL T ELT)) (-3173 ((|#2| $) NIL T ELT)) (-1889 (($ (-582 $)) NIL (|has| |#2| (-390)) ELT) (($ $ $) NIL (|has| |#2| (-390)) ELT)) (-3241 (((-1071) $) NIL T ELT)) (-2822 (((-3 (-582 $) #1#) $) NIL T ELT)) (-2821 (((-3 (-582 $) #1#) $) NIL T ELT)) (-2823 (((-3 (-2 (|:| |var| (-772 |#1|)) (|:| -2400 (-693))) #1#) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-1795 (((-85) $) NIL T ELT)) (-1794 ((|#2| $) NIL T ELT)) (-2707 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#2| (-390)) ELT)) (-3143 (($ (-582 $)) NIL (|has| |#2| (-390)) ELT) (($ $ $) NIL (|has| |#2| (-390)) ELT)) (-2704 (((-346 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-820)) ELT)) (-2705 (((-346 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-820)) ELT)) (-3730 (((-346 $) $) NIL (|has| |#2| (-820)) ELT)) (-3464 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-494)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-494)) ELT)) (-3766 (($ $ (-582 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-582 $) (-582 $)) NIL T ELT) (($ $ (-772 |#1|) |#2|) NIL T ELT) (($ $ (-582 (-772 |#1|)) (-582 |#2|)) NIL T ELT) (($ $ (-772 |#1|) $) NIL T ELT) (($ $ (-582 (-772 |#1|)) (-582 $)) NIL T ELT)) (-3755 (($ $ (-772 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-3756 (($ $ (-582 (-772 |#1|)) (-582 (-693))) NIL T ELT) (($ $ (-772 |#1|) (-693)) NIL T ELT) (($ $ (-582 (-772 |#1|))) NIL T ELT) (($ $ (-772 |#1|)) NIL T ELT)) (-3946 (((-420 (-3955 |#1|) (-693)) $) NIL T ELT) (((-693) $ (-772 |#1|)) NIL T ELT) (((-582 (-693)) $ (-582 (-772 |#1|))) NIL T ELT)) (-3970 (((-799 (-328)) $) NIL (-12 (|has| (-772 |#1|) (-552 (-799 (-328)))) (|has| |#2| (-552 (-799 (-328))))) ELT) (((-799 (-483)) $) NIL (-12 (|has| (-772 |#1|) (-552 (-799 (-483)))) (|has| |#2| (-552 (-799 (-483))))) ELT) (((-472) $) NIL (-12 (|has| (-772 |#1|) (-552 (-472))) (|has| |#2| (-552 (-472)))) ELT)) (-2816 ((|#2| $) NIL (|has| |#2| (-390)) ELT) (($ $ (-772 |#1|)) NIL (|has| |#2| (-390)) ELT)) (-2702 (((-3 (-1177 $) #1#) (-629 $)) NIL (-12 (|has| $ (-118)) (|has| |#2| (-820))) ELT)) (-3944 (((-771) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-772 |#1|)) NIL T ELT) (($ (-348 (-483))) NIL (OR (|has| |#2| (-38 (-348 (-483)))) (|has| |#2| (-949 (-348 (-483))))) ELT) (($ $) NIL (|has| |#2| (-494)) ELT)) (-3815 (((-582 |#2|) $) NIL T ELT)) (-3675 ((|#2| $ (-420 (-3955 |#1|) (-693))) NIL T ELT) (($ $ (-772 |#1|) (-693)) NIL T ELT) (($ $ (-582 (-772 |#1|)) (-582 (-693))) NIL T ELT)) (-2701 (((-631 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#2| (-820))) (|has| |#2| (-118))) ELT)) (-3125 (((-693)) NIL T CONST)) (-1621 (($ $ $ (-693)) NIL (|has| |#2| (-146)) ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2061 (((-85) $ $) NIL (|has| |#2| (-494)) ELT)) (-3124 (((-85) $ $) NIL T ELT)) (-2659 (($) NIL T CONST)) (-2665 (($) NIL T CONST)) (-2668 (($ $ (-582 (-772 |#1|)) (-582 (-693))) NIL T ELT) (($ $ (-772 |#1|) (-693)) NIL T ELT) (($ $ (-582 (-772 |#1|))) NIL T ELT) (($ $ (-772 |#1|)) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-3947 (($ $ |#2|) NIL (|has| |#2| (-312)) ELT)) (-3835 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3837 (($ $ $) NIL T ELT)) (** (($ $ (-829)) NIL T ELT) (($ $ (-693)) NIL T ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-348 (-483))) NIL (|has| |#2| (-38 (-348 (-483)))) ELT) (($ (-348 (-483)) $) NIL (|has| |#2| (-38 (-348 (-483)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT))) -(((-419 |#1| |#2|) (-13 (-860 |#2| (-420 (-3955 |#1|) (-693)) (-772 |#1|)) (-10 -8 (-15 -1935 ($ $ (-582 (-483)))))) (-582 (-1088)) (-960)) (T -419)) -((-1935 (*1 *1 *1 *2) (-12 (-5 *2 (-582 (-483))) (-5 *1 (-419 *3 *4)) (-14 *3 (-582 (-1088))) (-4 *4 (-960))))) -((-2567 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-3187 (((-85) $) NIL (|has| |#2| (-23)) ELT)) (-3705 (($ (-829)) NIL (|has| |#2| (-960)) ELT)) (-2197 (((-1183) $ (-483) (-483)) NIL (|has| $ (-6 -3994)) ELT)) (-2482 (($ $ $) NIL (|has| |#2| (-716)) ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL (|has| |#2| (-104)) ELT)) (-3135 (((-693)) NIL (|has| |#2| (-318)) ELT)) (-3786 ((|#2| $ (-483) |#2|) NIL (|has| $ (-6 -3994)) ELT)) (-3722 (($) NIL T CONST)) (-3156 (((-3 (-483) #1#) $) NIL (-12 (|has| |#2| (-949 (-483))) (|has| |#2| (-1012))) ELT) (((-3 (-348 (-483)) #1#) $) NIL (-12 (|has| |#2| (-949 (-348 (-483)))) (|has| |#2| (-1012))) ELT) (((-3 |#2| #1#) $) NIL (|has| |#2| (-1012)) ELT)) (-3155 (((-483) $) NIL (-12 (|has| |#2| (-949 (-483))) (|has| |#2| (-1012))) ELT) (((-348 (-483)) $) NIL (-12 (|has| |#2| (-949 (-348 (-483)))) (|has| |#2| (-1012))) ELT) ((|#2| $) NIL (|has| |#2| (-1012)) ELT)) (-2278 (((-629 (-483)) (-629 $)) NIL (-12 (|has| |#2| (-579 (-483))) (|has| |#2| (-960))) ELT) (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-629 $) (-1177 $)) NIL (-12 (|has| |#2| (-579 (-483))) (|has| |#2| (-960))) ELT) (((-2 (|:| |mat| (-629 |#2|)) (|:| |vec| (-1177 |#2|))) (-629 $) (-1177 $)) NIL (|has| |#2| (-960)) ELT) (((-629 |#2|) (-629 $)) NIL (|has| |#2| (-960)) ELT)) (-3465 (((-3 $ #1#) $) NIL (|has| |#2| (-960)) ELT)) (-2993 (($) NIL (|has| |#2| (-318)) ELT)) (-1574 ((|#2| $ (-483) |#2|) NIL (|has| $ (-6 -3994)) ELT)) (-3111 ((|#2| $ (-483)) 11 T ELT)) (-3185 (((-85) $) NIL (|has| |#2| (-716)) ELT)) (-2888 (((-582 |#2|) $) NIL (|has| $ (-6 -3993)) ELT)) (-1212 (((-85) $ $) NIL (|has| |#2| (-23)) ELT)) (-2409 (((-85) $) NIL (|has| |#2| (-960)) ELT)) (-2199 (((-483) $) NIL (|has| (-483) (-755)) ELT)) (-2530 (($ $ $) NIL (|has| |#2| (-755)) ELT)) (-2607 (((-582 |#2|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3244 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#2| (-1012))) ELT)) (-2200 (((-483) $) NIL (|has| (-483) (-755)) ELT)) (-2856 (($ $ $) NIL (|has| |#2| (-755)) ELT)) (-1947 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3956 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2009 (((-829) $) NIL (|has| |#2| (-318)) ELT)) (-2279 (((-629 (-483)) (-1177 $)) NIL (-12 (|has| |#2| (-579 (-483))) (|has| |#2| (-960))) ELT) (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL (-12 (|has| |#2| (-579 (-483))) (|has| |#2| (-960))) ELT) (((-2 (|:| |mat| (-629 |#2|)) (|:| |vec| (-1177 |#2|))) (-1177 $) $) NIL (|has| |#2| (-960)) ELT) (((-629 |#2|) (-1177 $)) NIL (|has| |#2| (-960)) ELT)) (-3241 (((-1071) $) NIL (|has| |#2| (-1012)) ELT)) (-2202 (((-582 (-483)) $) NIL T ELT)) (-2203 (((-85) (-483) $) NIL T ELT)) (-2399 (($ (-829)) NIL (|has| |#2| (-318)) ELT)) (-3242 (((-1032) $) NIL (|has| |#2| (-1012)) ELT)) (-3799 ((|#2| $) NIL (|has| (-483) (-755)) ELT)) (-2198 (($ $ |#2|) NIL (|has| $ (-6 -3994)) ELT)) (-1945 (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3766 (($ $ (-582 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ (-582 |#2|) (-582 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1012))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-2201 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#2| (-1012))) ELT)) (-2204 (((-582 |#2|) $) NIL T ELT)) (-3401 (((-85) $) NIL T ELT)) (-3563 (($) NIL T ELT)) (-3798 ((|#2| $ (-483) |#2|) NIL T ELT) ((|#2| $ (-483)) NIL T ELT)) (-3834 ((|#2| $ $) NIL (|has| |#2| (-960)) ELT)) (-1466 (($ (-1177 |#2|)) NIL T ELT)) (-3909 (((-107)) NIL (|has| |#2| (-312)) ELT)) (-3756 (($ $ (-693)) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-960))) ELT) (($ $) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-960))) ELT) (($ $ (-582 (-1088)) (-582 (-693))) NIL (-12 (|has| |#2| (-810 (-1088))) (|has| |#2| (-960))) ELT) (($ $ (-1088) (-693)) NIL (-12 (|has| |#2| (-810 (-1088))) (|has| |#2| (-960))) ELT) (($ $ (-582 (-1088))) NIL (-12 (|has| |#2| (-810 (-1088))) (|has| |#2| (-960))) ELT) (($ $ (-1088)) NIL (-12 (|has| |#2| (-810 (-1088))) (|has| |#2| (-960))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-960)) ELT) (($ $ (-1 |#2| |#2|) (-693)) NIL (|has| |#2| (-960)) ELT)) (-1944 (((-693) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3993)) ELT) (((-693) |#2| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#2| (-1012))) ELT)) (-3398 (($ $) NIL T ELT)) (-3944 (((-1177 |#2|) $) NIL T ELT) (($ (-483)) NIL (OR (-12 (|has| |#2| (-949 (-483))) (|has| |#2| (-1012))) (|has| |#2| (-960))) ELT) (($ (-348 (-483))) NIL (-12 (|has| |#2| (-949 (-348 (-483)))) (|has| |#2| (-1012))) ELT) (($ |#2|) NIL (|has| |#2| (-1012)) ELT) (((-771) $) NIL (|has| |#2| (-551 (-771))) ELT)) (-3125 (((-693)) NIL (|has| |#2| (-960)) CONST)) (-1263 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3124 (((-85) $ $) NIL (|has| |#2| (-960)) ELT)) (-2659 (($) NIL (|has| |#2| (-23)) CONST)) (-2665 (($) NIL (|has| |#2| (-960)) CONST)) (-2668 (($ $ (-693)) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-960))) ELT) (($ $) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-960))) ELT) (($ $ (-582 (-1088)) (-582 (-693))) NIL (-12 (|has| |#2| (-810 (-1088))) (|has| |#2| (-960))) ELT) (($ $ (-1088) (-693)) NIL (-12 (|has| |#2| (-810 (-1088))) (|has| |#2| (-960))) ELT) (($ $ (-582 (-1088))) NIL (-12 (|has| |#2| (-810 (-1088))) (|has| |#2| (-960))) ELT) (($ $ (-1088)) NIL (-12 (|has| |#2| (-810 (-1088))) (|has| |#2| (-960))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-960)) ELT) (($ $ (-1 |#2| |#2|) (-693)) NIL (|has| |#2| (-960)) ELT)) (-2565 (((-85) $ $) NIL (|has| |#2| (-755)) ELT)) (-2566 (((-85) $ $) NIL (|has| |#2| (-755)) ELT)) (-3055 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-2683 (((-85) $ $) NIL (|has| |#2| (-755)) ELT)) (-2684 (((-85) $ $) 17 (|has| |#2| (-755)) ELT)) (-3947 (($ $ |#2|) NIL (|has| |#2| (-312)) ELT)) (-3835 (($ $ $) NIL (|has| |#2| (-21)) ELT) (($ $) NIL (|has| |#2| (-21)) ELT)) (-3837 (($ $ $) NIL (|has| |#2| (-25)) ELT)) (** (($ $ (-693)) NIL (|has| |#2| (-960)) ELT) (($ $ (-829)) NIL (|has| |#2| (-960)) ELT)) (* (($ $ $) NIL (|has| |#2| (-960)) ELT) (($ $ |#2|) NIL (|has| |#2| (-662)) ELT) (($ |#2| $) NIL (|has| |#2| (-662)) ELT) (($ (-483) $) NIL (|has| |#2| (-21)) ELT) (($ (-693) $) NIL (|has| |#2| (-23)) ELT) (($ (-829) $) NIL (|has| |#2| (-25)) ELT)) (-3955 (((-693) $) NIL (|has| $ (-6 -3993)) ELT))) -(((-420 |#1| |#2|) (-196 |#1| |#2|) (-693) (-716)) (T -420)) -NIL -((-2567 (((-85) $ $) NIL T ELT)) (-1936 (((-582 (-784)) $) 16 T ELT)) (-3540 (((-445) $) 14 T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-1937 (($ (-445) (-582 (-784))) 12 T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3944 (((-771) $) 23 T ELT) (($ (-1093)) NIL T ELT) (((-1093) $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-421) (-13 (-994) (-10 -8 (-15 -1937 ($ (-445) (-582 (-784)))) (-15 -3540 ((-445) $)) (-15 -1936 ((-582 (-784)) $))))) (T -421)) -((-1937 (*1 *1 *2 *3) (-12 (-5 *2 (-445)) (-5 *3 (-582 (-784))) (-5 *1 (-421)))) (-3540 (*1 *2 *1) (-12 (-5 *2 (-445)) (-5 *1 (-421)))) (-1936 (*1 *2 *1) (-12 (-5 *2 (-582 (-784))) (-5 *1 (-421))))) -((-2567 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3722 (($) NIL T CONST)) (-2888 (((-582 |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-2855 (($ $ $) 48 T ELT)) (-3516 (($ $ $) 47 T ELT)) (-2607 (((-582 |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3244 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#1| (-1012))) ELT)) (-2856 ((|#1| $) 40 T ELT)) (-1947 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3956 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3241 (((-1071) $) NIL (|has| |#1| (-1012)) ELT)) (-1272 ((|#1| $) 41 T ELT)) (-3607 (($ |#1| $) 18 T ELT)) (-1938 (($ (-582 |#1|)) 19 T ELT)) (-3242 (((-1032) $) NIL (|has| |#1| (-1012)) ELT)) (-1273 ((|#1| $) 34 T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3766 (($ $ (-582 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-582 |#1|) (-582 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-3401 (((-85) $) NIL T ELT)) (-3563 (($) 11 T ELT)) (-1944 (((-693) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3993)) ELT) (((-693) |#1| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#1| (-1012))) ELT)) (-3398 (($ $) NIL T ELT)) (-3944 (((-771) $) NIL (|has| |#1| (-551 (-771))) ELT)) (-1263 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1274 (($ (-582 |#1|)) 45 T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3055 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3955 (((-693) $) 29 (|has| $ (-6 -3993)) ELT))) -(((-422 |#1|) (-13 (-880 |#1|) (-10 -8 (-15 -1938 ($ (-582 |#1|))))) (-755)) (T -422)) -((-1938 (*1 *1 *2) (-12 (-5 *2 (-582 *3)) (-4 *3 (-755)) (-5 *1 (-422 *3))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3187 (((-85) $) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3722 (($) NIL T CONST)) (-3840 (($ $) 71 T ELT)) (-1635 (((-85) $) NIL T ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-1967 (((-354 |#2| (-348 |#2|) |#3| |#4|) $) 45 T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-2408 (((-3 |#4| #1#) $) 117 T ELT)) (-1636 (($ (-354 |#2| (-348 |#2|) |#3| |#4|)) 80 T ELT) (($ |#4|) 31 T ELT) (($ |#1| |#1|) 127 T ELT) (($ |#1| |#1| (-483)) NIL T ELT) (($ |#4| |#2| |#2| |#2| |#1|) 140 T ELT)) (-3433 (((-2 (|:| -2335 (-354 |#2| (-348 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 47 T ELT)) (-3944 (((-771) $) 110 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2659 (($) 32 T CONST)) (-3055 (((-85) $ $) 121 T ELT)) (-3835 (($ $) 76 T ELT) (($ $ $) NIL T ELT)) (-3837 (($ $ $) 72 T ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-483) $) 77 T ELT))) -(((-423 |#1| |#2| |#3| |#4|) (-286 |#1| |#2| |#3| |#4|) (-312) (-1153 |#1|) (-1153 (-348 |#2|)) (-291 |#1| |#2| |#3|)) (T -423)) -NIL -((-1942 (((-483) (-582 (-483))) 53 T ELT)) (-1939 ((|#1| (-582 |#1|)) 94 T ELT)) (-1941 (((-582 |#1|) (-582 |#1|)) 95 T ELT)) (-1940 (((-582 |#1|) (-582 |#1|)) 97 T ELT)) (-3143 ((|#1| (-582 |#1|)) 96 T ELT)) (-2816 (((-582 (-483)) (-582 |#1|)) 56 T ELT))) -(((-424 |#1|) (-10 -7 (-15 -3143 (|#1| (-582 |#1|))) (-15 -1939 (|#1| (-582 |#1|))) (-15 -1940 ((-582 |#1|) (-582 |#1|))) (-15 -1941 ((-582 |#1|) (-582 |#1|))) (-15 -2816 ((-582 (-483)) (-582 |#1|))) (-15 -1942 ((-483) (-582 (-483))))) (-1153 (-483))) (T -424)) -((-1942 (*1 *2 *3) (-12 (-5 *3 (-582 (-483))) (-5 *2 (-483)) (-5 *1 (-424 *4)) (-4 *4 (-1153 *2)))) (-2816 (*1 *2 *3) (-12 (-5 *3 (-582 *4)) (-4 *4 (-1153 (-483))) (-5 *2 (-582 (-483))) (-5 *1 (-424 *4)))) (-1941 (*1 *2 *2) (-12 (-5 *2 (-582 *3)) (-4 *3 (-1153 (-483))) (-5 *1 (-424 *3)))) (-1940 (*1 *2 *2) (-12 (-5 *2 (-582 *3)) (-4 *3 (-1153 (-483))) (-5 *1 (-424 *3)))) (-1939 (*1 *2 *3) (-12 (-5 *3 (-582 *2)) (-5 *1 (-424 *2)) (-4 *2 (-1153 (-483))))) (-3143 (*1 *2 *3) (-12 (-5 *3 (-582 *2)) (-5 *1 (-424 *2)) (-4 *2 (-1153 (-483)))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3187 (((-85) $) NIL T ELT)) (-3128 (((-483) $) NIL (|has| (-483) (-258)) ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3980 $) (|:| |associate| $)) $) NIL T ELT)) (-2062 (($ $) NIL T ELT)) (-2060 (((-85) $) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2706 (((-346 (-1083 $)) (-1083 $)) NIL (|has| (-483) (-820)) ELT)) (-3773 (($ $) NIL T ELT)) (-3969 (((-346 $) $) NIL T ELT)) (-2703 (((-3 (-582 (-1083 $)) #1#) (-582 (-1083 $)) (-1083 $)) NIL (|has| (-483) (-820)) ELT)) (-1606 (((-85) $ $) NIL T ELT)) (-3621 (((-483) $) NIL (|has| (-483) (-739)) ELT)) (-3722 (($) NIL T CONST)) (-3156 (((-3 (-483) #1#) $) NIL T ELT) (((-3 (-1088) #1#) $) NIL (|has| (-483) (-949 (-1088))) ELT) (((-3 (-348 (-483)) #1#) $) NIL (|has| (-483) (-949 (-483))) ELT) (((-3 (-483) #1#) $) NIL (|has| (-483) (-949 (-483))) ELT)) (-3155 (((-483) $) NIL T ELT) (((-1088) $) NIL (|has| (-483) (-949 (-1088))) ELT) (((-348 (-483)) $) NIL (|has| (-483) (-949 (-483))) ELT) (((-483) $) NIL (|has| (-483) (-949 (-483))) ELT)) (-2563 (($ $ $) NIL T ELT)) (-2278 (((-629 (-483)) (-629 $)) NIL (|has| (-483) (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-629 $) (-1177 $)) NIL (|has| (-483) (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-629 $) (-1177 $)) NIL T ELT) (((-629 (-483)) (-629 $)) NIL T ELT)) (-3465 (((-3 $ #1#) $) NIL T ELT)) (-2993 (($) NIL (|has| (-483) (-482)) ELT)) (-2562 (($ $ $) NIL T ELT)) (-2740 (((-2 (|:| -3952 (-582 $)) (|:| -2408 $)) (-582 $)) NIL T ELT)) (-3721 (((-85) $) NIL T ELT)) (-3185 (((-85) $) NIL (|has| (-483) (-739)) ELT)) (-2795 (((-797 (-483) $) $ (-799 (-483)) (-797 (-483) $)) NIL (|has| (-483) (-795 (-483))) ELT) (((-797 (-328) $) $ (-799 (-328)) (-797 (-328) $)) NIL (|has| (-483) (-795 (-328))) ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-2409 (((-85) $) NIL T ELT)) (-2995 (($ $) NIL T ELT)) (-2997 (((-483) $) NIL T ELT)) (-3443 (((-631 $) $) NIL (|has| (-483) (-1064)) ELT)) (-3186 (((-85) $) NIL (|has| (-483) (-739)) ELT)) (-1603 (((-3 (-582 $) #1#) (-582 $) $) NIL T ELT)) (-2530 (($ $ $) NIL (|has| (-483) (-755)) ELT)) (-2856 (($ $ $) NIL (|has| (-483) (-755)) ELT)) (-3956 (($ (-1 (-483) (-483)) $) NIL T ELT)) (-2279 (((-629 (-483)) (-1177 $)) NIL (|has| (-483) (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL (|has| (-483) (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL T ELT) (((-629 (-483)) (-1177 $)) NIL T ELT)) (-1889 (($ $ $) NIL T ELT) (($ (-582 $)) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-2483 (($ $) NIL T ELT)) (-3444 (($) NIL (|has| (-483) (-1064)) CONST)) (-1943 (($ (-348 (-483))) 9 T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-2707 (((-1083 $) (-1083 $) (-1083 $)) NIL T ELT)) (-3143 (($ $ $) NIL T ELT) (($ (-582 $)) NIL T ELT)) (-3127 (($ $) NIL (|has| (-483) (-258)) ELT) (((-348 (-483)) $) NIL T ELT)) (-3129 (((-483) $) NIL (|has| (-483) (-482)) ELT)) (-2704 (((-346 (-1083 $)) (-1083 $)) NIL (|has| (-483) (-820)) ELT)) (-2705 (((-346 (-1083 $)) (-1083 $)) NIL (|has| (-483) (-820)) ELT)) (-3730 (((-346 $) $) NIL T ELT)) (-1604 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3464 (((-3 $ #1#) $ $) NIL T ELT)) (-2739 (((-631 (-582 $)) (-582 $) $) NIL T ELT)) (-3766 (($ $ (-582 (-483)) (-582 (-483))) NIL (|has| (-483) (-260 (-483))) ELT) (($ $ (-483) (-483)) NIL (|has| (-483) (-260 (-483))) ELT) (($ $ (-249 (-483))) NIL (|has| (-483) (-260 (-483))) ELT) (($ $ (-582 (-249 (-483)))) NIL (|has| (-483) (-260 (-483))) ELT) (($ $ (-582 (-1088)) (-582 (-483))) NIL (|has| (-483) (-454 (-1088) (-483))) ELT) (($ $ (-1088) (-483)) NIL (|has| (-483) (-454 (-1088) (-483))) ELT)) (-1605 (((-693) $) NIL T ELT)) (-3798 (($ $ (-483)) NIL (|has| (-483) (-241 (-483) (-483))) ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL T ELT)) (-3756 (($ $ (-1 (-483) (-483))) NIL T ELT) (($ $ (-1 (-483) (-483)) (-693)) NIL T ELT) (($ $ (-1088)) NIL (|has| (-483) (-810 (-1088))) ELT) (($ $ (-582 (-1088))) NIL (|has| (-483) (-810 (-1088))) ELT) (($ $ (-1088) (-693)) NIL (|has| (-483) (-810 (-1088))) ELT) (($ $ (-582 (-1088)) (-582 (-693))) NIL (|has| (-483) (-810 (-1088))) ELT) (($ $) NIL (|has| (-483) (-189)) ELT) (($ $ (-693)) NIL (|has| (-483) (-189)) ELT)) (-2994 (($ $) NIL T ELT)) (-2996 (((-483) $) NIL T ELT)) (-3970 (((-799 (-483)) $) NIL (|has| (-483) (-552 (-799 (-483)))) ELT) (((-799 (-328)) $) NIL (|has| (-483) (-552 (-799 (-328)))) ELT) (((-472) $) NIL (|has| (-483) (-552 (-472))) ELT) (((-328) $) NIL (|has| (-483) (-932)) ELT) (((-179) $) NIL (|has| (-483) (-932)) ELT)) (-2702 (((-3 (-1177 $) #1#) (-629 $)) NIL (-12 (|has| $ (-118)) (|has| (-483) (-820))) ELT)) (-3944 (((-771) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ $) NIL T ELT) (($ (-348 (-483))) 8 T ELT) (($ (-483)) NIL T ELT) (($ (-1088)) NIL (|has| (-483) (-949 (-1088))) ELT) (((-348 (-483)) $) NIL T ELT) (((-916 16) $) 10 T ELT)) (-2701 (((-631 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-483) (-820))) (|has| (-483) (-118))) ELT)) (-3125 (((-693)) NIL T CONST)) (-3130 (((-483) $) NIL (|has| (-483) (-482)) ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2061 (((-85) $ $) NIL T ELT)) (-3124 (((-85) $ $) NIL T ELT)) (-3381 (($ $) NIL (|has| (-483) (-739)) ELT)) (-2659 (($) NIL T CONST)) (-2665 (($) NIL T CONST)) (-2668 (($ $ (-1 (-483) (-483))) NIL T ELT) (($ $ (-1 (-483) (-483)) (-693)) NIL T ELT) (($ $ (-1088)) NIL (|has| (-483) (-810 (-1088))) ELT) (($ $ (-582 (-1088))) NIL (|has| (-483) (-810 (-1088))) ELT) (($ $ (-1088) (-693)) NIL (|has| (-483) (-810 (-1088))) ELT) (($ $ (-582 (-1088)) (-582 (-693))) NIL (|has| (-483) (-810 (-1088))) ELT) (($ $) NIL (|has| (-483) (-189)) ELT) (($ $ (-693)) NIL (|has| (-483) (-189)) ELT)) (-2565 (((-85) $ $) NIL (|has| (-483) (-755)) ELT)) (-2566 (((-85) $ $) NIL (|has| (-483) (-755)) ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-2683 (((-85) $ $) NIL (|has| (-483) (-755)) ELT)) (-2684 (((-85) $ $) NIL (|has| (-483) (-755)) ELT)) (-3947 (($ $ $) NIL T ELT) (($ (-483) (-483)) NIL T ELT)) (-3835 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3837 (($ $ $) NIL T ELT)) (** (($ $ (-829)) NIL T ELT) (($ $ (-693)) NIL T ELT) (($ $ (-483)) NIL T ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-348 (-483))) NIL T ELT) (($ (-348 (-483)) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ (-483)) NIL T ELT))) -(((-425) (-13 (-903 (-483)) (-551 (-348 (-483))) (-551 (-916 16)) (-10 -8 (-15 -3127 ((-348 (-483)) $)) (-15 -1943 ($ (-348 (-483))))))) (T -425)) -((-3127 (*1 *2 *1) (-12 (-5 *2 (-348 (-483))) (-5 *1 (-425)))) (-1943 (*1 *1 *2) (-12 (-5 *2 (-348 (-483))) (-5 *1 (-425))))) -((-2607 (((-582 |#2|) $) 31 T ELT)) (-3244 (((-85) |#2| $) 39 T ELT)) (-1945 (((-85) (-1 (-85) |#2|) $) 26 T ELT)) (-3766 (($ $ (-582 (-249 |#2|))) 13 T ELT) (($ $ (-249 |#2|)) NIL T ELT) (($ $ |#2| |#2|) NIL T ELT) (($ $ (-582 |#2|) (-582 |#2|)) NIL T ELT)) (-1944 (((-693) (-1 (-85) |#2|) $) 30 T ELT) (((-693) |#2| $) 37 T ELT)) (-3944 (((-771) $) 45 T ELT)) (-1946 (((-85) (-1 (-85) |#2|) $) 23 T ELT)) (-3055 (((-85) $ $) 35 T ELT)) (-3955 (((-693) $) 18 T ELT))) -(((-426 |#1| |#2|) (-10 -7 (-15 -3055 ((-85) |#1| |#1|)) (-15 -3944 ((-771) |#1|)) (-15 -3766 (|#1| |#1| (-582 |#2|) (-582 |#2|))) (-15 -3766 (|#1| |#1| |#2| |#2|)) (-15 -3766 (|#1| |#1| (-249 |#2|))) (-15 -3766 (|#1| |#1| (-582 (-249 |#2|)))) (-15 -3244 ((-85) |#2| |#1|)) (-15 -1944 ((-693) |#2| |#1|)) (-15 -2607 ((-582 |#2|) |#1|)) (-15 -1944 ((-693) (-1 (-85) |#2|) |#1|)) (-15 -1945 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -1946 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -3955 ((-693) |#1|))) (-427 |#2|) (-1127)) (T -426)) -NIL -((-2567 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3722 (($) 7 T CONST)) (-2888 (((-582 |#1|) $) 30 (|has| $ (-6 -3993)) ELT)) (-2607 (((-582 |#1|) $) 29 (|has| $ (-6 -3993)) ELT)) (-3244 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3993))) ELT)) (-1947 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3994)) ELT)) (-3956 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3241 (((-1071) $) 22 (|has| |#1| (-1012)) ELT)) (-3242 (((-1032) $) 21 (|has| |#1| (-1012)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3993)) ELT)) (-3766 (($ $ (-582 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-582 |#1|) (-582 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT)) (-1220 (((-85) $ $) 11 T ELT)) (-3401 (((-85) $) 8 T ELT)) (-3563 (($) 9 T ELT)) (-1944 (((-693) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3993)) ELT) (((-693) |#1| $) 28 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3993))) ELT)) (-3398 (($ $) 10 T ELT)) (-3944 (((-771) $) 17 (|has| |#1| (-551 (-771))) ELT)) (-1263 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3993)) ELT)) (-3055 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3955 (((-693) $) 6 (|has| $ (-6 -3993)) ELT))) -(((-427 |#1|) (-113) (-1127)) (T -427)) -((-3956 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-427 *3)) (-4 *3 (-1127)))) (-1947 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -3994)) (-4 *1 (-427 *3)) (-4 *3 (-1127)))) (-1946 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-85) *4)) (|has| *1 (-6 -3993)) (-4 *1 (-427 *4)) (-4 *4 (-1127)) (-5 *2 (-85)))) (-1945 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-85) *4)) (|has| *1 (-6 -3993)) (-4 *1 (-427 *4)) (-4 *4 (-1127)) (-5 *2 (-85)))) (-1944 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-85) *4)) (|has| *1 (-6 -3993)) (-4 *1 (-427 *4)) (-4 *4 (-1127)) (-5 *2 (-693)))) (-2888 (*1 *2 *1) (-12 (|has| *1 (-6 -3993)) (-4 *1 (-427 *3)) (-4 *3 (-1127)) (-5 *2 (-582 *3)))) (-2607 (*1 *2 *1) (-12 (|has| *1 (-6 -3993)) (-4 *1 (-427 *3)) (-4 *3 (-1127)) (-5 *2 (-582 *3)))) (-1944 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -3993)) (-4 *1 (-427 *3)) (-4 *3 (-1127)) (-4 *3 (-1012)) (-5 *2 (-693)))) (-3244 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -3993)) (-4 *1 (-427 *3)) (-4 *3 (-1127)) (-4 *3 (-1012)) (-5 *2 (-85))))) -(-13 (-34) (-10 -8 (IF (|has| |t#1| (-551 (-771))) (-6 (-551 (-771))) |%noBranch|) (IF (|has| |t#1| (-72)) (-6 (-72)) |%noBranch|) (IF (|has| |t#1| (-1012)) (-6 (-1012)) |%noBranch|) (IF (|has| |t#1| (-1012)) (IF (|has| |t#1| (-260 |t#1|)) (-6 (-260 |t#1|)) |%noBranch|) |%noBranch|) (-15 -3956 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -3994)) (-15 -1947 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -3993)) (PROGN (-15 -1946 ((-85) (-1 (-85) |t#1|) $)) (-15 -1945 ((-85) (-1 (-85) |t#1|) $)) (-15 -1944 ((-693) (-1 (-85) |t#1|) $)) (-15 -2888 ((-582 |t#1|) $)) (-15 -2607 ((-582 |t#1|) $)) (IF (|has| |t#1| (-1012)) (PROGN (-15 -1944 ((-693) |t#1| $)) (-15 -3244 ((-85) |t#1| $))) |%noBranch|)) |%noBranch|))) -(((-34) . T) ((-72) OR (|has| |#1| (-1012)) (|has| |#1| (-72))) ((-551 (-771)) OR (|has| |#1| (-1012)) (|has| |#1| (-551 (-771)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ((-454 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ((-13) . T) ((-1012) |has| |#1| (-1012)) ((-1127) . T)) -((-3944 ((|#1| $) 6 T ELT) (($ |#1|) 9 T ELT))) -(((-428 |#1|) (-113) (-1127)) (T -428)) -NIL -(-13 (-551 |t#1|) (-554 |t#1|)) -(((-554 |#1|) . T) ((-551 |#1|) . T)) -((-2567 (((-85) $ $) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-1948 (($ (-1071)) 8 T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3944 (((-771) $) 15 T ELT) (((-1071) $) 12 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) 11 T ELT))) -(((-429) (-13 (-1012) (-551 (-1071)) (-10 -8 (-15 -1948 ($ (-1071)))))) (T -429)) -((-1948 (*1 *1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-429))))) -((-3490 (($ $) 15 T ELT)) (-3488 (($ $) 24 T ELT)) (-3492 (($ $) 12 T ELT)) (-3493 (($ $) 10 T ELT)) (-3491 (($ $) 17 T ELT)) (-3489 (($ $) 22 T ELT))) -(((-430 |#1|) (-10 -7 (-15 -3489 (|#1| |#1|)) (-15 -3491 (|#1| |#1|)) (-15 -3493 (|#1| |#1|)) (-15 -3492 (|#1| |#1|)) (-15 -3488 (|#1| |#1|)) (-15 -3490 (|#1| |#1|))) (-431)) (T -430)) -NIL -((-3490 (($ $) 11 T ELT)) (-3488 (($ $) 10 T ELT)) (-3492 (($ $) 9 T ELT)) (-3493 (($ $) 8 T ELT)) (-3491 (($ $) 7 T ELT)) (-3489 (($ $) 6 T ELT))) -(((-431) (-113)) (T -431)) -((-3490 (*1 *1 *1) (-4 *1 (-431))) (-3488 (*1 *1 *1) (-4 *1 (-431))) (-3492 (*1 *1 *1) (-4 *1 (-431))) (-3493 (*1 *1 *1) (-4 *1 (-431))) (-3491 (*1 *1 *1) (-4 *1 (-431))) (-3489 (*1 *1 *1) (-4 *1 (-431)))) -(-13 (-10 -8 (-15 -3489 ($ $)) (-15 -3491 ($ $)) (-15 -3493 ($ $)) (-15 -3492 ($ $)) (-15 -3488 ($ $)) (-15 -3490 ($ $)))) -((-3730 (((-346 |#4|) |#4| (-1 (-346 |#2|) |#2|)) 54 T ELT))) -(((-432 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3730 ((-346 |#4|) |#4| (-1 (-346 |#2|) |#2|)))) (-312) (-1153 |#1|) (-13 (-312) (-120) (-660 |#1| |#2|)) (-1153 |#3|)) (T -432)) -((-3730 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-346 *6) *6)) (-4 *6 (-1153 *5)) (-4 *5 (-312)) (-4 *7 (-13 (-312) (-120) (-660 *5 *6))) (-5 *2 (-346 *3)) (-5 *1 (-432 *5 *6 *7 *3)) (-4 *3 (-1153 *7))))) -((-2567 (((-85) $ $) NIL T ELT)) (-1213 (((-582 $) (-1083 $) (-1088)) NIL T ELT) (((-582 $) (-1083 $)) NIL T ELT) (((-582 $) (-856 $)) NIL T ELT)) (-1214 (($ (-1083 $) (-1088)) NIL T ELT) (($ (-1083 $)) NIL T ELT) (($ (-856 $)) NIL T ELT)) (-3187 (((-85) $) 39 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3980 $) (|:| |associate| $)) $) NIL T ELT)) (-2062 (($ $) NIL T ELT)) (-2060 (((-85) $) NIL T ELT)) (-1949 (((-85) $ $) 72 T ELT)) (-1598 (((-582 (-549 $)) $) 49 T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-1602 (($ $ (-249 $)) NIL T ELT) (($ $ (-582 (-249 $))) NIL T ELT) (($ $ (-582 (-549 $)) (-582 $)) NIL T ELT)) (-3773 (($ $) NIL T ELT)) (-3969 (((-346 $) $) NIL T ELT)) (-3036 (($ $) NIL T ELT)) (-1606 (((-85) $ $) NIL T ELT)) (-3722 (($) NIL T CONST)) (-1215 (((-582 $) (-1083 $) (-1088)) NIL T ELT) (((-582 $) (-1083 $)) NIL T ELT) (((-582 $) (-856 $)) NIL T ELT)) (-3182 (($ (-1083 $) (-1088)) NIL T ELT) (($ (-1083 $)) NIL T ELT) (($ (-856 $)) NIL T ELT)) (-3156 (((-3 (-549 $) #1#) $) NIL T ELT) (((-3 (-483) #1#) $) NIL T ELT) (((-3 (-348 (-483)) #1#) $) NIL T ELT)) (-3155 (((-549 $) $) NIL T ELT) (((-483) $) NIL T ELT) (((-348 (-483)) $) 54 T ELT)) (-2563 (($ $ $) NIL T ELT)) (-2278 (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-629 $) (-1177 $)) NIL T ELT) (((-629 (-483)) (-629 $)) NIL T ELT) (((-2 (|:| |mat| (-629 (-348 (-483)))) (|:| |vec| (-1177 (-348 (-483))))) (-629 $) (-1177 $)) NIL T ELT) (((-629 (-348 (-483))) (-629 $)) NIL T ELT)) (-3840 (($ $) NIL T ELT)) (-3465 (((-3 $ #1#) $) NIL T ELT)) (-2562 (($ $ $) NIL T ELT)) (-2740 (((-2 (|:| -3952 (-582 $)) (|:| -2408 $)) (-582 $)) NIL T ELT)) (-3721 (((-85) $) NIL T ELT)) (-2572 (($ $) NIL T ELT) (($ (-582 $)) NIL T ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-1597 (((-582 (-86)) $) NIL T ELT)) (-3593 (((-86) (-86)) NIL T ELT)) (-2409 (((-85) $) 42 T ELT)) (-2672 (((-85) $) NIL (|has| $ (-949 (-483))) ELT)) (-2997 (((-1037 (-483) (-549 $)) $) 37 T ELT)) (-3010 (($ $ (-483)) NIL T ELT)) (-3131 (((-1083 $) (-1083 $) (-549 $)) 86 T ELT) (((-1083 $) (-1083 $) (-582 (-549 $))) 61 T ELT) (($ $ (-549 $)) 75 T ELT) (($ $ (-582 (-549 $))) 76 T ELT)) (-1603 (((-3 (-582 $) #1#) (-582 $) $) NIL T ELT)) (-1595 (((-1083 $) (-549 $)) 73 (|has| $ (-960)) ELT)) (-3956 (($ (-1 $ $) (-549 $)) NIL T ELT)) (-1600 (((-3 (-549 $) #1#) $) NIL T ELT)) (-2279 (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL T ELT) (((-629 (-483)) (-1177 $)) NIL T ELT) (((-2 (|:| |mat| (-629 (-348 (-483)))) (|:| |vec| (-1177 (-348 (-483))))) (-1177 $) $) NIL T ELT) (((-629 (-348 (-483))) (-1177 $)) NIL T ELT)) (-1889 (($ (-582 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-1599 (((-582 (-549 $)) $) NIL T ELT)) (-2234 (($ (-86) $) NIL T ELT) (($ (-86) (-582 $)) NIL T ELT)) (-2632 (((-85) $ (-86)) NIL T ELT) (((-85) $ (-1088)) NIL T ELT)) (-2483 (($ $) NIL T ELT)) (-2602 (((-693) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-2707 (((-1083 $) (-1083 $) (-1083 $)) NIL T ELT)) (-3143 (($ (-582 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-1596 (((-85) $ $) NIL T ELT) (((-85) $ (-1088)) NIL T ELT)) (-3730 (((-346 $) $) NIL T ELT)) (-1604 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL T ELT)) (-3464 (((-3 $ #1#) $ $) NIL T ELT)) (-2739 (((-631 (-582 $)) (-582 $) $) NIL T ELT)) (-2673 (((-85) $) NIL (|has| $ (-949 (-483))) ELT)) (-3766 (($ $ (-549 $) $) NIL T ELT) (($ $ (-582 (-549 $)) (-582 $)) NIL T ELT) (($ $ (-582 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-582 $) (-582 $)) NIL T ELT) (($ $ (-582 (-1088)) (-582 (-1 $ $))) NIL T ELT) (($ $ (-582 (-1088)) (-582 (-1 $ (-582 $)))) NIL T ELT) (($ $ (-1088) (-1 $ (-582 $))) NIL T ELT) (($ $ (-1088) (-1 $ $)) NIL T ELT) (($ $ (-582 (-86)) (-582 (-1 $ $))) NIL T ELT) (($ $ (-582 (-86)) (-582 (-1 $ (-582 $)))) NIL T ELT) (($ $ (-86) (-1 $ (-582 $))) NIL T ELT) (($ $ (-86) (-1 $ $)) NIL T ELT)) (-1605 (((-693) $) NIL T ELT)) (-3798 (($ (-86) $) NIL T ELT) (($ (-86) $ $) NIL T ELT) (($ (-86) $ $ $) NIL T ELT) (($ (-86) $ $ $ $) NIL T ELT) (($ (-86) (-582 $)) NIL T ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL T ELT)) (-1601 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3756 (($ $) 36 T ELT) (($ $ (-693)) NIL T ELT)) (-2996 (((-1037 (-483) (-549 $)) $) 20 T ELT)) (-3184 (($ $) NIL (|has| $ (-960)) ELT)) (-3970 (((-328) $) 100 T ELT) (((-179) $) 108 T ELT) (((-142 (-328)) $) 116 T ELT)) (-3944 (((-771) $) NIL T ELT) (($ (-549 $)) NIL T ELT) (($ (-348 (-483))) NIL T ELT) (($ $) NIL T ELT) (($ (-483)) NIL T ELT) (($ (-1037 (-483) (-549 $))) 21 T ELT)) (-3125 (((-693)) NIL T CONST)) (-2589 (($ $) NIL T ELT) (($ (-582 $)) NIL T ELT)) (-2253 (((-85) (-86)) 92 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2061 (((-85) $ $) NIL T ELT)) (-3124 (((-85) $ $) NIL T ELT)) (-2659 (($) 10 T CONST)) (-2665 (($) 22 T CONST)) (-2668 (($ $) NIL T ELT) (($ $ (-693)) NIL T ELT)) (-3055 (((-85) $ $) 24 T ELT)) (-3947 (($ $ $) 44 T ELT)) (-3835 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3837 (($ $ $) NIL T ELT)) (** (($ $ (-348 (-483))) NIL T ELT) (($ $ (-483)) 47 T ELT) (($ $ (-693)) NIL T ELT) (($ $ (-829)) NIL T ELT)) (* (($ (-348 (-483)) $) NIL T ELT) (($ $ (-348 (-483))) NIL T ELT) (($ $ $) 27 T ELT) (($ (-483) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-829) $) NIL T ELT))) -(((-433) (-13 (-254) (-27) (-949 (-483)) (-949 (-348 (-483))) (-579 (-483)) (-932) (-579 (-348 (-483))) (-120) (-552 (-142 (-328))) (-190) (-554 (-1037 (-483) (-549 $))) (-10 -8 (-15 -2997 ((-1037 (-483) (-549 $)) $)) (-15 -2996 ((-1037 (-483) (-549 $)) $)) (-15 -3840 ($ $)) (-15 -1949 ((-85) $ $)) (-15 -3131 ((-1083 $) (-1083 $) (-549 $))) (-15 -3131 ((-1083 $) (-1083 $) (-582 (-549 $)))) (-15 -3131 ($ $ (-549 $))) (-15 -3131 ($ $ (-582 (-549 $))))))) (T -433)) -((-2997 (*1 *2 *1) (-12 (-5 *2 (-1037 (-483) (-549 (-433)))) (-5 *1 (-433)))) (-2996 (*1 *2 *1) (-12 (-5 *2 (-1037 (-483) (-549 (-433)))) (-5 *1 (-433)))) (-3840 (*1 *1 *1) (-5 *1 (-433))) (-1949 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-433)))) (-3131 (*1 *2 *2 *3) (-12 (-5 *2 (-1083 (-433))) (-5 *3 (-549 (-433))) (-5 *1 (-433)))) (-3131 (*1 *2 *2 *3) (-12 (-5 *2 (-1083 (-433))) (-5 *3 (-582 (-549 (-433)))) (-5 *1 (-433)))) (-3131 (*1 *1 *1 *2) (-12 (-5 *2 (-549 (-433))) (-5 *1 (-433)))) (-3131 (*1 *1 *1 *2) (-12 (-5 *2 (-582 (-549 (-433)))) (-5 *1 (-433))))) -((-2567 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2197 (((-1183) $ (-483) (-483)) NIL (|has| $ (-6 -3994)) ELT)) (-1730 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-755)) ELT)) (-1728 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-6 -3994)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-755))) ELT)) (-2908 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-755)) ELT)) (-3786 ((|#1| $ (-483) |#1|) 19 (|has| $ (-6 -3994)) ELT) ((|#1| $ (-1144 (-483)) |#1|) NIL (|has| $ (-6 -3994)) ELT)) (-3708 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3722 (($) NIL T CONST)) (-2296 (($ $) NIL (|has| $ (-6 -3994)) ELT)) (-2297 (($ $) NIL T ELT)) (-1351 (($ $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#1| (-1012))) ELT)) (-3404 (($ |#1| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#1| (-1012))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3840 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3993)) (|has| |#1| (-1012))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3993)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-1574 ((|#1| $ (-483) |#1|) 14 (|has| $ (-6 -3994)) ELT)) (-3111 ((|#1| $ (-483)) 13 T ELT)) (-3417 (((-483) (-1 (-85) |#1|) $) NIL T ELT) (((-483) |#1| $) NIL (|has| |#1| (-1012)) ELT) (((-483) |#1| $ (-483)) NIL (|has| |#1| (-1012)) ELT)) (-2888 (((-582 |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3612 (($ (-693) |#1|) NIL T ELT)) (-2199 (((-483) $) 9 (|has| (-483) (-755)) ELT)) (-2530 (($ $ $) NIL (|has| |#1| (-755)) ELT)) (-3516 (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-755)) ELT)) (-2607 (((-582 |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3244 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#1| (-1012))) ELT)) (-2200 (((-483) $) 16 (|has| (-483) (-755)) ELT)) (-2856 (($ $ $) NIL (|has| |#1| (-755)) ELT)) (-1947 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3956 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3241 (((-1071) $) NIL (|has| |#1| (-1012)) ELT)) (-2303 (($ |#1| $ (-483)) NIL T ELT) (($ $ $ (-483)) NIL T ELT)) (-2202 (((-582 (-483)) $) NIL T ELT)) (-2203 (((-85) (-483) $) NIL T ELT)) (-3242 (((-1032) $) NIL (|has| |#1| (-1012)) ELT)) (-3799 ((|#1| $) NIL (|has| (-483) (-755)) ELT)) (-1352 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2198 (($ $ |#1|) NIL (|has| $ (-6 -3994)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3766 (($ $ (-582 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-582 |#1|) (-582 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-2201 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#1| (-1012))) ELT)) (-2204 (((-582 |#1|) $) NIL T ELT)) (-3401 (((-85) $) NIL T ELT)) (-3563 (($) NIL T ELT)) (-3798 ((|#1| $ (-483) |#1|) NIL T ELT) ((|#1| $ (-483)) 18 T ELT) (($ $ (-1144 (-483))) NIL T ELT)) (-2304 (($ $ (-483)) NIL T ELT) (($ $ (-1144 (-483))) NIL T ELT)) (-1944 (((-693) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3993)) ELT) (((-693) |#1| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#1| (-1012))) ELT)) (-1729 (($ $ $ (-483)) NIL (|has| $ (-6 -3994)) ELT)) (-3398 (($ $) NIL T ELT)) (-3970 (((-472) $) NIL (|has| |#1| (-552 (-472))) ELT)) (-3528 (($ (-582 |#1|)) NIL T ELT)) (-3800 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-582 $)) NIL T ELT)) (-3944 (((-771) $) NIL (|has| |#1| (-551 (-771))) ELT)) (-1263 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-2565 (((-85) $ $) NIL (|has| |#1| (-755)) ELT)) (-2566 (((-85) $ $) NIL (|has| |#1| (-755)) ELT)) (-3055 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2683 (((-85) $ $) NIL (|has| |#1| (-755)) ELT)) (-2684 (((-85) $ $) NIL (|has| |#1| (-755)) ELT)) (-3955 (((-693) $) NIL (|has| $ (-6 -3993)) ELT))) -(((-434 |#1| |#2|) (-19 |#1|) (-1127) (-483)) (T -434)) -NIL -((-2567 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3786 ((|#1| $ (-483) (-483) |#1|) 44 T ELT)) (-1255 (($ $ (-483) |#2|) NIL T ELT)) (-1254 (($ $ (-483) |#3|) NIL T ELT)) (-3722 (($) NIL T CONST)) (-3110 ((|#2| $ (-483)) 53 T ELT)) (-1574 ((|#1| $ (-483) (-483) |#1|) 43 T ELT)) (-3111 ((|#1| $ (-483) (-483)) 38 T ELT)) (-2888 (((-582 |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3113 (((-693) $) 28 T ELT)) (-3612 (($ (-693) (-693) |#1|) 24 T ELT)) (-3112 (((-693) $) 30 T ELT)) (-3117 (((-483) $) 26 T ELT)) (-3115 (((-483) $) 27 T ELT)) (-2607 (((-582 |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3244 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#1| (-1012))) ELT)) (-3116 (((-483) $) 29 T ELT)) (-3114 (((-483) $) 31 T ELT)) (-1947 (($ (-1 |#1| |#1|) $) 66 T ELT)) (-3956 (($ (-1 |#1| |#1|) $) 64 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 70 T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 74 T ELT)) (-3241 (((-1071) $) 48 (|has| |#1| (-1012)) ELT)) (-3242 (((-1032) $) NIL (|has| |#1| (-1012)) ELT)) (-2198 (($ $ |#1|) 61 T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3766 (($ $ (-582 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-582 |#1|) (-582 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-3401 (((-85) $) 33 T ELT)) (-3563 (($) NIL T ELT)) (-3798 ((|#1| $ (-483) (-483)) 41 T ELT) ((|#1| $ (-483) (-483) |#1|) 72 T ELT)) (-1944 (((-693) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3993)) ELT) (((-693) |#1| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#1| (-1012))) ELT)) (-3398 (($ $) 59 T ELT)) (-3109 ((|#3| $ (-483)) 55 T ELT)) (-3944 (((-771) $) NIL (|has| |#1| (-551 (-771))) ELT)) (-1263 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3055 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3955 (((-693) $) NIL (|has| $ (-6 -3993)) ELT))) -(((-435 |#1| |#2| |#3|) (-57 |#1| |#2| |#3|) (-1127) (-322 |#1|) (-322 |#1|)) (T -435)) -NIL -((-1951 (((-582 (-2 (|:| -2011 (-629 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-629 |#2|)))) (-2 (|:| -2011 (-629 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-629 |#2|))) (-693) (-693)) 32 T ELT)) (-1950 (((-582 (-1083 |#1|)) |#1| (-693) (-693) (-693)) 43 T ELT)) (-2076 (((-2 (|:| -2011 (-629 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-629 |#2|))) (-582 |#3|) (-582 (-2 (|:| -2011 (-629 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-629 |#2|)))) (-693)) 107 T ELT))) -(((-436 |#1| |#2| |#3|) (-10 -7 (-15 -1950 ((-582 (-1083 |#1|)) |#1| (-693) (-693) (-693))) (-15 -1951 ((-582 (-2 (|:| -2011 (-629 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-629 |#2|)))) (-2 (|:| -2011 (-629 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-629 |#2|))) (-693) (-693))) (-15 -2076 ((-2 (|:| -2011 (-629 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-629 |#2|))) (-582 |#3|) (-582 (-2 (|:| -2011 (-629 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-629 |#2|)))) (-693)))) (-299) (-1153 |#1|) (-1153 |#2|)) (T -436)) -((-2076 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-582 *8)) (-5 *4 (-582 (-2 (|:| -2011 (-629 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-629 *7))))) (-5 *5 (-693)) (-4 *8 (-1153 *7)) (-4 *7 (-1153 *6)) (-4 *6 (-299)) (-5 *2 (-2 (|:| -2011 (-629 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-629 *7)))) (-5 *1 (-436 *6 *7 *8)))) (-1951 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-693)) (-4 *5 (-299)) (-4 *6 (-1153 *5)) (-5 *2 (-582 (-2 (|:| -2011 (-629 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-629 *6))))) (-5 *1 (-436 *5 *6 *7)) (-5 *3 (-2 (|:| -2011 (-629 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-629 *6)))) (-4 *7 (-1153 *6)))) (-1950 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-693)) (-4 *3 (-299)) (-4 *5 (-1153 *3)) (-5 *2 (-582 (-1083 *3))) (-5 *1 (-436 *3 *5 *6)) (-4 *6 (-1153 *5))))) -((-1957 (((-2 (|:| -2011 (-629 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-629 |#1|))) (-2 (|:| -2011 (-629 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-629 |#1|))) (-2 (|:| -2011 (-629 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-629 |#1|)))) 70 T ELT)) (-1952 ((|#1| (-629 |#1|) |#1| (-693)) 24 T ELT)) (-1954 (((-693) (-693) (-693)) 34 T ELT)) (-1956 (((-629 |#1|) (-629 |#1|) (-629 |#1|)) 50 T ELT)) (-1955 (((-629 |#1|) (-629 |#1|) (-629 |#1|) |#1|) 58 T ELT) (((-629 |#1|) (-629 |#1|) (-629 |#1|)) 55 T ELT)) (-1953 ((|#1| (-629 |#1|) (-629 |#1|) |#1| (-483)) 28 T ELT)) (-3327 ((|#1| (-629 |#1|)) 18 T ELT))) -(((-437 |#1| |#2| |#3|) (-10 -7 (-15 -3327 (|#1| (-629 |#1|))) (-15 -1952 (|#1| (-629 |#1|) |#1| (-693))) (-15 -1953 (|#1| (-629 |#1|) (-629 |#1|) |#1| (-483))) (-15 -1954 ((-693) (-693) (-693))) (-15 -1955 ((-629 |#1|) (-629 |#1|) (-629 |#1|))) (-15 -1955 ((-629 |#1|) (-629 |#1|) (-629 |#1|) |#1|)) (-15 -1956 ((-629 |#1|) (-629 |#1|) (-629 |#1|))) (-15 -1957 ((-2 (|:| -2011 (-629 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-629 |#1|))) (-2 (|:| -2011 (-629 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-629 |#1|))) (-2 (|:| -2011 (-629 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-629 |#1|)))))) (-13 (-258) (-10 -8 (-15 -3969 ((-346 $) $)))) (-1153 |#1|) (-351 |#1| |#2|)) (T -437)) -((-1957 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -2011 (-629 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-629 *3)))) (-4 *3 (-13 (-258) (-10 -8 (-15 -3969 ((-346 $) $))))) (-4 *4 (-1153 *3)) (-5 *1 (-437 *3 *4 *5)) (-4 *5 (-351 *3 *4)))) (-1956 (*1 *2 *2 *2) (-12 (-5 *2 (-629 *3)) (-4 *3 (-13 (-258) (-10 -8 (-15 -3969 ((-346 $) $))))) (-4 *4 (-1153 *3)) (-5 *1 (-437 *3 *4 *5)) (-4 *5 (-351 *3 *4)))) (-1955 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-629 *3)) (-4 *3 (-13 (-258) (-10 -8 (-15 -3969 ((-346 $) $))))) (-4 *4 (-1153 *3)) (-5 *1 (-437 *3 *4 *5)) (-4 *5 (-351 *3 *4)))) (-1955 (*1 *2 *2 *2) (-12 (-5 *2 (-629 *3)) (-4 *3 (-13 (-258) (-10 -8 (-15 -3969 ((-346 $) $))))) (-4 *4 (-1153 *3)) (-5 *1 (-437 *3 *4 *5)) (-4 *5 (-351 *3 *4)))) (-1954 (*1 *2 *2 *2) (-12 (-5 *2 (-693)) (-4 *3 (-13 (-258) (-10 -8 (-15 -3969 ((-346 $) $))))) (-4 *4 (-1153 *3)) (-5 *1 (-437 *3 *4 *5)) (-4 *5 (-351 *3 *4)))) (-1953 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-629 *2)) (-5 *4 (-483)) (-4 *2 (-13 (-258) (-10 -8 (-15 -3969 ((-346 $) $))))) (-4 *5 (-1153 *2)) (-5 *1 (-437 *2 *5 *6)) (-4 *6 (-351 *2 *5)))) (-1952 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-629 *2)) (-5 *4 (-693)) (-4 *2 (-13 (-258) (-10 -8 (-15 -3969 ((-346 $) $))))) (-4 *5 (-1153 *2)) (-5 *1 (-437 *2 *5 *6)) (-4 *6 (-351 *2 *5)))) (-3327 (*1 *2 *3) (-12 (-5 *3 (-629 *2)) (-4 *4 (-1153 *2)) (-4 *2 (-13 (-258) (-10 -8 (-15 -3969 ((-346 $) $))))) (-5 *1 (-437 *2 *4 *5)) (-4 *5 (-351 *2 *4))))) -((-2567 (((-85) $ $) NIL T ELT)) (-2312 (($ $) 44 T ELT)) (-3320 (($ $ $) 41 T ELT)) (-2197 (((-1183) $ (-483) (-483)) NIL (|has| $ (-6 -3994)) ELT)) (-1730 (((-85) $) NIL (|has| (-85) (-755)) ELT) (((-85) (-1 (-85) (-85) (-85)) $) NIL T ELT)) (-1728 (($ $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-85) (-755))) ELT) (($ (-1 (-85) (-85) (-85)) $) NIL (|has| $ (-6 -3994)) ELT)) (-2908 (($ $) NIL (|has| (-85) (-755)) ELT) (($ (-1 (-85) (-85) (-85)) $) NIL T ELT)) (-3786 (((-85) $ (-1144 (-483)) (-85)) NIL (|has| $ (-6 -3994)) ELT) (((-85) $ (-483) (-85)) 43 (|has| $ (-6 -3994)) ELT)) (-3708 (($ (-1 (-85) (-85)) $) NIL (|has| $ (-6 -3993)) ELT)) (-3722 (($) NIL T CONST)) (-2296 (($ $) NIL (|has| $ (-6 -3994)) ELT)) (-2297 (($ $) NIL T ELT)) (-1351 (($ $) NIL (-12 (|has| $ (-6 -3993)) (|has| (-85) (-1012))) ELT)) (-3404 (($ (-1 (-85) (-85)) $) NIL (|has| $ (-6 -3993)) ELT) (($ (-85) $) NIL (-12 (|has| $ (-6 -3993)) (|has| (-85) (-1012))) ELT)) (-3840 (((-85) (-1 (-85) (-85) (-85)) $) NIL (|has| $ (-6 -3993)) ELT) (((-85) (-1 (-85) (-85) (-85)) $ (-85)) NIL (|has| $ (-6 -3993)) ELT) (((-85) (-1 (-85) (-85) (-85)) $ (-85) (-85)) NIL (-12 (|has| $ (-6 -3993)) (|has| (-85) (-1012))) ELT)) (-1574 (((-85) $ (-483) (-85)) NIL (|has| $ (-6 -3994)) ELT)) (-3111 (((-85) $ (-483)) NIL T ELT)) (-3417 (((-483) (-85) $ (-483)) NIL (|has| (-85) (-1012)) ELT) (((-483) (-85) $) NIL (|has| (-85) (-1012)) ELT) (((-483) (-1 (-85) (-85)) $) NIL T ELT)) (-2888 (((-582 (-85)) $) NIL (|has| $ (-6 -3993)) ELT)) (-2560 (($ $ $) 39 T ELT)) (-2559 (($ $) NIL T ELT)) (-1298 (($ $ $) NIL T ELT)) (-3612 (($ (-693) (-85)) 27 T ELT)) (-1299 (($ $ $) NIL T ELT)) (-2199 (((-483) $) 8 (|has| (-483) (-755)) ELT)) (-2530 (($ $ $) NIL T ELT)) (-3516 (($ $ $) NIL (|has| (-85) (-755)) ELT) (($ (-1 (-85) (-85) (-85)) $ $) NIL T ELT)) (-2607 (((-582 (-85)) $) NIL (|has| $ (-6 -3993)) ELT)) (-3244 (((-85) (-85) $) NIL (-12 (|has| $ (-6 -3993)) (|has| (-85) (-1012))) ELT)) (-2200 (((-483) $) NIL (|has| (-483) (-755)) ELT)) (-2856 (($ $ $) NIL T ELT)) (-1947 (($ (-1 (-85) (-85)) $) NIL (|has| $ (-6 -3994)) ELT)) (-3956 (($ (-1 (-85) (-85) (-85)) $ $) 36 T ELT) (($ (-1 (-85) (-85)) $) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-2303 (($ $ $ (-483)) NIL T ELT) (($ (-85) $ (-483)) NIL T ELT)) (-2202 (((-582 (-483)) $) NIL T ELT)) (-2203 (((-85) (-483) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3799 (((-85) $) NIL (|has| (-483) (-755)) ELT)) (-1352 (((-3 (-85) "failed") (-1 (-85) (-85)) $) NIL T ELT)) (-2198 (($ $ (-85)) NIL (|has| $ (-6 -3994)) ELT)) (-1945 (((-85) (-1 (-85) (-85)) $) NIL (|has| $ (-6 -3993)) ELT)) (-3766 (($ $ (-582 (-85)) (-582 (-85))) NIL (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1012))) ELT) (($ $ (-85) (-85)) NIL (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1012))) ELT) (($ $ (-249 (-85))) NIL (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1012))) ELT) (($ $ (-582 (-249 (-85)))) NIL (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1012))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-2201 (((-85) (-85) $) NIL (-12 (|has| $ (-6 -3993)) (|has| (-85) (-1012))) ELT)) (-2204 (((-582 (-85)) $) NIL T ELT)) (-3401 (((-85) $) NIL T ELT)) (-3563 (($) 29 T ELT)) (-3798 (($ $ (-1144 (-483))) NIL T ELT) (((-85) $ (-483)) 22 T ELT) (((-85) $ (-483) (-85)) NIL T ELT)) (-2304 (($ $ (-1144 (-483))) NIL T ELT) (($ $ (-483)) NIL T ELT)) (-1944 (((-693) (-85) $) NIL (-12 (|has| $ (-6 -3993)) (|has| (-85) (-1012))) ELT) (((-693) (-1 (-85) (-85)) $) NIL (|has| $ (-6 -3993)) ELT)) (-1729 (($ $ $ (-483)) NIL (|has| $ (-6 -3994)) ELT)) (-3398 (($ $) 30 T ELT)) (-3970 (((-472) $) NIL (|has| (-85) (-552 (-472))) ELT)) (-3528 (($ (-582 (-85))) NIL T ELT)) (-3800 (($ (-582 $)) NIL T ELT) (($ $ $) NIL T ELT) (($ (-85) $) NIL T ELT) (($ $ (-85)) NIL T ELT)) (-3944 (((-771) $) 26 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-1946 (((-85) (-1 (-85) (-85)) $) NIL (|has| $ (-6 -3993)) ELT)) (-2561 (($ $ $) 37 T ELT)) (-2310 (($ $ $) 46 T ELT)) (-2565 (((-85) $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) 31 T ELT)) (-2683 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) 32 T ELT)) (-2311 (($ $ $) 45 T ELT)) (-3955 (((-693) $) 13 (|has| $ (-6 -3993)) ELT))) -(((-438 |#1|) (-96) (-483)) (T -438)) -NIL -((-1959 (((-3 |#2| #1="failed") (-1 (-3 |#1| #1#) |#4|) (-1083 |#4|)) 35 T ELT)) (-1958 (((-1083 |#4|) (-1 |#4| |#1|) |#2|) 31 T ELT) ((|#2| (-1 |#1| |#4|) (-1083 |#4|)) 22 T ELT)) (-1960 (((-3 (-629 |#2|) #1#) (-1 (-3 |#1| #1#) |#4|) (-629 (-1083 |#4|))) 46 T ELT)) (-1961 (((-1083 (-1083 |#4|)) (-1 |#4| |#1|) |#3|) 55 T ELT))) -(((-439 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1958 (|#2| (-1 |#1| |#4|) (-1083 |#4|))) (-15 -1958 ((-1083 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -1959 ((-3 |#2| #1="failed") (-1 (-3 |#1| #1#) |#4|) (-1083 |#4|))) (-15 -1960 ((-3 (-629 |#2|) #1#) (-1 (-3 |#1| #1#) |#4|) (-629 (-1083 |#4|)))) (-15 -1961 ((-1083 (-1083 |#4|)) (-1 |#4| |#1|) |#3|))) (-960) (-1153 |#1|) (-1153 |#2|) (-960)) (T -439)) -((-1961 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-960)) (-4 *7 (-960)) (-4 *6 (-1153 *5)) (-5 *2 (-1083 (-1083 *7))) (-5 *1 (-439 *5 *6 *4 *7)) (-4 *4 (-1153 *6)))) (-1960 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-629 (-1083 *8))) (-4 *5 (-960)) (-4 *8 (-960)) (-4 *6 (-1153 *5)) (-5 *2 (-629 *6)) (-5 *1 (-439 *5 *6 *7 *8)) (-4 *7 (-1153 *6)))) (-1959 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1083 *7)) (-4 *5 (-960)) (-4 *7 (-960)) (-4 *2 (-1153 *5)) (-5 *1 (-439 *5 *2 *6 *7)) (-4 *6 (-1153 *2)))) (-1958 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-960)) (-4 *7 (-960)) (-4 *4 (-1153 *5)) (-5 *2 (-1083 *7)) (-5 *1 (-439 *5 *4 *6 *7)) (-4 *6 (-1153 *4)))) (-1958 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1083 *7)) (-4 *5 (-960)) (-4 *7 (-960)) (-4 *2 (-1153 *5)) (-5 *1 (-439 *5 *2 *6 *7)) (-4 *6 (-1153 *2))))) -((-2567 (((-85) $ $) NIL T ELT)) (-2530 (($ $ $) NIL T ELT)) (-2856 (($ $ $) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-1962 (((-1183) $) 25 T ELT)) (-3798 (((-1071) $ (-1088)) 30 T ELT)) (-3615 (((-1183) $) 20 T ELT)) (-3944 (((-771) $) 27 T ELT) (($ (-1071)) 26 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2565 (((-85) $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) 12 T ELT)) (-2683 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) 10 T ELT))) -(((-440) (-13 (-755) (-554 (-1071)) (-10 -8 (-15 -3798 ((-1071) $ (-1088))) (-15 -3615 ((-1183) $)) (-15 -1962 ((-1183) $))))) (T -440)) -((-3798 (*1 *2 *1 *3) (-12 (-5 *3 (-1088)) (-5 *2 (-1071)) (-5 *1 (-440)))) (-3615 (*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-440)))) (-1962 (*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-440))))) -((-3739 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19 T ELT)) (-3737 ((|#1| |#4|) 10 T ELT)) (-3738 ((|#3| |#4|) 17 T ELT))) -(((-441 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3737 (|#1| |#4|)) (-15 -3738 (|#3| |#4|)) (-15 -3739 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-494) (-903 |#1|) (-322 |#1|) (-322 |#2|)) (T -441)) -((-3739 (*1 *2 *3) (-12 (-4 *4 (-494)) (-4 *5 (-903 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-441 *4 *5 *6 *3)) (-4 *6 (-322 *4)) (-4 *3 (-322 *5)))) (-3738 (*1 *2 *3) (-12 (-4 *4 (-494)) (-4 *5 (-903 *4)) (-4 *2 (-322 *4)) (-5 *1 (-441 *4 *5 *2 *3)) (-4 *3 (-322 *5)))) (-3737 (*1 *2 *3) (-12 (-4 *4 (-903 *2)) (-4 *2 (-494)) (-5 *1 (-441 *2 *4 *5 *3)) (-4 *5 (-322 *2)) (-4 *3 (-322 *4))))) -((-2567 (((-85) $ $) NIL T ELT)) (-1972 (((-85) $ (-582 |#3|)) 127 T ELT) (((-85) $) 128 T ELT)) (-3187 (((-85) $) 178 T ELT)) (-1964 (($ $ |#4|) 117 T ELT) (($ $ |#4| (-582 |#3|)) 122 T ELT)) (-1963 (((-1078 (-582 (-856 |#1|)) (-582 (-249 (-856 |#1|)))) (-582 |#4|)) 171 (|has| |#3| (-552 (-1088))) ELT)) (-1971 (($ $ $) 107 T ELT) (($ $ |#4|) 105 T ELT)) (-2409 (((-85) $) 177 T ELT)) (-1968 (($ $) 132 T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3237 (($ $ $) 99 T ELT) (($ (-582 $)) 101 T ELT)) (-1973 (((-85) |#4| $) 130 T ELT)) (-1974 (((-85) $ $) 82 T ELT)) (-1967 (($ (-582 |#4|)) 106 T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-1966 (($ (-582 |#4|)) 175 T ELT)) (-1965 (((-85) $) 176 T ELT)) (-2250 (($ $) 85 T ELT)) (-2694 (((-582 |#4|) $) 73 T ELT)) (-1970 (((-2 (|:| |mval| (-629 |#1|)) (|:| |invmval| (-629 |#1|)) (|:| |genIdeal| $)) $ (-582 |#3|)) NIL T ELT)) (-1975 (((-85) |#4| $) 89 T ELT)) (-3909 (((-483) $ (-582 |#3|)) 134 T ELT) (((-483) $) 135 T ELT)) (-3944 (((-771) $) 174 T ELT) (($ (-582 |#4|)) 102 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-1969 (($ (-2 (|:| |mval| (-629 |#1|)) (|:| |invmval| (-629 |#1|)) (|:| |genIdeal| $))) NIL T ELT)) (-3055 (((-85) $ $) 84 T ELT)) (-3837 (($ $ $) 109 T ELT)) (** (($ $ (-693)) 115 T ELT)) (* (($ $ $) 113 T ELT))) -(((-442 |#1| |#2| |#3| |#4|) (-13 (-1012) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-693))) (-15 -3837 ($ $ $)) (-15 -2409 ((-85) $)) (-15 -3187 ((-85) $)) (-15 -1975 ((-85) |#4| $)) (-15 -1974 ((-85) $ $)) (-15 -1973 ((-85) |#4| $)) (-15 -1972 ((-85) $ (-582 |#3|))) (-15 -1972 ((-85) $)) (-15 -3237 ($ $ $)) (-15 -3237 ($ (-582 $))) (-15 -1971 ($ $ $)) (-15 -1971 ($ $ |#4|)) (-15 -2250 ($ $)) (-15 -1970 ((-2 (|:| |mval| (-629 |#1|)) (|:| |invmval| (-629 |#1|)) (|:| |genIdeal| $)) $ (-582 |#3|))) (-15 -1969 ($ (-2 (|:| |mval| (-629 |#1|)) (|:| |invmval| (-629 |#1|)) (|:| |genIdeal| $)))) (-15 -3909 ((-483) $ (-582 |#3|))) (-15 -3909 ((-483) $)) (-15 -1968 ($ $)) (-15 -1967 ($ (-582 |#4|))) (-15 -1966 ($ (-582 |#4|))) (-15 -1965 ((-85) $)) (-15 -2694 ((-582 |#4|) $)) (-15 -3944 ($ (-582 |#4|))) (-15 -1964 ($ $ |#4|)) (-15 -1964 ($ $ |#4| (-582 |#3|))) (IF (|has| |#3| (-552 (-1088))) (-15 -1963 ((-1078 (-582 (-856 |#1|)) (-582 (-249 (-856 |#1|)))) (-582 |#4|))) |%noBranch|))) (-312) (-716) (-755) (-860 |#1| |#2| |#3|)) (T -442)) -((* (*1 *1 *1 *1) (-12 (-4 *2 (-312)) (-4 *3 (-716)) (-4 *4 (-755)) (-5 *1 (-442 *2 *3 *4 *5)) (-4 *5 (-860 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-693)) (-4 *3 (-312)) (-4 *4 (-716)) (-4 *5 (-755)) (-5 *1 (-442 *3 *4 *5 *6)) (-4 *6 (-860 *3 *4 *5)))) (-3837 (*1 *1 *1 *1) (-12 (-4 *2 (-312)) (-4 *3 (-716)) (-4 *4 (-755)) (-5 *1 (-442 *2 *3 *4 *5)) (-4 *5 (-860 *2 *3 *4)))) (-2409 (*1 *2 *1) (-12 (-4 *3 (-312)) (-4 *4 (-716)) (-4 *5 (-755)) (-5 *2 (-85)) (-5 *1 (-442 *3 *4 *5 *6)) (-4 *6 (-860 *3 *4 *5)))) (-3187 (*1 *2 *1) (-12 (-4 *3 (-312)) (-4 *4 (-716)) (-4 *5 (-755)) (-5 *2 (-85)) (-5 *1 (-442 *3 *4 *5 *6)) (-4 *6 (-860 *3 *4 *5)))) (-1975 (*1 *2 *3 *1) (-12 (-4 *4 (-312)) (-4 *5 (-716)) (-4 *6 (-755)) (-5 *2 (-85)) (-5 *1 (-442 *4 *5 *6 *3)) (-4 *3 (-860 *4 *5 *6)))) (-1974 (*1 *2 *1 *1) (-12 (-4 *3 (-312)) (-4 *4 (-716)) (-4 *5 (-755)) (-5 *2 (-85)) (-5 *1 (-442 *3 *4 *5 *6)) (-4 *6 (-860 *3 *4 *5)))) (-1973 (*1 *2 *3 *1) (-12 (-4 *4 (-312)) (-4 *5 (-716)) (-4 *6 (-755)) (-5 *2 (-85)) (-5 *1 (-442 *4 *5 *6 *3)) (-4 *3 (-860 *4 *5 *6)))) (-1972 (*1 *2 *1 *3) (-12 (-5 *3 (-582 *6)) (-4 *6 (-755)) (-4 *4 (-312)) (-4 *5 (-716)) (-5 *2 (-85)) (-5 *1 (-442 *4 *5 *6 *7)) (-4 *7 (-860 *4 *5 *6)))) (-1972 (*1 *2 *1) (-12 (-4 *3 (-312)) (-4 *4 (-716)) (-4 *5 (-755)) (-5 *2 (-85)) (-5 *1 (-442 *3 *4 *5 *6)) (-4 *6 (-860 *3 *4 *5)))) (-3237 (*1 *1 *1 *1) (-12 (-4 *2 (-312)) (-4 *3 (-716)) (-4 *4 (-755)) (-5 *1 (-442 *2 *3 *4 *5)) (-4 *5 (-860 *2 *3 *4)))) (-3237 (*1 *1 *2) (-12 (-5 *2 (-582 (-442 *3 *4 *5 *6))) (-4 *3 (-312)) (-4 *4 (-716)) (-4 *5 (-755)) (-5 *1 (-442 *3 *4 *5 *6)) (-4 *6 (-860 *3 *4 *5)))) (-1971 (*1 *1 *1 *1) (-12 (-4 *2 (-312)) (-4 *3 (-716)) (-4 *4 (-755)) (-5 *1 (-442 *2 *3 *4 *5)) (-4 *5 (-860 *2 *3 *4)))) (-1971 (*1 *1 *1 *2) (-12 (-4 *3 (-312)) (-4 *4 (-716)) (-4 *5 (-755)) (-5 *1 (-442 *3 *4 *5 *2)) (-4 *2 (-860 *3 *4 *5)))) (-2250 (*1 *1 *1) (-12 (-4 *2 (-312)) (-4 *3 (-716)) (-4 *4 (-755)) (-5 *1 (-442 *2 *3 *4 *5)) (-4 *5 (-860 *2 *3 *4)))) (-1970 (*1 *2 *1 *3) (-12 (-5 *3 (-582 *6)) (-4 *6 (-755)) (-4 *4 (-312)) (-4 *5 (-716)) (-5 *2 (-2 (|:| |mval| (-629 *4)) (|:| |invmval| (-629 *4)) (|:| |genIdeal| (-442 *4 *5 *6 *7)))) (-5 *1 (-442 *4 *5 *6 *7)) (-4 *7 (-860 *4 *5 *6)))) (-1969 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-629 *3)) (|:| |invmval| (-629 *3)) (|:| |genIdeal| (-442 *3 *4 *5 *6)))) (-4 *3 (-312)) (-4 *4 (-716)) (-4 *5 (-755)) (-5 *1 (-442 *3 *4 *5 *6)) (-4 *6 (-860 *3 *4 *5)))) (-3909 (*1 *2 *1 *3) (-12 (-5 *3 (-582 *6)) (-4 *6 (-755)) (-4 *4 (-312)) (-4 *5 (-716)) (-5 *2 (-483)) (-5 *1 (-442 *4 *5 *6 *7)) (-4 *7 (-860 *4 *5 *6)))) (-3909 (*1 *2 *1) (-12 (-4 *3 (-312)) (-4 *4 (-716)) (-4 *5 (-755)) (-5 *2 (-483)) (-5 *1 (-442 *3 *4 *5 *6)) (-4 *6 (-860 *3 *4 *5)))) (-1968 (*1 *1 *1) (-12 (-4 *2 (-312)) (-4 *3 (-716)) (-4 *4 (-755)) (-5 *1 (-442 *2 *3 *4 *5)) (-4 *5 (-860 *2 *3 *4)))) (-1967 (*1 *1 *2) (-12 (-5 *2 (-582 *6)) (-4 *6 (-860 *3 *4 *5)) (-4 *3 (-312)) (-4 *4 (-716)) (-4 *5 (-755)) (-5 *1 (-442 *3 *4 *5 *6)))) (-1966 (*1 *1 *2) (-12 (-5 *2 (-582 *6)) (-4 *6 (-860 *3 *4 *5)) (-4 *3 (-312)) (-4 *4 (-716)) (-4 *5 (-755)) (-5 *1 (-442 *3 *4 *5 *6)))) (-1965 (*1 *2 *1) (-12 (-4 *3 (-312)) (-4 *4 (-716)) (-4 *5 (-755)) (-5 *2 (-85)) (-5 *1 (-442 *3 *4 *5 *6)) (-4 *6 (-860 *3 *4 *5)))) (-2694 (*1 *2 *1) (-12 (-4 *3 (-312)) (-4 *4 (-716)) (-4 *5 (-755)) (-5 *2 (-582 *6)) (-5 *1 (-442 *3 *4 *5 *6)) (-4 *6 (-860 *3 *4 *5)))) (-3944 (*1 *1 *2) (-12 (-5 *2 (-582 *6)) (-4 *6 (-860 *3 *4 *5)) (-4 *3 (-312)) (-4 *4 (-716)) (-4 *5 (-755)) (-5 *1 (-442 *3 *4 *5 *6)))) (-1964 (*1 *1 *1 *2) (-12 (-4 *3 (-312)) (-4 *4 (-716)) (-4 *5 (-755)) (-5 *1 (-442 *3 *4 *5 *2)) (-4 *2 (-860 *3 *4 *5)))) (-1964 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-582 *6)) (-4 *6 (-755)) (-4 *4 (-312)) (-4 *5 (-716)) (-5 *1 (-442 *4 *5 *6 *2)) (-4 *2 (-860 *4 *5 *6)))) (-1963 (*1 *2 *3) (-12 (-5 *3 (-582 *7)) (-4 *7 (-860 *4 *5 *6)) (-4 *6 (-552 (-1088))) (-4 *4 (-312)) (-4 *5 (-716)) (-4 *6 (-755)) (-5 *2 (-1078 (-582 (-856 *4)) (-582 (-249 (-856 *4))))) (-5 *1 (-442 *4 *5 *6 *7))))) -((-1976 (((-85) (-442 (-348 (-483)) (-197 |#2| (-693)) (-772 |#1|) (-206 |#1| (-348 (-483))))) 178 T ELT)) (-1977 (((-85) (-442 (-348 (-483)) (-197 |#2| (-693)) (-772 |#1|) (-206 |#1| (-348 (-483))))) 179 T ELT)) (-1978 (((-442 (-348 (-483)) (-197 |#2| (-693)) (-772 |#1|) (-206 |#1| (-348 (-483)))) (-442 (-348 (-483)) (-197 |#2| (-693)) (-772 |#1|) (-206 |#1| (-348 (-483))))) 129 T ELT)) (-3721 (((-85) (-442 (-348 (-483)) (-197 |#2| (-693)) (-772 |#1|) (-206 |#1| (-348 (-483))))) NIL T ELT)) (-1979 (((-582 (-442 (-348 (-483)) (-197 |#2| (-693)) (-772 |#1|) (-206 |#1| (-348 (-483))))) (-442 (-348 (-483)) (-197 |#2| (-693)) (-772 |#1|) (-206 |#1| (-348 (-483))))) 181 T ELT)) (-1980 (((-442 (-348 (-483)) (-197 |#2| (-693)) (-772 |#1|) (-206 |#1| (-348 (-483)))) (-442 (-348 (-483)) (-197 |#2| (-693)) (-772 |#1|) (-206 |#1| (-348 (-483)))) (-582 (-772 |#1|))) 197 T ELT))) -(((-443 |#1| |#2|) (-10 -7 (-15 -1976 ((-85) (-442 (-348 (-483)) (-197 |#2| (-693)) (-772 |#1|) (-206 |#1| (-348 (-483)))))) (-15 -1977 ((-85) (-442 (-348 (-483)) (-197 |#2| (-693)) (-772 |#1|) (-206 |#1| (-348 (-483)))))) (-15 -3721 ((-85) (-442 (-348 (-483)) (-197 |#2| (-693)) (-772 |#1|) (-206 |#1| (-348 (-483)))))) (-15 -1978 ((-442 (-348 (-483)) (-197 |#2| (-693)) (-772 |#1|) (-206 |#1| (-348 (-483)))) (-442 (-348 (-483)) (-197 |#2| (-693)) (-772 |#1|) (-206 |#1| (-348 (-483)))))) (-15 -1979 ((-582 (-442 (-348 (-483)) (-197 |#2| (-693)) (-772 |#1|) (-206 |#1| (-348 (-483))))) (-442 (-348 (-483)) (-197 |#2| (-693)) (-772 |#1|) (-206 |#1| (-348 (-483)))))) (-15 -1980 ((-442 (-348 (-483)) (-197 |#2| (-693)) (-772 |#1|) (-206 |#1| (-348 (-483)))) (-442 (-348 (-483)) (-197 |#2| (-693)) (-772 |#1|) (-206 |#1| (-348 (-483)))) (-582 (-772 |#1|))))) (-582 (-1088)) (-693)) (T -443)) -((-1980 (*1 *2 *2 *3) (-12 (-5 *2 (-442 (-348 (-483)) (-197 *5 (-693)) (-772 *4) (-206 *4 (-348 (-483))))) (-5 *3 (-582 (-772 *4))) (-14 *4 (-582 (-1088))) (-14 *5 (-693)) (-5 *1 (-443 *4 *5)))) (-1979 (*1 *2 *3) (-12 (-14 *4 (-582 (-1088))) (-14 *5 (-693)) (-5 *2 (-582 (-442 (-348 (-483)) (-197 *5 (-693)) (-772 *4) (-206 *4 (-348 (-483)))))) (-5 *1 (-443 *4 *5)) (-5 *3 (-442 (-348 (-483)) (-197 *5 (-693)) (-772 *4) (-206 *4 (-348 (-483))))))) (-1978 (*1 *2 *2) (-12 (-5 *2 (-442 (-348 (-483)) (-197 *4 (-693)) (-772 *3) (-206 *3 (-348 (-483))))) (-14 *3 (-582 (-1088))) (-14 *4 (-693)) (-5 *1 (-443 *3 *4)))) (-3721 (*1 *2 *3) (-12 (-5 *3 (-442 (-348 (-483)) (-197 *5 (-693)) (-772 *4) (-206 *4 (-348 (-483))))) (-14 *4 (-582 (-1088))) (-14 *5 (-693)) (-5 *2 (-85)) (-5 *1 (-443 *4 *5)))) (-1977 (*1 *2 *3) (-12 (-5 *3 (-442 (-348 (-483)) (-197 *5 (-693)) (-772 *4) (-206 *4 (-348 (-483))))) (-14 *4 (-582 (-1088))) (-14 *5 (-693)) (-5 *2 (-85)) (-5 *1 (-443 *4 *5)))) (-1976 (*1 *2 *3) (-12 (-5 *3 (-442 (-348 (-483)) (-197 *5 (-693)) (-772 *4) (-206 *4 (-348 (-483))))) (-14 *4 (-582 (-1088))) (-14 *5 (-693)) (-5 *2 (-85)) (-5 *1 (-443 *4 *5))))) -((-3798 ((|#1| $ |#1| |#1|) 6 T ELT))) -(((-444 |#1|) (-113) (-72)) (T -444)) -NIL -(-13 (-80 |t#1|) (-10 -8 (-6 (|%Rule| |idempotence| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |t#1|)) (-3055 (|f| |x| |x|) |x|)))))) -(((-80 |#1|) . T) ((|MappingCategory| |#1| |#1| |#1|) . T) ((-1127) . T)) -((-2567 (((-85) $ $) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-1981 (($) 6 T ELT)) (-3944 (((-771) $) 10 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) 8 T ELT))) -(((-445) (-13 (-1012) (-10 -8 (-15 -1981 ($))))) (T -445)) -((-1981 (*1 *1) (-5 *1 (-445)))) -((-2567 (((-85) $ $) NIL T ELT)) (-3187 (((-85) $) NIL T ELT)) (-3772 (((-582 (-452 |#1| |#2|)) $) 10 T ELT)) (-1310 (((-3 $ "failed") $ $) NIL T ELT)) (-3722 (($) NIL T CONST)) (-3957 (($ $) NIL T ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-2892 (($ |#1| |#2|) NIL T ELT)) (-3956 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1982 ((|#2| $) NIL T ELT)) (-3173 ((|#1| $) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3970 (($ (-582 (-452 |#1| |#2|))) 15 T ELT)) (-3944 (((-771) $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2659 (($) 20 T CONST)) (-3055 (((-85) $ $) NIL T ELT)) (-3835 (($ $) 16 T ELT) (($ $ $) 36 T ELT)) (-3837 (($ $ $) NIL T ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-483) $) 25 T ELT))) -(((-446 |#1| |#2|) (-13 (-21) (-448 |#1| |#2|)) (-21) (-758)) (T -446)) -NIL -((-2567 (((-85) $ $) NIL T ELT)) (-3187 (((-85) $) 16 T ELT)) (-3772 (((-582 (-452 |#1| |#2|)) $) 13 T ELT)) (-3722 (($) NIL T CONST)) (-3957 (($ $) 39 T ELT)) (-1212 (((-85) $ $) 44 T ELT)) (-2892 (($ |#1| |#2|) 36 T ELT)) (-3956 (($ (-1 |#1| |#1|) $) 38 T ELT)) (-1982 ((|#2| $) NIL T ELT)) (-3173 ((|#1| $) 41 T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3970 (($ (-582 (-452 |#1| |#2|))) 11 T ELT)) (-3944 (((-771) $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2659 (($) 12 T CONST)) (-3055 (((-85) $ $) NIL T ELT)) (-3837 (($ $ $) 30 T ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) 35 T ELT))) -(((-447 |#1| |#2|) (-13 (-23) (-448 |#1| |#2|)) (-23) (-758)) (T -447)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-3772 (((-582 (-452 |#1| |#2|)) $) 16 T ELT)) (-3957 (($ $) 17 T ELT)) (-2892 (($ |#1| |#2|) 20 T ELT)) (-3956 (($ (-1 |#1| |#1|) $) 21 T ELT)) (-1982 ((|#2| $) 18 T ELT)) (-3173 ((|#1| $) 19 T ELT)) (-3241 (((-1071) $) 15 (-12 (|has| |#2| (-1012)) (|has| |#1| (-1012))) ELT)) (-3242 (((-1032) $) 14 (-12 (|has| |#2| (-1012)) (|has| |#1| (-1012))) ELT)) (-3970 (($ (-582 (-452 |#1| |#2|))) 22 T ELT)) (-3944 (((-771) $) 13 (-12 (|has| |#2| (-1012)) (|has| |#1| (-1012))) ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-3055 (((-85) $ $) 8 T ELT))) -(((-448 |#1| |#2|) (-113) (-72) (-758)) (T -448)) -((-3956 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-448 *3 *4)) (-4 *3 (-72)) (-4 *4 (-758)))) (-2892 (*1 *1 *2 *3) (-12 (-4 *1 (-448 *2 *3)) (-4 *2 (-72)) (-4 *3 (-758)))) (-3173 (*1 *2 *1) (-12 (-4 *1 (-448 *2 *3)) (-4 *3 (-758)) (-4 *2 (-72)))) (-1982 (*1 *2 *1) (-12 (-4 *1 (-448 *3 *2)) (-4 *3 (-72)) (-4 *2 (-758)))) (-3957 (*1 *1 *1) (-12 (-4 *1 (-448 *2 *3)) (-4 *2 (-72)) (-4 *3 (-758)))) (-3772 (*1 *2 *1) (-12 (-4 *1 (-448 *3 *4)) (-4 *3 (-72)) (-4 *4 (-758)) (-5 *2 (-582 (-452 *3 *4)))))) -(-13 (-72) (-556 (-582 (-452 |t#1| |t#2|))) (-10 -8 (IF (|has| |t#1| (-1012)) (IF (|has| |t#2| (-1012)) (-6 (-1012)) |%noBranch|) |%noBranch|) (-15 -3956 ($ (-1 |t#1| |t#1|) $)) (-15 -2892 ($ |t#1| |t#2|)) (-15 -3173 (|t#1| $)) (-15 -1982 (|t#2| $)) (-15 -3957 ($ $)) (-15 -3772 ((-582 (-452 |t#1| |t#2|)) $)))) -(((-72) . T) ((-551 (-771)) -12 (|has| |#1| (-1012)) (|has| |#2| (-1012))) ((-556 (-582 (-452 |#1| |#2|))) . T) ((-13) . T) ((-1012) -12 (|has| |#1| (-1012)) (|has| |#2| (-1012))) ((-1127) . T)) -((-2567 (((-85) $ $) NIL T ELT)) (-3772 (((-582 (-452 |#1| |#2|)) $) 29 T ELT)) (-3957 (($ $) 23 T ELT)) (-2892 (($ |#1| |#2|) 19 T ELT)) (-3956 (($ (-1 |#1| |#1|) $) 21 T ELT)) (-1982 ((|#2| $) 28 T ELT)) (-3173 ((|#1| $) 27 T ELT)) (-3241 (((-1071) $) NIL (-12 (|has| |#1| (-1012)) (|has| |#2| (-1012))) ELT)) (-3242 (((-1032) $) NIL (-12 (|has| |#1| (-1012)) (|has| |#2| (-1012))) ELT)) (-3970 (($ (-582 (-452 |#1| |#2|))) 30 T ELT)) (-1983 (($ $ $ (-1 |#1| |#1| |#1|) (-1 (-85) |#1| |#1|)) 40 T ELT)) (-3944 (((-771) $) 17 (-12 (|has| |#1| (-1012)) (|has| |#2| (-1012))) ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-449 |#1| |#2|) (-13 (-448 |#1| |#2|) (-10 -8 (-15 -1983 ($ $ $ (-1 |#1| |#1| |#1|) (-1 (-85) |#1| |#1|))))) (-72) (-758)) (T -449)) -((-1983 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4 *4)) (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-72)) (-5 *1 (-449 *4 *5)) (-4 *5 (-758))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3187 (((-85) $) NIL T ELT)) (-3772 (((-582 (-452 |#1| |#2|)) $) 10 T ELT)) (-3722 (($) NIL T CONST)) (-3957 (($ $) NIL T ELT)) (-3185 (((-85) $) NIL T ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-2892 (($ |#1| |#2|) NIL T ELT)) (-2530 (($ $ $) NIL T ELT)) (-2856 (($ $ $) NIL T ELT)) (-3956 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1982 ((|#2| $) NIL T ELT)) (-3173 ((|#1| $) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3970 (($ (-582 (-452 |#1| |#2|))) NIL T ELT)) (-3944 (((-771) $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2659 (($) NIL T CONST)) (-2565 (((-85) $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-2683 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) 21 T ELT)) (-3837 (($ $ $) NIL T ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) NIL T ELT))) -(((-450 |#1| |#2|) (-13 (-715) (-448 |#1| |#2|)) (-715) (-758)) (T -450)) -NIL -((-2567 (((-85) $ $) NIL T ELT)) (-3187 (((-85) $) NIL T ELT)) (-3772 (((-582 (-452 |#1| |#2|)) $) NIL T ELT)) (-2482 (($ $ $) 24 T ELT)) (-1310 (((-3 $ "failed") $ $) 20 T ELT)) (-3722 (($) NIL T CONST)) (-3957 (($ $) NIL T ELT)) (-3185 (((-85) $) NIL T ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-2892 (($ |#1| |#2|) NIL T ELT)) (-2530 (($ $ $) NIL T ELT)) (-2856 (($ $ $) NIL T ELT)) (-3956 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1982 ((|#2| $) NIL T ELT)) (-3173 ((|#1| $) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3970 (($ (-582 (-452 |#1| |#2|))) NIL T ELT)) (-3944 (((-771) $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2659 (($) NIL T CONST)) (-2565 (((-85) $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-2683 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-3837 (($ $ $) NIL T ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) NIL T ELT))) -(((-451 |#1| |#2|) (-13 (-716) (-448 |#1| |#2|)) (-716) (-755)) (T -451)) -NIL -((-2567 (((-85) $ $) NIL T ELT)) (-1984 (($ |#2| |#1|) 9 T ELT)) (-2399 ((|#2| $) 11 T ELT)) (-3944 (((-781 |#2| |#1|) $) 14 T ELT)) (-3675 ((|#1| $) 13 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-452 |#1| |#2|) (-13 (-72) (-551 (-781 |#2| |#1|)) (-10 -8 (-15 -1984 ($ |#2| |#1|)) (-15 -2399 (|#2| $)) (-15 -3675 (|#1| $)))) (-72) (-758)) (T -452)) -((-1984 (*1 *1 *2 *3) (-12 (-5 *1 (-452 *3 *2)) (-4 *3 (-72)) (-4 *2 (-758)))) (-2399 (*1 *2 *1) (-12 (-4 *2 (-758)) (-5 *1 (-452 *3 *2)) (-4 *3 (-72)))) (-3675 (*1 *2 *1) (-12 (-4 *2 (-72)) (-5 *1 (-452 *2 *3)) (-4 *3 (-758))))) -((-3766 (($ $ (-582 |#2|) (-582 |#3|)) NIL T ELT) (($ $ |#2| |#3|) 12 T ELT))) -(((-453 |#1| |#2| |#3|) (-10 -7 (-15 -3766 (|#1| |#1| |#2| |#3|)) (-15 -3766 (|#1| |#1| (-582 |#2|) (-582 |#3|)))) (-454 |#2| |#3|) (-1012) (-1127)) (T -453)) -NIL -((-3766 (($ $ (-582 |#1|) (-582 |#2|)) 7 T ELT) (($ $ |#1| |#2|) 6 T ELT))) -(((-454 |#1| |#2|) (-113) (-1012) (-1127)) (T -454)) -((-3766 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-582 *4)) (-5 *3 (-582 *5)) (-4 *1 (-454 *4 *5)) (-4 *4 (-1012)) (-4 *5 (-1127)))) (-3766 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-454 *2 *3)) (-4 *2 (-1012)) (-4 *3 (-1127))))) -(-13 (-10 -8 (-15 -3766 ($ $ |t#1| |t#2|)) (-15 -3766 ($ $ (-582 |t#1|) (-582 |t#2|))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3187 (((-85) $) 17 T ELT)) (-3772 (((-582 (-2 (|:| |gen| |#1|) (|:| -3941 |#2|))) $) 19 T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3135 (((-693) $) NIL T ELT)) (-3722 (($) NIL T CONST)) (-3156 (((-3 |#1| #1#) $) NIL T ELT)) (-3155 ((|#1| $) NIL T ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-2298 ((|#1| $ (-483)) 24 T ELT)) (-1620 ((|#2| $ (-483)) 22 T ELT)) (-2289 (($ (-1 |#1| |#1|) $) 48 T ELT)) (-1619 (($ (-1 |#2| |#2|) $) 45 T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-1618 (($ $ $) 55 (|has| |#2| (-715)) ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3944 (((-771) $) 44 T ELT) (($ |#1|) NIL T ELT)) (-3675 ((|#2| |#1| $) 51 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2659 (($) 11 T CONST)) (-3055 (((-85) $ $) 30 T ELT)) (-3837 (($ $ $) 28 T ELT) (($ |#1| $) 26 T ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) 37 T ELT) (($ |#2| |#1|) 32 T ELT))) -(((-455 |#1| |#2| |#3|) (-274 |#1| |#2|) (-1012) (-104) |#2|) (T -455)) -NIL -((-2567 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2197 (((-1183) $ (-483) (-483)) NIL (|has| $ (-6 -3994)) ELT)) (-1730 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-755)) ELT)) (-1728 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-6 -3994)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-755))) ELT)) (-2908 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-755)) ELT)) (-1985 (((-85) (-85)) 32 T ELT)) (-3786 ((|#1| $ (-483) |#1|) 42 (|has| $ (-6 -3994)) ELT) ((|#1| $ (-1144 (-483)) |#1|) NIL (|has| $ (-6 -3994)) ELT)) (-1568 (($ (-1 (-85) |#1|) $) 79 T ELT)) (-3708 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3722 (($) NIL T CONST)) (-2296 (($ $) NIL (|has| $ (-6 -3994)) ELT)) (-2297 (($ $) NIL T ELT)) (-2367 (($ $) 83 (|has| |#1| (-1012)) ELT)) (-1351 (($ $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#1| (-1012))) ELT)) (-3403 (($ |#1| $) NIL (|has| |#1| (-1012)) ELT) (($ (-1 (-85) |#1|) $) 66 T ELT)) (-3404 (($ |#1| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#1| (-1012))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3840 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3993)) (|has| |#1| (-1012))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3993)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-1574 ((|#1| $ (-483) |#1|) NIL (|has| $ (-6 -3994)) ELT)) (-3111 ((|#1| $ (-483)) NIL T ELT)) (-3417 (((-483) (-1 (-85) |#1|) $) NIL T ELT) (((-483) |#1| $) NIL (|has| |#1| (-1012)) ELT) (((-483) |#1| $ (-483)) NIL (|has| |#1| (-1012)) ELT)) (-1986 (($ $ (-483)) 19 T ELT)) (-1987 (((-693) $) 13 T ELT)) (-2888 (((-582 |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3612 (($ (-693) |#1|) 31 T ELT)) (-2199 (((-483) $) 29 (|has| (-483) (-755)) ELT)) (-2530 (($ $ $) NIL (|has| |#1| (-755)) ELT)) (-2855 (($ $ $) NIL (|has| |#1| (-755)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) 57 T ELT)) (-3516 (($ (-1 (-85) |#1| |#1|) $ $) 58 T ELT) (($ $ $) NIL (|has| |#1| (-755)) ELT)) (-2607 (((-582 |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3244 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#1| (-1012))) ELT)) (-2200 (((-483) $) 28 (|has| (-483) (-755)) ELT)) (-2856 (($ $ $) NIL (|has| |#1| (-755)) ELT)) (-1947 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3956 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3241 (((-1071) $) NIL (|has| |#1| (-1012)) ELT)) (-3607 (($ $ $ (-483)) 75 T ELT) (($ |#1| $ (-483)) 59 T ELT)) (-2303 (($ |#1| $ (-483)) NIL T ELT) (($ $ $ (-483)) NIL T ELT)) (-2202 (((-582 (-483)) $) NIL T ELT)) (-2203 (((-85) (-483) $) NIL T ELT)) (-3242 (((-1032) $) NIL (|has| |#1| (-1012)) ELT)) (-1988 (($ (-582 |#1|)) 43 T ELT)) (-3799 ((|#1| $) NIL (|has| (-483) (-755)) ELT)) (-1352 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2198 (($ $ |#1|) 24 (|has| $ (-6 -3994)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3766 (($ $ (-582 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-582 |#1|) (-582 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT)) (-1220 (((-85) $ $) 62 T ELT)) (-2201 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#1| (-1012))) ELT)) (-2204 (((-582 |#1|) $) NIL T ELT)) (-3401 (((-85) $) NIL T ELT)) (-3563 (($) 21 T ELT)) (-3798 ((|#1| $ (-483) |#1|) NIL T ELT) ((|#1| $ (-483)) 55 T ELT) (($ $ (-1144 (-483))) NIL T ELT)) (-1569 (($ $ (-1144 (-483))) 73 T ELT) (($ $ (-483)) 67 T ELT)) (-2304 (($ $ (-483)) NIL T ELT) (($ $ (-1144 (-483))) NIL T ELT)) (-1944 (((-693) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3993)) ELT) (((-693) |#1| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#1| (-1012))) ELT)) (-1729 (($ $ $ (-483)) 63 (|has| $ (-6 -3994)) ELT)) (-3398 (($ $) 53 T ELT)) (-3970 (((-472) $) NIL (|has| |#1| (-552 (-472))) ELT)) (-3528 (($ (-582 |#1|)) NIL T ELT)) (-3789 (($ $ $) 64 T ELT) (($ $ |#1|) 61 T ELT)) (-3800 (($ $ |#1|) NIL T ELT) (($ |#1| $) 60 T ELT) (($ $ $) NIL T ELT) (($ (-582 $)) NIL T ELT)) (-3944 (((-771) $) NIL (|has| |#1| (-551 (-771))) ELT)) (-1263 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-2565 (((-85) $ $) NIL (|has| |#1| (-755)) ELT)) (-2566 (((-85) $ $) NIL (|has| |#1| (-755)) ELT)) (-3055 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2683 (((-85) $ $) NIL (|has| |#1| (-755)) ELT)) (-2684 (((-85) $ $) NIL (|has| |#1| (-755)) ELT)) (-3955 (((-693) $) 22 (|has| $ (-6 -3993)) ELT))) -(((-456 |#1| |#2|) (-13 (-19 |#1|) (-237 |#1|) (-10 -8 (-15 -1988 ($ (-582 |#1|))) (-15 -1987 ((-693) $)) (-15 -1986 ($ $ (-483))) (-15 -1985 ((-85) (-85))))) (-1127) (-483)) (T -456)) -((-1988 (*1 *1 *2) (-12 (-5 *2 (-582 *3)) (-4 *3 (-1127)) (-5 *1 (-456 *3 *4)) (-14 *4 (-483)))) (-1987 (*1 *2 *1) (-12 (-5 *2 (-693)) (-5 *1 (-456 *3 *4)) (-4 *3 (-1127)) (-14 *4 (-483)))) (-1986 (*1 *1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-456 *3 *4)) (-4 *3 (-1127)) (-14 *4 *2))) (-1985 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-456 *3 *4)) (-4 *3 (-1127)) (-14 *4 (-483))))) -((-2567 (((-85) $ $) NIL T ELT)) (-1990 (((-1047) $) 12 T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-1989 (((-1047) $) 14 T ELT)) (-3920 (((-1047) $) 10 T ELT)) (-3944 (((-771) $) 20 T ELT) (($ (-1093)) NIL T ELT) (((-1093) $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-457) (-13 (-994) (-10 -8 (-15 -3920 ((-1047) $)) (-15 -1990 ((-1047) $)) (-15 -1989 ((-1047) $))))) (T -457)) -((-3920 (*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-457)))) (-1990 (*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-457)))) (-1989 (*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-457))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3187 (((-85) $) NIL T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3980 $) (|:| |associate| $)) $) NIL T ELT)) (-2062 (($ $) NIL T ELT)) (-2060 (((-85) $) NIL T ELT)) (-3930 (((-85) $) NIL T ELT)) (-3927 (((-693)) NIL T ELT)) (-3328 (((-516 |#1|) $) NIL T ELT) (($ $ (-829)) NIL (|has| (-516 |#1|) (-318)) ELT)) (-1673 (((-1100 (-829) (-693)) (-483)) NIL (|has| (-516 |#1|) (-318)) ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3773 (($ $) NIL T ELT)) (-3969 (((-346 $) $) NIL T ELT)) (-1606 (((-85) $ $) NIL T ELT)) (-3135 (((-693)) NIL (|has| (-516 |#1|) (-318)) ELT)) (-3722 (($) NIL T CONST)) (-3156 (((-3 (-516 |#1|) #1#) $) NIL T ELT)) (-3155 (((-516 |#1|) $) NIL T ELT)) (-1790 (($ (-1177 (-516 |#1|))) NIL T ELT)) (-1671 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-516 |#1|) (-318)) ELT)) (-2563 (($ $ $) NIL T ELT)) (-3465 (((-3 $ #1#) $) NIL T ELT)) (-2993 (($) NIL (|has| (-516 |#1|) (-318)) ELT)) (-2562 (($ $ $) NIL T ELT)) (-2740 (((-2 (|:| -3952 (-582 $)) (|:| -2408 $)) (-582 $)) NIL T ELT)) (-2832 (($) NIL (|has| (-516 |#1|) (-318)) ELT)) (-1678 (((-85) $) NIL (|has| (-516 |#1|) (-318)) ELT)) (-1762 (($ $ (-693)) NIL (OR (|has| (-516 |#1|) (-118)) (|has| (-516 |#1|) (-318))) ELT) (($ $) NIL (OR (|has| (-516 |#1|) (-118)) (|has| (-516 |#1|) (-318))) ELT)) (-3721 (((-85) $) NIL T ELT)) (-3770 (((-829) $) NIL (|has| (-516 |#1|) (-318)) ELT) (((-742 (-829)) $) NIL (OR (|has| (-516 |#1|) (-118)) (|has| (-516 |#1|) (-318))) ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-2409 (((-85) $) NIL T ELT)) (-2012 (($) NIL (|has| (-516 |#1|) (-318)) ELT)) (-2010 (((-85) $) NIL (|has| (-516 |#1|) (-318)) ELT)) (-3131 (((-516 |#1|) $) NIL T ELT) (($ $ (-829)) NIL (|has| (-516 |#1|) (-318)) ELT)) (-3443 (((-631 $) $) NIL (|has| (-516 |#1|) (-318)) ELT)) (-1603 (((-3 (-582 $) #1#) (-582 $) $) NIL T ELT)) (-2013 (((-1083 (-516 |#1|)) $) NIL T ELT) (((-1083 $) $ (-829)) NIL (|has| (-516 |#1|) (-318)) ELT)) (-2009 (((-829) $) NIL (|has| (-516 |#1|) (-318)) ELT)) (-1625 (((-1083 (-516 |#1|)) $) NIL (|has| (-516 |#1|) (-318)) ELT)) (-1624 (((-1083 (-516 |#1|)) $) NIL (|has| (-516 |#1|) (-318)) ELT) (((-3 (-1083 (-516 |#1|)) #1#) $ $) NIL (|has| (-516 |#1|) (-318)) ELT)) (-1626 (($ $ (-1083 (-516 |#1|))) NIL (|has| (-516 |#1|) (-318)) ELT)) (-1889 (($ $ $) NIL T ELT) (($ (-582 $)) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-2483 (($ $) NIL T ELT)) (-3444 (($) NIL (|has| (-516 |#1|) (-318)) CONST)) (-2399 (($ (-829)) NIL (|has| (-516 |#1|) (-318)) ELT)) (-3929 (((-85) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-2408 (($) NIL (|has| (-516 |#1|) (-318)) ELT)) (-2707 (((-1083 $) (-1083 $) (-1083 $)) NIL T ELT)) (-3143 (($ $ $) NIL T ELT) (($ (-582 $)) NIL T ELT)) (-1674 (((-582 (-2 (|:| -3730 (-483)) (|:| -2400 (-483))))) NIL (|has| (-516 |#1|) (-318)) ELT)) (-3730 (((-346 $) $) NIL T ELT)) (-3928 (((-742 (-829))) NIL T ELT) (((-829)) NIL T ELT)) (-1604 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3464 (((-3 $ #1#) $ $) NIL T ELT)) (-2739 (((-631 (-582 $)) (-582 $) $) NIL T ELT)) (-1605 (((-693) $) NIL T ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL T ELT)) (-1763 (((-693) $) NIL (|has| (-516 |#1|) (-318)) ELT) (((-3 (-693) #1#) $ $) NIL (OR (|has| (-516 |#1|) (-118)) (|has| (-516 |#1|) (-318))) ELT)) (-3909 (((-107)) NIL T ELT)) (-3756 (($ $ (-693)) NIL (|has| (-516 |#1|) (-318)) ELT) (($ $) NIL (|has| (-516 |#1|) (-318)) ELT)) (-3946 (((-742 (-829)) $) NIL T ELT) (((-829) $) NIL T ELT)) (-3184 (((-1083 (-516 |#1|))) NIL T ELT)) (-1672 (($) NIL (|has| (-516 |#1|) (-318)) ELT)) (-1627 (($) NIL (|has| (-516 |#1|) (-318)) ELT)) (-3223 (((-1177 (-516 |#1|)) $) NIL T ELT) (((-629 (-516 |#1|)) (-1177 $)) NIL T ELT)) (-2702 (((-3 (-1177 $) #1#) (-629 $)) NIL (|has| (-516 |#1|) (-318)) ELT)) (-3944 (((-771) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ $) NIL T ELT) (($ (-348 (-483))) NIL T ELT) (($ (-516 |#1|)) NIL T ELT)) (-2701 (($ $) NIL (|has| (-516 |#1|) (-318)) ELT) (((-631 $) $) NIL (OR (|has| (-516 |#1|) (-118)) (|has| (-516 |#1|) (-318))) ELT)) (-3125 (((-693)) NIL T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-2011 (((-1177 $)) NIL T ELT) (((-1177 $) (-829)) NIL T ELT)) (-2061 (((-85) $ $) NIL T ELT)) (-3124 (((-85) $ $) NIL T ELT)) (-3931 (((-85) $) NIL T ELT)) (-2659 (($) NIL T CONST)) (-2665 (($) NIL T CONST)) (-3926 (($ $) NIL (|has| (-516 |#1|) (-318)) ELT) (($ $ (-693)) NIL (|has| (-516 |#1|) (-318)) ELT)) (-2668 (($ $ (-693)) NIL (|has| (-516 |#1|) (-318)) ELT) (($ $) NIL (|has| (-516 |#1|) (-318)) ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-3947 (($ $ $) NIL T ELT) (($ $ (-516 |#1|)) NIL T ELT)) (-3835 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3837 (($ $ $) NIL T ELT)) (** (($ $ (-829)) NIL T ELT) (($ $ (-693)) NIL T ELT) (($ $ (-483)) NIL T ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-348 (-483))) NIL T ELT) (($ (-348 (-483)) $) NIL T ELT) (($ $ (-516 |#1|)) NIL T ELT) (($ (-516 |#1|) $) NIL T ELT))) -(((-458 |#1| |#2|) (-280 (-516 |#1|)) (-829) (-829)) (T -458)) -NIL -((-3108 ((|#4| |#4|) 38 T ELT)) (-3107 (((-693) |#4|) 45 T ELT)) (-3106 (((-693) |#4|) 46 T ELT)) (-3105 (((-582 |#3|) |#4|) 57 (|has| |#3| (-6 -3994)) ELT)) (-3588 (((-3 |#4| "failed") |#4|) 69 T ELT)) (-1991 ((|#4| |#4|) 61 T ELT)) (-3326 ((|#1| |#4|) 60 T ELT))) -(((-459 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3108 (|#4| |#4|)) (-15 -3107 ((-693) |#4|)) (-15 -3106 ((-693) |#4|)) (IF (|has| |#3| (-6 -3994)) (-15 -3105 ((-582 |#3|) |#4|)) |%noBranch|) (-15 -3326 (|#1| |#4|)) (-15 -1991 (|#4| |#4|)) (-15 -3588 ((-3 |#4| "failed") |#4|))) (-312) (-322 |#1|) (-322 |#1|) (-626 |#1| |#2| |#3|)) (T -459)) -((-3588 (*1 *2 *2) (|partial| -12 (-4 *3 (-312)) (-4 *4 (-322 *3)) (-4 *5 (-322 *3)) (-5 *1 (-459 *3 *4 *5 *2)) (-4 *2 (-626 *3 *4 *5)))) (-1991 (*1 *2 *2) (-12 (-4 *3 (-312)) (-4 *4 (-322 *3)) (-4 *5 (-322 *3)) (-5 *1 (-459 *3 *4 *5 *2)) (-4 *2 (-626 *3 *4 *5)))) (-3326 (*1 *2 *3) (-12 (-4 *4 (-322 *2)) (-4 *5 (-322 *2)) (-4 *2 (-312)) (-5 *1 (-459 *2 *4 *5 *3)) (-4 *3 (-626 *2 *4 *5)))) (-3105 (*1 *2 *3) (-12 (|has| *6 (-6 -3994)) (-4 *4 (-312)) (-4 *5 (-322 *4)) (-4 *6 (-322 *4)) (-5 *2 (-582 *6)) (-5 *1 (-459 *4 *5 *6 *3)) (-4 *3 (-626 *4 *5 *6)))) (-3106 (*1 *2 *3) (-12 (-4 *4 (-312)) (-4 *5 (-322 *4)) (-4 *6 (-322 *4)) (-5 *2 (-693)) (-5 *1 (-459 *4 *5 *6 *3)) (-4 *3 (-626 *4 *5 *6)))) (-3107 (*1 *2 *3) (-12 (-4 *4 (-312)) (-4 *5 (-322 *4)) (-4 *6 (-322 *4)) (-5 *2 (-693)) (-5 *1 (-459 *4 *5 *6 *3)) (-4 *3 (-626 *4 *5 *6)))) (-3108 (*1 *2 *2) (-12 (-4 *3 (-312)) (-4 *4 (-322 *3)) (-4 *5 (-322 *3)) (-5 *1 (-459 *3 *4 *5 *2)) (-4 *2 (-626 *3 *4 *5))))) -((-3108 ((|#8| |#4|) 20 T ELT)) (-3105 (((-582 |#3|) |#4|) 29 (|has| |#7| (-6 -3994)) ELT)) (-3588 (((-3 |#8| "failed") |#4|) 23 T ELT))) -(((-460 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3108 (|#8| |#4|)) (-15 -3588 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -3994)) (-15 -3105 ((-582 |#3|) |#4|)) |%noBranch|)) (-494) (-322 |#1|) (-322 |#1|) (-626 |#1| |#2| |#3|) (-903 |#1|) (-322 |#5|) (-322 |#5|) (-626 |#5| |#6| |#7|)) (T -460)) -((-3105 (*1 *2 *3) (-12 (|has| *9 (-6 -3994)) (-4 *4 (-494)) (-4 *5 (-322 *4)) (-4 *6 (-322 *4)) (-4 *7 (-903 *4)) (-4 *8 (-322 *7)) (-4 *9 (-322 *7)) (-5 *2 (-582 *6)) (-5 *1 (-460 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-626 *4 *5 *6)) (-4 *10 (-626 *7 *8 *9)))) (-3588 (*1 *2 *3) (|partial| -12 (-4 *4 (-494)) (-4 *5 (-322 *4)) (-4 *6 (-322 *4)) (-4 *7 (-903 *4)) (-4 *2 (-626 *7 *8 *9)) (-5 *1 (-460 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-626 *4 *5 *6)) (-4 *8 (-322 *7)) (-4 *9 (-322 *7)))) (-3108 (*1 *2 *3) (-12 (-4 *4 (-494)) (-4 *5 (-322 *4)) (-4 *6 (-322 *4)) (-4 *7 (-903 *4)) (-4 *2 (-626 *7 *8 *9)) (-5 *1 (-460 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-626 *4 *5 *6)) (-4 *8 (-322 *7)) (-4 *9 (-322 *7))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-1992 (((-582 (-1128)) $) 14 T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3944 (((-771) $) 20 T ELT) (($ (-1093)) NIL T ELT) (((-1093) $) NIL T ELT) (($ (-582 (-1128))) 12 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-461) (-13 (-994) (-10 -8 (-15 -3944 ($ (-582 (-1128)))) (-15 -1992 ((-582 (-1128)) $))))) (T -461)) -((-3944 (*1 *1 *2) (-12 (-5 *2 (-582 (-1128))) (-5 *1 (-461)))) (-1992 (*1 *2 *1) (-12 (-5 *2 (-582 (-1128))) (-5 *1 (-461))))) -((-2567 (((-85) $ $) NIL T ELT)) (-1993 (((-1047) $) 15 T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3448 (((-445) $) 12 T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3944 (((-771) $) 22 T ELT) (($ (-1093)) NIL T ELT) (((-1093) $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-462) (-13 (-994) (-10 -8 (-15 -3448 ((-445) $)) (-15 -1993 ((-1047) $))))) (T -462)) -((-3448 (*1 *2 *1) (-12 (-5 *2 (-445)) (-5 *1 (-462)))) (-1993 (*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-462))))) -((-1999 (((-631 (-1136)) $) 15 T ELT)) (-1995 (((-631 (-1134)) $) 38 T ELT)) (-1997 (((-631 (-1133)) $) 29 T ELT)) (-2000 (((-631 (-487)) $) 12 T ELT)) (-1996 (((-631 (-485)) $) 42 T ELT)) (-1998 (((-631 (-484)) $) 33 T ELT)) (-1994 (((-693) $ (-102)) 54 T ELT))) -(((-463 |#1|) (-10 -7 (-15 -1994 ((-693) |#1| (-102))) (-15 -1995 ((-631 (-1134)) |#1|)) (-15 -1996 ((-631 (-485)) |#1|)) (-15 -1997 ((-631 (-1133)) |#1|)) (-15 -1998 ((-631 (-484)) |#1|)) (-15 -1999 ((-631 (-1136)) |#1|)) (-15 -2000 ((-631 (-487)) |#1|))) (-464)) (T -463)) -NIL -((-1999 (((-631 (-1136)) $) 12 T ELT)) (-1995 (((-631 (-1134)) $) 8 T ELT)) (-1997 (((-631 (-1133)) $) 10 T ELT)) (-2000 (((-631 (-487)) $) 13 T ELT)) (-1996 (((-631 (-485)) $) 9 T ELT)) (-1998 (((-631 (-484)) $) 11 T ELT)) (-1994 (((-693) $ (-102)) 7 T ELT)) (-2001 (((-631 (-101)) $) 14 T ELT)) (-1698 (($ $) 6 T ELT))) -(((-464) (-113)) (T -464)) -((-2001 (*1 *2 *1) (-12 (-4 *1 (-464)) (-5 *2 (-631 (-101))))) (-2000 (*1 *2 *1) (-12 (-4 *1 (-464)) (-5 *2 (-631 (-487))))) (-1999 (*1 *2 *1) (-12 (-4 *1 (-464)) (-5 *2 (-631 (-1136))))) (-1998 (*1 *2 *1) (-12 (-4 *1 (-464)) (-5 *2 (-631 (-484))))) (-1997 (*1 *2 *1) (-12 (-4 *1 (-464)) (-5 *2 (-631 (-1133))))) (-1996 (*1 *2 *1) (-12 (-4 *1 (-464)) (-5 *2 (-631 (-485))))) (-1995 (*1 *2 *1) (-12 (-4 *1 (-464)) (-5 *2 (-631 (-1134))))) (-1994 (*1 *2 *1 *3) (-12 (-4 *1 (-464)) (-5 *3 (-102)) (-5 *2 (-693))))) -(-13 (-147) (-10 -8 (-15 -2001 ((-631 (-101)) $)) (-15 -2000 ((-631 (-487)) $)) (-15 -1999 ((-631 (-1136)) $)) (-15 -1998 ((-631 (-484)) $)) (-15 -1997 ((-631 (-1133)) $)) (-15 -1996 ((-631 (-485)) $)) (-15 -1995 ((-631 (-1134)) $)) (-15 -1994 ((-693) $ (-102))))) +((-1728 (*1 *2) (-12 (-4 *3 (-146)) (-5 *2 (-1178 *1)) (-4 *1 (-316 *3)))) (-3108 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-830)))) (-1891 (*1 *2 *3) (-12 (-5 *3 (-1178 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-583 (-857 *4))))) (-3223 (*1 *2 *3) (-12 (-5 *3 (-1178 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-1178 (-630 *4))))) (-1786 (*1 *2 *1 *3) (-12 (-5 *3 (-1178 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-630 *4)))) (-1785 (*1 *2 *1 *3) (-12 (-5 *3 (-1178 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-630 *4)))) (-1727 (*1 *2 *1) (-12 (-4 *1 (-316 *2)) (-4 *2 (-146)))) (-1726 (*1 *2 *1) (-12 (-4 *1 (-316 *2)) (-4 *2 (-146)))) (-1725 (*1 *2 *1) (-12 (-4 *1 (-316 *2)) (-4 *2 (-146)))) (-1724 (*1 *2 *1) (-12 (-4 *1 (-316 *2)) (-4 *2 (-146)))) (-3224 (*1 *2 *1 *3) (-12 (-5 *3 (-1178 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-1178 *4)))) (-3224 (*1 *2 *3 *3) (-12 (-5 *3 (-1178 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-630 *4)))) (-1791 (*1 *1 *2 *3) (-12 (-5 *2 (-1178 *4)) (-5 *3 (-1178 *1)) (-4 *4 (-146)) (-4 *1 (-316 *4)))) (-1790 (*1 *2 *3) (-12 (-5 *3 (-1178 *1)) (-4 *1 (-316 *2)) (-4 *2 (-146)))) (-1789 (*1 *2 *3) (-12 (-5 *3 (-1178 *1)) (-4 *1 (-316 *2)) (-4 *2 (-146)))) (-1788 (*1 *2 *3) (-12 (-5 *3 (-1178 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-630 *4)))) (-1787 (*1 *2 *3) (-12 (-5 *3 (-1178 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-630 *4)))) (-1723 (*1 *2 *1) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-1084 *3)))) (-1722 (*1 *2 *1) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-1084 *3)))) (-1721 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1720 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1719 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1718 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1717 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1716 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1715 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1714 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1713 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1712 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1711 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1710 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1709 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1708 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1707 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-3466 (*1 *1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-146)) (-4 *2 (-495)))) (-2405 (*1 *1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-146)) (-4 *2 (-495)))) (-2404 (*1 *1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-146)) (-4 *2 (-495)))) (-1706 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-4 *3 (-495)) (-5 *2 (-583 (-1178 *3))))) (-1705 (*1 *2 *1) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-4 *3 (-495)) (-5 *2 (-1084 *3)))) (-1704 (*1 *2 *1) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-4 *3 (-495)) (-5 *2 (-1084 *3)))) (-1906 (*1 *2) (|partial| -12 (-4 *3 (-495)) (-4 *3 (-146)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2012 (-583 *1)))) (-4 *1 (-316 *3)))) (-1905 (*1 *2) (|partial| -12 (-4 *3 (-495)) (-4 *3 (-146)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2012 (-583 *1)))) (-4 *1 (-316 *3)))) (-1703 (*1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-495)) (-4 *2 (-146)))) (-1702 (*1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-495)) (-4 *2 (-146)))) (-1771 (*1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-495)) (-4 *2 (-146))))) +(-13 (-683 |t#1|) (-10 -8 (-15 -1728 ((-1178 $))) (-15 -3108 ((-830))) (-15 -1891 ((-583 (-857 |t#1|)) (-1178 $))) (-15 -3223 ((-1178 (-630 |t#1|)) (-1178 $))) (-15 -1786 ((-630 |t#1|) $ (-1178 $))) (-15 -1785 ((-630 |t#1|) $ (-1178 $))) (-15 -1727 (|t#1| $)) (-15 -1726 (|t#1| $)) (-15 -1725 (|t#1| $)) (-15 -1724 (|t#1| $)) (-15 -3224 ((-1178 |t#1|) $ (-1178 $))) (-15 -3224 ((-630 |t#1|) (-1178 $) (-1178 $))) (-15 -1791 ($ (-1178 |t#1|) (-1178 $))) (-15 -1790 (|t#1| (-1178 $))) (-15 -1789 (|t#1| (-1178 $))) (-15 -1788 ((-630 |t#1|) (-1178 $))) (-15 -1787 ((-630 |t#1|) (-1178 $))) (-15 -1723 ((-1084 |t#1|) $)) (-15 -1722 ((-1084 |t#1|) $)) (-15 -1721 ((-85))) (-15 -1720 ((-85))) (-15 -1719 ((-85))) (-15 -1718 ((-85))) (-15 -1717 ((-85))) (-15 -1716 ((-85))) (-15 -1715 ((-85))) (-15 -1714 ((-85))) (-15 -1713 ((-85))) (-15 -1712 ((-85))) (-15 -1711 ((-85))) (-15 -1710 ((-85))) (-15 -1709 ((-85))) (-15 -1708 ((-85))) (-15 -1707 ((-85))) (IF (|has| |t#1| (-495)) (PROGN (-15 -3466 ((-3 $ "failed") $)) (-15 -2405 ((-3 $ "failed") $)) (-15 -2404 ((-3 $ "failed") $)) (-15 -1706 ((-583 (-1178 |t#1|)))) (-15 -1705 ((-1084 |t#1|) $)) (-15 -1704 ((-1084 |t#1|) $)) (-15 -1906 ((-3 (-2 (|:| |particular| $) (|:| -2012 (-583 $))) "failed"))) (-15 -1905 ((-3 (-2 (|:| |particular| $) (|:| -2012 (-583 $))) "failed"))) (-15 -1703 ((-3 $ "failed"))) (-15 -1702 ((-3 $ "failed"))) (-15 -1771 ((-3 $ "failed"))) (-6 -3991)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-590 |#1|) . T) ((-582 |#1|) . T) ((-654 |#1|) . T) ((-657) . T) ((-683 |#1|) . T) ((-685) . T) ((-963 |#1|) . T) ((-968 |#1|) . T) ((-1013) . T) ((-1128) . T)) +((-2568 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3723 (($) 7 T CONST)) (-2889 (((-583 |#1|) $) 30 (|has| $ (-6 -3994)) ELT)) (-2608 (((-583 |#1|) $) 29 T ELT)) (-3245 (((-85) |#1| $) 27 (|has| |#1| (-1013)) ELT)) (-1948 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3242 (((-1072) $) 22 (|has| |#1| (-1013)) ELT)) (-3243 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 32 T ELT)) (-3767 (($ $ (-583 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1221 (((-85) $ $) 11 T ELT)) (-3402 (((-85) $) 8 T ELT)) (-3564 (($) 9 T ELT)) (-1945 (((-694) (-1 (-85) |#1|) $) 31 T ELT) (((-694) |#1| $) 28 (|has| |#1| (-1013)) ELT)) (-3399 (($ $) 10 T ELT)) (-3945 (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-1264 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) 33 T ELT)) (-3056 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3956 (((-694) $) 6 T ELT))) +(((-317 |#1|) (-113) (-1128)) (T -317)) +((-3956 (*1 *2 *1) (-12 (-4 *1 (-317 *3)) (-4 *3 (-1128)) (-5 *2 (-694)))) (-1947 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-85) *4)) (-4 *1 (-317 *4)) (-4 *4 (-1128)) (-5 *2 (-85)))) (-1946 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-85) *4)) (-4 *1 (-317 *4)) (-4 *4 (-1128)) (-5 *2 (-85)))) (-1945 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-85) *4)) (-4 *1 (-317 *4)) (-4 *4 (-1128)) (-5 *2 (-694)))) (-2608 (*1 *2 *1) (-12 (-4 *1 (-317 *3)) (-4 *3 (-1128)) (-5 *2 (-583 *3)))) (-1945 (*1 *2 *3 *1) (-12 (-4 *1 (-317 *3)) (-4 *3 (-1128)) (-4 *3 (-1013)) (-5 *2 (-694)))) (-3245 (*1 *2 *3 *1) (-12 (-4 *1 (-317 *3)) (-4 *3 (-1128)) (-4 *3 (-1013)) (-5 *2 (-85))))) +(-13 (-428 |t#1|) (-10 -8 (-15 -3956 ((-694) $)) (-15 -1947 ((-85) (-1 (-85) |t#1|) $)) (-15 -1946 ((-85) (-1 (-85) |t#1|) $)) (-15 -1945 ((-694) (-1 (-85) |t#1|) $)) (-15 -2608 ((-583 |t#1|) $)) (IF (|has| |t#1| (-1013)) (PROGN (-15 -1945 ((-694) |t#1| $)) (-15 -3245 ((-85) |t#1| $))) |%noBranch|))) +(((-34) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1013)) (|has| |#1| (-552 (-772)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-428 |#1|) . T) ((-455 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-1013) |has| |#1| (-1013)) ((-1128) . T)) +((-2994 (($) 15 T ELT))) +(((-318 |#1|) (-10 -7 (-15 -2994 (|#1|))) (-319)) (T -318)) +NIL +((-2568 (((-85) $ $) 7 T ELT)) (-3136 (((-694)) 20 T ELT)) (-2994 (($) 17 T ELT)) (-2010 (((-830) $) 18 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-2400 (($ (-830)) 19 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3945 (((-772) $) 13 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-3056 (((-85) $ $) 8 T ELT))) +(((-319) (-113)) (T -319)) +((-3136 (*1 *2) (-12 (-4 *1 (-319)) (-5 *2 (-694)))) (-2400 (*1 *1 *2) (-12 (-5 *2 (-830)) (-4 *1 (-319)))) (-2010 (*1 *2 *1) (-12 (-4 *1 (-319)) (-5 *2 (-830)))) (-2994 (*1 *1) (-4 *1 (-319)))) +(-13 (-1013) (-10 -8 (-15 -3136 ((-694))) (-15 -2400 ($ (-830))) (-15 -2010 ((-830) $)) (-15 -2994 ($)))) +(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-1013) . T) ((-1128) . T)) +((-1781 (((-630 |#2|) (-1178 $)) 45 T ELT)) (-1791 (($ (-1178 |#2|) (-1178 $)) 39 T ELT)) (-1780 (((-630 |#2|) $ (-1178 $)) 47 T ELT)) (-3756 ((|#2| (-1178 $)) 13 T ELT)) (-3224 (((-1178 |#2|) $ (-1178 $)) NIL T ELT) (((-630 |#2|) (-1178 $) (-1178 $)) 27 T ELT))) +(((-320 |#1| |#2| |#3|) (-10 -7 (-15 -1781 ((-630 |#2|) (-1178 |#1|))) (-15 -3756 (|#2| (-1178 |#1|))) (-15 -1791 (|#1| (-1178 |#2|) (-1178 |#1|))) (-15 -3224 ((-630 |#2|) (-1178 |#1|) (-1178 |#1|))) (-15 -3224 ((-1178 |#2|) |#1| (-1178 |#1|))) (-15 -1780 ((-630 |#2|) |#1| (-1178 |#1|)))) (-321 |#2| |#3|) (-146) (-1154 |#2|)) (T -320)) +NIL +((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-1781 (((-630 |#1|) (-1178 $)) 61 T ELT)) (-3329 ((|#1| $) 67 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3723 (($) 23 T CONST)) (-1791 (($ (-1178 |#1|) (-1178 $)) 63 T ELT)) (-1780 (((-630 |#1|) $ (-1178 $)) 68 T ELT)) (-3466 (((-3 $ "failed") $) 42 T ELT)) (-3108 (((-830)) 69 T ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3132 ((|#1| $) 66 T ELT)) (-2014 ((|#2| $) 59 (|has| |#1| (-312)) ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3756 ((|#1| (-1178 $)) 62 T ELT)) (-3224 (((-1178 |#1|) $ (-1178 $)) 65 T ELT) (((-630 |#1|) (-1178 $) (-1178 $)) 64 T ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ |#1|) 52 T ELT)) (-2702 (((-632 $) $) 58 (|has| |#1| (-118)) ELT)) (-2449 ((|#2| $) 60 T ELT)) (-3126 (((-694)) 40 T CONST)) (-1264 (((-85) $ $) 6 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 54 T ELT) (($ |#1| $) 53 T ELT))) +(((-321 |#1| |#2|) (-113) (-146) (-1154 |t#1|)) (T -321)) +((-3108 (*1 *2) (-12 (-4 *1 (-321 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1154 *3)) (-5 *2 (-830)))) (-1780 (*1 *2 *1 *3) (-12 (-5 *3 (-1178 *1)) (-4 *1 (-321 *4 *5)) (-4 *4 (-146)) (-4 *5 (-1154 *4)) (-5 *2 (-630 *4)))) (-3329 (*1 *2 *1) (-12 (-4 *1 (-321 *2 *3)) (-4 *3 (-1154 *2)) (-4 *2 (-146)))) (-3132 (*1 *2 *1) (-12 (-4 *1 (-321 *2 *3)) (-4 *3 (-1154 *2)) (-4 *2 (-146)))) (-3224 (*1 *2 *1 *3) (-12 (-5 *3 (-1178 *1)) (-4 *1 (-321 *4 *5)) (-4 *4 (-146)) (-4 *5 (-1154 *4)) (-5 *2 (-1178 *4)))) (-3224 (*1 *2 *3 *3) (-12 (-5 *3 (-1178 *1)) (-4 *1 (-321 *4 *5)) (-4 *4 (-146)) (-4 *5 (-1154 *4)) (-5 *2 (-630 *4)))) (-1791 (*1 *1 *2 *3) (-12 (-5 *2 (-1178 *4)) (-5 *3 (-1178 *1)) (-4 *4 (-146)) (-4 *1 (-321 *4 *5)) (-4 *5 (-1154 *4)))) (-3756 (*1 *2 *3) (-12 (-5 *3 (-1178 *1)) (-4 *1 (-321 *2 *4)) (-4 *4 (-1154 *2)) (-4 *2 (-146)))) (-1781 (*1 *2 *3) (-12 (-5 *3 (-1178 *1)) (-4 *1 (-321 *4 *5)) (-4 *4 (-146)) (-4 *5 (-1154 *4)) (-5 *2 (-630 *4)))) (-2449 (*1 *2 *1) (-12 (-4 *1 (-321 *3 *2)) (-4 *3 (-146)) (-4 *2 (-1154 *3)))) (-2014 (*1 *2 *1) (-12 (-4 *1 (-321 *3 *2)) (-4 *3 (-146)) (-4 *3 (-312)) (-4 *2 (-1154 *3))))) +(-13 (-38 |t#1|) (-10 -8 (-15 -3108 ((-830))) (-15 -1780 ((-630 |t#1|) $ (-1178 $))) (-15 -3329 (|t#1| $)) (-15 -3132 (|t#1| $)) (-15 -3224 ((-1178 |t#1|) $ (-1178 $))) (-15 -3224 ((-630 |t#1|) (-1178 $) (-1178 $))) (-15 -1791 ($ (-1178 |t#1|) (-1178 $))) (-15 -3756 (|t#1| (-1178 $))) (-15 -1781 ((-630 |t#1|) (-1178 $))) (-15 -2449 (|t#2| $)) (IF (|has| |t#1| (-312)) (-15 -2014 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-555 (-484)) . T) ((-555 |#1|) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-582 |#1|) . T) ((-654 |#1|) . T) ((-663) . T) ((-963 |#1|) . T) ((-968 |#1|) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T)) +((-1731 (((-85) (-1 (-85) |#2| |#2|) $) NIL T ELT) (((-85) $) 18 T ELT)) (-1729 (($ (-1 (-85) |#2| |#2|) $) NIL T ELT) (($ $) 28 T ELT)) (-2909 (($ (-1 (-85) |#2| |#2|) $) 27 T ELT) (($ $) 22 T ELT)) (-2298 (($ $) 25 T ELT)) (-3418 (((-484) (-1 (-85) |#2|) $) NIL T ELT) (((-484) |#2| $) 11 T ELT) (((-484) |#2| $ (-484)) NIL T ELT)) (-3517 (($ (-1 (-85) |#2| |#2|) $ $) NIL T ELT) (($ $ $) 20 T ELT))) +(((-322 |#1| |#2|) (-10 -7 (-15 -1729 (|#1| |#1|)) (-15 -1729 (|#1| (-1 (-85) |#2| |#2|) |#1|)) (-15 -1731 ((-85) |#1|)) (-15 -2909 (|#1| |#1|)) (-15 -3517 (|#1| |#1| |#1|)) (-15 -3418 ((-484) |#2| |#1| (-484))) (-15 -3418 ((-484) |#2| |#1|)) (-15 -3418 ((-484) (-1 (-85) |#2|) |#1|)) (-15 -1731 ((-85) (-1 (-85) |#2| |#2|) |#1|)) (-15 -2909 (|#1| (-1 (-85) |#2| |#2|) |#1|)) (-15 -2298 (|#1| |#1|)) (-15 -3517 (|#1| (-1 (-85) |#2| |#2|) |#1| |#1|))) (-323 |#2|) (-1128)) (T -322)) +NIL +((-2568 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-2198 (((-1184) $ (-484) (-484)) 44 (|has| $ (-6 -3995)) ELT)) (-1731 (((-85) (-1 (-85) |#1| |#1|) $) 107 T ELT) (((-85) $) 101 (|has| |#1| (-756)) ELT)) (-1729 (($ (-1 (-85) |#1| |#1|) $) 98 (|has| $ (-6 -3995)) ELT) (($ $) 97 (-12 (|has| |#1| (-756)) (|has| $ (-6 -3995))) ELT)) (-2909 (($ (-1 (-85) |#1| |#1|) $) 108 T ELT) (($ $) 102 (|has| |#1| (-756)) ELT)) (-3787 ((|#1| $ (-484) |#1|) 56 (|has| $ (-6 -3995)) ELT) ((|#1| $ (-1145 (-484)) |#1|) 64 (|has| $ (-6 -3995)) ELT)) (-3709 (($ (-1 (-85) |#1|) $) 81 (|has| $ (-6 -3994)) ELT)) (-3723 (($) 7 T CONST)) (-2297 (($ $) 99 (|has| $ (-6 -3995)) ELT)) (-2298 (($ $) 109 T ELT)) (-1352 (($ $) 84 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-3405 (($ |#1| $) 83 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT) (($ (-1 (-85) |#1|) $) 80 (|has| $ (-6 -3994)) ELT)) (-3841 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -3994)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -3994)) ELT)) (-1575 ((|#1| $ (-484) |#1|) 57 (|has| $ (-6 -3995)) ELT)) (-3112 ((|#1| $ (-484)) 55 T ELT)) (-3418 (((-484) (-1 (-85) |#1|) $) 106 T ELT) (((-484) |#1| $) 105 (|has| |#1| (-1013)) ELT) (((-484) |#1| $ (-484)) 104 (|has| |#1| (-1013)) ELT)) (-2889 (((-583 |#1|) $) 30 (|has| $ (-6 -3994)) ELT)) (-3613 (($ (-694) |#1|) 74 T ELT)) (-2200 (((-484) $) 47 (|has| (-484) (-756)) ELT)) (-2531 (($ $ $) 91 (|has| |#1| (-756)) ELT)) (-3517 (($ (-1 (-85) |#1| |#1|) $ $) 110 T ELT) (($ $ $) 103 (|has| |#1| (-756)) ELT)) (-2608 (((-583 |#1|) $) 29 (|has| $ (-6 -3994)) ELT)) (-3245 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-2201 (((-484) $) 48 (|has| (-484) (-756)) ELT)) (-2857 (($ $ $) 92 (|has| |#1| (-756)) ELT)) (-1948 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-3242 (((-1072) $) 22 (|has| |#1| (-1013)) ELT)) (-2304 (($ |#1| $ (-484)) 66 T ELT) (($ $ $ (-484)) 65 T ELT)) (-2203 (((-583 (-484)) $) 50 T ELT)) (-2204 (((-85) (-484) $) 51 T ELT)) (-3243 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-3800 ((|#1| $) 46 (|has| (-484) (-756)) ELT)) (-1353 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 77 T ELT)) (-2199 (($ $ |#1|) 45 (|has| $ (-6 -3995)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3994)) ELT)) (-3767 (($ $ (-583 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1221 (((-85) $ $) 11 T ELT)) (-2202 (((-85) |#1| $) 49 (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-2205 (((-583 |#1|) $) 52 T ELT)) (-3402 (((-85) $) 8 T ELT)) (-3564 (($) 9 T ELT)) (-3799 ((|#1| $ (-484) |#1|) 54 T ELT) ((|#1| $ (-484)) 53 T ELT) (($ $ (-1145 (-484))) 75 T ELT)) (-2305 (($ $ (-484)) 68 T ELT) (($ $ (-1145 (-484))) 67 T ELT)) (-1945 (((-694) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3994)) ELT) (((-694) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-1730 (($ $ $ (-484)) 100 (|has| $ (-6 -3995)) ELT)) (-3399 (($ $) 10 T ELT)) (-3971 (((-473) $) 85 (|has| |#1| (-553 (-473))) ELT)) (-3529 (($ (-583 |#1|)) 76 T ELT)) (-3801 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-583 $)) 70 T ELT)) (-3945 (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-1264 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3994)) ELT)) (-2566 (((-85) $ $) 93 (|has| |#1| (-756)) ELT)) (-2567 (((-85) $ $) 95 (|has| |#1| (-756)) ELT)) (-3056 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-2684 (((-85) $ $) 94 (|has| |#1| (-756)) ELT)) (-2685 (((-85) $ $) 96 (|has| |#1| (-756)) ELT)) (-3956 (((-694) $) 6 (|has| $ (-6 -3994)) ELT))) +(((-323 |#1|) (-113) (-1128)) (T -323)) +((-3517 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-85) *3 *3)) (-4 *1 (-323 *3)) (-4 *3 (-1128)))) (-2298 (*1 *1 *1) (-12 (-4 *1 (-323 *2)) (-4 *2 (-1128)))) (-2909 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3 *3)) (-4 *1 (-323 *3)) (-4 *3 (-1128)))) (-1731 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *1 (-323 *4)) (-4 *4 (-1128)) (-5 *2 (-85)))) (-3418 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-85) *4)) (-4 *1 (-323 *4)) (-4 *4 (-1128)) (-5 *2 (-484)))) (-3418 (*1 *2 *3 *1) (-12 (-4 *1 (-323 *3)) (-4 *3 (-1128)) (-4 *3 (-1013)) (-5 *2 (-484)))) (-3418 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-484)) (-4 *1 (-323 *3)) (-4 *3 (-1128)) (-4 *3 (-1013)))) (-3517 (*1 *1 *1 *1) (-12 (-4 *1 (-323 *2)) (-4 *2 (-1128)) (-4 *2 (-756)))) (-2909 (*1 *1 *1) (-12 (-4 *1 (-323 *2)) (-4 *2 (-1128)) (-4 *2 (-756)))) (-1731 (*1 *2 *1) (-12 (-4 *1 (-323 *3)) (-4 *3 (-1128)) (-4 *3 (-756)) (-5 *2 (-85)))) (-1730 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-484)) (|has| *1 (-6 -3995)) (-4 *1 (-323 *3)) (-4 *3 (-1128)))) (-2297 (*1 *1 *1) (-12 (|has| *1 (-6 -3995)) (-4 *1 (-323 *2)) (-4 *2 (-1128)))) (-1729 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3 *3)) (|has| *1 (-6 -3995)) (-4 *1 (-323 *3)) (-4 *3 (-1128)))) (-1729 (*1 *1 *1) (-12 (|has| *1 (-6 -3995)) (-4 *1 (-323 *2)) (-4 *2 (-1128)) (-4 *2 (-756))))) +(-13 (-593 |t#1|) (-10 -8 (-6 -3994) (-15 -3517 ($ (-1 (-85) |t#1| |t#1|) $ $)) (-15 -2298 ($ $)) (-15 -2909 ($ (-1 (-85) |t#1| |t#1|) $)) (-15 -1731 ((-85) (-1 (-85) |t#1| |t#1|) $)) (-15 -3418 ((-484) (-1 (-85) |t#1|) $)) (IF (|has| |t#1| (-1013)) (PROGN (-15 -3418 ((-484) |t#1| $)) (-15 -3418 ((-484) |t#1| $ (-484)))) |%noBranch|) (IF (|has| |t#1| (-756)) (PROGN (-6 (-756)) (-15 -3517 ($ $ $)) (-15 -2909 ($ $)) (-15 -1731 ((-85) $))) |%noBranch|) (IF (|has| $ (-6 -3995)) (PROGN (-15 -1730 ($ $ $ (-484))) (-15 -2297 ($ $)) (-15 -1729 ($ (-1 (-85) |t#1| |t#1|) $)) (IF (|has| |t#1| (-756)) (-15 -1729 ($ $)) |%noBranch|)) |%noBranch|))) +(((-34) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-756)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1013)) (|has| |#1| (-756)) (|has| |#1| (-552 (-772)))) ((-124 |#1|) . T) ((-553 (-473)) |has| |#1| (-553 (-473))) ((-241 (-484) |#1|) . T) ((-241 (-1145 (-484)) $) . T) ((-243 (-484) |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-428 |#1|) . T) ((-538 (-484) |#1|) . T) ((-455 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-593 |#1|) . T) ((-756) |has| |#1| (-756)) ((-759) |has| |#1| (-756)) ((-1013) OR (|has| |#1| (-1013)) (|has| |#1| (-756))) ((-1128) . T)) +((-3840 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 25 T ELT)) (-3841 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 17 T ELT)) (-3957 ((|#4| (-1 |#3| |#1|) |#2|) 23 T ELT))) +(((-324 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3957 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3841 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3840 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1128) (-323 |#1|) (-1128) (-323 |#3|)) (T -324)) +((-3840 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1128)) (-4 *5 (-1128)) (-4 *2 (-323 *5)) (-5 *1 (-324 *6 *4 *5 *2)) (-4 *4 (-323 *6)))) (-3841 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1128)) (-4 *2 (-1128)) (-5 *1 (-324 *5 *4 *2 *6)) (-4 *4 (-323 *5)) (-4 *6 (-323 *2)))) (-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1128)) (-4 *6 (-1128)) (-4 *2 (-323 *6)) (-5 *1 (-324 *5 *4 *6 *2)) (-4 *4 (-323 *5))))) +((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-3933 (((-583 |#1|) $) 43 T ELT)) (-3946 (($ $ (-694)) 44 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3723 (($) 23 T CONST)) (-3938 (((-1203 |#1| |#2|) (-1203 |#1| |#2|) $) 47 T ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-3935 (($ $) 45 T ELT)) (-3939 (((-1203 |#1| |#2|) (-1203 |#1| |#2|) $) 48 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3767 (($ $ |#1| $) 42 T ELT) (($ $ (-583 |#1|) (-583 $)) 41 T ELT)) (-3947 (((-694) $) 49 T ELT)) (-3529 (($ $ $) 40 T ELT)) (-3945 (((-772) $) 13 T ELT) (($ |#1|) 52 T ELT) (((-1194 |#1| |#2|) $) 51 T ELT) (((-1203 |#1| |#2|) $) 50 T ELT)) (-3953 ((|#2| (-1203 |#1| |#2|) $) 53 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-2660 (($) 24 T CONST)) (-1732 (($ (-614 |#1|)) 46 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-3948 (($ $ |#2|) 39 (|has| |#2| (-312)) ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ |#2| $) 33 T ELT) (($ $ |#2|) 37 T ELT))) +(((-325 |#1| |#2|) (-113) (-756) (-146)) (T -325)) +((-3953 (*1 *2 *3 *1) (-12 (-5 *3 (-1203 *4 *2)) (-4 *1 (-325 *4 *2)) (-4 *4 (-756)) (-4 *2 (-146)))) (-3945 (*1 *1 *2) (-12 (-4 *1 (-325 *2 *3)) (-4 *2 (-756)) (-4 *3 (-146)))) (-3945 (*1 *2 *1) (-12 (-4 *1 (-325 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146)) (-5 *2 (-1194 *3 *4)))) (-3945 (*1 *2 *1) (-12 (-4 *1 (-325 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146)) (-5 *2 (-1203 *3 *4)))) (-3947 (*1 *2 *1) (-12 (-4 *1 (-325 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146)) (-5 *2 (-694)))) (-3939 (*1 *2 *2 *1) (-12 (-5 *2 (-1203 *3 *4)) (-4 *1 (-325 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146)))) (-3938 (*1 *2 *2 *1) (-12 (-5 *2 (-1203 *3 *4)) (-4 *1 (-325 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146)))) (-1732 (*1 *1 *2) (-12 (-5 *2 (-614 *3)) (-4 *3 (-756)) (-4 *1 (-325 *3 *4)) (-4 *4 (-146)))) (-3935 (*1 *1 *1) (-12 (-4 *1 (-325 *2 *3)) (-4 *2 (-756)) (-4 *3 (-146)))) (-3946 (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-325 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146)))) (-3933 (*1 *2 *1) (-12 (-4 *1 (-325 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146)) (-5 *2 (-583 *3)))) (-3767 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-325 *2 *3)) (-4 *2 (-756)) (-4 *3 (-146)))) (-3767 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *4)) (-5 *3 (-583 *1)) (-4 *1 (-325 *4 *5)) (-4 *4 (-756)) (-4 *5 (-146))))) +(-13 (-574 |t#2|) (-10 -8 (-15 -3953 (|t#2| (-1203 |t#1| |t#2|) $)) (-15 -3945 ($ |t#1|)) (-15 -3945 ((-1194 |t#1| |t#2|) $)) (-15 -3945 ((-1203 |t#1| |t#2|) $)) (-15 -3947 ((-694) $)) (-15 -3939 ((-1203 |t#1| |t#2|) (-1203 |t#1| |t#2|) $)) (-15 -3938 ((-1203 |t#1| |t#2|) (-1203 |t#1| |t#2|) $)) (-15 -1732 ($ (-614 |t#1|))) (-15 -3935 ($ $)) (-15 -3946 ($ $ (-694))) (-15 -3933 ((-583 |t#1|) $)) (-15 -3767 ($ $ |t#1| $)) (-15 -3767 ($ $ (-583 |t#1|) (-583 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#2| |#2|) . T) ((-104) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 |#2|) . T) ((-590 |#2|) . T) ((-574 |#2|) . T) ((-582 |#2|) . T) ((-654 |#2|) . T) ((-963 |#2|) . T) ((-968 |#2|) . T) ((-1013) . T) ((-1128) . T)) +((-1735 ((|#2| (-1 (-85) |#1| |#1|) |#2|) 40 T ELT)) (-1733 ((|#2| (-1 (-85) |#1| |#1|) |#2|) 13 T ELT)) (-1734 ((|#2| (-1 (-85) |#1| |#1|) |#2|) 33 T ELT))) +(((-326 |#1| |#2|) (-10 -7 (-15 -1733 (|#2| (-1 (-85) |#1| |#1|) |#2|)) (-15 -1734 (|#2| (-1 (-85) |#1| |#1|) |#2|)) (-15 -1735 (|#2| (-1 (-85) |#1| |#1|) |#2|))) (-1128) (-13 (-323 |#1|) (-10 -7 (-6 -3995)))) (T -326)) +((-1735 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1128)) (-5 *1 (-326 *4 *2)) (-4 *2 (-13 (-323 *4) (-10 -7 (-6 -3995)))))) (-1734 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1128)) (-5 *1 (-326 *4 *2)) (-4 *2 (-13 (-323 *4) (-10 -7 (-6 -3995)))))) (-1733 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1128)) (-5 *1 (-326 *4 *2)) (-4 *2 (-13 (-323 *4) (-10 -7 (-6 -3995))))))) +((-2279 (((-630 |#2|) (-630 $)) NIL T ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1178 |#2|))) (-630 $) (-1178 $)) NIL T ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) 22 T ELT) (((-630 (-484)) (-630 $)) 14 T ELT))) +(((-327 |#1| |#2|) (-10 -7 (-15 -2279 ((-630 (-484)) (-630 |#1|))) (-15 -2279 ((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 |#1|) (-1178 |#1|))) (-15 -2279 ((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1178 |#2|))) (-630 |#1|) (-1178 |#1|))) (-15 -2279 ((-630 |#2|) (-630 |#1|)))) (-328 |#2|) (-961)) (T -327)) +NIL +((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3723 (($) 23 T CONST)) (-2279 (((-630 |#1|) (-630 $)) 36 T ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1178 |#1|))) (-630 $) (-1178 $)) 35 T ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) 47 (|has| |#1| (-580 (-484))) ELT) (((-630 (-484)) (-630 $)) 46 (|has| |#1| (-580 (-484))) ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2280 (((-630 |#1|) (-1178 $)) 38 T ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1178 |#1|))) (-1178 $) $) 37 T ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) 45 (|has| |#1| (-580 (-484))) ELT) (((-630 (-484)) (-1178 $)) 44 (|has| |#1| (-580 (-484))) ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3945 (((-772) $) 13 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-2660 (($) 24 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ |#1| $) 33 T ELT))) +(((-328 |#1|) (-113) (-961)) (T -328)) +NIL +(-13 (-580 |t#1|) (-10 -7 (IF (|has| |t#1| (-580 (-484))) (-6 (-580 (-484))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-590 (-484)) |has| |#1| (-580 (-484))) ((-590 |#1|) . T) ((-580 (-484)) |has| |#1| (-580 (-484))) ((-580 |#1|) . T) ((-1013) . T) ((-1128) . T)) +((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) 16 T ELT)) (-3129 (((-484) $) 44 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-3770 (($ $) 120 T ELT)) (-3491 (($ $) 81 T ELT)) (-3638 (($ $) 72 T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3774 (($ $) NIL T ELT)) (-3970 (((-347 $) $) NIL T ELT)) (-3037 (($ $) 28 T ELT)) (-1607 (((-85) $ $) NIL T ELT)) (-3489 (($ $) 79 T ELT)) (-3637 (($ $) 67 T ELT)) (-3622 (((-484) $) 60 T ELT)) (-2441 (($ $ (-484)) 55 T ELT)) (-3493 (($ $) NIL T ELT)) (-3636 (($ $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-3127 (($ $) 122 T ELT)) (-3157 (((-3 (-484) #1#) $) 217 T ELT) (((-3 (-349 (-484)) #1#) $) 213 T ELT)) (-3156 (((-484) $) 215 T ELT) (((-349 (-484)) $) 211 T ELT)) (-2564 (($ $ $) NIL T ELT)) (-1744 (((-484) $ $) 110 T ELT)) (-3466 (((-3 $ #1#) $) 125 T ELT)) (-1743 (((-349 (-484)) $ (-694)) 218 T ELT) (((-349 (-484)) $ (-694) (-694)) 210 T ELT)) (-2563 (($ $ $) NIL T ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-3722 (((-85) $) NIL T ELT)) (-1767 (((-830)) 106 T ELT) (((-830) (-830)) 107 (|has| $ (-6 -3985)) ELT)) (-3186 (((-85) $) 38 T ELT)) (-3626 (($) 22 T ELT)) (-2796 (((-798 (-329) $) $ (-800 (-329)) (-798 (-329) $)) NIL T ELT)) (-1736 (((-1184) (-694)) 177 T ELT)) (-1737 (((-1184)) 182 T ELT) (((-1184) (-694)) 183 T ELT)) (-1739 (((-1184)) 184 T ELT) (((-1184) (-694)) 185 T ELT)) (-1738 (((-1184)) 180 T ELT) (((-1184) (-694)) 181 T ELT)) (-3771 (((-484) $) 50 T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) 21 T ELT)) (-3011 (($ $ (-484)) NIL T ELT)) (-2443 (($ $) 32 T ELT)) (-3132 (($ $) NIL T ELT)) (-3187 (((-85) $) 18 T ELT)) (-1604 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2531 (($ $ $) NIL T ELT) (($) NIL (-12 (-2560 (|has| $ (-6 -3977))) (-2560 (|has| $ (-6 -3985)))) ELT)) (-2857 (($ $ $) NIL T ELT) (($) NIL (-12 (-2560 (|has| $ (-6 -3977))) (-2560 (|has| $ (-6 -3985)))) ELT)) (-1769 (((-484) $) 112 T ELT)) (-1742 (($) 90 T ELT) (($ $) 97 T ELT)) (-1741 (($) 96 T ELT) (($ $) 98 T ELT)) (-3941 (($ $) 84 T ELT)) (-1890 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2484 (($ $) 127 T ELT)) (-1766 (((-830) (-484)) 27 (|has| $ (-6 -3985)) ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3144 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3128 (($ $) 41 T ELT)) (-3130 (($ $) 119 T ELT)) (-3254 (($ (-484) (-484)) 115 T ELT) (($ (-484) (-484) (-830)) 116 T ELT)) (-3731 (((-347 $) $) NIL T ELT)) (-1605 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3465 (((-3 $ #1#) $ $) NIL T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-2401 (((-484) $) 113 T ELT)) (-1740 (($) 99 T ELT)) (-3942 (($ $) 78 T ELT)) (-1606 (((-694) $) NIL T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL T ELT)) (-2615 (((-830)) 108 T ELT) (((-830) (-830)) 109 (|has| $ (-6 -3985)) ELT)) (-3757 (($ $) 126 T ELT) (($ $ (-694)) NIL T ELT)) (-1765 (((-830) (-484)) 31 (|has| $ (-6 -3985)) ELT)) (-3494 (($ $) NIL T ELT)) (-3635 (($ $) NIL T ELT)) (-3492 (($ $) NIL T ELT)) (-3634 (($ $) NIL T ELT)) (-3490 (($ $) 80 T ELT)) (-3633 (($ $) 71 T ELT)) (-3971 (((-329) $) 202 T ELT) (((-179) $) 204 T ELT) (((-800 (-329)) $) NIL T ELT) (((-1072) $) 188 T ELT) (((-473) $) 200 T ELT) (($ (-179)) 209 T ELT)) (-3945 (((-772) $) 192 T ELT) (($ (-484)) 214 T ELT) (($ $) NIL T ELT) (($ (-349 (-484))) NIL T ELT) (($ (-484)) 214 T ELT) (($ (-349 (-484))) NIL T ELT) (((-179) $) 205 T ELT)) (-3126 (((-694)) NIL T CONST)) (-3131 (($ $) 121 T ELT)) (-1768 (((-830)) 42 T ELT) (((-830) (-830)) 62 (|has| $ (-6 -3985)) ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2694 (((-830)) 111 T ELT)) (-3497 (($ $) 87 T ELT)) (-3485 (($ $) 30 T ELT) (($ $ $) 40 T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3495 (($ $) 85 T ELT)) (-3483 (($ $) 20 T ELT)) (-3499 (($ $) NIL T ELT)) (-3487 (($ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-3500 (($ $) NIL T ELT)) (-3488 (($ $) NIL T ELT)) (-3498 (($ $) NIL T ELT)) (-3486 (($ $) NIL T ELT)) (-3496 (($ $) 86 T ELT)) (-3484 (($ $) 33 T ELT)) (-3382 (($ $) 39 T ELT)) (-2660 (($) 17 T CONST)) (-2666 (($) 24 T CONST)) (-2669 (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-2566 (((-85) $ $) 189 T ELT)) (-2567 (((-85) $ $) 26 T ELT)) (-3056 (((-85) $ $) 37 T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) 43 T ELT)) (-3948 (($ $ $) 29 T ELT) (($ $ (-484)) 23 T ELT)) (-3836 (($ $) 19 T ELT) (($ $ $) 34 T ELT)) (-3838 (($ $ $) 54 T ELT)) (** (($ $ (-830)) 65 T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) 91 T ELT) (($ $ (-349 (-484))) 137 T ELT) (($ $ $) 129 T ELT)) (* (($ (-830) $) 61 T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 66 T ELT) (($ $ $) 53 T ELT) (($ $ (-349 (-484))) NIL T ELT) (($ (-349 (-484)) $) NIL T ELT))) +(((-329) (-13 (-346) (-190) (-553 (-1072)) (-552 (-179)) (-1114) (-553 (-473)) (-557 (-179)) (-10 -8 (-15 -3948 ($ $ (-484))) (-15 ** ($ $ $)) (-15 -2443 ($ $)) (-15 -1744 ((-484) $ $)) (-15 -2441 ($ $ (-484))) (-15 -1743 ((-349 (-484)) $ (-694))) (-15 -1743 ((-349 (-484)) $ (-694) (-694))) (-15 -1742 ($)) (-15 -1741 ($)) (-15 -1740 ($)) (-15 -3485 ($ $ $)) (-15 -1742 ($ $)) (-15 -1741 ($ $)) (-15 -1739 ((-1184))) (-15 -1739 ((-1184) (-694))) (-15 -1738 ((-1184))) (-15 -1738 ((-1184) (-694))) (-15 -1737 ((-1184))) (-15 -1737 ((-1184) (-694))) (-15 -1736 ((-1184) (-694))) (-6 -3985) (-6 -3977)))) (T -329)) +((** (*1 *1 *1 *1) (-5 *1 (-329))) (-3948 (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-329)))) (-2443 (*1 *1 *1) (-5 *1 (-329))) (-1744 (*1 *2 *1 *1) (-12 (-5 *2 (-484)) (-5 *1 (-329)))) (-2441 (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-329)))) (-1743 (*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-5 *2 (-349 (-484))) (-5 *1 (-329)))) (-1743 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-694)) (-5 *2 (-349 (-484))) (-5 *1 (-329)))) (-1742 (*1 *1) (-5 *1 (-329))) (-1741 (*1 *1) (-5 *1 (-329))) (-1740 (*1 *1) (-5 *1 (-329))) (-3485 (*1 *1 *1 *1) (-5 *1 (-329))) (-1742 (*1 *1 *1) (-5 *1 (-329))) (-1741 (*1 *1 *1) (-5 *1 (-329))) (-1739 (*1 *2) (-12 (-5 *2 (-1184)) (-5 *1 (-329)))) (-1739 (*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1184)) (-5 *1 (-329)))) (-1738 (*1 *2) (-12 (-5 *2 (-1184)) (-5 *1 (-329)))) (-1738 (*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1184)) (-5 *1 (-329)))) (-1737 (*1 *2) (-12 (-5 *2 (-1184)) (-5 *1 (-329)))) (-1737 (*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1184)) (-5 *1 (-329)))) (-1736 (*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1184)) (-5 *1 (-329))))) +((-1745 (((-583 (-249 (-857 (-142 |#1|)))) (-249 (-349 (-857 (-142 (-484))))) |#1|) 52 T ELT) (((-583 (-249 (-857 (-142 |#1|)))) (-349 (-857 (-142 (-484)))) |#1|) 51 T ELT) (((-583 (-583 (-249 (-857 (-142 |#1|))))) (-583 (-249 (-349 (-857 (-142 (-484)))))) |#1|) 48 T ELT) (((-583 (-583 (-249 (-857 (-142 |#1|))))) (-583 (-349 (-857 (-142 (-484))))) |#1|) 42 T ELT)) (-1746 (((-583 (-583 (-142 |#1|))) (-583 (-349 (-857 (-142 (-484))))) (-583 (-1089)) |#1|) 30 T ELT) (((-583 (-142 |#1|)) (-349 (-857 (-142 (-484)))) |#1|) 18 T ELT))) +(((-330 |#1|) (-10 -7 (-15 -1745 ((-583 (-583 (-249 (-857 (-142 |#1|))))) (-583 (-349 (-857 (-142 (-484))))) |#1|)) (-15 -1745 ((-583 (-583 (-249 (-857 (-142 |#1|))))) (-583 (-249 (-349 (-857 (-142 (-484)))))) |#1|)) (-15 -1745 ((-583 (-249 (-857 (-142 |#1|)))) (-349 (-857 (-142 (-484)))) |#1|)) (-15 -1745 ((-583 (-249 (-857 (-142 |#1|)))) (-249 (-349 (-857 (-142 (-484))))) |#1|)) (-15 -1746 ((-583 (-142 |#1|)) (-349 (-857 (-142 (-484)))) |#1|)) (-15 -1746 ((-583 (-583 (-142 |#1|))) (-583 (-349 (-857 (-142 (-484))))) (-583 (-1089)) |#1|))) (-13 (-312) (-755))) (T -330)) +((-1746 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 (-349 (-857 (-142 (-484)))))) (-5 *4 (-583 (-1089))) (-5 *2 (-583 (-583 (-142 *5)))) (-5 *1 (-330 *5)) (-4 *5 (-13 (-312) (-755))))) (-1746 (*1 *2 *3 *4) (-12 (-5 *3 (-349 (-857 (-142 (-484))))) (-5 *2 (-583 (-142 *4))) (-5 *1 (-330 *4)) (-4 *4 (-13 (-312) (-755))))) (-1745 (*1 *2 *3 *4) (-12 (-5 *3 (-249 (-349 (-857 (-142 (-484)))))) (-5 *2 (-583 (-249 (-857 (-142 *4))))) (-5 *1 (-330 *4)) (-4 *4 (-13 (-312) (-755))))) (-1745 (*1 *2 *3 *4) (-12 (-5 *3 (-349 (-857 (-142 (-484))))) (-5 *2 (-583 (-249 (-857 (-142 *4))))) (-5 *1 (-330 *4)) (-4 *4 (-13 (-312) (-755))))) (-1745 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-249 (-349 (-857 (-142 (-484))))))) (-5 *2 (-583 (-583 (-249 (-857 (-142 *4)))))) (-5 *1 (-330 *4)) (-4 *4 (-13 (-312) (-755))))) (-1745 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-349 (-857 (-142 (-484)))))) (-5 *2 (-583 (-583 (-249 (-857 (-142 *4)))))) (-5 *1 (-330 *4)) (-4 *4 (-13 (-312) (-755)))))) +((-3572 (((-583 (-249 (-857 |#1|))) (-249 (-349 (-857 (-484)))) |#1|) 47 T ELT) (((-583 (-249 (-857 |#1|))) (-349 (-857 (-484))) |#1|) 46 T ELT) (((-583 (-583 (-249 (-857 |#1|)))) (-583 (-249 (-349 (-857 (-484))))) |#1|) 43 T ELT) (((-583 (-583 (-249 (-857 |#1|)))) (-583 (-349 (-857 (-484)))) |#1|) 37 T ELT)) (-1747 (((-583 |#1|) (-349 (-857 (-484))) |#1|) 20 T ELT) (((-583 (-583 |#1|)) (-583 (-349 (-857 (-484)))) (-583 (-1089)) |#1|) 30 T ELT))) +(((-331 |#1|) (-10 -7 (-15 -3572 ((-583 (-583 (-249 (-857 |#1|)))) (-583 (-349 (-857 (-484)))) |#1|)) (-15 -3572 ((-583 (-583 (-249 (-857 |#1|)))) (-583 (-249 (-349 (-857 (-484))))) |#1|)) (-15 -3572 ((-583 (-249 (-857 |#1|))) (-349 (-857 (-484))) |#1|)) (-15 -3572 ((-583 (-249 (-857 |#1|))) (-249 (-349 (-857 (-484)))) |#1|)) (-15 -1747 ((-583 (-583 |#1|)) (-583 (-349 (-857 (-484)))) (-583 (-1089)) |#1|)) (-15 -1747 ((-583 |#1|) (-349 (-857 (-484))) |#1|))) (-13 (-755) (-312))) (T -331)) +((-1747 (*1 *2 *3 *4) (-12 (-5 *3 (-349 (-857 (-484)))) (-5 *2 (-583 *4)) (-5 *1 (-331 *4)) (-4 *4 (-13 (-755) (-312))))) (-1747 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 (-349 (-857 (-484))))) (-5 *4 (-583 (-1089))) (-5 *2 (-583 (-583 *5))) (-5 *1 (-331 *5)) (-4 *5 (-13 (-755) (-312))))) (-3572 (*1 *2 *3 *4) (-12 (-5 *3 (-249 (-349 (-857 (-484))))) (-5 *2 (-583 (-249 (-857 *4)))) (-5 *1 (-331 *4)) (-4 *4 (-13 (-755) (-312))))) (-3572 (*1 *2 *3 *4) (-12 (-5 *3 (-349 (-857 (-484)))) (-5 *2 (-583 (-249 (-857 *4)))) (-5 *1 (-331 *4)) (-4 *4 (-13 (-755) (-312))))) (-3572 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-249 (-349 (-857 (-484)))))) (-5 *2 (-583 (-583 (-249 (-857 *4))))) (-5 *1 (-331 *4)) (-4 *4 (-13 (-755) (-312))))) (-3572 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-349 (-857 (-484))))) (-5 *2 (-583 (-583 (-249 (-857 *4))))) (-5 *1 (-331 *4)) (-4 *4 (-13 (-755) (-312)))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-3773 (((-583 (-453 |#1| |#2|)) $) NIL T ELT)) (-1311 (((-3 $ "failed") $ $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-3958 (($ $) NIL T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2893 (($ |#1| |#2|) NIL T ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1983 ((|#2| $) NIL T ELT)) (-3174 ((|#1| $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3971 (($ (-583 (-453 |#1| |#2|))) NIL T ELT)) (-3945 (((-772) $) 34 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2660 (($) 12 T CONST)) (-3056 (((-85) $ $) NIL T ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ |#1| $) 15 T ELT) (($ $ |#1|) 18 T ELT))) +(((-332 |#1| |#2|) (-13 (-82 |#1| |#1|) (-449 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-146)) (-6 (-654 |#1|)) |%noBranch|))) (-961) (-759)) (T -332)) +NIL +((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 |#2| #1#) $) 29 T ELT)) (-3156 ((|#2| $) 31 T ELT)) (-3958 (($ $) NIL T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2420 (((-694) $) 13 T ELT)) (-2821 (((-583 $) $) 23 T ELT)) (-3936 (((-85) $) NIL T ELT)) (-3937 (($ |#2| |#1|) 21 T ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1748 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 17 T ELT)) (-2894 ((|#2| $) 18 T ELT)) (-3174 ((|#1| $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) 50 T ELT) (($ |#2|) 30 T ELT)) (-3816 (((-583 |#1|) $) 20 T ELT)) (-3676 ((|#1| $ |#2|) 54 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2660 (($) 32 T CONST)) (-2665 (((-583 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 14 T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ |#1| $) 35 T ELT) (($ $ |#1|) 36 T ELT) (($ |#1| |#2|) 38 T ELT) (($ |#2| |#1|) 39 T ELT))) +(((-333 |#1| |#2|) (-13 (-334 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-961) (-756)) (T -333)) +((* (*1 *1 *2 *3) (-12 (-5 *1 (-333 *3 *2)) (-4 *3 (-961)) (-4 *2 (-756))))) +((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3723 (($) 23 T CONST)) (-3157 (((-3 |#2| "failed") $) 55 T ELT)) (-3156 ((|#2| $) 56 T ELT)) (-3958 (($ $) 41 T ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2420 (((-694) $) 45 T ELT)) (-2821 (((-583 $) $) 46 T ELT)) (-3936 (((-85) $) 49 T ELT)) (-3937 (($ |#2| |#1|) 50 T ELT)) (-3957 (($ (-1 |#1| |#1|) $) 51 T ELT)) (-1748 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 42 T ELT)) (-2894 ((|#2| $) 44 T ELT)) (-3174 ((|#1| $) 43 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3945 (((-772) $) 13 T ELT) (($ |#2|) 54 T ELT)) (-3816 (((-583 |#1|) $) 47 T ELT)) (-3676 ((|#1| $ |#2|) 52 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-2660 (($) 24 T CONST)) (-2665 (((-583 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 48 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ |#1| $) 33 T ELT) (($ $ |#1|) 37 T ELT) (($ |#1| |#2|) 53 T ELT))) +(((-334 |#1| |#2|) (-113) (-961) (-1013)) (T -334)) +((* (*1 *1 *2 *3) (-12 (-4 *1 (-334 *2 *3)) (-4 *2 (-961)) (-4 *3 (-1013)))) (-3676 (*1 *2 *1 *3) (-12 (-4 *1 (-334 *2 *3)) (-4 *3 (-1013)) (-4 *2 (-961)))) (-3957 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-334 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1013)))) (-3937 (*1 *1 *2 *3) (-12 (-4 *1 (-334 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1013)))) (-3936 (*1 *2 *1) (-12 (-4 *1 (-334 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1013)) (-5 *2 (-85)))) (-2665 (*1 *2 *1) (-12 (-4 *1 (-334 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1013)) (-5 *2 (-583 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-3816 (*1 *2 *1) (-12 (-4 *1 (-334 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1013)) (-5 *2 (-583 *3)))) (-2821 (*1 *2 *1) (-12 (-4 *3 (-961)) (-4 *4 (-1013)) (-5 *2 (-583 *1)) (-4 *1 (-334 *3 *4)))) (-2420 (*1 *2 *1) (-12 (-4 *1 (-334 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1013)) (-5 *2 (-694)))) (-2894 (*1 *2 *1) (-12 (-4 *1 (-334 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1013)))) (-3174 (*1 *2 *1) (-12 (-4 *1 (-334 *2 *3)) (-4 *3 (-1013)) (-4 *2 (-961)))) (-1748 (*1 *2 *1) (-12 (-4 *1 (-334 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1013)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-3958 (*1 *1 *1) (-12 (-4 *1 (-334 *2 *3)) (-4 *2 (-961)) (-4 *3 (-1013))))) +(-13 (-82 |t#1| |t#1|) (-950 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -3676 (|t#1| $ |t#2|)) (-15 -3957 ($ (-1 |t#1| |t#1|) $)) (-15 -3937 ($ |t#2| |t#1|)) (-15 -3936 ((-85) $)) (-15 -2665 ((-583 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -3816 ((-583 |t#1|) $)) (-15 -2821 ((-583 $) $)) (-15 -2420 ((-694) $)) (-15 -2894 (|t#2| $)) (-15 -3174 (|t#1| $)) (-15 -1748 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -3958 ($ $)) (IF (|has| |t#1| (-146)) (-6 (-654 |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-555 |#2|) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-590 |#1|) . T) ((-582 |#1|) |has| |#1| (-146)) ((-654 |#1|) |has| |#1| (-146)) ((-950 |#2|) . T) ((-963 |#1|) . T) ((-968 |#1|) . T) ((-1013) . T) ((-1128) . T)) +((-2568 (((-85) $ $) 7 T ELT)) (-3136 (((-694) $) 40 T ELT)) (-3723 (($) 23 T CONST)) (-3938 (((-3 $ "failed") $ $) 43 T ELT)) (-3157 (((-3 |#1| "failed") $) 51 T ELT)) (-3156 ((|#1| $) 52 T ELT)) (-3466 (((-3 $ "failed") $) 20 T ELT)) (-1749 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 41 T ELT)) (-2410 (((-85) $) 22 T ELT)) (-2299 ((|#1| $ (-484)) 37 T ELT)) (-2300 (((-694) $ (-484)) 38 T ELT)) (-2531 (($ $ $) 29 (|has| |#1| (-756)) ELT)) (-2857 (($ $ $) 30 (|has| |#1| (-756)) ELT)) (-2290 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-2291 (($ (-1 (-694) (-694)) $) 36 T ELT)) (-3939 (((-3 $ "failed") $ $) 44 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-1750 (($ $ $) 45 T ELT)) (-1751 (($ $ $) 46 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-1778 (((-583 (-2 (|:| |gen| |#1|) (|:| -3942 (-694)))) $) 39 T ELT)) (-2879 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 42 T ELT)) (-3945 (((-772) $) 13 T ELT) (($ |#1|) 50 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-2666 (($) 24 T CONST)) (-2566 (((-85) $ $) 31 (|has| |#1| (-756)) ELT)) (-2567 (((-85) $ $) 33 (|has| |#1| (-756)) ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-2684 (((-85) $ $) 32 (|has| |#1| (-756)) ELT)) (-2685 (((-85) $ $) 34 (|has| |#1| (-756)) ELT)) (** (($ $ (-830)) 17 T ELT) (($ $ (-694)) 21 T ELT) (($ |#1| (-694)) 47 T ELT)) (* (($ $ $) 18 T ELT) (($ |#1| $) 49 T ELT) (($ $ |#1|) 48 T ELT))) +(((-335 |#1|) (-113) (-1013)) (T -335)) +((* (*1 *1 *2 *1) (-12 (-4 *1 (-335 *2)) (-4 *2 (-1013)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-335 *2)) (-4 *2 (-1013)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-694)) (-4 *1 (-335 *2)) (-4 *2 (-1013)))) (-1751 (*1 *1 *1 *1) (-12 (-4 *1 (-335 *2)) (-4 *2 (-1013)))) (-1750 (*1 *1 *1 *1) (-12 (-4 *1 (-335 *2)) (-4 *2 (-1013)))) (-3939 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-335 *2)) (-4 *2 (-1013)))) (-3938 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-335 *2)) (-4 *2 (-1013)))) (-2879 (*1 *2 *1 *1) (|partial| -12 (-4 *3 (-1013)) (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) (-4 *1 (-335 *3)))) (-1749 (*1 *2 *1 *1) (-12 (-4 *3 (-1013)) (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1))) (-4 *1 (-335 *3)))) (-3136 (*1 *2 *1) (-12 (-4 *1 (-335 *3)) (-4 *3 (-1013)) (-5 *2 (-694)))) (-1778 (*1 *2 *1) (-12 (-4 *1 (-335 *3)) (-4 *3 (-1013)) (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -3942 (-694))))))) (-2300 (*1 *2 *1 *3) (-12 (-5 *3 (-484)) (-4 *1 (-335 *4)) (-4 *4 (-1013)) (-5 *2 (-694)))) (-2299 (*1 *2 *1 *3) (-12 (-5 *3 (-484)) (-4 *1 (-335 *2)) (-4 *2 (-1013)))) (-2291 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-694) (-694))) (-4 *1 (-335 *3)) (-4 *3 (-1013)))) (-2290 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-335 *3)) (-4 *3 (-1013))))) +(-13 (-663) (-950 |t#1|) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 ** ($ |t#1| (-694))) (-15 -1751 ($ $ $)) (-15 -1750 ($ $ $)) (-15 -3939 ((-3 $ "failed") $ $)) (-15 -3938 ((-3 $ "failed") $ $)) (-15 -2879 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1749 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3136 ((-694) $)) (-15 -1778 ((-583 (-2 (|:| |gen| |t#1|) (|:| -3942 (-694)))) $)) (-15 -2300 ((-694) $ (-484))) (-15 -2299 (|t#1| $ (-484))) (-15 -2291 ($ (-1 (-694) (-694)) $)) (-15 -2290 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-756)) (-6 (-756)) |%noBranch|))) +(((-72) . T) ((-555 |#1|) . T) ((-552 (-772)) . T) ((-13) . T) ((-663) . T) ((-756) |has| |#1| (-756)) ((-759) |has| |#1| (-756)) ((-950 |#1|) . T) ((-1025) . T) ((-1013) . T) ((-1128) . T)) +((-2568 (((-85) $ $) NIL T ELT)) (-3136 (((-694) $) 74 T ELT)) (-3723 (($) NIL T CONST)) (-3938 (((-3 $ #1="failed") $ $) 77 T ELT)) (-3157 (((-3 |#1| #1#) $) NIL T ELT)) (-3156 ((|#1| $) NIL T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-1749 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 64 T ELT)) (-2410 (((-85) $) 17 T ELT)) (-2299 ((|#1| $ (-484)) NIL T ELT)) (-2300 (((-694) $ (-484)) NIL T ELT)) (-2531 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2857 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2290 (($ (-1 |#1| |#1|) $) 40 T ELT)) (-2291 (($ (-1 (-694) (-694)) $) 37 T ELT)) (-3939 (((-3 $ #1#) $ $) 60 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-1750 (($ $ $) 28 T ELT)) (-1751 (($ $ $) 26 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1778 (((-583 (-2 (|:| |gen| |#1|) (|:| -3942 (-694)))) $) 34 T ELT)) (-2879 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) #1#) $ $) 70 T ELT)) (-3945 (((-772) $) 24 T ELT) (($ |#1|) NIL T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2666 (($) 7 T CONST)) (-2566 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2567 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2685 (((-85) $ $) 83 (|has| |#1| (-756)) ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ |#1| (-694)) 42 T ELT)) (* (($ $ $) 52 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 30 T ELT))) +(((-336 |#1|) (-335 |#1|) (-1013)) (T -336)) +NIL +((-2568 (((-85) $ $) NIL T ELT)) (-1752 (((-85) $) 25 T ELT)) (-1753 (((-85) $) 22 T ELT)) (-3613 (($ (-1072) (-1072) (-1072)) 26 T ELT)) (-3541 (((-1072) $) 16 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1757 (($ (-1072) (-1072) (-1072)) 14 T ELT)) (-1755 (((-1072) $) 17 T ELT)) (-1754 (((-85) $) 18 T ELT)) (-1756 (((-1072) $) 15 T ELT)) (-3945 (((-772) $) 12 T ELT) (($ (-1072)) 13 T ELT) (((-1072) $) 9 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 7 T ELT))) +(((-337) (-338)) (T -337)) +NIL +((-2568 (((-85) $ $) 7 T ELT)) (-1752 (((-85) $) 20 T ELT)) (-1753 (((-85) $) 21 T ELT)) (-3613 (($ (-1072) (-1072) (-1072)) 19 T ELT)) (-3541 (((-1072) $) 24 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-1757 (($ (-1072) (-1072) (-1072)) 26 T ELT)) (-1755 (((-1072) $) 23 T ELT)) (-1754 (((-85) $) 22 T ELT)) (-1756 (((-1072) $) 25 T ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-1072)) 28 T ELT) (((-1072) $) 27 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-3056 (((-85) $ $) 8 T ELT))) +(((-338) (-113)) (T -338)) +((-1757 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1072)) (-4 *1 (-338)))) (-1756 (*1 *2 *1) (-12 (-4 *1 (-338)) (-5 *2 (-1072)))) (-3541 (*1 *2 *1) (-12 (-4 *1 (-338)) (-5 *2 (-1072)))) (-1755 (*1 *2 *1) (-12 (-4 *1 (-338)) (-5 *2 (-1072)))) (-1754 (*1 *2 *1) (-12 (-4 *1 (-338)) (-5 *2 (-85)))) (-1753 (*1 *2 *1) (-12 (-4 *1 (-338)) (-5 *2 (-85)))) (-1752 (*1 *2 *1) (-12 (-4 *1 (-338)) (-5 *2 (-85)))) (-3613 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1072)) (-4 *1 (-338))))) +(-13 (-1013) (-429 (-1072)) (-10 -8 (-15 -1757 ($ (-1072) (-1072) (-1072))) (-15 -1756 ((-1072) $)) (-15 -3541 ((-1072) $)) (-15 -1755 ((-1072) $)) (-15 -1754 ((-85) $)) (-15 -1753 ((-85) $)) (-15 -1752 ((-85) $)) (-15 -3613 ($ (-1072) (-1072) (-1072))))) +(((-72) . T) ((-555 (-1072)) . T) ((-552 (-772)) . T) ((-552 (-1072)) . T) ((-429 (-1072)) . T) ((-13) . T) ((-1013) . T) ((-1128) . T)) +((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-1311 (((-3 $ "failed") $ $) NIL T ELT)) (-1758 (((-772) $) 64 T ELT)) (-3723 (($) NIL T CONST)) (-2407 (($ $ (-830)) NIL T ELT)) (-2433 (($ $ (-830)) NIL T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2406 (($ $ (-830)) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2409 (($ (-694)) 38 T ELT)) (-3910 (((-694)) 18 T ELT)) (-1759 (((-772) $) 66 T ELT)) (-2435 (($ $ $) NIL T ELT)) (-3945 (((-772) $) NIL T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2436 (($ $ $ $) NIL T ELT)) (-2434 (($ $ $) NIL T ELT)) (-2660 (($) 24 T CONST)) (-3056 (((-85) $ $) 41 T ELT)) (-3836 (($ $) 48 T ELT) (($ $ $) 50 T ELT)) (-3838 (($ $ $) 51 T ELT)) (** (($ $ (-830)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 52 T ELT) (($ $ |#3|) NIL T ELT) (($ |#3| $) 47 T ELT))) +(((-339 |#1| |#2| |#3|) (-13 (-683 |#3|) (-10 -8 (-15 -3910 ((-694))) (-15 -1759 ((-772) $)) (-15 -1758 ((-772) $)) (-15 -2409 ($ (-694))))) (-694) (-694) (-146)) (T -339)) +((-3910 (*1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-146)))) (-1759 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-694)) (-14 *4 (-694)) (-4 *5 (-146)))) (-1758 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-694)) (-14 *4 (-694)) (-4 *5 (-146)))) (-2409 (*1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-146))))) +((-3771 (((-694) (-283 |#1| |#2| |#3| |#4|)) 16 T ELT))) +(((-340 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3771 ((-694) (-283 |#1| |#2| |#3| |#4|)))) (-13 (-319) (-312)) (-1154 |#1|) (-1154 (-349 |#2|)) (-291 |#1| |#2| |#3|)) (T -340)) +((-3771 (*1 *2 *3) (-12 (-5 *3 (-283 *4 *5 *6 *7)) (-4 *4 (-13 (-319) (-312))) (-4 *5 (-1154 *4)) (-4 *6 (-1154 (-349 *5))) (-4 *7 (-291 *4 *5 *6)) (-5 *2 (-694)) (-5 *1 (-340 *4 *5 *6 *7))))) +((-2568 (((-85) $ $) NIL T ELT)) (-1761 ((|#2| $) 38 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1762 (($ (-349 |#2|)) 93 T ELT)) (-1760 (((-583 (-2 (|:| -2401 (-694)) (|:| -3772 |#2|) (|:| |num| |#2|))) $) 39 T ELT)) (-3757 (($ $ (-694)) 36 T ELT) (($ $) 34 T ELT)) (-3971 (((-349 |#2|) $) 49 T ELT)) (-3529 (($ (-583 (-2 (|:| -2401 (-694)) (|:| -3772 |#2|) (|:| |num| |#2|)))) 33 T ELT)) (-3945 (((-772) $) 131 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2669 (($ $ (-694)) 37 T ELT) (($ $) 35 T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3838 (($ |#2| $) 41 T ELT))) +(((-341 |#1| |#2|) (-13 (-1013) (-189) (-553 (-349 |#2|)) (-10 -8 (-15 -3838 ($ |#2| $)) (-15 -1762 ($ (-349 |#2|))) (-15 -1761 (|#2| $)) (-15 -1760 ((-583 (-2 (|:| -2401 (-694)) (|:| -3772 |#2|) (|:| |num| |#2|))) $)) (-15 -3529 ($ (-583 (-2 (|:| -2401 (-694)) (|:| -3772 |#2|) (|:| |num| |#2|))))))) (-13 (-312) (-120)) (-1154 |#1|)) (T -341)) +((-3838 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-312) (-120))) (-5 *1 (-341 *3 *2)) (-4 *2 (-1154 *3)))) (-1762 (*1 *1 *2) (-12 (-5 *2 (-349 *4)) (-4 *4 (-1154 *3)) (-4 *3 (-13 (-312) (-120))) (-5 *1 (-341 *3 *4)))) (-1761 (*1 *2 *1) (-12 (-4 *2 (-1154 *3)) (-5 *1 (-341 *3 *2)) (-4 *3 (-13 (-312) (-120))))) (-1760 (*1 *2 *1) (-12 (-4 *3 (-13 (-312) (-120))) (-5 *2 (-583 (-2 (|:| -2401 (-694)) (|:| -3772 *4) (|:| |num| *4)))) (-5 *1 (-341 *3 *4)) (-4 *4 (-1154 *3)))) (-3529 (*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| -2401 (-694)) (|:| -3772 *4) (|:| |num| *4)))) (-4 *4 (-1154 *3)) (-4 *3 (-13 (-312) (-120))) (-5 *1 (-341 *3 *4))))) +((-2568 (((-85) $ $) 10 (OR (|has| |#1| (-796 (-484))) (|has| |#1| (-796 (-329)))) ELT)) (-2796 (((-798 (-329) $) $ (-800 (-329)) (-798 (-329) $)) 16 (|has| |#1| (-796 (-329))) ELT) (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) 15 (|has| |#1| (-796 (-484))) ELT)) (-3242 (((-1072) $) 14 (OR (|has| |#1| (-796 (-484))) (|has| |#1| (-796 (-329)))) ELT)) (-3243 (((-1033) $) 13 (OR (|has| |#1| (-796 (-484))) (|has| |#1| (-796 (-329)))) ELT)) (-3945 (((-772) $) 12 (OR (|has| |#1| (-796 (-484))) (|has| |#1| (-796 (-329)))) ELT)) (-1264 (((-85) $ $) 11 (OR (|has| |#1| (-796 (-484))) (|has| |#1| (-796 (-329)))) ELT)) (-3056 (((-85) $ $) 9 (OR (|has| |#1| (-796 (-484))) (|has| |#1| (-796 (-329)))) ELT))) +(((-342 |#1|) (-113) (-1128)) (T -342)) +NIL +(-13 (-1128) (-10 -7 (IF (|has| |t#1| (-796 (-484))) (-6 (-796 (-484))) |%noBranch|) (IF (|has| |t#1| (-796 (-329))) (-6 (-796 (-329))) |%noBranch|))) +(((-72) OR (|has| |#1| (-796 (-484))) (|has| |#1| (-796 (-329)))) ((-552 (-772)) OR (|has| |#1| (-796 (-484))) (|has| |#1| (-796 (-329)))) ((-13) . T) ((-796 (-329)) |has| |#1| (-796 (-329))) ((-796 (-484)) |has| |#1| (-796 (-484))) ((-1013) OR (|has| |#1| (-796 (-484))) (|has| |#1| (-796 (-329)))) ((-1128) . T)) +((-1763 (($ $) 10 T ELT) (($ $ (-694)) 12 T ELT))) +(((-343 |#1|) (-10 -7 (-15 -1763 (|#1| |#1| (-694))) (-15 -1763 (|#1| |#1|))) (-344)) (T -343)) +NIL +((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) 55 T ELT)) (-2063 (($ $) 54 T ELT)) (-2061 (((-85) $) 52 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3774 (($ $) 91 T ELT)) (-3970 (((-347 $) $) 90 T ELT)) (-1607 (((-85) $ $) 75 T ELT)) (-3723 (($) 23 T CONST)) (-2564 (($ $ $) 71 T ELT)) (-3466 (((-3 $ "failed") $) 42 T ELT)) (-2563 (($ $ $) 72 T ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) 66 T ELT)) (-1763 (($ $) 97 T ELT) (($ $ (-694)) 96 T ELT)) (-3722 (((-85) $) 89 T ELT)) (-3771 (((-743 (-830)) $) 99 T ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-1604 (((-3 (-583 $) #1="failed") (-583 $) $) 68 T ELT)) (-1890 (($ $ $) 60 T ELT) (($ (-583 $)) 59 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-2484 (($ $) 88 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) 58 T ELT)) (-3144 (($ $ $) 62 T ELT) (($ (-583 $)) 61 T ELT)) (-3731 (((-347 $) $) 92 T ELT)) (-1605 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 69 T ELT)) (-3465 (((-3 $ "failed") $ $) 56 T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) 65 T ELT)) (-1606 (((-694) $) 74 T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 73 T ELT)) (-1764 (((-3 (-694) "failed") $ $) 98 T ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ $) 57 T ELT) (($ (-349 (-484))) 84 T ELT)) (-2702 (((-632 $) $) 100 T ELT)) (-3126 (((-694)) 40 T CONST)) (-1264 (((-85) $ $) 6 T ELT)) (-2062 (((-85) $ $) 53 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3948 (($ $ $) 83 T ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT) (($ $ (-484)) 87 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-349 (-484))) 86 T ELT) (($ (-349 (-484)) $) 85 T ELT))) +(((-344) (-113)) (T -344)) +((-3771 (*1 *2 *1) (-12 (-4 *1 (-344)) (-5 *2 (-743 (-830))))) (-1764 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-344)) (-5 *2 (-694)))) (-1763 (*1 *1 *1) (-4 *1 (-344))) (-1763 (*1 *1 *1 *2) (-12 (-4 *1 (-344)) (-5 *2 (-694))))) +(-13 (-312) (-118) (-10 -8 (-15 -3771 ((-743 (-830)) $)) (-15 -1764 ((-3 (-694) "failed") $ $)) (-15 -1763 ($ $)) (-15 -1763 ($ $ (-694))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-349 (-484))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-349 (-484)) (-349 (-484))) . T) ((-82 $ $) . T) ((-104) . T) ((-118) . T) ((-555 (-349 (-484))) . T) ((-555 (-484)) . T) ((-555 $) . T) ((-552 (-772)) . T) ((-146) . T) ((-201) . T) ((-246) . T) ((-258) . T) ((-312) . T) ((-391) . T) ((-495) . T) ((-13) . T) ((-588 (-349 (-484))) . T) ((-588 (-484)) . T) ((-588 $) . T) ((-590 (-349 (-484))) . T) ((-590 $) . T) ((-582 (-349 (-484))) . T) ((-582 $) . T) ((-654 (-349 (-484))) . T) ((-654 $) . T) ((-663) . T) ((-832) . T) ((-963 (-349 (-484))) . T) ((-963 $) . T) ((-968 (-349 (-484))) . T) ((-968 $) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T) ((-1133) . T)) +((-3254 (($ (-484) (-484)) 11 T ELT) (($ (-484) (-484) (-830)) NIL T ELT)) (-2615 (((-830)) 19 T ELT) (((-830) (-830)) NIL T ELT))) +(((-345 |#1|) (-10 -7 (-15 -2615 ((-830) (-830))) (-15 -2615 ((-830))) (-15 -3254 (|#1| (-484) (-484) (-830))) (-15 -3254 (|#1| (-484) (-484)))) (-346)) (T -345)) +((-2615 (*1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-345 *3)) (-4 *3 (-346)))) (-2615 (*1 *2 *2) (-12 (-5 *2 (-830)) (-5 *1 (-345 *3)) (-4 *3 (-346))))) +((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-3129 (((-484) $) 108 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) 55 T ELT)) (-2063 (($ $) 54 T ELT)) (-2061 (((-85) $) 52 T ELT)) (-3770 (($ $) 106 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3774 (($ $) 91 T ELT)) (-3970 (((-347 $) $) 90 T ELT)) (-3037 (($ $) 116 T ELT)) (-1607 (((-85) $ $) 75 T ELT)) (-3622 (((-484) $) 133 T ELT)) (-3723 (($) 23 T CONST)) (-3127 (($ $) 105 T ELT)) (-3157 (((-3 (-484) #1="failed") $) 121 T ELT) (((-3 (-349 (-484)) #1#) $) 118 T ELT)) (-3156 (((-484) $) 122 T ELT) (((-349 (-484)) $) 119 T ELT)) (-2564 (($ $ $) 71 T ELT)) (-3466 (((-3 $ "failed") $) 42 T ELT)) (-2563 (($ $ $) 72 T ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) 66 T ELT)) (-3722 (((-85) $) 89 T ELT)) (-1767 (((-830)) 149 T ELT) (((-830) (-830)) 146 (|has| $ (-6 -3985)) ELT)) (-3186 (((-85) $) 131 T ELT)) (-2796 (((-798 (-329) $) $ (-800 (-329)) (-798 (-329) $)) 112 T ELT)) (-3771 (((-484) $) 155 T ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3011 (($ $ (-484)) 115 T ELT)) (-3132 (($ $) 111 T ELT)) (-3187 (((-85) $) 132 T ELT)) (-1604 (((-3 (-583 $) #2="failed") (-583 $) $) 68 T ELT)) (-2531 (($ $ $) 125 T ELT) (($) 143 (-12 (-2560 (|has| $ (-6 -3985))) (-2560 (|has| $ (-6 -3977)))) ELT)) (-2857 (($ $ $) 126 T ELT) (($) 142 (-12 (-2560 (|has| $ (-6 -3985))) (-2560 (|has| $ (-6 -3977)))) ELT)) (-1769 (((-484) $) 152 T ELT)) (-1890 (($ $ $) 60 T ELT) (($ (-583 $)) 59 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-2484 (($ $) 88 T ELT)) (-1766 (((-830) (-484)) 145 (|has| $ (-6 -3985)) ELT)) (-3243 (((-1033) $) 12 T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) 58 T ELT)) (-3144 (($ $ $) 62 T ELT) (($ (-583 $)) 61 T ELT)) (-3128 (($ $) 107 T ELT)) (-3130 (($ $) 109 T ELT)) (-3254 (($ (-484) (-484)) 157 T ELT) (($ (-484) (-484) (-830)) 156 T ELT)) (-3731 (((-347 $) $) 92 T ELT)) (-1605 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 69 T ELT)) (-3465 (((-3 $ "failed") $ $) 56 T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) 65 T ELT)) (-2401 (((-484) $) 153 T ELT)) (-1606 (((-694) $) 74 T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 73 T ELT)) (-2615 (((-830)) 150 T ELT) (((-830) (-830)) 147 (|has| $ (-6 -3985)) ELT)) (-1765 (((-830) (-484)) 144 (|has| $ (-6 -3985)) ELT)) (-3971 (((-329) $) 124 T ELT) (((-179) $) 123 T ELT) (((-800 (-329)) $) 113 T ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ $) 57 T ELT) (($ (-349 (-484))) 84 T ELT) (($ (-484)) 120 T ELT) (($ (-349 (-484))) 117 T ELT)) (-3126 (((-694)) 40 T CONST)) (-3131 (($ $) 110 T ELT)) (-1768 (((-830)) 151 T ELT) (((-830) (-830)) 148 (|has| $ (-6 -3985)) ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-2694 (((-830)) 154 T ELT)) (-2062 (((-85) $ $) 53 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-3382 (($ $) 134 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-2566 (((-85) $ $) 127 T ELT)) (-2567 (((-85) $ $) 129 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-2684 (((-85) $ $) 128 T ELT)) (-2685 (((-85) $ $) 130 T ELT)) (-3948 (($ $ $) 83 T ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT) (($ $ (-484)) 87 T ELT) (($ $ (-349 (-484))) 114 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-349 (-484))) 86 T ELT) (($ (-349 (-484)) $) 85 T ELT))) +(((-346) (-113)) (T -346)) +((-3254 (*1 *1 *2 *2) (-12 (-5 *2 (-484)) (-4 *1 (-346)))) (-3254 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-484)) (-5 *3 (-830)) (-4 *1 (-346)))) (-3771 (*1 *2 *1) (-12 (-4 *1 (-346)) (-5 *2 (-484)))) (-2694 (*1 *2) (-12 (-4 *1 (-346)) (-5 *2 (-830)))) (-2401 (*1 *2 *1) (-12 (-4 *1 (-346)) (-5 *2 (-484)))) (-1769 (*1 *2 *1) (-12 (-4 *1 (-346)) (-5 *2 (-484)))) (-1768 (*1 *2) (-12 (-4 *1 (-346)) (-5 *2 (-830)))) (-2615 (*1 *2) (-12 (-4 *1 (-346)) (-5 *2 (-830)))) (-1767 (*1 *2) (-12 (-4 *1 (-346)) (-5 *2 (-830)))) (-1768 (*1 *2 *2) (-12 (-5 *2 (-830)) (|has| *1 (-6 -3985)) (-4 *1 (-346)))) (-2615 (*1 *2 *2) (-12 (-5 *2 (-830)) (|has| *1 (-6 -3985)) (-4 *1 (-346)))) (-1767 (*1 *2 *2) (-12 (-5 *2 (-830)) (|has| *1 (-6 -3985)) (-4 *1 (-346)))) (-1766 (*1 *2 *3) (-12 (-5 *3 (-484)) (|has| *1 (-6 -3985)) (-4 *1 (-346)) (-5 *2 (-830)))) (-1765 (*1 *2 *3) (-12 (-5 *3 (-484)) (|has| *1 (-6 -3985)) (-4 *1 (-346)) (-5 *2 (-830)))) (-2531 (*1 *1) (-12 (-4 *1 (-346)) (-2560 (|has| *1 (-6 -3985))) (-2560 (|has| *1 (-6 -3977))))) (-2857 (*1 *1) (-12 (-4 *1 (-346)) (-2560 (|has| *1 (-6 -3985))) (-2560 (|has| *1 (-6 -3977)))))) +(-13 (-973) (-10 -8 (-6 -3769) (-15 -3254 ($ (-484) (-484))) (-15 -3254 ($ (-484) (-484) (-830))) (-15 -3771 ((-484) $)) (-15 -2694 ((-830))) (-15 -2401 ((-484) $)) (-15 -1769 ((-484) $)) (-15 -1768 ((-830))) (-15 -2615 ((-830))) (-15 -1767 ((-830))) (IF (|has| $ (-6 -3985)) (PROGN (-15 -1768 ((-830) (-830))) (-15 -2615 ((-830) (-830))) (-15 -1767 ((-830) (-830))) (-15 -1766 ((-830) (-484))) (-15 -1765 ((-830) (-484)))) |%noBranch|) (IF (|has| $ (-6 -3977)) |%noBranch| (IF (|has| $ (-6 -3985)) |%noBranch| (PROGN (-15 -2531 ($)) (-15 -2857 ($))))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-349 (-484))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-349 (-484)) (-349 (-484))) . T) ((-82 $ $) . T) ((-104) . T) ((-120) . T) ((-555 (-349 (-484))) . T) ((-555 (-484)) . T) ((-555 $) . T) ((-552 (-772)) . T) ((-146) . T) ((-553 (-179)) . T) ((-553 (-329)) . T) ((-553 (-800 (-329))) . T) ((-201) . T) ((-246) . T) ((-258) . T) ((-312) . T) ((-391) . T) ((-495) . T) ((-13) . T) ((-588 (-349 (-484))) . T) ((-588 (-484)) . T) ((-588 $) . T) ((-590 (-349 (-484))) . T) ((-590 $) . T) ((-582 (-349 (-484))) . T) ((-582 $) . T) ((-654 (-349 (-484))) . T) ((-654 $) . T) ((-663) . T) ((-714) . T) ((-716) . T) ((-718) . T) ((-721) . T) ((-755) . T) ((-756) . T) ((-759) . T) ((-796 (-329)) . T) ((-832) . T) ((-915) . T) ((-933) . T) ((-973) . T) ((-950 (-349 (-484))) . T) ((-950 (-484)) . T) ((-963 (-349 (-484))) . T) ((-963 $) . T) ((-968 (-349 (-484))) . T) ((-968 $) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T) ((-1133) . T)) +((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) 59 T ELT)) (-1770 (($ $) 77 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) 189 T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) 48 T ELT)) (-1771 ((|#1| $) 16 T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3774 (($ $) NIL (|has| |#1| (-1133)) ELT)) (-3970 (((-347 $) $) NIL (|has| |#1| (-1133)) ELT)) (-1773 (($ |#1| (-484)) 42 T ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 (-484) #1#) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-3 (-349 (-484)) #1#) $) NIL (|has| |#1| (-950 (-349 (-484)))) ELT) (((-3 |#1| #1#) $) 147 T ELT)) (-3156 (((-484) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-349 (-484)) $) NIL (|has| |#1| (-950 (-349 (-484)))) ELT) ((|#1| $) 73 T ELT)) (-3466 (((-3 $ #1#) $) 163 T ELT)) (-3024 (((-3 (-349 (-484)) #1#) $) 84 (|has| |#1| (-483)) ELT)) (-3023 (((-85) $) 80 (|has| |#1| (-483)) ELT)) (-3022 (((-349 (-484)) $) 82 (|has| |#1| (-483)) ELT)) (-1774 (($ |#1| (-484)) 44 T ELT)) (-3722 (((-85) $) 209 (|has| |#1| (-1133)) ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) 61 T ELT)) (-1833 (((-694) $) 51 T ELT)) (-1775 (((-3 #2="nil" #3="sqfr" #4="irred" #5="prime") $ (-484)) 174 T ELT)) (-2299 ((|#1| $ (-484)) 173 T ELT)) (-1776 (((-484) $ (-484)) 172 T ELT)) (-1779 (($ |#1| (-484)) 41 T ELT)) (-3957 (($ (-1 |#1| |#1|) $) 182 T ELT)) (-1830 (($ |#1| (-583 (-2 (|:| |flg| (-3 #2# #3# #4# #5#)) (|:| |fctr| |#1|) (|:| |xpnt| (-484))))) 78 T ELT)) (-1890 (($ (-583 $)) NIL (|has| |#1| (-391)) ELT) (($ $ $) NIL (|has| |#1| (-391)) ELT)) (-3242 (((-1072) $) NIL T ELT)) (-1777 (($ |#1| (-484)) 43 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) NIL (|has| |#1| (-391)) ELT)) (-3144 (($ (-583 $)) NIL (|has| |#1| (-391)) ELT) (($ $ $) 190 (|has| |#1| (-391)) ELT)) (-1772 (($ |#1| (-484) (-3 #2# #3# #4# #5#)) 40 T ELT)) (-1778 (((-583 (-2 (|:| -3731 |#1|) (|:| -2401 (-484)))) $) 72 T ELT)) (-1951 (((-583 (-2 (|:| |flg| (-3 #2# #3# #4# #5#)) (|:| |fctr| |#1|) (|:| |xpnt| (-484)))) $) 12 T ELT)) (-3731 (((-347 $) $) NIL (|has| |#1| (-1133)) ELT)) (-3465 (((-3 $ #1#) $ $) 175 T ELT)) (-2401 (((-484) $) 166 T ELT)) (-3962 ((|#1| $) 74 T ELT)) (-3767 (($ $ (-583 |#1|) (-583 |#1|)) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-249 |#1|)) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-583 (-249 |#1|))) 99 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-583 (-1089)) (-583 |#1|)) 105 (|has| |#1| (-455 (-1089) |#1|)) ELT) (($ $ (-1089) |#1|) NIL (|has| |#1| (-455 (-1089) |#1|)) ELT) (($ $ (-1089) $) NIL (|has| |#1| (-455 (-1089) $)) ELT) (($ $ (-583 (-1089)) (-583 $)) 106 (|has| |#1| (-455 (-1089) $)) ELT) (($ $ (-583 (-249 $))) 102 (|has| |#1| (-260 $)) ELT) (($ $ (-249 $)) NIL (|has| |#1| (-260 $)) ELT) (($ $ $ $) NIL (|has| |#1| (-260 $)) ELT) (($ $ (-583 $) (-583 $)) NIL (|has| |#1| (-260 $)) ELT)) (-3799 (($ $ |#1|) 91 (|has| |#1| (-241 |#1| |#1|)) ELT) (($ $ $) 92 (|has| |#1| (-241 $ $)) ELT)) (-3757 (($ $ (-1 |#1| |#1|)) 181 T ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL T ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-694)) NIL (|has| |#1| (-189)) ELT) (($ $ (-1089)) NIL (|has| |#1| (-811 (-1089))) ELT) (($ $ (-583 (-1089))) NIL (|has| |#1| (-811 (-1089))) ELT) (($ $ (-1089) (-694)) NIL (|has| |#1| (-811 (-1089))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (|has| |#1| (-811 (-1089))) ELT)) (-3971 (((-473) $) 39 (|has| |#1| (-553 (-473))) ELT) (((-329) $) 112 (|has| |#1| (-933)) ELT) (((-179) $) 118 (|has| |#1| (-933)) ELT)) (-3945 (((-772) $) 145 T ELT) (($ (-484)) 64 T ELT) (($ $) NIL T ELT) (($ |#1|) 63 T ELT) (($ (-349 (-484))) NIL (|has| |#1| (-950 (-349 (-484)))) ELT)) (-3126 (((-694)) 66 T CONST)) (-1264 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) 53 T CONST)) (-2666 (($) 52 T CONST)) (-2669 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL T ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-694)) NIL (|has| |#1| (-189)) ELT) (($ $ (-1089)) NIL (|has| |#1| (-811 (-1089))) ELT) (($ $ (-583 (-1089))) NIL (|has| |#1| (-811 (-1089))) ELT) (($ $ (-1089) (-694)) NIL (|has| |#1| (-811 (-1089))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (|has| |#1| (-811 (-1089))) ELT)) (-3056 (((-85) $ $) 158 T ELT)) (-3836 (($ $) 160 T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) 179 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) 124 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 68 T ELT) (($ $ $) 67 T ELT) (($ |#1| $) 69 T ELT) (($ $ |#1|) NIL T ELT))) +(((-347 |#1|) (-13 (-495) (-184 |#1|) (-38 |#1|) (-288 |#1|) (-354 |#1|) (-10 -8 (-15 -3962 (|#1| $)) (-15 -2401 ((-484) $)) (-15 -1830 ($ |#1| (-583 (-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-484)))))) (-15 -1951 ((-583 (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#1|) (|:| |xpnt| (-484)))) $)) (-15 -1779 ($ |#1| (-484))) (-15 -1778 ((-583 (-2 (|:| -3731 |#1|) (|:| -2401 (-484)))) $)) (-15 -1777 ($ |#1| (-484))) (-15 -1776 ((-484) $ (-484))) (-15 -2299 (|#1| $ (-484))) (-15 -1775 ((-3 #1# #2# #3# #4#) $ (-484))) (-15 -1833 ((-694) $)) (-15 -1774 ($ |#1| (-484))) (-15 -1773 ($ |#1| (-484))) (-15 -1772 ($ |#1| (-484) (-3 #1# #2# #3# #4#))) (-15 -1771 (|#1| $)) (-15 -1770 ($ $)) (-15 -3957 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-391)) (-6 (-391)) |%noBranch|) (IF (|has| |#1| (-933)) (-6 (-933)) |%noBranch|) (IF (|has| |#1| (-1133)) (-6 (-1133)) |%noBranch|) (IF (|has| |#1| (-553 (-473))) (-6 (-553 (-473))) |%noBranch|) (IF (|has| |#1| (-483)) (PROGN (-15 -3023 ((-85) $)) (-15 -3022 ((-349 (-484)) $)) (-15 -3024 ((-3 (-349 (-484)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-241 $ $)) (-6 (-241 $ $)) |%noBranch|) (IF (|has| |#1| (-260 $)) (-6 (-260 $)) |%noBranch|) (IF (|has| |#1| (-455 (-1089) $)) (-6 (-455 (-1089) $)) |%noBranch|))) (-495)) (T -347)) +((-3957 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-495)) (-5 *1 (-347 *3)))) (-3962 (*1 *2 *1) (-12 (-5 *1 (-347 *2)) (-4 *2 (-495)))) (-2401 (*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-347 *3)) (-4 *3 (-495)))) (-1830 (*1 *1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| *2) (|:| |xpnt| (-484))))) (-4 *2 (-495)) (-5 *1 (-347 *2)))) (-1951 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| *3) (|:| |xpnt| (-484))))) (-5 *1 (-347 *3)) (-4 *3 (-495)))) (-1779 (*1 *1 *2 *3) (-12 (-5 *3 (-484)) (-5 *1 (-347 *2)) (-4 *2 (-495)))) (-1778 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| -3731 *3) (|:| -2401 (-484))))) (-5 *1 (-347 *3)) (-4 *3 (-495)))) (-1777 (*1 *1 *2 *3) (-12 (-5 *3 (-484)) (-5 *1 (-347 *2)) (-4 *2 (-495)))) (-1776 (*1 *2 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-347 *3)) (-4 *3 (-495)))) (-2299 (*1 *2 *1 *3) (-12 (-5 *3 (-484)) (-5 *1 (-347 *2)) (-4 *2 (-495)))) (-1775 (*1 *2 *1 *3) (-12 (-5 *3 (-484)) (-5 *2 (-3 #1# #2# #3# #4#)) (-5 *1 (-347 *4)) (-4 *4 (-495)))) (-1833 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-347 *3)) (-4 *3 (-495)))) (-1774 (*1 *1 *2 *3) (-12 (-5 *3 (-484)) (-5 *1 (-347 *2)) (-4 *2 (-495)))) (-1773 (*1 *1 *2 *3) (-12 (-5 *3 (-484)) (-5 *1 (-347 *2)) (-4 *2 (-495)))) (-1772 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-484)) (-5 *4 (-3 #1# #2# #3# #4#)) (-5 *1 (-347 *2)) (-4 *2 (-495)))) (-1771 (*1 *2 *1) (-12 (-5 *1 (-347 *2)) (-4 *2 (-495)))) (-1770 (*1 *1 *1) (-12 (-5 *1 (-347 *2)) (-4 *2 (-495)))) (-3023 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-347 *3)) (-4 *3 (-483)) (-4 *3 (-495)))) (-3022 (*1 *2 *1) (-12 (-5 *2 (-349 (-484))) (-5 *1 (-347 *3)) (-4 *3 (-483)) (-4 *3 (-495)))) (-3024 (*1 *2 *1) (|partial| -12 (-5 *2 (-349 (-484))) (-5 *1 (-347 *3)) (-4 *3 (-483)) (-4 *3 (-495))))) +((-3957 (((-347 |#2|) (-1 |#2| |#1|) (-347 |#1|)) 20 T ELT))) +(((-348 |#1| |#2|) (-10 -7 (-15 -3957 ((-347 |#2|) (-1 |#2| |#1|) (-347 |#1|)))) (-495) (-495)) (T -348)) +((-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-347 *5)) (-4 *5 (-495)) (-4 *6 (-495)) (-5 *2 (-347 *6)) (-5 *1 (-348 *5 *6))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) 13 T ELT)) (-3129 ((|#1| $) 21 (|has| |#1| (-258)) ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2707 (((-347 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-821)) ELT)) (-3774 (($ $) NIL T ELT)) (-3970 (((-347 $) $) NIL T ELT)) (-2704 (((-3 (-583 (-1084 $)) #1#) (-583 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-821)) ELT)) (-1607 (((-85) $ $) NIL T ELT)) (-3622 (((-484) $) NIL (|has| |#1| (-740)) ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 |#1| #1#) $) 17 T ELT) (((-3 (-1089) #1#) $) NIL (|has| |#1| (-950 (-1089))) ELT) (((-3 (-349 (-484)) #1#) $) 54 (|has| |#1| (-950 (-484))) ELT) (((-3 (-484) #1#) $) NIL (|has| |#1| (-950 (-484))) ELT)) (-3156 ((|#1| $) 15 T ELT) (((-1089) $) NIL (|has| |#1| (-950 (-1089))) ELT) (((-349 (-484)) $) 51 (|has| |#1| (-950 (-484))) ELT) (((-484) $) NIL (|has| |#1| (-950 (-484))) ELT)) (-2564 (($ $ $) NIL T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1178 |#1|))) (-630 $) (-1178 $)) NIL T ELT) (((-630 |#1|) (-630 $)) NIL T ELT)) (-3466 (((-3 $ #1#) $) 32 T ELT)) (-2994 (($) NIL (|has| |#1| (-483)) ELT)) (-2563 (($ $ $) NIL T ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-3722 (((-85) $) NIL T ELT)) (-3186 (((-85) $) NIL (|has| |#1| (-740)) ELT)) (-2796 (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) NIL (|has| |#1| (-796 (-484))) ELT) (((-798 (-329) $) $ (-800 (-329)) (-798 (-329) $)) NIL (|has| |#1| (-796 (-329))) ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) 38 T ELT)) (-2996 (($ $) NIL T ELT)) (-2998 ((|#1| $) 55 T ELT)) (-3444 (((-632 $) $) NIL (|has| |#1| (-1065)) ELT)) (-3187 (((-85) $) 22 (|has| |#1| (-740)) ELT)) (-1604 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2531 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2857 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2280 (((-630 (-484)) (-1178 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1178 |#1|))) (-1178 $) $) NIL T ELT) (((-630 |#1|) (-1178 $)) NIL T ELT)) (-1890 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2484 (($ $) NIL T ELT)) (-3445 (($) NIL (|has| |#1| (-1065)) CONST)) (-3243 (((-1033) $) NIL T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) 82 T ELT)) (-3144 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3128 (($ $) NIL (|has| |#1| (-258)) ELT)) (-3130 ((|#1| $) 26 (|has| |#1| (-483)) ELT)) (-2705 (((-347 (-1084 $)) (-1084 $)) 133 (|has| |#1| (-821)) ELT)) (-2706 (((-347 (-1084 $)) (-1084 $)) 128 (|has| |#1| (-821)) ELT)) (-3731 (((-347 $) $) NIL T ELT)) (-1605 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3465 (((-3 $ #1#) $ $) NIL T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-3767 (($ $ (-583 |#1|) (-583 |#1|)) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-249 |#1|)) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-583 (-249 |#1|))) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-583 (-1089)) (-583 |#1|)) NIL (|has| |#1| (-455 (-1089) |#1|)) ELT) (($ $ (-1089) |#1|) NIL (|has| |#1| (-455 (-1089) |#1|)) ELT)) (-1606 (((-694) $) NIL T ELT)) (-3799 (($ $ |#1|) NIL (|has| |#1| (-241 |#1| |#1|)) ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL T ELT)) (-3757 (($ $ (-1 |#1| |#1|)) 45 T ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL T ELT) (($ $ (-1089)) NIL (|has| |#1| (-811 (-1089))) ELT) (($ $ (-583 (-1089))) NIL (|has| |#1| (-811 (-1089))) ELT) (($ $ (-1089) (-694)) NIL (|has| |#1| (-811 (-1089))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (|has| |#1| (-811 (-1089))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-694)) NIL (|has| |#1| (-189)) ELT)) (-2995 (($ $) NIL T ELT)) (-2997 ((|#1| $) 57 T ELT)) (-3971 (((-800 (-484)) $) NIL (|has| |#1| (-553 (-800 (-484)))) ELT) (((-800 (-329)) $) NIL (|has| |#1| (-553 (-800 (-329)))) ELT) (((-473) $) NIL (|has| |#1| (-553 (-473))) ELT) (((-329) $) NIL (|has| |#1| (-933)) ELT) (((-179) $) NIL (|has| |#1| (-933)) ELT)) (-2703 (((-3 (-1178 $) #1#) (-630 $)) 112 (-12 (|has| $ (-118)) (|has| |#1| (-821))) ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-349 (-484))) NIL T ELT) (($ |#1|) 10 T ELT) (($ (-1089)) NIL (|has| |#1| (-950 (-1089))) ELT)) (-2702 (((-632 $) $) 92 (OR (-12 (|has| $ (-118)) (|has| |#1| (-821))) (|has| |#1| (-118))) ELT)) (-3126 (((-694)) 93 T CONST)) (-3131 ((|#1| $) 24 (|has| |#1| (-483)) ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-3382 (($ $) NIL (|has| |#1| (-740)) ELT)) (-2660 (($) 28 T CONST)) (-2666 (($) 8 T CONST)) (-2669 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL T ELT) (($ $ (-1089)) NIL (|has| |#1| (-811 (-1089))) ELT) (($ $ (-583 (-1089))) NIL (|has| |#1| (-811 (-1089))) ELT) (($ $ (-1089) (-694)) NIL (|has| |#1| (-811 (-1089))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (|has| |#1| (-811 (-1089))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-694)) NIL (|has| |#1| (-189)) ELT)) (-2566 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2567 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3056 (((-85) $ $) 48 T ELT)) (-2684 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2685 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3948 (($ $ $) 123 T ELT) (($ |#1| |#1|) 34 T ELT)) (-3836 (($ $) 23 T ELT) (($ $ $) 37 T ELT)) (-3838 (($ $ $) 35 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) 122 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 42 T ELT) (($ $ $) 39 T ELT) (($ $ (-349 (-484))) NIL T ELT) (($ (-349 (-484)) $) NIL T ELT) (($ |#1| $) 43 T ELT) (($ $ |#1|) 70 T ELT))) +(((-349 |#1|) (-13 (-904 |#1|) (-10 -7 (IF (|has| |#1| (-6 -3981)) (IF (|has| |#1| (-391)) (IF (|has| |#1| (-6 -3992)) (-6 -3981) |%noBranch|) |%noBranch|) |%noBranch|))) (-495)) (T -349)) +NIL +((-3957 (((-349 |#2|) (-1 |#2| |#1|) (-349 |#1|)) 13 T ELT))) +(((-350 |#1| |#2|) (-10 -7 (-15 -3957 ((-349 |#2|) (-1 |#2| |#1|) (-349 |#1|)))) (-495) (-495)) (T -350)) +((-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-349 *5)) (-4 *5 (-495)) (-4 *6 (-495)) (-5 *2 (-349 *6)) (-5 *1 (-350 *5 *6))))) +((-1781 (((-630 |#2|) (-1178 $)) NIL T ELT) (((-630 |#2|)) 18 T ELT)) (-1791 (($ (-1178 |#2|) (-1178 $)) NIL T ELT) (($ (-1178 |#2|)) 24 T ELT)) (-1780 (((-630 |#2|) $ (-1178 $)) NIL T ELT) (((-630 |#2|) $) 40 T ELT)) (-2014 ((|#3| $) 69 T ELT)) (-3756 ((|#2| (-1178 $)) NIL T ELT) ((|#2|) 20 T ELT)) (-3224 (((-1178 |#2|) $ (-1178 $)) NIL T ELT) (((-630 |#2|) (-1178 $) (-1178 $)) NIL T ELT) (((-1178 |#2|) $) 22 T ELT) (((-630 |#2|) (-1178 $)) 38 T ELT)) (-3971 (((-1178 |#2|) $) 11 T ELT) (($ (-1178 |#2|)) 13 T ELT)) (-2449 ((|#3| $) 55 T ELT))) +(((-351 |#1| |#2| |#3|) (-10 -7 (-15 -1780 ((-630 |#2|) |#1|)) (-15 -3756 (|#2|)) (-15 -1781 ((-630 |#2|))) (-15 -3971 (|#1| (-1178 |#2|))) (-15 -3971 ((-1178 |#2|) |#1|)) (-15 -1791 (|#1| (-1178 |#2|))) (-15 -3224 ((-630 |#2|) (-1178 |#1|))) (-15 -3224 ((-1178 |#2|) |#1|)) (-15 -2014 (|#3| |#1|)) (-15 -2449 (|#3| |#1|)) (-15 -1781 ((-630 |#2|) (-1178 |#1|))) (-15 -3756 (|#2| (-1178 |#1|))) (-15 -1791 (|#1| (-1178 |#2|) (-1178 |#1|))) (-15 -3224 ((-630 |#2|) (-1178 |#1|) (-1178 |#1|))) (-15 -3224 ((-1178 |#2|) |#1| (-1178 |#1|))) (-15 -1780 ((-630 |#2|) |#1| (-1178 |#1|)))) (-352 |#2| |#3|) (-146) (-1154 |#2|)) (T -351)) +((-1781 (*1 *2) (-12 (-4 *4 (-146)) (-4 *5 (-1154 *4)) (-5 *2 (-630 *4)) (-5 *1 (-351 *3 *4 *5)) (-4 *3 (-352 *4 *5)))) (-3756 (*1 *2) (-12 (-4 *4 (-1154 *2)) (-4 *2 (-146)) (-5 *1 (-351 *3 *2 *4)) (-4 *3 (-352 *2 *4))))) +((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-1781 (((-630 |#1|) (-1178 $)) 61 T ELT) (((-630 |#1|)) 77 T ELT)) (-3329 ((|#1| $) 67 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3723 (($) 23 T CONST)) (-1791 (($ (-1178 |#1|) (-1178 $)) 63 T ELT) (($ (-1178 |#1|)) 80 T ELT)) (-1780 (((-630 |#1|) $ (-1178 $)) 68 T ELT) (((-630 |#1|) $) 75 T ELT)) (-3466 (((-3 $ "failed") $) 42 T ELT)) (-3108 (((-830)) 69 T ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3132 ((|#1| $) 66 T ELT)) (-2014 ((|#2| $) 59 (|has| |#1| (-312)) ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3756 ((|#1| (-1178 $)) 62 T ELT) ((|#1|) 76 T ELT)) (-3224 (((-1178 |#1|) $ (-1178 $)) 65 T ELT) (((-630 |#1|) (-1178 $) (-1178 $)) 64 T ELT) (((-1178 |#1|) $) 82 T ELT) (((-630 |#1|) (-1178 $)) 81 T ELT)) (-3971 (((-1178 |#1|) $) 79 T ELT) (($ (-1178 |#1|)) 78 T ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ |#1|) 52 T ELT)) (-2702 (((-632 $) $) 58 (|has| |#1| (-118)) ELT)) (-2449 ((|#2| $) 60 T ELT)) (-3126 (((-694)) 40 T CONST)) (-1264 (((-85) $ $) 6 T ELT)) (-2012 (((-1178 $)) 83 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 54 T ELT) (($ |#1| $) 53 T ELT))) +(((-352 |#1| |#2|) (-113) (-146) (-1154 |t#1|)) (T -352)) +((-2012 (*1 *2) (-12 (-4 *3 (-146)) (-4 *4 (-1154 *3)) (-5 *2 (-1178 *1)) (-4 *1 (-352 *3 *4)))) (-3224 (*1 *2 *1) (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1154 *3)) (-5 *2 (-1178 *3)))) (-3224 (*1 *2 *3) (-12 (-5 *3 (-1178 *1)) (-4 *1 (-352 *4 *5)) (-4 *4 (-146)) (-4 *5 (-1154 *4)) (-5 *2 (-630 *4)))) (-1791 (*1 *1 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-146)) (-4 *1 (-352 *3 *4)) (-4 *4 (-1154 *3)))) (-3971 (*1 *2 *1) (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1154 *3)) (-5 *2 (-1178 *3)))) (-3971 (*1 *1 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-146)) (-4 *1 (-352 *3 *4)) (-4 *4 (-1154 *3)))) (-1781 (*1 *2) (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1154 *3)) (-5 *2 (-630 *3)))) (-3756 (*1 *2) (-12 (-4 *1 (-352 *2 *3)) (-4 *3 (-1154 *2)) (-4 *2 (-146)))) (-1780 (*1 *2 *1) (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1154 *3)) (-5 *2 (-630 *3))))) +(-13 (-321 |t#1| |t#2|) (-10 -8 (-15 -2012 ((-1178 $))) (-15 -3224 ((-1178 |t#1|) $)) (-15 -3224 ((-630 |t#1|) (-1178 $))) (-15 -1791 ($ (-1178 |t#1|))) (-15 -3971 ((-1178 |t#1|) $)) (-15 -3971 ($ (-1178 |t#1|))) (-15 -1781 ((-630 |t#1|))) (-15 -3756 (|t#1|)) (-15 -1780 ((-630 |t#1|) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-555 (-484)) . T) ((-555 |#1|) . T) ((-552 (-772)) . T) ((-321 |#1| |#2|) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-582 |#1|) . T) ((-654 |#1|) . T) ((-663) . T) ((-963 |#1|) . T) ((-968 |#1|) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T)) +((-3157 (((-3 |#2| #1="failed") $) NIL T ELT) (((-3 (-349 (-484)) #1#) $) 27 T ELT) (((-3 (-484) #1#) $) 19 T ELT)) (-3156 ((|#2| $) NIL T ELT) (((-349 (-484)) $) 24 T ELT) (((-484) $) 14 T ELT)) (-3945 (($ |#2|) NIL T ELT) (($ (-349 (-484))) 22 T ELT) (($ (-484)) 11 T ELT))) +(((-353 |#1| |#2|) (-10 -7 (-15 -3945 (|#1| (-484))) (-15 -3157 ((-3 (-484) #1="failed") |#1|)) (-15 -3156 ((-484) |#1|)) (-15 -3945 (|#1| (-349 (-484)))) (-15 -3157 ((-3 (-349 (-484)) #1#) |#1|)) (-15 -3156 ((-349 (-484)) |#1|)) (-15 -3156 (|#2| |#1|)) (-15 -3157 ((-3 |#2| #1#) |#1|)) (-15 -3945 (|#1| |#2|))) (-354 |#2|) (-1128)) (T -353)) +NIL +((-3157 (((-3 |#1| #1="failed") $) 9 T ELT) (((-3 (-349 (-484)) #1#) $) 16 (|has| |#1| (-950 (-349 (-484)))) ELT) (((-3 (-484) #1#) $) 13 (|has| |#1| (-950 (-484))) ELT)) (-3156 ((|#1| $) 8 T ELT) (((-349 (-484)) $) 17 (|has| |#1| (-950 (-349 (-484)))) ELT) (((-484) $) 14 (|has| |#1| (-950 (-484))) ELT)) (-3945 (($ |#1|) 6 T ELT) (($ (-349 (-484))) 15 (|has| |#1| (-950 (-349 (-484)))) ELT) (($ (-484)) 12 (|has| |#1| (-950 (-484))) ELT))) +(((-354 |#1|) (-113) (-1128)) (T -354)) +NIL +(-13 (-950 |t#1|) (-10 -7 (IF (|has| |t#1| (-950 (-484))) (-6 (-950 (-484))) |%noBranch|) (IF (|has| |t#1| (-950 (-349 (-484)))) (-6 (-950 (-349 (-484)))) |%noBranch|))) +(((-555 (-349 (-484))) |has| |#1| (-950 (-349 (-484)))) ((-555 (-484)) |has| |#1| (-950 (-484))) ((-555 |#1|) . T) ((-950 (-349 (-484))) |has| |#1| (-950 (-349 (-484)))) ((-950 (-484)) |has| |#1| (-950 (-484))) ((-950 |#1|) . T)) +((-2568 (((-85) $ $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-3466 (((-3 $ "failed") $) NIL T ELT)) (-1782 ((|#4| (-694) (-1178 |#4|)) 55 T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2998 (((-1178 |#4|) $) 15 T ELT)) (-3132 ((|#2| $) 53 T ELT)) (-1783 (($ $) 156 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2484 (($ $) 103 T ELT)) (-1968 (($ (-1178 |#4|)) 102 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2997 ((|#1| $) 16 T ELT)) (-3009 (($ $ $) NIL T ELT)) (-2435 (($ $ $) NIL T ELT)) (-3945 (((-772) $) 147 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2012 (((-1178 |#4|) $) 140 T ELT)) (-2666 (($) 11 T CONST)) (-3056 (((-85) $ $) 39 T ELT)) (-3948 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) 133 T ELT)) (* (($ $ $) 130 T ELT))) +(((-355 |#1| |#2| |#3| |#4|) (-13 (-412) (-10 -8 (-15 -1968 ($ (-1178 |#4|))) (-15 -2012 ((-1178 |#4|) $)) (-15 -3132 (|#2| $)) (-15 -2998 ((-1178 |#4|) $)) (-15 -2997 (|#1| $)) (-15 -1783 ($ $)) (-15 -1782 (|#4| (-694) (-1178 |#4|))))) (-258) (-904 |#1|) (-1154 |#2|) (-13 (-352 |#2| |#3|) (-950 |#2|))) (T -355)) +((-1968 (*1 *1 *2) (-12 (-5 *2 (-1178 *6)) (-4 *6 (-13 (-352 *4 *5) (-950 *4))) (-4 *4 (-904 *3)) (-4 *5 (-1154 *4)) (-4 *3 (-258)) (-5 *1 (-355 *3 *4 *5 *6)))) (-2012 (*1 *2 *1) (-12 (-4 *3 (-258)) (-4 *4 (-904 *3)) (-4 *5 (-1154 *4)) (-5 *2 (-1178 *6)) (-5 *1 (-355 *3 *4 *5 *6)) (-4 *6 (-13 (-352 *4 *5) (-950 *4))))) (-3132 (*1 *2 *1) (-12 (-4 *4 (-1154 *2)) (-4 *2 (-904 *3)) (-5 *1 (-355 *3 *2 *4 *5)) (-4 *3 (-258)) (-4 *5 (-13 (-352 *2 *4) (-950 *2))))) (-2998 (*1 *2 *1) (-12 (-4 *3 (-258)) (-4 *4 (-904 *3)) (-4 *5 (-1154 *4)) (-5 *2 (-1178 *6)) (-5 *1 (-355 *3 *4 *5 *6)) (-4 *6 (-13 (-352 *4 *5) (-950 *4))))) (-2997 (*1 *2 *1) (-12 (-4 *3 (-904 *2)) (-4 *4 (-1154 *3)) (-4 *2 (-258)) (-5 *1 (-355 *2 *3 *4 *5)) (-4 *5 (-13 (-352 *3 *4) (-950 *3))))) (-1783 (*1 *1 *1) (-12 (-4 *2 (-258)) (-4 *3 (-904 *2)) (-4 *4 (-1154 *3)) (-5 *1 (-355 *2 *3 *4 *5)) (-4 *5 (-13 (-352 *3 *4) (-950 *3))))) (-1782 (*1 *2 *3 *4) (-12 (-5 *3 (-694)) (-5 *4 (-1178 *2)) (-4 *5 (-258)) (-4 *6 (-904 *5)) (-4 *2 (-13 (-352 *6 *7) (-950 *6))) (-5 *1 (-355 *5 *6 *7 *2)) (-4 *7 (-1154 *6))))) +((-3957 (((-355 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-355 |#1| |#2| |#3| |#4|)) 35 T ELT))) +(((-356 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3957 ((-355 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-355 |#1| |#2| |#3| |#4|)))) (-258) (-904 |#1|) (-1154 |#2|) (-13 (-352 |#2| |#3|) (-950 |#2|)) (-258) (-904 |#5|) (-1154 |#6|) (-13 (-352 |#6| |#7|) (-950 |#6|))) (T -356)) +((-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-355 *5 *6 *7 *8)) (-4 *5 (-258)) (-4 *6 (-904 *5)) (-4 *7 (-1154 *6)) (-4 *8 (-13 (-352 *6 *7) (-950 *6))) (-4 *9 (-258)) (-4 *10 (-904 *9)) (-4 *11 (-1154 *10)) (-5 *2 (-355 *9 *10 *11 *12)) (-5 *1 (-356 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-352 *10 *11) (-950 *10)))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-3466 (((-3 $ "failed") $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-3132 ((|#2| $) 69 T ELT)) (-1784 (($ (-1178 |#4|)) 27 T ELT) (($ (-355 |#1| |#2| |#3| |#4|)) 83 (|has| |#4| (-950 |#2|)) ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) 37 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2012 (((-1178 |#4|) $) 28 T ELT)) (-2666 (($) 26 T CONST)) (-3056 (((-85) $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ $ $) 80 T ELT))) +(((-357 |#1| |#2| |#3| |#4| |#5|) (-13 (-663) (-10 -8 (-15 -2012 ((-1178 |#4|) $)) (-15 -3132 (|#2| $)) (-15 -1784 ($ (-1178 |#4|))) (IF (|has| |#4| (-950 |#2|)) (-15 -1784 ($ (-355 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-258) (-904 |#1|) (-1154 |#2|) (-352 |#2| |#3|) (-1178 |#4|)) (T -357)) +((-2012 (*1 *2 *1) (-12 (-4 *3 (-258)) (-4 *4 (-904 *3)) (-4 *5 (-1154 *4)) (-5 *2 (-1178 *6)) (-5 *1 (-357 *3 *4 *5 *6 *7)) (-4 *6 (-352 *4 *5)) (-14 *7 *2))) (-3132 (*1 *2 *1) (-12 (-4 *4 (-1154 *2)) (-4 *2 (-904 *3)) (-5 *1 (-357 *3 *2 *4 *5 *6)) (-4 *3 (-258)) (-4 *5 (-352 *2 *4)) (-14 *6 (-1178 *5)))) (-1784 (*1 *1 *2) (-12 (-5 *2 (-1178 *6)) (-4 *6 (-352 *4 *5)) (-4 *4 (-904 *3)) (-4 *5 (-1154 *4)) (-4 *3 (-258)) (-5 *1 (-357 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-1784 (*1 *1 *2) (-12 (-5 *2 (-355 *3 *4 *5 *6)) (-4 *6 (-950 *4)) (-4 *3 (-258)) (-4 *4 (-904 *3)) (-4 *5 (-1154 *4)) (-4 *6 (-352 *4 *5)) (-14 *7 (-1178 *6)) (-5 *1 (-357 *3 *4 *5 *6 *7))))) +((-3957 ((|#3| (-1 |#4| |#2|) |#1|) 29 T ELT))) +(((-358 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3957 (|#3| (-1 |#4| |#2|) |#1|))) (-360 |#2|) (-146) (-360 |#4|) (-146)) (T -358)) +((-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-146)) (-4 *6 (-146)) (-4 *2 (-360 *6)) (-5 *1 (-358 *4 *5 *2 *6)) (-4 *4 (-360 *5))))) +((-1771 (((-3 $ #1="failed")) 99 T ELT)) (-3223 (((-1178 (-630 |#2|)) (-1178 $)) NIL T ELT) (((-1178 (-630 |#2|))) 104 T ELT)) (-1905 (((-3 (-2 (|:| |particular| $) (|:| -2012 (-583 $))) #1#)) 97 T ELT)) (-1702 (((-3 $ #1#)) 96 T ELT)) (-1787 (((-630 |#2|) (-1178 $)) NIL T ELT) (((-630 |#2|)) 115 T ELT)) (-1785 (((-630 |#2|) $ (-1178 $)) NIL T ELT) (((-630 |#2|) $) 123 T ELT)) (-1899 (((-1084 (-857 |#2|))) 64 T ELT)) (-1789 ((|#2| (-1178 $)) NIL T ELT) ((|#2|) 119 T ELT)) (-1791 (($ (-1178 |#2|) (-1178 $)) NIL T ELT) (($ (-1178 |#2|)) 125 T ELT)) (-1906 (((-3 (-2 (|:| |particular| $) (|:| -2012 (-583 $))) #1#)) 95 T ELT)) (-1703 (((-3 $ #1#)) 87 T ELT)) (-1788 (((-630 |#2|) (-1178 $)) NIL T ELT) (((-630 |#2|)) 113 T ELT)) (-1786 (((-630 |#2|) $ (-1178 $)) NIL T ELT) (((-630 |#2|) $) 121 T ELT)) (-1903 (((-1084 (-857 |#2|))) 63 T ELT)) (-1790 ((|#2| (-1178 $)) NIL T ELT) ((|#2|) 117 T ELT)) (-3224 (((-1178 |#2|) $ (-1178 $)) NIL T ELT) (((-630 |#2|) (-1178 $) (-1178 $)) NIL T ELT) (((-1178 |#2|) $) 124 T ELT) (((-630 |#2|) (-1178 $)) 133 T ELT)) (-3971 (((-1178 |#2|) $) 109 T ELT) (($ (-1178 |#2|)) 111 T ELT)) (-1891 (((-583 (-857 |#2|)) (-1178 $)) NIL T ELT) (((-583 (-857 |#2|))) 107 T ELT)) (-2545 (($ (-630 |#2|) $) 103 T ELT))) +(((-359 |#1| |#2|) (-10 -7 (-15 -2545 (|#1| (-630 |#2|) |#1|)) (-15 -1899 ((-1084 (-857 |#2|)))) (-15 -1903 ((-1084 (-857 |#2|)))) (-15 -1785 ((-630 |#2|) |#1|)) (-15 -1786 ((-630 |#2|) |#1|)) (-15 -1787 ((-630 |#2|))) (-15 -1788 ((-630 |#2|))) (-15 -1789 (|#2|)) (-15 -1790 (|#2|)) (-15 -3971 (|#1| (-1178 |#2|))) (-15 -3971 ((-1178 |#2|) |#1|)) (-15 -1791 (|#1| (-1178 |#2|))) (-15 -1891 ((-583 (-857 |#2|)))) (-15 -3223 ((-1178 (-630 |#2|)))) (-15 -3224 ((-630 |#2|) (-1178 |#1|))) (-15 -3224 ((-1178 |#2|) |#1|)) (-15 -1771 ((-3 |#1| #1="failed"))) (-15 -1702 ((-3 |#1| #1#))) (-15 -1703 ((-3 |#1| #1#))) (-15 -1905 ((-3 (-2 (|:| |particular| |#1|) (|:| -2012 (-583 |#1|))) #1#))) (-15 -1906 ((-3 (-2 (|:| |particular| |#1|) (|:| -2012 (-583 |#1|))) #1#))) (-15 -1787 ((-630 |#2|) (-1178 |#1|))) (-15 -1788 ((-630 |#2|) (-1178 |#1|))) (-15 -1789 (|#2| (-1178 |#1|))) (-15 -1790 (|#2| (-1178 |#1|))) (-15 -1791 (|#1| (-1178 |#2|) (-1178 |#1|))) (-15 -3224 ((-630 |#2|) (-1178 |#1|) (-1178 |#1|))) (-15 -3224 ((-1178 |#2|) |#1| (-1178 |#1|))) (-15 -1785 ((-630 |#2|) |#1| (-1178 |#1|))) (-15 -1786 ((-630 |#2|) |#1| (-1178 |#1|))) (-15 -3223 ((-1178 (-630 |#2|)) (-1178 |#1|))) (-15 -1891 ((-583 (-857 |#2|)) (-1178 |#1|)))) (-360 |#2|) (-146)) (T -359)) +((-3223 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-1178 (-630 *4))) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) (-1891 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-583 (-857 *4))) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) (-1790 (*1 *2) (-12 (-4 *2 (-146)) (-5 *1 (-359 *3 *2)) (-4 *3 (-360 *2)))) (-1789 (*1 *2) (-12 (-4 *2 (-146)) (-5 *1 (-359 *3 *2)) (-4 *3 (-360 *2)))) (-1788 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-630 *4)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) (-1787 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-630 *4)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) (-1903 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-1084 (-857 *4))) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) (-1899 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-1084 (-857 *4))) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4))))) +((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-1771 (((-3 $ #1="failed")) 48 (|has| |#1| (-495)) ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3223 (((-1178 (-630 |#1|)) (-1178 $)) 89 T ELT) (((-1178 (-630 |#1|))) 115 T ELT)) (-1728 (((-1178 $)) 92 T ELT)) (-3723 (($) 23 T CONST)) (-1905 (((-3 (-2 (|:| |particular| $) (|:| -2012 (-583 $))) #1#)) 51 (|has| |#1| (-495)) ELT)) (-1702 (((-3 $ #1#)) 49 (|has| |#1| (-495)) ELT)) (-1787 (((-630 |#1|) (-1178 $)) 76 T ELT) (((-630 |#1|)) 107 T ELT)) (-1726 ((|#1| $) 85 T ELT)) (-1785 (((-630 |#1|) $ (-1178 $)) 87 T ELT) (((-630 |#1|) $) 105 T ELT)) (-2404 (((-3 $ #1#) $) 56 (|has| |#1| (-495)) ELT)) (-1899 (((-1084 (-857 |#1|))) 103 (|has| |#1| (-312)) ELT)) (-2407 (($ $ (-830)) 37 T ELT)) (-1724 ((|#1| $) 83 T ELT)) (-1704 (((-1084 |#1|) $) 53 (|has| |#1| (-495)) ELT)) (-1789 ((|#1| (-1178 $)) 78 T ELT) ((|#1|) 109 T ELT)) (-1722 (((-1084 |#1|) $) 74 T ELT)) (-1716 (((-85)) 68 T ELT)) (-1791 (($ (-1178 |#1|) (-1178 $)) 80 T ELT) (($ (-1178 |#1|)) 113 T ELT)) (-3466 (((-3 $ #1#) $) 58 (|has| |#1| (-495)) ELT)) (-3108 (((-830)) 91 T ELT)) (-1713 (((-85)) 65 T ELT)) (-2433 (($ $ (-830)) 44 T ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-1709 (((-85)) 61 T ELT)) (-1707 (((-85)) 59 T ELT)) (-1711 (((-85)) 63 T ELT)) (-1906 (((-3 (-2 (|:| |particular| $) (|:| -2012 (-583 $))) #1#)) 52 (|has| |#1| (-495)) ELT)) (-1703 (((-3 $ #1#)) 50 (|has| |#1| (-495)) ELT)) (-1788 (((-630 |#1|) (-1178 $)) 77 T ELT) (((-630 |#1|)) 108 T ELT)) (-1727 ((|#1| $) 86 T ELT)) (-1786 (((-630 |#1|) $ (-1178 $)) 88 T ELT) (((-630 |#1|) $) 106 T ELT)) (-2405 (((-3 $ #1#) $) 57 (|has| |#1| (-495)) ELT)) (-1903 (((-1084 (-857 |#1|))) 104 (|has| |#1| (-312)) ELT)) (-2406 (($ $ (-830)) 38 T ELT)) (-1725 ((|#1| $) 84 T ELT)) (-1705 (((-1084 |#1|) $) 54 (|has| |#1| (-495)) ELT)) (-1790 ((|#1| (-1178 $)) 79 T ELT) ((|#1|) 110 T ELT)) (-1723 (((-1084 |#1|) $) 75 T ELT)) (-1717 (((-85)) 69 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-1708 (((-85)) 60 T ELT)) (-1710 (((-85)) 62 T ELT)) (-1712 (((-85)) 64 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-1715 (((-85)) 67 T ELT)) (-3799 ((|#1| $ (-484)) 119 T ELT)) (-3224 (((-1178 |#1|) $ (-1178 $)) 82 T ELT) (((-630 |#1|) (-1178 $) (-1178 $)) 81 T ELT) (((-1178 |#1|) $) 117 T ELT) (((-630 |#1|) (-1178 $)) 116 T ELT)) (-3971 (((-1178 |#1|) $) 112 T ELT) (($ (-1178 |#1|)) 111 T ELT)) (-1891 (((-583 (-857 |#1|)) (-1178 $)) 90 T ELT) (((-583 (-857 |#1|))) 114 T ELT)) (-2435 (($ $ $) 34 T ELT)) (-1721 (((-85)) 73 T ELT)) (-3945 (((-772) $) 13 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-2012 (((-1178 $)) 118 T ELT)) (-1706 (((-583 (-1178 |#1|))) 55 (|has| |#1| (-495)) ELT)) (-2436 (($ $ $ $) 35 T ELT)) (-1719 (((-85)) 71 T ELT)) (-2545 (($ (-630 |#1|) $) 102 T ELT)) (-2434 (($ $ $) 33 T ELT)) (-1720 (((-85)) 72 T ELT)) (-1718 (((-85)) 70 T ELT)) (-1714 (((-85)) 66 T ELT)) (-2660 (($) 24 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 39 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 36 T ELT) (($ $ |#1|) 46 T ELT) (($ |#1| $) 45 T ELT))) +(((-360 |#1|) (-113) (-146)) (T -360)) +((-2012 (*1 *2) (-12 (-4 *3 (-146)) (-5 *2 (-1178 *1)) (-4 *1 (-360 *3)))) (-3224 (*1 *2 *1) (-12 (-4 *1 (-360 *3)) (-4 *3 (-146)) (-5 *2 (-1178 *3)))) (-3224 (*1 *2 *3) (-12 (-5 *3 (-1178 *1)) (-4 *1 (-360 *4)) (-4 *4 (-146)) (-5 *2 (-630 *4)))) (-3223 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-146)) (-5 *2 (-1178 (-630 *3))))) (-1891 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-146)) (-5 *2 (-583 (-857 *3))))) (-1791 (*1 *1 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-146)) (-4 *1 (-360 *3)))) (-3971 (*1 *2 *1) (-12 (-4 *1 (-360 *3)) (-4 *3 (-146)) (-5 *2 (-1178 *3)))) (-3971 (*1 *1 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-146)) (-4 *1 (-360 *3)))) (-1790 (*1 *2) (-12 (-4 *1 (-360 *2)) (-4 *2 (-146)))) (-1789 (*1 *2) (-12 (-4 *1 (-360 *2)) (-4 *2 (-146)))) (-1788 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-146)) (-5 *2 (-630 *3)))) (-1787 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-146)) (-5 *2 (-630 *3)))) (-1786 (*1 *2 *1) (-12 (-4 *1 (-360 *3)) (-4 *3 (-146)) (-5 *2 (-630 *3)))) (-1785 (*1 *2 *1) (-12 (-4 *1 (-360 *3)) (-4 *3 (-146)) (-5 *2 (-630 *3)))) (-1903 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-146)) (-4 *3 (-312)) (-5 *2 (-1084 (-857 *3))))) (-1899 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-146)) (-4 *3 (-312)) (-5 *2 (-1084 (-857 *3))))) (-2545 (*1 *1 *2 *1) (-12 (-5 *2 (-630 *3)) (-4 *1 (-360 *3)) (-4 *3 (-146))))) +(-13 (-316 |t#1|) (-241 (-484) |t#1|) (-10 -8 (-15 -2012 ((-1178 $))) (-15 -3224 ((-1178 |t#1|) $)) (-15 -3224 ((-630 |t#1|) (-1178 $))) (-15 -3223 ((-1178 (-630 |t#1|)))) (-15 -1891 ((-583 (-857 |t#1|)))) (-15 -1791 ($ (-1178 |t#1|))) (-15 -3971 ((-1178 |t#1|) $)) (-15 -3971 ($ (-1178 |t#1|))) (-15 -1790 (|t#1|)) (-15 -1789 (|t#1|)) (-15 -1788 ((-630 |t#1|))) (-15 -1787 ((-630 |t#1|))) (-15 -1786 ((-630 |t#1|) $)) (-15 -1785 ((-630 |t#1|) $)) (IF (|has| |t#1| (-312)) (PROGN (-15 -1903 ((-1084 (-857 |t#1|)))) (-15 -1899 ((-1084 (-857 |t#1|))))) |%noBranch|) (-15 -2545 ($ (-630 |t#1|) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-552 (-772)) . T) ((-241 (-484) |#1|) . T) ((-316 |#1|) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-590 |#1|) . T) ((-582 |#1|) . T) ((-654 |#1|) . T) ((-657) . T) ((-683 |#1|) . T) ((-685) . T) ((-963 |#1|) . T) ((-968 |#1|) . T) ((-1013) . T) ((-1128) . T)) +((-3134 (((-347 |#1|) (-347 |#1|) (-1 (-347 |#1|) |#1|)) 28 T ELT)) (-1792 (((-347 |#1|) (-347 |#1|) (-347 |#1|)) 17 T ELT))) +(((-361 |#1|) (-10 -7 (-15 -3134 ((-347 |#1|) (-347 |#1|) (-1 (-347 |#1|) |#1|))) (-15 -1792 ((-347 |#1|) (-347 |#1|) (-347 |#1|)))) (-495)) (T -361)) +((-1792 (*1 *2 *2 *2) (-12 (-5 *2 (-347 *3)) (-4 *3 (-495)) (-5 *1 (-361 *3)))) (-3134 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-347 *4) *4)) (-4 *4 (-495)) (-5 *2 (-347 *4)) (-5 *1 (-361 *4))))) +((-3081 (((-583 (-1089)) $) 81 T ELT)) (-3083 (((-349 (-1084 $)) $ (-550 $)) 313 T ELT)) (-1603 (($ $ (-249 $)) NIL T ELT) (($ $ (-583 (-249 $))) NIL T ELT) (($ $ (-583 (-550 $)) (-583 $)) 277 T ELT)) (-3157 (((-3 (-550 $) #1="failed") $) NIL T ELT) (((-3 (-1089) #1#) $) 84 T ELT) (((-3 (-484) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 273 T ELT) (((-3 (-349 (-857 |#2|)) #1#) $) 363 T ELT) (((-3 (-857 |#2|) #1#) $) 275 T ELT) (((-3 (-349 (-484)) #1#) $) NIL T ELT)) (-3156 (((-550 $) $) NIL T ELT) (((-1089) $) 28 T ELT) (((-484) $) NIL T ELT) ((|#2| $) 271 T ELT) (((-349 (-857 |#2|)) $) 345 T ELT) (((-857 |#2|) $) 272 T ELT) (((-349 (-484)) $) NIL T ELT)) (-3594 (((-86) (-86)) 47 T ELT)) (-2996 (($ $) 99 T ELT)) (-1601 (((-3 (-550 $) #1#) $) 268 T ELT)) (-1600 (((-583 (-550 $)) $) 269 T ELT)) (-2823 (((-3 (-583 $) #1#) $) 287 T ELT)) (-2825 (((-3 (-2 (|:| |val| $) (|:| -2401 (-484))) #1#) $) 294 T ELT)) (-2822 (((-3 (-583 $) #1#) $) 285 T ELT)) (-1793 (((-3 (-2 (|:| -3953 (-484)) (|:| |var| (-550 $))) #1#) $) 304 T ELT)) (-2824 (((-3 (-2 (|:| |var| (-550 $)) (|:| -2401 (-484))) #1#) $) 291 T ELT) (((-3 (-2 (|:| |var| (-550 $)) (|:| -2401 (-484))) #1#) $ (-86)) 255 T ELT) (((-3 (-2 (|:| |var| (-550 $)) (|:| -2401 (-484))) #1#) $ (-1089)) 257 T ELT)) (-1796 (((-85) $) 17 T ELT)) (-1795 ((|#2| $) 19 T ELT)) (-3767 (($ $ (-550 $) $) NIL T ELT) (($ $ (-583 (-550 $)) (-583 $)) 276 T ELT) (($ $ (-583 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ (-583 (-1089)) (-583 (-1 $ $))) NIL T ELT) (($ $ (-583 (-1089)) (-583 (-1 $ (-583 $)))) 109 T ELT) (($ $ (-1089) (-1 $ (-583 $))) NIL T ELT) (($ $ (-1089) (-1 $ $)) NIL T ELT) (($ $ (-583 (-86)) (-583 (-1 $ $))) NIL T ELT) (($ $ (-583 (-86)) (-583 (-1 $ (-583 $)))) NIL T ELT) (($ $ (-86) (-1 $ (-583 $))) NIL T ELT) (($ $ (-86) (-1 $ $)) NIL T ELT) (($ $ (-1089)) 62 T ELT) (($ $ (-583 (-1089))) 280 T ELT) (($ $) 281 T ELT) (($ $ (-86) $ (-1089)) 65 T ELT) (($ $ (-583 (-86)) (-583 $) (-1089)) 72 T ELT) (($ $ (-583 (-1089)) (-583 (-694)) (-583 (-1 $ $))) 120 T ELT) (($ $ (-583 (-1089)) (-583 (-694)) (-583 (-1 $ (-583 $)))) 282 T ELT) (($ $ (-1089) (-694) (-1 $ (-583 $))) 105 T ELT) (($ $ (-1089) (-694) (-1 $ $)) 104 T ELT)) (-3799 (($ (-86) $) NIL T ELT) (($ (-86) $ $) NIL T ELT) (($ (-86) $ $ $) NIL T ELT) (($ (-86) $ $ $ $) NIL T ELT) (($ (-86) (-583 $)) 119 T ELT)) (-3757 (($ $ (-1089)) 278 T ELT) (($ $ (-583 (-1089))) NIL T ELT) (($ $ (-1089) (-694)) NIL T ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL T ELT)) (-2995 (($ $) 324 T ELT)) (-3971 (((-800 (-484)) $) 297 T ELT) (((-800 (-329)) $) 301 T ELT) (($ (-347 $)) 359 T ELT) (((-473) $) NIL T ELT)) (-3945 (((-772) $) 279 T ELT) (($ (-550 $)) 93 T ELT) (($ (-1089)) 24 T ELT) (($ |#2|) NIL T ELT) (($ (-1038 |#2| (-550 $))) NIL T ELT) (($ (-349 |#2|)) 329 T ELT) (($ (-857 (-349 |#2|))) 368 T ELT) (($ (-349 (-857 (-349 |#2|)))) 341 T ELT) (($ (-349 (-857 |#2|))) 335 T ELT) (($ $) NIL T ELT) (($ (-857 |#2|)) 216 T ELT) (($ (-484)) NIL T ELT) (($ (-349 (-484))) 373 T ELT)) (-3126 (((-694)) 88 T CONST)) (-2254 (((-85) (-86)) 42 T ELT)) (-1794 (($ (-1089) $) 31 T ELT) (($ (-1089) $ $) 32 T ELT) (($ (-1089) $ $ $) 33 T ELT) (($ (-1089) $ $ $ $) 34 T ELT) (($ (-1089) (-583 $)) 39 T ELT)) (* (($ (-349 (-484)) $) NIL T ELT) (($ $ (-349 (-484))) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 306 T ELT) (($ $ $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-830) $) NIL T ELT))) +(((-362 |#1| |#2|) (-10 -7 (-15 * (|#1| (-830) |#1|)) (-15 * (|#1| (-694) |#1|)) (-15 * (|#1| (-484) |#1|)) (-15 -3945 (|#1| (-349 (-484)))) (-15 -3157 ((-3 (-349 (-484)) #1="failed") |#1|)) (-15 -3156 ((-349 (-484)) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3945 (|#1| (-484))) (-15 -3126 ((-694)) -3951) (-15 * (|#1| |#2| |#1|)) (-15 -3971 ((-473) |#1|)) (-15 -3945 (|#1| (-857 |#2|))) (-15 -3157 ((-3 (-857 |#2|) #1#) |#1|)) (-15 -3156 ((-857 |#2|) |#1|)) (-15 -3757 (|#1| |#1| (-583 (-1089)) (-583 (-694)))) (-15 -3757 (|#1| |#1| (-1089) (-694))) (-15 -3757 (|#1| |#1| (-583 (-1089)))) (-15 -3757 (|#1| |#1| (-1089))) (-15 * (|#1| |#1| |#2|)) (-15 -3945 (|#1| |#1|)) (-15 * (|#1| |#1| (-349 (-484)))) (-15 * (|#1| (-349 (-484)) |#1|)) (-15 -3945 (|#1| (-349 (-857 |#2|)))) (-15 -3157 ((-3 (-349 (-857 |#2|)) #1#) |#1|)) (-15 -3156 ((-349 (-857 |#2|)) |#1|)) (-15 -3083 ((-349 (-1084 |#1|)) |#1| (-550 |#1|))) (-15 -3945 (|#1| (-349 (-857 (-349 |#2|))))) (-15 -3945 (|#1| (-857 (-349 |#2|)))) (-15 -3945 (|#1| (-349 |#2|))) (-15 -2995 (|#1| |#1|)) (-15 -3971 (|#1| (-347 |#1|))) (-15 -3767 (|#1| |#1| (-1089) (-694) (-1 |#1| |#1|))) (-15 -3767 (|#1| |#1| (-1089) (-694) (-1 |#1| (-583 |#1|)))) (-15 -3767 (|#1| |#1| (-583 (-1089)) (-583 (-694)) (-583 (-1 |#1| (-583 |#1|))))) (-15 -3767 (|#1| |#1| (-583 (-1089)) (-583 (-694)) (-583 (-1 |#1| |#1|)))) (-15 -2825 ((-3 (-2 (|:| |val| |#1|) (|:| -2401 (-484))) #1#) |#1|)) (-15 -2824 ((-3 (-2 (|:| |var| (-550 |#1|)) (|:| -2401 (-484))) #1#) |#1| (-1089))) (-15 -2824 ((-3 (-2 (|:| |var| (-550 |#1|)) (|:| -2401 (-484))) #1#) |#1| (-86))) (-15 -2996 (|#1| |#1|)) (-15 -3945 (|#1| (-1038 |#2| (-550 |#1|)))) (-15 -1793 ((-3 (-2 (|:| -3953 (-484)) (|:| |var| (-550 |#1|))) #1#) |#1|)) (-15 -2822 ((-3 (-583 |#1|) #1#) |#1|)) (-15 -2824 ((-3 (-2 (|:| |var| (-550 |#1|)) (|:| -2401 (-484))) #1#) |#1|)) (-15 -2823 ((-3 (-583 |#1|) #1#) |#1|)) (-15 -3767 (|#1| |#1| (-583 (-86)) (-583 |#1|) (-1089))) (-15 -3767 (|#1| |#1| (-86) |#1| (-1089))) (-15 -3767 (|#1| |#1|)) (-15 -3767 (|#1| |#1| (-583 (-1089)))) (-15 -3767 (|#1| |#1| (-1089))) (-15 -1794 (|#1| (-1089) (-583 |#1|))) (-15 -1794 (|#1| (-1089) |#1| |#1| |#1| |#1|)) (-15 -1794 (|#1| (-1089) |#1| |#1| |#1|)) (-15 -1794 (|#1| (-1089) |#1| |#1|)) (-15 -1794 (|#1| (-1089) |#1|)) (-15 -3081 ((-583 (-1089)) |#1|)) (-15 -1795 (|#2| |#1|)) (-15 -1796 ((-85) |#1|)) (-15 -3945 (|#1| |#2|)) (-15 -3157 ((-3 |#2| #1#) |#1|)) (-15 -3156 (|#2| |#1|)) (-15 -3156 ((-484) |#1|)) (-15 -3157 ((-3 (-484) #1#) |#1|)) (-15 -3971 ((-800 (-329)) |#1|)) (-15 -3971 ((-800 (-484)) |#1|)) (-15 -3945 (|#1| (-1089))) (-15 -3157 ((-3 (-1089) #1#) |#1|)) (-15 -3156 ((-1089) |#1|)) (-15 -3767 (|#1| |#1| (-86) (-1 |#1| |#1|))) (-15 -3767 (|#1| |#1| (-86) (-1 |#1| (-583 |#1|)))) (-15 -3767 (|#1| |#1| (-583 (-86)) (-583 (-1 |#1| (-583 |#1|))))) (-15 -3767 (|#1| |#1| (-583 (-86)) (-583 (-1 |#1| |#1|)))) (-15 -3767 (|#1| |#1| (-1089) (-1 |#1| |#1|))) (-15 -3767 (|#1| |#1| (-1089) (-1 |#1| (-583 |#1|)))) (-15 -3767 (|#1| |#1| (-583 (-1089)) (-583 (-1 |#1| (-583 |#1|))))) (-15 -3767 (|#1| |#1| (-583 (-1089)) (-583 (-1 |#1| |#1|)))) (-15 -2254 ((-85) (-86))) (-15 -3594 ((-86) (-86))) (-15 -1600 ((-583 (-550 |#1|)) |#1|)) (-15 -1601 ((-3 (-550 |#1|) #1#) |#1|)) (-15 -1603 (|#1| |#1| (-583 (-550 |#1|)) (-583 |#1|))) (-15 -1603 (|#1| |#1| (-583 (-249 |#1|)))) (-15 -1603 (|#1| |#1| (-249 |#1|))) (-15 -3799 (|#1| (-86) (-583 |#1|))) (-15 -3799 (|#1| (-86) |#1| |#1| |#1| |#1|)) (-15 -3799 (|#1| (-86) |#1| |#1| |#1|)) (-15 -3799 (|#1| (-86) |#1| |#1|)) (-15 -3799 (|#1| (-86) |#1|)) (-15 -3767 (|#1| |#1| (-583 |#1|) (-583 |#1|))) (-15 -3767 (|#1| |#1| |#1| |#1|)) (-15 -3767 (|#1| |#1| (-249 |#1|))) (-15 -3767 (|#1| |#1| (-583 (-249 |#1|)))) (-15 -3767 (|#1| |#1| (-583 (-550 |#1|)) (-583 |#1|))) (-15 -3767 (|#1| |#1| (-550 |#1|) |#1|)) (-15 -3945 (|#1| (-550 |#1|))) (-15 -3157 ((-3 (-550 |#1|) #1#) |#1|)) (-15 -3156 ((-550 |#1|) |#1|)) (-15 -3945 ((-772) |#1|))) (-363 |#2|) (-1013)) (T -362)) +((-3594 (*1 *2 *2) (-12 (-5 *2 (-86)) (-4 *4 (-1013)) (-5 *1 (-362 *3 *4)) (-4 *3 (-363 *4)))) (-2254 (*1 *2 *3) (-12 (-5 *3 (-86)) (-4 *5 (-1013)) (-5 *2 (-85)) (-5 *1 (-362 *4 *5)) (-4 *4 (-363 *5)))) (-3126 (*1 *2) (-12 (-4 *4 (-1013)) (-5 *2 (-694)) (-5 *1 (-362 *3 *4)) (-4 *3 (-363 *4))))) +((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 129 (|has| |#1| (-25)) ELT)) (-3081 (((-583 (-1089)) $) 222 T ELT)) (-3083 (((-349 (-1084 $)) $ (-550 $)) 190 (|has| |#1| (-495)) ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) 162 (|has| |#1| (-495)) ELT)) (-2063 (($ $) 163 (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) 165 (|has| |#1| (-495)) ELT)) (-1599 (((-583 (-550 $)) $) 42 T ELT)) (-1311 (((-3 $ "failed") $ $) 132 (|has| |#1| (-21)) ELT)) (-1603 (($ $ (-249 $)) 54 T ELT) (($ $ (-583 (-249 $))) 53 T ELT) (($ $ (-583 (-550 $)) (-583 $)) 52 T ELT)) (-3774 (($ $) 182 (|has| |#1| (-495)) ELT)) (-3970 (((-347 $) $) 183 (|has| |#1| (-495)) ELT)) (-1607 (((-85) $ $) 173 (|has| |#1| (-495)) ELT)) (-3723 (($) 117 (OR (|has| |#1| (-1025)) (|has| |#1| (-25))) CONST)) (-3157 (((-3 (-550 $) #1="failed") $) 67 T ELT) (((-3 (-1089) #1#) $) 235 T ELT) (((-3 (-484) #1#) $) 229 (|has| |#1| (-950 (-484))) ELT) (((-3 |#1| #1#) $) 226 T ELT) (((-3 (-349 (-857 |#1|)) #1#) $) 188 (|has| |#1| (-495)) ELT) (((-3 (-857 |#1|) #1#) $) 137 (|has| |#1| (-961)) ELT) (((-3 (-349 (-484)) #1#) $) 111 (OR (-12 (|has| |#1| (-950 (-484))) (|has| |#1| (-495))) (|has| |#1| (-950 (-349 (-484))))) ELT)) (-3156 (((-550 $) $) 68 T ELT) (((-1089) $) 236 T ELT) (((-484) $) 228 (|has| |#1| (-950 (-484))) ELT) ((|#1| $) 227 T ELT) (((-349 (-857 |#1|)) $) 189 (|has| |#1| (-495)) ELT) (((-857 |#1|) $) 138 (|has| |#1| (-961)) ELT) (((-349 (-484)) $) 112 (OR (-12 (|has| |#1| (-950 (-484))) (|has| |#1| (-495))) (|has| |#1| (-950 (-349 (-484))))) ELT)) (-2564 (($ $ $) 177 (|has| |#1| (-495)) ELT)) (-2279 (((-630 (-484)) (-630 $)) 155 (-2562 (|has| |#1| (-580 (-484))) (|has| |#1| (-961))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) 154 (-2562 (|has| |#1| (-580 (-484))) (|has| |#1| (-961))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1178 |#1|))) (-630 $) (-1178 $)) 153 (|has| |#1| (-961)) ELT) (((-630 |#1|) (-630 $)) 152 (|has| |#1| (-961)) ELT)) (-3466 (((-3 $ "failed") $) 119 (|has| |#1| (-1025)) ELT)) (-2563 (($ $ $) 176 (|has| |#1| (-495)) ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) 171 (|has| |#1| (-495)) ELT)) (-3722 (((-85) $) 184 (|has| |#1| (-495)) ELT)) (-2796 (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) 231 (|has| |#1| (-796 (-484))) ELT) (((-798 (-329) $) $ (-800 (-329)) (-798 (-329) $)) 230 (|has| |#1| (-796 (-329))) ELT)) (-2573 (($ $) 49 T ELT) (($ (-583 $)) 48 T ELT)) (-1213 (((-85) $ $) 131 (|has| |#1| (-25)) ELT)) (-1598 (((-583 (-86)) $) 41 T ELT)) (-3594 (((-86) (-86)) 40 T ELT)) (-2410 (((-85) $) 118 (|has| |#1| (-1025)) ELT)) (-2673 (((-85) $) 20 (|has| $ (-950 (-484))) ELT)) (-2996 (($ $) 205 (|has| |#1| (-961)) ELT)) (-2998 (((-1038 |#1| (-550 $)) $) 206 (|has| |#1| (-961)) ELT)) (-1604 (((-3 (-583 $) #2="failed") (-583 $) $) 180 (|has| |#1| (-495)) ELT)) (-1596 (((-1084 $) (-550 $)) 23 (|has| $ (-961)) ELT)) (-3957 (($ (-1 $ $) (-550 $)) 34 T ELT)) (-1601 (((-3 (-550 $) "failed") $) 44 T ELT)) (-2280 (((-630 (-484)) (-1178 $)) 157 (-2562 (|has| |#1| (-580 (-484))) (|has| |#1| (-961))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) 156 (-2562 (|has| |#1| (-580 (-484))) (|has| |#1| (-961))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1178 |#1|))) (-1178 $) $) 151 (|has| |#1| (-961)) ELT) (((-630 |#1|) (-1178 $)) 150 (|has| |#1| (-961)) ELT)) (-1890 (($ (-583 $)) 169 (|has| |#1| (-495)) ELT) (($ $ $) 168 (|has| |#1| (-495)) ELT)) (-3242 (((-1072) $) 11 T ELT)) (-1600 (((-583 (-550 $)) $) 43 T ELT)) (-2235 (($ (-86) $) 36 T ELT) (($ (-86) (-583 $)) 35 T ELT)) (-2823 (((-3 (-583 $) "failed") $) 211 (|has| |#1| (-1025)) ELT)) (-2825 (((-3 (-2 (|:| |val| $) (|:| -2401 (-484))) "failed") $) 202 (|has| |#1| (-961)) ELT)) (-2822 (((-3 (-583 $) "failed") $) 209 (|has| |#1| (-25)) ELT)) (-1793 (((-3 (-2 (|:| -3953 (-484)) (|:| |var| (-550 $))) "failed") $) 208 (|has| |#1| (-25)) ELT)) (-2824 (((-3 (-2 (|:| |var| (-550 $)) (|:| -2401 (-484))) "failed") $) 210 (|has| |#1| (-1025)) ELT) (((-3 (-2 (|:| |var| (-550 $)) (|:| -2401 (-484))) "failed") $ (-86)) 204 (|has| |#1| (-961)) ELT) (((-3 (-2 (|:| |var| (-550 $)) (|:| -2401 (-484))) "failed") $ (-1089)) 203 (|has| |#1| (-961)) ELT)) (-2633 (((-85) $ (-86)) 38 T ELT) (((-85) $ (-1089)) 37 T ELT)) (-2484 (($ $) 121 (OR (|has| |#1| (-412)) (|has| |#1| (-495))) ELT)) (-2603 (((-694) $) 45 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-1796 (((-85) $) 224 T ELT)) (-1795 ((|#1| $) 223 T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) 170 (|has| |#1| (-495)) ELT)) (-3144 (($ (-583 $)) 167 (|has| |#1| (-495)) ELT) (($ $ $) 166 (|has| |#1| (-495)) ELT)) (-1597 (((-85) $ $) 33 T ELT) (((-85) $ (-1089)) 32 T ELT)) (-3731 (((-347 $) $) 181 (|has| |#1| (-495)) ELT)) (-1605 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 179 (|has| |#1| (-495)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) 178 (|has| |#1| (-495)) ELT)) (-3465 (((-3 $ "failed") $ $) 161 (|has| |#1| (-495)) ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) 172 (|has| |#1| (-495)) ELT)) (-2674 (((-85) $) 21 (|has| $ (-950 (-484))) ELT)) (-3767 (($ $ (-550 $) $) 65 T ELT) (($ $ (-583 (-550 $)) (-583 $)) 64 T ELT) (($ $ (-583 (-249 $))) 63 T ELT) (($ $ (-249 $)) 62 T ELT) (($ $ $ $) 61 T ELT) (($ $ (-583 $) (-583 $)) 60 T ELT) (($ $ (-583 (-1089)) (-583 (-1 $ $))) 31 T ELT) (($ $ (-583 (-1089)) (-583 (-1 $ (-583 $)))) 30 T ELT) (($ $ (-1089) (-1 $ (-583 $))) 29 T ELT) (($ $ (-1089) (-1 $ $)) 28 T ELT) (($ $ (-583 (-86)) (-583 (-1 $ $))) 27 T ELT) (($ $ (-583 (-86)) (-583 (-1 $ (-583 $)))) 26 T ELT) (($ $ (-86) (-1 $ (-583 $))) 25 T ELT) (($ $ (-86) (-1 $ $)) 24 T ELT) (($ $ (-1089)) 216 (|has| |#1| (-553 (-473))) ELT) (($ $ (-583 (-1089))) 215 (|has| |#1| (-553 (-473))) ELT) (($ $) 214 (|has| |#1| (-553 (-473))) ELT) (($ $ (-86) $ (-1089)) 213 (|has| |#1| (-553 (-473))) ELT) (($ $ (-583 (-86)) (-583 $) (-1089)) 212 (|has| |#1| (-553 (-473))) ELT) (($ $ (-583 (-1089)) (-583 (-694)) (-583 (-1 $ $))) 201 (|has| |#1| (-961)) ELT) (($ $ (-583 (-1089)) (-583 (-694)) (-583 (-1 $ (-583 $)))) 200 (|has| |#1| (-961)) ELT) (($ $ (-1089) (-694) (-1 $ (-583 $))) 199 (|has| |#1| (-961)) ELT) (($ $ (-1089) (-694) (-1 $ $)) 198 (|has| |#1| (-961)) ELT)) (-1606 (((-694) $) 174 (|has| |#1| (-495)) ELT)) (-3799 (($ (-86) $) 59 T ELT) (($ (-86) $ $) 58 T ELT) (($ (-86) $ $ $) 57 T ELT) (($ (-86) $ $ $ $) 56 T ELT) (($ (-86) (-583 $)) 55 T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 175 (|has| |#1| (-495)) ELT)) (-1602 (($ $) 47 T ELT) (($ $ $) 46 T ELT)) (-3757 (($ $ (-1089)) 148 (|has| |#1| (-961)) ELT) (($ $ (-583 (-1089))) 146 (|has| |#1| (-961)) ELT) (($ $ (-1089) (-694)) 145 (|has| |#1| (-961)) ELT) (($ $ (-583 (-1089)) (-583 (-694))) 144 (|has| |#1| (-961)) ELT)) (-2995 (($ $) 195 (|has| |#1| (-495)) ELT)) (-2997 (((-1038 |#1| (-550 $)) $) 196 (|has| |#1| (-495)) ELT)) (-3185 (($ $) 22 (|has| $ (-961)) ELT)) (-3971 (((-800 (-484)) $) 233 (|has| |#1| (-553 (-800 (-484)))) ELT) (((-800 (-329)) $) 232 (|has| |#1| (-553 (-800 (-329)))) ELT) (($ (-347 $)) 197 (|has| |#1| (-495)) ELT) (((-473) $) 113 (|has| |#1| (-553 (-473))) ELT)) (-3009 (($ $ $) 124 (|has| |#1| (-412)) ELT)) (-2435 (($ $ $) 125 (|has| |#1| (-412)) ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-550 $)) 66 T ELT) (($ (-1089)) 234 T ELT) (($ |#1|) 225 T ELT) (($ (-1038 |#1| (-550 $))) 207 (|has| |#1| (-961)) ELT) (($ (-349 |#1|)) 193 (|has| |#1| (-495)) ELT) (($ (-857 (-349 |#1|))) 192 (|has| |#1| (-495)) ELT) (($ (-349 (-857 (-349 |#1|)))) 191 (|has| |#1| (-495)) ELT) (($ (-349 (-857 |#1|))) 187 (|has| |#1| (-495)) ELT) (($ $) 160 (|has| |#1| (-495)) ELT) (($ (-857 |#1|)) 136 (|has| |#1| (-961)) ELT) (($ (-349 (-484))) 110 (OR (|has| |#1| (-495)) (-12 (|has| |#1| (-950 (-484))) (|has| |#1| (-495))) (|has| |#1| (-950 (-349 (-484))))) ELT) (($ (-484)) 109 (OR (|has| |#1| (-961)) (|has| |#1| (-950 (-484)))) ELT)) (-2702 (((-632 $) $) 158 (|has| |#1| (-118)) ELT)) (-3126 (((-694)) 140 (|has| |#1| (-961)) CONST)) (-2590 (($ $) 51 T ELT) (($ (-583 $)) 50 T ELT)) (-2254 (((-85) (-86)) 39 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-2062 (((-85) $ $) 164 (|has| |#1| (-495)) ELT)) (-1794 (($ (-1089) $) 221 T ELT) (($ (-1089) $ $) 220 T ELT) (($ (-1089) $ $ $) 219 T ELT) (($ (-1089) $ $ $ $) 218 T ELT) (($ (-1089) (-583 $)) 217 T ELT)) (-3125 (((-85) $ $) 139 (|has| |#1| (-961)) ELT)) (-2660 (($) 128 (|has| |#1| (-25)) CONST)) (-2666 (($) 116 (|has| |#1| (-1025)) CONST)) (-2669 (($ $ (-1089)) 147 (|has| |#1| (-961)) ELT) (($ $ (-583 (-1089))) 143 (|has| |#1| (-961)) ELT) (($ $ (-1089) (-694)) 142 (|has| |#1| (-961)) ELT) (($ $ (-583 (-1089)) (-583 (-694))) 141 (|has| |#1| (-961)) ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-3948 (($ (-1038 |#1| (-550 $)) (-1038 |#1| (-550 $))) 194 (|has| |#1| (-495)) ELT) (($ $ $) 122 (OR (|has| |#1| (-412)) (|has| |#1| (-495))) ELT)) (-3836 (($ $ $) 135 (|has| |#1| (-21)) ELT) (($ $) 134 (|has| |#1| (-21)) ELT)) (-3838 (($ $ $) 126 (|has| |#1| (-25)) ELT)) (** (($ $ (-484)) 123 (OR (|has| |#1| (-412)) (|has| |#1| (-495))) ELT) (($ $ (-694)) 120 (|has| |#1| (-1025)) ELT) (($ $ (-830)) 115 (|has| |#1| (-1025)) ELT)) (* (($ (-349 (-484)) $) 186 (|has| |#1| (-495)) ELT) (($ $ (-349 (-484))) 185 (|has| |#1| (-495)) ELT) (($ $ |#1|) 159 (|has| |#1| (-146)) ELT) (($ |#1| $) 149 (|has| |#1| (-961)) ELT) (($ (-484) $) 133 (|has| |#1| (-21)) ELT) (($ (-694) $) 130 (|has| |#1| (-25)) ELT) (($ (-830) $) 127 (|has| |#1| (-25)) ELT) (($ $ $) 114 (|has| |#1| (-1025)) ELT))) +(((-363 |#1|) (-113) (-1013)) (T -363)) +((-1796 (*1 *2 *1) (-12 (-4 *1 (-363 *3)) (-4 *3 (-1013)) (-5 *2 (-85)))) (-1795 (*1 *2 *1) (-12 (-4 *1 (-363 *2)) (-4 *2 (-1013)))) (-3081 (*1 *2 *1) (-12 (-4 *1 (-363 *3)) (-4 *3 (-1013)) (-5 *2 (-583 (-1089))))) (-1794 (*1 *1 *2 *1) (-12 (-5 *2 (-1089)) (-4 *1 (-363 *3)) (-4 *3 (-1013)))) (-1794 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1089)) (-4 *1 (-363 *3)) (-4 *3 (-1013)))) (-1794 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1089)) (-4 *1 (-363 *3)) (-4 *3 (-1013)))) (-1794 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1089)) (-4 *1 (-363 *3)) (-4 *3 (-1013)))) (-1794 (*1 *1 *2 *3) (-12 (-5 *2 (-1089)) (-5 *3 (-583 *1)) (-4 *1 (-363 *4)) (-4 *4 (-1013)))) (-3767 (*1 *1 *1 *2) (-12 (-5 *2 (-1089)) (-4 *1 (-363 *3)) (-4 *3 (-1013)) (-4 *3 (-553 (-473))))) (-3767 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-1089))) (-4 *1 (-363 *3)) (-4 *3 (-1013)) (-4 *3 (-553 (-473))))) (-3767 (*1 *1 *1) (-12 (-4 *1 (-363 *2)) (-4 *2 (-1013)) (-4 *2 (-553 (-473))))) (-3767 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-86)) (-5 *3 (-1089)) (-4 *1 (-363 *4)) (-4 *4 (-1013)) (-4 *4 (-553 (-473))))) (-3767 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-583 (-86))) (-5 *3 (-583 *1)) (-5 *4 (-1089)) (-4 *1 (-363 *5)) (-4 *5 (-1013)) (-4 *5 (-553 (-473))))) (-2823 (*1 *2 *1) (|partial| -12 (-4 *3 (-1025)) (-4 *3 (-1013)) (-5 *2 (-583 *1)) (-4 *1 (-363 *3)))) (-2824 (*1 *2 *1) (|partial| -12 (-4 *3 (-1025)) (-4 *3 (-1013)) (-5 *2 (-2 (|:| |var| (-550 *1)) (|:| -2401 (-484)))) (-4 *1 (-363 *3)))) (-2822 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1013)) (-5 *2 (-583 *1)) (-4 *1 (-363 *3)))) (-1793 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1013)) (-5 *2 (-2 (|:| -3953 (-484)) (|:| |var| (-550 *1)))) (-4 *1 (-363 *3)))) (-3945 (*1 *1 *2) (-12 (-5 *2 (-1038 *3 (-550 *1))) (-4 *3 (-961)) (-4 *3 (-1013)) (-4 *1 (-363 *3)))) (-2998 (*1 *2 *1) (-12 (-4 *3 (-961)) (-4 *3 (-1013)) (-5 *2 (-1038 *3 (-550 *1))) (-4 *1 (-363 *3)))) (-2996 (*1 *1 *1) (-12 (-4 *1 (-363 *2)) (-4 *2 (-1013)) (-4 *2 (-961)))) (-2824 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-86)) (-4 *4 (-961)) (-4 *4 (-1013)) (-5 *2 (-2 (|:| |var| (-550 *1)) (|:| -2401 (-484)))) (-4 *1 (-363 *4)))) (-2824 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1089)) (-4 *4 (-961)) (-4 *4 (-1013)) (-5 *2 (-2 (|:| |var| (-550 *1)) (|:| -2401 (-484)))) (-4 *1 (-363 *4)))) (-2825 (*1 *2 *1) (|partial| -12 (-4 *3 (-961)) (-4 *3 (-1013)) (-5 *2 (-2 (|:| |val| *1) (|:| -2401 (-484)))) (-4 *1 (-363 *3)))) (-3767 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-583 (-1089))) (-5 *3 (-583 (-694))) (-5 *4 (-583 (-1 *1 *1))) (-4 *1 (-363 *5)) (-4 *5 (-1013)) (-4 *5 (-961)))) (-3767 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-583 (-1089))) (-5 *3 (-583 (-694))) (-5 *4 (-583 (-1 *1 (-583 *1)))) (-4 *1 (-363 *5)) (-4 *5 (-1013)) (-4 *5 (-961)))) (-3767 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1089)) (-5 *3 (-694)) (-5 *4 (-1 *1 (-583 *1))) (-4 *1 (-363 *5)) (-4 *5 (-1013)) (-4 *5 (-961)))) (-3767 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1089)) (-5 *3 (-694)) (-5 *4 (-1 *1 *1)) (-4 *1 (-363 *5)) (-4 *5 (-1013)) (-4 *5 (-961)))) (-3971 (*1 *1 *2) (-12 (-5 *2 (-347 *1)) (-4 *1 (-363 *3)) (-4 *3 (-495)) (-4 *3 (-1013)))) (-2997 (*1 *2 *1) (-12 (-4 *3 (-495)) (-4 *3 (-1013)) (-5 *2 (-1038 *3 (-550 *1))) (-4 *1 (-363 *3)))) (-2995 (*1 *1 *1) (-12 (-4 *1 (-363 *2)) (-4 *2 (-1013)) (-4 *2 (-495)))) (-3948 (*1 *1 *2 *2) (-12 (-5 *2 (-1038 *3 (-550 *1))) (-4 *3 (-495)) (-4 *3 (-1013)) (-4 *1 (-363 *3)))) (-3945 (*1 *1 *2) (-12 (-5 *2 (-349 *3)) (-4 *3 (-495)) (-4 *3 (-1013)) (-4 *1 (-363 *3)))) (-3945 (*1 *1 *2) (-12 (-5 *2 (-857 (-349 *3))) (-4 *3 (-495)) (-4 *3 (-1013)) (-4 *1 (-363 *3)))) (-3945 (*1 *1 *2) (-12 (-5 *2 (-349 (-857 (-349 *3)))) (-4 *3 (-495)) (-4 *3 (-1013)) (-4 *1 (-363 *3)))) (-3083 (*1 *2 *1 *3) (-12 (-5 *3 (-550 *1)) (-4 *1 (-363 *4)) (-4 *4 (-1013)) (-4 *4 (-495)) (-5 *2 (-349 (-1084 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-363 *3)) (-4 *3 (-1013)) (-4 *3 (-1025))))) +(-13 (-254) (-950 (-1089)) (-794 |t#1|) (-342 |t#1|) (-354 |t#1|) (-10 -8 (-15 -1796 ((-85) $)) (-15 -1795 (|t#1| $)) (-15 -3081 ((-583 (-1089)) $)) (-15 -1794 ($ (-1089) $)) (-15 -1794 ($ (-1089) $ $)) (-15 -1794 ($ (-1089) $ $ $)) (-15 -1794 ($ (-1089) $ $ $ $)) (-15 -1794 ($ (-1089) (-583 $))) (IF (|has| |t#1| (-553 (-473))) (PROGN (-6 (-553 (-473))) (-15 -3767 ($ $ (-1089))) (-15 -3767 ($ $ (-583 (-1089)))) (-15 -3767 ($ $)) (-15 -3767 ($ $ (-86) $ (-1089))) (-15 -3767 ($ $ (-583 (-86)) (-583 $) (-1089)))) |%noBranch|) (IF (|has| |t#1| (-1025)) (PROGN (-6 (-663)) (-15 ** ($ $ (-694))) (-15 -2823 ((-3 (-583 $) "failed") $)) (-15 -2824 ((-3 (-2 (|:| |var| (-550 $)) (|:| -2401 (-484))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-412)) (-6 (-412)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -2822 ((-3 (-583 $) "failed") $)) (-15 -1793 ((-3 (-2 (|:| -3953 (-484)) (|:| |var| (-550 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-961)) (PROGN (-6 (-961)) (-6 (-950 (-857 |t#1|))) (-6 (-809 (-1089))) (-6 (-328 |t#1|)) (-15 -3945 ($ (-1038 |t#1| (-550 $)))) (-15 -2998 ((-1038 |t#1| (-550 $)) $)) (-15 -2996 ($ $)) (-15 -2824 ((-3 (-2 (|:| |var| (-550 $)) (|:| -2401 (-484))) "failed") $ (-86))) (-15 -2824 ((-3 (-2 (|:| |var| (-550 $)) (|:| -2401 (-484))) "failed") $ (-1089))) (-15 -2825 ((-3 (-2 (|:| |val| $) (|:| -2401 (-484))) "failed") $)) (-15 -3767 ($ $ (-583 (-1089)) (-583 (-694)) (-583 (-1 $ $)))) (-15 -3767 ($ $ (-583 (-1089)) (-583 (-694)) (-583 (-1 $ (-583 $))))) (-15 -3767 ($ $ (-1089) (-694) (-1 $ (-583 $)))) (-15 -3767 ($ $ (-1089) (-694) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-495)) (PROGN (-6 (-312)) (-6 (-950 (-349 (-857 |t#1|)))) (-15 -3971 ($ (-347 $))) (-15 -2997 ((-1038 |t#1| (-550 $)) $)) (-15 -2995 ($ $)) (-15 -3948 ($ (-1038 |t#1| (-550 $)) (-1038 |t#1| (-550 $)))) (-15 -3945 ($ (-349 |t#1|))) (-15 -3945 ($ (-857 (-349 |t#1|)))) (-15 -3945 ($ (-349 (-857 (-349 |t#1|))))) (-15 -3083 ((-349 (-1084 $)) $ (-550 $))) (IF (|has| |t#1| (-950 (-484))) (-6 (-950 (-349 (-484)))) |%noBranch|)) |%noBranch|))) +(((-21) OR (|has| |#1| (-961)) (|has| |#1| (-495)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118)) (|has| |#1| (-21))) ((-23) OR (|has| |#1| (-961)) (|has| |#1| (-495)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) OR (|has| |#1| (-961)) (|has| |#1| (-495)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-38 (-349 (-484))) |has| |#1| (-495)) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) |has| |#1| (-495)) ((-72) . T) ((-82 (-349 (-484)) (-349 (-484))) |has| |#1| (-495)) ((-82 |#1| |#1|) |has| |#1| (-146)) ((-82 $ $) |has| |#1| (-495)) ((-104) OR (|has| |#1| (-961)) (|has| |#1| (-495)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118)) (|has| |#1| (-21))) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-555 (-349 (-484))) OR (|has| |#1| (-950 (-349 (-484)))) (|has| |#1| (-495))) ((-555 (-349 (-857 |#1|))) |has| |#1| (-495)) ((-555 (-484)) OR (|has| |#1| (-961)) (|has| |#1| (-950 (-484))) (|has| |#1| (-495)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-555 (-550 $)) . T) ((-555 (-857 |#1|)) |has| |#1| (-961)) ((-555 (-1089)) . T) ((-555 |#1|) . T) ((-555 $) |has| |#1| (-495)) ((-552 (-772)) . T) ((-146) |has| |#1| (-495)) ((-553 (-473)) |has| |#1| (-553 (-473))) ((-553 (-800 (-329))) |has| |#1| (-553 (-800 (-329)))) ((-553 (-800 (-484))) |has| |#1| (-553 (-800 (-484)))) ((-201) |has| |#1| (-495)) ((-246) |has| |#1| (-495)) ((-258) |has| |#1| (-495)) ((-260 $) . T) ((-254) . T) ((-312) |has| |#1| (-495)) ((-328 |#1|) |has| |#1| (-961)) ((-342 |#1|) . T) ((-354 |#1|) . T) ((-391) |has| |#1| (-495)) ((-412) |has| |#1| (-412)) ((-455 (-550 $) $) . T) ((-455 $ $) . T) ((-495) |has| |#1| (-495)) ((-13) . T) ((-588 (-349 (-484))) |has| |#1| (-495)) ((-588 (-484)) OR (|has| |#1| (-961)) (|has| |#1| (-495)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118)) (|has| |#1| (-21))) ((-588 |#1|) OR (|has| |#1| (-961)) (|has| |#1| (-146))) ((-588 $) OR (|has| |#1| (-961)) (|has| |#1| (-495)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-590 (-349 (-484))) |has| |#1| (-495)) ((-590 (-484)) -12 (|has| |#1| (-580 (-484))) (|has| |#1| (-961))) ((-590 |#1|) OR (|has| |#1| (-961)) (|has| |#1| (-146))) ((-590 $) OR (|has| |#1| (-961)) (|has| |#1| (-495)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-582 (-349 (-484))) |has| |#1| (-495)) ((-582 |#1|) |has| |#1| (-146)) ((-582 $) |has| |#1| (-495)) ((-580 (-484)) -12 (|has| |#1| (-580 (-484))) (|has| |#1| (-961))) ((-580 |#1|) |has| |#1| (-961)) ((-654 (-349 (-484))) |has| |#1| (-495)) ((-654 |#1|) |has| |#1| (-146)) ((-654 $) |has| |#1| (-495)) ((-663) OR (|has| |#1| (-1025)) (|has| |#1| (-961)) (|has| |#1| (-495)) (|has| |#1| (-412)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-806 $ (-1089)) |has| |#1| (-961)) ((-809 (-1089)) |has| |#1| (-961)) ((-811 (-1089)) |has| |#1| (-961)) ((-796 (-329)) |has| |#1| (-796 (-329))) ((-796 (-484)) |has| |#1| (-796 (-484))) ((-794 |#1|) . T) ((-832) |has| |#1| (-495)) ((-950 (-349 (-484))) OR (|has| |#1| (-950 (-349 (-484)))) (-12 (|has| |#1| (-495)) (|has| |#1| (-950 (-484))))) ((-950 (-349 (-857 |#1|))) |has| |#1| (-495)) ((-950 (-484)) |has| |#1| (-950 (-484))) ((-950 (-550 $)) . T) ((-950 (-857 |#1|)) |has| |#1| (-961)) ((-950 (-1089)) . T) ((-950 |#1|) . T) ((-963 (-349 (-484))) |has| |#1| (-495)) ((-963 |#1|) |has| |#1| (-146)) ((-963 $) |has| |#1| (-495)) ((-968 (-349 (-484))) |has| |#1| (-495)) ((-968 |#1|) |has| |#1| (-146)) ((-968 $) |has| |#1| (-495)) ((-961) OR (|has| |#1| (-961)) (|has| |#1| (-495)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-970) OR (|has| |#1| (-961)) (|has| |#1| (-495)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-1025) OR (|has| |#1| (-1025)) (|has| |#1| (-961)) (|has| |#1| (-495)) (|has| |#1| (-412)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-1060) OR (|has| |#1| (-961)) (|has| |#1| (-495)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-1013) . T) ((-1128) . T) ((-1133) |has| |#1| (-495))) +((-3957 ((|#4| (-1 |#3| |#1|) |#2|) 11 T ELT))) +(((-364 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3957 (|#4| (-1 |#3| |#1|) |#2|))) (-961) (-363 |#1|) (-961) (-363 |#3|)) (T -364)) +((-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-4 *2 (-363 *6)) (-5 *1 (-364 *5 *4 *6 *2)) (-4 *4 (-363 *5))))) +((-1800 ((|#2| |#2|) 182 T ELT)) (-1797 (((-3 (|:| |%expansion| (-264 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1072)) (|:| |prob| (-1072))))) |#2| (-85)) 60 T ELT))) +(((-365 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1797 ((-3 (|:| |%expansion| (-264 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1072)) (|:| |prob| (-1072))))) |#2| (-85))) (-15 -1800 (|#2| |#2|))) (-13 (-391) (-950 (-484)) (-580 (-484))) (-13 (-27) (-1114) (-363 |#1|)) (-1089) |#2|) (T -365)) +((-1800 (*1 *2 *2) (-12 (-4 *3 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *1 (-365 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1114) (-363 *3))) (-14 *4 (-1089)) (-14 *5 *2))) (-1797 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *2 (-3 (|:| |%expansion| (-264 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1072)) (|:| |prob| (-1072)))))) (-5 *1 (-365 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1114) (-363 *5))) (-14 *6 (-1089)) (-14 *7 *3)))) +((-1800 ((|#2| |#2|) 105 T ELT)) (-1798 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1072)) (|:| |prob| (-1072))))) |#2| (-85) (-1072)) 52 T ELT)) (-1799 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1072)) (|:| |prob| (-1072))))) |#2| (-85) (-1072)) 169 T ELT))) +(((-366 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1798 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1072)) (|:| |prob| (-1072))))) |#2| (-85) (-1072))) (-15 -1799 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1072)) (|:| |prob| (-1072))))) |#2| (-85) (-1072))) (-15 -1800 (|#2| |#2|))) (-13 (-391) (-950 (-484)) (-580 (-484))) (-13 (-27) (-1114) (-363 |#1|) (-10 -8 (-15 -3945 ($ |#3|)))) (-755) (-13 (-1157 |#2| |#3|) (-312) (-1114) (-10 -8 (-15 -3757 ($ $)) (-15 -3811 ($ $)))) (-896 |#4|) (-1089)) (T -366)) +((-1800 (*1 *2 *2) (-12 (-4 *3 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-4 *2 (-13 (-27) (-1114) (-363 *3) (-10 -8 (-15 -3945 ($ *4))))) (-4 *4 (-755)) (-4 *5 (-13 (-1157 *2 *4) (-312) (-1114) (-10 -8 (-15 -3757 ($ $)) (-15 -3811 ($ $))))) (-5 *1 (-366 *3 *2 *4 *5 *6 *7)) (-4 *6 (-896 *5)) (-14 *7 (-1089)))) (-1799 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-85)) (-4 *6 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-4 *3 (-13 (-27) (-1114) (-363 *6) (-10 -8 (-15 -3945 ($ *7))))) (-4 *7 (-755)) (-4 *8 (-13 (-1157 *3 *7) (-312) (-1114) (-10 -8 (-15 -3757 ($ $)) (-15 -3811 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1072)) (|:| |prob| (-1072)))))) (-5 *1 (-366 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1072)) (-4 *9 (-896 *8)) (-14 *10 (-1089)))) (-1798 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-85)) (-4 *6 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-4 *3 (-13 (-27) (-1114) (-363 *6) (-10 -8 (-15 -3945 ($ *7))))) (-4 *7 (-755)) (-4 *8 (-13 (-1157 *3 *7) (-312) (-1114) (-10 -8 (-15 -3757 ($ $)) (-15 -3811 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1072)) (|:| |prob| (-1072)))))) (-5 *1 (-366 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1072)) (-4 *9 (-896 *8)) (-14 *10 (-1089))))) +((-1801 (($) 51 T ELT)) (-3234 (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ $ $) 47 T ELT)) (-3236 (($ $ $) 46 T ELT)) (-3235 (((-85) $ $) 35 T ELT)) (-3136 (((-694)) 55 T ELT)) (-3239 (($ (-583 |#2|)) 23 T ELT) (($) NIL T ELT)) (-2994 (($) 66 T ELT)) (-3241 (((-85) $ $) 15 T ELT)) (-2531 ((|#2| $) 77 T ELT)) (-2857 ((|#2| $) 75 T ELT)) (-2010 (((-830) $) 70 T ELT)) (-3238 (($ $ $) 42 T ELT)) (-2400 (($ (-830)) 60 T ELT)) (-3237 (($ $ |#2|) NIL T ELT) (($ $ $) 45 T ELT)) (-1945 (((-694) (-1 (-85) |#2|) $) NIL T ELT) (((-694) |#2| $) 31 T ELT)) (-3529 (($ (-583 |#2|)) 27 T ELT)) (-1802 (($ $) 53 T ELT)) (-3945 (((-772) $) 40 T ELT)) (-1803 (((-694) $) 24 T ELT)) (-3240 (($ (-583 |#2|)) 22 T ELT) (($) NIL T ELT)) (-3056 (((-85) $ $) 19 T ELT))) +(((-367 |#1| |#2|) (-10 -7 (-15 -3136 ((-694))) (-15 -2400 (|#1| (-830))) (-15 -2010 ((-830) |#1|)) (-15 -2994 (|#1|)) (-15 -2531 (|#2| |#1|)) (-15 -2857 (|#2| |#1|)) (-15 -1801 (|#1|)) (-15 -1802 (|#1| |#1|)) (-15 -1803 ((-694) |#1|)) (-15 -3056 ((-85) |#1| |#1|)) (-15 -3945 ((-772) |#1|)) (-15 -3241 ((-85) |#1| |#1|)) (-15 -3240 (|#1|)) (-15 -3240 (|#1| (-583 |#2|))) (-15 -3239 (|#1|)) (-15 -3239 (|#1| (-583 |#2|))) (-15 -3238 (|#1| |#1| |#1|)) (-15 -3237 (|#1| |#1| |#1|)) (-15 -3237 (|#1| |#1| |#2|)) (-15 -3236 (|#1| |#1| |#1|)) (-15 -3235 ((-85) |#1| |#1|)) (-15 -3234 (|#1| |#1| |#1|)) (-15 -3234 (|#1| |#1| |#2|)) (-15 -3234 (|#1| |#2| |#1|)) (-15 -3529 (|#1| (-583 |#2|))) (-15 -1945 ((-694) |#2| |#1|)) (-15 -1945 ((-694) (-1 (-85) |#2|) |#1|))) (-368 |#2|) (-1013)) (T -367)) +((-3136 (*1 *2) (-12 (-4 *4 (-1013)) (-5 *2 (-694)) (-5 *1 (-367 *3 *4)) (-4 *3 (-368 *4))))) +((-2568 (((-85) $ $) 19 T ELT)) (-1801 (($) 71 (|has| |#1| (-319)) ELT)) (-3234 (($ |#1| $) 86 T ELT) (($ $ |#1|) 85 T ELT) (($ $ $) 84 T ELT)) (-3236 (($ $ $) 82 T ELT)) (-3235 (((-85) $ $) 83 T ELT)) (-3136 (((-694)) 65 (|has| |#1| (-319)) ELT)) (-3239 (($ (-583 |#1|)) 78 T ELT) (($) 77 T ELT)) (-1569 (($ (-1 (-85) |#1|) $) 49 (|has| $ (-6 -3994)) ELT)) (-3709 (($ (-1 (-85) |#1|) $) 59 (|has| $ (-6 -3994)) ELT)) (-3723 (($) 7 T CONST)) (-1352 (($ $) 62 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-3404 (($ |#1| $) 51 (|has| $ (-6 -3994)) ELT) (($ (-1 (-85) |#1|) $) 50 (|has| $ (-6 -3994)) ELT)) (-3405 (($ |#1| $) 61 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT) (($ (-1 (-85) |#1|) $) 58 (|has| $ (-6 -3994)) ELT)) (-3841 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -3994)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -3994)) ELT)) (-2994 (($) 68 (|has| |#1| (-319)) ELT)) (-2889 (((-583 |#1|) $) 30 (|has| $ (-6 -3994)) ELT)) (-3241 (((-85) $ $) 74 T ELT)) (-2531 ((|#1| $) 69 (|has| |#1| (-756)) ELT)) (-2608 (((-583 |#1|) $) 29 (|has| $ (-6 -3994)) ELT)) (-3245 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-2857 ((|#1| $) 70 (|has| |#1| (-756)) ELT)) (-1948 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-2010 (((-830) $) 67 (|has| |#1| (-319)) ELT)) (-3242 (((-1072) $) 22 T ELT)) (-3238 (($ $ $) 79 T ELT)) (-1273 ((|#1| $) 43 T ELT)) (-3608 (($ |#1| $) 44 T ELT)) (-2400 (($ (-830)) 66 (|has| |#1| (-319)) ELT)) (-3243 (((-1033) $) 21 T ELT)) (-1353 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 55 T ELT)) (-1274 ((|#1| $) 45 T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3994)) ELT)) (-3767 (($ $ (-583 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1221 (((-85) $ $) 11 T ELT)) (-3402 (((-85) $) 8 T ELT)) (-3564 (($) 9 T ELT)) (-3237 (($ $ |#1|) 81 T ELT) (($ $ $) 80 T ELT)) (-1465 (($) 53 T ELT) (($ (-583 |#1|)) 52 T ELT)) (-1945 (((-694) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3994)) ELT) (((-694) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-3399 (($ $) 10 T ELT)) (-3971 (((-473) $) 63 (|has| |#1| (-553 (-473))) ELT)) (-3529 (($ (-583 |#1|)) 54 T ELT)) (-1802 (($ $) 72 (|has| |#1| (-319)) ELT)) (-3945 (((-772) $) 17 T ELT)) (-1803 (((-694) $) 73 T ELT)) (-3240 (($ (-583 |#1|)) 76 T ELT) (($) 75 T ELT)) (-1264 (((-85) $ $) 20 T ELT)) (-1275 (($ (-583 |#1|)) 46 T ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3994)) ELT)) (-3056 (((-85) $ $) 18 T ELT)) (-3956 (((-694) $) 6 (|has| $ (-6 -3994)) ELT))) +(((-368 |#1|) (-113) (-1013)) (T -368)) +((-1803 (*1 *2 *1) (-12 (-4 *1 (-368 *3)) (-4 *3 (-1013)) (-5 *2 (-694)))) (-1802 (*1 *1 *1) (-12 (-4 *1 (-368 *2)) (-4 *2 (-1013)) (-4 *2 (-319)))) (-1801 (*1 *1) (-12 (-4 *1 (-368 *2)) (-4 *2 (-319)) (-4 *2 (-1013)))) (-2857 (*1 *2 *1) (-12 (-4 *1 (-368 *2)) (-4 *2 (-1013)) (-4 *2 (-756)))) (-2531 (*1 *2 *1) (-12 (-4 *1 (-368 *2)) (-4 *2 (-1013)) (-4 *2 (-756))))) +(-13 (-183 |t#1|) (-1011 |t#1|) (-10 -8 (-6 -3994) (-15 -1803 ((-694) $)) (IF (|has| |t#1| (-319)) (PROGN (-6 (-319)) (-15 -1802 ($ $)) (-15 -1801 ($))) |%noBranch|) (IF (|has| |t#1| (-756)) (PROGN (-15 -2857 (|t#1| $)) (-15 -2531 (|t#1| $))) |%noBranch|))) +(((-34) . T) ((-76 |#1|) . T) ((-72) . T) ((-552 (-772)) . T) ((-124 |#1|) . T) ((-553 (-473)) |has| |#1| (-553 (-473))) ((-183 |#1|) . T) ((-193 |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-319) |has| |#1| (-319)) ((-428 |#1|) . T) ((-455 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-1011 |#1|) . T) ((-1013) . T) ((-1128) . T)) +((-3840 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22 T ELT)) (-3841 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20 T ELT)) (-3957 ((|#4| (-1 |#3| |#1|) |#2|) 17 T ELT))) +(((-369 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3957 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3841 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3840 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1013) (-368 |#1|) (-1013) (-368 |#3|)) (T -369)) +((-3840 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1013)) (-4 *5 (-1013)) (-4 *2 (-368 *5)) (-5 *1 (-369 *6 *4 *5 *2)) (-4 *4 (-368 *6)))) (-3841 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1013)) (-4 *2 (-1013)) (-5 *1 (-369 *5 *4 *2 *6)) (-4 *4 (-368 *5)) (-4 *6 (-368 *2)))) (-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *2 (-368 *6)) (-5 *1 (-369 *5 *4 *6 *2)) (-4 *4 (-368 *5))))) +((-1804 (((-519 |#2|) |#2| (-1089)) 36 T ELT)) (-2100 (((-519 |#2|) |#2| (-1089)) 21 T ELT)) (-2149 ((|#2| |#2| (-1089)) 26 T ELT))) +(((-370 |#1| |#2|) (-10 -7 (-15 -2100 ((-519 |#2|) |#2| (-1089))) (-15 -1804 ((-519 |#2|) |#2| (-1089))) (-15 -2149 (|#2| |#2| (-1089)))) (-13 (-258) (-120) (-950 (-484)) (-580 (-484))) (-13 (-1114) (-29 |#1|))) (T -370)) +((-2149 (*1 *2 *2 *3) (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-258) (-120) (-950 (-484)) (-580 (-484)))) (-5 *1 (-370 *4 *2)) (-4 *2 (-13 (-1114) (-29 *4))))) (-1804 (*1 *2 *3 *4) (-12 (-5 *4 (-1089)) (-4 *5 (-13 (-258) (-120) (-950 (-484)) (-580 (-484)))) (-5 *2 (-519 *3)) (-5 *1 (-370 *5 *3)) (-4 *3 (-13 (-1114) (-29 *5))))) (-2100 (*1 *2 *3 *4) (-12 (-5 *4 (-1089)) (-4 *5 (-13 (-258) (-120) (-950 (-484)) (-580 (-484)))) (-5 *2 (-519 *3)) (-5 *1 (-370 *5 *3)) (-4 *3 (-13 (-1114) (-29 *5)))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-1806 (($ |#2| |#1|) 37 T ELT)) (-1805 (($ |#2| |#1|) 35 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-281 |#2|)) 25 T ELT)) (-3126 (((-694)) NIL T CONST)) (-1264 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) 10 T CONST)) (-2666 (($) 16 T CONST)) (-3056 (((-85) $ $) NIL T ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) 36 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 40 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-371 |#1| |#2|) (-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -3981)) (IF (|has| |#1| (-6 -3981)) (-6 -3981) |%noBranch|) |%noBranch|) (-15 -3945 ($ |#1|)) (-15 -3945 ($ (-281 |#2|))) (-15 -1806 ($ |#2| |#1|)) (-15 -1805 ($ |#2| |#1|)))) (-13 (-146) (-38 (-349 (-484)))) (-13 (-756) (-21))) (T -371)) +((-3945 (*1 *1 *2) (-12 (-5 *1 (-371 *2 *3)) (-4 *2 (-13 (-146) (-38 (-349 (-484))))) (-4 *3 (-13 (-756) (-21))))) (-3945 (*1 *1 *2) (-12 (-5 *2 (-281 *4)) (-4 *4 (-13 (-756) (-21))) (-5 *1 (-371 *3 *4)) (-4 *3 (-13 (-146) (-38 (-349 (-484))))))) (-1806 (*1 *1 *2 *3) (-12 (-5 *1 (-371 *3 *2)) (-4 *3 (-13 (-146) (-38 (-349 (-484))))) (-4 *2 (-13 (-756) (-21))))) (-1805 (*1 *1 *2 *3) (-12 (-5 *1 (-371 *3 *2)) (-4 *3 (-13 (-146) (-38 (-349 (-484))))) (-4 *2 (-13 (-756) (-21)))))) +((-3811 (((-3 |#2| (-583 |#2|)) |#2| (-1089)) 115 T ELT))) +(((-372 |#1| |#2|) (-10 -7 (-15 -3811 ((-3 |#2| (-583 |#2|)) |#2| (-1089)))) (-13 (-258) (-120) (-950 (-484)) (-580 (-484))) (-13 (-1114) (-871) (-29 |#1|))) (T -372)) +((-3811 (*1 *2 *3 *4) (-12 (-5 *4 (-1089)) (-4 *5 (-13 (-258) (-120) (-950 (-484)) (-580 (-484)))) (-5 *2 (-3 *3 (-583 *3))) (-5 *1 (-372 *5 *3)) (-4 *3 (-13 (-1114) (-871) (-29 *5)))))) +((-3385 ((|#2| |#2| |#2|) 31 T ELT)) (-3594 (((-86) (-86)) 43 T ELT)) (-1808 ((|#2| |#2|) 63 T ELT)) (-1807 ((|#2| |#2|) 66 T ELT)) (-3384 ((|#2| |#2|) 30 T ELT)) (-3388 ((|#2| |#2| |#2|) 33 T ELT)) (-3390 ((|#2| |#2| |#2|) 35 T ELT)) (-3387 ((|#2| |#2| |#2|) 32 T ELT)) (-3389 ((|#2| |#2| |#2|) 34 T ELT)) (-2254 (((-85) (-86)) 41 T ELT)) (-3392 ((|#2| |#2|) 37 T ELT)) (-3391 ((|#2| |#2|) 36 T ELT)) (-3382 ((|#2| |#2|) 25 T ELT)) (-3386 ((|#2| |#2| |#2|) 28 T ELT) ((|#2| |#2|) 26 T ELT)) (-3383 ((|#2| |#2| |#2|) 29 T ELT))) +(((-373 |#1| |#2|) (-10 -7 (-15 -2254 ((-85) (-86))) (-15 -3594 ((-86) (-86))) (-15 -3382 (|#2| |#2|)) (-15 -3386 (|#2| |#2|)) (-15 -3386 (|#2| |#2| |#2|)) (-15 -3383 (|#2| |#2| |#2|)) (-15 -3384 (|#2| |#2|)) (-15 -3385 (|#2| |#2| |#2|)) (-15 -3387 (|#2| |#2| |#2|)) (-15 -3388 (|#2| |#2| |#2|)) (-15 -3389 (|#2| |#2| |#2|)) (-15 -3390 (|#2| |#2| |#2|)) (-15 -3391 (|#2| |#2|)) (-15 -3392 (|#2| |#2|)) (-15 -1807 (|#2| |#2|)) (-15 -1808 (|#2| |#2|))) (-495) (-363 |#1|)) (T -373)) +((-1808 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-373 *3 *2)) (-4 *2 (-363 *3)))) (-1807 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-373 *3 *2)) (-4 *2 (-363 *3)))) (-3392 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-373 *3 *2)) (-4 *2 (-363 *3)))) (-3391 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-373 *3 *2)) (-4 *2 (-363 *3)))) (-3390 (*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-373 *3 *2)) (-4 *2 (-363 *3)))) (-3389 (*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-373 *3 *2)) (-4 *2 (-363 *3)))) (-3388 (*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-373 *3 *2)) (-4 *2 (-363 *3)))) (-3387 (*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-373 *3 *2)) (-4 *2 (-363 *3)))) (-3385 (*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-373 *3 *2)) (-4 *2 (-363 *3)))) (-3384 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-373 *3 *2)) (-4 *2 (-363 *3)))) (-3383 (*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-373 *3 *2)) (-4 *2 (-363 *3)))) (-3386 (*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-373 *3 *2)) (-4 *2 (-363 *3)))) (-3386 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-373 *3 *2)) (-4 *2 (-363 *3)))) (-3382 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-373 *3 *2)) (-4 *2 (-363 *3)))) (-3594 (*1 *2 *2) (-12 (-5 *2 (-86)) (-4 *3 (-495)) (-5 *1 (-373 *3 *4)) (-4 *4 (-363 *3)))) (-2254 (*1 *2 *3) (-12 (-5 *3 (-86)) (-4 *4 (-495)) (-5 *2 (-85)) (-5 *1 (-373 *4 *5)) (-4 *5 (-363 *4))))) +((-2833 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1084 |#2|)) (|:| |pol2| (-1084 |#2|)) (|:| |prim| (-1084 |#2|))) |#2| |#2|) 103 (|has| |#2| (-27)) ELT) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-583 (-1084 |#2|))) (|:| |prim| (-1084 |#2|))) (-583 |#2|)) 65 T ELT))) +(((-374 |#1| |#2|) (-10 -7 (-15 -2833 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-583 (-1084 |#2|))) (|:| |prim| (-1084 |#2|))) (-583 |#2|))) (IF (|has| |#2| (-27)) (-15 -2833 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1084 |#2|)) (|:| |pol2| (-1084 |#2|)) (|:| |prim| (-1084 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-495) (-120)) (-363 |#1|)) (T -374)) +((-2833 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-495) (-120))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1084 *3)) (|:| |pol2| (-1084 *3)) (|:| |prim| (-1084 *3)))) (-5 *1 (-374 *4 *3)) (-4 *3 (-27)) (-4 *3 (-363 *4)))) (-2833 (*1 *2 *3) (-12 (-5 *3 (-583 *5)) (-4 *5 (-363 *4)) (-4 *4 (-13 (-495) (-120))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-583 (-1084 *5))) (|:| |prim| (-1084 *5)))) (-5 *1 (-374 *4 *5))))) +((-1810 (((-1184)) 18 T ELT)) (-1809 (((-1084 (-349 (-484))) |#2| (-550 |#2|)) 40 T ELT) (((-349 (-484)) |#2|) 27 T ELT))) +(((-375 |#1| |#2|) (-10 -7 (-15 -1809 ((-349 (-484)) |#2|)) (-15 -1809 ((-1084 (-349 (-484))) |#2| (-550 |#2|))) (-15 -1810 ((-1184)))) (-13 (-495) (-950 (-484))) (-363 |#1|)) (T -375)) +((-1810 (*1 *2) (-12 (-4 *3 (-13 (-495) (-950 (-484)))) (-5 *2 (-1184)) (-5 *1 (-375 *3 *4)) (-4 *4 (-363 *3)))) (-1809 (*1 *2 *3 *4) (-12 (-5 *4 (-550 *3)) (-4 *3 (-363 *5)) (-4 *5 (-13 (-495) (-950 (-484)))) (-5 *2 (-1084 (-349 (-484)))) (-5 *1 (-375 *5 *3)))) (-1809 (*1 *2 *3) (-12 (-4 *4 (-13 (-495) (-950 (-484)))) (-5 *2 (-349 (-484))) (-5 *1 (-375 *4 *3)) (-4 *3 (-363 *4))))) +((-3644 (((-85) $) 33 T ELT)) (-1811 (((-85) $) 35 T ELT)) (-3259 (((-85) $) 36 T ELT)) (-1813 (((-85) $) 39 T ELT)) (-1815 (((-85) $) 34 T ELT)) (-1814 (((-85) $) 38 T ELT)) (-3945 (((-772) $) 20 T ELT) (($ (-1072)) 32 T ELT) (($ (-1089)) 30 T ELT) (((-1089) $) 24 T ELT) (((-1015) $) 23 T ELT)) (-1812 (((-85) $) 37 T ELT)) (-3056 (((-85) $ $) 17 T ELT))) +(((-376) (-13 (-552 (-772)) (-10 -8 (-15 -3945 ($ (-1072))) (-15 -3945 ($ (-1089))) (-15 -3945 ((-1089) $)) (-15 -3945 ((-1015) $)) (-15 -3644 ((-85) $)) (-15 -1815 ((-85) $)) (-15 -3259 ((-85) $)) (-15 -1814 ((-85) $)) (-15 -1813 ((-85) $)) (-15 -1812 ((-85) $)) (-15 -1811 ((-85) $)) (-15 -3056 ((-85) $ $))))) (T -376)) +((-3945 (*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-376)))) (-3945 (*1 *1 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-376)))) (-3945 (*1 *2 *1) (-12 (-5 *2 (-1089)) (-5 *1 (-376)))) (-3945 (*1 *2 *1) (-12 (-5 *2 (-1015)) (-5 *1 (-376)))) (-3644 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-376)))) (-1815 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-376)))) (-3259 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-376)))) (-1814 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-376)))) (-1813 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-376)))) (-1812 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-376)))) (-1811 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-376)))) (-3056 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-376))))) +((-1817 (((-3 (-347 (-1084 (-349 (-484)))) #1="failed") |#3|) 71 T ELT)) (-1816 (((-347 |#3|) |#3|) 34 T ELT)) (-1819 (((-3 (-347 (-1084 (-48))) #1#) |#3|) 29 (|has| |#2| (-950 (-48))) ELT)) (-1818 (((-3 (|:| |overq| (-1084 (-349 (-484)))) (|:| |overan| (-1084 (-48))) (|:| -2639 (-85))) |#3|) 37 T ELT))) +(((-377 |#1| |#2| |#3|) (-10 -7 (-15 -1816 ((-347 |#3|) |#3|)) (-15 -1817 ((-3 (-347 (-1084 (-349 (-484)))) #1="failed") |#3|)) (-15 -1818 ((-3 (|:| |overq| (-1084 (-349 (-484)))) (|:| |overan| (-1084 (-48))) (|:| -2639 (-85))) |#3|)) (IF (|has| |#2| (-950 (-48))) (-15 -1819 ((-3 (-347 (-1084 (-48))) #1#) |#3|)) |%noBranch|)) (-13 (-495) (-950 (-484))) (-363 |#1|) (-1154 |#2|)) (T -377)) +((-1819 (*1 *2 *3) (|partial| -12 (-4 *5 (-950 (-48))) (-4 *4 (-13 (-495) (-950 (-484)))) (-4 *5 (-363 *4)) (-5 *2 (-347 (-1084 (-48)))) (-5 *1 (-377 *4 *5 *3)) (-4 *3 (-1154 *5)))) (-1818 (*1 *2 *3) (-12 (-4 *4 (-13 (-495) (-950 (-484)))) (-4 *5 (-363 *4)) (-5 *2 (-3 (|:| |overq| (-1084 (-349 (-484)))) (|:| |overan| (-1084 (-48))) (|:| -2639 (-85)))) (-5 *1 (-377 *4 *5 *3)) (-4 *3 (-1154 *5)))) (-1817 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-495) (-950 (-484)))) (-4 *5 (-363 *4)) (-5 *2 (-347 (-1084 (-349 (-484))))) (-5 *1 (-377 *4 *5 *3)) (-4 *3 (-1154 *5)))) (-1816 (*1 *2 *3) (-12 (-4 *4 (-13 (-495) (-950 (-484)))) (-4 *5 (-363 *4)) (-5 *2 (-347 *3)) (-5 *1 (-377 *4 *5 *3)) (-4 *3 (-1154 *5))))) +((-2568 (((-85) $ $) NIL T ELT)) (-1829 (((-3 (|:| |fst| (-376)) (|:| -3909 #1="void")) $) 11 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1826 (($) 35 T ELT)) (-1823 (($) 41 T ELT)) (-1824 (($) 37 T ELT)) (-1821 (($) 39 T ELT)) (-1825 (($) 36 T ELT)) (-1822 (($) 38 T ELT)) (-1820 (($) 40 T ELT)) (-1827 (((-85) $) 8 T ELT)) (-1828 (((-583 (-857 (-484))) $) 19 T ELT)) (-3529 (($ (-3 (|:| |fst| (-376)) (|:| -3909 #1#)) (-583 (-1089)) (-85)) 29 T ELT) (($ (-3 (|:| |fst| (-376)) (|:| -3909 #1#)) (-583 (-857 (-484))) (-85)) 30 T ELT)) (-3945 (((-772) $) 24 T ELT) (($ (-376)) 32 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT))) +(((-378) (-13 (-1013) (-10 -8 (-15 -3945 ($ (-376))) (-15 -1829 ((-3 (|:| |fst| (-376)) (|:| -3909 #1="void")) $)) (-15 -1828 ((-583 (-857 (-484))) $)) (-15 -1827 ((-85) $)) (-15 -3529 ($ (-3 (|:| |fst| (-376)) (|:| -3909 #1#)) (-583 (-1089)) (-85))) (-15 -3529 ($ (-3 (|:| |fst| (-376)) (|:| -3909 #1#)) (-583 (-857 (-484))) (-85))) (-15 -1826 ($)) (-15 -1825 ($)) (-15 -1824 ($)) (-15 -1823 ($)) (-15 -1822 ($)) (-15 -1821 ($)) (-15 -1820 ($))))) (T -378)) +((-3945 (*1 *1 *2) (-12 (-5 *2 (-376)) (-5 *1 (-378)))) (-1829 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-376)) (|:| -3909 #1="void"))) (-5 *1 (-378)))) (-1828 (*1 *2 *1) (-12 (-5 *2 (-583 (-857 (-484)))) (-5 *1 (-378)))) (-1827 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-378)))) (-3529 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-376)) (|:| -3909 #1#))) (-5 *3 (-583 (-1089))) (-5 *4 (-85)) (-5 *1 (-378)))) (-3529 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-376)) (|:| -3909 #1#))) (-5 *3 (-583 (-857 (-484)))) (-5 *4 (-85)) (-5 *1 (-378)))) (-1826 (*1 *1) (-5 *1 (-378))) (-1825 (*1 *1) (-5 *1 (-378))) (-1824 (*1 *1) (-5 *1 (-378))) (-1823 (*1 *1) (-5 *1 (-378))) (-1822 (*1 *1) (-5 *1 (-378))) (-1821 (*1 *1) (-5 *1 (-378))) (-1820 (*1 *1) (-5 *1 (-378)))) +((-2568 (((-85) $ $) NIL T ELT)) (-3541 (((-1089) $) 8 T ELT)) (-3242 (((-1072) $) 17 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) 11 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 14 T ELT))) +(((-379 |#1|) (-13 (-1013) (-10 -8 (-15 -3541 ((-1089) $)))) (-1089)) (T -379)) +((-3541 (*1 *2 *1) (-12 (-5 *2 (-1089)) (-5 *1 (-379 *3)) (-14 *3 *2)))) +((-2568 (((-85) $ $) NIL T ELT)) (-3319 (((-1028) $) 7 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) 13 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 9 T ELT))) +(((-380) (-13 (-1013) (-10 -8 (-15 -3319 ((-1028) $))))) (T -380)) +((-3319 (*1 *2 *1) (-12 (-5 *2 (-1028)) (-5 *1 (-380))))) +((-1835 (((-85)) 18 T ELT)) (-1836 (((-85) (-85)) 19 T ELT)) (-1837 (((-85)) 14 T ELT)) (-1838 (((-85) (-85)) 15 T ELT)) (-1840 (((-85)) 16 T ELT)) (-1841 (((-85) (-85)) 17 T ELT)) (-1832 (((-830) (-830)) 22 T ELT) (((-830)) 21 T ELT)) (-1833 (((-694) (-583 (-2 (|:| -3731 |#1|) (|:| -3947 (-484))))) 52 T ELT)) (-1831 (((-830) (-830)) 24 T ELT) (((-830)) 23 T ELT)) (-1834 (((-2 (|:| -2578 (-484)) (|:| -1778 (-583 |#1|))) |#1|) 94 T ELT)) (-1830 (((-347 |#1|) (-2 (|:| |contp| (-484)) (|:| -1778 (-583 (-2 (|:| |irr| |#1|) (|:| -2395 (-484))))))) 176 T ELT)) (-3733 (((-2 (|:| |contp| (-484)) (|:| -1778 (-583 (-2 (|:| |irr| |#1|) (|:| -2395 (-484)))))) |#1| (-85)) 209 T ELT)) (-3732 (((-347 |#1|) |#1| (-694) (-694)) 224 T ELT) (((-347 |#1|) |#1| (-583 (-694)) (-694)) 221 T ELT) (((-347 |#1|) |#1| (-583 (-694))) 223 T ELT) (((-347 |#1|) |#1| (-694)) 222 T ELT) (((-347 |#1|) |#1|) 220 T ELT)) (-1852 (((-3 |#1| #1="failed") (-830) |#1| (-583 (-694)) (-694) (-85)) 226 T ELT) (((-3 |#1| #1#) (-830) |#1| (-583 (-694)) (-694)) 227 T ELT) (((-3 |#1| #1#) (-830) |#1| (-583 (-694))) 229 T ELT) (((-3 |#1| #1#) (-830) |#1| (-694)) 228 T ELT) (((-3 |#1| #1#) (-830) |#1|) 230 T ELT)) (-3731 (((-347 |#1|) |#1| (-694) (-694)) 219 T ELT) (((-347 |#1|) |#1| (-583 (-694)) (-694)) 215 T ELT) (((-347 |#1|) |#1| (-583 (-694))) 217 T ELT) (((-347 |#1|) |#1| (-694)) 216 T ELT) (((-347 |#1|) |#1|) 214 T ELT)) (-1839 (((-85) |#1|) 43 T ELT)) (-1851 (((-675 (-694)) (-583 (-2 (|:| -3731 |#1|) (|:| -3947 (-484))))) 99 T ELT)) (-1842 (((-2 (|:| |contp| (-484)) (|:| -1778 (-583 (-2 (|:| |irr| |#1|) (|:| -2395 (-484)))))) |#1| (-85) (-1009 (-694)) (-694)) 213 T ELT))) +(((-381 |#1|) (-10 -7 (-15 -1830 ((-347 |#1|) (-2 (|:| |contp| (-484)) (|:| -1778 (-583 (-2 (|:| |irr| |#1|) (|:| -2395 (-484)))))))) (-15 -1851 ((-675 (-694)) (-583 (-2 (|:| -3731 |#1|) (|:| -3947 (-484)))))) (-15 -1831 ((-830))) (-15 -1831 ((-830) (-830))) (-15 -1832 ((-830))) (-15 -1832 ((-830) (-830))) (-15 -1833 ((-694) (-583 (-2 (|:| -3731 |#1|) (|:| -3947 (-484)))))) (-15 -1834 ((-2 (|:| -2578 (-484)) (|:| -1778 (-583 |#1|))) |#1|)) (-15 -1835 ((-85))) (-15 -1836 ((-85) (-85))) (-15 -1837 ((-85))) (-15 -1838 ((-85) (-85))) (-15 -1839 ((-85) |#1|)) (-15 -1840 ((-85))) (-15 -1841 ((-85) (-85))) (-15 -3731 ((-347 |#1|) |#1|)) (-15 -3731 ((-347 |#1|) |#1| (-694))) (-15 -3731 ((-347 |#1|) |#1| (-583 (-694)))) (-15 -3731 ((-347 |#1|) |#1| (-583 (-694)) (-694))) (-15 -3731 ((-347 |#1|) |#1| (-694) (-694))) (-15 -3732 ((-347 |#1|) |#1|)) (-15 -3732 ((-347 |#1|) |#1| (-694))) (-15 -3732 ((-347 |#1|) |#1| (-583 (-694)))) (-15 -3732 ((-347 |#1|) |#1| (-583 (-694)) (-694))) (-15 -3732 ((-347 |#1|) |#1| (-694) (-694))) (-15 -1852 ((-3 |#1| #1="failed") (-830) |#1|)) (-15 -1852 ((-3 |#1| #1#) (-830) |#1| (-694))) (-15 -1852 ((-3 |#1| #1#) (-830) |#1| (-583 (-694)))) (-15 -1852 ((-3 |#1| #1#) (-830) |#1| (-583 (-694)) (-694))) (-15 -1852 ((-3 |#1| #1#) (-830) |#1| (-583 (-694)) (-694) (-85))) (-15 -3733 ((-2 (|:| |contp| (-484)) (|:| -1778 (-583 (-2 (|:| |irr| |#1|) (|:| -2395 (-484)))))) |#1| (-85))) (-15 -1842 ((-2 (|:| |contp| (-484)) (|:| -1778 (-583 (-2 (|:| |irr| |#1|) (|:| -2395 (-484)))))) |#1| (-85) (-1009 (-694)) (-694)))) (-1154 (-484))) (T -381)) +((-1842 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-85)) (-5 *5 (-1009 (-694))) (-5 *6 (-694)) (-5 *2 (-2 (|:| |contp| (-484)) (|:| -1778 (-583 (-2 (|:| |irr| *3) (|:| -2395 (-484))))))) (-5 *1 (-381 *3)) (-4 *3 (-1154 (-484))))) (-3733 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-5 *2 (-2 (|:| |contp| (-484)) (|:| -1778 (-583 (-2 (|:| |irr| *3) (|:| -2395 (-484))))))) (-5 *1 (-381 *3)) (-4 *3 (-1154 (-484))))) (-1852 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-830)) (-5 *4 (-583 (-694))) (-5 *5 (-694)) (-5 *6 (-85)) (-5 *1 (-381 *2)) (-4 *2 (-1154 (-484))))) (-1852 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-830)) (-5 *4 (-583 (-694))) (-5 *5 (-694)) (-5 *1 (-381 *2)) (-4 *2 (-1154 (-484))))) (-1852 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-830)) (-5 *4 (-583 (-694))) (-5 *1 (-381 *2)) (-4 *2 (-1154 (-484))))) (-1852 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-830)) (-5 *4 (-694)) (-5 *1 (-381 *2)) (-4 *2 (-1154 (-484))))) (-1852 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-830)) (-5 *1 (-381 *2)) (-4 *2 (-1154 (-484))))) (-3732 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-694)) (-5 *2 (-347 *3)) (-5 *1 (-381 *3)) (-4 *3 (-1154 (-484))))) (-3732 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-583 (-694))) (-5 *5 (-694)) (-5 *2 (-347 *3)) (-5 *1 (-381 *3)) (-4 *3 (-1154 (-484))))) (-3732 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-694))) (-5 *2 (-347 *3)) (-5 *1 (-381 *3)) (-4 *3 (-1154 (-484))))) (-3732 (*1 *2 *3 *4) (-12 (-5 *4 (-694)) (-5 *2 (-347 *3)) (-5 *1 (-381 *3)) (-4 *3 (-1154 (-484))))) (-3732 (*1 *2 *3) (-12 (-5 *2 (-347 *3)) (-5 *1 (-381 *3)) (-4 *3 (-1154 (-484))))) (-3731 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-694)) (-5 *2 (-347 *3)) (-5 *1 (-381 *3)) (-4 *3 (-1154 (-484))))) (-3731 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-583 (-694))) (-5 *5 (-694)) (-5 *2 (-347 *3)) (-5 *1 (-381 *3)) (-4 *3 (-1154 (-484))))) (-3731 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-694))) (-5 *2 (-347 *3)) (-5 *1 (-381 *3)) (-4 *3 (-1154 (-484))))) (-3731 (*1 *2 *3 *4) (-12 (-5 *4 (-694)) (-5 *2 (-347 *3)) (-5 *1 (-381 *3)) (-4 *3 (-1154 (-484))))) (-3731 (*1 *2 *3) (-12 (-5 *2 (-347 *3)) (-5 *1 (-381 *3)) (-4 *3 (-1154 (-484))))) (-1841 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-381 *3)) (-4 *3 (-1154 (-484))))) (-1840 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-381 *3)) (-4 *3 (-1154 (-484))))) (-1839 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-381 *3)) (-4 *3 (-1154 (-484))))) (-1838 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-381 *3)) (-4 *3 (-1154 (-484))))) (-1837 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-381 *3)) (-4 *3 (-1154 (-484))))) (-1836 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-381 *3)) (-4 *3 (-1154 (-484))))) (-1835 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-381 *3)) (-4 *3 (-1154 (-484))))) (-1834 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2578 (-484)) (|:| -1778 (-583 *3)))) (-5 *1 (-381 *3)) (-4 *3 (-1154 (-484))))) (-1833 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3731 *4) (|:| -3947 (-484))))) (-4 *4 (-1154 (-484))) (-5 *2 (-694)) (-5 *1 (-381 *4)))) (-1832 (*1 *2 *2) (-12 (-5 *2 (-830)) (-5 *1 (-381 *3)) (-4 *3 (-1154 (-484))))) (-1832 (*1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-381 *3)) (-4 *3 (-1154 (-484))))) (-1831 (*1 *2 *2) (-12 (-5 *2 (-830)) (-5 *1 (-381 *3)) (-4 *3 (-1154 (-484))))) (-1831 (*1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-381 *3)) (-4 *3 (-1154 (-484))))) (-1851 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3731 *4) (|:| -3947 (-484))))) (-4 *4 (-1154 (-484))) (-5 *2 (-675 (-694))) (-5 *1 (-381 *4)))) (-1830 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-484)) (|:| -1778 (-583 (-2 (|:| |irr| *4) (|:| -2395 (-484))))))) (-4 *4 (-1154 (-484))) (-5 *2 (-347 *4)) (-5 *1 (-381 *4))))) +((-1846 (((-484) |#2|) 52 T ELT) (((-484) |#2| (-694)) 51 T ELT)) (-1845 (((-484) |#2|) 64 T ELT)) (-1847 ((|#3| |#2|) 26 T ELT)) (-3132 ((|#3| |#2| (-830)) 15 T ELT)) (-3832 ((|#3| |#2|) 16 T ELT)) (-1848 ((|#3| |#2|) 9 T ELT)) (-2603 ((|#3| |#2|) 10 T ELT)) (-1844 ((|#3| |#2| (-830)) 71 T ELT) ((|#3| |#2|) 34 T ELT)) (-1843 (((-484) |#2|) 66 T ELT))) +(((-382 |#1| |#2| |#3|) (-10 -7 (-15 -1843 ((-484) |#2|)) (-15 -1844 (|#3| |#2|)) (-15 -1844 (|#3| |#2| (-830))) (-15 -1845 ((-484) |#2|)) (-15 -1846 ((-484) |#2| (-694))) (-15 -1846 ((-484) |#2|)) (-15 -3132 (|#3| |#2| (-830))) (-15 -1847 (|#3| |#2|)) (-15 -1848 (|#3| |#2|)) (-15 -2603 (|#3| |#2|)) (-15 -3832 (|#3| |#2|))) (-961) (-1154 |#1|) (-13 (-346) (-950 |#1|) (-312) (-1114) (-239))) (T -382)) +((-3832 (*1 *2 *3) (-12 (-4 *4 (-961)) (-4 *2 (-13 (-346) (-950 *4) (-312) (-1114) (-239))) (-5 *1 (-382 *4 *3 *2)) (-4 *3 (-1154 *4)))) (-2603 (*1 *2 *3) (-12 (-4 *4 (-961)) (-4 *2 (-13 (-346) (-950 *4) (-312) (-1114) (-239))) (-5 *1 (-382 *4 *3 *2)) (-4 *3 (-1154 *4)))) (-1848 (*1 *2 *3) (-12 (-4 *4 (-961)) (-4 *2 (-13 (-346) (-950 *4) (-312) (-1114) (-239))) (-5 *1 (-382 *4 *3 *2)) (-4 *3 (-1154 *4)))) (-1847 (*1 *2 *3) (-12 (-4 *4 (-961)) (-4 *2 (-13 (-346) (-950 *4) (-312) (-1114) (-239))) (-5 *1 (-382 *4 *3 *2)) (-4 *3 (-1154 *4)))) (-3132 (*1 *2 *3 *4) (-12 (-5 *4 (-830)) (-4 *5 (-961)) (-4 *2 (-13 (-346) (-950 *5) (-312) (-1114) (-239))) (-5 *1 (-382 *5 *3 *2)) (-4 *3 (-1154 *5)))) (-1846 (*1 *2 *3) (-12 (-4 *4 (-961)) (-5 *2 (-484)) (-5 *1 (-382 *4 *3 *5)) (-4 *3 (-1154 *4)) (-4 *5 (-13 (-346) (-950 *4) (-312) (-1114) (-239))))) (-1846 (*1 *2 *3 *4) (-12 (-5 *4 (-694)) (-4 *5 (-961)) (-5 *2 (-484)) (-5 *1 (-382 *5 *3 *6)) (-4 *3 (-1154 *5)) (-4 *6 (-13 (-346) (-950 *5) (-312) (-1114) (-239))))) (-1845 (*1 *2 *3) (-12 (-4 *4 (-961)) (-5 *2 (-484)) (-5 *1 (-382 *4 *3 *5)) (-4 *3 (-1154 *4)) (-4 *5 (-13 (-346) (-950 *4) (-312) (-1114) (-239))))) (-1844 (*1 *2 *3 *4) (-12 (-5 *4 (-830)) (-4 *5 (-961)) (-4 *2 (-13 (-346) (-950 *5) (-312) (-1114) (-239))) (-5 *1 (-382 *5 *3 *2)) (-4 *3 (-1154 *5)))) (-1844 (*1 *2 *3) (-12 (-4 *4 (-961)) (-4 *2 (-13 (-346) (-950 *4) (-312) (-1114) (-239))) (-5 *1 (-382 *4 *3 *2)) (-4 *3 (-1154 *4)))) (-1843 (*1 *2 *3) (-12 (-4 *4 (-961)) (-5 *2 (-484)) (-5 *1 (-382 *4 *3 *5)) (-4 *3 (-1154 *4)) (-4 *5 (-13 (-346) (-950 *4) (-312) (-1114) (-239)))))) +((-3353 ((|#2| (-1178 |#1|)) 42 T ELT)) (-1850 ((|#2| |#2| |#1|) 58 T ELT)) (-1849 ((|#2| |#2| |#1|) 49 T ELT)) (-2298 ((|#2| |#2|) 44 T ELT)) (-3173 (((-85) |#2|) 32 T ELT)) (-1853 (((-583 |#2|) (-830) (-347 |#2|)) 21 T ELT)) (-1852 ((|#2| (-830) (-347 |#2|)) 25 T ELT)) (-1851 (((-675 (-694)) (-347 |#2|)) 29 T ELT))) +(((-383 |#1| |#2|) (-10 -7 (-15 -3173 ((-85) |#2|)) (-15 -3353 (|#2| (-1178 |#1|))) (-15 -2298 (|#2| |#2|)) (-15 -1849 (|#2| |#2| |#1|)) (-15 -1850 (|#2| |#2| |#1|)) (-15 -1851 ((-675 (-694)) (-347 |#2|))) (-15 -1852 (|#2| (-830) (-347 |#2|))) (-15 -1853 ((-583 |#2|) (-830) (-347 |#2|)))) (-961) (-1154 |#1|)) (T -383)) +((-1853 (*1 *2 *3 *4) (-12 (-5 *3 (-830)) (-5 *4 (-347 *6)) (-4 *6 (-1154 *5)) (-4 *5 (-961)) (-5 *2 (-583 *6)) (-5 *1 (-383 *5 *6)))) (-1852 (*1 *2 *3 *4) (-12 (-5 *3 (-830)) (-5 *4 (-347 *2)) (-4 *2 (-1154 *5)) (-5 *1 (-383 *5 *2)) (-4 *5 (-961)))) (-1851 (*1 *2 *3) (-12 (-5 *3 (-347 *5)) (-4 *5 (-1154 *4)) (-4 *4 (-961)) (-5 *2 (-675 (-694))) (-5 *1 (-383 *4 *5)))) (-1850 (*1 *2 *2 *3) (-12 (-4 *3 (-961)) (-5 *1 (-383 *3 *2)) (-4 *2 (-1154 *3)))) (-1849 (*1 *2 *2 *3) (-12 (-4 *3 (-961)) (-5 *1 (-383 *3 *2)) (-4 *2 (-1154 *3)))) (-2298 (*1 *2 *2) (-12 (-4 *3 (-961)) (-5 *1 (-383 *3 *2)) (-4 *2 (-1154 *3)))) (-3353 (*1 *2 *3) (-12 (-5 *3 (-1178 *4)) (-4 *4 (-961)) (-4 *2 (-1154 *4)) (-5 *1 (-383 *4 *2)))) (-3173 (*1 *2 *3) (-12 (-4 *4 (-961)) (-5 *2 (-85)) (-5 *1 (-383 *4 *3)) (-4 *3 (-1154 *4))))) +((-1856 (((-694)) 59 T ELT)) (-1860 (((-694)) 29 (|has| |#1| (-346)) ELT) (((-694) (-694)) 28 (|has| |#1| (-346)) ELT)) (-1859 (((-484) |#1|) 25 (|has| |#1| (-346)) ELT)) (-1858 (((-484) |#1|) 27 (|has| |#1| (-346)) ELT)) (-1855 (((-694)) 58 T ELT) (((-694) (-694)) 57 T ELT)) (-1854 ((|#1| (-694) (-484)) 37 T ELT)) (-1857 (((-1184)) 61 T ELT))) +(((-384 |#1|) (-10 -7 (-15 -1854 (|#1| (-694) (-484))) (-15 -1855 ((-694) (-694))) (-15 -1855 ((-694))) (-15 -1856 ((-694))) (-15 -1857 ((-1184))) (IF (|has| |#1| (-346)) (PROGN (-15 -1858 ((-484) |#1|)) (-15 -1859 ((-484) |#1|)) (-15 -1860 ((-694) (-694))) (-15 -1860 ((-694)))) |%noBranch|)) (-961)) (T -384)) +((-1860 (*1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-384 *3)) (-4 *3 (-346)) (-4 *3 (-961)))) (-1860 (*1 *2 *2) (-12 (-5 *2 (-694)) (-5 *1 (-384 *3)) (-4 *3 (-346)) (-4 *3 (-961)))) (-1859 (*1 *2 *3) (-12 (-5 *2 (-484)) (-5 *1 (-384 *3)) (-4 *3 (-346)) (-4 *3 (-961)))) (-1858 (*1 *2 *3) (-12 (-5 *2 (-484)) (-5 *1 (-384 *3)) (-4 *3 (-346)) (-4 *3 (-961)))) (-1857 (*1 *2) (-12 (-5 *2 (-1184)) (-5 *1 (-384 *3)) (-4 *3 (-961)))) (-1856 (*1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-384 *3)) (-4 *3 (-961)))) (-1855 (*1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-384 *3)) (-4 *3 (-961)))) (-1855 (*1 *2 *2) (-12 (-5 *2 (-694)) (-5 *1 (-384 *3)) (-4 *3 (-961)))) (-1854 (*1 *2 *3 *4) (-12 (-5 *3 (-694)) (-5 *4 (-484)) (-5 *1 (-384 *2)) (-4 *2 (-961))))) +((-1861 (((-583 (-484)) (-484)) 76 T ELT)) (-3722 (((-85) (-142 (-484))) 84 T ELT)) (-3731 (((-347 (-142 (-484))) (-142 (-484))) 75 T ELT))) +(((-385) (-10 -7 (-15 -3731 ((-347 (-142 (-484))) (-142 (-484)))) (-15 -1861 ((-583 (-484)) (-484))) (-15 -3722 ((-85) (-142 (-484)))))) (T -385)) +((-3722 (*1 *2 *3) (-12 (-5 *3 (-142 (-484))) (-5 *2 (-85)) (-5 *1 (-385)))) (-1861 (*1 *2 *3) (-12 (-5 *2 (-583 (-484))) (-5 *1 (-385)) (-5 *3 (-484)))) (-3731 (*1 *2 *3) (-12 (-5 *2 (-347 (-142 (-484)))) (-5 *1 (-385)) (-5 *3 (-142 (-484)))))) +((-2946 ((|#4| |#4| (-583 |#4|)) 20 (|has| |#1| (-312)) ELT)) (-2251 (((-583 |#4|) (-583 |#4|) (-1072) (-1072)) 46 T ELT) (((-583 |#4|) (-583 |#4|) (-1072)) 45 T ELT) (((-583 |#4|) (-583 |#4|)) 34 T ELT))) +(((-386 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2251 ((-583 |#4|) (-583 |#4|))) (-15 -2251 ((-583 |#4|) (-583 |#4|) (-1072))) (-15 -2251 ((-583 |#4|) (-583 |#4|) (-1072) (-1072))) (IF (|has| |#1| (-312)) (-15 -2946 (|#4| |#4| (-583 |#4|))) |%noBranch|)) (-391) (-717) (-756) (-861 |#1| |#2| |#3|)) (T -386)) +((-2946 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-861 *4 *5 *6)) (-4 *4 (-312)) (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-386 *4 *5 *6 *2)))) (-2251 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-1072)) (-4 *7 (-861 *4 *5 *6)) (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-386 *4 *5 *6 *7)))) (-2251 (*1 *2 *2 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-1072)) (-4 *7 (-861 *4 *5 *6)) (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-386 *4 *5 *6 *7)))) (-2251 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-861 *3 *4 *5)) (-4 *3 (-391)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-386 *3 *4 *5 *6))))) +((-1862 ((|#4| |#4| (-583 |#4|)) 82 T ELT)) (-1863 (((-583 |#4|) (-583 |#4|) (-1072) (-1072)) 22 T ELT) (((-583 |#4|) (-583 |#4|) (-1072)) 21 T ELT) (((-583 |#4|) (-583 |#4|)) 13 T ELT))) +(((-387 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1862 (|#4| |#4| (-583 |#4|))) (-15 -1863 ((-583 |#4|) (-583 |#4|))) (-15 -1863 ((-583 |#4|) (-583 |#4|) (-1072))) (-15 -1863 ((-583 |#4|) (-583 |#4|) (-1072) (-1072)))) (-258) (-717) (-756) (-861 |#1| |#2| |#3|)) (T -387)) +((-1863 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-1072)) (-4 *7 (-861 *4 *5 *6)) (-4 *4 (-258)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-387 *4 *5 *6 *7)))) (-1863 (*1 *2 *2 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-1072)) (-4 *7 (-861 *4 *5 *6)) (-4 *4 (-258)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-387 *4 *5 *6 *7)))) (-1863 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-861 *3 *4 *5)) (-4 *3 (-258)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-387 *3 *4 *5 *6)))) (-1862 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-861 *4 *5 *6)) (-4 *4 (-258)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-387 *4 *5 *6 *2))))) +((-1865 (((-583 (-583 |#4|)) (-583 |#4|) (-85)) 90 T ELT) (((-583 (-583 |#4|)) (-583 |#4|)) 89 T ELT) (((-583 (-583 |#4|)) (-583 |#4|) (-583 |#4|) (-85)) 83 T ELT) (((-583 (-583 |#4|)) (-583 |#4|) (-583 |#4|)) 84 T ELT)) (-1864 (((-583 (-583 |#4|)) (-583 |#4|) (-85)) 56 T ELT) (((-583 (-583 |#4|)) (-583 |#4|)) 78 T ELT))) +(((-388 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1864 ((-583 (-583 |#4|)) (-583 |#4|))) (-15 -1864 ((-583 (-583 |#4|)) (-583 |#4|) (-85))) (-15 -1865 ((-583 (-583 |#4|)) (-583 |#4|) (-583 |#4|))) (-15 -1865 ((-583 (-583 |#4|)) (-583 |#4|) (-583 |#4|) (-85))) (-15 -1865 ((-583 (-583 |#4|)) (-583 |#4|))) (-15 -1865 ((-583 (-583 |#4|)) (-583 |#4|) (-85)))) (-13 (-258) (-120)) (-717) (-756) (-861 |#1| |#2| |#3|)) (T -388)) +((-1865 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *8 (-861 *5 *6 *7)) (-5 *2 (-583 (-583 *8))) (-5 *1 (-388 *5 *6 *7 *8)) (-5 *3 (-583 *8)))) (-1865 (*1 *2 *3) (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-861 *4 *5 *6)) (-5 *2 (-583 (-583 *7))) (-5 *1 (-388 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) (-1865 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *8 (-861 *5 *6 *7)) (-5 *2 (-583 (-583 *8))) (-5 *1 (-388 *5 *6 *7 *8)) (-5 *3 (-583 *8)))) (-1865 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-861 *4 *5 *6)) (-5 *2 (-583 (-583 *7))) (-5 *1 (-388 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) (-1864 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *8 (-861 *5 *6 *7)) (-5 *2 (-583 (-583 *8))) (-5 *1 (-388 *5 *6 *7 *8)) (-5 *3 (-583 *8)))) (-1864 (*1 *2 *3) (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-861 *4 *5 *6)) (-5 *2 (-583 (-583 *7))) (-5 *1 (-388 *4 *5 *6 *7)) (-5 *3 (-583 *7))))) +((-1889 (((-694) |#4|) 12 T ELT)) (-1877 (((-583 (-2 (|:| |totdeg| (-694)) (|:| -2004 |#4|))) |#4| (-694) (-583 (-2 (|:| |totdeg| (-694)) (|:| -2004 |#4|)))) 39 T ELT)) (-1879 (((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 49 T ELT)) (-1878 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 52 T ELT)) (-1867 ((|#4| |#4| (-583 |#4|)) 54 T ELT)) (-1875 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-583 |#4|)) 96 T ELT)) (-1882 (((-1184) |#4|) 59 T ELT)) (-1885 (((-1184) (-583 |#4|)) 69 T ELT)) (-1883 (((-484) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-484) (-484) (-484)) 66 T ELT)) (-1886 (((-1184) (-484)) 110 T ELT)) (-1880 (((-583 |#4|) (-583 |#4|)) 104 T ELT)) (-1888 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-694)) (|:| -2004 |#4|)) |#4| (-694)) 31 T ELT)) (-1881 (((-484) |#4|) 109 T ELT)) (-1876 ((|#4| |#4|) 37 T ELT)) (-1868 (((-583 |#4|) (-583 |#4|) (-484) (-484)) 74 T ELT)) (-1884 (((-484) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-484) (-484) (-484) (-484)) 123 T ELT)) (-1887 (((-85) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 20 T ELT)) (-1869 (((-85) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 78 T ELT)) (-1874 (((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 76 T ELT)) (-1873 (((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 47 T ELT)) (-1870 (((-85) |#2| |#2|) 75 T ELT)) (-1872 (((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 48 T ELT)) (-1871 (((-85) |#2| |#2| |#2| |#2|) 80 T ELT)) (-1866 ((|#4| |#4| (-583 |#4|)) 97 T ELT))) +(((-389 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1866 (|#4| |#4| (-583 |#4|))) (-15 -1867 (|#4| |#4| (-583 |#4|))) (-15 -1868 ((-583 |#4|) (-583 |#4|) (-484) (-484))) (-15 -1869 ((-85) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1870 ((-85) |#2| |#2|)) (-15 -1871 ((-85) |#2| |#2| |#2| |#2|)) (-15 -1872 ((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1873 ((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1874 ((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1875 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-583 |#4|))) (-15 -1876 (|#4| |#4|)) (-15 -1877 ((-583 (-2 (|:| |totdeg| (-694)) (|:| -2004 |#4|))) |#4| (-694) (-583 (-2 (|:| |totdeg| (-694)) (|:| -2004 |#4|))))) (-15 -1878 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1879 ((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1880 ((-583 |#4|) (-583 |#4|))) (-15 -1881 ((-484) |#4|)) (-15 -1882 ((-1184) |#4|)) (-15 -1883 ((-484) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-484) (-484) (-484))) (-15 -1884 ((-484) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-484) (-484) (-484) (-484))) (-15 -1885 ((-1184) (-583 |#4|))) (-15 -1886 ((-1184) (-484))) (-15 -1887 ((-85) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1888 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-694)) (|:| -2004 |#4|)) |#4| (-694))) (-15 -1889 ((-694) |#4|))) (-391) (-717) (-756) (-861 |#1| |#2| |#3|)) (T -389)) +((-1889 (*1 *2 *3) (-12 (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-694)) (-5 *1 (-389 *4 *5 *6 *3)) (-4 *3 (-861 *4 *5 *6)))) (-1888 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-694)) (|:| -2004 *4))) (-5 *5 (-694)) (-4 *4 (-861 *6 *7 *8)) (-4 *6 (-391)) (-4 *7 (-717)) (-4 *8 (-756)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-389 *6 *7 *8 *4)))) (-1887 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-694)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-717)) (-4 *7 (-861 *4 *5 *6)) (-4 *4 (-391)) (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-389 *4 *5 *6 *7)))) (-1886 (*1 *2 *3) (-12 (-5 *3 (-484)) (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-1184)) (-5 *1 (-389 *4 *5 *6 *7)) (-4 *7 (-861 *4 *5 *6)))) (-1885 (*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-861 *4 *5 *6)) (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-1184)) (-5 *1 (-389 *4 *5 *6 *7)))) (-1884 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-484)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-694)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-717)) (-4 *4 (-861 *5 *6 *7)) (-4 *5 (-391)) (-4 *7 (-756)) (-5 *1 (-389 *5 *6 *7 *4)))) (-1883 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-484)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-694)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-717)) (-4 *4 (-861 *5 *6 *7)) (-4 *5 (-391)) (-4 *7 (-756)) (-5 *1 (-389 *5 *6 *7 *4)))) (-1882 (*1 *2 *3) (-12 (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-1184)) (-5 *1 (-389 *4 *5 *6 *3)) (-4 *3 (-861 *4 *5 *6)))) (-1881 (*1 *2 *3) (-12 (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-484)) (-5 *1 (-389 *4 *5 *6 *3)) (-4 *3 (-861 *4 *5 *6)))) (-1880 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-861 *3 *4 *5)) (-4 *3 (-391)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-389 *3 *4 *5 *6)))) (-1879 (*1 *2 *2 *2) (-12 (-5 *2 (-583 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-694)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-717)) (-4 *6 (-861 *3 *4 *5)) (-4 *3 (-391)) (-4 *5 (-756)) (-5 *1 (-389 *3 *4 *5 *6)))) (-1878 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-694)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-717)) (-4 *2 (-861 *4 *5 *6)) (-5 *1 (-389 *4 *5 *6 *2)) (-4 *4 (-391)) (-4 *6 (-756)))) (-1877 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-583 (-2 (|:| |totdeg| (-694)) (|:| -2004 *3)))) (-5 *4 (-694)) (-4 *3 (-861 *5 *6 *7)) (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *1 (-389 *5 *6 *7 *3)))) (-1876 (*1 *2 *2) (-12 (-4 *3 (-391)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-389 *3 *4 *5 *2)) (-4 *2 (-861 *3 *4 *5)))) (-1875 (*1 *2 *3 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-861 *5 *6 *7)) (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-389 *5 *6 *7 *3)))) (-1874 (*1 *2 *3 *2) (-12 (-5 *2 (-583 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-694)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-717)) (-4 *6 (-861 *4 *3 *5)) (-4 *4 (-391)) (-4 *5 (-756)) (-5 *1 (-389 *4 *3 *5 *6)))) (-1873 (*1 *2 *2) (-12 (-5 *2 (-583 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-694)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-717)) (-4 *6 (-861 *3 *4 *5)) (-4 *3 (-391)) (-4 *5 (-756)) (-5 *1 (-389 *3 *4 *5 *6)))) (-1872 (*1 *2 *3 *2) (-12 (-5 *2 (-583 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-694)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-717)) (-4 *3 (-861 *4 *5 *6)) (-4 *4 (-391)) (-4 *6 (-756)) (-5 *1 (-389 *4 *5 *6 *3)))) (-1871 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-391)) (-4 *3 (-717)) (-4 *5 (-756)) (-5 *2 (-85)) (-5 *1 (-389 *4 *3 *5 *6)) (-4 *6 (-861 *4 *3 *5)))) (-1870 (*1 *2 *3 *3) (-12 (-4 *4 (-391)) (-4 *3 (-717)) (-4 *5 (-756)) (-5 *2 (-85)) (-5 *1 (-389 *4 *3 *5 *6)) (-4 *6 (-861 *4 *3 *5)))) (-1869 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-694)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-717)) (-4 *7 (-861 *4 *5 *6)) (-4 *4 (-391)) (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-389 *4 *5 *6 *7)))) (-1868 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-484)) (-4 *7 (-861 *4 *5 *6)) (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-389 *4 *5 *6 *7)))) (-1867 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-861 *4 *5 *6)) (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-389 *4 *5 *6 *2)))) (-1866 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-861 *4 *5 *6)) (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-389 *4 *5 *6 *2))))) +((-1890 (($ $ $) 14 T ELT) (($ (-583 $)) 21 T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) 45 T ELT)) (-3144 (($ $ $) NIL T ELT) (($ (-583 $)) 22 T ELT))) +(((-390 |#1|) (-10 -7 (-15 -2708 ((-1084 |#1|) (-1084 |#1|) (-1084 |#1|))) (-15 -1890 (|#1| (-583 |#1|))) (-15 -1890 (|#1| |#1| |#1|)) (-15 -3144 (|#1| (-583 |#1|))) (-15 -3144 (|#1| |#1| |#1|))) (-391)) (T -390)) +NIL +((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) 55 T ELT)) (-2063 (($ $) 54 T ELT)) (-2061 (((-85) $) 52 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3723 (($) 23 T CONST)) (-3466 (((-3 $ "failed") $) 42 T ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-1890 (($ $ $) 60 T ELT) (($ (-583 $)) 59 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) 58 T ELT)) (-3144 (($ $ $) 62 T ELT) (($ (-583 $)) 61 T ELT)) (-3465 (((-3 $ "failed") $ $) 56 T ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ $) 57 T ELT)) (-3126 (((-694)) 40 T CONST)) (-1264 (((-85) $ $) 6 T ELT)) (-2062 (((-85) $ $) 53 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT))) +(((-391) (-113)) (T -391)) +((-3144 (*1 *1 *1 *1) (-4 *1 (-391))) (-3144 (*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-391)))) (-1890 (*1 *1 *1 *1) (-4 *1 (-391))) (-1890 (*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-391)))) (-2708 (*1 *2 *2 *2) (-12 (-5 *2 (-1084 *1)) (-4 *1 (-391))))) +(-13 (-495) (-10 -8 (-15 -3144 ($ $ $)) (-15 -3144 ($ (-583 $))) (-15 -1890 ($ $ $)) (-15 -1890 ($ (-583 $))) (-15 -2708 ((-1084 $) (-1084 $) (-1084 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-555 (-484)) . T) ((-555 $) . T) ((-552 (-772)) . T) ((-146) . T) ((-246) . T) ((-495) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 $) . T) ((-590 $) . T) ((-582 $) . T) ((-654 $) . T) ((-663) . T) ((-963 $) . T) ((-968 $) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T)) +((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-1771 (((-3 $ #1="failed")) NIL (|has| (-349 (-857 |#1|)) (-495)) ELT)) (-1311 (((-3 $ #1#) $ $) NIL T ELT)) (-3223 (((-1178 (-630 (-349 (-857 |#1|)))) (-1178 $)) NIL T ELT) (((-1178 (-630 (-349 (-857 |#1|))))) NIL T ELT)) (-1728 (((-1178 $)) NIL T ELT)) (-3723 (($) NIL T CONST)) (-1905 (((-3 (-2 (|:| |particular| $) (|:| -2012 (-583 $))) #1#)) NIL T ELT)) (-1702 (((-3 $ #1#)) NIL (|has| (-349 (-857 |#1|)) (-495)) ELT)) (-1787 (((-630 (-349 (-857 |#1|))) (-1178 $)) NIL T ELT) (((-630 (-349 (-857 |#1|)))) NIL T ELT)) (-1726 (((-349 (-857 |#1|)) $) NIL T ELT)) (-1785 (((-630 (-349 (-857 |#1|))) $ (-1178 $)) NIL T ELT) (((-630 (-349 (-857 |#1|))) $) NIL T ELT)) (-2404 (((-3 $ #1#) $) NIL (|has| (-349 (-857 |#1|)) (-495)) ELT)) (-1899 (((-1084 (-857 (-349 (-857 |#1|))))) NIL (|has| (-349 (-857 |#1|)) (-312)) ELT) (((-1084 (-349 (-857 |#1|)))) 89 (|has| |#1| (-495)) ELT)) (-2407 (($ $ (-830)) NIL T ELT)) (-1724 (((-349 (-857 |#1|)) $) NIL T ELT)) (-1704 (((-1084 (-349 (-857 |#1|))) $) 87 (|has| (-349 (-857 |#1|)) (-495)) ELT)) (-1789 (((-349 (-857 |#1|)) (-1178 $)) NIL T ELT) (((-349 (-857 |#1|))) NIL T ELT)) (-1722 (((-1084 (-349 (-857 |#1|))) $) NIL T ELT)) (-1716 (((-85)) NIL T ELT)) (-1791 (($ (-1178 (-349 (-857 |#1|))) (-1178 $)) 111 T ELT) (($ (-1178 (-349 (-857 |#1|)))) NIL T ELT)) (-3466 (((-3 $ #1#) $) NIL (|has| (-349 (-857 |#1|)) (-495)) ELT)) (-3108 (((-830)) NIL T ELT)) (-1713 (((-85)) NIL T ELT)) (-2433 (($ $ (-830)) NIL T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-1709 (((-85)) NIL T ELT)) (-1707 (((-85)) NIL T ELT)) (-1711 (((-85)) NIL T ELT)) (-1906 (((-3 (-2 (|:| |particular| $) (|:| -2012 (-583 $))) #1#)) NIL T ELT)) (-1703 (((-3 $ #1#)) NIL (|has| (-349 (-857 |#1|)) (-495)) ELT)) (-1788 (((-630 (-349 (-857 |#1|))) (-1178 $)) NIL T ELT) (((-630 (-349 (-857 |#1|)))) NIL T ELT)) (-1727 (((-349 (-857 |#1|)) $) NIL T ELT)) (-1786 (((-630 (-349 (-857 |#1|))) $ (-1178 $)) NIL T ELT) (((-630 (-349 (-857 |#1|))) $) NIL T ELT)) (-2405 (((-3 $ #1#) $) NIL (|has| (-349 (-857 |#1|)) (-495)) ELT)) (-1903 (((-1084 (-857 (-349 (-857 |#1|))))) NIL (|has| (-349 (-857 |#1|)) (-312)) ELT) (((-1084 (-349 (-857 |#1|)))) 88 (|has| |#1| (-495)) ELT)) (-2406 (($ $ (-830)) NIL T ELT)) (-1725 (((-349 (-857 |#1|)) $) NIL T ELT)) (-1705 (((-1084 (-349 (-857 |#1|))) $) 84 (|has| (-349 (-857 |#1|)) (-495)) ELT)) (-1790 (((-349 (-857 |#1|)) (-1178 $)) NIL T ELT) (((-349 (-857 |#1|))) NIL T ELT)) (-1723 (((-1084 (-349 (-857 |#1|))) $) NIL T ELT)) (-1717 (((-85)) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-1708 (((-85)) NIL T ELT)) (-1710 (((-85)) NIL T ELT)) (-1712 (((-85)) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1893 (((-349 (-857 |#1|)) $ $) 75 (|has| |#1| (-495)) ELT)) (-1897 (((-349 (-857 |#1|)) $) 74 (|has| |#1| (-495)) ELT)) (-1896 (((-349 (-857 |#1|)) $) 101 (|has| |#1| (-495)) ELT)) (-1898 (((-1084 (-349 (-857 |#1|))) $) 93 (|has| |#1| (-495)) ELT)) (-1892 (((-349 (-857 |#1|))) 76 (|has| |#1| (-495)) ELT)) (-1895 (((-349 (-857 |#1|)) $ $) 64 (|has| |#1| (-495)) ELT)) (-1901 (((-349 (-857 |#1|)) $) 63 (|has| |#1| (-495)) ELT)) (-1900 (((-349 (-857 |#1|)) $) 100 (|has| |#1| (-495)) ELT)) (-1902 (((-1084 (-349 (-857 |#1|))) $) 92 (|has| |#1| (-495)) ELT)) (-1894 (((-349 (-857 |#1|))) 73 (|has| |#1| (-495)) ELT)) (-1904 (($) 107 T ELT) (($ (-1089)) 115 T ELT) (($ (-1178 (-1089))) 114 T ELT) (($ (-1178 $)) 102 T ELT) (($ (-1089) (-1178 $)) 113 T ELT) (($ (-1178 (-1089)) (-1178 $)) 112 T ELT)) (-1715 (((-85)) NIL T ELT)) (-3799 (((-349 (-857 |#1|)) $ (-484)) NIL T ELT)) (-3224 (((-1178 (-349 (-857 |#1|))) $ (-1178 $)) 104 T ELT) (((-630 (-349 (-857 |#1|))) (-1178 $) (-1178 $)) NIL T ELT) (((-1178 (-349 (-857 |#1|))) $) 44 T ELT) (((-630 (-349 (-857 |#1|))) (-1178 $)) NIL T ELT)) (-3971 (((-1178 (-349 (-857 |#1|))) $) NIL T ELT) (($ (-1178 (-349 (-857 |#1|)))) 41 T ELT)) (-1891 (((-583 (-857 (-349 (-857 |#1|)))) (-1178 $)) NIL T ELT) (((-583 (-857 (-349 (-857 |#1|))))) NIL T ELT) (((-583 (-857 |#1|)) (-1178 $)) 105 (|has| |#1| (-495)) ELT) (((-583 (-857 |#1|))) 106 (|has| |#1| (-495)) ELT)) (-2435 (($ $ $) NIL T ELT)) (-1721 (((-85)) NIL T ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-1178 (-349 (-857 |#1|)))) NIL T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2012 (((-1178 $)) 66 T ELT)) (-1706 (((-583 (-1178 (-349 (-857 |#1|))))) NIL (|has| (-349 (-857 |#1|)) (-495)) ELT)) (-2436 (($ $ $ $) NIL T ELT)) (-1719 (((-85)) NIL T ELT)) (-2545 (($ (-630 (-349 (-857 |#1|))) $) NIL T ELT)) (-2434 (($ $ $) NIL T ELT)) (-1720 (((-85)) NIL T ELT)) (-1718 (((-85)) NIL T ELT)) (-1714 (((-85)) NIL T ELT)) (-2660 (($) NIL T CONST)) (-3056 (((-85) $ $) NIL T ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) 103 T ELT)) (-3838 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 62 T ELT) (($ $ (-349 (-857 |#1|))) NIL T ELT) (($ (-349 (-857 |#1|)) $) NIL T ELT) (($ (-1055 |#2| (-349 (-857 |#1|))) $) NIL T ELT))) +(((-392 |#1| |#2| |#3| |#4|) (-13 (-360 (-349 (-857 |#1|))) (-590 (-1055 |#2| (-349 (-857 |#1|)))) (-10 -8 (-15 -3945 ($ (-1178 (-349 (-857 |#1|))))) (-15 -1906 ((-3 (-2 (|:| |particular| $) (|:| -2012 (-583 $))) #1="failed"))) (-15 -1905 ((-3 (-2 (|:| |particular| $) (|:| -2012 (-583 $))) #1#))) (-15 -1904 ($)) (-15 -1904 ($ (-1089))) (-15 -1904 ($ (-1178 (-1089)))) (-15 -1904 ($ (-1178 $))) (-15 -1904 ($ (-1089) (-1178 $))) (-15 -1904 ($ (-1178 (-1089)) (-1178 $))) (IF (|has| |#1| (-495)) (PROGN (-15 -1903 ((-1084 (-349 (-857 |#1|))))) (-15 -1902 ((-1084 (-349 (-857 |#1|))) $)) (-15 -1901 ((-349 (-857 |#1|)) $)) (-15 -1900 ((-349 (-857 |#1|)) $)) (-15 -1899 ((-1084 (-349 (-857 |#1|))))) (-15 -1898 ((-1084 (-349 (-857 |#1|))) $)) (-15 -1897 ((-349 (-857 |#1|)) $)) (-15 -1896 ((-349 (-857 |#1|)) $)) (-15 -1895 ((-349 (-857 |#1|)) $ $)) (-15 -1894 ((-349 (-857 |#1|)))) (-15 -1893 ((-349 (-857 |#1|)) $ $)) (-15 -1892 ((-349 (-857 |#1|)))) (-15 -1891 ((-583 (-857 |#1|)) (-1178 $))) (-15 -1891 ((-583 (-857 |#1|))))) |%noBranch|))) (-146) (-830) (-583 (-1089)) (-1178 (-630 |#1|))) (T -392)) +((-3945 (*1 *1 *2) (-12 (-5 *2 (-1178 (-349 (-857 *3)))) (-4 *3 (-146)) (-14 *6 (-1178 (-630 *3))) (-5 *1 (-392 *3 *4 *5 *6)) (-14 *4 (-830)) (-14 *5 (-583 (-1089))))) (-1906 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-392 *3 *4 *5 *6)) (|:| -2012 (-583 (-392 *3 *4 *5 *6))))) (-5 *1 (-392 *3 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1089))) (-14 *6 (-1178 (-630 *3))))) (-1905 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-392 *3 *4 *5 *6)) (|:| -2012 (-583 (-392 *3 *4 *5 *6))))) (-5 *1 (-392 *3 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1089))) (-14 *6 (-1178 (-630 *3))))) (-1904 (*1 *1) (-12 (-5 *1 (-392 *2 *3 *4 *5)) (-4 *2 (-146)) (-14 *3 (-830)) (-14 *4 (-583 (-1089))) (-14 *5 (-1178 (-630 *2))))) (-1904 (*1 *1 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-392 *3 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 *2)) (-14 *6 (-1178 (-630 *3))))) (-1904 (*1 *1 *2) (-12 (-5 *2 (-1178 (-1089))) (-5 *1 (-392 *3 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1089))) (-14 *6 (-1178 (-630 *3))))) (-1904 (*1 *1 *2) (-12 (-5 *2 (-1178 (-392 *3 *4 *5 *6))) (-5 *1 (-392 *3 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1089))) (-14 *6 (-1178 (-630 *3))))) (-1904 (*1 *1 *2 *3) (-12 (-5 *2 (-1089)) (-5 *3 (-1178 (-392 *4 *5 *6 *7))) (-5 *1 (-392 *4 *5 *6 *7)) (-4 *4 (-146)) (-14 *5 (-830)) (-14 *6 (-583 *2)) (-14 *7 (-1178 (-630 *4))))) (-1904 (*1 *1 *2 *3) (-12 (-5 *2 (-1178 (-1089))) (-5 *3 (-1178 (-392 *4 *5 *6 *7))) (-5 *1 (-392 *4 *5 *6 *7)) (-4 *4 (-146)) (-14 *5 (-830)) (-14 *6 (-583 (-1089))) (-14 *7 (-1178 (-630 *4))))) (-1903 (*1 *2) (-12 (-5 *2 (-1084 (-349 (-857 *3)))) (-5 *1 (-392 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1089))) (-14 *6 (-1178 (-630 *3))))) (-1902 (*1 *2 *1) (-12 (-5 *2 (-1084 (-349 (-857 *3)))) (-5 *1 (-392 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1089))) (-14 *6 (-1178 (-630 *3))))) (-1901 (*1 *2 *1) (-12 (-5 *2 (-349 (-857 *3))) (-5 *1 (-392 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1089))) (-14 *6 (-1178 (-630 *3))))) (-1900 (*1 *2 *1) (-12 (-5 *2 (-349 (-857 *3))) (-5 *1 (-392 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1089))) (-14 *6 (-1178 (-630 *3))))) (-1899 (*1 *2) (-12 (-5 *2 (-1084 (-349 (-857 *3)))) (-5 *1 (-392 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1089))) (-14 *6 (-1178 (-630 *3))))) (-1898 (*1 *2 *1) (-12 (-5 *2 (-1084 (-349 (-857 *3)))) (-5 *1 (-392 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1089))) (-14 *6 (-1178 (-630 *3))))) (-1897 (*1 *2 *1) (-12 (-5 *2 (-349 (-857 *3))) (-5 *1 (-392 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1089))) (-14 *6 (-1178 (-630 *3))))) (-1896 (*1 *2 *1) (-12 (-5 *2 (-349 (-857 *3))) (-5 *1 (-392 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1089))) (-14 *6 (-1178 (-630 *3))))) (-1895 (*1 *2 *1 *1) (-12 (-5 *2 (-349 (-857 *3))) (-5 *1 (-392 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1089))) (-14 *6 (-1178 (-630 *3))))) (-1894 (*1 *2) (-12 (-5 *2 (-349 (-857 *3))) (-5 *1 (-392 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1089))) (-14 *6 (-1178 (-630 *3))))) (-1893 (*1 *2 *1 *1) (-12 (-5 *2 (-349 (-857 *3))) (-5 *1 (-392 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1089))) (-14 *6 (-1178 (-630 *3))))) (-1892 (*1 *2) (-12 (-5 *2 (-349 (-857 *3))) (-5 *1 (-392 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1089))) (-14 *6 (-1178 (-630 *3))))) (-1891 (*1 *2 *3) (-12 (-5 *3 (-1178 (-392 *4 *5 *6 *7))) (-5 *2 (-583 (-857 *4))) (-5 *1 (-392 *4 *5 *6 *7)) (-4 *4 (-495)) (-4 *4 (-146)) (-14 *5 (-830)) (-14 *6 (-583 (-1089))) (-14 *7 (-1178 (-630 *4))))) (-1891 (*1 *2) (-12 (-5 *2 (-583 (-857 *3))) (-5 *1 (-392 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1089))) (-14 *6 (-1178 (-630 *3)))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) 19 T ELT)) (-3081 (((-583 (-773 |#1|)) $) 88 T ELT)) (-3083 (((-1084 $) $ (-773 |#1|)) 53 T ELT) (((-1084 |#2|) $) 140 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL (|has| |#2| (-495)) ELT)) (-2063 (($ $) NIL (|has| |#2| (-495)) ELT)) (-2061 (((-85) $) NIL (|has| |#2| (-495)) ELT)) (-2819 (((-694) $) 28 T ELT) (((-694) $ (-583 (-773 |#1|))) NIL T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2707 (((-347 (-1084 $)) (-1084 $)) NIL (|has| |#2| (-821)) ELT)) (-3774 (($ $) NIL (|has| |#2| (-391)) ELT)) (-3970 (((-347 $) $) NIL (|has| |#2| (-391)) ELT)) (-2704 (((-3 (-583 (-1084 $)) #1#) (-583 (-1084 $)) (-1084 $)) NIL (|has| |#2| (-821)) ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 |#2| #1#) $) 51 T ELT) (((-3 (-349 (-484)) #1#) $) NIL (|has| |#2| (-950 (-349 (-484)))) ELT) (((-3 (-484) #1#) $) NIL (|has| |#2| (-950 (-484))) ELT) (((-3 (-773 |#1|) #1#) $) NIL T ELT)) (-3156 ((|#2| $) 49 T ELT) (((-349 (-484)) $) NIL (|has| |#2| (-950 (-349 (-484)))) ELT) (((-484) $) NIL (|has| |#2| (-950 (-484))) ELT) (((-773 |#1|) $) NIL T ELT)) (-3755 (($ $ $ (-773 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-1936 (($ $ (-583 (-484))) 95 T ELT)) (-3958 (($ $) 81 T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) NIL (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1178 |#2|))) (-630 $) (-1178 $)) NIL T ELT) (((-630 |#2|) (-630 $)) NIL T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-3502 (($ $) NIL (|has| |#2| (-391)) ELT) (($ $ (-773 |#1|)) NIL (|has| |#2| (-391)) ELT)) (-2818 (((-583 $) $) NIL T ELT)) (-3722 (((-85) $) NIL (|has| |#2| (-821)) ELT)) (-1623 (($ $ |#2| |#3| $) NIL T ELT)) (-2796 (((-798 (-329) $) $ (-800 (-329)) (-798 (-329) $)) NIL (-12 (|has| (-773 |#1|) (-796 (-329))) (|has| |#2| (-796 (-329)))) ELT) (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) NIL (-12 (|has| (-773 |#1|) (-796 (-484))) (|has| |#2| (-796 (-484)))) ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2420 (((-694) $) 66 T ELT)) (-3084 (($ (-1084 |#2|) (-773 |#1|)) 145 T ELT) (($ (-1084 $) (-773 |#1|)) 59 T ELT)) (-2821 (((-583 $) $) NIL T ELT)) (-3936 (((-85) $) 69 T ELT)) (-2893 (($ |#2| |#3|) 36 T ELT) (($ $ (-773 |#1|) (-694)) 38 T ELT) (($ $ (-583 (-773 |#1|)) (-583 (-694))) NIL T ELT)) (-3762 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $ (-773 |#1|)) NIL T ELT)) (-2820 ((|#3| $) NIL T ELT) (((-694) $ (-773 |#1|)) 57 T ELT) (((-583 (-694)) $ (-583 (-773 |#1|))) 64 T ELT)) (-1624 (($ (-1 |#3| |#3|) $) NIL T ELT)) (-3957 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3082 (((-3 (-773 |#1|) #1#) $) 46 T ELT)) (-2280 (((-630 (-484)) (-1178 $)) NIL (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1178 |#2|))) (-1178 $) $) NIL T ELT) (((-630 |#2|) (-1178 $)) NIL T ELT)) (-2894 (($ $) NIL T ELT)) (-3174 ((|#2| $) 48 T ELT)) (-1890 (($ (-583 $)) NIL (|has| |#2| (-391)) ELT) (($ $ $) NIL (|has| |#2| (-391)) ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2823 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2822 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2824 (((-3 (-2 (|:| |var| (-773 |#1|)) (|:| -2401 (-694))) #1#) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1796 (((-85) $) 47 T ELT)) (-1795 ((|#2| $) 138 T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) NIL (|has| |#2| (-391)) ELT)) (-3144 (($ (-583 $)) NIL (|has| |#2| (-391)) ELT) (($ $ $) 151 (|has| |#2| (-391)) ELT)) (-2705 (((-347 (-1084 $)) (-1084 $)) NIL (|has| |#2| (-821)) ELT)) (-2706 (((-347 (-1084 $)) (-1084 $)) NIL (|has| |#2| (-821)) ELT)) (-3731 (((-347 $) $) NIL (|has| |#2| (-821)) ELT)) (-3465 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-495)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-495)) ELT)) (-3767 (($ $ (-583 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ (-773 |#1|) |#2|) 102 T ELT) (($ $ (-583 (-773 |#1|)) (-583 |#2|)) 108 T ELT) (($ $ (-773 |#1|) $) 100 T ELT) (($ $ (-583 (-773 |#1|)) (-583 $)) 126 T ELT)) (-3756 (($ $ (-773 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-3757 (($ $ (-583 (-773 |#1|)) (-583 (-694))) NIL T ELT) (($ $ (-773 |#1|) (-694)) NIL T ELT) (($ $ (-583 (-773 |#1|))) NIL T ELT) (($ $ (-773 |#1|)) 60 T ELT)) (-3947 ((|#3| $) 80 T ELT) (((-694) $ (-773 |#1|)) 43 T ELT) (((-583 (-694)) $ (-583 (-773 |#1|))) 63 T ELT)) (-3971 (((-800 (-329)) $) NIL (-12 (|has| (-773 |#1|) (-553 (-800 (-329)))) (|has| |#2| (-553 (-800 (-329))))) ELT) (((-800 (-484)) $) NIL (-12 (|has| (-773 |#1|) (-553 (-800 (-484)))) (|has| |#2| (-553 (-800 (-484))))) ELT) (((-473) $) NIL (-12 (|has| (-773 |#1|) (-553 (-473))) (|has| |#2| (-553 (-473)))) ELT)) (-2817 ((|#2| $) 147 (|has| |#2| (-391)) ELT) (($ $ (-773 |#1|)) NIL (|has| |#2| (-391)) ELT)) (-2703 (((-3 (-1178 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| |#2| (-821))) ELT)) (-3945 (((-772) $) 175 T ELT) (($ (-484)) NIL T ELT) (($ |#2|) 101 T ELT) (($ (-773 |#1|)) 40 T ELT) (($ (-349 (-484))) NIL (OR (|has| |#2| (-38 (-349 (-484)))) (|has| |#2| (-950 (-349 (-484))))) ELT) (($ $) NIL (|has| |#2| (-495)) ELT)) (-3816 (((-583 |#2|) $) NIL T ELT)) (-3676 ((|#2| $ |#3|) NIL T ELT) (($ $ (-773 |#1|) (-694)) NIL T ELT) (($ $ (-583 (-773 |#1|)) (-583 (-694))) NIL T ELT)) (-2702 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#2| (-821))) (|has| |#2| (-118))) ELT)) (-3126 (((-694)) NIL T CONST)) (-1622 (($ $ $ (-694)) NIL (|has| |#2| (-146)) ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL (|has| |#2| (-495)) ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) 23 T CONST)) (-2666 (($) 32 T CONST)) (-2669 (($ $ (-583 (-773 |#1|)) (-583 (-694))) NIL T ELT) (($ $ (-773 |#1|) (-694)) NIL T ELT) (($ $ (-583 (-773 |#1|))) NIL T ELT) (($ $ (-773 |#1|)) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3948 (($ $ |#2|) 77 (|has| |#2| (-312)) ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) 133 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) 131 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 37 T ELT) (($ $ (-349 (-484))) NIL (|has| |#2| (-38 (-349 (-484)))) ELT) (($ (-349 (-484)) $) NIL (|has| |#2| (-38 (-349 (-484)))) ELT) (($ |#2| $) 76 T ELT) (($ $ |#2|) NIL T ELT))) +(((-393 |#1| |#2| |#3|) (-13 (-861 |#2| |#3| (-773 |#1|)) (-10 -8 (-15 -1936 ($ $ (-583 (-484)))))) (-583 (-1089)) (-961) (-196 (-3956 |#1|) (-694))) (T -393)) +((-1936 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-484))) (-14 *3 (-583 (-1089))) (-5 *1 (-393 *3 *4 *5)) (-4 *4 (-961)) (-4 *5 (-196 (-3956 *3) (-694)))))) +((-1910 (((-85) |#1| (-583 |#2|)) 90 T ELT)) (-1908 (((-3 (-1178 (-583 |#2|)) #1="failed") (-694) |#1| (-583 |#2|)) 99 T ELT)) (-1909 (((-3 (-583 |#2|) #1#) |#2| |#1| (-1178 (-583 |#2|))) 101 T ELT)) (-2037 ((|#2| |#2| |#1|) 35 T ELT)) (-1907 (((-694) |#2| (-583 |#2|)) 26 T ELT))) +(((-394 |#1| |#2|) (-10 -7 (-15 -2037 (|#2| |#2| |#1|)) (-15 -1907 ((-694) |#2| (-583 |#2|))) (-15 -1908 ((-3 (-1178 (-583 |#2|)) #1="failed") (-694) |#1| (-583 |#2|))) (-15 -1909 ((-3 (-583 |#2|) #1#) |#2| |#1| (-1178 (-583 |#2|)))) (-15 -1910 ((-85) |#1| (-583 |#2|)))) (-258) (-1154 |#1|)) (T -394)) +((-1910 (*1 *2 *3 *4) (-12 (-5 *4 (-583 *5)) (-4 *5 (-1154 *3)) (-4 *3 (-258)) (-5 *2 (-85)) (-5 *1 (-394 *3 *5)))) (-1909 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1178 (-583 *3))) (-4 *4 (-258)) (-5 *2 (-583 *3)) (-5 *1 (-394 *4 *3)) (-4 *3 (-1154 *4)))) (-1908 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-694)) (-4 *4 (-258)) (-4 *6 (-1154 *4)) (-5 *2 (-1178 (-583 *6))) (-5 *1 (-394 *4 *6)) (-5 *5 (-583 *6)))) (-1907 (*1 *2 *3 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-1154 *5)) (-4 *5 (-258)) (-5 *2 (-694)) (-5 *1 (-394 *5 *3)))) (-2037 (*1 *2 *2 *3) (-12 (-4 *3 (-258)) (-5 *1 (-394 *3 *2)) (-4 *2 (-1154 *3))))) +((-3731 (((-347 |#5|) |#5|) 24 T ELT))) +(((-395 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3731 ((-347 |#5|) |#5|))) (-13 (-756) (-10 -8 (-15 -3971 ((-1089) $)) (-15 -3830 ((-3 $ "failed") (-1089))))) (-717) (-495) (-495) (-861 |#4| |#2| |#1|)) (T -395)) +((-3731 (*1 *2 *3) (-12 (-4 *4 (-13 (-756) (-10 -8 (-15 -3971 ((-1089) $)) (-15 -3830 ((-3 $ "failed") (-1089)))))) (-4 *5 (-717)) (-4 *7 (-495)) (-5 *2 (-347 *3)) (-5 *1 (-395 *4 *5 *6 *7 *3)) (-4 *6 (-495)) (-4 *3 (-861 *7 *5 *4))))) +((-2700 ((|#3|) 43 T ELT)) (-2708 (((-1084 |#4|) (-1084 |#4|) (-1084 |#4|)) 34 T ELT))) +(((-396 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2708 ((-1084 |#4|) (-1084 |#4|) (-1084 |#4|))) (-15 -2700 (|#3|))) (-717) (-756) (-821) (-861 |#3| |#1| |#2|)) (T -396)) +((-2700 (*1 *2) (-12 (-4 *3 (-717)) (-4 *4 (-756)) (-4 *2 (-821)) (-5 *1 (-396 *3 *4 *2 *5)) (-4 *5 (-861 *2 *3 *4)))) (-2708 (*1 *2 *2 *2) (-12 (-5 *2 (-1084 *6)) (-4 *6 (-861 *5 *3 *4)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *5 (-821)) (-5 *1 (-396 *3 *4 *5 *6))))) +((-3731 (((-347 (-1084 |#1|)) (-1084 |#1|)) 43 T ELT))) +(((-397 |#1|) (-10 -7 (-15 -3731 ((-347 (-1084 |#1|)) (-1084 |#1|)))) (-258)) (T -397)) +((-3731 (*1 *2 *3) (-12 (-4 *4 (-258)) (-5 *2 (-347 (-1084 *4))) (-5 *1 (-397 *4)) (-5 *3 (-1084 *4))))) +((-3728 (((-51) |#2| (-1089) (-249 |#2|) (-1145 (-694))) 44 T ELT) (((-51) (-1 |#2| (-484)) (-249 |#2|) (-1145 (-694))) 43 T ELT) (((-51) |#2| (-1089) (-249 |#2|)) 36 T ELT) (((-51) (-1 |#2| (-484)) (-249 |#2|)) 29 T ELT)) (-3817 (((-51) |#2| (-1089) (-249 |#2|) (-1145 (-349 (-484))) (-349 (-484))) 88 T ELT) (((-51) (-1 |#2| (-349 (-484))) (-249 |#2|) (-1145 (-349 (-484))) (-349 (-484))) 87 T ELT) (((-51) |#2| (-1089) (-249 |#2|) (-1145 (-484))) 86 T ELT) (((-51) (-1 |#2| (-484)) (-249 |#2|) (-1145 (-484))) 85 T ELT) (((-51) |#2| (-1089) (-249 |#2|)) 80 T ELT) (((-51) (-1 |#2| (-484)) (-249 |#2|)) 79 T ELT)) (-3781 (((-51) |#2| (-1089) (-249 |#2|) (-1145 (-349 (-484))) (-349 (-484))) 74 T ELT) (((-51) (-1 |#2| (-349 (-484))) (-249 |#2|) (-1145 (-349 (-484))) (-349 (-484))) 72 T ELT)) (-3778 (((-51) |#2| (-1089) (-249 |#2|) (-1145 (-484))) 51 T ELT) (((-51) (-1 |#2| (-484)) (-249 |#2|) (-1145 (-484))) 50 T ELT))) +(((-398 |#1| |#2|) (-10 -7 (-15 -3728 ((-51) (-1 |#2| (-484)) (-249 |#2|))) (-15 -3728 ((-51) |#2| (-1089) (-249 |#2|))) (-15 -3728 ((-51) (-1 |#2| (-484)) (-249 |#2|) (-1145 (-694)))) (-15 -3728 ((-51) |#2| (-1089) (-249 |#2|) (-1145 (-694)))) (-15 -3778 ((-51) (-1 |#2| (-484)) (-249 |#2|) (-1145 (-484)))) (-15 -3778 ((-51) |#2| (-1089) (-249 |#2|) (-1145 (-484)))) (-15 -3781 ((-51) (-1 |#2| (-349 (-484))) (-249 |#2|) (-1145 (-349 (-484))) (-349 (-484)))) (-15 -3781 ((-51) |#2| (-1089) (-249 |#2|) (-1145 (-349 (-484))) (-349 (-484)))) (-15 -3817 ((-51) (-1 |#2| (-484)) (-249 |#2|))) (-15 -3817 ((-51) |#2| (-1089) (-249 |#2|))) (-15 -3817 ((-51) (-1 |#2| (-484)) (-249 |#2|) (-1145 (-484)))) (-15 -3817 ((-51) |#2| (-1089) (-249 |#2|) (-1145 (-484)))) (-15 -3817 ((-51) (-1 |#2| (-349 (-484))) (-249 |#2|) (-1145 (-349 (-484))) (-349 (-484)))) (-15 -3817 ((-51) |#2| (-1089) (-249 |#2|) (-1145 (-349 (-484))) (-349 (-484))))) (-13 (-495) (-950 (-484)) (-580 (-484))) (-13 (-27) (-1114) (-363 |#1|))) (T -398)) +((-3817 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1089)) (-5 *5 (-249 *3)) (-5 *6 (-1145 (-349 (-484)))) (-5 *7 (-349 (-484))) (-4 *3 (-13 (-27) (-1114) (-363 *8))) (-4 *8 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-398 *8 *3)))) (-3817 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-349 (-484)))) (-5 *4 (-249 *8)) (-5 *5 (-1145 (-349 (-484)))) (-5 *6 (-349 (-484))) (-4 *8 (-13 (-27) (-1114) (-363 *7))) (-4 *7 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-398 *7 *8)))) (-3817 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1089)) (-5 *5 (-249 *3)) (-5 *6 (-1145 (-484))) (-4 *3 (-13 (-27) (-1114) (-363 *7))) (-4 *7 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-398 *7 *3)))) (-3817 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-484))) (-5 *4 (-249 *7)) (-5 *5 (-1145 (-484))) (-4 *7 (-13 (-27) (-1114) (-363 *6))) (-4 *6 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-398 *6 *7)))) (-3817 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1089)) (-5 *5 (-249 *3)) (-4 *3 (-13 (-27) (-1114) (-363 *6))) (-4 *6 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-398 *6 *3)))) (-3817 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-484))) (-5 *4 (-249 *6)) (-4 *6 (-13 (-27) (-1114) (-363 *5))) (-4 *5 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-398 *5 *6)))) (-3781 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1089)) (-5 *5 (-249 *3)) (-5 *6 (-1145 (-349 (-484)))) (-5 *7 (-349 (-484))) (-4 *3 (-13 (-27) (-1114) (-363 *8))) (-4 *8 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-398 *8 *3)))) (-3781 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-349 (-484)))) (-5 *4 (-249 *8)) (-5 *5 (-1145 (-349 (-484)))) (-5 *6 (-349 (-484))) (-4 *8 (-13 (-27) (-1114) (-363 *7))) (-4 *7 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-398 *7 *8)))) (-3778 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1089)) (-5 *5 (-249 *3)) (-5 *6 (-1145 (-484))) (-4 *3 (-13 (-27) (-1114) (-363 *7))) (-4 *7 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-398 *7 *3)))) (-3778 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-484))) (-5 *4 (-249 *7)) (-5 *5 (-1145 (-484))) (-4 *7 (-13 (-27) (-1114) (-363 *6))) (-4 *6 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-398 *6 *7)))) (-3728 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1089)) (-5 *5 (-249 *3)) (-5 *6 (-1145 (-694))) (-4 *3 (-13 (-27) (-1114) (-363 *7))) (-4 *7 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-398 *7 *3)))) (-3728 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-484))) (-5 *4 (-249 *7)) (-5 *5 (-1145 (-694))) (-4 *7 (-13 (-27) (-1114) (-363 *6))) (-4 *6 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-398 *6 *7)))) (-3728 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1089)) (-5 *5 (-249 *3)) (-4 *3 (-13 (-27) (-1114) (-363 *6))) (-4 *6 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-398 *6 *3)))) (-3728 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-484))) (-5 *4 (-249 *6)) (-4 *6 (-13 (-27) (-1114) (-363 *5))) (-4 *5 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-398 *5 *6))))) +((-2037 ((|#2| |#2| |#1|) 15 T ELT)) (-1912 (((-583 |#2|) |#2| (-583 |#2|) |#1| (-830)) 82 T ELT)) (-1911 (((-2 (|:| |plist| (-583 |#2|)) (|:| |modulo| |#1|)) |#2| (-583 |#2|) |#1| (-830)) 71 T ELT))) +(((-399 |#1| |#2|) (-10 -7 (-15 -1911 ((-2 (|:| |plist| (-583 |#2|)) (|:| |modulo| |#1|)) |#2| (-583 |#2|) |#1| (-830))) (-15 -1912 ((-583 |#2|) |#2| (-583 |#2|) |#1| (-830))) (-15 -2037 (|#2| |#2| |#1|))) (-258) (-1154 |#1|)) (T -399)) +((-2037 (*1 *2 *2 *3) (-12 (-4 *3 (-258)) (-5 *1 (-399 *3 *2)) (-4 *2 (-1154 *3)))) (-1912 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-583 *3)) (-5 *5 (-830)) (-4 *3 (-1154 *4)) (-4 *4 (-258)) (-5 *1 (-399 *4 *3)))) (-1911 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-830)) (-4 *5 (-258)) (-4 *3 (-1154 *5)) (-5 *2 (-2 (|:| |plist| (-583 *3)) (|:| |modulo| *5))) (-5 *1 (-399 *5 *3)) (-5 *4 (-583 *3))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) 28 T ELT)) (-3706 (($ |#3|) 25 T ELT)) (-1311 (((-3 $ "failed") $ $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-3958 (($ $) 32 T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-1913 (($ |#2| |#4| $) 33 T ELT)) (-2893 (($ |#2| (-650 |#3| |#4| |#5|)) 24 T ELT)) (-2894 (((-650 |#3| |#4| |#5|) $) 15 T ELT)) (-1915 ((|#3| $) 19 T ELT)) (-1916 ((|#4| $) 17 T ELT)) (-3174 ((|#2| $) 29 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) NIL T ELT)) (-1914 (($ |#2| |#3| |#4|) 26 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2660 (($) 36 T CONST)) (-3056 (((-85) $ $) NIL T ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) 34 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ |#6| $) 40 T ELT) (($ $ |#6|) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT))) +(((-400 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-654 |#6|) (-654 |#2|) (-10 -8 (-15 -3174 (|#2| $)) (-15 -2894 ((-650 |#3| |#4| |#5|) $)) (-15 -1916 (|#4| $)) (-15 -1915 (|#3| $)) (-15 -3958 ($ $)) (-15 -2893 ($ |#2| (-650 |#3| |#4| |#5|))) (-15 -3706 ($ |#3|)) (-15 -1914 ($ |#2| |#3| |#4|)) (-15 -1913 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-583 (-1089)) (-146) (-756) (-196 (-3956 |#1|) (-694)) (-1 (-85) (-2 (|:| -2400 |#3|) (|:| -2401 |#4|)) (-2 (|:| -2400 |#3|) (|:| -2401 |#4|))) (-861 |#2| |#4| (-773 |#1|))) (T -400)) +((* (*1 *1 *2 *1) (-12 (-14 *3 (-583 (-1089))) (-4 *4 (-146)) (-4 *6 (-196 (-3956 *3) (-694))) (-14 *7 (-1 (-85) (-2 (|:| -2400 *5) (|:| -2401 *6)) (-2 (|:| -2400 *5) (|:| -2401 *6)))) (-5 *1 (-400 *3 *4 *5 *6 *7 *2)) (-4 *5 (-756)) (-4 *2 (-861 *4 *6 (-773 *3))))) (-3174 (*1 *2 *1) (-12 (-14 *3 (-583 (-1089))) (-4 *5 (-196 (-3956 *3) (-694))) (-14 *6 (-1 (-85) (-2 (|:| -2400 *4) (|:| -2401 *5)) (-2 (|:| -2400 *4) (|:| -2401 *5)))) (-4 *2 (-146)) (-5 *1 (-400 *3 *2 *4 *5 *6 *7)) (-4 *4 (-756)) (-4 *7 (-861 *2 *5 (-773 *3))))) (-2894 (*1 *2 *1) (-12 (-14 *3 (-583 (-1089))) (-4 *4 (-146)) (-4 *6 (-196 (-3956 *3) (-694))) (-14 *7 (-1 (-85) (-2 (|:| -2400 *5) (|:| -2401 *6)) (-2 (|:| -2400 *5) (|:| -2401 *6)))) (-5 *2 (-650 *5 *6 *7)) (-5 *1 (-400 *3 *4 *5 *6 *7 *8)) (-4 *5 (-756)) (-4 *8 (-861 *4 *6 (-773 *3))))) (-1916 (*1 *2 *1) (-12 (-14 *3 (-583 (-1089))) (-4 *4 (-146)) (-14 *6 (-1 (-85) (-2 (|:| -2400 *5) (|:| -2401 *2)) (-2 (|:| -2400 *5) (|:| -2401 *2)))) (-4 *2 (-196 (-3956 *3) (-694))) (-5 *1 (-400 *3 *4 *5 *2 *6 *7)) (-4 *5 (-756)) (-4 *7 (-861 *4 *2 (-773 *3))))) (-1915 (*1 *2 *1) (-12 (-14 *3 (-583 (-1089))) (-4 *4 (-146)) (-4 *5 (-196 (-3956 *3) (-694))) (-14 *6 (-1 (-85) (-2 (|:| -2400 *2) (|:| -2401 *5)) (-2 (|:| -2400 *2) (|:| -2401 *5)))) (-4 *2 (-756)) (-5 *1 (-400 *3 *4 *2 *5 *6 *7)) (-4 *7 (-861 *4 *5 (-773 *3))))) (-3958 (*1 *1 *1) (-12 (-14 *2 (-583 (-1089))) (-4 *3 (-146)) (-4 *5 (-196 (-3956 *2) (-694))) (-14 *6 (-1 (-85) (-2 (|:| -2400 *4) (|:| -2401 *5)) (-2 (|:| -2400 *4) (|:| -2401 *5)))) (-5 *1 (-400 *2 *3 *4 *5 *6 *7)) (-4 *4 (-756)) (-4 *7 (-861 *3 *5 (-773 *2))))) (-2893 (*1 *1 *2 *3) (-12 (-5 *3 (-650 *5 *6 *7)) (-4 *5 (-756)) (-4 *6 (-196 (-3956 *4) (-694))) (-14 *7 (-1 (-85) (-2 (|:| -2400 *5) (|:| -2401 *6)) (-2 (|:| -2400 *5) (|:| -2401 *6)))) (-14 *4 (-583 (-1089))) (-4 *2 (-146)) (-5 *1 (-400 *4 *2 *5 *6 *7 *8)) (-4 *8 (-861 *2 *6 (-773 *4))))) (-3706 (*1 *1 *2) (-12 (-14 *3 (-583 (-1089))) (-4 *4 (-146)) (-4 *5 (-196 (-3956 *3) (-694))) (-14 *6 (-1 (-85) (-2 (|:| -2400 *2) (|:| -2401 *5)) (-2 (|:| -2400 *2) (|:| -2401 *5)))) (-5 *1 (-400 *3 *4 *2 *5 *6 *7)) (-4 *2 (-756)) (-4 *7 (-861 *4 *5 (-773 *3))))) (-1914 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-583 (-1089))) (-4 *2 (-146)) (-4 *4 (-196 (-3956 *5) (-694))) (-14 *6 (-1 (-85) (-2 (|:| -2400 *3) (|:| -2401 *4)) (-2 (|:| -2400 *3) (|:| -2401 *4)))) (-5 *1 (-400 *5 *2 *3 *4 *6 *7)) (-4 *3 (-756)) (-4 *7 (-861 *2 *4 (-773 *5))))) (-1913 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-583 (-1089))) (-4 *2 (-146)) (-4 *3 (-196 (-3956 *4) (-694))) (-14 *6 (-1 (-85) (-2 (|:| -2400 *5) (|:| -2401 *3)) (-2 (|:| -2400 *5) (|:| -2401 *3)))) (-5 *1 (-400 *4 *2 *5 *3 *6 *7)) (-4 *5 (-756)) (-4 *7 (-861 *2 *3 (-773 *4)))))) +((-1917 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 39 T ELT))) +(((-401 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1917 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-717) (-756) (-495) (-861 |#3| |#1| |#2|) (-13 (-950 (-349 (-484))) (-312) (-10 -8 (-15 -3945 ($ |#4|)) (-15 -2998 (|#4| $)) (-15 -2997 (|#4| $))))) (T -401)) +((-1917 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-756)) (-4 *5 (-717)) (-4 *6 (-495)) (-4 *7 (-861 *6 *5 *3)) (-5 *1 (-401 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-950 (-349 (-484))) (-312) (-10 -8 (-15 -3945 ($ *7)) (-15 -2998 (*7 $)) (-15 -2997 (*7 $)))))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3081 (((-583 |#3|) $) 41 T ELT)) (-2908 (((-85) $) NIL T ELT)) (-2899 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-2909 (((-2 (|:| |under| $) (|:| -3130 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3709 (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3723 (($) NIL T CONST)) (-2904 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-2906 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-2905 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-2907 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-2900 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-495)) ELT)) (-2901 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-495)) ELT)) (-3157 (((-3 $ #1="failed") (-583 |#4|)) 49 T ELT)) (-3156 (($ (-583 |#4|)) NIL T ELT)) (-1352 (($ $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#4| (-1013))) ELT)) (-3405 (($ |#4| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#4| (-1013))) ELT) (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3994)) ELT)) (-2902 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-495)) ELT)) (-3841 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -3994)) (|has| |#4| (-1013))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -3994)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -3994)) ELT)) (-2889 (((-583 |#4|) $) 18 (|has| $ (-6 -3994)) ELT)) (-3180 ((|#3| $) 47 T ELT)) (-2608 (((-583 |#4|) $) 14 (|has| $ (-6 -3994)) ELT)) (-3245 (((-85) |#4| $) 26 (-12 (|has| $ (-6 -3994)) (|has| |#4| (-1013))) ELT)) (-1948 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#4| |#4|) $) 21 T ELT)) (-2914 (((-583 |#3|) $) NIL T ELT)) (-2913 (((-85) |#3| $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2903 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-495)) ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1353 (((-3 |#4| #1#) (-1 (-85) |#4|) $) NIL T ELT)) (-1946 (((-85) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3767 (($ $ (-583 |#4|) (-583 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-249 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-583 (-249 |#4|))) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT)) (-1221 (((-85) $ $) NIL T ELT)) (-3402 (((-85) $) 39 T ELT)) (-3564 (($) 17 T ELT)) (-1945 (((-694) |#4| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#4| (-1013))) ELT) (((-694) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3399 (($ $) 16 T ELT)) (-3971 (((-473) $) NIL (|has| |#4| (-553 (-473))) ELT) (($ (-583 |#4|)) 51 T ELT)) (-3529 (($ (-583 |#4|)) 13 T ELT)) (-2910 (($ $ |#3|) NIL T ELT)) (-2912 (($ $ |#3|) NIL T ELT)) (-2911 (($ $ |#3|) NIL T ELT)) (-3945 (((-772) $) 38 T ELT) (((-583 |#4|) $) 50 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-1947 (((-85) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3056 (((-85) $ $) 30 T ELT)) (-3956 (((-694) $) NIL (|has| $ (-6 -3994)) ELT))) +(((-402 |#1| |#2| |#3| |#4|) (-13 (-889 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3971 ($ (-583 |#4|))) (-6 -3994) (-6 -3995))) (-961) (-717) (-756) (-977 |#1| |#2| |#3|)) (T -402)) +((-3971 (*1 *1 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-402 *3 *4 *5 *6))))) +((-2660 (($) 11 T CONST)) (-2666 (($) 13 T CONST)) (* (($ |#2| $) 15 T ELT) (($ $ |#2|) 16 T ELT))) +(((-403 |#1| |#2| |#3|) (-10 -7 (-15 -2666 (|#1|) -3951) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2660 (|#1|) -3951)) (-404 |#2| |#3|) (-146) (-23)) (T -403)) +NIL +((-2568 (((-85) $ $) 7 T ELT)) (-3157 (((-3 |#1| "failed") $) 30 T ELT)) (-3156 ((|#1| $) 31 T ELT)) (-3943 (($ $ $) 27 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3947 ((|#2| $) 23 T ELT)) (-3945 (((-772) $) 13 T ELT) (($ |#1|) 29 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-2660 (($) 22 T CONST)) (-2666 (($) 28 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3836 (($ $) 19 T ELT) (($ $ $) 17 T ELT)) (-3838 (($ $ $) 18 T ELT)) (* (($ |#1| $) 21 T ELT) (($ $ |#1|) 20 T ELT))) +(((-404 |#1| |#2|) (-113) (-146) (-23)) (T -404)) +((-2666 (*1 *1) (-12 (-4 *1 (-404 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) (-3943 (*1 *1 *1 *1) (-12 (-4 *1 (-404 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23))))) +(-13 (-409 |t#1| |t#2|) (-950 |t#1|) (-10 -8 (-15 -2666 ($) -3951) (-15 -3943 ($ $ $)))) +(((-72) . T) ((-555 |#1|) . T) ((-552 (-772)) . T) ((-409 |#1| |#2|) . T) ((-13) . T) ((-950 |#1|) . T) ((-1013) . T) ((-1128) . T)) +((-1918 (((-1178 (-1178 (-484))) (-1178 (-1178 (-484))) (-830)) 26 T ELT)) (-1919 (((-1178 (-1178 (-484))) (-830)) 21 T ELT))) +(((-405) (-10 -7 (-15 -1918 ((-1178 (-1178 (-484))) (-1178 (-1178 (-484))) (-830))) (-15 -1919 ((-1178 (-1178 (-484))) (-830))))) (T -405)) +((-1919 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1178 (-1178 (-484)))) (-5 *1 (-405)))) (-1918 (*1 *2 *2 *3) (-12 (-5 *2 (-1178 (-1178 (-484)))) (-5 *3 (-830)) (-5 *1 (-405))))) +((-2770 (((-484) (-484)) 32 T ELT) (((-484)) 24 T ELT)) (-2774 (((-484) (-484)) 28 T ELT) (((-484)) 20 T ELT)) (-2772 (((-484) (-484)) 30 T ELT) (((-484)) 22 T ELT)) (-1921 (((-85) (-85)) 14 T ELT) (((-85)) 12 T ELT)) (-1920 (((-85) (-85)) 13 T ELT) (((-85)) 11 T ELT)) (-1922 (((-85) (-85)) 26 T ELT) (((-85)) 17 T ELT))) +(((-406) (-10 -7 (-15 -1920 ((-85))) (-15 -1921 ((-85))) (-15 -1920 ((-85) (-85))) (-15 -1921 ((-85) (-85))) (-15 -1922 ((-85))) (-15 -2772 ((-484))) (-15 -2774 ((-484))) (-15 -2770 ((-484))) (-15 -1922 ((-85) (-85))) (-15 -2772 ((-484) (-484))) (-15 -2774 ((-484) (-484))) (-15 -2770 ((-484) (-484))))) (T -406)) +((-2770 (*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-406)))) (-2774 (*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-406)))) (-2772 (*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-406)))) (-1922 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-406)))) (-2770 (*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-406)))) (-2774 (*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-406)))) (-2772 (*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-406)))) (-1922 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-406)))) (-1921 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-406)))) (-1920 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-406)))) (-1921 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-406)))) (-1920 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-406))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3850 (((-583 (-329)) $) 34 T ELT) (((-583 (-329)) $ (-583 (-329))) 145 T ELT)) (-1927 (((-583 (-1001 (-329))) $) 16 T ELT) (((-583 (-1001 (-329))) $ (-583 (-1001 (-329)))) 142 T ELT)) (-1924 (((-583 (-583 (-854 (-179)))) (-583 (-583 (-854 (-179)))) (-583 (-783))) 58 T ELT)) (-1928 (((-583 (-583 (-854 (-179)))) $) 137 T ELT)) (-3705 (((-1184) $ (-854 (-179)) (-783)) 162 T ELT)) (-1929 (($ $) 136 T ELT) (($ (-583 (-583 (-854 (-179))))) 148 T ELT) (($ (-583 (-583 (-854 (-179)))) (-583 (-783)) (-583 (-783)) (-583 (-830))) 147 T ELT) (($ (-583 (-583 (-854 (-179)))) (-583 (-783)) (-583 (-783)) (-583 (-830)) (-583 (-221))) 149 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3859 (((-484) $) 110 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1930 (($) 146 T ELT)) (-1923 (((-583 (-179)) (-583 (-583 (-854 (-179))))) 89 T ELT)) (-1926 (((-1184) $ (-583 (-854 (-179))) (-783) (-783) (-830)) 154 T ELT) (((-1184) $ (-854 (-179))) 156 T ELT) (((-1184) $ (-854 (-179)) (-783) (-783) (-830)) 155 T ELT)) (-3945 (((-772) $) 168 T ELT) (($ (-583 (-583 (-854 (-179))))) 163 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-1925 (((-1184) $ (-854 (-179))) 161 T ELT)) (-3056 (((-85) $ $) NIL T ELT))) +(((-407) (-13 (-1013) (-10 -8 (-15 -1930 ($)) (-15 -1929 ($ $)) (-15 -1929 ($ (-583 (-583 (-854 (-179)))))) (-15 -1929 ($ (-583 (-583 (-854 (-179)))) (-583 (-783)) (-583 (-783)) (-583 (-830)))) (-15 -1929 ($ (-583 (-583 (-854 (-179)))) (-583 (-783)) (-583 (-783)) (-583 (-830)) (-583 (-221)))) (-15 -1928 ((-583 (-583 (-854 (-179)))) $)) (-15 -3859 ((-484) $)) (-15 -1927 ((-583 (-1001 (-329))) $)) (-15 -1927 ((-583 (-1001 (-329))) $ (-583 (-1001 (-329))))) (-15 -3850 ((-583 (-329)) $)) (-15 -3850 ((-583 (-329)) $ (-583 (-329)))) (-15 -1926 ((-1184) $ (-583 (-854 (-179))) (-783) (-783) (-830))) (-15 -1926 ((-1184) $ (-854 (-179)))) (-15 -1926 ((-1184) $ (-854 (-179)) (-783) (-783) (-830))) (-15 -1925 ((-1184) $ (-854 (-179)))) (-15 -3705 ((-1184) $ (-854 (-179)) (-783))) (-15 -3945 ($ (-583 (-583 (-854 (-179)))))) (-15 -3945 ((-772) $)) (-15 -1924 ((-583 (-583 (-854 (-179)))) (-583 (-583 (-854 (-179)))) (-583 (-783)))) (-15 -1923 ((-583 (-179)) (-583 (-583 (-854 (-179))))))))) (T -407)) +((-3945 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-407)))) (-1930 (*1 *1) (-5 *1 (-407))) (-1929 (*1 *1 *1) (-5 *1 (-407))) (-1929 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 (-854 (-179))))) (-5 *1 (-407)))) (-1929 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-583 (-583 (-854 (-179))))) (-5 *3 (-583 (-783))) (-5 *4 (-583 (-830))) (-5 *1 (-407)))) (-1929 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-583 (-583 (-854 (-179))))) (-5 *3 (-583 (-783))) (-5 *4 (-583 (-830))) (-5 *5 (-583 (-221))) (-5 *1 (-407)))) (-1928 (*1 *2 *1) (-12 (-5 *2 (-583 (-583 (-854 (-179))))) (-5 *1 (-407)))) (-3859 (*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-407)))) (-1927 (*1 *2 *1) (-12 (-5 *2 (-583 (-1001 (-329)))) (-5 *1 (-407)))) (-1927 (*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1001 (-329)))) (-5 *1 (-407)))) (-3850 (*1 *2 *1) (-12 (-5 *2 (-583 (-329))) (-5 *1 (-407)))) (-3850 (*1 *2 *1 *2) (-12 (-5 *2 (-583 (-329))) (-5 *1 (-407)))) (-1926 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-583 (-854 (-179)))) (-5 *4 (-783)) (-5 *5 (-830)) (-5 *2 (-1184)) (-5 *1 (-407)))) (-1926 (*1 *2 *1 *3) (-12 (-5 *3 (-854 (-179))) (-5 *2 (-1184)) (-5 *1 (-407)))) (-1926 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-854 (-179))) (-5 *4 (-783)) (-5 *5 (-830)) (-5 *2 (-1184)) (-5 *1 (-407)))) (-1925 (*1 *2 *1 *3) (-12 (-5 *3 (-854 (-179))) (-5 *2 (-1184)) (-5 *1 (-407)))) (-3705 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-854 (-179))) (-5 *4 (-783)) (-5 *2 (-1184)) (-5 *1 (-407)))) (-3945 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 (-854 (-179))))) (-5 *1 (-407)))) (-1924 (*1 *2 *2 *3) (-12 (-5 *2 (-583 (-583 (-854 (-179))))) (-5 *3 (-583 (-783))) (-5 *1 (-407)))) (-1923 (*1 *2 *3) (-12 (-5 *3 (-583 (-583 (-854 (-179))))) (-5 *2 (-583 (-179))) (-5 *1 (-407))))) +((-3836 (($ $) NIL T ELT) (($ $ $) 11 T ELT))) +(((-408 |#1| |#2| |#3|) (-10 -7 (-15 -3836 (|#1| |#1| |#1|)) (-15 -3836 (|#1| |#1|))) (-409 |#2| |#3|) (-146) (-23)) (T -408)) +NIL +((-2568 (((-85) $ $) 7 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3947 ((|#2| $) 23 T ELT)) (-3945 (((-772) $) 13 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-2660 (($) 22 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3836 (($ $) 19 T ELT) (($ $ $) 17 T ELT)) (-3838 (($ $ $) 18 T ELT)) (* (($ |#1| $) 21 T ELT) (($ $ |#1|) 20 T ELT))) +(((-409 |#1| |#2|) (-113) (-146) (-23)) (T -409)) +((-3947 (*1 *2 *1) (-12 (-4 *1 (-409 *3 *2)) (-4 *3 (-146)) (-4 *2 (-23)))) (-2660 (*1 *1) (-12 (-4 *1 (-409 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-409 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-409 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) (-3836 (*1 *1 *1) (-12 (-4 *1 (-409 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) (-3838 (*1 *1 *1 *1) (-12 (-4 *1 (-409 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) (-3836 (*1 *1 *1 *1) (-12 (-4 *1 (-409 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23))))) +(-13 (-1013) (-10 -8 (-15 -3947 (|t#2| $)) (-15 -2660 ($) -3951) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -3836 ($ $)) (-15 -3838 ($ $ $)) (-15 -3836 ($ $ $)))) +(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-1013) . T) ((-1128) . T)) +((-1932 (((-3 (-583 (-420 |#1| |#2|)) "failed") (-583 (-420 |#1| |#2|)) (-583 (-773 |#1|))) 135 T ELT)) (-1931 (((-583 (-583 (-206 |#1| |#2|))) (-583 (-206 |#1| |#2|)) (-583 (-773 |#1|))) 132 T ELT)) (-1933 (((-2 (|:| |dpolys| (-583 (-206 |#1| |#2|))) (|:| |coords| (-583 (-484)))) (-583 (-206 |#1| |#2|)) (-583 (-773 |#1|))) 87 T ELT))) +(((-410 |#1| |#2| |#3|) (-10 -7 (-15 -1931 ((-583 (-583 (-206 |#1| |#2|))) (-583 (-206 |#1| |#2|)) (-583 (-773 |#1|)))) (-15 -1932 ((-3 (-583 (-420 |#1| |#2|)) "failed") (-583 (-420 |#1| |#2|)) (-583 (-773 |#1|)))) (-15 -1933 ((-2 (|:| |dpolys| (-583 (-206 |#1| |#2|))) (|:| |coords| (-583 (-484)))) (-583 (-206 |#1| |#2|)) (-583 (-773 |#1|))))) (-583 (-1089)) (-391) (-391)) (T -410)) +((-1933 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-773 *5))) (-14 *5 (-583 (-1089))) (-4 *6 (-391)) (-5 *2 (-2 (|:| |dpolys| (-583 (-206 *5 *6))) (|:| |coords| (-583 (-484))))) (-5 *1 (-410 *5 *6 *7)) (-5 *3 (-583 (-206 *5 *6))) (-4 *7 (-391)))) (-1932 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-420 *4 *5))) (-5 *3 (-583 (-773 *4))) (-14 *4 (-583 (-1089))) (-4 *5 (-391)) (-5 *1 (-410 *4 *5 *6)) (-4 *6 (-391)))) (-1931 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-773 *5))) (-14 *5 (-583 (-1089))) (-4 *6 (-391)) (-5 *2 (-583 (-583 (-206 *5 *6)))) (-5 *1 (-410 *5 *6 *7)) (-5 *3 (-583 (-206 *5 *6))) (-4 *7 (-391))))) +((-3466 (((-3 $ "failed") $) 11 T ELT)) (-3009 (($ $ $) 22 T ELT)) (-2435 (($ $ $) 23 T ELT)) (-3948 (($ $ $) 9 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) 21 T ELT))) +(((-411 |#1|) (-10 -7 (-15 -2435 (|#1| |#1| |#1|)) (-15 -3009 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-484))) (-15 -3948 (|#1| |#1| |#1|)) (-15 -3466 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-694))) (-15 ** (|#1| |#1| (-830)))) (-412)) (T -411)) +NIL +((-2568 (((-85) $ $) 7 T ELT)) (-3723 (($) 23 T CONST)) (-3466 (((-3 $ "failed") $) 20 T ELT)) (-2410 (((-85) $) 22 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-2484 (($ $) 30 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3009 (($ $ $) 27 T ELT)) (-2435 (($ $ $) 26 T ELT)) (-3945 (((-772) $) 13 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-2666 (($) 24 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3948 (($ $ $) 29 T ELT)) (** (($ $ (-830)) 17 T ELT) (($ $ (-694)) 21 T ELT) (($ $ (-484)) 28 T ELT)) (* (($ $ $) 18 T ELT))) +(((-412) (-113)) (T -412)) +((-2484 (*1 *1 *1) (-4 *1 (-412))) (-3948 (*1 *1 *1 *1) (-4 *1 (-412))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-412)) (-5 *2 (-484)))) (-3009 (*1 *1 *1 *1) (-4 *1 (-412))) (-2435 (*1 *1 *1 *1) (-4 *1 (-412)))) +(-13 (-663) (-10 -8 (-15 -2484 ($ $)) (-15 -3948 ($ $ $)) (-15 ** ($ $ (-484))) (-6 -3991) (-15 -3009 ($ $ $)) (-15 -2435 ($ $ $)))) +(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-663) . T) ((-1025) . T) ((-1013) . T) ((-1128) . T)) +((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-3081 (((-583 (-994)) $) NIL T ELT)) (-3830 (((-1089) $) 18 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2063 (($ $) NIL (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-3770 (($ $ (-349 (-484))) NIL T ELT) (($ $ (-349 (-484)) (-349 (-484))) NIL T ELT)) (-3773 (((-1068 (-2 (|:| |k| (-349 (-484))) (|:| |c| |#1|))) $) NIL T ELT)) (-3491 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3638 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3774 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3970 (((-347 $) $) NIL (|has| |#1| (-312)) ELT)) (-3037 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-1607 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3489 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3637 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3817 (($ (-694) (-1068 (-2 (|:| |k| (-349 (-484))) (|:| |c| |#1|)))) NIL T ELT)) (-3493 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3636 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3723 (($) NIL T CONST)) (-2564 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3958 (($ $) NIL T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-2563 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) NIL (|has| |#1| (-312)) ELT)) (-3722 (((-85) $) NIL (|has| |#1| (-312)) ELT)) (-2892 (((-85) $) NIL T ELT)) (-3626 (($) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3771 (((-349 (-484)) $) NIL T ELT) (((-349 (-484)) $ (-349 (-484))) NIL T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-3011 (($ $ (-484)) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3776 (($ $ (-830)) NIL T ELT) (($ $ (-349 (-484))) NIL T ELT)) (-1604 (((-3 (-583 $) #1#) (-583 $) $) NIL (|has| |#1| (-312)) ELT)) (-3936 (((-85) $) NIL T ELT)) (-2893 (($ |#1| (-349 (-484))) NIL T ELT) (($ $ (-994) (-349 (-484))) NIL T ELT) (($ $ (-583 (-994)) (-583 (-349 (-484)))) NIL T ELT)) (-3957 (($ (-1 |#1| |#1|) $) 25 T ELT)) (-3941 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2894 (($ $) NIL T ELT)) (-3174 ((|#1| $) NIL T ELT)) (-1890 (($ (-583 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2484 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3811 (($ $) 29 (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $ (-1089)) 35 (OR (-12 (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-29 (-484))) (|has| |#1| (-871)) (|has| |#1| (-1114))) (-12 (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-15 -3811 (|#1| |#1| (-1089)))) (|has| |#1| (-15 -3081 ((-583 (-1089)) |#1|))))) ELT) (($ $ (-1175 |#2|)) 30 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) NIL (|has| |#1| (-312)) ELT)) (-3144 (($ (-583 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3731 (((-347 $) $) NIL (|has| |#1| (-312)) ELT)) (-1605 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3768 (($ $ (-349 (-484))) NIL T ELT)) (-3465 (((-3 $ #1#) $ $) NIL (|has| |#1| (-495)) ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL (|has| |#1| (-312)) ELT)) (-3942 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3767 (((-1068 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-349 (-484))))) ELT)) (-1606 (((-694) $) NIL (|has| |#1| (-312)) ELT)) (-3799 ((|#1| $ (-349 (-484))) NIL T ELT) (($ $ $) NIL (|has| (-349 (-484)) (-1025)) ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3757 (($ $ (-1089)) 28 (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))) ELT) (($ $ (-583 (-1089))) NIL (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))) ELT) (($ $ (-1089) (-694)) NIL (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))) ELT) (($ $) 14 (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|))) ELT) (($ $ (-694)) NIL (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|))) ELT) (($ $ (-1175 |#2|)) 16 T ELT)) (-3947 (((-349 (-484)) $) NIL T ELT)) (-3494 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3635 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3492 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3634 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3490 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3633 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2891 (($ $) NIL T ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT) (($ (-1175 |#2|)) NIL T ELT) (($ (-1159 |#1| |#2| |#3|)) 9 T ELT) (($ (-349 (-484))) NIL (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $) NIL (|has| |#1| (-495)) ELT)) (-3676 ((|#1| $ (-349 (-484))) NIL T ELT)) (-2702 (((-632 $) $) NIL (|has| |#1| (-118)) ELT)) (-3126 (((-694)) NIL T CONST)) (-3772 ((|#1| $) 21 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3497 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3485 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2062 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-3495 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3483 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3499 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3487 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3769 ((|#1| $ (-349 (-484))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-349 (-484))))) (|has| |#1| (-15 -3945 (|#1| (-1089))))) ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-3500 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3488 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3498 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3486 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3496 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3484 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2660 (($) NIL T CONST)) (-2666 (($) NIL T CONST)) (-2669 (($ $ (-1089)) NIL (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))) ELT) (($ $ (-583 (-1089))) NIL (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))) ELT) (($ $ (-1089) (-694)) NIL (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|))) ELT) (($ $ (-694)) NIL (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|))) ELT) (($ $ (-1175 |#2|)) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3948 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) 27 T ELT)) (-3838 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $ (-349 (-484))) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 26 T ELT) (($ (-349 (-484)) $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $ (-349 (-484))) NIL (|has| |#1| (-38 (-349 (-484)))) ELT))) +(((-413 |#1| |#2| |#3|) (-13 (-1161 |#1|) (-806 $ (-1175 |#2|)) (-10 -8 (-15 -3945 ($ (-1175 |#2|))) (-15 -3945 ($ (-1159 |#1| |#2| |#3|))) (IF (|has| |#1| (-38 (-349 (-484)))) (-15 -3811 ($ $ (-1175 |#2|))) |%noBranch|))) (-961) (-1089) |#1|) (T -413)) +((-3945 (*1 *1 *2) (-12 (-5 *2 (-1175 *4)) (-14 *4 (-1089)) (-5 *1 (-413 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) (-3945 (*1 *1 *2) (-12 (-5 *2 (-1159 *3 *4 *5)) (-4 *3 (-961)) (-14 *4 (-1089)) (-14 *5 *3) (-5 *1 (-413 *3 *4 *5)))) (-3811 (*1 *1 *1 *2) (-12 (-5 *2 (-1175 *4)) (-14 *4 (-1089)) (-5 *1 (-413 *3 *4 *5)) (-4 *3 (-38 (-349 (-484)))) (-4 *3 (-961)) (-14 *5 *3)))) +((-2568 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3598 (($) NIL T ELT) (($ (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2198 (((-1184) $ |#1| |#1|) NIL (|has| $ (-6 -3995)) ELT)) (-3787 ((|#2| $ |#1| |#2|) 18 T ELT)) (-1569 (($ (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT)) (-3709 (($ (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT)) (-2231 (((-3 |#2| #1="failed") |#1| $) 19 T ELT)) (-3723 (($) NIL T CONST)) (-1352 (($ $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT)) (-3404 (($ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-6 -3994)) ELT) (($ (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT) (((-3 |#2| #1#) |#1| $) 16 T ELT)) (-3405 (($ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT)) (-3841 (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -3994)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3994)) ELT) (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT)) (-1575 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3995)) ELT)) (-3112 ((|#2| $ |#1|) NIL T ELT)) (-2889 (((-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT) (((-583 |#2|) $) NIL (|has| $ (-6 -3994)) ELT)) (-2200 ((|#1| $) NIL (|has| |#1| (-756)) ELT)) (-2608 (((-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT) (((-583 |#2|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3245 (((-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#2| (-1013))) ELT)) (-2201 ((|#1| $) NIL (|has| |#1| (-756)) ELT)) (-1948 (($ (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3242 (((-1072) $) NIL (OR (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| |#2| (-1013))) ELT)) (-2232 (((-583 |#1|) $) NIL T ELT)) (-2233 (((-85) |#1| $) NIL T ELT)) (-1273 (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3608 (($ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2203 (((-583 |#1|) $) NIL T ELT)) (-2204 (((-85) |#1| $) NIL T ELT)) (-3243 (((-1033) $) NIL (OR (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| |#2| (-1013))) ELT)) (-3800 ((|#2| $) NIL (|has| |#1| (-756)) ELT)) (-1353 (((-3 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2199 (($ $ |#2|) NIL (|has| $ (-6 -3995)) ELT)) (-1274 (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1946 (((-85) (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3767 (($ $ (-583 (-249 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-249 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-583 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT)) (-1221 (((-85) $ $) NIL T ELT)) (-2202 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#2| (-1013))) ELT)) (-2205 (((-583 |#2|) $) NIL T ELT)) (-3402 (((-85) $) NIL T ELT)) (-3564 (($) NIL T ELT)) (-3799 ((|#2| $ |#1|) 13 T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1465 (($) NIL T ELT) (($ (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1945 (((-694) (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT) (((-694) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (((-694) |#2| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#2| (-1013))) ELT) (((-694) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3399 (($ $) NIL T ELT)) (-3971 (((-473) $) NIL (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-553 (-473))) ELT)) (-3529 (($ (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3945 (((-772) $) NIL (OR (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-552 (-772))) (|has| |#2| (-552 (-772)))) ELT)) (-1264 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1275 (($ (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1947 (((-85) (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3056 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3956 (((-694) $) NIL (|has| $ (-6 -3994)) ELT))) +(((-414 |#1| |#2| |#3| |#4|) (-1106 |#1| |#2|) (-1013) (-1013) (-1106 |#1| |#2|) |#2|) (T -414)) +NIL +((-2568 (((-85) $ $) NIL T ELT)) (-3680 (((-583 (-2 (|:| -3860 $) (|:| -1701 (-583 |#4|)))) (-583 |#4|)) NIL T ELT)) (-3681 (((-583 $) (-583 |#4|)) NIL T ELT)) (-3081 (((-583 |#3|) $) NIL T ELT)) (-2908 (((-85) $) NIL T ELT)) (-2899 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-3692 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3687 ((|#4| |#4| $) NIL T ELT)) (-2909 (((-2 (|:| |under| $) (|:| -3130 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3709 (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3994)) ELT) (((-3 |#4| #1="failed") $ |#3|) NIL T ELT)) (-3723 (($) NIL T CONST)) (-2904 (((-85) $) 29 (|has| |#1| (-495)) ELT)) (-2906 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-2905 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-2907 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-3688 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-2900 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-495)) ELT)) (-2901 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-495)) ELT)) (-3157 (((-3 $ #1#) (-583 |#4|)) NIL T ELT)) (-3156 (($ (-583 |#4|)) NIL T ELT)) (-3798 (((-3 $ #1#) $) 45 T ELT)) (-3684 ((|#4| |#4| $) NIL T ELT)) (-1352 (($ $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#4| (-1013))) ELT)) (-3405 (($ |#4| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#4| (-1013))) ELT) (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3994)) ELT)) (-2902 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-495)) ELT)) (-3693 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3682 ((|#4| |#4| $) NIL T ELT)) (-3841 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -3994)) (|has| |#4| (-1013))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -3994)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -3994)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3695 (((-2 (|:| -3860 (-583 |#4|)) (|:| -1701 (-583 |#4|))) $) NIL T ELT)) (-2889 (((-583 |#4|) $) 18 (|has| $ (-6 -3994)) ELT)) (-3694 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3180 ((|#3| $) 38 T ELT)) (-2608 (((-583 |#4|) $) 19 (|has| $ (-6 -3994)) ELT)) (-3245 (((-85) |#4| $) 27 (-12 (|has| $ (-6 -3994)) (|has| |#4| (-1013))) ELT)) (-1948 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#4| |#4|) $) 23 T ELT)) (-2914 (((-583 |#3|) $) NIL T ELT)) (-2913 (((-85) |#3| $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3797 (((-3 |#4| #1#) $) 42 T ELT)) (-3696 (((-583 |#4|) $) NIL T ELT)) (-3690 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3685 ((|#4| |#4| $) NIL T ELT)) (-3698 (((-85) $ $) NIL T ELT)) (-2903 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-495)) ELT)) (-3691 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3686 ((|#4| |#4| $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3800 (((-3 |#4| #1#) $) 40 T ELT)) (-1353 (((-3 |#4| #1#) (-1 (-85) |#4|) $) NIL T ELT)) (-3678 (((-3 $ #1#) $ |#4|) 55 T ELT)) (-3768 (($ $ |#4|) NIL T ELT)) (-1946 (((-85) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3767 (($ $ (-583 |#4|) (-583 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-249 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-583 (-249 |#4|))) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT)) (-1221 (((-85) $ $) NIL T ELT)) (-3402 (((-85) $) 17 T ELT)) (-3564 (($) 14 T ELT)) (-3947 (((-694) $) NIL T ELT)) (-1945 (((-694) |#4| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#4| (-1013))) ELT) (((-694) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3399 (($ $) 13 T ELT)) (-3971 (((-473) $) NIL (|has| |#4| (-553 (-473))) ELT)) (-3529 (($ (-583 |#4|)) 22 T ELT)) (-2910 (($ $ |#3|) 49 T ELT)) (-2912 (($ $ |#3|) 51 T ELT)) (-3683 (($ $) NIL T ELT)) (-2911 (($ $ |#3|) NIL T ELT)) (-3945 (((-772) $) 35 T ELT) (((-583 |#4|) $) 46 T ELT)) (-3677 (((-694) $) NIL (|has| |#3| (-319)) ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3697 (((-3 (-2 (|:| |bas| $) (|:| -3323 (-583 |#4|))) #1#) (-583 |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3323 (-583 |#4|))) #1#) (-583 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3689 (((-85) $ (-1 (-85) |#4| (-583 |#4|))) NIL T ELT)) (-1947 (((-85) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3679 (((-583 |#3|) $) NIL T ELT)) (-3932 (((-85) |#3| $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3956 (((-694) $) NIL (|has| $ (-6 -3994)) ELT))) +(((-415 |#1| |#2| |#3| |#4|) (-1123 |#1| |#2| |#3| |#4|) (-495) (-717) (-756) (-977 |#1| |#2| |#3|)) (T -415)) +NIL +((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3774 (($ $) NIL T ELT)) (-3970 (((-347 $) $) NIL T ELT)) (-1607 (((-85) $ $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 (-484) #1#) $) NIL T ELT) (((-3 (-349 (-484)) #1#) $) NIL T ELT)) (-3156 (((-484) $) NIL T ELT) (((-349 (-484)) $) NIL T ELT)) (-2564 (($ $ $) NIL T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-2563 (($ $ $) NIL T ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-3722 (((-85) $) NIL T ELT)) (-3626 (($) 17 T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-1604 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-1890 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2484 (($ $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3144 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3731 (((-347 $) $) NIL T ELT)) (-1605 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3465 (((-3 $ #1#) $ $) NIL T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-1606 (((-694) $) NIL T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL T ELT)) (-3971 (((-329) $) 21 T ELT) (((-179) $) 24 T ELT) (((-349 (-1084 (-484))) $) 18 T ELT) (((-473) $) 53 T ELT)) (-3945 (((-772) $) 51 T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-349 (-484))) NIL T ELT) (((-179) $) 23 T ELT) (((-329) $) 20 T ELT)) (-3126 (((-694)) NIL T CONST)) (-1264 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) 37 T CONST)) (-2666 (($) 8 T CONST)) (-3056 (((-85) $ $) NIL T ELT)) (-3948 (($ $ $) NIL T ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-349 (-484))) NIL T ELT) (($ (-349 (-484)) $) NIL T ELT))) +(((-416) (-13 (-312) (-120) (-950 (-484)) (-950 (-349 (-484))) (-933) (-552 (-179)) (-552 (-329)) (-553 (-349 (-1084 (-484)))) (-553 (-473)) (-10 -8 (-15 -3626 ($))))) (T -416)) +((-3626 (*1 *1) (-5 *1 (-416)))) +((-2568 (((-85) $ $) NIL T ELT)) (-3527 (((-1048) $) 12 T ELT)) (-3528 (((-1048) $) 10 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) 18 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT))) +(((-417) (-13 (-995) (-10 -8 (-15 -3528 ((-1048) $)) (-15 -3527 ((-1048) $))))) (T -417)) +((-3528 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-417)))) (-3527 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-417))))) +((-2568 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3598 (($) NIL T ELT) (($ (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2198 (((-1184) $ |#1| |#1|) NIL (|has| $ (-6 -3995)) ELT)) (-3787 ((|#2| $ |#1| |#2|) 16 T ELT)) (-1569 (($ (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT)) (-3709 (($ (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT)) (-2231 (((-3 |#2| #1="failed") |#1| $) 20 T ELT)) (-3723 (($) NIL T CONST)) (-1352 (($ $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT)) (-3404 (($ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-6 -3994)) ELT) (($ (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT) (((-3 |#2| #1#) |#1| $) 18 T ELT)) (-3405 (($ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT)) (-3841 (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -3994)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3994)) ELT) (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT)) (-1575 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3995)) ELT)) (-3112 ((|#2| $ |#1|) NIL T ELT)) (-2889 (((-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT) (((-583 |#2|) $) NIL (|has| $ (-6 -3994)) ELT)) (-2200 ((|#1| $) NIL (|has| |#1| (-756)) ELT)) (-2608 (((-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT) (((-583 |#2|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3245 (((-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#2| (-1013))) ELT)) (-2201 ((|#1| $) NIL (|has| |#1| (-756)) ELT)) (-1948 (($ (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3242 (((-1072) $) NIL (OR (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| |#2| (-1013))) ELT)) (-2232 (((-583 |#1|) $) 13 T ELT)) (-2233 (((-85) |#1| $) NIL T ELT)) (-1273 (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3608 (($ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2203 (((-583 |#1|) $) NIL T ELT)) (-2204 (((-85) |#1| $) NIL T ELT)) (-3243 (((-1033) $) NIL (OR (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| |#2| (-1013))) ELT)) (-3800 ((|#2| $) NIL (|has| |#1| (-756)) ELT)) (-1353 (((-3 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2199 (($ $ |#2|) NIL (|has| $ (-6 -3995)) ELT)) (-1274 (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1946 (((-85) (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3767 (($ $ (-583 (-249 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-249 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-583 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT)) (-1221 (((-85) $ $) NIL T ELT)) (-2202 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#2| (-1013))) ELT)) (-2205 (((-583 |#2|) $) NIL T ELT)) (-3402 (((-85) $) NIL T ELT)) (-3564 (($) 19 T ELT)) (-3799 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1465 (($) NIL T ELT) (($ (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1945 (((-694) (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT) (((-694) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (((-694) |#2| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#2| (-1013))) ELT) (((-694) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3399 (($ $) NIL T ELT)) (-3971 (((-473) $) NIL (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-553 (-473))) ELT)) (-3529 (($ (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3945 (((-772) $) NIL (OR (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-552 (-772))) (|has| |#2| (-552 (-772)))) ELT)) (-1264 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1275 (($ (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1947 (((-85) (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3056 (((-85) $ $) 11 (OR (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3956 (((-694) $) 15 (|has| $ (-6 -3994)) ELT))) +(((-418 |#1| |#2| |#3|) (-13 (-1106 |#1| |#2|) (-10 -7 (-6 -3994))) (-1013) (-1013) (-1072)) (T -418)) +NIL +((-1934 (((-484) (-484) (-484)) 19 T ELT)) (-1935 (((-85) (-484) (-484) (-484) (-484)) 28 T ELT)) (-3456 (((-1178 (-583 (-484))) (-694) (-694)) 42 T ELT))) +(((-419) (-10 -7 (-15 -1934 ((-484) (-484) (-484))) (-15 -1935 ((-85) (-484) (-484) (-484) (-484))) (-15 -3456 ((-1178 (-583 (-484))) (-694) (-694))))) (T -419)) +((-3456 (*1 *2 *3 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1178 (-583 (-484)))) (-5 *1 (-419)))) (-1935 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-484)) (-5 *2 (-85)) (-5 *1 (-419)))) (-1934 (*1 *2 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-419))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-3081 (((-583 (-773 |#1|)) $) NIL T ELT)) (-3083 (((-1084 $) $ (-773 |#1|)) NIL T ELT) (((-1084 |#2|) $) NIL T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL (|has| |#2| (-495)) ELT)) (-2063 (($ $) NIL (|has| |#2| (-495)) ELT)) (-2061 (((-85) $) NIL (|has| |#2| (-495)) ELT)) (-2819 (((-694) $) NIL T ELT) (((-694) $ (-583 (-773 |#1|))) NIL T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2707 (((-347 (-1084 $)) (-1084 $)) NIL (|has| |#2| (-821)) ELT)) (-3774 (($ $) NIL (|has| |#2| (-391)) ELT)) (-3970 (((-347 $) $) NIL (|has| |#2| (-391)) ELT)) (-2704 (((-3 (-583 (-1084 $)) #1#) (-583 (-1084 $)) (-1084 $)) NIL (|has| |#2| (-821)) ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-349 (-484)) #1#) $) NIL (|has| |#2| (-950 (-349 (-484)))) ELT) (((-3 (-484) #1#) $) NIL (|has| |#2| (-950 (-484))) ELT) (((-3 (-773 |#1|) #1#) $) NIL T ELT)) (-3156 ((|#2| $) NIL T ELT) (((-349 (-484)) $) NIL (|has| |#2| (-950 (-349 (-484)))) ELT) (((-484) $) NIL (|has| |#2| (-950 (-484))) ELT) (((-773 |#1|) $) NIL T ELT)) (-3755 (($ $ $ (-773 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-1936 (($ $ (-583 (-484))) NIL T ELT)) (-3958 (($ $) NIL T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) NIL (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1178 |#2|))) (-630 $) (-1178 $)) NIL T ELT) (((-630 |#2|) (-630 $)) NIL T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-3502 (($ $) NIL (|has| |#2| (-391)) ELT) (($ $ (-773 |#1|)) NIL (|has| |#2| (-391)) ELT)) (-2818 (((-583 $) $) NIL T ELT)) (-3722 (((-85) $) NIL (|has| |#2| (-821)) ELT)) (-1623 (($ $ |#2| (-421 (-3956 |#1|) (-694)) $) NIL T ELT)) (-2796 (((-798 (-329) $) $ (-800 (-329)) (-798 (-329) $)) NIL (-12 (|has| (-773 |#1|) (-796 (-329))) (|has| |#2| (-796 (-329)))) ELT) (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) NIL (-12 (|has| (-773 |#1|) (-796 (-484))) (|has| |#2| (-796 (-484)))) ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2420 (((-694) $) NIL T ELT)) (-3084 (($ (-1084 |#2|) (-773 |#1|)) NIL T ELT) (($ (-1084 $) (-773 |#1|)) NIL T ELT)) (-2821 (((-583 $) $) NIL T ELT)) (-3936 (((-85) $) NIL T ELT)) (-2893 (($ |#2| (-421 (-3956 |#1|) (-694))) NIL T ELT) (($ $ (-773 |#1|) (-694)) NIL T ELT) (($ $ (-583 (-773 |#1|)) (-583 (-694))) NIL T ELT)) (-3762 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $ (-773 |#1|)) NIL T ELT)) (-2820 (((-421 (-3956 |#1|) (-694)) $) NIL T ELT) (((-694) $ (-773 |#1|)) NIL T ELT) (((-583 (-694)) $ (-583 (-773 |#1|))) NIL T ELT)) (-1624 (($ (-1 (-421 (-3956 |#1|) (-694)) (-421 (-3956 |#1|) (-694))) $) NIL T ELT)) (-3957 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3082 (((-3 (-773 |#1|) #1#) $) NIL T ELT)) (-2280 (((-630 (-484)) (-1178 $)) NIL (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1178 |#2|))) (-1178 $) $) NIL T ELT) (((-630 |#2|) (-1178 $)) NIL T ELT)) (-2894 (($ $) NIL T ELT)) (-3174 ((|#2| $) NIL T ELT)) (-1890 (($ (-583 $)) NIL (|has| |#2| (-391)) ELT) (($ $ $) NIL (|has| |#2| (-391)) ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2823 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2822 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2824 (((-3 (-2 (|:| |var| (-773 |#1|)) (|:| -2401 (-694))) #1#) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1796 (((-85) $) NIL T ELT)) (-1795 ((|#2| $) NIL T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) NIL (|has| |#2| (-391)) ELT)) (-3144 (($ (-583 $)) NIL (|has| |#2| (-391)) ELT) (($ $ $) NIL (|has| |#2| (-391)) ELT)) (-2705 (((-347 (-1084 $)) (-1084 $)) NIL (|has| |#2| (-821)) ELT)) (-2706 (((-347 (-1084 $)) (-1084 $)) NIL (|has| |#2| (-821)) ELT)) (-3731 (((-347 $) $) NIL (|has| |#2| (-821)) ELT)) (-3465 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-495)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-495)) ELT)) (-3767 (($ $ (-583 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ (-773 |#1|) |#2|) NIL T ELT) (($ $ (-583 (-773 |#1|)) (-583 |#2|)) NIL T ELT) (($ $ (-773 |#1|) $) NIL T ELT) (($ $ (-583 (-773 |#1|)) (-583 $)) NIL T ELT)) (-3756 (($ $ (-773 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-3757 (($ $ (-583 (-773 |#1|)) (-583 (-694))) NIL T ELT) (($ $ (-773 |#1|) (-694)) NIL T ELT) (($ $ (-583 (-773 |#1|))) NIL T ELT) (($ $ (-773 |#1|)) NIL T ELT)) (-3947 (((-421 (-3956 |#1|) (-694)) $) NIL T ELT) (((-694) $ (-773 |#1|)) NIL T ELT) (((-583 (-694)) $ (-583 (-773 |#1|))) NIL T ELT)) (-3971 (((-800 (-329)) $) NIL (-12 (|has| (-773 |#1|) (-553 (-800 (-329)))) (|has| |#2| (-553 (-800 (-329))))) ELT) (((-800 (-484)) $) NIL (-12 (|has| (-773 |#1|) (-553 (-800 (-484)))) (|has| |#2| (-553 (-800 (-484))))) ELT) (((-473) $) NIL (-12 (|has| (-773 |#1|) (-553 (-473))) (|has| |#2| (-553 (-473)))) ELT)) (-2817 ((|#2| $) NIL (|has| |#2| (-391)) ELT) (($ $ (-773 |#1|)) NIL (|has| |#2| (-391)) ELT)) (-2703 (((-3 (-1178 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| |#2| (-821))) ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-773 |#1|)) NIL T ELT) (($ (-349 (-484))) NIL (OR (|has| |#2| (-38 (-349 (-484)))) (|has| |#2| (-950 (-349 (-484))))) ELT) (($ $) NIL (|has| |#2| (-495)) ELT)) (-3816 (((-583 |#2|) $) NIL T ELT)) (-3676 ((|#2| $ (-421 (-3956 |#1|) (-694))) NIL T ELT) (($ $ (-773 |#1|) (-694)) NIL T ELT) (($ $ (-583 (-773 |#1|)) (-583 (-694))) NIL T ELT)) (-2702 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#2| (-821))) (|has| |#2| (-118))) ELT)) (-3126 (((-694)) NIL T CONST)) (-1622 (($ $ $ (-694)) NIL (|has| |#2| (-146)) ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL (|has| |#2| (-495)) ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) NIL T CONST)) (-2666 (($) NIL T CONST)) (-2669 (($ $ (-583 (-773 |#1|)) (-583 (-694))) NIL T ELT) (($ $ (-773 |#1|) (-694)) NIL T ELT) (($ $ (-583 (-773 |#1|))) NIL T ELT) (($ $ (-773 |#1|)) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3948 (($ $ |#2|) NIL (|has| |#2| (-312)) ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-349 (-484))) NIL (|has| |#2| (-38 (-349 (-484)))) ELT) (($ (-349 (-484)) $) NIL (|has| |#2| (-38 (-349 (-484)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT))) +(((-420 |#1| |#2|) (-13 (-861 |#2| (-421 (-3956 |#1|) (-694)) (-773 |#1|)) (-10 -8 (-15 -1936 ($ $ (-583 (-484)))))) (-583 (-1089)) (-961)) (T -420)) +((-1936 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-484))) (-5 *1 (-420 *3 *4)) (-14 *3 (-583 (-1089))) (-4 *4 (-961))))) +((-2568 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-3188 (((-85) $) NIL (|has| |#2| (-23)) ELT)) (-3706 (($ (-830)) NIL (|has| |#2| (-961)) ELT)) (-2198 (((-1184) $ (-484) (-484)) NIL (|has| $ (-6 -3995)) ELT)) (-2483 (($ $ $) NIL (|has| |#2| (-717)) ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL (|has| |#2| (-104)) ELT)) (-3136 (((-694)) NIL (|has| |#2| (-319)) ELT)) (-3787 ((|#2| $ (-484) |#2|) NIL (|has| $ (-6 -3995)) ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 (-484) #1#) $) NIL (-12 (|has| |#2| (-950 (-484))) (|has| |#2| (-1013))) ELT) (((-3 (-349 (-484)) #1#) $) NIL (-12 (|has| |#2| (-950 (-349 (-484)))) (|has| |#2| (-1013))) ELT) (((-3 |#2| #1#) $) NIL (|has| |#2| (-1013)) ELT)) (-3156 (((-484) $) NIL (-12 (|has| |#2| (-950 (-484))) (|has| |#2| (-1013))) ELT) (((-349 (-484)) $) NIL (-12 (|has| |#2| (-950 (-349 (-484)))) (|has| |#2| (-1013))) ELT) ((|#2| $) NIL (|has| |#2| (-1013)) ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (-12 (|has| |#2| (-580 (-484))) (|has| |#2| (-961))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) NIL (-12 (|has| |#2| (-580 (-484))) (|has| |#2| (-961))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1178 |#2|))) (-630 $) (-1178 $)) NIL (|has| |#2| (-961)) ELT) (((-630 |#2|) (-630 $)) NIL (|has| |#2| (-961)) ELT)) (-3466 (((-3 $ #1#) $) NIL (|has| |#2| (-961)) ELT)) (-2994 (($) NIL (|has| |#2| (-319)) ELT)) (-1575 ((|#2| $ (-484) |#2|) NIL (|has| $ (-6 -3995)) ELT)) (-3112 ((|#2| $ (-484)) 11 T ELT)) (-3186 (((-85) $) NIL (|has| |#2| (-717)) ELT)) (-2889 (((-583 |#2|) $) NIL (|has| $ (-6 -3994)) ELT)) (-1213 (((-85) $ $) NIL (|has| |#2| (-23)) ELT)) (-2410 (((-85) $) NIL (|has| |#2| (-961)) ELT)) (-2200 (((-484) $) NIL (|has| (-484) (-756)) ELT)) (-2531 (($ $ $) NIL (|has| |#2| (-756)) ELT)) (-2608 (((-583 |#2|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3245 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#2| (-1013))) ELT)) (-2201 (((-484) $) NIL (|has| (-484) (-756)) ELT)) (-2857 (($ $ $) NIL (|has| |#2| (-756)) ELT)) (-1948 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2010 (((-830) $) NIL (|has| |#2| (-319)) ELT)) (-2280 (((-630 (-484)) (-1178 $)) NIL (-12 (|has| |#2| (-580 (-484))) (|has| |#2| (-961))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (-12 (|has| |#2| (-580 (-484))) (|has| |#2| (-961))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1178 |#2|))) (-1178 $) $) NIL (|has| |#2| (-961)) ELT) (((-630 |#2|) (-1178 $)) NIL (|has| |#2| (-961)) ELT)) (-3242 (((-1072) $) NIL (|has| |#2| (-1013)) ELT)) (-2203 (((-583 (-484)) $) NIL T ELT)) (-2204 (((-85) (-484) $) NIL T ELT)) (-2400 (($ (-830)) NIL (|has| |#2| (-319)) ELT)) (-3243 (((-1033) $) NIL (|has| |#2| (-1013)) ELT)) (-3800 ((|#2| $) NIL (|has| (-484) (-756)) ELT)) (-2199 (($ $ |#2|) NIL (|has| $ (-6 -3995)) ELT)) (-1946 (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3767 (($ $ (-583 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT)) (-1221 (((-85) $ $) NIL T ELT)) (-2202 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#2| (-1013))) ELT)) (-2205 (((-583 |#2|) $) NIL T ELT)) (-3402 (((-85) $) NIL T ELT)) (-3564 (($) NIL T ELT)) (-3799 ((|#2| $ (-484) |#2|) NIL T ELT) ((|#2| $ (-484)) NIL T ELT)) (-3835 ((|#2| $ $) NIL (|has| |#2| (-961)) ELT)) (-1467 (($ (-1178 |#2|)) NIL T ELT)) (-3910 (((-107)) NIL (|has| |#2| (-312)) ELT)) (-3757 (($ $ (-694)) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-961))) ELT) (($ $) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-961))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (-12 (|has| |#2| (-811 (-1089))) (|has| |#2| (-961))) ELT) (($ $ (-1089) (-694)) NIL (-12 (|has| |#2| (-811 (-1089))) (|has| |#2| (-961))) ELT) (($ $ (-583 (-1089))) NIL (-12 (|has| |#2| (-811 (-1089))) (|has| |#2| (-961))) ELT) (($ $ (-1089)) NIL (-12 (|has| |#2| (-811 (-1089))) (|has| |#2| (-961))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-961)) ELT) (($ $ (-1 |#2| |#2|) (-694)) NIL (|has| |#2| (-961)) ELT)) (-1945 (((-694) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3994)) ELT) (((-694) |#2| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#2| (-1013))) ELT)) (-3399 (($ $) NIL T ELT)) (-3945 (((-1178 |#2|) $) NIL T ELT) (($ (-484)) NIL (OR (-12 (|has| |#2| (-950 (-484))) (|has| |#2| (-1013))) (|has| |#2| (-961))) ELT) (($ (-349 (-484))) NIL (-12 (|has| |#2| (-950 (-349 (-484)))) (|has| |#2| (-1013))) ELT) (($ |#2|) NIL (|has| |#2| (-1013)) ELT) (((-772) $) NIL (|has| |#2| (-552 (-772))) ELT)) (-3126 (((-694)) NIL (|has| |#2| (-961)) CONST)) (-1264 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-1947 (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3125 (((-85) $ $) NIL (|has| |#2| (-961)) ELT)) (-2660 (($) NIL (|has| |#2| (-23)) CONST)) (-2666 (($) NIL (|has| |#2| (-961)) CONST)) (-2669 (($ $ (-694)) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-961))) ELT) (($ $) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-961))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (-12 (|has| |#2| (-811 (-1089))) (|has| |#2| (-961))) ELT) (($ $ (-1089) (-694)) NIL (-12 (|has| |#2| (-811 (-1089))) (|has| |#2| (-961))) ELT) (($ $ (-583 (-1089))) NIL (-12 (|has| |#2| (-811 (-1089))) (|has| |#2| (-961))) ELT) (($ $ (-1089)) NIL (-12 (|has| |#2| (-811 (-1089))) (|has| |#2| (-961))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-961)) ELT) (($ $ (-1 |#2| |#2|) (-694)) NIL (|has| |#2| (-961)) ELT)) (-2566 (((-85) $ $) NIL (|has| |#2| (-756)) ELT)) (-2567 (((-85) $ $) NIL (|has| |#2| (-756)) ELT)) (-3056 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-2684 (((-85) $ $) NIL (|has| |#2| (-756)) ELT)) (-2685 (((-85) $ $) 17 (|has| |#2| (-756)) ELT)) (-3948 (($ $ |#2|) NIL (|has| |#2| (-312)) ELT)) (-3836 (($ $ $) NIL (|has| |#2| (-21)) ELT) (($ $) NIL (|has| |#2| (-21)) ELT)) (-3838 (($ $ $) NIL (|has| |#2| (-25)) ELT)) (** (($ $ (-694)) NIL (|has| |#2| (-961)) ELT) (($ $ (-830)) NIL (|has| |#2| (-961)) ELT)) (* (($ $ $) NIL (|has| |#2| (-961)) ELT) (($ $ |#2|) NIL (|has| |#2| (-663)) ELT) (($ |#2| $) NIL (|has| |#2| (-663)) ELT) (($ (-484) $) NIL (|has| |#2| (-21)) ELT) (($ (-694) $) NIL (|has| |#2| (-23)) ELT) (($ (-830) $) NIL (|has| |#2| (-25)) ELT)) (-3956 (((-694) $) NIL (|has| $ (-6 -3994)) ELT))) +(((-421 |#1| |#2|) (-196 |#1| |#2|) (-694) (-717)) (T -421)) +NIL +((-2568 (((-85) $ $) NIL T ELT)) (-1937 (((-583 (-785)) $) 16 T ELT)) (-3541 (((-446) $) 14 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-1938 (($ (-446) (-583 (-785))) 12 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) 23 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT))) +(((-422) (-13 (-995) (-10 -8 (-15 -1938 ($ (-446) (-583 (-785)))) (-15 -3541 ((-446) $)) (-15 -1937 ((-583 (-785)) $))))) (T -422)) +((-1938 (*1 *1 *2 *3) (-12 (-5 *2 (-446)) (-5 *3 (-583 (-785))) (-5 *1 (-422)))) (-3541 (*1 *2 *1) (-12 (-5 *2 (-446)) (-5 *1 (-422)))) (-1937 (*1 *2 *1) (-12 (-5 *2 (-583 (-785))) (-5 *1 (-422))))) +((-2568 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3723 (($) NIL T CONST)) (-2889 (((-583 |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-2856 (($ $ $) 48 T ELT)) (-3517 (($ $ $) 47 T ELT)) (-2608 (((-583 |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3245 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-2857 ((|#1| $) 40 T ELT)) (-1948 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3242 (((-1072) $) NIL (|has| |#1| (-1013)) ELT)) (-1273 ((|#1| $) 41 T ELT)) (-3608 (($ |#1| $) 18 T ELT)) (-1939 (($ (-583 |#1|)) 19 T ELT)) (-3243 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-1274 ((|#1| $) 34 T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3767 (($ $ (-583 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1221 (((-85) $ $) NIL T ELT)) (-3402 (((-85) $) NIL T ELT)) (-3564 (($) 11 T ELT)) (-1945 (((-694) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT) (((-694) |#1| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-3399 (($ $) NIL T ELT)) (-3945 (((-772) $) NIL (|has| |#1| (-552 (-772))) ELT)) (-1264 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1275 (($ (-583 |#1|)) 45 T ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3056 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3956 (((-694) $) 29 (|has| $ (-6 -3994)) ELT))) +(((-423 |#1|) (-13 (-881 |#1|) (-10 -8 (-15 -1939 ($ (-583 |#1|))))) (-756)) (T -423)) +((-1939 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-756)) (-5 *1 (-423 *3))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-3841 (($ $) 71 T ELT)) (-1636 (((-85) $) NIL T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-1968 (((-355 |#2| (-349 |#2|) |#3| |#4|) $) 45 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2409 (((-3 |#4| #1#) $) 117 T ELT)) (-1637 (($ (-355 |#2| (-349 |#2|) |#3| |#4|)) 80 T ELT) (($ |#4|) 31 T ELT) (($ |#1| |#1|) 127 T ELT) (($ |#1| |#1| (-484)) NIL T ELT) (($ |#4| |#2| |#2| |#2| |#1|) 140 T ELT)) (-3434 (((-2 (|:| -2336 (-355 |#2| (-349 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 47 T ELT)) (-3945 (((-772) $) 110 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2660 (($) 32 T CONST)) (-3056 (((-85) $ $) 121 T ELT)) (-3836 (($ $) 76 T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) 72 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 77 T ELT))) +(((-424 |#1| |#2| |#3| |#4|) (-286 |#1| |#2| |#3| |#4|) (-312) (-1154 |#1|) (-1154 (-349 |#2|)) (-291 |#1| |#2| |#3|)) (T -424)) +NIL +((-1943 (((-484) (-583 (-484))) 53 T ELT)) (-1940 ((|#1| (-583 |#1|)) 94 T ELT)) (-1942 (((-583 |#1|) (-583 |#1|)) 95 T ELT)) (-1941 (((-583 |#1|) (-583 |#1|)) 97 T ELT)) (-3144 ((|#1| (-583 |#1|)) 96 T ELT)) (-2817 (((-583 (-484)) (-583 |#1|)) 56 T ELT))) +(((-425 |#1|) (-10 -7 (-15 -3144 (|#1| (-583 |#1|))) (-15 -1940 (|#1| (-583 |#1|))) (-15 -1941 ((-583 |#1|) (-583 |#1|))) (-15 -1942 ((-583 |#1|) (-583 |#1|))) (-15 -2817 ((-583 (-484)) (-583 |#1|))) (-15 -1943 ((-484) (-583 (-484))))) (-1154 (-484))) (T -425)) +((-1943 (*1 *2 *3) (-12 (-5 *3 (-583 (-484))) (-5 *2 (-484)) (-5 *1 (-425 *4)) (-4 *4 (-1154 *2)))) (-2817 (*1 *2 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-1154 (-484))) (-5 *2 (-583 (-484))) (-5 *1 (-425 *4)))) (-1942 (*1 *2 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1154 (-484))) (-5 *1 (-425 *3)))) (-1941 (*1 *2 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1154 (-484))) (-5 *1 (-425 *3)))) (-1940 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-5 *1 (-425 *2)) (-4 *2 (-1154 (-484))))) (-3144 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-5 *1 (-425 *2)) (-4 *2 (-1154 (-484)))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-3129 (((-484) $) NIL (|has| (-484) (-258)) ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2707 (((-347 (-1084 $)) (-1084 $)) NIL (|has| (-484) (-821)) ELT)) (-3774 (($ $) NIL T ELT)) (-3970 (((-347 $) $) NIL T ELT)) (-2704 (((-3 (-583 (-1084 $)) #1#) (-583 (-1084 $)) (-1084 $)) NIL (|has| (-484) (-821)) ELT)) (-1607 (((-85) $ $) NIL T ELT)) (-3622 (((-484) $) NIL (|has| (-484) (-740)) ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 (-484) #1#) $) NIL T ELT) (((-3 (-1089) #1#) $) NIL (|has| (-484) (-950 (-1089))) ELT) (((-3 (-349 (-484)) #1#) $) NIL (|has| (-484) (-950 (-484))) ELT) (((-3 (-484) #1#) $) NIL (|has| (-484) (-950 (-484))) ELT)) (-3156 (((-484) $) NIL T ELT) (((-1089) $) NIL (|has| (-484) (-950 (-1089))) ELT) (((-349 (-484)) $) NIL (|has| (-484) (-950 (-484))) ELT) (((-484) $) NIL (|has| (-484) (-950 (-484))) ELT)) (-2564 (($ $ $) NIL T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (|has| (-484) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) NIL (|has| (-484) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) NIL T ELT) (((-630 (-484)) (-630 $)) NIL T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-2994 (($) NIL (|has| (-484) (-483)) ELT)) (-2563 (($ $ $) NIL T ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-3722 (((-85) $) NIL T ELT)) (-3186 (((-85) $) NIL (|has| (-484) (-740)) ELT)) (-2796 (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) NIL (|has| (-484) (-796 (-484))) ELT) (((-798 (-329) $) $ (-800 (-329)) (-798 (-329) $)) NIL (|has| (-484) (-796 (-329))) ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2996 (($ $) NIL T ELT)) (-2998 (((-484) $) NIL T ELT)) (-3444 (((-632 $) $) NIL (|has| (-484) (-1065)) ELT)) (-3187 (((-85) $) NIL (|has| (-484) (-740)) ELT)) (-1604 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2531 (($ $ $) NIL (|has| (-484) (-756)) ELT)) (-2857 (($ $ $) NIL (|has| (-484) (-756)) ELT)) (-3957 (($ (-1 (-484) (-484)) $) NIL T ELT)) (-2280 (((-630 (-484)) (-1178 $)) NIL (|has| (-484) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (|has| (-484) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL T ELT) (((-630 (-484)) (-1178 $)) NIL T ELT)) (-1890 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2484 (($ $) NIL T ELT)) (-3445 (($) NIL (|has| (-484) (-1065)) CONST)) (-1944 (($ (-349 (-484))) 9 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3144 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3128 (($ $) NIL (|has| (-484) (-258)) ELT) (((-349 (-484)) $) NIL T ELT)) (-3130 (((-484) $) NIL (|has| (-484) (-483)) ELT)) (-2705 (((-347 (-1084 $)) (-1084 $)) NIL (|has| (-484) (-821)) ELT)) (-2706 (((-347 (-1084 $)) (-1084 $)) NIL (|has| (-484) (-821)) ELT)) (-3731 (((-347 $) $) NIL T ELT)) (-1605 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3465 (((-3 $ #1#) $ $) NIL T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-3767 (($ $ (-583 (-484)) (-583 (-484))) NIL (|has| (-484) (-260 (-484))) ELT) (($ $ (-484) (-484)) NIL (|has| (-484) (-260 (-484))) ELT) (($ $ (-249 (-484))) NIL (|has| (-484) (-260 (-484))) ELT) (($ $ (-583 (-249 (-484)))) NIL (|has| (-484) (-260 (-484))) ELT) (($ $ (-583 (-1089)) (-583 (-484))) NIL (|has| (-484) (-455 (-1089) (-484))) ELT) (($ $ (-1089) (-484)) NIL (|has| (-484) (-455 (-1089) (-484))) ELT)) (-1606 (((-694) $) NIL T ELT)) (-3799 (($ $ (-484)) NIL (|has| (-484) (-241 (-484) (-484))) ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL T ELT)) (-3757 (($ $ (-1 (-484) (-484))) NIL T ELT) (($ $ (-1 (-484) (-484)) (-694)) NIL T ELT) (($ $ (-1089)) NIL (|has| (-484) (-811 (-1089))) ELT) (($ $ (-583 (-1089))) NIL (|has| (-484) (-811 (-1089))) ELT) (($ $ (-1089) (-694)) NIL (|has| (-484) (-811 (-1089))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (|has| (-484) (-811 (-1089))) ELT) (($ $) NIL (|has| (-484) (-189)) ELT) (($ $ (-694)) NIL (|has| (-484) (-189)) ELT)) (-2995 (($ $) NIL T ELT)) (-2997 (((-484) $) NIL T ELT)) (-3971 (((-800 (-484)) $) NIL (|has| (-484) (-553 (-800 (-484)))) ELT) (((-800 (-329)) $) NIL (|has| (-484) (-553 (-800 (-329)))) ELT) (((-473) $) NIL (|has| (-484) (-553 (-473))) ELT) (((-329) $) NIL (|has| (-484) (-933)) ELT) (((-179) $) NIL (|has| (-484) (-933)) ELT)) (-2703 (((-3 (-1178 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| (-484) (-821))) ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-349 (-484))) 8 T ELT) (($ (-484)) NIL T ELT) (($ (-1089)) NIL (|has| (-484) (-950 (-1089))) ELT) (((-349 (-484)) $) NIL T ELT) (((-917 16) $) 10 T ELT)) (-2702 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-484) (-821))) (|has| (-484) (-118))) ELT)) (-3126 (((-694)) NIL T CONST)) (-3131 (((-484) $) NIL (|has| (-484) (-483)) ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-3382 (($ $) NIL (|has| (-484) (-740)) ELT)) (-2660 (($) NIL T CONST)) (-2666 (($) NIL T CONST)) (-2669 (($ $ (-1 (-484) (-484))) NIL T ELT) (($ $ (-1 (-484) (-484)) (-694)) NIL T ELT) (($ $ (-1089)) NIL (|has| (-484) (-811 (-1089))) ELT) (($ $ (-583 (-1089))) NIL (|has| (-484) (-811 (-1089))) ELT) (($ $ (-1089) (-694)) NIL (|has| (-484) (-811 (-1089))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (|has| (-484) (-811 (-1089))) ELT) (($ $) NIL (|has| (-484) (-189)) ELT) (($ $ (-694)) NIL (|has| (-484) (-189)) ELT)) (-2566 (((-85) $ $) NIL (|has| (-484) (-756)) ELT)) (-2567 (((-85) $ $) NIL (|has| (-484) (-756)) ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL (|has| (-484) (-756)) ELT)) (-2685 (((-85) $ $) NIL (|has| (-484) (-756)) ELT)) (-3948 (($ $ $) NIL T ELT) (($ (-484) (-484)) NIL T ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-349 (-484))) NIL T ELT) (($ (-349 (-484)) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ (-484)) NIL T ELT))) +(((-426) (-13 (-904 (-484)) (-552 (-349 (-484))) (-552 (-917 16)) (-10 -8 (-15 -3128 ((-349 (-484)) $)) (-15 -1944 ($ (-349 (-484))))))) (T -426)) +((-3128 (*1 *2 *1) (-12 (-5 *2 (-349 (-484))) (-5 *1 (-426)))) (-1944 (*1 *1 *2) (-12 (-5 *2 (-349 (-484))) (-5 *1 (-426))))) +((-2608 (((-583 |#2|) $) 31 T ELT)) (-3245 (((-85) |#2| $) 39 T ELT)) (-1946 (((-85) (-1 (-85) |#2|) $) 26 T ELT)) (-3767 (($ $ (-583 (-249 |#2|))) 13 T ELT) (($ $ (-249 |#2|)) NIL T ELT) (($ $ |#2| |#2|) NIL T ELT) (($ $ (-583 |#2|) (-583 |#2|)) NIL T ELT)) (-1945 (((-694) (-1 (-85) |#2|) $) 30 T ELT) (((-694) |#2| $) 37 T ELT)) (-3945 (((-772) $) 45 T ELT)) (-1947 (((-85) (-1 (-85) |#2|) $) 23 T ELT)) (-3056 (((-85) $ $) 35 T ELT)) (-3956 (((-694) $) 18 T ELT))) +(((-427 |#1| |#2|) (-10 -7 (-15 -3056 ((-85) |#1| |#1|)) (-15 -3945 ((-772) |#1|)) (-15 -3767 (|#1| |#1| (-583 |#2|) (-583 |#2|))) (-15 -3767 (|#1| |#1| |#2| |#2|)) (-15 -3767 (|#1| |#1| (-249 |#2|))) (-15 -3767 (|#1| |#1| (-583 (-249 |#2|)))) (-15 -3245 ((-85) |#2| |#1|)) (-15 -1945 ((-694) |#2| |#1|)) (-15 -2608 ((-583 |#2|) |#1|)) (-15 -1945 ((-694) (-1 (-85) |#2|) |#1|)) (-15 -1946 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -1947 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -3956 ((-694) |#1|))) (-428 |#2|) (-1128)) (T -427)) +NIL +((-2568 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3723 (($) 7 T CONST)) (-2889 (((-583 |#1|) $) 30 (|has| $ (-6 -3994)) ELT)) (-2608 (((-583 |#1|) $) 29 (|has| $ (-6 -3994)) ELT)) (-3245 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-1948 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3242 (((-1072) $) 22 (|has| |#1| (-1013)) ELT)) (-3243 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3994)) ELT)) (-3767 (($ $ (-583 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1221 (((-85) $ $) 11 T ELT)) (-3402 (((-85) $) 8 T ELT)) (-3564 (($) 9 T ELT)) (-1945 (((-694) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3994)) ELT) (((-694) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-3399 (($ $) 10 T ELT)) (-3945 (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-1264 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3994)) ELT)) (-3056 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3956 (((-694) $) 6 (|has| $ (-6 -3994)) ELT))) +(((-428 |#1|) (-113) (-1128)) (T -428)) +((-3957 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-428 *3)) (-4 *3 (-1128)))) (-1948 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -3995)) (-4 *1 (-428 *3)) (-4 *3 (-1128)))) (-1947 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-85) *4)) (|has| *1 (-6 -3994)) (-4 *1 (-428 *4)) (-4 *4 (-1128)) (-5 *2 (-85)))) (-1946 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-85) *4)) (|has| *1 (-6 -3994)) (-4 *1 (-428 *4)) (-4 *4 (-1128)) (-5 *2 (-85)))) (-1945 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-85) *4)) (|has| *1 (-6 -3994)) (-4 *1 (-428 *4)) (-4 *4 (-1128)) (-5 *2 (-694)))) (-2889 (*1 *2 *1) (-12 (|has| *1 (-6 -3994)) (-4 *1 (-428 *3)) (-4 *3 (-1128)) (-5 *2 (-583 *3)))) (-2608 (*1 *2 *1) (-12 (|has| *1 (-6 -3994)) (-4 *1 (-428 *3)) (-4 *3 (-1128)) (-5 *2 (-583 *3)))) (-1945 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -3994)) (-4 *1 (-428 *3)) (-4 *3 (-1128)) (-4 *3 (-1013)) (-5 *2 (-694)))) (-3245 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -3994)) (-4 *1 (-428 *3)) (-4 *3 (-1128)) (-4 *3 (-1013)) (-5 *2 (-85))))) +(-13 (-34) (-10 -8 (IF (|has| |t#1| (-552 (-772))) (-6 (-552 (-772))) |%noBranch|) (IF (|has| |t#1| (-72)) (-6 (-72)) |%noBranch|) (IF (|has| |t#1| (-1013)) (-6 (-1013)) |%noBranch|) (IF (|has| |t#1| (-1013)) (IF (|has| |t#1| (-260 |t#1|)) (-6 (-260 |t#1|)) |%noBranch|) |%noBranch|) (-15 -3957 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -3995)) (-15 -1948 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -3994)) (PROGN (-15 -1947 ((-85) (-1 (-85) |t#1|) $)) (-15 -1946 ((-85) (-1 (-85) |t#1|) $)) (-15 -1945 ((-694) (-1 (-85) |t#1|) $)) (-15 -2889 ((-583 |t#1|) $)) (-15 -2608 ((-583 |t#1|) $)) (IF (|has| |t#1| (-1013)) (PROGN (-15 -1945 ((-694) |t#1| $)) (-15 -3245 ((-85) |t#1| $))) |%noBranch|)) |%noBranch|))) +(((-34) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1013)) (|has| |#1| (-552 (-772)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-455 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-1013) |has| |#1| (-1013)) ((-1128) . T)) +((-3945 ((|#1| $) 6 T ELT) (($ |#1|) 9 T ELT))) +(((-429 |#1|) (-113) (-1128)) (T -429)) +NIL +(-13 (-552 |t#1|) (-555 |t#1|)) +(((-555 |#1|) . T) ((-552 |#1|) . T)) +((-2568 (((-85) $ $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-1949 (($ (-1072)) 8 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) 15 T ELT) (((-1072) $) 12 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 11 T ELT))) +(((-430) (-13 (-1013) (-552 (-1072)) (-10 -8 (-15 -1949 ($ (-1072)))))) (T -430)) +((-1949 (*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-430))))) +((-3491 (($ $) 15 T ELT)) (-3489 (($ $) 24 T ELT)) (-3493 (($ $) 12 T ELT)) (-3494 (($ $) 10 T ELT)) (-3492 (($ $) 17 T ELT)) (-3490 (($ $) 22 T ELT))) +(((-431 |#1|) (-10 -7 (-15 -3490 (|#1| |#1|)) (-15 -3492 (|#1| |#1|)) (-15 -3494 (|#1| |#1|)) (-15 -3493 (|#1| |#1|)) (-15 -3489 (|#1| |#1|)) (-15 -3491 (|#1| |#1|))) (-432)) (T -431)) +NIL +((-3491 (($ $) 11 T ELT)) (-3489 (($ $) 10 T ELT)) (-3493 (($ $) 9 T ELT)) (-3494 (($ $) 8 T ELT)) (-3492 (($ $) 7 T ELT)) (-3490 (($ $) 6 T ELT))) +(((-432) (-113)) (T -432)) +((-3491 (*1 *1 *1) (-4 *1 (-432))) (-3489 (*1 *1 *1) (-4 *1 (-432))) (-3493 (*1 *1 *1) (-4 *1 (-432))) (-3494 (*1 *1 *1) (-4 *1 (-432))) (-3492 (*1 *1 *1) (-4 *1 (-432))) (-3490 (*1 *1 *1) (-4 *1 (-432)))) +(-13 (-10 -8 (-15 -3490 ($ $)) (-15 -3492 ($ $)) (-15 -3494 ($ $)) (-15 -3493 ($ $)) (-15 -3489 ($ $)) (-15 -3491 ($ $)))) +((-3731 (((-347 |#4|) |#4| (-1 (-347 |#2|) |#2|)) 54 T ELT))) +(((-433 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3731 ((-347 |#4|) |#4| (-1 (-347 |#2|) |#2|)))) (-312) (-1154 |#1|) (-13 (-312) (-120) (-661 |#1| |#2|)) (-1154 |#3|)) (T -433)) +((-3731 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-347 *6) *6)) (-4 *6 (-1154 *5)) (-4 *5 (-312)) (-4 *7 (-13 (-312) (-120) (-661 *5 *6))) (-5 *2 (-347 *3)) (-5 *1 (-433 *5 *6 *7 *3)) (-4 *3 (-1154 *7))))) +((-2568 (((-85) $ $) NIL T ELT)) (-1214 (((-583 $) (-1084 $) (-1089)) NIL T ELT) (((-583 $) (-1084 $)) NIL T ELT) (((-583 $) (-857 $)) NIL T ELT)) (-1215 (($ (-1084 $) (-1089)) NIL T ELT) (($ (-1084 $)) NIL T ELT) (($ (-857 $)) NIL T ELT)) (-3188 (((-85) $) 39 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-1950 (((-85) $ $) 72 T ELT)) (-1599 (((-583 (-550 $)) $) 49 T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-1603 (($ $ (-249 $)) NIL T ELT) (($ $ (-583 (-249 $))) NIL T ELT) (($ $ (-583 (-550 $)) (-583 $)) NIL T ELT)) (-3774 (($ $) NIL T ELT)) (-3970 (((-347 $) $) NIL T ELT)) (-3037 (($ $) NIL T ELT)) (-1607 (((-85) $ $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-1216 (((-583 $) (-1084 $) (-1089)) NIL T ELT) (((-583 $) (-1084 $)) NIL T ELT) (((-583 $) (-857 $)) NIL T ELT)) (-3183 (($ (-1084 $) (-1089)) NIL T ELT) (($ (-1084 $)) NIL T ELT) (($ (-857 $)) NIL T ELT)) (-3157 (((-3 (-550 $) #1#) $) NIL T ELT) (((-3 (-484) #1#) $) NIL T ELT) (((-3 (-349 (-484)) #1#) $) NIL T ELT)) (-3156 (((-550 $) $) NIL T ELT) (((-484) $) NIL T ELT) (((-349 (-484)) $) 54 T ELT)) (-2564 (($ $ $) NIL T ELT)) (-2279 (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) NIL T ELT) (((-630 (-484)) (-630 $)) NIL T ELT) (((-2 (|:| |mat| (-630 (-349 (-484)))) (|:| |vec| (-1178 (-349 (-484))))) (-630 $) (-1178 $)) NIL T ELT) (((-630 (-349 (-484))) (-630 $)) NIL T ELT)) (-3841 (($ $) NIL T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-2563 (($ $ $) NIL T ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-3722 (((-85) $) NIL T ELT)) (-2573 (($ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-1598 (((-583 (-86)) $) NIL T ELT)) (-3594 (((-86) (-86)) NIL T ELT)) (-2410 (((-85) $) 42 T ELT)) (-2673 (((-85) $) NIL (|has| $ (-950 (-484))) ELT)) (-2998 (((-1038 (-484) (-550 $)) $) 37 T ELT)) (-3011 (($ $ (-484)) NIL T ELT)) (-3132 (((-1084 $) (-1084 $) (-550 $)) 86 T ELT) (((-1084 $) (-1084 $) (-583 (-550 $))) 61 T ELT) (($ $ (-550 $)) 75 T ELT) (($ $ (-583 (-550 $))) 76 T ELT)) (-1604 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-1596 (((-1084 $) (-550 $)) 73 (|has| $ (-961)) ELT)) (-3957 (($ (-1 $ $) (-550 $)) NIL T ELT)) (-1601 (((-3 (-550 $) #1#) $) NIL T ELT)) (-2280 (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL T ELT) (((-630 (-484)) (-1178 $)) NIL T ELT) (((-2 (|:| |mat| (-630 (-349 (-484)))) (|:| |vec| (-1178 (-349 (-484))))) (-1178 $) $) NIL T ELT) (((-630 (-349 (-484))) (-1178 $)) NIL T ELT)) (-1890 (($ (-583 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-1600 (((-583 (-550 $)) $) NIL T ELT)) (-2235 (($ (-86) $) NIL T ELT) (($ (-86) (-583 $)) NIL T ELT)) (-2633 (((-85) $ (-86)) NIL T ELT) (((-85) $ (-1089)) NIL T ELT)) (-2484 (($ $) NIL T ELT)) (-2603 (((-694) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3144 (($ (-583 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-1597 (((-85) $ $) NIL T ELT) (((-85) $ (-1089)) NIL T ELT)) (-3731 (((-347 $) $) NIL T ELT)) (-1605 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT)) (-3465 (((-3 $ #1#) $ $) NIL T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-2674 (((-85) $) NIL (|has| $ (-950 (-484))) ELT)) (-3767 (($ $ (-550 $) $) NIL T ELT) (($ $ (-583 (-550 $)) (-583 $)) NIL T ELT) (($ $ (-583 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ (-583 (-1089)) (-583 (-1 $ $))) NIL T ELT) (($ $ (-583 (-1089)) (-583 (-1 $ (-583 $)))) NIL T ELT) (($ $ (-1089) (-1 $ (-583 $))) NIL T ELT) (($ $ (-1089) (-1 $ $)) NIL T ELT) (($ $ (-583 (-86)) (-583 (-1 $ $))) NIL T ELT) (($ $ (-583 (-86)) (-583 (-1 $ (-583 $)))) NIL T ELT) (($ $ (-86) (-1 $ (-583 $))) NIL T ELT) (($ $ (-86) (-1 $ $)) NIL T ELT)) (-1606 (((-694) $) NIL T ELT)) (-3799 (($ (-86) $) NIL T ELT) (($ (-86) $ $) NIL T ELT) (($ (-86) $ $ $) NIL T ELT) (($ (-86) $ $ $ $) NIL T ELT) (($ (-86) (-583 $)) NIL T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL T ELT)) (-1602 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3757 (($ $) 36 T ELT) (($ $ (-694)) NIL T ELT)) (-2997 (((-1038 (-484) (-550 $)) $) 20 T ELT)) (-3185 (($ $) NIL (|has| $ (-961)) ELT)) (-3971 (((-329) $) 100 T ELT) (((-179) $) 108 T ELT) (((-142 (-329)) $) 116 T ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-550 $)) NIL T ELT) (($ (-349 (-484))) NIL T ELT) (($ $) NIL T ELT) (($ (-484)) NIL T ELT) (($ (-1038 (-484) (-550 $))) 21 T ELT)) (-3126 (((-694)) NIL T CONST)) (-2590 (($ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-2254 (((-85) (-86)) 92 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) 10 T CONST)) (-2666 (($) 22 T CONST)) (-2669 (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-3056 (((-85) $ $) 24 T ELT)) (-3948 (($ $ $) 44 T ELT)) (-3836 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (** (($ $ (-349 (-484))) NIL T ELT) (($ $ (-484)) 47 T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-830)) NIL T ELT)) (* (($ (-349 (-484)) $) NIL T ELT) (($ $ (-349 (-484))) NIL T ELT) (($ $ $) 27 T ELT) (($ (-484) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-830) $) NIL T ELT))) +(((-434) (-13 (-254) (-27) (-950 (-484)) (-950 (-349 (-484))) (-580 (-484)) (-933) (-580 (-349 (-484))) (-120) (-553 (-142 (-329))) (-190) (-555 (-1038 (-484) (-550 $))) (-10 -8 (-15 -2998 ((-1038 (-484) (-550 $)) $)) (-15 -2997 ((-1038 (-484) (-550 $)) $)) (-15 -3841 ($ $)) (-15 -1950 ((-85) $ $)) (-15 -3132 ((-1084 $) (-1084 $) (-550 $))) (-15 -3132 ((-1084 $) (-1084 $) (-583 (-550 $)))) (-15 -3132 ($ $ (-550 $))) (-15 -3132 ($ $ (-583 (-550 $))))))) (T -434)) +((-2998 (*1 *2 *1) (-12 (-5 *2 (-1038 (-484) (-550 (-434)))) (-5 *1 (-434)))) (-2997 (*1 *2 *1) (-12 (-5 *2 (-1038 (-484) (-550 (-434)))) (-5 *1 (-434)))) (-3841 (*1 *1 *1) (-5 *1 (-434))) (-1950 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-434)))) (-3132 (*1 *2 *2 *3) (-12 (-5 *2 (-1084 (-434))) (-5 *3 (-550 (-434))) (-5 *1 (-434)))) (-3132 (*1 *2 *2 *3) (-12 (-5 *2 (-1084 (-434))) (-5 *3 (-583 (-550 (-434)))) (-5 *1 (-434)))) (-3132 (*1 *1 *1 *2) (-12 (-5 *2 (-550 (-434))) (-5 *1 (-434)))) (-3132 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-550 (-434)))) (-5 *1 (-434))))) +((-2568 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2198 (((-1184) $ (-484) (-484)) NIL (|has| $ (-6 -3995)) ELT)) (-1731 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-756)) ELT)) (-1729 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-6 -3995)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-756))) ELT)) (-2909 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-756)) ELT)) (-3787 ((|#1| $ (-484) |#1|) 19 (|has| $ (-6 -3995)) ELT) ((|#1| $ (-1145 (-484)) |#1|) NIL (|has| $ (-6 -3995)) ELT)) (-3709 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3723 (($) NIL T CONST)) (-2297 (($ $) NIL (|has| $ (-6 -3995)) ELT)) (-2298 (($ $) NIL T ELT)) (-1352 (($ $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-3405 (($ |#1| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3841 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3994)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-1575 ((|#1| $ (-484) |#1|) 14 (|has| $ (-6 -3995)) ELT)) (-3112 ((|#1| $ (-484)) 13 T ELT)) (-3418 (((-484) (-1 (-85) |#1|) $) NIL T ELT) (((-484) |#1| $) NIL (|has| |#1| (-1013)) ELT) (((-484) |#1| $ (-484)) NIL (|has| |#1| (-1013)) ELT)) (-2889 (((-583 |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3613 (($ (-694) |#1|) NIL T ELT)) (-2200 (((-484) $) 9 (|has| (-484) (-756)) ELT)) (-2531 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-3517 (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2608 (((-583 |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3245 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-2201 (((-484) $) 16 (|has| (-484) (-756)) ELT)) (-2857 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-1948 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3242 (((-1072) $) NIL (|has| |#1| (-1013)) ELT)) (-2304 (($ |#1| $ (-484)) NIL T ELT) (($ $ $ (-484)) NIL T ELT)) (-2203 (((-583 (-484)) $) NIL T ELT)) (-2204 (((-85) (-484) $) NIL T ELT)) (-3243 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-3800 ((|#1| $) NIL (|has| (-484) (-756)) ELT)) (-1353 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2199 (($ $ |#1|) NIL (|has| $ (-6 -3995)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3767 (($ $ (-583 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1221 (((-85) $ $) NIL T ELT)) (-2202 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-2205 (((-583 |#1|) $) NIL T ELT)) (-3402 (((-85) $) NIL T ELT)) (-3564 (($) NIL T ELT)) (-3799 ((|#1| $ (-484) |#1|) NIL T ELT) ((|#1| $ (-484)) 18 T ELT) (($ $ (-1145 (-484))) NIL T ELT)) (-2305 (($ $ (-484)) NIL T ELT) (($ $ (-1145 (-484))) NIL T ELT)) (-1945 (((-694) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT) (((-694) |#1| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-1730 (($ $ $ (-484)) NIL (|has| $ (-6 -3995)) ELT)) (-3399 (($ $) NIL T ELT)) (-3971 (((-473) $) NIL (|has| |#1| (-553 (-473))) ELT)) (-3529 (($ (-583 |#1|)) NIL T ELT)) (-3801 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3945 (((-772) $) NIL (|has| |#1| (-552 (-772))) ELT)) (-1264 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-2566 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2567 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3056 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2684 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2685 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3956 (((-694) $) NIL (|has| $ (-6 -3994)) ELT))) +(((-435 |#1| |#2|) (-19 |#1|) (-1128) (-484)) (T -435)) +NIL +((-2568 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3787 ((|#1| $ (-484) (-484) |#1|) 44 T ELT)) (-1256 (($ $ (-484) |#2|) NIL T ELT)) (-1255 (($ $ (-484) |#3|) NIL T ELT)) (-3723 (($) NIL T CONST)) (-3111 ((|#2| $ (-484)) 53 T ELT)) (-1575 ((|#1| $ (-484) (-484) |#1|) 43 T ELT)) (-3112 ((|#1| $ (-484) (-484)) 38 T ELT)) (-2889 (((-583 |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3114 (((-694) $) 28 T ELT)) (-3613 (($ (-694) (-694) |#1|) 24 T ELT)) (-3113 (((-694) $) 30 T ELT)) (-3118 (((-484) $) 26 T ELT)) (-3116 (((-484) $) 27 T ELT)) (-2608 (((-583 |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3245 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-3117 (((-484) $) 29 T ELT)) (-3115 (((-484) $) 31 T ELT)) (-1948 (($ (-1 |#1| |#1|) $) 66 T ELT)) (-3957 (($ (-1 |#1| |#1|) $) 64 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 70 T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 74 T ELT)) (-3242 (((-1072) $) 48 (|has| |#1| (-1013)) ELT)) (-3243 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-2199 (($ $ |#1|) 61 T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3767 (($ $ (-583 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1221 (((-85) $ $) NIL T ELT)) (-3402 (((-85) $) 33 T ELT)) (-3564 (($) NIL T ELT)) (-3799 ((|#1| $ (-484) (-484)) 41 T ELT) ((|#1| $ (-484) (-484) |#1|) 72 T ELT)) (-1945 (((-694) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT) (((-694) |#1| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-3399 (($ $) 59 T ELT)) (-3110 ((|#3| $ (-484)) 55 T ELT)) (-3945 (((-772) $) NIL (|has| |#1| (-552 (-772))) ELT)) (-1264 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3056 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3956 (((-694) $) NIL (|has| $ (-6 -3994)) ELT))) +(((-436 |#1| |#2| |#3|) (-57 |#1| |#2| |#3|) (-1128) (-323 |#1|) (-323 |#1|)) (T -436)) +NIL +((-1952 (((-583 (-2 (|:| -2012 (-630 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-630 |#2|)))) (-2 (|:| -2012 (-630 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-630 |#2|))) (-694) (-694)) 32 T ELT)) (-1951 (((-583 (-1084 |#1|)) |#1| (-694) (-694) (-694)) 43 T ELT)) (-2077 (((-2 (|:| -2012 (-630 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-630 |#2|))) (-583 |#3|) (-583 (-2 (|:| -2012 (-630 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-630 |#2|)))) (-694)) 107 T ELT))) +(((-437 |#1| |#2| |#3|) (-10 -7 (-15 -1951 ((-583 (-1084 |#1|)) |#1| (-694) (-694) (-694))) (-15 -1952 ((-583 (-2 (|:| -2012 (-630 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-630 |#2|)))) (-2 (|:| -2012 (-630 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-630 |#2|))) (-694) (-694))) (-15 -2077 ((-2 (|:| -2012 (-630 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-630 |#2|))) (-583 |#3|) (-583 (-2 (|:| -2012 (-630 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-630 |#2|)))) (-694)))) (-299) (-1154 |#1|) (-1154 |#2|)) (T -437)) +((-2077 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 (-2 (|:| -2012 (-630 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-630 *7))))) (-5 *5 (-694)) (-4 *8 (-1154 *7)) (-4 *7 (-1154 *6)) (-4 *6 (-299)) (-5 *2 (-2 (|:| -2012 (-630 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-630 *7)))) (-5 *1 (-437 *6 *7 *8)))) (-1952 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-694)) (-4 *5 (-299)) (-4 *6 (-1154 *5)) (-5 *2 (-583 (-2 (|:| -2012 (-630 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-630 *6))))) (-5 *1 (-437 *5 *6 *7)) (-5 *3 (-2 (|:| -2012 (-630 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-630 *6)))) (-4 *7 (-1154 *6)))) (-1951 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-694)) (-4 *3 (-299)) (-4 *5 (-1154 *3)) (-5 *2 (-583 (-1084 *3))) (-5 *1 (-437 *3 *5 *6)) (-4 *6 (-1154 *5))))) +((-1958 (((-2 (|:| -2012 (-630 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-630 |#1|))) (-2 (|:| -2012 (-630 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-630 |#1|))) (-2 (|:| -2012 (-630 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-630 |#1|)))) 70 T ELT)) (-1953 ((|#1| (-630 |#1|) |#1| (-694)) 24 T ELT)) (-1955 (((-694) (-694) (-694)) 34 T ELT)) (-1957 (((-630 |#1|) (-630 |#1|) (-630 |#1|)) 50 T ELT)) (-1956 (((-630 |#1|) (-630 |#1|) (-630 |#1|) |#1|) 58 T ELT) (((-630 |#1|) (-630 |#1|) (-630 |#1|)) 55 T ELT)) (-1954 ((|#1| (-630 |#1|) (-630 |#1|) |#1| (-484)) 28 T ELT)) (-3328 ((|#1| (-630 |#1|)) 18 T ELT))) +(((-438 |#1| |#2| |#3|) (-10 -7 (-15 -3328 (|#1| (-630 |#1|))) (-15 -1953 (|#1| (-630 |#1|) |#1| (-694))) (-15 -1954 (|#1| (-630 |#1|) (-630 |#1|) |#1| (-484))) (-15 -1955 ((-694) (-694) (-694))) (-15 -1956 ((-630 |#1|) (-630 |#1|) (-630 |#1|))) (-15 -1956 ((-630 |#1|) (-630 |#1|) (-630 |#1|) |#1|)) (-15 -1957 ((-630 |#1|) (-630 |#1|) (-630 |#1|))) (-15 -1958 ((-2 (|:| -2012 (-630 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-630 |#1|))) (-2 (|:| -2012 (-630 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-630 |#1|))) (-2 (|:| -2012 (-630 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-630 |#1|)))))) (-13 (-258) (-10 -8 (-15 -3970 ((-347 $) $)))) (-1154 |#1|) (-352 |#1| |#2|)) (T -438)) +((-1958 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -2012 (-630 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-630 *3)))) (-4 *3 (-13 (-258) (-10 -8 (-15 -3970 ((-347 $) $))))) (-4 *4 (-1154 *3)) (-5 *1 (-438 *3 *4 *5)) (-4 *5 (-352 *3 *4)))) (-1957 (*1 *2 *2 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-13 (-258) (-10 -8 (-15 -3970 ((-347 $) $))))) (-4 *4 (-1154 *3)) (-5 *1 (-438 *3 *4 *5)) (-4 *5 (-352 *3 *4)))) (-1956 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-630 *3)) (-4 *3 (-13 (-258) (-10 -8 (-15 -3970 ((-347 $) $))))) (-4 *4 (-1154 *3)) (-5 *1 (-438 *3 *4 *5)) (-4 *5 (-352 *3 *4)))) (-1956 (*1 *2 *2 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-13 (-258) (-10 -8 (-15 -3970 ((-347 $) $))))) (-4 *4 (-1154 *3)) (-5 *1 (-438 *3 *4 *5)) (-4 *5 (-352 *3 *4)))) (-1955 (*1 *2 *2 *2) (-12 (-5 *2 (-694)) (-4 *3 (-13 (-258) (-10 -8 (-15 -3970 ((-347 $) $))))) (-4 *4 (-1154 *3)) (-5 *1 (-438 *3 *4 *5)) (-4 *5 (-352 *3 *4)))) (-1954 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-630 *2)) (-5 *4 (-484)) (-4 *2 (-13 (-258) (-10 -8 (-15 -3970 ((-347 $) $))))) (-4 *5 (-1154 *2)) (-5 *1 (-438 *2 *5 *6)) (-4 *6 (-352 *2 *5)))) (-1953 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-630 *2)) (-5 *4 (-694)) (-4 *2 (-13 (-258) (-10 -8 (-15 -3970 ((-347 $) $))))) (-4 *5 (-1154 *2)) (-5 *1 (-438 *2 *5 *6)) (-4 *6 (-352 *2 *5)))) (-3328 (*1 *2 *3) (-12 (-5 *3 (-630 *2)) (-4 *4 (-1154 *2)) (-4 *2 (-13 (-258) (-10 -8 (-15 -3970 ((-347 $) $))))) (-5 *1 (-438 *2 *4 *5)) (-4 *5 (-352 *2 *4))))) +((-2568 (((-85) $ $) NIL T ELT)) (-2313 (($ $) 44 T ELT)) (-3321 (($ $ $) 41 T ELT)) (-2198 (((-1184) $ (-484) (-484)) NIL (|has| $ (-6 -3995)) ELT)) (-1731 (((-85) $) NIL (|has| (-85) (-756)) ELT) (((-85) (-1 (-85) (-85) (-85)) $) NIL T ELT)) (-1729 (($ $) NIL (-12 (|has| $ (-6 -3995)) (|has| (-85) (-756))) ELT) (($ (-1 (-85) (-85) (-85)) $) NIL (|has| $ (-6 -3995)) ELT)) (-2909 (($ $) NIL (|has| (-85) (-756)) ELT) (($ (-1 (-85) (-85) (-85)) $) NIL T ELT)) (-3787 (((-85) $ (-1145 (-484)) (-85)) NIL (|has| $ (-6 -3995)) ELT) (((-85) $ (-484) (-85)) 43 (|has| $ (-6 -3995)) ELT)) (-3709 (($ (-1 (-85) (-85)) $) NIL (|has| $ (-6 -3994)) ELT)) (-3723 (($) NIL T CONST)) (-2297 (($ $) NIL (|has| $ (-6 -3995)) ELT)) (-2298 (($ $) NIL T ELT)) (-1352 (($ $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-85) (-1013))) ELT)) (-3405 (($ (-1 (-85) (-85)) $) NIL (|has| $ (-6 -3994)) ELT) (($ (-85) $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-85) (-1013))) ELT)) (-3841 (((-85) (-1 (-85) (-85) (-85)) $) NIL (|has| $ (-6 -3994)) ELT) (((-85) (-1 (-85) (-85) (-85)) $ (-85)) NIL (|has| $ (-6 -3994)) ELT) (((-85) (-1 (-85) (-85) (-85)) $ (-85) (-85)) NIL (-12 (|has| $ (-6 -3994)) (|has| (-85) (-1013))) ELT)) (-1575 (((-85) $ (-484) (-85)) NIL (|has| $ (-6 -3995)) ELT)) (-3112 (((-85) $ (-484)) NIL T ELT)) (-3418 (((-484) (-85) $ (-484)) NIL (|has| (-85) (-1013)) ELT) (((-484) (-85) $) NIL (|has| (-85) (-1013)) ELT) (((-484) (-1 (-85) (-85)) $) NIL T ELT)) (-2889 (((-583 (-85)) $) NIL (|has| $ (-6 -3994)) ELT)) (-2561 (($ $ $) 39 T ELT)) (-2560 (($ $) NIL T ELT)) (-1299 (($ $ $) NIL T ELT)) (-3613 (($ (-694) (-85)) 27 T ELT)) (-1300 (($ $ $) NIL T ELT)) (-2200 (((-484) $) 8 (|has| (-484) (-756)) ELT)) (-2531 (($ $ $) NIL T ELT)) (-3517 (($ $ $) NIL (|has| (-85) (-756)) ELT) (($ (-1 (-85) (-85) (-85)) $ $) NIL T ELT)) (-2608 (((-583 (-85)) $) NIL (|has| $ (-6 -3994)) ELT)) (-3245 (((-85) (-85) $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-85) (-1013))) ELT)) (-2201 (((-484) $) NIL (|has| (-484) (-756)) ELT)) (-2857 (($ $ $) NIL T ELT)) (-1948 (($ (-1 (-85) (-85)) $) NIL (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 (-85) (-85) (-85)) $ $) 36 T ELT) (($ (-1 (-85) (-85)) $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2304 (($ $ $ (-484)) NIL T ELT) (($ (-85) $ (-484)) NIL T ELT)) (-2203 (((-583 (-484)) $) NIL T ELT)) (-2204 (((-85) (-484) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3800 (((-85) $) NIL (|has| (-484) (-756)) ELT)) (-1353 (((-3 (-85) "failed") (-1 (-85) (-85)) $) NIL T ELT)) (-2199 (($ $ (-85)) NIL (|has| $ (-6 -3995)) ELT)) (-1946 (((-85) (-1 (-85) (-85)) $) NIL (|has| $ (-6 -3994)) ELT)) (-3767 (($ $ (-583 (-85)) (-583 (-85))) NIL (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1013))) ELT) (($ $ (-85) (-85)) NIL (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1013))) ELT) (($ $ (-249 (-85))) NIL (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1013))) ELT) (($ $ (-583 (-249 (-85)))) NIL (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1013))) ELT)) (-1221 (((-85) $ $) NIL T ELT)) (-2202 (((-85) (-85) $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-85) (-1013))) ELT)) (-2205 (((-583 (-85)) $) NIL T ELT)) (-3402 (((-85) $) NIL T ELT)) (-3564 (($) 29 T ELT)) (-3799 (($ $ (-1145 (-484))) NIL T ELT) (((-85) $ (-484)) 22 T ELT) (((-85) $ (-484) (-85)) NIL T ELT)) (-2305 (($ $ (-1145 (-484))) NIL T ELT) (($ $ (-484)) NIL T ELT)) (-1945 (((-694) (-85) $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-85) (-1013))) ELT) (((-694) (-1 (-85) (-85)) $) NIL (|has| $ (-6 -3994)) ELT)) (-1730 (($ $ $ (-484)) NIL (|has| $ (-6 -3995)) ELT)) (-3399 (($ $) 30 T ELT)) (-3971 (((-473) $) NIL (|has| (-85) (-553 (-473))) ELT)) (-3529 (($ (-583 (-85))) NIL T ELT)) (-3801 (($ (-583 $)) NIL T ELT) (($ $ $) NIL T ELT) (($ (-85) $) NIL T ELT) (($ $ (-85)) NIL T ELT)) (-3945 (((-772) $) 26 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-1947 (((-85) (-1 (-85) (-85)) $) NIL (|has| $ (-6 -3994)) ELT)) (-2562 (($ $ $) 37 T ELT)) (-2311 (($ $ $) 46 T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 31 T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) 32 T ELT)) (-2312 (($ $ $) 45 T ELT)) (-3956 (((-694) $) 13 (|has| $ (-6 -3994)) ELT))) +(((-439 |#1|) (-96) (-484)) (T -439)) +NIL +((-1960 (((-3 |#2| #1="failed") (-1 (-3 |#1| #1#) |#4|) (-1084 |#4|)) 35 T ELT)) (-1959 (((-1084 |#4|) (-1 |#4| |#1|) |#2|) 31 T ELT) ((|#2| (-1 |#1| |#4|) (-1084 |#4|)) 22 T ELT)) (-1961 (((-3 (-630 |#2|) #1#) (-1 (-3 |#1| #1#) |#4|) (-630 (-1084 |#4|))) 46 T ELT)) (-1962 (((-1084 (-1084 |#4|)) (-1 |#4| |#1|) |#3|) 55 T ELT))) +(((-440 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1959 (|#2| (-1 |#1| |#4|) (-1084 |#4|))) (-15 -1959 ((-1084 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -1960 ((-3 |#2| #1="failed") (-1 (-3 |#1| #1#) |#4|) (-1084 |#4|))) (-15 -1961 ((-3 (-630 |#2|) #1#) (-1 (-3 |#1| #1#) |#4|) (-630 (-1084 |#4|)))) (-15 -1962 ((-1084 (-1084 |#4|)) (-1 |#4| |#1|) |#3|))) (-961) (-1154 |#1|) (-1154 |#2|) (-961)) (T -440)) +((-1962 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-961)) (-4 *7 (-961)) (-4 *6 (-1154 *5)) (-5 *2 (-1084 (-1084 *7))) (-5 *1 (-440 *5 *6 *4 *7)) (-4 *4 (-1154 *6)))) (-1961 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-630 (-1084 *8))) (-4 *5 (-961)) (-4 *8 (-961)) (-4 *6 (-1154 *5)) (-5 *2 (-630 *6)) (-5 *1 (-440 *5 *6 *7 *8)) (-4 *7 (-1154 *6)))) (-1960 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1084 *7)) (-4 *5 (-961)) (-4 *7 (-961)) (-4 *2 (-1154 *5)) (-5 *1 (-440 *5 *2 *6 *7)) (-4 *6 (-1154 *2)))) (-1959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-961)) (-4 *7 (-961)) (-4 *4 (-1154 *5)) (-5 *2 (-1084 *7)) (-5 *1 (-440 *5 *4 *6 *7)) (-4 *6 (-1154 *4)))) (-1959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1084 *7)) (-4 *5 (-961)) (-4 *7 (-961)) (-4 *2 (-1154 *5)) (-5 *1 (-440 *5 *2 *6 *7)) (-4 *6 (-1154 *2))))) +((-2568 (((-85) $ $) NIL T ELT)) (-2531 (($ $ $) NIL T ELT)) (-2857 (($ $ $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1963 (((-1184) $) 25 T ELT)) (-3799 (((-1072) $ (-1089)) 30 T ELT)) (-3616 (((-1184) $) 20 T ELT)) (-3945 (((-772) $) 27 T ELT) (($ (-1072)) 26 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 12 T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) 10 T ELT))) +(((-441) (-13 (-756) (-555 (-1072)) (-10 -8 (-15 -3799 ((-1072) $ (-1089))) (-15 -3616 ((-1184) $)) (-15 -1963 ((-1184) $))))) (T -441)) +((-3799 (*1 *2 *1 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-1072)) (-5 *1 (-441)))) (-3616 (*1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-441)))) (-1963 (*1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-441))))) +((-3740 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19 T ELT)) (-3738 ((|#1| |#4|) 10 T ELT)) (-3739 ((|#3| |#4|) 17 T ELT))) +(((-442 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3738 (|#1| |#4|)) (-15 -3739 (|#3| |#4|)) (-15 -3740 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-495) (-904 |#1|) (-323 |#1|) (-323 |#2|)) (T -442)) +((-3740 (*1 *2 *3) (-12 (-4 *4 (-495)) (-4 *5 (-904 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-442 *4 *5 *6 *3)) (-4 *6 (-323 *4)) (-4 *3 (-323 *5)))) (-3739 (*1 *2 *3) (-12 (-4 *4 (-495)) (-4 *5 (-904 *4)) (-4 *2 (-323 *4)) (-5 *1 (-442 *4 *5 *2 *3)) (-4 *3 (-323 *5)))) (-3738 (*1 *2 *3) (-12 (-4 *4 (-904 *2)) (-4 *2 (-495)) (-5 *1 (-442 *2 *4 *5 *3)) (-4 *5 (-323 *2)) (-4 *3 (-323 *4))))) +((-2568 (((-85) $ $) NIL T ELT)) (-1973 (((-85) $ (-583 |#3|)) 127 T ELT) (((-85) $) 128 T ELT)) (-3188 (((-85) $) 178 T ELT)) (-1965 (($ $ |#4|) 117 T ELT) (($ $ |#4| (-583 |#3|)) 122 T ELT)) (-1964 (((-1079 (-583 (-857 |#1|)) (-583 (-249 (-857 |#1|)))) (-583 |#4|)) 171 (|has| |#3| (-553 (-1089))) ELT)) (-1972 (($ $ $) 107 T ELT) (($ $ |#4|) 105 T ELT)) (-2410 (((-85) $) 177 T ELT)) (-1969 (($ $) 132 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3238 (($ $ $) 99 T ELT) (($ (-583 $)) 101 T ELT)) (-1974 (((-85) |#4| $) 130 T ELT)) (-1975 (((-85) $ $) 82 T ELT)) (-1968 (($ (-583 |#4|)) 106 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1967 (($ (-583 |#4|)) 175 T ELT)) (-1966 (((-85) $) 176 T ELT)) (-2251 (($ $) 85 T ELT)) (-2695 (((-583 |#4|) $) 73 T ELT)) (-1971 (((-2 (|:| |mval| (-630 |#1|)) (|:| |invmval| (-630 |#1|)) (|:| |genIdeal| $)) $ (-583 |#3|)) NIL T ELT)) (-1976 (((-85) |#4| $) 89 T ELT)) (-3910 (((-484) $ (-583 |#3|)) 134 T ELT) (((-484) $) 135 T ELT)) (-3945 (((-772) $) 174 T ELT) (($ (-583 |#4|)) 102 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-1970 (($ (-2 (|:| |mval| (-630 |#1|)) (|:| |invmval| (-630 |#1|)) (|:| |genIdeal| $))) NIL T ELT)) (-3056 (((-85) $ $) 84 T ELT)) (-3838 (($ $ $) 109 T ELT)) (** (($ $ (-694)) 115 T ELT)) (* (($ $ $) 113 T ELT))) +(((-443 |#1| |#2| |#3| |#4|) (-13 (-1013) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-694))) (-15 -3838 ($ $ $)) (-15 -2410 ((-85) $)) (-15 -3188 ((-85) $)) (-15 -1976 ((-85) |#4| $)) (-15 -1975 ((-85) $ $)) (-15 -1974 ((-85) |#4| $)) (-15 -1973 ((-85) $ (-583 |#3|))) (-15 -1973 ((-85) $)) (-15 -3238 ($ $ $)) (-15 -3238 ($ (-583 $))) (-15 -1972 ($ $ $)) (-15 -1972 ($ $ |#4|)) (-15 -2251 ($ $)) (-15 -1971 ((-2 (|:| |mval| (-630 |#1|)) (|:| |invmval| (-630 |#1|)) (|:| |genIdeal| $)) $ (-583 |#3|))) (-15 -1970 ($ (-2 (|:| |mval| (-630 |#1|)) (|:| |invmval| (-630 |#1|)) (|:| |genIdeal| $)))) (-15 -3910 ((-484) $ (-583 |#3|))) (-15 -3910 ((-484) $)) (-15 -1969 ($ $)) (-15 -1968 ($ (-583 |#4|))) (-15 -1967 ($ (-583 |#4|))) (-15 -1966 ((-85) $)) (-15 -2695 ((-583 |#4|) $)) (-15 -3945 ($ (-583 |#4|))) (-15 -1965 ($ $ |#4|)) (-15 -1965 ($ $ |#4| (-583 |#3|))) (IF (|has| |#3| (-553 (-1089))) (-15 -1964 ((-1079 (-583 (-857 |#1|)) (-583 (-249 (-857 |#1|)))) (-583 |#4|))) |%noBranch|))) (-312) (-717) (-756) (-861 |#1| |#2| |#3|)) (T -443)) +((* (*1 *1 *1 *1) (-12 (-4 *2 (-312)) (-4 *3 (-717)) (-4 *4 (-756)) (-5 *1 (-443 *2 *3 *4 *5)) (-4 *5 (-861 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *3 (-312)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-443 *3 *4 *5 *6)) (-4 *6 (-861 *3 *4 *5)))) (-3838 (*1 *1 *1 *1) (-12 (-4 *2 (-312)) (-4 *3 (-717)) (-4 *4 (-756)) (-5 *1 (-443 *2 *3 *4 *5)) (-4 *5 (-861 *2 *3 *4)))) (-2410 (*1 *2 *1) (-12 (-4 *3 (-312)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85)) (-5 *1 (-443 *3 *4 *5 *6)) (-4 *6 (-861 *3 *4 *5)))) (-3188 (*1 *2 *1) (-12 (-4 *3 (-312)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85)) (-5 *1 (-443 *3 *4 *5 *6)) (-4 *6 (-861 *3 *4 *5)))) (-1976 (*1 *2 *3 *1) (-12 (-4 *4 (-312)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-443 *4 *5 *6 *3)) (-4 *3 (-861 *4 *5 *6)))) (-1975 (*1 *2 *1 *1) (-12 (-4 *3 (-312)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85)) (-5 *1 (-443 *3 *4 *5 *6)) (-4 *6 (-861 *3 *4 *5)))) (-1974 (*1 *2 *3 *1) (-12 (-4 *4 (-312)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-443 *4 *5 *6 *3)) (-4 *3 (-861 *4 *5 *6)))) (-1973 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *6)) (-4 *6 (-756)) (-4 *4 (-312)) (-4 *5 (-717)) (-5 *2 (-85)) (-5 *1 (-443 *4 *5 *6 *7)) (-4 *7 (-861 *4 *5 *6)))) (-1973 (*1 *2 *1) (-12 (-4 *3 (-312)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85)) (-5 *1 (-443 *3 *4 *5 *6)) (-4 *6 (-861 *3 *4 *5)))) (-3238 (*1 *1 *1 *1) (-12 (-4 *2 (-312)) (-4 *3 (-717)) (-4 *4 (-756)) (-5 *1 (-443 *2 *3 *4 *5)) (-4 *5 (-861 *2 *3 *4)))) (-3238 (*1 *1 *2) (-12 (-5 *2 (-583 (-443 *3 *4 *5 *6))) (-4 *3 (-312)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-443 *3 *4 *5 *6)) (-4 *6 (-861 *3 *4 *5)))) (-1972 (*1 *1 *1 *1) (-12 (-4 *2 (-312)) (-4 *3 (-717)) (-4 *4 (-756)) (-5 *1 (-443 *2 *3 *4 *5)) (-4 *5 (-861 *2 *3 *4)))) (-1972 (*1 *1 *1 *2) (-12 (-4 *3 (-312)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-443 *3 *4 *5 *2)) (-4 *2 (-861 *3 *4 *5)))) (-2251 (*1 *1 *1) (-12 (-4 *2 (-312)) (-4 *3 (-717)) (-4 *4 (-756)) (-5 *1 (-443 *2 *3 *4 *5)) (-4 *5 (-861 *2 *3 *4)))) (-1971 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *6)) (-4 *6 (-756)) (-4 *4 (-312)) (-4 *5 (-717)) (-5 *2 (-2 (|:| |mval| (-630 *4)) (|:| |invmval| (-630 *4)) (|:| |genIdeal| (-443 *4 *5 *6 *7)))) (-5 *1 (-443 *4 *5 *6 *7)) (-4 *7 (-861 *4 *5 *6)))) (-1970 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-630 *3)) (|:| |invmval| (-630 *3)) (|:| |genIdeal| (-443 *3 *4 *5 *6)))) (-4 *3 (-312)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-443 *3 *4 *5 *6)) (-4 *6 (-861 *3 *4 *5)))) (-3910 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *6)) (-4 *6 (-756)) (-4 *4 (-312)) (-4 *5 (-717)) (-5 *2 (-484)) (-5 *1 (-443 *4 *5 *6 *7)) (-4 *7 (-861 *4 *5 *6)))) (-3910 (*1 *2 *1) (-12 (-4 *3 (-312)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-484)) (-5 *1 (-443 *3 *4 *5 *6)) (-4 *6 (-861 *3 *4 *5)))) (-1969 (*1 *1 *1) (-12 (-4 *2 (-312)) (-4 *3 (-717)) (-4 *4 (-756)) (-5 *1 (-443 *2 *3 *4 *5)) (-4 *5 (-861 *2 *3 *4)))) (-1968 (*1 *1 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-861 *3 *4 *5)) (-4 *3 (-312)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-443 *3 *4 *5 *6)))) (-1967 (*1 *1 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-861 *3 *4 *5)) (-4 *3 (-312)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-443 *3 *4 *5 *6)))) (-1966 (*1 *2 *1) (-12 (-4 *3 (-312)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85)) (-5 *1 (-443 *3 *4 *5 *6)) (-4 *6 (-861 *3 *4 *5)))) (-2695 (*1 *2 *1) (-12 (-4 *3 (-312)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-583 *6)) (-5 *1 (-443 *3 *4 *5 *6)) (-4 *6 (-861 *3 *4 *5)))) (-3945 (*1 *1 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-861 *3 *4 *5)) (-4 *3 (-312)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-443 *3 *4 *5 *6)))) (-1965 (*1 *1 *1 *2) (-12 (-4 *3 (-312)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-443 *3 *4 *5 *2)) (-4 *2 (-861 *3 *4 *5)))) (-1965 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-583 *6)) (-4 *6 (-756)) (-4 *4 (-312)) (-4 *5 (-717)) (-5 *1 (-443 *4 *5 *6 *2)) (-4 *2 (-861 *4 *5 *6)))) (-1964 (*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-861 *4 *5 *6)) (-4 *6 (-553 (-1089))) (-4 *4 (-312)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-1079 (-583 (-857 *4)) (-583 (-249 (-857 *4))))) (-5 *1 (-443 *4 *5 *6 *7))))) +((-1977 (((-85) (-443 (-349 (-484)) (-197 |#2| (-694)) (-773 |#1|) (-206 |#1| (-349 (-484))))) 178 T ELT)) (-1978 (((-85) (-443 (-349 (-484)) (-197 |#2| (-694)) (-773 |#1|) (-206 |#1| (-349 (-484))))) 179 T ELT)) (-1979 (((-443 (-349 (-484)) (-197 |#2| (-694)) (-773 |#1|) (-206 |#1| (-349 (-484)))) (-443 (-349 (-484)) (-197 |#2| (-694)) (-773 |#1|) (-206 |#1| (-349 (-484))))) 129 T ELT)) (-3722 (((-85) (-443 (-349 (-484)) (-197 |#2| (-694)) (-773 |#1|) (-206 |#1| (-349 (-484))))) NIL T ELT)) (-1980 (((-583 (-443 (-349 (-484)) (-197 |#2| (-694)) (-773 |#1|) (-206 |#1| (-349 (-484))))) (-443 (-349 (-484)) (-197 |#2| (-694)) (-773 |#1|) (-206 |#1| (-349 (-484))))) 181 T ELT)) (-1981 (((-443 (-349 (-484)) (-197 |#2| (-694)) (-773 |#1|) (-206 |#1| (-349 (-484)))) (-443 (-349 (-484)) (-197 |#2| (-694)) (-773 |#1|) (-206 |#1| (-349 (-484)))) (-583 (-773 |#1|))) 197 T ELT))) +(((-444 |#1| |#2|) (-10 -7 (-15 -1977 ((-85) (-443 (-349 (-484)) (-197 |#2| (-694)) (-773 |#1|) (-206 |#1| (-349 (-484)))))) (-15 -1978 ((-85) (-443 (-349 (-484)) (-197 |#2| (-694)) (-773 |#1|) (-206 |#1| (-349 (-484)))))) (-15 -3722 ((-85) (-443 (-349 (-484)) (-197 |#2| (-694)) (-773 |#1|) (-206 |#1| (-349 (-484)))))) (-15 -1979 ((-443 (-349 (-484)) (-197 |#2| (-694)) (-773 |#1|) (-206 |#1| (-349 (-484)))) (-443 (-349 (-484)) (-197 |#2| (-694)) (-773 |#1|) (-206 |#1| (-349 (-484)))))) (-15 -1980 ((-583 (-443 (-349 (-484)) (-197 |#2| (-694)) (-773 |#1|) (-206 |#1| (-349 (-484))))) (-443 (-349 (-484)) (-197 |#2| (-694)) (-773 |#1|) (-206 |#1| (-349 (-484)))))) (-15 -1981 ((-443 (-349 (-484)) (-197 |#2| (-694)) (-773 |#1|) (-206 |#1| (-349 (-484)))) (-443 (-349 (-484)) (-197 |#2| (-694)) (-773 |#1|) (-206 |#1| (-349 (-484)))) (-583 (-773 |#1|))))) (-583 (-1089)) (-694)) (T -444)) +((-1981 (*1 *2 *2 *3) (-12 (-5 *2 (-443 (-349 (-484)) (-197 *5 (-694)) (-773 *4) (-206 *4 (-349 (-484))))) (-5 *3 (-583 (-773 *4))) (-14 *4 (-583 (-1089))) (-14 *5 (-694)) (-5 *1 (-444 *4 *5)))) (-1980 (*1 *2 *3) (-12 (-14 *4 (-583 (-1089))) (-14 *5 (-694)) (-5 *2 (-583 (-443 (-349 (-484)) (-197 *5 (-694)) (-773 *4) (-206 *4 (-349 (-484)))))) (-5 *1 (-444 *4 *5)) (-5 *3 (-443 (-349 (-484)) (-197 *5 (-694)) (-773 *4) (-206 *4 (-349 (-484))))))) (-1979 (*1 *2 *2) (-12 (-5 *2 (-443 (-349 (-484)) (-197 *4 (-694)) (-773 *3) (-206 *3 (-349 (-484))))) (-14 *3 (-583 (-1089))) (-14 *4 (-694)) (-5 *1 (-444 *3 *4)))) (-3722 (*1 *2 *3) (-12 (-5 *3 (-443 (-349 (-484)) (-197 *5 (-694)) (-773 *4) (-206 *4 (-349 (-484))))) (-14 *4 (-583 (-1089))) (-14 *5 (-694)) (-5 *2 (-85)) (-5 *1 (-444 *4 *5)))) (-1978 (*1 *2 *3) (-12 (-5 *3 (-443 (-349 (-484)) (-197 *5 (-694)) (-773 *4) (-206 *4 (-349 (-484))))) (-14 *4 (-583 (-1089))) (-14 *5 (-694)) (-5 *2 (-85)) (-5 *1 (-444 *4 *5)))) (-1977 (*1 *2 *3) (-12 (-5 *3 (-443 (-349 (-484)) (-197 *5 (-694)) (-773 *4) (-206 *4 (-349 (-484))))) (-14 *4 (-583 (-1089))) (-14 *5 (-694)) (-5 *2 (-85)) (-5 *1 (-444 *4 *5))))) +((-3799 ((|#1| $ |#1| |#1|) 6 T ELT))) +(((-445 |#1|) (-113) (-72)) (T -445)) +NIL +(-13 (-80 |t#1|) (-10 -8 (-6 (|%Rule| |idempotence| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |t#1|)) (-3056 (|f| |x| |x|) |x|)))))) +(((-80 |#1|) . T) ((|MappingCategory| |#1| |#1| |#1|) . T) ((-1128) . T)) +((-2568 (((-85) $ $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1982 (($) 6 T ELT)) (-3945 (((-772) $) 10 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 8 T ELT))) +(((-446) (-13 (-1013) (-10 -8 (-15 -1982 ($))))) (T -446)) +((-1982 (*1 *1) (-5 *1 (-446)))) +((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-3773 (((-583 (-453 |#1| |#2|)) $) 10 T ELT)) (-1311 (((-3 $ "failed") $ $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-3958 (($ $) NIL T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2893 (($ |#1| |#2|) NIL T ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1983 ((|#2| $) NIL T ELT)) (-3174 ((|#1| $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3971 (($ (-583 (-453 |#1| |#2|))) 15 T ELT)) (-3945 (((-772) $) NIL T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2660 (($) 20 T CONST)) (-3056 (((-85) $ $) NIL T ELT)) (-3836 (($ $) 16 T ELT) (($ $ $) 36 T ELT)) (-3838 (($ $ $) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 25 T ELT))) +(((-447 |#1| |#2|) (-13 (-21) (-449 |#1| |#2|)) (-21) (-759)) (T -447)) +NIL +((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) 16 T ELT)) (-3773 (((-583 (-453 |#1| |#2|)) $) 13 T ELT)) (-3723 (($) NIL T CONST)) (-3958 (($ $) 39 T ELT)) (-1213 (((-85) $ $) 44 T ELT)) (-2893 (($ |#1| |#2|) 36 T ELT)) (-3957 (($ (-1 |#1| |#1|) $) 38 T ELT)) (-1983 ((|#2| $) NIL T ELT)) (-3174 ((|#1| $) 41 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3971 (($ (-583 (-453 |#1| |#2|))) 11 T ELT)) (-3945 (((-772) $) NIL T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2660 (($) 12 T CONST)) (-3056 (((-85) $ $) NIL T ELT)) (-3838 (($ $ $) 30 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) 35 T ELT))) +(((-448 |#1| |#2|) (-13 (-23) (-449 |#1| |#2|)) (-23) (-759)) (T -448)) +NIL +((-2568 (((-85) $ $) 7 T ELT)) (-3773 (((-583 (-453 |#1| |#2|)) $) 16 T ELT)) (-3958 (($ $) 17 T ELT)) (-2893 (($ |#1| |#2|) 20 T ELT)) (-3957 (($ (-1 |#1| |#1|) $) 21 T ELT)) (-1983 ((|#2| $) 18 T ELT)) (-3174 ((|#1| $) 19 T ELT)) (-3242 (((-1072) $) 15 (-12 (|has| |#2| (-1013)) (|has| |#1| (-1013))) ELT)) (-3243 (((-1033) $) 14 (-12 (|has| |#2| (-1013)) (|has| |#1| (-1013))) ELT)) (-3971 (($ (-583 (-453 |#1| |#2|))) 22 T ELT)) (-3945 (((-772) $) 13 (-12 (|has| |#2| (-1013)) (|has| |#1| (-1013))) ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-3056 (((-85) $ $) 8 T ELT))) +(((-449 |#1| |#2|) (-113) (-72) (-759)) (T -449)) +((-3957 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-449 *3 *4)) (-4 *3 (-72)) (-4 *4 (-759)))) (-2893 (*1 *1 *2 *3) (-12 (-4 *1 (-449 *2 *3)) (-4 *2 (-72)) (-4 *3 (-759)))) (-3174 (*1 *2 *1) (-12 (-4 *1 (-449 *2 *3)) (-4 *3 (-759)) (-4 *2 (-72)))) (-1983 (*1 *2 *1) (-12 (-4 *1 (-449 *3 *2)) (-4 *3 (-72)) (-4 *2 (-759)))) (-3958 (*1 *1 *1) (-12 (-4 *1 (-449 *2 *3)) (-4 *2 (-72)) (-4 *3 (-759)))) (-3773 (*1 *2 *1) (-12 (-4 *1 (-449 *3 *4)) (-4 *3 (-72)) (-4 *4 (-759)) (-5 *2 (-583 (-453 *3 *4)))))) +(-13 (-72) (-557 (-583 (-453 |t#1| |t#2|))) (-10 -8 (IF (|has| |t#1| (-1013)) (IF (|has| |t#2| (-1013)) (-6 (-1013)) |%noBranch|) |%noBranch|) (-15 -3957 ($ (-1 |t#1| |t#1|) $)) (-15 -2893 ($ |t#1| |t#2|)) (-15 -3174 (|t#1| $)) (-15 -1983 (|t#2| $)) (-15 -3958 ($ $)) (-15 -3773 ((-583 (-453 |t#1| |t#2|)) $)))) +(((-72) . T) ((-552 (-772)) -12 (|has| |#1| (-1013)) (|has| |#2| (-1013))) ((-557 (-583 (-453 |#1| |#2|))) . T) ((-13) . T) ((-1013) -12 (|has| |#1| (-1013)) (|has| |#2| (-1013))) ((-1128) . T)) +((-2568 (((-85) $ $) NIL T ELT)) (-3773 (((-583 (-453 |#1| |#2|)) $) 29 T ELT)) (-3958 (($ $) 23 T ELT)) (-2893 (($ |#1| |#2|) 19 T ELT)) (-3957 (($ (-1 |#1| |#1|) $) 21 T ELT)) (-1983 ((|#2| $) 28 T ELT)) (-3174 ((|#1| $) 27 T ELT)) (-3242 (((-1072) $) NIL (-12 (|has| |#1| (-1013)) (|has| |#2| (-1013))) ELT)) (-3243 (((-1033) $) NIL (-12 (|has| |#1| (-1013)) (|has| |#2| (-1013))) ELT)) (-3971 (($ (-583 (-453 |#1| |#2|))) 30 T ELT)) (-1984 (($ $ $ (-1 |#1| |#1| |#1|) (-1 (-85) |#1| |#1|)) 40 T ELT)) (-3945 (((-772) $) 17 (-12 (|has| |#1| (-1013)) (|has| |#2| (-1013))) ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT))) +(((-450 |#1| |#2|) (-13 (-449 |#1| |#2|) (-10 -8 (-15 -1984 ($ $ $ (-1 |#1| |#1| |#1|) (-1 (-85) |#1| |#1|))))) (-72) (-759)) (T -450)) +((-1984 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4 *4)) (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-72)) (-5 *1 (-450 *4 *5)) (-4 *5 (-759))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-3773 (((-583 (-453 |#1| |#2|)) $) 10 T ELT)) (-3723 (($) NIL T CONST)) (-3958 (($ $) NIL T ELT)) (-3186 (((-85) $) NIL T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2893 (($ |#1| |#2|) NIL T ELT)) (-2531 (($ $ $) NIL T ELT)) (-2857 (($ $ $) NIL T ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1983 ((|#2| $) NIL T ELT)) (-3174 ((|#1| $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3971 (($ (-583 (-453 |#1| |#2|))) NIL T ELT)) (-3945 (((-772) $) NIL T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2660 (($) NIL T CONST)) (-2566 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) 21 T ELT)) (-3838 (($ $ $) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT))) +(((-451 |#1| |#2|) (-13 (-716) (-449 |#1| |#2|)) (-716) (-759)) (T -451)) +NIL +((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-3773 (((-583 (-453 |#1| |#2|)) $) NIL T ELT)) (-2483 (($ $ $) 24 T ELT)) (-1311 (((-3 $ "failed") $ $) 20 T ELT)) (-3723 (($) NIL T CONST)) (-3958 (($ $) NIL T ELT)) (-3186 (((-85) $) NIL T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2893 (($ |#1| |#2|) NIL T ELT)) (-2531 (($ $ $) NIL T ELT)) (-2857 (($ $ $) NIL T ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1983 ((|#2| $) NIL T ELT)) (-3174 ((|#1| $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3971 (($ (-583 (-453 |#1| |#2|))) NIL T ELT)) (-3945 (((-772) $) NIL T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2660 (($) NIL T CONST)) (-2566 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT))) +(((-452 |#1| |#2|) (-13 (-717) (-449 |#1| |#2|)) (-717) (-756)) (T -452)) +NIL +((-2568 (((-85) $ $) NIL T ELT)) (-1985 (($ |#2| |#1|) 9 T ELT)) (-2400 ((|#2| $) 11 T ELT)) (-3945 (((-782 |#2| |#1|) $) 14 T ELT)) (-3676 ((|#1| $) 13 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT))) +(((-453 |#1| |#2|) (-13 (-72) (-552 (-782 |#2| |#1|)) (-10 -8 (-15 -1985 ($ |#2| |#1|)) (-15 -2400 (|#2| $)) (-15 -3676 (|#1| $)))) (-72) (-759)) (T -453)) +((-1985 (*1 *1 *2 *3) (-12 (-5 *1 (-453 *3 *2)) (-4 *3 (-72)) (-4 *2 (-759)))) (-2400 (*1 *2 *1) (-12 (-4 *2 (-759)) (-5 *1 (-453 *3 *2)) (-4 *3 (-72)))) (-3676 (*1 *2 *1) (-12 (-4 *2 (-72)) (-5 *1 (-453 *2 *3)) (-4 *3 (-759))))) +((-3767 (($ $ (-583 |#2|) (-583 |#3|)) NIL T ELT) (($ $ |#2| |#3|) 12 T ELT))) +(((-454 |#1| |#2| |#3|) (-10 -7 (-15 -3767 (|#1| |#1| |#2| |#3|)) (-15 -3767 (|#1| |#1| (-583 |#2|) (-583 |#3|)))) (-455 |#2| |#3|) (-1013) (-1128)) (T -454)) +NIL +((-3767 (($ $ (-583 |#1|) (-583 |#2|)) 7 T ELT) (($ $ |#1| |#2|) 6 T ELT))) +(((-455 |#1| |#2|) (-113) (-1013) (-1128)) (T -455)) +((-3767 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *4)) (-5 *3 (-583 *5)) (-4 *1 (-455 *4 *5)) (-4 *4 (-1013)) (-4 *5 (-1128)))) (-3767 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-455 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1128))))) +(-13 (-10 -8 (-15 -3767 ($ $ |t#1| |t#2|)) (-15 -3767 ($ $ (-583 |t#1|) (-583 |t#2|))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) 17 T ELT)) (-3773 (((-583 (-2 (|:| |gen| |#1|) (|:| -3942 |#2|))) $) 19 T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3136 (((-694) $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 |#1| #1#) $) NIL T ELT)) (-3156 ((|#1| $) NIL T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2299 ((|#1| $ (-484)) 24 T ELT)) (-1621 ((|#2| $ (-484)) 22 T ELT)) (-2290 (($ (-1 |#1| |#1|) $) 48 T ELT)) (-1620 (($ (-1 |#2| |#2|) $) 45 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-1619 (($ $ $) 55 (|has| |#2| (-716)) ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) 44 T ELT) (($ |#1|) NIL T ELT)) (-3676 ((|#2| |#1| $) 51 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2660 (($) 11 T CONST)) (-3056 (((-85) $ $) 30 T ELT)) (-3838 (($ $ $) 28 T ELT) (($ |#1| $) 26 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) 37 T ELT) (($ |#2| |#1|) 32 T ELT))) +(((-456 |#1| |#2| |#3|) (-274 |#1| |#2|) (-1013) (-104) |#2|) (T -456)) +NIL +((-2568 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2198 (((-1184) $ (-484) (-484)) NIL (|has| $ (-6 -3995)) ELT)) (-1731 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-756)) ELT)) (-1729 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-6 -3995)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-756))) ELT)) (-2909 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-756)) ELT)) (-1986 (((-85) (-85)) 32 T ELT)) (-3787 ((|#1| $ (-484) |#1|) 42 (|has| $ (-6 -3995)) ELT) ((|#1| $ (-1145 (-484)) |#1|) NIL (|has| $ (-6 -3995)) ELT)) (-1569 (($ (-1 (-85) |#1|) $) 79 T ELT)) (-3709 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3723 (($) NIL T CONST)) (-2297 (($ $) NIL (|has| $ (-6 -3995)) ELT)) (-2298 (($ $) NIL T ELT)) (-2368 (($ $) 83 (|has| |#1| (-1013)) ELT)) (-1352 (($ $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-3404 (($ |#1| $) NIL (|has| |#1| (-1013)) ELT) (($ (-1 (-85) |#1|) $) 66 T ELT)) (-3405 (($ |#1| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3841 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3994)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-1575 ((|#1| $ (-484) |#1|) NIL (|has| $ (-6 -3995)) ELT)) (-3112 ((|#1| $ (-484)) NIL T ELT)) (-3418 (((-484) (-1 (-85) |#1|) $) NIL T ELT) (((-484) |#1| $) NIL (|has| |#1| (-1013)) ELT) (((-484) |#1| $ (-484)) NIL (|has| |#1| (-1013)) ELT)) (-1987 (($ $ (-484)) 19 T ELT)) (-1988 (((-694) $) 13 T ELT)) (-2889 (((-583 |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3613 (($ (-694) |#1|) 31 T ELT)) (-2200 (((-484) $) 29 (|has| (-484) (-756)) ELT)) (-2531 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2856 (($ $ $) NIL (|has| |#1| (-756)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) 57 T ELT)) (-3517 (($ (-1 (-85) |#1| |#1|) $ $) 58 T ELT) (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2608 (((-583 |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3245 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-2201 (((-484) $) 28 (|has| (-484) (-756)) ELT)) (-2857 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-1948 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3242 (((-1072) $) NIL (|has| |#1| (-1013)) ELT)) (-3608 (($ $ $ (-484)) 75 T ELT) (($ |#1| $ (-484)) 59 T ELT)) (-2304 (($ |#1| $ (-484)) NIL T ELT) (($ $ $ (-484)) NIL T ELT)) (-2203 (((-583 (-484)) $) NIL T ELT)) (-2204 (((-85) (-484) $) NIL T ELT)) (-3243 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-1989 (($ (-583 |#1|)) 43 T ELT)) (-3800 ((|#1| $) NIL (|has| (-484) (-756)) ELT)) (-1353 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2199 (($ $ |#1|) 24 (|has| $ (-6 -3995)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3767 (($ $ (-583 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1221 (((-85) $ $) 62 T ELT)) (-2202 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-2205 (((-583 |#1|) $) NIL T ELT)) (-3402 (((-85) $) NIL T ELT)) (-3564 (($) 21 T ELT)) (-3799 ((|#1| $ (-484) |#1|) NIL T ELT) ((|#1| $ (-484)) 55 T ELT) (($ $ (-1145 (-484))) NIL T ELT)) (-1570 (($ $ (-1145 (-484))) 73 T ELT) (($ $ (-484)) 67 T ELT)) (-2305 (($ $ (-484)) NIL T ELT) (($ $ (-1145 (-484))) NIL T ELT)) (-1945 (((-694) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT) (((-694) |#1| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-1730 (($ $ $ (-484)) 63 (|has| $ (-6 -3995)) ELT)) (-3399 (($ $) 53 T ELT)) (-3971 (((-473) $) NIL (|has| |#1| (-553 (-473))) ELT)) (-3529 (($ (-583 |#1|)) NIL T ELT)) (-3790 (($ $ $) 64 T ELT) (($ $ |#1|) 61 T ELT)) (-3801 (($ $ |#1|) NIL T ELT) (($ |#1| $) 60 T ELT) (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3945 (((-772) $) NIL (|has| |#1| (-552 (-772))) ELT)) (-1264 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-2566 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2567 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3056 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2684 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2685 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3956 (((-694) $) 22 (|has| $ (-6 -3994)) ELT))) +(((-457 |#1| |#2|) (-13 (-19 |#1|) (-237 |#1|) (-10 -8 (-15 -1989 ($ (-583 |#1|))) (-15 -1988 ((-694) $)) (-15 -1987 ($ $ (-484))) (-15 -1986 ((-85) (-85))))) (-1128) (-484)) (T -457)) +((-1989 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1128)) (-5 *1 (-457 *3 *4)) (-14 *4 (-484)))) (-1988 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-457 *3 *4)) (-4 *3 (-1128)) (-14 *4 (-484)))) (-1987 (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-457 *3 *4)) (-4 *3 (-1128)) (-14 *4 *2))) (-1986 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-457 *3 *4)) (-4 *3 (-1128)) (-14 *4 (-484))))) +((-2568 (((-85) $ $) NIL T ELT)) (-1991 (((-1048) $) 12 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1990 (((-1048) $) 14 T ELT)) (-3921 (((-1048) $) 10 T ELT)) (-3945 (((-772) $) 20 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT))) +(((-458) (-13 (-995) (-10 -8 (-15 -3921 ((-1048) $)) (-15 -1991 ((-1048) $)) (-15 -1990 ((-1048) $))))) (T -458)) +((-3921 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-458)))) (-1991 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-458)))) (-1990 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-458))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-3931 (((-85) $) NIL T ELT)) (-3928 (((-694)) NIL T ELT)) (-3329 (((-517 |#1|) $) NIL T ELT) (($ $ (-830)) NIL (|has| (-517 |#1|) (-319)) ELT)) (-1674 (((-1101 (-830) (-694)) (-484)) NIL (|has| (-517 |#1|) (-319)) ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3774 (($ $) NIL T ELT)) (-3970 (((-347 $) $) NIL T ELT)) (-1607 (((-85) $ $) NIL T ELT)) (-3136 (((-694)) NIL (|has| (-517 |#1|) (-319)) ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 (-517 |#1|) #1#) $) NIL T ELT)) (-3156 (((-517 |#1|) $) NIL T ELT)) (-1791 (($ (-1178 (-517 |#1|))) NIL T ELT)) (-1672 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-517 |#1|) (-319)) ELT)) (-2564 (($ $ $) NIL T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-2994 (($) NIL (|has| (-517 |#1|) (-319)) ELT)) (-2563 (($ $ $) NIL T ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-2833 (($) NIL (|has| (-517 |#1|) (-319)) ELT)) (-1679 (((-85) $) NIL (|has| (-517 |#1|) (-319)) ELT)) (-1763 (($ $ (-694)) NIL (OR (|has| (-517 |#1|) (-118)) (|has| (-517 |#1|) (-319))) ELT) (($ $) NIL (OR (|has| (-517 |#1|) (-118)) (|has| (-517 |#1|) (-319))) ELT)) (-3722 (((-85) $) NIL T ELT)) (-3771 (((-830) $) NIL (|has| (-517 |#1|) (-319)) ELT) (((-743 (-830)) $) NIL (OR (|has| (-517 |#1|) (-118)) (|has| (-517 |#1|) (-319))) ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2013 (($) NIL (|has| (-517 |#1|) (-319)) ELT)) (-2011 (((-85) $) NIL (|has| (-517 |#1|) (-319)) ELT)) (-3132 (((-517 |#1|) $) NIL T ELT) (($ $ (-830)) NIL (|has| (-517 |#1|) (-319)) ELT)) (-3444 (((-632 $) $) NIL (|has| (-517 |#1|) (-319)) ELT)) (-1604 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2014 (((-1084 (-517 |#1|)) $) NIL T ELT) (((-1084 $) $ (-830)) NIL (|has| (-517 |#1|) (-319)) ELT)) (-2010 (((-830) $) NIL (|has| (-517 |#1|) (-319)) ELT)) (-1626 (((-1084 (-517 |#1|)) $) NIL (|has| (-517 |#1|) (-319)) ELT)) (-1625 (((-1084 (-517 |#1|)) $) NIL (|has| (-517 |#1|) (-319)) ELT) (((-3 (-1084 (-517 |#1|)) #1#) $ $) NIL (|has| (-517 |#1|) (-319)) ELT)) (-1627 (($ $ (-1084 (-517 |#1|))) NIL (|has| (-517 |#1|) (-319)) ELT)) (-1890 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2484 (($ $) NIL T ELT)) (-3445 (($) NIL (|has| (-517 |#1|) (-319)) CONST)) (-2400 (($ (-830)) NIL (|has| (-517 |#1|) (-319)) ELT)) (-3930 (((-85) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2409 (($) NIL (|has| (-517 |#1|) (-319)) ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3144 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-1675 (((-583 (-2 (|:| -3731 (-484)) (|:| -2401 (-484))))) NIL (|has| (-517 |#1|) (-319)) ELT)) (-3731 (((-347 $) $) NIL T ELT)) (-3929 (((-743 (-830))) NIL T ELT) (((-830)) NIL T ELT)) (-1605 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3465 (((-3 $ #1#) $ $) NIL T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-1606 (((-694) $) NIL T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL T ELT)) (-1764 (((-694) $) NIL (|has| (-517 |#1|) (-319)) ELT) (((-3 (-694) #1#) $ $) NIL (OR (|has| (-517 |#1|) (-118)) (|has| (-517 |#1|) (-319))) ELT)) (-3910 (((-107)) NIL T ELT)) (-3757 (($ $ (-694)) NIL (|has| (-517 |#1|) (-319)) ELT) (($ $) NIL (|has| (-517 |#1|) (-319)) ELT)) (-3947 (((-743 (-830)) $) NIL T ELT) (((-830) $) NIL T ELT)) (-3185 (((-1084 (-517 |#1|))) NIL T ELT)) (-1673 (($) NIL (|has| (-517 |#1|) (-319)) ELT)) (-1628 (($) NIL (|has| (-517 |#1|) (-319)) ELT)) (-3224 (((-1178 (-517 |#1|)) $) NIL T ELT) (((-630 (-517 |#1|)) (-1178 $)) NIL T ELT)) (-2703 (((-3 (-1178 $) #1#) (-630 $)) NIL (|has| (-517 |#1|) (-319)) ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-349 (-484))) NIL T ELT) (($ (-517 |#1|)) NIL T ELT)) (-2702 (($ $) NIL (|has| (-517 |#1|) (-319)) ELT) (((-632 $) $) NIL (OR (|has| (-517 |#1|) (-118)) (|has| (-517 |#1|) (-319))) ELT)) (-3126 (((-694)) NIL T CONST)) (-1264 (((-85) $ $) NIL T ELT)) (-2012 (((-1178 $)) NIL T ELT) (((-1178 $) (-830)) NIL T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-3932 (((-85) $) NIL T ELT)) (-2660 (($) NIL T CONST)) (-2666 (($) NIL T CONST)) (-3927 (($ $) NIL (|has| (-517 |#1|) (-319)) ELT) (($ $ (-694)) NIL (|has| (-517 |#1|) (-319)) ELT)) (-2669 (($ $ (-694)) NIL (|has| (-517 |#1|) (-319)) ELT) (($ $) NIL (|has| (-517 |#1|) (-319)) ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3948 (($ $ $) NIL T ELT) (($ $ (-517 |#1|)) NIL T ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-349 (-484))) NIL T ELT) (($ (-349 (-484)) $) NIL T ELT) (($ $ (-517 |#1|)) NIL T ELT) (($ (-517 |#1|) $) NIL T ELT))) +(((-459 |#1| |#2|) (-280 (-517 |#1|)) (-830) (-830)) (T -459)) +NIL +((-3109 ((|#4| |#4|) 38 T ELT)) (-3108 (((-694) |#4|) 45 T ELT)) (-3107 (((-694) |#4|) 46 T ELT)) (-3106 (((-583 |#3|) |#4|) 57 (|has| |#3| (-6 -3995)) ELT)) (-3589 (((-3 |#4| "failed") |#4|) 69 T ELT)) (-1992 ((|#4| |#4|) 61 T ELT)) (-3327 ((|#1| |#4|) 60 T ELT))) +(((-460 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3109 (|#4| |#4|)) (-15 -3108 ((-694) |#4|)) (-15 -3107 ((-694) |#4|)) (IF (|has| |#3| (-6 -3995)) (-15 -3106 ((-583 |#3|) |#4|)) |%noBranch|) (-15 -3327 (|#1| |#4|)) (-15 -1992 (|#4| |#4|)) (-15 -3589 ((-3 |#4| "failed") |#4|))) (-312) (-323 |#1|) (-323 |#1|) (-627 |#1| |#2| |#3|)) (T -460)) +((-3589 (*1 *2 *2) (|partial| -12 (-4 *3 (-312)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)) (-5 *1 (-460 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5)))) (-1992 (*1 *2 *2) (-12 (-4 *3 (-312)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)) (-5 *1 (-460 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5)))) (-3327 (*1 *2 *3) (-12 (-4 *4 (-323 *2)) (-4 *5 (-323 *2)) (-4 *2 (-312)) (-5 *1 (-460 *2 *4 *5 *3)) (-4 *3 (-627 *2 *4 *5)))) (-3106 (*1 *2 *3) (-12 (|has| *6 (-6 -3995)) (-4 *4 (-312)) (-4 *5 (-323 *4)) (-4 *6 (-323 *4)) (-5 *2 (-583 *6)) (-5 *1 (-460 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6)))) (-3107 (*1 *2 *3) (-12 (-4 *4 (-312)) (-4 *5 (-323 *4)) (-4 *6 (-323 *4)) (-5 *2 (-694)) (-5 *1 (-460 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6)))) (-3108 (*1 *2 *3) (-12 (-4 *4 (-312)) (-4 *5 (-323 *4)) (-4 *6 (-323 *4)) (-5 *2 (-694)) (-5 *1 (-460 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6)))) (-3109 (*1 *2 *2) (-12 (-4 *3 (-312)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)) (-5 *1 (-460 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5))))) +((-3109 ((|#8| |#4|) 20 T ELT)) (-3106 (((-583 |#3|) |#4|) 29 (|has| |#7| (-6 -3995)) ELT)) (-3589 (((-3 |#8| "failed") |#4|) 23 T ELT))) +(((-461 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3109 (|#8| |#4|)) (-15 -3589 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -3995)) (-15 -3106 ((-583 |#3|) |#4|)) |%noBranch|)) (-495) (-323 |#1|) (-323 |#1|) (-627 |#1| |#2| |#3|) (-904 |#1|) (-323 |#5|) (-323 |#5|) (-627 |#5| |#6| |#7|)) (T -461)) +((-3106 (*1 *2 *3) (-12 (|has| *9 (-6 -3995)) (-4 *4 (-495)) (-4 *5 (-323 *4)) (-4 *6 (-323 *4)) (-4 *7 (-904 *4)) (-4 *8 (-323 *7)) (-4 *9 (-323 *7)) (-5 *2 (-583 *6)) (-5 *1 (-461 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-627 *4 *5 *6)) (-4 *10 (-627 *7 *8 *9)))) (-3589 (*1 *2 *3) (|partial| -12 (-4 *4 (-495)) (-4 *5 (-323 *4)) (-4 *6 (-323 *4)) (-4 *7 (-904 *4)) (-4 *2 (-627 *7 *8 *9)) (-5 *1 (-461 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-627 *4 *5 *6)) (-4 *8 (-323 *7)) (-4 *9 (-323 *7)))) (-3109 (*1 *2 *3) (-12 (-4 *4 (-495)) (-4 *5 (-323 *4)) (-4 *6 (-323 *4)) (-4 *7 (-904 *4)) (-4 *2 (-627 *7 *8 *9)) (-5 *1 (-461 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-627 *4 *5 *6)) (-4 *8 (-323 *7)) (-4 *9 (-323 *7))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-1993 (((-583 (-1129)) $) 14 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) 20 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT) (($ (-583 (-1129))) 12 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT))) +(((-462) (-13 (-995) (-10 -8 (-15 -3945 ($ (-583 (-1129)))) (-15 -1993 ((-583 (-1129)) $))))) (T -462)) +((-3945 (*1 *1 *2) (-12 (-5 *2 (-583 (-1129))) (-5 *1 (-462)))) (-1993 (*1 *2 *1) (-12 (-5 *2 (-583 (-1129))) (-5 *1 (-462))))) +((-2568 (((-85) $ $) NIL T ELT)) (-1994 (((-1048) $) 15 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3449 (((-446) $) 12 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) 22 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT))) +(((-463) (-13 (-995) (-10 -8 (-15 -3449 ((-446) $)) (-15 -1994 ((-1048) $))))) (T -463)) +((-3449 (*1 *2 *1) (-12 (-5 *2 (-446)) (-5 *1 (-463)))) (-1994 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-463))))) +((-2000 (((-632 (-1137)) $) 15 T ELT)) (-1996 (((-632 (-1135)) $) 38 T ELT)) (-1998 (((-632 (-1134)) $) 29 T ELT)) (-2001 (((-632 (-488)) $) 12 T ELT)) (-1997 (((-632 (-486)) $) 42 T ELT)) (-1999 (((-632 (-485)) $) 33 T ELT)) (-1995 (((-694) $ (-102)) 54 T ELT))) +(((-464 |#1|) (-10 -7 (-15 -1995 ((-694) |#1| (-102))) (-15 -1996 ((-632 (-1135)) |#1|)) (-15 -1997 ((-632 (-486)) |#1|)) (-15 -1998 ((-632 (-1134)) |#1|)) (-15 -1999 ((-632 (-485)) |#1|)) (-15 -2000 ((-632 (-1137)) |#1|)) (-15 -2001 ((-632 (-488)) |#1|))) (-465)) (T -464)) +NIL +((-2000 (((-632 (-1137)) $) 12 T ELT)) (-1996 (((-632 (-1135)) $) 8 T ELT)) (-1998 (((-632 (-1134)) $) 10 T ELT)) (-2001 (((-632 (-488)) $) 13 T ELT)) (-1997 (((-632 (-486)) $) 9 T ELT)) (-1999 (((-632 (-485)) $) 11 T ELT)) (-1995 (((-694) $ (-102)) 7 T ELT)) (-2002 (((-632 (-101)) $) 14 T ELT)) (-1699 (($ $) 6 T ELT))) +(((-465) (-113)) (T -465)) +((-2002 (*1 *2 *1) (-12 (-4 *1 (-465)) (-5 *2 (-632 (-101))))) (-2001 (*1 *2 *1) (-12 (-4 *1 (-465)) (-5 *2 (-632 (-488))))) (-2000 (*1 *2 *1) (-12 (-4 *1 (-465)) (-5 *2 (-632 (-1137))))) (-1999 (*1 *2 *1) (-12 (-4 *1 (-465)) (-5 *2 (-632 (-485))))) (-1998 (*1 *2 *1) (-12 (-4 *1 (-465)) (-5 *2 (-632 (-1134))))) (-1997 (*1 *2 *1) (-12 (-4 *1 (-465)) (-5 *2 (-632 (-486))))) (-1996 (*1 *2 *1) (-12 (-4 *1 (-465)) (-5 *2 (-632 (-1135))))) (-1995 (*1 *2 *1 *3) (-12 (-4 *1 (-465)) (-5 *3 (-102)) (-5 *2 (-694))))) +(-13 (-147) (-10 -8 (-15 -2002 ((-632 (-101)) $)) (-15 -2001 ((-632 (-488)) $)) (-15 -2000 ((-632 (-1137)) $)) (-15 -1999 ((-632 (-485)) $)) (-15 -1998 ((-632 (-1134)) $)) (-15 -1997 ((-632 (-486)) $)) (-15 -1996 ((-632 (-1135)) $)) (-15 -1995 ((-694) $ (-102))))) (((-147) . T)) -((-2004 (((-1083 |#1|) (-693)) 114 T ELT)) (-3328 (((-1177 |#1|) (-1177 |#1|) (-829)) 107 T ELT)) (-2002 (((-1183) (-1177 (-582 (-2 (|:| -3400 |#1|) (|:| -2399 (-1032))))) |#1|) 122 T ELT)) (-2006 (((-1177 |#1|) (-1177 |#1|) (-693)) 53 T ELT)) (-2993 (((-1177 |#1|) (-829)) 109 T ELT)) (-2008 (((-1177 |#1|) (-1177 |#1|) (-483)) 30 T ELT)) (-2003 (((-1083 |#1|) (-1177 |#1|)) 115 T ELT)) (-2012 (((-1177 |#1|) (-829)) 136 T ELT)) (-2010 (((-85) (-1177 |#1|)) 119 T ELT)) (-3131 (((-1177 |#1|) (-1177 |#1|) (-829)) 99 T ELT)) (-2013 (((-1083 |#1|) (-1177 |#1|)) 130 T ELT)) (-2009 (((-829) (-1177 |#1|)) 95 T ELT)) (-2483 (((-1177 |#1|) (-1177 |#1|)) 38 T ELT)) (-2399 (((-1177 |#1|) (-829) (-829)) 139 T ELT)) (-2007 (((-1177 |#1|) (-1177 |#1|) (-1032) (-1032)) 29 T ELT)) (-2005 (((-1177 |#1|) (-1177 |#1|) (-693) (-1032)) 54 T ELT)) (-2011 (((-1177 (-1177 |#1|)) (-829)) 135 T ELT)) (-3947 (((-1177 |#1|) (-1177 |#1|) (-1177 |#1|)) 120 T ELT)) (** (((-1177 |#1|) (-1177 |#1|) (-483)) 67 T ELT)) (* (((-1177 |#1|) (-1177 |#1|) (-1177 |#1|)) 31 T ELT))) -(((-465 |#1|) (-10 -7 (-15 -2002 ((-1183) (-1177 (-582 (-2 (|:| -3400 |#1|) (|:| -2399 (-1032))))) |#1|)) (-15 -2993 ((-1177 |#1|) (-829))) (-15 -2399 ((-1177 |#1|) (-829) (-829))) (-15 -2003 ((-1083 |#1|) (-1177 |#1|))) (-15 -2004 ((-1083 |#1|) (-693))) (-15 -2005 ((-1177 |#1|) (-1177 |#1|) (-693) (-1032))) (-15 -2006 ((-1177 |#1|) (-1177 |#1|) (-693))) (-15 -2007 ((-1177 |#1|) (-1177 |#1|) (-1032) (-1032))) (-15 -2008 ((-1177 |#1|) (-1177 |#1|) (-483))) (-15 ** ((-1177 |#1|) (-1177 |#1|) (-483))) (-15 * ((-1177 |#1|) (-1177 |#1|) (-1177 |#1|))) (-15 -3947 ((-1177 |#1|) (-1177 |#1|) (-1177 |#1|))) (-15 -3131 ((-1177 |#1|) (-1177 |#1|) (-829))) (-15 -3328 ((-1177 |#1|) (-1177 |#1|) (-829))) (-15 -2483 ((-1177 |#1|) (-1177 |#1|))) (-15 -2009 ((-829) (-1177 |#1|))) (-15 -2010 ((-85) (-1177 |#1|))) (-15 -2011 ((-1177 (-1177 |#1|)) (-829))) (-15 -2012 ((-1177 |#1|) (-829))) (-15 -2013 ((-1083 |#1|) (-1177 |#1|)))) (-299)) (T -465)) -((-2013 (*1 *2 *3) (-12 (-5 *3 (-1177 *4)) (-4 *4 (-299)) (-5 *2 (-1083 *4)) (-5 *1 (-465 *4)))) (-2012 (*1 *2 *3) (-12 (-5 *3 (-829)) (-5 *2 (-1177 *4)) (-5 *1 (-465 *4)) (-4 *4 (-299)))) (-2011 (*1 *2 *3) (-12 (-5 *3 (-829)) (-5 *2 (-1177 (-1177 *4))) (-5 *1 (-465 *4)) (-4 *4 (-299)))) (-2010 (*1 *2 *3) (-12 (-5 *3 (-1177 *4)) (-4 *4 (-299)) (-5 *2 (-85)) (-5 *1 (-465 *4)))) (-2009 (*1 *2 *3) (-12 (-5 *3 (-1177 *4)) (-4 *4 (-299)) (-5 *2 (-829)) (-5 *1 (-465 *4)))) (-2483 (*1 *2 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-299)) (-5 *1 (-465 *3)))) (-3328 (*1 *2 *2 *3) (-12 (-5 *2 (-1177 *4)) (-5 *3 (-829)) (-4 *4 (-299)) (-5 *1 (-465 *4)))) (-3131 (*1 *2 *2 *3) (-12 (-5 *2 (-1177 *4)) (-5 *3 (-829)) (-4 *4 (-299)) (-5 *1 (-465 *4)))) (-3947 (*1 *2 *2 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-299)) (-5 *1 (-465 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-299)) (-5 *1 (-465 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1177 *4)) (-5 *3 (-483)) (-4 *4 (-299)) (-5 *1 (-465 *4)))) (-2008 (*1 *2 *2 *3) (-12 (-5 *2 (-1177 *4)) (-5 *3 (-483)) (-4 *4 (-299)) (-5 *1 (-465 *4)))) (-2007 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1177 *4)) (-5 *3 (-1032)) (-4 *4 (-299)) (-5 *1 (-465 *4)))) (-2006 (*1 *2 *2 *3) (-12 (-5 *2 (-1177 *4)) (-5 *3 (-693)) (-4 *4 (-299)) (-5 *1 (-465 *4)))) (-2005 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1177 *5)) (-5 *3 (-693)) (-5 *4 (-1032)) (-4 *5 (-299)) (-5 *1 (-465 *5)))) (-2004 (*1 *2 *3) (-12 (-5 *3 (-693)) (-5 *2 (-1083 *4)) (-5 *1 (-465 *4)) (-4 *4 (-299)))) (-2003 (*1 *2 *3) (-12 (-5 *3 (-1177 *4)) (-4 *4 (-299)) (-5 *2 (-1083 *4)) (-5 *1 (-465 *4)))) (-2399 (*1 *2 *3 *3) (-12 (-5 *3 (-829)) (-5 *2 (-1177 *4)) (-5 *1 (-465 *4)) (-4 *4 (-299)))) (-2993 (*1 *2 *3) (-12 (-5 *3 (-829)) (-5 *2 (-1177 *4)) (-5 *1 (-465 *4)) (-4 *4 (-299)))) (-2002 (*1 *2 *3 *4) (-12 (-5 *3 (-1177 (-582 (-2 (|:| -3400 *4) (|:| -2399 (-1032)))))) (-4 *4 (-299)) (-5 *2 (-1183)) (-5 *1 (-465 *4))))) -((-1999 (((-631 (-1136)) $) NIL T ELT)) (-1995 (((-631 (-1134)) $) NIL T ELT)) (-1997 (((-631 (-1133)) $) NIL T ELT)) (-2000 (((-631 (-487)) $) NIL T ELT)) (-1996 (((-631 (-485)) $) NIL T ELT)) (-1998 (((-631 (-484)) $) NIL T ELT)) (-1994 (((-693) $ (-102)) NIL T ELT)) (-2001 (((-631 (-101)) $) 26 T ELT)) (-2014 (((-1032) $ (-1032)) 31 T ELT)) (-3417 (((-1032) $) 30 T ELT)) (-2557 (((-85) $) 20 T ELT)) (-2016 (($ (-336)) 14 T ELT) (($ (-1071)) 16 T ELT)) (-2015 (((-85) $) 27 T ELT)) (-3944 (((-771) $) 34 T ELT)) (-1698 (($ $) 28 T ELT))) -(((-466) (-13 (-464) (-551 (-771)) (-10 -8 (-15 -2016 ($ (-336))) (-15 -2016 ($ (-1071))) (-15 -2015 ((-85) $)) (-15 -2557 ((-85) $)) (-15 -3417 ((-1032) $)) (-15 -2014 ((-1032) $ (-1032)))))) (T -466)) -((-2016 (*1 *1 *2) (-12 (-5 *2 (-336)) (-5 *1 (-466)))) (-2016 (*1 *1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-466)))) (-2015 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-466)))) (-2557 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-466)))) (-3417 (*1 *2 *1) (-12 (-5 *2 (-1032)) (-5 *1 (-466)))) (-2014 (*1 *2 *1 *2) (-12 (-5 *2 (-1032)) (-5 *1 (-466))))) -((-2018 (((-1 |#1| |#1|) |#1|) 11 T ELT)) (-2017 (((-1 |#1| |#1|)) 10 T ELT))) -(((-467 |#1|) (-10 -7 (-15 -2017 ((-1 |#1| |#1|))) (-15 -2018 ((-1 |#1| |#1|) |#1|))) (-13 (-662) (-25))) (T -467)) -((-2018 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-467 *3)) (-4 *3 (-13 (-662) (-25))))) (-2017 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-467 *3)) (-4 *3 (-13 (-662) (-25)))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3187 (((-85) $) NIL T ELT)) (-3772 (((-582 (-452 (-693) |#1|)) $) NIL T ELT)) (-2482 (($ $ $) NIL T ELT)) (-1310 (((-3 $ "failed") $ $) NIL T ELT)) (-3722 (($) NIL T CONST)) (-3957 (($ $) NIL T ELT)) (-3185 (((-85) $) NIL T ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-2892 (($ (-693) |#1|) NIL T ELT)) (-2530 (($ $ $) NIL T ELT)) (-2856 (($ $ $) NIL T ELT)) (-3956 (($ (-1 (-693) (-693)) $) NIL T ELT)) (-1982 ((|#1| $) NIL T ELT)) (-3173 (((-693) $) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3970 (($ (-582 (-452 (-693) |#1|))) NIL T ELT)) (-3944 (((-771) $) 28 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2659 (($) NIL T CONST)) (-2565 (((-85) $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-2683 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-3837 (($ $ $) NIL T ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) NIL T ELT))) -(((-468 |#1|) (-13 (-716) (-448 (-693) |#1|)) (-755)) (T -468)) -NIL -((-2020 (((-582 |#2|) (-1083 |#1|) |#3|) 98 T ELT)) (-2021 (((-582 (-2 (|:| |outval| |#2|) (|:| |outmult| (-483)) (|:| |outvect| (-582 (-629 |#2|))))) (-629 |#1|) |#3| (-1 (-346 (-1083 |#1|)) (-1083 |#1|))) 114 T ELT)) (-2019 (((-1083 |#1|) (-629 |#1|)) 110 T ELT))) -(((-469 |#1| |#2| |#3|) (-10 -7 (-15 -2019 ((-1083 |#1|) (-629 |#1|))) (-15 -2020 ((-582 |#2|) (-1083 |#1|) |#3|)) (-15 -2021 ((-582 (-2 (|:| |outval| |#2|) (|:| |outmult| (-483)) (|:| |outvect| (-582 (-629 |#2|))))) (-629 |#1|) |#3| (-1 (-346 (-1083 |#1|)) (-1083 |#1|))))) (-312) (-312) (-13 (-312) (-754))) (T -469)) -((-2021 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-629 *6)) (-5 *5 (-1 (-346 (-1083 *6)) (-1083 *6))) (-4 *6 (-312)) (-5 *2 (-582 (-2 (|:| |outval| *7) (|:| |outmult| (-483)) (|:| |outvect| (-582 (-629 *7)))))) (-5 *1 (-469 *6 *7 *4)) (-4 *7 (-312)) (-4 *4 (-13 (-312) (-754))))) (-2020 (*1 *2 *3 *4) (-12 (-5 *3 (-1083 *5)) (-4 *5 (-312)) (-5 *2 (-582 *6)) (-5 *1 (-469 *5 *6 *4)) (-4 *6 (-312)) (-4 *4 (-13 (-312) (-754))))) (-2019 (*1 *2 *3) (-12 (-5 *3 (-629 *4)) (-4 *4 (-312)) (-5 *2 (-1083 *4)) (-5 *1 (-469 *4 *5 *6)) (-4 *5 (-312)) (-4 *6 (-13 (-312) (-754)))))) -((-2554 (((-631 (-1136)) $ (-1136)) NIL T ELT)) (-2555 (((-631 (-487)) $ (-487)) NIL T ELT)) (-2553 (((-693) $ (-102)) 39 T ELT)) (-2556 (((-631 (-101)) $ (-101)) 40 T ELT)) (-1999 (((-631 (-1136)) $) NIL T ELT)) (-1995 (((-631 (-1134)) $) NIL T ELT)) (-1997 (((-631 (-1133)) $) NIL T ELT)) (-2000 (((-631 (-487)) $) NIL T ELT)) (-1996 (((-631 (-485)) $) NIL T ELT)) (-1998 (((-631 (-484)) $) NIL T ELT)) (-1994 (((-693) $ (-102)) 35 T ELT)) (-2001 (((-631 (-101)) $) 37 T ELT)) (-2438 (((-85) $) 27 T ELT)) (-2439 (((-631 $) (-514) (-864)) 18 T ELT) (((-631 $) (-429) (-864)) 24 T ELT)) (-3944 (((-771) $) 48 T ELT)) (-1698 (($ $) 42 T ELT))) -(((-470) (-13 (-690 (-514)) (-551 (-771)) (-10 -8 (-15 -2439 ((-631 $) (-429) (-864)))))) (T -470)) -((-2439 (*1 *2 *3 *4) (-12 (-5 *3 (-429)) (-5 *4 (-864)) (-5 *2 (-631 (-470))) (-5 *1 (-470))))) -((-2526 (((-749 (-483))) 12 T ELT)) (-2525 (((-749 (-483))) 14 T ELT)) (-2513 (((-742 (-483))) 9 T ELT))) -(((-471) (-10 -7 (-15 -2513 ((-742 (-483)))) (-15 -2526 ((-749 (-483)))) (-15 -2525 ((-749 (-483)))))) (T -471)) -((-2525 (*1 *2) (-12 (-5 *2 (-749 (-483))) (-5 *1 (-471)))) (-2526 (*1 *2) (-12 (-5 *2 (-749 (-483))) (-5 *1 (-471)))) (-2513 (*1 *2) (-12 (-5 *2 (-742 (-483))) (-5 *1 (-471))))) -((-2567 (((-85) $ $) NIL T ELT)) (-2025 (((-1071) $) 55 T ELT)) (-3259 (((-85) $) 51 T ELT)) (-3255 (((-1088) $) 52 T ELT)) (-3260 (((-85) $) 49 T ELT)) (-3533 (((-1071) $) 50 T ELT)) (-2024 (($ (-1071)) 56 T ELT)) (-3262 (((-85) $) NIL T ELT)) (-3264 (((-85) $) NIL T ELT)) (-3261 (((-85) $) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-2027 (($ $ (-582 (-1088))) 21 T ELT)) (-2030 (((-51) $) 23 T ELT)) (-3258 (((-85) $) NIL T ELT)) (-3254 (((-483) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-2382 (($ $ (-582 (-1088)) (-1088)) 73 T ELT)) (-3257 (((-85) $) NIL T ELT)) (-3253 (((-179) $) NIL T ELT)) (-2026 (($ $) 44 T ELT)) (-3252 (((-771) $) NIL T ELT)) (-3265 (((-85) $ $) NIL T ELT)) (-3798 (($ $ (-483)) NIL T ELT) (($ $ (-582 (-483))) NIL T ELT)) (-3256 (((-582 $) $) 30 T ELT)) (-2023 (((-1088) (-582 $)) 57 T ELT)) (-3970 (($ (-1071)) NIL T ELT) (($ (-1088)) 19 T ELT) (($ (-483)) 8 T ELT) (($ (-179)) 28 T ELT) (($ (-771)) NIL T ELT) (($ (-582 $)) 65 T ELT) (((-1014) $) 12 T ELT) (($ (-1014)) 13 T ELT)) (-2022 (((-1088) (-1088) (-582 $)) 60 T ELT)) (-3944 (((-771) $) 54 T ELT)) (-3250 (($ $) 59 T ELT)) (-3251 (($ $) 58 T ELT)) (-2028 (($ $ (-582 $)) 66 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3263 (((-85) $) 29 T ELT)) (-2659 (($) 9 T CONST)) (-2665 (($) 11 T CONST)) (-3055 (((-85) $ $) 74 T ELT)) (-3947 (($ $ $) 82 T ELT)) (-3837 (($ $ $) 75 T ELT)) (** (($ $ (-693)) 81 T ELT) (($ $ (-483)) 80 T ELT)) (* (($ $ $) 76 T ELT)) (-3955 (((-483) $) NIL T ELT))) -(((-472) (-13 (-1015 (-1071) (-1088) (-483) (-179) (-771)) (-552 (-1014)) (-10 -8 (-15 -2030 ((-51) $)) (-15 -3970 ($ (-1014))) (-15 -2028 ($ $ (-582 $))) (-15 -2382 ($ $ (-582 (-1088)) (-1088))) (-15 -2027 ($ $ (-582 (-1088)))) (-15 -3837 ($ $ $)) (-15 * ($ $ $)) (-15 -3947 ($ $ $)) (-15 ** ($ $ (-693))) (-15 ** ($ $ (-483))) (-15 -2659 ($) -3950) (-15 -2665 ($) -3950) (-15 -2026 ($ $)) (-15 -2025 ((-1071) $)) (-15 -2024 ($ (-1071))) (-15 -2023 ((-1088) (-582 $))) (-15 -2022 ((-1088) (-1088) (-582 $)))))) (T -472)) -((-2030 (*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-472)))) (-3970 (*1 *1 *2) (-12 (-5 *2 (-1014)) (-5 *1 (-472)))) (-2028 (*1 *1 *1 *2) (-12 (-5 *2 (-582 (-472))) (-5 *1 (-472)))) (-2382 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-582 (-1088))) (-5 *3 (-1088)) (-5 *1 (-472)))) (-2027 (*1 *1 *1 *2) (-12 (-5 *2 (-582 (-1088))) (-5 *1 (-472)))) (-3837 (*1 *1 *1 *1) (-5 *1 (-472))) (* (*1 *1 *1 *1) (-5 *1 (-472))) (-3947 (*1 *1 *1 *1) (-5 *1 (-472))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-693)) (-5 *1 (-472)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-472)))) (-2659 (*1 *1) (-5 *1 (-472))) (-2665 (*1 *1) (-5 *1 (-472))) (-2026 (*1 *1 *1) (-5 *1 (-472))) (-2025 (*1 *2 *1) (-12 (-5 *2 (-1071)) (-5 *1 (-472)))) (-2024 (*1 *1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-472)))) (-2023 (*1 *2 *3) (-12 (-5 *3 (-582 (-472))) (-5 *2 (-1088)) (-5 *1 (-472)))) (-2022 (*1 *2 *2 *3) (-12 (-5 *2 (-1088)) (-5 *3 (-582 (-472))) (-5 *1 (-472))))) -((-2029 (((-472) (-1088)) 15 T ELT)) (-2030 ((|#1| (-472)) 20 T ELT))) -(((-473 |#1|) (-10 -7 (-15 -2029 ((-472) (-1088))) (-15 -2030 (|#1| (-472)))) (-1127)) (T -473)) -((-2030 (*1 *2 *3) (-12 (-5 *3 (-472)) (-5 *1 (-473 *2)) (-4 *2 (-1127)))) (-2029 (*1 *2 *3) (-12 (-5 *3 (-1088)) (-5 *2 (-472)) (-5 *1 (-473 *4)) (-4 *4 (-1127))))) -((-3451 ((|#2| |#2|) 17 T ELT)) (-3449 ((|#2| |#2|) 13 T ELT)) (-3452 ((|#2| |#2| (-483) (-483)) 20 T ELT)) (-3450 ((|#2| |#2|) 15 T ELT))) -(((-474 |#1| |#2|) (-10 -7 (-15 -3449 (|#2| |#2|)) (-15 -3450 (|#2| |#2|)) (-15 -3451 (|#2| |#2|)) (-15 -3452 (|#2| |#2| (-483) (-483)))) (-13 (-494) (-120)) (-1170 |#1|)) (T -474)) -((-3452 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-483)) (-4 *4 (-13 (-494) (-120))) (-5 *1 (-474 *4 *2)) (-4 *2 (-1170 *4)))) (-3451 (*1 *2 *2) (-12 (-4 *3 (-13 (-494) (-120))) (-5 *1 (-474 *3 *2)) (-4 *2 (-1170 *3)))) (-3450 (*1 *2 *2) (-12 (-4 *3 (-13 (-494) (-120))) (-5 *1 (-474 *3 *2)) (-4 *2 (-1170 *3)))) (-3449 (*1 *2 *2) (-12 (-4 *3 (-13 (-494) (-120))) (-5 *1 (-474 *3 *2)) (-4 *2 (-1170 *3))))) -((-2033 (((-582 (-249 (-856 |#2|))) (-582 |#2|) (-582 (-1088))) 32 T ELT)) (-2031 (((-582 |#2|) (-856 |#1|) |#3|) 54 T ELT) (((-582 |#2|) (-1083 |#1|) |#3|) 53 T ELT)) (-2032 (((-582 (-582 |#2|)) (-582 (-856 |#1|)) (-582 (-856 |#1|)) (-582 (-1088)) |#3|) 106 T ELT))) -(((-475 |#1| |#2| |#3|) (-10 -7 (-15 -2031 ((-582 |#2|) (-1083 |#1|) |#3|)) (-15 -2031 ((-582 |#2|) (-856 |#1|) |#3|)) (-15 -2032 ((-582 (-582 |#2|)) (-582 (-856 |#1|)) (-582 (-856 |#1|)) (-582 (-1088)) |#3|)) (-15 -2033 ((-582 (-249 (-856 |#2|))) (-582 |#2|) (-582 (-1088))))) (-390) (-312) (-13 (-312) (-754))) (T -475)) -((-2033 (*1 *2 *3 *4) (-12 (-5 *3 (-582 *6)) (-5 *4 (-582 (-1088))) (-4 *6 (-312)) (-5 *2 (-582 (-249 (-856 *6)))) (-5 *1 (-475 *5 *6 *7)) (-4 *5 (-390)) (-4 *7 (-13 (-312) (-754))))) (-2032 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-582 (-856 *6))) (-5 *4 (-582 (-1088))) (-4 *6 (-390)) (-5 *2 (-582 (-582 *7))) (-5 *1 (-475 *6 *7 *5)) (-4 *7 (-312)) (-4 *5 (-13 (-312) (-754))))) (-2031 (*1 *2 *3 *4) (-12 (-5 *3 (-856 *5)) (-4 *5 (-390)) (-5 *2 (-582 *6)) (-5 *1 (-475 *5 *6 *4)) (-4 *6 (-312)) (-4 *4 (-13 (-312) (-754))))) (-2031 (*1 *2 *3 *4) (-12 (-5 *3 (-1083 *5)) (-4 *5 (-390)) (-5 *2 (-582 *6)) (-5 *1 (-475 *5 *6 *4)) (-4 *6 (-312)) (-4 *4 (-13 (-312) (-754)))))) -((-2036 ((|#2| |#2| |#1|) 17 T ELT)) (-2034 ((|#2| (-582 |#2|)) 30 T ELT)) (-2035 ((|#2| (-582 |#2|)) 51 T ELT))) -(((-476 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2034 (|#2| (-582 |#2|))) (-15 -2035 (|#2| (-582 |#2|))) (-15 -2036 (|#2| |#2| |#1|))) (-258) (-1153 |#1|) |#1| (-1 |#1| |#1| (-693))) (T -476)) -((-2036 (*1 *2 *2 *3) (-12 (-4 *3 (-258)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-693))) (-5 *1 (-476 *3 *2 *4 *5)) (-4 *2 (-1153 *3)))) (-2035 (*1 *2 *3) (-12 (-5 *3 (-582 *2)) (-4 *2 (-1153 *4)) (-5 *1 (-476 *4 *2 *5 *6)) (-4 *4 (-258)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-693))))) (-2034 (*1 *2 *3) (-12 (-5 *3 (-582 *2)) (-4 *2 (-1153 *4)) (-5 *1 (-476 *4 *2 *5 *6)) (-4 *4 (-258)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-693)))))) -((-3730 (((-346 (-1083 |#4|)) (-1083 |#4|) (-1 (-346 (-1083 |#3|)) (-1083 |#3|))) 90 T ELT) (((-346 |#4|) |#4| (-1 (-346 (-1083 |#3|)) (-1083 |#3|))) 213 T ELT))) -(((-477 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3730 ((-346 |#4|) |#4| (-1 (-346 (-1083 |#3|)) (-1083 |#3|)))) (-15 -3730 ((-346 (-1083 |#4|)) (-1083 |#4|) (-1 (-346 (-1083 |#3|)) (-1083 |#3|))))) (-755) (-716) (-13 (-258) (-120)) (-860 |#3| |#2| |#1|)) (T -477)) -((-3730 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-346 (-1083 *7)) (-1083 *7))) (-4 *7 (-13 (-258) (-120))) (-4 *5 (-755)) (-4 *6 (-716)) (-4 *8 (-860 *7 *6 *5)) (-5 *2 (-346 (-1083 *8))) (-5 *1 (-477 *5 *6 *7 *8)) (-5 *3 (-1083 *8)))) (-3730 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-346 (-1083 *7)) (-1083 *7))) (-4 *7 (-13 (-258) (-120))) (-4 *5 (-755)) (-4 *6 (-716)) (-5 *2 (-346 *3)) (-5 *1 (-477 *5 *6 *7 *3)) (-4 *3 (-860 *7 *6 *5))))) -((-3451 ((|#4| |#4|) 74 T ELT)) (-3449 ((|#4| |#4|) 70 T ELT)) (-3452 ((|#4| |#4| (-483) (-483)) 76 T ELT)) (-3450 ((|#4| |#4|) 72 T ELT))) -(((-478 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3449 (|#4| |#4|)) (-15 -3450 (|#4| |#4|)) (-15 -3451 (|#4| |#4|)) (-15 -3452 (|#4| |#4| (-483) (-483)))) (-13 (-312) (-318) (-552 (-483))) (-1153 |#1|) (-660 |#1| |#2|) (-1170 |#3|)) (T -478)) -((-3452 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-483)) (-4 *4 (-13 (-312) (-318) (-552 *3))) (-4 *5 (-1153 *4)) (-4 *6 (-660 *4 *5)) (-5 *1 (-478 *4 *5 *6 *2)) (-4 *2 (-1170 *6)))) (-3451 (*1 *2 *2) (-12 (-4 *3 (-13 (-312) (-318) (-552 (-483)))) (-4 *4 (-1153 *3)) (-4 *5 (-660 *3 *4)) (-5 *1 (-478 *3 *4 *5 *2)) (-4 *2 (-1170 *5)))) (-3450 (*1 *2 *2) (-12 (-4 *3 (-13 (-312) (-318) (-552 (-483)))) (-4 *4 (-1153 *3)) (-4 *5 (-660 *3 *4)) (-5 *1 (-478 *3 *4 *5 *2)) (-4 *2 (-1170 *5)))) (-3449 (*1 *2 *2) (-12 (-4 *3 (-13 (-312) (-318) (-552 (-483)))) (-4 *4 (-1153 *3)) (-4 *5 (-660 *3 *4)) (-5 *1 (-478 *3 *4 *5 *2)) (-4 *2 (-1170 *5))))) -((-3451 ((|#2| |#2|) 27 T ELT)) (-3449 ((|#2| |#2|) 23 T ELT)) (-3452 ((|#2| |#2| (-483) (-483)) 29 T ELT)) (-3450 ((|#2| |#2|) 25 T ELT))) -(((-479 |#1| |#2|) (-10 -7 (-15 -3449 (|#2| |#2|)) (-15 -3450 (|#2| |#2|)) (-15 -3451 (|#2| |#2|)) (-15 -3452 (|#2| |#2| (-483) (-483)))) (-13 (-312) (-318) (-552 (-483))) (-1170 |#1|)) (T -479)) -((-3452 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-483)) (-4 *4 (-13 (-312) (-318) (-552 *3))) (-5 *1 (-479 *4 *2)) (-4 *2 (-1170 *4)))) (-3451 (*1 *2 *2) (-12 (-4 *3 (-13 (-312) (-318) (-552 (-483)))) (-5 *1 (-479 *3 *2)) (-4 *2 (-1170 *3)))) (-3450 (*1 *2 *2) (-12 (-4 *3 (-13 (-312) (-318) (-552 (-483)))) (-5 *1 (-479 *3 *2)) (-4 *2 (-1170 *3)))) (-3449 (*1 *2 *2) (-12 (-4 *3 (-13 (-312) (-318) (-552 (-483)))) (-5 *1 (-479 *3 *2)) (-4 *2 (-1170 *3))))) -((-2037 (((-3 (-483) #1="failed") |#2| |#1| (-1 (-3 (-483) #1#) |#1|)) 18 T ELT) (((-3 (-483) #1#) |#2| |#1| (-483) (-1 (-3 (-483) #1#) |#1|)) 14 T ELT) (((-3 (-483) #1#) |#2| (-483) (-1 (-3 (-483) #1#) |#1|)) 30 T ELT))) -(((-480 |#1| |#2|) (-10 -7 (-15 -2037 ((-3 (-483) #1="failed") |#2| (-483) (-1 (-3 (-483) #1#) |#1|))) (-15 -2037 ((-3 (-483) #1#) |#2| |#1| (-483) (-1 (-3 (-483) #1#) |#1|))) (-15 -2037 ((-3 (-483) #1#) |#2| |#1| (-1 (-3 (-483) #1#) |#1|)))) (-960) (-1153 |#1|)) (T -480)) -((-2037 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-483) #1="failed") *4)) (-4 *4 (-960)) (-5 *2 (-483)) (-5 *1 (-480 *4 *3)) (-4 *3 (-1153 *4)))) (-2037 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-483) #1#) *4)) (-4 *4 (-960)) (-5 *2 (-483)) (-5 *1 (-480 *4 *3)) (-4 *3 (-1153 *4)))) (-2037 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-483) #1#) *5)) (-4 *5 (-960)) (-5 *2 (-483)) (-5 *1 (-480 *5 *3)) (-4 *3 (-1153 *5))))) -((-2046 (($ $ $) 87 T ELT)) (-3969 (((-346 $) $) 50 T ELT)) (-3156 (((-3 (-483) #1="failed") $) 62 T ELT)) (-3155 (((-483) $) 40 T ELT)) (-3023 (((-3 (-348 (-483)) #1#) $) 80 T ELT)) (-3022 (((-85) $) 24 T ELT)) (-3021 (((-348 (-483)) $) 78 T ELT)) (-3721 (((-85) $) 53 T ELT)) (-2039 (($ $ $ $) 94 T ELT)) (-1367 (($ $ $) 60 T ELT)) (-2795 (((-797 (-483) $) $ (-799 (-483)) (-797 (-483) $)) 75 T ELT)) (-3443 (((-631 $) $) 70 T ELT)) (-2043 (($ $) 22 T ELT)) (-2038 (($ $ $) 92 T ELT)) (-3444 (($) 63 T CONST)) (-1365 (($ $) 56 T ELT)) (-3730 (((-346 $) $) 48 T ELT)) (-2673 (((-85) $) 15 T ELT)) (-1605 (((-693) $) 30 T ELT)) (-3756 (($ $) 11 T ELT) (($ $ (-693)) NIL T ELT)) (-3398 (($ $) 16 T ELT)) (-3970 (((-483) $) NIL T ELT) (((-472) $) 39 T ELT) (((-799 (-483)) $) 43 T ELT) (((-328) $) 33 T ELT) (((-179) $) 36 T ELT)) (-3125 (((-693)) 9 T CONST)) (-2048 (((-85) $ $) 19 T ELT)) (-3100 (($ $ $) 58 T ELT))) -(((-481 |#1|) (-10 -7 (-15 -2038 (|#1| |#1| |#1|)) (-15 -2039 (|#1| |#1| |#1| |#1|)) (-15 -2043 (|#1| |#1|)) (-15 -3398 (|#1| |#1|)) (-15 -3023 ((-3 (-348 (-483)) #1="failed") |#1|)) (-15 -3021 ((-348 (-483)) |#1|)) (-15 -3022 ((-85) |#1|)) (-15 -2046 (|#1| |#1| |#1|)) (-15 -2048 ((-85) |#1| |#1|)) (-15 -2673 ((-85) |#1|)) (-15 -3444 (|#1|) -3950) (-15 -3443 ((-631 |#1|) |#1|)) (-15 -3970 ((-179) |#1|)) (-15 -3970 ((-328) |#1|)) (-15 -1367 (|#1| |#1| |#1|)) (-15 -1365 (|#1| |#1|)) (-15 -3100 (|#1| |#1| |#1|)) (-15 -2795 ((-797 (-483) |#1|) |#1| (-799 (-483)) (-797 (-483) |#1|))) (-15 -3970 ((-799 (-483)) |#1|)) (-15 -3970 ((-472) |#1|)) (-15 -3156 ((-3 (-483) #1#) |#1|)) (-15 -3155 ((-483) |#1|)) (-15 -3970 ((-483) |#1|)) (-15 -3756 (|#1| |#1| (-693))) (-15 -3756 (|#1| |#1|)) (-15 -1605 ((-693) |#1|)) (-15 -3730 ((-346 |#1|) |#1|)) (-15 -3969 ((-346 |#1|) |#1|)) (-15 -3721 ((-85) |#1|)) (-15 -3125 ((-693)) -3950)) (-482)) (T -481)) -((-3125 (*1 *2) (-12 (-5 *2 (-693)) (-5 *1 (-481 *3)) (-4 *3 (-482))))) -((-2567 (((-85) $ $) 7 T ELT)) (-3187 (((-85) $) 22 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3980 $) (|:| |associate| $)) $) 55 T ELT)) (-2062 (($ $) 54 T ELT)) (-2060 (((-85) $) 52 T ELT)) (-2046 (($ $ $) 102 T ELT)) (-1310 (((-3 $ "failed") $ $) 26 T ELT)) (-2041 (($ $ $ $) 91 T ELT)) (-3773 (($ $) 66 T ELT)) (-3969 (((-346 $) $) 67 T ELT)) (-1606 (((-85) $ $) 145 T ELT)) (-3621 (((-483) $) 134 T ELT)) (-2440 (($ $ $) 105 T ELT)) (-3722 (($) 23 T CONST)) (-3156 (((-3 (-483) "failed") $) 126 T ELT)) (-3155 (((-483) $) 127 T ELT)) (-2563 (($ $ $) 149 T ELT)) (-2278 (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-629 $) (-1177 $)) 124 T ELT) (((-629 (-483)) (-629 $)) 123 T ELT)) (-3465 (((-3 $ "failed") $) 42 T ELT)) (-3023 (((-3 (-348 (-483)) "failed") $) 99 T ELT)) (-3022 (((-85) $) 101 T ELT)) (-3021 (((-348 (-483)) $) 100 T ELT)) (-2993 (($) 98 T ELT) (($ $) 97 T ELT)) (-2562 (($ $ $) 148 T ELT)) (-2740 (((-2 (|:| -3952 (-582 $)) (|:| -2408 $)) (-582 $)) 143 T ELT)) (-3721 (((-85) $) 68 T ELT)) (-2039 (($ $ $ $) 89 T ELT)) (-2047 (($ $ $) 103 T ELT)) (-3185 (((-85) $) 136 T ELT)) (-1367 (($ $ $) 114 T ELT)) (-2795 (((-797 (-483) $) $ (-799 (-483)) (-797 (-483) $)) 117 T ELT)) (-1212 (((-85) $ $) 20 T ELT)) (-2409 (((-85) $) 44 T ELT)) (-2672 (((-85) $) 109 T ELT)) (-3443 (((-631 $) $) 111 T ELT)) (-3186 (((-85) $) 135 T ELT)) (-1603 (((-3 (-582 $) #1="failed") (-582 $) $) 152 T ELT)) (-2040 (($ $ $ $) 90 T ELT)) (-2530 (($ $ $) 142 T ELT)) (-2856 (($ $ $) 141 T ELT)) (-2043 (($ $) 93 T ELT)) (-3831 (($ $) 106 T ELT)) (-2279 (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) 122 T ELT) (((-629 (-483)) (-1177 $)) 121 T ELT)) (-1889 (($ $ $) 60 T ELT) (($ (-582 $)) 59 T ELT)) (-3241 (((-1071) $) 11 T ELT)) (-2038 (($ $ $) 88 T ELT)) (-3444 (($) 110 T CONST)) (-2045 (($ $) 95 T ELT)) (-3242 (((-1032) $) 12 T ELT)) (-2707 (((-1083 $) (-1083 $) (-1083 $)) 58 T ELT)) (-3143 (($ $ $) 62 T ELT) (($ (-582 $)) 61 T ELT)) (-1365 (($ $) 115 T ELT)) (-3730 (((-346 $) $) 65 T ELT)) (-1604 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 151 T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) 150 T ELT)) (-3464 (((-3 $ "failed") $ $) 56 T ELT)) (-2739 (((-631 (-582 $)) (-582 $) $) 144 T ELT)) (-2673 (((-85) $) 108 T ELT)) (-1605 (((-693) $) 146 T ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) 147 T ELT)) (-3756 (($ $) 132 T ELT) (($ $ (-693)) 130 T ELT)) (-2044 (($ $) 94 T ELT)) (-3398 (($ $) 96 T ELT)) (-3970 (((-483) $) 128 T ELT) (((-472) $) 119 T ELT) (((-799 (-483)) $) 118 T ELT) (((-328) $) 113 T ELT) (((-179) $) 112 T ELT)) (-3944 (((-771) $) 13 T ELT) (($ (-483)) 41 T ELT) (($ $) 57 T ELT) (($ (-483)) 125 T ELT)) (-3125 (((-693)) 40 T CONST)) (-2048 (((-85) $ $) 104 T ELT)) (-3100 (($ $ $) 116 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2693 (($) 107 T ELT)) (-2061 (((-85) $ $) 53 T ELT)) (-3124 (((-85) $ $) 33 T ELT)) (-2042 (($ $ $ $) 92 T ELT)) (-3381 (($ $) 133 T ELT)) (-2659 (($) 24 T CONST)) (-2665 (($) 45 T CONST)) (-2668 (($ $) 131 T ELT) (($ $ (-693)) 129 T ELT)) (-2565 (((-85) $ $) 140 T ELT)) (-2566 (((-85) $ $) 138 T ELT)) (-3055 (((-85) $ $) 8 T ELT)) (-2683 (((-85) $ $) 139 T ELT)) (-2684 (((-85) $ $) 137 T ELT)) (-3835 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3837 (($ $ $) 18 T ELT)) (** (($ $ (-829)) 35 T ELT) (($ $ (-693)) 43 T ELT)) (* (($ (-829) $) 17 T ELT) (($ (-693) $) 21 T ELT) (($ (-483) $) 30 T ELT) (($ $ $) 34 T ELT) (($ (-483) $) 120 T ELT))) -(((-482) (-113)) (T -482)) -((-2672 (*1 *2 *1) (-12 (-4 *1 (-482)) (-5 *2 (-85)))) (-2673 (*1 *2 *1) (-12 (-4 *1 (-482)) (-5 *2 (-85)))) (-2693 (*1 *1) (-4 *1 (-482))) (-3831 (*1 *1 *1) (-4 *1 (-482))) (-2440 (*1 *1 *1 *1) (-4 *1 (-482))) (-2048 (*1 *2 *1 *1) (-12 (-4 *1 (-482)) (-5 *2 (-85)))) (-2047 (*1 *1 *1 *1) (-4 *1 (-482))) (-2046 (*1 *1 *1 *1) (-4 *1 (-482))) (-3022 (*1 *2 *1) (-12 (-4 *1 (-482)) (-5 *2 (-85)))) (-3021 (*1 *2 *1) (-12 (-4 *1 (-482)) (-5 *2 (-348 (-483))))) (-3023 (*1 *2 *1) (|partial| -12 (-4 *1 (-482)) (-5 *2 (-348 (-483))))) (-2993 (*1 *1) (-4 *1 (-482))) (-2993 (*1 *1 *1) (-4 *1 (-482))) (-3398 (*1 *1 *1) (-4 *1 (-482))) (-2045 (*1 *1 *1) (-4 *1 (-482))) (-2044 (*1 *1 *1) (-4 *1 (-482))) (-2043 (*1 *1 *1) (-4 *1 (-482))) (-2042 (*1 *1 *1 *1 *1) (-4 *1 (-482))) (-2041 (*1 *1 *1 *1 *1) (-4 *1 (-482))) (-2040 (*1 *1 *1 *1 *1) (-4 *1 (-482))) (-2039 (*1 *1 *1 *1 *1) (-4 *1 (-482))) (-2038 (*1 *1 *1 *1) (-4 *1 (-482)))) -(-13 (-1132) (-258) (-739) (-190) (-552 (-483)) (-949 (-483)) (-579 (-483)) (-552 (-472)) (-552 (-799 (-483))) (-795 (-483)) (-116) (-932) (-120) (-1064) (-10 -8 (-15 -2672 ((-85) $)) (-15 -2673 ((-85) $)) (-6 -3992) (-15 -2693 ($)) (-15 -3831 ($ $)) (-15 -2440 ($ $ $)) (-15 -2048 ((-85) $ $)) (-15 -2047 ($ $ $)) (-15 -2046 ($ $ $)) (-15 -3022 ((-85) $)) (-15 -3021 ((-348 (-483)) $)) (-15 -3023 ((-3 (-348 (-483)) "failed") $)) (-15 -2993 ($)) (-15 -2993 ($ $)) (-15 -3398 ($ $)) (-15 -2045 ($ $)) (-15 -2044 ($ $)) (-15 -2043 ($ $)) (-15 -2042 ($ $ $ $)) (-15 -2041 ($ $ $ $)) (-15 -2040 ($ $ $ $)) (-15 -2039 ($ $ $ $)) (-15 -2038 ($ $ $)) (-6 -3991))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-120) . T) ((-554 (-483)) . T) ((-554 $) . T) ((-551 (-771)) . T) ((-116) . T) ((-146) . T) ((-552 (-179)) . T) ((-552 (-328)) . T) ((-552 (-472)) . T) ((-552 (-483)) . T) ((-552 (-799 (-483))) . T) ((-186 $) . T) ((-190) . T) ((-189) . T) ((-246) . T) ((-258) . T) ((-390) . T) ((-494) . T) ((-13) . T) ((-587 (-483)) . T) ((-587 $) . T) ((-589 (-483)) . T) ((-589 $) . T) ((-581 $) . T) ((-579 (-483)) . T) ((-653 $) . T) ((-662) . T) ((-713) . T) ((-715) . T) ((-717) . T) ((-720) . T) ((-739) . T) ((-754) . T) ((-755) . T) ((-758) . T) ((-795 (-483)) . T) ((-831) . T) ((-932) . T) ((-949 (-483)) . T) ((-962 $) . T) ((-967 $) . T) ((-960) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1064) . T) ((-1127) . T) ((-1132) . T)) -((-2567 (((-85) $ $) NIL T ELT)) (-3187 (((-85) $) 8 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3980 $) (|:| |associate| $)) $) 77 T ELT)) (-2062 (($ $) 78 T ELT)) (-2060 (((-85) $) NIL T ELT)) (-2046 (($ $ $) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2041 (($ $ $ $) 31 T ELT)) (-3773 (($ $) NIL T ELT)) (-3969 (((-346 $) $) NIL T ELT)) (-1606 (((-85) $ $) NIL T ELT)) (-3621 (((-483) $) NIL T ELT)) (-2440 (($ $ $) 71 T ELT)) (-3722 (($) NIL T CONST)) (-3156 (((-3 (-483) #1#) $) NIL T ELT)) (-3155 (((-483) $) NIL T ELT)) (-2563 (($ $ $) 45 T ELT)) (-2278 (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-629 $) (-1177 $)) 53 T ELT) (((-629 (-483)) (-629 $)) 49 T ELT)) (-3465 (((-3 $ #1#) $) 74 T ELT)) (-3023 (((-3 (-348 (-483)) #1#) $) NIL T ELT)) (-3022 (((-85) $) NIL T ELT)) (-3021 (((-348 (-483)) $) NIL T ELT)) (-2993 (($) 55 T ELT) (($ $) 56 T ELT)) (-2562 (($ $ $) 70 T ELT)) (-2740 (((-2 (|:| -3952 (-582 $)) (|:| -2408 $)) (-582 $)) NIL T ELT)) (-3721 (((-85) $) NIL T ELT)) (-2039 (($ $ $ $) NIL T ELT)) (-2047 (($ $ $) 46 T ELT)) (-3185 (((-85) $) 22 T ELT)) (-1367 (($ $ $) NIL T ELT)) (-2795 (((-797 (-483) $) $ (-799 (-483)) (-797 (-483) $)) NIL T ELT)) (-1212 (((-85) $ $) 110 T ELT)) (-2409 (((-85) $) 9 T ELT)) (-2672 (((-85) $) 64 T ELT)) (-3443 (((-631 $) $) NIL T ELT)) (-3186 (((-85) $) 21 T ELT)) (-1603 (((-3 (-582 $) #1#) (-582 $) $) NIL T ELT)) (-2040 (($ $ $ $) 32 T ELT)) (-2530 (($ $ $) 67 T ELT)) (-2856 (($ $ $) 66 T ELT)) (-2043 (($ $) NIL T ELT)) (-3831 (($ $) 29 T ELT)) (-2279 (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL T ELT) (((-629 (-483)) (-1177 $)) NIL T ELT)) (-1889 (($ $ $) NIL T ELT) (($ (-582 $)) NIL T ELT)) (-3241 (((-1071) $) 44 T ELT)) (-2038 (($ $ $) NIL T ELT)) (-3444 (($) NIL T CONST)) (-2045 (($ $) 15 T ELT)) (-3242 (((-1032) $) 19 T ELT)) (-2707 (((-1083 $) (-1083 $) (-1083 $)) 109 T ELT)) (-3143 (($ $ $) 75 T ELT) (($ (-582 $)) NIL T ELT)) (-1365 (($ $) NIL T ELT)) (-3730 (((-346 $) $) 95 T ELT)) (-1604 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL T ELT)) (-3464 (((-3 $ #1#) $ $) 93 T ELT)) (-2739 (((-631 (-582 $)) (-582 $) $) NIL T ELT)) (-2673 (((-85) $) 65 T ELT)) (-1605 (((-693) $) NIL T ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) 69 T ELT)) (-3756 (($ $) NIL T ELT) (($ $ (-693)) NIL T ELT)) (-2044 (($ $) 17 T ELT)) (-3398 (($ $) 13 T ELT)) (-3970 (((-483) $) 28 T ELT) (((-472) $) 41 T ELT) (((-799 (-483)) $) NIL T ELT) (((-328) $) 35 T ELT) (((-179) $) 38 T ELT)) (-3944 (((-771) $) 26 T ELT) (($ (-483)) 27 T ELT) (($ $) NIL T ELT) (($ (-483)) 27 T ELT)) (-3125 (((-693)) NIL T CONST)) (-2048 (((-85) $ $) NIL T ELT)) (-3100 (($ $ $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2693 (($) 12 T ELT)) (-2061 (((-85) $ $) NIL T ELT)) (-3124 (((-85) $ $) 112 T ELT)) (-2042 (($ $ $ $) 30 T ELT)) (-3381 (($ $) 54 T ELT)) (-2659 (($) 10 T CONST)) (-2665 (($) 11 T CONST)) (-2668 (($ $) NIL T ELT) (($ $ (-693)) NIL T ELT)) (-2565 (((-85) $ $) 59 T ELT)) (-2566 (((-85) $ $) 57 T ELT)) (-3055 (((-85) $ $) 7 T ELT)) (-2683 (((-85) $ $) 58 T ELT)) (-2684 (((-85) $ $) 20 T ELT)) (-3835 (($ $) 42 T ELT) (($ $ $) 16 T ELT)) (-3837 (($ $ $) 14 T ELT)) (** (($ $ (-829)) NIL T ELT) (($ $ (-693)) 63 T ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-483) $) 61 T ELT) (($ $ $) 60 T ELT) (($ (-483) $) 61 T ELT))) -(((-483) (-13 (-482) (-10 -7 (-6 -3980) (-6 -3985) (-6 -3981)))) (T -483)) -NIL -((-2567 (((-85) $ $) NIL T ELT)) (-3135 (((-693)) NIL T ELT)) (-3722 (($) NIL T CONST)) (-2993 (($) NIL T ELT)) (-2530 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2856 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2009 (((-829) $) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-2399 (($ (-829)) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3944 (((-771) $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2565 (((-85) $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-2683 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL T ELT))) -(((-484) (-13 (-751) (-10 -8 (-15 -3722 ($) -3950)))) (T -484)) -((-3722 (*1 *1) (-5 *1 (-484)))) -((-483) (|%not| (|%ilt| 16 (|%ilength| |#1|)))) -((-2567 (((-85) $ $) NIL T ELT)) (-3135 (((-693)) NIL T ELT)) (-3722 (($) NIL T CONST)) (-2993 (($) NIL T ELT)) (-2530 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2856 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2009 (((-829) $) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-2399 (($ (-829)) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3944 (((-771) $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2565 (((-85) $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-2683 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL T ELT))) -(((-485) (-13 (-751) (-10 -8 (-15 -3722 ($) -3950)))) (T -485)) -((-3722 (*1 *1) (-5 *1 (-485)))) -((-483) (|%not| (|%ilt| 32 (|%ilength| |#1|)))) -((-2567 (((-85) $ $) NIL T ELT)) (-3135 (((-693)) NIL T ELT)) (-3722 (($) NIL T CONST)) (-2993 (($) NIL T ELT)) (-2530 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2856 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2009 (((-829) $) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-2399 (($ (-829)) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3944 (((-771) $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2565 (((-85) $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-2683 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL T ELT))) -(((-486) (-13 (-751) (-10 -8 (-15 -3722 ($) -3950)))) (T -486)) -((-3722 (*1 *1) (-5 *1 (-486)))) -((-483) (|%not| (|%ilt| 64 (|%ilength| |#1|)))) -((-2567 (((-85) $ $) NIL T ELT)) (-3135 (((-693)) NIL T ELT)) (-3722 (($) NIL T CONST)) (-2993 (($) NIL T ELT)) (-2530 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2856 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2009 (((-829) $) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-2399 (($ (-829)) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3944 (((-771) $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2565 (((-85) $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-2683 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL T ELT))) -(((-487) (-13 (-751) (-10 -8 (-15 -3722 ($) -3950)))) (T -487)) -((-3722 (*1 *1) (-5 *1 (-487)))) -((-483) (|%not| (|%ilt| 8 (|%ilength| |#1|)))) -((-2567 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3597 (($) NIL T ELT) (($ (-582 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2197 (((-1183) $ |#1| |#1|) NIL (|has| $ (-6 -3994)) ELT)) (-3786 ((|#2| $ |#1| |#2|) NIL T ELT)) (-1568 (($ (-1 (-85) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3993)) ELT)) (-3708 (($ (-1 (-85) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3993)) ELT)) (-2230 (((-3 |#2| #1="failed") |#1| $) NIL T ELT)) (-3722 (($) NIL T CONST)) (-1351 (($ $) NIL (-12 (|has| $ (-6 -3993)) (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012))) ELT)) (-3403 (($ (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-6 -3993)) ELT) (($ (-1 (-85) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3993)) ELT) (((-3 |#2| #1#) |#1| $) NIL T ELT)) (-3404 (($ (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3993)) (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ (-1 (-85) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3993)) ELT)) (-3840 (((-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -3993)) (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (((-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3993)) ELT) (((-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3993)) ELT)) (-1574 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3994)) ELT)) (-3111 ((|#2| $ |#1|) NIL T ELT)) (-2888 (((-582 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3993)) ELT) (((-582 |#2|) $) NIL (|has| $ (-6 -3993)) ELT)) (-2199 ((|#1| $) NIL (|has| |#1| (-755)) ELT)) (-2607 (((-582 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3993)) ELT) (((-582 |#2|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3244 (((-85) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3993)) (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#2| (-1012))) ELT)) (-2200 ((|#1| $) NIL (|has| |#1| (-755)) ELT)) (-1947 (($ (-1 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3956 (($ (-1 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3241 (((-1071) $) NIL (OR (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| |#2| (-1012))) ELT)) (-2231 (((-582 |#1|) $) NIL T ELT)) (-2232 (((-85) |#1| $) NIL T ELT)) (-1272 (((-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3607 (($ (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2202 (((-582 |#1|) $) NIL T ELT)) (-2203 (((-85) |#1| $) NIL T ELT)) (-3242 (((-1032) $) NIL (OR (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| |#2| (-1012))) ELT)) (-3799 ((|#2| $) NIL (|has| |#1| (-755)) ELT)) (-1352 (((-3 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-85) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2198 (($ $ |#2|) NIL (|has| $ (-6 -3994)) ELT)) (-1273 (((-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1945 (((-85) (-1 (-85) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3993)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3766 (($ $ (-582 (-249 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-249 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-582 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) (-582 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-582 |#2|) (-582 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ (-582 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1012))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-2201 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#2| (-1012))) ELT)) (-2204 (((-582 |#2|) $) NIL T ELT)) (-3401 (((-85) $) NIL T ELT)) (-3563 (($) NIL T ELT)) (-3798 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1464 (($) NIL T ELT) (($ (-582 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1944 (((-693) (-1 (-85) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3993)) ELT) (((-693) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3993)) (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (((-693) |#2| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#2| (-1012))) ELT) (((-693) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3398 (($ $) NIL T ELT)) (-3970 (((-472) $) NIL (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-552 (-472))) ELT)) (-3528 (($ (-582 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3944 (((-771) $) NIL (OR (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-551 (-771))) (|has| |#2| (-551 (-771)))) ELT)) (-1263 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1274 (($ (-582 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1946 (((-85) (-1 (-85) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3993)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3055 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3955 (((-693) $) NIL (|has| $ (-6 -3993)) ELT))) -(((-488 |#1| |#2| |#3|) (-13 (-1105 |#1| |#2|) (-10 -7 (-6 -3993))) (-1012) (-1012) (-13 (-1105 |#1| |#2|) (-10 -7 (-6 -3993)))) (T -488)) -NIL -((-2049 (((-518 |#2|) |#2| (-549 |#2|) (-549 |#2|) (-1 (-1083 |#2|) (-1083 |#2|))) 50 T ELT))) -(((-489 |#1| |#2|) (-10 -7 (-15 -2049 ((-518 |#2|) |#2| (-549 |#2|) (-549 |#2|) (-1 (-1083 |#2|) (-1083 |#2|))))) (-494) (-13 (-27) (-362 |#1|))) (T -489)) -((-2049 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-549 *3)) (-5 *5 (-1 (-1083 *3) (-1083 *3))) (-4 *3 (-13 (-27) (-362 *6))) (-4 *6 (-494)) (-5 *2 (-518 *3)) (-5 *1 (-489 *6 *3))))) -((-2051 (((-518 |#5|) |#5| (-1 |#3| |#3|)) 217 T ELT)) (-2052 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 213 T ELT)) (-2050 (((-518 |#5|) |#5| (-1 |#3| |#3|)) 221 T ELT))) -(((-490 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2050 ((-518 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2051 ((-518 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2052 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-494) (-949 (-483))) (-13 (-27) (-362 |#1|)) (-1153 |#2|) (-1153 (-348 |#3|)) (-291 |#2| |#3| |#4|)) (T -490)) -((-2052 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1153 *5)) (-4 *5 (-13 (-27) (-362 *4))) (-4 *4 (-13 (-494) (-949 (-483)))) (-4 *7 (-1153 (-348 *6))) (-5 *1 (-490 *4 *5 *6 *7 *2)) (-4 *2 (-291 *5 *6 *7)))) (-2051 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1153 *6)) (-4 *6 (-13 (-27) (-362 *5))) (-4 *5 (-13 (-494) (-949 (-483)))) (-4 *8 (-1153 (-348 *7))) (-5 *2 (-518 *3)) (-5 *1 (-490 *5 *6 *7 *8 *3)) (-4 *3 (-291 *6 *7 *8)))) (-2050 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1153 *6)) (-4 *6 (-13 (-27) (-362 *5))) (-4 *5 (-13 (-494) (-949 (-483)))) (-4 *8 (-1153 (-348 *7))) (-5 *2 (-518 *3)) (-5 *1 (-490 *5 *6 *7 *8 *3)) (-4 *3 (-291 *6 *7 *8))))) -((-2055 (((-85) (-483) (-483)) 12 T ELT)) (-2053 (((-483) (-483)) 7 T ELT)) (-2054 (((-483) (-483) (-483)) 10 T ELT))) -(((-491) (-10 -7 (-15 -2053 ((-483) (-483))) (-15 -2054 ((-483) (-483) (-483))) (-15 -2055 ((-85) (-483) (-483))))) (T -491)) -((-2055 (*1 *2 *3 *3) (-12 (-5 *3 (-483)) (-5 *2 (-85)) (-5 *1 (-491)))) (-2054 (*1 *2 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-491)))) (-2053 (*1 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-491))))) -((-2567 (((-85) $ $) 7 T ELT)) (-3187 (((-85) $) 22 T ELT)) (-2603 ((|#1| $) 77 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3980 $) (|:| |associate| $)) $) 55 T ELT)) (-2062 (($ $) 54 T ELT)) (-2060 (((-85) $) 52 T ELT)) (-3490 (($ $) 107 T ELT)) (-3637 (($ $) 90 T ELT)) (-2482 ((|#1| $) 78 T ELT)) (-1310 (((-3 $ "failed") $ $) 26 T ELT)) (-3036 (($ $) 89 T ELT)) (-3488 (($ $) 106 T ELT)) (-3636 (($ $) 91 T ELT)) (-3492 (($ $) 105 T ELT)) (-3635 (($ $) 92 T ELT)) (-3722 (($) 23 T CONST)) (-3156 (((-3 (-483) "failed") $) 85 T ELT)) (-3155 (((-483) $) 86 T ELT)) (-3465 (((-3 $ "failed") $) 42 T ELT)) (-2058 (($ |#1| |#1|) 82 T ELT)) (-3185 (((-85) $) 76 T ELT)) (-3625 (($) 117 T ELT)) (-1212 (((-85) $ $) 20 T ELT)) (-2409 (((-85) $) 44 T ELT)) (-3010 (($ $ (-483)) 88 T ELT)) (-3186 (((-85) $) 75 T ELT)) (-2530 (($ $ $) 118 T ELT)) (-2856 (($ $ $) 119 T ELT)) (-3940 (($ $) 114 T ELT)) (-1889 (($ $ $) 60 T ELT) (($ (-582 $)) 59 T ELT)) (-3241 (((-1071) $) 11 T ELT)) (-2059 (($ |#1| |#1|) 83 T ELT) (($ |#1|) 81 T ELT) (($ (-348 (-483))) 80 T ELT)) (-2057 ((|#1| $) 79 T ELT)) (-3242 (((-1032) $) 12 T ELT)) (-2707 (((-1083 $) (-1083 $) (-1083 $)) 58 T ELT)) (-3143 (($ $ $) 62 T ELT) (($ (-582 $)) 61 T ELT)) (-3464 (((-3 $ "failed") $ $) 56 T ELT)) (-3941 (($ $) 115 T ELT)) (-3493 (($ $) 104 T ELT)) (-3634 (($ $) 93 T ELT)) (-3491 (($ $) 103 T ELT)) (-3633 (($ $) 94 T ELT)) (-3489 (($ $) 102 T ELT)) (-3632 (($ $) 95 T ELT)) (-2056 (((-85) $ |#1|) 74 T ELT)) (-3944 (((-771) $) 13 T ELT) (($ (-483)) 41 T ELT) (($ $) 57 T ELT) (($ (-483)) 84 T ELT)) (-3125 (((-693)) 40 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-3496 (($ $) 113 T ELT)) (-3484 (($ $) 101 T ELT)) (-2061 (((-85) $ $) 53 T ELT)) (-3494 (($ $) 112 T ELT)) (-3482 (($ $) 100 T ELT)) (-3498 (($ $) 111 T ELT)) (-3486 (($ $) 99 T ELT)) (-3124 (((-85) $ $) 33 T ELT)) (-3499 (($ $) 110 T ELT)) (-3487 (($ $) 98 T ELT)) (-3497 (($ $) 109 T ELT)) (-3485 (($ $) 97 T ELT)) (-3495 (($ $) 108 T ELT)) (-3483 (($ $) 96 T ELT)) (-2659 (($) 24 T CONST)) (-2665 (($) 45 T CONST)) (-2565 (((-85) $ $) 120 T ELT)) (-2566 (((-85) $ $) 122 T ELT)) (-3055 (((-85) $ $) 8 T ELT)) (-2683 (((-85) $ $) 121 T ELT)) (-2684 (((-85) $ $) 123 T ELT)) (-3835 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3837 (($ $ $) 18 T ELT)) (** (($ $ (-829)) 35 T ELT) (($ $ (-693)) 43 T ELT) (($ $ $) 116 T ELT) (($ $ (-348 (-483))) 87 T ELT)) (* (($ (-829) $) 17 T ELT) (($ (-693) $) 21 T ELT) (($ (-483) $) 30 T ELT) (($ $ $) 34 T ELT))) -(((-492 |#1|) (-113) (-13 (-345) (-1113))) (T -492)) -((-2059 (*1 *1 *2 *2) (-12 (-4 *1 (-492 *2)) (-4 *2 (-13 (-345) (-1113))))) (-2058 (*1 *1 *2 *2) (-12 (-4 *1 (-492 *2)) (-4 *2 (-13 (-345) (-1113))))) (-2059 (*1 *1 *2) (-12 (-4 *1 (-492 *2)) (-4 *2 (-13 (-345) (-1113))))) (-2059 (*1 *1 *2) (-12 (-5 *2 (-348 (-483))) (-4 *1 (-492 *3)) (-4 *3 (-13 (-345) (-1113))))) (-2057 (*1 *2 *1) (-12 (-4 *1 (-492 *2)) (-4 *2 (-13 (-345) (-1113))))) (-2482 (*1 *2 *1) (-12 (-4 *1 (-492 *2)) (-4 *2 (-13 (-345) (-1113))))) (-2603 (*1 *2 *1) (-12 (-4 *1 (-492 *2)) (-4 *2 (-13 (-345) (-1113))))) (-3185 (*1 *2 *1) (-12 (-4 *1 (-492 *3)) (-4 *3 (-13 (-345) (-1113))) (-5 *2 (-85)))) (-3186 (*1 *2 *1) (-12 (-4 *1 (-492 *3)) (-4 *3 (-13 (-345) (-1113))) (-5 *2 (-85)))) (-2056 (*1 *2 *1 *3) (-12 (-4 *1 (-492 *3)) (-4 *3 (-13 (-345) (-1113))) (-5 *2 (-85))))) -(-13 (-390) (-755) (-1113) (-914) (-949 (-483)) (-10 -8 (-6 -3768) (-15 -2059 ($ |t#1| |t#1|)) (-15 -2058 ($ |t#1| |t#1|)) (-15 -2059 ($ |t#1|)) (-15 -2059 ($ (-348 (-483)))) (-15 -2057 (|t#1| $)) (-15 -2482 (|t#1| $)) (-15 -2603 (|t#1| $)) (-15 -3185 ((-85) $)) (-15 -3186 ((-85) $)) (-15 -2056 ((-85) $ |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-35) . T) ((-66) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-554 (-483)) . T) ((-554 $) . T) ((-551 (-771)) . T) ((-146) . T) ((-239) . T) ((-246) . T) ((-390) . T) ((-431) . T) ((-494) . T) ((-13) . T) ((-587 (-483)) . T) ((-587 $) . T) ((-589 $) . T) ((-581 $) . T) ((-653 $) . T) ((-662) . T) ((-755) . T) ((-758) . T) ((-914) . T) ((-949 (-483)) . T) ((-962 $) . T) ((-967 $) . T) ((-960) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1113) . T) ((-1116) . T) ((-1127) . T)) -((-2063 (((-2 (|:| -1770 $) (|:| -3980 $) (|:| |associate| $)) $) 9 T ELT)) (-2062 (($ $) 11 T ELT)) (-2060 (((-85) $) 20 T ELT)) (-3465 (((-3 $ "failed") $) 16 T ELT)) (-2061 (((-85) $ $) 22 T ELT))) -(((-493 |#1|) (-10 -7 (-15 -2060 ((-85) |#1|)) (-15 -2061 ((-85) |#1| |#1|)) (-15 -2062 (|#1| |#1|)) (-15 -2063 ((-2 (|:| -1770 |#1|) (|:| -3980 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3465 ((-3 |#1| "failed") |#1|))) (-494)) (T -493)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-3187 (((-85) $) 22 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3980 $) (|:| |associate| $)) $) 55 T ELT)) (-2062 (($ $) 54 T ELT)) (-2060 (((-85) $) 52 T ELT)) (-1310 (((-3 $ "failed") $ $) 26 T ELT)) (-3722 (($) 23 T CONST)) (-3465 (((-3 $ "failed") $) 42 T ELT)) (-1212 (((-85) $ $) 20 T ELT)) (-2409 (((-85) $) 44 T ELT)) (-3241 (((-1071) $) 11 T ELT)) (-3242 (((-1032) $) 12 T ELT)) (-3464 (((-3 $ "failed") $ $) 56 T ELT)) (-3944 (((-771) $) 13 T ELT) (($ (-483)) 41 T ELT) (($ $) 57 T ELT)) (-3125 (((-693)) 40 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-2061 (((-85) $ $) 53 T ELT)) (-3124 (((-85) $ $) 33 T ELT)) (-2659 (($) 24 T CONST)) (-2665 (($) 45 T CONST)) (-3055 (((-85) $ $) 8 T ELT)) (-3835 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3837 (($ $ $) 18 T ELT)) (** (($ $ (-829)) 35 T ELT) (($ $ (-693)) 43 T ELT)) (* (($ (-829) $) 17 T ELT) (($ (-693) $) 21 T ELT) (($ (-483) $) 30 T ELT) (($ $ $) 34 T ELT))) -(((-494) (-113)) (T -494)) -((-3464 (*1 *1 *1 *1) (|partial| -4 *1 (-494))) (-2063 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -1770 *1) (|:| -3980 *1) (|:| |associate| *1))) (-4 *1 (-494)))) (-2062 (*1 *1 *1) (-4 *1 (-494))) (-2061 (*1 *2 *1 *1) (-12 (-4 *1 (-494)) (-5 *2 (-85)))) (-2060 (*1 *2 *1) (-12 (-4 *1 (-494)) (-5 *2 (-85))))) -(-13 (-146) (-38 $) (-246) (-10 -8 (-15 -3464 ((-3 $ "failed") $ $)) (-15 -2063 ((-2 (|:| -1770 $) (|:| -3980 $) (|:| |associate| $)) $)) (-15 -2062 ($ $)) (-15 -2061 ((-85) $ $)) (-15 -2060 ((-85) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-554 (-483)) . T) ((-554 $) . T) ((-551 (-771)) . T) ((-146) . T) ((-246) . T) ((-13) . T) ((-587 (-483)) . T) ((-587 $) . T) ((-589 $) . T) ((-581 $) . T) ((-653 $) . T) ((-662) . T) ((-962 $) . T) ((-967 $) . T) ((-960) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T)) -((-2065 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-582 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-1088) (-582 |#2|)) 38 T ELT)) (-2067 (((-518 |#2|) |#2| (-1088)) 63 T ELT)) (-2066 (((-3 |#2| #1#) |#2| (-1088)) 156 T ELT)) (-2068 (((-3 (-2 (|:| -2135 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1088) (-549 |#2|) (-582 (-549 |#2|))) 159 T ELT)) (-2064 (((-3 (-2 (|:| -2135 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1088) |#2|) 41 T ELT))) -(((-495 |#1| |#2|) (-10 -7 (-15 -2064 ((-3 (-2 (|:| -2135 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-1088) |#2|)) (-15 -2065 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-582 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-1088) (-582 |#2|))) (-15 -2066 ((-3 |#2| #1#) |#2| (-1088))) (-15 -2067 ((-518 |#2|) |#2| (-1088))) (-15 -2068 ((-3 (-2 (|:| -2135 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1088) (-549 |#2|) (-582 (-549 |#2|))))) (-13 (-390) (-120) (-949 (-483)) (-579 (-483))) (-13 (-27) (-1113) (-362 |#1|))) (T -495)) -((-2068 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1088)) (-5 *6 (-582 (-549 *3))) (-5 *5 (-549 *3)) (-4 *3 (-13 (-27) (-1113) (-362 *7))) (-4 *7 (-13 (-390) (-120) (-949 (-483)) (-579 (-483)))) (-5 *2 (-2 (|:| -2135 *3) (|:| |coeff| *3))) (-5 *1 (-495 *7 *3)))) (-2067 (*1 *2 *3 *4) (-12 (-5 *4 (-1088)) (-4 *5 (-13 (-390) (-120) (-949 (-483)) (-579 (-483)))) (-5 *2 (-518 *3)) (-5 *1 (-495 *5 *3)) (-4 *3 (-13 (-27) (-1113) (-362 *5))))) (-2066 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1088)) (-4 *4 (-13 (-390) (-120) (-949 (-483)) (-579 (-483)))) (-5 *1 (-495 *4 *2)) (-4 *2 (-13 (-27) (-1113) (-362 *4))))) (-2065 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1088)) (-5 *5 (-582 *3)) (-4 *3 (-13 (-27) (-1113) (-362 *6))) (-4 *6 (-13 (-390) (-120) (-949 (-483)) (-579 (-483)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-582 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-495 *6 *3)))) (-2064 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1088)) (-4 *5 (-13 (-390) (-120) (-949 (-483)) (-579 (-483)))) (-5 *2 (-2 (|:| -2135 *3) (|:| |coeff| *3))) (-5 *1 (-495 *5 *3)) (-4 *3 (-13 (-27) (-1113) (-362 *5)))))) -((-3969 (((-346 |#1|) |#1|) 17 T ELT)) (-3730 (((-346 |#1|) |#1|) 32 T ELT)) (-2070 (((-3 |#1| "failed") |#1|) 48 T ELT)) (-2069 (((-346 |#1|) |#1|) 59 T ELT))) -(((-496 |#1|) (-10 -7 (-15 -3730 ((-346 |#1|) |#1|)) (-15 -3969 ((-346 |#1|) |#1|)) (-15 -2069 ((-346 |#1|) |#1|)) (-15 -2070 ((-3 |#1| "failed") |#1|))) (-482)) (T -496)) -((-2070 (*1 *2 *2) (|partial| -12 (-5 *1 (-496 *2)) (-4 *2 (-482)))) (-2069 (*1 *2 *3) (-12 (-5 *2 (-346 *3)) (-5 *1 (-496 *3)) (-4 *3 (-482)))) (-3969 (*1 *2 *3) (-12 (-5 *2 (-346 *3)) (-5 *1 (-496 *3)) (-4 *3 (-482)))) (-3730 (*1 *2 *3) (-12 (-5 *2 (-346 *3)) (-5 *1 (-496 *3)) (-4 *3 (-482))))) -((-3082 (((-1083 (-348 (-1083 |#2|))) |#2| (-549 |#2|) (-549 |#2|) (-1083 |#2|)) 35 T ELT)) (-2073 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-582 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-549 |#2|) (-549 |#2|) (-582 |#2|) (-549 |#2|) |#2| (-348 (-1083 |#2|))) 105 T ELT) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-582 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-549 |#2|) (-549 |#2|) (-582 |#2|) |#2| (-1083 |#2|)) 115 T ELT)) (-2071 (((-518 |#2|) |#2| (-549 |#2|) (-549 |#2|) (-549 |#2|) |#2| (-348 (-1083 |#2|))) 85 T ELT) (((-518 |#2|) |#2| (-549 |#2|) (-549 |#2|) |#2| (-1083 |#2|)) 55 T ELT)) (-2072 (((-3 (-2 (|:| -2135 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-549 |#2|) (-549 |#2|) |#2| (-549 |#2|) |#2| (-348 (-1083 |#2|))) 92 T ELT) (((-3 (-2 (|:| -2135 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-549 |#2|) (-549 |#2|) |#2| |#2| (-1083 |#2|)) 114 T ELT)) (-2074 (((-3 |#2| #1#) |#2| |#2| (-549 |#2|) (-549 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1088)) (-549 |#2|) |#2| (-348 (-1083 |#2|))) 110 T ELT) (((-3 |#2| #1#) |#2| |#2| (-549 |#2|) (-549 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1088)) |#2| (-1083 |#2|)) 116 T ELT)) (-2075 (((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2011 (-582 |#2|))) |#3| |#2| (-549 |#2|) (-549 |#2|) (-549 |#2|) |#2| (-348 (-1083 |#2|))) 133 (|has| |#3| (-599 |#2|)) ELT) (((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2011 (-582 |#2|))) |#3| |#2| (-549 |#2|) (-549 |#2|) |#2| (-1083 |#2|)) 132 (|has| |#3| (-599 |#2|)) ELT)) (-3083 ((|#2| (-1083 (-348 (-1083 |#2|))) (-549 |#2|) |#2|) 53 T ELT)) (-3078 (((-1083 (-348 (-1083 |#2|))) (-1083 |#2|) (-549 |#2|)) 34 T ELT))) -(((-497 |#1| |#2| |#3|) (-10 -7 (-15 -2071 ((-518 |#2|) |#2| (-549 |#2|) (-549 |#2|) |#2| (-1083 |#2|))) (-15 -2071 ((-518 |#2|) |#2| (-549 |#2|) (-549 |#2|) (-549 |#2|) |#2| (-348 (-1083 |#2|)))) (-15 -2072 ((-3 (-2 (|:| -2135 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-549 |#2|) (-549 |#2|) |#2| |#2| (-1083 |#2|))) (-15 -2072 ((-3 (-2 (|:| -2135 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-549 |#2|) (-549 |#2|) |#2| (-549 |#2|) |#2| (-348 (-1083 |#2|)))) (-15 -2073 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-582 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-549 |#2|) (-549 |#2|) (-582 |#2|) |#2| (-1083 |#2|))) (-15 -2073 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-582 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-549 |#2|) (-549 |#2|) (-582 |#2|) (-549 |#2|) |#2| (-348 (-1083 |#2|)))) (-15 -2074 ((-3 |#2| #1#) |#2| |#2| (-549 |#2|) (-549 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1088)) |#2| (-1083 |#2|))) (-15 -2074 ((-3 |#2| #1#) |#2| |#2| (-549 |#2|) (-549 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1088)) (-549 |#2|) |#2| (-348 (-1083 |#2|)))) (-15 -3082 ((-1083 (-348 (-1083 |#2|))) |#2| (-549 |#2|) (-549 |#2|) (-1083 |#2|))) (-15 -3083 (|#2| (-1083 (-348 (-1083 |#2|))) (-549 |#2|) |#2|)) (-15 -3078 ((-1083 (-348 (-1083 |#2|))) (-1083 |#2|) (-549 |#2|))) (IF (|has| |#3| (-599 |#2|)) (PROGN (-15 -2075 ((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2011 (-582 |#2|))) |#3| |#2| (-549 |#2|) (-549 |#2|) |#2| (-1083 |#2|))) (-15 -2075 ((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2011 (-582 |#2|))) |#3| |#2| (-549 |#2|) (-549 |#2|) (-549 |#2|) |#2| (-348 (-1083 |#2|))))) |%noBranch|)) (-13 (-390) (-949 (-483)) (-120) (-579 (-483))) (-13 (-362 |#1|) (-27) (-1113)) (-1012)) (T -497)) -((-2075 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-549 *4)) (-5 *6 (-348 (-1083 *4))) (-4 *4 (-13 (-362 *7) (-27) (-1113))) (-4 *7 (-13 (-390) (-949 (-483)) (-120) (-579 (-483)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2011 (-582 *4)))) (-5 *1 (-497 *7 *4 *3)) (-4 *3 (-599 *4)) (-4 *3 (-1012)))) (-2075 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-549 *4)) (-5 *6 (-1083 *4)) (-4 *4 (-13 (-362 *7) (-27) (-1113))) (-4 *7 (-13 (-390) (-949 (-483)) (-120) (-579 (-483)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2011 (-582 *4)))) (-5 *1 (-497 *7 *4 *3)) (-4 *3 (-599 *4)) (-4 *3 (-1012)))) (-3078 (*1 *2 *3 *4) (-12 (-5 *4 (-549 *6)) (-4 *6 (-13 (-362 *5) (-27) (-1113))) (-4 *5 (-13 (-390) (-949 (-483)) (-120) (-579 (-483)))) (-5 *2 (-1083 (-348 (-1083 *6)))) (-5 *1 (-497 *5 *6 *7)) (-5 *3 (-1083 *6)) (-4 *7 (-1012)))) (-3083 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1083 (-348 (-1083 *2)))) (-5 *4 (-549 *2)) (-4 *2 (-13 (-362 *5) (-27) (-1113))) (-4 *5 (-13 (-390) (-949 (-483)) (-120) (-579 (-483)))) (-5 *1 (-497 *5 *2 *6)) (-4 *6 (-1012)))) (-3082 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-549 *3)) (-4 *3 (-13 (-362 *6) (-27) (-1113))) (-4 *6 (-13 (-390) (-949 (-483)) (-120) (-579 (-483)))) (-5 *2 (-1083 (-348 (-1083 *3)))) (-5 *1 (-497 *6 *3 *7)) (-5 *5 (-1083 *3)) (-4 *7 (-1012)))) (-2074 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-549 *2)) (-5 *4 (-1 (-3 *2 #2="failed") *2 *2 (-1088))) (-5 *5 (-348 (-1083 *2))) (-4 *2 (-13 (-362 *6) (-27) (-1113))) (-4 *6 (-13 (-390) (-949 (-483)) (-120) (-579 (-483)))) (-5 *1 (-497 *6 *2 *7)) (-4 *7 (-1012)))) (-2074 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-549 *2)) (-5 *4 (-1 (-3 *2 #2#) *2 *2 (-1088))) (-5 *5 (-1083 *2)) (-4 *2 (-13 (-362 *6) (-27) (-1113))) (-4 *6 (-13 (-390) (-949 (-483)) (-120) (-579 (-483)))) (-5 *1 (-497 *6 *2 *7)) (-4 *7 (-1012)))) (-2073 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-549 *3)) (-5 *5 (-582 *3)) (-5 *6 (-348 (-1083 *3))) (-4 *3 (-13 (-362 *7) (-27) (-1113))) (-4 *7 (-13 (-390) (-949 (-483)) (-120) (-579 (-483)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-582 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-497 *7 *3 *8)) (-4 *8 (-1012)))) (-2073 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-549 *3)) (-5 *5 (-582 *3)) (-5 *6 (-1083 *3)) (-4 *3 (-13 (-362 *7) (-27) (-1113))) (-4 *7 (-13 (-390) (-949 (-483)) (-120) (-579 (-483)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-582 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-497 *7 *3 *8)) (-4 *8 (-1012)))) (-2072 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-549 *3)) (-5 *5 (-348 (-1083 *3))) (-4 *3 (-13 (-362 *6) (-27) (-1113))) (-4 *6 (-13 (-390) (-949 (-483)) (-120) (-579 (-483)))) (-5 *2 (-2 (|:| -2135 *3) (|:| |coeff| *3))) (-5 *1 (-497 *6 *3 *7)) (-4 *7 (-1012)))) (-2072 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-549 *3)) (-5 *5 (-1083 *3)) (-4 *3 (-13 (-362 *6) (-27) (-1113))) (-4 *6 (-13 (-390) (-949 (-483)) (-120) (-579 (-483)))) (-5 *2 (-2 (|:| -2135 *3) (|:| |coeff| *3))) (-5 *1 (-497 *6 *3 *7)) (-4 *7 (-1012)))) (-2071 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-549 *3)) (-5 *5 (-348 (-1083 *3))) (-4 *3 (-13 (-362 *6) (-27) (-1113))) (-4 *6 (-13 (-390) (-949 (-483)) (-120) (-579 (-483)))) (-5 *2 (-518 *3)) (-5 *1 (-497 *6 *3 *7)) (-4 *7 (-1012)))) (-2071 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-549 *3)) (-5 *5 (-1083 *3)) (-4 *3 (-13 (-362 *6) (-27) (-1113))) (-4 *6 (-13 (-390) (-949 (-483)) (-120) (-579 (-483)))) (-5 *2 (-518 *3)) (-5 *1 (-497 *6 *3 *7)) (-4 *7 (-1012))))) -((-2085 (((-483) (-483) (-693)) 87 T ELT)) (-2084 (((-483) (-483)) 85 T ELT)) (-2083 (((-483) (-483)) 82 T ELT)) (-2082 (((-483) (-483)) 89 T ELT)) (-2804 (((-483) (-483) (-483)) 67 T ELT)) (-2081 (((-483) (-483) (-483)) 64 T ELT)) (-2080 (((-348 (-483)) (-483)) 29 T ELT)) (-2079 (((-483) (-483)) 34 T ELT)) (-2078 (((-483) (-483)) 76 T ELT)) (-2801 (((-483) (-483)) 47 T ELT)) (-2077 (((-582 (-483)) (-483)) 81 T ELT)) (-2076 (((-483) (-483) (-483) (-483) (-483)) 60 T ELT)) (-2797 (((-348 (-483)) (-483)) 56 T ELT))) -(((-498) (-10 -7 (-15 -2797 ((-348 (-483)) (-483))) (-15 -2076 ((-483) (-483) (-483) (-483) (-483))) (-15 -2077 ((-582 (-483)) (-483))) (-15 -2801 ((-483) (-483))) (-15 -2078 ((-483) (-483))) (-15 -2079 ((-483) (-483))) (-15 -2080 ((-348 (-483)) (-483))) (-15 -2081 ((-483) (-483) (-483))) (-15 -2804 ((-483) (-483) (-483))) (-15 -2082 ((-483) (-483))) (-15 -2083 ((-483) (-483))) (-15 -2084 ((-483) (-483))) (-15 -2085 ((-483) (-483) (-693))))) (T -498)) -((-2085 (*1 *2 *2 *3) (-12 (-5 *2 (-483)) (-5 *3 (-693)) (-5 *1 (-498)))) (-2084 (*1 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-498)))) (-2083 (*1 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-498)))) (-2082 (*1 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-498)))) (-2804 (*1 *2 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-498)))) (-2081 (*1 *2 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-498)))) (-2080 (*1 *2 *3) (-12 (-5 *2 (-348 (-483))) (-5 *1 (-498)) (-5 *3 (-483)))) (-2079 (*1 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-498)))) (-2078 (*1 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-498)))) (-2801 (*1 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-498)))) (-2077 (*1 *2 *3) (-12 (-5 *2 (-582 (-483))) (-5 *1 (-498)) (-5 *3 (-483)))) (-2076 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-498)))) (-2797 (*1 *2 *3) (-12 (-5 *2 (-348 (-483))) (-5 *1 (-498)) (-5 *3 (-483))))) -((-2086 (((-2 (|:| |answer| |#4|) (|:| -2134 |#4|)) |#4| (-1 |#2| |#2|)) 56 T ELT))) -(((-499 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2086 ((-2 (|:| |answer| |#4|) (|:| -2134 |#4|)) |#4| (-1 |#2| |#2|)))) (-312) (-1153 |#1|) (-1153 (-348 |#2|)) (-291 |#1| |#2| |#3|)) (T -499)) -((-2086 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1153 *5)) (-4 *5 (-312)) (-4 *7 (-1153 (-348 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -2134 *3))) (-5 *1 (-499 *5 *6 *7 *3)) (-4 *3 (-291 *5 *6 *7))))) -((-2086 (((-2 (|:| |answer| (-348 |#2|)) (|:| -2134 (-348 |#2|)) (|:| |specpart| (-348 |#2|)) (|:| |polypart| |#2|)) (-348 |#2|) (-1 |#2| |#2|)) 18 T ELT))) -(((-500 |#1| |#2|) (-10 -7 (-15 -2086 ((-2 (|:| |answer| (-348 |#2|)) (|:| -2134 (-348 |#2|)) (|:| |specpart| (-348 |#2|)) (|:| |polypart| |#2|)) (-348 |#2|) (-1 |#2| |#2|)))) (-312) (-1153 |#1|)) (T -500)) -((-2086 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1153 *5)) (-4 *5 (-312)) (-5 *2 (-2 (|:| |answer| (-348 *6)) (|:| -2134 (-348 *6)) (|:| |specpart| (-348 *6)) (|:| |polypart| *6))) (-5 *1 (-500 *5 *6)) (-5 *3 (-348 *6))))) -((-2089 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-582 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-549 |#2|) (-549 |#2|) (-582 |#2|)) 195 T ELT)) (-2087 (((-518 |#2|) |#2| (-549 |#2|) (-549 |#2|)) 97 T ELT)) (-2088 (((-3 (-2 (|:| -2135 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-549 |#2|) (-549 |#2|) |#2|) 191 T ELT)) (-2090 (((-3 |#2| #1#) |#2| |#2| |#2| (-549 |#2|) (-549 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1088))) 200 T ELT)) (-2091 (((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2011 (-582 |#2|))) |#3| |#2| (-549 |#2|) (-549 |#2|) (-1088)) 209 (|has| |#3| (-599 |#2|)) ELT))) -(((-501 |#1| |#2| |#3|) (-10 -7 (-15 -2087 ((-518 |#2|) |#2| (-549 |#2|) (-549 |#2|))) (-15 -2088 ((-3 (-2 (|:| -2135 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-549 |#2|) (-549 |#2|) |#2|)) (-15 -2089 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-582 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-549 |#2|) (-549 |#2|) (-582 |#2|))) (-15 -2090 ((-3 |#2| #1#) |#2| |#2| |#2| (-549 |#2|) (-549 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1088)))) (IF (|has| |#3| (-599 |#2|)) (-15 -2091 ((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2011 (-582 |#2|))) |#3| |#2| (-549 |#2|) (-549 |#2|) (-1088))) |%noBranch|)) (-13 (-390) (-949 (-483)) (-120) (-579 (-483))) (-13 (-362 |#1|) (-27) (-1113)) (-1012)) (T -501)) -((-2091 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-549 *4)) (-5 *6 (-1088)) (-4 *4 (-13 (-362 *7) (-27) (-1113))) (-4 *7 (-13 (-390) (-949 (-483)) (-120) (-579 (-483)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2011 (-582 *4)))) (-5 *1 (-501 *7 *4 *3)) (-4 *3 (-599 *4)) (-4 *3 (-1012)))) (-2090 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-549 *2)) (-5 *4 (-1 (-3 *2 #1#) *2 *2 (-1088))) (-4 *2 (-13 (-362 *5) (-27) (-1113))) (-4 *5 (-13 (-390) (-949 (-483)) (-120) (-579 (-483)))) (-5 *1 (-501 *5 *2 *6)) (-4 *6 (-1012)))) (-2089 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-549 *3)) (-5 *5 (-582 *3)) (-4 *3 (-13 (-362 *6) (-27) (-1113))) (-4 *6 (-13 (-390) (-949 (-483)) (-120) (-579 (-483)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-582 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-501 *6 *3 *7)) (-4 *7 (-1012)))) (-2088 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-549 *3)) (-4 *3 (-13 (-362 *5) (-27) (-1113))) (-4 *5 (-13 (-390) (-949 (-483)) (-120) (-579 (-483)))) (-5 *2 (-2 (|:| -2135 *3) (|:| |coeff| *3))) (-5 *1 (-501 *5 *3 *6)) (-4 *6 (-1012)))) (-2087 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-549 *3)) (-4 *3 (-13 (-362 *5) (-27) (-1113))) (-4 *5 (-13 (-390) (-949 (-483)) (-120) (-579 (-483)))) (-5 *2 (-518 *3)) (-5 *1 (-501 *5 *3 *6)) (-4 *6 (-1012))))) -((-2092 (((-2 (|:| -2337 |#2|) (|:| |nconst| |#2|)) |#2| (-1088)) 64 T ELT)) (-2094 (((-3 |#2| #1="failed") |#2| (-1088) (-749 |#2|) (-749 |#2|)) 174 (-12 (|has| |#2| (-1051)) (|has| |#1| (-552 (-799 (-483)))) (|has| |#1| (-795 (-483)))) ELT) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) #1#) |#2| (-1088)) 145 (-12 (|has| |#2| (-568)) (|has| |#1| (-552 (-799 (-483)))) (|has| |#1| (-795 (-483)))) ELT)) (-2093 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) #1#) |#2| (-1088)) 156 (-12 (|has| |#2| (-568)) (|has| |#1| (-552 (-799 (-483)))) (|has| |#1| (-795 (-483)))) ELT))) -(((-502 |#1| |#2|) (-10 -7 (-15 -2092 ((-2 (|:| -2337 |#2|) (|:| |nconst| |#2|)) |#2| (-1088))) (IF (|has| |#1| (-552 (-799 (-483)))) (IF (|has| |#1| (-795 (-483))) (PROGN (IF (|has| |#2| (-568)) (PROGN (-15 -2093 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) #1="failed") |#2| (-1088))) (-15 -2094 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) #1#) |#2| (-1088)))) |%noBranch|) (IF (|has| |#2| (-1051)) (-15 -2094 ((-3 |#2| #1#) |#2| (-1088) (-749 |#2|) (-749 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-949 (-483)) (-390) (-579 (-483))) (-13 (-27) (-1113) (-362 |#1|))) (T -502)) -((-2094 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1088)) (-5 *4 (-749 *2)) (-4 *2 (-1051)) (-4 *2 (-13 (-27) (-1113) (-362 *5))) (-4 *5 (-552 (-799 (-483)))) (-4 *5 (-795 (-483))) (-4 *5 (-13 (-949 (-483)) (-390) (-579 (-483)))) (-5 *1 (-502 *5 *2)))) (-2094 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1088)) (-4 *5 (-552 (-799 (-483)))) (-4 *5 (-795 (-483))) (-4 *5 (-13 (-949 (-483)) (-390) (-579 (-483)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-502 *5 *3)) (-4 *3 (-568)) (-4 *3 (-13 (-27) (-1113) (-362 *5))))) (-2093 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1088)) (-4 *5 (-552 (-799 (-483)))) (-4 *5 (-795 (-483))) (-4 *5 (-13 (-949 (-483)) (-390) (-579 (-483)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-502 *5 *3)) (-4 *3 (-568)) (-4 *3 (-13 (-27) (-1113) (-362 *5))))) (-2092 (*1 *2 *3 *4) (-12 (-5 *4 (-1088)) (-4 *5 (-13 (-949 (-483)) (-390) (-579 (-483)))) (-5 *2 (-2 (|:| -2337 *3) (|:| |nconst| *3))) (-5 *1 (-502 *5 *3)) (-4 *3 (-13 (-27) (-1113) (-362 *5)))))) -((-2097 (((-3 (-2 (|:| |mainpart| (-348 |#2|)) (|:| |limitedlogs| (-582 (-2 (|:| |coeff| (-348 |#2|)) (|:| |logand| (-348 |#2|)))))) #1="failed") (-348 |#2|) (-582 (-348 |#2|))) 41 T ELT)) (-3810 (((-518 (-348 |#2|)) (-348 |#2|)) 28 T ELT)) (-2095 (((-3 (-348 |#2|) #1#) (-348 |#2|)) 17 T ELT)) (-2096 (((-3 (-2 (|:| -2135 (-348 |#2|)) (|:| |coeff| (-348 |#2|))) #1#) (-348 |#2|) (-348 |#2|)) 48 T ELT))) -(((-503 |#1| |#2|) (-10 -7 (-15 -3810 ((-518 (-348 |#2|)) (-348 |#2|))) (-15 -2095 ((-3 (-348 |#2|) #1="failed") (-348 |#2|))) (-15 -2096 ((-3 (-2 (|:| -2135 (-348 |#2|)) (|:| |coeff| (-348 |#2|))) #1#) (-348 |#2|) (-348 |#2|))) (-15 -2097 ((-3 (-2 (|:| |mainpart| (-348 |#2|)) (|:| |limitedlogs| (-582 (-2 (|:| |coeff| (-348 |#2|)) (|:| |logand| (-348 |#2|)))))) #1#) (-348 |#2|) (-582 (-348 |#2|))))) (-13 (-312) (-120) (-949 (-483))) (-1153 |#1|)) (T -503)) -((-2097 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-582 (-348 *6))) (-5 *3 (-348 *6)) (-4 *6 (-1153 *5)) (-4 *5 (-13 (-312) (-120) (-949 (-483)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-582 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-503 *5 *6)))) (-2096 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-312) (-120) (-949 (-483)))) (-4 *5 (-1153 *4)) (-5 *2 (-2 (|:| -2135 (-348 *5)) (|:| |coeff| (-348 *5)))) (-5 *1 (-503 *4 *5)) (-5 *3 (-348 *5)))) (-2095 (*1 *2 *2) (|partial| -12 (-5 *2 (-348 *4)) (-4 *4 (-1153 *3)) (-4 *3 (-13 (-312) (-120) (-949 (-483)))) (-5 *1 (-503 *3 *4)))) (-3810 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-120) (-949 (-483)))) (-4 *5 (-1153 *4)) (-5 *2 (-518 (-348 *5))) (-5 *1 (-503 *4 *5)) (-5 *3 (-348 *5))))) -((-2098 (((-3 (-483) "failed") |#1|) 14 T ELT)) (-3258 (((-85) |#1|) 13 T ELT)) (-3254 (((-483) |#1|) 9 T ELT))) -(((-504 |#1|) (-10 -7 (-15 -3254 ((-483) |#1|)) (-15 -3258 ((-85) |#1|)) (-15 -2098 ((-3 (-483) "failed") |#1|))) (-949 (-483))) (T -504)) -((-2098 (*1 *2 *3) (|partial| -12 (-5 *2 (-483)) (-5 *1 (-504 *3)) (-4 *3 (-949 *2)))) (-3258 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-504 *3)) (-4 *3 (-949 (-483))))) (-3254 (*1 *2 *3) (-12 (-5 *2 (-483)) (-5 *1 (-504 *3)) (-4 *3 (-949 *2))))) -((-2101 (((-3 (-2 (|:| |mainpart| (-348 (-856 |#1|))) (|:| |limitedlogs| (-582 (-2 (|:| |coeff| (-348 (-856 |#1|))) (|:| |logand| (-348 (-856 |#1|))))))) #1="failed") (-348 (-856 |#1|)) (-1088) (-582 (-348 (-856 |#1|)))) 48 T ELT)) (-2099 (((-518 (-348 (-856 |#1|))) (-348 (-856 |#1|)) (-1088)) 28 T ELT)) (-2100 (((-3 (-348 (-856 |#1|)) #1#) (-348 (-856 |#1|)) (-1088)) 23 T ELT)) (-2102 (((-3 (-2 (|:| -2135 (-348 (-856 |#1|))) (|:| |coeff| (-348 (-856 |#1|)))) #1#) (-348 (-856 |#1|)) (-1088) (-348 (-856 |#1|))) 35 T ELT))) -(((-505 |#1|) (-10 -7 (-15 -2099 ((-518 (-348 (-856 |#1|))) (-348 (-856 |#1|)) (-1088))) (-15 -2100 ((-3 (-348 (-856 |#1|)) #1="failed") (-348 (-856 |#1|)) (-1088))) (-15 -2101 ((-3 (-2 (|:| |mainpart| (-348 (-856 |#1|))) (|:| |limitedlogs| (-582 (-2 (|:| |coeff| (-348 (-856 |#1|))) (|:| |logand| (-348 (-856 |#1|))))))) #1#) (-348 (-856 |#1|)) (-1088) (-582 (-348 (-856 |#1|))))) (-15 -2102 ((-3 (-2 (|:| -2135 (-348 (-856 |#1|))) (|:| |coeff| (-348 (-856 |#1|)))) #1#) (-348 (-856 |#1|)) (-1088) (-348 (-856 |#1|))))) (-13 (-494) (-949 (-483)) (-120))) (T -505)) -((-2102 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1088)) (-4 *5 (-13 (-494) (-949 (-483)) (-120))) (-5 *2 (-2 (|:| -2135 (-348 (-856 *5))) (|:| |coeff| (-348 (-856 *5))))) (-5 *1 (-505 *5)) (-5 *3 (-348 (-856 *5))))) (-2101 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1088)) (-5 *5 (-582 (-348 (-856 *6)))) (-5 *3 (-348 (-856 *6))) (-4 *6 (-13 (-494) (-949 (-483)) (-120))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-582 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-505 *6)))) (-2100 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-348 (-856 *4))) (-5 *3 (-1088)) (-4 *4 (-13 (-494) (-949 (-483)) (-120))) (-5 *1 (-505 *4)))) (-2099 (*1 *2 *3 *4) (-12 (-5 *4 (-1088)) (-4 *5 (-13 (-494) (-949 (-483)) (-120))) (-5 *2 (-518 (-348 (-856 *5)))) (-5 *1 (-505 *5)) (-5 *3 (-348 (-856 *5)))))) -((-2567 (((-85) $ $) 77 T ELT)) (-3187 (((-85) $) 49 T ELT)) (-2603 ((|#1| $) 39 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3980 $) (|:| |associate| $)) $) NIL T ELT)) (-2062 (($ $) NIL T ELT)) (-2060 (((-85) $) 81 T ELT)) (-3490 (($ $) 142 T ELT)) (-3637 (($ $) 120 T ELT)) (-2482 ((|#1| $) 37 T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3036 (($ $) NIL T ELT)) (-3488 (($ $) 144 T ELT)) (-3636 (($ $) 116 T ELT)) (-3492 (($ $) 146 T ELT)) (-3635 (($ $) 124 T ELT)) (-3722 (($) NIL T CONST)) (-3156 (((-3 (-483) #1#) $) 95 T ELT)) (-3155 (((-483) $) 97 T ELT)) (-3465 (((-3 $ #1#) $) 80 T ELT)) (-2058 (($ |#1| |#1|) 35 T ELT)) (-3185 (((-85) $) 44 T ELT)) (-3625 (($) 106 T ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-2409 (((-85) $) 56 T ELT)) (-3010 (($ $ (-483)) NIL T ELT)) (-3186 (((-85) $) 46 T ELT)) (-2530 (($ $ $) NIL T ELT)) (-2856 (($ $ $) NIL T ELT)) (-3940 (($ $) 108 T ELT)) (-1889 (($ $ $) NIL T ELT) (($ (-582 $)) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-2059 (($ |#1| |#1|) 29 T ELT) (($ |#1|) 34 T ELT) (($ (-348 (-483))) 94 T ELT)) (-2057 ((|#1| $) 36 T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-2707 (((-1083 $) (-1083 $) (-1083 $)) NIL T ELT)) (-3143 (($ $ $) 83 T ELT) (($ (-582 $)) NIL T ELT)) (-3464 (((-3 $ #1#) $ $) 82 T ELT)) (-3941 (($ $) 110 T ELT)) (-3493 (($ $) 150 T ELT)) (-3634 (($ $) 122 T ELT)) (-3491 (($ $) 152 T ELT)) (-3633 (($ $) 126 T ELT)) (-3489 (($ $) 148 T ELT)) (-3632 (($ $) 118 T ELT)) (-2056 (((-85) $ |#1|) 42 T ELT)) (-3944 (((-771) $) 102 T ELT) (($ (-483)) 85 T ELT) (($ $) NIL T ELT) (($ (-483)) 85 T ELT)) (-3125 (((-693)) 104 T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-3496 (($ $) 164 T ELT)) (-3484 (($ $) 132 T ELT)) (-2061 (((-85) $ $) NIL T ELT)) (-3494 (($ $) 162 T ELT)) (-3482 (($ $) 128 T ELT)) (-3498 (($ $) 160 T ELT)) (-3486 (($ $) 140 T ELT)) (-3124 (((-85) $ $) NIL T ELT)) (-3499 (($ $) 158 T ELT)) (-3487 (($ $) 138 T ELT)) (-3497 (($ $) 156 T ELT)) (-3485 (($ $) 134 T ELT)) (-3495 (($ $) 154 T ELT)) (-3483 (($ $) 130 T ELT)) (-2659 (($) 30 T CONST)) (-2665 (($) 10 T CONST)) (-2565 (((-85) $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) 50 T ELT)) (-2683 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) 48 T ELT)) (-3835 (($ $) 54 T ELT) (($ $ $) 55 T ELT)) (-3837 (($ $ $) 53 T ELT)) (** (($ $ (-829)) 73 T ELT) (($ $ (-693)) NIL T ELT) (($ $ $) 112 T ELT) (($ $ (-348 (-483))) 166 T ELT)) (* (($ (-829) $) 67 T ELT) (($ (-693) $) NIL T ELT) (($ (-483) $) 66 T ELT) (($ $ $) 62 T ELT))) -(((-506 |#1|) (-492 |#1|) (-13 (-345) (-1113))) (T -506)) -NIL -((-2703 (((-3 (-582 (-1083 (-483))) "failed") (-582 (-1083 (-483))) (-1083 (-483))) 27 T ELT))) -(((-507) (-10 -7 (-15 -2703 ((-3 (-582 (-1083 (-483))) "failed") (-582 (-1083 (-483))) (-1083 (-483)))))) (T -507)) -((-2703 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-582 (-1083 (-483)))) (-5 *3 (-1083 (-483))) (-5 *1 (-507))))) -((-2103 (((-582 (-549 |#2|)) (-582 (-549 |#2|)) (-1088)) 19 T ELT)) (-2106 (((-582 (-549 |#2|)) (-582 |#2|) (-1088)) 23 T ELT)) (-3233 (((-582 (-549 |#2|)) (-582 (-549 |#2|)) (-582 (-549 |#2|))) 11 T ELT)) (-2107 ((|#2| |#2| (-1088)) 59 (|has| |#1| (-494)) ELT)) (-2108 ((|#2| |#2| (-1088)) 87 (-12 (|has| |#2| (-239)) (|has| |#1| (-390))) ELT)) (-2105 (((-549 |#2|) (-549 |#2|) (-582 (-549 |#2|)) (-1088)) 25 T ELT)) (-2104 (((-549 |#2|) (-582 (-549 |#2|))) 24 T ELT)) (-2109 (((-518 |#2|) |#2| (-1088) (-1 (-518 |#2|) |#2| (-1088)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1088))) 115 (-12 (|has| |#2| (-239)) (|has| |#2| (-568)) (|has| |#2| (-949 (-1088))) (|has| |#1| (-552 (-799 (-483)))) (|has| |#1| (-390)) (|has| |#1| (-795 (-483)))) ELT))) -(((-508 |#1| |#2|) (-10 -7 (-15 -2103 ((-582 (-549 |#2|)) (-582 (-549 |#2|)) (-1088))) (-15 -2104 ((-549 |#2|) (-582 (-549 |#2|)))) (-15 -2105 ((-549 |#2|) (-549 |#2|) (-582 (-549 |#2|)) (-1088))) (-15 -3233 ((-582 (-549 |#2|)) (-582 (-549 |#2|)) (-582 (-549 |#2|)))) (-15 -2106 ((-582 (-549 |#2|)) (-582 |#2|) (-1088))) (IF (|has| |#1| (-494)) (-15 -2107 (|#2| |#2| (-1088))) |%noBranch|) (IF (|has| |#1| (-390)) (IF (|has| |#2| (-239)) (PROGN (-15 -2108 (|#2| |#2| (-1088))) (IF (|has| |#1| (-552 (-799 (-483)))) (IF (|has| |#1| (-795 (-483))) (IF (|has| |#2| (-568)) (IF (|has| |#2| (-949 (-1088))) (-15 -2109 ((-518 |#2|) |#2| (-1088) (-1 (-518 |#2|) |#2| (-1088)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1088)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-1012) (-362 |#1|)) (T -508)) -((-2109 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-518 *3) *3 (-1088))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1088))) (-4 *3 (-239)) (-4 *3 (-568)) (-4 *3 (-949 *4)) (-4 *3 (-362 *7)) (-5 *4 (-1088)) (-4 *7 (-552 (-799 (-483)))) (-4 *7 (-390)) (-4 *7 (-795 (-483))) (-4 *7 (-1012)) (-5 *2 (-518 *3)) (-5 *1 (-508 *7 *3)))) (-2108 (*1 *2 *2 *3) (-12 (-5 *3 (-1088)) (-4 *4 (-390)) (-4 *4 (-1012)) (-5 *1 (-508 *4 *2)) (-4 *2 (-239)) (-4 *2 (-362 *4)))) (-2107 (*1 *2 *2 *3) (-12 (-5 *3 (-1088)) (-4 *4 (-494)) (-4 *4 (-1012)) (-5 *1 (-508 *4 *2)) (-4 *2 (-362 *4)))) (-2106 (*1 *2 *3 *4) (-12 (-5 *3 (-582 *6)) (-5 *4 (-1088)) (-4 *6 (-362 *5)) (-4 *5 (-1012)) (-5 *2 (-582 (-549 *6))) (-5 *1 (-508 *5 *6)))) (-3233 (*1 *2 *2 *2) (-12 (-5 *2 (-582 (-549 *4))) (-4 *4 (-362 *3)) (-4 *3 (-1012)) (-5 *1 (-508 *3 *4)))) (-2105 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-582 (-549 *6))) (-5 *4 (-1088)) (-5 *2 (-549 *6)) (-4 *6 (-362 *5)) (-4 *5 (-1012)) (-5 *1 (-508 *5 *6)))) (-2104 (*1 *2 *3) (-12 (-5 *3 (-582 (-549 *5))) (-4 *4 (-1012)) (-5 *2 (-549 *5)) (-5 *1 (-508 *4 *5)) (-4 *5 (-362 *4)))) (-2103 (*1 *2 *2 *3) (-12 (-5 *2 (-582 (-549 *5))) (-5 *3 (-1088)) (-4 *5 (-362 *4)) (-4 *4 (-1012)) (-5 *1 (-508 *4 *5))))) -((-2112 (((-2 (|:| |answer| (-518 (-348 |#2|))) (|:| |a0| |#1|)) (-348 |#2|) (-1 |#2| |#2|) (-1 (-3 (-582 |#1|) #1="failed") (-483) |#1| |#1|)) 199 T ELT)) (-2115 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-348 |#2|)) (|:| |limitedlogs| (-582 (-2 (|:| |coeff| (-348 |#2|)) (|:| |logand| (-348 |#2|))))))) (|:| |a0| |#1|)) #1#) (-348 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2135 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-582 (-348 |#2|))) 174 T ELT)) (-2118 (((-3 (-2 (|:| |mainpart| (-348 |#2|)) (|:| |limitedlogs| (-582 (-2 (|:| |coeff| (-348 |#2|)) (|:| |logand| (-348 |#2|)))))) #1#) (-348 |#2|) (-1 |#2| |#2|) (-582 (-348 |#2|))) 171 T ELT)) (-2119 (((-3 |#2| #1#) |#2| (-1 (-3 (-2 (|:| -2135 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) |#1|) 162 T ELT)) (-2110 (((-2 (|:| |answer| (-518 (-348 |#2|))) (|:| |a0| |#1|)) (-348 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2135 |#1|) (|:| |coeff| |#1|)) #1#) |#1|)) 185 T ELT)) (-2117 (((-3 (-2 (|:| -2135 (-348 |#2|)) (|:| |coeff| (-348 |#2|))) #1#) (-348 |#2|) (-1 |#2| |#2|) (-348 |#2|)) 202 T ELT)) (-2113 (((-3 (-2 (|:| |answer| (-348 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2135 (-348 |#2|)) (|:| |coeff| (-348 |#2|))) #1#) (-348 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2135 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-348 |#2|)) 205 T ELT)) (-2121 (((-2 (|:| |ir| (-518 (-348 |#2|))) (|:| |specpart| (-348 |#2|)) (|:| |polypart| |#2|)) (-348 |#2|) (-1 |#2| |#2|)) 88 T ELT)) (-2122 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 100 T ELT)) (-2116 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-348 |#2|)) (|:| |limitedlogs| (-582 (-2 (|:| |coeff| (-348 |#2|)) (|:| |logand| (-348 |#2|))))))) (|:| |a0| |#1|)) #1#) (-348 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3136 |#1|) (|:| |sol?| (-85))) (-483) |#1|) (-582 (-348 |#2|))) 178 T ELT)) (-2120 (((-3 (-561 |#1| |#2|) #1#) (-561 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3136 |#1|) (|:| |sol?| (-85))) (-483) |#1|)) 166 T ELT)) (-2111 (((-2 (|:| |answer| (-518 (-348 |#2|))) (|:| |a0| |#1|)) (-348 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3136 |#1|) (|:| |sol?| (-85))) (-483) |#1|)) 189 T ELT)) (-2114 (((-3 (-2 (|:| |answer| (-348 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2135 (-348 |#2|)) (|:| |coeff| (-348 |#2|))) #1#) (-348 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3136 |#1|) (|:| |sol?| (-85))) (-483) |#1|) (-348 |#2|)) 210 T ELT))) -(((-509 |#1| |#2|) (-10 -7 (-15 -2110 ((-2 (|:| |answer| (-518 (-348 |#2|))) (|:| |a0| |#1|)) (-348 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2135 |#1|) (|:| |coeff| |#1|)) #1="failed") |#1|))) (-15 -2111 ((-2 (|:| |answer| (-518 (-348 |#2|))) (|:| |a0| |#1|)) (-348 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3136 |#1|) (|:| |sol?| (-85))) (-483) |#1|))) (-15 -2112 ((-2 (|:| |answer| (-518 (-348 |#2|))) (|:| |a0| |#1|)) (-348 |#2|) (-1 |#2| |#2|) (-1 (-3 (-582 |#1|) #1#) (-483) |#1| |#1|))) (-15 -2113 ((-3 (-2 (|:| |answer| (-348 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2135 (-348 |#2|)) (|:| |coeff| (-348 |#2|))) #1#) (-348 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2135 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-348 |#2|))) (-15 -2114 ((-3 (-2 (|:| |answer| (-348 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2135 (-348 |#2|)) (|:| |coeff| (-348 |#2|))) #1#) (-348 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3136 |#1|) (|:| |sol?| (-85))) (-483) |#1|) (-348 |#2|))) (-15 -2115 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-348 |#2|)) (|:| |limitedlogs| (-582 (-2 (|:| |coeff| (-348 |#2|)) (|:| |logand| (-348 |#2|))))))) (|:| |a0| |#1|)) #1#) (-348 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2135 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-582 (-348 |#2|)))) (-15 -2116 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-348 |#2|)) (|:| |limitedlogs| (-582 (-2 (|:| |coeff| (-348 |#2|)) (|:| |logand| (-348 |#2|))))))) (|:| |a0| |#1|)) #1#) (-348 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3136 |#1|) (|:| |sol?| (-85))) (-483) |#1|) (-582 (-348 |#2|)))) (-15 -2117 ((-3 (-2 (|:| -2135 (-348 |#2|)) (|:| |coeff| (-348 |#2|))) #1#) (-348 |#2|) (-1 |#2| |#2|) (-348 |#2|))) (-15 -2118 ((-3 (-2 (|:| |mainpart| (-348 |#2|)) (|:| |limitedlogs| (-582 (-2 (|:| |coeff| (-348 |#2|)) (|:| |logand| (-348 |#2|)))))) #1#) (-348 |#2|) (-1 |#2| |#2|) (-582 (-348 |#2|)))) (-15 -2119 ((-3 |#2| #1#) |#2| (-1 (-3 (-2 (|:| -2135 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) |#1|)) (-15 -2120 ((-3 (-561 |#1| |#2|) #1#) (-561 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3136 |#1|) (|:| |sol?| (-85))) (-483) |#1|))) (-15 -2121 ((-2 (|:| |ir| (-518 (-348 |#2|))) (|:| |specpart| (-348 |#2|)) (|:| |polypart| |#2|)) (-348 |#2|) (-1 |#2| |#2|))) (-15 -2122 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-312) (-1153 |#1|)) (T -509)) -((-2122 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1153 *5)) (-4 *5 (-312)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-509 *5 *3)))) (-2121 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1153 *5)) (-4 *5 (-312)) (-5 *2 (-2 (|:| |ir| (-518 (-348 *6))) (|:| |specpart| (-348 *6)) (|:| |polypart| *6))) (-5 *1 (-509 *5 *6)) (-5 *3 (-348 *6)))) (-2120 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-561 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3136 *4) (|:| |sol?| (-85))) (-483) *4)) (-4 *4 (-312)) (-4 *5 (-1153 *4)) (-5 *1 (-509 *4 *5)))) (-2119 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -2135 *4) (|:| |coeff| *4)) #1="failed") *4)) (-4 *4 (-312)) (-5 *1 (-509 *4 *2)) (-4 *2 (-1153 *4)))) (-2118 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-582 (-348 *7))) (-4 *7 (-1153 *6)) (-5 *3 (-348 *7)) (-4 *6 (-312)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-582 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-509 *6 *7)))) (-2117 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1153 *5)) (-4 *5 (-312)) (-5 *2 (-2 (|:| -2135 (-348 *6)) (|:| |coeff| (-348 *6)))) (-5 *1 (-509 *5 *6)) (-5 *3 (-348 *6)))) (-2116 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3136 *7) (|:| |sol?| (-85))) (-483) *7)) (-5 *6 (-582 (-348 *8))) (-4 *7 (-312)) (-4 *8 (-1153 *7)) (-5 *3 (-348 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-582 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-509 *7 *8)))) (-2115 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -2135 *7) (|:| |coeff| *7)) #1#) *7)) (-5 *6 (-582 (-348 *8))) (-4 *7 (-312)) (-4 *8 (-1153 *7)) (-5 *3 (-348 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-582 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-509 *7 *8)))) (-2114 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3136 *6) (|:| |sol?| (-85))) (-483) *6)) (-4 *6 (-312)) (-4 *7 (-1153 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-348 *7)) (|:| |a0| *6)) (-2 (|:| -2135 (-348 *7)) (|:| |coeff| (-348 *7))) "failed")) (-5 *1 (-509 *6 *7)) (-5 *3 (-348 *7)))) (-2113 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2135 *6) (|:| |coeff| *6)) #1#) *6)) (-4 *6 (-312)) (-4 *7 (-1153 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-348 *7)) (|:| |a0| *6)) (-2 (|:| -2135 (-348 *7)) (|:| |coeff| (-348 *7))) "failed")) (-5 *1 (-509 *6 *7)) (-5 *3 (-348 *7)))) (-2112 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-582 *6) "failed") (-483) *6 *6)) (-4 *6 (-312)) (-4 *7 (-1153 *6)) (-5 *2 (-2 (|:| |answer| (-518 (-348 *7))) (|:| |a0| *6))) (-5 *1 (-509 *6 *7)) (-5 *3 (-348 *7)))) (-2111 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3136 *6) (|:| |sol?| (-85))) (-483) *6)) (-4 *6 (-312)) (-4 *7 (-1153 *6)) (-5 *2 (-2 (|:| |answer| (-518 (-348 *7))) (|:| |a0| *6))) (-5 *1 (-509 *6 *7)) (-5 *3 (-348 *7)))) (-2110 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2135 *6) (|:| |coeff| *6)) #1#) *6)) (-4 *6 (-312)) (-4 *7 (-1153 *6)) (-5 *2 (-2 (|:| |answer| (-518 (-348 *7))) (|:| |a0| *6))) (-5 *1 (-509 *6 *7)) (-5 *3 (-348 *7))))) -((-2123 (((-3 |#2| "failed") |#2| (-1088) (-1088)) 10 T ELT))) -(((-510 |#1| |#2|) (-10 -7 (-15 -2123 ((-3 |#2| "failed") |#2| (-1088) (-1088)))) (-13 (-258) (-120) (-949 (-483)) (-579 (-483))) (-13 (-1113) (-870) (-1051) (-29 |#1|))) (T -510)) -((-2123 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1088)) (-4 *4 (-13 (-258) (-120) (-949 (-483)) (-579 (-483)))) (-5 *1 (-510 *4 *2)) (-4 *2 (-13 (-1113) (-870) (-1051) (-29 *4)))))) -((-2554 (((-631 (-1136)) $ (-1136)) 27 T ELT)) (-2555 (((-631 (-487)) $ (-487)) 26 T ELT)) (-2553 (((-693) $ (-102)) 28 T ELT)) (-2556 (((-631 (-101)) $ (-101)) 25 T ELT)) (-1999 (((-631 (-1136)) $) 12 T ELT)) (-1995 (((-631 (-1134)) $) 8 T ELT)) (-1997 (((-631 (-1133)) $) 10 T ELT)) (-2000 (((-631 (-487)) $) 13 T ELT)) (-1996 (((-631 (-485)) $) 9 T ELT)) (-1998 (((-631 (-484)) $) 11 T ELT)) (-1994 (((-693) $ (-102)) 7 T ELT)) (-2001 (((-631 (-101)) $) 14 T ELT)) (-1698 (($ $) 6 T ELT))) -(((-511) (-113)) (T -511)) -NIL -(-13 (-464) (-769)) -(((-147) . T) ((-464) . T) ((-769) . T)) -((-2554 (((-631 (-1136)) $ (-1136)) NIL T ELT)) (-2555 (((-631 (-487)) $ (-487)) NIL T ELT)) (-2553 (((-693) $ (-102)) NIL T ELT)) (-2556 (((-631 (-101)) $ (-101)) NIL T ELT)) (-1999 (((-631 (-1136)) $) NIL T ELT)) (-1995 (((-631 (-1134)) $) NIL T ELT)) (-1997 (((-631 (-1133)) $) NIL T ELT)) (-2000 (((-631 (-487)) $) NIL T ELT)) (-1996 (((-631 (-485)) $) NIL T ELT)) (-1998 (((-631 (-484)) $) NIL T ELT)) (-1994 (((-693) $ (-102)) NIL T ELT)) (-2001 (((-631 (-101)) $) NIL T ELT)) (-2557 (((-85) $) NIL T ELT)) (-2124 (($ (-336)) 14 T ELT) (($ (-1071)) 16 T ELT)) (-3944 (((-771) $) NIL T ELT)) (-1698 (($ $) NIL T ELT))) -(((-512) (-13 (-511) (-551 (-771)) (-10 -8 (-15 -2124 ($ (-336))) (-15 -2124 ($ (-1071))) (-15 -2557 ((-85) $))))) (T -512)) -((-2124 (*1 *1 *2) (-12 (-5 *2 (-336)) (-5 *1 (-512)))) (-2124 (*1 *1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-512)))) (-2557 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-512))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3458 (($) 7 T CONST)) (-3241 (((-1071) $) NIL T ELT)) (-2127 (($) 6 T CONST)) (-3242 (((-1032) $) NIL T ELT)) (-3944 (((-771) $) 15 T ELT)) (-2125 (($) 9 T CONST)) (-2126 (($) 8 T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) 11 T ELT))) -(((-513) (-13 (-1012) (-10 -8 (-15 -2127 ($) -3950) (-15 -3458 ($) -3950) (-15 -2126 ($) -3950) (-15 -2125 ($) -3950)))) (T -513)) -((-2127 (*1 *1) (-5 *1 (-513))) (-3458 (*1 *1) (-5 *1 (-513))) (-2126 (*1 *1) (-5 *1 (-513))) (-2125 (*1 *1) (-5 *1 (-513)))) -((-2567 (((-85) $ $) NIL T ELT)) (-2128 (((-631 $) (-429)) 23 T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-2130 (($ (-1071)) 16 T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3944 (((-771) $) 33 T ELT)) (-2129 (((-166 4 (-101)) $) 24 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) 26 T ELT))) -(((-514) (-13 (-1012) (-10 -8 (-15 -2130 ($ (-1071))) (-15 -2129 ((-166 4 (-101)) $)) (-15 -2128 ((-631 $) (-429)))))) (T -514)) -((-2130 (*1 *1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-514)))) (-2129 (*1 *2 *1) (-12 (-5 *2 (-166 4 (-101))) (-5 *1 (-514)))) (-2128 (*1 *2 *3) (-12 (-5 *3 (-429)) (-5 *2 (-631 (-514))) (-5 *1 (-514))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3187 (((-85) $) NIL T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3980 $) (|:| |associate| $)) $) NIL T ELT)) (-2062 (($ $) NIL T ELT)) (-2060 (((-85) $) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3036 (($ $ (-483)) 73 T ELT)) (-1606 (((-85) $ $) NIL T ELT)) (-3722 (($) NIL T CONST)) (-2610 (($ (-1083 (-483)) (-483)) 79 T ELT)) (-2563 (($ $ $) NIL T ELT)) (-3465 (((-3 $ #1#) $) 64 T ELT)) (-2611 (($ $) 43 T ELT)) (-2562 (($ $ $) NIL T ELT)) (-2740 (((-2 (|:| -3952 (-582 $)) (|:| -2408 $)) (-582 $)) NIL T ELT)) (-3770 (((-693) $) 16 T ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-2409 (((-85) $) NIL T ELT)) (-1603 (((-3 (-582 $) #1#) (-582 $) $) NIL T ELT)) (-2613 (((-483)) 37 T ELT)) (-2612 (((-483) $) 41 T ELT)) (-1889 (($ $ $) NIL T ELT) (($ (-582 $)) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-2707 (((-1083 $) (-1083 $) (-1083 $)) NIL T ELT)) (-3143 (($ $ $) NIL T ELT) (($ (-582 $)) NIL T ELT)) (-1604 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3767 (($ $ (-483)) 24 T ELT)) (-3464 (((-3 $ #1#) $ $) 70 T ELT)) (-2739 (((-631 (-582 $)) (-582 $) $) NIL T ELT)) (-1605 (((-693) $) 17 T ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) 71 T ELT)) (-2614 (((-1067 (-483)) $) 19 T ELT)) (-2890 (($ $) 26 T ELT)) (-3944 (((-771) $) 100 T ELT) (($ (-483)) 59 T ELT) (($ $) NIL T ELT)) (-3125 (((-693)) 15 T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-2061 (((-85) $ $) NIL T ELT)) (-3768 (((-483) $ (-483)) 46 T ELT)) (-3124 (((-85) $ $) NIL T ELT)) (-2659 (($) 44 T CONST)) (-2665 (($) 21 T CONST)) (-3055 (((-85) $ $) 51 T ELT)) (-3835 (($ $) 58 T ELT) (($ $ $) 48 T ELT)) (-3837 (($ $ $) 57 T ELT)) (** (($ $ (-829)) NIL T ELT) (($ $ (-693)) NIL T ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-483) $) 60 T ELT) (($ $ $) 61 T ELT))) -(((-515 |#1| |#2|) (-778 |#1|) (-483) (-85)) (T -515)) -NIL -((-2567 (((-85) $ $) NIL T ELT)) (-3187 (((-85) $) 30 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3980 $) (|:| |associate| $)) $) NIL T ELT)) (-2062 (($ $) NIL T ELT)) (-2060 (((-85) $) NIL T ELT)) (-3930 (((-85) $) NIL T ELT)) (-3927 (((-693)) NIL T ELT)) (-3328 (($ $ (-829)) NIL (|has| $ (-318)) ELT) (($ $) NIL T ELT)) (-1673 (((-1100 (-829) (-693)) (-483)) 59 T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3773 (($ $) NIL T ELT)) (-3969 (((-346 $) $) NIL T ELT)) (-1606 (((-85) $ $) NIL T ELT)) (-3135 (((-693)) NIL T ELT)) (-3722 (($) NIL T CONST)) (-3156 (((-3 $ #1#) $) 95 T ELT)) (-3155 (($ $) 94 T ELT)) (-1790 (($ (-1177 $)) 93 T ELT)) (-1671 (((-3 "prime" "polynomial" "normal" "cyclic")) 56 T ELT)) (-2563 (($ $ $) NIL T ELT)) (-3465 (((-3 $ #1#) $) 47 T ELT)) (-2993 (($) NIL T ELT)) (-2562 (($ $ $) NIL T ELT)) (-2740 (((-2 (|:| -3952 (-582 $)) (|:| -2408 $)) (-582 $)) NIL T ELT)) (-2832 (($) 61 T ELT)) (-1678 (((-85) $) NIL T ELT)) (-1762 (($ $) NIL T ELT) (($ $ (-693)) NIL T ELT)) (-3721 (((-85) $) NIL T ELT)) (-3770 (((-742 (-829)) $) NIL T ELT) (((-829) $) NIL T ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-2409 (((-85) $) NIL T ELT)) (-2012 (($) 49 (|has| $ (-318)) ELT)) (-2010 (((-85) $) NIL (|has| $ (-318)) ELT)) (-3131 (($ $ (-829)) NIL (|has| $ (-318)) ELT) (($ $) NIL T ELT)) (-3443 (((-631 $) $) NIL T ELT)) (-1603 (((-3 (-582 $) #1#) (-582 $) $) NIL T ELT)) (-2013 (((-1083 $) $ (-829)) NIL (|has| $ (-318)) ELT) (((-1083 $) $) 104 T ELT)) (-2009 (((-829) $) 67 T ELT)) (-1625 (((-1083 $) $) NIL (|has| $ (-318)) ELT)) (-1624 (((-3 (-1083 $) #1#) $ $) NIL (|has| $ (-318)) ELT) (((-1083 $) $) NIL (|has| $ (-318)) ELT)) (-1626 (($ $ (-1083 $)) NIL (|has| $ (-318)) ELT)) (-1889 (($ $ $) NIL T ELT) (($ (-582 $)) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-2483 (($ $) NIL T ELT)) (-3444 (($) NIL T CONST)) (-2399 (($ (-829)) 60 T ELT)) (-3929 (((-85) $) 87 T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-2408 (($) 28 (|has| $ (-318)) ELT)) (-2707 (((-1083 $) (-1083 $) (-1083 $)) NIL T ELT)) (-3143 (($ $ $) NIL T ELT) (($ (-582 $)) NIL T ELT)) (-1674 (((-582 (-2 (|:| -3730 (-483)) (|:| -2400 (-483))))) 54 T ELT)) (-3730 (((-346 $) $) NIL T ELT)) (-3928 (((-829)) 86 T ELT) (((-742 (-829))) NIL T ELT)) (-1604 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3464 (((-3 $ #1#) $ $) NIL T ELT)) (-2739 (((-631 (-582 $)) (-582 $) $) NIL T ELT)) (-1605 (((-693) $) NIL T ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL T ELT)) (-1763 (((-3 (-693) #1#) $ $) NIL T ELT) (((-693) $) NIL T ELT)) (-3909 (((-107)) NIL T ELT)) (-3756 (($ $) NIL T ELT) (($ $ (-693)) NIL T ELT)) (-3946 (((-829) $) 85 T ELT) (((-742 (-829)) $) NIL T ELT)) (-3184 (((-1083 $)) 102 T ELT)) (-1672 (($) 66 T ELT)) (-1627 (($) 50 (|has| $ (-318)) ELT)) (-3223 (((-629 $) (-1177 $)) NIL T ELT) (((-1177 $) $) 91 T ELT)) (-3970 (((-483) $) 42 T ELT)) (-2702 (((-3 (-1177 $) #1#) (-629 $)) NIL T ELT)) (-3944 (((-771) $) NIL T ELT) (($ (-483)) 45 T ELT) (($ $) NIL T ELT) (($ (-348 (-483))) NIL T ELT)) (-2701 (((-631 $) $) NIL T ELT) (($ $) 105 T ELT)) (-3125 (((-693)) 51 T CONST)) (-1263 (((-85) $ $) 107 T ELT)) (-2011 (((-1177 $) (-829)) 97 T ELT) (((-1177 $)) 96 T ELT)) (-2061 (((-85) $ $) NIL T ELT)) (-3124 (((-85) $ $) NIL T ELT)) (-3931 (((-85) $) NIL T ELT)) (-2659 (($) 31 T CONST)) (-2665 (($) 27 T CONST)) (-3926 (($ $ (-693)) NIL (|has| $ (-318)) ELT) (($ $) NIL (|has| $ (-318)) ELT)) (-2668 (($ $) NIL T ELT) (($ $ (-693)) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-3947 (($ $ $) NIL T ELT)) (-3835 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3837 (($ $ $) NIL T ELT)) (** (($ $ (-829)) NIL T ELT) (($ $ (-693)) NIL T ELT) (($ $ (-483)) 34 T ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) 81 T ELT) (($ $ (-348 (-483))) NIL T ELT) (($ (-348 (-483)) $) NIL T ELT))) -(((-516 |#1|) (-13 (-299) (-280 $) (-552 (-483))) (-829)) (T -516)) -NIL -((-2131 (((-1183) (-1071)) 10 T ELT))) -(((-517) (-10 -7 (-15 -2131 ((-1183) (-1071))))) (T -517)) -((-2131 (*1 *2 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-1183)) (-5 *1 (-517))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3187 (((-85) $) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3722 (($) NIL T CONST)) (-3156 (((-3 |#1| #1#) $) 77 T ELT)) (-3155 ((|#1| $) NIL T ELT)) (-2135 ((|#1| $) 30 T ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-2133 (((-582 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 32 T ELT)) (-2136 (($ |#1| (-582 (-2 (|:| |scalar| (-348 (-483))) (|:| |coeff| (-1083 |#1|)) (|:| |logand| (-1083 |#1|)))) (-582 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 28 T ELT)) (-2134 (((-582 (-2 (|:| |scalar| (-348 (-483))) (|:| |coeff| (-1083 |#1|)) (|:| |logand| (-1083 |#1|)))) $) 31 T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-2831 (($ |#1| |#1|) 38 T ELT) (($ |#1| (-1088)) 49 (|has| |#1| (-949 (-1088))) ELT)) (-3242 (((-1032) $) NIL T ELT)) (-2132 (((-85) $) 35 T ELT)) (-3756 ((|#1| $ (-1 |#1| |#1|)) 89 T ELT) ((|#1| $ (-1088)) 90 (|has| |#1| (-808 (-1088))) ELT)) (-3944 (((-771) $) 113 T ELT) (($ |#1|) 29 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2659 (($) 18 T CONST)) (-3055 (((-85) $ $) NIL T ELT)) (-3835 (($ $) 17 T ELT) (($ $ $) NIL T ELT)) (-3837 (($ $ $) 86 T ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-483) $) 16 T ELT) (($ (-348 (-483)) $) 41 T ELT) (($ $ (-348 (-483))) NIL T ELT))) -(((-518 |#1|) (-13 (-653 (-348 (-483))) (-949 |#1|) (-10 -8 (-15 -2136 ($ |#1| (-582 (-2 (|:| |scalar| (-348 (-483))) (|:| |coeff| (-1083 |#1|)) (|:| |logand| (-1083 |#1|)))) (-582 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2135 (|#1| $)) (-15 -2134 ((-582 (-2 (|:| |scalar| (-348 (-483))) (|:| |coeff| (-1083 |#1|)) (|:| |logand| (-1083 |#1|)))) $)) (-15 -2133 ((-582 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2132 ((-85) $)) (-15 -2831 ($ |#1| |#1|)) (-15 -3756 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-808 (-1088))) (-15 -3756 (|#1| $ (-1088))) |%noBranch|) (IF (|has| |#1| (-949 (-1088))) (-15 -2831 ($ |#1| (-1088))) |%noBranch|))) (-312)) (T -518)) -((-2136 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-582 (-2 (|:| |scalar| (-348 (-483))) (|:| |coeff| (-1083 *2)) (|:| |logand| (-1083 *2))))) (-5 *4 (-582 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-312)) (-5 *1 (-518 *2)))) (-2135 (*1 *2 *1) (-12 (-5 *1 (-518 *2)) (-4 *2 (-312)))) (-2134 (*1 *2 *1) (-12 (-5 *2 (-582 (-2 (|:| |scalar| (-348 (-483))) (|:| |coeff| (-1083 *3)) (|:| |logand| (-1083 *3))))) (-5 *1 (-518 *3)) (-4 *3 (-312)))) (-2133 (*1 *2 *1) (-12 (-5 *2 (-582 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-518 *3)) (-4 *3 (-312)))) (-2132 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-518 *3)) (-4 *3 (-312)))) (-2831 (*1 *1 *2 *2) (-12 (-5 *1 (-518 *2)) (-4 *2 (-312)))) (-3756 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-518 *2)) (-4 *2 (-312)))) (-3756 (*1 *2 *1 *3) (-12 (-4 *2 (-312)) (-4 *2 (-808 *3)) (-5 *1 (-518 *2)) (-5 *3 (-1088)))) (-2831 (*1 *1 *2 *3) (-12 (-5 *3 (-1088)) (-5 *1 (-518 *2)) (-4 *2 (-949 *3)) (-4 *2 (-312))))) -((-3956 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-582 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-582 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) #1#)) 44 T ELT) (((-3 |#2| #1#) (-1 |#2| |#1|) (-3 |#1| #1#)) 11 T ELT) (((-3 (-2 (|:| -2135 |#2|) (|:| |coeff| |#2|)) #1#) (-1 |#2| |#1|) (-3 (-2 (|:| -2135 |#1|) (|:| |coeff| |#1|)) #1#)) 35 T ELT) (((-518 |#2|) (-1 |#2| |#1|) (-518 |#1|)) 30 T ELT))) -(((-519 |#1| |#2|) (-10 -7 (-15 -3956 ((-518 |#2|) (-1 |#2| |#1|) (-518 |#1|))) (-15 -3956 ((-3 (-2 (|:| -2135 |#2|) (|:| |coeff| |#2|)) #1="failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2135 |#1|) (|:| |coeff| |#1|)) #1#))) (-15 -3956 ((-3 |#2| #1#) (-1 |#2| |#1|) (-3 |#1| #1#))) (-15 -3956 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-582 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-582 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) #1#)))) (-312) (-312)) (T -519)) -((-3956 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-582 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-312)) (-4 *6 (-312)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-582 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-519 *5 *6)))) (-3956 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-312)) (-4 *2 (-312)) (-5 *1 (-519 *5 *2)))) (-3956 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -2135 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-312)) (-4 *6 (-312)) (-5 *2 (-2 (|:| -2135 *6) (|:| |coeff| *6))) (-5 *1 (-519 *5 *6)))) (-3956 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-518 *5)) (-4 *5 (-312)) (-4 *6 (-312)) (-5 *2 (-518 *6)) (-5 *1 (-519 *5 *6))))) -((-3416 (((-518 |#2|) (-518 |#2|)) 42 T ELT)) (-3961 (((-582 |#2|) (-518 |#2|)) 44 T ELT)) (-2147 ((|#2| (-518 |#2|)) 50 T ELT))) -(((-520 |#1| |#2|) (-10 -7 (-15 -3416 ((-518 |#2|) (-518 |#2|))) (-15 -3961 ((-582 |#2|) (-518 |#2|))) (-15 -2147 (|#2| (-518 |#2|)))) (-13 (-390) (-949 (-483)) (-579 (-483))) (-13 (-29 |#1|) (-1113))) (T -520)) -((-2147 (*1 *2 *3) (-12 (-5 *3 (-518 *2)) (-4 *2 (-13 (-29 *4) (-1113))) (-5 *1 (-520 *4 *2)) (-4 *4 (-13 (-390) (-949 (-483)) (-579 (-483)))))) (-3961 (*1 *2 *3) (-12 (-5 *3 (-518 *5)) (-4 *5 (-13 (-29 *4) (-1113))) (-4 *4 (-13 (-390) (-949 (-483)) (-579 (-483)))) (-5 *2 (-582 *5)) (-5 *1 (-520 *4 *5)))) (-3416 (*1 *2 *2) (-12 (-5 *2 (-518 *4)) (-4 *4 (-13 (-29 *3) (-1113))) (-4 *3 (-13 (-390) (-949 (-483)) (-579 (-483)))) (-5 *1 (-520 *3 *4))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-2139 (($ (-445) (-531)) 14 T ELT)) (-2137 (($ (-445) (-531) $) 16 T ELT)) (-2138 (($ (-445) (-531)) 15 T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3944 (((-771) $) NIL T ELT) (($ (-1093)) 7 T ELT) (((-1093) $) 6 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-521) (-13 (-1012) (-428 (-1093)) (-10 -8 (-15 -2139 ($ (-445) (-531))) (-15 -2138 ($ (-445) (-531))) (-15 -2137 ($ (-445) (-531) $))))) (T -521)) -((-2139 (*1 *1 *2 *3) (-12 (-5 *2 (-445)) (-5 *3 (-531)) (-5 *1 (-521)))) (-2138 (*1 *1 *2 *3) (-12 (-5 *2 (-445)) (-5 *3 (-531)) (-5 *1 (-521)))) (-2137 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-445)) (-5 *3 (-531)) (-5 *1 (-521))))) -((-2143 (((-85) |#1|) 16 T ELT)) (-2144 (((-3 |#1| #1="failed") |#1|) 14 T ELT)) (-2141 (((-2 (|:| -2693 |#1|) (|:| -2400 (-693))) |#1|) 37 T ELT) (((-3 |#1| #1#) |#1| (-693)) 18 T ELT)) (-2140 (((-85) |#1| (-693)) 19 T ELT)) (-2145 ((|#1| |#1|) 41 T ELT)) (-2142 ((|#1| |#1| (-693)) 44 T ELT))) -(((-522 |#1|) (-10 -7 (-15 -2140 ((-85) |#1| (-693))) (-15 -2141 ((-3 |#1| #1="failed") |#1| (-693))) (-15 -2141 ((-2 (|:| -2693 |#1|) (|:| -2400 (-693))) |#1|)) (-15 -2142 (|#1| |#1| (-693))) (-15 -2143 ((-85) |#1|)) (-15 -2144 ((-3 |#1| #1#) |#1|)) (-15 -2145 (|#1| |#1|))) (-482)) (T -522)) -((-2145 (*1 *2 *2) (-12 (-5 *1 (-522 *2)) (-4 *2 (-482)))) (-2144 (*1 *2 *2) (|partial| -12 (-5 *1 (-522 *2)) (-4 *2 (-482)))) (-2143 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-522 *3)) (-4 *3 (-482)))) (-2142 (*1 *2 *2 *3) (-12 (-5 *3 (-693)) (-5 *1 (-522 *2)) (-4 *2 (-482)))) (-2141 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2693 *3) (|:| -2400 (-693)))) (-5 *1 (-522 *3)) (-4 *3 (-482)))) (-2141 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-693)) (-5 *1 (-522 *2)) (-4 *2 (-482)))) (-2140 (*1 *2 *3 *4) (-12 (-5 *4 (-693)) (-5 *2 (-85)) (-5 *1 (-522 *3)) (-4 *3 (-482))))) -((-2146 (((-1083 |#1|) (-829)) 44 T ELT))) -(((-523 |#1|) (-10 -7 (-15 -2146 ((-1083 |#1|) (-829)))) (-299)) (T -523)) -((-2146 (*1 *2 *3) (-12 (-5 *3 (-829)) (-5 *2 (-1083 *4)) (-5 *1 (-523 *4)) (-4 *4 (-299))))) -((-3416 (((-518 (-348 (-856 |#1|))) (-518 (-348 (-856 |#1|)))) 27 T ELT)) (-3810 (((-3 (-265 |#1|) (-582 (-265 |#1|))) (-348 (-856 |#1|)) (-1088)) 33 (|has| |#1| (-120)) ELT)) (-3961 (((-582 (-265 |#1|)) (-518 (-348 (-856 |#1|)))) 19 T ELT)) (-2148 (((-265 |#1|) (-348 (-856 |#1|)) (-1088)) 31 (|has| |#1| (-120)) ELT)) (-2147 (((-265 |#1|) (-518 (-348 (-856 |#1|)))) 21 T ELT))) -(((-524 |#1|) (-10 -7 (-15 -3416 ((-518 (-348 (-856 |#1|))) (-518 (-348 (-856 |#1|))))) (-15 -3961 ((-582 (-265 |#1|)) (-518 (-348 (-856 |#1|))))) (-15 -2147 ((-265 |#1|) (-518 (-348 (-856 |#1|))))) (IF (|has| |#1| (-120)) (PROGN (-15 -3810 ((-3 (-265 |#1|) (-582 (-265 |#1|))) (-348 (-856 |#1|)) (-1088))) (-15 -2148 ((-265 |#1|) (-348 (-856 |#1|)) (-1088)))) |%noBranch|)) (-13 (-390) (-949 (-483)) (-579 (-483)))) (T -524)) -((-2148 (*1 *2 *3 *4) (-12 (-5 *3 (-348 (-856 *5))) (-5 *4 (-1088)) (-4 *5 (-120)) (-4 *5 (-13 (-390) (-949 (-483)) (-579 (-483)))) (-5 *2 (-265 *5)) (-5 *1 (-524 *5)))) (-3810 (*1 *2 *3 *4) (-12 (-5 *3 (-348 (-856 *5))) (-5 *4 (-1088)) (-4 *5 (-120)) (-4 *5 (-13 (-390) (-949 (-483)) (-579 (-483)))) (-5 *2 (-3 (-265 *5) (-582 (-265 *5)))) (-5 *1 (-524 *5)))) (-2147 (*1 *2 *3) (-12 (-5 *3 (-518 (-348 (-856 *4)))) (-4 *4 (-13 (-390) (-949 (-483)) (-579 (-483)))) (-5 *2 (-265 *4)) (-5 *1 (-524 *4)))) (-3961 (*1 *2 *3) (-12 (-5 *3 (-518 (-348 (-856 *4)))) (-4 *4 (-13 (-390) (-949 (-483)) (-579 (-483)))) (-5 *2 (-582 (-265 *4))) (-5 *1 (-524 *4)))) (-3416 (*1 *2 *2) (-12 (-5 *2 (-518 (-348 (-856 *3)))) (-4 *3 (-13 (-390) (-949 (-483)) (-579 (-483)))) (-5 *1 (-524 *3))))) -((-2150 (((-582 (-629 (-483))) (-582 (-829)) (-582 (-812 (-483)))) 80 T ELT) (((-582 (-629 (-483))) (-582 (-829))) 81 T ELT) (((-629 (-483)) (-582 (-829)) (-812 (-483))) 74 T ELT)) (-2149 (((-693) (-582 (-829))) 71 T ELT))) -(((-525) (-10 -7 (-15 -2149 ((-693) (-582 (-829)))) (-15 -2150 ((-629 (-483)) (-582 (-829)) (-812 (-483)))) (-15 -2150 ((-582 (-629 (-483))) (-582 (-829)))) (-15 -2150 ((-582 (-629 (-483))) (-582 (-829)) (-582 (-812 (-483))))))) (T -525)) -((-2150 (*1 *2 *3 *4) (-12 (-5 *3 (-582 (-829))) (-5 *4 (-582 (-812 (-483)))) (-5 *2 (-582 (-629 (-483)))) (-5 *1 (-525)))) (-2150 (*1 *2 *3) (-12 (-5 *3 (-582 (-829))) (-5 *2 (-582 (-629 (-483)))) (-5 *1 (-525)))) (-2150 (*1 *2 *3 *4) (-12 (-5 *3 (-582 (-829))) (-5 *4 (-812 (-483))) (-5 *2 (-629 (-483))) (-5 *1 (-525)))) (-2149 (*1 *2 *3) (-12 (-5 *3 (-582 (-829))) (-5 *2 (-693)) (-5 *1 (-525))))) -((-3212 (((-582 |#5|) |#5| (-85)) 97 T ELT)) (-2151 (((-85) |#5| (-582 |#5|)) 34 T ELT))) -(((-526 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3212 ((-582 |#5|) |#5| (-85))) (-15 -2151 ((-85) |#5| (-582 |#5|)))) (-13 (-258) (-120)) (-716) (-755) (-976 |#1| |#2| |#3|) (-1019 |#1| |#2| |#3| |#4|)) (T -526)) -((-2151 (*1 *2 *3 *4) (-12 (-5 *4 (-582 *3)) (-4 *3 (-1019 *5 *6 *7 *8)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-716)) (-4 *7 (-755)) (-4 *8 (-976 *5 *6 *7)) (-5 *2 (-85)) (-5 *1 (-526 *5 *6 *7 *8 *3)))) (-3212 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-716)) (-4 *7 (-755)) (-4 *8 (-976 *5 *6 *7)) (-5 *2 (-582 *3)) (-5 *1 (-526 *5 *6 *7 *8 *3)) (-4 *3 (-1019 *5 *6 *7 *8))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3526 (((-1047) $) 12 T ELT)) (-3527 (((-1047) $) 10 T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3944 (((-771) $) 18 T ELT) (($ (-1093)) NIL T ELT) (((-1093) $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-527) (-13 (-994) (-10 -8 (-15 -3527 ((-1047) $)) (-15 -3526 ((-1047) $))))) (T -527)) -((-3527 (*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-527)))) (-3526 (*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-527))))) -((-3530 (((-2 (|:| |num| |#4|) (|:| |den| (-483))) |#4| |#2|) 23 T ELT) (((-2 (|:| |num| |#4|) (|:| |den| (-483))) |#4| |#2| (-1000 |#4|)) 32 T ELT))) -(((-528 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3530 ((-2 (|:| |num| |#4|) (|:| |den| (-483))) |#4| |#2| (-1000 |#4|))) (-15 -3530 ((-2 (|:| |num| |#4|) (|:| |den| (-483))) |#4| |#2|))) (-716) (-755) (-494) (-860 |#3| |#1| |#2|)) (T -528)) -((-3530 (*1 *2 *3 *4) (-12 (-4 *5 (-716)) (-4 *4 (-755)) (-4 *6 (-494)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-483)))) (-5 *1 (-528 *5 *4 *6 *3)) (-4 *3 (-860 *6 *5 *4)))) (-3530 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1000 *3)) (-4 *3 (-860 *7 *6 *4)) (-4 *6 (-716)) (-4 *4 (-755)) (-4 *7 (-494)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-483)))) (-5 *1 (-528 *6 *4 *7 *3))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3187 (((-85) $) 71 T ELT)) (-3080 (((-582 (-993)) $) NIL T ELT)) (-3829 (((-1088) $) NIL T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3980 $) (|:| |associate| $)) $) NIL (|has| |#1| (-494)) ELT)) (-2062 (($ $) NIL (|has| |#1| (-494)) ELT)) (-2060 (((-85) $) NIL (|has| |#1| (-494)) ELT)) (-3769 (($ $ (-483)) 58 T ELT) (($ $ (-483) (-483)) 59 T ELT)) (-3772 (((-1067 (-2 (|:| |k| (-483)) (|:| |c| |#1|))) $) 65 T ELT)) (-2182 (($ $) 109 T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2180 (((-771) (-1067 (-2 (|:| |k| (-483)) (|:| |c| |#1|))) (-938 (-749 (-483))) (-1088) |#1| (-348 (-483))) 232 T ELT)) (-3816 (($ (-1067 (-2 (|:| |k| (-483)) (|:| |c| |#1|)))) 36 T ELT)) (-3722 (($) NIL T CONST)) (-3957 (($ $) NIL T ELT)) (-3465 (((-3 $ #1#) $) NIL T ELT)) (-2891 (((-85) $) NIL T ELT)) (-3770 (((-483) $) 63 T ELT) (((-483) $ (-483)) 64 T ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-2409 (((-85) $) NIL T ELT)) (-3775 (($ $ (-829)) 83 T ELT)) (-3813 (($ (-1 |#1| (-483)) $) 80 T ELT)) (-3935 (((-85) $) 26 T ELT)) (-2892 (($ |#1| (-483)) 22 T ELT) (($ $ (-993) (-483)) NIL T ELT) (($ $ (-582 (-993)) (-582 (-483))) NIL T ELT)) (-3956 (($ (-1 |#1| |#1|) $) 75 T ELT)) (-2186 (($ (-938 (-749 (-483))) (-1067 (-2 (|:| |k| (-483)) (|:| |c| |#1|)))) 13 T ELT)) (-2893 (($ $) NIL T ELT)) (-3173 ((|#1| $) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3810 (($ $) 120 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-2183 (((-3 $ #1#) $ $ (-85)) 108 T ELT)) (-2181 (($ $ $) 116 T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-2184 (((-1067 (-2 (|:| |k| (-483)) (|:| |c| |#1|))) $) 15 T ELT)) (-2185 (((-938 (-749 (-483))) $) 14 T ELT)) (-3767 (($ $ (-483)) 47 T ELT)) (-3464 (((-3 $ #1#) $ $) NIL (|has| |#1| (-494)) ELT)) (-3766 (((-1067 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-483)))) ELT)) (-3798 ((|#1| $ (-483)) 62 T ELT) (($ $ $) NIL (|has| (-483) (-1024)) ELT)) (-3756 (($ $ (-1088)) NIL (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) ELT) (($ $ (-582 (-1088))) NIL (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) ELT) (($ $ (-1088) (-693)) NIL (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) ELT) (($ $ (-582 (-1088)) (-582 (-693))) NIL (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) ELT) (($ $) 77 (|has| |#1| (-15 * (|#1| (-483) |#1|))) ELT) (($ $ (-693)) NIL (|has| |#1| (-15 * (|#1| (-483) |#1|))) ELT)) (-3946 (((-483) $) NIL T ELT)) (-2890 (($ $) 48 T ELT)) (-3944 (((-771) $) NIL T ELT) (($ (-483)) 29 T ELT) (($ (-348 (-483))) NIL (|has| |#1| (-38 (-348 (-483)))) ELT) (($ $) NIL (|has| |#1| (-494)) ELT) (($ |#1|) 28 (|has| |#1| (-146)) ELT)) (-3675 ((|#1| $ (-483)) 61 T ELT)) (-2701 (((-631 $) $) NIL (|has| |#1| (-118)) ELT)) (-3125 (((-693)) 39 T CONST)) (-3771 ((|#1| $) NIL T ELT)) (-2161 (($ $) 192 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-2173 (($ $) 167 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-2163 (($ $) 189 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-2175 (($ $) 164 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-2159 (($ $) 194 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-2171 (($ $) 170 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-2178 (($ $ (-348 (-483))) 157 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-2179 (($ $ |#1|) 128 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-2176 (($ $) 161 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-2177 (($ $) 159 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-2158 (($ $) 195 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-2170 (($ $) 171 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-2160 (($ $) 193 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-2172 (($ $) 169 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-2162 (($ $) 190 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-2174 (($ $) 165 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-2155 (($ $) 200 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-2167 (($ $) 180 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-2157 (($ $) 197 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-2169 (($ $) 176 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-2153 (($ $) 204 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-2165 (($ $) 184 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-2152 (($ $) 206 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-2164 (($ $) 186 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-2154 (($ $) 202 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-2166 (($ $) 182 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-2156 (($ $) 199 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-2168 (($ $) 178 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2061 (((-85) $ $) NIL (|has| |#1| (-494)) ELT)) (-3768 ((|#1| $ (-483)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-483)))) (|has| |#1| (-15 -3944 (|#1| (-1088))))) ELT)) (-3124 (((-85) $ $) NIL T ELT)) (-2659 (($) 30 T CONST)) (-2665 (($) 40 T CONST)) (-2668 (($ $ (-1088)) NIL (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) ELT) (($ $ (-582 (-1088))) NIL (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) ELT) (($ $ (-1088) (-693)) NIL (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) ELT) (($ $ (-582 (-1088)) (-582 (-693))) NIL (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-483) |#1|))) ELT) (($ $ (-693)) NIL (|has| |#1| (-15 * (|#1| (-483) |#1|))) ELT)) (-3055 (((-85) $ $) 73 T ELT)) (-3947 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3835 (($ $) 91 T ELT) (($ $ $) 72 T ELT)) (-3837 (($ $ $) 88 T ELT)) (** (($ $ (-829)) NIL T ELT) (($ $ (-693)) 111 T ELT)) (* (($ (-829) $) 98 T ELT) (($ (-693) $) 96 T ELT) (($ (-483) $) 93 T ELT) (($ $ $) 104 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 123 T ELT) (($ (-348 (-483)) $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT) (($ $ (-348 (-483))) NIL (|has| |#1| (-38 (-348 (-483)))) ELT))) -(((-529 |#1|) (-13 (-1156 |#1| (-483)) (-10 -8 (-15 -2186 ($ (-938 (-749 (-483))) (-1067 (-2 (|:| |k| (-483)) (|:| |c| |#1|))))) (-15 -2185 ((-938 (-749 (-483))) $)) (-15 -2184 ((-1067 (-2 (|:| |k| (-483)) (|:| |c| |#1|))) $)) (-15 -3816 ($ (-1067 (-2 (|:| |k| (-483)) (|:| |c| |#1|))))) (-15 -3935 ((-85) $)) (-15 -3813 ($ (-1 |#1| (-483)) $)) (-15 -2183 ((-3 $ "failed") $ $ (-85))) (-15 -2182 ($ $)) (-15 -2181 ($ $ $)) (-15 -2180 ((-771) (-1067 (-2 (|:| |k| (-483)) (|:| |c| |#1|))) (-938 (-749 (-483))) (-1088) |#1| (-348 (-483)))) (IF (|has| |#1| (-38 (-348 (-483)))) (PROGN (-15 -3810 ($ $)) (-15 -2179 ($ $ |#1|)) (-15 -2178 ($ $ (-348 (-483)))) (-15 -2177 ($ $)) (-15 -2176 ($ $)) (-15 -2175 ($ $)) (-15 -2174 ($ $)) (-15 -2173 ($ $)) (-15 -2172 ($ $)) (-15 -2171 ($ $)) (-15 -2170 ($ $)) (-15 -2169 ($ $)) (-15 -2168 ($ $)) (-15 -2167 ($ $)) (-15 -2166 ($ $)) (-15 -2165 ($ $)) (-15 -2164 ($ $)) (-15 -2163 ($ $)) (-15 -2162 ($ $)) (-15 -2161 ($ $)) (-15 -2160 ($ $)) (-15 -2159 ($ $)) (-15 -2158 ($ $)) (-15 -2157 ($ $)) (-15 -2156 ($ $)) (-15 -2155 ($ $)) (-15 -2154 ($ $)) (-15 -2153 ($ $)) (-15 -2152 ($ $))) |%noBranch|))) (-960)) (T -529)) -((-3935 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-529 *3)) (-4 *3 (-960)))) (-2186 (*1 *1 *2 *3) (-12 (-5 *2 (-938 (-749 (-483)))) (-5 *3 (-1067 (-2 (|:| |k| (-483)) (|:| |c| *4)))) (-4 *4 (-960)) (-5 *1 (-529 *4)))) (-2185 (*1 *2 *1) (-12 (-5 *2 (-938 (-749 (-483)))) (-5 *1 (-529 *3)) (-4 *3 (-960)))) (-2184 (*1 *2 *1) (-12 (-5 *2 (-1067 (-2 (|:| |k| (-483)) (|:| |c| *3)))) (-5 *1 (-529 *3)) (-4 *3 (-960)))) (-3816 (*1 *1 *2) (-12 (-5 *2 (-1067 (-2 (|:| |k| (-483)) (|:| |c| *3)))) (-4 *3 (-960)) (-5 *1 (-529 *3)))) (-3813 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-483))) (-4 *3 (-960)) (-5 *1 (-529 *3)))) (-2183 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-85)) (-5 *1 (-529 *3)) (-4 *3 (-960)))) (-2182 (*1 *1 *1) (-12 (-5 *1 (-529 *2)) (-4 *2 (-960)))) (-2181 (*1 *1 *1 *1) (-12 (-5 *1 (-529 *2)) (-4 *2 (-960)))) (-2180 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1067 (-2 (|:| |k| (-483)) (|:| |c| *6)))) (-5 *4 (-938 (-749 (-483)))) (-5 *5 (-1088)) (-5 *7 (-348 (-483))) (-4 *6 (-960)) (-5 *2 (-771)) (-5 *1 (-529 *6)))) (-3810 (*1 *1 *1) (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-348 (-483)))) (-4 *2 (-960)))) (-2179 (*1 *1 *1 *2) (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-348 (-483)))) (-4 *2 (-960)))) (-2178 (*1 *1 *1 *2) (-12 (-5 *2 (-348 (-483))) (-5 *1 (-529 *3)) (-4 *3 (-38 *2)) (-4 *3 (-960)))) (-2177 (*1 *1 *1) (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-348 (-483)))) (-4 *2 (-960)))) (-2176 (*1 *1 *1) (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-348 (-483)))) (-4 *2 (-960)))) (-2175 (*1 *1 *1) (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-348 (-483)))) (-4 *2 (-960)))) (-2174 (*1 *1 *1) (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-348 (-483)))) (-4 *2 (-960)))) (-2173 (*1 *1 *1) (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-348 (-483)))) (-4 *2 (-960)))) (-2172 (*1 *1 *1) (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-348 (-483)))) (-4 *2 (-960)))) (-2171 (*1 *1 *1) (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-348 (-483)))) (-4 *2 (-960)))) (-2170 (*1 *1 *1) (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-348 (-483)))) (-4 *2 (-960)))) (-2169 (*1 *1 *1) (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-348 (-483)))) (-4 *2 (-960)))) (-2168 (*1 *1 *1) (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-348 (-483)))) (-4 *2 (-960)))) (-2167 (*1 *1 *1) (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-348 (-483)))) (-4 *2 (-960)))) (-2166 (*1 *1 *1) (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-348 (-483)))) (-4 *2 (-960)))) (-2165 (*1 *1 *1) (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-348 (-483)))) (-4 *2 (-960)))) (-2164 (*1 *1 *1) (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-348 (-483)))) (-4 *2 (-960)))) (-2163 (*1 *1 *1) (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-348 (-483)))) (-4 *2 (-960)))) (-2162 (*1 *1 *1) (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-348 (-483)))) (-4 *2 (-960)))) (-2161 (*1 *1 *1) (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-348 (-483)))) (-4 *2 (-960)))) (-2160 (*1 *1 *1) (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-348 (-483)))) (-4 *2 (-960)))) (-2159 (*1 *1 *1) (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-348 (-483)))) (-4 *2 (-960)))) (-2158 (*1 *1 *1) (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-348 (-483)))) (-4 *2 (-960)))) (-2157 (*1 *1 *1) (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-348 (-483)))) (-4 *2 (-960)))) (-2156 (*1 *1 *1) (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-348 (-483)))) (-4 *2 (-960)))) (-2155 (*1 *1 *1) (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-348 (-483)))) (-4 *2 (-960)))) (-2154 (*1 *1 *1) (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-348 (-483)))) (-4 *2 (-960)))) (-2153 (*1 *1 *1) (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-348 (-483)))) (-4 *2 (-960)))) (-2152 (*1 *1 *1) (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-348 (-483)))) (-4 *2 (-960))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3187 (((-85) $) 62 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3980 $) (|:| |associate| $)) $) NIL (|has| |#1| (-494)) ELT)) (-2062 (($ $) NIL (|has| |#1| (-494)) ELT)) (-2060 (((-85) $) NIL (|has| |#1| (-494)) ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3816 (($ (-1067 |#1|)) 9 T ELT)) (-3722 (($) NIL T CONST)) (-3465 (((-3 $ #1#) $) 44 T ELT)) (-2891 (((-85) $) 56 T ELT)) (-3770 (((-693) $) 61 T ELT) (((-693) $ (-693)) 60 T ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-2409 (((-85) $) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3464 (((-3 $ #1#) $ $) 46 (|has| |#1| (-494)) ELT)) (-3944 (((-771) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ $) NIL (|has| |#1| (-494)) ELT)) (-3815 (((-1067 |#1|) $) 25 T ELT)) (-3125 (((-693)) 55 T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-2061 (((-85) $ $) NIL (|has| |#1| (-494)) ELT)) (-3124 (((-85) $ $) NIL T ELT)) (-2659 (($) 10 T CONST)) (-2665 (($) 14 T CONST)) (-3055 (((-85) $ $) 24 T ELT)) (-3835 (($ $) 32 T ELT) (($ $ $) 16 T ELT)) (-3837 (($ $ $) 27 T ELT)) (** (($ $ (-829)) NIL T ELT) (($ $ (-693)) 53 T ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-483) $) 36 T ELT) (($ $ $) 30 T ELT) (($ $ |#1|) 40 T ELT) (($ |#1| $) 39 T ELT) (($ $ (-483)) 38 T ELT))) -(((-530 |#1|) (-13 (-960) (-82 |#1| |#1|) (-10 -8 (-15 -3815 ((-1067 |#1|) $)) (-15 -3816 ($ (-1067 |#1|))) (-15 -2891 ((-85) $)) (-15 -3770 ((-693) $)) (-15 -3770 ((-693) $ (-693))) (-15 * ($ $ (-483))) (IF (|has| |#1| (-494)) (-6 (-494)) |%noBranch|))) (-960)) (T -530)) -((-3815 (*1 *2 *1) (-12 (-5 *2 (-1067 *3)) (-5 *1 (-530 *3)) (-4 *3 (-960)))) (-3816 (*1 *1 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-960)) (-5 *1 (-530 *3)))) (-2891 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-530 *3)) (-4 *3 (-960)))) (-3770 (*1 *2 *1) (-12 (-5 *2 (-693)) (-5 *1 (-530 *3)) (-4 *3 (-960)))) (-3770 (*1 *2 *1 *2) (-12 (-5 *2 (-693)) (-5 *1 (-530 *3)) (-4 *3 (-960)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-530 *3)) (-4 *3 (-960))))) -((-2567 (((-85) $ $) NIL T ELT)) (-2189 (($) 8 T CONST)) (-2190 (($) 7 T CONST)) (-2187 (($ $ (-582 $)) 16 T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-2191 (($) 6 T CONST)) (-3242 (((-1032) $) NIL T ELT)) (-3944 (((-771) $) NIL T ELT) (($ (-1093)) 15 T ELT) (((-1093) $) 10 T ELT)) (-2188 (($) NIL T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-531) (-13 (-1012) (-428 (-1093)) (-10 -8 (-15 -2191 ($) -3950) (-15 -2190 ($) -3950) (-15 -2189 ($) -3950) (-15 -2188 ($) -3950) (-15 -2187 ($ $ (-582 $)))))) (T -531)) -((-2191 (*1 *1) (-5 *1 (-531))) (-2190 (*1 *1) (-5 *1 (-531))) (-2189 (*1 *1) (-5 *1 (-531))) (-2188 (*1 *1) (-5 *1 (-531))) (-2187 (*1 *1 *1 *2) (-12 (-5 *2 (-582 (-531))) (-5 *1 (-531))))) -((-3956 (((-535 |#2|) (-1 |#2| |#1|) (-535 |#1|)) 15 T ELT))) -(((-532 |#1| |#2|) (-13 (-1127) (-10 -7 (-15 -3956 ((-535 |#2|) (-1 |#2| |#1|) (-535 |#1|))))) (-1127) (-1127)) (T -532)) -((-3956 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-535 *5)) (-4 *5 (-1127)) (-4 *6 (-1127)) (-5 *2 (-535 *6)) (-5 *1 (-532 *5 *6))))) -((-3956 (((-1067 |#3|) (-1 |#3| |#1| |#2|) (-535 |#1|) (-1067 |#2|)) 20 T ELT) (((-1067 |#3|) (-1 |#3| |#1| |#2|) (-1067 |#1|) (-535 |#2|)) 19 T ELT) (((-535 |#3|) (-1 |#3| |#1| |#2|) (-535 |#1|) (-535 |#2|)) 18 T ELT))) -(((-533 |#1| |#2| |#3|) (-10 -7 (-15 -3956 ((-535 |#3|) (-1 |#3| |#1| |#2|) (-535 |#1|) (-535 |#2|))) (-15 -3956 ((-1067 |#3|) (-1 |#3| |#1| |#2|) (-1067 |#1|) (-535 |#2|))) (-15 -3956 ((-1067 |#3|) (-1 |#3| |#1| |#2|) (-535 |#1|) (-1067 |#2|)))) (-1127) (-1127) (-1127)) (T -533)) -((-3956 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-535 *6)) (-5 *5 (-1067 *7)) (-4 *6 (-1127)) (-4 *7 (-1127)) (-4 *8 (-1127)) (-5 *2 (-1067 *8)) (-5 *1 (-533 *6 *7 *8)))) (-3956 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1067 *6)) (-5 *5 (-535 *7)) (-4 *6 (-1127)) (-4 *7 (-1127)) (-4 *8 (-1127)) (-5 *2 (-1067 *8)) (-5 *1 (-533 *6 *7 *8)))) (-3956 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-535 *6)) (-5 *5 (-535 *7)) (-4 *6 (-1127)) (-4 *7 (-1127)) (-4 *8 (-1127)) (-5 *2 (-535 *8)) (-5 *1 (-533 *6 *7 *8))))) -((-2196 ((|#3| |#3| (-582 (-549 |#3|)) (-582 (-1088))) 57 T ELT)) (-2195 (((-142 |#2|) |#3|) 122 T ELT)) (-2192 ((|#3| (-142 |#2|)) 46 T ELT)) (-2193 ((|#2| |#3|) 21 T ELT)) (-2194 ((|#3| |#2|) 35 T ELT))) -(((-534 |#1| |#2| |#3|) (-10 -7 (-15 -2192 (|#3| (-142 |#2|))) (-15 -2193 (|#2| |#3|)) (-15 -2194 (|#3| |#2|)) (-15 -2195 ((-142 |#2|) |#3|)) (-15 -2196 (|#3| |#3| (-582 (-549 |#3|)) (-582 (-1088))))) (-494) (-13 (-362 |#1|) (-914) (-1113)) (-13 (-362 (-142 |#1|)) (-914) (-1113))) (T -534)) -((-2196 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-582 (-549 *2))) (-5 *4 (-582 (-1088))) (-4 *2 (-13 (-362 (-142 *5)) (-914) (-1113))) (-4 *5 (-494)) (-5 *1 (-534 *5 *6 *2)) (-4 *6 (-13 (-362 *5) (-914) (-1113))))) (-2195 (*1 *2 *3) (-12 (-4 *4 (-494)) (-5 *2 (-142 *5)) (-5 *1 (-534 *4 *5 *3)) (-4 *5 (-13 (-362 *4) (-914) (-1113))) (-4 *3 (-13 (-362 (-142 *4)) (-914) (-1113))))) (-2194 (*1 *2 *3) (-12 (-4 *4 (-494)) (-4 *2 (-13 (-362 (-142 *4)) (-914) (-1113))) (-5 *1 (-534 *4 *3 *2)) (-4 *3 (-13 (-362 *4) (-914) (-1113))))) (-2193 (*1 *2 *3) (-12 (-4 *4 (-494)) (-4 *2 (-13 (-362 *4) (-914) (-1113))) (-5 *1 (-534 *4 *2 *3)) (-4 *3 (-13 (-362 (-142 *4)) (-914) (-1113))))) (-2192 (*1 *2 *3) (-12 (-5 *3 (-142 *5)) (-4 *5 (-13 (-362 *4) (-914) (-1113))) (-4 *4 (-494)) (-4 *2 (-13 (-362 (-142 *4)) (-914) (-1113))) (-5 *1 (-534 *4 *5 *2))))) -((-3708 (($ (-1 (-85) |#1|) $) 19 T ELT)) (-3956 (($ (-1 |#1| |#1|) $) 22 T ELT)) (-3455 (($ (-1 |#1| |#1|) |#1|) 11 T ELT)) (-3454 (($ (-1 (-85) |#1|) $) 15 T ELT)) (-3453 (($ (-1 (-85) |#1|) $) 17 T ELT)) (-3528 (((-1067 |#1|) $) 20 T ELT)) (-3944 (((-771) $) 25 T ELT))) -(((-535 |#1|) (-13 (-551 (-771)) (-10 -8 (-15 -3956 ($ (-1 |#1| |#1|) $)) (-15 -3454 ($ (-1 (-85) |#1|) $)) (-15 -3453 ($ (-1 (-85) |#1|) $)) (-15 -3708 ($ (-1 (-85) |#1|) $)) (-15 -3455 ($ (-1 |#1| |#1|) |#1|)) (-15 -3528 ((-1067 |#1|) $)))) (-1127)) (T -535)) -((-3956 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1127)) (-5 *1 (-535 *3)))) (-3454 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1127)) (-5 *1 (-535 *3)))) (-3453 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1127)) (-5 *1 (-535 *3)))) (-3708 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1127)) (-5 *1 (-535 *3)))) (-3455 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1127)) (-5 *1 (-535 *3)))) (-3528 (*1 *2 *1) (-12 (-5 *2 (-1067 *3)) (-5 *1 (-535 *3)) (-4 *3 (-1127))))) -((-2197 (((-1183) $ |#2| |#2|) 35 T ELT)) (-2199 ((|#2| $) 23 T ELT)) (-2200 ((|#2| $) 21 T ELT)) (-1947 (($ (-1 |#3| |#3|) $) 32 T ELT)) (-3956 (($ (-1 |#3| |#3|) $) 30 T ELT)) (-3799 ((|#3| $) 26 T ELT)) (-2198 (($ $ |#3|) 33 T ELT)) (-2201 (((-85) |#3| $) 17 T ELT)) (-2204 (((-582 |#3|) $) 15 T ELT)) (-3798 ((|#3| $ |#2| |#3|) 12 T ELT) ((|#3| $ |#2|) NIL T ELT))) -(((-536 |#1| |#2| |#3|) (-10 -7 (-15 -2197 ((-1183) |#1| |#2| |#2|)) (-15 -2198 (|#1| |#1| |#3|)) (-15 -3799 (|#3| |#1|)) (-15 -2199 (|#2| |#1|)) (-15 -2200 (|#2| |#1|)) (-15 -2201 ((-85) |#3| |#1|)) (-15 -2204 ((-582 |#3|) |#1|)) (-15 -3798 (|#3| |#1| |#2|)) (-15 -3798 (|#3| |#1| |#2| |#3|)) (-15 -1947 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3956 (|#1| (-1 |#3| |#3|) |#1|))) (-537 |#2| |#3|) (-1012) (-1127)) (T -536)) -NIL -((-2567 (((-85) $ $) 19 (|has| |#2| (-72)) ELT)) (-2197 (((-1183) $ |#1| |#1|) 44 (|has| $ (-6 -3994)) ELT)) (-3786 ((|#2| $ |#1| |#2|) 56 (|has| $ (-6 -3994)) ELT)) (-3722 (($) 7 T CONST)) (-1574 ((|#2| $ |#1| |#2|) 57 (|has| $ (-6 -3994)) ELT)) (-3111 ((|#2| $ |#1|) 55 T ELT)) (-2888 (((-582 |#2|) $) 30 (|has| $ (-6 -3993)) ELT)) (-2199 ((|#1| $) 47 (|has| |#1| (-755)) ELT)) (-2607 (((-582 |#2|) $) 29 (|has| $ (-6 -3993)) ELT)) (-3244 (((-85) |#2| $) 27 (-12 (|has| |#2| (-1012)) (|has| $ (-6 -3993))) ELT)) (-2200 ((|#1| $) 48 (|has| |#1| (-755)) ELT)) (-1947 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -3994)) ELT)) (-3956 (($ (-1 |#2| |#2|) $) 35 T ELT)) (-3241 (((-1071) $) 22 (|has| |#2| (-1012)) ELT)) (-2202 (((-582 |#1|) $) 50 T ELT)) (-2203 (((-85) |#1| $) 51 T ELT)) (-3242 (((-1032) $) 21 (|has| |#2| (-1012)) ELT)) (-3799 ((|#2| $) 46 (|has| |#1| (-755)) ELT)) (-2198 (($ $ |#2|) 45 (|has| $ (-6 -3994)) ELT)) (-1945 (((-85) (-1 (-85) |#2|) $) 32 (|has| $ (-6 -3993)) ELT)) (-3766 (($ $ (-582 (-249 |#2|))) 26 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ (-249 |#2|)) 25 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ (-582 |#2|) (-582 |#2|)) 23 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1012))) ELT)) (-1220 (((-85) $ $) 11 T ELT)) (-2201 (((-85) |#2| $) 49 (-12 (|has| $ (-6 -3993)) (|has| |#2| (-1012))) ELT)) (-2204 (((-582 |#2|) $) 52 T ELT)) (-3401 (((-85) $) 8 T ELT)) (-3563 (($) 9 T ELT)) (-3798 ((|#2| $ |#1| |#2|) 54 T ELT) ((|#2| $ |#1|) 53 T ELT)) (-1944 (((-693) (-1 (-85) |#2|) $) 31 (|has| $ (-6 -3993)) ELT) (((-693) |#2| $) 28 (-12 (|has| |#2| (-1012)) (|has| $ (-6 -3993))) ELT)) (-3398 (($ $) 10 T ELT)) (-3944 (((-771) $) 17 (|has| |#2| (-551 (-771))) ELT)) (-1263 (((-85) $ $) 20 (|has| |#2| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#2|) $) 33 (|has| $ (-6 -3993)) ELT)) (-3055 (((-85) $ $) 18 (|has| |#2| (-72)) ELT)) (-3955 (((-693) $) 6 (|has| $ (-6 -3993)) ELT))) -(((-537 |#1| |#2|) (-113) (-1012) (-1127)) (T -537)) -((-2204 (*1 *2 *1) (-12 (-4 *1 (-537 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1127)) (-5 *2 (-582 *4)))) (-2203 (*1 *2 *3 *1) (-12 (-4 *1 (-537 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1127)) (-5 *2 (-85)))) (-2202 (*1 *2 *1) (-12 (-4 *1 (-537 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1127)) (-5 *2 (-582 *3)))) (-2201 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -3993)) (-4 *1 (-537 *4 *3)) (-4 *4 (-1012)) (-4 *3 (-1127)) (-4 *3 (-1012)) (-5 *2 (-85)))) (-2200 (*1 *2 *1) (-12 (-4 *1 (-537 *2 *3)) (-4 *3 (-1127)) (-4 *2 (-1012)) (-4 *2 (-755)))) (-2199 (*1 *2 *1) (-12 (-4 *1 (-537 *2 *3)) (-4 *3 (-1127)) (-4 *2 (-1012)) (-4 *2 (-755)))) (-3799 (*1 *2 *1) (-12 (-4 *1 (-537 *3 *2)) (-4 *3 (-1012)) (-4 *3 (-755)) (-4 *2 (-1127)))) (-2198 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -3994)) (-4 *1 (-537 *3 *2)) (-4 *3 (-1012)) (-4 *2 (-1127)))) (-2197 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -3994)) (-4 *1 (-537 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1127)) (-5 *2 (-1183))))) -(-13 (-427 |t#2|) (-243 |t#1| |t#2|) (-10 -8 (-15 -2204 ((-582 |t#2|) $)) (-15 -2203 ((-85) |t#1| $)) (-15 -2202 ((-582 |t#1|) $)) (IF (|has| |t#2| (-1012)) (IF (|has| $ (-6 -3993)) (-15 -2201 ((-85) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-755)) (PROGN (-15 -2200 (|t#1| $)) (-15 -2199 (|t#1| $)) (-15 -3799 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -3994)) (PROGN (-15 -2198 ($ $ |t#2|)) (-15 -2197 ((-1183) $ |t#1| |t#1|))) |%noBranch|))) -(((-34) . T) ((-72) OR (|has| |#2| (-1012)) (|has| |#2| (-72))) ((-551 (-771)) OR (|has| |#2| (-1012)) (|has| |#2| (-551 (-771)))) ((-241 |#1| |#2|) . T) ((-243 |#1| |#2|) . T) ((-260 |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1012))) ((-427 |#2|) . T) ((-454 |#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1012))) ((-13) . T) ((-1012) |has| |#2| (-1012)) ((-1127) . T)) -((-2567 (((-85) $ $) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3944 (((-771) $) NIL T ELT) (($ (-1093)) NIL T ELT) (((-1093) $) NIL T ELT) (((-1128) $) 15 T ELT) (($ (-582 (-1128))) 14 T ELT)) (-2205 (((-582 (-1128)) $) 12 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-538) (-13 (-994) (-551 (-1128)) (-10 -8 (-15 -3944 ($ (-582 (-1128)))) (-15 -2205 ((-582 (-1128)) $))))) (T -538)) -((-3944 (*1 *1 *2) (-12 (-5 *2 (-582 (-1128))) (-5 *1 (-538)))) (-2205 (*1 *2 *1) (-12 (-5 *2 (-582 (-1128))) (-5 *1 (-538))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3187 (((-85) $) NIL T ELT)) (-1770 (((-3 $ #1="failed")) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-494))) (-12 (|has| |#2| (-359 |#1|)) (|has| |#1| (-494)))) ELT)) (-1310 (((-3 $ #1#) $ $) NIL T ELT)) (-3222 (((-1177 (-629 |#1|))) NIL (|has| |#2| (-359 |#1|)) ELT) (((-1177 (-629 |#1|)) (-1177 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1727 (((-1177 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3722 (($) NIL T CONST)) (-1904 (((-3 (-2 (|:| |particular| $) (|:| -2011 (-582 $))) #1#)) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-494))) (-12 (|has| |#2| (-359 |#1|)) (|has| |#1| (-494)))) ELT)) (-1701 (((-3 $ #1#)) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-494))) (-12 (|has| |#2| (-359 |#1|)) (|has| |#1| (-494)))) ELT)) (-1786 (((-629 |#1|)) NIL (|has| |#2| (-359 |#1|)) ELT) (((-629 |#1|) (-1177 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1725 ((|#1| $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1784 (((-629 |#1|) $) NIL (|has| |#2| (-359 |#1|)) ELT) (((-629 |#1|) $ (-1177 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2403 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-494))) (-12 (|has| |#2| (-359 |#1|)) (|has| |#1| (-494)))) ELT)) (-1898 (((-1083 (-856 |#1|))) NIL (-12 (|has| |#2| (-359 |#1|)) (|has| |#1| (-312))) ELT)) (-2406 (($ $ (-829)) NIL T ELT)) (-1723 ((|#1| $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1703 (((-1083 |#1|) $) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-494))) (-12 (|has| |#2| (-359 |#1|)) (|has| |#1| (-494)))) ELT)) (-1788 ((|#1|) NIL (|has| |#2| (-359 |#1|)) ELT) ((|#1| (-1177 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1721 (((-1083 |#1|) $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1715 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1790 (($ (-1177 |#1|)) NIL (|has| |#2| (-359 |#1|)) ELT) (($ (-1177 |#1|) (-1177 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3465 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-494))) (-12 (|has| |#2| (-359 |#1|)) (|has| |#1| (-494)))) ELT)) (-3107 (((-829)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1712 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2432 (($ $ (-829)) NIL T ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-1708 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1706 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1710 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1905 (((-3 (-2 (|:| |particular| $) (|:| -2011 (-582 $))) #1#)) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-494))) (-12 (|has| |#2| (-359 |#1|)) (|has| |#1| (-494)))) ELT)) (-1702 (((-3 $ #1#)) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-494))) (-12 (|has| |#2| (-359 |#1|)) (|has| |#1| (-494)))) ELT)) (-1787 (((-629 |#1|)) NIL (|has| |#2| (-359 |#1|)) ELT) (((-629 |#1|) (-1177 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1726 ((|#1| $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1785 (((-629 |#1|) $) NIL (|has| |#2| (-359 |#1|)) ELT) (((-629 |#1|) $ (-1177 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2404 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-494))) (-12 (|has| |#2| (-359 |#1|)) (|has| |#1| (-494)))) ELT)) (-1902 (((-1083 (-856 |#1|))) NIL (-12 (|has| |#2| (-359 |#1|)) (|has| |#1| (-312))) ELT)) (-2405 (($ $ (-829)) NIL T ELT)) (-1724 ((|#1| $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1704 (((-1083 |#1|) $) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-494))) (-12 (|has| |#2| (-359 |#1|)) (|has| |#1| (-494)))) ELT)) (-1789 ((|#1|) NIL (|has| |#2| (-359 |#1|)) ELT) ((|#1| (-1177 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1722 (((-1083 |#1|) $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1716 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3241 (((-1071) $) NIL T ELT)) (-1707 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1709 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1711 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3242 (((-1032) $) NIL T ELT)) (-1714 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3798 ((|#1| $ (-483)) NIL (|has| |#2| (-359 |#1|)) ELT)) (-3223 (((-629 |#1|) (-1177 $)) NIL (|has| |#2| (-359 |#1|)) ELT) (((-1177 |#1|) $) NIL (|has| |#2| (-359 |#1|)) ELT) (((-629 |#1|) (-1177 $) (-1177 $)) NIL (|has| |#2| (-316 |#1|)) ELT) (((-1177 |#1|) $ (-1177 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3970 (($ (-1177 |#1|)) NIL (|has| |#2| (-359 |#1|)) ELT) (((-1177 |#1|) $) NIL (|has| |#2| (-359 |#1|)) ELT)) (-1890 (((-582 (-856 |#1|))) NIL (|has| |#2| (-359 |#1|)) ELT) (((-582 (-856 |#1|)) (-1177 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2434 (($ $ $) NIL T ELT)) (-1720 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3944 (((-771) $) NIL T ELT) ((|#2| $) 21 T ELT) (($ |#2|) 22 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2011 (((-1177 $)) NIL (|has| |#2| (-359 |#1|)) ELT)) (-1705 (((-582 (-1177 |#1|))) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-494))) (-12 (|has| |#2| (-359 |#1|)) (|has| |#1| (-494)))) ELT)) (-2435 (($ $ $ $) NIL T ELT)) (-1718 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2544 (($ (-629 |#1|) $) NIL (|has| |#2| (-359 |#1|)) ELT)) (-2433 (($ $ $) NIL T ELT)) (-1719 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1717 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1713 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2659 (($) NIL T CONST)) (-3055 (((-85) $ $) NIL T ELT)) (-3835 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3837 (($ $ $) NIL T ELT)) (** (($ $ (-829)) 24 T ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) 20 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-539 |#1| |#2|) (-13 (-682 |#1|) (-551 |#2|) (-10 -8 (-15 -3944 ($ |#2|)) (IF (|has| |#2| (-359 |#1|)) (-6 (-359 |#1|)) |%noBranch|) (IF (|has| |#2| (-316 |#1|)) (-6 (-316 |#1|)) |%noBranch|))) (-146) (-682 |#1|)) (T -539)) -((-3944 (*1 *1 *2) (-12 (-4 *3 (-146)) (-5 *1 (-539 *3 *2)) (-4 *2 (-682 *3))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3944 (((-771) $) NIL T ELT) (($ (-101)) 6 T ELT) (((-101) $) 7 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-540) (-13 (-1012) (-428 (-101)))) (T -540)) -NIL -((-2567 (((-85) $ $) NIL T ELT)) (-2312 (($ $) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-2207 (($) 10 T CONST)) (-2229 (($) 8 T CONST)) (-2206 (($) 11 T CONST)) (-2225 (($) 9 T CONST)) (-2222 (($) 12 T CONST)) (-3242 (((-1032) $) NIL T ELT)) (-3944 (((-771) $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2310 (($ $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-2311 (($ $ $) NIL T ELT))) -(((-541) (-13 (-1012) (-603) (-10 -8 (-15 -2229 ($) -3950) (-15 -2225 ($) -3950) (-15 -2207 ($) -3950) (-15 -2206 ($) -3950) (-15 -2222 ($) -3950)))) (T -541)) -((-2229 (*1 *1) (-5 *1 (-541))) (-2225 (*1 *1) (-5 *1 (-541))) (-2207 (*1 *1) (-5 *1 (-541))) (-2206 (*1 *1) (-5 *1 (-541))) (-2222 (*1 *1) (-5 *1 (-541)))) -((-2567 (((-85) $ $) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-2218 (($) 11 T CONST)) (-2212 (($) 17 T CONST)) (-2208 (($) 21 T CONST)) (-2210 (($) 19 T CONST)) (-2215 (($) 14 T CONST)) (-2209 (($) 20 T CONST)) (-2217 (($) 12 T CONST)) (-2216 (($) 13 T CONST)) (-2211 (($) 18 T CONST)) (-2214 (($) 15 T CONST)) (-2213 (($) 16 T CONST)) (-3242 (((-1032) $) NIL T ELT)) (-3944 (((-771) $) NIL T ELT) (((-101) $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-542) (-13 (-1012) (-551 (-101)) (-10 -8 (-15 -2218 ($) -3950) (-15 -2217 ($) -3950) (-15 -2216 ($) -3950) (-15 -2215 ($) -3950) (-15 -2214 ($) -3950) (-15 -2213 ($) -3950) (-15 -2212 ($) -3950) (-15 -2211 ($) -3950) (-15 -2210 ($) -3950) (-15 -2209 ($) -3950) (-15 -2208 ($) -3950)))) (T -542)) -((-2218 (*1 *1) (-5 *1 (-542))) (-2217 (*1 *1) (-5 *1 (-542))) (-2216 (*1 *1) (-5 *1 (-542))) (-2215 (*1 *1) (-5 *1 (-542))) (-2214 (*1 *1) (-5 *1 (-542))) (-2213 (*1 *1) (-5 *1 (-542))) (-2212 (*1 *1) (-5 *1 (-542))) (-2211 (*1 *1) (-5 *1 (-542))) (-2210 (*1 *1) (-5 *1 (-542))) (-2209 (*1 *1) (-5 *1 (-542))) (-2208 (*1 *1) (-5 *1 (-542)))) -((-2567 (((-85) $ $) NIL T ELT)) (-2312 (($ $) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-2220 (($) 13 T CONST)) (-2219 (($) 14 T CONST)) (-2226 (($) 11 T CONST)) (-2229 (($) 8 T CONST)) (-2227 (($) 10 T CONST)) (-2228 (($) 9 T CONST)) (-2225 (($) 12 T CONST)) (-3242 (((-1032) $) NIL T ELT)) (-3944 (((-771) $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2310 (($ $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-2311 (($ $ $) NIL T ELT))) -(((-543) (-13 (-1012) (-603) (-10 -8 (-15 -2229 ($) -3950) (-15 -2228 ($) -3950) (-15 -2227 ($) -3950) (-15 -2226 ($) -3950) (-15 -2225 ($) -3950) (-15 -2220 ($) -3950) (-15 -2219 ($) -3950)))) (T -543)) -((-2229 (*1 *1) (-5 *1 (-543))) (-2228 (*1 *1) (-5 *1 (-543))) (-2227 (*1 *1) (-5 *1 (-543))) (-2226 (*1 *1) (-5 *1 (-543))) (-2225 (*1 *1) (-5 *1 (-543))) (-2220 (*1 *1) (-5 *1 (-543))) (-2219 (*1 *1) (-5 *1 (-543)))) -((-2567 (((-85) $ $) NIL T ELT)) (-2312 (($ $) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-2224 (($) 13 T CONST)) (-2221 (($) 16 T CONST)) (-2226 (($) 11 T CONST)) (-2229 (($) 8 T CONST)) (-2227 (($) 10 T CONST)) (-2228 (($) 9 T CONST)) (-2223 (($) 14 T CONST)) (-2225 (($) 12 T CONST)) (-2222 (($) 15 T CONST)) (-3242 (((-1032) $) NIL T ELT)) (-3944 (((-771) $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2310 (($ $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-2311 (($ $ $) NIL T ELT))) -(((-544) (-13 (-1012) (-603) (-10 -8 (-15 -2229 ($) -3950) (-15 -2228 ($) -3950) (-15 -2227 ($) -3950) (-15 -2226 ($) -3950) (-15 -2225 ($) -3950) (-15 -2224 ($) -3950) (-15 -2223 ($) -3950) (-15 -2222 ($) -3950) (-15 -2221 ($) -3950)))) (T -544)) -((-2229 (*1 *1) (-5 *1 (-544))) (-2228 (*1 *1) (-5 *1 (-544))) (-2227 (*1 *1) (-5 *1 (-544))) (-2226 (*1 *1) (-5 *1 (-544))) (-2225 (*1 *1) (-5 *1 (-544))) (-2224 (*1 *1) (-5 *1 (-544))) (-2223 (*1 *1) (-5 *1 (-544))) (-2222 (*1 *1) (-5 *1 (-544))) (-2221 (*1 *1) (-5 *1 (-544)))) -((-2567 (((-85) $ $) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3944 (((-771) $) 19 T ELT) (($ (-540)) 12 T ELT) (((-540) $) 11 T ELT) (($ (-101)) NIL T ELT) (((-101) $) 14 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-545) (-13 (-1012) (-428 (-540)) (-428 (-101)))) (T -545)) -NIL -((-2567 (((-85) $ $) NIL T ELT)) (-1695 (((-2 (|:| -3858 (-1071)) (|:| |entry| |#1|)) $ (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|))) 40 T ELT)) (-3597 (($ (-582 (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|)))) NIL T ELT) (($) NIL T ELT)) (-2197 (((-1183) $ (-1071) (-1071)) NIL (|has| $ (-6 -3994)) ELT)) (-3786 ((|#1| $ (-1071) |#1|) 50 T ELT)) (-1568 (($ (-1 (-85) (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3993)) ELT)) (-3708 (($ (-1 (-85) (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3993)) ELT)) (-2230 (((-3 |#1| #1="failed") (-1071) $) 53 T ELT)) (-3722 (($) NIL T CONST)) (-1699 (($ $ (-1071)) 25 T ELT)) (-1351 (($ $) NIL (-12 (|has| $ (-6 -3993)) (|has| (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|)) (-1012))) ELT)) (-3403 (((-3 |#1| #1#) (-1071) $) 54 T ELT) (($ (-1 (-85) (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3993)) ELT) (($ (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|)) $) NIL (|has| $ (-6 -3993)) ELT)) (-3404 (($ (-1 (-85) (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3993)) ELT) (($ (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|)) $) NIL (-12 (|has| $ (-6 -3993)) (|has| (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|)) (-1012))) ELT)) (-3840 (((-2 (|:| -3858 (-1071)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|)) (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|)) (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3993)) ELT) (((-2 (|:| -3858 (-1071)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|)) (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|)) (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|))) $ (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|))) NIL (|has| $ (-6 -3993)) ELT) (((-2 (|:| -3858 (-1071)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|)) (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|)) (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|))) $ (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|)) (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|))) NIL (-12 (|has| $ (-6 -3993)) (|has| (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|)) (-1012))) ELT)) (-1696 (((-2 (|:| -3858 (-1071)) (|:| |entry| |#1|)) $) 39 T ELT)) (-1574 ((|#1| $ (-1071) |#1|) NIL (|has| $ (-6 -3994)) ELT)) (-3111 ((|#1| $ (-1071)) NIL T ELT)) (-2888 (((-582 |#1|) $) NIL (|has| $ (-6 -3993)) ELT) (((-582 (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3993)) ELT)) (-2270 (($ $) 55 T ELT)) (-1700 (($ (-336)) 23 T ELT) (($ (-336) (-1071)) 22 T ELT)) (-3540 (((-336) $) 41 T ELT)) (-2199 (((-1071) $) NIL (|has| (-1071) (-755)) ELT)) (-2607 (((-582 |#1|) $) NIL (|has| $ (-6 -3993)) ELT) (((-582 (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3993)) ELT)) (-3244 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#1| (-1012))) ELT) (((-85) (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|)) $) NIL (-12 (|has| $ (-6 -3993)) (|has| (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|)) (-1012))) ELT)) (-2200 (((-1071) $) NIL (|has| (-1071) (-755)) ELT)) (-1947 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3994)) ELT) (($ (-1 (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|)) (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3994)) ELT)) (-3956 (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|)) (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|))) $) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-2231 (((-582 (-1071)) $) 46 T ELT)) (-2232 (((-85) (-1071) $) NIL T ELT)) (-1697 (((-1071) $) 42 T ELT)) (-1272 (((-2 (|:| -3858 (-1071)) (|:| |entry| |#1|)) $) NIL T ELT)) (-3607 (($ (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|)) $) NIL T ELT)) (-2202 (((-582 (-1071)) $) NIL T ELT)) (-2203 (((-85) (-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3799 ((|#1| $) NIL (|has| (-1071) (-755)) ELT)) (-1352 (((-3 (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|)) #1#) (-1 (-85) (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|))) $) NIL T ELT)) (-2198 (($ $ |#1|) NIL (|has| $ (-6 -3994)) ELT)) (-1273 (((-2 (|:| -3858 (-1071)) (|:| |entry| |#1|)) $) NIL T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3993)) ELT) (((-85) (-1 (-85) (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3993)) ELT)) (-3766 (($ $ (-582 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-582 |#1|) (-582 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-582 (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|))) (-582 (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|)))) NIL (-12 (|has| (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|)) (-1012))) ELT) (($ $ (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|)) (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|))) NIL (-12 (|has| (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|)) (-1012))) ELT) (($ $ (-249 (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|)))) NIL (-12 (|has| (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|)) (-1012))) ELT) (($ $ (-582 (-249 (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|))))) NIL (-12 (|has| (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|)) (-1012))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-2201 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#1| (-1012))) ELT)) (-2204 (((-582 |#1|) $) NIL T ELT)) (-3401 (((-85) $) NIL T ELT)) (-3563 (($) 44 T ELT)) (-3798 ((|#1| $ (-1071) |#1|) NIL T ELT) ((|#1| $ (-1071)) 49 T ELT)) (-1464 (($ (-582 (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|)))) NIL T ELT) (($) NIL T ELT)) (-1944 (((-693) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3993)) ELT) (((-693) |#1| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#1| (-1012))) ELT) (((-693) (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|)) $) NIL (-12 (|has| $ (-6 -3993)) (|has| (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|)) (-1012))) ELT) (((-693) (-1 (-85) (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3993)) ELT)) (-3398 (($ $) NIL T ELT)) (-3970 (((-472) $) NIL (|has| (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|)) (-552 (-472))) ELT)) (-3528 (($ (-582 (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|)))) NIL T ELT)) (-3944 (((-771) $) 21 T ELT)) (-1698 (($ $) 26 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-1274 (($ (-582 (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|)))) NIL T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3993)) ELT) (((-85) (-1 (-85) (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3993)) ELT)) (-3055 (((-85) $ $) 20 T ELT)) (-3955 (((-693) $) 48 (|has| $ (-6 -3993)) ELT))) -(((-546 |#1|) (-13 (-314 (-336) (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|))) (-1105 (-1071) |#1|) (-10 -8 (-6 -3993) (-15 -2270 ($ $)))) (-1012)) (T -546)) -((-2270 (*1 *1 *1) (-12 (-5 *1 (-546 *2)) (-4 *2 (-1012))))) -((-3244 (((-85) (-2 (|:| -3858 |#2|) (|:| |entry| |#3|)) $) 16 T ELT)) (-2231 (((-582 |#2|) $) 20 T ELT)) (-2232 (((-85) |#2| $) 12 T ELT))) -(((-547 |#1| |#2| |#3|) (-10 -7 (-15 -2231 ((-582 |#2|) |#1|)) (-15 -2232 ((-85) |#2| |#1|)) (-15 -3244 ((-85) (-2 (|:| -3858 |#2|) (|:| |entry| |#3|)) |#1|))) (-548 |#2| |#3|) (-1012) (-1012)) (T -547)) -NIL -((-2567 (((-85) $ $) 19 (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-1568 (($ (-1 (-85) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) 49 (|has| $ (-6 -3993)) ELT)) (-3708 (($ (-1 (-85) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) 59 (|has| $ (-6 -3993)) ELT)) (-2230 (((-3 |#2| "failed") |#1| $) 65 T ELT)) (-3722 (($) 7 T CONST)) (-1351 (($ $) 62 (-12 (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| $ (-6 -3993))) ELT)) (-3403 (($ (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $) 51 (|has| $ (-6 -3993)) ELT) (($ (-1 (-85) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) 50 (|has| $ (-6 -3993)) ELT) (((-3 |#2| "failed") |#1| $) 66 T ELT)) (-3404 (($ (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $) 61 (-12 (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| $ (-6 -3993))) ELT) (($ (-1 (-85) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) 58 (|has| $ (-6 -3993)) ELT)) (-3840 (((-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) 60 (-12 (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| $ (-6 -3993))) ELT) (((-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) 57 (|has| $ (-6 -3993)) ELT) (((-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) 56 (|has| $ (-6 -3993)) ELT)) (-2888 (((-582 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) 30 (|has| $ (-6 -3993)) ELT)) (-2607 (((-582 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) 29 (|has| $ (-6 -3993)) ELT)) (-3244 (((-85) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $) 27 (-12 (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| $ (-6 -3993))) ELT)) (-1947 (($ (-1 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) 34 (|has| $ (-6 -3994)) ELT)) (-3956 (($ (-1 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) 35 T ELT)) (-3241 (((-1071) $) 22 (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012)) ELT)) (-2231 (((-582 |#1|) $) 67 T ELT)) (-2232 (((-85) |#1| $) 68 T ELT)) (-1272 (((-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $) 43 T ELT)) (-3607 (($ (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $) 44 T ELT)) (-3242 (((-1032) $) 21 (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012)) ELT)) (-1352 (((-3 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) "failed") (-1 (-85) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) 55 T ELT)) (-1273 (((-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $) 45 T ELT)) (-1945 (((-85) (-1 (-85) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) 32 (|has| $ (-6 -3993)) ELT)) (-3766 (($ $ (-582 (-249 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))))) 26 (-12 (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-249 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)))) 25 (-12 (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) 24 (-12 (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-582 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) (-582 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)))) 23 (-12 (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012))) ELT)) (-1220 (((-85) $ $) 11 T ELT)) (-3401 (((-85) $) 8 T ELT)) (-3563 (($) 9 T ELT)) (-1464 (($) 53 T ELT) (($ (-582 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)))) 52 T ELT)) (-1944 (((-693) (-1 (-85) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) 31 (|has| $ (-6 -3993)) ELT) (((-693) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $) 28 (-12 (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| $ (-6 -3993))) ELT)) (-3398 (($ $) 10 T ELT)) (-3970 (((-472) $) 63 (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-552 (-472))) ELT)) (-3528 (($ (-582 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)))) 54 T ELT)) (-3944 (((-771) $) 17 (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-551 (-771))) ELT)) (-1263 (((-85) $ $) 20 (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-1274 (($ (-582 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)))) 46 T ELT)) (-1946 (((-85) (-1 (-85) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) 33 (|has| $ (-6 -3993)) ELT)) (-3055 (((-85) $ $) 18 (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-3955 (((-693) $) 6 (|has| $ (-6 -3993)) ELT))) -(((-548 |#1| |#2|) (-113) (-1012) (-1012)) (T -548)) -((-2232 (*1 *2 *3 *1) (-12 (-4 *1 (-548 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1012)) (-5 *2 (-85)))) (-2231 (*1 *2 *1) (-12 (-4 *1 (-548 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1012)) (-5 *2 (-582 *3)))) (-3403 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-548 *3 *2)) (-4 *3 (-1012)) (-4 *2 (-1012)))) (-2230 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-548 *3 *2)) (-4 *3 (-1012)) (-4 *2 (-1012))))) -(-13 (-183 (-2 (|:| -3858 |t#1|) (|:| |entry| |t#2|))) (-10 -8 (-15 -2232 ((-85) |t#1| $)) (-15 -2231 ((-582 |t#1|) $)) (-15 -3403 ((-3 |t#2| "failed") |t#1| $)) (-15 -2230 ((-3 |t#2| "failed") |t#1| $)))) -(((-34) . T) ((-76 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) . T) ((-72) OR (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-72))) ((-551 (-771)) OR (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-551 (-771)))) ((-124 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) . T) ((-552 (-472)) |has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-552 (-472))) ((-183 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) . T) ((-193 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) . T) ((-260 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012))) ((-427 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) . T) ((-454 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012))) ((-13) . T) ((-1012) |has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012)) ((-1127) . T)) -((-2567 (((-85) $ $) NIL T ELT)) (-2233 (((-3 (-1088) "failed") $) 46 T ELT)) (-1311 (((-1183) $ (-693)) 22 T ELT)) (-3417 (((-693) $) 20 T ELT)) (-3593 (((-86) $) 9 T ELT)) (-2530 (($ $ $) NIL T ELT)) (-2856 (($ $ $) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-2234 (($ (-86) (-582 |#1|) (-693)) 32 T ELT) (($ (-1088)) 33 T ELT)) (-2632 (((-85) $ (-86)) 15 T ELT) (((-85) $ (-1088)) 13 T ELT)) (-2602 (((-693) $) 17 T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3970 (((-799 (-483)) $) 99 (|has| |#1| (-552 (-799 (-483)))) ELT) (((-799 (-328)) $) 106 (|has| |#1| (-552 (-799 (-328)))) ELT) (((-472) $) 92 (|has| |#1| (-552 (-472))) ELT)) (-3944 (((-771) $) 74 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2235 (((-582 |#1|) $) 19 T ELT)) (-2565 (((-85) $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) 51 T ELT)) (-2683 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) 53 T ELT))) -(((-549 |#1|) (-13 (-105) (-755) (-793 |#1|) (-10 -8 (-15 -3593 ((-86) $)) (-15 -2235 ((-582 |#1|) $)) (-15 -2602 ((-693) $)) (-15 -2234 ($ (-86) (-582 |#1|) (-693))) (-15 -2234 ($ (-1088))) (-15 -2233 ((-3 (-1088) "failed") $)) (-15 -2632 ((-85) $ (-86))) (-15 -2632 ((-85) $ (-1088))) (IF (|has| |#1| (-552 (-472))) (-6 (-552 (-472))) |%noBranch|))) (-1012)) (T -549)) -((-3593 (*1 *2 *1) (-12 (-5 *2 (-86)) (-5 *1 (-549 *3)) (-4 *3 (-1012)))) (-2235 (*1 *2 *1) (-12 (-5 *2 (-582 *3)) (-5 *1 (-549 *3)) (-4 *3 (-1012)))) (-2602 (*1 *2 *1) (-12 (-5 *2 (-693)) (-5 *1 (-549 *3)) (-4 *3 (-1012)))) (-2234 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-86)) (-5 *3 (-582 *5)) (-5 *4 (-693)) (-4 *5 (-1012)) (-5 *1 (-549 *5)))) (-2234 (*1 *1 *2) (-12 (-5 *2 (-1088)) (-5 *1 (-549 *3)) (-4 *3 (-1012)))) (-2233 (*1 *2 *1) (|partial| -12 (-5 *2 (-1088)) (-5 *1 (-549 *3)) (-4 *3 (-1012)))) (-2632 (*1 *2 *1 *3) (-12 (-5 *3 (-86)) (-5 *2 (-85)) (-5 *1 (-549 *4)) (-4 *4 (-1012)))) (-2632 (*1 *2 *1 *3) (-12 (-5 *3 (-1088)) (-5 *2 (-85)) (-5 *1 (-549 *4)) (-4 *4 (-1012))))) -((-2236 (((-549 |#2|) |#1|) 17 T ELT)) (-2237 (((-3 |#1| "failed") (-549 |#2|)) 21 T ELT))) -(((-550 |#1| |#2|) (-10 -7 (-15 -2236 ((-549 |#2|) |#1|)) (-15 -2237 ((-3 |#1| "failed") (-549 |#2|)))) (-1012) (-1012)) (T -550)) -((-2237 (*1 *2 *3) (|partial| -12 (-5 *3 (-549 *4)) (-4 *4 (-1012)) (-4 *2 (-1012)) (-5 *1 (-550 *2 *4)))) (-2236 (*1 *2 *3) (-12 (-5 *2 (-549 *4)) (-5 *1 (-550 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1012))))) -((-3944 ((|#1| $) 6 T ELT))) -(((-551 |#1|) (-113) (-1127)) (T -551)) -((-3944 (*1 *2 *1) (-12 (-4 *1 (-551 *2)) (-4 *2 (-1127))))) -(-13 (-10 -8 (-15 -3944 (|t#1| $)))) -((-3970 ((|#1| $) 6 T ELT))) -(((-552 |#1|) (-113) (-1127)) (T -552)) -((-3970 (*1 *2 *1) (-12 (-4 *1 (-552 *2)) (-4 *2 (-1127))))) -(-13 (-10 -8 (-15 -3970 (|t#1| $)))) -((-2238 (((-3 (-1083 (-348 |#2|)) #1="failed") (-348 |#2|) (-348 |#2|) (-348 |#2|) (-1 (-346 |#2|) |#2|)) 15 T ELT) (((-3 (-1083 (-348 |#2|)) #1#) (-348 |#2|) (-348 |#2|) (-348 |#2|)) 16 T ELT))) -(((-553 |#1| |#2|) (-10 -7 (-15 -2238 ((-3 (-1083 (-348 |#2|)) #1="failed") (-348 |#2|) (-348 |#2|) (-348 |#2|))) (-15 -2238 ((-3 (-1083 (-348 |#2|)) #1#) (-348 |#2|) (-348 |#2|) (-348 |#2|) (-1 (-346 |#2|) |#2|)))) (-13 (-120) (-27) (-949 (-483)) (-949 (-348 (-483)))) (-1153 |#1|)) (T -553)) -((-2238 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-346 *6) *6)) (-4 *6 (-1153 *5)) (-4 *5 (-13 (-120) (-27) (-949 (-483)) (-949 (-348 (-483))))) (-5 *2 (-1083 (-348 *6))) (-5 *1 (-553 *5 *6)) (-5 *3 (-348 *6)))) (-2238 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-120) (-27) (-949 (-483)) (-949 (-348 (-483))))) (-4 *5 (-1153 *4)) (-5 *2 (-1083 (-348 *5))) (-5 *1 (-553 *4 *5)) (-5 *3 (-348 *5))))) -((-3944 (($ |#1|) 6 T ELT))) -(((-554 |#1|) (-113) (-1127)) (T -554)) -((-3944 (*1 *1 *2) (-12 (-4 *1 (-554 *2)) (-4 *2 (-1127))))) -(-13 (-10 -8 (-15 -3944 ($ |t#1|)))) -((-2567 (((-85) $ $) NIL T ELT)) (-2312 (($ $) NIL T ELT)) (-2239 (($) 11 T CONST)) (-2854 (($) 13 T CONST)) (-3135 (((-693)) 36 T ELT)) (-2993 (($) NIL T ELT)) (-2560 (($ $ $) 25 T ELT)) (-2559 (($ $) 23 T ELT)) (-2009 (((-829) $) 43 T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-2399 (($ (-829)) 42 T ELT)) (-2852 (($ $ $) 26 T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-2853 (($) 9 T CONST)) (-2851 (($ $ $) 27 T ELT)) (-3944 (((-771) $) 34 T ELT)) (-3564 (((-85) $ (|[\|\|]| -2853)) 20 T ELT) (((-85) $ (|[\|\|]| -2239)) 22 T ELT) (((-85) $ (|[\|\|]| -2854)) 18 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2561 (($ $ $) 24 T ELT)) (-2310 (($ $ $) NIL T ELT)) (-3055 (((-85) $ $) 16 T ELT)) (-2311 (($ $ $) NIL T ELT))) -(((-555) (-13 (-879) (-318) (-10 -8 (-15 -2239 ($) -3950) (-15 -3564 ((-85) $ (|[\|\|]| -2853))) (-15 -3564 ((-85) $ (|[\|\|]| -2239))) (-15 -3564 ((-85) $ (|[\|\|]| -2854)))))) (T -555)) -((-2239 (*1 *1) (-5 *1 (-555))) (-3564 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2853)) (-5 *2 (-85)) (-5 *1 (-555)))) (-3564 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2239)) (-5 *2 (-85)) (-5 *1 (-555)))) (-3564 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2854)) (-5 *2 (-85)) (-5 *1 (-555))))) -((-3970 (($ |#1|) 6 T ELT))) -(((-556 |#1|) (-113) (-1127)) (T -556)) -((-3970 (*1 *1 *2) (-12 (-4 *1 (-556 *2)) (-4 *2 (-1127))))) -(-13 (-10 -8 (-15 -3970 ($ |t#1|)))) -((-2567 (((-85) $ $) NIL T ELT)) (-3187 (((-85) $) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3621 (((-483) $) NIL (|has| |#1| (-754)) ELT)) (-3722 (($) NIL T CONST)) (-3465 (((-3 $ #1#) $) NIL T ELT)) (-3185 (((-85) $) NIL (|has| |#1| (-754)) ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-2409 (((-85) $) NIL T ELT)) (-2997 ((|#1| $) 13 T ELT)) (-3186 (((-85) $) NIL (|has| |#1| (-754)) ELT)) (-2530 (($ $ $) NIL (|has| |#1| (-754)) ELT)) (-2856 (($ $ $) NIL (|has| |#1| (-754)) ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-2996 ((|#3| $) 15 T ELT)) (-3944 (((-771) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ |#2|) NIL T ELT)) (-3125 (((-693)) 20 T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-3124 (((-85) $ $) NIL T ELT)) (-3381 (($ $) NIL (|has| |#1| (-754)) ELT)) (-2659 (($) NIL T CONST)) (-2665 (($) 12 T CONST)) (-2565 (((-85) $ $) NIL (|has| |#1| (-754)) ELT)) (-2566 (((-85) $ $) NIL (|has| |#1| (-754)) ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-2683 (((-85) $ $) NIL (|has| |#1| (-754)) ELT)) (-2684 (((-85) $ $) NIL (|has| |#1| (-754)) ELT)) (-3947 (($ $ |#3|) NIL T ELT) (($ |#1| |#3|) 11 T ELT)) (-3835 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3837 (($ $ $) NIL T ELT)) (** (($ $ (-829)) NIL T ELT) (($ $ (-693)) NIL T ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) 17 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT))) -(((-557 |#1| |#2| |#3|) (-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-754)) (-6 (-754)) |%noBranch|) (-15 -3947 ($ $ |#3|)) (-15 -3947 ($ |#1| |#3|)) (-15 -2997 (|#1| $)) (-15 -2996 (|#3| $)))) (-38 |#2|) (-146) (|SubsetCategory| (-662) |#2|)) (T -557)) -((-3947 (*1 *1 *1 *2) (-12 (-4 *4 (-146)) (-5 *1 (-557 *3 *4 *2)) (-4 *3 (-38 *4)) (-4 *2 (|SubsetCategory| (-662) *4)))) (-3947 (*1 *1 *2 *3) (-12 (-4 *4 (-146)) (-5 *1 (-557 *2 *4 *3)) (-4 *2 (-38 *4)) (-4 *3 (|SubsetCategory| (-662) *4)))) (-2997 (*1 *2 *1) (-12 (-4 *3 (-146)) (-4 *2 (-38 *3)) (-5 *1 (-557 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-662) *3)))) (-2996 (*1 *2 *1) (-12 (-4 *4 (-146)) (-4 *2 (|SubsetCategory| (-662) *4)) (-5 *1 (-557 *3 *4 *2)) (-4 *3 (-38 *4))))) -((-3944 (((-771) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ |#2|) 10 T ELT))) -(((-558 |#1| |#2|) (-10 -7 (-15 -3944 (|#1| |#2|)) (-15 -3944 (|#1| (-483))) (-15 -3944 ((-771) |#1|))) (-559 |#2|) (-960)) (T -558)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-3187 (((-85) $) 22 T ELT)) (-1310 (((-3 $ "failed") $ $) 26 T ELT)) (-3722 (($) 23 T CONST)) (-3465 (((-3 $ "failed") $) 42 T ELT)) (-1212 (((-85) $ $) 20 T ELT)) (-2409 (((-85) $) 44 T ELT)) (-3241 (((-1071) $) 11 T ELT)) (-3242 (((-1032) $) 12 T ELT)) (-3944 (((-771) $) 13 T ELT) (($ (-483)) 41 T ELT) (($ |#1|) 49 T ELT)) (-3125 (((-693)) 40 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-3124 (((-85) $ $) 33 T ELT)) (-2659 (($) 24 T CONST)) (-2665 (($) 45 T CONST)) (-3055 (((-85) $ $) 8 T ELT)) (-3835 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3837 (($ $ $) 18 T ELT)) (** (($ $ (-829)) 35 T ELT) (($ $ (-693)) 43 T ELT)) (* (($ (-829) $) 17 T ELT) (($ (-693) $) 21 T ELT) (($ (-483) $) 30 T ELT) (($ $ $) 34 T ELT) (($ |#1| $) 50 T ELT))) -(((-559 |#1|) (-113) (-960)) (T -559)) -((-3944 (*1 *1 *2) (-12 (-4 *1 (-559 *2)) (-4 *2 (-960))))) -(-13 (-960) (-589 |t#1|) (-10 -8 (-15 -3944 ($ |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-554 (-483)) . T) ((-551 (-771)) . T) ((-13) . T) ((-587 (-483)) . T) ((-587 |#1|) . T) ((-587 $) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-662) . T) ((-960) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T)) -((-2240 ((|#2| |#2| (-1088) (-1088)) 16 T ELT))) -(((-560 |#1| |#2|) (-10 -7 (-15 -2240 (|#2| |#2| (-1088) (-1088)))) (-13 (-258) (-120) (-949 (-483)) (-579 (-483))) (-13 (-1113) (-870) (-29 |#1|))) (T -560)) -((-2240 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1088)) (-4 *4 (-13 (-258) (-120) (-949 (-483)) (-579 (-483)))) (-5 *1 (-560 *4 *2)) (-4 *2 (-13 (-1113) (-870) (-29 *4)))))) -((-2567 (((-85) $ $) 64 T ELT)) (-3187 (((-85) $) 58 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3980 $) (|:| |associate| $)) $) NIL T ELT)) (-2062 (($ $) NIL T ELT)) (-2060 (((-85) $) NIL T ELT)) (-2241 ((|#1| $) 55 T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-1606 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3749 (((-2 (|:| -1760 $) (|:| -1759 (-348 |#2|))) (-348 |#2|)) 111 (|has| |#1| (-312)) ELT)) (-3722 (($) NIL T CONST)) (-3156 (((-3 (-483) #1#) $) NIL (|has| |#1| (-949 (-483))) ELT) (((-3 (-348 (-483)) #1#) $) NIL (|has| |#1| (-949 (-348 (-483)))) ELT) (((-3 |#1| #1#) $) 99 T ELT) (((-3 |#2| #1#) $) 95 T ELT)) (-3155 (((-483) $) NIL (|has| |#1| (-949 (-483))) ELT) (((-348 (-483)) $) NIL (|has| |#1| (-949 (-348 (-483)))) ELT) ((|#1| $) NIL T ELT) ((|#2| $) NIL T ELT)) (-2563 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3957 (($ $) 27 T ELT)) (-3465 (((-3 $ #1#) $) 88 T ELT)) (-2562 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2740 (((-2 (|:| -3952 (-582 $)) (|:| -2408 $)) (-582 $)) NIL (|has| |#1| (-312)) ELT)) (-3770 (((-483) $) 22 T ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-2409 (((-85) $) NIL T ELT)) (-1603 (((-3 (-582 $) #1#) (-582 $) $) NIL (|has| |#1| (-312)) ELT)) (-3935 (((-85) $) 40 T ELT)) (-2892 (($ |#1| (-483)) 24 T ELT)) (-3173 ((|#1| $) 57 T ELT)) (-1889 (($ (-582 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-2707 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#1| (-312)) ELT)) (-3143 (($ (-582 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) 101 (|has| |#1| (-312)) ELT)) (-1604 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 116 (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3464 (((-3 $ #1#) $ $) 93 T ELT)) (-2739 (((-631 (-582 $)) (-582 $) $) NIL (|has| |#1| (-312)) ELT)) (-1605 (((-693) $) 115 (|has| |#1| (-312)) ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) 114 (|has| |#1| (-312)) ELT)) (-3756 (($ $ (-1 |#2| |#2|) (-693)) NIL T ELT) (($ $ (-1 |#2| |#2|)) 75 T ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-693)) NIL (|has| |#2| (-189)) ELT) (($ $ (-1088)) NIL (|has| |#2| (-810 (-1088))) ELT) (($ $ (-582 (-1088))) NIL (|has| |#2| (-810 (-1088))) ELT) (($ $ (-1088) (-693)) NIL (|has| |#2| (-810 (-1088))) ELT) (($ $ (-582 (-1088)) (-582 (-693))) NIL (|has| |#2| (-810 (-1088))) ELT)) (-3946 (((-483) $) 38 T ELT)) (-3970 (((-348 |#2|) $) 47 T ELT)) (-3944 (((-771) $) 69 T ELT) (($ (-483)) 35 T ELT) (($ $) NIL T ELT) (($ (-348 (-483))) NIL (|has| |#1| (-949 (-348 (-483)))) ELT) (($ |#1|) 34 T ELT) (($ |#2|) 25 T ELT)) (-3675 ((|#1| $ (-483)) 72 T ELT)) (-2701 (((-631 $) $) NIL (|has| |#1| (-118)) ELT)) (-3125 (((-693)) 32 T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-2061 (((-85) $ $) NIL T ELT)) (-3124 (((-85) $ $) NIL T ELT)) (-2659 (($) 9 T CONST)) (-2665 (($) 14 T CONST)) (-2668 (($ $ (-1 |#2| |#2|) (-693)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-693)) NIL (|has| |#2| (-189)) ELT) (($ $ (-1088)) NIL (|has| |#2| (-810 (-1088))) ELT) (($ $ (-582 (-1088))) NIL (|has| |#2| (-810 (-1088))) ELT) (($ $ (-1088) (-693)) NIL (|has| |#2| (-810 (-1088))) ELT) (($ $ (-582 (-1088)) (-582 (-693))) NIL (|has| |#2| (-810 (-1088))) ELT)) (-3055 (((-85) $ $) 21 T ELT)) (-3835 (($ $) 51 T ELT) (($ $ $) NIL T ELT)) (-3837 (($ $ $) 90 T ELT)) (** (($ $ (-829)) NIL T ELT) (($ $ (-693)) NIL T ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 49 T ELT))) -(((-561 |#1| |#2|) (-13 (-184 |#2|) (-494) (-552 (-348 |#2|)) (-353 |#1|) (-949 |#2|) (-10 -8 (-15 -3935 ((-85) $)) (-15 -3946 ((-483) $)) (-15 -3770 ((-483) $)) (-15 -3957 ($ $)) (-15 -3173 (|#1| $)) (-15 -2241 (|#1| $)) (-15 -3675 (|#1| $ (-483))) (-15 -2892 ($ |#1| (-483))) (IF (|has| |#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |#1| (-312)) (PROGN (-6 (-258)) (-15 -3749 ((-2 (|:| -1760 $) (|:| -1759 (-348 |#2|))) (-348 |#2|)))) |%noBranch|))) (-494) (-1153 |#1|)) (T -561)) -((-3935 (*1 *2 *1) (-12 (-4 *3 (-494)) (-5 *2 (-85)) (-5 *1 (-561 *3 *4)) (-4 *4 (-1153 *3)))) (-3946 (*1 *2 *1) (-12 (-4 *3 (-494)) (-5 *2 (-483)) (-5 *1 (-561 *3 *4)) (-4 *4 (-1153 *3)))) (-3770 (*1 *2 *1) (-12 (-4 *3 (-494)) (-5 *2 (-483)) (-5 *1 (-561 *3 *4)) (-4 *4 (-1153 *3)))) (-3957 (*1 *1 *1) (-12 (-4 *2 (-494)) (-5 *1 (-561 *2 *3)) (-4 *3 (-1153 *2)))) (-3173 (*1 *2 *1) (-12 (-4 *2 (-494)) (-5 *1 (-561 *2 *3)) (-4 *3 (-1153 *2)))) (-2241 (*1 *2 *1) (-12 (-4 *2 (-494)) (-5 *1 (-561 *2 *3)) (-4 *3 (-1153 *2)))) (-3675 (*1 *2 *1 *3) (-12 (-5 *3 (-483)) (-4 *2 (-494)) (-5 *1 (-561 *2 *4)) (-4 *4 (-1153 *2)))) (-2892 (*1 *1 *2 *3) (-12 (-5 *3 (-483)) (-4 *2 (-494)) (-5 *1 (-561 *2 *4)) (-4 *4 (-1153 *2)))) (-3749 (*1 *2 *3) (-12 (-4 *4 (-312)) (-4 *4 (-494)) (-4 *5 (-1153 *4)) (-5 *2 (-2 (|:| -1760 (-561 *4 *5)) (|:| -1759 (-348 *5)))) (-5 *1 (-561 *4 *5)) (-5 *3 (-348 *5))))) -((-3680 (((-582 |#6|) (-582 |#4|) (-85)) 54 T ELT)) (-2242 ((|#6| |#6|) 48 T ELT))) -(((-562 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2242 (|#6| |#6|)) (-15 -3680 ((-582 |#6|) (-582 |#4|) (-85)))) (-390) (-716) (-755) (-976 |#1| |#2| |#3|) (-982 |#1| |#2| |#3| |#4|) (-1019 |#1| |#2| |#3| |#4|)) (T -562)) -((-3680 (*1 *2 *3 *4) (-12 (-5 *3 (-582 *8)) (-5 *4 (-85)) (-4 *8 (-976 *5 *6 *7)) (-4 *5 (-390)) (-4 *6 (-716)) (-4 *7 (-755)) (-5 *2 (-582 *10)) (-5 *1 (-562 *5 *6 *7 *8 *9 *10)) (-4 *9 (-982 *5 *6 *7 *8)) (-4 *10 (-1019 *5 *6 *7 *8)))) (-2242 (*1 *2 *2) (-12 (-4 *3 (-390)) (-4 *4 (-716)) (-4 *5 (-755)) (-4 *6 (-976 *3 *4 *5)) (-5 *1 (-562 *3 *4 *5 *6 *7 *2)) (-4 *7 (-982 *3 *4 *5 *6)) (-4 *2 (-1019 *3 *4 *5 *6))))) -((-2243 (((-85) |#3| (-693) (-582 |#3|)) 30 T ELT)) (-2244 (((-3 (-2 (|:| |polfac| (-582 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-582 (-1083 |#3|)))) "failed") |#3| (-582 (-1083 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1777 (-582 (-2 (|:| |irr| |#4|) (|:| -2394 (-483)))))) (-582 |#3|) (-582 |#1|) (-582 |#3|)) 68 T ELT))) -(((-563 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2243 ((-85) |#3| (-693) (-582 |#3|))) (-15 -2244 ((-3 (-2 (|:| |polfac| (-582 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-582 (-1083 |#3|)))) "failed") |#3| (-582 (-1083 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1777 (-582 (-2 (|:| |irr| |#4|) (|:| -2394 (-483)))))) (-582 |#3|) (-582 |#1|) (-582 |#3|)))) (-755) (-716) (-258) (-860 |#3| |#2| |#1|)) (T -563)) -((-2244 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -1777 (-582 (-2 (|:| |irr| *10) (|:| -2394 (-483))))))) (-5 *6 (-582 *3)) (-5 *7 (-582 *8)) (-4 *8 (-755)) (-4 *3 (-258)) (-4 *10 (-860 *3 *9 *8)) (-4 *9 (-716)) (-5 *2 (-2 (|:| |polfac| (-582 *10)) (|:| |correct| *3) (|:| |corrfact| (-582 (-1083 *3))))) (-5 *1 (-563 *8 *9 *3 *10)) (-5 *4 (-582 (-1083 *3))))) (-2243 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-693)) (-5 *5 (-582 *3)) (-4 *3 (-258)) (-4 *6 (-755)) (-4 *7 (-716)) (-5 *2 (-85)) (-5 *1 (-563 *6 *7 *3 *8)) (-4 *8 (-860 *3 *7 *6))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3526 (((-1047) $) 12 T ELT)) (-3527 (((-1047) $) 10 T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3944 (((-771) $) 18 T ELT) (($ (-1093)) NIL T ELT) (((-1093) $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-564) (-13 (-994) (-10 -8 (-15 -3527 ((-1047) $)) (-15 -3526 ((-1047) $))))) (T -564)) -((-3527 (*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-564)))) (-3526 (*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-564))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3932 (((-582 |#1|) $) NIL T ELT)) (-3722 (($) NIL T CONST)) (-3465 (((-3 $ "failed") $) NIL T ELT)) (-2409 (((-85) $) NIL T ELT)) (-3934 (($ $) 77 T ELT)) (-3940 (((-605 |#1| |#2|) $) 60 T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-2483 (($ $) 81 T ELT)) (-2245 (((-582 (-249 |#2|)) $ $) 42 T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3941 (($ (-605 |#1| |#2|)) 56 T ELT)) (-3008 (($ $ $) NIL T ELT)) (-2434 (($ $ $) NIL T ELT)) (-3944 (((-771) $) 66 T ELT) (((-1193 |#1| |#2|) $) NIL T ELT) (((-1198 |#1| |#2|) $) 74 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2665 (($) 61 T CONST)) (-2246 (((-582 (-2 (|:| |k| (-613 |#1|)) (|:| |c| |#2|))) $) 41 T ELT)) (-2247 (((-582 (-605 |#1| |#2|)) (-582 |#1|)) 73 T ELT)) (-2664 (((-582 (-2 (|:| |k| (-802 |#1|)) (|:| |c| |#2|))) $) 46 T ELT)) (-3055 (((-85) $ $) 62 T ELT)) (-3947 (($ $ $) NIL T ELT)) (** (($ $ (-829)) NIL T ELT) (($ $ (-693)) NIL T ELT) (($ $ (-483)) NIL T ELT)) (* (($ $ $) 52 T ELT))) -(((-565 |#1| |#2| |#3|) (-13 (-411) (-10 -8 (-15 -3941 ($ (-605 |#1| |#2|))) (-15 -3940 ((-605 |#1| |#2|) $)) (-15 -2664 ((-582 (-2 (|:| |k| (-802 |#1|)) (|:| |c| |#2|))) $)) (-15 -3944 ((-1193 |#1| |#2|) $)) (-15 -3944 ((-1198 |#1| |#2|) $)) (-15 -3934 ($ $)) (-15 -3932 ((-582 |#1|) $)) (-15 -2247 ((-582 (-605 |#1| |#2|)) (-582 |#1|))) (-15 -2246 ((-582 (-2 (|:| |k| (-613 |#1|)) (|:| |c| |#2|))) $)) (-15 -2245 ((-582 (-249 |#2|)) $ $)))) (-755) (-13 (-146) (-653 (-348 (-483)))) (-829)) (T -565)) -((-3941 (*1 *1 *2) (-12 (-5 *2 (-605 *3 *4)) (-4 *3 (-755)) (-4 *4 (-13 (-146) (-653 (-348 (-483))))) (-5 *1 (-565 *3 *4 *5)) (-14 *5 (-829)))) (-3940 (*1 *2 *1) (-12 (-5 *2 (-605 *3 *4)) (-5 *1 (-565 *3 *4 *5)) (-4 *3 (-755)) (-4 *4 (-13 (-146) (-653 (-348 (-483))))) (-14 *5 (-829)))) (-2664 (*1 *2 *1) (-12 (-5 *2 (-582 (-2 (|:| |k| (-802 *3)) (|:| |c| *4)))) (-5 *1 (-565 *3 *4 *5)) (-4 *3 (-755)) (-4 *4 (-13 (-146) (-653 (-348 (-483))))) (-14 *5 (-829)))) (-3944 (*1 *2 *1) (-12 (-5 *2 (-1193 *3 *4)) (-5 *1 (-565 *3 *4 *5)) (-4 *3 (-755)) (-4 *4 (-13 (-146) (-653 (-348 (-483))))) (-14 *5 (-829)))) (-3944 (*1 *2 *1) (-12 (-5 *2 (-1198 *3 *4)) (-5 *1 (-565 *3 *4 *5)) (-4 *3 (-755)) (-4 *4 (-13 (-146) (-653 (-348 (-483))))) (-14 *5 (-829)))) (-3934 (*1 *1 *1) (-12 (-5 *1 (-565 *2 *3 *4)) (-4 *2 (-755)) (-4 *3 (-13 (-146) (-653 (-348 (-483))))) (-14 *4 (-829)))) (-3932 (*1 *2 *1) (-12 (-5 *2 (-582 *3)) (-5 *1 (-565 *3 *4 *5)) (-4 *3 (-755)) (-4 *4 (-13 (-146) (-653 (-348 (-483))))) (-14 *5 (-829)))) (-2247 (*1 *2 *3) (-12 (-5 *3 (-582 *4)) (-4 *4 (-755)) (-5 *2 (-582 (-605 *4 *5))) (-5 *1 (-565 *4 *5 *6)) (-4 *5 (-13 (-146) (-653 (-348 (-483))))) (-14 *6 (-829)))) (-2246 (*1 *2 *1) (-12 (-5 *2 (-582 (-2 (|:| |k| (-613 *3)) (|:| |c| *4)))) (-5 *1 (-565 *3 *4 *5)) (-4 *3 (-755)) (-4 *4 (-13 (-146) (-653 (-348 (-483))))) (-14 *5 (-829)))) (-2245 (*1 *2 *1 *1) (-12 (-5 *2 (-582 (-249 *4))) (-5 *1 (-565 *3 *4 *5)) (-4 *3 (-755)) (-4 *4 (-13 (-146) (-653 (-348 (-483))))) (-14 *5 (-829))))) -((-3680 (((-582 (-1058 |#1| (-468 (-772 |#2|)) (-772 |#2|) (-702 |#1| (-772 |#2|)))) (-582 (-702 |#1| (-772 |#2|))) (-85)) 103 T ELT) (((-582 (-957 |#1| |#2|)) (-582 (-702 |#1| (-772 |#2|))) (-85)) 77 T ELT)) (-2248 (((-85) (-582 (-702 |#1| (-772 |#2|)))) 26 T ELT)) (-2252 (((-582 (-1058 |#1| (-468 (-772 |#2|)) (-772 |#2|) (-702 |#1| (-772 |#2|)))) (-582 (-702 |#1| (-772 |#2|))) (-85)) 102 T ELT)) (-2251 (((-582 (-957 |#1| |#2|)) (-582 (-702 |#1| (-772 |#2|))) (-85)) 76 T ELT)) (-2250 (((-582 (-702 |#1| (-772 |#2|))) (-582 (-702 |#1| (-772 |#2|)))) 30 T ELT)) (-2249 (((-3 (-582 (-702 |#1| (-772 |#2|))) "failed") (-582 (-702 |#1| (-772 |#2|)))) 29 T ELT))) -(((-566 |#1| |#2|) (-10 -7 (-15 -2248 ((-85) (-582 (-702 |#1| (-772 |#2|))))) (-15 -2249 ((-3 (-582 (-702 |#1| (-772 |#2|))) "failed") (-582 (-702 |#1| (-772 |#2|))))) (-15 -2250 ((-582 (-702 |#1| (-772 |#2|))) (-582 (-702 |#1| (-772 |#2|))))) (-15 -2251 ((-582 (-957 |#1| |#2|)) (-582 (-702 |#1| (-772 |#2|))) (-85))) (-15 -2252 ((-582 (-1058 |#1| (-468 (-772 |#2|)) (-772 |#2|) (-702 |#1| (-772 |#2|)))) (-582 (-702 |#1| (-772 |#2|))) (-85))) (-15 -3680 ((-582 (-957 |#1| |#2|)) (-582 (-702 |#1| (-772 |#2|))) (-85))) (-15 -3680 ((-582 (-1058 |#1| (-468 (-772 |#2|)) (-772 |#2|) (-702 |#1| (-772 |#2|)))) (-582 (-702 |#1| (-772 |#2|))) (-85)))) (-390) (-582 (-1088))) (T -566)) -((-3680 (*1 *2 *3 *4) (-12 (-5 *3 (-582 (-702 *5 (-772 *6)))) (-5 *4 (-85)) (-4 *5 (-390)) (-14 *6 (-582 (-1088))) (-5 *2 (-582 (-1058 *5 (-468 (-772 *6)) (-772 *6) (-702 *5 (-772 *6))))) (-5 *1 (-566 *5 *6)))) (-3680 (*1 *2 *3 *4) (-12 (-5 *3 (-582 (-702 *5 (-772 *6)))) (-5 *4 (-85)) (-4 *5 (-390)) (-14 *6 (-582 (-1088))) (-5 *2 (-582 (-957 *5 *6))) (-5 *1 (-566 *5 *6)))) (-2252 (*1 *2 *3 *4) (-12 (-5 *3 (-582 (-702 *5 (-772 *6)))) (-5 *4 (-85)) (-4 *5 (-390)) (-14 *6 (-582 (-1088))) (-5 *2 (-582 (-1058 *5 (-468 (-772 *6)) (-772 *6) (-702 *5 (-772 *6))))) (-5 *1 (-566 *5 *6)))) (-2251 (*1 *2 *3 *4) (-12 (-5 *3 (-582 (-702 *5 (-772 *6)))) (-5 *4 (-85)) (-4 *5 (-390)) (-14 *6 (-582 (-1088))) (-5 *2 (-582 (-957 *5 *6))) (-5 *1 (-566 *5 *6)))) (-2250 (*1 *2 *2) (-12 (-5 *2 (-582 (-702 *3 (-772 *4)))) (-4 *3 (-390)) (-14 *4 (-582 (-1088))) (-5 *1 (-566 *3 *4)))) (-2249 (*1 *2 *2) (|partial| -12 (-5 *2 (-582 (-702 *3 (-772 *4)))) (-4 *3 (-390)) (-14 *4 (-582 (-1088))) (-5 *1 (-566 *3 *4)))) (-2248 (*1 *2 *3) (-12 (-5 *3 (-582 (-702 *4 (-772 *5)))) (-4 *4 (-390)) (-14 *5 (-582 (-1088))) (-5 *2 (-85)) (-5 *1 (-566 *4 *5))))) -((-3593 (((-86) (-86)) 88 T ELT)) (-2256 ((|#2| |#2|) 28 T ELT)) (-2831 ((|#2| |#2| (-1003 |#2|)) 84 T ELT) ((|#2| |#2| (-1088)) 50 T ELT)) (-2254 ((|#2| |#2|) 27 T ELT)) (-2255 ((|#2| |#2|) 29 T ELT)) (-2253 (((-85) (-86)) 33 T ELT)) (-2258 ((|#2| |#2|) 24 T ELT)) (-2259 ((|#2| |#2|) 26 T ELT)) (-2257 ((|#2| |#2|) 25 T ELT))) -(((-567 |#1| |#2|) (-10 -7 (-15 -2253 ((-85) (-86))) (-15 -3593 ((-86) (-86))) (-15 -2259 (|#2| |#2|)) (-15 -2258 (|#2| |#2|)) (-15 -2257 (|#2| |#2|)) (-15 -2256 (|#2| |#2|)) (-15 -2254 (|#2| |#2|)) (-15 -2255 (|#2| |#2|)) (-15 -2831 (|#2| |#2| (-1088))) (-15 -2831 (|#2| |#2| (-1003 |#2|)))) (-494) (-13 (-362 |#1|) (-914) (-1113))) (T -567)) -((-2831 (*1 *2 *2 *3) (-12 (-5 *3 (-1003 *2)) (-4 *2 (-13 (-362 *4) (-914) (-1113))) (-4 *4 (-494)) (-5 *1 (-567 *4 *2)))) (-2831 (*1 *2 *2 *3) (-12 (-5 *3 (-1088)) (-4 *4 (-494)) (-5 *1 (-567 *4 *2)) (-4 *2 (-13 (-362 *4) (-914) (-1113))))) (-2255 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-567 *3 *2)) (-4 *2 (-13 (-362 *3) (-914) (-1113))))) (-2254 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-567 *3 *2)) (-4 *2 (-13 (-362 *3) (-914) (-1113))))) (-2256 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-567 *3 *2)) (-4 *2 (-13 (-362 *3) (-914) (-1113))))) (-2257 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-567 *3 *2)) (-4 *2 (-13 (-362 *3) (-914) (-1113))))) (-2258 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-567 *3 *2)) (-4 *2 (-13 (-362 *3) (-914) (-1113))))) (-2259 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-567 *3 *2)) (-4 *2 (-13 (-362 *3) (-914) (-1113))))) (-3593 (*1 *2 *2) (-12 (-5 *2 (-86)) (-4 *3 (-494)) (-5 *1 (-567 *3 *4)) (-4 *4 (-13 (-362 *3) (-914) (-1113))))) (-2253 (*1 *2 *3) (-12 (-5 *3 (-86)) (-4 *4 (-494)) (-5 *2 (-85)) (-5 *1 (-567 *4 *5)) (-4 *5 (-13 (-362 *4) (-914) (-1113)))))) -((-3490 (($ $) 38 T ELT)) (-3637 (($ $) 21 T ELT)) (-3488 (($ $) 37 T ELT)) (-3636 (($ $) 22 T ELT)) (-3492 (($ $) 36 T ELT)) (-3635 (($ $) 23 T ELT)) (-3625 (($) 48 T ELT)) (-3940 (($ $) 45 T ELT)) (-2256 (($ $) 17 T ELT)) (-2831 (($ $ (-1003 $)) 7 T ELT) (($ $ (-1088)) 6 T ELT)) (-3941 (($ $) 46 T ELT)) (-2254 (($ $) 15 T ELT)) (-2255 (($ $) 16 T ELT)) (-3493 (($ $) 35 T ELT)) (-3634 (($ $) 24 T ELT)) (-3491 (($ $) 34 T ELT)) (-3633 (($ $) 25 T ELT)) (-3489 (($ $) 33 T ELT)) (-3632 (($ $) 26 T ELT)) (-3496 (($ $) 44 T ELT)) (-3484 (($ $) 32 T ELT)) (-3494 (($ $) 43 T ELT)) (-3482 (($ $) 31 T ELT)) (-3498 (($ $) 42 T ELT)) (-3486 (($ $) 30 T ELT)) (-3499 (($ $) 41 T ELT)) (-3487 (($ $) 29 T ELT)) (-3497 (($ $) 40 T ELT)) (-3485 (($ $) 28 T ELT)) (-3495 (($ $) 39 T ELT)) (-3483 (($ $) 27 T ELT)) (-2258 (($ $) 19 T ELT)) (-2259 (($ $) 20 T ELT)) (-2257 (($ $) 18 T ELT)) (** (($ $ $) 47 T ELT))) -(((-568) (-113)) (T -568)) -((-2259 (*1 *1 *1) (-4 *1 (-568))) (-2258 (*1 *1 *1) (-4 *1 (-568))) (-2257 (*1 *1 *1) (-4 *1 (-568))) (-2256 (*1 *1 *1) (-4 *1 (-568))) (-2255 (*1 *1 *1) (-4 *1 (-568))) (-2254 (*1 *1 *1) (-4 *1 (-568)))) -(-13 (-870) (-1113) (-10 -8 (-15 -2259 ($ $)) (-15 -2258 ($ $)) (-15 -2257 ($ $)) (-15 -2256 ($ $)) (-15 -2255 ($ $)) (-15 -2254 ($ $)))) -(((-35) . T) ((-66) . T) ((-239) . T) ((-431) . T) ((-870) . T) ((-1113) . T) ((-1116) . T)) -((-2269 (((-419 |#1| |#2|) (-206 |#1| |#2|)) 65 T ELT)) (-2262 (((-582 (-206 |#1| |#2|)) (-582 (-419 |#1| |#2|))) 90 T ELT)) (-2263 (((-419 |#1| |#2|) (-582 (-419 |#1| |#2|)) (-772 |#1|)) 92 T ELT) (((-419 |#1| |#2|) (-582 (-419 |#1| |#2|)) (-582 (-419 |#1| |#2|)) (-772 |#1|)) 91 T ELT)) (-2260 (((-2 (|:| |gblist| (-582 (-206 |#1| |#2|))) (|:| |gvlist| (-582 (-483)))) (-582 (-419 |#1| |#2|))) 136 T ELT)) (-2267 (((-582 (-419 |#1| |#2|)) (-772 |#1|) (-582 (-419 |#1| |#2|)) (-582 (-419 |#1| |#2|))) 105 T ELT)) (-2261 (((-2 (|:| |glbase| (-582 (-206 |#1| |#2|))) (|:| |glval| (-582 (-483)))) (-582 (-206 |#1| |#2|))) 147 T ELT)) (-2265 (((-1177 |#2|) (-419 |#1| |#2|) (-582 (-419 |#1| |#2|))) 70 T ELT)) (-2264 (((-582 (-419 |#1| |#2|)) (-582 (-419 |#1| |#2|))) 47 T ELT)) (-2268 (((-206 |#1| |#2|) (-206 |#1| |#2|) (-582 (-206 |#1| |#2|))) 61 T ELT)) (-2266 (((-206 |#1| |#2|) (-582 |#2|) (-206 |#1| |#2|) (-582 (-206 |#1| |#2|))) 113 T ELT))) -(((-569 |#1| |#2|) (-10 -7 (-15 -2260 ((-2 (|:| |gblist| (-582 (-206 |#1| |#2|))) (|:| |gvlist| (-582 (-483)))) (-582 (-419 |#1| |#2|)))) (-15 -2261 ((-2 (|:| |glbase| (-582 (-206 |#1| |#2|))) (|:| |glval| (-582 (-483)))) (-582 (-206 |#1| |#2|)))) (-15 -2262 ((-582 (-206 |#1| |#2|)) (-582 (-419 |#1| |#2|)))) (-15 -2263 ((-419 |#1| |#2|) (-582 (-419 |#1| |#2|)) (-582 (-419 |#1| |#2|)) (-772 |#1|))) (-15 -2263 ((-419 |#1| |#2|) (-582 (-419 |#1| |#2|)) (-772 |#1|))) (-15 -2264 ((-582 (-419 |#1| |#2|)) (-582 (-419 |#1| |#2|)))) (-15 -2265 ((-1177 |#2|) (-419 |#1| |#2|) (-582 (-419 |#1| |#2|)))) (-15 -2266 ((-206 |#1| |#2|) (-582 |#2|) (-206 |#1| |#2|) (-582 (-206 |#1| |#2|)))) (-15 -2267 ((-582 (-419 |#1| |#2|)) (-772 |#1|) (-582 (-419 |#1| |#2|)) (-582 (-419 |#1| |#2|)))) (-15 -2268 ((-206 |#1| |#2|) (-206 |#1| |#2|) (-582 (-206 |#1| |#2|)))) (-15 -2269 ((-419 |#1| |#2|) (-206 |#1| |#2|)))) (-582 (-1088)) (-390)) (T -569)) -((-2269 (*1 *2 *3) (-12 (-5 *3 (-206 *4 *5)) (-14 *4 (-582 (-1088))) (-4 *5 (-390)) (-5 *2 (-419 *4 *5)) (-5 *1 (-569 *4 *5)))) (-2268 (*1 *2 *2 *3) (-12 (-5 *3 (-582 (-206 *4 *5))) (-5 *2 (-206 *4 *5)) (-14 *4 (-582 (-1088))) (-4 *5 (-390)) (-5 *1 (-569 *4 *5)))) (-2267 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-582 (-419 *4 *5))) (-5 *3 (-772 *4)) (-14 *4 (-582 (-1088))) (-4 *5 (-390)) (-5 *1 (-569 *4 *5)))) (-2266 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-582 *6)) (-5 *4 (-582 (-206 *5 *6))) (-4 *6 (-390)) (-5 *2 (-206 *5 *6)) (-14 *5 (-582 (-1088))) (-5 *1 (-569 *5 *6)))) (-2265 (*1 *2 *3 *4) (-12 (-5 *4 (-582 (-419 *5 *6))) (-5 *3 (-419 *5 *6)) (-14 *5 (-582 (-1088))) (-4 *6 (-390)) (-5 *2 (-1177 *6)) (-5 *1 (-569 *5 *6)))) (-2264 (*1 *2 *2) (-12 (-5 *2 (-582 (-419 *3 *4))) (-14 *3 (-582 (-1088))) (-4 *4 (-390)) (-5 *1 (-569 *3 *4)))) (-2263 (*1 *2 *3 *4) (-12 (-5 *3 (-582 (-419 *5 *6))) (-5 *4 (-772 *5)) (-14 *5 (-582 (-1088))) (-5 *2 (-419 *5 *6)) (-5 *1 (-569 *5 *6)) (-4 *6 (-390)))) (-2263 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-582 (-419 *5 *6))) (-5 *4 (-772 *5)) (-14 *5 (-582 (-1088))) (-5 *2 (-419 *5 *6)) (-5 *1 (-569 *5 *6)) (-4 *6 (-390)))) (-2262 (*1 *2 *3) (-12 (-5 *3 (-582 (-419 *4 *5))) (-14 *4 (-582 (-1088))) (-4 *5 (-390)) (-5 *2 (-582 (-206 *4 *5))) (-5 *1 (-569 *4 *5)))) (-2261 (*1 *2 *3) (-12 (-14 *4 (-582 (-1088))) (-4 *5 (-390)) (-5 *2 (-2 (|:| |glbase| (-582 (-206 *4 *5))) (|:| |glval| (-582 (-483))))) (-5 *1 (-569 *4 *5)) (-5 *3 (-582 (-206 *4 *5))))) (-2260 (*1 *2 *3) (-12 (-5 *3 (-582 (-419 *4 *5))) (-14 *4 (-582 (-1088))) (-4 *5 (-390)) (-5 *2 (-2 (|:| |gblist| (-582 (-206 *4 *5))) (|:| |gvlist| (-582 (-483))))) (-5 *1 (-569 *4 *5))))) -((-2567 (((-85) $ $) NIL (OR (|has| (-51) (-72)) (|has| (-2 (|:| -3858 (-1071)) (|:| |entry| (-51))) (-72))) ELT)) (-3597 (($) NIL T ELT) (($ (-582 (-2 (|:| -3858 (-1071)) (|:| |entry| (-51))))) NIL T ELT)) (-2197 (((-1183) $ (-1071) (-1071)) NIL (|has| $ (-6 -3994)) ELT)) (-3786 (((-51) $ (-1071) (-51)) NIL T ELT) (((-51) $ (-1088) (-51)) 16 T ELT)) (-1568 (($ (-1 (-85) (-2 (|:| -3858 (-1071)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3993)) ELT)) (-3708 (($ (-1 (-85) (-2 (|:| -3858 (-1071)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3993)) ELT)) (-2230 (((-3 (-51) #1="failed") (-1071) $) NIL T ELT)) (-3722 (($) NIL T CONST)) (-1351 (($ $) NIL (-12 (|has| $ (-6 -3993)) (|has| (-2 (|:| -3858 (-1071)) (|:| |entry| (-51))) (-1012))) ELT)) (-3403 (($ (-2 (|:| -3858 (-1071)) (|:| |entry| (-51))) $) NIL (|has| $ (-6 -3993)) ELT) (($ (-1 (-85) (-2 (|:| -3858 (-1071)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3993)) ELT) (((-3 (-51) #1#) (-1071) $) NIL T ELT)) (-3404 (($ (-2 (|:| -3858 (-1071)) (|:| |entry| (-51))) $) NIL (-12 (|has| $ (-6 -3993)) (|has| (-2 (|:| -3858 (-1071)) (|:| |entry| (-51))) (-1012))) ELT) (($ (-1 (-85) (-2 (|:| -3858 (-1071)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3993)) ELT)) (-3840 (((-2 (|:| -3858 (-1071)) (|:| |entry| (-51))) (-1 (-2 (|:| -3858 (-1071)) (|:| |entry| (-51))) (-2 (|:| -3858 (-1071)) (|:| |entry| (-51))) (-2 (|:| -3858 (-1071)) (|:| |entry| (-51)))) $ (-2 (|:| -3858 (-1071)) (|:| |entry| (-51))) (-2 (|:| -3858 (-1071)) (|:| |entry| (-51)))) NIL (-12 (|has| $ (-6 -3993)) (|has| (-2 (|:| -3858 (-1071)) (|:| |entry| (-51))) (-1012))) ELT) (((-2 (|:| -3858 (-1071)) (|:| |entry| (-51))) (-1 (-2 (|:| -3858 (-1071)) (|:| |entry| (-51))) (-2 (|:| -3858 (-1071)) (|:| |entry| (-51))) (-2 (|:| -3858 (-1071)) (|:| |entry| (-51)))) $ (-2 (|:| -3858 (-1071)) (|:| |entry| (-51)))) NIL (|has| $ (-6 -3993)) ELT) (((-2 (|:| -3858 (-1071)) (|:| |entry| (-51))) (-1 (-2 (|:| -3858 (-1071)) (|:| |entry| (-51))) (-2 (|:| -3858 (-1071)) (|:| |entry| (-51))) (-2 (|:| -3858 (-1071)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3993)) ELT)) (-1574 (((-51) $ (-1071) (-51)) NIL (|has| $ (-6 -3994)) ELT)) (-3111 (((-51) $ (-1071)) NIL T ELT)) (-2888 (((-582 (-2 (|:| -3858 (-1071)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3993)) ELT) (((-582 (-51)) $) NIL (|has| $ (-6 -3993)) ELT)) (-2270 (($ $) NIL T ELT)) (-2199 (((-1071) $) NIL (|has| (-1071) (-755)) ELT)) (-2607 (((-582 (-2 (|:| -3858 (-1071)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3993)) ELT) (((-582 (-51)) $) NIL (|has| $ (-6 -3993)) ELT)) (-3244 (((-85) (-2 (|:| -3858 (-1071)) (|:| |entry| (-51))) $) NIL (-12 (|has| $ (-6 -3993)) (|has| (-2 (|:| -3858 (-1071)) (|:| |entry| (-51))) (-1012))) ELT) (((-85) (-51) $) NIL (-12 (|has| $ (-6 -3993)) (|has| (-51) (-1012))) ELT)) (-2200 (((-1071) $) NIL (|has| (-1071) (-755)) ELT)) (-1947 (($ (-1 (-2 (|:| -3858 (-1071)) (|:| |entry| (-51))) (-2 (|:| -3858 (-1071)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3994)) ELT) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -3994)) ELT)) (-3956 (($ (-1 (-2 (|:| -3858 (-1071)) (|:| |entry| (-51))) (-2 (|:| -3858 (-1071)) (|:| |entry| (-51)))) $) NIL T ELT) (($ (-1 (-51) (-51)) $) NIL T ELT) (($ (-1 (-51) (-51) (-51)) $ $) NIL T ELT)) (-2271 (($ (-336)) 8 T ELT)) (-3241 (((-1071) $) NIL (OR (|has| (-51) (-1012)) (|has| (-2 (|:| -3858 (-1071)) (|:| |entry| (-51))) (-1012))) ELT)) (-2231 (((-582 (-1071)) $) NIL T ELT)) (-2232 (((-85) (-1071) $) NIL T ELT)) (-1272 (((-2 (|:| -3858 (-1071)) (|:| |entry| (-51))) $) NIL T ELT)) (-3607 (($ (-2 (|:| -3858 (-1071)) (|:| |entry| (-51))) $) NIL T ELT)) (-2202 (((-582 (-1071)) $) NIL T ELT)) (-2203 (((-85) (-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL (OR (|has| (-51) (-1012)) (|has| (-2 (|:| -3858 (-1071)) (|:| |entry| (-51))) (-1012))) ELT)) (-3799 (((-51) $) NIL (|has| (-1071) (-755)) ELT)) (-1352 (((-3 (-2 (|:| -3858 (-1071)) (|:| |entry| (-51))) #1#) (-1 (-85) (-2 (|:| -3858 (-1071)) (|:| |entry| (-51)))) $) NIL T ELT)) (-2198 (($ $ (-51)) NIL (|has| $ (-6 -3994)) ELT)) (-1273 (((-2 (|:| -3858 (-1071)) (|:| |entry| (-51))) $) NIL T ELT)) (-1945 (((-85) (-1 (-85) (-2 (|:| -3858 (-1071)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3993)) ELT) (((-85) (-1 (-85) (-51)) $) NIL (|has| $ (-6 -3993)) ELT)) (-3766 (($ $ (-582 (-249 (-2 (|:| -3858 (-1071)) (|:| |entry| (-51)))))) NIL (-12 (|has| (-2 (|:| -3858 (-1071)) (|:| |entry| (-51))) (-260 (-2 (|:| -3858 (-1071)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3858 (-1071)) (|:| |entry| (-51))) (-1012))) ELT) (($ $ (-249 (-2 (|:| -3858 (-1071)) (|:| |entry| (-51))))) NIL (-12 (|has| (-2 (|:| -3858 (-1071)) (|:| |entry| (-51))) (-260 (-2 (|:| -3858 (-1071)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3858 (-1071)) (|:| |entry| (-51))) (-1012))) ELT) (($ $ (-2 (|:| -3858 (-1071)) (|:| |entry| (-51))) (-2 (|:| -3858 (-1071)) (|:| |entry| (-51)))) NIL (-12 (|has| (-2 (|:| -3858 (-1071)) (|:| |entry| (-51))) (-260 (-2 (|:| -3858 (-1071)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3858 (-1071)) (|:| |entry| (-51))) (-1012))) ELT) (($ $ (-582 (-2 (|:| -3858 (-1071)) (|:| |entry| (-51)))) (-582 (-2 (|:| -3858 (-1071)) (|:| |entry| (-51))))) NIL (-12 (|has| (-2 (|:| -3858 (-1071)) (|:| |entry| (-51))) (-260 (-2 (|:| -3858 (-1071)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3858 (-1071)) (|:| |entry| (-51))) (-1012))) ELT) (($ $ (-582 (-51)) (-582 (-51))) NIL (-12 (|has| (-51) (-260 (-51))) (|has| (-51) (-1012))) ELT) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-260 (-51))) (|has| (-51) (-1012))) ELT) (($ $ (-249 (-51))) NIL (-12 (|has| (-51) (-260 (-51))) (|has| (-51) (-1012))) ELT) (($ $ (-582 (-249 (-51)))) NIL (-12 (|has| (-51) (-260 (-51))) (|has| (-51) (-1012))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-2201 (((-85) (-51) $) NIL (-12 (|has| $ (-6 -3993)) (|has| (-51) (-1012))) ELT)) (-2204 (((-582 (-51)) $) NIL T ELT)) (-3401 (((-85) $) NIL T ELT)) (-3563 (($) NIL T ELT)) (-3798 (((-51) $ (-1071)) NIL T ELT) (((-51) $ (-1071) (-51)) NIL T ELT) (((-51) $ (-1088)) 14 T ELT)) (-1464 (($) NIL T ELT) (($ (-582 (-2 (|:| -3858 (-1071)) (|:| |entry| (-51))))) NIL T ELT)) (-1944 (((-693) (-1 (-85) (-2 (|:| -3858 (-1071)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3993)) ELT) (((-693) (-2 (|:| -3858 (-1071)) (|:| |entry| (-51))) $) NIL (-12 (|has| $ (-6 -3993)) (|has| (-2 (|:| -3858 (-1071)) (|:| |entry| (-51))) (-1012))) ELT) (((-693) (-51) $) NIL (-12 (|has| $ (-6 -3993)) (|has| (-51) (-1012))) ELT) (((-693) (-1 (-85) (-51)) $) NIL (|has| $ (-6 -3993)) ELT)) (-3398 (($ $) NIL T ELT)) (-3970 (((-472) $) NIL (|has| (-2 (|:| -3858 (-1071)) (|:| |entry| (-51))) (-552 (-472))) ELT)) (-3528 (($ (-582 (-2 (|:| -3858 (-1071)) (|:| |entry| (-51))))) NIL T ELT)) (-3944 (((-771) $) NIL (OR (|has| (-2 (|:| -3858 (-1071)) (|:| |entry| (-51))) (-551 (-771))) (|has| (-51) (-551 (-771)))) ELT)) (-1263 (((-85) $ $) NIL (OR (|has| (-51) (-72)) (|has| (-2 (|:| -3858 (-1071)) (|:| |entry| (-51))) (-72))) ELT)) (-1274 (($ (-582 (-2 (|:| -3858 (-1071)) (|:| |entry| (-51))))) NIL T ELT)) (-1946 (((-85) (-1 (-85) (-2 (|:| -3858 (-1071)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3993)) ELT) (((-85) (-1 (-85) (-51)) $) NIL (|has| $ (-6 -3993)) ELT)) (-3055 (((-85) $ $) NIL (OR (|has| (-51) (-72)) (|has| (-2 (|:| -3858 (-1071)) (|:| |entry| (-51))) (-72))) ELT)) (-3955 (((-693) $) NIL (|has| $ (-6 -3993)) ELT))) -(((-570) (-13 (-1105 (-1071) (-51)) (-241 (-1088) (-51)) (-10 -8 (-15 -2271 ($ (-336))) (-15 -2270 ($ $)) (-15 -3786 ((-51) $ (-1088) (-51)))))) (T -570)) -((-2271 (*1 *1 *2) (-12 (-5 *2 (-336)) (-5 *1 (-570)))) (-2270 (*1 *1 *1) (-5 *1 (-570))) (-3786 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1088)) (-5 *1 (-570))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3187 (((-85) $) NIL T ELT)) (-1770 (((-3 $ #1="failed")) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-494))) (-12 (|has| |#2| (-359 |#1|)) (|has| |#1| (-494)))) ELT)) (-1310 (((-3 $ #1#) $ $) NIL T ELT)) (-3222 (((-1177 (-629 |#1|))) NIL (|has| |#2| (-359 |#1|)) ELT) (((-1177 (-629 |#1|)) (-1177 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1727 (((-1177 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3722 (($) NIL T CONST)) (-1904 (((-3 (-2 (|:| |particular| $) (|:| -2011 (-582 $))) #1#)) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-494))) (-12 (|has| |#2| (-359 |#1|)) (|has| |#1| (-494)))) ELT)) (-1701 (((-3 $ #1#)) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-494))) (-12 (|has| |#2| (-359 |#1|)) (|has| |#1| (-494)))) ELT)) (-1786 (((-629 |#1|)) NIL (|has| |#2| (-359 |#1|)) ELT) (((-629 |#1|) (-1177 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1725 ((|#1| $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1784 (((-629 |#1|) $) NIL (|has| |#2| (-359 |#1|)) ELT) (((-629 |#1|) $ (-1177 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2403 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-494))) (-12 (|has| |#2| (-359 |#1|)) (|has| |#1| (-494)))) ELT)) (-1898 (((-1083 (-856 |#1|))) NIL (-12 (|has| |#2| (-359 |#1|)) (|has| |#1| (-312))) ELT)) (-2406 (($ $ (-829)) NIL T ELT)) (-1723 ((|#1| $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1703 (((-1083 |#1|) $) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-494))) (-12 (|has| |#2| (-359 |#1|)) (|has| |#1| (-494)))) ELT)) (-1788 ((|#1|) NIL (|has| |#2| (-359 |#1|)) ELT) ((|#1| (-1177 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1721 (((-1083 |#1|) $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1715 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1790 (($ (-1177 |#1|)) NIL (|has| |#2| (-359 |#1|)) ELT) (($ (-1177 |#1|) (-1177 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3465 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-494))) (-12 (|has| |#2| (-359 |#1|)) (|has| |#1| (-494)))) ELT)) (-3107 (((-829)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1712 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2432 (($ $ (-829)) NIL T ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-1708 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1706 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1710 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1905 (((-3 (-2 (|:| |particular| $) (|:| -2011 (-582 $))) #1#)) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-494))) (-12 (|has| |#2| (-359 |#1|)) (|has| |#1| (-494)))) ELT)) (-1702 (((-3 $ #1#)) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-494))) (-12 (|has| |#2| (-359 |#1|)) (|has| |#1| (-494)))) ELT)) (-1787 (((-629 |#1|)) NIL (|has| |#2| (-359 |#1|)) ELT) (((-629 |#1|) (-1177 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1726 ((|#1| $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1785 (((-629 |#1|) $) NIL (|has| |#2| (-359 |#1|)) ELT) (((-629 |#1|) $ (-1177 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2404 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-494))) (-12 (|has| |#2| (-359 |#1|)) (|has| |#1| (-494)))) ELT)) (-1902 (((-1083 (-856 |#1|))) NIL (-12 (|has| |#2| (-359 |#1|)) (|has| |#1| (-312))) ELT)) (-2405 (($ $ (-829)) NIL T ELT)) (-1724 ((|#1| $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1704 (((-1083 |#1|) $) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-494))) (-12 (|has| |#2| (-359 |#1|)) (|has| |#1| (-494)))) ELT)) (-1789 ((|#1|) NIL (|has| |#2| (-359 |#1|)) ELT) ((|#1| (-1177 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1722 (((-1083 |#1|) $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1716 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3241 (((-1071) $) NIL T ELT)) (-1707 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1709 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1711 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3242 (((-1032) $) NIL T ELT)) (-1714 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3798 ((|#1| $ (-483)) NIL (|has| |#2| (-359 |#1|)) ELT)) (-3223 (((-629 |#1|) (-1177 $)) NIL (|has| |#2| (-359 |#1|)) ELT) (((-1177 |#1|) $) NIL (|has| |#2| (-359 |#1|)) ELT) (((-629 |#1|) (-1177 $) (-1177 $)) NIL (|has| |#2| (-316 |#1|)) ELT) (((-1177 |#1|) $ (-1177 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3970 (($ (-1177 |#1|)) NIL (|has| |#2| (-359 |#1|)) ELT) (((-1177 |#1|) $) NIL (|has| |#2| (-359 |#1|)) ELT)) (-1890 (((-582 (-856 |#1|))) NIL (|has| |#2| (-359 |#1|)) ELT) (((-582 (-856 |#1|)) (-1177 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2434 (($ $ $) NIL T ELT)) (-1720 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3944 (((-771) $) NIL T ELT) ((|#2| $) 11 T ELT) (($ |#2|) 12 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2011 (((-1177 $)) NIL (|has| |#2| (-359 |#1|)) ELT)) (-1705 (((-582 (-1177 |#1|))) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-494))) (-12 (|has| |#2| (-359 |#1|)) (|has| |#1| (-494)))) ELT)) (-2435 (($ $ $ $) NIL T ELT)) (-1718 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2544 (($ (-629 |#1|) $) NIL (|has| |#2| (-359 |#1|)) ELT)) (-2433 (($ $ $) NIL T ELT)) (-1719 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1717 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1713 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2659 (($) 18 T CONST)) (-3055 (((-85) $ $) NIL T ELT)) (-3835 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3837 (($ $ $) NIL T ELT)) (** (($ $ (-829)) 19 T ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) 10 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-571 |#1| |#2|) (-13 (-682 |#1|) (-551 |#2|) (-10 -8 (-15 -3944 ($ |#2|)) (IF (|has| |#2| (-359 |#1|)) (-6 (-359 |#1|)) |%noBranch|) (IF (|has| |#2| (-316 |#1|)) (-6 (-316 |#1|)) |%noBranch|))) (-146) (-682 |#1|)) (T -571)) -((-3944 (*1 *1 *2) (-12 (-4 *3 (-146)) (-5 *1 (-571 *3 *2)) (-4 *2 (-682 *3))))) -((-3947 (($ $ |#2|) 10 T ELT))) -(((-572 |#1| |#2|) (-10 -7 (-15 -3947 (|#1| |#1| |#2|))) (-573 |#2|) (-146)) (T -572)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-3187 (((-85) $) 22 T ELT)) (-1310 (((-3 $ "failed") $ $) 26 T ELT)) (-3722 (($) 23 T CONST)) (-1212 (((-85) $ $) 20 T ELT)) (-3241 (((-1071) $) 11 T ELT)) (-3242 (((-1032) $) 12 T ELT)) (-3528 (($ $ $) 40 T ELT)) (-3944 (((-771) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2659 (($) 24 T CONST)) (-3055 (((-85) $ $) 8 T ELT)) (-3947 (($ $ |#1|) 39 (|has| |#1| (-312)) ELT)) (-3835 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3837 (($ $ $) 18 T ELT)) (* (($ (-829) $) 17 T ELT) (($ (-693) $) 21 T ELT) (($ (-483) $) 30 T ELT) (($ |#1| $) 33 T ELT) (($ $ |#1|) 37 T ELT))) -(((-573 |#1|) (-113) (-146)) (T -573)) -((-3528 (*1 *1 *1 *1) (-12 (-4 *1 (-573 *2)) (-4 *2 (-146)))) (-3947 (*1 *1 *1 *2) (-12 (-4 *1 (-573 *2)) (-4 *2 (-146)) (-4 *2 (-312))))) -(-13 (-653 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -3528 ($ $ $)) (IF (|has| |t#1| (-312)) (-15 -3947 ($ $ |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-551 (-771)) . T) ((-13) . T) ((-587 (-483)) . T) ((-587 |#1|) . T) ((-589 |#1|) . T) ((-581 |#1|) . T) ((-653 |#1|) . T) ((-962 |#1|) . T) ((-967 |#1|) . T) ((-1012) . T) ((-1127) . T)) -((-2273 (((-3 (-749 |#2|) #1="failed") |#2| (-249 |#2|) (-1071)) 105 T ELT) (((-3 (-749 |#2|) (-2 (|:| |leftHandLimit| (-3 (-749 |#2|) #1#)) (|:| |rightHandLimit| (-3 (-749 |#2|) #1#))) #1#) |#2| (-249 (-749 |#2|))) 130 T ELT)) (-2272 (((-3 (-742 |#2|) #1#) |#2| (-249 (-742 |#2|))) 135 T ELT))) -(((-574 |#1| |#2|) (-10 -7 (-15 -2273 ((-3 (-749 |#2|) (-2 (|:| |leftHandLimit| (-3 (-749 |#2|) #1="failed")) (|:| |rightHandLimit| (-3 (-749 |#2|) #1#))) #1#) |#2| (-249 (-749 |#2|)))) (-15 -2272 ((-3 (-742 |#2|) #1#) |#2| (-249 (-742 |#2|)))) (-15 -2273 ((-3 (-749 |#2|) #1#) |#2| (-249 |#2|) (-1071)))) (-13 (-390) (-949 (-483)) (-579 (-483))) (-13 (-27) (-1113) (-362 |#1|))) (T -574)) -((-2273 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-249 *3)) (-5 *5 (-1071)) (-4 *3 (-13 (-27) (-1113) (-362 *6))) (-4 *6 (-13 (-390) (-949 (-483)) (-579 (-483)))) (-5 *2 (-749 *3)) (-5 *1 (-574 *6 *3)))) (-2272 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-249 (-742 *3))) (-4 *5 (-13 (-390) (-949 (-483)) (-579 (-483)))) (-5 *2 (-742 *3)) (-5 *1 (-574 *5 *3)) (-4 *3 (-13 (-27) (-1113) (-362 *5))))) (-2273 (*1 *2 *3 *4) (-12 (-5 *4 (-249 (-749 *3))) (-4 *3 (-13 (-27) (-1113) (-362 *5))) (-4 *5 (-13 (-390) (-949 (-483)) (-579 (-483)))) (-5 *2 (-3 (-749 *3) (-2 (|:| |leftHandLimit| (-3 (-749 *3) #1="failed")) (|:| |rightHandLimit| (-3 (-749 *3) #1#))) "failed")) (-5 *1 (-574 *5 *3))))) -((-2273 (((-3 (-749 (-348 (-856 |#1|))) #1="failed") (-348 (-856 |#1|)) (-249 (-348 (-856 |#1|))) (-1071)) 86 T ELT) (((-3 (-749 (-348 (-856 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-749 (-348 (-856 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-749 (-348 (-856 |#1|))) #1#))) #1#) (-348 (-856 |#1|)) (-249 (-348 (-856 |#1|)))) 20 T ELT) (((-3 (-749 (-348 (-856 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-749 (-348 (-856 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-749 (-348 (-856 |#1|))) #1#))) #1#) (-348 (-856 |#1|)) (-249 (-749 (-856 |#1|)))) 35 T ELT)) (-2272 (((-742 (-348 (-856 |#1|))) (-348 (-856 |#1|)) (-249 (-348 (-856 |#1|)))) 23 T ELT) (((-742 (-348 (-856 |#1|))) (-348 (-856 |#1|)) (-249 (-742 (-856 |#1|)))) 43 T ELT))) -(((-575 |#1|) (-10 -7 (-15 -2273 ((-3 (-749 (-348 (-856 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-749 (-348 (-856 |#1|))) #1="failed")) (|:| |rightHandLimit| (-3 (-749 (-348 (-856 |#1|))) #1#))) #1#) (-348 (-856 |#1|)) (-249 (-749 (-856 |#1|))))) (-15 -2273 ((-3 (-749 (-348 (-856 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-749 (-348 (-856 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-749 (-348 (-856 |#1|))) #1#))) #1#) (-348 (-856 |#1|)) (-249 (-348 (-856 |#1|))))) (-15 -2272 ((-742 (-348 (-856 |#1|))) (-348 (-856 |#1|)) (-249 (-742 (-856 |#1|))))) (-15 -2272 ((-742 (-348 (-856 |#1|))) (-348 (-856 |#1|)) (-249 (-348 (-856 |#1|))))) (-15 -2273 ((-3 (-749 (-348 (-856 |#1|))) #1#) (-348 (-856 |#1|)) (-249 (-348 (-856 |#1|))) (-1071)))) (-390)) (T -575)) -((-2273 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-249 (-348 (-856 *6)))) (-5 *5 (-1071)) (-5 *3 (-348 (-856 *6))) (-4 *6 (-390)) (-5 *2 (-749 *3)) (-5 *1 (-575 *6)))) (-2272 (*1 *2 *3 *4) (-12 (-5 *4 (-249 (-348 (-856 *5)))) (-5 *3 (-348 (-856 *5))) (-4 *5 (-390)) (-5 *2 (-742 *3)) (-5 *1 (-575 *5)))) (-2272 (*1 *2 *3 *4) (-12 (-5 *4 (-249 (-742 (-856 *5)))) (-4 *5 (-390)) (-5 *2 (-742 (-348 (-856 *5)))) (-5 *1 (-575 *5)) (-5 *3 (-348 (-856 *5))))) (-2273 (*1 *2 *3 *4) (-12 (-5 *4 (-249 (-348 (-856 *5)))) (-5 *3 (-348 (-856 *5))) (-4 *5 (-390)) (-5 *2 (-3 (-749 *3) (-2 (|:| |leftHandLimit| (-3 (-749 *3) #1="failed")) (|:| |rightHandLimit| (-3 (-749 *3) #1#))) #2="failed")) (-5 *1 (-575 *5)))) (-2273 (*1 *2 *3 *4) (-12 (-5 *4 (-249 (-749 (-856 *5)))) (-4 *5 (-390)) (-5 *2 (-3 (-749 (-348 (-856 *5))) (-2 (|:| |leftHandLimit| (-3 (-749 (-348 (-856 *5))) #1#)) (|:| |rightHandLimit| (-3 (-749 (-348 (-856 *5))) #1#))) #2#)) (-5 *1 (-575 *5)) (-5 *3 (-348 (-856 *5)))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3135 (((-693)) NIL T ELT)) (-2993 (($) NIL T ELT)) (-2530 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2856 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2009 (((-829) $) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-2399 (($ (-829)) 11 T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-2850 (($ (-168 |#1|)) 12 T ELT)) (-3944 (((-771) $) NIL T ELT) (($ (-772 |#1|)) 7 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2565 (((-85) $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-2683 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL T ELT))) -(((-576 |#1|) (-13 (-751) (-554 (-772 |#1|)) (-10 -8 (-15 -2850 ($ (-168 |#1|))))) (-582 (-1088))) (T -576)) -((-2850 (*1 *1 *2) (-12 (-5 *2 (-168 *3)) (-14 *3 (-582 (-1088))) (-5 *1 (-576 *3))))) -((-2276 (((-3 (-1177 (-348 |#1|)) #1="failed") (-1177 |#2|) |#2|) 64 (-2559 (|has| |#1| (-312))) ELT) (((-3 (-1177 |#1|) #1#) (-1177 |#2|) |#2|) 49 (|has| |#1| (-312)) ELT)) (-2274 (((-85) (-1177 |#2|)) 33 T ELT)) (-2275 (((-3 (-1177 |#1|) #1#) (-1177 |#2|)) 40 T ELT))) -(((-577 |#1| |#2|) (-10 -7 (-15 -2274 ((-85) (-1177 |#2|))) (-15 -2275 ((-3 (-1177 |#1|) #1="failed") (-1177 |#2|))) (IF (|has| |#1| (-312)) (-15 -2276 ((-3 (-1177 |#1|) #1#) (-1177 |#2|) |#2|)) (-15 -2276 ((-3 (-1177 (-348 |#1|)) #1#) (-1177 |#2|) |#2|)))) (-494) (-13 (-960) (-579 |#1|))) (T -577)) -((-2276 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1177 *4)) (-4 *4 (-13 (-960) (-579 *5))) (-2559 (-4 *5 (-312))) (-4 *5 (-494)) (-5 *2 (-1177 (-348 *5))) (-5 *1 (-577 *5 *4)))) (-2276 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1177 *4)) (-4 *4 (-13 (-960) (-579 *5))) (-4 *5 (-312)) (-4 *5 (-494)) (-5 *2 (-1177 *5)) (-5 *1 (-577 *5 *4)))) (-2275 (*1 *2 *3) (|partial| -12 (-5 *3 (-1177 *5)) (-4 *5 (-13 (-960) (-579 *4))) (-4 *4 (-494)) (-5 *2 (-1177 *4)) (-5 *1 (-577 *4 *5)))) (-2274 (*1 *2 *3) (-12 (-5 *3 (-1177 *5)) (-4 *5 (-13 (-960) (-579 *4))) (-4 *4 (-494)) (-5 *2 (-85)) (-5 *1 (-577 *4 *5))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3187 (((-85) $) NIL T ELT)) (-3772 (((-582 (-452 |#1| (-576 |#2|))) $) NIL T ELT)) (-1310 (((-3 $ "failed") $ $) NIL T ELT)) (-3722 (($) NIL T CONST)) (-3957 (($ $) NIL T ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-2892 (($ |#1| (-576 |#2|)) NIL T ELT)) (-3956 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2277 (($ (-582 |#1|)) 25 T ELT)) (-1982 (((-576 |#2|) $) NIL T ELT)) (-3173 ((|#1| $) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3909 (((-107)) 16 T ELT)) (-3223 (((-1177 |#1|) $) 44 T ELT)) (-3970 (($ (-582 (-452 |#1| (-576 |#2|)))) NIL T ELT)) (-3944 (((-771) $) NIL T ELT) (($ (-576 |#2|)) 11 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2659 (($) 20 T CONST)) (-3055 (((-85) $ $) NIL T ELT)) (-3947 (($ $ |#1|) NIL T ELT)) (-3835 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3837 (($ $ $) 17 T ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) -(((-578 |#1| |#2|) (-13 (-1185 |#1|) (-554 (-576 |#2|)) (-448 |#1| (-576 |#2|)) (-10 -8 (-15 -2277 ($ (-582 |#1|))) (-15 -3223 ((-1177 |#1|) $)))) (-312) (-582 (-1088))) (T -578)) -((-2277 (*1 *1 *2) (-12 (-5 *2 (-582 *3)) (-4 *3 (-312)) (-5 *1 (-578 *3 *4)) (-14 *4 (-582 (-1088))))) (-3223 (*1 *2 *1) (-12 (-5 *2 (-1177 *3)) (-5 *1 (-578 *3 *4)) (-4 *3 (-312)) (-14 *4 (-582 (-1088)))))) -((-2567 (((-85) $ $) 7 T ELT)) (-3187 (((-85) $) 22 T ELT)) (-1310 (((-3 $ "failed") $ $) 26 T ELT)) (-3722 (($) 23 T CONST)) (-2278 (((-629 |#1|) (-629 $)) 36 T ELT) (((-2 (|:| |mat| (-629 |#1|)) (|:| |vec| (-1177 |#1|))) (-629 $) (-1177 $)) 35 T ELT)) (-1212 (((-85) $ $) 20 T ELT)) (-2279 (((-629 |#1|) (-1177 $)) 38 T ELT) (((-2 (|:| |mat| (-629 |#1|)) (|:| |vec| (-1177 |#1|))) (-1177 $) $) 37 T ELT)) (-3241 (((-1071) $) 11 T ELT)) (-3242 (((-1032) $) 12 T ELT)) (-3944 (((-771) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2659 (($) 24 T CONST)) (-3055 (((-85) $ $) 8 T ELT)) (-3835 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3837 (($ $ $) 18 T ELT)) (* (($ (-829) $) 17 T ELT) (($ (-693) $) 21 T ELT) (($ (-483) $) 30 T ELT) (($ |#1| $) 33 T ELT))) -(((-579 |#1|) (-113) (-960)) (T -579)) -((-2279 (*1 *2 *3) (-12 (-5 *3 (-1177 *1)) (-4 *1 (-579 *4)) (-4 *4 (-960)) (-5 *2 (-629 *4)))) (-2279 (*1 *2 *3 *1) (-12 (-5 *3 (-1177 *1)) (-4 *1 (-579 *4)) (-4 *4 (-960)) (-5 *2 (-2 (|:| |mat| (-629 *4)) (|:| |vec| (-1177 *4)))))) (-2278 (*1 *2 *3) (-12 (-5 *3 (-629 *1)) (-4 *1 (-579 *4)) (-4 *4 (-960)) (-5 *2 (-629 *4)))) (-2278 (*1 *2 *3 *4) (-12 (-5 *3 (-629 *1)) (-5 *4 (-1177 *1)) (-4 *1 (-579 *5)) (-4 *5 (-960)) (-5 *2 (-2 (|:| |mat| (-629 *5)) (|:| |vec| (-1177 *5))))))) -(-13 (-589 |t#1|) (-10 -8 (-15 -2279 ((-629 |t#1|) (-1177 $))) (-15 -2279 ((-2 (|:| |mat| (-629 |t#1|)) (|:| |vec| (-1177 |t#1|))) (-1177 $) $)) (-15 -2278 ((-629 |t#1|) (-629 $))) (-15 -2278 ((-2 (|:| |mat| (-629 |t#1|)) (|:| |vec| (-1177 |t#1|))) (-629 $) (-1177 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-551 (-771)) . T) ((-13) . T) ((-587 (-483)) . T) ((-587 |#1|) . T) ((-589 |#1|) . T) ((-1012) . T) ((-1127) . T)) -((-2567 (((-85) $ $) NIL T ELT)) (-3187 (((-85) $) NIL T ELT)) (-1310 (((-3 $ "failed") $ $) NIL T ELT)) (-3722 (($) NIL T CONST)) (-1212 (((-85) $ $) NIL T ELT)) (-2280 (($ (-582 |#1|)) 23 T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3798 ((|#1| $ (-578 |#1| |#2|)) 46 T ELT)) (-3909 (((-107)) 13 T ELT)) (-3223 (((-1177 |#1|) $) 42 T ELT)) (-3944 (((-771) $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2659 (($) 18 T CONST)) (-3055 (((-85) $ $) NIL T ELT)) (-3947 (($ $ |#1|) NIL T ELT)) (-3835 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3837 (($ $ $) 14 T ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) -(((-580 |#1| |#2|) (-13 (-1185 |#1|) (-241 (-578 |#1| |#2|) |#1|) (-10 -8 (-15 -2280 ($ (-582 |#1|))) (-15 -3223 ((-1177 |#1|) $)))) (-312) (-582 (-1088))) (T -580)) -((-2280 (*1 *1 *2) (-12 (-5 *2 (-582 *3)) (-4 *3 (-312)) (-5 *1 (-580 *3 *4)) (-14 *4 (-582 (-1088))))) (-3223 (*1 *2 *1) (-12 (-5 *2 (-1177 *3)) (-5 *1 (-580 *3 *4)) (-4 *3 (-312)) (-14 *4 (-582 (-1088)))))) -((-2567 (((-85) $ $) 7 T ELT)) (-3241 (((-1071) $) 11 T ELT)) (-3242 (((-1032) $) 12 T ELT)) (-3944 (((-771) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-3055 (((-85) $ $) 8 T ELT)) (* (($ |#1| $) 17 T ELT) (($ $ |#1|) 20 T ELT))) -(((-581 |#1|) (-113) (-1024)) (T -581)) -NIL -(-13 (-587 |t#1|) (-962 |t#1|)) -(((-72) . T) ((-551 (-771)) . T) ((-13) . T) ((-587 |#1|) . T) ((-962 |#1|) . T) ((-1012) . T) ((-1127) . T)) -((-2567 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3400 ((|#1| $) NIL T ELT)) (-3793 ((|#1| $) NIL T ELT)) (-3795 (($ $) NIL T ELT)) (-2197 (((-1183) $ (-483) (-483)) NIL (|has| $ (-6 -3994)) ELT)) (-3783 (($ $ (-483)) 68 (|has| $ (-6 -3994)) ELT)) (-1730 (((-85) $) NIL (|has| |#1| (-755)) ELT) (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT)) (-1728 (($ $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-755))) ELT) (($ (-1 (-85) |#1| |#1|) $) 65 (|has| $ (-6 -3994)) ELT)) (-2908 (($ $) NIL (|has| |#1| (-755)) ELT) (($ (-1 (-85) |#1| |#1|) $) NIL T ELT)) (-3440 (((-85) $ (-693)) NIL T ELT)) (-3024 ((|#1| $ |#1|) NIL (|has| $ (-6 -3994)) ELT)) (-3785 (($ $ $) 26 (|has| $ (-6 -3994)) ELT)) (-3784 ((|#1| $ |#1|) NIL (|has| $ (-6 -3994)) ELT)) (-3787 ((|#1| $ |#1|) 24 (|has| $ (-6 -3994)) ELT)) (-3786 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3994)) ELT) ((|#1| $ #2="first" |#1|) 25 (|has| $ (-6 -3994)) ELT) (($ $ #3="rest" $) 27 (|has| $ (-6 -3994)) ELT) ((|#1| $ #4="last" |#1|) NIL (|has| $ (-6 -3994)) ELT) ((|#1| $ (-1144 (-483)) |#1|) NIL (|has| $ (-6 -3994)) ELT) ((|#1| $ (-483) |#1|) NIL (|has| $ (-6 -3994)) ELT)) (-3025 (($ $ (-582 $)) NIL (|has| $ (-6 -3994)) ELT)) (-2283 (($ $ $) 74 (|has| |#1| (-1012)) ELT)) (-2282 (($ $ $) 75 (|has| |#1| (-1012)) ELT)) (-2281 (($ $ $) 79 (|has| |#1| (-1012)) ELT)) (-1568 (($ (-1 (-85) |#1|) $) NIL T ELT)) (-3708 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3794 ((|#1| $) NIL T ELT)) (-3722 (($) NIL T CONST)) (-2296 (($ $) 31 (|has| $ (-6 -3994)) ELT)) (-2297 (($ $) 32 T ELT)) (-3797 (($ $) 21 T ELT) (($ $ (-693)) 35 T ELT)) (-2367 (($ $) 63 (|has| |#1| (-1012)) ELT)) (-1351 (($ $) 73 (-12 (|has| $ (-6 -3993)) (|has| |#1| (-1012))) ELT)) (-3403 (($ |#1| $) NIL (|has| |#1| (-1012)) ELT) (($ (-1 (-85) |#1|) $) NIL T ELT)) (-3404 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3993)) ELT) (($ |#1| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#1| (-1012))) ELT)) (-3840 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3993)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3993)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3993)) (|has| |#1| (-1012))) ELT)) (-1574 ((|#1| $ (-483) |#1|) NIL (|has| $ (-6 -3994)) ELT)) (-3111 ((|#1| $ (-483)) NIL T ELT)) (-3441 (((-85) $) NIL T ELT)) (-3417 (((-483) |#1| $ (-483)) NIL (|has| |#1| (-1012)) ELT) (((-483) |#1| $) NIL (|has| |#1| (-1012)) ELT) (((-483) (-1 (-85) |#1|) $) NIL T ELT)) (-2888 (((-582 |#1|) $) 30 (|has| $ (-6 -3993)) ELT)) (-2285 (((-85) $) 9 T ELT)) (-3030 (((-582 $) $) NIL T ELT)) (-3026 (((-85) $ $) NIL (|has| |#1| (-1012)) ELT)) (-2286 (($) 7 T CONST)) (-3612 (($ (-693) |#1|) NIL T ELT)) (-3717 (((-85) $ (-693)) NIL T ELT)) (-2199 (((-483) $) 34 (|has| (-483) (-755)) ELT)) (-2530 (($ $ $) NIL (|has| |#1| (-755)) ELT)) (-2855 (($ $ $) NIL (|has| |#1| (-755)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) 66 T ELT)) (-3516 (($ $ $) NIL (|has| |#1| (-755)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT)) (-2607 (((-582 |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3244 (((-85) |#1| $) 61 (-12 (|has| $ (-6 -3993)) (|has| |#1| (-1012))) ELT)) (-2200 (((-483) $) NIL (|has| (-483) (-755)) ELT)) (-2856 (($ $ $) NIL (|has| |#1| (-755)) ELT)) (-1947 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3956 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3532 (($ |#1|) NIL T ELT)) (-3714 (((-85) $ (-693)) NIL T ELT)) (-3029 (((-582 |#1|) $) NIL T ELT)) (-3525 (((-85) $) NIL T ELT)) (-3241 (((-1071) $) 59 (|has| |#1| (-1012)) ELT)) (-3796 ((|#1| $) NIL T ELT) (($ $ (-693)) NIL T ELT)) (-3607 (($ $ $ (-483)) NIL T ELT) (($ |#1| $ (-483)) NIL T ELT)) (-2303 (($ $ $ (-483)) NIL T ELT) (($ |#1| $ (-483)) NIL T ELT)) (-2202 (((-582 (-483)) $) NIL T ELT)) (-2203 (((-85) (-483) $) NIL T ELT)) (-3242 (((-1032) $) NIL (|has| |#1| (-1012)) ELT)) (-3799 ((|#1| $) 16 T ELT) (($ $ (-693)) NIL T ELT)) (-1352 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2198 (($ $ |#1|) NIL (|has| $ (-6 -3994)) ELT)) (-3442 (((-85) $) NIL T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3766 (($ $ (-582 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-582 |#1|) (-582 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT)) (-1220 (((-85) $ $) 15 T ELT)) (-2201 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#1| (-1012))) ELT)) (-2204 (((-582 |#1|) $) NIL T ELT)) (-3401 (((-85) $) 20 T ELT)) (-3563 (($) 19 T ELT)) (-3798 ((|#1| $ #1#) NIL T ELT) ((|#1| $ #2#) 18 T ELT) (($ $ #3#) 23 T ELT) ((|#1| $ #4#) NIL T ELT) (($ $ (-1144 (-483))) NIL T ELT) ((|#1| $ (-483)) 78 T ELT) ((|#1| $ (-483) |#1|) NIL T ELT)) (-3028 (((-483) $ $) NIL T ELT)) (-1569 (($ $ (-1144 (-483))) NIL T ELT) (($ $ (-483)) NIL T ELT)) (-2304 (($ $ (-1144 (-483))) NIL T ELT) (($ $ (-483)) NIL T ELT)) (-3631 (((-85) $) NIL T ELT)) (-3790 (($ $) NIL T ELT)) (-3788 (($ $) NIL (|has| $ (-6 -3994)) ELT)) (-3791 (((-693) $) NIL T ELT)) (-3792 (($ $) 40 T ELT)) (-1944 (((-693) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3993)) ELT) (((-693) |#1| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#1| (-1012))) ELT)) (-1729 (($ $ $ (-483)) NIL (|has| $ (-6 -3994)) ELT)) (-3398 (($ $) 36 T ELT)) (-3970 (((-472) $) 87 (|has| |#1| (-552 (-472))) ELT)) (-3528 (($ (-582 |#1|)) 29 T ELT)) (-3459 (($ |#1| $) 10 T ELT)) (-3789 (($ $ $) 62 T ELT) (($ $ |#1|) NIL T ELT)) (-3800 (($ $ $) 72 T ELT) (($ |#1| $) 14 T ELT) (($ (-582 $)) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3944 (((-771) $) 51 (|has| |#1| (-551 (-771))) ELT)) (-3520 (((-582 $) $) NIL T ELT)) (-3027 (((-85) $ $) NIL (|has| |#1| (-1012)) ELT)) (-1263 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2284 (($ $ $) 11 T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-2565 (((-85) $ $) NIL (|has| |#1| (-755)) ELT)) (-2566 (((-85) $ $) NIL (|has| |#1| (-755)) ELT)) (-3055 (((-85) $ $) 55 (|has| |#1| (-72)) ELT)) (-2683 (((-85) $ $) NIL (|has| |#1| (-755)) ELT)) (-2684 (((-85) $ $) NIL (|has| |#1| (-755)) ELT)) (-3955 (((-693) $) 13 (|has| $ (-6 -3993)) ELT))) -(((-582 |#1|) (-13 (-607 |#1|) (-10 -8 (-15 -2286 ($) -3950) (-15 -2285 ((-85) $)) (-15 -3459 ($ |#1| $)) (-15 -2284 ($ $ $)) (IF (|has| |#1| (-1012)) (PROGN (-15 -2283 ($ $ $)) (-15 -2282 ($ $ $)) (-15 -2281 ($ $ $))) |%noBranch|))) (-1127)) (T -582)) -((-2286 (*1 *1) (-12 (-5 *1 (-582 *2)) (-4 *2 (-1127)))) (-2285 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-582 *3)) (-4 *3 (-1127)))) (-3459 (*1 *1 *2 *1) (-12 (-5 *1 (-582 *2)) (-4 *2 (-1127)))) (-2284 (*1 *1 *1 *1) (-12 (-5 *1 (-582 *2)) (-4 *2 (-1127)))) (-2283 (*1 *1 *1 *1) (-12 (-5 *1 (-582 *2)) (-4 *2 (-1012)) (-4 *2 (-1127)))) (-2282 (*1 *1 *1 *1) (-12 (-5 *1 (-582 *2)) (-4 *2 (-1012)) (-4 *2 (-1127)))) (-2281 (*1 *1 *1 *1) (-12 (-5 *1 (-582 *2)) (-4 *2 (-1012)) (-4 *2 (-1127))))) -((-3839 (((-582 |#2|) (-1 |#2| |#1| |#2|) (-582 |#1|) |#2|) 16 T ELT)) (-3840 ((|#2| (-1 |#2| |#1| |#2|) (-582 |#1|) |#2|) 18 T ELT)) (-3956 (((-582 |#2|) (-1 |#2| |#1|) (-582 |#1|)) 13 T ELT))) -(((-583 |#1| |#2|) (-10 -7 (-15 -3839 ((-582 |#2|) (-1 |#2| |#1| |#2|) (-582 |#1|) |#2|)) (-15 -3840 (|#2| (-1 |#2| |#1| |#2|) (-582 |#1|) |#2|)) (-15 -3956 ((-582 |#2|) (-1 |#2| |#1|) (-582 |#1|)))) (-1127) (-1127)) (T -583)) -((-3956 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-582 *5)) (-4 *5 (-1127)) (-4 *6 (-1127)) (-5 *2 (-582 *6)) (-5 *1 (-583 *5 *6)))) (-3840 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-582 *5)) (-4 *5 (-1127)) (-4 *2 (-1127)) (-5 *1 (-583 *5 *2)))) (-3839 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-582 *6)) (-4 *6 (-1127)) (-4 *5 (-1127)) (-5 *2 (-582 *5)) (-5 *1 (-583 *6 *5))))) -((-3420 ((|#2| (-582 |#1|) (-582 |#2|) |#1| (-1 |#2| |#1|)) 18 T ELT) (((-1 |#2| |#1|) (-582 |#1|) (-582 |#2|) (-1 |#2| |#1|)) 19 T ELT) ((|#2| (-582 |#1|) (-582 |#2|) |#1| |#2|) 16 T ELT) (((-1 |#2| |#1|) (-582 |#1|) (-582 |#2|) |#2|) 17 T ELT) ((|#2| (-582 |#1|) (-582 |#2|) |#1|) 10 T ELT) (((-1 |#2| |#1|) (-582 |#1|) (-582 |#2|)) 12 T ELT))) -(((-584 |#1| |#2|) (-10 -7 (-15 -3420 ((-1 |#2| |#1|) (-582 |#1|) (-582 |#2|))) (-15 -3420 (|#2| (-582 |#1|) (-582 |#2|) |#1|)) (-15 -3420 ((-1 |#2| |#1|) (-582 |#1|) (-582 |#2|) |#2|)) (-15 -3420 (|#2| (-582 |#1|) (-582 |#2|) |#1| |#2|)) (-15 -3420 ((-1 |#2| |#1|) (-582 |#1|) (-582 |#2|) (-1 |#2| |#1|))) (-15 -3420 (|#2| (-582 |#1|) (-582 |#2|) |#1| (-1 |#2| |#1|)))) (-1012) (-1127)) (T -584)) -((-3420 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-582 *5)) (-5 *4 (-582 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1012)) (-4 *2 (-1127)) (-5 *1 (-584 *5 *2)))) (-3420 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-582 *5)) (-5 *4 (-582 *6)) (-4 *5 (-1012)) (-4 *6 (-1127)) (-5 *1 (-584 *5 *6)))) (-3420 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-582 *5)) (-5 *4 (-582 *2)) (-4 *5 (-1012)) (-4 *2 (-1127)) (-5 *1 (-584 *5 *2)))) (-3420 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-582 *6)) (-5 *4 (-582 *5)) (-4 *6 (-1012)) (-4 *5 (-1127)) (-5 *2 (-1 *5 *6)) (-5 *1 (-584 *6 *5)))) (-3420 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-582 *5)) (-5 *4 (-582 *2)) (-4 *5 (-1012)) (-4 *2 (-1127)) (-5 *1 (-584 *5 *2)))) (-3420 (*1 *2 *3 *4) (-12 (-5 *3 (-582 *5)) (-5 *4 (-582 *6)) (-4 *5 (-1012)) (-4 *6 (-1127)) (-5 *2 (-1 *6 *5)) (-5 *1 (-584 *5 *6))))) -((-3956 (((-582 |#3|) (-1 |#3| |#1| |#2|) (-582 |#1|) (-582 |#2|)) 21 T ELT))) -(((-585 |#1| |#2| |#3|) (-10 -7 (-15 -3956 ((-582 |#3|) (-1 |#3| |#1| |#2|) (-582 |#1|) (-582 |#2|)))) (-1127) (-1127) (-1127)) (T -585)) -((-3956 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-582 *6)) (-5 *5 (-582 *7)) (-4 *6 (-1127)) (-4 *7 (-1127)) (-4 *8 (-1127)) (-5 *2 (-582 *8)) (-5 *1 (-585 *6 *7 *8))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3944 (((-771) $) 11 T ELT) (($ (-1093)) NIL T ELT) (((-1093) $) NIL T ELT) ((|#1| $) 8 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-586 |#1|) (-13 (-994) (-551 |#1|)) (-1012)) (T -586)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-3241 (((-1071) $) 11 T ELT)) (-3242 (((-1032) $) 12 T ELT)) (-3944 (((-771) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-3055 (((-85) $ $) 8 T ELT)) (* (($ |#1| $) 17 T ELT))) -(((-587 |#1|) (-113) (-1024)) (T -587)) -((* (*1 *1 *2 *1) (-12 (-4 *1 (-587 *2)) (-4 *2 (-1024))))) -(-13 (-1012) (-10 -8 (-15 * ($ |t#1| $)))) -(((-72) . T) ((-551 (-771)) . T) ((-13) . T) ((-1012) . T) ((-1127) . T)) -((-2567 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2287 (($ |#1| |#1| $) 45 T ELT)) (-1568 (($ (-1 (-85) |#1|) $) 61 (|has| $ (-6 -3993)) ELT)) (-3708 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3722 (($) NIL T CONST)) (-2367 (($ $) 47 T ELT)) (-1351 (($ $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#1| (-1012))) ELT)) (-3403 (($ |#1| $) 58 (|has| $ (-6 -3993)) ELT) (($ (-1 (-85) |#1|) $) 60 (|has| $ (-6 -3993)) ELT)) (-3404 (($ |#1| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#1| (-1012))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3840 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3993)) (|has| |#1| (-1012))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3993)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-2888 (((-582 |#1|) $) 9 (|has| $ (-6 -3993)) ELT)) (-2607 (((-582 |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3244 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#1| (-1012))) ELT)) (-1947 (($ (-1 |#1| |#1|) $) 41 (|has| $ (-6 -3994)) ELT)) (-3956 (($ (-1 |#1| |#1|) $) 39 T ELT)) (-3241 (((-1071) $) NIL (|has| |#1| (-1012)) ELT)) (-1272 ((|#1| $) 49 T ELT)) (-3607 (($ |#1| $) 30 T ELT) (($ |#1| $ (-693)) 44 T ELT)) (-3242 (((-1032) $) NIL (|has| |#1| (-1012)) ELT)) (-1352 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-1273 ((|#1| $) 52 T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3766 (($ $ (-582 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-582 |#1|) (-582 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-3401 (((-85) $) 23 T ELT)) (-3563 (($) 29 T ELT)) (-2288 (((-85) $) 56 T ELT)) (-2366 (((-582 (-2 (|:| |entry| |#1|) (|:| -1944 (-693)))) $) 69 T ELT)) (-1464 (($) 26 T ELT) (($ (-582 |#1|)) 19 T ELT)) (-1944 (((-693) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3993)) ELT) (((-693) |#1| $) 65 (-12 (|has| $ (-6 -3993)) (|has| |#1| (-1012))) ELT)) (-3398 (($ $) 20 T ELT)) (-3970 (((-472) $) 36 (|has| |#1| (-552 (-472))) ELT)) (-3528 (($ (-582 |#1|)) NIL T ELT)) (-3944 (((-771) $) 14 (|has| |#1| (-551 (-771))) ELT)) (-1263 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1274 (($ (-582 |#1|)) 24 T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3055 (((-85) $ $) 71 (|has| |#1| (-72)) ELT)) (-3955 (((-693) $) 17 (|has| $ (-6 -3993)) ELT))) -(((-588 |#1|) (-13 (-633 |#1|) (-10 -8 (-6 -3993) (-15 -2288 ((-85) $)) (-15 -2287 ($ |#1| |#1| $)))) (-1012)) (T -588)) -((-2288 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-588 *3)) (-4 *3 (-1012)))) (-2287 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-588 *2)) (-4 *2 (-1012))))) -((-2567 (((-85) $ $) 7 T ELT)) (-3187 (((-85) $) 22 T ELT)) (-1310 (((-3 $ "failed") $ $) 26 T ELT)) (-3722 (($) 23 T CONST)) (-1212 (((-85) $ $) 20 T ELT)) (-3241 (((-1071) $) 11 T ELT)) (-3242 (((-1032) $) 12 T ELT)) (-3944 (((-771) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2659 (($) 24 T CONST)) (-3055 (((-85) $ $) 8 T ELT)) (-3835 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3837 (($ $ $) 18 T ELT)) (* (($ (-829) $) 17 T ELT) (($ (-693) $) 21 T ELT) (($ (-483) $) 30 T ELT) (($ |#1| $) 33 T ELT))) -(((-589 |#1|) (-113) (-969)) (T -589)) -NIL -(-13 (-21) (-587 |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-551 (-771)) . T) ((-13) . T) ((-587 (-483)) . T) ((-587 |#1|) . T) ((-1012) . T) ((-1127) . T)) -((-2567 (((-85) $ $) NIL T ELT)) (-3135 (((-693) $) 17 T ELT)) (-2294 (($ $ |#1|) 68 T ELT)) (-2296 (($ $) 39 T ELT)) (-2297 (($ $) 37 T ELT)) (-3156 (((-3 |#1| "failed") $) 60 T ELT)) (-3155 ((|#1| $) NIL T ELT)) (-2292 (($ |#1| |#2| $) 77 T ELT) (($ $ $) 79 T ELT)) (-3531 (((-771) $ (-1 (-771) (-771) (-771)) (-1 (-771) (-771) (-771)) (-483)) 55 T ELT)) (-2298 ((|#1| $ (-483)) 35 T ELT)) (-2299 ((|#2| $ (-483)) 34 T ELT)) (-2289 (($ (-1 |#1| |#1|) $) 41 T ELT)) (-2290 (($ (-1 |#2| |#2|) $) 46 T ELT)) (-2295 (($) 13 T ELT)) (-2301 (($ |#1| |#2|) 24 T ELT)) (-2300 (($ (-582 (-2 (|:| |gen| |#1|) (|:| -3941 |#2|)))) 25 T ELT)) (-2302 (((-582 (-2 (|:| |gen| |#1|) (|:| -3941 |#2|))) $) 14 T ELT)) (-2293 (($ |#1| $) 69 T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-2291 (((-85) $ $) 74 T ELT)) (-3944 (((-771) $) 21 T ELT) (($ |#1|) 18 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) 27 T ELT))) -(((-590 |#1| |#2| |#3|) (-13 (-1012) (-949 |#1|) (-10 -8 (-15 -3531 ((-771) $ (-1 (-771) (-771) (-771)) (-1 (-771) (-771) (-771)) (-483))) (-15 -2302 ((-582 (-2 (|:| |gen| |#1|) (|:| -3941 |#2|))) $)) (-15 -2301 ($ |#1| |#2|)) (-15 -2300 ($ (-582 (-2 (|:| |gen| |#1|) (|:| -3941 |#2|))))) (-15 -2299 (|#2| $ (-483))) (-15 -2298 (|#1| $ (-483))) (-15 -2297 ($ $)) (-15 -2296 ($ $)) (-15 -3135 ((-693) $)) (-15 -2295 ($)) (-15 -2294 ($ $ |#1|)) (-15 -2293 ($ |#1| $)) (-15 -2292 ($ |#1| |#2| $)) (-15 -2292 ($ $ $)) (-15 -2291 ((-85) $ $)) (-15 -2290 ($ (-1 |#2| |#2|) $)) (-15 -2289 ($ (-1 |#1| |#1|) $)))) (-1012) (-23) |#2|) (T -590)) -((-3531 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-771) (-771) (-771))) (-5 *4 (-483)) (-5 *2 (-771)) (-5 *1 (-590 *5 *6 *7)) (-4 *5 (-1012)) (-4 *6 (-23)) (-14 *7 *6))) (-2302 (*1 *2 *1) (-12 (-5 *2 (-582 (-2 (|:| |gen| *3) (|:| -3941 *4)))) (-5 *1 (-590 *3 *4 *5)) (-4 *3 (-1012)) (-4 *4 (-23)) (-14 *5 *4))) (-2301 (*1 *1 *2 *3) (-12 (-5 *1 (-590 *2 *3 *4)) (-4 *2 (-1012)) (-4 *3 (-23)) (-14 *4 *3))) (-2300 (*1 *1 *2) (-12 (-5 *2 (-582 (-2 (|:| |gen| *3) (|:| -3941 *4)))) (-4 *3 (-1012)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-590 *3 *4 *5)))) (-2299 (*1 *2 *1 *3) (-12 (-5 *3 (-483)) (-4 *2 (-23)) (-5 *1 (-590 *4 *2 *5)) (-4 *4 (-1012)) (-14 *5 *2))) (-2298 (*1 *2 *1 *3) (-12 (-5 *3 (-483)) (-4 *2 (-1012)) (-5 *1 (-590 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-2297 (*1 *1 *1) (-12 (-5 *1 (-590 *2 *3 *4)) (-4 *2 (-1012)) (-4 *3 (-23)) (-14 *4 *3))) (-2296 (*1 *1 *1) (-12 (-5 *1 (-590 *2 *3 *4)) (-4 *2 (-1012)) (-4 *3 (-23)) (-14 *4 *3))) (-3135 (*1 *2 *1) (-12 (-5 *2 (-693)) (-5 *1 (-590 *3 *4 *5)) (-4 *3 (-1012)) (-4 *4 (-23)) (-14 *5 *4))) (-2295 (*1 *1) (-12 (-5 *1 (-590 *2 *3 *4)) (-4 *2 (-1012)) (-4 *3 (-23)) (-14 *4 *3))) (-2294 (*1 *1 *1 *2) (-12 (-5 *1 (-590 *2 *3 *4)) (-4 *2 (-1012)) (-4 *3 (-23)) (-14 *4 *3))) (-2293 (*1 *1 *2 *1) (-12 (-5 *1 (-590 *2 *3 *4)) (-4 *2 (-1012)) (-4 *3 (-23)) (-14 *4 *3))) (-2292 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-590 *2 *3 *4)) (-4 *2 (-1012)) (-4 *3 (-23)) (-14 *4 *3))) (-2292 (*1 *1 *1 *1) (-12 (-5 *1 (-590 *2 *3 *4)) (-4 *2 (-1012)) (-4 *3 (-23)) (-14 *4 *3))) (-2291 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-590 *3 *4 *5)) (-4 *3 (-1012)) (-4 *4 (-23)) (-14 *5 *4))) (-2290 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-590 *3 *4 *5)) (-4 *3 (-1012)))) (-2289 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1012)) (-5 *1 (-590 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4)))) -((-2200 (((-483) $) 30 T ELT)) (-2303 (($ |#2| $ (-483)) 26 T ELT) (($ $ $ (-483)) NIL T ELT)) (-2202 (((-582 (-483)) $) 12 T ELT)) (-2203 (((-85) (-483) $) 17 T ELT)) (-3800 (($ $ |#2|) 23 T ELT) (($ |#2| $) 24 T ELT) (($ $ $) NIL T ELT) (($ (-582 $)) NIL T ELT))) -(((-591 |#1| |#2|) (-10 -7 (-15 -2303 (|#1| |#1| |#1| (-483))) (-15 -2303 (|#1| |#2| |#1| (-483))) (-15 -3800 (|#1| (-582 |#1|))) (-15 -3800 (|#1| |#1| |#1|)) (-15 -3800 (|#1| |#2| |#1|)) (-15 -3800 (|#1| |#1| |#2|)) (-15 -2200 ((-483) |#1|)) (-15 -2202 ((-582 (-483)) |#1|)) (-15 -2203 ((-85) (-483) |#1|))) (-592 |#2|) (-1127)) (T -591)) -NIL -((-2567 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-2197 (((-1183) $ (-483) (-483)) 44 (|has| $ (-6 -3994)) ELT)) (-3786 ((|#1| $ (-483) |#1|) 56 (|has| $ (-6 -3994)) ELT) ((|#1| $ (-1144 (-483)) |#1|) 64 (|has| $ (-6 -3994)) ELT)) (-3708 (($ (-1 (-85) |#1|) $) 81 (|has| $ (-6 -3993)) ELT)) (-3722 (($) 7 T CONST)) (-1351 (($ $) 84 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3993))) ELT)) (-3404 (($ |#1| $) 83 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3993))) ELT) (($ (-1 (-85) |#1|) $) 80 (|has| $ (-6 -3993)) ELT)) (-3840 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3993))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -3993)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -3993)) ELT)) (-1574 ((|#1| $ (-483) |#1|) 57 (|has| $ (-6 -3994)) ELT)) (-3111 ((|#1| $ (-483)) 55 T ELT)) (-2888 (((-582 |#1|) $) 30 (|has| $ (-6 -3993)) ELT)) (-3612 (($ (-693) |#1|) 74 T ELT)) (-2199 (((-483) $) 47 (|has| (-483) (-755)) ELT)) (-2607 (((-582 |#1|) $) 29 (|has| $ (-6 -3993)) ELT)) (-3244 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3993))) ELT)) (-2200 (((-483) $) 48 (|has| (-483) (-755)) ELT)) (-1947 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3994)) ELT)) (-3956 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-3241 (((-1071) $) 22 (|has| |#1| (-1012)) ELT)) (-2303 (($ |#1| $ (-483)) 66 T ELT) (($ $ $ (-483)) 65 T ELT)) (-2202 (((-582 (-483)) $) 50 T ELT)) (-2203 (((-85) (-483) $) 51 T ELT)) (-3242 (((-1032) $) 21 (|has| |#1| (-1012)) ELT)) (-3799 ((|#1| $) 46 (|has| (-483) (-755)) ELT)) (-1352 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 77 T ELT)) (-2198 (($ $ |#1|) 45 (|has| $ (-6 -3994)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3993)) ELT)) (-3766 (($ $ (-582 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-582 |#1|) (-582 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT)) (-1220 (((-85) $ $) 11 T ELT)) (-2201 (((-85) |#1| $) 49 (-12 (|has| $ (-6 -3993)) (|has| |#1| (-1012))) ELT)) (-2204 (((-582 |#1|) $) 52 T ELT)) (-3401 (((-85) $) 8 T ELT)) (-3563 (($) 9 T ELT)) (-3798 ((|#1| $ (-483) |#1|) 54 T ELT) ((|#1| $ (-483)) 53 T ELT) (($ $ (-1144 (-483))) 75 T ELT)) (-2304 (($ $ (-483)) 68 T ELT) (($ $ (-1144 (-483))) 67 T ELT)) (-1944 (((-693) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3993)) ELT) (((-693) |#1| $) 28 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3993))) ELT)) (-3398 (($ $) 10 T ELT)) (-3970 (((-472) $) 85 (|has| |#1| (-552 (-472))) ELT)) (-3528 (($ (-582 |#1|)) 76 T ELT)) (-3800 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-582 $)) 70 T ELT)) (-3944 (((-771) $) 17 (|has| |#1| (-551 (-771))) ELT)) (-1263 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3993)) ELT)) (-3055 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3955 (((-693) $) 6 (|has| $ (-6 -3993)) ELT))) -(((-592 |#1|) (-113) (-1127)) (T -592)) -((-3612 (*1 *1 *2 *3) (-12 (-5 *2 (-693)) (-4 *1 (-592 *3)) (-4 *3 (-1127)))) (-3800 (*1 *1 *1 *2) (-12 (-4 *1 (-592 *2)) (-4 *2 (-1127)))) (-3800 (*1 *1 *2 *1) (-12 (-4 *1 (-592 *2)) (-4 *2 (-1127)))) (-3800 (*1 *1 *1 *1) (-12 (-4 *1 (-592 *2)) (-4 *2 (-1127)))) (-3800 (*1 *1 *2) (-12 (-5 *2 (-582 *1)) (-4 *1 (-592 *3)) (-4 *3 (-1127)))) (-3956 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-592 *3)) (-4 *3 (-1127)))) (-2304 (*1 *1 *1 *2) (-12 (-5 *2 (-483)) (-4 *1 (-592 *3)) (-4 *3 (-1127)))) (-2304 (*1 *1 *1 *2) (-12 (-5 *2 (-1144 (-483))) (-4 *1 (-592 *3)) (-4 *3 (-1127)))) (-2303 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-483)) (-4 *1 (-592 *2)) (-4 *2 (-1127)))) (-2303 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-483)) (-4 *1 (-592 *3)) (-4 *3 (-1127)))) (-3786 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1144 (-483))) (|has| *1 (-6 -3994)) (-4 *1 (-592 *2)) (-4 *2 (-1127))))) -(-13 (-537 (-483) |t#1|) (-124 |t#1|) (-241 (-1144 (-483)) $) (-10 -8 (-15 -3612 ($ (-693) |t#1|)) (-15 -3800 ($ $ |t#1|)) (-15 -3800 ($ |t#1| $)) (-15 -3800 ($ $ $)) (-15 -3800 ($ (-582 $))) (-15 -3956 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -2304 ($ $ (-483))) (-15 -2304 ($ $ (-1144 (-483)))) (-15 -2303 ($ |t#1| $ (-483))) (-15 -2303 ($ $ $ (-483))) (IF (|has| $ (-6 -3994)) (-15 -3786 (|t#1| $ (-1144 (-483)) |t#1|)) |%noBranch|))) -(((-34) . T) ((-72) OR (|has| |#1| (-1012)) (|has| |#1| (-72))) ((-551 (-771)) OR (|has| |#1| (-1012)) (|has| |#1| (-551 (-771)))) ((-124 |#1|) . T) ((-552 (-472)) |has| |#1| (-552 (-472))) ((-241 (-483) |#1|) . T) ((-241 (-1144 (-483)) $) . T) ((-243 (-483) |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ((-427 |#1|) . T) ((-537 (-483) |#1|) . T) ((-454 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ((-13) . T) ((-1012) |has| |#1| (-1012)) ((-1127) . T)) -((-2567 (((-85) $ $) NIL T ELT)) (-3187 (((-85) $) 15 T ELT)) (-1310 (((-3 $ "failed") $ $) NIL T ELT)) (-3621 (((-483) $) NIL (|has| |#1| (-713)) ELT)) (-3722 (($) NIL T CONST)) (-3185 (((-85) $) NIL (|has| |#1| (-713)) ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-2997 ((|#1| $) 23 T ELT)) (-3186 (((-85) $) NIL (|has| |#1| (-713)) ELT)) (-2530 (($ $ $) NIL (|has| |#1| (-713)) ELT)) (-2856 (($ $ $) NIL (|has| |#1| (-713)) ELT)) (-3241 (((-1071) $) 48 T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-2996 ((|#3| $) 24 T ELT)) (-3944 (((-771) $) 43 T ELT)) (-1263 (((-85) $ $) 22 T ELT)) (-3381 (($ $) NIL (|has| |#1| (-713)) ELT)) (-2659 (($) 10 T CONST)) (-2565 (((-85) $ $) NIL (|has| |#1| (-713)) ELT)) (-2566 (((-85) $ $) NIL (|has| |#1| (-713)) ELT)) (-3055 (((-85) $ $) 20 T ELT)) (-2683 (((-85) $ $) NIL (|has| |#1| (-713)) ELT)) (-2684 (((-85) $ $) 26 (|has| |#1| (-713)) ELT)) (-3947 (($ $ |#3|) 36 T ELT) (($ |#1| |#3|) 37 T ELT)) (-3835 (($ $) 17 T ELT) (($ $ $) NIL T ELT)) (-3837 (($ $ $) 29 T ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-483) $) 32 T ELT) (($ |#2| $) 34 T ELT) (($ $ |#2|) NIL T ELT))) -(((-593 |#1| |#2| |#3|) (-13 (-653 |#2|) (-10 -8 (IF (|has| |#1| (-713)) (-6 (-713)) |%noBranch|) (-15 -3947 ($ $ |#3|)) (-15 -3947 ($ |#1| |#3|)) (-15 -2997 (|#1| $)) (-15 -2996 (|#3| $)))) (-653 |#2|) (-146) (|SubsetCategory| (-662) |#2|)) (T -593)) -((-3947 (*1 *1 *1 *2) (-12 (-4 *4 (-146)) (-5 *1 (-593 *3 *4 *2)) (-4 *3 (-653 *4)) (-4 *2 (|SubsetCategory| (-662) *4)))) (-3947 (*1 *1 *2 *3) (-12 (-4 *4 (-146)) (-5 *1 (-593 *2 *4 *3)) (-4 *2 (-653 *4)) (-4 *3 (|SubsetCategory| (-662) *4)))) (-2997 (*1 *2 *1) (-12 (-4 *3 (-146)) (-4 *2 (-653 *3)) (-5 *1 (-593 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-662) *3)))) (-2996 (*1 *2 *1) (-12 (-4 *4 (-146)) (-4 *2 (|SubsetCategory| (-662) *4)) (-5 *1 (-593 *3 *4 *2)) (-4 *3 (-653 *4))))) -((-3571 (((-3 |#2| #1="failed") |#3| |#2| (-1088) |#2| (-582 |#2|)) 174 T ELT) (((-3 (-2 (|:| |particular| |#2|) (|:| -2011 (-582 |#2|))) #1#) |#3| |#2| (-1088)) 44 T ELT))) -(((-594 |#1| |#2| |#3|) (-10 -7 (-15 -3571 ((-3 (-2 (|:| |particular| |#2|) (|:| -2011 (-582 |#2|))) #1="failed") |#3| |#2| (-1088))) (-15 -3571 ((-3 |#2| #1#) |#3| |#2| (-1088) |#2| (-582 |#2|)))) (-13 (-258) (-949 (-483)) (-579 (-483)) (-120)) (-13 (-29 |#1|) (-1113) (-870)) (-599 |#2|)) (T -594)) -((-3571 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1088)) (-5 *5 (-582 *2)) (-4 *2 (-13 (-29 *6) (-1113) (-870))) (-4 *6 (-13 (-258) (-949 (-483)) (-579 (-483)) (-120))) (-5 *1 (-594 *6 *2 *3)) (-4 *3 (-599 *2)))) (-3571 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1088)) (-4 *6 (-13 (-258) (-949 (-483)) (-579 (-483)) (-120))) (-4 *4 (-13 (-29 *6) (-1113) (-870))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2011 (-582 *4)))) (-5 *1 (-594 *6 *4 *3)) (-4 *3 (-599 *4))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3187 (((-85) $) NIL T ELT)) (-2305 (($ $) NIL (|has| |#1| (-312)) ELT)) (-2307 (($ $ $) 28 (|has| |#1| (-312)) ELT)) (-2308 (($ $ (-693)) 31 (|has| |#1| (-312)) ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3722 (($) NIL T CONST)) (-2535 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2536 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2537 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2533 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2532 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-2534 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-2548 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3156 (((-3 (-483) #1#) $) NIL (|has| |#1| (-949 (-483))) ELT) (((-3 (-348 (-483)) #1#) $) NIL (|has| |#1| (-949 (-348 (-483)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3155 (((-483) $) NIL (|has| |#1| (-949 (-483))) ELT) (((-348 (-483)) $) NIL (|has| |#1| (-949 (-348 (-483)))) ELT) ((|#1| $) NIL T ELT)) (-3957 (($ $) NIL T ELT)) (-3465 (((-3 $ #1#) $) NIL T ELT)) (-3501 (($ $) NIL (|has| |#1| (-390)) ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-2409 (((-85) $) NIL T ELT)) (-2892 (($ |#1| (-693)) NIL T ELT)) (-2546 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL (|has| |#1| (-494)) ELT)) (-2545 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL (|has| |#1| (-494)) ELT)) (-2819 (((-693) $) NIL T ELT)) (-2541 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2542 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2531 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2539 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2538 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-2540 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-2547 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3173 ((|#1| $) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3464 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-494)) ELT)) (-3798 ((|#1| $ |#1|) 24 T ELT)) (-2309 (($ $ $) 33 (|has| |#1| (-312)) ELT)) (-3946 (((-693) $) NIL T ELT)) (-2816 ((|#1| $) NIL (|has| |#1| (-390)) ELT)) (-3944 (((-771) $) 20 T ELT) (($ (-483)) NIL T ELT) (($ (-348 (-483))) NIL (|has| |#1| (-949 (-348 (-483)))) ELT) (($ |#1|) NIL T ELT)) (-3815 (((-582 |#1|) $) NIL T ELT)) (-3675 ((|#1| $ (-693)) NIL T ELT)) (-3125 (((-693)) NIL T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-2544 ((|#1| $ |#1| |#1|) 23 T ELT)) (-3124 (((-85) $ $) NIL T ELT)) (-2519 (($ $) NIL T ELT)) (-2659 (($) 21 T CONST)) (-2665 (($) 8 T CONST)) (-2668 (($) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-3835 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3837 (($ $ $) NIL T ELT)) (** (($ $ (-829)) NIL T ELT) (($ $ (-693)) NIL T ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-595 |#1| |#2|) (-599 |#1|) (-960) (-1 |#1| |#1|)) (T -595)) -NIL -((-2567 (((-85) $ $) NIL T ELT)) (-3187 (((-85) $) NIL T ELT)) (-2305 (($ $) NIL (|has| |#1| (-312)) ELT)) (-2307 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2308 (($ $ (-693)) NIL (|has| |#1| (-312)) ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3722 (($) NIL T CONST)) (-2535 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2536 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2537 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2533 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2532 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-2534 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-2548 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3156 (((-3 (-483) #1#) $) NIL (|has| |#1| (-949 (-483))) ELT) (((-3 (-348 (-483)) #1#) $) NIL (|has| |#1| (-949 (-348 (-483)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3155 (((-483) $) NIL (|has| |#1| (-949 (-483))) ELT) (((-348 (-483)) $) NIL (|has| |#1| (-949 (-348 (-483)))) ELT) ((|#1| $) NIL T ELT)) (-3957 (($ $) NIL T ELT)) (-3465 (((-3 $ #1#) $) NIL T ELT)) (-3501 (($ $) NIL (|has| |#1| (-390)) ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-2409 (((-85) $) NIL T ELT)) (-2892 (($ |#1| (-693)) NIL T ELT)) (-2546 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL (|has| |#1| (-494)) ELT)) (-2545 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL (|has| |#1| (-494)) ELT)) (-2819 (((-693) $) NIL T ELT)) (-2541 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2542 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2531 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2539 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2538 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-2540 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-2547 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3173 ((|#1| $) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3464 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-494)) ELT)) (-3798 ((|#1| $ |#1|) NIL T ELT)) (-2309 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3946 (((-693) $) NIL T ELT)) (-2816 ((|#1| $) NIL (|has| |#1| (-390)) ELT)) (-3944 (((-771) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ (-348 (-483))) NIL (|has| |#1| (-949 (-348 (-483)))) ELT) (($ |#1|) NIL T ELT)) (-3815 (((-582 |#1|) $) NIL T ELT)) (-3675 ((|#1| $ (-693)) NIL T ELT)) (-3125 (((-693)) NIL T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-2544 ((|#1| $ |#1| |#1|) NIL T ELT)) (-3124 (((-85) $ $) NIL T ELT)) (-2519 (($ $) NIL T ELT)) (-2659 (($) NIL T CONST)) (-2665 (($) NIL T CONST)) (-2668 (($) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-3835 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3837 (($ $ $) NIL T ELT)) (** (($ $ (-829)) NIL T ELT) (($ $ (-693)) NIL T ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-596 |#1|) (-599 |#1|) (-190)) (T -596)) -NIL -((-2567 (((-85) $ $) NIL T ELT)) (-3187 (((-85) $) NIL T ELT)) (-2305 (($ $) NIL (|has| |#1| (-312)) ELT)) (-2307 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2308 (($ $ (-693)) NIL (|has| |#1| (-312)) ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3722 (($) NIL T CONST)) (-2535 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2536 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2537 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2533 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2532 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-2534 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-2548 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3156 (((-3 (-483) #1#) $) NIL (|has| |#1| (-949 (-483))) ELT) (((-3 (-348 (-483)) #1#) $) NIL (|has| |#1| (-949 (-348 (-483)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3155 (((-483) $) NIL (|has| |#1| (-949 (-483))) ELT) (((-348 (-483)) $) NIL (|has| |#1| (-949 (-348 (-483)))) ELT) ((|#1| $) NIL T ELT)) (-3957 (($ $) NIL T ELT)) (-3465 (((-3 $ #1#) $) NIL T ELT)) (-3501 (($ $) NIL (|has| |#1| (-390)) ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-2409 (((-85) $) NIL T ELT)) (-2892 (($ |#1| (-693)) NIL T ELT)) (-2546 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL (|has| |#1| (-494)) ELT)) (-2545 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL (|has| |#1| (-494)) ELT)) (-2819 (((-693) $) NIL T ELT)) (-2541 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2542 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2531 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2539 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2538 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-2540 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-2547 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3173 ((|#1| $) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3464 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-494)) ELT)) (-3798 ((|#1| $ |#1|) NIL T ELT) ((|#2| $ |#2|) 13 T ELT)) (-2309 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3946 (((-693) $) NIL T ELT)) (-2816 ((|#1| $) NIL (|has| |#1| (-390)) ELT)) (-3944 (((-771) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ (-348 (-483))) NIL (|has| |#1| (-949 (-348 (-483)))) ELT) (($ |#1|) NIL T ELT)) (-3815 (((-582 |#1|) $) NIL T ELT)) (-3675 ((|#1| $ (-693)) NIL T ELT)) (-3125 (((-693)) NIL T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-2544 ((|#1| $ |#1| |#1|) NIL T ELT)) (-3124 (((-85) $ $) NIL T ELT)) (-2519 (($ $) NIL T ELT)) (-2659 (($) NIL T CONST)) (-2665 (($) NIL T CONST)) (-2668 (($) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-3835 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3837 (($ $ $) NIL T ELT)) (** (($ $ (-829)) NIL T ELT) (($ $ (-693)) NIL T ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-597 |#1| |#2|) (-13 (-599 |#1|) (-241 |#2| |#2|)) (-190) (-13 (-589 |#1|) (-10 -8 (-15 -3756 ($ $))))) (T -597)) -NIL -((-2305 (($ $) 29 T ELT)) (-2519 (($ $) 27 T ELT)) (-2668 (($) 13 T ELT))) -(((-598 |#1| |#2|) (-10 -7 (-15 -2305 (|#1| |#1|)) (-15 -2519 (|#1| |#1|)) (-15 -2668 (|#1|))) (-599 |#2|) (-960)) (T -598)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-3187 (((-85) $) 22 T ELT)) (-2305 (($ $) 96 (|has| |#1| (-312)) ELT)) (-2307 (($ $ $) 98 (|has| |#1| (-312)) ELT)) (-2308 (($ $ (-693)) 97 (|has| |#1| (-312)) ELT)) (-1310 (((-3 $ "failed") $ $) 26 T ELT)) (-3722 (($) 23 T CONST)) (-2535 (($ $ $) 58 (|has| |#1| (-312)) ELT)) (-2536 (($ $ $) 59 (|has| |#1| (-312)) ELT)) (-2537 (($ $ $) 61 (|has| |#1| (-312)) ELT)) (-2533 (($ $ $) 56 (|has| |#1| (-312)) ELT)) (-2532 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) 55 (|has| |#1| (-312)) ELT)) (-2534 (((-3 $ #1="failed") $ $) 57 (|has| |#1| (-312)) ELT)) (-2548 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) 60 (|has| |#1| (-312)) ELT)) (-3156 (((-3 (-483) #2="failed") $) 88 (|has| |#1| (-949 (-483))) ELT) (((-3 (-348 (-483)) #2#) $) 85 (|has| |#1| (-949 (-348 (-483)))) ELT) (((-3 |#1| #2#) $) 82 T ELT)) (-3155 (((-483) $) 87 (|has| |#1| (-949 (-483))) ELT) (((-348 (-483)) $) 84 (|has| |#1| (-949 (-348 (-483)))) ELT) ((|#1| $) 83 T ELT)) (-3957 (($ $) 77 T ELT)) (-3465 (((-3 $ "failed") $) 42 T ELT)) (-3501 (($ $) 68 (|has| |#1| (-390)) ELT)) (-1212 (((-85) $ $) 20 T ELT)) (-2409 (((-85) $) 44 T ELT)) (-2892 (($ |#1| (-693)) 75 T ELT)) (-2546 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) 70 (|has| |#1| (-494)) ELT)) (-2545 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) 71 (|has| |#1| (-494)) ELT)) (-2819 (((-693) $) 79 T ELT)) (-2541 (($ $ $) 65 (|has| |#1| (-312)) ELT)) (-2542 (($ $ $) 66 (|has| |#1| (-312)) ELT)) (-2531 (($ $ $) 54 (|has| |#1| (-312)) ELT)) (-2539 (($ $ $) 63 (|has| |#1| (-312)) ELT)) (-2538 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) 62 (|has| |#1| (-312)) ELT)) (-2540 (((-3 $ #1#) $ $) 64 (|has| |#1| (-312)) ELT)) (-2547 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) 67 (|has| |#1| (-312)) ELT)) (-3173 ((|#1| $) 78 T ELT)) (-3241 (((-1071) $) 11 T ELT)) (-3242 (((-1032) $) 12 T ELT)) (-3464 (((-3 $ #1#) $ |#1|) 72 (|has| |#1| (-494)) ELT)) (-3798 ((|#1| $ |#1|) 101 T ELT)) (-2309 (($ $ $) 95 (|has| |#1| (-312)) ELT)) (-3946 (((-693) $) 80 T ELT)) (-2816 ((|#1| $) 69 (|has| |#1| (-390)) ELT)) (-3944 (((-771) $) 13 T ELT) (($ (-483)) 41 T ELT) (($ (-348 (-483))) 86 (|has| |#1| (-949 (-348 (-483)))) ELT) (($ |#1|) 81 T ELT)) (-3815 (((-582 |#1|) $) 74 T ELT)) (-3675 ((|#1| $ (-693)) 76 T ELT)) (-3125 (((-693)) 40 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-2544 ((|#1| $ |#1| |#1|) 73 T ELT)) (-3124 (((-85) $ $) 33 T ELT)) (-2519 (($ $) 99 T ELT)) (-2659 (($) 24 T CONST)) (-2665 (($) 45 T CONST)) (-2668 (($) 100 T ELT)) (-3055 (((-85) $ $) 8 T ELT)) (-3835 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3837 (($ $ $) 18 T ELT)) (** (($ $ (-829)) 35 T ELT) (($ $ (-693)) 43 T ELT)) (* (($ (-829) $) 17 T ELT) (($ (-693) $) 21 T ELT) (($ (-483) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 90 T ELT) (($ |#1| $) 89 T ELT))) -(((-599 |#1|) (-113) (-960)) (T -599)) -((-2668 (*1 *1) (-12 (-4 *1 (-599 *2)) (-4 *2 (-960)))) (-2519 (*1 *1 *1) (-12 (-4 *1 (-599 *2)) (-4 *2 (-960)))) (-2307 (*1 *1 *1 *1) (-12 (-4 *1 (-599 *2)) (-4 *2 (-960)) (-4 *2 (-312)))) (-2308 (*1 *1 *1 *2) (-12 (-5 *2 (-693)) (-4 *1 (-599 *3)) (-4 *3 (-960)) (-4 *3 (-312)))) (-2305 (*1 *1 *1) (-12 (-4 *1 (-599 *2)) (-4 *2 (-960)) (-4 *2 (-312)))) (-2309 (*1 *1 *1 *1) (-12 (-4 *1 (-599 *2)) (-4 *2 (-960)) (-4 *2 (-312))))) -(-13 (-760 |t#1|) (-241 |t#1| |t#1|) (-10 -8 (-15 -2668 ($)) (-15 -2519 ($ $)) (IF (|has| |t#1| (-312)) (PROGN (-15 -2307 ($ $ $)) (-15 -2308 ($ $ (-693))) (-15 -2305 ($ $)) (-15 -2309 ($ $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-146)) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-554 (-348 (-483))) |has| |#1| (-949 (-348 (-483)))) ((-554 (-483)) . T) ((-554 |#1|) . T) ((-551 (-771)) . T) ((-241 |#1| |#1|) . T) ((-353 |#1|) . T) ((-13) . T) ((-587 (-483)) . T) ((-587 |#1|) . T) ((-587 $) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-581 |#1|) |has| |#1| (-146)) ((-653 |#1|) |has| |#1| (-146)) ((-662) . T) ((-949 (-348 (-483))) |has| |#1| (-949 (-348 (-483)))) ((-949 (-483)) |has| |#1| (-949 (-483))) ((-949 |#1|) . T) ((-962 |#1|) . T) ((-967 |#1|) . T) ((-960) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T) ((-760 |#1|) . T)) -((-2306 (((-582 (-596 (-348 |#2|))) (-596 (-348 |#2|))) 86 (|has| |#1| (-27)) ELT)) (-3730 (((-582 (-596 (-348 |#2|))) (-596 (-348 |#2|))) 85 (|has| |#1| (-27)) ELT) (((-582 (-596 (-348 |#2|))) (-596 (-348 |#2|)) (-1 (-582 |#1|) |#2|)) 19 T ELT))) -(((-600 |#1| |#2|) (-10 -7 (-15 -3730 ((-582 (-596 (-348 |#2|))) (-596 (-348 |#2|)) (-1 (-582 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3730 ((-582 (-596 (-348 |#2|))) (-596 (-348 |#2|)))) (-15 -2306 ((-582 (-596 (-348 |#2|))) (-596 (-348 |#2|))))) |%noBranch|)) (-13 (-312) (-120) (-949 (-483)) (-949 (-348 (-483)))) (-1153 |#1|)) (T -600)) -((-2306 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-312) (-120) (-949 (-483)) (-949 (-348 (-483))))) (-4 *5 (-1153 *4)) (-5 *2 (-582 (-596 (-348 *5)))) (-5 *1 (-600 *4 *5)) (-5 *3 (-596 (-348 *5))))) (-3730 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-312) (-120) (-949 (-483)) (-949 (-348 (-483))))) (-4 *5 (-1153 *4)) (-5 *2 (-582 (-596 (-348 *5)))) (-5 *1 (-600 *4 *5)) (-5 *3 (-596 (-348 *5))))) (-3730 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-582 *5) *6)) (-4 *5 (-13 (-312) (-120) (-949 (-483)) (-949 (-348 (-483))))) (-4 *6 (-1153 *5)) (-5 *2 (-582 (-596 (-348 *6)))) (-5 *1 (-600 *5 *6)) (-5 *3 (-596 (-348 *6)))))) -((-2307 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 65 T ELT)) (-2308 ((|#2| |#2| (-693) (-1 |#1| |#1|)) 45 T ELT)) (-2309 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 67 T ELT))) -(((-601 |#1| |#2|) (-10 -7 (-15 -2307 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2308 (|#2| |#2| (-693) (-1 |#1| |#1|))) (-15 -2309 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-312) (-599 |#1|)) (T -601)) -((-2309 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-312)) (-5 *1 (-601 *4 *2)) (-4 *2 (-599 *4)))) (-2308 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-693)) (-5 *4 (-1 *5 *5)) (-4 *5 (-312)) (-5 *1 (-601 *5 *2)) (-4 *2 (-599 *5)))) (-2307 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-312)) (-5 *1 (-601 *4 *2)) (-4 *2 (-599 *4))))) -((-2310 (($ $ $) 9 T ELT))) -(((-602 |#1|) (-10 -7 (-15 -2310 (|#1| |#1| |#1|))) (-603)) (T -602)) -NIL -((-2312 (($ $) 8 T ELT)) (-2310 (($ $ $) 6 T ELT)) (-2311 (($ $ $) 7 T ELT))) -(((-603) (-113)) (T -603)) -((-2312 (*1 *1 *1) (-4 *1 (-603))) (-2311 (*1 *1 *1 *1) (-4 *1 (-603))) (-2310 (*1 *1 *1 *1) (-4 *1 (-603)))) -(-13 (-1127) (-10 -8 (-15 -2312 ($ $)) (-15 -2311 ($ $ $)) (-15 -2310 ($ $ $)))) -(((-13) . T) ((-1127) . T)) -((-2313 (((-3 (-582 (-1083 |#1|)) "failed") (-582 (-1083 |#1|)) (-1083 |#1|)) 33 T ELT))) -(((-604 |#1|) (-10 -7 (-15 -2313 ((-3 (-582 (-1083 |#1|)) "failed") (-582 (-1083 |#1|)) (-1083 |#1|)))) (-820)) (T -604)) -((-2313 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-582 (-1083 *4))) (-5 *3 (-1083 *4)) (-4 *4 (-820)) (-5 *1 (-604 *4))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3187 (((-85) $) NIL T ELT)) (-3932 (((-582 |#1|) $) 85 T ELT)) (-3945 (($ $ (-693)) 95 T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3722 (($) NIL T CONST)) (-3937 (((-1202 |#1| |#2|) (-1202 |#1| |#2|) $) 50 T ELT)) (-3156 (((-3 (-613 |#1|) #1#) $) NIL T ELT)) (-3155 (((-613 |#1|) $) NIL T ELT)) (-3957 (($ $) 94 T ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-2419 (((-693) $) NIL T ELT)) (-2820 (((-582 $) $) NIL T ELT)) (-3935 (((-85) $) NIL T ELT)) (-3936 (($ (-613 |#1|) |#2|) 70 T ELT)) (-3934 (($ $) 90 T ELT)) (-3956 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3938 (((-1202 |#1| |#2|) (-1202 |#1| |#2|) $) 49 T ELT)) (-1747 (((-2 (|:| |k| (-613 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-2893 (((-613 |#1|) $) NIL T ELT)) (-3173 ((|#2| $) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3766 (($ $ |#1| $) 32 T ELT) (($ $ (-582 |#1|) (-582 $)) 34 T ELT)) (-3946 (((-693) $) 92 T ELT)) (-3528 (($ $ $) 20 T ELT) (($ (-613 |#1|) (-613 |#1|)) 79 T ELT) (($ (-613 |#1|) $) 77 T ELT) (($ $ (-613 |#1|)) 78 T ELT)) (-3944 (((-771) $) NIL T ELT) (($ |#1|) 76 T ELT) (((-1193 |#1| |#2|) $) 60 T ELT) (((-1202 |#1| |#2|) $) 43 T ELT) (($ (-613 |#1|)) 27 T ELT)) (-3815 (((-582 |#2|) $) NIL T ELT)) (-3675 ((|#2| $ (-613 |#1|)) NIL T ELT)) (-3952 ((|#2| (-1202 |#1| |#2|) $) 45 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2659 (($) 23 T CONST)) (-2664 (((-582 (-2 (|:| |k| (-613 |#1|)) (|:| |c| |#2|))) $) NIL T ELT)) (-3943 (((-3 $ #1#) (-1193 |#1| |#2|)) 62 T ELT)) (-1731 (($ (-613 |#1|)) 14 T ELT)) (-3055 (((-85) $ $) 46 T ELT)) (-3947 (($ $ |#2|) NIL (|has| |#2| (-312)) ELT)) (-3835 (($ $) 68 T ELT) (($ $ $) NIL T ELT)) (-3837 (($ $ $) 31 T ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ |#2| $) 30 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| (-613 |#1|)) NIL T ELT))) -(((-605 |#1| |#2|) (-13 (-324 |#1| |#2|) (-333 |#2| (-613 |#1|)) (-10 -8 (-15 -3943 ((-3 $ "failed") (-1193 |#1| |#2|))) (-15 -3528 ($ (-613 |#1|) (-613 |#1|))) (-15 -3528 ($ (-613 |#1|) $)) (-15 -3528 ($ $ (-613 |#1|))))) (-755) (-146)) (T -605)) -((-3943 (*1 *1 *2) (|partial| -12 (-5 *2 (-1193 *3 *4)) (-4 *3 (-755)) (-4 *4 (-146)) (-5 *1 (-605 *3 *4)))) (-3528 (*1 *1 *2 *2) (-12 (-5 *2 (-613 *3)) (-4 *3 (-755)) (-5 *1 (-605 *3 *4)) (-4 *4 (-146)))) (-3528 (*1 *1 *2 *1) (-12 (-5 *2 (-613 *3)) (-4 *3 (-755)) (-5 *1 (-605 *3 *4)) (-4 *4 (-146)))) (-3528 (*1 *1 *1 *2) (-12 (-5 *2 (-613 *3)) (-4 *3 (-755)) (-5 *1 (-605 *3 *4)) (-4 *4 (-146))))) -((-1730 (((-85) $) NIL T ELT) (((-85) (-1 (-85) |#2| |#2|) $) 59 T ELT)) (-1728 (($ $) NIL T ELT) (($ (-1 (-85) |#2| |#2|) $) 12 T ELT)) (-1568 (($ (-1 (-85) |#2|) $) 29 T ELT)) (-2296 (($ $) 65 T ELT)) (-2367 (($ $) 74 T ELT)) (-3403 (($ |#2| $) NIL T ELT) (($ (-1 (-85) |#2|) $) 43 T ELT)) (-3840 ((|#2| (-1 |#2| |#2| |#2|) $) 21 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 60 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 62 T ELT)) (-3417 (((-483) |#2| $ (-483)) 71 T ELT) (((-483) |#2| $) NIL T ELT) (((-483) (-1 (-85) |#2|) $) 54 T ELT)) (-3612 (($ (-693) |#2|) 63 T ELT)) (-2855 (($ $ $) NIL T ELT) (($ (-1 (-85) |#2| |#2|) $ $) 31 T ELT)) (-3516 (($ $ $) NIL T ELT) (($ (-1 (-85) |#2| |#2|) $ $) 24 T ELT)) (-3956 (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 64 T ELT)) (-3532 (($ |#2|) 15 T ELT)) (-3607 (($ $ $ (-483)) 42 T ELT) (($ |#2| $ (-483)) 40 T ELT)) (-1352 (((-3 |#2| "failed") (-1 (-85) |#2|) $) 53 T ELT)) (-1569 (($ $ (-1144 (-483))) 51 T ELT) (($ $ (-483)) 44 T ELT)) (-1729 (($ $ $ (-483)) 70 T ELT)) (-3398 (($ $) 68 T ELT)) (-2684 (((-85) $ $) 76 T ELT))) -(((-606 |#1| |#2|) (-10 -7 (-15 -3532 (|#1| |#2|)) (-15 -1569 (|#1| |#1| (-483))) (-15 -1569 (|#1| |#1| (-1144 (-483)))) (-15 -3403 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3607 (|#1| |#2| |#1| (-483))) (-15 -3607 (|#1| |#1| |#1| (-483))) (-15 -2855 (|#1| (-1 (-85) |#2| |#2|) |#1| |#1|)) (-15 -1568 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3403 (|#1| |#2| |#1|)) (-15 -2367 (|#1| |#1|)) (-15 -2855 (|#1| |#1| |#1|)) (-15 -3516 (|#1| (-1 (-85) |#2| |#2|) |#1| |#1|)) (-15 -1730 ((-85) (-1 (-85) |#2| |#2|) |#1|)) (-15 -3417 ((-483) (-1 (-85) |#2|) |#1|)) (-15 -3417 ((-483) |#2| |#1|)) (-15 -3417 ((-483) |#2| |#1| (-483))) (-15 -3516 (|#1| |#1| |#1|)) (-15 -1730 ((-85) |#1|)) (-15 -1729 (|#1| |#1| |#1| (-483))) (-15 -2296 (|#1| |#1|)) (-15 -1728 (|#1| (-1 (-85) |#2| |#2|) |#1|)) (-15 -1728 (|#1| |#1|)) (-15 -2684 ((-85) |#1| |#1|)) (-15 -3840 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3840 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3840 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1352 ((-3 |#2| "failed") (-1 (-85) |#2|) |#1|)) (-15 -3612 (|#1| (-693) |#2|)) (-15 -3956 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3956 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3398 (|#1| |#1|))) (-607 |#2|) (-1127)) (T -606)) -NIL -((-2567 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3400 ((|#1| $) 52 T ELT)) (-3793 ((|#1| $) 71 T ELT)) (-3795 (($ $) 73 T ELT)) (-2197 (((-1183) $ (-483) (-483)) 107 (|has| $ (-6 -3994)) ELT)) (-3783 (($ $ (-483)) 58 (|has| $ (-6 -3994)) ELT)) (-1730 (((-85) $) 153 (|has| |#1| (-755)) ELT) (((-85) (-1 (-85) |#1| |#1|) $) 147 T ELT)) (-1728 (($ $) 157 (-12 (|has| |#1| (-755)) (|has| $ (-6 -3994))) ELT) (($ (-1 (-85) |#1| |#1|) $) 156 (|has| $ (-6 -3994)) ELT)) (-2908 (($ $) 152 (|has| |#1| (-755)) ELT) (($ (-1 (-85) |#1| |#1|) $) 146 T ELT)) (-3440 (((-85) $ (-693)) 90 T ELT)) (-3024 ((|#1| $ |#1|) 43 (|has| $ (-6 -3994)) ELT)) (-3785 (($ $ $) 62 (|has| $ (-6 -3994)) ELT)) (-3784 ((|#1| $ |#1|) 60 (|has| $ (-6 -3994)) ELT)) (-3787 ((|#1| $ |#1|) 64 (|has| $ (-6 -3994)) ELT)) (-3786 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -3994)) ELT) ((|#1| $ #2="first" |#1|) 63 (|has| $ (-6 -3994)) ELT) (($ $ #3="rest" $) 61 (|has| $ (-6 -3994)) ELT) ((|#1| $ #4="last" |#1|) 59 (|has| $ (-6 -3994)) ELT) ((|#1| $ (-1144 (-483)) |#1|) 127 (|has| $ (-6 -3994)) ELT) ((|#1| $ (-483) |#1|) 96 (|has| $ (-6 -3994)) ELT)) (-3025 (($ $ (-582 $)) 45 (|has| $ (-6 -3994)) ELT)) (-1568 (($ (-1 (-85) |#1|) $) 140 T ELT)) (-3708 (($ (-1 (-85) |#1|) $) 112 (|has| $ (-6 -3993)) ELT)) (-3794 ((|#1| $) 72 T ELT)) (-3722 (($) 7 T CONST)) (-2296 (($ $) 155 (|has| $ (-6 -3994)) ELT)) (-2297 (($ $) 145 T ELT)) (-3797 (($ $) 79 T ELT) (($ $ (-693)) 77 T ELT)) (-2367 (($ $) 142 (|has| |#1| (-1012)) ELT)) (-1351 (($ $) 109 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3993))) ELT)) (-3403 (($ |#1| $) 141 (|has| |#1| (-1012)) ELT) (($ (-1 (-85) |#1|) $) 136 T ELT)) (-3404 (($ (-1 (-85) |#1|) $) 113 (|has| $ (-6 -3993)) ELT) (($ |#1| $) 110 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3993))) ELT)) (-3840 ((|#1| (-1 |#1| |#1| |#1|) $) 115 (|has| $ (-6 -3993)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 114 (|has| $ (-6 -3993)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 111 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3993))) ELT)) (-1574 ((|#1| $ (-483) |#1|) 95 (|has| $ (-6 -3994)) ELT)) (-3111 ((|#1| $ (-483)) 97 T ELT)) (-3441 (((-85) $) 93 T ELT)) (-3417 (((-483) |#1| $ (-483)) 150 (|has| |#1| (-1012)) ELT) (((-483) |#1| $) 149 (|has| |#1| (-1012)) ELT) (((-483) (-1 (-85) |#1|) $) 148 T ELT)) (-2888 (((-582 |#1|) $) 30 (|has| $ (-6 -3993)) ELT)) (-3030 (((-582 $) $) 54 T ELT)) (-3026 (((-85) $ $) 46 (|has| |#1| (-1012)) ELT)) (-3612 (($ (-693) |#1|) 119 T ELT)) (-3717 (((-85) $ (-693)) 91 T ELT)) (-2199 (((-483) $) 105 (|has| (-483) (-755)) ELT)) (-2530 (($ $ $) 163 (|has| |#1| (-755)) ELT)) (-2855 (($ $ $) 143 (|has| |#1| (-755)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) 139 T ELT)) (-3516 (($ $ $) 151 (|has| |#1| (-755)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) 144 T ELT)) (-2607 (((-582 |#1|) $) 29 (|has| $ (-6 -3993)) ELT)) (-3244 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3993))) ELT)) (-2200 (((-483) $) 104 (|has| (-483) (-755)) ELT)) (-2856 (($ $ $) 162 (|has| |#1| (-755)) ELT)) (-1947 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3994)) ELT)) (-3956 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 122 T ELT)) (-3532 (($ |#1|) 133 T ELT)) (-3714 (((-85) $ (-693)) 92 T ELT)) (-3029 (((-582 |#1|) $) 49 T ELT)) (-3525 (((-85) $) 53 T ELT)) (-3241 (((-1071) $) 22 (|has| |#1| (-1012)) ELT)) (-3796 ((|#1| $) 76 T ELT) (($ $ (-693)) 74 T ELT)) (-3607 (($ $ $ (-483)) 138 T ELT) (($ |#1| $ (-483)) 137 T ELT)) (-2303 (($ $ $ (-483)) 126 T ELT) (($ |#1| $ (-483)) 125 T ELT)) (-2202 (((-582 (-483)) $) 102 T ELT)) (-2203 (((-85) (-483) $) 101 T ELT)) (-3242 (((-1032) $) 21 (|has| |#1| (-1012)) ELT)) (-3799 ((|#1| $) 82 T ELT) (($ $ (-693)) 80 T ELT)) (-1352 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 116 T ELT)) (-2198 (($ $ |#1|) 106 (|has| $ (-6 -3994)) ELT)) (-3442 (((-85) $) 94 T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3993)) ELT)) (-3766 (($ $ (-582 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-582 |#1|) (-582 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT)) (-1220 (((-85) $ $) 11 T ELT)) (-2201 (((-85) |#1| $) 103 (-12 (|has| $ (-6 -3993)) (|has| |#1| (-1012))) ELT)) (-2204 (((-582 |#1|) $) 100 T ELT)) (-3401 (((-85) $) 8 T ELT)) (-3563 (($) 9 T ELT)) (-3798 ((|#1| $ #1#) 51 T ELT) ((|#1| $ #2#) 81 T ELT) (($ $ #3#) 78 T ELT) ((|#1| $ #4#) 75 T ELT) (($ $ (-1144 (-483))) 118 T ELT) ((|#1| $ (-483)) 99 T ELT) ((|#1| $ (-483) |#1|) 98 T ELT)) (-3028 (((-483) $ $) 48 T ELT)) (-1569 (($ $ (-1144 (-483))) 135 T ELT) (($ $ (-483)) 134 T ELT)) (-2304 (($ $ (-1144 (-483))) 124 T ELT) (($ $ (-483)) 123 T ELT)) (-3631 (((-85) $) 50 T ELT)) (-3790 (($ $) 68 T ELT)) (-3788 (($ $) 65 (|has| $ (-6 -3994)) ELT)) (-3791 (((-693) $) 69 T ELT)) (-3792 (($ $) 70 T ELT)) (-1944 (((-693) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3993)) ELT) (((-693) |#1| $) 28 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3993))) ELT)) (-1729 (($ $ $ (-483)) 154 (|has| $ (-6 -3994)) ELT)) (-3398 (($ $) 10 T ELT)) (-3970 (((-472) $) 108 (|has| |#1| (-552 (-472))) ELT)) (-3528 (($ (-582 |#1|)) 117 T ELT)) (-3789 (($ $ $) 67 T ELT) (($ $ |#1|) 66 T ELT)) (-3800 (($ $ $) 84 T ELT) (($ |#1| $) 83 T ELT) (($ (-582 $)) 121 T ELT) (($ $ |#1|) 120 T ELT)) (-3944 (((-771) $) 17 (|has| |#1| (-551 (-771))) ELT)) (-3520 (((-582 $) $) 55 T ELT)) (-3027 (((-85) $ $) 47 (|has| |#1| (-1012)) ELT)) (-1263 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3993)) ELT)) (-2565 (((-85) $ $) 161 (|has| |#1| (-755)) ELT)) (-2566 (((-85) $ $) 159 (|has| |#1| (-755)) ELT)) (-3055 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-2683 (((-85) $ $) 160 (|has| |#1| (-755)) ELT)) (-2684 (((-85) $ $) 158 (|has| |#1| (-755)) ELT)) (-3955 (((-693) $) 6 (|has| $ (-6 -3993)) ELT))) -(((-607 |#1|) (-113) (-1127)) (T -607)) -((-3532 (*1 *1 *2) (-12 (-4 *1 (-607 *2)) (-4 *2 (-1127))))) -(-13 (-1062 |t#1|) (-322 |t#1|) (-237 |t#1|) (-10 -8 (-15 -3532 ($ |t#1|)))) -(((-34) . T) ((-72) OR (|has| |#1| (-1012)) (|has| |#1| (-755)) (|has| |#1| (-72))) ((-551 (-771)) OR (|has| |#1| (-1012)) (|has| |#1| (-755)) (|has| |#1| (-551 (-771)))) ((-124 |#1|) . T) ((-552 (-472)) |has| |#1| (-552 (-472))) ((-241 (-483) |#1|) . T) ((-241 (-1144 (-483)) $) . T) ((-243 (-483) |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ((-237 |#1|) . T) ((-322 |#1|) . T) ((-427 |#1|) . T) ((-537 (-483) |#1|) . T) ((-454 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ((-13) . T) ((-592 |#1|) . T) ((-755) |has| |#1| (-755)) ((-758) |has| |#1| (-755)) ((-922 |#1|) . T) ((-1012) OR (|has| |#1| (-1012)) (|has| |#1| (-755))) ((-1062 |#1|) . T) ((-1127) . T) ((-1166 |#1|) . T)) -((-3571 (((-582 (-2 (|:| |particular| (-3 |#3| #1="failed")) (|:| -2011 (-582 |#3|)))) |#4| (-582 |#3|)) 66 T ELT) (((-2 (|:| |particular| (-3 |#3| #1#)) (|:| -2011 (-582 |#3|))) |#4| |#3|) 60 T ELT)) (-3107 (((-693) |#4| |#3|) 18 T ELT)) (-3338 (((-3 |#3| #1#) |#4| |#3|) 21 T ELT)) (-2314 (((-85) |#4| |#3|) 14 T ELT))) -(((-608 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3571 ((-2 (|:| |particular| (-3 |#3| #1="failed")) (|:| -2011 (-582 |#3|))) |#4| |#3|)) (-15 -3571 ((-582 (-2 (|:| |particular| (-3 |#3| #1#)) (|:| -2011 (-582 |#3|)))) |#4| (-582 |#3|))) (-15 -3338 ((-3 |#3| #1#) |#4| |#3|)) (-15 -2314 ((-85) |#4| |#3|)) (-15 -3107 ((-693) |#4| |#3|))) (-312) (-13 (-322 |#1|) (-10 -7 (-6 -3994))) (-13 (-322 |#1|) (-10 -7 (-6 -3994))) (-626 |#1| |#2| |#3|)) (T -608)) -((-3107 (*1 *2 *3 *4) (-12 (-4 *5 (-312)) (-4 *6 (-13 (-322 *5) (-10 -7 (-6 -3994)))) (-4 *4 (-13 (-322 *5) (-10 -7 (-6 -3994)))) (-5 *2 (-693)) (-5 *1 (-608 *5 *6 *4 *3)) (-4 *3 (-626 *5 *6 *4)))) (-2314 (*1 *2 *3 *4) (-12 (-4 *5 (-312)) (-4 *6 (-13 (-322 *5) (-10 -7 (-6 -3994)))) (-4 *4 (-13 (-322 *5) (-10 -7 (-6 -3994)))) (-5 *2 (-85)) (-5 *1 (-608 *5 *6 *4 *3)) (-4 *3 (-626 *5 *6 *4)))) (-3338 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-312)) (-4 *5 (-13 (-322 *4) (-10 -7 (-6 -3994)))) (-4 *2 (-13 (-322 *4) (-10 -7 (-6 -3994)))) (-5 *1 (-608 *4 *5 *2 *3)) (-4 *3 (-626 *4 *5 *2)))) (-3571 (*1 *2 *3 *4) (-12 (-4 *5 (-312)) (-4 *6 (-13 (-322 *5) (-10 -7 (-6 -3994)))) (-4 *7 (-13 (-322 *5) (-10 -7 (-6 -3994)))) (-5 *2 (-582 (-2 (|:| |particular| (-3 *7 #1="failed")) (|:| -2011 (-582 *7))))) (-5 *1 (-608 *5 *6 *7 *3)) (-5 *4 (-582 *7)) (-4 *3 (-626 *5 *6 *7)))) (-3571 (*1 *2 *3 *4) (-12 (-4 *5 (-312)) (-4 *6 (-13 (-322 *5) (-10 -7 (-6 -3994)))) (-4 *4 (-13 (-322 *5) (-10 -7 (-6 -3994)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2011 (-582 *4)))) (-5 *1 (-608 *5 *6 *4 *3)) (-4 *3 (-626 *5 *6 *4))))) -((-3571 (((-582 (-2 (|:| |particular| (-3 (-1177 |#1|) #1="failed")) (|:| -2011 (-582 (-1177 |#1|))))) (-582 (-582 |#1|)) (-582 (-1177 |#1|))) 22 T ELT) (((-582 (-2 (|:| |particular| (-3 (-1177 |#1|) #1#)) (|:| -2011 (-582 (-1177 |#1|))))) (-629 |#1|) (-582 (-1177 |#1|))) 21 T ELT) (((-2 (|:| |particular| (-3 (-1177 |#1|) #1#)) (|:| -2011 (-582 (-1177 |#1|)))) (-582 (-582 |#1|)) (-1177 |#1|)) 18 T ELT) (((-2 (|:| |particular| (-3 (-1177 |#1|) #1#)) (|:| -2011 (-582 (-1177 |#1|)))) (-629 |#1|) (-1177 |#1|)) 14 T ELT)) (-3107 (((-693) (-629 |#1|) (-1177 |#1|)) 30 T ELT)) (-3338 (((-3 (-1177 |#1|) #1#) (-629 |#1|) (-1177 |#1|)) 24 T ELT)) (-2314 (((-85) (-629 |#1|) (-1177 |#1|)) 27 T ELT))) -(((-609 |#1|) (-10 -7 (-15 -3571 ((-2 (|:| |particular| (-3 (-1177 |#1|) #1="failed")) (|:| -2011 (-582 (-1177 |#1|)))) (-629 |#1|) (-1177 |#1|))) (-15 -3571 ((-2 (|:| |particular| (-3 (-1177 |#1|) #1#)) (|:| -2011 (-582 (-1177 |#1|)))) (-582 (-582 |#1|)) (-1177 |#1|))) (-15 -3571 ((-582 (-2 (|:| |particular| (-3 (-1177 |#1|) #1#)) (|:| -2011 (-582 (-1177 |#1|))))) (-629 |#1|) (-582 (-1177 |#1|)))) (-15 -3571 ((-582 (-2 (|:| |particular| (-3 (-1177 |#1|) #1#)) (|:| -2011 (-582 (-1177 |#1|))))) (-582 (-582 |#1|)) (-582 (-1177 |#1|)))) (-15 -3338 ((-3 (-1177 |#1|) #1#) (-629 |#1|) (-1177 |#1|))) (-15 -2314 ((-85) (-629 |#1|) (-1177 |#1|))) (-15 -3107 ((-693) (-629 |#1|) (-1177 |#1|)))) (-312)) (T -609)) -((-3107 (*1 *2 *3 *4) (-12 (-5 *3 (-629 *5)) (-5 *4 (-1177 *5)) (-4 *5 (-312)) (-5 *2 (-693)) (-5 *1 (-609 *5)))) (-2314 (*1 *2 *3 *4) (-12 (-5 *3 (-629 *5)) (-5 *4 (-1177 *5)) (-4 *5 (-312)) (-5 *2 (-85)) (-5 *1 (-609 *5)))) (-3338 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1177 *4)) (-5 *3 (-629 *4)) (-4 *4 (-312)) (-5 *1 (-609 *4)))) (-3571 (*1 *2 *3 *4) (-12 (-5 *3 (-582 (-582 *5))) (-4 *5 (-312)) (-5 *2 (-582 (-2 (|:| |particular| (-3 (-1177 *5) #1="failed")) (|:| -2011 (-582 (-1177 *5)))))) (-5 *1 (-609 *5)) (-5 *4 (-582 (-1177 *5))))) (-3571 (*1 *2 *3 *4) (-12 (-5 *3 (-629 *5)) (-4 *5 (-312)) (-5 *2 (-582 (-2 (|:| |particular| (-3 (-1177 *5) #1#)) (|:| -2011 (-582 (-1177 *5)))))) (-5 *1 (-609 *5)) (-5 *4 (-582 (-1177 *5))))) (-3571 (*1 *2 *3 *4) (-12 (-5 *3 (-582 (-582 *5))) (-4 *5 (-312)) (-5 *2 (-2 (|:| |particular| (-3 (-1177 *5) #1#)) (|:| -2011 (-582 (-1177 *5))))) (-5 *1 (-609 *5)) (-5 *4 (-1177 *5)))) (-3571 (*1 *2 *3 *4) (-12 (-5 *3 (-629 *5)) (-4 *5 (-312)) (-5 *2 (-2 (|:| |particular| (-3 (-1177 *5) #1#)) (|:| -2011 (-582 (-1177 *5))))) (-5 *1 (-609 *5)) (-5 *4 (-1177 *5))))) -((-2315 (((-2 (|:| |particular| (-3 (-1177 (-348 |#4|)) "failed")) (|:| -2011 (-582 (-1177 (-348 |#4|))))) (-582 |#4|) (-582 |#3|)) 51 T ELT))) -(((-610 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2315 ((-2 (|:| |particular| (-3 (-1177 (-348 |#4|)) "failed")) (|:| -2011 (-582 (-1177 (-348 |#4|))))) (-582 |#4|) (-582 |#3|)))) (-494) (-716) (-755) (-860 |#1| |#2| |#3|)) (T -610)) -((-2315 (*1 *2 *3 *4) (-12 (-5 *3 (-582 *8)) (-5 *4 (-582 *7)) (-4 *7 (-755)) (-4 *8 (-860 *5 *6 *7)) (-4 *5 (-494)) (-4 *6 (-716)) (-5 *2 (-2 (|:| |particular| (-3 (-1177 (-348 *8)) "failed")) (|:| -2011 (-582 (-1177 (-348 *8)))))) (-5 *1 (-610 *5 *6 *7 *8))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3187 (((-85) $) NIL T ELT)) (-1770 (((-3 $ #1="failed")) NIL (|has| |#2| (-494)) ELT)) (-3328 ((|#2| $) NIL T ELT)) (-3119 (((-85) $) NIL T ELT)) (-1310 (((-3 $ #1#) $ $) NIL T ELT)) (-3222 (((-1177 (-629 |#2|))) NIL T ELT) (((-1177 (-629 |#2|)) (-1177 $)) NIL T ELT)) (-3121 (((-85) $) NIL T ELT)) (-1727 (((-1177 $)) 41 T ELT)) (-3331 (($ |#2|) NIL T ELT)) (-3722 (($) NIL T CONST)) (-3108 (($ $) NIL (|has| |#2| (-258)) ELT)) (-3110 (((-197 |#1| |#2|) $ (-483)) NIL T ELT)) (-1904 (((-3 (-2 (|:| |particular| $) (|:| -2011 (-582 $))) #1#)) NIL (|has| |#2| (-494)) ELT)) (-1701 (((-3 $ #1#)) NIL (|has| |#2| (-494)) ELT)) (-1786 (((-629 |#2|)) NIL T ELT) (((-629 |#2|) (-1177 $)) NIL T ELT)) (-1725 ((|#2| $) NIL T ELT)) (-1784 (((-629 |#2|) $) NIL T ELT) (((-629 |#2|) $ (-1177 $)) NIL T ELT)) (-2403 (((-3 $ #1#) $) NIL (|has| |#2| (-494)) ELT)) (-1898 (((-1083 (-856 |#2|))) NIL (|has| |#2| (-312)) ELT)) (-2406 (($ $ (-829)) NIL T ELT)) (-1723 ((|#2| $) NIL T ELT)) (-1703 (((-1083 |#2|) $) NIL (|has| |#2| (-494)) ELT)) (-1788 ((|#2|) NIL T ELT) ((|#2| (-1177 $)) NIL T ELT)) (-1721 (((-1083 |#2|) $) NIL T ELT)) (-1715 (((-85)) NIL T ELT)) (-3156 (((-3 (-483) #1#) $) NIL (|has| |#2| (-949 (-483))) ELT) (((-3 (-348 (-483)) #1#) $) NIL (|has| |#2| (-949 (-348 (-483)))) ELT) (((-3 |#2| #1#) $) NIL T ELT)) (-3155 (((-483) $) NIL (|has| |#2| (-949 (-483))) ELT) (((-348 (-483)) $) NIL (|has| |#2| (-949 (-348 (-483)))) ELT) ((|#2| $) NIL T ELT)) (-1790 (($ (-1177 |#2|)) NIL T ELT) (($ (-1177 |#2|) (-1177 $)) NIL T ELT)) (-2278 (((-629 (-483)) (-629 $)) NIL (|has| |#2| (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-629 $) (-1177 $)) NIL (|has| |#2| (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 |#2|)) (|:| |vec| (-1177 |#2|))) (-629 $) (-1177 $)) NIL T ELT) (((-629 |#2|) (-629 $)) NIL T ELT)) (-3465 (((-3 $ #1#) $) NIL T ELT)) (-3107 (((-693) $) NIL (|has| |#2| (-494)) ELT) (((-829)) 42 T ELT)) (-3111 ((|#2| $ (-483) (-483)) NIL T ELT)) (-1712 (((-85)) NIL T ELT)) (-2432 (($ $ (-829)) NIL T ELT)) (-2888 (((-582 |#2|) $) NIL (|has| $ (-6 -3993)) ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-2409 (((-85) $) NIL T ELT)) (-3106 (((-693) $) NIL (|has| |#2| (-494)) ELT)) (-3105 (((-582 (-197 |#1| |#2|)) $) NIL (|has| |#2| (-494)) ELT)) (-3113 (((-693) $) NIL T ELT)) (-1708 (((-85)) NIL T ELT)) (-3112 (((-693) $) NIL T ELT)) (-3325 ((|#2| $) NIL (|has| |#2| (-6 (-3995 #2="*"))) ELT)) (-3117 (((-483) $) NIL T ELT)) (-3115 (((-483) $) NIL T ELT)) (-2607 (((-582 |#2|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3244 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#2| (-1012))) ELT)) (-3116 (((-483) $) NIL T ELT)) (-3114 (((-483) $) NIL T ELT)) (-3122 (($ (-582 (-582 |#2|))) NIL T ELT)) (-1947 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3956 (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3592 (((-582 (-582 |#2|)) $) NIL T ELT)) (-1706 (((-85)) NIL T ELT)) (-1710 (((-85)) NIL T ELT)) (-1905 (((-3 (-2 (|:| |particular| $) (|:| -2011 (-582 $))) #1#)) NIL (|has| |#2| (-494)) ELT)) (-1702 (((-3 $ #1#)) NIL (|has| |#2| (-494)) ELT)) (-1787 (((-629 |#2|)) NIL T ELT) (((-629 |#2|) (-1177 $)) NIL T ELT)) (-1726 ((|#2| $) NIL T ELT)) (-1785 (((-629 |#2|) $) NIL T ELT) (((-629 |#2|) $ (-1177 $)) NIL T ELT)) (-2279 (((-629 (-483)) (-1177 $)) NIL (|has| |#2| (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL (|has| |#2| (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 |#2|)) (|:| |vec| (-1177 |#2|))) (-1177 $) $) NIL T ELT) (((-629 |#2|) (-1177 $)) NIL T ELT)) (-2404 (((-3 $ #1#) $) NIL (|has| |#2| (-494)) ELT)) (-1902 (((-1083 (-856 |#2|))) NIL (|has| |#2| (-312)) ELT)) (-2405 (($ $ (-829)) NIL T ELT)) (-1724 ((|#2| $) NIL T ELT)) (-1704 (((-1083 |#2|) $) NIL (|has| |#2| (-494)) ELT)) (-1789 ((|#2|) NIL T ELT) ((|#2| (-1177 $)) NIL T ELT)) (-1722 (((-1083 |#2|) $) NIL T ELT)) (-1716 (((-85)) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-1707 (((-85)) NIL T ELT)) (-1709 (((-85)) NIL T ELT)) (-1711 (((-85)) NIL T ELT)) (-3588 (((-3 $ #1#) $) NIL (|has| |#2| (-312)) ELT)) (-3242 (((-1032) $) NIL T ELT)) (-1714 (((-85)) NIL T ELT)) (-3464 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-494)) ELT)) (-1945 (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3766 (($ $ (-582 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ (-582 |#2|) (-582 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1012))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-3401 (((-85) $) NIL T ELT)) (-3563 (($) NIL T ELT)) (-3798 ((|#2| $ (-483) (-483) |#2|) NIL T ELT) ((|#2| $ (-483) (-483)) 27 T ELT) ((|#2| $ (-483)) NIL T ELT)) (-3756 (($ $ (-1 |#2| |#2|) (-693)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-693)) NIL (|has| |#2| (-189)) ELT) (($ $ (-1088)) NIL (|has| |#2| (-810 (-1088))) ELT) (($ $ (-582 (-1088))) NIL (|has| |#2| (-810 (-1088))) ELT) (($ $ (-1088) (-693)) NIL (|has| |#2| (-810 (-1088))) ELT) (($ $ (-582 (-1088)) (-582 (-693))) NIL (|has| |#2| (-810 (-1088))) ELT)) (-3327 ((|#2| $) NIL T ELT)) (-3330 (($ (-582 |#2|)) NIL T ELT)) (-3120 (((-85) $) NIL T ELT)) (-3329 (((-197 |#1| |#2|) $) NIL T ELT)) (-3326 ((|#2| $) NIL (|has| |#2| (-6 (-3995 #2#))) ELT)) (-1944 (((-693) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3993)) ELT) (((-693) |#2| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#2| (-1012))) ELT)) (-3398 (($ $) NIL T ELT)) (-3223 (((-629 |#2|) (-1177 $)) NIL T ELT) (((-1177 |#2|) $) NIL T ELT) (((-629 |#2|) (-1177 $) (-1177 $)) NIL T ELT) (((-1177 |#2|) $ (-1177 $)) 30 T ELT)) (-3970 (($ (-1177 |#2|)) NIL T ELT) (((-1177 |#2|) $) NIL T ELT)) (-1890 (((-582 (-856 |#2|))) NIL T ELT) (((-582 (-856 |#2|)) (-1177 $)) NIL T ELT)) (-2434 (($ $ $) NIL T ELT)) (-1720 (((-85)) NIL T ELT)) (-3109 (((-197 |#1| |#2|) $ (-483)) NIL T ELT)) (-3944 (((-771) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ (-348 (-483))) NIL (|has| |#2| (-949 (-348 (-483)))) ELT) (($ |#2|) NIL T ELT) (((-629 |#2|) $) NIL T ELT)) (-3125 (((-693)) NIL T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-2011 (((-1177 $)) 40 T ELT)) (-1705 (((-582 (-1177 |#2|))) NIL (|has| |#2| (-494)) ELT)) (-2435 (($ $ $ $) NIL T ELT)) (-1718 (((-85)) NIL T ELT)) (-2544 (($ (-629 |#2|) $) NIL T ELT)) (-1946 (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3118 (((-85) $) NIL T ELT)) (-2433 (($ $ $) NIL T ELT)) (-1719 (((-85)) NIL T ELT)) (-1717 (((-85)) NIL T ELT)) (-3124 (((-85) $ $) NIL T ELT)) (-1713 (((-85)) NIL T ELT)) (-2659 (($) NIL T CONST)) (-2665 (($) NIL T CONST)) (-2668 (($ $ (-1 |#2| |#2|) (-693)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-693)) NIL (|has| |#2| (-189)) ELT) (($ $ (-1088)) NIL (|has| |#2| (-810 (-1088))) ELT) (($ $ (-582 (-1088))) NIL (|has| |#2| (-810 (-1088))) ELT) (($ $ (-1088) (-693)) NIL (|has| |#2| (-810 (-1088))) ELT) (($ $ (-582 (-1088)) (-582 (-693))) NIL (|has| |#2| (-810 (-1088))) ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-3947 (($ $ |#2|) NIL (|has| |#2| (-312)) ELT)) (-3835 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3837 (($ $ $) NIL T ELT)) (** (($ $ (-829)) NIL T ELT) (($ $ (-693)) NIL T ELT) (($ $ (-483)) NIL (|has| |#2| (-312)) ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (((-197 |#1| |#2|) $ (-197 |#1| |#2|)) NIL T ELT) (((-197 |#1| |#2|) (-197 |#1| |#2|) $) NIL T ELT)) (-3955 (((-693) $) NIL (|has| $ (-6 -3993)) ELT))) -(((-611 |#1| |#2|) (-13 (-1035 |#1| |#2| (-197 |#1| |#2|) (-197 |#1| |#2|)) (-551 (-629 |#2|)) (-359 |#2|)) (-829) (-146)) (T -611)) -NIL -((-2567 (((-85) $ $) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3247 (((-582 (-1047)) $) 12 T ELT)) (-3944 (((-771) $) 18 T ELT) (($ (-1093)) NIL T ELT) (((-1093) $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-612) (-13 (-994) (-10 -8 (-15 -3247 ((-582 (-1047)) $))))) (T -612)) -((-3247 (*1 *2 *1) (-12 (-5 *2 (-582 (-1047))) (-5 *1 (-612))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3932 (((-582 |#1|) $) NIL T ELT)) (-3136 (($ $) 62 T ELT)) (-2663 (((-85) $) NIL T ELT)) (-3156 (((-3 |#1| #1="failed") $) NIL T ELT)) (-3155 ((|#1| $) NIL T ELT)) (-2530 (($ $ $) NIL T ELT)) (-2856 (($ $ $) NIL T ELT)) (-2318 (((-3 $ #1#) (-738 |#1|)) 28 T ELT)) (-2320 (((-85) (-738 |#1|)) 18 T ELT)) (-2319 (($ (-738 |#1|)) 29 T ELT)) (-2510 (((-85) $ $) 36 T ELT)) (-3831 (((-829) $) 43 T ELT)) (-3137 (($ $) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3730 (((-582 $) (-738 |#1|)) 20 T ELT)) (-3944 (((-771) $) 51 T ELT) (($ |#1|) 40 T ELT) (((-738 |#1|) $) 47 T ELT) (((-617 |#1|) $) 52 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2317 (((-58 (-582 $)) (-582 |#1|) (-829)) 67 T ELT)) (-2316 (((-582 $) (-582 |#1|) (-829)) 70 T ELT)) (-2565 (((-85) $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) 63 T ELT)) (-2683 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) 46 T ELT))) -(((-613 |#1|) (-13 (-755) (-949 |#1|) (-10 -8 (-15 -2663 ((-85) $)) (-15 -3137 ($ $)) (-15 -3136 ($ $)) (-15 -3831 ((-829) $)) (-15 -2510 ((-85) $ $)) (-15 -3944 ((-738 |#1|) $)) (-15 -3944 ((-617 |#1|) $)) (-15 -3730 ((-582 $) (-738 |#1|))) (-15 -2320 ((-85) (-738 |#1|))) (-15 -2319 ($ (-738 |#1|))) (-15 -2318 ((-3 $ "failed") (-738 |#1|))) (-15 -3932 ((-582 |#1|) $)) (-15 -2317 ((-58 (-582 $)) (-582 |#1|) (-829))) (-15 -2316 ((-582 $) (-582 |#1|) (-829))))) (-755)) (T -613)) -((-2663 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-613 *3)) (-4 *3 (-755)))) (-3137 (*1 *1 *1) (-12 (-5 *1 (-613 *2)) (-4 *2 (-755)))) (-3136 (*1 *1 *1) (-12 (-5 *1 (-613 *2)) (-4 *2 (-755)))) (-3831 (*1 *2 *1) (-12 (-5 *2 (-829)) (-5 *1 (-613 *3)) (-4 *3 (-755)))) (-2510 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-613 *3)) (-4 *3 (-755)))) (-3944 (*1 *2 *1) (-12 (-5 *2 (-738 *3)) (-5 *1 (-613 *3)) (-4 *3 (-755)))) (-3944 (*1 *2 *1) (-12 (-5 *2 (-617 *3)) (-5 *1 (-613 *3)) (-4 *3 (-755)))) (-3730 (*1 *2 *3) (-12 (-5 *3 (-738 *4)) (-4 *4 (-755)) (-5 *2 (-582 (-613 *4))) (-5 *1 (-613 *4)))) (-2320 (*1 *2 *3) (-12 (-5 *3 (-738 *4)) (-4 *4 (-755)) (-5 *2 (-85)) (-5 *1 (-613 *4)))) (-2319 (*1 *1 *2) (-12 (-5 *2 (-738 *3)) (-4 *3 (-755)) (-5 *1 (-613 *3)))) (-2318 (*1 *1 *2) (|partial| -12 (-5 *2 (-738 *3)) (-4 *3 (-755)) (-5 *1 (-613 *3)))) (-3932 (*1 *2 *1) (-12 (-5 *2 (-582 *3)) (-5 *1 (-613 *3)) (-4 *3 (-755)))) (-2317 (*1 *2 *3 *4) (-12 (-5 *3 (-582 *5)) (-5 *4 (-829)) (-4 *5 (-755)) (-5 *2 (-58 (-582 (-613 *5)))) (-5 *1 (-613 *5)))) (-2316 (*1 *2 *3 *4) (-12 (-5 *3 (-582 *5)) (-5 *4 (-829)) (-4 *5 (-755)) (-5 *2 (-582 (-613 *5))) (-5 *1 (-613 *5))))) -((-3400 ((|#2| $) 100 T ELT)) (-3795 (($ $) 121 T ELT)) (-3440 (((-85) $ (-693)) 35 T ELT)) (-3797 (($ $) 109 T ELT) (($ $ (-693)) 112 T ELT)) (-3441 (((-85) $) 122 T ELT)) (-3030 (((-582 $) $) 96 T ELT)) (-3026 (((-85) $ $) 92 T ELT)) (-3717 (((-85) $ (-693)) 33 T ELT)) (-2199 (((-483) $) 66 T ELT)) (-2200 (((-483) $) 65 T ELT)) (-3714 (((-85) $ (-693)) 31 T ELT)) (-3525 (((-85) $) 98 T ELT)) (-3796 ((|#2| $) 113 T ELT) (($ $ (-693)) 117 T ELT)) (-2303 (($ $ $ (-483)) 83 T ELT) (($ |#2| $ (-483)) 82 T ELT)) (-2202 (((-582 (-483)) $) 64 T ELT)) (-2203 (((-85) (-483) $) 59 T ELT)) (-3799 ((|#2| $) NIL T ELT) (($ $ (-693)) 108 T ELT)) (-3767 (($ $ (-483)) 125 T ELT)) (-3442 (((-85) $) 124 T ELT)) (-1945 (((-85) (-1 (-85) |#2|) $) 42 T ELT)) (-2204 (((-582 |#2|) $) 46 T ELT)) (-3798 ((|#2| $ "value") NIL T ELT) ((|#2| $ "first") 107 T ELT) (($ $ "rest") 111 T ELT) ((|#2| $ "last") 120 T ELT) (($ $ (-1144 (-483))) 79 T ELT) ((|#2| $ (-483)) 57 T ELT) ((|#2| $ (-483) |#2|) 58 T ELT)) (-3028 (((-483) $ $) 91 T ELT)) (-2304 (($ $ (-1144 (-483))) 78 T ELT) (($ $ (-483)) 72 T ELT)) (-3631 (((-85) $) 87 T ELT)) (-3790 (($ $) 105 T ELT)) (-3791 (((-693) $) 104 T ELT)) (-3792 (($ $) 103 T ELT)) (-3528 (($ (-582 |#2|)) 53 T ELT)) (-2890 (($ $) 126 T ELT)) (-3520 (((-582 $) $) 90 T ELT)) (-3027 (((-85) $ $) 89 T ELT)) (-1946 (((-85) (-1 (-85) |#2|) $) 41 T ELT)) (-3055 (((-85) $ $) 20 T ELT)) (-3955 (((-693) $) 39 T ELT))) -(((-614 |#1| |#2|) (-10 -7 (-15 -3055 ((-85) |#1| |#1|)) (-15 -2890 (|#1| |#1|)) (-15 -3767 (|#1| |#1| (-483))) (-15 -3440 ((-85) |#1| (-693))) (-15 -3717 ((-85) |#1| (-693))) (-15 -3714 ((-85) |#1| (-693))) (-15 -3441 ((-85) |#1|)) (-15 -3442 ((-85) |#1|)) (-15 -3798 (|#2| |#1| (-483) |#2|)) (-15 -3798 (|#2| |#1| (-483))) (-15 -2204 ((-582 |#2|) |#1|)) (-15 -2203 ((-85) (-483) |#1|)) (-15 -2202 ((-582 (-483)) |#1|)) (-15 -2200 ((-483) |#1|)) (-15 -2199 ((-483) |#1|)) (-15 -3528 (|#1| (-582 |#2|))) (-15 -3798 (|#1| |#1| (-1144 (-483)))) (-15 -2304 (|#1| |#1| (-483))) (-15 -2304 (|#1| |#1| (-1144 (-483)))) (-15 -2303 (|#1| |#2| |#1| (-483))) (-15 -2303 (|#1| |#1| |#1| (-483))) (-15 -3790 (|#1| |#1|)) (-15 -3791 ((-693) |#1|)) (-15 -3792 (|#1| |#1|)) (-15 -3795 (|#1| |#1|)) (-15 -3796 (|#1| |#1| (-693))) (-15 -3798 (|#2| |#1| "last")) (-15 -3796 (|#2| |#1|)) (-15 -3797 (|#1| |#1| (-693))) (-15 -3798 (|#1| |#1| "rest")) (-15 -3797 (|#1| |#1|)) (-15 -3799 (|#1| |#1| (-693))) (-15 -3798 (|#2| |#1| "first")) (-15 -3799 (|#2| |#1|)) (-15 -3026 ((-85) |#1| |#1|)) (-15 -3027 ((-85) |#1| |#1|)) (-15 -3028 ((-483) |#1| |#1|)) (-15 -3631 ((-85) |#1|)) (-15 -3798 (|#2| |#1| "value")) (-15 -3400 (|#2| |#1|)) (-15 -3525 ((-85) |#1|)) (-15 -3030 ((-582 |#1|) |#1|)) (-15 -3520 ((-582 |#1|) |#1|)) (-15 -1945 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -1946 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -3955 ((-693) |#1|))) (-615 |#2|) (-1127)) (T -614)) -NIL -((-2567 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3400 ((|#1| $) 52 T ELT)) (-3793 ((|#1| $) 71 T ELT)) (-3795 (($ $) 73 T ELT)) (-2197 (((-1183) $ (-483) (-483)) 107 (|has| $ (-6 -3994)) ELT)) (-3783 (($ $ (-483)) 58 (|has| $ (-6 -3994)) ELT)) (-3440 (((-85) $ (-693)) 90 T ELT)) (-3024 ((|#1| $ |#1|) 43 (|has| $ (-6 -3994)) ELT)) (-3785 (($ $ $) 62 (|has| $ (-6 -3994)) ELT)) (-3784 ((|#1| $ |#1|) 60 (|has| $ (-6 -3994)) ELT)) (-3787 ((|#1| $ |#1|) 64 (|has| $ (-6 -3994)) ELT)) (-3786 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -3994)) ELT) ((|#1| $ #2="first" |#1|) 63 (|has| $ (-6 -3994)) ELT) (($ $ #3="rest" $) 61 (|has| $ (-6 -3994)) ELT) ((|#1| $ #4="last" |#1|) 59 (|has| $ (-6 -3994)) ELT) ((|#1| $ (-1144 (-483)) |#1|) 127 (|has| $ (-6 -3994)) ELT) ((|#1| $ (-483) |#1|) 96 (|has| $ (-6 -3994)) ELT)) (-3025 (($ $ (-582 $)) 45 (|has| $ (-6 -3994)) ELT)) (-3708 (($ (-1 (-85) |#1|) $) 112 T ELT)) (-3794 ((|#1| $) 72 T ELT)) (-3722 (($) 7 T CONST)) (-2322 (($ $) 135 T ELT)) (-3797 (($ $) 79 T ELT) (($ $ (-693)) 77 T ELT)) (-1351 (($ $) 109 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3993))) ELT)) (-3404 (($ |#1| $) 110 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3993))) ELT) (($ (-1 (-85) |#1|) $) 113 T ELT)) (-3840 ((|#1| (-1 |#1| |#1| |#1|) $) 115 (|has| $ (-6 -3993)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 114 (|has| $ (-6 -3993)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 111 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3993))) ELT)) (-1574 ((|#1| $ (-483) |#1|) 95 (|has| $ (-6 -3994)) ELT)) (-3111 ((|#1| $ (-483)) 97 T ELT)) (-3441 (((-85) $) 93 T ELT)) (-2888 (((-582 |#1|) $) 30 (|has| $ (-6 -3993)) ELT)) (-2321 (((-693) $) 134 T ELT)) (-3030 (((-582 $) $) 54 T ELT)) (-3026 (((-85) $ $) 46 (|has| |#1| (-1012)) ELT)) (-3612 (($ (-693) |#1|) 119 T ELT)) (-3717 (((-85) $ (-693)) 91 T ELT)) (-2199 (((-483) $) 105 (|has| (-483) (-755)) ELT)) (-2607 (((-582 |#1|) $) 29 (|has| $ (-6 -3993)) ELT)) (-3244 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3993))) ELT)) (-2200 (((-483) $) 104 (|has| (-483) (-755)) ELT)) (-1947 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3994)) ELT)) (-3956 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 122 T ELT)) (-3714 (((-85) $ (-693)) 92 T ELT)) (-3029 (((-582 |#1|) $) 49 T ELT)) (-3525 (((-85) $) 53 T ELT)) (-2324 (($ $) 137 T ELT)) (-2325 (((-85) $) 138 T ELT)) (-3241 (((-1071) $) 22 (|has| |#1| (-1012)) ELT)) (-3796 ((|#1| $) 76 T ELT) (($ $ (-693)) 74 T ELT)) (-2303 (($ $ $ (-483)) 126 T ELT) (($ |#1| $ (-483)) 125 T ELT)) (-2202 (((-582 (-483)) $) 102 T ELT)) (-2203 (((-85) (-483) $) 101 T ELT)) (-3242 (((-1032) $) 21 (|has| |#1| (-1012)) ELT)) (-2323 ((|#1| $) 136 T ELT)) (-3799 ((|#1| $) 82 T ELT) (($ $ (-693)) 80 T ELT)) (-1352 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 116 T ELT)) (-2198 (($ $ |#1|) 106 (|has| $ (-6 -3994)) ELT)) (-3767 (($ $ (-483)) 133 T ELT)) (-3442 (((-85) $) 94 T ELT)) (-2326 (((-85) $) 139 T ELT)) (-2327 (((-85) $) 140 T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3993)) ELT)) (-3766 (($ $ (-582 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-582 |#1|) (-582 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT)) (-1220 (((-85) $ $) 11 T ELT)) (-2201 (((-85) |#1| $) 103 (-12 (|has| $ (-6 -3993)) (|has| |#1| (-1012))) ELT)) (-2204 (((-582 |#1|) $) 100 T ELT)) (-3401 (((-85) $) 8 T ELT)) (-3563 (($) 9 T ELT)) (-3798 ((|#1| $ #1#) 51 T ELT) ((|#1| $ #2#) 81 T ELT) (($ $ #3#) 78 T ELT) ((|#1| $ #4#) 75 T ELT) (($ $ (-1144 (-483))) 118 T ELT) ((|#1| $ (-483)) 99 T ELT) ((|#1| $ (-483) |#1|) 98 T ELT)) (-3028 (((-483) $ $) 48 T ELT)) (-2304 (($ $ (-1144 (-483))) 124 T ELT) (($ $ (-483)) 123 T ELT)) (-3631 (((-85) $) 50 T ELT)) (-3790 (($ $) 68 T ELT)) (-3788 (($ $) 65 (|has| $ (-6 -3994)) ELT)) (-3791 (((-693) $) 69 T ELT)) (-3792 (($ $) 70 T ELT)) (-1944 (((-693) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3993)) ELT) (((-693) |#1| $) 28 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3993))) ELT)) (-3398 (($ $) 10 T ELT)) (-3970 (((-472) $) 108 (|has| |#1| (-552 (-472))) ELT)) (-3528 (($ (-582 |#1|)) 117 T ELT)) (-3789 (($ $ $) 67 (|has| $ (-6 -3994)) ELT) (($ $ |#1|) 66 (|has| $ (-6 -3994)) ELT)) (-3800 (($ $ $) 84 T ELT) (($ |#1| $) 83 T ELT) (($ (-582 $)) 121 T ELT) (($ $ |#1|) 120 T ELT)) (-2890 (($ $) 132 T ELT)) (-3944 (((-771) $) 17 (|has| |#1| (-551 (-771))) ELT)) (-3520 (((-582 $) $) 55 T ELT)) (-3027 (((-85) $ $) 47 (|has| |#1| (-1012)) ELT)) (-1263 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3993)) ELT)) (-3055 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3955 (((-693) $) 6 (|has| $ (-6 -3993)) ELT))) -(((-615 |#1|) (-113) (-1127)) (T -615)) -((-3404 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-615 *3)) (-4 *3 (-1127)))) (-3708 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-615 *3)) (-4 *3 (-1127)))) (-2327 (*1 *2 *1) (-12 (-4 *1 (-615 *3)) (-4 *3 (-1127)) (-5 *2 (-85)))) (-2326 (*1 *2 *1) (-12 (-4 *1 (-615 *3)) (-4 *3 (-1127)) (-5 *2 (-85)))) (-2325 (*1 *2 *1) (-12 (-4 *1 (-615 *3)) (-4 *3 (-1127)) (-5 *2 (-85)))) (-2324 (*1 *1 *1) (-12 (-4 *1 (-615 *2)) (-4 *2 (-1127)))) (-2323 (*1 *2 *1) (-12 (-4 *1 (-615 *2)) (-4 *2 (-1127)))) (-2322 (*1 *1 *1) (-12 (-4 *1 (-615 *2)) (-4 *2 (-1127)))) (-2321 (*1 *2 *1) (-12 (-4 *1 (-615 *3)) (-4 *3 (-1127)) (-5 *2 (-693)))) (-3767 (*1 *1 *1 *2) (-12 (-5 *2 (-483)) (-4 *1 (-615 *3)) (-4 *3 (-1127)))) (-2890 (*1 *1 *1) (-12 (-4 *1 (-615 *2)) (-4 *2 (-1127))))) -(-13 (-1062 |t#1|) (-10 -8 (-15 -3404 ($ (-1 (-85) |t#1|) $)) (-15 -3708 ($ (-1 (-85) |t#1|) $)) (-15 -2327 ((-85) $)) (-15 -2326 ((-85) $)) (-15 -2325 ((-85) $)) (-15 -2324 ($ $)) (-15 -2323 (|t#1| $)) (-15 -2322 ($ $)) (-15 -2321 ((-693) $)) (-15 -3767 ($ $ (-483))) (-15 -2890 ($ $)))) -(((-34) . T) ((-72) OR (|has| |#1| (-1012)) (|has| |#1| (-72))) ((-551 (-771)) OR (|has| |#1| (-1012)) (|has| |#1| (-551 (-771)))) ((-124 |#1|) . T) ((-552 (-472)) |has| |#1| (-552 (-472))) ((-241 (-483) |#1|) . T) ((-241 (-1144 (-483)) $) . T) ((-243 (-483) |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ((-427 |#1|) . T) ((-537 (-483) |#1|) . T) ((-454 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ((-13) . T) ((-592 |#1|) . T) ((-922 |#1|) . T) ((-1012) |has| |#1| (-1012)) ((-1062 |#1|) . T) ((-1127) . T) ((-1166 |#1|) . T)) -((-2567 (((-85) $ $) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3177 (((-421) $) 15 T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3944 (((-771) $) 24 T ELT) (($ (-1093)) NIL T ELT) (((-1093) $) NIL T ELT)) (-3232 (((-1047) $) 17 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-616) (-13 (-994) (-10 -8 (-15 -3177 ((-421) $)) (-15 -3232 ((-1047) $))))) (T -616)) -((-3177 (*1 *2 *1) (-12 (-5 *2 (-421)) (-5 *1 (-616)))) (-3232 (*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-616))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3932 (((-582 |#1|) $) 15 T ELT)) (-3136 (($ $) 19 T ELT)) (-2663 (((-85) $) 20 T ELT)) (-3156 (((-3 |#1| "failed") $) 23 T ELT)) (-3155 ((|#1| $) 21 T ELT)) (-3797 (($ $) 37 T ELT)) (-3934 (($ $) 25 T ELT)) (-2530 (($ $ $) NIL T ELT)) (-2856 (($ $ $) NIL T ELT)) (-2510 (((-85) $ $) 46 T ELT)) (-3831 (((-829) $) 40 T ELT)) (-3137 (($ $) 18 T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3799 ((|#1| $) 36 T ELT)) (-3944 (((-771) $) 32 T ELT) (($ |#1|) 24 T ELT) (((-738 |#1|) $) 28 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2565 (((-85) $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) 13 T ELT)) (-2683 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) 44 T ELT)) (* (($ $ $) 35 T ELT))) -(((-617 |#1|) (-13 (-755) (-949 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -3944 ((-738 |#1|) $)) (-15 -3799 (|#1| $)) (-15 -3137 ($ $)) (-15 -3831 ((-829) $)) (-15 -2510 ((-85) $ $)) (-15 -3934 ($ $)) (-15 -3797 ($ $)) (-15 -2663 ((-85) $)) (-15 -3136 ($ $)) (-15 -3932 ((-582 |#1|) $)))) (-755)) (T -617)) -((* (*1 *1 *1 *1) (-12 (-5 *1 (-617 *2)) (-4 *2 (-755)))) (-3944 (*1 *2 *1) (-12 (-5 *2 (-738 *3)) (-5 *1 (-617 *3)) (-4 *3 (-755)))) (-3799 (*1 *2 *1) (-12 (-5 *1 (-617 *2)) (-4 *2 (-755)))) (-3137 (*1 *1 *1) (-12 (-5 *1 (-617 *2)) (-4 *2 (-755)))) (-3831 (*1 *2 *1) (-12 (-5 *2 (-829)) (-5 *1 (-617 *3)) (-4 *3 (-755)))) (-2510 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-617 *3)) (-4 *3 (-755)))) (-3934 (*1 *1 *1) (-12 (-5 *1 (-617 *2)) (-4 *2 (-755)))) (-3797 (*1 *1 *1) (-12 (-5 *1 (-617 *2)) (-4 *2 (-755)))) (-2663 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-617 *3)) (-4 *3 (-755)))) (-3136 (*1 *1 *1) (-12 (-5 *1 (-617 *2)) (-4 *2 (-755)))) (-3932 (*1 *2 *1) (-12 (-5 *2 (-582 *3)) (-5 *1 (-617 *3)) (-4 *3 (-755))))) -((-2336 ((|#1| (-1 |#1| (-693) |#1|) (-693) |#1|) 11 T ELT)) (-2328 ((|#1| (-1 |#1| |#1|) (-693) |#1|) 9 T ELT))) -(((-618 |#1|) (-10 -7 (-15 -2328 (|#1| (-1 |#1| |#1|) (-693) |#1|)) (-15 -2336 (|#1| (-1 |#1| (-693) |#1|) (-693) |#1|))) (-1012)) (T -618)) -((-2336 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-693) *2)) (-5 *4 (-693)) (-4 *2 (-1012)) (-5 *1 (-618 *2)))) (-2328 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-693)) (-4 *2 (-1012)) (-5 *1 (-618 *2))))) -((-2330 ((|#2| |#1| |#2|) 9 T ELT)) (-2329 ((|#1| |#1| |#2|) 8 T ELT))) -(((-619 |#1| |#2|) (-10 -7 (-15 -2329 (|#1| |#1| |#2|)) (-15 -2330 (|#2| |#1| |#2|))) (-1012) (-1012)) (T -619)) -((-2330 (*1 *2 *3 *2) (-12 (-5 *1 (-619 *3 *2)) (-4 *3 (-1012)) (-4 *2 (-1012)))) (-2329 (*1 *2 *2 *3) (-12 (-5 *1 (-619 *2 *3)) (-4 *2 (-1012)) (-4 *3 (-1012))))) -((-2331 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11 T ELT))) -(((-620 |#1| |#2| |#3|) (-10 -7 (-15 -2331 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1012) (-1012) (-1012)) (T -620)) -((-2331 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *2 (-1012)) (-5 *1 (-620 *5 *6 *2))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3317 (((-1128) $) 22 T ELT)) (-3316 (((-582 (-1128)) $) 20 T ELT)) (-2332 (($ (-582 (-1128)) (-1128)) 15 T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3944 (((-771) $) 30 T ELT) (($ (-1093)) NIL T ELT) (((-1093) $) NIL T ELT) (((-1128) $) 23 T ELT) (($ (-1027)) 11 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-621) (-13 (-994) (-551 (-1128)) (-10 -8 (-15 -3944 ($ (-1027))) (-15 -2332 ($ (-582 (-1128)) (-1128))) (-15 -3316 ((-582 (-1128)) $)) (-15 -3317 ((-1128) $))))) (T -621)) -((-3944 (*1 *1 *2) (-12 (-5 *2 (-1027)) (-5 *1 (-621)))) (-2332 (*1 *1 *2 *3) (-12 (-5 *2 (-582 (-1128))) (-5 *3 (-1128)) (-5 *1 (-621)))) (-3316 (*1 *2 *1) (-12 (-5 *2 (-582 (-1128))) (-5 *1 (-621)))) (-3317 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-621))))) -((-2336 (((-1 |#1| (-693) |#1|) (-1 |#1| (-693) |#1|)) 26 T ELT)) (-2333 (((-1 |#1|) |#1|) 8 T ELT)) (-2335 ((|#1| |#1|) 19 T ELT)) (-2334 (((-582 |#1|) (-1 (-582 |#1|) (-582 |#1|)) (-483)) 18 T ELT) ((|#1| (-1 |#1| |#1|)) 11 T ELT)) (-3944 (((-1 |#1|) |#1|) 9 T ELT)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-693)) 23 T ELT))) -(((-622 |#1|) (-10 -7 (-15 -2333 ((-1 |#1|) |#1|)) (-15 -3944 ((-1 |#1|) |#1|)) (-15 -2334 (|#1| (-1 |#1| |#1|))) (-15 -2334 ((-582 |#1|) (-1 (-582 |#1|) (-582 |#1|)) (-483))) (-15 -2335 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-693))) (-15 -2336 ((-1 |#1| (-693) |#1|) (-1 |#1| (-693) |#1|)))) (-1012)) (T -622)) -((-2336 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-693) *3)) (-4 *3 (-1012)) (-5 *1 (-622 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-693)) (-4 *4 (-1012)) (-5 *1 (-622 *4)))) (-2335 (*1 *2 *2) (-12 (-5 *1 (-622 *2)) (-4 *2 (-1012)))) (-2334 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-582 *5) (-582 *5))) (-5 *4 (-483)) (-5 *2 (-582 *5)) (-5 *1 (-622 *5)) (-4 *5 (-1012)))) (-2334 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-622 *2)) (-4 *2 (-1012)))) (-3944 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-622 *3)) (-4 *3 (-1012)))) (-2333 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-622 *3)) (-4 *3 (-1012))))) -((-2339 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16 T ELT)) (-2338 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13 T ELT)) (-3950 (((-1 |#2| |#1|) (-1 |#2|)) 14 T ELT)) (-2337 (((-1 |#2| |#1|) |#2|) 11 T ELT))) -(((-623 |#1| |#2|) (-10 -7 (-15 -2337 ((-1 |#2| |#1|) |#2|)) (-15 -2338 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -3950 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2339 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1012) (-1012)) (T -623)) -((-2339 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1012)) (-4 *5 (-1012)) (-5 *2 (-1 *5 *4)) (-5 *1 (-623 *4 *5)))) (-3950 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1012)) (-5 *2 (-1 *5 *4)) (-5 *1 (-623 *4 *5)) (-4 *4 (-1012)))) (-2338 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1012)) (-4 *5 (-1012)) (-5 *2 (-1 *5)) (-5 *1 (-623 *4 *5)))) (-2337 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-623 *4 *3)) (-4 *4 (-1012)) (-4 *3 (-1012))))) -((-2344 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17 T ELT)) (-2340 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11 T ELT)) (-2341 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13 T ELT)) (-2342 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14 T ELT)) (-2343 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15 T ELT)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21 T ELT))) -(((-624 |#1| |#2| |#3|) (-10 -7 (-15 -2340 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -2341 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -2342 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2343 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2344 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1012) (-1012) (-1012)) (T -624)) -((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *7 (-1012)) (-5 *2 (-1 *7 *5)) (-5 *1 (-624 *5 *6 *7)))) (-2344 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1012)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-624 *4 *5 *6)))) (-2343 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-624 *4 *5 *6)) (-4 *4 (-1012)))) (-2342 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1012)) (-4 *6 (-1012)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-624 *4 *5 *6)) (-4 *5 (-1012)))) (-2341 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1012)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-5 *2 (-1 *6 *5)) (-5 *1 (-624 *4 *5 *6)))) (-2340 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1012)) (-4 *4 (-1012)) (-4 *6 (-1012)) (-5 *2 (-1 *6 *5)) (-5 *1 (-624 *5 *4 *6))))) -((-3836 (($ (-693) (-693)) 42 T ELT)) (-2349 (($ $ $) 73 T ELT)) (-3412 (($ |#3|) 68 T ELT) (($ $) 69 T ELT)) (-3119 (((-85) $) 36 T ELT)) (-2348 (($ $ (-483) (-483)) 84 T ELT)) (-2347 (($ $ (-483) (-483)) 85 T ELT)) (-2346 (($ $ (-483) (-483) (-483) (-483)) 90 T ELT)) (-2351 (($ $) 71 T ELT)) (-3121 (((-85) $) 15 T ELT)) (-2345 (($ $ (-483) (-483) $) 91 T ELT)) (-3786 ((|#2| $ (-483) (-483) |#2|) NIL T ELT) (($ $ (-582 (-483)) (-582 (-483)) $) 89 T ELT)) (-3331 (($ (-693) |#2|) 55 T ELT)) (-3122 (($ (-582 (-582 |#2|))) 51 T ELT) (($ (-693) (-693) (-1 |#2| (-483) (-483))) 53 T ELT)) (-3592 (((-582 (-582 |#2|)) $) 80 T ELT)) (-2350 (($ $ $) 72 T ELT)) (-3464 (((-3 $ "failed") $ |#2|) 122 T ELT)) (-3798 ((|#2| $ (-483) (-483)) NIL T ELT) ((|#2| $ (-483) (-483) |#2|) NIL T ELT) (($ $ (-582 (-483)) (-582 (-483))) 88 T ELT)) (-3330 (($ (-582 |#2|)) 56 T ELT) (($ (-582 $)) 58 T ELT)) (-3120 (((-85) $) 28 T ELT)) (-3944 (($ |#4|) 63 T ELT) (((-771) $) NIL T ELT)) (-3118 (((-85) $) 38 T ELT)) (-3947 (($ $ |#2|) 124 T ELT)) (-3835 (($ $ $) 95 T ELT) (($ $) 98 T ELT)) (-3837 (($ $ $) 93 T ELT)) (** (($ $ (-693)) 111 T ELT) (($ $ (-483)) 128 T ELT)) (* (($ $ $) 104 T ELT) (($ |#2| $) 100 T ELT) (($ $ |#2|) 101 T ELT) (($ (-483) $) 103 T ELT) ((|#4| $ |#4|) 115 T ELT) ((|#3| |#3| $) 119 T ELT))) -(((-625 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3944 ((-771) |#1|)) (-15 ** (|#1| |#1| (-483))) (-15 -3947 (|#1| |#1| |#2|)) (-15 -3464 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-693))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-483) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3835 (|#1| |#1|)) (-15 -3835 (|#1| |#1| |#1|)) (-15 -3837 (|#1| |#1| |#1|)) (-15 -2345 (|#1| |#1| (-483) (-483) |#1|)) (-15 -2346 (|#1| |#1| (-483) (-483) (-483) (-483))) (-15 -2347 (|#1| |#1| (-483) (-483))) (-15 -2348 (|#1| |#1| (-483) (-483))) (-15 -3786 (|#1| |#1| (-582 (-483)) (-582 (-483)) |#1|)) (-15 -3798 (|#1| |#1| (-582 (-483)) (-582 (-483)))) (-15 -3592 ((-582 (-582 |#2|)) |#1|)) (-15 -2349 (|#1| |#1| |#1|)) (-15 -2350 (|#1| |#1| |#1|)) (-15 -2351 (|#1| |#1|)) (-15 -3412 (|#1| |#1|)) (-15 -3412 (|#1| |#3|)) (-15 -3944 (|#1| |#4|)) (-15 -3330 (|#1| (-582 |#1|))) (-15 -3330 (|#1| (-582 |#2|))) (-15 -3331 (|#1| (-693) |#2|)) (-15 -3122 (|#1| (-693) (-693) (-1 |#2| (-483) (-483)))) (-15 -3122 (|#1| (-582 (-582 |#2|)))) (-15 -3836 (|#1| (-693) (-693))) (-15 -3118 ((-85) |#1|)) (-15 -3119 ((-85) |#1|)) (-15 -3120 ((-85) |#1|)) (-15 -3121 ((-85) |#1|)) (-15 -3786 (|#2| |#1| (-483) (-483) |#2|)) (-15 -3798 (|#2| |#1| (-483) (-483) |#2|)) (-15 -3798 (|#2| |#1| (-483) (-483)))) (-626 |#2| |#3| |#4|) (-960) (-322 |#2|) (-322 |#2|)) (T -625)) -NIL -((-2567 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3836 (($ (-693) (-693)) 103 T ELT)) (-2349 (($ $ $) 92 T ELT)) (-3412 (($ |#2|) 96 T ELT) (($ $) 95 T ELT)) (-3119 (((-85) $) 105 T ELT)) (-2348 (($ $ (-483) (-483)) 88 T ELT)) (-2347 (($ $ (-483) (-483)) 87 T ELT)) (-2346 (($ $ (-483) (-483) (-483) (-483)) 86 T ELT)) (-2351 (($ $) 94 T ELT)) (-3121 (((-85) $) 107 T ELT)) (-2345 (($ $ (-483) (-483) $) 85 T ELT)) (-3786 ((|#1| $ (-483) (-483) |#1|) 48 T ELT) (($ $ (-582 (-483)) (-582 (-483)) $) 89 T ELT)) (-1255 (($ $ (-483) |#2|) 46 T ELT)) (-1254 (($ $ (-483) |#3|) 45 T ELT)) (-3331 (($ (-693) |#1|) 100 T ELT)) (-3722 (($) 7 T CONST)) (-3108 (($ $) 72 (|has| |#1| (-258)) ELT)) (-3110 ((|#2| $ (-483)) 50 T ELT)) (-3107 (((-693) $) 71 (|has| |#1| (-494)) ELT)) (-1574 ((|#1| $ (-483) (-483) |#1|) 47 T ELT)) (-3111 ((|#1| $ (-483) (-483)) 52 T ELT)) (-2888 (((-582 |#1|) $) 30 (|has| $ (-6 -3993)) ELT)) (-3106 (((-693) $) 70 (|has| |#1| (-494)) ELT)) (-3105 (((-582 |#3|) $) 69 (|has| |#1| (-494)) ELT)) (-3113 (((-693) $) 55 T ELT)) (-3612 (($ (-693) (-693) |#1|) 61 T ELT)) (-3112 (((-693) $) 54 T ELT)) (-3325 ((|#1| $) 67 (|has| |#1| (-6 (-3995 #1="*"))) ELT)) (-3117 (((-483) $) 59 T ELT)) (-3115 (((-483) $) 57 T ELT)) (-2607 (((-582 |#1|) $) 29 (|has| $ (-6 -3993)) ELT)) (-3244 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3993))) ELT)) (-3116 (((-483) $) 58 T ELT)) (-3114 (((-483) $) 56 T ELT)) (-3122 (($ (-582 (-582 |#1|))) 102 T ELT) (($ (-693) (-693) (-1 |#1| (-483) (-483))) 101 T ELT)) (-1947 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-3956 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 44 T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 43 T ELT)) (-3592 (((-582 (-582 |#1|)) $) 91 T ELT)) (-3241 (((-1071) $) 22 (|has| |#1| (-1012)) ELT)) (-3588 (((-3 $ "failed") $) 66 (|has| |#1| (-312)) ELT)) (-2350 (($ $ $) 93 T ELT)) (-3242 (((-1032) $) 21 (|has| |#1| (-1012)) ELT)) (-2198 (($ $ |#1|) 60 T ELT)) (-3464 (((-3 $ "failed") $ |#1|) 74 (|has| |#1| (-494)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3993)) ELT)) (-3766 (($ $ (-582 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-582 |#1|) (-582 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT)) (-1220 (((-85) $ $) 11 T ELT)) (-3401 (((-85) $) 8 T ELT)) (-3563 (($) 9 T ELT)) (-3798 ((|#1| $ (-483) (-483)) 53 T ELT) ((|#1| $ (-483) (-483) |#1|) 51 T ELT) (($ $ (-582 (-483)) (-582 (-483))) 90 T ELT)) (-3330 (($ (-582 |#1|)) 99 T ELT) (($ (-582 $)) 98 T ELT)) (-3120 (((-85) $) 106 T ELT)) (-3326 ((|#1| $) 68 (|has| |#1| (-6 (-3995 #1#))) ELT)) (-1944 (((-693) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3993)) ELT) (((-693) |#1| $) 28 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3993))) ELT)) (-3398 (($ $) 10 T ELT)) (-3109 ((|#3| $ (-483)) 49 T ELT)) (-3944 (($ |#3|) 97 T ELT) (((-771) $) 17 (|has| |#1| (-551 (-771))) ELT)) (-1263 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3993)) ELT)) (-3118 (((-85) $) 104 T ELT)) (-3055 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3947 (($ $ |#1|) 73 (|has| |#1| (-312)) ELT)) (-3835 (($ $ $) 83 T ELT) (($ $) 82 T ELT)) (-3837 (($ $ $) 84 T ELT)) (** (($ $ (-693)) 75 T ELT) (($ $ (-483)) 65 (|has| |#1| (-312)) ELT)) (* (($ $ $) 81 T ELT) (($ |#1| $) 80 T ELT) (($ $ |#1|) 79 T ELT) (($ (-483) $) 78 T ELT) ((|#3| $ |#3|) 77 T ELT) ((|#2| |#2| $) 76 T ELT)) (-3955 (((-693) $) 6 (|has| $ (-6 -3993)) ELT))) -(((-626 |#1| |#2| |#3|) (-113) (-960) (-322 |t#1|) (-322 |t#1|)) (T -626)) -((-3121 (*1 *2 *1) (-12 (-4 *1 (-626 *3 *4 *5)) (-4 *3 (-960)) (-4 *4 (-322 *3)) (-4 *5 (-322 *3)) (-5 *2 (-85)))) (-3120 (*1 *2 *1) (-12 (-4 *1 (-626 *3 *4 *5)) (-4 *3 (-960)) (-4 *4 (-322 *3)) (-4 *5 (-322 *3)) (-5 *2 (-85)))) (-3119 (*1 *2 *1) (-12 (-4 *1 (-626 *3 *4 *5)) (-4 *3 (-960)) (-4 *4 (-322 *3)) (-4 *5 (-322 *3)) (-5 *2 (-85)))) (-3118 (*1 *2 *1) (-12 (-4 *1 (-626 *3 *4 *5)) (-4 *3 (-960)) (-4 *4 (-322 *3)) (-4 *5 (-322 *3)) (-5 *2 (-85)))) (-3836 (*1 *1 *2 *2) (-12 (-5 *2 (-693)) (-4 *3 (-960)) (-4 *1 (-626 *3 *4 *5)) (-4 *4 (-322 *3)) (-4 *5 (-322 *3)))) (-3122 (*1 *1 *2) (-12 (-5 *2 (-582 (-582 *3))) (-4 *3 (-960)) (-4 *1 (-626 *3 *4 *5)) (-4 *4 (-322 *3)) (-4 *5 (-322 *3)))) (-3122 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-693)) (-5 *3 (-1 *4 (-483) (-483))) (-4 *4 (-960)) (-4 *1 (-626 *4 *5 *6)) (-4 *5 (-322 *4)) (-4 *6 (-322 *4)))) (-3331 (*1 *1 *2 *3) (-12 (-5 *2 (-693)) (-4 *3 (-960)) (-4 *1 (-626 *3 *4 *5)) (-4 *4 (-322 *3)) (-4 *5 (-322 *3)))) (-3330 (*1 *1 *2) (-12 (-5 *2 (-582 *3)) (-4 *3 (-960)) (-4 *1 (-626 *3 *4 *5)) (-4 *4 (-322 *3)) (-4 *5 (-322 *3)))) (-3330 (*1 *1 *2) (-12 (-5 *2 (-582 *1)) (-4 *3 (-960)) (-4 *1 (-626 *3 *4 *5)) (-4 *4 (-322 *3)) (-4 *5 (-322 *3)))) (-3944 (*1 *1 *2) (-12 (-4 *3 (-960)) (-4 *1 (-626 *3 *4 *2)) (-4 *4 (-322 *3)) (-4 *2 (-322 *3)))) (-3412 (*1 *1 *2) (-12 (-4 *3 (-960)) (-4 *1 (-626 *3 *2 *4)) (-4 *2 (-322 *3)) (-4 *4 (-322 *3)))) (-3412 (*1 *1 *1) (-12 (-4 *1 (-626 *2 *3 *4)) (-4 *2 (-960)) (-4 *3 (-322 *2)) (-4 *4 (-322 *2)))) (-2351 (*1 *1 *1) (-12 (-4 *1 (-626 *2 *3 *4)) (-4 *2 (-960)) (-4 *3 (-322 *2)) (-4 *4 (-322 *2)))) (-2350 (*1 *1 *1 *1) (-12 (-4 *1 (-626 *2 *3 *4)) (-4 *2 (-960)) (-4 *3 (-322 *2)) (-4 *4 (-322 *2)))) (-2349 (*1 *1 *1 *1) (-12 (-4 *1 (-626 *2 *3 *4)) (-4 *2 (-960)) (-4 *3 (-322 *2)) (-4 *4 (-322 *2)))) (-3592 (*1 *2 *1) (-12 (-4 *1 (-626 *3 *4 *5)) (-4 *3 (-960)) (-4 *4 (-322 *3)) (-4 *5 (-322 *3)) (-5 *2 (-582 (-582 *3))))) (-3798 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-582 (-483))) (-4 *1 (-626 *3 *4 *5)) (-4 *3 (-960)) (-4 *4 (-322 *3)) (-4 *5 (-322 *3)))) (-3786 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-582 (-483))) (-4 *1 (-626 *3 *4 *5)) (-4 *3 (-960)) (-4 *4 (-322 *3)) (-4 *5 (-322 *3)))) (-2348 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-483)) (-4 *1 (-626 *3 *4 *5)) (-4 *3 (-960)) (-4 *4 (-322 *3)) (-4 *5 (-322 *3)))) (-2347 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-483)) (-4 *1 (-626 *3 *4 *5)) (-4 *3 (-960)) (-4 *4 (-322 *3)) (-4 *5 (-322 *3)))) (-2346 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-483)) (-4 *1 (-626 *3 *4 *5)) (-4 *3 (-960)) (-4 *4 (-322 *3)) (-4 *5 (-322 *3)))) (-2345 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-483)) (-4 *1 (-626 *3 *4 *5)) (-4 *3 (-960)) (-4 *4 (-322 *3)) (-4 *5 (-322 *3)))) (-3837 (*1 *1 *1 *1) (-12 (-4 *1 (-626 *2 *3 *4)) (-4 *2 (-960)) (-4 *3 (-322 *2)) (-4 *4 (-322 *2)))) (-3835 (*1 *1 *1 *1) (-12 (-4 *1 (-626 *2 *3 *4)) (-4 *2 (-960)) (-4 *3 (-322 *2)) (-4 *4 (-322 *2)))) (-3835 (*1 *1 *1) (-12 (-4 *1 (-626 *2 *3 *4)) (-4 *2 (-960)) (-4 *3 (-322 *2)) (-4 *4 (-322 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-626 *2 *3 *4)) (-4 *2 (-960)) (-4 *3 (-322 *2)) (-4 *4 (-322 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-626 *2 *3 *4)) (-4 *2 (-960)) (-4 *3 (-322 *2)) (-4 *4 (-322 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-626 *2 *3 *4)) (-4 *2 (-960)) (-4 *3 (-322 *2)) (-4 *4 (-322 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-483)) (-4 *1 (-626 *3 *4 *5)) (-4 *3 (-960)) (-4 *4 (-322 *3)) (-4 *5 (-322 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-626 *3 *4 *2)) (-4 *3 (-960)) (-4 *4 (-322 *3)) (-4 *2 (-322 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-626 *3 *2 *4)) (-4 *3 (-960)) (-4 *2 (-322 *3)) (-4 *4 (-322 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-693)) (-4 *1 (-626 *3 *4 *5)) (-4 *3 (-960)) (-4 *4 (-322 *3)) (-4 *5 (-322 *3)))) (-3464 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-626 *2 *3 *4)) (-4 *2 (-960)) (-4 *3 (-322 *2)) (-4 *4 (-322 *2)) (-4 *2 (-494)))) (-3947 (*1 *1 *1 *2) (-12 (-4 *1 (-626 *2 *3 *4)) (-4 *2 (-960)) (-4 *3 (-322 *2)) (-4 *4 (-322 *2)) (-4 *2 (-312)))) (-3108 (*1 *1 *1) (-12 (-4 *1 (-626 *2 *3 *4)) (-4 *2 (-960)) (-4 *3 (-322 *2)) (-4 *4 (-322 *2)) (-4 *2 (-258)))) (-3107 (*1 *2 *1) (-12 (-4 *1 (-626 *3 *4 *5)) (-4 *3 (-960)) (-4 *4 (-322 *3)) (-4 *5 (-322 *3)) (-4 *3 (-494)) (-5 *2 (-693)))) (-3106 (*1 *2 *1) (-12 (-4 *1 (-626 *3 *4 *5)) (-4 *3 (-960)) (-4 *4 (-322 *3)) (-4 *5 (-322 *3)) (-4 *3 (-494)) (-5 *2 (-693)))) (-3105 (*1 *2 *1) (-12 (-4 *1 (-626 *3 *4 *5)) (-4 *3 (-960)) (-4 *4 (-322 *3)) (-4 *5 (-322 *3)) (-4 *3 (-494)) (-5 *2 (-582 *5)))) (-3326 (*1 *2 *1) (-12 (-4 *1 (-626 *2 *3 *4)) (-4 *3 (-322 *2)) (-4 *4 (-322 *2)) (|has| *2 (-6 (-3995 #1="*"))) (-4 *2 (-960)))) (-3325 (*1 *2 *1) (-12 (-4 *1 (-626 *2 *3 *4)) (-4 *3 (-322 *2)) (-4 *4 (-322 *2)) (|has| *2 (-6 (-3995 #1#))) (-4 *2 (-960)))) (-3588 (*1 *1 *1) (|partial| -12 (-4 *1 (-626 *2 *3 *4)) (-4 *2 (-960)) (-4 *3 (-322 *2)) (-4 *4 (-322 *2)) (-4 *2 (-312)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-483)) (-4 *1 (-626 *3 *4 *5)) (-4 *3 (-960)) (-4 *4 (-322 *3)) (-4 *5 (-322 *3)) (-4 *3 (-312))))) -(-13 (-57 |t#1| |t#2| |t#3|) (-10 -8 (-15 -3121 ((-85) $)) (-15 -3120 ((-85) $)) (-15 -3119 ((-85) $)) (-15 -3118 ((-85) $)) (-15 -3836 ($ (-693) (-693))) (-15 -3122 ($ (-582 (-582 |t#1|)))) (-15 -3122 ($ (-693) (-693) (-1 |t#1| (-483) (-483)))) (-15 -3331 ($ (-693) |t#1|)) (-15 -3330 ($ (-582 |t#1|))) (-15 -3330 ($ (-582 $))) (-15 -3944 ($ |t#3|)) (-15 -3412 ($ |t#2|)) (-15 -3412 ($ $)) (-15 -2351 ($ $)) (-15 -2350 ($ $ $)) (-15 -2349 ($ $ $)) (-15 -3592 ((-582 (-582 |t#1|)) $)) (-15 -3798 ($ $ (-582 (-483)) (-582 (-483)))) (-15 -3786 ($ $ (-582 (-483)) (-582 (-483)) $)) (-15 -2348 ($ $ (-483) (-483))) (-15 -2347 ($ $ (-483) (-483))) (-15 -2346 ($ $ (-483) (-483) (-483) (-483))) (-15 -2345 ($ $ (-483) (-483) $)) (-15 -3837 ($ $ $)) (-15 -3835 ($ $ $)) (-15 -3835 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-483) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-693))) (IF (|has| |t#1| (-494)) (-15 -3464 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-312)) (-15 -3947 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-258)) (-15 -3108 ($ $)) |%noBranch|) (IF (|has| |t#1| (-494)) (PROGN (-15 -3107 ((-693) $)) (-15 -3106 ((-693) $)) (-15 -3105 ((-582 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-3995 "*"))) (PROGN (-15 -3326 (|t#1| $)) (-15 -3325 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-312)) (PROGN (-15 -3588 ((-3 $ "failed") $)) (-15 ** ($ $ (-483)))) |%noBranch|))) -(((-34) . T) ((-72) OR (|has| |#1| (-1012)) (|has| |#1| (-72))) ((-551 (-771)) OR (|has| |#1| (-1012)) (|has| |#1| (-551 (-771)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ((-427 |#1|) . T) ((-454 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ((-13) . T) ((-1012) |has| |#1| (-1012)) ((-57 |#1| |#2| |#3|) . T) ((-1127) . T)) -((-3840 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39 T ELT)) (-3956 (((-3 |#8| #1="failed") (-1 (-3 |#5| #1#) |#1|) |#4|) 37 T ELT) ((|#8| (-1 |#5| |#1|) |#4|) 31 T ELT))) -(((-627 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3956 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -3956 ((-3 |#8| #1="failed") (-1 (-3 |#5| #1#) |#1|) |#4|)) (-15 -3840 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-960) (-322 |#1|) (-322 |#1|) (-626 |#1| |#2| |#3|) (-960) (-322 |#5|) (-322 |#5|) (-626 |#5| |#6| |#7|)) (T -627)) -((-3840 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-960)) (-4 *2 (-960)) (-4 *6 (-322 *5)) (-4 *7 (-322 *5)) (-4 *8 (-322 *2)) (-4 *9 (-322 *2)) (-5 *1 (-627 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-626 *5 *6 *7)) (-4 *10 (-626 *2 *8 *9)))) (-3956 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-960)) (-4 *8 (-960)) (-4 *6 (-322 *5)) (-4 *7 (-322 *5)) (-4 *2 (-626 *8 *9 *10)) (-5 *1 (-627 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-626 *5 *6 *7)) (-4 *9 (-322 *8)) (-4 *10 (-322 *8)))) (-3956 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-960)) (-4 *8 (-960)) (-4 *6 (-322 *5)) (-4 *7 (-322 *5)) (-4 *2 (-626 *8 *9 *10)) (-5 *1 (-627 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-626 *5 *6 *7)) (-4 *9 (-322 *8)) (-4 *10 (-322 *8))))) -((-3108 ((|#4| |#4|) 90 (|has| |#1| (-258)) ELT)) (-3107 (((-693) |#4|) 92 (|has| |#1| (-494)) ELT)) (-3106 (((-693) |#4|) 94 (|has| |#1| (-494)) ELT)) (-3105 (((-582 |#3|) |#4|) 101 (|has| |#1| (-494)) ELT)) (-2379 (((-2 (|:| -1971 |#1|) (|:| -2901 |#1|)) |#1| |#1|) 124 (|has| |#1| (-258)) ELT)) (-3325 ((|#1| |#4|) 52 T ELT)) (-2356 (((-3 |#4| #1="failed") |#4|) 84 (|has| |#1| (-494)) ELT)) (-3588 (((-3 |#4| #1#) |#4|) 98 (|has| |#1| (-312)) ELT)) (-2355 ((|#4| |#4|) 76 (|has| |#1| (-494)) ELT)) (-2353 ((|#4| |#4| |#1| (-483) (-483)) 60 T ELT)) (-2352 ((|#4| |#4| (-483) (-483)) 55 T ELT)) (-2354 ((|#4| |#4| |#1| (-483) (-483)) 65 T ELT)) (-3326 ((|#1| |#4|) 96 T ELT)) (-2519 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 80 (|has| |#1| (-494)) ELT))) -(((-628 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3326 (|#1| |#4|)) (-15 -3325 (|#1| |#4|)) (-15 -2352 (|#4| |#4| (-483) (-483))) (-15 -2353 (|#4| |#4| |#1| (-483) (-483))) (-15 -2354 (|#4| |#4| |#1| (-483) (-483))) (IF (|has| |#1| (-494)) (PROGN (-15 -3107 ((-693) |#4|)) (-15 -3106 ((-693) |#4|)) (-15 -3105 ((-582 |#3|) |#4|)) (-15 -2355 (|#4| |#4|)) (-15 -2356 ((-3 |#4| #1="failed") |#4|)) (-15 -2519 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-258)) (PROGN (-15 -3108 (|#4| |#4|)) (-15 -2379 ((-2 (|:| -1971 |#1|) (|:| -2901 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-312)) (-15 -3588 ((-3 |#4| #1#) |#4|)) |%noBranch|)) (-146) (-322 |#1|) (-322 |#1|) (-626 |#1| |#2| |#3|)) (T -628)) -((-3588 (*1 *2 *2) (|partial| -12 (-4 *3 (-312)) (-4 *3 (-146)) (-4 *4 (-322 *3)) (-4 *5 (-322 *3)) (-5 *1 (-628 *3 *4 *5 *2)) (-4 *2 (-626 *3 *4 *5)))) (-2379 (*1 *2 *3 *3) (-12 (-4 *3 (-258)) (-4 *3 (-146)) (-4 *4 (-322 *3)) (-4 *5 (-322 *3)) (-5 *2 (-2 (|:| -1971 *3) (|:| -2901 *3))) (-5 *1 (-628 *3 *4 *5 *6)) (-4 *6 (-626 *3 *4 *5)))) (-3108 (*1 *2 *2) (-12 (-4 *3 (-258)) (-4 *3 (-146)) (-4 *4 (-322 *3)) (-4 *5 (-322 *3)) (-5 *1 (-628 *3 *4 *5 *2)) (-4 *2 (-626 *3 *4 *5)))) (-2519 (*1 *2 *3) (-12 (-4 *4 (-494)) (-4 *4 (-146)) (-4 *5 (-322 *4)) (-4 *6 (-322 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-628 *4 *5 *6 *3)) (-4 *3 (-626 *4 *5 *6)))) (-2356 (*1 *2 *2) (|partial| -12 (-4 *3 (-494)) (-4 *3 (-146)) (-4 *4 (-322 *3)) (-4 *5 (-322 *3)) (-5 *1 (-628 *3 *4 *5 *2)) (-4 *2 (-626 *3 *4 *5)))) (-2355 (*1 *2 *2) (-12 (-4 *3 (-494)) (-4 *3 (-146)) (-4 *4 (-322 *3)) (-4 *5 (-322 *3)) (-5 *1 (-628 *3 *4 *5 *2)) (-4 *2 (-626 *3 *4 *5)))) (-3105 (*1 *2 *3) (-12 (-4 *4 (-494)) (-4 *4 (-146)) (-4 *5 (-322 *4)) (-4 *6 (-322 *4)) (-5 *2 (-582 *6)) (-5 *1 (-628 *4 *5 *6 *3)) (-4 *3 (-626 *4 *5 *6)))) (-3106 (*1 *2 *3) (-12 (-4 *4 (-494)) (-4 *4 (-146)) (-4 *5 (-322 *4)) (-4 *6 (-322 *4)) (-5 *2 (-693)) (-5 *1 (-628 *4 *5 *6 *3)) (-4 *3 (-626 *4 *5 *6)))) (-3107 (*1 *2 *3) (-12 (-4 *4 (-494)) (-4 *4 (-146)) (-4 *5 (-322 *4)) (-4 *6 (-322 *4)) (-5 *2 (-693)) (-5 *1 (-628 *4 *5 *6 *3)) (-4 *3 (-626 *4 *5 *6)))) (-2354 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-483)) (-4 *3 (-146)) (-4 *5 (-322 *3)) (-4 *6 (-322 *3)) (-5 *1 (-628 *3 *5 *6 *2)) (-4 *2 (-626 *3 *5 *6)))) (-2353 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-483)) (-4 *3 (-146)) (-4 *5 (-322 *3)) (-4 *6 (-322 *3)) (-5 *1 (-628 *3 *5 *6 *2)) (-4 *2 (-626 *3 *5 *6)))) (-2352 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-483)) (-4 *4 (-146)) (-4 *5 (-322 *4)) (-4 *6 (-322 *4)) (-5 *1 (-628 *4 *5 *6 *2)) (-4 *2 (-626 *4 *5 *6)))) (-3325 (*1 *2 *3) (-12 (-4 *4 (-322 *2)) (-4 *5 (-322 *2)) (-4 *2 (-146)) (-5 *1 (-628 *2 *4 *5 *3)) (-4 *3 (-626 *2 *4 *5)))) (-3326 (*1 *2 *3) (-12 (-4 *4 (-322 *2)) (-4 *5 (-322 *2)) (-4 *2 (-146)) (-5 *1 (-628 *2 *4 *5 *3)) (-4 *3 (-626 *2 *4 *5))))) -((-2567 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3836 (($ (-693) (-693)) 63 T ELT)) (-2349 (($ $ $) NIL T ELT)) (-3412 (($ (-1177 |#1|)) NIL T ELT) (($ $) NIL T ELT)) (-3119 (((-85) $) NIL T ELT)) (-2348 (($ $ (-483) (-483)) 21 T ELT)) (-2347 (($ $ (-483) (-483)) NIL T ELT)) (-2346 (($ $ (-483) (-483) (-483) (-483)) NIL T ELT)) (-2351 (($ $) NIL T ELT)) (-3121 (((-85) $) NIL T ELT)) (-2345 (($ $ (-483) (-483) $) NIL T ELT)) (-3786 ((|#1| $ (-483) (-483) |#1|) NIL T ELT) (($ $ (-582 (-483)) (-582 (-483)) $) NIL T ELT)) (-1255 (($ $ (-483) (-1177 |#1|)) NIL T ELT)) (-1254 (($ $ (-483) (-1177 |#1|)) NIL T ELT)) (-3331 (($ (-693) |#1|) 37 T ELT)) (-3722 (($) NIL T CONST)) (-3108 (($ $) 46 (|has| |#1| (-258)) ELT)) (-3110 (((-1177 |#1|) $ (-483)) NIL T ELT)) (-3107 (((-693) $) 48 (|has| |#1| (-494)) ELT)) (-1574 ((|#1| $ (-483) (-483) |#1|) 68 T ELT)) (-3111 ((|#1| $ (-483) (-483)) NIL T ELT)) (-2888 (((-582 |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3106 (((-693) $) 50 (|has| |#1| (-494)) ELT)) (-3105 (((-582 (-1177 |#1|)) $) 53 (|has| |#1| (-494)) ELT)) (-3113 (((-693) $) 31 T ELT)) (-3612 (($ (-693) (-693) |#1|) 27 T ELT)) (-3112 (((-693) $) 32 T ELT)) (-3325 ((|#1| $) 44 (|has| |#1| (-6 (-3995 #1="*"))) ELT)) (-3117 (((-483) $) 9 T ELT)) (-3115 (((-483) $) 10 T ELT)) (-2607 (((-582 |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3244 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#1| (-1012))) ELT)) (-3116 (((-483) $) 13 T ELT)) (-3114 (((-483) $) 64 T ELT)) (-3122 (($ (-582 (-582 |#1|))) NIL T ELT) (($ (-693) (-693) (-1 |#1| (-483) (-483))) NIL T ELT)) (-1947 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3956 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3592 (((-582 (-582 |#1|)) $) 75 T ELT)) (-3241 (((-1071) $) NIL (|has| |#1| (-1012)) ELT)) (-3588 (((-3 $ #2="failed") $) 57 (|has| |#1| (-312)) ELT)) (-2350 (($ $ $) NIL T ELT)) (-3242 (((-1032) $) NIL (|has| |#1| (-1012)) ELT)) (-2198 (($ $ |#1|) NIL T ELT)) (-3464 (((-3 $ #2#) $ |#1|) NIL (|has| |#1| (-494)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3766 (($ $ (-582 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-582 |#1|) (-582 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-3401 (((-85) $) NIL T ELT)) (-3563 (($) NIL T ELT)) (-3798 ((|#1| $ (-483) (-483)) NIL T ELT) ((|#1| $ (-483) (-483) |#1|) NIL T ELT) (($ $ (-582 (-483)) (-582 (-483))) NIL T ELT)) (-3330 (($ (-582 |#1|)) NIL T ELT) (($ (-582 $)) NIL T ELT) (($ (-1177 |#1|)) 69 T ELT)) (-3120 (((-85) $) NIL T ELT)) (-3326 ((|#1| $) 42 (|has| |#1| (-6 (-3995 #1#))) ELT)) (-1944 (((-693) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3993)) ELT) (((-693) |#1| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#1| (-1012))) ELT)) (-3398 (($ $) NIL T ELT)) (-3970 (((-472) $) 79 (|has| |#1| (-552 (-472))) ELT)) (-3109 (((-1177 |#1|) $ (-483)) NIL T ELT)) (-3944 (($ (-1177 |#1|)) NIL T ELT) (((-771) $) NIL (|has| |#1| (-551 (-771))) ELT)) (-1263 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3118 (((-85) $) NIL T ELT)) (-3055 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3947 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3835 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3837 (($ $ $) NIL T ELT)) (** (($ $ (-693)) 38 T ELT) (($ $ (-483)) 61 (|has| |#1| (-312)) ELT)) (* (($ $ $) 23 T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ (-483) $) NIL T ELT) (((-1177 |#1|) $ (-1177 |#1|)) NIL T ELT) (((-1177 |#1|) (-1177 |#1|) $) NIL T ELT)) (-3955 (((-693) $) NIL (|has| $ (-6 -3993)) ELT))) -(((-629 |#1|) (-13 (-626 |#1| (-1177 |#1|) (-1177 |#1|)) (-10 -8 (-15 -3330 ($ (-1177 |#1|))) (IF (|has| |#1| (-552 (-472))) (-6 (-552 (-472))) |%noBranch|) (IF (|has| |#1| (-312)) (-15 -3588 ((-3 $ "failed") $)) |%noBranch|))) (-960)) (T -629)) -((-3588 (*1 *1 *1) (|partial| -12 (-5 *1 (-629 *2)) (-4 *2 (-312)) (-4 *2 (-960)))) (-3330 (*1 *1 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-960)) (-5 *1 (-629 *3))))) -((-2362 (((-629 |#1|) (-629 |#1|) (-629 |#1|) (-629 |#1|)) 37 T ELT)) (-2361 (((-629 |#1|) (-629 |#1|) (-629 |#1|) |#1|) 32 T ELT)) (-2363 (((-629 |#1|) (-629 |#1|) (-629 |#1|) (-629 |#1|) (-629 |#1|) (-693)) 43 T ELT)) (-2358 (((-629 |#1|) (-629 |#1|) (-629 |#1|) (-629 |#1|)) 25 T ELT)) (-2359 (((-629 |#1|) (-629 |#1|) (-629 |#1|) (-629 |#1|)) 29 T ELT) (((-629 |#1|) (-629 |#1|) (-629 |#1|)) 27 T ELT)) (-2360 (((-629 |#1|) (-629 |#1|) |#1| (-629 |#1|)) 31 T ELT)) (-2357 (((-629 |#1|) (-629 |#1|) (-629 |#1|)) 23 T ELT)) (** (((-629 |#1|) (-629 |#1|) (-693)) 46 T ELT))) -(((-630 |#1|) (-10 -7 (-15 -2357 ((-629 |#1|) (-629 |#1|) (-629 |#1|))) (-15 -2358 ((-629 |#1|) (-629 |#1|) (-629 |#1|) (-629 |#1|))) (-15 -2359 ((-629 |#1|) (-629 |#1|) (-629 |#1|))) (-15 -2359 ((-629 |#1|) (-629 |#1|) (-629 |#1|) (-629 |#1|))) (-15 -2360 ((-629 |#1|) (-629 |#1|) |#1| (-629 |#1|))) (-15 -2361 ((-629 |#1|) (-629 |#1|) (-629 |#1|) |#1|)) (-15 -2362 ((-629 |#1|) (-629 |#1|) (-629 |#1|) (-629 |#1|))) (-15 -2363 ((-629 |#1|) (-629 |#1|) (-629 |#1|) (-629 |#1|) (-629 |#1|) (-693))) (-15 ** ((-629 |#1|) (-629 |#1|) (-693)))) (-960)) (T -630)) -((** (*1 *2 *2 *3) (-12 (-5 *2 (-629 *4)) (-5 *3 (-693)) (-4 *4 (-960)) (-5 *1 (-630 *4)))) (-2363 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-629 *4)) (-5 *3 (-693)) (-4 *4 (-960)) (-5 *1 (-630 *4)))) (-2362 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-629 *3)) (-4 *3 (-960)) (-5 *1 (-630 *3)))) (-2361 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-629 *3)) (-4 *3 (-960)) (-5 *1 (-630 *3)))) (-2360 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-629 *3)) (-4 *3 (-960)) (-5 *1 (-630 *3)))) (-2359 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-629 *3)) (-4 *3 (-960)) (-5 *1 (-630 *3)))) (-2359 (*1 *2 *2 *2) (-12 (-5 *2 (-629 *3)) (-4 *3 (-960)) (-5 *1 (-630 *3)))) (-2358 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-629 *3)) (-4 *3 (-960)) (-5 *1 (-630 *3)))) (-2357 (*1 *2 *2 *2) (-12 (-5 *2 (-629 *3)) (-4 *3 (-960)) (-5 *1 (-630 *3))))) -((-3156 (((-3 |#1| "failed") $) 18 T ELT)) (-3155 ((|#1| $) NIL T ELT)) (-2364 (($) 7 T CONST)) (-2365 (($ |#1|) 8 T ELT)) (-3944 (($ |#1|) 16 T ELT) (((-771) $) 23 T ELT)) (-3564 (((-85) $ (|[\|\|]| |#1|)) 14 T ELT) (((-85) $ (|[\|\|]| -2364)) 11 T ELT)) (-3570 ((|#1| $) 15 T ELT))) -(((-631 |#1|) (-13 (-1173) (-949 |#1|) (-551 (-771)) (-10 -8 (-15 -2365 ($ |#1|)) (-15 -3564 ((-85) $ (|[\|\|]| |#1|))) (-15 -3564 ((-85) $ (|[\|\|]| -2364))) (-15 -3570 (|#1| $)) (-15 -2364 ($) -3950))) (-551 (-771))) (T -631)) -((-2365 (*1 *1 *2) (-12 (-5 *1 (-631 *2)) (-4 *2 (-551 (-771))))) (-3564 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-551 (-771))) (-5 *2 (-85)) (-5 *1 (-631 *4)))) (-3564 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2364)) (-5 *2 (-85)) (-5 *1 (-631 *4)) (-4 *4 (-551 (-771))))) (-3570 (*1 *2 *1) (-12 (-5 *1 (-631 *2)) (-4 *2 (-551 (-771))))) (-2364 (*1 *1) (-12 (-5 *1 (-631 *2)) (-4 *2 (-551 (-771)))))) -((-3739 (((-2 (|:| |num| (-629 |#1|)) (|:| |den| |#1|)) (-629 |#2|)) 20 T ELT)) (-3737 ((|#1| (-629 |#2|)) 9 T ELT)) (-3738 (((-629 |#1|) (-629 |#2|)) 18 T ELT))) -(((-632 |#1| |#2|) (-10 -7 (-15 -3737 (|#1| (-629 |#2|))) (-15 -3738 ((-629 |#1|) (-629 |#2|))) (-15 -3739 ((-2 (|:| |num| (-629 |#1|)) (|:| |den| |#1|)) (-629 |#2|)))) (-494) (-903 |#1|)) (T -632)) -((-3739 (*1 *2 *3) (-12 (-5 *3 (-629 *5)) (-4 *5 (-903 *4)) (-4 *4 (-494)) (-5 *2 (-2 (|:| |num| (-629 *4)) (|:| |den| *4))) (-5 *1 (-632 *4 *5)))) (-3738 (*1 *2 *3) (-12 (-5 *3 (-629 *5)) (-4 *5 (-903 *4)) (-4 *4 (-494)) (-5 *2 (-629 *4)) (-5 *1 (-632 *4 *5)))) (-3737 (*1 *2 *3) (-12 (-5 *3 (-629 *4)) (-4 *4 (-903 *2)) (-4 *2 (-494)) (-5 *1 (-632 *2 *4))))) -((-2567 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-1568 (($ (-1 (-85) |#1|) $) 49 (|has| $ (-6 -3993)) ELT)) (-3708 (($ (-1 (-85) |#1|) $) 59 (|has| $ (-6 -3993)) ELT)) (-3722 (($) 7 T CONST)) (-2367 (($ $) 66 T ELT)) (-1351 (($ $) 62 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3993))) ELT)) (-3403 (($ |#1| $) 51 (|has| $ (-6 -3993)) ELT) (($ (-1 (-85) |#1|) $) 50 (|has| $ (-6 -3993)) ELT)) (-3404 (($ |#1| $) 61 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3993))) ELT) (($ (-1 (-85) |#1|) $) 58 (|has| $ (-6 -3993)) ELT)) (-3840 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3993))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -3993)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -3993)) ELT)) (-2888 (((-582 |#1|) $) 30 (|has| $ (-6 -3993)) ELT)) (-2607 (((-582 |#1|) $) 29 (|has| $ (-6 -3993)) ELT)) (-3244 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3993))) ELT)) (-1947 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3994)) ELT)) (-3956 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3241 (((-1071) $) 22 (|has| |#1| (-1012)) ELT)) (-1272 ((|#1| $) 43 T ELT)) (-3607 (($ |#1| $) 44 T ELT) (($ |#1| $ (-693)) 67 T ELT)) (-3242 (((-1032) $) 21 (|has| |#1| (-1012)) ELT)) (-1352 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 55 T ELT)) (-1273 ((|#1| $) 45 T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3993)) ELT)) (-3766 (($ $ (-582 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-582 |#1|) (-582 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT)) (-1220 (((-85) $ $) 11 T ELT)) (-3401 (((-85) $) 8 T ELT)) (-3563 (($) 9 T ELT)) (-2366 (((-582 (-2 (|:| |entry| |#1|) (|:| -1944 (-693)))) $) 65 T ELT)) (-1464 (($) 53 T ELT) (($ (-582 |#1|)) 52 T ELT)) (-1944 (((-693) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3993)) ELT) (((-693) |#1| $) 28 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3993))) ELT)) (-3398 (($ $) 10 T ELT)) (-3970 (((-472) $) 63 (|has| |#1| (-552 (-472))) ELT)) (-3528 (($ (-582 |#1|)) 54 T ELT)) (-3944 (((-771) $) 17 (|has| |#1| (-551 (-771))) ELT)) (-1263 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1274 (($ (-582 |#1|)) 46 T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3993)) ELT)) (-3055 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3955 (((-693) $) 6 (|has| $ (-6 -3993)) ELT))) -(((-633 |#1|) (-113) (-1012)) (T -633)) -((-3607 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-693)) (-4 *1 (-633 *2)) (-4 *2 (-1012)))) (-2367 (*1 *1 *1) (-12 (-4 *1 (-633 *2)) (-4 *2 (-1012)))) (-2366 (*1 *2 *1) (-12 (-4 *1 (-633 *3)) (-4 *3 (-1012)) (-5 *2 (-582 (-2 (|:| |entry| *3) (|:| -1944 (-693)))))))) -(-13 (-193 |t#1|) (-10 -8 (-15 -3607 ($ |t#1| $ (-693))) (-15 -2367 ($ $)) (-15 -2366 ((-582 (-2 (|:| |entry| |t#1|) (|:| -1944 (-693)))) $)))) -(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1012)) (|has| |#1| (-72))) ((-551 (-771)) OR (|has| |#1| (-1012)) (|has| |#1| (-551 (-771)))) ((-124 |#1|) . T) ((-552 (-472)) |has| |#1| (-552 (-472))) ((-193 |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ((-427 |#1|) . T) ((-454 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ((-13) . T) ((-1012) |has| |#1| (-1012)) ((-1127) . T)) -((-2370 (((-582 |#1|) (-582 (-2 (|:| -3730 |#1|) (|:| -3946 (-483)))) (-483)) 66 T ELT)) (-2368 ((|#1| |#1| (-483)) 63 T ELT)) (-3143 ((|#1| |#1| |#1| (-483)) 46 T ELT)) (-3730 (((-582 |#1|) |#1| (-483)) 49 T ELT)) (-2371 ((|#1| |#1| (-483) |#1| (-483)) 40 T ELT)) (-2369 (((-582 (-2 (|:| -3730 |#1|) (|:| -3946 (-483)))) |#1| (-483)) 62 T ELT))) -(((-634 |#1|) (-10 -7 (-15 -3143 (|#1| |#1| |#1| (-483))) (-15 -2368 (|#1| |#1| (-483))) (-15 -3730 ((-582 |#1|) |#1| (-483))) (-15 -2369 ((-582 (-2 (|:| -3730 |#1|) (|:| -3946 (-483)))) |#1| (-483))) (-15 -2370 ((-582 |#1|) (-582 (-2 (|:| -3730 |#1|) (|:| -3946 (-483)))) (-483))) (-15 -2371 (|#1| |#1| (-483) |#1| (-483)))) (-1153 (-483))) (T -634)) -((-2371 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-483)) (-5 *1 (-634 *2)) (-4 *2 (-1153 *3)))) (-2370 (*1 *2 *3 *4) (-12 (-5 *3 (-582 (-2 (|:| -3730 *5) (|:| -3946 (-483))))) (-5 *4 (-483)) (-4 *5 (-1153 *4)) (-5 *2 (-582 *5)) (-5 *1 (-634 *5)))) (-2369 (*1 *2 *3 *4) (-12 (-5 *4 (-483)) (-5 *2 (-582 (-2 (|:| -3730 *3) (|:| -3946 *4)))) (-5 *1 (-634 *3)) (-4 *3 (-1153 *4)))) (-3730 (*1 *2 *3 *4) (-12 (-5 *4 (-483)) (-5 *2 (-582 *3)) (-5 *1 (-634 *3)) (-4 *3 (-1153 *4)))) (-2368 (*1 *2 *2 *3) (-12 (-5 *3 (-483)) (-5 *1 (-634 *2)) (-4 *2 (-1153 *3)))) (-3143 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-483)) (-5 *1 (-634 *2)) (-4 *2 (-1153 *3))))) -((-2375 (((-1 (-853 (-179)) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179) (-179))) 17 T ELT)) (-2372 (((-1045 (-179)) (-1045 (-179)) (-1 (-853 (-179)) (-179) (-179)) (-1000 (-179)) (-1000 (-179)) (-582 (-221))) 53 T ELT) (((-1045 (-179)) (-1 (-853 (-179)) (-179) (-179)) (-1000 (-179)) (-1000 (-179)) (-582 (-221))) 55 T ELT) (((-1045 (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-3 (-1 (-179) (-179) (-179) (-179)) #1="undefined") (-1000 (-179)) (-1000 (-179)) (-582 (-221))) 57 T ELT)) (-2374 (((-1045 (-179)) (-265 (-483)) (-265 (-483)) (-265 (-483)) (-1 (-179) (-179)) (-1000 (-179)) (-582 (-221))) NIL T ELT)) (-2373 (((-1045 (-179)) (-1 (-179) (-179) (-179)) (-3 (-1 (-179) (-179) (-179) (-179)) #1#) (-1000 (-179)) (-1000 (-179)) (-582 (-221))) 58 T ELT))) -(((-635) (-10 -7 (-15 -2372 ((-1045 (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-3 (-1 (-179) (-179) (-179) (-179)) #1="undefined") (-1000 (-179)) (-1000 (-179)) (-582 (-221)))) (-15 -2372 ((-1045 (-179)) (-1 (-853 (-179)) (-179) (-179)) (-1000 (-179)) (-1000 (-179)) (-582 (-221)))) (-15 -2372 ((-1045 (-179)) (-1045 (-179)) (-1 (-853 (-179)) (-179) (-179)) (-1000 (-179)) (-1000 (-179)) (-582 (-221)))) (-15 -2373 ((-1045 (-179)) (-1 (-179) (-179) (-179)) (-3 (-1 (-179) (-179) (-179) (-179)) #1#) (-1000 (-179)) (-1000 (-179)) (-582 (-221)))) (-15 -2374 ((-1045 (-179)) (-265 (-483)) (-265 (-483)) (-265 (-483)) (-1 (-179) (-179)) (-1000 (-179)) (-582 (-221)))) (-15 -2375 ((-1 (-853 (-179)) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179) (-179)))))) (T -635)) -((-2375 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1 (-179) (-179) (-179) (-179))) (-5 *2 (-1 (-853 (-179)) (-179) (-179))) (-5 *1 (-635)))) (-2374 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-265 (-483))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1000 (-179))) (-5 *6 (-582 (-221))) (-5 *2 (-1045 (-179))) (-5 *1 (-635)))) (-2373 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-3 (-1 (-179) (-179) (-179) (-179)) #1="undefined")) (-5 *5 (-1000 (-179))) (-5 *6 (-582 (-221))) (-5 *2 (-1045 (-179))) (-5 *1 (-635)))) (-2372 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1045 (-179))) (-5 *3 (-1 (-853 (-179)) (-179) (-179))) (-5 *4 (-1000 (-179))) (-5 *5 (-582 (-221))) (-5 *1 (-635)))) (-2372 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-853 (-179)) (-179) (-179))) (-5 *4 (-1000 (-179))) (-5 *5 (-582 (-221))) (-5 *2 (-1045 (-179))) (-5 *1 (-635)))) (-2372 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-3 (-1 (-179) (-179) (-179) (-179)) #1#)) (-5 *5 (-1000 (-179))) (-5 *6 (-582 (-221))) (-5 *2 (-1045 (-179))) (-5 *1 (-635))))) -((-3730 (((-346 (-1083 |#4|)) (-1083 |#4|)) 87 T ELT) (((-346 |#4|) |#4|) 270 T ELT))) -(((-636 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3730 ((-346 |#4|) |#4|)) (-15 -3730 ((-346 (-1083 |#4|)) (-1083 |#4|)))) (-755) (-716) (-299) (-860 |#3| |#2| |#1|)) (T -636)) -((-3730 (*1 *2 *3) (-12 (-4 *4 (-755)) (-4 *5 (-716)) (-4 *6 (-299)) (-4 *7 (-860 *6 *5 *4)) (-5 *2 (-346 (-1083 *7))) (-5 *1 (-636 *4 *5 *6 *7)) (-5 *3 (-1083 *7)))) (-3730 (*1 *2 *3) (-12 (-4 *4 (-755)) (-4 *5 (-716)) (-4 *6 (-299)) (-5 *2 (-346 *3)) (-5 *1 (-636 *4 *5 *6 *3)) (-4 *3 (-860 *6 *5 *4))))) -((-2378 (((-629 |#1|) (-629 |#1|) |#1| |#1|) 85 T ELT)) (-3108 (((-629 |#1|) (-629 |#1|) |#1|) 66 T ELT)) (-2377 (((-629 |#1|) (-629 |#1|) |#1|) 86 T ELT)) (-2376 (((-629 |#1|) (-629 |#1|)) 67 T ELT)) (-2379 (((-2 (|:| -1971 |#1|) (|:| -2901 |#1|)) |#1| |#1|) 84 T ELT))) -(((-637 |#1|) (-10 -7 (-15 -2376 ((-629 |#1|) (-629 |#1|))) (-15 -3108 ((-629 |#1|) (-629 |#1|) |#1|)) (-15 -2377 ((-629 |#1|) (-629 |#1|) |#1|)) (-15 -2378 ((-629 |#1|) (-629 |#1|) |#1| |#1|)) (-15 -2379 ((-2 (|:| -1971 |#1|) (|:| -2901 |#1|)) |#1| |#1|))) (-258)) (T -637)) -((-2379 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -1971 *3) (|:| -2901 *3))) (-5 *1 (-637 *3)) (-4 *3 (-258)))) (-2378 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-629 *3)) (-4 *3 (-258)) (-5 *1 (-637 *3)))) (-2377 (*1 *2 *2 *3) (-12 (-5 *2 (-629 *3)) (-4 *3 (-258)) (-5 *1 (-637 *3)))) (-3108 (*1 *2 *2 *3) (-12 (-5 *2 (-629 *3)) (-4 *3 (-258)) (-5 *1 (-637 *3)))) (-2376 (*1 *2 *2) (-12 (-5 *2 (-629 *3)) (-4 *3 (-258)) (-5 *1 (-637 *3))))) -((-2385 (((-1 |#4| |#2| |#3|) |#1| (-1088) (-1088)) 19 T ELT)) (-2380 (((-1 |#4| |#2| |#3|) (-1088)) 12 T ELT))) -(((-638 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2380 ((-1 |#4| |#2| |#3|) (-1088))) (-15 -2385 ((-1 |#4| |#2| |#3|) |#1| (-1088) (-1088)))) (-552 (-472)) (-1127) (-1127) (-1127)) (T -638)) -((-2385 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1088)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-638 *3 *5 *6 *7)) (-4 *3 (-552 (-472))) (-4 *5 (-1127)) (-4 *6 (-1127)) (-4 *7 (-1127)))) (-2380 (*1 *2 *3) (-12 (-5 *3 (-1088)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-638 *4 *5 *6 *7)) (-4 *4 (-552 (-472))) (-4 *5 (-1127)) (-4 *6 (-1127)) (-4 *7 (-1127))))) -((-2381 (((-1 (-179) (-179) (-179)) |#1| (-1088) (-1088)) 43 T ELT) (((-1 (-179) (-179)) |#1| (-1088)) 48 T ELT))) -(((-639 |#1|) (-10 -7 (-15 -2381 ((-1 (-179) (-179)) |#1| (-1088))) (-15 -2381 ((-1 (-179) (-179) (-179)) |#1| (-1088) (-1088)))) (-552 (-472))) (T -639)) -((-2381 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1088)) (-5 *2 (-1 (-179) (-179) (-179))) (-5 *1 (-639 *3)) (-4 *3 (-552 (-472))))) (-2381 (*1 *2 *3 *4) (-12 (-5 *4 (-1088)) (-5 *2 (-1 (-179) (-179))) (-5 *1 (-639 *3)) (-4 *3 (-552 (-472)))))) -((-2382 (((-1088) |#1| (-1088) (-582 (-1088))) 10 T ELT) (((-1088) |#1| (-1088) (-1088) (-1088)) 13 T ELT) (((-1088) |#1| (-1088) (-1088)) 12 T ELT) (((-1088) |#1| (-1088)) 11 T ELT))) -(((-640 |#1|) (-10 -7 (-15 -2382 ((-1088) |#1| (-1088))) (-15 -2382 ((-1088) |#1| (-1088) (-1088))) (-15 -2382 ((-1088) |#1| (-1088) (-1088) (-1088))) (-15 -2382 ((-1088) |#1| (-1088) (-582 (-1088))))) (-552 (-472))) (T -640)) -((-2382 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-582 (-1088))) (-5 *2 (-1088)) (-5 *1 (-640 *3)) (-4 *3 (-552 (-472))))) (-2382 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1088)) (-5 *1 (-640 *3)) (-4 *3 (-552 (-472))))) (-2382 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1088)) (-5 *1 (-640 *3)) (-4 *3 (-552 (-472))))) (-2382 (*1 *2 *3 *2) (-12 (-5 *2 (-1088)) (-5 *1 (-640 *3)) (-4 *3 (-552 (-472)))))) -((-2383 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9 T ELT))) -(((-641 |#1| |#2|) (-10 -7 (-15 -2383 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1127) (-1127)) (T -641)) -((-2383 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-641 *3 *4)) (-4 *3 (-1127)) (-4 *4 (-1127))))) -((-2384 (((-1 |#3| |#2|) (-1088)) 11 T ELT)) (-2385 (((-1 |#3| |#2|) |#1| (-1088)) 21 T ELT))) -(((-642 |#1| |#2| |#3|) (-10 -7 (-15 -2384 ((-1 |#3| |#2|) (-1088))) (-15 -2385 ((-1 |#3| |#2|) |#1| (-1088)))) (-552 (-472)) (-1127) (-1127)) (T -642)) -((-2385 (*1 *2 *3 *4) (-12 (-5 *4 (-1088)) (-5 *2 (-1 *6 *5)) (-5 *1 (-642 *3 *5 *6)) (-4 *3 (-552 (-472))) (-4 *5 (-1127)) (-4 *6 (-1127)))) (-2384 (*1 *2 *3) (-12 (-5 *3 (-1088)) (-5 *2 (-1 *6 *5)) (-5 *1 (-642 *4 *5 *6)) (-4 *4 (-552 (-472))) (-4 *5 (-1127)) (-4 *6 (-1127))))) -((-2388 (((-3 (-582 (-1083 |#4|)) #1="failed") (-1083 |#4|) (-582 |#2|) (-582 (-1083 |#4|)) (-582 |#3|) (-582 |#4|) (-582 (-582 (-2 (|:| -3077 (-693)) (|:| |pcoef| |#4|)))) (-582 (-693)) (-1177 (-582 (-1083 |#3|))) |#3|) 92 T ELT)) (-2387 (((-3 (-582 (-1083 |#4|)) #1#) (-1083 |#4|) (-582 |#2|) (-582 (-1083 |#3|)) (-582 |#3|) (-582 |#4|) (-582 (-693)) |#3|) 110 T ELT)) (-2386 (((-3 (-582 (-1083 |#4|)) #1#) (-1083 |#4|) (-582 |#2|) (-582 |#3|) (-582 (-693)) (-582 (-1083 |#4|)) (-1177 (-582 (-1083 |#3|))) |#3|) 48 T ELT))) -(((-643 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2386 ((-3 (-582 (-1083 |#4|)) #1="failed") (-1083 |#4|) (-582 |#2|) (-582 |#3|) (-582 (-693)) (-582 (-1083 |#4|)) (-1177 (-582 (-1083 |#3|))) |#3|)) (-15 -2387 ((-3 (-582 (-1083 |#4|)) #1#) (-1083 |#4|) (-582 |#2|) (-582 (-1083 |#3|)) (-582 |#3|) (-582 |#4|) (-582 (-693)) |#3|)) (-15 -2388 ((-3 (-582 (-1083 |#4|)) #1#) (-1083 |#4|) (-582 |#2|) (-582 (-1083 |#4|)) (-582 |#3|) (-582 |#4|) (-582 (-582 (-2 (|:| -3077 (-693)) (|:| |pcoef| |#4|)))) (-582 (-693)) (-1177 (-582 (-1083 |#3|))) |#3|))) (-716) (-755) (-258) (-860 |#3| |#1| |#2|)) (T -643)) -((-2388 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-582 (-1083 *13))) (-5 *3 (-1083 *13)) (-5 *4 (-582 *12)) (-5 *5 (-582 *10)) (-5 *6 (-582 *13)) (-5 *7 (-582 (-582 (-2 (|:| -3077 (-693)) (|:| |pcoef| *13))))) (-5 *8 (-582 (-693))) (-5 *9 (-1177 (-582 (-1083 *10)))) (-4 *12 (-755)) (-4 *10 (-258)) (-4 *13 (-860 *10 *11 *12)) (-4 *11 (-716)) (-5 *1 (-643 *11 *12 *10 *13)))) (-2387 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-582 *11)) (-5 *5 (-582 (-1083 *9))) (-5 *6 (-582 *9)) (-5 *7 (-582 *12)) (-5 *8 (-582 (-693))) (-4 *11 (-755)) (-4 *9 (-258)) (-4 *12 (-860 *9 *10 *11)) (-4 *10 (-716)) (-5 *2 (-582 (-1083 *12))) (-5 *1 (-643 *10 *11 *9 *12)) (-5 *3 (-1083 *12)))) (-2386 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-582 (-1083 *11))) (-5 *3 (-1083 *11)) (-5 *4 (-582 *10)) (-5 *5 (-582 *8)) (-5 *6 (-582 (-693))) (-5 *7 (-1177 (-582 (-1083 *8)))) (-4 *10 (-755)) (-4 *8 (-258)) (-4 *11 (-860 *8 *9 *10)) (-4 *9 (-716)) (-5 *1 (-643 *9 *10 *8 *11))))) -((-2567 (((-85) $ $) 7 T ELT)) (-3187 (((-85) $) 22 T ELT)) (-1310 (((-3 $ "failed") $ $) 26 T ELT)) (-3722 (($) 23 T CONST)) (-3957 (($ $) 56 T ELT)) (-3465 (((-3 $ "failed") $) 42 T ELT)) (-1212 (((-85) $ $) 20 T ELT)) (-2409 (((-85) $) 44 T ELT)) (-2892 (($ |#1| (-693)) 54 T ELT)) (-2819 (((-693) $) 58 T ELT)) (-3173 ((|#1| $) 57 T ELT)) (-3241 (((-1071) $) 11 T ELT)) (-3242 (((-1032) $) 12 T ELT)) (-3946 (((-693) $) 59 T ELT)) (-3944 (((-771) $) 13 T ELT) (($ (-483)) 41 T ELT) (($ |#1|) 53 (|has| |#1| (-146)) ELT)) (-3675 ((|#1| $ (-693)) 55 T ELT)) (-3125 (((-693)) 40 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-3124 (((-85) $ $) 33 T ELT)) (-2659 (($) 24 T CONST)) (-2665 (($) 45 T CONST)) (-3055 (((-85) $ $) 8 T ELT)) (-3835 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3837 (($ $ $) 18 T ELT)) (** (($ $ (-829)) 35 T ELT) (($ $ (-693)) 43 T ELT)) (* (($ (-829) $) 17 T ELT) (($ (-693) $) 21 T ELT) (($ (-483) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 61 T ELT) (($ |#1| $) 60 T ELT))) -(((-644 |#1|) (-113) (-960)) (T -644)) -((-3946 (*1 *2 *1) (-12 (-4 *1 (-644 *3)) (-4 *3 (-960)) (-5 *2 (-693)))) (-2819 (*1 *2 *1) (-12 (-4 *1 (-644 *3)) (-4 *3 (-960)) (-5 *2 (-693)))) (-3173 (*1 *2 *1) (-12 (-4 *1 (-644 *2)) (-4 *2 (-960)))) (-3957 (*1 *1 *1) (-12 (-4 *1 (-644 *2)) (-4 *2 (-960)))) (-3675 (*1 *2 *1 *3) (-12 (-5 *3 (-693)) (-4 *1 (-644 *2)) (-4 *2 (-960)))) (-2892 (*1 *1 *2 *3) (-12 (-5 *3 (-693)) (-4 *1 (-644 *2)) (-4 *2 (-960))))) -(-13 (-960) (-82 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-146)) (-6 (-38 |t#1|)) |%noBranch|) (-15 -3946 ((-693) $)) (-15 -2819 ((-693) $)) (-15 -3173 (|t#1| $)) (-15 -3957 ($ $)) (-15 -3675 (|t#1| $ (-693))) (-15 -2892 ($ |t#1| (-693))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-146)) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-554 (-483)) . T) ((-554 |#1|) |has| |#1| (-146)) ((-551 (-771)) . T) ((-13) . T) ((-587 (-483)) . T) ((-587 |#1|) . T) ((-587 $) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-581 |#1|) |has| |#1| (-146)) ((-653 |#1|) |has| |#1| (-146)) ((-662) . T) ((-962 |#1|) . T) ((-967 |#1|) . T) ((-960) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T)) -((-3956 ((|#6| (-1 |#4| |#1|) |#3|) 23 T ELT))) -(((-645 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3956 (|#6| (-1 |#4| |#1|) |#3|))) (-494) (-1153 |#1|) (-1153 (-348 |#2|)) (-494) (-1153 |#4|) (-1153 (-348 |#5|))) (T -645)) -((-3956 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-494)) (-4 *7 (-494)) (-4 *6 (-1153 *5)) (-4 *2 (-1153 (-348 *8))) (-5 *1 (-645 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1153 (-348 *6))) (-4 *8 (-1153 *7))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-2389 (((-1071) (-771)) 36 T ELT)) (-3615 (((-1183) (-1071)) 29 T ELT)) (-2391 (((-1071) (-771)) 26 T ELT)) (-2390 (((-1071) (-771)) 27 T ELT)) (-3944 (((-771) $) NIL T ELT) (((-1071) (-771)) 25 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-646) (-13 (-1012) (-10 -7 (-15 -3944 ((-1071) (-771))) (-15 -2391 ((-1071) (-771))) (-15 -2390 ((-1071) (-771))) (-15 -2389 ((-1071) (-771))) (-15 -3615 ((-1183) (-1071)))))) (T -646)) -((-3944 (*1 *2 *3) (-12 (-5 *3 (-771)) (-5 *2 (-1071)) (-5 *1 (-646)))) (-2391 (*1 *2 *3) (-12 (-5 *3 (-771)) (-5 *2 (-1071)) (-5 *1 (-646)))) (-2390 (*1 *2 *3) (-12 (-5 *3 (-771)) (-5 *2 (-1071)) (-5 *1 (-646)))) (-2389 (*1 *2 *3) (-12 (-5 *3 (-771)) (-5 *2 (-1071)) (-5 *1 (-646)))) (-3615 (*1 *2 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-1183)) (-5 *1 (-646))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3187 (((-85) $) NIL T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3980 $) (|:| |associate| $)) $) NIL T ELT)) (-2062 (($ $) NIL T ELT)) (-2060 (((-85) $) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3773 (($ $) NIL T ELT)) (-3969 (((-346 $) $) NIL T ELT)) (-1606 (((-85) $ $) NIL T ELT)) (-3722 (($) NIL T CONST)) (-2563 (($ $ $) NIL T ELT)) (-3840 (($ |#1| |#2|) NIL T ELT)) (-3465 (((-3 $ #1#) $) NIL T ELT)) (-2562 (($ $ $) NIL T ELT)) (-2740 (((-2 (|:| -3952 (-582 $)) (|:| -2408 $)) (-582 $)) NIL T ELT)) (-3721 (((-85) $) NIL T ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-2409 (((-85) $) NIL T ELT)) (-1603 (((-3 (-582 $) #1#) (-582 $) $) NIL T ELT)) (-2613 ((|#2| $) NIL T ELT)) (-1889 (($ $ $) NIL T ELT) (($ (-582 $)) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-2483 (($ $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-2707 (((-1083 $) (-1083 $) (-1083 $)) NIL T ELT)) (-3143 (($ $ $) NIL T ELT) (($ (-582 $)) NIL T ELT)) (-3730 (((-346 $) $) NIL T ELT)) (-1604 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3464 (((-3 $ #1#) $ $) NIL T ELT)) (-2739 (((-631 (-582 $)) (-582 $) $) NIL T ELT)) (-2401 (((-3 $ #1#) $ $) NIL T ELT)) (-1605 (((-693) $) NIL T ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL T ELT)) (-3944 (((-771) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ $) NIL T ELT) (($ (-348 (-483))) NIL T ELT) ((|#1| $) NIL T ELT)) (-3125 (((-693)) NIL T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-2061 (((-85) $ $) NIL T ELT)) (-3124 (((-85) $ $) NIL T ELT)) (-2659 (($) NIL T CONST)) (-2665 (($) NIL T CONST)) (-3055 (((-85) $ $) NIL T ELT)) (-3947 (($ $ $) NIL T ELT)) (-3835 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3837 (($ $ $) NIL T ELT)) (** (($ $ (-829)) NIL T ELT) (($ $ (-693)) NIL T ELT) (($ $ (-483)) NIL T ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-348 (-483))) NIL T ELT) (($ (-348 (-483)) $) NIL T ELT))) -(((-647 |#1| |#2| |#3| |#4| |#5|) (-13 (-312) (-10 -8 (-15 -2613 (|#2| $)) (-15 -3944 (|#1| $)) (-15 -3840 ($ |#1| |#2|)) (-15 -2401 ((-3 $ #1="failed") $ $)))) (-146) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| #1#) |#2| |#2|) (-1 (-3 |#1| #1#) |#1| |#1| |#2|)) (T -647)) -((-2613 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-647 *3 *2 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 #1="failed") *2 *2)) (-14 *6 (-1 (-3 *3 #2="failed") *3 *3 *2)))) (-3944 (*1 *2 *1) (-12 (-4 *2 (-146)) (-5 *1 (-647 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-3840 (*1 *1 *2 *3) (-12 (-5 *1 (-647 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2401 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-647 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3187 (((-85) $) 37 T ELT)) (-3765 (((-1177 |#1|) $ (-693)) NIL T ELT)) (-3080 (((-582 (-993)) $) NIL T ELT)) (-3763 (($ (-1083 |#1|)) NIL T ELT)) (-3082 (((-1083 $) $ (-993)) NIL T ELT) (((-1083 |#1|) $) NIL T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3980 $) (|:| |associate| $)) $) NIL (|has| |#1| (-494)) ELT)) (-2062 (($ $) NIL (|has| |#1| (-494)) ELT)) (-2060 (((-85) $) NIL (|has| |#1| (-494)) ELT)) (-2818 (((-693) $) NIL T ELT) (((-693) $ (-582 (-993))) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3753 (($ $ $) NIL (|has| |#1| (-494)) ELT)) (-2706 (((-346 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-820)) ELT)) (-3773 (($ $) NIL (|has| |#1| (-390)) ELT)) (-3969 (((-346 $) $) NIL (|has| |#1| (-390)) ELT)) (-2703 (((-3 (-582 (-1083 $)) #1#) (-582 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-820)) ELT)) (-1606 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3135 (((-693)) 55 (|has| |#1| (-318)) ELT)) (-3759 (($ $ (-693)) NIL T ELT)) (-3758 (($ $ (-693)) NIL T ELT)) (-2398 ((|#2| |#2|) 51 T ELT)) (-3749 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-390)) ELT)) (-3722 (($) NIL T CONST)) (-3156 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-348 (-483)) #1#) $) NIL (|has| |#1| (-949 (-348 (-483)))) ELT) (((-3 (-483) #1#) $) NIL (|has| |#1| (-949 (-483))) ELT) (((-3 (-993) #1#) $) NIL T ELT)) (-3155 ((|#1| $) NIL T ELT) (((-348 (-483)) $) NIL (|has| |#1| (-949 (-348 (-483)))) ELT) (((-483) $) NIL (|has| |#1| (-949 (-483))) ELT) (((-993) $) NIL T ELT)) (-3754 (($ $ $ (-993)) NIL (|has| |#1| (-146)) ELT) ((|#1| $ $) NIL (|has| |#1| (-146)) ELT)) (-2563 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3957 (($ $) 72 T ELT)) (-2278 (((-629 (-483)) (-629 $)) NIL (|has| |#1| (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-629 $) (-1177 $)) NIL (|has| |#1| (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 |#1|)) (|:| |vec| (-1177 |#1|))) (-629 $) (-1177 $)) NIL T ELT) (((-629 |#1|) (-629 $)) NIL T ELT)) (-3840 (($ |#2|) 49 T ELT)) (-3465 (((-3 $ #1#) $) 98 T ELT)) (-2993 (($) 59 (|has| |#1| (-318)) ELT)) (-2562 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3757 (($ $ $) NIL T ELT)) (-3751 (($ $ $) NIL (|has| |#1| (-494)) ELT)) (-3750 (((-2 (|:| -3952 |#1|) (|:| -1971 $) (|:| -2901 $)) $ $) NIL (|has| |#1| (-494)) ELT)) (-2740 (((-2 (|:| -3952 (-582 $)) (|:| -2408 $)) (-582 $)) NIL (|has| |#1| (-312)) ELT)) (-3501 (($ $) NIL (|has| |#1| (-390)) ELT) (($ $ (-993)) NIL (|has| |#1| (-390)) ELT)) (-2817 (((-582 $) $) NIL T ELT)) (-3721 (((-85) $) NIL (|has| |#1| (-820)) ELT)) (-2394 (((-868 $)) 89 T ELT)) (-1622 (($ $ |#1| (-693) $) NIL T ELT)) (-2795 (((-797 (-328) $) $ (-799 (-328)) (-797 (-328) $)) NIL (-12 (|has| (-993) (-795 (-328))) (|has| |#1| (-795 (-328)))) ELT) (((-797 (-483) $) $ (-799 (-483)) (-797 (-483) $)) NIL (-12 (|has| (-993) (-795 (-483))) (|has| |#1| (-795 (-483)))) ELT)) (-3770 (((-693) $ $) NIL (|has| |#1| (-494)) ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-2409 (((-85) $) NIL T ELT)) (-2419 (((-693) $) NIL T ELT)) (-3443 (((-631 $) $) NIL (|has| |#1| (-1064)) ELT)) (-3083 (($ (-1083 |#1|) (-993)) NIL T ELT) (($ (-1083 $) (-993)) NIL T ELT)) (-3775 (($ $ (-693)) NIL T ELT)) (-1603 (((-3 (-582 $) #1#) (-582 $) $) NIL (|has| |#1| (-312)) ELT)) (-2820 (((-582 $) $) NIL T ELT)) (-3935 (((-85) $) NIL T ELT)) (-2892 (($ |#1| (-693)) 86 T ELT) (($ $ (-993) (-693)) NIL T ELT) (($ $ (-582 (-993)) (-582 (-693))) NIL T ELT)) (-3761 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $ (-993)) NIL T ELT) (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL T ELT)) (-2613 ((|#2|) 52 T ELT)) (-2819 (((-693) $) NIL T ELT) (((-693) $ (-993)) NIL T ELT) (((-582 (-693)) $ (-582 (-993))) NIL T ELT)) (-1623 (($ (-1 (-693) (-693)) $) NIL T ELT)) (-3956 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3764 (((-1083 |#1|) $) NIL T ELT)) (-3081 (((-3 (-993) #1#) $) NIL T ELT)) (-2009 (((-829) $) NIL (|has| |#1| (-318)) ELT)) (-3078 ((|#2| $) 48 T ELT)) (-2279 (((-629 (-483)) (-1177 $)) NIL (|has| |#1| (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL (|has| |#1| (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 |#1|)) (|:| |vec| (-1177 |#1|))) (-1177 $) $) NIL T ELT) (((-629 |#1|) (-1177 $)) NIL T ELT)) (-2893 (($ $) NIL T ELT)) (-3173 ((|#1| $) 35 T ELT)) (-1889 (($ (-582 $)) NIL (|has| |#1| (-390)) ELT) (($ $ $) NIL (|has| |#1| (-390)) ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3760 (((-2 (|:| -1971 $) (|:| -2901 $)) $ (-693)) NIL T ELT)) (-2822 (((-3 (-582 $) #1#) $) NIL T ELT)) (-2821 (((-3 (-582 $) #1#) $) NIL T ELT)) (-2823 (((-3 (-2 (|:| |var| (-993)) (|:| -2400 (-693))) #1#) $) NIL T ELT)) (-3810 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3444 (($) NIL (|has| |#1| (-1064)) CONST)) (-2399 (($ (-829)) NIL (|has| |#1| (-318)) ELT)) (-3242 (((-1032) $) NIL T ELT)) (-1795 (((-85) $) NIL T ELT)) (-1794 ((|#1| $) NIL T ELT)) (-2707 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#1| (-390)) ELT)) (-3143 (($ (-582 $)) NIL (|has| |#1| (-390)) ELT) (($ $ $) NIL (|has| |#1| (-390)) ELT)) (-2392 (($ $) 88 (|has| |#1| (-299)) ELT)) (-2704 (((-346 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-820)) ELT)) (-2705 (((-346 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-820)) ELT)) (-3730 (((-346 $) $) NIL (|has| |#1| (-820)) ELT)) (-1604 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3464 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-494)) ELT) (((-3 $ #1#) $ $) 97 (|has| |#1| (-494)) ELT)) (-2739 (((-631 (-582 $)) (-582 $) $) NIL (|has| |#1| (-312)) ELT)) (-3766 (($ $ (-582 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-582 $) (-582 $)) NIL T ELT) (($ $ (-993) |#1|) NIL T ELT) (($ $ (-582 (-993)) (-582 |#1|)) NIL T ELT) (($ $ (-993) $) NIL T ELT) (($ $ (-582 (-993)) (-582 $)) NIL T ELT)) (-1605 (((-693) $) NIL (|has| |#1| (-312)) ELT)) (-3798 ((|#1| $ |#1|) NIL T ELT) (($ $ $) NIL T ELT) (((-348 $) (-348 $) (-348 $)) NIL (|has| |#1| (-494)) ELT) ((|#1| (-348 $) |#1|) NIL (|has| |#1| (-312)) ELT) (((-348 $) $ (-348 $)) NIL (|has| |#1| (-494)) ELT)) (-3762 (((-3 $ #1#) $ (-693)) NIL T ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) 99 (|has| |#1| (-312)) ELT)) (-3755 (($ $ (-993)) NIL (|has| |#1| (-146)) ELT) ((|#1| $) NIL (|has| |#1| (-146)) ELT)) (-3756 (($ $ (-582 (-993)) (-582 (-693))) NIL T ELT) (($ $ (-993) (-693)) NIL T ELT) (($ $ (-582 (-993))) NIL T ELT) (($ $ (-993)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-693)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-693)) NIL T ELT) (($ $ (-1 |#1| |#1|) $) NIL T ELT) (($ $ (-1088)) NIL (|has| |#1| (-810 (-1088))) ELT) (($ $ (-582 (-1088))) NIL (|has| |#1| (-810 (-1088))) ELT) (($ $ (-1088) (-693)) NIL (|has| |#1| (-810 (-1088))) ELT) (($ $ (-582 (-1088)) (-582 (-693))) NIL (|has| |#1| (-810 (-1088))) ELT)) (-3946 (((-693) $) 39 T ELT) (((-693) $ (-993)) NIL T ELT) (((-582 (-693)) $ (-582 (-993))) NIL T ELT)) (-3970 (((-799 (-328)) $) NIL (-12 (|has| (-993) (-552 (-799 (-328)))) (|has| |#1| (-552 (-799 (-328))))) ELT) (((-799 (-483)) $) NIL (-12 (|has| (-993) (-552 (-799 (-483)))) (|has| |#1| (-552 (-799 (-483))))) ELT) (((-472) $) NIL (-12 (|has| (-993) (-552 (-472))) (|has| |#1| (-552 (-472)))) ELT)) (-2816 ((|#1| $) NIL (|has| |#1| (-390)) ELT) (($ $ (-993)) NIL (|has| |#1| (-390)) ELT)) (-2702 (((-3 (-1177 $) #1#) (-629 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-820))) ELT)) (-2393 (((-868 $)) 43 T ELT)) (-3752 (((-3 $ #1#) $ $) NIL (|has| |#1| (-494)) ELT) (((-3 (-348 $) #1#) (-348 $) $) NIL (|has| |#1| (-494)) ELT)) (-3944 (((-771) $) 69 T ELT) (($ (-483)) NIL T ELT) (($ |#1|) 66 T ELT) (($ (-993)) NIL T ELT) (($ |#2|) 76 T ELT) (($ (-348 (-483))) NIL (OR (|has| |#1| (-38 (-348 (-483)))) (|has| |#1| (-949 (-348 (-483))))) ELT) (($ $) NIL (|has| |#1| (-494)) ELT)) (-3815 (((-582 |#1|) $) NIL T ELT)) (-3675 ((|#1| $ (-693)) 71 T ELT) (($ $ (-993) (-693)) NIL T ELT) (($ $ (-582 (-993)) (-582 (-693))) NIL T ELT)) (-2701 (((-631 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-820))) (|has| |#1| (-118))) ELT)) (-3125 (((-693)) NIL T CONST)) (-1621 (($ $ $ (-693)) NIL (|has| |#1| (-146)) ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2061 (((-85) $ $) NIL (|has| |#1| (-494)) ELT)) (-3124 (((-85) $ $) NIL T ELT)) (-2659 (($) 26 T CONST)) (-2397 (((-1177 |#1|) $) 84 T ELT)) (-2396 (($ (-1177 |#1|)) 58 T ELT)) (-2665 (($) 9 T CONST)) (-2668 (($ $ (-582 (-993)) (-582 (-693))) NIL T ELT) (($ $ (-993) (-693)) NIL T ELT) (($ $ (-582 (-993))) NIL T ELT) (($ $ (-993)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-693)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-693)) NIL T ELT) (($ $ (-1088)) NIL (|has| |#1| (-810 (-1088))) ELT) (($ $ (-582 (-1088))) NIL (|has| |#1| (-810 (-1088))) ELT) (($ $ (-1088) (-693)) NIL (|has| |#1| (-810 (-1088))) ELT) (($ $ (-582 (-1088)) (-582 (-693))) NIL (|has| |#1| (-810 (-1088))) ELT)) (-2395 (((-1177 |#1|) $) NIL T ELT)) (-3055 (((-85) $ $) 77 T ELT)) (-3947 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3835 (($ $) 80 T ELT) (($ $ $) NIL T ELT)) (-3837 (($ $ $) 40 T ELT)) (** (($ $ (-829)) NIL T ELT) (($ $ (-693)) 93 T ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-483) $) 65 T ELT) (($ $ $) 83 T ELT) (($ $ (-348 (-483))) NIL (|has| |#1| (-38 (-348 (-483)))) ELT) (($ (-348 (-483)) $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT) (($ |#1| $) 63 T ELT) (($ $ |#1|) NIL T ELT))) -(((-648 |#1| |#2|) (-13 (-1153 |#1|) (-554 |#2|) (-10 -8 (-15 -2398 (|#2| |#2|)) (-15 -2613 (|#2|)) (-15 -3840 ($ |#2|)) (-15 -3078 (|#2| $)) (-15 -2397 ((-1177 |#1|) $)) (-15 -2396 ($ (-1177 |#1|))) (-15 -2395 ((-1177 |#1|) $)) (-15 -2394 ((-868 $))) (-15 -2393 ((-868 $))) (IF (|has| |#1| (-299)) (-15 -2392 ($ $)) |%noBranch|) (IF (|has| |#1| (-318)) (-6 (-318)) |%noBranch|))) (-960) (-1153 |#1|)) (T -648)) -((-2398 (*1 *2 *2) (-12 (-4 *3 (-960)) (-5 *1 (-648 *3 *2)) (-4 *2 (-1153 *3)))) (-2613 (*1 *2) (-12 (-4 *2 (-1153 *3)) (-5 *1 (-648 *3 *2)) (-4 *3 (-960)))) (-3840 (*1 *1 *2) (-12 (-4 *3 (-960)) (-5 *1 (-648 *3 *2)) (-4 *2 (-1153 *3)))) (-3078 (*1 *2 *1) (-12 (-4 *2 (-1153 *3)) (-5 *1 (-648 *3 *2)) (-4 *3 (-960)))) (-2397 (*1 *2 *1) (-12 (-4 *3 (-960)) (-5 *2 (-1177 *3)) (-5 *1 (-648 *3 *4)) (-4 *4 (-1153 *3)))) (-2396 (*1 *1 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-960)) (-5 *1 (-648 *3 *4)) (-4 *4 (-1153 *3)))) (-2395 (*1 *2 *1) (-12 (-4 *3 (-960)) (-5 *2 (-1177 *3)) (-5 *1 (-648 *3 *4)) (-4 *4 (-1153 *3)))) (-2394 (*1 *2) (-12 (-4 *3 (-960)) (-5 *2 (-868 (-648 *3 *4))) (-5 *1 (-648 *3 *4)) (-4 *4 (-1153 *3)))) (-2393 (*1 *2) (-12 (-4 *3 (-960)) (-5 *2 (-868 (-648 *3 *4))) (-5 *1 (-648 *3 *4)) (-4 *4 (-1153 *3)))) (-2392 (*1 *1 *1) (-12 (-4 *2 (-299)) (-4 *2 (-960)) (-5 *1 (-648 *2 *3)) (-4 *3 (-1153 *2))))) -((-2567 (((-85) $ $) NIL T ELT)) (-2530 (($ $ $) NIL T ELT)) (-2856 (($ $ $) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-2399 ((|#1| $) 13 T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-2400 ((|#2| $) 12 T ELT)) (-3528 (($ |#1| |#2|) 16 T ELT)) (-3944 (((-771) $) NIL T ELT) (($ (-2 (|:| -2399 |#1|) (|:| -2400 |#2|))) 15 T ELT) (((-2 (|:| -2399 |#1|) (|:| -2400 |#2|)) $) 14 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2565 (((-85) $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-2683 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) 11 T ELT))) -(((-649 |#1| |#2| |#3|) (-13 (-755) (-428 (-2 (|:| -2399 |#1|) (|:| -2400 |#2|))) (-10 -8 (-15 -2400 (|#2| $)) (-15 -2399 (|#1| $)) (-15 -3528 ($ |#1| |#2|)))) (-755) (-1012) (-1 (-85) (-2 (|:| -2399 |#1|) (|:| -2400 |#2|)) (-2 (|:| -2399 |#1|) (|:| -2400 |#2|)))) (T -649)) -((-2400 (*1 *2 *1) (-12 (-4 *2 (-1012)) (-5 *1 (-649 *3 *2 *4)) (-4 *3 (-755)) (-14 *4 (-1 (-85) (-2 (|:| -2399 *3) (|:| -2400 *2)) (-2 (|:| -2399 *3) (|:| -2400 *2)))))) (-2399 (*1 *2 *1) (-12 (-4 *2 (-755)) (-5 *1 (-649 *2 *3 *4)) (-4 *3 (-1012)) (-14 *4 (-1 (-85) (-2 (|:| -2399 *2) (|:| -2400 *3)) (-2 (|:| -2399 *2) (|:| -2400 *3)))))) (-3528 (*1 *1 *2 *3) (-12 (-5 *1 (-649 *2 *3 *4)) (-4 *2 (-755)) (-4 *3 (-1012)) (-14 *4 (-1 (-85) (-2 (|:| -2399 *2) (|:| -2400 *3)) (-2 (|:| -2399 *2) (|:| -2400 *3))))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3187 (((-85) $) 66 T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3722 (($) NIL T CONST)) (-3156 (((-3 |#1| #1#) $) 101 T ELT) (((-3 (-86) #1#) $) 107 T ELT)) (-3155 ((|#1| $) NIL T ELT) (((-86) $) 39 T ELT)) (-3465 (((-3 $ #1#) $) 102 T ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-2515 ((|#2| (-86) |#2|) 93 T ELT)) (-2409 (((-85) $) NIL T ELT)) (-2514 (($ |#1| (-310 (-86))) 14 T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-2516 (($ $ (-1 |#2| |#2|)) 65 T ELT)) (-2517 (($ $ (-1 |#2| |#2|)) 44 T ELT)) (-3798 ((|#2| $ |#2|) 33 T ELT)) (-2518 ((|#1| |#1|) 112 (|has| |#1| (-146)) ELT)) (-3944 (((-771) $) 73 T ELT) (($ (-483)) 18 T ELT) (($ |#1|) 17 T ELT) (($ (-86)) 23 T ELT)) (-2701 (((-631 $) $) NIL (|has| |#1| (-118)) ELT)) (-3125 (((-693)) 37 T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-3124 (((-85) $ $) NIL T ELT)) (-2519 (($ $) 111 (|has| |#1| (-146)) ELT) (($ $ $) 115 (|has| |#1| (-146)) ELT)) (-2659 (($) 21 T CONST)) (-2665 (($) 9 T CONST)) (-3055 (((-85) $ $) NIL T ELT)) (-3835 (($ $) 48 T ELT) (($ $ $) NIL T ELT)) (-3837 (($ $ $) 83 T ELT)) (** (($ $ (-829)) NIL T ELT) (($ $ (-693)) NIL T ELT) (($ (-86) (-483)) NIL T ELT) (($ $ (-483)) 64 T ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-483) $) 110 T ELT) (($ $ $) 53 T ELT) (($ |#1| $) 108 (|has| |#1| (-146)) ELT) (($ $ |#1|) 109 (|has| |#1| (-146)) ELT))) -(((-650 |#1| |#2|) (-13 (-960) (-949 |#1|) (-949 (-86)) (-241 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |#1| (-146)) (PROGN (-6 (-38 |#1|)) (-15 -2519 ($ $)) (-15 -2519 ($ $ $)) (-15 -2518 (|#1| |#1|))) |%noBranch|) (-15 -2517 ($ $ (-1 |#2| |#2|))) (-15 -2516 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-86) (-483))) (-15 ** ($ $ (-483))) (-15 -2515 (|#2| (-86) |#2|)) (-15 -2514 ($ |#1| (-310 (-86)))))) (-960) (-589 |#1|)) (T -650)) -((-2519 (*1 *1 *1) (-12 (-4 *2 (-146)) (-4 *2 (-960)) (-5 *1 (-650 *2 *3)) (-4 *3 (-589 *2)))) (-2519 (*1 *1 *1 *1) (-12 (-4 *2 (-146)) (-4 *2 (-960)) (-5 *1 (-650 *2 *3)) (-4 *3 (-589 *2)))) (-2518 (*1 *2 *2) (-12 (-4 *2 (-146)) (-4 *2 (-960)) (-5 *1 (-650 *2 *3)) (-4 *3 (-589 *2)))) (-2517 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-589 *3)) (-4 *3 (-960)) (-5 *1 (-650 *3 *4)))) (-2516 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-589 *3)) (-4 *3 (-960)) (-5 *1 (-650 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-483)) (-4 *4 (-960)) (-5 *1 (-650 *4 *5)) (-4 *5 (-589 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-483)) (-4 *3 (-960)) (-5 *1 (-650 *3 *4)) (-4 *4 (-589 *3)))) (-2515 (*1 *2 *3 *2) (-12 (-5 *3 (-86)) (-4 *4 (-960)) (-5 *1 (-650 *4 *2)) (-4 *2 (-589 *4)))) (-2514 (*1 *1 *2 *3) (-12 (-5 *3 (-310 (-86))) (-4 *2 (-960)) (-5 *1 (-650 *2 *4)) (-4 *4 (-589 *2))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3187 (((-85) $) 33 T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3722 (($) NIL T CONST)) (-3840 (($ |#1| |#2|) 25 T ELT)) (-3465 (((-3 $ #1#) $) 51 T ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-2409 (((-85) $) 35 T ELT)) (-2613 ((|#2| $) 12 T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-2483 (($ $) 52 T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-2401 (((-3 $ #1#) $ $) 50 T ELT)) (-3944 (((-771) $) 24 T ELT) (($ (-483)) 19 T ELT) ((|#1| $) 13 T ELT)) (-3125 (((-693)) 28 T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-3124 (((-85) $ $) NIL T ELT)) (-2659 (($) 16 T CONST)) (-2665 (($) 30 T CONST)) (-3055 (((-85) $ $) 41 T ELT)) (-3835 (($ $) 46 T ELT) (($ $ $) 40 T ELT)) (-3837 (($ $ $) 43 T ELT)) (** (($ $ (-829)) NIL T ELT) (($ $ (-693)) NIL T ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-483) $) 21 T ELT) (($ $ $) 20 T ELT))) -(((-651 |#1| |#2| |#3| |#4| |#5|) (-13 (-960) (-10 -8 (-15 -2613 (|#2| $)) (-15 -3944 (|#1| $)) (-15 -3840 ($ |#1| |#2|)) (-15 -2401 ((-3 $ #1="failed") $ $)) (-15 -3465 ((-3 $ #1#) $)) (-15 -2483 ($ $)))) (-146) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| #1#) |#2| |#2|) (-1 (-3 |#1| #1#) |#1| |#1| |#2|)) (T -651)) -((-3465 (*1 *1 *1) (|partial| -12 (-5 *1 (-651 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1="failed") *3 *3)) (-14 *6 (-1 (-3 *2 #2="failed") *2 *2 *3)))) (-2613 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-651 *3 *2 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 #1#) *2 *2)) (-14 *6 (-1 (-3 *3 #2#) *3 *3 *2)))) (-3944 (*1 *2 *1) (-12 (-4 *2 (-146)) (-5 *1 (-651 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-3840 (*1 *1 *2 *3) (-12 (-5 *1 (-651 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2401 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-651 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2483 (*1 *1 *1) (-12 (-5 *1 (-651 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3))))) -((* (($ (-829) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) 9 T ELT))) -(((-652 |#1| |#2|) (-10 -7 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-483) |#1|)) (-15 * (|#1| (-693) |#1|)) (-15 * (|#1| (-829) |#1|))) (-653 |#2|) (-146)) (T -652)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-3187 (((-85) $) 22 T ELT)) (-1310 (((-3 $ "failed") $ $) 26 T ELT)) (-3722 (($) 23 T CONST)) (-1212 (((-85) $ $) 20 T ELT)) (-3241 (((-1071) $) 11 T ELT)) (-3242 (((-1032) $) 12 T ELT)) (-3944 (((-771) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2659 (($) 24 T CONST)) (-3055 (((-85) $ $) 8 T ELT)) (-3835 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3837 (($ $ $) 18 T ELT)) (* (($ (-829) $) 17 T ELT) (($ (-693) $) 21 T ELT) (($ (-483) $) 30 T ELT) (($ |#1| $) 33 T ELT) (($ $ |#1|) 37 T ELT))) -(((-653 |#1|) (-113) (-146)) (T -653)) -NIL -(-13 (-82 |t#1| |t#1|) (-581 |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-551 (-771)) . T) ((-13) . T) ((-587 (-483)) . T) ((-587 |#1|) . T) ((-589 |#1|) . T) ((-581 |#1|) . T) ((-962 |#1|) . T) ((-967 |#1|) . T) ((-1012) . T) ((-1127) . T)) -((-2567 (((-85) $ $) NIL T ELT)) (-2440 (($ |#1|) 17 T ELT) (($ $ |#1|) 20 T ELT)) (-3845 (($ |#1|) 18 T ELT) (($ $ |#1|) 21 T ELT)) (-3722 (($) NIL T CONST)) (-3465 (((-3 $ "failed") $) NIL T ELT) (($) 19 T ELT) (($ $) 22 T ELT)) (-2409 (((-85) $) NIL T ELT)) (-2402 (($ |#1| |#1| |#1| |#1|) 8 T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-2483 (($ $) 16 T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3766 ((|#1| $ |#1|) 24 T ELT) (((-742 |#1|) $ (-742 |#1|)) 32 T ELT)) (-3008 (($ $ $) NIL T ELT)) (-2434 (($ $ $) NIL T ELT)) (-3944 (((-771) $) 39 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2665 (($) 9 T CONST)) (-3055 (((-85) $ $) 48 T ELT)) (-3947 (($ $ $) NIL T ELT)) (** (($ $ (-829)) NIL T ELT) (($ $ (-693)) NIL T ELT) (($ $ (-483)) NIL T ELT)) (* (($ $ $) 14 T ELT))) -(((-654 |#1|) (-13 (-411) (-10 -8 (-15 -2402 ($ |#1| |#1| |#1| |#1|)) (-15 -2440 ($ |#1|)) (-15 -3845 ($ |#1|)) (-15 -3465 ($)) (-15 -2440 ($ $ |#1|)) (-15 -3845 ($ $ |#1|)) (-15 -3465 ($ $)) (-15 -3766 (|#1| $ |#1|)) (-15 -3766 ((-742 |#1|) $ (-742 |#1|))))) (-312)) (T -654)) -((-2402 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-654 *2)) (-4 *2 (-312)))) (-2440 (*1 *1 *2) (-12 (-5 *1 (-654 *2)) (-4 *2 (-312)))) (-3845 (*1 *1 *2) (-12 (-5 *1 (-654 *2)) (-4 *2 (-312)))) (-3465 (*1 *1) (-12 (-5 *1 (-654 *2)) (-4 *2 (-312)))) (-2440 (*1 *1 *1 *2) (-12 (-5 *1 (-654 *2)) (-4 *2 (-312)))) (-3845 (*1 *1 *1 *2) (-12 (-5 *1 (-654 *2)) (-4 *2 (-312)))) (-3465 (*1 *1 *1) (-12 (-5 *1 (-654 *2)) (-4 *2 (-312)))) (-3766 (*1 *2 *1 *2) (-12 (-5 *1 (-654 *2)) (-4 *2 (-312)))) (-3766 (*1 *2 *1 *2) (-12 (-5 *2 (-742 *3)) (-4 *3 (-312)) (-5 *1 (-654 *3))))) -((-2406 (($ $ (-829)) 19 T ELT)) (-2405 (($ $ (-829)) 20 T ELT)) (** (($ $ (-829)) 10 T ELT))) -(((-655 |#1|) (-10 -7 (-15 ** (|#1| |#1| (-829))) (-15 -2405 (|#1| |#1| (-829))) (-15 -2406 (|#1| |#1| (-829)))) (-656)) (T -655)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-2406 (($ $ (-829)) 19 T ELT)) (-2405 (($ $ (-829)) 18 T ELT)) (-3241 (((-1071) $) 11 T ELT)) (-3242 (((-1032) $) 12 T ELT)) (-3944 (((-771) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-3055 (((-85) $ $) 8 T ELT)) (** (($ $ (-829)) 17 T ELT)) (* (($ $ $) 20 T ELT))) -(((-656) (-113)) (T -656)) -((* (*1 *1 *1 *1) (-4 *1 (-656))) (-2406 (*1 *1 *1 *2) (-12 (-4 *1 (-656)) (-5 *2 (-829)))) (-2405 (*1 *1 *1 *2) (-12 (-4 *1 (-656)) (-5 *2 (-829)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-656)) (-5 *2 (-829))))) -(-13 (-1012) (-10 -8 (-15 * ($ $ $)) (-15 -2406 ($ $ (-829))) (-15 -2405 ($ $ (-829))) (-15 ** ($ $ (-829))))) -(((-72) . T) ((-551 (-771)) . T) ((-13) . T) ((-1012) . T) ((-1127) . T)) -((-2406 (($ $ (-829)) NIL T ELT) (($ $ (-693)) 18 T ELT)) (-2409 (((-85) $) 10 T ELT)) (-2405 (($ $ (-829)) NIL T ELT) (($ $ (-693)) 19 T ELT)) (** (($ $ (-829)) NIL T ELT) (($ $ (-693)) 16 T ELT))) -(((-657 |#1|) (-10 -7 (-15 ** (|#1| |#1| (-693))) (-15 -2405 (|#1| |#1| (-693))) (-15 -2406 (|#1| |#1| (-693))) (-15 -2409 ((-85) |#1|)) (-15 ** (|#1| |#1| (-829))) (-15 -2405 (|#1| |#1| (-829))) (-15 -2406 (|#1| |#1| (-829)))) (-658)) (T -657)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-2403 (((-3 $ "failed") $) 22 T ELT)) (-2406 (($ $ (-829)) 19 T ELT) (($ $ (-693)) 27 T ELT)) (-3465 (((-3 $ "failed") $) 24 T ELT)) (-2409 (((-85) $) 28 T ELT)) (-2404 (((-3 $ "failed") $) 23 T ELT)) (-2405 (($ $ (-829)) 18 T ELT) (($ $ (-693)) 26 T ELT)) (-3241 (((-1071) $) 11 T ELT)) (-3242 (((-1032) $) 12 T ELT)) (-3944 (((-771) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2665 (($) 29 T CONST)) (-3055 (((-85) $ $) 8 T ELT)) (** (($ $ (-829)) 17 T ELT) (($ $ (-693)) 25 T ELT)) (* (($ $ $) 20 T ELT))) -(((-658) (-113)) (T -658)) -((-2665 (*1 *1) (-4 *1 (-658))) (-2409 (*1 *2 *1) (-12 (-4 *1 (-658)) (-5 *2 (-85)))) (-2406 (*1 *1 *1 *2) (-12 (-4 *1 (-658)) (-5 *2 (-693)))) (-2405 (*1 *1 *1 *2) (-12 (-4 *1 (-658)) (-5 *2 (-693)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-658)) (-5 *2 (-693)))) (-3465 (*1 *1 *1) (|partial| -4 *1 (-658))) (-2404 (*1 *1 *1) (|partial| -4 *1 (-658))) (-2403 (*1 *1 *1) (|partial| -4 *1 (-658)))) -(-13 (-656) (-10 -8 (-15 -2665 ($) -3950) (-15 -2409 ((-85) $)) (-15 -2406 ($ $ (-693))) (-15 -2405 ($ $ (-693))) (-15 ** ($ $ (-693))) (-15 -3465 ((-3 $ "failed") $)) (-15 -2404 ((-3 $ "failed") $)) (-15 -2403 ((-3 $ "failed") $)))) -(((-72) . T) ((-551 (-771)) . T) ((-13) . T) ((-656) . T) ((-1012) . T) ((-1127) . T)) -((-3135 (((-693)) 39 T ELT)) (-3156 (((-3 (-483) #1="failed") $) NIL T ELT) (((-3 (-348 (-483)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 26 T ELT)) (-3155 (((-483) $) NIL T ELT) (((-348 (-483)) $) NIL T ELT) ((|#2| $) 23 T ELT)) (-3840 (($ |#3|) NIL T ELT) (((-3 $ #1#) (-348 |#3|)) 49 T ELT)) (-3465 (((-3 $ #1#) $) 69 T ELT)) (-2993 (($) 43 T ELT)) (-3131 ((|#2| $) 21 T ELT)) (-2408 (($) 18 T ELT)) (-3756 (($ $ (-1 |#2| |#2|)) 57 T ELT) (($ $ (-1 |#2| |#2|) (-693)) NIL T ELT) (($ $ (-582 (-1088)) (-582 (-693))) NIL T ELT) (($ $ (-1088) (-693)) NIL T ELT) (($ $ (-582 (-1088))) NIL T ELT) (($ $ (-1088)) NIL T ELT) (($ $ (-693)) NIL T ELT) (($ $) NIL T ELT)) (-2407 (((-629 |#2|) (-1177 $) (-1 |#2| |#2|)) 64 T ELT)) (-3970 (((-1177 |#2|) $) NIL T ELT) (($ (-1177 |#2|)) NIL T ELT) ((|#3| $) 10 T ELT) (($ |#3|) 12 T ELT)) (-2448 ((|#3| $) 36 T ELT)) (-2011 (((-1177 $)) 33 T ELT))) -(((-659 |#1| |#2| |#3|) (-10 -7 (-15 -3756 (|#1| |#1|)) (-15 -3756 (|#1| |#1| (-693))) (-15 -3756 (|#1| |#1| (-1088))) (-15 -3756 (|#1| |#1| (-582 (-1088)))) (-15 -3756 (|#1| |#1| (-1088) (-693))) (-15 -3756 (|#1| |#1| (-582 (-1088)) (-582 (-693)))) (-15 -2993 (|#1|)) (-15 -3135 ((-693))) (-15 -3756 (|#1| |#1| (-1 |#2| |#2|) (-693))) (-15 -3756 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2407 ((-629 |#2|) (-1177 |#1|) (-1 |#2| |#2|))) (-15 -3840 ((-3 |#1| #1="failed") (-348 |#3|))) (-15 -3970 (|#1| |#3|)) (-15 -3840 (|#1| |#3|)) (-15 -2408 (|#1|)) (-15 -3156 ((-3 |#2| #1#) |#1|)) (-15 -3155 (|#2| |#1|)) (-15 -3155 ((-348 (-483)) |#1|)) (-15 -3156 ((-3 (-348 (-483)) #1#) |#1|)) (-15 -3155 ((-483) |#1|)) (-15 -3156 ((-3 (-483) #1#) |#1|)) (-15 -3970 (|#3| |#1|)) (-15 -3970 (|#1| (-1177 |#2|))) (-15 -3970 ((-1177 |#2|) |#1|)) (-15 -2011 ((-1177 |#1|))) (-15 -2448 (|#3| |#1|)) (-15 -3131 (|#2| |#1|)) (-15 -3465 ((-3 |#1| #1#) |#1|))) (-660 |#2| |#3|) (-146) (-1153 |#2|)) (T -659)) -((-3135 (*1 *2) (-12 (-4 *4 (-146)) (-4 *5 (-1153 *4)) (-5 *2 (-693)) (-5 *1 (-659 *3 *4 *5)) (-4 *3 (-660 *4 *5))))) -((-2567 (((-85) $ $) 7 T ELT)) (-3187 (((-85) $) 22 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3980 $) (|:| |associate| $)) $) 114 (|has| |#1| (-312)) ELT)) (-2062 (($ $) 115 (|has| |#1| (-312)) ELT)) (-2060 (((-85) $) 117 (|has| |#1| (-312)) ELT)) (-1780 (((-629 |#1|) (-1177 $)) 61 T ELT) (((-629 |#1|)) 77 T ELT)) (-3328 ((|#1| $) 67 T ELT)) (-1673 (((-1100 (-829) (-693)) (-483)) 167 (|has| |#1| (-299)) ELT)) (-1310 (((-3 $ "failed") $ $) 26 T ELT)) (-3773 (($ $) 134 (|has| |#1| (-312)) ELT)) (-3969 (((-346 $) $) 135 (|has| |#1| (-312)) ELT)) (-1606 (((-85) $ $) 125 (|has| |#1| (-312)) ELT)) (-3135 (((-693)) 108 (|has| |#1| (-318)) ELT)) (-3722 (($) 23 T CONST)) (-3156 (((-3 (-483) #1="failed") $) 194 (|has| |#1| (-949 (-483))) ELT) (((-3 (-348 (-483)) #1#) $) 192 (|has| |#1| (-949 (-348 (-483)))) ELT) (((-3 |#1| #1#) $) 189 T ELT)) (-3155 (((-483) $) 193 (|has| |#1| (-949 (-483))) ELT) (((-348 (-483)) $) 191 (|has| |#1| (-949 (-348 (-483)))) ELT) ((|#1| $) 190 T ELT)) (-1790 (($ (-1177 |#1|) (-1177 $)) 63 T ELT) (($ (-1177 |#1|)) 80 T ELT)) (-1671 (((-3 "prime" "polynomial" "normal" "cyclic")) 173 (|has| |#1| (-299)) ELT)) (-2563 (($ $ $) 129 (|has| |#1| (-312)) ELT)) (-1779 (((-629 |#1|) $ (-1177 $)) 68 T ELT) (((-629 |#1|) $) 75 T ELT)) (-2278 (((-629 (-483)) (-629 $)) 186 (|has| |#1| (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-629 $) (-1177 $)) 185 (|has| |#1| (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 |#1|)) (|:| |vec| (-1177 |#1|))) (-629 $) (-1177 $)) 184 T ELT) (((-629 |#1|) (-629 $)) 183 T ELT)) (-3840 (($ |#2|) 178 T ELT) (((-3 $ "failed") (-348 |#2|)) 175 (|has| |#1| (-312)) ELT)) (-3465 (((-3 $ "failed") $) 42 T ELT)) (-3107 (((-829)) 69 T ELT)) (-2993 (($) 111 (|has| |#1| (-318)) ELT)) (-2562 (($ $ $) 128 (|has| |#1| (-312)) ELT)) (-2740 (((-2 (|:| -3952 (-582 $)) (|:| -2408 $)) (-582 $)) 123 (|has| |#1| (-312)) ELT)) (-2832 (($) 169 (|has| |#1| (-299)) ELT)) (-1678 (((-85) $) 170 (|has| |#1| (-299)) ELT)) (-1762 (($ $ (-693)) 161 (|has| |#1| (-299)) ELT) (($ $) 160 (|has| |#1| (-299)) ELT)) (-3721 (((-85) $) 136 (|has| |#1| (-312)) ELT)) (-3770 (((-829) $) 172 (|has| |#1| (-299)) ELT) (((-742 (-829)) $) 158 (|has| |#1| (-299)) ELT)) (-1212 (((-85) $ $) 20 T ELT)) (-2409 (((-85) $) 44 T ELT)) (-3131 ((|#1| $) 66 T ELT)) (-3443 (((-631 $) $) 162 (|has| |#1| (-299)) ELT)) (-1603 (((-3 (-582 $) #2="failed") (-582 $) $) 132 (|has| |#1| (-312)) ELT)) (-2013 ((|#2| $) 59 (|has| |#1| (-312)) ELT)) (-2009 (((-829) $) 110 (|has| |#1| (-318)) ELT)) (-3078 ((|#2| $) 176 T ELT)) (-2279 (((-629 (-483)) (-1177 $)) 188 (|has| |#1| (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) 187 (|has| |#1| (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 |#1|)) (|:| |vec| (-1177 |#1|))) (-1177 $) $) 182 T ELT) (((-629 |#1|) (-1177 $)) 181 T ELT)) (-1889 (($ (-582 $)) 121 (|has| |#1| (-312)) ELT) (($ $ $) 120 (|has| |#1| (-312)) ELT)) (-3241 (((-1071) $) 11 T ELT)) (-2483 (($ $) 137 (|has| |#1| (-312)) ELT)) (-3444 (($) 163 (|has| |#1| (-299)) CONST)) (-2399 (($ (-829)) 109 (|has| |#1| (-318)) ELT)) (-3242 (((-1032) $) 12 T ELT)) (-2408 (($) 180 T ELT)) (-2707 (((-1083 $) (-1083 $) (-1083 $)) 122 (|has| |#1| (-312)) ELT)) (-3143 (($ (-582 $)) 119 (|has| |#1| (-312)) ELT) (($ $ $) 118 (|has| |#1| (-312)) ELT)) (-1674 (((-582 (-2 (|:| -3730 (-483)) (|:| -2400 (-483))))) 166 (|has| |#1| (-299)) ELT)) (-3730 (((-346 $) $) 133 (|has| |#1| (-312)) ELT)) (-1604 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 131 (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) 130 (|has| |#1| (-312)) ELT)) (-3464 (((-3 $ "failed") $ $) 113 (|has| |#1| (-312)) ELT)) (-2739 (((-631 (-582 $)) (-582 $) $) 124 (|has| |#1| (-312)) ELT)) (-1605 (((-693) $) 126 (|has| |#1| (-312)) ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) 127 (|has| |#1| (-312)) ELT)) (-3755 ((|#1| (-1177 $)) 62 T ELT) ((|#1|) 76 T ELT)) (-1763 (((-693) $) 171 (|has| |#1| (-299)) ELT) (((-3 (-693) "failed") $ $) 159 (|has| |#1| (-299)) ELT)) (-3756 (($ $ (-693)) 156 (OR (-2561 (|has| |#1| (-189)) (|has| |#1| (-312))) (|has| |#1| (-299))) ELT) (($ $) 154 (OR (-2561 (|has| |#1| (-189)) (|has| |#1| (-312))) (|has| |#1| (-299))) ELT) (($ $ (-582 (-1088)) (-582 (-693))) 150 (-2561 (|has| |#1| (-810 (-1088))) (|has| |#1| (-312))) ELT) (($ $ (-1088) (-693)) 149 (-2561 (|has| |#1| (-810 (-1088))) (|has| |#1| (-312))) ELT) (($ $ (-582 (-1088))) 148 (-2561 (|has| |#1| (-810 (-1088))) (|has| |#1| (-312))) ELT) (($ $ (-1088)) 146 (-2561 (|has| |#1| (-810 (-1088))) (|has| |#1| (-312))) ELT) (($ $ (-1 |#1| |#1|)) 145 (|has| |#1| (-312)) ELT) (($ $ (-1 |#1| |#1|) (-693)) 144 (|has| |#1| (-312)) ELT)) (-2407 (((-629 |#1|) (-1177 $) (-1 |#1| |#1|)) 174 (|has| |#1| (-312)) ELT)) (-3184 ((|#2|) 179 T ELT)) (-1672 (($) 168 (|has| |#1| (-299)) ELT)) (-3223 (((-1177 |#1|) $ (-1177 $)) 65 T ELT) (((-629 |#1|) (-1177 $) (-1177 $)) 64 T ELT) (((-1177 |#1|) $) 82 T ELT) (((-629 |#1|) (-1177 $)) 81 T ELT)) (-3970 (((-1177 |#1|) $) 79 T ELT) (($ (-1177 |#1|)) 78 T ELT) ((|#2| $) 195 T ELT) (($ |#2|) 177 T ELT)) (-2702 (((-3 (-1177 $) "failed") (-629 $)) 165 (|has| |#1| (-299)) ELT)) (-3944 (((-771) $) 13 T ELT) (($ (-483)) 41 T ELT) (($ |#1|) 52 T ELT) (($ $) 112 (|has| |#1| (-312)) ELT) (($ (-348 (-483))) 107 (OR (|has| |#1| (-312)) (|has| |#1| (-949 (-348 (-483))))) ELT)) (-2701 (($ $) 164 (|has| |#1| (-299)) ELT) (((-631 $) $) 58 (|has| |#1| (-118)) ELT)) (-2448 ((|#2| $) 60 T ELT)) (-3125 (((-693)) 40 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-2011 (((-1177 $)) 83 T ELT)) (-2061 (((-85) $ $) 116 (|has| |#1| (-312)) ELT)) (-3124 (((-85) $ $) 33 T ELT)) (-2659 (($) 24 T CONST)) (-2665 (($) 45 T CONST)) (-2668 (($ $ (-693)) 157 (OR (-2561 (|has| |#1| (-189)) (|has| |#1| (-312))) (|has| |#1| (-299))) ELT) (($ $) 155 (OR (-2561 (|has| |#1| (-189)) (|has| |#1| (-312))) (|has| |#1| (-299))) ELT) (($ $ (-582 (-1088)) (-582 (-693))) 153 (-2561 (|has| |#1| (-810 (-1088))) (|has| |#1| (-312))) ELT) (($ $ (-1088) (-693)) 152 (-2561 (|has| |#1| (-810 (-1088))) (|has| |#1| (-312))) ELT) (($ $ (-582 (-1088))) 151 (-2561 (|has| |#1| (-810 (-1088))) (|has| |#1| (-312))) ELT) (($ $ (-1088)) 147 (-2561 (|has| |#1| (-810 (-1088))) (|has| |#1| (-312))) ELT) (($ $ (-1 |#1| |#1|)) 143 (|has| |#1| (-312)) ELT) (($ $ (-1 |#1| |#1|) (-693)) 142 (|has| |#1| (-312)) ELT)) (-3055 (((-85) $ $) 8 T ELT)) (-3947 (($ $ $) 141 (|has| |#1| (-312)) ELT)) (-3835 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3837 (($ $ $) 18 T ELT)) (** (($ $ (-829)) 35 T ELT) (($ $ (-693)) 43 T ELT) (($ $ (-483)) 138 (|has| |#1| (-312)) ELT)) (* (($ (-829) $) 17 T ELT) (($ (-693) $) 21 T ELT) (($ (-483) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 54 T ELT) (($ |#1| $) 53 T ELT) (($ (-348 (-483)) $) 140 (|has| |#1| (-312)) ELT) (($ $ (-348 (-483))) 139 (|has| |#1| (-312)) ELT))) -(((-660 |#1| |#2|) (-113) (-146) (-1153 |t#1|)) (T -660)) -((-2408 (*1 *1) (-12 (-4 *2 (-146)) (-4 *1 (-660 *2 *3)) (-4 *3 (-1153 *2)))) (-3184 (*1 *2) (-12 (-4 *1 (-660 *3 *2)) (-4 *3 (-146)) (-4 *2 (-1153 *3)))) (-3840 (*1 *1 *2) (-12 (-4 *3 (-146)) (-4 *1 (-660 *3 *2)) (-4 *2 (-1153 *3)))) (-3970 (*1 *1 *2) (-12 (-4 *3 (-146)) (-4 *1 (-660 *3 *2)) (-4 *2 (-1153 *3)))) (-3078 (*1 *2 *1) (-12 (-4 *1 (-660 *3 *2)) (-4 *3 (-146)) (-4 *2 (-1153 *3)))) (-3840 (*1 *1 *2) (|partial| -12 (-5 *2 (-348 *4)) (-4 *4 (-1153 *3)) (-4 *3 (-312)) (-4 *3 (-146)) (-4 *1 (-660 *3 *4)))) (-2407 (*1 *2 *3 *4) (-12 (-5 *3 (-1177 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-312)) (-4 *1 (-660 *5 *6)) (-4 *5 (-146)) (-4 *6 (-1153 *5)) (-5 *2 (-629 *5))))) -(-13 (-351 |t#1| |t#2|) (-146) (-552 |t#2|) (-353 |t#1|) (-327 |t#1|) (-10 -8 (-15 -2408 ($)) (-15 -3184 (|t#2|)) (-15 -3840 ($ |t#2|)) (-15 -3970 ($ |t#2|)) (-15 -3078 (|t#2| $)) (IF (|has| |t#1| (-318)) (-6 (-318)) |%noBranch|) (IF (|has| |t#1| (-312)) (PROGN (-6 (-312)) (-6 (-184 |t#1|)) (-15 -3840 ((-3 $ "failed") (-348 |t#2|))) (-15 -2407 ((-629 |t#1|) (-1177 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-299)) (-6 (-299)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-348 (-483))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-38 |#1|) . T) ((-38 $) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-72) . T) ((-82 (-348 (-483)) (-348 (-483))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-82 |#1| |#1|) . T) ((-82 $ $) . T) ((-104) . T) ((-118) OR (|has| |#1| (-299)) (|has| |#1| (-118))) ((-120) |has| |#1| (-120)) ((-554 (-348 (-483))) OR (|has| |#1| (-949 (-348 (-483)))) (|has| |#1| (-299)) (|has| |#1| (-312))) ((-554 (-483)) . T) ((-554 |#1|) . T) ((-554 $) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-551 (-771)) . T) ((-146) . T) ((-552 |#2|) . T) ((-186 $) OR (|has| |#1| (-299)) (-12 (|has| |#1| (-189)) (|has| |#1| (-312))) (-12 (|has| |#1| (-190)) (|has| |#1| (-312)))) ((-184 |#1|) |has| |#1| (-312)) ((-190) OR (|has| |#1| (-299)) (-12 (|has| |#1| (-190)) (|has| |#1| (-312)))) ((-189) OR (|has| |#1| (-299)) (-12 (|has| |#1| (-189)) (|has| |#1| (-312))) (-12 (|has| |#1| (-190)) (|has| |#1| (-312)))) ((-225 |#1|) |has| |#1| (-312)) ((-201) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-246) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-258) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-312) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-343) |has| |#1| (-299)) ((-318) OR (|has| |#1| (-299)) (|has| |#1| (-318))) ((-299) |has| |#1| (-299)) ((-320 |#1| |#2|) . T) ((-351 |#1| |#2|) . T) ((-327 |#1|) . T) ((-353 |#1|) . T) ((-390) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-494) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-13) . T) ((-587 (-348 (-483))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-587 (-483)) . T) ((-587 |#1|) . T) ((-587 $) . T) ((-589 (-348 (-483))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-589 (-483)) |has| |#1| (-579 (-483))) ((-589 |#1|) . T) ((-589 $) . T) ((-581 (-348 (-483))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-581 |#1|) . T) ((-581 $) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-579 (-483)) |has| |#1| (-579 (-483))) ((-579 |#1|) . T) ((-653 (-348 (-483))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-653 |#1|) . T) ((-653 $) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-662) . T) ((-805 $ (-1088)) OR (-12 (|has| |#1| (-312)) (|has| |#1| (-810 (-1088)))) (-12 (|has| |#1| (-312)) (|has| |#1| (-808 (-1088))))) ((-808 (-1088)) -12 (|has| |#1| (-312)) (|has| |#1| (-808 (-1088)))) ((-810 (-1088)) OR (-12 (|has| |#1| (-312)) (|has| |#1| (-810 (-1088)))) (-12 (|has| |#1| (-312)) (|has| |#1| (-808 (-1088))))) ((-831) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-949 (-348 (-483))) |has| |#1| (-949 (-348 (-483)))) ((-949 (-483)) |has| |#1| (-949 (-483))) ((-949 |#1|) . T) ((-962 (-348 (-483))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-962 |#1|) . T) ((-962 $) . T) ((-967 (-348 (-483))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-967 |#1|) . T) ((-967 $) . T) ((-960) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1064) |has| |#1| (-299)) ((-1127) . T) ((-1132) OR (|has| |#1| (-299)) (|has| |#1| (-312)))) -((-3722 (($) 11 T CONST)) (-3465 (((-3 $ "failed") $) 14 T ELT)) (-2409 (((-85) $) 10 T ELT)) (** (($ $ (-829)) NIL T ELT) (($ $ (-693)) 20 T ELT))) -(((-661 |#1|) (-10 -7 (-15 -3465 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-693))) (-15 -2409 ((-85) |#1|)) (-15 -3722 (|#1|) -3950) (-15 ** (|#1| |#1| (-829)))) (-662)) (T -661)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-3722 (($) 23 T CONST)) (-3465 (((-3 $ "failed") $) 20 T ELT)) (-2409 (((-85) $) 22 T ELT)) (-3241 (((-1071) $) 11 T ELT)) (-3242 (((-1032) $) 12 T ELT)) (-3944 (((-771) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2665 (($) 24 T CONST)) (-3055 (((-85) $ $) 8 T ELT)) (** (($ $ (-829)) 17 T ELT) (($ $ (-693)) 21 T ELT)) (* (($ $ $) 18 T ELT))) -(((-662) (-113)) (T -662)) -((-2665 (*1 *1) (-4 *1 (-662))) (-3722 (*1 *1) (-4 *1 (-662))) (-2409 (*1 *2 *1) (-12 (-4 *1 (-662)) (-5 *2 (-85)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-662)) (-5 *2 (-693)))) (-3465 (*1 *1 *1) (|partial| -4 *1 (-662)))) -(-13 (-1024) (-10 -8 (-15 -2665 ($) -3950) (-15 -3722 ($) -3950) (-15 -2409 ((-85) $)) (-15 ** ($ $ (-693))) (-15 -3465 ((-3 $ "failed") $)))) -(((-72) . T) ((-551 (-771)) . T) ((-13) . T) ((-1024) . T) ((-1012) . T) ((-1127) . T)) -((-2567 (((-85) $ $) NIL T ELT)) (-2411 ((|#1| $) 16 T ELT)) (-2410 (($ (-1 |#1| |#1| |#1|) |#1|) 11 T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3798 ((|#1| $ |#1| |#1|) 14 T ELT)) (-3944 (((-771) $) NIL T ELT) (((-1021 |#1|) $) 17 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-663 |#1|) (-13 (-664 |#1|) (-1012) (-551 (-1021 |#1|)) (-10 -8 (-15 -2410 ($ (-1 |#1| |#1| |#1|) |#1|)))) (-72)) (T -663)) -((-2410 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *3 (-72)) (-5 *1 (-663 *3))))) -((-2411 ((|#1| $) 8 T ELT)) (-3798 ((|#1| $ |#1| |#1|) 6 T ELT))) -(((-664 |#1|) (-113) (-72)) (T -664)) -((-2411 (*1 *2 *1) (-12 (-4 *1 (-664 *2)) (-4 *2 (-72))))) -(-13 (-1022 |t#1|) (-10 -8 (-15 -2411 (|t#1| $)) (-6 (|%Rule| |neutrality| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |t#1|)) (SEQ (-3055 (|f| |x| (-2411 |f|)) |x|) (|exit| 1 (-3055 (|f| (-2411 |f|) |x|) |x|)))))))) -(((-80 |#1|) . T) ((|MappingCategory| |#1| |#1| |#1|) . T) ((-1022 |#1|) . T) ((-1127) . T)) -((-2412 (((-2 (|:| -3088 (-346 |#2|)) (|:| |special| (-346 |#2|))) |#2| (-1 |#2| |#2|)) 39 T ELT)) (-3416 (((-2 (|:| -3088 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12 T ELT)) (-2413 ((|#2| (-348 |#2|) (-1 |#2| |#2|)) 13 T ELT)) (-3433 (((-2 (|:| |poly| |#2|) (|:| -3088 (-348 |#2|)) (|:| |special| (-348 |#2|))) (-348 |#2|) (-1 |#2| |#2|)) 48 T ELT))) -(((-665 |#1| |#2|) (-10 -7 (-15 -3416 ((-2 (|:| -3088 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2412 ((-2 (|:| -3088 (-346 |#2|)) (|:| |special| (-346 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2413 (|#2| (-348 |#2|) (-1 |#2| |#2|))) (-15 -3433 ((-2 (|:| |poly| |#2|) (|:| -3088 (-348 |#2|)) (|:| |special| (-348 |#2|))) (-348 |#2|) (-1 |#2| |#2|)))) (-312) (-1153 |#1|)) (T -665)) -((-3433 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1153 *5)) (-4 *5 (-312)) (-5 *2 (-2 (|:| |poly| *6) (|:| -3088 (-348 *6)) (|:| |special| (-348 *6)))) (-5 *1 (-665 *5 *6)) (-5 *3 (-348 *6)))) (-2413 (*1 *2 *3 *4) (-12 (-5 *3 (-348 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1153 *5)) (-5 *1 (-665 *5 *2)) (-4 *5 (-312)))) (-2412 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1153 *5)) (-4 *5 (-312)) (-5 *2 (-2 (|:| -3088 (-346 *3)) (|:| |special| (-346 *3)))) (-5 *1 (-665 *5 *3)))) (-3416 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1153 *5)) (-4 *5 (-312)) (-5 *2 (-2 (|:| -3088 *3) (|:| |special| *3))) (-5 *1 (-665 *5 *3))))) -((-2414 ((|#7| (-582 |#5|) |#6|) NIL T ELT)) (-3956 ((|#7| (-1 |#5| |#4|) |#6|) 27 T ELT))) -(((-666 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -3956 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -2414 (|#7| (-582 |#5|) |#6|))) (-755) (-716) (-716) (-960) (-960) (-860 |#4| |#2| |#1|) (-860 |#5| |#3| |#1|)) (T -666)) -((-2414 (*1 *2 *3 *4) (-12 (-5 *3 (-582 *9)) (-4 *9 (-960)) (-4 *5 (-755)) (-4 *6 (-716)) (-4 *8 (-960)) (-4 *2 (-860 *9 *7 *5)) (-5 *1 (-666 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-716)) (-4 *4 (-860 *8 *6 *5)))) (-3956 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-960)) (-4 *9 (-960)) (-4 *5 (-755)) (-4 *6 (-716)) (-4 *2 (-860 *9 *7 *5)) (-5 *1 (-666 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-716)) (-4 *4 (-860 *8 *6 *5))))) -((-3956 ((|#7| (-1 |#2| |#1|) |#6|) 28 T ELT))) -(((-667 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -3956 (|#7| (-1 |#2| |#1|) |#6|))) (-755) (-755) (-716) (-716) (-960) (-860 |#5| |#3| |#1|) (-860 |#5| |#4| |#2|)) (T -667)) -((-3956 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-755)) (-4 *6 (-755)) (-4 *7 (-716)) (-4 *9 (-960)) (-4 *2 (-860 *9 *8 *6)) (-5 *1 (-667 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-716)) (-4 *4 (-860 *9 *7 *5))))) -((-3730 (((-346 |#4|) |#4|) 42 T ELT))) -(((-668 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3730 ((-346 |#4|) |#4|))) (-716) (-13 (-755) (-10 -8 (-15 -3970 ((-1088) $)) (-15 -3829 ((-3 $ "failed") (-1088))))) (-258) (-860 (-856 |#3|) |#1| |#2|)) (T -668)) -((-3730 (*1 *2 *3) (-12 (-4 *4 (-716)) (-4 *5 (-13 (-755) (-10 -8 (-15 -3970 ((-1088) $)) (-15 -3829 ((-3 $ "failed") (-1088)))))) (-4 *6 (-258)) (-5 *2 (-346 *3)) (-5 *1 (-668 *4 *5 *6 *3)) (-4 *3 (-860 (-856 *6) *4 *5))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3187 (((-85) $) NIL T ELT)) (-3080 (((-582 (-772 |#1|)) $) NIL T ELT)) (-3082 (((-1083 $) $ (-772 |#1|)) NIL T ELT) (((-1083 |#2|) $) NIL T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3980 $) (|:| |associate| $)) $) NIL (|has| |#2| (-494)) ELT)) (-2062 (($ $) NIL (|has| |#2| (-494)) ELT)) (-2060 (((-85) $) NIL (|has| |#2| (-494)) ELT)) (-2818 (((-693) $) NIL T ELT) (((-693) $ (-582 (-772 |#1|))) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2706 (((-346 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-820)) ELT)) (-3773 (($ $) NIL (|has| |#2| (-390)) ELT)) (-3969 (((-346 $) $) NIL (|has| |#2| (-390)) ELT)) (-2703 (((-3 (-582 (-1083 $)) #1#) (-582 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-820)) ELT)) (-3722 (($) NIL T CONST)) (-3156 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-348 (-483)) #1#) $) NIL (|has| |#2| (-949 (-348 (-483)))) ELT) (((-3 (-483) #1#) $) NIL (|has| |#2| (-949 (-483))) ELT) (((-3 (-772 |#1|) #1#) $) NIL T ELT)) (-3155 ((|#2| $) NIL T ELT) (((-348 (-483)) $) NIL (|has| |#2| (-949 (-348 (-483)))) ELT) (((-483) $) NIL (|has| |#2| (-949 (-483))) ELT) (((-772 |#1|) $) NIL T ELT)) (-3754 (($ $ $ (-772 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-3957 (($ $) NIL T ELT)) (-2278 (((-629 (-483)) (-629 $)) NIL (|has| |#2| (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-629 $) (-1177 $)) NIL (|has| |#2| (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 |#2|)) (|:| |vec| (-1177 |#2|))) (-629 $) (-1177 $)) NIL T ELT) (((-629 |#2|) (-629 $)) NIL T ELT)) (-3465 (((-3 $ #1#) $) NIL T ELT)) (-3501 (($ $) NIL (|has| |#2| (-390)) ELT) (($ $ (-772 |#1|)) NIL (|has| |#2| (-390)) ELT)) (-2817 (((-582 $) $) NIL T ELT)) (-3721 (((-85) $) NIL (|has| |#2| (-820)) ELT)) (-1622 (($ $ |#2| (-468 (-772 |#1|)) $) NIL T ELT)) (-2795 (((-797 (-328) $) $ (-799 (-328)) (-797 (-328) $)) NIL (-12 (|has| (-772 |#1|) (-795 (-328))) (|has| |#2| (-795 (-328)))) ELT) (((-797 (-483) $) $ (-799 (-483)) (-797 (-483) $)) NIL (-12 (|has| (-772 |#1|) (-795 (-483))) (|has| |#2| (-795 (-483)))) ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-2409 (((-85) $) NIL T ELT)) (-2419 (((-693) $) NIL T ELT)) (-3083 (($ (-1083 |#2|) (-772 |#1|)) NIL T ELT) (($ (-1083 $) (-772 |#1|)) NIL T ELT)) (-2820 (((-582 $) $) NIL T ELT)) (-3935 (((-85) $) NIL T ELT)) (-2892 (($ |#2| (-468 (-772 |#1|))) NIL T ELT) (($ $ (-772 |#1|) (-693)) NIL T ELT) (($ $ (-582 (-772 |#1|)) (-582 (-693))) NIL T ELT)) (-3761 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $ (-772 |#1|)) NIL T ELT)) (-2819 (((-468 (-772 |#1|)) $) NIL T ELT) (((-693) $ (-772 |#1|)) NIL T ELT) (((-582 (-693)) $ (-582 (-772 |#1|))) NIL T ELT)) (-1623 (($ (-1 (-468 (-772 |#1|)) (-468 (-772 |#1|))) $) NIL T ELT)) (-3956 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3081 (((-3 (-772 |#1|) #1#) $) NIL T ELT)) (-2279 (((-629 (-483)) (-1177 $)) NIL (|has| |#2| (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL (|has| |#2| (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 |#2|)) (|:| |vec| (-1177 |#2|))) (-1177 $) $) NIL T ELT) (((-629 |#2|) (-1177 $)) NIL T ELT)) (-2893 (($ $) NIL T ELT)) (-3173 ((|#2| $) NIL T ELT)) (-1889 (($ (-582 $)) NIL (|has| |#2| (-390)) ELT) (($ $ $) NIL (|has| |#2| (-390)) ELT)) (-3241 (((-1071) $) NIL T ELT)) (-2822 (((-3 (-582 $) #1#) $) NIL T ELT)) (-2821 (((-3 (-582 $) #1#) $) NIL T ELT)) (-2823 (((-3 (-2 (|:| |var| (-772 |#1|)) (|:| -2400 (-693))) #1#) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-1795 (((-85) $) NIL T ELT)) (-1794 ((|#2| $) NIL T ELT)) (-2707 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#2| (-390)) ELT)) (-3143 (($ (-582 $)) NIL (|has| |#2| (-390)) ELT) (($ $ $) NIL (|has| |#2| (-390)) ELT)) (-2704 (((-346 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-820)) ELT)) (-2705 (((-346 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-820)) ELT)) (-3730 (((-346 $) $) NIL (|has| |#2| (-820)) ELT)) (-3464 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-494)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-494)) ELT)) (-3766 (($ $ (-582 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-582 $) (-582 $)) NIL T ELT) (($ $ (-772 |#1|) |#2|) NIL T ELT) (($ $ (-582 (-772 |#1|)) (-582 |#2|)) NIL T ELT) (($ $ (-772 |#1|) $) NIL T ELT) (($ $ (-582 (-772 |#1|)) (-582 $)) NIL T ELT)) (-3755 (($ $ (-772 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-3756 (($ $ (-582 (-772 |#1|)) (-582 (-693))) NIL T ELT) (($ $ (-772 |#1|) (-693)) NIL T ELT) (($ $ (-582 (-772 |#1|))) NIL T ELT) (($ $ (-772 |#1|)) NIL T ELT)) (-3946 (((-468 (-772 |#1|)) $) NIL T ELT) (((-693) $ (-772 |#1|)) NIL T ELT) (((-582 (-693)) $ (-582 (-772 |#1|))) NIL T ELT)) (-3970 (((-799 (-328)) $) NIL (-12 (|has| (-772 |#1|) (-552 (-799 (-328)))) (|has| |#2| (-552 (-799 (-328))))) ELT) (((-799 (-483)) $) NIL (-12 (|has| (-772 |#1|) (-552 (-799 (-483)))) (|has| |#2| (-552 (-799 (-483))))) ELT) (((-472) $) NIL (-12 (|has| (-772 |#1|) (-552 (-472))) (|has| |#2| (-552 (-472)))) ELT)) (-2816 ((|#2| $) NIL (|has| |#2| (-390)) ELT) (($ $ (-772 |#1|)) NIL (|has| |#2| (-390)) ELT)) (-2702 (((-3 (-1177 $) #1#) (-629 $)) NIL (-12 (|has| $ (-118)) (|has| |#2| (-820))) ELT)) (-3944 (((-771) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-772 |#1|)) NIL T ELT) (($ $) NIL (|has| |#2| (-494)) ELT) (($ (-348 (-483))) NIL (OR (|has| |#2| (-38 (-348 (-483)))) (|has| |#2| (-949 (-348 (-483))))) ELT)) (-3815 (((-582 |#2|) $) NIL T ELT)) (-3675 ((|#2| $ (-468 (-772 |#1|))) NIL T ELT) (($ $ (-772 |#1|) (-693)) NIL T ELT) (($ $ (-582 (-772 |#1|)) (-582 (-693))) NIL T ELT)) (-2701 (((-631 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#2| (-820))) (|has| |#2| (-118))) ELT)) (-3125 (((-693)) NIL T CONST)) (-1621 (($ $ $ (-693)) NIL (|has| |#2| (-146)) ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2061 (((-85) $ $) NIL (|has| |#2| (-494)) ELT)) (-3124 (((-85) $ $) NIL T ELT)) (-2659 (($) NIL T CONST)) (-2665 (($) NIL T CONST)) (-2668 (($ $ (-582 (-772 |#1|)) (-582 (-693))) NIL T ELT) (($ $ (-772 |#1|) (-693)) NIL T ELT) (($ $ (-582 (-772 |#1|))) NIL T ELT) (($ $ (-772 |#1|)) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-3947 (($ $ |#2|) NIL (|has| |#2| (-312)) ELT)) (-3835 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3837 (($ $ $) NIL T ELT)) (** (($ $ (-829)) NIL T ELT) (($ $ (-693)) NIL T ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-348 (-483))) NIL (|has| |#2| (-38 (-348 (-483)))) ELT) (($ (-348 (-483)) $) NIL (|has| |#2| (-38 (-348 (-483)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT))) -(((-669 |#1| |#2|) (-860 |#2| (-468 (-772 |#1|)) (-772 |#1|)) (-582 (-1088)) (-960)) (T -669)) -NIL -((-2415 (((-2 (|:| -2482 (-856 |#3|)) (|:| -2057 (-856 |#3|))) |#4|) 14 T ELT)) (-2985 ((|#4| |#4| |#2|) 33 T ELT)) (-2418 ((|#4| (-348 (-856 |#3|)) |#2|) 62 T ELT)) (-2417 ((|#4| (-1083 (-856 |#3|)) |#2|) 74 T ELT)) (-2416 ((|#4| (-1083 |#4|) |#2|) 49 T ELT)) (-2984 ((|#4| |#4| |#2|) 52 T ELT)) (-3730 (((-346 |#4|) |#4|) 40 T ELT))) -(((-670 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2415 ((-2 (|:| -2482 (-856 |#3|)) (|:| -2057 (-856 |#3|))) |#4|)) (-15 -2984 (|#4| |#4| |#2|)) (-15 -2416 (|#4| (-1083 |#4|) |#2|)) (-15 -2985 (|#4| |#4| |#2|)) (-15 -2417 (|#4| (-1083 (-856 |#3|)) |#2|)) (-15 -2418 (|#4| (-348 (-856 |#3|)) |#2|)) (-15 -3730 ((-346 |#4|) |#4|))) (-716) (-13 (-755) (-10 -8 (-15 -3970 ((-1088) $)))) (-494) (-860 (-348 (-856 |#3|)) |#1| |#2|)) (T -670)) -((-3730 (*1 *2 *3) (-12 (-4 *4 (-716)) (-4 *5 (-13 (-755) (-10 -8 (-15 -3970 ((-1088) $))))) (-4 *6 (-494)) (-5 *2 (-346 *3)) (-5 *1 (-670 *4 *5 *6 *3)) (-4 *3 (-860 (-348 (-856 *6)) *4 *5)))) (-2418 (*1 *2 *3 *4) (-12 (-4 *6 (-494)) (-4 *2 (-860 *3 *5 *4)) (-5 *1 (-670 *5 *4 *6 *2)) (-5 *3 (-348 (-856 *6))) (-4 *5 (-716)) (-4 *4 (-13 (-755) (-10 -8 (-15 -3970 ((-1088) $))))))) (-2417 (*1 *2 *3 *4) (-12 (-5 *3 (-1083 (-856 *6))) (-4 *6 (-494)) (-4 *2 (-860 (-348 (-856 *6)) *5 *4)) (-5 *1 (-670 *5 *4 *6 *2)) (-4 *5 (-716)) (-4 *4 (-13 (-755) (-10 -8 (-15 -3970 ((-1088) $))))))) (-2985 (*1 *2 *2 *3) (-12 (-4 *4 (-716)) (-4 *3 (-13 (-755) (-10 -8 (-15 -3970 ((-1088) $))))) (-4 *5 (-494)) (-5 *1 (-670 *4 *3 *5 *2)) (-4 *2 (-860 (-348 (-856 *5)) *4 *3)))) (-2416 (*1 *2 *3 *4) (-12 (-5 *3 (-1083 *2)) (-4 *2 (-860 (-348 (-856 *6)) *5 *4)) (-5 *1 (-670 *5 *4 *6 *2)) (-4 *5 (-716)) (-4 *4 (-13 (-755) (-10 -8 (-15 -3970 ((-1088) $))))) (-4 *6 (-494)))) (-2984 (*1 *2 *2 *3) (-12 (-4 *4 (-716)) (-4 *3 (-13 (-755) (-10 -8 (-15 -3970 ((-1088) $))))) (-4 *5 (-494)) (-5 *1 (-670 *4 *3 *5 *2)) (-4 *2 (-860 (-348 (-856 *5)) *4 *3)))) (-2415 (*1 *2 *3) (-12 (-4 *4 (-716)) (-4 *5 (-13 (-755) (-10 -8 (-15 -3970 ((-1088) $))))) (-4 *6 (-494)) (-5 *2 (-2 (|:| -2482 (-856 *6)) (|:| -2057 (-856 *6)))) (-5 *1 (-670 *4 *5 *6 *3)) (-4 *3 (-860 (-348 (-856 *6)) *4 *5))))) -((-3730 (((-346 |#4|) |#4|) 54 T ELT))) -(((-671 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3730 ((-346 |#4|) |#4|))) (-716) (-755) (-13 (-258) (-120)) (-860 (-348 |#3|) |#1| |#2|)) (T -671)) -((-3730 (*1 *2 *3) (-12 (-4 *4 (-716)) (-4 *5 (-755)) (-4 *6 (-13 (-258) (-120))) (-5 *2 (-346 *3)) (-5 *1 (-671 *4 *5 *6 *3)) (-4 *3 (-860 (-348 *6) *4 *5))))) -((-3956 (((-673 |#2| |#3|) (-1 |#2| |#1|) (-673 |#1| |#3|)) 18 T ELT))) -(((-672 |#1| |#2| |#3|) (-10 -7 (-15 -3956 ((-673 |#2| |#3|) (-1 |#2| |#1|) (-673 |#1| |#3|)))) (-960) (-960) (-662)) (T -672)) -((-3956 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-673 *5 *7)) (-4 *5 (-960)) (-4 *6 (-960)) (-4 *7 (-662)) (-5 *2 (-673 *6 *7)) (-5 *1 (-672 *5 *6 *7))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3187 (((-85) $) 36 T ELT)) (-3772 (((-582 (-2 (|:| -3952 |#1|) (|:| -3936 |#2|))) $) 37 T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3135 (((-693)) 22 (-12 (|has| |#2| (-318)) (|has| |#1| (-318))) ELT)) (-3722 (($) NIL T CONST)) (-3156 (((-3 |#2| #1#) $) 76 T ELT) (((-3 |#1| #1#) $) 79 T ELT)) (-3155 ((|#2| $) NIL T ELT) ((|#1| $) NIL T ELT)) (-3957 (($ $) 99 (|has| |#2| (-755)) ELT)) (-3465 (((-3 $ #1#) $) 83 T ELT)) (-2993 (($) 48 (-12 (|has| |#2| (-318)) (|has| |#1| (-318))) ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-2409 (((-85) $) NIL T ELT)) (-2419 (((-693) $) 70 T ELT)) (-2820 (((-582 $) $) 52 T ELT)) (-3935 (((-85) $) NIL T ELT)) (-2892 (($ |#1| |#2|) 17 T ELT)) (-3956 (($ (-1 |#1| |#1|) $) 68 T ELT)) (-2009 (((-829) $) 43 (-12 (|has| |#2| (-318)) (|has| |#1| (-318))) ELT)) (-2893 ((|#2| $) 98 (|has| |#2| (-755)) ELT)) (-3173 ((|#1| $) 97 (|has| |#2| (-755)) ELT)) (-3241 (((-1071) $) NIL T ELT)) (-2399 (($ (-829)) 35 (-12 (|has| |#2| (-318)) (|has| |#1| (-318))) ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3944 (((-771) $) 96 T ELT) (($ (-483)) 59 T ELT) (($ |#2|) 55 T ELT) (($ |#1|) 56 T ELT) (($ (-582 (-2 (|:| -3952 |#1|) (|:| -3936 |#2|)))) 11 T ELT)) (-3815 (((-582 |#1|) $) 54 T ELT)) (-3675 ((|#1| $ |#2|) 114 T ELT)) (-2701 (((-631 $) $) NIL (|has| |#1| (-118)) ELT)) (-3125 (((-693)) NIL T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-3124 (((-85) $ $) NIL T ELT)) (-2659 (($) 12 T CONST)) (-2665 (($) 44 T CONST)) (-3055 (((-85) $ $) 104 T ELT)) (-3835 (($ $) 61 T ELT) (($ $ $) NIL T ELT)) (-3837 (($ $ $) 33 T ELT)) (** (($ $ (-829)) NIL T ELT) (($ $ (-693)) NIL T ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-483) $) 66 T ELT) (($ $ $) 117 T ELT) (($ |#1| $) 63 (|has| |#1| (-146)) ELT) (($ $ |#1|) NIL (|has| |#1| (-146)) ELT))) -(((-673 |#1| |#2|) (-13 (-960) (-949 |#2|) (-949 |#1|) (-10 -8 (-15 -2892 ($ |#1| |#2|)) (-15 -3675 (|#1| $ |#2|)) (-15 -3944 ($ (-582 (-2 (|:| -3952 |#1|) (|:| -3936 |#2|))))) (-15 -3772 ((-582 (-2 (|:| -3952 |#1|) (|:| -3936 |#2|))) $)) (-15 -3956 ($ (-1 |#1| |#1|) $)) (-15 -3935 ((-85) $)) (-15 -3815 ((-582 |#1|) $)) (-15 -2820 ((-582 $) $)) (-15 -2419 ((-693) $)) (IF (|has| |#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-318)) (IF (|has| |#2| (-318)) (-6 (-318)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-755)) (PROGN (-15 -2893 (|#2| $)) (-15 -3173 (|#1| $)) (-15 -3957 ($ $))) |%noBranch|))) (-960) (-662)) (T -673)) -((-2892 (*1 *1 *2 *3) (-12 (-5 *1 (-673 *2 *3)) (-4 *2 (-960)) (-4 *3 (-662)))) (-3675 (*1 *2 *1 *3) (-12 (-4 *2 (-960)) (-5 *1 (-673 *2 *3)) (-4 *3 (-662)))) (-3944 (*1 *1 *2) (-12 (-5 *2 (-582 (-2 (|:| -3952 *3) (|:| -3936 *4)))) (-4 *3 (-960)) (-4 *4 (-662)) (-5 *1 (-673 *3 *4)))) (-3772 (*1 *2 *1) (-12 (-5 *2 (-582 (-2 (|:| -3952 *3) (|:| -3936 *4)))) (-5 *1 (-673 *3 *4)) (-4 *3 (-960)) (-4 *4 (-662)))) (-3956 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-960)) (-5 *1 (-673 *3 *4)) (-4 *4 (-662)))) (-3935 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-673 *3 *4)) (-4 *3 (-960)) (-4 *4 (-662)))) (-3815 (*1 *2 *1) (-12 (-5 *2 (-582 *3)) (-5 *1 (-673 *3 *4)) (-4 *3 (-960)) (-4 *4 (-662)))) (-2820 (*1 *2 *1) (-12 (-5 *2 (-582 (-673 *3 *4))) (-5 *1 (-673 *3 *4)) (-4 *3 (-960)) (-4 *4 (-662)))) (-2419 (*1 *2 *1) (-12 (-5 *2 (-693)) (-5 *1 (-673 *3 *4)) (-4 *3 (-960)) (-4 *4 (-662)))) (-2893 (*1 *2 *1) (-12 (-4 *2 (-662)) (-4 *2 (-755)) (-5 *1 (-673 *3 *2)) (-4 *3 (-960)))) (-3173 (*1 *2 *1) (-12 (-4 *2 (-960)) (-5 *1 (-673 *2 *3)) (-4 *3 (-755)) (-4 *3 (-662)))) (-3957 (*1 *1 *1) (-12 (-5 *1 (-673 *2 *3)) (-4 *3 (-755)) (-4 *2 (-960)) (-4 *3 (-662))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3233 (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ $ $) 95 T ELT)) (-3235 (($ $ $) 99 T ELT)) (-3234 (((-85) $ $) 107 T ELT)) (-3238 (($ (-582 |#1|)) 26 T ELT) (($) 17 T ELT)) (-1568 (($ (-1 (-85) |#1|) $) 86 (|has| $ (-6 -3993)) ELT)) (-3708 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3722 (($) NIL T CONST)) (-2367 (($ $) 88 T ELT)) (-1351 (($ $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#1| (-1012))) ELT)) (-3403 (($ |#1| $) 71 (|has| $ (-6 -3993)) ELT) (($ (-1 (-85) |#1|) $) 80 (|has| $ (-6 -3993)) ELT) (($ |#1| $ (-483)) 78 T ELT) (($ (-1 (-85) |#1|) $ (-483)) 81 T ELT)) (-3404 (($ |#1| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#1| (-1012))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3993)) ELT) (($ |#1| $ (-483)) 83 T ELT) (($ (-1 (-85) |#1|) $ (-483)) 84 T ELT)) (-3840 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3993)) (|has| |#1| (-1012))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3993)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-2888 (((-582 |#1|) $) 32 (|has| $ (-6 -3993)) ELT)) (-3240 (((-85) $ $) 106 T ELT)) (-2420 (($) 15 T ELT) (($ |#1|) 28 T ELT) (($ (-582 |#1|)) 23 T ELT)) (-2607 (((-582 |#1|) $) 38 T ELT)) (-3244 (((-85) |#1| $) 66 (-12 (|has| $ (-6 -3993)) (|has| |#1| (-1012))) ELT)) (-1947 (($ (-1 |#1| |#1|) $) 91 (|has| $ (-6 -3994)) ELT)) (-3956 (($ (-1 |#1| |#1|) $) 92 T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3237 (($ $ $) 97 T ELT)) (-1272 ((|#1| $) 63 T ELT)) (-3607 (($ |#1| $) 64 T ELT) (($ |#1| $ (-693)) 89 T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-1352 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-1273 ((|#1| $) 62 T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3766 (($ $ (-582 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-582 |#1|) (-582 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-3401 (((-85) $) 57 T ELT)) (-3563 (($) 14 T ELT)) (-2366 (((-582 (-2 (|:| |entry| |#1|) (|:| -1944 (-693)))) $) 56 T ELT)) (-3236 (($ $ |#1|) NIL T ELT) (($ $ $) 98 T ELT)) (-1464 (($) 16 T ELT) (($ (-582 |#1|)) 25 T ELT)) (-1944 (((-693) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3993)) ELT) (((-693) |#1| $) 69 (-12 (|has| $ (-6 -3993)) (|has| |#1| (-1012))) ELT)) (-3398 (($ $) 82 T ELT)) (-3970 (((-472) $) 36 (|has| |#1| (-552 (-472))) ELT)) (-3528 (($ (-582 |#1|)) 22 T ELT)) (-3944 (((-771) $) 50 T ELT)) (-3239 (($ (-582 |#1|)) 27 T ELT) (($) 18 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-1274 (($ (-582 |#1|)) 24 T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3055 (((-85) $ $) 103 T ELT)) (-3955 (((-693) $) 68 (|has| $ (-6 -3993)) ELT))) -(((-674 |#1|) (-13 (-675 |#1|) (-10 -8 (-6 -3993) (-6 -3994) (-15 -2420 ($)) (-15 -2420 ($ |#1|)) (-15 -2420 ($ (-582 |#1|))) (-15 -2607 ((-582 |#1|) $)) (-15 -3404 ($ |#1| $ (-483))) (-15 -3404 ($ (-1 (-85) |#1|) $ (-483))) (-15 -3403 ($ |#1| $ (-483))) (-15 -3403 ($ (-1 (-85) |#1|) $ (-483))))) (-1012)) (T -674)) -((-2420 (*1 *1) (-12 (-5 *1 (-674 *2)) (-4 *2 (-1012)))) (-2420 (*1 *1 *2) (-12 (-5 *1 (-674 *2)) (-4 *2 (-1012)))) (-2420 (*1 *1 *2) (-12 (-5 *2 (-582 *3)) (-4 *3 (-1012)) (-5 *1 (-674 *3)))) (-2607 (*1 *2 *1) (-12 (-5 *2 (-582 *3)) (-5 *1 (-674 *3)) (-4 *3 (-1012)))) (-3404 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-483)) (-5 *1 (-674 *2)) (-4 *2 (-1012)))) (-3404 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-85) *4)) (-5 *3 (-483)) (-4 *4 (-1012)) (-5 *1 (-674 *4)))) (-3403 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-483)) (-5 *1 (-674 *2)) (-4 *2 (-1012)))) (-3403 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-85) *4)) (-5 *3 (-483)) (-4 *4 (-1012)) (-5 *1 (-674 *4))))) -((-2567 (((-85) $ $) 19 T ELT)) (-3233 (($ |#1| $) 81 T ELT) (($ $ |#1|) 80 T ELT) (($ $ $) 79 T ELT)) (-3235 (($ $ $) 77 T ELT)) (-3234 (((-85) $ $) 78 T ELT)) (-3238 (($ (-582 |#1|)) 73 T ELT) (($) 72 T ELT)) (-1568 (($ (-1 (-85) |#1|) $) 49 (|has| $ (-6 -3993)) ELT)) (-3708 (($ (-1 (-85) |#1|) $) 59 (|has| $ (-6 -3993)) ELT)) (-3722 (($) 7 T CONST)) (-2367 (($ $) 66 T ELT)) (-1351 (($ $) 62 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3993))) ELT)) (-3403 (($ |#1| $) 51 (|has| $ (-6 -3993)) ELT) (($ (-1 (-85) |#1|) $) 50 (|has| $ (-6 -3993)) ELT)) (-3404 (($ |#1| $) 61 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3993))) ELT) (($ (-1 (-85) |#1|) $) 58 (|has| $ (-6 -3993)) ELT)) (-3840 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3993))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -3993)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -3993)) ELT)) (-2888 (((-582 |#1|) $) 30 (|has| $ (-6 -3993)) ELT)) (-3240 (((-85) $ $) 69 T ELT)) (-2607 (((-582 |#1|) $) 29 (|has| $ (-6 -3993)) ELT)) (-3244 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3993))) ELT)) (-1947 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3994)) ELT)) (-3956 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3241 (((-1071) $) 22 T ELT)) (-3237 (($ $ $) 74 T ELT)) (-1272 ((|#1| $) 43 T ELT)) (-3607 (($ |#1| $) 44 T ELT) (($ |#1| $ (-693)) 67 T ELT)) (-3242 (((-1032) $) 21 T ELT)) (-1352 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 55 T ELT)) (-1273 ((|#1| $) 45 T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3993)) ELT)) (-3766 (($ $ (-582 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-582 |#1|) (-582 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT)) (-1220 (((-85) $ $) 11 T ELT)) (-3401 (((-85) $) 8 T ELT)) (-3563 (($) 9 T ELT)) (-2366 (((-582 (-2 (|:| |entry| |#1|) (|:| -1944 (-693)))) $) 65 T ELT)) (-3236 (($ $ |#1|) 76 T ELT) (($ $ $) 75 T ELT)) (-1464 (($) 53 T ELT) (($ (-582 |#1|)) 52 T ELT)) (-1944 (((-693) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3993)) ELT) (((-693) |#1| $) 28 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3993))) ELT)) (-3398 (($ $) 10 T ELT)) (-3970 (((-472) $) 63 (|has| |#1| (-552 (-472))) ELT)) (-3528 (($ (-582 |#1|)) 54 T ELT)) (-3944 (((-771) $) 17 T ELT)) (-3239 (($ (-582 |#1|)) 71 T ELT) (($) 70 T ELT)) (-1263 (((-85) $ $) 20 T ELT)) (-1274 (($ (-582 |#1|)) 46 T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3993)) ELT)) (-3055 (((-85) $ $) 18 T ELT)) (-3955 (((-693) $) 6 (|has| $ (-6 -3993)) ELT))) -(((-675 |#1|) (-113) (-1012)) (T -675)) -NIL -(-13 (-633 |t#1|) (-1010 |t#1|)) -(((-34) . T) ((-76 |#1|) . T) ((-72) . T) ((-551 (-771)) . T) ((-124 |#1|) . T) ((-552 (-472)) |has| |#1| (-552 (-472))) ((-193 |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ((-427 |#1|) . T) ((-454 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ((-13) . T) ((-633 |#1|) . T) ((-1010 |#1|) . T) ((-1012) . T) ((-1127) . T)) -((-2421 (((-1183) (-1071)) 8 T ELT))) -(((-676) (-10 -7 (-15 -2421 ((-1183) (-1071))))) (T -676)) -((-2421 (*1 *2 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-1183)) (-5 *1 (-676))))) -((-2422 (((-582 |#1|) (-582 |#1|) (-582 |#1|)) 15 T ELT))) -(((-677 |#1|) (-10 -7 (-15 -2422 ((-582 |#1|) (-582 |#1|) (-582 |#1|)))) (-755)) (T -677)) -((-2422 (*1 *2 *2 *2) (-12 (-5 *2 (-582 *3)) (-4 *3 (-755)) (-5 *1 (-677 *3))))) -((-2567 (((-85) $ $) 7 T ELT)) (-3187 (((-85) $) 22 T ELT)) (-3080 (((-582 |#2|) $) 159 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3980 $) (|:| |associate| $)) $) 152 (|has| |#1| (-494)) ELT)) (-2062 (($ $) 151 (|has| |#1| (-494)) ELT)) (-2060 (((-85) $) 149 (|has| |#1| (-494)) ELT)) (-3490 (($ $) 108 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3637 (($ $) 91 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-1310 (((-3 $ "failed") $ $) 26 T ELT)) (-3036 (($ $) 90 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3488 (($ $) 107 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3636 (($ $) 92 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3492 (($ $) 106 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3635 (($ $) 93 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3722 (($) 23 T CONST)) (-3957 (($ $) 143 T ELT)) (-3465 (((-3 $ "failed") $) 42 T ELT)) (-3812 (((-856 |#1|) $ (-693)) 121 T ELT) (((-856 |#1|) $ (-693) (-693)) 120 T ELT)) (-2891 (((-85) $) 160 T ELT)) (-3625 (($) 118 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3770 (((-693) $ |#2|) 123 T ELT) (((-693) $ |#2| (-693)) 122 T ELT)) (-1212 (((-85) $ $) 20 T ELT)) (-2409 (((-85) $) 44 T ELT)) (-3010 (($ $ (-483)) 89 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3935 (((-85) $) 141 T ELT)) (-2892 (($ $ (-582 |#2|) (-582 (-468 |#2|))) 158 T ELT) (($ $ |#2| (-468 |#2|)) 157 T ELT) (($ |#1| (-468 |#2|)) 142 T ELT) (($ $ |#2| (-693)) 125 T ELT) (($ $ (-582 |#2|) (-582 (-693))) 124 T ELT)) (-3956 (($ (-1 |#1| |#1|) $) 140 T ELT)) (-3940 (($ $) 115 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-2893 (($ $) 138 T ELT)) (-3173 ((|#1| $) 137 T ELT)) (-3241 (((-1071) $) 11 T ELT)) (-3810 (($ $ |#2|) 119 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3242 (((-1032) $) 12 T ELT)) (-3767 (($ $ (-693)) 126 T ELT)) (-3464 (((-3 $ "failed") $ $) 153 (|has| |#1| (-494)) ELT)) (-3941 (($ $) 116 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3766 (($ $ |#2| $) 134 T ELT) (($ $ (-582 |#2|) (-582 $)) 133 T ELT) (($ $ (-582 (-249 $))) 132 T ELT) (($ $ (-249 $)) 131 T ELT) (($ $ $ $) 130 T ELT) (($ $ (-582 $) (-582 $)) 129 T ELT)) (-3756 (($ $ (-582 |#2|) (-582 (-693))) 52 T ELT) (($ $ |#2| (-693)) 51 T ELT) (($ $ (-582 |#2|)) 50 T ELT) (($ $ |#2|) 48 T ELT)) (-3946 (((-468 |#2|) $) 139 T ELT)) (-3493 (($ $) 105 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3634 (($ $) 94 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3491 (($ $) 104 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3633 (($ $) 95 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3489 (($ $) 103 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3632 (($ $) 96 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-2890 (($ $) 161 T ELT)) (-3944 (((-771) $) 13 T ELT) (($ (-483)) 41 T ELT) (($ |#1|) 156 (|has| |#1| (-146)) ELT) (($ $) 154 (|has| |#1| (-494)) ELT) (($ (-348 (-483))) 146 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3675 ((|#1| $ (-468 |#2|)) 144 T ELT) (($ $ |#2| (-693)) 128 T ELT) (($ $ (-582 |#2|) (-582 (-693))) 127 T ELT)) (-2701 (((-631 $) $) 155 (|has| |#1| (-118)) ELT)) (-3125 (((-693)) 40 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-3496 (($ $) 114 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3484 (($ $) 102 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-2061 (((-85) $ $) 150 (|has| |#1| (-494)) ELT)) (-3494 (($ $) 113 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3482 (($ $) 101 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3498 (($ $) 112 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3486 (($ $) 100 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3124 (((-85) $ $) 33 T ELT)) (-3499 (($ $) 111 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3487 (($ $) 99 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3497 (($ $) 110 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3485 (($ $) 98 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3495 (($ $) 109 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3483 (($ $) 97 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-2659 (($) 24 T CONST)) (-2665 (($) 45 T CONST)) (-2668 (($ $ (-582 |#2|) (-582 (-693))) 55 T ELT) (($ $ |#2| (-693)) 54 T ELT) (($ $ (-582 |#2|)) 53 T ELT) (($ $ |#2|) 49 T ELT)) (-3055 (((-85) $ $) 8 T ELT)) (-3947 (($ $ |#1|) 145 (|has| |#1| (-312)) ELT)) (-3835 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3837 (($ $ $) 18 T ELT)) (** (($ $ (-829)) 35 T ELT) (($ $ (-693)) 43 T ELT) (($ $ $) 117 (|has| |#1| (-38 (-348 (-483)))) ELT) (($ $ (-348 (-483))) 88 (|has| |#1| (-38 (-348 (-483)))) ELT)) (* (($ (-829) $) 17 T ELT) (($ (-693) $) 21 T ELT) (($ (-483) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-348 (-483))) 148 (|has| |#1| (-38 (-348 (-483)))) ELT) (($ (-348 (-483)) $) 147 (|has| |#1| (-38 (-348 (-483)))) ELT) (($ |#1| $) 136 T ELT) (($ $ |#1|) 135 T ELT))) -(((-678 |#1| |#2|) (-113) (-960) (-755)) (T -678)) -((-3675 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-693)) (-4 *1 (-678 *4 *2)) (-4 *4 (-960)) (-4 *2 (-755)))) (-3675 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-582 *5)) (-5 *3 (-582 (-693))) (-4 *1 (-678 *4 *5)) (-4 *4 (-960)) (-4 *5 (-755)))) (-3767 (*1 *1 *1 *2) (-12 (-5 *2 (-693)) (-4 *1 (-678 *3 *4)) (-4 *3 (-960)) (-4 *4 (-755)))) (-2892 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-693)) (-4 *1 (-678 *4 *2)) (-4 *4 (-960)) (-4 *2 (-755)))) (-2892 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-582 *5)) (-5 *3 (-582 (-693))) (-4 *1 (-678 *4 *5)) (-4 *4 (-960)) (-4 *5 (-755)))) (-3770 (*1 *2 *1 *3) (-12 (-4 *1 (-678 *4 *3)) (-4 *4 (-960)) (-4 *3 (-755)) (-5 *2 (-693)))) (-3770 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-693)) (-4 *1 (-678 *4 *3)) (-4 *4 (-960)) (-4 *3 (-755)))) (-3812 (*1 *2 *1 *3) (-12 (-5 *3 (-693)) (-4 *1 (-678 *4 *5)) (-4 *4 (-960)) (-4 *5 (-755)) (-5 *2 (-856 *4)))) (-3812 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-693)) (-4 *1 (-678 *4 *5)) (-4 *4 (-960)) (-4 *5 (-755)) (-5 *2 (-856 *4)))) (-3810 (*1 *1 *1 *2) (-12 (-4 *1 (-678 *3 *2)) (-4 *3 (-960)) (-4 *2 (-755)) (-4 *3 (-38 (-348 (-483))))))) -(-13 (-808 |t#2|) (-885 |t#1| (-468 |t#2|) |t#2|) (-454 |t#2| $) (-260 $) (-10 -8 (-15 -3675 ($ $ |t#2| (-693))) (-15 -3675 ($ $ (-582 |t#2|) (-582 (-693)))) (-15 -3767 ($ $ (-693))) (-15 -2892 ($ $ |t#2| (-693))) (-15 -2892 ($ $ (-582 |t#2|) (-582 (-693)))) (-15 -3770 ((-693) $ |t#2|)) (-15 -3770 ((-693) $ |t#2| (-693))) (-15 -3812 ((-856 |t#1|) $ (-693))) (-15 -3812 ((-856 |t#1|) $ (-693) (-693))) (IF (|has| |t#1| (-38 (-348 (-483)))) (PROGN (-15 -3810 ($ $ |t#2|)) (-6 (-914)) (-6 (-1113))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| (-468 |#2|)) . T) ((-25) . T) ((-38 (-348 (-483))) |has| |#1| (-38 (-348 (-483)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) |has| |#1| (-494)) ((-35) |has| |#1| (-38 (-348 (-483)))) ((-66) |has| |#1| (-38 (-348 (-483)))) ((-72) . T) ((-82 (-348 (-483)) (-348 (-483))) |has| |#1| (-38 (-348 (-483)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-494)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-554 (-348 (-483))) |has| |#1| (-38 (-348 (-483)))) ((-554 (-483)) . T) ((-554 |#1|) |has| |#1| (-146)) ((-554 $) |has| |#1| (-494)) ((-551 (-771)) . T) ((-146) OR (|has| |#1| (-494)) (|has| |#1| (-146))) ((-239) |has| |#1| (-38 (-348 (-483)))) ((-246) |has| |#1| (-494)) ((-260 $) . T) ((-431) |has| |#1| (-38 (-348 (-483)))) ((-454 |#2| $) . T) ((-454 $ $) . T) ((-494) |has| |#1| (-494)) ((-13) . T) ((-587 (-348 (-483))) |has| |#1| (-38 (-348 (-483)))) ((-587 (-483)) . T) ((-587 |#1|) . T) ((-587 $) . T) ((-589 (-348 (-483))) |has| |#1| (-38 (-348 (-483)))) ((-589 |#1|) . T) ((-589 $) . T) ((-581 (-348 (-483))) |has| |#1| (-38 (-348 (-483)))) ((-581 |#1|) |has| |#1| (-146)) ((-581 $) |has| |#1| (-494)) ((-653 (-348 (-483))) |has| |#1| (-38 (-348 (-483)))) ((-653 |#1|) |has| |#1| (-146)) ((-653 $) |has| |#1| (-494)) ((-662) . T) ((-805 $ |#2|) . T) ((-808 |#2|) . T) ((-810 |#2|) . T) ((-885 |#1| (-468 |#2|) |#2|) . T) ((-914) |has| |#1| (-38 (-348 (-483)))) ((-962 (-348 (-483))) |has| |#1| (-38 (-348 (-483)))) ((-962 |#1|) . T) ((-962 $) OR (|has| |#1| (-494)) (|has| |#1| (-146))) ((-967 (-348 (-483))) |has| |#1| (-38 (-348 (-483)))) ((-967 |#1|) . T) ((-967 $) OR (|has| |#1| (-494)) (|has| |#1| (-146))) ((-960) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1113) |has| |#1| (-38 (-348 (-483)))) ((-1116) |has| |#1| (-38 (-348 (-483)))) ((-1127) . T)) -((-3730 (((-346 (-1083 |#4|)) (-1083 |#4|)) 30 T ELT) (((-346 |#4|) |#4|) 26 T ELT))) -(((-679 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3730 ((-346 |#4|) |#4|)) (-15 -3730 ((-346 (-1083 |#4|)) (-1083 |#4|)))) (-755) (-716) (-13 (-258) (-120)) (-860 |#3| |#2| |#1|)) (T -679)) -((-3730 (*1 *2 *3) (-12 (-4 *4 (-755)) (-4 *5 (-716)) (-4 *6 (-13 (-258) (-120))) (-4 *7 (-860 *6 *5 *4)) (-5 *2 (-346 (-1083 *7))) (-5 *1 (-679 *4 *5 *6 *7)) (-5 *3 (-1083 *7)))) (-3730 (*1 *2 *3) (-12 (-4 *4 (-755)) (-4 *5 (-716)) (-4 *6 (-13 (-258) (-120))) (-5 *2 (-346 *3)) (-5 *1 (-679 *4 *5 *6 *3)) (-4 *3 (-860 *6 *5 *4))))) -((-2425 (((-346 |#4|) |#4| |#2|) 142 T ELT)) (-2423 (((-346 |#4|) |#4|) NIL T ELT)) (-3969 (((-346 (-1083 |#4|)) (-1083 |#4|)) 129 T ELT) (((-346 |#4|) |#4|) 52 T ELT)) (-2427 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-582 (-2 (|:| -3730 (-1083 |#4|)) (|:| -2400 (-483)))))) (-1083 |#4|) (-582 |#2|) (-582 (-582 |#3|))) 81 T ELT)) (-2431 (((-1083 |#3|) (-1083 |#3|) (-483)) 169 T ELT)) (-2430 (((-582 (-693)) (-1083 |#4|) (-582 |#2|) (-693)) 75 T ELT)) (-3078 (((-3 (-582 (-1083 |#4|)) "failed") (-1083 |#4|) (-1083 |#3|) (-1083 |#3|) |#4| (-582 |#2|) (-582 (-693)) (-582 |#3|)) 79 T ELT)) (-2428 (((-2 (|:| |upol| (-1083 |#3|)) (|:| |Lval| (-582 |#3|)) (|:| |Lfact| (-582 (-2 (|:| -3730 (-1083 |#3|)) (|:| -2400 (-483))))) (|:| |ctpol| |#3|)) (-1083 |#4|) (-582 |#2|) (-582 (-582 |#3|))) 27 T ELT)) (-2426 (((-2 (|:| -2003 (-1083 |#4|)) (|:| |polval| (-1083 |#3|))) (-1083 |#4|) (-1083 |#3|) (-483)) 72 T ELT)) (-2424 (((-483) (-582 (-2 (|:| -3730 (-1083 |#3|)) (|:| -2400 (-483))))) 165 T ELT)) (-2429 ((|#4| (-483) (-346 |#4|)) 73 T ELT)) (-3355 (((-85) (-582 (-2 (|:| -3730 (-1083 |#3|)) (|:| -2400 (-483)))) (-582 (-2 (|:| -3730 (-1083 |#3|)) (|:| -2400 (-483))))) NIL T ELT))) -(((-680 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3969 ((-346 |#4|) |#4|)) (-15 -3969 ((-346 (-1083 |#4|)) (-1083 |#4|))) (-15 -2423 ((-346 |#4|) |#4|)) (-15 -2424 ((-483) (-582 (-2 (|:| -3730 (-1083 |#3|)) (|:| -2400 (-483)))))) (-15 -2425 ((-346 |#4|) |#4| |#2|)) (-15 -2426 ((-2 (|:| -2003 (-1083 |#4|)) (|:| |polval| (-1083 |#3|))) (-1083 |#4|) (-1083 |#3|) (-483))) (-15 -2427 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-582 (-2 (|:| -3730 (-1083 |#4|)) (|:| -2400 (-483)))))) (-1083 |#4|) (-582 |#2|) (-582 (-582 |#3|)))) (-15 -2428 ((-2 (|:| |upol| (-1083 |#3|)) (|:| |Lval| (-582 |#3|)) (|:| |Lfact| (-582 (-2 (|:| -3730 (-1083 |#3|)) (|:| -2400 (-483))))) (|:| |ctpol| |#3|)) (-1083 |#4|) (-582 |#2|) (-582 (-582 |#3|)))) (-15 -2429 (|#4| (-483) (-346 |#4|))) (-15 -3355 ((-85) (-582 (-2 (|:| -3730 (-1083 |#3|)) (|:| -2400 (-483)))) (-582 (-2 (|:| -3730 (-1083 |#3|)) (|:| -2400 (-483)))))) (-15 -3078 ((-3 (-582 (-1083 |#4|)) "failed") (-1083 |#4|) (-1083 |#3|) (-1083 |#3|) |#4| (-582 |#2|) (-582 (-693)) (-582 |#3|))) (-15 -2430 ((-582 (-693)) (-1083 |#4|) (-582 |#2|) (-693))) (-15 -2431 ((-1083 |#3|) (-1083 |#3|) (-483)))) (-716) (-755) (-258) (-860 |#3| |#1| |#2|)) (T -680)) -((-2431 (*1 *2 *2 *3) (-12 (-5 *2 (-1083 *6)) (-5 *3 (-483)) (-4 *6 (-258)) (-4 *4 (-716)) (-4 *5 (-755)) (-5 *1 (-680 *4 *5 *6 *7)) (-4 *7 (-860 *6 *4 *5)))) (-2430 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1083 *9)) (-5 *4 (-582 *7)) (-4 *7 (-755)) (-4 *9 (-860 *8 *6 *7)) (-4 *6 (-716)) (-4 *8 (-258)) (-5 *2 (-582 (-693))) (-5 *1 (-680 *6 *7 *8 *9)) (-5 *5 (-693)))) (-3078 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1083 *11)) (-5 *6 (-582 *10)) (-5 *7 (-582 (-693))) (-5 *8 (-582 *11)) (-4 *10 (-755)) (-4 *11 (-258)) (-4 *9 (-716)) (-4 *5 (-860 *11 *9 *10)) (-5 *2 (-582 (-1083 *5))) (-5 *1 (-680 *9 *10 *11 *5)) (-5 *3 (-1083 *5)))) (-3355 (*1 *2 *3 *3) (-12 (-5 *3 (-582 (-2 (|:| -3730 (-1083 *6)) (|:| -2400 (-483))))) (-4 *6 (-258)) (-4 *4 (-716)) (-4 *5 (-755)) (-5 *2 (-85)) (-5 *1 (-680 *4 *5 *6 *7)) (-4 *7 (-860 *6 *4 *5)))) (-2429 (*1 *2 *3 *4) (-12 (-5 *3 (-483)) (-5 *4 (-346 *2)) (-4 *2 (-860 *7 *5 *6)) (-5 *1 (-680 *5 *6 *7 *2)) (-4 *5 (-716)) (-4 *6 (-755)) (-4 *7 (-258)))) (-2428 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1083 *9)) (-5 *4 (-582 *7)) (-5 *5 (-582 (-582 *8))) (-4 *7 (-755)) (-4 *8 (-258)) (-4 *9 (-860 *8 *6 *7)) (-4 *6 (-716)) (-5 *2 (-2 (|:| |upol| (-1083 *8)) (|:| |Lval| (-582 *8)) (|:| |Lfact| (-582 (-2 (|:| -3730 (-1083 *8)) (|:| -2400 (-483))))) (|:| |ctpol| *8))) (-5 *1 (-680 *6 *7 *8 *9)))) (-2427 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-582 *7)) (-5 *5 (-582 (-582 *8))) (-4 *7 (-755)) (-4 *8 (-258)) (-4 *6 (-716)) (-4 *9 (-860 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-582 (-2 (|:| -3730 (-1083 *9)) (|:| -2400 (-483))))))) (-5 *1 (-680 *6 *7 *8 *9)) (-5 *3 (-1083 *9)))) (-2426 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-483)) (-4 *6 (-716)) (-4 *7 (-755)) (-4 *8 (-258)) (-4 *9 (-860 *8 *6 *7)) (-5 *2 (-2 (|:| -2003 (-1083 *9)) (|:| |polval| (-1083 *8)))) (-5 *1 (-680 *6 *7 *8 *9)) (-5 *3 (-1083 *9)) (-5 *4 (-1083 *8)))) (-2425 (*1 *2 *3 *4) (-12 (-4 *5 (-716)) (-4 *4 (-755)) (-4 *6 (-258)) (-5 *2 (-346 *3)) (-5 *1 (-680 *5 *4 *6 *3)) (-4 *3 (-860 *6 *5 *4)))) (-2424 (*1 *2 *3) (-12 (-5 *3 (-582 (-2 (|:| -3730 (-1083 *6)) (|:| -2400 (-483))))) (-4 *6 (-258)) (-4 *4 (-716)) (-4 *5 (-755)) (-5 *2 (-483)) (-5 *1 (-680 *4 *5 *6 *7)) (-4 *7 (-860 *6 *4 *5)))) (-2423 (*1 *2 *3) (-12 (-4 *4 (-716)) (-4 *5 (-755)) (-4 *6 (-258)) (-5 *2 (-346 *3)) (-5 *1 (-680 *4 *5 *6 *3)) (-4 *3 (-860 *6 *4 *5)))) (-3969 (*1 *2 *3) (-12 (-4 *4 (-716)) (-4 *5 (-755)) (-4 *6 (-258)) (-4 *7 (-860 *6 *4 *5)) (-5 *2 (-346 (-1083 *7))) (-5 *1 (-680 *4 *5 *6 *7)) (-5 *3 (-1083 *7)))) (-3969 (*1 *2 *3) (-12 (-4 *4 (-716)) (-4 *5 (-755)) (-4 *6 (-258)) (-5 *2 (-346 *3)) (-5 *1 (-680 *4 *5 *6 *3)) (-4 *3 (-860 *6 *4 *5))))) -((-2432 (($ $ (-829)) 17 T ELT))) -(((-681 |#1| |#2|) (-10 -7 (-15 -2432 (|#1| |#1| (-829)))) (-682 |#2|) (-146)) (T -681)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-3187 (((-85) $) 22 T ELT)) (-1310 (((-3 $ "failed") $ $) 26 T ELT)) (-3722 (($) 23 T CONST)) (-2406 (($ $ (-829)) 37 T ELT)) (-2432 (($ $ (-829)) 44 T ELT)) (-1212 (((-85) $ $) 20 T ELT)) (-2405 (($ $ (-829)) 38 T ELT)) (-3241 (((-1071) $) 11 T ELT)) (-3242 (((-1032) $) 12 T ELT)) (-2434 (($ $ $) 34 T ELT)) (-3944 (((-771) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2435 (($ $ $ $) 35 T ELT)) (-2433 (($ $ $) 33 T ELT)) (-2659 (($) 24 T CONST)) (-3055 (((-85) $ $) 8 T ELT)) (-3835 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3837 (($ $ $) 18 T ELT)) (** (($ $ (-829)) 39 T ELT)) (* (($ (-829) $) 17 T ELT) (($ (-693) $) 21 T ELT) (($ (-483) $) 30 T ELT) (($ $ $) 36 T ELT) (($ $ |#1|) 46 T ELT) (($ |#1| $) 45 T ELT))) -(((-682 |#1|) (-113) (-146)) (T -682)) -((-2432 (*1 *1 *1 *2) (-12 (-5 *2 (-829)) (-4 *1 (-682 *3)) (-4 *3 (-146))))) -(-13 (-684) (-653 |t#1|) (-10 -8 (-15 -2432 ($ $ (-829))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-551 (-771)) . T) ((-13) . T) ((-587 (-483)) . T) ((-587 |#1|) . T) ((-589 |#1|) . T) ((-581 |#1|) . T) ((-653 |#1|) . T) ((-656) . T) ((-684) . T) ((-962 |#1|) . T) ((-967 |#1|) . T) ((-1012) . T) ((-1127) . T)) -((-2434 (($ $ $) 10 T ELT)) (-2435 (($ $ $ $) 9 T ELT)) (-2433 (($ $ $) 12 T ELT))) -(((-683 |#1|) (-10 -7 (-15 -2433 (|#1| |#1| |#1|)) (-15 -2434 (|#1| |#1| |#1|)) (-15 -2435 (|#1| |#1| |#1| |#1|))) (-684)) (T -683)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-3187 (((-85) $) 22 T ELT)) (-1310 (((-3 $ "failed") $ $) 26 T ELT)) (-3722 (($) 23 T CONST)) (-2406 (($ $ (-829)) 37 T ELT)) (-1212 (((-85) $ $) 20 T ELT)) (-2405 (($ $ (-829)) 38 T ELT)) (-3241 (((-1071) $) 11 T ELT)) (-3242 (((-1032) $) 12 T ELT)) (-2434 (($ $ $) 34 T ELT)) (-3944 (((-771) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2435 (($ $ $ $) 35 T ELT)) (-2433 (($ $ $) 33 T ELT)) (-2659 (($) 24 T CONST)) (-3055 (((-85) $ $) 8 T ELT)) (-3835 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3837 (($ $ $) 18 T ELT)) (** (($ $ (-829)) 39 T ELT)) (* (($ (-829) $) 17 T ELT) (($ (-693) $) 21 T ELT) (($ (-483) $) 30 T ELT) (($ $ $) 36 T ELT))) -(((-684) (-113)) (T -684)) -((-2435 (*1 *1 *1 *1 *1) (-4 *1 (-684))) (-2434 (*1 *1 *1 *1) (-4 *1 (-684))) (-2433 (*1 *1 *1 *1) (-4 *1 (-684)))) -(-13 (-21) (-656) (-10 -8 (-15 -2435 ($ $ $ $)) (-15 -2434 ($ $ $)) (-15 -2433 ($ $ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-551 (-771)) . T) ((-13) . T) ((-587 (-483)) . T) ((-656) . T) ((-1012) . T) ((-1127) . T)) -((-3944 (((-771) $) NIL T ELT) (($ (-483)) 10 T ELT))) -(((-685 |#1|) (-10 -7 (-15 -3944 (|#1| (-483))) (-15 -3944 ((-771) |#1|))) (-686)) (T -685)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-3187 (((-85) $) 22 T ELT)) (-1310 (((-3 $ "failed") $ $) 26 T ELT)) (-3722 (($) 23 T CONST)) (-2403 (((-3 $ #1="failed") $) 49 T ELT)) (-2406 (($ $ (-829)) 37 T ELT) (($ $ (-693)) 44 T ELT)) (-3465 (((-3 $ #1#) $) 47 T ELT)) (-1212 (((-85) $ $) 20 T ELT)) (-2409 (((-85) $) 43 T ELT)) (-2404 (((-3 $ #1#) $) 48 T ELT)) (-2405 (($ $ (-829)) 38 T ELT) (($ $ (-693)) 45 T ELT)) (-3241 (((-1071) $) 11 T ELT)) (-3242 (((-1032) $) 12 T ELT)) (-2434 (($ $ $) 34 T ELT)) (-3944 (((-771) $) 13 T ELT) (($ (-483)) 40 T ELT)) (-3125 (((-693)) 41 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-2435 (($ $ $ $) 35 T ELT)) (-2433 (($ $ $) 33 T ELT)) (-2659 (($) 24 T CONST)) (-2665 (($) 42 T CONST)) (-3055 (((-85) $ $) 8 T ELT)) (-3835 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3837 (($ $ $) 18 T ELT)) (** (($ $ (-829)) 39 T ELT) (($ $ (-693)) 46 T ELT)) (* (($ (-829) $) 17 T ELT) (($ (-693) $) 21 T ELT) (($ (-483) $) 30 T ELT) (($ $ $) 36 T ELT))) -(((-686) (-113)) (T -686)) -((-3125 (*1 *2) (-12 (-4 *1 (-686)) (-5 *2 (-693)))) (-3944 (*1 *1 *2) (-12 (-5 *2 (-483)) (-4 *1 (-686))))) -(-13 (-684) (-658) (-10 -8 (-15 -3125 ((-693)) -3950) (-15 -3944 ($ (-483))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-551 (-771)) . T) ((-13) . T) ((-587 (-483)) . T) ((-656) . T) ((-658) . T) ((-684) . T) ((-1012) . T) ((-1127) . T)) -((-2437 (((-582 (-2 (|:| |outval| (-142 |#1|)) (|:| |outmult| (-483)) (|:| |outvect| (-582 (-629 (-142 |#1|)))))) (-629 (-142 (-348 (-483)))) |#1|) 33 T ELT)) (-2436 (((-582 (-142 |#1|)) (-629 (-142 (-348 (-483)))) |#1|) 23 T ELT)) (-2448 (((-856 (-142 (-348 (-483)))) (-629 (-142 (-348 (-483)))) (-1088)) 20 T ELT) (((-856 (-142 (-348 (-483)))) (-629 (-142 (-348 (-483))))) 19 T ELT))) -(((-687 |#1|) (-10 -7 (-15 -2448 ((-856 (-142 (-348 (-483)))) (-629 (-142 (-348 (-483)))))) (-15 -2448 ((-856 (-142 (-348 (-483)))) (-629 (-142 (-348 (-483)))) (-1088))) (-15 -2436 ((-582 (-142 |#1|)) (-629 (-142 (-348 (-483)))) |#1|)) (-15 -2437 ((-582 (-2 (|:| |outval| (-142 |#1|)) (|:| |outmult| (-483)) (|:| |outvect| (-582 (-629 (-142 |#1|)))))) (-629 (-142 (-348 (-483)))) |#1|))) (-13 (-312) (-754))) (T -687)) -((-2437 (*1 *2 *3 *4) (-12 (-5 *3 (-629 (-142 (-348 (-483))))) (-5 *2 (-582 (-2 (|:| |outval| (-142 *4)) (|:| |outmult| (-483)) (|:| |outvect| (-582 (-629 (-142 *4))))))) (-5 *1 (-687 *4)) (-4 *4 (-13 (-312) (-754))))) (-2436 (*1 *2 *3 *4) (-12 (-5 *3 (-629 (-142 (-348 (-483))))) (-5 *2 (-582 (-142 *4))) (-5 *1 (-687 *4)) (-4 *4 (-13 (-312) (-754))))) (-2448 (*1 *2 *3 *4) (-12 (-5 *3 (-629 (-142 (-348 (-483))))) (-5 *4 (-1088)) (-5 *2 (-856 (-142 (-348 (-483))))) (-5 *1 (-687 *5)) (-4 *5 (-13 (-312) (-754))))) (-2448 (*1 *2 *3) (-12 (-5 *3 (-629 (-142 (-348 (-483))))) (-5 *2 (-856 (-142 (-348 (-483))))) (-5 *1 (-687 *4)) (-4 *4 (-13 (-312) (-754)))))) -((-2615 (((-148 (-483)) |#1|) 27 T ELT))) -(((-688 |#1|) (-10 -7 (-15 -2615 ((-148 (-483)) |#1|))) (-345)) (T -688)) -((-2615 (*1 *2 *3) (-12 (-5 *2 (-148 (-483))) (-5 *1 (-688 *3)) (-4 *3 (-345))))) -((-2541 ((|#1| |#1| |#1|) 28 T ELT)) (-2542 ((|#1| |#1| |#1|) 27 T ELT)) (-2531 ((|#1| |#1| |#1|) 38 T ELT)) (-2539 ((|#1| |#1| |#1|) 33 T ELT)) (-2540 (((-3 |#1| "failed") |#1| |#1|) 31 T ELT)) (-2547 (((-2 (|:| -1971 |#1|) (|:| -2901 |#1|)) |#1| |#1|) 26 T ELT))) -(((-689 |#1| |#2|) (-10 -7 (-15 -2547 ((-2 (|:| -1971 |#1|) (|:| -2901 |#1|)) |#1| |#1|)) (-15 -2542 (|#1| |#1| |#1|)) (-15 -2541 (|#1| |#1| |#1|)) (-15 -2540 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2539 (|#1| |#1| |#1|)) (-15 -2531 (|#1| |#1| |#1|))) (-644 |#2|) (-312)) (T -689)) -((-2531 (*1 *2 *2 *2) (-12 (-4 *3 (-312)) (-5 *1 (-689 *2 *3)) (-4 *2 (-644 *3)))) (-2539 (*1 *2 *2 *2) (-12 (-4 *3 (-312)) (-5 *1 (-689 *2 *3)) (-4 *2 (-644 *3)))) (-2540 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-312)) (-5 *1 (-689 *2 *3)) (-4 *2 (-644 *3)))) (-2541 (*1 *2 *2 *2) (-12 (-4 *3 (-312)) (-5 *1 (-689 *2 *3)) (-4 *2 (-644 *3)))) (-2542 (*1 *2 *2 *2) (-12 (-4 *3 (-312)) (-5 *1 (-689 *2 *3)) (-4 *2 (-644 *3)))) (-2547 (*1 *2 *3 *3) (-12 (-4 *4 (-312)) (-5 *2 (-2 (|:| -1971 *3) (|:| -2901 *3))) (-5 *1 (-689 *3 *4)) (-4 *3 (-644 *4))))) -((-2554 (((-631 (-1136)) $ (-1136)) 27 T ELT)) (-2555 (((-631 (-487)) $ (-487)) 26 T ELT)) (-2553 (((-693) $ (-102)) 28 T ELT)) (-2556 (((-631 (-101)) $ (-101)) 25 T ELT)) (-1999 (((-631 (-1136)) $) 12 T ELT)) (-1995 (((-631 (-1134)) $) 8 T ELT)) (-1997 (((-631 (-1133)) $) 10 T ELT)) (-2000 (((-631 (-487)) $) 13 T ELT)) (-1996 (((-631 (-485)) $) 9 T ELT)) (-1998 (((-631 (-484)) $) 11 T ELT)) (-1994 (((-693) $ (-102)) 7 T ELT)) (-2001 (((-631 (-101)) $) 14 T ELT)) (-2438 (((-85) $) 32 T ELT)) (-2439 (((-631 $) |#1| (-864)) 33 T ELT)) (-1698 (($ $) 6 T ELT))) -(((-690 |#1|) (-113) (-1012)) (T -690)) -((-2439 (*1 *2 *3 *4) (-12 (-5 *4 (-864)) (-4 *3 (-1012)) (-5 *2 (-631 *1)) (-4 *1 (-690 *3)))) (-2438 (*1 *2 *1) (-12 (-4 *1 (-690 *3)) (-4 *3 (-1012)) (-5 *2 (-85))))) -(-13 (-511) (-10 -8 (-15 -2439 ((-631 $) |t#1| (-864))) (-15 -2438 ((-85) $)))) -(((-147) . T) ((-464) . T) ((-511) . T) ((-769) . T)) -((-3917 (((-2 (|:| -2011 (-629 (-483))) (|:| |basisDen| (-483)) (|:| |basisInv| (-629 (-483)))) (-483)) 72 T ELT)) (-3916 (((-2 (|:| -2011 (-629 (-483))) (|:| |basisDen| (-483)) (|:| |basisInv| (-629 (-483))))) 70 T ELT)) (-3755 (((-483)) 86 T ELT))) -(((-691 |#1| |#2|) (-10 -7 (-15 -3755 ((-483))) (-15 -3916 ((-2 (|:| -2011 (-629 (-483))) (|:| |basisDen| (-483)) (|:| |basisInv| (-629 (-483)))))) (-15 -3917 ((-2 (|:| -2011 (-629 (-483))) (|:| |basisDen| (-483)) (|:| |basisInv| (-629 (-483)))) (-483)))) (-1153 (-483)) (-351 (-483) |#1|)) (T -691)) -((-3917 (*1 *2 *3) (-12 (-5 *3 (-483)) (-4 *4 (-1153 *3)) (-5 *2 (-2 (|:| -2011 (-629 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-629 *3)))) (-5 *1 (-691 *4 *5)) (-4 *5 (-351 *3 *4)))) (-3916 (*1 *2) (-12 (-4 *3 (-1153 (-483))) (-5 *2 (-2 (|:| -2011 (-629 (-483))) (|:| |basisDen| (-483)) (|:| |basisInv| (-629 (-483))))) (-5 *1 (-691 *3 *4)) (-4 *4 (-351 (-483) *3)))) (-3755 (*1 *2) (-12 (-4 *3 (-1153 *2)) (-5 *2 (-483)) (-5 *1 (-691 *3 *4)) (-4 *4 (-351 *2 *3))))) -((-2507 (((-582 (-582 (-249 (-348 (-856 |#1|))))) (-582 (-856 |#1|))) 19 T ELT) (((-582 (-582 (-249 (-348 (-856 |#1|))))) (-582 (-856 |#1|)) (-582 (-1088))) 18 T ELT)) (-3571 (((-582 (-582 (-249 (-348 (-856 |#1|))))) (-582 (-856 |#1|))) 21 T ELT) (((-582 (-582 (-249 (-348 (-856 |#1|))))) (-582 (-856 |#1|)) (-582 (-1088))) 20 T ELT))) -(((-692 |#1|) (-10 -7 (-15 -2507 ((-582 (-582 (-249 (-348 (-856 |#1|))))) (-582 (-856 |#1|)) (-582 (-1088)))) (-15 -2507 ((-582 (-582 (-249 (-348 (-856 |#1|))))) (-582 (-856 |#1|)))) (-15 -3571 ((-582 (-582 (-249 (-348 (-856 |#1|))))) (-582 (-856 |#1|)) (-582 (-1088)))) (-15 -3571 ((-582 (-582 (-249 (-348 (-856 |#1|))))) (-582 (-856 |#1|))))) (-494)) (T -692)) -((-3571 (*1 *2 *3) (-12 (-5 *3 (-582 (-856 *4))) (-4 *4 (-494)) (-5 *2 (-582 (-582 (-249 (-348 (-856 *4)))))) (-5 *1 (-692 *4)))) (-3571 (*1 *2 *3 *4) (-12 (-5 *3 (-582 (-856 *5))) (-5 *4 (-582 (-1088))) (-4 *5 (-494)) (-5 *2 (-582 (-582 (-249 (-348 (-856 *5)))))) (-5 *1 (-692 *5)))) (-2507 (*1 *2 *3) (-12 (-5 *3 (-582 (-856 *4))) (-4 *4 (-494)) (-5 *2 (-582 (-582 (-249 (-348 (-856 *4)))))) (-5 *1 (-692 *4)))) (-2507 (*1 *2 *3 *4) (-12 (-5 *3 (-582 (-856 *5))) (-5 *4 (-582 (-1088))) (-4 *5 (-494)) (-5 *2 (-582 (-582 (-249 (-348 (-856 *5)))))) (-5 *1 (-692 *5))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3187 (((-85) $) NIL T ELT)) (-2482 (($ $ $) 10 T ELT)) (-1310 (((-3 $ #1="failed") $ $) 15 T ELT)) (-2440 (($ $ (-483)) 11 T ELT)) (-3722 (($) NIL T CONST)) (-2563 (($ $ $) NIL T ELT)) (-3465 (((-3 $ #1#) $) NIL T ELT)) (-2993 (($ $) NIL T ELT)) (-2562 (($ $ $) NIL T ELT)) (-3185 (((-85) $) NIL T ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-2409 (((-85) $) NIL T ELT)) (-2530 (($ $ $) NIL T ELT)) (-2856 (($ $ $) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3143 (($ $ $) NIL T ELT)) (-3464 (((-3 $ #1#) $ $) NIL T ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL T ELT)) (-3944 (((-771) $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2659 (($) 6 T CONST)) (-2665 (($) NIL T CONST)) (-2565 (((-85) $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-2683 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-3837 (($ $ $) NIL T ELT)) (** (($ $ (-693)) NIL T ELT) (($ $ (-829)) NIL T ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ $ $) NIL T ELT))) -(((-693) (-13 (-716) (-662) (-10 -8 (-15 -2562 ($ $ $)) (-15 -2563 ($ $ $)) (-15 -3143 ($ $ $)) (-15 -2878 ((-2 (|:| -1971 $) (|:| -2901 $)) $ $)) (-15 -3464 ((-3 $ "failed") $ $)) (-15 -2440 ($ $ (-483))) (-15 -2993 ($ $)) (-6 (-3995 "*"))))) (T -693)) -((-2562 (*1 *1 *1 *1) (-5 *1 (-693))) (-2563 (*1 *1 *1 *1) (-5 *1 (-693))) (-3143 (*1 *1 *1 *1) (-5 *1 (-693))) (-2878 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1971 (-693)) (|:| -2901 (-693)))) (-5 *1 (-693)))) (-3464 (*1 *1 *1 *1) (|partial| -5 *1 (-693))) (-2440 (*1 *1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-693)))) (-2993 (*1 *1 *1) (-5 *1 (-693)))) -((-483) (|%not| (|%ilt| |#1| 0))) -((-3571 (((-3 |#2| "failed") |#2| |#2| (-86) (-1088)) 37 T ELT))) -(((-694 |#1| |#2|) (-10 -7 (-15 -3571 ((-3 |#2| "failed") |#2| |#2| (-86) (-1088)))) (-13 (-258) (-949 (-483)) (-579 (-483)) (-120)) (-13 (-29 |#1|) (-1113) (-870))) (T -694)) -((-3571 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-86)) (-5 *4 (-1088)) (-4 *5 (-13 (-258) (-949 (-483)) (-579 (-483)) (-120))) (-5 *1 (-694 *5 *2)) (-4 *2 (-13 (-29 *5) (-1113) (-870)))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3944 (((-771) $) 7 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) 9 T ELT))) -(((-695) (-1012)) (T -695)) -NIL -((-3944 (((-695) |#1|) 8 T ELT))) -(((-696 |#1|) (-10 -7 (-15 -3944 ((-695) |#1|))) (-1127)) (T -696)) -((-3944 (*1 *2 *3) (-12 (-5 *2 (-695)) (-5 *1 (-696 *3)) (-4 *3 (-1127))))) -((-3131 ((|#2| |#4|) 35 T ELT))) -(((-697 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3131 (|#2| |#4|))) (-390) (-1153 |#1|) (-660 |#1| |#2|) (-1153 |#3|)) (T -697)) -((-3131 (*1 *2 *3) (-12 (-4 *4 (-390)) (-4 *5 (-660 *4 *2)) (-4 *2 (-1153 *4)) (-5 *1 (-697 *4 *2 *5 *3)) (-4 *3 (-1153 *5))))) -((-3465 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 57 T ELT)) (-2443 (((-1183) (-1071) (-1071) |#4| |#5|) 33 T ELT)) (-2441 ((|#4| |#4| |#5|) 74 T ELT)) (-2442 (((-582 (-2 (|:| |val| |#4|) (|:| -1598 |#5|))) |#4| |#5|) 79 T ELT)) (-2444 (((-582 (-2 (|:| |val| (-85)) (|:| -1598 |#5|))) |#4| |#5|) 16 T ELT))) -(((-698 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3465 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -2441 (|#4| |#4| |#5|)) (-15 -2442 ((-582 (-2 (|:| |val| |#4|) (|:| -1598 |#5|))) |#4| |#5|)) (-15 -2443 ((-1183) (-1071) (-1071) |#4| |#5|)) (-15 -2444 ((-582 (-2 (|:| |val| (-85)) (|:| -1598 |#5|))) |#4| |#5|))) (-390) (-716) (-755) (-976 |#1| |#2| |#3|) (-982 |#1| |#2| |#3| |#4|)) (T -698)) -((-2444 (*1 *2 *3 *4) (-12 (-4 *5 (-390)) (-4 *6 (-716)) (-4 *7 (-755)) (-4 *3 (-976 *5 *6 *7)) (-5 *2 (-582 (-2 (|:| |val| (-85)) (|:| -1598 *4)))) (-5 *1 (-698 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))) (-2443 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1071)) (-4 *6 (-390)) (-4 *7 (-716)) (-4 *8 (-755)) (-4 *4 (-976 *6 *7 *8)) (-5 *2 (-1183)) (-5 *1 (-698 *6 *7 *8 *4 *5)) (-4 *5 (-982 *6 *7 *8 *4)))) (-2442 (*1 *2 *3 *4) (-12 (-4 *5 (-390)) (-4 *6 (-716)) (-4 *7 (-755)) (-4 *3 (-976 *5 *6 *7)) (-5 *2 (-582 (-2 (|:| |val| *3) (|:| -1598 *4)))) (-5 *1 (-698 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))) (-2441 (*1 *2 *2 *3) (-12 (-4 *4 (-390)) (-4 *5 (-716)) (-4 *6 (-755)) (-4 *2 (-976 *4 *5 *6)) (-5 *1 (-698 *4 *5 *6 *2 *3)) (-4 *3 (-982 *4 *5 *6 *2)))) (-3465 (*1 *2 *3 *4) (-12 (-4 *5 (-390)) (-4 *6 (-716)) (-4 *7 (-755)) (-4 *3 (-976 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-698 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3))))) -((-3156 (((-3 (-1083 (-1083 |#1|)) "failed") |#4|) 53 T ELT)) (-2445 (((-582 |#4|) |#4|) 22 T ELT)) (-3926 ((|#4| |#4|) 17 T ELT))) -(((-699 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2445 ((-582 |#4|) |#4|)) (-15 -3156 ((-3 (-1083 (-1083 |#1|)) "failed") |#4|)) (-15 -3926 (|#4| |#4|))) (-299) (-280 |#1|) (-1153 |#2|) (-1153 |#3|) (-829)) (T -699)) -((-3926 (*1 *2 *2) (-12 (-4 *3 (-299)) (-4 *4 (-280 *3)) (-4 *5 (-1153 *4)) (-5 *1 (-699 *3 *4 *5 *2 *6)) (-4 *2 (-1153 *5)) (-14 *6 (-829)))) (-3156 (*1 *2 *3) (|partial| -12 (-4 *4 (-299)) (-4 *5 (-280 *4)) (-4 *6 (-1153 *5)) (-5 *2 (-1083 (-1083 *4))) (-5 *1 (-699 *4 *5 *6 *3 *7)) (-4 *3 (-1153 *6)) (-14 *7 (-829)))) (-2445 (*1 *2 *3) (-12 (-4 *4 (-299)) (-4 *5 (-280 *4)) (-4 *6 (-1153 *5)) (-5 *2 (-582 *3)) (-5 *1 (-699 *4 *5 *6 *3 *7)) (-4 *3 (-1153 *6)) (-14 *7 (-829))))) -((-2446 (((-2 (|:| |deter| (-582 (-1083 |#5|))) (|:| |dterm| (-582 (-582 (-2 (|:| -3077 (-693)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-582 |#1|)) (|:| |nlead| (-582 |#5|))) (-1083 |#5|) (-582 |#1|) (-582 |#5|)) 72 T ELT)) (-2447 (((-582 (-693)) |#1|) 20 T ELT))) -(((-700 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2446 ((-2 (|:| |deter| (-582 (-1083 |#5|))) (|:| |dterm| (-582 (-582 (-2 (|:| -3077 (-693)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-582 |#1|)) (|:| |nlead| (-582 |#5|))) (-1083 |#5|) (-582 |#1|) (-582 |#5|))) (-15 -2447 ((-582 (-693)) |#1|))) (-1153 |#4|) (-716) (-755) (-258) (-860 |#4| |#2| |#3|)) (T -700)) -((-2447 (*1 *2 *3) (-12 (-4 *4 (-716)) (-4 *5 (-755)) (-4 *6 (-258)) (-5 *2 (-582 (-693))) (-5 *1 (-700 *3 *4 *5 *6 *7)) (-4 *3 (-1153 *6)) (-4 *7 (-860 *6 *4 *5)))) (-2446 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1153 *9)) (-4 *7 (-716)) (-4 *8 (-755)) (-4 *9 (-258)) (-4 *10 (-860 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-582 (-1083 *10))) (|:| |dterm| (-582 (-582 (-2 (|:| -3077 (-693)) (|:| |pcoef| *10))))) (|:| |nfacts| (-582 *6)) (|:| |nlead| (-582 *10)))) (-5 *1 (-700 *6 *7 *8 *9 *10)) (-5 *3 (-1083 *10)) (-5 *4 (-582 *6)) (-5 *5 (-582 *10))))) -((-2450 (((-582 (-2 (|:| |outval| |#1|) (|:| |outmult| (-483)) (|:| |outvect| (-582 (-629 |#1|))))) (-629 (-348 (-483))) |#1|) 31 T ELT)) (-2449 (((-582 |#1|) (-629 (-348 (-483))) |#1|) 21 T ELT)) (-2448 (((-856 (-348 (-483))) (-629 (-348 (-483))) (-1088)) 18 T ELT) (((-856 (-348 (-483))) (-629 (-348 (-483)))) 17 T ELT))) -(((-701 |#1|) (-10 -7 (-15 -2448 ((-856 (-348 (-483))) (-629 (-348 (-483))))) (-15 -2448 ((-856 (-348 (-483))) (-629 (-348 (-483))) (-1088))) (-15 -2449 ((-582 |#1|) (-629 (-348 (-483))) |#1|)) (-15 -2450 ((-582 (-2 (|:| |outval| |#1|) (|:| |outmult| (-483)) (|:| |outvect| (-582 (-629 |#1|))))) (-629 (-348 (-483))) |#1|))) (-13 (-312) (-754))) (T -701)) -((-2450 (*1 *2 *3 *4) (-12 (-5 *3 (-629 (-348 (-483)))) (-5 *2 (-582 (-2 (|:| |outval| *4) (|:| |outmult| (-483)) (|:| |outvect| (-582 (-629 *4)))))) (-5 *1 (-701 *4)) (-4 *4 (-13 (-312) (-754))))) (-2449 (*1 *2 *3 *4) (-12 (-5 *3 (-629 (-348 (-483)))) (-5 *2 (-582 *4)) (-5 *1 (-701 *4)) (-4 *4 (-13 (-312) (-754))))) (-2448 (*1 *2 *3 *4) (-12 (-5 *3 (-629 (-348 (-483)))) (-5 *4 (-1088)) (-5 *2 (-856 (-348 (-483)))) (-5 *1 (-701 *5)) (-4 *5 (-13 (-312) (-754))))) (-2448 (*1 *2 *3) (-12 (-5 *3 (-629 (-348 (-483)))) (-5 *2 (-856 (-348 (-483)))) (-5 *1 (-701 *4)) (-4 *4 (-13 (-312) (-754)))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3187 (((-85) $) 36 T ELT)) (-3080 (((-582 |#2|) $) NIL T ELT)) (-3082 (((-1083 $) $ |#2|) NIL T ELT) (((-1083 |#1|) $) NIL T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3980 $) (|:| |associate| $)) $) NIL (|has| |#1| (-494)) ELT)) (-2062 (($ $) NIL (|has| |#1| (-494)) ELT)) (-2060 (((-85) $) NIL (|has| |#1| (-494)) ELT)) (-2818 (((-693) $) NIL T ELT) (((-693) $ (-582 |#2|)) NIL T ELT)) (-3795 (($ $) 30 T ELT)) (-3165 (((-85) $ $) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3753 (($ $ $) 110 (|has| |#1| (-494)) ELT)) (-3147 (((-582 $) $ $) 123 (|has| |#1| (-494)) ELT)) (-2706 (((-346 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-820)) ELT)) (-3773 (($ $) NIL (|has| |#1| (-390)) ELT)) (-3969 (((-346 $) $) NIL (|has| |#1| (-390)) ELT)) (-2703 (((-3 (-582 (-1083 $)) #1#) (-582 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-820)) ELT)) (-3722 (($) NIL T CONST)) (-3156 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-348 (-483)) #1#) $) NIL (|has| |#1| (-949 (-348 (-483)))) ELT) (((-3 (-483) #1#) $) NIL (|has| |#1| (-949 (-483))) ELT) (((-3 |#2| #1#) $) NIL T ELT) (((-3 $ #1#) (-856 (-348 (-483)))) NIL (-12 (|has| |#1| (-38 (-348 (-483)))) (|has| |#2| (-552 (-1088)))) ELT) (((-3 $ #1#) (-856 (-483))) NIL (OR (-12 (|has| |#1| (-38 (-483))) (|has| |#2| (-552 (-1088))) (-2559 (|has| |#1| (-38 (-348 (-483)))))) (-12 (|has| |#1| (-38 (-348 (-483)))) (|has| |#2| (-552 (-1088))))) ELT) (((-3 $ #1#) (-856 |#1|)) NIL (OR (-12 (|has| |#2| (-552 (-1088))) (-2559 (|has| |#1| (-38 (-348 (-483))))) (-2559 (|has| |#1| (-38 (-483))))) (-12 (|has| |#1| (-38 (-483))) (|has| |#2| (-552 (-1088))) (-2559 (|has| |#1| (-38 (-348 (-483))))) (-2559 (|has| |#1| (-482)))) (-12 (|has| |#1| (-38 (-348 (-483)))) (|has| |#2| (-552 (-1088))) (-2559 (|has| |#1| (-903 (-483)))))) ELT) (((-3 (-1037 |#1| |#2|) #1#) $) 21 T ELT)) (-3155 ((|#1| $) NIL T ELT) (((-348 (-483)) $) NIL (|has| |#1| (-949 (-348 (-483)))) ELT) (((-483) $) NIL (|has| |#1| (-949 (-483))) ELT) ((|#2| $) NIL T ELT) (($ (-856 (-348 (-483)))) NIL (-12 (|has| |#1| (-38 (-348 (-483)))) (|has| |#2| (-552 (-1088)))) ELT) (($ (-856 (-483))) NIL (OR (-12 (|has| |#1| (-38 (-483))) (|has| |#2| (-552 (-1088))) (-2559 (|has| |#1| (-38 (-348 (-483)))))) (-12 (|has| |#1| (-38 (-348 (-483)))) (|has| |#2| (-552 (-1088))))) ELT) (($ (-856 |#1|)) NIL (OR (-12 (|has| |#2| (-552 (-1088))) (-2559 (|has| |#1| (-38 (-348 (-483))))) (-2559 (|has| |#1| (-38 (-483))))) (-12 (|has| |#1| (-38 (-483))) (|has| |#2| (-552 (-1088))) (-2559 (|has| |#1| (-38 (-348 (-483))))) (-2559 (|has| |#1| (-482)))) (-12 (|has| |#1| (-38 (-348 (-483)))) (|has| |#2| (-552 (-1088))) (-2559 (|has| |#1| (-903 (-483)))))) ELT) (((-1037 |#1| |#2|) $) NIL T ELT)) (-3754 (($ $ $ |#2|) NIL (|has| |#1| (-146)) ELT) (($ $ $) 121 (|has| |#1| (-494)) ELT)) (-3957 (($ $) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-2278 (((-629 (-483)) (-629 $)) NIL (|has| |#1| (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-629 $) (-1177 $)) NIL (|has| |#1| (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 |#1|)) (|:| |vec| (-1177 |#1|))) (-629 $) (-1177 $)) NIL T ELT) (((-629 |#1|) (-629 $)) NIL T ELT)) (-3692 (((-85) $ $) NIL T ELT) (((-85) $ (-582 $)) NIL T ELT)) (-3465 (((-3 $ #1#) $) NIL T ELT)) (-3171 (((-85) $) NIL T ELT)) (-3750 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) 81 T ELT)) (-3142 (($ $) 136 (|has| |#1| (-390)) ELT)) (-3501 (($ $) NIL (|has| |#1| (-390)) ELT) (($ $ |#2|) NIL (|has| |#1| (-390)) ELT)) (-2817 (((-582 $) $) NIL T ELT)) (-3721 (((-85) $) NIL (|has| |#1| (-820)) ELT)) (-3153 (($ $) NIL (|has| |#1| (-494)) ELT)) (-3154 (($ $) NIL (|has| |#1| (-494)) ELT)) (-3164 (($ $ $) 76 T ELT) (($ $ $ |#2|) NIL T ELT)) (-3163 (($ $ $) 79 T ELT) (($ $ $ |#2|) NIL T ELT)) (-1622 (($ $ |#1| (-468 |#2|) $) NIL T ELT)) (-2795 (((-797 (-328) $) $ (-799 (-328)) (-797 (-328) $)) NIL (-12 (|has| |#1| (-795 (-328))) (|has| |#2| (-795 (-328)))) ELT) (((-797 (-483) $) $ (-799 (-483)) (-797 (-483) $)) NIL (-12 (|has| |#1| (-795 (-483))) (|has| |#2| (-795 (-483)))) ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-2409 (((-85) $) 57 T ELT)) (-2419 (((-693) $) NIL T ELT)) (-3693 (((-85) $ $) NIL T ELT) (((-85) $ (-582 $)) NIL T ELT)) (-3144 (($ $ $ $ $) 107 (|has| |#1| (-494)) ELT)) (-3179 ((|#2| $) 22 T ELT)) (-3083 (($ (-1083 |#1|) |#2|) NIL T ELT) (($ (-1083 $) |#2|) NIL T ELT)) (-2820 (((-582 $) $) NIL T ELT)) (-3935 (((-85) $) NIL T ELT)) (-2892 (($ |#1| (-468 |#2|)) NIL T ELT) (($ $ |#2| (-693)) 38 T ELT) (($ $ (-582 |#2|) (-582 (-693))) NIL T ELT)) (-3158 (($ $ $) 63 T ELT)) (-3761 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $ |#2|) NIL T ELT)) (-3172 (((-85) $) NIL T ELT)) (-2819 (((-468 |#2|) $) NIL T ELT) (((-693) $ |#2|) NIL T ELT) (((-582 (-693)) $ (-582 |#2|)) NIL T ELT)) (-3178 (((-693) $) 23 T ELT)) (-1623 (($ (-1 (-468 |#2|) (-468 |#2|)) $) NIL T ELT)) (-3956 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3081 (((-3 |#2| #1#) $) NIL T ELT)) (-3139 (($ $) NIL (|has| |#1| (-390)) ELT)) (-3140 (($ $) NIL (|has| |#1| (-390)) ELT)) (-3167 (((-582 $) $) NIL T ELT)) (-3170 (($ $) 39 T ELT)) (-3141 (($ $) NIL (|has| |#1| (-390)) ELT)) (-3168 (((-582 $) $) 43 T ELT)) (-2279 (((-629 (-483)) (-1177 $)) NIL (|has| |#1| (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL (|has| |#1| (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 |#1|)) (|:| |vec| (-1177 |#1|))) (-1177 $) $) NIL T ELT) (((-629 |#1|) (-1177 $)) NIL T ELT)) (-3169 (($ $) 41 T ELT)) (-2893 (($ $) NIL T ELT)) (-3173 ((|#1| $) NIL T ELT) (($ $ |#2|) 48 T ELT)) (-1889 (($ (-582 $)) NIL (|has| |#1| (-390)) ELT) (($ $ $) NIL (|has| |#1| (-390)) ELT)) (-3157 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3479 (-693))) $ $) 96 T ELT)) (-3159 (((-2 (|:| -3952 $) (|:| |gap| (-693)) (|:| -1971 $) (|:| -2901 $)) $ $) 78 T ELT) (((-2 (|:| -3952 $) (|:| |gap| (-693)) (|:| -1971 $) (|:| -2901 $)) $ $ |#2|) NIL T ELT)) (-3160 (((-2 (|:| -3952 $) (|:| |gap| (-693)) (|:| -2901 $)) $ $) NIL T ELT) (((-2 (|:| -3952 $) (|:| |gap| (-693)) (|:| -2901 $)) $ $ |#2|) NIL T ELT)) (-3162 (($ $ $) 83 T ELT) (($ $ $ |#2|) NIL T ELT)) (-3161 (($ $ $) 86 T ELT) (($ $ $ |#2|) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3189 (($ $ $) 125 (|has| |#1| (-494)) ELT)) (-3175 (((-582 $) $) 32 T ELT)) (-2822 (((-3 (-582 $) #1#) $) NIL T ELT)) (-2821 (((-3 (-582 $) #1#) $) NIL T ELT)) (-2823 (((-3 (-2 (|:| |var| |#2|) (|:| -2400 (-693))) #1#) $) NIL T ELT)) (-3689 (((-85) $ $) NIL T ELT) (((-85) $ (-582 $)) NIL T ELT)) (-3684 (($ $ $) NIL T ELT)) (-3444 (($ $) 24 T ELT)) (-3697 (((-85) $ $) NIL T ELT)) (-3690 (((-85) $ $) NIL T ELT) (((-85) $ (-582 $)) NIL T ELT)) (-3685 (($ $ $) NIL T ELT)) (-3177 (($ $) 26 T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3148 (((-2 (|:| -3143 $) (|:| |coef2| $)) $ $) 116 (|has| |#1| (-494)) ELT)) (-3149 (((-2 (|:| -3143 $) (|:| |coef1| $)) $ $) 113 (|has| |#1| (-494)) ELT)) (-1795 (((-85) $) 56 T ELT)) (-1794 ((|#1| $) 58 T ELT)) (-2707 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#1| (-390)) ELT)) (-3143 ((|#1| |#1| $) 133 (|has| |#1| (-390)) ELT) (($ (-582 $)) NIL (|has| |#1| (-390)) ELT) (($ $ $) NIL (|has| |#1| (-390)) ELT)) (-2704 (((-346 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-820)) ELT)) (-2705 (((-346 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-820)) ELT)) (-3730 (((-346 $) $) NIL (|has| |#1| (-820)) ELT)) (-3150 (((-2 (|:| -3143 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 119 (|has| |#1| (-494)) ELT)) (-3464 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-494)) ELT) (((-3 $ #1#) $ $) 98 (|has| |#1| (-494)) ELT)) (-3151 (($ $ |#1|) 129 (|has| |#1| (-494)) ELT) (($ $ $) NIL (|has| |#1| (-494)) ELT)) (-3152 (($ $ |#1|) 128 (|has| |#1| (-494)) ELT) (($ $ $) NIL (|has| |#1| (-494)) ELT)) (-3766 (($ $ (-582 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-582 $) (-582 $)) NIL T ELT) (($ $ |#2| |#1|) NIL T ELT) (($ $ (-582 |#2|) (-582 |#1|)) NIL T ELT) (($ $ |#2| $) NIL T ELT) (($ $ (-582 |#2|) (-582 $)) NIL T ELT)) (-3755 (($ $ |#2|) NIL (|has| |#1| (-146)) ELT)) (-3756 (($ $ (-582 |#2|) (-582 (-693))) NIL T ELT) (($ $ |#2| (-693)) NIL T ELT) (($ $ (-582 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-3946 (((-468 |#2|) $) NIL T ELT) (((-693) $ |#2|) 45 T ELT) (((-582 (-693)) $ (-582 |#2|)) NIL T ELT)) (-3176 (($ $) NIL T ELT)) (-3174 (($ $) 35 T ELT)) (-3970 (((-799 (-328)) $) NIL (-12 (|has| |#1| (-552 (-799 (-328)))) (|has| |#2| (-552 (-799 (-328))))) ELT) (((-799 (-483)) $) NIL (-12 (|has| |#1| (-552 (-799 (-483)))) (|has| |#2| (-552 (-799 (-483))))) ELT) (((-472) $) NIL (-12 (|has| |#1| (-552 (-472))) (|has| |#2| (-552 (-472)))) ELT) (($ (-856 (-348 (-483)))) NIL (-12 (|has| |#1| (-38 (-348 (-483)))) (|has| |#2| (-552 (-1088)))) ELT) (($ (-856 (-483))) NIL (OR (-12 (|has| |#1| (-38 (-483))) (|has| |#2| (-552 (-1088))) (-2559 (|has| |#1| (-38 (-348 (-483)))))) (-12 (|has| |#1| (-38 (-348 (-483)))) (|has| |#2| (-552 (-1088))))) ELT) (($ (-856 |#1|)) NIL (|has| |#2| (-552 (-1088))) ELT) (((-1071) $) NIL (-12 (|has| |#1| (-949 (-483))) (|has| |#2| (-552 (-1088)))) ELT) (((-856 |#1|) $) NIL (|has| |#2| (-552 (-1088))) ELT)) (-2816 ((|#1| $) 132 (|has| |#1| (-390)) ELT) (($ $ |#2|) NIL (|has| |#1| (-390)) ELT)) (-2702 (((-3 (-1177 $) #1#) (-629 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-820))) ELT)) (-3944 (((-771) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ |#1|) NIL T ELT) (($ |#2|) NIL T ELT) (((-856 |#1|) $) NIL (|has| |#2| (-552 (-1088))) ELT) (((-1037 |#1| |#2|) $) 18 T ELT) (($ (-1037 |#1| |#2|)) 19 T ELT) (($ (-348 (-483))) NIL (OR (|has| |#1| (-38 (-348 (-483)))) (|has| |#1| (-949 (-348 (-483))))) ELT) (($ $) NIL (|has| |#1| (-494)) ELT)) (-3815 (((-582 |#1|) $) NIL T ELT)) (-3675 ((|#1| $ (-468 |#2|)) NIL T ELT) (($ $ |#2| (-693)) 47 T ELT) (($ $ (-582 |#2|) (-582 (-693))) NIL T ELT)) (-2701 (((-631 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-820))) (|has| |#1| (-118))) ELT)) (-3125 (((-693)) NIL T CONST)) (-1621 (($ $ $ (-693)) NIL (|has| |#1| (-146)) ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2061 (((-85) $ $) NIL (|has| |#1| (-494)) ELT)) (-3124 (((-85) $ $) NIL T ELT)) (-2659 (($) 13 T CONST)) (-3166 (((-3 (-85) #1#) $ $) NIL T ELT)) (-2665 (($) 37 T CONST)) (-3145 (($ $ $ $ (-693)) 105 (|has| |#1| (-494)) ELT)) (-3146 (($ $ $ (-693)) 104 (|has| |#1| (-494)) ELT)) (-2668 (($ $ (-582 |#2|) (-582 (-693))) NIL T ELT) (($ $ |#2| (-693)) NIL T ELT) (($ $ (-582 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-3947 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3835 (($ $) NIL T ELT) (($ $ $) 75 T ELT)) (-3837 (($ $ $) 85 T ELT)) (** (($ $ (-829)) NIL T ELT) (($ $ (-693)) 70 T ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) 62 T ELT) (($ $ (-348 (-483))) NIL (|has| |#1| (-38 (-348 (-483)))) ELT) (($ (-348 (-483)) $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT) (($ |#1| $) 61 T ELT) (($ $ |#1|) NIL T ELT))) -(((-702 |#1| |#2|) (-13 (-976 |#1| (-468 |#2|) |#2|) (-551 (-1037 |#1| |#2|)) (-949 (-1037 |#1| |#2|))) (-960) (-755)) (T -702)) -NIL -((-2567 (((-85) $ $) NIL T ELT)) (-3187 (((-85) $) 12 T ELT)) (-3765 (((-1177 |#1|) $ (-693)) NIL T ELT)) (-3080 (((-582 (-993)) $) NIL T ELT)) (-3763 (($ (-1083 |#1|)) NIL T ELT)) (-3082 (((-1083 $) $ (-993)) NIL T ELT) (((-1083 |#1|) $) NIL T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3980 $) (|:| |associate| $)) $) NIL (|has| |#1| (-494)) ELT)) (-2062 (($ $) NIL (|has| |#1| (-494)) ELT)) (-2060 (((-85) $) NIL (|has| |#1| (-494)) ELT)) (-2818 (((-693) $) NIL T ELT) (((-693) $ (-582 (-993))) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2454 (((-582 $) $ $) 54 (|has| |#1| (-494)) ELT)) (-3753 (($ $ $) 50 (|has| |#1| (-494)) ELT)) (-2706 (((-346 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-820)) ELT)) (-3773 (($ $) NIL (|has| |#1| (-390)) ELT)) (-3969 (((-346 $) $) NIL (|has| |#1| (-390)) ELT)) (-2703 (((-3 (-582 (-1083 $)) #1#) (-582 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-820)) ELT)) (-1606 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3759 (($ $ (-693)) NIL T ELT)) (-3758 (($ $ (-693)) NIL T ELT)) (-3749 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-390)) ELT)) (-3722 (($) NIL T CONST)) (-3156 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-348 (-483)) #1#) $) NIL (|has| |#1| (-949 (-348 (-483)))) ELT) (((-3 (-483) #1#) $) NIL (|has| |#1| (-949 (-483))) ELT) (((-3 (-993) #1#) $) NIL T ELT) (((-3 (-1083 |#1|) #1#) $) 10 T ELT)) (-3155 ((|#1| $) NIL T ELT) (((-348 (-483)) $) NIL (|has| |#1| (-949 (-348 (-483)))) ELT) (((-483) $) NIL (|has| |#1| (-949 (-483))) ELT) (((-993) $) NIL T ELT) (((-1083 |#1|) $) NIL T ELT)) (-3754 (($ $ $ (-993)) NIL (|has| |#1| (-146)) ELT) ((|#1| $ $) 58 (|has| |#1| (-146)) ELT)) (-2563 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3957 (($ $) NIL T ELT)) (-2278 (((-629 (-483)) (-629 $)) NIL (|has| |#1| (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-629 $) (-1177 $)) NIL (|has| |#1| (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 |#1|)) (|:| |vec| (-1177 |#1|))) (-629 $) (-1177 $)) NIL T ELT) (((-629 |#1|) (-629 $)) NIL T ELT)) (-3465 (((-3 $ #1#) $) NIL T ELT)) (-2562 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3757 (($ $ $) NIL T ELT)) (-3751 (($ $ $) 87 (|has| |#1| (-494)) ELT)) (-3750 (((-2 (|:| -3952 |#1|) (|:| -1971 $) (|:| -2901 $)) $ $) 86 (|has| |#1| (-494)) ELT)) (-2740 (((-2 (|:| -3952 (-582 $)) (|:| -2408 $)) (-582 $)) NIL (|has| |#1| (-312)) ELT)) (-3501 (($ $) NIL (|has| |#1| (-390)) ELT) (($ $ (-993)) NIL (|has| |#1| (-390)) ELT)) (-2817 (((-582 $) $) NIL T ELT)) (-3721 (((-85) $) NIL (|has| |#1| (-820)) ELT)) (-1622 (($ $ |#1| (-693) $) NIL T ELT)) (-2795 (((-797 (-328) $) $ (-799 (-328)) (-797 (-328) $)) NIL (-12 (|has| (-993) (-795 (-328))) (|has| |#1| (-795 (-328)))) ELT) (((-797 (-483) $) $ (-799 (-483)) (-797 (-483) $)) NIL (-12 (|has| (-993) (-795 (-483))) (|has| |#1| (-795 (-483)))) ELT)) (-3770 (((-693) $ $) NIL (|has| |#1| (-494)) ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-2409 (((-85) $) NIL T ELT)) (-2419 (((-693) $) NIL T ELT)) (-3443 (((-631 $) $) NIL (|has| |#1| (-1064)) ELT)) (-3083 (($ (-1083 |#1|) (-993)) NIL T ELT) (($ (-1083 $) (-993)) NIL T ELT)) (-3775 (($ $ (-693)) NIL T ELT)) (-1603 (((-3 (-582 $) #1#) (-582 $) $) NIL (|has| |#1| (-312)) ELT)) (-2820 (((-582 $) $) NIL T ELT)) (-3935 (((-85) $) NIL T ELT)) (-2892 (($ |#1| (-693)) NIL T ELT) (($ $ (-993) (-693)) NIL T ELT) (($ $ (-582 (-993)) (-582 (-693))) NIL T ELT)) (-3158 (($ $ $) 27 T ELT)) (-3761 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $ (-993)) NIL T ELT) (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL T ELT)) (-2819 (((-693) $) NIL T ELT) (((-693) $ (-993)) NIL T ELT) (((-582 (-693)) $ (-582 (-993))) NIL T ELT)) (-1623 (($ (-1 (-693) (-693)) $) NIL T ELT)) (-3956 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3764 (((-1083 |#1|) $) NIL T ELT)) (-3081 (((-3 (-993) #1#) $) NIL T ELT)) (-2279 (((-629 (-483)) (-1177 $)) NIL (|has| |#1| (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL (|has| |#1| (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 |#1|)) (|:| |vec| (-1177 |#1|))) (-1177 $) $) NIL T ELT) (((-629 |#1|) (-1177 $)) NIL T ELT)) (-2893 (($ $) NIL T ELT)) (-3173 ((|#1| $) NIL T ELT)) (-1889 (($ (-582 $)) NIL (|has| |#1| (-390)) ELT) (($ $ $) NIL (|has| |#1| (-390)) ELT)) (-3157 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3479 (-693))) $ $) 37 T ELT)) (-2456 (($ $ $) 41 T ELT)) (-2455 (($ $ $) 47 T ELT)) (-3159 (((-2 (|:| -3952 |#1|) (|:| |gap| (-693)) (|:| -1971 $) (|:| -2901 $)) $ $) 46 T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3189 (($ $ $) 56 (|has| |#1| (-494)) ELT)) (-3760 (((-2 (|:| -1971 $) (|:| -2901 $)) $ (-693)) NIL T ELT)) (-2822 (((-3 (-582 $) #1#) $) NIL T ELT)) (-2821 (((-3 (-582 $) #1#) $) NIL T ELT)) (-2823 (((-3 (-2 (|:| |var| (-993)) (|:| -2400 (-693))) #1#) $) NIL T ELT)) (-3810 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3444 (($) NIL (|has| |#1| (-1064)) CONST)) (-3242 (((-1032) $) NIL T ELT)) (-3148 (((-2 (|:| -3143 $) (|:| |coef2| $)) $ $) 82 (|has| |#1| (-494)) ELT)) (-3149 (((-2 (|:| -3143 $) (|:| |coef1| $)) $ $) 78 (|has| |#1| (-494)) ELT)) (-2451 (((-2 (|:| -3754 |#1|) (|:| |coef2| $)) $ $) 70 (|has| |#1| (-494)) ELT)) (-2452 (((-2 (|:| -3754 |#1|) (|:| |coef1| $)) $ $) 66 (|has| |#1| (-494)) ELT)) (-1795 (((-85) $) 13 T ELT)) (-1794 ((|#1| $) NIL T ELT)) (-2707 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#1| (-390)) ELT)) (-3143 (($ (-582 $)) NIL (|has| |#1| (-390)) ELT) (($ $ $) NIL (|has| |#1| (-390)) ELT)) (-3736 (($ $ (-693) |#1| $) 26 T ELT)) (-2704 (((-346 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-820)) ELT)) (-2705 (((-346 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-820)) ELT)) (-3730 (((-346 $) $) NIL (|has| |#1| (-820)) ELT)) (-3150 (((-2 (|:| -3143 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 74 (|has| |#1| (-494)) ELT)) (-2453 (((-2 (|:| -3754 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 62 (|has| |#1| (-494)) ELT)) (-1604 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3464 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-494)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-494)) ELT)) (-2739 (((-631 (-582 $)) (-582 $) $) NIL (|has| |#1| (-312)) ELT)) (-3766 (($ $ (-582 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-582 $) (-582 $)) NIL T ELT) (($ $ (-993) |#1|) NIL T ELT) (($ $ (-582 (-993)) (-582 |#1|)) NIL T ELT) (($ $ (-993) $) NIL T ELT) (($ $ (-582 (-993)) (-582 $)) NIL T ELT)) (-1605 (((-693) $) NIL (|has| |#1| (-312)) ELT)) (-3798 ((|#1| $ |#1|) NIL T ELT) (($ $ $) NIL T ELT) (((-348 $) (-348 $) (-348 $)) NIL (|has| |#1| (-494)) ELT) ((|#1| (-348 $) |#1|) NIL (|has| |#1| (-312)) ELT) (((-348 $) $ (-348 $)) NIL (|has| |#1| (-494)) ELT)) (-3762 (((-3 $ #1#) $ (-693)) NIL T ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3755 (($ $ (-993)) NIL (|has| |#1| (-146)) ELT) ((|#1| $) NIL (|has| |#1| (-146)) ELT)) (-3756 (($ $ (-582 (-993)) (-582 (-693))) NIL T ELT) (($ $ (-993) (-693)) NIL T ELT) (($ $ (-582 (-993))) NIL T ELT) (($ $ (-993)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-693)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-693)) NIL T ELT) (($ $ (-1 |#1| |#1|) $) NIL T ELT) (($ $ (-1088)) NIL (|has| |#1| (-810 (-1088))) ELT) (($ $ (-582 (-1088))) NIL (|has| |#1| (-810 (-1088))) ELT) (($ $ (-1088) (-693)) NIL (|has| |#1| (-810 (-1088))) ELT) (($ $ (-582 (-1088)) (-582 (-693))) NIL (|has| |#1| (-810 (-1088))) ELT)) (-3946 (((-693) $) NIL T ELT) (((-693) $ (-993)) NIL T ELT) (((-582 (-693)) $ (-582 (-993))) NIL T ELT)) (-3970 (((-799 (-328)) $) NIL (-12 (|has| (-993) (-552 (-799 (-328)))) (|has| |#1| (-552 (-799 (-328))))) ELT) (((-799 (-483)) $) NIL (-12 (|has| (-993) (-552 (-799 (-483)))) (|has| |#1| (-552 (-799 (-483))))) ELT) (((-472) $) NIL (-12 (|has| (-993) (-552 (-472))) (|has| |#1| (-552 (-472)))) ELT)) (-2816 ((|#1| $) NIL (|has| |#1| (-390)) ELT) (($ $ (-993)) NIL (|has| |#1| (-390)) ELT)) (-2702 (((-3 (-1177 $) #1#) (-629 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-820))) ELT)) (-3752 (((-3 $ #1#) $ $) NIL (|has| |#1| (-494)) ELT) (((-3 (-348 $) #1#) (-348 $) $) NIL (|has| |#1| (-494)) ELT)) (-3944 (((-771) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-993)) NIL T ELT) (((-1083 |#1|) $) 7 T ELT) (($ (-1083 |#1|)) 8 T ELT) (($ (-348 (-483))) NIL (OR (|has| |#1| (-38 (-348 (-483)))) (|has| |#1| (-949 (-348 (-483))))) ELT) (($ $) NIL (|has| |#1| (-494)) ELT)) (-3815 (((-582 |#1|) $) NIL T ELT)) (-3675 ((|#1| $ (-693)) NIL T ELT) (($ $ (-993) (-693)) NIL T ELT) (($ $ (-582 (-993)) (-582 (-693))) NIL T ELT)) (-2701 (((-631 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-820))) (|has| |#1| (-118))) ELT)) (-3125 (((-693)) NIL T CONST)) (-1621 (($ $ $ (-693)) NIL (|has| |#1| (-146)) ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2061 (((-85) $ $) NIL (|has| |#1| (-494)) ELT)) (-3124 (((-85) $ $) NIL T ELT)) (-2659 (($) 28 T CONST)) (-2665 (($) 32 T CONST)) (-2668 (($ $ (-582 (-993)) (-582 (-693))) NIL T ELT) (($ $ (-993) (-693)) NIL T ELT) (($ $ (-582 (-993))) NIL T ELT) (($ $ (-993)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-693)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-693)) NIL T ELT) (($ $ (-1088)) NIL (|has| |#1| (-810 (-1088))) ELT) (($ $ (-582 (-1088))) NIL (|has| |#1| (-810 (-1088))) ELT) (($ $ (-1088) (-693)) NIL (|has| |#1| (-810 (-1088))) ELT) (($ $ (-582 (-1088)) (-582 (-693))) NIL (|has| |#1| (-810 (-1088))) ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-3947 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3835 (($ $) 40 T ELT) (($ $ $) NIL T ELT)) (-3837 (($ $ $) NIL T ELT)) (** (($ $ (-829)) NIL T ELT) (($ $ (-693)) NIL T ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-348 (-483))) NIL (|has| |#1| (-38 (-348 (-483)))) ELT) (($ (-348 (-483)) $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT) (($ |#1| $) 31 T ELT) (($ $ |#1|) NIL T ELT))) -(((-703 |#1|) (-13 (-1153 |#1|) (-551 (-1083 |#1|)) (-949 (-1083 |#1|)) (-10 -8 (-15 -3736 ($ $ (-693) |#1| $)) (-15 -3158 ($ $ $)) (-15 -3157 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3479 (-693))) $ $)) (-15 -2456 ($ $ $)) (-15 -3159 ((-2 (|:| -3952 |#1|) (|:| |gap| (-693)) (|:| -1971 $) (|:| -2901 $)) $ $)) (-15 -2455 ($ $ $)) (IF (|has| |#1| (-494)) (PROGN (-15 -2454 ((-582 $) $ $)) (-15 -3189 ($ $ $)) (-15 -3150 ((-2 (|:| -3143 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3149 ((-2 (|:| -3143 $) (|:| |coef1| $)) $ $)) (-15 -3148 ((-2 (|:| -3143 $) (|:| |coef2| $)) $ $)) (-15 -2453 ((-2 (|:| -3754 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2452 ((-2 (|:| -3754 |#1|) (|:| |coef1| $)) $ $)) (-15 -2451 ((-2 (|:| -3754 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-960)) (T -703)) -((-3736 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-693)) (-5 *1 (-703 *3)) (-4 *3 (-960)))) (-3158 (*1 *1 *1 *1) (-12 (-5 *1 (-703 *2)) (-4 *2 (-960)))) (-3157 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-703 *3)) (|:| |polden| *3) (|:| -3479 (-693)))) (-5 *1 (-703 *3)) (-4 *3 (-960)))) (-2456 (*1 *1 *1 *1) (-12 (-5 *1 (-703 *2)) (-4 *2 (-960)))) (-3159 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3952 *3) (|:| |gap| (-693)) (|:| -1971 (-703 *3)) (|:| -2901 (-703 *3)))) (-5 *1 (-703 *3)) (-4 *3 (-960)))) (-2455 (*1 *1 *1 *1) (-12 (-5 *1 (-703 *2)) (-4 *2 (-960)))) (-2454 (*1 *2 *1 *1) (-12 (-5 *2 (-582 (-703 *3))) (-5 *1 (-703 *3)) (-4 *3 (-494)) (-4 *3 (-960)))) (-3189 (*1 *1 *1 *1) (-12 (-5 *1 (-703 *2)) (-4 *2 (-494)) (-4 *2 (-960)))) (-3150 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3143 (-703 *3)) (|:| |coef1| (-703 *3)) (|:| |coef2| (-703 *3)))) (-5 *1 (-703 *3)) (-4 *3 (-494)) (-4 *3 (-960)))) (-3149 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3143 (-703 *3)) (|:| |coef1| (-703 *3)))) (-5 *1 (-703 *3)) (-4 *3 (-494)) (-4 *3 (-960)))) (-3148 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3143 (-703 *3)) (|:| |coef2| (-703 *3)))) (-5 *1 (-703 *3)) (-4 *3 (-494)) (-4 *3 (-960)))) (-2453 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3754 *3) (|:| |coef1| (-703 *3)) (|:| |coef2| (-703 *3)))) (-5 *1 (-703 *3)) (-4 *3 (-494)) (-4 *3 (-960)))) (-2452 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3754 *3) (|:| |coef1| (-703 *3)))) (-5 *1 (-703 *3)) (-4 *3 (-494)) (-4 *3 (-960)))) (-2451 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3754 *3) (|:| |coef2| (-703 *3)))) (-5 *1 (-703 *3)) (-4 *3 (-494)) (-4 *3 (-960))))) -((-3956 (((-703 |#2|) (-1 |#2| |#1|) (-703 |#1|)) 13 T ELT))) -(((-704 |#1| |#2|) (-10 -7 (-15 -3956 ((-703 |#2|) (-1 |#2| |#1|) (-703 |#1|)))) (-960) (-960)) (T -704)) -((-3956 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-703 *5)) (-4 *5 (-960)) (-4 *6 (-960)) (-5 *2 (-703 *6)) (-5 *1 (-704 *5 *6))))) -((-2458 ((|#1| (-693) |#1|) 33 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-2800 ((|#1| (-693) |#1|) 23 T ELT)) (-2457 ((|#1| (-693) |#1|) 35 (|has| |#1| (-38 (-348 (-483)))) ELT))) -(((-705 |#1|) (-10 -7 (-15 -2800 (|#1| (-693) |#1|)) (IF (|has| |#1| (-38 (-348 (-483)))) (PROGN (-15 -2457 (|#1| (-693) |#1|)) (-15 -2458 (|#1| (-693) |#1|))) |%noBranch|)) (-146)) (T -705)) -((-2458 (*1 *2 *3 *2) (-12 (-5 *3 (-693)) (-5 *1 (-705 *2)) (-4 *2 (-38 (-348 (-483)))) (-4 *2 (-146)))) (-2457 (*1 *2 *3 *2) (-12 (-5 *3 (-693)) (-5 *1 (-705 *2)) (-4 *2 (-38 (-348 (-483)))) (-4 *2 (-146)))) (-2800 (*1 *2 *3 *2) (-12 (-5 *3 (-693)) (-5 *1 (-705 *2)) (-4 *2 (-146))))) -((-2567 (((-85) $ $) 7 T ELT)) (-3679 (((-582 (-2 (|:| -3859 $) (|:| -1700 (-582 |#4|)))) (-582 |#4|)) 90 T ELT)) (-3680 (((-582 $) (-582 |#4|)) 91 T ELT) (((-582 $) (-582 |#4|) (-85)) 118 T ELT)) (-3080 (((-582 |#3|) $) 37 T ELT)) (-2907 (((-85) $) 30 T ELT)) (-2898 (((-85) $) 21 (|has| |#1| (-494)) ELT)) (-3691 (((-85) |#4| $) 106 T ELT) (((-85) $) 102 T ELT)) (-3686 ((|#4| |#4| $) 97 T ELT)) (-3773 (((-582 (-2 (|:| |val| |#4|) (|:| -1598 $))) |#4| $) 133 T ELT)) (-2908 (((-2 (|:| |under| $) (|:| -3129 $) (|:| |upper| $)) $ |#3|) 31 T ELT)) (-3708 (($ (-1 (-85) |#4|) $) 66 (|has| $ (-6 -3993)) ELT) (((-3 |#4| #1="failed") $ |#3|) 84 T ELT)) (-3722 (($) 46 T CONST)) (-2903 (((-85) $) 26 (|has| |#1| (-494)) ELT)) (-2905 (((-85) $ $) 28 (|has| |#1| (-494)) ELT)) (-2904 (((-85) $ $) 27 (|has| |#1| (-494)) ELT)) (-2906 (((-85) $) 29 (|has| |#1| (-494)) ELT)) (-3687 (((-582 |#4|) (-582 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 98 T ELT)) (-2899 (((-582 |#4|) (-582 |#4|) $) 22 (|has| |#1| (-494)) ELT)) (-2900 (((-582 |#4|) (-582 |#4|) $) 23 (|has| |#1| (-494)) ELT)) (-3156 (((-3 $ "failed") (-582 |#4|)) 40 T ELT)) (-3155 (($ (-582 |#4|)) 39 T ELT)) (-3797 (((-3 $ #1#) $) 87 T ELT)) (-3683 ((|#4| |#4| $) 94 T ELT)) (-1351 (($ $) 69 (-12 (|has| |#4| (-1012)) (|has| $ (-6 -3993))) ELT)) (-3404 (($ |#4| $) 68 (-12 (|has| |#4| (-1012)) (|has| $ (-6 -3993))) ELT) (($ (-1 (-85) |#4|) $) 65 (|has| $ (-6 -3993)) ELT)) (-2901 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 24 (|has| |#1| (-494)) ELT)) (-3692 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) 107 T ELT)) (-3681 ((|#4| |#4| $) 92 T ELT)) (-3840 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1012)) (|has| $ (-6 -3993))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -3993)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -3993)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 99 T ELT)) (-3694 (((-2 (|:| -3859 (-582 |#4|)) (|:| -1700 (-582 |#4|))) $) 110 T ELT)) (-3196 (((-85) |#4| $) 143 T ELT)) (-3194 (((-85) |#4| $) 140 T ELT)) (-3197 (((-85) |#4| $) 144 T ELT) (((-85) $) 141 T ELT)) (-2888 (((-582 |#4|) $) 53 (|has| $ (-6 -3993)) ELT)) (-3693 (((-85) |#4| $) 109 T ELT) (((-85) $) 108 T ELT)) (-3179 ((|#3| $) 38 T ELT)) (-2607 (((-582 |#4|) $) 54 (|has| $ (-6 -3993)) ELT)) (-3244 (((-85) |#4| $) 56 (-12 (|has| |#4| (-1012)) (|has| $ (-6 -3993))) ELT)) (-1947 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -3994)) ELT)) (-3956 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-2913 (((-582 |#3|) $) 36 T ELT)) (-2912 (((-85) |#3| $) 35 T ELT)) (-3241 (((-1071) $) 11 T ELT)) (-3190 (((-3 |#4| (-582 $)) |#4| |#4| $) 135 T ELT)) (-3189 (((-582 (-2 (|:| |val| |#4|) (|:| -1598 $))) |#4| |#4| $) 134 T ELT)) (-3796 (((-3 |#4| #1#) $) 88 T ELT)) (-3191 (((-582 $) |#4| $) 136 T ELT)) (-3193 (((-3 (-85) (-582 $)) |#4| $) 139 T ELT)) (-3192 (((-582 (-2 (|:| |val| (-85)) (|:| -1598 $))) |#4| $) 138 T ELT) (((-85) |#4| $) 137 T ELT)) (-3237 (((-582 $) |#4| $) 132 T ELT) (((-582 $) (-582 |#4|) $) 131 T ELT) (((-582 $) (-582 |#4|) (-582 $)) 130 T ELT) (((-582 $) |#4| (-582 $)) 129 T ELT)) (-3438 (($ |#4| $) 124 T ELT) (($ (-582 |#4|) $) 123 T ELT)) (-3695 (((-582 |#4|) $) 112 T ELT)) (-3689 (((-85) |#4| $) 104 T ELT) (((-85) $) 100 T ELT)) (-3684 ((|#4| |#4| $) 95 T ELT)) (-3697 (((-85) $ $) 115 T ELT)) (-2902 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-494)) ELT)) (-3690 (((-85) |#4| $) 105 T ELT) (((-85) $) 101 T ELT)) (-3685 ((|#4| |#4| $) 96 T ELT)) (-3242 (((-1032) $) 12 T ELT)) (-3799 (((-3 |#4| #1#) $) 89 T ELT)) (-1352 (((-3 |#4| "failed") (-1 (-85) |#4|) $) 62 T ELT)) (-3677 (((-3 $ #1#) $ |#4|) 83 T ELT)) (-3767 (($ $ |#4|) 82 T ELT) (((-582 $) |#4| $) 122 T ELT) (((-582 $) |#4| (-582 $)) 121 T ELT) (((-582 $) (-582 |#4|) $) 120 T ELT) (((-582 $) (-582 |#4|) (-582 $)) 119 T ELT)) (-1945 (((-85) (-1 (-85) |#4|) $) 51 (|has| $ (-6 -3993)) ELT)) (-3766 (($ $ (-582 |#4|) (-582 |#4|)) 60 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1012))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1012))) ELT) (($ $ (-249 |#4|)) 58 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1012))) ELT) (($ $ (-582 (-249 |#4|))) 57 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1012))) ELT)) (-1220 (((-85) $ $) 42 T ELT)) (-3401 (((-85) $) 45 T ELT)) (-3563 (($) 44 T ELT)) (-3946 (((-693) $) 111 T ELT)) (-1944 (((-693) |#4| $) 55 (-12 (|has| |#4| (-1012)) (|has| $ (-6 -3993))) ELT) (((-693) (-1 (-85) |#4|) $) 52 (|has| $ (-6 -3993)) ELT)) (-3398 (($ $) 43 T ELT)) (-3970 (((-472) $) 70 (|has| |#4| (-552 (-472))) ELT)) (-3528 (($ (-582 |#4|)) 61 T ELT)) (-2909 (($ $ |#3|) 32 T ELT)) (-2911 (($ $ |#3|) 34 T ELT)) (-3682 (($ $) 93 T ELT)) (-2910 (($ $ |#3|) 33 T ELT)) (-3944 (((-771) $) 13 T ELT) (((-582 |#4|) $) 41 T ELT)) (-3676 (((-693) $) 81 (|has| |#3| (-318)) ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-3696 (((-3 (-2 (|:| |bas| $) (|:| -3322 (-582 |#4|))) #1#) (-582 |#4|) (-1 (-85) |#4| |#4|)) 114 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3322 (-582 |#4|))) #1#) (-582 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) 113 T ELT)) (-3688 (((-85) $ (-1 (-85) |#4| (-582 |#4|))) 103 T ELT)) (-3188 (((-582 $) |#4| $) 128 T ELT) (((-582 $) |#4| (-582 $)) 127 T ELT) (((-582 $) (-582 |#4|) $) 126 T ELT) (((-582 $) (-582 |#4|) (-582 $)) 125 T ELT)) (-1946 (((-85) (-1 (-85) |#4|) $) 50 (|has| $ (-6 -3993)) ELT)) (-3678 (((-582 |#3|) $) 86 T ELT)) (-3195 (((-85) |#4| $) 142 T ELT)) (-3931 (((-85) |#3| $) 85 T ELT)) (-3055 (((-85) $ $) 8 T ELT)) (-3955 (((-693) $) 47 (|has| $ (-6 -3993)) ELT))) -(((-706 |#1| |#2| |#3| |#4|) (-113) (-390) (-716) (-755) (-976 |t#1| |t#2| |t#3|)) (T -706)) -NIL -(-13 (-982 |t#1| |t#2| |t#3| |t#4|)) -(((-34) . T) ((-72) . T) ((-551 (-582 |#4|)) . T) ((-551 (-771)) . T) ((-124 |#4|) . T) ((-552 (-472)) |has| |#4| (-552 (-472))) ((-260 |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1012))) ((-427 |#4|) . T) ((-454 |#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1012))) ((-13) . T) ((-888 |#1| |#2| |#3| |#4|) . T) ((-982 |#1| |#2| |#3| |#4|) . T) ((-1012) . T) ((-1122 |#1| |#2| |#3| |#4|) . T) ((-1127) . T)) -((-2461 (((-3 (-328) #1="failed") (-265 |#1|) (-829)) 60 (-12 (|has| |#1| (-494)) (|has| |#1| (-755))) ELT) (((-3 (-328) #1#) (-265 |#1|)) 52 (-12 (|has| |#1| (-494)) (|has| |#1| (-755))) ELT) (((-3 (-328) #1#) (-348 (-856 |#1|)) (-829)) 39 (|has| |#1| (-494)) ELT) (((-3 (-328) #1#) (-348 (-856 |#1|))) 35 (|has| |#1| (-494)) ELT) (((-3 (-328) #1#) (-856 |#1|) (-829)) 30 (|has| |#1| (-960)) ELT) (((-3 (-328) #1#) (-856 |#1|)) 24 (|has| |#1| (-960)) ELT)) (-2459 (((-328) (-265 |#1|) (-829)) 92 (-12 (|has| |#1| (-494)) (|has| |#1| (-755))) ELT) (((-328) (-265 |#1|)) 87 (-12 (|has| |#1| (-494)) (|has| |#1| (-755))) ELT) (((-328) (-348 (-856 |#1|)) (-829)) 84 (|has| |#1| (-494)) ELT) (((-328) (-348 (-856 |#1|))) 81 (|has| |#1| (-494)) ELT) (((-328) (-856 |#1|) (-829)) 80 (|has| |#1| (-960)) ELT) (((-328) (-856 |#1|)) 77 (|has| |#1| (-960)) ELT) (((-328) |#1| (-829)) 73 T ELT) (((-328) |#1|) 22 T ELT)) (-2462 (((-3 (-142 (-328)) #1#) (-265 (-142 |#1|)) (-829)) 68 (-12 (|has| |#1| (-494)) (|has| |#1| (-755))) ELT) (((-3 (-142 (-328)) #1#) (-265 (-142 |#1|))) 58 (-12 (|has| |#1| (-494)) (|has| |#1| (-755))) ELT) (((-3 (-142 (-328)) #1#) (-265 |#1|) (-829)) 61 (-12 (|has| |#1| (-494)) (|has| |#1| (-755))) ELT) (((-3 (-142 (-328)) #1#) (-265 |#1|)) 59 (-12 (|has| |#1| (-494)) (|has| |#1| (-755))) ELT) (((-3 (-142 (-328)) #1#) (-348 (-856 (-142 |#1|))) (-829)) 44 (|has| |#1| (-494)) ELT) (((-3 (-142 (-328)) #1#) (-348 (-856 (-142 |#1|)))) 43 (|has| |#1| (-494)) ELT) (((-3 (-142 (-328)) #1#) (-348 (-856 |#1|)) (-829)) 38 (|has| |#1| (-494)) ELT) (((-3 (-142 (-328)) #1#) (-348 (-856 |#1|))) 37 (|has| |#1| (-494)) ELT) (((-3 (-142 (-328)) #1#) (-856 |#1|) (-829)) 28 (|has| |#1| (-960)) ELT) (((-3 (-142 (-328)) #1#) (-856 |#1|)) 26 (|has| |#1| (-960)) ELT) (((-3 (-142 (-328)) #1#) (-856 (-142 |#1|)) (-829)) 18 (|has| |#1| (-146)) ELT) (((-3 (-142 (-328)) #1#) (-856 (-142 |#1|))) 15 (|has| |#1| (-146)) ELT)) (-2460 (((-142 (-328)) (-265 (-142 |#1|)) (-829)) 95 (-12 (|has| |#1| (-494)) (|has| |#1| (-755))) ELT) (((-142 (-328)) (-265 (-142 |#1|))) 94 (-12 (|has| |#1| (-494)) (|has| |#1| (-755))) ELT) (((-142 (-328)) (-265 |#1|) (-829)) 93 (-12 (|has| |#1| (-494)) (|has| |#1| (-755))) ELT) (((-142 (-328)) (-265 |#1|)) 91 (-12 (|has| |#1| (-494)) (|has| |#1| (-755))) ELT) (((-142 (-328)) (-348 (-856 (-142 |#1|))) (-829)) 86 (|has| |#1| (-494)) ELT) (((-142 (-328)) (-348 (-856 (-142 |#1|)))) 85 (|has| |#1| (-494)) ELT) (((-142 (-328)) (-348 (-856 |#1|)) (-829)) 83 (|has| |#1| (-494)) ELT) (((-142 (-328)) (-348 (-856 |#1|))) 82 (|has| |#1| (-494)) ELT) (((-142 (-328)) (-856 |#1|) (-829)) 79 (|has| |#1| (-960)) ELT) (((-142 (-328)) (-856 |#1|)) 78 (|has| |#1| (-960)) ELT) (((-142 (-328)) (-856 (-142 |#1|)) (-829)) 75 (|has| |#1| (-146)) ELT) (((-142 (-328)) (-856 (-142 |#1|))) 74 (|has| |#1| (-146)) ELT) (((-142 (-328)) (-142 |#1|) (-829)) 17 (|has| |#1| (-146)) ELT) (((-142 (-328)) (-142 |#1|)) 13 (|has| |#1| (-146)) ELT) (((-142 (-328)) |#1| (-829)) 27 T ELT) (((-142 (-328)) |#1|) 25 T ELT))) -(((-707 |#1|) (-10 -7 (-15 -2459 ((-328) |#1|)) (-15 -2459 ((-328) |#1| (-829))) (-15 -2460 ((-142 (-328)) |#1|)) (-15 -2460 ((-142 (-328)) |#1| (-829))) (IF (|has| |#1| (-146)) (PROGN (-15 -2460 ((-142 (-328)) (-142 |#1|))) (-15 -2460 ((-142 (-328)) (-142 |#1|) (-829))) (-15 -2460 ((-142 (-328)) (-856 (-142 |#1|)))) (-15 -2460 ((-142 (-328)) (-856 (-142 |#1|)) (-829)))) |%noBranch|) (IF (|has| |#1| (-960)) (PROGN (-15 -2459 ((-328) (-856 |#1|))) (-15 -2459 ((-328) (-856 |#1|) (-829))) (-15 -2460 ((-142 (-328)) (-856 |#1|))) (-15 -2460 ((-142 (-328)) (-856 |#1|) (-829)))) |%noBranch|) (IF (|has| |#1| (-494)) (PROGN (-15 -2459 ((-328) (-348 (-856 |#1|)))) (-15 -2459 ((-328) (-348 (-856 |#1|)) (-829))) (-15 -2460 ((-142 (-328)) (-348 (-856 |#1|)))) (-15 -2460 ((-142 (-328)) (-348 (-856 |#1|)) (-829))) (-15 -2460 ((-142 (-328)) (-348 (-856 (-142 |#1|))))) (-15 -2460 ((-142 (-328)) (-348 (-856 (-142 |#1|))) (-829))) (IF (|has| |#1| (-755)) (PROGN (-15 -2459 ((-328) (-265 |#1|))) (-15 -2459 ((-328) (-265 |#1|) (-829))) (-15 -2460 ((-142 (-328)) (-265 |#1|))) (-15 -2460 ((-142 (-328)) (-265 |#1|) (-829))) (-15 -2460 ((-142 (-328)) (-265 (-142 |#1|)))) (-15 -2460 ((-142 (-328)) (-265 (-142 |#1|)) (-829)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-146)) (PROGN (-15 -2462 ((-3 (-142 (-328)) #1="failed") (-856 (-142 |#1|)))) (-15 -2462 ((-3 (-142 (-328)) #1#) (-856 (-142 |#1|)) (-829)))) |%noBranch|) (IF (|has| |#1| (-960)) (PROGN (-15 -2461 ((-3 (-328) #1#) (-856 |#1|))) (-15 -2461 ((-3 (-328) #1#) (-856 |#1|) (-829))) (-15 -2462 ((-3 (-142 (-328)) #1#) (-856 |#1|))) (-15 -2462 ((-3 (-142 (-328)) #1#) (-856 |#1|) (-829)))) |%noBranch|) (IF (|has| |#1| (-494)) (PROGN (-15 -2461 ((-3 (-328) #1#) (-348 (-856 |#1|)))) (-15 -2461 ((-3 (-328) #1#) (-348 (-856 |#1|)) (-829))) (-15 -2462 ((-3 (-142 (-328)) #1#) (-348 (-856 |#1|)))) (-15 -2462 ((-3 (-142 (-328)) #1#) (-348 (-856 |#1|)) (-829))) (-15 -2462 ((-3 (-142 (-328)) #1#) (-348 (-856 (-142 |#1|))))) (-15 -2462 ((-3 (-142 (-328)) #1#) (-348 (-856 (-142 |#1|))) (-829))) (IF (|has| |#1| (-755)) (PROGN (-15 -2461 ((-3 (-328) #1#) (-265 |#1|))) (-15 -2461 ((-3 (-328) #1#) (-265 |#1|) (-829))) (-15 -2462 ((-3 (-142 (-328)) #1#) (-265 |#1|))) (-15 -2462 ((-3 (-142 (-328)) #1#) (-265 |#1|) (-829))) (-15 -2462 ((-3 (-142 (-328)) #1#) (-265 (-142 |#1|)))) (-15 -2462 ((-3 (-142 (-328)) #1#) (-265 (-142 |#1|)) (-829)))) |%noBranch|)) |%noBranch|)) (-552 (-328))) (T -707)) -((-2462 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-265 (-142 *5))) (-5 *4 (-829)) (-4 *5 (-494)) (-4 *5 (-755)) (-4 *5 (-552 (-328))) (-5 *2 (-142 (-328))) (-5 *1 (-707 *5)))) (-2462 (*1 *2 *3) (|partial| -12 (-5 *3 (-265 (-142 *4))) (-4 *4 (-494)) (-4 *4 (-755)) (-4 *4 (-552 (-328))) (-5 *2 (-142 (-328))) (-5 *1 (-707 *4)))) (-2462 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-265 *5)) (-5 *4 (-829)) (-4 *5 (-494)) (-4 *5 (-755)) (-4 *5 (-552 (-328))) (-5 *2 (-142 (-328))) (-5 *1 (-707 *5)))) (-2462 (*1 *2 *3) (|partial| -12 (-5 *3 (-265 *4)) (-4 *4 (-494)) (-4 *4 (-755)) (-4 *4 (-552 (-328))) (-5 *2 (-142 (-328))) (-5 *1 (-707 *4)))) (-2461 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-265 *5)) (-5 *4 (-829)) (-4 *5 (-494)) (-4 *5 (-755)) (-4 *5 (-552 *2)) (-5 *2 (-328)) (-5 *1 (-707 *5)))) (-2461 (*1 *2 *3) (|partial| -12 (-5 *3 (-265 *4)) (-4 *4 (-494)) (-4 *4 (-755)) (-4 *4 (-552 *2)) (-5 *2 (-328)) (-5 *1 (-707 *4)))) (-2462 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-348 (-856 (-142 *5)))) (-5 *4 (-829)) (-4 *5 (-494)) (-4 *5 (-552 (-328))) (-5 *2 (-142 (-328))) (-5 *1 (-707 *5)))) (-2462 (*1 *2 *3) (|partial| -12 (-5 *3 (-348 (-856 (-142 *4)))) (-4 *4 (-494)) (-4 *4 (-552 (-328))) (-5 *2 (-142 (-328))) (-5 *1 (-707 *4)))) (-2462 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-348 (-856 *5))) (-5 *4 (-829)) (-4 *5 (-494)) (-4 *5 (-552 (-328))) (-5 *2 (-142 (-328))) (-5 *1 (-707 *5)))) (-2462 (*1 *2 *3) (|partial| -12 (-5 *3 (-348 (-856 *4))) (-4 *4 (-494)) (-4 *4 (-552 (-328))) (-5 *2 (-142 (-328))) (-5 *1 (-707 *4)))) (-2461 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-348 (-856 *5))) (-5 *4 (-829)) (-4 *5 (-494)) (-4 *5 (-552 *2)) (-5 *2 (-328)) (-5 *1 (-707 *5)))) (-2461 (*1 *2 *3) (|partial| -12 (-5 *3 (-348 (-856 *4))) (-4 *4 (-494)) (-4 *4 (-552 *2)) (-5 *2 (-328)) (-5 *1 (-707 *4)))) (-2462 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-856 *5)) (-5 *4 (-829)) (-4 *5 (-960)) (-4 *5 (-552 (-328))) (-5 *2 (-142 (-328))) (-5 *1 (-707 *5)))) (-2462 (*1 *2 *3) (|partial| -12 (-5 *3 (-856 *4)) (-4 *4 (-960)) (-4 *4 (-552 (-328))) (-5 *2 (-142 (-328))) (-5 *1 (-707 *4)))) (-2461 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-856 *5)) (-5 *4 (-829)) (-4 *5 (-960)) (-4 *5 (-552 *2)) (-5 *2 (-328)) (-5 *1 (-707 *5)))) (-2461 (*1 *2 *3) (|partial| -12 (-5 *3 (-856 *4)) (-4 *4 (-960)) (-4 *4 (-552 *2)) (-5 *2 (-328)) (-5 *1 (-707 *4)))) (-2462 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-856 (-142 *5))) (-5 *4 (-829)) (-4 *5 (-146)) (-4 *5 (-552 (-328))) (-5 *2 (-142 (-328))) (-5 *1 (-707 *5)))) (-2462 (*1 *2 *3) (|partial| -12 (-5 *3 (-856 (-142 *4))) (-4 *4 (-146)) (-4 *4 (-552 (-328))) (-5 *2 (-142 (-328))) (-5 *1 (-707 *4)))) (-2460 (*1 *2 *3 *4) (-12 (-5 *3 (-265 (-142 *5))) (-5 *4 (-829)) (-4 *5 (-494)) (-4 *5 (-755)) (-4 *5 (-552 (-328))) (-5 *2 (-142 (-328))) (-5 *1 (-707 *5)))) (-2460 (*1 *2 *3) (-12 (-5 *3 (-265 (-142 *4))) (-4 *4 (-494)) (-4 *4 (-755)) (-4 *4 (-552 (-328))) (-5 *2 (-142 (-328))) (-5 *1 (-707 *4)))) (-2460 (*1 *2 *3 *4) (-12 (-5 *3 (-265 *5)) (-5 *4 (-829)) (-4 *5 (-494)) (-4 *5 (-755)) (-4 *5 (-552 (-328))) (-5 *2 (-142 (-328))) (-5 *1 (-707 *5)))) (-2460 (*1 *2 *3) (-12 (-5 *3 (-265 *4)) (-4 *4 (-494)) (-4 *4 (-755)) (-4 *4 (-552 (-328))) (-5 *2 (-142 (-328))) (-5 *1 (-707 *4)))) (-2459 (*1 *2 *3 *4) (-12 (-5 *3 (-265 *5)) (-5 *4 (-829)) (-4 *5 (-494)) (-4 *5 (-755)) (-4 *5 (-552 *2)) (-5 *2 (-328)) (-5 *1 (-707 *5)))) (-2459 (*1 *2 *3) (-12 (-5 *3 (-265 *4)) (-4 *4 (-494)) (-4 *4 (-755)) (-4 *4 (-552 *2)) (-5 *2 (-328)) (-5 *1 (-707 *4)))) (-2460 (*1 *2 *3 *4) (-12 (-5 *3 (-348 (-856 (-142 *5)))) (-5 *4 (-829)) (-4 *5 (-494)) (-4 *5 (-552 (-328))) (-5 *2 (-142 (-328))) (-5 *1 (-707 *5)))) (-2460 (*1 *2 *3) (-12 (-5 *3 (-348 (-856 (-142 *4)))) (-4 *4 (-494)) (-4 *4 (-552 (-328))) (-5 *2 (-142 (-328))) (-5 *1 (-707 *4)))) (-2460 (*1 *2 *3 *4) (-12 (-5 *3 (-348 (-856 *5))) (-5 *4 (-829)) (-4 *5 (-494)) (-4 *5 (-552 (-328))) (-5 *2 (-142 (-328))) (-5 *1 (-707 *5)))) (-2460 (*1 *2 *3) (-12 (-5 *3 (-348 (-856 *4))) (-4 *4 (-494)) (-4 *4 (-552 (-328))) (-5 *2 (-142 (-328))) (-5 *1 (-707 *4)))) (-2459 (*1 *2 *3 *4) (-12 (-5 *3 (-348 (-856 *5))) (-5 *4 (-829)) (-4 *5 (-494)) (-4 *5 (-552 *2)) (-5 *2 (-328)) (-5 *1 (-707 *5)))) (-2459 (*1 *2 *3) (-12 (-5 *3 (-348 (-856 *4))) (-4 *4 (-494)) (-4 *4 (-552 *2)) (-5 *2 (-328)) (-5 *1 (-707 *4)))) (-2460 (*1 *2 *3 *4) (-12 (-5 *3 (-856 *5)) (-5 *4 (-829)) (-4 *5 (-960)) (-4 *5 (-552 (-328))) (-5 *2 (-142 (-328))) (-5 *1 (-707 *5)))) (-2460 (*1 *2 *3) (-12 (-5 *3 (-856 *4)) (-4 *4 (-960)) (-4 *4 (-552 (-328))) (-5 *2 (-142 (-328))) (-5 *1 (-707 *4)))) (-2459 (*1 *2 *3 *4) (-12 (-5 *3 (-856 *5)) (-5 *4 (-829)) (-4 *5 (-960)) (-4 *5 (-552 *2)) (-5 *2 (-328)) (-5 *1 (-707 *5)))) (-2459 (*1 *2 *3) (-12 (-5 *3 (-856 *4)) (-4 *4 (-960)) (-4 *4 (-552 *2)) (-5 *2 (-328)) (-5 *1 (-707 *4)))) (-2460 (*1 *2 *3 *4) (-12 (-5 *3 (-856 (-142 *5))) (-5 *4 (-829)) (-4 *5 (-146)) (-4 *5 (-552 (-328))) (-5 *2 (-142 (-328))) (-5 *1 (-707 *5)))) (-2460 (*1 *2 *3) (-12 (-5 *3 (-856 (-142 *4))) (-4 *4 (-146)) (-4 *4 (-552 (-328))) (-5 *2 (-142 (-328))) (-5 *1 (-707 *4)))) (-2460 (*1 *2 *3 *4) (-12 (-5 *3 (-142 *5)) (-5 *4 (-829)) (-4 *5 (-146)) (-4 *5 (-552 (-328))) (-5 *2 (-142 (-328))) (-5 *1 (-707 *5)))) (-2460 (*1 *2 *3) (-12 (-5 *3 (-142 *4)) (-4 *4 (-146)) (-4 *4 (-552 (-328))) (-5 *2 (-142 (-328))) (-5 *1 (-707 *4)))) (-2460 (*1 *2 *3 *4) (-12 (-5 *4 (-829)) (-5 *2 (-142 (-328))) (-5 *1 (-707 *3)) (-4 *3 (-552 (-328))))) (-2460 (*1 *2 *3) (-12 (-5 *2 (-142 (-328))) (-5 *1 (-707 *3)) (-4 *3 (-552 (-328))))) (-2459 (*1 *2 *3 *4) (-12 (-5 *4 (-829)) (-5 *2 (-328)) (-5 *1 (-707 *3)) (-4 *3 (-552 *2)))) (-2459 (*1 *2 *3) (-12 (-5 *2 (-328)) (-5 *1 (-707 *3)) (-4 *3 (-552 *2))))) -((-2466 (((-829) (-1071)) 90 T ELT)) (-2468 (((-3 (-328) "failed") (-1071)) 36 T ELT)) (-2467 (((-328) (-1071)) 34 T ELT)) (-2464 (((-829) (-1071)) 64 T ELT)) (-2465 (((-1071) (-829)) 74 T ELT)) (-2463 (((-1071) (-829)) 63 T ELT))) -(((-708) (-10 -7 (-15 -2463 ((-1071) (-829))) (-15 -2464 ((-829) (-1071))) (-15 -2465 ((-1071) (-829))) (-15 -2466 ((-829) (-1071))) (-15 -2467 ((-328) (-1071))) (-15 -2468 ((-3 (-328) "failed") (-1071))))) (T -708)) -((-2468 (*1 *2 *3) (|partial| -12 (-5 *3 (-1071)) (-5 *2 (-328)) (-5 *1 (-708)))) (-2467 (*1 *2 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-328)) (-5 *1 (-708)))) (-2466 (*1 *2 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-829)) (-5 *1 (-708)))) (-2465 (*1 *2 *3) (-12 (-5 *3 (-829)) (-5 *2 (-1071)) (-5 *1 (-708)))) (-2464 (*1 *2 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-829)) (-5 *1 (-708)))) (-2463 (*1 *2 *3) (-12 (-5 *3 (-829)) (-5 *2 (-1071)) (-5 *1 (-708))))) -((-2471 (((-1183) (-1177 (-328)) (-483) (-328) (-2 (|:| |tryValue| (-328)) (|:| |did| (-328)) (|:| -1473 (-328))) (-328) (-1177 (-328)) (-1 (-1183) (-1177 (-328)) (-1177 (-328)) (-328)) (-1177 (-328)) (-1177 (-328)) (-1177 (-328)) (-1177 (-328)) (-1177 (-328)) (-1177 (-328)) (-1177 (-328))) 54 T ELT) (((-1183) (-1177 (-328)) (-483) (-328) (-2 (|:| |tryValue| (-328)) (|:| |did| (-328)) (|:| -1473 (-328))) (-328) (-1177 (-328)) (-1 (-1183) (-1177 (-328)) (-1177 (-328)) (-328))) 51 T ELT)) (-2472 (((-1183) (-1177 (-328)) (-483) (-328) (-328) (-483) (-1 (-1183) (-1177 (-328)) (-1177 (-328)) (-328))) 61 T ELT)) (-2470 (((-1183) (-1177 (-328)) (-483) (-328) (-328) (-328) (-328) (-483) (-1 (-1183) (-1177 (-328)) (-1177 (-328)) (-328))) 49 T ELT)) (-2469 (((-1183) (-1177 (-328)) (-483) (-328) (-328) (-1 (-1183) (-1177 (-328)) (-1177 (-328)) (-328)) (-1177 (-328)) (-1177 (-328)) (-1177 (-328)) (-1177 (-328))) 63 T ELT) (((-1183) (-1177 (-328)) (-483) (-328) (-328) (-1 (-1183) (-1177 (-328)) (-1177 (-328)) (-328))) 62 T ELT))) -(((-709) (-10 -7 (-15 -2469 ((-1183) (-1177 (-328)) (-483) (-328) (-328) (-1 (-1183) (-1177 (-328)) (-1177 (-328)) (-328)))) (-15 -2469 ((-1183) (-1177 (-328)) (-483) (-328) (-328) (-1 (-1183) (-1177 (-328)) (-1177 (-328)) (-328)) (-1177 (-328)) (-1177 (-328)) (-1177 (-328)) (-1177 (-328)))) (-15 -2470 ((-1183) (-1177 (-328)) (-483) (-328) (-328) (-328) (-328) (-483) (-1 (-1183) (-1177 (-328)) (-1177 (-328)) (-328)))) (-15 -2471 ((-1183) (-1177 (-328)) (-483) (-328) (-2 (|:| |tryValue| (-328)) (|:| |did| (-328)) (|:| -1473 (-328))) (-328) (-1177 (-328)) (-1 (-1183) (-1177 (-328)) (-1177 (-328)) (-328)))) (-15 -2471 ((-1183) (-1177 (-328)) (-483) (-328) (-2 (|:| |tryValue| (-328)) (|:| |did| (-328)) (|:| -1473 (-328))) (-328) (-1177 (-328)) (-1 (-1183) (-1177 (-328)) (-1177 (-328)) (-328)) (-1177 (-328)) (-1177 (-328)) (-1177 (-328)) (-1177 (-328)) (-1177 (-328)) (-1177 (-328)) (-1177 (-328)))) (-15 -2472 ((-1183) (-1177 (-328)) (-483) (-328) (-328) (-483) (-1 (-1183) (-1177 (-328)) (-1177 (-328)) (-328)))))) (T -709)) -((-2472 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-483)) (-5 *6 (-1 (-1183) (-1177 *5) (-1177 *5) (-328))) (-5 *3 (-1177 (-328))) (-5 *5 (-328)) (-5 *2 (-1183)) (-5 *1 (-709)))) (-2471 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-483)) (-5 *6 (-2 (|:| |tryValue| (-328)) (|:| |did| (-328)) (|:| -1473 (-328)))) (-5 *7 (-1 (-1183) (-1177 *5) (-1177 *5) (-328))) (-5 *3 (-1177 (-328))) (-5 *5 (-328)) (-5 *2 (-1183)) (-5 *1 (-709)))) (-2471 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-483)) (-5 *6 (-2 (|:| |tryValue| (-328)) (|:| |did| (-328)) (|:| -1473 (-328)))) (-5 *7 (-1 (-1183) (-1177 *5) (-1177 *5) (-328))) (-5 *3 (-1177 (-328))) (-5 *5 (-328)) (-5 *2 (-1183)) (-5 *1 (-709)))) (-2470 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-483)) (-5 *6 (-1 (-1183) (-1177 *5) (-1177 *5) (-328))) (-5 *3 (-1177 (-328))) (-5 *5 (-328)) (-5 *2 (-1183)) (-5 *1 (-709)))) (-2469 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-483)) (-5 *6 (-1 (-1183) (-1177 *5) (-1177 *5) (-328))) (-5 *3 (-1177 (-328))) (-5 *5 (-328)) (-5 *2 (-1183)) (-5 *1 (-709)))) (-2469 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-483)) (-5 *6 (-1 (-1183) (-1177 *5) (-1177 *5) (-328))) (-5 *3 (-1177 (-328))) (-5 *5 (-328)) (-5 *2 (-1183)) (-5 *1 (-709))))) -((-2481 (((-2 (|:| -3400 (-328)) (|:| -1594 (-328)) (|:| |totalpts| (-483)) (|:| |success| (-85))) (-1 (-328) (-328)) (-328) (-328) (-328) (-328) (-483) (-483)) 65 T ELT)) (-2478 (((-2 (|:| -3400 (-328)) (|:| -1594 (-328)) (|:| |totalpts| (-483)) (|:| |success| (-85))) (-1 (-328) (-328)) (-328) (-328) (-328) (-328) (-483) (-483)) 40 T ELT)) (-2480 (((-2 (|:| -3400 (-328)) (|:| -1594 (-328)) (|:| |totalpts| (-483)) (|:| |success| (-85))) (-1 (-328) (-328)) (-328) (-328) (-328) (-328) (-483) (-483)) 64 T ELT)) (-2477 (((-2 (|:| -3400 (-328)) (|:| -1594 (-328)) (|:| |totalpts| (-483)) (|:| |success| (-85))) (-1 (-328) (-328)) (-328) (-328) (-328) (-328) (-483) (-483)) 38 T ELT)) (-2479 (((-2 (|:| -3400 (-328)) (|:| -1594 (-328)) (|:| |totalpts| (-483)) (|:| |success| (-85))) (-1 (-328) (-328)) (-328) (-328) (-328) (-328) (-483) (-483)) 63 T ELT)) (-2476 (((-2 (|:| -3400 (-328)) (|:| -1594 (-328)) (|:| |totalpts| (-483)) (|:| |success| (-85))) (-1 (-328) (-328)) (-328) (-328) (-328) (-328) (-483) (-483)) 24 T ELT)) (-2475 (((-2 (|:| -3400 (-328)) (|:| -1594 (-328)) (|:| |totalpts| (-483)) (|:| |success| (-85))) (-1 (-328) (-328)) (-328) (-328) (-328) (-328) (-483) (-483) (-483)) 41 T ELT)) (-2474 (((-2 (|:| -3400 (-328)) (|:| -1594 (-328)) (|:| |totalpts| (-483)) (|:| |success| (-85))) (-1 (-328) (-328)) (-328) (-328) (-328) (-328) (-483) (-483) (-483)) 39 T ELT)) (-2473 (((-2 (|:| -3400 (-328)) (|:| -1594 (-328)) (|:| |totalpts| (-483)) (|:| |success| (-85))) (-1 (-328) (-328)) (-328) (-328) (-328) (-328) (-483) (-483) (-483)) 37 T ELT))) -(((-710) (-10 -7 (-15 -2473 ((-2 (|:| -3400 (-328)) (|:| -1594 (-328)) (|:| |totalpts| (-483)) (|:| |success| (-85))) (-1 (-328) (-328)) (-328) (-328) (-328) (-328) (-483) (-483) (-483))) (-15 -2474 ((-2 (|:| -3400 (-328)) (|:| -1594 (-328)) (|:| |totalpts| (-483)) (|:| |success| (-85))) (-1 (-328) (-328)) (-328) (-328) (-328) (-328) (-483) (-483) (-483))) (-15 -2475 ((-2 (|:| -3400 (-328)) (|:| -1594 (-328)) (|:| |totalpts| (-483)) (|:| |success| (-85))) (-1 (-328) (-328)) (-328) (-328) (-328) (-328) (-483) (-483) (-483))) (-15 -2476 ((-2 (|:| -3400 (-328)) (|:| -1594 (-328)) (|:| |totalpts| (-483)) (|:| |success| (-85))) (-1 (-328) (-328)) (-328) (-328) (-328) (-328) (-483) (-483))) (-15 -2477 ((-2 (|:| -3400 (-328)) (|:| -1594 (-328)) (|:| |totalpts| (-483)) (|:| |success| (-85))) (-1 (-328) (-328)) (-328) (-328) (-328) (-328) (-483) (-483))) (-15 -2478 ((-2 (|:| -3400 (-328)) (|:| -1594 (-328)) (|:| |totalpts| (-483)) (|:| |success| (-85))) (-1 (-328) (-328)) (-328) (-328) (-328) (-328) (-483) (-483))) (-15 -2479 ((-2 (|:| -3400 (-328)) (|:| -1594 (-328)) (|:| |totalpts| (-483)) (|:| |success| (-85))) (-1 (-328) (-328)) (-328) (-328) (-328) (-328) (-483) (-483))) (-15 -2480 ((-2 (|:| -3400 (-328)) (|:| -1594 (-328)) (|:| |totalpts| (-483)) (|:| |success| (-85))) (-1 (-328) (-328)) (-328) (-328) (-328) (-328) (-483) (-483))) (-15 -2481 ((-2 (|:| -3400 (-328)) (|:| -1594 (-328)) (|:| |totalpts| (-483)) (|:| |success| (-85))) (-1 (-328) (-328)) (-328) (-328) (-328) (-328) (-483) (-483))))) (T -710)) -((-2481 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-328) (-328))) (-5 *4 (-328)) (-5 *2 (-2 (|:| -3400 *4) (|:| -1594 *4) (|:| |totalpts| (-483)) (|:| |success| (-85)))) (-5 *1 (-710)) (-5 *5 (-483)))) (-2480 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-328) (-328))) (-5 *4 (-328)) (-5 *2 (-2 (|:| -3400 *4) (|:| -1594 *4) (|:| |totalpts| (-483)) (|:| |success| (-85)))) (-5 *1 (-710)) (-5 *5 (-483)))) (-2479 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-328) (-328))) (-5 *4 (-328)) (-5 *2 (-2 (|:| -3400 *4) (|:| -1594 *4) (|:| |totalpts| (-483)) (|:| |success| (-85)))) (-5 *1 (-710)) (-5 *5 (-483)))) (-2478 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-328) (-328))) (-5 *4 (-328)) (-5 *2 (-2 (|:| -3400 *4) (|:| -1594 *4) (|:| |totalpts| (-483)) (|:| |success| (-85)))) (-5 *1 (-710)) (-5 *5 (-483)))) (-2477 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-328) (-328))) (-5 *4 (-328)) (-5 *2 (-2 (|:| -3400 *4) (|:| -1594 *4) (|:| |totalpts| (-483)) (|:| |success| (-85)))) (-5 *1 (-710)) (-5 *5 (-483)))) (-2476 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-328) (-328))) (-5 *4 (-328)) (-5 *2 (-2 (|:| -3400 *4) (|:| -1594 *4) (|:| |totalpts| (-483)) (|:| |success| (-85)))) (-5 *1 (-710)) (-5 *5 (-483)))) (-2475 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-328) (-328))) (-5 *4 (-328)) (-5 *2 (-2 (|:| -3400 *4) (|:| -1594 *4) (|:| |totalpts| (-483)) (|:| |success| (-85)))) (-5 *1 (-710)) (-5 *5 (-483)))) (-2474 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-328) (-328))) (-5 *4 (-328)) (-5 *2 (-2 (|:| -3400 *4) (|:| -1594 *4) (|:| |totalpts| (-483)) (|:| |success| (-85)))) (-5 *1 (-710)) (-5 *5 (-483)))) (-2473 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-328) (-328))) (-5 *4 (-328)) (-5 *2 (-2 (|:| -3400 *4) (|:| -1594 *4) (|:| |totalpts| (-483)) (|:| |success| (-85)))) (-5 *1 (-710)) (-5 *5 (-483))))) -((-3703 (((-1123 |#1|) |#1| (-179) (-483)) 69 T ELT))) -(((-711 |#1|) (-10 -7 (-15 -3703 ((-1123 |#1|) |#1| (-179) (-483)))) (-886)) (T -711)) -((-3703 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-179)) (-5 *5 (-483)) (-5 *2 (-1123 *3)) (-5 *1 (-711 *3)) (-4 *3 (-886))))) -((-3621 (((-483) $) 17 T ELT)) (-3186 (((-85) $) 10 T ELT)) (-3381 (($ $) 19 T ELT))) -(((-712 |#1|) (-10 -7 (-15 -3381 (|#1| |#1|)) (-15 -3621 ((-483) |#1|)) (-15 -3186 ((-85) |#1|))) (-713)) (T -712)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-3187 (((-85) $) 31 T ELT)) (-1310 (((-3 $ "failed") $ $) 35 T ELT)) (-3621 (((-483) $) 38 T ELT)) (-3722 (($) 30 T CONST)) (-3185 (((-85) $) 28 T ELT)) (-1212 (((-85) $ $) 33 T ELT)) (-3186 (((-85) $) 39 T ELT)) (-2530 (($ $ $) 23 T ELT)) (-2856 (($ $ $) 22 T ELT)) (-3241 (((-1071) $) 11 T ELT)) (-3242 (((-1032) $) 12 T ELT)) (-3944 (((-771) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-3381 (($ $) 37 T ELT)) (-2659 (($) 29 T CONST)) (-2565 (((-85) $ $) 21 T ELT)) (-2566 (((-85) $ $) 19 T ELT)) (-3055 (((-85) $ $) 8 T ELT)) (-2683 (((-85) $ $) 20 T ELT)) (-2684 (((-85) $ $) 18 T ELT)) (-3835 (($ $ $) 42 T ELT) (($ $) 41 T ELT)) (-3837 (($ $ $) 25 T ELT)) (* (($ (-829) $) 26 T ELT) (($ (-693) $) 32 T ELT) (($ (-483) $) 40 T ELT))) -(((-713) (-113)) (T -713)) -((-3186 (*1 *2 *1) (-12 (-4 *1 (-713)) (-5 *2 (-85)))) (-3621 (*1 *2 *1) (-12 (-4 *1 (-713)) (-5 *2 (-483)))) (-3381 (*1 *1 *1) (-4 *1 (-713)))) -(-13 (-720) (-21) (-10 -8 (-15 -3186 ((-85) $)) (-15 -3621 ((-483) $)) (-15 -3381 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-551 (-771)) . T) ((-13) . T) ((-587 (-483)) . T) ((-715) . T) ((-717) . T) ((-720) . T) ((-755) . T) ((-758) . T) ((-1012) . T) ((-1127) . T)) -((-3185 (((-85) $) 10 T ELT))) -(((-714 |#1|) (-10 -7 (-15 -3185 ((-85) |#1|))) (-715)) (T -714)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-3187 (((-85) $) 31 T ELT)) (-3722 (($) 30 T CONST)) (-3185 (((-85) $) 28 T ELT)) (-1212 (((-85) $ $) 33 T ELT)) (-2530 (($ $ $) 23 T ELT)) (-2856 (($ $ $) 22 T ELT)) (-3241 (((-1071) $) 11 T ELT)) (-3242 (((-1032) $) 12 T ELT)) (-3944 (((-771) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2659 (($) 29 T CONST)) (-2565 (((-85) $ $) 21 T ELT)) (-2566 (((-85) $ $) 19 T ELT)) (-3055 (((-85) $ $) 8 T ELT)) (-2683 (((-85) $ $) 20 T ELT)) (-2684 (((-85) $ $) 18 T ELT)) (-3837 (($ $ $) 25 T ELT)) (* (($ (-829) $) 26 T ELT) (($ (-693) $) 32 T ELT))) -(((-715) (-113)) (T -715)) -((-3185 (*1 *2 *1) (-12 (-4 *1 (-715)) (-5 *2 (-85))))) -(-13 (-717) (-23) (-10 -8 (-15 -3185 ((-85) $)))) -(((-23) . T) ((-25) . T) ((-72) . T) ((-551 (-771)) . T) ((-13) . T) ((-717) . T) ((-755) . T) ((-758) . T) ((-1012) . T) ((-1127) . T)) -((-2567 (((-85) $ $) 7 T ELT)) (-3187 (((-85) $) 31 T ELT)) (-2482 (($ $ $) 36 T ELT)) (-1310 (((-3 $ "failed") $ $) 35 T ELT)) (-3722 (($) 30 T CONST)) (-3185 (((-85) $) 28 T ELT)) (-1212 (((-85) $ $) 33 T ELT)) (-2530 (($ $ $) 23 T ELT)) (-2856 (($ $ $) 22 T ELT)) (-3241 (((-1071) $) 11 T ELT)) (-3242 (((-1032) $) 12 T ELT)) (-3944 (((-771) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2659 (($) 29 T CONST)) (-2565 (((-85) $ $) 21 T ELT)) (-2566 (((-85) $ $) 19 T ELT)) (-3055 (((-85) $ $) 8 T ELT)) (-2683 (((-85) $ $) 20 T ELT)) (-2684 (((-85) $ $) 18 T ELT)) (-3837 (($ $ $) 25 T ELT)) (* (($ (-829) $) 26 T ELT) (($ (-693) $) 32 T ELT))) +((-2005 (((-1084 |#1|) (-694)) 114 T ELT)) (-3329 (((-1178 |#1|) (-1178 |#1|) (-830)) 107 T ELT)) (-2003 (((-1184) (-1178 (-583 (-2 (|:| -3401 |#1|) (|:| -2400 (-1033))))) |#1|) 122 T ELT)) (-2007 (((-1178 |#1|) (-1178 |#1|) (-694)) 53 T ELT)) (-2994 (((-1178 |#1|) (-830)) 109 T ELT)) (-2009 (((-1178 |#1|) (-1178 |#1|) (-484)) 30 T ELT)) (-2004 (((-1084 |#1|) (-1178 |#1|)) 115 T ELT)) (-2013 (((-1178 |#1|) (-830)) 136 T ELT)) (-2011 (((-85) (-1178 |#1|)) 119 T ELT)) (-3132 (((-1178 |#1|) (-1178 |#1|) (-830)) 99 T ELT)) (-2014 (((-1084 |#1|) (-1178 |#1|)) 130 T ELT)) (-2010 (((-830) (-1178 |#1|)) 95 T ELT)) (-2484 (((-1178 |#1|) (-1178 |#1|)) 38 T ELT)) (-2400 (((-1178 |#1|) (-830) (-830)) 139 T ELT)) (-2008 (((-1178 |#1|) (-1178 |#1|) (-1033) (-1033)) 29 T ELT)) (-2006 (((-1178 |#1|) (-1178 |#1|) (-694) (-1033)) 54 T ELT)) (-2012 (((-1178 (-1178 |#1|)) (-830)) 135 T ELT)) (-3948 (((-1178 |#1|) (-1178 |#1|) (-1178 |#1|)) 120 T ELT)) (** (((-1178 |#1|) (-1178 |#1|) (-484)) 67 T ELT)) (* (((-1178 |#1|) (-1178 |#1|) (-1178 |#1|)) 31 T ELT))) +(((-466 |#1|) (-10 -7 (-15 -2003 ((-1184) (-1178 (-583 (-2 (|:| -3401 |#1|) (|:| -2400 (-1033))))) |#1|)) (-15 -2994 ((-1178 |#1|) (-830))) (-15 -2400 ((-1178 |#1|) (-830) (-830))) (-15 -2004 ((-1084 |#1|) (-1178 |#1|))) (-15 -2005 ((-1084 |#1|) (-694))) (-15 -2006 ((-1178 |#1|) (-1178 |#1|) (-694) (-1033))) (-15 -2007 ((-1178 |#1|) (-1178 |#1|) (-694))) (-15 -2008 ((-1178 |#1|) (-1178 |#1|) (-1033) (-1033))) (-15 -2009 ((-1178 |#1|) (-1178 |#1|) (-484))) (-15 ** ((-1178 |#1|) (-1178 |#1|) (-484))) (-15 * ((-1178 |#1|) (-1178 |#1|) (-1178 |#1|))) (-15 -3948 ((-1178 |#1|) (-1178 |#1|) (-1178 |#1|))) (-15 -3132 ((-1178 |#1|) (-1178 |#1|) (-830))) (-15 -3329 ((-1178 |#1|) (-1178 |#1|) (-830))) (-15 -2484 ((-1178 |#1|) (-1178 |#1|))) (-15 -2010 ((-830) (-1178 |#1|))) (-15 -2011 ((-85) (-1178 |#1|))) (-15 -2012 ((-1178 (-1178 |#1|)) (-830))) (-15 -2013 ((-1178 |#1|) (-830))) (-15 -2014 ((-1084 |#1|) (-1178 |#1|)))) (-299)) (T -466)) +((-2014 (*1 *2 *3) (-12 (-5 *3 (-1178 *4)) (-4 *4 (-299)) (-5 *2 (-1084 *4)) (-5 *1 (-466 *4)))) (-2013 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1178 *4)) (-5 *1 (-466 *4)) (-4 *4 (-299)))) (-2012 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1178 (-1178 *4))) (-5 *1 (-466 *4)) (-4 *4 (-299)))) (-2011 (*1 *2 *3) (-12 (-5 *3 (-1178 *4)) (-4 *4 (-299)) (-5 *2 (-85)) (-5 *1 (-466 *4)))) (-2010 (*1 *2 *3) (-12 (-5 *3 (-1178 *4)) (-4 *4 (-299)) (-5 *2 (-830)) (-5 *1 (-466 *4)))) (-2484 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-299)) (-5 *1 (-466 *3)))) (-3329 (*1 *2 *2 *3) (-12 (-5 *2 (-1178 *4)) (-5 *3 (-830)) (-4 *4 (-299)) (-5 *1 (-466 *4)))) (-3132 (*1 *2 *2 *3) (-12 (-5 *2 (-1178 *4)) (-5 *3 (-830)) (-4 *4 (-299)) (-5 *1 (-466 *4)))) (-3948 (*1 *2 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-299)) (-5 *1 (-466 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-299)) (-5 *1 (-466 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1178 *4)) (-5 *3 (-484)) (-4 *4 (-299)) (-5 *1 (-466 *4)))) (-2009 (*1 *2 *2 *3) (-12 (-5 *2 (-1178 *4)) (-5 *3 (-484)) (-4 *4 (-299)) (-5 *1 (-466 *4)))) (-2008 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1178 *4)) (-5 *3 (-1033)) (-4 *4 (-299)) (-5 *1 (-466 *4)))) (-2007 (*1 *2 *2 *3) (-12 (-5 *2 (-1178 *4)) (-5 *3 (-694)) (-4 *4 (-299)) (-5 *1 (-466 *4)))) (-2006 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1178 *5)) (-5 *3 (-694)) (-5 *4 (-1033)) (-4 *5 (-299)) (-5 *1 (-466 *5)))) (-2005 (*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1084 *4)) (-5 *1 (-466 *4)) (-4 *4 (-299)))) (-2004 (*1 *2 *3) (-12 (-5 *3 (-1178 *4)) (-4 *4 (-299)) (-5 *2 (-1084 *4)) (-5 *1 (-466 *4)))) (-2400 (*1 *2 *3 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1178 *4)) (-5 *1 (-466 *4)) (-4 *4 (-299)))) (-2994 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1178 *4)) (-5 *1 (-466 *4)) (-4 *4 (-299)))) (-2003 (*1 *2 *3 *4) (-12 (-5 *3 (-1178 (-583 (-2 (|:| -3401 *4) (|:| -2400 (-1033)))))) (-4 *4 (-299)) (-5 *2 (-1184)) (-5 *1 (-466 *4))))) +((-2000 (((-632 (-1137)) $) NIL T ELT)) (-1996 (((-632 (-1135)) $) NIL T ELT)) (-1998 (((-632 (-1134)) $) NIL T ELT)) (-2001 (((-632 (-488)) $) NIL T ELT)) (-1997 (((-632 (-486)) $) NIL T ELT)) (-1999 (((-632 (-485)) $) NIL T ELT)) (-1995 (((-694) $ (-102)) NIL T ELT)) (-2002 (((-632 (-101)) $) 26 T ELT)) (-2015 (((-1033) $ (-1033)) 31 T ELT)) (-3418 (((-1033) $) 30 T ELT)) (-2558 (((-85) $) 20 T ELT)) (-2017 (($ (-337)) 14 T ELT) (($ (-1072)) 16 T ELT)) (-2016 (((-85) $) 27 T ELT)) (-3945 (((-772) $) 34 T ELT)) (-1699 (($ $) 28 T ELT))) +(((-467) (-13 (-465) (-552 (-772)) (-10 -8 (-15 -2017 ($ (-337))) (-15 -2017 ($ (-1072))) (-15 -2016 ((-85) $)) (-15 -2558 ((-85) $)) (-15 -3418 ((-1033) $)) (-15 -2015 ((-1033) $ (-1033)))))) (T -467)) +((-2017 (*1 *1 *2) (-12 (-5 *2 (-337)) (-5 *1 (-467)))) (-2017 (*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-467)))) (-2016 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-467)))) (-2558 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-467)))) (-3418 (*1 *2 *1) (-12 (-5 *2 (-1033)) (-5 *1 (-467)))) (-2015 (*1 *2 *1 *2) (-12 (-5 *2 (-1033)) (-5 *1 (-467))))) +((-2019 (((-1 |#1| |#1|) |#1|) 11 T ELT)) (-2018 (((-1 |#1| |#1|)) 10 T ELT))) +(((-468 |#1|) (-10 -7 (-15 -2018 ((-1 |#1| |#1|))) (-15 -2019 ((-1 |#1| |#1|) |#1|))) (-13 (-663) (-25))) (T -468)) +((-2019 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-468 *3)) (-4 *3 (-13 (-663) (-25))))) (-2018 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-468 *3)) (-4 *3 (-13 (-663) (-25)))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-3773 (((-583 (-453 (-694) |#1|)) $) NIL T ELT)) (-2483 (($ $ $) NIL T ELT)) (-1311 (((-3 $ "failed") $ $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-3958 (($ $) NIL T ELT)) (-3186 (((-85) $) NIL T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2893 (($ (-694) |#1|) NIL T ELT)) (-2531 (($ $ $) NIL T ELT)) (-2857 (($ $ $) NIL T ELT)) (-3957 (($ (-1 (-694) (-694)) $) NIL T ELT)) (-1983 ((|#1| $) NIL T ELT)) (-3174 (((-694) $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3971 (($ (-583 (-453 (-694) |#1|))) NIL T ELT)) (-3945 (((-772) $) 28 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2660 (($) NIL T CONST)) (-2566 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT))) +(((-469 |#1|) (-13 (-717) (-449 (-694) |#1|)) (-756)) (T -469)) +NIL +((-2021 (((-583 |#2|) (-1084 |#1|) |#3|) 98 T ELT)) (-2022 (((-583 (-2 (|:| |outval| |#2|) (|:| |outmult| (-484)) (|:| |outvect| (-583 (-630 |#2|))))) (-630 |#1|) |#3| (-1 (-347 (-1084 |#1|)) (-1084 |#1|))) 114 T ELT)) (-2020 (((-1084 |#1|) (-630 |#1|)) 110 T ELT))) +(((-470 |#1| |#2| |#3|) (-10 -7 (-15 -2020 ((-1084 |#1|) (-630 |#1|))) (-15 -2021 ((-583 |#2|) (-1084 |#1|) |#3|)) (-15 -2022 ((-583 (-2 (|:| |outval| |#2|) (|:| |outmult| (-484)) (|:| |outvect| (-583 (-630 |#2|))))) (-630 |#1|) |#3| (-1 (-347 (-1084 |#1|)) (-1084 |#1|))))) (-312) (-312) (-13 (-312) (-755))) (T -470)) +((-2022 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-630 *6)) (-5 *5 (-1 (-347 (-1084 *6)) (-1084 *6))) (-4 *6 (-312)) (-5 *2 (-583 (-2 (|:| |outval| *7) (|:| |outmult| (-484)) (|:| |outvect| (-583 (-630 *7)))))) (-5 *1 (-470 *6 *7 *4)) (-4 *7 (-312)) (-4 *4 (-13 (-312) (-755))))) (-2021 (*1 *2 *3 *4) (-12 (-5 *3 (-1084 *5)) (-4 *5 (-312)) (-5 *2 (-583 *6)) (-5 *1 (-470 *5 *6 *4)) (-4 *6 (-312)) (-4 *4 (-13 (-312) (-755))))) (-2020 (*1 *2 *3) (-12 (-5 *3 (-630 *4)) (-4 *4 (-312)) (-5 *2 (-1084 *4)) (-5 *1 (-470 *4 *5 *6)) (-4 *5 (-312)) (-4 *6 (-13 (-312) (-755)))))) +((-2555 (((-632 (-1137)) $ (-1137)) NIL T ELT)) (-2556 (((-632 (-488)) $ (-488)) NIL T ELT)) (-2554 (((-694) $ (-102)) 39 T ELT)) (-2557 (((-632 (-101)) $ (-101)) 40 T ELT)) (-2000 (((-632 (-1137)) $) NIL T ELT)) (-1996 (((-632 (-1135)) $) NIL T ELT)) (-1998 (((-632 (-1134)) $) NIL T ELT)) (-2001 (((-632 (-488)) $) NIL T ELT)) (-1997 (((-632 (-486)) $) NIL T ELT)) (-1999 (((-632 (-485)) $) NIL T ELT)) (-1995 (((-694) $ (-102)) 35 T ELT)) (-2002 (((-632 (-101)) $) 37 T ELT)) (-2439 (((-85) $) 27 T ELT)) (-2440 (((-632 $) (-515) (-865)) 18 T ELT) (((-632 $) (-430) (-865)) 24 T ELT)) (-3945 (((-772) $) 48 T ELT)) (-1699 (($ $) 42 T ELT))) +(((-471) (-13 (-691 (-515)) (-552 (-772)) (-10 -8 (-15 -2440 ((-632 $) (-430) (-865)))))) (T -471)) +((-2440 (*1 *2 *3 *4) (-12 (-5 *3 (-430)) (-5 *4 (-865)) (-5 *2 (-632 (-471))) (-5 *1 (-471))))) +((-2527 (((-750 (-484))) 12 T ELT)) (-2526 (((-750 (-484))) 14 T ELT)) (-2514 (((-743 (-484))) 9 T ELT))) +(((-472) (-10 -7 (-15 -2514 ((-743 (-484)))) (-15 -2527 ((-750 (-484)))) (-15 -2526 ((-750 (-484)))))) (T -472)) +((-2526 (*1 *2) (-12 (-5 *2 (-750 (-484))) (-5 *1 (-472)))) (-2527 (*1 *2) (-12 (-5 *2 (-750 (-484))) (-5 *1 (-472)))) (-2514 (*1 *2) (-12 (-5 *2 (-743 (-484))) (-5 *1 (-472))))) +((-2568 (((-85) $ $) NIL T ELT)) (-2026 (((-1072) $) 55 T ELT)) (-3260 (((-85) $) 51 T ELT)) (-3256 (((-1089) $) 52 T ELT)) (-3261 (((-85) $) 49 T ELT)) (-3534 (((-1072) $) 50 T ELT)) (-2025 (($ (-1072)) 56 T ELT)) (-3263 (((-85) $) NIL T ELT)) (-3265 (((-85) $) NIL T ELT)) (-3262 (((-85) $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2028 (($ $ (-583 (-1089))) 21 T ELT)) (-2031 (((-51) $) 23 T ELT)) (-3259 (((-85) $) NIL T ELT)) (-3255 (((-484) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2383 (($ $ (-583 (-1089)) (-1089)) 73 T ELT)) (-3258 (((-85) $) NIL T ELT)) (-3254 (((-179) $) NIL T ELT)) (-2027 (($ $) 44 T ELT)) (-3253 (((-772) $) NIL T ELT)) (-3266 (((-85) $ $) NIL T ELT)) (-3799 (($ $ (-484)) NIL T ELT) (($ $ (-583 (-484))) NIL T ELT)) (-3257 (((-583 $) $) 30 T ELT)) (-2024 (((-1089) (-583 $)) 57 T ELT)) (-3971 (($ (-1072)) NIL T ELT) (($ (-1089)) 19 T ELT) (($ (-484)) 8 T ELT) (($ (-179)) 28 T ELT) (($ (-772)) NIL T ELT) (($ (-583 $)) 65 T ELT) (((-1015) $) 12 T ELT) (($ (-1015)) 13 T ELT)) (-2023 (((-1089) (-1089) (-583 $)) 60 T ELT)) (-3945 (((-772) $) 54 T ELT)) (-3251 (($ $) 59 T ELT)) (-3252 (($ $) 58 T ELT)) (-2029 (($ $ (-583 $)) 66 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3264 (((-85) $) 29 T ELT)) (-2660 (($) 9 T CONST)) (-2666 (($) 11 T CONST)) (-3056 (((-85) $ $) 74 T ELT)) (-3948 (($ $ $) 82 T ELT)) (-3838 (($ $ $) 75 T ELT)) (** (($ $ (-694)) 81 T ELT) (($ $ (-484)) 80 T ELT)) (* (($ $ $) 76 T ELT)) (-3956 (((-484) $) NIL T ELT))) +(((-473) (-13 (-1016 (-1072) (-1089) (-484) (-179) (-772)) (-553 (-1015)) (-10 -8 (-15 -2031 ((-51) $)) (-15 -3971 ($ (-1015))) (-15 -2029 ($ $ (-583 $))) (-15 -2383 ($ $ (-583 (-1089)) (-1089))) (-15 -2028 ($ $ (-583 (-1089)))) (-15 -3838 ($ $ $)) (-15 * ($ $ $)) (-15 -3948 ($ $ $)) (-15 ** ($ $ (-694))) (-15 ** ($ $ (-484))) (-15 -2660 ($) -3951) (-15 -2666 ($) -3951) (-15 -2027 ($ $)) (-15 -2026 ((-1072) $)) (-15 -2025 ($ (-1072))) (-15 -2024 ((-1089) (-583 $))) (-15 -2023 ((-1089) (-1089) (-583 $)))))) (T -473)) +((-2031 (*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-473)))) (-3971 (*1 *1 *2) (-12 (-5 *2 (-1015)) (-5 *1 (-473)))) (-2029 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-473))) (-5 *1 (-473)))) (-2383 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-1089))) (-5 *3 (-1089)) (-5 *1 (-473)))) (-2028 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-1089))) (-5 *1 (-473)))) (-3838 (*1 *1 *1 *1) (-5 *1 (-473))) (* (*1 *1 *1 *1) (-5 *1 (-473))) (-3948 (*1 *1 *1 *1) (-5 *1 (-473))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-473)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-473)))) (-2660 (*1 *1) (-5 *1 (-473))) (-2666 (*1 *1) (-5 *1 (-473))) (-2027 (*1 *1 *1) (-5 *1 (-473))) (-2026 (*1 *2 *1) (-12 (-5 *2 (-1072)) (-5 *1 (-473)))) (-2025 (*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-473)))) (-2024 (*1 *2 *3) (-12 (-5 *3 (-583 (-473))) (-5 *2 (-1089)) (-5 *1 (-473)))) (-2023 (*1 *2 *2 *3) (-12 (-5 *2 (-1089)) (-5 *3 (-583 (-473))) (-5 *1 (-473))))) +((-2030 (((-473) (-1089)) 15 T ELT)) (-2031 ((|#1| (-473)) 20 T ELT))) +(((-474 |#1|) (-10 -7 (-15 -2030 ((-473) (-1089))) (-15 -2031 (|#1| (-473)))) (-1128)) (T -474)) +((-2031 (*1 *2 *3) (-12 (-5 *3 (-473)) (-5 *1 (-474 *2)) (-4 *2 (-1128)))) (-2030 (*1 *2 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-473)) (-5 *1 (-474 *4)) (-4 *4 (-1128))))) +((-3452 ((|#2| |#2|) 17 T ELT)) (-3450 ((|#2| |#2|) 13 T ELT)) (-3453 ((|#2| |#2| (-484) (-484)) 20 T ELT)) (-3451 ((|#2| |#2|) 15 T ELT))) +(((-475 |#1| |#2|) (-10 -7 (-15 -3450 (|#2| |#2|)) (-15 -3451 (|#2| |#2|)) (-15 -3452 (|#2| |#2|)) (-15 -3453 (|#2| |#2| (-484) (-484)))) (-13 (-495) (-120)) (-1171 |#1|)) (T -475)) +((-3453 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-484)) (-4 *4 (-13 (-495) (-120))) (-5 *1 (-475 *4 *2)) (-4 *2 (-1171 *4)))) (-3452 (*1 *2 *2) (-12 (-4 *3 (-13 (-495) (-120))) (-5 *1 (-475 *3 *2)) (-4 *2 (-1171 *3)))) (-3451 (*1 *2 *2) (-12 (-4 *3 (-13 (-495) (-120))) (-5 *1 (-475 *3 *2)) (-4 *2 (-1171 *3)))) (-3450 (*1 *2 *2) (-12 (-4 *3 (-13 (-495) (-120))) (-5 *1 (-475 *3 *2)) (-4 *2 (-1171 *3))))) +((-2034 (((-583 (-249 (-857 |#2|))) (-583 |#2|) (-583 (-1089))) 32 T ELT)) (-2032 (((-583 |#2|) (-857 |#1|) |#3|) 54 T ELT) (((-583 |#2|) (-1084 |#1|) |#3|) 53 T ELT)) (-2033 (((-583 (-583 |#2|)) (-583 (-857 |#1|)) (-583 (-857 |#1|)) (-583 (-1089)) |#3|) 106 T ELT))) +(((-476 |#1| |#2| |#3|) (-10 -7 (-15 -2032 ((-583 |#2|) (-1084 |#1|) |#3|)) (-15 -2032 ((-583 |#2|) (-857 |#1|) |#3|)) (-15 -2033 ((-583 (-583 |#2|)) (-583 (-857 |#1|)) (-583 (-857 |#1|)) (-583 (-1089)) |#3|)) (-15 -2034 ((-583 (-249 (-857 |#2|))) (-583 |#2|) (-583 (-1089))))) (-391) (-312) (-13 (-312) (-755))) (T -476)) +((-2034 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *6)) (-5 *4 (-583 (-1089))) (-4 *6 (-312)) (-5 *2 (-583 (-249 (-857 *6)))) (-5 *1 (-476 *5 *6 *7)) (-4 *5 (-391)) (-4 *7 (-13 (-312) (-755))))) (-2033 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-583 (-857 *6))) (-5 *4 (-583 (-1089))) (-4 *6 (-391)) (-5 *2 (-583 (-583 *7))) (-5 *1 (-476 *6 *7 *5)) (-4 *7 (-312)) (-4 *5 (-13 (-312) (-755))))) (-2032 (*1 *2 *3 *4) (-12 (-5 *3 (-857 *5)) (-4 *5 (-391)) (-5 *2 (-583 *6)) (-5 *1 (-476 *5 *6 *4)) (-4 *6 (-312)) (-4 *4 (-13 (-312) (-755))))) (-2032 (*1 *2 *3 *4) (-12 (-5 *3 (-1084 *5)) (-4 *5 (-391)) (-5 *2 (-583 *6)) (-5 *1 (-476 *5 *6 *4)) (-4 *6 (-312)) (-4 *4 (-13 (-312) (-755)))))) +((-2037 ((|#2| |#2| |#1|) 17 T ELT)) (-2035 ((|#2| (-583 |#2|)) 30 T ELT)) (-2036 ((|#2| (-583 |#2|)) 51 T ELT))) +(((-477 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2035 (|#2| (-583 |#2|))) (-15 -2036 (|#2| (-583 |#2|))) (-15 -2037 (|#2| |#2| |#1|))) (-258) (-1154 |#1|) |#1| (-1 |#1| |#1| (-694))) (T -477)) +((-2037 (*1 *2 *2 *3) (-12 (-4 *3 (-258)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-694))) (-5 *1 (-477 *3 *2 *4 *5)) (-4 *2 (-1154 *3)))) (-2036 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-1154 *4)) (-5 *1 (-477 *4 *2 *5 *6)) (-4 *4 (-258)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-694))))) (-2035 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-1154 *4)) (-5 *1 (-477 *4 *2 *5 *6)) (-4 *4 (-258)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-694)))))) +((-3731 (((-347 (-1084 |#4|)) (-1084 |#4|) (-1 (-347 (-1084 |#3|)) (-1084 |#3|))) 90 T ELT) (((-347 |#4|) |#4| (-1 (-347 (-1084 |#3|)) (-1084 |#3|))) 213 T ELT))) +(((-478 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3731 ((-347 |#4|) |#4| (-1 (-347 (-1084 |#3|)) (-1084 |#3|)))) (-15 -3731 ((-347 (-1084 |#4|)) (-1084 |#4|) (-1 (-347 (-1084 |#3|)) (-1084 |#3|))))) (-756) (-717) (-13 (-258) (-120)) (-861 |#3| |#2| |#1|)) (T -478)) +((-3731 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-347 (-1084 *7)) (-1084 *7))) (-4 *7 (-13 (-258) (-120))) (-4 *5 (-756)) (-4 *6 (-717)) (-4 *8 (-861 *7 *6 *5)) (-5 *2 (-347 (-1084 *8))) (-5 *1 (-478 *5 *6 *7 *8)) (-5 *3 (-1084 *8)))) (-3731 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-347 (-1084 *7)) (-1084 *7))) (-4 *7 (-13 (-258) (-120))) (-4 *5 (-756)) (-4 *6 (-717)) (-5 *2 (-347 *3)) (-5 *1 (-478 *5 *6 *7 *3)) (-4 *3 (-861 *7 *6 *5))))) +((-3452 ((|#4| |#4|) 74 T ELT)) (-3450 ((|#4| |#4|) 70 T ELT)) (-3453 ((|#4| |#4| (-484) (-484)) 76 T ELT)) (-3451 ((|#4| |#4|) 72 T ELT))) +(((-479 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3450 (|#4| |#4|)) (-15 -3451 (|#4| |#4|)) (-15 -3452 (|#4| |#4|)) (-15 -3453 (|#4| |#4| (-484) (-484)))) (-13 (-312) (-319) (-553 (-484))) (-1154 |#1|) (-661 |#1| |#2|) (-1171 |#3|)) (T -479)) +((-3453 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-484)) (-4 *4 (-13 (-312) (-319) (-553 *3))) (-4 *5 (-1154 *4)) (-4 *6 (-661 *4 *5)) (-5 *1 (-479 *4 *5 *6 *2)) (-4 *2 (-1171 *6)))) (-3452 (*1 *2 *2) (-12 (-4 *3 (-13 (-312) (-319) (-553 (-484)))) (-4 *4 (-1154 *3)) (-4 *5 (-661 *3 *4)) (-5 *1 (-479 *3 *4 *5 *2)) (-4 *2 (-1171 *5)))) (-3451 (*1 *2 *2) (-12 (-4 *3 (-13 (-312) (-319) (-553 (-484)))) (-4 *4 (-1154 *3)) (-4 *5 (-661 *3 *4)) (-5 *1 (-479 *3 *4 *5 *2)) (-4 *2 (-1171 *5)))) (-3450 (*1 *2 *2) (-12 (-4 *3 (-13 (-312) (-319) (-553 (-484)))) (-4 *4 (-1154 *3)) (-4 *5 (-661 *3 *4)) (-5 *1 (-479 *3 *4 *5 *2)) (-4 *2 (-1171 *5))))) +((-3452 ((|#2| |#2|) 27 T ELT)) (-3450 ((|#2| |#2|) 23 T ELT)) (-3453 ((|#2| |#2| (-484) (-484)) 29 T ELT)) (-3451 ((|#2| |#2|) 25 T ELT))) +(((-480 |#1| |#2|) (-10 -7 (-15 -3450 (|#2| |#2|)) (-15 -3451 (|#2| |#2|)) (-15 -3452 (|#2| |#2|)) (-15 -3453 (|#2| |#2| (-484) (-484)))) (-13 (-312) (-319) (-553 (-484))) (-1171 |#1|)) (T -480)) +((-3453 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-484)) (-4 *4 (-13 (-312) (-319) (-553 *3))) (-5 *1 (-480 *4 *2)) (-4 *2 (-1171 *4)))) (-3452 (*1 *2 *2) (-12 (-4 *3 (-13 (-312) (-319) (-553 (-484)))) (-5 *1 (-480 *3 *2)) (-4 *2 (-1171 *3)))) (-3451 (*1 *2 *2) (-12 (-4 *3 (-13 (-312) (-319) (-553 (-484)))) (-5 *1 (-480 *3 *2)) (-4 *2 (-1171 *3)))) (-3450 (*1 *2 *2) (-12 (-4 *3 (-13 (-312) (-319) (-553 (-484)))) (-5 *1 (-480 *3 *2)) (-4 *2 (-1171 *3))))) +((-2038 (((-3 (-484) #1="failed") |#2| |#1| (-1 (-3 (-484) #1#) |#1|)) 18 T ELT) (((-3 (-484) #1#) |#2| |#1| (-484) (-1 (-3 (-484) #1#) |#1|)) 14 T ELT) (((-3 (-484) #1#) |#2| (-484) (-1 (-3 (-484) #1#) |#1|)) 30 T ELT))) +(((-481 |#1| |#2|) (-10 -7 (-15 -2038 ((-3 (-484) #1="failed") |#2| (-484) (-1 (-3 (-484) #1#) |#1|))) (-15 -2038 ((-3 (-484) #1#) |#2| |#1| (-484) (-1 (-3 (-484) #1#) |#1|))) (-15 -2038 ((-3 (-484) #1#) |#2| |#1| (-1 (-3 (-484) #1#) |#1|)))) (-961) (-1154 |#1|)) (T -481)) +((-2038 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-484) #1="failed") *4)) (-4 *4 (-961)) (-5 *2 (-484)) (-5 *1 (-481 *4 *3)) (-4 *3 (-1154 *4)))) (-2038 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-484) #1#) *4)) (-4 *4 (-961)) (-5 *2 (-484)) (-5 *1 (-481 *4 *3)) (-4 *3 (-1154 *4)))) (-2038 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-484) #1#) *5)) (-4 *5 (-961)) (-5 *2 (-484)) (-5 *1 (-481 *5 *3)) (-4 *3 (-1154 *5))))) +((-2047 (($ $ $) 87 T ELT)) (-3970 (((-347 $) $) 50 T ELT)) (-3157 (((-3 (-484) #1="failed") $) 62 T ELT)) (-3156 (((-484) $) 40 T ELT)) (-3024 (((-3 (-349 (-484)) #1#) $) 80 T ELT)) (-3023 (((-85) $) 24 T ELT)) (-3022 (((-349 (-484)) $) 78 T ELT)) (-3722 (((-85) $) 53 T ELT)) (-2040 (($ $ $ $) 94 T ELT)) (-1368 (($ $ $) 60 T ELT)) (-2796 (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) 75 T ELT)) (-3444 (((-632 $) $) 70 T ELT)) (-2044 (($ $) 22 T ELT)) (-2039 (($ $ $) 92 T ELT)) (-3445 (($) 63 T CONST)) (-1366 (($ $) 56 T ELT)) (-3731 (((-347 $) $) 48 T ELT)) (-2674 (((-85) $) 15 T ELT)) (-1606 (((-694) $) 30 T ELT)) (-3757 (($ $) 11 T ELT) (($ $ (-694)) NIL T ELT)) (-3399 (($ $) 16 T ELT)) (-3971 (((-484) $) NIL T ELT) (((-473) $) 39 T ELT) (((-800 (-484)) $) 43 T ELT) (((-329) $) 33 T ELT) (((-179) $) 36 T ELT)) (-3126 (((-694)) 9 T CONST)) (-2049 (((-85) $ $) 19 T ELT)) (-3101 (($ $ $) 58 T ELT))) +(((-482 |#1|) (-10 -7 (-15 -2039 (|#1| |#1| |#1|)) (-15 -2040 (|#1| |#1| |#1| |#1|)) (-15 -2044 (|#1| |#1|)) (-15 -3399 (|#1| |#1|)) (-15 -3024 ((-3 (-349 (-484)) #1="failed") |#1|)) (-15 -3022 ((-349 (-484)) |#1|)) (-15 -3023 ((-85) |#1|)) (-15 -2047 (|#1| |#1| |#1|)) (-15 -2049 ((-85) |#1| |#1|)) (-15 -2674 ((-85) |#1|)) (-15 -3445 (|#1|) -3951) (-15 -3444 ((-632 |#1|) |#1|)) (-15 -3971 ((-179) |#1|)) (-15 -3971 ((-329) |#1|)) (-15 -1368 (|#1| |#1| |#1|)) (-15 -1366 (|#1| |#1|)) (-15 -3101 (|#1| |#1| |#1|)) (-15 -2796 ((-798 (-484) |#1|) |#1| (-800 (-484)) (-798 (-484) |#1|))) (-15 -3971 ((-800 (-484)) |#1|)) (-15 -3971 ((-473) |#1|)) (-15 -3157 ((-3 (-484) #1#) |#1|)) (-15 -3156 ((-484) |#1|)) (-15 -3971 ((-484) |#1|)) (-15 -3757 (|#1| |#1| (-694))) (-15 -3757 (|#1| |#1|)) (-15 -1606 ((-694) |#1|)) (-15 -3731 ((-347 |#1|) |#1|)) (-15 -3970 ((-347 |#1|) |#1|)) (-15 -3722 ((-85) |#1|)) (-15 -3126 ((-694)) -3951)) (-483)) (T -482)) +((-3126 (*1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-482 *3)) (-4 *3 (-483))))) +((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) 55 T ELT)) (-2063 (($ $) 54 T ELT)) (-2061 (((-85) $) 52 T ELT)) (-2047 (($ $ $) 102 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-2042 (($ $ $ $) 91 T ELT)) (-3774 (($ $) 66 T ELT)) (-3970 (((-347 $) $) 67 T ELT)) (-1607 (((-85) $ $) 145 T ELT)) (-3622 (((-484) $) 134 T ELT)) (-2441 (($ $ $) 105 T ELT)) (-3723 (($) 23 T CONST)) (-3157 (((-3 (-484) "failed") $) 126 T ELT)) (-3156 (((-484) $) 127 T ELT)) (-2564 (($ $ $) 149 T ELT)) (-2279 (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) 124 T ELT) (((-630 (-484)) (-630 $)) 123 T ELT)) (-3466 (((-3 $ "failed") $) 42 T ELT)) (-3024 (((-3 (-349 (-484)) "failed") $) 99 T ELT)) (-3023 (((-85) $) 101 T ELT)) (-3022 (((-349 (-484)) $) 100 T ELT)) (-2994 (($) 98 T ELT) (($ $) 97 T ELT)) (-2563 (($ $ $) 148 T ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) 143 T ELT)) (-3722 (((-85) $) 68 T ELT)) (-2040 (($ $ $ $) 89 T ELT)) (-2048 (($ $ $) 103 T ELT)) (-3186 (((-85) $) 136 T ELT)) (-1368 (($ $ $) 114 T ELT)) (-2796 (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) 117 T ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-2673 (((-85) $) 109 T ELT)) (-3444 (((-632 $) $) 111 T ELT)) (-3187 (((-85) $) 135 T ELT)) (-1604 (((-3 (-583 $) #1="failed") (-583 $) $) 152 T ELT)) (-2041 (($ $ $ $) 90 T ELT)) (-2531 (($ $ $) 142 T ELT)) (-2857 (($ $ $) 141 T ELT)) (-2044 (($ $) 93 T ELT)) (-3832 (($ $) 106 T ELT)) (-2280 (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) 122 T ELT) (((-630 (-484)) (-1178 $)) 121 T ELT)) (-1890 (($ $ $) 60 T ELT) (($ (-583 $)) 59 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-2039 (($ $ $) 88 T ELT)) (-3445 (($) 110 T CONST)) (-2046 (($ $) 95 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) 58 T ELT)) (-3144 (($ $ $) 62 T ELT) (($ (-583 $)) 61 T ELT)) (-1366 (($ $) 115 T ELT)) (-3731 (((-347 $) $) 65 T ELT)) (-1605 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 151 T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) 150 T ELT)) (-3465 (((-3 $ "failed") $ $) 56 T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) 144 T ELT)) (-2674 (((-85) $) 108 T ELT)) (-1606 (((-694) $) 146 T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 147 T ELT)) (-3757 (($ $) 132 T ELT) (($ $ (-694)) 130 T ELT)) (-2045 (($ $) 94 T ELT)) (-3399 (($ $) 96 T ELT)) (-3971 (((-484) $) 128 T ELT) (((-473) $) 119 T ELT) (((-800 (-484)) $) 118 T ELT) (((-329) $) 113 T ELT) (((-179) $) 112 T ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ $) 57 T ELT) (($ (-484)) 125 T ELT)) (-3126 (((-694)) 40 T CONST)) (-2049 (((-85) $ $) 104 T ELT)) (-3101 (($ $ $) 116 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-2694 (($) 107 T ELT)) (-2062 (((-85) $ $) 53 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-2043 (($ $ $ $) 92 T ELT)) (-3382 (($ $) 133 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-2669 (($ $) 131 T ELT) (($ $ (-694)) 129 T ELT)) (-2566 (((-85) $ $) 140 T ELT)) (-2567 (((-85) $ $) 138 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-2684 (((-85) $ $) 139 T ELT)) (-2685 (((-85) $ $) 137 T ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ (-484) $) 120 T ELT))) +(((-483) (-113)) (T -483)) +((-2673 (*1 *2 *1) (-12 (-4 *1 (-483)) (-5 *2 (-85)))) (-2674 (*1 *2 *1) (-12 (-4 *1 (-483)) (-5 *2 (-85)))) (-2694 (*1 *1) (-4 *1 (-483))) (-3832 (*1 *1 *1) (-4 *1 (-483))) (-2441 (*1 *1 *1 *1) (-4 *1 (-483))) (-2049 (*1 *2 *1 *1) (-12 (-4 *1 (-483)) (-5 *2 (-85)))) (-2048 (*1 *1 *1 *1) (-4 *1 (-483))) (-2047 (*1 *1 *1 *1) (-4 *1 (-483))) (-3023 (*1 *2 *1) (-12 (-4 *1 (-483)) (-5 *2 (-85)))) (-3022 (*1 *2 *1) (-12 (-4 *1 (-483)) (-5 *2 (-349 (-484))))) (-3024 (*1 *2 *1) (|partial| -12 (-4 *1 (-483)) (-5 *2 (-349 (-484))))) (-2994 (*1 *1) (-4 *1 (-483))) (-2994 (*1 *1 *1) (-4 *1 (-483))) (-3399 (*1 *1 *1) (-4 *1 (-483))) (-2046 (*1 *1 *1) (-4 *1 (-483))) (-2045 (*1 *1 *1) (-4 *1 (-483))) (-2044 (*1 *1 *1) (-4 *1 (-483))) (-2043 (*1 *1 *1 *1 *1) (-4 *1 (-483))) (-2042 (*1 *1 *1 *1 *1) (-4 *1 (-483))) (-2041 (*1 *1 *1 *1 *1) (-4 *1 (-483))) (-2040 (*1 *1 *1 *1 *1) (-4 *1 (-483))) (-2039 (*1 *1 *1 *1) (-4 *1 (-483)))) +(-13 (-1133) (-258) (-740) (-190) (-553 (-484)) (-950 (-484)) (-580 (-484)) (-553 (-473)) (-553 (-800 (-484))) (-796 (-484)) (-116) (-933) (-120) (-1065) (-10 -8 (-15 -2673 ((-85) $)) (-15 -2674 ((-85) $)) (-6 -3993) (-15 -2694 ($)) (-15 -3832 ($ $)) (-15 -2441 ($ $ $)) (-15 -2049 ((-85) $ $)) (-15 -2048 ($ $ $)) (-15 -2047 ($ $ $)) (-15 -3023 ((-85) $)) (-15 -3022 ((-349 (-484)) $)) (-15 -3024 ((-3 (-349 (-484)) "failed") $)) (-15 -2994 ($)) (-15 -2994 ($ $)) (-15 -3399 ($ $)) (-15 -2046 ($ $)) (-15 -2045 ($ $)) (-15 -2044 ($ $)) (-15 -2043 ($ $ $ $)) (-15 -2042 ($ $ $ $)) (-15 -2041 ($ $ $ $)) (-15 -2040 ($ $ $ $)) (-15 -2039 ($ $ $)) (-6 -3992))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-120) . T) ((-555 (-484)) . T) ((-555 $) . T) ((-552 (-772)) . T) ((-116) . T) ((-146) . T) ((-553 (-179)) . T) ((-553 (-329)) . T) ((-553 (-473)) . T) ((-553 (-484)) . T) ((-553 (-800 (-484))) . T) ((-186 $) . T) ((-190) . T) ((-189) . T) ((-246) . T) ((-258) . T) ((-391) . T) ((-495) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 $) . T) ((-590 (-484)) . T) ((-590 $) . T) ((-582 $) . T) ((-580 (-484)) . T) ((-654 $) . T) ((-663) . T) ((-714) . T) ((-716) . T) ((-718) . T) ((-721) . T) ((-740) . T) ((-755) . T) ((-756) . T) ((-759) . T) ((-796 (-484)) . T) ((-832) . T) ((-933) . T) ((-950 (-484)) . T) ((-963 $) . T) ((-968 $) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1065) . T) ((-1128) . T) ((-1133) . T)) +((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) 8 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) 77 T ELT)) (-2063 (($ $) 78 T ELT)) (-2061 (((-85) $) NIL T ELT)) (-2047 (($ $ $) NIL T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2042 (($ $ $ $) 31 T ELT)) (-3774 (($ $) NIL T ELT)) (-3970 (((-347 $) $) NIL T ELT)) (-1607 (((-85) $ $) NIL T ELT)) (-3622 (((-484) $) NIL T ELT)) (-2441 (($ $ $) 71 T ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 (-484) #1#) $) NIL T ELT)) (-3156 (((-484) $) NIL T ELT)) (-2564 (($ $ $) 45 T ELT)) (-2279 (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) 53 T ELT) (((-630 (-484)) (-630 $)) 49 T ELT)) (-3466 (((-3 $ #1#) $) 74 T ELT)) (-3024 (((-3 (-349 (-484)) #1#) $) NIL T ELT)) (-3023 (((-85) $) NIL T ELT)) (-3022 (((-349 (-484)) $) NIL T ELT)) (-2994 (($) 55 T ELT) (($ $) 56 T ELT)) (-2563 (($ $ $) 70 T ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-3722 (((-85) $) NIL T ELT)) (-2040 (($ $ $ $) NIL T ELT)) (-2048 (($ $ $) 46 T ELT)) (-3186 (((-85) $) 22 T ELT)) (-1368 (($ $ $) NIL T ELT)) (-2796 (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) NIL T ELT)) (-1213 (((-85) $ $) 110 T ELT)) (-2410 (((-85) $) 9 T ELT)) (-2673 (((-85) $) 64 T ELT)) (-3444 (((-632 $) $) NIL T ELT)) (-3187 (((-85) $) 21 T ELT)) (-1604 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2041 (($ $ $ $) 32 T ELT)) (-2531 (($ $ $) 67 T ELT)) (-2857 (($ $ $) 66 T ELT)) (-2044 (($ $) NIL T ELT)) (-3832 (($ $) 29 T ELT)) (-2280 (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL T ELT) (((-630 (-484)) (-1178 $)) NIL T ELT)) (-1890 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3242 (((-1072) $) 44 T ELT)) (-2039 (($ $ $) NIL T ELT)) (-3445 (($) NIL T CONST)) (-2046 (($ $) 15 T ELT)) (-3243 (((-1033) $) 19 T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) 109 T ELT)) (-3144 (($ $ $) 75 T ELT) (($ (-583 $)) NIL T ELT)) (-1366 (($ $) NIL T ELT)) (-3731 (((-347 $) $) 95 T ELT)) (-1605 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT)) (-3465 (((-3 $ #1#) $ $) 93 T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-2674 (((-85) $) 65 T ELT)) (-1606 (((-694) $) NIL T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 69 T ELT)) (-3757 (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-2045 (($ $) 17 T ELT)) (-3399 (($ $) 13 T ELT)) (-3971 (((-484) $) 28 T ELT) (((-473) $) 41 T ELT) (((-800 (-484)) $) NIL T ELT) (((-329) $) 35 T ELT) (((-179) $) 38 T ELT)) (-3945 (((-772) $) 26 T ELT) (($ (-484)) 27 T ELT) (($ $) NIL T ELT) (($ (-484)) 27 T ELT)) (-3126 (((-694)) NIL T CONST)) (-2049 (((-85) $ $) NIL T ELT)) (-3101 (($ $ $) NIL T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2694 (($) 12 T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) 112 T ELT)) (-2043 (($ $ $ $) 30 T ELT)) (-3382 (($ $) 54 T ELT)) (-2660 (($) 10 T CONST)) (-2666 (($) 11 T CONST)) (-2669 (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-2566 (((-85) $ $) 59 T ELT)) (-2567 (((-85) $ $) 57 T ELT)) (-3056 (((-85) $ $) 7 T ELT)) (-2684 (((-85) $ $) 58 T ELT)) (-2685 (((-85) $ $) 20 T ELT)) (-3836 (($ $) 42 T ELT) (($ $ $) 16 T ELT)) (-3838 (($ $ $) 14 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) 63 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 61 T ELT) (($ $ $) 60 T ELT) (($ (-484) $) 61 T ELT))) +(((-484) (-13 (-483) (-10 -7 (-6 -3981) (-6 -3986) (-6 -3982)))) (T -484)) +NIL +((-2568 (((-85) $ $) NIL T ELT)) (-3136 (((-694)) NIL T ELT)) (-3723 (($) NIL T CONST)) (-2994 (($) NIL T ELT)) (-2531 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2857 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2010 (((-830) $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2400 (($ (-830)) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) NIL T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT))) +(((-485) (-13 (-752) (-10 -8 (-15 -3723 ($) -3951)))) (T -485)) +((-3723 (*1 *1) (-5 *1 (-485)))) +((-484) (|%not| (|%ilt| 16 (|%ilength| |#1|)))) +((-2568 (((-85) $ $) NIL T ELT)) (-3136 (((-694)) NIL T ELT)) (-3723 (($) NIL T CONST)) (-2994 (($) NIL T ELT)) (-2531 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2857 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2010 (((-830) $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2400 (($ (-830)) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) NIL T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT))) +(((-486) (-13 (-752) (-10 -8 (-15 -3723 ($) -3951)))) (T -486)) +((-3723 (*1 *1) (-5 *1 (-486)))) +((-484) (|%not| (|%ilt| 32 (|%ilength| |#1|)))) +((-2568 (((-85) $ $) NIL T ELT)) (-3136 (((-694)) NIL T ELT)) (-3723 (($) NIL T CONST)) (-2994 (($) NIL T ELT)) (-2531 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2857 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2010 (((-830) $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2400 (($ (-830)) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) NIL T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT))) +(((-487) (-13 (-752) (-10 -8 (-15 -3723 ($) -3951)))) (T -487)) +((-3723 (*1 *1) (-5 *1 (-487)))) +((-484) (|%not| (|%ilt| 64 (|%ilength| |#1|)))) +((-2568 (((-85) $ $) NIL T ELT)) (-3136 (((-694)) NIL T ELT)) (-3723 (($) NIL T CONST)) (-2994 (($) NIL T ELT)) (-2531 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2857 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2010 (((-830) $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2400 (($ (-830)) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) NIL T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT))) +(((-488) (-13 (-752) (-10 -8 (-15 -3723 ($) -3951)))) (T -488)) +((-3723 (*1 *1) (-5 *1 (-488)))) +((-484) (|%not| (|%ilt| 8 (|%ilength| |#1|)))) +((-2568 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3598 (($) NIL T ELT) (($ (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2198 (((-1184) $ |#1| |#1|) NIL (|has| $ (-6 -3995)) ELT)) (-3787 ((|#2| $ |#1| |#2|) NIL T ELT)) (-1569 (($ (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT)) (-3709 (($ (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT)) (-2231 (((-3 |#2| #1="failed") |#1| $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-1352 (($ $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT)) (-3404 (($ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-6 -3994)) ELT) (($ (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT) (((-3 |#2| #1#) |#1| $) NIL T ELT)) (-3405 (($ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT)) (-3841 (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -3994)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3994)) ELT) (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT)) (-1575 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3995)) ELT)) (-3112 ((|#2| $ |#1|) NIL T ELT)) (-2889 (((-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT) (((-583 |#2|) $) NIL (|has| $ (-6 -3994)) ELT)) (-2200 ((|#1| $) NIL (|has| |#1| (-756)) ELT)) (-2608 (((-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT) (((-583 |#2|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3245 (((-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#2| (-1013))) ELT)) (-2201 ((|#1| $) NIL (|has| |#1| (-756)) ELT)) (-1948 (($ (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3242 (((-1072) $) NIL (OR (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| |#2| (-1013))) ELT)) (-2232 (((-583 |#1|) $) NIL T ELT)) (-2233 (((-85) |#1| $) NIL T ELT)) (-1273 (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3608 (($ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2203 (((-583 |#1|) $) NIL T ELT)) (-2204 (((-85) |#1| $) NIL T ELT)) (-3243 (((-1033) $) NIL (OR (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| |#2| (-1013))) ELT)) (-3800 ((|#2| $) NIL (|has| |#1| (-756)) ELT)) (-1353 (((-3 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2199 (($ $ |#2|) NIL (|has| $ (-6 -3995)) ELT)) (-1274 (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1946 (((-85) (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3767 (($ $ (-583 (-249 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-249 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-583 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT)) (-1221 (((-85) $ $) NIL T ELT)) (-2202 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#2| (-1013))) ELT)) (-2205 (((-583 |#2|) $) NIL T ELT)) (-3402 (((-85) $) NIL T ELT)) (-3564 (($) NIL T ELT)) (-3799 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1465 (($) NIL T ELT) (($ (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1945 (((-694) (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT) (((-694) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (((-694) |#2| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#2| (-1013))) ELT) (((-694) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3399 (($ $) NIL T ELT)) (-3971 (((-473) $) NIL (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-553 (-473))) ELT)) (-3529 (($ (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3945 (((-772) $) NIL (OR (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-552 (-772))) (|has| |#2| (-552 (-772)))) ELT)) (-1264 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1275 (($ (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1947 (((-85) (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3056 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3956 (((-694) $) NIL (|has| $ (-6 -3994)) ELT))) +(((-489 |#1| |#2| |#3|) (-13 (-1106 |#1| |#2|) (-10 -7 (-6 -3994))) (-1013) (-1013) (-13 (-1106 |#1| |#2|) (-10 -7 (-6 -3994)))) (T -489)) +NIL +((-2050 (((-519 |#2|) |#2| (-550 |#2|) (-550 |#2|) (-1 (-1084 |#2|) (-1084 |#2|))) 50 T ELT))) +(((-490 |#1| |#2|) (-10 -7 (-15 -2050 ((-519 |#2|) |#2| (-550 |#2|) (-550 |#2|) (-1 (-1084 |#2|) (-1084 |#2|))))) (-495) (-13 (-27) (-363 |#1|))) (T -490)) +((-2050 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-550 *3)) (-5 *5 (-1 (-1084 *3) (-1084 *3))) (-4 *3 (-13 (-27) (-363 *6))) (-4 *6 (-495)) (-5 *2 (-519 *3)) (-5 *1 (-490 *6 *3))))) +((-2052 (((-519 |#5|) |#5| (-1 |#3| |#3|)) 217 T ELT)) (-2053 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 213 T ELT)) (-2051 (((-519 |#5|) |#5| (-1 |#3| |#3|)) 221 T ELT))) +(((-491 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2051 ((-519 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2052 ((-519 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2053 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-495) (-950 (-484))) (-13 (-27) (-363 |#1|)) (-1154 |#2|) (-1154 (-349 |#3|)) (-291 |#2| |#3| |#4|)) (T -491)) +((-2053 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1154 *5)) (-4 *5 (-13 (-27) (-363 *4))) (-4 *4 (-13 (-495) (-950 (-484)))) (-4 *7 (-1154 (-349 *6))) (-5 *1 (-491 *4 *5 *6 *7 *2)) (-4 *2 (-291 *5 *6 *7)))) (-2052 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1154 *6)) (-4 *6 (-13 (-27) (-363 *5))) (-4 *5 (-13 (-495) (-950 (-484)))) (-4 *8 (-1154 (-349 *7))) (-5 *2 (-519 *3)) (-5 *1 (-491 *5 *6 *7 *8 *3)) (-4 *3 (-291 *6 *7 *8)))) (-2051 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1154 *6)) (-4 *6 (-13 (-27) (-363 *5))) (-4 *5 (-13 (-495) (-950 (-484)))) (-4 *8 (-1154 (-349 *7))) (-5 *2 (-519 *3)) (-5 *1 (-491 *5 *6 *7 *8 *3)) (-4 *3 (-291 *6 *7 *8))))) +((-2056 (((-85) (-484) (-484)) 12 T ELT)) (-2054 (((-484) (-484)) 7 T ELT)) (-2055 (((-484) (-484) (-484)) 10 T ELT))) +(((-492) (-10 -7 (-15 -2054 ((-484) (-484))) (-15 -2055 ((-484) (-484) (-484))) (-15 -2056 ((-85) (-484) (-484))))) (T -492)) +((-2056 (*1 *2 *3 *3) (-12 (-5 *3 (-484)) (-5 *2 (-85)) (-5 *1 (-492)))) (-2055 (*1 *2 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-492)))) (-2054 (*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-492))))) +((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-2604 ((|#1| $) 77 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) 55 T ELT)) (-2063 (($ $) 54 T ELT)) (-2061 (((-85) $) 52 T ELT)) (-3491 (($ $) 107 T ELT)) (-3638 (($ $) 90 T ELT)) (-2483 ((|#1| $) 78 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3037 (($ $) 89 T ELT)) (-3489 (($ $) 106 T ELT)) (-3637 (($ $) 91 T ELT)) (-3493 (($ $) 105 T ELT)) (-3636 (($ $) 92 T ELT)) (-3723 (($) 23 T CONST)) (-3157 (((-3 (-484) "failed") $) 85 T ELT)) (-3156 (((-484) $) 86 T ELT)) (-3466 (((-3 $ "failed") $) 42 T ELT)) (-2059 (($ |#1| |#1|) 82 T ELT)) (-3186 (((-85) $) 76 T ELT)) (-3626 (($) 117 T ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3011 (($ $ (-484)) 88 T ELT)) (-3187 (((-85) $) 75 T ELT)) (-2531 (($ $ $) 118 T ELT)) (-2857 (($ $ $) 119 T ELT)) (-3941 (($ $) 114 T ELT)) (-1890 (($ $ $) 60 T ELT) (($ (-583 $)) 59 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-2060 (($ |#1| |#1|) 83 T ELT) (($ |#1|) 81 T ELT) (($ (-349 (-484))) 80 T ELT)) (-2058 ((|#1| $) 79 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) 58 T ELT)) (-3144 (($ $ $) 62 T ELT) (($ (-583 $)) 61 T ELT)) (-3465 (((-3 $ "failed") $ $) 56 T ELT)) (-3942 (($ $) 115 T ELT)) (-3494 (($ $) 104 T ELT)) (-3635 (($ $) 93 T ELT)) (-3492 (($ $) 103 T ELT)) (-3634 (($ $) 94 T ELT)) (-3490 (($ $) 102 T ELT)) (-3633 (($ $) 95 T ELT)) (-2057 (((-85) $ |#1|) 74 T ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ $) 57 T ELT) (($ (-484)) 84 T ELT)) (-3126 (((-694)) 40 T CONST)) (-1264 (((-85) $ $) 6 T ELT)) (-3497 (($ $) 113 T ELT)) (-3485 (($ $) 101 T ELT)) (-2062 (((-85) $ $) 53 T ELT)) (-3495 (($ $) 112 T ELT)) (-3483 (($ $) 100 T ELT)) (-3499 (($ $) 111 T ELT)) (-3487 (($ $) 99 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-3500 (($ $) 110 T ELT)) (-3488 (($ $) 98 T ELT)) (-3498 (($ $) 109 T ELT)) (-3486 (($ $) 97 T ELT)) (-3496 (($ $) 108 T ELT)) (-3484 (($ $) 96 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-2566 (((-85) $ $) 120 T ELT)) (-2567 (((-85) $ $) 122 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-2684 (((-85) $ $) 121 T ELT)) (-2685 (((-85) $ $) 123 T ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT) (($ $ $) 116 T ELT) (($ $ (-349 (-484))) 87 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT))) +(((-493 |#1|) (-113) (-13 (-346) (-1114))) (T -493)) +((-2060 (*1 *1 *2 *2) (-12 (-4 *1 (-493 *2)) (-4 *2 (-13 (-346) (-1114))))) (-2059 (*1 *1 *2 *2) (-12 (-4 *1 (-493 *2)) (-4 *2 (-13 (-346) (-1114))))) (-2060 (*1 *1 *2) (-12 (-4 *1 (-493 *2)) (-4 *2 (-13 (-346) (-1114))))) (-2060 (*1 *1 *2) (-12 (-5 *2 (-349 (-484))) (-4 *1 (-493 *3)) (-4 *3 (-13 (-346) (-1114))))) (-2058 (*1 *2 *1) (-12 (-4 *1 (-493 *2)) (-4 *2 (-13 (-346) (-1114))))) (-2483 (*1 *2 *1) (-12 (-4 *1 (-493 *2)) (-4 *2 (-13 (-346) (-1114))))) (-2604 (*1 *2 *1) (-12 (-4 *1 (-493 *2)) (-4 *2 (-13 (-346) (-1114))))) (-3186 (*1 *2 *1) (-12 (-4 *1 (-493 *3)) (-4 *3 (-13 (-346) (-1114))) (-5 *2 (-85)))) (-3187 (*1 *2 *1) (-12 (-4 *1 (-493 *3)) (-4 *3 (-13 (-346) (-1114))) (-5 *2 (-85)))) (-2057 (*1 *2 *1 *3) (-12 (-4 *1 (-493 *3)) (-4 *3 (-13 (-346) (-1114))) (-5 *2 (-85))))) +(-13 (-391) (-756) (-1114) (-915) (-950 (-484)) (-10 -8 (-6 -3769) (-15 -2060 ($ |t#1| |t#1|)) (-15 -2059 ($ |t#1| |t#1|)) (-15 -2060 ($ |t#1|)) (-15 -2060 ($ (-349 (-484)))) (-15 -2058 (|t#1| $)) (-15 -2483 (|t#1| $)) (-15 -2604 (|t#1| $)) (-15 -3186 ((-85) $)) (-15 -3187 ((-85) $)) (-15 -2057 ((-85) $ |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-35) . T) ((-66) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-555 (-484)) . T) ((-555 $) . T) ((-552 (-772)) . T) ((-146) . T) ((-239) . T) ((-246) . T) ((-391) . T) ((-432) . T) ((-495) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 $) . T) ((-590 $) . T) ((-582 $) . T) ((-654 $) . T) ((-663) . T) ((-756) . T) ((-759) . T) ((-915) . T) ((-950 (-484)) . T) ((-963 $) . T) ((-968 $) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1114) . T) ((-1117) . T) ((-1128) . T)) +((-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) 9 T ELT)) (-2063 (($ $) 11 T ELT)) (-2061 (((-85) $) 20 T ELT)) (-3466 (((-3 $ "failed") $) 16 T ELT)) (-2062 (((-85) $ $) 22 T ELT))) +(((-494 |#1|) (-10 -7 (-15 -2061 ((-85) |#1|)) (-15 -2062 ((-85) |#1| |#1|)) (-15 -2063 (|#1| |#1|)) (-15 -2064 ((-2 (|:| -1771 |#1|) (|:| -3981 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3466 ((-3 |#1| "failed") |#1|))) (-495)) (T -494)) +NIL +((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) 55 T ELT)) (-2063 (($ $) 54 T ELT)) (-2061 (((-85) $) 52 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3723 (($) 23 T CONST)) (-3466 (((-3 $ "failed") $) 42 T ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3465 (((-3 $ "failed") $ $) 56 T ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ $) 57 T ELT)) (-3126 (((-694)) 40 T CONST)) (-1264 (((-85) $ $) 6 T ELT)) (-2062 (((-85) $ $) 53 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT))) +(((-495) (-113)) (T -495)) +((-3465 (*1 *1 *1 *1) (|partial| -4 *1 (-495))) (-2064 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -1771 *1) (|:| -3981 *1) (|:| |associate| *1))) (-4 *1 (-495)))) (-2063 (*1 *1 *1) (-4 *1 (-495))) (-2062 (*1 *2 *1 *1) (-12 (-4 *1 (-495)) (-5 *2 (-85)))) (-2061 (*1 *2 *1) (-12 (-4 *1 (-495)) (-5 *2 (-85))))) +(-13 (-146) (-38 $) (-246) (-10 -8 (-15 -3465 ((-3 $ "failed") $ $)) (-15 -2064 ((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $)) (-15 -2063 ($ $)) (-15 -2062 ((-85) $ $)) (-15 -2061 ((-85) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-555 (-484)) . T) ((-555 $) . T) ((-552 (-772)) . T) ((-146) . T) ((-246) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 $) . T) ((-590 $) . T) ((-582 $) . T) ((-654 $) . T) ((-663) . T) ((-963 $) . T) ((-968 $) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T)) +((-2066 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-1089) (-583 |#2|)) 38 T ELT)) (-2068 (((-519 |#2|) |#2| (-1089)) 63 T ELT)) (-2067 (((-3 |#2| #1#) |#2| (-1089)) 156 T ELT)) (-2069 (((-3 (-2 (|:| -2136 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1089) (-550 |#2|) (-583 (-550 |#2|))) 159 T ELT)) (-2065 (((-3 (-2 (|:| -2136 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1089) |#2|) 41 T ELT))) +(((-496 |#1| |#2|) (-10 -7 (-15 -2065 ((-3 (-2 (|:| -2136 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-1089) |#2|)) (-15 -2066 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-1089) (-583 |#2|))) (-15 -2067 ((-3 |#2| #1#) |#2| (-1089))) (-15 -2068 ((-519 |#2|) |#2| (-1089))) (-15 -2069 ((-3 (-2 (|:| -2136 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1089) (-550 |#2|) (-583 (-550 |#2|))))) (-13 (-391) (-120) (-950 (-484)) (-580 (-484))) (-13 (-27) (-1114) (-363 |#1|))) (T -496)) +((-2069 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1089)) (-5 *6 (-583 (-550 *3))) (-5 *5 (-550 *3)) (-4 *3 (-13 (-27) (-1114) (-363 *7))) (-4 *7 (-13 (-391) (-120) (-950 (-484)) (-580 (-484)))) (-5 *2 (-2 (|:| -2136 *3) (|:| |coeff| *3))) (-5 *1 (-496 *7 *3)))) (-2068 (*1 *2 *3 *4) (-12 (-5 *4 (-1089)) (-4 *5 (-13 (-391) (-120) (-950 (-484)) (-580 (-484)))) (-5 *2 (-519 *3)) (-5 *1 (-496 *5 *3)) (-4 *3 (-13 (-27) (-1114) (-363 *5))))) (-2067 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1089)) (-4 *4 (-13 (-391) (-120) (-950 (-484)) (-580 (-484)))) (-5 *1 (-496 *4 *2)) (-4 *2 (-13 (-27) (-1114) (-363 *4))))) (-2066 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1089)) (-5 *5 (-583 *3)) (-4 *3 (-13 (-27) (-1114) (-363 *6))) (-4 *6 (-13 (-391) (-120) (-950 (-484)) (-580 (-484)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-496 *6 *3)))) (-2065 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1089)) (-4 *5 (-13 (-391) (-120) (-950 (-484)) (-580 (-484)))) (-5 *2 (-2 (|:| -2136 *3) (|:| |coeff| *3))) (-5 *1 (-496 *5 *3)) (-4 *3 (-13 (-27) (-1114) (-363 *5)))))) +((-3970 (((-347 |#1|) |#1|) 17 T ELT)) (-3731 (((-347 |#1|) |#1|) 32 T ELT)) (-2071 (((-3 |#1| "failed") |#1|) 48 T ELT)) (-2070 (((-347 |#1|) |#1|) 59 T ELT))) +(((-497 |#1|) (-10 -7 (-15 -3731 ((-347 |#1|) |#1|)) (-15 -3970 ((-347 |#1|) |#1|)) (-15 -2070 ((-347 |#1|) |#1|)) (-15 -2071 ((-3 |#1| "failed") |#1|))) (-483)) (T -497)) +((-2071 (*1 *2 *2) (|partial| -12 (-5 *1 (-497 *2)) (-4 *2 (-483)))) (-2070 (*1 *2 *3) (-12 (-5 *2 (-347 *3)) (-5 *1 (-497 *3)) (-4 *3 (-483)))) (-3970 (*1 *2 *3) (-12 (-5 *2 (-347 *3)) (-5 *1 (-497 *3)) (-4 *3 (-483)))) (-3731 (*1 *2 *3) (-12 (-5 *2 (-347 *3)) (-5 *1 (-497 *3)) (-4 *3 (-483))))) +((-3083 (((-1084 (-349 (-1084 |#2|))) |#2| (-550 |#2|) (-550 |#2|) (-1084 |#2|)) 35 T ELT)) (-2074 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-550 |#2|) (-550 |#2|) (-583 |#2|) (-550 |#2|) |#2| (-349 (-1084 |#2|))) 105 T ELT) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-550 |#2|) (-550 |#2|) (-583 |#2|) |#2| (-1084 |#2|)) 115 T ELT)) (-2072 (((-519 |#2|) |#2| (-550 |#2|) (-550 |#2|) (-550 |#2|) |#2| (-349 (-1084 |#2|))) 85 T ELT) (((-519 |#2|) |#2| (-550 |#2|) (-550 |#2|) |#2| (-1084 |#2|)) 55 T ELT)) (-2073 (((-3 (-2 (|:| -2136 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-550 |#2|) (-550 |#2|) |#2| (-550 |#2|) |#2| (-349 (-1084 |#2|))) 92 T ELT) (((-3 (-2 (|:| -2136 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-550 |#2|) (-550 |#2|) |#2| |#2| (-1084 |#2|)) 114 T ELT)) (-2075 (((-3 |#2| #1#) |#2| |#2| (-550 |#2|) (-550 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1089)) (-550 |#2|) |#2| (-349 (-1084 |#2|))) 110 T ELT) (((-3 |#2| #1#) |#2| |#2| (-550 |#2|) (-550 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1089)) |#2| (-1084 |#2|)) 116 T ELT)) (-2076 (((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2012 (-583 |#2|))) |#3| |#2| (-550 |#2|) (-550 |#2|) (-550 |#2|) |#2| (-349 (-1084 |#2|))) 133 (|has| |#3| (-600 |#2|)) ELT) (((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2012 (-583 |#2|))) |#3| |#2| (-550 |#2|) (-550 |#2|) |#2| (-1084 |#2|)) 132 (|has| |#3| (-600 |#2|)) ELT)) (-3084 ((|#2| (-1084 (-349 (-1084 |#2|))) (-550 |#2|) |#2|) 53 T ELT)) (-3079 (((-1084 (-349 (-1084 |#2|))) (-1084 |#2|) (-550 |#2|)) 34 T ELT))) +(((-498 |#1| |#2| |#3|) (-10 -7 (-15 -2072 ((-519 |#2|) |#2| (-550 |#2|) (-550 |#2|) |#2| (-1084 |#2|))) (-15 -2072 ((-519 |#2|) |#2| (-550 |#2|) (-550 |#2|) (-550 |#2|) |#2| (-349 (-1084 |#2|)))) (-15 -2073 ((-3 (-2 (|:| -2136 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-550 |#2|) (-550 |#2|) |#2| |#2| (-1084 |#2|))) (-15 -2073 ((-3 (-2 (|:| -2136 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-550 |#2|) (-550 |#2|) |#2| (-550 |#2|) |#2| (-349 (-1084 |#2|)))) (-15 -2074 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-550 |#2|) (-550 |#2|) (-583 |#2|) |#2| (-1084 |#2|))) (-15 -2074 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-550 |#2|) (-550 |#2|) (-583 |#2|) (-550 |#2|) |#2| (-349 (-1084 |#2|)))) (-15 -2075 ((-3 |#2| #1#) |#2| |#2| (-550 |#2|) (-550 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1089)) |#2| (-1084 |#2|))) (-15 -2075 ((-3 |#2| #1#) |#2| |#2| (-550 |#2|) (-550 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1089)) (-550 |#2|) |#2| (-349 (-1084 |#2|)))) (-15 -3083 ((-1084 (-349 (-1084 |#2|))) |#2| (-550 |#2|) (-550 |#2|) (-1084 |#2|))) (-15 -3084 (|#2| (-1084 (-349 (-1084 |#2|))) (-550 |#2|) |#2|)) (-15 -3079 ((-1084 (-349 (-1084 |#2|))) (-1084 |#2|) (-550 |#2|))) (IF (|has| |#3| (-600 |#2|)) (PROGN (-15 -2076 ((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2012 (-583 |#2|))) |#3| |#2| (-550 |#2|) (-550 |#2|) |#2| (-1084 |#2|))) (-15 -2076 ((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2012 (-583 |#2|))) |#3| |#2| (-550 |#2|) (-550 |#2|) (-550 |#2|) |#2| (-349 (-1084 |#2|))))) |%noBranch|)) (-13 (-391) (-950 (-484)) (-120) (-580 (-484))) (-13 (-363 |#1|) (-27) (-1114)) (-1013)) (T -498)) +((-2076 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-550 *4)) (-5 *6 (-349 (-1084 *4))) (-4 *4 (-13 (-363 *7) (-27) (-1114))) (-4 *7 (-13 (-391) (-950 (-484)) (-120) (-580 (-484)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2012 (-583 *4)))) (-5 *1 (-498 *7 *4 *3)) (-4 *3 (-600 *4)) (-4 *3 (-1013)))) (-2076 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-550 *4)) (-5 *6 (-1084 *4)) (-4 *4 (-13 (-363 *7) (-27) (-1114))) (-4 *7 (-13 (-391) (-950 (-484)) (-120) (-580 (-484)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2012 (-583 *4)))) (-5 *1 (-498 *7 *4 *3)) (-4 *3 (-600 *4)) (-4 *3 (-1013)))) (-3079 (*1 *2 *3 *4) (-12 (-5 *4 (-550 *6)) (-4 *6 (-13 (-363 *5) (-27) (-1114))) (-4 *5 (-13 (-391) (-950 (-484)) (-120) (-580 (-484)))) (-5 *2 (-1084 (-349 (-1084 *6)))) (-5 *1 (-498 *5 *6 *7)) (-5 *3 (-1084 *6)) (-4 *7 (-1013)))) (-3084 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1084 (-349 (-1084 *2)))) (-5 *4 (-550 *2)) (-4 *2 (-13 (-363 *5) (-27) (-1114))) (-4 *5 (-13 (-391) (-950 (-484)) (-120) (-580 (-484)))) (-5 *1 (-498 *5 *2 *6)) (-4 *6 (-1013)))) (-3083 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-550 *3)) (-4 *3 (-13 (-363 *6) (-27) (-1114))) (-4 *6 (-13 (-391) (-950 (-484)) (-120) (-580 (-484)))) (-5 *2 (-1084 (-349 (-1084 *3)))) (-5 *1 (-498 *6 *3 *7)) (-5 *5 (-1084 *3)) (-4 *7 (-1013)))) (-2075 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-550 *2)) (-5 *4 (-1 (-3 *2 #2="failed") *2 *2 (-1089))) (-5 *5 (-349 (-1084 *2))) (-4 *2 (-13 (-363 *6) (-27) (-1114))) (-4 *6 (-13 (-391) (-950 (-484)) (-120) (-580 (-484)))) (-5 *1 (-498 *6 *2 *7)) (-4 *7 (-1013)))) (-2075 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-550 *2)) (-5 *4 (-1 (-3 *2 #2#) *2 *2 (-1089))) (-5 *5 (-1084 *2)) (-4 *2 (-13 (-363 *6) (-27) (-1114))) (-4 *6 (-13 (-391) (-950 (-484)) (-120) (-580 (-484)))) (-5 *1 (-498 *6 *2 *7)) (-4 *7 (-1013)))) (-2074 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-550 *3)) (-5 *5 (-583 *3)) (-5 *6 (-349 (-1084 *3))) (-4 *3 (-13 (-363 *7) (-27) (-1114))) (-4 *7 (-13 (-391) (-950 (-484)) (-120) (-580 (-484)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-498 *7 *3 *8)) (-4 *8 (-1013)))) (-2074 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-550 *3)) (-5 *5 (-583 *3)) (-5 *6 (-1084 *3)) (-4 *3 (-13 (-363 *7) (-27) (-1114))) (-4 *7 (-13 (-391) (-950 (-484)) (-120) (-580 (-484)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-498 *7 *3 *8)) (-4 *8 (-1013)))) (-2073 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-550 *3)) (-5 *5 (-349 (-1084 *3))) (-4 *3 (-13 (-363 *6) (-27) (-1114))) (-4 *6 (-13 (-391) (-950 (-484)) (-120) (-580 (-484)))) (-5 *2 (-2 (|:| -2136 *3) (|:| |coeff| *3))) (-5 *1 (-498 *6 *3 *7)) (-4 *7 (-1013)))) (-2073 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-550 *3)) (-5 *5 (-1084 *3)) (-4 *3 (-13 (-363 *6) (-27) (-1114))) (-4 *6 (-13 (-391) (-950 (-484)) (-120) (-580 (-484)))) (-5 *2 (-2 (|:| -2136 *3) (|:| |coeff| *3))) (-5 *1 (-498 *6 *3 *7)) (-4 *7 (-1013)))) (-2072 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-550 *3)) (-5 *5 (-349 (-1084 *3))) (-4 *3 (-13 (-363 *6) (-27) (-1114))) (-4 *6 (-13 (-391) (-950 (-484)) (-120) (-580 (-484)))) (-5 *2 (-519 *3)) (-5 *1 (-498 *6 *3 *7)) (-4 *7 (-1013)))) (-2072 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-550 *3)) (-5 *5 (-1084 *3)) (-4 *3 (-13 (-363 *6) (-27) (-1114))) (-4 *6 (-13 (-391) (-950 (-484)) (-120) (-580 (-484)))) (-5 *2 (-519 *3)) (-5 *1 (-498 *6 *3 *7)) (-4 *7 (-1013))))) +((-2086 (((-484) (-484) (-694)) 87 T ELT)) (-2085 (((-484) (-484)) 85 T ELT)) (-2084 (((-484) (-484)) 82 T ELT)) (-2083 (((-484) (-484)) 89 T ELT)) (-2805 (((-484) (-484) (-484)) 67 T ELT)) (-2082 (((-484) (-484) (-484)) 64 T ELT)) (-2081 (((-349 (-484)) (-484)) 29 T ELT)) (-2080 (((-484) (-484)) 34 T ELT)) (-2079 (((-484) (-484)) 76 T ELT)) (-2802 (((-484) (-484)) 47 T ELT)) (-2078 (((-583 (-484)) (-484)) 81 T ELT)) (-2077 (((-484) (-484) (-484) (-484) (-484)) 60 T ELT)) (-2798 (((-349 (-484)) (-484)) 56 T ELT))) +(((-499) (-10 -7 (-15 -2798 ((-349 (-484)) (-484))) (-15 -2077 ((-484) (-484) (-484) (-484) (-484))) (-15 -2078 ((-583 (-484)) (-484))) (-15 -2802 ((-484) (-484))) (-15 -2079 ((-484) (-484))) (-15 -2080 ((-484) (-484))) (-15 -2081 ((-349 (-484)) (-484))) (-15 -2082 ((-484) (-484) (-484))) (-15 -2805 ((-484) (-484) (-484))) (-15 -2083 ((-484) (-484))) (-15 -2084 ((-484) (-484))) (-15 -2085 ((-484) (-484))) (-15 -2086 ((-484) (-484) (-694))))) (T -499)) +((-2086 (*1 *2 *2 *3) (-12 (-5 *2 (-484)) (-5 *3 (-694)) (-5 *1 (-499)))) (-2085 (*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-499)))) (-2084 (*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-499)))) (-2083 (*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-499)))) (-2805 (*1 *2 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-499)))) (-2082 (*1 *2 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-499)))) (-2081 (*1 *2 *3) (-12 (-5 *2 (-349 (-484))) (-5 *1 (-499)) (-5 *3 (-484)))) (-2080 (*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-499)))) (-2079 (*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-499)))) (-2802 (*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-499)))) (-2078 (*1 *2 *3) (-12 (-5 *2 (-583 (-484))) (-5 *1 (-499)) (-5 *3 (-484)))) (-2077 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-499)))) (-2798 (*1 *2 *3) (-12 (-5 *2 (-349 (-484))) (-5 *1 (-499)) (-5 *3 (-484))))) +((-2087 (((-2 (|:| |answer| |#4|) (|:| -2135 |#4|)) |#4| (-1 |#2| |#2|)) 56 T ELT))) +(((-500 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2087 ((-2 (|:| |answer| |#4|) (|:| -2135 |#4|)) |#4| (-1 |#2| |#2|)))) (-312) (-1154 |#1|) (-1154 (-349 |#2|)) (-291 |#1| |#2| |#3|)) (T -500)) +((-2087 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1154 *5)) (-4 *5 (-312)) (-4 *7 (-1154 (-349 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -2135 *3))) (-5 *1 (-500 *5 *6 *7 *3)) (-4 *3 (-291 *5 *6 *7))))) +((-2087 (((-2 (|:| |answer| (-349 |#2|)) (|:| -2135 (-349 |#2|)) (|:| |specpart| (-349 |#2|)) (|:| |polypart| |#2|)) (-349 |#2|) (-1 |#2| |#2|)) 18 T ELT))) +(((-501 |#1| |#2|) (-10 -7 (-15 -2087 ((-2 (|:| |answer| (-349 |#2|)) (|:| -2135 (-349 |#2|)) (|:| |specpart| (-349 |#2|)) (|:| |polypart| |#2|)) (-349 |#2|) (-1 |#2| |#2|)))) (-312) (-1154 |#1|)) (T -501)) +((-2087 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1154 *5)) (-4 *5 (-312)) (-5 *2 (-2 (|:| |answer| (-349 *6)) (|:| -2135 (-349 *6)) (|:| |specpart| (-349 *6)) (|:| |polypart| *6))) (-5 *1 (-501 *5 *6)) (-5 *3 (-349 *6))))) +((-2090 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-550 |#2|) (-550 |#2|) (-583 |#2|)) 195 T ELT)) (-2088 (((-519 |#2|) |#2| (-550 |#2|) (-550 |#2|)) 97 T ELT)) (-2089 (((-3 (-2 (|:| -2136 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-550 |#2|) (-550 |#2|) |#2|) 191 T ELT)) (-2091 (((-3 |#2| #1#) |#2| |#2| |#2| (-550 |#2|) (-550 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1089))) 200 T ELT)) (-2092 (((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2012 (-583 |#2|))) |#3| |#2| (-550 |#2|) (-550 |#2|) (-1089)) 209 (|has| |#3| (-600 |#2|)) ELT))) +(((-502 |#1| |#2| |#3|) (-10 -7 (-15 -2088 ((-519 |#2|) |#2| (-550 |#2|) (-550 |#2|))) (-15 -2089 ((-3 (-2 (|:| -2136 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-550 |#2|) (-550 |#2|) |#2|)) (-15 -2090 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-550 |#2|) (-550 |#2|) (-583 |#2|))) (-15 -2091 ((-3 |#2| #1#) |#2| |#2| |#2| (-550 |#2|) (-550 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1089)))) (IF (|has| |#3| (-600 |#2|)) (-15 -2092 ((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2012 (-583 |#2|))) |#3| |#2| (-550 |#2|) (-550 |#2|) (-1089))) |%noBranch|)) (-13 (-391) (-950 (-484)) (-120) (-580 (-484))) (-13 (-363 |#1|) (-27) (-1114)) (-1013)) (T -502)) +((-2092 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-550 *4)) (-5 *6 (-1089)) (-4 *4 (-13 (-363 *7) (-27) (-1114))) (-4 *7 (-13 (-391) (-950 (-484)) (-120) (-580 (-484)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2012 (-583 *4)))) (-5 *1 (-502 *7 *4 *3)) (-4 *3 (-600 *4)) (-4 *3 (-1013)))) (-2091 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-550 *2)) (-5 *4 (-1 (-3 *2 #1#) *2 *2 (-1089))) (-4 *2 (-13 (-363 *5) (-27) (-1114))) (-4 *5 (-13 (-391) (-950 (-484)) (-120) (-580 (-484)))) (-5 *1 (-502 *5 *2 *6)) (-4 *6 (-1013)))) (-2090 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-550 *3)) (-5 *5 (-583 *3)) (-4 *3 (-13 (-363 *6) (-27) (-1114))) (-4 *6 (-13 (-391) (-950 (-484)) (-120) (-580 (-484)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-502 *6 *3 *7)) (-4 *7 (-1013)))) (-2089 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-550 *3)) (-4 *3 (-13 (-363 *5) (-27) (-1114))) (-4 *5 (-13 (-391) (-950 (-484)) (-120) (-580 (-484)))) (-5 *2 (-2 (|:| -2136 *3) (|:| |coeff| *3))) (-5 *1 (-502 *5 *3 *6)) (-4 *6 (-1013)))) (-2088 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-550 *3)) (-4 *3 (-13 (-363 *5) (-27) (-1114))) (-4 *5 (-13 (-391) (-950 (-484)) (-120) (-580 (-484)))) (-5 *2 (-519 *3)) (-5 *1 (-502 *5 *3 *6)) (-4 *6 (-1013))))) +((-2093 (((-2 (|:| -2338 |#2|) (|:| |nconst| |#2|)) |#2| (-1089)) 64 T ELT)) (-2095 (((-3 |#2| #1="failed") |#2| (-1089) (-750 |#2|) (-750 |#2|)) 174 (-12 (|has| |#2| (-1052)) (|has| |#1| (-553 (-800 (-484)))) (|has| |#1| (-796 (-484)))) ELT) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) #1#) |#2| (-1089)) 145 (-12 (|has| |#2| (-569)) (|has| |#1| (-553 (-800 (-484)))) (|has| |#1| (-796 (-484)))) ELT)) (-2094 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) #1#) |#2| (-1089)) 156 (-12 (|has| |#2| (-569)) (|has| |#1| (-553 (-800 (-484)))) (|has| |#1| (-796 (-484)))) ELT))) +(((-503 |#1| |#2|) (-10 -7 (-15 -2093 ((-2 (|:| -2338 |#2|) (|:| |nconst| |#2|)) |#2| (-1089))) (IF (|has| |#1| (-553 (-800 (-484)))) (IF (|has| |#1| (-796 (-484))) (PROGN (IF (|has| |#2| (-569)) (PROGN (-15 -2094 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) #1="failed") |#2| (-1089))) (-15 -2095 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) #1#) |#2| (-1089)))) |%noBranch|) (IF (|has| |#2| (-1052)) (-15 -2095 ((-3 |#2| #1#) |#2| (-1089) (-750 |#2|) (-750 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-950 (-484)) (-391) (-580 (-484))) (-13 (-27) (-1114) (-363 |#1|))) (T -503)) +((-2095 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1089)) (-5 *4 (-750 *2)) (-4 *2 (-1052)) (-4 *2 (-13 (-27) (-1114) (-363 *5))) (-4 *5 (-553 (-800 (-484)))) (-4 *5 (-796 (-484))) (-4 *5 (-13 (-950 (-484)) (-391) (-580 (-484)))) (-5 *1 (-503 *5 *2)))) (-2095 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1089)) (-4 *5 (-553 (-800 (-484)))) (-4 *5 (-796 (-484))) (-4 *5 (-13 (-950 (-484)) (-391) (-580 (-484)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-503 *5 *3)) (-4 *3 (-569)) (-4 *3 (-13 (-27) (-1114) (-363 *5))))) (-2094 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1089)) (-4 *5 (-553 (-800 (-484)))) (-4 *5 (-796 (-484))) (-4 *5 (-13 (-950 (-484)) (-391) (-580 (-484)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-503 *5 *3)) (-4 *3 (-569)) (-4 *3 (-13 (-27) (-1114) (-363 *5))))) (-2093 (*1 *2 *3 *4) (-12 (-5 *4 (-1089)) (-4 *5 (-13 (-950 (-484)) (-391) (-580 (-484)))) (-5 *2 (-2 (|:| -2338 *3) (|:| |nconst| *3))) (-5 *1 (-503 *5 *3)) (-4 *3 (-13 (-27) (-1114) (-363 *5)))))) +((-2098 (((-3 (-2 (|:| |mainpart| (-349 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-349 |#2|)) (|:| |logand| (-349 |#2|)))))) #1="failed") (-349 |#2|) (-583 (-349 |#2|))) 41 T ELT)) (-3811 (((-519 (-349 |#2|)) (-349 |#2|)) 28 T ELT)) (-2096 (((-3 (-349 |#2|) #1#) (-349 |#2|)) 17 T ELT)) (-2097 (((-3 (-2 (|:| -2136 (-349 |#2|)) (|:| |coeff| (-349 |#2|))) #1#) (-349 |#2|) (-349 |#2|)) 48 T ELT))) +(((-504 |#1| |#2|) (-10 -7 (-15 -3811 ((-519 (-349 |#2|)) (-349 |#2|))) (-15 -2096 ((-3 (-349 |#2|) #1="failed") (-349 |#2|))) (-15 -2097 ((-3 (-2 (|:| -2136 (-349 |#2|)) (|:| |coeff| (-349 |#2|))) #1#) (-349 |#2|) (-349 |#2|))) (-15 -2098 ((-3 (-2 (|:| |mainpart| (-349 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-349 |#2|)) (|:| |logand| (-349 |#2|)))))) #1#) (-349 |#2|) (-583 (-349 |#2|))))) (-13 (-312) (-120) (-950 (-484))) (-1154 |#1|)) (T -504)) +((-2098 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-583 (-349 *6))) (-5 *3 (-349 *6)) (-4 *6 (-1154 *5)) (-4 *5 (-13 (-312) (-120) (-950 (-484)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-504 *5 *6)))) (-2097 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-312) (-120) (-950 (-484)))) (-4 *5 (-1154 *4)) (-5 *2 (-2 (|:| -2136 (-349 *5)) (|:| |coeff| (-349 *5)))) (-5 *1 (-504 *4 *5)) (-5 *3 (-349 *5)))) (-2096 (*1 *2 *2) (|partial| -12 (-5 *2 (-349 *4)) (-4 *4 (-1154 *3)) (-4 *3 (-13 (-312) (-120) (-950 (-484)))) (-5 *1 (-504 *3 *4)))) (-3811 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-120) (-950 (-484)))) (-4 *5 (-1154 *4)) (-5 *2 (-519 (-349 *5))) (-5 *1 (-504 *4 *5)) (-5 *3 (-349 *5))))) +((-2099 (((-3 (-484) "failed") |#1|) 14 T ELT)) (-3259 (((-85) |#1|) 13 T ELT)) (-3255 (((-484) |#1|) 9 T ELT))) +(((-505 |#1|) (-10 -7 (-15 -3255 ((-484) |#1|)) (-15 -3259 ((-85) |#1|)) (-15 -2099 ((-3 (-484) "failed") |#1|))) (-950 (-484))) (T -505)) +((-2099 (*1 *2 *3) (|partial| -12 (-5 *2 (-484)) (-5 *1 (-505 *3)) (-4 *3 (-950 *2)))) (-3259 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-505 *3)) (-4 *3 (-950 (-484))))) (-3255 (*1 *2 *3) (-12 (-5 *2 (-484)) (-5 *1 (-505 *3)) (-4 *3 (-950 *2))))) +((-2102 (((-3 (-2 (|:| |mainpart| (-349 (-857 |#1|))) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-349 (-857 |#1|))) (|:| |logand| (-349 (-857 |#1|))))))) #1="failed") (-349 (-857 |#1|)) (-1089) (-583 (-349 (-857 |#1|)))) 48 T ELT)) (-2100 (((-519 (-349 (-857 |#1|))) (-349 (-857 |#1|)) (-1089)) 28 T ELT)) (-2101 (((-3 (-349 (-857 |#1|)) #1#) (-349 (-857 |#1|)) (-1089)) 23 T ELT)) (-2103 (((-3 (-2 (|:| -2136 (-349 (-857 |#1|))) (|:| |coeff| (-349 (-857 |#1|)))) #1#) (-349 (-857 |#1|)) (-1089) (-349 (-857 |#1|))) 35 T ELT))) +(((-506 |#1|) (-10 -7 (-15 -2100 ((-519 (-349 (-857 |#1|))) (-349 (-857 |#1|)) (-1089))) (-15 -2101 ((-3 (-349 (-857 |#1|)) #1="failed") (-349 (-857 |#1|)) (-1089))) (-15 -2102 ((-3 (-2 (|:| |mainpart| (-349 (-857 |#1|))) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-349 (-857 |#1|))) (|:| |logand| (-349 (-857 |#1|))))))) #1#) (-349 (-857 |#1|)) (-1089) (-583 (-349 (-857 |#1|))))) (-15 -2103 ((-3 (-2 (|:| -2136 (-349 (-857 |#1|))) (|:| |coeff| (-349 (-857 |#1|)))) #1#) (-349 (-857 |#1|)) (-1089) (-349 (-857 |#1|))))) (-13 (-495) (-950 (-484)) (-120))) (T -506)) +((-2103 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1089)) (-4 *5 (-13 (-495) (-950 (-484)) (-120))) (-5 *2 (-2 (|:| -2136 (-349 (-857 *5))) (|:| |coeff| (-349 (-857 *5))))) (-5 *1 (-506 *5)) (-5 *3 (-349 (-857 *5))))) (-2102 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1089)) (-5 *5 (-583 (-349 (-857 *6)))) (-5 *3 (-349 (-857 *6))) (-4 *6 (-13 (-495) (-950 (-484)) (-120))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-506 *6)))) (-2101 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-349 (-857 *4))) (-5 *3 (-1089)) (-4 *4 (-13 (-495) (-950 (-484)) (-120))) (-5 *1 (-506 *4)))) (-2100 (*1 *2 *3 *4) (-12 (-5 *4 (-1089)) (-4 *5 (-13 (-495) (-950 (-484)) (-120))) (-5 *2 (-519 (-349 (-857 *5)))) (-5 *1 (-506 *5)) (-5 *3 (-349 (-857 *5)))))) +((-2568 (((-85) $ $) 77 T ELT)) (-3188 (((-85) $) 49 T ELT)) (-2604 ((|#1| $) 39 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) 81 T ELT)) (-3491 (($ $) 142 T ELT)) (-3638 (($ $) 120 T ELT)) (-2483 ((|#1| $) 37 T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3037 (($ $) NIL T ELT)) (-3489 (($ $) 144 T ELT)) (-3637 (($ $) 116 T ELT)) (-3493 (($ $) 146 T ELT)) (-3636 (($ $) 124 T ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 (-484) #1#) $) 95 T ELT)) (-3156 (((-484) $) 97 T ELT)) (-3466 (((-3 $ #1#) $) 80 T ELT)) (-2059 (($ |#1| |#1|) 35 T ELT)) (-3186 (((-85) $) 44 T ELT)) (-3626 (($) 106 T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) 56 T ELT)) (-3011 (($ $ (-484)) NIL T ELT)) (-3187 (((-85) $) 46 T ELT)) (-2531 (($ $ $) NIL T ELT)) (-2857 (($ $ $) NIL T ELT)) (-3941 (($ $) 108 T ELT)) (-1890 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2060 (($ |#1| |#1|) 29 T ELT) (($ |#1|) 34 T ELT) (($ (-349 (-484))) 94 T ELT)) (-2058 ((|#1| $) 36 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3144 (($ $ $) 83 T ELT) (($ (-583 $)) NIL T ELT)) (-3465 (((-3 $ #1#) $ $) 82 T ELT)) (-3942 (($ $) 110 T ELT)) (-3494 (($ $) 150 T ELT)) (-3635 (($ $) 122 T ELT)) (-3492 (($ $) 152 T ELT)) (-3634 (($ $) 126 T ELT)) (-3490 (($ $) 148 T ELT)) (-3633 (($ $) 118 T ELT)) (-2057 (((-85) $ |#1|) 42 T ELT)) (-3945 (((-772) $) 102 T ELT) (($ (-484)) 85 T ELT) (($ $) NIL T ELT) (($ (-484)) 85 T ELT)) (-3126 (((-694)) 104 T CONST)) (-1264 (((-85) $ $) NIL T ELT)) (-3497 (($ $) 164 T ELT)) (-3485 (($ $) 132 T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3495 (($ $) 162 T ELT)) (-3483 (($ $) 128 T ELT)) (-3499 (($ $) 160 T ELT)) (-3487 (($ $) 140 T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-3500 (($ $) 158 T ELT)) (-3488 (($ $) 138 T ELT)) (-3498 (($ $) 156 T ELT)) (-3486 (($ $) 134 T ELT)) (-3496 (($ $) 154 T ELT)) (-3484 (($ $) 130 T ELT)) (-2660 (($) 30 T CONST)) (-2666 (($) 10 T CONST)) (-2566 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 50 T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) 48 T ELT)) (-3836 (($ $) 54 T ELT) (($ $ $) 55 T ELT)) (-3838 (($ $ $) 53 T ELT)) (** (($ $ (-830)) 73 T ELT) (($ $ (-694)) NIL T ELT) (($ $ $) 112 T ELT) (($ $ (-349 (-484))) 166 T ELT)) (* (($ (-830) $) 67 T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 66 T ELT) (($ $ $) 62 T ELT))) +(((-507 |#1|) (-493 |#1|) (-13 (-346) (-1114))) (T -507)) +NIL +((-2704 (((-3 (-583 (-1084 (-484))) "failed") (-583 (-1084 (-484))) (-1084 (-484))) 27 T ELT))) +(((-508) (-10 -7 (-15 -2704 ((-3 (-583 (-1084 (-484))) "failed") (-583 (-1084 (-484))) (-1084 (-484)))))) (T -508)) +((-2704 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-1084 (-484)))) (-5 *3 (-1084 (-484))) (-5 *1 (-508))))) +((-2104 (((-583 (-550 |#2|)) (-583 (-550 |#2|)) (-1089)) 19 T ELT)) (-2107 (((-583 (-550 |#2|)) (-583 |#2|) (-1089)) 23 T ELT)) (-3234 (((-583 (-550 |#2|)) (-583 (-550 |#2|)) (-583 (-550 |#2|))) 11 T ELT)) (-2108 ((|#2| |#2| (-1089)) 59 (|has| |#1| (-495)) ELT)) (-2109 ((|#2| |#2| (-1089)) 87 (-12 (|has| |#2| (-239)) (|has| |#1| (-391))) ELT)) (-2106 (((-550 |#2|) (-550 |#2|) (-583 (-550 |#2|)) (-1089)) 25 T ELT)) (-2105 (((-550 |#2|) (-583 (-550 |#2|))) 24 T ELT)) (-2110 (((-519 |#2|) |#2| (-1089) (-1 (-519 |#2|) |#2| (-1089)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1089))) 115 (-12 (|has| |#2| (-239)) (|has| |#2| (-569)) (|has| |#2| (-950 (-1089))) (|has| |#1| (-553 (-800 (-484)))) (|has| |#1| (-391)) (|has| |#1| (-796 (-484)))) ELT))) +(((-509 |#1| |#2|) (-10 -7 (-15 -2104 ((-583 (-550 |#2|)) (-583 (-550 |#2|)) (-1089))) (-15 -2105 ((-550 |#2|) (-583 (-550 |#2|)))) (-15 -2106 ((-550 |#2|) (-550 |#2|) (-583 (-550 |#2|)) (-1089))) (-15 -3234 ((-583 (-550 |#2|)) (-583 (-550 |#2|)) (-583 (-550 |#2|)))) (-15 -2107 ((-583 (-550 |#2|)) (-583 |#2|) (-1089))) (IF (|has| |#1| (-495)) (-15 -2108 (|#2| |#2| (-1089))) |%noBranch|) (IF (|has| |#1| (-391)) (IF (|has| |#2| (-239)) (PROGN (-15 -2109 (|#2| |#2| (-1089))) (IF (|has| |#1| (-553 (-800 (-484)))) (IF (|has| |#1| (-796 (-484))) (IF (|has| |#2| (-569)) (IF (|has| |#2| (-950 (-1089))) (-15 -2110 ((-519 |#2|) |#2| (-1089) (-1 (-519 |#2|) |#2| (-1089)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1089)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-1013) (-363 |#1|)) (T -509)) +((-2110 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-519 *3) *3 (-1089))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1089))) (-4 *3 (-239)) (-4 *3 (-569)) (-4 *3 (-950 *4)) (-4 *3 (-363 *7)) (-5 *4 (-1089)) (-4 *7 (-553 (-800 (-484)))) (-4 *7 (-391)) (-4 *7 (-796 (-484))) (-4 *7 (-1013)) (-5 *2 (-519 *3)) (-5 *1 (-509 *7 *3)))) (-2109 (*1 *2 *2 *3) (-12 (-5 *3 (-1089)) (-4 *4 (-391)) (-4 *4 (-1013)) (-5 *1 (-509 *4 *2)) (-4 *2 (-239)) (-4 *2 (-363 *4)))) (-2108 (*1 *2 *2 *3) (-12 (-5 *3 (-1089)) (-4 *4 (-495)) (-4 *4 (-1013)) (-5 *1 (-509 *4 *2)) (-4 *2 (-363 *4)))) (-2107 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *6)) (-5 *4 (-1089)) (-4 *6 (-363 *5)) (-4 *5 (-1013)) (-5 *2 (-583 (-550 *6))) (-5 *1 (-509 *5 *6)))) (-3234 (*1 *2 *2 *2) (-12 (-5 *2 (-583 (-550 *4))) (-4 *4 (-363 *3)) (-4 *3 (-1013)) (-5 *1 (-509 *3 *4)))) (-2106 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-583 (-550 *6))) (-5 *4 (-1089)) (-5 *2 (-550 *6)) (-4 *6 (-363 *5)) (-4 *5 (-1013)) (-5 *1 (-509 *5 *6)))) (-2105 (*1 *2 *3) (-12 (-5 *3 (-583 (-550 *5))) (-4 *4 (-1013)) (-5 *2 (-550 *5)) (-5 *1 (-509 *4 *5)) (-4 *5 (-363 *4)))) (-2104 (*1 *2 *2 *3) (-12 (-5 *2 (-583 (-550 *5))) (-5 *3 (-1089)) (-4 *5 (-363 *4)) (-4 *4 (-1013)) (-5 *1 (-509 *4 *5))))) +((-2113 (((-2 (|:| |answer| (-519 (-349 |#2|))) (|:| |a0| |#1|)) (-349 |#2|) (-1 |#2| |#2|) (-1 (-3 (-583 |#1|) #1="failed") (-484) |#1| |#1|)) 199 T ELT)) (-2116 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-349 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-349 |#2|)) (|:| |logand| (-349 |#2|))))))) (|:| |a0| |#1|)) #1#) (-349 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2136 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-583 (-349 |#2|))) 174 T ELT)) (-2119 (((-3 (-2 (|:| |mainpart| (-349 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-349 |#2|)) (|:| |logand| (-349 |#2|)))))) #1#) (-349 |#2|) (-1 |#2| |#2|) (-583 (-349 |#2|))) 171 T ELT)) (-2120 (((-3 |#2| #1#) |#2| (-1 (-3 (-2 (|:| -2136 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) |#1|) 162 T ELT)) (-2111 (((-2 (|:| |answer| (-519 (-349 |#2|))) (|:| |a0| |#1|)) (-349 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2136 |#1|) (|:| |coeff| |#1|)) #1#) |#1|)) 185 T ELT)) (-2118 (((-3 (-2 (|:| -2136 (-349 |#2|)) (|:| |coeff| (-349 |#2|))) #1#) (-349 |#2|) (-1 |#2| |#2|) (-349 |#2|)) 202 T ELT)) (-2114 (((-3 (-2 (|:| |answer| (-349 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2136 (-349 |#2|)) (|:| |coeff| (-349 |#2|))) #1#) (-349 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2136 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-349 |#2|)) 205 T ELT)) (-2122 (((-2 (|:| |ir| (-519 (-349 |#2|))) (|:| |specpart| (-349 |#2|)) (|:| |polypart| |#2|)) (-349 |#2|) (-1 |#2| |#2|)) 88 T ELT)) (-2123 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 100 T ELT)) (-2117 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-349 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-349 |#2|)) (|:| |logand| (-349 |#2|))))))) (|:| |a0| |#1|)) #1#) (-349 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3137 |#1|) (|:| |sol?| (-85))) (-484) |#1|) (-583 (-349 |#2|))) 178 T ELT)) (-2121 (((-3 (-562 |#1| |#2|) #1#) (-562 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3137 |#1|) (|:| |sol?| (-85))) (-484) |#1|)) 166 T ELT)) (-2112 (((-2 (|:| |answer| (-519 (-349 |#2|))) (|:| |a0| |#1|)) (-349 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3137 |#1|) (|:| |sol?| (-85))) (-484) |#1|)) 189 T ELT)) (-2115 (((-3 (-2 (|:| |answer| (-349 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2136 (-349 |#2|)) (|:| |coeff| (-349 |#2|))) #1#) (-349 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3137 |#1|) (|:| |sol?| (-85))) (-484) |#1|) (-349 |#2|)) 210 T ELT))) +(((-510 |#1| |#2|) (-10 -7 (-15 -2111 ((-2 (|:| |answer| (-519 (-349 |#2|))) (|:| |a0| |#1|)) (-349 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2136 |#1|) (|:| |coeff| |#1|)) #1="failed") |#1|))) (-15 -2112 ((-2 (|:| |answer| (-519 (-349 |#2|))) (|:| |a0| |#1|)) (-349 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3137 |#1|) (|:| |sol?| (-85))) (-484) |#1|))) (-15 -2113 ((-2 (|:| |answer| (-519 (-349 |#2|))) (|:| |a0| |#1|)) (-349 |#2|) (-1 |#2| |#2|) (-1 (-3 (-583 |#1|) #1#) (-484) |#1| |#1|))) (-15 -2114 ((-3 (-2 (|:| |answer| (-349 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2136 (-349 |#2|)) (|:| |coeff| (-349 |#2|))) #1#) (-349 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2136 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-349 |#2|))) (-15 -2115 ((-3 (-2 (|:| |answer| (-349 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2136 (-349 |#2|)) (|:| |coeff| (-349 |#2|))) #1#) (-349 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3137 |#1|) (|:| |sol?| (-85))) (-484) |#1|) (-349 |#2|))) (-15 -2116 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-349 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-349 |#2|)) (|:| |logand| (-349 |#2|))))))) (|:| |a0| |#1|)) #1#) (-349 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2136 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-583 (-349 |#2|)))) (-15 -2117 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-349 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-349 |#2|)) (|:| |logand| (-349 |#2|))))))) (|:| |a0| |#1|)) #1#) (-349 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3137 |#1|) (|:| |sol?| (-85))) (-484) |#1|) (-583 (-349 |#2|)))) (-15 -2118 ((-3 (-2 (|:| -2136 (-349 |#2|)) (|:| |coeff| (-349 |#2|))) #1#) (-349 |#2|) (-1 |#2| |#2|) (-349 |#2|))) (-15 -2119 ((-3 (-2 (|:| |mainpart| (-349 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-349 |#2|)) (|:| |logand| (-349 |#2|)))))) #1#) (-349 |#2|) (-1 |#2| |#2|) (-583 (-349 |#2|)))) (-15 -2120 ((-3 |#2| #1#) |#2| (-1 (-3 (-2 (|:| -2136 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) |#1|)) (-15 -2121 ((-3 (-562 |#1| |#2|) #1#) (-562 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3137 |#1|) (|:| |sol?| (-85))) (-484) |#1|))) (-15 -2122 ((-2 (|:| |ir| (-519 (-349 |#2|))) (|:| |specpart| (-349 |#2|)) (|:| |polypart| |#2|)) (-349 |#2|) (-1 |#2| |#2|))) (-15 -2123 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-312) (-1154 |#1|)) (T -510)) +((-2123 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1154 *5)) (-4 *5 (-312)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-510 *5 *3)))) (-2122 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1154 *5)) (-4 *5 (-312)) (-5 *2 (-2 (|:| |ir| (-519 (-349 *6))) (|:| |specpart| (-349 *6)) (|:| |polypart| *6))) (-5 *1 (-510 *5 *6)) (-5 *3 (-349 *6)))) (-2121 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-562 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3137 *4) (|:| |sol?| (-85))) (-484) *4)) (-4 *4 (-312)) (-4 *5 (-1154 *4)) (-5 *1 (-510 *4 *5)))) (-2120 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -2136 *4) (|:| |coeff| *4)) #1="failed") *4)) (-4 *4 (-312)) (-5 *1 (-510 *4 *2)) (-4 *2 (-1154 *4)))) (-2119 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-583 (-349 *7))) (-4 *7 (-1154 *6)) (-5 *3 (-349 *7)) (-4 *6 (-312)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-510 *6 *7)))) (-2118 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1154 *5)) (-4 *5 (-312)) (-5 *2 (-2 (|:| -2136 (-349 *6)) (|:| |coeff| (-349 *6)))) (-5 *1 (-510 *5 *6)) (-5 *3 (-349 *6)))) (-2117 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3137 *7) (|:| |sol?| (-85))) (-484) *7)) (-5 *6 (-583 (-349 *8))) (-4 *7 (-312)) (-4 *8 (-1154 *7)) (-5 *3 (-349 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-510 *7 *8)))) (-2116 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -2136 *7) (|:| |coeff| *7)) #1#) *7)) (-5 *6 (-583 (-349 *8))) (-4 *7 (-312)) (-4 *8 (-1154 *7)) (-5 *3 (-349 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-510 *7 *8)))) (-2115 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3137 *6) (|:| |sol?| (-85))) (-484) *6)) (-4 *6 (-312)) (-4 *7 (-1154 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-349 *7)) (|:| |a0| *6)) (-2 (|:| -2136 (-349 *7)) (|:| |coeff| (-349 *7))) "failed")) (-5 *1 (-510 *6 *7)) (-5 *3 (-349 *7)))) (-2114 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2136 *6) (|:| |coeff| *6)) #1#) *6)) (-4 *6 (-312)) (-4 *7 (-1154 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-349 *7)) (|:| |a0| *6)) (-2 (|:| -2136 (-349 *7)) (|:| |coeff| (-349 *7))) "failed")) (-5 *1 (-510 *6 *7)) (-5 *3 (-349 *7)))) (-2113 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-583 *6) "failed") (-484) *6 *6)) (-4 *6 (-312)) (-4 *7 (-1154 *6)) (-5 *2 (-2 (|:| |answer| (-519 (-349 *7))) (|:| |a0| *6))) (-5 *1 (-510 *6 *7)) (-5 *3 (-349 *7)))) (-2112 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3137 *6) (|:| |sol?| (-85))) (-484) *6)) (-4 *6 (-312)) (-4 *7 (-1154 *6)) (-5 *2 (-2 (|:| |answer| (-519 (-349 *7))) (|:| |a0| *6))) (-5 *1 (-510 *6 *7)) (-5 *3 (-349 *7)))) (-2111 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2136 *6) (|:| |coeff| *6)) #1#) *6)) (-4 *6 (-312)) (-4 *7 (-1154 *6)) (-5 *2 (-2 (|:| |answer| (-519 (-349 *7))) (|:| |a0| *6))) (-5 *1 (-510 *6 *7)) (-5 *3 (-349 *7))))) +((-2124 (((-3 |#2| "failed") |#2| (-1089) (-1089)) 10 T ELT))) +(((-511 |#1| |#2|) (-10 -7 (-15 -2124 ((-3 |#2| "failed") |#2| (-1089) (-1089)))) (-13 (-258) (-120) (-950 (-484)) (-580 (-484))) (-13 (-1114) (-871) (-1052) (-29 |#1|))) (T -511)) +((-2124 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1089)) (-4 *4 (-13 (-258) (-120) (-950 (-484)) (-580 (-484)))) (-5 *1 (-511 *4 *2)) (-4 *2 (-13 (-1114) (-871) (-1052) (-29 *4)))))) +((-2555 (((-632 (-1137)) $ (-1137)) 27 T ELT)) (-2556 (((-632 (-488)) $ (-488)) 26 T ELT)) (-2554 (((-694) $ (-102)) 28 T ELT)) (-2557 (((-632 (-101)) $ (-101)) 25 T ELT)) (-2000 (((-632 (-1137)) $) 12 T ELT)) (-1996 (((-632 (-1135)) $) 8 T ELT)) (-1998 (((-632 (-1134)) $) 10 T ELT)) (-2001 (((-632 (-488)) $) 13 T ELT)) (-1997 (((-632 (-486)) $) 9 T ELT)) (-1999 (((-632 (-485)) $) 11 T ELT)) (-1995 (((-694) $ (-102)) 7 T ELT)) (-2002 (((-632 (-101)) $) 14 T ELT)) (-1699 (($ $) 6 T ELT))) +(((-512) (-113)) (T -512)) +NIL +(-13 (-465) (-770)) +(((-147) . T) ((-465) . T) ((-770) . T)) +((-2555 (((-632 (-1137)) $ (-1137)) NIL T ELT)) (-2556 (((-632 (-488)) $ (-488)) NIL T ELT)) (-2554 (((-694) $ (-102)) NIL T ELT)) (-2557 (((-632 (-101)) $ (-101)) NIL T ELT)) (-2000 (((-632 (-1137)) $) NIL T ELT)) (-1996 (((-632 (-1135)) $) NIL T ELT)) (-1998 (((-632 (-1134)) $) NIL T ELT)) (-2001 (((-632 (-488)) $) NIL T ELT)) (-1997 (((-632 (-486)) $) NIL T ELT)) (-1999 (((-632 (-485)) $) NIL T ELT)) (-1995 (((-694) $ (-102)) NIL T ELT)) (-2002 (((-632 (-101)) $) NIL T ELT)) (-2558 (((-85) $) NIL T ELT)) (-2125 (($ (-337)) 14 T ELT) (($ (-1072)) 16 T ELT)) (-3945 (((-772) $) NIL T ELT)) (-1699 (($ $) NIL T ELT))) +(((-513) (-13 (-512) (-552 (-772)) (-10 -8 (-15 -2125 ($ (-337))) (-15 -2125 ($ (-1072))) (-15 -2558 ((-85) $))))) (T -513)) +((-2125 (*1 *1 *2) (-12 (-5 *2 (-337)) (-5 *1 (-513)))) (-2125 (*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-513)))) (-2558 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-513))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3459 (($) 7 T CONST)) (-3242 (((-1072) $) NIL T ELT)) (-2128 (($) 6 T CONST)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) 15 T ELT)) (-2126 (($) 9 T CONST)) (-2127 (($) 8 T CONST)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 11 T ELT))) +(((-514) (-13 (-1013) (-10 -8 (-15 -2128 ($) -3951) (-15 -3459 ($) -3951) (-15 -2127 ($) -3951) (-15 -2126 ($) -3951)))) (T -514)) +((-2128 (*1 *1) (-5 *1 (-514))) (-3459 (*1 *1) (-5 *1 (-514))) (-2127 (*1 *1) (-5 *1 (-514))) (-2126 (*1 *1) (-5 *1 (-514)))) +((-2568 (((-85) $ $) NIL T ELT)) (-2129 (((-632 $) (-430)) 23 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2131 (($ (-1072)) 16 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) 33 T ELT)) (-2130 (((-166 4 (-101)) $) 24 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 26 T ELT))) +(((-515) (-13 (-1013) (-10 -8 (-15 -2131 ($ (-1072))) (-15 -2130 ((-166 4 (-101)) $)) (-15 -2129 ((-632 $) (-430)))))) (T -515)) +((-2131 (*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-515)))) (-2130 (*1 *2 *1) (-12 (-5 *2 (-166 4 (-101))) (-5 *1 (-515)))) (-2129 (*1 *2 *3) (-12 (-5 *3 (-430)) (-5 *2 (-632 (-515))) (-5 *1 (-515))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3037 (($ $ (-484)) 73 T ELT)) (-1607 (((-85) $ $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-2611 (($ (-1084 (-484)) (-484)) 79 T ELT)) (-2564 (($ $ $) NIL T ELT)) (-3466 (((-3 $ #1#) $) 64 T ELT)) (-2612 (($ $) 43 T ELT)) (-2563 (($ $ $) NIL T ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-3771 (((-694) $) 16 T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-1604 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2614 (((-484)) 37 T ELT)) (-2613 (((-484) $) 41 T ELT)) (-1890 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3144 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-1605 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3768 (($ $ (-484)) 24 T ELT)) (-3465 (((-3 $ #1#) $ $) 70 T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-1606 (((-694) $) 17 T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 71 T ELT)) (-2615 (((-1068 (-484)) $) 19 T ELT)) (-2891 (($ $) 26 T ELT)) (-3945 (((-772) $) 100 T ELT) (($ (-484)) 59 T ELT) (($ $) NIL T ELT)) (-3126 (((-694)) 15 T CONST)) (-1264 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3769 (((-484) $ (-484)) 46 T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) 44 T CONST)) (-2666 (($) 21 T CONST)) (-3056 (((-85) $ $) 51 T ELT)) (-3836 (($ $) 58 T ELT) (($ $ $) 48 T ELT)) (-3838 (($ $ $) 57 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 60 T ELT) (($ $ $) 61 T ELT))) +(((-516 |#1| |#2|) (-779 |#1|) (-484) (-85)) (T -516)) +NIL +((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) 30 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-3931 (((-85) $) NIL T ELT)) (-3928 (((-694)) NIL T ELT)) (-3329 (($ $ (-830)) NIL (|has| $ (-319)) ELT) (($ $) NIL T ELT)) (-1674 (((-1101 (-830) (-694)) (-484)) 59 T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3774 (($ $) NIL T ELT)) (-3970 (((-347 $) $) NIL T ELT)) (-1607 (((-85) $ $) NIL T ELT)) (-3136 (((-694)) NIL T ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 $ #1#) $) 95 T ELT)) (-3156 (($ $) 94 T ELT)) (-1791 (($ (-1178 $)) 93 T ELT)) (-1672 (((-3 "prime" "polynomial" "normal" "cyclic")) 56 T ELT)) (-2564 (($ $ $) NIL T ELT)) (-3466 (((-3 $ #1#) $) 47 T ELT)) (-2994 (($) NIL T ELT)) (-2563 (($ $ $) NIL T ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-2833 (($) 61 T ELT)) (-1679 (((-85) $) NIL T ELT)) (-1763 (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-3722 (((-85) $) NIL T ELT)) (-3771 (((-743 (-830)) $) NIL T ELT) (((-830) $) NIL T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2013 (($) 49 (|has| $ (-319)) ELT)) (-2011 (((-85) $) NIL (|has| $ (-319)) ELT)) (-3132 (($ $ (-830)) NIL (|has| $ (-319)) ELT) (($ $) NIL T ELT)) (-3444 (((-632 $) $) NIL T ELT)) (-1604 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2014 (((-1084 $) $ (-830)) NIL (|has| $ (-319)) ELT) (((-1084 $) $) 104 T ELT)) (-2010 (((-830) $) 67 T ELT)) (-1626 (((-1084 $) $) NIL (|has| $ (-319)) ELT)) (-1625 (((-3 (-1084 $) #1#) $ $) NIL (|has| $ (-319)) ELT) (((-1084 $) $) NIL (|has| $ (-319)) ELT)) (-1627 (($ $ (-1084 $)) NIL (|has| $ (-319)) ELT)) (-1890 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2484 (($ $) NIL T ELT)) (-3445 (($) NIL T CONST)) (-2400 (($ (-830)) 60 T ELT)) (-3930 (((-85) $) 87 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2409 (($) 28 (|has| $ (-319)) ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3144 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-1675 (((-583 (-2 (|:| -3731 (-484)) (|:| -2401 (-484))))) 54 T ELT)) (-3731 (((-347 $) $) NIL T ELT)) (-3929 (((-830)) 86 T ELT) (((-743 (-830))) NIL T ELT)) (-1605 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3465 (((-3 $ #1#) $ $) NIL T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-1606 (((-694) $) NIL T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL T ELT)) (-1764 (((-3 (-694) #1#) $ $) NIL T ELT) (((-694) $) NIL T ELT)) (-3910 (((-107)) NIL T ELT)) (-3757 (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-3947 (((-830) $) 85 T ELT) (((-743 (-830)) $) NIL T ELT)) (-3185 (((-1084 $)) 102 T ELT)) (-1673 (($) 66 T ELT)) (-1628 (($) 50 (|has| $ (-319)) ELT)) (-3224 (((-630 $) (-1178 $)) NIL T ELT) (((-1178 $) $) 91 T ELT)) (-3971 (((-484) $) 42 T ELT)) (-2703 (((-3 (-1178 $) #1#) (-630 $)) NIL T ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-484)) 45 T ELT) (($ $) NIL T ELT) (($ (-349 (-484))) NIL T ELT)) (-2702 (((-632 $) $) NIL T ELT) (($ $) 105 T ELT)) (-3126 (((-694)) 51 T CONST)) (-1264 (((-85) $ $) 107 T ELT)) (-2012 (((-1178 $) (-830)) 97 T ELT) (((-1178 $)) 96 T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-3932 (((-85) $) NIL T ELT)) (-2660 (($) 31 T CONST)) (-2666 (($) 27 T CONST)) (-3927 (($ $ (-694)) NIL (|has| $ (-319)) ELT) (($ $) NIL (|has| $ (-319)) ELT)) (-2669 (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3948 (($ $ $) NIL T ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) 34 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 81 T ELT) (($ $ (-349 (-484))) NIL T ELT) (($ (-349 (-484)) $) NIL T ELT))) +(((-517 |#1|) (-13 (-299) (-280 $) (-553 (-484))) (-830)) (T -517)) +NIL +((-2132 (((-1184) (-1072)) 10 T ELT))) +(((-518) (-10 -7 (-15 -2132 ((-1184) (-1072))))) (T -518)) +((-2132 (*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-518))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 |#1| #1#) $) 77 T ELT)) (-3156 ((|#1| $) NIL T ELT)) (-2136 ((|#1| $) 30 T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2134 (((-583 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 32 T ELT)) (-2137 (($ |#1| (-583 (-2 (|:| |scalar| (-349 (-484))) (|:| |coeff| (-1084 |#1|)) (|:| |logand| (-1084 |#1|)))) (-583 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 28 T ELT)) (-2135 (((-583 (-2 (|:| |scalar| (-349 (-484))) (|:| |coeff| (-1084 |#1|)) (|:| |logand| (-1084 |#1|)))) $) 31 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2832 (($ |#1| |#1|) 38 T ELT) (($ |#1| (-1089)) 49 (|has| |#1| (-950 (-1089))) ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2133 (((-85) $) 35 T ELT)) (-3757 ((|#1| $ (-1 |#1| |#1|)) 89 T ELT) ((|#1| $ (-1089)) 90 (|has| |#1| (-809 (-1089))) ELT)) (-3945 (((-772) $) 113 T ELT) (($ |#1|) 29 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2660 (($) 18 T CONST)) (-3056 (((-85) $ $) NIL T ELT)) (-3836 (($ $) 17 T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) 86 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 16 T ELT) (($ (-349 (-484)) $) 41 T ELT) (($ $ (-349 (-484))) NIL T ELT))) +(((-519 |#1|) (-13 (-654 (-349 (-484))) (-950 |#1|) (-10 -8 (-15 -2137 ($ |#1| (-583 (-2 (|:| |scalar| (-349 (-484))) (|:| |coeff| (-1084 |#1|)) (|:| |logand| (-1084 |#1|)))) (-583 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2136 (|#1| $)) (-15 -2135 ((-583 (-2 (|:| |scalar| (-349 (-484))) (|:| |coeff| (-1084 |#1|)) (|:| |logand| (-1084 |#1|)))) $)) (-15 -2134 ((-583 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2133 ((-85) $)) (-15 -2832 ($ |#1| |#1|)) (-15 -3757 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-809 (-1089))) (-15 -3757 (|#1| $ (-1089))) |%noBranch|) (IF (|has| |#1| (-950 (-1089))) (-15 -2832 ($ |#1| (-1089))) |%noBranch|))) (-312)) (T -519)) +((-2137 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-583 (-2 (|:| |scalar| (-349 (-484))) (|:| |coeff| (-1084 *2)) (|:| |logand| (-1084 *2))))) (-5 *4 (-583 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-312)) (-5 *1 (-519 *2)))) (-2136 (*1 *2 *1) (-12 (-5 *1 (-519 *2)) (-4 *2 (-312)))) (-2135 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |scalar| (-349 (-484))) (|:| |coeff| (-1084 *3)) (|:| |logand| (-1084 *3))))) (-5 *1 (-519 *3)) (-4 *3 (-312)))) (-2134 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-519 *3)) (-4 *3 (-312)))) (-2133 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-519 *3)) (-4 *3 (-312)))) (-2832 (*1 *1 *2 *2) (-12 (-5 *1 (-519 *2)) (-4 *2 (-312)))) (-3757 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-519 *2)) (-4 *2 (-312)))) (-3757 (*1 *2 *1 *3) (-12 (-4 *2 (-312)) (-4 *2 (-809 *3)) (-5 *1 (-519 *2)) (-5 *3 (-1089)))) (-2832 (*1 *1 *2 *3) (-12 (-5 *3 (-1089)) (-5 *1 (-519 *2)) (-4 *2 (-950 *3)) (-4 *2 (-312))))) +((-3957 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) #1#)) 44 T ELT) (((-3 |#2| #1#) (-1 |#2| |#1|) (-3 |#1| #1#)) 11 T ELT) (((-3 (-2 (|:| -2136 |#2|) (|:| |coeff| |#2|)) #1#) (-1 |#2| |#1|) (-3 (-2 (|:| -2136 |#1|) (|:| |coeff| |#1|)) #1#)) 35 T ELT) (((-519 |#2|) (-1 |#2| |#1|) (-519 |#1|)) 30 T ELT))) +(((-520 |#1| |#2|) (-10 -7 (-15 -3957 ((-519 |#2|) (-1 |#2| |#1|) (-519 |#1|))) (-15 -3957 ((-3 (-2 (|:| -2136 |#2|) (|:| |coeff| |#2|)) #1="failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2136 |#1|) (|:| |coeff| |#1|)) #1#))) (-15 -3957 ((-3 |#2| #1#) (-1 |#2| |#1|) (-3 |#1| #1#))) (-15 -3957 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) #1#)))) (-312) (-312)) (T -520)) +((-3957 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-312)) (-4 *6 (-312)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-520 *5 *6)))) (-3957 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-312)) (-4 *2 (-312)) (-5 *1 (-520 *5 *2)))) (-3957 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -2136 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-312)) (-4 *6 (-312)) (-5 *2 (-2 (|:| -2136 *6) (|:| |coeff| *6))) (-5 *1 (-520 *5 *6)))) (-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-519 *5)) (-4 *5 (-312)) (-4 *6 (-312)) (-5 *2 (-519 *6)) (-5 *1 (-520 *5 *6))))) +((-3417 (((-519 |#2|) (-519 |#2|)) 42 T ELT)) (-3962 (((-583 |#2|) (-519 |#2|)) 44 T ELT)) (-2148 ((|#2| (-519 |#2|)) 50 T ELT))) +(((-521 |#1| |#2|) (-10 -7 (-15 -3417 ((-519 |#2|) (-519 |#2|))) (-15 -3962 ((-583 |#2|) (-519 |#2|))) (-15 -2148 (|#2| (-519 |#2|)))) (-13 (-391) (-950 (-484)) (-580 (-484))) (-13 (-29 |#1|) (-1114))) (T -521)) +((-2148 (*1 *2 *3) (-12 (-5 *3 (-519 *2)) (-4 *2 (-13 (-29 *4) (-1114))) (-5 *1 (-521 *4 *2)) (-4 *4 (-13 (-391) (-950 (-484)) (-580 (-484)))))) (-3962 (*1 *2 *3) (-12 (-5 *3 (-519 *5)) (-4 *5 (-13 (-29 *4) (-1114))) (-4 *4 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *2 (-583 *5)) (-5 *1 (-521 *4 *5)))) (-3417 (*1 *2 *2) (-12 (-5 *2 (-519 *4)) (-4 *4 (-13 (-29 *3) (-1114))) (-4 *3 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *1 (-521 *3 *4))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2140 (($ (-446) (-532)) 14 T ELT)) (-2138 (($ (-446) (-532) $) 16 T ELT)) (-2139 (($ (-446) (-532)) 15 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-1094)) 7 T ELT) (((-1094) $) 6 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT))) +(((-522) (-13 (-1013) (-429 (-1094)) (-10 -8 (-15 -2140 ($ (-446) (-532))) (-15 -2139 ($ (-446) (-532))) (-15 -2138 ($ (-446) (-532) $))))) (T -522)) +((-2140 (*1 *1 *2 *3) (-12 (-5 *2 (-446)) (-5 *3 (-532)) (-5 *1 (-522)))) (-2139 (*1 *1 *2 *3) (-12 (-5 *2 (-446)) (-5 *3 (-532)) (-5 *1 (-522)))) (-2138 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-446)) (-5 *3 (-532)) (-5 *1 (-522))))) +((-2144 (((-85) |#1|) 16 T ELT)) (-2145 (((-3 |#1| #1="failed") |#1|) 14 T ELT)) (-2142 (((-2 (|:| -2694 |#1|) (|:| -2401 (-694))) |#1|) 37 T ELT) (((-3 |#1| #1#) |#1| (-694)) 18 T ELT)) (-2141 (((-85) |#1| (-694)) 19 T ELT)) (-2146 ((|#1| |#1|) 41 T ELT)) (-2143 ((|#1| |#1| (-694)) 44 T ELT))) +(((-523 |#1|) (-10 -7 (-15 -2141 ((-85) |#1| (-694))) (-15 -2142 ((-3 |#1| #1="failed") |#1| (-694))) (-15 -2142 ((-2 (|:| -2694 |#1|) (|:| -2401 (-694))) |#1|)) (-15 -2143 (|#1| |#1| (-694))) (-15 -2144 ((-85) |#1|)) (-15 -2145 ((-3 |#1| #1#) |#1|)) (-15 -2146 (|#1| |#1|))) (-483)) (T -523)) +((-2146 (*1 *2 *2) (-12 (-5 *1 (-523 *2)) (-4 *2 (-483)))) (-2145 (*1 *2 *2) (|partial| -12 (-5 *1 (-523 *2)) (-4 *2 (-483)))) (-2144 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-523 *3)) (-4 *3 (-483)))) (-2143 (*1 *2 *2 *3) (-12 (-5 *3 (-694)) (-5 *1 (-523 *2)) (-4 *2 (-483)))) (-2142 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2694 *3) (|:| -2401 (-694)))) (-5 *1 (-523 *3)) (-4 *3 (-483)))) (-2142 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-694)) (-5 *1 (-523 *2)) (-4 *2 (-483)))) (-2141 (*1 *2 *3 *4) (-12 (-5 *4 (-694)) (-5 *2 (-85)) (-5 *1 (-523 *3)) (-4 *3 (-483))))) +((-2147 (((-1084 |#1|) (-830)) 44 T ELT))) +(((-524 |#1|) (-10 -7 (-15 -2147 ((-1084 |#1|) (-830)))) (-299)) (T -524)) +((-2147 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1084 *4)) (-5 *1 (-524 *4)) (-4 *4 (-299))))) +((-3417 (((-519 (-349 (-857 |#1|))) (-519 (-349 (-857 |#1|)))) 27 T ELT)) (-3811 (((-3 (-265 |#1|) (-583 (-265 |#1|))) (-349 (-857 |#1|)) (-1089)) 33 (|has| |#1| (-120)) ELT)) (-3962 (((-583 (-265 |#1|)) (-519 (-349 (-857 |#1|)))) 19 T ELT)) (-2149 (((-265 |#1|) (-349 (-857 |#1|)) (-1089)) 31 (|has| |#1| (-120)) ELT)) (-2148 (((-265 |#1|) (-519 (-349 (-857 |#1|)))) 21 T ELT))) +(((-525 |#1|) (-10 -7 (-15 -3417 ((-519 (-349 (-857 |#1|))) (-519 (-349 (-857 |#1|))))) (-15 -3962 ((-583 (-265 |#1|)) (-519 (-349 (-857 |#1|))))) (-15 -2148 ((-265 |#1|) (-519 (-349 (-857 |#1|))))) (IF (|has| |#1| (-120)) (PROGN (-15 -3811 ((-3 (-265 |#1|) (-583 (-265 |#1|))) (-349 (-857 |#1|)) (-1089))) (-15 -2149 ((-265 |#1|) (-349 (-857 |#1|)) (-1089)))) |%noBranch|)) (-13 (-391) (-950 (-484)) (-580 (-484)))) (T -525)) +((-2149 (*1 *2 *3 *4) (-12 (-5 *3 (-349 (-857 *5))) (-5 *4 (-1089)) (-4 *5 (-120)) (-4 *5 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *2 (-265 *5)) (-5 *1 (-525 *5)))) (-3811 (*1 *2 *3 *4) (-12 (-5 *3 (-349 (-857 *5))) (-5 *4 (-1089)) (-4 *5 (-120)) (-4 *5 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *2 (-3 (-265 *5) (-583 (-265 *5)))) (-5 *1 (-525 *5)))) (-2148 (*1 *2 *3) (-12 (-5 *3 (-519 (-349 (-857 *4)))) (-4 *4 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *2 (-265 *4)) (-5 *1 (-525 *4)))) (-3962 (*1 *2 *3) (-12 (-5 *3 (-519 (-349 (-857 *4)))) (-4 *4 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *2 (-583 (-265 *4))) (-5 *1 (-525 *4)))) (-3417 (*1 *2 *2) (-12 (-5 *2 (-519 (-349 (-857 *3)))) (-4 *3 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *1 (-525 *3))))) +((-2151 (((-583 (-630 (-484))) (-583 (-830)) (-583 (-813 (-484)))) 80 T ELT) (((-583 (-630 (-484))) (-583 (-830))) 81 T ELT) (((-630 (-484)) (-583 (-830)) (-813 (-484))) 74 T ELT)) (-2150 (((-694) (-583 (-830))) 71 T ELT))) +(((-526) (-10 -7 (-15 -2150 ((-694) (-583 (-830)))) (-15 -2151 ((-630 (-484)) (-583 (-830)) (-813 (-484)))) (-15 -2151 ((-583 (-630 (-484))) (-583 (-830)))) (-15 -2151 ((-583 (-630 (-484))) (-583 (-830)) (-583 (-813 (-484))))))) (T -526)) +((-2151 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-830))) (-5 *4 (-583 (-813 (-484)))) (-5 *2 (-583 (-630 (-484)))) (-5 *1 (-526)))) (-2151 (*1 *2 *3) (-12 (-5 *3 (-583 (-830))) (-5 *2 (-583 (-630 (-484)))) (-5 *1 (-526)))) (-2151 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-830))) (-5 *4 (-813 (-484))) (-5 *2 (-630 (-484))) (-5 *1 (-526)))) (-2150 (*1 *2 *3) (-12 (-5 *3 (-583 (-830))) (-5 *2 (-694)) (-5 *1 (-526))))) +((-3213 (((-583 |#5|) |#5| (-85)) 97 T ELT)) (-2152 (((-85) |#5| (-583 |#5|)) 34 T ELT))) +(((-527 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3213 ((-583 |#5|) |#5| (-85))) (-15 -2152 ((-85) |#5| (-583 |#5|)))) (-13 (-258) (-120)) (-717) (-756) (-977 |#1| |#2| |#3|) (-1020 |#1| |#2| |#3| |#4|)) (T -527)) +((-2152 (*1 *2 *3 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-1020 *5 *6 *7 *8)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *8 (-977 *5 *6 *7)) (-5 *2 (-85)) (-5 *1 (-527 *5 *6 *7 *8 *3)))) (-3213 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *8 (-977 *5 *6 *7)) (-5 *2 (-583 *3)) (-5 *1 (-527 *5 *6 *7 *8 *3)) (-4 *3 (-1020 *5 *6 *7 *8))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3527 (((-1048) $) 12 T ELT)) (-3528 (((-1048) $) 10 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) 18 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT))) +(((-528) (-13 (-995) (-10 -8 (-15 -3528 ((-1048) $)) (-15 -3527 ((-1048) $))))) (T -528)) +((-3528 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-528)))) (-3527 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-528))))) +((-3531 (((-2 (|:| |num| |#4|) (|:| |den| (-484))) |#4| |#2|) 23 T ELT) (((-2 (|:| |num| |#4|) (|:| |den| (-484))) |#4| |#2| (-1001 |#4|)) 32 T ELT))) +(((-529 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3531 ((-2 (|:| |num| |#4|) (|:| |den| (-484))) |#4| |#2| (-1001 |#4|))) (-15 -3531 ((-2 (|:| |num| |#4|) (|:| |den| (-484))) |#4| |#2|))) (-717) (-756) (-495) (-861 |#3| |#1| |#2|)) (T -529)) +((-3531 (*1 *2 *3 *4) (-12 (-4 *5 (-717)) (-4 *4 (-756)) (-4 *6 (-495)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-484)))) (-5 *1 (-529 *5 *4 *6 *3)) (-4 *3 (-861 *6 *5 *4)))) (-3531 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1001 *3)) (-4 *3 (-861 *7 *6 *4)) (-4 *6 (-717)) (-4 *4 (-756)) (-4 *7 (-495)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-484)))) (-5 *1 (-529 *6 *4 *7 *3))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) 71 T ELT)) (-3081 (((-583 (-994)) $) NIL T ELT)) (-3830 (((-1089) $) NIL T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2063 (($ $) NIL (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-3770 (($ $ (-484)) 58 T ELT) (($ $ (-484) (-484)) 59 T ELT)) (-3773 (((-1068 (-2 (|:| |k| (-484)) (|:| |c| |#1|))) $) 65 T ELT)) (-2183 (($ $) 109 T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2181 (((-772) (-1068 (-2 (|:| |k| (-484)) (|:| |c| |#1|))) (-939 (-750 (-484))) (-1089) |#1| (-349 (-484))) 232 T ELT)) (-3817 (($ (-1068 (-2 (|:| |k| (-484)) (|:| |c| |#1|)))) 36 T ELT)) (-3723 (($) NIL T CONST)) (-3958 (($ $) NIL T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-2892 (((-85) $) NIL T ELT)) (-3771 (((-484) $) 63 T ELT) (((-484) $ (-484)) 64 T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-3776 (($ $ (-830)) 83 T ELT)) (-3814 (($ (-1 |#1| (-484)) $) 80 T ELT)) (-3936 (((-85) $) 26 T ELT)) (-2893 (($ |#1| (-484)) 22 T ELT) (($ $ (-994) (-484)) NIL T ELT) (($ $ (-583 (-994)) (-583 (-484))) NIL T ELT)) (-3957 (($ (-1 |#1| |#1|) $) 75 T ELT)) (-2187 (($ (-939 (-750 (-484))) (-1068 (-2 (|:| |k| (-484)) (|:| |c| |#1|)))) 13 T ELT)) (-2894 (($ $) NIL T ELT)) (-3174 ((|#1| $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3811 (($ $) 120 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2184 (((-3 $ #1#) $ $ (-85)) 108 T ELT)) (-2182 (($ $ $) 116 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2185 (((-1068 (-2 (|:| |k| (-484)) (|:| |c| |#1|))) $) 15 T ELT)) (-2186 (((-939 (-750 (-484))) $) 14 T ELT)) (-3768 (($ $ (-484)) 47 T ELT)) (-3465 (((-3 $ #1#) $ $) NIL (|has| |#1| (-495)) ELT)) (-3767 (((-1068 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-484)))) ELT)) (-3799 ((|#1| $ (-484)) 62 T ELT) (($ $ $) NIL (|has| (-484) (-1025)) ELT)) (-3757 (($ $ (-1089)) NIL (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-583 (-1089))) NIL (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-1089) (-694)) NIL (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $) 77 (|has| |#1| (-15 * (|#1| (-484) |#1|))) ELT) (($ $ (-694)) NIL (|has| |#1| (-15 * (|#1| (-484) |#1|))) ELT)) (-3947 (((-484) $) NIL T ELT)) (-2891 (($ $) 48 T ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-484)) 29 T ELT) (($ (-349 (-484))) NIL (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $) NIL (|has| |#1| (-495)) ELT) (($ |#1|) 28 (|has| |#1| (-146)) ELT)) (-3676 ((|#1| $ (-484)) 61 T ELT)) (-2702 (((-632 $) $) NIL (|has| |#1| (-118)) ELT)) (-3126 (((-694)) 39 T CONST)) (-3772 ((|#1| $) NIL T ELT)) (-2162 (($ $) 192 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2174 (($ $) 167 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2164 (($ $) 189 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2176 (($ $) 164 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2160 (($ $) 194 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2172 (($ $) 170 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2179 (($ $ (-349 (-484))) 157 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2180 (($ $ |#1|) 128 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2177 (($ $) 161 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2178 (($ $) 159 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2159 (($ $) 195 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2171 (($ $) 171 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2161 (($ $) 193 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2173 (($ $) 169 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2163 (($ $) 190 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2175 (($ $) 165 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2156 (($ $) 200 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2168 (($ $) 180 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2158 (($ $) 197 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2170 (($ $) 176 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2154 (($ $) 204 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2166 (($ $) 184 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2153 (($ $) 206 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2165 (($ $) 186 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2155 (($ $) 202 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2167 (($ $) 182 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2157 (($ $) 199 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2169 (($ $) 178 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-3769 ((|#1| $ (-484)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-484)))) (|has| |#1| (-15 -3945 (|#1| (-1089))))) ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) 30 T CONST)) (-2666 (($) 40 T CONST)) (-2669 (($ $ (-1089)) NIL (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-583 (-1089))) NIL (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-1089) (-694)) NIL (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-484) |#1|))) ELT) (($ $ (-694)) NIL (|has| |#1| (-15 * (|#1| (-484) |#1|))) ELT)) (-3056 (((-85) $ $) 73 T ELT)) (-3948 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3836 (($ $) 91 T ELT) (($ $ $) 72 T ELT)) (-3838 (($ $ $) 88 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) 111 T ELT)) (* (($ (-830) $) 98 T ELT) (($ (-694) $) 96 T ELT) (($ (-484) $) 93 T ELT) (($ $ $) 104 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 123 T ELT) (($ (-349 (-484)) $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $ (-349 (-484))) NIL (|has| |#1| (-38 (-349 (-484)))) ELT))) +(((-530 |#1|) (-13 (-1157 |#1| (-484)) (-10 -8 (-15 -2187 ($ (-939 (-750 (-484))) (-1068 (-2 (|:| |k| (-484)) (|:| |c| |#1|))))) (-15 -2186 ((-939 (-750 (-484))) $)) (-15 -2185 ((-1068 (-2 (|:| |k| (-484)) (|:| |c| |#1|))) $)) (-15 -3817 ($ (-1068 (-2 (|:| |k| (-484)) (|:| |c| |#1|))))) (-15 -3936 ((-85) $)) (-15 -3814 ($ (-1 |#1| (-484)) $)) (-15 -2184 ((-3 $ "failed") $ $ (-85))) (-15 -2183 ($ $)) (-15 -2182 ($ $ $)) (-15 -2181 ((-772) (-1068 (-2 (|:| |k| (-484)) (|:| |c| |#1|))) (-939 (-750 (-484))) (-1089) |#1| (-349 (-484)))) (IF (|has| |#1| (-38 (-349 (-484)))) (PROGN (-15 -3811 ($ $)) (-15 -2180 ($ $ |#1|)) (-15 -2179 ($ $ (-349 (-484)))) (-15 -2178 ($ $)) (-15 -2177 ($ $)) (-15 -2176 ($ $)) (-15 -2175 ($ $)) (-15 -2174 ($ $)) (-15 -2173 ($ $)) (-15 -2172 ($ $)) (-15 -2171 ($ $)) (-15 -2170 ($ $)) (-15 -2169 ($ $)) (-15 -2168 ($ $)) (-15 -2167 ($ $)) (-15 -2166 ($ $)) (-15 -2165 ($ $)) (-15 -2164 ($ $)) (-15 -2163 ($ $)) (-15 -2162 ($ $)) (-15 -2161 ($ $)) (-15 -2160 ($ $)) (-15 -2159 ($ $)) (-15 -2158 ($ $)) (-15 -2157 ($ $)) (-15 -2156 ($ $)) (-15 -2155 ($ $)) (-15 -2154 ($ $)) (-15 -2153 ($ $))) |%noBranch|))) (-961)) (T -530)) +((-3936 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-530 *3)) (-4 *3 (-961)))) (-2187 (*1 *1 *2 *3) (-12 (-5 *2 (-939 (-750 (-484)))) (-5 *3 (-1068 (-2 (|:| |k| (-484)) (|:| |c| *4)))) (-4 *4 (-961)) (-5 *1 (-530 *4)))) (-2186 (*1 *2 *1) (-12 (-5 *2 (-939 (-750 (-484)))) (-5 *1 (-530 *3)) (-4 *3 (-961)))) (-2185 (*1 *2 *1) (-12 (-5 *2 (-1068 (-2 (|:| |k| (-484)) (|:| |c| *3)))) (-5 *1 (-530 *3)) (-4 *3 (-961)))) (-3817 (*1 *1 *2) (-12 (-5 *2 (-1068 (-2 (|:| |k| (-484)) (|:| |c| *3)))) (-4 *3 (-961)) (-5 *1 (-530 *3)))) (-3814 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-484))) (-4 *3 (-961)) (-5 *1 (-530 *3)))) (-2184 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-85)) (-5 *1 (-530 *3)) (-4 *3 (-961)))) (-2183 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-961)))) (-2182 (*1 *1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-961)))) (-2181 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1068 (-2 (|:| |k| (-484)) (|:| |c| *6)))) (-5 *4 (-939 (-750 (-484)))) (-5 *5 (-1089)) (-5 *7 (-349 (-484))) (-4 *6 (-961)) (-5 *2 (-772)) (-5 *1 (-530 *6)))) (-3811 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-349 (-484)))) (-4 *2 (-961)))) (-2180 (*1 *1 *1 *2) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-349 (-484)))) (-4 *2 (-961)))) (-2179 (*1 *1 *1 *2) (-12 (-5 *2 (-349 (-484))) (-5 *1 (-530 *3)) (-4 *3 (-38 *2)) (-4 *3 (-961)))) (-2178 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-349 (-484)))) (-4 *2 (-961)))) (-2177 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-349 (-484)))) (-4 *2 (-961)))) (-2176 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-349 (-484)))) (-4 *2 (-961)))) (-2175 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-349 (-484)))) (-4 *2 (-961)))) (-2174 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-349 (-484)))) (-4 *2 (-961)))) (-2173 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-349 (-484)))) (-4 *2 (-961)))) (-2172 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-349 (-484)))) (-4 *2 (-961)))) (-2171 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-349 (-484)))) (-4 *2 (-961)))) (-2170 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-349 (-484)))) (-4 *2 (-961)))) (-2169 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-349 (-484)))) (-4 *2 (-961)))) (-2168 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-349 (-484)))) (-4 *2 (-961)))) (-2167 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-349 (-484)))) (-4 *2 (-961)))) (-2166 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-349 (-484)))) (-4 *2 (-961)))) (-2165 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-349 (-484)))) (-4 *2 (-961)))) (-2164 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-349 (-484)))) (-4 *2 (-961)))) (-2163 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-349 (-484)))) (-4 *2 (-961)))) (-2162 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-349 (-484)))) (-4 *2 (-961)))) (-2161 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-349 (-484)))) (-4 *2 (-961)))) (-2160 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-349 (-484)))) (-4 *2 (-961)))) (-2159 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-349 (-484)))) (-4 *2 (-961)))) (-2158 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-349 (-484)))) (-4 *2 (-961)))) (-2157 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-349 (-484)))) (-4 *2 (-961)))) (-2156 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-349 (-484)))) (-4 *2 (-961)))) (-2155 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-349 (-484)))) (-4 *2 (-961)))) (-2154 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-349 (-484)))) (-4 *2 (-961)))) (-2153 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-349 (-484)))) (-4 *2 (-961))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) 62 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2063 (($ $) NIL (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3817 (($ (-1068 |#1|)) 9 T ELT)) (-3723 (($) NIL T CONST)) (-3466 (((-3 $ #1#) $) 44 T ELT)) (-2892 (((-85) $) 56 T ELT)) (-3771 (((-694) $) 61 T ELT) (((-694) $ (-694)) 60 T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3465 (((-3 $ #1#) $ $) 46 (|has| |#1| (-495)) ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL (|has| |#1| (-495)) ELT)) (-3816 (((-1068 |#1|) $) 25 T ELT)) (-3126 (((-694)) 55 T CONST)) (-1264 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) 10 T CONST)) (-2666 (($) 14 T CONST)) (-3056 (((-85) $ $) 24 T ELT)) (-3836 (($ $) 32 T ELT) (($ $ $) 16 T ELT)) (-3838 (($ $ $) 27 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) 53 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 36 T ELT) (($ $ $) 30 T ELT) (($ $ |#1|) 40 T ELT) (($ |#1| $) 39 T ELT) (($ $ (-484)) 38 T ELT))) +(((-531 |#1|) (-13 (-961) (-82 |#1| |#1|) (-10 -8 (-15 -3816 ((-1068 |#1|) $)) (-15 -3817 ($ (-1068 |#1|))) (-15 -2892 ((-85) $)) (-15 -3771 ((-694) $)) (-15 -3771 ((-694) $ (-694))) (-15 * ($ $ (-484))) (IF (|has| |#1| (-495)) (-6 (-495)) |%noBranch|))) (-961)) (T -531)) +((-3816 (*1 *2 *1) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-531 *3)) (-4 *3 (-961)))) (-3817 (*1 *1 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-961)) (-5 *1 (-531 *3)))) (-2892 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-531 *3)) (-4 *3 (-961)))) (-3771 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-531 *3)) (-4 *3 (-961)))) (-3771 (*1 *2 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-531 *3)) (-4 *3 (-961)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-531 *3)) (-4 *3 (-961))))) +((-2568 (((-85) $ $) NIL T ELT)) (-2190 (($) 8 T CONST)) (-2191 (($) 7 T CONST)) (-2188 (($ $ (-583 $)) 16 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2192 (($) 6 T CONST)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-1094)) 15 T ELT) (((-1094) $) 10 T ELT)) (-2189 (($) NIL T CONST)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT))) +(((-532) (-13 (-1013) (-429 (-1094)) (-10 -8 (-15 -2192 ($) -3951) (-15 -2191 ($) -3951) (-15 -2190 ($) -3951) (-15 -2189 ($) -3951) (-15 -2188 ($ $ (-583 $)))))) (T -532)) +((-2192 (*1 *1) (-5 *1 (-532))) (-2191 (*1 *1) (-5 *1 (-532))) (-2190 (*1 *1) (-5 *1 (-532))) (-2189 (*1 *1) (-5 *1 (-532))) (-2188 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-532))) (-5 *1 (-532))))) +((-3957 (((-536 |#2|) (-1 |#2| |#1|) (-536 |#1|)) 15 T ELT))) +(((-533 |#1| |#2|) (-13 (-1128) (-10 -7 (-15 -3957 ((-536 |#2|) (-1 |#2| |#1|) (-536 |#1|))))) (-1128) (-1128)) (T -533)) +((-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-536 *5)) (-4 *5 (-1128)) (-4 *6 (-1128)) (-5 *2 (-536 *6)) (-5 *1 (-533 *5 *6))))) +((-3957 (((-1068 |#3|) (-1 |#3| |#1| |#2|) (-536 |#1|) (-1068 |#2|)) 20 T ELT) (((-1068 |#3|) (-1 |#3| |#1| |#2|) (-1068 |#1|) (-536 |#2|)) 19 T ELT) (((-536 |#3|) (-1 |#3| |#1| |#2|) (-536 |#1|) (-536 |#2|)) 18 T ELT))) +(((-534 |#1| |#2| |#3|) (-10 -7 (-15 -3957 ((-536 |#3|) (-1 |#3| |#1| |#2|) (-536 |#1|) (-536 |#2|))) (-15 -3957 ((-1068 |#3|) (-1 |#3| |#1| |#2|) (-1068 |#1|) (-536 |#2|))) (-15 -3957 ((-1068 |#3|) (-1 |#3| |#1| |#2|) (-536 |#1|) (-1068 |#2|)))) (-1128) (-1128) (-1128)) (T -534)) +((-3957 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-536 *6)) (-5 *5 (-1068 *7)) (-4 *6 (-1128)) (-4 *7 (-1128)) (-4 *8 (-1128)) (-5 *2 (-1068 *8)) (-5 *1 (-534 *6 *7 *8)))) (-3957 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1068 *6)) (-5 *5 (-536 *7)) (-4 *6 (-1128)) (-4 *7 (-1128)) (-4 *8 (-1128)) (-5 *2 (-1068 *8)) (-5 *1 (-534 *6 *7 *8)))) (-3957 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-536 *6)) (-5 *5 (-536 *7)) (-4 *6 (-1128)) (-4 *7 (-1128)) (-4 *8 (-1128)) (-5 *2 (-536 *8)) (-5 *1 (-534 *6 *7 *8))))) +((-2197 ((|#3| |#3| (-583 (-550 |#3|)) (-583 (-1089))) 57 T ELT)) (-2196 (((-142 |#2|) |#3|) 122 T ELT)) (-2193 ((|#3| (-142 |#2|)) 46 T ELT)) (-2194 ((|#2| |#3|) 21 T ELT)) (-2195 ((|#3| |#2|) 35 T ELT))) +(((-535 |#1| |#2| |#3|) (-10 -7 (-15 -2193 (|#3| (-142 |#2|))) (-15 -2194 (|#2| |#3|)) (-15 -2195 (|#3| |#2|)) (-15 -2196 ((-142 |#2|) |#3|)) (-15 -2197 (|#3| |#3| (-583 (-550 |#3|)) (-583 (-1089))))) (-495) (-13 (-363 |#1|) (-915) (-1114)) (-13 (-363 (-142 |#1|)) (-915) (-1114))) (T -535)) +((-2197 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-583 (-550 *2))) (-5 *4 (-583 (-1089))) (-4 *2 (-13 (-363 (-142 *5)) (-915) (-1114))) (-4 *5 (-495)) (-5 *1 (-535 *5 *6 *2)) (-4 *6 (-13 (-363 *5) (-915) (-1114))))) (-2196 (*1 *2 *3) (-12 (-4 *4 (-495)) (-5 *2 (-142 *5)) (-5 *1 (-535 *4 *5 *3)) (-4 *5 (-13 (-363 *4) (-915) (-1114))) (-4 *3 (-13 (-363 (-142 *4)) (-915) (-1114))))) (-2195 (*1 *2 *3) (-12 (-4 *4 (-495)) (-4 *2 (-13 (-363 (-142 *4)) (-915) (-1114))) (-5 *1 (-535 *4 *3 *2)) (-4 *3 (-13 (-363 *4) (-915) (-1114))))) (-2194 (*1 *2 *3) (-12 (-4 *4 (-495)) (-4 *2 (-13 (-363 *4) (-915) (-1114))) (-5 *1 (-535 *4 *2 *3)) (-4 *3 (-13 (-363 (-142 *4)) (-915) (-1114))))) (-2193 (*1 *2 *3) (-12 (-5 *3 (-142 *5)) (-4 *5 (-13 (-363 *4) (-915) (-1114))) (-4 *4 (-495)) (-4 *2 (-13 (-363 (-142 *4)) (-915) (-1114))) (-5 *1 (-535 *4 *5 *2))))) +((-3709 (($ (-1 (-85) |#1|) $) 19 T ELT)) (-3957 (($ (-1 |#1| |#1|) $) 22 T ELT)) (-3456 (($ (-1 |#1| |#1|) |#1|) 11 T ELT)) (-3455 (($ (-1 (-85) |#1|) $) 15 T ELT)) (-3454 (($ (-1 (-85) |#1|) $) 17 T ELT)) (-3529 (((-1068 |#1|) $) 20 T ELT)) (-3945 (((-772) $) 25 T ELT))) +(((-536 |#1|) (-13 (-552 (-772)) (-10 -8 (-15 -3957 ($ (-1 |#1| |#1|) $)) (-15 -3455 ($ (-1 (-85) |#1|) $)) (-15 -3454 ($ (-1 (-85) |#1|) $)) (-15 -3709 ($ (-1 (-85) |#1|) $)) (-15 -3456 ($ (-1 |#1| |#1|) |#1|)) (-15 -3529 ((-1068 |#1|) $)))) (-1128)) (T -536)) +((-3957 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1128)) (-5 *1 (-536 *3)))) (-3455 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1128)) (-5 *1 (-536 *3)))) (-3454 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1128)) (-5 *1 (-536 *3)))) (-3709 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1128)) (-5 *1 (-536 *3)))) (-3456 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1128)) (-5 *1 (-536 *3)))) (-3529 (*1 *2 *1) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-536 *3)) (-4 *3 (-1128))))) +((-2198 (((-1184) $ |#2| |#2|) 35 T ELT)) (-2200 ((|#2| $) 23 T ELT)) (-2201 ((|#2| $) 21 T ELT)) (-1948 (($ (-1 |#3| |#3|) $) 32 T ELT)) (-3957 (($ (-1 |#3| |#3|) $) 30 T ELT)) (-3800 ((|#3| $) 26 T ELT)) (-2199 (($ $ |#3|) 33 T ELT)) (-2202 (((-85) |#3| $) 17 T ELT)) (-2205 (((-583 |#3|) $) 15 T ELT)) (-3799 ((|#3| $ |#2| |#3|) 12 T ELT) ((|#3| $ |#2|) NIL T ELT))) +(((-537 |#1| |#2| |#3|) (-10 -7 (-15 -2198 ((-1184) |#1| |#2| |#2|)) (-15 -2199 (|#1| |#1| |#3|)) (-15 -3800 (|#3| |#1|)) (-15 -2200 (|#2| |#1|)) (-15 -2201 (|#2| |#1|)) (-15 -2202 ((-85) |#3| |#1|)) (-15 -2205 ((-583 |#3|) |#1|)) (-15 -3799 (|#3| |#1| |#2|)) (-15 -3799 (|#3| |#1| |#2| |#3|)) (-15 -1948 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3957 (|#1| (-1 |#3| |#3|) |#1|))) (-538 |#2| |#3|) (-1013) (-1128)) (T -537)) +NIL +((-2568 (((-85) $ $) 19 (|has| |#2| (-72)) ELT)) (-2198 (((-1184) $ |#1| |#1|) 44 (|has| $ (-6 -3995)) ELT)) (-3787 ((|#2| $ |#1| |#2|) 56 (|has| $ (-6 -3995)) ELT)) (-3723 (($) 7 T CONST)) (-1575 ((|#2| $ |#1| |#2|) 57 (|has| $ (-6 -3995)) ELT)) (-3112 ((|#2| $ |#1|) 55 T ELT)) (-2889 (((-583 |#2|) $) 30 (|has| $ (-6 -3994)) ELT)) (-2200 ((|#1| $) 47 (|has| |#1| (-756)) ELT)) (-2608 (((-583 |#2|) $) 29 (|has| $ (-6 -3994)) ELT)) (-3245 (((-85) |#2| $) 27 (-12 (|has| |#2| (-1013)) (|has| $ (-6 -3994))) ELT)) (-2201 ((|#1| $) 48 (|has| |#1| (-756)) ELT)) (-1948 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#2| |#2|) $) 35 T ELT)) (-3242 (((-1072) $) 22 (|has| |#2| (-1013)) ELT)) (-2203 (((-583 |#1|) $) 50 T ELT)) (-2204 (((-85) |#1| $) 51 T ELT)) (-3243 (((-1033) $) 21 (|has| |#2| (-1013)) ELT)) (-3800 ((|#2| $) 46 (|has| |#1| (-756)) ELT)) (-2199 (($ $ |#2|) 45 (|has| $ (-6 -3995)) ELT)) (-1946 (((-85) (-1 (-85) |#2|) $) 32 (|has| $ (-6 -3994)) ELT)) (-3767 (($ $ (-583 (-249 |#2|))) 26 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-249 |#2|)) 25 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-583 |#2|) (-583 |#2|)) 23 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT)) (-1221 (((-85) $ $) 11 T ELT)) (-2202 (((-85) |#2| $) 49 (-12 (|has| $ (-6 -3994)) (|has| |#2| (-1013))) ELT)) (-2205 (((-583 |#2|) $) 52 T ELT)) (-3402 (((-85) $) 8 T ELT)) (-3564 (($) 9 T ELT)) (-3799 ((|#2| $ |#1| |#2|) 54 T ELT) ((|#2| $ |#1|) 53 T ELT)) (-1945 (((-694) (-1 (-85) |#2|) $) 31 (|has| $ (-6 -3994)) ELT) (((-694) |#2| $) 28 (-12 (|has| |#2| (-1013)) (|has| $ (-6 -3994))) ELT)) (-3399 (($ $) 10 T ELT)) (-3945 (((-772) $) 17 (|has| |#2| (-552 (-772))) ELT)) (-1264 (((-85) $ $) 20 (|has| |#2| (-72)) ELT)) (-1947 (((-85) (-1 (-85) |#2|) $) 33 (|has| $ (-6 -3994)) ELT)) (-3056 (((-85) $ $) 18 (|has| |#2| (-72)) ELT)) (-3956 (((-694) $) 6 (|has| $ (-6 -3994)) ELT))) +(((-538 |#1| |#2|) (-113) (-1013) (-1128)) (T -538)) +((-2205 (*1 *2 *1) (-12 (-4 *1 (-538 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1128)) (-5 *2 (-583 *4)))) (-2204 (*1 *2 *3 *1) (-12 (-4 *1 (-538 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1128)) (-5 *2 (-85)))) (-2203 (*1 *2 *1) (-12 (-4 *1 (-538 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1128)) (-5 *2 (-583 *3)))) (-2202 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -3994)) (-4 *1 (-538 *4 *3)) (-4 *4 (-1013)) (-4 *3 (-1128)) (-4 *3 (-1013)) (-5 *2 (-85)))) (-2201 (*1 *2 *1) (-12 (-4 *1 (-538 *2 *3)) (-4 *3 (-1128)) (-4 *2 (-1013)) (-4 *2 (-756)))) (-2200 (*1 *2 *1) (-12 (-4 *1 (-538 *2 *3)) (-4 *3 (-1128)) (-4 *2 (-1013)) (-4 *2 (-756)))) (-3800 (*1 *2 *1) (-12 (-4 *1 (-538 *3 *2)) (-4 *3 (-1013)) (-4 *3 (-756)) (-4 *2 (-1128)))) (-2199 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -3995)) (-4 *1 (-538 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1128)))) (-2198 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -3995)) (-4 *1 (-538 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1128)) (-5 *2 (-1184))))) +(-13 (-428 |t#2|) (-243 |t#1| |t#2|) (-10 -8 (-15 -2205 ((-583 |t#2|) $)) (-15 -2204 ((-85) |t#1| $)) (-15 -2203 ((-583 |t#1|) $)) (IF (|has| |t#2| (-1013)) (IF (|has| $ (-6 -3994)) (-15 -2202 ((-85) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-756)) (PROGN (-15 -2201 (|t#1| $)) (-15 -2200 (|t#1| $)) (-15 -3800 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -3995)) (PROGN (-15 -2199 ($ $ |t#2|)) (-15 -2198 ((-1184) $ |t#1| |t#1|))) |%noBranch|))) +(((-34) . T) ((-72) OR (|has| |#2| (-1013)) (|has| |#2| (-72))) ((-552 (-772)) OR (|has| |#2| (-1013)) (|has| |#2| (-552 (-772)))) ((-241 |#1| |#2|) . T) ((-243 |#1| |#2|) . T) ((-260 |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ((-428 |#2|) . T) ((-455 |#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ((-13) . T) ((-1013) |has| |#2| (-1013)) ((-1128) . T)) +((-2568 (((-85) $ $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT) (((-1129) $) 15 T ELT) (($ (-583 (-1129))) 14 T ELT)) (-2206 (((-583 (-1129)) $) 12 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT))) +(((-539) (-13 (-995) (-552 (-1129)) (-10 -8 (-15 -3945 ($ (-583 (-1129)))) (-15 -2206 ((-583 (-1129)) $))))) (T -539)) +((-3945 (*1 *1 *2) (-12 (-5 *2 (-583 (-1129))) (-5 *1 (-539)))) (-2206 (*1 *2 *1) (-12 (-5 *2 (-583 (-1129))) (-5 *1 (-539))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-1771 (((-3 $ #1="failed")) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-495)))) ELT)) (-1311 (((-3 $ #1#) $ $) NIL T ELT)) (-3223 (((-1178 (-630 |#1|))) NIL (|has| |#2| (-360 |#1|)) ELT) (((-1178 (-630 |#1|)) (-1178 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1728 (((-1178 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3723 (($) NIL T CONST)) (-1905 (((-3 (-2 (|:| |particular| $) (|:| -2012 (-583 $))) #1#)) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-495)))) ELT)) (-1702 (((-3 $ #1#)) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-495)))) ELT)) (-1787 (((-630 |#1|)) NIL (|has| |#2| (-360 |#1|)) ELT) (((-630 |#1|) (-1178 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1726 ((|#1| $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1785 (((-630 |#1|) $) NIL (|has| |#2| (-360 |#1|)) ELT) (((-630 |#1|) $ (-1178 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2404 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-495)))) ELT)) (-1899 (((-1084 (-857 |#1|))) NIL (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-312))) ELT)) (-2407 (($ $ (-830)) NIL T ELT)) (-1724 ((|#1| $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1704 (((-1084 |#1|) $) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-495)))) ELT)) (-1789 ((|#1|) NIL (|has| |#2| (-360 |#1|)) ELT) ((|#1| (-1178 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1722 (((-1084 |#1|) $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1716 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1791 (($ (-1178 |#1|)) NIL (|has| |#2| (-360 |#1|)) ELT) (($ (-1178 |#1|) (-1178 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3466 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-495)))) ELT)) (-3108 (((-830)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1713 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2433 (($ $ (-830)) NIL T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-1709 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1707 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1711 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1906 (((-3 (-2 (|:| |particular| $) (|:| -2012 (-583 $))) #1#)) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-495)))) ELT)) (-1703 (((-3 $ #1#)) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-495)))) ELT)) (-1788 (((-630 |#1|)) NIL (|has| |#2| (-360 |#1|)) ELT) (((-630 |#1|) (-1178 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1727 ((|#1| $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1786 (((-630 |#1|) $) NIL (|has| |#2| (-360 |#1|)) ELT) (((-630 |#1|) $ (-1178 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2405 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-495)))) ELT)) (-1903 (((-1084 (-857 |#1|))) NIL (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-312))) ELT)) (-2406 (($ $ (-830)) NIL T ELT)) (-1725 ((|#1| $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1705 (((-1084 |#1|) $) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-495)))) ELT)) (-1790 ((|#1|) NIL (|has| |#2| (-360 |#1|)) ELT) ((|#1| (-1178 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1723 (((-1084 |#1|) $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1717 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3242 (((-1072) $) NIL T ELT)) (-1708 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1710 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1712 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1715 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3799 ((|#1| $ (-484)) NIL (|has| |#2| (-360 |#1|)) ELT)) (-3224 (((-630 |#1|) (-1178 $)) NIL (|has| |#2| (-360 |#1|)) ELT) (((-1178 |#1|) $) NIL (|has| |#2| (-360 |#1|)) ELT) (((-630 |#1|) (-1178 $) (-1178 $)) NIL (|has| |#2| (-316 |#1|)) ELT) (((-1178 |#1|) $ (-1178 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3971 (($ (-1178 |#1|)) NIL (|has| |#2| (-360 |#1|)) ELT) (((-1178 |#1|) $) NIL (|has| |#2| (-360 |#1|)) ELT)) (-1891 (((-583 (-857 |#1|))) NIL (|has| |#2| (-360 |#1|)) ELT) (((-583 (-857 |#1|)) (-1178 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2435 (($ $ $) NIL T ELT)) (-1721 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3945 (((-772) $) NIL T ELT) ((|#2| $) 21 T ELT) (($ |#2|) 22 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2012 (((-1178 $)) NIL (|has| |#2| (-360 |#1|)) ELT)) (-1706 (((-583 (-1178 |#1|))) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-495)))) ELT)) (-2436 (($ $ $ $) NIL T ELT)) (-1719 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2545 (($ (-630 |#1|) $) NIL (|has| |#2| (-360 |#1|)) ELT)) (-2434 (($ $ $) NIL T ELT)) (-1720 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1718 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1714 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2660 (($) NIL T CONST)) (-3056 (((-85) $ $) NIL T ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (** (($ $ (-830)) 24 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 20 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-540 |#1| |#2|) (-13 (-683 |#1|) (-552 |#2|) (-10 -8 (-15 -3945 ($ |#2|)) (IF (|has| |#2| (-360 |#1|)) (-6 (-360 |#1|)) |%noBranch|) (IF (|has| |#2| (-316 |#1|)) (-6 (-316 |#1|)) |%noBranch|))) (-146) (-683 |#1|)) (T -540)) +((-3945 (*1 *1 *2) (-12 (-4 *3 (-146)) (-5 *1 (-540 *3 *2)) (-4 *2 (-683 *3))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-101)) 6 T ELT) (((-101) $) 7 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT))) +(((-541) (-13 (-1013) (-429 (-101)))) (T -541)) +NIL +((-2568 (((-85) $ $) NIL T ELT)) (-2313 (($ $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2208 (($) 10 T CONST)) (-2230 (($) 8 T CONST)) (-2207 (($) 11 T CONST)) (-2226 (($) 9 T CONST)) (-2223 (($) 12 T CONST)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) NIL T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2311 (($ $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2312 (($ $ $) NIL T ELT))) +(((-542) (-13 (-1013) (-604) (-10 -8 (-15 -2230 ($) -3951) (-15 -2226 ($) -3951) (-15 -2208 ($) -3951) (-15 -2207 ($) -3951) (-15 -2223 ($) -3951)))) (T -542)) +((-2230 (*1 *1) (-5 *1 (-542))) (-2226 (*1 *1) (-5 *1 (-542))) (-2208 (*1 *1) (-5 *1 (-542))) (-2207 (*1 *1) (-5 *1 (-542))) (-2223 (*1 *1) (-5 *1 (-542)))) +((-2568 (((-85) $ $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2219 (($) 11 T CONST)) (-2213 (($) 17 T CONST)) (-2209 (($) 21 T CONST)) (-2211 (($) 19 T CONST)) (-2216 (($) 14 T CONST)) (-2210 (($) 20 T CONST)) (-2218 (($) 12 T CONST)) (-2217 (($) 13 T CONST)) (-2212 (($) 18 T CONST)) (-2215 (($) 15 T CONST)) (-2214 (($) 16 T CONST)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) NIL T ELT) (((-101) $) NIL T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT))) +(((-543) (-13 (-1013) (-552 (-101)) (-10 -8 (-15 -2219 ($) -3951) (-15 -2218 ($) -3951) (-15 -2217 ($) -3951) (-15 -2216 ($) -3951) (-15 -2215 ($) -3951) (-15 -2214 ($) -3951) (-15 -2213 ($) -3951) (-15 -2212 ($) -3951) (-15 -2211 ($) -3951) (-15 -2210 ($) -3951) (-15 -2209 ($) -3951)))) (T -543)) +((-2219 (*1 *1) (-5 *1 (-543))) (-2218 (*1 *1) (-5 *1 (-543))) (-2217 (*1 *1) (-5 *1 (-543))) (-2216 (*1 *1) (-5 *1 (-543))) (-2215 (*1 *1) (-5 *1 (-543))) (-2214 (*1 *1) (-5 *1 (-543))) (-2213 (*1 *1) (-5 *1 (-543))) (-2212 (*1 *1) (-5 *1 (-543))) (-2211 (*1 *1) (-5 *1 (-543))) (-2210 (*1 *1) (-5 *1 (-543))) (-2209 (*1 *1) (-5 *1 (-543)))) +((-2568 (((-85) $ $) NIL T ELT)) (-2313 (($ $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2221 (($) 13 T CONST)) (-2220 (($) 14 T CONST)) (-2227 (($) 11 T CONST)) (-2230 (($) 8 T CONST)) (-2228 (($) 10 T CONST)) (-2229 (($) 9 T CONST)) (-2226 (($) 12 T CONST)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) NIL T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2311 (($ $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2312 (($ $ $) NIL T ELT))) +(((-544) (-13 (-1013) (-604) (-10 -8 (-15 -2230 ($) -3951) (-15 -2229 ($) -3951) (-15 -2228 ($) -3951) (-15 -2227 ($) -3951) (-15 -2226 ($) -3951) (-15 -2221 ($) -3951) (-15 -2220 ($) -3951)))) (T -544)) +((-2230 (*1 *1) (-5 *1 (-544))) (-2229 (*1 *1) (-5 *1 (-544))) (-2228 (*1 *1) (-5 *1 (-544))) (-2227 (*1 *1) (-5 *1 (-544))) (-2226 (*1 *1) (-5 *1 (-544))) (-2221 (*1 *1) (-5 *1 (-544))) (-2220 (*1 *1) (-5 *1 (-544)))) +((-2568 (((-85) $ $) NIL T ELT)) (-2313 (($ $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2225 (($) 13 T CONST)) (-2222 (($) 16 T CONST)) (-2227 (($) 11 T CONST)) (-2230 (($) 8 T CONST)) (-2228 (($) 10 T CONST)) (-2229 (($) 9 T CONST)) (-2224 (($) 14 T CONST)) (-2226 (($) 12 T CONST)) (-2223 (($) 15 T CONST)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) NIL T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2311 (($ $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2312 (($ $ $) NIL T ELT))) +(((-545) (-13 (-1013) (-604) (-10 -8 (-15 -2230 ($) -3951) (-15 -2229 ($) -3951) (-15 -2228 ($) -3951) (-15 -2227 ($) -3951) (-15 -2226 ($) -3951) (-15 -2225 ($) -3951) (-15 -2224 ($) -3951) (-15 -2223 ($) -3951) (-15 -2222 ($) -3951)))) (T -545)) +((-2230 (*1 *1) (-5 *1 (-545))) (-2229 (*1 *1) (-5 *1 (-545))) (-2228 (*1 *1) (-5 *1 (-545))) (-2227 (*1 *1) (-5 *1 (-545))) (-2226 (*1 *1) (-5 *1 (-545))) (-2225 (*1 *1) (-5 *1 (-545))) (-2224 (*1 *1) (-5 *1 (-545))) (-2223 (*1 *1) (-5 *1 (-545))) (-2222 (*1 *1) (-5 *1 (-545)))) +((-2568 (((-85) $ $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) 19 T ELT) (($ (-541)) 12 T ELT) (((-541) $) 11 T ELT) (($ (-101)) NIL T ELT) (((-101) $) 14 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT))) +(((-546) (-13 (-1013) (-429 (-541)) (-429 (-101)))) (T -546)) +NIL +((-2568 (((-85) $ $) NIL T ELT)) (-1696 (((-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) $ (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))) 40 T ELT)) (-3598 (($ (-583 (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)))) NIL T ELT) (($) NIL T ELT)) (-2198 (((-1184) $ (-1072) (-1072)) NIL (|has| $ (-6 -3995)) ELT)) (-3787 ((|#1| $ (-1072) |#1|) 50 T ELT)) (-1569 (($ (-1 (-85) (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3994)) ELT)) (-3709 (($ (-1 (-85) (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3994)) ELT)) (-2231 (((-3 |#1| #1="failed") (-1072) $) 53 T ELT)) (-3723 (($) NIL T CONST)) (-1700 (($ $ (-1072)) 25 T ELT)) (-1352 (($ $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-1013))) ELT)) (-3404 (((-3 |#1| #1#) (-1072) $) 54 T ELT) (($ (-1 (-85) (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3994)) ELT) (($ (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) $) NIL (|has| $ (-6 -3994)) ELT)) (-3405 (($ (-1 (-85) (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3994)) ELT) (($ (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-1013))) ELT)) (-3841 (((-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3994)) ELT) (((-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))) $ (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))) NIL (|has| $ (-6 -3994)) ELT) (((-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))) $ (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))) NIL (-12 (|has| $ (-6 -3994)) (|has| (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-1013))) ELT)) (-1697 (((-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) $) 39 T ELT)) (-1575 ((|#1| $ (-1072) |#1|) NIL (|has| $ (-6 -3995)) ELT)) (-3112 ((|#1| $ (-1072)) NIL T ELT)) (-2889 (((-583 |#1|) $) NIL (|has| $ (-6 -3994)) ELT) (((-583 (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3994)) ELT)) (-2271 (($ $) 55 T ELT)) (-1701 (($ (-337)) 23 T ELT) (($ (-337) (-1072)) 22 T ELT)) (-3541 (((-337) $) 41 T ELT)) (-2200 (((-1072) $) NIL (|has| (-1072) (-756)) ELT)) (-2608 (((-583 |#1|) $) NIL (|has| $ (-6 -3994)) ELT) (((-583 (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3994)) ELT)) (-3245 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT) (((-85) (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-1013))) ELT)) (-2201 (((-1072) $) NIL (|has| (-1072) (-756)) ELT)) (-1948 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3995)) ELT) (($ (-1 (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))) $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2232 (((-583 (-1072)) $) 46 T ELT)) (-2233 (((-85) (-1072) $) NIL T ELT)) (-1698 (((-1072) $) 42 T ELT)) (-1273 (((-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) $) NIL T ELT)) (-3608 (($ (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) $) NIL T ELT)) (-2203 (((-583 (-1072)) $) NIL T ELT)) (-2204 (((-85) (-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3800 ((|#1| $) NIL (|has| (-1072) (-756)) ELT)) (-1353 (((-3 (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) #1#) (-1 (-85) (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))) $) NIL T ELT)) (-2199 (($ $ |#1|) NIL (|has| $ (-6 -3995)) ELT)) (-1274 (((-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) $) NIL T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT) (((-85) (-1 (-85) (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3994)) ELT)) (-3767 (($ $ (-583 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))) (-583 (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)))) NIL (-12 (|has| (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-1013))) ELT) (($ $ (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))) NIL (-12 (|has| (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-1013))) ELT) (($ $ (-249 (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)))) NIL (-12 (|has| (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-1013))) ELT) (($ $ (-583 (-249 (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))))) NIL (-12 (|has| (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-1013))) ELT)) (-1221 (((-85) $ $) NIL T ELT)) (-2202 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-2205 (((-583 |#1|) $) NIL T ELT)) (-3402 (((-85) $) NIL T ELT)) (-3564 (($) 44 T ELT)) (-3799 ((|#1| $ (-1072) |#1|) NIL T ELT) ((|#1| $ (-1072)) 49 T ELT)) (-1465 (($ (-583 (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)))) NIL T ELT) (($) NIL T ELT)) (-1945 (((-694) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT) (((-694) |#1| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT) (((-694) (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-1013))) ELT) (((-694) (-1 (-85) (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3994)) ELT)) (-3399 (($ $) NIL T ELT)) (-3971 (((-473) $) NIL (|has| (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-553 (-473))) ELT)) (-3529 (($ (-583 (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)))) NIL T ELT)) (-3945 (((-772) $) 21 T ELT)) (-1699 (($ $) 26 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-1275 (($ (-583 (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)))) NIL T ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT) (((-85) (-1 (-85) (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3994)) ELT)) (-3056 (((-85) $ $) 20 T ELT)) (-3956 (((-694) $) 48 (|has| $ (-6 -3994)) ELT))) +(((-547 |#1|) (-13 (-314 (-337) (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))) (-1106 (-1072) |#1|) (-10 -8 (-6 -3994) (-15 -2271 ($ $)))) (-1013)) (T -547)) +((-2271 (*1 *1 *1) (-12 (-5 *1 (-547 *2)) (-4 *2 (-1013))))) +((-3245 (((-85) (-2 (|:| -3859 |#2|) (|:| |entry| |#3|)) $) 16 T ELT)) (-2232 (((-583 |#2|) $) 20 T ELT)) (-2233 (((-85) |#2| $) 12 T ELT))) +(((-548 |#1| |#2| |#3|) (-10 -7 (-15 -2232 ((-583 |#2|) |#1|)) (-15 -2233 ((-85) |#2| |#1|)) (-15 -3245 ((-85) (-2 (|:| -3859 |#2|) (|:| |entry| |#3|)) |#1|))) (-549 |#2| |#3|) (-1013) (-1013)) (T -548)) +NIL +((-2568 (((-85) $ $) 19 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-1569 (($ (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 49 (|has| $ (-6 -3994)) ELT)) (-3709 (($ (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 59 (|has| $ (-6 -3994)) ELT)) (-2231 (((-3 |#2| "failed") |#1| $) 65 T ELT)) (-3723 (($) 7 T CONST)) (-1352 (($ $) 62 (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| $ (-6 -3994))) ELT)) (-3404 (($ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) 51 (|has| $ (-6 -3994)) ELT) (($ (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 50 (|has| $ (-6 -3994)) ELT) (((-3 |#2| "failed") |#1| $) 66 T ELT)) (-3405 (($ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) 61 (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| $ (-6 -3994))) ELT) (($ (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 58 (|has| $ (-6 -3994)) ELT)) (-3841 (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) 60 (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| $ (-6 -3994))) ELT) (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) 57 (|has| $ (-6 -3994)) ELT) (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 56 (|has| $ (-6 -3994)) ELT)) (-2889 (((-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 30 (|has| $ (-6 -3994)) ELT)) (-2608 (((-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 29 (|has| $ (-6 -3994)) ELT)) (-3245 (((-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) 27 (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| $ (-6 -3994))) ELT)) (-1948 (($ (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 34 (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 35 T ELT)) (-3242 (((-1072) $) 22 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) ELT)) (-2232 (((-583 |#1|) $) 67 T ELT)) (-2233 (((-85) |#1| $) 68 T ELT)) (-1273 (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) 43 T ELT)) (-3608 (($ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) 44 T ELT)) (-3243 (((-1033) $) 21 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) ELT)) (-1353 (((-3 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) "failed") (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 55 T ELT)) (-1274 (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) 45 T ELT)) (-1946 (((-85) (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 32 (|has| $ (-6 -3994)) ELT)) (-3767 (($ $ (-583 (-249 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))))) 26 (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-249 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) 25 (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) 24 (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) 23 (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT)) (-1221 (((-85) $ $) 11 T ELT)) (-3402 (((-85) $) 8 T ELT)) (-3564 (($) 9 T ELT)) (-1465 (($) 53 T ELT) (($ (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) 52 T ELT)) (-1945 (((-694) (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 31 (|has| $ (-6 -3994)) ELT) (((-694) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) 28 (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| $ (-6 -3994))) ELT)) (-3399 (($ $) 10 T ELT)) (-3971 (((-473) $) 63 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-553 (-473))) ELT)) (-3529 (($ (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) 54 T ELT)) (-3945 (((-772) $) 17 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-552 (-772))) ELT)) (-1264 (((-85) $ $) 20 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-1275 (($ (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) 46 T ELT)) (-1947 (((-85) (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 33 (|has| $ (-6 -3994)) ELT)) (-3056 (((-85) $ $) 18 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-3956 (((-694) $) 6 (|has| $ (-6 -3994)) ELT))) +(((-549 |#1| |#2|) (-113) (-1013) (-1013)) (T -549)) +((-2233 (*1 *2 *3 *1) (-12 (-4 *1 (-549 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-5 *2 (-85)))) (-2232 (*1 *2 *1) (-12 (-4 *1 (-549 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-5 *2 (-583 *3)))) (-3404 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-549 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1013)))) (-2231 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-549 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1013))))) +(-13 (-183 (-2 (|:| -3859 |t#1|) (|:| |entry| |t#2|))) (-10 -8 (-15 -2233 ((-85) |t#1| $)) (-15 -2232 ((-583 |t#1|) $)) (-15 -3404 ((-3 |t#2| "failed") |t#1| $)) (-15 -2231 ((-3 |t#2| "failed") |t#1| $)))) +(((-34) . T) ((-76 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T) ((-72) OR (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-72))) ((-552 (-772)) OR (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-552 (-772)))) ((-124 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T) ((-553 (-473)) |has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-553 (-473))) ((-183 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T) ((-193 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T) ((-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ((-428 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T) ((-455 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ((-13) . T) ((-1013) |has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) ((-1128) . T)) +((-2568 (((-85) $ $) NIL T ELT)) (-2234 (((-3 (-1089) "failed") $) 46 T ELT)) (-1312 (((-1184) $ (-694)) 22 T ELT)) (-3418 (((-694) $) 20 T ELT)) (-3594 (((-86) $) 9 T ELT)) (-2531 (($ $ $) NIL T ELT)) (-2857 (($ $ $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2235 (($ (-86) (-583 |#1|) (-694)) 32 T ELT) (($ (-1089)) 33 T ELT)) (-2633 (((-85) $ (-86)) 15 T ELT) (((-85) $ (-1089)) 13 T ELT)) (-2603 (((-694) $) 17 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3971 (((-800 (-484)) $) 99 (|has| |#1| (-553 (-800 (-484)))) ELT) (((-800 (-329)) $) 106 (|has| |#1| (-553 (-800 (-329)))) ELT) (((-473) $) 92 (|has| |#1| (-553 (-473))) ELT)) (-3945 (((-772) $) 74 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2236 (((-583 |#1|) $) 19 T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 51 T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) 53 T ELT))) +(((-550 |#1|) (-13 (-105) (-756) (-794 |#1|) (-10 -8 (-15 -3594 ((-86) $)) (-15 -2236 ((-583 |#1|) $)) (-15 -2603 ((-694) $)) (-15 -2235 ($ (-86) (-583 |#1|) (-694))) (-15 -2235 ($ (-1089))) (-15 -2234 ((-3 (-1089) "failed") $)) (-15 -2633 ((-85) $ (-86))) (-15 -2633 ((-85) $ (-1089))) (IF (|has| |#1| (-553 (-473))) (-6 (-553 (-473))) |%noBranch|))) (-1013)) (T -550)) +((-3594 (*1 *2 *1) (-12 (-5 *2 (-86)) (-5 *1 (-550 *3)) (-4 *3 (-1013)))) (-2236 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-550 *3)) (-4 *3 (-1013)))) (-2603 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-550 *3)) (-4 *3 (-1013)))) (-2235 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-86)) (-5 *3 (-583 *5)) (-5 *4 (-694)) (-4 *5 (-1013)) (-5 *1 (-550 *5)))) (-2235 (*1 *1 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-550 *3)) (-4 *3 (-1013)))) (-2234 (*1 *2 *1) (|partial| -12 (-5 *2 (-1089)) (-5 *1 (-550 *3)) (-4 *3 (-1013)))) (-2633 (*1 *2 *1 *3) (-12 (-5 *3 (-86)) (-5 *2 (-85)) (-5 *1 (-550 *4)) (-4 *4 (-1013)))) (-2633 (*1 *2 *1 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-85)) (-5 *1 (-550 *4)) (-4 *4 (-1013))))) +((-2237 (((-550 |#2|) |#1|) 17 T ELT)) (-2238 (((-3 |#1| "failed") (-550 |#2|)) 21 T ELT))) +(((-551 |#1| |#2|) (-10 -7 (-15 -2237 ((-550 |#2|) |#1|)) (-15 -2238 ((-3 |#1| "failed") (-550 |#2|)))) (-1013) (-1013)) (T -551)) +((-2238 (*1 *2 *3) (|partial| -12 (-5 *3 (-550 *4)) (-4 *4 (-1013)) (-4 *2 (-1013)) (-5 *1 (-551 *2 *4)))) (-2237 (*1 *2 *3) (-12 (-5 *2 (-550 *4)) (-5 *1 (-551 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013))))) +((-3945 ((|#1| $) 6 T ELT))) +(((-552 |#1|) (-113) (-1128)) (T -552)) +((-3945 (*1 *2 *1) (-12 (-4 *1 (-552 *2)) (-4 *2 (-1128))))) +(-13 (-10 -8 (-15 -3945 (|t#1| $)))) +((-3971 ((|#1| $) 6 T ELT))) +(((-553 |#1|) (-113) (-1128)) (T -553)) +((-3971 (*1 *2 *1) (-12 (-4 *1 (-553 *2)) (-4 *2 (-1128))))) +(-13 (-10 -8 (-15 -3971 (|t#1| $)))) +((-2239 (((-3 (-1084 (-349 |#2|)) #1="failed") (-349 |#2|) (-349 |#2|) (-349 |#2|) (-1 (-347 |#2|) |#2|)) 15 T ELT) (((-3 (-1084 (-349 |#2|)) #1#) (-349 |#2|) (-349 |#2|) (-349 |#2|)) 16 T ELT))) +(((-554 |#1| |#2|) (-10 -7 (-15 -2239 ((-3 (-1084 (-349 |#2|)) #1="failed") (-349 |#2|) (-349 |#2|) (-349 |#2|))) (-15 -2239 ((-3 (-1084 (-349 |#2|)) #1#) (-349 |#2|) (-349 |#2|) (-349 |#2|) (-1 (-347 |#2|) |#2|)))) (-13 (-120) (-27) (-950 (-484)) (-950 (-349 (-484)))) (-1154 |#1|)) (T -554)) +((-2239 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-347 *6) *6)) (-4 *6 (-1154 *5)) (-4 *5 (-13 (-120) (-27) (-950 (-484)) (-950 (-349 (-484))))) (-5 *2 (-1084 (-349 *6))) (-5 *1 (-554 *5 *6)) (-5 *3 (-349 *6)))) (-2239 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-120) (-27) (-950 (-484)) (-950 (-349 (-484))))) (-4 *5 (-1154 *4)) (-5 *2 (-1084 (-349 *5))) (-5 *1 (-554 *4 *5)) (-5 *3 (-349 *5))))) +((-3945 (($ |#1|) 6 T ELT))) +(((-555 |#1|) (-113) (-1128)) (T -555)) +((-3945 (*1 *1 *2) (-12 (-4 *1 (-555 *2)) (-4 *2 (-1128))))) +(-13 (-10 -8 (-15 -3945 ($ |t#1|)))) +((-2568 (((-85) $ $) NIL T ELT)) (-2313 (($ $) NIL T ELT)) (-2240 (($) 11 T CONST)) (-2855 (($) 13 T CONST)) (-3136 (((-694)) 36 T ELT)) (-2994 (($) NIL T ELT)) (-2561 (($ $ $) 25 T ELT)) (-2560 (($ $) 23 T ELT)) (-2010 (((-830) $) 43 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2400 (($ (-830)) 42 T ELT)) (-2853 (($ $ $) 26 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2854 (($) 9 T CONST)) (-2852 (($ $ $) 27 T ELT)) (-3945 (((-772) $) 34 T ELT)) (-3565 (((-85) $ (|[\|\|]| -2854)) 20 T ELT) (((-85) $ (|[\|\|]| -2240)) 22 T ELT) (((-85) $ (|[\|\|]| -2855)) 18 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2562 (($ $ $) 24 T ELT)) (-2311 (($ $ $) NIL T ELT)) (-3056 (((-85) $ $) 16 T ELT)) (-2312 (($ $ $) NIL T ELT))) +(((-556) (-13 (-880) (-319) (-10 -8 (-15 -2240 ($) -3951) (-15 -3565 ((-85) $ (|[\|\|]| -2854))) (-15 -3565 ((-85) $ (|[\|\|]| -2240))) (-15 -3565 ((-85) $ (|[\|\|]| -2855)))))) (T -556)) +((-2240 (*1 *1) (-5 *1 (-556))) (-3565 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2854)) (-5 *2 (-85)) (-5 *1 (-556)))) (-3565 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2240)) (-5 *2 (-85)) (-5 *1 (-556)))) (-3565 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2855)) (-5 *2 (-85)) (-5 *1 (-556))))) +((-3971 (($ |#1|) 6 T ELT))) +(((-557 |#1|) (-113) (-1128)) (T -557)) +((-3971 (*1 *1 *2) (-12 (-4 *1 (-557 *2)) (-4 *2 (-1128))))) +(-13 (-10 -8 (-15 -3971 ($ |t#1|)))) +((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3622 (((-484) $) NIL (|has| |#1| (-755)) ELT)) (-3723 (($) NIL T CONST)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-3186 (((-85) $) NIL (|has| |#1| (-755)) ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2998 ((|#1| $) 13 T ELT)) (-3187 (((-85) $) NIL (|has| |#1| (-755)) ELT)) (-2531 (($ $ $) NIL (|has| |#1| (-755)) ELT)) (-2857 (($ $ $) NIL (|has| |#1| (-755)) ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2997 ((|#3| $) 15 T ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#2|) NIL T ELT)) (-3126 (((-694)) 20 T CONST)) (-1264 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-3382 (($ $) NIL (|has| |#1| (-755)) ELT)) (-2660 (($) NIL T CONST)) (-2666 (($) 12 T CONST)) (-2566 (((-85) $ $) NIL (|has| |#1| (-755)) ELT)) (-2567 (((-85) $ $) NIL (|has| |#1| (-755)) ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL (|has| |#1| (-755)) ELT)) (-2685 (((-85) $ $) NIL (|has| |#1| (-755)) ELT)) (-3948 (($ $ |#3|) NIL T ELT) (($ |#1| |#3|) 11 T ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 17 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT))) +(((-558 |#1| |#2| |#3|) (-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-755)) (-6 (-755)) |%noBranch|) (-15 -3948 ($ $ |#3|)) (-15 -3948 ($ |#1| |#3|)) (-15 -2998 (|#1| $)) (-15 -2997 (|#3| $)))) (-38 |#2|) (-146) (|SubsetCategory| (-663) |#2|)) (T -558)) +((-3948 (*1 *1 *1 *2) (-12 (-4 *4 (-146)) (-5 *1 (-558 *3 *4 *2)) (-4 *3 (-38 *4)) (-4 *2 (|SubsetCategory| (-663) *4)))) (-3948 (*1 *1 *2 *3) (-12 (-4 *4 (-146)) (-5 *1 (-558 *2 *4 *3)) (-4 *2 (-38 *4)) (-4 *3 (|SubsetCategory| (-663) *4)))) (-2998 (*1 *2 *1) (-12 (-4 *3 (-146)) (-4 *2 (-38 *3)) (-5 *1 (-558 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-663) *3)))) (-2997 (*1 *2 *1) (-12 (-4 *4 (-146)) (-4 *2 (|SubsetCategory| (-663) *4)) (-5 *1 (-558 *3 *4 *2)) (-4 *3 (-38 *4))))) +((-3945 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#2|) 10 T ELT))) +(((-559 |#1| |#2|) (-10 -7 (-15 -3945 (|#1| |#2|)) (-15 -3945 (|#1| (-484))) (-15 -3945 ((-772) |#1|))) (-560 |#2|) (-961)) (T -559)) +NIL +((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3723 (($) 23 T CONST)) (-3466 (((-3 $ "failed") $) 42 T ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ |#1|) 49 T ELT)) (-3126 (((-694)) 40 T CONST)) (-1264 (((-85) $ $) 6 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ |#1| $) 50 T ELT))) +(((-560 |#1|) (-113) (-961)) (T -560)) +((-3945 (*1 *1 *2) (-12 (-4 *1 (-560 *2)) (-4 *2 (-961))))) +(-13 (-961) (-590 |t#1|) (-10 -8 (-15 -3945 ($ |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-555 (-484)) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-663) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T)) +((-2241 ((|#2| |#2| (-1089) (-1089)) 16 T ELT))) +(((-561 |#1| |#2|) (-10 -7 (-15 -2241 (|#2| |#2| (-1089) (-1089)))) (-13 (-258) (-120) (-950 (-484)) (-580 (-484))) (-13 (-1114) (-871) (-29 |#1|))) (T -561)) +((-2241 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-258) (-120) (-950 (-484)) (-580 (-484)))) (-5 *1 (-561 *4 *2)) (-4 *2 (-13 (-1114) (-871) (-29 *4)))))) +((-2568 (((-85) $ $) 64 T ELT)) (-3188 (((-85) $) 58 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-2242 ((|#1| $) 55 T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-1607 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3750 (((-2 (|:| -1761 $) (|:| -1760 (-349 |#2|))) (-349 |#2|)) 111 (|has| |#1| (-312)) ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 (-484) #1#) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-3 (-349 (-484)) #1#) $) NIL (|has| |#1| (-950 (-349 (-484)))) ELT) (((-3 |#1| #1#) $) 99 T ELT) (((-3 |#2| #1#) $) 95 T ELT)) (-3156 (((-484) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-349 (-484)) $) NIL (|has| |#1| (-950 (-349 (-484)))) ELT) ((|#1| $) NIL T ELT) ((|#2| $) NIL T ELT)) (-2564 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3958 (($ $) 27 T ELT)) (-3466 (((-3 $ #1#) $) 88 T ELT)) (-2563 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) NIL (|has| |#1| (-312)) ELT)) (-3771 (((-484) $) 22 T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-1604 (((-3 (-583 $) #1#) (-583 $) $) NIL (|has| |#1| (-312)) ELT)) (-3936 (((-85) $) 40 T ELT)) (-2893 (($ |#1| (-484)) 24 T ELT)) (-3174 ((|#1| $) 57 T ELT)) (-1890 (($ (-583 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) NIL (|has| |#1| (-312)) ELT)) (-3144 (($ (-583 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) 101 (|has| |#1| (-312)) ELT)) (-1605 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 116 (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3465 (((-3 $ #1#) $ $) 93 T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL (|has| |#1| (-312)) ELT)) (-1606 (((-694) $) 115 (|has| |#1| (-312)) ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 114 (|has| |#1| (-312)) ELT)) (-3757 (($ $ (-1 |#2| |#2|) (-694)) NIL T ELT) (($ $ (-1 |#2| |#2|)) 75 T ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-694)) NIL (|has| |#2| (-189)) ELT) (($ $ (-1089)) NIL (|has| |#2| (-811 (-1089))) ELT) (($ $ (-583 (-1089))) NIL (|has| |#2| (-811 (-1089))) ELT) (($ $ (-1089) (-694)) NIL (|has| |#2| (-811 (-1089))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (|has| |#2| (-811 (-1089))) ELT)) (-3947 (((-484) $) 38 T ELT)) (-3971 (((-349 |#2|) $) 47 T ELT)) (-3945 (((-772) $) 69 T ELT) (($ (-484)) 35 T ELT) (($ $) NIL T ELT) (($ (-349 (-484))) NIL (|has| |#1| (-950 (-349 (-484)))) ELT) (($ |#1|) 34 T ELT) (($ |#2|) 25 T ELT)) (-3676 ((|#1| $ (-484)) 72 T ELT)) (-2702 (((-632 $) $) NIL (|has| |#1| (-118)) ELT)) (-3126 (((-694)) 32 T CONST)) (-1264 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) 9 T CONST)) (-2666 (($) 14 T CONST)) (-2669 (($ $ (-1 |#2| |#2|) (-694)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-694)) NIL (|has| |#2| (-189)) ELT) (($ $ (-1089)) NIL (|has| |#2| (-811 (-1089))) ELT) (($ $ (-583 (-1089))) NIL (|has| |#2| (-811 (-1089))) ELT) (($ $ (-1089) (-694)) NIL (|has| |#2| (-811 (-1089))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (|has| |#2| (-811 (-1089))) ELT)) (-3056 (((-85) $ $) 21 T ELT)) (-3836 (($ $) 51 T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) 90 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 49 T ELT))) +(((-562 |#1| |#2|) (-13 (-184 |#2|) (-495) (-553 (-349 |#2|)) (-354 |#1|) (-950 |#2|) (-10 -8 (-15 -3936 ((-85) $)) (-15 -3947 ((-484) $)) (-15 -3771 ((-484) $)) (-15 -3958 ($ $)) (-15 -3174 (|#1| $)) (-15 -2242 (|#1| $)) (-15 -3676 (|#1| $ (-484))) (-15 -2893 ($ |#1| (-484))) (IF (|has| |#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |#1| (-312)) (PROGN (-6 (-258)) (-15 -3750 ((-2 (|:| -1761 $) (|:| -1760 (-349 |#2|))) (-349 |#2|)))) |%noBranch|))) (-495) (-1154 |#1|)) (T -562)) +((-3936 (*1 *2 *1) (-12 (-4 *3 (-495)) (-5 *2 (-85)) (-5 *1 (-562 *3 *4)) (-4 *4 (-1154 *3)))) (-3947 (*1 *2 *1) (-12 (-4 *3 (-495)) (-5 *2 (-484)) (-5 *1 (-562 *3 *4)) (-4 *4 (-1154 *3)))) (-3771 (*1 *2 *1) (-12 (-4 *3 (-495)) (-5 *2 (-484)) (-5 *1 (-562 *3 *4)) (-4 *4 (-1154 *3)))) (-3958 (*1 *1 *1) (-12 (-4 *2 (-495)) (-5 *1 (-562 *2 *3)) (-4 *3 (-1154 *2)))) (-3174 (*1 *2 *1) (-12 (-4 *2 (-495)) (-5 *1 (-562 *2 *3)) (-4 *3 (-1154 *2)))) (-2242 (*1 *2 *1) (-12 (-4 *2 (-495)) (-5 *1 (-562 *2 *3)) (-4 *3 (-1154 *2)))) (-3676 (*1 *2 *1 *3) (-12 (-5 *3 (-484)) (-4 *2 (-495)) (-5 *1 (-562 *2 *4)) (-4 *4 (-1154 *2)))) (-2893 (*1 *1 *2 *3) (-12 (-5 *3 (-484)) (-4 *2 (-495)) (-5 *1 (-562 *2 *4)) (-4 *4 (-1154 *2)))) (-3750 (*1 *2 *3) (-12 (-4 *4 (-312)) (-4 *4 (-495)) (-4 *5 (-1154 *4)) (-5 *2 (-2 (|:| -1761 (-562 *4 *5)) (|:| -1760 (-349 *5)))) (-5 *1 (-562 *4 *5)) (-5 *3 (-349 *5))))) +((-3681 (((-583 |#6|) (-583 |#4|) (-85)) 54 T ELT)) (-2243 ((|#6| |#6|) 48 T ELT))) +(((-563 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2243 (|#6| |#6|)) (-15 -3681 ((-583 |#6|) (-583 |#4|) (-85)))) (-391) (-717) (-756) (-977 |#1| |#2| |#3|) (-983 |#1| |#2| |#3| |#4|) (-1020 |#1| |#2| |#3| |#4|)) (T -563)) +((-3681 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-85)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-583 *10)) (-5 *1 (-563 *5 *6 *7 *8 *9 *10)) (-4 *9 (-983 *5 *6 *7 *8)) (-4 *10 (-1020 *5 *6 *7 *8)))) (-2243 (*1 *2 *2) (-12 (-4 *3 (-391)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-5 *1 (-563 *3 *4 *5 *6 *7 *2)) (-4 *7 (-983 *3 *4 *5 *6)) (-4 *2 (-1020 *3 *4 *5 *6))))) +((-2244 (((-85) |#3| (-694) (-583 |#3|)) 30 T ELT)) (-2245 (((-3 (-2 (|:| |polfac| (-583 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-583 (-1084 |#3|)))) "failed") |#3| (-583 (-1084 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1778 (-583 (-2 (|:| |irr| |#4|) (|:| -2395 (-484)))))) (-583 |#3|) (-583 |#1|) (-583 |#3|)) 68 T ELT))) +(((-564 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2244 ((-85) |#3| (-694) (-583 |#3|))) (-15 -2245 ((-3 (-2 (|:| |polfac| (-583 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-583 (-1084 |#3|)))) "failed") |#3| (-583 (-1084 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1778 (-583 (-2 (|:| |irr| |#4|) (|:| -2395 (-484)))))) (-583 |#3|) (-583 |#1|) (-583 |#3|)))) (-756) (-717) (-258) (-861 |#3| |#2| |#1|)) (T -564)) +((-2245 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -1778 (-583 (-2 (|:| |irr| *10) (|:| -2395 (-484))))))) (-5 *6 (-583 *3)) (-5 *7 (-583 *8)) (-4 *8 (-756)) (-4 *3 (-258)) (-4 *10 (-861 *3 *9 *8)) (-4 *9 (-717)) (-5 *2 (-2 (|:| |polfac| (-583 *10)) (|:| |correct| *3) (|:| |corrfact| (-583 (-1084 *3))))) (-5 *1 (-564 *8 *9 *3 *10)) (-5 *4 (-583 (-1084 *3))))) (-2244 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-694)) (-5 *5 (-583 *3)) (-4 *3 (-258)) (-4 *6 (-756)) (-4 *7 (-717)) (-5 *2 (-85)) (-5 *1 (-564 *6 *7 *3 *8)) (-4 *8 (-861 *3 *7 *6))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3527 (((-1048) $) 12 T ELT)) (-3528 (((-1048) $) 10 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) 18 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT))) +(((-565) (-13 (-995) (-10 -8 (-15 -3528 ((-1048) $)) (-15 -3527 ((-1048) $))))) (T -565)) +((-3528 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-565)))) (-3527 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-565))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3933 (((-583 |#1|) $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-3466 (((-3 $ "failed") $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-3935 (($ $) 77 T ELT)) (-3941 (((-606 |#1| |#2|) $) 60 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2484 (($ $) 81 T ELT)) (-2246 (((-583 (-249 |#2|)) $ $) 42 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3942 (($ (-606 |#1| |#2|)) 56 T ELT)) (-3009 (($ $ $) NIL T ELT)) (-2435 (($ $ $) NIL T ELT)) (-3945 (((-772) $) 66 T ELT) (((-1194 |#1| |#2|) $) NIL T ELT) (((-1199 |#1| |#2|) $) 74 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2666 (($) 61 T CONST)) (-2247 (((-583 (-2 (|:| |k| (-614 |#1|)) (|:| |c| |#2|))) $) 41 T ELT)) (-2248 (((-583 (-606 |#1| |#2|)) (-583 |#1|)) 73 T ELT)) (-2665 (((-583 (-2 (|:| |k| (-803 |#1|)) (|:| |c| |#2|))) $) 46 T ELT)) (-3056 (((-85) $ $) 62 T ELT)) (-3948 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ $ $) 52 T ELT))) +(((-566 |#1| |#2| |#3|) (-13 (-412) (-10 -8 (-15 -3942 ($ (-606 |#1| |#2|))) (-15 -3941 ((-606 |#1| |#2|) $)) (-15 -2665 ((-583 (-2 (|:| |k| (-803 |#1|)) (|:| |c| |#2|))) $)) (-15 -3945 ((-1194 |#1| |#2|) $)) (-15 -3945 ((-1199 |#1| |#2|) $)) (-15 -3935 ($ $)) (-15 -3933 ((-583 |#1|) $)) (-15 -2248 ((-583 (-606 |#1| |#2|)) (-583 |#1|))) (-15 -2247 ((-583 (-2 (|:| |k| (-614 |#1|)) (|:| |c| |#2|))) $)) (-15 -2246 ((-583 (-249 |#2|)) $ $)))) (-756) (-13 (-146) (-654 (-349 (-484)))) (-830)) (T -566)) +((-3942 (*1 *1 *2) (-12 (-5 *2 (-606 *3 *4)) (-4 *3 (-756)) (-4 *4 (-13 (-146) (-654 (-349 (-484))))) (-5 *1 (-566 *3 *4 *5)) (-14 *5 (-830)))) (-3941 (*1 *2 *1) (-12 (-5 *2 (-606 *3 *4)) (-5 *1 (-566 *3 *4 *5)) (-4 *3 (-756)) (-4 *4 (-13 (-146) (-654 (-349 (-484))))) (-14 *5 (-830)))) (-2665 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |k| (-803 *3)) (|:| |c| *4)))) (-5 *1 (-566 *3 *4 *5)) (-4 *3 (-756)) (-4 *4 (-13 (-146) (-654 (-349 (-484))))) (-14 *5 (-830)))) (-3945 (*1 *2 *1) (-12 (-5 *2 (-1194 *3 *4)) (-5 *1 (-566 *3 *4 *5)) (-4 *3 (-756)) (-4 *4 (-13 (-146) (-654 (-349 (-484))))) (-14 *5 (-830)))) (-3945 (*1 *2 *1) (-12 (-5 *2 (-1199 *3 *4)) (-5 *1 (-566 *3 *4 *5)) (-4 *3 (-756)) (-4 *4 (-13 (-146) (-654 (-349 (-484))))) (-14 *5 (-830)))) (-3935 (*1 *1 *1) (-12 (-5 *1 (-566 *2 *3 *4)) (-4 *2 (-756)) (-4 *3 (-13 (-146) (-654 (-349 (-484))))) (-14 *4 (-830)))) (-3933 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-566 *3 *4 *5)) (-4 *3 (-756)) (-4 *4 (-13 (-146) (-654 (-349 (-484))))) (-14 *5 (-830)))) (-2248 (*1 *2 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-756)) (-5 *2 (-583 (-606 *4 *5))) (-5 *1 (-566 *4 *5 *6)) (-4 *5 (-13 (-146) (-654 (-349 (-484))))) (-14 *6 (-830)))) (-2247 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |k| (-614 *3)) (|:| |c| *4)))) (-5 *1 (-566 *3 *4 *5)) (-4 *3 (-756)) (-4 *4 (-13 (-146) (-654 (-349 (-484))))) (-14 *5 (-830)))) (-2246 (*1 *2 *1 *1) (-12 (-5 *2 (-583 (-249 *4))) (-5 *1 (-566 *3 *4 *5)) (-4 *3 (-756)) (-4 *4 (-13 (-146) (-654 (-349 (-484))))) (-14 *5 (-830))))) +((-3681 (((-583 (-1059 |#1| (-469 (-773 |#2|)) (-773 |#2|) (-703 |#1| (-773 |#2|)))) (-583 (-703 |#1| (-773 |#2|))) (-85)) 103 T ELT) (((-583 (-958 |#1| |#2|)) (-583 (-703 |#1| (-773 |#2|))) (-85)) 77 T ELT)) (-2249 (((-85) (-583 (-703 |#1| (-773 |#2|)))) 26 T ELT)) (-2253 (((-583 (-1059 |#1| (-469 (-773 |#2|)) (-773 |#2|) (-703 |#1| (-773 |#2|)))) (-583 (-703 |#1| (-773 |#2|))) (-85)) 102 T ELT)) (-2252 (((-583 (-958 |#1| |#2|)) (-583 (-703 |#1| (-773 |#2|))) (-85)) 76 T ELT)) (-2251 (((-583 (-703 |#1| (-773 |#2|))) (-583 (-703 |#1| (-773 |#2|)))) 30 T ELT)) (-2250 (((-3 (-583 (-703 |#1| (-773 |#2|))) "failed") (-583 (-703 |#1| (-773 |#2|)))) 29 T ELT))) +(((-567 |#1| |#2|) (-10 -7 (-15 -2249 ((-85) (-583 (-703 |#1| (-773 |#2|))))) (-15 -2250 ((-3 (-583 (-703 |#1| (-773 |#2|))) "failed") (-583 (-703 |#1| (-773 |#2|))))) (-15 -2251 ((-583 (-703 |#1| (-773 |#2|))) (-583 (-703 |#1| (-773 |#2|))))) (-15 -2252 ((-583 (-958 |#1| |#2|)) (-583 (-703 |#1| (-773 |#2|))) (-85))) (-15 -2253 ((-583 (-1059 |#1| (-469 (-773 |#2|)) (-773 |#2|) (-703 |#1| (-773 |#2|)))) (-583 (-703 |#1| (-773 |#2|))) (-85))) (-15 -3681 ((-583 (-958 |#1| |#2|)) (-583 (-703 |#1| (-773 |#2|))) (-85))) (-15 -3681 ((-583 (-1059 |#1| (-469 (-773 |#2|)) (-773 |#2|) (-703 |#1| (-773 |#2|)))) (-583 (-703 |#1| (-773 |#2|))) (-85)))) (-391) (-583 (-1089))) (T -567)) +((-3681 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-703 *5 (-773 *6)))) (-5 *4 (-85)) (-4 *5 (-391)) (-14 *6 (-583 (-1089))) (-5 *2 (-583 (-1059 *5 (-469 (-773 *6)) (-773 *6) (-703 *5 (-773 *6))))) (-5 *1 (-567 *5 *6)))) (-3681 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-703 *5 (-773 *6)))) (-5 *4 (-85)) (-4 *5 (-391)) (-14 *6 (-583 (-1089))) (-5 *2 (-583 (-958 *5 *6))) (-5 *1 (-567 *5 *6)))) (-2253 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-703 *5 (-773 *6)))) (-5 *4 (-85)) (-4 *5 (-391)) (-14 *6 (-583 (-1089))) (-5 *2 (-583 (-1059 *5 (-469 (-773 *6)) (-773 *6) (-703 *5 (-773 *6))))) (-5 *1 (-567 *5 *6)))) (-2252 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-703 *5 (-773 *6)))) (-5 *4 (-85)) (-4 *5 (-391)) (-14 *6 (-583 (-1089))) (-5 *2 (-583 (-958 *5 *6))) (-5 *1 (-567 *5 *6)))) (-2251 (*1 *2 *2) (-12 (-5 *2 (-583 (-703 *3 (-773 *4)))) (-4 *3 (-391)) (-14 *4 (-583 (-1089))) (-5 *1 (-567 *3 *4)))) (-2250 (*1 *2 *2) (|partial| -12 (-5 *2 (-583 (-703 *3 (-773 *4)))) (-4 *3 (-391)) (-14 *4 (-583 (-1089))) (-5 *1 (-567 *3 *4)))) (-2249 (*1 *2 *3) (-12 (-5 *3 (-583 (-703 *4 (-773 *5)))) (-4 *4 (-391)) (-14 *5 (-583 (-1089))) (-5 *2 (-85)) (-5 *1 (-567 *4 *5))))) +((-3594 (((-86) (-86)) 88 T ELT)) (-2257 ((|#2| |#2|) 28 T ELT)) (-2832 ((|#2| |#2| (-1004 |#2|)) 84 T ELT) ((|#2| |#2| (-1089)) 50 T ELT)) (-2255 ((|#2| |#2|) 27 T ELT)) (-2256 ((|#2| |#2|) 29 T ELT)) (-2254 (((-85) (-86)) 33 T ELT)) (-2259 ((|#2| |#2|) 24 T ELT)) (-2260 ((|#2| |#2|) 26 T ELT)) (-2258 ((|#2| |#2|) 25 T ELT))) +(((-568 |#1| |#2|) (-10 -7 (-15 -2254 ((-85) (-86))) (-15 -3594 ((-86) (-86))) (-15 -2260 (|#2| |#2|)) (-15 -2259 (|#2| |#2|)) (-15 -2258 (|#2| |#2|)) (-15 -2257 (|#2| |#2|)) (-15 -2255 (|#2| |#2|)) (-15 -2256 (|#2| |#2|)) (-15 -2832 (|#2| |#2| (-1089))) (-15 -2832 (|#2| |#2| (-1004 |#2|)))) (-495) (-13 (-363 |#1|) (-915) (-1114))) (T -568)) +((-2832 (*1 *2 *2 *3) (-12 (-5 *3 (-1004 *2)) (-4 *2 (-13 (-363 *4) (-915) (-1114))) (-4 *4 (-495)) (-5 *1 (-568 *4 *2)))) (-2832 (*1 *2 *2 *3) (-12 (-5 *3 (-1089)) (-4 *4 (-495)) (-5 *1 (-568 *4 *2)) (-4 *2 (-13 (-363 *4) (-915) (-1114))))) (-2256 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-568 *3 *2)) (-4 *2 (-13 (-363 *3) (-915) (-1114))))) (-2255 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-568 *3 *2)) (-4 *2 (-13 (-363 *3) (-915) (-1114))))) (-2257 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-568 *3 *2)) (-4 *2 (-13 (-363 *3) (-915) (-1114))))) (-2258 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-568 *3 *2)) (-4 *2 (-13 (-363 *3) (-915) (-1114))))) (-2259 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-568 *3 *2)) (-4 *2 (-13 (-363 *3) (-915) (-1114))))) (-2260 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-568 *3 *2)) (-4 *2 (-13 (-363 *3) (-915) (-1114))))) (-3594 (*1 *2 *2) (-12 (-5 *2 (-86)) (-4 *3 (-495)) (-5 *1 (-568 *3 *4)) (-4 *4 (-13 (-363 *3) (-915) (-1114))))) (-2254 (*1 *2 *3) (-12 (-5 *3 (-86)) (-4 *4 (-495)) (-5 *2 (-85)) (-5 *1 (-568 *4 *5)) (-4 *5 (-13 (-363 *4) (-915) (-1114)))))) +((-3491 (($ $) 38 T ELT)) (-3638 (($ $) 21 T ELT)) (-3489 (($ $) 37 T ELT)) (-3637 (($ $) 22 T ELT)) (-3493 (($ $) 36 T ELT)) (-3636 (($ $) 23 T ELT)) (-3626 (($) 48 T ELT)) (-3941 (($ $) 45 T ELT)) (-2257 (($ $) 17 T ELT)) (-2832 (($ $ (-1004 $)) 7 T ELT) (($ $ (-1089)) 6 T ELT)) (-3942 (($ $) 46 T ELT)) (-2255 (($ $) 15 T ELT)) (-2256 (($ $) 16 T ELT)) (-3494 (($ $) 35 T ELT)) (-3635 (($ $) 24 T ELT)) (-3492 (($ $) 34 T ELT)) (-3634 (($ $) 25 T ELT)) (-3490 (($ $) 33 T ELT)) (-3633 (($ $) 26 T ELT)) (-3497 (($ $) 44 T ELT)) (-3485 (($ $) 32 T ELT)) (-3495 (($ $) 43 T ELT)) (-3483 (($ $) 31 T ELT)) (-3499 (($ $) 42 T ELT)) (-3487 (($ $) 30 T ELT)) (-3500 (($ $) 41 T ELT)) (-3488 (($ $) 29 T ELT)) (-3498 (($ $) 40 T ELT)) (-3486 (($ $) 28 T ELT)) (-3496 (($ $) 39 T ELT)) (-3484 (($ $) 27 T ELT)) (-2259 (($ $) 19 T ELT)) (-2260 (($ $) 20 T ELT)) (-2258 (($ $) 18 T ELT)) (** (($ $ $) 47 T ELT))) +(((-569) (-113)) (T -569)) +((-2260 (*1 *1 *1) (-4 *1 (-569))) (-2259 (*1 *1 *1) (-4 *1 (-569))) (-2258 (*1 *1 *1) (-4 *1 (-569))) (-2257 (*1 *1 *1) (-4 *1 (-569))) (-2256 (*1 *1 *1) (-4 *1 (-569))) (-2255 (*1 *1 *1) (-4 *1 (-569)))) +(-13 (-871) (-1114) (-10 -8 (-15 -2260 ($ $)) (-15 -2259 ($ $)) (-15 -2258 ($ $)) (-15 -2257 ($ $)) (-15 -2256 ($ $)) (-15 -2255 ($ $)))) +(((-35) . T) ((-66) . T) ((-239) . T) ((-432) . T) ((-871) . T) ((-1114) . T) ((-1117) . T)) +((-2270 (((-420 |#1| |#2|) (-206 |#1| |#2|)) 65 T ELT)) (-2263 (((-583 (-206 |#1| |#2|)) (-583 (-420 |#1| |#2|))) 90 T ELT)) (-2264 (((-420 |#1| |#2|) (-583 (-420 |#1| |#2|)) (-773 |#1|)) 92 T ELT) (((-420 |#1| |#2|) (-583 (-420 |#1| |#2|)) (-583 (-420 |#1| |#2|)) (-773 |#1|)) 91 T ELT)) (-2261 (((-2 (|:| |gblist| (-583 (-206 |#1| |#2|))) (|:| |gvlist| (-583 (-484)))) (-583 (-420 |#1| |#2|))) 136 T ELT)) (-2268 (((-583 (-420 |#1| |#2|)) (-773 |#1|) (-583 (-420 |#1| |#2|)) (-583 (-420 |#1| |#2|))) 105 T ELT)) (-2262 (((-2 (|:| |glbase| (-583 (-206 |#1| |#2|))) (|:| |glval| (-583 (-484)))) (-583 (-206 |#1| |#2|))) 147 T ELT)) (-2266 (((-1178 |#2|) (-420 |#1| |#2|) (-583 (-420 |#1| |#2|))) 70 T ELT)) (-2265 (((-583 (-420 |#1| |#2|)) (-583 (-420 |#1| |#2|))) 47 T ELT)) (-2269 (((-206 |#1| |#2|) (-206 |#1| |#2|) (-583 (-206 |#1| |#2|))) 61 T ELT)) (-2267 (((-206 |#1| |#2|) (-583 |#2|) (-206 |#1| |#2|) (-583 (-206 |#1| |#2|))) 113 T ELT))) +(((-570 |#1| |#2|) (-10 -7 (-15 -2261 ((-2 (|:| |gblist| (-583 (-206 |#1| |#2|))) (|:| |gvlist| (-583 (-484)))) (-583 (-420 |#1| |#2|)))) (-15 -2262 ((-2 (|:| |glbase| (-583 (-206 |#1| |#2|))) (|:| |glval| (-583 (-484)))) (-583 (-206 |#1| |#2|)))) (-15 -2263 ((-583 (-206 |#1| |#2|)) (-583 (-420 |#1| |#2|)))) (-15 -2264 ((-420 |#1| |#2|) (-583 (-420 |#1| |#2|)) (-583 (-420 |#1| |#2|)) (-773 |#1|))) (-15 -2264 ((-420 |#1| |#2|) (-583 (-420 |#1| |#2|)) (-773 |#1|))) (-15 -2265 ((-583 (-420 |#1| |#2|)) (-583 (-420 |#1| |#2|)))) (-15 -2266 ((-1178 |#2|) (-420 |#1| |#2|) (-583 (-420 |#1| |#2|)))) (-15 -2267 ((-206 |#1| |#2|) (-583 |#2|) (-206 |#1| |#2|) (-583 (-206 |#1| |#2|)))) (-15 -2268 ((-583 (-420 |#1| |#2|)) (-773 |#1|) (-583 (-420 |#1| |#2|)) (-583 (-420 |#1| |#2|)))) (-15 -2269 ((-206 |#1| |#2|) (-206 |#1| |#2|) (-583 (-206 |#1| |#2|)))) (-15 -2270 ((-420 |#1| |#2|) (-206 |#1| |#2|)))) (-583 (-1089)) (-391)) (T -570)) +((-2270 (*1 *2 *3) (-12 (-5 *3 (-206 *4 *5)) (-14 *4 (-583 (-1089))) (-4 *5 (-391)) (-5 *2 (-420 *4 *5)) (-5 *1 (-570 *4 *5)))) (-2269 (*1 *2 *2 *3) (-12 (-5 *3 (-583 (-206 *4 *5))) (-5 *2 (-206 *4 *5)) (-14 *4 (-583 (-1089))) (-4 *5 (-391)) (-5 *1 (-570 *4 *5)))) (-2268 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-583 (-420 *4 *5))) (-5 *3 (-773 *4)) (-14 *4 (-583 (-1089))) (-4 *5 (-391)) (-5 *1 (-570 *4 *5)))) (-2267 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-583 *6)) (-5 *4 (-583 (-206 *5 *6))) (-4 *6 (-391)) (-5 *2 (-206 *5 *6)) (-14 *5 (-583 (-1089))) (-5 *1 (-570 *5 *6)))) (-2266 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-420 *5 *6))) (-5 *3 (-420 *5 *6)) (-14 *5 (-583 (-1089))) (-4 *6 (-391)) (-5 *2 (-1178 *6)) (-5 *1 (-570 *5 *6)))) (-2265 (*1 *2 *2) (-12 (-5 *2 (-583 (-420 *3 *4))) (-14 *3 (-583 (-1089))) (-4 *4 (-391)) (-5 *1 (-570 *3 *4)))) (-2264 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-420 *5 *6))) (-5 *4 (-773 *5)) (-14 *5 (-583 (-1089))) (-5 *2 (-420 *5 *6)) (-5 *1 (-570 *5 *6)) (-4 *6 (-391)))) (-2264 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-583 (-420 *5 *6))) (-5 *4 (-773 *5)) (-14 *5 (-583 (-1089))) (-5 *2 (-420 *5 *6)) (-5 *1 (-570 *5 *6)) (-4 *6 (-391)))) (-2263 (*1 *2 *3) (-12 (-5 *3 (-583 (-420 *4 *5))) (-14 *4 (-583 (-1089))) (-4 *5 (-391)) (-5 *2 (-583 (-206 *4 *5))) (-5 *1 (-570 *4 *5)))) (-2262 (*1 *2 *3) (-12 (-14 *4 (-583 (-1089))) (-4 *5 (-391)) (-5 *2 (-2 (|:| |glbase| (-583 (-206 *4 *5))) (|:| |glval| (-583 (-484))))) (-5 *1 (-570 *4 *5)) (-5 *3 (-583 (-206 *4 *5))))) (-2261 (*1 *2 *3) (-12 (-5 *3 (-583 (-420 *4 *5))) (-14 *4 (-583 (-1089))) (-4 *5 (-391)) (-5 *2 (-2 (|:| |gblist| (-583 (-206 *4 *5))) (|:| |gvlist| (-583 (-484))))) (-5 *1 (-570 *4 *5))))) +((-2568 (((-85) $ $) NIL (OR (|has| (-51) (-72)) (|has| (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))) (-72))) ELT)) (-3598 (($) NIL T ELT) (($ (-583 (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))))) NIL T ELT)) (-2198 (((-1184) $ (-1072) (-1072)) NIL (|has| $ (-6 -3995)) ELT)) (-3787 (((-51) $ (-1072) (-51)) NIL T ELT) (((-51) $ (-1089) (-51)) 16 T ELT)) (-1569 (($ (-1 (-85) (-2 (|:| -3859 (-1072)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3994)) ELT)) (-3709 (($ (-1 (-85) (-2 (|:| -3859 (-1072)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3994)) ELT)) (-2231 (((-3 (-51) #1="failed") (-1072) $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-1352 (($ $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))) (-1013))) ELT)) (-3404 (($ (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))) $) NIL (|has| $ (-6 -3994)) ELT) (($ (-1 (-85) (-2 (|:| -3859 (-1072)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3994)) ELT) (((-3 (-51) #1#) (-1072) $) NIL T ELT)) (-3405 (($ (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))) $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))) (-1013))) ELT) (($ (-1 (-85) (-2 (|:| -3859 (-1072)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3994)) ELT)) (-3841 (((-2 (|:| -3859 (-1072)) (|:| |entry| (-51))) (-1 (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))) (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))) (-2 (|:| -3859 (-1072)) (|:| |entry| (-51)))) $ (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))) (-2 (|:| -3859 (-1072)) (|:| |entry| (-51)))) NIL (-12 (|has| $ (-6 -3994)) (|has| (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))) (-1013))) ELT) (((-2 (|:| -3859 (-1072)) (|:| |entry| (-51))) (-1 (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))) (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))) (-2 (|:| -3859 (-1072)) (|:| |entry| (-51)))) $ (-2 (|:| -3859 (-1072)) (|:| |entry| (-51)))) NIL (|has| $ (-6 -3994)) ELT) (((-2 (|:| -3859 (-1072)) (|:| |entry| (-51))) (-1 (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))) (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))) (-2 (|:| -3859 (-1072)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3994)) ELT)) (-1575 (((-51) $ (-1072) (-51)) NIL (|has| $ (-6 -3995)) ELT)) (-3112 (((-51) $ (-1072)) NIL T ELT)) (-2889 (((-583 (-2 (|:| -3859 (-1072)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3994)) ELT) (((-583 (-51)) $) NIL (|has| $ (-6 -3994)) ELT)) (-2271 (($ $) NIL T ELT)) (-2200 (((-1072) $) NIL (|has| (-1072) (-756)) ELT)) (-2608 (((-583 (-2 (|:| -3859 (-1072)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3994)) ELT) (((-583 (-51)) $) NIL (|has| $ (-6 -3994)) ELT)) (-3245 (((-85) (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))) $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))) (-1013))) ELT) (((-85) (-51) $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-51) (-1013))) ELT)) (-2201 (((-1072) $) NIL (|has| (-1072) (-756)) ELT)) (-1948 (($ (-1 (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))) (-2 (|:| -3859 (-1072)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3995)) ELT) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))) (-2 (|:| -3859 (-1072)) (|:| |entry| (-51)))) $) NIL T ELT) (($ (-1 (-51) (-51)) $) NIL T ELT) (($ (-1 (-51) (-51) (-51)) $ $) NIL T ELT)) (-2272 (($ (-337)) 8 T ELT)) (-3242 (((-1072) $) NIL (OR (|has| (-51) (-1013)) (|has| (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))) (-1013))) ELT)) (-2232 (((-583 (-1072)) $) NIL T ELT)) (-2233 (((-85) (-1072) $) NIL T ELT)) (-1273 (((-2 (|:| -3859 (-1072)) (|:| |entry| (-51))) $) NIL T ELT)) (-3608 (($ (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))) $) NIL T ELT)) (-2203 (((-583 (-1072)) $) NIL T ELT)) (-2204 (((-85) (-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL (OR (|has| (-51) (-1013)) (|has| (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))) (-1013))) ELT)) (-3800 (((-51) $) NIL (|has| (-1072) (-756)) ELT)) (-1353 (((-3 (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))) #1#) (-1 (-85) (-2 (|:| -3859 (-1072)) (|:| |entry| (-51)))) $) NIL T ELT)) (-2199 (($ $ (-51)) NIL (|has| $ (-6 -3995)) ELT)) (-1274 (((-2 (|:| -3859 (-1072)) (|:| |entry| (-51))) $) NIL T ELT)) (-1946 (((-85) (-1 (-85) (-2 (|:| -3859 (-1072)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3994)) ELT) (((-85) (-1 (-85) (-51)) $) NIL (|has| $ (-6 -3994)) ELT)) (-3767 (($ $ (-583 (-249 (-2 (|:| -3859 (-1072)) (|:| |entry| (-51)))))) NIL (-12 (|has| (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))) (-260 (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))) (-1013))) ELT) (($ $ (-249 (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))))) NIL (-12 (|has| (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))) (-260 (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))) (-1013))) ELT) (($ $ (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))) (-2 (|:| -3859 (-1072)) (|:| |entry| (-51)))) NIL (-12 (|has| (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))) (-260 (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))) (-1013))) ELT) (($ $ (-583 (-2 (|:| -3859 (-1072)) (|:| |entry| (-51)))) (-583 (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))))) NIL (-12 (|has| (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))) (-260 (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))) (-1013))) ELT) (($ $ (-583 (-51)) (-583 (-51))) NIL (-12 (|has| (-51) (-260 (-51))) (|has| (-51) (-1013))) ELT) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-260 (-51))) (|has| (-51) (-1013))) ELT) (($ $ (-249 (-51))) NIL (-12 (|has| (-51) (-260 (-51))) (|has| (-51) (-1013))) ELT) (($ $ (-583 (-249 (-51)))) NIL (-12 (|has| (-51) (-260 (-51))) (|has| (-51) (-1013))) ELT)) (-1221 (((-85) $ $) NIL T ELT)) (-2202 (((-85) (-51) $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-51) (-1013))) ELT)) (-2205 (((-583 (-51)) $) NIL T ELT)) (-3402 (((-85) $) NIL T ELT)) (-3564 (($) NIL T ELT)) (-3799 (((-51) $ (-1072)) NIL T ELT) (((-51) $ (-1072) (-51)) NIL T ELT) (((-51) $ (-1089)) 14 T ELT)) (-1465 (($) NIL T ELT) (($ (-583 (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))))) NIL T ELT)) (-1945 (((-694) (-1 (-85) (-2 (|:| -3859 (-1072)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3994)) ELT) (((-694) (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))) $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))) (-1013))) ELT) (((-694) (-51) $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-51) (-1013))) ELT) (((-694) (-1 (-85) (-51)) $) NIL (|has| $ (-6 -3994)) ELT)) (-3399 (($ $) NIL T ELT)) (-3971 (((-473) $) NIL (|has| (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))) (-553 (-473))) ELT)) (-3529 (($ (-583 (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))))) NIL T ELT)) (-3945 (((-772) $) NIL (OR (|has| (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))) (-552 (-772))) (|has| (-51) (-552 (-772)))) ELT)) (-1264 (((-85) $ $) NIL (OR (|has| (-51) (-72)) (|has| (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))) (-72))) ELT)) (-1275 (($ (-583 (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))))) NIL T ELT)) (-1947 (((-85) (-1 (-85) (-2 (|:| -3859 (-1072)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3994)) ELT) (((-85) (-1 (-85) (-51)) $) NIL (|has| $ (-6 -3994)) ELT)) (-3056 (((-85) $ $) NIL (OR (|has| (-51) (-72)) (|has| (-2 (|:| -3859 (-1072)) (|:| |entry| (-51))) (-72))) ELT)) (-3956 (((-694) $) NIL (|has| $ (-6 -3994)) ELT))) +(((-571) (-13 (-1106 (-1072) (-51)) (-241 (-1089) (-51)) (-10 -8 (-15 -2272 ($ (-337))) (-15 -2271 ($ $)) (-15 -3787 ((-51) $ (-1089) (-51)))))) (T -571)) +((-2272 (*1 *1 *2) (-12 (-5 *2 (-337)) (-5 *1 (-571)))) (-2271 (*1 *1 *1) (-5 *1 (-571))) (-3787 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1089)) (-5 *1 (-571))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-1771 (((-3 $ #1="failed")) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-495)))) ELT)) (-1311 (((-3 $ #1#) $ $) NIL T ELT)) (-3223 (((-1178 (-630 |#1|))) NIL (|has| |#2| (-360 |#1|)) ELT) (((-1178 (-630 |#1|)) (-1178 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1728 (((-1178 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3723 (($) NIL T CONST)) (-1905 (((-3 (-2 (|:| |particular| $) (|:| -2012 (-583 $))) #1#)) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-495)))) ELT)) (-1702 (((-3 $ #1#)) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-495)))) ELT)) (-1787 (((-630 |#1|)) NIL (|has| |#2| (-360 |#1|)) ELT) (((-630 |#1|) (-1178 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1726 ((|#1| $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1785 (((-630 |#1|) $) NIL (|has| |#2| (-360 |#1|)) ELT) (((-630 |#1|) $ (-1178 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2404 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-495)))) ELT)) (-1899 (((-1084 (-857 |#1|))) NIL (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-312))) ELT)) (-2407 (($ $ (-830)) NIL T ELT)) (-1724 ((|#1| $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1704 (((-1084 |#1|) $) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-495)))) ELT)) (-1789 ((|#1|) NIL (|has| |#2| (-360 |#1|)) ELT) ((|#1| (-1178 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1722 (((-1084 |#1|) $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1716 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1791 (($ (-1178 |#1|)) NIL (|has| |#2| (-360 |#1|)) ELT) (($ (-1178 |#1|) (-1178 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3466 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-495)))) ELT)) (-3108 (((-830)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1713 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2433 (($ $ (-830)) NIL T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-1709 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1707 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1711 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1906 (((-3 (-2 (|:| |particular| $) (|:| -2012 (-583 $))) #1#)) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-495)))) ELT)) (-1703 (((-3 $ #1#)) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-495)))) ELT)) (-1788 (((-630 |#1|)) NIL (|has| |#2| (-360 |#1|)) ELT) (((-630 |#1|) (-1178 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1727 ((|#1| $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1786 (((-630 |#1|) $) NIL (|has| |#2| (-360 |#1|)) ELT) (((-630 |#1|) $ (-1178 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2405 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-495)))) ELT)) (-1903 (((-1084 (-857 |#1|))) NIL (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-312))) ELT)) (-2406 (($ $ (-830)) NIL T ELT)) (-1725 ((|#1| $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1705 (((-1084 |#1|) $) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-495)))) ELT)) (-1790 ((|#1|) NIL (|has| |#2| (-360 |#1|)) ELT) ((|#1| (-1178 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1723 (((-1084 |#1|) $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1717 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3242 (((-1072) $) NIL T ELT)) (-1708 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1710 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1712 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1715 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3799 ((|#1| $ (-484)) NIL (|has| |#2| (-360 |#1|)) ELT)) (-3224 (((-630 |#1|) (-1178 $)) NIL (|has| |#2| (-360 |#1|)) ELT) (((-1178 |#1|) $) NIL (|has| |#2| (-360 |#1|)) ELT) (((-630 |#1|) (-1178 $) (-1178 $)) NIL (|has| |#2| (-316 |#1|)) ELT) (((-1178 |#1|) $ (-1178 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3971 (($ (-1178 |#1|)) NIL (|has| |#2| (-360 |#1|)) ELT) (((-1178 |#1|) $) NIL (|has| |#2| (-360 |#1|)) ELT)) (-1891 (((-583 (-857 |#1|))) NIL (|has| |#2| (-360 |#1|)) ELT) (((-583 (-857 |#1|)) (-1178 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2435 (($ $ $) NIL T ELT)) (-1721 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3945 (((-772) $) NIL T ELT) ((|#2| $) 11 T ELT) (($ |#2|) 12 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2012 (((-1178 $)) NIL (|has| |#2| (-360 |#1|)) ELT)) (-1706 (((-583 (-1178 |#1|))) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-495)))) ELT)) (-2436 (($ $ $ $) NIL T ELT)) (-1719 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2545 (($ (-630 |#1|) $) NIL (|has| |#2| (-360 |#1|)) ELT)) (-2434 (($ $ $) NIL T ELT)) (-1720 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1718 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1714 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2660 (($) 18 T CONST)) (-3056 (((-85) $ $) NIL T ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (** (($ $ (-830)) 19 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 10 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-572 |#1| |#2|) (-13 (-683 |#1|) (-552 |#2|) (-10 -8 (-15 -3945 ($ |#2|)) (IF (|has| |#2| (-360 |#1|)) (-6 (-360 |#1|)) |%noBranch|) (IF (|has| |#2| (-316 |#1|)) (-6 (-316 |#1|)) |%noBranch|))) (-146) (-683 |#1|)) (T -572)) +((-3945 (*1 *1 *2) (-12 (-4 *3 (-146)) (-5 *1 (-572 *3 *2)) (-4 *2 (-683 *3))))) +((-3948 (($ $ |#2|) 10 T ELT))) +(((-573 |#1| |#2|) (-10 -7 (-15 -3948 (|#1| |#1| |#2|))) (-574 |#2|) (-146)) (T -573)) +NIL +((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3723 (($) 23 T CONST)) (-1213 (((-85) $ $) 20 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3529 (($ $ $) 40 T ELT)) (-3945 (((-772) $) 13 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-2660 (($) 24 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3948 (($ $ |#1|) 39 (|has| |#1| (-312)) ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ |#1| $) 33 T ELT) (($ $ |#1|) 37 T ELT))) +(((-574 |#1|) (-113) (-146)) (T -574)) +((-3529 (*1 *1 *1 *1) (-12 (-4 *1 (-574 *2)) (-4 *2 (-146)))) (-3948 (*1 *1 *1 *2) (-12 (-4 *1 (-574 *2)) (-4 *2 (-146)) (-4 *2 (-312))))) +(-13 (-654 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -3529 ($ $ $)) (IF (|has| |t#1| (-312)) (-15 -3948 ($ $ |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-590 |#1|) . T) ((-582 |#1|) . T) ((-654 |#1|) . T) ((-963 |#1|) . T) ((-968 |#1|) . T) ((-1013) . T) ((-1128) . T)) +((-2274 (((-3 (-750 |#2|) #1="failed") |#2| (-249 |#2|) (-1072)) 105 T ELT) (((-3 (-750 |#2|) (-2 (|:| |leftHandLimit| (-3 (-750 |#2|) #1#)) (|:| |rightHandLimit| (-3 (-750 |#2|) #1#))) #1#) |#2| (-249 (-750 |#2|))) 130 T ELT)) (-2273 (((-3 (-743 |#2|) #1#) |#2| (-249 (-743 |#2|))) 135 T ELT))) +(((-575 |#1| |#2|) (-10 -7 (-15 -2274 ((-3 (-750 |#2|) (-2 (|:| |leftHandLimit| (-3 (-750 |#2|) #1="failed")) (|:| |rightHandLimit| (-3 (-750 |#2|) #1#))) #1#) |#2| (-249 (-750 |#2|)))) (-15 -2273 ((-3 (-743 |#2|) #1#) |#2| (-249 (-743 |#2|)))) (-15 -2274 ((-3 (-750 |#2|) #1#) |#2| (-249 |#2|) (-1072)))) (-13 (-391) (-950 (-484)) (-580 (-484))) (-13 (-27) (-1114) (-363 |#1|))) (T -575)) +((-2274 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-249 *3)) (-5 *5 (-1072)) (-4 *3 (-13 (-27) (-1114) (-363 *6))) (-4 *6 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *2 (-750 *3)) (-5 *1 (-575 *6 *3)))) (-2273 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-249 (-743 *3))) (-4 *5 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *2 (-743 *3)) (-5 *1 (-575 *5 *3)) (-4 *3 (-13 (-27) (-1114) (-363 *5))))) (-2274 (*1 *2 *3 *4) (-12 (-5 *4 (-249 (-750 *3))) (-4 *3 (-13 (-27) (-1114) (-363 *5))) (-4 *5 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *2 (-3 (-750 *3) (-2 (|:| |leftHandLimit| (-3 (-750 *3) #1="failed")) (|:| |rightHandLimit| (-3 (-750 *3) #1#))) "failed")) (-5 *1 (-575 *5 *3))))) +((-2274 (((-3 (-750 (-349 (-857 |#1|))) #1="failed") (-349 (-857 |#1|)) (-249 (-349 (-857 |#1|))) (-1072)) 86 T ELT) (((-3 (-750 (-349 (-857 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-750 (-349 (-857 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-750 (-349 (-857 |#1|))) #1#))) #1#) (-349 (-857 |#1|)) (-249 (-349 (-857 |#1|)))) 20 T ELT) (((-3 (-750 (-349 (-857 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-750 (-349 (-857 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-750 (-349 (-857 |#1|))) #1#))) #1#) (-349 (-857 |#1|)) (-249 (-750 (-857 |#1|)))) 35 T ELT)) (-2273 (((-743 (-349 (-857 |#1|))) (-349 (-857 |#1|)) (-249 (-349 (-857 |#1|)))) 23 T ELT) (((-743 (-349 (-857 |#1|))) (-349 (-857 |#1|)) (-249 (-743 (-857 |#1|)))) 43 T ELT))) +(((-576 |#1|) (-10 -7 (-15 -2274 ((-3 (-750 (-349 (-857 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-750 (-349 (-857 |#1|))) #1="failed")) (|:| |rightHandLimit| (-3 (-750 (-349 (-857 |#1|))) #1#))) #1#) (-349 (-857 |#1|)) (-249 (-750 (-857 |#1|))))) (-15 -2274 ((-3 (-750 (-349 (-857 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-750 (-349 (-857 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-750 (-349 (-857 |#1|))) #1#))) #1#) (-349 (-857 |#1|)) (-249 (-349 (-857 |#1|))))) (-15 -2273 ((-743 (-349 (-857 |#1|))) (-349 (-857 |#1|)) (-249 (-743 (-857 |#1|))))) (-15 -2273 ((-743 (-349 (-857 |#1|))) (-349 (-857 |#1|)) (-249 (-349 (-857 |#1|))))) (-15 -2274 ((-3 (-750 (-349 (-857 |#1|))) #1#) (-349 (-857 |#1|)) (-249 (-349 (-857 |#1|))) (-1072)))) (-391)) (T -576)) +((-2274 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-249 (-349 (-857 *6)))) (-5 *5 (-1072)) (-5 *3 (-349 (-857 *6))) (-4 *6 (-391)) (-5 *2 (-750 *3)) (-5 *1 (-576 *6)))) (-2273 (*1 *2 *3 *4) (-12 (-5 *4 (-249 (-349 (-857 *5)))) (-5 *3 (-349 (-857 *5))) (-4 *5 (-391)) (-5 *2 (-743 *3)) (-5 *1 (-576 *5)))) (-2273 (*1 *2 *3 *4) (-12 (-5 *4 (-249 (-743 (-857 *5)))) (-4 *5 (-391)) (-5 *2 (-743 (-349 (-857 *5)))) (-5 *1 (-576 *5)) (-5 *3 (-349 (-857 *5))))) (-2274 (*1 *2 *3 *4) (-12 (-5 *4 (-249 (-349 (-857 *5)))) (-5 *3 (-349 (-857 *5))) (-4 *5 (-391)) (-5 *2 (-3 (-750 *3) (-2 (|:| |leftHandLimit| (-3 (-750 *3) #1="failed")) (|:| |rightHandLimit| (-3 (-750 *3) #1#))) #2="failed")) (-5 *1 (-576 *5)))) (-2274 (*1 *2 *3 *4) (-12 (-5 *4 (-249 (-750 (-857 *5)))) (-4 *5 (-391)) (-5 *2 (-3 (-750 (-349 (-857 *5))) (-2 (|:| |leftHandLimit| (-3 (-750 (-349 (-857 *5))) #1#)) (|:| |rightHandLimit| (-3 (-750 (-349 (-857 *5))) #1#))) #2#)) (-5 *1 (-576 *5)) (-5 *3 (-349 (-857 *5)))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3136 (((-694)) NIL T ELT)) (-2994 (($) NIL T ELT)) (-2531 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2857 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2010 (((-830) $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2400 (($ (-830)) 11 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2851 (($ (-168 |#1|)) 12 T ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-773 |#1|)) 7 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT))) +(((-577 |#1|) (-13 (-752) (-555 (-773 |#1|)) (-10 -8 (-15 -2851 ($ (-168 |#1|))))) (-583 (-1089))) (T -577)) +((-2851 (*1 *1 *2) (-12 (-5 *2 (-168 *3)) (-14 *3 (-583 (-1089))) (-5 *1 (-577 *3))))) +((-2277 (((-3 (-1178 (-349 |#1|)) #1="failed") (-1178 |#2|) |#2|) 64 (-2560 (|has| |#1| (-312))) ELT) (((-3 (-1178 |#1|) #1#) (-1178 |#2|) |#2|) 49 (|has| |#1| (-312)) ELT)) (-2275 (((-85) (-1178 |#2|)) 33 T ELT)) (-2276 (((-3 (-1178 |#1|) #1#) (-1178 |#2|)) 40 T ELT))) +(((-578 |#1| |#2|) (-10 -7 (-15 -2275 ((-85) (-1178 |#2|))) (-15 -2276 ((-3 (-1178 |#1|) #1="failed") (-1178 |#2|))) (IF (|has| |#1| (-312)) (-15 -2277 ((-3 (-1178 |#1|) #1#) (-1178 |#2|) |#2|)) (-15 -2277 ((-3 (-1178 (-349 |#1|)) #1#) (-1178 |#2|) |#2|)))) (-495) (-13 (-961) (-580 |#1|))) (T -578)) +((-2277 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1178 *4)) (-4 *4 (-13 (-961) (-580 *5))) (-2560 (-4 *5 (-312))) (-4 *5 (-495)) (-5 *2 (-1178 (-349 *5))) (-5 *1 (-578 *5 *4)))) (-2277 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1178 *4)) (-4 *4 (-13 (-961) (-580 *5))) (-4 *5 (-312)) (-4 *5 (-495)) (-5 *2 (-1178 *5)) (-5 *1 (-578 *5 *4)))) (-2276 (*1 *2 *3) (|partial| -12 (-5 *3 (-1178 *5)) (-4 *5 (-13 (-961) (-580 *4))) (-4 *4 (-495)) (-5 *2 (-1178 *4)) (-5 *1 (-578 *4 *5)))) (-2275 (*1 *2 *3) (-12 (-5 *3 (-1178 *5)) (-4 *5 (-13 (-961) (-580 *4))) (-4 *4 (-495)) (-5 *2 (-85)) (-5 *1 (-578 *4 *5))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-3773 (((-583 (-453 |#1| (-577 |#2|))) $) NIL T ELT)) (-1311 (((-3 $ "failed") $ $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-3958 (($ $) NIL T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2893 (($ |#1| (-577 |#2|)) NIL T ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2278 (($ (-583 |#1|)) 25 T ELT)) (-1983 (((-577 |#2|) $) NIL T ELT)) (-3174 ((|#1| $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3910 (((-107)) 16 T ELT)) (-3224 (((-1178 |#1|) $) 44 T ELT)) (-3971 (($ (-583 (-453 |#1| (-577 |#2|)))) NIL T ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-577 |#2|)) 11 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2660 (($) 20 T CONST)) (-3056 (((-85) $ $) NIL T ELT)) (-3948 (($ $ |#1|) NIL T ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) 17 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) +(((-579 |#1| |#2|) (-13 (-1186 |#1|) (-555 (-577 |#2|)) (-449 |#1| (-577 |#2|)) (-10 -8 (-15 -2278 ($ (-583 |#1|))) (-15 -3224 ((-1178 |#1|) $)))) (-312) (-583 (-1089))) (T -579)) +((-2278 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-312)) (-5 *1 (-579 *3 *4)) (-14 *4 (-583 (-1089))))) (-3224 (*1 *2 *1) (-12 (-5 *2 (-1178 *3)) (-5 *1 (-579 *3 *4)) (-4 *3 (-312)) (-14 *4 (-583 (-1089)))))) +((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3723 (($) 23 T CONST)) (-2279 (((-630 |#1|) (-630 $)) 36 T ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1178 |#1|))) (-630 $) (-1178 $)) 35 T ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2280 (((-630 |#1|) (-1178 $)) 38 T ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1178 |#1|))) (-1178 $) $) 37 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3945 (((-772) $) 13 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-2660 (($) 24 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ |#1| $) 33 T ELT))) +(((-580 |#1|) (-113) (-961)) (T -580)) +((-2280 (*1 *2 *3) (-12 (-5 *3 (-1178 *1)) (-4 *1 (-580 *4)) (-4 *4 (-961)) (-5 *2 (-630 *4)))) (-2280 (*1 *2 *3 *1) (-12 (-5 *3 (-1178 *1)) (-4 *1 (-580 *4)) (-4 *4 (-961)) (-5 *2 (-2 (|:| |mat| (-630 *4)) (|:| |vec| (-1178 *4)))))) (-2279 (*1 *2 *3) (-12 (-5 *3 (-630 *1)) (-4 *1 (-580 *4)) (-4 *4 (-961)) (-5 *2 (-630 *4)))) (-2279 (*1 *2 *3 *4) (-12 (-5 *3 (-630 *1)) (-5 *4 (-1178 *1)) (-4 *1 (-580 *5)) (-4 *5 (-961)) (-5 *2 (-2 (|:| |mat| (-630 *5)) (|:| |vec| (-1178 *5))))))) +(-13 (-590 |t#1|) (-10 -8 (-15 -2280 ((-630 |t#1|) (-1178 $))) (-15 -2280 ((-2 (|:| |mat| (-630 |t#1|)) (|:| |vec| (-1178 |t#1|))) (-1178 $) $)) (-15 -2279 ((-630 |t#1|) (-630 $))) (-15 -2279 ((-2 (|:| |mat| (-630 |t#1|)) (|:| |vec| (-1178 |t#1|))) (-630 $) (-1178 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-590 |#1|) . T) ((-1013) . T) ((-1128) . T)) +((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-1311 (((-3 $ "failed") $ $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-1213 (((-85) $ $) NIL T ELT)) (-2281 (($ (-583 |#1|)) 23 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3799 ((|#1| $ (-579 |#1| |#2|)) 46 T ELT)) (-3910 (((-107)) 13 T ELT)) (-3224 (((-1178 |#1|) $) 42 T ELT)) (-3945 (((-772) $) NIL T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2660 (($) 18 T CONST)) (-3056 (((-85) $ $) NIL T ELT)) (-3948 (($ $ |#1|) NIL T ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) 14 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) +(((-581 |#1| |#2|) (-13 (-1186 |#1|) (-241 (-579 |#1| |#2|) |#1|) (-10 -8 (-15 -2281 ($ (-583 |#1|))) (-15 -3224 ((-1178 |#1|) $)))) (-312) (-583 (-1089))) (T -581)) +((-2281 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-312)) (-5 *1 (-581 *3 *4)) (-14 *4 (-583 (-1089))))) (-3224 (*1 *2 *1) (-12 (-5 *2 (-1178 *3)) (-5 *1 (-581 *3 *4)) (-4 *3 (-312)) (-14 *4 (-583 (-1089)))))) +((-2568 (((-85) $ $) 7 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3945 (((-772) $) 13 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (* (($ |#1| $) 17 T ELT) (($ $ |#1|) 20 T ELT))) +(((-582 |#1|) (-113) (-1025)) (T -582)) +NIL +(-13 (-588 |t#1|) (-963 |t#1|)) +(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 |#1|) . T) ((-963 |#1|) . T) ((-1013) . T) ((-1128) . T)) +((-2568 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3401 ((|#1| $) NIL T ELT)) (-3794 ((|#1| $) NIL T ELT)) (-3796 (($ $) NIL T ELT)) (-2198 (((-1184) $ (-484) (-484)) NIL (|has| $ (-6 -3995)) ELT)) (-3784 (($ $ (-484)) 68 (|has| $ (-6 -3995)) ELT)) (-1731 (((-85) $) NIL (|has| |#1| (-756)) ELT) (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT)) (-1729 (($ $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-756))) ELT) (($ (-1 (-85) |#1| |#1|) $) 65 (|has| $ (-6 -3995)) ELT)) (-2909 (($ $) NIL (|has| |#1| (-756)) ELT) (($ (-1 (-85) |#1| |#1|) $) NIL T ELT)) (-3441 (((-85) $ (-694)) NIL T ELT)) (-3025 ((|#1| $ |#1|) NIL (|has| $ (-6 -3995)) ELT)) (-3786 (($ $ $) 26 (|has| $ (-6 -3995)) ELT)) (-3785 ((|#1| $ |#1|) NIL (|has| $ (-6 -3995)) ELT)) (-3788 ((|#1| $ |#1|) 24 (|has| $ (-6 -3995)) ELT)) (-3787 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3995)) ELT) ((|#1| $ #2="first" |#1|) 25 (|has| $ (-6 -3995)) ELT) (($ $ #3="rest" $) 27 (|has| $ (-6 -3995)) ELT) ((|#1| $ #4="last" |#1|) NIL (|has| $ (-6 -3995)) ELT) ((|#1| $ (-1145 (-484)) |#1|) NIL (|has| $ (-6 -3995)) ELT) ((|#1| $ (-484) |#1|) NIL (|has| $ (-6 -3995)) ELT)) (-3026 (($ $ (-583 $)) NIL (|has| $ (-6 -3995)) ELT)) (-2284 (($ $ $) 74 (|has| |#1| (-1013)) ELT)) (-2283 (($ $ $) 75 (|has| |#1| (-1013)) ELT)) (-2282 (($ $ $) 79 (|has| |#1| (-1013)) ELT)) (-1569 (($ (-1 (-85) |#1|) $) NIL T ELT)) (-3709 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3795 ((|#1| $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-2297 (($ $) 31 (|has| $ (-6 -3995)) ELT)) (-2298 (($ $) 32 T ELT)) (-3798 (($ $) 21 T ELT) (($ $ (-694)) 35 T ELT)) (-2368 (($ $) 63 (|has| |#1| (-1013)) ELT)) (-1352 (($ $) 73 (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-3404 (($ |#1| $) NIL (|has| |#1| (-1013)) ELT) (($ (-1 (-85) |#1|) $) NIL T ELT)) (-3405 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT) (($ |#1| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-3841 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3994)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3994)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-1575 ((|#1| $ (-484) |#1|) NIL (|has| $ (-6 -3995)) ELT)) (-3112 ((|#1| $ (-484)) NIL T ELT)) (-3442 (((-85) $) NIL T ELT)) (-3418 (((-484) |#1| $ (-484)) NIL (|has| |#1| (-1013)) ELT) (((-484) |#1| $) NIL (|has| |#1| (-1013)) ELT) (((-484) (-1 (-85) |#1|) $) NIL T ELT)) (-2889 (((-583 |#1|) $) 30 (|has| $ (-6 -3994)) ELT)) (-2286 (((-85) $) 9 T ELT)) (-3031 (((-583 $) $) NIL T ELT)) (-3027 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-2287 (($) 7 T CONST)) (-3613 (($ (-694) |#1|) NIL T ELT)) (-3718 (((-85) $ (-694)) NIL T ELT)) (-2200 (((-484) $) 34 (|has| (-484) (-756)) ELT)) (-2531 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2856 (($ $ $) NIL (|has| |#1| (-756)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) 66 T ELT)) (-3517 (($ $ $) NIL (|has| |#1| (-756)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT)) (-2608 (((-583 |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3245 (((-85) |#1| $) 61 (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-2201 (((-484) $) NIL (|has| (-484) (-756)) ELT)) (-2857 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-1948 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3533 (($ |#1|) NIL T ELT)) (-3715 (((-85) $ (-694)) NIL T ELT)) (-3030 (((-583 |#1|) $) NIL T ELT)) (-3526 (((-85) $) NIL T ELT)) (-3242 (((-1072) $) 59 (|has| |#1| (-1013)) ELT)) (-3797 ((|#1| $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-3608 (($ $ $ (-484)) NIL T ELT) (($ |#1| $ (-484)) NIL T ELT)) (-2304 (($ $ $ (-484)) NIL T ELT) (($ |#1| $ (-484)) NIL T ELT)) (-2203 (((-583 (-484)) $) NIL T ELT)) (-2204 (((-85) (-484) $) NIL T ELT)) (-3243 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-3800 ((|#1| $) 16 T ELT) (($ $ (-694)) NIL T ELT)) (-1353 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2199 (($ $ |#1|) NIL (|has| $ (-6 -3995)) ELT)) (-3443 (((-85) $) NIL T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3767 (($ $ (-583 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1221 (((-85) $ $) 15 T ELT)) (-2202 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-2205 (((-583 |#1|) $) NIL T ELT)) (-3402 (((-85) $) 20 T ELT)) (-3564 (($) 19 T ELT)) (-3799 ((|#1| $ #1#) NIL T ELT) ((|#1| $ #2#) 18 T ELT) (($ $ #3#) 23 T ELT) ((|#1| $ #4#) NIL T ELT) (($ $ (-1145 (-484))) NIL T ELT) ((|#1| $ (-484)) 78 T ELT) ((|#1| $ (-484) |#1|) NIL T ELT)) (-3029 (((-484) $ $) NIL T ELT)) (-1570 (($ $ (-1145 (-484))) NIL T ELT) (($ $ (-484)) NIL T ELT)) (-2305 (($ $ (-1145 (-484))) NIL T ELT) (($ $ (-484)) NIL T ELT)) (-3632 (((-85) $) NIL T ELT)) (-3791 (($ $) NIL T ELT)) (-3789 (($ $) NIL (|has| $ (-6 -3995)) ELT)) (-3792 (((-694) $) NIL T ELT)) (-3793 (($ $) 40 T ELT)) (-1945 (((-694) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT) (((-694) |#1| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-1730 (($ $ $ (-484)) NIL (|has| $ (-6 -3995)) ELT)) (-3399 (($ $) 36 T ELT)) (-3971 (((-473) $) 87 (|has| |#1| (-553 (-473))) ELT)) (-3529 (($ (-583 |#1|)) 29 T ELT)) (-3460 (($ |#1| $) 10 T ELT)) (-3790 (($ $ $) 62 T ELT) (($ $ |#1|) NIL T ELT)) (-3801 (($ $ $) 72 T ELT) (($ |#1| $) 14 T ELT) (($ (-583 $)) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3945 (((-772) $) 51 (|has| |#1| (-552 (-772))) ELT)) (-3521 (((-583 $) $) NIL T ELT)) (-3028 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-1264 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2285 (($ $ $) 11 T ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-2566 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2567 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3056 (((-85) $ $) 55 (|has| |#1| (-72)) ELT)) (-2684 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2685 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3956 (((-694) $) 13 (|has| $ (-6 -3994)) ELT))) +(((-583 |#1|) (-13 (-608 |#1|) (-10 -8 (-15 -2287 ($) -3951) (-15 -2286 ((-85) $)) (-15 -3460 ($ |#1| $)) (-15 -2285 ($ $ $)) (IF (|has| |#1| (-1013)) (PROGN (-15 -2284 ($ $ $)) (-15 -2283 ($ $ $)) (-15 -2282 ($ $ $))) |%noBranch|))) (-1128)) (T -583)) +((-2287 (*1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1128)))) (-2286 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-583 *3)) (-4 *3 (-1128)))) (-3460 (*1 *1 *2 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1128)))) (-2285 (*1 *1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1128)))) (-2284 (*1 *1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1013)) (-4 *2 (-1128)))) (-2283 (*1 *1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1013)) (-4 *2 (-1128)))) (-2282 (*1 *1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1013)) (-4 *2 (-1128))))) +((-3840 (((-583 |#2|) (-1 |#2| |#1| |#2|) (-583 |#1|) |#2|) 16 T ELT)) (-3841 ((|#2| (-1 |#2| |#1| |#2|) (-583 |#1|) |#2|) 18 T ELT)) (-3957 (((-583 |#2|) (-1 |#2| |#1|) (-583 |#1|)) 13 T ELT))) +(((-584 |#1| |#2|) (-10 -7 (-15 -3840 ((-583 |#2|) (-1 |#2| |#1| |#2|) (-583 |#1|) |#2|)) (-15 -3841 (|#2| (-1 |#2| |#1| |#2|) (-583 |#1|) |#2|)) (-15 -3957 ((-583 |#2|) (-1 |#2| |#1|) (-583 |#1|)))) (-1128) (-1128)) (T -584)) +((-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-583 *5)) (-4 *5 (-1128)) (-4 *6 (-1128)) (-5 *2 (-583 *6)) (-5 *1 (-584 *5 *6)))) (-3841 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-583 *5)) (-4 *5 (-1128)) (-4 *2 (-1128)) (-5 *1 (-584 *5 *2)))) (-3840 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-583 *6)) (-4 *6 (-1128)) (-4 *5 (-1128)) (-5 *2 (-583 *5)) (-5 *1 (-584 *6 *5))))) +((-3421 ((|#2| (-583 |#1|) (-583 |#2|) |#1| (-1 |#2| |#1|)) 18 T ELT) (((-1 |#2| |#1|) (-583 |#1|) (-583 |#2|) (-1 |#2| |#1|)) 19 T ELT) ((|#2| (-583 |#1|) (-583 |#2|) |#1| |#2|) 16 T ELT) (((-1 |#2| |#1|) (-583 |#1|) (-583 |#2|) |#2|) 17 T ELT) ((|#2| (-583 |#1|) (-583 |#2|) |#1|) 10 T ELT) (((-1 |#2| |#1|) (-583 |#1|) (-583 |#2|)) 12 T ELT))) +(((-585 |#1| |#2|) (-10 -7 (-15 -3421 ((-1 |#2| |#1|) (-583 |#1|) (-583 |#2|))) (-15 -3421 (|#2| (-583 |#1|) (-583 |#2|) |#1|)) (-15 -3421 ((-1 |#2| |#1|) (-583 |#1|) (-583 |#2|) |#2|)) (-15 -3421 (|#2| (-583 |#1|) (-583 |#2|) |#1| |#2|)) (-15 -3421 ((-1 |#2| |#1|) (-583 |#1|) (-583 |#2|) (-1 |#2| |#1|))) (-15 -3421 (|#2| (-583 |#1|) (-583 |#2|) |#1| (-1 |#2| |#1|)))) (-1013) (-1128)) (T -585)) +((-3421 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1013)) (-4 *2 (-1128)) (-5 *1 (-585 *5 *2)))) (-3421 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-583 *5)) (-5 *4 (-583 *6)) (-4 *5 (-1013)) (-4 *6 (-1128)) (-5 *1 (-585 *5 *6)))) (-3421 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 *2)) (-4 *5 (-1013)) (-4 *2 (-1128)) (-5 *1 (-585 *5 *2)))) (-3421 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 *6)) (-5 *4 (-583 *5)) (-4 *6 (-1013)) (-4 *5 (-1128)) (-5 *2 (-1 *5 *6)) (-5 *1 (-585 *6 *5)))) (-3421 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 *2)) (-4 *5 (-1013)) (-4 *2 (-1128)) (-5 *1 (-585 *5 *2)))) (-3421 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 *6)) (-4 *5 (-1013)) (-4 *6 (-1128)) (-5 *2 (-1 *6 *5)) (-5 *1 (-585 *5 *6))))) +((-3957 (((-583 |#3|) (-1 |#3| |#1| |#2|) (-583 |#1|) (-583 |#2|)) 21 T ELT))) +(((-586 |#1| |#2| |#3|) (-10 -7 (-15 -3957 ((-583 |#3|) (-1 |#3| |#1| |#2|) (-583 |#1|) (-583 |#2|)))) (-1128) (-1128) (-1128)) (T -586)) +((-3957 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-583 *6)) (-5 *5 (-583 *7)) (-4 *6 (-1128)) (-4 *7 (-1128)) (-4 *8 (-1128)) (-5 *2 (-583 *8)) (-5 *1 (-586 *6 *7 *8))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) 11 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT) ((|#1| $) 8 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT))) +(((-587 |#1|) (-13 (-995) (-552 |#1|)) (-1013)) (T -587)) +NIL +((-2568 (((-85) $ $) 7 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3945 (((-772) $) 13 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (* (($ |#1| $) 17 T ELT))) +(((-588 |#1|) (-113) (-1025)) (T -588)) +((* (*1 *1 *2 *1) (-12 (-4 *1 (-588 *2)) (-4 *2 (-1025))))) +(-13 (-1013) (-10 -8 (-15 * ($ |t#1| $)))) +(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-1013) . T) ((-1128) . T)) +((-2568 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2288 (($ |#1| |#1| $) 45 T ELT)) (-1569 (($ (-1 (-85) |#1|) $) 61 (|has| $ (-6 -3994)) ELT)) (-3709 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3723 (($) NIL T CONST)) (-2368 (($ $) 47 T ELT)) (-1352 (($ $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-3404 (($ |#1| $) 58 (|has| $ (-6 -3994)) ELT) (($ (-1 (-85) |#1|) $) 60 (|has| $ (-6 -3994)) ELT)) (-3405 (($ |#1| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3841 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3994)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-2889 (((-583 |#1|) $) 9 (|has| $ (-6 -3994)) ELT)) (-2608 (((-583 |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3245 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-1948 (($ (-1 |#1| |#1|) $) 41 (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) 39 T ELT)) (-3242 (((-1072) $) NIL (|has| |#1| (-1013)) ELT)) (-1273 ((|#1| $) 49 T ELT)) (-3608 (($ |#1| $) 30 T ELT) (($ |#1| $ (-694)) 44 T ELT)) (-3243 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-1353 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-1274 ((|#1| $) 52 T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3767 (($ $ (-583 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1221 (((-85) $ $) NIL T ELT)) (-3402 (((-85) $) 23 T ELT)) (-3564 (($) 29 T ELT)) (-2289 (((-85) $) 56 T ELT)) (-2367 (((-583 (-2 (|:| |entry| |#1|) (|:| -1945 (-694)))) $) 69 T ELT)) (-1465 (($) 26 T ELT) (($ (-583 |#1|)) 19 T ELT)) (-1945 (((-694) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT) (((-694) |#1| $) 65 (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-3399 (($ $) 20 T ELT)) (-3971 (((-473) $) 36 (|has| |#1| (-553 (-473))) ELT)) (-3529 (($ (-583 |#1|)) NIL T ELT)) (-3945 (((-772) $) 14 (|has| |#1| (-552 (-772))) ELT)) (-1264 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1275 (($ (-583 |#1|)) 24 T ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3056 (((-85) $ $) 71 (|has| |#1| (-72)) ELT)) (-3956 (((-694) $) 17 (|has| $ (-6 -3994)) ELT))) +(((-589 |#1|) (-13 (-634 |#1|) (-10 -8 (-6 -3994) (-15 -2289 ((-85) $)) (-15 -2288 ($ |#1| |#1| $)))) (-1013)) (T -589)) +((-2289 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-589 *3)) (-4 *3 (-1013)))) (-2288 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-589 *2)) (-4 *2 (-1013))))) +((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3723 (($) 23 T CONST)) (-1213 (((-85) $ $) 20 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3945 (((-772) $) 13 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-2660 (($) 24 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ |#1| $) 33 T ELT))) +(((-590 |#1|) (-113) (-970)) (T -590)) +NIL +(-13 (-21) (-588 |t#1|)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-1013) . T) ((-1128) . T)) +((-2568 (((-85) $ $) NIL T ELT)) (-3136 (((-694) $) 17 T ELT)) (-2295 (($ $ |#1|) 68 T ELT)) (-2297 (($ $) 39 T ELT)) (-2298 (($ $) 37 T ELT)) (-3157 (((-3 |#1| "failed") $) 60 T ELT)) (-3156 ((|#1| $) NIL T ELT)) (-2293 (($ |#1| |#2| $) 77 T ELT) (($ $ $) 79 T ELT)) (-3532 (((-772) $ (-1 (-772) (-772) (-772)) (-1 (-772) (-772) (-772)) (-484)) 55 T ELT)) (-2299 ((|#1| $ (-484)) 35 T ELT)) (-2300 ((|#2| $ (-484)) 34 T ELT)) (-2290 (($ (-1 |#1| |#1|) $) 41 T ELT)) (-2291 (($ (-1 |#2| |#2|) $) 46 T ELT)) (-2296 (($) 13 T ELT)) (-2302 (($ |#1| |#2|) 24 T ELT)) (-2301 (($ (-583 (-2 (|:| |gen| |#1|) (|:| -3942 |#2|)))) 25 T ELT)) (-2303 (((-583 (-2 (|:| |gen| |#1|) (|:| -3942 |#2|))) $) 14 T ELT)) (-2294 (($ |#1| $) 69 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2292 (((-85) $ $) 74 T ELT)) (-3945 (((-772) $) 21 T ELT) (($ |#1|) 18 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 27 T ELT))) +(((-591 |#1| |#2| |#3|) (-13 (-1013) (-950 |#1|) (-10 -8 (-15 -3532 ((-772) $ (-1 (-772) (-772) (-772)) (-1 (-772) (-772) (-772)) (-484))) (-15 -2303 ((-583 (-2 (|:| |gen| |#1|) (|:| -3942 |#2|))) $)) (-15 -2302 ($ |#1| |#2|)) (-15 -2301 ($ (-583 (-2 (|:| |gen| |#1|) (|:| -3942 |#2|))))) (-15 -2300 (|#2| $ (-484))) (-15 -2299 (|#1| $ (-484))) (-15 -2298 ($ $)) (-15 -2297 ($ $)) (-15 -3136 ((-694) $)) (-15 -2296 ($)) (-15 -2295 ($ $ |#1|)) (-15 -2294 ($ |#1| $)) (-15 -2293 ($ |#1| |#2| $)) (-15 -2293 ($ $ $)) (-15 -2292 ((-85) $ $)) (-15 -2291 ($ (-1 |#2| |#2|) $)) (-15 -2290 ($ (-1 |#1| |#1|) $)))) (-1013) (-23) |#2|) (T -591)) +((-3532 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-772) (-772) (-772))) (-5 *4 (-484)) (-5 *2 (-772)) (-5 *1 (-591 *5 *6 *7)) (-4 *5 (-1013)) (-4 *6 (-23)) (-14 *7 *6))) (-2303 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -3942 *4)))) (-5 *1 (-591 *3 *4 *5)) (-4 *3 (-1013)) (-4 *4 (-23)) (-14 *5 *4))) (-2302 (*1 *1 *2 *3) (-12 (-5 *1 (-591 *2 *3 *4)) (-4 *2 (-1013)) (-4 *3 (-23)) (-14 *4 *3))) (-2301 (*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -3942 *4)))) (-4 *3 (-1013)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-591 *3 *4 *5)))) (-2300 (*1 *2 *1 *3) (-12 (-5 *3 (-484)) (-4 *2 (-23)) (-5 *1 (-591 *4 *2 *5)) (-4 *4 (-1013)) (-14 *5 *2))) (-2299 (*1 *2 *1 *3) (-12 (-5 *3 (-484)) (-4 *2 (-1013)) (-5 *1 (-591 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-2298 (*1 *1 *1) (-12 (-5 *1 (-591 *2 *3 *4)) (-4 *2 (-1013)) (-4 *3 (-23)) (-14 *4 *3))) (-2297 (*1 *1 *1) (-12 (-5 *1 (-591 *2 *3 *4)) (-4 *2 (-1013)) (-4 *3 (-23)) (-14 *4 *3))) (-3136 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-591 *3 *4 *5)) (-4 *3 (-1013)) (-4 *4 (-23)) (-14 *5 *4))) (-2296 (*1 *1) (-12 (-5 *1 (-591 *2 *3 *4)) (-4 *2 (-1013)) (-4 *3 (-23)) (-14 *4 *3))) (-2295 (*1 *1 *1 *2) (-12 (-5 *1 (-591 *2 *3 *4)) (-4 *2 (-1013)) (-4 *3 (-23)) (-14 *4 *3))) (-2294 (*1 *1 *2 *1) (-12 (-5 *1 (-591 *2 *3 *4)) (-4 *2 (-1013)) (-4 *3 (-23)) (-14 *4 *3))) (-2293 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-591 *2 *3 *4)) (-4 *2 (-1013)) (-4 *3 (-23)) (-14 *4 *3))) (-2293 (*1 *1 *1 *1) (-12 (-5 *1 (-591 *2 *3 *4)) (-4 *2 (-1013)) (-4 *3 (-23)) (-14 *4 *3))) (-2292 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-591 *3 *4 *5)) (-4 *3 (-1013)) (-4 *4 (-23)) (-14 *5 *4))) (-2291 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-591 *3 *4 *5)) (-4 *3 (-1013)))) (-2290 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1013)) (-5 *1 (-591 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4)))) +((-2201 (((-484) $) 30 T ELT)) (-2304 (($ |#2| $ (-484)) 26 T ELT) (($ $ $ (-484)) NIL T ELT)) (-2203 (((-583 (-484)) $) 12 T ELT)) (-2204 (((-85) (-484) $) 17 T ELT)) (-3801 (($ $ |#2|) 23 T ELT) (($ |#2| $) 24 T ELT) (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT))) +(((-592 |#1| |#2|) (-10 -7 (-15 -2304 (|#1| |#1| |#1| (-484))) (-15 -2304 (|#1| |#2| |#1| (-484))) (-15 -3801 (|#1| (-583 |#1|))) (-15 -3801 (|#1| |#1| |#1|)) (-15 -3801 (|#1| |#2| |#1|)) (-15 -3801 (|#1| |#1| |#2|)) (-15 -2201 ((-484) |#1|)) (-15 -2203 ((-583 (-484)) |#1|)) (-15 -2204 ((-85) (-484) |#1|))) (-593 |#2|) (-1128)) (T -592)) +NIL +((-2568 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-2198 (((-1184) $ (-484) (-484)) 44 (|has| $ (-6 -3995)) ELT)) (-3787 ((|#1| $ (-484) |#1|) 56 (|has| $ (-6 -3995)) ELT) ((|#1| $ (-1145 (-484)) |#1|) 64 (|has| $ (-6 -3995)) ELT)) (-3709 (($ (-1 (-85) |#1|) $) 81 (|has| $ (-6 -3994)) ELT)) (-3723 (($) 7 T CONST)) (-1352 (($ $) 84 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-3405 (($ |#1| $) 83 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT) (($ (-1 (-85) |#1|) $) 80 (|has| $ (-6 -3994)) ELT)) (-3841 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -3994)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -3994)) ELT)) (-1575 ((|#1| $ (-484) |#1|) 57 (|has| $ (-6 -3995)) ELT)) (-3112 ((|#1| $ (-484)) 55 T ELT)) (-2889 (((-583 |#1|) $) 30 (|has| $ (-6 -3994)) ELT)) (-3613 (($ (-694) |#1|) 74 T ELT)) (-2200 (((-484) $) 47 (|has| (-484) (-756)) ELT)) (-2608 (((-583 |#1|) $) 29 (|has| $ (-6 -3994)) ELT)) (-3245 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-2201 (((-484) $) 48 (|has| (-484) (-756)) ELT)) (-1948 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-3242 (((-1072) $) 22 (|has| |#1| (-1013)) ELT)) (-2304 (($ |#1| $ (-484)) 66 T ELT) (($ $ $ (-484)) 65 T ELT)) (-2203 (((-583 (-484)) $) 50 T ELT)) (-2204 (((-85) (-484) $) 51 T ELT)) (-3243 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-3800 ((|#1| $) 46 (|has| (-484) (-756)) ELT)) (-1353 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 77 T ELT)) (-2199 (($ $ |#1|) 45 (|has| $ (-6 -3995)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3994)) ELT)) (-3767 (($ $ (-583 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1221 (((-85) $ $) 11 T ELT)) (-2202 (((-85) |#1| $) 49 (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-2205 (((-583 |#1|) $) 52 T ELT)) (-3402 (((-85) $) 8 T ELT)) (-3564 (($) 9 T ELT)) (-3799 ((|#1| $ (-484) |#1|) 54 T ELT) ((|#1| $ (-484)) 53 T ELT) (($ $ (-1145 (-484))) 75 T ELT)) (-2305 (($ $ (-484)) 68 T ELT) (($ $ (-1145 (-484))) 67 T ELT)) (-1945 (((-694) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3994)) ELT) (((-694) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-3399 (($ $) 10 T ELT)) (-3971 (((-473) $) 85 (|has| |#1| (-553 (-473))) ELT)) (-3529 (($ (-583 |#1|)) 76 T ELT)) (-3801 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-583 $)) 70 T ELT)) (-3945 (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-1264 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3994)) ELT)) (-3056 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3956 (((-694) $) 6 (|has| $ (-6 -3994)) ELT))) +(((-593 |#1|) (-113) (-1128)) (T -593)) +((-3613 (*1 *1 *2 *3) (-12 (-5 *2 (-694)) (-4 *1 (-593 *3)) (-4 *3 (-1128)))) (-3801 (*1 *1 *1 *2) (-12 (-4 *1 (-593 *2)) (-4 *2 (-1128)))) (-3801 (*1 *1 *2 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-1128)))) (-3801 (*1 *1 *1 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-1128)))) (-3801 (*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-593 *3)) (-4 *3 (-1128)))) (-3957 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-593 *3)) (-4 *3 (-1128)))) (-2305 (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-4 *1 (-593 *3)) (-4 *3 (-1128)))) (-2305 (*1 *1 *1 *2) (-12 (-5 *2 (-1145 (-484))) (-4 *1 (-593 *3)) (-4 *3 (-1128)))) (-2304 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-484)) (-4 *1 (-593 *2)) (-4 *2 (-1128)))) (-2304 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-484)) (-4 *1 (-593 *3)) (-4 *3 (-1128)))) (-3787 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1145 (-484))) (|has| *1 (-6 -3995)) (-4 *1 (-593 *2)) (-4 *2 (-1128))))) +(-13 (-538 (-484) |t#1|) (-124 |t#1|) (-241 (-1145 (-484)) $) (-10 -8 (-15 -3613 ($ (-694) |t#1|)) (-15 -3801 ($ $ |t#1|)) (-15 -3801 ($ |t#1| $)) (-15 -3801 ($ $ $)) (-15 -3801 ($ (-583 $))) (-15 -3957 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -2305 ($ $ (-484))) (-15 -2305 ($ $ (-1145 (-484)))) (-15 -2304 ($ |t#1| $ (-484))) (-15 -2304 ($ $ $ (-484))) (IF (|has| $ (-6 -3995)) (-15 -3787 (|t#1| $ (-1145 (-484)) |t#1|)) |%noBranch|))) +(((-34) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1013)) (|has| |#1| (-552 (-772)))) ((-124 |#1|) . T) ((-553 (-473)) |has| |#1| (-553 (-473))) ((-241 (-484) |#1|) . T) ((-241 (-1145 (-484)) $) . T) ((-243 (-484) |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-428 |#1|) . T) ((-538 (-484) |#1|) . T) ((-455 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-1013) |has| |#1| (-1013)) ((-1128) . T)) +((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) 15 T ELT)) (-1311 (((-3 $ "failed") $ $) NIL T ELT)) (-3622 (((-484) $) NIL (|has| |#1| (-714)) ELT)) (-3723 (($) NIL T CONST)) (-3186 (((-85) $) NIL (|has| |#1| (-714)) ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2998 ((|#1| $) 23 T ELT)) (-3187 (((-85) $) NIL (|has| |#1| (-714)) ELT)) (-2531 (($ $ $) NIL (|has| |#1| (-714)) ELT)) (-2857 (($ $ $) NIL (|has| |#1| (-714)) ELT)) (-3242 (((-1072) $) 48 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2997 ((|#3| $) 24 T ELT)) (-3945 (((-772) $) 43 T ELT)) (-1264 (((-85) $ $) 22 T ELT)) (-3382 (($ $) NIL (|has| |#1| (-714)) ELT)) (-2660 (($) 10 T CONST)) (-2566 (((-85) $ $) NIL (|has| |#1| (-714)) ELT)) (-2567 (((-85) $ $) NIL (|has| |#1| (-714)) ELT)) (-3056 (((-85) $ $) 20 T ELT)) (-2684 (((-85) $ $) NIL (|has| |#1| (-714)) ELT)) (-2685 (((-85) $ $) 26 (|has| |#1| (-714)) ELT)) (-3948 (($ $ |#3|) 36 T ELT) (($ |#1| |#3|) 37 T ELT)) (-3836 (($ $) 17 T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) 29 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 32 T ELT) (($ |#2| $) 34 T ELT) (($ $ |#2|) NIL T ELT))) +(((-594 |#1| |#2| |#3|) (-13 (-654 |#2|) (-10 -8 (IF (|has| |#1| (-714)) (-6 (-714)) |%noBranch|) (-15 -3948 ($ $ |#3|)) (-15 -3948 ($ |#1| |#3|)) (-15 -2998 (|#1| $)) (-15 -2997 (|#3| $)))) (-654 |#2|) (-146) (|SubsetCategory| (-663) |#2|)) (T -594)) +((-3948 (*1 *1 *1 *2) (-12 (-4 *4 (-146)) (-5 *1 (-594 *3 *4 *2)) (-4 *3 (-654 *4)) (-4 *2 (|SubsetCategory| (-663) *4)))) (-3948 (*1 *1 *2 *3) (-12 (-4 *4 (-146)) (-5 *1 (-594 *2 *4 *3)) (-4 *2 (-654 *4)) (-4 *3 (|SubsetCategory| (-663) *4)))) (-2998 (*1 *2 *1) (-12 (-4 *3 (-146)) (-4 *2 (-654 *3)) (-5 *1 (-594 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-663) *3)))) (-2997 (*1 *2 *1) (-12 (-4 *4 (-146)) (-4 *2 (|SubsetCategory| (-663) *4)) (-5 *1 (-594 *3 *4 *2)) (-4 *3 (-654 *4))))) +((-3572 (((-3 |#2| #1="failed") |#3| |#2| (-1089) |#2| (-583 |#2|)) 174 T ELT) (((-3 (-2 (|:| |particular| |#2|) (|:| -2012 (-583 |#2|))) #1#) |#3| |#2| (-1089)) 44 T ELT))) +(((-595 |#1| |#2| |#3|) (-10 -7 (-15 -3572 ((-3 (-2 (|:| |particular| |#2|) (|:| -2012 (-583 |#2|))) #1="failed") |#3| |#2| (-1089))) (-15 -3572 ((-3 |#2| #1#) |#3| |#2| (-1089) |#2| (-583 |#2|)))) (-13 (-258) (-950 (-484)) (-580 (-484)) (-120)) (-13 (-29 |#1|) (-1114) (-871)) (-600 |#2|)) (T -595)) +((-3572 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1089)) (-5 *5 (-583 *2)) (-4 *2 (-13 (-29 *6) (-1114) (-871))) (-4 *6 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120))) (-5 *1 (-595 *6 *2 *3)) (-4 *3 (-600 *2)))) (-3572 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1089)) (-4 *6 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120))) (-4 *4 (-13 (-29 *6) (-1114) (-871))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2012 (-583 *4)))) (-5 *1 (-595 *6 *4 *3)) (-4 *3 (-600 *4))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-2306 (($ $) NIL (|has| |#1| (-312)) ELT)) (-2308 (($ $ $) 28 (|has| |#1| (-312)) ELT)) (-2309 (($ $ (-694)) 31 (|has| |#1| (-312)) ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-2536 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2537 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2538 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2534 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2533 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-2535 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-2549 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3157 (((-3 (-484) #1#) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-3 (-349 (-484)) #1#) $) NIL (|has| |#1| (-950 (-349 (-484)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3156 (((-484) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-349 (-484)) $) NIL (|has| |#1| (-950 (-349 (-484)))) ELT) ((|#1| $) NIL T ELT)) (-3958 (($ $) NIL T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-3502 (($ $) NIL (|has| |#1| (-391)) ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2893 (($ |#1| (-694)) NIL T ELT)) (-2547 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL (|has| |#1| (-495)) ELT)) (-2546 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL (|has| |#1| (-495)) ELT)) (-2820 (((-694) $) NIL T ELT)) (-2542 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2543 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2532 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2540 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2539 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-2541 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-2548 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3174 ((|#1| $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3465 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-495)) ELT)) (-3799 ((|#1| $ |#1|) 24 T ELT)) (-2310 (($ $ $) 33 (|has| |#1| (-312)) ELT)) (-3947 (((-694) $) NIL T ELT)) (-2817 ((|#1| $) NIL (|has| |#1| (-391)) ELT)) (-3945 (((-772) $) 20 T ELT) (($ (-484)) NIL T ELT) (($ (-349 (-484))) NIL (|has| |#1| (-950 (-349 (-484)))) ELT) (($ |#1|) NIL T ELT)) (-3816 (((-583 |#1|) $) NIL T ELT)) (-3676 ((|#1| $ (-694)) NIL T ELT)) (-3126 (((-694)) NIL T CONST)) (-1264 (((-85) $ $) NIL T ELT)) (-2545 ((|#1| $ |#1| |#1|) 23 T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2520 (($ $) NIL T ELT)) (-2660 (($) 21 T CONST)) (-2666 (($) 8 T CONST)) (-2669 (($) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-596 |#1| |#2|) (-600 |#1|) (-961) (-1 |#1| |#1|)) (T -596)) +NIL +((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-2306 (($ $) NIL (|has| |#1| (-312)) ELT)) (-2308 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2309 (($ $ (-694)) NIL (|has| |#1| (-312)) ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-2536 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2537 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2538 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2534 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2533 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-2535 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-2549 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3157 (((-3 (-484) #1#) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-3 (-349 (-484)) #1#) $) NIL (|has| |#1| (-950 (-349 (-484)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3156 (((-484) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-349 (-484)) $) NIL (|has| |#1| (-950 (-349 (-484)))) ELT) ((|#1| $) NIL T ELT)) (-3958 (($ $) NIL T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-3502 (($ $) NIL (|has| |#1| (-391)) ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2893 (($ |#1| (-694)) NIL T ELT)) (-2547 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL (|has| |#1| (-495)) ELT)) (-2546 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL (|has| |#1| (-495)) ELT)) (-2820 (((-694) $) NIL T ELT)) (-2542 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2543 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2532 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2540 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2539 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-2541 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-2548 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3174 ((|#1| $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3465 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-495)) ELT)) (-3799 ((|#1| $ |#1|) NIL T ELT)) (-2310 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3947 (((-694) $) NIL T ELT)) (-2817 ((|#1| $) NIL (|has| |#1| (-391)) ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ (-349 (-484))) NIL (|has| |#1| (-950 (-349 (-484)))) ELT) (($ |#1|) NIL T ELT)) (-3816 (((-583 |#1|) $) NIL T ELT)) (-3676 ((|#1| $ (-694)) NIL T ELT)) (-3126 (((-694)) NIL T CONST)) (-1264 (((-85) $ $) NIL T ELT)) (-2545 ((|#1| $ |#1| |#1|) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2520 (($ $) NIL T ELT)) (-2660 (($) NIL T CONST)) (-2666 (($) NIL T CONST)) (-2669 (($) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-597 |#1|) (-600 |#1|) (-190)) (T -597)) +NIL +((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-2306 (($ $) NIL (|has| |#1| (-312)) ELT)) (-2308 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2309 (($ $ (-694)) NIL (|has| |#1| (-312)) ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-2536 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2537 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2538 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2534 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2533 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-2535 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-2549 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3157 (((-3 (-484) #1#) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-3 (-349 (-484)) #1#) $) NIL (|has| |#1| (-950 (-349 (-484)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3156 (((-484) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-349 (-484)) $) NIL (|has| |#1| (-950 (-349 (-484)))) ELT) ((|#1| $) NIL T ELT)) (-3958 (($ $) NIL T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-3502 (($ $) NIL (|has| |#1| (-391)) ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2893 (($ |#1| (-694)) NIL T ELT)) (-2547 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL (|has| |#1| (-495)) ELT)) (-2546 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL (|has| |#1| (-495)) ELT)) (-2820 (((-694) $) NIL T ELT)) (-2542 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2543 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2532 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2540 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2539 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-2541 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-2548 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3174 ((|#1| $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3465 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-495)) ELT)) (-3799 ((|#1| $ |#1|) NIL T ELT) ((|#2| $ |#2|) 13 T ELT)) (-2310 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3947 (((-694) $) NIL T ELT)) (-2817 ((|#1| $) NIL (|has| |#1| (-391)) ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ (-349 (-484))) NIL (|has| |#1| (-950 (-349 (-484)))) ELT) (($ |#1|) NIL T ELT)) (-3816 (((-583 |#1|) $) NIL T ELT)) (-3676 ((|#1| $ (-694)) NIL T ELT)) (-3126 (((-694)) NIL T CONST)) (-1264 (((-85) $ $) NIL T ELT)) (-2545 ((|#1| $ |#1| |#1|) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2520 (($ $) NIL T ELT)) (-2660 (($) NIL T CONST)) (-2666 (($) NIL T CONST)) (-2669 (($) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-598 |#1| |#2|) (-13 (-600 |#1|) (-241 |#2| |#2|)) (-190) (-13 (-590 |#1|) (-10 -8 (-15 -3757 ($ $))))) (T -598)) +NIL +((-2306 (($ $) 29 T ELT)) (-2520 (($ $) 27 T ELT)) (-2669 (($) 13 T ELT))) +(((-599 |#1| |#2|) (-10 -7 (-15 -2306 (|#1| |#1|)) (-15 -2520 (|#1| |#1|)) (-15 -2669 (|#1|))) (-600 |#2|) (-961)) (T -599)) +NIL +((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-2306 (($ $) 96 (|has| |#1| (-312)) ELT)) (-2308 (($ $ $) 98 (|has| |#1| (-312)) ELT)) (-2309 (($ $ (-694)) 97 (|has| |#1| (-312)) ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3723 (($) 23 T CONST)) (-2536 (($ $ $) 58 (|has| |#1| (-312)) ELT)) (-2537 (($ $ $) 59 (|has| |#1| (-312)) ELT)) (-2538 (($ $ $) 61 (|has| |#1| (-312)) ELT)) (-2534 (($ $ $) 56 (|has| |#1| (-312)) ELT)) (-2533 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) 55 (|has| |#1| (-312)) ELT)) (-2535 (((-3 $ #1="failed") $ $) 57 (|has| |#1| (-312)) ELT)) (-2549 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 60 (|has| |#1| (-312)) ELT)) (-3157 (((-3 (-484) #2="failed") $) 88 (|has| |#1| (-950 (-484))) ELT) (((-3 (-349 (-484)) #2#) $) 85 (|has| |#1| (-950 (-349 (-484)))) ELT) (((-3 |#1| #2#) $) 82 T ELT)) (-3156 (((-484) $) 87 (|has| |#1| (-950 (-484))) ELT) (((-349 (-484)) $) 84 (|has| |#1| (-950 (-349 (-484)))) ELT) ((|#1| $) 83 T ELT)) (-3958 (($ $) 77 T ELT)) (-3466 (((-3 $ "failed") $) 42 T ELT)) (-3502 (($ $) 68 (|has| |#1| (-391)) ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-2893 (($ |#1| (-694)) 75 T ELT)) (-2547 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 70 (|has| |#1| (-495)) ELT)) (-2546 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 71 (|has| |#1| (-495)) ELT)) (-2820 (((-694) $) 79 T ELT)) (-2542 (($ $ $) 65 (|has| |#1| (-312)) ELT)) (-2543 (($ $ $) 66 (|has| |#1| (-312)) ELT)) (-2532 (($ $ $) 54 (|has| |#1| (-312)) ELT)) (-2540 (($ $ $) 63 (|has| |#1| (-312)) ELT)) (-2539 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) 62 (|has| |#1| (-312)) ELT)) (-2541 (((-3 $ #1#) $ $) 64 (|has| |#1| (-312)) ELT)) (-2548 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 67 (|has| |#1| (-312)) ELT)) (-3174 ((|#1| $) 78 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3465 (((-3 $ #1#) $ |#1|) 72 (|has| |#1| (-495)) ELT)) (-3799 ((|#1| $ |#1|) 101 T ELT)) (-2310 (($ $ $) 95 (|has| |#1| (-312)) ELT)) (-3947 (((-694) $) 80 T ELT)) (-2817 ((|#1| $) 69 (|has| |#1| (-391)) ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ (-349 (-484))) 86 (|has| |#1| (-950 (-349 (-484)))) ELT) (($ |#1|) 81 T ELT)) (-3816 (((-583 |#1|) $) 74 T ELT)) (-3676 ((|#1| $ (-694)) 76 T ELT)) (-3126 (((-694)) 40 T CONST)) (-1264 (((-85) $ $) 6 T ELT)) (-2545 ((|#1| $ |#1| |#1|) 73 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-2520 (($ $) 99 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-2669 (($) 100 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 90 T ELT) (($ |#1| $) 89 T ELT))) +(((-600 |#1|) (-113) (-961)) (T -600)) +((-2669 (*1 *1) (-12 (-4 *1 (-600 *2)) (-4 *2 (-961)))) (-2520 (*1 *1 *1) (-12 (-4 *1 (-600 *2)) (-4 *2 (-961)))) (-2308 (*1 *1 *1 *1) (-12 (-4 *1 (-600 *2)) (-4 *2 (-961)) (-4 *2 (-312)))) (-2309 (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-600 *3)) (-4 *3 (-961)) (-4 *3 (-312)))) (-2306 (*1 *1 *1) (-12 (-4 *1 (-600 *2)) (-4 *2 (-961)) (-4 *2 (-312)))) (-2310 (*1 *1 *1 *1) (-12 (-4 *1 (-600 *2)) (-4 *2 (-961)) (-4 *2 (-312))))) +(-13 (-761 |t#1|) (-241 |t#1| |t#1|) (-10 -8 (-15 -2669 ($)) (-15 -2520 ($ $)) (IF (|has| |t#1| (-312)) (PROGN (-15 -2308 ($ $ $)) (-15 -2309 ($ $ (-694))) (-15 -2306 ($ $)) (-15 -2310 ($ $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-146)) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-555 (-349 (-484))) |has| |#1| (-950 (-349 (-484)))) ((-555 (-484)) . T) ((-555 |#1|) . T) ((-552 (-772)) . T) ((-241 |#1| |#1|) . T) ((-354 |#1|) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-582 |#1|) |has| |#1| (-146)) ((-654 |#1|) |has| |#1| (-146)) ((-663) . T) ((-950 (-349 (-484))) |has| |#1| (-950 (-349 (-484)))) ((-950 (-484)) |has| |#1| (-950 (-484))) ((-950 |#1|) . T) ((-963 |#1|) . T) ((-968 |#1|) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T) ((-761 |#1|) . T)) +((-2307 (((-583 (-597 (-349 |#2|))) (-597 (-349 |#2|))) 86 (|has| |#1| (-27)) ELT)) (-3731 (((-583 (-597 (-349 |#2|))) (-597 (-349 |#2|))) 85 (|has| |#1| (-27)) ELT) (((-583 (-597 (-349 |#2|))) (-597 (-349 |#2|)) (-1 (-583 |#1|) |#2|)) 19 T ELT))) +(((-601 |#1| |#2|) (-10 -7 (-15 -3731 ((-583 (-597 (-349 |#2|))) (-597 (-349 |#2|)) (-1 (-583 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3731 ((-583 (-597 (-349 |#2|))) (-597 (-349 |#2|)))) (-15 -2307 ((-583 (-597 (-349 |#2|))) (-597 (-349 |#2|))))) |%noBranch|)) (-13 (-312) (-120) (-950 (-484)) (-950 (-349 (-484)))) (-1154 |#1|)) (T -601)) +((-2307 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-312) (-120) (-950 (-484)) (-950 (-349 (-484))))) (-4 *5 (-1154 *4)) (-5 *2 (-583 (-597 (-349 *5)))) (-5 *1 (-601 *4 *5)) (-5 *3 (-597 (-349 *5))))) (-3731 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-312) (-120) (-950 (-484)) (-950 (-349 (-484))))) (-4 *5 (-1154 *4)) (-5 *2 (-583 (-597 (-349 *5)))) (-5 *1 (-601 *4 *5)) (-5 *3 (-597 (-349 *5))))) (-3731 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-583 *5) *6)) (-4 *5 (-13 (-312) (-120) (-950 (-484)) (-950 (-349 (-484))))) (-4 *6 (-1154 *5)) (-5 *2 (-583 (-597 (-349 *6)))) (-5 *1 (-601 *5 *6)) (-5 *3 (-597 (-349 *6)))))) +((-2308 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 65 T ELT)) (-2309 ((|#2| |#2| (-694) (-1 |#1| |#1|)) 45 T ELT)) (-2310 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 67 T ELT))) +(((-602 |#1| |#2|) (-10 -7 (-15 -2308 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2309 (|#2| |#2| (-694) (-1 |#1| |#1|))) (-15 -2310 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-312) (-600 |#1|)) (T -602)) +((-2310 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-312)) (-5 *1 (-602 *4 *2)) (-4 *2 (-600 *4)))) (-2309 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-694)) (-5 *4 (-1 *5 *5)) (-4 *5 (-312)) (-5 *1 (-602 *5 *2)) (-4 *2 (-600 *5)))) (-2308 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-312)) (-5 *1 (-602 *4 *2)) (-4 *2 (-600 *4))))) +((-2311 (($ $ $) 9 T ELT))) +(((-603 |#1|) (-10 -7 (-15 -2311 (|#1| |#1| |#1|))) (-604)) (T -603)) +NIL +((-2313 (($ $) 8 T ELT)) (-2311 (($ $ $) 6 T ELT)) (-2312 (($ $ $) 7 T ELT))) +(((-604) (-113)) (T -604)) +((-2313 (*1 *1 *1) (-4 *1 (-604))) (-2312 (*1 *1 *1 *1) (-4 *1 (-604))) (-2311 (*1 *1 *1 *1) (-4 *1 (-604)))) +(-13 (-1128) (-10 -8 (-15 -2313 ($ $)) (-15 -2312 ($ $ $)) (-15 -2311 ($ $ $)))) +(((-13) . T) ((-1128) . T)) +((-2314 (((-3 (-583 (-1084 |#1|)) "failed") (-583 (-1084 |#1|)) (-1084 |#1|)) 33 T ELT))) +(((-605 |#1|) (-10 -7 (-15 -2314 ((-3 (-583 (-1084 |#1|)) "failed") (-583 (-1084 |#1|)) (-1084 |#1|)))) (-821)) (T -605)) +((-2314 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-1084 *4))) (-5 *3 (-1084 *4)) (-4 *4 (-821)) (-5 *1 (-605 *4))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-3933 (((-583 |#1|) $) 85 T ELT)) (-3946 (($ $ (-694)) 95 T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-3938 (((-1203 |#1| |#2|) (-1203 |#1| |#2|) $) 50 T ELT)) (-3157 (((-3 (-614 |#1|) #1#) $) NIL T ELT)) (-3156 (((-614 |#1|) $) NIL T ELT)) (-3958 (($ $) 94 T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2420 (((-694) $) NIL T ELT)) (-2821 (((-583 $) $) NIL T ELT)) (-3936 (((-85) $) NIL T ELT)) (-3937 (($ (-614 |#1|) |#2|) 70 T ELT)) (-3935 (($ $) 90 T ELT)) (-3957 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3939 (((-1203 |#1| |#2|) (-1203 |#1| |#2|) $) 49 T ELT)) (-1748 (((-2 (|:| |k| (-614 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-2894 (((-614 |#1|) $) NIL T ELT)) (-3174 ((|#2| $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3767 (($ $ |#1| $) 32 T ELT) (($ $ (-583 |#1|) (-583 $)) 34 T ELT)) (-3947 (((-694) $) 92 T ELT)) (-3529 (($ $ $) 20 T ELT) (($ (-614 |#1|) (-614 |#1|)) 79 T ELT) (($ (-614 |#1|) $) 77 T ELT) (($ $ (-614 |#1|)) 78 T ELT)) (-3945 (((-772) $) NIL T ELT) (($ |#1|) 76 T ELT) (((-1194 |#1| |#2|) $) 60 T ELT) (((-1203 |#1| |#2|) $) 43 T ELT) (($ (-614 |#1|)) 27 T ELT)) (-3816 (((-583 |#2|) $) NIL T ELT)) (-3676 ((|#2| $ (-614 |#1|)) NIL T ELT)) (-3953 ((|#2| (-1203 |#1| |#2|) $) 45 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2660 (($) 23 T CONST)) (-2665 (((-583 (-2 (|:| |k| (-614 |#1|)) (|:| |c| |#2|))) $) NIL T ELT)) (-3944 (((-3 $ #1#) (-1194 |#1| |#2|)) 62 T ELT)) (-1732 (($ (-614 |#1|)) 14 T ELT)) (-3056 (((-85) $ $) 46 T ELT)) (-3948 (($ $ |#2|) NIL (|has| |#2| (-312)) ELT)) (-3836 (($ $) 68 T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) 31 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ |#2| $) 30 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| (-614 |#1|)) NIL T ELT))) +(((-606 |#1| |#2|) (-13 (-325 |#1| |#2|) (-334 |#2| (-614 |#1|)) (-10 -8 (-15 -3944 ((-3 $ "failed") (-1194 |#1| |#2|))) (-15 -3529 ($ (-614 |#1|) (-614 |#1|))) (-15 -3529 ($ (-614 |#1|) $)) (-15 -3529 ($ $ (-614 |#1|))))) (-756) (-146)) (T -606)) +((-3944 (*1 *1 *2) (|partial| -12 (-5 *2 (-1194 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146)) (-5 *1 (-606 *3 *4)))) (-3529 (*1 *1 *2 *2) (-12 (-5 *2 (-614 *3)) (-4 *3 (-756)) (-5 *1 (-606 *3 *4)) (-4 *4 (-146)))) (-3529 (*1 *1 *2 *1) (-12 (-5 *2 (-614 *3)) (-4 *3 (-756)) (-5 *1 (-606 *3 *4)) (-4 *4 (-146)))) (-3529 (*1 *1 *1 *2) (-12 (-5 *2 (-614 *3)) (-4 *3 (-756)) (-5 *1 (-606 *3 *4)) (-4 *4 (-146))))) +((-1731 (((-85) $) NIL T ELT) (((-85) (-1 (-85) |#2| |#2|) $) 59 T ELT)) (-1729 (($ $) NIL T ELT) (($ (-1 (-85) |#2| |#2|) $) 12 T ELT)) (-1569 (($ (-1 (-85) |#2|) $) 29 T ELT)) (-2297 (($ $) 65 T ELT)) (-2368 (($ $) 74 T ELT)) (-3404 (($ |#2| $) NIL T ELT) (($ (-1 (-85) |#2|) $) 43 T ELT)) (-3841 ((|#2| (-1 |#2| |#2| |#2|) $) 21 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 60 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 62 T ELT)) (-3418 (((-484) |#2| $ (-484)) 71 T ELT) (((-484) |#2| $) NIL T ELT) (((-484) (-1 (-85) |#2|) $) 54 T ELT)) (-3613 (($ (-694) |#2|) 63 T ELT)) (-2856 (($ $ $) NIL T ELT) (($ (-1 (-85) |#2| |#2|) $ $) 31 T ELT)) (-3517 (($ $ $) NIL T ELT) (($ (-1 (-85) |#2| |#2|) $ $) 24 T ELT)) (-3957 (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 64 T ELT)) (-3533 (($ |#2|) 15 T ELT)) (-3608 (($ $ $ (-484)) 42 T ELT) (($ |#2| $ (-484)) 40 T ELT)) (-1353 (((-3 |#2| "failed") (-1 (-85) |#2|) $) 53 T ELT)) (-1570 (($ $ (-1145 (-484))) 51 T ELT) (($ $ (-484)) 44 T ELT)) (-1730 (($ $ $ (-484)) 70 T ELT)) (-3399 (($ $) 68 T ELT)) (-2685 (((-85) $ $) 76 T ELT))) +(((-607 |#1| |#2|) (-10 -7 (-15 -3533 (|#1| |#2|)) (-15 -1570 (|#1| |#1| (-484))) (-15 -1570 (|#1| |#1| (-1145 (-484)))) (-15 -3404 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3608 (|#1| |#2| |#1| (-484))) (-15 -3608 (|#1| |#1| |#1| (-484))) (-15 -2856 (|#1| (-1 (-85) |#2| |#2|) |#1| |#1|)) (-15 -1569 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3404 (|#1| |#2| |#1|)) (-15 -2368 (|#1| |#1|)) (-15 -2856 (|#1| |#1| |#1|)) (-15 -3517 (|#1| (-1 (-85) |#2| |#2|) |#1| |#1|)) (-15 -1731 ((-85) (-1 (-85) |#2| |#2|) |#1|)) (-15 -3418 ((-484) (-1 (-85) |#2|) |#1|)) (-15 -3418 ((-484) |#2| |#1|)) (-15 -3418 ((-484) |#2| |#1| (-484))) (-15 -3517 (|#1| |#1| |#1|)) (-15 -1731 ((-85) |#1|)) (-15 -1730 (|#1| |#1| |#1| (-484))) (-15 -2297 (|#1| |#1|)) (-15 -1729 (|#1| (-1 (-85) |#2| |#2|) |#1|)) (-15 -1729 (|#1| |#1|)) (-15 -2685 ((-85) |#1| |#1|)) (-15 -3841 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3841 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3841 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1353 ((-3 |#2| "failed") (-1 (-85) |#2|) |#1|)) (-15 -3613 (|#1| (-694) |#2|)) (-15 -3957 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3957 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3399 (|#1| |#1|))) (-608 |#2|) (-1128)) (T -607)) +NIL +((-2568 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3401 ((|#1| $) 52 T ELT)) (-3794 ((|#1| $) 71 T ELT)) (-3796 (($ $) 73 T ELT)) (-2198 (((-1184) $ (-484) (-484)) 107 (|has| $ (-6 -3995)) ELT)) (-3784 (($ $ (-484)) 58 (|has| $ (-6 -3995)) ELT)) (-1731 (((-85) $) 153 (|has| |#1| (-756)) ELT) (((-85) (-1 (-85) |#1| |#1|) $) 147 T ELT)) (-1729 (($ $) 157 (-12 (|has| |#1| (-756)) (|has| $ (-6 -3995))) ELT) (($ (-1 (-85) |#1| |#1|) $) 156 (|has| $ (-6 -3995)) ELT)) (-2909 (($ $) 152 (|has| |#1| (-756)) ELT) (($ (-1 (-85) |#1| |#1|) $) 146 T ELT)) (-3441 (((-85) $ (-694)) 90 T ELT)) (-3025 ((|#1| $ |#1|) 43 (|has| $ (-6 -3995)) ELT)) (-3786 (($ $ $) 62 (|has| $ (-6 -3995)) ELT)) (-3785 ((|#1| $ |#1|) 60 (|has| $ (-6 -3995)) ELT)) (-3788 ((|#1| $ |#1|) 64 (|has| $ (-6 -3995)) ELT)) (-3787 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -3995)) ELT) ((|#1| $ #2="first" |#1|) 63 (|has| $ (-6 -3995)) ELT) (($ $ #3="rest" $) 61 (|has| $ (-6 -3995)) ELT) ((|#1| $ #4="last" |#1|) 59 (|has| $ (-6 -3995)) ELT) ((|#1| $ (-1145 (-484)) |#1|) 127 (|has| $ (-6 -3995)) ELT) ((|#1| $ (-484) |#1|) 96 (|has| $ (-6 -3995)) ELT)) (-3026 (($ $ (-583 $)) 45 (|has| $ (-6 -3995)) ELT)) (-1569 (($ (-1 (-85) |#1|) $) 140 T ELT)) (-3709 (($ (-1 (-85) |#1|) $) 112 (|has| $ (-6 -3994)) ELT)) (-3795 ((|#1| $) 72 T ELT)) (-3723 (($) 7 T CONST)) (-2297 (($ $) 155 (|has| $ (-6 -3995)) ELT)) (-2298 (($ $) 145 T ELT)) (-3798 (($ $) 79 T ELT) (($ $ (-694)) 77 T ELT)) (-2368 (($ $) 142 (|has| |#1| (-1013)) ELT)) (-1352 (($ $) 109 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-3404 (($ |#1| $) 141 (|has| |#1| (-1013)) ELT) (($ (-1 (-85) |#1|) $) 136 T ELT)) (-3405 (($ (-1 (-85) |#1|) $) 113 (|has| $ (-6 -3994)) ELT) (($ |#1| $) 110 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-3841 ((|#1| (-1 |#1| |#1| |#1|) $) 115 (|has| $ (-6 -3994)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 114 (|has| $ (-6 -3994)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 111 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-1575 ((|#1| $ (-484) |#1|) 95 (|has| $ (-6 -3995)) ELT)) (-3112 ((|#1| $ (-484)) 97 T ELT)) (-3442 (((-85) $) 93 T ELT)) (-3418 (((-484) |#1| $ (-484)) 150 (|has| |#1| (-1013)) ELT) (((-484) |#1| $) 149 (|has| |#1| (-1013)) ELT) (((-484) (-1 (-85) |#1|) $) 148 T ELT)) (-2889 (((-583 |#1|) $) 30 (|has| $ (-6 -3994)) ELT)) (-3031 (((-583 $) $) 54 T ELT)) (-3027 (((-85) $ $) 46 (|has| |#1| (-1013)) ELT)) (-3613 (($ (-694) |#1|) 119 T ELT)) (-3718 (((-85) $ (-694)) 91 T ELT)) (-2200 (((-484) $) 105 (|has| (-484) (-756)) ELT)) (-2531 (($ $ $) 163 (|has| |#1| (-756)) ELT)) (-2856 (($ $ $) 143 (|has| |#1| (-756)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) 139 T ELT)) (-3517 (($ $ $) 151 (|has| |#1| (-756)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) 144 T ELT)) (-2608 (((-583 |#1|) $) 29 (|has| $ (-6 -3994)) ELT)) (-3245 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-2201 (((-484) $) 104 (|has| (-484) (-756)) ELT)) (-2857 (($ $ $) 162 (|has| |#1| (-756)) ELT)) (-1948 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 122 T ELT)) (-3533 (($ |#1|) 133 T ELT)) (-3715 (((-85) $ (-694)) 92 T ELT)) (-3030 (((-583 |#1|) $) 49 T ELT)) (-3526 (((-85) $) 53 T ELT)) (-3242 (((-1072) $) 22 (|has| |#1| (-1013)) ELT)) (-3797 ((|#1| $) 76 T ELT) (($ $ (-694)) 74 T ELT)) (-3608 (($ $ $ (-484)) 138 T ELT) (($ |#1| $ (-484)) 137 T ELT)) (-2304 (($ $ $ (-484)) 126 T ELT) (($ |#1| $ (-484)) 125 T ELT)) (-2203 (((-583 (-484)) $) 102 T ELT)) (-2204 (((-85) (-484) $) 101 T ELT)) (-3243 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-3800 ((|#1| $) 82 T ELT) (($ $ (-694)) 80 T ELT)) (-1353 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 116 T ELT)) (-2199 (($ $ |#1|) 106 (|has| $ (-6 -3995)) ELT)) (-3443 (((-85) $) 94 T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3994)) ELT)) (-3767 (($ $ (-583 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1221 (((-85) $ $) 11 T ELT)) (-2202 (((-85) |#1| $) 103 (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-2205 (((-583 |#1|) $) 100 T ELT)) (-3402 (((-85) $) 8 T ELT)) (-3564 (($) 9 T ELT)) (-3799 ((|#1| $ #1#) 51 T ELT) ((|#1| $ #2#) 81 T ELT) (($ $ #3#) 78 T ELT) ((|#1| $ #4#) 75 T ELT) (($ $ (-1145 (-484))) 118 T ELT) ((|#1| $ (-484)) 99 T ELT) ((|#1| $ (-484) |#1|) 98 T ELT)) (-3029 (((-484) $ $) 48 T ELT)) (-1570 (($ $ (-1145 (-484))) 135 T ELT) (($ $ (-484)) 134 T ELT)) (-2305 (($ $ (-1145 (-484))) 124 T ELT) (($ $ (-484)) 123 T ELT)) (-3632 (((-85) $) 50 T ELT)) (-3791 (($ $) 68 T ELT)) (-3789 (($ $) 65 (|has| $ (-6 -3995)) ELT)) (-3792 (((-694) $) 69 T ELT)) (-3793 (($ $) 70 T ELT)) (-1945 (((-694) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3994)) ELT) (((-694) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-1730 (($ $ $ (-484)) 154 (|has| $ (-6 -3995)) ELT)) (-3399 (($ $) 10 T ELT)) (-3971 (((-473) $) 108 (|has| |#1| (-553 (-473))) ELT)) (-3529 (($ (-583 |#1|)) 117 T ELT)) (-3790 (($ $ $) 67 T ELT) (($ $ |#1|) 66 T ELT)) (-3801 (($ $ $) 84 T ELT) (($ |#1| $) 83 T ELT) (($ (-583 $)) 121 T ELT) (($ $ |#1|) 120 T ELT)) (-3945 (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-3521 (((-583 $) $) 55 T ELT)) (-3028 (((-85) $ $) 47 (|has| |#1| (-1013)) ELT)) (-1264 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3994)) ELT)) (-2566 (((-85) $ $) 161 (|has| |#1| (-756)) ELT)) (-2567 (((-85) $ $) 159 (|has| |#1| (-756)) ELT)) (-3056 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-2684 (((-85) $ $) 160 (|has| |#1| (-756)) ELT)) (-2685 (((-85) $ $) 158 (|has| |#1| (-756)) ELT)) (-3956 (((-694) $) 6 (|has| $ (-6 -3994)) ELT))) +(((-608 |#1|) (-113) (-1128)) (T -608)) +((-3533 (*1 *1 *2) (-12 (-4 *1 (-608 *2)) (-4 *2 (-1128))))) +(-13 (-1063 |t#1|) (-323 |t#1|) (-237 |t#1|) (-10 -8 (-15 -3533 ($ |t#1|)))) +(((-34) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-756)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1013)) (|has| |#1| (-756)) (|has| |#1| (-552 (-772)))) ((-124 |#1|) . T) ((-553 (-473)) |has| |#1| (-553 (-473))) ((-241 (-484) |#1|) . T) ((-241 (-1145 (-484)) $) . T) ((-243 (-484) |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-237 |#1|) . T) ((-323 |#1|) . T) ((-428 |#1|) . T) ((-538 (-484) |#1|) . T) ((-455 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-593 |#1|) . T) ((-756) |has| |#1| (-756)) ((-759) |has| |#1| (-756)) ((-923 |#1|) . T) ((-1013) OR (|has| |#1| (-1013)) (|has| |#1| (-756))) ((-1063 |#1|) . T) ((-1128) . T) ((-1167 |#1|) . T)) +((-3572 (((-583 (-2 (|:| |particular| (-3 |#3| #1="failed")) (|:| -2012 (-583 |#3|)))) |#4| (-583 |#3|)) 66 T ELT) (((-2 (|:| |particular| (-3 |#3| #1#)) (|:| -2012 (-583 |#3|))) |#4| |#3|) 60 T ELT)) (-3108 (((-694) |#4| |#3|) 18 T ELT)) (-3339 (((-3 |#3| #1#) |#4| |#3|) 21 T ELT)) (-2315 (((-85) |#4| |#3|) 14 T ELT))) +(((-609 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3572 ((-2 (|:| |particular| (-3 |#3| #1="failed")) (|:| -2012 (-583 |#3|))) |#4| |#3|)) (-15 -3572 ((-583 (-2 (|:| |particular| (-3 |#3| #1#)) (|:| -2012 (-583 |#3|)))) |#4| (-583 |#3|))) (-15 -3339 ((-3 |#3| #1#) |#4| |#3|)) (-15 -2315 ((-85) |#4| |#3|)) (-15 -3108 ((-694) |#4| |#3|))) (-312) (-13 (-323 |#1|) (-10 -7 (-6 -3995))) (-13 (-323 |#1|) (-10 -7 (-6 -3995))) (-627 |#1| |#2| |#3|)) (T -609)) +((-3108 (*1 *2 *3 *4) (-12 (-4 *5 (-312)) (-4 *6 (-13 (-323 *5) (-10 -7 (-6 -3995)))) (-4 *4 (-13 (-323 *5) (-10 -7 (-6 -3995)))) (-5 *2 (-694)) (-5 *1 (-609 *5 *6 *4 *3)) (-4 *3 (-627 *5 *6 *4)))) (-2315 (*1 *2 *3 *4) (-12 (-4 *5 (-312)) (-4 *6 (-13 (-323 *5) (-10 -7 (-6 -3995)))) (-4 *4 (-13 (-323 *5) (-10 -7 (-6 -3995)))) (-5 *2 (-85)) (-5 *1 (-609 *5 *6 *4 *3)) (-4 *3 (-627 *5 *6 *4)))) (-3339 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-312)) (-4 *5 (-13 (-323 *4) (-10 -7 (-6 -3995)))) (-4 *2 (-13 (-323 *4) (-10 -7 (-6 -3995)))) (-5 *1 (-609 *4 *5 *2 *3)) (-4 *3 (-627 *4 *5 *2)))) (-3572 (*1 *2 *3 *4) (-12 (-4 *5 (-312)) (-4 *6 (-13 (-323 *5) (-10 -7 (-6 -3995)))) (-4 *7 (-13 (-323 *5) (-10 -7 (-6 -3995)))) (-5 *2 (-583 (-2 (|:| |particular| (-3 *7 #1="failed")) (|:| -2012 (-583 *7))))) (-5 *1 (-609 *5 *6 *7 *3)) (-5 *4 (-583 *7)) (-4 *3 (-627 *5 *6 *7)))) (-3572 (*1 *2 *3 *4) (-12 (-4 *5 (-312)) (-4 *6 (-13 (-323 *5) (-10 -7 (-6 -3995)))) (-4 *4 (-13 (-323 *5) (-10 -7 (-6 -3995)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2012 (-583 *4)))) (-5 *1 (-609 *5 *6 *4 *3)) (-4 *3 (-627 *5 *6 *4))))) +((-3572 (((-583 (-2 (|:| |particular| (-3 (-1178 |#1|) #1="failed")) (|:| -2012 (-583 (-1178 |#1|))))) (-583 (-583 |#1|)) (-583 (-1178 |#1|))) 22 T ELT) (((-583 (-2 (|:| |particular| (-3 (-1178 |#1|) #1#)) (|:| -2012 (-583 (-1178 |#1|))))) (-630 |#1|) (-583 (-1178 |#1|))) 21 T ELT) (((-2 (|:| |particular| (-3 (-1178 |#1|) #1#)) (|:| -2012 (-583 (-1178 |#1|)))) (-583 (-583 |#1|)) (-1178 |#1|)) 18 T ELT) (((-2 (|:| |particular| (-3 (-1178 |#1|) #1#)) (|:| -2012 (-583 (-1178 |#1|)))) (-630 |#1|) (-1178 |#1|)) 14 T ELT)) (-3108 (((-694) (-630 |#1|) (-1178 |#1|)) 30 T ELT)) (-3339 (((-3 (-1178 |#1|) #1#) (-630 |#1|) (-1178 |#1|)) 24 T ELT)) (-2315 (((-85) (-630 |#1|) (-1178 |#1|)) 27 T ELT))) +(((-610 |#1|) (-10 -7 (-15 -3572 ((-2 (|:| |particular| (-3 (-1178 |#1|) #1="failed")) (|:| -2012 (-583 (-1178 |#1|)))) (-630 |#1|) (-1178 |#1|))) (-15 -3572 ((-2 (|:| |particular| (-3 (-1178 |#1|) #1#)) (|:| -2012 (-583 (-1178 |#1|)))) (-583 (-583 |#1|)) (-1178 |#1|))) (-15 -3572 ((-583 (-2 (|:| |particular| (-3 (-1178 |#1|) #1#)) (|:| -2012 (-583 (-1178 |#1|))))) (-630 |#1|) (-583 (-1178 |#1|)))) (-15 -3572 ((-583 (-2 (|:| |particular| (-3 (-1178 |#1|) #1#)) (|:| -2012 (-583 (-1178 |#1|))))) (-583 (-583 |#1|)) (-583 (-1178 |#1|)))) (-15 -3339 ((-3 (-1178 |#1|) #1#) (-630 |#1|) (-1178 |#1|))) (-15 -2315 ((-85) (-630 |#1|) (-1178 |#1|))) (-15 -3108 ((-694) (-630 |#1|) (-1178 |#1|)))) (-312)) (T -610)) +((-3108 (*1 *2 *3 *4) (-12 (-5 *3 (-630 *5)) (-5 *4 (-1178 *5)) (-4 *5 (-312)) (-5 *2 (-694)) (-5 *1 (-610 *5)))) (-2315 (*1 *2 *3 *4) (-12 (-5 *3 (-630 *5)) (-5 *4 (-1178 *5)) (-4 *5 (-312)) (-5 *2 (-85)) (-5 *1 (-610 *5)))) (-3339 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1178 *4)) (-5 *3 (-630 *4)) (-4 *4 (-312)) (-5 *1 (-610 *4)))) (-3572 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-583 *5))) (-4 *5 (-312)) (-5 *2 (-583 (-2 (|:| |particular| (-3 (-1178 *5) #1="failed")) (|:| -2012 (-583 (-1178 *5)))))) (-5 *1 (-610 *5)) (-5 *4 (-583 (-1178 *5))))) (-3572 (*1 *2 *3 *4) (-12 (-5 *3 (-630 *5)) (-4 *5 (-312)) (-5 *2 (-583 (-2 (|:| |particular| (-3 (-1178 *5) #1#)) (|:| -2012 (-583 (-1178 *5)))))) (-5 *1 (-610 *5)) (-5 *4 (-583 (-1178 *5))))) (-3572 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-583 *5))) (-4 *5 (-312)) (-5 *2 (-2 (|:| |particular| (-3 (-1178 *5) #1#)) (|:| -2012 (-583 (-1178 *5))))) (-5 *1 (-610 *5)) (-5 *4 (-1178 *5)))) (-3572 (*1 *2 *3 *4) (-12 (-5 *3 (-630 *5)) (-4 *5 (-312)) (-5 *2 (-2 (|:| |particular| (-3 (-1178 *5) #1#)) (|:| -2012 (-583 (-1178 *5))))) (-5 *1 (-610 *5)) (-5 *4 (-1178 *5))))) +((-2316 (((-2 (|:| |particular| (-3 (-1178 (-349 |#4|)) "failed")) (|:| -2012 (-583 (-1178 (-349 |#4|))))) (-583 |#4|) (-583 |#3|)) 51 T ELT))) +(((-611 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2316 ((-2 (|:| |particular| (-3 (-1178 (-349 |#4|)) "failed")) (|:| -2012 (-583 (-1178 (-349 |#4|))))) (-583 |#4|) (-583 |#3|)))) (-495) (-717) (-756) (-861 |#1| |#2| |#3|)) (T -611)) +((-2316 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *7)) (-4 *7 (-756)) (-4 *8 (-861 *5 *6 *7)) (-4 *5 (-495)) (-4 *6 (-717)) (-5 *2 (-2 (|:| |particular| (-3 (-1178 (-349 *8)) "failed")) (|:| -2012 (-583 (-1178 (-349 *8)))))) (-5 *1 (-611 *5 *6 *7 *8))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-1771 (((-3 $ #1="failed")) NIL (|has| |#2| (-495)) ELT)) (-3329 ((|#2| $) NIL T ELT)) (-3120 (((-85) $) NIL T ELT)) (-1311 (((-3 $ #1#) $ $) NIL T ELT)) (-3223 (((-1178 (-630 |#2|))) NIL T ELT) (((-1178 (-630 |#2|)) (-1178 $)) NIL T ELT)) (-3122 (((-85) $) NIL T ELT)) (-1728 (((-1178 $)) 41 T ELT)) (-3332 (($ |#2|) NIL T ELT)) (-3723 (($) NIL T CONST)) (-3109 (($ $) NIL (|has| |#2| (-258)) ELT)) (-3111 (((-197 |#1| |#2|) $ (-484)) NIL T ELT)) (-1905 (((-3 (-2 (|:| |particular| $) (|:| -2012 (-583 $))) #1#)) NIL (|has| |#2| (-495)) ELT)) (-1702 (((-3 $ #1#)) NIL (|has| |#2| (-495)) ELT)) (-1787 (((-630 |#2|)) NIL T ELT) (((-630 |#2|) (-1178 $)) NIL T ELT)) (-1726 ((|#2| $) NIL T ELT)) (-1785 (((-630 |#2|) $) NIL T ELT) (((-630 |#2|) $ (-1178 $)) NIL T ELT)) (-2404 (((-3 $ #1#) $) NIL (|has| |#2| (-495)) ELT)) (-1899 (((-1084 (-857 |#2|))) NIL (|has| |#2| (-312)) ELT)) (-2407 (($ $ (-830)) NIL T ELT)) (-1724 ((|#2| $) NIL T ELT)) (-1704 (((-1084 |#2|) $) NIL (|has| |#2| (-495)) ELT)) (-1789 ((|#2|) NIL T ELT) ((|#2| (-1178 $)) NIL T ELT)) (-1722 (((-1084 |#2|) $) NIL T ELT)) (-1716 (((-85)) NIL T ELT)) (-3157 (((-3 (-484) #1#) $) NIL (|has| |#2| (-950 (-484))) ELT) (((-3 (-349 (-484)) #1#) $) NIL (|has| |#2| (-950 (-349 (-484)))) ELT) (((-3 |#2| #1#) $) NIL T ELT)) (-3156 (((-484) $) NIL (|has| |#2| (-950 (-484))) ELT) (((-349 (-484)) $) NIL (|has| |#2| (-950 (-349 (-484)))) ELT) ((|#2| $) NIL T ELT)) (-1791 (($ (-1178 |#2|)) NIL T ELT) (($ (-1178 |#2|) (-1178 $)) NIL T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) NIL (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1178 |#2|))) (-630 $) (-1178 $)) NIL T ELT) (((-630 |#2|) (-630 $)) NIL T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-3108 (((-694) $) NIL (|has| |#2| (-495)) ELT) (((-830)) 42 T ELT)) (-3112 ((|#2| $ (-484) (-484)) NIL T ELT)) (-1713 (((-85)) NIL T ELT)) (-2433 (($ $ (-830)) NIL T ELT)) (-2889 (((-583 |#2|) $) NIL (|has| $ (-6 -3994)) ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-3107 (((-694) $) NIL (|has| |#2| (-495)) ELT)) (-3106 (((-583 (-197 |#1| |#2|)) $) NIL (|has| |#2| (-495)) ELT)) (-3114 (((-694) $) NIL T ELT)) (-1709 (((-85)) NIL T ELT)) (-3113 (((-694) $) NIL T ELT)) (-3326 ((|#2| $) NIL (|has| |#2| (-6 (-3996 #2="*"))) ELT)) (-3118 (((-484) $) NIL T ELT)) (-3116 (((-484) $) NIL T ELT)) (-2608 (((-583 |#2|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3245 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#2| (-1013))) ELT)) (-3117 (((-484) $) NIL T ELT)) (-3115 (((-484) $) NIL T ELT)) (-3123 (($ (-583 (-583 |#2|))) NIL T ELT)) (-1948 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3593 (((-583 (-583 |#2|)) $) NIL T ELT)) (-1707 (((-85)) NIL T ELT)) (-1711 (((-85)) NIL T ELT)) (-1906 (((-3 (-2 (|:| |particular| $) (|:| -2012 (-583 $))) #1#)) NIL (|has| |#2| (-495)) ELT)) (-1703 (((-3 $ #1#)) NIL (|has| |#2| (-495)) ELT)) (-1788 (((-630 |#2|)) NIL T ELT) (((-630 |#2|) (-1178 $)) NIL T ELT)) (-1727 ((|#2| $) NIL T ELT)) (-1786 (((-630 |#2|) $) NIL T ELT) (((-630 |#2|) $ (-1178 $)) NIL T ELT)) (-2280 (((-630 (-484)) (-1178 $)) NIL (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1178 |#2|))) (-1178 $) $) NIL T ELT) (((-630 |#2|) (-1178 $)) NIL T ELT)) (-2405 (((-3 $ #1#) $) NIL (|has| |#2| (-495)) ELT)) (-1903 (((-1084 (-857 |#2|))) NIL (|has| |#2| (-312)) ELT)) (-2406 (($ $ (-830)) NIL T ELT)) (-1725 ((|#2| $) NIL T ELT)) (-1705 (((-1084 |#2|) $) NIL (|has| |#2| (-495)) ELT)) (-1790 ((|#2|) NIL T ELT) ((|#2| (-1178 $)) NIL T ELT)) (-1723 (((-1084 |#2|) $) NIL T ELT)) (-1717 (((-85)) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-1708 (((-85)) NIL T ELT)) (-1710 (((-85)) NIL T ELT)) (-1712 (((-85)) NIL T ELT)) (-3589 (((-3 $ #1#) $) NIL (|has| |#2| (-312)) ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1715 (((-85)) NIL T ELT)) (-3465 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-495)) ELT)) (-1946 (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3767 (($ $ (-583 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT)) (-1221 (((-85) $ $) NIL T ELT)) (-3402 (((-85) $) NIL T ELT)) (-3564 (($) NIL T ELT)) (-3799 ((|#2| $ (-484) (-484) |#2|) NIL T ELT) ((|#2| $ (-484) (-484)) 27 T ELT) ((|#2| $ (-484)) NIL T ELT)) (-3757 (($ $ (-1 |#2| |#2|) (-694)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-694)) NIL (|has| |#2| (-189)) ELT) (($ $ (-1089)) NIL (|has| |#2| (-811 (-1089))) ELT) (($ $ (-583 (-1089))) NIL (|has| |#2| (-811 (-1089))) ELT) (($ $ (-1089) (-694)) NIL (|has| |#2| (-811 (-1089))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (|has| |#2| (-811 (-1089))) ELT)) (-3328 ((|#2| $) NIL T ELT)) (-3331 (($ (-583 |#2|)) NIL T ELT)) (-3121 (((-85) $) NIL T ELT)) (-3330 (((-197 |#1| |#2|) $) NIL T ELT)) (-3327 ((|#2| $) NIL (|has| |#2| (-6 (-3996 #2#))) ELT)) (-1945 (((-694) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3994)) ELT) (((-694) |#2| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#2| (-1013))) ELT)) (-3399 (($ $) NIL T ELT)) (-3224 (((-630 |#2|) (-1178 $)) NIL T ELT) (((-1178 |#2|) $) NIL T ELT) (((-630 |#2|) (-1178 $) (-1178 $)) NIL T ELT) (((-1178 |#2|) $ (-1178 $)) 30 T ELT)) (-3971 (($ (-1178 |#2|)) NIL T ELT) (((-1178 |#2|) $) NIL T ELT)) (-1891 (((-583 (-857 |#2|))) NIL T ELT) (((-583 (-857 |#2|)) (-1178 $)) NIL T ELT)) (-2435 (($ $ $) NIL T ELT)) (-1721 (((-85)) NIL T ELT)) (-3110 (((-197 |#1| |#2|) $ (-484)) NIL T ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ (-349 (-484))) NIL (|has| |#2| (-950 (-349 (-484)))) ELT) (($ |#2|) NIL T ELT) (((-630 |#2|) $) NIL T ELT)) (-3126 (((-694)) NIL T CONST)) (-1264 (((-85) $ $) NIL T ELT)) (-2012 (((-1178 $)) 40 T ELT)) (-1706 (((-583 (-1178 |#2|))) NIL (|has| |#2| (-495)) ELT)) (-2436 (($ $ $ $) NIL T ELT)) (-1719 (((-85)) NIL T ELT)) (-2545 (($ (-630 |#2|) $) NIL T ELT)) (-1947 (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3119 (((-85) $) NIL T ELT)) (-2434 (($ $ $) NIL T ELT)) (-1720 (((-85)) NIL T ELT)) (-1718 (((-85)) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-1714 (((-85)) NIL T ELT)) (-2660 (($) NIL T CONST)) (-2666 (($) NIL T CONST)) (-2669 (($ $ (-1 |#2| |#2|) (-694)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-694)) NIL (|has| |#2| (-189)) ELT) (($ $ (-1089)) NIL (|has| |#2| (-811 (-1089))) ELT) (($ $ (-583 (-1089))) NIL (|has| |#2| (-811 (-1089))) ELT) (($ $ (-1089) (-694)) NIL (|has| |#2| (-811 (-1089))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (|has| |#2| (-811 (-1089))) ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3948 (($ $ |#2|) NIL (|has| |#2| (-312)) ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL (|has| |#2| (-312)) ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (((-197 |#1| |#2|) $ (-197 |#1| |#2|)) NIL T ELT) (((-197 |#1| |#2|) (-197 |#1| |#2|) $) NIL T ELT)) (-3956 (((-694) $) NIL (|has| $ (-6 -3994)) ELT))) +(((-612 |#1| |#2|) (-13 (-1036 |#1| |#2| (-197 |#1| |#2|) (-197 |#1| |#2|)) (-552 (-630 |#2|)) (-360 |#2|)) (-830) (-146)) (T -612)) +NIL +((-2568 (((-85) $ $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3248 (((-583 (-1048)) $) 12 T ELT)) (-3945 (((-772) $) 18 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT))) +(((-613) (-13 (-995) (-10 -8 (-15 -3248 ((-583 (-1048)) $))))) (T -613)) +((-3248 (*1 *2 *1) (-12 (-5 *2 (-583 (-1048))) (-5 *1 (-613))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3933 (((-583 |#1|) $) NIL T ELT)) (-3137 (($ $) 62 T ELT)) (-2664 (((-85) $) NIL T ELT)) (-3157 (((-3 |#1| #1="failed") $) NIL T ELT)) (-3156 ((|#1| $) NIL T ELT)) (-2531 (($ $ $) NIL T ELT)) (-2857 (($ $ $) NIL T ELT)) (-2319 (((-3 $ #1#) (-739 |#1|)) 28 T ELT)) (-2321 (((-85) (-739 |#1|)) 18 T ELT)) (-2320 (($ (-739 |#1|)) 29 T ELT)) (-2511 (((-85) $ $) 36 T ELT)) (-3832 (((-830) $) 43 T ELT)) (-3138 (($ $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3731 (((-583 $) (-739 |#1|)) 20 T ELT)) (-3945 (((-772) $) 51 T ELT) (($ |#1|) 40 T ELT) (((-739 |#1|) $) 47 T ELT) (((-618 |#1|) $) 52 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2318 (((-58 (-583 $)) (-583 |#1|) (-830)) 67 T ELT)) (-2317 (((-583 $) (-583 |#1|) (-830)) 70 T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 63 T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) 46 T ELT))) +(((-614 |#1|) (-13 (-756) (-950 |#1|) (-10 -8 (-15 -2664 ((-85) $)) (-15 -3138 ($ $)) (-15 -3137 ($ $)) (-15 -3832 ((-830) $)) (-15 -2511 ((-85) $ $)) (-15 -3945 ((-739 |#1|) $)) (-15 -3945 ((-618 |#1|) $)) (-15 -3731 ((-583 $) (-739 |#1|))) (-15 -2321 ((-85) (-739 |#1|))) (-15 -2320 ($ (-739 |#1|))) (-15 -2319 ((-3 $ "failed") (-739 |#1|))) (-15 -3933 ((-583 |#1|) $)) (-15 -2318 ((-58 (-583 $)) (-583 |#1|) (-830))) (-15 -2317 ((-583 $) (-583 |#1|) (-830))))) (-756)) (T -614)) +((-2664 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-614 *3)) (-4 *3 (-756)))) (-3138 (*1 *1 *1) (-12 (-5 *1 (-614 *2)) (-4 *2 (-756)))) (-3137 (*1 *1 *1) (-12 (-5 *1 (-614 *2)) (-4 *2 (-756)))) (-3832 (*1 *2 *1) (-12 (-5 *2 (-830)) (-5 *1 (-614 *3)) (-4 *3 (-756)))) (-2511 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-614 *3)) (-4 *3 (-756)))) (-3945 (*1 *2 *1) (-12 (-5 *2 (-739 *3)) (-5 *1 (-614 *3)) (-4 *3 (-756)))) (-3945 (*1 *2 *1) (-12 (-5 *2 (-618 *3)) (-5 *1 (-614 *3)) (-4 *3 (-756)))) (-3731 (*1 *2 *3) (-12 (-5 *3 (-739 *4)) (-4 *4 (-756)) (-5 *2 (-583 (-614 *4))) (-5 *1 (-614 *4)))) (-2321 (*1 *2 *3) (-12 (-5 *3 (-739 *4)) (-4 *4 (-756)) (-5 *2 (-85)) (-5 *1 (-614 *4)))) (-2320 (*1 *1 *2) (-12 (-5 *2 (-739 *3)) (-4 *3 (-756)) (-5 *1 (-614 *3)))) (-2319 (*1 *1 *2) (|partial| -12 (-5 *2 (-739 *3)) (-4 *3 (-756)) (-5 *1 (-614 *3)))) (-3933 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-614 *3)) (-4 *3 (-756)))) (-2318 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *5)) (-5 *4 (-830)) (-4 *5 (-756)) (-5 *2 (-58 (-583 (-614 *5)))) (-5 *1 (-614 *5)))) (-2317 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *5)) (-5 *4 (-830)) (-4 *5 (-756)) (-5 *2 (-583 (-614 *5))) (-5 *1 (-614 *5))))) +((-3401 ((|#2| $) 100 T ELT)) (-3796 (($ $) 121 T ELT)) (-3441 (((-85) $ (-694)) 35 T ELT)) (-3798 (($ $) 109 T ELT) (($ $ (-694)) 112 T ELT)) (-3442 (((-85) $) 122 T ELT)) (-3031 (((-583 $) $) 96 T ELT)) (-3027 (((-85) $ $) 92 T ELT)) (-3718 (((-85) $ (-694)) 33 T ELT)) (-2200 (((-484) $) 66 T ELT)) (-2201 (((-484) $) 65 T ELT)) (-3715 (((-85) $ (-694)) 31 T ELT)) (-3526 (((-85) $) 98 T ELT)) (-3797 ((|#2| $) 113 T ELT) (($ $ (-694)) 117 T ELT)) (-2304 (($ $ $ (-484)) 83 T ELT) (($ |#2| $ (-484)) 82 T ELT)) (-2203 (((-583 (-484)) $) 64 T ELT)) (-2204 (((-85) (-484) $) 59 T ELT)) (-3800 ((|#2| $) NIL T ELT) (($ $ (-694)) 108 T ELT)) (-3768 (($ $ (-484)) 125 T ELT)) (-3443 (((-85) $) 124 T ELT)) (-1946 (((-85) (-1 (-85) |#2|) $) 42 T ELT)) (-2205 (((-583 |#2|) $) 46 T ELT)) (-3799 ((|#2| $ "value") NIL T ELT) ((|#2| $ "first") 107 T ELT) (($ $ "rest") 111 T ELT) ((|#2| $ "last") 120 T ELT) (($ $ (-1145 (-484))) 79 T ELT) ((|#2| $ (-484)) 57 T ELT) ((|#2| $ (-484) |#2|) 58 T ELT)) (-3029 (((-484) $ $) 91 T ELT)) (-2305 (($ $ (-1145 (-484))) 78 T ELT) (($ $ (-484)) 72 T ELT)) (-3632 (((-85) $) 87 T ELT)) (-3791 (($ $) 105 T ELT)) (-3792 (((-694) $) 104 T ELT)) (-3793 (($ $) 103 T ELT)) (-3529 (($ (-583 |#2|)) 53 T ELT)) (-2891 (($ $) 126 T ELT)) (-3521 (((-583 $) $) 90 T ELT)) (-3028 (((-85) $ $) 89 T ELT)) (-1947 (((-85) (-1 (-85) |#2|) $) 41 T ELT)) (-3056 (((-85) $ $) 20 T ELT)) (-3956 (((-694) $) 39 T ELT))) +(((-615 |#1| |#2|) (-10 -7 (-15 -3056 ((-85) |#1| |#1|)) (-15 -2891 (|#1| |#1|)) (-15 -3768 (|#1| |#1| (-484))) (-15 -3441 ((-85) |#1| (-694))) (-15 -3718 ((-85) |#1| (-694))) (-15 -3715 ((-85) |#1| (-694))) (-15 -3442 ((-85) |#1|)) (-15 -3443 ((-85) |#1|)) (-15 -3799 (|#2| |#1| (-484) |#2|)) (-15 -3799 (|#2| |#1| (-484))) (-15 -2205 ((-583 |#2|) |#1|)) (-15 -2204 ((-85) (-484) |#1|)) (-15 -2203 ((-583 (-484)) |#1|)) (-15 -2201 ((-484) |#1|)) (-15 -2200 ((-484) |#1|)) (-15 -3529 (|#1| (-583 |#2|))) (-15 -3799 (|#1| |#1| (-1145 (-484)))) (-15 -2305 (|#1| |#1| (-484))) (-15 -2305 (|#1| |#1| (-1145 (-484)))) (-15 -2304 (|#1| |#2| |#1| (-484))) (-15 -2304 (|#1| |#1| |#1| (-484))) (-15 -3791 (|#1| |#1|)) (-15 -3792 ((-694) |#1|)) (-15 -3793 (|#1| |#1|)) (-15 -3796 (|#1| |#1|)) (-15 -3797 (|#1| |#1| (-694))) (-15 -3799 (|#2| |#1| "last")) (-15 -3797 (|#2| |#1|)) (-15 -3798 (|#1| |#1| (-694))) (-15 -3799 (|#1| |#1| "rest")) (-15 -3798 (|#1| |#1|)) (-15 -3800 (|#1| |#1| (-694))) (-15 -3799 (|#2| |#1| "first")) (-15 -3800 (|#2| |#1|)) (-15 -3027 ((-85) |#1| |#1|)) (-15 -3028 ((-85) |#1| |#1|)) (-15 -3029 ((-484) |#1| |#1|)) (-15 -3632 ((-85) |#1|)) (-15 -3799 (|#2| |#1| "value")) (-15 -3401 (|#2| |#1|)) (-15 -3526 ((-85) |#1|)) (-15 -3031 ((-583 |#1|) |#1|)) (-15 -3521 ((-583 |#1|) |#1|)) (-15 -1946 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -1947 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -3956 ((-694) |#1|))) (-616 |#2|) (-1128)) (T -615)) +NIL +((-2568 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3401 ((|#1| $) 52 T ELT)) (-3794 ((|#1| $) 71 T ELT)) (-3796 (($ $) 73 T ELT)) (-2198 (((-1184) $ (-484) (-484)) 107 (|has| $ (-6 -3995)) ELT)) (-3784 (($ $ (-484)) 58 (|has| $ (-6 -3995)) ELT)) (-3441 (((-85) $ (-694)) 90 T ELT)) (-3025 ((|#1| $ |#1|) 43 (|has| $ (-6 -3995)) ELT)) (-3786 (($ $ $) 62 (|has| $ (-6 -3995)) ELT)) (-3785 ((|#1| $ |#1|) 60 (|has| $ (-6 -3995)) ELT)) (-3788 ((|#1| $ |#1|) 64 (|has| $ (-6 -3995)) ELT)) (-3787 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -3995)) ELT) ((|#1| $ #2="first" |#1|) 63 (|has| $ (-6 -3995)) ELT) (($ $ #3="rest" $) 61 (|has| $ (-6 -3995)) ELT) ((|#1| $ #4="last" |#1|) 59 (|has| $ (-6 -3995)) ELT) ((|#1| $ (-1145 (-484)) |#1|) 127 (|has| $ (-6 -3995)) ELT) ((|#1| $ (-484) |#1|) 96 (|has| $ (-6 -3995)) ELT)) (-3026 (($ $ (-583 $)) 45 (|has| $ (-6 -3995)) ELT)) (-3709 (($ (-1 (-85) |#1|) $) 112 T ELT)) (-3795 ((|#1| $) 72 T ELT)) (-3723 (($) 7 T CONST)) (-2323 (($ $) 135 T ELT)) (-3798 (($ $) 79 T ELT) (($ $ (-694)) 77 T ELT)) (-1352 (($ $) 109 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-3405 (($ |#1| $) 110 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT) (($ (-1 (-85) |#1|) $) 113 T ELT)) (-3841 ((|#1| (-1 |#1| |#1| |#1|) $) 115 (|has| $ (-6 -3994)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 114 (|has| $ (-6 -3994)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 111 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-1575 ((|#1| $ (-484) |#1|) 95 (|has| $ (-6 -3995)) ELT)) (-3112 ((|#1| $ (-484)) 97 T ELT)) (-3442 (((-85) $) 93 T ELT)) (-2889 (((-583 |#1|) $) 30 (|has| $ (-6 -3994)) ELT)) (-2322 (((-694) $) 134 T ELT)) (-3031 (((-583 $) $) 54 T ELT)) (-3027 (((-85) $ $) 46 (|has| |#1| (-1013)) ELT)) (-3613 (($ (-694) |#1|) 119 T ELT)) (-3718 (((-85) $ (-694)) 91 T ELT)) (-2200 (((-484) $) 105 (|has| (-484) (-756)) ELT)) (-2608 (((-583 |#1|) $) 29 (|has| $ (-6 -3994)) ELT)) (-3245 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-2201 (((-484) $) 104 (|has| (-484) (-756)) ELT)) (-1948 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 122 T ELT)) (-3715 (((-85) $ (-694)) 92 T ELT)) (-3030 (((-583 |#1|) $) 49 T ELT)) (-3526 (((-85) $) 53 T ELT)) (-2325 (($ $) 137 T ELT)) (-2326 (((-85) $) 138 T ELT)) (-3242 (((-1072) $) 22 (|has| |#1| (-1013)) ELT)) (-3797 ((|#1| $) 76 T ELT) (($ $ (-694)) 74 T ELT)) (-2304 (($ $ $ (-484)) 126 T ELT) (($ |#1| $ (-484)) 125 T ELT)) (-2203 (((-583 (-484)) $) 102 T ELT)) (-2204 (((-85) (-484) $) 101 T ELT)) (-3243 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-2324 ((|#1| $) 136 T ELT)) (-3800 ((|#1| $) 82 T ELT) (($ $ (-694)) 80 T ELT)) (-1353 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 116 T ELT)) (-2199 (($ $ |#1|) 106 (|has| $ (-6 -3995)) ELT)) (-3768 (($ $ (-484)) 133 T ELT)) (-3443 (((-85) $) 94 T ELT)) (-2327 (((-85) $) 139 T ELT)) (-2328 (((-85) $) 140 T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3994)) ELT)) (-3767 (($ $ (-583 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1221 (((-85) $ $) 11 T ELT)) (-2202 (((-85) |#1| $) 103 (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-2205 (((-583 |#1|) $) 100 T ELT)) (-3402 (((-85) $) 8 T ELT)) (-3564 (($) 9 T ELT)) (-3799 ((|#1| $ #1#) 51 T ELT) ((|#1| $ #2#) 81 T ELT) (($ $ #3#) 78 T ELT) ((|#1| $ #4#) 75 T ELT) (($ $ (-1145 (-484))) 118 T ELT) ((|#1| $ (-484)) 99 T ELT) ((|#1| $ (-484) |#1|) 98 T ELT)) (-3029 (((-484) $ $) 48 T ELT)) (-2305 (($ $ (-1145 (-484))) 124 T ELT) (($ $ (-484)) 123 T ELT)) (-3632 (((-85) $) 50 T ELT)) (-3791 (($ $) 68 T ELT)) (-3789 (($ $) 65 (|has| $ (-6 -3995)) ELT)) (-3792 (((-694) $) 69 T ELT)) (-3793 (($ $) 70 T ELT)) (-1945 (((-694) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3994)) ELT) (((-694) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-3399 (($ $) 10 T ELT)) (-3971 (((-473) $) 108 (|has| |#1| (-553 (-473))) ELT)) (-3529 (($ (-583 |#1|)) 117 T ELT)) (-3790 (($ $ $) 67 (|has| $ (-6 -3995)) ELT) (($ $ |#1|) 66 (|has| $ (-6 -3995)) ELT)) (-3801 (($ $ $) 84 T ELT) (($ |#1| $) 83 T ELT) (($ (-583 $)) 121 T ELT) (($ $ |#1|) 120 T ELT)) (-2891 (($ $) 132 T ELT)) (-3945 (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-3521 (((-583 $) $) 55 T ELT)) (-3028 (((-85) $ $) 47 (|has| |#1| (-1013)) ELT)) (-1264 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3994)) ELT)) (-3056 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3956 (((-694) $) 6 (|has| $ (-6 -3994)) ELT))) +(((-616 |#1|) (-113) (-1128)) (T -616)) +((-3405 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-616 *3)) (-4 *3 (-1128)))) (-3709 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-616 *3)) (-4 *3 (-1128)))) (-2328 (*1 *2 *1) (-12 (-4 *1 (-616 *3)) (-4 *3 (-1128)) (-5 *2 (-85)))) (-2327 (*1 *2 *1) (-12 (-4 *1 (-616 *3)) (-4 *3 (-1128)) (-5 *2 (-85)))) (-2326 (*1 *2 *1) (-12 (-4 *1 (-616 *3)) (-4 *3 (-1128)) (-5 *2 (-85)))) (-2325 (*1 *1 *1) (-12 (-4 *1 (-616 *2)) (-4 *2 (-1128)))) (-2324 (*1 *2 *1) (-12 (-4 *1 (-616 *2)) (-4 *2 (-1128)))) (-2323 (*1 *1 *1) (-12 (-4 *1 (-616 *2)) (-4 *2 (-1128)))) (-2322 (*1 *2 *1) (-12 (-4 *1 (-616 *3)) (-4 *3 (-1128)) (-5 *2 (-694)))) (-3768 (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-4 *1 (-616 *3)) (-4 *3 (-1128)))) (-2891 (*1 *1 *1) (-12 (-4 *1 (-616 *2)) (-4 *2 (-1128))))) +(-13 (-1063 |t#1|) (-10 -8 (-15 -3405 ($ (-1 (-85) |t#1|) $)) (-15 -3709 ($ (-1 (-85) |t#1|) $)) (-15 -2328 ((-85) $)) (-15 -2327 ((-85) $)) (-15 -2326 ((-85) $)) (-15 -2325 ($ $)) (-15 -2324 (|t#1| $)) (-15 -2323 ($ $)) (-15 -2322 ((-694) $)) (-15 -3768 ($ $ (-484))) (-15 -2891 ($ $)))) +(((-34) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1013)) (|has| |#1| (-552 (-772)))) ((-124 |#1|) . T) ((-553 (-473)) |has| |#1| (-553 (-473))) ((-241 (-484) |#1|) . T) ((-241 (-1145 (-484)) $) . T) ((-243 (-484) |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-428 |#1|) . T) ((-538 (-484) |#1|) . T) ((-455 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-593 |#1|) . T) ((-923 |#1|) . T) ((-1013) |has| |#1| (-1013)) ((-1063 |#1|) . T) ((-1128) . T) ((-1167 |#1|) . T)) +((-2568 (((-85) $ $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3178 (((-422) $) 15 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) 24 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-3233 (((-1048) $) 17 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT))) +(((-617) (-13 (-995) (-10 -8 (-15 -3178 ((-422) $)) (-15 -3233 ((-1048) $))))) (T -617)) +((-3178 (*1 *2 *1) (-12 (-5 *2 (-422)) (-5 *1 (-617)))) (-3233 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-617))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3933 (((-583 |#1|) $) 15 T ELT)) (-3137 (($ $) 19 T ELT)) (-2664 (((-85) $) 20 T ELT)) (-3157 (((-3 |#1| "failed") $) 23 T ELT)) (-3156 ((|#1| $) 21 T ELT)) (-3798 (($ $) 37 T ELT)) (-3935 (($ $) 25 T ELT)) (-2531 (($ $ $) NIL T ELT)) (-2857 (($ $ $) NIL T ELT)) (-2511 (((-85) $ $) 46 T ELT)) (-3832 (((-830) $) 40 T ELT)) (-3138 (($ $) 18 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3800 ((|#1| $) 36 T ELT)) (-3945 (((-772) $) 32 T ELT) (($ |#1|) 24 T ELT) (((-739 |#1|) $) 28 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 13 T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) 44 T ELT)) (* (($ $ $) 35 T ELT))) +(((-618 |#1|) (-13 (-756) (-950 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -3945 ((-739 |#1|) $)) (-15 -3800 (|#1| $)) (-15 -3138 ($ $)) (-15 -3832 ((-830) $)) (-15 -2511 ((-85) $ $)) (-15 -3935 ($ $)) (-15 -3798 ($ $)) (-15 -2664 ((-85) $)) (-15 -3137 ($ $)) (-15 -3933 ((-583 |#1|) $)))) (-756)) (T -618)) +((* (*1 *1 *1 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-756)))) (-3945 (*1 *2 *1) (-12 (-5 *2 (-739 *3)) (-5 *1 (-618 *3)) (-4 *3 (-756)))) (-3800 (*1 *2 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-756)))) (-3138 (*1 *1 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-756)))) (-3832 (*1 *2 *1) (-12 (-5 *2 (-830)) (-5 *1 (-618 *3)) (-4 *3 (-756)))) (-2511 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-618 *3)) (-4 *3 (-756)))) (-3935 (*1 *1 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-756)))) (-3798 (*1 *1 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-756)))) (-2664 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-618 *3)) (-4 *3 (-756)))) (-3137 (*1 *1 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-756)))) (-3933 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-618 *3)) (-4 *3 (-756))))) +((-2337 ((|#1| (-1 |#1| (-694) |#1|) (-694) |#1|) 11 T ELT)) (-2329 ((|#1| (-1 |#1| |#1|) (-694) |#1|) 9 T ELT))) +(((-619 |#1|) (-10 -7 (-15 -2329 (|#1| (-1 |#1| |#1|) (-694) |#1|)) (-15 -2337 (|#1| (-1 |#1| (-694) |#1|) (-694) |#1|))) (-1013)) (T -619)) +((-2337 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-694) *2)) (-5 *4 (-694)) (-4 *2 (-1013)) (-5 *1 (-619 *2)))) (-2329 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-694)) (-4 *2 (-1013)) (-5 *1 (-619 *2))))) +((-2331 ((|#2| |#1| |#2|) 9 T ELT)) (-2330 ((|#1| |#1| |#2|) 8 T ELT))) +(((-620 |#1| |#2|) (-10 -7 (-15 -2330 (|#1| |#1| |#2|)) (-15 -2331 (|#2| |#1| |#2|))) (-1013) (-1013)) (T -620)) +((-2331 (*1 *2 *3 *2) (-12 (-5 *1 (-620 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1013)))) (-2330 (*1 *2 *2 *3) (-12 (-5 *1 (-620 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013))))) +((-2332 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11 T ELT))) +(((-621 |#1| |#2| |#3|) (-10 -7 (-15 -2332 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1013) (-1013) (-1013)) (T -621)) +((-2332 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *2 (-1013)) (-5 *1 (-621 *5 *6 *2))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3318 (((-1129) $) 22 T ELT)) (-3317 (((-583 (-1129)) $) 20 T ELT)) (-2333 (($ (-583 (-1129)) (-1129)) 15 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) 30 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT) (((-1129) $) 23 T ELT) (($ (-1028)) 11 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT))) +(((-622) (-13 (-995) (-552 (-1129)) (-10 -8 (-15 -3945 ($ (-1028))) (-15 -2333 ($ (-583 (-1129)) (-1129))) (-15 -3317 ((-583 (-1129)) $)) (-15 -3318 ((-1129) $))))) (T -622)) +((-3945 (*1 *1 *2) (-12 (-5 *2 (-1028)) (-5 *1 (-622)))) (-2333 (*1 *1 *2 *3) (-12 (-5 *2 (-583 (-1129))) (-5 *3 (-1129)) (-5 *1 (-622)))) (-3317 (*1 *2 *1) (-12 (-5 *2 (-583 (-1129))) (-5 *1 (-622)))) (-3318 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-622))))) +((-2337 (((-1 |#1| (-694) |#1|) (-1 |#1| (-694) |#1|)) 26 T ELT)) (-2334 (((-1 |#1|) |#1|) 8 T ELT)) (-2336 ((|#1| |#1|) 19 T ELT)) (-2335 (((-583 |#1|) (-1 (-583 |#1|) (-583 |#1|)) (-484)) 18 T ELT) ((|#1| (-1 |#1| |#1|)) 11 T ELT)) (-3945 (((-1 |#1|) |#1|) 9 T ELT)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-694)) 23 T ELT))) +(((-623 |#1|) (-10 -7 (-15 -2334 ((-1 |#1|) |#1|)) (-15 -3945 ((-1 |#1|) |#1|)) (-15 -2335 (|#1| (-1 |#1| |#1|))) (-15 -2335 ((-583 |#1|) (-1 (-583 |#1|) (-583 |#1|)) (-484))) (-15 -2336 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-694))) (-15 -2337 ((-1 |#1| (-694) |#1|) (-1 |#1| (-694) |#1|)))) (-1013)) (T -623)) +((-2337 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-694) *3)) (-4 *3 (-1013)) (-5 *1 (-623 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-694)) (-4 *4 (-1013)) (-5 *1 (-623 *4)))) (-2336 (*1 *2 *2) (-12 (-5 *1 (-623 *2)) (-4 *2 (-1013)))) (-2335 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-583 *5) (-583 *5))) (-5 *4 (-484)) (-5 *2 (-583 *5)) (-5 *1 (-623 *5)) (-4 *5 (-1013)))) (-2335 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-623 *2)) (-4 *2 (-1013)))) (-3945 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-623 *3)) (-4 *3 (-1013)))) (-2334 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-623 *3)) (-4 *3 (-1013))))) +((-2340 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16 T ELT)) (-2339 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13 T ELT)) (-3951 (((-1 |#2| |#1|) (-1 |#2|)) 14 T ELT)) (-2338 (((-1 |#2| |#1|) |#2|) 11 T ELT))) +(((-624 |#1| |#2|) (-10 -7 (-15 -2338 ((-1 |#2| |#1|) |#2|)) (-15 -2339 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -3951 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2340 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1013) (-1013)) (T -624)) +((-2340 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-5 *2 (-1 *5 *4)) (-5 *1 (-624 *4 *5)))) (-3951 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1013)) (-5 *2 (-1 *5 *4)) (-5 *1 (-624 *4 *5)) (-4 *4 (-1013)))) (-2339 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-5 *2 (-1 *5)) (-5 *1 (-624 *4 *5)))) (-2338 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-624 *4 *3)) (-4 *4 (-1013)) (-4 *3 (-1013))))) +((-2345 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17 T ELT)) (-2341 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11 T ELT)) (-2342 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13 T ELT)) (-2343 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14 T ELT)) (-2344 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15 T ELT)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21 T ELT))) +(((-625 |#1| |#2| |#3|) (-10 -7 (-15 -2341 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -2342 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -2343 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2344 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2345 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1013) (-1013) (-1013)) (T -625)) +((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-1 *7 *5)) (-5 *1 (-625 *5 *6 *7)))) (-2345 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-625 *4 *5 *6)))) (-2344 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-625 *4 *5 *6)) (-4 *4 (-1013)))) (-2343 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1013)) (-4 *6 (-1013)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-625 *4 *5 *6)) (-4 *5 (-1013)))) (-2342 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-5 *2 (-1 *6 *5)) (-5 *1 (-625 *4 *5 *6)))) (-2341 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1013)) (-4 *4 (-1013)) (-4 *6 (-1013)) (-5 *2 (-1 *6 *5)) (-5 *1 (-625 *5 *4 *6))))) +((-3837 (($ (-694) (-694)) 42 T ELT)) (-2350 (($ $ $) 73 T ELT)) (-3413 (($ |#3|) 68 T ELT) (($ $) 69 T ELT)) (-3120 (((-85) $) 36 T ELT)) (-2349 (($ $ (-484) (-484)) 84 T ELT)) (-2348 (($ $ (-484) (-484)) 85 T ELT)) (-2347 (($ $ (-484) (-484) (-484) (-484)) 90 T ELT)) (-2352 (($ $) 71 T ELT)) (-3122 (((-85) $) 15 T ELT)) (-2346 (($ $ (-484) (-484) $) 91 T ELT)) (-3787 ((|#2| $ (-484) (-484) |#2|) NIL T ELT) (($ $ (-583 (-484)) (-583 (-484)) $) 89 T ELT)) (-3332 (($ (-694) |#2|) 55 T ELT)) (-3123 (($ (-583 (-583 |#2|))) 51 T ELT) (($ (-694) (-694) (-1 |#2| (-484) (-484))) 53 T ELT)) (-3593 (((-583 (-583 |#2|)) $) 80 T ELT)) (-2351 (($ $ $) 72 T ELT)) (-3465 (((-3 $ "failed") $ |#2|) 122 T ELT)) (-3799 ((|#2| $ (-484) (-484)) NIL T ELT) ((|#2| $ (-484) (-484) |#2|) NIL T ELT) (($ $ (-583 (-484)) (-583 (-484))) 88 T ELT)) (-3331 (($ (-583 |#2|)) 56 T ELT) (($ (-583 $)) 58 T ELT)) (-3121 (((-85) $) 28 T ELT)) (-3945 (($ |#4|) 63 T ELT) (((-772) $) NIL T ELT)) (-3119 (((-85) $) 38 T ELT)) (-3948 (($ $ |#2|) 124 T ELT)) (-3836 (($ $ $) 95 T ELT) (($ $) 98 T ELT)) (-3838 (($ $ $) 93 T ELT)) (** (($ $ (-694)) 111 T ELT) (($ $ (-484)) 128 T ELT)) (* (($ $ $) 104 T ELT) (($ |#2| $) 100 T ELT) (($ $ |#2|) 101 T ELT) (($ (-484) $) 103 T ELT) ((|#4| $ |#4|) 115 T ELT) ((|#3| |#3| $) 119 T ELT))) +(((-626 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3945 ((-772) |#1|)) (-15 ** (|#1| |#1| (-484))) (-15 -3948 (|#1| |#1| |#2|)) (-15 -3465 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-694))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-484) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3836 (|#1| |#1|)) (-15 -3836 (|#1| |#1| |#1|)) (-15 -3838 (|#1| |#1| |#1|)) (-15 -2346 (|#1| |#1| (-484) (-484) |#1|)) (-15 -2347 (|#1| |#1| (-484) (-484) (-484) (-484))) (-15 -2348 (|#1| |#1| (-484) (-484))) (-15 -2349 (|#1| |#1| (-484) (-484))) (-15 -3787 (|#1| |#1| (-583 (-484)) (-583 (-484)) |#1|)) (-15 -3799 (|#1| |#1| (-583 (-484)) (-583 (-484)))) (-15 -3593 ((-583 (-583 |#2|)) |#1|)) (-15 -2350 (|#1| |#1| |#1|)) (-15 -2351 (|#1| |#1| |#1|)) (-15 -2352 (|#1| |#1|)) (-15 -3413 (|#1| |#1|)) (-15 -3413 (|#1| |#3|)) (-15 -3945 (|#1| |#4|)) (-15 -3331 (|#1| (-583 |#1|))) (-15 -3331 (|#1| (-583 |#2|))) (-15 -3332 (|#1| (-694) |#2|)) (-15 -3123 (|#1| (-694) (-694) (-1 |#2| (-484) (-484)))) (-15 -3123 (|#1| (-583 (-583 |#2|)))) (-15 -3837 (|#1| (-694) (-694))) (-15 -3119 ((-85) |#1|)) (-15 -3120 ((-85) |#1|)) (-15 -3121 ((-85) |#1|)) (-15 -3122 ((-85) |#1|)) (-15 -3787 (|#2| |#1| (-484) (-484) |#2|)) (-15 -3799 (|#2| |#1| (-484) (-484) |#2|)) (-15 -3799 (|#2| |#1| (-484) (-484)))) (-627 |#2| |#3| |#4|) (-961) (-323 |#2|) (-323 |#2|)) (T -626)) +NIL +((-2568 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3837 (($ (-694) (-694)) 103 T ELT)) (-2350 (($ $ $) 92 T ELT)) (-3413 (($ |#2|) 96 T ELT) (($ $) 95 T ELT)) (-3120 (((-85) $) 105 T ELT)) (-2349 (($ $ (-484) (-484)) 88 T ELT)) (-2348 (($ $ (-484) (-484)) 87 T ELT)) (-2347 (($ $ (-484) (-484) (-484) (-484)) 86 T ELT)) (-2352 (($ $) 94 T ELT)) (-3122 (((-85) $) 107 T ELT)) (-2346 (($ $ (-484) (-484) $) 85 T ELT)) (-3787 ((|#1| $ (-484) (-484) |#1|) 48 T ELT) (($ $ (-583 (-484)) (-583 (-484)) $) 89 T ELT)) (-1256 (($ $ (-484) |#2|) 46 T ELT)) (-1255 (($ $ (-484) |#3|) 45 T ELT)) (-3332 (($ (-694) |#1|) 100 T ELT)) (-3723 (($) 7 T CONST)) (-3109 (($ $) 72 (|has| |#1| (-258)) ELT)) (-3111 ((|#2| $ (-484)) 50 T ELT)) (-3108 (((-694) $) 71 (|has| |#1| (-495)) ELT)) (-1575 ((|#1| $ (-484) (-484) |#1|) 47 T ELT)) (-3112 ((|#1| $ (-484) (-484)) 52 T ELT)) (-2889 (((-583 |#1|) $) 30 (|has| $ (-6 -3994)) ELT)) (-3107 (((-694) $) 70 (|has| |#1| (-495)) ELT)) (-3106 (((-583 |#3|) $) 69 (|has| |#1| (-495)) ELT)) (-3114 (((-694) $) 55 T ELT)) (-3613 (($ (-694) (-694) |#1|) 61 T ELT)) (-3113 (((-694) $) 54 T ELT)) (-3326 ((|#1| $) 67 (|has| |#1| (-6 (-3996 #1="*"))) ELT)) (-3118 (((-484) $) 59 T ELT)) (-3116 (((-484) $) 57 T ELT)) (-2608 (((-583 |#1|) $) 29 (|has| $ (-6 -3994)) ELT)) (-3245 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-3117 (((-484) $) 58 T ELT)) (-3115 (((-484) $) 56 T ELT)) (-3123 (($ (-583 (-583 |#1|))) 102 T ELT) (($ (-694) (-694) (-1 |#1| (-484) (-484))) 101 T ELT)) (-1948 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-3957 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 44 T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 43 T ELT)) (-3593 (((-583 (-583 |#1|)) $) 91 T ELT)) (-3242 (((-1072) $) 22 (|has| |#1| (-1013)) ELT)) (-3589 (((-3 $ "failed") $) 66 (|has| |#1| (-312)) ELT)) (-2351 (($ $ $) 93 T ELT)) (-3243 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-2199 (($ $ |#1|) 60 T ELT)) (-3465 (((-3 $ "failed") $ |#1|) 74 (|has| |#1| (-495)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3994)) ELT)) (-3767 (($ $ (-583 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1221 (((-85) $ $) 11 T ELT)) (-3402 (((-85) $) 8 T ELT)) (-3564 (($) 9 T ELT)) (-3799 ((|#1| $ (-484) (-484)) 53 T ELT) ((|#1| $ (-484) (-484) |#1|) 51 T ELT) (($ $ (-583 (-484)) (-583 (-484))) 90 T ELT)) (-3331 (($ (-583 |#1|)) 99 T ELT) (($ (-583 $)) 98 T ELT)) (-3121 (((-85) $) 106 T ELT)) (-3327 ((|#1| $) 68 (|has| |#1| (-6 (-3996 #1#))) ELT)) (-1945 (((-694) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3994)) ELT) (((-694) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-3399 (($ $) 10 T ELT)) (-3110 ((|#3| $ (-484)) 49 T ELT)) (-3945 (($ |#3|) 97 T ELT) (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-1264 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3994)) ELT)) (-3119 (((-85) $) 104 T ELT)) (-3056 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3948 (($ $ |#1|) 73 (|has| |#1| (-312)) ELT)) (-3836 (($ $ $) 83 T ELT) (($ $) 82 T ELT)) (-3838 (($ $ $) 84 T ELT)) (** (($ $ (-694)) 75 T ELT) (($ $ (-484)) 65 (|has| |#1| (-312)) ELT)) (* (($ $ $) 81 T ELT) (($ |#1| $) 80 T ELT) (($ $ |#1|) 79 T ELT) (($ (-484) $) 78 T ELT) ((|#3| $ |#3|) 77 T ELT) ((|#2| |#2| $) 76 T ELT)) (-3956 (((-694) $) 6 (|has| $ (-6 -3994)) ELT))) +(((-627 |#1| |#2| |#3|) (-113) (-961) (-323 |t#1|) (-323 |t#1|)) (T -627)) +((-3122 (*1 *2 *1) (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)) (-5 *2 (-85)))) (-3121 (*1 *2 *1) (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)) (-5 *2 (-85)))) (-3120 (*1 *2 *1) (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)) (-5 *2 (-85)))) (-3119 (*1 *2 *1) (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)) (-5 *2 (-85)))) (-3837 (*1 *1 *2 *2) (-12 (-5 *2 (-694)) (-4 *3 (-961)) (-4 *1 (-627 *3 *4 *5)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)))) (-3123 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-961)) (-4 *1 (-627 *3 *4 *5)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)))) (-3123 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-694)) (-5 *3 (-1 *4 (-484) (-484))) (-4 *4 (-961)) (-4 *1 (-627 *4 *5 *6)) (-4 *5 (-323 *4)) (-4 *6 (-323 *4)))) (-3332 (*1 *1 *2 *3) (-12 (-5 *2 (-694)) (-4 *3 (-961)) (-4 *1 (-627 *3 *4 *5)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)))) (-3331 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-961)) (-4 *1 (-627 *3 *4 *5)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)))) (-3331 (*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *3 (-961)) (-4 *1 (-627 *3 *4 *5)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)))) (-3945 (*1 *1 *2) (-12 (-4 *3 (-961)) (-4 *1 (-627 *3 *4 *2)) (-4 *4 (-323 *3)) (-4 *2 (-323 *3)))) (-3413 (*1 *1 *2) (-12 (-4 *3 (-961)) (-4 *1 (-627 *3 *2 *4)) (-4 *2 (-323 *3)) (-4 *4 (-323 *3)))) (-3413 (*1 *1 *1) (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-323 *2)) (-4 *4 (-323 *2)))) (-2352 (*1 *1 *1) (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-323 *2)) (-4 *4 (-323 *2)))) (-2351 (*1 *1 *1 *1) (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-323 *2)) (-4 *4 (-323 *2)))) (-2350 (*1 *1 *1 *1) (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-323 *2)) (-4 *4 (-323 *2)))) (-3593 (*1 *2 *1) (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)) (-5 *2 (-583 (-583 *3))))) (-3799 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-583 (-484))) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)))) (-3787 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-583 (-484))) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)))) (-2349 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-484)) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)))) (-2348 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-484)) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)))) (-2347 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-484)) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)))) (-2346 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-484)) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)))) (-3838 (*1 *1 *1 *1) (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-323 *2)) (-4 *4 (-323 *2)))) (-3836 (*1 *1 *1 *1) (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-323 *2)) (-4 *4 (-323 *2)))) (-3836 (*1 *1 *1) (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-323 *2)) (-4 *4 (-323 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-323 *2)) (-4 *4 (-323 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-323 *2)) (-4 *4 (-323 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-323 *2)) (-4 *4 (-323 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-484)) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-627 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-323 *3)) (-4 *2 (-323 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-627 *3 *2 *4)) (-4 *3 (-961)) (-4 *2 (-323 *3)) (-4 *4 (-323 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)))) (-3465 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-323 *2)) (-4 *4 (-323 *2)) (-4 *2 (-495)))) (-3948 (*1 *1 *1 *2) (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-323 *2)) (-4 *4 (-323 *2)) (-4 *2 (-312)))) (-3109 (*1 *1 *1) (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-323 *2)) (-4 *4 (-323 *2)) (-4 *2 (-258)))) (-3108 (*1 *2 *1) (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)) (-4 *3 (-495)) (-5 *2 (-694)))) (-3107 (*1 *2 *1) (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)) (-4 *3 (-495)) (-5 *2 (-694)))) (-3106 (*1 *2 *1) (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)) (-4 *3 (-495)) (-5 *2 (-583 *5)))) (-3327 (*1 *2 *1) (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *3 (-323 *2)) (-4 *4 (-323 *2)) (|has| *2 (-6 (-3996 #1="*"))) (-4 *2 (-961)))) (-3326 (*1 *2 *1) (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *3 (-323 *2)) (-4 *4 (-323 *2)) (|has| *2 (-6 (-3996 #1#))) (-4 *2 (-961)))) (-3589 (*1 *1 *1) (|partial| -12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-323 *2)) (-4 *4 (-323 *2)) (-4 *2 (-312)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)) (-4 *3 (-312))))) +(-13 (-57 |t#1| |t#2| |t#3|) (-10 -8 (-15 -3122 ((-85) $)) (-15 -3121 ((-85) $)) (-15 -3120 ((-85) $)) (-15 -3119 ((-85) $)) (-15 -3837 ($ (-694) (-694))) (-15 -3123 ($ (-583 (-583 |t#1|)))) (-15 -3123 ($ (-694) (-694) (-1 |t#1| (-484) (-484)))) (-15 -3332 ($ (-694) |t#1|)) (-15 -3331 ($ (-583 |t#1|))) (-15 -3331 ($ (-583 $))) (-15 -3945 ($ |t#3|)) (-15 -3413 ($ |t#2|)) (-15 -3413 ($ $)) (-15 -2352 ($ $)) (-15 -2351 ($ $ $)) (-15 -2350 ($ $ $)) (-15 -3593 ((-583 (-583 |t#1|)) $)) (-15 -3799 ($ $ (-583 (-484)) (-583 (-484)))) (-15 -3787 ($ $ (-583 (-484)) (-583 (-484)) $)) (-15 -2349 ($ $ (-484) (-484))) (-15 -2348 ($ $ (-484) (-484))) (-15 -2347 ($ $ (-484) (-484) (-484) (-484))) (-15 -2346 ($ $ (-484) (-484) $)) (-15 -3838 ($ $ $)) (-15 -3836 ($ $ $)) (-15 -3836 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-484) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-694))) (IF (|has| |t#1| (-495)) (-15 -3465 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-312)) (-15 -3948 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-258)) (-15 -3109 ($ $)) |%noBranch|) (IF (|has| |t#1| (-495)) (PROGN (-15 -3108 ((-694) $)) (-15 -3107 ((-694) $)) (-15 -3106 ((-583 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-3996 "*"))) (PROGN (-15 -3327 (|t#1| $)) (-15 -3326 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-312)) (PROGN (-15 -3589 ((-3 $ "failed") $)) (-15 ** ($ $ (-484)))) |%noBranch|))) +(((-34) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1013)) (|has| |#1| (-552 (-772)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-428 |#1|) . T) ((-455 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-1013) |has| |#1| (-1013)) ((-57 |#1| |#2| |#3|) . T) ((-1128) . T)) +((-3841 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39 T ELT)) (-3957 (((-3 |#8| #1="failed") (-1 (-3 |#5| #1#) |#1|) |#4|) 37 T ELT) ((|#8| (-1 |#5| |#1|) |#4|) 31 T ELT))) +(((-628 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3957 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -3957 ((-3 |#8| #1="failed") (-1 (-3 |#5| #1#) |#1|) |#4|)) (-15 -3841 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-961) (-323 |#1|) (-323 |#1|) (-627 |#1| |#2| |#3|) (-961) (-323 |#5|) (-323 |#5|) (-627 |#5| |#6| |#7|)) (T -628)) +((-3841 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-961)) (-4 *2 (-961)) (-4 *6 (-323 *5)) (-4 *7 (-323 *5)) (-4 *8 (-323 *2)) (-4 *9 (-323 *2)) (-5 *1 (-628 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-627 *5 *6 *7)) (-4 *10 (-627 *2 *8 *9)))) (-3957 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-961)) (-4 *8 (-961)) (-4 *6 (-323 *5)) (-4 *7 (-323 *5)) (-4 *2 (-627 *8 *9 *10)) (-5 *1 (-628 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-627 *5 *6 *7)) (-4 *9 (-323 *8)) (-4 *10 (-323 *8)))) (-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-961)) (-4 *8 (-961)) (-4 *6 (-323 *5)) (-4 *7 (-323 *5)) (-4 *2 (-627 *8 *9 *10)) (-5 *1 (-628 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-627 *5 *6 *7)) (-4 *9 (-323 *8)) (-4 *10 (-323 *8))))) +((-3109 ((|#4| |#4|) 90 (|has| |#1| (-258)) ELT)) (-3108 (((-694) |#4|) 92 (|has| |#1| (-495)) ELT)) (-3107 (((-694) |#4|) 94 (|has| |#1| (-495)) ELT)) (-3106 (((-583 |#3|) |#4|) 101 (|has| |#1| (-495)) ELT)) (-2380 (((-2 (|:| -1972 |#1|) (|:| -2902 |#1|)) |#1| |#1|) 124 (|has| |#1| (-258)) ELT)) (-3326 ((|#1| |#4|) 52 T ELT)) (-2357 (((-3 |#4| #1="failed") |#4|) 84 (|has| |#1| (-495)) ELT)) (-3589 (((-3 |#4| #1#) |#4|) 98 (|has| |#1| (-312)) ELT)) (-2356 ((|#4| |#4|) 76 (|has| |#1| (-495)) ELT)) (-2354 ((|#4| |#4| |#1| (-484) (-484)) 60 T ELT)) (-2353 ((|#4| |#4| (-484) (-484)) 55 T ELT)) (-2355 ((|#4| |#4| |#1| (-484) (-484)) 65 T ELT)) (-3327 ((|#1| |#4|) 96 T ELT)) (-2520 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 80 (|has| |#1| (-495)) ELT))) +(((-629 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3327 (|#1| |#4|)) (-15 -3326 (|#1| |#4|)) (-15 -2353 (|#4| |#4| (-484) (-484))) (-15 -2354 (|#4| |#4| |#1| (-484) (-484))) (-15 -2355 (|#4| |#4| |#1| (-484) (-484))) (IF (|has| |#1| (-495)) (PROGN (-15 -3108 ((-694) |#4|)) (-15 -3107 ((-694) |#4|)) (-15 -3106 ((-583 |#3|) |#4|)) (-15 -2356 (|#4| |#4|)) (-15 -2357 ((-3 |#4| #1="failed") |#4|)) (-15 -2520 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-258)) (PROGN (-15 -3109 (|#4| |#4|)) (-15 -2380 ((-2 (|:| -1972 |#1|) (|:| -2902 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-312)) (-15 -3589 ((-3 |#4| #1#) |#4|)) |%noBranch|)) (-146) (-323 |#1|) (-323 |#1|) (-627 |#1| |#2| |#3|)) (T -629)) +((-3589 (*1 *2 *2) (|partial| -12 (-4 *3 (-312)) (-4 *3 (-146)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)) (-5 *1 (-629 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5)))) (-2380 (*1 *2 *3 *3) (-12 (-4 *3 (-258)) (-4 *3 (-146)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)) (-5 *2 (-2 (|:| -1972 *3) (|:| -2902 *3))) (-5 *1 (-629 *3 *4 *5 *6)) (-4 *6 (-627 *3 *4 *5)))) (-3109 (*1 *2 *2) (-12 (-4 *3 (-258)) (-4 *3 (-146)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)) (-5 *1 (-629 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5)))) (-2520 (*1 *2 *3) (-12 (-4 *4 (-495)) (-4 *4 (-146)) (-4 *5 (-323 *4)) (-4 *6 (-323 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-629 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6)))) (-2357 (*1 *2 *2) (|partial| -12 (-4 *3 (-495)) (-4 *3 (-146)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)) (-5 *1 (-629 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5)))) (-2356 (*1 *2 *2) (-12 (-4 *3 (-495)) (-4 *3 (-146)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)) (-5 *1 (-629 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5)))) (-3106 (*1 *2 *3) (-12 (-4 *4 (-495)) (-4 *4 (-146)) (-4 *5 (-323 *4)) (-4 *6 (-323 *4)) (-5 *2 (-583 *6)) (-5 *1 (-629 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6)))) (-3107 (*1 *2 *3) (-12 (-4 *4 (-495)) (-4 *4 (-146)) (-4 *5 (-323 *4)) (-4 *6 (-323 *4)) (-5 *2 (-694)) (-5 *1 (-629 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6)))) (-3108 (*1 *2 *3) (-12 (-4 *4 (-495)) (-4 *4 (-146)) (-4 *5 (-323 *4)) (-4 *6 (-323 *4)) (-5 *2 (-694)) (-5 *1 (-629 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6)))) (-2355 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-484)) (-4 *3 (-146)) (-4 *5 (-323 *3)) (-4 *6 (-323 *3)) (-5 *1 (-629 *3 *5 *6 *2)) (-4 *2 (-627 *3 *5 *6)))) (-2354 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-484)) (-4 *3 (-146)) (-4 *5 (-323 *3)) (-4 *6 (-323 *3)) (-5 *1 (-629 *3 *5 *6 *2)) (-4 *2 (-627 *3 *5 *6)))) (-2353 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-484)) (-4 *4 (-146)) (-4 *5 (-323 *4)) (-4 *6 (-323 *4)) (-5 *1 (-629 *4 *5 *6 *2)) (-4 *2 (-627 *4 *5 *6)))) (-3326 (*1 *2 *3) (-12 (-4 *4 (-323 *2)) (-4 *5 (-323 *2)) (-4 *2 (-146)) (-5 *1 (-629 *2 *4 *5 *3)) (-4 *3 (-627 *2 *4 *5)))) (-3327 (*1 *2 *3) (-12 (-4 *4 (-323 *2)) (-4 *5 (-323 *2)) (-4 *2 (-146)) (-5 *1 (-629 *2 *4 *5 *3)) (-4 *3 (-627 *2 *4 *5))))) +((-2568 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3837 (($ (-694) (-694)) 63 T ELT)) (-2350 (($ $ $) NIL T ELT)) (-3413 (($ (-1178 |#1|)) NIL T ELT) (($ $) NIL T ELT)) (-3120 (((-85) $) NIL T ELT)) (-2349 (($ $ (-484) (-484)) 21 T ELT)) (-2348 (($ $ (-484) (-484)) NIL T ELT)) (-2347 (($ $ (-484) (-484) (-484) (-484)) NIL T ELT)) (-2352 (($ $) NIL T ELT)) (-3122 (((-85) $) NIL T ELT)) (-2346 (($ $ (-484) (-484) $) NIL T ELT)) (-3787 ((|#1| $ (-484) (-484) |#1|) NIL T ELT) (($ $ (-583 (-484)) (-583 (-484)) $) NIL T ELT)) (-1256 (($ $ (-484) (-1178 |#1|)) NIL T ELT)) (-1255 (($ $ (-484) (-1178 |#1|)) NIL T ELT)) (-3332 (($ (-694) |#1|) 37 T ELT)) (-3723 (($) NIL T CONST)) (-3109 (($ $) 46 (|has| |#1| (-258)) ELT)) (-3111 (((-1178 |#1|) $ (-484)) NIL T ELT)) (-3108 (((-694) $) 48 (|has| |#1| (-495)) ELT)) (-1575 ((|#1| $ (-484) (-484) |#1|) 68 T ELT)) (-3112 ((|#1| $ (-484) (-484)) NIL T ELT)) (-2889 (((-583 |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3107 (((-694) $) 50 (|has| |#1| (-495)) ELT)) (-3106 (((-583 (-1178 |#1|)) $) 53 (|has| |#1| (-495)) ELT)) (-3114 (((-694) $) 31 T ELT)) (-3613 (($ (-694) (-694) |#1|) 27 T ELT)) (-3113 (((-694) $) 32 T ELT)) (-3326 ((|#1| $) 44 (|has| |#1| (-6 (-3996 #1="*"))) ELT)) (-3118 (((-484) $) 9 T ELT)) (-3116 (((-484) $) 10 T ELT)) (-2608 (((-583 |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3245 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-3117 (((-484) $) 13 T ELT)) (-3115 (((-484) $) 64 T ELT)) (-3123 (($ (-583 (-583 |#1|))) NIL T ELT) (($ (-694) (-694) (-1 |#1| (-484) (-484))) NIL T ELT)) (-1948 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3593 (((-583 (-583 |#1|)) $) 75 T ELT)) (-3242 (((-1072) $) NIL (|has| |#1| (-1013)) ELT)) (-3589 (((-3 $ #2="failed") $) 57 (|has| |#1| (-312)) ELT)) (-2351 (($ $ $) NIL T ELT)) (-3243 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-2199 (($ $ |#1|) NIL T ELT)) (-3465 (((-3 $ #2#) $ |#1|) NIL (|has| |#1| (-495)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3767 (($ $ (-583 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1221 (((-85) $ $) NIL T ELT)) (-3402 (((-85) $) NIL T ELT)) (-3564 (($) NIL T ELT)) (-3799 ((|#1| $ (-484) (-484)) NIL T ELT) ((|#1| $ (-484) (-484) |#1|) NIL T ELT) (($ $ (-583 (-484)) (-583 (-484))) NIL T ELT)) (-3331 (($ (-583 |#1|)) NIL T ELT) (($ (-583 $)) NIL T ELT) (($ (-1178 |#1|)) 69 T ELT)) (-3121 (((-85) $) NIL T ELT)) (-3327 ((|#1| $) 42 (|has| |#1| (-6 (-3996 #1#))) ELT)) (-1945 (((-694) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT) (((-694) |#1| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-3399 (($ $) NIL T ELT)) (-3971 (((-473) $) 79 (|has| |#1| (-553 (-473))) ELT)) (-3110 (((-1178 |#1|) $ (-484)) NIL T ELT)) (-3945 (($ (-1178 |#1|)) NIL T ELT) (((-772) $) NIL (|has| |#1| (-552 (-772))) ELT)) (-1264 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3119 (((-85) $) NIL T ELT)) (-3056 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3948 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3836 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (** (($ $ (-694)) 38 T ELT) (($ $ (-484)) 61 (|has| |#1| (-312)) ELT)) (* (($ $ $) 23 T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ (-484) $) NIL T ELT) (((-1178 |#1|) $ (-1178 |#1|)) NIL T ELT) (((-1178 |#1|) (-1178 |#1|) $) NIL T ELT)) (-3956 (((-694) $) NIL (|has| $ (-6 -3994)) ELT))) +(((-630 |#1|) (-13 (-627 |#1| (-1178 |#1|) (-1178 |#1|)) (-10 -8 (-15 -3331 ($ (-1178 |#1|))) (IF (|has| |#1| (-553 (-473))) (-6 (-553 (-473))) |%noBranch|) (IF (|has| |#1| (-312)) (-15 -3589 ((-3 $ "failed") $)) |%noBranch|))) (-961)) (T -630)) +((-3589 (*1 *1 *1) (|partial| -12 (-5 *1 (-630 *2)) (-4 *2 (-312)) (-4 *2 (-961)))) (-3331 (*1 *1 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-961)) (-5 *1 (-630 *3))))) +((-2363 (((-630 |#1|) (-630 |#1|) (-630 |#1|) (-630 |#1|)) 37 T ELT)) (-2362 (((-630 |#1|) (-630 |#1|) (-630 |#1|) |#1|) 32 T ELT)) (-2364 (((-630 |#1|) (-630 |#1|) (-630 |#1|) (-630 |#1|) (-630 |#1|) (-694)) 43 T ELT)) (-2359 (((-630 |#1|) (-630 |#1|) (-630 |#1|) (-630 |#1|)) 25 T ELT)) (-2360 (((-630 |#1|) (-630 |#1|) (-630 |#1|) (-630 |#1|)) 29 T ELT) (((-630 |#1|) (-630 |#1|) (-630 |#1|)) 27 T ELT)) (-2361 (((-630 |#1|) (-630 |#1|) |#1| (-630 |#1|)) 31 T ELT)) (-2358 (((-630 |#1|) (-630 |#1|) (-630 |#1|)) 23 T ELT)) (** (((-630 |#1|) (-630 |#1|) (-694)) 46 T ELT))) +(((-631 |#1|) (-10 -7 (-15 -2358 ((-630 |#1|) (-630 |#1|) (-630 |#1|))) (-15 -2359 ((-630 |#1|) (-630 |#1|) (-630 |#1|) (-630 |#1|))) (-15 -2360 ((-630 |#1|) (-630 |#1|) (-630 |#1|))) (-15 -2360 ((-630 |#1|) (-630 |#1|) (-630 |#1|) (-630 |#1|))) (-15 -2361 ((-630 |#1|) (-630 |#1|) |#1| (-630 |#1|))) (-15 -2362 ((-630 |#1|) (-630 |#1|) (-630 |#1|) |#1|)) (-15 -2363 ((-630 |#1|) (-630 |#1|) (-630 |#1|) (-630 |#1|))) (-15 -2364 ((-630 |#1|) (-630 |#1|) (-630 |#1|) (-630 |#1|) (-630 |#1|) (-694))) (-15 ** ((-630 |#1|) (-630 |#1|) (-694)))) (-961)) (T -631)) +((** (*1 *2 *2 *3) (-12 (-5 *2 (-630 *4)) (-5 *3 (-694)) (-4 *4 (-961)) (-5 *1 (-631 *4)))) (-2364 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-630 *4)) (-5 *3 (-694)) (-4 *4 (-961)) (-5 *1 (-631 *4)))) (-2363 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-961)) (-5 *1 (-631 *3)))) (-2362 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-630 *3)) (-4 *3 (-961)) (-5 *1 (-631 *3)))) (-2361 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-961)) (-5 *1 (-631 *3)))) (-2360 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-961)) (-5 *1 (-631 *3)))) (-2360 (*1 *2 *2 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-961)) (-5 *1 (-631 *3)))) (-2359 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-961)) (-5 *1 (-631 *3)))) (-2358 (*1 *2 *2 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-961)) (-5 *1 (-631 *3))))) +((-3157 (((-3 |#1| "failed") $) 18 T ELT)) (-3156 ((|#1| $) NIL T ELT)) (-2365 (($) 7 T CONST)) (-2366 (($ |#1|) 8 T ELT)) (-3945 (($ |#1|) 16 T ELT) (((-772) $) 23 T ELT)) (-3565 (((-85) $ (|[\|\|]| |#1|)) 14 T ELT) (((-85) $ (|[\|\|]| -2365)) 11 T ELT)) (-3571 ((|#1| $) 15 T ELT))) +(((-632 |#1|) (-13 (-1174) (-950 |#1|) (-552 (-772)) (-10 -8 (-15 -2366 ($ |#1|)) (-15 -3565 ((-85) $ (|[\|\|]| |#1|))) (-15 -3565 ((-85) $ (|[\|\|]| -2365))) (-15 -3571 (|#1| $)) (-15 -2365 ($) -3951))) (-552 (-772))) (T -632)) +((-2366 (*1 *1 *2) (-12 (-5 *1 (-632 *2)) (-4 *2 (-552 (-772))))) (-3565 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-552 (-772))) (-5 *2 (-85)) (-5 *1 (-632 *4)))) (-3565 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2365)) (-5 *2 (-85)) (-5 *1 (-632 *4)) (-4 *4 (-552 (-772))))) (-3571 (*1 *2 *1) (-12 (-5 *1 (-632 *2)) (-4 *2 (-552 (-772))))) (-2365 (*1 *1) (-12 (-5 *1 (-632 *2)) (-4 *2 (-552 (-772)))))) +((-3740 (((-2 (|:| |num| (-630 |#1|)) (|:| |den| |#1|)) (-630 |#2|)) 20 T ELT)) (-3738 ((|#1| (-630 |#2|)) 9 T ELT)) (-3739 (((-630 |#1|) (-630 |#2|)) 18 T ELT))) +(((-633 |#1| |#2|) (-10 -7 (-15 -3738 (|#1| (-630 |#2|))) (-15 -3739 ((-630 |#1|) (-630 |#2|))) (-15 -3740 ((-2 (|:| |num| (-630 |#1|)) (|:| |den| |#1|)) (-630 |#2|)))) (-495) (-904 |#1|)) (T -633)) +((-3740 (*1 *2 *3) (-12 (-5 *3 (-630 *5)) (-4 *5 (-904 *4)) (-4 *4 (-495)) (-5 *2 (-2 (|:| |num| (-630 *4)) (|:| |den| *4))) (-5 *1 (-633 *4 *5)))) (-3739 (*1 *2 *3) (-12 (-5 *3 (-630 *5)) (-4 *5 (-904 *4)) (-4 *4 (-495)) (-5 *2 (-630 *4)) (-5 *1 (-633 *4 *5)))) (-3738 (*1 *2 *3) (-12 (-5 *3 (-630 *4)) (-4 *4 (-904 *2)) (-4 *2 (-495)) (-5 *1 (-633 *2 *4))))) +((-2568 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-1569 (($ (-1 (-85) |#1|) $) 49 (|has| $ (-6 -3994)) ELT)) (-3709 (($ (-1 (-85) |#1|) $) 59 (|has| $ (-6 -3994)) ELT)) (-3723 (($) 7 T CONST)) (-2368 (($ $) 66 T ELT)) (-1352 (($ $) 62 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-3404 (($ |#1| $) 51 (|has| $ (-6 -3994)) ELT) (($ (-1 (-85) |#1|) $) 50 (|has| $ (-6 -3994)) ELT)) (-3405 (($ |#1| $) 61 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT) (($ (-1 (-85) |#1|) $) 58 (|has| $ (-6 -3994)) ELT)) (-3841 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -3994)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -3994)) ELT)) (-2889 (((-583 |#1|) $) 30 (|has| $ (-6 -3994)) ELT)) (-2608 (((-583 |#1|) $) 29 (|has| $ (-6 -3994)) ELT)) (-3245 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-1948 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3242 (((-1072) $) 22 (|has| |#1| (-1013)) ELT)) (-1273 ((|#1| $) 43 T ELT)) (-3608 (($ |#1| $) 44 T ELT) (($ |#1| $ (-694)) 67 T ELT)) (-3243 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-1353 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 55 T ELT)) (-1274 ((|#1| $) 45 T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3994)) ELT)) (-3767 (($ $ (-583 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1221 (((-85) $ $) 11 T ELT)) (-3402 (((-85) $) 8 T ELT)) (-3564 (($) 9 T ELT)) (-2367 (((-583 (-2 (|:| |entry| |#1|) (|:| -1945 (-694)))) $) 65 T ELT)) (-1465 (($) 53 T ELT) (($ (-583 |#1|)) 52 T ELT)) (-1945 (((-694) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3994)) ELT) (((-694) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-3399 (($ $) 10 T ELT)) (-3971 (((-473) $) 63 (|has| |#1| (-553 (-473))) ELT)) (-3529 (($ (-583 |#1|)) 54 T ELT)) (-3945 (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-1264 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1275 (($ (-583 |#1|)) 46 T ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3994)) ELT)) (-3056 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3956 (((-694) $) 6 (|has| $ (-6 -3994)) ELT))) +(((-634 |#1|) (-113) (-1013)) (T -634)) +((-3608 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-694)) (-4 *1 (-634 *2)) (-4 *2 (-1013)))) (-2368 (*1 *1 *1) (-12 (-4 *1 (-634 *2)) (-4 *2 (-1013)))) (-2367 (*1 *2 *1) (-12 (-4 *1 (-634 *3)) (-4 *3 (-1013)) (-5 *2 (-583 (-2 (|:| |entry| *3) (|:| -1945 (-694)))))))) +(-13 (-193 |t#1|) (-10 -8 (-15 -3608 ($ |t#1| $ (-694))) (-15 -2368 ($ $)) (-15 -2367 ((-583 (-2 (|:| |entry| |t#1|) (|:| -1945 (-694)))) $)))) +(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1013)) (|has| |#1| (-552 (-772)))) ((-124 |#1|) . T) ((-553 (-473)) |has| |#1| (-553 (-473))) ((-193 |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-428 |#1|) . T) ((-455 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-1013) |has| |#1| (-1013)) ((-1128) . T)) +((-2371 (((-583 |#1|) (-583 (-2 (|:| -3731 |#1|) (|:| -3947 (-484)))) (-484)) 66 T ELT)) (-2369 ((|#1| |#1| (-484)) 63 T ELT)) (-3144 ((|#1| |#1| |#1| (-484)) 46 T ELT)) (-3731 (((-583 |#1|) |#1| (-484)) 49 T ELT)) (-2372 ((|#1| |#1| (-484) |#1| (-484)) 40 T ELT)) (-2370 (((-583 (-2 (|:| -3731 |#1|) (|:| -3947 (-484)))) |#1| (-484)) 62 T ELT))) +(((-635 |#1|) (-10 -7 (-15 -3144 (|#1| |#1| |#1| (-484))) (-15 -2369 (|#1| |#1| (-484))) (-15 -3731 ((-583 |#1|) |#1| (-484))) (-15 -2370 ((-583 (-2 (|:| -3731 |#1|) (|:| -3947 (-484)))) |#1| (-484))) (-15 -2371 ((-583 |#1|) (-583 (-2 (|:| -3731 |#1|) (|:| -3947 (-484)))) (-484))) (-15 -2372 (|#1| |#1| (-484) |#1| (-484)))) (-1154 (-484))) (T -635)) +((-2372 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-484)) (-5 *1 (-635 *2)) (-4 *2 (-1154 *3)))) (-2371 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-2 (|:| -3731 *5) (|:| -3947 (-484))))) (-5 *4 (-484)) (-4 *5 (-1154 *4)) (-5 *2 (-583 *5)) (-5 *1 (-635 *5)))) (-2370 (*1 *2 *3 *4) (-12 (-5 *4 (-484)) (-5 *2 (-583 (-2 (|:| -3731 *3) (|:| -3947 *4)))) (-5 *1 (-635 *3)) (-4 *3 (-1154 *4)))) (-3731 (*1 *2 *3 *4) (-12 (-5 *4 (-484)) (-5 *2 (-583 *3)) (-5 *1 (-635 *3)) (-4 *3 (-1154 *4)))) (-2369 (*1 *2 *2 *3) (-12 (-5 *3 (-484)) (-5 *1 (-635 *2)) (-4 *2 (-1154 *3)))) (-3144 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-484)) (-5 *1 (-635 *2)) (-4 *2 (-1154 *3))))) +((-2376 (((-1 (-854 (-179)) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179) (-179))) 17 T ELT)) (-2373 (((-1046 (-179)) (-1046 (-179)) (-1 (-854 (-179)) (-179) (-179)) (-1001 (-179)) (-1001 (-179)) (-583 (-221))) 53 T ELT) (((-1046 (-179)) (-1 (-854 (-179)) (-179) (-179)) (-1001 (-179)) (-1001 (-179)) (-583 (-221))) 55 T ELT) (((-1046 (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-3 (-1 (-179) (-179) (-179) (-179)) #1="undefined") (-1001 (-179)) (-1001 (-179)) (-583 (-221))) 57 T ELT)) (-2375 (((-1046 (-179)) (-265 (-484)) (-265 (-484)) (-265 (-484)) (-1 (-179) (-179)) (-1001 (-179)) (-583 (-221))) NIL T ELT)) (-2374 (((-1046 (-179)) (-1 (-179) (-179) (-179)) (-3 (-1 (-179) (-179) (-179) (-179)) #1#) (-1001 (-179)) (-1001 (-179)) (-583 (-221))) 58 T ELT))) +(((-636) (-10 -7 (-15 -2373 ((-1046 (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-3 (-1 (-179) (-179) (-179) (-179)) #1="undefined") (-1001 (-179)) (-1001 (-179)) (-583 (-221)))) (-15 -2373 ((-1046 (-179)) (-1 (-854 (-179)) (-179) (-179)) (-1001 (-179)) (-1001 (-179)) (-583 (-221)))) (-15 -2373 ((-1046 (-179)) (-1046 (-179)) (-1 (-854 (-179)) (-179) (-179)) (-1001 (-179)) (-1001 (-179)) (-583 (-221)))) (-15 -2374 ((-1046 (-179)) (-1 (-179) (-179) (-179)) (-3 (-1 (-179) (-179) (-179) (-179)) #1#) (-1001 (-179)) (-1001 (-179)) (-583 (-221)))) (-15 -2375 ((-1046 (-179)) (-265 (-484)) (-265 (-484)) (-265 (-484)) (-1 (-179) (-179)) (-1001 (-179)) (-583 (-221)))) (-15 -2376 ((-1 (-854 (-179)) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179) (-179)))))) (T -636)) +((-2376 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1 (-179) (-179) (-179) (-179))) (-5 *2 (-1 (-854 (-179)) (-179) (-179))) (-5 *1 (-636)))) (-2375 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-265 (-484))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1001 (-179))) (-5 *6 (-583 (-221))) (-5 *2 (-1046 (-179))) (-5 *1 (-636)))) (-2374 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-3 (-1 (-179) (-179) (-179) (-179)) #1="undefined")) (-5 *5 (-1001 (-179))) (-5 *6 (-583 (-221))) (-5 *2 (-1046 (-179))) (-5 *1 (-636)))) (-2373 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1046 (-179))) (-5 *3 (-1 (-854 (-179)) (-179) (-179))) (-5 *4 (-1001 (-179))) (-5 *5 (-583 (-221))) (-5 *1 (-636)))) (-2373 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-854 (-179)) (-179) (-179))) (-5 *4 (-1001 (-179))) (-5 *5 (-583 (-221))) (-5 *2 (-1046 (-179))) (-5 *1 (-636)))) (-2373 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-3 (-1 (-179) (-179) (-179) (-179)) #1#)) (-5 *5 (-1001 (-179))) (-5 *6 (-583 (-221))) (-5 *2 (-1046 (-179))) (-5 *1 (-636))))) +((-3731 (((-347 (-1084 |#4|)) (-1084 |#4|)) 87 T ELT) (((-347 |#4|) |#4|) 270 T ELT))) +(((-637 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3731 ((-347 |#4|) |#4|)) (-15 -3731 ((-347 (-1084 |#4|)) (-1084 |#4|)))) (-756) (-717) (-299) (-861 |#3| |#2| |#1|)) (T -637)) +((-3731 (*1 *2 *3) (-12 (-4 *4 (-756)) (-4 *5 (-717)) (-4 *6 (-299)) (-4 *7 (-861 *6 *5 *4)) (-5 *2 (-347 (-1084 *7))) (-5 *1 (-637 *4 *5 *6 *7)) (-5 *3 (-1084 *7)))) (-3731 (*1 *2 *3) (-12 (-4 *4 (-756)) (-4 *5 (-717)) (-4 *6 (-299)) (-5 *2 (-347 *3)) (-5 *1 (-637 *4 *5 *6 *3)) (-4 *3 (-861 *6 *5 *4))))) +((-2379 (((-630 |#1|) (-630 |#1|) |#1| |#1|) 85 T ELT)) (-3109 (((-630 |#1|) (-630 |#1|) |#1|) 66 T ELT)) (-2378 (((-630 |#1|) (-630 |#1|) |#1|) 86 T ELT)) (-2377 (((-630 |#1|) (-630 |#1|)) 67 T ELT)) (-2380 (((-2 (|:| -1972 |#1|) (|:| -2902 |#1|)) |#1| |#1|) 84 T ELT))) +(((-638 |#1|) (-10 -7 (-15 -2377 ((-630 |#1|) (-630 |#1|))) (-15 -3109 ((-630 |#1|) (-630 |#1|) |#1|)) (-15 -2378 ((-630 |#1|) (-630 |#1|) |#1|)) (-15 -2379 ((-630 |#1|) (-630 |#1|) |#1| |#1|)) (-15 -2380 ((-2 (|:| -1972 |#1|) (|:| -2902 |#1|)) |#1| |#1|))) (-258)) (T -638)) +((-2380 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -1972 *3) (|:| -2902 *3))) (-5 *1 (-638 *3)) (-4 *3 (-258)))) (-2379 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-630 *3)) (-4 *3 (-258)) (-5 *1 (-638 *3)))) (-2378 (*1 *2 *2 *3) (-12 (-5 *2 (-630 *3)) (-4 *3 (-258)) (-5 *1 (-638 *3)))) (-3109 (*1 *2 *2 *3) (-12 (-5 *2 (-630 *3)) (-4 *3 (-258)) (-5 *1 (-638 *3)))) (-2377 (*1 *2 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-258)) (-5 *1 (-638 *3))))) +((-2386 (((-1 |#4| |#2| |#3|) |#1| (-1089) (-1089)) 19 T ELT)) (-2381 (((-1 |#4| |#2| |#3|) (-1089)) 12 T ELT))) +(((-639 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2381 ((-1 |#4| |#2| |#3|) (-1089))) (-15 -2386 ((-1 |#4| |#2| |#3|) |#1| (-1089) (-1089)))) (-553 (-473)) (-1128) (-1128) (-1128)) (T -639)) +((-2386 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1089)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-639 *3 *5 *6 *7)) (-4 *3 (-553 (-473))) (-4 *5 (-1128)) (-4 *6 (-1128)) (-4 *7 (-1128)))) (-2381 (*1 *2 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-639 *4 *5 *6 *7)) (-4 *4 (-553 (-473))) (-4 *5 (-1128)) (-4 *6 (-1128)) (-4 *7 (-1128))))) +((-2382 (((-1 (-179) (-179) (-179)) |#1| (-1089) (-1089)) 43 T ELT) (((-1 (-179) (-179)) |#1| (-1089)) 48 T ELT))) +(((-640 |#1|) (-10 -7 (-15 -2382 ((-1 (-179) (-179)) |#1| (-1089))) (-15 -2382 ((-1 (-179) (-179) (-179)) |#1| (-1089) (-1089)))) (-553 (-473))) (T -640)) +((-2382 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1089)) (-5 *2 (-1 (-179) (-179) (-179))) (-5 *1 (-640 *3)) (-4 *3 (-553 (-473))))) (-2382 (*1 *2 *3 *4) (-12 (-5 *4 (-1089)) (-5 *2 (-1 (-179) (-179))) (-5 *1 (-640 *3)) (-4 *3 (-553 (-473)))))) +((-2383 (((-1089) |#1| (-1089) (-583 (-1089))) 10 T ELT) (((-1089) |#1| (-1089) (-1089) (-1089)) 13 T ELT) (((-1089) |#1| (-1089) (-1089)) 12 T ELT) (((-1089) |#1| (-1089)) 11 T ELT))) +(((-641 |#1|) (-10 -7 (-15 -2383 ((-1089) |#1| (-1089))) (-15 -2383 ((-1089) |#1| (-1089) (-1089))) (-15 -2383 ((-1089) |#1| (-1089) (-1089) (-1089))) (-15 -2383 ((-1089) |#1| (-1089) (-583 (-1089))))) (-553 (-473))) (T -641)) +((-2383 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-583 (-1089))) (-5 *2 (-1089)) (-5 *1 (-641 *3)) (-4 *3 (-553 (-473))))) (-2383 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-641 *3)) (-4 *3 (-553 (-473))))) (-2383 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-641 *3)) (-4 *3 (-553 (-473))))) (-2383 (*1 *2 *3 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-641 *3)) (-4 *3 (-553 (-473)))))) +((-2384 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9 T ELT))) +(((-642 |#1| |#2|) (-10 -7 (-15 -2384 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1128) (-1128)) (T -642)) +((-2384 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-642 *3 *4)) (-4 *3 (-1128)) (-4 *4 (-1128))))) +((-2385 (((-1 |#3| |#2|) (-1089)) 11 T ELT)) (-2386 (((-1 |#3| |#2|) |#1| (-1089)) 21 T ELT))) +(((-643 |#1| |#2| |#3|) (-10 -7 (-15 -2385 ((-1 |#3| |#2|) (-1089))) (-15 -2386 ((-1 |#3| |#2|) |#1| (-1089)))) (-553 (-473)) (-1128) (-1128)) (T -643)) +((-2386 (*1 *2 *3 *4) (-12 (-5 *4 (-1089)) (-5 *2 (-1 *6 *5)) (-5 *1 (-643 *3 *5 *6)) (-4 *3 (-553 (-473))) (-4 *5 (-1128)) (-4 *6 (-1128)))) (-2385 (*1 *2 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-1 *6 *5)) (-5 *1 (-643 *4 *5 *6)) (-4 *4 (-553 (-473))) (-4 *5 (-1128)) (-4 *6 (-1128))))) +((-2389 (((-3 (-583 (-1084 |#4|)) #1="failed") (-1084 |#4|) (-583 |#2|) (-583 (-1084 |#4|)) (-583 |#3|) (-583 |#4|) (-583 (-583 (-2 (|:| -3078 (-694)) (|:| |pcoef| |#4|)))) (-583 (-694)) (-1178 (-583 (-1084 |#3|))) |#3|) 92 T ELT)) (-2388 (((-3 (-583 (-1084 |#4|)) #1#) (-1084 |#4|) (-583 |#2|) (-583 (-1084 |#3|)) (-583 |#3|) (-583 |#4|) (-583 (-694)) |#3|) 110 T ELT)) (-2387 (((-3 (-583 (-1084 |#4|)) #1#) (-1084 |#4|) (-583 |#2|) (-583 |#3|) (-583 (-694)) (-583 (-1084 |#4|)) (-1178 (-583 (-1084 |#3|))) |#3|) 48 T ELT))) +(((-644 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2387 ((-3 (-583 (-1084 |#4|)) #1="failed") (-1084 |#4|) (-583 |#2|) (-583 |#3|) (-583 (-694)) (-583 (-1084 |#4|)) (-1178 (-583 (-1084 |#3|))) |#3|)) (-15 -2388 ((-3 (-583 (-1084 |#4|)) #1#) (-1084 |#4|) (-583 |#2|) (-583 (-1084 |#3|)) (-583 |#3|) (-583 |#4|) (-583 (-694)) |#3|)) (-15 -2389 ((-3 (-583 (-1084 |#4|)) #1#) (-1084 |#4|) (-583 |#2|) (-583 (-1084 |#4|)) (-583 |#3|) (-583 |#4|) (-583 (-583 (-2 (|:| -3078 (-694)) (|:| |pcoef| |#4|)))) (-583 (-694)) (-1178 (-583 (-1084 |#3|))) |#3|))) (-717) (-756) (-258) (-861 |#3| |#1| |#2|)) (T -644)) +((-2389 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-583 (-1084 *13))) (-5 *3 (-1084 *13)) (-5 *4 (-583 *12)) (-5 *5 (-583 *10)) (-5 *6 (-583 *13)) (-5 *7 (-583 (-583 (-2 (|:| -3078 (-694)) (|:| |pcoef| *13))))) (-5 *8 (-583 (-694))) (-5 *9 (-1178 (-583 (-1084 *10)))) (-4 *12 (-756)) (-4 *10 (-258)) (-4 *13 (-861 *10 *11 *12)) (-4 *11 (-717)) (-5 *1 (-644 *11 *12 *10 *13)))) (-2388 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-583 *11)) (-5 *5 (-583 (-1084 *9))) (-5 *6 (-583 *9)) (-5 *7 (-583 *12)) (-5 *8 (-583 (-694))) (-4 *11 (-756)) (-4 *9 (-258)) (-4 *12 (-861 *9 *10 *11)) (-4 *10 (-717)) (-5 *2 (-583 (-1084 *12))) (-5 *1 (-644 *10 *11 *9 *12)) (-5 *3 (-1084 *12)))) (-2387 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-583 (-1084 *11))) (-5 *3 (-1084 *11)) (-5 *4 (-583 *10)) (-5 *5 (-583 *8)) (-5 *6 (-583 (-694))) (-5 *7 (-1178 (-583 (-1084 *8)))) (-4 *10 (-756)) (-4 *8 (-258)) (-4 *11 (-861 *8 *9 *10)) (-4 *9 (-717)) (-5 *1 (-644 *9 *10 *8 *11))))) +((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3723 (($) 23 T CONST)) (-3958 (($ $) 56 T ELT)) (-3466 (((-3 $ "failed") $) 42 T ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-2893 (($ |#1| (-694)) 54 T ELT)) (-2820 (((-694) $) 58 T ELT)) (-3174 ((|#1| $) 57 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3947 (((-694) $) 59 T ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ |#1|) 53 (|has| |#1| (-146)) ELT)) (-3676 ((|#1| $ (-694)) 55 T ELT)) (-3126 (((-694)) 40 T CONST)) (-1264 (((-85) $ $) 6 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 61 T ELT) (($ |#1| $) 60 T ELT))) +(((-645 |#1|) (-113) (-961)) (T -645)) +((-3947 (*1 *2 *1) (-12 (-4 *1 (-645 *3)) (-4 *3 (-961)) (-5 *2 (-694)))) (-2820 (*1 *2 *1) (-12 (-4 *1 (-645 *3)) (-4 *3 (-961)) (-5 *2 (-694)))) (-3174 (*1 *2 *1) (-12 (-4 *1 (-645 *2)) (-4 *2 (-961)))) (-3958 (*1 *1 *1) (-12 (-4 *1 (-645 *2)) (-4 *2 (-961)))) (-3676 (*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-4 *1 (-645 *2)) (-4 *2 (-961)))) (-2893 (*1 *1 *2 *3) (-12 (-5 *3 (-694)) (-4 *1 (-645 *2)) (-4 *2 (-961))))) +(-13 (-961) (-82 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-146)) (-6 (-38 |t#1|)) |%noBranch|) (-15 -3947 ((-694) $)) (-15 -2820 ((-694) $)) (-15 -3174 (|t#1| $)) (-15 -3958 ($ $)) (-15 -3676 (|t#1| $ (-694))) (-15 -2893 ($ |t#1| (-694))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-146)) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-555 (-484)) . T) ((-555 |#1|) |has| |#1| (-146)) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-582 |#1|) |has| |#1| (-146)) ((-654 |#1|) |has| |#1| (-146)) ((-663) . T) ((-963 |#1|) . T) ((-968 |#1|) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T)) +((-3957 ((|#6| (-1 |#4| |#1|) |#3|) 23 T ELT))) +(((-646 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3957 (|#6| (-1 |#4| |#1|) |#3|))) (-495) (-1154 |#1|) (-1154 (-349 |#2|)) (-495) (-1154 |#4|) (-1154 (-349 |#5|))) (T -646)) +((-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-495)) (-4 *7 (-495)) (-4 *6 (-1154 *5)) (-4 *2 (-1154 (-349 *8))) (-5 *1 (-646 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1154 (-349 *6))) (-4 *8 (-1154 *7))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2390 (((-1072) (-772)) 36 T ELT)) (-3616 (((-1184) (-1072)) 29 T ELT)) (-2392 (((-1072) (-772)) 26 T ELT)) (-2391 (((-1072) (-772)) 27 T ELT)) (-3945 (((-772) $) NIL T ELT) (((-1072) (-772)) 25 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT))) +(((-647) (-13 (-1013) (-10 -7 (-15 -3945 ((-1072) (-772))) (-15 -2392 ((-1072) (-772))) (-15 -2391 ((-1072) (-772))) (-15 -2390 ((-1072) (-772))) (-15 -3616 ((-1184) (-1072)))))) (T -647)) +((-3945 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1072)) (-5 *1 (-647)))) (-2392 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1072)) (-5 *1 (-647)))) (-2391 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1072)) (-5 *1 (-647)))) (-2390 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1072)) (-5 *1 (-647)))) (-3616 (*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-647))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3774 (($ $) NIL T ELT)) (-3970 (((-347 $) $) NIL T ELT)) (-1607 (((-85) $ $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-2564 (($ $ $) NIL T ELT)) (-3841 (($ |#1| |#2|) NIL T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-2563 (($ $ $) NIL T ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-3722 (((-85) $) NIL T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-1604 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2614 ((|#2| $) NIL T ELT)) (-1890 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2484 (($ $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3144 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3731 (((-347 $) $) NIL T ELT)) (-1605 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3465 (((-3 $ #1#) $ $) NIL T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-2402 (((-3 $ #1#) $ $) NIL T ELT)) (-1606 (((-694) $) NIL T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL T ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-349 (-484))) NIL T ELT) ((|#1| $) NIL T ELT)) (-3126 (((-694)) NIL T CONST)) (-1264 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) NIL T CONST)) (-2666 (($) NIL T CONST)) (-3056 (((-85) $ $) NIL T ELT)) (-3948 (($ $ $) NIL T ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-349 (-484))) NIL T ELT) (($ (-349 (-484)) $) NIL T ELT))) +(((-648 |#1| |#2| |#3| |#4| |#5|) (-13 (-312) (-10 -8 (-15 -2614 (|#2| $)) (-15 -3945 (|#1| $)) (-15 -3841 ($ |#1| |#2|)) (-15 -2402 ((-3 $ #1="failed") $ $)))) (-146) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| #1#) |#2| |#2|) (-1 (-3 |#1| #1#) |#1| |#1| |#2|)) (T -648)) +((-2614 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-648 *3 *2 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 #1="failed") *2 *2)) (-14 *6 (-1 (-3 *3 #2="failed") *3 *3 *2)))) (-3945 (*1 *2 *1) (-12 (-4 *2 (-146)) (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-3841 (*1 *1 *2 *3) (-12 (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2402 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) 37 T ELT)) (-3766 (((-1178 |#1|) $ (-694)) NIL T ELT)) (-3081 (((-583 (-994)) $) NIL T ELT)) (-3764 (($ (-1084 |#1|)) NIL T ELT)) (-3083 (((-1084 $) $ (-994)) NIL T ELT) (((-1084 |#1|) $) NIL T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2063 (($ $) NIL (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-2819 (((-694) $) NIL T ELT) (((-694) $ (-583 (-994))) NIL T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3754 (($ $ $) NIL (|has| |#1| (-495)) ELT)) (-2707 (((-347 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-821)) ELT)) (-3774 (($ $) NIL (|has| |#1| (-391)) ELT)) (-3970 (((-347 $) $) NIL (|has| |#1| (-391)) ELT)) (-2704 (((-3 (-583 (-1084 $)) #1#) (-583 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-821)) ELT)) (-1607 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3136 (((-694)) 55 (|has| |#1| (-319)) ELT)) (-3760 (($ $ (-694)) NIL T ELT)) (-3759 (($ $ (-694)) NIL T ELT)) (-2399 ((|#2| |#2|) 51 T ELT)) (-3750 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-391)) ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-349 (-484)) #1#) $) NIL (|has| |#1| (-950 (-349 (-484)))) ELT) (((-3 (-484) #1#) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-3 (-994) #1#) $) NIL T ELT)) (-3156 ((|#1| $) NIL T ELT) (((-349 (-484)) $) NIL (|has| |#1| (-950 (-349 (-484)))) ELT) (((-484) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-994) $) NIL T ELT)) (-3755 (($ $ $ (-994)) NIL (|has| |#1| (-146)) ELT) ((|#1| $ $) NIL (|has| |#1| (-146)) ELT)) (-2564 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3958 (($ $) 72 T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1178 |#1|))) (-630 $) (-1178 $)) NIL T ELT) (((-630 |#1|) (-630 $)) NIL T ELT)) (-3841 (($ |#2|) 49 T ELT)) (-3466 (((-3 $ #1#) $) 98 T ELT)) (-2994 (($) 59 (|has| |#1| (-319)) ELT)) (-2563 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3758 (($ $ $) NIL T ELT)) (-3752 (($ $ $) NIL (|has| |#1| (-495)) ELT)) (-3751 (((-2 (|:| -3953 |#1|) (|:| -1972 $) (|:| -2902 $)) $ $) NIL (|has| |#1| (-495)) ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) NIL (|has| |#1| (-312)) ELT)) (-3502 (($ $) NIL (|has| |#1| (-391)) ELT) (($ $ (-994)) NIL (|has| |#1| (-391)) ELT)) (-2818 (((-583 $) $) NIL T ELT)) (-3722 (((-85) $) NIL (|has| |#1| (-821)) ELT)) (-2395 (((-869 $)) 89 T ELT)) (-1623 (($ $ |#1| (-694) $) NIL T ELT)) (-2796 (((-798 (-329) $) $ (-800 (-329)) (-798 (-329) $)) NIL (-12 (|has| (-994) (-796 (-329))) (|has| |#1| (-796 (-329)))) ELT) (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) NIL (-12 (|has| (-994) (-796 (-484))) (|has| |#1| (-796 (-484)))) ELT)) (-3771 (((-694) $ $) NIL (|has| |#1| (-495)) ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2420 (((-694) $) NIL T ELT)) (-3444 (((-632 $) $) NIL (|has| |#1| (-1065)) ELT)) (-3084 (($ (-1084 |#1|) (-994)) NIL T ELT) (($ (-1084 $) (-994)) NIL T ELT)) (-3776 (($ $ (-694)) NIL T ELT)) (-1604 (((-3 (-583 $) #1#) (-583 $) $) NIL (|has| |#1| (-312)) ELT)) (-2821 (((-583 $) $) NIL T ELT)) (-3936 (((-85) $) NIL T ELT)) (-2893 (($ |#1| (-694)) 86 T ELT) (($ $ (-994) (-694)) NIL T ELT) (($ $ (-583 (-994)) (-583 (-694))) NIL T ELT)) (-3762 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $ (-994)) NIL T ELT) (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL T ELT)) (-2614 ((|#2|) 52 T ELT)) (-2820 (((-694) $) NIL T ELT) (((-694) $ (-994)) NIL T ELT) (((-583 (-694)) $ (-583 (-994))) NIL T ELT)) (-1624 (($ (-1 (-694) (-694)) $) NIL T ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3765 (((-1084 |#1|) $) NIL T ELT)) (-3082 (((-3 (-994) #1#) $) NIL T ELT)) (-2010 (((-830) $) NIL (|has| |#1| (-319)) ELT)) (-3079 ((|#2| $) 48 T ELT)) (-2280 (((-630 (-484)) (-1178 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1178 |#1|))) (-1178 $) $) NIL T ELT) (((-630 |#1|) (-1178 $)) NIL T ELT)) (-2894 (($ $) NIL T ELT)) (-3174 ((|#1| $) 35 T ELT)) (-1890 (($ (-583 $)) NIL (|has| |#1| (-391)) ELT) (($ $ $) NIL (|has| |#1| (-391)) ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3761 (((-2 (|:| -1972 $) (|:| -2902 $)) $ (-694)) NIL T ELT)) (-2823 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2822 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2824 (((-3 (-2 (|:| |var| (-994)) (|:| -2401 (-694))) #1#) $) NIL T ELT)) (-3811 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3445 (($) NIL (|has| |#1| (-1065)) CONST)) (-2400 (($ (-830)) NIL (|has| |#1| (-319)) ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1796 (((-85) $) NIL T ELT)) (-1795 ((|#1| $) NIL T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) NIL (|has| |#1| (-391)) ELT)) (-3144 (($ (-583 $)) NIL (|has| |#1| (-391)) ELT) (($ $ $) NIL (|has| |#1| (-391)) ELT)) (-2393 (($ $) 88 (|has| |#1| (-299)) ELT)) (-2705 (((-347 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-821)) ELT)) (-2706 (((-347 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-821)) ELT)) (-3731 (((-347 $) $) NIL (|has| |#1| (-821)) ELT)) (-1605 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3465 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-495)) ELT) (((-3 $ #1#) $ $) 97 (|has| |#1| (-495)) ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL (|has| |#1| (-312)) ELT)) (-3767 (($ $ (-583 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ (-994) |#1|) NIL T ELT) (($ $ (-583 (-994)) (-583 |#1|)) NIL T ELT) (($ $ (-994) $) NIL T ELT) (($ $ (-583 (-994)) (-583 $)) NIL T ELT)) (-1606 (((-694) $) NIL (|has| |#1| (-312)) ELT)) (-3799 ((|#1| $ |#1|) NIL T ELT) (($ $ $) NIL T ELT) (((-349 $) (-349 $) (-349 $)) NIL (|has| |#1| (-495)) ELT) ((|#1| (-349 $) |#1|) NIL (|has| |#1| (-312)) ELT) (((-349 $) $ (-349 $)) NIL (|has| |#1| (-495)) ELT)) (-3763 (((-3 $ #1#) $ (-694)) NIL T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 99 (|has| |#1| (-312)) ELT)) (-3756 (($ $ (-994)) NIL (|has| |#1| (-146)) ELT) ((|#1| $) NIL (|has| |#1| (-146)) ELT)) (-3757 (($ $ (-583 (-994)) (-583 (-694))) NIL T ELT) (($ $ (-994) (-694)) NIL T ELT) (($ $ (-583 (-994))) NIL T ELT) (($ $ (-994)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL T ELT) (($ $ (-1 |#1| |#1|) $) NIL T ELT) (($ $ (-1089)) NIL (|has| |#1| (-811 (-1089))) ELT) (($ $ (-583 (-1089))) NIL (|has| |#1| (-811 (-1089))) ELT) (($ $ (-1089) (-694)) NIL (|has| |#1| (-811 (-1089))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (|has| |#1| (-811 (-1089))) ELT)) (-3947 (((-694) $) 39 T ELT) (((-694) $ (-994)) NIL T ELT) (((-583 (-694)) $ (-583 (-994))) NIL T ELT)) (-3971 (((-800 (-329)) $) NIL (-12 (|has| (-994) (-553 (-800 (-329)))) (|has| |#1| (-553 (-800 (-329))))) ELT) (((-800 (-484)) $) NIL (-12 (|has| (-994) (-553 (-800 (-484)))) (|has| |#1| (-553 (-800 (-484))))) ELT) (((-473) $) NIL (-12 (|has| (-994) (-553 (-473))) (|has| |#1| (-553 (-473)))) ELT)) (-2817 ((|#1| $) NIL (|has| |#1| (-391)) ELT) (($ $ (-994)) NIL (|has| |#1| (-391)) ELT)) (-2703 (((-3 (-1178 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-821))) ELT)) (-2394 (((-869 $)) 43 T ELT)) (-3753 (((-3 $ #1#) $ $) NIL (|has| |#1| (-495)) ELT) (((-3 (-349 $) #1#) (-349 $) $) NIL (|has| |#1| (-495)) ELT)) (-3945 (((-772) $) 69 T ELT) (($ (-484)) NIL T ELT) (($ |#1|) 66 T ELT) (($ (-994)) NIL T ELT) (($ |#2|) 76 T ELT) (($ (-349 (-484))) NIL (OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-950 (-349 (-484))))) ELT) (($ $) NIL (|has| |#1| (-495)) ELT)) (-3816 (((-583 |#1|) $) NIL T ELT)) (-3676 ((|#1| $ (-694)) 71 T ELT) (($ $ (-994) (-694)) NIL T ELT) (($ $ (-583 (-994)) (-583 (-694))) NIL T ELT)) (-2702 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-821))) (|has| |#1| (-118))) ELT)) (-3126 (((-694)) NIL T CONST)) (-1622 (($ $ $ (-694)) NIL (|has| |#1| (-146)) ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) 26 T CONST)) (-2398 (((-1178 |#1|) $) 84 T ELT)) (-2397 (($ (-1178 |#1|)) 58 T ELT)) (-2666 (($) 9 T CONST)) (-2669 (($ $ (-583 (-994)) (-583 (-694))) NIL T ELT) (($ $ (-994) (-694)) NIL T ELT) (($ $ (-583 (-994))) NIL T ELT) (($ $ (-994)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL T ELT) (($ $ (-1089)) NIL (|has| |#1| (-811 (-1089))) ELT) (($ $ (-583 (-1089))) NIL (|has| |#1| (-811 (-1089))) ELT) (($ $ (-1089) (-694)) NIL (|has| |#1| (-811 (-1089))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (|has| |#1| (-811 (-1089))) ELT)) (-2396 (((-1178 |#1|) $) NIL T ELT)) (-3056 (((-85) $ $) 77 T ELT)) (-3948 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3836 (($ $) 80 T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) 40 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) 93 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 65 T ELT) (($ $ $) 83 T ELT) (($ $ (-349 (-484))) NIL (|has| |#1| (-38 (-349 (-484)))) ELT) (($ (-349 (-484)) $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT) (($ |#1| $) 63 T ELT) (($ $ |#1|) NIL T ELT))) +(((-649 |#1| |#2|) (-13 (-1154 |#1|) (-555 |#2|) (-10 -8 (-15 -2399 (|#2| |#2|)) (-15 -2614 (|#2|)) (-15 -3841 ($ |#2|)) (-15 -3079 (|#2| $)) (-15 -2398 ((-1178 |#1|) $)) (-15 -2397 ($ (-1178 |#1|))) (-15 -2396 ((-1178 |#1|) $)) (-15 -2395 ((-869 $))) (-15 -2394 ((-869 $))) (IF (|has| |#1| (-299)) (-15 -2393 ($ $)) |%noBranch|) (IF (|has| |#1| (-319)) (-6 (-319)) |%noBranch|))) (-961) (-1154 |#1|)) (T -649)) +((-2399 (*1 *2 *2) (-12 (-4 *3 (-961)) (-5 *1 (-649 *3 *2)) (-4 *2 (-1154 *3)))) (-2614 (*1 *2) (-12 (-4 *2 (-1154 *3)) (-5 *1 (-649 *3 *2)) (-4 *3 (-961)))) (-3841 (*1 *1 *2) (-12 (-4 *3 (-961)) (-5 *1 (-649 *3 *2)) (-4 *2 (-1154 *3)))) (-3079 (*1 *2 *1) (-12 (-4 *2 (-1154 *3)) (-5 *1 (-649 *3 *2)) (-4 *3 (-961)))) (-2398 (*1 *2 *1) (-12 (-4 *3 (-961)) (-5 *2 (-1178 *3)) (-5 *1 (-649 *3 *4)) (-4 *4 (-1154 *3)))) (-2397 (*1 *1 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-961)) (-5 *1 (-649 *3 *4)) (-4 *4 (-1154 *3)))) (-2396 (*1 *2 *1) (-12 (-4 *3 (-961)) (-5 *2 (-1178 *3)) (-5 *1 (-649 *3 *4)) (-4 *4 (-1154 *3)))) (-2395 (*1 *2) (-12 (-4 *3 (-961)) (-5 *2 (-869 (-649 *3 *4))) (-5 *1 (-649 *3 *4)) (-4 *4 (-1154 *3)))) (-2394 (*1 *2) (-12 (-4 *3 (-961)) (-5 *2 (-869 (-649 *3 *4))) (-5 *1 (-649 *3 *4)) (-4 *4 (-1154 *3)))) (-2393 (*1 *1 *1) (-12 (-4 *2 (-299)) (-4 *2 (-961)) (-5 *1 (-649 *2 *3)) (-4 *3 (-1154 *2))))) +((-2568 (((-85) $ $) NIL T ELT)) (-2531 (($ $ $) NIL T ELT)) (-2857 (($ $ $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2400 ((|#1| $) 13 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2401 ((|#2| $) 12 T ELT)) (-3529 (($ |#1| |#2|) 16 T ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-2 (|:| -2400 |#1|) (|:| -2401 |#2|))) 15 T ELT) (((-2 (|:| -2400 |#1|) (|:| -2401 |#2|)) $) 14 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) 11 T ELT))) +(((-650 |#1| |#2| |#3|) (-13 (-756) (-429 (-2 (|:| -2400 |#1|) (|:| -2401 |#2|))) (-10 -8 (-15 -2401 (|#2| $)) (-15 -2400 (|#1| $)) (-15 -3529 ($ |#1| |#2|)))) (-756) (-1013) (-1 (-85) (-2 (|:| -2400 |#1|) (|:| -2401 |#2|)) (-2 (|:| -2400 |#1|) (|:| -2401 |#2|)))) (T -650)) +((-2401 (*1 *2 *1) (-12 (-4 *2 (-1013)) (-5 *1 (-650 *3 *2 *4)) (-4 *3 (-756)) (-14 *4 (-1 (-85) (-2 (|:| -2400 *3) (|:| -2401 *2)) (-2 (|:| -2400 *3) (|:| -2401 *2)))))) (-2400 (*1 *2 *1) (-12 (-4 *2 (-756)) (-5 *1 (-650 *2 *3 *4)) (-4 *3 (-1013)) (-14 *4 (-1 (-85) (-2 (|:| -2400 *2) (|:| -2401 *3)) (-2 (|:| -2400 *2) (|:| -2401 *3)))))) (-3529 (*1 *1 *2 *3) (-12 (-5 *1 (-650 *2 *3 *4)) (-4 *2 (-756)) (-4 *3 (-1013)) (-14 *4 (-1 (-85) (-2 (|:| -2400 *2) (|:| -2401 *3)) (-2 (|:| -2400 *2) (|:| -2401 *3))))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) 66 T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 |#1| #1#) $) 101 T ELT) (((-3 (-86) #1#) $) 107 T ELT)) (-3156 ((|#1| $) NIL T ELT) (((-86) $) 39 T ELT)) (-3466 (((-3 $ #1#) $) 102 T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2516 ((|#2| (-86) |#2|) 93 T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2515 (($ |#1| (-310 (-86))) 14 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2517 (($ $ (-1 |#2| |#2|)) 65 T ELT)) (-2518 (($ $ (-1 |#2| |#2|)) 44 T ELT)) (-3799 ((|#2| $ |#2|) 33 T ELT)) (-2519 ((|#1| |#1|) 112 (|has| |#1| (-146)) ELT)) (-3945 (((-772) $) 73 T ELT) (($ (-484)) 18 T ELT) (($ |#1|) 17 T ELT) (($ (-86)) 23 T ELT)) (-2702 (((-632 $) $) NIL (|has| |#1| (-118)) ELT)) (-3126 (((-694)) 37 T CONST)) (-1264 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2520 (($ $) 111 (|has| |#1| (-146)) ELT) (($ $ $) 115 (|has| |#1| (-146)) ELT)) (-2660 (($) 21 T CONST)) (-2666 (($) 9 T CONST)) (-3056 (((-85) $ $) NIL T ELT)) (-3836 (($ $) 48 T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) 83 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ (-86) (-484)) NIL T ELT) (($ $ (-484)) 64 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 110 T ELT) (($ $ $) 53 T ELT) (($ |#1| $) 108 (|has| |#1| (-146)) ELT) (($ $ |#1|) 109 (|has| |#1| (-146)) ELT))) +(((-651 |#1| |#2|) (-13 (-961) (-950 |#1|) (-950 (-86)) (-241 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |#1| (-146)) (PROGN (-6 (-38 |#1|)) (-15 -2520 ($ $)) (-15 -2520 ($ $ $)) (-15 -2519 (|#1| |#1|))) |%noBranch|) (-15 -2518 ($ $ (-1 |#2| |#2|))) (-15 -2517 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-86) (-484))) (-15 ** ($ $ (-484))) (-15 -2516 (|#2| (-86) |#2|)) (-15 -2515 ($ |#1| (-310 (-86)))))) (-961) (-590 |#1|)) (T -651)) +((-2520 (*1 *1 *1) (-12 (-4 *2 (-146)) (-4 *2 (-961)) (-5 *1 (-651 *2 *3)) (-4 *3 (-590 *2)))) (-2520 (*1 *1 *1 *1) (-12 (-4 *2 (-146)) (-4 *2 (-961)) (-5 *1 (-651 *2 *3)) (-4 *3 (-590 *2)))) (-2519 (*1 *2 *2) (-12 (-4 *2 (-146)) (-4 *2 (-961)) (-5 *1 (-651 *2 *3)) (-4 *3 (-590 *2)))) (-2518 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-590 *3)) (-4 *3 (-961)) (-5 *1 (-651 *3 *4)))) (-2517 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-590 *3)) (-4 *3 (-961)) (-5 *1 (-651 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-484)) (-4 *4 (-961)) (-5 *1 (-651 *4 *5)) (-4 *5 (-590 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-4 *3 (-961)) (-5 *1 (-651 *3 *4)) (-4 *4 (-590 *3)))) (-2516 (*1 *2 *3 *2) (-12 (-5 *3 (-86)) (-4 *4 (-961)) (-5 *1 (-651 *4 *2)) (-4 *2 (-590 *4)))) (-2515 (*1 *1 *2 *3) (-12 (-5 *3 (-310 (-86))) (-4 *2 (-961)) (-5 *1 (-651 *2 *4)) (-4 *4 (-590 *2))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) 33 T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-3841 (($ |#1| |#2|) 25 T ELT)) (-3466 (((-3 $ #1#) $) 51 T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) 35 T ELT)) (-2614 ((|#2| $) 12 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2484 (($ $) 52 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2402 (((-3 $ #1#) $ $) 50 T ELT)) (-3945 (((-772) $) 24 T ELT) (($ (-484)) 19 T ELT) ((|#1| $) 13 T ELT)) (-3126 (((-694)) 28 T CONST)) (-1264 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) 16 T CONST)) (-2666 (($) 30 T CONST)) (-3056 (((-85) $ $) 41 T ELT)) (-3836 (($ $) 46 T ELT) (($ $ $) 40 T ELT)) (-3838 (($ $ $) 43 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 21 T ELT) (($ $ $) 20 T ELT))) +(((-652 |#1| |#2| |#3| |#4| |#5|) (-13 (-961) (-10 -8 (-15 -2614 (|#2| $)) (-15 -3945 (|#1| $)) (-15 -3841 ($ |#1| |#2|)) (-15 -2402 ((-3 $ #1="failed") $ $)) (-15 -3466 ((-3 $ #1#) $)) (-15 -2484 ($ $)))) (-146) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| #1#) |#2| |#2|) (-1 (-3 |#1| #1#) |#1| |#1| |#2|)) (T -652)) +((-3466 (*1 *1 *1) (|partial| -12 (-5 *1 (-652 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1="failed") *3 *3)) (-14 *6 (-1 (-3 *2 #2="failed") *2 *2 *3)))) (-2614 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-652 *3 *2 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 #1#) *2 *2)) (-14 *6 (-1 (-3 *3 #2#) *3 *3 *2)))) (-3945 (*1 *2 *1) (-12 (-4 *2 (-146)) (-5 *1 (-652 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-3841 (*1 *1 *2 *3) (-12 (-5 *1 (-652 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2402 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-652 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2484 (*1 *1 *1) (-12 (-5 *1 (-652 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3))))) +((* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) 9 T ELT))) +(((-653 |#1| |#2|) (-10 -7 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-484) |#1|)) (-15 * (|#1| (-694) |#1|)) (-15 * (|#1| (-830) |#1|))) (-654 |#2|) (-146)) (T -653)) +NIL +((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3723 (($) 23 T CONST)) (-1213 (((-85) $ $) 20 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3945 (((-772) $) 13 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-2660 (($) 24 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ |#1| $) 33 T ELT) (($ $ |#1|) 37 T ELT))) +(((-654 |#1|) (-113) (-146)) (T -654)) +NIL +(-13 (-82 |t#1| |t#1|) (-582 |t#1|)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-590 |#1|) . T) ((-582 |#1|) . T) ((-963 |#1|) . T) ((-968 |#1|) . T) ((-1013) . T) ((-1128) . T)) +((-2568 (((-85) $ $) NIL T ELT)) (-2441 (($ |#1|) 17 T ELT) (($ $ |#1|) 20 T ELT)) (-3846 (($ |#1|) 18 T ELT) (($ $ |#1|) 21 T ELT)) (-3723 (($) NIL T CONST)) (-3466 (((-3 $ "failed") $) NIL T ELT) (($) 19 T ELT) (($ $) 22 T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2403 (($ |#1| |#1| |#1| |#1|) 8 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2484 (($ $) 16 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3767 ((|#1| $ |#1|) 24 T ELT) (((-743 |#1|) $ (-743 |#1|)) 32 T ELT)) (-3009 (($ $ $) NIL T ELT)) (-2435 (($ $ $) NIL T ELT)) (-3945 (((-772) $) 39 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2666 (($) 9 T CONST)) (-3056 (((-85) $ $) 48 T ELT)) (-3948 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ $ $) 14 T ELT))) +(((-655 |#1|) (-13 (-412) (-10 -8 (-15 -2403 ($ |#1| |#1| |#1| |#1|)) (-15 -2441 ($ |#1|)) (-15 -3846 ($ |#1|)) (-15 -3466 ($)) (-15 -2441 ($ $ |#1|)) (-15 -3846 ($ $ |#1|)) (-15 -3466 ($ $)) (-15 -3767 (|#1| $ |#1|)) (-15 -3767 ((-743 |#1|) $ (-743 |#1|))))) (-312)) (T -655)) +((-2403 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-655 *2)) (-4 *2 (-312)))) (-2441 (*1 *1 *2) (-12 (-5 *1 (-655 *2)) (-4 *2 (-312)))) (-3846 (*1 *1 *2) (-12 (-5 *1 (-655 *2)) (-4 *2 (-312)))) (-3466 (*1 *1) (-12 (-5 *1 (-655 *2)) (-4 *2 (-312)))) (-2441 (*1 *1 *1 *2) (-12 (-5 *1 (-655 *2)) (-4 *2 (-312)))) (-3846 (*1 *1 *1 *2) (-12 (-5 *1 (-655 *2)) (-4 *2 (-312)))) (-3466 (*1 *1 *1) (-12 (-5 *1 (-655 *2)) (-4 *2 (-312)))) (-3767 (*1 *2 *1 *2) (-12 (-5 *1 (-655 *2)) (-4 *2 (-312)))) (-3767 (*1 *2 *1 *2) (-12 (-5 *2 (-743 *3)) (-4 *3 (-312)) (-5 *1 (-655 *3))))) +((-2407 (($ $ (-830)) 19 T ELT)) (-2406 (($ $ (-830)) 20 T ELT)) (** (($ $ (-830)) 10 T ELT))) +(((-656 |#1|) (-10 -7 (-15 ** (|#1| |#1| (-830))) (-15 -2406 (|#1| |#1| (-830))) (-15 -2407 (|#1| |#1| (-830)))) (-657)) (T -656)) +NIL +((-2568 (((-85) $ $) 7 T ELT)) (-2407 (($ $ (-830)) 19 T ELT)) (-2406 (($ $ (-830)) 18 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3945 (((-772) $) 13 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (** (($ $ (-830)) 17 T ELT)) (* (($ $ $) 20 T ELT))) +(((-657) (-113)) (T -657)) +((* (*1 *1 *1 *1) (-4 *1 (-657))) (-2407 (*1 *1 *1 *2) (-12 (-4 *1 (-657)) (-5 *2 (-830)))) (-2406 (*1 *1 *1 *2) (-12 (-4 *1 (-657)) (-5 *2 (-830)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-657)) (-5 *2 (-830))))) +(-13 (-1013) (-10 -8 (-15 * ($ $ $)) (-15 -2407 ($ $ (-830))) (-15 -2406 ($ $ (-830))) (-15 ** ($ $ (-830))))) +(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-1013) . T) ((-1128) . T)) +((-2407 (($ $ (-830)) NIL T ELT) (($ $ (-694)) 18 T ELT)) (-2410 (((-85) $) 10 T ELT)) (-2406 (($ $ (-830)) NIL T ELT) (($ $ (-694)) 19 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) 16 T ELT))) +(((-658 |#1|) (-10 -7 (-15 ** (|#1| |#1| (-694))) (-15 -2406 (|#1| |#1| (-694))) (-15 -2407 (|#1| |#1| (-694))) (-15 -2410 ((-85) |#1|)) (-15 ** (|#1| |#1| (-830))) (-15 -2406 (|#1| |#1| (-830))) (-15 -2407 (|#1| |#1| (-830)))) (-659)) (T -658)) +NIL +((-2568 (((-85) $ $) 7 T ELT)) (-2404 (((-3 $ "failed") $) 22 T ELT)) (-2407 (($ $ (-830)) 19 T ELT) (($ $ (-694)) 27 T ELT)) (-3466 (((-3 $ "failed") $) 24 T ELT)) (-2410 (((-85) $) 28 T ELT)) (-2405 (((-3 $ "failed") $) 23 T ELT)) (-2406 (($ $ (-830)) 18 T ELT) (($ $ (-694)) 26 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3945 (((-772) $) 13 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-2666 (($) 29 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (** (($ $ (-830)) 17 T ELT) (($ $ (-694)) 25 T ELT)) (* (($ $ $) 20 T ELT))) +(((-659) (-113)) (T -659)) +((-2666 (*1 *1) (-4 *1 (-659))) (-2410 (*1 *2 *1) (-12 (-4 *1 (-659)) (-5 *2 (-85)))) (-2407 (*1 *1 *1 *2) (-12 (-4 *1 (-659)) (-5 *2 (-694)))) (-2406 (*1 *1 *1 *2) (-12 (-4 *1 (-659)) (-5 *2 (-694)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-659)) (-5 *2 (-694)))) (-3466 (*1 *1 *1) (|partial| -4 *1 (-659))) (-2405 (*1 *1 *1) (|partial| -4 *1 (-659))) (-2404 (*1 *1 *1) (|partial| -4 *1 (-659)))) +(-13 (-657) (-10 -8 (-15 -2666 ($) -3951) (-15 -2410 ((-85) $)) (-15 -2407 ($ $ (-694))) (-15 -2406 ($ $ (-694))) (-15 ** ($ $ (-694))) (-15 -3466 ((-3 $ "failed") $)) (-15 -2405 ((-3 $ "failed") $)) (-15 -2404 ((-3 $ "failed") $)))) +(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-657) . T) ((-1013) . T) ((-1128) . T)) +((-3136 (((-694)) 39 T ELT)) (-3157 (((-3 (-484) #1="failed") $) NIL T ELT) (((-3 (-349 (-484)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 26 T ELT)) (-3156 (((-484) $) NIL T ELT) (((-349 (-484)) $) NIL T ELT) ((|#2| $) 23 T ELT)) (-3841 (($ |#3|) NIL T ELT) (((-3 $ #1#) (-349 |#3|)) 49 T ELT)) (-3466 (((-3 $ #1#) $) 69 T ELT)) (-2994 (($) 43 T ELT)) (-3132 ((|#2| $) 21 T ELT)) (-2409 (($) 18 T ELT)) (-3757 (($ $ (-1 |#2| |#2|)) 57 T ELT) (($ $ (-1 |#2| |#2|) (-694)) NIL T ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL T ELT) (($ $ (-1089) (-694)) NIL T ELT) (($ $ (-583 (-1089))) NIL T ELT) (($ $ (-1089)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $) NIL T ELT)) (-2408 (((-630 |#2|) (-1178 $) (-1 |#2| |#2|)) 64 T ELT)) (-3971 (((-1178 |#2|) $) NIL T ELT) (($ (-1178 |#2|)) NIL T ELT) ((|#3| $) 10 T ELT) (($ |#3|) 12 T ELT)) (-2449 ((|#3| $) 36 T ELT)) (-2012 (((-1178 $)) 33 T ELT))) +(((-660 |#1| |#2| |#3|) (-10 -7 (-15 -3757 (|#1| |#1|)) (-15 -3757 (|#1| |#1| (-694))) (-15 -3757 (|#1| |#1| (-1089))) (-15 -3757 (|#1| |#1| (-583 (-1089)))) (-15 -3757 (|#1| |#1| (-1089) (-694))) (-15 -3757 (|#1| |#1| (-583 (-1089)) (-583 (-694)))) (-15 -2994 (|#1|)) (-15 -3136 ((-694))) (-15 -3757 (|#1| |#1| (-1 |#2| |#2|) (-694))) (-15 -3757 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2408 ((-630 |#2|) (-1178 |#1|) (-1 |#2| |#2|))) (-15 -3841 ((-3 |#1| #1="failed") (-349 |#3|))) (-15 -3971 (|#1| |#3|)) (-15 -3841 (|#1| |#3|)) (-15 -2409 (|#1|)) (-15 -3157 ((-3 |#2| #1#) |#1|)) (-15 -3156 (|#2| |#1|)) (-15 -3156 ((-349 (-484)) |#1|)) (-15 -3157 ((-3 (-349 (-484)) #1#) |#1|)) (-15 -3156 ((-484) |#1|)) (-15 -3157 ((-3 (-484) #1#) |#1|)) (-15 -3971 (|#3| |#1|)) (-15 -3971 (|#1| (-1178 |#2|))) (-15 -3971 ((-1178 |#2|) |#1|)) (-15 -2012 ((-1178 |#1|))) (-15 -2449 (|#3| |#1|)) (-15 -3132 (|#2| |#1|)) (-15 -3466 ((-3 |#1| #1#) |#1|))) (-661 |#2| |#3|) (-146) (-1154 |#2|)) (T -660)) +((-3136 (*1 *2) (-12 (-4 *4 (-146)) (-4 *5 (-1154 *4)) (-5 *2 (-694)) (-5 *1 (-660 *3 *4 *5)) (-4 *3 (-661 *4 *5))))) +((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) 114 (|has| |#1| (-312)) ELT)) (-2063 (($ $) 115 (|has| |#1| (-312)) ELT)) (-2061 (((-85) $) 117 (|has| |#1| (-312)) ELT)) (-1781 (((-630 |#1|) (-1178 $)) 61 T ELT) (((-630 |#1|)) 77 T ELT)) (-3329 ((|#1| $) 67 T ELT)) (-1674 (((-1101 (-830) (-694)) (-484)) 167 (|has| |#1| (-299)) ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3774 (($ $) 134 (|has| |#1| (-312)) ELT)) (-3970 (((-347 $) $) 135 (|has| |#1| (-312)) ELT)) (-1607 (((-85) $ $) 125 (|has| |#1| (-312)) ELT)) (-3136 (((-694)) 108 (|has| |#1| (-319)) ELT)) (-3723 (($) 23 T CONST)) (-3157 (((-3 (-484) #1="failed") $) 194 (|has| |#1| (-950 (-484))) ELT) (((-3 (-349 (-484)) #1#) $) 192 (|has| |#1| (-950 (-349 (-484)))) ELT) (((-3 |#1| #1#) $) 189 T ELT)) (-3156 (((-484) $) 193 (|has| |#1| (-950 (-484))) ELT) (((-349 (-484)) $) 191 (|has| |#1| (-950 (-349 (-484)))) ELT) ((|#1| $) 190 T ELT)) (-1791 (($ (-1178 |#1|) (-1178 $)) 63 T ELT) (($ (-1178 |#1|)) 80 T ELT)) (-1672 (((-3 "prime" "polynomial" "normal" "cyclic")) 173 (|has| |#1| (-299)) ELT)) (-2564 (($ $ $) 129 (|has| |#1| (-312)) ELT)) (-1780 (((-630 |#1|) $ (-1178 $)) 68 T ELT) (((-630 |#1|) $) 75 T ELT)) (-2279 (((-630 (-484)) (-630 $)) 186 (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) 185 (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1178 |#1|))) (-630 $) (-1178 $)) 184 T ELT) (((-630 |#1|) (-630 $)) 183 T ELT)) (-3841 (($ |#2|) 178 T ELT) (((-3 $ "failed") (-349 |#2|)) 175 (|has| |#1| (-312)) ELT)) (-3466 (((-3 $ "failed") $) 42 T ELT)) (-3108 (((-830)) 69 T ELT)) (-2994 (($) 111 (|has| |#1| (-319)) ELT)) (-2563 (($ $ $) 128 (|has| |#1| (-312)) ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) 123 (|has| |#1| (-312)) ELT)) (-2833 (($) 169 (|has| |#1| (-299)) ELT)) (-1679 (((-85) $) 170 (|has| |#1| (-299)) ELT)) (-1763 (($ $ (-694)) 161 (|has| |#1| (-299)) ELT) (($ $) 160 (|has| |#1| (-299)) ELT)) (-3722 (((-85) $) 136 (|has| |#1| (-312)) ELT)) (-3771 (((-830) $) 172 (|has| |#1| (-299)) ELT) (((-743 (-830)) $) 158 (|has| |#1| (-299)) ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3132 ((|#1| $) 66 T ELT)) (-3444 (((-632 $) $) 162 (|has| |#1| (-299)) ELT)) (-1604 (((-3 (-583 $) #2="failed") (-583 $) $) 132 (|has| |#1| (-312)) ELT)) (-2014 ((|#2| $) 59 (|has| |#1| (-312)) ELT)) (-2010 (((-830) $) 110 (|has| |#1| (-319)) ELT)) (-3079 ((|#2| $) 176 T ELT)) (-2280 (((-630 (-484)) (-1178 $)) 188 (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) 187 (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1178 |#1|))) (-1178 $) $) 182 T ELT) (((-630 |#1|) (-1178 $)) 181 T ELT)) (-1890 (($ (-583 $)) 121 (|has| |#1| (-312)) ELT) (($ $ $) 120 (|has| |#1| (-312)) ELT)) (-3242 (((-1072) $) 11 T ELT)) (-2484 (($ $) 137 (|has| |#1| (-312)) ELT)) (-3445 (($) 163 (|has| |#1| (-299)) CONST)) (-2400 (($ (-830)) 109 (|has| |#1| (-319)) ELT)) (-3243 (((-1033) $) 12 T ELT)) (-2409 (($) 180 T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) 122 (|has| |#1| (-312)) ELT)) (-3144 (($ (-583 $)) 119 (|has| |#1| (-312)) ELT) (($ $ $) 118 (|has| |#1| (-312)) ELT)) (-1675 (((-583 (-2 (|:| -3731 (-484)) (|:| -2401 (-484))))) 166 (|has| |#1| (-299)) ELT)) (-3731 (((-347 $) $) 133 (|has| |#1| (-312)) ELT)) (-1605 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 131 (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) 130 (|has| |#1| (-312)) ELT)) (-3465 (((-3 $ "failed") $ $) 113 (|has| |#1| (-312)) ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) 124 (|has| |#1| (-312)) ELT)) (-1606 (((-694) $) 126 (|has| |#1| (-312)) ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 127 (|has| |#1| (-312)) ELT)) (-3756 ((|#1| (-1178 $)) 62 T ELT) ((|#1|) 76 T ELT)) (-1764 (((-694) $) 171 (|has| |#1| (-299)) ELT) (((-3 (-694) "failed") $ $) 159 (|has| |#1| (-299)) ELT)) (-3757 (($ $ (-694)) 156 (OR (-2562 (|has| |#1| (-189)) (|has| |#1| (-312))) (|has| |#1| (-299))) ELT) (($ $) 154 (OR (-2562 (|has| |#1| (-189)) (|has| |#1| (-312))) (|has| |#1| (-299))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) 150 (-2562 (|has| |#1| (-811 (-1089))) (|has| |#1| (-312))) ELT) (($ $ (-1089) (-694)) 149 (-2562 (|has| |#1| (-811 (-1089))) (|has| |#1| (-312))) ELT) (($ $ (-583 (-1089))) 148 (-2562 (|has| |#1| (-811 (-1089))) (|has| |#1| (-312))) ELT) (($ $ (-1089)) 146 (-2562 (|has| |#1| (-811 (-1089))) (|has| |#1| (-312))) ELT) (($ $ (-1 |#1| |#1|)) 145 (|has| |#1| (-312)) ELT) (($ $ (-1 |#1| |#1|) (-694)) 144 (|has| |#1| (-312)) ELT)) (-2408 (((-630 |#1|) (-1178 $) (-1 |#1| |#1|)) 174 (|has| |#1| (-312)) ELT)) (-3185 ((|#2|) 179 T ELT)) (-1673 (($) 168 (|has| |#1| (-299)) ELT)) (-3224 (((-1178 |#1|) $ (-1178 $)) 65 T ELT) (((-630 |#1|) (-1178 $) (-1178 $)) 64 T ELT) (((-1178 |#1|) $) 82 T ELT) (((-630 |#1|) (-1178 $)) 81 T ELT)) (-3971 (((-1178 |#1|) $) 79 T ELT) (($ (-1178 |#1|)) 78 T ELT) ((|#2| $) 195 T ELT) (($ |#2|) 177 T ELT)) (-2703 (((-3 (-1178 $) "failed") (-630 $)) 165 (|has| |#1| (-299)) ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ |#1|) 52 T ELT) (($ $) 112 (|has| |#1| (-312)) ELT) (($ (-349 (-484))) 107 (OR (|has| |#1| (-312)) (|has| |#1| (-950 (-349 (-484))))) ELT)) (-2702 (($ $) 164 (|has| |#1| (-299)) ELT) (((-632 $) $) 58 (|has| |#1| (-118)) ELT)) (-2449 ((|#2| $) 60 T ELT)) (-3126 (((-694)) 40 T CONST)) (-1264 (((-85) $ $) 6 T ELT)) (-2012 (((-1178 $)) 83 T ELT)) (-2062 (((-85) $ $) 116 (|has| |#1| (-312)) ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-2669 (($ $ (-694)) 157 (OR (-2562 (|has| |#1| (-189)) (|has| |#1| (-312))) (|has| |#1| (-299))) ELT) (($ $) 155 (OR (-2562 (|has| |#1| (-189)) (|has| |#1| (-312))) (|has| |#1| (-299))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) 153 (-2562 (|has| |#1| (-811 (-1089))) (|has| |#1| (-312))) ELT) (($ $ (-1089) (-694)) 152 (-2562 (|has| |#1| (-811 (-1089))) (|has| |#1| (-312))) ELT) (($ $ (-583 (-1089))) 151 (-2562 (|has| |#1| (-811 (-1089))) (|has| |#1| (-312))) ELT) (($ $ (-1089)) 147 (-2562 (|has| |#1| (-811 (-1089))) (|has| |#1| (-312))) ELT) (($ $ (-1 |#1| |#1|)) 143 (|has| |#1| (-312)) ELT) (($ $ (-1 |#1| |#1|) (-694)) 142 (|has| |#1| (-312)) ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-3948 (($ $ $) 141 (|has| |#1| (-312)) ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT) (($ $ (-484)) 138 (|has| |#1| (-312)) ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 54 T ELT) (($ |#1| $) 53 T ELT) (($ (-349 (-484)) $) 140 (|has| |#1| (-312)) ELT) (($ $ (-349 (-484))) 139 (|has| |#1| (-312)) ELT))) +(((-661 |#1| |#2|) (-113) (-146) (-1154 |t#1|)) (T -661)) +((-2409 (*1 *1) (-12 (-4 *2 (-146)) (-4 *1 (-661 *2 *3)) (-4 *3 (-1154 *2)))) (-3185 (*1 *2) (-12 (-4 *1 (-661 *3 *2)) (-4 *3 (-146)) (-4 *2 (-1154 *3)))) (-3841 (*1 *1 *2) (-12 (-4 *3 (-146)) (-4 *1 (-661 *3 *2)) (-4 *2 (-1154 *3)))) (-3971 (*1 *1 *2) (-12 (-4 *3 (-146)) (-4 *1 (-661 *3 *2)) (-4 *2 (-1154 *3)))) (-3079 (*1 *2 *1) (-12 (-4 *1 (-661 *3 *2)) (-4 *3 (-146)) (-4 *2 (-1154 *3)))) (-3841 (*1 *1 *2) (|partial| -12 (-5 *2 (-349 *4)) (-4 *4 (-1154 *3)) (-4 *3 (-312)) (-4 *3 (-146)) (-4 *1 (-661 *3 *4)))) (-2408 (*1 *2 *3 *4) (-12 (-5 *3 (-1178 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-312)) (-4 *1 (-661 *5 *6)) (-4 *5 (-146)) (-4 *6 (-1154 *5)) (-5 *2 (-630 *5))))) +(-13 (-352 |t#1| |t#2|) (-146) (-553 |t#2|) (-354 |t#1|) (-328 |t#1|) (-10 -8 (-15 -2409 ($)) (-15 -3185 (|t#2|)) (-15 -3841 ($ |t#2|)) (-15 -3971 ($ |t#2|)) (-15 -3079 (|t#2| $)) (IF (|has| |t#1| (-319)) (-6 (-319)) |%noBranch|) (IF (|has| |t#1| (-312)) (PROGN (-6 (-312)) (-6 (-184 |t#1|)) (-15 -3841 ((-3 $ "failed") (-349 |t#2|))) (-15 -2408 ((-630 |t#1|) (-1178 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-299)) (-6 (-299)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-349 (-484))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-38 |#1|) . T) ((-38 $) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-72) . T) ((-82 (-349 (-484)) (-349 (-484))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-82 |#1| |#1|) . T) ((-82 $ $) . T) ((-104) . T) ((-118) OR (|has| |#1| (-299)) (|has| |#1| (-118))) ((-120) |has| |#1| (-120)) ((-555 (-349 (-484))) OR (|has| |#1| (-950 (-349 (-484)))) (|has| |#1| (-299)) (|has| |#1| (-312))) ((-555 (-484)) . T) ((-555 |#1|) . T) ((-555 $) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-552 (-772)) . T) ((-146) . T) ((-553 |#2|) . T) ((-186 $) OR (|has| |#1| (-299)) (-12 (|has| |#1| (-189)) (|has| |#1| (-312))) (-12 (|has| |#1| (-190)) (|has| |#1| (-312)))) ((-184 |#1|) |has| |#1| (-312)) ((-190) OR (|has| |#1| (-299)) (-12 (|has| |#1| (-190)) (|has| |#1| (-312)))) ((-189) OR (|has| |#1| (-299)) (-12 (|has| |#1| (-189)) (|has| |#1| (-312))) (-12 (|has| |#1| (-190)) (|has| |#1| (-312)))) ((-225 |#1|) |has| |#1| (-312)) ((-201) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-246) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-258) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-312) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-344) |has| |#1| (-299)) ((-319) OR (|has| |#1| (-299)) (|has| |#1| (-319))) ((-299) |has| |#1| (-299)) ((-321 |#1| |#2|) . T) ((-352 |#1| |#2|) . T) ((-328 |#1|) . T) ((-354 |#1|) . T) ((-391) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-495) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-13) . T) ((-588 (-349 (-484))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 (-349 (-484))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-590 (-484)) |has| |#1| (-580 (-484))) ((-590 |#1|) . T) ((-590 $) . T) ((-582 (-349 (-484))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-582 |#1|) . T) ((-582 $) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-580 (-484)) |has| |#1| (-580 (-484))) ((-580 |#1|) . T) ((-654 (-349 (-484))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-654 |#1|) . T) ((-654 $) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-663) . T) ((-806 $ (-1089)) OR (-12 (|has| |#1| (-312)) (|has| |#1| (-811 (-1089)))) (-12 (|has| |#1| (-312)) (|has| |#1| (-809 (-1089))))) ((-809 (-1089)) -12 (|has| |#1| (-312)) (|has| |#1| (-809 (-1089)))) ((-811 (-1089)) OR (-12 (|has| |#1| (-312)) (|has| |#1| (-811 (-1089)))) (-12 (|has| |#1| (-312)) (|has| |#1| (-809 (-1089))))) ((-832) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-950 (-349 (-484))) |has| |#1| (-950 (-349 (-484)))) ((-950 (-484)) |has| |#1| (-950 (-484))) ((-950 |#1|) . T) ((-963 (-349 (-484))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-963 |#1|) . T) ((-963 $) . T) ((-968 (-349 (-484))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-968 |#1|) . T) ((-968 $) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1065) |has| |#1| (-299)) ((-1128) . T) ((-1133) OR (|has| |#1| (-299)) (|has| |#1| (-312)))) +((-3723 (($) 11 T CONST)) (-3466 (((-3 $ "failed") $) 14 T ELT)) (-2410 (((-85) $) 10 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) 20 T ELT))) +(((-662 |#1|) (-10 -7 (-15 -3466 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-694))) (-15 -2410 ((-85) |#1|)) (-15 -3723 (|#1|) -3951) (-15 ** (|#1| |#1| (-830)))) (-663)) (T -662)) +NIL +((-2568 (((-85) $ $) 7 T ELT)) (-3723 (($) 23 T CONST)) (-3466 (((-3 $ "failed") $) 20 T ELT)) (-2410 (((-85) $) 22 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3945 (((-772) $) 13 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-2666 (($) 24 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (** (($ $ (-830)) 17 T ELT) (($ $ (-694)) 21 T ELT)) (* (($ $ $) 18 T ELT))) +(((-663) (-113)) (T -663)) +((-2666 (*1 *1) (-4 *1 (-663))) (-3723 (*1 *1) (-4 *1 (-663))) (-2410 (*1 *2 *1) (-12 (-4 *1 (-663)) (-5 *2 (-85)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-663)) (-5 *2 (-694)))) (-3466 (*1 *1 *1) (|partial| -4 *1 (-663)))) +(-13 (-1025) (-10 -8 (-15 -2666 ($) -3951) (-15 -3723 ($) -3951) (-15 -2410 ((-85) $)) (-15 ** ($ $ (-694))) (-15 -3466 ((-3 $ "failed") $)))) +(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-1025) . T) ((-1013) . T) ((-1128) . T)) +((-2568 (((-85) $ $) NIL T ELT)) (-2412 ((|#1| $) 16 T ELT)) (-2411 (($ (-1 |#1| |#1| |#1|) |#1|) 11 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3799 ((|#1| $ |#1| |#1|) 14 T ELT)) (-3945 (((-772) $) NIL T ELT) (((-1022 |#1|) $) 17 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT))) +(((-664 |#1|) (-13 (-665 |#1|) (-1013) (-552 (-1022 |#1|)) (-10 -8 (-15 -2411 ($ (-1 |#1| |#1| |#1|) |#1|)))) (-72)) (T -664)) +((-2411 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *3 (-72)) (-5 *1 (-664 *3))))) +((-2412 ((|#1| $) 8 T ELT)) (-3799 ((|#1| $ |#1| |#1|) 6 T ELT))) +(((-665 |#1|) (-113) (-72)) (T -665)) +((-2412 (*1 *2 *1) (-12 (-4 *1 (-665 *2)) (-4 *2 (-72))))) +(-13 (-1023 |t#1|) (-10 -8 (-15 -2412 (|t#1| $)) (-6 (|%Rule| |neutrality| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |t#1|)) (SEQ (-3056 (|f| |x| (-2412 |f|)) |x|) (|exit| 1 (-3056 (|f| (-2412 |f|) |x|) |x|)))))))) +(((-80 |#1|) . T) ((|MappingCategory| |#1| |#1| |#1|) . T) ((-1023 |#1|) . T) ((-1128) . T)) +((-2413 (((-2 (|:| -3089 (-347 |#2|)) (|:| |special| (-347 |#2|))) |#2| (-1 |#2| |#2|)) 39 T ELT)) (-3417 (((-2 (|:| -3089 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12 T ELT)) (-2414 ((|#2| (-349 |#2|) (-1 |#2| |#2|)) 13 T ELT)) (-3434 (((-2 (|:| |poly| |#2|) (|:| -3089 (-349 |#2|)) (|:| |special| (-349 |#2|))) (-349 |#2|) (-1 |#2| |#2|)) 48 T ELT))) +(((-666 |#1| |#2|) (-10 -7 (-15 -3417 ((-2 (|:| -3089 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2413 ((-2 (|:| -3089 (-347 |#2|)) (|:| |special| (-347 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2414 (|#2| (-349 |#2|) (-1 |#2| |#2|))) (-15 -3434 ((-2 (|:| |poly| |#2|) (|:| -3089 (-349 |#2|)) (|:| |special| (-349 |#2|))) (-349 |#2|) (-1 |#2| |#2|)))) (-312) (-1154 |#1|)) (T -666)) +((-3434 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1154 *5)) (-4 *5 (-312)) (-5 *2 (-2 (|:| |poly| *6) (|:| -3089 (-349 *6)) (|:| |special| (-349 *6)))) (-5 *1 (-666 *5 *6)) (-5 *3 (-349 *6)))) (-2414 (*1 *2 *3 *4) (-12 (-5 *3 (-349 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1154 *5)) (-5 *1 (-666 *5 *2)) (-4 *5 (-312)))) (-2413 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1154 *5)) (-4 *5 (-312)) (-5 *2 (-2 (|:| -3089 (-347 *3)) (|:| |special| (-347 *3)))) (-5 *1 (-666 *5 *3)))) (-3417 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1154 *5)) (-4 *5 (-312)) (-5 *2 (-2 (|:| -3089 *3) (|:| |special| *3))) (-5 *1 (-666 *5 *3))))) +((-2415 ((|#7| (-583 |#5|) |#6|) NIL T ELT)) (-3957 ((|#7| (-1 |#5| |#4|) |#6|) 27 T ELT))) +(((-667 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -3957 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -2415 (|#7| (-583 |#5|) |#6|))) (-756) (-717) (-717) (-961) (-961) (-861 |#4| |#2| |#1|) (-861 |#5| |#3| |#1|)) (T -667)) +((-2415 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *9)) (-4 *9 (-961)) (-4 *5 (-756)) (-4 *6 (-717)) (-4 *8 (-961)) (-4 *2 (-861 *9 *7 *5)) (-5 *1 (-667 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-717)) (-4 *4 (-861 *8 *6 *5)))) (-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-961)) (-4 *9 (-961)) (-4 *5 (-756)) (-4 *6 (-717)) (-4 *2 (-861 *9 *7 *5)) (-5 *1 (-667 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-717)) (-4 *4 (-861 *8 *6 *5))))) +((-3957 ((|#7| (-1 |#2| |#1|) |#6|) 28 T ELT))) +(((-668 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -3957 (|#7| (-1 |#2| |#1|) |#6|))) (-756) (-756) (-717) (-717) (-961) (-861 |#5| |#3| |#1|) (-861 |#5| |#4| |#2|)) (T -668)) +((-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-756)) (-4 *6 (-756)) (-4 *7 (-717)) (-4 *9 (-961)) (-4 *2 (-861 *9 *8 *6)) (-5 *1 (-668 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-717)) (-4 *4 (-861 *9 *7 *5))))) +((-3731 (((-347 |#4|) |#4|) 42 T ELT))) +(((-669 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3731 ((-347 |#4|) |#4|))) (-717) (-13 (-756) (-10 -8 (-15 -3971 ((-1089) $)) (-15 -3830 ((-3 $ "failed") (-1089))))) (-258) (-861 (-857 |#3|) |#1| |#2|)) (T -669)) +((-3731 (*1 *2 *3) (-12 (-4 *4 (-717)) (-4 *5 (-13 (-756) (-10 -8 (-15 -3971 ((-1089) $)) (-15 -3830 ((-3 $ "failed") (-1089)))))) (-4 *6 (-258)) (-5 *2 (-347 *3)) (-5 *1 (-669 *4 *5 *6 *3)) (-4 *3 (-861 (-857 *6) *4 *5))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-3081 (((-583 (-773 |#1|)) $) NIL T ELT)) (-3083 (((-1084 $) $ (-773 |#1|)) NIL T ELT) (((-1084 |#2|) $) NIL T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL (|has| |#2| (-495)) ELT)) (-2063 (($ $) NIL (|has| |#2| (-495)) ELT)) (-2061 (((-85) $) NIL (|has| |#2| (-495)) ELT)) (-2819 (((-694) $) NIL T ELT) (((-694) $ (-583 (-773 |#1|))) NIL T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2707 (((-347 (-1084 $)) (-1084 $)) NIL (|has| |#2| (-821)) ELT)) (-3774 (($ $) NIL (|has| |#2| (-391)) ELT)) (-3970 (((-347 $) $) NIL (|has| |#2| (-391)) ELT)) (-2704 (((-3 (-583 (-1084 $)) #1#) (-583 (-1084 $)) (-1084 $)) NIL (|has| |#2| (-821)) ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-349 (-484)) #1#) $) NIL (|has| |#2| (-950 (-349 (-484)))) ELT) (((-3 (-484) #1#) $) NIL (|has| |#2| (-950 (-484))) ELT) (((-3 (-773 |#1|) #1#) $) NIL T ELT)) (-3156 ((|#2| $) NIL T ELT) (((-349 (-484)) $) NIL (|has| |#2| (-950 (-349 (-484)))) ELT) (((-484) $) NIL (|has| |#2| (-950 (-484))) ELT) (((-773 |#1|) $) NIL T ELT)) (-3755 (($ $ $ (-773 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-3958 (($ $) NIL T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) NIL (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1178 |#2|))) (-630 $) (-1178 $)) NIL T ELT) (((-630 |#2|) (-630 $)) NIL T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-3502 (($ $) NIL (|has| |#2| (-391)) ELT) (($ $ (-773 |#1|)) NIL (|has| |#2| (-391)) ELT)) (-2818 (((-583 $) $) NIL T ELT)) (-3722 (((-85) $) NIL (|has| |#2| (-821)) ELT)) (-1623 (($ $ |#2| (-469 (-773 |#1|)) $) NIL T ELT)) (-2796 (((-798 (-329) $) $ (-800 (-329)) (-798 (-329) $)) NIL (-12 (|has| (-773 |#1|) (-796 (-329))) (|has| |#2| (-796 (-329)))) ELT) (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) NIL (-12 (|has| (-773 |#1|) (-796 (-484))) (|has| |#2| (-796 (-484)))) ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2420 (((-694) $) NIL T ELT)) (-3084 (($ (-1084 |#2|) (-773 |#1|)) NIL T ELT) (($ (-1084 $) (-773 |#1|)) NIL T ELT)) (-2821 (((-583 $) $) NIL T ELT)) (-3936 (((-85) $) NIL T ELT)) (-2893 (($ |#2| (-469 (-773 |#1|))) NIL T ELT) (($ $ (-773 |#1|) (-694)) NIL T ELT) (($ $ (-583 (-773 |#1|)) (-583 (-694))) NIL T ELT)) (-3762 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $ (-773 |#1|)) NIL T ELT)) (-2820 (((-469 (-773 |#1|)) $) NIL T ELT) (((-694) $ (-773 |#1|)) NIL T ELT) (((-583 (-694)) $ (-583 (-773 |#1|))) NIL T ELT)) (-1624 (($ (-1 (-469 (-773 |#1|)) (-469 (-773 |#1|))) $) NIL T ELT)) (-3957 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3082 (((-3 (-773 |#1|) #1#) $) NIL T ELT)) (-2280 (((-630 (-484)) (-1178 $)) NIL (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1178 |#2|))) (-1178 $) $) NIL T ELT) (((-630 |#2|) (-1178 $)) NIL T ELT)) (-2894 (($ $) NIL T ELT)) (-3174 ((|#2| $) NIL T ELT)) (-1890 (($ (-583 $)) NIL (|has| |#2| (-391)) ELT) (($ $ $) NIL (|has| |#2| (-391)) ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2823 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2822 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2824 (((-3 (-2 (|:| |var| (-773 |#1|)) (|:| -2401 (-694))) #1#) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1796 (((-85) $) NIL T ELT)) (-1795 ((|#2| $) NIL T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) NIL (|has| |#2| (-391)) ELT)) (-3144 (($ (-583 $)) NIL (|has| |#2| (-391)) ELT) (($ $ $) NIL (|has| |#2| (-391)) ELT)) (-2705 (((-347 (-1084 $)) (-1084 $)) NIL (|has| |#2| (-821)) ELT)) (-2706 (((-347 (-1084 $)) (-1084 $)) NIL (|has| |#2| (-821)) ELT)) (-3731 (((-347 $) $) NIL (|has| |#2| (-821)) ELT)) (-3465 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-495)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-495)) ELT)) (-3767 (($ $ (-583 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ (-773 |#1|) |#2|) NIL T ELT) (($ $ (-583 (-773 |#1|)) (-583 |#2|)) NIL T ELT) (($ $ (-773 |#1|) $) NIL T ELT) (($ $ (-583 (-773 |#1|)) (-583 $)) NIL T ELT)) (-3756 (($ $ (-773 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-3757 (($ $ (-583 (-773 |#1|)) (-583 (-694))) NIL T ELT) (($ $ (-773 |#1|) (-694)) NIL T ELT) (($ $ (-583 (-773 |#1|))) NIL T ELT) (($ $ (-773 |#1|)) NIL T ELT)) (-3947 (((-469 (-773 |#1|)) $) NIL T ELT) (((-694) $ (-773 |#1|)) NIL T ELT) (((-583 (-694)) $ (-583 (-773 |#1|))) NIL T ELT)) (-3971 (((-800 (-329)) $) NIL (-12 (|has| (-773 |#1|) (-553 (-800 (-329)))) (|has| |#2| (-553 (-800 (-329))))) ELT) (((-800 (-484)) $) NIL (-12 (|has| (-773 |#1|) (-553 (-800 (-484)))) (|has| |#2| (-553 (-800 (-484))))) ELT) (((-473) $) NIL (-12 (|has| (-773 |#1|) (-553 (-473))) (|has| |#2| (-553 (-473)))) ELT)) (-2817 ((|#2| $) NIL (|has| |#2| (-391)) ELT) (($ $ (-773 |#1|)) NIL (|has| |#2| (-391)) ELT)) (-2703 (((-3 (-1178 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| |#2| (-821))) ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-773 |#1|)) NIL T ELT) (($ $) NIL (|has| |#2| (-495)) ELT) (($ (-349 (-484))) NIL (OR (|has| |#2| (-38 (-349 (-484)))) (|has| |#2| (-950 (-349 (-484))))) ELT)) (-3816 (((-583 |#2|) $) NIL T ELT)) (-3676 ((|#2| $ (-469 (-773 |#1|))) NIL T ELT) (($ $ (-773 |#1|) (-694)) NIL T ELT) (($ $ (-583 (-773 |#1|)) (-583 (-694))) NIL T ELT)) (-2702 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#2| (-821))) (|has| |#2| (-118))) ELT)) (-3126 (((-694)) NIL T CONST)) (-1622 (($ $ $ (-694)) NIL (|has| |#2| (-146)) ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL (|has| |#2| (-495)) ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) NIL T CONST)) (-2666 (($) NIL T CONST)) (-2669 (($ $ (-583 (-773 |#1|)) (-583 (-694))) NIL T ELT) (($ $ (-773 |#1|) (-694)) NIL T ELT) (($ $ (-583 (-773 |#1|))) NIL T ELT) (($ $ (-773 |#1|)) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3948 (($ $ |#2|) NIL (|has| |#2| (-312)) ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-349 (-484))) NIL (|has| |#2| (-38 (-349 (-484)))) ELT) (($ (-349 (-484)) $) NIL (|has| |#2| (-38 (-349 (-484)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT))) +(((-670 |#1| |#2|) (-861 |#2| (-469 (-773 |#1|)) (-773 |#1|)) (-583 (-1089)) (-961)) (T -670)) +NIL +((-2416 (((-2 (|:| -2483 (-857 |#3|)) (|:| -2058 (-857 |#3|))) |#4|) 14 T ELT)) (-2986 ((|#4| |#4| |#2|) 33 T ELT)) (-2419 ((|#4| (-349 (-857 |#3|)) |#2|) 62 T ELT)) (-2418 ((|#4| (-1084 (-857 |#3|)) |#2|) 74 T ELT)) (-2417 ((|#4| (-1084 |#4|) |#2|) 49 T ELT)) (-2985 ((|#4| |#4| |#2|) 52 T ELT)) (-3731 (((-347 |#4|) |#4|) 40 T ELT))) +(((-671 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2416 ((-2 (|:| -2483 (-857 |#3|)) (|:| -2058 (-857 |#3|))) |#4|)) (-15 -2985 (|#4| |#4| |#2|)) (-15 -2417 (|#4| (-1084 |#4|) |#2|)) (-15 -2986 (|#4| |#4| |#2|)) (-15 -2418 (|#4| (-1084 (-857 |#3|)) |#2|)) (-15 -2419 (|#4| (-349 (-857 |#3|)) |#2|)) (-15 -3731 ((-347 |#4|) |#4|))) (-717) (-13 (-756) (-10 -8 (-15 -3971 ((-1089) $)))) (-495) (-861 (-349 (-857 |#3|)) |#1| |#2|)) (T -671)) +((-3731 (*1 *2 *3) (-12 (-4 *4 (-717)) (-4 *5 (-13 (-756) (-10 -8 (-15 -3971 ((-1089) $))))) (-4 *6 (-495)) (-5 *2 (-347 *3)) (-5 *1 (-671 *4 *5 *6 *3)) (-4 *3 (-861 (-349 (-857 *6)) *4 *5)))) (-2419 (*1 *2 *3 *4) (-12 (-4 *6 (-495)) (-4 *2 (-861 *3 *5 *4)) (-5 *1 (-671 *5 *4 *6 *2)) (-5 *3 (-349 (-857 *6))) (-4 *5 (-717)) (-4 *4 (-13 (-756) (-10 -8 (-15 -3971 ((-1089) $))))))) (-2418 (*1 *2 *3 *4) (-12 (-5 *3 (-1084 (-857 *6))) (-4 *6 (-495)) (-4 *2 (-861 (-349 (-857 *6)) *5 *4)) (-5 *1 (-671 *5 *4 *6 *2)) (-4 *5 (-717)) (-4 *4 (-13 (-756) (-10 -8 (-15 -3971 ((-1089) $))))))) (-2986 (*1 *2 *2 *3) (-12 (-4 *4 (-717)) (-4 *3 (-13 (-756) (-10 -8 (-15 -3971 ((-1089) $))))) (-4 *5 (-495)) (-5 *1 (-671 *4 *3 *5 *2)) (-4 *2 (-861 (-349 (-857 *5)) *4 *3)))) (-2417 (*1 *2 *3 *4) (-12 (-5 *3 (-1084 *2)) (-4 *2 (-861 (-349 (-857 *6)) *5 *4)) (-5 *1 (-671 *5 *4 *6 *2)) (-4 *5 (-717)) (-4 *4 (-13 (-756) (-10 -8 (-15 -3971 ((-1089) $))))) (-4 *6 (-495)))) (-2985 (*1 *2 *2 *3) (-12 (-4 *4 (-717)) (-4 *3 (-13 (-756) (-10 -8 (-15 -3971 ((-1089) $))))) (-4 *5 (-495)) (-5 *1 (-671 *4 *3 *5 *2)) (-4 *2 (-861 (-349 (-857 *5)) *4 *3)))) (-2416 (*1 *2 *3) (-12 (-4 *4 (-717)) (-4 *5 (-13 (-756) (-10 -8 (-15 -3971 ((-1089) $))))) (-4 *6 (-495)) (-5 *2 (-2 (|:| -2483 (-857 *6)) (|:| -2058 (-857 *6)))) (-5 *1 (-671 *4 *5 *6 *3)) (-4 *3 (-861 (-349 (-857 *6)) *4 *5))))) +((-3731 (((-347 |#4|) |#4|) 54 T ELT))) +(((-672 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3731 ((-347 |#4|) |#4|))) (-717) (-756) (-13 (-258) (-120)) (-861 (-349 |#3|) |#1| |#2|)) (T -672)) +((-3731 (*1 *2 *3) (-12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-13 (-258) (-120))) (-5 *2 (-347 *3)) (-5 *1 (-672 *4 *5 *6 *3)) (-4 *3 (-861 (-349 *6) *4 *5))))) +((-3957 (((-674 |#2| |#3|) (-1 |#2| |#1|) (-674 |#1| |#3|)) 18 T ELT))) +(((-673 |#1| |#2| |#3|) (-10 -7 (-15 -3957 ((-674 |#2| |#3|) (-1 |#2| |#1|) (-674 |#1| |#3|)))) (-961) (-961) (-663)) (T -673)) +((-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-674 *5 *7)) (-4 *5 (-961)) (-4 *6 (-961)) (-4 *7 (-663)) (-5 *2 (-674 *6 *7)) (-5 *1 (-673 *5 *6 *7))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) 36 T ELT)) (-3773 (((-583 (-2 (|:| -3953 |#1|) (|:| -3937 |#2|))) $) 37 T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3136 (((-694)) 22 (-12 (|has| |#2| (-319)) (|has| |#1| (-319))) ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 |#2| #1#) $) 76 T ELT) (((-3 |#1| #1#) $) 79 T ELT)) (-3156 ((|#2| $) NIL T ELT) ((|#1| $) NIL T ELT)) (-3958 (($ $) 99 (|has| |#2| (-756)) ELT)) (-3466 (((-3 $ #1#) $) 83 T ELT)) (-2994 (($) 48 (-12 (|has| |#2| (-319)) (|has| |#1| (-319))) ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2420 (((-694) $) 70 T ELT)) (-2821 (((-583 $) $) 52 T ELT)) (-3936 (((-85) $) NIL T ELT)) (-2893 (($ |#1| |#2|) 17 T ELT)) (-3957 (($ (-1 |#1| |#1|) $) 68 T ELT)) (-2010 (((-830) $) 43 (-12 (|has| |#2| (-319)) (|has| |#1| (-319))) ELT)) (-2894 ((|#2| $) 98 (|has| |#2| (-756)) ELT)) (-3174 ((|#1| $) 97 (|has| |#2| (-756)) ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2400 (($ (-830)) 35 (-12 (|has| |#2| (-319)) (|has| |#1| (-319))) ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) 96 T ELT) (($ (-484)) 59 T ELT) (($ |#2|) 55 T ELT) (($ |#1|) 56 T ELT) (($ (-583 (-2 (|:| -3953 |#1|) (|:| -3937 |#2|)))) 11 T ELT)) (-3816 (((-583 |#1|) $) 54 T ELT)) (-3676 ((|#1| $ |#2|) 114 T ELT)) (-2702 (((-632 $) $) NIL (|has| |#1| (-118)) ELT)) (-3126 (((-694)) NIL T CONST)) (-1264 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) 12 T CONST)) (-2666 (($) 44 T CONST)) (-3056 (((-85) $ $) 104 T ELT)) (-3836 (($ $) 61 T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) 33 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 66 T ELT) (($ $ $) 117 T ELT) (($ |#1| $) 63 (|has| |#1| (-146)) ELT) (($ $ |#1|) NIL (|has| |#1| (-146)) ELT))) +(((-674 |#1| |#2|) (-13 (-961) (-950 |#2|) (-950 |#1|) (-10 -8 (-15 -2893 ($ |#1| |#2|)) (-15 -3676 (|#1| $ |#2|)) (-15 -3945 ($ (-583 (-2 (|:| -3953 |#1|) (|:| -3937 |#2|))))) (-15 -3773 ((-583 (-2 (|:| -3953 |#1|) (|:| -3937 |#2|))) $)) (-15 -3957 ($ (-1 |#1| |#1|) $)) (-15 -3936 ((-85) $)) (-15 -3816 ((-583 |#1|) $)) (-15 -2821 ((-583 $) $)) (-15 -2420 ((-694) $)) (IF (|has| |#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-319)) (IF (|has| |#2| (-319)) (-6 (-319)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-756)) (PROGN (-15 -2894 (|#2| $)) (-15 -3174 (|#1| $)) (-15 -3958 ($ $))) |%noBranch|))) (-961) (-663)) (T -674)) +((-2893 (*1 *1 *2 *3) (-12 (-5 *1 (-674 *2 *3)) (-4 *2 (-961)) (-4 *3 (-663)))) (-3676 (*1 *2 *1 *3) (-12 (-4 *2 (-961)) (-5 *1 (-674 *2 *3)) (-4 *3 (-663)))) (-3945 (*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| -3953 *3) (|:| -3937 *4)))) (-4 *3 (-961)) (-4 *4 (-663)) (-5 *1 (-674 *3 *4)))) (-3773 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| -3953 *3) (|:| -3937 *4)))) (-5 *1 (-674 *3 *4)) (-4 *3 (-961)) (-4 *4 (-663)))) (-3957 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-674 *3 *4)) (-4 *4 (-663)))) (-3936 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-674 *3 *4)) (-4 *3 (-961)) (-4 *4 (-663)))) (-3816 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-674 *3 *4)) (-4 *3 (-961)) (-4 *4 (-663)))) (-2821 (*1 *2 *1) (-12 (-5 *2 (-583 (-674 *3 *4))) (-5 *1 (-674 *3 *4)) (-4 *3 (-961)) (-4 *4 (-663)))) (-2420 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-674 *3 *4)) (-4 *3 (-961)) (-4 *4 (-663)))) (-2894 (*1 *2 *1) (-12 (-4 *2 (-663)) (-4 *2 (-756)) (-5 *1 (-674 *3 *2)) (-4 *3 (-961)))) (-3174 (*1 *2 *1) (-12 (-4 *2 (-961)) (-5 *1 (-674 *2 *3)) (-4 *3 (-756)) (-4 *3 (-663)))) (-3958 (*1 *1 *1) (-12 (-5 *1 (-674 *2 *3)) (-4 *3 (-756)) (-4 *2 (-961)) (-4 *3 (-663))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3234 (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ $ $) 95 T ELT)) (-3236 (($ $ $) 99 T ELT)) (-3235 (((-85) $ $) 107 T ELT)) (-3239 (($ (-583 |#1|)) 26 T ELT) (($) 17 T ELT)) (-1569 (($ (-1 (-85) |#1|) $) 86 (|has| $ (-6 -3994)) ELT)) (-3709 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3723 (($) NIL T CONST)) (-2368 (($ $) 88 T ELT)) (-1352 (($ $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-3404 (($ |#1| $) 71 (|has| $ (-6 -3994)) ELT) (($ (-1 (-85) |#1|) $) 80 (|has| $ (-6 -3994)) ELT) (($ |#1| $ (-484)) 78 T ELT) (($ (-1 (-85) |#1|) $ (-484)) 81 T ELT)) (-3405 (($ |#1| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT) (($ |#1| $ (-484)) 83 T ELT) (($ (-1 (-85) |#1|) $ (-484)) 84 T ELT)) (-3841 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3994)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-2889 (((-583 |#1|) $) 32 (|has| $ (-6 -3994)) ELT)) (-3241 (((-85) $ $) 106 T ELT)) (-2421 (($) 15 T ELT) (($ |#1|) 28 T ELT) (($ (-583 |#1|)) 23 T ELT)) (-2608 (((-583 |#1|) $) 38 T ELT)) (-3245 (((-85) |#1| $) 66 (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-1948 (($ (-1 |#1| |#1|) $) 91 (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) 92 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3238 (($ $ $) 97 T ELT)) (-1273 ((|#1| $) 63 T ELT)) (-3608 (($ |#1| $) 64 T ELT) (($ |#1| $ (-694)) 89 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1353 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-1274 ((|#1| $) 62 T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3767 (($ $ (-583 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1221 (((-85) $ $) NIL T ELT)) (-3402 (((-85) $) 57 T ELT)) (-3564 (($) 14 T ELT)) (-2367 (((-583 (-2 (|:| |entry| |#1|) (|:| -1945 (-694)))) $) 56 T ELT)) (-3237 (($ $ |#1|) NIL T ELT) (($ $ $) 98 T ELT)) (-1465 (($) 16 T ELT) (($ (-583 |#1|)) 25 T ELT)) (-1945 (((-694) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT) (((-694) |#1| $) 69 (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-3399 (($ $) 82 T ELT)) (-3971 (((-473) $) 36 (|has| |#1| (-553 (-473))) ELT)) (-3529 (($ (-583 |#1|)) 22 T ELT)) (-3945 (((-772) $) 50 T ELT)) (-3240 (($ (-583 |#1|)) 27 T ELT) (($) 18 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-1275 (($ (-583 |#1|)) 24 T ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3056 (((-85) $ $) 103 T ELT)) (-3956 (((-694) $) 68 (|has| $ (-6 -3994)) ELT))) +(((-675 |#1|) (-13 (-676 |#1|) (-10 -8 (-6 -3994) (-6 -3995) (-15 -2421 ($)) (-15 -2421 ($ |#1|)) (-15 -2421 ($ (-583 |#1|))) (-15 -2608 ((-583 |#1|) $)) (-15 -3405 ($ |#1| $ (-484))) (-15 -3405 ($ (-1 (-85) |#1|) $ (-484))) (-15 -3404 ($ |#1| $ (-484))) (-15 -3404 ($ (-1 (-85) |#1|) $ (-484))))) (-1013)) (T -675)) +((-2421 (*1 *1) (-12 (-5 *1 (-675 *2)) (-4 *2 (-1013)))) (-2421 (*1 *1 *2) (-12 (-5 *1 (-675 *2)) (-4 *2 (-1013)))) (-2421 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1013)) (-5 *1 (-675 *3)))) (-2608 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-675 *3)) (-4 *3 (-1013)))) (-3405 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-484)) (-5 *1 (-675 *2)) (-4 *2 (-1013)))) (-3405 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-85) *4)) (-5 *3 (-484)) (-4 *4 (-1013)) (-5 *1 (-675 *4)))) (-3404 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-484)) (-5 *1 (-675 *2)) (-4 *2 (-1013)))) (-3404 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-85) *4)) (-5 *3 (-484)) (-4 *4 (-1013)) (-5 *1 (-675 *4))))) +((-2568 (((-85) $ $) 19 T ELT)) (-3234 (($ |#1| $) 81 T ELT) (($ $ |#1|) 80 T ELT) (($ $ $) 79 T ELT)) (-3236 (($ $ $) 77 T ELT)) (-3235 (((-85) $ $) 78 T ELT)) (-3239 (($ (-583 |#1|)) 73 T ELT) (($) 72 T ELT)) (-1569 (($ (-1 (-85) |#1|) $) 49 (|has| $ (-6 -3994)) ELT)) (-3709 (($ (-1 (-85) |#1|) $) 59 (|has| $ (-6 -3994)) ELT)) (-3723 (($) 7 T CONST)) (-2368 (($ $) 66 T ELT)) (-1352 (($ $) 62 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-3404 (($ |#1| $) 51 (|has| $ (-6 -3994)) ELT) (($ (-1 (-85) |#1|) $) 50 (|has| $ (-6 -3994)) ELT)) (-3405 (($ |#1| $) 61 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT) (($ (-1 (-85) |#1|) $) 58 (|has| $ (-6 -3994)) ELT)) (-3841 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -3994)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -3994)) ELT)) (-2889 (((-583 |#1|) $) 30 (|has| $ (-6 -3994)) ELT)) (-3241 (((-85) $ $) 69 T ELT)) (-2608 (((-583 |#1|) $) 29 (|has| $ (-6 -3994)) ELT)) (-3245 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-1948 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3242 (((-1072) $) 22 T ELT)) (-3238 (($ $ $) 74 T ELT)) (-1273 ((|#1| $) 43 T ELT)) (-3608 (($ |#1| $) 44 T ELT) (($ |#1| $ (-694)) 67 T ELT)) (-3243 (((-1033) $) 21 T ELT)) (-1353 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 55 T ELT)) (-1274 ((|#1| $) 45 T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3994)) ELT)) (-3767 (($ $ (-583 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1221 (((-85) $ $) 11 T ELT)) (-3402 (((-85) $) 8 T ELT)) (-3564 (($) 9 T ELT)) (-2367 (((-583 (-2 (|:| |entry| |#1|) (|:| -1945 (-694)))) $) 65 T ELT)) (-3237 (($ $ |#1|) 76 T ELT) (($ $ $) 75 T ELT)) (-1465 (($) 53 T ELT) (($ (-583 |#1|)) 52 T ELT)) (-1945 (((-694) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3994)) ELT) (((-694) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-3399 (($ $) 10 T ELT)) (-3971 (((-473) $) 63 (|has| |#1| (-553 (-473))) ELT)) (-3529 (($ (-583 |#1|)) 54 T ELT)) (-3945 (((-772) $) 17 T ELT)) (-3240 (($ (-583 |#1|)) 71 T ELT) (($) 70 T ELT)) (-1264 (((-85) $ $) 20 T ELT)) (-1275 (($ (-583 |#1|)) 46 T ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3994)) ELT)) (-3056 (((-85) $ $) 18 T ELT)) (-3956 (((-694) $) 6 (|has| $ (-6 -3994)) ELT))) +(((-676 |#1|) (-113) (-1013)) (T -676)) +NIL +(-13 (-634 |t#1|) (-1011 |t#1|)) +(((-34) . T) ((-76 |#1|) . T) ((-72) . T) ((-552 (-772)) . T) ((-124 |#1|) . T) ((-553 (-473)) |has| |#1| (-553 (-473))) ((-193 |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-428 |#1|) . T) ((-455 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-634 |#1|) . T) ((-1011 |#1|) . T) ((-1013) . T) ((-1128) . T)) +((-2422 (((-1184) (-1072)) 8 T ELT))) +(((-677) (-10 -7 (-15 -2422 ((-1184) (-1072))))) (T -677)) +((-2422 (*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-677))))) +((-2423 (((-583 |#1|) (-583 |#1|) (-583 |#1|)) 15 T ELT))) +(((-678 |#1|) (-10 -7 (-15 -2423 ((-583 |#1|) (-583 |#1|) (-583 |#1|)))) (-756)) (T -678)) +((-2423 (*1 *2 *2 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-756)) (-5 *1 (-678 *3))))) +((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-3081 (((-583 |#2|) $) 159 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) 152 (|has| |#1| (-495)) ELT)) (-2063 (($ $) 151 (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) 149 (|has| |#1| (-495)) ELT)) (-3491 (($ $) 108 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3638 (($ $) 91 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3037 (($ $) 90 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3489 (($ $) 107 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3637 (($ $) 92 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3493 (($ $) 106 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3636 (($ $) 93 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3723 (($) 23 T CONST)) (-3958 (($ $) 143 T ELT)) (-3466 (((-3 $ "failed") $) 42 T ELT)) (-3813 (((-857 |#1|) $ (-694)) 121 T ELT) (((-857 |#1|) $ (-694) (-694)) 120 T ELT)) (-2892 (((-85) $) 160 T ELT)) (-3626 (($) 118 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3771 (((-694) $ |#2|) 123 T ELT) (((-694) $ |#2| (-694)) 122 T ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3011 (($ $ (-484)) 89 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3936 (((-85) $) 141 T ELT)) (-2893 (($ $ (-583 |#2|) (-583 (-469 |#2|))) 158 T ELT) (($ $ |#2| (-469 |#2|)) 157 T ELT) (($ |#1| (-469 |#2|)) 142 T ELT) (($ $ |#2| (-694)) 125 T ELT) (($ $ (-583 |#2|) (-583 (-694))) 124 T ELT)) (-3957 (($ (-1 |#1| |#1|) $) 140 T ELT)) (-3941 (($ $) 115 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2894 (($ $) 138 T ELT)) (-3174 ((|#1| $) 137 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3811 (($ $ |#2|) 119 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3768 (($ $ (-694)) 126 T ELT)) (-3465 (((-3 $ "failed") $ $) 153 (|has| |#1| (-495)) ELT)) (-3942 (($ $) 116 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3767 (($ $ |#2| $) 134 T ELT) (($ $ (-583 |#2|) (-583 $)) 133 T ELT) (($ $ (-583 (-249 $))) 132 T ELT) (($ $ (-249 $)) 131 T ELT) (($ $ $ $) 130 T ELT) (($ $ (-583 $) (-583 $)) 129 T ELT)) (-3757 (($ $ (-583 |#2|) (-583 (-694))) 52 T ELT) (($ $ |#2| (-694)) 51 T ELT) (($ $ (-583 |#2|)) 50 T ELT) (($ $ |#2|) 48 T ELT)) (-3947 (((-469 |#2|) $) 139 T ELT)) (-3494 (($ $) 105 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3635 (($ $) 94 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3492 (($ $) 104 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3634 (($ $) 95 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3490 (($ $) 103 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3633 (($ $) 96 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2891 (($ $) 161 T ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ |#1|) 156 (|has| |#1| (-146)) ELT) (($ $) 154 (|has| |#1| (-495)) ELT) (($ (-349 (-484))) 146 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3676 ((|#1| $ (-469 |#2|)) 144 T ELT) (($ $ |#2| (-694)) 128 T ELT) (($ $ (-583 |#2|) (-583 (-694))) 127 T ELT)) (-2702 (((-632 $) $) 155 (|has| |#1| (-118)) ELT)) (-3126 (((-694)) 40 T CONST)) (-1264 (((-85) $ $) 6 T ELT)) (-3497 (($ $) 114 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3485 (($ $) 102 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2062 (((-85) $ $) 150 (|has| |#1| (-495)) ELT)) (-3495 (($ $) 113 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3483 (($ $) 101 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3499 (($ $) 112 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3487 (($ $) 100 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-3500 (($ $) 111 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3488 (($ $) 99 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3498 (($ $) 110 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3486 (($ $) 98 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3496 (($ $) 109 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3484 (($ $) 97 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-2669 (($ $ (-583 |#2|) (-583 (-694))) 55 T ELT) (($ $ |#2| (-694)) 54 T ELT) (($ $ (-583 |#2|)) 53 T ELT) (($ $ |#2|) 49 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-3948 (($ $ |#1|) 145 (|has| |#1| (-312)) ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT) (($ $ $) 117 (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $ (-349 (-484))) 88 (|has| |#1| (-38 (-349 (-484)))) ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-349 (-484))) 148 (|has| |#1| (-38 (-349 (-484)))) ELT) (($ (-349 (-484)) $) 147 (|has| |#1| (-38 (-349 (-484)))) ELT) (($ |#1| $) 136 T ELT) (($ $ |#1|) 135 T ELT))) +(((-679 |#1| |#2|) (-113) (-961) (-756)) (T -679)) +((-3676 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-694)) (-4 *1 (-679 *4 *2)) (-4 *4 (-961)) (-4 *2 (-756)))) (-3676 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *5)) (-5 *3 (-583 (-694))) (-4 *1 (-679 *4 *5)) (-4 *4 (-961)) (-4 *5 (-756)))) (-3768 (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-679 *3 *4)) (-4 *3 (-961)) (-4 *4 (-756)))) (-2893 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-694)) (-4 *1 (-679 *4 *2)) (-4 *4 (-961)) (-4 *2 (-756)))) (-2893 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *5)) (-5 *3 (-583 (-694))) (-4 *1 (-679 *4 *5)) (-4 *4 (-961)) (-4 *5 (-756)))) (-3771 (*1 *2 *1 *3) (-12 (-4 *1 (-679 *4 *3)) (-4 *4 (-961)) (-4 *3 (-756)) (-5 *2 (-694)))) (-3771 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-694)) (-4 *1 (-679 *4 *3)) (-4 *4 (-961)) (-4 *3 (-756)))) (-3813 (*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-4 *1 (-679 *4 *5)) (-4 *4 (-961)) (-4 *5 (-756)) (-5 *2 (-857 *4)))) (-3813 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-694)) (-4 *1 (-679 *4 *5)) (-4 *4 (-961)) (-4 *5 (-756)) (-5 *2 (-857 *4)))) (-3811 (*1 *1 *1 *2) (-12 (-4 *1 (-679 *3 *2)) (-4 *3 (-961)) (-4 *2 (-756)) (-4 *3 (-38 (-349 (-484))))))) +(-13 (-809 |t#2|) (-886 |t#1| (-469 |t#2|) |t#2|) (-455 |t#2| $) (-260 $) (-10 -8 (-15 -3676 ($ $ |t#2| (-694))) (-15 -3676 ($ $ (-583 |t#2|) (-583 (-694)))) (-15 -3768 ($ $ (-694))) (-15 -2893 ($ $ |t#2| (-694))) (-15 -2893 ($ $ (-583 |t#2|) (-583 (-694)))) (-15 -3771 ((-694) $ |t#2|)) (-15 -3771 ((-694) $ |t#2| (-694))) (-15 -3813 ((-857 |t#1|) $ (-694))) (-15 -3813 ((-857 |t#1|) $ (-694) (-694))) (IF (|has| |t#1| (-38 (-349 (-484)))) (PROGN (-15 -3811 ($ $ |t#2|)) (-6 (-915)) (-6 (-1114))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| (-469 |#2|)) . T) ((-25) . T) ((-38 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) |has| |#1| (-495)) ((-35) |has| |#1| (-38 (-349 (-484)))) ((-66) |has| |#1| (-38 (-349 (-484)))) ((-72) . T) ((-82 (-349 (-484)) (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-555 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-555 (-484)) . T) ((-555 |#1|) |has| |#1| (-146)) ((-555 $) |has| |#1| (-495)) ((-552 (-772)) . T) ((-146) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-239) |has| |#1| (-38 (-349 (-484)))) ((-246) |has| |#1| (-495)) ((-260 $) . T) ((-432) |has| |#1| (-38 (-349 (-484)))) ((-455 |#2| $) . T) ((-455 $ $) . T) ((-495) |has| |#1| (-495)) ((-13) . T) ((-588 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-590 |#1|) . T) ((-590 $) . T) ((-582 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-582 |#1|) |has| |#1| (-146)) ((-582 $) |has| |#1| (-495)) ((-654 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-654 |#1|) |has| |#1| (-146)) ((-654 $) |has| |#1| (-495)) ((-663) . T) ((-806 $ |#2|) . T) ((-809 |#2|) . T) ((-811 |#2|) . T) ((-886 |#1| (-469 |#2|) |#2|) . T) ((-915) |has| |#1| (-38 (-349 (-484)))) ((-963 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-963 |#1|) . T) ((-963 $) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-968 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-968 |#1|) . T) ((-968 $) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1114) |has| |#1| (-38 (-349 (-484)))) ((-1117) |has| |#1| (-38 (-349 (-484)))) ((-1128) . T)) +((-3731 (((-347 (-1084 |#4|)) (-1084 |#4|)) 30 T ELT) (((-347 |#4|) |#4|) 26 T ELT))) +(((-680 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3731 ((-347 |#4|) |#4|)) (-15 -3731 ((-347 (-1084 |#4|)) (-1084 |#4|)))) (-756) (-717) (-13 (-258) (-120)) (-861 |#3| |#2| |#1|)) (T -680)) +((-3731 (*1 *2 *3) (-12 (-4 *4 (-756)) (-4 *5 (-717)) (-4 *6 (-13 (-258) (-120))) (-4 *7 (-861 *6 *5 *4)) (-5 *2 (-347 (-1084 *7))) (-5 *1 (-680 *4 *5 *6 *7)) (-5 *3 (-1084 *7)))) (-3731 (*1 *2 *3) (-12 (-4 *4 (-756)) (-4 *5 (-717)) (-4 *6 (-13 (-258) (-120))) (-5 *2 (-347 *3)) (-5 *1 (-680 *4 *5 *6 *3)) (-4 *3 (-861 *6 *5 *4))))) +((-2426 (((-347 |#4|) |#4| |#2|) 142 T ELT)) (-2424 (((-347 |#4|) |#4|) NIL T ELT)) (-3970 (((-347 (-1084 |#4|)) (-1084 |#4|)) 129 T ELT) (((-347 |#4|) |#4|) 52 T ELT)) (-2428 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-583 (-2 (|:| -3731 (-1084 |#4|)) (|:| -2401 (-484)))))) (-1084 |#4|) (-583 |#2|) (-583 (-583 |#3|))) 81 T ELT)) (-2432 (((-1084 |#3|) (-1084 |#3|) (-484)) 169 T ELT)) (-2431 (((-583 (-694)) (-1084 |#4|) (-583 |#2|) (-694)) 75 T ELT)) (-3079 (((-3 (-583 (-1084 |#4|)) "failed") (-1084 |#4|) (-1084 |#3|) (-1084 |#3|) |#4| (-583 |#2|) (-583 (-694)) (-583 |#3|)) 79 T ELT)) (-2429 (((-2 (|:| |upol| (-1084 |#3|)) (|:| |Lval| (-583 |#3|)) (|:| |Lfact| (-583 (-2 (|:| -3731 (-1084 |#3|)) (|:| -2401 (-484))))) (|:| |ctpol| |#3|)) (-1084 |#4|) (-583 |#2|) (-583 (-583 |#3|))) 27 T ELT)) (-2427 (((-2 (|:| -2004 (-1084 |#4|)) (|:| |polval| (-1084 |#3|))) (-1084 |#4|) (-1084 |#3|) (-484)) 72 T ELT)) (-2425 (((-484) (-583 (-2 (|:| -3731 (-1084 |#3|)) (|:| -2401 (-484))))) 165 T ELT)) (-2430 ((|#4| (-484) (-347 |#4|)) 73 T ELT)) (-3356 (((-85) (-583 (-2 (|:| -3731 (-1084 |#3|)) (|:| -2401 (-484)))) (-583 (-2 (|:| -3731 (-1084 |#3|)) (|:| -2401 (-484))))) NIL T ELT))) +(((-681 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3970 ((-347 |#4|) |#4|)) (-15 -3970 ((-347 (-1084 |#4|)) (-1084 |#4|))) (-15 -2424 ((-347 |#4|) |#4|)) (-15 -2425 ((-484) (-583 (-2 (|:| -3731 (-1084 |#3|)) (|:| -2401 (-484)))))) (-15 -2426 ((-347 |#4|) |#4| |#2|)) (-15 -2427 ((-2 (|:| -2004 (-1084 |#4|)) (|:| |polval| (-1084 |#3|))) (-1084 |#4|) (-1084 |#3|) (-484))) (-15 -2428 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-583 (-2 (|:| -3731 (-1084 |#4|)) (|:| -2401 (-484)))))) (-1084 |#4|) (-583 |#2|) (-583 (-583 |#3|)))) (-15 -2429 ((-2 (|:| |upol| (-1084 |#3|)) (|:| |Lval| (-583 |#3|)) (|:| |Lfact| (-583 (-2 (|:| -3731 (-1084 |#3|)) (|:| -2401 (-484))))) (|:| |ctpol| |#3|)) (-1084 |#4|) (-583 |#2|) (-583 (-583 |#3|)))) (-15 -2430 (|#4| (-484) (-347 |#4|))) (-15 -3356 ((-85) (-583 (-2 (|:| -3731 (-1084 |#3|)) (|:| -2401 (-484)))) (-583 (-2 (|:| -3731 (-1084 |#3|)) (|:| -2401 (-484)))))) (-15 -3079 ((-3 (-583 (-1084 |#4|)) "failed") (-1084 |#4|) (-1084 |#3|) (-1084 |#3|) |#4| (-583 |#2|) (-583 (-694)) (-583 |#3|))) (-15 -2431 ((-583 (-694)) (-1084 |#4|) (-583 |#2|) (-694))) (-15 -2432 ((-1084 |#3|) (-1084 |#3|) (-484)))) (-717) (-756) (-258) (-861 |#3| |#1| |#2|)) (T -681)) +((-2432 (*1 *2 *2 *3) (-12 (-5 *2 (-1084 *6)) (-5 *3 (-484)) (-4 *6 (-258)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-681 *4 *5 *6 *7)) (-4 *7 (-861 *6 *4 *5)))) (-2431 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1084 *9)) (-5 *4 (-583 *7)) (-4 *7 (-756)) (-4 *9 (-861 *8 *6 *7)) (-4 *6 (-717)) (-4 *8 (-258)) (-5 *2 (-583 (-694))) (-5 *1 (-681 *6 *7 *8 *9)) (-5 *5 (-694)))) (-3079 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1084 *11)) (-5 *6 (-583 *10)) (-5 *7 (-583 (-694))) (-5 *8 (-583 *11)) (-4 *10 (-756)) (-4 *11 (-258)) (-4 *9 (-717)) (-4 *5 (-861 *11 *9 *10)) (-5 *2 (-583 (-1084 *5))) (-5 *1 (-681 *9 *10 *11 *5)) (-5 *3 (-1084 *5)))) (-3356 (*1 *2 *3 *3) (-12 (-5 *3 (-583 (-2 (|:| -3731 (-1084 *6)) (|:| -2401 (-484))))) (-4 *6 (-258)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85)) (-5 *1 (-681 *4 *5 *6 *7)) (-4 *7 (-861 *6 *4 *5)))) (-2430 (*1 *2 *3 *4) (-12 (-5 *3 (-484)) (-5 *4 (-347 *2)) (-4 *2 (-861 *7 *5 *6)) (-5 *1 (-681 *5 *6 *7 *2)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-258)))) (-2429 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1084 *9)) (-5 *4 (-583 *7)) (-5 *5 (-583 (-583 *8))) (-4 *7 (-756)) (-4 *8 (-258)) (-4 *9 (-861 *8 *6 *7)) (-4 *6 (-717)) (-5 *2 (-2 (|:| |upol| (-1084 *8)) (|:| |Lval| (-583 *8)) (|:| |Lfact| (-583 (-2 (|:| -3731 (-1084 *8)) (|:| -2401 (-484))))) (|:| |ctpol| *8))) (-5 *1 (-681 *6 *7 *8 *9)))) (-2428 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-583 *7)) (-5 *5 (-583 (-583 *8))) (-4 *7 (-756)) (-4 *8 (-258)) (-4 *6 (-717)) (-4 *9 (-861 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-583 (-2 (|:| -3731 (-1084 *9)) (|:| -2401 (-484))))))) (-5 *1 (-681 *6 *7 *8 *9)) (-5 *3 (-1084 *9)))) (-2427 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-484)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *8 (-258)) (-4 *9 (-861 *8 *6 *7)) (-5 *2 (-2 (|:| -2004 (-1084 *9)) (|:| |polval| (-1084 *8)))) (-5 *1 (-681 *6 *7 *8 *9)) (-5 *3 (-1084 *9)) (-5 *4 (-1084 *8)))) (-2426 (*1 *2 *3 *4) (-12 (-4 *5 (-717)) (-4 *4 (-756)) (-4 *6 (-258)) (-5 *2 (-347 *3)) (-5 *1 (-681 *5 *4 *6 *3)) (-4 *3 (-861 *6 *5 *4)))) (-2425 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3731 (-1084 *6)) (|:| -2401 (-484))))) (-4 *6 (-258)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-484)) (-5 *1 (-681 *4 *5 *6 *7)) (-4 *7 (-861 *6 *4 *5)))) (-2424 (*1 *2 *3) (-12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-258)) (-5 *2 (-347 *3)) (-5 *1 (-681 *4 *5 *6 *3)) (-4 *3 (-861 *6 *4 *5)))) (-3970 (*1 *2 *3) (-12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-258)) (-4 *7 (-861 *6 *4 *5)) (-5 *2 (-347 (-1084 *7))) (-5 *1 (-681 *4 *5 *6 *7)) (-5 *3 (-1084 *7)))) (-3970 (*1 *2 *3) (-12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-258)) (-5 *2 (-347 *3)) (-5 *1 (-681 *4 *5 *6 *3)) (-4 *3 (-861 *6 *4 *5))))) +((-2433 (($ $ (-830)) 17 T ELT))) +(((-682 |#1| |#2|) (-10 -7 (-15 -2433 (|#1| |#1| (-830)))) (-683 |#2|) (-146)) (T -682)) +NIL +((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3723 (($) 23 T CONST)) (-2407 (($ $ (-830)) 37 T ELT)) (-2433 (($ $ (-830)) 44 T ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2406 (($ $ (-830)) 38 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-2435 (($ $ $) 34 T ELT)) (-3945 (((-772) $) 13 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-2436 (($ $ $ $) 35 T ELT)) (-2434 (($ $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 39 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 36 T ELT) (($ $ |#1|) 46 T ELT) (($ |#1| $) 45 T ELT))) +(((-683 |#1|) (-113) (-146)) (T -683)) +((-2433 (*1 *1 *1 *2) (-12 (-5 *2 (-830)) (-4 *1 (-683 *3)) (-4 *3 (-146))))) +(-13 (-685) (-654 |t#1|) (-10 -8 (-15 -2433 ($ $ (-830))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-590 |#1|) . T) ((-582 |#1|) . T) ((-654 |#1|) . T) ((-657) . T) ((-685) . T) ((-963 |#1|) . T) ((-968 |#1|) . T) ((-1013) . T) ((-1128) . T)) +((-2435 (($ $ $) 10 T ELT)) (-2436 (($ $ $ $) 9 T ELT)) (-2434 (($ $ $) 12 T ELT))) +(((-684 |#1|) (-10 -7 (-15 -2434 (|#1| |#1| |#1|)) (-15 -2435 (|#1| |#1| |#1|)) (-15 -2436 (|#1| |#1| |#1| |#1|))) (-685)) (T -684)) +NIL +((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3723 (($) 23 T CONST)) (-2407 (($ $ (-830)) 37 T ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2406 (($ $ (-830)) 38 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-2435 (($ $ $) 34 T ELT)) (-3945 (((-772) $) 13 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-2436 (($ $ $ $) 35 T ELT)) (-2434 (($ $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 39 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 36 T ELT))) +(((-685) (-113)) (T -685)) +((-2436 (*1 *1 *1 *1 *1) (-4 *1 (-685))) (-2435 (*1 *1 *1 *1) (-4 *1 (-685))) (-2434 (*1 *1 *1 *1) (-4 *1 (-685)))) +(-13 (-21) (-657) (-10 -8 (-15 -2436 ($ $ $ $)) (-15 -2435 ($ $ $)) (-15 -2434 ($ $ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-657) . T) ((-1013) . T) ((-1128) . T)) +((-3945 (((-772) $) NIL T ELT) (($ (-484)) 10 T ELT))) +(((-686 |#1|) (-10 -7 (-15 -3945 (|#1| (-484))) (-15 -3945 ((-772) |#1|))) (-687)) (T -686)) +NIL +((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3723 (($) 23 T CONST)) (-2404 (((-3 $ #1="failed") $) 49 T ELT)) (-2407 (($ $ (-830)) 37 T ELT) (($ $ (-694)) 44 T ELT)) (-3466 (((-3 $ #1#) $) 47 T ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 43 T ELT)) (-2405 (((-3 $ #1#) $) 48 T ELT)) (-2406 (($ $ (-830)) 38 T ELT) (($ $ (-694)) 45 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-2435 (($ $ $) 34 T ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-484)) 40 T ELT)) (-3126 (((-694)) 41 T CONST)) (-1264 (((-85) $ $) 6 T ELT)) (-2436 (($ $ $ $) 35 T ELT)) (-2434 (($ $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 42 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 39 T ELT) (($ $ (-694)) 46 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 36 T ELT))) +(((-687) (-113)) (T -687)) +((-3126 (*1 *2) (-12 (-4 *1 (-687)) (-5 *2 (-694)))) (-3945 (*1 *1 *2) (-12 (-5 *2 (-484)) (-4 *1 (-687))))) +(-13 (-685) (-659) (-10 -8 (-15 -3126 ((-694)) -3951) (-15 -3945 ($ (-484))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-657) . T) ((-659) . T) ((-685) . T) ((-1013) . T) ((-1128) . T)) +((-2438 (((-583 (-2 (|:| |outval| (-142 |#1|)) (|:| |outmult| (-484)) (|:| |outvect| (-583 (-630 (-142 |#1|)))))) (-630 (-142 (-349 (-484)))) |#1|) 33 T ELT)) (-2437 (((-583 (-142 |#1|)) (-630 (-142 (-349 (-484)))) |#1|) 23 T ELT)) (-2449 (((-857 (-142 (-349 (-484)))) (-630 (-142 (-349 (-484)))) (-1089)) 20 T ELT) (((-857 (-142 (-349 (-484)))) (-630 (-142 (-349 (-484))))) 19 T ELT))) +(((-688 |#1|) (-10 -7 (-15 -2449 ((-857 (-142 (-349 (-484)))) (-630 (-142 (-349 (-484)))))) (-15 -2449 ((-857 (-142 (-349 (-484)))) (-630 (-142 (-349 (-484)))) (-1089))) (-15 -2437 ((-583 (-142 |#1|)) (-630 (-142 (-349 (-484)))) |#1|)) (-15 -2438 ((-583 (-2 (|:| |outval| (-142 |#1|)) (|:| |outmult| (-484)) (|:| |outvect| (-583 (-630 (-142 |#1|)))))) (-630 (-142 (-349 (-484)))) |#1|))) (-13 (-312) (-755))) (T -688)) +((-2438 (*1 *2 *3 *4) (-12 (-5 *3 (-630 (-142 (-349 (-484))))) (-5 *2 (-583 (-2 (|:| |outval| (-142 *4)) (|:| |outmult| (-484)) (|:| |outvect| (-583 (-630 (-142 *4))))))) (-5 *1 (-688 *4)) (-4 *4 (-13 (-312) (-755))))) (-2437 (*1 *2 *3 *4) (-12 (-5 *3 (-630 (-142 (-349 (-484))))) (-5 *2 (-583 (-142 *4))) (-5 *1 (-688 *4)) (-4 *4 (-13 (-312) (-755))))) (-2449 (*1 *2 *3 *4) (-12 (-5 *3 (-630 (-142 (-349 (-484))))) (-5 *4 (-1089)) (-5 *2 (-857 (-142 (-349 (-484))))) (-5 *1 (-688 *5)) (-4 *5 (-13 (-312) (-755))))) (-2449 (*1 *2 *3) (-12 (-5 *3 (-630 (-142 (-349 (-484))))) (-5 *2 (-857 (-142 (-349 (-484))))) (-5 *1 (-688 *4)) (-4 *4 (-13 (-312) (-755)))))) +((-2616 (((-148 (-484)) |#1|) 27 T ELT))) +(((-689 |#1|) (-10 -7 (-15 -2616 ((-148 (-484)) |#1|))) (-346)) (T -689)) +((-2616 (*1 *2 *3) (-12 (-5 *2 (-148 (-484))) (-5 *1 (-689 *3)) (-4 *3 (-346))))) +((-2542 ((|#1| |#1| |#1|) 28 T ELT)) (-2543 ((|#1| |#1| |#1|) 27 T ELT)) (-2532 ((|#1| |#1| |#1|) 38 T ELT)) (-2540 ((|#1| |#1| |#1|) 33 T ELT)) (-2541 (((-3 |#1| "failed") |#1| |#1|) 31 T ELT)) (-2548 (((-2 (|:| -1972 |#1|) (|:| -2902 |#1|)) |#1| |#1|) 26 T ELT))) +(((-690 |#1| |#2|) (-10 -7 (-15 -2548 ((-2 (|:| -1972 |#1|) (|:| -2902 |#1|)) |#1| |#1|)) (-15 -2543 (|#1| |#1| |#1|)) (-15 -2542 (|#1| |#1| |#1|)) (-15 -2541 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2540 (|#1| |#1| |#1|)) (-15 -2532 (|#1| |#1| |#1|))) (-645 |#2|) (-312)) (T -690)) +((-2532 (*1 *2 *2 *2) (-12 (-4 *3 (-312)) (-5 *1 (-690 *2 *3)) (-4 *2 (-645 *3)))) (-2540 (*1 *2 *2 *2) (-12 (-4 *3 (-312)) (-5 *1 (-690 *2 *3)) (-4 *2 (-645 *3)))) (-2541 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-312)) (-5 *1 (-690 *2 *3)) (-4 *2 (-645 *3)))) (-2542 (*1 *2 *2 *2) (-12 (-4 *3 (-312)) (-5 *1 (-690 *2 *3)) (-4 *2 (-645 *3)))) (-2543 (*1 *2 *2 *2) (-12 (-4 *3 (-312)) (-5 *1 (-690 *2 *3)) (-4 *2 (-645 *3)))) (-2548 (*1 *2 *3 *3) (-12 (-4 *4 (-312)) (-5 *2 (-2 (|:| -1972 *3) (|:| -2902 *3))) (-5 *1 (-690 *3 *4)) (-4 *3 (-645 *4))))) +((-2555 (((-632 (-1137)) $ (-1137)) 27 T ELT)) (-2556 (((-632 (-488)) $ (-488)) 26 T ELT)) (-2554 (((-694) $ (-102)) 28 T ELT)) (-2557 (((-632 (-101)) $ (-101)) 25 T ELT)) (-2000 (((-632 (-1137)) $) 12 T ELT)) (-1996 (((-632 (-1135)) $) 8 T ELT)) (-1998 (((-632 (-1134)) $) 10 T ELT)) (-2001 (((-632 (-488)) $) 13 T ELT)) (-1997 (((-632 (-486)) $) 9 T ELT)) (-1999 (((-632 (-485)) $) 11 T ELT)) (-1995 (((-694) $ (-102)) 7 T ELT)) (-2002 (((-632 (-101)) $) 14 T ELT)) (-2439 (((-85) $) 32 T ELT)) (-2440 (((-632 $) |#1| (-865)) 33 T ELT)) (-1699 (($ $) 6 T ELT))) +(((-691 |#1|) (-113) (-1013)) (T -691)) +((-2440 (*1 *2 *3 *4) (-12 (-5 *4 (-865)) (-4 *3 (-1013)) (-5 *2 (-632 *1)) (-4 *1 (-691 *3)))) (-2439 (*1 *2 *1) (-12 (-4 *1 (-691 *3)) (-4 *3 (-1013)) (-5 *2 (-85))))) +(-13 (-512) (-10 -8 (-15 -2440 ((-632 $) |t#1| (-865))) (-15 -2439 ((-85) $)))) +(((-147) . T) ((-465) . T) ((-512) . T) ((-770) . T)) +((-3918 (((-2 (|:| -2012 (-630 (-484))) (|:| |basisDen| (-484)) (|:| |basisInv| (-630 (-484)))) (-484)) 72 T ELT)) (-3917 (((-2 (|:| -2012 (-630 (-484))) (|:| |basisDen| (-484)) (|:| |basisInv| (-630 (-484))))) 70 T ELT)) (-3756 (((-484)) 86 T ELT))) +(((-692 |#1| |#2|) (-10 -7 (-15 -3756 ((-484))) (-15 -3917 ((-2 (|:| -2012 (-630 (-484))) (|:| |basisDen| (-484)) (|:| |basisInv| (-630 (-484)))))) (-15 -3918 ((-2 (|:| -2012 (-630 (-484))) (|:| |basisDen| (-484)) (|:| |basisInv| (-630 (-484)))) (-484)))) (-1154 (-484)) (-352 (-484) |#1|)) (T -692)) +((-3918 (*1 *2 *3) (-12 (-5 *3 (-484)) (-4 *4 (-1154 *3)) (-5 *2 (-2 (|:| -2012 (-630 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-630 *3)))) (-5 *1 (-692 *4 *5)) (-4 *5 (-352 *3 *4)))) (-3917 (*1 *2) (-12 (-4 *3 (-1154 (-484))) (-5 *2 (-2 (|:| -2012 (-630 (-484))) (|:| |basisDen| (-484)) (|:| |basisInv| (-630 (-484))))) (-5 *1 (-692 *3 *4)) (-4 *4 (-352 (-484) *3)))) (-3756 (*1 *2) (-12 (-4 *3 (-1154 *2)) (-5 *2 (-484)) (-5 *1 (-692 *3 *4)) (-4 *4 (-352 *2 *3))))) +((-2508 (((-583 (-583 (-249 (-349 (-857 |#1|))))) (-583 (-857 |#1|))) 19 T ELT) (((-583 (-583 (-249 (-349 (-857 |#1|))))) (-583 (-857 |#1|)) (-583 (-1089))) 18 T ELT)) (-3572 (((-583 (-583 (-249 (-349 (-857 |#1|))))) (-583 (-857 |#1|))) 21 T ELT) (((-583 (-583 (-249 (-349 (-857 |#1|))))) (-583 (-857 |#1|)) (-583 (-1089))) 20 T ELT))) +(((-693 |#1|) (-10 -7 (-15 -2508 ((-583 (-583 (-249 (-349 (-857 |#1|))))) (-583 (-857 |#1|)) (-583 (-1089)))) (-15 -2508 ((-583 (-583 (-249 (-349 (-857 |#1|))))) (-583 (-857 |#1|)))) (-15 -3572 ((-583 (-583 (-249 (-349 (-857 |#1|))))) (-583 (-857 |#1|)) (-583 (-1089)))) (-15 -3572 ((-583 (-583 (-249 (-349 (-857 |#1|))))) (-583 (-857 |#1|))))) (-495)) (T -693)) +((-3572 (*1 *2 *3) (-12 (-5 *3 (-583 (-857 *4))) (-4 *4 (-495)) (-5 *2 (-583 (-583 (-249 (-349 (-857 *4)))))) (-5 *1 (-693 *4)))) (-3572 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-857 *5))) (-5 *4 (-583 (-1089))) (-4 *5 (-495)) (-5 *2 (-583 (-583 (-249 (-349 (-857 *5)))))) (-5 *1 (-693 *5)))) (-2508 (*1 *2 *3) (-12 (-5 *3 (-583 (-857 *4))) (-4 *4 (-495)) (-5 *2 (-583 (-583 (-249 (-349 (-857 *4)))))) (-5 *1 (-693 *4)))) (-2508 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-857 *5))) (-5 *4 (-583 (-1089))) (-4 *5 (-495)) (-5 *2 (-583 (-583 (-249 (-349 (-857 *5)))))) (-5 *1 (-693 *5))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-2483 (($ $ $) 10 T ELT)) (-1311 (((-3 $ #1="failed") $ $) 15 T ELT)) (-2441 (($ $ (-484)) 11 T ELT)) (-3723 (($) NIL T CONST)) (-2564 (($ $ $) NIL T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-2994 (($ $) NIL T ELT)) (-2563 (($ $ $) NIL T ELT)) (-3186 (((-85) $) NIL T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2531 (($ $ $) NIL T ELT)) (-2857 (($ $ $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3144 (($ $ $) NIL T ELT)) (-3465 (((-3 $ #1#) $ $) NIL T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL T ELT)) (-3945 (((-772) $) NIL T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2660 (($) 6 T CONST)) (-2666 (($) NIL T CONST)) (-2566 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (** (($ $ (-694)) NIL T ELT) (($ $ (-830)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ $ $) NIL T ELT))) +(((-694) (-13 (-717) (-663) (-10 -8 (-15 -2563 ($ $ $)) (-15 -2564 ($ $ $)) (-15 -3144 ($ $ $)) (-15 -2879 ((-2 (|:| -1972 $) (|:| -2902 $)) $ $)) (-15 -3465 ((-3 $ "failed") $ $)) (-15 -2441 ($ $ (-484))) (-15 -2994 ($ $)) (-6 (-3996 "*"))))) (T -694)) +((-2563 (*1 *1 *1 *1) (-5 *1 (-694))) (-2564 (*1 *1 *1 *1) (-5 *1 (-694))) (-3144 (*1 *1 *1 *1) (-5 *1 (-694))) (-2879 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1972 (-694)) (|:| -2902 (-694)))) (-5 *1 (-694)))) (-3465 (*1 *1 *1 *1) (|partial| -5 *1 (-694))) (-2441 (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-694)))) (-2994 (*1 *1 *1) (-5 *1 (-694)))) +((-484) (|%not| (|%ilt| |#1| 0))) +((-3572 (((-3 |#2| "failed") |#2| |#2| (-86) (-1089)) 37 T ELT))) +(((-695 |#1| |#2|) (-10 -7 (-15 -3572 ((-3 |#2| "failed") |#2| |#2| (-86) (-1089)))) (-13 (-258) (-950 (-484)) (-580 (-484)) (-120)) (-13 (-29 |#1|) (-1114) (-871))) (T -695)) +((-3572 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-86)) (-5 *4 (-1089)) (-4 *5 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120))) (-5 *1 (-695 *5 *2)) (-4 *2 (-13 (-29 *5) (-1114) (-871)))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) 7 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 9 T ELT))) +(((-696) (-1013)) (T -696)) +NIL +((-3945 (((-696) |#1|) 8 T ELT))) +(((-697 |#1|) (-10 -7 (-15 -3945 ((-696) |#1|))) (-1128)) (T -697)) +((-3945 (*1 *2 *3) (-12 (-5 *2 (-696)) (-5 *1 (-697 *3)) (-4 *3 (-1128))))) +((-3132 ((|#2| |#4|) 35 T ELT))) +(((-698 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3132 (|#2| |#4|))) (-391) (-1154 |#1|) (-661 |#1| |#2|) (-1154 |#3|)) (T -698)) +((-3132 (*1 *2 *3) (-12 (-4 *4 (-391)) (-4 *5 (-661 *4 *2)) (-4 *2 (-1154 *4)) (-5 *1 (-698 *4 *2 *5 *3)) (-4 *3 (-1154 *5))))) +((-3466 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 57 T ELT)) (-2444 (((-1184) (-1072) (-1072) |#4| |#5|) 33 T ELT)) (-2442 ((|#4| |#4| |#5|) 74 T ELT)) (-2443 (((-583 (-2 (|:| |val| |#4|) (|:| -1599 |#5|))) |#4| |#5|) 79 T ELT)) (-2445 (((-583 (-2 (|:| |val| (-85)) (|:| -1599 |#5|))) |#4| |#5|) 16 T ELT))) +(((-699 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3466 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -2442 (|#4| |#4| |#5|)) (-15 -2443 ((-583 (-2 (|:| |val| |#4|) (|:| -1599 |#5|))) |#4| |#5|)) (-15 -2444 ((-1184) (-1072) (-1072) |#4| |#5|)) (-15 -2445 ((-583 (-2 (|:| |val| (-85)) (|:| -1599 |#5|))) |#4| |#5|))) (-391) (-717) (-756) (-977 |#1| |#2| |#3|) (-983 |#1| |#2| |#3| |#4|)) (T -699)) +((-2445 (*1 *2 *3 *4) (-12 (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-85)) (|:| -1599 *4)))) (-5 *1 (-699 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-2444 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1072)) (-4 *6 (-391)) (-4 *7 (-717)) (-4 *8 (-756)) (-4 *4 (-977 *6 *7 *8)) (-5 *2 (-1184)) (-5 *1 (-699 *6 *7 *8 *4 *5)) (-4 *5 (-983 *6 *7 *8 *4)))) (-2443 (*1 *2 *3 *4) (-12 (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1599 *4)))) (-5 *1 (-699 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-2442 (*1 *2 *2 *3) (-12 (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *2 (-977 *4 *5 *6)) (-5 *1 (-699 *4 *5 *6 *2 *3)) (-4 *3 (-983 *4 *5 *6 *2)))) (-3466 (*1 *2 *3 *4) (-12 (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-699 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3))))) +((-3157 (((-3 (-1084 (-1084 |#1|)) "failed") |#4|) 53 T ELT)) (-2446 (((-583 |#4|) |#4|) 22 T ELT)) (-3927 ((|#4| |#4|) 17 T ELT))) +(((-700 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2446 ((-583 |#4|) |#4|)) (-15 -3157 ((-3 (-1084 (-1084 |#1|)) "failed") |#4|)) (-15 -3927 (|#4| |#4|))) (-299) (-280 |#1|) (-1154 |#2|) (-1154 |#3|) (-830)) (T -700)) +((-3927 (*1 *2 *2) (-12 (-4 *3 (-299)) (-4 *4 (-280 *3)) (-4 *5 (-1154 *4)) (-5 *1 (-700 *3 *4 *5 *2 *6)) (-4 *2 (-1154 *5)) (-14 *6 (-830)))) (-3157 (*1 *2 *3) (|partial| -12 (-4 *4 (-299)) (-4 *5 (-280 *4)) (-4 *6 (-1154 *5)) (-5 *2 (-1084 (-1084 *4))) (-5 *1 (-700 *4 *5 *6 *3 *7)) (-4 *3 (-1154 *6)) (-14 *7 (-830)))) (-2446 (*1 *2 *3) (-12 (-4 *4 (-299)) (-4 *5 (-280 *4)) (-4 *6 (-1154 *5)) (-5 *2 (-583 *3)) (-5 *1 (-700 *4 *5 *6 *3 *7)) (-4 *3 (-1154 *6)) (-14 *7 (-830))))) +((-2447 (((-2 (|:| |deter| (-583 (-1084 |#5|))) (|:| |dterm| (-583 (-583 (-2 (|:| -3078 (-694)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-583 |#1|)) (|:| |nlead| (-583 |#5|))) (-1084 |#5|) (-583 |#1|) (-583 |#5|)) 72 T ELT)) (-2448 (((-583 (-694)) |#1|) 20 T ELT))) +(((-701 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2447 ((-2 (|:| |deter| (-583 (-1084 |#5|))) (|:| |dterm| (-583 (-583 (-2 (|:| -3078 (-694)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-583 |#1|)) (|:| |nlead| (-583 |#5|))) (-1084 |#5|) (-583 |#1|) (-583 |#5|))) (-15 -2448 ((-583 (-694)) |#1|))) (-1154 |#4|) (-717) (-756) (-258) (-861 |#4| |#2| |#3|)) (T -701)) +((-2448 (*1 *2 *3) (-12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-258)) (-5 *2 (-583 (-694))) (-5 *1 (-701 *3 *4 *5 *6 *7)) (-4 *3 (-1154 *6)) (-4 *7 (-861 *6 *4 *5)))) (-2447 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1154 *9)) (-4 *7 (-717)) (-4 *8 (-756)) (-4 *9 (-258)) (-4 *10 (-861 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-583 (-1084 *10))) (|:| |dterm| (-583 (-583 (-2 (|:| -3078 (-694)) (|:| |pcoef| *10))))) (|:| |nfacts| (-583 *6)) (|:| |nlead| (-583 *10)))) (-5 *1 (-701 *6 *7 *8 *9 *10)) (-5 *3 (-1084 *10)) (-5 *4 (-583 *6)) (-5 *5 (-583 *10))))) +((-2451 (((-583 (-2 (|:| |outval| |#1|) (|:| |outmult| (-484)) (|:| |outvect| (-583 (-630 |#1|))))) (-630 (-349 (-484))) |#1|) 31 T ELT)) (-2450 (((-583 |#1|) (-630 (-349 (-484))) |#1|) 21 T ELT)) (-2449 (((-857 (-349 (-484))) (-630 (-349 (-484))) (-1089)) 18 T ELT) (((-857 (-349 (-484))) (-630 (-349 (-484)))) 17 T ELT))) +(((-702 |#1|) (-10 -7 (-15 -2449 ((-857 (-349 (-484))) (-630 (-349 (-484))))) (-15 -2449 ((-857 (-349 (-484))) (-630 (-349 (-484))) (-1089))) (-15 -2450 ((-583 |#1|) (-630 (-349 (-484))) |#1|)) (-15 -2451 ((-583 (-2 (|:| |outval| |#1|) (|:| |outmult| (-484)) (|:| |outvect| (-583 (-630 |#1|))))) (-630 (-349 (-484))) |#1|))) (-13 (-312) (-755))) (T -702)) +((-2451 (*1 *2 *3 *4) (-12 (-5 *3 (-630 (-349 (-484)))) (-5 *2 (-583 (-2 (|:| |outval| *4) (|:| |outmult| (-484)) (|:| |outvect| (-583 (-630 *4)))))) (-5 *1 (-702 *4)) (-4 *4 (-13 (-312) (-755))))) (-2450 (*1 *2 *3 *4) (-12 (-5 *3 (-630 (-349 (-484)))) (-5 *2 (-583 *4)) (-5 *1 (-702 *4)) (-4 *4 (-13 (-312) (-755))))) (-2449 (*1 *2 *3 *4) (-12 (-5 *3 (-630 (-349 (-484)))) (-5 *4 (-1089)) (-5 *2 (-857 (-349 (-484)))) (-5 *1 (-702 *5)) (-4 *5 (-13 (-312) (-755))))) (-2449 (*1 *2 *3) (-12 (-5 *3 (-630 (-349 (-484)))) (-5 *2 (-857 (-349 (-484)))) (-5 *1 (-702 *4)) (-4 *4 (-13 (-312) (-755)))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) 36 T ELT)) (-3081 (((-583 |#2|) $) NIL T ELT)) (-3083 (((-1084 $) $ |#2|) NIL T ELT) (((-1084 |#1|) $) NIL T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2063 (($ $) NIL (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-2819 (((-694) $) NIL T ELT) (((-694) $ (-583 |#2|)) NIL T ELT)) (-3796 (($ $) 30 T ELT)) (-3166 (((-85) $ $) NIL T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3754 (($ $ $) 110 (|has| |#1| (-495)) ELT)) (-3148 (((-583 $) $ $) 123 (|has| |#1| (-495)) ELT)) (-2707 (((-347 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-821)) ELT)) (-3774 (($ $) NIL (|has| |#1| (-391)) ELT)) (-3970 (((-347 $) $) NIL (|has| |#1| (-391)) ELT)) (-2704 (((-3 (-583 (-1084 $)) #1#) (-583 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-821)) ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-349 (-484)) #1#) $) NIL (|has| |#1| (-950 (-349 (-484)))) ELT) (((-3 (-484) #1#) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-3 |#2| #1#) $) NIL T ELT) (((-3 $ #1#) (-857 (-349 (-484)))) NIL (-12 (|has| |#1| (-38 (-349 (-484)))) (|has| |#2| (-553 (-1089)))) ELT) (((-3 $ #1#) (-857 (-484))) NIL (OR (-12 (|has| |#1| (-38 (-484))) (|has| |#2| (-553 (-1089))) (-2560 (|has| |#1| (-38 (-349 (-484)))))) (-12 (|has| |#1| (-38 (-349 (-484)))) (|has| |#2| (-553 (-1089))))) ELT) (((-3 $ #1#) (-857 |#1|)) NIL (OR (-12 (|has| |#2| (-553 (-1089))) (-2560 (|has| |#1| (-38 (-349 (-484))))) (-2560 (|has| |#1| (-38 (-484))))) (-12 (|has| |#1| (-38 (-484))) (|has| |#2| (-553 (-1089))) (-2560 (|has| |#1| (-38 (-349 (-484))))) (-2560 (|has| |#1| (-483)))) (-12 (|has| |#1| (-38 (-349 (-484)))) (|has| |#2| (-553 (-1089))) (-2560 (|has| |#1| (-904 (-484)))))) ELT) (((-3 (-1038 |#1| |#2|) #1#) $) 21 T ELT)) (-3156 ((|#1| $) NIL T ELT) (((-349 (-484)) $) NIL (|has| |#1| (-950 (-349 (-484)))) ELT) (((-484) $) NIL (|has| |#1| (-950 (-484))) ELT) ((|#2| $) NIL T ELT) (($ (-857 (-349 (-484)))) NIL (-12 (|has| |#1| (-38 (-349 (-484)))) (|has| |#2| (-553 (-1089)))) ELT) (($ (-857 (-484))) NIL (OR (-12 (|has| |#1| (-38 (-484))) (|has| |#2| (-553 (-1089))) (-2560 (|has| |#1| (-38 (-349 (-484)))))) (-12 (|has| |#1| (-38 (-349 (-484)))) (|has| |#2| (-553 (-1089))))) ELT) (($ (-857 |#1|)) NIL (OR (-12 (|has| |#2| (-553 (-1089))) (-2560 (|has| |#1| (-38 (-349 (-484))))) (-2560 (|has| |#1| (-38 (-484))))) (-12 (|has| |#1| (-38 (-484))) (|has| |#2| (-553 (-1089))) (-2560 (|has| |#1| (-38 (-349 (-484))))) (-2560 (|has| |#1| (-483)))) (-12 (|has| |#1| (-38 (-349 (-484)))) (|has| |#2| (-553 (-1089))) (-2560 (|has| |#1| (-904 (-484)))))) ELT) (((-1038 |#1| |#2|) $) NIL T ELT)) (-3755 (($ $ $ |#2|) NIL (|has| |#1| (-146)) ELT) (($ $ $) 121 (|has| |#1| (-495)) ELT)) (-3958 (($ $) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1178 |#1|))) (-630 $) (-1178 $)) NIL T ELT) (((-630 |#1|) (-630 $)) NIL T ELT)) (-3693 (((-85) $ $) NIL T ELT) (((-85) $ (-583 $)) NIL T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-3172 (((-85) $) NIL T ELT)) (-3751 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 81 T ELT)) (-3143 (($ $) 136 (|has| |#1| (-391)) ELT)) (-3502 (($ $) NIL (|has| |#1| (-391)) ELT) (($ $ |#2|) NIL (|has| |#1| (-391)) ELT)) (-2818 (((-583 $) $) NIL T ELT)) (-3722 (((-85) $) NIL (|has| |#1| (-821)) ELT)) (-3154 (($ $) NIL (|has| |#1| (-495)) ELT)) (-3155 (($ $) NIL (|has| |#1| (-495)) ELT)) (-3165 (($ $ $) 76 T ELT) (($ $ $ |#2|) NIL T ELT)) (-3164 (($ $ $) 79 T ELT) (($ $ $ |#2|) NIL T ELT)) (-1623 (($ $ |#1| (-469 |#2|) $) NIL T ELT)) (-2796 (((-798 (-329) $) $ (-800 (-329)) (-798 (-329) $)) NIL (-12 (|has| |#1| (-796 (-329))) (|has| |#2| (-796 (-329)))) ELT) (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) NIL (-12 (|has| |#1| (-796 (-484))) (|has| |#2| (-796 (-484)))) ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) 57 T ELT)) (-2420 (((-694) $) NIL T ELT)) (-3694 (((-85) $ $) NIL T ELT) (((-85) $ (-583 $)) NIL T ELT)) (-3145 (($ $ $ $ $) 107 (|has| |#1| (-495)) ELT)) (-3180 ((|#2| $) 22 T ELT)) (-3084 (($ (-1084 |#1|) |#2|) NIL T ELT) (($ (-1084 $) |#2|) NIL T ELT)) (-2821 (((-583 $) $) NIL T ELT)) (-3936 (((-85) $) NIL T ELT)) (-2893 (($ |#1| (-469 |#2|)) NIL T ELT) (($ $ |#2| (-694)) 38 T ELT) (($ $ (-583 |#2|) (-583 (-694))) NIL T ELT)) (-3159 (($ $ $) 63 T ELT)) (-3762 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $ |#2|) NIL T ELT)) (-3173 (((-85) $) NIL T ELT)) (-2820 (((-469 |#2|) $) NIL T ELT) (((-694) $ |#2|) NIL T ELT) (((-583 (-694)) $ (-583 |#2|)) NIL T ELT)) (-3179 (((-694) $) 23 T ELT)) (-1624 (($ (-1 (-469 |#2|) (-469 |#2|)) $) NIL T ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3082 (((-3 |#2| #1#) $) NIL T ELT)) (-3140 (($ $) NIL (|has| |#1| (-391)) ELT)) (-3141 (($ $) NIL (|has| |#1| (-391)) ELT)) (-3168 (((-583 $) $) NIL T ELT)) (-3171 (($ $) 39 T ELT)) (-3142 (($ $) NIL (|has| |#1| (-391)) ELT)) (-3169 (((-583 $) $) 43 T ELT)) (-2280 (((-630 (-484)) (-1178 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1178 |#1|))) (-1178 $) $) NIL T ELT) (((-630 |#1|) (-1178 $)) NIL T ELT)) (-3170 (($ $) 41 T ELT)) (-2894 (($ $) NIL T ELT)) (-3174 ((|#1| $) NIL T ELT) (($ $ |#2|) 48 T ELT)) (-1890 (($ (-583 $)) NIL (|has| |#1| (-391)) ELT) (($ $ $) NIL (|has| |#1| (-391)) ELT)) (-3158 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3480 (-694))) $ $) 96 T ELT)) (-3160 (((-2 (|:| -3953 $) (|:| |gap| (-694)) (|:| -1972 $) (|:| -2902 $)) $ $) 78 T ELT) (((-2 (|:| -3953 $) (|:| |gap| (-694)) (|:| -1972 $) (|:| -2902 $)) $ $ |#2|) NIL T ELT)) (-3161 (((-2 (|:| -3953 $) (|:| |gap| (-694)) (|:| -2902 $)) $ $) NIL T ELT) (((-2 (|:| -3953 $) (|:| |gap| (-694)) (|:| -2902 $)) $ $ |#2|) NIL T ELT)) (-3163 (($ $ $) 83 T ELT) (($ $ $ |#2|) NIL T ELT)) (-3162 (($ $ $) 86 T ELT) (($ $ $ |#2|) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3190 (($ $ $) 125 (|has| |#1| (-495)) ELT)) (-3176 (((-583 $) $) 32 T ELT)) (-2823 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2822 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2824 (((-3 (-2 (|:| |var| |#2|) (|:| -2401 (-694))) #1#) $) NIL T ELT)) (-3690 (((-85) $ $) NIL T ELT) (((-85) $ (-583 $)) NIL T ELT)) (-3685 (($ $ $) NIL T ELT)) (-3445 (($ $) 24 T ELT)) (-3698 (((-85) $ $) NIL T ELT)) (-3691 (((-85) $ $) NIL T ELT) (((-85) $ (-583 $)) NIL T ELT)) (-3686 (($ $ $) NIL T ELT)) (-3178 (($ $) 26 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3149 (((-2 (|:| -3144 $) (|:| |coef2| $)) $ $) 116 (|has| |#1| (-495)) ELT)) (-3150 (((-2 (|:| -3144 $) (|:| |coef1| $)) $ $) 113 (|has| |#1| (-495)) ELT)) (-1796 (((-85) $) 56 T ELT)) (-1795 ((|#1| $) 58 T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) NIL (|has| |#1| (-391)) ELT)) (-3144 ((|#1| |#1| $) 133 (|has| |#1| (-391)) ELT) (($ (-583 $)) NIL (|has| |#1| (-391)) ELT) (($ $ $) NIL (|has| |#1| (-391)) ELT)) (-2705 (((-347 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-821)) ELT)) (-2706 (((-347 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-821)) ELT)) (-3731 (((-347 $) $) NIL (|has| |#1| (-821)) ELT)) (-3151 (((-2 (|:| -3144 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 119 (|has| |#1| (-495)) ELT)) (-3465 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-495)) ELT) (((-3 $ #1#) $ $) 98 (|has| |#1| (-495)) ELT)) (-3152 (($ $ |#1|) 129 (|has| |#1| (-495)) ELT) (($ $ $) NIL (|has| |#1| (-495)) ELT)) (-3153 (($ $ |#1|) 128 (|has| |#1| (-495)) ELT) (($ $ $) NIL (|has| |#1| (-495)) ELT)) (-3767 (($ $ (-583 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ |#2| |#1|) NIL T ELT) (($ $ (-583 |#2|) (-583 |#1|)) NIL T ELT) (($ $ |#2| $) NIL T ELT) (($ $ (-583 |#2|) (-583 $)) NIL T ELT)) (-3756 (($ $ |#2|) NIL (|has| |#1| (-146)) ELT)) (-3757 (($ $ (-583 |#2|) (-583 (-694))) NIL T ELT) (($ $ |#2| (-694)) NIL T ELT) (($ $ (-583 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-3947 (((-469 |#2|) $) NIL T ELT) (((-694) $ |#2|) 45 T ELT) (((-583 (-694)) $ (-583 |#2|)) NIL T ELT)) (-3177 (($ $) NIL T ELT)) (-3175 (($ $) 35 T ELT)) (-3971 (((-800 (-329)) $) NIL (-12 (|has| |#1| (-553 (-800 (-329)))) (|has| |#2| (-553 (-800 (-329))))) ELT) (((-800 (-484)) $) NIL (-12 (|has| |#1| (-553 (-800 (-484)))) (|has| |#2| (-553 (-800 (-484))))) ELT) (((-473) $) NIL (-12 (|has| |#1| (-553 (-473))) (|has| |#2| (-553 (-473)))) ELT) (($ (-857 (-349 (-484)))) NIL (-12 (|has| |#1| (-38 (-349 (-484)))) (|has| |#2| (-553 (-1089)))) ELT) (($ (-857 (-484))) NIL (OR (-12 (|has| |#1| (-38 (-484))) (|has| |#2| (-553 (-1089))) (-2560 (|has| |#1| (-38 (-349 (-484)))))) (-12 (|has| |#1| (-38 (-349 (-484)))) (|has| |#2| (-553 (-1089))))) ELT) (($ (-857 |#1|)) NIL (|has| |#2| (-553 (-1089))) ELT) (((-1072) $) NIL (-12 (|has| |#1| (-950 (-484))) (|has| |#2| (-553 (-1089)))) ELT) (((-857 |#1|) $) NIL (|has| |#2| (-553 (-1089))) ELT)) (-2817 ((|#1| $) 132 (|has| |#1| (-391)) ELT) (($ $ |#2|) NIL (|has| |#1| (-391)) ELT)) (-2703 (((-3 (-1178 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-821))) ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#1|) NIL T ELT) (($ |#2|) NIL T ELT) (((-857 |#1|) $) NIL (|has| |#2| (-553 (-1089))) ELT) (((-1038 |#1| |#2|) $) 18 T ELT) (($ (-1038 |#1| |#2|)) 19 T ELT) (($ (-349 (-484))) NIL (OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-950 (-349 (-484))))) ELT) (($ $) NIL (|has| |#1| (-495)) ELT)) (-3816 (((-583 |#1|) $) NIL T ELT)) (-3676 ((|#1| $ (-469 |#2|)) NIL T ELT) (($ $ |#2| (-694)) 47 T ELT) (($ $ (-583 |#2|) (-583 (-694))) NIL T ELT)) (-2702 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-821))) (|has| |#1| (-118))) ELT)) (-3126 (((-694)) NIL T CONST)) (-1622 (($ $ $ (-694)) NIL (|has| |#1| (-146)) ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) 13 T CONST)) (-3167 (((-3 (-85) #1#) $ $) NIL T ELT)) (-2666 (($) 37 T CONST)) (-3146 (($ $ $ $ (-694)) 105 (|has| |#1| (-495)) ELT)) (-3147 (($ $ $ (-694)) 104 (|has| |#1| (-495)) ELT)) (-2669 (($ $ (-583 |#2|) (-583 (-694))) NIL T ELT) (($ $ |#2| (-694)) NIL T ELT) (($ $ (-583 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3948 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) 75 T ELT)) (-3838 (($ $ $) 85 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) 70 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 62 T ELT) (($ $ (-349 (-484))) NIL (|has| |#1| (-38 (-349 (-484)))) ELT) (($ (-349 (-484)) $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT) (($ |#1| $) 61 T ELT) (($ $ |#1|) NIL T ELT))) +(((-703 |#1| |#2|) (-13 (-977 |#1| (-469 |#2|) |#2|) (-552 (-1038 |#1| |#2|)) (-950 (-1038 |#1| |#2|))) (-961) (-756)) (T -703)) +NIL +((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) 12 T ELT)) (-3766 (((-1178 |#1|) $ (-694)) NIL T ELT)) (-3081 (((-583 (-994)) $) NIL T ELT)) (-3764 (($ (-1084 |#1|)) NIL T ELT)) (-3083 (((-1084 $) $ (-994)) NIL T ELT) (((-1084 |#1|) $) NIL T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2063 (($ $) NIL (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-2819 (((-694) $) NIL T ELT) (((-694) $ (-583 (-994))) NIL T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2455 (((-583 $) $ $) 54 (|has| |#1| (-495)) ELT)) (-3754 (($ $ $) 50 (|has| |#1| (-495)) ELT)) (-2707 (((-347 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-821)) ELT)) (-3774 (($ $) NIL (|has| |#1| (-391)) ELT)) (-3970 (((-347 $) $) NIL (|has| |#1| (-391)) ELT)) (-2704 (((-3 (-583 (-1084 $)) #1#) (-583 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-821)) ELT)) (-1607 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3760 (($ $ (-694)) NIL T ELT)) (-3759 (($ $ (-694)) NIL T ELT)) (-3750 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-391)) ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-349 (-484)) #1#) $) NIL (|has| |#1| (-950 (-349 (-484)))) ELT) (((-3 (-484) #1#) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-3 (-994) #1#) $) NIL T ELT) (((-3 (-1084 |#1|) #1#) $) 10 T ELT)) (-3156 ((|#1| $) NIL T ELT) (((-349 (-484)) $) NIL (|has| |#1| (-950 (-349 (-484)))) ELT) (((-484) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-994) $) NIL T ELT) (((-1084 |#1|) $) NIL T ELT)) (-3755 (($ $ $ (-994)) NIL (|has| |#1| (-146)) ELT) ((|#1| $ $) 58 (|has| |#1| (-146)) ELT)) (-2564 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3958 (($ $) NIL T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1178 |#1|))) (-630 $) (-1178 $)) NIL T ELT) (((-630 |#1|) (-630 $)) NIL T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-2563 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3758 (($ $ $) NIL T ELT)) (-3752 (($ $ $) 87 (|has| |#1| (-495)) ELT)) (-3751 (((-2 (|:| -3953 |#1|) (|:| -1972 $) (|:| -2902 $)) $ $) 86 (|has| |#1| (-495)) ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) NIL (|has| |#1| (-312)) ELT)) (-3502 (($ $) NIL (|has| |#1| (-391)) ELT) (($ $ (-994)) NIL (|has| |#1| (-391)) ELT)) (-2818 (((-583 $) $) NIL T ELT)) (-3722 (((-85) $) NIL (|has| |#1| (-821)) ELT)) (-1623 (($ $ |#1| (-694) $) NIL T ELT)) (-2796 (((-798 (-329) $) $ (-800 (-329)) (-798 (-329) $)) NIL (-12 (|has| (-994) (-796 (-329))) (|has| |#1| (-796 (-329)))) ELT) (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) NIL (-12 (|has| (-994) (-796 (-484))) (|has| |#1| (-796 (-484)))) ELT)) (-3771 (((-694) $ $) NIL (|has| |#1| (-495)) ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2420 (((-694) $) NIL T ELT)) (-3444 (((-632 $) $) NIL (|has| |#1| (-1065)) ELT)) (-3084 (($ (-1084 |#1|) (-994)) NIL T ELT) (($ (-1084 $) (-994)) NIL T ELT)) (-3776 (($ $ (-694)) NIL T ELT)) (-1604 (((-3 (-583 $) #1#) (-583 $) $) NIL (|has| |#1| (-312)) ELT)) (-2821 (((-583 $) $) NIL T ELT)) (-3936 (((-85) $) NIL T ELT)) (-2893 (($ |#1| (-694)) NIL T ELT) (($ $ (-994) (-694)) NIL T ELT) (($ $ (-583 (-994)) (-583 (-694))) NIL T ELT)) (-3159 (($ $ $) 27 T ELT)) (-3762 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $ (-994)) NIL T ELT) (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL T ELT)) (-2820 (((-694) $) NIL T ELT) (((-694) $ (-994)) NIL T ELT) (((-583 (-694)) $ (-583 (-994))) NIL T ELT)) (-1624 (($ (-1 (-694) (-694)) $) NIL T ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3765 (((-1084 |#1|) $) NIL T ELT)) (-3082 (((-3 (-994) #1#) $) NIL T ELT)) (-2280 (((-630 (-484)) (-1178 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1178 |#1|))) (-1178 $) $) NIL T ELT) (((-630 |#1|) (-1178 $)) NIL T ELT)) (-2894 (($ $) NIL T ELT)) (-3174 ((|#1| $) NIL T ELT)) (-1890 (($ (-583 $)) NIL (|has| |#1| (-391)) ELT) (($ $ $) NIL (|has| |#1| (-391)) ELT)) (-3158 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3480 (-694))) $ $) 37 T ELT)) (-2457 (($ $ $) 41 T ELT)) (-2456 (($ $ $) 47 T ELT)) (-3160 (((-2 (|:| -3953 |#1|) (|:| |gap| (-694)) (|:| -1972 $) (|:| -2902 $)) $ $) 46 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3190 (($ $ $) 56 (|has| |#1| (-495)) ELT)) (-3761 (((-2 (|:| -1972 $) (|:| -2902 $)) $ (-694)) NIL T ELT)) (-2823 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2822 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2824 (((-3 (-2 (|:| |var| (-994)) (|:| -2401 (-694))) #1#) $) NIL T ELT)) (-3811 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3445 (($) NIL (|has| |#1| (-1065)) CONST)) (-3243 (((-1033) $) NIL T ELT)) (-3149 (((-2 (|:| -3144 $) (|:| |coef2| $)) $ $) 82 (|has| |#1| (-495)) ELT)) (-3150 (((-2 (|:| -3144 $) (|:| |coef1| $)) $ $) 78 (|has| |#1| (-495)) ELT)) (-2452 (((-2 (|:| -3755 |#1|) (|:| |coef2| $)) $ $) 70 (|has| |#1| (-495)) ELT)) (-2453 (((-2 (|:| -3755 |#1|) (|:| |coef1| $)) $ $) 66 (|has| |#1| (-495)) ELT)) (-1796 (((-85) $) 13 T ELT)) (-1795 ((|#1| $) NIL T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) NIL (|has| |#1| (-391)) ELT)) (-3144 (($ (-583 $)) NIL (|has| |#1| (-391)) ELT) (($ $ $) NIL (|has| |#1| (-391)) ELT)) (-3737 (($ $ (-694) |#1| $) 26 T ELT)) (-2705 (((-347 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-821)) ELT)) (-2706 (((-347 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-821)) ELT)) (-3731 (((-347 $) $) NIL (|has| |#1| (-821)) ELT)) (-3151 (((-2 (|:| -3144 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 74 (|has| |#1| (-495)) ELT)) (-2454 (((-2 (|:| -3755 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 62 (|has| |#1| (-495)) ELT)) (-1605 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3465 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-495)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-495)) ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL (|has| |#1| (-312)) ELT)) (-3767 (($ $ (-583 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ (-994) |#1|) NIL T ELT) (($ $ (-583 (-994)) (-583 |#1|)) NIL T ELT) (($ $ (-994) $) NIL T ELT) (($ $ (-583 (-994)) (-583 $)) NIL T ELT)) (-1606 (((-694) $) NIL (|has| |#1| (-312)) ELT)) (-3799 ((|#1| $ |#1|) NIL T ELT) (($ $ $) NIL T ELT) (((-349 $) (-349 $) (-349 $)) NIL (|has| |#1| (-495)) ELT) ((|#1| (-349 $) |#1|) NIL (|has| |#1| (-312)) ELT) (((-349 $) $ (-349 $)) NIL (|has| |#1| (-495)) ELT)) (-3763 (((-3 $ #1#) $ (-694)) NIL T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3756 (($ $ (-994)) NIL (|has| |#1| (-146)) ELT) ((|#1| $) NIL (|has| |#1| (-146)) ELT)) (-3757 (($ $ (-583 (-994)) (-583 (-694))) NIL T ELT) (($ $ (-994) (-694)) NIL T ELT) (($ $ (-583 (-994))) NIL T ELT) (($ $ (-994)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL T ELT) (($ $ (-1 |#1| |#1|) $) NIL T ELT) (($ $ (-1089)) NIL (|has| |#1| (-811 (-1089))) ELT) (($ $ (-583 (-1089))) NIL (|has| |#1| (-811 (-1089))) ELT) (($ $ (-1089) (-694)) NIL (|has| |#1| (-811 (-1089))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (|has| |#1| (-811 (-1089))) ELT)) (-3947 (((-694) $) NIL T ELT) (((-694) $ (-994)) NIL T ELT) (((-583 (-694)) $ (-583 (-994))) NIL T ELT)) (-3971 (((-800 (-329)) $) NIL (-12 (|has| (-994) (-553 (-800 (-329)))) (|has| |#1| (-553 (-800 (-329))))) ELT) (((-800 (-484)) $) NIL (-12 (|has| (-994) (-553 (-800 (-484)))) (|has| |#1| (-553 (-800 (-484))))) ELT) (((-473) $) NIL (-12 (|has| (-994) (-553 (-473))) (|has| |#1| (-553 (-473)))) ELT)) (-2817 ((|#1| $) NIL (|has| |#1| (-391)) ELT) (($ $ (-994)) NIL (|has| |#1| (-391)) ELT)) (-2703 (((-3 (-1178 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-821))) ELT)) (-3753 (((-3 $ #1#) $ $) NIL (|has| |#1| (-495)) ELT) (((-3 (-349 $) #1#) (-349 $) $) NIL (|has| |#1| (-495)) ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-994)) NIL T ELT) (((-1084 |#1|) $) 7 T ELT) (($ (-1084 |#1|)) 8 T ELT) (($ (-349 (-484))) NIL (OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-950 (-349 (-484))))) ELT) (($ $) NIL (|has| |#1| (-495)) ELT)) (-3816 (((-583 |#1|) $) NIL T ELT)) (-3676 ((|#1| $ (-694)) NIL T ELT) (($ $ (-994) (-694)) NIL T ELT) (($ $ (-583 (-994)) (-583 (-694))) NIL T ELT)) (-2702 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-821))) (|has| |#1| (-118))) ELT)) (-3126 (((-694)) NIL T CONST)) (-1622 (($ $ $ (-694)) NIL (|has| |#1| (-146)) ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) 28 T CONST)) (-2666 (($) 32 T CONST)) (-2669 (($ $ (-583 (-994)) (-583 (-694))) NIL T ELT) (($ $ (-994) (-694)) NIL T ELT) (($ $ (-583 (-994))) NIL T ELT) (($ $ (-994)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL T ELT) (($ $ (-1089)) NIL (|has| |#1| (-811 (-1089))) ELT) (($ $ (-583 (-1089))) NIL (|has| |#1| (-811 (-1089))) ELT) (($ $ (-1089) (-694)) NIL (|has| |#1| (-811 (-1089))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (|has| |#1| (-811 (-1089))) ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3948 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3836 (($ $) 40 T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-349 (-484))) NIL (|has| |#1| (-38 (-349 (-484)))) ELT) (($ (-349 (-484)) $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT) (($ |#1| $) 31 T ELT) (($ $ |#1|) NIL T ELT))) +(((-704 |#1|) (-13 (-1154 |#1|) (-552 (-1084 |#1|)) (-950 (-1084 |#1|)) (-10 -8 (-15 -3737 ($ $ (-694) |#1| $)) (-15 -3159 ($ $ $)) (-15 -3158 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3480 (-694))) $ $)) (-15 -2457 ($ $ $)) (-15 -3160 ((-2 (|:| -3953 |#1|) (|:| |gap| (-694)) (|:| -1972 $) (|:| -2902 $)) $ $)) (-15 -2456 ($ $ $)) (IF (|has| |#1| (-495)) (PROGN (-15 -2455 ((-583 $) $ $)) (-15 -3190 ($ $ $)) (-15 -3151 ((-2 (|:| -3144 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3150 ((-2 (|:| -3144 $) (|:| |coef1| $)) $ $)) (-15 -3149 ((-2 (|:| -3144 $) (|:| |coef2| $)) $ $)) (-15 -2454 ((-2 (|:| -3755 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2453 ((-2 (|:| -3755 |#1|) (|:| |coef1| $)) $ $)) (-15 -2452 ((-2 (|:| -3755 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-961)) (T -704)) +((-3737 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-694)) (-5 *1 (-704 *3)) (-4 *3 (-961)))) (-3159 (*1 *1 *1 *1) (-12 (-5 *1 (-704 *2)) (-4 *2 (-961)))) (-3158 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-704 *3)) (|:| |polden| *3) (|:| -3480 (-694)))) (-5 *1 (-704 *3)) (-4 *3 (-961)))) (-2457 (*1 *1 *1 *1) (-12 (-5 *1 (-704 *2)) (-4 *2 (-961)))) (-3160 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3953 *3) (|:| |gap| (-694)) (|:| -1972 (-704 *3)) (|:| -2902 (-704 *3)))) (-5 *1 (-704 *3)) (-4 *3 (-961)))) (-2456 (*1 *1 *1 *1) (-12 (-5 *1 (-704 *2)) (-4 *2 (-961)))) (-2455 (*1 *2 *1 *1) (-12 (-5 *2 (-583 (-704 *3))) (-5 *1 (-704 *3)) (-4 *3 (-495)) (-4 *3 (-961)))) (-3190 (*1 *1 *1 *1) (-12 (-5 *1 (-704 *2)) (-4 *2 (-495)) (-4 *2 (-961)))) (-3151 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3144 (-704 *3)) (|:| |coef1| (-704 *3)) (|:| |coef2| (-704 *3)))) (-5 *1 (-704 *3)) (-4 *3 (-495)) (-4 *3 (-961)))) (-3150 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3144 (-704 *3)) (|:| |coef1| (-704 *3)))) (-5 *1 (-704 *3)) (-4 *3 (-495)) (-4 *3 (-961)))) (-3149 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3144 (-704 *3)) (|:| |coef2| (-704 *3)))) (-5 *1 (-704 *3)) (-4 *3 (-495)) (-4 *3 (-961)))) (-2454 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3755 *3) (|:| |coef1| (-704 *3)) (|:| |coef2| (-704 *3)))) (-5 *1 (-704 *3)) (-4 *3 (-495)) (-4 *3 (-961)))) (-2453 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3755 *3) (|:| |coef1| (-704 *3)))) (-5 *1 (-704 *3)) (-4 *3 (-495)) (-4 *3 (-961)))) (-2452 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3755 *3) (|:| |coef2| (-704 *3)))) (-5 *1 (-704 *3)) (-4 *3 (-495)) (-4 *3 (-961))))) +((-3957 (((-704 |#2|) (-1 |#2| |#1|) (-704 |#1|)) 13 T ELT))) +(((-705 |#1| |#2|) (-10 -7 (-15 -3957 ((-704 |#2|) (-1 |#2| |#1|) (-704 |#1|)))) (-961) (-961)) (T -705)) +((-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-704 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-5 *2 (-704 *6)) (-5 *1 (-705 *5 *6))))) +((-2459 ((|#1| (-694) |#1|) 33 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2801 ((|#1| (-694) |#1|) 23 T ELT)) (-2458 ((|#1| (-694) |#1|) 35 (|has| |#1| (-38 (-349 (-484)))) ELT))) +(((-706 |#1|) (-10 -7 (-15 -2801 (|#1| (-694) |#1|)) (IF (|has| |#1| (-38 (-349 (-484)))) (PROGN (-15 -2458 (|#1| (-694) |#1|)) (-15 -2459 (|#1| (-694) |#1|))) |%noBranch|)) (-146)) (T -706)) +((-2459 (*1 *2 *3 *2) (-12 (-5 *3 (-694)) (-5 *1 (-706 *2)) (-4 *2 (-38 (-349 (-484)))) (-4 *2 (-146)))) (-2458 (*1 *2 *3 *2) (-12 (-5 *3 (-694)) (-5 *1 (-706 *2)) (-4 *2 (-38 (-349 (-484)))) (-4 *2 (-146)))) (-2801 (*1 *2 *3 *2) (-12 (-5 *3 (-694)) (-5 *1 (-706 *2)) (-4 *2 (-146))))) +((-2568 (((-85) $ $) 7 T ELT)) (-3680 (((-583 (-2 (|:| -3860 $) (|:| -1701 (-583 |#4|)))) (-583 |#4|)) 90 T ELT)) (-3681 (((-583 $) (-583 |#4|)) 91 T ELT) (((-583 $) (-583 |#4|) (-85)) 118 T ELT)) (-3081 (((-583 |#3|) $) 37 T ELT)) (-2908 (((-85) $) 30 T ELT)) (-2899 (((-85) $) 21 (|has| |#1| (-495)) ELT)) (-3692 (((-85) |#4| $) 106 T ELT) (((-85) $) 102 T ELT)) (-3687 ((|#4| |#4| $) 97 T ELT)) (-3774 (((-583 (-2 (|:| |val| |#4|) (|:| -1599 $))) |#4| $) 133 T ELT)) (-2909 (((-2 (|:| |under| $) (|:| -3130 $) (|:| |upper| $)) $ |#3|) 31 T ELT)) (-3709 (($ (-1 (-85) |#4|) $) 66 (|has| $ (-6 -3994)) ELT) (((-3 |#4| #1="failed") $ |#3|) 84 T ELT)) (-3723 (($) 46 T CONST)) (-2904 (((-85) $) 26 (|has| |#1| (-495)) ELT)) (-2906 (((-85) $ $) 28 (|has| |#1| (-495)) ELT)) (-2905 (((-85) $ $) 27 (|has| |#1| (-495)) ELT)) (-2907 (((-85) $) 29 (|has| |#1| (-495)) ELT)) (-3688 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 98 T ELT)) (-2900 (((-583 |#4|) (-583 |#4|) $) 22 (|has| |#1| (-495)) ELT)) (-2901 (((-583 |#4|) (-583 |#4|) $) 23 (|has| |#1| (-495)) ELT)) (-3157 (((-3 $ "failed") (-583 |#4|)) 40 T ELT)) (-3156 (($ (-583 |#4|)) 39 T ELT)) (-3798 (((-3 $ #1#) $) 87 T ELT)) (-3684 ((|#4| |#4| $) 94 T ELT)) (-1352 (($ $) 69 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -3994))) ELT)) (-3405 (($ |#4| $) 68 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -3994))) ELT) (($ (-1 (-85) |#4|) $) 65 (|has| $ (-6 -3994)) ELT)) (-2902 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 24 (|has| |#1| (-495)) ELT)) (-3693 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) 107 T ELT)) (-3682 ((|#4| |#4| $) 92 T ELT)) (-3841 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -3994))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -3994)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -3994)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 99 T ELT)) (-3695 (((-2 (|:| -3860 (-583 |#4|)) (|:| -1701 (-583 |#4|))) $) 110 T ELT)) (-3197 (((-85) |#4| $) 143 T ELT)) (-3195 (((-85) |#4| $) 140 T ELT)) (-3198 (((-85) |#4| $) 144 T ELT) (((-85) $) 141 T ELT)) (-2889 (((-583 |#4|) $) 53 (|has| $ (-6 -3994)) ELT)) (-3694 (((-85) |#4| $) 109 T ELT) (((-85) $) 108 T ELT)) (-3180 ((|#3| $) 38 T ELT)) (-2608 (((-583 |#4|) $) 54 (|has| $ (-6 -3994)) ELT)) (-3245 (((-85) |#4| $) 56 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -3994))) ELT)) (-1948 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-2914 (((-583 |#3|) $) 36 T ELT)) (-2913 (((-85) |#3| $) 35 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3191 (((-3 |#4| (-583 $)) |#4| |#4| $) 135 T ELT)) (-3190 (((-583 (-2 (|:| |val| |#4|) (|:| -1599 $))) |#4| |#4| $) 134 T ELT)) (-3797 (((-3 |#4| #1#) $) 88 T ELT)) (-3192 (((-583 $) |#4| $) 136 T ELT)) (-3194 (((-3 (-85) (-583 $)) |#4| $) 139 T ELT)) (-3193 (((-583 (-2 (|:| |val| (-85)) (|:| -1599 $))) |#4| $) 138 T ELT) (((-85) |#4| $) 137 T ELT)) (-3238 (((-583 $) |#4| $) 132 T ELT) (((-583 $) (-583 |#4|) $) 131 T ELT) (((-583 $) (-583 |#4|) (-583 $)) 130 T ELT) (((-583 $) |#4| (-583 $)) 129 T ELT)) (-3439 (($ |#4| $) 124 T ELT) (($ (-583 |#4|) $) 123 T ELT)) (-3696 (((-583 |#4|) $) 112 T ELT)) (-3690 (((-85) |#4| $) 104 T ELT) (((-85) $) 100 T ELT)) (-3685 ((|#4| |#4| $) 95 T ELT)) (-3698 (((-85) $ $) 115 T ELT)) (-2903 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-495)) ELT)) (-3691 (((-85) |#4| $) 105 T ELT) (((-85) $) 101 T ELT)) (-3686 ((|#4| |#4| $) 96 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3800 (((-3 |#4| #1#) $) 89 T ELT)) (-1353 (((-3 |#4| "failed") (-1 (-85) |#4|) $) 62 T ELT)) (-3678 (((-3 $ #1#) $ |#4|) 83 T ELT)) (-3768 (($ $ |#4|) 82 T ELT) (((-583 $) |#4| $) 122 T ELT) (((-583 $) |#4| (-583 $)) 121 T ELT) (((-583 $) (-583 |#4|) $) 120 T ELT) (((-583 $) (-583 |#4|) (-583 $)) 119 T ELT)) (-1946 (((-85) (-1 (-85) |#4|) $) 51 (|has| $ (-6 -3994)) ELT)) (-3767 (($ $ (-583 |#4|) (-583 |#4|)) 60 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-249 |#4|)) 58 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-583 (-249 |#4|))) 57 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT)) (-1221 (((-85) $ $) 42 T ELT)) (-3402 (((-85) $) 45 T ELT)) (-3564 (($) 44 T ELT)) (-3947 (((-694) $) 111 T ELT)) (-1945 (((-694) |#4| $) 55 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -3994))) ELT) (((-694) (-1 (-85) |#4|) $) 52 (|has| $ (-6 -3994)) ELT)) (-3399 (($ $) 43 T ELT)) (-3971 (((-473) $) 70 (|has| |#4| (-553 (-473))) ELT)) (-3529 (($ (-583 |#4|)) 61 T ELT)) (-2910 (($ $ |#3|) 32 T ELT)) (-2912 (($ $ |#3|) 34 T ELT)) (-3683 (($ $) 93 T ELT)) (-2911 (($ $ |#3|) 33 T ELT)) (-3945 (((-772) $) 13 T ELT) (((-583 |#4|) $) 41 T ELT)) (-3677 (((-694) $) 81 (|has| |#3| (-319)) ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-3697 (((-3 (-2 (|:| |bas| $) (|:| -3323 (-583 |#4|))) #1#) (-583 |#4|) (-1 (-85) |#4| |#4|)) 114 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3323 (-583 |#4|))) #1#) (-583 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) 113 T ELT)) (-3689 (((-85) $ (-1 (-85) |#4| (-583 |#4|))) 103 T ELT)) (-3189 (((-583 $) |#4| $) 128 T ELT) (((-583 $) |#4| (-583 $)) 127 T ELT) (((-583 $) (-583 |#4|) $) 126 T ELT) (((-583 $) (-583 |#4|) (-583 $)) 125 T ELT)) (-1947 (((-85) (-1 (-85) |#4|) $) 50 (|has| $ (-6 -3994)) ELT)) (-3679 (((-583 |#3|) $) 86 T ELT)) (-3196 (((-85) |#4| $) 142 T ELT)) (-3932 (((-85) |#3| $) 85 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-3956 (((-694) $) 47 (|has| $ (-6 -3994)) ELT))) +(((-707 |#1| |#2| |#3| |#4|) (-113) (-391) (-717) (-756) (-977 |t#1| |t#2| |t#3|)) (T -707)) +NIL +(-13 (-983 |t#1| |t#2| |t#3| |t#4|)) +(((-34) . T) ((-72) . T) ((-552 (-583 |#4|)) . T) ((-552 (-772)) . T) ((-124 |#4|) . T) ((-553 (-473)) |has| |#4| (-553 (-473))) ((-260 |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ((-428 |#4|) . T) ((-455 |#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ((-13) . T) ((-889 |#1| |#2| |#3| |#4|) . T) ((-983 |#1| |#2| |#3| |#4|) . T) ((-1013) . T) ((-1123 |#1| |#2| |#3| |#4|) . T) ((-1128) . T)) +((-2462 (((-3 (-329) #1="failed") (-265 |#1|) (-830)) 60 (-12 (|has| |#1| (-495)) (|has| |#1| (-756))) ELT) (((-3 (-329) #1#) (-265 |#1|)) 52 (-12 (|has| |#1| (-495)) (|has| |#1| (-756))) ELT) (((-3 (-329) #1#) (-349 (-857 |#1|)) (-830)) 39 (|has| |#1| (-495)) ELT) (((-3 (-329) #1#) (-349 (-857 |#1|))) 35 (|has| |#1| (-495)) ELT) (((-3 (-329) #1#) (-857 |#1|) (-830)) 30 (|has| |#1| (-961)) ELT) (((-3 (-329) #1#) (-857 |#1|)) 24 (|has| |#1| (-961)) ELT)) (-2460 (((-329) (-265 |#1|) (-830)) 92 (-12 (|has| |#1| (-495)) (|has| |#1| (-756))) ELT) (((-329) (-265 |#1|)) 87 (-12 (|has| |#1| (-495)) (|has| |#1| (-756))) ELT) (((-329) (-349 (-857 |#1|)) (-830)) 84 (|has| |#1| (-495)) ELT) (((-329) (-349 (-857 |#1|))) 81 (|has| |#1| (-495)) ELT) (((-329) (-857 |#1|) (-830)) 80 (|has| |#1| (-961)) ELT) (((-329) (-857 |#1|)) 77 (|has| |#1| (-961)) ELT) (((-329) |#1| (-830)) 73 T ELT) (((-329) |#1|) 22 T ELT)) (-2463 (((-3 (-142 (-329)) #1#) (-265 (-142 |#1|)) (-830)) 68 (-12 (|has| |#1| (-495)) (|has| |#1| (-756))) ELT) (((-3 (-142 (-329)) #1#) (-265 (-142 |#1|))) 58 (-12 (|has| |#1| (-495)) (|has| |#1| (-756))) ELT) (((-3 (-142 (-329)) #1#) (-265 |#1|) (-830)) 61 (-12 (|has| |#1| (-495)) (|has| |#1| (-756))) ELT) (((-3 (-142 (-329)) #1#) (-265 |#1|)) 59 (-12 (|has| |#1| (-495)) (|has| |#1| (-756))) ELT) (((-3 (-142 (-329)) #1#) (-349 (-857 (-142 |#1|))) (-830)) 44 (|has| |#1| (-495)) ELT) (((-3 (-142 (-329)) #1#) (-349 (-857 (-142 |#1|)))) 43 (|has| |#1| (-495)) ELT) (((-3 (-142 (-329)) #1#) (-349 (-857 |#1|)) (-830)) 38 (|has| |#1| (-495)) ELT) (((-3 (-142 (-329)) #1#) (-349 (-857 |#1|))) 37 (|has| |#1| (-495)) ELT) (((-3 (-142 (-329)) #1#) (-857 |#1|) (-830)) 28 (|has| |#1| (-961)) ELT) (((-3 (-142 (-329)) #1#) (-857 |#1|)) 26 (|has| |#1| (-961)) ELT) (((-3 (-142 (-329)) #1#) (-857 (-142 |#1|)) (-830)) 18 (|has| |#1| (-146)) ELT) (((-3 (-142 (-329)) #1#) (-857 (-142 |#1|))) 15 (|has| |#1| (-146)) ELT)) (-2461 (((-142 (-329)) (-265 (-142 |#1|)) (-830)) 95 (-12 (|has| |#1| (-495)) (|has| |#1| (-756))) ELT) (((-142 (-329)) (-265 (-142 |#1|))) 94 (-12 (|has| |#1| (-495)) (|has| |#1| (-756))) ELT) (((-142 (-329)) (-265 |#1|) (-830)) 93 (-12 (|has| |#1| (-495)) (|has| |#1| (-756))) ELT) (((-142 (-329)) (-265 |#1|)) 91 (-12 (|has| |#1| (-495)) (|has| |#1| (-756))) ELT) (((-142 (-329)) (-349 (-857 (-142 |#1|))) (-830)) 86 (|has| |#1| (-495)) ELT) (((-142 (-329)) (-349 (-857 (-142 |#1|)))) 85 (|has| |#1| (-495)) ELT) (((-142 (-329)) (-349 (-857 |#1|)) (-830)) 83 (|has| |#1| (-495)) ELT) (((-142 (-329)) (-349 (-857 |#1|))) 82 (|has| |#1| (-495)) ELT) (((-142 (-329)) (-857 |#1|) (-830)) 79 (|has| |#1| (-961)) ELT) (((-142 (-329)) (-857 |#1|)) 78 (|has| |#1| (-961)) ELT) (((-142 (-329)) (-857 (-142 |#1|)) (-830)) 75 (|has| |#1| (-146)) ELT) (((-142 (-329)) (-857 (-142 |#1|))) 74 (|has| |#1| (-146)) ELT) (((-142 (-329)) (-142 |#1|) (-830)) 17 (|has| |#1| (-146)) ELT) (((-142 (-329)) (-142 |#1|)) 13 (|has| |#1| (-146)) ELT) (((-142 (-329)) |#1| (-830)) 27 T ELT) (((-142 (-329)) |#1|) 25 T ELT))) +(((-708 |#1|) (-10 -7 (-15 -2460 ((-329) |#1|)) (-15 -2460 ((-329) |#1| (-830))) (-15 -2461 ((-142 (-329)) |#1|)) (-15 -2461 ((-142 (-329)) |#1| (-830))) (IF (|has| |#1| (-146)) (PROGN (-15 -2461 ((-142 (-329)) (-142 |#1|))) (-15 -2461 ((-142 (-329)) (-142 |#1|) (-830))) (-15 -2461 ((-142 (-329)) (-857 (-142 |#1|)))) (-15 -2461 ((-142 (-329)) (-857 (-142 |#1|)) (-830)))) |%noBranch|) (IF (|has| |#1| (-961)) (PROGN (-15 -2460 ((-329) (-857 |#1|))) (-15 -2460 ((-329) (-857 |#1|) (-830))) (-15 -2461 ((-142 (-329)) (-857 |#1|))) (-15 -2461 ((-142 (-329)) (-857 |#1|) (-830)))) |%noBranch|) (IF (|has| |#1| (-495)) (PROGN (-15 -2460 ((-329) (-349 (-857 |#1|)))) (-15 -2460 ((-329) (-349 (-857 |#1|)) (-830))) (-15 -2461 ((-142 (-329)) (-349 (-857 |#1|)))) (-15 -2461 ((-142 (-329)) (-349 (-857 |#1|)) (-830))) (-15 -2461 ((-142 (-329)) (-349 (-857 (-142 |#1|))))) (-15 -2461 ((-142 (-329)) (-349 (-857 (-142 |#1|))) (-830))) (IF (|has| |#1| (-756)) (PROGN (-15 -2460 ((-329) (-265 |#1|))) (-15 -2460 ((-329) (-265 |#1|) (-830))) (-15 -2461 ((-142 (-329)) (-265 |#1|))) (-15 -2461 ((-142 (-329)) (-265 |#1|) (-830))) (-15 -2461 ((-142 (-329)) (-265 (-142 |#1|)))) (-15 -2461 ((-142 (-329)) (-265 (-142 |#1|)) (-830)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-146)) (PROGN (-15 -2463 ((-3 (-142 (-329)) #1="failed") (-857 (-142 |#1|)))) (-15 -2463 ((-3 (-142 (-329)) #1#) (-857 (-142 |#1|)) (-830)))) |%noBranch|) (IF (|has| |#1| (-961)) (PROGN (-15 -2462 ((-3 (-329) #1#) (-857 |#1|))) (-15 -2462 ((-3 (-329) #1#) (-857 |#1|) (-830))) (-15 -2463 ((-3 (-142 (-329)) #1#) (-857 |#1|))) (-15 -2463 ((-3 (-142 (-329)) #1#) (-857 |#1|) (-830)))) |%noBranch|) (IF (|has| |#1| (-495)) (PROGN (-15 -2462 ((-3 (-329) #1#) (-349 (-857 |#1|)))) (-15 -2462 ((-3 (-329) #1#) (-349 (-857 |#1|)) (-830))) (-15 -2463 ((-3 (-142 (-329)) #1#) (-349 (-857 |#1|)))) (-15 -2463 ((-3 (-142 (-329)) #1#) (-349 (-857 |#1|)) (-830))) (-15 -2463 ((-3 (-142 (-329)) #1#) (-349 (-857 (-142 |#1|))))) (-15 -2463 ((-3 (-142 (-329)) #1#) (-349 (-857 (-142 |#1|))) (-830))) (IF (|has| |#1| (-756)) (PROGN (-15 -2462 ((-3 (-329) #1#) (-265 |#1|))) (-15 -2462 ((-3 (-329) #1#) (-265 |#1|) (-830))) (-15 -2463 ((-3 (-142 (-329)) #1#) (-265 |#1|))) (-15 -2463 ((-3 (-142 (-329)) #1#) (-265 |#1|) (-830))) (-15 -2463 ((-3 (-142 (-329)) #1#) (-265 (-142 |#1|)))) (-15 -2463 ((-3 (-142 (-329)) #1#) (-265 (-142 |#1|)) (-830)))) |%noBranch|)) |%noBranch|)) (-553 (-329))) (T -708)) +((-2463 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-265 (-142 *5))) (-5 *4 (-830)) (-4 *5 (-495)) (-4 *5 (-756)) (-4 *5 (-553 (-329))) (-5 *2 (-142 (-329))) (-5 *1 (-708 *5)))) (-2463 (*1 *2 *3) (|partial| -12 (-5 *3 (-265 (-142 *4))) (-4 *4 (-495)) (-4 *4 (-756)) (-4 *4 (-553 (-329))) (-5 *2 (-142 (-329))) (-5 *1 (-708 *4)))) (-2463 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-265 *5)) (-5 *4 (-830)) (-4 *5 (-495)) (-4 *5 (-756)) (-4 *5 (-553 (-329))) (-5 *2 (-142 (-329))) (-5 *1 (-708 *5)))) (-2463 (*1 *2 *3) (|partial| -12 (-5 *3 (-265 *4)) (-4 *4 (-495)) (-4 *4 (-756)) (-4 *4 (-553 (-329))) (-5 *2 (-142 (-329))) (-5 *1 (-708 *4)))) (-2462 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-265 *5)) (-5 *4 (-830)) (-4 *5 (-495)) (-4 *5 (-756)) (-4 *5 (-553 *2)) (-5 *2 (-329)) (-5 *1 (-708 *5)))) (-2462 (*1 *2 *3) (|partial| -12 (-5 *3 (-265 *4)) (-4 *4 (-495)) (-4 *4 (-756)) (-4 *4 (-553 *2)) (-5 *2 (-329)) (-5 *1 (-708 *4)))) (-2463 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-349 (-857 (-142 *5)))) (-5 *4 (-830)) (-4 *5 (-495)) (-4 *5 (-553 (-329))) (-5 *2 (-142 (-329))) (-5 *1 (-708 *5)))) (-2463 (*1 *2 *3) (|partial| -12 (-5 *3 (-349 (-857 (-142 *4)))) (-4 *4 (-495)) (-4 *4 (-553 (-329))) (-5 *2 (-142 (-329))) (-5 *1 (-708 *4)))) (-2463 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-349 (-857 *5))) (-5 *4 (-830)) (-4 *5 (-495)) (-4 *5 (-553 (-329))) (-5 *2 (-142 (-329))) (-5 *1 (-708 *5)))) (-2463 (*1 *2 *3) (|partial| -12 (-5 *3 (-349 (-857 *4))) (-4 *4 (-495)) (-4 *4 (-553 (-329))) (-5 *2 (-142 (-329))) (-5 *1 (-708 *4)))) (-2462 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-349 (-857 *5))) (-5 *4 (-830)) (-4 *5 (-495)) (-4 *5 (-553 *2)) (-5 *2 (-329)) (-5 *1 (-708 *5)))) (-2462 (*1 *2 *3) (|partial| -12 (-5 *3 (-349 (-857 *4))) (-4 *4 (-495)) (-4 *4 (-553 *2)) (-5 *2 (-329)) (-5 *1 (-708 *4)))) (-2463 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-857 *5)) (-5 *4 (-830)) (-4 *5 (-961)) (-4 *5 (-553 (-329))) (-5 *2 (-142 (-329))) (-5 *1 (-708 *5)))) (-2463 (*1 *2 *3) (|partial| -12 (-5 *3 (-857 *4)) (-4 *4 (-961)) (-4 *4 (-553 (-329))) (-5 *2 (-142 (-329))) (-5 *1 (-708 *4)))) (-2462 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-857 *5)) (-5 *4 (-830)) (-4 *5 (-961)) (-4 *5 (-553 *2)) (-5 *2 (-329)) (-5 *1 (-708 *5)))) (-2462 (*1 *2 *3) (|partial| -12 (-5 *3 (-857 *4)) (-4 *4 (-961)) (-4 *4 (-553 *2)) (-5 *2 (-329)) (-5 *1 (-708 *4)))) (-2463 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-857 (-142 *5))) (-5 *4 (-830)) (-4 *5 (-146)) (-4 *5 (-553 (-329))) (-5 *2 (-142 (-329))) (-5 *1 (-708 *5)))) (-2463 (*1 *2 *3) (|partial| -12 (-5 *3 (-857 (-142 *4))) (-4 *4 (-146)) (-4 *4 (-553 (-329))) (-5 *2 (-142 (-329))) (-5 *1 (-708 *4)))) (-2461 (*1 *2 *3 *4) (-12 (-5 *3 (-265 (-142 *5))) (-5 *4 (-830)) (-4 *5 (-495)) (-4 *5 (-756)) (-4 *5 (-553 (-329))) (-5 *2 (-142 (-329))) (-5 *1 (-708 *5)))) (-2461 (*1 *2 *3) (-12 (-5 *3 (-265 (-142 *4))) (-4 *4 (-495)) (-4 *4 (-756)) (-4 *4 (-553 (-329))) (-5 *2 (-142 (-329))) (-5 *1 (-708 *4)))) (-2461 (*1 *2 *3 *4) (-12 (-5 *3 (-265 *5)) (-5 *4 (-830)) (-4 *5 (-495)) (-4 *5 (-756)) (-4 *5 (-553 (-329))) (-5 *2 (-142 (-329))) (-5 *1 (-708 *5)))) (-2461 (*1 *2 *3) (-12 (-5 *3 (-265 *4)) (-4 *4 (-495)) (-4 *4 (-756)) (-4 *4 (-553 (-329))) (-5 *2 (-142 (-329))) (-5 *1 (-708 *4)))) (-2460 (*1 *2 *3 *4) (-12 (-5 *3 (-265 *5)) (-5 *4 (-830)) (-4 *5 (-495)) (-4 *5 (-756)) (-4 *5 (-553 *2)) (-5 *2 (-329)) (-5 *1 (-708 *5)))) (-2460 (*1 *2 *3) (-12 (-5 *3 (-265 *4)) (-4 *4 (-495)) (-4 *4 (-756)) (-4 *4 (-553 *2)) (-5 *2 (-329)) (-5 *1 (-708 *4)))) (-2461 (*1 *2 *3 *4) (-12 (-5 *3 (-349 (-857 (-142 *5)))) (-5 *4 (-830)) (-4 *5 (-495)) (-4 *5 (-553 (-329))) (-5 *2 (-142 (-329))) (-5 *1 (-708 *5)))) (-2461 (*1 *2 *3) (-12 (-5 *3 (-349 (-857 (-142 *4)))) (-4 *4 (-495)) (-4 *4 (-553 (-329))) (-5 *2 (-142 (-329))) (-5 *1 (-708 *4)))) (-2461 (*1 *2 *3 *4) (-12 (-5 *3 (-349 (-857 *5))) (-5 *4 (-830)) (-4 *5 (-495)) (-4 *5 (-553 (-329))) (-5 *2 (-142 (-329))) (-5 *1 (-708 *5)))) (-2461 (*1 *2 *3) (-12 (-5 *3 (-349 (-857 *4))) (-4 *4 (-495)) (-4 *4 (-553 (-329))) (-5 *2 (-142 (-329))) (-5 *1 (-708 *4)))) (-2460 (*1 *2 *3 *4) (-12 (-5 *3 (-349 (-857 *5))) (-5 *4 (-830)) (-4 *5 (-495)) (-4 *5 (-553 *2)) (-5 *2 (-329)) (-5 *1 (-708 *5)))) (-2460 (*1 *2 *3) (-12 (-5 *3 (-349 (-857 *4))) (-4 *4 (-495)) (-4 *4 (-553 *2)) (-5 *2 (-329)) (-5 *1 (-708 *4)))) (-2461 (*1 *2 *3 *4) (-12 (-5 *3 (-857 *5)) (-5 *4 (-830)) (-4 *5 (-961)) (-4 *5 (-553 (-329))) (-5 *2 (-142 (-329))) (-5 *1 (-708 *5)))) (-2461 (*1 *2 *3) (-12 (-5 *3 (-857 *4)) (-4 *4 (-961)) (-4 *4 (-553 (-329))) (-5 *2 (-142 (-329))) (-5 *1 (-708 *4)))) (-2460 (*1 *2 *3 *4) (-12 (-5 *3 (-857 *5)) (-5 *4 (-830)) (-4 *5 (-961)) (-4 *5 (-553 *2)) (-5 *2 (-329)) (-5 *1 (-708 *5)))) (-2460 (*1 *2 *3) (-12 (-5 *3 (-857 *4)) (-4 *4 (-961)) (-4 *4 (-553 *2)) (-5 *2 (-329)) (-5 *1 (-708 *4)))) (-2461 (*1 *2 *3 *4) (-12 (-5 *3 (-857 (-142 *5))) (-5 *4 (-830)) (-4 *5 (-146)) (-4 *5 (-553 (-329))) (-5 *2 (-142 (-329))) (-5 *1 (-708 *5)))) (-2461 (*1 *2 *3) (-12 (-5 *3 (-857 (-142 *4))) (-4 *4 (-146)) (-4 *4 (-553 (-329))) (-5 *2 (-142 (-329))) (-5 *1 (-708 *4)))) (-2461 (*1 *2 *3 *4) (-12 (-5 *3 (-142 *5)) (-5 *4 (-830)) (-4 *5 (-146)) (-4 *5 (-553 (-329))) (-5 *2 (-142 (-329))) (-5 *1 (-708 *5)))) (-2461 (*1 *2 *3) (-12 (-5 *3 (-142 *4)) (-4 *4 (-146)) (-4 *4 (-553 (-329))) (-5 *2 (-142 (-329))) (-5 *1 (-708 *4)))) (-2461 (*1 *2 *3 *4) (-12 (-5 *4 (-830)) (-5 *2 (-142 (-329))) (-5 *1 (-708 *3)) (-4 *3 (-553 (-329))))) (-2461 (*1 *2 *3) (-12 (-5 *2 (-142 (-329))) (-5 *1 (-708 *3)) (-4 *3 (-553 (-329))))) (-2460 (*1 *2 *3 *4) (-12 (-5 *4 (-830)) (-5 *2 (-329)) (-5 *1 (-708 *3)) (-4 *3 (-553 *2)))) (-2460 (*1 *2 *3) (-12 (-5 *2 (-329)) (-5 *1 (-708 *3)) (-4 *3 (-553 *2))))) +((-2467 (((-830) (-1072)) 90 T ELT)) (-2469 (((-3 (-329) "failed") (-1072)) 36 T ELT)) (-2468 (((-329) (-1072)) 34 T ELT)) (-2465 (((-830) (-1072)) 64 T ELT)) (-2466 (((-1072) (-830)) 74 T ELT)) (-2464 (((-1072) (-830)) 63 T ELT))) +(((-709) (-10 -7 (-15 -2464 ((-1072) (-830))) (-15 -2465 ((-830) (-1072))) (-15 -2466 ((-1072) (-830))) (-15 -2467 ((-830) (-1072))) (-15 -2468 ((-329) (-1072))) (-15 -2469 ((-3 (-329) "failed") (-1072))))) (T -709)) +((-2469 (*1 *2 *3) (|partial| -12 (-5 *3 (-1072)) (-5 *2 (-329)) (-5 *1 (-709)))) (-2468 (*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-329)) (-5 *1 (-709)))) (-2467 (*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-830)) (-5 *1 (-709)))) (-2466 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1072)) (-5 *1 (-709)))) (-2465 (*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-830)) (-5 *1 (-709)))) (-2464 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1072)) (-5 *1 (-709))))) +((-2472 (((-1184) (-1178 (-329)) (-484) (-329) (-2 (|:| |tryValue| (-329)) (|:| |did| (-329)) (|:| -1474 (-329))) (-329) (-1178 (-329)) (-1 (-1184) (-1178 (-329)) (-1178 (-329)) (-329)) (-1178 (-329)) (-1178 (-329)) (-1178 (-329)) (-1178 (-329)) (-1178 (-329)) (-1178 (-329)) (-1178 (-329))) 54 T ELT) (((-1184) (-1178 (-329)) (-484) (-329) (-2 (|:| |tryValue| (-329)) (|:| |did| (-329)) (|:| -1474 (-329))) (-329) (-1178 (-329)) (-1 (-1184) (-1178 (-329)) (-1178 (-329)) (-329))) 51 T ELT)) (-2473 (((-1184) (-1178 (-329)) (-484) (-329) (-329) (-484) (-1 (-1184) (-1178 (-329)) (-1178 (-329)) (-329))) 61 T ELT)) (-2471 (((-1184) (-1178 (-329)) (-484) (-329) (-329) (-329) (-329) (-484) (-1 (-1184) (-1178 (-329)) (-1178 (-329)) (-329))) 49 T ELT)) (-2470 (((-1184) (-1178 (-329)) (-484) (-329) (-329) (-1 (-1184) (-1178 (-329)) (-1178 (-329)) (-329)) (-1178 (-329)) (-1178 (-329)) (-1178 (-329)) (-1178 (-329))) 63 T ELT) (((-1184) (-1178 (-329)) (-484) (-329) (-329) (-1 (-1184) (-1178 (-329)) (-1178 (-329)) (-329))) 62 T ELT))) +(((-710) (-10 -7 (-15 -2470 ((-1184) (-1178 (-329)) (-484) (-329) (-329) (-1 (-1184) (-1178 (-329)) (-1178 (-329)) (-329)))) (-15 -2470 ((-1184) (-1178 (-329)) (-484) (-329) (-329) (-1 (-1184) (-1178 (-329)) (-1178 (-329)) (-329)) (-1178 (-329)) (-1178 (-329)) (-1178 (-329)) (-1178 (-329)))) (-15 -2471 ((-1184) (-1178 (-329)) (-484) (-329) (-329) (-329) (-329) (-484) (-1 (-1184) (-1178 (-329)) (-1178 (-329)) (-329)))) (-15 -2472 ((-1184) (-1178 (-329)) (-484) (-329) (-2 (|:| |tryValue| (-329)) (|:| |did| (-329)) (|:| -1474 (-329))) (-329) (-1178 (-329)) (-1 (-1184) (-1178 (-329)) (-1178 (-329)) (-329)))) (-15 -2472 ((-1184) (-1178 (-329)) (-484) (-329) (-2 (|:| |tryValue| (-329)) (|:| |did| (-329)) (|:| -1474 (-329))) (-329) (-1178 (-329)) (-1 (-1184) (-1178 (-329)) (-1178 (-329)) (-329)) (-1178 (-329)) (-1178 (-329)) (-1178 (-329)) (-1178 (-329)) (-1178 (-329)) (-1178 (-329)) (-1178 (-329)))) (-15 -2473 ((-1184) (-1178 (-329)) (-484) (-329) (-329) (-484) (-1 (-1184) (-1178 (-329)) (-1178 (-329)) (-329)))))) (T -710)) +((-2473 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-484)) (-5 *6 (-1 (-1184) (-1178 *5) (-1178 *5) (-329))) (-5 *3 (-1178 (-329))) (-5 *5 (-329)) (-5 *2 (-1184)) (-5 *1 (-710)))) (-2472 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-484)) (-5 *6 (-2 (|:| |tryValue| (-329)) (|:| |did| (-329)) (|:| -1474 (-329)))) (-5 *7 (-1 (-1184) (-1178 *5) (-1178 *5) (-329))) (-5 *3 (-1178 (-329))) (-5 *5 (-329)) (-5 *2 (-1184)) (-5 *1 (-710)))) (-2472 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-484)) (-5 *6 (-2 (|:| |tryValue| (-329)) (|:| |did| (-329)) (|:| -1474 (-329)))) (-5 *7 (-1 (-1184) (-1178 *5) (-1178 *5) (-329))) (-5 *3 (-1178 (-329))) (-5 *5 (-329)) (-5 *2 (-1184)) (-5 *1 (-710)))) (-2471 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-484)) (-5 *6 (-1 (-1184) (-1178 *5) (-1178 *5) (-329))) (-5 *3 (-1178 (-329))) (-5 *5 (-329)) (-5 *2 (-1184)) (-5 *1 (-710)))) (-2470 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-484)) (-5 *6 (-1 (-1184) (-1178 *5) (-1178 *5) (-329))) (-5 *3 (-1178 (-329))) (-5 *5 (-329)) (-5 *2 (-1184)) (-5 *1 (-710)))) (-2470 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-484)) (-5 *6 (-1 (-1184) (-1178 *5) (-1178 *5) (-329))) (-5 *3 (-1178 (-329))) (-5 *5 (-329)) (-5 *2 (-1184)) (-5 *1 (-710))))) +((-2482 (((-2 (|:| -3401 (-329)) (|:| -1595 (-329)) (|:| |totalpts| (-484)) (|:| |success| (-85))) (-1 (-329) (-329)) (-329) (-329) (-329) (-329) (-484) (-484)) 65 T ELT)) (-2479 (((-2 (|:| -3401 (-329)) (|:| -1595 (-329)) (|:| |totalpts| (-484)) (|:| |success| (-85))) (-1 (-329) (-329)) (-329) (-329) (-329) (-329) (-484) (-484)) 40 T ELT)) (-2481 (((-2 (|:| -3401 (-329)) (|:| -1595 (-329)) (|:| |totalpts| (-484)) (|:| |success| (-85))) (-1 (-329) (-329)) (-329) (-329) (-329) (-329) (-484) (-484)) 64 T ELT)) (-2478 (((-2 (|:| -3401 (-329)) (|:| -1595 (-329)) (|:| |totalpts| (-484)) (|:| |success| (-85))) (-1 (-329) (-329)) (-329) (-329) (-329) (-329) (-484) (-484)) 38 T ELT)) (-2480 (((-2 (|:| -3401 (-329)) (|:| -1595 (-329)) (|:| |totalpts| (-484)) (|:| |success| (-85))) (-1 (-329) (-329)) (-329) (-329) (-329) (-329) (-484) (-484)) 63 T ELT)) (-2477 (((-2 (|:| -3401 (-329)) (|:| -1595 (-329)) (|:| |totalpts| (-484)) (|:| |success| (-85))) (-1 (-329) (-329)) (-329) (-329) (-329) (-329) (-484) (-484)) 24 T ELT)) (-2476 (((-2 (|:| -3401 (-329)) (|:| -1595 (-329)) (|:| |totalpts| (-484)) (|:| |success| (-85))) (-1 (-329) (-329)) (-329) (-329) (-329) (-329) (-484) (-484) (-484)) 41 T ELT)) (-2475 (((-2 (|:| -3401 (-329)) (|:| -1595 (-329)) (|:| |totalpts| (-484)) (|:| |success| (-85))) (-1 (-329) (-329)) (-329) (-329) (-329) (-329) (-484) (-484) (-484)) 39 T ELT)) (-2474 (((-2 (|:| -3401 (-329)) (|:| -1595 (-329)) (|:| |totalpts| (-484)) (|:| |success| (-85))) (-1 (-329) (-329)) (-329) (-329) (-329) (-329) (-484) (-484) (-484)) 37 T ELT))) +(((-711) (-10 -7 (-15 -2474 ((-2 (|:| -3401 (-329)) (|:| -1595 (-329)) (|:| |totalpts| (-484)) (|:| |success| (-85))) (-1 (-329) (-329)) (-329) (-329) (-329) (-329) (-484) (-484) (-484))) (-15 -2475 ((-2 (|:| -3401 (-329)) (|:| -1595 (-329)) (|:| |totalpts| (-484)) (|:| |success| (-85))) (-1 (-329) (-329)) (-329) (-329) (-329) (-329) (-484) (-484) (-484))) (-15 -2476 ((-2 (|:| -3401 (-329)) (|:| -1595 (-329)) (|:| |totalpts| (-484)) (|:| |success| (-85))) (-1 (-329) (-329)) (-329) (-329) (-329) (-329) (-484) (-484) (-484))) (-15 -2477 ((-2 (|:| -3401 (-329)) (|:| -1595 (-329)) (|:| |totalpts| (-484)) (|:| |success| (-85))) (-1 (-329) (-329)) (-329) (-329) (-329) (-329) (-484) (-484))) (-15 -2478 ((-2 (|:| -3401 (-329)) (|:| -1595 (-329)) (|:| |totalpts| (-484)) (|:| |success| (-85))) (-1 (-329) (-329)) (-329) (-329) (-329) (-329) (-484) (-484))) (-15 -2479 ((-2 (|:| -3401 (-329)) (|:| -1595 (-329)) (|:| |totalpts| (-484)) (|:| |success| (-85))) (-1 (-329) (-329)) (-329) (-329) (-329) (-329) (-484) (-484))) (-15 -2480 ((-2 (|:| -3401 (-329)) (|:| -1595 (-329)) (|:| |totalpts| (-484)) (|:| |success| (-85))) (-1 (-329) (-329)) (-329) (-329) (-329) (-329) (-484) (-484))) (-15 -2481 ((-2 (|:| -3401 (-329)) (|:| -1595 (-329)) (|:| |totalpts| (-484)) (|:| |success| (-85))) (-1 (-329) (-329)) (-329) (-329) (-329) (-329) (-484) (-484))) (-15 -2482 ((-2 (|:| -3401 (-329)) (|:| -1595 (-329)) (|:| |totalpts| (-484)) (|:| |success| (-85))) (-1 (-329) (-329)) (-329) (-329) (-329) (-329) (-484) (-484))))) (T -711)) +((-2482 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-329) (-329))) (-5 *4 (-329)) (-5 *2 (-2 (|:| -3401 *4) (|:| -1595 *4) (|:| |totalpts| (-484)) (|:| |success| (-85)))) (-5 *1 (-711)) (-5 *5 (-484)))) (-2481 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-329) (-329))) (-5 *4 (-329)) (-5 *2 (-2 (|:| -3401 *4) (|:| -1595 *4) (|:| |totalpts| (-484)) (|:| |success| (-85)))) (-5 *1 (-711)) (-5 *5 (-484)))) (-2480 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-329) (-329))) (-5 *4 (-329)) (-5 *2 (-2 (|:| -3401 *4) (|:| -1595 *4) (|:| |totalpts| (-484)) (|:| |success| (-85)))) (-5 *1 (-711)) (-5 *5 (-484)))) (-2479 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-329) (-329))) (-5 *4 (-329)) (-5 *2 (-2 (|:| -3401 *4) (|:| -1595 *4) (|:| |totalpts| (-484)) (|:| |success| (-85)))) (-5 *1 (-711)) (-5 *5 (-484)))) (-2478 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-329) (-329))) (-5 *4 (-329)) (-5 *2 (-2 (|:| -3401 *4) (|:| -1595 *4) (|:| |totalpts| (-484)) (|:| |success| (-85)))) (-5 *1 (-711)) (-5 *5 (-484)))) (-2477 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-329) (-329))) (-5 *4 (-329)) (-5 *2 (-2 (|:| -3401 *4) (|:| -1595 *4) (|:| |totalpts| (-484)) (|:| |success| (-85)))) (-5 *1 (-711)) (-5 *5 (-484)))) (-2476 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-329) (-329))) (-5 *4 (-329)) (-5 *2 (-2 (|:| -3401 *4) (|:| -1595 *4) (|:| |totalpts| (-484)) (|:| |success| (-85)))) (-5 *1 (-711)) (-5 *5 (-484)))) (-2475 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-329) (-329))) (-5 *4 (-329)) (-5 *2 (-2 (|:| -3401 *4) (|:| -1595 *4) (|:| |totalpts| (-484)) (|:| |success| (-85)))) (-5 *1 (-711)) (-5 *5 (-484)))) (-2474 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-329) (-329))) (-5 *4 (-329)) (-5 *2 (-2 (|:| -3401 *4) (|:| -1595 *4) (|:| |totalpts| (-484)) (|:| |success| (-85)))) (-5 *1 (-711)) (-5 *5 (-484))))) +((-3704 (((-1124 |#1|) |#1| (-179) (-484)) 69 T ELT))) +(((-712 |#1|) (-10 -7 (-15 -3704 ((-1124 |#1|) |#1| (-179) (-484)))) (-887)) (T -712)) +((-3704 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-179)) (-5 *5 (-484)) (-5 *2 (-1124 *3)) (-5 *1 (-712 *3)) (-4 *3 (-887))))) +((-3622 (((-484) $) 17 T ELT)) (-3187 (((-85) $) 10 T ELT)) (-3382 (($ $) 19 T ELT))) +(((-713 |#1|) (-10 -7 (-15 -3382 (|#1| |#1|)) (-15 -3622 ((-484) |#1|)) (-15 -3187 ((-85) |#1|))) (-714)) (T -713)) +NIL +((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 31 T ELT)) (-1311 (((-3 $ "failed") $ $) 35 T ELT)) (-3622 (((-484) $) 38 T ELT)) (-3723 (($) 30 T CONST)) (-3186 (((-85) $) 28 T ELT)) (-1213 (((-85) $ $) 33 T ELT)) (-3187 (((-85) $) 39 T ELT)) (-2531 (($ $ $) 23 T ELT)) (-2857 (($ $ $) 22 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3945 (((-772) $) 13 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-3382 (($ $) 37 T ELT)) (-2660 (($) 29 T CONST)) (-2566 (((-85) $ $) 21 T ELT)) (-2567 (((-85) $ $) 19 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-2684 (((-85) $ $) 20 T ELT)) (-2685 (((-85) $ $) 18 T ELT)) (-3836 (($ $ $) 42 T ELT) (($ $) 41 T ELT)) (-3838 (($ $ $) 25 T ELT)) (* (($ (-830) $) 26 T ELT) (($ (-694) $) 32 T ELT) (($ (-484) $) 40 T ELT))) +(((-714) (-113)) (T -714)) +((-3187 (*1 *2 *1) (-12 (-4 *1 (-714)) (-5 *2 (-85)))) (-3622 (*1 *2 *1) (-12 (-4 *1 (-714)) (-5 *2 (-484)))) (-3382 (*1 *1 *1) (-4 *1 (-714)))) +(-13 (-721) (-21) (-10 -8 (-15 -3187 ((-85) $)) (-15 -3622 ((-484) $)) (-15 -3382 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-716) . T) ((-718) . T) ((-721) . T) ((-756) . T) ((-759) . T) ((-1013) . T) ((-1128) . T)) +((-3186 (((-85) $) 10 T ELT))) +(((-715 |#1|) (-10 -7 (-15 -3186 ((-85) |#1|))) (-716)) (T -715)) +NIL +((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 31 T ELT)) (-3723 (($) 30 T CONST)) (-3186 (((-85) $) 28 T ELT)) (-1213 (((-85) $ $) 33 T ELT)) (-2531 (($ $ $) 23 T ELT)) (-2857 (($ $ $) 22 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3945 (((-772) $) 13 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-2660 (($) 29 T CONST)) (-2566 (((-85) $ $) 21 T ELT)) (-2567 (((-85) $ $) 19 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-2684 (((-85) $ $) 20 T ELT)) (-2685 (((-85) $ $) 18 T ELT)) (-3838 (($ $ $) 25 T ELT)) (* (($ (-830) $) 26 T ELT) (($ (-694) $) 32 T ELT))) (((-716) (-113)) (T -716)) -((-2482 (*1 *1 *1 *1) (-4 *1 (-716)))) -(-13 (-720) (-10 -8 (-15 -2482 ($ $ $)))) -(((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-551 (-771)) . T) ((-13) . T) ((-715) . T) ((-717) . T) ((-720) . T) ((-755) . T) ((-758) . T) ((-1012) . T) ((-1127) . T)) -((-2567 (((-85) $ $) 7 T ELT)) (-2530 (($ $ $) 23 T ELT)) (-2856 (($ $ $) 22 T ELT)) (-3241 (((-1071) $) 11 T ELT)) (-3242 (((-1032) $) 12 T ELT)) (-3944 (((-771) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2565 (((-85) $ $) 21 T ELT)) (-2566 (((-85) $ $) 19 T ELT)) (-3055 (((-85) $ $) 8 T ELT)) (-2683 (((-85) $ $) 20 T ELT)) (-2684 (((-85) $ $) 18 T ELT)) (-3837 (($ $ $) 25 T ELT)) (* (($ (-829) $) 26 T ELT))) +((-3186 (*1 *2 *1) (-12 (-4 *1 (-716)) (-5 *2 (-85))))) +(-13 (-718) (-23) (-10 -8 (-15 -3186 ((-85) $)))) +(((-23) . T) ((-25) . T) ((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-718) . T) ((-756) . T) ((-759) . T) ((-1013) . T) ((-1128) . T)) +((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 31 T ELT)) (-2483 (($ $ $) 36 T ELT)) (-1311 (((-3 $ "failed") $ $) 35 T ELT)) (-3723 (($) 30 T CONST)) (-3186 (((-85) $) 28 T ELT)) (-1213 (((-85) $ $) 33 T ELT)) (-2531 (($ $ $) 23 T ELT)) (-2857 (($ $ $) 22 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3945 (((-772) $) 13 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-2660 (($) 29 T CONST)) (-2566 (((-85) $ $) 21 T ELT)) (-2567 (((-85) $ $) 19 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-2684 (((-85) $ $) 20 T ELT)) (-2685 (((-85) $ $) 18 T ELT)) (-3838 (($ $ $) 25 T ELT)) (* (($ (-830) $) 26 T ELT) (($ (-694) $) 32 T ELT))) (((-717) (-113)) (T -717)) -NIL -(-13 (-755) (-25)) -(((-25) . T) ((-72) . T) ((-551 (-771)) . T) ((-13) . T) ((-755) . T) ((-758) . T) ((-1012) . T) ((-1127) . T)) -((-3187 (((-85) $) 42 T ELT)) (-3156 (((-3 (-483) #1="failed") $) NIL T ELT) (((-3 (-348 (-483)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 45 T ELT)) (-3155 (((-483) $) NIL T ELT) (((-348 (-483)) $) NIL T ELT) ((|#2| $) 43 T ELT)) (-3023 (((-3 (-348 (-483)) #1#) $) 78 T ELT)) (-3022 (((-85) $) 72 T ELT)) (-3021 (((-348 (-483)) $) 76 T ELT)) (-3131 ((|#2| $) 26 T ELT)) (-3956 (($ (-1 |#2| |#2|) $) 23 T ELT)) (-2483 (($ $) 58 T ELT)) (-3970 (((-472) $) 67 T ELT)) (-3008 (($ $) 21 T ELT)) (-3944 (((-771) $) 53 T ELT) (($ (-483)) 40 T ELT) (($ |#2|) 38 T ELT) (($ (-348 (-483))) NIL T ELT)) (-3125 (((-693)) 10 T CONST)) (-3381 ((|#2| $) 71 T ELT)) (-3055 (((-85) $ $) 30 T ELT)) (-2684 (((-85) $ $) 69 T ELT)) (-3835 (($ $) 32 T ELT) (($ $ $) NIL T ELT)) (-3837 (($ $ $) 31 T ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-483) $) 36 T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 33 T ELT))) -(((-718 |#1| |#2|) (-10 -7 (-15 -2684 ((-85) |#1| |#1|)) (-15 -3970 ((-472) |#1|)) (-15 -2483 (|#1| |#1|)) (-15 -3023 ((-3 (-348 (-483)) #1="failed") |#1|)) (-15 -3021 ((-348 (-483)) |#1|)) (-15 -3022 ((-85) |#1|)) (-15 -3381 (|#2| |#1|)) (-15 -3131 (|#2| |#1|)) (-15 -3008 (|#1| |#1|)) (-15 -3956 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3156 ((-3 |#2| #1#) |#1|)) (-15 -3155 (|#2| |#1|)) (-15 -3155 ((-348 (-483)) |#1|)) (-15 -3156 ((-3 (-348 (-483)) #1#) |#1|)) (-15 -3944 (|#1| (-348 (-483)))) (-15 -3155 ((-483) |#1|)) (-15 -3156 ((-3 (-483) #1#) |#1|)) (-15 -3944 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3125 ((-693)) -3950) (-15 -3944 (|#1| (-483))) (-15 * (|#1| |#1| |#1|)) (-15 -3835 (|#1| |#1| |#1|)) (-15 -3835 (|#1| |#1|)) (-15 * (|#1| (-483) |#1|)) (-15 * (|#1| (-693) |#1|)) (-15 -3187 ((-85) |#1|)) (-15 * (|#1| (-829) |#1|)) (-15 -3837 (|#1| |#1| |#1|)) (-15 -3944 ((-771) |#1|)) (-15 -3055 ((-85) |#1| |#1|))) (-719 |#2|) (-146)) (T -718)) -((-3125 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-693)) (-5 *1 (-718 *3 *4)) (-4 *3 (-719 *4))))) -((-2567 (((-85) $ $) 7 T ELT)) (-3187 (((-85) $) 22 T ELT)) (-1310 (((-3 $ "failed") $ $) 26 T ELT)) (-3135 (((-693)) 67 (|has| |#1| (-318)) ELT)) (-3722 (($) 23 T CONST)) (-3156 (((-3 (-483) #1="failed") $) 109 (|has| |#1| (-949 (-483))) ELT) (((-3 (-348 (-483)) #1#) $) 106 (|has| |#1| (-949 (-348 (-483)))) ELT) (((-3 |#1| #1#) $) 103 T ELT)) (-3155 (((-483) $) 108 (|has| |#1| (-949 (-483))) ELT) (((-348 (-483)) $) 105 (|has| |#1| (-949 (-348 (-483)))) ELT) ((|#1| $) 104 T ELT)) (-3465 (((-3 $ "failed") $) 42 T ELT)) (-3641 ((|#1| $) 93 T ELT)) (-3023 (((-3 (-348 (-483)) "failed") $) 80 (|has| |#1| (-482)) ELT)) (-3022 (((-85) $) 82 (|has| |#1| (-482)) ELT)) (-3021 (((-348 (-483)) $) 81 (|has| |#1| (-482)) ELT)) (-2993 (($) 70 (|has| |#1| (-318)) ELT)) (-1212 (((-85) $ $) 20 T ELT)) (-2409 (((-85) $) 44 T ELT)) (-2488 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 84 T ELT)) (-3131 ((|#1| $) 85 T ELT)) (-2530 (($ $ $) 71 (|has| |#1| (-755)) ELT)) (-2856 (($ $ $) 72 (|has| |#1| (-755)) ELT)) (-3956 (($ (-1 |#1| |#1|) $) 95 T ELT)) (-2009 (((-829) $) 69 (|has| |#1| (-318)) ELT)) (-3241 (((-1071) $) 11 T ELT)) (-2483 (($ $) 79 (|has| |#1| (-312)) ELT)) (-2399 (($ (-829)) 68 (|has| |#1| (-318)) ELT)) (-2485 ((|#1| $) 90 T ELT)) (-2486 ((|#1| $) 91 T ELT)) (-2487 ((|#1| $) 92 T ELT)) (-3005 ((|#1| $) 86 T ELT)) (-3006 ((|#1| $) 87 T ELT)) (-3007 ((|#1| $) 88 T ELT)) (-2484 ((|#1| $) 89 T ELT)) (-3242 (((-1032) $) 12 T ELT)) (-3766 (($ $ (-582 |#1|) (-582 |#1|)) 101 (|has| |#1| (-260 |#1|)) ELT) (($ $ |#1| |#1|) 100 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-249 |#1|)) 99 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-582 (-249 |#1|))) 98 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-582 (-1088)) (-582 |#1|)) 97 (|has| |#1| (-454 (-1088) |#1|)) ELT) (($ $ (-1088) |#1|) 96 (|has| |#1| (-454 (-1088) |#1|)) ELT)) (-3798 (($ $ |#1|) 102 (|has| |#1| (-241 |#1| |#1|)) ELT)) (-3970 (((-472) $) 77 (|has| |#1| (-552 (-472))) ELT)) (-3008 (($ $) 94 T ELT)) (-3944 (((-771) $) 13 T ELT) (($ (-483)) 41 T ELT) (($ |#1|) 52 T ELT) (($ (-348 (-483))) 107 (|has| |#1| (-949 (-348 (-483)))) ELT)) (-2701 (((-631 $) $) 78 (|has| |#1| (-118)) ELT)) (-3125 (((-693)) 40 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-3124 (((-85) $ $) 33 T ELT)) (-3381 ((|#1| $) 83 (|has| |#1| (-972)) ELT)) (-2659 (($) 24 T CONST)) (-2665 (($) 45 T CONST)) (-2565 (((-85) $ $) 73 (|has| |#1| (-755)) ELT)) (-2566 (((-85) $ $) 75 (|has| |#1| (-755)) ELT)) (-3055 (((-85) $ $) 8 T ELT)) (-2683 (((-85) $ $) 74 (|has| |#1| (-755)) ELT)) (-2684 (((-85) $ $) 76 (|has| |#1| (-755)) ELT)) (-3835 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3837 (($ $ $) 18 T ELT)) (** (($ $ (-829)) 35 T ELT) (($ $ (-693)) 43 T ELT)) (* (($ (-829) $) 17 T ELT) (($ (-693) $) 21 T ELT) (($ (-483) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 54 T ELT) (($ |#1| $) 53 T ELT))) -(((-719 |#1|) (-113) (-146)) (T -719)) -((-3008 (*1 *1 *1) (-12 (-4 *1 (-719 *2)) (-4 *2 (-146)))) (-3641 (*1 *2 *1) (-12 (-4 *1 (-719 *2)) (-4 *2 (-146)))) (-2487 (*1 *2 *1) (-12 (-4 *1 (-719 *2)) (-4 *2 (-146)))) (-2486 (*1 *2 *1) (-12 (-4 *1 (-719 *2)) (-4 *2 (-146)))) (-2485 (*1 *2 *1) (-12 (-4 *1 (-719 *2)) (-4 *2 (-146)))) (-2484 (*1 *2 *1) (-12 (-4 *1 (-719 *2)) (-4 *2 (-146)))) (-3007 (*1 *2 *1) (-12 (-4 *1 (-719 *2)) (-4 *2 (-146)))) (-3006 (*1 *2 *1) (-12 (-4 *1 (-719 *2)) (-4 *2 (-146)))) (-3005 (*1 *2 *1) (-12 (-4 *1 (-719 *2)) (-4 *2 (-146)))) (-3131 (*1 *2 *1) (-12 (-4 *1 (-719 *2)) (-4 *2 (-146)))) (-2488 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-719 *2)) (-4 *2 (-146)))) (-3381 (*1 *2 *1) (-12 (-4 *1 (-719 *2)) (-4 *2 (-146)) (-4 *2 (-972)))) (-3022 (*1 *2 *1) (-12 (-4 *1 (-719 *3)) (-4 *3 (-146)) (-4 *3 (-482)) (-5 *2 (-85)))) (-3021 (*1 *2 *1) (-12 (-4 *1 (-719 *3)) (-4 *3 (-146)) (-4 *3 (-482)) (-5 *2 (-348 (-483))))) (-3023 (*1 *2 *1) (|partial| -12 (-4 *1 (-719 *3)) (-4 *3 (-146)) (-4 *3 (-482)) (-5 *2 (-348 (-483))))) (-2483 (*1 *1 *1) (-12 (-4 *1 (-719 *2)) (-4 *2 (-146)) (-4 *2 (-312))))) -(-13 (-38 |t#1|) (-353 |t#1|) (-288 |t#1|) (-10 -8 (-15 -3008 ($ $)) (-15 -3641 (|t#1| $)) (-15 -2487 (|t#1| $)) (-15 -2486 (|t#1| $)) (-15 -2485 (|t#1| $)) (-15 -2484 (|t#1| $)) (-15 -3007 (|t#1| $)) (-15 -3006 (|t#1| $)) (-15 -3005 (|t#1| $)) (-15 -3131 (|t#1| $)) (-15 -2488 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-318)) (-6 (-318)) |%noBranch|) (IF (|has| |t#1| (-755)) (-6 (-755)) |%noBranch|) (IF (|has| |t#1| (-552 (-472))) (-6 (-552 (-472))) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-972)) (-15 -3381 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-482)) (PROGN (-15 -3022 ((-85) $)) (-15 -3021 ((-348 (-483)) $)) (-15 -3023 ((-3 (-348 (-483)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-312)) (-15 -2483 ($ $)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-554 (-348 (-483))) |has| |#1| (-949 (-348 (-483)))) ((-554 (-483)) . T) ((-554 |#1|) . T) ((-551 (-771)) . T) ((-552 (-472)) |has| |#1| (-552 (-472))) ((-241 |#1| $) |has| |#1| (-241 |#1| |#1|)) ((-260 |#1|) |has| |#1| (-260 |#1|)) ((-318) |has| |#1| (-318)) ((-288 |#1|) . T) ((-353 |#1|) . T) ((-454 (-1088) |#1|) |has| |#1| (-454 (-1088) |#1|)) ((-454 |#1| |#1|) |has| |#1| (-260 |#1|)) ((-13) . T) ((-587 (-483)) . T) ((-587 |#1|) . T) ((-587 $) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-581 |#1|) . T) ((-653 |#1|) . T) ((-662) . T) ((-755) |has| |#1| (-755)) ((-758) |has| |#1| (-755)) ((-949 (-348 (-483))) |has| |#1| (-949 (-348 (-483)))) ((-949 (-483)) |has| |#1| (-949 (-483))) ((-949 |#1|) . T) ((-962 |#1|) . T) ((-967 |#1|) . T) ((-960) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T)) -((-2567 (((-85) $ $) 7 T ELT)) (-3187 (((-85) $) 31 T ELT)) (-1310 (((-3 $ "failed") $ $) 35 T ELT)) (-3722 (($) 30 T CONST)) (-3185 (((-85) $) 28 T ELT)) (-1212 (((-85) $ $) 33 T ELT)) (-2530 (($ $ $) 23 T ELT)) (-2856 (($ $ $) 22 T ELT)) (-3241 (((-1071) $) 11 T ELT)) (-3242 (((-1032) $) 12 T ELT)) (-3944 (((-771) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2659 (($) 29 T CONST)) (-2565 (((-85) $ $) 21 T ELT)) (-2566 (((-85) $ $) 19 T ELT)) (-3055 (((-85) $ $) 8 T ELT)) (-2683 (((-85) $ $) 20 T ELT)) (-2684 (((-85) $ $) 18 T ELT)) (-3837 (($ $ $) 25 T ELT)) (* (($ (-829) $) 26 T ELT) (($ (-693) $) 32 T ELT))) -(((-720) (-113)) (T -720)) -NIL -(-13 (-715) (-104)) -(((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-551 (-771)) . T) ((-13) . T) ((-715) . T) ((-717) . T) ((-755) . T) ((-758) . T) ((-1012) . T) ((-1127) . T)) -((-2567 (((-85) $ $) NIL T ELT)) (-3187 (((-85) $) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3135 (((-693)) NIL (|has| |#1| (-318)) ELT)) (-3722 (($) NIL T CONST)) (-3156 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-908 |#1|) #1#) $) 35 T ELT) (((-3 (-483) #1#) $) NIL (OR (|has| (-908 |#1|) (-949 (-483))) (|has| |#1| (-949 (-483)))) ELT) (((-3 (-348 (-483)) #1#) $) NIL (OR (|has| (-908 |#1|) (-949 (-348 (-483)))) (|has| |#1| (-949 (-348 (-483))))) ELT)) (-3155 ((|#1| $) NIL T ELT) (((-908 |#1|) $) 33 T ELT) (((-483) $) NIL (OR (|has| (-908 |#1|) (-949 (-483))) (|has| |#1| (-949 (-483)))) ELT) (((-348 (-483)) $) NIL (OR (|has| (-908 |#1|) (-949 (-348 (-483)))) (|has| |#1| (-949 (-348 (-483))))) ELT)) (-3465 (((-3 $ #1#) $) NIL T ELT)) (-3641 ((|#1| $) 16 T ELT)) (-3023 (((-3 (-348 (-483)) #1#) $) NIL (|has| |#1| (-482)) ELT)) (-3022 (((-85) $) NIL (|has| |#1| (-482)) ELT)) (-3021 (((-348 (-483)) $) NIL (|has| |#1| (-482)) ELT)) (-2993 (($) NIL (|has| |#1| (-318)) ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-2409 (((-85) $) NIL T ELT)) (-2488 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28 T ELT) (($ (-908 |#1|) (-908 |#1|)) 29 T ELT)) (-3131 ((|#1| $) NIL T ELT)) (-2530 (($ $ $) NIL (|has| |#1| (-755)) ELT)) (-2856 (($ $ $) NIL (|has| |#1| (-755)) ELT)) (-3956 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2009 (((-829) $) NIL (|has| |#1| (-318)) ELT)) (-3241 (((-1071) $) NIL T ELT)) (-2483 (($ $) NIL (|has| |#1| (-312)) ELT)) (-2399 (($ (-829)) NIL (|has| |#1| (-318)) ELT)) (-2485 ((|#1| $) 22 T ELT)) (-2486 ((|#1| $) 20 T ELT)) (-2487 ((|#1| $) 18 T ELT)) (-3005 ((|#1| $) 26 T ELT)) (-3006 ((|#1| $) 25 T ELT)) (-3007 ((|#1| $) 24 T ELT)) (-2484 ((|#1| $) 23 T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3766 (($ $ (-582 |#1|) (-582 |#1|)) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-249 |#1|)) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-582 (-249 |#1|))) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-582 (-1088)) (-582 |#1|)) NIL (|has| |#1| (-454 (-1088) |#1|)) ELT) (($ $ (-1088) |#1|) NIL (|has| |#1| (-454 (-1088) |#1|)) ELT)) (-3798 (($ $ |#1|) NIL (|has| |#1| (-241 |#1| |#1|)) ELT)) (-3970 (((-472) $) NIL (|has| |#1| (-552 (-472))) ELT)) (-3008 (($ $) NIL T ELT)) (-3944 (((-771) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-908 |#1|)) 30 T ELT) (($ (-348 (-483))) NIL (OR (|has| (-908 |#1|) (-949 (-348 (-483)))) (|has| |#1| (-949 (-348 (-483))))) ELT)) (-2701 (((-631 $) $) NIL (|has| |#1| (-118)) ELT)) (-3125 (((-693)) NIL T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-3124 (((-85) $ $) NIL T ELT)) (-3381 ((|#1| $) NIL (|has| |#1| (-972)) ELT)) (-2659 (($) 8 T CONST)) (-2665 (($) 12 T CONST)) (-2565 (((-85) $ $) NIL (|has| |#1| (-755)) ELT)) (-2566 (((-85) $ $) NIL (|has| |#1| (-755)) ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-2683 (((-85) $ $) NIL (|has| |#1| (-755)) ELT)) (-2684 (((-85) $ $) NIL (|has| |#1| (-755)) ELT)) (-3835 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3837 (($ $ $) NIL T ELT)) (** (($ $ (-829)) NIL T ELT) (($ $ (-693)) NIL T ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) 40 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-721 |#1|) (-13 (-719 |#1|) (-353 (-908 |#1|)) (-10 -8 (-15 -2488 ($ (-908 |#1|) (-908 |#1|))))) (-146)) (T -721)) -((-2488 (*1 *1 *2 *2) (-12 (-5 *2 (-908 *3)) (-4 *3 (-146)) (-5 *1 (-721 *3))))) -((-3956 ((|#3| (-1 |#4| |#2|) |#1|) 20 T ELT))) -(((-722 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3956 (|#3| (-1 |#4| |#2|) |#1|))) (-719 |#2|) (-146) (-719 |#4|) (-146)) (T -722)) -((-3956 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-146)) (-4 *6 (-146)) (-4 *2 (-719 *6)) (-5 *1 (-722 *4 *5 *2 *6)) (-4 *4 (-719 *5))))) -((-2489 (((-2 (|:| |particular| |#2|) (|:| -2011 (-582 |#2|))) |#3| |#2| (-1088)) 19 T ELT))) -(((-723 |#1| |#2| |#3|) (-10 -7 (-15 -2489 ((-2 (|:| |particular| |#2|) (|:| -2011 (-582 |#2|))) |#3| |#2| (-1088)))) (-13 (-258) (-949 (-483)) (-579 (-483)) (-120)) (-13 (-29 |#1|) (-1113) (-870)) (-599 |#2|)) (T -723)) -((-2489 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1088)) (-4 *6 (-13 (-258) (-949 (-483)) (-579 (-483)) (-120))) (-4 *4 (-13 (-29 *6) (-1113) (-870))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2011 (-582 *4)))) (-5 *1 (-723 *6 *4 *3)) (-4 *3 (-599 *4))))) -((-3571 (((-3 |#2| #1="failed") |#2| (-86) (-249 |#2|) (-582 |#2|)) 28 T ELT) (((-3 |#2| #1#) (-249 |#2|) (-86) (-249 |#2|) (-582 |#2|)) 29 T ELT) (((-3 (-2 (|:| |particular| |#2|) (|:| -2011 (-582 |#2|))) |#2| #1#) |#2| (-86) (-1088)) 17 T ELT) (((-3 (-2 (|:| |particular| |#2|) (|:| -2011 (-582 |#2|))) |#2| #1#) (-249 |#2|) (-86) (-1088)) 18 T ELT) (((-3 (-2 (|:| |particular| (-1177 |#2|)) (|:| -2011 (-582 (-1177 |#2|)))) #1#) (-582 |#2|) (-582 (-86)) (-1088)) 24 T ELT) (((-3 (-2 (|:| |particular| (-1177 |#2|)) (|:| -2011 (-582 (-1177 |#2|)))) #1#) (-582 (-249 |#2|)) (-582 (-86)) (-1088)) 26 T ELT) (((-3 (-582 (-1177 |#2|)) #1#) (-629 |#2|) (-1088)) 37 T ELT) (((-3 (-2 (|:| |particular| (-1177 |#2|)) (|:| -2011 (-582 (-1177 |#2|)))) #1#) (-629 |#2|) (-1177 |#2|) (-1088)) 35 T ELT))) -(((-724 |#1| |#2|) (-10 -7 (-15 -3571 ((-3 (-2 (|:| |particular| (-1177 |#2|)) (|:| -2011 (-582 (-1177 |#2|)))) #1="failed") (-629 |#2|) (-1177 |#2|) (-1088))) (-15 -3571 ((-3 (-582 (-1177 |#2|)) #1#) (-629 |#2|) (-1088))) (-15 -3571 ((-3 (-2 (|:| |particular| (-1177 |#2|)) (|:| -2011 (-582 (-1177 |#2|)))) #1#) (-582 (-249 |#2|)) (-582 (-86)) (-1088))) (-15 -3571 ((-3 (-2 (|:| |particular| (-1177 |#2|)) (|:| -2011 (-582 (-1177 |#2|)))) #1#) (-582 |#2|) (-582 (-86)) (-1088))) (-15 -3571 ((-3 (-2 (|:| |particular| |#2|) (|:| -2011 (-582 |#2|))) |#2| #1#) (-249 |#2|) (-86) (-1088))) (-15 -3571 ((-3 (-2 (|:| |particular| |#2|) (|:| -2011 (-582 |#2|))) |#2| #1#) |#2| (-86) (-1088))) (-15 -3571 ((-3 |#2| #1#) (-249 |#2|) (-86) (-249 |#2|) (-582 |#2|))) (-15 -3571 ((-3 |#2| #1#) |#2| (-86) (-249 |#2|) (-582 |#2|)))) (-13 (-258) (-949 (-483)) (-579 (-483)) (-120)) (-13 (-29 |#1|) (-1113) (-870))) (T -724)) -((-3571 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-86)) (-5 *4 (-249 *2)) (-5 *5 (-582 *2)) (-4 *2 (-13 (-29 *6) (-1113) (-870))) (-4 *6 (-13 (-258) (-949 (-483)) (-579 (-483)) (-120))) (-5 *1 (-724 *6 *2)))) (-3571 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-249 *2)) (-5 *4 (-86)) (-5 *5 (-582 *2)) (-4 *2 (-13 (-29 *6) (-1113) (-870))) (-5 *1 (-724 *6 *2)) (-4 *6 (-13 (-258) (-949 (-483)) (-579 (-483)) (-120))))) (-3571 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-86)) (-5 *5 (-1088)) (-4 *6 (-13 (-258) (-949 (-483)) (-579 (-483)) (-120))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -2011 (-582 *3))) *3 #1="failed")) (-5 *1 (-724 *6 *3)) (-4 *3 (-13 (-29 *6) (-1113) (-870))))) (-3571 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-249 *7)) (-5 *4 (-86)) (-5 *5 (-1088)) (-4 *7 (-13 (-29 *6) (-1113) (-870))) (-4 *6 (-13 (-258) (-949 (-483)) (-579 (-483)) (-120))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -2011 (-582 *7))) *7 #1#)) (-5 *1 (-724 *6 *7)))) (-3571 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-582 *7)) (-5 *4 (-582 (-86))) (-5 *5 (-1088)) (-4 *7 (-13 (-29 *6) (-1113) (-870))) (-4 *6 (-13 (-258) (-949 (-483)) (-579 (-483)) (-120))) (-5 *2 (-2 (|:| |particular| (-1177 *7)) (|:| -2011 (-582 (-1177 *7))))) (-5 *1 (-724 *6 *7)))) (-3571 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-582 (-249 *7))) (-5 *4 (-582 (-86))) (-5 *5 (-1088)) (-4 *7 (-13 (-29 *6) (-1113) (-870))) (-4 *6 (-13 (-258) (-949 (-483)) (-579 (-483)) (-120))) (-5 *2 (-2 (|:| |particular| (-1177 *7)) (|:| -2011 (-582 (-1177 *7))))) (-5 *1 (-724 *6 *7)))) (-3571 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-629 *6)) (-5 *4 (-1088)) (-4 *6 (-13 (-29 *5) (-1113) (-870))) (-4 *5 (-13 (-258) (-949 (-483)) (-579 (-483)) (-120))) (-5 *2 (-582 (-1177 *6))) (-5 *1 (-724 *5 *6)))) (-3571 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-629 *7)) (-5 *5 (-1088)) (-4 *7 (-13 (-29 *6) (-1113) (-870))) (-4 *6 (-13 (-258) (-949 (-483)) (-579 (-483)) (-120))) (-5 *2 (-2 (|:| |particular| (-1177 *7)) (|:| -2011 (-582 (-1177 *7))))) (-5 *1 (-724 *6 *7)) (-5 *4 (-1177 *7))))) -((-3468 ((|#2| |#2| (-1088)) 17 T ELT)) (-2490 ((|#2| |#2| (-1088)) 56 T ELT)) (-2491 (((-1 |#2| |#2|) (-1088)) 11 T ELT))) -(((-725 |#1| |#2|) (-10 -7 (-15 -3468 (|#2| |#2| (-1088))) (-15 -2490 (|#2| |#2| (-1088))) (-15 -2491 ((-1 |#2| |#2|) (-1088)))) (-13 (-258) (-949 (-483)) (-579 (-483)) (-120)) (-13 (-29 |#1|) (-1113) (-870))) (T -725)) -((-2491 (*1 *2 *3) (-12 (-5 *3 (-1088)) (-4 *4 (-13 (-258) (-949 (-483)) (-579 (-483)) (-120))) (-5 *2 (-1 *5 *5)) (-5 *1 (-725 *4 *5)) (-4 *5 (-13 (-29 *4) (-1113) (-870))))) (-2490 (*1 *2 *2 *3) (-12 (-5 *3 (-1088)) (-4 *4 (-13 (-258) (-949 (-483)) (-579 (-483)) (-120))) (-5 *1 (-725 *4 *2)) (-4 *2 (-13 (-29 *4) (-1113) (-870))))) (-3468 (*1 *2 *2 *3) (-12 (-5 *3 (-1088)) (-4 *4 (-13 (-258) (-949 (-483)) (-579 (-483)) (-120))) (-5 *1 (-725 *4 *2)) (-4 *2 (-13 (-29 *4) (-1113) (-870)))))) -((-2492 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2011 (-582 |#4|))) (-596 |#4|) |#4|) 33 T ELT))) -(((-726 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2492 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2011 (-582 |#4|))) (-596 |#4|) |#4|))) (-13 (-312) (-120) (-949 (-483)) (-949 (-348 (-483)))) (-1153 |#1|) (-1153 (-348 |#2|)) (-291 |#1| |#2| |#3|)) (T -726)) -((-2492 (*1 *2 *3 *4) (-12 (-5 *3 (-596 *4)) (-4 *4 (-291 *5 *6 *7)) (-4 *5 (-13 (-312) (-120) (-949 (-483)) (-949 (-348 (-483))))) (-4 *6 (-1153 *5)) (-4 *7 (-1153 (-348 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2011 (-582 *4)))) (-5 *1 (-726 *5 *6 *7 *4))))) -((-3739 (((-2 (|:| -3265 |#3|) (|:| |rh| (-582 (-348 |#2|)))) |#4| (-582 (-348 |#2|))) 53 T ELT)) (-2494 (((-582 (-2 (|:| -3771 |#2|) (|:| -3225 |#2|))) |#4| |#2|) 62 T ELT) (((-582 (-2 (|:| -3771 |#2|) (|:| -3225 |#2|))) |#4|) 61 T ELT) (((-582 (-2 (|:| -3771 |#2|) (|:| -3225 |#2|))) |#3| |#2|) 20 T ELT) (((-582 (-2 (|:| -3771 |#2|) (|:| -3225 |#2|))) |#3|) 21 T ELT)) (-2495 ((|#2| |#4| |#1|) 63 T ELT) ((|#2| |#3| |#1|) 28 T ELT)) (-2493 ((|#2| |#3| (-582 (-348 |#2|))) 109 T ELT) (((-3 |#2| "failed") |#3| (-348 |#2|)) 105 T ELT))) -(((-727 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2493 ((-3 |#2| "failed") |#3| (-348 |#2|))) (-15 -2493 (|#2| |#3| (-582 (-348 |#2|)))) (-15 -2494 ((-582 (-2 (|:| -3771 |#2|) (|:| -3225 |#2|))) |#3|)) (-15 -2494 ((-582 (-2 (|:| -3771 |#2|) (|:| -3225 |#2|))) |#3| |#2|)) (-15 -2495 (|#2| |#3| |#1|)) (-15 -2494 ((-582 (-2 (|:| -3771 |#2|) (|:| -3225 |#2|))) |#4|)) (-15 -2494 ((-582 (-2 (|:| -3771 |#2|) (|:| -3225 |#2|))) |#4| |#2|)) (-15 -2495 (|#2| |#4| |#1|)) (-15 -3739 ((-2 (|:| -3265 |#3|) (|:| |rh| (-582 (-348 |#2|)))) |#4| (-582 (-348 |#2|))))) (-13 (-312) (-120) (-949 (-348 (-483)))) (-1153 |#1|) (-599 |#2|) (-599 (-348 |#2|))) (T -727)) -((-3739 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-312) (-120) (-949 (-348 (-483))))) (-4 *6 (-1153 *5)) (-5 *2 (-2 (|:| -3265 *7) (|:| |rh| (-582 (-348 *6))))) (-5 *1 (-727 *5 *6 *7 *3)) (-5 *4 (-582 (-348 *6))) (-4 *7 (-599 *6)) (-4 *3 (-599 (-348 *6))))) (-2495 (*1 *2 *3 *4) (-12 (-4 *2 (-1153 *4)) (-5 *1 (-727 *4 *2 *5 *3)) (-4 *4 (-13 (-312) (-120) (-949 (-348 (-483))))) (-4 *5 (-599 *2)) (-4 *3 (-599 (-348 *2))))) (-2494 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-312) (-120) (-949 (-348 (-483))))) (-4 *4 (-1153 *5)) (-5 *2 (-582 (-2 (|:| -3771 *4) (|:| -3225 *4)))) (-5 *1 (-727 *5 *4 *6 *3)) (-4 *6 (-599 *4)) (-4 *3 (-599 (-348 *4))))) (-2494 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-120) (-949 (-348 (-483))))) (-4 *5 (-1153 *4)) (-5 *2 (-582 (-2 (|:| -3771 *5) (|:| -3225 *5)))) (-5 *1 (-727 *4 *5 *6 *3)) (-4 *6 (-599 *5)) (-4 *3 (-599 (-348 *5))))) (-2495 (*1 *2 *3 *4) (-12 (-4 *2 (-1153 *4)) (-5 *1 (-727 *4 *2 *3 *5)) (-4 *4 (-13 (-312) (-120) (-949 (-348 (-483))))) (-4 *3 (-599 *2)) (-4 *5 (-599 (-348 *2))))) (-2494 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-312) (-120) (-949 (-348 (-483))))) (-4 *4 (-1153 *5)) (-5 *2 (-582 (-2 (|:| -3771 *4) (|:| -3225 *4)))) (-5 *1 (-727 *5 *4 *3 *6)) (-4 *3 (-599 *4)) (-4 *6 (-599 (-348 *4))))) (-2494 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-120) (-949 (-348 (-483))))) (-4 *5 (-1153 *4)) (-5 *2 (-582 (-2 (|:| -3771 *5) (|:| -3225 *5)))) (-5 *1 (-727 *4 *5 *3 *6)) (-4 *3 (-599 *5)) (-4 *6 (-599 (-348 *5))))) (-2493 (*1 *2 *3 *4) (-12 (-5 *4 (-582 (-348 *2))) (-4 *2 (-1153 *5)) (-5 *1 (-727 *5 *2 *3 *6)) (-4 *5 (-13 (-312) (-120) (-949 (-348 (-483))))) (-4 *3 (-599 *2)) (-4 *6 (-599 (-348 *2))))) (-2493 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-348 *2)) (-4 *2 (-1153 *5)) (-5 *1 (-727 *5 *2 *3 *6)) (-4 *5 (-13 (-312) (-120) (-949 (-348 (-483))))) (-4 *3 (-599 *2)) (-4 *6 (-599 *4))))) -((-2503 (((-582 (-2 (|:| |frac| (-348 |#2|)) (|:| -3265 |#3|))) |#3| (-1 (-582 |#2|) |#2| (-1083 |#2|)) (-1 (-346 |#2|) |#2|)) 156 T ELT)) (-2504 (((-582 (-2 (|:| |poly| |#2|) (|:| -3265 |#3|))) |#3| (-1 (-582 |#1|) |#2|)) 52 T ELT)) (-2497 (((-582 (-2 (|:| |deg| (-693)) (|:| -3265 |#2|))) |#3|) 123 T ELT)) (-2496 ((|#2| |#3|) 42 T ELT)) (-2498 (((-582 (-2 (|:| -3950 |#1|) (|:| -3265 |#3|))) |#3| (-1 (-582 |#1|) |#2|)) 100 T ELT)) (-2499 ((|#3| |#3| (-348 |#2|)) 71 T ELT) ((|#3| |#3| |#2|) 97 T ELT))) -(((-728 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2496 (|#2| |#3|)) (-15 -2497 ((-582 (-2 (|:| |deg| (-693)) (|:| -3265 |#2|))) |#3|)) (-15 -2498 ((-582 (-2 (|:| -3950 |#1|) (|:| -3265 |#3|))) |#3| (-1 (-582 |#1|) |#2|))) (-15 -2504 ((-582 (-2 (|:| |poly| |#2|) (|:| -3265 |#3|))) |#3| (-1 (-582 |#1|) |#2|))) (-15 -2503 ((-582 (-2 (|:| |frac| (-348 |#2|)) (|:| -3265 |#3|))) |#3| (-1 (-582 |#2|) |#2| (-1083 |#2|)) (-1 (-346 |#2|) |#2|))) (-15 -2499 (|#3| |#3| |#2|)) (-15 -2499 (|#3| |#3| (-348 |#2|)))) (-13 (-312) (-120) (-949 (-348 (-483)))) (-1153 |#1|) (-599 |#2|) (-599 (-348 |#2|))) (T -728)) -((-2499 (*1 *2 *2 *3) (-12 (-5 *3 (-348 *5)) (-4 *4 (-13 (-312) (-120) (-949 (-348 (-483))))) (-4 *5 (-1153 *4)) (-5 *1 (-728 *4 *5 *2 *6)) (-4 *2 (-599 *5)) (-4 *6 (-599 *3)))) (-2499 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-312) (-120) (-949 (-348 (-483))))) (-4 *3 (-1153 *4)) (-5 *1 (-728 *4 *3 *2 *5)) (-4 *2 (-599 *3)) (-4 *5 (-599 (-348 *3))))) (-2503 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-582 *7) *7 (-1083 *7))) (-5 *5 (-1 (-346 *7) *7)) (-4 *7 (-1153 *6)) (-4 *6 (-13 (-312) (-120) (-949 (-348 (-483))))) (-5 *2 (-582 (-2 (|:| |frac| (-348 *7)) (|:| -3265 *3)))) (-5 *1 (-728 *6 *7 *3 *8)) (-4 *3 (-599 *7)) (-4 *8 (-599 (-348 *7))))) (-2504 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-582 *5) *6)) (-4 *5 (-13 (-312) (-120) (-949 (-348 (-483))))) (-4 *6 (-1153 *5)) (-5 *2 (-582 (-2 (|:| |poly| *6) (|:| -3265 *3)))) (-5 *1 (-728 *5 *6 *3 *7)) (-4 *3 (-599 *6)) (-4 *7 (-599 (-348 *6))))) (-2498 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-582 *5) *6)) (-4 *5 (-13 (-312) (-120) (-949 (-348 (-483))))) (-4 *6 (-1153 *5)) (-5 *2 (-582 (-2 (|:| -3950 *5) (|:| -3265 *3)))) (-5 *1 (-728 *5 *6 *3 *7)) (-4 *3 (-599 *6)) (-4 *7 (-599 (-348 *6))))) (-2497 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-120) (-949 (-348 (-483))))) (-4 *5 (-1153 *4)) (-5 *2 (-582 (-2 (|:| |deg| (-693)) (|:| -3265 *5)))) (-5 *1 (-728 *4 *5 *3 *6)) (-4 *3 (-599 *5)) (-4 *6 (-599 (-348 *5))))) (-2496 (*1 *2 *3) (-12 (-4 *2 (-1153 *4)) (-5 *1 (-728 *4 *2 *3 *5)) (-4 *4 (-13 (-312) (-120) (-949 (-348 (-483))))) (-4 *3 (-599 *2)) (-4 *5 (-599 (-348 *2)))))) -((-2500 (((-2 (|:| -2011 (-582 (-348 |#2|))) (|:| |mat| (-629 |#1|))) (-597 |#2| (-348 |#2|)) (-582 (-348 |#2|))) 146 T ELT) (((-2 (|:| |particular| (-3 (-348 |#2|) #1="failed")) (|:| -2011 (-582 (-348 |#2|)))) (-597 |#2| (-348 |#2|)) (-348 |#2|)) 145 T ELT) (((-2 (|:| -2011 (-582 (-348 |#2|))) (|:| |mat| (-629 |#1|))) (-596 (-348 |#2|)) (-582 (-348 |#2|))) 140 T ELT) (((-2 (|:| |particular| (-3 (-348 |#2|) #1#)) (|:| -2011 (-582 (-348 |#2|)))) (-596 (-348 |#2|)) (-348 |#2|)) 138 T ELT)) (-2501 ((|#2| (-597 |#2| (-348 |#2|))) 86 T ELT) ((|#2| (-596 (-348 |#2|))) 89 T ELT))) -(((-729 |#1| |#2|) (-10 -7 (-15 -2500 ((-2 (|:| |particular| (-3 (-348 |#2|) #1="failed")) (|:| -2011 (-582 (-348 |#2|)))) (-596 (-348 |#2|)) (-348 |#2|))) (-15 -2500 ((-2 (|:| -2011 (-582 (-348 |#2|))) (|:| |mat| (-629 |#1|))) (-596 (-348 |#2|)) (-582 (-348 |#2|)))) (-15 -2500 ((-2 (|:| |particular| (-3 (-348 |#2|) #1#)) (|:| -2011 (-582 (-348 |#2|)))) (-597 |#2| (-348 |#2|)) (-348 |#2|))) (-15 -2500 ((-2 (|:| -2011 (-582 (-348 |#2|))) (|:| |mat| (-629 |#1|))) (-597 |#2| (-348 |#2|)) (-582 (-348 |#2|)))) (-15 -2501 (|#2| (-596 (-348 |#2|)))) (-15 -2501 (|#2| (-597 |#2| (-348 |#2|))))) (-13 (-312) (-120) (-949 (-483)) (-949 (-348 (-483)))) (-1153 |#1|)) (T -729)) -((-2501 (*1 *2 *3) (-12 (-5 *3 (-597 *2 (-348 *2))) (-4 *2 (-1153 *4)) (-5 *1 (-729 *4 *2)) (-4 *4 (-13 (-312) (-120) (-949 (-483)) (-949 (-348 (-483))))))) (-2501 (*1 *2 *3) (-12 (-5 *3 (-596 (-348 *2))) (-4 *2 (-1153 *4)) (-5 *1 (-729 *4 *2)) (-4 *4 (-13 (-312) (-120) (-949 (-483)) (-949 (-348 (-483))))))) (-2500 (*1 *2 *3 *4) (-12 (-5 *3 (-597 *6 (-348 *6))) (-4 *6 (-1153 *5)) (-4 *5 (-13 (-312) (-120) (-949 (-483)) (-949 (-348 (-483))))) (-5 *2 (-2 (|:| -2011 (-582 (-348 *6))) (|:| |mat| (-629 *5)))) (-5 *1 (-729 *5 *6)) (-5 *4 (-582 (-348 *6))))) (-2500 (*1 *2 *3 *4) (-12 (-5 *3 (-597 *6 (-348 *6))) (-5 *4 (-348 *6)) (-4 *6 (-1153 *5)) (-4 *5 (-13 (-312) (-120) (-949 (-483)) (-949 (-348 (-483))))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2011 (-582 *4)))) (-5 *1 (-729 *5 *6)))) (-2500 (*1 *2 *3 *4) (-12 (-5 *3 (-596 (-348 *6))) (-4 *6 (-1153 *5)) (-4 *5 (-13 (-312) (-120) (-949 (-483)) (-949 (-348 (-483))))) (-5 *2 (-2 (|:| -2011 (-582 (-348 *6))) (|:| |mat| (-629 *5)))) (-5 *1 (-729 *5 *6)) (-5 *4 (-582 (-348 *6))))) (-2500 (*1 *2 *3 *4) (-12 (-5 *3 (-596 (-348 *6))) (-5 *4 (-348 *6)) (-4 *6 (-1153 *5)) (-4 *5 (-13 (-312) (-120) (-949 (-483)) (-949 (-348 (-483))))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2011 (-582 *4)))) (-5 *1 (-729 *5 *6))))) -((-2502 (((-2 (|:| |mat| (-629 |#2|)) (|:| |vec| (-1177 |#1|))) |#5| |#4|) 49 T ELT))) -(((-730 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2502 ((-2 (|:| |mat| (-629 |#2|)) (|:| |vec| (-1177 |#1|))) |#5| |#4|))) (-312) (-599 |#1|) (-1153 |#1|) (-660 |#1| |#3|) (-599 |#4|)) (T -730)) -((-2502 (*1 *2 *3 *4) (-12 (-4 *5 (-312)) (-4 *7 (-1153 *5)) (-4 *4 (-660 *5 *7)) (-5 *2 (-2 (|:| |mat| (-629 *6)) (|:| |vec| (-1177 *5)))) (-5 *1 (-730 *5 *6 *7 *4 *3)) (-4 *6 (-599 *5)) (-4 *3 (-599 *4))))) -((-2503 (((-582 (-2 (|:| |frac| (-348 |#2|)) (|:| -3265 (-597 |#2| (-348 |#2|))))) (-597 |#2| (-348 |#2|)) (-1 (-346 |#2|) |#2|)) 47 T ELT)) (-2505 (((-582 (-348 |#2|)) (-597 |#2| (-348 |#2|)) (-1 (-346 |#2|) |#2|)) 163 (|has| |#1| (-27)) ELT) (((-582 (-348 |#2|)) (-597 |#2| (-348 |#2|))) 164 (|has| |#1| (-27)) ELT) (((-582 (-348 |#2|)) (-596 (-348 |#2|)) (-1 (-346 |#2|) |#2|)) 165 (|has| |#1| (-27)) ELT) (((-582 (-348 |#2|)) (-596 (-348 |#2|))) 166 (|has| |#1| (-27)) ELT) (((-582 (-348 |#2|)) (-597 |#2| (-348 |#2|)) (-1 (-582 |#1|) |#2|) (-1 (-346 |#2|) |#2|)) 38 T ELT) (((-582 (-348 |#2|)) (-597 |#2| (-348 |#2|)) (-1 (-582 |#1|) |#2|)) 39 T ELT) (((-582 (-348 |#2|)) (-596 (-348 |#2|)) (-1 (-582 |#1|) |#2|) (-1 (-346 |#2|) |#2|)) 36 T ELT) (((-582 (-348 |#2|)) (-596 (-348 |#2|)) (-1 (-582 |#1|) |#2|)) 37 T ELT)) (-2504 (((-582 (-2 (|:| |poly| |#2|) (|:| -3265 (-597 |#2| (-348 |#2|))))) (-597 |#2| (-348 |#2|)) (-1 (-582 |#1|) |#2|)) 96 T ELT))) -(((-731 |#1| |#2|) (-10 -7 (-15 -2505 ((-582 (-348 |#2|)) (-596 (-348 |#2|)) (-1 (-582 |#1|) |#2|))) (-15 -2505 ((-582 (-348 |#2|)) (-596 (-348 |#2|)) (-1 (-582 |#1|) |#2|) (-1 (-346 |#2|) |#2|))) (-15 -2505 ((-582 (-348 |#2|)) (-597 |#2| (-348 |#2|)) (-1 (-582 |#1|) |#2|))) (-15 -2505 ((-582 (-348 |#2|)) (-597 |#2| (-348 |#2|)) (-1 (-582 |#1|) |#2|) (-1 (-346 |#2|) |#2|))) (-15 -2503 ((-582 (-2 (|:| |frac| (-348 |#2|)) (|:| -3265 (-597 |#2| (-348 |#2|))))) (-597 |#2| (-348 |#2|)) (-1 (-346 |#2|) |#2|))) (-15 -2504 ((-582 (-2 (|:| |poly| |#2|) (|:| -3265 (-597 |#2| (-348 |#2|))))) (-597 |#2| (-348 |#2|)) (-1 (-582 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2505 ((-582 (-348 |#2|)) (-596 (-348 |#2|)))) (-15 -2505 ((-582 (-348 |#2|)) (-596 (-348 |#2|)) (-1 (-346 |#2|) |#2|))) (-15 -2505 ((-582 (-348 |#2|)) (-597 |#2| (-348 |#2|)))) (-15 -2505 ((-582 (-348 |#2|)) (-597 |#2| (-348 |#2|)) (-1 (-346 |#2|) |#2|)))) |%noBranch|)) (-13 (-312) (-120) (-949 (-483)) (-949 (-348 (-483)))) (-1153 |#1|)) (T -731)) -((-2505 (*1 *2 *3 *4) (-12 (-5 *3 (-597 *6 (-348 *6))) (-5 *4 (-1 (-346 *6) *6)) (-4 *6 (-1153 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-312) (-120) (-949 (-483)) (-949 (-348 (-483))))) (-5 *2 (-582 (-348 *6))) (-5 *1 (-731 *5 *6)))) (-2505 (*1 *2 *3) (-12 (-5 *3 (-597 *5 (-348 *5))) (-4 *5 (-1153 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-312) (-120) (-949 (-483)) (-949 (-348 (-483))))) (-5 *2 (-582 (-348 *5))) (-5 *1 (-731 *4 *5)))) (-2505 (*1 *2 *3 *4) (-12 (-5 *3 (-596 (-348 *6))) (-5 *4 (-1 (-346 *6) *6)) (-4 *6 (-1153 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-312) (-120) (-949 (-483)) (-949 (-348 (-483))))) (-5 *2 (-582 (-348 *6))) (-5 *1 (-731 *5 *6)))) (-2505 (*1 *2 *3) (-12 (-5 *3 (-596 (-348 *5))) (-4 *5 (-1153 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-312) (-120) (-949 (-483)) (-949 (-348 (-483))))) (-5 *2 (-582 (-348 *5))) (-5 *1 (-731 *4 *5)))) (-2504 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-582 *5) *6)) (-4 *5 (-13 (-312) (-120) (-949 (-483)) (-949 (-348 (-483))))) (-4 *6 (-1153 *5)) (-5 *2 (-582 (-2 (|:| |poly| *6) (|:| -3265 (-597 *6 (-348 *6)))))) (-5 *1 (-731 *5 *6)) (-5 *3 (-597 *6 (-348 *6))))) (-2503 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-346 *6) *6)) (-4 *6 (-1153 *5)) (-4 *5 (-13 (-312) (-120) (-949 (-483)) (-949 (-348 (-483))))) (-5 *2 (-582 (-2 (|:| |frac| (-348 *6)) (|:| -3265 (-597 *6 (-348 *6)))))) (-5 *1 (-731 *5 *6)) (-5 *3 (-597 *6 (-348 *6))))) (-2505 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-597 *7 (-348 *7))) (-5 *4 (-1 (-582 *6) *7)) (-5 *5 (-1 (-346 *7) *7)) (-4 *6 (-13 (-312) (-120) (-949 (-483)) (-949 (-348 (-483))))) (-4 *7 (-1153 *6)) (-5 *2 (-582 (-348 *7))) (-5 *1 (-731 *6 *7)))) (-2505 (*1 *2 *3 *4) (-12 (-5 *3 (-597 *6 (-348 *6))) (-5 *4 (-1 (-582 *5) *6)) (-4 *5 (-13 (-312) (-120) (-949 (-483)) (-949 (-348 (-483))))) (-4 *6 (-1153 *5)) (-5 *2 (-582 (-348 *6))) (-5 *1 (-731 *5 *6)))) (-2505 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-596 (-348 *7))) (-5 *4 (-1 (-582 *6) *7)) (-5 *5 (-1 (-346 *7) *7)) (-4 *6 (-13 (-312) (-120) (-949 (-483)) (-949 (-348 (-483))))) (-4 *7 (-1153 *6)) (-5 *2 (-582 (-348 *7))) (-5 *1 (-731 *6 *7)))) (-2505 (*1 *2 *3 *4) (-12 (-5 *3 (-596 (-348 *6))) (-5 *4 (-1 (-582 *5) *6)) (-4 *5 (-13 (-312) (-120) (-949 (-483)) (-949 (-348 (-483))))) (-4 *6 (-1153 *5)) (-5 *2 (-582 (-348 *6))) (-5 *1 (-731 *5 *6))))) -((-2506 (((-2 (|:| |mat| (-629 |#2|)) (|:| |vec| (-1177 |#1|))) (-629 |#2|) (-1177 |#1|)) 110 T ELT) (((-2 (|:| A (-629 |#1|)) (|:| |eqs| (-582 (-2 (|:| C (-629 |#1|)) (|:| |g| (-1177 |#1|)) (|:| -3265 |#2|) (|:| |rh| |#1|))))) (-629 |#1|) (-1177 |#1|)) 15 T ELT)) (-2507 (((-2 (|:| |particular| (-3 (-1177 |#1|) #1="failed")) (|:| -2011 (-582 (-1177 |#1|)))) (-629 |#2|) (-1177 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| #1#)) (|:| -2011 (-582 |#1|))) |#2| |#1|)) 116 T ELT)) (-3571 (((-3 (-2 (|:| |particular| (-1177 |#1|)) (|:| -2011 (-629 |#1|))) #1#) (-629 |#1|) (-1177 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2011 (-582 |#1|))) #1#) |#2| |#1|)) 54 T ELT))) -(((-732 |#1| |#2|) (-10 -7 (-15 -2506 ((-2 (|:| A (-629 |#1|)) (|:| |eqs| (-582 (-2 (|:| C (-629 |#1|)) (|:| |g| (-1177 |#1|)) (|:| -3265 |#2|) (|:| |rh| |#1|))))) (-629 |#1|) (-1177 |#1|))) (-15 -2506 ((-2 (|:| |mat| (-629 |#2|)) (|:| |vec| (-1177 |#1|))) (-629 |#2|) (-1177 |#1|))) (-15 -3571 ((-3 (-2 (|:| |particular| (-1177 |#1|)) (|:| -2011 (-629 |#1|))) #1="failed") (-629 |#1|) (-1177 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2011 (-582 |#1|))) #1#) |#2| |#1|))) (-15 -2507 ((-2 (|:| |particular| (-3 (-1177 |#1|) #1#)) (|:| -2011 (-582 (-1177 |#1|)))) (-629 |#2|) (-1177 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| #1#)) (|:| -2011 (-582 |#1|))) |#2| |#1|)))) (-312) (-599 |#1|)) (T -732)) -((-2507 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-629 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2011 (-582 *6))) *7 *6)) (-4 *6 (-312)) (-4 *7 (-599 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1177 *6) "failed")) (|:| -2011 (-582 (-1177 *6))))) (-5 *1 (-732 *6 *7)) (-5 *4 (-1177 *6)))) (-3571 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -2011 (-582 *6))) "failed") *7 *6)) (-4 *6 (-312)) (-4 *7 (-599 *6)) (-5 *2 (-2 (|:| |particular| (-1177 *6)) (|:| -2011 (-629 *6)))) (-5 *1 (-732 *6 *7)) (-5 *3 (-629 *6)) (-5 *4 (-1177 *6)))) (-2506 (*1 *2 *3 *4) (-12 (-4 *5 (-312)) (-4 *6 (-599 *5)) (-5 *2 (-2 (|:| |mat| (-629 *6)) (|:| |vec| (-1177 *5)))) (-5 *1 (-732 *5 *6)) (-5 *3 (-629 *6)) (-5 *4 (-1177 *5)))) (-2506 (*1 *2 *3 *4) (-12 (-4 *5 (-312)) (-5 *2 (-2 (|:| A (-629 *5)) (|:| |eqs| (-582 (-2 (|:| C (-629 *5)) (|:| |g| (-1177 *5)) (|:| -3265 *6) (|:| |rh| *5)))))) (-5 *1 (-732 *5 *6)) (-5 *3 (-629 *5)) (-5 *4 (-1177 *5)) (-4 *6 (-599 *5))))) -((-2508 (((-629 |#1|) (-582 |#1|) (-693)) 14 T ELT) (((-629 |#1|) (-582 |#1|)) 15 T ELT)) (-2509 (((-3 (-1177 |#1|) #1="failed") |#2| |#1| (-582 |#1|)) 39 T ELT)) (-3338 (((-3 |#1| #1#) |#2| |#1| (-582 |#1|) (-1 |#1| |#1|)) 46 T ELT))) -(((-733 |#1| |#2|) (-10 -7 (-15 -2508 ((-629 |#1|) (-582 |#1|))) (-15 -2508 ((-629 |#1|) (-582 |#1|) (-693))) (-15 -2509 ((-3 (-1177 |#1|) #1="failed") |#2| |#1| (-582 |#1|))) (-15 -3338 ((-3 |#1| #1#) |#2| |#1| (-582 |#1|) (-1 |#1| |#1|)))) (-312) (-599 |#1|)) (T -733)) -((-3338 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-582 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-312)) (-5 *1 (-733 *2 *3)) (-4 *3 (-599 *2)))) (-2509 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-582 *4)) (-4 *4 (-312)) (-5 *2 (-1177 *4)) (-5 *1 (-733 *4 *3)) (-4 *3 (-599 *4)))) (-2508 (*1 *2 *3 *4) (-12 (-5 *3 (-582 *5)) (-5 *4 (-693)) (-4 *5 (-312)) (-5 *2 (-629 *5)) (-5 *1 (-733 *5 *6)) (-4 *6 (-599 *5)))) (-2508 (*1 *2 *3) (-12 (-5 *3 (-582 *4)) (-4 *4 (-312)) (-5 *2 (-629 *4)) (-5 *1 (-733 *4 *5)) (-4 *5 (-599 *4))))) -((-2567 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-3187 (((-85) $) NIL (|has| |#2| (-23)) ELT)) (-3705 (($ (-829)) NIL (|has| |#2| (-960)) ELT)) (-2197 (((-1183) $ (-483) (-483)) NIL (|has| $ (-6 -3994)) ELT)) (-2482 (($ $ $) NIL (|has| |#2| (-716)) ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL (|has| |#2| (-104)) ELT)) (-3135 (((-693)) NIL (|has| |#2| (-318)) ELT)) (-3786 ((|#2| $ (-483) |#2|) NIL (|has| $ (-6 -3994)) ELT)) (-3722 (($) NIL T CONST)) (-3156 (((-3 (-483) #1#) $) NIL (-12 (|has| |#2| (-949 (-483))) (|has| |#2| (-1012))) ELT) (((-3 (-348 (-483)) #1#) $) NIL (-12 (|has| |#2| (-949 (-348 (-483)))) (|has| |#2| (-1012))) ELT) (((-3 |#2| #1#) $) NIL (|has| |#2| (-1012)) ELT)) (-3155 (((-483) $) NIL (-12 (|has| |#2| (-949 (-483))) (|has| |#2| (-1012))) ELT) (((-348 (-483)) $) NIL (-12 (|has| |#2| (-949 (-348 (-483)))) (|has| |#2| (-1012))) ELT) ((|#2| $) NIL (|has| |#2| (-1012)) ELT)) (-2278 (((-629 (-483)) (-629 $)) NIL (-12 (|has| |#2| (-579 (-483))) (|has| |#2| (-960))) ELT) (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-629 $) (-1177 $)) NIL (-12 (|has| |#2| (-579 (-483))) (|has| |#2| (-960))) ELT) (((-2 (|:| |mat| (-629 |#2|)) (|:| |vec| (-1177 |#2|))) (-629 $) (-1177 $)) NIL (|has| |#2| (-960)) ELT) (((-629 |#2|) (-629 $)) NIL (|has| |#2| (-960)) ELT)) (-3465 (((-3 $ #1#) $) NIL (|has| |#2| (-960)) ELT)) (-2993 (($) NIL (|has| |#2| (-318)) ELT)) (-1574 ((|#2| $ (-483) |#2|) NIL (|has| $ (-6 -3994)) ELT)) (-3111 ((|#2| $ (-483)) NIL T ELT)) (-3185 (((-85) $) NIL (|has| |#2| (-716)) ELT)) (-2888 (((-582 |#2|) $) NIL (|has| $ (-6 -3993)) ELT)) (-1212 (((-85) $ $) NIL (|has| |#2| (-23)) ELT)) (-2409 (((-85) $) NIL (|has| |#2| (-960)) ELT)) (-2199 (((-483) $) NIL (|has| (-483) (-755)) ELT)) (-2530 (($ $ $) NIL (|has| |#2| (-755)) ELT)) (-2607 (((-582 |#2|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3244 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#2| (-1012))) ELT)) (-2200 (((-483) $) NIL (|has| (-483) (-755)) ELT)) (-2856 (($ $ $) NIL (|has| |#2| (-755)) ELT)) (-1947 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3956 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2009 (((-829) $) NIL (|has| |#2| (-318)) ELT)) (-2279 (((-629 (-483)) (-1177 $)) NIL (-12 (|has| |#2| (-579 (-483))) (|has| |#2| (-960))) ELT) (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL (-12 (|has| |#2| (-579 (-483))) (|has| |#2| (-960))) ELT) (((-2 (|:| |mat| (-629 |#2|)) (|:| |vec| (-1177 |#2|))) (-1177 $) $) NIL (|has| |#2| (-960)) ELT) (((-629 |#2|) (-1177 $)) NIL (|has| |#2| (-960)) ELT)) (-3241 (((-1071) $) NIL (|has| |#2| (-1012)) ELT)) (-2202 (((-582 (-483)) $) NIL T ELT)) (-2203 (((-85) (-483) $) NIL T ELT)) (-2399 (($ (-829)) NIL (|has| |#2| (-318)) ELT)) (-3242 (((-1032) $) NIL (|has| |#2| (-1012)) ELT)) (-3799 ((|#2| $) NIL (|has| (-483) (-755)) ELT)) (-2198 (($ $ |#2|) NIL (|has| $ (-6 -3994)) ELT)) (-1945 (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3766 (($ $ (-582 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ (-582 |#2|) (-582 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1012))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-2201 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#2| (-1012))) ELT)) (-2204 (((-582 |#2|) $) NIL T ELT)) (-3401 (((-85) $) NIL T ELT)) (-3563 (($) NIL T ELT)) (-3798 ((|#2| $ (-483) |#2|) NIL T ELT) ((|#2| $ (-483)) NIL T ELT)) (-3834 ((|#2| $ $) NIL (|has| |#2| (-960)) ELT)) (-1466 (($ (-1177 |#2|)) NIL T ELT)) (-3909 (((-107)) NIL (|has| |#2| (-312)) ELT)) (-3756 (($ $ (-693)) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-960))) ELT) (($ $) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-960))) ELT) (($ $ (-582 (-1088)) (-582 (-693))) NIL (-12 (|has| |#2| (-810 (-1088))) (|has| |#2| (-960))) ELT) (($ $ (-1088) (-693)) NIL (-12 (|has| |#2| (-810 (-1088))) (|has| |#2| (-960))) ELT) (($ $ (-582 (-1088))) NIL (-12 (|has| |#2| (-810 (-1088))) (|has| |#2| (-960))) ELT) (($ $ (-1088)) NIL (-12 (|has| |#2| (-810 (-1088))) (|has| |#2| (-960))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-960)) ELT) (($ $ (-1 |#2| |#2|) (-693)) NIL (|has| |#2| (-960)) ELT)) (-1944 (((-693) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3993)) ELT) (((-693) |#2| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#2| (-1012))) ELT)) (-3398 (($ $) NIL T ELT)) (-3944 (((-1177 |#2|) $) NIL T ELT) (($ (-483)) NIL (OR (-12 (|has| |#2| (-949 (-483))) (|has| |#2| (-1012))) (|has| |#2| (-960))) ELT) (($ (-348 (-483))) NIL (-12 (|has| |#2| (-949 (-348 (-483)))) (|has| |#2| (-1012))) ELT) (($ |#2|) NIL (|has| |#2| (-1012)) ELT) (((-771) $) NIL (|has| |#2| (-551 (-771))) ELT)) (-3125 (((-693)) NIL (|has| |#2| (-960)) CONST)) (-1263 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3124 (((-85) $ $) NIL (|has| |#2| (-960)) ELT)) (-2659 (($) NIL (|has| |#2| (-23)) CONST)) (-2665 (($) NIL (|has| |#2| (-960)) CONST)) (-2668 (($ $ (-693)) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-960))) ELT) (($ $) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-960))) ELT) (($ $ (-582 (-1088)) (-582 (-693))) NIL (-12 (|has| |#2| (-810 (-1088))) (|has| |#2| (-960))) ELT) (($ $ (-1088) (-693)) NIL (-12 (|has| |#2| (-810 (-1088))) (|has| |#2| (-960))) ELT) (($ $ (-582 (-1088))) NIL (-12 (|has| |#2| (-810 (-1088))) (|has| |#2| (-960))) ELT) (($ $ (-1088)) NIL (-12 (|has| |#2| (-810 (-1088))) (|has| |#2| (-960))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-960)) ELT) (($ $ (-1 |#2| |#2|) (-693)) NIL (|has| |#2| (-960)) ELT)) (-2565 (((-85) $ $) NIL (|has| |#2| (-755)) ELT)) (-2566 (((-85) $ $) NIL (|has| |#2| (-755)) ELT)) (-3055 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-2683 (((-85) $ $) NIL (|has| |#2| (-755)) ELT)) (-2684 (((-85) $ $) 11 (|has| |#2| (-755)) ELT)) (-3947 (($ $ |#2|) NIL (|has| |#2| (-312)) ELT)) (-3835 (($ $ $) NIL (|has| |#2| (-21)) ELT) (($ $) NIL (|has| |#2| (-21)) ELT)) (-3837 (($ $ $) NIL (|has| |#2| (-25)) ELT)) (** (($ $ (-693)) NIL (|has| |#2| (-960)) ELT) (($ $ (-829)) NIL (|has| |#2| (-960)) ELT)) (* (($ $ $) NIL (|has| |#2| (-960)) ELT) (($ $ |#2|) NIL (|has| |#2| (-662)) ELT) (($ |#2| $) NIL (|has| |#2| (-662)) ELT) (($ (-483) $) NIL (|has| |#2| (-21)) ELT) (($ (-693) $) NIL (|has| |#2| (-23)) ELT) (($ (-829) $) NIL (|has| |#2| (-25)) ELT)) (-3955 (((-693) $) NIL (|has| $ (-6 -3993)) ELT))) -(((-734 |#1| |#2| |#3|) (-196 |#1| |#2|) (-693) (-716) (-1 (-85) (-1177 |#2|) (-1177 |#2|))) (T -734)) -NIL -((-2567 (((-85) $ $) NIL T ELT)) (-3187 (((-85) $) NIL T ELT)) (-1486 (((-582 (-693)) $) NIL T ELT) (((-582 (-693)) $ (-1088)) NIL T ELT)) (-1520 (((-693) $) NIL T ELT) (((-693) $ (-1088)) NIL T ELT)) (-3080 (((-582 (-737 (-1088))) $) NIL T ELT)) (-3082 (((-1083 $) $ (-737 (-1088))) NIL T ELT) (((-1083 |#1|) $) NIL T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3980 $) (|:| |associate| $)) $) NIL (|has| |#1| (-494)) ELT)) (-2062 (($ $) NIL (|has| |#1| (-494)) ELT)) (-2060 (((-85) $) NIL (|has| |#1| (-494)) ELT)) (-2818 (((-693) $) NIL T ELT) (((-693) $ (-582 (-737 (-1088)))) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2706 (((-346 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-820)) ELT)) (-3773 (($ $) NIL (|has| |#1| (-390)) ELT)) (-3969 (((-346 $) $) NIL (|has| |#1| (-390)) ELT)) (-2703 (((-3 (-582 (-1083 $)) #1#) (-582 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-820)) ELT)) (-1482 (($ $) NIL T ELT)) (-3722 (($) NIL T CONST)) (-3156 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-348 (-483)) #1#) $) NIL (|has| |#1| (-949 (-348 (-483)))) ELT) (((-3 (-483) #1#) $) NIL (|has| |#1| (-949 (-483))) ELT) (((-3 (-737 (-1088)) #1#) $) NIL T ELT) (((-3 (-1088) #1#) $) NIL T ELT) (((-3 (-1037 |#1| (-1088)) #1#) $) NIL T ELT)) (-3155 ((|#1| $) NIL T ELT) (((-348 (-483)) $) NIL (|has| |#1| (-949 (-348 (-483)))) ELT) (((-483) $) NIL (|has| |#1| (-949 (-483))) ELT) (((-737 (-1088)) $) NIL T ELT) (((-1088) $) NIL T ELT) (((-1037 |#1| (-1088)) $) NIL T ELT)) (-3754 (($ $ $ (-737 (-1088))) NIL (|has| |#1| (-146)) ELT)) (-3957 (($ $) NIL T ELT)) (-2278 (((-629 (-483)) (-629 $)) NIL (|has| |#1| (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-629 $) (-1177 $)) NIL (|has| |#1| (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 |#1|)) (|:| |vec| (-1177 |#1|))) (-629 $) (-1177 $)) NIL T ELT) (((-629 |#1|) (-629 $)) NIL T ELT)) (-3465 (((-3 $ #1#) $) NIL T ELT)) (-3501 (($ $) NIL (|has| |#1| (-390)) ELT) (($ $ (-737 (-1088))) NIL (|has| |#1| (-390)) ELT)) (-2817 (((-582 $) $) NIL T ELT)) (-3721 (((-85) $) NIL (|has| |#1| (-820)) ELT)) (-1622 (($ $ |#1| (-468 (-737 (-1088))) $) NIL T ELT)) (-2795 (((-797 (-328) $) $ (-799 (-328)) (-797 (-328) $)) NIL (-12 (|has| (-737 (-1088)) (-795 (-328))) (|has| |#1| (-795 (-328)))) ELT) (((-797 (-483) $) $ (-799 (-483)) (-797 (-483) $)) NIL (-12 (|has| (-737 (-1088)) (-795 (-483))) (|has| |#1| (-795 (-483)))) ELT)) (-3770 (((-693) $ (-1088)) NIL T ELT) (((-693) $) NIL T ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-2409 (((-85) $) NIL T ELT)) (-2419 (((-693) $) NIL T ELT)) (-3083 (($ (-1083 |#1|) (-737 (-1088))) NIL T ELT) (($ (-1083 $) (-737 (-1088))) NIL T ELT)) (-2820 (((-582 $) $) NIL T ELT)) (-3935 (((-85) $) NIL T ELT)) (-2892 (($ |#1| (-468 (-737 (-1088)))) NIL T ELT) (($ $ (-737 (-1088)) (-693)) NIL T ELT) (($ $ (-582 (-737 (-1088))) (-582 (-693))) NIL T ELT)) (-3761 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $ (-737 (-1088))) NIL T ELT)) (-2819 (((-468 (-737 (-1088))) $) NIL T ELT) (((-693) $ (-737 (-1088))) NIL T ELT) (((-582 (-693)) $ (-582 (-737 (-1088)))) NIL T ELT)) (-1623 (($ (-1 (-468 (-737 (-1088))) (-468 (-737 (-1088)))) $) NIL T ELT)) (-3956 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1521 (((-1 $ (-693)) (-1088)) NIL T ELT) (((-1 $ (-693)) $) NIL (|has| |#1| (-190)) ELT)) (-3081 (((-3 (-737 (-1088)) #1#) $) NIL T ELT)) (-2279 (((-629 (-483)) (-1177 $)) NIL (|has| |#1| (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL (|has| |#1| (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 |#1|)) (|:| |vec| (-1177 |#1|))) (-1177 $) $) NIL T ELT) (((-629 |#1|) (-1177 $)) NIL T ELT)) (-2893 (($ $) NIL T ELT)) (-3173 ((|#1| $) NIL T ELT)) (-1484 (((-737 (-1088)) $) NIL T ELT)) (-1889 (($ (-582 $)) NIL (|has| |#1| (-390)) ELT) (($ $ $) NIL (|has| |#1| (-390)) ELT)) (-3241 (((-1071) $) NIL T ELT)) (-1485 (((-85) $) NIL T ELT)) (-2822 (((-3 (-582 $) #1#) $) NIL T ELT)) (-2821 (((-3 (-582 $) #1#) $) NIL T ELT)) (-2823 (((-3 (-2 (|:| |var| (-737 (-1088))) (|:| -2400 (-693))) #1#) $) NIL T ELT)) (-1483 (($ $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-1795 (((-85) $) NIL T ELT)) (-1794 ((|#1| $) NIL T ELT)) (-2707 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#1| (-390)) ELT)) (-3143 (($ (-582 $)) NIL (|has| |#1| (-390)) ELT) (($ $ $) NIL (|has| |#1| (-390)) ELT)) (-2704 (((-346 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-820)) ELT)) (-2705 (((-346 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-820)) ELT)) (-3730 (((-346 $) $) NIL (|has| |#1| (-820)) ELT)) (-3464 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-494)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-494)) ELT)) (-3766 (($ $ (-582 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-582 $) (-582 $)) NIL T ELT) (($ $ (-737 (-1088)) |#1|) NIL T ELT) (($ $ (-582 (-737 (-1088))) (-582 |#1|)) NIL T ELT) (($ $ (-737 (-1088)) $) NIL T ELT) (($ $ (-582 (-737 (-1088))) (-582 $)) NIL T ELT) (($ $ (-1088) $) NIL (|has| |#1| (-190)) ELT) (($ $ (-582 (-1088)) (-582 $)) NIL (|has| |#1| (-190)) ELT) (($ $ (-1088) |#1|) NIL (|has| |#1| (-190)) ELT) (($ $ (-582 (-1088)) (-582 |#1|)) NIL (|has| |#1| (-190)) ELT)) (-3755 (($ $ (-737 (-1088))) NIL (|has| |#1| (-146)) ELT)) (-3756 (($ $ (-582 (-737 (-1088))) (-582 (-693))) NIL T ELT) (($ $ (-737 (-1088)) (-693)) NIL T ELT) (($ $ (-582 (-737 (-1088)))) NIL T ELT) (($ $ (-737 (-1088))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-693)) NIL T ELT) (($ $ (-1088)) NIL (|has| |#1| (-810 (-1088))) ELT) (($ $ (-582 (-1088))) NIL (|has| |#1| (-810 (-1088))) ELT) (($ $ (-1088) (-693)) NIL (|has| |#1| (-810 (-1088))) ELT) (($ $ (-582 (-1088)) (-582 (-693))) NIL (|has| |#1| (-810 (-1088))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-693)) NIL (|has| |#1| (-189)) ELT)) (-1487 (((-582 (-1088)) $) NIL T ELT)) (-3946 (((-468 (-737 (-1088))) $) NIL T ELT) (((-693) $ (-737 (-1088))) NIL T ELT) (((-582 (-693)) $ (-582 (-737 (-1088)))) NIL T ELT) (((-693) $ (-1088)) NIL T ELT)) (-3970 (((-799 (-328)) $) NIL (-12 (|has| (-737 (-1088)) (-552 (-799 (-328)))) (|has| |#1| (-552 (-799 (-328))))) ELT) (((-799 (-483)) $) NIL (-12 (|has| (-737 (-1088)) (-552 (-799 (-483)))) (|has| |#1| (-552 (-799 (-483))))) ELT) (((-472) $) NIL (-12 (|has| (-737 (-1088)) (-552 (-472))) (|has| |#1| (-552 (-472)))) ELT)) (-2816 ((|#1| $) NIL (|has| |#1| (-390)) ELT) (($ $ (-737 (-1088))) NIL (|has| |#1| (-390)) ELT)) (-2702 (((-3 (-1177 $) #1#) (-629 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-820))) ELT)) (-3944 (((-771) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-737 (-1088))) NIL T ELT) (($ (-1088)) NIL T ELT) (($ (-1037 |#1| (-1088))) NIL T ELT) (($ (-348 (-483))) NIL (OR (|has| |#1| (-38 (-348 (-483)))) (|has| |#1| (-949 (-348 (-483))))) ELT) (($ $) NIL (|has| |#1| (-494)) ELT)) (-3815 (((-582 |#1|) $) NIL T ELT)) (-3675 ((|#1| $ (-468 (-737 (-1088)))) NIL T ELT) (($ $ (-737 (-1088)) (-693)) NIL T ELT) (($ $ (-582 (-737 (-1088))) (-582 (-693))) NIL T ELT)) (-2701 (((-631 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-820))) (|has| |#1| (-118))) ELT)) (-3125 (((-693)) NIL T CONST)) (-1621 (($ $ $ (-693)) NIL (|has| |#1| (-146)) ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2061 (((-85) $ $) NIL (|has| |#1| (-494)) ELT)) (-3124 (((-85) $ $) NIL T ELT)) (-2659 (($) NIL T CONST)) (-2665 (($) NIL T CONST)) (-2668 (($ $ (-582 (-737 (-1088))) (-582 (-693))) NIL T ELT) (($ $ (-737 (-1088)) (-693)) NIL T ELT) (($ $ (-582 (-737 (-1088)))) NIL T ELT) (($ $ (-737 (-1088))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-693)) NIL T ELT) (($ $ (-1088)) NIL (|has| |#1| (-810 (-1088))) ELT) (($ $ (-582 (-1088))) NIL (|has| |#1| (-810 (-1088))) ELT) (($ $ (-1088) (-693)) NIL (|has| |#1| (-810 (-1088))) ELT) (($ $ (-582 (-1088)) (-582 (-693))) NIL (|has| |#1| (-810 (-1088))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-693)) NIL (|has| |#1| (-189)) ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-3947 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3835 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3837 (($ $ $) NIL T ELT)) (** (($ $ (-829)) NIL T ELT) (($ $ (-693)) NIL T ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-348 (-483))) NIL (|has| |#1| (-38 (-348 (-483)))) ELT) (($ (-348 (-483)) $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) -(((-735 |#1|) (-13 (-213 |#1| (-1088) (-737 (-1088)) (-468 (-737 (-1088)))) (-949 (-1037 |#1| (-1088)))) (-960)) (T -735)) -NIL -((-2567 (((-85) $ $) NIL T ELT)) (-3187 (((-85) $) NIL T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3980 $) (|:| |associate| $)) $) NIL (|has| |#2| (-312)) ELT)) (-2062 (($ $) NIL (|has| |#2| (-312)) ELT)) (-2060 (((-85) $) NIL (|has| |#2| (-312)) ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3773 (($ $) NIL (|has| |#2| (-312)) ELT)) (-3969 (((-346 $) $) NIL (|has| |#2| (-312)) ELT)) (-1606 (((-85) $ $) NIL (|has| |#2| (-312)) ELT)) (-3722 (($) NIL T CONST)) (-2563 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-3465 (((-3 $ #1#) $) NIL T ELT)) (-2562 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-2740 (((-2 (|:| -3952 (-582 $)) (|:| -2408 $)) (-582 $)) NIL (|has| |#2| (-312)) ELT)) (-3721 (((-85) $) NIL (|has| |#2| (-312)) ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-2409 (((-85) $) NIL T ELT)) (-1603 (((-3 (-582 $) #1#) (-582 $) $) NIL (|has| |#2| (-312)) ELT)) (-1889 (($ (-582 $)) NIL (|has| |#2| (-312)) ELT) (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-3241 (((-1071) $) NIL T ELT)) (-2483 (($ $) 20 (|has| |#2| (-312)) ELT)) (-3242 (((-1032) $) NIL T ELT)) (-2707 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#2| (-312)) ELT)) (-3143 (($ (-582 $)) NIL (|has| |#2| (-312)) ELT) (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-3730 (((-346 $) $) NIL (|has| |#2| (-312)) ELT)) (-1604 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#2| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL (|has| |#2| (-312)) ELT)) (-3464 (((-3 $ #1#) $ $) NIL (|has| |#2| (-312)) ELT)) (-2739 (((-631 (-582 $)) (-582 $) $) NIL (|has| |#2| (-312)) ELT)) (-1605 (((-693) $) NIL (|has| |#2| (-312)) ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL (|has| |#2| (-312)) ELT)) (-3756 (($ $) 13 T ELT) (($ $ (-693)) NIL T ELT)) (-3944 (((-771) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ |#2|) 10 T ELT) ((|#2| $) 11 T ELT) (($ (-348 (-483))) NIL (|has| |#2| (-312)) ELT) (($ $) NIL (|has| |#2| (-312)) ELT)) (-3125 (((-693)) NIL T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-2061 (((-85) $ $) NIL (|has| |#2| (-312)) ELT)) (-3124 (((-85) $ $) NIL T ELT)) (-2659 (($) NIL T CONST)) (-2665 (($) NIL T CONST)) (-2668 (($ $) NIL T ELT) (($ $ (-693)) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-3947 (($ $ $) 15 (|has| |#2| (-312)) ELT)) (-3835 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3837 (($ $ $) NIL T ELT)) (** (($ $ (-693)) NIL T ELT) (($ $ (-829)) NIL T ELT) (($ $ (-483)) 18 (|has| |#2| (-312)) ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-348 (-483)) $) NIL (|has| |#2| (-312)) ELT) (($ $ (-348 (-483))) NIL (|has| |#2| (-312)) ELT))) -(((-736 |#1| |#2| |#3|) (-13 (-82 $ $) (-190) (-428 |#2|) (-10 -7 (IF (|has| |#2| (-312)) (-6 (-312)) |%noBranch|))) (-1012) (-808 |#1|) |#1|) (T -736)) -NIL -((-2567 (((-85) $ $) NIL T ELT)) (-1520 (((-693) $) NIL T ELT)) (-3829 ((|#1| $) 10 T ELT)) (-3156 (((-3 |#1| "failed") $) NIL T ELT)) (-3155 ((|#1| $) NIL T ELT)) (-3770 (((-693) $) 11 T ELT)) (-2530 (($ $ $) NIL T ELT)) (-2856 (($ $ $) NIL T ELT)) (-1521 (($ |#1| (-693)) 9 T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3756 (($ $ (-693)) NIL T ELT) (($ $) NIL T ELT)) (-3944 (((-771) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2668 (($ $ (-693)) NIL T ELT) (($ $) NIL T ELT)) (-2565 (((-85) $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-2683 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL T ELT))) -(((-737 |#1|) (-228 |#1|) (-755)) (T -737)) -NIL -((-2567 (((-85) $ $) NIL T ELT)) (-3932 (((-582 |#1|) $) 39 T ELT)) (-3135 (((-693) $) NIL T ELT)) (-3722 (($) NIL T CONST)) (-3937 (((-3 $ #1="failed") $ $) NIL T ELT) (((-3 $ #1#) $ |#1|) 29 T ELT)) (-3156 (((-3 |#1| #1#) $) NIL T ELT)) (-3155 ((|#1| $) NIL T ELT)) (-3797 (($ $) 43 T ELT)) (-3465 (((-3 $ #1#) $) NIL T ELT)) (-1748 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL T ELT)) (-2409 (((-85) $) NIL T ELT)) (-2298 ((|#1| $ (-483)) NIL T ELT)) (-2299 (((-693) $ (-483)) NIL T ELT)) (-3934 (($ $) 55 T ELT)) (-2530 (($ $ $) NIL T ELT)) (-2856 (($ $ $) NIL T ELT)) (-2289 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2290 (($ (-1 (-693) (-693)) $) NIL T ELT)) (-3938 (((-3 $ #1#) $ $) NIL T ELT) (((-3 $ #1#) $ |#1|) 26 T ELT)) (-2510 (((-85) $ $) 52 T ELT)) (-3831 (((-693) $) 35 T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-1749 (($ $ $) NIL T ELT)) (-1750 (($ $ $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3799 ((|#1| $) 42 T ELT)) (-1777 (((-582 (-2 (|:| |gen| |#1|) (|:| -3941 (-693)))) $) NIL T ELT)) (-2878 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) #1#) $ $) NIL T ELT)) (-2564 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) #1#) $ $) NIL T ELT)) (-3944 (((-771) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2665 (($) 7 T CONST)) (-2565 (((-85) $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-2683 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) 54 T ELT)) (** (($ $ (-829)) NIL T ELT) (($ $ (-693)) NIL T ELT) (($ |#1| (-693)) NIL T ELT)) (* (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) -(((-738 |#1|) (-13 (-334 |#1|) (-753) (-10 -8 (-15 -3799 (|#1| $)) (-15 -3797 ($ $)) (-15 -3934 ($ $)) (-15 -2510 ((-85) $ $)) (-15 -3938 ((-3 $ #1="failed") $ |#1|)) (-15 -3937 ((-3 $ #1#) $ |#1|)) (-15 -2564 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) #1#) $ $)) (-15 -3831 ((-693) $)) (-15 -3932 ((-582 |#1|) $)))) (-755)) (T -738)) -((-3799 (*1 *2 *1) (-12 (-5 *1 (-738 *2)) (-4 *2 (-755)))) (-3797 (*1 *1 *1) (-12 (-5 *1 (-738 *2)) (-4 *2 (-755)))) (-3934 (*1 *1 *1) (-12 (-5 *1 (-738 *2)) (-4 *2 (-755)))) (-2510 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-738 *3)) (-4 *3 (-755)))) (-3938 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-738 *2)) (-4 *2 (-755)))) (-3937 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-738 *2)) (-4 *2 (-755)))) (-2564 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-738 *3)) (|:| |rm| (-738 *3)))) (-5 *1 (-738 *3)) (-4 *3 (-755)))) (-3831 (*1 *2 *1) (-12 (-5 *2 (-693)) (-5 *1 (-738 *3)) (-4 *3 (-755)))) (-3932 (*1 *2 *1) (-12 (-5 *2 (-582 *3)) (-5 *1 (-738 *3)) (-4 *3 (-755))))) -((-2567 (((-85) $ $) 7 T ELT)) (-3187 (((-85) $) 22 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3980 $) (|:| |associate| $)) $) 55 T ELT)) (-2062 (($ $) 54 T ELT)) (-2060 (((-85) $) 52 T ELT)) (-1310 (((-3 $ "failed") $ $) 26 T ELT)) (-3621 (((-483) $) 69 T ELT)) (-3722 (($) 23 T CONST)) (-3465 (((-3 $ "failed") $) 42 T ELT)) (-3185 (((-85) $) 67 T ELT)) (-1212 (((-85) $ $) 20 T ELT)) (-2409 (((-85) $) 44 T ELT)) (-3186 (((-85) $) 68 T ELT)) (-2530 (($ $ $) 61 T ELT)) (-2856 (($ $ $) 62 T ELT)) (-3241 (((-1071) $) 11 T ELT)) (-3242 (((-1032) $) 12 T ELT)) (-3464 (((-3 $ "failed") $ $) 56 T ELT)) (-3944 (((-771) $) 13 T ELT) (($ (-483)) 41 T ELT) (($ $) 57 T ELT)) (-3125 (((-693)) 40 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-2061 (((-85) $ $) 53 T ELT)) (-3124 (((-85) $ $) 33 T ELT)) (-3381 (($ $) 70 T ELT)) (-2659 (($) 24 T CONST)) (-2665 (($) 45 T CONST)) (-2565 (((-85) $ $) 63 T ELT)) (-2566 (((-85) $ $) 65 T ELT)) (-3055 (((-85) $ $) 8 T ELT)) (-2683 (((-85) $ $) 64 T ELT)) (-2684 (((-85) $ $) 66 T ELT)) (-3835 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3837 (($ $ $) 18 T ELT)) (** (($ $ (-829)) 35 T ELT) (($ $ (-693)) 43 T ELT)) (* (($ (-829) $) 17 T ELT) (($ (-693) $) 21 T ELT) (($ (-483) $) 30 T ELT) (($ $ $) 34 T ELT))) -(((-739) (-113)) (T -739)) -NIL -(-13 (-494) (-754)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-120) . T) ((-554 (-483)) . T) ((-554 $) . T) ((-551 (-771)) . T) ((-146) . T) ((-246) . T) ((-494) . T) ((-13) . T) ((-587 (-483)) . T) ((-587 $) . T) ((-589 $) . T) ((-581 $) . T) ((-653 $) . T) ((-662) . T) ((-713) . T) ((-715) . T) ((-717) . T) ((-720) . T) ((-754) . T) ((-755) . T) ((-758) . T) ((-962 $) . T) ((-967 $) . T) ((-960) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T)) -((-2567 (((-85) $ $) NIL T ELT)) (-3187 (((-85) $) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3722 (($) NIL T CONST)) (-3957 (($ $) NIL T ELT)) (-3465 (((-3 $ #1#) $) NIL T ELT)) (-2511 ((|#1| $) 10 T ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-2512 (($ |#1|) 9 T ELT)) (-2409 (((-85) $) NIL T ELT)) (-2892 (($ |#2| (-693)) NIL T ELT)) (-2819 (((-693) $) NIL T ELT)) (-3173 ((|#2| $) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3756 (($ $) NIL (|has| |#1| (-190)) ELT) (($ $ (-693)) NIL (|has| |#1| (-190)) ELT)) (-3946 (((-693) $) NIL T ELT)) (-3944 (((-771) $) 17 T ELT) (($ (-483)) NIL T ELT) (($ |#2|) NIL (|has| |#2| (-146)) ELT)) (-3675 ((|#2| $ (-693)) NIL T ELT)) (-3125 (((-693)) NIL T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-3124 (((-85) $ $) NIL T ELT)) (-2659 (($) NIL T CONST)) (-2665 (($) NIL T CONST)) (-2668 (($ $) NIL (|has| |#1| (-190)) ELT) (($ $ (-693)) NIL (|has| |#1| (-190)) ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-3835 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3837 (($ $ $) NIL T ELT)) (** (($ $ (-829)) NIL T ELT) (($ $ (-693)) NIL T ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) 12 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT))) -(((-740 |#1| |#2|) (-13 (-644 |#2|) (-10 -8 (IF (|has| |#1| (-190)) (-6 (-190)) |%noBranch|) (-15 -2512 ($ |#1|)) (-15 -2511 (|#1| $)))) (-644 |#2|) (-960)) (T -740)) -((-2512 (*1 *1 *2) (-12 (-4 *3 (-960)) (-5 *1 (-740 *2 *3)) (-4 *2 (-644 *3)))) (-2511 (*1 *2 *1) (-12 (-4 *2 (-644 *3)) (-5 *1 (-740 *2 *3)) (-4 *3 (-960))))) -((-2567 (((-85) $ $) 19 T ELT)) (-3233 (($ |#1| $) 81 T ELT) (($ $ |#1|) 80 T ELT) (($ $ $) 79 T ELT)) (-3235 (($ $ $) 77 T ELT)) (-3234 (((-85) $ $) 78 T ELT)) (-3238 (($ (-582 |#1|)) 73 T ELT) (($) 72 T ELT)) (-1568 (($ (-1 (-85) |#1|) $) 49 (|has| $ (-6 -3993)) ELT)) (-3708 (($ (-1 (-85) |#1|) $) 59 (|has| $ (-6 -3993)) ELT)) (-3722 (($) 7 T CONST)) (-2367 (($ $) 66 T ELT)) (-1351 (($ $) 62 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3993))) ELT)) (-3403 (($ |#1| $) 51 (|has| $ (-6 -3993)) ELT) (($ (-1 (-85) |#1|) $) 50 (|has| $ (-6 -3993)) ELT)) (-3404 (($ |#1| $) 61 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3993))) ELT) (($ (-1 (-85) |#1|) $) 58 (|has| $ (-6 -3993)) ELT)) (-3840 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3993))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -3993)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -3993)) ELT)) (-2888 (((-582 |#1|) $) 30 (|has| $ (-6 -3993)) ELT)) (-3240 (((-85) $ $) 69 T ELT)) (-2530 ((|#1| $) 83 T ELT)) (-2855 (($ $ $) 86 T ELT)) (-3516 (($ $ $) 85 T ELT)) (-2607 (((-582 |#1|) $) 29 (|has| $ (-6 -3993)) ELT)) (-3244 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3993))) ELT)) (-2856 ((|#1| $) 84 T ELT)) (-1947 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3994)) ELT)) (-3956 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3241 (((-1071) $) 22 T ELT)) (-3237 (($ $ $) 74 T ELT)) (-1272 ((|#1| $) 43 T ELT)) (-3607 (($ |#1| $) 44 T ELT) (($ |#1| $ (-693)) 67 T ELT)) (-3242 (((-1032) $) 21 T ELT)) (-1352 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 55 T ELT)) (-1273 ((|#1| $) 45 T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3993)) ELT)) (-3766 (($ $ (-582 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-582 |#1|) (-582 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT)) (-1220 (((-85) $ $) 11 T ELT)) (-3401 (((-85) $) 8 T ELT)) (-3563 (($) 9 T ELT)) (-2366 (((-582 (-2 (|:| |entry| |#1|) (|:| -1944 (-693)))) $) 65 T ELT)) (-3236 (($ $ |#1|) 76 T ELT) (($ $ $) 75 T ELT)) (-1464 (($) 53 T ELT) (($ (-582 |#1|)) 52 T ELT)) (-1944 (((-693) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3993)) ELT) (((-693) |#1| $) 28 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3993))) ELT)) (-3398 (($ $) 10 T ELT)) (-3970 (((-472) $) 63 (|has| |#1| (-552 (-472))) ELT)) (-3528 (($ (-582 |#1|)) 54 T ELT)) (-3944 (((-771) $) 17 T ELT)) (-3239 (($ (-582 |#1|)) 71 T ELT) (($) 70 T ELT)) (-1263 (((-85) $ $) 20 T ELT)) (-1274 (($ (-582 |#1|)) 46 T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3993)) ELT)) (-3055 (((-85) $ $) 18 T ELT)) (-3955 (((-693) $) 6 (|has| $ (-6 -3993)) ELT))) -(((-741 |#1|) (-113) (-755)) (T -741)) -((-2530 (*1 *2 *1) (-12 (-4 *1 (-741 *2)) (-4 *2 (-755))))) -(-13 (-675 |t#1|) (-880 |t#1|) (-10 -8 (-15 -2530 (|t#1| $)))) -(((-34) . T) ((-76 |#1|) . T) ((-72) . T) ((-551 (-771)) . T) ((-124 |#1|) . T) ((-552 (-472)) |has| |#1| (-552 (-472))) ((-193 |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ((-427 |#1|) . T) ((-454 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ((-13) . T) ((-633 |#1|) . T) ((-675 |#1|) . T) ((-880 |#1|) . T) ((-1010 |#1|) . T) ((-1012) . T) ((-1127) . T)) -((-2567 (((-85) $ $) NIL T ELT)) (-3187 (((-85) $) NIL (|has| |#1| (-21)) ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-21)) ELT)) (-3621 (((-483) $) NIL (|has| |#1| (-754)) ELT)) (-3722 (($) NIL (|has| |#1| (-21)) CONST)) (-3156 (((-3 (-483) #1#) $) NIL (|has| |#1| (-949 (-483))) ELT) (((-3 (-348 (-483)) #1#) $) NIL (|has| |#1| (-949 (-348 (-483)))) ELT) (((-3 |#1| #1#) $) 15 T ELT)) (-3155 (((-483) $) NIL (|has| |#1| (-949 (-483))) ELT) (((-348 (-483)) $) NIL (|has| |#1| (-949 (-348 (-483)))) ELT) ((|#1| $) 9 T ELT)) (-3465 (((-3 $ #1#) $) 42 (|has| |#1| (-754)) ELT)) (-3023 (((-3 (-348 (-483)) #1#) $) 51 (|has| |#1| (-482)) ELT)) (-3022 (((-85) $) 46 (|has| |#1| (-482)) ELT)) (-3021 (((-348 (-483)) $) 48 (|has| |#1| (-482)) ELT)) (-3185 (((-85) $) NIL (|has| |#1| (-754)) ELT)) (-1212 (((-85) $ $) NIL (|has| |#1| (-21)) ELT)) (-2409 (((-85) $) NIL (|has| |#1| (-754)) ELT)) (-3186 (((-85) $) NIL (|has| |#1| (-754)) ELT)) (-2530 (($ $ $) NIL (|has| |#1| (-754)) ELT)) (-2856 (($ $ $) NIL (|has| |#1| (-754)) ELT)) (-3241 (((-1071) $) NIL T ELT)) (-2513 (($) 13 T ELT)) (-2523 (((-85) $) 12 T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-2524 (((-85) $) 11 T ELT)) (-3944 (((-771) $) 18 T ELT) (($ (-348 (-483))) NIL (|has| |#1| (-949 (-348 (-483)))) ELT) (($ |#1|) 8 T ELT) (($ (-483)) NIL (OR (|has| |#1| (-754)) (|has| |#1| (-949 (-483)))) ELT)) (-3125 (((-693)) 36 (|has| |#1| (-754)) CONST)) (-1263 (((-85) $ $) 53 T ELT)) (-3124 (((-85) $ $) NIL (|has| |#1| (-754)) ELT)) (-3381 (($ $) NIL (|has| |#1| (-754)) ELT)) (-2659 (($) 23 (|has| |#1| (-21)) CONST)) (-2665 (($) 33 (|has| |#1| (-754)) CONST)) (-2565 (((-85) $ $) NIL (|has| |#1| (-754)) ELT)) (-2566 (((-85) $ $) NIL (|has| |#1| (-754)) ELT)) (-3055 (((-85) $ $) 21 T ELT)) (-2683 (((-85) $ $) NIL (|has| |#1| (-754)) ELT)) (-2684 (((-85) $ $) 45 (|has| |#1| (-754)) ELT)) (-3835 (($ $ $) NIL (|has| |#1| (-21)) ELT) (($ $) 29 (|has| |#1| (-21)) ELT)) (-3837 (($ $ $) 31 (|has| |#1| (-21)) ELT)) (** (($ $ (-829)) NIL (|has| |#1| (-754)) ELT) (($ $ (-693)) NIL (|has| |#1| (-754)) ELT)) (* (($ $ $) 39 (|has| |#1| (-754)) ELT) (($ (-483) $) 27 (|has| |#1| (-21)) ELT) (($ (-693) $) NIL (|has| |#1| (-21)) ELT) (($ (-829) $) NIL (|has| |#1| (-21)) ELT))) -(((-742 |#1|) (-13 (-1012) (-353 |#1|) (-10 -8 (-15 -2513 ($)) (-15 -2524 ((-85) $)) (-15 -2523 ((-85) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-754)) (-6 (-754)) |%noBranch|) (IF (|has| |#1| (-482)) (PROGN (-15 -3022 ((-85) $)) (-15 -3021 ((-348 (-483)) $)) (-15 -3023 ((-3 (-348 (-483)) "failed") $))) |%noBranch|))) (-1012)) (T -742)) -((-2513 (*1 *1) (-12 (-5 *1 (-742 *2)) (-4 *2 (-1012)))) (-2524 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-742 *3)) (-4 *3 (-1012)))) (-2523 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-742 *3)) (-4 *3 (-1012)))) (-3022 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-742 *3)) (-4 *3 (-482)) (-4 *3 (-1012)))) (-3021 (*1 *2 *1) (-12 (-5 *2 (-348 (-483))) (-5 *1 (-742 *3)) (-4 *3 (-482)) (-4 *3 (-1012)))) (-3023 (*1 *2 *1) (|partial| -12 (-5 *2 (-348 (-483))) (-5 *1 (-742 *3)) (-4 *3 (-482)) (-4 *3 (-1012))))) -((-3956 (((-742 |#2|) (-1 |#2| |#1|) (-742 |#1|) (-742 |#2|)) 12 T ELT) (((-742 |#2|) (-1 |#2| |#1|) (-742 |#1|)) 13 T ELT))) -(((-743 |#1| |#2|) (-10 -7 (-15 -3956 ((-742 |#2|) (-1 |#2| |#1|) (-742 |#1|))) (-15 -3956 ((-742 |#2|) (-1 |#2| |#1|) (-742 |#1|) (-742 |#2|)))) (-1012) (-1012)) (T -743)) -((-3956 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-742 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-742 *5)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-5 *1 (-743 *5 *6)))) (-3956 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-742 *5)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-5 *2 (-742 *6)) (-5 *1 (-743 *5 *6))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3187 (((-85) $) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3722 (($) NIL T CONST)) (-3156 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-86) #1#) $) NIL T ELT)) (-3155 ((|#1| $) NIL T ELT) (((-86) $) NIL T ELT)) (-3465 (((-3 $ #1#) $) NIL T ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-2515 ((|#1| (-86) |#1|) NIL T ELT)) (-2409 (((-85) $) NIL T ELT)) (-2514 (($ |#1| (-310 (-86))) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-2516 (($ $ (-1 |#1| |#1|)) NIL T ELT)) (-2517 (($ $ (-1 |#1| |#1|)) NIL T ELT)) (-3798 ((|#1| $ |#1|) NIL T ELT)) (-2518 ((|#1| |#1|) NIL (|has| |#1| (-146)) ELT)) (-3944 (((-771) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-86)) NIL T ELT)) (-2701 (((-631 $) $) NIL (|has| |#1| (-118)) ELT)) (-3125 (((-693)) NIL T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-3124 (((-85) $ $) NIL T ELT)) (-2519 (($ $) NIL (|has| |#1| (-146)) ELT) (($ $ $) NIL (|has| |#1| (-146)) ELT)) (-2659 (($) NIL T CONST)) (-2665 (($) NIL T CONST)) (-3055 (((-85) $ $) NIL T ELT)) (-3835 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3837 (($ $ $) NIL T ELT)) (** (($ $ (-829)) NIL T ELT) (($ $ (-693)) NIL T ELT) (($ (-86) (-483)) NIL T ELT) (($ $ (-483)) NIL T ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ |#1| $) NIL (|has| |#1| (-146)) ELT) (($ $ |#1|) NIL (|has| |#1| (-146)) ELT))) -(((-744 |#1|) (-13 (-960) (-949 |#1|) (-949 (-86)) (-241 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |#1| (-146)) (PROGN (-6 (-38 |#1|)) (-15 -2519 ($ $)) (-15 -2519 ($ $ $)) (-15 -2518 (|#1| |#1|))) |%noBranch|) (-15 -2517 ($ $ (-1 |#1| |#1|))) (-15 -2516 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-86) (-483))) (-15 ** ($ $ (-483))) (-15 -2515 (|#1| (-86) |#1|)) (-15 -2514 ($ |#1| (-310 (-86)))))) (-960)) (T -744)) -((-2519 (*1 *1 *1) (-12 (-5 *1 (-744 *2)) (-4 *2 (-146)) (-4 *2 (-960)))) (-2519 (*1 *1 *1 *1) (-12 (-5 *1 (-744 *2)) (-4 *2 (-146)) (-4 *2 (-960)))) (-2518 (*1 *2 *2) (-12 (-5 *1 (-744 *2)) (-4 *2 (-146)) (-4 *2 (-960)))) (-2517 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-960)) (-5 *1 (-744 *3)))) (-2516 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-960)) (-5 *1 (-744 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-483)) (-5 *1 (-744 *4)) (-4 *4 (-960)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-744 *3)) (-4 *3 (-960)))) (-2515 (*1 *2 *3 *2) (-12 (-5 *3 (-86)) (-5 *1 (-744 *2)) (-4 *2 (-960)))) (-2514 (*1 *1 *2 *3) (-12 (-5 *3 (-310 (-86))) (-5 *1 (-744 *2)) (-4 *2 (-960))))) -((-2632 (((-85) $ |#2|) 14 T ELT)) (-3944 (((-771) $) 11 T ELT))) -(((-745 |#1| |#2|) (-10 -7 (-15 -2632 ((-85) |#1| |#2|)) (-15 -3944 ((-771) |#1|))) (-746 |#2|) (-1012)) (T -745)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-3540 ((|#1| $) 19 T ELT)) (-3241 (((-1071) $) 11 T ELT)) (-2632 (((-85) $ |#1|) 17 T ELT)) (-3242 (((-1032) $) 12 T ELT)) (-3944 (((-771) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2520 (((-55) $) 18 T ELT)) (-3055 (((-85) $ $) 8 T ELT))) -(((-746 |#1|) (-113) (-1012)) (T -746)) -((-3540 (*1 *2 *1) (-12 (-4 *1 (-746 *2)) (-4 *2 (-1012)))) (-2520 (*1 *2 *1) (-12 (-4 *1 (-746 *3)) (-4 *3 (-1012)) (-5 *2 (-55)))) (-2632 (*1 *2 *1 *3) (-12 (-4 *1 (-746 *3)) (-4 *3 (-1012)) (-5 *2 (-85))))) -(-13 (-1012) (-10 -8 (-15 -3540 (|t#1| $)) (-15 -2520 ((-55) $)) (-15 -2632 ((-85) $ |t#1|)))) -(((-72) . T) ((-551 (-771)) . T) ((-13) . T) ((-1012) . T) ((-1127) . T)) -((-2521 (((-167 (-440)) (-1071)) 9 T ELT))) -(((-747) (-10 -7 (-15 -2521 ((-167 (-440)) (-1071))))) (T -747)) -((-2521 (*1 *2 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-167 (-440))) (-5 *1 (-747))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3318 (((-1027) $) 10 T ELT)) (-3540 (((-445) $) 9 T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-2632 (((-85) $ (-445)) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3528 (($ (-445) (-1027)) 8 T ELT)) (-3944 (((-771) $) 25 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2520 (((-55) $) 20 T ELT)) (-3055 (((-85) $ $) 12 T ELT))) -(((-748) (-13 (-746 (-445)) (-10 -8 (-15 -3318 ((-1027) $)) (-15 -3528 ($ (-445) (-1027)))))) (T -748)) -((-3318 (*1 *2 *1) (-12 (-5 *2 (-1027)) (-5 *1 (-748)))) (-3528 (*1 *1 *2 *3) (-12 (-5 *2 (-445)) (-5 *3 (-1027)) (-5 *1 (-748))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3187 (((-85) $) NIL (|has| |#1| (-21)) ELT)) (-2522 (((-1032) $) 31 T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-21)) ELT)) (-3621 (((-483) $) NIL (|has| |#1| (-754)) ELT)) (-3722 (($) NIL (|has| |#1| (-21)) CONST)) (-3156 (((-3 (-483) #1#) $) NIL (|has| |#1| (-949 (-483))) ELT) (((-3 (-348 (-483)) #1#) $) NIL (|has| |#1| (-949 (-348 (-483)))) ELT) (((-3 |#1| #1#) $) 18 T ELT)) (-3155 (((-483) $) NIL (|has| |#1| (-949 (-483))) ELT) (((-348 (-483)) $) NIL (|has| |#1| (-949 (-348 (-483)))) ELT) ((|#1| $) 9 T ELT)) (-3465 (((-3 $ #1#) $) 57 (|has| |#1| (-754)) ELT)) (-3023 (((-3 (-348 (-483)) #1#) $) 65 (|has| |#1| (-482)) ELT)) (-3022 (((-85) $) 60 (|has| |#1| (-482)) ELT)) (-3021 (((-348 (-483)) $) 63 (|has| |#1| (-482)) ELT)) (-3185 (((-85) $) NIL (|has| |#1| (-754)) ELT)) (-2526 (($) 14 T ELT)) (-1212 (((-85) $ $) NIL (|has| |#1| (-21)) ELT)) (-2409 (((-85) $) NIL (|has| |#1| (-754)) ELT)) (-3186 (((-85) $) NIL (|has| |#1| (-754)) ELT)) (-2525 (($) 16 T ELT)) (-2530 (($ $ $) NIL (|has| |#1| (-754)) ELT)) (-2856 (($ $ $) NIL (|has| |#1| (-754)) ELT)) (-3241 (((-1071) $) NIL T ELT)) (-2523 (((-85) $) 12 T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-2524 (((-85) $) 11 T ELT)) (-3944 (((-771) $) 24 T ELT) (($ (-348 (-483))) NIL (|has| |#1| (-949 (-348 (-483)))) ELT) (($ |#1|) 8 T ELT) (($ (-483)) NIL (OR (|has| |#1| (-754)) (|has| |#1| (-949 (-483)))) ELT)) (-3125 (((-693)) 50 (|has| |#1| (-754)) CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-3124 (((-85) $ $) NIL (|has| |#1| (-754)) ELT)) (-3381 (($ $) NIL (|has| |#1| (-754)) ELT)) (-2659 (($) 37 (|has| |#1| (-21)) CONST)) (-2665 (($) 47 (|has| |#1| (-754)) CONST)) (-2565 (((-85) $ $) NIL (|has| |#1| (-754)) ELT)) (-2566 (((-85) $ $) NIL (|has| |#1| (-754)) ELT)) (-3055 (((-85) $ $) 35 T ELT)) (-2683 (((-85) $ $) NIL (|has| |#1| (-754)) ELT)) (-2684 (((-85) $ $) 59 (|has| |#1| (-754)) ELT)) (-3835 (($ $ $) NIL (|has| |#1| (-21)) ELT) (($ $) 43 (|has| |#1| (-21)) ELT)) (-3837 (($ $ $) 45 (|has| |#1| (-21)) ELT)) (** (($ $ (-829)) NIL (|has| |#1| (-754)) ELT) (($ $ (-693)) NIL (|has| |#1| (-754)) ELT)) (* (($ $ $) 54 (|has| |#1| (-754)) ELT) (($ (-483) $) 41 (|has| |#1| (-21)) ELT) (($ (-693) $) NIL (|has| |#1| (-21)) ELT) (($ (-829) $) NIL (|has| |#1| (-21)) ELT))) -(((-749 |#1|) (-13 (-1012) (-353 |#1|) (-10 -8 (-15 -2526 ($)) (-15 -2525 ($)) (-15 -2524 ((-85) $)) (-15 -2523 ((-85) $)) (-15 -2522 ((-1032) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-754)) (-6 (-754)) |%noBranch|) (IF (|has| |#1| (-482)) (PROGN (-15 -3022 ((-85) $)) (-15 -3021 ((-348 (-483)) $)) (-15 -3023 ((-3 (-348 (-483)) "failed") $))) |%noBranch|))) (-1012)) (T -749)) -((-2526 (*1 *1) (-12 (-5 *1 (-749 *2)) (-4 *2 (-1012)))) (-2525 (*1 *1) (-12 (-5 *1 (-749 *2)) (-4 *2 (-1012)))) (-2524 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-749 *3)) (-4 *3 (-1012)))) (-2523 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-749 *3)) (-4 *3 (-1012)))) (-2522 (*1 *2 *1) (-12 (-5 *2 (-1032)) (-5 *1 (-749 *3)) (-4 *3 (-1012)))) (-3022 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-749 *3)) (-4 *3 (-482)) (-4 *3 (-1012)))) (-3021 (*1 *2 *1) (-12 (-5 *2 (-348 (-483))) (-5 *1 (-749 *3)) (-4 *3 (-482)) (-4 *3 (-1012)))) (-3023 (*1 *2 *1) (|partial| -12 (-5 *2 (-348 (-483))) (-5 *1 (-749 *3)) (-4 *3 (-482)) (-4 *3 (-1012))))) -((-3956 (((-749 |#2|) (-1 |#2| |#1|) (-749 |#1|) (-749 |#2|) (-749 |#2|)) 13 T ELT) (((-749 |#2|) (-1 |#2| |#1|) (-749 |#1|)) 14 T ELT))) -(((-750 |#1| |#2|) (-10 -7 (-15 -3956 ((-749 |#2|) (-1 |#2| |#1|) (-749 |#1|))) (-15 -3956 ((-749 |#2|) (-1 |#2| |#1|) (-749 |#1|) (-749 |#2|) (-749 |#2|)))) (-1012) (-1012)) (T -750)) -((-3956 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-749 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-749 *5)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-5 *1 (-750 *5 *6)))) (-3956 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-749 *5)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-5 *2 (-749 *6)) (-5 *1 (-750 *5 *6))))) -((-2567 (((-85) $ $) 7 T ELT)) (-3135 (((-693)) 27 T ELT)) (-2993 (($) 30 T ELT)) (-2530 (($ $ $) 23 T ELT) (($) 26 T CONST)) (-2856 (($ $ $) 22 T ELT) (($) 25 T CONST)) (-2009 (((-829) $) 29 T ELT)) (-3241 (((-1071) $) 11 T ELT)) (-2399 (($ (-829)) 28 T ELT)) (-3242 (((-1032) $) 12 T ELT)) (-3944 (((-771) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2565 (((-85) $ $) 21 T ELT)) (-2566 (((-85) $ $) 19 T ELT)) (-3055 (((-85) $ $) 8 T ELT)) (-2683 (((-85) $ $) 20 T ELT)) (-2684 (((-85) $ $) 18 T ELT))) -(((-751) (-113)) (T -751)) -((-2530 (*1 *1) (-4 *1 (-751))) (-2856 (*1 *1) (-4 *1 (-751)))) -(-13 (-755) (-318) (-10 -8 (-15 -2530 ($) -3950) (-15 -2856 ($) -3950))) -(((-72) . T) ((-551 (-771)) . T) ((-318) . T) ((-13) . T) ((-755) . T) ((-758) . T) ((-1012) . T) ((-1127) . T)) -((-2528 (((-85) (-1177 |#2|) (-1177 |#2|)) 19 T ELT)) (-2529 (((-85) (-1177 |#2|) (-1177 |#2|)) 20 T ELT)) (-2527 (((-85) (-1177 |#2|) (-1177 |#2|)) 16 T ELT))) -(((-752 |#1| |#2|) (-10 -7 (-15 -2527 ((-85) (-1177 |#2|) (-1177 |#2|))) (-15 -2528 ((-85) (-1177 |#2|) (-1177 |#2|))) (-15 -2529 ((-85) (-1177 |#2|) (-1177 |#2|)))) (-693) (-715)) (T -752)) -((-2529 (*1 *2 *3 *3) (-12 (-5 *3 (-1177 *5)) (-4 *5 (-715)) (-5 *2 (-85)) (-5 *1 (-752 *4 *5)) (-14 *4 (-693)))) (-2528 (*1 *2 *3 *3) (-12 (-5 *3 (-1177 *5)) (-4 *5 (-715)) (-5 *2 (-85)) (-5 *1 (-752 *4 *5)) (-14 *4 (-693)))) (-2527 (*1 *2 *3 *3) (-12 (-5 *3 (-1177 *5)) (-4 *5 (-715)) (-5 *2 (-85)) (-5 *1 (-752 *4 *5)) (-14 *4 (-693))))) -((-2567 (((-85) $ $) 7 T ELT)) (-3722 (($) 29 T CONST)) (-3465 (((-3 $ "failed") $) 32 T ELT)) (-2409 (((-85) $) 30 T ELT)) (-2530 (($ $ $) 23 T ELT)) (-2856 (($ $ $) 22 T ELT)) (-3241 (((-1071) $) 11 T ELT)) (-3242 (((-1032) $) 12 T ELT)) (-3944 (((-771) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2665 (($) 28 T CONST)) (-2565 (((-85) $ $) 21 T ELT)) (-2566 (((-85) $ $) 19 T ELT)) (-3055 (((-85) $ $) 8 T ELT)) (-2683 (((-85) $ $) 20 T ELT)) (-2684 (((-85) $ $) 18 T ELT)) (** (($ $ (-829)) 26 T ELT) (($ $ (-693)) 31 T ELT)) (* (($ $ $) 25 T ELT))) -(((-753) (-113)) (T -753)) -NIL -(-13 (-765) (-662)) -(((-72) . T) ((-551 (-771)) . T) ((-13) . T) ((-662) . T) ((-765) . T) ((-755) . T) ((-758) . T) ((-1024) . T) ((-1012) . T) ((-1127) . T)) -((-2567 (((-85) $ $) 7 T ELT)) (-3187 (((-85) $) 31 T ELT)) (-1310 (((-3 $ "failed") $ $) 35 T ELT)) (-3621 (((-483) $) 38 T ELT)) (-3722 (($) 30 T CONST)) (-3465 (((-3 $ "failed") $) 55 T ELT)) (-3185 (((-85) $) 28 T ELT)) (-1212 (((-85) $ $) 33 T ELT)) (-2409 (((-85) $) 53 T ELT)) (-3186 (((-85) $) 39 T ELT)) (-2530 (($ $ $) 23 T ELT)) (-2856 (($ $ $) 22 T ELT)) (-3241 (((-1071) $) 11 T ELT)) (-3242 (((-1032) $) 12 T ELT)) (-3944 (((-771) $) 13 T ELT) (($ (-483)) 56 T ELT)) (-3125 (((-693)) 57 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-3124 (((-85) $ $) 51 T ELT)) (-3381 (($ $) 37 T ELT)) (-2659 (($) 29 T CONST)) (-2665 (($) 52 T CONST)) (-2565 (((-85) $ $) 21 T ELT)) (-2566 (((-85) $ $) 19 T ELT)) (-3055 (((-85) $ $) 8 T ELT)) (-2683 (((-85) $ $) 20 T ELT)) (-2684 (((-85) $ $) 18 T ELT)) (-3835 (($ $ $) 42 T ELT) (($ $) 41 T ELT)) (-3837 (($ $ $) 25 T ELT)) (** (($ $ (-693)) 54 T ELT) (($ $ (-829)) 49 T ELT)) (* (($ (-829) $) 26 T ELT) (($ (-693) $) 32 T ELT) (($ (-483) $) 40 T ELT) (($ $ $) 50 T ELT))) +((-2483 (*1 *1 *1 *1) (-4 *1 (-717)))) +(-13 (-721) (-10 -8 (-15 -2483 ($ $ $)))) +(((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-552 (-772)) . T) ((-13) . T) ((-716) . T) ((-718) . T) ((-721) . T) ((-756) . T) ((-759) . T) ((-1013) . T) ((-1128) . T)) +((-2568 (((-85) $ $) 7 T ELT)) (-2531 (($ $ $) 23 T ELT)) (-2857 (($ $ $) 22 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3945 (((-772) $) 13 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-2566 (((-85) $ $) 21 T ELT)) (-2567 (((-85) $ $) 19 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-2684 (((-85) $ $) 20 T ELT)) (-2685 (((-85) $ $) 18 T ELT)) (-3838 (($ $ $) 25 T ELT)) (* (($ (-830) $) 26 T ELT))) +(((-718) (-113)) (T -718)) +NIL +(-13 (-756) (-25)) +(((-25) . T) ((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-756) . T) ((-759) . T) ((-1013) . T) ((-1128) . T)) +((-3188 (((-85) $) 42 T ELT)) (-3157 (((-3 (-484) #1="failed") $) NIL T ELT) (((-3 (-349 (-484)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 45 T ELT)) (-3156 (((-484) $) NIL T ELT) (((-349 (-484)) $) NIL T ELT) ((|#2| $) 43 T ELT)) (-3024 (((-3 (-349 (-484)) #1#) $) 78 T ELT)) (-3023 (((-85) $) 72 T ELT)) (-3022 (((-349 (-484)) $) 76 T ELT)) (-3132 ((|#2| $) 26 T ELT)) (-3957 (($ (-1 |#2| |#2|) $) 23 T ELT)) (-2484 (($ $) 58 T ELT)) (-3971 (((-473) $) 67 T ELT)) (-3009 (($ $) 21 T ELT)) (-3945 (((-772) $) 53 T ELT) (($ (-484)) 40 T ELT) (($ |#2|) 38 T ELT) (($ (-349 (-484))) NIL T ELT)) (-3126 (((-694)) 10 T CONST)) (-3382 ((|#2| $) 71 T ELT)) (-3056 (((-85) $ $) 30 T ELT)) (-2685 (((-85) $ $) 69 T ELT)) (-3836 (($ $) 32 T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) 31 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 36 T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 33 T ELT))) +(((-719 |#1| |#2|) (-10 -7 (-15 -2685 ((-85) |#1| |#1|)) (-15 -3971 ((-473) |#1|)) (-15 -2484 (|#1| |#1|)) (-15 -3024 ((-3 (-349 (-484)) #1="failed") |#1|)) (-15 -3022 ((-349 (-484)) |#1|)) (-15 -3023 ((-85) |#1|)) (-15 -3382 (|#2| |#1|)) (-15 -3132 (|#2| |#1|)) (-15 -3009 (|#1| |#1|)) (-15 -3957 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3157 ((-3 |#2| #1#) |#1|)) (-15 -3156 (|#2| |#1|)) (-15 -3156 ((-349 (-484)) |#1|)) (-15 -3157 ((-3 (-349 (-484)) #1#) |#1|)) (-15 -3945 (|#1| (-349 (-484)))) (-15 -3156 ((-484) |#1|)) (-15 -3157 ((-3 (-484) #1#) |#1|)) (-15 -3945 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3126 ((-694)) -3951) (-15 -3945 (|#1| (-484))) (-15 * (|#1| |#1| |#1|)) (-15 -3836 (|#1| |#1| |#1|)) (-15 -3836 (|#1| |#1|)) (-15 * (|#1| (-484) |#1|)) (-15 * (|#1| (-694) |#1|)) (-15 -3188 ((-85) |#1|)) (-15 * (|#1| (-830) |#1|)) (-15 -3838 (|#1| |#1| |#1|)) (-15 -3945 ((-772) |#1|)) (-15 -3056 ((-85) |#1| |#1|))) (-720 |#2|) (-146)) (T -719)) +((-3126 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-694)) (-5 *1 (-719 *3 *4)) (-4 *3 (-720 *4))))) +((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3136 (((-694)) 67 (|has| |#1| (-319)) ELT)) (-3723 (($) 23 T CONST)) (-3157 (((-3 (-484) #1="failed") $) 109 (|has| |#1| (-950 (-484))) ELT) (((-3 (-349 (-484)) #1#) $) 106 (|has| |#1| (-950 (-349 (-484)))) ELT) (((-3 |#1| #1#) $) 103 T ELT)) (-3156 (((-484) $) 108 (|has| |#1| (-950 (-484))) ELT) (((-349 (-484)) $) 105 (|has| |#1| (-950 (-349 (-484)))) ELT) ((|#1| $) 104 T ELT)) (-3466 (((-3 $ "failed") $) 42 T ELT)) (-3642 ((|#1| $) 93 T ELT)) (-3024 (((-3 (-349 (-484)) "failed") $) 80 (|has| |#1| (-483)) ELT)) (-3023 (((-85) $) 82 (|has| |#1| (-483)) ELT)) (-3022 (((-349 (-484)) $) 81 (|has| |#1| (-483)) ELT)) (-2994 (($) 70 (|has| |#1| (-319)) ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-2489 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 84 T ELT)) (-3132 ((|#1| $) 85 T ELT)) (-2531 (($ $ $) 71 (|has| |#1| (-756)) ELT)) (-2857 (($ $ $) 72 (|has| |#1| (-756)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) 95 T ELT)) (-2010 (((-830) $) 69 (|has| |#1| (-319)) ELT)) (-3242 (((-1072) $) 11 T ELT)) (-2484 (($ $) 79 (|has| |#1| (-312)) ELT)) (-2400 (($ (-830)) 68 (|has| |#1| (-319)) ELT)) (-2486 ((|#1| $) 90 T ELT)) (-2487 ((|#1| $) 91 T ELT)) (-2488 ((|#1| $) 92 T ELT)) (-3006 ((|#1| $) 86 T ELT)) (-3007 ((|#1| $) 87 T ELT)) (-3008 ((|#1| $) 88 T ELT)) (-2485 ((|#1| $) 89 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3767 (($ $ (-583 |#1|) (-583 |#1|)) 101 (|has| |#1| (-260 |#1|)) ELT) (($ $ |#1| |#1|) 100 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-249 |#1|)) 99 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-583 (-249 |#1|))) 98 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-583 (-1089)) (-583 |#1|)) 97 (|has| |#1| (-455 (-1089) |#1|)) ELT) (($ $ (-1089) |#1|) 96 (|has| |#1| (-455 (-1089) |#1|)) ELT)) (-3799 (($ $ |#1|) 102 (|has| |#1| (-241 |#1| |#1|)) ELT)) (-3971 (((-473) $) 77 (|has| |#1| (-553 (-473))) ELT)) (-3009 (($ $) 94 T ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ |#1|) 52 T ELT) (($ (-349 (-484))) 107 (|has| |#1| (-950 (-349 (-484)))) ELT)) (-2702 (((-632 $) $) 78 (|has| |#1| (-118)) ELT)) (-3126 (((-694)) 40 T CONST)) (-1264 (((-85) $ $) 6 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-3382 ((|#1| $) 83 (|has| |#1| (-973)) ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-2566 (((-85) $ $) 73 (|has| |#1| (-756)) ELT)) (-2567 (((-85) $ $) 75 (|has| |#1| (-756)) ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-2684 (((-85) $ $) 74 (|has| |#1| (-756)) ELT)) (-2685 (((-85) $ $) 76 (|has| |#1| (-756)) ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 54 T ELT) (($ |#1| $) 53 T ELT))) +(((-720 |#1|) (-113) (-146)) (T -720)) +((-3009 (*1 *1 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146)))) (-3642 (*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146)))) (-2488 (*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146)))) (-2487 (*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146)))) (-2486 (*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146)))) (-2485 (*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146)))) (-3008 (*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146)))) (-3007 (*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146)))) (-3006 (*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146)))) (-3132 (*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146)))) (-2489 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146)))) (-3382 (*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146)) (-4 *2 (-973)))) (-3023 (*1 *2 *1) (-12 (-4 *1 (-720 *3)) (-4 *3 (-146)) (-4 *3 (-483)) (-5 *2 (-85)))) (-3022 (*1 *2 *1) (-12 (-4 *1 (-720 *3)) (-4 *3 (-146)) (-4 *3 (-483)) (-5 *2 (-349 (-484))))) (-3024 (*1 *2 *1) (|partial| -12 (-4 *1 (-720 *3)) (-4 *3 (-146)) (-4 *3 (-483)) (-5 *2 (-349 (-484))))) (-2484 (*1 *1 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146)) (-4 *2 (-312))))) +(-13 (-38 |t#1|) (-354 |t#1|) (-288 |t#1|) (-10 -8 (-15 -3009 ($ $)) (-15 -3642 (|t#1| $)) (-15 -2488 (|t#1| $)) (-15 -2487 (|t#1| $)) (-15 -2486 (|t#1| $)) (-15 -2485 (|t#1| $)) (-15 -3008 (|t#1| $)) (-15 -3007 (|t#1| $)) (-15 -3006 (|t#1| $)) (-15 -3132 (|t#1| $)) (-15 -2489 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-319)) (-6 (-319)) |%noBranch|) (IF (|has| |t#1| (-756)) (-6 (-756)) |%noBranch|) (IF (|has| |t#1| (-553 (-473))) (-6 (-553 (-473))) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-973)) (-15 -3382 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-483)) (PROGN (-15 -3023 ((-85) $)) (-15 -3022 ((-349 (-484)) $)) (-15 -3024 ((-3 (-349 (-484)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-312)) (-15 -2484 ($ $)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-555 (-349 (-484))) |has| |#1| (-950 (-349 (-484)))) ((-555 (-484)) . T) ((-555 |#1|) . T) ((-552 (-772)) . T) ((-553 (-473)) |has| |#1| (-553 (-473))) ((-241 |#1| $) |has| |#1| (-241 |#1| |#1|)) ((-260 |#1|) |has| |#1| (-260 |#1|)) ((-319) |has| |#1| (-319)) ((-288 |#1|) . T) ((-354 |#1|) . T) ((-455 (-1089) |#1|) |has| |#1| (-455 (-1089) |#1|)) ((-455 |#1| |#1|) |has| |#1| (-260 |#1|)) ((-13) . T) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-582 |#1|) . T) ((-654 |#1|) . T) ((-663) . T) ((-756) |has| |#1| (-756)) ((-759) |has| |#1| (-756)) ((-950 (-349 (-484))) |has| |#1| (-950 (-349 (-484)))) ((-950 (-484)) |has| |#1| (-950 (-484))) ((-950 |#1|) . T) ((-963 |#1|) . T) ((-968 |#1|) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T)) +((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 31 T ELT)) (-1311 (((-3 $ "failed") $ $) 35 T ELT)) (-3723 (($) 30 T CONST)) (-3186 (((-85) $) 28 T ELT)) (-1213 (((-85) $ $) 33 T ELT)) (-2531 (($ $ $) 23 T ELT)) (-2857 (($ $ $) 22 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3945 (((-772) $) 13 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-2660 (($) 29 T CONST)) (-2566 (((-85) $ $) 21 T ELT)) (-2567 (((-85) $ $) 19 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-2684 (((-85) $ $) 20 T ELT)) (-2685 (((-85) $ $) 18 T ELT)) (-3838 (($ $ $) 25 T ELT)) (* (($ (-830) $) 26 T ELT) (($ (-694) $) 32 T ELT))) +(((-721) (-113)) (T -721)) +NIL +(-13 (-716) (-104)) +(((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-552 (-772)) . T) ((-13) . T) ((-716) . T) ((-718) . T) ((-756) . T) ((-759) . T) ((-1013) . T) ((-1128) . T)) +((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3136 (((-694)) NIL (|has| |#1| (-319)) ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-909 |#1|) #1#) $) 35 T ELT) (((-3 (-484) #1#) $) NIL (OR (|has| (-909 |#1|) (-950 (-484))) (|has| |#1| (-950 (-484)))) ELT) (((-3 (-349 (-484)) #1#) $) NIL (OR (|has| (-909 |#1|) (-950 (-349 (-484)))) (|has| |#1| (-950 (-349 (-484))))) ELT)) (-3156 ((|#1| $) NIL T ELT) (((-909 |#1|) $) 33 T ELT) (((-484) $) NIL (OR (|has| (-909 |#1|) (-950 (-484))) (|has| |#1| (-950 (-484)))) ELT) (((-349 (-484)) $) NIL (OR (|has| (-909 |#1|) (-950 (-349 (-484)))) (|has| |#1| (-950 (-349 (-484))))) ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-3642 ((|#1| $) 16 T ELT)) (-3024 (((-3 (-349 (-484)) #1#) $) NIL (|has| |#1| (-483)) ELT)) (-3023 (((-85) $) NIL (|has| |#1| (-483)) ELT)) (-3022 (((-349 (-484)) $) NIL (|has| |#1| (-483)) ELT)) (-2994 (($) NIL (|has| |#1| (-319)) ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2489 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28 T ELT) (($ (-909 |#1|) (-909 |#1|)) 29 T ELT)) (-3132 ((|#1| $) NIL T ELT)) (-2531 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2857 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2010 (((-830) $) NIL (|has| |#1| (-319)) ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2484 (($ $) NIL (|has| |#1| (-312)) ELT)) (-2400 (($ (-830)) NIL (|has| |#1| (-319)) ELT)) (-2486 ((|#1| $) 22 T ELT)) (-2487 ((|#1| $) 20 T ELT)) (-2488 ((|#1| $) 18 T ELT)) (-3006 ((|#1| $) 26 T ELT)) (-3007 ((|#1| $) 25 T ELT)) (-3008 ((|#1| $) 24 T ELT)) (-2485 ((|#1| $) 23 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3767 (($ $ (-583 |#1|) (-583 |#1|)) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-249 |#1|)) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-583 (-249 |#1|))) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-583 (-1089)) (-583 |#1|)) NIL (|has| |#1| (-455 (-1089) |#1|)) ELT) (($ $ (-1089) |#1|) NIL (|has| |#1| (-455 (-1089) |#1|)) ELT)) (-3799 (($ $ |#1|) NIL (|has| |#1| (-241 |#1| |#1|)) ELT)) (-3971 (((-473) $) NIL (|has| |#1| (-553 (-473))) ELT)) (-3009 (($ $) NIL T ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-909 |#1|)) 30 T ELT) (($ (-349 (-484))) NIL (OR (|has| (-909 |#1|) (-950 (-349 (-484)))) (|has| |#1| (-950 (-349 (-484))))) ELT)) (-2702 (((-632 $) $) NIL (|has| |#1| (-118)) ELT)) (-3126 (((-694)) NIL T CONST)) (-1264 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-3382 ((|#1| $) NIL (|has| |#1| (-973)) ELT)) (-2660 (($) 8 T CONST)) (-2666 (($) 12 T CONST)) (-2566 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2567 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2685 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 40 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-722 |#1|) (-13 (-720 |#1|) (-354 (-909 |#1|)) (-10 -8 (-15 -2489 ($ (-909 |#1|) (-909 |#1|))))) (-146)) (T -722)) +((-2489 (*1 *1 *2 *2) (-12 (-5 *2 (-909 *3)) (-4 *3 (-146)) (-5 *1 (-722 *3))))) +((-3957 ((|#3| (-1 |#4| |#2|) |#1|) 20 T ELT))) +(((-723 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3957 (|#3| (-1 |#4| |#2|) |#1|))) (-720 |#2|) (-146) (-720 |#4|) (-146)) (T -723)) +((-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-146)) (-4 *6 (-146)) (-4 *2 (-720 *6)) (-5 *1 (-723 *4 *5 *2 *6)) (-4 *4 (-720 *5))))) +((-2490 (((-2 (|:| |particular| |#2|) (|:| -2012 (-583 |#2|))) |#3| |#2| (-1089)) 19 T ELT))) +(((-724 |#1| |#2| |#3|) (-10 -7 (-15 -2490 ((-2 (|:| |particular| |#2|) (|:| -2012 (-583 |#2|))) |#3| |#2| (-1089)))) (-13 (-258) (-950 (-484)) (-580 (-484)) (-120)) (-13 (-29 |#1|) (-1114) (-871)) (-600 |#2|)) (T -724)) +((-2490 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1089)) (-4 *6 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120))) (-4 *4 (-13 (-29 *6) (-1114) (-871))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2012 (-583 *4)))) (-5 *1 (-724 *6 *4 *3)) (-4 *3 (-600 *4))))) +((-3572 (((-3 |#2| #1="failed") |#2| (-86) (-249 |#2|) (-583 |#2|)) 28 T ELT) (((-3 |#2| #1#) (-249 |#2|) (-86) (-249 |#2|) (-583 |#2|)) 29 T ELT) (((-3 (-2 (|:| |particular| |#2|) (|:| -2012 (-583 |#2|))) |#2| #1#) |#2| (-86) (-1089)) 17 T ELT) (((-3 (-2 (|:| |particular| |#2|) (|:| -2012 (-583 |#2|))) |#2| #1#) (-249 |#2|) (-86) (-1089)) 18 T ELT) (((-3 (-2 (|:| |particular| (-1178 |#2|)) (|:| -2012 (-583 (-1178 |#2|)))) #1#) (-583 |#2|) (-583 (-86)) (-1089)) 24 T ELT) (((-3 (-2 (|:| |particular| (-1178 |#2|)) (|:| -2012 (-583 (-1178 |#2|)))) #1#) (-583 (-249 |#2|)) (-583 (-86)) (-1089)) 26 T ELT) (((-3 (-583 (-1178 |#2|)) #1#) (-630 |#2|) (-1089)) 37 T ELT) (((-3 (-2 (|:| |particular| (-1178 |#2|)) (|:| -2012 (-583 (-1178 |#2|)))) #1#) (-630 |#2|) (-1178 |#2|) (-1089)) 35 T ELT))) +(((-725 |#1| |#2|) (-10 -7 (-15 -3572 ((-3 (-2 (|:| |particular| (-1178 |#2|)) (|:| -2012 (-583 (-1178 |#2|)))) #1="failed") (-630 |#2|) (-1178 |#2|) (-1089))) (-15 -3572 ((-3 (-583 (-1178 |#2|)) #1#) (-630 |#2|) (-1089))) (-15 -3572 ((-3 (-2 (|:| |particular| (-1178 |#2|)) (|:| -2012 (-583 (-1178 |#2|)))) #1#) (-583 (-249 |#2|)) (-583 (-86)) (-1089))) (-15 -3572 ((-3 (-2 (|:| |particular| (-1178 |#2|)) (|:| -2012 (-583 (-1178 |#2|)))) #1#) (-583 |#2|) (-583 (-86)) (-1089))) (-15 -3572 ((-3 (-2 (|:| |particular| |#2|) (|:| -2012 (-583 |#2|))) |#2| #1#) (-249 |#2|) (-86) (-1089))) (-15 -3572 ((-3 (-2 (|:| |particular| |#2|) (|:| -2012 (-583 |#2|))) |#2| #1#) |#2| (-86) (-1089))) (-15 -3572 ((-3 |#2| #1#) (-249 |#2|) (-86) (-249 |#2|) (-583 |#2|))) (-15 -3572 ((-3 |#2| #1#) |#2| (-86) (-249 |#2|) (-583 |#2|)))) (-13 (-258) (-950 (-484)) (-580 (-484)) (-120)) (-13 (-29 |#1|) (-1114) (-871))) (T -725)) +((-3572 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-86)) (-5 *4 (-249 *2)) (-5 *5 (-583 *2)) (-4 *2 (-13 (-29 *6) (-1114) (-871))) (-4 *6 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120))) (-5 *1 (-725 *6 *2)))) (-3572 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-249 *2)) (-5 *4 (-86)) (-5 *5 (-583 *2)) (-4 *2 (-13 (-29 *6) (-1114) (-871))) (-5 *1 (-725 *6 *2)) (-4 *6 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120))))) (-3572 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-86)) (-5 *5 (-1089)) (-4 *6 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -2012 (-583 *3))) *3 #1="failed")) (-5 *1 (-725 *6 *3)) (-4 *3 (-13 (-29 *6) (-1114) (-871))))) (-3572 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-249 *7)) (-5 *4 (-86)) (-5 *5 (-1089)) (-4 *7 (-13 (-29 *6) (-1114) (-871))) (-4 *6 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -2012 (-583 *7))) *7 #1#)) (-5 *1 (-725 *6 *7)))) (-3572 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-583 *7)) (-5 *4 (-583 (-86))) (-5 *5 (-1089)) (-4 *7 (-13 (-29 *6) (-1114) (-871))) (-4 *6 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120))) (-5 *2 (-2 (|:| |particular| (-1178 *7)) (|:| -2012 (-583 (-1178 *7))))) (-5 *1 (-725 *6 *7)))) (-3572 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-583 (-249 *7))) (-5 *4 (-583 (-86))) (-5 *5 (-1089)) (-4 *7 (-13 (-29 *6) (-1114) (-871))) (-4 *6 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120))) (-5 *2 (-2 (|:| |particular| (-1178 *7)) (|:| -2012 (-583 (-1178 *7))))) (-5 *1 (-725 *6 *7)))) (-3572 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-630 *6)) (-5 *4 (-1089)) (-4 *6 (-13 (-29 *5) (-1114) (-871))) (-4 *5 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120))) (-5 *2 (-583 (-1178 *6))) (-5 *1 (-725 *5 *6)))) (-3572 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-630 *7)) (-5 *5 (-1089)) (-4 *7 (-13 (-29 *6) (-1114) (-871))) (-4 *6 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120))) (-5 *2 (-2 (|:| |particular| (-1178 *7)) (|:| -2012 (-583 (-1178 *7))))) (-5 *1 (-725 *6 *7)) (-5 *4 (-1178 *7))))) +((-3469 ((|#2| |#2| (-1089)) 17 T ELT)) (-2491 ((|#2| |#2| (-1089)) 56 T ELT)) (-2492 (((-1 |#2| |#2|) (-1089)) 11 T ELT))) +(((-726 |#1| |#2|) (-10 -7 (-15 -3469 (|#2| |#2| (-1089))) (-15 -2491 (|#2| |#2| (-1089))) (-15 -2492 ((-1 |#2| |#2|) (-1089)))) (-13 (-258) (-950 (-484)) (-580 (-484)) (-120)) (-13 (-29 |#1|) (-1114) (-871))) (T -726)) +((-2492 (*1 *2 *3) (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120))) (-5 *2 (-1 *5 *5)) (-5 *1 (-726 *4 *5)) (-4 *5 (-13 (-29 *4) (-1114) (-871))))) (-2491 (*1 *2 *2 *3) (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120))) (-5 *1 (-726 *4 *2)) (-4 *2 (-13 (-29 *4) (-1114) (-871))))) (-3469 (*1 *2 *2 *3) (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120))) (-5 *1 (-726 *4 *2)) (-4 *2 (-13 (-29 *4) (-1114) (-871)))))) +((-2493 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2012 (-583 |#4|))) (-597 |#4|) |#4|) 33 T ELT))) +(((-727 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2493 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2012 (-583 |#4|))) (-597 |#4|) |#4|))) (-13 (-312) (-120) (-950 (-484)) (-950 (-349 (-484)))) (-1154 |#1|) (-1154 (-349 |#2|)) (-291 |#1| |#2| |#3|)) (T -727)) +((-2493 (*1 *2 *3 *4) (-12 (-5 *3 (-597 *4)) (-4 *4 (-291 *5 *6 *7)) (-4 *5 (-13 (-312) (-120) (-950 (-484)) (-950 (-349 (-484))))) (-4 *6 (-1154 *5)) (-4 *7 (-1154 (-349 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2012 (-583 *4)))) (-5 *1 (-727 *5 *6 *7 *4))))) +((-3740 (((-2 (|:| -3266 |#3|) (|:| |rh| (-583 (-349 |#2|)))) |#4| (-583 (-349 |#2|))) 53 T ELT)) (-2495 (((-583 (-2 (|:| -3772 |#2|) (|:| -3226 |#2|))) |#4| |#2|) 62 T ELT) (((-583 (-2 (|:| -3772 |#2|) (|:| -3226 |#2|))) |#4|) 61 T ELT) (((-583 (-2 (|:| -3772 |#2|) (|:| -3226 |#2|))) |#3| |#2|) 20 T ELT) (((-583 (-2 (|:| -3772 |#2|) (|:| -3226 |#2|))) |#3|) 21 T ELT)) (-2496 ((|#2| |#4| |#1|) 63 T ELT) ((|#2| |#3| |#1|) 28 T ELT)) (-2494 ((|#2| |#3| (-583 (-349 |#2|))) 109 T ELT) (((-3 |#2| "failed") |#3| (-349 |#2|)) 105 T ELT))) +(((-728 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2494 ((-3 |#2| "failed") |#3| (-349 |#2|))) (-15 -2494 (|#2| |#3| (-583 (-349 |#2|)))) (-15 -2495 ((-583 (-2 (|:| -3772 |#2|) (|:| -3226 |#2|))) |#3|)) (-15 -2495 ((-583 (-2 (|:| -3772 |#2|) (|:| -3226 |#2|))) |#3| |#2|)) (-15 -2496 (|#2| |#3| |#1|)) (-15 -2495 ((-583 (-2 (|:| -3772 |#2|) (|:| -3226 |#2|))) |#4|)) (-15 -2495 ((-583 (-2 (|:| -3772 |#2|) (|:| -3226 |#2|))) |#4| |#2|)) (-15 -2496 (|#2| |#4| |#1|)) (-15 -3740 ((-2 (|:| -3266 |#3|) (|:| |rh| (-583 (-349 |#2|)))) |#4| (-583 (-349 |#2|))))) (-13 (-312) (-120) (-950 (-349 (-484)))) (-1154 |#1|) (-600 |#2|) (-600 (-349 |#2|))) (T -728)) +((-3740 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-312) (-120) (-950 (-349 (-484))))) (-4 *6 (-1154 *5)) (-5 *2 (-2 (|:| -3266 *7) (|:| |rh| (-583 (-349 *6))))) (-5 *1 (-728 *5 *6 *7 *3)) (-5 *4 (-583 (-349 *6))) (-4 *7 (-600 *6)) (-4 *3 (-600 (-349 *6))))) (-2496 (*1 *2 *3 *4) (-12 (-4 *2 (-1154 *4)) (-5 *1 (-728 *4 *2 *5 *3)) (-4 *4 (-13 (-312) (-120) (-950 (-349 (-484))))) (-4 *5 (-600 *2)) (-4 *3 (-600 (-349 *2))))) (-2495 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-312) (-120) (-950 (-349 (-484))))) (-4 *4 (-1154 *5)) (-5 *2 (-583 (-2 (|:| -3772 *4) (|:| -3226 *4)))) (-5 *1 (-728 *5 *4 *6 *3)) (-4 *6 (-600 *4)) (-4 *3 (-600 (-349 *4))))) (-2495 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-120) (-950 (-349 (-484))))) (-4 *5 (-1154 *4)) (-5 *2 (-583 (-2 (|:| -3772 *5) (|:| -3226 *5)))) (-5 *1 (-728 *4 *5 *6 *3)) (-4 *6 (-600 *5)) (-4 *3 (-600 (-349 *5))))) (-2496 (*1 *2 *3 *4) (-12 (-4 *2 (-1154 *4)) (-5 *1 (-728 *4 *2 *3 *5)) (-4 *4 (-13 (-312) (-120) (-950 (-349 (-484))))) (-4 *3 (-600 *2)) (-4 *5 (-600 (-349 *2))))) (-2495 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-312) (-120) (-950 (-349 (-484))))) (-4 *4 (-1154 *5)) (-5 *2 (-583 (-2 (|:| -3772 *4) (|:| -3226 *4)))) (-5 *1 (-728 *5 *4 *3 *6)) (-4 *3 (-600 *4)) (-4 *6 (-600 (-349 *4))))) (-2495 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-120) (-950 (-349 (-484))))) (-4 *5 (-1154 *4)) (-5 *2 (-583 (-2 (|:| -3772 *5) (|:| -3226 *5)))) (-5 *1 (-728 *4 *5 *3 *6)) (-4 *3 (-600 *5)) (-4 *6 (-600 (-349 *5))))) (-2494 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-349 *2))) (-4 *2 (-1154 *5)) (-5 *1 (-728 *5 *2 *3 *6)) (-4 *5 (-13 (-312) (-120) (-950 (-349 (-484))))) (-4 *3 (-600 *2)) (-4 *6 (-600 (-349 *2))))) (-2494 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-349 *2)) (-4 *2 (-1154 *5)) (-5 *1 (-728 *5 *2 *3 *6)) (-4 *5 (-13 (-312) (-120) (-950 (-349 (-484))))) (-4 *3 (-600 *2)) (-4 *6 (-600 *4))))) +((-2504 (((-583 (-2 (|:| |frac| (-349 |#2|)) (|:| -3266 |#3|))) |#3| (-1 (-583 |#2|) |#2| (-1084 |#2|)) (-1 (-347 |#2|) |#2|)) 156 T ELT)) (-2505 (((-583 (-2 (|:| |poly| |#2|) (|:| -3266 |#3|))) |#3| (-1 (-583 |#1|) |#2|)) 52 T ELT)) (-2498 (((-583 (-2 (|:| |deg| (-694)) (|:| -3266 |#2|))) |#3|) 123 T ELT)) (-2497 ((|#2| |#3|) 42 T ELT)) (-2499 (((-583 (-2 (|:| -3951 |#1|) (|:| -3266 |#3|))) |#3| (-1 (-583 |#1|) |#2|)) 100 T ELT)) (-2500 ((|#3| |#3| (-349 |#2|)) 71 T ELT) ((|#3| |#3| |#2|) 97 T ELT))) +(((-729 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2497 (|#2| |#3|)) (-15 -2498 ((-583 (-2 (|:| |deg| (-694)) (|:| -3266 |#2|))) |#3|)) (-15 -2499 ((-583 (-2 (|:| -3951 |#1|) (|:| -3266 |#3|))) |#3| (-1 (-583 |#1|) |#2|))) (-15 -2505 ((-583 (-2 (|:| |poly| |#2|) (|:| -3266 |#3|))) |#3| (-1 (-583 |#1|) |#2|))) (-15 -2504 ((-583 (-2 (|:| |frac| (-349 |#2|)) (|:| -3266 |#3|))) |#3| (-1 (-583 |#2|) |#2| (-1084 |#2|)) (-1 (-347 |#2|) |#2|))) (-15 -2500 (|#3| |#3| |#2|)) (-15 -2500 (|#3| |#3| (-349 |#2|)))) (-13 (-312) (-120) (-950 (-349 (-484)))) (-1154 |#1|) (-600 |#2|) (-600 (-349 |#2|))) (T -729)) +((-2500 (*1 *2 *2 *3) (-12 (-5 *3 (-349 *5)) (-4 *4 (-13 (-312) (-120) (-950 (-349 (-484))))) (-4 *5 (-1154 *4)) (-5 *1 (-729 *4 *5 *2 *6)) (-4 *2 (-600 *5)) (-4 *6 (-600 *3)))) (-2500 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-312) (-120) (-950 (-349 (-484))))) (-4 *3 (-1154 *4)) (-5 *1 (-729 *4 *3 *2 *5)) (-4 *2 (-600 *3)) (-4 *5 (-600 (-349 *3))))) (-2504 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-583 *7) *7 (-1084 *7))) (-5 *5 (-1 (-347 *7) *7)) (-4 *7 (-1154 *6)) (-4 *6 (-13 (-312) (-120) (-950 (-349 (-484))))) (-5 *2 (-583 (-2 (|:| |frac| (-349 *7)) (|:| -3266 *3)))) (-5 *1 (-729 *6 *7 *3 *8)) (-4 *3 (-600 *7)) (-4 *8 (-600 (-349 *7))))) (-2505 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-583 *5) *6)) (-4 *5 (-13 (-312) (-120) (-950 (-349 (-484))))) (-4 *6 (-1154 *5)) (-5 *2 (-583 (-2 (|:| |poly| *6) (|:| -3266 *3)))) (-5 *1 (-729 *5 *6 *3 *7)) (-4 *3 (-600 *6)) (-4 *7 (-600 (-349 *6))))) (-2499 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-583 *5) *6)) (-4 *5 (-13 (-312) (-120) (-950 (-349 (-484))))) (-4 *6 (-1154 *5)) (-5 *2 (-583 (-2 (|:| -3951 *5) (|:| -3266 *3)))) (-5 *1 (-729 *5 *6 *3 *7)) (-4 *3 (-600 *6)) (-4 *7 (-600 (-349 *6))))) (-2498 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-120) (-950 (-349 (-484))))) (-4 *5 (-1154 *4)) (-5 *2 (-583 (-2 (|:| |deg| (-694)) (|:| -3266 *5)))) (-5 *1 (-729 *4 *5 *3 *6)) (-4 *3 (-600 *5)) (-4 *6 (-600 (-349 *5))))) (-2497 (*1 *2 *3) (-12 (-4 *2 (-1154 *4)) (-5 *1 (-729 *4 *2 *3 *5)) (-4 *4 (-13 (-312) (-120) (-950 (-349 (-484))))) (-4 *3 (-600 *2)) (-4 *5 (-600 (-349 *2)))))) +((-2501 (((-2 (|:| -2012 (-583 (-349 |#2|))) (|:| |mat| (-630 |#1|))) (-598 |#2| (-349 |#2|)) (-583 (-349 |#2|))) 146 T ELT) (((-2 (|:| |particular| (-3 (-349 |#2|) #1="failed")) (|:| -2012 (-583 (-349 |#2|)))) (-598 |#2| (-349 |#2|)) (-349 |#2|)) 145 T ELT) (((-2 (|:| -2012 (-583 (-349 |#2|))) (|:| |mat| (-630 |#1|))) (-597 (-349 |#2|)) (-583 (-349 |#2|))) 140 T ELT) (((-2 (|:| |particular| (-3 (-349 |#2|) #1#)) (|:| -2012 (-583 (-349 |#2|)))) (-597 (-349 |#2|)) (-349 |#2|)) 138 T ELT)) (-2502 ((|#2| (-598 |#2| (-349 |#2|))) 86 T ELT) ((|#2| (-597 (-349 |#2|))) 89 T ELT))) +(((-730 |#1| |#2|) (-10 -7 (-15 -2501 ((-2 (|:| |particular| (-3 (-349 |#2|) #1="failed")) (|:| -2012 (-583 (-349 |#2|)))) (-597 (-349 |#2|)) (-349 |#2|))) (-15 -2501 ((-2 (|:| -2012 (-583 (-349 |#2|))) (|:| |mat| (-630 |#1|))) (-597 (-349 |#2|)) (-583 (-349 |#2|)))) (-15 -2501 ((-2 (|:| |particular| (-3 (-349 |#2|) #1#)) (|:| -2012 (-583 (-349 |#2|)))) (-598 |#2| (-349 |#2|)) (-349 |#2|))) (-15 -2501 ((-2 (|:| -2012 (-583 (-349 |#2|))) (|:| |mat| (-630 |#1|))) (-598 |#2| (-349 |#2|)) (-583 (-349 |#2|)))) (-15 -2502 (|#2| (-597 (-349 |#2|)))) (-15 -2502 (|#2| (-598 |#2| (-349 |#2|))))) (-13 (-312) (-120) (-950 (-484)) (-950 (-349 (-484)))) (-1154 |#1|)) (T -730)) +((-2502 (*1 *2 *3) (-12 (-5 *3 (-598 *2 (-349 *2))) (-4 *2 (-1154 *4)) (-5 *1 (-730 *4 *2)) (-4 *4 (-13 (-312) (-120) (-950 (-484)) (-950 (-349 (-484))))))) (-2502 (*1 *2 *3) (-12 (-5 *3 (-597 (-349 *2))) (-4 *2 (-1154 *4)) (-5 *1 (-730 *4 *2)) (-4 *4 (-13 (-312) (-120) (-950 (-484)) (-950 (-349 (-484))))))) (-2501 (*1 *2 *3 *4) (-12 (-5 *3 (-598 *6 (-349 *6))) (-4 *6 (-1154 *5)) (-4 *5 (-13 (-312) (-120) (-950 (-484)) (-950 (-349 (-484))))) (-5 *2 (-2 (|:| -2012 (-583 (-349 *6))) (|:| |mat| (-630 *5)))) (-5 *1 (-730 *5 *6)) (-5 *4 (-583 (-349 *6))))) (-2501 (*1 *2 *3 *4) (-12 (-5 *3 (-598 *6 (-349 *6))) (-5 *4 (-349 *6)) (-4 *6 (-1154 *5)) (-4 *5 (-13 (-312) (-120) (-950 (-484)) (-950 (-349 (-484))))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2012 (-583 *4)))) (-5 *1 (-730 *5 *6)))) (-2501 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-349 *6))) (-4 *6 (-1154 *5)) (-4 *5 (-13 (-312) (-120) (-950 (-484)) (-950 (-349 (-484))))) (-5 *2 (-2 (|:| -2012 (-583 (-349 *6))) (|:| |mat| (-630 *5)))) (-5 *1 (-730 *5 *6)) (-5 *4 (-583 (-349 *6))))) (-2501 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-349 *6))) (-5 *4 (-349 *6)) (-4 *6 (-1154 *5)) (-4 *5 (-13 (-312) (-120) (-950 (-484)) (-950 (-349 (-484))))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2012 (-583 *4)))) (-5 *1 (-730 *5 *6))))) +((-2503 (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1178 |#1|))) |#5| |#4|) 49 T ELT))) +(((-731 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2503 ((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1178 |#1|))) |#5| |#4|))) (-312) (-600 |#1|) (-1154 |#1|) (-661 |#1| |#3|) (-600 |#4|)) (T -731)) +((-2503 (*1 *2 *3 *4) (-12 (-4 *5 (-312)) (-4 *7 (-1154 *5)) (-4 *4 (-661 *5 *7)) (-5 *2 (-2 (|:| |mat| (-630 *6)) (|:| |vec| (-1178 *5)))) (-5 *1 (-731 *5 *6 *7 *4 *3)) (-4 *6 (-600 *5)) (-4 *3 (-600 *4))))) +((-2504 (((-583 (-2 (|:| |frac| (-349 |#2|)) (|:| -3266 (-598 |#2| (-349 |#2|))))) (-598 |#2| (-349 |#2|)) (-1 (-347 |#2|) |#2|)) 47 T ELT)) (-2506 (((-583 (-349 |#2|)) (-598 |#2| (-349 |#2|)) (-1 (-347 |#2|) |#2|)) 163 (|has| |#1| (-27)) ELT) (((-583 (-349 |#2|)) (-598 |#2| (-349 |#2|))) 164 (|has| |#1| (-27)) ELT) (((-583 (-349 |#2|)) (-597 (-349 |#2|)) (-1 (-347 |#2|) |#2|)) 165 (|has| |#1| (-27)) ELT) (((-583 (-349 |#2|)) (-597 (-349 |#2|))) 166 (|has| |#1| (-27)) ELT) (((-583 (-349 |#2|)) (-598 |#2| (-349 |#2|)) (-1 (-583 |#1|) |#2|) (-1 (-347 |#2|) |#2|)) 38 T ELT) (((-583 (-349 |#2|)) (-598 |#2| (-349 |#2|)) (-1 (-583 |#1|) |#2|)) 39 T ELT) (((-583 (-349 |#2|)) (-597 (-349 |#2|)) (-1 (-583 |#1|) |#2|) (-1 (-347 |#2|) |#2|)) 36 T ELT) (((-583 (-349 |#2|)) (-597 (-349 |#2|)) (-1 (-583 |#1|) |#2|)) 37 T ELT)) (-2505 (((-583 (-2 (|:| |poly| |#2|) (|:| -3266 (-598 |#2| (-349 |#2|))))) (-598 |#2| (-349 |#2|)) (-1 (-583 |#1|) |#2|)) 96 T ELT))) +(((-732 |#1| |#2|) (-10 -7 (-15 -2506 ((-583 (-349 |#2|)) (-597 (-349 |#2|)) (-1 (-583 |#1|) |#2|))) (-15 -2506 ((-583 (-349 |#2|)) (-597 (-349 |#2|)) (-1 (-583 |#1|) |#2|) (-1 (-347 |#2|) |#2|))) (-15 -2506 ((-583 (-349 |#2|)) (-598 |#2| (-349 |#2|)) (-1 (-583 |#1|) |#2|))) (-15 -2506 ((-583 (-349 |#2|)) (-598 |#2| (-349 |#2|)) (-1 (-583 |#1|) |#2|) (-1 (-347 |#2|) |#2|))) (-15 -2504 ((-583 (-2 (|:| |frac| (-349 |#2|)) (|:| -3266 (-598 |#2| (-349 |#2|))))) (-598 |#2| (-349 |#2|)) (-1 (-347 |#2|) |#2|))) (-15 -2505 ((-583 (-2 (|:| |poly| |#2|) (|:| -3266 (-598 |#2| (-349 |#2|))))) (-598 |#2| (-349 |#2|)) (-1 (-583 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2506 ((-583 (-349 |#2|)) (-597 (-349 |#2|)))) (-15 -2506 ((-583 (-349 |#2|)) (-597 (-349 |#2|)) (-1 (-347 |#2|) |#2|))) (-15 -2506 ((-583 (-349 |#2|)) (-598 |#2| (-349 |#2|)))) (-15 -2506 ((-583 (-349 |#2|)) (-598 |#2| (-349 |#2|)) (-1 (-347 |#2|) |#2|)))) |%noBranch|)) (-13 (-312) (-120) (-950 (-484)) (-950 (-349 (-484)))) (-1154 |#1|)) (T -732)) +((-2506 (*1 *2 *3 *4) (-12 (-5 *3 (-598 *6 (-349 *6))) (-5 *4 (-1 (-347 *6) *6)) (-4 *6 (-1154 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-312) (-120) (-950 (-484)) (-950 (-349 (-484))))) (-5 *2 (-583 (-349 *6))) (-5 *1 (-732 *5 *6)))) (-2506 (*1 *2 *3) (-12 (-5 *3 (-598 *5 (-349 *5))) (-4 *5 (-1154 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-312) (-120) (-950 (-484)) (-950 (-349 (-484))))) (-5 *2 (-583 (-349 *5))) (-5 *1 (-732 *4 *5)))) (-2506 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-349 *6))) (-5 *4 (-1 (-347 *6) *6)) (-4 *6 (-1154 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-312) (-120) (-950 (-484)) (-950 (-349 (-484))))) (-5 *2 (-583 (-349 *6))) (-5 *1 (-732 *5 *6)))) (-2506 (*1 *2 *3) (-12 (-5 *3 (-597 (-349 *5))) (-4 *5 (-1154 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-312) (-120) (-950 (-484)) (-950 (-349 (-484))))) (-5 *2 (-583 (-349 *5))) (-5 *1 (-732 *4 *5)))) (-2505 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-583 *5) *6)) (-4 *5 (-13 (-312) (-120) (-950 (-484)) (-950 (-349 (-484))))) (-4 *6 (-1154 *5)) (-5 *2 (-583 (-2 (|:| |poly| *6) (|:| -3266 (-598 *6 (-349 *6)))))) (-5 *1 (-732 *5 *6)) (-5 *3 (-598 *6 (-349 *6))))) (-2504 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-347 *6) *6)) (-4 *6 (-1154 *5)) (-4 *5 (-13 (-312) (-120) (-950 (-484)) (-950 (-349 (-484))))) (-5 *2 (-583 (-2 (|:| |frac| (-349 *6)) (|:| -3266 (-598 *6 (-349 *6)))))) (-5 *1 (-732 *5 *6)) (-5 *3 (-598 *6 (-349 *6))))) (-2506 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-598 *7 (-349 *7))) (-5 *4 (-1 (-583 *6) *7)) (-5 *5 (-1 (-347 *7) *7)) (-4 *6 (-13 (-312) (-120) (-950 (-484)) (-950 (-349 (-484))))) (-4 *7 (-1154 *6)) (-5 *2 (-583 (-349 *7))) (-5 *1 (-732 *6 *7)))) (-2506 (*1 *2 *3 *4) (-12 (-5 *3 (-598 *6 (-349 *6))) (-5 *4 (-1 (-583 *5) *6)) (-4 *5 (-13 (-312) (-120) (-950 (-484)) (-950 (-349 (-484))))) (-4 *6 (-1154 *5)) (-5 *2 (-583 (-349 *6))) (-5 *1 (-732 *5 *6)))) (-2506 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-597 (-349 *7))) (-5 *4 (-1 (-583 *6) *7)) (-5 *5 (-1 (-347 *7) *7)) (-4 *6 (-13 (-312) (-120) (-950 (-484)) (-950 (-349 (-484))))) (-4 *7 (-1154 *6)) (-5 *2 (-583 (-349 *7))) (-5 *1 (-732 *6 *7)))) (-2506 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-349 *6))) (-5 *4 (-1 (-583 *5) *6)) (-4 *5 (-13 (-312) (-120) (-950 (-484)) (-950 (-349 (-484))))) (-4 *6 (-1154 *5)) (-5 *2 (-583 (-349 *6))) (-5 *1 (-732 *5 *6))))) +((-2507 (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1178 |#1|))) (-630 |#2|) (-1178 |#1|)) 110 T ELT) (((-2 (|:| A (-630 |#1|)) (|:| |eqs| (-583 (-2 (|:| C (-630 |#1|)) (|:| |g| (-1178 |#1|)) (|:| -3266 |#2|) (|:| |rh| |#1|))))) (-630 |#1|) (-1178 |#1|)) 15 T ELT)) (-2508 (((-2 (|:| |particular| (-3 (-1178 |#1|) #1="failed")) (|:| -2012 (-583 (-1178 |#1|)))) (-630 |#2|) (-1178 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| #1#)) (|:| -2012 (-583 |#1|))) |#2| |#1|)) 116 T ELT)) (-3572 (((-3 (-2 (|:| |particular| (-1178 |#1|)) (|:| -2012 (-630 |#1|))) #1#) (-630 |#1|) (-1178 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2012 (-583 |#1|))) #1#) |#2| |#1|)) 54 T ELT))) +(((-733 |#1| |#2|) (-10 -7 (-15 -2507 ((-2 (|:| A (-630 |#1|)) (|:| |eqs| (-583 (-2 (|:| C (-630 |#1|)) (|:| |g| (-1178 |#1|)) (|:| -3266 |#2|) (|:| |rh| |#1|))))) (-630 |#1|) (-1178 |#1|))) (-15 -2507 ((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1178 |#1|))) (-630 |#2|) (-1178 |#1|))) (-15 -3572 ((-3 (-2 (|:| |particular| (-1178 |#1|)) (|:| -2012 (-630 |#1|))) #1="failed") (-630 |#1|) (-1178 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2012 (-583 |#1|))) #1#) |#2| |#1|))) (-15 -2508 ((-2 (|:| |particular| (-3 (-1178 |#1|) #1#)) (|:| -2012 (-583 (-1178 |#1|)))) (-630 |#2|) (-1178 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| #1#)) (|:| -2012 (-583 |#1|))) |#2| |#1|)))) (-312) (-600 |#1|)) (T -733)) +((-2508 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-630 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2012 (-583 *6))) *7 *6)) (-4 *6 (-312)) (-4 *7 (-600 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1178 *6) "failed")) (|:| -2012 (-583 (-1178 *6))))) (-5 *1 (-733 *6 *7)) (-5 *4 (-1178 *6)))) (-3572 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -2012 (-583 *6))) "failed") *7 *6)) (-4 *6 (-312)) (-4 *7 (-600 *6)) (-5 *2 (-2 (|:| |particular| (-1178 *6)) (|:| -2012 (-630 *6)))) (-5 *1 (-733 *6 *7)) (-5 *3 (-630 *6)) (-5 *4 (-1178 *6)))) (-2507 (*1 *2 *3 *4) (-12 (-4 *5 (-312)) (-4 *6 (-600 *5)) (-5 *2 (-2 (|:| |mat| (-630 *6)) (|:| |vec| (-1178 *5)))) (-5 *1 (-733 *5 *6)) (-5 *3 (-630 *6)) (-5 *4 (-1178 *5)))) (-2507 (*1 *2 *3 *4) (-12 (-4 *5 (-312)) (-5 *2 (-2 (|:| A (-630 *5)) (|:| |eqs| (-583 (-2 (|:| C (-630 *5)) (|:| |g| (-1178 *5)) (|:| -3266 *6) (|:| |rh| *5)))))) (-5 *1 (-733 *5 *6)) (-5 *3 (-630 *5)) (-5 *4 (-1178 *5)) (-4 *6 (-600 *5))))) +((-2509 (((-630 |#1|) (-583 |#1|) (-694)) 14 T ELT) (((-630 |#1|) (-583 |#1|)) 15 T ELT)) (-2510 (((-3 (-1178 |#1|) #1="failed") |#2| |#1| (-583 |#1|)) 39 T ELT)) (-3339 (((-3 |#1| #1#) |#2| |#1| (-583 |#1|) (-1 |#1| |#1|)) 46 T ELT))) +(((-734 |#1| |#2|) (-10 -7 (-15 -2509 ((-630 |#1|) (-583 |#1|))) (-15 -2509 ((-630 |#1|) (-583 |#1|) (-694))) (-15 -2510 ((-3 (-1178 |#1|) #1="failed") |#2| |#1| (-583 |#1|))) (-15 -3339 ((-3 |#1| #1#) |#2| |#1| (-583 |#1|) (-1 |#1| |#1|)))) (-312) (-600 |#1|)) (T -734)) +((-3339 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-583 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-312)) (-5 *1 (-734 *2 *3)) (-4 *3 (-600 *2)))) (-2510 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-583 *4)) (-4 *4 (-312)) (-5 *2 (-1178 *4)) (-5 *1 (-734 *4 *3)) (-4 *3 (-600 *4)))) (-2509 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *5)) (-5 *4 (-694)) (-4 *5 (-312)) (-5 *2 (-630 *5)) (-5 *1 (-734 *5 *6)) (-4 *6 (-600 *5)))) (-2509 (*1 *2 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-312)) (-5 *2 (-630 *4)) (-5 *1 (-734 *4 *5)) (-4 *5 (-600 *4))))) +((-2568 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-3188 (((-85) $) NIL (|has| |#2| (-23)) ELT)) (-3706 (($ (-830)) NIL (|has| |#2| (-961)) ELT)) (-2198 (((-1184) $ (-484) (-484)) NIL (|has| $ (-6 -3995)) ELT)) (-2483 (($ $ $) NIL (|has| |#2| (-717)) ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL (|has| |#2| (-104)) ELT)) (-3136 (((-694)) NIL (|has| |#2| (-319)) ELT)) (-3787 ((|#2| $ (-484) |#2|) NIL (|has| $ (-6 -3995)) ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 (-484) #1#) $) NIL (-12 (|has| |#2| (-950 (-484))) (|has| |#2| (-1013))) ELT) (((-3 (-349 (-484)) #1#) $) NIL (-12 (|has| |#2| (-950 (-349 (-484)))) (|has| |#2| (-1013))) ELT) (((-3 |#2| #1#) $) NIL (|has| |#2| (-1013)) ELT)) (-3156 (((-484) $) NIL (-12 (|has| |#2| (-950 (-484))) (|has| |#2| (-1013))) ELT) (((-349 (-484)) $) NIL (-12 (|has| |#2| (-950 (-349 (-484)))) (|has| |#2| (-1013))) ELT) ((|#2| $) NIL (|has| |#2| (-1013)) ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (-12 (|has| |#2| (-580 (-484))) (|has| |#2| (-961))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) NIL (-12 (|has| |#2| (-580 (-484))) (|has| |#2| (-961))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1178 |#2|))) (-630 $) (-1178 $)) NIL (|has| |#2| (-961)) ELT) (((-630 |#2|) (-630 $)) NIL (|has| |#2| (-961)) ELT)) (-3466 (((-3 $ #1#) $) NIL (|has| |#2| (-961)) ELT)) (-2994 (($) NIL (|has| |#2| (-319)) ELT)) (-1575 ((|#2| $ (-484) |#2|) NIL (|has| $ (-6 -3995)) ELT)) (-3112 ((|#2| $ (-484)) NIL T ELT)) (-3186 (((-85) $) NIL (|has| |#2| (-717)) ELT)) (-2889 (((-583 |#2|) $) NIL (|has| $ (-6 -3994)) ELT)) (-1213 (((-85) $ $) NIL (|has| |#2| (-23)) ELT)) (-2410 (((-85) $) NIL (|has| |#2| (-961)) ELT)) (-2200 (((-484) $) NIL (|has| (-484) (-756)) ELT)) (-2531 (($ $ $) NIL (|has| |#2| (-756)) ELT)) (-2608 (((-583 |#2|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3245 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#2| (-1013))) ELT)) (-2201 (((-484) $) NIL (|has| (-484) (-756)) ELT)) (-2857 (($ $ $) NIL (|has| |#2| (-756)) ELT)) (-1948 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2010 (((-830) $) NIL (|has| |#2| (-319)) ELT)) (-2280 (((-630 (-484)) (-1178 $)) NIL (-12 (|has| |#2| (-580 (-484))) (|has| |#2| (-961))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (-12 (|has| |#2| (-580 (-484))) (|has| |#2| (-961))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1178 |#2|))) (-1178 $) $) NIL (|has| |#2| (-961)) ELT) (((-630 |#2|) (-1178 $)) NIL (|has| |#2| (-961)) ELT)) (-3242 (((-1072) $) NIL (|has| |#2| (-1013)) ELT)) (-2203 (((-583 (-484)) $) NIL T ELT)) (-2204 (((-85) (-484) $) NIL T ELT)) (-2400 (($ (-830)) NIL (|has| |#2| (-319)) ELT)) (-3243 (((-1033) $) NIL (|has| |#2| (-1013)) ELT)) (-3800 ((|#2| $) NIL (|has| (-484) (-756)) ELT)) (-2199 (($ $ |#2|) NIL (|has| $ (-6 -3995)) ELT)) (-1946 (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3767 (($ $ (-583 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT)) (-1221 (((-85) $ $) NIL T ELT)) (-2202 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#2| (-1013))) ELT)) (-2205 (((-583 |#2|) $) NIL T ELT)) (-3402 (((-85) $) NIL T ELT)) (-3564 (($) NIL T ELT)) (-3799 ((|#2| $ (-484) |#2|) NIL T ELT) ((|#2| $ (-484)) NIL T ELT)) (-3835 ((|#2| $ $) NIL (|has| |#2| (-961)) ELT)) (-1467 (($ (-1178 |#2|)) NIL T ELT)) (-3910 (((-107)) NIL (|has| |#2| (-312)) ELT)) (-3757 (($ $ (-694)) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-961))) ELT) (($ $) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-961))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (-12 (|has| |#2| (-811 (-1089))) (|has| |#2| (-961))) ELT) (($ $ (-1089) (-694)) NIL (-12 (|has| |#2| (-811 (-1089))) (|has| |#2| (-961))) ELT) (($ $ (-583 (-1089))) NIL (-12 (|has| |#2| (-811 (-1089))) (|has| |#2| (-961))) ELT) (($ $ (-1089)) NIL (-12 (|has| |#2| (-811 (-1089))) (|has| |#2| (-961))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-961)) ELT) (($ $ (-1 |#2| |#2|) (-694)) NIL (|has| |#2| (-961)) ELT)) (-1945 (((-694) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3994)) ELT) (((-694) |#2| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#2| (-1013))) ELT)) (-3399 (($ $) NIL T ELT)) (-3945 (((-1178 |#2|) $) NIL T ELT) (($ (-484)) NIL (OR (-12 (|has| |#2| (-950 (-484))) (|has| |#2| (-1013))) (|has| |#2| (-961))) ELT) (($ (-349 (-484))) NIL (-12 (|has| |#2| (-950 (-349 (-484)))) (|has| |#2| (-1013))) ELT) (($ |#2|) NIL (|has| |#2| (-1013)) ELT) (((-772) $) NIL (|has| |#2| (-552 (-772))) ELT)) (-3126 (((-694)) NIL (|has| |#2| (-961)) CONST)) (-1264 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-1947 (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3125 (((-85) $ $) NIL (|has| |#2| (-961)) ELT)) (-2660 (($) NIL (|has| |#2| (-23)) CONST)) (-2666 (($) NIL (|has| |#2| (-961)) CONST)) (-2669 (($ $ (-694)) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-961))) ELT) (($ $) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-961))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (-12 (|has| |#2| (-811 (-1089))) (|has| |#2| (-961))) ELT) (($ $ (-1089) (-694)) NIL (-12 (|has| |#2| (-811 (-1089))) (|has| |#2| (-961))) ELT) (($ $ (-583 (-1089))) NIL (-12 (|has| |#2| (-811 (-1089))) (|has| |#2| (-961))) ELT) (($ $ (-1089)) NIL (-12 (|has| |#2| (-811 (-1089))) (|has| |#2| (-961))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-961)) ELT) (($ $ (-1 |#2| |#2|) (-694)) NIL (|has| |#2| (-961)) ELT)) (-2566 (((-85) $ $) NIL (|has| |#2| (-756)) ELT)) (-2567 (((-85) $ $) NIL (|has| |#2| (-756)) ELT)) (-3056 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-2684 (((-85) $ $) NIL (|has| |#2| (-756)) ELT)) (-2685 (((-85) $ $) 11 (|has| |#2| (-756)) ELT)) (-3948 (($ $ |#2|) NIL (|has| |#2| (-312)) ELT)) (-3836 (($ $ $) NIL (|has| |#2| (-21)) ELT) (($ $) NIL (|has| |#2| (-21)) ELT)) (-3838 (($ $ $) NIL (|has| |#2| (-25)) ELT)) (** (($ $ (-694)) NIL (|has| |#2| (-961)) ELT) (($ $ (-830)) NIL (|has| |#2| (-961)) ELT)) (* (($ $ $) NIL (|has| |#2| (-961)) ELT) (($ $ |#2|) NIL (|has| |#2| (-663)) ELT) (($ |#2| $) NIL (|has| |#2| (-663)) ELT) (($ (-484) $) NIL (|has| |#2| (-21)) ELT) (($ (-694) $) NIL (|has| |#2| (-23)) ELT) (($ (-830) $) NIL (|has| |#2| (-25)) ELT)) (-3956 (((-694) $) NIL (|has| $ (-6 -3994)) ELT))) +(((-735 |#1| |#2| |#3|) (-196 |#1| |#2|) (-694) (-717) (-1 (-85) (-1178 |#2|) (-1178 |#2|))) (T -735)) +NIL +((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-1487 (((-583 (-694)) $) NIL T ELT) (((-583 (-694)) $ (-1089)) NIL T ELT)) (-1521 (((-694) $) NIL T ELT) (((-694) $ (-1089)) NIL T ELT)) (-3081 (((-583 (-738 (-1089))) $) NIL T ELT)) (-3083 (((-1084 $) $ (-738 (-1089))) NIL T ELT) (((-1084 |#1|) $) NIL T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2063 (($ $) NIL (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-2819 (((-694) $) NIL T ELT) (((-694) $ (-583 (-738 (-1089)))) NIL T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2707 (((-347 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-821)) ELT)) (-3774 (($ $) NIL (|has| |#1| (-391)) ELT)) (-3970 (((-347 $) $) NIL (|has| |#1| (-391)) ELT)) (-2704 (((-3 (-583 (-1084 $)) #1#) (-583 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-821)) ELT)) (-1483 (($ $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-349 (-484)) #1#) $) NIL (|has| |#1| (-950 (-349 (-484)))) ELT) (((-3 (-484) #1#) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-3 (-738 (-1089)) #1#) $) NIL T ELT) (((-3 (-1089) #1#) $) NIL T ELT) (((-3 (-1038 |#1| (-1089)) #1#) $) NIL T ELT)) (-3156 ((|#1| $) NIL T ELT) (((-349 (-484)) $) NIL (|has| |#1| (-950 (-349 (-484)))) ELT) (((-484) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-738 (-1089)) $) NIL T ELT) (((-1089) $) NIL T ELT) (((-1038 |#1| (-1089)) $) NIL T ELT)) (-3755 (($ $ $ (-738 (-1089))) NIL (|has| |#1| (-146)) ELT)) (-3958 (($ $) NIL T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1178 |#1|))) (-630 $) (-1178 $)) NIL T ELT) (((-630 |#1|) (-630 $)) NIL T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-3502 (($ $) NIL (|has| |#1| (-391)) ELT) (($ $ (-738 (-1089))) NIL (|has| |#1| (-391)) ELT)) (-2818 (((-583 $) $) NIL T ELT)) (-3722 (((-85) $) NIL (|has| |#1| (-821)) ELT)) (-1623 (($ $ |#1| (-469 (-738 (-1089))) $) NIL T ELT)) (-2796 (((-798 (-329) $) $ (-800 (-329)) (-798 (-329) $)) NIL (-12 (|has| (-738 (-1089)) (-796 (-329))) (|has| |#1| (-796 (-329)))) ELT) (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) NIL (-12 (|has| (-738 (-1089)) (-796 (-484))) (|has| |#1| (-796 (-484)))) ELT)) (-3771 (((-694) $ (-1089)) NIL T ELT) (((-694) $) NIL T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2420 (((-694) $) NIL T ELT)) (-3084 (($ (-1084 |#1|) (-738 (-1089))) NIL T ELT) (($ (-1084 $) (-738 (-1089))) NIL T ELT)) (-2821 (((-583 $) $) NIL T ELT)) (-3936 (((-85) $) NIL T ELT)) (-2893 (($ |#1| (-469 (-738 (-1089)))) NIL T ELT) (($ $ (-738 (-1089)) (-694)) NIL T ELT) (($ $ (-583 (-738 (-1089))) (-583 (-694))) NIL T ELT)) (-3762 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $ (-738 (-1089))) NIL T ELT)) (-2820 (((-469 (-738 (-1089))) $) NIL T ELT) (((-694) $ (-738 (-1089))) NIL T ELT) (((-583 (-694)) $ (-583 (-738 (-1089)))) NIL T ELT)) (-1624 (($ (-1 (-469 (-738 (-1089))) (-469 (-738 (-1089)))) $) NIL T ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1522 (((-1 $ (-694)) (-1089)) NIL T ELT) (((-1 $ (-694)) $) NIL (|has| |#1| (-190)) ELT)) (-3082 (((-3 (-738 (-1089)) #1#) $) NIL T ELT)) (-2280 (((-630 (-484)) (-1178 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1178 |#1|))) (-1178 $) $) NIL T ELT) (((-630 |#1|) (-1178 $)) NIL T ELT)) (-2894 (($ $) NIL T ELT)) (-3174 ((|#1| $) NIL T ELT)) (-1485 (((-738 (-1089)) $) NIL T ELT)) (-1890 (($ (-583 $)) NIL (|has| |#1| (-391)) ELT) (($ $ $) NIL (|has| |#1| (-391)) ELT)) (-3242 (((-1072) $) NIL T ELT)) (-1486 (((-85) $) NIL T ELT)) (-2823 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2822 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2824 (((-3 (-2 (|:| |var| (-738 (-1089))) (|:| -2401 (-694))) #1#) $) NIL T ELT)) (-1484 (($ $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1796 (((-85) $) NIL T ELT)) (-1795 ((|#1| $) NIL T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) NIL (|has| |#1| (-391)) ELT)) (-3144 (($ (-583 $)) NIL (|has| |#1| (-391)) ELT) (($ $ $) NIL (|has| |#1| (-391)) ELT)) (-2705 (((-347 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-821)) ELT)) (-2706 (((-347 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-821)) ELT)) (-3731 (((-347 $) $) NIL (|has| |#1| (-821)) ELT)) (-3465 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-495)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-495)) ELT)) (-3767 (($ $ (-583 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ (-738 (-1089)) |#1|) NIL T ELT) (($ $ (-583 (-738 (-1089))) (-583 |#1|)) NIL T ELT) (($ $ (-738 (-1089)) $) NIL T ELT) (($ $ (-583 (-738 (-1089))) (-583 $)) NIL T ELT) (($ $ (-1089) $) NIL (|has| |#1| (-190)) ELT) (($ $ (-583 (-1089)) (-583 $)) NIL (|has| |#1| (-190)) ELT) (($ $ (-1089) |#1|) NIL (|has| |#1| (-190)) ELT) (($ $ (-583 (-1089)) (-583 |#1|)) NIL (|has| |#1| (-190)) ELT)) (-3756 (($ $ (-738 (-1089))) NIL (|has| |#1| (-146)) ELT)) (-3757 (($ $ (-583 (-738 (-1089))) (-583 (-694))) NIL T ELT) (($ $ (-738 (-1089)) (-694)) NIL T ELT) (($ $ (-583 (-738 (-1089)))) NIL T ELT) (($ $ (-738 (-1089))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL T ELT) (($ $ (-1089)) NIL (|has| |#1| (-811 (-1089))) ELT) (($ $ (-583 (-1089))) NIL (|has| |#1| (-811 (-1089))) ELT) (($ $ (-1089) (-694)) NIL (|has| |#1| (-811 (-1089))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (|has| |#1| (-811 (-1089))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-694)) NIL (|has| |#1| (-189)) ELT)) (-1488 (((-583 (-1089)) $) NIL T ELT)) (-3947 (((-469 (-738 (-1089))) $) NIL T ELT) (((-694) $ (-738 (-1089))) NIL T ELT) (((-583 (-694)) $ (-583 (-738 (-1089)))) NIL T ELT) (((-694) $ (-1089)) NIL T ELT)) (-3971 (((-800 (-329)) $) NIL (-12 (|has| (-738 (-1089)) (-553 (-800 (-329)))) (|has| |#1| (-553 (-800 (-329))))) ELT) (((-800 (-484)) $) NIL (-12 (|has| (-738 (-1089)) (-553 (-800 (-484)))) (|has| |#1| (-553 (-800 (-484))))) ELT) (((-473) $) NIL (-12 (|has| (-738 (-1089)) (-553 (-473))) (|has| |#1| (-553 (-473)))) ELT)) (-2817 ((|#1| $) NIL (|has| |#1| (-391)) ELT) (($ $ (-738 (-1089))) NIL (|has| |#1| (-391)) ELT)) (-2703 (((-3 (-1178 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-821))) ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-738 (-1089))) NIL T ELT) (($ (-1089)) NIL T ELT) (($ (-1038 |#1| (-1089))) NIL T ELT) (($ (-349 (-484))) NIL (OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-950 (-349 (-484))))) ELT) (($ $) NIL (|has| |#1| (-495)) ELT)) (-3816 (((-583 |#1|) $) NIL T ELT)) (-3676 ((|#1| $ (-469 (-738 (-1089)))) NIL T ELT) (($ $ (-738 (-1089)) (-694)) NIL T ELT) (($ $ (-583 (-738 (-1089))) (-583 (-694))) NIL T ELT)) (-2702 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-821))) (|has| |#1| (-118))) ELT)) (-3126 (((-694)) NIL T CONST)) (-1622 (($ $ $ (-694)) NIL (|has| |#1| (-146)) ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) NIL T CONST)) (-2666 (($) NIL T CONST)) (-2669 (($ $ (-583 (-738 (-1089))) (-583 (-694))) NIL T ELT) (($ $ (-738 (-1089)) (-694)) NIL T ELT) (($ $ (-583 (-738 (-1089)))) NIL T ELT) (($ $ (-738 (-1089))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL T ELT) (($ $ (-1089)) NIL (|has| |#1| (-811 (-1089))) ELT) (($ $ (-583 (-1089))) NIL (|has| |#1| (-811 (-1089))) ELT) (($ $ (-1089) (-694)) NIL (|has| |#1| (-811 (-1089))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (|has| |#1| (-811 (-1089))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-694)) NIL (|has| |#1| (-189)) ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3948 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-349 (-484))) NIL (|has| |#1| (-38 (-349 (-484)))) ELT) (($ (-349 (-484)) $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) +(((-736 |#1|) (-13 (-213 |#1| (-1089) (-738 (-1089)) (-469 (-738 (-1089)))) (-950 (-1038 |#1| (-1089)))) (-961)) (T -736)) +NIL +((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL (|has| |#2| (-312)) ELT)) (-2063 (($ $) NIL (|has| |#2| (-312)) ELT)) (-2061 (((-85) $) NIL (|has| |#2| (-312)) ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3774 (($ $) NIL (|has| |#2| (-312)) ELT)) (-3970 (((-347 $) $) NIL (|has| |#2| (-312)) ELT)) (-1607 (((-85) $ $) NIL (|has| |#2| (-312)) ELT)) (-3723 (($) NIL T CONST)) (-2564 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-2563 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) NIL (|has| |#2| (-312)) ELT)) (-3722 (((-85) $) NIL (|has| |#2| (-312)) ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-1604 (((-3 (-583 $) #1#) (-583 $) $) NIL (|has| |#2| (-312)) ELT)) (-1890 (($ (-583 $)) NIL (|has| |#2| (-312)) ELT) (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2484 (($ $) 20 (|has| |#2| (-312)) ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) NIL (|has| |#2| (-312)) ELT)) (-3144 (($ (-583 $)) NIL (|has| |#2| (-312)) ELT) (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-3731 (((-347 $) $) NIL (|has| |#2| (-312)) ELT)) (-1605 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#2| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL (|has| |#2| (-312)) ELT)) (-3465 (((-3 $ #1#) $ $) NIL (|has| |#2| (-312)) ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL (|has| |#2| (-312)) ELT)) (-1606 (((-694) $) NIL (|has| |#2| (-312)) ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL (|has| |#2| (-312)) ELT)) (-3757 (($ $) 13 T ELT) (($ $ (-694)) NIL T ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#2|) 10 T ELT) ((|#2| $) 11 T ELT) (($ (-349 (-484))) NIL (|has| |#2| (-312)) ELT) (($ $) NIL (|has| |#2| (-312)) ELT)) (-3126 (((-694)) NIL T CONST)) (-1264 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL (|has| |#2| (-312)) ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) NIL T CONST)) (-2666 (($) NIL T CONST)) (-2669 (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3948 (($ $ $) 15 (|has| |#2| (-312)) ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (** (($ $ (-694)) NIL T ELT) (($ $ (-830)) NIL T ELT) (($ $ (-484)) 18 (|has| |#2| (-312)) ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-349 (-484)) $) NIL (|has| |#2| (-312)) ELT) (($ $ (-349 (-484))) NIL (|has| |#2| (-312)) ELT))) +(((-737 |#1| |#2| |#3|) (-13 (-82 $ $) (-190) (-429 |#2|) (-10 -7 (IF (|has| |#2| (-312)) (-6 (-312)) |%noBranch|))) (-1013) (-809 |#1|) |#1|) (T -737)) +NIL +((-2568 (((-85) $ $) NIL T ELT)) (-1521 (((-694) $) NIL T ELT)) (-3830 ((|#1| $) 10 T ELT)) (-3157 (((-3 |#1| "failed") $) NIL T ELT)) (-3156 ((|#1| $) NIL T ELT)) (-3771 (((-694) $) 11 T ELT)) (-2531 (($ $ $) NIL T ELT)) (-2857 (($ $ $) NIL T ELT)) (-1522 (($ |#1| (-694)) 9 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3757 (($ $ (-694)) NIL T ELT) (($ $) NIL T ELT)) (-3945 (((-772) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2669 (($ $ (-694)) NIL T ELT) (($ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT))) +(((-738 |#1|) (-228 |#1|) (-756)) (T -738)) +NIL +((-2568 (((-85) $ $) NIL T ELT)) (-3933 (((-583 |#1|) $) 39 T ELT)) (-3136 (((-694) $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-3938 (((-3 $ #1="failed") $ $) NIL T ELT) (((-3 $ #1#) $ |#1|) 29 T ELT)) (-3157 (((-3 |#1| #1#) $) NIL T ELT)) (-3156 ((|#1| $) NIL T ELT)) (-3798 (($ $) 43 T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-1749 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2299 ((|#1| $ (-484)) NIL T ELT)) (-2300 (((-694) $ (-484)) NIL T ELT)) (-3935 (($ $) 55 T ELT)) (-2531 (($ $ $) NIL T ELT)) (-2857 (($ $ $) NIL T ELT)) (-2290 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2291 (($ (-1 (-694) (-694)) $) NIL T ELT)) (-3939 (((-3 $ #1#) $ $) NIL T ELT) (((-3 $ #1#) $ |#1|) 26 T ELT)) (-2511 (((-85) $ $) 52 T ELT)) (-3832 (((-694) $) 35 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-1750 (($ $ $) NIL T ELT)) (-1751 (($ $ $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3800 ((|#1| $) 42 T ELT)) (-1778 (((-583 (-2 (|:| |gen| |#1|) (|:| -3942 (-694)))) $) NIL T ELT)) (-2879 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) #1#) $ $) NIL T ELT)) (-2565 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) #1#) $ $) NIL T ELT)) (-3945 (((-772) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2666 (($) 7 T CONST)) (-2566 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) 54 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ |#1| (-694)) NIL T ELT)) (* (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) +(((-739 |#1|) (-13 (-335 |#1|) (-754) (-10 -8 (-15 -3800 (|#1| $)) (-15 -3798 ($ $)) (-15 -3935 ($ $)) (-15 -2511 ((-85) $ $)) (-15 -3939 ((-3 $ #1="failed") $ |#1|)) (-15 -3938 ((-3 $ #1#) $ |#1|)) (-15 -2565 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) #1#) $ $)) (-15 -3832 ((-694) $)) (-15 -3933 ((-583 |#1|) $)))) (-756)) (T -739)) +((-3800 (*1 *2 *1) (-12 (-5 *1 (-739 *2)) (-4 *2 (-756)))) (-3798 (*1 *1 *1) (-12 (-5 *1 (-739 *2)) (-4 *2 (-756)))) (-3935 (*1 *1 *1) (-12 (-5 *1 (-739 *2)) (-4 *2 (-756)))) (-2511 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-739 *3)) (-4 *3 (-756)))) (-3939 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-739 *2)) (-4 *2 (-756)))) (-3938 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-739 *2)) (-4 *2 (-756)))) (-2565 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-739 *3)) (|:| |rm| (-739 *3)))) (-5 *1 (-739 *3)) (-4 *3 (-756)))) (-3832 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-739 *3)) (-4 *3 (-756)))) (-3933 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-739 *3)) (-4 *3 (-756))))) +((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) 55 T ELT)) (-2063 (($ $) 54 T ELT)) (-2061 (((-85) $) 52 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3622 (((-484) $) 69 T ELT)) (-3723 (($) 23 T CONST)) (-3466 (((-3 $ "failed") $) 42 T ELT)) (-3186 (((-85) $) 67 T ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3187 (((-85) $) 68 T ELT)) (-2531 (($ $ $) 61 T ELT)) (-2857 (($ $ $) 62 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3465 (((-3 $ "failed") $ $) 56 T ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ $) 57 T ELT)) (-3126 (((-694)) 40 T CONST)) (-1264 (((-85) $ $) 6 T ELT)) (-2062 (((-85) $ $) 53 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-3382 (($ $) 70 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-2566 (((-85) $ $) 63 T ELT)) (-2567 (((-85) $ $) 65 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-2684 (((-85) $ $) 64 T ELT)) (-2685 (((-85) $ $) 66 T ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT))) +(((-740) (-113)) (T -740)) +NIL +(-13 (-495) (-755)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-120) . T) ((-555 (-484)) . T) ((-555 $) . T) ((-552 (-772)) . T) ((-146) . T) ((-246) . T) ((-495) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 $) . T) ((-590 $) . T) ((-582 $) . T) ((-654 $) . T) ((-663) . T) ((-714) . T) ((-716) . T) ((-718) . T) ((-721) . T) ((-755) . T) ((-756) . T) ((-759) . T) ((-963 $) . T) ((-968 $) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T)) +((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-3958 (($ $) NIL T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-2512 ((|#1| $) 10 T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2513 (($ |#1|) 9 T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2893 (($ |#2| (-694)) NIL T ELT)) (-2820 (((-694) $) NIL T ELT)) (-3174 ((|#2| $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3757 (($ $) NIL (|has| |#1| (-190)) ELT) (($ $ (-694)) NIL (|has| |#1| (-190)) ELT)) (-3947 (((-694) $) NIL T ELT)) (-3945 (((-772) $) 17 T ELT) (($ (-484)) NIL T ELT) (($ |#2|) NIL (|has| |#2| (-146)) ELT)) (-3676 ((|#2| $ (-694)) NIL T ELT)) (-3126 (((-694)) NIL T CONST)) (-1264 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) NIL T CONST)) (-2666 (($) NIL T CONST)) (-2669 (($ $) NIL (|has| |#1| (-190)) ELT) (($ $ (-694)) NIL (|has| |#1| (-190)) ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 12 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT))) +(((-741 |#1| |#2|) (-13 (-645 |#2|) (-10 -8 (IF (|has| |#1| (-190)) (-6 (-190)) |%noBranch|) (-15 -2513 ($ |#1|)) (-15 -2512 (|#1| $)))) (-645 |#2|) (-961)) (T -741)) +((-2513 (*1 *1 *2) (-12 (-4 *3 (-961)) (-5 *1 (-741 *2 *3)) (-4 *2 (-645 *3)))) (-2512 (*1 *2 *1) (-12 (-4 *2 (-645 *3)) (-5 *1 (-741 *2 *3)) (-4 *3 (-961))))) +((-2568 (((-85) $ $) 19 T ELT)) (-3234 (($ |#1| $) 81 T ELT) (($ $ |#1|) 80 T ELT) (($ $ $) 79 T ELT)) (-3236 (($ $ $) 77 T ELT)) (-3235 (((-85) $ $) 78 T ELT)) (-3239 (($ (-583 |#1|)) 73 T ELT) (($) 72 T ELT)) (-1569 (($ (-1 (-85) |#1|) $) 49 (|has| $ (-6 -3994)) ELT)) (-3709 (($ (-1 (-85) |#1|) $) 59 (|has| $ (-6 -3994)) ELT)) (-3723 (($) 7 T CONST)) (-2368 (($ $) 66 T ELT)) (-1352 (($ $) 62 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-3404 (($ |#1| $) 51 (|has| $ (-6 -3994)) ELT) (($ (-1 (-85) |#1|) $) 50 (|has| $ (-6 -3994)) ELT)) (-3405 (($ |#1| $) 61 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT) (($ (-1 (-85) |#1|) $) 58 (|has| $ (-6 -3994)) ELT)) (-3841 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -3994)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -3994)) ELT)) (-2889 (((-583 |#1|) $) 30 (|has| $ (-6 -3994)) ELT)) (-3241 (((-85) $ $) 69 T ELT)) (-2531 ((|#1| $) 83 T ELT)) (-2856 (($ $ $) 86 T ELT)) (-3517 (($ $ $) 85 T ELT)) (-2608 (((-583 |#1|) $) 29 (|has| $ (-6 -3994)) ELT)) (-3245 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-2857 ((|#1| $) 84 T ELT)) (-1948 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3242 (((-1072) $) 22 T ELT)) (-3238 (($ $ $) 74 T ELT)) (-1273 ((|#1| $) 43 T ELT)) (-3608 (($ |#1| $) 44 T ELT) (($ |#1| $ (-694)) 67 T ELT)) (-3243 (((-1033) $) 21 T ELT)) (-1353 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 55 T ELT)) (-1274 ((|#1| $) 45 T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3994)) ELT)) (-3767 (($ $ (-583 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1221 (((-85) $ $) 11 T ELT)) (-3402 (((-85) $) 8 T ELT)) (-3564 (($) 9 T ELT)) (-2367 (((-583 (-2 (|:| |entry| |#1|) (|:| -1945 (-694)))) $) 65 T ELT)) (-3237 (($ $ |#1|) 76 T ELT) (($ $ $) 75 T ELT)) (-1465 (($) 53 T ELT) (($ (-583 |#1|)) 52 T ELT)) (-1945 (((-694) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3994)) ELT) (((-694) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-3399 (($ $) 10 T ELT)) (-3971 (((-473) $) 63 (|has| |#1| (-553 (-473))) ELT)) (-3529 (($ (-583 |#1|)) 54 T ELT)) (-3945 (((-772) $) 17 T ELT)) (-3240 (($ (-583 |#1|)) 71 T ELT) (($) 70 T ELT)) (-1264 (((-85) $ $) 20 T ELT)) (-1275 (($ (-583 |#1|)) 46 T ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3994)) ELT)) (-3056 (((-85) $ $) 18 T ELT)) (-3956 (((-694) $) 6 (|has| $ (-6 -3994)) ELT))) +(((-742 |#1|) (-113) (-756)) (T -742)) +((-2531 (*1 *2 *1) (-12 (-4 *1 (-742 *2)) (-4 *2 (-756))))) +(-13 (-676 |t#1|) (-881 |t#1|) (-10 -8 (-15 -2531 (|t#1| $)))) +(((-34) . T) ((-76 |#1|) . T) ((-72) . T) ((-552 (-772)) . T) ((-124 |#1|) . T) ((-553 (-473)) |has| |#1| (-553 (-473))) ((-193 |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-428 |#1|) . T) ((-455 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-634 |#1|) . T) ((-676 |#1|) . T) ((-881 |#1|) . T) ((-1011 |#1|) . T) ((-1013) . T) ((-1128) . T)) +((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL (|has| |#1| (-21)) ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-21)) ELT)) (-3622 (((-484) $) NIL (|has| |#1| (-755)) ELT)) (-3723 (($) NIL (|has| |#1| (-21)) CONST)) (-3157 (((-3 (-484) #1#) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-3 (-349 (-484)) #1#) $) NIL (|has| |#1| (-950 (-349 (-484)))) ELT) (((-3 |#1| #1#) $) 15 T ELT)) (-3156 (((-484) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-349 (-484)) $) NIL (|has| |#1| (-950 (-349 (-484)))) ELT) ((|#1| $) 9 T ELT)) (-3466 (((-3 $ #1#) $) 42 (|has| |#1| (-755)) ELT)) (-3024 (((-3 (-349 (-484)) #1#) $) 51 (|has| |#1| (-483)) ELT)) (-3023 (((-85) $) 46 (|has| |#1| (-483)) ELT)) (-3022 (((-349 (-484)) $) 48 (|has| |#1| (-483)) ELT)) (-3186 (((-85) $) NIL (|has| |#1| (-755)) ELT)) (-1213 (((-85) $ $) NIL (|has| |#1| (-21)) ELT)) (-2410 (((-85) $) NIL (|has| |#1| (-755)) ELT)) (-3187 (((-85) $) NIL (|has| |#1| (-755)) ELT)) (-2531 (($ $ $) NIL (|has| |#1| (-755)) ELT)) (-2857 (($ $ $) NIL (|has| |#1| (-755)) ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2514 (($) 13 T ELT)) (-2524 (((-85) $) 12 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2525 (((-85) $) 11 T ELT)) (-3945 (((-772) $) 18 T ELT) (($ (-349 (-484))) NIL (|has| |#1| (-950 (-349 (-484)))) ELT) (($ |#1|) 8 T ELT) (($ (-484)) NIL (OR (|has| |#1| (-755)) (|has| |#1| (-950 (-484)))) ELT)) (-3126 (((-694)) 36 (|has| |#1| (-755)) CONST)) (-1264 (((-85) $ $) 53 T ELT)) (-3125 (((-85) $ $) NIL (|has| |#1| (-755)) ELT)) (-3382 (($ $) NIL (|has| |#1| (-755)) ELT)) (-2660 (($) 23 (|has| |#1| (-21)) CONST)) (-2666 (($) 33 (|has| |#1| (-755)) CONST)) (-2566 (((-85) $ $) NIL (|has| |#1| (-755)) ELT)) (-2567 (((-85) $ $) NIL (|has| |#1| (-755)) ELT)) (-3056 (((-85) $ $) 21 T ELT)) (-2684 (((-85) $ $) NIL (|has| |#1| (-755)) ELT)) (-2685 (((-85) $ $) 45 (|has| |#1| (-755)) ELT)) (-3836 (($ $ $) NIL (|has| |#1| (-21)) ELT) (($ $) 29 (|has| |#1| (-21)) ELT)) (-3838 (($ $ $) 31 (|has| |#1| (-21)) ELT)) (** (($ $ (-830)) NIL (|has| |#1| (-755)) ELT) (($ $ (-694)) NIL (|has| |#1| (-755)) ELT)) (* (($ $ $) 39 (|has| |#1| (-755)) ELT) (($ (-484) $) 27 (|has| |#1| (-21)) ELT) (($ (-694) $) NIL (|has| |#1| (-21)) ELT) (($ (-830) $) NIL (|has| |#1| (-21)) ELT))) +(((-743 |#1|) (-13 (-1013) (-354 |#1|) (-10 -8 (-15 -2514 ($)) (-15 -2525 ((-85) $)) (-15 -2524 ((-85) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-755)) (-6 (-755)) |%noBranch|) (IF (|has| |#1| (-483)) (PROGN (-15 -3023 ((-85) $)) (-15 -3022 ((-349 (-484)) $)) (-15 -3024 ((-3 (-349 (-484)) "failed") $))) |%noBranch|))) (-1013)) (T -743)) +((-2514 (*1 *1) (-12 (-5 *1 (-743 *2)) (-4 *2 (-1013)))) (-2525 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-743 *3)) (-4 *3 (-1013)))) (-2524 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-743 *3)) (-4 *3 (-1013)))) (-3023 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-743 *3)) (-4 *3 (-483)) (-4 *3 (-1013)))) (-3022 (*1 *2 *1) (-12 (-5 *2 (-349 (-484))) (-5 *1 (-743 *3)) (-4 *3 (-483)) (-4 *3 (-1013)))) (-3024 (*1 *2 *1) (|partial| -12 (-5 *2 (-349 (-484))) (-5 *1 (-743 *3)) (-4 *3 (-483)) (-4 *3 (-1013))))) +((-3957 (((-743 |#2|) (-1 |#2| |#1|) (-743 |#1|) (-743 |#2|)) 12 T ELT) (((-743 |#2|) (-1 |#2| |#1|) (-743 |#1|)) 13 T ELT))) +(((-744 |#1| |#2|) (-10 -7 (-15 -3957 ((-743 |#2|) (-1 |#2| |#1|) (-743 |#1|))) (-15 -3957 ((-743 |#2|) (-1 |#2| |#1|) (-743 |#1|) (-743 |#2|)))) (-1013) (-1013)) (T -744)) +((-3957 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-743 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-743 *5)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-5 *1 (-744 *5 *6)))) (-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-743 *5)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-5 *2 (-743 *6)) (-5 *1 (-744 *5 *6))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-86) #1#) $) NIL T ELT)) (-3156 ((|#1| $) NIL T ELT) (((-86) $) NIL T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2516 ((|#1| (-86) |#1|) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2515 (($ |#1| (-310 (-86))) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2517 (($ $ (-1 |#1| |#1|)) NIL T ELT)) (-2518 (($ $ (-1 |#1| |#1|)) NIL T ELT)) (-3799 ((|#1| $ |#1|) NIL T ELT)) (-2519 ((|#1| |#1|) NIL (|has| |#1| (-146)) ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-86)) NIL T ELT)) (-2702 (((-632 $) $) NIL (|has| |#1| (-118)) ELT)) (-3126 (((-694)) NIL T CONST)) (-1264 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2520 (($ $) NIL (|has| |#1| (-146)) ELT) (($ $ $) NIL (|has| |#1| (-146)) ELT)) (-2660 (($) NIL T CONST)) (-2666 (($) NIL T CONST)) (-3056 (((-85) $ $) NIL T ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ (-86) (-484)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ |#1| $) NIL (|has| |#1| (-146)) ELT) (($ $ |#1|) NIL (|has| |#1| (-146)) ELT))) +(((-745 |#1|) (-13 (-961) (-950 |#1|) (-950 (-86)) (-241 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |#1| (-146)) (PROGN (-6 (-38 |#1|)) (-15 -2520 ($ $)) (-15 -2520 ($ $ $)) (-15 -2519 (|#1| |#1|))) |%noBranch|) (-15 -2518 ($ $ (-1 |#1| |#1|))) (-15 -2517 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-86) (-484))) (-15 ** ($ $ (-484))) (-15 -2516 (|#1| (-86) |#1|)) (-15 -2515 ($ |#1| (-310 (-86)))))) (-961)) (T -745)) +((-2520 (*1 *1 *1) (-12 (-5 *1 (-745 *2)) (-4 *2 (-146)) (-4 *2 (-961)))) (-2520 (*1 *1 *1 *1) (-12 (-5 *1 (-745 *2)) (-4 *2 (-146)) (-4 *2 (-961)))) (-2519 (*1 *2 *2) (-12 (-5 *1 (-745 *2)) (-4 *2 (-146)) (-4 *2 (-961)))) (-2518 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-745 *3)))) (-2517 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-745 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-484)) (-5 *1 (-745 *4)) (-4 *4 (-961)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-745 *3)) (-4 *3 (-961)))) (-2516 (*1 *2 *3 *2) (-12 (-5 *3 (-86)) (-5 *1 (-745 *2)) (-4 *2 (-961)))) (-2515 (*1 *1 *2 *3) (-12 (-5 *3 (-310 (-86))) (-5 *1 (-745 *2)) (-4 *2 (-961))))) +((-2633 (((-85) $ |#2|) 14 T ELT)) (-3945 (((-772) $) 11 T ELT))) +(((-746 |#1| |#2|) (-10 -7 (-15 -2633 ((-85) |#1| |#2|)) (-15 -3945 ((-772) |#1|))) (-747 |#2|) (-1013)) (T -746)) +NIL +((-2568 (((-85) $ $) 7 T ELT)) (-3541 ((|#1| $) 19 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-2633 (((-85) $ |#1|) 17 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3945 (((-772) $) 13 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-2521 (((-55) $) 18 T ELT)) (-3056 (((-85) $ $) 8 T ELT))) +(((-747 |#1|) (-113) (-1013)) (T -747)) +((-3541 (*1 *2 *1) (-12 (-4 *1 (-747 *2)) (-4 *2 (-1013)))) (-2521 (*1 *2 *1) (-12 (-4 *1 (-747 *3)) (-4 *3 (-1013)) (-5 *2 (-55)))) (-2633 (*1 *2 *1 *3) (-12 (-4 *1 (-747 *3)) (-4 *3 (-1013)) (-5 *2 (-85))))) +(-13 (-1013) (-10 -8 (-15 -3541 (|t#1| $)) (-15 -2521 ((-55) $)) (-15 -2633 ((-85) $ |t#1|)))) +(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-1013) . T) ((-1128) . T)) +((-2522 (((-167 (-441)) (-1072)) 9 T ELT))) +(((-748) (-10 -7 (-15 -2522 ((-167 (-441)) (-1072))))) (T -748)) +((-2522 (*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-167 (-441))) (-5 *1 (-748))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3319 (((-1028) $) 10 T ELT)) (-3541 (((-446) $) 9 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2633 (((-85) $ (-446)) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3529 (($ (-446) (-1028)) 8 T ELT)) (-3945 (((-772) $) 25 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2521 (((-55) $) 20 T ELT)) (-3056 (((-85) $ $) 12 T ELT))) +(((-749) (-13 (-747 (-446)) (-10 -8 (-15 -3319 ((-1028) $)) (-15 -3529 ($ (-446) (-1028)))))) (T -749)) +((-3319 (*1 *2 *1) (-12 (-5 *2 (-1028)) (-5 *1 (-749)))) (-3529 (*1 *1 *2 *3) (-12 (-5 *2 (-446)) (-5 *3 (-1028)) (-5 *1 (-749))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL (|has| |#1| (-21)) ELT)) (-2523 (((-1033) $) 31 T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-21)) ELT)) (-3622 (((-484) $) NIL (|has| |#1| (-755)) ELT)) (-3723 (($) NIL (|has| |#1| (-21)) CONST)) (-3157 (((-3 (-484) #1#) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-3 (-349 (-484)) #1#) $) NIL (|has| |#1| (-950 (-349 (-484)))) ELT) (((-3 |#1| #1#) $) 18 T ELT)) (-3156 (((-484) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-349 (-484)) $) NIL (|has| |#1| (-950 (-349 (-484)))) ELT) ((|#1| $) 9 T ELT)) (-3466 (((-3 $ #1#) $) 57 (|has| |#1| (-755)) ELT)) (-3024 (((-3 (-349 (-484)) #1#) $) 65 (|has| |#1| (-483)) ELT)) (-3023 (((-85) $) 60 (|has| |#1| (-483)) ELT)) (-3022 (((-349 (-484)) $) 63 (|has| |#1| (-483)) ELT)) (-3186 (((-85) $) NIL (|has| |#1| (-755)) ELT)) (-2527 (($) 14 T ELT)) (-1213 (((-85) $ $) NIL (|has| |#1| (-21)) ELT)) (-2410 (((-85) $) NIL (|has| |#1| (-755)) ELT)) (-3187 (((-85) $) NIL (|has| |#1| (-755)) ELT)) (-2526 (($) 16 T ELT)) (-2531 (($ $ $) NIL (|has| |#1| (-755)) ELT)) (-2857 (($ $ $) NIL (|has| |#1| (-755)) ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2524 (((-85) $) 12 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2525 (((-85) $) 11 T ELT)) (-3945 (((-772) $) 24 T ELT) (($ (-349 (-484))) NIL (|has| |#1| (-950 (-349 (-484)))) ELT) (($ |#1|) 8 T ELT) (($ (-484)) NIL (OR (|has| |#1| (-755)) (|has| |#1| (-950 (-484)))) ELT)) (-3126 (((-694)) 50 (|has| |#1| (-755)) CONST)) (-1264 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL (|has| |#1| (-755)) ELT)) (-3382 (($ $) NIL (|has| |#1| (-755)) ELT)) (-2660 (($) 37 (|has| |#1| (-21)) CONST)) (-2666 (($) 47 (|has| |#1| (-755)) CONST)) (-2566 (((-85) $ $) NIL (|has| |#1| (-755)) ELT)) (-2567 (((-85) $ $) NIL (|has| |#1| (-755)) ELT)) (-3056 (((-85) $ $) 35 T ELT)) (-2684 (((-85) $ $) NIL (|has| |#1| (-755)) ELT)) (-2685 (((-85) $ $) 59 (|has| |#1| (-755)) ELT)) (-3836 (($ $ $) NIL (|has| |#1| (-21)) ELT) (($ $) 43 (|has| |#1| (-21)) ELT)) (-3838 (($ $ $) 45 (|has| |#1| (-21)) ELT)) (** (($ $ (-830)) NIL (|has| |#1| (-755)) ELT) (($ $ (-694)) NIL (|has| |#1| (-755)) ELT)) (* (($ $ $) 54 (|has| |#1| (-755)) ELT) (($ (-484) $) 41 (|has| |#1| (-21)) ELT) (($ (-694) $) NIL (|has| |#1| (-21)) ELT) (($ (-830) $) NIL (|has| |#1| (-21)) ELT))) +(((-750 |#1|) (-13 (-1013) (-354 |#1|) (-10 -8 (-15 -2527 ($)) (-15 -2526 ($)) (-15 -2525 ((-85) $)) (-15 -2524 ((-85) $)) (-15 -2523 ((-1033) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-755)) (-6 (-755)) |%noBranch|) (IF (|has| |#1| (-483)) (PROGN (-15 -3023 ((-85) $)) (-15 -3022 ((-349 (-484)) $)) (-15 -3024 ((-3 (-349 (-484)) "failed") $))) |%noBranch|))) (-1013)) (T -750)) +((-2527 (*1 *1) (-12 (-5 *1 (-750 *2)) (-4 *2 (-1013)))) (-2526 (*1 *1) (-12 (-5 *1 (-750 *2)) (-4 *2 (-1013)))) (-2525 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-750 *3)) (-4 *3 (-1013)))) (-2524 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-750 *3)) (-4 *3 (-1013)))) (-2523 (*1 *2 *1) (-12 (-5 *2 (-1033)) (-5 *1 (-750 *3)) (-4 *3 (-1013)))) (-3023 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-750 *3)) (-4 *3 (-483)) (-4 *3 (-1013)))) (-3022 (*1 *2 *1) (-12 (-5 *2 (-349 (-484))) (-5 *1 (-750 *3)) (-4 *3 (-483)) (-4 *3 (-1013)))) (-3024 (*1 *2 *1) (|partial| -12 (-5 *2 (-349 (-484))) (-5 *1 (-750 *3)) (-4 *3 (-483)) (-4 *3 (-1013))))) +((-3957 (((-750 |#2|) (-1 |#2| |#1|) (-750 |#1|) (-750 |#2|) (-750 |#2|)) 13 T ELT) (((-750 |#2|) (-1 |#2| |#1|) (-750 |#1|)) 14 T ELT))) +(((-751 |#1| |#2|) (-10 -7 (-15 -3957 ((-750 |#2|) (-1 |#2| |#1|) (-750 |#1|))) (-15 -3957 ((-750 |#2|) (-1 |#2| |#1|) (-750 |#1|) (-750 |#2|) (-750 |#2|)))) (-1013) (-1013)) (T -751)) +((-3957 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-750 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-750 *5)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-5 *1 (-751 *5 *6)))) (-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-750 *5)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-5 *2 (-750 *6)) (-5 *1 (-751 *5 *6))))) +((-2568 (((-85) $ $) 7 T ELT)) (-3136 (((-694)) 27 T ELT)) (-2994 (($) 30 T ELT)) (-2531 (($ $ $) 23 T ELT) (($) 26 T CONST)) (-2857 (($ $ $) 22 T ELT) (($) 25 T CONST)) (-2010 (((-830) $) 29 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-2400 (($ (-830)) 28 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3945 (((-772) $) 13 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-2566 (((-85) $ $) 21 T ELT)) (-2567 (((-85) $ $) 19 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-2684 (((-85) $ $) 20 T ELT)) (-2685 (((-85) $ $) 18 T ELT))) +(((-752) (-113)) (T -752)) +((-2531 (*1 *1) (-4 *1 (-752))) (-2857 (*1 *1) (-4 *1 (-752)))) +(-13 (-756) (-319) (-10 -8 (-15 -2531 ($) -3951) (-15 -2857 ($) -3951))) +(((-72) . T) ((-552 (-772)) . T) ((-319) . T) ((-13) . T) ((-756) . T) ((-759) . T) ((-1013) . T) ((-1128) . T)) +((-2529 (((-85) (-1178 |#2|) (-1178 |#2|)) 19 T ELT)) (-2530 (((-85) (-1178 |#2|) (-1178 |#2|)) 20 T ELT)) (-2528 (((-85) (-1178 |#2|) (-1178 |#2|)) 16 T ELT))) +(((-753 |#1| |#2|) (-10 -7 (-15 -2528 ((-85) (-1178 |#2|) (-1178 |#2|))) (-15 -2529 ((-85) (-1178 |#2|) (-1178 |#2|))) (-15 -2530 ((-85) (-1178 |#2|) (-1178 |#2|)))) (-694) (-716)) (T -753)) +((-2530 (*1 *2 *3 *3) (-12 (-5 *3 (-1178 *5)) (-4 *5 (-716)) (-5 *2 (-85)) (-5 *1 (-753 *4 *5)) (-14 *4 (-694)))) (-2529 (*1 *2 *3 *3) (-12 (-5 *3 (-1178 *5)) (-4 *5 (-716)) (-5 *2 (-85)) (-5 *1 (-753 *4 *5)) (-14 *4 (-694)))) (-2528 (*1 *2 *3 *3) (-12 (-5 *3 (-1178 *5)) (-4 *5 (-716)) (-5 *2 (-85)) (-5 *1 (-753 *4 *5)) (-14 *4 (-694))))) +((-2568 (((-85) $ $) 7 T ELT)) (-3723 (($) 29 T CONST)) (-3466 (((-3 $ "failed") $) 32 T ELT)) (-2410 (((-85) $) 30 T ELT)) (-2531 (($ $ $) 23 T ELT)) (-2857 (($ $ $) 22 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3945 (((-772) $) 13 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-2666 (($) 28 T CONST)) (-2566 (((-85) $ $) 21 T ELT)) (-2567 (((-85) $ $) 19 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-2684 (((-85) $ $) 20 T ELT)) (-2685 (((-85) $ $) 18 T ELT)) (** (($ $ (-830)) 26 T ELT) (($ $ (-694)) 31 T ELT)) (* (($ $ $) 25 T ELT))) (((-754) (-113)) (T -754)) NIL -(-13 (-713) (-120) (-662)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-120) . T) ((-554 (-483)) . T) ((-551 (-771)) . T) ((-13) . T) ((-587 (-483)) . T) ((-587 $) . T) ((-589 $) . T) ((-662) . T) ((-713) . T) ((-715) . T) ((-717) . T) ((-720) . T) ((-755) . T) ((-758) . T) ((-960) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T)) -((-2567 (((-85) $ $) 7 T ELT)) (-2530 (($ $ $) 23 T ELT)) (-2856 (($ $ $) 22 T ELT)) (-3241 (((-1071) $) 11 T ELT)) (-3242 (((-1032) $) 12 T ELT)) (-3944 (((-771) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2565 (((-85) $ $) 21 T ELT)) (-2566 (((-85) $ $) 19 T ELT)) (-3055 (((-85) $ $) 8 T ELT)) (-2683 (((-85) $ $) 20 T ELT)) (-2684 (((-85) $ $) 18 T ELT))) +(-13 (-766) (-663)) +(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-663) . T) ((-766) . T) ((-756) . T) ((-759) . T) ((-1025) . T) ((-1013) . T) ((-1128) . T)) +((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 31 T ELT)) (-1311 (((-3 $ "failed") $ $) 35 T ELT)) (-3622 (((-484) $) 38 T ELT)) (-3723 (($) 30 T CONST)) (-3466 (((-3 $ "failed") $) 55 T ELT)) (-3186 (((-85) $) 28 T ELT)) (-1213 (((-85) $ $) 33 T ELT)) (-2410 (((-85) $) 53 T ELT)) (-3187 (((-85) $) 39 T ELT)) (-2531 (($ $ $) 23 T ELT)) (-2857 (($ $ $) 22 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-484)) 56 T ELT)) (-3126 (((-694)) 57 T CONST)) (-1264 (((-85) $ $) 6 T ELT)) (-3125 (((-85) $ $) 51 T ELT)) (-3382 (($ $) 37 T ELT)) (-2660 (($) 29 T CONST)) (-2666 (($) 52 T CONST)) (-2566 (((-85) $ $) 21 T ELT)) (-2567 (((-85) $ $) 19 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-2684 (((-85) $ $) 20 T ELT)) (-2685 (((-85) $ $) 18 T ELT)) (-3836 (($ $ $) 42 T ELT) (($ $) 41 T ELT)) (-3838 (($ $ $) 25 T ELT)) (** (($ $ (-694)) 54 T ELT) (($ $ (-830)) 49 T ELT)) (* (($ (-830) $) 26 T ELT) (($ (-694) $) 32 T ELT) (($ (-484) $) 40 T ELT) (($ $ $) 50 T ELT))) (((-755) (-113)) (T -755)) NIL -(-13 (-1012) (-758)) -(((-72) . T) ((-551 (-771)) . T) ((-13) . T) ((-758) . T) ((-1012) . T) ((-1127) . T)) -((-2567 (((-85) $ $) NIL T ELT)) (-2530 (($ $ $) NIL T ELT)) (-2856 (($ $ $) NIL T ELT)) (-3944 (($ |#1|) 10 T ELT) ((|#1| $) 9 T ELT) (((-771) $) 15 (|has| |#1| (-551 (-771))) ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2565 (((-85) $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-2683 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) 12 T ELT))) -(((-756 |#1| |#2|) (-13 (-758) (-428 |#1|) (-10 -7 (IF (|has| |#1| (-551 (-771))) (-6 (-551 (-771))) |%noBranch|))) (-1127) (-1 (-85) |#1| |#1|)) (T -756)) -NIL -((-2530 (($ $ $) 16 T ELT)) (-2856 (($ $ $) 15 T ELT)) (-1263 (((-85) $ $) 17 T ELT)) (-2565 (((-85) $ $) 12 T ELT)) (-2566 (((-85) $ $) 9 T ELT)) (-3055 (((-85) $ $) 14 T ELT)) (-2683 (((-85) $ $) 11 T ELT))) -(((-757 |#1|) (-10 -7 (-15 -2530 (|#1| |#1| |#1|)) (-15 -2856 (|#1| |#1| |#1|)) (-15 -2565 ((-85) |#1| |#1|)) (-15 -2683 ((-85) |#1| |#1|)) (-15 -2566 ((-85) |#1| |#1|)) (-15 -1263 ((-85) |#1| |#1|)) (-15 -3055 ((-85) |#1| |#1|))) (-758)) (T -757)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-2530 (($ $ $) 10 T ELT)) (-2856 (($ $ $) 11 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2565 (((-85) $ $) 12 T ELT)) (-2566 (((-85) $ $) 14 T ELT)) (-3055 (((-85) $ $) 8 T ELT)) (-2683 (((-85) $ $) 13 T ELT)) (-2684 (((-85) $ $) 15 T ELT))) -(((-758) (-113)) (T -758)) -((-2684 (*1 *2 *1 *1) (-12 (-4 *1 (-758)) (-5 *2 (-85)))) (-2566 (*1 *2 *1 *1) (-12 (-4 *1 (-758)) (-5 *2 (-85)))) (-2683 (*1 *2 *1 *1) (-12 (-4 *1 (-758)) (-5 *2 (-85)))) (-2565 (*1 *2 *1 *1) (-12 (-4 *1 (-758)) (-5 *2 (-85)))) (-2856 (*1 *1 *1 *1) (-4 *1 (-758))) (-2530 (*1 *1 *1 *1) (-4 *1 (-758)))) -(-13 (-72) (-10 -8 (-15 -2684 ((-85) $ $)) (-15 -2566 ((-85) $ $)) (-15 -2683 ((-85) $ $)) (-15 -2565 ((-85) $ $)) (-15 -2856 ($ $ $)) (-15 -2530 ($ $ $)))) -(((-72) . T) ((-13) . T) ((-1127) . T)) -((-2535 (($ $ $) 49 T ELT)) (-2536 (($ $ $) 48 T ELT)) (-2537 (($ $ $) 46 T ELT)) (-2533 (($ $ $) 55 T ELT)) (-2532 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) 50 T ELT)) (-2534 (((-3 $ #1="failed") $ $) 53 T ELT)) (-3156 (((-3 (-483) #1#) $) NIL T ELT) (((-3 (-348 (-483)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 29 T ELT)) (-3501 (($ $) 39 T ELT)) (-2541 (($ $ $) 43 T ELT)) (-2542 (($ $ $) 42 T ELT)) (-2531 (($ $ $) 51 T ELT)) (-2539 (($ $ $) 57 T ELT)) (-2538 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) 45 T ELT)) (-2540 (((-3 $ #1#) $ $) 52 T ELT)) (-3464 (((-3 $ #1#) $ |#2|) 32 T ELT)) (-2816 ((|#2| $) 36 T ELT)) (-3944 (((-771) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ (-348 (-483))) NIL T ELT) (($ |#2|) 13 T ELT)) (-3815 (((-582 |#2|) $) 21 T ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 25 T ELT))) -(((-759 |#1| |#2|) (-10 -7 (-15 -2531 (|#1| |#1| |#1|)) (-15 -2532 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2408 |#1|)) |#1| |#1|)) (-15 -2533 (|#1| |#1| |#1|)) (-15 -2534 ((-3 |#1| #1="failed") |#1| |#1|)) (-15 -2535 (|#1| |#1| |#1|)) (-15 -2536 (|#1| |#1| |#1|)) (-15 -2537 (|#1| |#1| |#1|)) (-15 -2538 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2408 |#1|)) |#1| |#1|)) (-15 -2539 (|#1| |#1| |#1|)) (-15 -2540 ((-3 |#1| #1#) |#1| |#1|)) (-15 -2541 (|#1| |#1| |#1|)) (-15 -2542 (|#1| |#1| |#1|)) (-15 -3501 (|#1| |#1|)) (-15 -2816 (|#2| |#1|)) (-15 -3464 ((-3 |#1| #1#) |#1| |#2|)) (-15 -3815 ((-582 |#2|) |#1|)) (-15 -3944 (|#1| |#2|)) (-15 -3156 ((-3 |#2| #1#) |#1|)) (-15 -3156 ((-3 (-348 (-483)) #1#) |#1|)) (-15 -3944 (|#1| (-348 (-483)))) (-15 -3156 ((-3 (-483) #1#) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3944 (|#1| (-483))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-483) |#1|)) (-15 * (|#1| (-693) |#1|)) (-15 * (|#1| (-829) |#1|)) (-15 -3944 ((-771) |#1|))) (-760 |#2|) (-960)) (T -759)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-3187 (((-85) $) 22 T ELT)) (-1310 (((-3 $ "failed") $ $) 26 T ELT)) (-3722 (($) 23 T CONST)) (-2535 (($ $ $) 58 (|has| |#1| (-312)) ELT)) (-2536 (($ $ $) 59 (|has| |#1| (-312)) ELT)) (-2537 (($ $ $) 61 (|has| |#1| (-312)) ELT)) (-2533 (($ $ $) 56 (|has| |#1| (-312)) ELT)) (-2532 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) 55 (|has| |#1| (-312)) ELT)) (-2534 (((-3 $ "failed") $ $) 57 (|has| |#1| (-312)) ELT)) (-2548 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) 60 (|has| |#1| (-312)) ELT)) (-3156 (((-3 (-483) #1="failed") $) 88 (|has| |#1| (-949 (-483))) ELT) (((-3 (-348 (-483)) #1#) $) 85 (|has| |#1| (-949 (-348 (-483)))) ELT) (((-3 |#1| #1#) $) 82 T ELT)) (-3155 (((-483) $) 87 (|has| |#1| (-949 (-483))) ELT) (((-348 (-483)) $) 84 (|has| |#1| (-949 (-348 (-483)))) ELT) ((|#1| $) 83 T ELT)) (-3957 (($ $) 77 T ELT)) (-3465 (((-3 $ "failed") $) 42 T ELT)) (-3501 (($ $) 68 (|has| |#1| (-390)) ELT)) (-1212 (((-85) $ $) 20 T ELT)) (-2409 (((-85) $) 44 T ELT)) (-2892 (($ |#1| (-693)) 75 T ELT)) (-2546 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) 70 (|has| |#1| (-494)) ELT)) (-2545 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) 71 (|has| |#1| (-494)) ELT)) (-2819 (((-693) $) 79 T ELT)) (-2541 (($ $ $) 65 (|has| |#1| (-312)) ELT)) (-2542 (($ $ $) 66 (|has| |#1| (-312)) ELT)) (-2531 (($ $ $) 54 (|has| |#1| (-312)) ELT)) (-2539 (($ $ $) 63 (|has| |#1| (-312)) ELT)) (-2538 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) 62 (|has| |#1| (-312)) ELT)) (-2540 (((-3 $ "failed") $ $) 64 (|has| |#1| (-312)) ELT)) (-2547 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) 67 (|has| |#1| (-312)) ELT)) (-3173 ((|#1| $) 78 T ELT)) (-3241 (((-1071) $) 11 T ELT)) (-3242 (((-1032) $) 12 T ELT)) (-3464 (((-3 $ "failed") $ |#1|) 72 (|has| |#1| (-494)) ELT)) (-3946 (((-693) $) 80 T ELT)) (-2816 ((|#1| $) 69 (|has| |#1| (-390)) ELT)) (-3944 (((-771) $) 13 T ELT) (($ (-483)) 41 T ELT) (($ (-348 (-483))) 86 (|has| |#1| (-949 (-348 (-483)))) ELT) (($ |#1|) 81 T ELT)) (-3815 (((-582 |#1|) $) 74 T ELT)) (-3675 ((|#1| $ (-693)) 76 T ELT)) (-3125 (((-693)) 40 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-2544 ((|#1| $ |#1| |#1|) 73 T ELT)) (-3124 (((-85) $ $) 33 T ELT)) (-2659 (($) 24 T CONST)) (-2665 (($) 45 T CONST)) (-3055 (((-85) $ $) 8 T ELT)) (-3835 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3837 (($ $ $) 18 T ELT)) (** (($ $ (-829)) 35 T ELT) (($ $ (-693)) 43 T ELT)) (* (($ (-829) $) 17 T ELT) (($ (-693) $) 21 T ELT) (($ (-483) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 90 T ELT) (($ |#1| $) 89 T ELT))) -(((-760 |#1|) (-113) (-960)) (T -760)) -((-3946 (*1 *2 *1) (-12 (-4 *1 (-760 *3)) (-4 *3 (-960)) (-5 *2 (-693)))) (-2819 (*1 *2 *1) (-12 (-4 *1 (-760 *3)) (-4 *3 (-960)) (-5 *2 (-693)))) (-3173 (*1 *2 *1) (-12 (-4 *1 (-760 *2)) (-4 *2 (-960)))) (-3957 (*1 *1 *1) (-12 (-4 *1 (-760 *2)) (-4 *2 (-960)))) (-3675 (*1 *2 *1 *3) (-12 (-5 *3 (-693)) (-4 *1 (-760 *2)) (-4 *2 (-960)))) (-2892 (*1 *1 *2 *3) (-12 (-5 *3 (-693)) (-4 *1 (-760 *2)) (-4 *2 (-960)))) (-3815 (*1 *2 *1) (-12 (-4 *1 (-760 *3)) (-4 *3 (-960)) (-5 *2 (-582 *3)))) (-2544 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-760 *2)) (-4 *2 (-960)))) (-3464 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-760 *2)) (-4 *2 (-960)) (-4 *2 (-494)))) (-2545 (*1 *2 *1 *1) (-12 (-4 *3 (-494)) (-4 *3 (-960)) (-5 *2 (-2 (|:| -1971 *1) (|:| -2901 *1))) (-4 *1 (-760 *3)))) (-2546 (*1 *2 *1 *1) (-12 (-4 *3 (-494)) (-4 *3 (-960)) (-5 *2 (-2 (|:| -1971 *1) (|:| -2901 *1))) (-4 *1 (-760 *3)))) (-2816 (*1 *2 *1) (-12 (-4 *1 (-760 *2)) (-4 *2 (-960)) (-4 *2 (-390)))) (-3501 (*1 *1 *1) (-12 (-4 *1 (-760 *2)) (-4 *2 (-960)) (-4 *2 (-390)))) (-2547 (*1 *2 *1 *1) (-12 (-4 *3 (-312)) (-4 *3 (-960)) (-5 *2 (-2 (|:| -1971 *1) (|:| -2901 *1))) (-4 *1 (-760 *3)))) (-2542 (*1 *1 *1 *1) (-12 (-4 *1 (-760 *2)) (-4 *2 (-960)) (-4 *2 (-312)))) (-2541 (*1 *1 *1 *1) (-12 (-4 *1 (-760 *2)) (-4 *2 (-960)) (-4 *2 (-312)))) (-2540 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-760 *2)) (-4 *2 (-960)) (-4 *2 (-312)))) (-2539 (*1 *1 *1 *1) (-12 (-4 *1 (-760 *2)) (-4 *2 (-960)) (-4 *2 (-312)))) (-2538 (*1 *2 *1 *1) (-12 (-4 *3 (-312)) (-4 *3 (-960)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2408 *1))) (-4 *1 (-760 *3)))) (-2537 (*1 *1 *1 *1) (-12 (-4 *1 (-760 *2)) (-4 *2 (-960)) (-4 *2 (-312)))) (-2548 (*1 *2 *1 *1) (-12 (-4 *3 (-312)) (-4 *3 (-960)) (-5 *2 (-2 (|:| -1971 *1) (|:| -2901 *1))) (-4 *1 (-760 *3)))) (-2536 (*1 *1 *1 *1) (-12 (-4 *1 (-760 *2)) (-4 *2 (-960)) (-4 *2 (-312)))) (-2535 (*1 *1 *1 *1) (-12 (-4 *1 (-760 *2)) (-4 *2 (-960)) (-4 *2 (-312)))) (-2534 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-760 *2)) (-4 *2 (-960)) (-4 *2 (-312)))) (-2533 (*1 *1 *1 *1) (-12 (-4 *1 (-760 *2)) (-4 *2 (-960)) (-4 *2 (-312)))) (-2532 (*1 *2 *1 *1) (-12 (-4 *3 (-312)) (-4 *3 (-960)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2408 *1))) (-4 *1 (-760 *3)))) (-2531 (*1 *1 *1 *1) (-12 (-4 *1 (-760 *2)) (-4 *2 (-960)) (-4 *2 (-312))))) -(-13 (-960) (-82 |t#1| |t#1|) (-353 |t#1|) (-10 -8 (-15 -3946 ((-693) $)) (-15 -2819 ((-693) $)) (-15 -3173 (|t#1| $)) (-15 -3957 ($ $)) (-15 -3675 (|t#1| $ (-693))) (-15 -2892 ($ |t#1| (-693))) (-15 -3815 ((-582 |t#1|) $)) (-15 -2544 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-146)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-494)) (PROGN (-15 -3464 ((-3 $ "failed") $ |t#1|)) (-15 -2545 ((-2 (|:| -1971 $) (|:| -2901 $)) $ $)) (-15 -2546 ((-2 (|:| -1971 $) (|:| -2901 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-390)) (PROGN (-15 -2816 (|t#1| $)) (-15 -3501 ($ $))) |%noBranch|) (IF (|has| |t#1| (-312)) (PROGN (-15 -2547 ((-2 (|:| -1971 $) (|:| -2901 $)) $ $)) (-15 -2542 ($ $ $)) (-15 -2541 ($ $ $)) (-15 -2540 ((-3 $ "failed") $ $)) (-15 -2539 ($ $ $)) (-15 -2538 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $)) (-15 -2537 ($ $ $)) (-15 -2548 ((-2 (|:| -1971 $) (|:| -2901 $)) $ $)) (-15 -2536 ($ $ $)) (-15 -2535 ($ $ $)) (-15 -2534 ((-3 $ "failed") $ $)) (-15 -2533 ($ $ $)) (-15 -2532 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $)) (-15 -2531 ($ $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-146)) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-554 (-348 (-483))) |has| |#1| (-949 (-348 (-483)))) ((-554 (-483)) . T) ((-554 |#1|) . T) ((-551 (-771)) . T) ((-353 |#1|) . T) ((-13) . T) ((-587 (-483)) . T) ((-587 |#1|) . T) ((-587 $) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-581 |#1|) |has| |#1| (-146)) ((-653 |#1|) |has| |#1| (-146)) ((-662) . T) ((-949 (-348 (-483))) |has| |#1| (-949 (-348 (-483)))) ((-949 (-483)) |has| |#1| (-949 (-483))) ((-949 |#1|) . T) ((-962 |#1|) . T) ((-967 |#1|) . T) ((-960) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T)) -((-2543 ((|#2| |#2| |#2| (-69 |#1|) (-1 |#1| |#1|)) 20 T ELT)) (-2548 (((-2 (|:| -1971 |#2|) (|:| -2901 |#2|)) |#2| |#2| (-69 |#1|)) 46 (|has| |#1| (-312)) ELT)) (-2546 (((-2 (|:| -1971 |#2|) (|:| -2901 |#2|)) |#2| |#2| (-69 |#1|)) 43 (|has| |#1| (-494)) ELT)) (-2545 (((-2 (|:| -1971 |#2|) (|:| -2901 |#2|)) |#2| |#2| (-69 |#1|)) 42 (|has| |#1| (-494)) ELT)) (-2547 (((-2 (|:| -1971 |#2|) (|:| -2901 |#2|)) |#2| |#2| (-69 |#1|)) 45 (|has| |#1| (-312)) ELT)) (-2544 ((|#1| |#2| |#1| |#1| (-69 |#1|) (-1 |#1| |#1|)) 33 T ELT))) -(((-761 |#1| |#2|) (-10 -7 (-15 -2543 (|#2| |#2| |#2| (-69 |#1|) (-1 |#1| |#1|))) (-15 -2544 (|#1| |#2| |#1| |#1| (-69 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-494)) (PROGN (-15 -2545 ((-2 (|:| -1971 |#2|) (|:| -2901 |#2|)) |#2| |#2| (-69 |#1|))) (-15 -2546 ((-2 (|:| -1971 |#2|) (|:| -2901 |#2|)) |#2| |#2| (-69 |#1|)))) |%noBranch|) (IF (|has| |#1| (-312)) (PROGN (-15 -2547 ((-2 (|:| -1971 |#2|) (|:| -2901 |#2|)) |#2| |#2| (-69 |#1|))) (-15 -2548 ((-2 (|:| -1971 |#2|) (|:| -2901 |#2|)) |#2| |#2| (-69 |#1|)))) |%noBranch|)) (-960) (-760 |#1|)) (T -761)) -((-2548 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-69 *5)) (-4 *5 (-312)) (-4 *5 (-960)) (-5 *2 (-2 (|:| -1971 *3) (|:| -2901 *3))) (-5 *1 (-761 *5 *3)) (-4 *3 (-760 *5)))) (-2547 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-69 *5)) (-4 *5 (-312)) (-4 *5 (-960)) (-5 *2 (-2 (|:| -1971 *3) (|:| -2901 *3))) (-5 *1 (-761 *5 *3)) (-4 *3 (-760 *5)))) (-2546 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-69 *5)) (-4 *5 (-494)) (-4 *5 (-960)) (-5 *2 (-2 (|:| -1971 *3) (|:| -2901 *3))) (-5 *1 (-761 *5 *3)) (-4 *3 (-760 *5)))) (-2545 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-69 *5)) (-4 *5 (-494)) (-4 *5 (-960)) (-5 *2 (-2 (|:| -1971 *3) (|:| -2901 *3))) (-5 *1 (-761 *5 *3)) (-4 *3 (-760 *5)))) (-2544 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-69 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-960)) (-5 *1 (-761 *2 *3)) (-4 *3 (-760 *2)))) (-2543 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-69 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-960)) (-5 *1 (-761 *5 *2)) (-4 *2 (-760 *5))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3187 (((-85) $) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3722 (($) NIL T CONST)) (-2535 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2536 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2537 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2533 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2532 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-2534 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-2548 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) 34 (|has| |#1| (-312)) ELT)) (-3156 (((-3 (-483) #1#) $) NIL (|has| |#1| (-949 (-483))) ELT) (((-3 (-348 (-483)) #1#) $) NIL (|has| |#1| (-949 (-348 (-483)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3155 (((-483) $) NIL (|has| |#1| (-949 (-483))) ELT) (((-348 (-483)) $) NIL (|has| |#1| (-949 (-348 (-483)))) ELT) ((|#1| $) NIL T ELT)) (-3957 (($ $) NIL T ELT)) (-3465 (((-3 $ #1#) $) NIL T ELT)) (-3501 (($ $) NIL (|has| |#1| (-390)) ELT)) (-3531 (((-771) $ (-771)) NIL T ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-2409 (((-85) $) NIL T ELT)) (-2892 (($ |#1| (-693)) NIL T ELT)) (-2546 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) 30 (|has| |#1| (-494)) ELT)) (-2545 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) 28 (|has| |#1| (-494)) ELT)) (-2819 (((-693) $) NIL T ELT)) (-2541 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2542 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2531 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2539 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2538 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-2540 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-2547 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) 32 (|has| |#1| (-312)) ELT)) (-3173 ((|#1| $) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3464 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-494)) ELT)) (-3946 (((-693) $) NIL T ELT)) (-2816 ((|#1| $) NIL (|has| |#1| (-390)) ELT)) (-3944 (((-771) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ (-348 (-483))) NIL (|has| |#1| (-949 (-348 (-483)))) ELT) (($ |#1|) NIL T ELT)) (-3815 (((-582 |#1|) $) NIL T ELT)) (-3675 ((|#1| $ (-693)) NIL T ELT)) (-3125 (((-693)) NIL T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-2544 ((|#1| $ |#1| |#1|) 15 T ELT)) (-3124 (((-85) $ $) NIL T ELT)) (-2659 (($) NIL T CONST)) (-2665 (($) 23 T CONST)) (-3055 (((-85) $ $) NIL T ELT)) (-3835 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3837 (($ $ $) NIL T ELT)) (** (($ $ (-829)) 19 T ELT) (($ $ (-693)) 24 T ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) 13 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-762 |#1| |#2| |#3|) (-13 (-760 |#1|) (-10 -8 (-15 -3531 ((-771) $ (-771))))) (-960) (-69 |#1|) (-1 |#1| |#1|)) (T -762)) -((-3531 (*1 *2 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-762 *3 *4 *5)) (-4 *3 (-960)) (-14 *4 (-69 *3)) (-14 *5 (-1 *3 *3))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3187 (((-85) $) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3722 (($) NIL T CONST)) (-2535 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-2536 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-2537 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-2533 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-2532 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL (|has| |#2| (-312)) ELT)) (-2534 (((-3 $ #1#) $ $) NIL (|has| |#2| (-312)) ELT)) (-2548 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL (|has| |#2| (-312)) ELT)) (-3156 (((-3 (-483) #1#) $) NIL (|has| |#2| (-949 (-483))) ELT) (((-3 (-348 (-483)) #1#) $) NIL (|has| |#2| (-949 (-348 (-483)))) ELT) (((-3 |#2| #1#) $) NIL T ELT)) (-3155 (((-483) $) NIL (|has| |#2| (-949 (-483))) ELT) (((-348 (-483)) $) NIL (|has| |#2| (-949 (-348 (-483)))) ELT) ((|#2| $) NIL T ELT)) (-3957 (($ $) NIL T ELT)) (-3465 (((-3 $ #1#) $) NIL T ELT)) (-3501 (($ $) NIL (|has| |#2| (-390)) ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-2409 (((-85) $) NIL T ELT)) (-2892 (($ |#2| (-693)) 17 T ELT)) (-2546 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL (|has| |#2| (-494)) ELT)) (-2545 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL (|has| |#2| (-494)) ELT)) (-2819 (((-693) $) NIL T ELT)) (-2541 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-2542 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-2531 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-2539 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-2538 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL (|has| |#2| (-312)) ELT)) (-2540 (((-3 $ #1#) $ $) NIL (|has| |#2| (-312)) ELT)) (-2547 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL (|has| |#2| (-312)) ELT)) (-3173 ((|#2| $) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3464 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-494)) ELT)) (-3946 (((-693) $) NIL T ELT)) (-2816 ((|#2| $) NIL (|has| |#2| (-390)) ELT)) (-3944 (((-771) $) 24 T ELT) (($ (-483)) NIL T ELT) (($ (-348 (-483))) NIL (|has| |#2| (-949 (-348 (-483)))) ELT) (($ |#2|) NIL T ELT) (($ (-1174 |#1|)) 19 T ELT)) (-3815 (((-582 |#2|) $) NIL T ELT)) (-3675 ((|#2| $ (-693)) NIL T ELT)) (-3125 (((-693)) NIL T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-2544 ((|#2| $ |#2| |#2|) NIL T ELT)) (-3124 (((-85) $ $) NIL T ELT)) (-2659 (($) NIL T CONST)) (-2665 (($) 13 T CONST)) (-3055 (((-85) $ $) NIL T ELT)) (-3835 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3837 (($ $ $) NIL T ELT)) (** (($ $ (-829)) NIL T ELT) (($ $ (-693)) NIL T ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT))) -(((-763 |#1| |#2| |#3| |#4|) (-13 (-760 |#2|) (-554 (-1174 |#1|))) (-1088) (-960) (-69 |#2|) (-1 |#2| |#2|)) (T -763)) -NIL -((-2551 ((|#1| (-693) |#1|) 45 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-2550 ((|#1| (-693) (-693) |#1|) 36 T ELT) ((|#1| (-693) |#1|) 24 T ELT)) (-2549 ((|#1| (-693) |#1|) 40 T ELT)) (-2799 ((|#1| (-693) |#1|) 38 T ELT)) (-2798 ((|#1| (-693) |#1|) 37 T ELT))) -(((-764 |#1|) (-10 -7 (-15 -2798 (|#1| (-693) |#1|)) (-15 -2799 (|#1| (-693) |#1|)) (-15 -2549 (|#1| (-693) |#1|)) (-15 -2550 (|#1| (-693) |#1|)) (-15 -2550 (|#1| (-693) (-693) |#1|)) (IF (|has| |#1| (-38 (-348 (-483)))) (-15 -2551 (|#1| (-693) |#1|)) |%noBranch|)) (-146)) (T -764)) -((-2551 (*1 *2 *3 *2) (-12 (-5 *3 (-693)) (-5 *1 (-764 *2)) (-4 *2 (-38 (-348 (-483)))) (-4 *2 (-146)))) (-2550 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-693)) (-5 *1 (-764 *2)) (-4 *2 (-146)))) (-2550 (*1 *2 *3 *2) (-12 (-5 *3 (-693)) (-5 *1 (-764 *2)) (-4 *2 (-146)))) (-2549 (*1 *2 *3 *2) (-12 (-5 *3 (-693)) (-5 *1 (-764 *2)) (-4 *2 (-146)))) (-2799 (*1 *2 *3 *2) (-12 (-5 *3 (-693)) (-5 *1 (-764 *2)) (-4 *2 (-146)))) (-2798 (*1 *2 *3 *2) (-12 (-5 *3 (-693)) (-5 *1 (-764 *2)) (-4 *2 (-146))))) -((-2567 (((-85) $ $) 7 T ELT)) (-2530 (($ $ $) 23 T ELT)) (-2856 (($ $ $) 22 T ELT)) (-3241 (((-1071) $) 11 T ELT)) (-3242 (((-1032) $) 12 T ELT)) (-3944 (((-771) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2565 (((-85) $ $) 21 T ELT)) (-2566 (((-85) $ $) 19 T ELT)) (-3055 (((-85) $ $) 8 T ELT)) (-2683 (((-85) $ $) 20 T ELT)) (-2684 (((-85) $ $) 18 T ELT)) (** (($ $ (-829)) 26 T ELT)) (* (($ $ $) 25 T ELT))) -(((-765) (-113)) (T -765)) -NIL -(-13 (-755) (-1024)) -(((-72) . T) ((-551 (-771)) . T) ((-13) . T) ((-755) . T) ((-758) . T) ((-1024) . T) ((-1012) . T) ((-1127) . T)) -((-2567 (((-85) $ $) NIL T ELT)) (-3400 (((-483) $) 14 T ELT)) (-2530 (($ $ $) NIL T ELT)) (-2856 (($ $ $) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3944 (((-771) $) 20 T ELT) (($ (-483)) 13 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2565 (((-85) $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) 10 T ELT)) (-2683 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) 12 T ELT))) -(((-766) (-13 (-755) (-10 -8 (-15 -3944 ($ (-483))) (-15 -3400 ((-483) $))))) (T -766)) -((-3944 (*1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-766)))) (-3400 (*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-766))))) -((-2552 (((-1183) (-582 (-51))) 23 T ELT)) (-3458 (((-1183) (-1071) (-771)) 13 T ELT) (((-1183) (-771)) 8 T ELT) (((-1183) (-1071)) 10 T ELT))) -(((-767) (-10 -7 (-15 -3458 ((-1183) (-1071))) (-15 -3458 ((-1183) (-771))) (-15 -3458 ((-1183) (-1071) (-771))) (-15 -2552 ((-1183) (-582 (-51)))))) (T -767)) -((-2552 (*1 *2 *3) (-12 (-5 *3 (-582 (-51))) (-5 *2 (-1183)) (-5 *1 (-767)))) (-3458 (*1 *2 *3 *4) (-12 (-5 *3 (-1071)) (-5 *4 (-771)) (-5 *2 (-1183)) (-5 *1 (-767)))) (-3458 (*1 *2 *3) (-12 (-5 *3 (-771)) (-5 *2 (-1183)) (-5 *1 (-767)))) (-3458 (*1 *2 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-1183)) (-5 *1 (-767))))) -((-2554 (((-631 (-1136)) $ (-1136)) 15 T ELT)) (-2555 (((-631 (-487)) $ (-487)) 12 T ELT)) (-2553 (((-693) $ (-102)) 30 T ELT))) -(((-768 |#1|) (-10 -7 (-15 -2553 ((-693) |#1| (-102))) (-15 -2554 ((-631 (-1136)) |#1| (-1136))) (-15 -2555 ((-631 (-487)) |#1| (-487)))) (-769)) (T -768)) -NIL -((-2554 (((-631 (-1136)) $ (-1136)) 8 T ELT)) (-2555 (((-631 (-487)) $ (-487)) 9 T ELT)) (-2553 (((-693) $ (-102)) 7 T ELT)) (-2556 (((-631 (-101)) $ (-101)) 10 T ELT)) (-1698 (($ $) 6 T ELT))) -(((-769) (-113)) (T -769)) -((-2556 (*1 *2 *1 *3) (-12 (-4 *1 (-769)) (-5 *2 (-631 (-101))) (-5 *3 (-101)))) (-2555 (*1 *2 *1 *3) (-12 (-4 *1 (-769)) (-5 *2 (-631 (-487))) (-5 *3 (-487)))) (-2554 (*1 *2 *1 *3) (-12 (-4 *1 (-769)) (-5 *2 (-631 (-1136))) (-5 *3 (-1136)))) (-2553 (*1 *2 *1 *3) (-12 (-4 *1 (-769)) (-5 *3 (-102)) (-5 *2 (-693))))) -(-13 (-147) (-10 -8 (-15 -2556 ((-631 (-101)) $ (-101))) (-15 -2555 ((-631 (-487)) $ (-487))) (-15 -2554 ((-631 (-1136)) $ (-1136))) (-15 -2553 ((-693) $ (-102))))) +(-13 (-714) (-120) (-663)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-120) . T) ((-555 (-484)) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 $) . T) ((-590 $) . T) ((-663) . T) ((-714) . T) ((-716) . T) ((-718) . T) ((-721) . T) ((-756) . T) ((-759) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T)) +((-2568 (((-85) $ $) 7 T ELT)) (-2531 (($ $ $) 23 T ELT)) (-2857 (($ $ $) 22 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3945 (((-772) $) 13 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-2566 (((-85) $ $) 21 T ELT)) (-2567 (((-85) $ $) 19 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-2684 (((-85) $ $) 20 T ELT)) (-2685 (((-85) $ $) 18 T ELT))) +(((-756) (-113)) (T -756)) +NIL +(-13 (-1013) (-759)) +(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-759) . T) ((-1013) . T) ((-1128) . T)) +((-2568 (((-85) $ $) NIL T ELT)) (-2531 (($ $ $) NIL T ELT)) (-2857 (($ $ $) NIL T ELT)) (-3945 (($ |#1|) 10 T ELT) ((|#1| $) 9 T ELT) (((-772) $) 15 (|has| |#1| (-552 (-772))) ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) 12 T ELT))) +(((-757 |#1| |#2|) (-13 (-759) (-429 |#1|) (-10 -7 (IF (|has| |#1| (-552 (-772))) (-6 (-552 (-772))) |%noBranch|))) (-1128) (-1 (-85) |#1| |#1|)) (T -757)) +NIL +((-2531 (($ $ $) 16 T ELT)) (-2857 (($ $ $) 15 T ELT)) (-1264 (((-85) $ $) 17 T ELT)) (-2566 (((-85) $ $) 12 T ELT)) (-2567 (((-85) $ $) 9 T ELT)) (-3056 (((-85) $ $) 14 T ELT)) (-2684 (((-85) $ $) 11 T ELT))) +(((-758 |#1|) (-10 -7 (-15 -2531 (|#1| |#1| |#1|)) (-15 -2857 (|#1| |#1| |#1|)) (-15 -2566 ((-85) |#1| |#1|)) (-15 -2684 ((-85) |#1| |#1|)) (-15 -2567 ((-85) |#1| |#1|)) (-15 -1264 ((-85) |#1| |#1|)) (-15 -3056 ((-85) |#1| |#1|))) (-759)) (T -758)) +NIL +((-2568 (((-85) $ $) 7 T ELT)) (-2531 (($ $ $) 10 T ELT)) (-2857 (($ $ $) 11 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-2566 (((-85) $ $) 12 T ELT)) (-2567 (((-85) $ $) 14 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-2684 (((-85) $ $) 13 T ELT)) (-2685 (((-85) $ $) 15 T ELT))) +(((-759) (-113)) (T -759)) +((-2685 (*1 *2 *1 *1) (-12 (-4 *1 (-759)) (-5 *2 (-85)))) (-2567 (*1 *2 *1 *1) (-12 (-4 *1 (-759)) (-5 *2 (-85)))) (-2684 (*1 *2 *1 *1) (-12 (-4 *1 (-759)) (-5 *2 (-85)))) (-2566 (*1 *2 *1 *1) (-12 (-4 *1 (-759)) (-5 *2 (-85)))) (-2857 (*1 *1 *1 *1) (-4 *1 (-759))) (-2531 (*1 *1 *1 *1) (-4 *1 (-759)))) +(-13 (-72) (-10 -8 (-15 -2685 ((-85) $ $)) (-15 -2567 ((-85) $ $)) (-15 -2684 ((-85) $ $)) (-15 -2566 ((-85) $ $)) (-15 -2857 ($ $ $)) (-15 -2531 ($ $ $)))) +(((-72) . T) ((-13) . T) ((-1128) . T)) +((-2536 (($ $ $) 49 T ELT)) (-2537 (($ $ $) 48 T ELT)) (-2538 (($ $ $) 46 T ELT)) (-2534 (($ $ $) 55 T ELT)) (-2533 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) 50 T ELT)) (-2535 (((-3 $ #1="failed") $ $) 53 T ELT)) (-3157 (((-3 (-484) #1#) $) NIL T ELT) (((-3 (-349 (-484)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 29 T ELT)) (-3502 (($ $) 39 T ELT)) (-2542 (($ $ $) 43 T ELT)) (-2543 (($ $ $) 42 T ELT)) (-2532 (($ $ $) 51 T ELT)) (-2540 (($ $ $) 57 T ELT)) (-2539 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) 45 T ELT)) (-2541 (((-3 $ #1#) $ $) 52 T ELT)) (-3465 (((-3 $ #1#) $ |#2|) 32 T ELT)) (-2817 ((|#2| $) 36 T ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ (-349 (-484))) NIL T ELT) (($ |#2|) 13 T ELT)) (-3816 (((-583 |#2|) $) 21 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 25 T ELT))) +(((-760 |#1| |#2|) (-10 -7 (-15 -2532 (|#1| |#1| |#1|)) (-15 -2533 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2409 |#1|)) |#1| |#1|)) (-15 -2534 (|#1| |#1| |#1|)) (-15 -2535 ((-3 |#1| #1="failed") |#1| |#1|)) (-15 -2536 (|#1| |#1| |#1|)) (-15 -2537 (|#1| |#1| |#1|)) (-15 -2538 (|#1| |#1| |#1|)) (-15 -2539 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2409 |#1|)) |#1| |#1|)) (-15 -2540 (|#1| |#1| |#1|)) (-15 -2541 ((-3 |#1| #1#) |#1| |#1|)) (-15 -2542 (|#1| |#1| |#1|)) (-15 -2543 (|#1| |#1| |#1|)) (-15 -3502 (|#1| |#1|)) (-15 -2817 (|#2| |#1|)) (-15 -3465 ((-3 |#1| #1#) |#1| |#2|)) (-15 -3816 ((-583 |#2|) |#1|)) (-15 -3945 (|#1| |#2|)) (-15 -3157 ((-3 |#2| #1#) |#1|)) (-15 -3157 ((-3 (-349 (-484)) #1#) |#1|)) (-15 -3945 (|#1| (-349 (-484)))) (-15 -3157 ((-3 (-484) #1#) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3945 (|#1| (-484))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-484) |#1|)) (-15 * (|#1| (-694) |#1|)) (-15 * (|#1| (-830) |#1|)) (-15 -3945 ((-772) |#1|))) (-761 |#2|) (-961)) (T -760)) +NIL +((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3723 (($) 23 T CONST)) (-2536 (($ $ $) 58 (|has| |#1| (-312)) ELT)) (-2537 (($ $ $) 59 (|has| |#1| (-312)) ELT)) (-2538 (($ $ $) 61 (|has| |#1| (-312)) ELT)) (-2534 (($ $ $) 56 (|has| |#1| (-312)) ELT)) (-2533 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) 55 (|has| |#1| (-312)) ELT)) (-2535 (((-3 $ "failed") $ $) 57 (|has| |#1| (-312)) ELT)) (-2549 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 60 (|has| |#1| (-312)) ELT)) (-3157 (((-3 (-484) #1="failed") $) 88 (|has| |#1| (-950 (-484))) ELT) (((-3 (-349 (-484)) #1#) $) 85 (|has| |#1| (-950 (-349 (-484)))) ELT) (((-3 |#1| #1#) $) 82 T ELT)) (-3156 (((-484) $) 87 (|has| |#1| (-950 (-484))) ELT) (((-349 (-484)) $) 84 (|has| |#1| (-950 (-349 (-484)))) ELT) ((|#1| $) 83 T ELT)) (-3958 (($ $) 77 T ELT)) (-3466 (((-3 $ "failed") $) 42 T ELT)) (-3502 (($ $) 68 (|has| |#1| (-391)) ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-2893 (($ |#1| (-694)) 75 T ELT)) (-2547 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 70 (|has| |#1| (-495)) ELT)) (-2546 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 71 (|has| |#1| (-495)) ELT)) (-2820 (((-694) $) 79 T ELT)) (-2542 (($ $ $) 65 (|has| |#1| (-312)) ELT)) (-2543 (($ $ $) 66 (|has| |#1| (-312)) ELT)) (-2532 (($ $ $) 54 (|has| |#1| (-312)) ELT)) (-2540 (($ $ $) 63 (|has| |#1| (-312)) ELT)) (-2539 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) 62 (|has| |#1| (-312)) ELT)) (-2541 (((-3 $ "failed") $ $) 64 (|has| |#1| (-312)) ELT)) (-2548 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 67 (|has| |#1| (-312)) ELT)) (-3174 ((|#1| $) 78 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3465 (((-3 $ "failed") $ |#1|) 72 (|has| |#1| (-495)) ELT)) (-3947 (((-694) $) 80 T ELT)) (-2817 ((|#1| $) 69 (|has| |#1| (-391)) ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ (-349 (-484))) 86 (|has| |#1| (-950 (-349 (-484)))) ELT) (($ |#1|) 81 T ELT)) (-3816 (((-583 |#1|) $) 74 T ELT)) (-3676 ((|#1| $ (-694)) 76 T ELT)) (-3126 (((-694)) 40 T CONST)) (-1264 (((-85) $ $) 6 T ELT)) (-2545 ((|#1| $ |#1| |#1|) 73 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 90 T ELT) (($ |#1| $) 89 T ELT))) +(((-761 |#1|) (-113) (-961)) (T -761)) +((-3947 (*1 *2 *1) (-12 (-4 *1 (-761 *3)) (-4 *3 (-961)) (-5 *2 (-694)))) (-2820 (*1 *2 *1) (-12 (-4 *1 (-761 *3)) (-4 *3 (-961)) (-5 *2 (-694)))) (-3174 (*1 *2 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)))) (-3958 (*1 *1 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)))) (-3676 (*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-4 *1 (-761 *2)) (-4 *2 (-961)))) (-2893 (*1 *1 *2 *3) (-12 (-5 *3 (-694)) (-4 *1 (-761 *2)) (-4 *2 (-961)))) (-3816 (*1 *2 *1) (-12 (-4 *1 (-761 *3)) (-4 *3 (-961)) (-5 *2 (-583 *3)))) (-2545 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)))) (-3465 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-495)))) (-2546 (*1 *2 *1 *1) (-12 (-4 *3 (-495)) (-4 *3 (-961)) (-5 *2 (-2 (|:| -1972 *1) (|:| -2902 *1))) (-4 *1 (-761 *3)))) (-2547 (*1 *2 *1 *1) (-12 (-4 *3 (-495)) (-4 *3 (-961)) (-5 *2 (-2 (|:| -1972 *1) (|:| -2902 *1))) (-4 *1 (-761 *3)))) (-2817 (*1 *2 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-391)))) (-3502 (*1 *1 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-391)))) (-2548 (*1 *2 *1 *1) (-12 (-4 *3 (-312)) (-4 *3 (-961)) (-5 *2 (-2 (|:| -1972 *1) (|:| -2902 *1))) (-4 *1 (-761 *3)))) (-2543 (*1 *1 *1 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-312)))) (-2542 (*1 *1 *1 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-312)))) (-2541 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-312)))) (-2540 (*1 *1 *1 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-312)))) (-2539 (*1 *2 *1 *1) (-12 (-4 *3 (-312)) (-4 *3 (-961)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2409 *1))) (-4 *1 (-761 *3)))) (-2538 (*1 *1 *1 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-312)))) (-2549 (*1 *2 *1 *1) (-12 (-4 *3 (-312)) (-4 *3 (-961)) (-5 *2 (-2 (|:| -1972 *1) (|:| -2902 *1))) (-4 *1 (-761 *3)))) (-2537 (*1 *1 *1 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-312)))) (-2536 (*1 *1 *1 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-312)))) (-2535 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-312)))) (-2534 (*1 *1 *1 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-312)))) (-2533 (*1 *2 *1 *1) (-12 (-4 *3 (-312)) (-4 *3 (-961)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2409 *1))) (-4 *1 (-761 *3)))) (-2532 (*1 *1 *1 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-312))))) +(-13 (-961) (-82 |t#1| |t#1|) (-354 |t#1|) (-10 -8 (-15 -3947 ((-694) $)) (-15 -2820 ((-694) $)) (-15 -3174 (|t#1| $)) (-15 -3958 ($ $)) (-15 -3676 (|t#1| $ (-694))) (-15 -2893 ($ |t#1| (-694))) (-15 -3816 ((-583 |t#1|) $)) (-15 -2545 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-146)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-495)) (PROGN (-15 -3465 ((-3 $ "failed") $ |t#1|)) (-15 -2546 ((-2 (|:| -1972 $) (|:| -2902 $)) $ $)) (-15 -2547 ((-2 (|:| -1972 $) (|:| -2902 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-391)) (PROGN (-15 -2817 (|t#1| $)) (-15 -3502 ($ $))) |%noBranch|) (IF (|has| |t#1| (-312)) (PROGN (-15 -2548 ((-2 (|:| -1972 $) (|:| -2902 $)) $ $)) (-15 -2543 ($ $ $)) (-15 -2542 ($ $ $)) (-15 -2541 ((-3 $ "failed") $ $)) (-15 -2540 ($ $ $)) (-15 -2539 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $)) (-15 -2538 ($ $ $)) (-15 -2549 ((-2 (|:| -1972 $) (|:| -2902 $)) $ $)) (-15 -2537 ($ $ $)) (-15 -2536 ($ $ $)) (-15 -2535 ((-3 $ "failed") $ $)) (-15 -2534 ($ $ $)) (-15 -2533 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $)) (-15 -2532 ($ $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-146)) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-555 (-349 (-484))) |has| |#1| (-950 (-349 (-484)))) ((-555 (-484)) . T) ((-555 |#1|) . T) ((-552 (-772)) . T) ((-354 |#1|) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-582 |#1|) |has| |#1| (-146)) ((-654 |#1|) |has| |#1| (-146)) ((-663) . T) ((-950 (-349 (-484))) |has| |#1| (-950 (-349 (-484)))) ((-950 (-484)) |has| |#1| (-950 (-484))) ((-950 |#1|) . T) ((-963 |#1|) . T) ((-968 |#1|) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T)) +((-2544 ((|#2| |#2| |#2| (-69 |#1|) (-1 |#1| |#1|)) 20 T ELT)) (-2549 (((-2 (|:| -1972 |#2|) (|:| -2902 |#2|)) |#2| |#2| (-69 |#1|)) 46 (|has| |#1| (-312)) ELT)) (-2547 (((-2 (|:| -1972 |#2|) (|:| -2902 |#2|)) |#2| |#2| (-69 |#1|)) 43 (|has| |#1| (-495)) ELT)) (-2546 (((-2 (|:| -1972 |#2|) (|:| -2902 |#2|)) |#2| |#2| (-69 |#1|)) 42 (|has| |#1| (-495)) ELT)) (-2548 (((-2 (|:| -1972 |#2|) (|:| -2902 |#2|)) |#2| |#2| (-69 |#1|)) 45 (|has| |#1| (-312)) ELT)) (-2545 ((|#1| |#2| |#1| |#1| (-69 |#1|) (-1 |#1| |#1|)) 33 T ELT))) +(((-762 |#1| |#2|) (-10 -7 (-15 -2544 (|#2| |#2| |#2| (-69 |#1|) (-1 |#1| |#1|))) (-15 -2545 (|#1| |#2| |#1| |#1| (-69 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-495)) (PROGN (-15 -2546 ((-2 (|:| -1972 |#2|) (|:| -2902 |#2|)) |#2| |#2| (-69 |#1|))) (-15 -2547 ((-2 (|:| -1972 |#2|) (|:| -2902 |#2|)) |#2| |#2| (-69 |#1|)))) |%noBranch|) (IF (|has| |#1| (-312)) (PROGN (-15 -2548 ((-2 (|:| -1972 |#2|) (|:| -2902 |#2|)) |#2| |#2| (-69 |#1|))) (-15 -2549 ((-2 (|:| -1972 |#2|) (|:| -2902 |#2|)) |#2| |#2| (-69 |#1|)))) |%noBranch|)) (-961) (-761 |#1|)) (T -762)) +((-2549 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-69 *5)) (-4 *5 (-312)) (-4 *5 (-961)) (-5 *2 (-2 (|:| -1972 *3) (|:| -2902 *3))) (-5 *1 (-762 *5 *3)) (-4 *3 (-761 *5)))) (-2548 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-69 *5)) (-4 *5 (-312)) (-4 *5 (-961)) (-5 *2 (-2 (|:| -1972 *3) (|:| -2902 *3))) (-5 *1 (-762 *5 *3)) (-4 *3 (-761 *5)))) (-2547 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-69 *5)) (-4 *5 (-495)) (-4 *5 (-961)) (-5 *2 (-2 (|:| -1972 *3) (|:| -2902 *3))) (-5 *1 (-762 *5 *3)) (-4 *3 (-761 *5)))) (-2546 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-69 *5)) (-4 *5 (-495)) (-4 *5 (-961)) (-5 *2 (-2 (|:| -1972 *3) (|:| -2902 *3))) (-5 *1 (-762 *5 *3)) (-4 *3 (-761 *5)))) (-2545 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-69 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-961)) (-5 *1 (-762 *2 *3)) (-4 *3 (-761 *2)))) (-2544 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-69 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-961)) (-5 *1 (-762 *5 *2)) (-4 *2 (-761 *5))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-2536 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2537 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2538 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2534 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2533 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-2535 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-2549 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 34 (|has| |#1| (-312)) ELT)) (-3157 (((-3 (-484) #1#) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-3 (-349 (-484)) #1#) $) NIL (|has| |#1| (-950 (-349 (-484)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3156 (((-484) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-349 (-484)) $) NIL (|has| |#1| (-950 (-349 (-484)))) ELT) ((|#1| $) NIL T ELT)) (-3958 (($ $) NIL T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-3502 (($ $) NIL (|has| |#1| (-391)) ELT)) (-3532 (((-772) $ (-772)) NIL T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2893 (($ |#1| (-694)) NIL T ELT)) (-2547 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 30 (|has| |#1| (-495)) ELT)) (-2546 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 28 (|has| |#1| (-495)) ELT)) (-2820 (((-694) $) NIL T ELT)) (-2542 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2543 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2532 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2540 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2539 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-2541 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-2548 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 32 (|has| |#1| (-312)) ELT)) (-3174 ((|#1| $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3465 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-495)) ELT)) (-3947 (((-694) $) NIL T ELT)) (-2817 ((|#1| $) NIL (|has| |#1| (-391)) ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ (-349 (-484))) NIL (|has| |#1| (-950 (-349 (-484)))) ELT) (($ |#1|) NIL T ELT)) (-3816 (((-583 |#1|) $) NIL T ELT)) (-3676 ((|#1| $ (-694)) NIL T ELT)) (-3126 (((-694)) NIL T CONST)) (-1264 (((-85) $ $) NIL T ELT)) (-2545 ((|#1| $ |#1| |#1|) 15 T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) NIL T CONST)) (-2666 (($) 23 T CONST)) (-3056 (((-85) $ $) NIL T ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (** (($ $ (-830)) 19 T ELT) (($ $ (-694)) 24 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 13 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-763 |#1| |#2| |#3|) (-13 (-761 |#1|) (-10 -8 (-15 -3532 ((-772) $ (-772))))) (-961) (-69 |#1|) (-1 |#1| |#1|)) (T -763)) +((-3532 (*1 *2 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-763 *3 *4 *5)) (-4 *3 (-961)) (-14 *4 (-69 *3)) (-14 *5 (-1 *3 *3))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-2536 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-2537 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-2538 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-2534 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-2533 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL (|has| |#2| (-312)) ELT)) (-2535 (((-3 $ #1#) $ $) NIL (|has| |#2| (-312)) ELT)) (-2549 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL (|has| |#2| (-312)) ELT)) (-3157 (((-3 (-484) #1#) $) NIL (|has| |#2| (-950 (-484))) ELT) (((-3 (-349 (-484)) #1#) $) NIL (|has| |#2| (-950 (-349 (-484)))) ELT) (((-3 |#2| #1#) $) NIL T ELT)) (-3156 (((-484) $) NIL (|has| |#2| (-950 (-484))) ELT) (((-349 (-484)) $) NIL (|has| |#2| (-950 (-349 (-484)))) ELT) ((|#2| $) NIL T ELT)) (-3958 (($ $) NIL T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-3502 (($ $) NIL (|has| |#2| (-391)) ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2893 (($ |#2| (-694)) 17 T ELT)) (-2547 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL (|has| |#2| (-495)) ELT)) (-2546 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL (|has| |#2| (-495)) ELT)) (-2820 (((-694) $) NIL T ELT)) (-2542 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-2543 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-2532 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-2540 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-2539 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL (|has| |#2| (-312)) ELT)) (-2541 (((-3 $ #1#) $ $) NIL (|has| |#2| (-312)) ELT)) (-2548 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL (|has| |#2| (-312)) ELT)) (-3174 ((|#2| $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3465 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-495)) ELT)) (-3947 (((-694) $) NIL T ELT)) (-2817 ((|#2| $) NIL (|has| |#2| (-391)) ELT)) (-3945 (((-772) $) 24 T ELT) (($ (-484)) NIL T ELT) (($ (-349 (-484))) NIL (|has| |#2| (-950 (-349 (-484)))) ELT) (($ |#2|) NIL T ELT) (($ (-1175 |#1|)) 19 T ELT)) (-3816 (((-583 |#2|) $) NIL T ELT)) (-3676 ((|#2| $ (-694)) NIL T ELT)) (-3126 (((-694)) NIL T CONST)) (-1264 (((-85) $ $) NIL T ELT)) (-2545 ((|#2| $ |#2| |#2|) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) NIL T CONST)) (-2666 (($) 13 T CONST)) (-3056 (((-85) $ $) NIL T ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT))) +(((-764 |#1| |#2| |#3| |#4|) (-13 (-761 |#2|) (-555 (-1175 |#1|))) (-1089) (-961) (-69 |#2|) (-1 |#2| |#2|)) (T -764)) +NIL +((-2552 ((|#1| (-694) |#1|) 45 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2551 ((|#1| (-694) (-694) |#1|) 36 T ELT) ((|#1| (-694) |#1|) 24 T ELT)) (-2550 ((|#1| (-694) |#1|) 40 T ELT)) (-2800 ((|#1| (-694) |#1|) 38 T ELT)) (-2799 ((|#1| (-694) |#1|) 37 T ELT))) +(((-765 |#1|) (-10 -7 (-15 -2799 (|#1| (-694) |#1|)) (-15 -2800 (|#1| (-694) |#1|)) (-15 -2550 (|#1| (-694) |#1|)) (-15 -2551 (|#1| (-694) |#1|)) (-15 -2551 (|#1| (-694) (-694) |#1|)) (IF (|has| |#1| (-38 (-349 (-484)))) (-15 -2552 (|#1| (-694) |#1|)) |%noBranch|)) (-146)) (T -765)) +((-2552 (*1 *2 *3 *2) (-12 (-5 *3 (-694)) (-5 *1 (-765 *2)) (-4 *2 (-38 (-349 (-484)))) (-4 *2 (-146)))) (-2551 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-694)) (-5 *1 (-765 *2)) (-4 *2 (-146)))) (-2551 (*1 *2 *3 *2) (-12 (-5 *3 (-694)) (-5 *1 (-765 *2)) (-4 *2 (-146)))) (-2550 (*1 *2 *3 *2) (-12 (-5 *3 (-694)) (-5 *1 (-765 *2)) (-4 *2 (-146)))) (-2800 (*1 *2 *3 *2) (-12 (-5 *3 (-694)) (-5 *1 (-765 *2)) (-4 *2 (-146)))) (-2799 (*1 *2 *3 *2) (-12 (-5 *3 (-694)) (-5 *1 (-765 *2)) (-4 *2 (-146))))) +((-2568 (((-85) $ $) 7 T ELT)) (-2531 (($ $ $) 23 T ELT)) (-2857 (($ $ $) 22 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3945 (((-772) $) 13 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-2566 (((-85) $ $) 21 T ELT)) (-2567 (((-85) $ $) 19 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-2684 (((-85) $ $) 20 T ELT)) (-2685 (((-85) $ $) 18 T ELT)) (** (($ $ (-830)) 26 T ELT)) (* (($ $ $) 25 T ELT))) +(((-766) (-113)) (T -766)) +NIL +(-13 (-756) (-1025)) +(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-756) . T) ((-759) . T) ((-1025) . T) ((-1013) . T) ((-1128) . T)) +((-2568 (((-85) $ $) NIL T ELT)) (-3401 (((-484) $) 14 T ELT)) (-2531 (($ $ $) NIL T ELT)) (-2857 (($ $ $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) 20 T ELT) (($ (-484)) 13 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 10 T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) 12 T ELT))) +(((-767) (-13 (-756) (-10 -8 (-15 -3945 ($ (-484))) (-15 -3401 ((-484) $))))) (T -767)) +((-3945 (*1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-767)))) (-3401 (*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-767))))) +((-2553 (((-1184) (-583 (-51))) 23 T ELT)) (-3459 (((-1184) (-1072) (-772)) 13 T ELT) (((-1184) (-772)) 8 T ELT) (((-1184) (-1072)) 10 T ELT))) +(((-768) (-10 -7 (-15 -3459 ((-1184) (-1072))) (-15 -3459 ((-1184) (-772))) (-15 -3459 ((-1184) (-1072) (-772))) (-15 -2553 ((-1184) (-583 (-51)))))) (T -768)) +((-2553 (*1 *2 *3) (-12 (-5 *3 (-583 (-51))) (-5 *2 (-1184)) (-5 *1 (-768)))) (-3459 (*1 *2 *3 *4) (-12 (-5 *3 (-1072)) (-5 *4 (-772)) (-5 *2 (-1184)) (-5 *1 (-768)))) (-3459 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1184)) (-5 *1 (-768)))) (-3459 (*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-768))))) +((-2555 (((-632 (-1137)) $ (-1137)) 15 T ELT)) (-2556 (((-632 (-488)) $ (-488)) 12 T ELT)) (-2554 (((-694) $ (-102)) 30 T ELT))) +(((-769 |#1|) (-10 -7 (-15 -2554 ((-694) |#1| (-102))) (-15 -2555 ((-632 (-1137)) |#1| (-1137))) (-15 -2556 ((-632 (-488)) |#1| (-488)))) (-770)) (T -769)) +NIL +((-2555 (((-632 (-1137)) $ (-1137)) 8 T ELT)) (-2556 (((-632 (-488)) $ (-488)) 9 T ELT)) (-2554 (((-694) $ (-102)) 7 T ELT)) (-2557 (((-632 (-101)) $ (-101)) 10 T ELT)) (-1699 (($ $) 6 T ELT))) +(((-770) (-113)) (T -770)) +((-2557 (*1 *2 *1 *3) (-12 (-4 *1 (-770)) (-5 *2 (-632 (-101))) (-5 *3 (-101)))) (-2556 (*1 *2 *1 *3) (-12 (-4 *1 (-770)) (-5 *2 (-632 (-488))) (-5 *3 (-488)))) (-2555 (*1 *2 *1 *3) (-12 (-4 *1 (-770)) (-5 *2 (-632 (-1137))) (-5 *3 (-1137)))) (-2554 (*1 *2 *1 *3) (-12 (-4 *1 (-770)) (-5 *3 (-102)) (-5 *2 (-694))))) +(-13 (-147) (-10 -8 (-15 -2557 ((-632 (-101)) $ (-101))) (-15 -2556 ((-632 (-488)) $ (-488))) (-15 -2555 ((-632 (-1137)) $ (-1137))) (-15 -2554 ((-694) $ (-102))))) (((-147) . T)) -((-2554 (((-631 (-1136)) $ (-1136)) NIL T ELT)) (-2555 (((-631 (-487)) $ (-487)) NIL T ELT)) (-2553 (((-693) $ (-102)) NIL T ELT)) (-2556 (((-631 (-101)) $ (-101)) 22 T ELT)) (-2558 (($ (-336)) 12 T ELT) (($ (-1071)) 14 T ELT)) (-2557 (((-85) $) 19 T ELT)) (-3944 (((-771) $) 26 T ELT)) (-1698 (($ $) 23 T ELT))) -(((-770) (-13 (-769) (-551 (-771)) (-10 -8 (-15 -2558 ($ (-336))) (-15 -2558 ($ (-1071))) (-15 -2557 ((-85) $))))) (T -770)) -((-2558 (*1 *1 *2) (-12 (-5 *2 (-336)) (-5 *1 (-770)))) (-2558 (*1 *1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-770)))) (-2557 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-770))))) -((-2567 (((-85) $ $) NIL T ELT) (($ $ $) 85 T ELT)) (-2588 (($ $ $) 125 T ELT)) (-2603 (((-483) $) 31 T ELT) (((-483)) 36 T ELT)) (-2598 (($ (-483)) 53 T ELT)) (-2595 (($ $ $) 54 T ELT) (($ (-582 $)) 84 T ELT)) (-2579 (($ $ (-582 $)) 82 T ELT)) (-2600 (((-483) $) 34 T ELT)) (-2582 (($ $ $) 73 T ELT)) (-3530 (($ $) 140 T ELT) (($ $ $) 141 T ELT) (($ $ $ $) 142 T ELT)) (-2601 (((-483) $) 33 T ELT)) (-2583 (($ $ $) 72 T ELT)) (-3533 (($ $) 114 T ELT)) (-2586 (($ $ $) 129 T ELT)) (-2569 (($ (-582 $)) 61 T ELT)) (-3538 (($ $ (-582 $)) 79 T ELT)) (-2597 (($ (-483) (-483)) 55 T ELT)) (-2610 (($ $) 126 T ELT) (($ $ $) 127 T ELT)) (-3136 (($ $ (-483)) 43 T ELT) (($ $) 46 T ELT)) (-2563 (($ $ $) 97 T ELT)) (-2584 (($ $ $) 132 T ELT)) (-2578 (($ $) 115 T ELT)) (-2562 (($ $ $) 98 T ELT)) (-2574 (($ $) 143 T ELT) (($ $ $) 144 T ELT) (($ $ $ $) 145 T ELT)) (-2836 (((-1183) $) 10 T ELT)) (-2577 (($ $) 118 T ELT) (($ $ (-693)) 122 T ELT)) (-2580 (($ $ $) 75 T ELT)) (-2581 (($ $ $) 74 T ELT)) (-2594 (($ $ (-582 $)) 110 T ELT)) (-2592 (($ $ $) 113 T ELT)) (-2571 (($ (-582 $)) 59 T ELT)) (-2572 (($ $) 70 T ELT) (($ (-582 $)) 71 T ELT)) (-2575 (($ $ $) 123 T ELT)) (-2576 (($ $) 116 T ELT)) (-2587 (($ $ $) 128 T ELT)) (-3531 (($ (-483)) 21 T ELT) (($ (-1088)) 23 T ELT) (($ (-1071)) 30 T ELT) (($ (-179)) 25 T ELT)) (-2560 (($ $ $) 101 T ELT)) (-2559 (($ $) 102 T ELT)) (-2605 (((-1183) (-1071)) 15 T ELT)) (-2606 (($ (-1071)) 14 T ELT)) (-3122 (($ (-582 (-582 $))) 58 T ELT)) (-3137 (($ $ (-483)) 42 T ELT) (($ $) 45 T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-2590 (($ $ $) 131 T ELT)) (-3468 (($ $) 146 T ELT) (($ $ $) 147 T ELT) (($ $ $ $) 148 T ELT)) (-2591 (((-85) $) 108 T ELT)) (-2593 (($ $ (-582 $)) 111 T ELT) (($ $ $ $) 112 T ELT)) (-2599 (($ (-483)) 39 T ELT)) (-2602 (((-483) $) 32 T ELT) (((-483)) 35 T ELT)) (-2596 (($ $ $) 40 T ELT) (($ (-582 $)) 83 T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3464 (($ $ $) 99 T ELT)) (-3563 (($) 13 T ELT)) (-3798 (($ $ (-582 $)) 109 T ELT)) (-2604 (((-1071) (-1071)) 8 T ELT)) (-3834 (($ $) 117 T ELT) (($ $ (-693)) 121 T ELT)) (-2564 (($ $ $) 96 T ELT)) (-3756 (($ $ (-693)) 139 T ELT)) (-2570 (($ (-582 $)) 60 T ELT)) (-3944 (((-771) $) 19 T ELT)) (-3771 (($ $ (-483)) 41 T ELT) (($ $) 44 T ELT)) (-2573 (($ $) 68 T ELT) (($ (-582 $)) 69 T ELT)) (-3239 (($ $) 66 T ELT) (($ (-582 $)) 67 T ELT)) (-2589 (($ $) 124 T ELT)) (-2568 (($ (-582 $)) 65 T ELT)) (-3100 (($ $ $) 105 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2585 (($ $ $) 130 T ELT)) (-2561 (($ $ $) 100 T ELT)) (-3735 (($ $ $) 103 T ELT) (($ $) 104 T ELT)) (-2565 (($ $ $) 89 T ELT)) (-2566 (($ $ $) 87 T ELT)) (-3055 (((-85) $ $) 16 T ELT) (($ $ $) 17 T ELT)) (-2683 (($ $ $) 88 T ELT)) (-2684 (($ $ $) 86 T ELT)) (-3947 (($ $ $) 94 T ELT)) (-3835 (($ $ $) 91 T ELT) (($ $) 92 T ELT)) (-3837 (($ $ $) 90 T ELT)) (** (($ $ $) 95 T ELT)) (* (($ $ $) 93 T ELT))) -(((-771) (-13 (-1012) (-10 -8 (-15 -2836 ((-1183) $)) (-15 -2606 ($ (-1071))) (-15 -2605 ((-1183) (-1071))) (-15 -3531 ($ (-483))) (-15 -3531 ($ (-1088))) (-15 -3531 ($ (-1071))) (-15 -3531 ($ (-179))) (-15 -3563 ($)) (-15 -2604 ((-1071) (-1071))) (-15 -2603 ((-483) $)) (-15 -2602 ((-483) $)) (-15 -2603 ((-483))) (-15 -2602 ((-483))) (-15 -2601 ((-483) $)) (-15 -2600 ((-483) $)) (-15 -2599 ($ (-483))) (-15 -2598 ($ (-483))) (-15 -2597 ($ (-483) (-483))) (-15 -3137 ($ $ (-483))) (-15 -3136 ($ $ (-483))) (-15 -3771 ($ $ (-483))) (-15 -3137 ($ $)) (-15 -3136 ($ $)) (-15 -3771 ($ $)) (-15 -2596 ($ $ $)) (-15 -2595 ($ $ $)) (-15 -2596 ($ (-582 $))) (-15 -2595 ($ (-582 $))) (-15 -2594 ($ $ (-582 $))) (-15 -2593 ($ $ (-582 $))) (-15 -2593 ($ $ $ $)) (-15 -2592 ($ $ $)) (-15 -2591 ((-85) $)) (-15 -3798 ($ $ (-582 $))) (-15 -3533 ($ $)) (-15 -2590 ($ $ $)) (-15 -2589 ($ $)) (-15 -3122 ($ (-582 (-582 $)))) (-15 -2588 ($ $ $)) (-15 -2610 ($ $)) (-15 -2610 ($ $ $)) (-15 -2587 ($ $ $)) (-15 -2586 ($ $ $)) (-15 -2585 ($ $ $)) (-15 -2584 ($ $ $)) (-15 -3756 ($ $ (-693))) (-15 -3100 ($ $ $)) (-15 -2583 ($ $ $)) (-15 -2582 ($ $ $)) (-15 -2581 ($ $ $)) (-15 -2580 ($ $ $)) (-15 -3538 ($ $ (-582 $))) (-15 -2579 ($ $ (-582 $))) (-15 -2578 ($ $)) (-15 -3834 ($ $)) (-15 -3834 ($ $ (-693))) (-15 -2577 ($ $)) (-15 -2577 ($ $ (-693))) (-15 -2576 ($ $)) (-15 -2575 ($ $ $)) (-15 -3530 ($ $)) (-15 -3530 ($ $ $)) (-15 -3530 ($ $ $ $)) (-15 -2574 ($ $)) (-15 -2574 ($ $ $)) (-15 -2574 ($ $ $ $)) (-15 -3468 ($ $)) (-15 -3468 ($ $ $)) (-15 -3468 ($ $ $ $)) (-15 -3239 ($ $)) (-15 -3239 ($ (-582 $))) (-15 -2573 ($ $)) (-15 -2573 ($ (-582 $))) (-15 -2572 ($ $)) (-15 -2572 ($ (-582 $))) (-15 -2571 ($ (-582 $))) (-15 -2570 ($ (-582 $))) (-15 -2569 ($ (-582 $))) (-15 -2568 ($ (-582 $))) (-15 -3055 ($ $ $)) (-15 -2567 ($ $ $)) (-15 -2684 ($ $ $)) (-15 -2566 ($ $ $)) (-15 -2683 ($ $ $)) (-15 -2565 ($ $ $)) (-15 -3837 ($ $ $)) (-15 -3835 ($ $ $)) (-15 -3835 ($ $)) (-15 * ($ $ $)) (-15 -3947 ($ $ $)) (-15 ** ($ $ $)) (-15 -2564 ($ $ $)) (-15 -2563 ($ $ $)) (-15 -2562 ($ $ $)) (-15 -3464 ($ $ $)) (-15 -2561 ($ $ $)) (-15 -2560 ($ $ $)) (-15 -2559 ($ $)) (-15 -3735 ($ $ $)) (-15 -3735 ($ $))))) (T -771)) -((-2836 (*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-771)))) (-2606 (*1 *1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-771)))) (-2605 (*1 *2 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-1183)) (-5 *1 (-771)))) (-3531 (*1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-771)))) (-3531 (*1 *1 *2) (-12 (-5 *2 (-1088)) (-5 *1 (-771)))) (-3531 (*1 *1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-771)))) (-3531 (*1 *1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-771)))) (-3563 (*1 *1) (-5 *1 (-771))) (-2604 (*1 *2 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-771)))) (-2603 (*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-771)))) (-2602 (*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-771)))) (-2603 (*1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-771)))) (-2602 (*1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-771)))) (-2601 (*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-771)))) (-2600 (*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-771)))) (-2599 (*1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-771)))) (-2598 (*1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-771)))) (-2597 (*1 *1 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-771)))) (-3137 (*1 *1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-771)))) (-3136 (*1 *1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-771)))) (-3771 (*1 *1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-771)))) (-3137 (*1 *1 *1) (-5 *1 (-771))) (-3136 (*1 *1 *1) (-5 *1 (-771))) (-3771 (*1 *1 *1) (-5 *1 (-771))) (-2596 (*1 *1 *1 *1) (-5 *1 (-771))) (-2595 (*1 *1 *1 *1) (-5 *1 (-771))) (-2596 (*1 *1 *2) (-12 (-5 *2 (-582 (-771))) (-5 *1 (-771)))) (-2595 (*1 *1 *2) (-12 (-5 *2 (-582 (-771))) (-5 *1 (-771)))) (-2594 (*1 *1 *1 *2) (-12 (-5 *2 (-582 (-771))) (-5 *1 (-771)))) (-2593 (*1 *1 *1 *2) (-12 (-5 *2 (-582 (-771))) (-5 *1 (-771)))) (-2593 (*1 *1 *1 *1 *1) (-5 *1 (-771))) (-2592 (*1 *1 *1 *1) (-5 *1 (-771))) (-2591 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-771)))) (-3798 (*1 *1 *1 *2) (-12 (-5 *2 (-582 (-771))) (-5 *1 (-771)))) (-3533 (*1 *1 *1) (-5 *1 (-771))) (-2590 (*1 *1 *1 *1) (-5 *1 (-771))) (-2589 (*1 *1 *1) (-5 *1 (-771))) (-3122 (*1 *1 *2) (-12 (-5 *2 (-582 (-582 (-771)))) (-5 *1 (-771)))) (-2588 (*1 *1 *1 *1) (-5 *1 (-771))) (-2610 (*1 *1 *1) (-5 *1 (-771))) (-2610 (*1 *1 *1 *1) (-5 *1 (-771))) (-2587 (*1 *1 *1 *1) (-5 *1 (-771))) (-2586 (*1 *1 *1 *1) (-5 *1 (-771))) (-2585 (*1 *1 *1 *1) (-5 *1 (-771))) (-2584 (*1 *1 *1 *1) (-5 *1 (-771))) (-3756 (*1 *1 *1 *2) (-12 (-5 *2 (-693)) (-5 *1 (-771)))) (-3100 (*1 *1 *1 *1) (-5 *1 (-771))) (-2583 (*1 *1 *1 *1) (-5 *1 (-771))) (-2582 (*1 *1 *1 *1) (-5 *1 (-771))) (-2581 (*1 *1 *1 *1) (-5 *1 (-771))) (-2580 (*1 *1 *1 *1) (-5 *1 (-771))) (-3538 (*1 *1 *1 *2) (-12 (-5 *2 (-582 (-771))) (-5 *1 (-771)))) (-2579 (*1 *1 *1 *2) (-12 (-5 *2 (-582 (-771))) (-5 *1 (-771)))) (-2578 (*1 *1 *1) (-5 *1 (-771))) (-3834 (*1 *1 *1) (-5 *1 (-771))) (-3834 (*1 *1 *1 *2) (-12 (-5 *2 (-693)) (-5 *1 (-771)))) (-2577 (*1 *1 *1) (-5 *1 (-771))) (-2577 (*1 *1 *1 *2) (-12 (-5 *2 (-693)) (-5 *1 (-771)))) (-2576 (*1 *1 *1) (-5 *1 (-771))) (-2575 (*1 *1 *1 *1) (-5 *1 (-771))) (-3530 (*1 *1 *1) (-5 *1 (-771))) (-3530 (*1 *1 *1 *1) (-5 *1 (-771))) (-3530 (*1 *1 *1 *1 *1) (-5 *1 (-771))) (-2574 (*1 *1 *1) (-5 *1 (-771))) (-2574 (*1 *1 *1 *1) (-5 *1 (-771))) (-2574 (*1 *1 *1 *1 *1) (-5 *1 (-771))) (-3468 (*1 *1 *1) (-5 *1 (-771))) (-3468 (*1 *1 *1 *1) (-5 *1 (-771))) (-3468 (*1 *1 *1 *1 *1) (-5 *1 (-771))) (-3239 (*1 *1 *1) (-5 *1 (-771))) (-3239 (*1 *1 *2) (-12 (-5 *2 (-582 (-771))) (-5 *1 (-771)))) (-2573 (*1 *1 *1) (-5 *1 (-771))) (-2573 (*1 *1 *2) (-12 (-5 *2 (-582 (-771))) (-5 *1 (-771)))) (-2572 (*1 *1 *1) (-5 *1 (-771))) (-2572 (*1 *1 *2) (-12 (-5 *2 (-582 (-771))) (-5 *1 (-771)))) (-2571 (*1 *1 *2) (-12 (-5 *2 (-582 (-771))) (-5 *1 (-771)))) (-2570 (*1 *1 *2) (-12 (-5 *2 (-582 (-771))) (-5 *1 (-771)))) (-2569 (*1 *1 *2) (-12 (-5 *2 (-582 (-771))) (-5 *1 (-771)))) (-2568 (*1 *1 *2) (-12 (-5 *2 (-582 (-771))) (-5 *1 (-771)))) (-3055 (*1 *1 *1 *1) (-5 *1 (-771))) (-2567 (*1 *1 *1 *1) (-5 *1 (-771))) (-2684 (*1 *1 *1 *1) (-5 *1 (-771))) (-2566 (*1 *1 *1 *1) (-5 *1 (-771))) (-2683 (*1 *1 *1 *1) (-5 *1 (-771))) (-2565 (*1 *1 *1 *1) (-5 *1 (-771))) (-3837 (*1 *1 *1 *1) (-5 *1 (-771))) (-3835 (*1 *1 *1 *1) (-5 *1 (-771))) (-3835 (*1 *1 *1) (-5 *1 (-771))) (* (*1 *1 *1 *1) (-5 *1 (-771))) (-3947 (*1 *1 *1 *1) (-5 *1 (-771))) (** (*1 *1 *1 *1) (-5 *1 (-771))) (-2564 (*1 *1 *1 *1) (-5 *1 (-771))) (-2563 (*1 *1 *1 *1) (-5 *1 (-771))) (-2562 (*1 *1 *1 *1) (-5 *1 (-771))) (-3464 (*1 *1 *1 *1) (-5 *1 (-771))) (-2561 (*1 *1 *1 *1) (-5 *1 (-771))) (-2560 (*1 *1 *1 *1) (-5 *1 (-771))) (-2559 (*1 *1 *1) (-5 *1 (-771))) (-3735 (*1 *1 *1 *1) (-5 *1 (-771))) (-3735 (*1 *1 *1) (-5 *1 (-771)))) -((-2567 (((-85) $ $) NIL T ELT)) (-3829 (((-3 $ "failed") (-1088)) 36 T ELT)) (-3135 (((-693)) 32 T ELT)) (-2993 (($) NIL T ELT)) (-2530 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2856 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2009 (((-829) $) 29 T ELT)) (-3241 (((-1071) $) 43 T ELT)) (-2399 (($ (-829)) 28 T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3970 (((-1088) $) 13 T ELT) (((-472) $) 19 T ELT) (((-799 (-328)) $) 26 T ELT) (((-799 (-483)) $) 22 T ELT)) (-3944 (((-771) $) 16 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2565 (((-85) $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) 40 T ELT)) (-2683 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) 38 T ELT))) -(((-772 |#1|) (-13 (-751) (-552 (-1088)) (-552 (-472)) (-552 (-799 (-328))) (-552 (-799 (-483))) (-10 -8 (-15 -3829 ((-3 $ "failed") (-1088))))) (-582 (-1088))) (T -772)) -((-3829 (*1 *1 *2) (|partial| -12 (-5 *2 (-1088)) (-5 *1 (-772 *3)) (-14 *3 (-582 *2))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3540 (((-445) $) 12 T ELT)) (-2607 (((-582 (-379)) $) 14 T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3944 (((-771) $) 22 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) 17 T ELT))) -(((-773) (-13 (-1012) (-10 -8 (-15 -3540 ((-445) $)) (-15 -2607 ((-582 (-379)) $))))) (T -773)) -((-3540 (*1 *2 *1) (-12 (-5 *2 (-445)) (-5 *1 (-773)))) (-2607 (*1 *2 *1) (-12 (-5 *2 (-582 (-379))) (-5 *1 (-773))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3187 (((-85) $) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3722 (($) NIL T CONST)) (-3465 (((-3 $ #1#) $) NIL T ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-2409 (((-85) $) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3944 (((-771) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ (-856 |#1|)) NIL T ELT) (((-856 |#1|) $) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT)) (-3125 (((-693)) NIL T CONST)) (-3921 (((-1183) (-693)) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3124 (((-85) $ $) NIL T ELT)) (-2659 (($) NIL T CONST)) (-2665 (($) NIL T CONST)) (-3055 (((-85) $ $) NIL T ELT)) (-3947 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-3835 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3837 (($ $ $) NIL T ELT)) (** (($ $ (-829)) NIL T ELT) (($ $ (-693)) NIL T ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ |#1| $) NIL (|has| |#1| (-146)) ELT) (($ $ |#1|) NIL (|has| |#1| (-146)) ELT))) -(((-774 |#1| |#2| |#3| |#4|) (-13 (-960) (-428 (-856 |#1|)) (-10 -8 (IF (|has| |#1| (-146)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-312)) (-15 -3947 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3921 ((-1183) (-693))))) (-960) (-582 (-1088)) (-582 (-693)) (-693)) (T -774)) -((-3947 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-774 *2 *3 *4 *5)) (-4 *2 (-312)) (-4 *2 (-960)) (-14 *3 (-582 (-1088))) (-14 *4 (-582 (-693))) (-14 *5 (-693)))) (-3921 (*1 *2 *3) (-12 (-5 *3 (-693)) (-5 *2 (-1183)) (-5 *1 (-774 *4 *5 *6 *7)) (-4 *4 (-960)) (-14 *5 (-582 (-1088))) (-14 *6 (-582 *3)) (-14 *7 *3)))) -((-2608 (((-3 (-148 |#3|) #1="failed") (-693) (-693) |#2| |#2|) 38 T ELT)) (-2609 (((-3 (-348 |#3|) #1#) (-693) (-693) |#2| |#2|) 29 T ELT))) -(((-775 |#1| |#2| |#3|) (-10 -7 (-15 -2609 ((-3 (-348 |#3|) #1="failed") (-693) (-693) |#2| |#2|)) (-15 -2608 ((-3 (-148 |#3|) #1#) (-693) (-693) |#2| |#2|))) (-312) (-1170 |#1|) (-1153 |#1|)) (T -775)) -((-2608 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-693)) (-4 *5 (-312)) (-5 *2 (-148 *6)) (-5 *1 (-775 *5 *4 *6)) (-4 *4 (-1170 *5)) (-4 *6 (-1153 *5)))) (-2609 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-693)) (-4 *5 (-312)) (-5 *2 (-348 *6)) (-5 *1 (-775 *5 *4 *6)) (-4 *4 (-1170 *5)) (-4 *6 (-1153 *5))))) -((-2609 (((-3 (-348 (-1146 |#2| |#1|)) #1="failed") (-693) (-693) (-1167 |#1| |#2| |#3|)) 30 T ELT) (((-3 (-348 (-1146 |#2| |#1|)) #1#) (-693) (-693) (-1167 |#1| |#2| |#3|) (-1167 |#1| |#2| |#3|)) 28 T ELT))) -(((-776 |#1| |#2| |#3|) (-10 -7 (-15 -2609 ((-3 (-348 (-1146 |#2| |#1|)) #1="failed") (-693) (-693) (-1167 |#1| |#2| |#3|) (-1167 |#1| |#2| |#3|))) (-15 -2609 ((-3 (-348 (-1146 |#2| |#1|)) #1#) (-693) (-693) (-1167 |#1| |#2| |#3|)))) (-312) (-1088) |#1|) (T -776)) -((-2609 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-693)) (-5 *4 (-1167 *5 *6 *7)) (-4 *5 (-312)) (-14 *6 (-1088)) (-14 *7 *5) (-5 *2 (-348 (-1146 *6 *5))) (-5 *1 (-776 *5 *6 *7)))) (-2609 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-693)) (-5 *4 (-1167 *5 *6 *7)) (-4 *5 (-312)) (-14 *6 (-1088)) (-14 *7 *5) (-5 *2 (-348 (-1146 *6 *5))) (-5 *1 (-776 *5 *6 *7))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3187 (((-85) $) NIL T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3980 $) (|:| |associate| $)) $) NIL T ELT)) (-2062 (($ $) NIL T ELT)) (-2060 (((-85) $) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3036 (($ $ (-483)) NIL T ELT)) (-1606 (((-85) $ $) NIL T ELT)) (-3722 (($) NIL T CONST)) (-2610 (($ (-1083 (-483)) (-483)) NIL T ELT)) (-2563 (($ $ $) NIL T ELT)) (-3465 (((-3 $ #1#) $) NIL T ELT)) (-2611 (($ $) NIL T ELT)) (-2562 (($ $ $) NIL T ELT)) (-2740 (((-2 (|:| -3952 (-582 $)) (|:| -2408 $)) (-582 $)) NIL T ELT)) (-3770 (((-693) $) NIL T ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-2409 (((-85) $) NIL T ELT)) (-1603 (((-3 (-582 $) #1#) (-582 $) $) NIL T ELT)) (-2613 (((-483)) NIL T ELT)) (-2612 (((-483) $) NIL T ELT)) (-1889 (($ $ $) NIL T ELT) (($ (-582 $)) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-2707 (((-1083 $) (-1083 $) (-1083 $)) NIL T ELT)) (-3143 (($ $ $) NIL T ELT) (($ (-582 $)) NIL T ELT)) (-1604 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3767 (($ $ (-483)) NIL T ELT)) (-3464 (((-3 $ #1#) $ $) NIL T ELT)) (-2739 (((-631 (-582 $)) (-582 $) $) NIL T ELT)) (-1605 (((-693) $) NIL T ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL T ELT)) (-2614 (((-1067 (-483)) $) NIL T ELT)) (-2890 (($ $) NIL T ELT)) (-3944 (((-771) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ $) NIL T ELT)) (-3125 (((-693)) NIL T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-2061 (((-85) $ $) NIL T ELT)) (-3768 (((-483) $ (-483)) NIL T ELT)) (-3124 (((-85) $ $) NIL T ELT)) (-2659 (($) NIL T CONST)) (-2665 (($) NIL T CONST)) (-3055 (((-85) $ $) NIL T ELT)) (-3835 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3837 (($ $ $) NIL T ELT)) (** (($ $ (-829)) NIL T ELT) (($ $ (-693)) NIL T ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT))) -(((-777 |#1|) (-778 |#1|) (-483)) (T -777)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-3187 (((-85) $) 22 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3980 $) (|:| |associate| $)) $) 55 T ELT)) (-2062 (($ $) 54 T ELT)) (-2060 (((-85) $) 52 T ELT)) (-1310 (((-3 $ "failed") $ $) 26 T ELT)) (-3036 (($ $ (-483)) 78 T ELT)) (-1606 (((-85) $ $) 75 T ELT)) (-3722 (($) 23 T CONST)) (-2610 (($ (-1083 (-483)) (-483)) 77 T ELT)) (-2563 (($ $ $) 71 T ELT)) (-3465 (((-3 $ "failed") $) 42 T ELT)) (-2611 (($ $) 80 T ELT)) (-2562 (($ $ $) 72 T ELT)) (-2740 (((-2 (|:| -3952 (-582 $)) (|:| -2408 $)) (-582 $)) 66 T ELT)) (-3770 (((-693) $) 85 T ELT)) (-1212 (((-85) $ $) 20 T ELT)) (-2409 (((-85) $) 44 T ELT)) (-1603 (((-3 (-582 $) #1="failed") (-582 $) $) 68 T ELT)) (-2613 (((-483)) 82 T ELT)) (-2612 (((-483) $) 81 T ELT)) (-1889 (($ $ $) 60 T ELT) (($ (-582 $)) 59 T ELT)) (-3241 (((-1071) $) 11 T ELT)) (-3242 (((-1032) $) 12 T ELT)) (-2707 (((-1083 $) (-1083 $) (-1083 $)) 58 T ELT)) (-3143 (($ $ $) 62 T ELT) (($ (-582 $)) 61 T ELT)) (-1604 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 69 T ELT)) (-3767 (($ $ (-483)) 84 T ELT)) (-3464 (((-3 $ "failed") $ $) 56 T ELT)) (-2739 (((-631 (-582 $)) (-582 $) $) 65 T ELT)) (-1605 (((-693) $) 74 T ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) 73 T ELT)) (-2614 (((-1067 (-483)) $) 86 T ELT)) (-2890 (($ $) 83 T ELT)) (-3944 (((-771) $) 13 T ELT) (($ (-483)) 41 T ELT) (($ $) 57 T ELT)) (-3125 (((-693)) 40 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-2061 (((-85) $ $) 53 T ELT)) (-3768 (((-483) $ (-483)) 79 T ELT)) (-3124 (((-85) $ $) 33 T ELT)) (-2659 (($) 24 T CONST)) (-2665 (($) 45 T CONST)) (-3055 (((-85) $ $) 8 T ELT)) (-3835 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3837 (($ $ $) 18 T ELT)) (** (($ $ (-829)) 35 T ELT) (($ $ (-693)) 43 T ELT)) (* (($ (-829) $) 17 T ELT) (($ (-693) $) 21 T ELT) (($ (-483) $) 30 T ELT) (($ $ $) 34 T ELT))) -(((-778 |#1|) (-113) (-483)) (T -778)) -((-2614 (*1 *2 *1) (-12 (-4 *1 (-778 *3)) (-5 *2 (-1067 (-483))))) (-3770 (*1 *2 *1) (-12 (-4 *1 (-778 *3)) (-5 *2 (-693)))) (-3767 (*1 *1 *1 *2) (-12 (-4 *1 (-778 *3)) (-5 *2 (-483)))) (-2890 (*1 *1 *1) (-4 *1 (-778 *2))) (-2613 (*1 *2) (-12 (-4 *1 (-778 *3)) (-5 *2 (-483)))) (-2612 (*1 *2 *1) (-12 (-4 *1 (-778 *3)) (-5 *2 (-483)))) (-2611 (*1 *1 *1) (-4 *1 (-778 *2))) (-3768 (*1 *2 *1 *2) (-12 (-4 *1 (-778 *3)) (-5 *2 (-483)))) (-3036 (*1 *1 *1 *2) (-12 (-4 *1 (-778 *3)) (-5 *2 (-483)))) (-2610 (*1 *1 *2 *3) (-12 (-5 *2 (-1083 (-483))) (-5 *3 (-483)) (-4 *1 (-778 *4))))) -(-13 (-258) (-120) (-10 -8 (-15 -2614 ((-1067 (-483)) $)) (-15 -3770 ((-693) $)) (-15 -3767 ($ $ (-483))) (-15 -2890 ($ $)) (-15 -2613 ((-483))) (-15 -2612 ((-483) $)) (-15 -2611 ($ $)) (-15 -3768 ((-483) $ (-483))) (-15 -3036 ($ $ (-483))) (-15 -2610 ($ (-1083 (-483)) (-483))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-120) . T) ((-554 (-483)) . T) ((-554 $) . T) ((-551 (-771)) . T) ((-146) . T) ((-246) . T) ((-258) . T) ((-390) . T) ((-494) . T) ((-13) . T) ((-587 (-483)) . T) ((-587 $) . T) ((-589 $) . T) ((-581 $) . T) ((-653 $) . T) ((-662) . T) ((-831) . T) ((-962 $) . T) ((-967 $) . T) ((-960) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T)) -((-2567 (((-85) $ $) NIL T ELT)) (-3187 (((-85) $) NIL T ELT)) (-3128 (((-777 |#1|) $) NIL (|has| (-777 |#1|) (-258)) ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3980 $) (|:| |associate| $)) $) NIL T ELT)) (-2062 (($ $) NIL T ELT)) (-2060 (((-85) $) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2706 (((-346 (-1083 $)) (-1083 $)) NIL (|has| (-777 |#1|) (-820)) ELT)) (-3773 (($ $) NIL T ELT)) (-3969 (((-346 $) $) NIL T ELT)) (-2703 (((-3 (-582 (-1083 $)) #1#) (-582 (-1083 $)) (-1083 $)) NIL (|has| (-777 |#1|) (-820)) ELT)) (-1606 (((-85) $ $) NIL T ELT)) (-3621 (((-483) $) NIL (|has| (-777 |#1|) (-739)) ELT)) (-3722 (($) NIL T CONST)) (-3156 (((-3 (-777 |#1|) #1#) $) NIL T ELT) (((-3 (-1088) #1#) $) NIL (|has| (-777 |#1|) (-949 (-1088))) ELT) (((-3 (-348 (-483)) #1#) $) NIL (|has| (-777 |#1|) (-949 (-483))) ELT) (((-3 (-483) #1#) $) NIL (|has| (-777 |#1|) (-949 (-483))) ELT)) (-3155 (((-777 |#1|) $) NIL T ELT) (((-1088) $) NIL (|has| (-777 |#1|) (-949 (-1088))) ELT) (((-348 (-483)) $) NIL (|has| (-777 |#1|) (-949 (-483))) ELT) (((-483) $) NIL (|has| (-777 |#1|) (-949 (-483))) ELT)) (-3728 (($ $) NIL T ELT) (($ (-483) $) NIL T ELT)) (-2563 (($ $ $) NIL T ELT)) (-2278 (((-629 (-483)) (-629 $)) NIL (|has| (-777 |#1|) (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-629 $) (-1177 $)) NIL (|has| (-777 |#1|) (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 (-777 |#1|))) (|:| |vec| (-1177 (-777 |#1|)))) (-629 $) (-1177 $)) NIL T ELT) (((-629 (-777 |#1|)) (-629 $)) NIL T ELT)) (-3465 (((-3 $ #1#) $) NIL T ELT)) (-2993 (($) NIL (|has| (-777 |#1|) (-482)) ELT)) (-2562 (($ $ $) NIL T ELT)) (-2740 (((-2 (|:| -3952 (-582 $)) (|:| -2408 $)) (-582 $)) NIL T ELT)) (-3721 (((-85) $) NIL T ELT)) (-3185 (((-85) $) NIL (|has| (-777 |#1|) (-739)) ELT)) (-2795 (((-797 (-483) $) $ (-799 (-483)) (-797 (-483) $)) NIL (|has| (-777 |#1|) (-795 (-483))) ELT) (((-797 (-328) $) $ (-799 (-328)) (-797 (-328) $)) NIL (|has| (-777 |#1|) (-795 (-328))) ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-2409 (((-85) $) NIL T ELT)) (-2995 (($ $) NIL T ELT)) (-2997 (((-777 |#1|) $) NIL T ELT)) (-3443 (((-631 $) $) NIL (|has| (-777 |#1|) (-1064)) ELT)) (-3186 (((-85) $) NIL (|has| (-777 |#1|) (-739)) ELT)) (-1603 (((-3 (-582 $) #1#) (-582 $) $) NIL T ELT)) (-2530 (($ $ $) NIL (|has| (-777 |#1|) (-755)) ELT)) (-2856 (($ $ $) NIL (|has| (-777 |#1|) (-755)) ELT)) (-3956 (($ (-1 (-777 |#1|) (-777 |#1|)) $) NIL T ELT)) (-2279 (((-629 (-483)) (-1177 $)) NIL (|has| (-777 |#1|) (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL (|has| (-777 |#1|) (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 (-777 |#1|))) (|:| |vec| (-1177 (-777 |#1|)))) (-1177 $) $) NIL T ELT) (((-629 (-777 |#1|)) (-1177 $)) NIL T ELT)) (-1889 (($ $ $) NIL T ELT) (($ (-582 $)) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-2483 (($ $) NIL T ELT)) (-3444 (($) NIL (|has| (-777 |#1|) (-1064)) CONST)) (-3242 (((-1032) $) NIL T ELT)) (-2707 (((-1083 $) (-1083 $) (-1083 $)) NIL T ELT)) (-3143 (($ $ $) NIL T ELT) (($ (-582 $)) NIL T ELT)) (-3127 (($ $) NIL (|has| (-777 |#1|) (-258)) ELT)) (-3129 (((-777 |#1|) $) NIL (|has| (-777 |#1|) (-482)) ELT)) (-2704 (((-346 (-1083 $)) (-1083 $)) NIL (|has| (-777 |#1|) (-820)) ELT)) (-2705 (((-346 (-1083 $)) (-1083 $)) NIL (|has| (-777 |#1|) (-820)) ELT)) (-3730 (((-346 $) $) NIL T ELT)) (-1604 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3464 (((-3 $ #1#) $ $) NIL T ELT)) (-2739 (((-631 (-582 $)) (-582 $) $) NIL T ELT)) (-3766 (($ $ (-582 (-777 |#1|)) (-582 (-777 |#1|))) NIL (|has| (-777 |#1|) (-260 (-777 |#1|))) ELT) (($ $ (-777 |#1|) (-777 |#1|)) NIL (|has| (-777 |#1|) (-260 (-777 |#1|))) ELT) (($ $ (-249 (-777 |#1|))) NIL (|has| (-777 |#1|) (-260 (-777 |#1|))) ELT) (($ $ (-582 (-249 (-777 |#1|)))) NIL (|has| (-777 |#1|) (-260 (-777 |#1|))) ELT) (($ $ (-582 (-1088)) (-582 (-777 |#1|))) NIL (|has| (-777 |#1|) (-454 (-1088) (-777 |#1|))) ELT) (($ $ (-1088) (-777 |#1|)) NIL (|has| (-777 |#1|) (-454 (-1088) (-777 |#1|))) ELT)) (-1605 (((-693) $) NIL T ELT)) (-3798 (($ $ (-777 |#1|)) NIL (|has| (-777 |#1|) (-241 (-777 |#1|) (-777 |#1|))) ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL T ELT)) (-3756 (($ $ (-1 (-777 |#1|) (-777 |#1|))) NIL T ELT) (($ $ (-1 (-777 |#1|) (-777 |#1|)) (-693)) NIL T ELT) (($ $ (-1088)) NIL (|has| (-777 |#1|) (-810 (-1088))) ELT) (($ $ (-582 (-1088))) NIL (|has| (-777 |#1|) (-810 (-1088))) ELT) (($ $ (-1088) (-693)) NIL (|has| (-777 |#1|) (-810 (-1088))) ELT) (($ $ (-582 (-1088)) (-582 (-693))) NIL (|has| (-777 |#1|) (-810 (-1088))) ELT) (($ $) NIL (|has| (-777 |#1|) (-189)) ELT) (($ $ (-693)) NIL (|has| (-777 |#1|) (-189)) ELT)) (-2994 (($ $) NIL T ELT)) (-2996 (((-777 |#1|) $) NIL T ELT)) (-3970 (((-799 (-483)) $) NIL (|has| (-777 |#1|) (-552 (-799 (-483)))) ELT) (((-799 (-328)) $) NIL (|has| (-777 |#1|) (-552 (-799 (-328)))) ELT) (((-472) $) NIL (|has| (-777 |#1|) (-552 (-472))) ELT) (((-328) $) NIL (|has| (-777 |#1|) (-932)) ELT) (((-179) $) NIL (|has| (-777 |#1|) (-932)) ELT)) (-2615 (((-148 (-348 (-483))) $) NIL T ELT)) (-2702 (((-3 (-1177 $) #1#) (-629 $)) NIL (-12 (|has| $ (-118)) (|has| (-777 |#1|) (-820))) ELT)) (-3944 (((-771) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ $) NIL T ELT) (($ (-348 (-483))) NIL T ELT) (($ (-777 |#1|)) NIL T ELT) (($ (-1088)) NIL (|has| (-777 |#1|) (-949 (-1088))) ELT)) (-2701 (((-631 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-777 |#1|) (-820))) (|has| (-777 |#1|) (-118))) ELT)) (-3125 (((-693)) NIL T CONST)) (-3130 (((-777 |#1|) $) NIL (|has| (-777 |#1|) (-482)) ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2061 (((-85) $ $) NIL T ELT)) (-3768 (((-348 (-483)) $ (-483)) NIL T ELT)) (-3124 (((-85) $ $) NIL T ELT)) (-3381 (($ $) NIL (|has| (-777 |#1|) (-739)) ELT)) (-2659 (($) NIL T CONST)) (-2665 (($) NIL T CONST)) (-2668 (($ $ (-1 (-777 |#1|) (-777 |#1|))) NIL T ELT) (($ $ (-1 (-777 |#1|) (-777 |#1|)) (-693)) NIL T ELT) (($ $ (-1088)) NIL (|has| (-777 |#1|) (-810 (-1088))) ELT) (($ $ (-582 (-1088))) NIL (|has| (-777 |#1|) (-810 (-1088))) ELT) (($ $ (-1088) (-693)) NIL (|has| (-777 |#1|) (-810 (-1088))) ELT) (($ $ (-582 (-1088)) (-582 (-693))) NIL (|has| (-777 |#1|) (-810 (-1088))) ELT) (($ $) NIL (|has| (-777 |#1|) (-189)) ELT) (($ $ (-693)) NIL (|has| (-777 |#1|) (-189)) ELT)) (-2565 (((-85) $ $) NIL (|has| (-777 |#1|) (-755)) ELT)) (-2566 (((-85) $ $) NIL (|has| (-777 |#1|) (-755)) ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-2683 (((-85) $ $) NIL (|has| (-777 |#1|) (-755)) ELT)) (-2684 (((-85) $ $) NIL (|has| (-777 |#1|) (-755)) ELT)) (-3947 (($ $ $) NIL T ELT) (($ (-777 |#1|) (-777 |#1|)) NIL T ELT)) (-3835 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3837 (($ $ $) NIL T ELT)) (** (($ $ (-829)) NIL T ELT) (($ $ (-693)) NIL T ELT) (($ $ (-483)) NIL T ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-348 (-483))) NIL T ELT) (($ (-348 (-483)) $) NIL T ELT) (($ (-777 |#1|) $) NIL T ELT) (($ $ (-777 |#1|)) NIL T ELT))) -(((-779 |#1|) (-13 (-903 (-777 |#1|)) (-10 -8 (-15 -3768 ((-348 (-483)) $ (-483))) (-15 -2615 ((-148 (-348 (-483))) $)) (-15 -3728 ($ $)) (-15 -3728 ($ (-483) $)))) (-483)) (T -779)) -((-3768 (*1 *2 *1 *3) (-12 (-5 *2 (-348 (-483))) (-5 *1 (-779 *4)) (-14 *4 *3) (-5 *3 (-483)))) (-2615 (*1 *2 *1) (-12 (-5 *2 (-148 (-348 (-483)))) (-5 *1 (-779 *3)) (-14 *3 (-483)))) (-3728 (*1 *1 *1) (-12 (-5 *1 (-779 *2)) (-14 *2 (-483)))) (-3728 (*1 *1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-779 *3)) (-14 *3 *2)))) -((-2567 (((-85) $ $) NIL T ELT)) (-3187 (((-85) $) NIL T ELT)) (-3128 ((|#2| $) NIL (|has| |#2| (-258)) ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3980 $) (|:| |associate| $)) $) NIL T ELT)) (-2062 (($ $) NIL T ELT)) (-2060 (((-85) $) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2706 (((-346 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-820)) ELT)) (-3773 (($ $) NIL T ELT)) (-3969 (((-346 $) $) NIL T ELT)) (-2703 (((-3 (-582 (-1083 $)) #1#) (-582 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-820)) ELT)) (-1606 (((-85) $ $) NIL T ELT)) (-3621 (((-483) $) NIL (|has| |#2| (-739)) ELT)) (-3722 (($) NIL T CONST)) (-3156 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-1088) #1#) $) NIL (|has| |#2| (-949 (-1088))) ELT) (((-3 (-348 (-483)) #1#) $) NIL (|has| |#2| (-949 (-483))) ELT) (((-3 (-483) #1#) $) NIL (|has| |#2| (-949 (-483))) ELT)) (-3155 ((|#2| $) NIL T ELT) (((-1088) $) NIL (|has| |#2| (-949 (-1088))) ELT) (((-348 (-483)) $) NIL (|has| |#2| (-949 (-483))) ELT) (((-483) $) NIL (|has| |#2| (-949 (-483))) ELT)) (-3728 (($ $) 35 T ELT) (($ (-483) $) 38 T ELT)) (-2563 (($ $ $) NIL T ELT)) (-2278 (((-629 (-483)) (-629 $)) NIL (|has| |#2| (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-629 $) (-1177 $)) NIL (|has| |#2| (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 |#2|)) (|:| |vec| (-1177 |#2|))) (-629 $) (-1177 $)) NIL T ELT) (((-629 |#2|) (-629 $)) NIL T ELT)) (-3465 (((-3 $ #1#) $) 64 T ELT)) (-2993 (($) NIL (|has| |#2| (-482)) ELT)) (-2562 (($ $ $) NIL T ELT)) (-2740 (((-2 (|:| -3952 (-582 $)) (|:| -2408 $)) (-582 $)) NIL T ELT)) (-3721 (((-85) $) NIL T ELT)) (-3185 (((-85) $) NIL (|has| |#2| (-739)) ELT)) (-2795 (((-797 (-483) $) $ (-799 (-483)) (-797 (-483) $)) NIL (|has| |#2| (-795 (-483))) ELT) (((-797 (-328) $) $ (-799 (-328)) (-797 (-328) $)) NIL (|has| |#2| (-795 (-328))) ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-2409 (((-85) $) NIL T ELT)) (-2995 (($ $) NIL T ELT)) (-2997 ((|#2| $) NIL T ELT)) (-3443 (((-631 $) $) NIL (|has| |#2| (-1064)) ELT)) (-3186 (((-85) $) NIL (|has| |#2| (-739)) ELT)) (-1603 (((-3 (-582 $) #1#) (-582 $) $) NIL T ELT)) (-2530 (($ $ $) NIL (|has| |#2| (-755)) ELT)) (-2856 (($ $ $) NIL (|has| |#2| (-755)) ELT)) (-3956 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2279 (((-629 (-483)) (-1177 $)) NIL (|has| |#2| (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL (|has| |#2| (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 |#2|)) (|:| |vec| (-1177 |#2|))) (-1177 $) $) NIL T ELT) (((-629 |#2|) (-1177 $)) NIL T ELT)) (-1889 (($ $ $) NIL T ELT) (($ (-582 $)) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-2483 (($ $) 60 T ELT)) (-3444 (($) NIL (|has| |#2| (-1064)) CONST)) (-3242 (((-1032) $) NIL T ELT)) (-2707 (((-1083 $) (-1083 $) (-1083 $)) NIL T ELT)) (-3143 (($ $ $) NIL T ELT) (($ (-582 $)) NIL T ELT)) (-3127 (($ $) NIL (|has| |#2| (-258)) ELT)) (-3129 ((|#2| $) NIL (|has| |#2| (-482)) ELT)) (-2704 (((-346 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-820)) ELT)) (-2705 (((-346 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-820)) ELT)) (-3730 (((-346 $) $) NIL T ELT)) (-1604 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3464 (((-3 $ #1#) $ $) NIL T ELT)) (-2739 (((-631 (-582 $)) (-582 $) $) NIL T ELT)) (-3766 (($ $ (-582 |#2|) (-582 |#2|)) NIL (|has| |#2| (-260 |#2|)) ELT) (($ $ |#2| |#2|) NIL (|has| |#2| (-260 |#2|)) ELT) (($ $ (-249 |#2|)) NIL (|has| |#2| (-260 |#2|)) ELT) (($ $ (-582 (-249 |#2|))) NIL (|has| |#2| (-260 |#2|)) ELT) (($ $ (-582 (-1088)) (-582 |#2|)) NIL (|has| |#2| (-454 (-1088) |#2|)) ELT) (($ $ (-1088) |#2|) NIL (|has| |#2| (-454 (-1088) |#2|)) ELT)) (-1605 (((-693) $) NIL T ELT)) (-3798 (($ $ |#2|) NIL (|has| |#2| (-241 |#2| |#2|)) ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL T ELT)) (-3756 (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-693)) NIL T ELT) (($ $ (-1088)) NIL (|has| |#2| (-810 (-1088))) ELT) (($ $ (-582 (-1088))) NIL (|has| |#2| (-810 (-1088))) ELT) (($ $ (-1088) (-693)) NIL (|has| |#2| (-810 (-1088))) ELT) (($ $ (-582 (-1088)) (-582 (-693))) NIL (|has| |#2| (-810 (-1088))) ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-693)) NIL (|has| |#2| (-189)) ELT)) (-2994 (($ $) NIL T ELT)) (-2996 ((|#2| $) NIL T ELT)) (-3970 (((-799 (-483)) $) NIL (|has| |#2| (-552 (-799 (-483)))) ELT) (((-799 (-328)) $) NIL (|has| |#2| (-552 (-799 (-328)))) ELT) (((-472) $) NIL (|has| |#2| (-552 (-472))) ELT) (((-328) $) NIL (|has| |#2| (-932)) ELT) (((-179) $) NIL (|has| |#2| (-932)) ELT)) (-2615 (((-148 (-348 (-483))) $) 78 T ELT)) (-2702 (((-3 (-1177 $) #1#) (-629 $)) NIL (-12 (|has| $ (-118)) (|has| |#2| (-820))) ELT)) (-3944 (((-771) $) 105 T ELT) (($ (-483)) 20 T ELT) (($ $) NIL T ELT) (($ (-348 (-483))) 25 T ELT) (($ |#2|) 19 T ELT) (($ (-1088)) NIL (|has| |#2| (-949 (-1088))) ELT)) (-2701 (((-631 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#2| (-820))) (|has| |#2| (-118))) ELT)) (-3125 (((-693)) NIL T CONST)) (-3130 ((|#2| $) NIL (|has| |#2| (-482)) ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2061 (((-85) $ $) NIL T ELT)) (-3768 (((-348 (-483)) $ (-483)) 71 T ELT)) (-3124 (((-85) $ $) NIL T ELT)) (-3381 (($ $) NIL (|has| |#2| (-739)) ELT)) (-2659 (($) 15 T CONST)) (-2665 (($) 17 T CONST)) (-2668 (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-693)) NIL T ELT) (($ $ (-1088)) NIL (|has| |#2| (-810 (-1088))) ELT) (($ $ (-582 (-1088))) NIL (|has| |#2| (-810 (-1088))) ELT) (($ $ (-1088) (-693)) NIL (|has| |#2| (-810 (-1088))) ELT) (($ $ (-582 (-1088)) (-582 (-693))) NIL (|has| |#2| (-810 (-1088))) ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-693)) NIL (|has| |#2| (-189)) ELT)) (-2565 (((-85) $ $) NIL (|has| |#2| (-755)) ELT)) (-2566 (((-85) $ $) NIL (|has| |#2| (-755)) ELT)) (-3055 (((-85) $ $) 46 T ELT)) (-2683 (((-85) $ $) NIL (|has| |#2| (-755)) ELT)) (-2684 (((-85) $ $) NIL (|has| |#2| (-755)) ELT)) (-3947 (($ $ $) 24 T ELT) (($ |#2| |#2|) 65 T ELT)) (-3835 (($ $) 50 T ELT) (($ $ $) 52 T ELT)) (-3837 (($ $ $) 48 T ELT)) (** (($ $ (-829)) NIL T ELT) (($ $ (-693)) NIL T ELT) (($ $ (-483)) 61 T ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-483) $) 53 T ELT) (($ $ $) 55 T ELT) (($ $ (-348 (-483))) NIL T ELT) (($ (-348 (-483)) $) NIL T ELT) (($ |#2| $) 66 T ELT) (($ $ |#2|) NIL T ELT))) -(((-780 |#1| |#2|) (-13 (-903 |#2|) (-10 -8 (-15 -3768 ((-348 (-483)) $ (-483))) (-15 -2615 ((-148 (-348 (-483))) $)) (-15 -3728 ($ $)) (-15 -3728 ($ (-483) $)))) (-483) (-778 |#1|)) (T -780)) -((-3768 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-348 (-483))) (-5 *1 (-780 *4 *5)) (-5 *3 (-483)) (-4 *5 (-778 *4)))) (-2615 (*1 *2 *1) (-12 (-14 *3 (-483)) (-5 *2 (-148 (-348 (-483)))) (-5 *1 (-780 *3 *4)) (-4 *4 (-778 *3)))) (-3728 (*1 *1 *1) (-12 (-14 *2 (-483)) (-5 *1 (-780 *2 *3)) (-4 *3 (-778 *2)))) (-3728 (*1 *1 *2 *1) (-12 (-5 *2 (-483)) (-14 *3 *2) (-5 *1 (-780 *3 *4)) (-4 *4 (-778 *3))))) -((-2567 (((-85) $ $) NIL (-12 (|has| |#1| (-1012)) (|has| |#2| (-1012))) ELT)) (-3794 ((|#2| $) 12 T ELT)) (-2616 (($ |#1| |#2|) 9 T ELT)) (-3241 (((-1071) $) NIL (-12 (|has| |#1| (-1012)) (|has| |#2| (-1012))) ELT)) (-3242 (((-1032) $) NIL (-12 (|has| |#1| (-1012)) (|has| |#2| (-1012))) ELT)) (-3799 ((|#1| $) 11 T ELT)) (-3528 (($ |#1| |#2|) 10 T ELT)) (-3944 (((-771) $) 18 (OR (-12 (|has| |#1| (-551 (-771))) (|has| |#2| (-551 (-771)))) (-12 (|has| |#1| (-1012)) (|has| |#2| (-1012)))) ELT)) (-1263 (((-85) $ $) NIL (-12 (|has| |#1| (-1012)) (|has| |#2| (-1012))) ELT)) (-3055 (((-85) $ $) 23 (-12 (|has| |#1| (-1012)) (|has| |#2| (-1012))) ELT))) -(((-781 |#1| |#2|) (-13 (-1127) (-10 -8 (IF (|has| |#1| (-551 (-771))) (IF (|has| |#2| (-551 (-771))) (-6 (-551 (-771))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1012)) (IF (|has| |#2| (-1012)) (-6 (-1012)) |%noBranch|) |%noBranch|) (-15 -2616 ($ |#1| |#2|)) (-15 -3528 ($ |#1| |#2|)) (-15 -3799 (|#1| $)) (-15 -3794 (|#2| $)))) (-1127) (-1127)) (T -781)) -((-2616 (*1 *1 *2 *3) (-12 (-5 *1 (-781 *2 *3)) (-4 *2 (-1127)) (-4 *3 (-1127)))) (-3528 (*1 *1 *2 *3) (-12 (-5 *1 (-781 *2 *3)) (-4 *2 (-1127)) (-4 *3 (-1127)))) (-3799 (*1 *2 *1) (-12 (-4 *2 (-1127)) (-5 *1 (-781 *2 *3)) (-4 *3 (-1127)))) (-3794 (*1 *2 *1) (-12 (-4 *2 (-1127)) (-5 *1 (-781 *3 *2)) (-4 *3 (-1127))))) -((-2567 (((-85) $ $) NIL T ELT)) (-2956 (((-483) $) 16 T ELT)) (-2618 (($ (-130)) 13 T ELT)) (-2617 (($ (-130)) 14 T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-2955 (((-130) $) 15 T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-2620 (($ (-130)) 11 T ELT)) (-2621 (($ (-130)) 10 T ELT)) (-3944 (((-771) $) 24 T ELT) (($ (-130)) 17 T ELT)) (-2619 (($ (-130)) 12 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-782) (-13 (-1012) (-554 (-130)) (-10 -8 (-15 -2621 ($ (-130))) (-15 -2620 ($ (-130))) (-15 -2619 ($ (-130))) (-15 -2618 ($ (-130))) (-15 -2617 ($ (-130))) (-15 -2955 ((-130) $)) (-15 -2956 ((-483) $))))) (T -782)) -((-2621 (*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-782)))) (-2620 (*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-782)))) (-2619 (*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-782)))) (-2618 (*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-782)))) (-2617 (*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-782)))) (-2955 (*1 *2 *1) (-12 (-5 *2 (-130)) (-5 *1 (-782)))) (-2956 (*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-782))))) -((-3944 (((-265 (-483)) (-348 (-856 (-48)))) 23 T ELT) (((-265 (-483)) (-856 (-48))) 18 T ELT))) -(((-783) (-10 -7 (-15 -3944 ((-265 (-483)) (-856 (-48)))) (-15 -3944 ((-265 (-483)) (-348 (-856 (-48))))))) (T -783)) -((-3944 (*1 *2 *3) (-12 (-5 *3 (-348 (-856 (-48)))) (-5 *2 (-265 (-483))) (-5 *1 (-783)))) (-3944 (*1 *2 *3) (-12 (-5 *3 (-856 (-48))) (-5 *2 (-265 (-483))) (-5 *1 (-783))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3944 (((-771) $) 18 T ELT) (($ (-1093)) NIL T ELT) (((-1093) $) NIL T ELT)) (-3564 (((-85) $ (|[\|\|]| (-445))) 9 T ELT) (((-85) $ (|[\|\|]| (-1071))) 13 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3570 (((-445) $) 10 T ELT) (((-1071) $) 14 T ELT)) (-3055 (((-85) $ $) 15 T ELT))) -(((-784) (-13 (-994) (-1173) (-10 -8 (-15 -3564 ((-85) $ (|[\|\|]| (-445)))) (-15 -3570 ((-445) $)) (-15 -3564 ((-85) $ (|[\|\|]| (-1071)))) (-15 -3570 ((-1071) $))))) (T -784)) -((-3564 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-445))) (-5 *2 (-85)) (-5 *1 (-784)))) (-3570 (*1 *2 *1) (-12 (-5 *2 (-445)) (-5 *1 (-784)))) (-3564 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1071))) (-5 *2 (-85)) (-5 *1 (-784)))) (-3570 (*1 *2 *1) (-12 (-5 *2 (-1071)) (-5 *1 (-784))))) -((-3956 (((-786 |#2|) (-1 |#2| |#1|) (-786 |#1|)) 15 T ELT))) -(((-785 |#1| |#2|) (-10 -7 (-15 -3956 ((-786 |#2|) (-1 |#2| |#1|) (-786 |#1|)))) (-1127) (-1127)) (T -785)) -((-3956 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-786 *5)) (-4 *5 (-1127)) (-4 *6 (-1127)) (-5 *2 (-786 *6)) (-5 *1 (-785 *5 *6))))) -((-3369 (($ |#1| |#1|) 8 T ELT)) (-2624 ((|#1| $ (-693)) 15 T ELT))) -(((-786 |#1|) (-10 -8 (-15 -3369 ($ |#1| |#1|)) (-15 -2624 (|#1| $ (-693)))) (-1127)) (T -786)) -((-2624 (*1 *2 *1 *3) (-12 (-5 *3 (-693)) (-5 *1 (-786 *2)) (-4 *2 (-1127)))) (-3369 (*1 *1 *2 *2) (-12 (-5 *1 (-786 *2)) (-4 *2 (-1127))))) -((-3956 (((-788 |#2|) (-1 |#2| |#1|) (-788 |#1|)) 15 T ELT))) -(((-787 |#1| |#2|) (-10 -7 (-15 -3956 ((-788 |#2|) (-1 |#2| |#1|) (-788 |#1|)))) (-1127) (-1127)) (T -787)) -((-3956 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-788 *5)) (-4 *5 (-1127)) (-4 *6 (-1127)) (-5 *2 (-788 *6)) (-5 *1 (-787 *5 *6))))) -((-3369 (($ |#1| |#1| |#1|) 8 T ELT)) (-2624 ((|#1| $ (-693)) 15 T ELT))) -(((-788 |#1|) (-10 -8 (-15 -3369 ($ |#1| |#1| |#1|)) (-15 -2624 (|#1| $ (-693)))) (-1127)) (T -788)) -((-2624 (*1 *2 *1 *3) (-12 (-5 *3 (-693)) (-5 *1 (-788 *2)) (-4 *2 (-1127)))) (-3369 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-788 *2)) (-4 *2 (-1127))))) -((-2622 (((-582 (-1093)) (-1071)) 9 T ELT))) -(((-789) (-10 -7 (-15 -2622 ((-582 (-1093)) (-1071))))) (T -789)) -((-2622 (*1 *2 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-582 (-1093))) (-5 *1 (-789))))) -((-3956 (((-791 |#2|) (-1 |#2| |#1|) (-791 |#1|)) 15 T ELT))) -(((-790 |#1| |#2|) (-10 -7 (-15 -3956 ((-791 |#2|) (-1 |#2| |#1|) (-791 |#1|)))) (-1127) (-1127)) (T -790)) -((-3956 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-791 *5)) (-4 *5 (-1127)) (-4 *6 (-1127)) (-5 *2 (-791 *6)) (-5 *1 (-790 *5 *6))))) -((-2623 (($ |#1| |#1| |#1|) 8 T ELT)) (-2624 ((|#1| $ (-693)) 15 T ELT))) -(((-791 |#1|) (-10 -8 (-15 -2623 ($ |#1| |#1| |#1|)) (-15 -2624 (|#1| $ (-693)))) (-1127)) (T -791)) -((-2624 (*1 *2 *1 *3) (-12 (-5 *3 (-693)) (-5 *1 (-791 *2)) (-4 *2 (-1127)))) (-2623 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-791 *2)) (-4 *2 (-1127))))) -((-2627 (((-1067 (-582 (-483))) (-582 (-483)) (-1067 (-582 (-483)))) 41 T ELT)) (-2626 (((-1067 (-582 (-483))) (-582 (-483)) (-582 (-483))) 31 T ELT)) (-2628 (((-1067 (-582 (-483))) (-582 (-483))) 53 T ELT) (((-1067 (-582 (-483))) (-582 (-483)) (-582 (-483))) 50 T ELT)) (-2629 (((-1067 (-582 (-483))) (-483)) 55 T ELT)) (-2625 (((-1067 (-582 (-829))) (-1067 (-582 (-829)))) 22 T ELT)) (-3008 (((-582 (-829)) (-582 (-829))) 18 T ELT))) -(((-792) (-10 -7 (-15 -3008 ((-582 (-829)) (-582 (-829)))) (-15 -2625 ((-1067 (-582 (-829))) (-1067 (-582 (-829))))) (-15 -2626 ((-1067 (-582 (-483))) (-582 (-483)) (-582 (-483)))) (-15 -2627 ((-1067 (-582 (-483))) (-582 (-483)) (-1067 (-582 (-483))))) (-15 -2628 ((-1067 (-582 (-483))) (-582 (-483)) (-582 (-483)))) (-15 -2628 ((-1067 (-582 (-483))) (-582 (-483)))) (-15 -2629 ((-1067 (-582 (-483))) (-483))))) (T -792)) -((-2629 (*1 *2 *3) (-12 (-5 *2 (-1067 (-582 (-483)))) (-5 *1 (-792)) (-5 *3 (-483)))) (-2628 (*1 *2 *3) (-12 (-5 *2 (-1067 (-582 (-483)))) (-5 *1 (-792)) (-5 *3 (-582 (-483))))) (-2628 (*1 *2 *3 *3) (-12 (-5 *2 (-1067 (-582 (-483)))) (-5 *1 (-792)) (-5 *3 (-582 (-483))))) (-2627 (*1 *2 *3 *2) (-12 (-5 *2 (-1067 (-582 (-483)))) (-5 *3 (-582 (-483))) (-5 *1 (-792)))) (-2626 (*1 *2 *3 *3) (-12 (-5 *2 (-1067 (-582 (-483)))) (-5 *1 (-792)) (-5 *3 (-582 (-483))))) (-2625 (*1 *2 *2) (-12 (-5 *2 (-1067 (-582 (-829)))) (-5 *1 (-792)))) (-3008 (*1 *2 *2) (-12 (-5 *2 (-582 (-829))) (-5 *1 (-792))))) -((-3970 (((-799 (-328)) $) 9 (|has| |#1| (-552 (-799 (-328)))) ELT) (((-799 (-483)) $) 8 (|has| |#1| (-552 (-799 (-483)))) ELT))) -(((-793 |#1|) (-113) (-1127)) (T -793)) -NIL -(-13 (-10 -7 (IF (|has| |t#1| (-552 (-799 (-483)))) (-6 (-552 (-799 (-483)))) |%noBranch|) (IF (|has| |t#1| (-552 (-799 (-328)))) (-6 (-552 (-799 (-328)))) |%noBranch|))) -(((-552 (-799 (-328))) |has| |#1| (-552 (-799 (-328)))) ((-552 (-799 (-483))) |has| |#1| (-552 (-799 (-483))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3612 (($) 14 T ELT)) (-2631 (($ (-797 |#1| |#2|) (-797 |#1| |#3|)) 28 T ELT)) (-2630 (((-797 |#1| |#3|) $) 16 T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-2639 (((-85) $) 22 T ELT)) (-2638 (($) 19 T ELT)) (-3944 (((-771) $) 31 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2849 (((-797 |#1| |#2|) $) 15 T ELT)) (-3055 (((-85) $ $) 26 T ELT))) -(((-794 |#1| |#2| |#3|) (-13 (-1012) (-10 -8 (-15 -2639 ((-85) $)) (-15 -2638 ($)) (-15 -3612 ($)) (-15 -2631 ($ (-797 |#1| |#2|) (-797 |#1| |#3|))) (-15 -2849 ((-797 |#1| |#2|) $)) (-15 -2630 ((-797 |#1| |#3|) $)))) (-1012) (-1012) (-607 |#2|)) (T -794)) -((-2639 (*1 *2 *1) (-12 (-4 *4 (-1012)) (-5 *2 (-85)) (-5 *1 (-794 *3 *4 *5)) (-4 *3 (-1012)) (-4 *5 (-607 *4)))) (-2638 (*1 *1) (-12 (-4 *3 (-1012)) (-5 *1 (-794 *2 *3 *4)) (-4 *2 (-1012)) (-4 *4 (-607 *3)))) (-3612 (*1 *1) (-12 (-4 *3 (-1012)) (-5 *1 (-794 *2 *3 *4)) (-4 *2 (-1012)) (-4 *4 (-607 *3)))) (-2631 (*1 *1 *2 *3) (-12 (-5 *2 (-797 *4 *5)) (-5 *3 (-797 *4 *6)) (-4 *4 (-1012)) (-4 *5 (-1012)) (-4 *6 (-607 *5)) (-5 *1 (-794 *4 *5 *6)))) (-2849 (*1 *2 *1) (-12 (-4 *4 (-1012)) (-5 *2 (-797 *3 *4)) (-5 *1 (-794 *3 *4 *5)) (-4 *3 (-1012)) (-4 *5 (-607 *4)))) (-2630 (*1 *2 *1) (-12 (-4 *4 (-1012)) (-5 *2 (-797 *3 *5)) (-5 *1 (-794 *3 *4 *5)) (-4 *3 (-1012)) (-4 *5 (-607 *4))))) -((-2567 (((-85) $ $) 7 T ELT)) (-2795 (((-797 |#1| $) $ (-799 |#1|) (-797 |#1| $)) 17 T ELT)) (-3241 (((-1071) $) 11 T ELT)) (-3242 (((-1032) $) 12 T ELT)) (-3944 (((-771) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-3055 (((-85) $ $) 8 T ELT))) -(((-795 |#1|) (-113) (-1012)) (T -795)) -((-2795 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-797 *4 *1)) (-5 *3 (-799 *4)) (-4 *1 (-795 *4)) (-4 *4 (-1012))))) -(-13 (-1012) (-10 -8 (-15 -2795 ((-797 |t#1| $) $ (-799 |t#1|) (-797 |t#1| $))))) -(((-72) . T) ((-551 (-771)) . T) ((-13) . T) ((-1012) . T) ((-1127) . T)) -((-2632 (((-85) (-582 |#2|) |#3|) 23 T ELT) (((-85) |#2| |#3|) 18 T ELT)) (-2633 (((-797 |#1| |#2|) |#2| |#3|) 45 (-12 (-2559 (|has| |#2| (-949 (-1088)))) (-2559 (|has| |#2| (-960)))) ELT) (((-582 (-249 (-856 |#2|))) |#2| |#3|) 44 (-12 (|has| |#2| (-960)) (-2559 (|has| |#2| (-949 (-1088))))) ELT) (((-582 (-249 |#2|)) |#2| |#3|) 36 (|has| |#2| (-949 (-1088))) ELT) (((-794 |#1| |#2| (-582 |#2|)) (-582 |#2|) |#3|) 21 T ELT))) -(((-796 |#1| |#2| |#3|) (-10 -7 (-15 -2632 ((-85) |#2| |#3|)) (-15 -2632 ((-85) (-582 |#2|) |#3|)) (-15 -2633 ((-794 |#1| |#2| (-582 |#2|)) (-582 |#2|) |#3|)) (IF (|has| |#2| (-949 (-1088))) (-15 -2633 ((-582 (-249 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-960)) (-15 -2633 ((-582 (-249 (-856 |#2|))) |#2| |#3|)) (-15 -2633 ((-797 |#1| |#2|) |#2| |#3|))))) (-1012) (-795 |#1|) (-552 (-799 |#1|))) (T -796)) -((-2633 (*1 *2 *3 *4) (-12 (-4 *5 (-1012)) (-5 *2 (-797 *5 *3)) (-5 *1 (-796 *5 *3 *4)) (-2559 (-4 *3 (-949 (-1088)))) (-2559 (-4 *3 (-960))) (-4 *3 (-795 *5)) (-4 *4 (-552 (-799 *5))))) (-2633 (*1 *2 *3 *4) (-12 (-4 *5 (-1012)) (-5 *2 (-582 (-249 (-856 *3)))) (-5 *1 (-796 *5 *3 *4)) (-4 *3 (-960)) (-2559 (-4 *3 (-949 (-1088)))) (-4 *3 (-795 *5)) (-4 *4 (-552 (-799 *5))))) (-2633 (*1 *2 *3 *4) (-12 (-4 *5 (-1012)) (-5 *2 (-582 (-249 *3))) (-5 *1 (-796 *5 *3 *4)) (-4 *3 (-949 (-1088))) (-4 *3 (-795 *5)) (-4 *4 (-552 (-799 *5))))) (-2633 (*1 *2 *3 *4) (-12 (-4 *5 (-1012)) (-4 *6 (-795 *5)) (-5 *2 (-794 *5 *6 (-582 *6))) (-5 *1 (-796 *5 *6 *4)) (-5 *3 (-582 *6)) (-4 *4 (-552 (-799 *5))))) (-2632 (*1 *2 *3 *4) (-12 (-5 *3 (-582 *6)) (-4 *6 (-795 *5)) (-4 *5 (-1012)) (-5 *2 (-85)) (-5 *1 (-796 *5 *6 *4)) (-4 *4 (-552 (-799 *5))))) (-2632 (*1 *2 *3 *4) (-12 (-4 *5 (-1012)) (-5 *2 (-85)) (-5 *1 (-796 *5 *3 *4)) (-4 *3 (-795 *5)) (-4 *4 (-552 (-799 *5)))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3233 (($ $ $) 40 T ELT)) (-2660 (((-3 (-85) #1="failed") $ (-799 |#1|)) 37 T ELT)) (-3612 (($) 12 T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-2635 (($ (-799 |#1|) |#2| $) 20 T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-2637 (((-3 |#2| #1#) (-799 |#1|) $) 51 T ELT)) (-2639 (((-85) $) 15 T ELT)) (-2638 (($) 13 T ELT)) (-3256 (((-582 (-2 (|:| -3858 (-1088)) (|:| |entry| |#2|))) $) 25 T ELT)) (-3528 (($ (-582 (-2 (|:| -3858 (-1088)) (|:| |entry| |#2|)))) 23 T ELT)) (-3944 (((-771) $) 45 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2634 (($ (-799 |#1|) |#2| $ |#2|) 49 T ELT)) (-2636 (($ (-799 |#1|) |#2| $) 48 T ELT)) (-3055 (((-85) $ $) 42 T ELT))) -(((-797 |#1| |#2|) (-13 (-1012) (-10 -8 (-15 -2639 ((-85) $)) (-15 -2638 ($)) (-15 -3612 ($)) (-15 -3233 ($ $ $)) (-15 -2637 ((-3 |#2| #1="failed") (-799 |#1|) $)) (-15 -2636 ($ (-799 |#1|) |#2| $)) (-15 -2635 ($ (-799 |#1|) |#2| $)) (-15 -2634 ($ (-799 |#1|) |#2| $ |#2|)) (-15 -3256 ((-582 (-2 (|:| -3858 (-1088)) (|:| |entry| |#2|))) $)) (-15 -3528 ($ (-582 (-2 (|:| -3858 (-1088)) (|:| |entry| |#2|))))) (-15 -2660 ((-3 (-85) #1#) $ (-799 |#1|))))) (-1012) (-1012)) (T -797)) -((-2639 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-797 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1012)))) (-2638 (*1 *1) (-12 (-5 *1 (-797 *2 *3)) (-4 *2 (-1012)) (-4 *3 (-1012)))) (-3612 (*1 *1) (-12 (-5 *1 (-797 *2 *3)) (-4 *2 (-1012)) (-4 *3 (-1012)))) (-3233 (*1 *1 *1 *1) (-12 (-5 *1 (-797 *2 *3)) (-4 *2 (-1012)) (-4 *3 (-1012)))) (-2637 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-799 *4)) (-4 *4 (-1012)) (-4 *2 (-1012)) (-5 *1 (-797 *4 *2)))) (-2636 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-799 *4)) (-4 *4 (-1012)) (-5 *1 (-797 *4 *3)) (-4 *3 (-1012)))) (-2635 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-799 *4)) (-4 *4 (-1012)) (-5 *1 (-797 *4 *3)) (-4 *3 (-1012)))) (-2634 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-799 *4)) (-4 *4 (-1012)) (-5 *1 (-797 *4 *3)) (-4 *3 (-1012)))) (-3256 (*1 *2 *1) (-12 (-5 *2 (-582 (-2 (|:| -3858 (-1088)) (|:| |entry| *4)))) (-5 *1 (-797 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1012)))) (-3528 (*1 *1 *2) (-12 (-5 *2 (-582 (-2 (|:| -3858 (-1088)) (|:| |entry| *4)))) (-4 *4 (-1012)) (-5 *1 (-797 *3 *4)) (-4 *3 (-1012)))) (-2660 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-799 *4)) (-4 *4 (-1012)) (-5 *2 (-85)) (-5 *1 (-797 *4 *5)) (-4 *5 (-1012))))) -((-3956 (((-797 |#1| |#3|) (-1 |#3| |#2|) (-797 |#1| |#2|)) 22 T ELT))) -(((-798 |#1| |#2| |#3|) (-10 -7 (-15 -3956 ((-797 |#1| |#3|) (-1 |#3| |#2|) (-797 |#1| |#2|)))) (-1012) (-1012) (-1012)) (T -798)) -((-3956 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-797 *5 *6)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *7 (-1012)) (-5 *2 (-797 *5 *7)) (-5 *1 (-798 *5 *6 *7))))) -((-2567 (((-85) $ $) NIL T ELT)) (-2647 (($ $ (-582 (-51))) 74 T ELT)) (-3080 (((-582 $) $) 139 T ELT)) (-2644 (((-2 (|:| |var| (-582 (-1088))) (|:| |pred| (-51))) $) 30 T ELT)) (-3259 (((-85) $) 35 T ELT)) (-2645 (($ $ (-582 (-1088)) (-51)) 31 T ELT)) (-2648 (($ $ (-582 (-51))) 73 T ELT)) (-3156 (((-3 |#1| #1="failed") $) 71 T ELT) (((-3 (-1088) #1#) $) 167 T ELT)) (-3155 ((|#1| $) 68 T ELT) (((-1088) $) NIL T ELT)) (-2642 (($ $) 126 T ELT)) (-2654 (((-85) $) 55 T ELT)) (-2649 (((-582 (-51)) $) 50 T ELT)) (-2646 (($ (-1088) (-85) (-85) (-85)) 75 T ELT)) (-2640 (((-3 (-582 $) #1#) (-582 $)) 82 T ELT)) (-2651 (((-85) $) 58 T ELT)) (-2652 (((-85) $) 57 T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-2822 (((-3 (-582 $) #1#) $) 41 T ELT)) (-2657 (((-3 (-2 (|:| |num| $) (|:| |den| $)) #1#) $) 48 T ELT)) (-2824 (((-3 (-2 (|:| |val| $) (|:| -2400 $)) #1#) $) 97 T ELT)) (-2821 (((-3 (-582 $) #1#) $) 40 T ELT)) (-2658 (((-3 (-582 $) #1#) $ (-86)) 124 T ELT) (((-3 (-2 (|:| -2512 (-86)) (|:| |arg| (-582 $))) #1#) $) 107 T ELT)) (-2656 (((-3 (-582 $) #1#) $) 42 T ELT)) (-2823 (((-3 (-2 (|:| |val| $) (|:| -2400 (-693))) #1#) $) 45 T ELT)) (-2655 (((-85) $) 34 T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-2643 (((-85) $) 28 T ELT)) (-2650 (((-85) $) 52 T ELT)) (-2641 (((-582 (-51)) $) 130 T ELT)) (-2653 (((-85) $) 56 T ELT)) (-3798 (($ (-86) (-582 $)) 104 T ELT)) (-3321 (((-693) $) 33 T ELT)) (-3398 (($ $) 72 T ELT)) (-3970 (($ (-582 $)) 69 T ELT)) (-3951 (((-85) $) 32 T ELT)) (-3944 (((-771) $) 63 T ELT) (($ |#1|) 23 T ELT) (($ (-1088)) 76 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2661 (($ $ (-51)) 129 T ELT)) (-2659 (($) 103 T CONST)) (-2665 (($) 83 T CONST)) (-3055 (((-85) $ $) 93 T ELT)) (-3947 (($ $ $) 117 T ELT)) (-3837 (($ $ $) 121 T ELT)) (** (($ $ (-693)) 115 T ELT) (($ $ $) 64 T ELT)) (* (($ $ $) 122 T ELT))) -(((-799 |#1|) (-13 (-1012) (-949 |#1|) (-949 (-1088)) (-10 -8 (-15 -2659 ($) -3950) (-15 -2665 ($) -3950) (-15 -2821 ((-3 (-582 $) #1="failed") $)) (-15 -2822 ((-3 (-582 $) #1#) $)) (-15 -2658 ((-3 (-582 $) #1#) $ (-86))) (-15 -2658 ((-3 (-2 (|:| -2512 (-86)) (|:| |arg| (-582 $))) #1#) $)) (-15 -2823 ((-3 (-2 (|:| |val| $) (|:| -2400 (-693))) #1#) $)) (-15 -2657 ((-3 (-2 (|:| |num| $) (|:| |den| $)) #1#) $)) (-15 -2656 ((-3 (-582 $) #1#) $)) (-15 -2824 ((-3 (-2 (|:| |val| $) (|:| -2400 $)) #1#) $)) (-15 -3798 ($ (-86) (-582 $))) (-15 -3837 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-693))) (-15 ** ($ $ $)) (-15 -3947 ($ $ $)) (-15 -3321 ((-693) $)) (-15 -3970 ($ (-582 $))) (-15 -3398 ($ $)) (-15 -2655 ((-85) $)) (-15 -2654 ((-85) $)) (-15 -3259 ((-85) $)) (-15 -3951 ((-85) $)) (-15 -2653 ((-85) $)) (-15 -2652 ((-85) $)) (-15 -2651 ((-85) $)) (-15 -2650 ((-85) $)) (-15 -2649 ((-582 (-51)) $)) (-15 -2648 ($ $ (-582 (-51)))) (-15 -2647 ($ $ (-582 (-51)))) (-15 -2646 ($ (-1088) (-85) (-85) (-85))) (-15 -2645 ($ $ (-582 (-1088)) (-51))) (-15 -2644 ((-2 (|:| |var| (-582 (-1088))) (|:| |pred| (-51))) $)) (-15 -2643 ((-85) $)) (-15 -2642 ($ $)) (-15 -2661 ($ $ (-51))) (-15 -2641 ((-582 (-51)) $)) (-15 -3080 ((-582 $) $)) (-15 -2640 ((-3 (-582 $) #1#) (-582 $))))) (-1012)) (T -799)) -((-2659 (*1 *1) (-12 (-5 *1 (-799 *2)) (-4 *2 (-1012)))) (-2665 (*1 *1) (-12 (-5 *1 (-799 *2)) (-4 *2 (-1012)))) (-2821 (*1 *2 *1) (|partial| -12 (-5 *2 (-582 (-799 *3))) (-5 *1 (-799 *3)) (-4 *3 (-1012)))) (-2822 (*1 *2 *1) (|partial| -12 (-5 *2 (-582 (-799 *3))) (-5 *1 (-799 *3)) (-4 *3 (-1012)))) (-2658 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-86)) (-5 *2 (-582 (-799 *4))) (-5 *1 (-799 *4)) (-4 *4 (-1012)))) (-2658 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -2512 (-86)) (|:| |arg| (-582 (-799 *3))))) (-5 *1 (-799 *3)) (-4 *3 (-1012)))) (-2823 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-799 *3)) (|:| -2400 (-693)))) (-5 *1 (-799 *3)) (-4 *3 (-1012)))) (-2657 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-799 *3)) (|:| |den| (-799 *3)))) (-5 *1 (-799 *3)) (-4 *3 (-1012)))) (-2656 (*1 *2 *1) (|partial| -12 (-5 *2 (-582 (-799 *3))) (-5 *1 (-799 *3)) (-4 *3 (-1012)))) (-2824 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-799 *3)) (|:| -2400 (-799 *3)))) (-5 *1 (-799 *3)) (-4 *3 (-1012)))) (-3798 (*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-582 (-799 *4))) (-5 *1 (-799 *4)) (-4 *4 (-1012)))) (-3837 (*1 *1 *1 *1) (-12 (-5 *1 (-799 *2)) (-4 *2 (-1012)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-799 *2)) (-4 *2 (-1012)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-693)) (-5 *1 (-799 *3)) (-4 *3 (-1012)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-799 *2)) (-4 *2 (-1012)))) (-3947 (*1 *1 *1 *1) (-12 (-5 *1 (-799 *2)) (-4 *2 (-1012)))) (-3321 (*1 *2 *1) (-12 (-5 *2 (-693)) (-5 *1 (-799 *3)) (-4 *3 (-1012)))) (-3970 (*1 *1 *2) (-12 (-5 *2 (-582 (-799 *3))) (-5 *1 (-799 *3)) (-4 *3 (-1012)))) (-3398 (*1 *1 *1) (-12 (-5 *1 (-799 *2)) (-4 *2 (-1012)))) (-2655 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-799 *3)) (-4 *3 (-1012)))) (-2654 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-799 *3)) (-4 *3 (-1012)))) (-3259 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-799 *3)) (-4 *3 (-1012)))) (-3951 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-799 *3)) (-4 *3 (-1012)))) (-2653 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-799 *3)) (-4 *3 (-1012)))) (-2652 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-799 *3)) (-4 *3 (-1012)))) (-2651 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-799 *3)) (-4 *3 (-1012)))) (-2650 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-799 *3)) (-4 *3 (-1012)))) (-2649 (*1 *2 *1) (-12 (-5 *2 (-582 (-51))) (-5 *1 (-799 *3)) (-4 *3 (-1012)))) (-2648 (*1 *1 *1 *2) (-12 (-5 *2 (-582 (-51))) (-5 *1 (-799 *3)) (-4 *3 (-1012)))) (-2647 (*1 *1 *1 *2) (-12 (-5 *2 (-582 (-51))) (-5 *1 (-799 *3)) (-4 *3 (-1012)))) (-2646 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1088)) (-5 *3 (-85)) (-5 *1 (-799 *4)) (-4 *4 (-1012)))) (-2645 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-582 (-1088))) (-5 *3 (-51)) (-5 *1 (-799 *4)) (-4 *4 (-1012)))) (-2644 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-582 (-1088))) (|:| |pred| (-51)))) (-5 *1 (-799 *3)) (-4 *3 (-1012)))) (-2643 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-799 *3)) (-4 *3 (-1012)))) (-2642 (*1 *1 *1) (-12 (-5 *1 (-799 *2)) (-4 *2 (-1012)))) (-2661 (*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-799 *3)) (-4 *3 (-1012)))) (-2641 (*1 *2 *1) (-12 (-5 *2 (-582 (-51))) (-5 *1 (-799 *3)) (-4 *3 (-1012)))) (-3080 (*1 *2 *1) (-12 (-5 *2 (-582 (-799 *3))) (-5 *1 (-799 *3)) (-4 *3 (-1012)))) (-2640 (*1 *2 *2) (|partial| -12 (-5 *2 (-582 (-799 *3))) (-5 *1 (-799 *3)) (-4 *3 (-1012))))) -((-3208 (((-799 |#1|) (-799 |#1|) (-582 (-1088)) (-1 (-85) (-582 |#2|))) 32 T ELT) (((-799 |#1|) (-799 |#1|) (-582 (-1 (-85) |#2|))) 46 T ELT) (((-799 |#1|) (-799 |#1|) (-1 (-85) |#2|)) 35 T ELT)) (-2660 (((-85) (-582 |#2|) (-799 |#1|)) 42 T ELT) (((-85) |#2| (-799 |#1|)) 36 T ELT)) (-3529 (((-1 (-85) |#2|) (-799 |#1|)) 16 T ELT)) (-2662 (((-582 |#2|) (-799 |#1|)) 24 T ELT)) (-2661 (((-799 |#1|) (-799 |#1|) |#2|) 20 T ELT))) -(((-800 |#1| |#2|) (-10 -7 (-15 -3208 ((-799 |#1|) (-799 |#1|) (-1 (-85) |#2|))) (-15 -3208 ((-799 |#1|) (-799 |#1|) (-582 (-1 (-85) |#2|)))) (-15 -3208 ((-799 |#1|) (-799 |#1|) (-582 (-1088)) (-1 (-85) (-582 |#2|)))) (-15 -3529 ((-1 (-85) |#2|) (-799 |#1|))) (-15 -2660 ((-85) |#2| (-799 |#1|))) (-15 -2660 ((-85) (-582 |#2|) (-799 |#1|))) (-15 -2661 ((-799 |#1|) (-799 |#1|) |#2|)) (-15 -2662 ((-582 |#2|) (-799 |#1|)))) (-1012) (-1127)) (T -800)) -((-2662 (*1 *2 *3) (-12 (-5 *3 (-799 *4)) (-4 *4 (-1012)) (-5 *2 (-582 *5)) (-5 *1 (-800 *4 *5)) (-4 *5 (-1127)))) (-2661 (*1 *2 *2 *3) (-12 (-5 *2 (-799 *4)) (-4 *4 (-1012)) (-5 *1 (-800 *4 *3)) (-4 *3 (-1127)))) (-2660 (*1 *2 *3 *4) (-12 (-5 *3 (-582 *6)) (-5 *4 (-799 *5)) (-4 *5 (-1012)) (-4 *6 (-1127)) (-5 *2 (-85)) (-5 *1 (-800 *5 *6)))) (-2660 (*1 *2 *3 *4) (-12 (-5 *4 (-799 *5)) (-4 *5 (-1012)) (-5 *2 (-85)) (-5 *1 (-800 *5 *3)) (-4 *3 (-1127)))) (-3529 (*1 *2 *3) (-12 (-5 *3 (-799 *4)) (-4 *4 (-1012)) (-5 *2 (-1 (-85) *5)) (-5 *1 (-800 *4 *5)) (-4 *5 (-1127)))) (-3208 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-799 *5)) (-5 *3 (-582 (-1088))) (-5 *4 (-1 (-85) (-582 *6))) (-4 *5 (-1012)) (-4 *6 (-1127)) (-5 *1 (-800 *5 *6)))) (-3208 (*1 *2 *2 *3) (-12 (-5 *2 (-799 *4)) (-5 *3 (-582 (-1 (-85) *5))) (-4 *4 (-1012)) (-4 *5 (-1127)) (-5 *1 (-800 *4 *5)))) (-3208 (*1 *2 *2 *3) (-12 (-5 *2 (-799 *4)) (-5 *3 (-1 (-85) *5)) (-4 *4 (-1012)) (-4 *5 (-1127)) (-5 *1 (-800 *4 *5))))) -((-3956 (((-799 |#2|) (-1 |#2| |#1|) (-799 |#1|)) 19 T ELT))) -(((-801 |#1| |#2|) (-10 -7 (-15 -3956 ((-799 |#2|) (-1 |#2| |#1|) (-799 |#1|)))) (-1012) (-1012)) (T -801)) -((-3956 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-799 *5)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-5 *2 (-799 *6)) (-5 *1 (-801 *5 *6))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3932 (((-582 |#1|) $) 20 T ELT)) (-2663 (((-85) $) 49 T ELT)) (-3156 (((-3 (-613 |#1|) "failed") $) 55 T ELT)) (-3155 (((-613 |#1|) $) 53 T ELT)) (-3797 (($ $) 24 T ELT)) (-2530 (($ $ $) NIL T ELT)) (-2856 (($ $ $) NIL T ELT)) (-3831 (((-693) $) 60 T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3799 (((-613 |#1|) $) 22 T ELT)) (-3944 (((-771) $) 47 T ELT) (($ (-613 |#1|)) 27 T ELT) (((-738 |#1|) $) 36 T ELT) (($ |#1|) 26 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2665 (($) 11 T CONST)) (-2664 (((-582 (-613 |#1|)) $) 28 T ELT)) (-2565 (((-85) $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) 14 T ELT)) (-2683 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) 66 T ELT))) -(((-802 |#1|) (-13 (-755) (-949 (-613 |#1|)) (-10 -8 (-15 -2665 ($) -3950) (-15 -3944 ((-738 |#1|) $)) (-15 -3944 ($ |#1|)) (-15 -3799 ((-613 |#1|) $)) (-15 -3831 ((-693) $)) (-15 -2664 ((-582 (-613 |#1|)) $)) (-15 -3797 ($ $)) (-15 -2663 ((-85) $)) (-15 -3932 ((-582 |#1|) $)))) (-755)) (T -802)) -((-2665 (*1 *1) (-12 (-5 *1 (-802 *2)) (-4 *2 (-755)))) (-3944 (*1 *2 *1) (-12 (-5 *2 (-738 *3)) (-5 *1 (-802 *3)) (-4 *3 (-755)))) (-3944 (*1 *1 *2) (-12 (-5 *1 (-802 *2)) (-4 *2 (-755)))) (-3799 (*1 *2 *1) (-12 (-5 *2 (-613 *3)) (-5 *1 (-802 *3)) (-4 *3 (-755)))) (-3831 (*1 *2 *1) (-12 (-5 *2 (-693)) (-5 *1 (-802 *3)) (-4 *3 (-755)))) (-2664 (*1 *2 *1) (-12 (-5 *2 (-582 (-613 *3))) (-5 *1 (-802 *3)) (-4 *3 (-755)))) (-3797 (*1 *1 *1) (-12 (-5 *1 (-802 *2)) (-4 *2 (-755)))) (-2663 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-802 *3)) (-4 *3 (-755)))) (-3932 (*1 *2 *1) (-12 (-5 *2 (-582 *3)) (-5 *1 (-802 *3)) (-4 *3 (-755))))) -((-3472 ((|#1| |#1| |#1|) 19 T ELT))) -(((-803 |#1| |#2|) (-10 -7 (-15 -3472 (|#1| |#1| |#1|))) (-1153 |#2|) (-960)) (T -803)) -((-3472 (*1 *2 *2 *2) (-12 (-4 *3 (-960)) (-5 *1 (-803 *2 *3)) (-4 *2 (-1153 *3))))) -((-2668 ((|#2| $ |#3|) 10 T ELT))) -(((-804 |#1| |#2| |#3|) (-10 -7 (-15 -2668 (|#2| |#1| |#3|))) (-805 |#2| |#3|) (-1127) (-1127)) (T -804)) -NIL -((-3756 ((|#1| $ |#2|) 7 T ELT)) (-2668 ((|#1| $ |#2|) 6 T ELT))) -(((-805 |#1| |#2|) (-113) (-1127) (-1127)) (T -805)) -((-3756 (*1 *2 *1 *3) (-12 (-4 *1 (-805 *2 *3)) (-4 *3 (-1127)) (-4 *2 (-1127)))) (-2668 (*1 *2 *1 *3) (-12 (-4 *1 (-805 *2 *3)) (-4 *3 (-1127)) (-4 *2 (-1127))))) -(-13 (-1127) (-10 -8 (-15 -3756 (|t#1| $ |t#2|)) (-15 -2668 (|t#1| $ |t#2|)))) -(((-13) . T) ((-1127) . T)) -((-2667 ((|#1| |#1| (-693)) 26 T ELT)) (-2666 (((-3 |#1| #1="failed") |#1| |#1|) 23 T ELT)) (-3433 (((-3 (-2 (|:| -3137 |#1|) (|:| -3136 |#1|)) #1#) |#1| (-693) (-693)) 29 T ELT) (((-582 |#1|) |#1|) 38 T ELT))) -(((-806 |#1| |#2|) (-10 -7 (-15 -3433 ((-582 |#1|) |#1|)) (-15 -3433 ((-3 (-2 (|:| -3137 |#1|) (|:| -3136 |#1|)) #1="failed") |#1| (-693) (-693))) (-15 -2666 ((-3 |#1| #1#) |#1| |#1|)) (-15 -2667 (|#1| |#1| (-693)))) (-1153 |#2|) (-312)) (T -806)) -((-2667 (*1 *2 *2 *3) (-12 (-5 *3 (-693)) (-4 *4 (-312)) (-5 *1 (-806 *2 *4)) (-4 *2 (-1153 *4)))) (-2666 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-312)) (-5 *1 (-806 *2 *3)) (-4 *2 (-1153 *3)))) (-3433 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-693)) (-4 *5 (-312)) (-5 *2 (-2 (|:| -3137 *3) (|:| -3136 *3))) (-5 *1 (-806 *3 *5)) (-4 *3 (-1153 *5)))) (-3433 (*1 *2 *3) (-12 (-4 *4 (-312)) (-5 *2 (-582 *3)) (-5 *1 (-806 *3 *4)) (-4 *3 (-1153 *4))))) -((-2567 (((-85) $ $) 7 T ELT)) (-3187 (((-85) $) 22 T ELT)) (-1310 (((-3 $ "failed") $ $) 26 T ELT)) (-3722 (($) 23 T CONST)) (-1212 (((-85) $ $) 20 T ELT)) (-3241 (((-1071) $) 11 T ELT)) (-3242 (((-1032) $) 12 T ELT)) (-3756 (($ $ (-582 |#2|) (-582 (-693))) 45 T ELT) (($ $ |#2| (-693)) 44 T ELT) (($ $ (-582 |#2|)) 43 T ELT) (($ $ |#2|) 41 T ELT)) (-3944 (((-771) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2659 (($) 24 T CONST)) (-2668 (($ $ (-582 |#2|) (-582 (-693))) 48 T ELT) (($ $ |#2| (-693)) 47 T ELT) (($ $ (-582 |#2|)) 46 T ELT) (($ $ |#2|) 42 T ELT)) (-3055 (((-85) $ $) 8 T ELT)) (-3835 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3837 (($ $ $) 18 T ELT)) (* (($ (-829) $) 17 T ELT) (($ (-693) $) 21 T ELT) (($ (-483) $) 30 T ELT) (($ |#1| $) 33 T ELT) (($ $ |#1|) 37 T ELT))) -(((-807 |#1| |#2|) (-113) (-960) (-1012)) (T -807)) -NIL -(-13 (-82 |t#1| |t#1|) (-810 |t#2|) (-10 -7 (IF (|has| |t#1| (-146)) (-6 (-653 |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-551 (-771)) . T) ((-13) . T) ((-587 (-483)) . T) ((-587 |#1|) . T) ((-589 |#1|) . T) ((-581 |#1|) |has| |#1| (-146)) ((-653 |#1|) |has| |#1| (-146)) ((-805 $ |#2|) . T) ((-810 |#2|) . T) ((-962 |#1|) . T) ((-967 |#1|) . T) ((-1012) . T) ((-1127) . T)) -((-2567 (((-85) $ $) 7 T ELT)) (-3187 (((-85) $) 22 T ELT)) (-1310 (((-3 $ "failed") $ $) 26 T ELT)) (-3722 (($) 23 T CONST)) (-3465 (((-3 $ "failed") $) 42 T ELT)) (-1212 (((-85) $ $) 20 T ELT)) (-2409 (((-85) $) 44 T ELT)) (-3241 (((-1071) $) 11 T ELT)) (-3242 (((-1032) $) 12 T ELT)) (-3756 (($ $ (-582 |#1|) (-582 (-693))) 52 T ELT) (($ $ |#1| (-693)) 51 T ELT) (($ $ (-582 |#1|)) 50 T ELT) (($ $ |#1|) 48 T ELT)) (-3944 (((-771) $) 13 T ELT) (($ (-483)) 41 T ELT)) (-3125 (((-693)) 40 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-3124 (((-85) $ $) 33 T ELT)) (-2659 (($) 24 T CONST)) (-2665 (($) 45 T CONST)) (-2668 (($ $ (-582 |#1|) (-582 (-693))) 55 T ELT) (($ $ |#1| (-693)) 54 T ELT) (($ $ (-582 |#1|)) 53 T ELT) (($ $ |#1|) 49 T ELT)) (-3055 (((-85) $ $) 8 T ELT)) (-3835 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3837 (($ $ $) 18 T ELT)) (** (($ $ (-829)) 35 T ELT) (($ $ (-693)) 43 T ELT)) (* (($ (-829) $) 17 T ELT) (($ (-693) $) 21 T ELT) (($ (-483) $) 30 T ELT) (($ $ $) 34 T ELT))) -(((-808 |#1|) (-113) (-1012)) (T -808)) -NIL -(-13 (-960) (-810 |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-554 (-483)) . T) ((-551 (-771)) . T) ((-13) . T) ((-587 (-483)) . T) ((-587 $) . T) ((-589 $) . T) ((-662) . T) ((-805 $ |#1|) . T) ((-810 |#1|) . T) ((-960) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T)) -((-3756 (($ $ |#2|) NIL T ELT) (($ $ (-582 |#2|)) 10 T ELT) (($ $ |#2| (-693)) 12 T ELT) (($ $ (-582 |#2|) (-582 (-693))) 15 T ELT)) (-2668 (($ $ |#2|) 16 T ELT) (($ $ (-582 |#2|)) 18 T ELT) (($ $ |#2| (-693)) 19 T ELT) (($ $ (-582 |#2|) (-582 (-693))) 21 T ELT))) -(((-809 |#1| |#2|) (-10 -7 (-15 -2668 (|#1| |#1| (-582 |#2|) (-582 (-693)))) (-15 -2668 (|#1| |#1| |#2| (-693))) (-15 -2668 (|#1| |#1| (-582 |#2|))) (-15 -3756 (|#1| |#1| (-582 |#2|) (-582 (-693)))) (-15 -3756 (|#1| |#1| |#2| (-693))) (-15 -3756 (|#1| |#1| (-582 |#2|))) (-15 -2668 (|#1| |#1| |#2|)) (-15 -3756 (|#1| |#1| |#2|))) (-810 |#2|) (-1012)) (T -809)) -NIL -((-3756 (($ $ |#1|) 7 T ELT) (($ $ (-582 |#1|)) 15 T ELT) (($ $ |#1| (-693)) 14 T ELT) (($ $ (-582 |#1|) (-582 (-693))) 13 T ELT)) (-2668 (($ $ |#1|) 6 T ELT) (($ $ (-582 |#1|)) 12 T ELT) (($ $ |#1| (-693)) 11 T ELT) (($ $ (-582 |#1|) (-582 (-693))) 10 T ELT))) -(((-810 |#1|) (-113) (-1012)) (T -810)) -((-3756 (*1 *1 *1 *2) (-12 (-5 *2 (-582 *3)) (-4 *1 (-810 *3)) (-4 *3 (-1012)))) (-3756 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-693)) (-4 *1 (-810 *2)) (-4 *2 (-1012)))) (-3756 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-582 *4)) (-5 *3 (-582 (-693))) (-4 *1 (-810 *4)) (-4 *4 (-1012)))) (-2668 (*1 *1 *1 *2) (-12 (-5 *2 (-582 *3)) (-4 *1 (-810 *3)) (-4 *3 (-1012)))) (-2668 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-693)) (-4 *1 (-810 *2)) (-4 *2 (-1012)))) (-2668 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-582 *4)) (-5 *3 (-582 (-693))) (-4 *1 (-810 *4)) (-4 *4 (-1012))))) -(-13 (-805 $ |t#1|) (-10 -8 (-15 -3756 ($ $ (-582 |t#1|))) (-15 -3756 ($ $ |t#1| (-693))) (-15 -3756 ($ $ (-582 |t#1|) (-582 (-693)))) (-15 -2668 ($ $ (-582 |t#1|))) (-15 -2668 ($ $ |t#1| (-693))) (-15 -2668 ($ $ (-582 |t#1|) (-582 (-693)))))) -(((-13) . T) ((-805 $ |#1|) . T) ((-1127) . T)) -((-2567 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3400 ((|#1| $) 26 T ELT)) (-3024 ((|#1| $ |#1|) NIL (|has| $ (-6 -3994)) ELT)) (-1291 (($ $ $) NIL (|has| $ (-6 -3994)) ELT)) (-1292 (($ $ $) NIL (|has| $ (-6 -3994)) ELT)) (-3786 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3994)) ELT) (($ $ #2="left" $) NIL (|has| $ (-6 -3994)) ELT) (($ $ #3="right" $) NIL (|has| $ (-6 -3994)) ELT)) (-3025 (($ $ (-582 $)) NIL (|has| $ (-6 -3994)) ELT)) (-3722 (($) NIL T CONST)) (-3136 (($ $) 25 T ELT)) (-2669 (($ |#1|) 12 T ELT) (($ $ $) 17 T ELT)) (-2888 (((-582 |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3030 (((-582 $) $) NIL T ELT)) (-3026 (((-85) $ $) NIL (|has| |#1| (-1012)) ELT)) (-2607 (((-582 |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3244 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#1| (-1012))) ELT)) (-1947 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3956 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3137 (($ $) 23 T ELT)) (-3029 (((-582 |#1|) $) NIL T ELT)) (-3525 (((-85) $) 20 T ELT)) (-3241 (((-1071) $) NIL (|has| |#1| (-1012)) ELT)) (-3242 (((-1032) $) NIL (|has| |#1| (-1012)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3766 (($ $ (-582 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-582 |#1|) (-582 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-3401 (((-85) $) NIL T ELT)) (-3563 (($) NIL T ELT)) (-3798 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3028 (((-483) $ $) NIL T ELT)) (-3631 (((-85) $) NIL T ELT)) (-1944 (((-693) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3993)) ELT) (((-693) |#1| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#1| (-1012))) ELT)) (-3398 (($ $) NIL T ELT)) (-3944 (((-1114 |#1|) $) 9 T ELT) (((-771) $) 29 (|has| |#1| (-551 (-771))) ELT)) (-3520 (((-582 $) $) NIL T ELT)) (-3027 (((-85) $ $) NIL (|has| |#1| (-1012)) ELT)) (-1263 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3055 (((-85) $ $) 21 (|has| |#1| (-72)) ELT)) (-3955 (((-693) $) NIL (|has| $ (-6 -3993)) ELT))) -(((-811 |#1|) (-13 (-92 |#1|) (-551 (-1114 |#1|)) (-10 -8 (-15 -2669 ($ |#1|)) (-15 -2669 ($ $ $)))) (-1012)) (T -811)) -((-2669 (*1 *1 *2) (-12 (-5 *1 (-811 *2)) (-4 *2 (-1012)))) (-2669 (*1 *1 *1 *1) (-12 (-5 *1 (-811 *2)) (-4 *2 (-1012))))) -((-2567 (((-85) $ $) NIL T ELT)) (-2685 (((-1008 |#1|) $) 61 T ELT)) (-2908 (((-582 $) (-582 $)) 104 T ELT)) (-3621 (((-483) $) 84 T ELT)) (-3722 (($) NIL T CONST)) (-3465 (((-3 $ "failed") $) NIL T ELT)) (-3770 (((-693) $) 81 T ELT)) (-2689 (((-1008 |#1|) $ |#1|) 71 T ELT)) (-2409 (((-85) $) NIL T ELT)) (-2672 (((-85) $) 89 T ELT)) (-2674 (((-693) $) 85 T ELT)) (-2530 (($ $ $) NIL (OR (|has| |#1| (-318)) (|has| |#1| (-755))) ELT)) (-2856 (($ $ $) NIL (OR (|has| |#1| (-318)) (|has| |#1| (-755))) ELT)) (-2678 (((-2 (|:| |preimage| (-582 |#1|)) (|:| |image| (-582 |#1|))) $) 56 T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-2483 (($ $) 131 T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-2671 (((-1008 |#1|) $) 136 (|has| |#1| (-318)) ELT)) (-2673 (((-85) $) 82 T ELT)) (-3798 ((|#1| $ |#1|) 69 T ELT)) (-3946 (((-693) $) 63 T ELT)) (-2680 (($ (-582 (-582 |#1|))) 119 T ELT)) (-2675 (((-883) $) 75 T ELT)) (-2681 (($ (-582 |#1|)) 32 T ELT)) (-3008 (($ $ $) NIL T ELT)) (-2434 (($ $ $) NIL T ELT)) (-2677 (($ (-582 (-582 |#1|))) 58 T ELT)) (-2676 (($ (-582 (-582 |#1|))) 124 T ELT)) (-2670 (($ (-582 |#1|)) 133 T ELT)) (-3944 (((-771) $) 118 T ELT) (($ (-582 (-582 |#1|))) 92 T ELT) (($ (-582 |#1|)) 93 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2665 (($) 24 T CONST)) (-2565 (((-85) $ $) NIL (OR (|has| |#1| (-318)) (|has| |#1| (-755))) ELT)) (-2566 (((-85) $ $) NIL (OR (|has| |#1| (-318)) (|has| |#1| (-755))) ELT)) (-3055 (((-85) $ $) 67 T ELT)) (-2683 (((-85) $ $) NIL (OR (|has| |#1| (-318)) (|has| |#1| (-755))) ELT)) (-2684 (((-85) $ $) 91 T ELT)) (-3947 (($ $ $) NIL T ELT)) (** (($ $ (-829)) NIL T ELT) (($ $ (-693)) NIL T ELT) (($ $ (-483)) NIL T ELT)) (* (($ $ $) 33 T ELT))) -(((-812 |#1|) (-13 (-814 |#1|) (-10 -8 (-15 -2678 ((-2 (|:| |preimage| (-582 |#1|)) (|:| |image| (-582 |#1|))) $)) (-15 -2677 ($ (-582 (-582 |#1|)))) (-15 -3944 ($ (-582 (-582 |#1|)))) (-15 -3944 ($ (-582 |#1|))) (-15 -2676 ($ (-582 (-582 |#1|)))) (-15 -3946 ((-693) $)) (-15 -2675 ((-883) $)) (-15 -3770 ((-693) $)) (-15 -2674 ((-693) $)) (-15 -3621 ((-483) $)) (-15 -2673 ((-85) $)) (-15 -2672 ((-85) $)) (-15 -2908 ((-582 $) (-582 $))) (IF (|has| |#1| (-318)) (-15 -2671 ((-1008 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-482)) (-15 -2670 ($ (-582 |#1|))) (IF (|has| |#1| (-318)) (-15 -2670 ($ (-582 |#1|))) |%noBranch|)))) (-1012)) (T -812)) -((-2678 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-582 *3)) (|:| |image| (-582 *3)))) (-5 *1 (-812 *3)) (-4 *3 (-1012)))) (-2677 (*1 *1 *2) (-12 (-5 *2 (-582 (-582 *3))) (-4 *3 (-1012)) (-5 *1 (-812 *3)))) (-3944 (*1 *1 *2) (-12 (-5 *2 (-582 (-582 *3))) (-4 *3 (-1012)) (-5 *1 (-812 *3)))) (-3944 (*1 *1 *2) (-12 (-5 *2 (-582 *3)) (-4 *3 (-1012)) (-5 *1 (-812 *3)))) (-2676 (*1 *1 *2) (-12 (-5 *2 (-582 (-582 *3))) (-4 *3 (-1012)) (-5 *1 (-812 *3)))) (-3946 (*1 *2 *1) (-12 (-5 *2 (-693)) (-5 *1 (-812 *3)) (-4 *3 (-1012)))) (-2675 (*1 *2 *1) (-12 (-5 *2 (-883)) (-5 *1 (-812 *3)) (-4 *3 (-1012)))) (-3770 (*1 *2 *1) (-12 (-5 *2 (-693)) (-5 *1 (-812 *3)) (-4 *3 (-1012)))) (-2674 (*1 *2 *1) (-12 (-5 *2 (-693)) (-5 *1 (-812 *3)) (-4 *3 (-1012)))) (-3621 (*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-812 *3)) (-4 *3 (-1012)))) (-2673 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-812 *3)) (-4 *3 (-1012)))) (-2672 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-812 *3)) (-4 *3 (-1012)))) (-2908 (*1 *2 *2) (-12 (-5 *2 (-582 (-812 *3))) (-5 *1 (-812 *3)) (-4 *3 (-1012)))) (-2671 (*1 *2 *1) (-12 (-5 *2 (-1008 *3)) (-5 *1 (-812 *3)) (-4 *3 (-318)) (-4 *3 (-1012)))) (-2670 (*1 *1 *2) (-12 (-5 *2 (-582 *3)) (-4 *3 (-1012)) (-5 *1 (-812 *3))))) -((-2679 ((|#2| (-1054 |#1| |#2|)) 48 T ELT))) -(((-813 |#1| |#2|) (-10 -7 (-15 -2679 (|#2| (-1054 |#1| |#2|)))) (-829) (-13 (-960) (-10 -7 (-6 (-3995 "*"))))) (T -813)) -((-2679 (*1 *2 *3) (-12 (-5 *3 (-1054 *4 *2)) (-14 *4 (-829)) (-4 *2 (-13 (-960) (-10 -7 (-6 (-3995 "*"))))) (-5 *1 (-813 *4 *2))))) -((-2567 (((-85) $ $) 7 T ELT)) (-2685 (((-1008 |#1|) $) 42 T ELT)) (-3722 (($) 23 T CONST)) (-3465 (((-3 $ "failed") $) 20 T ELT)) (-2689 (((-1008 |#1|) $ |#1|) 41 T ELT)) (-2409 (((-85) $) 22 T ELT)) (-2530 (($ $ $) 35 (OR (|has| |#1| (-755)) (|has| |#1| (-318))) ELT)) (-2856 (($ $ $) 36 (OR (|has| |#1| (-755)) (|has| |#1| (-318))) ELT)) (-3241 (((-1071) $) 11 T ELT)) (-2483 (($ $) 30 T ELT)) (-3242 (((-1032) $) 12 T ELT)) (-3798 ((|#1| $ |#1|) 45 T ELT)) (-2680 (($ (-582 (-582 |#1|))) 43 T ELT)) (-2681 (($ (-582 |#1|)) 44 T ELT)) (-3008 (($ $ $) 27 T ELT)) (-2434 (($ $ $) 26 T ELT)) (-3944 (((-771) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2665 (($) 24 T CONST)) (-2565 (((-85) $ $) 37 (OR (|has| |#1| (-755)) (|has| |#1| (-318))) ELT)) (-2566 (((-85) $ $) 39 (OR (|has| |#1| (-755)) (|has| |#1| (-318))) ELT)) (-3055 (((-85) $ $) 8 T ELT)) (-2683 (((-85) $ $) 38 (OR (|has| |#1| (-755)) (|has| |#1| (-318))) ELT)) (-2684 (((-85) $ $) 40 T ELT)) (-3947 (($ $ $) 29 T ELT)) (** (($ $ (-829)) 17 T ELT) (($ $ (-693)) 21 T ELT) (($ $ (-483)) 28 T ELT)) (* (($ $ $) 18 T ELT))) -(((-814 |#1|) (-113) (-1012)) (T -814)) -((-2681 (*1 *1 *2) (-12 (-5 *2 (-582 *3)) (-4 *3 (-1012)) (-4 *1 (-814 *3)))) (-2680 (*1 *1 *2) (-12 (-5 *2 (-582 (-582 *3))) (-4 *3 (-1012)) (-4 *1 (-814 *3)))) (-2685 (*1 *2 *1) (-12 (-4 *1 (-814 *3)) (-4 *3 (-1012)) (-5 *2 (-1008 *3)))) (-2689 (*1 *2 *1 *3) (-12 (-4 *1 (-814 *3)) (-4 *3 (-1012)) (-5 *2 (-1008 *3)))) (-2684 (*1 *2 *1 *1) (-12 (-4 *1 (-814 *3)) (-4 *3 (-1012)) (-5 *2 (-85))))) -(-13 (-411) (-241 |t#1| |t#1|) (-10 -8 (-15 -2681 ($ (-582 |t#1|))) (-15 -2680 ($ (-582 (-582 |t#1|)))) (-15 -2685 ((-1008 |t#1|) $)) (-15 -2689 ((-1008 |t#1|) $ |t#1|)) (-15 -2684 ((-85) $ $)) (IF (|has| |t#1| (-755)) (-6 (-755)) |%noBranch|) (IF (|has| |t#1| (-318)) (-6 (-755)) |%noBranch|))) -(((-72) . T) ((-551 (-771)) . T) ((-241 |#1| |#1|) . T) ((-411) . T) ((-13) . T) ((-662) . T) ((-755) OR (|has| |#1| (-755)) (|has| |#1| (-318))) ((-758) OR (|has| |#1| (-755)) (|has| |#1| (-318))) ((-1024) . T) ((-1012) . T) ((-1127) . T)) -((-2567 (((-85) $ $) NIL T ELT)) (-2691 (((-582 (-582 (-693))) $) 163 T ELT)) (-2687 (((-582 (-693)) (-812 |#1|) $) 191 T ELT)) (-2686 (((-582 (-693)) (-812 |#1|) $) 192 T ELT)) (-2685 (((-1008 |#1|) $) 155 T ELT)) (-2692 (((-582 (-812 |#1|)) $) 152 T ELT)) (-2993 (((-812 |#1|) $ (-483)) 157 T ELT) (((-812 |#1|) $) 158 T ELT)) (-2690 (($ (-582 (-812 |#1|))) 165 T ELT)) (-3770 (((-693) $) 159 T ELT)) (-2688 (((-1008 (-1008 |#1|)) $) 189 T ELT)) (-2689 (((-1008 |#1|) $ |#1|) 180 T ELT) (((-1008 (-1008 |#1|)) $ (-1008 |#1|)) 201 T ELT) (((-1008 (-582 |#1|)) $ (-582 |#1|)) 204 T ELT)) (-3244 (((-85) (-812 |#1|) $) 140 T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-2682 (((-1183) $) 145 T ELT) (((-1183) $ (-483) (-483)) 205 T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-2694 (((-582 (-812 |#1|)) $) 146 T ELT)) (-3798 (((-812 |#1|) $ (-693)) 153 T ELT)) (-3946 (((-693) $) 160 T ELT)) (-3944 (((-771) $) 177 T ELT) (((-582 (-812 |#1|)) $) 28 T ELT) (($ (-582 (-812 |#1|))) 164 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2693 (((-582 |#1|) $) 162 T ELT)) (-3055 (((-85) $ $) 198 T ELT)) (-2683 (((-85) $ $) 195 T ELT)) (-2684 (((-85) $ $) 194 T ELT))) -(((-815 |#1|) (-13 (-1012) (-10 -8 (-15 -3944 ((-582 (-812 |#1|)) $)) (-15 -2694 ((-582 (-812 |#1|)) $)) (-15 -3798 ((-812 |#1|) $ (-693))) (-15 -2993 ((-812 |#1|) $ (-483))) (-15 -2993 ((-812 |#1|) $)) (-15 -3770 ((-693) $)) (-15 -3946 ((-693) $)) (-15 -2693 ((-582 |#1|) $)) (-15 -2692 ((-582 (-812 |#1|)) $)) (-15 -2691 ((-582 (-582 (-693))) $)) (-15 -3944 ($ (-582 (-812 |#1|)))) (-15 -2690 ($ (-582 (-812 |#1|)))) (-15 -2689 ((-1008 |#1|) $ |#1|)) (-15 -2688 ((-1008 (-1008 |#1|)) $)) (-15 -2689 ((-1008 (-1008 |#1|)) $ (-1008 |#1|))) (-15 -2689 ((-1008 (-582 |#1|)) $ (-582 |#1|))) (-15 -3244 ((-85) (-812 |#1|) $)) (-15 -2687 ((-582 (-693)) (-812 |#1|) $)) (-15 -2686 ((-582 (-693)) (-812 |#1|) $)) (-15 -2685 ((-1008 |#1|) $)) (-15 -2684 ((-85) $ $)) (-15 -2683 ((-85) $ $)) (-15 -2682 ((-1183) $)) (-15 -2682 ((-1183) $ (-483) (-483))))) (-1012)) (T -815)) -((-3944 (*1 *2 *1) (-12 (-5 *2 (-582 (-812 *3))) (-5 *1 (-815 *3)) (-4 *3 (-1012)))) (-2694 (*1 *2 *1) (-12 (-5 *2 (-582 (-812 *3))) (-5 *1 (-815 *3)) (-4 *3 (-1012)))) (-3798 (*1 *2 *1 *3) (-12 (-5 *3 (-693)) (-5 *2 (-812 *4)) (-5 *1 (-815 *4)) (-4 *4 (-1012)))) (-2993 (*1 *2 *1 *3) (-12 (-5 *3 (-483)) (-5 *2 (-812 *4)) (-5 *1 (-815 *4)) (-4 *4 (-1012)))) (-2993 (*1 *2 *1) (-12 (-5 *2 (-812 *3)) (-5 *1 (-815 *3)) (-4 *3 (-1012)))) (-3770 (*1 *2 *1) (-12 (-5 *2 (-693)) (-5 *1 (-815 *3)) (-4 *3 (-1012)))) (-3946 (*1 *2 *1) (-12 (-5 *2 (-693)) (-5 *1 (-815 *3)) (-4 *3 (-1012)))) (-2693 (*1 *2 *1) (-12 (-5 *2 (-582 *3)) (-5 *1 (-815 *3)) (-4 *3 (-1012)))) (-2692 (*1 *2 *1) (-12 (-5 *2 (-582 (-812 *3))) (-5 *1 (-815 *3)) (-4 *3 (-1012)))) (-2691 (*1 *2 *1) (-12 (-5 *2 (-582 (-582 (-693)))) (-5 *1 (-815 *3)) (-4 *3 (-1012)))) (-3944 (*1 *1 *2) (-12 (-5 *2 (-582 (-812 *3))) (-4 *3 (-1012)) (-5 *1 (-815 *3)))) (-2690 (*1 *1 *2) (-12 (-5 *2 (-582 (-812 *3))) (-4 *3 (-1012)) (-5 *1 (-815 *3)))) (-2689 (*1 *2 *1 *3) (-12 (-5 *2 (-1008 *3)) (-5 *1 (-815 *3)) (-4 *3 (-1012)))) (-2688 (*1 *2 *1) (-12 (-5 *2 (-1008 (-1008 *3))) (-5 *1 (-815 *3)) (-4 *3 (-1012)))) (-2689 (*1 *2 *1 *3) (-12 (-4 *4 (-1012)) (-5 *2 (-1008 (-1008 *4))) (-5 *1 (-815 *4)) (-5 *3 (-1008 *4)))) (-2689 (*1 *2 *1 *3) (-12 (-4 *4 (-1012)) (-5 *2 (-1008 (-582 *4))) (-5 *1 (-815 *4)) (-5 *3 (-582 *4)))) (-3244 (*1 *2 *3 *1) (-12 (-5 *3 (-812 *4)) (-4 *4 (-1012)) (-5 *2 (-85)) (-5 *1 (-815 *4)))) (-2687 (*1 *2 *3 *1) (-12 (-5 *3 (-812 *4)) (-4 *4 (-1012)) (-5 *2 (-582 (-693))) (-5 *1 (-815 *4)))) (-2686 (*1 *2 *3 *1) (-12 (-5 *3 (-812 *4)) (-4 *4 (-1012)) (-5 *2 (-582 (-693))) (-5 *1 (-815 *4)))) (-2685 (*1 *2 *1) (-12 (-5 *2 (-1008 *3)) (-5 *1 (-815 *3)) (-4 *3 (-1012)))) (-2684 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-815 *3)) (-4 *3 (-1012)))) (-2683 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-815 *3)) (-4 *3 (-1012)))) (-2682 (*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-815 *3)) (-4 *3 (-1012)))) (-2682 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-483)) (-5 *2 (-1183)) (-5 *1 (-815 *4)) (-4 *4 (-1012))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3187 (((-85) $) NIL T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3980 $) (|:| |associate| $)) $) NIL T ELT)) (-2062 (($ $) NIL T ELT)) (-2060 (((-85) $) NIL T ELT)) (-3930 (((-85) $) NIL T ELT)) (-3927 (((-693)) NIL T ELT)) (-3328 (($ $ (-829)) NIL (|has| $ (-318)) ELT) (($ $) NIL T ELT)) (-1673 (((-1100 (-829) (-693)) (-483)) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3773 (($ $) NIL T ELT)) (-3969 (((-346 $) $) NIL T ELT)) (-1606 (((-85) $ $) NIL T ELT)) (-3135 (((-693)) NIL T ELT)) (-3722 (($) NIL T CONST)) (-3156 (((-3 $ #1#) $) NIL T ELT)) (-3155 (($ $) NIL T ELT)) (-1790 (($ (-1177 $)) NIL T ELT)) (-1671 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL T ELT)) (-2563 (($ $ $) NIL T ELT)) (-3465 (((-3 $ #1#) $) NIL T ELT)) (-2993 (($) NIL T ELT)) (-2562 (($ $ $) NIL T ELT)) (-2740 (((-2 (|:| -3952 (-582 $)) (|:| -2408 $)) (-582 $)) NIL T ELT)) (-2832 (($) NIL T ELT)) (-1678 (((-85) $) NIL T ELT)) (-1762 (($ $) NIL T ELT) (($ $ (-693)) NIL T ELT)) (-3721 (((-85) $) NIL T ELT)) (-3770 (((-742 (-829)) $) NIL T ELT) (((-829) $) NIL T ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-2409 (((-85) $) NIL T ELT)) (-2012 (($) NIL (|has| $ (-318)) ELT)) (-2010 (((-85) $) NIL (|has| $ (-318)) ELT)) (-3131 (($ $ (-829)) NIL (|has| $ (-318)) ELT) (($ $) NIL T ELT)) (-3443 (((-631 $) $) NIL T ELT)) (-1603 (((-3 (-582 $) #1#) (-582 $) $) NIL T ELT)) (-2013 (((-1083 $) $ (-829)) NIL (|has| $ (-318)) ELT) (((-1083 $) $) NIL T ELT)) (-2009 (((-829) $) NIL T ELT)) (-1625 (((-1083 $) $) NIL (|has| $ (-318)) ELT)) (-1624 (((-3 (-1083 $) #1#) $ $) NIL (|has| $ (-318)) ELT) (((-1083 $) $) NIL (|has| $ (-318)) ELT)) (-1626 (($ $ (-1083 $)) NIL (|has| $ (-318)) ELT)) (-1889 (($ $ $) NIL T ELT) (($ (-582 $)) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-2483 (($ $) NIL T ELT)) (-3444 (($) NIL T CONST)) (-2399 (($ (-829)) NIL T ELT)) (-3929 (((-85) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-2408 (($) NIL (|has| $ (-318)) ELT)) (-2707 (((-1083 $) (-1083 $) (-1083 $)) NIL T ELT)) (-3143 (($ $ $) NIL T ELT) (($ (-582 $)) NIL T ELT)) (-1674 (((-582 (-2 (|:| -3730 (-483)) (|:| -2400 (-483))))) NIL T ELT)) (-3730 (((-346 $) $) NIL T ELT)) (-3928 (((-829)) NIL T ELT) (((-742 (-829))) NIL T ELT)) (-1604 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3464 (((-3 $ #1#) $ $) NIL T ELT)) (-2739 (((-631 (-582 $)) (-582 $) $) NIL T ELT)) (-1605 (((-693) $) NIL T ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL T ELT)) (-1763 (((-3 (-693) #1#) $ $) NIL T ELT) (((-693) $) NIL T ELT)) (-3909 (((-107)) NIL T ELT)) (-3756 (($ $) NIL T ELT) (($ $ (-693)) NIL T ELT)) (-3946 (((-829) $) NIL T ELT) (((-742 (-829)) $) NIL T ELT)) (-3184 (((-1083 $)) NIL T ELT)) (-1672 (($) NIL T ELT)) (-1627 (($) NIL (|has| $ (-318)) ELT)) (-3223 (((-629 $) (-1177 $)) NIL T ELT) (((-1177 $) $) NIL T ELT)) (-3970 (((-483) $) NIL T ELT)) (-2702 (((-3 (-1177 $) #1#) (-629 $)) NIL T ELT)) (-3944 (((-771) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ $) NIL T ELT) (($ (-348 (-483))) NIL T ELT)) (-2701 (((-631 $) $) NIL T ELT) (($ $) NIL T ELT)) (-3125 (((-693)) NIL T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-2011 (((-1177 $) (-829)) NIL T ELT) (((-1177 $)) NIL T ELT)) (-2061 (((-85) $ $) NIL T ELT)) (-3124 (((-85) $ $) NIL T ELT)) (-3931 (((-85) $) NIL T ELT)) (-2659 (($) NIL T CONST)) (-2665 (($) NIL T CONST)) (-3926 (($ $ (-693)) NIL (|has| $ (-318)) ELT) (($ $) NIL (|has| $ (-318)) ELT)) (-2668 (($ $) NIL T ELT) (($ $ (-693)) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-3947 (($ $ $) NIL T ELT)) (-3835 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3837 (($ $ $) NIL T ELT)) (** (($ $ (-829)) NIL T ELT) (($ $ (-693)) NIL T ELT) (($ $ (-483)) NIL T ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-348 (-483))) NIL T ELT) (($ (-348 (-483)) $) NIL T ELT))) -(((-816 |#1|) (-13 (-299) (-280 $) (-552 (-483))) (-829)) (T -816)) -NIL -((-2696 (((-3 (-582 (-1083 |#4|)) #1="failed") (-582 (-1083 |#4|)) (-1083 |#4|)) 164 T ELT)) (-2699 ((|#1|) 101 T ELT)) (-2698 (((-346 (-1083 |#4|)) (-1083 |#4|)) 173 T ELT)) (-2700 (((-346 (-1083 |#4|)) (-582 |#3|) (-1083 |#4|)) 83 T ELT)) (-2697 (((-346 (-1083 |#4|)) (-1083 |#4|)) 183 T ELT)) (-2695 (((-3 (-582 (-1083 |#4|)) #1#) (-582 (-1083 |#4|)) (-1083 |#4|) |#3|) 117 T ELT))) -(((-817 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2696 ((-3 (-582 (-1083 |#4|)) #1="failed") (-582 (-1083 |#4|)) (-1083 |#4|))) (-15 -2697 ((-346 (-1083 |#4|)) (-1083 |#4|))) (-15 -2698 ((-346 (-1083 |#4|)) (-1083 |#4|))) (-15 -2699 (|#1|)) (-15 -2695 ((-3 (-582 (-1083 |#4|)) #1#) (-582 (-1083 |#4|)) (-1083 |#4|) |#3|)) (-15 -2700 ((-346 (-1083 |#4|)) (-582 |#3|) (-1083 |#4|)))) (-820) (-716) (-755) (-860 |#1| |#2| |#3|)) (T -817)) -((-2700 (*1 *2 *3 *4) (-12 (-5 *3 (-582 *7)) (-4 *7 (-755)) (-4 *5 (-820)) (-4 *6 (-716)) (-4 *8 (-860 *5 *6 *7)) (-5 *2 (-346 (-1083 *8))) (-5 *1 (-817 *5 *6 *7 *8)) (-5 *4 (-1083 *8)))) (-2695 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-582 (-1083 *7))) (-5 *3 (-1083 *7)) (-4 *7 (-860 *5 *6 *4)) (-4 *5 (-820)) (-4 *6 (-716)) (-4 *4 (-755)) (-5 *1 (-817 *5 *6 *4 *7)))) (-2699 (*1 *2) (-12 (-4 *3 (-716)) (-4 *4 (-755)) (-4 *2 (-820)) (-5 *1 (-817 *2 *3 *4 *5)) (-4 *5 (-860 *2 *3 *4)))) (-2698 (*1 *2 *3) (-12 (-4 *4 (-820)) (-4 *5 (-716)) (-4 *6 (-755)) (-4 *7 (-860 *4 *5 *6)) (-5 *2 (-346 (-1083 *7))) (-5 *1 (-817 *4 *5 *6 *7)) (-5 *3 (-1083 *7)))) (-2697 (*1 *2 *3) (-12 (-4 *4 (-820)) (-4 *5 (-716)) (-4 *6 (-755)) (-4 *7 (-860 *4 *5 *6)) (-5 *2 (-346 (-1083 *7))) (-5 *1 (-817 *4 *5 *6 *7)) (-5 *3 (-1083 *7)))) (-2696 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-582 (-1083 *7))) (-5 *3 (-1083 *7)) (-4 *7 (-860 *4 *5 *6)) (-4 *4 (-820)) (-4 *5 (-716)) (-4 *6 (-755)) (-5 *1 (-817 *4 *5 *6 *7))))) -((-2696 (((-3 (-582 (-1083 |#2|)) "failed") (-582 (-1083 |#2|)) (-1083 |#2|)) 39 T ELT)) (-2699 ((|#1|) 71 T ELT)) (-2698 (((-346 (-1083 |#2|)) (-1083 |#2|)) 125 T ELT)) (-2700 (((-346 (-1083 |#2|)) (-1083 |#2|)) 109 T ELT)) (-2697 (((-346 (-1083 |#2|)) (-1083 |#2|)) 136 T ELT))) -(((-818 |#1| |#2|) (-10 -7 (-15 -2696 ((-3 (-582 (-1083 |#2|)) "failed") (-582 (-1083 |#2|)) (-1083 |#2|))) (-15 -2697 ((-346 (-1083 |#2|)) (-1083 |#2|))) (-15 -2698 ((-346 (-1083 |#2|)) (-1083 |#2|))) (-15 -2699 (|#1|)) (-15 -2700 ((-346 (-1083 |#2|)) (-1083 |#2|)))) (-820) (-1153 |#1|)) (T -818)) -((-2700 (*1 *2 *3) (-12 (-4 *4 (-820)) (-4 *5 (-1153 *4)) (-5 *2 (-346 (-1083 *5))) (-5 *1 (-818 *4 *5)) (-5 *3 (-1083 *5)))) (-2699 (*1 *2) (-12 (-4 *2 (-820)) (-5 *1 (-818 *2 *3)) (-4 *3 (-1153 *2)))) (-2698 (*1 *2 *3) (-12 (-4 *4 (-820)) (-4 *5 (-1153 *4)) (-5 *2 (-346 (-1083 *5))) (-5 *1 (-818 *4 *5)) (-5 *3 (-1083 *5)))) (-2697 (*1 *2 *3) (-12 (-4 *4 (-820)) (-4 *5 (-1153 *4)) (-5 *2 (-346 (-1083 *5))) (-5 *1 (-818 *4 *5)) (-5 *3 (-1083 *5)))) (-2696 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-582 (-1083 *5))) (-5 *3 (-1083 *5)) (-4 *5 (-1153 *4)) (-4 *4 (-820)) (-5 *1 (-818 *4 *5))))) -((-2703 (((-3 (-582 (-1083 $)) "failed") (-582 (-1083 $)) (-1083 $)) 46 T ELT)) (-2707 (((-1083 $) (-1083 $) (-1083 $)) 18 T ELT)) (-2701 (((-631 $) $) 40 T ELT))) -(((-819 |#1|) (-10 -7 (-15 -2701 ((-631 |#1|) |#1|)) (-15 -2703 ((-3 (-582 (-1083 |#1|)) "failed") (-582 (-1083 |#1|)) (-1083 |#1|))) (-15 -2707 ((-1083 |#1|) (-1083 |#1|) (-1083 |#1|)))) (-820)) (T -819)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-3187 (((-85) $) 22 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3980 $) (|:| |associate| $)) $) 55 T ELT)) (-2062 (($ $) 54 T ELT)) (-2060 (((-85) $) 52 T ELT)) (-1310 (((-3 $ "failed") $ $) 26 T ELT)) (-2706 (((-346 (-1083 $)) (-1083 $)) 75 T ELT)) (-3773 (($ $) 66 T ELT)) (-3969 (((-346 $) $) 67 T ELT)) (-2703 (((-3 (-582 (-1083 $)) "failed") (-582 (-1083 $)) (-1083 $)) 72 T ELT)) (-3722 (($) 23 T CONST)) (-3465 (((-3 $ "failed") $) 42 T ELT)) (-3721 (((-85) $) 68 T ELT)) (-1212 (((-85) $ $) 20 T ELT)) (-2409 (((-85) $) 44 T ELT)) (-1889 (($ $ $) 60 T ELT) (($ (-582 $)) 59 T ELT)) (-3241 (((-1071) $) 11 T ELT)) (-3242 (((-1032) $) 12 T ELT)) (-2707 (((-1083 $) (-1083 $) (-1083 $)) 58 T ELT)) (-3143 (($ $ $) 62 T ELT) (($ (-582 $)) 61 T ELT)) (-2704 (((-346 (-1083 $)) (-1083 $)) 73 T ELT)) (-2705 (((-346 (-1083 $)) (-1083 $)) 74 T ELT)) (-3730 (((-346 $) $) 65 T ELT)) (-3464 (((-3 $ "failed") $ $) 56 T ELT)) (-2702 (((-3 (-1177 $) "failed") (-629 $)) 71 (|has| $ (-118)) ELT)) (-3944 (((-771) $) 13 T ELT) (($ (-483)) 41 T ELT) (($ $) 57 T ELT)) (-2701 (((-631 $) $) 70 (|has| $ (-118)) ELT)) (-3125 (((-693)) 40 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-2061 (((-85) $ $) 53 T ELT)) (-3124 (((-85) $ $) 33 T ELT)) (-2659 (($) 24 T CONST)) (-2665 (($) 45 T CONST)) (-3055 (((-85) $ $) 8 T ELT)) (-3835 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3837 (($ $ $) 18 T ELT)) (** (($ $ (-829)) 35 T ELT) (($ $ (-693)) 43 T ELT)) (* (($ (-829) $) 17 T ELT) (($ (-693) $) 21 T ELT) (($ (-483) $) 30 T ELT) (($ $ $) 34 T ELT))) -(((-820) (-113)) (T -820)) -((-2707 (*1 *2 *2 *2) (-12 (-5 *2 (-1083 *1)) (-4 *1 (-820)))) (-2706 (*1 *2 *3) (-12 (-4 *1 (-820)) (-5 *2 (-346 (-1083 *1))) (-5 *3 (-1083 *1)))) (-2705 (*1 *2 *3) (-12 (-4 *1 (-820)) (-5 *2 (-346 (-1083 *1))) (-5 *3 (-1083 *1)))) (-2704 (*1 *2 *3) (-12 (-4 *1 (-820)) (-5 *2 (-346 (-1083 *1))) (-5 *3 (-1083 *1)))) (-2703 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-582 (-1083 *1))) (-5 *3 (-1083 *1)) (-4 *1 (-820)))) (-2702 (*1 *2 *3) (|partial| -12 (-5 *3 (-629 *1)) (-4 *1 (-118)) (-4 *1 (-820)) (-5 *2 (-1177 *1)))) (-2701 (*1 *2 *1) (-12 (-5 *2 (-631 *1)) (-4 *1 (-118)) (-4 *1 (-820))))) -(-13 (-1132) (-10 -8 (-15 -2706 ((-346 (-1083 $)) (-1083 $))) (-15 -2705 ((-346 (-1083 $)) (-1083 $))) (-15 -2704 ((-346 (-1083 $)) (-1083 $))) (-15 -2707 ((-1083 $) (-1083 $) (-1083 $))) (-15 -2703 ((-3 (-582 (-1083 $)) "failed") (-582 (-1083 $)) (-1083 $))) (IF (|has| $ (-118)) (PROGN (-15 -2702 ((-3 (-1177 $) "failed") (-629 $))) (-15 -2701 ((-631 $) $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-554 (-483)) . T) ((-554 $) . T) ((-551 (-771)) . T) ((-146) . T) ((-246) . T) ((-390) . T) ((-494) . T) ((-13) . T) ((-587 (-483)) . T) ((-587 $) . T) ((-589 $) . T) ((-581 $) . T) ((-653 $) . T) ((-662) . T) ((-962 $) . T) ((-967 $) . T) ((-960) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T) ((-1132) . T)) -((-2709 (((-3 (-2 (|:| -3770 (-693)) (|:| -2382 |#5|)) #1="failed") (-283 |#2| |#3| |#4| |#5|)) 78 T ELT)) (-2708 (((-85) (-283 |#2| |#3| |#4| |#5|)) 17 T ELT)) (-3770 (((-3 (-693) #1#) (-283 |#2| |#3| |#4| |#5|)) 15 T ELT))) -(((-821 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3770 ((-3 (-693) #1="failed") (-283 |#2| |#3| |#4| |#5|))) (-15 -2708 ((-85) (-283 |#2| |#3| |#4| |#5|))) (-15 -2709 ((-3 (-2 (|:| -3770 (-693)) (|:| -2382 |#5|)) #1#) (-283 |#2| |#3| |#4| |#5|)))) (-13 (-494) (-949 (-483))) (-362 |#1|) (-1153 |#2|) (-1153 (-348 |#3|)) (-291 |#2| |#3| |#4|)) (T -821)) -((-2709 (*1 *2 *3) (|partial| -12 (-5 *3 (-283 *5 *6 *7 *8)) (-4 *5 (-362 *4)) (-4 *6 (-1153 *5)) (-4 *7 (-1153 (-348 *6))) (-4 *8 (-291 *5 *6 *7)) (-4 *4 (-13 (-494) (-949 (-483)))) (-5 *2 (-2 (|:| -3770 (-693)) (|:| -2382 *8))) (-5 *1 (-821 *4 *5 *6 *7 *8)))) (-2708 (*1 *2 *3) (-12 (-5 *3 (-283 *5 *6 *7 *8)) (-4 *5 (-362 *4)) (-4 *6 (-1153 *5)) (-4 *7 (-1153 (-348 *6))) (-4 *8 (-291 *5 *6 *7)) (-4 *4 (-13 (-494) (-949 (-483)))) (-5 *2 (-85)) (-5 *1 (-821 *4 *5 *6 *7 *8)))) (-3770 (*1 *2 *3) (|partial| -12 (-5 *3 (-283 *5 *6 *7 *8)) (-4 *5 (-362 *4)) (-4 *6 (-1153 *5)) (-4 *7 (-1153 (-348 *6))) (-4 *8 (-291 *5 *6 *7)) (-4 *4 (-13 (-494) (-949 (-483)))) (-5 *2 (-693)) (-5 *1 (-821 *4 *5 *6 *7 *8))))) -((-2709 (((-3 (-2 (|:| -3770 (-693)) (|:| -2382 |#3|)) #1="failed") (-283 (-348 (-483)) |#1| |#2| |#3|)) 64 T ELT)) (-2708 (((-85) (-283 (-348 (-483)) |#1| |#2| |#3|)) 16 T ELT)) (-3770 (((-3 (-693) #1#) (-283 (-348 (-483)) |#1| |#2| |#3|)) 14 T ELT))) -(((-822 |#1| |#2| |#3|) (-10 -7 (-15 -3770 ((-3 (-693) #1="failed") (-283 (-348 (-483)) |#1| |#2| |#3|))) (-15 -2708 ((-85) (-283 (-348 (-483)) |#1| |#2| |#3|))) (-15 -2709 ((-3 (-2 (|:| -3770 (-693)) (|:| -2382 |#3|)) #1#) (-283 (-348 (-483)) |#1| |#2| |#3|)))) (-1153 (-348 (-483))) (-1153 (-348 |#1|)) (-291 (-348 (-483)) |#1| |#2|)) (T -822)) -((-2709 (*1 *2 *3) (|partial| -12 (-5 *3 (-283 (-348 (-483)) *4 *5 *6)) (-4 *4 (-1153 (-348 (-483)))) (-4 *5 (-1153 (-348 *4))) (-4 *6 (-291 (-348 (-483)) *4 *5)) (-5 *2 (-2 (|:| -3770 (-693)) (|:| -2382 *6))) (-5 *1 (-822 *4 *5 *6)))) (-2708 (*1 *2 *3) (-12 (-5 *3 (-283 (-348 (-483)) *4 *5 *6)) (-4 *4 (-1153 (-348 (-483)))) (-4 *5 (-1153 (-348 *4))) (-4 *6 (-291 (-348 (-483)) *4 *5)) (-5 *2 (-85)) (-5 *1 (-822 *4 *5 *6)))) (-3770 (*1 *2 *3) (|partial| -12 (-5 *3 (-283 (-348 (-483)) *4 *5 *6)) (-4 *4 (-1153 (-348 (-483)))) (-4 *5 (-1153 (-348 *4))) (-4 *6 (-291 (-348 (-483)) *4 *5)) (-5 *2 (-693)) (-5 *1 (-822 *4 *5 *6))))) -((-2714 ((|#2| |#2|) 26 T ELT)) (-2712 (((-483) (-582 (-2 (|:| |den| (-483)) (|:| |gcdnum| (-483))))) 15 T ELT)) (-2710 (((-829) (-483)) 38 T ELT)) (-2713 (((-483) |#2|) 45 T ELT)) (-2711 (((-483) |#2|) 21 T ELT) (((-2 (|:| |den| (-483)) (|:| |gcdnum| (-483))) |#1|) 20 T ELT))) -(((-823 |#1| |#2|) (-10 -7 (-15 -2710 ((-829) (-483))) (-15 -2711 ((-2 (|:| |den| (-483)) (|:| |gcdnum| (-483))) |#1|)) (-15 -2711 ((-483) |#2|)) (-15 -2712 ((-483) (-582 (-2 (|:| |den| (-483)) (|:| |gcdnum| (-483)))))) (-15 -2713 ((-483) |#2|)) (-15 -2714 (|#2| |#2|))) (-1153 (-348 (-483))) (-1153 (-348 |#1|))) (T -823)) -((-2714 (*1 *2 *2) (-12 (-4 *3 (-1153 (-348 (-483)))) (-5 *1 (-823 *3 *2)) (-4 *2 (-1153 (-348 *3))))) (-2713 (*1 *2 *3) (-12 (-4 *4 (-1153 (-348 *2))) (-5 *2 (-483)) (-5 *1 (-823 *4 *3)) (-4 *3 (-1153 (-348 *4))))) (-2712 (*1 *2 *3) (-12 (-5 *3 (-582 (-2 (|:| |den| (-483)) (|:| |gcdnum| (-483))))) (-4 *4 (-1153 (-348 *2))) (-5 *2 (-483)) (-5 *1 (-823 *4 *5)) (-4 *5 (-1153 (-348 *4))))) (-2711 (*1 *2 *3) (-12 (-4 *4 (-1153 (-348 *2))) (-5 *2 (-483)) (-5 *1 (-823 *4 *3)) (-4 *3 (-1153 (-348 *4))))) (-2711 (*1 *2 *3) (-12 (-4 *3 (-1153 (-348 (-483)))) (-5 *2 (-2 (|:| |den| (-483)) (|:| |gcdnum| (-483)))) (-5 *1 (-823 *3 *4)) (-4 *4 (-1153 (-348 *3))))) (-2710 (*1 *2 *3) (-12 (-5 *3 (-483)) (-4 *4 (-1153 (-348 *3))) (-5 *2 (-829)) (-5 *1 (-823 *4 *5)) (-4 *5 (-1153 (-348 *4)))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3187 (((-85) $) NIL T ELT)) (-3128 ((|#1| $) 99 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3980 $) (|:| |associate| $)) $) NIL T ELT)) (-2062 (($ $) NIL T ELT)) (-2060 (((-85) $) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3773 (($ $) NIL T ELT)) (-3969 (((-346 $) $) NIL T ELT)) (-1606 (((-85) $ $) NIL T ELT)) (-3722 (($) NIL T CONST)) (-2563 (($ $ $) NIL T ELT)) (-3465 (((-3 $ #1#) $) 93 T ELT)) (-2562 (($ $ $) NIL T ELT)) (-2740 (((-2 (|:| -3952 (-582 $)) (|:| -2408 $)) (-582 $)) NIL T ELT)) (-3721 (((-85) $) NIL T ELT)) (-2722 (($ |#1| (-346 |#1|)) 91 T ELT)) (-2716 (((-1083 |#1|) |#1| |#1|) 52 T ELT)) (-2715 (($ $) 60 T ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-2409 (((-85) $) NIL T ELT)) (-2717 (((-483) $) 96 T ELT)) (-2718 (($ $ (-483)) 98 T ELT)) (-1603 (((-3 (-582 $) #1#) (-582 $) $) NIL T ELT)) (-1889 (($ $ $) NIL T ELT) (($ (-582 $)) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-2483 (($ $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-2707 (((-1083 $) (-1083 $) (-1083 $)) NIL T ELT)) (-3143 (($ $ $) NIL T ELT) (($ (-582 $)) NIL T ELT)) (-2719 ((|#1| $) 95 T ELT)) (-2720 (((-346 |#1|) $) 94 T ELT)) (-3730 (((-346 $) $) NIL T ELT)) (-1604 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3464 (((-3 $ #1#) $ $) 92 T ELT)) (-2739 (((-631 (-582 $)) (-582 $) $) NIL T ELT)) (-1605 (((-693) $) NIL T ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL T ELT)) (-2721 (($ $) 49 T ELT)) (-3944 (((-771) $) 123 T ELT) (($ (-483)) 72 T ELT) (($ $) NIL T ELT) (($ (-348 (-483))) NIL T ELT) (($ |#1|) 40 T ELT) (((-348 |#1|) $) 77 T ELT) (($ (-348 (-346 |#1|))) 85 T ELT)) (-3125 (((-693)) 70 T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-2061 (((-85) $ $) NIL T ELT)) (-3124 (((-85) $ $) NIL T ELT)) (-2659 (($) 24 T CONST)) (-2665 (($) 12 T CONST)) (-3055 (((-85) $ $) 86 T ELT)) (-3947 (($ $ $) NIL T ELT)) (-3835 (($ $) 107 T ELT) (($ $ $) NIL T ELT)) (-3837 (($ $ $) 48 T ELT)) (** (($ $ (-829)) NIL T ELT) (($ $ (-693)) NIL T ELT) (($ $ (-483)) NIL T ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-483) $) 109 T ELT) (($ $ $) 47 T ELT) (($ $ (-348 (-483))) NIL T ELT) (($ (-348 (-483)) $) NIL T ELT) (($ |#1| $) 108 T ELT) (($ $ |#1|) NIL T ELT))) -(((-824 |#1|) (-13 (-312) (-38 |#1|) (-10 -8 (-15 -3944 ((-348 |#1|) $)) (-15 -3944 ($ (-348 (-346 |#1|)))) (-15 -2721 ($ $)) (-15 -2720 ((-346 |#1|) $)) (-15 -2719 (|#1| $)) (-15 -2718 ($ $ (-483))) (-15 -2717 ((-483) $)) (-15 -2716 ((-1083 |#1|) |#1| |#1|)) (-15 -2715 ($ $)) (-15 -2722 ($ |#1| (-346 |#1|))) (-15 -3128 (|#1| $)))) (-258)) (T -824)) -((-3944 (*1 *2 *1) (-12 (-5 *2 (-348 *3)) (-5 *1 (-824 *3)) (-4 *3 (-258)))) (-3944 (*1 *1 *2) (-12 (-5 *2 (-348 (-346 *3))) (-4 *3 (-258)) (-5 *1 (-824 *3)))) (-2721 (*1 *1 *1) (-12 (-5 *1 (-824 *2)) (-4 *2 (-258)))) (-2720 (*1 *2 *1) (-12 (-5 *2 (-346 *3)) (-5 *1 (-824 *3)) (-4 *3 (-258)))) (-2719 (*1 *2 *1) (-12 (-5 *1 (-824 *2)) (-4 *2 (-258)))) (-2718 (*1 *1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-824 *3)) (-4 *3 (-258)))) (-2717 (*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-824 *3)) (-4 *3 (-258)))) (-2716 (*1 *2 *3 *3) (-12 (-5 *2 (-1083 *3)) (-5 *1 (-824 *3)) (-4 *3 (-258)))) (-2715 (*1 *1 *1) (-12 (-5 *1 (-824 *2)) (-4 *2 (-258)))) (-2722 (*1 *1 *2 *3) (-12 (-5 *3 (-346 *2)) (-4 *2 (-258)) (-5 *1 (-824 *2)))) (-3128 (*1 *2 *1) (-12 (-5 *1 (-824 *2)) (-4 *2 (-258))))) -((-2722 (((-51) (-856 |#1|) (-346 (-856 |#1|)) (-1088)) 17 T ELT) (((-51) (-348 (-856 |#1|)) (-1088)) 18 T ELT))) -(((-825 |#1|) (-10 -7 (-15 -2722 ((-51) (-348 (-856 |#1|)) (-1088))) (-15 -2722 ((-51) (-856 |#1|) (-346 (-856 |#1|)) (-1088)))) (-13 (-258) (-120))) (T -825)) -((-2722 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-346 (-856 *6))) (-5 *5 (-1088)) (-5 *3 (-856 *6)) (-4 *6 (-13 (-258) (-120))) (-5 *2 (-51)) (-5 *1 (-825 *6)))) (-2722 (*1 *2 *3 *4) (-12 (-5 *3 (-348 (-856 *5))) (-5 *4 (-1088)) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-51)) (-5 *1 (-825 *5))))) -((-2723 ((|#4| (-582 |#4|)) 148 T ELT) (((-1083 |#4|) (-1083 |#4|) (-1083 |#4|)) 85 T ELT) ((|#4| |#4| |#4|) 147 T ELT)) (-3143 (((-1083 |#4|) (-582 (-1083 |#4|))) 141 T ELT) (((-1083 |#4|) (-1083 |#4|) (-1083 |#4|)) 61 T ELT) ((|#4| (-582 |#4|)) 70 T ELT) ((|#4| |#4| |#4|) 108 T ELT))) -(((-826 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3143 (|#4| |#4| |#4|)) (-15 -3143 (|#4| (-582 |#4|))) (-15 -3143 ((-1083 |#4|) (-1083 |#4|) (-1083 |#4|))) (-15 -3143 ((-1083 |#4|) (-582 (-1083 |#4|)))) (-15 -2723 (|#4| |#4| |#4|)) (-15 -2723 ((-1083 |#4|) (-1083 |#4|) (-1083 |#4|))) (-15 -2723 (|#4| (-582 |#4|)))) (-716) (-755) (-258) (-860 |#3| |#1| |#2|)) (T -826)) -((-2723 (*1 *2 *3) (-12 (-5 *3 (-582 *2)) (-4 *2 (-860 *6 *4 *5)) (-5 *1 (-826 *4 *5 *6 *2)) (-4 *4 (-716)) (-4 *5 (-755)) (-4 *6 (-258)))) (-2723 (*1 *2 *2 *2) (-12 (-5 *2 (-1083 *6)) (-4 *6 (-860 *5 *3 *4)) (-4 *3 (-716)) (-4 *4 (-755)) (-4 *5 (-258)) (-5 *1 (-826 *3 *4 *5 *6)))) (-2723 (*1 *2 *2 *2) (-12 (-4 *3 (-716)) (-4 *4 (-755)) (-4 *5 (-258)) (-5 *1 (-826 *3 *4 *5 *2)) (-4 *2 (-860 *5 *3 *4)))) (-3143 (*1 *2 *3) (-12 (-5 *3 (-582 (-1083 *7))) (-4 *4 (-716)) (-4 *5 (-755)) (-4 *6 (-258)) (-5 *2 (-1083 *7)) (-5 *1 (-826 *4 *5 *6 *7)) (-4 *7 (-860 *6 *4 *5)))) (-3143 (*1 *2 *2 *2) (-12 (-5 *2 (-1083 *6)) (-4 *6 (-860 *5 *3 *4)) (-4 *3 (-716)) (-4 *4 (-755)) (-4 *5 (-258)) (-5 *1 (-826 *3 *4 *5 *6)))) (-3143 (*1 *2 *3) (-12 (-5 *3 (-582 *2)) (-4 *2 (-860 *6 *4 *5)) (-5 *1 (-826 *4 *5 *6 *2)) (-4 *4 (-716)) (-4 *5 (-755)) (-4 *6 (-258)))) (-3143 (*1 *2 *2 *2) (-12 (-4 *3 (-716)) (-4 *4 (-755)) (-4 *5 (-258)) (-5 *1 (-826 *3 *4 *5 *2)) (-4 *2 (-860 *5 *3 *4))))) -((-2736 (((-815 (-483)) (-883)) 38 T ELT) (((-815 (-483)) (-582 (-483))) 34 T ELT)) (-2724 (((-815 (-483)) (-582 (-483))) 66 T ELT) (((-815 (-483)) (-829)) 67 T ELT)) (-2735 (((-815 (-483))) 39 T ELT)) (-2733 (((-815 (-483))) 53 T ELT) (((-815 (-483)) (-582 (-483))) 52 T ELT)) (-2732 (((-815 (-483))) 51 T ELT) (((-815 (-483)) (-582 (-483))) 50 T ELT)) (-2731 (((-815 (-483))) 49 T ELT) (((-815 (-483)) (-582 (-483))) 48 T ELT)) (-2730 (((-815 (-483))) 47 T ELT) (((-815 (-483)) (-582 (-483))) 46 T ELT)) (-2729 (((-815 (-483))) 45 T ELT) (((-815 (-483)) (-582 (-483))) 44 T ELT)) (-2734 (((-815 (-483))) 55 T ELT) (((-815 (-483)) (-582 (-483))) 54 T ELT)) (-2728 (((-815 (-483)) (-582 (-483))) 71 T ELT) (((-815 (-483)) (-829)) 73 T ELT)) (-2727 (((-815 (-483)) (-582 (-483))) 68 T ELT) (((-815 (-483)) (-829)) 69 T ELT)) (-2725 (((-815 (-483)) (-582 (-483))) 64 T ELT) (((-815 (-483)) (-829)) 65 T ELT)) (-2726 (((-815 (-483)) (-582 (-829))) 57 T ELT))) -(((-827) (-10 -7 (-15 -2724 ((-815 (-483)) (-829))) (-15 -2724 ((-815 (-483)) (-582 (-483)))) (-15 -2725 ((-815 (-483)) (-829))) (-15 -2725 ((-815 (-483)) (-582 (-483)))) (-15 -2726 ((-815 (-483)) (-582 (-829)))) (-15 -2727 ((-815 (-483)) (-829))) (-15 -2727 ((-815 (-483)) (-582 (-483)))) (-15 -2728 ((-815 (-483)) (-829))) (-15 -2728 ((-815 (-483)) (-582 (-483)))) (-15 -2729 ((-815 (-483)) (-582 (-483)))) (-15 -2729 ((-815 (-483)))) (-15 -2730 ((-815 (-483)) (-582 (-483)))) (-15 -2730 ((-815 (-483)))) (-15 -2731 ((-815 (-483)) (-582 (-483)))) (-15 -2731 ((-815 (-483)))) (-15 -2732 ((-815 (-483)) (-582 (-483)))) (-15 -2732 ((-815 (-483)))) (-15 -2733 ((-815 (-483)) (-582 (-483)))) (-15 -2733 ((-815 (-483)))) (-15 -2734 ((-815 (-483)) (-582 (-483)))) (-15 -2734 ((-815 (-483)))) (-15 -2735 ((-815 (-483)))) (-15 -2736 ((-815 (-483)) (-582 (-483)))) (-15 -2736 ((-815 (-483)) (-883))))) (T -827)) -((-2736 (*1 *2 *3) (-12 (-5 *3 (-883)) (-5 *2 (-815 (-483))) (-5 *1 (-827)))) (-2736 (*1 *2 *3) (-12 (-5 *3 (-582 (-483))) (-5 *2 (-815 (-483))) (-5 *1 (-827)))) (-2735 (*1 *2) (-12 (-5 *2 (-815 (-483))) (-5 *1 (-827)))) (-2734 (*1 *2) (-12 (-5 *2 (-815 (-483))) (-5 *1 (-827)))) (-2734 (*1 *2 *3) (-12 (-5 *3 (-582 (-483))) (-5 *2 (-815 (-483))) (-5 *1 (-827)))) (-2733 (*1 *2) (-12 (-5 *2 (-815 (-483))) (-5 *1 (-827)))) (-2733 (*1 *2 *3) (-12 (-5 *3 (-582 (-483))) (-5 *2 (-815 (-483))) (-5 *1 (-827)))) (-2732 (*1 *2) (-12 (-5 *2 (-815 (-483))) (-5 *1 (-827)))) (-2732 (*1 *2 *3) (-12 (-5 *3 (-582 (-483))) (-5 *2 (-815 (-483))) (-5 *1 (-827)))) (-2731 (*1 *2) (-12 (-5 *2 (-815 (-483))) (-5 *1 (-827)))) (-2731 (*1 *2 *3) (-12 (-5 *3 (-582 (-483))) (-5 *2 (-815 (-483))) (-5 *1 (-827)))) (-2730 (*1 *2) (-12 (-5 *2 (-815 (-483))) (-5 *1 (-827)))) (-2730 (*1 *2 *3) (-12 (-5 *3 (-582 (-483))) (-5 *2 (-815 (-483))) (-5 *1 (-827)))) (-2729 (*1 *2) (-12 (-5 *2 (-815 (-483))) (-5 *1 (-827)))) (-2729 (*1 *2 *3) (-12 (-5 *3 (-582 (-483))) (-5 *2 (-815 (-483))) (-5 *1 (-827)))) (-2728 (*1 *2 *3) (-12 (-5 *3 (-582 (-483))) (-5 *2 (-815 (-483))) (-5 *1 (-827)))) (-2728 (*1 *2 *3) (-12 (-5 *3 (-829)) (-5 *2 (-815 (-483))) (-5 *1 (-827)))) (-2727 (*1 *2 *3) (-12 (-5 *3 (-582 (-483))) (-5 *2 (-815 (-483))) (-5 *1 (-827)))) (-2727 (*1 *2 *3) (-12 (-5 *3 (-829)) (-5 *2 (-815 (-483))) (-5 *1 (-827)))) (-2726 (*1 *2 *3) (-12 (-5 *3 (-582 (-829))) (-5 *2 (-815 (-483))) (-5 *1 (-827)))) (-2725 (*1 *2 *3) (-12 (-5 *3 (-582 (-483))) (-5 *2 (-815 (-483))) (-5 *1 (-827)))) (-2725 (*1 *2 *3) (-12 (-5 *3 (-829)) (-5 *2 (-815 (-483))) (-5 *1 (-827)))) (-2724 (*1 *2 *3) (-12 (-5 *3 (-582 (-483))) (-5 *2 (-815 (-483))) (-5 *1 (-827)))) (-2724 (*1 *2 *3) (-12 (-5 *3 (-829)) (-5 *2 (-815 (-483))) (-5 *1 (-827))))) -((-2738 (((-582 (-856 |#1|)) (-582 (-856 |#1|)) (-582 (-1088))) 14 T ELT)) (-2737 (((-582 (-856 |#1|)) (-582 (-856 |#1|)) (-582 (-1088))) 13 T ELT))) -(((-828 |#1|) (-10 -7 (-15 -2737 ((-582 (-856 |#1|)) (-582 (-856 |#1|)) (-582 (-1088)))) (-15 -2738 ((-582 (-856 |#1|)) (-582 (-856 |#1|)) (-582 (-1088))))) (-390)) (T -828)) -((-2738 (*1 *2 *2 *3) (-12 (-5 *2 (-582 (-856 *4))) (-5 *3 (-582 (-1088))) (-4 *4 (-390)) (-5 *1 (-828 *4)))) (-2737 (*1 *2 *2 *3) (-12 (-5 *2 (-582 (-856 *4))) (-5 *3 (-582 (-1088))) (-4 *4 (-390)) (-5 *1 (-828 *4))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3722 (($) NIL T CONST)) (-3465 (((-3 $ "failed") $) NIL T ELT)) (-2409 (((-85) $) NIL T ELT)) (-2530 (($ $ $) NIL T ELT)) (-2856 (($ $ $) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3143 (($ $ $) NIL T ELT)) (-3944 (((-771) $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2665 (($) NIL T CONST)) (-2565 (((-85) $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-2683 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-3837 (($ $ $) NIL T ELT)) (** (($ $ (-693)) NIL T ELT) (($ $ (-829)) NIL T ELT)) (* (($ (-829) $) NIL T ELT) (($ $ $) NIL T ELT))) -(((-829) (-13 (-717) (-662) (-10 -8 (-15 -3143 ($ $ $)) (-6 (-3995 "*"))))) (T -829)) -((-3143 (*1 *1 *1 *1) (-5 *1 (-829)))) -((-693) (|%ilt| 0 |#1|)) -((-3944 (((-265 |#1|) (-415)) 16 T ELT))) -(((-830 |#1|) (-10 -7 (-15 -3944 ((-265 |#1|) (-415)))) (-494)) (T -830)) -((-3944 (*1 *2 *3) (-12 (-5 *3 (-415)) (-5 *2 (-265 *4)) (-5 *1 (-830 *4)) (-4 *4 (-494))))) -((-2567 (((-85) $ $) 7 T ELT)) (-3187 (((-85) $) 22 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3980 $) (|:| |associate| $)) $) 55 T ELT)) (-2062 (($ $) 54 T ELT)) (-2060 (((-85) $) 52 T ELT)) (-1310 (((-3 $ "failed") $ $) 26 T ELT)) (-3722 (($) 23 T CONST)) (-3465 (((-3 $ "failed") $) 42 T ELT)) (-2740 (((-2 (|:| -3952 (-582 $)) (|:| -2408 $)) (-582 $)) 66 T ELT)) (-1212 (((-85) $ $) 20 T ELT)) (-2409 (((-85) $) 44 T ELT)) (-1889 (($ $ $) 60 T ELT) (($ (-582 $)) 59 T ELT)) (-3241 (((-1071) $) 11 T ELT)) (-3242 (((-1032) $) 12 T ELT)) (-2707 (((-1083 $) (-1083 $) (-1083 $)) 58 T ELT)) (-3143 (($ $ $) 62 T ELT) (($ (-582 $)) 61 T ELT)) (-3464 (((-3 $ "failed") $ $) 56 T ELT)) (-2739 (((-631 (-582 $)) (-582 $) $) 65 T ELT)) (-3944 (((-771) $) 13 T ELT) (($ (-483)) 41 T ELT) (($ $) 57 T ELT)) (-3125 (((-693)) 40 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-2061 (((-85) $ $) 53 T ELT)) (-3124 (((-85) $ $) 33 T ELT)) (-2659 (($) 24 T CONST)) (-2665 (($) 45 T CONST)) (-3055 (((-85) $ $) 8 T ELT)) (-3835 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3837 (($ $ $) 18 T ELT)) (** (($ $ (-829)) 35 T ELT) (($ $ (-693)) 43 T ELT)) (* (($ (-829) $) 17 T ELT) (($ (-693) $) 21 T ELT) (($ (-483) $) 30 T ELT) (($ $ $) 34 T ELT))) -(((-831) (-113)) (T -831)) -((-2740 (*1 *2 *3) (-12 (-4 *1 (-831)) (-5 *2 (-2 (|:| -3952 (-582 *1)) (|:| -2408 *1))) (-5 *3 (-582 *1)))) (-2739 (*1 *2 *3 *1) (-12 (-4 *1 (-831)) (-5 *2 (-631 (-582 *1))) (-5 *3 (-582 *1))))) -(-13 (-390) (-10 -8 (-15 -2740 ((-2 (|:| -3952 (-582 $)) (|:| -2408 $)) (-582 $))) (-15 -2739 ((-631 (-582 $)) (-582 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-554 (-483)) . T) ((-554 $) . T) ((-551 (-771)) . T) ((-146) . T) ((-246) . T) ((-390) . T) ((-494) . T) ((-13) . T) ((-587 (-483)) . T) ((-587 $) . T) ((-589 $) . T) ((-581 $) . T) ((-653 $) . T) ((-662) . T) ((-962 $) . T) ((-967 $) . T) ((-960) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T)) -((-3104 (((-1083 |#2|) (-582 |#2|) (-582 |#2|)) 17 T ELT) (((-1146 |#1| |#2|) (-1146 |#1| |#2|) (-582 |#2|) (-582 |#2|)) 13 T ELT))) -(((-832 |#1| |#2|) (-10 -7 (-15 -3104 ((-1146 |#1| |#2|) (-1146 |#1| |#2|) (-582 |#2|) (-582 |#2|))) (-15 -3104 ((-1083 |#2|) (-582 |#2|) (-582 |#2|)))) (-1088) (-312)) (T -832)) -((-3104 (*1 *2 *3 *3) (-12 (-5 *3 (-582 *5)) (-4 *5 (-312)) (-5 *2 (-1083 *5)) (-5 *1 (-832 *4 *5)) (-14 *4 (-1088)))) (-3104 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1146 *4 *5)) (-5 *3 (-582 *5)) (-14 *4 (-1088)) (-4 *5 (-312)) (-5 *1 (-832 *4 *5))))) -((-2741 ((|#2| (-582 |#1|) (-582 |#1|)) 28 T ELT))) -(((-833 |#1| |#2|) (-10 -7 (-15 -2741 (|#2| (-582 |#1|) (-582 |#1|)))) (-312) (-1153 |#1|)) (T -833)) -((-2741 (*1 *2 *3 *3) (-12 (-5 *3 (-582 *4)) (-4 *4 (-312)) (-4 *2 (-1153 *4)) (-5 *1 (-833 *4 *2))))) -((-2743 (((-483) (-582 (-2 (|:| |eqzro| (-582 |#4|)) (|:| |neqzro| (-582 |#4|)) (|:| |wcond| (-582 (-856 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-348 (-856 |#1|)))) (|:| -2011 (-582 (-1177 (-348 (-856 |#1|))))))))) (-1071)) 175 T ELT)) (-2762 ((|#4| |#4|) 194 T ELT)) (-2747 (((-582 (-348 (-856 |#1|))) (-582 (-1088))) 146 T ELT)) (-2761 (((-2 (|:| |eqzro| (-582 |#4|)) (|:| |neqzro| (-582 |#4|)) (|:| |wcond| (-582 (-856 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-348 (-856 |#1|)))) (|:| -2011 (-582 (-1177 (-348 (-856 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-582 (-483))) (|:| |cols| (-582 (-483)))) (-629 |#4|) (-582 (-348 (-856 |#1|))) (-582 (-582 |#4|)) (-693) (-693) (-483)) 88 T ELT)) (-2751 (((-2 (|:| |partsol| (-1177 (-348 (-856 |#1|)))) (|:| -2011 (-582 (-1177 (-348 (-856 |#1|)))))) (-2 (|:| |partsol| (-1177 (-348 (-856 |#1|)))) (|:| -2011 (-582 (-1177 (-348 (-856 |#1|)))))) (-582 |#4|)) 69 T ELT)) (-2760 (((-629 |#4|) (-629 |#4|) (-582 |#4|)) 65 T ELT)) (-2744 (((-582 (-2 (|:| |eqzro| (-582 |#4|)) (|:| |neqzro| (-582 |#4|)) (|:| |wcond| (-582 (-856 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-348 (-856 |#1|)))) (|:| -2011 (-582 (-1177 (-348 (-856 |#1|))))))))) (-1071)) 187 T ELT)) (-2742 (((-483) (-629 |#4|) (-829) (-1071)) 167 T ELT) (((-483) (-629 |#4|) (-582 (-1088)) (-829) (-1071)) 166 T ELT) (((-483) (-629 |#4|) (-582 |#4|) (-829) (-1071)) 165 T ELT) (((-483) (-629 |#4|) (-1071)) 154 T ELT) (((-483) (-629 |#4|) (-582 (-1088)) (-1071)) 153 T ELT) (((-483) (-629 |#4|) (-582 |#4|) (-1071)) 152 T ELT) (((-582 (-2 (|:| |eqzro| (-582 |#4|)) (|:| |neqzro| (-582 |#4|)) (|:| |wcond| (-582 (-856 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-348 (-856 |#1|)))) (|:| -2011 (-582 (-1177 (-348 (-856 |#1|))))))))) (-629 |#4|) (-829)) 151 T ELT) (((-582 (-2 (|:| |eqzro| (-582 |#4|)) (|:| |neqzro| (-582 |#4|)) (|:| |wcond| (-582 (-856 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-348 (-856 |#1|)))) (|:| -2011 (-582 (-1177 (-348 (-856 |#1|))))))))) (-629 |#4|) (-582 (-1088)) (-829)) 150 T ELT) (((-582 (-2 (|:| |eqzro| (-582 |#4|)) (|:| |neqzro| (-582 |#4|)) (|:| |wcond| (-582 (-856 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-348 (-856 |#1|)))) (|:| -2011 (-582 (-1177 (-348 (-856 |#1|))))))))) (-629 |#4|) (-582 |#4|) (-829)) 149 T ELT) (((-582 (-2 (|:| |eqzro| (-582 |#4|)) (|:| |neqzro| (-582 |#4|)) (|:| |wcond| (-582 (-856 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-348 (-856 |#1|)))) (|:| -2011 (-582 (-1177 (-348 (-856 |#1|))))))))) (-629 |#4|)) 148 T ELT) (((-582 (-2 (|:| |eqzro| (-582 |#4|)) (|:| |neqzro| (-582 |#4|)) (|:| |wcond| (-582 (-856 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-348 (-856 |#1|)))) (|:| -2011 (-582 (-1177 (-348 (-856 |#1|))))))))) (-629 |#4|) (-582 (-1088))) 147 T ELT) (((-582 (-2 (|:| |eqzro| (-582 |#4|)) (|:| |neqzro| (-582 |#4|)) (|:| |wcond| (-582 (-856 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-348 (-856 |#1|)))) (|:| -2011 (-582 (-1177 (-348 (-856 |#1|))))))))) (-629 |#4|) (-582 |#4|)) 143 T ELT)) (-2748 ((|#4| (-856 |#1|)) 80 T ELT)) (-2758 (((-85) (-582 |#4|) (-582 (-582 |#4|))) 191 T ELT)) (-2757 (((-582 (-582 (-483))) (-483) (-483)) 161 T ELT)) (-2756 (((-582 (-582 |#4|)) (-582 (-582 |#4|))) 106 T ELT)) (-2755 (((-693) (-582 (-2 (|:| -3107 (-693)) (|:| |eqns| (-582 (-2 (|:| |det| |#4|) (|:| |rows| (-582 (-483))) (|:| |cols| (-582 (-483)))))) (|:| |fgb| (-582 |#4|))))) 100 T ELT)) (-2754 (((-693) (-582 (-2 (|:| -3107 (-693)) (|:| |eqns| (-582 (-2 (|:| |det| |#4|) (|:| |rows| (-582 (-483))) (|:| |cols| (-582 (-483)))))) (|:| |fgb| (-582 |#4|))))) 99 T ELT)) (-2763 (((-85) (-582 (-856 |#1|))) 19 T ELT) (((-85) (-582 |#4|)) 15 T ELT)) (-2749 (((-2 (|:| |sysok| (-85)) (|:| |z0| (-582 |#4|)) (|:| |n0| (-582 |#4|))) (-582 |#4|) (-582 |#4|)) 84 T ELT)) (-2753 (((-582 |#4|) |#4|) 57 T ELT)) (-2746 (((-582 (-348 (-856 |#1|))) (-582 |#4|)) 142 T ELT) (((-629 (-348 (-856 |#1|))) (-629 |#4|)) 66 T ELT) (((-348 (-856 |#1|)) |#4|) 139 T ELT)) (-2745 (((-2 (|:| |rgl| (-582 (-2 (|:| |eqzro| (-582 |#4|)) (|:| |neqzro| (-582 |#4|)) (|:| |wcond| (-582 (-856 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-348 (-856 |#1|)))) (|:| -2011 (-582 (-1177 (-348 (-856 |#1|)))))))))) (|:| |rgsz| (-483))) (-629 |#4|) (-582 (-348 (-856 |#1|))) (-693) (-1071) (-483)) 112 T ELT)) (-2750 (((-582 (-2 (|:| -3107 (-693)) (|:| |eqns| (-582 (-2 (|:| |det| |#4|) (|:| |rows| (-582 (-483))) (|:| |cols| (-582 (-483)))))) (|:| |fgb| (-582 |#4|)))) (-629 |#4|) (-693)) 98 T ELT)) (-2759 (((-582 (-2 (|:| |det| |#4|) (|:| |rows| (-582 (-483))) (|:| |cols| (-582 (-483))))) (-629 |#4|) (-693)) 121 T ELT)) (-2752 (((-2 (|:| |partsol| (-1177 (-348 (-856 |#1|)))) (|:| -2011 (-582 (-1177 (-348 (-856 |#1|)))))) (-2 (|:| |mat| (-629 (-348 (-856 |#1|)))) (|:| |vec| (-582 (-348 (-856 |#1|)))) (|:| -3107 (-693)) (|:| |rows| (-582 (-483))) (|:| |cols| (-582 (-483))))) 56 T ELT))) -(((-834 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2742 ((-582 (-2 (|:| |eqzro| (-582 |#4|)) (|:| |neqzro| (-582 |#4|)) (|:| |wcond| (-582 (-856 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-348 (-856 |#1|)))) (|:| -2011 (-582 (-1177 (-348 (-856 |#1|))))))))) (-629 |#4|) (-582 |#4|))) (-15 -2742 ((-582 (-2 (|:| |eqzro| (-582 |#4|)) (|:| |neqzro| (-582 |#4|)) (|:| |wcond| (-582 (-856 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-348 (-856 |#1|)))) (|:| -2011 (-582 (-1177 (-348 (-856 |#1|))))))))) (-629 |#4|) (-582 (-1088)))) (-15 -2742 ((-582 (-2 (|:| |eqzro| (-582 |#4|)) (|:| |neqzro| (-582 |#4|)) (|:| |wcond| (-582 (-856 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-348 (-856 |#1|)))) (|:| -2011 (-582 (-1177 (-348 (-856 |#1|))))))))) (-629 |#4|))) (-15 -2742 ((-582 (-2 (|:| |eqzro| (-582 |#4|)) (|:| |neqzro| (-582 |#4|)) (|:| |wcond| (-582 (-856 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-348 (-856 |#1|)))) (|:| -2011 (-582 (-1177 (-348 (-856 |#1|))))))))) (-629 |#4|) (-582 |#4|) (-829))) (-15 -2742 ((-582 (-2 (|:| |eqzro| (-582 |#4|)) (|:| |neqzro| (-582 |#4|)) (|:| |wcond| (-582 (-856 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-348 (-856 |#1|)))) (|:| -2011 (-582 (-1177 (-348 (-856 |#1|))))))))) (-629 |#4|) (-582 (-1088)) (-829))) (-15 -2742 ((-582 (-2 (|:| |eqzro| (-582 |#4|)) (|:| |neqzro| (-582 |#4|)) (|:| |wcond| (-582 (-856 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-348 (-856 |#1|)))) (|:| -2011 (-582 (-1177 (-348 (-856 |#1|))))))))) (-629 |#4|) (-829))) (-15 -2742 ((-483) (-629 |#4|) (-582 |#4|) (-1071))) (-15 -2742 ((-483) (-629 |#4|) (-582 (-1088)) (-1071))) (-15 -2742 ((-483) (-629 |#4|) (-1071))) (-15 -2742 ((-483) (-629 |#4|) (-582 |#4|) (-829) (-1071))) (-15 -2742 ((-483) (-629 |#4|) (-582 (-1088)) (-829) (-1071))) (-15 -2742 ((-483) (-629 |#4|) (-829) (-1071))) (-15 -2743 ((-483) (-582 (-2 (|:| |eqzro| (-582 |#4|)) (|:| |neqzro| (-582 |#4|)) (|:| |wcond| (-582 (-856 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-348 (-856 |#1|)))) (|:| -2011 (-582 (-1177 (-348 (-856 |#1|))))))))) (-1071))) (-15 -2744 ((-582 (-2 (|:| |eqzro| (-582 |#4|)) (|:| |neqzro| (-582 |#4|)) (|:| |wcond| (-582 (-856 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-348 (-856 |#1|)))) (|:| -2011 (-582 (-1177 (-348 (-856 |#1|))))))))) (-1071))) (-15 -2745 ((-2 (|:| |rgl| (-582 (-2 (|:| |eqzro| (-582 |#4|)) (|:| |neqzro| (-582 |#4|)) (|:| |wcond| (-582 (-856 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-348 (-856 |#1|)))) (|:| -2011 (-582 (-1177 (-348 (-856 |#1|)))))))))) (|:| |rgsz| (-483))) (-629 |#4|) (-582 (-348 (-856 |#1|))) (-693) (-1071) (-483))) (-15 -2746 ((-348 (-856 |#1|)) |#4|)) (-15 -2746 ((-629 (-348 (-856 |#1|))) (-629 |#4|))) (-15 -2746 ((-582 (-348 (-856 |#1|))) (-582 |#4|))) (-15 -2747 ((-582 (-348 (-856 |#1|))) (-582 (-1088)))) (-15 -2748 (|#4| (-856 |#1|))) (-15 -2749 ((-2 (|:| |sysok| (-85)) (|:| |z0| (-582 |#4|)) (|:| |n0| (-582 |#4|))) (-582 |#4|) (-582 |#4|))) (-15 -2750 ((-582 (-2 (|:| -3107 (-693)) (|:| |eqns| (-582 (-2 (|:| |det| |#4|) (|:| |rows| (-582 (-483))) (|:| |cols| (-582 (-483)))))) (|:| |fgb| (-582 |#4|)))) (-629 |#4|) (-693))) (-15 -2751 ((-2 (|:| |partsol| (-1177 (-348 (-856 |#1|)))) (|:| -2011 (-582 (-1177 (-348 (-856 |#1|)))))) (-2 (|:| |partsol| (-1177 (-348 (-856 |#1|)))) (|:| -2011 (-582 (-1177 (-348 (-856 |#1|)))))) (-582 |#4|))) (-15 -2752 ((-2 (|:| |partsol| (-1177 (-348 (-856 |#1|)))) (|:| -2011 (-582 (-1177 (-348 (-856 |#1|)))))) (-2 (|:| |mat| (-629 (-348 (-856 |#1|)))) (|:| |vec| (-582 (-348 (-856 |#1|)))) (|:| -3107 (-693)) (|:| |rows| (-582 (-483))) (|:| |cols| (-582 (-483)))))) (-15 -2753 ((-582 |#4|) |#4|)) (-15 -2754 ((-693) (-582 (-2 (|:| -3107 (-693)) (|:| |eqns| (-582 (-2 (|:| |det| |#4|) (|:| |rows| (-582 (-483))) (|:| |cols| (-582 (-483)))))) (|:| |fgb| (-582 |#4|)))))) (-15 -2755 ((-693) (-582 (-2 (|:| -3107 (-693)) (|:| |eqns| (-582 (-2 (|:| |det| |#4|) (|:| |rows| (-582 (-483))) (|:| |cols| (-582 (-483)))))) (|:| |fgb| (-582 |#4|)))))) (-15 -2756 ((-582 (-582 |#4|)) (-582 (-582 |#4|)))) (-15 -2757 ((-582 (-582 (-483))) (-483) (-483))) (-15 -2758 ((-85) (-582 |#4|) (-582 (-582 |#4|)))) (-15 -2759 ((-582 (-2 (|:| |det| |#4|) (|:| |rows| (-582 (-483))) (|:| |cols| (-582 (-483))))) (-629 |#4|) (-693))) (-15 -2760 ((-629 |#4|) (-629 |#4|) (-582 |#4|))) (-15 -2761 ((-2 (|:| |eqzro| (-582 |#4|)) (|:| |neqzro| (-582 |#4|)) (|:| |wcond| (-582 (-856 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-348 (-856 |#1|)))) (|:| -2011 (-582 (-1177 (-348 (-856 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-582 (-483))) (|:| |cols| (-582 (-483)))) (-629 |#4|) (-582 (-348 (-856 |#1|))) (-582 (-582 |#4|)) (-693) (-693) (-483))) (-15 -2762 (|#4| |#4|)) (-15 -2763 ((-85) (-582 |#4|))) (-15 -2763 ((-85) (-582 (-856 |#1|))))) (-13 (-258) (-120)) (-13 (-755) (-552 (-1088))) (-716) (-860 |#1| |#3| |#2|)) (T -834)) -((-2763 (*1 *2 *3) (-12 (-5 *3 (-582 (-856 *4))) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-755) (-552 (-1088)))) (-4 *6 (-716)) (-5 *2 (-85)) (-5 *1 (-834 *4 *5 *6 *7)) (-4 *7 (-860 *4 *6 *5)))) (-2763 (*1 *2 *3) (-12 (-5 *3 (-582 *7)) (-4 *7 (-860 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-755) (-552 (-1088)))) (-4 *6 (-716)) (-5 *2 (-85)) (-5 *1 (-834 *4 *5 *6 *7)))) (-2762 (*1 *2 *2) (-12 (-4 *3 (-13 (-258) (-120))) (-4 *4 (-13 (-755) (-552 (-1088)))) (-4 *5 (-716)) (-5 *1 (-834 *3 *4 *5 *2)) (-4 *2 (-860 *3 *5 *4)))) (-2761 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-582 (-483))) (|:| |cols| (-582 (-483))))) (-5 *4 (-629 *12)) (-5 *5 (-582 (-348 (-856 *9)))) (-5 *6 (-582 (-582 *12))) (-5 *7 (-693)) (-5 *8 (-483)) (-4 *9 (-13 (-258) (-120))) (-4 *12 (-860 *9 *11 *10)) (-4 *10 (-13 (-755) (-552 (-1088)))) (-4 *11 (-716)) (-5 *2 (-2 (|:| |eqzro| (-582 *12)) (|:| |neqzro| (-582 *12)) (|:| |wcond| (-582 (-856 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-348 (-856 *9)))) (|:| -2011 (-582 (-1177 (-348 (-856 *9))))))))) (-5 *1 (-834 *9 *10 *11 *12)))) (-2760 (*1 *2 *2 *3) (-12 (-5 *2 (-629 *7)) (-5 *3 (-582 *7)) (-4 *7 (-860 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-755) (-552 (-1088)))) (-4 *6 (-716)) (-5 *1 (-834 *4 *5 *6 *7)))) (-2759 (*1 *2 *3 *4) (-12 (-5 *3 (-629 *8)) (-5 *4 (-693)) (-4 *8 (-860 *5 *7 *6)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-755) (-552 (-1088)))) (-4 *7 (-716)) (-5 *2 (-582 (-2 (|:| |det| *8) (|:| |rows| (-582 (-483))) (|:| |cols| (-582 (-483)))))) (-5 *1 (-834 *5 *6 *7 *8)))) (-2758 (*1 *2 *3 *4) (-12 (-5 *4 (-582 (-582 *8))) (-5 *3 (-582 *8)) (-4 *8 (-860 *5 *7 *6)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-755) (-552 (-1088)))) (-4 *7 (-716)) (-5 *2 (-85)) (-5 *1 (-834 *5 *6 *7 *8)))) (-2757 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-755) (-552 (-1088)))) (-4 *6 (-716)) (-5 *2 (-582 (-582 (-483)))) (-5 *1 (-834 *4 *5 *6 *7)) (-5 *3 (-483)) (-4 *7 (-860 *4 *6 *5)))) (-2756 (*1 *2 *2) (-12 (-5 *2 (-582 (-582 *6))) (-4 *6 (-860 *3 *5 *4)) (-4 *3 (-13 (-258) (-120))) (-4 *4 (-13 (-755) (-552 (-1088)))) (-4 *5 (-716)) (-5 *1 (-834 *3 *4 *5 *6)))) (-2755 (*1 *2 *3) (-12 (-5 *3 (-582 (-2 (|:| -3107 (-693)) (|:| |eqns| (-582 (-2 (|:| |det| *7) (|:| |rows| (-582 (-483))) (|:| |cols| (-582 (-483)))))) (|:| |fgb| (-582 *7))))) (-4 *7 (-860 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-755) (-552 (-1088)))) (-4 *6 (-716)) (-5 *2 (-693)) (-5 *1 (-834 *4 *5 *6 *7)))) (-2754 (*1 *2 *3) (-12 (-5 *3 (-582 (-2 (|:| -3107 (-693)) (|:| |eqns| (-582 (-2 (|:| |det| *7) (|:| |rows| (-582 (-483))) (|:| |cols| (-582 (-483)))))) (|:| |fgb| (-582 *7))))) (-4 *7 (-860 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-755) (-552 (-1088)))) (-4 *6 (-716)) (-5 *2 (-693)) (-5 *1 (-834 *4 *5 *6 *7)))) (-2753 (*1 *2 *3) (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-755) (-552 (-1088)))) (-4 *6 (-716)) (-5 *2 (-582 *3)) (-5 *1 (-834 *4 *5 *6 *3)) (-4 *3 (-860 *4 *6 *5)))) (-2752 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |mat| (-629 (-348 (-856 *4)))) (|:| |vec| (-582 (-348 (-856 *4)))) (|:| -3107 (-693)) (|:| |rows| (-582 (-483))) (|:| |cols| (-582 (-483))))) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-755) (-552 (-1088)))) (-4 *6 (-716)) (-5 *2 (-2 (|:| |partsol| (-1177 (-348 (-856 *4)))) (|:| -2011 (-582 (-1177 (-348 (-856 *4))))))) (-5 *1 (-834 *4 *5 *6 *7)) (-4 *7 (-860 *4 *6 *5)))) (-2751 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1177 (-348 (-856 *4)))) (|:| -2011 (-582 (-1177 (-348 (-856 *4))))))) (-5 *3 (-582 *7)) (-4 *4 (-13 (-258) (-120))) (-4 *7 (-860 *4 *6 *5)) (-4 *5 (-13 (-755) (-552 (-1088)))) (-4 *6 (-716)) (-5 *1 (-834 *4 *5 *6 *7)))) (-2750 (*1 *2 *3 *4) (-12 (-5 *3 (-629 *8)) (-4 *8 (-860 *5 *7 *6)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-755) (-552 (-1088)))) (-4 *7 (-716)) (-5 *2 (-582 (-2 (|:| -3107 (-693)) (|:| |eqns| (-582 (-2 (|:| |det| *8) (|:| |rows| (-582 (-483))) (|:| |cols| (-582 (-483)))))) (|:| |fgb| (-582 *8))))) (-5 *1 (-834 *5 *6 *7 *8)) (-5 *4 (-693)))) (-2749 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-755) (-552 (-1088)))) (-4 *6 (-716)) (-4 *7 (-860 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-85)) (|:| |z0| (-582 *7)) (|:| |n0| (-582 *7)))) (-5 *1 (-834 *4 *5 *6 *7)) (-5 *3 (-582 *7)))) (-2748 (*1 *2 *3) (-12 (-5 *3 (-856 *4)) (-4 *4 (-13 (-258) (-120))) (-4 *2 (-860 *4 *6 *5)) (-5 *1 (-834 *4 *5 *6 *2)) (-4 *5 (-13 (-755) (-552 (-1088)))) (-4 *6 (-716)))) (-2747 (*1 *2 *3) (-12 (-5 *3 (-582 (-1088))) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-755) (-552 (-1088)))) (-4 *6 (-716)) (-5 *2 (-582 (-348 (-856 *4)))) (-5 *1 (-834 *4 *5 *6 *7)) (-4 *7 (-860 *4 *6 *5)))) (-2746 (*1 *2 *3) (-12 (-5 *3 (-582 *7)) (-4 *7 (-860 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-755) (-552 (-1088)))) (-4 *6 (-716)) (-5 *2 (-582 (-348 (-856 *4)))) (-5 *1 (-834 *4 *5 *6 *7)))) (-2746 (*1 *2 *3) (-12 (-5 *3 (-629 *7)) (-4 *7 (-860 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-755) (-552 (-1088)))) (-4 *6 (-716)) (-5 *2 (-629 (-348 (-856 *4)))) (-5 *1 (-834 *4 *5 *6 *7)))) (-2746 (*1 *2 *3) (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-755) (-552 (-1088)))) (-4 *6 (-716)) (-5 *2 (-348 (-856 *4))) (-5 *1 (-834 *4 *5 *6 *3)) (-4 *3 (-860 *4 *6 *5)))) (-2745 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-629 *11)) (-5 *4 (-582 (-348 (-856 *8)))) (-5 *5 (-693)) (-5 *6 (-1071)) (-4 *8 (-13 (-258) (-120))) (-4 *11 (-860 *8 *10 *9)) (-4 *9 (-13 (-755) (-552 (-1088)))) (-4 *10 (-716)) (-5 *2 (-2 (|:| |rgl| (-582 (-2 (|:| |eqzro| (-582 *11)) (|:| |neqzro| (-582 *11)) (|:| |wcond| (-582 (-856 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-348 (-856 *8)))) (|:| -2011 (-582 (-1177 (-348 (-856 *8)))))))))) (|:| |rgsz| (-483)))) (-5 *1 (-834 *8 *9 *10 *11)) (-5 *7 (-483)))) (-2744 (*1 *2 *3) (-12 (-5 *3 (-1071)) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-755) (-552 (-1088)))) (-4 *6 (-716)) (-5 *2 (-582 (-2 (|:| |eqzro| (-582 *7)) (|:| |neqzro| (-582 *7)) (|:| |wcond| (-582 (-856 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-348 (-856 *4)))) (|:| -2011 (-582 (-1177 (-348 (-856 *4)))))))))) (-5 *1 (-834 *4 *5 *6 *7)) (-4 *7 (-860 *4 *6 *5)))) (-2743 (*1 *2 *3 *4) (-12 (-5 *3 (-582 (-2 (|:| |eqzro| (-582 *8)) (|:| |neqzro| (-582 *8)) (|:| |wcond| (-582 (-856 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-348 (-856 *5)))) (|:| -2011 (-582 (-1177 (-348 (-856 *5)))))))))) (-5 *4 (-1071)) (-4 *5 (-13 (-258) (-120))) (-4 *8 (-860 *5 *7 *6)) (-4 *6 (-13 (-755) (-552 (-1088)))) (-4 *7 (-716)) (-5 *2 (-483)) (-5 *1 (-834 *5 *6 *7 *8)))) (-2742 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-629 *9)) (-5 *4 (-829)) (-5 *5 (-1071)) (-4 *9 (-860 *6 *8 *7)) (-4 *6 (-13 (-258) (-120))) (-4 *7 (-13 (-755) (-552 (-1088)))) (-4 *8 (-716)) (-5 *2 (-483)) (-5 *1 (-834 *6 *7 *8 *9)))) (-2742 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-629 *10)) (-5 *4 (-582 (-1088))) (-5 *5 (-829)) (-5 *6 (-1071)) (-4 *10 (-860 *7 *9 *8)) (-4 *7 (-13 (-258) (-120))) (-4 *8 (-13 (-755) (-552 (-1088)))) (-4 *9 (-716)) (-5 *2 (-483)) (-5 *1 (-834 *7 *8 *9 *10)))) (-2742 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-629 *10)) (-5 *4 (-582 *10)) (-5 *5 (-829)) (-5 *6 (-1071)) (-4 *10 (-860 *7 *9 *8)) (-4 *7 (-13 (-258) (-120))) (-4 *8 (-13 (-755) (-552 (-1088)))) (-4 *9 (-716)) (-5 *2 (-483)) (-5 *1 (-834 *7 *8 *9 *10)))) (-2742 (*1 *2 *3 *4) (-12 (-5 *3 (-629 *8)) (-5 *4 (-1071)) (-4 *8 (-860 *5 *7 *6)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-755) (-552 (-1088)))) (-4 *7 (-716)) (-5 *2 (-483)) (-5 *1 (-834 *5 *6 *7 *8)))) (-2742 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-629 *9)) (-5 *4 (-582 (-1088))) (-5 *5 (-1071)) (-4 *9 (-860 *6 *8 *7)) (-4 *6 (-13 (-258) (-120))) (-4 *7 (-13 (-755) (-552 (-1088)))) (-4 *8 (-716)) (-5 *2 (-483)) (-5 *1 (-834 *6 *7 *8 *9)))) (-2742 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-629 *9)) (-5 *4 (-582 *9)) (-5 *5 (-1071)) (-4 *9 (-860 *6 *8 *7)) (-4 *6 (-13 (-258) (-120))) (-4 *7 (-13 (-755) (-552 (-1088)))) (-4 *8 (-716)) (-5 *2 (-483)) (-5 *1 (-834 *6 *7 *8 *9)))) (-2742 (*1 *2 *3 *4) (-12 (-5 *3 (-629 *8)) (-5 *4 (-829)) (-4 *8 (-860 *5 *7 *6)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-755) (-552 (-1088)))) (-4 *7 (-716)) (-5 *2 (-582 (-2 (|:| |eqzro| (-582 *8)) (|:| |neqzro| (-582 *8)) (|:| |wcond| (-582 (-856 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-348 (-856 *5)))) (|:| -2011 (-582 (-1177 (-348 (-856 *5)))))))))) (-5 *1 (-834 *5 *6 *7 *8)))) (-2742 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-629 *9)) (-5 *4 (-582 (-1088))) (-5 *5 (-829)) (-4 *9 (-860 *6 *8 *7)) (-4 *6 (-13 (-258) (-120))) (-4 *7 (-13 (-755) (-552 (-1088)))) (-4 *8 (-716)) (-5 *2 (-582 (-2 (|:| |eqzro| (-582 *9)) (|:| |neqzro| (-582 *9)) (|:| |wcond| (-582 (-856 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-348 (-856 *6)))) (|:| -2011 (-582 (-1177 (-348 (-856 *6)))))))))) (-5 *1 (-834 *6 *7 *8 *9)))) (-2742 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-629 *9)) (-5 *5 (-829)) (-4 *9 (-860 *6 *8 *7)) (-4 *6 (-13 (-258) (-120))) (-4 *7 (-13 (-755) (-552 (-1088)))) (-4 *8 (-716)) (-5 *2 (-582 (-2 (|:| |eqzro| (-582 *9)) (|:| |neqzro| (-582 *9)) (|:| |wcond| (-582 (-856 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-348 (-856 *6)))) (|:| -2011 (-582 (-1177 (-348 (-856 *6)))))))))) (-5 *1 (-834 *6 *7 *8 *9)) (-5 *4 (-582 *9)))) (-2742 (*1 *2 *3) (-12 (-5 *3 (-629 *7)) (-4 *7 (-860 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-755) (-552 (-1088)))) (-4 *6 (-716)) (-5 *2 (-582 (-2 (|:| |eqzro| (-582 *7)) (|:| |neqzro| (-582 *7)) (|:| |wcond| (-582 (-856 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-348 (-856 *4)))) (|:| -2011 (-582 (-1177 (-348 (-856 *4)))))))))) (-5 *1 (-834 *4 *5 *6 *7)))) (-2742 (*1 *2 *3 *4) (-12 (-5 *3 (-629 *8)) (-5 *4 (-582 (-1088))) (-4 *8 (-860 *5 *7 *6)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-755) (-552 (-1088)))) (-4 *7 (-716)) (-5 *2 (-582 (-2 (|:| |eqzro| (-582 *8)) (|:| |neqzro| (-582 *8)) (|:| |wcond| (-582 (-856 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-348 (-856 *5)))) (|:| -2011 (-582 (-1177 (-348 (-856 *5)))))))))) (-5 *1 (-834 *5 *6 *7 *8)))) (-2742 (*1 *2 *3 *4) (-12 (-5 *3 (-629 *8)) (-4 *8 (-860 *5 *7 *6)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-755) (-552 (-1088)))) (-4 *7 (-716)) (-5 *2 (-582 (-2 (|:| |eqzro| (-582 *8)) (|:| |neqzro| (-582 *8)) (|:| |wcond| (-582 (-856 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-348 (-856 *5)))) (|:| -2011 (-582 (-1177 (-348 (-856 *5)))))))))) (-5 *1 (-834 *5 *6 *7 *8)) (-5 *4 (-582 *8))))) -((-3872 (($ $ (-1000 (-179))) 125 T ELT) (($ $ (-1000 (-179)) (-1000 (-179))) 126 T ELT)) (-2895 (((-1000 (-179)) $) 73 T ELT)) (-2896 (((-1000 (-179)) $) 72 T ELT)) (-2787 (((-1000 (-179)) $) 74 T ELT)) (-2768 (((-483) (-483)) 66 T ELT)) (-2772 (((-483) (-483)) 61 T ELT)) (-2770 (((-483) (-483)) 64 T ELT)) (-2766 (((-85) (-85)) 68 T ELT)) (-2769 (((-483)) 65 T ELT)) (-3133 (($ $ (-1000 (-179))) 129 T ELT) (($ $) 130 T ELT)) (-2789 (($ (-1 (-853 (-179)) (-179)) (-1000 (-179))) 148 T ELT) (($ (-1 (-853 (-179)) (-179)) (-1000 (-179)) (-1000 (-179)) (-1000 (-179))) 149 T ELT)) (-2775 (($ (-1 (-179) (-179)) (-1000 (-179))) 156 T ELT) (($ (-1 (-179) (-179))) 160 T ELT)) (-2788 (($ (-1 (-179) (-179)) (-1000 (-179))) 144 T ELT) (($ (-1 (-179) (-179)) (-1000 (-179)) (-1000 (-179))) 145 T ELT) (($ (-582 (-1 (-179) (-179))) (-1000 (-179))) 153 T ELT) (($ (-582 (-1 (-179) (-179))) (-1000 (-179)) (-1000 (-179))) 154 T ELT) (($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1000 (-179))) 146 T ELT) (($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1000 (-179)) (-1000 (-179)) (-1000 (-179))) 147 T ELT) (($ $ (-1000 (-179))) 131 T ELT)) (-2774 (((-85) $) 69 T ELT)) (-2765 (((-483)) 70 T ELT)) (-2773 (((-483)) 59 T ELT)) (-2771 (((-483)) 62 T ELT)) (-2897 (((-582 (-582 (-853 (-179)))) $) 35 T ELT)) (-2764 (((-85) (-85)) 71 T ELT)) (-3944 (((-771) $) 174 T ELT)) (-2767 (((-85)) 67 T ELT))) -(((-835) (-13 (-865) (-10 -8 (-15 -2788 ($ (-1 (-179) (-179)) (-1000 (-179)))) (-15 -2788 ($ (-1 (-179) (-179)) (-1000 (-179)) (-1000 (-179)))) (-15 -2788 ($ (-582 (-1 (-179) (-179))) (-1000 (-179)))) (-15 -2788 ($ (-582 (-1 (-179) (-179))) (-1000 (-179)) (-1000 (-179)))) (-15 -2788 ($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1000 (-179)))) (-15 -2788 ($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1000 (-179)) (-1000 (-179)) (-1000 (-179)))) (-15 -2789 ($ (-1 (-853 (-179)) (-179)) (-1000 (-179)))) (-15 -2789 ($ (-1 (-853 (-179)) (-179)) (-1000 (-179)) (-1000 (-179)) (-1000 (-179)))) (-15 -2775 ($ (-1 (-179) (-179)) (-1000 (-179)))) (-15 -2775 ($ (-1 (-179) (-179)))) (-15 -2788 ($ $ (-1000 (-179)))) (-15 -2774 ((-85) $)) (-15 -3872 ($ $ (-1000 (-179)))) (-15 -3872 ($ $ (-1000 (-179)) (-1000 (-179)))) (-15 -3133 ($ $ (-1000 (-179)))) (-15 -3133 ($ $)) (-15 -2787 ((-1000 (-179)) $)) (-15 -2773 ((-483))) (-15 -2772 ((-483) (-483))) (-15 -2771 ((-483))) (-15 -2770 ((-483) (-483))) (-15 -2769 ((-483))) (-15 -2768 ((-483) (-483))) (-15 -2767 ((-85))) (-15 -2766 ((-85) (-85))) (-15 -2765 ((-483))) (-15 -2764 ((-85) (-85)))))) (T -835)) -((-2788 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1000 (-179))) (-5 *1 (-835)))) (-2788 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1000 (-179))) (-5 *1 (-835)))) (-2788 (*1 *1 *2 *3) (-12 (-5 *2 (-582 (-1 (-179) (-179)))) (-5 *3 (-1000 (-179))) (-5 *1 (-835)))) (-2788 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-582 (-1 (-179) (-179)))) (-5 *3 (-1000 (-179))) (-5 *1 (-835)))) (-2788 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1000 (-179))) (-5 *1 (-835)))) (-2788 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1000 (-179))) (-5 *1 (-835)))) (-2789 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-853 (-179)) (-179))) (-5 *3 (-1000 (-179))) (-5 *1 (-835)))) (-2789 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-853 (-179)) (-179))) (-5 *3 (-1000 (-179))) (-5 *1 (-835)))) (-2775 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1000 (-179))) (-5 *1 (-835)))) (-2775 (*1 *1 *2) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *1 (-835)))) (-2788 (*1 *1 *1 *2) (-12 (-5 *2 (-1000 (-179))) (-5 *1 (-835)))) (-2774 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-835)))) (-3872 (*1 *1 *1 *2) (-12 (-5 *2 (-1000 (-179))) (-5 *1 (-835)))) (-3872 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1000 (-179))) (-5 *1 (-835)))) (-3133 (*1 *1 *1 *2) (-12 (-5 *2 (-1000 (-179))) (-5 *1 (-835)))) (-3133 (*1 *1 *1) (-5 *1 (-835))) (-2787 (*1 *2 *1) (-12 (-5 *2 (-1000 (-179))) (-5 *1 (-835)))) (-2773 (*1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-835)))) (-2772 (*1 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-835)))) (-2771 (*1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-835)))) (-2770 (*1 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-835)))) (-2769 (*1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-835)))) (-2768 (*1 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-835)))) (-2767 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-835)))) (-2766 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-835)))) (-2765 (*1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-835)))) (-2764 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-835))))) -((-2775 (((-835) |#1| (-1088)) 17 T ELT) (((-835) |#1| (-1088) (-1000 (-179))) 21 T ELT)) (-2788 (((-835) |#1| |#1| (-1088) (-1000 (-179))) 19 T ELT) (((-835) |#1| (-1088) (-1000 (-179))) 15 T ELT))) -(((-836 |#1|) (-10 -7 (-15 -2788 ((-835) |#1| (-1088) (-1000 (-179)))) (-15 -2788 ((-835) |#1| |#1| (-1088) (-1000 (-179)))) (-15 -2775 ((-835) |#1| (-1088) (-1000 (-179)))) (-15 -2775 ((-835) |#1| (-1088)))) (-552 (-472))) (T -836)) -((-2775 (*1 *2 *3 *4) (-12 (-5 *4 (-1088)) (-5 *2 (-835)) (-5 *1 (-836 *3)) (-4 *3 (-552 (-472))))) (-2775 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1088)) (-5 *5 (-1000 (-179))) (-5 *2 (-835)) (-5 *1 (-836 *3)) (-4 *3 (-552 (-472))))) (-2788 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1088)) (-5 *5 (-1000 (-179))) (-5 *2 (-835)) (-5 *1 (-836 *3)) (-4 *3 (-552 (-472))))) (-2788 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1088)) (-5 *5 (-1000 (-179))) (-5 *2 (-835)) (-5 *1 (-836 *3)) (-4 *3 (-552 (-472)))))) -((-3872 (($ $ (-1000 (-179)) (-1000 (-179)) (-1000 (-179))) 123 T ELT)) (-2894 (((-1000 (-179)) $) 64 T ELT)) (-2895 (((-1000 (-179)) $) 63 T ELT)) (-2896 (((-1000 (-179)) $) 62 T ELT)) (-2786 (((-582 (-582 (-179))) $) 69 T ELT)) (-2787 (((-1000 (-179)) $) 65 T ELT)) (-2780 (((-483) (-483)) 57 T ELT)) (-2784 (((-483) (-483)) 52 T ELT)) (-2782 (((-483) (-483)) 55 T ELT)) (-2778 (((-85) (-85)) 59 T ELT)) (-2781 (((-483)) 56 T ELT)) (-3133 (($ $ (-1000 (-179))) 126 T ELT) (($ $) 127 T ELT)) (-2789 (($ (-1 (-853 (-179)) (-179)) (-1000 (-179))) 133 T ELT) (($ (-1 (-853 (-179)) (-179)) (-1000 (-179)) (-1000 (-179)) (-1000 (-179)) (-1000 (-179))) 134 T ELT)) (-2788 (($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1000 (-179))) 140 T ELT) (($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1000 (-179)) (-1000 (-179)) (-1000 (-179)) (-1000 (-179))) 141 T ELT) (($ $ (-1000 (-179))) 129 T ELT)) (-2777 (((-483)) 60 T ELT)) (-2785 (((-483)) 50 T ELT)) (-2783 (((-483)) 53 T ELT)) (-2897 (((-582 (-582 (-853 (-179)))) $) 157 T ELT)) (-2776 (((-85) (-85)) 61 T ELT)) (-3944 (((-771) $) 155 T ELT)) (-2779 (((-85)) 58 T ELT))) -(((-837) (-13 (-886) (-10 -8 (-15 -2789 ($ (-1 (-853 (-179)) (-179)) (-1000 (-179)))) (-15 -2789 ($ (-1 (-853 (-179)) (-179)) (-1000 (-179)) (-1000 (-179)) (-1000 (-179)) (-1000 (-179)))) (-15 -2788 ($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1000 (-179)))) (-15 -2788 ($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1000 (-179)) (-1000 (-179)) (-1000 (-179)) (-1000 (-179)))) (-15 -2788 ($ $ (-1000 (-179)))) (-15 -3872 ($ $ (-1000 (-179)) (-1000 (-179)) (-1000 (-179)))) (-15 -3133 ($ $ (-1000 (-179)))) (-15 -3133 ($ $)) (-15 -2787 ((-1000 (-179)) $)) (-15 -2786 ((-582 (-582 (-179))) $)) (-15 -2785 ((-483))) (-15 -2784 ((-483) (-483))) (-15 -2783 ((-483))) (-15 -2782 ((-483) (-483))) (-15 -2781 ((-483))) (-15 -2780 ((-483) (-483))) (-15 -2779 ((-85))) (-15 -2778 ((-85) (-85))) (-15 -2777 ((-483))) (-15 -2776 ((-85) (-85)))))) (T -837)) -((-2789 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-853 (-179)) (-179))) (-5 *3 (-1000 (-179))) (-5 *1 (-837)))) (-2789 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-853 (-179)) (-179))) (-5 *3 (-1000 (-179))) (-5 *1 (-837)))) (-2788 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1000 (-179))) (-5 *1 (-837)))) (-2788 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1000 (-179))) (-5 *1 (-837)))) (-2788 (*1 *1 *1 *2) (-12 (-5 *2 (-1000 (-179))) (-5 *1 (-837)))) (-3872 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1000 (-179))) (-5 *1 (-837)))) (-3133 (*1 *1 *1 *2) (-12 (-5 *2 (-1000 (-179))) (-5 *1 (-837)))) (-3133 (*1 *1 *1) (-5 *1 (-837))) (-2787 (*1 *2 *1) (-12 (-5 *2 (-1000 (-179))) (-5 *1 (-837)))) (-2786 (*1 *2 *1) (-12 (-5 *2 (-582 (-582 (-179)))) (-5 *1 (-837)))) (-2785 (*1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-837)))) (-2784 (*1 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-837)))) (-2783 (*1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-837)))) (-2782 (*1 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-837)))) (-2781 (*1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-837)))) (-2780 (*1 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-837)))) (-2779 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-837)))) (-2778 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-837)))) (-2777 (*1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-837)))) (-2776 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-837))))) -((-2790 (((-582 (-1000 (-179))) (-582 (-582 (-853 (-179))))) 34 T ELT))) -(((-838) (-10 -7 (-15 -2790 ((-582 (-1000 (-179))) (-582 (-582 (-853 (-179)))))))) (T -838)) -((-2790 (*1 *2 *3) (-12 (-5 *3 (-582 (-582 (-853 (-179))))) (-5 *2 (-582 (-1000 (-179)))) (-5 *1 (-838))))) -((-2792 (((-265 (-483)) (-1088)) 16 T ELT)) (-2793 (((-265 (-483)) (-1088)) 14 T ELT)) (-3950 (((-265 (-483)) (-1088)) 12 T ELT)) (-2791 (((-265 (-483)) (-1088) (-445)) 19 T ELT))) -(((-839) (-10 -7 (-15 -2791 ((-265 (-483)) (-1088) (-445))) (-15 -3950 ((-265 (-483)) (-1088))) (-15 -2792 ((-265 (-483)) (-1088))) (-15 -2793 ((-265 (-483)) (-1088))))) (T -839)) -((-2793 (*1 *2 *3) (-12 (-5 *3 (-1088)) (-5 *2 (-265 (-483))) (-5 *1 (-839)))) (-2792 (*1 *2 *3) (-12 (-5 *3 (-1088)) (-5 *2 (-265 (-483))) (-5 *1 (-839)))) (-3950 (*1 *2 *3) (-12 (-5 *3 (-1088)) (-5 *2 (-265 (-483))) (-5 *1 (-839)))) (-2791 (*1 *2 *3 *4) (-12 (-5 *3 (-1088)) (-5 *4 (-445)) (-5 *2 (-265 (-483))) (-5 *1 (-839))))) -((-2792 ((|#2| |#2|) 28 T ELT)) (-2793 ((|#2| |#2|) 29 T ELT)) (-3950 ((|#2| |#2|) 27 T ELT)) (-2791 ((|#2| |#2| (-445)) 26 T ELT))) -(((-840 |#1| |#2|) (-10 -7 (-15 -2791 (|#2| |#2| (-445))) (-15 -3950 (|#2| |#2|)) (-15 -2792 (|#2| |#2|)) (-15 -2793 (|#2| |#2|))) (-1012) (-362 |#1|)) (T -840)) -((-2793 (*1 *2 *2) (-12 (-4 *3 (-1012)) (-5 *1 (-840 *3 *2)) (-4 *2 (-362 *3)))) (-2792 (*1 *2 *2) (-12 (-4 *3 (-1012)) (-5 *1 (-840 *3 *2)) (-4 *2 (-362 *3)))) (-3950 (*1 *2 *2) (-12 (-4 *3 (-1012)) (-5 *1 (-840 *3 *2)) (-4 *2 (-362 *3)))) (-2791 (*1 *2 *2 *3) (-12 (-5 *3 (-445)) (-4 *4 (-1012)) (-5 *1 (-840 *4 *2)) (-4 *2 (-362 *4))))) -((-2795 (((-797 |#1| |#3|) |#2| (-799 |#1|) (-797 |#1| |#3|)) 25 T ELT)) (-2794 (((-1 (-85) |#2|) (-1 (-85) |#3|)) 13 T ELT))) -(((-841 |#1| |#2| |#3|) (-10 -7 (-15 -2794 ((-1 (-85) |#2|) (-1 (-85) |#3|))) (-15 -2795 ((-797 |#1| |#3|) |#2| (-799 |#1|) (-797 |#1| |#3|)))) (-1012) (-795 |#1|) (-13 (-1012) (-949 |#2|))) (T -841)) -((-2795 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-797 *5 *6)) (-5 *4 (-799 *5)) (-4 *5 (-1012)) (-4 *6 (-13 (-1012) (-949 *3))) (-4 *3 (-795 *5)) (-5 *1 (-841 *5 *3 *6)))) (-2794 (*1 *2 *3) (-12 (-5 *3 (-1 (-85) *6)) (-4 *6 (-13 (-1012) (-949 *5))) (-4 *5 (-795 *4)) (-4 *4 (-1012)) (-5 *2 (-1 (-85) *5)) (-5 *1 (-841 *4 *5 *6))))) -((-2795 (((-797 |#1| |#3|) |#3| (-799 |#1|) (-797 |#1| |#3|)) 30 T ELT))) -(((-842 |#1| |#2| |#3|) (-10 -7 (-15 -2795 ((-797 |#1| |#3|) |#3| (-799 |#1|) (-797 |#1| |#3|)))) (-1012) (-13 (-494) (-795 |#1|)) (-13 (-362 |#2|) (-552 (-799 |#1|)) (-795 |#1|) (-949 (-549 $)))) (T -842)) -((-2795 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-797 *5 *3)) (-4 *5 (-1012)) (-4 *3 (-13 (-362 *6) (-552 *4) (-795 *5) (-949 (-549 $)))) (-5 *4 (-799 *5)) (-4 *6 (-13 (-494) (-795 *5))) (-5 *1 (-842 *5 *6 *3))))) -((-2795 (((-797 (-483) |#1|) |#1| (-799 (-483)) (-797 (-483) |#1|)) 13 T ELT))) -(((-843 |#1|) (-10 -7 (-15 -2795 ((-797 (-483) |#1|) |#1| (-799 (-483)) (-797 (-483) |#1|)))) (-482)) (T -843)) -((-2795 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-797 (-483) *3)) (-5 *4 (-799 (-483))) (-4 *3 (-482)) (-5 *1 (-843 *3))))) -((-2795 (((-797 |#1| |#2|) (-549 |#2|) (-799 |#1|) (-797 |#1| |#2|)) 57 T ELT))) -(((-844 |#1| |#2|) (-10 -7 (-15 -2795 ((-797 |#1| |#2|) (-549 |#2|) (-799 |#1|) (-797 |#1| |#2|)))) (-1012) (-13 (-1012) (-949 (-549 $)) (-552 (-799 |#1|)) (-795 |#1|))) (T -844)) -((-2795 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-797 *5 *6)) (-5 *3 (-549 *6)) (-4 *5 (-1012)) (-4 *6 (-13 (-1012) (-949 (-549 $)) (-552 *4) (-795 *5))) (-5 *4 (-799 *5)) (-5 *1 (-844 *5 *6))))) -((-2795 (((-794 |#1| |#2| |#3|) |#3| (-799 |#1|) (-794 |#1| |#2| |#3|)) 17 T ELT))) -(((-845 |#1| |#2| |#3|) (-10 -7 (-15 -2795 ((-794 |#1| |#2| |#3|) |#3| (-799 |#1|) (-794 |#1| |#2| |#3|)))) (-1012) (-795 |#1|) (-607 |#2|)) (T -845)) -((-2795 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-794 *5 *6 *3)) (-5 *4 (-799 *5)) (-4 *5 (-1012)) (-4 *6 (-795 *5)) (-4 *3 (-607 *6)) (-5 *1 (-845 *5 *6 *3))))) -((-2795 (((-797 |#1| |#5|) |#5| (-799 |#1|) (-797 |#1| |#5|)) 17 (|has| |#3| (-795 |#1|)) ELT) (((-797 |#1| |#5|) |#5| (-799 |#1|) (-797 |#1| |#5|) (-1 (-797 |#1| |#5|) |#3| (-799 |#1|) (-797 |#1| |#5|))) 16 T ELT))) -(((-846 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2795 ((-797 |#1| |#5|) |#5| (-799 |#1|) (-797 |#1| |#5|) (-1 (-797 |#1| |#5|) |#3| (-799 |#1|) (-797 |#1| |#5|)))) (IF (|has| |#3| (-795 |#1|)) (-15 -2795 ((-797 |#1| |#5|) |#5| (-799 |#1|) (-797 |#1| |#5|))) |%noBranch|)) (-1012) (-716) (-755) (-13 (-960) (-795 |#1|)) (-13 (-860 |#4| |#2| |#3|) (-552 (-799 |#1|)))) (T -846)) -((-2795 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-797 *5 *3)) (-4 *5 (-1012)) (-4 *3 (-13 (-860 *8 *6 *7) (-552 *4))) (-5 *4 (-799 *5)) (-4 *7 (-795 *5)) (-4 *6 (-716)) (-4 *7 (-755)) (-4 *8 (-13 (-960) (-795 *5))) (-5 *1 (-846 *5 *6 *7 *8 *3)))) (-2795 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-797 *6 *3) *8 (-799 *6) (-797 *6 *3))) (-4 *8 (-755)) (-5 *2 (-797 *6 *3)) (-5 *4 (-799 *6)) (-4 *6 (-1012)) (-4 *3 (-13 (-860 *9 *7 *8) (-552 *4))) (-4 *7 (-716)) (-4 *9 (-13 (-960) (-795 *6))) (-5 *1 (-846 *6 *7 *8 *9 *3))))) -((-3208 (((-265 (-483)) (-1088) (-582 (-1 (-85) |#1|))) 18 T ELT) (((-265 (-483)) (-1088) (-1 (-85) |#1|)) 15 T ELT))) -(((-847 |#1|) (-10 -7 (-15 -3208 ((-265 (-483)) (-1088) (-1 (-85) |#1|))) (-15 -3208 ((-265 (-483)) (-1088) (-582 (-1 (-85) |#1|))))) (-1127)) (T -847)) -((-3208 (*1 *2 *3 *4) (-12 (-5 *3 (-1088)) (-5 *4 (-582 (-1 (-85) *5))) (-4 *5 (-1127)) (-5 *2 (-265 (-483))) (-5 *1 (-847 *5)))) (-3208 (*1 *2 *3 *4) (-12 (-5 *3 (-1088)) (-5 *4 (-1 (-85) *5)) (-4 *5 (-1127)) (-5 *2 (-265 (-483))) (-5 *1 (-847 *5))))) -((-3208 ((|#2| |#2| (-582 (-1 (-85) |#3|))) 12 T ELT) ((|#2| |#2| (-1 (-85) |#3|)) 13 T ELT))) -(((-848 |#1| |#2| |#3|) (-10 -7 (-15 -3208 (|#2| |#2| (-1 (-85) |#3|))) (-15 -3208 (|#2| |#2| (-582 (-1 (-85) |#3|))))) (-1012) (-362 |#1|) (-1127)) (T -848)) -((-3208 (*1 *2 *2 *3) (-12 (-5 *3 (-582 (-1 (-85) *5))) (-4 *5 (-1127)) (-4 *4 (-1012)) (-5 *1 (-848 *4 *2 *5)) (-4 *2 (-362 *4)))) (-3208 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-85) *5)) (-4 *5 (-1127)) (-4 *4 (-1012)) (-5 *1 (-848 *4 *2 *5)) (-4 *2 (-362 *4))))) -((-2795 (((-797 |#1| |#3|) |#3| (-799 |#1|) (-797 |#1| |#3|)) 25 T ELT))) -(((-849 |#1| |#2| |#3|) (-10 -7 (-15 -2795 ((-797 |#1| |#3|) |#3| (-799 |#1|) (-797 |#1| |#3|)))) (-1012) (-13 (-494) (-795 |#1|) (-552 (-799 |#1|))) (-903 |#2|)) (T -849)) -((-2795 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-797 *5 *3)) (-4 *5 (-1012)) (-4 *3 (-903 *6)) (-4 *6 (-13 (-494) (-795 *5) (-552 *4))) (-5 *4 (-799 *5)) (-5 *1 (-849 *5 *6 *3))))) -((-2795 (((-797 |#1| (-1088)) (-1088) (-799 |#1|) (-797 |#1| (-1088))) 18 T ELT))) -(((-850 |#1|) (-10 -7 (-15 -2795 ((-797 |#1| (-1088)) (-1088) (-799 |#1|) (-797 |#1| (-1088))))) (-1012)) (T -850)) -((-2795 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-797 *5 (-1088))) (-5 *3 (-1088)) (-5 *4 (-799 *5)) (-4 *5 (-1012)) (-5 *1 (-850 *5))))) -((-2796 (((-797 |#1| |#3|) (-582 |#3|) (-582 (-799 |#1|)) (-797 |#1| |#3|) (-1 (-797 |#1| |#3|) |#3| (-799 |#1|) (-797 |#1| |#3|))) 34 T ELT)) (-2795 (((-797 |#1| |#3|) (-582 |#3|) (-582 (-799 |#1|)) (-1 |#3| (-582 |#3|)) (-797 |#1| |#3|) (-1 (-797 |#1| |#3|) |#3| (-799 |#1|) (-797 |#1| |#3|))) 33 T ELT))) -(((-851 |#1| |#2| |#3|) (-10 -7 (-15 -2795 ((-797 |#1| |#3|) (-582 |#3|) (-582 (-799 |#1|)) (-1 |#3| (-582 |#3|)) (-797 |#1| |#3|) (-1 (-797 |#1| |#3|) |#3| (-799 |#1|) (-797 |#1| |#3|)))) (-15 -2796 ((-797 |#1| |#3|) (-582 |#3|) (-582 (-799 |#1|)) (-797 |#1| |#3|) (-1 (-797 |#1| |#3|) |#3| (-799 |#1|) (-797 |#1| |#3|))))) (-1012) (-960) (-13 (-960) (-552 (-799 |#1|)) (-949 |#2|))) (T -851)) -((-2796 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-582 *8)) (-5 *4 (-582 (-799 *6))) (-5 *5 (-1 (-797 *6 *8) *8 (-799 *6) (-797 *6 *8))) (-4 *6 (-1012)) (-4 *8 (-13 (-960) (-552 (-799 *6)) (-949 *7))) (-5 *2 (-797 *6 *8)) (-4 *7 (-960)) (-5 *1 (-851 *6 *7 *8)))) (-2795 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-582 (-799 *7))) (-5 *5 (-1 *9 (-582 *9))) (-5 *6 (-1 (-797 *7 *9) *9 (-799 *7) (-797 *7 *9))) (-4 *7 (-1012)) (-4 *9 (-13 (-960) (-552 (-799 *7)) (-949 *8))) (-5 *2 (-797 *7 *9)) (-5 *3 (-582 *9)) (-4 *8 (-960)) (-5 *1 (-851 *7 *8 *9))))) -((-2804 (((-1083 (-348 (-483))) (-483)) 80 T ELT)) (-2803 (((-1083 (-483)) (-483)) 83 T ELT)) (-3332 (((-1083 (-483)) (-483)) 77 T ELT)) (-2802 (((-483) (-1083 (-483))) 73 T ELT)) (-2801 (((-1083 (-348 (-483))) (-483)) 66 T ELT)) (-2800 (((-1083 (-483)) (-483)) 49 T ELT)) (-2799 (((-1083 (-483)) (-483)) 85 T ELT)) (-2798 (((-1083 (-483)) (-483)) 84 T ELT)) (-2797 (((-1083 (-348 (-483))) (-483)) 68 T ELT))) -(((-852) (-10 -7 (-15 -2797 ((-1083 (-348 (-483))) (-483))) (-15 -2798 ((-1083 (-483)) (-483))) (-15 -2799 ((-1083 (-483)) (-483))) (-15 -2800 ((-1083 (-483)) (-483))) (-15 -2801 ((-1083 (-348 (-483))) (-483))) (-15 -2802 ((-483) (-1083 (-483)))) (-15 -3332 ((-1083 (-483)) (-483))) (-15 -2803 ((-1083 (-483)) (-483))) (-15 -2804 ((-1083 (-348 (-483))) (-483))))) (T -852)) -((-2804 (*1 *2 *3) (-12 (-5 *2 (-1083 (-348 (-483)))) (-5 *1 (-852)) (-5 *3 (-483)))) (-2803 (*1 *2 *3) (-12 (-5 *2 (-1083 (-483))) (-5 *1 (-852)) (-5 *3 (-483)))) (-3332 (*1 *2 *3) (-12 (-5 *2 (-1083 (-483))) (-5 *1 (-852)) (-5 *3 (-483)))) (-2802 (*1 *2 *3) (-12 (-5 *3 (-1083 (-483))) (-5 *2 (-483)) (-5 *1 (-852)))) (-2801 (*1 *2 *3) (-12 (-5 *2 (-1083 (-348 (-483)))) (-5 *1 (-852)) (-5 *3 (-483)))) (-2800 (*1 *2 *3) (-12 (-5 *2 (-1083 (-483))) (-5 *1 (-852)) (-5 *3 (-483)))) (-2799 (*1 *2 *3) (-12 (-5 *2 (-1083 (-483))) (-5 *1 (-852)) (-5 *3 (-483)))) (-2798 (*1 *2 *3) (-12 (-5 *2 (-1083 (-483))) (-5 *1 (-852)) (-5 *3 (-483)))) (-2797 (*1 *2 *3) (-12 (-5 *2 (-1083 (-348 (-483)))) (-5 *1 (-852)) (-5 *3 (-483))))) -((-2567 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3836 (($ (-693)) NIL (|has| |#1| (-23)) ELT)) (-2197 (((-1183) $ (-483) (-483)) NIL (|has| $ (-6 -3994)) ELT)) (-1730 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-755)) ELT)) (-1728 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-6 -3994)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-755))) ELT)) (-2908 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-755)) ELT)) (-3786 ((|#1| $ (-483) |#1|) NIL (|has| $ (-6 -3994)) ELT) ((|#1| $ (-1144 (-483)) |#1|) NIL (|has| $ (-6 -3994)) ELT)) (-3708 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3722 (($) NIL T CONST)) (-2296 (($ $) NIL (|has| $ (-6 -3994)) ELT)) (-2297 (($ $) NIL T ELT)) (-1351 (($ $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#1| (-1012))) ELT)) (-3404 (($ |#1| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#1| (-1012))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3840 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3993)) (|has| |#1| (-1012))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3993)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-1574 ((|#1| $ (-483) |#1|) NIL (|has| $ (-6 -3994)) ELT)) (-3111 ((|#1| $ (-483)) NIL T ELT)) (-3417 (((-483) (-1 (-85) |#1|) $) NIL T ELT) (((-483) |#1| $) NIL (|has| |#1| (-1012)) ELT) (((-483) |#1| $ (-483)) NIL (|has| |#1| (-1012)) ELT)) (-3704 (($ (-582 |#1|)) 9 T ELT)) (-2888 (((-582 |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3833 (((-629 |#1|) $ $) NIL (|has| |#1| (-960)) ELT)) (-3612 (($ (-693) |#1|) NIL T ELT)) (-2199 (((-483) $) NIL (|has| (-483) (-755)) ELT)) (-2530 (($ $ $) NIL (|has| |#1| (-755)) ELT)) (-3516 (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-755)) ELT)) (-2607 (((-582 |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3244 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#1| (-1012))) ELT)) (-2200 (((-483) $) NIL (|has| (-483) (-755)) ELT)) (-2856 (($ $ $) NIL (|has| |#1| (-755)) ELT)) (-1947 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3956 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3830 ((|#1| $) NIL (-12 (|has| |#1| (-914)) (|has| |#1| (-960))) ELT)) (-3831 ((|#1| $) NIL (-12 (|has| |#1| (-914)) (|has| |#1| (-960))) ELT)) (-3241 (((-1071) $) NIL (|has| |#1| (-1012)) ELT)) (-2303 (($ |#1| $ (-483)) NIL T ELT) (($ $ $ (-483)) NIL T ELT)) (-2202 (((-582 (-483)) $) NIL T ELT)) (-2203 (((-85) (-483) $) NIL T ELT)) (-3242 (((-1032) $) NIL (|has| |#1| (-1012)) ELT)) (-3799 ((|#1| $) NIL (|has| (-483) (-755)) ELT)) (-1352 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2198 (($ $ |#1|) NIL (|has| $ (-6 -3994)) ELT)) (-3767 (($ $ (-582 |#1|)) 25 T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3766 (($ $ (-582 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-582 |#1|) (-582 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-2201 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#1| (-1012))) ELT)) (-2204 (((-582 |#1|) $) NIL T ELT)) (-3401 (((-85) $) NIL T ELT)) (-3563 (($) NIL T ELT)) (-3798 ((|#1| $ (-483) |#1|) NIL T ELT) ((|#1| $ (-483)) 18 T ELT) (($ $ (-1144 (-483))) NIL T ELT)) (-3834 ((|#1| $ $) NIL (|has| |#1| (-960)) ELT)) (-3909 (((-829) $) 13 T ELT)) (-2304 (($ $ (-483)) NIL T ELT) (($ $ (-1144 (-483))) NIL T ELT)) (-3832 (($ $ $) 23 T ELT)) (-1944 (((-693) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3993)) ELT) (((-693) |#1| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#1| (-1012))) ELT)) (-1729 (($ $ $ (-483)) NIL (|has| $ (-6 -3994)) ELT)) (-3398 (($ $) NIL T ELT)) (-3970 (((-472) $) NIL (|has| |#1| (-552 (-472))) ELT) (($ (-582 |#1|)) 14 T ELT)) (-3528 (($ (-582 |#1|)) NIL T ELT)) (-3800 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) 24 T ELT) (($ (-582 $)) NIL T ELT)) (-3944 (((-771) $) NIL (|has| |#1| (-551 (-771))) ELT)) (-1263 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-2565 (((-85) $ $) NIL (|has| |#1| (-755)) ELT)) (-2566 (((-85) $ $) NIL (|has| |#1| (-755)) ELT)) (-3055 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2683 (((-85) $ $) NIL (|has| |#1| (-755)) ELT)) (-2684 (((-85) $ $) NIL (|has| |#1| (-755)) ELT)) (-3835 (($ $) NIL (|has| |#1| (-21)) ELT) (($ $ $) NIL (|has| |#1| (-21)) ELT)) (-3837 (($ $ $) NIL (|has| |#1| (-25)) ELT)) (* (($ (-483) $) NIL (|has| |#1| (-21)) ELT) (($ |#1| $) NIL (|has| |#1| (-662)) ELT) (($ $ |#1|) NIL (|has| |#1| (-662)) ELT)) (-3955 (((-693) $) 11 (|has| $ (-6 -3993)) ELT))) -(((-853 |#1|) (-892 |#1|) (-960)) (T -853)) -NIL -((-2807 (((-419 |#1| |#2|) (-856 |#2|)) 22 T ELT)) (-2810 (((-206 |#1| |#2|) (-856 |#2|)) 35 T ELT)) (-2808 (((-856 |#2|) (-419 |#1| |#2|)) 27 T ELT)) (-2806 (((-206 |#1| |#2|) (-419 |#1| |#2|)) 57 T ELT)) (-2809 (((-856 |#2|) (-206 |#1| |#2|)) 32 T ELT)) (-2805 (((-419 |#1| |#2|) (-206 |#1| |#2|)) 48 T ELT))) -(((-854 |#1| |#2|) (-10 -7 (-15 -2805 ((-419 |#1| |#2|) (-206 |#1| |#2|))) (-15 -2806 ((-206 |#1| |#2|) (-419 |#1| |#2|))) (-15 -2807 ((-419 |#1| |#2|) (-856 |#2|))) (-15 -2808 ((-856 |#2|) (-419 |#1| |#2|))) (-15 -2809 ((-856 |#2|) (-206 |#1| |#2|))) (-15 -2810 ((-206 |#1| |#2|) (-856 |#2|)))) (-582 (-1088)) (-960)) (T -854)) -((-2810 (*1 *2 *3) (-12 (-5 *3 (-856 *5)) (-4 *5 (-960)) (-5 *2 (-206 *4 *5)) (-5 *1 (-854 *4 *5)) (-14 *4 (-582 (-1088))))) (-2809 (*1 *2 *3) (-12 (-5 *3 (-206 *4 *5)) (-14 *4 (-582 (-1088))) (-4 *5 (-960)) (-5 *2 (-856 *5)) (-5 *1 (-854 *4 *5)))) (-2808 (*1 *2 *3) (-12 (-5 *3 (-419 *4 *5)) (-14 *4 (-582 (-1088))) (-4 *5 (-960)) (-5 *2 (-856 *5)) (-5 *1 (-854 *4 *5)))) (-2807 (*1 *2 *3) (-12 (-5 *3 (-856 *5)) (-4 *5 (-960)) (-5 *2 (-419 *4 *5)) (-5 *1 (-854 *4 *5)) (-14 *4 (-582 (-1088))))) (-2806 (*1 *2 *3) (-12 (-5 *3 (-419 *4 *5)) (-14 *4 (-582 (-1088))) (-4 *5 (-960)) (-5 *2 (-206 *4 *5)) (-5 *1 (-854 *4 *5)))) (-2805 (*1 *2 *3) (-12 (-5 *3 (-206 *4 *5)) (-14 *4 (-582 (-1088))) (-4 *5 (-960)) (-5 *2 (-419 *4 *5)) (-5 *1 (-854 *4 *5))))) -((-2811 (((-582 |#2|) |#2| |#2|) 10 T ELT)) (-2814 (((-693) (-582 |#1|)) 47 (|has| |#1| (-754)) ELT)) (-2812 (((-582 |#2|) |#2|) 11 T ELT)) (-2815 (((-693) (-582 |#1|) (-483) (-483)) 45 (|has| |#1| (-754)) ELT)) (-2813 ((|#1| |#2|) 37 (|has| |#1| (-754)) ELT))) -(((-855 |#1| |#2|) (-10 -7 (-15 -2811 ((-582 |#2|) |#2| |#2|)) (-15 -2812 ((-582 |#2|) |#2|)) (IF (|has| |#1| (-754)) (PROGN (-15 -2813 (|#1| |#2|)) (-15 -2814 ((-693) (-582 |#1|))) (-15 -2815 ((-693) (-582 |#1|) (-483) (-483)))) |%noBranch|)) (-312) (-1153 |#1|)) (T -855)) -((-2815 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-582 *5)) (-5 *4 (-483)) (-4 *5 (-754)) (-4 *5 (-312)) (-5 *2 (-693)) (-5 *1 (-855 *5 *6)) (-4 *6 (-1153 *5)))) (-2814 (*1 *2 *3) (-12 (-5 *3 (-582 *4)) (-4 *4 (-754)) (-4 *4 (-312)) (-5 *2 (-693)) (-5 *1 (-855 *4 *5)) (-4 *5 (-1153 *4)))) (-2813 (*1 *2 *3) (-12 (-4 *2 (-312)) (-4 *2 (-754)) (-5 *1 (-855 *2 *3)) (-4 *3 (-1153 *2)))) (-2812 (*1 *2 *3) (-12 (-4 *4 (-312)) (-5 *2 (-582 *3)) (-5 *1 (-855 *4 *3)) (-4 *3 (-1153 *4)))) (-2811 (*1 *2 *3 *3) (-12 (-4 *4 (-312)) (-5 *2 (-582 *3)) (-5 *1 (-855 *4 *3)) (-4 *3 (-1153 *4))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3187 (((-85) $) NIL T ELT)) (-3080 (((-582 (-1088)) $) 16 T ELT)) (-3082 (((-1083 $) $ (-1088)) 21 T ELT) (((-1083 |#1|) $) NIL T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3980 $) (|:| |associate| $)) $) NIL (|has| |#1| (-494)) ELT)) (-2062 (($ $) NIL (|has| |#1| (-494)) ELT)) (-2060 (((-85) $) NIL (|has| |#1| (-494)) ELT)) (-2818 (((-693) $) NIL T ELT) (((-693) $ (-582 (-1088))) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2706 (((-346 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-820)) ELT)) (-3773 (($ $) NIL (|has| |#1| (-390)) ELT)) (-3969 (((-346 $) $) NIL (|has| |#1| (-390)) ELT)) (-2703 (((-3 (-582 (-1083 $)) #1#) (-582 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-820)) ELT)) (-3722 (($) NIL T CONST)) (-3156 (((-3 |#1| #1#) $) 8 T ELT) (((-3 (-348 (-483)) #1#) $) NIL (|has| |#1| (-949 (-348 (-483)))) ELT) (((-3 (-483) #1#) $) NIL (|has| |#1| (-949 (-483))) ELT) (((-3 (-1088) #1#) $) NIL T ELT)) (-3155 ((|#1| $) NIL T ELT) (((-348 (-483)) $) NIL (|has| |#1| (-949 (-348 (-483)))) ELT) (((-483) $) NIL (|has| |#1| (-949 (-483))) ELT) (((-1088) $) NIL T ELT)) (-3754 (($ $ $ (-1088)) NIL (|has| |#1| (-146)) ELT)) (-3957 (($ $) NIL T ELT)) (-2278 (((-629 (-483)) (-629 $)) NIL (|has| |#1| (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-629 $) (-1177 $)) NIL (|has| |#1| (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 |#1|)) (|:| |vec| (-1177 |#1|))) (-629 $) (-1177 $)) NIL T ELT) (((-629 |#1|) (-629 $)) NIL T ELT)) (-3465 (((-3 $ #1#) $) NIL T ELT)) (-3501 (($ $) NIL (|has| |#1| (-390)) ELT) (($ $ (-1088)) NIL (|has| |#1| (-390)) ELT)) (-2817 (((-582 $) $) NIL T ELT)) (-3721 (((-85) $) NIL (|has| |#1| (-820)) ELT)) (-1622 (($ $ |#1| (-468 (-1088)) $) NIL T ELT)) (-2795 (((-797 (-328) $) $ (-799 (-328)) (-797 (-328) $)) NIL (-12 (|has| (-1088) (-795 (-328))) (|has| |#1| (-795 (-328)))) ELT) (((-797 (-483) $) $ (-799 (-483)) (-797 (-483) $)) NIL (-12 (|has| (-1088) (-795 (-483))) (|has| |#1| (-795 (-483)))) ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-2409 (((-85) $) NIL T ELT)) (-2419 (((-693) $) NIL T ELT)) (-3083 (($ (-1083 |#1|) (-1088)) NIL T ELT) (($ (-1083 $) (-1088)) NIL T ELT)) (-2820 (((-582 $) $) NIL T ELT)) (-3935 (((-85) $) NIL T ELT)) (-2892 (($ |#1| (-468 (-1088))) NIL T ELT) (($ $ (-1088) (-693)) NIL T ELT) (($ $ (-582 (-1088)) (-582 (-693))) NIL T ELT)) (-3761 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $ (-1088)) NIL T ELT)) (-2819 (((-468 (-1088)) $) NIL T ELT) (((-693) $ (-1088)) NIL T ELT) (((-582 (-693)) $ (-582 (-1088))) NIL T ELT)) (-1623 (($ (-1 (-468 (-1088)) (-468 (-1088))) $) NIL T ELT)) (-3956 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3081 (((-3 (-1088) #1#) $) 19 T ELT)) (-2279 (((-629 (-483)) (-1177 $)) NIL (|has| |#1| (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL (|has| |#1| (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 |#1|)) (|:| |vec| (-1177 |#1|))) (-1177 $) $) NIL T ELT) (((-629 |#1|) (-1177 $)) NIL T ELT)) (-2893 (($ $) NIL T ELT)) (-3173 ((|#1| $) NIL T ELT)) (-1889 (($ (-582 $)) NIL (|has| |#1| (-390)) ELT) (($ $ $) NIL (|has| |#1| (-390)) ELT)) (-3241 (((-1071) $) NIL T ELT)) (-2822 (((-3 (-582 $) #1#) $) NIL T ELT)) (-2821 (((-3 (-582 $) #1#) $) NIL T ELT)) (-2823 (((-3 (-2 (|:| |var| (-1088)) (|:| -2400 (-693))) #1#) $) NIL T ELT)) (-3810 (($ $ (-1088)) 29 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3242 (((-1032) $) NIL T ELT)) (-1795 (((-85) $) NIL T ELT)) (-1794 ((|#1| $) NIL T ELT)) (-2707 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#1| (-390)) ELT)) (-3143 (($ (-582 $)) NIL (|has| |#1| (-390)) ELT) (($ $ $) NIL (|has| |#1| (-390)) ELT)) (-2704 (((-346 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-820)) ELT)) (-2705 (((-346 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-820)) ELT)) (-3730 (((-346 $) $) NIL (|has| |#1| (-820)) ELT)) (-3464 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-494)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-494)) ELT)) (-3766 (($ $ (-582 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-582 $) (-582 $)) NIL T ELT) (($ $ (-1088) |#1|) NIL T ELT) (($ $ (-582 (-1088)) (-582 |#1|)) NIL T ELT) (($ $ (-1088) $) NIL T ELT) (($ $ (-582 (-1088)) (-582 $)) NIL T ELT)) (-3755 (($ $ (-1088)) NIL (|has| |#1| (-146)) ELT)) (-3756 (($ $ (-582 (-1088)) (-582 (-693))) NIL T ELT) (($ $ (-1088) (-693)) NIL T ELT) (($ $ (-582 (-1088))) NIL T ELT) (($ $ (-1088)) NIL T ELT)) (-3946 (((-468 (-1088)) $) NIL T ELT) (((-693) $ (-1088)) NIL T ELT) (((-582 (-693)) $ (-582 (-1088))) NIL T ELT)) (-3970 (((-799 (-328)) $) NIL (-12 (|has| (-1088) (-552 (-799 (-328)))) (|has| |#1| (-552 (-799 (-328))))) ELT) (((-799 (-483)) $) NIL (-12 (|has| (-1088) (-552 (-799 (-483)))) (|has| |#1| (-552 (-799 (-483))))) ELT) (((-472) $) NIL (-12 (|has| (-1088) (-552 (-472))) (|has| |#1| (-552 (-472)))) ELT)) (-2816 ((|#1| $) NIL (|has| |#1| (-390)) ELT) (($ $ (-1088)) NIL (|has| |#1| (-390)) ELT)) (-2702 (((-3 (-1177 $) #1#) (-629 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-820))) ELT)) (-3944 (((-771) $) 25 T ELT) (($ (-483)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-1088)) 27 T ELT) (($ (-348 (-483))) NIL (OR (|has| |#1| (-38 (-348 (-483)))) (|has| |#1| (-949 (-348 (-483))))) ELT) (($ $) NIL (|has| |#1| (-494)) ELT)) (-3815 (((-582 |#1|) $) NIL T ELT)) (-3675 ((|#1| $ (-468 (-1088))) NIL T ELT) (($ $ (-1088) (-693)) NIL T ELT) (($ $ (-582 (-1088)) (-582 (-693))) NIL T ELT)) (-2701 (((-631 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-820))) (|has| |#1| (-118))) ELT)) (-3125 (((-693)) NIL T CONST)) (-1621 (($ $ $ (-693)) NIL (|has| |#1| (-146)) ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2061 (((-85) $ $) NIL (|has| |#1| (-494)) ELT)) (-3124 (((-85) $ $) NIL T ELT)) (-2659 (($) NIL T CONST)) (-2665 (($) NIL T CONST)) (-2668 (($ $ (-582 (-1088)) (-582 (-693))) NIL T ELT) (($ $ (-1088) (-693)) NIL T ELT) (($ $ (-582 (-1088))) NIL T ELT) (($ $ (-1088)) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-3947 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3835 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3837 (($ $ $) NIL T ELT)) (** (($ $ (-829)) NIL T ELT) (($ $ (-693)) NIL T ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-348 (-483))) NIL (|has| |#1| (-38 (-348 (-483)))) ELT) (($ (-348 (-483)) $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) -(((-856 |#1|) (-13 (-860 |#1| (-468 (-1088)) (-1088)) (-10 -8 (IF (|has| |#1| (-38 (-348 (-483)))) (-15 -3810 ($ $ (-1088))) |%noBranch|))) (-960)) (T -856)) -((-3810 (*1 *1 *1 *2) (-12 (-5 *2 (-1088)) (-5 *1 (-856 *3)) (-4 *3 (-38 (-348 (-483)))) (-4 *3 (-960))))) -((-3956 (((-856 |#2|) (-1 |#2| |#1|) (-856 |#1|)) 19 T ELT))) -(((-857 |#1| |#2|) (-10 -7 (-15 -3956 ((-856 |#2|) (-1 |#2| |#1|) (-856 |#1|)))) (-960) (-960)) (T -857)) -((-3956 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-856 *5)) (-4 *5 (-960)) (-4 *6 (-960)) (-5 *2 (-856 *6)) (-5 *1 (-857 *5 *6))))) -((-3082 (((-1146 |#1| (-856 |#2|)) (-856 |#2|) (-1174 |#1|)) 18 T ELT))) -(((-858 |#1| |#2|) (-10 -7 (-15 -3082 ((-1146 |#1| (-856 |#2|)) (-856 |#2|) (-1174 |#1|)))) (-1088) (-960)) (T -858)) -((-3082 (*1 *2 *3 *4) (-12 (-5 *4 (-1174 *5)) (-14 *5 (-1088)) (-4 *6 (-960)) (-5 *2 (-1146 *5 (-856 *6))) (-5 *1 (-858 *5 *6)) (-5 *3 (-856 *6))))) -((-2818 (((-693) $) 88 T ELT) (((-693) $ (-582 |#4|)) 93 T ELT)) (-3773 (($ $) 214 T ELT)) (-3969 (((-346 $) $) 206 T ELT)) (-2703 (((-3 (-582 (-1083 $)) #1="failed") (-582 (-1083 $)) (-1083 $)) 141 T ELT)) (-3156 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-348 (-483)) #1#) $) NIL T ELT) (((-3 (-483) #1#) $) NIL T ELT) (((-3 |#4| #1#) $) 74 T ELT)) (-3155 ((|#2| $) NIL T ELT) (((-348 (-483)) $) NIL T ELT) (((-483) $) NIL T ELT) ((|#4| $) 73 T ELT)) (-3754 (($ $ $ |#4|) 95 T ELT)) (-2278 (((-629 (-483)) (-629 $)) NIL T ELT) (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-629 $) (-1177 $)) NIL T ELT) (((-2 (|:| |mat| (-629 |#2|)) (|:| |vec| (-1177 |#2|))) (-629 $) (-1177 $)) 131 T ELT) (((-629 |#2|) (-629 $)) 121 T ELT)) (-3501 (($ $) 221 T ELT) (($ $ |#4|) 224 T ELT)) (-2817 (((-582 $) $) 77 T ELT)) (-2795 (((-797 (-328) $) $ (-799 (-328)) (-797 (-328) $)) 240 T ELT) (((-797 (-483) $) $ (-799 (-483)) (-797 (-483) $)) 233 T ELT)) (-2820 (((-582 $) $) 34 T ELT)) (-2892 (($ |#2| |#3|) NIL T ELT) (($ $ |#4| (-693)) NIL T ELT) (($ $ (-582 |#4|) (-582 (-693))) 71 T ELT)) (-3761 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $ |#4|) 203 T ELT)) (-2822 (((-3 (-582 $) #1#) $) 52 T ELT)) (-2821 (((-3 (-582 $) #1#) $) 39 T ELT)) (-2823 (((-3 (-2 (|:| |var| |#4|) (|:| -2400 (-693))) #1#) $) 57 T ELT)) (-2707 (((-1083 $) (-1083 $) (-1083 $)) 134 T ELT)) (-2704 (((-346 (-1083 $)) (-1083 $)) 147 T ELT)) (-2705 (((-346 (-1083 $)) (-1083 $)) 145 T ELT)) (-3730 (((-346 $) $) 165 T ELT)) (-3766 (($ $ (-582 (-249 $))) 24 T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-582 $) (-582 $)) NIL T ELT) (($ $ |#4| |#2|) NIL T ELT) (($ $ (-582 |#4|) (-582 |#2|)) NIL T ELT) (($ $ |#4| $) NIL T ELT) (($ $ (-582 |#4|) (-582 $)) NIL T ELT)) (-3755 (($ $ |#4|) 97 T ELT)) (-3970 (((-799 (-328)) $) 254 T ELT) (((-799 (-483)) $) 247 T ELT) (((-472) $) 262 T ELT)) (-2816 ((|#2| $) NIL T ELT) (($ $ |#4|) 216 T ELT)) (-2702 (((-3 (-1177 $) #1#) (-629 $)) 185 T ELT)) (-3675 ((|#2| $ |#3|) NIL T ELT) (($ $ |#4| (-693)) 62 T ELT) (($ $ (-582 |#4|) (-582 (-693))) 69 T ELT)) (-2701 (((-631 $) $) 195 T ELT)) (-1263 (((-85) $ $) 227 T ELT))) -(((-859 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2707 ((-1083 |#1|) (-1083 |#1|) (-1083 |#1|))) (-15 -3969 ((-346 |#1|) |#1|)) (-15 -3773 (|#1| |#1|)) (-15 -2701 ((-631 |#1|) |#1|)) (-15 -3970 ((-472) |#1|)) (-15 -3970 ((-799 (-483)) |#1|)) (-15 -3970 ((-799 (-328)) |#1|)) (-15 -2795 ((-797 (-483) |#1|) |#1| (-799 (-483)) (-797 (-483) |#1|))) (-15 -2795 ((-797 (-328) |#1|) |#1| (-799 (-328)) (-797 (-328) |#1|))) (-15 -3730 ((-346 |#1|) |#1|)) (-15 -2705 ((-346 (-1083 |#1|)) (-1083 |#1|))) (-15 -2704 ((-346 (-1083 |#1|)) (-1083 |#1|))) (-15 -2703 ((-3 (-582 (-1083 |#1|)) #1="failed") (-582 (-1083 |#1|)) (-1083 |#1|))) (-15 -2702 ((-3 (-1177 |#1|) #1#) (-629 |#1|))) (-15 -3501 (|#1| |#1| |#4|)) (-15 -2816 (|#1| |#1| |#4|)) (-15 -3755 (|#1| |#1| |#4|)) (-15 -3754 (|#1| |#1| |#1| |#4|)) (-15 -2817 ((-582 |#1|) |#1|)) (-15 -2818 ((-693) |#1| (-582 |#4|))) (-15 -2818 ((-693) |#1|)) (-15 -2823 ((-3 (-2 (|:| |var| |#4|) (|:| -2400 (-693))) #1#) |#1|)) (-15 -2822 ((-3 (-582 |#1|) #1#) |#1|)) (-15 -2821 ((-3 (-582 |#1|) #1#) |#1|)) (-15 -2892 (|#1| |#1| (-582 |#4|) (-582 (-693)))) (-15 -2892 (|#1| |#1| |#4| (-693))) (-15 -3761 ((-2 (|:| -1971 |#1|) (|:| -2901 |#1|)) |#1| |#1| |#4|)) (-15 -2820 ((-582 |#1|) |#1|)) (-15 -3675 (|#1| |#1| (-582 |#4|) (-582 (-693)))) (-15 -3675 (|#1| |#1| |#4| (-693))) (-15 -2278 ((-629 |#2|) (-629 |#1|))) (-15 -2278 ((-2 (|:| |mat| (-629 |#2|)) (|:| |vec| (-1177 |#2|))) (-629 |#1|) (-1177 |#1|))) (-15 -2278 ((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-629 |#1|) (-1177 |#1|))) (-15 -2278 ((-629 (-483)) (-629 |#1|))) (-15 -3156 ((-3 |#4| #1#) |#1|)) (-15 -3155 (|#4| |#1|)) (-15 -3766 (|#1| |#1| (-582 |#4|) (-582 |#1|))) (-15 -3766 (|#1| |#1| |#4| |#1|)) (-15 -3766 (|#1| |#1| (-582 |#4|) (-582 |#2|))) (-15 -3766 (|#1| |#1| |#4| |#2|)) (-15 -3766 (|#1| |#1| (-582 |#1|) (-582 |#1|))) (-15 -3766 (|#1| |#1| |#1| |#1|)) (-15 -3766 (|#1| |#1| (-249 |#1|))) (-15 -3766 (|#1| |#1| (-582 (-249 |#1|)))) (-15 -2892 (|#1| |#2| |#3|)) (-15 -3675 (|#2| |#1| |#3|)) (-15 -3156 ((-3 (-483) #1#) |#1|)) (-15 -3155 ((-483) |#1|)) (-15 -3156 ((-3 (-348 (-483)) #1#) |#1|)) (-15 -3155 ((-348 (-483)) |#1|)) (-15 -3155 (|#2| |#1|)) (-15 -3156 ((-3 |#2| #1#) |#1|)) (-15 -2816 (|#2| |#1|)) (-15 -3501 (|#1| |#1|)) (-15 -1263 ((-85) |#1| |#1|))) (-860 |#2| |#3| |#4|) (-960) (-716) (-755)) (T -859)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-3187 (((-85) $) 22 T ELT)) (-3080 (((-582 |#3|) $) 123 T ELT)) (-3082 (((-1083 $) $ |#3|) 138 T ELT) (((-1083 |#1|) $) 137 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3980 $) (|:| |associate| $)) $) 100 (|has| |#1| (-494)) ELT)) (-2062 (($ $) 101 (|has| |#1| (-494)) ELT)) (-2060 (((-85) $) 103 (|has| |#1| (-494)) ELT)) (-2818 (((-693) $) 125 T ELT) (((-693) $ (-582 |#3|)) 124 T ELT)) (-1310 (((-3 $ "failed") $ $) 26 T ELT)) (-2706 (((-346 (-1083 $)) (-1083 $)) 113 (|has| |#1| (-820)) ELT)) (-3773 (($ $) 111 (|has| |#1| (-390)) ELT)) (-3969 (((-346 $) $) 110 (|has| |#1| (-390)) ELT)) (-2703 (((-3 (-582 (-1083 $)) #1="failed") (-582 (-1083 $)) (-1083 $)) 116 (|has| |#1| (-820)) ELT)) (-3722 (($) 23 T CONST)) (-3156 (((-3 |#1| #2="failed") $) 181 T ELT) (((-3 (-348 (-483)) #2#) $) 178 (|has| |#1| (-949 (-348 (-483)))) ELT) (((-3 (-483) #2#) $) 176 (|has| |#1| (-949 (-483))) ELT) (((-3 |#3| #2#) $) 153 T ELT)) (-3155 ((|#1| $) 180 T ELT) (((-348 (-483)) $) 179 (|has| |#1| (-949 (-348 (-483)))) ELT) (((-483) $) 177 (|has| |#1| (-949 (-483))) ELT) ((|#3| $) 154 T ELT)) (-3754 (($ $ $ |#3|) 121 (|has| |#1| (-146)) ELT)) (-3957 (($ $) 171 T ELT)) (-2278 (((-629 (-483)) (-629 $)) 149 (|has| |#1| (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-629 $) (-1177 $)) 148 (|has| |#1| (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 |#1|)) (|:| |vec| (-1177 |#1|))) (-629 $) (-1177 $)) 147 T ELT) (((-629 |#1|) (-629 $)) 146 T ELT)) (-3465 (((-3 $ "failed") $) 42 T ELT)) (-3501 (($ $) 193 (|has| |#1| (-390)) ELT) (($ $ |#3|) 118 (|has| |#1| (-390)) ELT)) (-2817 (((-582 $) $) 122 T ELT)) (-3721 (((-85) $) 109 (|has| |#1| (-820)) ELT)) (-1622 (($ $ |#1| |#2| $) 189 T ELT)) (-2795 (((-797 (-328) $) $ (-799 (-328)) (-797 (-328) $)) 97 (-12 (|has| |#3| (-795 (-328))) (|has| |#1| (-795 (-328)))) ELT) (((-797 (-483) $) $ (-799 (-483)) (-797 (-483) $)) 96 (-12 (|has| |#3| (-795 (-483))) (|has| |#1| (-795 (-483)))) ELT)) (-1212 (((-85) $ $) 20 T ELT)) (-2409 (((-85) $) 44 T ELT)) (-2419 (((-693) $) 186 T ELT)) (-3083 (($ (-1083 |#1|) |#3|) 130 T ELT) (($ (-1083 $) |#3|) 129 T ELT)) (-2820 (((-582 $) $) 139 T ELT)) (-3935 (((-85) $) 169 T ELT)) (-2892 (($ |#1| |#2|) 170 T ELT) (($ $ |#3| (-693)) 132 T ELT) (($ $ (-582 |#3|) (-582 (-693))) 131 T ELT)) (-3761 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $ |#3|) 133 T ELT)) (-2819 ((|#2| $) 187 T ELT) (((-693) $ |#3|) 135 T ELT) (((-582 (-693)) $ (-582 |#3|)) 134 T ELT)) (-1623 (($ (-1 |#2| |#2|) $) 188 T ELT)) (-3956 (($ (-1 |#1| |#1|) $) 168 T ELT)) (-3081 (((-3 |#3| "failed") $) 136 T ELT)) (-2279 (((-629 (-483)) (-1177 $)) 151 (|has| |#1| (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) 150 (|has| |#1| (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 |#1|)) (|:| |vec| (-1177 |#1|))) (-1177 $) $) 145 T ELT) (((-629 |#1|) (-1177 $)) 144 T ELT)) (-2893 (($ $) 166 T ELT)) (-3173 ((|#1| $) 165 T ELT)) (-1889 (($ (-582 $)) 107 (|has| |#1| (-390)) ELT) (($ $ $) 106 (|has| |#1| (-390)) ELT)) (-3241 (((-1071) $) 11 T ELT)) (-2822 (((-3 (-582 $) "failed") $) 127 T ELT)) (-2821 (((-3 (-582 $) "failed") $) 128 T ELT)) (-2823 (((-3 (-2 (|:| |var| |#3|) (|:| -2400 (-693))) "failed") $) 126 T ELT)) (-3242 (((-1032) $) 12 T ELT)) (-1795 (((-85) $) 183 T ELT)) (-1794 ((|#1| $) 184 T ELT)) (-2707 (((-1083 $) (-1083 $) (-1083 $)) 108 (|has| |#1| (-390)) ELT)) (-3143 (($ (-582 $)) 105 (|has| |#1| (-390)) ELT) (($ $ $) 104 (|has| |#1| (-390)) ELT)) (-2704 (((-346 (-1083 $)) (-1083 $)) 115 (|has| |#1| (-820)) ELT)) (-2705 (((-346 (-1083 $)) (-1083 $)) 114 (|has| |#1| (-820)) ELT)) (-3730 (((-346 $) $) 112 (|has| |#1| (-820)) ELT)) (-3464 (((-3 $ "failed") $ |#1|) 191 (|has| |#1| (-494)) ELT) (((-3 $ "failed") $ $) 99 (|has| |#1| (-494)) ELT)) (-3766 (($ $ (-582 (-249 $))) 162 T ELT) (($ $ (-249 $)) 161 T ELT) (($ $ $ $) 160 T ELT) (($ $ (-582 $) (-582 $)) 159 T ELT) (($ $ |#3| |#1|) 158 T ELT) (($ $ (-582 |#3|) (-582 |#1|)) 157 T ELT) (($ $ |#3| $) 156 T ELT) (($ $ (-582 |#3|) (-582 $)) 155 T ELT)) (-3755 (($ $ |#3|) 120 (|has| |#1| (-146)) ELT)) (-3756 (($ $ (-582 |#3|) (-582 (-693))) 52 T ELT) (($ $ |#3| (-693)) 51 T ELT) (($ $ (-582 |#3|)) 50 T ELT) (($ $ |#3|) 48 T ELT)) (-3946 ((|#2| $) 167 T ELT) (((-693) $ |#3|) 143 T ELT) (((-582 (-693)) $ (-582 |#3|)) 142 T ELT)) (-3970 (((-799 (-328)) $) 95 (-12 (|has| |#3| (-552 (-799 (-328)))) (|has| |#1| (-552 (-799 (-328))))) ELT) (((-799 (-483)) $) 94 (-12 (|has| |#3| (-552 (-799 (-483)))) (|has| |#1| (-552 (-799 (-483))))) ELT) (((-472) $) 93 (-12 (|has| |#3| (-552 (-472))) (|has| |#1| (-552 (-472)))) ELT)) (-2816 ((|#1| $) 192 (|has| |#1| (-390)) ELT) (($ $ |#3|) 119 (|has| |#1| (-390)) ELT)) (-2702 (((-3 (-1177 $) #1#) (-629 $)) 117 (-2561 (|has| $ (-118)) (|has| |#1| (-820))) ELT)) (-3944 (((-771) $) 13 T ELT) (($ (-483)) 41 T ELT) (($ |#1|) 182 T ELT) (($ |#3|) 152 T ELT) (($ $) 98 (|has| |#1| (-494)) ELT) (($ (-348 (-483))) 91 (OR (|has| |#1| (-949 (-348 (-483)))) (|has| |#1| (-38 (-348 (-483))))) ELT)) (-3815 (((-582 |#1|) $) 185 T ELT)) (-3675 ((|#1| $ |#2|) 172 T ELT) (($ $ |#3| (-693)) 141 T ELT) (($ $ (-582 |#3|) (-582 (-693))) 140 T ELT)) (-2701 (((-631 $) $) 92 (OR (-2561 (|has| $ (-118)) (|has| |#1| (-820))) (|has| |#1| (-118))) ELT)) (-3125 (((-693)) 40 T CONST)) (-1621 (($ $ $ (-693)) 190 (|has| |#1| (-146)) ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2061 (((-85) $ $) 102 (|has| |#1| (-494)) ELT)) (-3124 (((-85) $ $) 33 T ELT)) (-2659 (($) 24 T CONST)) (-2665 (($) 45 T CONST)) (-2668 (($ $ (-582 |#3|) (-582 (-693))) 55 T ELT) (($ $ |#3| (-693)) 54 T ELT) (($ $ (-582 |#3|)) 53 T ELT) (($ $ |#3|) 49 T ELT)) (-3055 (((-85) $ $) 8 T ELT)) (-3947 (($ $ |#1|) 173 (|has| |#1| (-312)) ELT)) (-3835 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3837 (($ $ $) 18 T ELT)) (** (($ $ (-829)) 35 T ELT) (($ $ (-693)) 43 T ELT)) (* (($ (-829) $) 17 T ELT) (($ (-693) $) 21 T ELT) (($ (-483) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-348 (-483))) 175 (|has| |#1| (-38 (-348 (-483)))) ELT) (($ (-348 (-483)) $) 174 (|has| |#1| (-38 (-348 (-483)))) ELT) (($ |#1| $) 164 T ELT) (($ $ |#1|) 163 T ELT))) -(((-860 |#1| |#2| |#3|) (-113) (-960) (-716) (-755)) (T -860)) -((-3501 (*1 *1 *1) (-12 (-4 *1 (-860 *2 *3 *4)) (-4 *2 (-960)) (-4 *3 (-716)) (-4 *4 (-755)) (-4 *2 (-390)))) (-3946 (*1 *2 *1 *3) (-12 (-4 *1 (-860 *4 *5 *3)) (-4 *4 (-960)) (-4 *5 (-716)) (-4 *3 (-755)) (-5 *2 (-693)))) (-3946 (*1 *2 *1 *3) (-12 (-5 *3 (-582 *6)) (-4 *1 (-860 *4 *5 *6)) (-4 *4 (-960)) (-4 *5 (-716)) (-4 *6 (-755)) (-5 *2 (-582 (-693))))) (-3675 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-693)) (-4 *1 (-860 *4 *5 *2)) (-4 *4 (-960)) (-4 *5 (-716)) (-4 *2 (-755)))) (-3675 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-582 *6)) (-5 *3 (-582 (-693))) (-4 *1 (-860 *4 *5 *6)) (-4 *4 (-960)) (-4 *5 (-716)) (-4 *6 (-755)))) (-2820 (*1 *2 *1) (-12 (-4 *3 (-960)) (-4 *4 (-716)) (-4 *5 (-755)) (-5 *2 (-582 *1)) (-4 *1 (-860 *3 *4 *5)))) (-3082 (*1 *2 *1 *3) (-12 (-4 *4 (-960)) (-4 *5 (-716)) (-4 *3 (-755)) (-5 *2 (-1083 *1)) (-4 *1 (-860 *4 *5 *3)))) (-3082 (*1 *2 *1) (-12 (-4 *1 (-860 *3 *4 *5)) (-4 *3 (-960)) (-4 *4 (-716)) (-4 *5 (-755)) (-5 *2 (-1083 *3)))) (-3081 (*1 *2 *1) (|partial| -12 (-4 *1 (-860 *3 *4 *2)) (-4 *3 (-960)) (-4 *4 (-716)) (-4 *2 (-755)))) (-2819 (*1 *2 *1 *3) (-12 (-4 *1 (-860 *4 *5 *3)) (-4 *4 (-960)) (-4 *5 (-716)) (-4 *3 (-755)) (-5 *2 (-693)))) (-2819 (*1 *2 *1 *3) (-12 (-5 *3 (-582 *6)) (-4 *1 (-860 *4 *5 *6)) (-4 *4 (-960)) (-4 *5 (-716)) (-4 *6 (-755)) (-5 *2 (-582 (-693))))) (-3761 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-960)) (-4 *5 (-716)) (-4 *3 (-755)) (-5 *2 (-2 (|:| -1971 *1) (|:| -2901 *1))) (-4 *1 (-860 *4 *5 *3)))) (-2892 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-693)) (-4 *1 (-860 *4 *5 *2)) (-4 *4 (-960)) (-4 *5 (-716)) (-4 *2 (-755)))) (-2892 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-582 *6)) (-5 *3 (-582 (-693))) (-4 *1 (-860 *4 *5 *6)) (-4 *4 (-960)) (-4 *5 (-716)) (-4 *6 (-755)))) (-3083 (*1 *1 *2 *3) (-12 (-5 *2 (-1083 *4)) (-4 *4 (-960)) (-4 *1 (-860 *4 *5 *3)) (-4 *5 (-716)) (-4 *3 (-755)))) (-3083 (*1 *1 *2 *3) (-12 (-5 *2 (-1083 *1)) (-4 *1 (-860 *4 *5 *3)) (-4 *4 (-960)) (-4 *5 (-716)) (-4 *3 (-755)))) (-2821 (*1 *2 *1) (|partial| -12 (-4 *3 (-960)) (-4 *4 (-716)) (-4 *5 (-755)) (-5 *2 (-582 *1)) (-4 *1 (-860 *3 *4 *5)))) (-2822 (*1 *2 *1) (|partial| -12 (-4 *3 (-960)) (-4 *4 (-716)) (-4 *5 (-755)) (-5 *2 (-582 *1)) (-4 *1 (-860 *3 *4 *5)))) (-2823 (*1 *2 *1) (|partial| -12 (-4 *1 (-860 *3 *4 *5)) (-4 *3 (-960)) (-4 *4 (-716)) (-4 *5 (-755)) (-5 *2 (-2 (|:| |var| *5) (|:| -2400 (-693)))))) (-2818 (*1 *2 *1) (-12 (-4 *1 (-860 *3 *4 *5)) (-4 *3 (-960)) (-4 *4 (-716)) (-4 *5 (-755)) (-5 *2 (-693)))) (-2818 (*1 *2 *1 *3) (-12 (-5 *3 (-582 *6)) (-4 *1 (-860 *4 *5 *6)) (-4 *4 (-960)) (-4 *5 (-716)) (-4 *6 (-755)) (-5 *2 (-693)))) (-3080 (*1 *2 *1) (-12 (-4 *1 (-860 *3 *4 *5)) (-4 *3 (-960)) (-4 *4 (-716)) (-4 *5 (-755)) (-5 *2 (-582 *5)))) (-2817 (*1 *2 *1) (-12 (-4 *3 (-960)) (-4 *4 (-716)) (-4 *5 (-755)) (-5 *2 (-582 *1)) (-4 *1 (-860 *3 *4 *5)))) (-3754 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-860 *3 *4 *2)) (-4 *3 (-960)) (-4 *4 (-716)) (-4 *2 (-755)) (-4 *3 (-146)))) (-3755 (*1 *1 *1 *2) (-12 (-4 *1 (-860 *3 *4 *2)) (-4 *3 (-960)) (-4 *4 (-716)) (-4 *2 (-755)) (-4 *3 (-146)))) (-2816 (*1 *1 *1 *2) (-12 (-4 *1 (-860 *3 *4 *2)) (-4 *3 (-960)) (-4 *4 (-716)) (-4 *2 (-755)) (-4 *3 (-390)))) (-3501 (*1 *1 *1 *2) (-12 (-4 *1 (-860 *3 *4 *2)) (-4 *3 (-960)) (-4 *4 (-716)) (-4 *2 (-755)) (-4 *3 (-390)))) (-3773 (*1 *1 *1) (-12 (-4 *1 (-860 *2 *3 *4)) (-4 *2 (-960)) (-4 *3 (-716)) (-4 *4 (-755)) (-4 *2 (-390)))) (-3969 (*1 *2 *1) (-12 (-4 *3 (-390)) (-4 *3 (-960)) (-4 *4 (-716)) (-4 *5 (-755)) (-5 *2 (-346 *1)) (-4 *1 (-860 *3 *4 *5))))) -(-13 (-808 |t#3|) (-277 |t#1| |t#2|) (-260 $) (-454 |t#3| |t#1|) (-454 |t#3| $) (-949 |t#3|) (-327 |t#1|) (-10 -8 (-15 -3946 ((-693) $ |t#3|)) (-15 -3946 ((-582 (-693)) $ (-582 |t#3|))) (-15 -3675 ($ $ |t#3| (-693))) (-15 -3675 ($ $ (-582 |t#3|) (-582 (-693)))) (-15 -2820 ((-582 $) $)) (-15 -3082 ((-1083 $) $ |t#3|)) (-15 -3082 ((-1083 |t#1|) $)) (-15 -3081 ((-3 |t#3| "failed") $)) (-15 -2819 ((-693) $ |t#3|)) (-15 -2819 ((-582 (-693)) $ (-582 |t#3|))) (-15 -3761 ((-2 (|:| -1971 $) (|:| -2901 $)) $ $ |t#3|)) (-15 -2892 ($ $ |t#3| (-693))) (-15 -2892 ($ $ (-582 |t#3|) (-582 (-693)))) (-15 -3083 ($ (-1083 |t#1|) |t#3|)) (-15 -3083 ($ (-1083 $) |t#3|)) (-15 -2821 ((-3 (-582 $) "failed") $)) (-15 -2822 ((-3 (-582 $) "failed") $)) (-15 -2823 ((-3 (-2 (|:| |var| |t#3|) (|:| -2400 (-693))) "failed") $)) (-15 -2818 ((-693) $)) (-15 -2818 ((-693) $ (-582 |t#3|))) (-15 -3080 ((-582 |t#3|) $)) (-15 -2817 ((-582 $) $)) (IF (|has| |t#1| (-552 (-472))) (IF (|has| |t#3| (-552 (-472))) (-6 (-552 (-472))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-552 (-799 (-483)))) (IF (|has| |t#3| (-552 (-799 (-483)))) (-6 (-552 (-799 (-483)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-552 (-799 (-328)))) (IF (|has| |t#3| (-552 (-799 (-328)))) (-6 (-552 (-799 (-328)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-795 (-483))) (IF (|has| |t#3| (-795 (-483))) (-6 (-795 (-483))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-795 (-328))) (IF (|has| |t#3| (-795 (-328))) (-6 (-795 (-328))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-146)) (PROGN (-15 -3754 ($ $ $ |t#3|)) (-15 -3755 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-390)) (PROGN (-6 (-390)) (-15 -2816 ($ $ |t#3|)) (-15 -3501 ($ $)) (-15 -3501 ($ $ |t#3|)) (-15 -3969 ((-346 $) $)) (-15 -3773 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -3991)) (-6 -3991) |%noBranch|) (IF (|has| |t#1| (-820)) (-6 (-820)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-348 (-483))) |has| |#1| (-38 (-348 (-483)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) OR (|has| |#1| (-820)) (|has| |#1| (-494)) (|has| |#1| (-390))) ((-72) . T) ((-82 (-348 (-483)) (-348 (-483))) |has| |#1| (-38 (-348 (-483)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-820)) (|has| |#1| (-494)) (|has| |#1| (-390)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-554 (-348 (-483))) OR (|has| |#1| (-949 (-348 (-483)))) (|has| |#1| (-38 (-348 (-483))))) ((-554 (-483)) . T) ((-554 |#1|) . T) ((-554 |#3|) . T) ((-554 $) OR (|has| |#1| (-820)) (|has| |#1| (-494)) (|has| |#1| (-390))) ((-551 (-771)) . T) ((-146) OR (|has| |#1| (-820)) (|has| |#1| (-494)) (|has| |#1| (-390)) (|has| |#1| (-146))) ((-552 (-472)) -12 (|has| |#1| (-552 (-472))) (|has| |#3| (-552 (-472)))) ((-552 (-799 (-328))) -12 (|has| |#1| (-552 (-799 (-328)))) (|has| |#3| (-552 (-799 (-328))))) ((-552 (-799 (-483))) -12 (|has| |#1| (-552 (-799 (-483)))) (|has| |#3| (-552 (-799 (-483))))) ((-246) OR (|has| |#1| (-820)) (|has| |#1| (-494)) (|has| |#1| (-390))) ((-260 $) . T) ((-277 |#1| |#2|) . T) ((-327 |#1|) . T) ((-353 |#1|) . T) ((-390) OR (|has| |#1| (-820)) (|has| |#1| (-390))) ((-454 |#3| |#1|) . T) ((-454 |#3| $) . T) ((-454 $ $) . T) ((-494) OR (|has| |#1| (-820)) (|has| |#1| (-494)) (|has| |#1| (-390))) ((-13) . T) ((-587 (-348 (-483))) |has| |#1| (-38 (-348 (-483)))) ((-587 (-483)) . T) ((-587 |#1|) . T) ((-587 $) . T) ((-589 (-348 (-483))) |has| |#1| (-38 (-348 (-483)))) ((-589 (-483)) |has| |#1| (-579 (-483))) ((-589 |#1|) . T) ((-589 $) . T) ((-581 (-348 (-483))) |has| |#1| (-38 (-348 (-483)))) ((-581 |#1|) |has| |#1| (-146)) ((-581 $) OR (|has| |#1| (-820)) (|has| |#1| (-494)) (|has| |#1| (-390))) ((-579 (-483)) |has| |#1| (-579 (-483))) ((-579 |#1|) . T) ((-653 (-348 (-483))) |has| |#1| (-38 (-348 (-483)))) ((-653 |#1|) |has| |#1| (-146)) ((-653 $) OR (|has| |#1| (-820)) (|has| |#1| (-494)) (|has| |#1| (-390))) ((-662) . T) ((-805 $ |#3|) . T) ((-808 |#3|) . T) ((-810 |#3|) . T) ((-795 (-328)) -12 (|has| |#1| (-795 (-328))) (|has| |#3| (-795 (-328)))) ((-795 (-483)) -12 (|has| |#1| (-795 (-483))) (|has| |#3| (-795 (-483)))) ((-820) |has| |#1| (-820)) ((-949 (-348 (-483))) |has| |#1| (-949 (-348 (-483)))) ((-949 (-483)) |has| |#1| (-949 (-483))) ((-949 |#1|) . T) ((-949 |#3|) . T) ((-962 (-348 (-483))) |has| |#1| (-38 (-348 (-483)))) ((-962 |#1|) . T) ((-962 $) OR (|has| |#1| (-820)) (|has| |#1| (-494)) (|has| |#1| (-390)) (|has| |#1| (-146))) ((-967 (-348 (-483))) |has| |#1| (-38 (-348 (-483)))) ((-967 |#1|) . T) ((-967 $) OR (|has| |#1| (-820)) (|has| |#1| (-494)) (|has| |#1| (-390)) (|has| |#1| (-146))) ((-960) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T) ((-1132) |has| |#1| (-820))) -((-3080 (((-582 |#2|) |#5|) 40 T ELT)) (-3082 (((-1083 |#5|) |#5| |#2| (-1083 |#5|)) 23 T ELT) (((-348 (-1083 |#5|)) |#5| |#2|) 16 T ELT)) (-3083 ((|#5| (-348 (-1083 |#5|)) |#2|) 30 T ELT)) (-3081 (((-3 |#2| #1="failed") |#5|) 70 T ELT)) (-2822 (((-3 (-582 |#5|) #1#) |#5|) 64 T ELT)) (-2824 (((-3 (-2 (|:| |val| |#5|) (|:| -2400 (-483))) #1#) |#5|) 53 T ELT)) (-2821 (((-3 (-582 |#5|) #1#) |#5|) 66 T ELT)) (-2823 (((-3 (-2 (|:| |var| |#2|) (|:| -2400 (-483))) #1#) |#5|) 56 T ELT))) -(((-861 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3080 ((-582 |#2|) |#5|)) (-15 -3081 ((-3 |#2| #1="failed") |#5|)) (-15 -3082 ((-348 (-1083 |#5|)) |#5| |#2|)) (-15 -3083 (|#5| (-348 (-1083 |#5|)) |#2|)) (-15 -3082 ((-1083 |#5|) |#5| |#2| (-1083 |#5|))) (-15 -2821 ((-3 (-582 |#5|) #1#) |#5|)) (-15 -2822 ((-3 (-582 |#5|) #1#) |#5|)) (-15 -2823 ((-3 (-2 (|:| |var| |#2|) (|:| -2400 (-483))) #1#) |#5|)) (-15 -2824 ((-3 (-2 (|:| |val| |#5|) (|:| -2400 (-483))) #1#) |#5|))) (-716) (-755) (-960) (-860 |#3| |#1| |#2|) (-13 (-312) (-10 -8 (-15 -3944 ($ |#4|)) (-15 -2997 (|#4| $)) (-15 -2996 (|#4| $))))) (T -861)) -((-2824 (*1 *2 *3) (|partial| -12 (-4 *4 (-716)) (-4 *5 (-755)) (-4 *6 (-960)) (-4 *7 (-860 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2400 (-483)))) (-5 *1 (-861 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-312) (-10 -8 (-15 -3944 ($ *7)) (-15 -2997 (*7 $)) (-15 -2996 (*7 $))))))) (-2823 (*1 *2 *3) (|partial| -12 (-4 *4 (-716)) (-4 *5 (-755)) (-4 *6 (-960)) (-4 *7 (-860 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2400 (-483)))) (-5 *1 (-861 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-312) (-10 -8 (-15 -3944 ($ *7)) (-15 -2997 (*7 $)) (-15 -2996 (*7 $))))))) (-2822 (*1 *2 *3) (|partial| -12 (-4 *4 (-716)) (-4 *5 (-755)) (-4 *6 (-960)) (-4 *7 (-860 *6 *4 *5)) (-5 *2 (-582 *3)) (-5 *1 (-861 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-312) (-10 -8 (-15 -3944 ($ *7)) (-15 -2997 (*7 $)) (-15 -2996 (*7 $))))))) (-2821 (*1 *2 *3) (|partial| -12 (-4 *4 (-716)) (-4 *5 (-755)) (-4 *6 (-960)) (-4 *7 (-860 *6 *4 *5)) (-5 *2 (-582 *3)) (-5 *1 (-861 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-312) (-10 -8 (-15 -3944 ($ *7)) (-15 -2997 (*7 $)) (-15 -2996 (*7 $))))))) (-3082 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-13 (-312) (-10 -8 (-15 -3944 ($ *7)) (-15 -2997 (*7 $)) (-15 -2996 (*7 $))))) (-4 *7 (-860 *6 *5 *4)) (-4 *5 (-716)) (-4 *4 (-755)) (-4 *6 (-960)) (-5 *1 (-861 *5 *4 *6 *7 *3)))) (-3083 (*1 *2 *3 *4) (-12 (-5 *3 (-348 (-1083 *2))) (-4 *5 (-716)) (-4 *4 (-755)) (-4 *6 (-960)) (-4 *2 (-13 (-312) (-10 -8 (-15 -3944 ($ *7)) (-15 -2997 (*7 $)) (-15 -2996 (*7 $))))) (-5 *1 (-861 *5 *4 *6 *7 *2)) (-4 *7 (-860 *6 *5 *4)))) (-3082 (*1 *2 *3 *4) (-12 (-4 *5 (-716)) (-4 *4 (-755)) (-4 *6 (-960)) (-4 *7 (-860 *6 *5 *4)) (-5 *2 (-348 (-1083 *3))) (-5 *1 (-861 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-312) (-10 -8 (-15 -3944 ($ *7)) (-15 -2997 (*7 $)) (-15 -2996 (*7 $))))))) (-3081 (*1 *2 *3) (|partial| -12 (-4 *4 (-716)) (-4 *5 (-960)) (-4 *6 (-860 *5 *4 *2)) (-4 *2 (-755)) (-5 *1 (-861 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-312) (-10 -8 (-15 -3944 ($ *6)) (-15 -2997 (*6 $)) (-15 -2996 (*6 $))))))) (-3080 (*1 *2 *3) (-12 (-4 *4 (-716)) (-4 *5 (-755)) (-4 *6 (-960)) (-4 *7 (-860 *6 *4 *5)) (-5 *2 (-582 *5)) (-5 *1 (-861 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-312) (-10 -8 (-15 -3944 ($ *7)) (-15 -2997 (*7 $)) (-15 -2996 (*7 $)))))))) -((-3956 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24 T ELT))) -(((-862 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3956 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-716) (-755) (-960) (-860 |#3| |#1| |#2|) (-13 (-1012) (-10 -8 (-15 -3837 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-693)))))) (T -862)) -((-3956 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-755)) (-4 *8 (-960)) (-4 *6 (-716)) (-4 *2 (-13 (-1012) (-10 -8 (-15 -3837 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-693)))))) (-5 *1 (-862 *6 *7 *8 *5 *2)) (-4 *5 (-860 *8 *6 *7))))) -((-2825 (((-2 (|:| -2400 (-693)) (|:| -3952 |#5|) (|:| |radicand| |#5|)) |#3| (-693)) 48 T ELT)) (-2826 (((-2 (|:| -2400 (-693)) (|:| -3952 |#5|) (|:| |radicand| |#5|)) (-348 (-483)) (-693)) 43 T ELT)) (-2828 (((-2 (|:| -2400 (-693)) (|:| -3952 |#4|) (|:| |radicand| (-582 |#4|))) |#4| (-693)) 64 T ELT)) (-2827 (((-2 (|:| -2400 (-693)) (|:| -3952 |#5|) (|:| |radicand| |#5|)) |#5| (-693)) 73 (|has| |#3| (-390)) ELT))) -(((-863 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2825 ((-2 (|:| -2400 (-693)) (|:| -3952 |#5|) (|:| |radicand| |#5|)) |#3| (-693))) (-15 -2826 ((-2 (|:| -2400 (-693)) (|:| -3952 |#5|) (|:| |radicand| |#5|)) (-348 (-483)) (-693))) (IF (|has| |#3| (-390)) (-15 -2827 ((-2 (|:| -2400 (-693)) (|:| -3952 |#5|) (|:| |radicand| |#5|)) |#5| (-693))) |%noBranch|) (-15 -2828 ((-2 (|:| -2400 (-693)) (|:| -3952 |#4|) (|:| |radicand| (-582 |#4|))) |#4| (-693)))) (-716) (-755) (-494) (-860 |#3| |#1| |#2|) (-13 (-312) (-10 -8 (-15 -3944 ($ |#4|)) (-15 -2997 (|#4| $)) (-15 -2996 (|#4| $))))) (T -863)) -((-2828 (*1 *2 *3 *4) (-12 (-4 *5 (-716)) (-4 *6 (-755)) (-4 *7 (-494)) (-4 *3 (-860 *7 *5 *6)) (-5 *2 (-2 (|:| -2400 (-693)) (|:| -3952 *3) (|:| |radicand| (-582 *3)))) (-5 *1 (-863 *5 *6 *7 *3 *8)) (-5 *4 (-693)) (-4 *8 (-13 (-312) (-10 -8 (-15 -3944 ($ *3)) (-15 -2997 (*3 $)) (-15 -2996 (*3 $))))))) (-2827 (*1 *2 *3 *4) (-12 (-4 *7 (-390)) (-4 *5 (-716)) (-4 *6 (-755)) (-4 *7 (-494)) (-4 *8 (-860 *7 *5 *6)) (-5 *2 (-2 (|:| -2400 (-693)) (|:| -3952 *3) (|:| |radicand| *3))) (-5 *1 (-863 *5 *6 *7 *8 *3)) (-5 *4 (-693)) (-4 *3 (-13 (-312) (-10 -8 (-15 -3944 ($ *8)) (-15 -2997 (*8 $)) (-15 -2996 (*8 $))))))) (-2826 (*1 *2 *3 *4) (-12 (-5 *3 (-348 (-483))) (-4 *5 (-716)) (-4 *6 (-755)) (-4 *7 (-494)) (-4 *8 (-860 *7 *5 *6)) (-5 *2 (-2 (|:| -2400 (-693)) (|:| -3952 *9) (|:| |radicand| *9))) (-5 *1 (-863 *5 *6 *7 *8 *9)) (-5 *4 (-693)) (-4 *9 (-13 (-312) (-10 -8 (-15 -3944 ($ *8)) (-15 -2997 (*8 $)) (-15 -2996 (*8 $))))))) (-2825 (*1 *2 *3 *4) (-12 (-4 *5 (-716)) (-4 *6 (-755)) (-4 *3 (-494)) (-4 *7 (-860 *3 *5 *6)) (-5 *2 (-2 (|:| -2400 (-693)) (|:| -3952 *8) (|:| |radicand| *8))) (-5 *1 (-863 *5 *6 *3 *7 *8)) (-5 *4 (-693)) (-4 *8 (-13 (-312) (-10 -8 (-15 -3944 ($ *7)) (-15 -2997 (*7 $)) (-15 -2996 (*7 $)))))))) -((-2567 (((-85) $ $) NIL T ELT)) (-2829 (($ (-1032)) 8 T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3944 (((-771) $) 15 T ELT) (((-1032) $) 12 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) 11 T ELT))) -(((-864) (-13 (-1012) (-551 (-1032)) (-10 -8 (-15 -2829 ($ (-1032)))))) (T -864)) -((-2829 (*1 *1 *2) (-12 (-5 *2 (-1032)) (-5 *1 (-864))))) -((-2895 (((-1000 (-179)) $) 8 T ELT)) (-2896 (((-1000 (-179)) $) 9 T ELT)) (-2897 (((-582 (-582 (-853 (-179)))) $) 10 T ELT)) (-3944 (((-771) $) 6 T ELT))) -(((-865) (-113)) (T -865)) -((-2897 (*1 *2 *1) (-12 (-4 *1 (-865)) (-5 *2 (-582 (-582 (-853 (-179))))))) (-2896 (*1 *2 *1) (-12 (-4 *1 (-865)) (-5 *2 (-1000 (-179))))) (-2895 (*1 *2 *1) (-12 (-4 *1 (-865)) (-5 *2 (-1000 (-179)))))) -(-13 (-551 (-771)) (-10 -8 (-15 -2897 ((-582 (-582 (-853 (-179)))) $)) (-15 -2896 ((-1000 (-179)) $)) (-15 -2895 ((-1000 (-179)) $)))) -(((-551 (-771)) . T)) -((-2567 (((-85) $ $) NIL T ELT)) (-3187 (((-85) $) NIL T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3980 $) (|:| |associate| $)) $) 80 (|has| |#1| (-494)) ELT)) (-2062 (($ $) 81 (|has| |#1| (-494)) ELT)) (-2060 (((-85) $) NIL (|has| |#1| (-494)) ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3722 (($) NIL T CONST)) (-3156 (((-3 (-483) #1#) $) NIL (|has| |#1| (-949 (-483))) ELT) (((-3 (-348 (-483)) #1#) $) NIL (|has| |#1| (-949 (-348 (-483)))) ELT) (((-3 |#1| #1#) $) 35 T ELT)) (-3155 (((-483) $) NIL (|has| |#1| (-949 (-483))) ELT) (((-348 (-483)) $) NIL (|has| |#1| (-949 (-348 (-483)))) ELT) ((|#1| $) NIL T ELT)) (-3957 (($ $) 32 T ELT)) (-3465 (((-3 $ #1#) $) 43 T ELT)) (-3501 (($ $) NIL (|has| |#1| (-390)) ELT)) (-1622 (($ $ |#1| |#2| $) 64 T ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-2409 (((-85) $) NIL T ELT)) (-2419 (((-693) $) 18 T ELT)) (-3935 (((-85) $) NIL T ELT)) (-2892 (($ |#1| |#2|) NIL T ELT)) (-2819 ((|#2| $) 25 T ELT)) (-1623 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3956 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2893 (($ $) 29 T ELT)) (-3173 ((|#1| $) 27 T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-1795 (((-85) $) 52 T ELT)) (-1794 ((|#1| $) NIL T ELT)) (-3736 (($ $ |#2| |#1| $) 90 (-12 (|has| |#2| (-104)) (|has| |#1| (-494))) ELT)) (-3464 (((-3 $ #1#) $ $) 92 (|has| |#1| (-494)) ELT) (((-3 $ #1#) $ |#1|) 87 (|has| |#1| (-494)) ELT)) (-3946 ((|#2| $) 23 T ELT)) (-2816 ((|#1| $) NIL (|has| |#1| (-390)) ELT)) (-3944 (((-771) $) NIL T ELT) (($ (-483)) 47 T ELT) (($ $) NIL (|has| |#1| (-494)) ELT) (($ |#1|) 42 T ELT) (($ (-348 (-483))) NIL (OR (|has| |#1| (-38 (-348 (-483)))) (|has| |#1| (-949 (-348 (-483))))) ELT)) (-3815 (((-582 |#1|) $) NIL T ELT)) (-3675 ((|#1| $ |#2|) 38 T ELT)) (-2701 (((-631 $) $) NIL (|has| |#1| (-118)) ELT)) (-3125 (((-693)) 15 T CONST)) (-1621 (($ $ $ (-693)) 76 (|has| |#1| (-146)) ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2061 (((-85) $ $) 86 (|has| |#1| (-494)) ELT)) (-3124 (((-85) $ $) NIL T ELT)) (-2659 (($) 28 T CONST)) (-2665 (($) 12 T CONST)) (-3055 (((-85) $ $) 85 T ELT)) (-3947 (($ $ |#1|) 93 (|has| |#1| (-312)) ELT)) (-3835 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3837 (($ $ $) NIL T ELT)) (** (($ $ (-829)) 71 T ELT) (($ $ (-693)) 69 T ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) 68 T ELT) (($ $ |#1|) 66 T ELT) (($ |#1| $) 65 T ELT) (($ (-348 (-483)) $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT) (($ $ (-348 (-483))) NIL (|has| |#1| (-38 (-348 (-483)))) ELT))) -(((-866 |#1| |#2|) (-13 (-277 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-494)) (IF (|has| |#2| (-104)) (-15 -3736 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -3991)) (-6 -3991) |%noBranch|))) (-960) (-715)) (T -866)) -((-3736 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-866 *3 *2)) (-4 *2 (-104)) (-4 *3 (-494)) (-4 *3 (-960)) (-4 *2 (-715))))) -((-2830 (((-3 (-629 |#1|) "failed") |#2| (-829)) 18 T ELT))) -(((-867 |#1| |#2|) (-10 -7 (-15 -2830 ((-3 (-629 |#1|) "failed") |#2| (-829)))) (-494) (-599 |#1|)) (T -867)) -((-2830 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-829)) (-4 *5 (-494)) (-5 *2 (-629 *5)) (-5 *1 (-867 *5 *3)) (-4 *3 (-599 *5))))) -((-2567 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2197 (((-1183) $ (-483) (-483)) NIL (|has| $ (-6 -3994)) ELT)) (-1730 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-755)) ELT)) (-1728 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-6 -3994)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-755))) ELT)) (-2908 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-755)) ELT)) (-3786 ((|#1| $ (-483) |#1|) 18 (|has| $ (-6 -3994)) ELT) ((|#1| $ (-1144 (-483)) |#1|) NIL (|has| $ (-6 -3994)) ELT)) (-3708 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3722 (($) NIL T CONST)) (-2296 (($ $) NIL (|has| $ (-6 -3994)) ELT)) (-2297 (($ $) NIL T ELT)) (-1351 (($ $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#1| (-1012))) ELT)) (-3404 (($ |#1| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#1| (-1012))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3840 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3993)) (|has| |#1| (-1012))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3993)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-1574 ((|#1| $ (-483) |#1|) 17 (|has| $ (-6 -3994)) ELT)) (-3111 ((|#1| $ (-483)) 15 T ELT)) (-3417 (((-483) (-1 (-85) |#1|) $) NIL T ELT) (((-483) |#1| $) NIL (|has| |#1| (-1012)) ELT) (((-483) |#1| $ (-483)) NIL (|has| |#1| (-1012)) ELT)) (-2888 (((-582 |#1|) $) 23 (|has| $ (-6 -3993)) ELT)) (-3612 (($ (-693) |#1|) 14 T ELT)) (-2199 (((-483) $) 10 (|has| (-483) (-755)) ELT)) (-2530 (($ $ $) NIL (|has| |#1| (-755)) ELT)) (-3516 (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-755)) ELT)) (-2607 (((-582 |#1|) $) 24 (|has| $ (-6 -3993)) ELT)) (-3244 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#1| (-1012))) ELT)) (-2200 (((-483) $) 22 (|has| (-483) (-755)) ELT)) (-2856 (($ $ $) NIL (|has| |#1| (-755)) ELT)) (-1947 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3956 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3241 (((-1071) $) NIL (|has| |#1| (-1012)) ELT)) (-2303 (($ |#1| $ (-483)) NIL T ELT) (($ $ $ (-483)) NIL T ELT)) (-2202 (((-582 (-483)) $) NIL T ELT)) (-2203 (((-85) (-483) $) NIL T ELT)) (-3242 (((-1032) $) NIL (|has| |#1| (-1012)) ELT)) (-3799 ((|#1| $) NIL (|has| (-483) (-755)) ELT)) (-1352 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2198 (($ $ |#1|) 19 (|has| $ (-6 -3994)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3766 (($ $ (-582 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-582 |#1|) (-582 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-2201 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#1| (-1012))) ELT)) (-2204 (((-582 |#1|) $) NIL T ELT)) (-3401 (((-85) $) NIL T ELT)) (-3563 (($) 11 T ELT)) (-3798 ((|#1| $ (-483) |#1|) NIL T ELT) ((|#1| $ (-483)) 16 T ELT) (($ $ (-1144 (-483))) NIL T ELT)) (-2304 (($ $ (-483)) NIL T ELT) (($ $ (-1144 (-483))) NIL T ELT)) (-1944 (((-693) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3993)) ELT) (((-693) |#1| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#1| (-1012))) ELT)) (-1729 (($ $ $ (-483)) NIL (|has| $ (-6 -3994)) ELT)) (-3398 (($ $) 20 T ELT)) (-3970 (((-472) $) NIL (|has| |#1| (-552 (-472))) ELT)) (-3528 (($ (-582 |#1|)) 13 T ELT)) (-3800 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-582 $)) NIL T ELT)) (-3944 (((-771) $) NIL (|has| |#1| (-551 (-771))) ELT)) (-1263 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-2565 (((-85) $ $) NIL (|has| |#1| (-755)) ELT)) (-2566 (((-85) $ $) NIL (|has| |#1| (-755)) ELT)) (-3055 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2683 (((-85) $ $) NIL (|has| |#1| (-755)) ELT)) (-2684 (((-85) $ $) NIL (|has| |#1| (-755)) ELT)) (-3955 (((-693) $) 8 (|has| $ (-6 -3993)) ELT))) -(((-868 |#1|) (-19 |#1|) (-1127)) (T -868)) -NIL -((-3839 (((-868 |#2|) (-1 |#2| |#1| |#2|) (-868 |#1|) |#2|) 16 T ELT)) (-3840 ((|#2| (-1 |#2| |#1| |#2|) (-868 |#1|) |#2|) 18 T ELT)) (-3956 (((-868 |#2|) (-1 |#2| |#1|) (-868 |#1|)) 13 T ELT))) -(((-869 |#1| |#2|) (-10 -7 (-15 -3839 ((-868 |#2|) (-1 |#2| |#1| |#2|) (-868 |#1|) |#2|)) (-15 -3840 (|#2| (-1 |#2| |#1| |#2|) (-868 |#1|) |#2|)) (-15 -3956 ((-868 |#2|) (-1 |#2| |#1|) (-868 |#1|)))) (-1127) (-1127)) (T -869)) -((-3956 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-868 *5)) (-4 *5 (-1127)) (-4 *6 (-1127)) (-5 *2 (-868 *6)) (-5 *1 (-869 *5 *6)))) (-3840 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-868 *5)) (-4 *5 (-1127)) (-4 *2 (-1127)) (-5 *1 (-869 *5 *2)))) (-3839 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-868 *6)) (-4 *6 (-1127)) (-4 *5 (-1127)) (-5 *2 (-868 *5)) (-5 *1 (-869 *6 *5))))) -((-2831 (($ $ (-1003 $)) 7 T ELT) (($ $ (-1088)) 6 T ELT))) -(((-870) (-113)) (T -870)) -((-2831 (*1 *1 *1 *2) (-12 (-5 *2 (-1003 *1)) (-4 *1 (-870)))) (-2831 (*1 *1 *1 *2) (-12 (-4 *1 (-870)) (-5 *2 (-1088))))) -(-13 (-10 -8 (-15 -2831 ($ $ (-1088))) (-15 -2831 ($ $ (-1003 $))))) -((-2832 (((-2 (|:| -3952 (-582 (-483))) (|:| |poly| (-582 (-1083 |#1|))) (|:| |prim| (-1083 |#1|))) (-582 (-856 |#1|)) (-582 (-1088)) (-1088)) 26 T ELT) (((-2 (|:| -3952 (-582 (-483))) (|:| |poly| (-582 (-1083 |#1|))) (|:| |prim| (-1083 |#1|))) (-582 (-856 |#1|)) (-582 (-1088))) 27 T ELT) (((-2 (|:| |coef1| (-483)) (|:| |coef2| (-483)) (|:| |prim| (-1083 |#1|))) (-856 |#1|) (-1088) (-856 |#1|) (-1088)) 49 T ELT))) -(((-871 |#1|) (-10 -7 (-15 -2832 ((-2 (|:| |coef1| (-483)) (|:| |coef2| (-483)) (|:| |prim| (-1083 |#1|))) (-856 |#1|) (-1088) (-856 |#1|) (-1088))) (-15 -2832 ((-2 (|:| -3952 (-582 (-483))) (|:| |poly| (-582 (-1083 |#1|))) (|:| |prim| (-1083 |#1|))) (-582 (-856 |#1|)) (-582 (-1088)))) (-15 -2832 ((-2 (|:| -3952 (-582 (-483))) (|:| |poly| (-582 (-1083 |#1|))) (|:| |prim| (-1083 |#1|))) (-582 (-856 |#1|)) (-582 (-1088)) (-1088)))) (-13 (-312) (-120))) (T -871)) -((-2832 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-582 (-856 *6))) (-5 *4 (-582 (-1088))) (-5 *5 (-1088)) (-4 *6 (-13 (-312) (-120))) (-5 *2 (-2 (|:| -3952 (-582 (-483))) (|:| |poly| (-582 (-1083 *6))) (|:| |prim| (-1083 *6)))) (-5 *1 (-871 *6)))) (-2832 (*1 *2 *3 *4) (-12 (-5 *3 (-582 (-856 *5))) (-5 *4 (-582 (-1088))) (-4 *5 (-13 (-312) (-120))) (-5 *2 (-2 (|:| -3952 (-582 (-483))) (|:| |poly| (-582 (-1083 *5))) (|:| |prim| (-1083 *5)))) (-5 *1 (-871 *5)))) (-2832 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-856 *5)) (-5 *4 (-1088)) (-4 *5 (-13 (-312) (-120))) (-5 *2 (-2 (|:| |coef1| (-483)) (|:| |coef2| (-483)) (|:| |prim| (-1083 *5)))) (-5 *1 (-871 *5))))) -((-2835 (((-582 |#1|) |#1| |#1|) 47 T ELT)) (-3721 (((-85) |#1|) 44 T ELT)) (-2834 ((|#1| |#1|) 80 T ELT)) (-2833 ((|#1| |#1|) 79 T ELT))) -(((-872 |#1|) (-10 -7 (-15 -3721 ((-85) |#1|)) (-15 -2833 (|#1| |#1|)) (-15 -2834 (|#1| |#1|)) (-15 -2835 ((-582 |#1|) |#1| |#1|))) (-482)) (T -872)) -((-2835 (*1 *2 *3 *3) (-12 (-5 *2 (-582 *3)) (-5 *1 (-872 *3)) (-4 *3 (-482)))) (-2834 (*1 *2 *2) (-12 (-5 *1 (-872 *2)) (-4 *2 (-482)))) (-2833 (*1 *2 *2) (-12 (-5 *1 (-872 *2)) (-4 *2 (-482)))) (-3721 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-872 *3)) (-4 *3 (-482))))) -((-2836 (((-1183) (-771)) 9 T ELT))) -(((-873) (-10 -7 (-15 -2836 ((-1183) (-771))))) (T -873)) -((-2836 (*1 *2 *3) (-12 (-5 *3 (-771)) (-5 *2 (-1183)) (-5 *1 (-873))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3187 (((-85) $) NIL (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-716)) (|has| |#2| (-716)))) ELT)) (-2482 (($ $ $) 65 (-12 (|has| |#1| (-716)) (|has| |#2| (-716))) ELT)) (-1310 (((-3 $ #1="failed") $ $) 52 (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-716)) (|has| |#2| (-716)))) ELT)) (-3135 (((-693)) 36 (-12 (|has| |#1| (-318)) (|has| |#2| (-318))) ELT)) (-2837 ((|#2| $) 22 T ELT)) (-2838 ((|#1| $) 21 T ELT)) (-3722 (($) NIL (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-411)) (|has| |#2| (-411))) (-12 (|has| |#1| (-662)) (|has| |#2| (-662))) (-12 (|has| |#1| (-716)) (|has| |#2| (-716)))) CONST)) (-3465 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#1| (-411)) (|has| |#2| (-411))) (-12 (|has| |#1| (-662)) (|has| |#2| (-662)))) ELT)) (-2993 (($) NIL (-12 (|has| |#1| (-318)) (|has| |#2| (-318))) ELT)) (-3185 (((-85) $) NIL (-12 (|has| |#1| (-716)) (|has| |#2| (-716))) ELT)) (-1212 (((-85) $ $) NIL (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-716)) (|has| |#2| (-716)))) ELT)) (-2409 (((-85) $) NIL (OR (-12 (|has| |#1| (-411)) (|has| |#2| (-411))) (-12 (|has| |#1| (-662)) (|has| |#2| (-662)))) ELT)) (-2530 (($ $ $) NIL (OR (-12 (|has| |#1| (-716)) (|has| |#2| (-716))) (-12 (|has| |#1| (-755)) (|has| |#2| (-755)))) ELT)) (-2856 (($ $ $) NIL (OR (-12 (|has| |#1| (-716)) (|has| |#2| (-716))) (-12 (|has| |#1| (-755)) (|has| |#2| (-755)))) ELT)) (-2839 (($ |#1| |#2|) 20 T ELT)) (-2009 (((-829) $) NIL (-12 (|has| |#1| (-318)) (|has| |#2| (-318))) ELT)) (-3241 (((-1071) $) NIL T ELT)) (-2483 (($ $) 39 (-12 (|has| |#1| (-411)) (|has| |#2| (-411))) ELT)) (-2399 (($ (-829)) NIL (-12 (|has| |#1| (-318)) (|has| |#2| (-318))) ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3008 (($ $ $) NIL (-12 (|has| |#1| (-411)) (|has| |#2| (-411))) ELT)) (-2434 (($ $ $) NIL (-12 (|has| |#1| (-411)) (|has| |#2| (-411))) ELT)) (-3944 (((-771) $) 14 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2659 (($) 42 (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-716)) (|has| |#2| (-716)))) CONST)) (-2665 (($) 25 (OR (-12 (|has| |#1| (-411)) (|has| |#2| (-411))) (-12 (|has| |#1| (-662)) (|has| |#2| (-662)))) CONST)) (-2565 (((-85) $ $) NIL (OR (-12 (|has| |#1| (-716)) (|has| |#2| (-716))) (-12 (|has| |#1| (-755)) (|has| |#2| (-755)))) ELT)) (-2566 (((-85) $ $) NIL (OR (-12 (|has| |#1| (-716)) (|has| |#2| (-716))) (-12 (|has| |#1| (-755)) (|has| |#2| (-755)))) ELT)) (-3055 (((-85) $ $) 19 T ELT)) (-2683 (((-85) $ $) NIL (OR (-12 (|has| |#1| (-716)) (|has| |#2| (-716))) (-12 (|has| |#1| (-755)) (|has| |#2| (-755)))) ELT)) (-2684 (((-85) $ $) 69 (OR (-12 (|has| |#1| (-716)) (|has| |#2| (-716))) (-12 (|has| |#1| (-755)) (|has| |#2| (-755)))) ELT)) (-3947 (($ $ $) NIL (-12 (|has| |#1| (-411)) (|has| |#2| (-411))) ELT)) (-3835 (($ $ $) 58 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) ELT) (($ $) 55 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) ELT)) (-3837 (($ $ $) 45 (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-716)) (|has| |#2| (-716)))) ELT)) (** (($ $ (-483)) NIL (-12 (|has| |#1| (-411)) (|has| |#2| (-411))) ELT) (($ $ (-693)) 32 (OR (-12 (|has| |#1| (-411)) (|has| |#2| (-411))) (-12 (|has| |#1| (-662)) (|has| |#2| (-662)))) ELT) (($ $ (-829)) NIL (OR (-12 (|has| |#1| (-411)) (|has| |#2| (-411))) (-12 (|has| |#1| (-662)) (|has| |#2| (-662)))) ELT)) (* (($ (-483) $) 62 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) ELT) (($ (-693) $) 48 (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-716)) (|has| |#2| (-716)))) ELT) (($ (-829) $) NIL (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-716)) (|has| |#2| (-716)))) ELT) (($ $ $) 28 (OR (-12 (|has| |#1| (-411)) (|has| |#2| (-411))) (-12 (|has| |#1| (-662)) (|has| |#2| (-662)))) ELT))) -(((-874 |#1| |#2|) (-13 (-1012) (-10 -8 (IF (|has| |#1| (-318)) (IF (|has| |#2| (-318)) (-6 (-318)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-662)) (IF (|has| |#2| (-662)) (-6 (-662)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-104)) (IF (|has| |#2| (-104)) (-6 (-104)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-411)) (IF (|has| |#2| (-411)) (-6 (-411)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-716)) (IF (|has| |#2| (-716)) (-6 (-716)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-755)) (IF (|has| |#2| (-755)) (-6 (-755)) |%noBranch|) |%noBranch|) (-15 -2839 ($ |#1| |#2|)) (-15 -2838 (|#1| $)) (-15 -2837 (|#2| $)))) (-1012) (-1012)) (T -874)) -((-2839 (*1 *1 *2 *3) (-12 (-5 *1 (-874 *2 *3)) (-4 *2 (-1012)) (-4 *3 (-1012)))) (-2838 (*1 *2 *1) (-12 (-4 *2 (-1012)) (-5 *1 (-874 *2 *3)) (-4 *3 (-1012)))) (-2837 (*1 *2 *1) (-12 (-4 *2 (-1012)) (-5 *1 (-874 *3 *2)) (-4 *3 (-1012))))) -((-3400 (((-1014) $) 13 T ELT)) (-2840 (($ (-445) (-1014)) 15 T ELT)) (-3540 (((-445) $) 11 T ELT)) (-3944 (((-771) $) 25 T ELT))) -(((-875) (-13 (-551 (-771)) (-10 -8 (-15 -3540 ((-445) $)) (-15 -3400 ((-1014) $)) (-15 -2840 ($ (-445) (-1014)))))) (T -875)) -((-3540 (*1 *2 *1) (-12 (-5 *2 (-445)) (-5 *1 (-875)))) (-3400 (*1 *2 *1) (-12 (-5 *2 (-1014)) (-5 *1 (-875)))) (-2840 (*1 *1 *2 *3) (-12 (-5 *2 (-445)) (-5 *3 (-1014)) (-5 *1 (-875))))) -((-2567 (((-85) $ $) NIL T ELT)) (-2312 (($ $) 29 T ELT)) (-2854 (($) 17 T CONST)) (-2560 (($ $ $) NIL T ELT)) (-2559 (($ $) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-2845 (((-631 (-781 $ $)) $) 62 T ELT)) (-2847 (((-631 $) $) 52 T ELT)) (-2844 (((-631 (-781 $ $)) $) 63 T ELT)) (-2843 (((-631 (-781 $ $)) $) 64 T ELT)) (-2848 (((-631 |#1|) $) 43 T ELT)) (-2846 (((-631 (-781 $ $)) $) 61 T ELT)) (-2852 (($ $ $) 38 T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-2853 (($) 16 T CONST)) (-2851 (($ $ $) 39 T ELT)) (-2841 (($ $ $) 36 T ELT)) (-2842 (($ $ $) 34 T ELT)) (-3944 (((-771) $) 66 T ELT) (($ |#1|) 12 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2561 (($ $ $) NIL T ELT)) (-2310 (($ $ $) 37 T ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-2311 (($ $ $) 35 T ELT))) -(((-876 |#1|) (-13 (-879) (-554 |#1|) (-10 -8 (-15 -2848 ((-631 |#1|) $)) (-15 -2847 ((-631 $) $)) (-15 -2846 ((-631 (-781 $ $)) $)) (-15 -2845 ((-631 (-781 $ $)) $)) (-15 -2844 ((-631 (-781 $ $)) $)) (-15 -2843 ((-631 (-781 $ $)) $)) (-15 -2842 ($ $ $)) (-15 -2841 ($ $ $)))) (-1012)) (T -876)) -((-2848 (*1 *2 *1) (-12 (-5 *2 (-631 *3)) (-5 *1 (-876 *3)) (-4 *3 (-1012)))) (-2847 (*1 *2 *1) (-12 (-5 *2 (-631 (-876 *3))) (-5 *1 (-876 *3)) (-4 *3 (-1012)))) (-2846 (*1 *2 *1) (-12 (-5 *2 (-631 (-781 (-876 *3) (-876 *3)))) (-5 *1 (-876 *3)) (-4 *3 (-1012)))) (-2845 (*1 *2 *1) (-12 (-5 *2 (-631 (-781 (-876 *3) (-876 *3)))) (-5 *1 (-876 *3)) (-4 *3 (-1012)))) (-2844 (*1 *2 *1) (-12 (-5 *2 (-631 (-781 (-876 *3) (-876 *3)))) (-5 *1 (-876 *3)) (-4 *3 (-1012)))) (-2843 (*1 *2 *1) (-12 (-5 *2 (-631 (-781 (-876 *3) (-876 *3)))) (-5 *1 (-876 *3)) (-4 *3 (-1012)))) (-2842 (*1 *1 *1 *1) (-12 (-5 *1 (-876 *2)) (-4 *2 (-1012)))) (-2841 (*1 *1 *1 *1) (-12 (-5 *1 (-876 *2)) (-4 *2 (-1012))))) -((-3647 (((-876 |#1|) (-876 |#1|)) 46 T ELT)) (-2850 (((-876 |#1|) (-876 |#1|)) 22 T ELT)) (-2849 (((-1008 |#1|) (-876 |#1|)) 41 T ELT))) -(((-877 |#1|) (-13 (-1127) (-10 -7 (-15 -2850 ((-876 |#1|) (-876 |#1|))) (-15 -2849 ((-1008 |#1|) (-876 |#1|))) (-15 -3647 ((-876 |#1|) (-876 |#1|))))) (-1012)) (T -877)) -((-2850 (*1 *2 *2) (-12 (-5 *2 (-876 *3)) (-4 *3 (-1012)) (-5 *1 (-877 *3)))) (-2849 (*1 *2 *3) (-12 (-5 *3 (-876 *4)) (-4 *4 (-1012)) (-5 *2 (-1008 *4)) (-5 *1 (-877 *4)))) (-3647 (*1 *2 *2) (-12 (-5 *2 (-876 *3)) (-4 *3 (-1012)) (-5 *1 (-877 *3))))) -((-3956 (((-876 |#2|) (-1 |#2| |#1|) (-876 |#1|)) 29 T ELT))) -(((-878 |#1| |#2|) (-13 (-1127) (-10 -7 (-15 -3956 ((-876 |#2|) (-1 |#2| |#1|) (-876 |#1|))))) (-1012) (-1012)) (T -878)) -((-3956 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-876 *5)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-5 *2 (-876 *6)) (-5 *1 (-878 *5 *6))))) -((-2567 (((-85) $ $) 19 T ELT)) (-2312 (($ $) 8 T ELT)) (-2854 (($) 17 T CONST)) (-2560 (($ $ $) 9 T ELT)) (-2559 (($ $) 11 T ELT)) (-3241 (((-1071) $) 23 T ELT)) (-2852 (($ $ $) 15 T ELT)) (-3242 (((-1032) $) 22 T ELT)) (-2853 (($) 16 T CONST)) (-2851 (($ $ $) 14 T ELT)) (-3944 (((-771) $) 21 T ELT)) (-1263 (((-85) $ $) 20 T ELT)) (-2561 (($ $ $) 10 T ELT)) (-2310 (($ $ $) 6 T ELT)) (-3055 (((-85) $ $) 18 T ELT)) (-2311 (($ $ $) 7 T ELT))) -(((-879) (-113)) (T -879)) -((-2854 (*1 *1) (-4 *1 (-879))) (-2853 (*1 *1) (-4 *1 (-879))) (-2852 (*1 *1 *1 *1) (-4 *1 (-879))) (-2851 (*1 *1 *1 *1) (-4 *1 (-879)))) -(-13 (-84) (-1012) (-10 -8 (-15 -2854 ($) -3950) (-15 -2853 ($) -3950) (-15 -2852 ($ $ $)) (-15 -2851 ($ $ $)))) -(((-72) . T) ((-84) . T) ((-551 (-771)) . T) ((-13) . T) ((-603) . T) ((-1012) . T) ((-1127) . T)) -((-2567 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3722 (($) 7 T CONST)) (-2888 (((-582 |#1|) $) 30 (|has| $ (-6 -3993)) ELT)) (-2855 (($ $ $) 47 T ELT)) (-3516 (($ $ $) 48 T ELT)) (-2607 (((-582 |#1|) $) 29 (|has| $ (-6 -3993)) ELT)) (-3244 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3993))) ELT)) (-2856 ((|#1| $) 49 T ELT)) (-1947 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3994)) ELT)) (-3956 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3241 (((-1071) $) 22 (|has| |#1| (-1012)) ELT)) (-1272 ((|#1| $) 43 T ELT)) (-3607 (($ |#1| $) 44 T ELT)) (-3242 (((-1032) $) 21 (|has| |#1| (-1012)) ELT)) (-1273 ((|#1| $) 45 T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3993)) ELT)) (-3766 (($ $ (-582 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-582 |#1|) (-582 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT)) (-1220 (((-85) $ $) 11 T ELT)) (-3401 (((-85) $) 8 T ELT)) (-3563 (($) 9 T ELT)) (-1944 (((-693) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3993)) ELT) (((-693) |#1| $) 28 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3993))) ELT)) (-3398 (($ $) 10 T ELT)) (-3944 (((-771) $) 17 (|has| |#1| (-551 (-771))) ELT)) (-1263 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1274 (($ (-582 |#1|)) 46 T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3993)) ELT)) (-3055 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3955 (((-693) $) 6 (|has| $ (-6 -3993)) ELT))) -(((-880 |#1|) (-113) (-755)) (T -880)) -((-2856 (*1 *2 *1) (-12 (-4 *1 (-880 *2)) (-4 *2 (-755)))) (-3516 (*1 *1 *1 *1) (-12 (-4 *1 (-880 *2)) (-4 *2 (-755)))) (-2855 (*1 *1 *1 *1) (-12 (-4 *1 (-880 *2)) (-4 *2 (-755))))) -(-13 (-76 |t#1|) (-10 -8 (-6 -3993) (-15 -2856 (|t#1| $)) (-15 -3516 ($ $ $)) (-15 -2855 ($ $ $)))) -(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1012)) (|has| |#1| (-72))) ((-551 (-771)) OR (|has| |#1| (-1012)) (|has| |#1| (-551 (-771)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ((-427 |#1|) . T) ((-454 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ((-13) . T) ((-1012) |has| |#1| (-1012)) ((-1127) . T)) -((-2868 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3143 |#2|)) |#2| |#2|) 105 T ELT)) (-3753 ((|#2| |#2| |#2|) 103 T ELT)) (-2869 (((-2 (|:| |coef2| |#2|) (|:| -3143 |#2|)) |#2| |#2|) 107 T ELT)) (-2870 (((-2 (|:| |coef1| |#2|) (|:| -3143 |#2|)) |#2| |#2|) 109 T ELT)) (-2877 (((-2 (|:| |coef2| |#2|) (|:| -2875 |#1|)) |#2| |#2|) 132 (|has| |#1| (-390)) ELT)) (-2884 (((-2 (|:| |coef2| |#2|) (|:| -3754 |#1|)) |#2| |#2|) 56 T ELT)) (-2858 (((-2 (|:| |coef2| |#2|) (|:| -3754 |#1|)) |#2| |#2|) 80 T ELT)) (-2859 (((-2 (|:| |coef1| |#2|) (|:| -3754 |#1|)) |#2| |#2|) 82 T ELT)) (-2867 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 96 T ELT)) (-2862 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-693)) 89 T ELT)) (-2872 (((-2 (|:| |coef2| |#2|) (|:| -3755 |#1|)) |#2|) 121 T ELT)) (-2865 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-693)) 92 T ELT)) (-2874 (((-582 (-693)) |#2| |#2|) 102 T ELT)) (-2882 ((|#1| |#2| |#2|) 50 T ELT)) (-2876 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2875 |#1|)) |#2| |#2|) 130 (|has| |#1| (-390)) ELT)) (-2875 ((|#1| |#2| |#2|) 128 (|has| |#1| (-390)) ELT)) (-2883 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3754 |#1|)) |#2| |#2|) 54 T ELT)) (-2857 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3754 |#1|)) |#2| |#2|) 79 T ELT)) (-3754 ((|#1| |#2| |#2|) 76 T ELT)) (-3750 (((-2 (|:| -3952 |#1|) (|:| -1971 |#2|) (|:| -2901 |#2|)) |#2| |#2|) 41 T ELT)) (-2881 ((|#2| |#2| |#2| |#2| |#1|) 67 T ELT)) (-2866 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 94 T ELT)) (-3189 ((|#2| |#2| |#2|) 93 T ELT)) (-2861 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-693)) 87 T ELT)) (-2860 ((|#2| |#2| |#2| (-693)) 85 T ELT)) (-3143 ((|#2| |#2| |#2|) 136 (|has| |#1| (-390)) ELT)) (-3464 (((-1177 |#2|) (-1177 |#2|) |#1|) 22 T ELT)) (-2878 (((-2 (|:| -1971 |#2|) (|:| -2901 |#2|)) |#2| |#2|) 46 T ELT)) (-2871 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3755 |#1|)) |#2|) 119 T ELT)) (-3755 ((|#1| |#2|) 116 T ELT)) (-2864 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-693)) 91 T ELT)) (-2863 ((|#2| |#2| |#2| (-693)) 90 T ELT)) (-2873 (((-582 |#2|) |#2| |#2|) 99 T ELT)) (-2880 ((|#2| |#2| |#1| |#1| (-693)) 62 T ELT)) (-2879 ((|#1| |#1| |#1| (-693)) 61 T ELT)) (* (((-1177 |#2|) |#1| (-1177 |#2|)) 17 T ELT))) -(((-881 |#1| |#2|) (-10 -7 (-15 -3754 (|#1| |#2| |#2|)) (-15 -2857 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3754 |#1|)) |#2| |#2|)) (-15 -2858 ((-2 (|:| |coef2| |#2|) (|:| -3754 |#1|)) |#2| |#2|)) (-15 -2859 ((-2 (|:| |coef1| |#2|) (|:| -3754 |#1|)) |#2| |#2|)) (-15 -2860 (|#2| |#2| |#2| (-693))) (-15 -2861 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-693))) (-15 -2862 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-693))) (-15 -2863 (|#2| |#2| |#2| (-693))) (-15 -2864 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-693))) (-15 -2865 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-693))) (-15 -3189 (|#2| |#2| |#2|)) (-15 -2866 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2867 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3753 (|#2| |#2| |#2|)) (-15 -2868 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3143 |#2|)) |#2| |#2|)) (-15 -2869 ((-2 (|:| |coef2| |#2|) (|:| -3143 |#2|)) |#2| |#2|)) (-15 -2870 ((-2 (|:| |coef1| |#2|) (|:| -3143 |#2|)) |#2| |#2|)) (-15 -3755 (|#1| |#2|)) (-15 -2871 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3755 |#1|)) |#2|)) (-15 -2872 ((-2 (|:| |coef2| |#2|) (|:| -3755 |#1|)) |#2|)) (-15 -2873 ((-582 |#2|) |#2| |#2|)) (-15 -2874 ((-582 (-693)) |#2| |#2|)) (IF (|has| |#1| (-390)) (PROGN (-15 -2875 (|#1| |#2| |#2|)) (-15 -2876 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2875 |#1|)) |#2| |#2|)) (-15 -2877 ((-2 (|:| |coef2| |#2|) (|:| -2875 |#1|)) |#2| |#2|)) (-15 -3143 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1177 |#2|) |#1| (-1177 |#2|))) (-15 -3464 ((-1177 |#2|) (-1177 |#2|) |#1|)) (-15 -3750 ((-2 (|:| -3952 |#1|) (|:| -1971 |#2|) (|:| -2901 |#2|)) |#2| |#2|)) (-15 -2878 ((-2 (|:| -1971 |#2|) (|:| -2901 |#2|)) |#2| |#2|)) (-15 -2879 (|#1| |#1| |#1| (-693))) (-15 -2880 (|#2| |#2| |#1| |#1| (-693))) (-15 -2881 (|#2| |#2| |#2| |#2| |#1|)) (-15 -2882 (|#1| |#2| |#2|)) (-15 -2883 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3754 |#1|)) |#2| |#2|)) (-15 -2884 ((-2 (|:| |coef2| |#2|) (|:| -3754 |#1|)) |#2| |#2|))) (-494) (-1153 |#1|)) (T -881)) -((-2884 (*1 *2 *3 *3) (-12 (-4 *4 (-494)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3754 *4))) (-5 *1 (-881 *4 *3)) (-4 *3 (-1153 *4)))) (-2883 (*1 *2 *3 *3) (-12 (-4 *4 (-494)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3754 *4))) (-5 *1 (-881 *4 *3)) (-4 *3 (-1153 *4)))) (-2882 (*1 *2 *3 *3) (-12 (-4 *2 (-494)) (-5 *1 (-881 *2 *3)) (-4 *3 (-1153 *2)))) (-2881 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-494)) (-5 *1 (-881 *3 *2)) (-4 *2 (-1153 *3)))) (-2880 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-693)) (-4 *3 (-494)) (-5 *1 (-881 *3 *2)) (-4 *2 (-1153 *3)))) (-2879 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-693)) (-4 *2 (-494)) (-5 *1 (-881 *2 *4)) (-4 *4 (-1153 *2)))) (-2878 (*1 *2 *3 *3) (-12 (-4 *4 (-494)) (-5 *2 (-2 (|:| -1971 *3) (|:| -2901 *3))) (-5 *1 (-881 *4 *3)) (-4 *3 (-1153 *4)))) (-3750 (*1 *2 *3 *3) (-12 (-4 *4 (-494)) (-5 *2 (-2 (|:| -3952 *4) (|:| -1971 *3) (|:| -2901 *3))) (-5 *1 (-881 *4 *3)) (-4 *3 (-1153 *4)))) (-3464 (*1 *2 *2 *3) (-12 (-5 *2 (-1177 *4)) (-4 *4 (-1153 *3)) (-4 *3 (-494)) (-5 *1 (-881 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1177 *4)) (-4 *4 (-1153 *3)) (-4 *3 (-494)) (-5 *1 (-881 *3 *4)))) (-3143 (*1 *2 *2 *2) (-12 (-4 *3 (-390)) (-4 *3 (-494)) (-5 *1 (-881 *3 *2)) (-4 *2 (-1153 *3)))) (-2877 (*1 *2 *3 *3) (-12 (-4 *4 (-390)) (-4 *4 (-494)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2875 *4))) (-5 *1 (-881 *4 *3)) (-4 *3 (-1153 *4)))) (-2876 (*1 *2 *3 *3) (-12 (-4 *4 (-390)) (-4 *4 (-494)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2875 *4))) (-5 *1 (-881 *4 *3)) (-4 *3 (-1153 *4)))) (-2875 (*1 *2 *3 *3) (-12 (-4 *2 (-494)) (-4 *2 (-390)) (-5 *1 (-881 *2 *3)) (-4 *3 (-1153 *2)))) (-2874 (*1 *2 *3 *3) (-12 (-4 *4 (-494)) (-5 *2 (-582 (-693))) (-5 *1 (-881 *4 *3)) (-4 *3 (-1153 *4)))) (-2873 (*1 *2 *3 *3) (-12 (-4 *4 (-494)) (-5 *2 (-582 *3)) (-5 *1 (-881 *4 *3)) (-4 *3 (-1153 *4)))) (-2872 (*1 *2 *3) (-12 (-4 *4 (-494)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3755 *4))) (-5 *1 (-881 *4 *3)) (-4 *3 (-1153 *4)))) (-2871 (*1 *2 *3) (-12 (-4 *4 (-494)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3755 *4))) (-5 *1 (-881 *4 *3)) (-4 *3 (-1153 *4)))) (-3755 (*1 *2 *3) (-12 (-4 *2 (-494)) (-5 *1 (-881 *2 *3)) (-4 *3 (-1153 *2)))) (-2870 (*1 *2 *3 *3) (-12 (-4 *4 (-494)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3143 *3))) (-5 *1 (-881 *4 *3)) (-4 *3 (-1153 *4)))) (-2869 (*1 *2 *3 *3) (-12 (-4 *4 (-494)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3143 *3))) (-5 *1 (-881 *4 *3)) (-4 *3 (-1153 *4)))) (-2868 (*1 *2 *3 *3) (-12 (-4 *4 (-494)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3143 *3))) (-5 *1 (-881 *4 *3)) (-4 *3 (-1153 *4)))) (-3753 (*1 *2 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-881 *3 *2)) (-4 *2 (-1153 *3)))) (-2867 (*1 *2 *3 *3) (-12 (-4 *4 (-494)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-881 *4 *3)) (-4 *3 (-1153 *4)))) (-2866 (*1 *2 *3 *3) (-12 (-4 *4 (-494)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-881 *4 *3)) (-4 *3 (-1153 *4)))) (-3189 (*1 *2 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-881 *3 *2)) (-4 *2 (-1153 *3)))) (-2865 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-693)) (-4 *5 (-494)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-881 *5 *3)) (-4 *3 (-1153 *5)))) (-2864 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-693)) (-4 *5 (-494)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-881 *5 *3)) (-4 *3 (-1153 *5)))) (-2863 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-693)) (-4 *4 (-494)) (-5 *1 (-881 *4 *2)) (-4 *2 (-1153 *4)))) (-2862 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-693)) (-4 *5 (-494)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-881 *5 *3)) (-4 *3 (-1153 *5)))) (-2861 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-693)) (-4 *5 (-494)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-881 *5 *3)) (-4 *3 (-1153 *5)))) (-2860 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-693)) (-4 *4 (-494)) (-5 *1 (-881 *4 *2)) (-4 *2 (-1153 *4)))) (-2859 (*1 *2 *3 *3) (-12 (-4 *4 (-494)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3754 *4))) (-5 *1 (-881 *4 *3)) (-4 *3 (-1153 *4)))) (-2858 (*1 *2 *3 *3) (-12 (-4 *4 (-494)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3754 *4))) (-5 *1 (-881 *4 *3)) (-4 *3 (-1153 *4)))) (-2857 (*1 *2 *3 *3) (-12 (-4 *4 (-494)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3754 *4))) (-5 *1 (-881 *4 *3)) (-4 *3 (-1153 *4)))) (-3754 (*1 *2 *3 *3) (-12 (-4 *2 (-494)) (-5 *1 (-881 *2 *3)) (-4 *3 (-1153 *2))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3317 (((-1128) $) 14 T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3205 (((-1047) $) 11 T ELT)) (-3944 (((-771) $) 21 T ELT) (($ (-1093)) NIL T ELT) (((-1093) $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-882) (-13 (-994) (-10 -8 (-15 -3205 ((-1047) $)) (-15 -3317 ((-1128) $))))) (T -882)) -((-3205 (*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-882)))) (-3317 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-882))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3187 (((-85) $) 40 T ELT)) (-1310 (((-3 $ "failed") $ $) 54 T ELT)) (-3722 (($) NIL T CONST)) (-2886 (((-582 (-781 (-829) (-829))) $) 64 T ELT)) (-3185 (((-85) $) NIL T ELT)) (-2885 (((-829) $) 91 T ELT)) (-2888 (((-582 (-829)) $) 17 T ELT)) (-2887 (((-1067 $) (-693)) 39 T ELT)) (-2889 (($ (-582 (-829))) 16 T ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-2530 (($ $ $) NIL T ELT)) (-2856 (($ $ $) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3008 (($ $) 67 T ELT)) (-3944 (((-771) $) 87 T ELT) (((-582 (-829)) $) 11 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2659 (($) 10 T CONST)) (-2565 (((-85) $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) 44 T ELT)) (-2683 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) 42 T ELT)) (-3837 (($ $ $) 46 T ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) 49 T ELT)) (-3955 (((-693) $) 22 T ELT))) -(((-883) (-13 (-720) (-551 (-582 (-829))) (-10 -8 (-15 -2889 ($ (-582 (-829)))) (-15 -2888 ((-582 (-829)) $)) (-15 -3955 ((-693) $)) (-15 -2887 ((-1067 $) (-693))) (-15 -2886 ((-582 (-781 (-829) (-829))) $)) (-15 -2885 ((-829) $)) (-15 -3008 ($ $))))) (T -883)) -((-2889 (*1 *1 *2) (-12 (-5 *2 (-582 (-829))) (-5 *1 (-883)))) (-2888 (*1 *2 *1) (-12 (-5 *2 (-582 (-829))) (-5 *1 (-883)))) (-3955 (*1 *2 *1) (-12 (-5 *2 (-693)) (-5 *1 (-883)))) (-2887 (*1 *2 *3) (-12 (-5 *3 (-693)) (-5 *2 (-1067 (-883))) (-5 *1 (-883)))) (-2886 (*1 *2 *1) (-12 (-5 *2 (-582 (-781 (-829) (-829)))) (-5 *1 (-883)))) (-2885 (*1 *2 *1) (-12 (-5 *2 (-829)) (-5 *1 (-883)))) (-3008 (*1 *1 *1) (-5 *1 (-883)))) -((-3947 (($ $ |#2|) 31 T ELT)) (-3835 (($ $) 23 T ELT) (($ $ $) NIL T ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-483) $) 17 T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) 21 T ELT) (($ |#2| $) 20 T ELT) (($ (-348 (-483)) $) 27 T ELT) (($ $ (-348 (-483))) 29 T ELT))) -(((-884 |#1| |#2| |#3| |#4|) (-10 -7 (-15 * (|#1| |#1| (-348 (-483)))) (-15 * (|#1| (-348 (-483)) |#1|)) (-15 -3947 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -3835 (|#1| |#1| |#1|)) (-15 -3835 (|#1| |#1|)) (-15 * (|#1| (-483) |#1|)) (-15 * (|#1| (-693) |#1|)) (-15 * (|#1| (-829) |#1|))) (-885 |#2| |#3| |#4|) (-960) (-715) (-755)) (T -884)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-3187 (((-85) $) 22 T ELT)) (-3080 (((-582 |#3|) $) 95 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3980 $) (|:| |associate| $)) $) 71 (|has| |#1| (-494)) ELT)) (-2062 (($ $) 72 (|has| |#1| (-494)) ELT)) (-2060 (((-85) $) 74 (|has| |#1| (-494)) ELT)) (-1310 (((-3 $ "failed") $ $) 26 T ELT)) (-3722 (($) 23 T CONST)) (-3957 (($ $) 80 T ELT)) (-3465 (((-3 $ "failed") $) 42 T ELT)) (-2891 (((-85) $) 94 T ELT)) (-1212 (((-85) $ $) 20 T ELT)) (-2409 (((-85) $) 44 T ELT)) (-3935 (((-85) $) 82 T ELT)) (-2892 (($ |#1| |#2|) 81 T ELT) (($ $ |#3| |#2|) 97 T ELT) (($ $ (-582 |#3|) (-582 |#2|)) 96 T ELT)) (-3956 (($ (-1 |#1| |#1|) $) 83 T ELT)) (-2893 (($ $) 85 T ELT)) (-3173 ((|#1| $) 86 T ELT)) (-3241 (((-1071) $) 11 T ELT)) (-3242 (((-1032) $) 12 T ELT)) (-3464 (((-3 $ "failed") $ $) 70 (|has| |#1| (-494)) ELT)) (-3946 ((|#2| $) 84 T ELT)) (-2890 (($ $) 93 T ELT)) (-3944 (((-771) $) 13 T ELT) (($ (-483)) 41 T ELT) (($ (-348 (-483))) 77 (|has| |#1| (-38 (-348 (-483)))) ELT) (($ $) 69 (|has| |#1| (-494)) ELT) (($ |#1|) 67 (|has| |#1| (-146)) ELT)) (-3675 ((|#1| $ |#2|) 79 T ELT)) (-2701 (((-631 $) $) 68 (|has| |#1| (-118)) ELT)) (-3125 (((-693)) 40 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-2061 (((-85) $ $) 73 (|has| |#1| (-494)) ELT)) (-3124 (((-85) $ $) 33 T ELT)) (-2659 (($) 24 T CONST)) (-2665 (($) 45 T CONST)) (-3055 (((-85) $ $) 8 T ELT)) (-3947 (($ $ |#1|) 78 (|has| |#1| (-312)) ELT)) (-3835 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3837 (($ $ $) 18 T ELT)) (** (($ $ (-829)) 35 T ELT) (($ $ (-693)) 43 T ELT)) (* (($ (-829) $) 17 T ELT) (($ (-693) $) 21 T ELT) (($ (-483) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 88 T ELT) (($ |#1| $) 87 T ELT) (($ (-348 (-483)) $) 76 (|has| |#1| (-38 (-348 (-483)))) ELT) (($ $ (-348 (-483))) 75 (|has| |#1| (-38 (-348 (-483)))) ELT))) -(((-885 |#1| |#2| |#3|) (-113) (-960) (-715) (-755)) (T -885)) -((-3173 (*1 *2 *1) (-12 (-4 *1 (-885 *2 *3 *4)) (-4 *3 (-715)) (-4 *4 (-755)) (-4 *2 (-960)))) (-2893 (*1 *1 *1) (-12 (-4 *1 (-885 *2 *3 *4)) (-4 *2 (-960)) (-4 *3 (-715)) (-4 *4 (-755)))) (-3946 (*1 *2 *1) (-12 (-4 *1 (-885 *3 *2 *4)) (-4 *3 (-960)) (-4 *4 (-755)) (-4 *2 (-715)))) (-2892 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-885 *4 *3 *2)) (-4 *4 (-960)) (-4 *3 (-715)) (-4 *2 (-755)))) (-2892 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-582 *6)) (-5 *3 (-582 *5)) (-4 *1 (-885 *4 *5 *6)) (-4 *4 (-960)) (-4 *5 (-715)) (-4 *6 (-755)))) (-3080 (*1 *2 *1) (-12 (-4 *1 (-885 *3 *4 *5)) (-4 *3 (-960)) (-4 *4 (-715)) (-4 *5 (-755)) (-5 *2 (-582 *5)))) (-2891 (*1 *2 *1) (-12 (-4 *1 (-885 *3 *4 *5)) (-4 *3 (-960)) (-4 *4 (-715)) (-4 *5 (-755)) (-5 *2 (-85)))) (-2890 (*1 *1 *1) (-12 (-4 *1 (-885 *2 *3 *4)) (-4 *2 (-960)) (-4 *3 (-715)) (-4 *4 (-755))))) -(-13 (-47 |t#1| |t#2|) (-10 -8 (-15 -2892 ($ $ |t#3| |t#2|)) (-15 -2892 ($ $ (-582 |t#3|) (-582 |t#2|))) (-15 -2893 ($ $)) (-15 -3173 (|t#1| $)) (-15 -3946 (|t#2| $)) (-15 -3080 ((-582 |t#3|) $)) (-15 -2891 ((-85) $)) (-15 -2890 ($ $)))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-348 (-483))) |has| |#1| (-38 (-348 (-483)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) |has| |#1| (-494)) ((-72) . T) ((-82 (-348 (-483)) (-348 (-483))) |has| |#1| (-38 (-348 (-483)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-494)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-554 (-348 (-483))) |has| |#1| (-38 (-348 (-483)))) ((-554 (-483)) . T) ((-554 |#1|) |has| |#1| (-146)) ((-554 $) |has| |#1| (-494)) ((-551 (-771)) . T) ((-146) OR (|has| |#1| (-494)) (|has| |#1| (-146))) ((-246) |has| |#1| (-494)) ((-494) |has| |#1| (-494)) ((-13) . T) ((-587 (-348 (-483))) |has| |#1| (-38 (-348 (-483)))) ((-587 (-483)) . T) ((-587 |#1|) . T) ((-587 $) . T) ((-589 (-348 (-483))) |has| |#1| (-38 (-348 (-483)))) ((-589 |#1|) . T) ((-589 $) . T) ((-581 (-348 (-483))) |has| |#1| (-38 (-348 (-483)))) ((-581 |#1|) |has| |#1| (-146)) ((-581 $) |has| |#1| (-494)) ((-653 (-348 (-483))) |has| |#1| (-38 (-348 (-483)))) ((-653 |#1|) |has| |#1| (-146)) ((-653 $) |has| |#1| (-494)) ((-662) . T) ((-962 (-348 (-483))) |has| |#1| (-38 (-348 (-483)))) ((-962 |#1|) . T) ((-962 $) OR (|has| |#1| (-494)) (|has| |#1| (-146))) ((-967 (-348 (-483))) |has| |#1| (-38 (-348 (-483)))) ((-967 |#1|) . T) ((-967 $) OR (|has| |#1| (-494)) (|has| |#1| (-146))) ((-960) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T)) -((-2894 (((-1000 (-179)) $) 8 T ELT)) (-2895 (((-1000 (-179)) $) 9 T ELT)) (-2896 (((-1000 (-179)) $) 10 T ELT)) (-2897 (((-582 (-582 (-853 (-179)))) $) 11 T ELT)) (-3944 (((-771) $) 6 T ELT))) -(((-886) (-113)) (T -886)) -((-2897 (*1 *2 *1) (-12 (-4 *1 (-886)) (-5 *2 (-582 (-582 (-853 (-179))))))) (-2896 (*1 *2 *1) (-12 (-4 *1 (-886)) (-5 *2 (-1000 (-179))))) (-2895 (*1 *2 *1) (-12 (-4 *1 (-886)) (-5 *2 (-1000 (-179))))) (-2894 (*1 *2 *1) (-12 (-4 *1 (-886)) (-5 *2 (-1000 (-179)))))) -(-13 (-551 (-771)) (-10 -8 (-15 -2897 ((-582 (-582 (-853 (-179)))) $)) (-15 -2896 ((-1000 (-179)) $)) (-15 -2895 ((-1000 (-179)) $)) (-15 -2894 ((-1000 (-179)) $)))) -(((-551 (-771)) . T)) -((-3080 (((-582 |#4|) $) 23 T ELT)) (-2907 (((-85) $) 55 T ELT)) (-2898 (((-85) $) 54 T ELT)) (-2908 (((-2 (|:| |under| $) (|:| -3129 $) (|:| |upper| $)) $ |#4|) 42 T ELT)) (-2903 (((-85) $) 56 T ELT)) (-2905 (((-85) $ $) 62 T ELT)) (-2904 (((-85) $ $) 65 T ELT)) (-2906 (((-85) $) 60 T ELT)) (-2899 (((-582 |#5|) (-582 |#5|) $) 98 T ELT)) (-2900 (((-582 |#5|) (-582 |#5|) $) 95 T ELT)) (-2901 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 88 T ELT)) (-2913 (((-582 |#4|) $) 27 T ELT)) (-2912 (((-85) |#4| $) 34 T ELT)) (-2902 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 81 T ELT)) (-2909 (($ $ |#4|) 39 T ELT)) (-2911 (($ $ |#4|) 38 T ELT)) (-2910 (($ $ |#4|) 40 T ELT)) (-3055 (((-85) $ $) 46 T ELT))) -(((-887 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2898 ((-85) |#1|)) (-15 -2899 ((-582 |#5|) (-582 |#5|) |#1|)) (-15 -2900 ((-582 |#5|) (-582 |#5|) |#1|)) (-15 -2901 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2902 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2903 ((-85) |#1|)) (-15 -2904 ((-85) |#1| |#1|)) (-15 -2905 ((-85) |#1| |#1|)) (-15 -2906 ((-85) |#1|)) (-15 -2907 ((-85) |#1|)) (-15 -2908 ((-2 (|:| |under| |#1|) (|:| -3129 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -2909 (|#1| |#1| |#4|)) (-15 -2910 (|#1| |#1| |#4|)) (-15 -2911 (|#1| |#1| |#4|)) (-15 -2912 ((-85) |#4| |#1|)) (-15 -2913 ((-582 |#4|) |#1|)) (-15 -3080 ((-582 |#4|) |#1|)) (-15 -3055 ((-85) |#1| |#1|))) (-888 |#2| |#3| |#4| |#5|) (-960) (-716) (-755) (-976 |#2| |#3| |#4|)) (T -887)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-3080 (((-582 |#3|) $) 37 T ELT)) (-2907 (((-85) $) 30 T ELT)) (-2898 (((-85) $) 21 (|has| |#1| (-494)) ELT)) (-2908 (((-2 (|:| |under| $) (|:| -3129 $) (|:| |upper| $)) $ |#3|) 31 T ELT)) (-3708 (($ (-1 (-85) |#4|) $) 66 (|has| $ (-6 -3993)) ELT)) (-3722 (($) 46 T CONST)) (-2903 (((-85) $) 26 (|has| |#1| (-494)) ELT)) (-2905 (((-85) $ $) 28 (|has| |#1| (-494)) ELT)) (-2904 (((-85) $ $) 27 (|has| |#1| (-494)) ELT)) (-2906 (((-85) $) 29 (|has| |#1| (-494)) ELT)) (-2899 (((-582 |#4|) (-582 |#4|) $) 22 (|has| |#1| (-494)) ELT)) (-2900 (((-582 |#4|) (-582 |#4|) $) 23 (|has| |#1| (-494)) ELT)) (-3156 (((-3 $ "failed") (-582 |#4|)) 40 T ELT)) (-3155 (($ (-582 |#4|)) 39 T ELT)) (-1351 (($ $) 69 (-12 (|has| |#4| (-1012)) (|has| $ (-6 -3993))) ELT)) (-3404 (($ |#4| $) 68 (-12 (|has| |#4| (-1012)) (|has| $ (-6 -3993))) ELT) (($ (-1 (-85) |#4|) $) 65 (|has| $ (-6 -3993)) ELT)) (-2901 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 24 (|has| |#1| (-494)) ELT)) (-3840 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1012)) (|has| $ (-6 -3993))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -3993)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -3993)) ELT)) (-2888 (((-582 |#4|) $) 53 (|has| $ (-6 -3993)) ELT)) (-3179 ((|#3| $) 38 T ELT)) (-2607 (((-582 |#4|) $) 54 (|has| $ (-6 -3993)) ELT)) (-3244 (((-85) |#4| $) 56 (-12 (|has| |#4| (-1012)) (|has| $ (-6 -3993))) ELT)) (-1947 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -3994)) ELT)) (-3956 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-2913 (((-582 |#3|) $) 36 T ELT)) (-2912 (((-85) |#3| $) 35 T ELT)) (-3241 (((-1071) $) 11 T ELT)) (-2902 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-494)) ELT)) (-3242 (((-1032) $) 12 T ELT)) (-1352 (((-3 |#4| "failed") (-1 (-85) |#4|) $) 62 T ELT)) (-1945 (((-85) (-1 (-85) |#4|) $) 51 (|has| $ (-6 -3993)) ELT)) (-3766 (($ $ (-582 |#4|) (-582 |#4|)) 60 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1012))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1012))) ELT) (($ $ (-249 |#4|)) 58 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1012))) ELT) (($ $ (-582 (-249 |#4|))) 57 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1012))) ELT)) (-1220 (((-85) $ $) 42 T ELT)) (-3401 (((-85) $) 45 T ELT)) (-3563 (($) 44 T ELT)) (-1944 (((-693) |#4| $) 55 (-12 (|has| |#4| (-1012)) (|has| $ (-6 -3993))) ELT) (((-693) (-1 (-85) |#4|) $) 52 (|has| $ (-6 -3993)) ELT)) (-3398 (($ $) 43 T ELT)) (-3970 (((-472) $) 70 (|has| |#4| (-552 (-472))) ELT)) (-3528 (($ (-582 |#4|)) 61 T ELT)) (-2909 (($ $ |#3|) 32 T ELT)) (-2911 (($ $ |#3|) 34 T ELT)) (-2910 (($ $ |#3|) 33 T ELT)) (-3944 (((-771) $) 13 T ELT) (((-582 |#4|) $) 41 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-1946 (((-85) (-1 (-85) |#4|) $) 50 (|has| $ (-6 -3993)) ELT)) (-3055 (((-85) $ $) 8 T ELT)) (-3955 (((-693) $) 47 (|has| $ (-6 -3993)) ELT))) -(((-888 |#1| |#2| |#3| |#4|) (-113) (-960) (-716) (-755) (-976 |t#1| |t#2| |t#3|)) (T -888)) -((-3156 (*1 *1 *2) (|partial| -12 (-5 *2 (-582 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-960)) (-4 *4 (-716)) (-4 *5 (-755)) (-4 *1 (-888 *3 *4 *5 *6)))) (-3155 (*1 *1 *2) (-12 (-5 *2 (-582 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-960)) (-4 *4 (-716)) (-4 *5 (-755)) (-4 *1 (-888 *3 *4 *5 *6)))) (-3179 (*1 *2 *1) (-12 (-4 *1 (-888 *3 *4 *2 *5)) (-4 *3 (-960)) (-4 *4 (-716)) (-4 *5 (-976 *3 *4 *2)) (-4 *2 (-755)))) (-3080 (*1 *2 *1) (-12 (-4 *1 (-888 *3 *4 *5 *6)) (-4 *3 (-960)) (-4 *4 (-716)) (-4 *5 (-755)) (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-582 *5)))) (-2913 (*1 *2 *1) (-12 (-4 *1 (-888 *3 *4 *5 *6)) (-4 *3 (-960)) (-4 *4 (-716)) (-4 *5 (-755)) (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-582 *5)))) (-2912 (*1 *2 *3 *1) (-12 (-4 *1 (-888 *4 *5 *3 *6)) (-4 *4 (-960)) (-4 *5 (-716)) (-4 *3 (-755)) (-4 *6 (-976 *4 *5 *3)) (-5 *2 (-85)))) (-2911 (*1 *1 *1 *2) (-12 (-4 *1 (-888 *3 *4 *2 *5)) (-4 *3 (-960)) (-4 *4 (-716)) (-4 *2 (-755)) (-4 *5 (-976 *3 *4 *2)))) (-2910 (*1 *1 *1 *2) (-12 (-4 *1 (-888 *3 *4 *2 *5)) (-4 *3 (-960)) (-4 *4 (-716)) (-4 *2 (-755)) (-4 *5 (-976 *3 *4 *2)))) (-2909 (*1 *1 *1 *2) (-12 (-4 *1 (-888 *3 *4 *2 *5)) (-4 *3 (-960)) (-4 *4 (-716)) (-4 *2 (-755)) (-4 *5 (-976 *3 *4 *2)))) (-2908 (*1 *2 *1 *3) (-12 (-4 *4 (-960)) (-4 *5 (-716)) (-4 *3 (-755)) (-4 *6 (-976 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -3129 *1) (|:| |upper| *1))) (-4 *1 (-888 *4 *5 *3 *6)))) (-2907 (*1 *2 *1) (-12 (-4 *1 (-888 *3 *4 *5 *6)) (-4 *3 (-960)) (-4 *4 (-716)) (-4 *5 (-755)) (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-85)))) (-2906 (*1 *2 *1) (-12 (-4 *1 (-888 *3 *4 *5 *6)) (-4 *3 (-960)) (-4 *4 (-716)) (-4 *5 (-755)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-494)) (-5 *2 (-85)))) (-2905 (*1 *2 *1 *1) (-12 (-4 *1 (-888 *3 *4 *5 *6)) (-4 *3 (-960)) (-4 *4 (-716)) (-4 *5 (-755)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-494)) (-5 *2 (-85)))) (-2904 (*1 *2 *1 *1) (-12 (-4 *1 (-888 *3 *4 *5 *6)) (-4 *3 (-960)) (-4 *4 (-716)) (-4 *5 (-755)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-494)) (-5 *2 (-85)))) (-2903 (*1 *2 *1) (-12 (-4 *1 (-888 *3 *4 *5 *6)) (-4 *3 (-960)) (-4 *4 (-716)) (-4 *5 (-755)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-494)) (-5 *2 (-85)))) (-2902 (*1 *2 *3 *1) (-12 (-4 *1 (-888 *4 *5 *6 *3)) (-4 *4 (-960)) (-4 *5 (-716)) (-4 *6 (-755)) (-4 *3 (-976 *4 *5 *6)) (-4 *4 (-494)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-2901 (*1 *2 *3 *1) (-12 (-4 *1 (-888 *4 *5 *6 *3)) (-4 *4 (-960)) (-4 *5 (-716)) (-4 *6 (-755)) (-4 *3 (-976 *4 *5 *6)) (-4 *4 (-494)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-2900 (*1 *2 *2 *1) (-12 (-5 *2 (-582 *6)) (-4 *1 (-888 *3 *4 *5 *6)) (-4 *3 (-960)) (-4 *4 (-716)) (-4 *5 (-755)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-494)))) (-2899 (*1 *2 *2 *1) (-12 (-5 *2 (-582 *6)) (-4 *1 (-888 *3 *4 *5 *6)) (-4 *3 (-960)) (-4 *4 (-716)) (-4 *5 (-755)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-494)))) (-2898 (*1 *2 *1) (-12 (-4 *1 (-888 *3 *4 *5 *6)) (-4 *3 (-960)) (-4 *4 (-716)) (-4 *5 (-755)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-494)) (-5 *2 (-85))))) -(-13 (-1012) (-124 |t#4|) (-551 (-582 |t#4|)) (-10 -8 (-6 -3993) (-15 -3156 ((-3 $ "failed") (-582 |t#4|))) (-15 -3155 ($ (-582 |t#4|))) (-15 -3179 (|t#3| $)) (-15 -3080 ((-582 |t#3|) $)) (-15 -2913 ((-582 |t#3|) $)) (-15 -2912 ((-85) |t#3| $)) (-15 -2911 ($ $ |t#3|)) (-15 -2910 ($ $ |t#3|)) (-15 -2909 ($ $ |t#3|)) (-15 -2908 ((-2 (|:| |under| $) (|:| -3129 $) (|:| |upper| $)) $ |t#3|)) (-15 -2907 ((-85) $)) (IF (|has| |t#1| (-494)) (PROGN (-15 -2906 ((-85) $)) (-15 -2905 ((-85) $ $)) (-15 -2904 ((-85) $ $)) (-15 -2903 ((-85) $)) (-15 -2902 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -2901 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -2900 ((-582 |t#4|) (-582 |t#4|) $)) (-15 -2899 ((-582 |t#4|) (-582 |t#4|) $)) (-15 -2898 ((-85) $))) |%noBranch|))) -(((-34) . T) ((-72) . T) ((-551 (-582 |#4|)) . T) ((-551 (-771)) . T) ((-124 |#4|) . T) ((-552 (-472)) |has| |#4| (-552 (-472))) ((-260 |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1012))) ((-427 |#4|) . T) ((-454 |#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1012))) ((-13) . T) ((-1012) . T) ((-1127) . T)) -((-2915 (((-582 |#4|) |#4| |#4|) 135 T ELT)) (-2938 (((-582 |#4|) (-582 |#4|) (-85)) 123 (|has| |#1| (-390)) ELT) (((-582 |#4|) (-582 |#4|)) 124 (|has| |#1| (-390)) ELT)) (-2925 (((-2 (|:| |goodPols| (-582 |#4|)) (|:| |badPols| (-582 |#4|))) (-582 |#4|)) 44 T ELT)) (-2924 (((-85) |#4|) 43 T ELT)) (-2937 (((-582 |#4|) |#4|) 120 (|has| |#1| (-390)) ELT)) (-2920 (((-2 (|:| |goodPols| (-582 |#4|)) (|:| |badPols| (-582 |#4|))) (-1 (-85) |#4|) (-582 |#4|)) 24 T ELT)) (-2921 (((-2 (|:| |goodPols| (-582 |#4|)) (|:| |badPols| (-582 |#4|))) (-582 (-1 (-85) |#4|)) (-582 |#4|)) 30 T ELT)) (-2922 (((-2 (|:| |goodPols| (-582 |#4|)) (|:| |badPols| (-582 |#4|))) (-582 (-1 (-85) |#4|)) (-582 |#4|)) 31 T ELT)) (-2933 (((-3 (-2 (|:| |bas| (-414 |#1| |#2| |#3| |#4|)) (|:| -3322 (-582 |#4|))) "failed") (-582 |#4|)) 90 T ELT)) (-2935 (((-582 |#4|) (-582 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|)) 103 T ELT)) (-2936 (((-582 |#4|) (-582 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|)) 127 T ELT)) (-2914 (((-582 |#4|) (-582 |#4|)) 126 T ELT)) (-2930 (((-582 |#4|) (-582 |#4|) (-582 |#4|) (-85)) 59 T ELT) (((-582 |#4|) (-582 |#4|) (-582 |#4|)) 61 T ELT)) (-2931 ((|#4| |#4| (-582 |#4|)) 60 T ELT)) (-2939 (((-582 |#4|) (-582 |#4|) (-582 |#4|)) 131 (|has| |#1| (-390)) ELT)) (-2941 (((-582 |#4|) (-582 |#4|) (-582 |#4|)) 134 (|has| |#1| (-390)) ELT)) (-2940 (((-582 |#4|) (-582 |#4|) (-582 |#4|)) 133 (|has| |#1| (-390)) ELT)) (-2916 (((-582 |#4|) (-582 |#4|) (-582 |#4|) (-1 (-582 |#4|) (-582 |#4|))) 105 T ELT) (((-582 |#4|) (-582 |#4|) (-582 |#4|)) 107 T ELT) (((-582 |#4|) (-582 |#4|) |#4|) 139 T ELT) (((-582 |#4|) |#4| |#4|) 136 T ELT) (((-582 |#4|) (-582 |#4|)) 106 T ELT)) (-2944 (((-582 |#4|) (-582 |#4|) (-582 |#4|)) 117 (-12 (|has| |#1| (-120)) (|has| |#1| (-258))) ELT)) (-2923 (((-2 (|:| |goodPols| (-582 |#4|)) (|:| |badPols| (-582 |#4|))) (-582 |#4|)) 52 T ELT)) (-2919 (((-85) (-582 |#4|)) 79 T ELT)) (-2918 (((-85) (-582 |#4|) (-582 (-582 |#4|))) 67 T ELT)) (-2927 (((-2 (|:| |goodPols| (-582 |#4|)) (|:| |badPols| (-582 |#4|))) (-582 |#4|)) 37 T ELT)) (-2926 (((-85) |#4|) 36 T ELT)) (-2943 (((-582 |#4|) (-582 |#4|)) 116 (-12 (|has| |#1| (-120)) (|has| |#1| (-258))) ELT)) (-2942 (((-582 |#4|) (-582 |#4|)) 115 (-12 (|has| |#1| (-120)) (|has| |#1| (-258))) ELT)) (-2932 (((-582 |#4|) (-582 |#4|)) 83 T ELT)) (-2934 (((-582 |#4|) (-582 |#4|)) 97 T ELT)) (-2917 (((-85) (-582 |#4|) (-582 |#4|)) 65 T ELT)) (-2929 (((-2 (|:| |goodPols| (-582 |#4|)) (|:| |badPols| (-582 |#4|))) (-582 |#4|)) 50 T ELT)) (-2928 (((-85) |#4|) 45 T ELT))) -(((-889 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2916 ((-582 |#4|) (-582 |#4|))) (-15 -2916 ((-582 |#4|) |#4| |#4|)) (-15 -2914 ((-582 |#4|) (-582 |#4|))) (-15 -2915 ((-582 |#4|) |#4| |#4|)) (-15 -2916 ((-582 |#4|) (-582 |#4|) |#4|)) (-15 -2916 ((-582 |#4|) (-582 |#4|) (-582 |#4|))) (-15 -2916 ((-582 |#4|) (-582 |#4|) (-582 |#4|) (-1 (-582 |#4|) (-582 |#4|)))) (-15 -2917 ((-85) (-582 |#4|) (-582 |#4|))) (-15 -2918 ((-85) (-582 |#4|) (-582 (-582 |#4|)))) (-15 -2919 ((-85) (-582 |#4|))) (-15 -2920 ((-2 (|:| |goodPols| (-582 |#4|)) (|:| |badPols| (-582 |#4|))) (-1 (-85) |#4|) (-582 |#4|))) (-15 -2921 ((-2 (|:| |goodPols| (-582 |#4|)) (|:| |badPols| (-582 |#4|))) (-582 (-1 (-85) |#4|)) (-582 |#4|))) (-15 -2922 ((-2 (|:| |goodPols| (-582 |#4|)) (|:| |badPols| (-582 |#4|))) (-582 (-1 (-85) |#4|)) (-582 |#4|))) (-15 -2923 ((-2 (|:| |goodPols| (-582 |#4|)) (|:| |badPols| (-582 |#4|))) (-582 |#4|))) (-15 -2924 ((-85) |#4|)) (-15 -2925 ((-2 (|:| |goodPols| (-582 |#4|)) (|:| |badPols| (-582 |#4|))) (-582 |#4|))) (-15 -2926 ((-85) |#4|)) (-15 -2927 ((-2 (|:| |goodPols| (-582 |#4|)) (|:| |badPols| (-582 |#4|))) (-582 |#4|))) (-15 -2928 ((-85) |#4|)) (-15 -2929 ((-2 (|:| |goodPols| (-582 |#4|)) (|:| |badPols| (-582 |#4|))) (-582 |#4|))) (-15 -2930 ((-582 |#4|) (-582 |#4|) (-582 |#4|))) (-15 -2930 ((-582 |#4|) (-582 |#4|) (-582 |#4|) (-85))) (-15 -2931 (|#4| |#4| (-582 |#4|))) (-15 -2932 ((-582 |#4|) (-582 |#4|))) (-15 -2933 ((-3 (-2 (|:| |bas| (-414 |#1| |#2| |#3| |#4|)) (|:| -3322 (-582 |#4|))) "failed") (-582 |#4|))) (-15 -2934 ((-582 |#4|) (-582 |#4|))) (-15 -2935 ((-582 |#4|) (-582 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2936 ((-582 |#4|) (-582 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-390)) (PROGN (-15 -2937 ((-582 |#4|) |#4|)) (-15 -2938 ((-582 |#4|) (-582 |#4|))) (-15 -2938 ((-582 |#4|) (-582 |#4|) (-85))) (-15 -2939 ((-582 |#4|) (-582 |#4|) (-582 |#4|))) (-15 -2940 ((-582 |#4|) (-582 |#4|) (-582 |#4|))) (-15 -2941 ((-582 |#4|) (-582 |#4|) (-582 |#4|)))) |%noBranch|) (IF (|has| |#1| (-258)) (IF (|has| |#1| (-120)) (PROGN (-15 -2942 ((-582 |#4|) (-582 |#4|))) (-15 -2943 ((-582 |#4|) (-582 |#4|))) (-15 -2944 ((-582 |#4|) (-582 |#4|) (-582 |#4|)))) |%noBranch|) |%noBranch|)) (-494) (-716) (-755) (-976 |#1| |#2| |#3|)) (T -889)) -((-2944 (*1 *2 *2 *2) (-12 (-5 *2 (-582 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-120)) (-4 *3 (-258)) (-4 *3 (-494)) (-4 *4 (-716)) (-4 *5 (-755)) (-5 *1 (-889 *3 *4 *5 *6)))) (-2943 (*1 *2 *2) (-12 (-5 *2 (-582 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-120)) (-4 *3 (-258)) (-4 *3 (-494)) (-4 *4 (-716)) (-4 *5 (-755)) (-5 *1 (-889 *3 *4 *5 *6)))) (-2942 (*1 *2 *2) (-12 (-5 *2 (-582 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-120)) (-4 *3 (-258)) (-4 *3 (-494)) (-4 *4 (-716)) (-4 *5 (-755)) (-5 *1 (-889 *3 *4 *5 *6)))) (-2941 (*1 *2 *2 *2) (-12 (-5 *2 (-582 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-390)) (-4 *3 (-494)) (-4 *4 (-716)) (-4 *5 (-755)) (-5 *1 (-889 *3 *4 *5 *6)))) (-2940 (*1 *2 *2 *2) (-12 (-5 *2 (-582 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-390)) (-4 *3 (-494)) (-4 *4 (-716)) (-4 *5 (-755)) (-5 *1 (-889 *3 *4 *5 *6)))) (-2939 (*1 *2 *2 *2) (-12 (-5 *2 (-582 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-390)) (-4 *3 (-494)) (-4 *4 (-716)) (-4 *5 (-755)) (-5 *1 (-889 *3 *4 *5 *6)))) (-2938 (*1 *2 *2 *3) (-12 (-5 *2 (-582 *7)) (-5 *3 (-85)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-390)) (-4 *4 (-494)) (-4 *5 (-716)) (-4 *6 (-755)) (-5 *1 (-889 *4 *5 *6 *7)))) (-2938 (*1 *2 *2) (-12 (-5 *2 (-582 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-390)) (-4 *3 (-494)) (-4 *4 (-716)) (-4 *5 (-755)) (-5 *1 (-889 *3 *4 *5 *6)))) (-2937 (*1 *2 *3) (-12 (-4 *4 (-390)) (-4 *4 (-494)) (-4 *5 (-716)) (-4 *6 (-755)) (-5 *2 (-582 *3)) (-5 *1 (-889 *4 *5 *6 *3)) (-4 *3 (-976 *4 *5 *6)))) (-2936 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-582 *8)) (-5 *3 (-1 (-85) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-976 *5 *6 *7)) (-4 *5 (-494)) (-4 *6 (-716)) (-4 *7 (-755)) (-5 *1 (-889 *5 *6 *7 *8)))) (-2935 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-582 *9)) (-5 *3 (-1 (-85) *9)) (-5 *4 (-1 (-85) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-976 *6 *7 *8)) (-4 *6 (-494)) (-4 *7 (-716)) (-4 *8 (-755)) (-5 *1 (-889 *6 *7 *8 *9)))) (-2934 (*1 *2 *2) (-12 (-5 *2 (-582 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-494)) (-4 *4 (-716)) (-4 *5 (-755)) (-5 *1 (-889 *3 *4 *5 *6)))) (-2933 (*1 *2 *3) (|partial| -12 (-4 *4 (-494)) (-4 *5 (-716)) (-4 *6 (-755)) (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-414 *4 *5 *6 *7)) (|:| -3322 (-582 *7)))) (-5 *1 (-889 *4 *5 *6 *7)) (-5 *3 (-582 *7)))) (-2932 (*1 *2 *2) (-12 (-5 *2 (-582 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-494)) (-4 *4 (-716)) (-4 *5 (-755)) (-5 *1 (-889 *3 *4 *5 *6)))) (-2931 (*1 *2 *2 *3) (-12 (-5 *3 (-582 *2)) (-4 *2 (-976 *4 *5 *6)) (-4 *4 (-494)) (-4 *5 (-716)) (-4 *6 (-755)) (-5 *1 (-889 *4 *5 *6 *2)))) (-2930 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-582 *7)) (-5 *3 (-85)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-494)) (-4 *5 (-716)) (-4 *6 (-755)) (-5 *1 (-889 *4 *5 *6 *7)))) (-2930 (*1 *2 *2 *2) (-12 (-5 *2 (-582 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-494)) (-4 *4 (-716)) (-4 *5 (-755)) (-5 *1 (-889 *3 *4 *5 *6)))) (-2929 (*1 *2 *3) (-12 (-4 *4 (-494)) (-4 *5 (-716)) (-4 *6 (-755)) (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-582 *7)) (|:| |badPols| (-582 *7)))) (-5 *1 (-889 *4 *5 *6 *7)) (-5 *3 (-582 *7)))) (-2928 (*1 *2 *3) (-12 (-4 *4 (-494)) (-4 *5 (-716)) (-4 *6 (-755)) (-5 *2 (-85)) (-5 *1 (-889 *4 *5 *6 *3)) (-4 *3 (-976 *4 *5 *6)))) (-2927 (*1 *2 *3) (-12 (-4 *4 (-494)) (-4 *5 (-716)) (-4 *6 (-755)) (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-582 *7)) (|:| |badPols| (-582 *7)))) (-5 *1 (-889 *4 *5 *6 *7)) (-5 *3 (-582 *7)))) (-2926 (*1 *2 *3) (-12 (-4 *4 (-494)) (-4 *5 (-716)) (-4 *6 (-755)) (-5 *2 (-85)) (-5 *1 (-889 *4 *5 *6 *3)) (-4 *3 (-976 *4 *5 *6)))) (-2925 (*1 *2 *3) (-12 (-4 *4 (-494)) (-4 *5 (-716)) (-4 *6 (-755)) (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-582 *7)) (|:| |badPols| (-582 *7)))) (-5 *1 (-889 *4 *5 *6 *7)) (-5 *3 (-582 *7)))) (-2924 (*1 *2 *3) (-12 (-4 *4 (-494)) (-4 *5 (-716)) (-4 *6 (-755)) (-5 *2 (-85)) (-5 *1 (-889 *4 *5 *6 *3)) (-4 *3 (-976 *4 *5 *6)))) (-2923 (*1 *2 *3) (-12 (-4 *4 (-494)) (-4 *5 (-716)) (-4 *6 (-755)) (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-582 *7)) (|:| |badPols| (-582 *7)))) (-5 *1 (-889 *4 *5 *6 *7)) (-5 *3 (-582 *7)))) (-2922 (*1 *2 *3 *4) (-12 (-5 *3 (-582 (-1 (-85) *8))) (-4 *8 (-976 *5 *6 *7)) (-4 *5 (-494)) (-4 *6 (-716)) (-4 *7 (-755)) (-5 *2 (-2 (|:| |goodPols| (-582 *8)) (|:| |badPols| (-582 *8)))) (-5 *1 (-889 *5 *6 *7 *8)) (-5 *4 (-582 *8)))) (-2921 (*1 *2 *3 *4) (-12 (-5 *3 (-582 (-1 (-85) *8))) (-4 *8 (-976 *5 *6 *7)) (-4 *5 (-494)) (-4 *6 (-716)) (-4 *7 (-755)) (-5 *2 (-2 (|:| |goodPols| (-582 *8)) (|:| |badPols| (-582 *8)))) (-5 *1 (-889 *5 *6 *7 *8)) (-5 *4 (-582 *8)))) (-2920 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-85) *8)) (-4 *8 (-976 *5 *6 *7)) (-4 *5 (-494)) (-4 *6 (-716)) (-4 *7 (-755)) (-5 *2 (-2 (|:| |goodPols| (-582 *8)) (|:| |badPols| (-582 *8)))) (-5 *1 (-889 *5 *6 *7 *8)) (-5 *4 (-582 *8)))) (-2919 (*1 *2 *3) (-12 (-5 *3 (-582 *7)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-494)) (-4 *5 (-716)) (-4 *6 (-755)) (-5 *2 (-85)) (-5 *1 (-889 *4 *5 *6 *7)))) (-2918 (*1 *2 *3 *4) (-12 (-5 *4 (-582 (-582 *8))) (-5 *3 (-582 *8)) (-4 *8 (-976 *5 *6 *7)) (-4 *5 (-494)) (-4 *6 (-716)) (-4 *7 (-755)) (-5 *2 (-85)) (-5 *1 (-889 *5 *6 *7 *8)))) (-2917 (*1 *2 *3 *3) (-12 (-5 *3 (-582 *7)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-494)) (-4 *5 (-716)) (-4 *6 (-755)) (-5 *2 (-85)) (-5 *1 (-889 *4 *5 *6 *7)))) (-2916 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-582 *7) (-582 *7))) (-5 *2 (-582 *7)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-494)) (-4 *5 (-716)) (-4 *6 (-755)) (-5 *1 (-889 *4 *5 *6 *7)))) (-2916 (*1 *2 *2 *2) (-12 (-5 *2 (-582 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-494)) (-4 *4 (-716)) (-4 *5 (-755)) (-5 *1 (-889 *3 *4 *5 *6)))) (-2916 (*1 *2 *2 *3) (-12 (-5 *2 (-582 *3)) (-4 *3 (-976 *4 *5 *6)) (-4 *4 (-494)) (-4 *5 (-716)) (-4 *6 (-755)) (-5 *1 (-889 *4 *5 *6 *3)))) (-2915 (*1 *2 *3 *3) (-12 (-4 *4 (-494)) (-4 *5 (-716)) (-4 *6 (-755)) (-5 *2 (-582 *3)) (-5 *1 (-889 *4 *5 *6 *3)) (-4 *3 (-976 *4 *5 *6)))) (-2914 (*1 *2 *2) (-12 (-5 *2 (-582 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-494)) (-4 *4 (-716)) (-4 *5 (-755)) (-5 *1 (-889 *3 *4 *5 *6)))) (-2916 (*1 *2 *3 *3) (-12 (-4 *4 (-494)) (-4 *5 (-716)) (-4 *6 (-755)) (-5 *2 (-582 *3)) (-5 *1 (-889 *4 *5 *6 *3)) (-4 *3 (-976 *4 *5 *6)))) (-2916 (*1 *2 *2) (-12 (-5 *2 (-582 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-494)) (-4 *4 (-716)) (-4 *5 (-755)) (-5 *1 (-889 *3 *4 *5 *6))))) -((-2945 (((-2 (|:| R (-629 |#1|)) (|:| A (-629 |#1|)) (|:| |Ainv| (-629 |#1|))) (-629 |#1|) (-69 |#1|) (-1 |#1| |#1|)) 19 T ELT)) (-2947 (((-582 (-2 (|:| C (-629 |#1|)) (|:| |g| (-1177 |#1|)))) (-629 |#1|) (-1177 |#1|)) 45 T ELT)) (-2946 (((-629 |#1|) (-629 |#1|) (-629 |#1|) (-69 |#1|) (-1 |#1| |#1|)) 16 T ELT))) -(((-890 |#1|) (-10 -7 (-15 -2945 ((-2 (|:| R (-629 |#1|)) (|:| A (-629 |#1|)) (|:| |Ainv| (-629 |#1|))) (-629 |#1|) (-69 |#1|) (-1 |#1| |#1|))) (-15 -2946 ((-629 |#1|) (-629 |#1|) (-629 |#1|) (-69 |#1|) (-1 |#1| |#1|))) (-15 -2947 ((-582 (-2 (|:| C (-629 |#1|)) (|:| |g| (-1177 |#1|)))) (-629 |#1|) (-1177 |#1|)))) (-312)) (T -890)) -((-2947 (*1 *2 *3 *4) (-12 (-4 *5 (-312)) (-5 *2 (-582 (-2 (|:| C (-629 *5)) (|:| |g| (-1177 *5))))) (-5 *1 (-890 *5)) (-5 *3 (-629 *5)) (-5 *4 (-1177 *5)))) (-2946 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-629 *5)) (-5 *3 (-69 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-312)) (-5 *1 (-890 *5)))) (-2945 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-69 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-312)) (-5 *2 (-2 (|:| R (-629 *6)) (|:| A (-629 *6)) (|:| |Ainv| (-629 *6)))) (-5 *1 (-890 *6)) (-5 *3 (-629 *6))))) -((-3969 (((-346 |#4|) |#4|) 61 T ELT))) -(((-891 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3969 ((-346 |#4|) |#4|))) (-755) (-716) (-390) (-860 |#3| |#2| |#1|)) (T -891)) -((-3969 (*1 *2 *3) (-12 (-4 *4 (-755)) (-4 *5 (-716)) (-4 *6 (-390)) (-5 *2 (-346 *3)) (-5 *1 (-891 *4 *5 *6 *3)) (-4 *3 (-860 *6 *5 *4))))) -((-2567 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3836 (($ (-693)) 121 (|has| |#1| (-23)) ELT)) (-2197 (((-1183) $ (-483) (-483)) 44 (|has| $ (-6 -3994)) ELT)) (-1730 (((-85) (-1 (-85) |#1| |#1|) $) 107 T ELT) (((-85) $) 101 (|has| |#1| (-755)) ELT)) (-1728 (($ (-1 (-85) |#1| |#1|) $) 98 (|has| $ (-6 -3994)) ELT) (($ $) 97 (-12 (|has| |#1| (-755)) (|has| $ (-6 -3994))) ELT)) (-2908 (($ (-1 (-85) |#1| |#1|) $) 108 T ELT) (($ $) 102 (|has| |#1| (-755)) ELT)) (-3786 ((|#1| $ (-483) |#1|) 56 (|has| $ (-6 -3994)) ELT) ((|#1| $ (-1144 (-483)) |#1|) 64 (|has| $ (-6 -3994)) ELT)) (-3708 (($ (-1 (-85) |#1|) $) 81 (|has| $ (-6 -3993)) ELT)) (-3722 (($) 7 T CONST)) (-2296 (($ $) 99 (|has| $ (-6 -3994)) ELT)) (-2297 (($ $) 109 T ELT)) (-1351 (($ $) 84 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3993))) ELT)) (-3404 (($ |#1| $) 83 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3993))) ELT) (($ (-1 (-85) |#1|) $) 80 (|has| $ (-6 -3993)) ELT)) (-3840 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3993))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -3993)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -3993)) ELT)) (-1574 ((|#1| $ (-483) |#1|) 57 (|has| $ (-6 -3994)) ELT)) (-3111 ((|#1| $ (-483)) 55 T ELT)) (-3417 (((-483) (-1 (-85) |#1|) $) 106 T ELT) (((-483) |#1| $) 105 (|has| |#1| (-1012)) ELT) (((-483) |#1| $ (-483)) 104 (|has| |#1| (-1012)) ELT)) (-3704 (($ (-582 |#1|)) 127 T ELT)) (-2888 (((-582 |#1|) $) 30 (|has| $ (-6 -3993)) ELT)) (-3833 (((-629 |#1|) $ $) 114 (|has| |#1| (-960)) ELT)) (-3612 (($ (-693) |#1|) 74 T ELT)) (-2199 (((-483) $) 47 (|has| (-483) (-755)) ELT)) (-2530 (($ $ $) 91 (|has| |#1| (-755)) ELT)) (-3516 (($ (-1 (-85) |#1| |#1|) $ $) 110 T ELT) (($ $ $) 103 (|has| |#1| (-755)) ELT)) (-2607 (((-582 |#1|) $) 29 (|has| $ (-6 -3993)) ELT)) (-3244 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3993))) ELT)) (-2200 (((-483) $) 48 (|has| (-483) (-755)) ELT)) (-2856 (($ $ $) 92 (|has| |#1| (-755)) ELT)) (-1947 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3994)) ELT)) (-3956 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-3830 ((|#1| $) 111 (-12 (|has| |#1| (-960)) (|has| |#1| (-914))) ELT)) (-3831 ((|#1| $) 112 (-12 (|has| |#1| (-960)) (|has| |#1| (-914))) ELT)) (-3241 (((-1071) $) 22 (|has| |#1| (-1012)) ELT)) (-2303 (($ |#1| $ (-483)) 66 T ELT) (($ $ $ (-483)) 65 T ELT)) (-2202 (((-582 (-483)) $) 50 T ELT)) (-2203 (((-85) (-483) $) 51 T ELT)) (-3242 (((-1032) $) 21 (|has| |#1| (-1012)) ELT)) (-3799 ((|#1| $) 46 (|has| (-483) (-755)) ELT)) (-1352 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 77 T ELT)) (-2198 (($ $ |#1|) 45 (|has| $ (-6 -3994)) ELT)) (-3767 (($ $ (-582 |#1|)) 125 T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3993)) ELT)) (-3766 (($ $ (-582 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-582 |#1|) (-582 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT)) (-1220 (((-85) $ $) 11 T ELT)) (-2201 (((-85) |#1| $) 49 (-12 (|has| $ (-6 -3993)) (|has| |#1| (-1012))) ELT)) (-2204 (((-582 |#1|) $) 52 T ELT)) (-3401 (((-85) $) 8 T ELT)) (-3563 (($) 9 T ELT)) (-3798 ((|#1| $ (-483) |#1|) 54 T ELT) ((|#1| $ (-483)) 53 T ELT) (($ $ (-1144 (-483))) 75 T ELT)) (-3834 ((|#1| $ $) 115 (|has| |#1| (-960)) ELT)) (-3909 (((-829) $) 126 T ELT)) (-2304 (($ $ (-483)) 68 T ELT) (($ $ (-1144 (-483))) 67 T ELT)) (-3832 (($ $ $) 113 T ELT)) (-1944 (((-693) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3993)) ELT) (((-693) |#1| $) 28 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3993))) ELT)) (-1729 (($ $ $ (-483)) 100 (|has| $ (-6 -3994)) ELT)) (-3398 (($ $) 10 T ELT)) (-3970 (((-472) $) 85 (|has| |#1| (-552 (-472))) ELT) (($ (-582 |#1|)) 128 T ELT)) (-3528 (($ (-582 |#1|)) 76 T ELT)) (-3800 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-582 $)) 70 T ELT)) (-3944 (((-771) $) 17 (|has| |#1| (-551 (-771))) ELT)) (-1263 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3993)) ELT)) (-2565 (((-85) $ $) 93 (|has| |#1| (-755)) ELT)) (-2566 (((-85) $ $) 95 (|has| |#1| (-755)) ELT)) (-3055 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-2683 (((-85) $ $) 94 (|has| |#1| (-755)) ELT)) (-2684 (((-85) $ $) 96 (|has| |#1| (-755)) ELT)) (-3835 (($ $) 120 (|has| |#1| (-21)) ELT) (($ $ $) 119 (|has| |#1| (-21)) ELT)) (-3837 (($ $ $) 122 (|has| |#1| (-25)) ELT)) (* (($ (-483) $) 118 (|has| |#1| (-21)) ELT) (($ |#1| $) 117 (|has| |#1| (-662)) ELT) (($ $ |#1|) 116 (|has| |#1| (-662)) ELT)) (-3955 (((-693) $) 6 (|has| $ (-6 -3993)) ELT))) -(((-892 |#1|) (-113) (-960)) (T -892)) -((-3704 (*1 *1 *2) (-12 (-5 *2 (-582 *3)) (-4 *3 (-960)) (-4 *1 (-892 *3)))) (-3909 (*1 *2 *1) (-12 (-4 *1 (-892 *3)) (-4 *3 (-960)) (-5 *2 (-829)))) (-3832 (*1 *1 *1 *1) (-12 (-4 *1 (-892 *2)) (-4 *2 (-960)))) (-3767 (*1 *1 *1 *2) (-12 (-5 *2 (-582 *3)) (-4 *1 (-892 *3)) (-4 *3 (-960))))) -(-13 (-1176 |t#1|) (-556 (-582 |t#1|)) (-10 -8 (-15 -3704 ($ (-582 |t#1|))) (-15 -3909 ((-829) $)) (-15 -3832 ($ $ $)) (-15 -3767 ($ $ (-582 |t#1|))))) -(((-34) . T) ((-72) OR (|has| |#1| (-1012)) (|has| |#1| (-755)) (|has| |#1| (-72))) ((-551 (-771)) OR (|has| |#1| (-1012)) (|has| |#1| (-755)) (|has| |#1| (-551 (-771)))) ((-124 |#1|) . T) ((-556 (-582 |#1|)) . T) ((-552 (-472)) |has| |#1| (-552 (-472))) ((-241 (-483) |#1|) . T) ((-241 (-1144 (-483)) $) . T) ((-243 (-483) |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ((-322 |#1|) . T) ((-427 |#1|) . T) ((-537 (-483) |#1|) . T) ((-454 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ((-13) . T) ((-592 |#1|) . T) ((-19 |#1|) . T) ((-755) |has| |#1| (-755)) ((-758) |has| |#1| (-755)) ((-1012) OR (|has| |#1| (-1012)) (|has| |#1| (-755))) ((-1127) . T) ((-1176 |#1|) . T)) -((-3956 (((-853 |#2|) (-1 |#2| |#1|) (-853 |#1|)) 17 T ELT))) -(((-893 |#1| |#2|) (-10 -7 (-15 -3956 ((-853 |#2|) (-1 |#2| |#1|) (-853 |#1|)))) (-960) (-960)) (T -893)) -((-3956 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-853 *5)) (-4 *5 (-960)) (-4 *6 (-960)) (-5 *2 (-853 *6)) (-5 *1 (-893 *5 *6))))) -((-2950 ((|#1| (-853 |#1|)) 14 T ELT)) (-2949 ((|#1| (-853 |#1|)) 13 T ELT)) (-2948 ((|#1| (-853 |#1|)) 12 T ELT)) (-2952 ((|#1| (-853 |#1|)) 16 T ELT)) (-2956 ((|#1| (-853 |#1|)) 24 T ELT)) (-2951 ((|#1| (-853 |#1|)) 15 T ELT)) (-2953 ((|#1| (-853 |#1|)) 17 T ELT)) (-2955 ((|#1| (-853 |#1|)) 23 T ELT)) (-2954 ((|#1| (-853 |#1|)) 22 T ELT))) -(((-894 |#1|) (-10 -7 (-15 -2948 (|#1| (-853 |#1|))) (-15 -2949 (|#1| (-853 |#1|))) (-15 -2950 (|#1| (-853 |#1|))) (-15 -2951 (|#1| (-853 |#1|))) (-15 -2952 (|#1| (-853 |#1|))) (-15 -2953 (|#1| (-853 |#1|))) (-15 -2954 (|#1| (-853 |#1|))) (-15 -2955 (|#1| (-853 |#1|))) (-15 -2956 (|#1| (-853 |#1|)))) (-960)) (T -894)) -((-2956 (*1 *2 *3) (-12 (-5 *3 (-853 *2)) (-5 *1 (-894 *2)) (-4 *2 (-960)))) (-2955 (*1 *2 *3) (-12 (-5 *3 (-853 *2)) (-5 *1 (-894 *2)) (-4 *2 (-960)))) (-2954 (*1 *2 *3) (-12 (-5 *3 (-853 *2)) (-5 *1 (-894 *2)) (-4 *2 (-960)))) (-2953 (*1 *2 *3) (-12 (-5 *3 (-853 *2)) (-5 *1 (-894 *2)) (-4 *2 (-960)))) (-2952 (*1 *2 *3) (-12 (-5 *3 (-853 *2)) (-5 *1 (-894 *2)) (-4 *2 (-960)))) (-2951 (*1 *2 *3) (-12 (-5 *3 (-853 *2)) (-5 *1 (-894 *2)) (-4 *2 (-960)))) (-2950 (*1 *2 *3) (-12 (-5 *3 (-853 *2)) (-5 *1 (-894 *2)) (-4 *2 (-960)))) (-2949 (*1 *2 *3) (-12 (-5 *3 (-853 *2)) (-5 *1 (-894 *2)) (-4 *2 (-960)))) (-2948 (*1 *2 *3) (-12 (-5 *3 (-853 *2)) (-5 *1 (-894 *2)) (-4 *2 (-960))))) -((-2974 (((-3 |#1| "failed") |#1|) 18 T ELT)) (-2962 (((-3 |#1| "failed") |#1|) 6 T ELT)) (-2972 (((-3 |#1| "failed") |#1|) 16 T ELT)) (-2960 (((-3 |#1| "failed") |#1|) 4 T ELT)) (-2976 (((-3 |#1| "failed") |#1|) 20 T ELT)) (-2964 (((-3 |#1| "failed") |#1|) 8 T ELT)) (-2957 (((-3 |#1| "failed") |#1| (-693)) 1 T ELT)) (-2959 (((-3 |#1| "failed") |#1|) 3 T ELT)) (-2958 (((-3 |#1| "failed") |#1|) 2 T ELT)) (-2977 (((-3 |#1| "failed") |#1|) 21 T ELT)) (-2965 (((-3 |#1| "failed") |#1|) 9 T ELT)) (-2975 (((-3 |#1| "failed") |#1|) 19 T ELT)) (-2963 (((-3 |#1| "failed") |#1|) 7 T ELT)) (-2973 (((-3 |#1| "failed") |#1|) 17 T ELT)) (-2961 (((-3 |#1| "failed") |#1|) 5 T ELT)) (-2980 (((-3 |#1| "failed") |#1|) 24 T ELT)) (-2968 (((-3 |#1| "failed") |#1|) 12 T ELT)) (-2978 (((-3 |#1| "failed") |#1|) 22 T ELT)) (-2966 (((-3 |#1| "failed") |#1|) 10 T ELT)) (-2982 (((-3 |#1| "failed") |#1|) 26 T ELT)) (-2970 (((-3 |#1| "failed") |#1|) 14 T ELT)) (-2983 (((-3 |#1| "failed") |#1|) 27 T ELT)) (-2971 (((-3 |#1| "failed") |#1|) 15 T ELT)) (-2981 (((-3 |#1| "failed") |#1|) 25 T ELT)) (-2969 (((-3 |#1| "failed") |#1|) 13 T ELT)) (-2979 (((-3 |#1| "failed") |#1|) 23 T ELT)) (-2967 (((-3 |#1| "failed") |#1|) 11 T ELT))) -(((-895 |#1|) (-113) (-1113)) (T -895)) -((-2983 (*1 *2 *2) (|partial| -12 (-4 *1 (-895 *2)) (-4 *2 (-1113)))) (-2982 (*1 *2 *2) (|partial| -12 (-4 *1 (-895 *2)) (-4 *2 (-1113)))) (-2981 (*1 *2 *2) (|partial| -12 (-4 *1 (-895 *2)) (-4 *2 (-1113)))) (-2980 (*1 *2 *2) (|partial| -12 (-4 *1 (-895 *2)) (-4 *2 (-1113)))) (-2979 (*1 *2 *2) (|partial| -12 (-4 *1 (-895 *2)) (-4 *2 (-1113)))) (-2978 (*1 *2 *2) (|partial| -12 (-4 *1 (-895 *2)) (-4 *2 (-1113)))) (-2977 (*1 *2 *2) (|partial| -12 (-4 *1 (-895 *2)) (-4 *2 (-1113)))) (-2976 (*1 *2 *2) (|partial| -12 (-4 *1 (-895 *2)) (-4 *2 (-1113)))) (-2975 (*1 *2 *2) (|partial| -12 (-4 *1 (-895 *2)) (-4 *2 (-1113)))) (-2974 (*1 *2 *2) (|partial| -12 (-4 *1 (-895 *2)) (-4 *2 (-1113)))) (-2973 (*1 *2 *2) (|partial| -12 (-4 *1 (-895 *2)) (-4 *2 (-1113)))) (-2972 (*1 *2 *2) (|partial| -12 (-4 *1 (-895 *2)) (-4 *2 (-1113)))) (-2971 (*1 *2 *2) (|partial| -12 (-4 *1 (-895 *2)) (-4 *2 (-1113)))) (-2970 (*1 *2 *2) (|partial| -12 (-4 *1 (-895 *2)) (-4 *2 (-1113)))) (-2969 (*1 *2 *2) (|partial| -12 (-4 *1 (-895 *2)) (-4 *2 (-1113)))) (-2968 (*1 *2 *2) (|partial| -12 (-4 *1 (-895 *2)) (-4 *2 (-1113)))) (-2967 (*1 *2 *2) (|partial| -12 (-4 *1 (-895 *2)) (-4 *2 (-1113)))) (-2966 (*1 *2 *2) (|partial| -12 (-4 *1 (-895 *2)) (-4 *2 (-1113)))) (-2965 (*1 *2 *2) (|partial| -12 (-4 *1 (-895 *2)) (-4 *2 (-1113)))) (-2964 (*1 *2 *2) (|partial| -12 (-4 *1 (-895 *2)) (-4 *2 (-1113)))) (-2963 (*1 *2 *2) (|partial| -12 (-4 *1 (-895 *2)) (-4 *2 (-1113)))) (-2962 (*1 *2 *2) (|partial| -12 (-4 *1 (-895 *2)) (-4 *2 (-1113)))) (-2961 (*1 *2 *2) (|partial| -12 (-4 *1 (-895 *2)) (-4 *2 (-1113)))) (-2960 (*1 *2 *2) (|partial| -12 (-4 *1 (-895 *2)) (-4 *2 (-1113)))) (-2959 (*1 *2 *2) (|partial| -12 (-4 *1 (-895 *2)) (-4 *2 (-1113)))) (-2958 (*1 *2 *2) (|partial| -12 (-4 *1 (-895 *2)) (-4 *2 (-1113)))) (-2957 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-693)) (-4 *1 (-895 *2)) (-4 *2 (-1113))))) -(-13 (-10 -7 (-15 -2957 ((-3 |t#1| "failed") |t#1| (-693))) (-15 -2958 ((-3 |t#1| "failed") |t#1|)) (-15 -2959 ((-3 |t#1| "failed") |t#1|)) (-15 -2960 ((-3 |t#1| "failed") |t#1|)) (-15 -2961 ((-3 |t#1| "failed") |t#1|)) (-15 -2962 ((-3 |t#1| "failed") |t#1|)) (-15 -2963 ((-3 |t#1| "failed") |t#1|)) (-15 -2964 ((-3 |t#1| "failed") |t#1|)) (-15 -2965 ((-3 |t#1| "failed") |t#1|)) (-15 -2966 ((-3 |t#1| "failed") |t#1|)) (-15 -2967 ((-3 |t#1| "failed") |t#1|)) (-15 -2968 ((-3 |t#1| "failed") |t#1|)) (-15 -2969 ((-3 |t#1| "failed") |t#1|)) (-15 -2970 ((-3 |t#1| "failed") |t#1|)) (-15 -2971 ((-3 |t#1| "failed") |t#1|)) (-15 -2972 ((-3 |t#1| "failed") |t#1|)) (-15 -2973 ((-3 |t#1| "failed") |t#1|)) (-15 -2974 ((-3 |t#1| "failed") |t#1|)) (-15 -2975 ((-3 |t#1| "failed") |t#1|)) (-15 -2976 ((-3 |t#1| "failed") |t#1|)) (-15 -2977 ((-3 |t#1| "failed") |t#1|)) (-15 -2978 ((-3 |t#1| "failed") |t#1|)) (-15 -2979 ((-3 |t#1| "failed") |t#1|)) (-15 -2980 ((-3 |t#1| "failed") |t#1|)) (-15 -2981 ((-3 |t#1| "failed") |t#1|)) (-15 -2982 ((-3 |t#1| "failed") |t#1|)) (-15 -2983 ((-3 |t#1| "failed") |t#1|)))) -((-2985 ((|#4| |#4| (-582 |#3|)) 57 T ELT) ((|#4| |#4| |#3|) 56 T ELT)) (-2984 ((|#4| |#4| (-582 |#3|)) 24 T ELT) ((|#4| |#4| |#3|) 20 T ELT)) (-3956 ((|#4| (-1 |#4| (-856 |#1|)) |#4|) 33 T ELT))) -(((-896 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2984 (|#4| |#4| |#3|)) (-15 -2984 (|#4| |#4| (-582 |#3|))) (-15 -2985 (|#4| |#4| |#3|)) (-15 -2985 (|#4| |#4| (-582 |#3|))) (-15 -3956 (|#4| (-1 |#4| (-856 |#1|)) |#4|))) (-960) (-716) (-13 (-755) (-10 -8 (-15 -3970 ((-1088) $)) (-15 -3829 ((-3 $ "failed") (-1088))))) (-860 (-856 |#1|) |#2| |#3|)) (T -896)) -((-3956 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-856 *4))) (-4 *4 (-960)) (-4 *2 (-860 (-856 *4) *5 *6)) (-4 *5 (-716)) (-4 *6 (-13 (-755) (-10 -8 (-15 -3970 ((-1088) $)) (-15 -3829 ((-3 $ #1="failed") (-1088)))))) (-5 *1 (-896 *4 *5 *6 *2)))) (-2985 (*1 *2 *2 *3) (-12 (-5 *3 (-582 *6)) (-4 *6 (-13 (-755) (-10 -8 (-15 -3970 ((-1088) $)) (-15 -3829 ((-3 $ #1#) (-1088)))))) (-4 *4 (-960)) (-4 *5 (-716)) (-5 *1 (-896 *4 *5 *6 *2)) (-4 *2 (-860 (-856 *4) *5 *6)))) (-2985 (*1 *2 *2 *3) (-12 (-4 *4 (-960)) (-4 *5 (-716)) (-4 *3 (-13 (-755) (-10 -8 (-15 -3970 ((-1088) $)) (-15 -3829 ((-3 $ #1#) (-1088)))))) (-5 *1 (-896 *4 *5 *3 *2)) (-4 *2 (-860 (-856 *4) *5 *3)))) (-2984 (*1 *2 *2 *3) (-12 (-5 *3 (-582 *6)) (-4 *6 (-13 (-755) (-10 -8 (-15 -3970 ((-1088) $)) (-15 -3829 ((-3 $ #1#) (-1088)))))) (-4 *4 (-960)) (-4 *5 (-716)) (-5 *1 (-896 *4 *5 *6 *2)) (-4 *2 (-860 (-856 *4) *5 *6)))) (-2984 (*1 *2 *2 *3) (-12 (-4 *4 (-960)) (-4 *5 (-716)) (-4 *3 (-13 (-755) (-10 -8 (-15 -3970 ((-1088) $)) (-15 -3829 ((-3 $ #1#) (-1088)))))) (-5 *1 (-896 *4 *5 *3 *2)) (-4 *2 (-860 (-856 *4) *5 *3))))) -((-2986 ((|#2| |#3|) 35 T ELT)) (-3917 (((-2 (|:| -2011 (-629 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-629 |#2|))) |#2|) 79 T ELT)) (-3916 (((-2 (|:| -2011 (-629 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-629 |#2|)))) 100 T ELT))) -(((-897 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3916 ((-2 (|:| -2011 (-629 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-629 |#2|))))) (-15 -3917 ((-2 (|:| -2011 (-629 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-629 |#2|))) |#2|)) (-15 -2986 (|#2| |#3|))) (-299) (-1153 |#1|) (-1153 |#2|) (-660 |#2| |#3|)) (T -897)) -((-2986 (*1 *2 *3) (-12 (-4 *3 (-1153 *2)) (-4 *2 (-1153 *4)) (-5 *1 (-897 *4 *2 *3 *5)) (-4 *4 (-299)) (-4 *5 (-660 *2 *3)))) (-3917 (*1 *2 *3) (-12 (-4 *4 (-299)) (-4 *3 (-1153 *4)) (-4 *5 (-1153 *3)) (-5 *2 (-2 (|:| -2011 (-629 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-629 *3)))) (-5 *1 (-897 *4 *3 *5 *6)) (-4 *6 (-660 *3 *5)))) (-3916 (*1 *2) (-12 (-4 *3 (-299)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 *4)) (-5 *2 (-2 (|:| -2011 (-629 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-629 *4)))) (-5 *1 (-897 *3 *4 *5 *6)) (-4 *6 (-660 *4 *5))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3399 (((-3 (-85) #1="failed") $) 71 T ELT)) (-3647 (($ $) 36 (-12 (|has| |#1| (-120)) (|has| |#1| (-258))) ELT)) (-2990 (($ $ (-3 (-85) #1#)) 72 T ELT)) (-2991 (($ (-582 |#4|) |#4|) 25 T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-2987 (($ $) 69 T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3401 (((-85) $) 70 T ELT)) (-3563 (($) 30 T ELT)) (-2988 ((|#4| $) 74 T ELT)) (-2989 (((-582 |#4|) $) 73 T ELT)) (-3944 (((-771) $) 68 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-898 |#1| |#2| |#3| |#4|) (-13 (-1012) (-551 (-771)) (-10 -8 (-15 -3563 ($)) (-15 -2991 ($ (-582 |#4|) |#4|)) (-15 -3399 ((-3 (-85) #1="failed") $)) (-15 -2990 ($ $ (-3 (-85) #1#))) (-15 -3401 ((-85) $)) (-15 -2989 ((-582 |#4|) $)) (-15 -2988 (|#4| $)) (-15 -2987 ($ $)) (IF (|has| |#1| (-258)) (IF (|has| |#1| (-120)) (-15 -3647 ($ $)) |%noBranch|) |%noBranch|))) (-390) (-755) (-716) (-860 |#1| |#3| |#2|)) (T -898)) -((-3563 (*1 *1) (-12 (-4 *2 (-390)) (-4 *3 (-755)) (-4 *4 (-716)) (-5 *1 (-898 *2 *3 *4 *5)) (-4 *5 (-860 *2 *4 *3)))) (-2991 (*1 *1 *2 *3) (-12 (-5 *2 (-582 *3)) (-4 *3 (-860 *4 *6 *5)) (-4 *4 (-390)) (-4 *5 (-755)) (-4 *6 (-716)) (-5 *1 (-898 *4 *5 *6 *3)))) (-3399 (*1 *2 *1) (|partial| -12 (-4 *3 (-390)) (-4 *4 (-755)) (-4 *5 (-716)) (-5 *2 (-85)) (-5 *1 (-898 *3 *4 *5 *6)) (-4 *6 (-860 *3 *5 *4)))) (-2990 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-85) "failed")) (-4 *3 (-390)) (-4 *4 (-755)) (-4 *5 (-716)) (-5 *1 (-898 *3 *4 *5 *6)) (-4 *6 (-860 *3 *5 *4)))) (-3401 (*1 *2 *1) (-12 (-4 *3 (-390)) (-4 *4 (-755)) (-4 *5 (-716)) (-5 *2 (-85)) (-5 *1 (-898 *3 *4 *5 *6)) (-4 *6 (-860 *3 *5 *4)))) (-2989 (*1 *2 *1) (-12 (-4 *3 (-390)) (-4 *4 (-755)) (-4 *5 (-716)) (-5 *2 (-582 *6)) (-5 *1 (-898 *3 *4 *5 *6)) (-4 *6 (-860 *3 *5 *4)))) (-2988 (*1 *2 *1) (-12 (-4 *2 (-860 *3 *5 *4)) (-5 *1 (-898 *3 *4 *5 *2)) (-4 *3 (-390)) (-4 *4 (-755)) (-4 *5 (-716)))) (-2987 (*1 *1 *1) (-12 (-4 *2 (-390)) (-4 *3 (-755)) (-4 *4 (-716)) (-5 *1 (-898 *2 *3 *4 *5)) (-4 *5 (-860 *2 *4 *3)))) (-3647 (*1 *1 *1) (-12 (-4 *2 (-120)) (-4 *2 (-258)) (-4 *2 (-390)) (-4 *3 (-755)) (-4 *4 (-716)) (-5 *1 (-898 *2 *3 *4 *5)) (-4 *5 (-860 *2 *4 *3))))) -((-2992 (((-898 (-348 (-483)) (-772 |#1|) (-197 |#2| (-693)) (-206 |#1| (-348 (-483)))) (-898 (-348 (-483)) (-772 |#1|) (-197 |#2| (-693)) (-206 |#1| (-348 (-483))))) 82 T ELT))) -(((-899 |#1| |#2|) (-10 -7 (-15 -2992 ((-898 (-348 (-483)) (-772 |#1|) (-197 |#2| (-693)) (-206 |#1| (-348 (-483)))) (-898 (-348 (-483)) (-772 |#1|) (-197 |#2| (-693)) (-206 |#1| (-348 (-483))))))) (-582 (-1088)) (-693)) (T -899)) -((-2992 (*1 *2 *2) (-12 (-5 *2 (-898 (-348 (-483)) (-772 *3) (-197 *4 (-693)) (-206 *3 (-348 (-483))))) (-14 *3 (-582 (-1088))) (-14 *4 (-693)) (-5 *1 (-899 *3 *4))))) -((-3268 (((-85) |#5| |#5|) 44 T ELT)) (-3271 (((-85) |#5| |#5|) 59 T ELT)) (-3276 (((-85) |#5| (-582 |#5|)) 81 T ELT) (((-85) |#5| |#5|) 68 T ELT)) (-3272 (((-85) (-582 |#4|) (-582 |#4|)) 65 T ELT)) (-3278 (((-85) (-2 (|:| |val| (-582 |#4|)) (|:| -1598 |#5|)) (-2 (|:| |val| (-582 |#4|)) (|:| -1598 |#5|))) 70 T ELT)) (-3267 (((-1183)) 32 T ELT)) (-3266 (((-1183) (-1071) (-1071) (-1071)) 28 T ELT)) (-3277 (((-582 |#5|) (-582 |#5|)) 100 T ELT)) (-3279 (((-582 (-2 (|:| |val| (-582 |#4|)) (|:| -1598 |#5|))) (-582 (-2 (|:| |val| (-582 |#4|)) (|:| -1598 |#5|)))) 92 T ELT)) (-3280 (((-582 (-2 (|:| -3265 (-582 |#4|)) (|:| -1598 |#5|) (|:| |ineq| (-582 |#4|)))) (-582 |#4|) (-582 |#5|) (-85) (-85)) 122 T ELT)) (-3270 (((-85) |#5| |#5|) 53 T ELT)) (-3275 (((-3 (-85) #1="failed") |#5| |#5|) 78 T ELT)) (-3273 (((-85) (-582 |#4|) (-582 |#4|)) 64 T ELT)) (-3274 (((-85) (-582 |#4|) (-582 |#4|)) 66 T ELT)) (-3697 (((-85) (-582 |#4|) (-582 |#4|)) 67 T ELT)) (-3281 (((-3 (-2 (|:| -3265 (-582 |#4|)) (|:| -1598 |#5|) (|:| |ineq| (-582 |#4|))) #1#) (-582 |#4|) |#5| (-582 |#4|) (-85) (-85) (-85) (-85) (-85)) 117 T ELT)) (-3269 (((-582 |#5|) (-582 |#5|)) 49 T ELT))) -(((-900 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3266 ((-1183) (-1071) (-1071) (-1071))) (-15 -3267 ((-1183))) (-15 -3268 ((-85) |#5| |#5|)) (-15 -3269 ((-582 |#5|) (-582 |#5|))) (-15 -3270 ((-85) |#5| |#5|)) (-15 -3271 ((-85) |#5| |#5|)) (-15 -3272 ((-85) (-582 |#4|) (-582 |#4|))) (-15 -3273 ((-85) (-582 |#4|) (-582 |#4|))) (-15 -3274 ((-85) (-582 |#4|) (-582 |#4|))) (-15 -3697 ((-85) (-582 |#4|) (-582 |#4|))) (-15 -3275 ((-3 (-85) #1="failed") |#5| |#5|)) (-15 -3276 ((-85) |#5| |#5|)) (-15 -3276 ((-85) |#5| (-582 |#5|))) (-15 -3277 ((-582 |#5|) (-582 |#5|))) (-15 -3278 ((-85) (-2 (|:| |val| (-582 |#4|)) (|:| -1598 |#5|)) (-2 (|:| |val| (-582 |#4|)) (|:| -1598 |#5|)))) (-15 -3279 ((-582 (-2 (|:| |val| (-582 |#4|)) (|:| -1598 |#5|))) (-582 (-2 (|:| |val| (-582 |#4|)) (|:| -1598 |#5|))))) (-15 -3280 ((-582 (-2 (|:| -3265 (-582 |#4|)) (|:| -1598 |#5|) (|:| |ineq| (-582 |#4|)))) (-582 |#4|) (-582 |#5|) (-85) (-85))) (-15 -3281 ((-3 (-2 (|:| -3265 (-582 |#4|)) (|:| -1598 |#5|) (|:| |ineq| (-582 |#4|))) #1#) (-582 |#4|) |#5| (-582 |#4|) (-85) (-85) (-85) (-85) (-85)))) (-390) (-716) (-755) (-976 |#1| |#2| |#3|) (-982 |#1| |#2| |#3| |#4|)) (T -900)) -((-3281 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-85)) (-4 *6 (-390)) (-4 *7 (-716)) (-4 *8 (-755)) (-4 *9 (-976 *6 *7 *8)) (-5 *2 (-2 (|:| -3265 (-582 *9)) (|:| -1598 *4) (|:| |ineq| (-582 *9)))) (-5 *1 (-900 *6 *7 *8 *9 *4)) (-5 *3 (-582 *9)) (-4 *4 (-982 *6 *7 *8 *9)))) (-3280 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-582 *10)) (-5 *5 (-85)) (-4 *10 (-982 *6 *7 *8 *9)) (-4 *6 (-390)) (-4 *7 (-716)) (-4 *8 (-755)) (-4 *9 (-976 *6 *7 *8)) (-5 *2 (-582 (-2 (|:| -3265 (-582 *9)) (|:| -1598 *10) (|:| |ineq| (-582 *9))))) (-5 *1 (-900 *6 *7 *8 *9 *10)) (-5 *3 (-582 *9)))) (-3279 (*1 *2 *2) (-12 (-5 *2 (-582 (-2 (|:| |val| (-582 *6)) (|:| -1598 *7)))) (-4 *6 (-976 *3 *4 *5)) (-4 *7 (-982 *3 *4 *5 *6)) (-4 *3 (-390)) (-4 *4 (-716)) (-4 *5 (-755)) (-5 *1 (-900 *3 *4 *5 *6 *7)))) (-3278 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-582 *7)) (|:| -1598 *8))) (-4 *7 (-976 *4 *5 *6)) (-4 *8 (-982 *4 *5 *6 *7)) (-4 *4 (-390)) (-4 *5 (-716)) (-4 *6 (-755)) (-5 *2 (-85)) (-5 *1 (-900 *4 *5 *6 *7 *8)))) (-3277 (*1 *2 *2) (-12 (-5 *2 (-582 *7)) (-4 *7 (-982 *3 *4 *5 *6)) (-4 *3 (-390)) (-4 *4 (-716)) (-4 *5 (-755)) (-4 *6 (-976 *3 *4 *5)) (-5 *1 (-900 *3 *4 *5 *6 *7)))) (-3276 (*1 *2 *3 *4) (-12 (-5 *4 (-582 *3)) (-4 *3 (-982 *5 *6 *7 *8)) (-4 *5 (-390)) (-4 *6 (-716)) (-4 *7 (-755)) (-4 *8 (-976 *5 *6 *7)) (-5 *2 (-85)) (-5 *1 (-900 *5 *6 *7 *8 *3)))) (-3276 (*1 *2 *3 *3) (-12 (-4 *4 (-390)) (-4 *5 (-716)) (-4 *6 (-755)) (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-900 *4 *5 *6 *7 *3)) (-4 *3 (-982 *4 *5 *6 *7)))) (-3275 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-390)) (-4 *5 (-716)) (-4 *6 (-755)) (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-900 *4 *5 *6 *7 *3)) (-4 *3 (-982 *4 *5 *6 *7)))) (-3697 (*1 *2 *3 *3) (-12 (-5 *3 (-582 *7)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-390)) (-4 *5 (-716)) (-4 *6 (-755)) (-5 *2 (-85)) (-5 *1 (-900 *4 *5 *6 *7 *8)) (-4 *8 (-982 *4 *5 *6 *7)))) (-3274 (*1 *2 *3 *3) (-12 (-5 *3 (-582 *7)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-390)) (-4 *5 (-716)) (-4 *6 (-755)) (-5 *2 (-85)) (-5 *1 (-900 *4 *5 *6 *7 *8)) (-4 *8 (-982 *4 *5 *6 *7)))) (-3273 (*1 *2 *3 *3) (-12 (-5 *3 (-582 *7)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-390)) (-4 *5 (-716)) (-4 *6 (-755)) (-5 *2 (-85)) (-5 *1 (-900 *4 *5 *6 *7 *8)) (-4 *8 (-982 *4 *5 *6 *7)))) (-3272 (*1 *2 *3 *3) (-12 (-5 *3 (-582 *7)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-390)) (-4 *5 (-716)) (-4 *6 (-755)) (-5 *2 (-85)) (-5 *1 (-900 *4 *5 *6 *7 *8)) (-4 *8 (-982 *4 *5 *6 *7)))) (-3271 (*1 *2 *3 *3) (-12 (-4 *4 (-390)) (-4 *5 (-716)) (-4 *6 (-755)) (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-900 *4 *5 *6 *7 *3)) (-4 *3 (-982 *4 *5 *6 *7)))) (-3270 (*1 *2 *3 *3) (-12 (-4 *4 (-390)) (-4 *5 (-716)) (-4 *6 (-755)) (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-900 *4 *5 *6 *7 *3)) (-4 *3 (-982 *4 *5 *6 *7)))) (-3269 (*1 *2 *2) (-12 (-5 *2 (-582 *7)) (-4 *7 (-982 *3 *4 *5 *6)) (-4 *3 (-390)) (-4 *4 (-716)) (-4 *5 (-755)) (-4 *6 (-976 *3 *4 *5)) (-5 *1 (-900 *3 *4 *5 *6 *7)))) (-3268 (*1 *2 *3 *3) (-12 (-4 *4 (-390)) (-4 *5 (-716)) (-4 *6 (-755)) (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-900 *4 *5 *6 *7 *3)) (-4 *3 (-982 *4 *5 *6 *7)))) (-3267 (*1 *2) (-12 (-4 *3 (-390)) (-4 *4 (-716)) (-4 *5 (-755)) (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-1183)) (-5 *1 (-900 *3 *4 *5 *6 *7)) (-4 *7 (-982 *3 *4 *5 *6)))) (-3266 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1071)) (-4 *4 (-390)) (-4 *5 (-716)) (-4 *6 (-755)) (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-1183)) (-5 *1 (-900 *4 *5 *6 *7 *8)) (-4 *8 (-982 *4 *5 *6 *7))))) -((-3829 (((-1088) $) 15 T ELT)) (-3400 (((-1071) $) 16 T ELT)) (-3225 (($ (-1088) (-1071)) 14 T ELT)) (-3944 (((-771) $) 13 T ELT))) -(((-901) (-13 (-551 (-771)) (-10 -8 (-15 -3225 ($ (-1088) (-1071))) (-15 -3829 ((-1088) $)) (-15 -3400 ((-1071) $))))) (T -901)) -((-3225 (*1 *1 *2 *3) (-12 (-5 *2 (-1088)) (-5 *3 (-1071)) (-5 *1 (-901)))) (-3829 (*1 *2 *1) (-12 (-5 *2 (-1088)) (-5 *1 (-901)))) (-3400 (*1 *2 *1) (-12 (-5 *2 (-1071)) (-5 *1 (-901))))) -((-3156 (((-3 |#2| #1="failed") $) NIL T ELT) (((-3 (-1088) #1#) $) 72 T ELT) (((-3 (-348 (-483)) #1#) $) NIL T ELT) (((-3 (-483) #1#) $) 102 T ELT)) (-3155 ((|#2| $) NIL T ELT) (((-1088) $) 67 T ELT) (((-348 (-483)) $) NIL T ELT) (((-483) $) 99 T ELT)) (-2278 (((-629 (-483)) (-629 $)) NIL T ELT) (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-629 $) (-1177 $)) NIL T ELT) (((-2 (|:| |mat| (-629 |#2|)) (|:| |vec| (-1177 |#2|))) (-629 $) (-1177 $)) 121 T ELT) (((-629 |#2|) (-629 $)) 35 T ELT)) (-2993 (($) 105 T ELT)) (-2795 (((-797 (-483) $) $ (-799 (-483)) (-797 (-483) $)) 82 T ELT) (((-797 (-328) $) $ (-799 (-328)) (-797 (-328) $)) 91 T ELT)) (-2995 (($ $) 10 T ELT)) (-3443 (((-631 $) $) 27 T ELT)) (-3956 (($ (-1 |#2| |#2|) $) 29 T ELT)) (-3444 (($) 16 T CONST)) (-3127 (($ $) 61 T ELT)) (-3756 (($ $ (-1 |#2| |#2|)) 43 T ELT) (($ $ (-1 |#2| |#2|) (-693)) NIL T ELT) (($ $ (-1088)) NIL T ELT) (($ $ (-582 (-1088))) NIL T ELT) (($ $ (-1088) (-693)) NIL T ELT) (($ $ (-582 (-1088)) (-582 (-693))) NIL T ELT) (($ $) NIL T ELT) (($ $ (-693)) NIL T ELT)) (-2994 (($ $) 12 T ELT)) (-3970 (((-799 (-483)) $) 77 T ELT) (((-799 (-328)) $) 86 T ELT) (((-472) $) 47 T ELT) (((-328) $) 51 T ELT) (((-179) $) 55 T ELT)) (-3944 (((-771) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ $) NIL T ELT) (($ (-348 (-483))) 97 T ELT) (($ |#2|) NIL T ELT) (($ (-1088)) 64 T ELT)) (-3125 (((-693)) 38 T CONST)) (-2684 (((-85) $ $) 57 T ELT))) -(((-902 |#1| |#2|) (-10 -7 (-15 -2684 ((-85) |#1| |#1|)) (-15 -3756 (|#1| |#1| (-693))) (-15 -3756 (|#1| |#1|)) (-15 -3756 (|#1| |#1| (-582 (-1088)) (-582 (-693)))) (-15 -3756 (|#1| |#1| (-1088) (-693))) (-15 -3756 (|#1| |#1| (-582 (-1088)))) (-15 -3756 (|#1| |#1| (-1088))) (-15 -3444 (|#1|) -3950) (-15 -3443 ((-631 |#1|) |#1|)) (-15 -3156 ((-3 (-483) #1="failed") |#1|)) (-15 -3155 ((-483) |#1|)) (-15 -3156 ((-3 (-348 (-483)) #1#) |#1|)) (-15 -3155 ((-348 (-483)) |#1|)) (-15 -3970 ((-179) |#1|)) (-15 -3970 ((-328) |#1|)) (-15 -3970 ((-472) |#1|)) (-15 -3944 (|#1| (-1088))) (-15 -3156 ((-3 (-1088) #1#) |#1|)) (-15 -3155 ((-1088) |#1|)) (-15 -2993 (|#1|)) (-15 -3127 (|#1| |#1|)) (-15 -2994 (|#1| |#1|)) (-15 -2995 (|#1| |#1|)) (-15 -2795 ((-797 (-328) |#1|) |#1| (-799 (-328)) (-797 (-328) |#1|))) (-15 -2795 ((-797 (-483) |#1|) |#1| (-799 (-483)) (-797 (-483) |#1|))) (-15 -3970 ((-799 (-328)) |#1|)) (-15 -3970 ((-799 (-483)) |#1|)) (-15 -2278 ((-629 |#2|) (-629 |#1|))) (-15 -2278 ((-2 (|:| |mat| (-629 |#2|)) (|:| |vec| (-1177 |#2|))) (-629 |#1|) (-1177 |#1|))) (-15 -2278 ((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-629 |#1|) (-1177 |#1|))) (-15 -2278 ((-629 (-483)) (-629 |#1|))) (-15 -3756 (|#1| |#1| (-1 |#2| |#2|) (-693))) (-15 -3756 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3956 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3156 ((-3 |#2| #1#) |#1|)) (-15 -3155 (|#2| |#1|)) (-15 -3944 (|#1| |#2|)) (-15 -3944 (|#1| (-348 (-483)))) (-15 -3944 (|#1| |#1|)) (-15 -3125 ((-693)) -3950) (-15 -3944 (|#1| (-483))) (-15 -3944 ((-771) |#1|))) (-903 |#2|) (-494)) (T -902)) -((-3125 (*1 *2) (-12 (-4 *4 (-494)) (-5 *2 (-693)) (-5 *1 (-902 *3 *4)) (-4 *3 (-903 *4))))) -((-2567 (((-85) $ $) 7 T ELT)) (-3187 (((-85) $) 22 T ELT)) (-3128 ((|#1| $) 173 (|has| |#1| (-258)) ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3980 $) (|:| |associate| $)) $) 55 T ELT)) (-2062 (($ $) 54 T ELT)) (-2060 (((-85) $) 52 T ELT)) (-1310 (((-3 $ "failed") $ $) 26 T ELT)) (-2706 (((-346 (-1083 $)) (-1083 $)) 164 (|has| |#1| (-820)) ELT)) (-3773 (($ $) 91 T ELT)) (-3969 (((-346 $) $) 90 T ELT)) (-2703 (((-3 (-582 (-1083 $)) #1="failed") (-582 (-1083 $)) (-1083 $)) 167 (|has| |#1| (-820)) ELT)) (-1606 (((-85) $ $) 75 T ELT)) (-3621 (((-483) $) 154 (|has| |#1| (-739)) ELT)) (-3722 (($) 23 T CONST)) (-3156 (((-3 |#1| #2="failed") $) 203 T ELT) (((-3 (-1088) #2#) $) 162 (|has| |#1| (-949 (-1088))) ELT) (((-3 (-348 (-483)) #2#) $) 145 (|has| |#1| (-949 (-483))) ELT) (((-3 (-483) #2#) $) 143 (|has| |#1| (-949 (-483))) ELT)) (-3155 ((|#1| $) 204 T ELT) (((-1088) $) 163 (|has| |#1| (-949 (-1088))) ELT) (((-348 (-483)) $) 146 (|has| |#1| (-949 (-483))) ELT) (((-483) $) 144 (|has| |#1| (-949 (-483))) ELT)) (-2563 (($ $ $) 71 T ELT)) (-2278 (((-629 (-483)) (-629 $)) 188 (|has| |#1| (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-629 $) (-1177 $)) 187 (|has| |#1| (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 |#1|)) (|:| |vec| (-1177 |#1|))) (-629 $) (-1177 $)) 186 T ELT) (((-629 |#1|) (-629 $)) 185 T ELT)) (-3465 (((-3 $ "failed") $) 42 T ELT)) (-2993 (($) 171 (|has| |#1| (-482)) ELT)) (-2562 (($ $ $) 72 T ELT)) (-2740 (((-2 (|:| -3952 (-582 $)) (|:| -2408 $)) (-582 $)) 66 T ELT)) (-3721 (((-85) $) 89 T ELT)) (-3185 (((-85) $) 156 (|has| |#1| (-739)) ELT)) (-2795 (((-797 (-483) $) $ (-799 (-483)) (-797 (-483) $)) 180 (|has| |#1| (-795 (-483))) ELT) (((-797 (-328) $) $ (-799 (-328)) (-797 (-328) $)) 179 (|has| |#1| (-795 (-328))) ELT)) (-1212 (((-85) $ $) 20 T ELT)) (-2409 (((-85) $) 44 T ELT)) (-2995 (($ $) 175 T ELT)) (-2997 ((|#1| $) 177 T ELT)) (-3443 (((-631 $) $) 142 (|has| |#1| (-1064)) ELT)) (-3186 (((-85) $) 155 (|has| |#1| (-739)) ELT)) (-1603 (((-3 (-582 $) #3="failed") (-582 $) $) 68 T ELT)) (-2530 (($ $ $) 147 (|has| |#1| (-755)) ELT)) (-2856 (($ $ $) 148 (|has| |#1| (-755)) ELT)) (-3956 (($ (-1 |#1| |#1|) $) 195 T ELT)) (-2279 (((-629 (-483)) (-1177 $)) 190 (|has| |#1| (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) 189 (|has| |#1| (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 |#1|)) (|:| |vec| (-1177 |#1|))) (-1177 $) $) 184 T ELT) (((-629 |#1|) (-1177 $)) 183 T ELT)) (-1889 (($ $ $) 60 T ELT) (($ (-582 $)) 59 T ELT)) (-3241 (((-1071) $) 11 T ELT)) (-2483 (($ $) 88 T ELT)) (-3444 (($) 141 (|has| |#1| (-1064)) CONST)) (-3242 (((-1032) $) 12 T ELT)) (-2707 (((-1083 $) (-1083 $) (-1083 $)) 58 T ELT)) (-3143 (($ $ $) 62 T ELT) (($ (-582 $)) 61 T ELT)) (-3127 (($ $) 172 (|has| |#1| (-258)) ELT)) (-3129 ((|#1| $) 169 (|has| |#1| (-482)) ELT)) (-2704 (((-346 (-1083 $)) (-1083 $)) 166 (|has| |#1| (-820)) ELT)) (-2705 (((-346 (-1083 $)) (-1083 $)) 165 (|has| |#1| (-820)) ELT)) (-3730 (((-346 $) $) 92 T ELT)) (-1604 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 69 T ELT)) (-3464 (((-3 $ "failed") $ $) 56 T ELT)) (-2739 (((-631 (-582 $)) (-582 $) $) 65 T ELT)) (-3766 (($ $ (-582 |#1|) (-582 |#1|)) 201 (|has| |#1| (-260 |#1|)) ELT) (($ $ |#1| |#1|) 200 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-249 |#1|)) 199 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-582 (-249 |#1|))) 198 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-582 (-1088)) (-582 |#1|)) 197 (|has| |#1| (-454 (-1088) |#1|)) ELT) (($ $ (-1088) |#1|) 196 (|has| |#1| (-454 (-1088) |#1|)) ELT)) (-1605 (((-693) $) 74 T ELT)) (-3798 (($ $ |#1|) 202 (|has| |#1| (-241 |#1| |#1|)) ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) 73 T ELT)) (-3756 (($ $ (-1 |#1| |#1|)) 194 T ELT) (($ $ (-1 |#1| |#1|) (-693)) 193 T ELT) (($ $) 140 (|has| |#1| (-189)) ELT) (($ $ (-693)) 138 (|has| |#1| (-189)) ELT) (($ $ (-1088)) 136 (|has| |#1| (-810 (-1088))) ELT) (($ $ (-582 (-1088))) 134 (|has| |#1| (-810 (-1088))) ELT) (($ $ (-1088) (-693)) 133 (|has| |#1| (-810 (-1088))) ELT) (($ $ (-582 (-1088)) (-582 (-693))) 132 (|has| |#1| (-810 (-1088))) ELT)) (-2994 (($ $) 174 T ELT)) (-2996 ((|#1| $) 176 T ELT)) (-3970 (((-799 (-483)) $) 182 (|has| |#1| (-552 (-799 (-483)))) ELT) (((-799 (-328)) $) 181 (|has| |#1| (-552 (-799 (-328)))) ELT) (((-472) $) 159 (|has| |#1| (-552 (-472))) ELT) (((-328) $) 158 (|has| |#1| (-932)) ELT) (((-179) $) 157 (|has| |#1| (-932)) ELT)) (-2702 (((-3 (-1177 $) #1#) (-629 $)) 168 (-2561 (|has| $ (-118)) (|has| |#1| (-820))) ELT)) (-3944 (((-771) $) 13 T ELT) (($ (-483)) 41 T ELT) (($ $) 57 T ELT) (($ (-348 (-483))) 84 T ELT) (($ |#1|) 207 T ELT) (($ (-1088)) 161 (|has| |#1| (-949 (-1088))) ELT)) (-2701 (((-631 $) $) 160 (OR (|has| |#1| (-118)) (-2561 (|has| $ (-118)) (|has| |#1| (-820)))) ELT)) (-3125 (((-693)) 40 T CONST)) (-3130 ((|#1| $) 170 (|has| |#1| (-482)) ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2061 (((-85) $ $) 53 T ELT)) (-3124 (((-85) $ $) 33 T ELT)) (-3381 (($ $) 153 (|has| |#1| (-739)) ELT)) (-2659 (($) 24 T CONST)) (-2665 (($) 45 T CONST)) (-2668 (($ $ (-1 |#1| |#1|)) 192 T ELT) (($ $ (-1 |#1| |#1|) (-693)) 191 T ELT) (($ $) 139 (|has| |#1| (-189)) ELT) (($ $ (-693)) 137 (|has| |#1| (-189)) ELT) (($ $ (-1088)) 135 (|has| |#1| (-810 (-1088))) ELT) (($ $ (-582 (-1088))) 131 (|has| |#1| (-810 (-1088))) ELT) (($ $ (-1088) (-693)) 130 (|has| |#1| (-810 (-1088))) ELT) (($ $ (-582 (-1088)) (-582 (-693))) 129 (|has| |#1| (-810 (-1088))) ELT)) (-2565 (((-85) $ $) 149 (|has| |#1| (-755)) ELT)) (-2566 (((-85) $ $) 151 (|has| |#1| (-755)) ELT)) (-3055 (((-85) $ $) 8 T ELT)) (-2683 (((-85) $ $) 150 (|has| |#1| (-755)) ELT)) (-2684 (((-85) $ $) 152 (|has| |#1| (-755)) ELT)) (-3947 (($ $ $) 83 T ELT) (($ |#1| |#1|) 178 T ELT)) (-3835 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3837 (($ $ $) 18 T ELT)) (** (($ $ (-829)) 35 T ELT) (($ $ (-693)) 43 T ELT) (($ $ (-483)) 87 T ELT)) (* (($ (-829) $) 17 T ELT) (($ (-693) $) 21 T ELT) (($ (-483) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-348 (-483))) 86 T ELT) (($ (-348 (-483)) $) 85 T ELT) (($ |#1| $) 206 T ELT) (($ $ |#1|) 205 T ELT))) -(((-903 |#1|) (-113) (-494)) (T -903)) -((-3947 (*1 *1 *2 *2) (-12 (-4 *1 (-903 *2)) (-4 *2 (-494)))) (-2997 (*1 *2 *1) (-12 (-4 *1 (-903 *2)) (-4 *2 (-494)))) (-2996 (*1 *2 *1) (-12 (-4 *1 (-903 *2)) (-4 *2 (-494)))) (-2995 (*1 *1 *1) (-12 (-4 *1 (-903 *2)) (-4 *2 (-494)))) (-2994 (*1 *1 *1) (-12 (-4 *1 (-903 *2)) (-4 *2 (-494)))) (-3128 (*1 *2 *1) (-12 (-4 *1 (-903 *2)) (-4 *2 (-494)) (-4 *2 (-258)))) (-3127 (*1 *1 *1) (-12 (-4 *1 (-903 *2)) (-4 *2 (-494)) (-4 *2 (-258)))) (-2993 (*1 *1) (-12 (-4 *1 (-903 *2)) (-4 *2 (-482)) (-4 *2 (-494)))) (-3130 (*1 *2 *1) (-12 (-4 *1 (-903 *2)) (-4 *2 (-494)) (-4 *2 (-482)))) (-3129 (*1 *2 *1) (-12 (-4 *1 (-903 *2)) (-4 *2 (-494)) (-4 *2 (-482))))) -(-13 (-312) (-38 |t#1|) (-949 |t#1|) (-288 |t#1|) (-184 |t#1|) (-327 |t#1|) (-793 |t#1|) (-341 |t#1|) (-10 -8 (-15 -3947 ($ |t#1| |t#1|)) (-15 -2997 (|t#1| $)) (-15 -2996 (|t#1| $)) (-15 -2995 ($ $)) (-15 -2994 ($ $)) (IF (|has| |t#1| (-1064)) (-6 (-1064)) |%noBranch|) (IF (|has| |t#1| (-949 (-483))) (PROGN (-6 (-949 (-483))) (-6 (-949 (-348 (-483))))) |%noBranch|) (IF (|has| |t#1| (-755)) (-6 (-755)) |%noBranch|) (IF (|has| |t#1| (-739)) (-6 (-739)) |%noBranch|) (IF (|has| |t#1| (-932)) (-6 (-932)) |%noBranch|) (IF (|has| |t#1| (-552 (-472))) (-6 (-552 (-472))) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-949 (-1088))) (-6 (-949 (-1088))) |%noBranch|) (IF (|has| |t#1| (-258)) (PROGN (-15 -3128 (|t#1| $)) (-15 -3127 ($ $))) |%noBranch|) (IF (|has| |t#1| (-482)) (PROGN (-15 -2993 ($)) (-15 -3130 (|t#1| $)) (-15 -3129 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-820)) (-6 (-820)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-348 (-483))) . T) ((-38 |#1|) . T) ((-38 $) . T) ((-72) . T) ((-82 (-348 (-483)) (-348 (-483))) . T) ((-82 |#1| |#1|) . T) ((-82 $ $) . T) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) OR (|has| |#1| (-739)) (|has| |#1| (-120))) ((-554 (-348 (-483))) . T) ((-554 (-483)) . T) ((-554 (-1088)) |has| |#1| (-949 (-1088))) ((-554 |#1|) . T) ((-554 $) . T) ((-551 (-771)) . T) ((-146) . T) ((-552 (-179)) |has| |#1| (-932)) ((-552 (-328)) |has| |#1| (-932)) ((-552 (-472)) |has| |#1| (-552 (-472))) ((-552 (-799 (-328))) |has| |#1| (-552 (-799 (-328)))) ((-552 (-799 (-483))) |has| |#1| (-552 (-799 (-483)))) ((-186 $) OR (|has| |#1| (-189)) (|has| |#1| (-190))) ((-184 |#1|) . T) ((-190) |has| |#1| (-190)) ((-189) OR (|has| |#1| (-189)) (|has| |#1| (-190))) ((-225 |#1|) . T) ((-201) . T) ((-241 |#1| $) |has| |#1| (-241 |#1| |#1|)) ((-246) . T) ((-258) . T) ((-260 |#1|) |has| |#1| (-260 |#1|)) ((-312) . T) ((-288 |#1|) . T) ((-327 |#1|) . T) ((-341 |#1|) . T) ((-390) . T) ((-454 (-1088) |#1|) |has| |#1| (-454 (-1088) |#1|)) ((-454 |#1| |#1|) |has| |#1| (-260 |#1|)) ((-494) . T) ((-13) . T) ((-587 (-348 (-483))) . T) ((-587 (-483)) . T) ((-587 |#1|) . T) ((-587 $) . T) ((-589 (-348 (-483))) . T) ((-589 (-483)) |has| |#1| (-579 (-483))) ((-589 |#1|) . T) ((-589 $) . T) ((-581 (-348 (-483))) . T) ((-581 |#1|) . T) ((-581 $) . T) ((-579 (-483)) |has| |#1| (-579 (-483))) ((-579 |#1|) . T) ((-653 (-348 (-483))) . T) ((-653 |#1|) . T) ((-653 $) . T) ((-662) . T) ((-713) |has| |#1| (-739)) ((-715) |has| |#1| (-739)) ((-717) |has| |#1| (-739)) ((-720) |has| |#1| (-739)) ((-739) |has| |#1| (-739)) ((-754) |has| |#1| (-739)) ((-755) OR (|has| |#1| (-755)) (|has| |#1| (-739))) ((-758) OR (|has| |#1| (-755)) (|has| |#1| (-739))) ((-805 $ (-1088)) OR (|has| |#1| (-810 (-1088))) (|has| |#1| (-808 (-1088)))) ((-808 (-1088)) |has| |#1| (-808 (-1088))) ((-810 (-1088)) OR (|has| |#1| (-810 (-1088))) (|has| |#1| (-808 (-1088)))) ((-795 (-328)) |has| |#1| (-795 (-328))) ((-795 (-483)) |has| |#1| (-795 (-483))) ((-793 |#1|) . T) ((-820) |has| |#1| (-820)) ((-831) . T) ((-932) |has| |#1| (-932)) ((-949 (-348 (-483))) |has| |#1| (-949 (-483))) ((-949 (-483)) |has| |#1| (-949 (-483))) ((-949 (-1088)) |has| |#1| (-949 (-1088))) ((-949 |#1|) . T) ((-962 (-348 (-483))) . T) ((-962 |#1|) . T) ((-962 $) . T) ((-967 (-348 (-483))) . T) ((-967 |#1|) . T) ((-967 $) . T) ((-960) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1064) |has| |#1| (-1064)) ((-1127) . T) ((-1132) . T)) -((-3956 ((|#4| (-1 |#2| |#1|) |#3|) 14 T ELT))) -(((-904 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3956 (|#4| (-1 |#2| |#1|) |#3|))) (-494) (-494) (-903 |#1|) (-903 |#2|)) (T -904)) -((-3956 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-494)) (-4 *6 (-494)) (-4 *2 (-903 *6)) (-5 *1 (-904 *5 *6 *4 *2)) (-4 *4 (-903 *5))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3187 (((-85) $) NIL T ELT)) (-1310 (((-3 $ "failed") $ $) NIL T ELT)) (-3722 (($) NIL T CONST)) (-2998 (($ (-1054 |#1| |#2|)) 11 T ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-3122 (((-1054 |#1| |#2|) $) 12 T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3798 ((|#2| $ (-197 |#1| |#2|)) 16 T ELT)) (-3944 (((-771) $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2659 (($) NIL T CONST)) (-3055 (((-85) $ $) NIL T ELT)) (-3835 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3837 (($ $ $) NIL T ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-483) $) NIL T ELT))) -(((-905 |#1| |#2|) (-13 (-21) (-241 (-197 |#1| |#2|) |#2|) (-10 -8 (-15 -2998 ($ (-1054 |#1| |#2|))) (-15 -3122 ((-1054 |#1| |#2|) $)))) (-829) (-312)) (T -905)) -((-2998 (*1 *1 *2) (-12 (-5 *2 (-1054 *3 *4)) (-14 *3 (-829)) (-4 *4 (-312)) (-5 *1 (-905 *3 *4)))) (-3122 (*1 *2 *1) (-12 (-5 *2 (-1054 *3 *4)) (-5 *1 (-905 *3 *4)) (-14 *3 (-829)) (-4 *4 (-312))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3205 (((-1047) $) 10 T ELT)) (-3944 (((-771) $) 16 T ELT) (($ (-1093)) NIL T ELT) (((-1093) $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-906) (-13 (-994) (-10 -8 (-15 -3205 ((-1047) $))))) (T -906)) -((-3205 (*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-906))))) -((-2567 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3722 (($) 7 T CONST)) (-3001 (($ $) 50 T ELT)) (-2888 (((-582 |#1|) $) 30 (|has| $ (-6 -3993)) ELT)) (-2607 (((-582 |#1|) $) 29 (|has| $ (-6 -3993)) ELT)) (-3244 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3993))) ELT)) (-1947 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3994)) ELT)) (-3956 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3831 (((-693) $) 49 T ELT)) (-3241 (((-1071) $) 22 (|has| |#1| (-1012)) ELT)) (-1272 ((|#1| $) 43 T ELT)) (-3607 (($ |#1| $) 44 T ELT)) (-3242 (((-1032) $) 21 (|has| |#1| (-1012)) ELT)) (-3000 ((|#1| $) 48 T ELT)) (-1273 ((|#1| $) 45 T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3993)) ELT)) (-3766 (($ $ (-582 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-582 |#1|) (-582 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT)) (-1220 (((-85) $ $) 11 T ELT)) (-3003 ((|#1| |#1| $) 52 T ELT)) (-3401 (((-85) $) 8 T ELT)) (-3563 (($) 9 T ELT)) (-3002 ((|#1| $) 51 T ELT)) (-1944 (((-693) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3993)) ELT) (((-693) |#1| $) 28 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3993))) ELT)) (-3398 (($ $) 10 T ELT)) (-3944 (((-771) $) 17 (|has| |#1| (-551 (-771))) ELT)) (-1263 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1274 (($ (-582 |#1|)) 46 T ELT)) (-2999 ((|#1| $) 47 T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3993)) ELT)) (-3055 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3955 (((-693) $) 6 (|has| $ (-6 -3993)) ELT))) -(((-907 |#1|) (-113) (-1127)) (T -907)) -((-3003 (*1 *2 *2 *1) (-12 (-4 *1 (-907 *2)) (-4 *2 (-1127)))) (-3002 (*1 *2 *1) (-12 (-4 *1 (-907 *2)) (-4 *2 (-1127)))) (-3001 (*1 *1 *1) (-12 (-4 *1 (-907 *2)) (-4 *2 (-1127)))) (-3831 (*1 *2 *1) (-12 (-4 *1 (-907 *3)) (-4 *3 (-1127)) (-5 *2 (-693)))) (-3000 (*1 *2 *1) (-12 (-4 *1 (-907 *2)) (-4 *2 (-1127)))) (-2999 (*1 *2 *1) (-12 (-4 *1 (-907 *2)) (-4 *2 (-1127))))) -(-13 (-76 |t#1|) (-10 -8 (-6 -3993) (-15 -3003 (|t#1| |t#1| $)) (-15 -3002 (|t#1| $)) (-15 -3001 ($ $)) (-15 -3831 ((-693) $)) (-15 -3000 (|t#1| $)) (-15 -2999 (|t#1| $)))) -(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1012)) (|has| |#1| (-72))) ((-551 (-771)) OR (|has| |#1| (-1012)) (|has| |#1| (-551 (-771)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ((-427 |#1|) . T) ((-454 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ((-13) . T) ((-1012) |has| |#1| (-1012)) ((-1127) . T)) -((-2567 (((-85) $ $) NIL T ELT)) (-3187 (((-85) $) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3722 (($) NIL T CONST)) (-3156 (((-3 (-483) #1#) $) NIL (|has| |#1| (-949 (-483))) ELT) (((-3 (-348 (-483)) #1#) $) NIL (|has| |#1| (-949 (-348 (-483)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3155 (((-483) $) NIL (|has| |#1| (-949 (-483))) ELT) (((-348 (-483)) $) NIL (|has| |#1| (-949 (-348 (-483)))) ELT) ((|#1| $) NIL T ELT)) (-2278 (((-629 (-483)) (-629 $)) NIL (|has| |#1| (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-629 $) (-1177 $)) NIL (|has| |#1| (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 |#1|)) (|:| |vec| (-1177 |#1|))) (-629 $) (-1177 $)) NIL T ELT) (((-629 |#1|) (-629 $)) NIL T ELT)) (-3465 (((-3 $ #1#) $) NIL T ELT)) (-3641 ((|#1| $) 12 T ELT)) (-3023 (((-3 (-348 (-483)) #1#) $) NIL (|has| |#1| (-482)) ELT)) (-3022 (((-85) $) NIL (|has| |#1| (-482)) ELT)) (-3021 (((-348 (-483)) $) NIL (|has| |#1| (-482)) ELT)) (-3004 (($ |#1| |#1| |#1| |#1|) 16 T ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-2409 (((-85) $) NIL T ELT)) (-3131 ((|#1| $) NIL T ELT)) (-2530 (($ $ $) NIL (|has| |#1| (-755)) ELT)) (-2856 (($ $ $) NIL (|has| |#1| (-755)) ELT)) (-3956 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2279 (((-629 (-483)) (-1177 $)) NIL (|has| |#1| (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL (|has| |#1| (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 |#1|)) (|:| |vec| (-1177 |#1|))) (-1177 $) $) NIL T ELT) (((-629 |#1|) (-1177 $)) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-2483 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3005 ((|#1| $) 15 T ELT)) (-3006 ((|#1| $) 14 T ELT)) (-3007 ((|#1| $) 13 T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3766 (($ $ (-582 |#1|) (-582 |#1|)) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-249 |#1|)) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-582 (-249 |#1|))) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-582 (-1088)) (-582 |#1|)) NIL (|has| |#1| (-454 (-1088) |#1|)) ELT) (($ $ (-1088) |#1|) NIL (|has| |#1| (-454 (-1088) |#1|)) ELT)) (-3798 (($ $ |#1|) NIL (|has| |#1| (-241 |#1| |#1|)) ELT)) (-3756 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-693)) NIL T ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-693)) NIL (|has| |#1| (-189)) ELT) (($ $ (-1088)) NIL (|has| |#1| (-810 (-1088))) ELT) (($ $ (-582 (-1088))) NIL (|has| |#1| (-810 (-1088))) ELT) (($ $ (-1088) (-693)) NIL (|has| |#1| (-810 (-1088))) ELT) (($ $ (-582 (-1088)) (-582 (-693))) NIL (|has| |#1| (-810 (-1088))) ELT)) (-3970 (((-472) $) NIL (|has| |#1| (-552 (-472))) ELT)) (-3008 (($ $) NIL T ELT)) (-3944 (((-771) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-348 (-483))) NIL (OR (|has| |#1| (-312)) (|has| |#1| (-949 (-348 (-483))))) ELT)) (-2701 (((-631 $) $) NIL (|has| |#1| (-118)) ELT)) (-3125 (((-693)) NIL T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-3124 (((-85) $ $) NIL T ELT)) (-3381 ((|#1| $) NIL (|has| |#1| (-972)) ELT)) (-2659 (($) 8 T CONST)) (-2665 (($) 10 T CONST)) (-2668 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-693)) NIL T ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-693)) NIL (|has| |#1| (-189)) ELT) (($ $ (-1088)) NIL (|has| |#1| (-810 (-1088))) ELT) (($ $ (-582 (-1088))) NIL (|has| |#1| (-810 (-1088))) ELT) (($ $ (-1088) (-693)) NIL (|has| |#1| (-810 (-1088))) ELT) (($ $ (-582 (-1088)) (-582 (-693))) NIL (|has| |#1| (-810 (-1088))) ELT)) (-2565 (((-85) $ $) NIL (|has| |#1| (-755)) ELT)) (-2566 (((-85) $ $) NIL (|has| |#1| (-755)) ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-2683 (((-85) $ $) NIL (|has| |#1| (-755)) ELT)) (-2684 (((-85) $ $) NIL (|has| |#1| (-755)) ELT)) (-3835 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3837 (($ $ $) NIL T ELT)) (** (($ $ (-829)) NIL T ELT) (($ $ (-693)) NIL T ELT) (($ $ (-483)) NIL (|has| |#1| (-312)) ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) 20 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ (-348 (-483))) NIL (|has| |#1| (-312)) ELT) (($ (-348 (-483)) $) NIL (|has| |#1| (-312)) ELT))) -(((-908 |#1|) (-910 |#1|) (-146)) (T -908)) -NIL -((-3187 (((-85) $) 43 T ELT)) (-3156 (((-3 (-483) #1="failed") $) NIL T ELT) (((-3 (-348 (-483)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 46 T ELT)) (-3155 (((-483) $) NIL T ELT) (((-348 (-483)) $) NIL T ELT) ((|#2| $) 44 T ELT)) (-3023 (((-3 (-348 (-483)) #1#) $) 78 T ELT)) (-3022 (((-85) $) 72 T ELT)) (-3021 (((-348 (-483)) $) 76 T ELT)) (-2409 (((-85) $) 42 T ELT)) (-3131 ((|#2| $) 22 T ELT)) (-3956 (($ (-1 |#2| |#2|) $) 19 T ELT)) (-2483 (($ $) 58 T ELT)) (-3756 (($ $ (-1 |#2| |#2|)) 35 T ELT) (($ $ (-1 |#2| |#2|) (-693)) NIL T ELT) (($ $ (-1088)) NIL T ELT) (($ $ (-582 (-1088))) NIL T ELT) (($ $ (-1088) (-693)) NIL T ELT) (($ $ (-582 (-1088)) (-582 (-693))) NIL T ELT) (($ $) NIL T ELT) (($ $ (-693)) NIL T ELT)) (-3970 (((-472) $) 67 T ELT)) (-3008 (($ $) 17 T ELT)) (-3944 (((-771) $) 53 T ELT) (($ (-483)) 39 T ELT) (($ |#2|) 37 T ELT) (($ (-348 (-483))) NIL T ELT)) (-3125 (((-693)) 10 T CONST)) (-3381 ((|#2| $) 71 T ELT)) (-3055 (((-85) $ $) 26 T ELT)) (-2684 (((-85) $ $) 69 T ELT)) (-3835 (($ $) 30 T ELT) (($ $ $) 29 T ELT)) (-3837 (($ $ $) 27 T ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-483) $) 34 T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 31 T ELT) (($ $ (-348 (-483))) NIL T ELT) (($ (-348 (-483)) $) NIL T ELT))) -(((-909 |#1| |#2|) (-10 -7 (-15 -3944 (|#1| (-348 (-483)))) (-15 -3756 (|#1| |#1| (-693))) (-15 -3756 (|#1| |#1|)) (-15 -3756 (|#1| |#1| (-582 (-1088)) (-582 (-693)))) (-15 -3756 (|#1| |#1| (-1088) (-693))) (-15 -3756 (|#1| |#1| (-582 (-1088)))) (-15 -3756 (|#1| |#1| (-1088))) (-15 -2684 ((-85) |#1| |#1|)) (-15 * (|#1| (-348 (-483)) |#1|)) (-15 * (|#1| |#1| (-348 (-483)))) (-15 -2483 (|#1| |#1|)) (-15 -3970 ((-472) |#1|)) (-15 -3023 ((-3 (-348 (-483)) #1="failed") |#1|)) (-15 -3021 ((-348 (-483)) |#1|)) (-15 -3022 ((-85) |#1|)) (-15 -3381 (|#2| |#1|)) (-15 -3131 (|#2| |#1|)) (-15 -3008 (|#1| |#1|)) (-15 -3956 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3756 (|#1| |#1| (-1 |#2| |#2|) (-693))) (-15 -3756 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3156 ((-3 |#2| #1#) |#1|)) (-15 -3155 (|#2| |#1|)) (-15 -3155 ((-348 (-483)) |#1|)) (-15 -3156 ((-3 (-348 (-483)) #1#) |#1|)) (-15 -3155 ((-483) |#1|)) (-15 -3156 ((-3 (-483) #1#) |#1|)) (-15 -3944 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3125 ((-693)) -3950) (-15 -3944 (|#1| (-483))) (-15 -2409 ((-85) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3835 (|#1| |#1| |#1|)) (-15 -3835 (|#1| |#1|)) (-15 * (|#1| (-483) |#1|)) (-15 * (|#1| (-693) |#1|)) (-15 -3187 ((-85) |#1|)) (-15 * (|#1| (-829) |#1|)) (-15 -3837 (|#1| |#1| |#1|)) (-15 -3944 ((-771) |#1|)) (-15 -3055 ((-85) |#1| |#1|))) (-910 |#2|) (-146)) (T -909)) -((-3125 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-693)) (-5 *1 (-909 *3 *4)) (-4 *3 (-910 *4))))) -((-2567 (((-85) $ $) 7 T ELT)) (-3187 (((-85) $) 22 T ELT)) (-1310 (((-3 $ "failed") $ $) 26 T ELT)) (-3722 (($) 23 T CONST)) (-3156 (((-3 (-483) #1="failed") $) 143 (|has| |#1| (-949 (-483))) ELT) (((-3 (-348 (-483)) #1#) $) 141 (|has| |#1| (-949 (-348 (-483)))) ELT) (((-3 |#1| #1#) $) 138 T ELT)) (-3155 (((-483) $) 142 (|has| |#1| (-949 (-483))) ELT) (((-348 (-483)) $) 140 (|has| |#1| (-949 (-348 (-483)))) ELT) ((|#1| $) 139 T ELT)) (-2278 (((-629 (-483)) (-629 $)) 123 (|has| |#1| (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-629 $) (-1177 $)) 122 (|has| |#1| (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 |#1|)) (|:| |vec| (-1177 |#1|))) (-629 $) (-1177 $)) 121 T ELT) (((-629 |#1|) (-629 $)) 120 T ELT)) (-3465 (((-3 $ "failed") $) 42 T ELT)) (-3641 ((|#1| $) 111 T ELT)) (-3023 (((-3 (-348 (-483)) "failed") $) 107 (|has| |#1| (-482)) ELT)) (-3022 (((-85) $) 109 (|has| |#1| (-482)) ELT)) (-3021 (((-348 (-483)) $) 108 (|has| |#1| (-482)) ELT)) (-3004 (($ |#1| |#1| |#1| |#1|) 112 T ELT)) (-1212 (((-85) $ $) 20 T ELT)) (-2409 (((-85) $) 44 T ELT)) (-3131 ((|#1| $) 113 T ELT)) (-2530 (($ $ $) 95 (|has| |#1| (-755)) ELT)) (-2856 (($ $ $) 96 (|has| |#1| (-755)) ELT)) (-3956 (($ (-1 |#1| |#1|) $) 126 T ELT)) (-2279 (((-629 (-483)) (-1177 $)) 125 (|has| |#1| (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) 124 (|has| |#1| (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 |#1|)) (|:| |vec| (-1177 |#1|))) (-1177 $) $) 119 T ELT) (((-629 |#1|) (-1177 $)) 118 T ELT)) (-3241 (((-1071) $) 11 T ELT)) (-2483 (($ $) 104 (|has| |#1| (-312)) ELT)) (-3005 ((|#1| $) 114 T ELT)) (-3006 ((|#1| $) 115 T ELT)) (-3007 ((|#1| $) 116 T ELT)) (-3242 (((-1032) $) 12 T ELT)) (-3766 (($ $ (-582 |#1|) (-582 |#1|)) 132 (|has| |#1| (-260 |#1|)) ELT) (($ $ |#1| |#1|) 131 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-249 |#1|)) 130 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-582 (-249 |#1|))) 129 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-582 (-1088)) (-582 |#1|)) 128 (|has| |#1| (-454 (-1088) |#1|)) ELT) (($ $ (-1088) |#1|) 127 (|has| |#1| (-454 (-1088) |#1|)) ELT)) (-3798 (($ $ |#1|) 133 (|has| |#1| (-241 |#1| |#1|)) ELT)) (-3756 (($ $ (-1 |#1| |#1|)) 137 T ELT) (($ $ (-1 |#1| |#1|) (-693)) 136 T ELT) (($ $) 94 (|has| |#1| (-189)) ELT) (($ $ (-693)) 92 (|has| |#1| (-189)) ELT) (($ $ (-1088)) 90 (|has| |#1| (-810 (-1088))) ELT) (($ $ (-582 (-1088))) 88 (|has| |#1| (-810 (-1088))) ELT) (($ $ (-1088) (-693)) 87 (|has| |#1| (-810 (-1088))) ELT) (($ $ (-582 (-1088)) (-582 (-693))) 86 (|has| |#1| (-810 (-1088))) ELT)) (-3970 (((-472) $) 105 (|has| |#1| (-552 (-472))) ELT)) (-3008 (($ $) 117 T ELT)) (-3944 (((-771) $) 13 T ELT) (($ (-483)) 41 T ELT) (($ |#1|) 52 T ELT) (($ (-348 (-483))) 82 (OR (|has| |#1| (-312)) (|has| |#1| (-949 (-348 (-483))))) ELT)) (-2701 (((-631 $) $) 106 (|has| |#1| (-118)) ELT)) (-3125 (((-693)) 40 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-3124 (((-85) $ $) 33 T ELT)) (-3381 ((|#1| $) 110 (|has| |#1| (-972)) ELT)) (-2659 (($) 24 T CONST)) (-2665 (($) 45 T CONST)) (-2668 (($ $ (-1 |#1| |#1|)) 135 T ELT) (($ $ (-1 |#1| |#1|) (-693)) 134 T ELT) (($ $) 93 (|has| |#1| (-189)) ELT) (($ $ (-693)) 91 (|has| |#1| (-189)) ELT) (($ $ (-1088)) 89 (|has| |#1| (-810 (-1088))) ELT) (($ $ (-582 (-1088))) 85 (|has| |#1| (-810 (-1088))) ELT) (($ $ (-1088) (-693)) 84 (|has| |#1| (-810 (-1088))) ELT) (($ $ (-582 (-1088)) (-582 (-693))) 83 (|has| |#1| (-810 (-1088))) ELT)) (-2565 (((-85) $ $) 97 (|has| |#1| (-755)) ELT)) (-2566 (((-85) $ $) 99 (|has| |#1| (-755)) ELT)) (-3055 (((-85) $ $) 8 T ELT)) (-2683 (((-85) $ $) 98 (|has| |#1| (-755)) ELT)) (-2684 (((-85) $ $) 100 (|has| |#1| (-755)) ELT)) (-3835 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3837 (($ $ $) 18 T ELT)) (** (($ $ (-829)) 35 T ELT) (($ $ (-693)) 43 T ELT) (($ $ (-483)) 103 (|has| |#1| (-312)) ELT)) (* (($ (-829) $) 17 T ELT) (($ (-693) $) 21 T ELT) (($ (-483) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 54 T ELT) (($ |#1| $) 53 T ELT) (($ $ (-348 (-483))) 102 (|has| |#1| (-312)) ELT) (($ (-348 (-483)) $) 101 (|has| |#1| (-312)) ELT))) -(((-910 |#1|) (-113) (-146)) (T -910)) -((-3008 (*1 *1 *1) (-12 (-4 *1 (-910 *2)) (-4 *2 (-146)))) (-3007 (*1 *2 *1) (-12 (-4 *1 (-910 *2)) (-4 *2 (-146)))) (-3006 (*1 *2 *1) (-12 (-4 *1 (-910 *2)) (-4 *2 (-146)))) (-3005 (*1 *2 *1) (-12 (-4 *1 (-910 *2)) (-4 *2 (-146)))) (-3131 (*1 *2 *1) (-12 (-4 *1 (-910 *2)) (-4 *2 (-146)))) (-3004 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-910 *2)) (-4 *2 (-146)))) (-3641 (*1 *2 *1) (-12 (-4 *1 (-910 *2)) (-4 *2 (-146)))) (-3381 (*1 *2 *1) (-12 (-4 *1 (-910 *2)) (-4 *2 (-146)) (-4 *2 (-972)))) (-3022 (*1 *2 *1) (-12 (-4 *1 (-910 *3)) (-4 *3 (-146)) (-4 *3 (-482)) (-5 *2 (-85)))) (-3021 (*1 *2 *1) (-12 (-4 *1 (-910 *3)) (-4 *3 (-146)) (-4 *3 (-482)) (-5 *2 (-348 (-483))))) (-3023 (*1 *2 *1) (|partial| -12 (-4 *1 (-910 *3)) (-4 *3 (-146)) (-4 *3 (-482)) (-5 *2 (-348 (-483)))))) -(-13 (-38 |t#1|) (-353 |t#1|) (-184 |t#1|) (-288 |t#1|) (-327 |t#1|) (-10 -8 (-15 -3008 ($ $)) (-15 -3007 (|t#1| $)) (-15 -3006 (|t#1| $)) (-15 -3005 (|t#1| $)) (-15 -3131 (|t#1| $)) (-15 -3004 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -3641 (|t#1| $)) (IF (|has| |t#1| (-246)) (-6 (-246)) |%noBranch|) (IF (|has| |t#1| (-755)) (-6 (-755)) |%noBranch|) (IF (|has| |t#1| (-312)) (-6 (-201)) |%noBranch|) (IF (|has| |t#1| (-552 (-472))) (-6 (-552 (-472))) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-972)) (-15 -3381 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-482)) (PROGN (-15 -3022 ((-85) $)) (-15 -3021 ((-348 (-483)) $)) (-15 -3023 ((-3 (-348 (-483)) "failed") $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-348 (-483))) |has| |#1| (-312)) ((-38 |#1|) . T) ((-72) . T) ((-82 (-348 (-483)) (-348 (-483))) |has| |#1| (-312)) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-312)) (|has| |#1| (-246))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-554 (-348 (-483))) OR (|has| |#1| (-949 (-348 (-483)))) (|has| |#1| (-312))) ((-554 (-483)) . T) ((-554 |#1|) . T) ((-551 (-771)) . T) ((-552 (-472)) |has| |#1| (-552 (-472))) ((-186 $) OR (|has| |#1| (-189)) (|has| |#1| (-190))) ((-184 |#1|) . T) ((-190) |has| |#1| (-190)) ((-189) OR (|has| |#1| (-189)) (|has| |#1| (-190))) ((-225 |#1|) . T) ((-201) |has| |#1| (-312)) ((-241 |#1| $) |has| |#1| (-241 |#1| |#1|)) ((-246) OR (|has| |#1| (-312)) (|has| |#1| (-246))) ((-260 |#1|) |has| |#1| (-260 |#1|)) ((-288 |#1|) . T) ((-327 |#1|) . T) ((-353 |#1|) . T) ((-454 (-1088) |#1|) |has| |#1| (-454 (-1088) |#1|)) ((-454 |#1| |#1|) |has| |#1| (-260 |#1|)) ((-13) . T) ((-587 (-348 (-483))) |has| |#1| (-312)) ((-587 (-483)) . T) ((-587 |#1|) . T) ((-587 $) . T) ((-589 (-348 (-483))) |has| |#1| (-312)) ((-589 (-483)) |has| |#1| (-579 (-483))) ((-589 |#1|) . T) ((-589 $) . T) ((-581 (-348 (-483))) |has| |#1| (-312)) ((-581 |#1|) . T) ((-579 (-483)) |has| |#1| (-579 (-483))) ((-579 |#1|) . T) ((-653 (-348 (-483))) |has| |#1| (-312)) ((-653 |#1|) . T) ((-662) . T) ((-755) |has| |#1| (-755)) ((-758) |has| |#1| (-755)) ((-805 $ (-1088)) OR (|has| |#1| (-810 (-1088))) (|has| |#1| (-808 (-1088)))) ((-808 (-1088)) |has| |#1| (-808 (-1088))) ((-810 (-1088)) OR (|has| |#1| (-810 (-1088))) (|has| |#1| (-808 (-1088)))) ((-949 (-348 (-483))) |has| |#1| (-949 (-348 (-483)))) ((-949 (-483)) |has| |#1| (-949 (-483))) ((-949 |#1|) . T) ((-962 (-348 (-483))) |has| |#1| (-312)) ((-962 |#1|) . T) ((-962 $) OR (|has| |#1| (-312)) (|has| |#1| (-246))) ((-967 (-348 (-483))) |has| |#1| (-312)) ((-967 |#1|) . T) ((-967 $) OR (|has| |#1| (-312)) (|has| |#1| (-246))) ((-960) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T)) -((-3956 ((|#3| (-1 |#4| |#2|) |#1|) 16 T ELT))) -(((-911 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3956 (|#3| (-1 |#4| |#2|) |#1|))) (-910 |#2|) (-146) (-910 |#4|) (-146)) (T -911)) -((-3956 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-146)) (-4 *6 (-146)) (-4 *2 (-910 *6)) (-5 *1 (-911 *4 *5 *2 *6)) (-4 *4 (-910 *5))))) -((-2567 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3722 (($) NIL T CONST)) (-3001 (($ $) 24 T ELT)) (-3009 (($ (-582 |#1|)) 34 T ELT)) (-2888 (((-582 |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-2607 (((-582 |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3244 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#1| (-1012))) ELT)) (-1947 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3956 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3831 (((-693) $) 27 T ELT)) (-3241 (((-1071) $) NIL (|has| |#1| (-1012)) ELT)) (-1272 ((|#1| $) 29 T ELT)) (-3607 (($ |#1| $) 18 T ELT)) (-3242 (((-1032) $) NIL (|has| |#1| (-1012)) ELT)) (-3000 ((|#1| $) 28 T ELT)) (-1273 ((|#1| $) 23 T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3766 (($ $ (-582 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-582 |#1|) (-582 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-3003 ((|#1| |#1| $) 17 T ELT)) (-3401 (((-85) $) 19 T ELT)) (-3563 (($) NIL T ELT)) (-3002 ((|#1| $) 22 T ELT)) (-1944 (((-693) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3993)) ELT) (((-693) |#1| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#1| (-1012))) ELT)) (-3398 (($ $) NIL T ELT)) (-3944 (((-771) $) NIL (|has| |#1| (-551 (-771))) ELT)) (-1263 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1274 (($ (-582 |#1|)) NIL T ELT)) (-2999 ((|#1| $) 31 T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3055 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3955 (((-693) $) NIL (|has| $ (-6 -3993)) ELT))) -(((-912 |#1|) (-13 (-907 |#1|) (-10 -8 (-15 -3009 ($ (-582 |#1|))))) (-1012)) (T -912)) -((-3009 (*1 *1 *2) (-12 (-5 *2 (-582 *3)) (-4 *3 (-1012)) (-5 *1 (-912 *3))))) -((-3036 (($ $) 12 T ELT)) (-3010 (($ $ (-483)) 13 T ELT))) -(((-913 |#1|) (-10 -7 (-15 -3036 (|#1| |#1|)) (-15 -3010 (|#1| |#1| (-483)))) (-914)) (T -913)) -NIL -((-3036 (($ $) 6 T ELT)) (-3010 (($ $ (-483)) 7 T ELT)) (** (($ $ (-348 (-483))) 8 T ELT))) -(((-914) (-113)) (T -914)) -((** (*1 *1 *1 *2) (-12 (-4 *1 (-914)) (-5 *2 (-348 (-483))))) (-3010 (*1 *1 *1 *2) (-12 (-4 *1 (-914)) (-5 *2 (-483)))) (-3036 (*1 *1 *1) (-4 *1 (-914)))) -(-13 (-10 -8 (-15 -3036 ($ $)) (-15 -3010 ($ $ (-483))) (-15 ** ($ $ (-348 (-483)))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3187 (((-85) $) NIL T ELT)) (-1645 (((-2 (|:| |num| (-1177 |#2|)) (|:| |den| |#2|)) $) NIL T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3980 $) (|:| |associate| $)) $) NIL (|has| (-348 |#2|) (-312)) ELT)) (-2062 (($ $) NIL (|has| (-348 |#2|) (-312)) ELT)) (-2060 (((-85) $) NIL (|has| (-348 |#2|) (-312)) ELT)) (-1780 (((-629 (-348 |#2|)) (-1177 $)) NIL T ELT) (((-629 (-348 |#2|))) NIL T ELT)) (-3328 (((-348 |#2|) $) NIL T ELT)) (-1673 (((-1100 (-829) (-693)) (-483)) NIL (|has| (-348 |#2|) (-299)) ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3773 (($ $) NIL (|has| (-348 |#2|) (-312)) ELT)) (-3969 (((-346 $) $) NIL (|has| (-348 |#2|) (-312)) ELT)) (-1606 (((-85) $ $) NIL (|has| (-348 |#2|) (-312)) ELT)) (-3135 (((-693)) NIL (|has| (-348 |#2|) (-318)) ELT)) (-1659 (((-85)) NIL T ELT)) (-1658 (((-85) |#1|) 162 T ELT) (((-85) |#2|) 166 T ELT)) (-3722 (($) NIL T CONST)) (-3156 (((-3 (-483) #1#) $) NIL (|has| (-348 |#2|) (-949 (-483))) ELT) (((-3 (-348 (-483)) #1#) $) NIL (|has| (-348 |#2|) (-949 (-348 (-483)))) ELT) (((-3 (-348 |#2|) #1#) $) NIL T ELT)) (-3155 (((-483) $) NIL (|has| (-348 |#2|) (-949 (-483))) ELT) (((-348 (-483)) $) NIL (|has| (-348 |#2|) (-949 (-348 (-483)))) ELT) (((-348 |#2|) $) NIL T ELT)) (-1790 (($ (-1177 (-348 |#2|)) (-1177 $)) NIL T ELT) (($ (-1177 (-348 |#2|))) 79 T ELT) (($ (-1177 |#2|) |#2|) NIL T ELT)) (-1671 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-348 |#2|) (-299)) ELT)) (-2563 (($ $ $) NIL (|has| (-348 |#2|) (-312)) ELT)) (-1779 (((-629 (-348 |#2|)) $ (-1177 $)) NIL T ELT) (((-629 (-348 |#2|)) $) NIL T ELT)) (-2278 (((-629 (-483)) (-629 $)) NIL (|has| (-348 |#2|) (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-629 $) (-1177 $)) NIL (|has| (-348 |#2|) (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 (-348 |#2|))) (|:| |vec| (-1177 (-348 |#2|)))) (-629 $) (-1177 $)) NIL T ELT) (((-629 (-348 |#2|)) (-629 $)) NIL T ELT)) (-1650 (((-1177 $) (-1177 $)) NIL T ELT)) (-3840 (($ |#3|) 73 T ELT) (((-3 $ #1#) (-348 |#3|)) NIL (|has| (-348 |#2|) (-312)) ELT)) (-3465 (((-3 $ #1#) $) NIL T ELT)) (-1637 (((-582 (-582 |#1|))) NIL (|has| |#1| (-318)) ELT)) (-1662 (((-85) |#1| |#1|) NIL T ELT)) (-3107 (((-829)) NIL T ELT)) (-2993 (($) NIL (|has| (-348 |#2|) (-318)) ELT)) (-1657 (((-85)) NIL T ELT)) (-1656 (((-85) |#1|) 61 T ELT) (((-85) |#2|) 164 T ELT)) (-2562 (($ $ $) NIL (|has| (-348 |#2|) (-312)) ELT)) (-2740 (((-2 (|:| -3952 (-582 $)) (|:| -2408 $)) (-582 $)) NIL (|has| (-348 |#2|) (-312)) ELT)) (-3501 (($ $) NIL T ELT)) (-2832 (($) NIL (|has| (-348 |#2|) (-299)) ELT)) (-1678 (((-85) $) NIL (|has| (-348 |#2|) (-299)) ELT)) (-1762 (($ $ (-693)) NIL (|has| (-348 |#2|) (-299)) ELT) (($ $) NIL (|has| (-348 |#2|) (-299)) ELT)) (-3721 (((-85) $) NIL (|has| (-348 |#2|) (-312)) ELT)) (-3770 (((-829) $) NIL (|has| (-348 |#2|) (-299)) ELT) (((-742 (-829)) $) NIL (|has| (-348 |#2|) (-299)) ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-2409 (((-85) $) NIL T ELT)) (-3375 (((-693)) NIL T ELT)) (-1651 (((-1177 $) (-1177 $)) NIL T ELT)) (-3131 (((-348 |#2|) $) NIL T ELT)) (-1638 (((-582 (-856 |#1|)) (-1088)) NIL (|has| |#1| (-312)) ELT)) (-3443 (((-631 $) $) NIL (|has| (-348 |#2|) (-299)) ELT)) (-1603 (((-3 (-582 $) #1#) (-582 $) $) NIL (|has| (-348 |#2|) (-312)) ELT)) (-2013 ((|#3| $) NIL (|has| (-348 |#2|) (-312)) ELT)) (-2009 (((-829) $) NIL (|has| (-348 |#2|) (-318)) ELT)) (-3078 ((|#3| $) NIL T ELT)) (-2279 (((-629 (-483)) (-1177 $)) NIL (|has| (-348 |#2|) (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL (|has| (-348 |#2|) (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 (-348 |#2|))) (|:| |vec| (-1177 (-348 |#2|)))) (-1177 $) $) NIL T ELT) (((-629 (-348 |#2|)) (-1177 $)) NIL T ELT)) (-1889 (($ (-582 $)) NIL (|has| (-348 |#2|) (-312)) ELT) (($ $ $) NIL (|has| (-348 |#2|) (-312)) ELT)) (-3241 (((-1071) $) NIL T ELT)) (-1646 (((-629 (-348 |#2|))) 57 T ELT)) (-1648 (((-629 (-348 |#2|))) 56 T ELT)) (-2483 (($ $) NIL (|has| (-348 |#2|) (-312)) ELT)) (-1643 (($ (-1177 |#2|) |#2|) 80 T ELT)) (-1647 (((-629 (-348 |#2|))) 55 T ELT)) (-1649 (((-629 (-348 |#2|))) 54 T ELT)) (-1642 (((-2 (|:| |num| (-629 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 95 T ELT)) (-1644 (((-2 (|:| |num| (-1177 |#2|)) (|:| |den| |#2|)) $) 86 T ELT)) (-1655 (((-1177 $)) 51 T ELT)) (-3916 (((-1177 $)) 50 T ELT)) (-1654 (((-85) $) NIL T ELT)) (-1653 (((-85) $) NIL T ELT) (((-85) $ |#1|) NIL T ELT) (((-85) $ |#2|) NIL T ELT)) (-3444 (($) NIL (|has| (-348 |#2|) (-299)) CONST)) (-2399 (($ (-829)) NIL (|has| (-348 |#2|) (-318)) ELT)) (-1640 (((-3 |#2| #1#)) 70 T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-1664 (((-693)) NIL T ELT)) (-2408 (($) NIL T ELT)) (-2707 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| (-348 |#2|) (-312)) ELT)) (-3143 (($ (-582 $)) NIL (|has| (-348 |#2|) (-312)) ELT) (($ $ $) NIL (|has| (-348 |#2|) (-312)) ELT)) (-1674 (((-582 (-2 (|:| -3730 (-483)) (|:| -2400 (-483))))) NIL (|has| (-348 |#2|) (-299)) ELT)) (-3730 (((-346 $) $) NIL (|has| (-348 |#2|) (-312)) ELT)) (-1604 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| (-348 |#2|) (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL (|has| (-348 |#2|) (-312)) ELT)) (-3464 (((-3 $ #1#) $ $) NIL (|has| (-348 |#2|) (-312)) ELT)) (-2739 (((-631 (-582 $)) (-582 $) $) NIL (|has| (-348 |#2|) (-312)) ELT)) (-1605 (((-693) $) NIL (|has| (-348 |#2|) (-312)) ELT)) (-3798 ((|#1| $ |#1| |#1|) NIL T ELT)) (-1641 (((-3 |#2| #1#)) 68 T ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL (|has| (-348 |#2|) (-312)) ELT)) (-3755 (((-348 |#2|) (-1177 $)) NIL T ELT) (((-348 |#2|)) 47 T ELT)) (-1763 (((-693) $) NIL (|has| (-348 |#2|) (-299)) ELT) (((-3 (-693) #1#) $ $) NIL (|has| (-348 |#2|) (-299)) ELT)) (-3756 (($ $ (-1 (-348 |#2|) (-348 |#2|))) NIL (|has| (-348 |#2|) (-312)) ELT) (($ $ (-1 (-348 |#2|) (-348 |#2|)) (-693)) NIL (|has| (-348 |#2|) (-312)) ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-582 (-1088)) (-582 (-693))) NIL (OR (-12 (|has| (-348 |#2|) (-312)) (|has| (-348 |#2|) (-808 (-1088)))) (-12 (|has| (-348 |#2|) (-312)) (|has| (-348 |#2|) (-810 (-1088))))) ELT) (($ $ (-1088) (-693)) NIL (OR (-12 (|has| (-348 |#2|) (-312)) (|has| (-348 |#2|) (-808 (-1088)))) (-12 (|has| (-348 |#2|) (-312)) (|has| (-348 |#2|) (-810 (-1088))))) ELT) (($ $ (-582 (-1088))) NIL (OR (-12 (|has| (-348 |#2|) (-312)) (|has| (-348 |#2|) (-808 (-1088)))) (-12 (|has| (-348 |#2|) (-312)) (|has| (-348 |#2|) (-810 (-1088))))) ELT) (($ $ (-1088)) NIL (OR (-12 (|has| (-348 |#2|) (-312)) (|has| (-348 |#2|) (-808 (-1088)))) (-12 (|has| (-348 |#2|) (-312)) (|has| (-348 |#2|) (-810 (-1088))))) ELT) (($ $ (-693)) NIL (OR (-12 (|has| (-348 |#2|) (-190)) (|has| (-348 |#2|) (-312))) (-12 (|has| (-348 |#2|) (-189)) (|has| (-348 |#2|) (-312))) (|has| (-348 |#2|) (-299))) ELT) (($ $) NIL (OR (-12 (|has| (-348 |#2|) (-190)) (|has| (-348 |#2|) (-312))) (-12 (|has| (-348 |#2|) (-189)) (|has| (-348 |#2|) (-312))) (|has| (-348 |#2|) (-299))) ELT)) (-2407 (((-629 (-348 |#2|)) (-1177 $) (-1 (-348 |#2|) (-348 |#2|))) NIL (|has| (-348 |#2|) (-312)) ELT)) (-3184 ((|#3|) 58 T ELT)) (-1672 (($) NIL (|has| (-348 |#2|) (-299)) ELT)) (-3223 (((-1177 (-348 |#2|)) $ (-1177 $)) NIL T ELT) (((-629 (-348 |#2|)) (-1177 $) (-1177 $)) NIL T ELT) (((-1177 (-348 |#2|)) $) 81 T ELT) (((-629 (-348 |#2|)) (-1177 $)) NIL T ELT)) (-3970 (((-1177 (-348 |#2|)) $) NIL T ELT) (($ (-1177 (-348 |#2|))) NIL T ELT) ((|#3| $) NIL T ELT) (($ |#3|) NIL T ELT)) (-2702 (((-3 (-1177 $) #1#) (-629 $)) NIL (|has| (-348 |#2|) (-299)) ELT)) (-1652 (((-1177 $) (-1177 $)) NIL T ELT)) (-3944 (((-771) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ (-348 |#2|)) NIL T ELT) (($ (-348 (-483))) NIL (OR (|has| (-348 |#2|) (-312)) (|has| (-348 |#2|) (-949 (-348 (-483))))) ELT) (($ $) NIL (|has| (-348 |#2|) (-312)) ELT)) (-2701 (($ $) NIL (|has| (-348 |#2|) (-299)) ELT) (((-631 $) $) NIL (|has| (-348 |#2|) (-118)) ELT)) (-2448 ((|#3| $) NIL T ELT)) (-3125 (((-693)) NIL T CONST)) (-1661 (((-85)) 65 T ELT)) (-1660 (((-85) |#1|) 167 T ELT) (((-85) |#2|) 168 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2011 (((-1177 $)) NIL T ELT)) (-2061 (((-85) $ $) NIL (|has| (-348 |#2|) (-312)) ELT)) (-3124 (((-85) $ $) NIL T ELT)) (-1639 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL T ELT)) (-1663 (((-85)) NIL T ELT)) (-2659 (($) NIL T CONST)) (-2665 (($) NIL T CONST)) (-2668 (($ $ (-1 (-348 |#2|) (-348 |#2|))) NIL (|has| (-348 |#2|) (-312)) ELT) (($ $ (-1 (-348 |#2|) (-348 |#2|)) (-693)) NIL (|has| (-348 |#2|) (-312)) ELT) (($ $ (-582 (-1088)) (-582 (-693))) NIL (OR (-12 (|has| (-348 |#2|) (-312)) (|has| (-348 |#2|) (-808 (-1088)))) (-12 (|has| (-348 |#2|) (-312)) (|has| (-348 |#2|) (-810 (-1088))))) ELT) (($ $ (-1088) (-693)) NIL (OR (-12 (|has| (-348 |#2|) (-312)) (|has| (-348 |#2|) (-808 (-1088)))) (-12 (|has| (-348 |#2|) (-312)) (|has| (-348 |#2|) (-810 (-1088))))) ELT) (($ $ (-582 (-1088))) NIL (OR (-12 (|has| (-348 |#2|) (-312)) (|has| (-348 |#2|) (-808 (-1088)))) (-12 (|has| (-348 |#2|) (-312)) (|has| (-348 |#2|) (-810 (-1088))))) ELT) (($ $ (-1088)) NIL (OR (-12 (|has| (-348 |#2|) (-312)) (|has| (-348 |#2|) (-808 (-1088)))) (-12 (|has| (-348 |#2|) (-312)) (|has| (-348 |#2|) (-810 (-1088))))) ELT) (($ $ (-693)) NIL (OR (-12 (|has| (-348 |#2|) (-190)) (|has| (-348 |#2|) (-312))) (-12 (|has| (-348 |#2|) (-189)) (|has| (-348 |#2|) (-312))) (|has| (-348 |#2|) (-299))) ELT) (($ $) NIL (OR (-12 (|has| (-348 |#2|) (-190)) (|has| (-348 |#2|) (-312))) (-12 (|has| (-348 |#2|) (-189)) (|has| (-348 |#2|) (-312))) (|has| (-348 |#2|) (-299))) ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-3947 (($ $ $) NIL (|has| (-348 |#2|) (-312)) ELT)) (-3835 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3837 (($ $ $) NIL T ELT)) (** (($ $ (-829)) NIL T ELT) (($ $ (-693)) NIL T ELT) (($ $ (-483)) NIL (|has| (-348 |#2|) (-312)) ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-348 |#2|)) NIL T ELT) (($ (-348 |#2|) $) NIL T ELT) (($ (-348 (-483)) $) NIL (|has| (-348 |#2|) (-312)) ELT) (($ $ (-348 (-483))) NIL (|has| (-348 |#2|) (-312)) ELT))) -(((-915 |#1| |#2| |#3| |#4| |#5|) (-291 |#1| |#2| |#3|) (-1132) (-1153 |#1|) (-1153 (-348 |#2|)) (-348 |#2|) (-693)) (T -915)) -NIL -((-2567 (((-85) $ $) NIL T ELT)) (-3187 (((-85) $) NIL T ELT)) (-3016 (((-582 (-483)) $) 73 T ELT)) (-3012 (($ (-582 (-483))) 81 T ELT)) (-3128 (((-483) $) 48 (|has| (-483) (-258)) ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3980 $) (|:| |associate| $)) $) NIL T ELT)) (-2062 (($ $) NIL T ELT)) (-2060 (((-85) $) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2706 (((-346 (-1083 $)) (-1083 $)) NIL (|has| (-483) (-820)) ELT)) (-3773 (($ $) NIL T ELT)) (-3969 (((-346 $) $) NIL T ELT)) (-2703 (((-3 (-582 (-1083 $)) #1#) (-582 (-1083 $)) (-1083 $)) NIL (|has| (-483) (-820)) ELT)) (-1606 (((-85) $ $) NIL T ELT)) (-3621 (((-483) $) NIL (|has| (-483) (-739)) ELT)) (-3722 (($) NIL T CONST)) (-3156 (((-3 (-483) #1#) $) 60 T ELT) (((-3 (-1088) #1#) $) NIL (|has| (-483) (-949 (-1088))) ELT) (((-3 (-348 (-483)) #1#) $) 57 (|has| (-483) (-949 (-483))) ELT) (((-3 (-483) #1#) $) 60 (|has| (-483) (-949 (-483))) ELT)) (-3155 (((-483) $) NIL T ELT) (((-1088) $) NIL (|has| (-483) (-949 (-1088))) ELT) (((-348 (-483)) $) NIL (|has| (-483) (-949 (-483))) ELT) (((-483) $) NIL (|has| (-483) (-949 (-483))) ELT)) (-2563 (($ $ $) NIL T ELT)) (-2278 (((-629 (-483)) (-629 $)) NIL (|has| (-483) (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-629 $) (-1177 $)) NIL (|has| (-483) (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-629 $) (-1177 $)) NIL T ELT) (((-629 (-483)) (-629 $)) NIL T ELT)) (-3465 (((-3 $ #1#) $) NIL T ELT)) (-2993 (($) NIL (|has| (-483) (-482)) ELT)) (-2562 (($ $ $) NIL T ELT)) (-2740 (((-2 (|:| -3952 (-582 $)) (|:| -2408 $)) (-582 $)) NIL T ELT)) (-3721 (((-85) $) NIL T ELT)) (-3014 (((-582 (-483)) $) 79 T ELT)) (-3185 (((-85) $) NIL (|has| (-483) (-739)) ELT)) (-2795 (((-797 (-483) $) $ (-799 (-483)) (-797 (-483) $)) NIL (|has| (-483) (-795 (-483))) ELT) (((-797 (-328) $) $ (-799 (-328)) (-797 (-328) $)) NIL (|has| (-483) (-795 (-328))) ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-2409 (((-85) $) NIL T ELT)) (-2995 (($ $) NIL T ELT)) (-2997 (((-483) $) 45 T ELT)) (-3443 (((-631 $) $) NIL (|has| (-483) (-1064)) ELT)) (-3186 (((-85) $) NIL (|has| (-483) (-739)) ELT)) (-1603 (((-3 (-582 $) #1#) (-582 $) $) NIL T ELT)) (-2530 (($ $ $) NIL (|has| (-483) (-755)) ELT)) (-2856 (($ $ $) NIL (|has| (-483) (-755)) ELT)) (-3956 (($ (-1 (-483) (-483)) $) NIL T ELT)) (-2279 (((-629 (-483)) (-1177 $)) NIL (|has| (-483) (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL (|has| (-483) (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL T ELT) (((-629 (-483)) (-1177 $)) NIL T ELT)) (-1889 (($ $ $) NIL T ELT) (($ (-582 $)) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-2483 (($ $) NIL T ELT)) (-3444 (($) NIL (|has| (-483) (-1064)) CONST)) (-3242 (((-1032) $) NIL T ELT)) (-2707 (((-1083 $) (-1083 $) (-1083 $)) NIL T ELT)) (-3143 (($ $ $) NIL T ELT) (($ (-582 $)) NIL T ELT)) (-3127 (($ $) NIL (|has| (-483) (-258)) ELT) (((-348 (-483)) $) 50 T ELT)) (-3015 (((-1067 (-483)) $) 78 T ELT)) (-3011 (($ (-582 (-483)) (-582 (-483))) 82 T ELT)) (-3129 (((-483) $) 64 (|has| (-483) (-482)) ELT)) (-2704 (((-346 (-1083 $)) (-1083 $)) NIL (|has| (-483) (-820)) ELT)) (-2705 (((-346 (-1083 $)) (-1083 $)) NIL (|has| (-483) (-820)) ELT)) (-3730 (((-346 $) $) NIL T ELT)) (-1604 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3464 (((-3 $ #1#) $ $) NIL T ELT)) (-2739 (((-631 (-582 $)) (-582 $) $) NIL T ELT)) (-3766 (($ $ (-582 (-483)) (-582 (-483))) NIL (|has| (-483) (-260 (-483))) ELT) (($ $ (-483) (-483)) NIL (|has| (-483) (-260 (-483))) ELT) (($ $ (-249 (-483))) NIL (|has| (-483) (-260 (-483))) ELT) (($ $ (-582 (-249 (-483)))) NIL (|has| (-483) (-260 (-483))) ELT) (($ $ (-582 (-1088)) (-582 (-483))) NIL (|has| (-483) (-454 (-1088) (-483))) ELT) (($ $ (-1088) (-483)) NIL (|has| (-483) (-454 (-1088) (-483))) ELT)) (-1605 (((-693) $) NIL T ELT)) (-3798 (($ $ (-483)) NIL (|has| (-483) (-241 (-483) (-483))) ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL T ELT)) (-3756 (($ $ (-1 (-483) (-483))) NIL T ELT) (($ $ (-1 (-483) (-483)) (-693)) NIL T ELT) (($ $ (-1088)) NIL (|has| (-483) (-810 (-1088))) ELT) (($ $ (-582 (-1088))) NIL (|has| (-483) (-810 (-1088))) ELT) (($ $ (-1088) (-693)) NIL (|has| (-483) (-810 (-1088))) ELT) (($ $ (-582 (-1088)) (-582 (-693))) NIL (|has| (-483) (-810 (-1088))) ELT) (($ $) 15 (|has| (-483) (-189)) ELT) (($ $ (-693)) NIL (|has| (-483) (-189)) ELT)) (-2994 (($ $) NIL T ELT)) (-2996 (((-483) $) 47 T ELT)) (-3013 (((-582 (-483)) $) 80 T ELT)) (-3970 (((-799 (-483)) $) NIL (|has| (-483) (-552 (-799 (-483)))) ELT) (((-799 (-328)) $) NIL (|has| (-483) (-552 (-799 (-328)))) ELT) (((-472) $) NIL (|has| (-483) (-552 (-472))) ELT) (((-328) $) NIL (|has| (-483) (-932)) ELT) (((-179) $) NIL (|has| (-483) (-932)) ELT)) (-2702 (((-3 (-1177 $) #1#) (-629 $)) NIL (-12 (|has| $ (-118)) (|has| (-483) (-820))) ELT)) (-3944 (((-771) $) 108 T ELT) (($ (-483)) 51 T ELT) (($ $) NIL T ELT) (($ (-348 (-483))) 27 T ELT) (($ (-483)) 51 T ELT) (($ (-1088)) NIL (|has| (-483) (-949 (-1088))) ELT) (((-348 (-483)) $) 25 T ELT)) (-2701 (((-631 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-483) (-820))) (|has| (-483) (-118))) ELT)) (-3125 (((-693)) 13 T CONST)) (-3130 (((-483) $) 62 (|has| (-483) (-482)) ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2061 (((-85) $ $) NIL T ELT)) (-3124 (((-85) $ $) NIL T ELT)) (-3381 (($ $) NIL (|has| (-483) (-739)) ELT)) (-2659 (($) 14 T CONST)) (-2665 (($) 17 T CONST)) (-2668 (($ $ (-1 (-483) (-483))) NIL T ELT) (($ $ (-1 (-483) (-483)) (-693)) NIL T ELT) (($ $ (-1088)) NIL (|has| (-483) (-810 (-1088))) ELT) (($ $ (-582 (-1088))) NIL (|has| (-483) (-810 (-1088))) ELT) (($ $ (-1088) (-693)) NIL (|has| (-483) (-810 (-1088))) ELT) (($ $ (-582 (-1088)) (-582 (-693))) NIL (|has| (-483) (-810 (-1088))) ELT) (($ $) NIL (|has| (-483) (-189)) ELT) (($ $ (-693)) NIL (|has| (-483) (-189)) ELT)) (-2565 (((-85) $ $) NIL (|has| (-483) (-755)) ELT)) (-2566 (((-85) $ $) NIL (|has| (-483) (-755)) ELT)) (-3055 (((-85) $ $) 21 T ELT)) (-2683 (((-85) $ $) NIL (|has| (-483) (-755)) ELT)) (-2684 (((-85) $ $) 40 (|has| (-483) (-755)) ELT)) (-3947 (($ $ $) 36 T ELT) (($ (-483) (-483)) 38 T ELT)) (-3835 (($ $) 23 T ELT) (($ $ $) 30 T ELT)) (-3837 (($ $ $) 28 T ELT)) (** (($ $ (-829)) NIL T ELT) (($ $ (-693)) NIL T ELT) (($ $ (-483)) NIL T ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-483) $) 32 T ELT) (($ $ $) 34 T ELT) (($ $ (-348 (-483))) NIL T ELT) (($ (-348 (-483)) $) NIL T ELT) (($ (-483) $) 32 T ELT) (($ $ (-483)) NIL T ELT))) -(((-916 |#1|) (-13 (-903 (-483)) (-551 (-348 (-483))) (-10 -8 (-15 -3127 ((-348 (-483)) $)) (-15 -3016 ((-582 (-483)) $)) (-15 -3015 ((-1067 (-483)) $)) (-15 -3014 ((-582 (-483)) $)) (-15 -3013 ((-582 (-483)) $)) (-15 -3012 ($ (-582 (-483)))) (-15 -3011 ($ (-582 (-483)) (-582 (-483)))))) (-483)) (T -916)) -((-3127 (*1 *2 *1) (-12 (-5 *2 (-348 (-483))) (-5 *1 (-916 *3)) (-14 *3 (-483)))) (-3016 (*1 *2 *1) (-12 (-5 *2 (-582 (-483))) (-5 *1 (-916 *3)) (-14 *3 (-483)))) (-3015 (*1 *2 *1) (-12 (-5 *2 (-1067 (-483))) (-5 *1 (-916 *3)) (-14 *3 (-483)))) (-3014 (*1 *2 *1) (-12 (-5 *2 (-582 (-483))) (-5 *1 (-916 *3)) (-14 *3 (-483)))) (-3013 (*1 *2 *1) (-12 (-5 *2 (-582 (-483))) (-5 *1 (-916 *3)) (-14 *3 (-483)))) (-3012 (*1 *1 *2) (-12 (-5 *2 (-582 (-483))) (-5 *1 (-916 *3)) (-14 *3 (-483)))) (-3011 (*1 *1 *2 *2) (-12 (-5 *2 (-582 (-483))) (-5 *1 (-916 *3)) (-14 *3 (-483))))) -((-3017 (((-51) (-348 (-483)) (-483)) 9 T ELT))) -(((-917) (-10 -7 (-15 -3017 ((-51) (-348 (-483)) (-483))))) (T -917)) -((-3017 (*1 *2 *3 *4) (-12 (-5 *3 (-348 (-483))) (-5 *4 (-483)) (-5 *2 (-51)) (-5 *1 (-917))))) -((-3135 (((-483)) 21 T ELT)) (-3020 (((-483)) 26 T ELT)) (-3019 (((-1183) (-483)) 24 T ELT)) (-3018 (((-483) (-483)) 27 T ELT) (((-483)) 20 T ELT))) -(((-918) (-10 -7 (-15 -3018 ((-483))) (-15 -3135 ((-483))) (-15 -3018 ((-483) (-483))) (-15 -3019 ((-1183) (-483))) (-15 -3020 ((-483))))) (T -918)) -((-3020 (*1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-918)))) (-3019 (*1 *2 *3) (-12 (-5 *3 (-483)) (-5 *2 (-1183)) (-5 *1 (-918)))) (-3018 (*1 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-918)))) (-3135 (*1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-918)))) (-3018 (*1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-918))))) -((-3731 (((-346 |#1|) |#1|) 43 T ELT)) (-3730 (((-346 |#1|) |#1|) 41 T ELT))) -(((-919 |#1|) (-10 -7 (-15 -3730 ((-346 |#1|) |#1|)) (-15 -3731 ((-346 |#1|) |#1|))) (-1153 (-348 (-483)))) (T -919)) -((-3731 (*1 *2 *3) (-12 (-5 *2 (-346 *3)) (-5 *1 (-919 *3)) (-4 *3 (-1153 (-348 (-483)))))) (-3730 (*1 *2 *3) (-12 (-5 *2 (-346 *3)) (-5 *1 (-919 *3)) (-4 *3 (-1153 (-348 (-483))))))) -((-3023 (((-3 (-348 (-483)) "failed") |#1|) 15 T ELT)) (-3022 (((-85) |#1|) 14 T ELT)) (-3021 (((-348 (-483)) |#1|) 10 T ELT))) -(((-920 |#1|) (-10 -7 (-15 -3021 ((-348 (-483)) |#1|)) (-15 -3022 ((-85) |#1|)) (-15 -3023 ((-3 (-348 (-483)) "failed") |#1|))) (-949 (-348 (-483)))) (T -920)) -((-3023 (*1 *2 *3) (|partial| -12 (-5 *2 (-348 (-483))) (-5 *1 (-920 *3)) (-4 *3 (-949 *2)))) (-3022 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-920 *3)) (-4 *3 (-949 (-348 (-483)))))) (-3021 (*1 *2 *3) (-12 (-5 *2 (-348 (-483))) (-5 *1 (-920 *3)) (-4 *3 (-949 *2))))) -((-3786 ((|#2| $ #1="value" |#2|) 12 T ELT)) (-3798 ((|#2| $ #1#) 10 T ELT)) (-3027 (((-85) $ $) 18 T ELT))) -(((-921 |#1| |#2|) (-10 -7 (-15 -3786 (|#2| |#1| #1="value" |#2|)) (-15 -3027 ((-85) |#1| |#1|)) (-15 -3798 (|#2| |#1| #1#))) (-922 |#2|) (-1127)) (T -921)) -NIL -((-2567 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3400 ((|#1| $) 52 T ELT)) (-3024 ((|#1| $ |#1|) 43 (|has| $ (-6 -3994)) ELT)) (-3786 ((|#1| $ "value" |#1|) 44 (|has| $ (-6 -3994)) ELT)) (-3025 (($ $ (-582 $)) 45 (|has| $ (-6 -3994)) ELT)) (-3722 (($) 7 T CONST)) (-2888 (((-582 |#1|) $) 30 (|has| $ (-6 -3993)) ELT)) (-3030 (((-582 $) $) 54 T ELT)) (-3026 (((-85) $ $) 46 (|has| |#1| (-1012)) ELT)) (-2607 (((-582 |#1|) $) 29 (|has| $ (-6 -3993)) ELT)) (-3244 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3993))) ELT)) (-1947 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3994)) ELT)) (-3956 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3029 (((-582 |#1|) $) 49 T ELT)) (-3525 (((-85) $) 53 T ELT)) (-3241 (((-1071) $) 22 (|has| |#1| (-1012)) ELT)) (-3242 (((-1032) $) 21 (|has| |#1| (-1012)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3993)) ELT)) (-3766 (($ $ (-582 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-582 |#1|) (-582 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT)) (-1220 (((-85) $ $) 11 T ELT)) (-3401 (((-85) $) 8 T ELT)) (-3563 (($) 9 T ELT)) (-3798 ((|#1| $ "value") 51 T ELT)) (-3028 (((-483) $ $) 48 T ELT)) (-3631 (((-85) $) 50 T ELT)) (-1944 (((-693) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3993)) ELT) (((-693) |#1| $) 28 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3993))) ELT)) (-3398 (($ $) 10 T ELT)) (-3944 (((-771) $) 17 (|has| |#1| (-551 (-771))) ELT)) (-3520 (((-582 $) $) 55 T ELT)) (-3027 (((-85) $ $) 47 (|has| |#1| (-1012)) ELT)) (-1263 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3993)) ELT)) (-3055 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3955 (((-693) $) 6 (|has| $ (-6 -3993)) ELT))) -(((-922 |#1|) (-113) (-1127)) (T -922)) -((-3520 (*1 *2 *1) (-12 (-4 *3 (-1127)) (-5 *2 (-582 *1)) (-4 *1 (-922 *3)))) (-3030 (*1 *2 *1) (-12 (-4 *3 (-1127)) (-5 *2 (-582 *1)) (-4 *1 (-922 *3)))) (-3525 (*1 *2 *1) (-12 (-4 *1 (-922 *3)) (-4 *3 (-1127)) (-5 *2 (-85)))) (-3400 (*1 *2 *1) (-12 (-4 *1 (-922 *2)) (-4 *2 (-1127)))) (-3798 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-922 *2)) (-4 *2 (-1127)))) (-3631 (*1 *2 *1) (-12 (-4 *1 (-922 *3)) (-4 *3 (-1127)) (-5 *2 (-85)))) (-3029 (*1 *2 *1) (-12 (-4 *1 (-922 *3)) (-4 *3 (-1127)) (-5 *2 (-582 *3)))) (-3028 (*1 *2 *1 *1) (-12 (-4 *1 (-922 *3)) (-4 *3 (-1127)) (-5 *2 (-483)))) (-3027 (*1 *2 *1 *1) (-12 (-4 *1 (-922 *3)) (-4 *3 (-1127)) (-4 *3 (-1012)) (-5 *2 (-85)))) (-3026 (*1 *2 *1 *1) (-12 (-4 *1 (-922 *3)) (-4 *3 (-1127)) (-4 *3 (-1012)) (-5 *2 (-85)))) (-3025 (*1 *1 *1 *2) (-12 (-5 *2 (-582 *1)) (|has| *1 (-6 -3994)) (-4 *1 (-922 *3)) (-4 *3 (-1127)))) (-3786 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -3994)) (-4 *1 (-922 *2)) (-4 *2 (-1127)))) (-3024 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -3994)) (-4 *1 (-922 *2)) (-4 *2 (-1127))))) -(-13 (-427 |t#1|) (-10 -8 (-15 -3520 ((-582 $) $)) (-15 -3030 ((-582 $) $)) (-15 -3525 ((-85) $)) (-15 -3400 (|t#1| $)) (-15 -3798 (|t#1| $ "value")) (-15 -3631 ((-85) $)) (-15 -3029 ((-582 |t#1|) $)) (-15 -3028 ((-483) $ $)) (IF (|has| |t#1| (-1012)) (PROGN (-15 -3027 ((-85) $ $)) (-15 -3026 ((-85) $ $))) |%noBranch|) (IF (|has| $ (-6 -3994)) (PROGN (-15 -3025 ($ $ (-582 $))) (-15 -3786 (|t#1| $ "value" |t#1|)) (-15 -3024 (|t#1| $ |t#1|))) |%noBranch|))) -(((-34) . T) ((-72) OR (|has| |#1| (-1012)) (|has| |#1| (-72))) ((-551 (-771)) OR (|has| |#1| (-1012)) (|has| |#1| (-551 (-771)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ((-427 |#1|) . T) ((-454 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ((-13) . T) ((-1012) |has| |#1| (-1012)) ((-1127) . T)) -((-3036 (($ $) 9 T ELT) (($ $ (-829)) 49 T ELT) (($ (-348 (-483))) 13 T ELT) (($ (-483)) 15 T ELT)) (-3182 (((-3 $ #1="failed") (-1083 $) (-829) (-771)) 24 T ELT) (((-3 $ #1#) (-1083 $) (-829)) 32 T ELT)) (-3010 (($ $ (-483)) 58 T ELT)) (-3125 (((-693)) 18 T CONST)) (-3183 (((-582 $) (-1083 $)) NIL T ELT) (((-582 $) (-1083 (-348 (-483)))) 63 T ELT) (((-582 $) (-1083 (-483))) 68 T ELT) (((-582 $) (-856 $)) 72 T ELT) (((-582 $) (-856 (-348 (-483)))) 76 T ELT) (((-582 $) (-856 (-483))) 80 T ELT)) (** (($ $ (-829)) NIL T ELT) (($ $ (-693)) NIL T ELT) (($ $ (-483)) NIL T ELT) (($ $ (-348 (-483))) 53 T ELT))) -(((-923 |#1|) (-10 -7 (-15 -3036 (|#1| (-483))) (-15 -3036 (|#1| (-348 (-483)))) (-15 -3036 (|#1| |#1| (-829))) (-15 -3183 ((-582 |#1|) (-856 (-483)))) (-15 -3183 ((-582 |#1|) (-856 (-348 (-483))))) (-15 -3183 ((-582 |#1|) (-856 |#1|))) (-15 -3183 ((-582 |#1|) (-1083 (-483)))) (-15 -3183 ((-582 |#1|) (-1083 (-348 (-483))))) (-15 -3183 ((-582 |#1|) (-1083 |#1|))) (-15 -3182 ((-3 |#1| #1="failed") (-1083 |#1|) (-829))) (-15 -3182 ((-3 |#1| #1#) (-1083 |#1|) (-829) (-771))) (-15 ** (|#1| |#1| (-348 (-483)))) (-15 -3010 (|#1| |#1| (-483))) (-15 -3036 (|#1| |#1|)) (-15 ** (|#1| |#1| (-483))) (-15 -3125 ((-693)) -3950) (-15 ** (|#1| |#1| (-693))) (-15 ** (|#1| |#1| (-829)))) (-924)) (T -923)) -((-3125 (*1 *2) (-12 (-5 *2 (-693)) (-5 *1 (-923 *3)) (-4 *3 (-924))))) -((-2567 (((-85) $ $) 7 T ELT)) (-3187 (((-85) $) 22 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3980 $) (|:| |associate| $)) $) 111 T ELT)) (-2062 (($ $) 112 T ELT)) (-2060 (((-85) $) 114 T ELT)) (-1310 (((-3 $ "failed") $ $) 26 T ELT)) (-3773 (($ $) 131 T ELT)) (-3969 (((-346 $) $) 132 T ELT)) (-3036 (($ $) 95 T ELT) (($ $ (-829)) 81 T ELT) (($ (-348 (-483))) 80 T ELT) (($ (-483)) 79 T ELT)) (-1606 (((-85) $ $) 122 T ELT)) (-3621 (((-483) $) 148 T ELT)) (-3722 (($) 23 T CONST)) (-3182 (((-3 $ "failed") (-1083 $) (-829) (-771)) 89 T ELT) (((-3 $ "failed") (-1083 $) (-829)) 88 T ELT)) (-3156 (((-3 (-483) #1="failed") $) 108 (|has| (-348 (-483)) (-949 (-483))) ELT) (((-3 (-348 (-483)) #1#) $) 106 (|has| (-348 (-483)) (-949 (-348 (-483)))) ELT) (((-3 (-348 (-483)) #1#) $) 103 T ELT)) (-3155 (((-483) $) 107 (|has| (-348 (-483)) (-949 (-483))) ELT) (((-348 (-483)) $) 105 (|has| (-348 (-483)) (-949 (-348 (-483)))) ELT) (((-348 (-483)) $) 104 T ELT)) (-3032 (($ $ (-771)) 78 T ELT)) (-3031 (($ $ (-771)) 77 T ELT)) (-2563 (($ $ $) 126 T ELT)) (-3465 (((-3 $ "failed") $) 42 T ELT)) (-2562 (($ $ $) 125 T ELT)) (-2740 (((-2 (|:| -3952 (-582 $)) (|:| -2408 $)) (-582 $)) 120 T ELT)) (-3721 (((-85) $) 133 T ELT)) (-3185 (((-85) $) 146 T ELT)) (-1212 (((-85) $ $) 20 T ELT)) (-2409 (((-85) $) 44 T ELT)) (-3010 (($ $ (-483)) 94 T ELT)) (-3186 (((-85) $) 147 T ELT)) (-1603 (((-3 (-582 $) #2="failed") (-582 $) $) 129 T ELT)) (-2530 (($ $ $) 140 T ELT)) (-2856 (($ $ $) 141 T ELT)) (-3033 (((-3 (-1083 $) "failed") $) 90 T ELT)) (-3035 (((-3 (-771) "failed") $) 92 T ELT)) (-3034 (((-3 (-1083 $) "failed") $) 91 T ELT)) (-1889 (($ (-582 $)) 118 T ELT) (($ $ $) 117 T ELT)) (-3241 (((-1071) $) 11 T ELT)) (-2483 (($ $) 134 T ELT)) (-3242 (((-1032) $) 12 T ELT)) (-2707 (((-1083 $) (-1083 $) (-1083 $)) 119 T ELT)) (-3143 (($ (-582 $)) 116 T ELT) (($ $ $) 115 T ELT)) (-3730 (((-346 $) $) 130 T ELT)) (-1604 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 128 T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) 127 T ELT)) (-3464 (((-3 $ "failed") $ $) 110 T ELT)) (-2739 (((-631 (-582 $)) (-582 $) $) 121 T ELT)) (-1605 (((-693) $) 123 T ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) 124 T ELT)) (-3944 (((-771) $) 13 T ELT) (($ (-483)) 41 T ELT) (($ (-348 (-483))) 138 T ELT) (($ $) 109 T ELT) (($ (-348 (-483))) 102 T ELT) (($ (-483)) 101 T ELT) (($ (-348 (-483))) 98 T ELT)) (-3125 (((-693)) 40 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-2061 (((-85) $ $) 113 T ELT)) (-3768 (((-348 (-483)) $ $) 76 T ELT)) (-3124 (((-85) $ $) 33 T ELT)) (-3183 (((-582 $) (-1083 $)) 87 T ELT) (((-582 $) (-1083 (-348 (-483)))) 86 T ELT) (((-582 $) (-1083 (-483))) 85 T ELT) (((-582 $) (-856 $)) 84 T ELT) (((-582 $) (-856 (-348 (-483)))) 83 T ELT) (((-582 $) (-856 (-483))) 82 T ELT)) (-3381 (($ $) 149 T ELT)) (-2659 (($) 24 T CONST)) (-2665 (($) 45 T CONST)) (-2565 (((-85) $ $) 142 T ELT)) (-2566 (((-85) $ $) 144 T ELT)) (-3055 (((-85) $ $) 8 T ELT)) (-2683 (((-85) $ $) 143 T ELT)) (-2684 (((-85) $ $) 145 T ELT)) (-3947 (($ $ $) 139 T ELT)) (-3835 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3837 (($ $ $) 18 T ELT)) (** (($ $ (-829)) 35 T ELT) (($ $ (-693)) 43 T ELT) (($ $ (-483)) 135 T ELT) (($ $ (-348 (-483))) 93 T ELT)) (* (($ (-829) $) 17 T ELT) (($ (-693) $) 21 T ELT) (($ (-483) $) 30 T ELT) (($ $ $) 34 T ELT) (($ (-348 (-483)) $) 137 T ELT) (($ $ (-348 (-483))) 136 T ELT) (($ (-483) $) 100 T ELT) (($ $ (-483)) 99 T ELT) (($ (-348 (-483)) $) 97 T ELT) (($ $ (-348 (-483))) 96 T ELT))) -(((-924) (-113)) (T -924)) -((-3036 (*1 *1 *1) (-4 *1 (-924))) (-3035 (*1 *2 *1) (|partial| -12 (-4 *1 (-924)) (-5 *2 (-771)))) (-3034 (*1 *2 *1) (|partial| -12 (-5 *2 (-1083 *1)) (-4 *1 (-924)))) (-3033 (*1 *2 *1) (|partial| -12 (-5 *2 (-1083 *1)) (-4 *1 (-924)))) (-3182 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1083 *1)) (-5 *3 (-829)) (-5 *4 (-771)) (-4 *1 (-924)))) (-3182 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1083 *1)) (-5 *3 (-829)) (-4 *1 (-924)))) (-3183 (*1 *2 *3) (-12 (-5 *3 (-1083 *1)) (-4 *1 (-924)) (-5 *2 (-582 *1)))) (-3183 (*1 *2 *3) (-12 (-5 *3 (-1083 (-348 (-483)))) (-5 *2 (-582 *1)) (-4 *1 (-924)))) (-3183 (*1 *2 *3) (-12 (-5 *3 (-1083 (-483))) (-5 *2 (-582 *1)) (-4 *1 (-924)))) (-3183 (*1 *2 *3) (-12 (-5 *3 (-856 *1)) (-4 *1 (-924)) (-5 *2 (-582 *1)))) (-3183 (*1 *2 *3) (-12 (-5 *3 (-856 (-348 (-483)))) (-5 *2 (-582 *1)) (-4 *1 (-924)))) (-3183 (*1 *2 *3) (-12 (-5 *3 (-856 (-483))) (-5 *2 (-582 *1)) (-4 *1 (-924)))) (-3036 (*1 *1 *1 *2) (-12 (-4 *1 (-924)) (-5 *2 (-829)))) (-3036 (*1 *1 *2) (-12 (-5 *2 (-348 (-483))) (-4 *1 (-924)))) (-3036 (*1 *1 *2) (-12 (-5 *2 (-483)) (-4 *1 (-924)))) (-3032 (*1 *1 *1 *2) (-12 (-4 *1 (-924)) (-5 *2 (-771)))) (-3031 (*1 *1 *1 *2) (-12 (-4 *1 (-924)) (-5 *2 (-771)))) (-3768 (*1 *2 *1 *1) (-12 (-4 *1 (-924)) (-5 *2 (-348 (-483)))))) -(-13 (-120) (-754) (-146) (-312) (-353 (-348 (-483))) (-38 (-483)) (-38 (-348 (-483))) (-914) (-10 -8 (-15 -3035 ((-3 (-771) "failed") $)) (-15 -3034 ((-3 (-1083 $) "failed") $)) (-15 -3033 ((-3 (-1083 $) "failed") $)) (-15 -3182 ((-3 $ "failed") (-1083 $) (-829) (-771))) (-15 -3182 ((-3 $ "failed") (-1083 $) (-829))) (-15 -3183 ((-582 $) (-1083 $))) (-15 -3183 ((-582 $) (-1083 (-348 (-483))))) (-15 -3183 ((-582 $) (-1083 (-483)))) (-15 -3183 ((-582 $) (-856 $))) (-15 -3183 ((-582 $) (-856 (-348 (-483))))) (-15 -3183 ((-582 $) (-856 (-483)))) (-15 -3036 ($ $ (-829))) (-15 -3036 ($ $)) (-15 -3036 ($ (-348 (-483)))) (-15 -3036 ($ (-483))) (-15 -3032 ($ $ (-771))) (-15 -3031 ($ $ (-771))) (-15 -3768 ((-348 (-483)) $ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-348 (-483))) . T) ((-38 (-483)) . T) ((-38 $) . T) ((-72) . T) ((-82 (-348 (-483)) (-348 (-483))) . T) ((-82 (-483) (-483)) . T) ((-82 $ $) . T) ((-104) . T) ((-120) . T) ((-554 (-348 (-483))) . T) ((-554 (-483)) . T) ((-554 $) . T) ((-551 (-771)) . T) ((-146) . T) ((-201) . T) ((-246) . T) ((-258) . T) ((-312) . T) ((-353 (-348 (-483))) . T) ((-390) . T) ((-494) . T) ((-13) . T) ((-587 (-348 (-483))) . T) ((-587 (-483)) . T) ((-587 $) . T) ((-589 (-348 (-483))) . T) ((-589 (-483)) . T) ((-589 $) . T) ((-581 (-348 (-483))) . T) ((-581 (-483)) . T) ((-581 $) . T) ((-653 (-348 (-483))) . T) ((-653 (-483)) . T) ((-653 $) . T) ((-662) . T) ((-713) . T) ((-715) . T) ((-717) . T) ((-720) . T) ((-754) . T) ((-755) . T) ((-758) . T) ((-831) . T) ((-914) . T) ((-949 (-348 (-483))) . T) ((-949 (-483)) |has| (-348 (-483)) (-949 (-483))) ((-962 (-348 (-483))) . T) ((-962 (-483)) . T) ((-962 $) . T) ((-967 (-348 (-483))) . T) ((-967 (-483)) . T) ((-967 $) . T) ((-960) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T) ((-1132) . T)) -((-3037 (((-2 (|:| |ans| |#2|) (|:| -3136 |#2|) (|:| |sol?| (-85))) (-483) |#2| |#2| (-1088) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-582 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-582 |#2|)) (-1 (-3 (-2 (|:| -2135 |#2|) (|:| |coeff| |#2|)) #1#) |#2| |#2|)) 67 T ELT))) -(((-925 |#1| |#2|) (-10 -7 (-15 -3037 ((-2 (|:| |ans| |#2|) (|:| -3136 |#2|) (|:| |sol?| (-85))) (-483) |#2| |#2| (-1088) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-582 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-582 |#2|)) (-1 (-3 (-2 (|:| -2135 |#2|) (|:| |coeff| |#2|)) #1#) |#2| |#2|)))) (-13 (-390) (-120) (-949 (-483)) (-579 (-483))) (-13 (-1113) (-27) (-362 |#1|))) (T -925)) -((-3037 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1088)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-582 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-582 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2135 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1113) (-27) (-362 *8))) (-4 *8 (-13 (-390) (-120) (-949 *3) (-579 *3))) (-5 *3 (-483)) (-5 *2 (-2 (|:| |ans| *4) (|:| -3136 *4) (|:| |sol?| (-85)))) (-5 *1 (-925 *8 *4))))) -((-3038 (((-3 (-582 |#2|) #1="failed") (-483) |#2| |#2| |#2| (-1088) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-582 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-582 |#2|)) (-1 (-3 (-2 (|:| -2135 |#2|) (|:| |coeff| |#2|)) #1#) |#2| |#2|)) 55 T ELT))) -(((-926 |#1| |#2|) (-10 -7 (-15 -3038 ((-3 (-582 |#2|) #1="failed") (-483) |#2| |#2| |#2| (-1088) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-582 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-582 |#2|)) (-1 (-3 (-2 (|:| -2135 |#2|) (|:| |coeff| |#2|)) #1#) |#2| |#2|)))) (-13 (-390) (-120) (-949 (-483)) (-579 (-483))) (-13 (-1113) (-27) (-362 |#1|))) (T -926)) -((-3038 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1088)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-582 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-582 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2135 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1113) (-27) (-362 *8))) (-4 *8 (-13 (-390) (-120) (-949 *3) (-579 *3))) (-5 *3 (-483)) (-5 *2 (-582 *4)) (-5 *1 (-926 *8 *4))))) -((-3041 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-85)))) (|:| -3265 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-483)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-483) (-1 |#2| |#2|)) 39 T ELT)) (-3039 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-348 |#2|)) (|:| |c| (-348 |#2|)) (|:| -3092 |#2|)) "failed") (-348 |#2|) (-348 |#2|) (-1 |#2| |#2|)) 71 T ELT)) (-3040 (((-2 (|:| |ans| (-348 |#2|)) (|:| |nosol| (-85))) (-348 |#2|) (-348 |#2|)) 76 T ELT))) -(((-927 |#1| |#2|) (-10 -7 (-15 -3039 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-348 |#2|)) (|:| |c| (-348 |#2|)) (|:| -3092 |#2|)) "failed") (-348 |#2|) (-348 |#2|) (-1 |#2| |#2|))) (-15 -3040 ((-2 (|:| |ans| (-348 |#2|)) (|:| |nosol| (-85))) (-348 |#2|) (-348 |#2|))) (-15 -3041 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-85)))) (|:| -3265 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-483)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-483) (-1 |#2| |#2|)))) (-13 (-312) (-120) (-949 (-483))) (-1153 |#1|)) (T -927)) -((-3041 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1153 *6)) (-4 *6 (-13 (-312) (-120) (-949 *4))) (-5 *4 (-483)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-85)))) (|:| -3265 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-927 *6 *3)))) (-3040 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-312) (-120) (-949 (-483)))) (-4 *5 (-1153 *4)) (-5 *2 (-2 (|:| |ans| (-348 *5)) (|:| |nosol| (-85)))) (-5 *1 (-927 *4 *5)) (-5 *3 (-348 *5)))) (-3039 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1153 *5)) (-4 *5 (-13 (-312) (-120) (-949 (-483)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-348 *6)) (|:| |c| (-348 *6)) (|:| -3092 *6))) (-5 *1 (-927 *5 *6)) (-5 *3 (-348 *6))))) -((-3042 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-348 |#2|)) (|:| |h| |#2|) (|:| |c1| (-348 |#2|)) (|:| |c2| (-348 |#2|)) (|:| -3092 |#2|)) #1="failed") (-348 |#2|) (-348 |#2|) (-348 |#2|) (-1 |#2| |#2|)) 22 T ELT)) (-3043 (((-3 (-582 (-348 |#2|)) #1#) (-348 |#2|) (-348 |#2|) (-348 |#2|)) 34 T ELT))) -(((-928 |#1| |#2|) (-10 -7 (-15 -3042 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-348 |#2|)) (|:| |h| |#2|) (|:| |c1| (-348 |#2|)) (|:| |c2| (-348 |#2|)) (|:| -3092 |#2|)) #1="failed") (-348 |#2|) (-348 |#2|) (-348 |#2|) (-1 |#2| |#2|))) (-15 -3043 ((-3 (-582 (-348 |#2|)) #1#) (-348 |#2|) (-348 |#2|) (-348 |#2|)))) (-13 (-312) (-120) (-949 (-483))) (-1153 |#1|)) (T -928)) -((-3043 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-312) (-120) (-949 (-483)))) (-4 *5 (-1153 *4)) (-5 *2 (-582 (-348 *5))) (-5 *1 (-928 *4 *5)) (-5 *3 (-348 *5)))) (-3042 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1153 *5)) (-4 *5 (-13 (-312) (-120) (-949 (-483)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-348 *6)) (|:| |h| *6) (|:| |c1| (-348 *6)) (|:| |c2| (-348 *6)) (|:| -3092 *6))) (-5 *1 (-928 *5 *6)) (-5 *3 (-348 *6))))) -((-3044 (((-1 |#1|) (-582 (-2 (|:| -3400 |#1|) (|:| -1520 (-483))))) 34 T ELT)) (-3099 (((-1 |#1|) (-1008 |#1|)) 42 T ELT)) (-3045 (((-1 |#1|) (-1177 |#1|) (-1177 (-483)) (-483)) 31 T ELT))) -(((-929 |#1|) (-10 -7 (-15 -3099 ((-1 |#1|) (-1008 |#1|))) (-15 -3044 ((-1 |#1|) (-582 (-2 (|:| -3400 |#1|) (|:| -1520 (-483)))))) (-15 -3045 ((-1 |#1|) (-1177 |#1|) (-1177 (-483)) (-483)))) (-1012)) (T -929)) -((-3045 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1177 *6)) (-5 *4 (-1177 (-483))) (-5 *5 (-483)) (-4 *6 (-1012)) (-5 *2 (-1 *6)) (-5 *1 (-929 *6)))) (-3044 (*1 *2 *3) (-12 (-5 *3 (-582 (-2 (|:| -3400 *4) (|:| -1520 (-483))))) (-4 *4 (-1012)) (-5 *2 (-1 *4)) (-5 *1 (-929 *4)))) (-3099 (*1 *2 *3) (-12 (-5 *3 (-1008 *4)) (-4 *4 (-1012)) (-5 *2 (-1 *4)) (-5 *1 (-929 *4))))) -((-3770 (((-693) (-283 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23 T ELT))) -(((-930 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3770 ((-693) (-283 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-312) (-1153 |#1|) (-1153 (-348 |#2|)) (-291 |#1| |#2| |#3|) (-13 (-318) (-312))) (T -930)) -((-3770 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-283 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-312)) (-4 *7 (-1153 *6)) (-4 *4 (-1153 (-348 *7))) (-4 *8 (-291 *6 *7 *4)) (-4 *9 (-13 (-318) (-312))) (-5 *2 (-693)) (-5 *1 (-930 *6 *7 *4 *8 *9))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3593 (((-1047) $) 10 T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3944 (((-771) $) NIL T ELT) (($ (-1093)) NIL T ELT) (((-1093) $) NIL T ELT)) (-3232 (((-1047) $) 12 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-931) (-13 (-994) (-10 -8 (-15 -3593 ((-1047) $)) (-15 -3232 ((-1047) $))))) (T -931)) -((-3593 (*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-931)))) (-3232 (*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-931))))) -((-3970 (((-179) $) 6 T ELT) (((-328) $) 9 T ELT))) -(((-932) (-113)) (T -932)) -NIL -(-13 (-552 (-179)) (-552 (-328))) -(((-552 (-179)) . T) ((-552 (-328)) . T)) -((-3133 (((-3 (-2 (|:| -3137 (-348 (-483))) (|:| -3136 (-348 (-483)))) "failed") |#1| (-2 (|:| -3137 (-348 (-483))) (|:| -3136 (-348 (-483)))) (-2 (|:| -3137 (-348 (-483))) (|:| -3136 (-348 (-483))))) 32 T ELT) (((-2 (|:| -3137 (-348 (-483))) (|:| -3136 (-348 (-483)))) |#1| (-2 (|:| -3137 (-348 (-483))) (|:| -3136 (-348 (-483)))) (-348 (-483))) 29 T ELT)) (-3048 (((-582 (-2 (|:| -3137 (-348 (-483))) (|:| -3136 (-348 (-483))))) |#1| (-2 (|:| -3137 (-348 (-483))) (|:| -3136 (-348 (-483)))) (-348 (-483))) 34 T ELT) (((-582 (-2 (|:| -3137 (-348 (-483))) (|:| -3136 (-348 (-483))))) |#1| (-348 (-483))) 30 T ELT) (((-582 (-2 (|:| -3137 (-348 (-483))) (|:| -3136 (-348 (-483))))) |#1| (-2 (|:| -3137 (-348 (-483))) (|:| -3136 (-348 (-483))))) 33 T ELT) (((-582 (-2 (|:| -3137 (-348 (-483))) (|:| -3136 (-348 (-483))))) |#1|) 28 T ELT)) (-3047 (((-582 (-348 (-483))) (-582 (-2 (|:| -3137 (-348 (-483))) (|:| -3136 (-348 (-483)))))) 20 T ELT)) (-3046 (((-348 (-483)) (-2 (|:| -3137 (-348 (-483))) (|:| -3136 (-348 (-483))))) 17 T ELT))) -(((-933 |#1|) (-10 -7 (-15 -3048 ((-582 (-2 (|:| -3137 (-348 (-483))) (|:| -3136 (-348 (-483))))) |#1|)) (-15 -3048 ((-582 (-2 (|:| -3137 (-348 (-483))) (|:| -3136 (-348 (-483))))) |#1| (-2 (|:| -3137 (-348 (-483))) (|:| -3136 (-348 (-483)))))) (-15 -3048 ((-582 (-2 (|:| -3137 (-348 (-483))) (|:| -3136 (-348 (-483))))) |#1| (-348 (-483)))) (-15 -3048 ((-582 (-2 (|:| -3137 (-348 (-483))) (|:| -3136 (-348 (-483))))) |#1| (-2 (|:| -3137 (-348 (-483))) (|:| -3136 (-348 (-483)))) (-348 (-483)))) (-15 -3133 ((-2 (|:| -3137 (-348 (-483))) (|:| -3136 (-348 (-483)))) |#1| (-2 (|:| -3137 (-348 (-483))) (|:| -3136 (-348 (-483)))) (-348 (-483)))) (-15 -3133 ((-3 (-2 (|:| -3137 (-348 (-483))) (|:| -3136 (-348 (-483)))) "failed") |#1| (-2 (|:| -3137 (-348 (-483))) (|:| -3136 (-348 (-483)))) (-2 (|:| -3137 (-348 (-483))) (|:| -3136 (-348 (-483)))))) (-15 -3046 ((-348 (-483)) (-2 (|:| -3137 (-348 (-483))) (|:| -3136 (-348 (-483)))))) (-15 -3047 ((-582 (-348 (-483))) (-582 (-2 (|:| -3137 (-348 (-483))) (|:| -3136 (-348 (-483)))))))) (-1153 (-483))) (T -933)) -((-3047 (*1 *2 *3) (-12 (-5 *3 (-582 (-2 (|:| -3137 (-348 (-483))) (|:| -3136 (-348 (-483)))))) (-5 *2 (-582 (-348 (-483)))) (-5 *1 (-933 *4)) (-4 *4 (-1153 (-483))))) (-3046 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3137 (-348 (-483))) (|:| -3136 (-348 (-483))))) (-5 *2 (-348 (-483))) (-5 *1 (-933 *4)) (-4 *4 (-1153 (-483))))) (-3133 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3137 (-348 (-483))) (|:| -3136 (-348 (-483))))) (-5 *1 (-933 *3)) (-4 *3 (-1153 (-483))))) (-3133 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3137 (-348 (-483))) (|:| -3136 (-348 (-483))))) (-5 *4 (-348 (-483))) (-5 *1 (-933 *3)) (-4 *3 (-1153 (-483))))) (-3048 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-348 (-483))) (-5 *2 (-582 (-2 (|:| -3137 *5) (|:| -3136 *5)))) (-5 *1 (-933 *3)) (-4 *3 (-1153 (-483))) (-5 *4 (-2 (|:| -3137 *5) (|:| -3136 *5))))) (-3048 (*1 *2 *3 *4) (-12 (-5 *2 (-582 (-2 (|:| -3137 (-348 (-483))) (|:| -3136 (-348 (-483)))))) (-5 *1 (-933 *3)) (-4 *3 (-1153 (-483))) (-5 *4 (-348 (-483))))) (-3048 (*1 *2 *3 *4) (-12 (-5 *2 (-582 (-2 (|:| -3137 (-348 (-483))) (|:| -3136 (-348 (-483)))))) (-5 *1 (-933 *3)) (-4 *3 (-1153 (-483))) (-5 *4 (-2 (|:| -3137 (-348 (-483))) (|:| -3136 (-348 (-483))))))) (-3048 (*1 *2 *3) (-12 (-5 *2 (-582 (-2 (|:| -3137 (-348 (-483))) (|:| -3136 (-348 (-483)))))) (-5 *1 (-933 *3)) (-4 *3 (-1153 (-483)))))) -((-3133 (((-3 (-2 (|:| -3137 (-348 (-483))) (|:| -3136 (-348 (-483)))) "failed") |#1| (-2 (|:| -3137 (-348 (-483))) (|:| -3136 (-348 (-483)))) (-2 (|:| -3137 (-348 (-483))) (|:| -3136 (-348 (-483))))) 35 T ELT) (((-2 (|:| -3137 (-348 (-483))) (|:| -3136 (-348 (-483)))) |#1| (-2 (|:| -3137 (-348 (-483))) (|:| -3136 (-348 (-483)))) (-348 (-483))) 32 T ELT)) (-3048 (((-582 (-2 (|:| -3137 (-348 (-483))) (|:| -3136 (-348 (-483))))) |#1| (-2 (|:| -3137 (-348 (-483))) (|:| -3136 (-348 (-483)))) (-348 (-483))) 30 T ELT) (((-582 (-2 (|:| -3137 (-348 (-483))) (|:| -3136 (-348 (-483))))) |#1| (-348 (-483))) 26 T ELT) (((-582 (-2 (|:| -3137 (-348 (-483))) (|:| -3136 (-348 (-483))))) |#1| (-2 (|:| -3137 (-348 (-483))) (|:| -3136 (-348 (-483))))) 28 T ELT) (((-582 (-2 (|:| -3137 (-348 (-483))) (|:| -3136 (-348 (-483))))) |#1|) 24 T ELT))) -(((-934 |#1|) (-10 -7 (-15 -3048 ((-582 (-2 (|:| -3137 (-348 (-483))) (|:| -3136 (-348 (-483))))) |#1|)) (-15 -3048 ((-582 (-2 (|:| -3137 (-348 (-483))) (|:| -3136 (-348 (-483))))) |#1| (-2 (|:| -3137 (-348 (-483))) (|:| -3136 (-348 (-483)))))) (-15 -3048 ((-582 (-2 (|:| -3137 (-348 (-483))) (|:| -3136 (-348 (-483))))) |#1| (-348 (-483)))) (-15 -3048 ((-582 (-2 (|:| -3137 (-348 (-483))) (|:| -3136 (-348 (-483))))) |#1| (-2 (|:| -3137 (-348 (-483))) (|:| -3136 (-348 (-483)))) (-348 (-483)))) (-15 -3133 ((-2 (|:| -3137 (-348 (-483))) (|:| -3136 (-348 (-483)))) |#1| (-2 (|:| -3137 (-348 (-483))) (|:| -3136 (-348 (-483)))) (-348 (-483)))) (-15 -3133 ((-3 (-2 (|:| -3137 (-348 (-483))) (|:| -3136 (-348 (-483)))) "failed") |#1| (-2 (|:| -3137 (-348 (-483))) (|:| -3136 (-348 (-483)))) (-2 (|:| -3137 (-348 (-483))) (|:| -3136 (-348 (-483))))))) (-1153 (-348 (-483)))) (T -934)) -((-3133 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3137 (-348 (-483))) (|:| -3136 (-348 (-483))))) (-5 *1 (-934 *3)) (-4 *3 (-1153 (-348 (-483)))))) (-3133 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3137 (-348 (-483))) (|:| -3136 (-348 (-483))))) (-5 *4 (-348 (-483))) (-5 *1 (-934 *3)) (-4 *3 (-1153 *4)))) (-3048 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-348 (-483))) (-5 *2 (-582 (-2 (|:| -3137 *5) (|:| -3136 *5)))) (-5 *1 (-934 *3)) (-4 *3 (-1153 *5)) (-5 *4 (-2 (|:| -3137 *5) (|:| -3136 *5))))) (-3048 (*1 *2 *3 *4) (-12 (-5 *4 (-348 (-483))) (-5 *2 (-582 (-2 (|:| -3137 *4) (|:| -3136 *4)))) (-5 *1 (-934 *3)) (-4 *3 (-1153 *4)))) (-3048 (*1 *2 *3 *4) (-12 (-5 *2 (-582 (-2 (|:| -3137 (-348 (-483))) (|:| -3136 (-348 (-483)))))) (-5 *1 (-934 *3)) (-4 *3 (-1153 (-348 (-483)))) (-5 *4 (-2 (|:| -3137 (-348 (-483))) (|:| -3136 (-348 (-483))))))) (-3048 (*1 *2 *3) (-12 (-5 *2 (-582 (-2 (|:| -3137 (-348 (-483))) (|:| -3136 (-348 (-483)))))) (-5 *1 (-934 *3)) (-4 *3 (-1153 (-348 (-483))))))) -((-3571 (((-582 (-328)) (-856 (-483)) (-328)) 28 T ELT) (((-582 (-328)) (-856 (-348 (-483))) (-328)) 27 T ELT)) (-3967 (((-582 (-582 (-328))) (-582 (-856 (-483))) (-582 (-1088)) (-328)) 37 T ELT))) -(((-935) (-10 -7 (-15 -3571 ((-582 (-328)) (-856 (-348 (-483))) (-328))) (-15 -3571 ((-582 (-328)) (-856 (-483)) (-328))) (-15 -3967 ((-582 (-582 (-328))) (-582 (-856 (-483))) (-582 (-1088)) (-328))))) (T -935)) -((-3967 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-582 (-856 (-483)))) (-5 *4 (-582 (-1088))) (-5 *2 (-582 (-582 (-328)))) (-5 *1 (-935)) (-5 *5 (-328)))) (-3571 (*1 *2 *3 *4) (-12 (-5 *3 (-856 (-483))) (-5 *2 (-582 (-328))) (-5 *1 (-935)) (-5 *4 (-328)))) (-3571 (*1 *2 *3 *4) (-12 (-5 *3 (-856 (-348 (-483)))) (-5 *2 (-582 (-328))) (-5 *1 (-935)) (-5 *4 (-328))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3187 (((-85) $) 75 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3980 $) (|:| |associate| $)) $) NIL T ELT)) (-2062 (($ $) NIL T ELT)) (-2060 (((-85) $) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3773 (($ $) NIL T ELT)) (-3969 (((-346 $) $) NIL T ELT)) (-3036 (($ $) NIL T ELT) (($ $ (-829)) NIL T ELT) (($ (-348 (-483))) NIL T ELT) (($ (-483)) NIL T ELT)) (-1606 (((-85) $ $) NIL T ELT)) (-3621 (((-483) $) 70 T ELT)) (-3722 (($) NIL T CONST)) (-3182 (((-3 $ #1#) (-1083 $) (-829) (-771)) NIL T ELT) (((-3 $ #1#) (-1083 $) (-829)) 55 T ELT)) (-3156 (((-3 (-348 (-483)) #1#) $) NIL (|has| (-348 (-483)) (-949 (-348 (-483)))) ELT) (((-3 (-348 (-483)) #1#) $) NIL T ELT) (((-3 |#1| #1#) $) 115 T ELT) (((-3 (-483) #1#) $) NIL (OR (|has| (-348 (-483)) (-949 (-483))) (|has| |#1| (-949 (-483)))) ELT)) (-3155 (((-348 (-483)) $) 17 (|has| (-348 (-483)) (-949 (-348 (-483)))) ELT) (((-348 (-483)) $) 17 T ELT) ((|#1| $) 116 T ELT) (((-483) $) NIL (OR (|has| (-348 (-483)) (-949 (-483))) (|has| |#1| (-949 (-483)))) ELT)) (-3032 (($ $ (-771)) 47 T ELT)) (-3031 (($ $ (-771)) 48 T ELT)) (-2563 (($ $ $) NIL T ELT)) (-3181 (((-348 (-483)) $ $) 21 T ELT)) (-3465 (((-3 $ #1#) $) 88 T ELT)) (-2562 (($ $ $) NIL T ELT)) (-2740 (((-2 (|:| -3952 (-582 $)) (|:| -2408 $)) (-582 $)) NIL T ELT)) (-3721 (((-85) $) NIL T ELT)) (-3185 (((-85) $) 66 T ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-2409 (((-85) $) NIL T ELT)) (-3010 (($ $ (-483)) NIL T ELT)) (-3186 (((-85) $) 69 T ELT)) (-1603 (((-3 (-582 $) #1#) (-582 $) $) NIL T ELT)) (-2530 (($ $ $) NIL T ELT)) (-2856 (($ $ $) NIL T ELT)) (-3033 (((-3 (-1083 $) #1#) $) 83 T ELT)) (-3035 (((-3 (-771) #1#) $) 82 T ELT)) (-3034 (((-3 (-1083 $) #1#) $) 80 T ELT)) (-3049 (((-3 (-973 $ (-1083 $)) #1#) $) 78 T ELT)) (-1889 (($ (-582 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-2483 (($ $) 89 T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-2707 (((-1083 $) (-1083 $) (-1083 $)) NIL T ELT)) (-3143 (($ (-582 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3730 (((-346 $) $) NIL T ELT)) (-1604 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL T ELT)) (-3464 (((-3 $ #1#) $ $) NIL T ELT)) (-2739 (((-631 (-582 $)) (-582 $) $) NIL T ELT)) (-1605 (((-693) $) NIL T ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL T ELT)) (-3944 (((-771) $) 87 T ELT) (($ (-483)) NIL T ELT) (($ (-348 (-483))) NIL T ELT) (($ $) 63 T ELT) (($ (-348 (-483))) NIL T ELT) (($ (-483)) NIL T ELT) (($ (-348 (-483))) NIL T ELT) (($ |#1|) 118 T ELT)) (-3125 (((-693)) NIL T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-2061 (((-85) $ $) NIL T ELT)) (-3768 (((-348 (-483)) $ $) 27 T ELT)) (-3124 (((-85) $ $) NIL T ELT)) (-3183 (((-582 $) (-1083 $)) 61 T ELT) (((-582 $) (-1083 (-348 (-483)))) NIL T ELT) (((-582 $) (-1083 (-483))) NIL T ELT) (((-582 $) (-856 $)) NIL T ELT) (((-582 $) (-856 (-348 (-483)))) NIL T ELT) (((-582 $) (-856 (-483))) NIL T ELT)) (-3050 (($ (-973 $ (-1083 $)) (-771)) 46 T ELT)) (-3381 (($ $) 22 T ELT)) (-2659 (($) 32 T CONST)) (-2665 (($) 39 T CONST)) (-2565 (((-85) $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) 76 T ELT)) (-2683 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) 24 T ELT)) (-3947 (($ $ $) 37 T ELT)) (-3835 (($ $) 38 T ELT) (($ $ $) 74 T ELT)) (-3837 (($ $ $) 111 T ELT)) (** (($ $ (-829)) NIL T ELT) (($ $ (-693)) NIL T ELT) (($ $ (-483)) NIL T ELT) (($ $ (-348 (-483))) NIL T ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-483) $) 71 T ELT) (($ $ $) 103 T ELT) (($ (-348 (-483)) $) NIL T ELT) (($ $ (-348 (-483))) NIL T ELT) (($ (-483) $) 71 T ELT) (($ $ (-483)) NIL T ELT) (($ (-348 (-483)) $) NIL T ELT) (($ $ (-348 (-483))) NIL T ELT) (($ |#1| $) 101 T ELT) (($ $ |#1|) NIL T ELT))) -(((-936 |#1|) (-13 (-924) (-353 |#1|) (-38 |#1|) (-10 -8 (-15 -3050 ($ (-973 $ (-1083 $)) (-771))) (-15 -3049 ((-3 (-973 $ (-1083 $)) "failed") $)) (-15 -3181 ((-348 (-483)) $ $)))) (-13 (-754) (-312) (-932))) (T -936)) -((-3050 (*1 *1 *2 *3) (-12 (-5 *2 (-973 (-936 *4) (-1083 (-936 *4)))) (-5 *3 (-771)) (-5 *1 (-936 *4)) (-4 *4 (-13 (-754) (-312) (-932))))) (-3049 (*1 *2 *1) (|partial| -12 (-5 *2 (-973 (-936 *3) (-1083 (-936 *3)))) (-5 *1 (-936 *3)) (-4 *3 (-13 (-754) (-312) (-932))))) (-3181 (*1 *2 *1 *1) (-12 (-5 *2 (-348 (-483))) (-5 *1 (-936 *3)) (-4 *3 (-13 (-754) (-312) (-932)))))) -((-3051 (((-2 (|:| -3265 |#2|) (|:| -2512 (-582 |#1|))) |#2| (-582 |#1|)) 32 T ELT) ((|#2| |#2| |#1|) 27 T ELT))) -(((-937 |#1| |#2|) (-10 -7 (-15 -3051 (|#2| |#2| |#1|)) (-15 -3051 ((-2 (|:| -3265 |#2|) (|:| -2512 (-582 |#1|))) |#2| (-582 |#1|)))) (-312) (-599 |#1|)) (T -937)) -((-3051 (*1 *2 *3 *4) (-12 (-4 *5 (-312)) (-5 *2 (-2 (|:| -3265 *3) (|:| -2512 (-582 *5)))) (-5 *1 (-937 *5 *3)) (-5 *4 (-582 *5)) (-4 *3 (-599 *5)))) (-3051 (*1 *2 *2 *3) (-12 (-4 *3 (-312)) (-5 *1 (-937 *3 *2)) (-4 *2 (-599 *3))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3052 ((|#1| $ |#1|) 12 T ELT)) (-3054 (($ |#1|) 10 T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3053 ((|#1| $) 11 T ELT)) (-3944 (((-771) $) 17 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) 9 T ELT))) -(((-938 |#1|) (-13 (-1012) (-10 -8 (-15 -3054 ($ |#1|)) (-15 -3053 (|#1| $)) (-15 -3052 (|#1| $ |#1|)) (-15 -3055 ((-85) $ $)))) (-1127)) (T -938)) -((-3055 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-938 *3)) (-4 *3 (-1127)))) (-3054 (*1 *1 *2) (-12 (-5 *1 (-938 *2)) (-4 *2 (-1127)))) (-3053 (*1 *2 *1) (-12 (-5 *1 (-938 *2)) (-4 *2 (-1127)))) (-3052 (*1 *2 *1 *2) (-12 (-5 *1 (-938 *2)) (-4 *2 (-1127))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3679 (((-582 (-2 (|:| -3859 $) (|:| -1700 (-582 |#4|)))) (-582 |#4|)) NIL T ELT)) (-3680 (((-582 $) (-582 |#4|)) 114 T ELT) (((-582 $) (-582 |#4|) (-85)) 115 T ELT) (((-582 $) (-582 |#4|) (-85) (-85)) 113 T ELT) (((-582 $) (-582 |#4|) (-85) (-85) (-85) (-85)) 116 T ELT)) (-3080 (((-582 |#3|) $) NIL T ELT)) (-2907 (((-85) $) NIL T ELT)) (-2898 (((-85) $) NIL (|has| |#1| (-494)) ELT)) (-3691 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3686 ((|#4| |#4| $) NIL T ELT)) (-3773 (((-582 (-2 (|:| |val| |#4|) (|:| -1598 $))) |#4| $) 108 T ELT)) (-2908 (((-2 (|:| |under| $) (|:| -3129 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3708 (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3993)) ELT) (((-3 |#4| #1="failed") $ |#3|) 63 T ELT)) (-3722 (($) NIL T CONST)) (-2903 (((-85) $) 29 (|has| |#1| (-494)) ELT)) (-2905 (((-85) $ $) NIL (|has| |#1| (-494)) ELT)) (-2904 (((-85) $ $) NIL (|has| |#1| (-494)) ELT)) (-2906 (((-85) $) NIL (|has| |#1| (-494)) ELT)) (-3687 (((-582 |#4|) (-582 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-2899 (((-582 |#4|) (-582 |#4|) $) NIL (|has| |#1| (-494)) ELT)) (-2900 (((-582 |#4|) (-582 |#4|) $) NIL (|has| |#1| (-494)) ELT)) (-3156 (((-3 $ #1#) (-582 |#4|)) NIL T ELT)) (-3155 (($ (-582 |#4|)) NIL T ELT)) (-3797 (((-3 $ #1#) $) 45 T ELT)) (-3683 ((|#4| |#4| $) 66 T ELT)) (-1351 (($ $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#4| (-1012))) ELT)) (-3404 (($ |#4| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#4| (-1012))) ELT) (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3993)) ELT)) (-2901 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 81 (|has| |#1| (-494)) ELT)) (-3692 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3681 ((|#4| |#4| $) NIL T ELT)) (-3840 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -3993)) (|has| |#4| (-1012))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -3993)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -3993)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3694 (((-2 (|:| -3859 (-582 |#4|)) (|:| -1700 (-582 |#4|))) $) NIL T ELT)) (-3196 (((-85) |#4| $) NIL T ELT)) (-3194 (((-85) |#4| $) NIL T ELT)) (-3197 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3436 (((-2 (|:| |val| (-582 |#4|)) (|:| |towers| (-582 $))) (-582 |#4|) (-85) (-85)) 129 T ELT)) (-2888 (((-582 |#4|) $) 18 (|has| $ (-6 -3993)) ELT)) (-3693 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3179 ((|#3| $) 38 T ELT)) (-2607 (((-582 |#4|) $) 19 (|has| $ (-6 -3993)) ELT)) (-3244 (((-85) |#4| $) 27 (-12 (|has| $ (-6 -3993)) (|has| |#4| (-1012))) ELT)) (-1947 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -3994)) ELT)) (-3956 (($ (-1 |#4| |#4|) $) 23 T ELT)) (-2913 (((-582 |#3|) $) NIL T ELT)) (-2912 (((-85) |#3| $) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3190 (((-3 |#4| (-582 $)) |#4| |#4| $) NIL T ELT)) (-3189 (((-582 (-2 (|:| |val| |#4|) (|:| -1598 $))) |#4| |#4| $) 106 T ELT)) (-3796 (((-3 |#4| #1#) $) 42 T ELT)) (-3191 (((-582 $) |#4| $) 89 T ELT)) (-3193 (((-3 (-85) (-582 $)) |#4| $) NIL T ELT)) (-3192 (((-582 (-2 (|:| |val| (-85)) (|:| -1598 $))) |#4| $) 99 T ELT) (((-85) |#4| $) 61 T ELT)) (-3237 (((-582 $) |#4| $) 111 T ELT) (((-582 $) (-582 |#4|) $) NIL T ELT) (((-582 $) (-582 |#4|) (-582 $)) 112 T ELT) (((-582 $) |#4| (-582 $)) NIL T ELT)) (-3437 (((-582 $) (-582 |#4|) (-85) (-85) (-85)) 124 T ELT)) (-3438 (($ |#4| $) 78 T ELT) (($ (-582 |#4|) $) 79 T ELT) (((-582 $) |#4| $ (-85) (-85) (-85) (-85) (-85)) 75 T ELT)) (-3695 (((-582 |#4|) $) NIL T ELT)) (-3689 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3684 ((|#4| |#4| $) NIL T ELT)) (-3697 (((-85) $ $) NIL T ELT)) (-2902 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-494)) ELT)) (-3690 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3685 ((|#4| |#4| $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3799 (((-3 |#4| #1#) $) 40 T ELT)) (-1352 (((-3 |#4| #1#) (-1 (-85) |#4|) $) NIL T ELT)) (-3677 (((-3 $ #1#) $ |#4|) 56 T ELT)) (-3767 (($ $ |#4|) NIL T ELT) (((-582 $) |#4| $) 91 T ELT) (((-582 $) |#4| (-582 $)) NIL T ELT) (((-582 $) (-582 |#4|) $) NIL T ELT) (((-582 $) (-582 |#4|) (-582 $)) 85 T ELT)) (-1945 (((-85) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3766 (($ $ (-582 |#4|) (-582 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1012))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1012))) ELT) (($ $ (-249 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1012))) ELT) (($ $ (-582 (-249 |#4|))) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1012))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-3401 (((-85) $) 17 T ELT)) (-3563 (($) 14 T ELT)) (-3946 (((-693) $) NIL T ELT)) (-1944 (((-693) |#4| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#4| (-1012))) ELT) (((-693) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3398 (($ $) 13 T ELT)) (-3970 (((-472) $) NIL (|has| |#4| (-552 (-472))) ELT)) (-3528 (($ (-582 |#4|)) 22 T ELT)) (-2909 (($ $ |#3|) 49 T ELT)) (-2911 (($ $ |#3|) 51 T ELT)) (-3682 (($ $) NIL T ELT)) (-2910 (($ $ |#3|) NIL T ELT)) (-3944 (((-771) $) 35 T ELT) (((-582 |#4|) $) 46 T ELT)) (-3676 (((-693) $) NIL (|has| |#3| (-318)) ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3696 (((-3 (-2 (|:| |bas| $) (|:| -3322 (-582 |#4|))) #1#) (-582 |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3322 (-582 |#4|))) #1#) (-582 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3688 (((-85) $ (-1 (-85) |#4| (-582 |#4|))) NIL T ELT)) (-3188 (((-582 $) |#4| $) 88 T ELT) (((-582 $) |#4| (-582 $)) NIL T ELT) (((-582 $) (-582 |#4|) $) NIL T ELT) (((-582 $) (-582 |#4|) (-582 $)) NIL T ELT)) (-1946 (((-85) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3678 (((-582 |#3|) $) NIL T ELT)) (-3195 (((-85) |#4| $) NIL T ELT)) (-3931 (((-85) |#3| $) 62 T ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-3955 (((-693) $) NIL (|has| $ (-6 -3993)) ELT))) -(((-939 |#1| |#2| |#3| |#4|) (-13 (-982 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3438 ((-582 $) |#4| $ (-85) (-85) (-85) (-85) (-85))) (-15 -3680 ((-582 $) (-582 |#4|) (-85) (-85))) (-15 -3680 ((-582 $) (-582 |#4|) (-85) (-85) (-85) (-85))) (-15 -3437 ((-582 $) (-582 |#4|) (-85) (-85) (-85))) (-15 -3436 ((-2 (|:| |val| (-582 |#4|)) (|:| |towers| (-582 $))) (-582 |#4|) (-85) (-85))))) (-390) (-716) (-755) (-976 |#1| |#2| |#3|)) (T -939)) -((-3438 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-390)) (-4 *6 (-716)) (-4 *7 (-755)) (-5 *2 (-582 (-939 *5 *6 *7 *3))) (-5 *1 (-939 *5 *6 *7 *3)) (-4 *3 (-976 *5 *6 *7)))) (-3680 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-582 *8)) (-5 *4 (-85)) (-4 *8 (-976 *5 *6 *7)) (-4 *5 (-390)) (-4 *6 (-716)) (-4 *7 (-755)) (-5 *2 (-582 (-939 *5 *6 *7 *8))) (-5 *1 (-939 *5 *6 *7 *8)))) (-3680 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-582 *8)) (-5 *4 (-85)) (-4 *8 (-976 *5 *6 *7)) (-4 *5 (-390)) (-4 *6 (-716)) (-4 *7 (-755)) (-5 *2 (-582 (-939 *5 *6 *7 *8))) (-5 *1 (-939 *5 *6 *7 *8)))) (-3437 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-582 *8)) (-5 *4 (-85)) (-4 *8 (-976 *5 *6 *7)) (-4 *5 (-390)) (-4 *6 (-716)) (-4 *7 (-755)) (-5 *2 (-582 (-939 *5 *6 *7 *8))) (-5 *1 (-939 *5 *6 *7 *8)))) (-3436 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-390)) (-4 *6 (-716)) (-4 *7 (-755)) (-4 *8 (-976 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-582 *8)) (|:| |towers| (-582 (-939 *5 *6 *7 *8))))) (-5 *1 (-939 *5 *6 *7 *8)) (-5 *3 (-582 *8))))) -((-3056 (((-582 (-2 (|:| |radval| (-265 (-483))) (|:| |radmult| (-483)) (|:| |radvect| (-582 (-629 (-265 (-483))))))) (-629 (-348 (-856 (-483))))) 67 T ELT)) (-3057 (((-582 (-629 (-265 (-483)))) (-265 (-483)) (-629 (-348 (-856 (-483))))) 52 T ELT)) (-3058 (((-582 (-265 (-483))) (-629 (-348 (-856 (-483))))) 45 T ELT)) (-3062 (((-582 (-629 (-265 (-483)))) (-629 (-348 (-856 (-483))))) 85 T ELT)) (-3060 (((-629 (-265 (-483))) (-629 (-265 (-483)))) 38 T ELT)) (-3061 (((-582 (-629 (-265 (-483)))) (-582 (-629 (-265 (-483))))) 74 T ELT)) (-3059 (((-3 (-629 (-265 (-483))) "failed") (-629 (-348 (-856 (-483))))) 82 T ELT))) -(((-940) (-10 -7 (-15 -3056 ((-582 (-2 (|:| |radval| (-265 (-483))) (|:| |radmult| (-483)) (|:| |radvect| (-582 (-629 (-265 (-483))))))) (-629 (-348 (-856 (-483)))))) (-15 -3057 ((-582 (-629 (-265 (-483)))) (-265 (-483)) (-629 (-348 (-856 (-483)))))) (-15 -3058 ((-582 (-265 (-483))) (-629 (-348 (-856 (-483)))))) (-15 -3059 ((-3 (-629 (-265 (-483))) "failed") (-629 (-348 (-856 (-483)))))) (-15 -3060 ((-629 (-265 (-483))) (-629 (-265 (-483))))) (-15 -3061 ((-582 (-629 (-265 (-483)))) (-582 (-629 (-265 (-483)))))) (-15 -3062 ((-582 (-629 (-265 (-483)))) (-629 (-348 (-856 (-483)))))))) (T -940)) -((-3062 (*1 *2 *3) (-12 (-5 *3 (-629 (-348 (-856 (-483))))) (-5 *2 (-582 (-629 (-265 (-483))))) (-5 *1 (-940)))) (-3061 (*1 *2 *2) (-12 (-5 *2 (-582 (-629 (-265 (-483))))) (-5 *1 (-940)))) (-3060 (*1 *2 *2) (-12 (-5 *2 (-629 (-265 (-483)))) (-5 *1 (-940)))) (-3059 (*1 *2 *3) (|partial| -12 (-5 *3 (-629 (-348 (-856 (-483))))) (-5 *2 (-629 (-265 (-483)))) (-5 *1 (-940)))) (-3058 (*1 *2 *3) (-12 (-5 *3 (-629 (-348 (-856 (-483))))) (-5 *2 (-582 (-265 (-483)))) (-5 *1 (-940)))) (-3057 (*1 *2 *3 *4) (-12 (-5 *4 (-629 (-348 (-856 (-483))))) (-5 *2 (-582 (-629 (-265 (-483))))) (-5 *1 (-940)) (-5 *3 (-265 (-483))))) (-3056 (*1 *2 *3) (-12 (-5 *3 (-629 (-348 (-856 (-483))))) (-5 *2 (-582 (-2 (|:| |radval| (-265 (-483))) (|:| |radmult| (-483)) (|:| |radvect| (-582 (-629 (-265 (-483)))))))) (-5 *1 (-940))))) -((-3066 (((-582 (-629 |#1|)) (-582 (-629 |#1|))) 69 T ELT) (((-629 |#1|) (-629 |#1|)) 68 T ELT) (((-582 (-629 |#1|)) (-582 (-629 |#1|)) (-582 (-629 |#1|))) 67 T ELT) (((-629 |#1|) (-629 |#1|) (-629 |#1|)) 64 T ELT)) (-3065 (((-582 (-629 |#1|)) (-582 (-629 |#1|)) (-829)) 62 T ELT) (((-629 |#1|) (-629 |#1|) (-829)) 61 T ELT)) (-3067 (((-582 (-629 (-483))) (-582 (-582 (-483)))) 80 T ELT) (((-582 (-629 (-483))) (-582 (-812 (-483))) (-483)) 79 T ELT) (((-629 (-483)) (-582 (-483))) 76 T ELT) (((-629 (-483)) (-812 (-483)) (-483)) 74 T ELT)) (-3064 (((-629 (-856 |#1|)) (-693)) 94 T ELT)) (-3063 (((-582 (-629 |#1|)) (-582 (-629 |#1|)) (-829)) 48 (|has| |#1| (-6 (-3995 #1="*"))) ELT) (((-629 |#1|) (-629 |#1|) (-829)) 46 (|has| |#1| (-6 (-3995 #1#))) ELT))) -(((-941 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-3995 #1="*"))) (-15 -3063 ((-629 |#1|) (-629 |#1|) (-829))) |%noBranch|) (IF (|has| |#1| (-6 (-3995 #1#))) (-15 -3063 ((-582 (-629 |#1|)) (-582 (-629 |#1|)) (-829))) |%noBranch|) (-15 -3064 ((-629 (-856 |#1|)) (-693))) (-15 -3065 ((-629 |#1|) (-629 |#1|) (-829))) (-15 -3065 ((-582 (-629 |#1|)) (-582 (-629 |#1|)) (-829))) (-15 -3066 ((-629 |#1|) (-629 |#1|) (-629 |#1|))) (-15 -3066 ((-582 (-629 |#1|)) (-582 (-629 |#1|)) (-582 (-629 |#1|)))) (-15 -3066 ((-629 |#1|) (-629 |#1|))) (-15 -3066 ((-582 (-629 |#1|)) (-582 (-629 |#1|)))) (-15 -3067 ((-629 (-483)) (-812 (-483)) (-483))) (-15 -3067 ((-629 (-483)) (-582 (-483)))) (-15 -3067 ((-582 (-629 (-483))) (-582 (-812 (-483))) (-483))) (-15 -3067 ((-582 (-629 (-483))) (-582 (-582 (-483)))))) (-960)) (T -941)) -((-3067 (*1 *2 *3) (-12 (-5 *3 (-582 (-582 (-483)))) (-5 *2 (-582 (-629 (-483)))) (-5 *1 (-941 *4)) (-4 *4 (-960)))) (-3067 (*1 *2 *3 *4) (-12 (-5 *3 (-582 (-812 (-483)))) (-5 *4 (-483)) (-5 *2 (-582 (-629 *4))) (-5 *1 (-941 *5)) (-4 *5 (-960)))) (-3067 (*1 *2 *3) (-12 (-5 *3 (-582 (-483))) (-5 *2 (-629 (-483))) (-5 *1 (-941 *4)) (-4 *4 (-960)))) (-3067 (*1 *2 *3 *4) (-12 (-5 *3 (-812 (-483))) (-5 *4 (-483)) (-5 *2 (-629 *4)) (-5 *1 (-941 *5)) (-4 *5 (-960)))) (-3066 (*1 *2 *2) (-12 (-5 *2 (-582 (-629 *3))) (-4 *3 (-960)) (-5 *1 (-941 *3)))) (-3066 (*1 *2 *2) (-12 (-5 *2 (-629 *3)) (-4 *3 (-960)) (-5 *1 (-941 *3)))) (-3066 (*1 *2 *2 *2) (-12 (-5 *2 (-582 (-629 *3))) (-4 *3 (-960)) (-5 *1 (-941 *3)))) (-3066 (*1 *2 *2 *2) (-12 (-5 *2 (-629 *3)) (-4 *3 (-960)) (-5 *1 (-941 *3)))) (-3065 (*1 *2 *2 *3) (-12 (-5 *2 (-582 (-629 *4))) (-5 *3 (-829)) (-4 *4 (-960)) (-5 *1 (-941 *4)))) (-3065 (*1 *2 *2 *3) (-12 (-5 *2 (-629 *4)) (-5 *3 (-829)) (-4 *4 (-960)) (-5 *1 (-941 *4)))) (-3064 (*1 *2 *3) (-12 (-5 *3 (-693)) (-5 *2 (-629 (-856 *4))) (-5 *1 (-941 *4)) (-4 *4 (-960)))) (-3063 (*1 *2 *2 *3) (-12 (-5 *2 (-582 (-629 *4))) (-5 *3 (-829)) (|has| *4 (-6 (-3995 "*"))) (-4 *4 (-960)) (-5 *1 (-941 *4)))) (-3063 (*1 *2 *2 *3) (-12 (-5 *2 (-629 *4)) (-5 *3 (-829)) (|has| *4 (-6 (-3995 "*"))) (-4 *4 (-960)) (-5 *1 (-941 *4))))) -((-3071 (((-629 |#1|) (-582 (-629 |#1|)) (-1177 |#1|)) 69 (|has| |#1| (-258)) ELT)) (-3416 (((-582 (-582 (-629 |#1|))) (-582 (-629 |#1|)) (-1177 (-1177 |#1|))) 107 (|has| |#1| (-312)) ELT) (((-582 (-582 (-629 |#1|))) (-582 (-629 |#1|)) (-1177 |#1|)) 104 (|has| |#1| (-312)) ELT)) (-3075 (((-1177 |#1|) (-582 (-1177 |#1|)) (-483)) 113 (-12 (|has| |#1| (-312)) (|has| |#1| (-318))) ELT)) (-3074 (((-582 (-582 (-629 |#1|))) (-582 (-629 |#1|)) (-829)) 119 (-12 (|has| |#1| (-312)) (|has| |#1| (-318))) ELT) (((-582 (-582 (-629 |#1|))) (-582 (-629 |#1|)) (-85)) 118 (-12 (|has| |#1| (-312)) (|has| |#1| (-318))) ELT) (((-582 (-582 (-629 |#1|))) (-582 (-629 |#1|))) 117 (-12 (|has| |#1| (-312)) (|has| |#1| (-318))) ELT) (((-582 (-582 (-629 |#1|))) (-582 (-629 |#1|)) (-85) (-483) (-483)) 116 (-12 (|has| |#1| (-312)) (|has| |#1| (-318))) ELT)) (-3073 (((-85) (-582 (-629 |#1|))) 101 (|has| |#1| (-312)) ELT) (((-85) (-582 (-629 |#1|)) (-483)) 100 (|has| |#1| (-312)) ELT)) (-3070 (((-1177 (-1177 |#1|)) (-582 (-629 |#1|)) (-1177 |#1|)) 66 (|has| |#1| (-258)) ELT)) (-3069 (((-629 |#1|) (-582 (-629 |#1|)) (-629 |#1|)) 46 T ELT)) (-3068 (((-629 |#1|) (-1177 (-1177 |#1|))) 39 T ELT)) (-3072 (((-629 |#1|) (-582 (-629 |#1|)) (-582 (-629 |#1|)) (-483)) 93 (|has| |#1| (-312)) ELT) (((-629 |#1|) (-582 (-629 |#1|)) (-582 (-629 |#1|))) 92 (|has| |#1| (-312)) ELT) (((-629 |#1|) (-582 (-629 |#1|)) (-582 (-629 |#1|)) (-85) (-483)) 91 (|has| |#1| (-312)) ELT))) -(((-942 |#1|) (-10 -7 (-15 -3068 ((-629 |#1|) (-1177 (-1177 |#1|)))) (-15 -3069 ((-629 |#1|) (-582 (-629 |#1|)) (-629 |#1|))) (IF (|has| |#1| (-258)) (PROGN (-15 -3070 ((-1177 (-1177 |#1|)) (-582 (-629 |#1|)) (-1177 |#1|))) (-15 -3071 ((-629 |#1|) (-582 (-629 |#1|)) (-1177 |#1|)))) |%noBranch|) (IF (|has| |#1| (-312)) (PROGN (-15 -3072 ((-629 |#1|) (-582 (-629 |#1|)) (-582 (-629 |#1|)) (-85) (-483))) (-15 -3072 ((-629 |#1|) (-582 (-629 |#1|)) (-582 (-629 |#1|)))) (-15 -3072 ((-629 |#1|) (-582 (-629 |#1|)) (-582 (-629 |#1|)) (-483))) (-15 -3073 ((-85) (-582 (-629 |#1|)) (-483))) (-15 -3073 ((-85) (-582 (-629 |#1|)))) (-15 -3416 ((-582 (-582 (-629 |#1|))) (-582 (-629 |#1|)) (-1177 |#1|))) (-15 -3416 ((-582 (-582 (-629 |#1|))) (-582 (-629 |#1|)) (-1177 (-1177 |#1|))))) |%noBranch|) (IF (|has| |#1| (-318)) (IF (|has| |#1| (-312)) (PROGN (-15 -3074 ((-582 (-582 (-629 |#1|))) (-582 (-629 |#1|)) (-85) (-483) (-483))) (-15 -3074 ((-582 (-582 (-629 |#1|))) (-582 (-629 |#1|)))) (-15 -3074 ((-582 (-582 (-629 |#1|))) (-582 (-629 |#1|)) (-85))) (-15 -3074 ((-582 (-582 (-629 |#1|))) (-582 (-629 |#1|)) (-829))) (-15 -3075 ((-1177 |#1|) (-582 (-1177 |#1|)) (-483)))) |%noBranch|) |%noBranch|)) (-960)) (T -942)) -((-3075 (*1 *2 *3 *4) (-12 (-5 *3 (-582 (-1177 *5))) (-5 *4 (-483)) (-5 *2 (-1177 *5)) (-5 *1 (-942 *5)) (-4 *5 (-312)) (-4 *5 (-318)) (-4 *5 (-960)))) (-3074 (*1 *2 *3 *4) (-12 (-5 *4 (-829)) (-4 *5 (-312)) (-4 *5 (-318)) (-4 *5 (-960)) (-5 *2 (-582 (-582 (-629 *5)))) (-5 *1 (-942 *5)) (-5 *3 (-582 (-629 *5))))) (-3074 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-312)) (-4 *5 (-318)) (-4 *5 (-960)) (-5 *2 (-582 (-582 (-629 *5)))) (-5 *1 (-942 *5)) (-5 *3 (-582 (-629 *5))))) (-3074 (*1 *2 *3) (-12 (-4 *4 (-312)) (-4 *4 (-318)) (-4 *4 (-960)) (-5 *2 (-582 (-582 (-629 *4)))) (-5 *1 (-942 *4)) (-5 *3 (-582 (-629 *4))))) (-3074 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-85)) (-5 *5 (-483)) (-4 *6 (-312)) (-4 *6 (-318)) (-4 *6 (-960)) (-5 *2 (-582 (-582 (-629 *6)))) (-5 *1 (-942 *6)) (-5 *3 (-582 (-629 *6))))) (-3416 (*1 *2 *3 *4) (-12 (-5 *4 (-1177 (-1177 *5))) (-4 *5 (-312)) (-4 *5 (-960)) (-5 *2 (-582 (-582 (-629 *5)))) (-5 *1 (-942 *5)) (-5 *3 (-582 (-629 *5))))) (-3416 (*1 *2 *3 *4) (-12 (-5 *4 (-1177 *5)) (-4 *5 (-312)) (-4 *5 (-960)) (-5 *2 (-582 (-582 (-629 *5)))) (-5 *1 (-942 *5)) (-5 *3 (-582 (-629 *5))))) (-3073 (*1 *2 *3) (-12 (-5 *3 (-582 (-629 *4))) (-4 *4 (-312)) (-4 *4 (-960)) (-5 *2 (-85)) (-5 *1 (-942 *4)))) (-3073 (*1 *2 *3 *4) (-12 (-5 *3 (-582 (-629 *5))) (-5 *4 (-483)) (-4 *5 (-312)) (-4 *5 (-960)) (-5 *2 (-85)) (-5 *1 (-942 *5)))) (-3072 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-582 (-629 *5))) (-5 *4 (-483)) (-5 *2 (-629 *5)) (-5 *1 (-942 *5)) (-4 *5 (-312)) (-4 *5 (-960)))) (-3072 (*1 *2 *3 *3) (-12 (-5 *3 (-582 (-629 *4))) (-5 *2 (-629 *4)) (-5 *1 (-942 *4)) (-4 *4 (-312)) (-4 *4 (-960)))) (-3072 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-582 (-629 *6))) (-5 *4 (-85)) (-5 *5 (-483)) (-5 *2 (-629 *6)) (-5 *1 (-942 *6)) (-4 *6 (-312)) (-4 *6 (-960)))) (-3071 (*1 *2 *3 *4) (-12 (-5 *3 (-582 (-629 *5))) (-5 *4 (-1177 *5)) (-4 *5 (-258)) (-4 *5 (-960)) (-5 *2 (-629 *5)) (-5 *1 (-942 *5)))) (-3070 (*1 *2 *3 *4) (-12 (-5 *3 (-582 (-629 *5))) (-4 *5 (-258)) (-4 *5 (-960)) (-5 *2 (-1177 (-1177 *5))) (-5 *1 (-942 *5)) (-5 *4 (-1177 *5)))) (-3069 (*1 *2 *3 *2) (-12 (-5 *3 (-582 (-629 *4))) (-5 *2 (-629 *4)) (-4 *4 (-960)) (-5 *1 (-942 *4)))) (-3068 (*1 *2 *3) (-12 (-5 *3 (-1177 (-1177 *4))) (-4 *4 (-960)) (-5 *2 (-629 *4)) (-5 *1 (-942 *4))))) -((-3076 ((|#1| (-829) |#1|) 18 T ELT))) -(((-943 |#1|) (-10 -7 (-15 -3076 (|#1| (-829) |#1|))) (-13 (-1012) (-10 -8 (-15 -3837 ($ $ $))))) (T -943)) -((-3076 (*1 *2 *3 *2) (-12 (-5 *3 (-829)) (-5 *1 (-943 *2)) (-4 *2 (-13 (-1012) (-10 -8 (-15 -3837 ($ $ $)))))))) -((-3077 ((|#1| |#1| (-829)) 18 T ELT))) -(((-944 |#1|) (-10 -7 (-15 -3077 (|#1| |#1| (-829)))) (-13 (-1012) (-10 -8 (-15 * ($ $ $))))) (T -944)) -((-3077 (*1 *2 *2 *3) (-12 (-5 *3 (-829)) (-5 *1 (-944 *2)) (-4 *2 (-13 (-1012) (-10 -8 (-15 * ($ $ $)))))))) -((-3944 ((|#1| (-262)) 11 T ELT) (((-1183) |#1|) 9 T ELT))) -(((-945 |#1|) (-10 -7 (-15 -3944 ((-1183) |#1|)) (-15 -3944 (|#1| (-262)))) (-1127)) (T -945)) -((-3944 (*1 *2 *3) (-12 (-5 *3 (-262)) (-5 *1 (-945 *2)) (-4 *2 (-1127)))) (-3944 (*1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *1 (-945 *3)) (-4 *3 (-1127))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3187 (((-85) $) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3722 (($) NIL T CONST)) (-3840 (($ |#4|) 24 T ELT)) (-3465 (((-3 $ #1#) $) NIL T ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-2409 (((-85) $) NIL T ELT)) (-3078 ((|#4| $) 26 T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3944 (((-771) $) 45 T ELT) (($ (-483)) NIL T ELT) (($ |#1|) NIL T ELT) (($ |#4|) 25 T ELT)) (-3125 (((-693)) 42 T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-3124 (((-85) $ $) NIL T ELT)) (-2659 (($) 21 T CONST)) (-2665 (($) 22 T CONST)) (-3055 (((-85) $ $) 39 T ELT)) (-3835 (($ $) 30 T ELT) (($ $ $) NIL T ELT)) (-3837 (($ $ $) 28 T ELT)) (** (($ $ (-829)) NIL T ELT) (($ $ (-693)) NIL T ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-483) $) 35 T ELT) (($ $ $) 32 T ELT) (($ |#1| $) 37 T ELT) (($ $ |#1|) NIL T ELT))) -(((-946 |#1| |#2| |#3| |#4| |#5|) (-13 (-146) (-38 |#1|) (-10 -8 (-15 -3840 ($ |#4|)) (-15 -3944 ($ |#4|)) (-15 -3078 (|#4| $)))) (-312) (-716) (-755) (-860 |#1| |#2| |#3|) (-582 |#4|)) (T -946)) -((-3840 (*1 *1 *2) (-12 (-4 *3 (-312)) (-4 *4 (-716)) (-4 *5 (-755)) (-5 *1 (-946 *3 *4 *5 *2 *6)) (-4 *2 (-860 *3 *4 *5)) (-14 *6 (-582 *2)))) (-3944 (*1 *1 *2) (-12 (-4 *3 (-312)) (-4 *4 (-716)) (-4 *5 (-755)) (-5 *1 (-946 *3 *4 *5 *2 *6)) (-4 *2 (-860 *3 *4 *5)) (-14 *6 (-582 *2)))) (-3078 (*1 *2 *1) (-12 (-4 *2 (-860 *3 *4 *5)) (-5 *1 (-946 *3 *4 *5 *2 *6)) (-4 *3 (-312)) (-4 *4 (-716)) (-4 *5 (-755)) (-14 *6 (-582 *2))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3205 (((-1047) $) 11 T ELT)) (-3944 (((-771) $) 17 T ELT) (($ (-1093)) NIL T ELT) (((-1093) $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-947) (-13 (-994) (-10 -8 (-15 -3205 ((-1047) $))))) (T -947)) -((-3205 (*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-947))))) -((-3155 ((|#2| $) 10 T ELT))) -(((-948 |#1| |#2|) (-10 -7 (-15 -3155 (|#2| |#1|))) (-949 |#2|) (-1127)) (T -948)) -NIL -((-3156 (((-3 |#1| "failed") $) 9 T ELT)) (-3155 ((|#1| $) 8 T ELT)) (-3944 (($ |#1|) 6 T ELT))) -(((-949 |#1|) (-113) (-1127)) (T -949)) -((-3156 (*1 *2 *1) (|partial| -12 (-4 *1 (-949 *2)) (-4 *2 (-1127)))) (-3155 (*1 *2 *1) (-12 (-4 *1 (-949 *2)) (-4 *2 (-1127))))) -(-13 (-554 |t#1|) (-10 -8 (-15 -3156 ((-3 |t#1| "failed") $)) (-15 -3155 (|t#1| $)))) -(((-554 |#1|) . T)) -((-3079 (((-582 (-582 (-249 (-348 (-856 |#2|))))) (-582 (-856 |#2|)) (-582 (-1088))) 38 T ELT))) -(((-950 |#1| |#2|) (-10 -7 (-15 -3079 ((-582 (-582 (-249 (-348 (-856 |#2|))))) (-582 (-856 |#2|)) (-582 (-1088))))) (-494) (-13 (-494) (-949 |#1|))) (T -950)) -((-3079 (*1 *2 *3 *4) (-12 (-5 *3 (-582 (-856 *6))) (-5 *4 (-582 (-1088))) (-4 *6 (-13 (-494) (-949 *5))) (-4 *5 (-494)) (-5 *2 (-582 (-582 (-249 (-348 (-856 *6)))))) (-5 *1 (-950 *5 *6))))) -((-3080 (((-582 (-1088)) (-348 (-856 |#1|))) 17 T ELT)) (-3082 (((-348 (-1083 (-348 (-856 |#1|)))) (-348 (-856 |#1|)) (-1088)) 24 T ELT)) (-3083 (((-348 (-856 |#1|)) (-348 (-1083 (-348 (-856 |#1|)))) (-1088)) 26 T ELT)) (-3081 (((-3 (-1088) "failed") (-348 (-856 |#1|))) 20 T ELT)) (-3766 (((-348 (-856 |#1|)) (-348 (-856 |#1|)) (-582 (-249 (-348 (-856 |#1|))))) 32 T ELT) (((-348 (-856 |#1|)) (-348 (-856 |#1|)) (-249 (-348 (-856 |#1|)))) 33 T ELT) (((-348 (-856 |#1|)) (-348 (-856 |#1|)) (-582 (-1088)) (-582 (-348 (-856 |#1|)))) 28 T ELT) (((-348 (-856 |#1|)) (-348 (-856 |#1|)) (-1088) (-348 (-856 |#1|))) 29 T ELT)) (-3944 (((-348 (-856 |#1|)) |#1|) 11 T ELT))) -(((-951 |#1|) (-10 -7 (-15 -3080 ((-582 (-1088)) (-348 (-856 |#1|)))) (-15 -3081 ((-3 (-1088) "failed") (-348 (-856 |#1|)))) (-15 -3082 ((-348 (-1083 (-348 (-856 |#1|)))) (-348 (-856 |#1|)) (-1088))) (-15 -3083 ((-348 (-856 |#1|)) (-348 (-1083 (-348 (-856 |#1|)))) (-1088))) (-15 -3766 ((-348 (-856 |#1|)) (-348 (-856 |#1|)) (-1088) (-348 (-856 |#1|)))) (-15 -3766 ((-348 (-856 |#1|)) (-348 (-856 |#1|)) (-582 (-1088)) (-582 (-348 (-856 |#1|))))) (-15 -3766 ((-348 (-856 |#1|)) (-348 (-856 |#1|)) (-249 (-348 (-856 |#1|))))) (-15 -3766 ((-348 (-856 |#1|)) (-348 (-856 |#1|)) (-582 (-249 (-348 (-856 |#1|)))))) (-15 -3944 ((-348 (-856 |#1|)) |#1|))) (-494)) (T -951)) -((-3944 (*1 *2 *3) (-12 (-5 *2 (-348 (-856 *3))) (-5 *1 (-951 *3)) (-4 *3 (-494)))) (-3766 (*1 *2 *2 *3) (-12 (-5 *3 (-582 (-249 (-348 (-856 *4))))) (-5 *2 (-348 (-856 *4))) (-4 *4 (-494)) (-5 *1 (-951 *4)))) (-3766 (*1 *2 *2 *3) (-12 (-5 *3 (-249 (-348 (-856 *4)))) (-5 *2 (-348 (-856 *4))) (-4 *4 (-494)) (-5 *1 (-951 *4)))) (-3766 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-582 (-1088))) (-5 *4 (-582 (-348 (-856 *5)))) (-5 *2 (-348 (-856 *5))) (-4 *5 (-494)) (-5 *1 (-951 *5)))) (-3766 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-348 (-856 *4))) (-5 *3 (-1088)) (-4 *4 (-494)) (-5 *1 (-951 *4)))) (-3083 (*1 *2 *3 *4) (-12 (-5 *3 (-348 (-1083 (-348 (-856 *5))))) (-5 *4 (-1088)) (-5 *2 (-348 (-856 *5))) (-5 *1 (-951 *5)) (-4 *5 (-494)))) (-3082 (*1 *2 *3 *4) (-12 (-5 *4 (-1088)) (-4 *5 (-494)) (-5 *2 (-348 (-1083 (-348 (-856 *5))))) (-5 *1 (-951 *5)) (-5 *3 (-348 (-856 *5))))) (-3081 (*1 *2 *3) (|partial| -12 (-5 *3 (-348 (-856 *4))) (-4 *4 (-494)) (-5 *2 (-1088)) (-5 *1 (-951 *4)))) (-3080 (*1 *2 *3) (-12 (-5 *3 (-348 (-856 *4))) (-4 *4 (-494)) (-5 *2 (-582 (-1088))) (-5 *1 (-951 *4))))) -((-3084 (((-328)) 17 T ELT)) (-3099 (((-1 (-328)) (-328) (-328)) 22 T ELT)) (-3092 (((-1 (-328)) (-693)) 48 T ELT)) (-3085 (((-328)) 37 T ELT)) (-3088 (((-1 (-328)) (-328) (-328)) 38 T ELT)) (-3086 (((-328)) 29 T ELT)) (-3089 (((-1 (-328)) (-328)) 30 T ELT)) (-3087 (((-328) (-693)) 43 T ELT)) (-3090 (((-1 (-328)) (-693)) 44 T ELT)) (-3091 (((-1 (-328)) (-693) (-693)) 47 T ELT)) (-3382 (((-1 (-328)) (-693) (-693)) 45 T ELT))) -(((-952) (-10 -7 (-15 -3084 ((-328))) (-15 -3085 ((-328))) (-15 -3086 ((-328))) (-15 -3087 ((-328) (-693))) (-15 -3099 ((-1 (-328)) (-328) (-328))) (-15 -3088 ((-1 (-328)) (-328) (-328))) (-15 -3089 ((-1 (-328)) (-328))) (-15 -3090 ((-1 (-328)) (-693))) (-15 -3382 ((-1 (-328)) (-693) (-693))) (-15 -3091 ((-1 (-328)) (-693) (-693))) (-15 -3092 ((-1 (-328)) (-693))))) (T -952)) -((-3092 (*1 *2 *3) (-12 (-5 *3 (-693)) (-5 *2 (-1 (-328))) (-5 *1 (-952)))) (-3091 (*1 *2 *3 *3) (-12 (-5 *3 (-693)) (-5 *2 (-1 (-328))) (-5 *1 (-952)))) (-3382 (*1 *2 *3 *3) (-12 (-5 *3 (-693)) (-5 *2 (-1 (-328))) (-5 *1 (-952)))) (-3090 (*1 *2 *3) (-12 (-5 *3 (-693)) (-5 *2 (-1 (-328))) (-5 *1 (-952)))) (-3089 (*1 *2 *3) (-12 (-5 *2 (-1 (-328))) (-5 *1 (-952)) (-5 *3 (-328)))) (-3088 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-328))) (-5 *1 (-952)) (-5 *3 (-328)))) (-3099 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-328))) (-5 *1 (-952)) (-5 *3 (-328)))) (-3087 (*1 *2 *3) (-12 (-5 *3 (-693)) (-5 *2 (-328)) (-5 *1 (-952)))) (-3086 (*1 *2) (-12 (-5 *2 (-328)) (-5 *1 (-952)))) (-3085 (*1 *2) (-12 (-5 *2 (-328)) (-5 *1 (-952)))) (-3084 (*1 *2) (-12 (-5 *2 (-328)) (-5 *1 (-952))))) -((-3730 (((-346 |#1|) |#1|) 33 T ELT))) -(((-953 |#1|) (-10 -7 (-15 -3730 ((-346 |#1|) |#1|))) (-1153 (-348 (-856 (-483))))) (T -953)) -((-3730 (*1 *2 *3) (-12 (-5 *2 (-346 *3)) (-5 *1 (-953 *3)) (-4 *3 (-1153 (-348 (-856 (-483)))))))) -((-3093 (((-348 (-346 (-856 |#1|))) (-348 (-856 |#1|))) 14 T ELT))) -(((-954 |#1|) (-10 -7 (-15 -3093 ((-348 (-346 (-856 |#1|))) (-348 (-856 |#1|))))) (-258)) (T -954)) -((-3093 (*1 *2 *3) (-12 (-5 *3 (-348 (-856 *4))) (-4 *4 (-258)) (-5 *2 (-348 (-346 (-856 *4)))) (-5 *1 (-954 *4))))) -((-2567 (((-85) $ $) 7 T ELT)) (-3187 (((-85) $) 22 T ELT)) (-3722 (($) 23 T CONST)) (-3097 ((|#1| $) 29 T ELT)) (-1212 (((-85) $ $) 20 T ELT)) (-3241 (((-1071) $) 11 T ELT)) (-3242 (((-1032) $) 12 T ELT)) (-3096 ((|#1| $) 28 T ELT)) (-3094 ((|#1|) 26 T CONST)) (-3944 (((-771) $) 13 T ELT)) (-3095 ((|#1| $) 27 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2659 (($) 24 T CONST)) (-3055 (((-85) $ $) 8 T ELT)) (-3837 (($ $ $) 18 T ELT)) (* (($ (-829) $) 17 T ELT) (($ (-693) $) 21 T ELT))) -(((-955 |#1|) (-113) (-23)) (T -955)) -((-3097 (*1 *2 *1) (-12 (-4 *1 (-955 *2)) (-4 *2 (-23)))) (-3096 (*1 *2 *1) (-12 (-4 *1 (-955 *2)) (-4 *2 (-23)))) (-3095 (*1 *2 *1) (-12 (-4 *1 (-955 *2)) (-4 *2 (-23)))) (-3094 (*1 *2) (-12 (-4 *1 (-955 *2)) (-4 *2 (-23))))) -(-13 (-23) (-10 -8 (-15 -3097 (|t#1| $)) (-15 -3096 (|t#1| $)) (-15 -3095 (|t#1| $)) (-15 -3094 (|t#1|) -3950))) -(((-23) . T) ((-25) . T) ((-72) . T) ((-551 (-771)) . T) ((-13) . T) ((-1012) . T) ((-1127) . T)) -((-2567 (((-85) $ $) 7 T ELT)) (-3187 (((-85) $) 22 T ELT)) (-3098 (($) 31 T CONST)) (-3722 (($) 23 T CONST)) (-3097 ((|#1| $) 29 T ELT)) (-1212 (((-85) $ $) 20 T ELT)) (-3241 (((-1071) $) 11 T ELT)) (-3242 (((-1032) $) 12 T ELT)) (-3096 ((|#1| $) 28 T ELT)) (-3094 ((|#1|) 26 T CONST)) (-3944 (((-771) $) 13 T ELT)) (-3095 ((|#1| $) 27 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2659 (($) 24 T CONST)) (-3055 (((-85) $ $) 8 T ELT)) (-3837 (($ $ $) 18 T ELT)) (* (($ (-829) $) 17 T ELT) (($ (-693) $) 21 T ELT))) +((-2555 (((-632 (-1137)) $ (-1137)) NIL T ELT)) (-2556 (((-632 (-488)) $ (-488)) NIL T ELT)) (-2554 (((-694) $ (-102)) NIL T ELT)) (-2557 (((-632 (-101)) $ (-101)) 22 T ELT)) (-2559 (($ (-337)) 12 T ELT) (($ (-1072)) 14 T ELT)) (-2558 (((-85) $) 19 T ELT)) (-3945 (((-772) $) 26 T ELT)) (-1699 (($ $) 23 T ELT))) +(((-771) (-13 (-770) (-552 (-772)) (-10 -8 (-15 -2559 ($ (-337))) (-15 -2559 ($ (-1072))) (-15 -2558 ((-85) $))))) (T -771)) +((-2559 (*1 *1 *2) (-12 (-5 *2 (-337)) (-5 *1 (-771)))) (-2559 (*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-771)))) (-2558 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-771))))) +((-2568 (((-85) $ $) NIL T ELT) (($ $ $) 85 T ELT)) (-2589 (($ $ $) 125 T ELT)) (-2604 (((-484) $) 31 T ELT) (((-484)) 36 T ELT)) (-2599 (($ (-484)) 53 T ELT)) (-2596 (($ $ $) 54 T ELT) (($ (-583 $)) 84 T ELT)) (-2580 (($ $ (-583 $)) 82 T ELT)) (-2601 (((-484) $) 34 T ELT)) (-2583 (($ $ $) 73 T ELT)) (-3531 (($ $) 140 T ELT) (($ $ $) 141 T ELT) (($ $ $ $) 142 T ELT)) (-2602 (((-484) $) 33 T ELT)) (-2584 (($ $ $) 72 T ELT)) (-3534 (($ $) 114 T ELT)) (-2587 (($ $ $) 129 T ELT)) (-2570 (($ (-583 $)) 61 T ELT)) (-3539 (($ $ (-583 $)) 79 T ELT)) (-2598 (($ (-484) (-484)) 55 T ELT)) (-2611 (($ $) 126 T ELT) (($ $ $) 127 T ELT)) (-3137 (($ $ (-484)) 43 T ELT) (($ $) 46 T ELT)) (-2564 (($ $ $) 97 T ELT)) (-2585 (($ $ $) 132 T ELT)) (-2579 (($ $) 115 T ELT)) (-2563 (($ $ $) 98 T ELT)) (-2575 (($ $) 143 T ELT) (($ $ $) 144 T ELT) (($ $ $ $) 145 T ELT)) (-2837 (((-1184) $) 10 T ELT)) (-2578 (($ $) 118 T ELT) (($ $ (-694)) 122 T ELT)) (-2581 (($ $ $) 75 T ELT)) (-2582 (($ $ $) 74 T ELT)) (-2595 (($ $ (-583 $)) 110 T ELT)) (-2593 (($ $ $) 113 T ELT)) (-2572 (($ (-583 $)) 59 T ELT)) (-2573 (($ $) 70 T ELT) (($ (-583 $)) 71 T ELT)) (-2576 (($ $ $) 123 T ELT)) (-2577 (($ $) 116 T ELT)) (-2588 (($ $ $) 128 T ELT)) (-3532 (($ (-484)) 21 T ELT) (($ (-1089)) 23 T ELT) (($ (-1072)) 30 T ELT) (($ (-179)) 25 T ELT)) (-2561 (($ $ $) 101 T ELT)) (-2560 (($ $) 102 T ELT)) (-2606 (((-1184) (-1072)) 15 T ELT)) (-2607 (($ (-1072)) 14 T ELT)) (-3123 (($ (-583 (-583 $))) 58 T ELT)) (-3138 (($ $ (-484)) 42 T ELT) (($ $) 45 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2591 (($ $ $) 131 T ELT)) (-3469 (($ $) 146 T ELT) (($ $ $) 147 T ELT) (($ $ $ $) 148 T ELT)) (-2592 (((-85) $) 108 T ELT)) (-2594 (($ $ (-583 $)) 111 T ELT) (($ $ $ $) 112 T ELT)) (-2600 (($ (-484)) 39 T ELT)) (-2603 (((-484) $) 32 T ELT) (((-484)) 35 T ELT)) (-2597 (($ $ $) 40 T ELT) (($ (-583 $)) 83 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3465 (($ $ $) 99 T ELT)) (-3564 (($) 13 T ELT)) (-3799 (($ $ (-583 $)) 109 T ELT)) (-2605 (((-1072) (-1072)) 8 T ELT)) (-3835 (($ $) 117 T ELT) (($ $ (-694)) 121 T ELT)) (-2565 (($ $ $) 96 T ELT)) (-3757 (($ $ (-694)) 139 T ELT)) (-2571 (($ (-583 $)) 60 T ELT)) (-3945 (((-772) $) 19 T ELT)) (-3772 (($ $ (-484)) 41 T ELT) (($ $) 44 T ELT)) (-2574 (($ $) 68 T ELT) (($ (-583 $)) 69 T ELT)) (-3240 (($ $) 66 T ELT) (($ (-583 $)) 67 T ELT)) (-2590 (($ $) 124 T ELT)) (-2569 (($ (-583 $)) 65 T ELT)) (-3101 (($ $ $) 105 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2586 (($ $ $) 130 T ELT)) (-2562 (($ $ $) 100 T ELT)) (-3736 (($ $ $) 103 T ELT) (($ $) 104 T ELT)) (-2566 (($ $ $) 89 T ELT)) (-2567 (($ $ $) 87 T ELT)) (-3056 (((-85) $ $) 16 T ELT) (($ $ $) 17 T ELT)) (-2684 (($ $ $) 88 T ELT)) (-2685 (($ $ $) 86 T ELT)) (-3948 (($ $ $) 94 T ELT)) (-3836 (($ $ $) 91 T ELT) (($ $) 92 T ELT)) (-3838 (($ $ $) 90 T ELT)) (** (($ $ $) 95 T ELT)) (* (($ $ $) 93 T ELT))) +(((-772) (-13 (-1013) (-10 -8 (-15 -2837 ((-1184) $)) (-15 -2607 ($ (-1072))) (-15 -2606 ((-1184) (-1072))) (-15 -3532 ($ (-484))) (-15 -3532 ($ (-1089))) (-15 -3532 ($ (-1072))) (-15 -3532 ($ (-179))) (-15 -3564 ($)) (-15 -2605 ((-1072) (-1072))) (-15 -2604 ((-484) $)) (-15 -2603 ((-484) $)) (-15 -2604 ((-484))) (-15 -2603 ((-484))) (-15 -2602 ((-484) $)) (-15 -2601 ((-484) $)) (-15 -2600 ($ (-484))) (-15 -2599 ($ (-484))) (-15 -2598 ($ (-484) (-484))) (-15 -3138 ($ $ (-484))) (-15 -3137 ($ $ (-484))) (-15 -3772 ($ $ (-484))) (-15 -3138 ($ $)) (-15 -3137 ($ $)) (-15 -3772 ($ $)) (-15 -2597 ($ $ $)) (-15 -2596 ($ $ $)) (-15 -2597 ($ (-583 $))) (-15 -2596 ($ (-583 $))) (-15 -2595 ($ $ (-583 $))) (-15 -2594 ($ $ (-583 $))) (-15 -2594 ($ $ $ $)) (-15 -2593 ($ $ $)) (-15 -2592 ((-85) $)) (-15 -3799 ($ $ (-583 $))) (-15 -3534 ($ $)) (-15 -2591 ($ $ $)) (-15 -2590 ($ $)) (-15 -3123 ($ (-583 (-583 $)))) (-15 -2589 ($ $ $)) (-15 -2611 ($ $)) (-15 -2611 ($ $ $)) (-15 -2588 ($ $ $)) (-15 -2587 ($ $ $)) (-15 -2586 ($ $ $)) (-15 -2585 ($ $ $)) (-15 -3757 ($ $ (-694))) (-15 -3101 ($ $ $)) (-15 -2584 ($ $ $)) (-15 -2583 ($ $ $)) (-15 -2582 ($ $ $)) (-15 -2581 ($ $ $)) (-15 -3539 ($ $ (-583 $))) (-15 -2580 ($ $ (-583 $))) (-15 -2579 ($ $)) (-15 -3835 ($ $)) (-15 -3835 ($ $ (-694))) (-15 -2578 ($ $)) (-15 -2578 ($ $ (-694))) (-15 -2577 ($ $)) (-15 -2576 ($ $ $)) (-15 -3531 ($ $)) (-15 -3531 ($ $ $)) (-15 -3531 ($ $ $ $)) (-15 -2575 ($ $)) (-15 -2575 ($ $ $)) (-15 -2575 ($ $ $ $)) (-15 -3469 ($ $)) (-15 -3469 ($ $ $)) (-15 -3469 ($ $ $ $)) (-15 -3240 ($ $)) (-15 -3240 ($ (-583 $))) (-15 -2574 ($ $)) (-15 -2574 ($ (-583 $))) (-15 -2573 ($ $)) (-15 -2573 ($ (-583 $))) (-15 -2572 ($ (-583 $))) (-15 -2571 ($ (-583 $))) (-15 -2570 ($ (-583 $))) (-15 -2569 ($ (-583 $))) (-15 -3056 ($ $ $)) (-15 -2568 ($ $ $)) (-15 -2685 ($ $ $)) (-15 -2567 ($ $ $)) (-15 -2684 ($ $ $)) (-15 -2566 ($ $ $)) (-15 -3838 ($ $ $)) (-15 -3836 ($ $ $)) (-15 -3836 ($ $)) (-15 * ($ $ $)) (-15 -3948 ($ $ $)) (-15 ** ($ $ $)) (-15 -2565 ($ $ $)) (-15 -2564 ($ $ $)) (-15 -2563 ($ $ $)) (-15 -3465 ($ $ $)) (-15 -2562 ($ $ $)) (-15 -2561 ($ $ $)) (-15 -2560 ($ $)) (-15 -3736 ($ $ $)) (-15 -3736 ($ $))))) (T -772)) +((-2837 (*1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-772)))) (-2607 (*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-772)))) (-2606 (*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-772)))) (-3532 (*1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-772)))) (-3532 (*1 *1 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-772)))) (-3532 (*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-772)))) (-3532 (*1 *1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-772)))) (-3564 (*1 *1) (-5 *1 (-772))) (-2605 (*1 *2 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-772)))) (-2604 (*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-772)))) (-2603 (*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-772)))) (-2604 (*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-772)))) (-2603 (*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-772)))) (-2602 (*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-772)))) (-2601 (*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-772)))) (-2600 (*1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-772)))) (-2599 (*1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-772)))) (-2598 (*1 *1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-772)))) (-3138 (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-772)))) (-3137 (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-772)))) (-3772 (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-772)))) (-3138 (*1 *1 *1) (-5 *1 (-772))) (-3137 (*1 *1 *1) (-5 *1 (-772))) (-3772 (*1 *1 *1) (-5 *1 (-772))) (-2597 (*1 *1 *1 *1) (-5 *1 (-772))) (-2596 (*1 *1 *1 *1) (-5 *1 (-772))) (-2597 (*1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772)))) (-2596 (*1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772)))) (-2595 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772)))) (-2594 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772)))) (-2594 (*1 *1 *1 *1 *1) (-5 *1 (-772))) (-2593 (*1 *1 *1 *1) (-5 *1 (-772))) (-2592 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-772)))) (-3799 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772)))) (-3534 (*1 *1 *1) (-5 *1 (-772))) (-2591 (*1 *1 *1 *1) (-5 *1 (-772))) (-2590 (*1 *1 *1) (-5 *1 (-772))) (-3123 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 (-772)))) (-5 *1 (-772)))) (-2589 (*1 *1 *1 *1) (-5 *1 (-772))) (-2611 (*1 *1 *1) (-5 *1 (-772))) (-2611 (*1 *1 *1 *1) (-5 *1 (-772))) (-2588 (*1 *1 *1 *1) (-5 *1 (-772))) (-2587 (*1 *1 *1 *1) (-5 *1 (-772))) (-2586 (*1 *1 *1 *1) (-5 *1 (-772))) (-2585 (*1 *1 *1 *1) (-5 *1 (-772))) (-3757 (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-772)))) (-3101 (*1 *1 *1 *1) (-5 *1 (-772))) (-2584 (*1 *1 *1 *1) (-5 *1 (-772))) (-2583 (*1 *1 *1 *1) (-5 *1 (-772))) (-2582 (*1 *1 *1 *1) (-5 *1 (-772))) (-2581 (*1 *1 *1 *1) (-5 *1 (-772))) (-3539 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772)))) (-2580 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772)))) (-2579 (*1 *1 *1) (-5 *1 (-772))) (-3835 (*1 *1 *1) (-5 *1 (-772))) (-3835 (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-772)))) (-2578 (*1 *1 *1) (-5 *1 (-772))) (-2578 (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-772)))) (-2577 (*1 *1 *1) (-5 *1 (-772))) (-2576 (*1 *1 *1 *1) (-5 *1 (-772))) (-3531 (*1 *1 *1) (-5 *1 (-772))) (-3531 (*1 *1 *1 *1) (-5 *1 (-772))) (-3531 (*1 *1 *1 *1 *1) (-5 *1 (-772))) (-2575 (*1 *1 *1) (-5 *1 (-772))) (-2575 (*1 *1 *1 *1) (-5 *1 (-772))) (-2575 (*1 *1 *1 *1 *1) (-5 *1 (-772))) (-3469 (*1 *1 *1) (-5 *1 (-772))) (-3469 (*1 *1 *1 *1) (-5 *1 (-772))) (-3469 (*1 *1 *1 *1 *1) (-5 *1 (-772))) (-3240 (*1 *1 *1) (-5 *1 (-772))) (-3240 (*1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772)))) (-2574 (*1 *1 *1) (-5 *1 (-772))) (-2574 (*1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772)))) (-2573 (*1 *1 *1) (-5 *1 (-772))) (-2573 (*1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772)))) (-2572 (*1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772)))) (-2571 (*1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772)))) (-2570 (*1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772)))) (-2569 (*1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772)))) (-3056 (*1 *1 *1 *1) (-5 *1 (-772))) (-2568 (*1 *1 *1 *1) (-5 *1 (-772))) (-2685 (*1 *1 *1 *1) (-5 *1 (-772))) (-2567 (*1 *1 *1 *1) (-5 *1 (-772))) (-2684 (*1 *1 *1 *1) (-5 *1 (-772))) (-2566 (*1 *1 *1 *1) (-5 *1 (-772))) (-3838 (*1 *1 *1 *1) (-5 *1 (-772))) (-3836 (*1 *1 *1 *1) (-5 *1 (-772))) (-3836 (*1 *1 *1) (-5 *1 (-772))) (* (*1 *1 *1 *1) (-5 *1 (-772))) (-3948 (*1 *1 *1 *1) (-5 *1 (-772))) (** (*1 *1 *1 *1) (-5 *1 (-772))) (-2565 (*1 *1 *1 *1) (-5 *1 (-772))) (-2564 (*1 *1 *1 *1) (-5 *1 (-772))) (-2563 (*1 *1 *1 *1) (-5 *1 (-772))) (-3465 (*1 *1 *1 *1) (-5 *1 (-772))) (-2562 (*1 *1 *1 *1) (-5 *1 (-772))) (-2561 (*1 *1 *1 *1) (-5 *1 (-772))) (-2560 (*1 *1 *1) (-5 *1 (-772))) (-3736 (*1 *1 *1 *1) (-5 *1 (-772))) (-3736 (*1 *1 *1) (-5 *1 (-772)))) +((-2568 (((-85) $ $) NIL T ELT)) (-3830 (((-3 $ "failed") (-1089)) 36 T ELT)) (-3136 (((-694)) 32 T ELT)) (-2994 (($) NIL T ELT)) (-2531 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2857 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2010 (((-830) $) 29 T ELT)) (-3242 (((-1072) $) 43 T ELT)) (-2400 (($ (-830)) 28 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3971 (((-1089) $) 13 T ELT) (((-473) $) 19 T ELT) (((-800 (-329)) $) 26 T ELT) (((-800 (-484)) $) 22 T ELT)) (-3945 (((-772) $) 16 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 40 T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) 38 T ELT))) +(((-773 |#1|) (-13 (-752) (-553 (-1089)) (-553 (-473)) (-553 (-800 (-329))) (-553 (-800 (-484))) (-10 -8 (-15 -3830 ((-3 $ "failed") (-1089))))) (-583 (-1089))) (T -773)) +((-3830 (*1 *1 *2) (|partial| -12 (-5 *2 (-1089)) (-5 *1 (-773 *3)) (-14 *3 (-583 *2))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3541 (((-446) $) 12 T ELT)) (-2608 (((-583 (-380)) $) 14 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) 22 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 17 T ELT))) +(((-774) (-13 (-1013) (-10 -8 (-15 -3541 ((-446) $)) (-15 -2608 ((-583 (-380)) $))))) (T -774)) +((-3541 (*1 *2 *1) (-12 (-5 *2 (-446)) (-5 *1 (-774)))) (-2608 (*1 *2 *1) (-12 (-5 *2 (-583 (-380))) (-5 *1 (-774))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ (-857 |#1|)) NIL T ELT) (((-857 |#1|) $) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT)) (-3126 (((-694)) NIL T CONST)) (-3922 (((-1184) (-694)) NIL T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) NIL T CONST)) (-2666 (($) NIL T CONST)) (-3056 (((-85) $ $) NIL T ELT)) (-3948 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ |#1| $) NIL (|has| |#1| (-146)) ELT) (($ $ |#1|) NIL (|has| |#1| (-146)) ELT))) +(((-775 |#1| |#2| |#3| |#4|) (-13 (-961) (-429 (-857 |#1|)) (-10 -8 (IF (|has| |#1| (-146)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-312)) (-15 -3948 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3922 ((-1184) (-694))))) (-961) (-583 (-1089)) (-583 (-694)) (-694)) (T -775)) +((-3948 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-775 *2 *3 *4 *5)) (-4 *2 (-312)) (-4 *2 (-961)) (-14 *3 (-583 (-1089))) (-14 *4 (-583 (-694))) (-14 *5 (-694)))) (-3922 (*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1184)) (-5 *1 (-775 *4 *5 *6 *7)) (-4 *4 (-961)) (-14 *5 (-583 (-1089))) (-14 *6 (-583 *3)) (-14 *7 *3)))) +((-2609 (((-3 (-148 |#3|) #1="failed") (-694) (-694) |#2| |#2|) 38 T ELT)) (-2610 (((-3 (-349 |#3|) #1#) (-694) (-694) |#2| |#2|) 29 T ELT))) +(((-776 |#1| |#2| |#3|) (-10 -7 (-15 -2610 ((-3 (-349 |#3|) #1="failed") (-694) (-694) |#2| |#2|)) (-15 -2609 ((-3 (-148 |#3|) #1#) (-694) (-694) |#2| |#2|))) (-312) (-1171 |#1|) (-1154 |#1|)) (T -776)) +((-2609 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-694)) (-4 *5 (-312)) (-5 *2 (-148 *6)) (-5 *1 (-776 *5 *4 *6)) (-4 *4 (-1171 *5)) (-4 *6 (-1154 *5)))) (-2610 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-694)) (-4 *5 (-312)) (-5 *2 (-349 *6)) (-5 *1 (-776 *5 *4 *6)) (-4 *4 (-1171 *5)) (-4 *6 (-1154 *5))))) +((-2610 (((-3 (-349 (-1147 |#2| |#1|)) #1="failed") (-694) (-694) (-1168 |#1| |#2| |#3|)) 30 T ELT) (((-3 (-349 (-1147 |#2| |#1|)) #1#) (-694) (-694) (-1168 |#1| |#2| |#3|) (-1168 |#1| |#2| |#3|)) 28 T ELT))) +(((-777 |#1| |#2| |#3|) (-10 -7 (-15 -2610 ((-3 (-349 (-1147 |#2| |#1|)) #1="failed") (-694) (-694) (-1168 |#1| |#2| |#3|) (-1168 |#1| |#2| |#3|))) (-15 -2610 ((-3 (-349 (-1147 |#2| |#1|)) #1#) (-694) (-694) (-1168 |#1| |#2| |#3|)))) (-312) (-1089) |#1|) (T -777)) +((-2610 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-694)) (-5 *4 (-1168 *5 *6 *7)) (-4 *5 (-312)) (-14 *6 (-1089)) (-14 *7 *5) (-5 *2 (-349 (-1147 *6 *5))) (-5 *1 (-777 *5 *6 *7)))) (-2610 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-694)) (-5 *4 (-1168 *5 *6 *7)) (-4 *5 (-312)) (-14 *6 (-1089)) (-14 *7 *5) (-5 *2 (-349 (-1147 *6 *5))) (-5 *1 (-777 *5 *6 *7))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3037 (($ $ (-484)) NIL T ELT)) (-1607 (((-85) $ $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-2611 (($ (-1084 (-484)) (-484)) NIL T ELT)) (-2564 (($ $ $) NIL T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-2612 (($ $) NIL T ELT)) (-2563 (($ $ $) NIL T ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-3771 (((-694) $) NIL T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-1604 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2614 (((-484)) NIL T ELT)) (-2613 (((-484) $) NIL T ELT)) (-1890 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3144 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-1605 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3768 (($ $ (-484)) NIL T ELT)) (-3465 (((-3 $ #1#) $ $) NIL T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-1606 (((-694) $) NIL T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL T ELT)) (-2615 (((-1068 (-484)) $) NIL T ELT)) (-2891 (($ $) NIL T ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT)) (-3126 (((-694)) NIL T CONST)) (-1264 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3769 (((-484) $ (-484)) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) NIL T CONST)) (-2666 (($) NIL T CONST)) (-3056 (((-85) $ $) NIL T ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT))) +(((-778 |#1|) (-779 |#1|) (-484)) (T -778)) +NIL +((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) 55 T ELT)) (-2063 (($ $) 54 T ELT)) (-2061 (((-85) $) 52 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3037 (($ $ (-484)) 78 T ELT)) (-1607 (((-85) $ $) 75 T ELT)) (-3723 (($) 23 T CONST)) (-2611 (($ (-1084 (-484)) (-484)) 77 T ELT)) (-2564 (($ $ $) 71 T ELT)) (-3466 (((-3 $ "failed") $) 42 T ELT)) (-2612 (($ $) 80 T ELT)) (-2563 (($ $ $) 72 T ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) 66 T ELT)) (-3771 (((-694) $) 85 T ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-1604 (((-3 (-583 $) #1="failed") (-583 $) $) 68 T ELT)) (-2614 (((-484)) 82 T ELT)) (-2613 (((-484) $) 81 T ELT)) (-1890 (($ $ $) 60 T ELT) (($ (-583 $)) 59 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) 58 T ELT)) (-3144 (($ $ $) 62 T ELT) (($ (-583 $)) 61 T ELT)) (-1605 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 69 T ELT)) (-3768 (($ $ (-484)) 84 T ELT)) (-3465 (((-3 $ "failed") $ $) 56 T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) 65 T ELT)) (-1606 (((-694) $) 74 T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 73 T ELT)) (-2615 (((-1068 (-484)) $) 86 T ELT)) (-2891 (($ $) 83 T ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ $) 57 T ELT)) (-3126 (((-694)) 40 T CONST)) (-1264 (((-85) $ $) 6 T ELT)) (-2062 (((-85) $ $) 53 T ELT)) (-3769 (((-484) $ (-484)) 79 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT))) +(((-779 |#1|) (-113) (-484)) (T -779)) +((-2615 (*1 *2 *1) (-12 (-4 *1 (-779 *3)) (-5 *2 (-1068 (-484))))) (-3771 (*1 *2 *1) (-12 (-4 *1 (-779 *3)) (-5 *2 (-694)))) (-3768 (*1 *1 *1 *2) (-12 (-4 *1 (-779 *3)) (-5 *2 (-484)))) (-2891 (*1 *1 *1) (-4 *1 (-779 *2))) (-2614 (*1 *2) (-12 (-4 *1 (-779 *3)) (-5 *2 (-484)))) (-2613 (*1 *2 *1) (-12 (-4 *1 (-779 *3)) (-5 *2 (-484)))) (-2612 (*1 *1 *1) (-4 *1 (-779 *2))) (-3769 (*1 *2 *1 *2) (-12 (-4 *1 (-779 *3)) (-5 *2 (-484)))) (-3037 (*1 *1 *1 *2) (-12 (-4 *1 (-779 *3)) (-5 *2 (-484)))) (-2611 (*1 *1 *2 *3) (-12 (-5 *2 (-1084 (-484))) (-5 *3 (-484)) (-4 *1 (-779 *4))))) +(-13 (-258) (-120) (-10 -8 (-15 -2615 ((-1068 (-484)) $)) (-15 -3771 ((-694) $)) (-15 -3768 ($ $ (-484))) (-15 -2891 ($ $)) (-15 -2614 ((-484))) (-15 -2613 ((-484) $)) (-15 -2612 ($ $)) (-15 -3769 ((-484) $ (-484))) (-15 -3037 ($ $ (-484))) (-15 -2611 ($ (-1084 (-484)) (-484))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-120) . T) ((-555 (-484)) . T) ((-555 $) . T) ((-552 (-772)) . T) ((-146) . T) ((-246) . T) ((-258) . T) ((-391) . T) ((-495) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 $) . T) ((-590 $) . T) ((-582 $) . T) ((-654 $) . T) ((-663) . T) ((-832) . T) ((-963 $) . T) ((-968 $) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T)) +((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-3129 (((-778 |#1|) $) NIL (|has| (-778 |#1|) (-258)) ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2707 (((-347 (-1084 $)) (-1084 $)) NIL (|has| (-778 |#1|) (-821)) ELT)) (-3774 (($ $) NIL T ELT)) (-3970 (((-347 $) $) NIL T ELT)) (-2704 (((-3 (-583 (-1084 $)) #1#) (-583 (-1084 $)) (-1084 $)) NIL (|has| (-778 |#1|) (-821)) ELT)) (-1607 (((-85) $ $) NIL T ELT)) (-3622 (((-484) $) NIL (|has| (-778 |#1|) (-740)) ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 (-778 |#1|) #1#) $) NIL T ELT) (((-3 (-1089) #1#) $) NIL (|has| (-778 |#1|) (-950 (-1089))) ELT) (((-3 (-349 (-484)) #1#) $) NIL (|has| (-778 |#1|) (-950 (-484))) ELT) (((-3 (-484) #1#) $) NIL (|has| (-778 |#1|) (-950 (-484))) ELT)) (-3156 (((-778 |#1|) $) NIL T ELT) (((-1089) $) NIL (|has| (-778 |#1|) (-950 (-1089))) ELT) (((-349 (-484)) $) NIL (|has| (-778 |#1|) (-950 (-484))) ELT) (((-484) $) NIL (|has| (-778 |#1|) (-950 (-484))) ELT)) (-3729 (($ $) NIL T ELT) (($ (-484) $) NIL T ELT)) (-2564 (($ $ $) NIL T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (|has| (-778 |#1|) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) NIL (|has| (-778 |#1|) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-778 |#1|))) (|:| |vec| (-1178 (-778 |#1|)))) (-630 $) (-1178 $)) NIL T ELT) (((-630 (-778 |#1|)) (-630 $)) NIL T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-2994 (($) NIL (|has| (-778 |#1|) (-483)) ELT)) (-2563 (($ $ $) NIL T ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-3722 (((-85) $) NIL T ELT)) (-3186 (((-85) $) NIL (|has| (-778 |#1|) (-740)) ELT)) (-2796 (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) NIL (|has| (-778 |#1|) (-796 (-484))) ELT) (((-798 (-329) $) $ (-800 (-329)) (-798 (-329) $)) NIL (|has| (-778 |#1|) (-796 (-329))) ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2996 (($ $) NIL T ELT)) (-2998 (((-778 |#1|) $) NIL T ELT)) (-3444 (((-632 $) $) NIL (|has| (-778 |#1|) (-1065)) ELT)) (-3187 (((-85) $) NIL (|has| (-778 |#1|) (-740)) ELT)) (-1604 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2531 (($ $ $) NIL (|has| (-778 |#1|) (-756)) ELT)) (-2857 (($ $ $) NIL (|has| (-778 |#1|) (-756)) ELT)) (-3957 (($ (-1 (-778 |#1|) (-778 |#1|)) $) NIL T ELT)) (-2280 (((-630 (-484)) (-1178 $)) NIL (|has| (-778 |#1|) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (|has| (-778 |#1|) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-778 |#1|))) (|:| |vec| (-1178 (-778 |#1|)))) (-1178 $) $) NIL T ELT) (((-630 (-778 |#1|)) (-1178 $)) NIL T ELT)) (-1890 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2484 (($ $) NIL T ELT)) (-3445 (($) NIL (|has| (-778 |#1|) (-1065)) CONST)) (-3243 (((-1033) $) NIL T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3144 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3128 (($ $) NIL (|has| (-778 |#1|) (-258)) ELT)) (-3130 (((-778 |#1|) $) NIL (|has| (-778 |#1|) (-483)) ELT)) (-2705 (((-347 (-1084 $)) (-1084 $)) NIL (|has| (-778 |#1|) (-821)) ELT)) (-2706 (((-347 (-1084 $)) (-1084 $)) NIL (|has| (-778 |#1|) (-821)) ELT)) (-3731 (((-347 $) $) NIL T ELT)) (-1605 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3465 (((-3 $ #1#) $ $) NIL T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-3767 (($ $ (-583 (-778 |#1|)) (-583 (-778 |#1|))) NIL (|has| (-778 |#1|) (-260 (-778 |#1|))) ELT) (($ $ (-778 |#1|) (-778 |#1|)) NIL (|has| (-778 |#1|) (-260 (-778 |#1|))) ELT) (($ $ (-249 (-778 |#1|))) NIL (|has| (-778 |#1|) (-260 (-778 |#1|))) ELT) (($ $ (-583 (-249 (-778 |#1|)))) NIL (|has| (-778 |#1|) (-260 (-778 |#1|))) ELT) (($ $ (-583 (-1089)) (-583 (-778 |#1|))) NIL (|has| (-778 |#1|) (-455 (-1089) (-778 |#1|))) ELT) (($ $ (-1089) (-778 |#1|)) NIL (|has| (-778 |#1|) (-455 (-1089) (-778 |#1|))) ELT)) (-1606 (((-694) $) NIL T ELT)) (-3799 (($ $ (-778 |#1|)) NIL (|has| (-778 |#1|) (-241 (-778 |#1|) (-778 |#1|))) ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL T ELT)) (-3757 (($ $ (-1 (-778 |#1|) (-778 |#1|))) NIL T ELT) (($ $ (-1 (-778 |#1|) (-778 |#1|)) (-694)) NIL T ELT) (($ $ (-1089)) NIL (|has| (-778 |#1|) (-811 (-1089))) ELT) (($ $ (-583 (-1089))) NIL (|has| (-778 |#1|) (-811 (-1089))) ELT) (($ $ (-1089) (-694)) NIL (|has| (-778 |#1|) (-811 (-1089))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (|has| (-778 |#1|) (-811 (-1089))) ELT) (($ $) NIL (|has| (-778 |#1|) (-189)) ELT) (($ $ (-694)) NIL (|has| (-778 |#1|) (-189)) ELT)) (-2995 (($ $) NIL T ELT)) (-2997 (((-778 |#1|) $) NIL T ELT)) (-3971 (((-800 (-484)) $) NIL (|has| (-778 |#1|) (-553 (-800 (-484)))) ELT) (((-800 (-329)) $) NIL (|has| (-778 |#1|) (-553 (-800 (-329)))) ELT) (((-473) $) NIL (|has| (-778 |#1|) (-553 (-473))) ELT) (((-329) $) NIL (|has| (-778 |#1|) (-933)) ELT) (((-179) $) NIL (|has| (-778 |#1|) (-933)) ELT)) (-2616 (((-148 (-349 (-484))) $) NIL T ELT)) (-2703 (((-3 (-1178 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| (-778 |#1|) (-821))) ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-349 (-484))) NIL T ELT) (($ (-778 |#1|)) NIL T ELT) (($ (-1089)) NIL (|has| (-778 |#1|) (-950 (-1089))) ELT)) (-2702 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-778 |#1|) (-821))) (|has| (-778 |#1|) (-118))) ELT)) (-3126 (((-694)) NIL T CONST)) (-3131 (((-778 |#1|) $) NIL (|has| (-778 |#1|) (-483)) ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3769 (((-349 (-484)) $ (-484)) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-3382 (($ $) NIL (|has| (-778 |#1|) (-740)) ELT)) (-2660 (($) NIL T CONST)) (-2666 (($) NIL T CONST)) (-2669 (($ $ (-1 (-778 |#1|) (-778 |#1|))) NIL T ELT) (($ $ (-1 (-778 |#1|) (-778 |#1|)) (-694)) NIL T ELT) (($ $ (-1089)) NIL (|has| (-778 |#1|) (-811 (-1089))) ELT) (($ $ (-583 (-1089))) NIL (|has| (-778 |#1|) (-811 (-1089))) ELT) (($ $ (-1089) (-694)) NIL (|has| (-778 |#1|) (-811 (-1089))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (|has| (-778 |#1|) (-811 (-1089))) ELT) (($ $) NIL (|has| (-778 |#1|) (-189)) ELT) (($ $ (-694)) NIL (|has| (-778 |#1|) (-189)) ELT)) (-2566 (((-85) $ $) NIL (|has| (-778 |#1|) (-756)) ELT)) (-2567 (((-85) $ $) NIL (|has| (-778 |#1|) (-756)) ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL (|has| (-778 |#1|) (-756)) ELT)) (-2685 (((-85) $ $) NIL (|has| (-778 |#1|) (-756)) ELT)) (-3948 (($ $ $) NIL T ELT) (($ (-778 |#1|) (-778 |#1|)) NIL T ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-349 (-484))) NIL T ELT) (($ (-349 (-484)) $) NIL T ELT) (($ (-778 |#1|) $) NIL T ELT) (($ $ (-778 |#1|)) NIL T ELT))) +(((-780 |#1|) (-13 (-904 (-778 |#1|)) (-10 -8 (-15 -3769 ((-349 (-484)) $ (-484))) (-15 -2616 ((-148 (-349 (-484))) $)) (-15 -3729 ($ $)) (-15 -3729 ($ (-484) $)))) (-484)) (T -780)) +((-3769 (*1 *2 *1 *3) (-12 (-5 *2 (-349 (-484))) (-5 *1 (-780 *4)) (-14 *4 *3) (-5 *3 (-484)))) (-2616 (*1 *2 *1) (-12 (-5 *2 (-148 (-349 (-484)))) (-5 *1 (-780 *3)) (-14 *3 (-484)))) (-3729 (*1 *1 *1) (-12 (-5 *1 (-780 *2)) (-14 *2 (-484)))) (-3729 (*1 *1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-780 *3)) (-14 *3 *2)))) +((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-3129 ((|#2| $) NIL (|has| |#2| (-258)) ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2707 (((-347 (-1084 $)) (-1084 $)) NIL (|has| |#2| (-821)) ELT)) (-3774 (($ $) NIL T ELT)) (-3970 (((-347 $) $) NIL T ELT)) (-2704 (((-3 (-583 (-1084 $)) #1#) (-583 (-1084 $)) (-1084 $)) NIL (|has| |#2| (-821)) ELT)) (-1607 (((-85) $ $) NIL T ELT)) (-3622 (((-484) $) NIL (|has| |#2| (-740)) ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-1089) #1#) $) NIL (|has| |#2| (-950 (-1089))) ELT) (((-3 (-349 (-484)) #1#) $) NIL (|has| |#2| (-950 (-484))) ELT) (((-3 (-484) #1#) $) NIL (|has| |#2| (-950 (-484))) ELT)) (-3156 ((|#2| $) NIL T ELT) (((-1089) $) NIL (|has| |#2| (-950 (-1089))) ELT) (((-349 (-484)) $) NIL (|has| |#2| (-950 (-484))) ELT) (((-484) $) NIL (|has| |#2| (-950 (-484))) ELT)) (-3729 (($ $) 35 T ELT) (($ (-484) $) 38 T ELT)) (-2564 (($ $ $) NIL T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) NIL (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1178 |#2|))) (-630 $) (-1178 $)) NIL T ELT) (((-630 |#2|) (-630 $)) NIL T ELT)) (-3466 (((-3 $ #1#) $) 64 T ELT)) (-2994 (($) NIL (|has| |#2| (-483)) ELT)) (-2563 (($ $ $) NIL T ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-3722 (((-85) $) NIL T ELT)) (-3186 (((-85) $) NIL (|has| |#2| (-740)) ELT)) (-2796 (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) NIL (|has| |#2| (-796 (-484))) ELT) (((-798 (-329) $) $ (-800 (-329)) (-798 (-329) $)) NIL (|has| |#2| (-796 (-329))) ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2996 (($ $) NIL T ELT)) (-2998 ((|#2| $) NIL T ELT)) (-3444 (((-632 $) $) NIL (|has| |#2| (-1065)) ELT)) (-3187 (((-85) $) NIL (|has| |#2| (-740)) ELT)) (-1604 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2531 (($ $ $) NIL (|has| |#2| (-756)) ELT)) (-2857 (($ $ $) NIL (|has| |#2| (-756)) ELT)) (-3957 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2280 (((-630 (-484)) (-1178 $)) NIL (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1178 |#2|))) (-1178 $) $) NIL T ELT) (((-630 |#2|) (-1178 $)) NIL T ELT)) (-1890 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2484 (($ $) 60 T ELT)) (-3445 (($) NIL (|has| |#2| (-1065)) CONST)) (-3243 (((-1033) $) NIL T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3144 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3128 (($ $) NIL (|has| |#2| (-258)) ELT)) (-3130 ((|#2| $) NIL (|has| |#2| (-483)) ELT)) (-2705 (((-347 (-1084 $)) (-1084 $)) NIL (|has| |#2| (-821)) ELT)) (-2706 (((-347 (-1084 $)) (-1084 $)) NIL (|has| |#2| (-821)) ELT)) (-3731 (((-347 $) $) NIL T ELT)) (-1605 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3465 (((-3 $ #1#) $ $) NIL T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-3767 (($ $ (-583 |#2|) (-583 |#2|)) NIL (|has| |#2| (-260 |#2|)) ELT) (($ $ |#2| |#2|) NIL (|has| |#2| (-260 |#2|)) ELT) (($ $ (-249 |#2|)) NIL (|has| |#2| (-260 |#2|)) ELT) (($ $ (-583 (-249 |#2|))) NIL (|has| |#2| (-260 |#2|)) ELT) (($ $ (-583 (-1089)) (-583 |#2|)) NIL (|has| |#2| (-455 (-1089) |#2|)) ELT) (($ $ (-1089) |#2|) NIL (|has| |#2| (-455 (-1089) |#2|)) ELT)) (-1606 (((-694) $) NIL T ELT)) (-3799 (($ $ |#2|) NIL (|has| |#2| (-241 |#2| |#2|)) ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL T ELT)) (-3757 (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-694)) NIL T ELT) (($ $ (-1089)) NIL (|has| |#2| (-811 (-1089))) ELT) (($ $ (-583 (-1089))) NIL (|has| |#2| (-811 (-1089))) ELT) (($ $ (-1089) (-694)) NIL (|has| |#2| (-811 (-1089))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (|has| |#2| (-811 (-1089))) ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-694)) NIL (|has| |#2| (-189)) ELT)) (-2995 (($ $) NIL T ELT)) (-2997 ((|#2| $) NIL T ELT)) (-3971 (((-800 (-484)) $) NIL (|has| |#2| (-553 (-800 (-484)))) ELT) (((-800 (-329)) $) NIL (|has| |#2| (-553 (-800 (-329)))) ELT) (((-473) $) NIL (|has| |#2| (-553 (-473))) ELT) (((-329) $) NIL (|has| |#2| (-933)) ELT) (((-179) $) NIL (|has| |#2| (-933)) ELT)) (-2616 (((-148 (-349 (-484))) $) 78 T ELT)) (-2703 (((-3 (-1178 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| |#2| (-821))) ELT)) (-3945 (((-772) $) 105 T ELT) (($ (-484)) 20 T ELT) (($ $) NIL T ELT) (($ (-349 (-484))) 25 T ELT) (($ |#2|) 19 T ELT) (($ (-1089)) NIL (|has| |#2| (-950 (-1089))) ELT)) (-2702 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#2| (-821))) (|has| |#2| (-118))) ELT)) (-3126 (((-694)) NIL T CONST)) (-3131 ((|#2| $) NIL (|has| |#2| (-483)) ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3769 (((-349 (-484)) $ (-484)) 71 T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-3382 (($ $) NIL (|has| |#2| (-740)) ELT)) (-2660 (($) 15 T CONST)) (-2666 (($) 17 T CONST)) (-2669 (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-694)) NIL T ELT) (($ $ (-1089)) NIL (|has| |#2| (-811 (-1089))) ELT) (($ $ (-583 (-1089))) NIL (|has| |#2| (-811 (-1089))) ELT) (($ $ (-1089) (-694)) NIL (|has| |#2| (-811 (-1089))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (|has| |#2| (-811 (-1089))) ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-694)) NIL (|has| |#2| (-189)) ELT)) (-2566 (((-85) $ $) NIL (|has| |#2| (-756)) ELT)) (-2567 (((-85) $ $) NIL (|has| |#2| (-756)) ELT)) (-3056 (((-85) $ $) 46 T ELT)) (-2684 (((-85) $ $) NIL (|has| |#2| (-756)) ELT)) (-2685 (((-85) $ $) NIL (|has| |#2| (-756)) ELT)) (-3948 (($ $ $) 24 T ELT) (($ |#2| |#2|) 65 T ELT)) (-3836 (($ $) 50 T ELT) (($ $ $) 52 T ELT)) (-3838 (($ $ $) 48 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) 61 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 53 T ELT) (($ $ $) 55 T ELT) (($ $ (-349 (-484))) NIL T ELT) (($ (-349 (-484)) $) NIL T ELT) (($ |#2| $) 66 T ELT) (($ $ |#2|) NIL T ELT))) +(((-781 |#1| |#2|) (-13 (-904 |#2|) (-10 -8 (-15 -3769 ((-349 (-484)) $ (-484))) (-15 -2616 ((-148 (-349 (-484))) $)) (-15 -3729 ($ $)) (-15 -3729 ($ (-484) $)))) (-484) (-779 |#1|)) (T -781)) +((-3769 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-349 (-484))) (-5 *1 (-781 *4 *5)) (-5 *3 (-484)) (-4 *5 (-779 *4)))) (-2616 (*1 *2 *1) (-12 (-14 *3 (-484)) (-5 *2 (-148 (-349 (-484)))) (-5 *1 (-781 *3 *4)) (-4 *4 (-779 *3)))) (-3729 (*1 *1 *1) (-12 (-14 *2 (-484)) (-5 *1 (-781 *2 *3)) (-4 *3 (-779 *2)))) (-3729 (*1 *1 *2 *1) (-12 (-5 *2 (-484)) (-14 *3 *2) (-5 *1 (-781 *3 *4)) (-4 *4 (-779 *3))))) +((-2568 (((-85) $ $) NIL (-12 (|has| |#1| (-1013)) (|has| |#2| (-1013))) ELT)) (-3795 ((|#2| $) 12 T ELT)) (-2617 (($ |#1| |#2|) 9 T ELT)) (-3242 (((-1072) $) NIL (-12 (|has| |#1| (-1013)) (|has| |#2| (-1013))) ELT)) (-3243 (((-1033) $) NIL (-12 (|has| |#1| (-1013)) (|has| |#2| (-1013))) ELT)) (-3800 ((|#1| $) 11 T ELT)) (-3529 (($ |#1| |#2|) 10 T ELT)) (-3945 (((-772) $) 18 (OR (-12 (|has| |#1| (-552 (-772))) (|has| |#2| (-552 (-772)))) (-12 (|has| |#1| (-1013)) (|has| |#2| (-1013)))) ELT)) (-1264 (((-85) $ $) NIL (-12 (|has| |#1| (-1013)) (|has| |#2| (-1013))) ELT)) (-3056 (((-85) $ $) 23 (-12 (|has| |#1| (-1013)) (|has| |#2| (-1013))) ELT))) +(((-782 |#1| |#2|) (-13 (-1128) (-10 -8 (IF (|has| |#1| (-552 (-772))) (IF (|has| |#2| (-552 (-772))) (-6 (-552 (-772))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1013)) (IF (|has| |#2| (-1013)) (-6 (-1013)) |%noBranch|) |%noBranch|) (-15 -2617 ($ |#1| |#2|)) (-15 -3529 ($ |#1| |#2|)) (-15 -3800 (|#1| $)) (-15 -3795 (|#2| $)))) (-1128) (-1128)) (T -782)) +((-2617 (*1 *1 *2 *3) (-12 (-5 *1 (-782 *2 *3)) (-4 *2 (-1128)) (-4 *3 (-1128)))) (-3529 (*1 *1 *2 *3) (-12 (-5 *1 (-782 *2 *3)) (-4 *2 (-1128)) (-4 *3 (-1128)))) (-3800 (*1 *2 *1) (-12 (-4 *2 (-1128)) (-5 *1 (-782 *2 *3)) (-4 *3 (-1128)))) (-3795 (*1 *2 *1) (-12 (-4 *2 (-1128)) (-5 *1 (-782 *3 *2)) (-4 *3 (-1128))))) +((-2568 (((-85) $ $) NIL T ELT)) (-2957 (((-484) $) 16 T ELT)) (-2619 (($ (-130)) 13 T ELT)) (-2618 (($ (-130)) 14 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2956 (((-130) $) 15 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2621 (($ (-130)) 11 T ELT)) (-2622 (($ (-130)) 10 T ELT)) (-3945 (((-772) $) 24 T ELT) (($ (-130)) 17 T ELT)) (-2620 (($ (-130)) 12 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT))) +(((-783) (-13 (-1013) (-555 (-130)) (-10 -8 (-15 -2622 ($ (-130))) (-15 -2621 ($ (-130))) (-15 -2620 ($ (-130))) (-15 -2619 ($ (-130))) (-15 -2618 ($ (-130))) (-15 -2956 ((-130) $)) (-15 -2957 ((-484) $))))) (T -783)) +((-2622 (*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-783)))) (-2621 (*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-783)))) (-2620 (*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-783)))) (-2619 (*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-783)))) (-2618 (*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-783)))) (-2956 (*1 *2 *1) (-12 (-5 *2 (-130)) (-5 *1 (-783)))) (-2957 (*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-783))))) +((-3945 (((-265 (-484)) (-349 (-857 (-48)))) 23 T ELT) (((-265 (-484)) (-857 (-48))) 18 T ELT))) +(((-784) (-10 -7 (-15 -3945 ((-265 (-484)) (-857 (-48)))) (-15 -3945 ((-265 (-484)) (-349 (-857 (-48))))))) (T -784)) +((-3945 (*1 *2 *3) (-12 (-5 *3 (-349 (-857 (-48)))) (-5 *2 (-265 (-484))) (-5 *1 (-784)))) (-3945 (*1 *2 *3) (-12 (-5 *3 (-857 (-48))) (-5 *2 (-265 (-484))) (-5 *1 (-784))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) 18 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-3565 (((-85) $ (|[\|\|]| (-446))) 9 T ELT) (((-85) $ (|[\|\|]| (-1072))) 13 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3571 (((-446) $) 10 T ELT) (((-1072) $) 14 T ELT)) (-3056 (((-85) $ $) 15 T ELT))) +(((-785) (-13 (-995) (-1174) (-10 -8 (-15 -3565 ((-85) $ (|[\|\|]| (-446)))) (-15 -3571 ((-446) $)) (-15 -3565 ((-85) $ (|[\|\|]| (-1072)))) (-15 -3571 ((-1072) $))))) (T -785)) +((-3565 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-446))) (-5 *2 (-85)) (-5 *1 (-785)))) (-3571 (*1 *2 *1) (-12 (-5 *2 (-446)) (-5 *1 (-785)))) (-3565 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1072))) (-5 *2 (-85)) (-5 *1 (-785)))) (-3571 (*1 *2 *1) (-12 (-5 *2 (-1072)) (-5 *1 (-785))))) +((-3957 (((-787 |#2|) (-1 |#2| |#1|) (-787 |#1|)) 15 T ELT))) +(((-786 |#1| |#2|) (-10 -7 (-15 -3957 ((-787 |#2|) (-1 |#2| |#1|) (-787 |#1|)))) (-1128) (-1128)) (T -786)) +((-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-787 *5)) (-4 *5 (-1128)) (-4 *6 (-1128)) (-5 *2 (-787 *6)) (-5 *1 (-786 *5 *6))))) +((-3370 (($ |#1| |#1|) 8 T ELT)) (-2625 ((|#1| $ (-694)) 15 T ELT))) +(((-787 |#1|) (-10 -8 (-15 -3370 ($ |#1| |#1|)) (-15 -2625 (|#1| $ (-694)))) (-1128)) (T -787)) +((-2625 (*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-5 *1 (-787 *2)) (-4 *2 (-1128)))) (-3370 (*1 *1 *2 *2) (-12 (-5 *1 (-787 *2)) (-4 *2 (-1128))))) +((-3957 (((-789 |#2|) (-1 |#2| |#1|) (-789 |#1|)) 15 T ELT))) +(((-788 |#1| |#2|) (-10 -7 (-15 -3957 ((-789 |#2|) (-1 |#2| |#1|) (-789 |#1|)))) (-1128) (-1128)) (T -788)) +((-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-789 *5)) (-4 *5 (-1128)) (-4 *6 (-1128)) (-5 *2 (-789 *6)) (-5 *1 (-788 *5 *6))))) +((-3370 (($ |#1| |#1| |#1|) 8 T ELT)) (-2625 ((|#1| $ (-694)) 15 T ELT))) +(((-789 |#1|) (-10 -8 (-15 -3370 ($ |#1| |#1| |#1|)) (-15 -2625 (|#1| $ (-694)))) (-1128)) (T -789)) +((-2625 (*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-5 *1 (-789 *2)) (-4 *2 (-1128)))) (-3370 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-789 *2)) (-4 *2 (-1128))))) +((-2623 (((-583 (-1094)) (-1072)) 9 T ELT))) +(((-790) (-10 -7 (-15 -2623 ((-583 (-1094)) (-1072))))) (T -790)) +((-2623 (*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-583 (-1094))) (-5 *1 (-790))))) +((-3957 (((-792 |#2|) (-1 |#2| |#1|) (-792 |#1|)) 15 T ELT))) +(((-791 |#1| |#2|) (-10 -7 (-15 -3957 ((-792 |#2|) (-1 |#2| |#1|) (-792 |#1|)))) (-1128) (-1128)) (T -791)) +((-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-792 *5)) (-4 *5 (-1128)) (-4 *6 (-1128)) (-5 *2 (-792 *6)) (-5 *1 (-791 *5 *6))))) +((-2624 (($ |#1| |#1| |#1|) 8 T ELT)) (-2625 ((|#1| $ (-694)) 15 T ELT))) +(((-792 |#1|) (-10 -8 (-15 -2624 ($ |#1| |#1| |#1|)) (-15 -2625 (|#1| $ (-694)))) (-1128)) (T -792)) +((-2625 (*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-5 *1 (-792 *2)) (-4 *2 (-1128)))) (-2624 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-792 *2)) (-4 *2 (-1128))))) +((-2628 (((-1068 (-583 (-484))) (-583 (-484)) (-1068 (-583 (-484)))) 41 T ELT)) (-2627 (((-1068 (-583 (-484))) (-583 (-484)) (-583 (-484))) 31 T ELT)) (-2629 (((-1068 (-583 (-484))) (-583 (-484))) 53 T ELT) (((-1068 (-583 (-484))) (-583 (-484)) (-583 (-484))) 50 T ELT)) (-2630 (((-1068 (-583 (-484))) (-484)) 55 T ELT)) (-2626 (((-1068 (-583 (-830))) (-1068 (-583 (-830)))) 22 T ELT)) (-3009 (((-583 (-830)) (-583 (-830))) 18 T ELT))) +(((-793) (-10 -7 (-15 -3009 ((-583 (-830)) (-583 (-830)))) (-15 -2626 ((-1068 (-583 (-830))) (-1068 (-583 (-830))))) (-15 -2627 ((-1068 (-583 (-484))) (-583 (-484)) (-583 (-484)))) (-15 -2628 ((-1068 (-583 (-484))) (-583 (-484)) (-1068 (-583 (-484))))) (-15 -2629 ((-1068 (-583 (-484))) (-583 (-484)) (-583 (-484)))) (-15 -2629 ((-1068 (-583 (-484))) (-583 (-484)))) (-15 -2630 ((-1068 (-583 (-484))) (-484))))) (T -793)) +((-2630 (*1 *2 *3) (-12 (-5 *2 (-1068 (-583 (-484)))) (-5 *1 (-793)) (-5 *3 (-484)))) (-2629 (*1 *2 *3) (-12 (-5 *2 (-1068 (-583 (-484)))) (-5 *1 (-793)) (-5 *3 (-583 (-484))))) (-2629 (*1 *2 *3 *3) (-12 (-5 *2 (-1068 (-583 (-484)))) (-5 *1 (-793)) (-5 *3 (-583 (-484))))) (-2628 (*1 *2 *3 *2) (-12 (-5 *2 (-1068 (-583 (-484)))) (-5 *3 (-583 (-484))) (-5 *1 (-793)))) (-2627 (*1 *2 *3 *3) (-12 (-5 *2 (-1068 (-583 (-484)))) (-5 *1 (-793)) (-5 *3 (-583 (-484))))) (-2626 (*1 *2 *2) (-12 (-5 *2 (-1068 (-583 (-830)))) (-5 *1 (-793)))) (-3009 (*1 *2 *2) (-12 (-5 *2 (-583 (-830))) (-5 *1 (-793))))) +((-3971 (((-800 (-329)) $) 9 (|has| |#1| (-553 (-800 (-329)))) ELT) (((-800 (-484)) $) 8 (|has| |#1| (-553 (-800 (-484)))) ELT))) +(((-794 |#1|) (-113) (-1128)) (T -794)) +NIL +(-13 (-10 -7 (IF (|has| |t#1| (-553 (-800 (-484)))) (-6 (-553 (-800 (-484)))) |%noBranch|) (IF (|has| |t#1| (-553 (-800 (-329)))) (-6 (-553 (-800 (-329)))) |%noBranch|))) +(((-553 (-800 (-329))) |has| |#1| (-553 (-800 (-329)))) ((-553 (-800 (-484))) |has| |#1| (-553 (-800 (-484))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3613 (($) 14 T ELT)) (-2632 (($ (-798 |#1| |#2|) (-798 |#1| |#3|)) 28 T ELT)) (-2631 (((-798 |#1| |#3|) $) 16 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2640 (((-85) $) 22 T ELT)) (-2639 (($) 19 T ELT)) (-3945 (((-772) $) 31 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2850 (((-798 |#1| |#2|) $) 15 T ELT)) (-3056 (((-85) $ $) 26 T ELT))) +(((-795 |#1| |#2| |#3|) (-13 (-1013) (-10 -8 (-15 -2640 ((-85) $)) (-15 -2639 ($)) (-15 -3613 ($)) (-15 -2632 ($ (-798 |#1| |#2|) (-798 |#1| |#3|))) (-15 -2850 ((-798 |#1| |#2|) $)) (-15 -2631 ((-798 |#1| |#3|) $)))) (-1013) (-1013) (-608 |#2|)) (T -795)) +((-2640 (*1 *2 *1) (-12 (-4 *4 (-1013)) (-5 *2 (-85)) (-5 *1 (-795 *3 *4 *5)) (-4 *3 (-1013)) (-4 *5 (-608 *4)))) (-2639 (*1 *1) (-12 (-4 *3 (-1013)) (-5 *1 (-795 *2 *3 *4)) (-4 *2 (-1013)) (-4 *4 (-608 *3)))) (-3613 (*1 *1) (-12 (-4 *3 (-1013)) (-5 *1 (-795 *2 *3 *4)) (-4 *2 (-1013)) (-4 *4 (-608 *3)))) (-2632 (*1 *1 *2 *3) (-12 (-5 *2 (-798 *4 *5)) (-5 *3 (-798 *4 *6)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-608 *5)) (-5 *1 (-795 *4 *5 *6)))) (-2850 (*1 *2 *1) (-12 (-4 *4 (-1013)) (-5 *2 (-798 *3 *4)) (-5 *1 (-795 *3 *4 *5)) (-4 *3 (-1013)) (-4 *5 (-608 *4)))) (-2631 (*1 *2 *1) (-12 (-4 *4 (-1013)) (-5 *2 (-798 *3 *5)) (-5 *1 (-795 *3 *4 *5)) (-4 *3 (-1013)) (-4 *5 (-608 *4))))) +((-2568 (((-85) $ $) 7 T ELT)) (-2796 (((-798 |#1| $) $ (-800 |#1|) (-798 |#1| $)) 17 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3945 (((-772) $) 13 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-3056 (((-85) $ $) 8 T ELT))) +(((-796 |#1|) (-113) (-1013)) (T -796)) +((-2796 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-798 *4 *1)) (-5 *3 (-800 *4)) (-4 *1 (-796 *4)) (-4 *4 (-1013))))) +(-13 (-1013) (-10 -8 (-15 -2796 ((-798 |t#1| $) $ (-800 |t#1|) (-798 |t#1| $))))) +(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-1013) . T) ((-1128) . T)) +((-2633 (((-85) (-583 |#2|) |#3|) 23 T ELT) (((-85) |#2| |#3|) 18 T ELT)) (-2634 (((-798 |#1| |#2|) |#2| |#3|) 45 (-12 (-2560 (|has| |#2| (-950 (-1089)))) (-2560 (|has| |#2| (-961)))) ELT) (((-583 (-249 (-857 |#2|))) |#2| |#3|) 44 (-12 (|has| |#2| (-961)) (-2560 (|has| |#2| (-950 (-1089))))) ELT) (((-583 (-249 |#2|)) |#2| |#3|) 36 (|has| |#2| (-950 (-1089))) ELT) (((-795 |#1| |#2| (-583 |#2|)) (-583 |#2|) |#3|) 21 T ELT))) +(((-797 |#1| |#2| |#3|) (-10 -7 (-15 -2633 ((-85) |#2| |#3|)) (-15 -2633 ((-85) (-583 |#2|) |#3|)) (-15 -2634 ((-795 |#1| |#2| (-583 |#2|)) (-583 |#2|) |#3|)) (IF (|has| |#2| (-950 (-1089))) (-15 -2634 ((-583 (-249 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-961)) (-15 -2634 ((-583 (-249 (-857 |#2|))) |#2| |#3|)) (-15 -2634 ((-798 |#1| |#2|) |#2| |#3|))))) (-1013) (-796 |#1|) (-553 (-800 |#1|))) (T -797)) +((-2634 (*1 *2 *3 *4) (-12 (-4 *5 (-1013)) (-5 *2 (-798 *5 *3)) (-5 *1 (-797 *5 *3 *4)) (-2560 (-4 *3 (-950 (-1089)))) (-2560 (-4 *3 (-961))) (-4 *3 (-796 *5)) (-4 *4 (-553 (-800 *5))))) (-2634 (*1 *2 *3 *4) (-12 (-4 *5 (-1013)) (-5 *2 (-583 (-249 (-857 *3)))) (-5 *1 (-797 *5 *3 *4)) (-4 *3 (-961)) (-2560 (-4 *3 (-950 (-1089)))) (-4 *3 (-796 *5)) (-4 *4 (-553 (-800 *5))))) (-2634 (*1 *2 *3 *4) (-12 (-4 *5 (-1013)) (-5 *2 (-583 (-249 *3))) (-5 *1 (-797 *5 *3 *4)) (-4 *3 (-950 (-1089))) (-4 *3 (-796 *5)) (-4 *4 (-553 (-800 *5))))) (-2634 (*1 *2 *3 *4) (-12 (-4 *5 (-1013)) (-4 *6 (-796 *5)) (-5 *2 (-795 *5 *6 (-583 *6))) (-5 *1 (-797 *5 *6 *4)) (-5 *3 (-583 *6)) (-4 *4 (-553 (-800 *5))))) (-2633 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *6)) (-4 *6 (-796 *5)) (-4 *5 (-1013)) (-5 *2 (-85)) (-5 *1 (-797 *5 *6 *4)) (-4 *4 (-553 (-800 *5))))) (-2633 (*1 *2 *3 *4) (-12 (-4 *5 (-1013)) (-5 *2 (-85)) (-5 *1 (-797 *5 *3 *4)) (-4 *3 (-796 *5)) (-4 *4 (-553 (-800 *5)))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3234 (($ $ $) 40 T ELT)) (-2661 (((-3 (-85) #1="failed") $ (-800 |#1|)) 37 T ELT)) (-3613 (($) 12 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2636 (($ (-800 |#1|) |#2| $) 20 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2638 (((-3 |#2| #1#) (-800 |#1|) $) 51 T ELT)) (-2640 (((-85) $) 15 T ELT)) (-2639 (($) 13 T ELT)) (-3257 (((-583 (-2 (|:| -3859 (-1089)) (|:| |entry| |#2|))) $) 25 T ELT)) (-3529 (($ (-583 (-2 (|:| -3859 (-1089)) (|:| |entry| |#2|)))) 23 T ELT)) (-3945 (((-772) $) 45 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2635 (($ (-800 |#1|) |#2| $ |#2|) 49 T ELT)) (-2637 (($ (-800 |#1|) |#2| $) 48 T ELT)) (-3056 (((-85) $ $) 42 T ELT))) +(((-798 |#1| |#2|) (-13 (-1013) (-10 -8 (-15 -2640 ((-85) $)) (-15 -2639 ($)) (-15 -3613 ($)) (-15 -3234 ($ $ $)) (-15 -2638 ((-3 |#2| #1="failed") (-800 |#1|) $)) (-15 -2637 ($ (-800 |#1|) |#2| $)) (-15 -2636 ($ (-800 |#1|) |#2| $)) (-15 -2635 ($ (-800 |#1|) |#2| $ |#2|)) (-15 -3257 ((-583 (-2 (|:| -3859 (-1089)) (|:| |entry| |#2|))) $)) (-15 -3529 ($ (-583 (-2 (|:| -3859 (-1089)) (|:| |entry| |#2|))))) (-15 -2661 ((-3 (-85) #1#) $ (-800 |#1|))))) (-1013) (-1013)) (T -798)) +((-2640 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-798 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)))) (-2639 (*1 *1) (-12 (-5 *1 (-798 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013)))) (-3613 (*1 *1) (-12 (-5 *1 (-798 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013)))) (-3234 (*1 *1 *1 *1) (-12 (-5 *1 (-798 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013)))) (-2638 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-800 *4)) (-4 *4 (-1013)) (-4 *2 (-1013)) (-5 *1 (-798 *4 *2)))) (-2637 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-800 *4)) (-4 *4 (-1013)) (-5 *1 (-798 *4 *3)) (-4 *3 (-1013)))) (-2636 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-800 *4)) (-4 *4 (-1013)) (-5 *1 (-798 *4 *3)) (-4 *3 (-1013)))) (-2635 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-800 *4)) (-4 *4 (-1013)) (-5 *1 (-798 *4 *3)) (-4 *3 (-1013)))) (-3257 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| -3859 (-1089)) (|:| |entry| *4)))) (-5 *1 (-798 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)))) (-3529 (*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| -3859 (-1089)) (|:| |entry| *4)))) (-4 *4 (-1013)) (-5 *1 (-798 *3 *4)) (-4 *3 (-1013)))) (-2661 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-800 *4)) (-4 *4 (-1013)) (-5 *2 (-85)) (-5 *1 (-798 *4 *5)) (-4 *5 (-1013))))) +((-3957 (((-798 |#1| |#3|) (-1 |#3| |#2|) (-798 |#1| |#2|)) 22 T ELT))) +(((-799 |#1| |#2| |#3|) (-10 -7 (-15 -3957 ((-798 |#1| |#3|) (-1 |#3| |#2|) (-798 |#1| |#2|)))) (-1013) (-1013) (-1013)) (T -799)) +((-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-798 *5 *6)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-798 *5 *7)) (-5 *1 (-799 *5 *6 *7))))) +((-2568 (((-85) $ $) NIL T ELT)) (-2648 (($ $ (-583 (-51))) 74 T ELT)) (-3081 (((-583 $) $) 139 T ELT)) (-2645 (((-2 (|:| |var| (-583 (-1089))) (|:| |pred| (-51))) $) 30 T ELT)) (-3260 (((-85) $) 35 T ELT)) (-2646 (($ $ (-583 (-1089)) (-51)) 31 T ELT)) (-2649 (($ $ (-583 (-51))) 73 T ELT)) (-3157 (((-3 |#1| #1="failed") $) 71 T ELT) (((-3 (-1089) #1#) $) 167 T ELT)) (-3156 ((|#1| $) 68 T ELT) (((-1089) $) NIL T ELT)) (-2643 (($ $) 126 T ELT)) (-2655 (((-85) $) 55 T ELT)) (-2650 (((-583 (-51)) $) 50 T ELT)) (-2647 (($ (-1089) (-85) (-85) (-85)) 75 T ELT)) (-2641 (((-3 (-583 $) #1#) (-583 $)) 82 T ELT)) (-2652 (((-85) $) 58 T ELT)) (-2653 (((-85) $) 57 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2823 (((-3 (-583 $) #1#) $) 41 T ELT)) (-2658 (((-3 (-2 (|:| |num| $) (|:| |den| $)) #1#) $) 48 T ELT)) (-2825 (((-3 (-2 (|:| |val| $) (|:| -2401 $)) #1#) $) 97 T ELT)) (-2822 (((-3 (-583 $) #1#) $) 40 T ELT)) (-2659 (((-3 (-583 $) #1#) $ (-86)) 124 T ELT) (((-3 (-2 (|:| -2513 (-86)) (|:| |arg| (-583 $))) #1#) $) 107 T ELT)) (-2657 (((-3 (-583 $) #1#) $) 42 T ELT)) (-2824 (((-3 (-2 (|:| |val| $) (|:| -2401 (-694))) #1#) $) 45 T ELT)) (-2656 (((-85) $) 34 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2644 (((-85) $) 28 T ELT)) (-2651 (((-85) $) 52 T ELT)) (-2642 (((-583 (-51)) $) 130 T ELT)) (-2654 (((-85) $) 56 T ELT)) (-3799 (($ (-86) (-583 $)) 104 T ELT)) (-3322 (((-694) $) 33 T ELT)) (-3399 (($ $) 72 T ELT)) (-3971 (($ (-583 $)) 69 T ELT)) (-3952 (((-85) $) 32 T ELT)) (-3945 (((-772) $) 63 T ELT) (($ |#1|) 23 T ELT) (($ (-1089)) 76 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2662 (($ $ (-51)) 129 T ELT)) (-2660 (($) 103 T CONST)) (-2666 (($) 83 T CONST)) (-3056 (((-85) $ $) 93 T ELT)) (-3948 (($ $ $) 117 T ELT)) (-3838 (($ $ $) 121 T ELT)) (** (($ $ (-694)) 115 T ELT) (($ $ $) 64 T ELT)) (* (($ $ $) 122 T ELT))) +(((-800 |#1|) (-13 (-1013) (-950 |#1|) (-950 (-1089)) (-10 -8 (-15 -2660 ($) -3951) (-15 -2666 ($) -3951) (-15 -2822 ((-3 (-583 $) #1="failed") $)) (-15 -2823 ((-3 (-583 $) #1#) $)) (-15 -2659 ((-3 (-583 $) #1#) $ (-86))) (-15 -2659 ((-3 (-2 (|:| -2513 (-86)) (|:| |arg| (-583 $))) #1#) $)) (-15 -2824 ((-3 (-2 (|:| |val| $) (|:| -2401 (-694))) #1#) $)) (-15 -2658 ((-3 (-2 (|:| |num| $) (|:| |den| $)) #1#) $)) (-15 -2657 ((-3 (-583 $) #1#) $)) (-15 -2825 ((-3 (-2 (|:| |val| $) (|:| -2401 $)) #1#) $)) (-15 -3799 ($ (-86) (-583 $))) (-15 -3838 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-694))) (-15 ** ($ $ $)) (-15 -3948 ($ $ $)) (-15 -3322 ((-694) $)) (-15 -3971 ($ (-583 $))) (-15 -3399 ($ $)) (-15 -2656 ((-85) $)) (-15 -2655 ((-85) $)) (-15 -3260 ((-85) $)) (-15 -3952 ((-85) $)) (-15 -2654 ((-85) $)) (-15 -2653 ((-85) $)) (-15 -2652 ((-85) $)) (-15 -2651 ((-85) $)) (-15 -2650 ((-583 (-51)) $)) (-15 -2649 ($ $ (-583 (-51)))) (-15 -2648 ($ $ (-583 (-51)))) (-15 -2647 ($ (-1089) (-85) (-85) (-85))) (-15 -2646 ($ $ (-583 (-1089)) (-51))) (-15 -2645 ((-2 (|:| |var| (-583 (-1089))) (|:| |pred| (-51))) $)) (-15 -2644 ((-85) $)) (-15 -2643 ($ $)) (-15 -2662 ($ $ (-51))) (-15 -2642 ((-583 (-51)) $)) (-15 -3081 ((-583 $) $)) (-15 -2641 ((-3 (-583 $) #1#) (-583 $))))) (-1013)) (T -800)) +((-2660 (*1 *1) (-12 (-5 *1 (-800 *2)) (-4 *2 (-1013)))) (-2666 (*1 *1) (-12 (-5 *1 (-800 *2)) (-4 *2 (-1013)))) (-2822 (*1 *2 *1) (|partial| -12 (-5 *2 (-583 (-800 *3))) (-5 *1 (-800 *3)) (-4 *3 (-1013)))) (-2823 (*1 *2 *1) (|partial| -12 (-5 *2 (-583 (-800 *3))) (-5 *1 (-800 *3)) (-4 *3 (-1013)))) (-2659 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-86)) (-5 *2 (-583 (-800 *4))) (-5 *1 (-800 *4)) (-4 *4 (-1013)))) (-2659 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -2513 (-86)) (|:| |arg| (-583 (-800 *3))))) (-5 *1 (-800 *3)) (-4 *3 (-1013)))) (-2824 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-800 *3)) (|:| -2401 (-694)))) (-5 *1 (-800 *3)) (-4 *3 (-1013)))) (-2658 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-800 *3)) (|:| |den| (-800 *3)))) (-5 *1 (-800 *3)) (-4 *3 (-1013)))) (-2657 (*1 *2 *1) (|partial| -12 (-5 *2 (-583 (-800 *3))) (-5 *1 (-800 *3)) (-4 *3 (-1013)))) (-2825 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-800 *3)) (|:| -2401 (-800 *3)))) (-5 *1 (-800 *3)) (-4 *3 (-1013)))) (-3799 (*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-583 (-800 *4))) (-5 *1 (-800 *4)) (-4 *4 (-1013)))) (-3838 (*1 *1 *1 *1) (-12 (-5 *1 (-800 *2)) (-4 *2 (-1013)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-800 *2)) (-4 *2 (-1013)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-800 *3)) (-4 *3 (-1013)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-800 *2)) (-4 *2 (-1013)))) (-3948 (*1 *1 *1 *1) (-12 (-5 *1 (-800 *2)) (-4 *2 (-1013)))) (-3322 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-800 *3)) (-4 *3 (-1013)))) (-3971 (*1 *1 *2) (-12 (-5 *2 (-583 (-800 *3))) (-5 *1 (-800 *3)) (-4 *3 (-1013)))) (-3399 (*1 *1 *1) (-12 (-5 *1 (-800 *2)) (-4 *2 (-1013)))) (-2656 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-800 *3)) (-4 *3 (-1013)))) (-2655 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-800 *3)) (-4 *3 (-1013)))) (-3260 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-800 *3)) (-4 *3 (-1013)))) (-3952 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-800 *3)) (-4 *3 (-1013)))) (-2654 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-800 *3)) (-4 *3 (-1013)))) (-2653 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-800 *3)) (-4 *3 (-1013)))) (-2652 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-800 *3)) (-4 *3 (-1013)))) (-2651 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-800 *3)) (-4 *3 (-1013)))) (-2650 (*1 *2 *1) (-12 (-5 *2 (-583 (-51))) (-5 *1 (-800 *3)) (-4 *3 (-1013)))) (-2649 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-51))) (-5 *1 (-800 *3)) (-4 *3 (-1013)))) (-2648 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-51))) (-5 *1 (-800 *3)) (-4 *3 (-1013)))) (-2647 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1089)) (-5 *3 (-85)) (-5 *1 (-800 *4)) (-4 *4 (-1013)))) (-2646 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-1089))) (-5 *3 (-51)) (-5 *1 (-800 *4)) (-4 *4 (-1013)))) (-2645 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-583 (-1089))) (|:| |pred| (-51)))) (-5 *1 (-800 *3)) (-4 *3 (-1013)))) (-2644 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-800 *3)) (-4 *3 (-1013)))) (-2643 (*1 *1 *1) (-12 (-5 *1 (-800 *2)) (-4 *2 (-1013)))) (-2662 (*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-800 *3)) (-4 *3 (-1013)))) (-2642 (*1 *2 *1) (-12 (-5 *2 (-583 (-51))) (-5 *1 (-800 *3)) (-4 *3 (-1013)))) (-3081 (*1 *2 *1) (-12 (-5 *2 (-583 (-800 *3))) (-5 *1 (-800 *3)) (-4 *3 (-1013)))) (-2641 (*1 *2 *2) (|partial| -12 (-5 *2 (-583 (-800 *3))) (-5 *1 (-800 *3)) (-4 *3 (-1013))))) +((-3209 (((-800 |#1|) (-800 |#1|) (-583 (-1089)) (-1 (-85) (-583 |#2|))) 32 T ELT) (((-800 |#1|) (-800 |#1|) (-583 (-1 (-85) |#2|))) 46 T ELT) (((-800 |#1|) (-800 |#1|) (-1 (-85) |#2|)) 35 T ELT)) (-2661 (((-85) (-583 |#2|) (-800 |#1|)) 42 T ELT) (((-85) |#2| (-800 |#1|)) 36 T ELT)) (-3530 (((-1 (-85) |#2|) (-800 |#1|)) 16 T ELT)) (-2663 (((-583 |#2|) (-800 |#1|)) 24 T ELT)) (-2662 (((-800 |#1|) (-800 |#1|) |#2|) 20 T ELT))) +(((-801 |#1| |#2|) (-10 -7 (-15 -3209 ((-800 |#1|) (-800 |#1|) (-1 (-85) |#2|))) (-15 -3209 ((-800 |#1|) (-800 |#1|) (-583 (-1 (-85) |#2|)))) (-15 -3209 ((-800 |#1|) (-800 |#1|) (-583 (-1089)) (-1 (-85) (-583 |#2|)))) (-15 -3530 ((-1 (-85) |#2|) (-800 |#1|))) (-15 -2661 ((-85) |#2| (-800 |#1|))) (-15 -2661 ((-85) (-583 |#2|) (-800 |#1|))) (-15 -2662 ((-800 |#1|) (-800 |#1|) |#2|)) (-15 -2663 ((-583 |#2|) (-800 |#1|)))) (-1013) (-1128)) (T -801)) +((-2663 (*1 *2 *3) (-12 (-5 *3 (-800 *4)) (-4 *4 (-1013)) (-5 *2 (-583 *5)) (-5 *1 (-801 *4 *5)) (-4 *5 (-1128)))) (-2662 (*1 *2 *2 *3) (-12 (-5 *2 (-800 *4)) (-4 *4 (-1013)) (-5 *1 (-801 *4 *3)) (-4 *3 (-1128)))) (-2661 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *6)) (-5 *4 (-800 *5)) (-4 *5 (-1013)) (-4 *6 (-1128)) (-5 *2 (-85)) (-5 *1 (-801 *5 *6)))) (-2661 (*1 *2 *3 *4) (-12 (-5 *4 (-800 *5)) (-4 *5 (-1013)) (-5 *2 (-85)) (-5 *1 (-801 *5 *3)) (-4 *3 (-1128)))) (-3530 (*1 *2 *3) (-12 (-5 *3 (-800 *4)) (-4 *4 (-1013)) (-5 *2 (-1 (-85) *5)) (-5 *1 (-801 *4 *5)) (-4 *5 (-1128)))) (-3209 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-800 *5)) (-5 *3 (-583 (-1089))) (-5 *4 (-1 (-85) (-583 *6))) (-4 *5 (-1013)) (-4 *6 (-1128)) (-5 *1 (-801 *5 *6)))) (-3209 (*1 *2 *2 *3) (-12 (-5 *2 (-800 *4)) (-5 *3 (-583 (-1 (-85) *5))) (-4 *4 (-1013)) (-4 *5 (-1128)) (-5 *1 (-801 *4 *5)))) (-3209 (*1 *2 *2 *3) (-12 (-5 *2 (-800 *4)) (-5 *3 (-1 (-85) *5)) (-4 *4 (-1013)) (-4 *5 (-1128)) (-5 *1 (-801 *4 *5))))) +((-3957 (((-800 |#2|) (-1 |#2| |#1|) (-800 |#1|)) 19 T ELT))) +(((-802 |#1| |#2|) (-10 -7 (-15 -3957 ((-800 |#2|) (-1 |#2| |#1|) (-800 |#1|)))) (-1013) (-1013)) (T -802)) +((-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-800 *5)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-5 *2 (-800 *6)) (-5 *1 (-802 *5 *6))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3933 (((-583 |#1|) $) 20 T ELT)) (-2664 (((-85) $) 49 T ELT)) (-3157 (((-3 (-614 |#1|) "failed") $) 55 T ELT)) (-3156 (((-614 |#1|) $) 53 T ELT)) (-3798 (($ $) 24 T ELT)) (-2531 (($ $ $) NIL T ELT)) (-2857 (($ $ $) NIL T ELT)) (-3832 (((-694) $) 60 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3800 (((-614 |#1|) $) 22 T ELT)) (-3945 (((-772) $) 47 T ELT) (($ (-614 |#1|)) 27 T ELT) (((-739 |#1|) $) 36 T ELT) (($ |#1|) 26 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2666 (($) 11 T CONST)) (-2665 (((-583 (-614 |#1|)) $) 28 T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 14 T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) 66 T ELT))) +(((-803 |#1|) (-13 (-756) (-950 (-614 |#1|)) (-10 -8 (-15 -2666 ($) -3951) (-15 -3945 ((-739 |#1|) $)) (-15 -3945 ($ |#1|)) (-15 -3800 ((-614 |#1|) $)) (-15 -3832 ((-694) $)) (-15 -2665 ((-583 (-614 |#1|)) $)) (-15 -3798 ($ $)) (-15 -2664 ((-85) $)) (-15 -3933 ((-583 |#1|) $)))) (-756)) (T -803)) +((-2666 (*1 *1) (-12 (-5 *1 (-803 *2)) (-4 *2 (-756)))) (-3945 (*1 *2 *1) (-12 (-5 *2 (-739 *3)) (-5 *1 (-803 *3)) (-4 *3 (-756)))) (-3945 (*1 *1 *2) (-12 (-5 *1 (-803 *2)) (-4 *2 (-756)))) (-3800 (*1 *2 *1) (-12 (-5 *2 (-614 *3)) (-5 *1 (-803 *3)) (-4 *3 (-756)))) (-3832 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-803 *3)) (-4 *3 (-756)))) (-2665 (*1 *2 *1) (-12 (-5 *2 (-583 (-614 *3))) (-5 *1 (-803 *3)) (-4 *3 (-756)))) (-3798 (*1 *1 *1) (-12 (-5 *1 (-803 *2)) (-4 *2 (-756)))) (-2664 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-803 *3)) (-4 *3 (-756)))) (-3933 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-803 *3)) (-4 *3 (-756))))) +((-3473 ((|#1| |#1| |#1|) 19 T ELT))) +(((-804 |#1| |#2|) (-10 -7 (-15 -3473 (|#1| |#1| |#1|))) (-1154 |#2|) (-961)) (T -804)) +((-3473 (*1 *2 *2 *2) (-12 (-4 *3 (-961)) (-5 *1 (-804 *2 *3)) (-4 *2 (-1154 *3))))) +((-2669 ((|#2| $ |#3|) 10 T ELT))) +(((-805 |#1| |#2| |#3|) (-10 -7 (-15 -2669 (|#2| |#1| |#3|))) (-806 |#2| |#3|) (-1128) (-1128)) (T -805)) +NIL +((-3757 ((|#1| $ |#2|) 7 T ELT)) (-2669 ((|#1| $ |#2|) 6 T ELT))) +(((-806 |#1| |#2|) (-113) (-1128) (-1128)) (T -806)) +((-3757 (*1 *2 *1 *3) (-12 (-4 *1 (-806 *2 *3)) (-4 *3 (-1128)) (-4 *2 (-1128)))) (-2669 (*1 *2 *1 *3) (-12 (-4 *1 (-806 *2 *3)) (-4 *3 (-1128)) (-4 *2 (-1128))))) +(-13 (-1128) (-10 -8 (-15 -3757 (|t#1| $ |t#2|)) (-15 -2669 (|t#1| $ |t#2|)))) +(((-13) . T) ((-1128) . T)) +((-2668 ((|#1| |#1| (-694)) 26 T ELT)) (-2667 (((-3 |#1| #1="failed") |#1| |#1|) 23 T ELT)) (-3434 (((-3 (-2 (|:| -3138 |#1|) (|:| -3137 |#1|)) #1#) |#1| (-694) (-694)) 29 T ELT) (((-583 |#1|) |#1|) 38 T ELT))) +(((-807 |#1| |#2|) (-10 -7 (-15 -3434 ((-583 |#1|) |#1|)) (-15 -3434 ((-3 (-2 (|:| -3138 |#1|) (|:| -3137 |#1|)) #1="failed") |#1| (-694) (-694))) (-15 -2667 ((-3 |#1| #1#) |#1| |#1|)) (-15 -2668 (|#1| |#1| (-694)))) (-1154 |#2|) (-312)) (T -807)) +((-2668 (*1 *2 *2 *3) (-12 (-5 *3 (-694)) (-4 *4 (-312)) (-5 *1 (-807 *2 *4)) (-4 *2 (-1154 *4)))) (-2667 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-312)) (-5 *1 (-807 *2 *3)) (-4 *2 (-1154 *3)))) (-3434 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-694)) (-4 *5 (-312)) (-5 *2 (-2 (|:| -3138 *3) (|:| -3137 *3))) (-5 *1 (-807 *3 *5)) (-4 *3 (-1154 *5)))) (-3434 (*1 *2 *3) (-12 (-4 *4 (-312)) (-5 *2 (-583 *3)) (-5 *1 (-807 *3 *4)) (-4 *3 (-1154 *4))))) +((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3723 (($) 23 T CONST)) (-1213 (((-85) $ $) 20 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3757 (($ $ (-583 |#2|) (-583 (-694))) 45 T ELT) (($ $ |#2| (-694)) 44 T ELT) (($ $ (-583 |#2|)) 43 T ELT) (($ $ |#2|) 41 T ELT)) (-3945 (((-772) $) 13 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-2660 (($) 24 T CONST)) (-2669 (($ $ (-583 |#2|) (-583 (-694))) 48 T ELT) (($ $ |#2| (-694)) 47 T ELT) (($ $ (-583 |#2|)) 46 T ELT) (($ $ |#2|) 42 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ |#1| $) 33 T ELT) (($ $ |#1|) 37 T ELT))) +(((-808 |#1| |#2|) (-113) (-961) (-1013)) (T -808)) +NIL +(-13 (-82 |t#1| |t#1|) (-811 |t#2|) (-10 -7 (IF (|has| |t#1| (-146)) (-6 (-654 |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-590 |#1|) . T) ((-582 |#1|) |has| |#1| (-146)) ((-654 |#1|) |has| |#1| (-146)) ((-806 $ |#2|) . T) ((-811 |#2|) . T) ((-963 |#1|) . T) ((-968 |#1|) . T) ((-1013) . T) ((-1128) . T)) +((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3723 (($) 23 T CONST)) (-3466 (((-3 $ "failed") $) 42 T ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3757 (($ $ (-583 |#1|) (-583 (-694))) 52 T ELT) (($ $ |#1| (-694)) 51 T ELT) (($ $ (-583 |#1|)) 50 T ELT) (($ $ |#1|) 48 T ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT)) (-3126 (((-694)) 40 T CONST)) (-1264 (((-85) $ $) 6 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-2669 (($ $ (-583 |#1|) (-583 (-694))) 55 T ELT) (($ $ |#1| (-694)) 54 T ELT) (($ $ (-583 |#1|)) 53 T ELT) (($ $ |#1|) 49 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT))) +(((-809 |#1|) (-113) (-1013)) (T -809)) +NIL +(-13 (-961) (-811 |t#1|)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-555 (-484)) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 $) . T) ((-590 $) . T) ((-663) . T) ((-806 $ |#1|) . T) ((-811 |#1|) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T)) +((-3757 (($ $ |#2|) NIL T ELT) (($ $ (-583 |#2|)) 10 T ELT) (($ $ |#2| (-694)) 12 T ELT) (($ $ (-583 |#2|) (-583 (-694))) 15 T ELT)) (-2669 (($ $ |#2|) 16 T ELT) (($ $ (-583 |#2|)) 18 T ELT) (($ $ |#2| (-694)) 19 T ELT) (($ $ (-583 |#2|) (-583 (-694))) 21 T ELT))) +(((-810 |#1| |#2|) (-10 -7 (-15 -2669 (|#1| |#1| (-583 |#2|) (-583 (-694)))) (-15 -2669 (|#1| |#1| |#2| (-694))) (-15 -2669 (|#1| |#1| (-583 |#2|))) (-15 -3757 (|#1| |#1| (-583 |#2|) (-583 (-694)))) (-15 -3757 (|#1| |#1| |#2| (-694))) (-15 -3757 (|#1| |#1| (-583 |#2|))) (-15 -2669 (|#1| |#1| |#2|)) (-15 -3757 (|#1| |#1| |#2|))) (-811 |#2|) (-1013)) (T -810)) +NIL +((-3757 (($ $ |#1|) 7 T ELT) (($ $ (-583 |#1|)) 15 T ELT) (($ $ |#1| (-694)) 14 T ELT) (($ $ (-583 |#1|) (-583 (-694))) 13 T ELT)) (-2669 (($ $ |#1|) 6 T ELT) (($ $ (-583 |#1|)) 12 T ELT) (($ $ |#1| (-694)) 11 T ELT) (($ $ (-583 |#1|) (-583 (-694))) 10 T ELT))) +(((-811 |#1|) (-113) (-1013)) (T -811)) +((-3757 (*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *1 (-811 *3)) (-4 *3 (-1013)))) (-3757 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-694)) (-4 *1 (-811 *2)) (-4 *2 (-1013)))) (-3757 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *4)) (-5 *3 (-583 (-694))) (-4 *1 (-811 *4)) (-4 *4 (-1013)))) (-2669 (*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *1 (-811 *3)) (-4 *3 (-1013)))) (-2669 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-694)) (-4 *1 (-811 *2)) (-4 *2 (-1013)))) (-2669 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *4)) (-5 *3 (-583 (-694))) (-4 *1 (-811 *4)) (-4 *4 (-1013))))) +(-13 (-806 $ |t#1|) (-10 -8 (-15 -3757 ($ $ (-583 |t#1|))) (-15 -3757 ($ $ |t#1| (-694))) (-15 -3757 ($ $ (-583 |t#1|) (-583 (-694)))) (-15 -2669 ($ $ (-583 |t#1|))) (-15 -2669 ($ $ |t#1| (-694))) (-15 -2669 ($ $ (-583 |t#1|) (-583 (-694)))))) +(((-13) . T) ((-806 $ |#1|) . T) ((-1128) . T)) +((-2568 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3401 ((|#1| $) 26 T ELT)) (-3025 ((|#1| $ |#1|) NIL (|has| $ (-6 -3995)) ELT)) (-1292 (($ $ $) NIL (|has| $ (-6 -3995)) ELT)) (-1293 (($ $ $) NIL (|has| $ (-6 -3995)) ELT)) (-3787 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3995)) ELT) (($ $ #2="left" $) NIL (|has| $ (-6 -3995)) ELT) (($ $ #3="right" $) NIL (|has| $ (-6 -3995)) ELT)) (-3026 (($ $ (-583 $)) NIL (|has| $ (-6 -3995)) ELT)) (-3723 (($) NIL T CONST)) (-3137 (($ $) 25 T ELT)) (-2670 (($ |#1|) 12 T ELT) (($ $ $) 17 T ELT)) (-2889 (((-583 |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3031 (((-583 $) $) NIL T ELT)) (-3027 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-2608 (((-583 |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3245 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-1948 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3138 (($ $) 23 T ELT)) (-3030 (((-583 |#1|) $) NIL T ELT)) (-3526 (((-85) $) 20 T ELT)) (-3242 (((-1072) $) NIL (|has| |#1| (-1013)) ELT)) (-3243 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3767 (($ $ (-583 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1221 (((-85) $ $) NIL T ELT)) (-3402 (((-85) $) NIL T ELT)) (-3564 (($) NIL T ELT)) (-3799 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3029 (((-484) $ $) NIL T ELT)) (-3632 (((-85) $) NIL T ELT)) (-1945 (((-694) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT) (((-694) |#1| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-3399 (($ $) NIL T ELT)) (-3945 (((-1115 |#1|) $) 9 T ELT) (((-772) $) 29 (|has| |#1| (-552 (-772))) ELT)) (-3521 (((-583 $) $) NIL T ELT)) (-3028 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-1264 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3056 (((-85) $ $) 21 (|has| |#1| (-72)) ELT)) (-3956 (((-694) $) NIL (|has| $ (-6 -3994)) ELT))) +(((-812 |#1|) (-13 (-92 |#1|) (-552 (-1115 |#1|)) (-10 -8 (-15 -2670 ($ |#1|)) (-15 -2670 ($ $ $)))) (-1013)) (T -812)) +((-2670 (*1 *1 *2) (-12 (-5 *1 (-812 *2)) (-4 *2 (-1013)))) (-2670 (*1 *1 *1 *1) (-12 (-5 *1 (-812 *2)) (-4 *2 (-1013))))) +((-2568 (((-85) $ $) NIL T ELT)) (-2686 (((-1009 |#1|) $) 61 T ELT)) (-2909 (((-583 $) (-583 $)) 104 T ELT)) (-3622 (((-484) $) 84 T ELT)) (-3723 (($) NIL T CONST)) (-3466 (((-3 $ "failed") $) NIL T ELT)) (-3771 (((-694) $) 81 T ELT)) (-2690 (((-1009 |#1|) $ |#1|) 71 T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2673 (((-85) $) 89 T ELT)) (-2675 (((-694) $) 85 T ELT)) (-2531 (($ $ $) NIL (OR (|has| |#1| (-319)) (|has| |#1| (-756))) ELT)) (-2857 (($ $ $) NIL (OR (|has| |#1| (-319)) (|has| |#1| (-756))) ELT)) (-2679 (((-2 (|:| |preimage| (-583 |#1|)) (|:| |image| (-583 |#1|))) $) 56 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2484 (($ $) 131 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2672 (((-1009 |#1|) $) 136 (|has| |#1| (-319)) ELT)) (-2674 (((-85) $) 82 T ELT)) (-3799 ((|#1| $ |#1|) 69 T ELT)) (-3947 (((-694) $) 63 T ELT)) (-2681 (($ (-583 (-583 |#1|))) 119 T ELT)) (-2676 (((-884) $) 75 T ELT)) (-2682 (($ (-583 |#1|)) 32 T ELT)) (-3009 (($ $ $) NIL T ELT)) (-2435 (($ $ $) NIL T ELT)) (-2678 (($ (-583 (-583 |#1|))) 58 T ELT)) (-2677 (($ (-583 (-583 |#1|))) 124 T ELT)) (-2671 (($ (-583 |#1|)) 133 T ELT)) (-3945 (((-772) $) 118 T ELT) (($ (-583 (-583 |#1|))) 92 T ELT) (($ (-583 |#1|)) 93 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2666 (($) 24 T CONST)) (-2566 (((-85) $ $) NIL (OR (|has| |#1| (-319)) (|has| |#1| (-756))) ELT)) (-2567 (((-85) $ $) NIL (OR (|has| |#1| (-319)) (|has| |#1| (-756))) ELT)) (-3056 (((-85) $ $) 67 T ELT)) (-2684 (((-85) $ $) NIL (OR (|has| |#1| (-319)) (|has| |#1| (-756))) ELT)) (-2685 (((-85) $ $) 91 T ELT)) (-3948 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ $ $) 33 T ELT))) +(((-813 |#1|) (-13 (-815 |#1|) (-10 -8 (-15 -2679 ((-2 (|:| |preimage| (-583 |#1|)) (|:| |image| (-583 |#1|))) $)) (-15 -2678 ($ (-583 (-583 |#1|)))) (-15 -3945 ($ (-583 (-583 |#1|)))) (-15 -3945 ($ (-583 |#1|))) (-15 -2677 ($ (-583 (-583 |#1|)))) (-15 -3947 ((-694) $)) (-15 -2676 ((-884) $)) (-15 -3771 ((-694) $)) (-15 -2675 ((-694) $)) (-15 -3622 ((-484) $)) (-15 -2674 ((-85) $)) (-15 -2673 ((-85) $)) (-15 -2909 ((-583 $) (-583 $))) (IF (|has| |#1| (-319)) (-15 -2672 ((-1009 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-483)) (-15 -2671 ($ (-583 |#1|))) (IF (|has| |#1| (-319)) (-15 -2671 ($ (-583 |#1|))) |%noBranch|)))) (-1013)) (T -813)) +((-2679 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-583 *3)) (|:| |image| (-583 *3)))) (-5 *1 (-813 *3)) (-4 *3 (-1013)))) (-2678 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1013)) (-5 *1 (-813 *3)))) (-3945 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1013)) (-5 *1 (-813 *3)))) (-3945 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1013)) (-5 *1 (-813 *3)))) (-2677 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1013)) (-5 *1 (-813 *3)))) (-3947 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-813 *3)) (-4 *3 (-1013)))) (-2676 (*1 *2 *1) (-12 (-5 *2 (-884)) (-5 *1 (-813 *3)) (-4 *3 (-1013)))) (-3771 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-813 *3)) (-4 *3 (-1013)))) (-2675 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-813 *3)) (-4 *3 (-1013)))) (-3622 (*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-813 *3)) (-4 *3 (-1013)))) (-2674 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-813 *3)) (-4 *3 (-1013)))) (-2673 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-813 *3)) (-4 *3 (-1013)))) (-2909 (*1 *2 *2) (-12 (-5 *2 (-583 (-813 *3))) (-5 *1 (-813 *3)) (-4 *3 (-1013)))) (-2672 (*1 *2 *1) (-12 (-5 *2 (-1009 *3)) (-5 *1 (-813 *3)) (-4 *3 (-319)) (-4 *3 (-1013)))) (-2671 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1013)) (-5 *1 (-813 *3))))) +((-2680 ((|#2| (-1055 |#1| |#2|)) 48 T ELT))) +(((-814 |#1| |#2|) (-10 -7 (-15 -2680 (|#2| (-1055 |#1| |#2|)))) (-830) (-13 (-961) (-10 -7 (-6 (-3996 "*"))))) (T -814)) +((-2680 (*1 *2 *3) (-12 (-5 *3 (-1055 *4 *2)) (-14 *4 (-830)) (-4 *2 (-13 (-961) (-10 -7 (-6 (-3996 "*"))))) (-5 *1 (-814 *4 *2))))) +((-2568 (((-85) $ $) 7 T ELT)) (-2686 (((-1009 |#1|) $) 42 T ELT)) (-3723 (($) 23 T CONST)) (-3466 (((-3 $ "failed") $) 20 T ELT)) (-2690 (((-1009 |#1|) $ |#1|) 41 T ELT)) (-2410 (((-85) $) 22 T ELT)) (-2531 (($ $ $) 35 (OR (|has| |#1| (-756)) (|has| |#1| (-319))) ELT)) (-2857 (($ $ $) 36 (OR (|has| |#1| (-756)) (|has| |#1| (-319))) ELT)) (-3242 (((-1072) $) 11 T ELT)) (-2484 (($ $) 30 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3799 ((|#1| $ |#1|) 45 T ELT)) (-2681 (($ (-583 (-583 |#1|))) 43 T ELT)) (-2682 (($ (-583 |#1|)) 44 T ELT)) (-3009 (($ $ $) 27 T ELT)) (-2435 (($ $ $) 26 T ELT)) (-3945 (((-772) $) 13 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-2666 (($) 24 T CONST)) (-2566 (((-85) $ $) 37 (OR (|has| |#1| (-756)) (|has| |#1| (-319))) ELT)) (-2567 (((-85) $ $) 39 (OR (|has| |#1| (-756)) (|has| |#1| (-319))) ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-2684 (((-85) $ $) 38 (OR (|has| |#1| (-756)) (|has| |#1| (-319))) ELT)) (-2685 (((-85) $ $) 40 T ELT)) (-3948 (($ $ $) 29 T ELT)) (** (($ $ (-830)) 17 T ELT) (($ $ (-694)) 21 T ELT) (($ $ (-484)) 28 T ELT)) (* (($ $ $) 18 T ELT))) +(((-815 |#1|) (-113) (-1013)) (T -815)) +((-2682 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1013)) (-4 *1 (-815 *3)))) (-2681 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1013)) (-4 *1 (-815 *3)))) (-2686 (*1 *2 *1) (-12 (-4 *1 (-815 *3)) (-4 *3 (-1013)) (-5 *2 (-1009 *3)))) (-2690 (*1 *2 *1 *3) (-12 (-4 *1 (-815 *3)) (-4 *3 (-1013)) (-5 *2 (-1009 *3)))) (-2685 (*1 *2 *1 *1) (-12 (-4 *1 (-815 *3)) (-4 *3 (-1013)) (-5 *2 (-85))))) +(-13 (-412) (-241 |t#1| |t#1|) (-10 -8 (-15 -2682 ($ (-583 |t#1|))) (-15 -2681 ($ (-583 (-583 |t#1|)))) (-15 -2686 ((-1009 |t#1|) $)) (-15 -2690 ((-1009 |t#1|) $ |t#1|)) (-15 -2685 ((-85) $ $)) (IF (|has| |t#1| (-756)) (-6 (-756)) |%noBranch|) (IF (|has| |t#1| (-319)) (-6 (-756)) |%noBranch|))) +(((-72) . T) ((-552 (-772)) . T) ((-241 |#1| |#1|) . T) ((-412) . T) ((-13) . T) ((-663) . T) ((-756) OR (|has| |#1| (-756)) (|has| |#1| (-319))) ((-759) OR (|has| |#1| (-756)) (|has| |#1| (-319))) ((-1025) . T) ((-1013) . T) ((-1128) . T)) +((-2568 (((-85) $ $) NIL T ELT)) (-2692 (((-583 (-583 (-694))) $) 163 T ELT)) (-2688 (((-583 (-694)) (-813 |#1|) $) 191 T ELT)) (-2687 (((-583 (-694)) (-813 |#1|) $) 192 T ELT)) (-2686 (((-1009 |#1|) $) 155 T ELT)) (-2693 (((-583 (-813 |#1|)) $) 152 T ELT)) (-2994 (((-813 |#1|) $ (-484)) 157 T ELT) (((-813 |#1|) $) 158 T ELT)) (-2691 (($ (-583 (-813 |#1|))) 165 T ELT)) (-3771 (((-694) $) 159 T ELT)) (-2689 (((-1009 (-1009 |#1|)) $) 189 T ELT)) (-2690 (((-1009 |#1|) $ |#1|) 180 T ELT) (((-1009 (-1009 |#1|)) $ (-1009 |#1|)) 201 T ELT) (((-1009 (-583 |#1|)) $ (-583 |#1|)) 204 T ELT)) (-3245 (((-85) (-813 |#1|) $) 140 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2683 (((-1184) $) 145 T ELT) (((-1184) $ (-484) (-484)) 205 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2695 (((-583 (-813 |#1|)) $) 146 T ELT)) (-3799 (((-813 |#1|) $ (-694)) 153 T ELT)) (-3947 (((-694) $) 160 T ELT)) (-3945 (((-772) $) 177 T ELT) (((-583 (-813 |#1|)) $) 28 T ELT) (($ (-583 (-813 |#1|))) 164 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2694 (((-583 |#1|) $) 162 T ELT)) (-3056 (((-85) $ $) 198 T ELT)) (-2684 (((-85) $ $) 195 T ELT)) (-2685 (((-85) $ $) 194 T ELT))) +(((-816 |#1|) (-13 (-1013) (-10 -8 (-15 -3945 ((-583 (-813 |#1|)) $)) (-15 -2695 ((-583 (-813 |#1|)) $)) (-15 -3799 ((-813 |#1|) $ (-694))) (-15 -2994 ((-813 |#1|) $ (-484))) (-15 -2994 ((-813 |#1|) $)) (-15 -3771 ((-694) $)) (-15 -3947 ((-694) $)) (-15 -2694 ((-583 |#1|) $)) (-15 -2693 ((-583 (-813 |#1|)) $)) (-15 -2692 ((-583 (-583 (-694))) $)) (-15 -3945 ($ (-583 (-813 |#1|)))) (-15 -2691 ($ (-583 (-813 |#1|)))) (-15 -2690 ((-1009 |#1|) $ |#1|)) (-15 -2689 ((-1009 (-1009 |#1|)) $)) (-15 -2690 ((-1009 (-1009 |#1|)) $ (-1009 |#1|))) (-15 -2690 ((-1009 (-583 |#1|)) $ (-583 |#1|))) (-15 -3245 ((-85) (-813 |#1|) $)) (-15 -2688 ((-583 (-694)) (-813 |#1|) $)) (-15 -2687 ((-583 (-694)) (-813 |#1|) $)) (-15 -2686 ((-1009 |#1|) $)) (-15 -2685 ((-85) $ $)) (-15 -2684 ((-85) $ $)) (-15 -2683 ((-1184) $)) (-15 -2683 ((-1184) $ (-484) (-484))))) (-1013)) (T -816)) +((-3945 (*1 *2 *1) (-12 (-5 *2 (-583 (-813 *3))) (-5 *1 (-816 *3)) (-4 *3 (-1013)))) (-2695 (*1 *2 *1) (-12 (-5 *2 (-583 (-813 *3))) (-5 *1 (-816 *3)) (-4 *3 (-1013)))) (-3799 (*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-5 *2 (-813 *4)) (-5 *1 (-816 *4)) (-4 *4 (-1013)))) (-2994 (*1 *2 *1 *3) (-12 (-5 *3 (-484)) (-5 *2 (-813 *4)) (-5 *1 (-816 *4)) (-4 *4 (-1013)))) (-2994 (*1 *2 *1) (-12 (-5 *2 (-813 *3)) (-5 *1 (-816 *3)) (-4 *3 (-1013)))) (-3771 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-816 *3)) (-4 *3 (-1013)))) (-3947 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-816 *3)) (-4 *3 (-1013)))) (-2694 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-816 *3)) (-4 *3 (-1013)))) (-2693 (*1 *2 *1) (-12 (-5 *2 (-583 (-813 *3))) (-5 *1 (-816 *3)) (-4 *3 (-1013)))) (-2692 (*1 *2 *1) (-12 (-5 *2 (-583 (-583 (-694)))) (-5 *1 (-816 *3)) (-4 *3 (-1013)))) (-3945 (*1 *1 *2) (-12 (-5 *2 (-583 (-813 *3))) (-4 *3 (-1013)) (-5 *1 (-816 *3)))) (-2691 (*1 *1 *2) (-12 (-5 *2 (-583 (-813 *3))) (-4 *3 (-1013)) (-5 *1 (-816 *3)))) (-2690 (*1 *2 *1 *3) (-12 (-5 *2 (-1009 *3)) (-5 *1 (-816 *3)) (-4 *3 (-1013)))) (-2689 (*1 *2 *1) (-12 (-5 *2 (-1009 (-1009 *3))) (-5 *1 (-816 *3)) (-4 *3 (-1013)))) (-2690 (*1 *2 *1 *3) (-12 (-4 *4 (-1013)) (-5 *2 (-1009 (-1009 *4))) (-5 *1 (-816 *4)) (-5 *3 (-1009 *4)))) (-2690 (*1 *2 *1 *3) (-12 (-4 *4 (-1013)) (-5 *2 (-1009 (-583 *4))) (-5 *1 (-816 *4)) (-5 *3 (-583 *4)))) (-3245 (*1 *2 *3 *1) (-12 (-5 *3 (-813 *4)) (-4 *4 (-1013)) (-5 *2 (-85)) (-5 *1 (-816 *4)))) (-2688 (*1 *2 *3 *1) (-12 (-5 *3 (-813 *4)) (-4 *4 (-1013)) (-5 *2 (-583 (-694))) (-5 *1 (-816 *4)))) (-2687 (*1 *2 *3 *1) (-12 (-5 *3 (-813 *4)) (-4 *4 (-1013)) (-5 *2 (-583 (-694))) (-5 *1 (-816 *4)))) (-2686 (*1 *2 *1) (-12 (-5 *2 (-1009 *3)) (-5 *1 (-816 *3)) (-4 *3 (-1013)))) (-2685 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-816 *3)) (-4 *3 (-1013)))) (-2684 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-816 *3)) (-4 *3 (-1013)))) (-2683 (*1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-816 *3)) (-4 *3 (-1013)))) (-2683 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-484)) (-5 *2 (-1184)) (-5 *1 (-816 *4)) (-4 *4 (-1013))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-3931 (((-85) $) NIL T ELT)) (-3928 (((-694)) NIL T ELT)) (-3329 (($ $ (-830)) NIL (|has| $ (-319)) ELT) (($ $) NIL T ELT)) (-1674 (((-1101 (-830) (-694)) (-484)) NIL T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3774 (($ $) NIL T ELT)) (-3970 (((-347 $) $) NIL T ELT)) (-1607 (((-85) $ $) NIL T ELT)) (-3136 (((-694)) NIL T ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 $ #1#) $) NIL T ELT)) (-3156 (($ $) NIL T ELT)) (-1791 (($ (-1178 $)) NIL T ELT)) (-1672 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL T ELT)) (-2564 (($ $ $) NIL T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-2994 (($) NIL T ELT)) (-2563 (($ $ $) NIL T ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-2833 (($) NIL T ELT)) (-1679 (((-85) $) NIL T ELT)) (-1763 (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-3722 (((-85) $) NIL T ELT)) (-3771 (((-743 (-830)) $) NIL T ELT) (((-830) $) NIL T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2013 (($) NIL (|has| $ (-319)) ELT)) (-2011 (((-85) $) NIL (|has| $ (-319)) ELT)) (-3132 (($ $ (-830)) NIL (|has| $ (-319)) ELT) (($ $) NIL T ELT)) (-3444 (((-632 $) $) NIL T ELT)) (-1604 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2014 (((-1084 $) $ (-830)) NIL (|has| $ (-319)) ELT) (((-1084 $) $) NIL T ELT)) (-2010 (((-830) $) NIL T ELT)) (-1626 (((-1084 $) $) NIL (|has| $ (-319)) ELT)) (-1625 (((-3 (-1084 $) #1#) $ $) NIL (|has| $ (-319)) ELT) (((-1084 $) $) NIL (|has| $ (-319)) ELT)) (-1627 (($ $ (-1084 $)) NIL (|has| $ (-319)) ELT)) (-1890 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2484 (($ $) NIL T ELT)) (-3445 (($) NIL T CONST)) (-2400 (($ (-830)) NIL T ELT)) (-3930 (((-85) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2409 (($) NIL (|has| $ (-319)) ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3144 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-1675 (((-583 (-2 (|:| -3731 (-484)) (|:| -2401 (-484))))) NIL T ELT)) (-3731 (((-347 $) $) NIL T ELT)) (-3929 (((-830)) NIL T ELT) (((-743 (-830))) NIL T ELT)) (-1605 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3465 (((-3 $ #1#) $ $) NIL T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-1606 (((-694) $) NIL T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL T ELT)) (-1764 (((-3 (-694) #1#) $ $) NIL T ELT) (((-694) $) NIL T ELT)) (-3910 (((-107)) NIL T ELT)) (-3757 (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-3947 (((-830) $) NIL T ELT) (((-743 (-830)) $) NIL T ELT)) (-3185 (((-1084 $)) NIL T ELT)) (-1673 (($) NIL T ELT)) (-1628 (($) NIL (|has| $ (-319)) ELT)) (-3224 (((-630 $) (-1178 $)) NIL T ELT) (((-1178 $) $) NIL T ELT)) (-3971 (((-484) $) NIL T ELT)) (-2703 (((-3 (-1178 $) #1#) (-630 $)) NIL T ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-349 (-484))) NIL T ELT)) (-2702 (((-632 $) $) NIL T ELT) (($ $) NIL T ELT)) (-3126 (((-694)) NIL T CONST)) (-1264 (((-85) $ $) NIL T ELT)) (-2012 (((-1178 $) (-830)) NIL T ELT) (((-1178 $)) NIL T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-3932 (((-85) $) NIL T ELT)) (-2660 (($) NIL T CONST)) (-2666 (($) NIL T CONST)) (-3927 (($ $ (-694)) NIL (|has| $ (-319)) ELT) (($ $) NIL (|has| $ (-319)) ELT)) (-2669 (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3948 (($ $ $) NIL T ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-349 (-484))) NIL T ELT) (($ (-349 (-484)) $) NIL T ELT))) +(((-817 |#1|) (-13 (-299) (-280 $) (-553 (-484))) (-830)) (T -817)) +NIL +((-2697 (((-3 (-583 (-1084 |#4|)) #1="failed") (-583 (-1084 |#4|)) (-1084 |#4|)) 164 T ELT)) (-2700 ((|#1|) 101 T ELT)) (-2699 (((-347 (-1084 |#4|)) (-1084 |#4|)) 173 T ELT)) (-2701 (((-347 (-1084 |#4|)) (-583 |#3|) (-1084 |#4|)) 83 T ELT)) (-2698 (((-347 (-1084 |#4|)) (-1084 |#4|)) 183 T ELT)) (-2696 (((-3 (-583 (-1084 |#4|)) #1#) (-583 (-1084 |#4|)) (-1084 |#4|) |#3|) 117 T ELT))) +(((-818 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2697 ((-3 (-583 (-1084 |#4|)) #1="failed") (-583 (-1084 |#4|)) (-1084 |#4|))) (-15 -2698 ((-347 (-1084 |#4|)) (-1084 |#4|))) (-15 -2699 ((-347 (-1084 |#4|)) (-1084 |#4|))) (-15 -2700 (|#1|)) (-15 -2696 ((-3 (-583 (-1084 |#4|)) #1#) (-583 (-1084 |#4|)) (-1084 |#4|) |#3|)) (-15 -2701 ((-347 (-1084 |#4|)) (-583 |#3|) (-1084 |#4|)))) (-821) (-717) (-756) (-861 |#1| |#2| |#3|)) (T -818)) +((-2701 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *7)) (-4 *7 (-756)) (-4 *5 (-821)) (-4 *6 (-717)) (-4 *8 (-861 *5 *6 *7)) (-5 *2 (-347 (-1084 *8))) (-5 *1 (-818 *5 *6 *7 *8)) (-5 *4 (-1084 *8)))) (-2696 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-583 (-1084 *7))) (-5 *3 (-1084 *7)) (-4 *7 (-861 *5 *6 *4)) (-4 *5 (-821)) (-4 *6 (-717)) (-4 *4 (-756)) (-5 *1 (-818 *5 *6 *4 *7)))) (-2700 (*1 *2) (-12 (-4 *3 (-717)) (-4 *4 (-756)) (-4 *2 (-821)) (-5 *1 (-818 *2 *3 *4 *5)) (-4 *5 (-861 *2 *3 *4)))) (-2699 (*1 *2 *3) (-12 (-4 *4 (-821)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-861 *4 *5 *6)) (-5 *2 (-347 (-1084 *7))) (-5 *1 (-818 *4 *5 *6 *7)) (-5 *3 (-1084 *7)))) (-2698 (*1 *2 *3) (-12 (-4 *4 (-821)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-861 *4 *5 *6)) (-5 *2 (-347 (-1084 *7))) (-5 *1 (-818 *4 *5 *6 *7)) (-5 *3 (-1084 *7)))) (-2697 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-1084 *7))) (-5 *3 (-1084 *7)) (-4 *7 (-861 *4 *5 *6)) (-4 *4 (-821)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-818 *4 *5 *6 *7))))) +((-2697 (((-3 (-583 (-1084 |#2|)) "failed") (-583 (-1084 |#2|)) (-1084 |#2|)) 39 T ELT)) (-2700 ((|#1|) 71 T ELT)) (-2699 (((-347 (-1084 |#2|)) (-1084 |#2|)) 125 T ELT)) (-2701 (((-347 (-1084 |#2|)) (-1084 |#2|)) 109 T ELT)) (-2698 (((-347 (-1084 |#2|)) (-1084 |#2|)) 136 T ELT))) +(((-819 |#1| |#2|) (-10 -7 (-15 -2697 ((-3 (-583 (-1084 |#2|)) "failed") (-583 (-1084 |#2|)) (-1084 |#2|))) (-15 -2698 ((-347 (-1084 |#2|)) (-1084 |#2|))) (-15 -2699 ((-347 (-1084 |#2|)) (-1084 |#2|))) (-15 -2700 (|#1|)) (-15 -2701 ((-347 (-1084 |#2|)) (-1084 |#2|)))) (-821) (-1154 |#1|)) (T -819)) +((-2701 (*1 *2 *3) (-12 (-4 *4 (-821)) (-4 *5 (-1154 *4)) (-5 *2 (-347 (-1084 *5))) (-5 *1 (-819 *4 *5)) (-5 *3 (-1084 *5)))) (-2700 (*1 *2) (-12 (-4 *2 (-821)) (-5 *1 (-819 *2 *3)) (-4 *3 (-1154 *2)))) (-2699 (*1 *2 *3) (-12 (-4 *4 (-821)) (-4 *5 (-1154 *4)) (-5 *2 (-347 (-1084 *5))) (-5 *1 (-819 *4 *5)) (-5 *3 (-1084 *5)))) (-2698 (*1 *2 *3) (-12 (-4 *4 (-821)) (-4 *5 (-1154 *4)) (-5 *2 (-347 (-1084 *5))) (-5 *1 (-819 *4 *5)) (-5 *3 (-1084 *5)))) (-2697 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-1084 *5))) (-5 *3 (-1084 *5)) (-4 *5 (-1154 *4)) (-4 *4 (-821)) (-5 *1 (-819 *4 *5))))) +((-2704 (((-3 (-583 (-1084 $)) "failed") (-583 (-1084 $)) (-1084 $)) 46 T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) 18 T ELT)) (-2702 (((-632 $) $) 40 T ELT))) +(((-820 |#1|) (-10 -7 (-15 -2702 ((-632 |#1|) |#1|)) (-15 -2704 ((-3 (-583 (-1084 |#1|)) "failed") (-583 (-1084 |#1|)) (-1084 |#1|))) (-15 -2708 ((-1084 |#1|) (-1084 |#1|) (-1084 |#1|)))) (-821)) (T -820)) +NIL +((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) 55 T ELT)) (-2063 (($ $) 54 T ELT)) (-2061 (((-85) $) 52 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-2707 (((-347 (-1084 $)) (-1084 $)) 75 T ELT)) (-3774 (($ $) 66 T ELT)) (-3970 (((-347 $) $) 67 T ELT)) (-2704 (((-3 (-583 (-1084 $)) "failed") (-583 (-1084 $)) (-1084 $)) 72 T ELT)) (-3723 (($) 23 T CONST)) (-3466 (((-3 $ "failed") $) 42 T ELT)) (-3722 (((-85) $) 68 T ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-1890 (($ $ $) 60 T ELT) (($ (-583 $)) 59 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) 58 T ELT)) (-3144 (($ $ $) 62 T ELT) (($ (-583 $)) 61 T ELT)) (-2705 (((-347 (-1084 $)) (-1084 $)) 73 T ELT)) (-2706 (((-347 (-1084 $)) (-1084 $)) 74 T ELT)) (-3731 (((-347 $) $) 65 T ELT)) (-3465 (((-3 $ "failed") $ $) 56 T ELT)) (-2703 (((-3 (-1178 $) "failed") (-630 $)) 71 (|has| $ (-118)) ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ $) 57 T ELT)) (-2702 (((-632 $) $) 70 (|has| $ (-118)) ELT)) (-3126 (((-694)) 40 T CONST)) (-1264 (((-85) $ $) 6 T ELT)) (-2062 (((-85) $ $) 53 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT))) +(((-821) (-113)) (T -821)) +((-2708 (*1 *2 *2 *2) (-12 (-5 *2 (-1084 *1)) (-4 *1 (-821)))) (-2707 (*1 *2 *3) (-12 (-4 *1 (-821)) (-5 *2 (-347 (-1084 *1))) (-5 *3 (-1084 *1)))) (-2706 (*1 *2 *3) (-12 (-4 *1 (-821)) (-5 *2 (-347 (-1084 *1))) (-5 *3 (-1084 *1)))) (-2705 (*1 *2 *3) (-12 (-4 *1 (-821)) (-5 *2 (-347 (-1084 *1))) (-5 *3 (-1084 *1)))) (-2704 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-1084 *1))) (-5 *3 (-1084 *1)) (-4 *1 (-821)))) (-2703 (*1 *2 *3) (|partial| -12 (-5 *3 (-630 *1)) (-4 *1 (-118)) (-4 *1 (-821)) (-5 *2 (-1178 *1)))) (-2702 (*1 *2 *1) (-12 (-5 *2 (-632 *1)) (-4 *1 (-118)) (-4 *1 (-821))))) +(-13 (-1133) (-10 -8 (-15 -2707 ((-347 (-1084 $)) (-1084 $))) (-15 -2706 ((-347 (-1084 $)) (-1084 $))) (-15 -2705 ((-347 (-1084 $)) (-1084 $))) (-15 -2708 ((-1084 $) (-1084 $) (-1084 $))) (-15 -2704 ((-3 (-583 (-1084 $)) "failed") (-583 (-1084 $)) (-1084 $))) (IF (|has| $ (-118)) (PROGN (-15 -2703 ((-3 (-1178 $) "failed") (-630 $))) (-15 -2702 ((-632 $) $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-555 (-484)) . T) ((-555 $) . T) ((-552 (-772)) . T) ((-146) . T) ((-246) . T) ((-391) . T) ((-495) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 $) . T) ((-590 $) . T) ((-582 $) . T) ((-654 $) . T) ((-663) . T) ((-963 $) . T) ((-968 $) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T) ((-1133) . T)) +((-2710 (((-3 (-2 (|:| -3771 (-694)) (|:| -2383 |#5|)) #1="failed") (-283 |#2| |#3| |#4| |#5|)) 78 T ELT)) (-2709 (((-85) (-283 |#2| |#3| |#4| |#5|)) 17 T ELT)) (-3771 (((-3 (-694) #1#) (-283 |#2| |#3| |#4| |#5|)) 15 T ELT))) +(((-822 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3771 ((-3 (-694) #1="failed") (-283 |#2| |#3| |#4| |#5|))) (-15 -2709 ((-85) (-283 |#2| |#3| |#4| |#5|))) (-15 -2710 ((-3 (-2 (|:| -3771 (-694)) (|:| -2383 |#5|)) #1#) (-283 |#2| |#3| |#4| |#5|)))) (-13 (-495) (-950 (-484))) (-363 |#1|) (-1154 |#2|) (-1154 (-349 |#3|)) (-291 |#2| |#3| |#4|)) (T -822)) +((-2710 (*1 *2 *3) (|partial| -12 (-5 *3 (-283 *5 *6 *7 *8)) (-4 *5 (-363 *4)) (-4 *6 (-1154 *5)) (-4 *7 (-1154 (-349 *6))) (-4 *8 (-291 *5 *6 *7)) (-4 *4 (-13 (-495) (-950 (-484)))) (-5 *2 (-2 (|:| -3771 (-694)) (|:| -2383 *8))) (-5 *1 (-822 *4 *5 *6 *7 *8)))) (-2709 (*1 *2 *3) (-12 (-5 *3 (-283 *5 *6 *7 *8)) (-4 *5 (-363 *4)) (-4 *6 (-1154 *5)) (-4 *7 (-1154 (-349 *6))) (-4 *8 (-291 *5 *6 *7)) (-4 *4 (-13 (-495) (-950 (-484)))) (-5 *2 (-85)) (-5 *1 (-822 *4 *5 *6 *7 *8)))) (-3771 (*1 *2 *3) (|partial| -12 (-5 *3 (-283 *5 *6 *7 *8)) (-4 *5 (-363 *4)) (-4 *6 (-1154 *5)) (-4 *7 (-1154 (-349 *6))) (-4 *8 (-291 *5 *6 *7)) (-4 *4 (-13 (-495) (-950 (-484)))) (-5 *2 (-694)) (-5 *1 (-822 *4 *5 *6 *7 *8))))) +((-2710 (((-3 (-2 (|:| -3771 (-694)) (|:| -2383 |#3|)) #1="failed") (-283 (-349 (-484)) |#1| |#2| |#3|)) 64 T ELT)) (-2709 (((-85) (-283 (-349 (-484)) |#1| |#2| |#3|)) 16 T ELT)) (-3771 (((-3 (-694) #1#) (-283 (-349 (-484)) |#1| |#2| |#3|)) 14 T ELT))) +(((-823 |#1| |#2| |#3|) (-10 -7 (-15 -3771 ((-3 (-694) #1="failed") (-283 (-349 (-484)) |#1| |#2| |#3|))) (-15 -2709 ((-85) (-283 (-349 (-484)) |#1| |#2| |#3|))) (-15 -2710 ((-3 (-2 (|:| -3771 (-694)) (|:| -2383 |#3|)) #1#) (-283 (-349 (-484)) |#1| |#2| |#3|)))) (-1154 (-349 (-484))) (-1154 (-349 |#1|)) (-291 (-349 (-484)) |#1| |#2|)) (T -823)) +((-2710 (*1 *2 *3) (|partial| -12 (-5 *3 (-283 (-349 (-484)) *4 *5 *6)) (-4 *4 (-1154 (-349 (-484)))) (-4 *5 (-1154 (-349 *4))) (-4 *6 (-291 (-349 (-484)) *4 *5)) (-5 *2 (-2 (|:| -3771 (-694)) (|:| -2383 *6))) (-5 *1 (-823 *4 *5 *6)))) (-2709 (*1 *2 *3) (-12 (-5 *3 (-283 (-349 (-484)) *4 *5 *6)) (-4 *4 (-1154 (-349 (-484)))) (-4 *5 (-1154 (-349 *4))) (-4 *6 (-291 (-349 (-484)) *4 *5)) (-5 *2 (-85)) (-5 *1 (-823 *4 *5 *6)))) (-3771 (*1 *2 *3) (|partial| -12 (-5 *3 (-283 (-349 (-484)) *4 *5 *6)) (-4 *4 (-1154 (-349 (-484)))) (-4 *5 (-1154 (-349 *4))) (-4 *6 (-291 (-349 (-484)) *4 *5)) (-5 *2 (-694)) (-5 *1 (-823 *4 *5 *6))))) +((-2715 ((|#2| |#2|) 26 T ELT)) (-2713 (((-484) (-583 (-2 (|:| |den| (-484)) (|:| |gcdnum| (-484))))) 15 T ELT)) (-2711 (((-830) (-484)) 38 T ELT)) (-2714 (((-484) |#2|) 45 T ELT)) (-2712 (((-484) |#2|) 21 T ELT) (((-2 (|:| |den| (-484)) (|:| |gcdnum| (-484))) |#1|) 20 T ELT))) +(((-824 |#1| |#2|) (-10 -7 (-15 -2711 ((-830) (-484))) (-15 -2712 ((-2 (|:| |den| (-484)) (|:| |gcdnum| (-484))) |#1|)) (-15 -2712 ((-484) |#2|)) (-15 -2713 ((-484) (-583 (-2 (|:| |den| (-484)) (|:| |gcdnum| (-484)))))) (-15 -2714 ((-484) |#2|)) (-15 -2715 (|#2| |#2|))) (-1154 (-349 (-484))) (-1154 (-349 |#1|))) (T -824)) +((-2715 (*1 *2 *2) (-12 (-4 *3 (-1154 (-349 (-484)))) (-5 *1 (-824 *3 *2)) (-4 *2 (-1154 (-349 *3))))) (-2714 (*1 *2 *3) (-12 (-4 *4 (-1154 (-349 *2))) (-5 *2 (-484)) (-5 *1 (-824 *4 *3)) (-4 *3 (-1154 (-349 *4))))) (-2713 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| |den| (-484)) (|:| |gcdnum| (-484))))) (-4 *4 (-1154 (-349 *2))) (-5 *2 (-484)) (-5 *1 (-824 *4 *5)) (-4 *5 (-1154 (-349 *4))))) (-2712 (*1 *2 *3) (-12 (-4 *4 (-1154 (-349 *2))) (-5 *2 (-484)) (-5 *1 (-824 *4 *3)) (-4 *3 (-1154 (-349 *4))))) (-2712 (*1 *2 *3) (-12 (-4 *3 (-1154 (-349 (-484)))) (-5 *2 (-2 (|:| |den| (-484)) (|:| |gcdnum| (-484)))) (-5 *1 (-824 *3 *4)) (-4 *4 (-1154 (-349 *3))))) (-2711 (*1 *2 *3) (-12 (-5 *3 (-484)) (-4 *4 (-1154 (-349 *3))) (-5 *2 (-830)) (-5 *1 (-824 *4 *5)) (-4 *5 (-1154 (-349 *4)))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-3129 ((|#1| $) 99 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3774 (($ $) NIL T ELT)) (-3970 (((-347 $) $) NIL T ELT)) (-1607 (((-85) $ $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-2564 (($ $ $) NIL T ELT)) (-3466 (((-3 $ #1#) $) 93 T ELT)) (-2563 (($ $ $) NIL T ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-3722 (((-85) $) NIL T ELT)) (-2723 (($ |#1| (-347 |#1|)) 91 T ELT)) (-2717 (((-1084 |#1|) |#1| |#1|) 52 T ELT)) (-2716 (($ $) 60 T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2718 (((-484) $) 96 T ELT)) (-2719 (($ $ (-484)) 98 T ELT)) (-1604 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-1890 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2484 (($ $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3144 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-2720 ((|#1| $) 95 T ELT)) (-2721 (((-347 |#1|) $) 94 T ELT)) (-3731 (((-347 $) $) NIL T ELT)) (-1605 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3465 (((-3 $ #1#) $ $) 92 T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-1606 (((-694) $) NIL T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL T ELT)) (-2722 (($ $) 49 T ELT)) (-3945 (((-772) $) 123 T ELT) (($ (-484)) 72 T ELT) (($ $) NIL T ELT) (($ (-349 (-484))) NIL T ELT) (($ |#1|) 40 T ELT) (((-349 |#1|) $) 77 T ELT) (($ (-349 (-347 |#1|))) 85 T ELT)) (-3126 (((-694)) 70 T CONST)) (-1264 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 12 T CONST)) (-3056 (((-85) $ $) 86 T ELT)) (-3948 (($ $ $) NIL T ELT)) (-3836 (($ $) 107 T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) 48 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 109 T ELT) (($ $ $) 47 T ELT) (($ $ (-349 (-484))) NIL T ELT) (($ (-349 (-484)) $) NIL T ELT) (($ |#1| $) 108 T ELT) (($ $ |#1|) NIL T ELT))) +(((-825 |#1|) (-13 (-312) (-38 |#1|) (-10 -8 (-15 -3945 ((-349 |#1|) $)) (-15 -3945 ($ (-349 (-347 |#1|)))) (-15 -2722 ($ $)) (-15 -2721 ((-347 |#1|) $)) (-15 -2720 (|#1| $)) (-15 -2719 ($ $ (-484))) (-15 -2718 ((-484) $)) (-15 -2717 ((-1084 |#1|) |#1| |#1|)) (-15 -2716 ($ $)) (-15 -2723 ($ |#1| (-347 |#1|))) (-15 -3129 (|#1| $)))) (-258)) (T -825)) +((-3945 (*1 *2 *1) (-12 (-5 *2 (-349 *3)) (-5 *1 (-825 *3)) (-4 *3 (-258)))) (-3945 (*1 *1 *2) (-12 (-5 *2 (-349 (-347 *3))) (-4 *3 (-258)) (-5 *1 (-825 *3)))) (-2722 (*1 *1 *1) (-12 (-5 *1 (-825 *2)) (-4 *2 (-258)))) (-2721 (*1 *2 *1) (-12 (-5 *2 (-347 *3)) (-5 *1 (-825 *3)) (-4 *3 (-258)))) (-2720 (*1 *2 *1) (-12 (-5 *1 (-825 *2)) (-4 *2 (-258)))) (-2719 (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-825 *3)) (-4 *3 (-258)))) (-2718 (*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-825 *3)) (-4 *3 (-258)))) (-2717 (*1 *2 *3 *3) (-12 (-5 *2 (-1084 *3)) (-5 *1 (-825 *3)) (-4 *3 (-258)))) (-2716 (*1 *1 *1) (-12 (-5 *1 (-825 *2)) (-4 *2 (-258)))) (-2723 (*1 *1 *2 *3) (-12 (-5 *3 (-347 *2)) (-4 *2 (-258)) (-5 *1 (-825 *2)))) (-3129 (*1 *2 *1) (-12 (-5 *1 (-825 *2)) (-4 *2 (-258))))) +((-2723 (((-51) (-857 |#1|) (-347 (-857 |#1|)) (-1089)) 17 T ELT) (((-51) (-349 (-857 |#1|)) (-1089)) 18 T ELT))) +(((-826 |#1|) (-10 -7 (-15 -2723 ((-51) (-349 (-857 |#1|)) (-1089))) (-15 -2723 ((-51) (-857 |#1|) (-347 (-857 |#1|)) (-1089)))) (-13 (-258) (-120))) (T -826)) +((-2723 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-347 (-857 *6))) (-5 *5 (-1089)) (-5 *3 (-857 *6)) (-4 *6 (-13 (-258) (-120))) (-5 *2 (-51)) (-5 *1 (-826 *6)))) (-2723 (*1 *2 *3 *4) (-12 (-5 *3 (-349 (-857 *5))) (-5 *4 (-1089)) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-51)) (-5 *1 (-826 *5))))) +((-2724 ((|#4| (-583 |#4|)) 148 T ELT) (((-1084 |#4|) (-1084 |#4|) (-1084 |#4|)) 85 T ELT) ((|#4| |#4| |#4|) 147 T ELT)) (-3144 (((-1084 |#4|) (-583 (-1084 |#4|))) 141 T ELT) (((-1084 |#4|) (-1084 |#4|) (-1084 |#4|)) 61 T ELT) ((|#4| (-583 |#4|)) 70 T ELT) ((|#4| |#4| |#4|) 108 T ELT))) +(((-827 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3144 (|#4| |#4| |#4|)) (-15 -3144 (|#4| (-583 |#4|))) (-15 -3144 ((-1084 |#4|) (-1084 |#4|) (-1084 |#4|))) (-15 -3144 ((-1084 |#4|) (-583 (-1084 |#4|)))) (-15 -2724 (|#4| |#4| |#4|)) (-15 -2724 ((-1084 |#4|) (-1084 |#4|) (-1084 |#4|))) (-15 -2724 (|#4| (-583 |#4|)))) (-717) (-756) (-258) (-861 |#3| |#1| |#2|)) (T -827)) +((-2724 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-861 *6 *4 *5)) (-5 *1 (-827 *4 *5 *6 *2)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-258)))) (-2724 (*1 *2 *2 *2) (-12 (-5 *2 (-1084 *6)) (-4 *6 (-861 *5 *3 *4)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *5 (-258)) (-5 *1 (-827 *3 *4 *5 *6)))) (-2724 (*1 *2 *2 *2) (-12 (-4 *3 (-717)) (-4 *4 (-756)) (-4 *5 (-258)) (-5 *1 (-827 *3 *4 *5 *2)) (-4 *2 (-861 *5 *3 *4)))) (-3144 (*1 *2 *3) (-12 (-5 *3 (-583 (-1084 *7))) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-258)) (-5 *2 (-1084 *7)) (-5 *1 (-827 *4 *5 *6 *7)) (-4 *7 (-861 *6 *4 *5)))) (-3144 (*1 *2 *2 *2) (-12 (-5 *2 (-1084 *6)) (-4 *6 (-861 *5 *3 *4)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *5 (-258)) (-5 *1 (-827 *3 *4 *5 *6)))) (-3144 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-861 *6 *4 *5)) (-5 *1 (-827 *4 *5 *6 *2)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-258)))) (-3144 (*1 *2 *2 *2) (-12 (-4 *3 (-717)) (-4 *4 (-756)) (-4 *5 (-258)) (-5 *1 (-827 *3 *4 *5 *2)) (-4 *2 (-861 *5 *3 *4))))) +((-2737 (((-816 (-484)) (-884)) 38 T ELT) (((-816 (-484)) (-583 (-484))) 34 T ELT)) (-2725 (((-816 (-484)) (-583 (-484))) 66 T ELT) (((-816 (-484)) (-830)) 67 T ELT)) (-2736 (((-816 (-484))) 39 T ELT)) (-2734 (((-816 (-484))) 53 T ELT) (((-816 (-484)) (-583 (-484))) 52 T ELT)) (-2733 (((-816 (-484))) 51 T ELT) (((-816 (-484)) (-583 (-484))) 50 T ELT)) (-2732 (((-816 (-484))) 49 T ELT) (((-816 (-484)) (-583 (-484))) 48 T ELT)) (-2731 (((-816 (-484))) 47 T ELT) (((-816 (-484)) (-583 (-484))) 46 T ELT)) (-2730 (((-816 (-484))) 45 T ELT) (((-816 (-484)) (-583 (-484))) 44 T ELT)) (-2735 (((-816 (-484))) 55 T ELT) (((-816 (-484)) (-583 (-484))) 54 T ELT)) (-2729 (((-816 (-484)) (-583 (-484))) 71 T ELT) (((-816 (-484)) (-830)) 73 T ELT)) (-2728 (((-816 (-484)) (-583 (-484))) 68 T ELT) (((-816 (-484)) (-830)) 69 T ELT)) (-2726 (((-816 (-484)) (-583 (-484))) 64 T ELT) (((-816 (-484)) (-830)) 65 T ELT)) (-2727 (((-816 (-484)) (-583 (-830))) 57 T ELT))) +(((-828) (-10 -7 (-15 -2725 ((-816 (-484)) (-830))) (-15 -2725 ((-816 (-484)) (-583 (-484)))) (-15 -2726 ((-816 (-484)) (-830))) (-15 -2726 ((-816 (-484)) (-583 (-484)))) (-15 -2727 ((-816 (-484)) (-583 (-830)))) (-15 -2728 ((-816 (-484)) (-830))) (-15 -2728 ((-816 (-484)) (-583 (-484)))) (-15 -2729 ((-816 (-484)) (-830))) (-15 -2729 ((-816 (-484)) (-583 (-484)))) (-15 -2730 ((-816 (-484)) (-583 (-484)))) (-15 -2730 ((-816 (-484)))) (-15 -2731 ((-816 (-484)) (-583 (-484)))) (-15 -2731 ((-816 (-484)))) (-15 -2732 ((-816 (-484)) (-583 (-484)))) (-15 -2732 ((-816 (-484)))) (-15 -2733 ((-816 (-484)) (-583 (-484)))) (-15 -2733 ((-816 (-484)))) (-15 -2734 ((-816 (-484)) (-583 (-484)))) (-15 -2734 ((-816 (-484)))) (-15 -2735 ((-816 (-484)) (-583 (-484)))) (-15 -2735 ((-816 (-484)))) (-15 -2736 ((-816 (-484)))) (-15 -2737 ((-816 (-484)) (-583 (-484)))) (-15 -2737 ((-816 (-484)) (-884))))) (T -828)) +((-2737 (*1 *2 *3) (-12 (-5 *3 (-884)) (-5 *2 (-816 (-484))) (-5 *1 (-828)))) (-2737 (*1 *2 *3) (-12 (-5 *3 (-583 (-484))) (-5 *2 (-816 (-484))) (-5 *1 (-828)))) (-2736 (*1 *2) (-12 (-5 *2 (-816 (-484))) (-5 *1 (-828)))) (-2735 (*1 *2) (-12 (-5 *2 (-816 (-484))) (-5 *1 (-828)))) (-2735 (*1 *2 *3) (-12 (-5 *3 (-583 (-484))) (-5 *2 (-816 (-484))) (-5 *1 (-828)))) (-2734 (*1 *2) (-12 (-5 *2 (-816 (-484))) (-5 *1 (-828)))) (-2734 (*1 *2 *3) (-12 (-5 *3 (-583 (-484))) (-5 *2 (-816 (-484))) (-5 *1 (-828)))) (-2733 (*1 *2) (-12 (-5 *2 (-816 (-484))) (-5 *1 (-828)))) (-2733 (*1 *2 *3) (-12 (-5 *3 (-583 (-484))) (-5 *2 (-816 (-484))) (-5 *1 (-828)))) (-2732 (*1 *2) (-12 (-5 *2 (-816 (-484))) (-5 *1 (-828)))) (-2732 (*1 *2 *3) (-12 (-5 *3 (-583 (-484))) (-5 *2 (-816 (-484))) (-5 *1 (-828)))) (-2731 (*1 *2) (-12 (-5 *2 (-816 (-484))) (-5 *1 (-828)))) (-2731 (*1 *2 *3) (-12 (-5 *3 (-583 (-484))) (-5 *2 (-816 (-484))) (-5 *1 (-828)))) (-2730 (*1 *2) (-12 (-5 *2 (-816 (-484))) (-5 *1 (-828)))) (-2730 (*1 *2 *3) (-12 (-5 *3 (-583 (-484))) (-5 *2 (-816 (-484))) (-5 *1 (-828)))) (-2729 (*1 *2 *3) (-12 (-5 *3 (-583 (-484))) (-5 *2 (-816 (-484))) (-5 *1 (-828)))) (-2729 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-816 (-484))) (-5 *1 (-828)))) (-2728 (*1 *2 *3) (-12 (-5 *3 (-583 (-484))) (-5 *2 (-816 (-484))) (-5 *1 (-828)))) (-2728 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-816 (-484))) (-5 *1 (-828)))) (-2727 (*1 *2 *3) (-12 (-5 *3 (-583 (-830))) (-5 *2 (-816 (-484))) (-5 *1 (-828)))) (-2726 (*1 *2 *3) (-12 (-5 *3 (-583 (-484))) (-5 *2 (-816 (-484))) (-5 *1 (-828)))) (-2726 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-816 (-484))) (-5 *1 (-828)))) (-2725 (*1 *2 *3) (-12 (-5 *3 (-583 (-484))) (-5 *2 (-816 (-484))) (-5 *1 (-828)))) (-2725 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-816 (-484))) (-5 *1 (-828))))) +((-2739 (((-583 (-857 |#1|)) (-583 (-857 |#1|)) (-583 (-1089))) 14 T ELT)) (-2738 (((-583 (-857 |#1|)) (-583 (-857 |#1|)) (-583 (-1089))) 13 T ELT))) +(((-829 |#1|) (-10 -7 (-15 -2738 ((-583 (-857 |#1|)) (-583 (-857 |#1|)) (-583 (-1089)))) (-15 -2739 ((-583 (-857 |#1|)) (-583 (-857 |#1|)) (-583 (-1089))))) (-391)) (T -829)) +((-2739 (*1 *2 *2 *3) (-12 (-5 *2 (-583 (-857 *4))) (-5 *3 (-583 (-1089))) (-4 *4 (-391)) (-5 *1 (-829 *4)))) (-2738 (*1 *2 *2 *3) (-12 (-5 *2 (-583 (-857 *4))) (-5 *3 (-583 (-1089))) (-4 *4 (-391)) (-5 *1 (-829 *4))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-3466 (((-3 $ "failed") $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2531 (($ $ $) NIL T ELT)) (-2857 (($ $ $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3144 (($ $ $) NIL T ELT)) (-3945 (((-772) $) NIL T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2666 (($) NIL T CONST)) (-2566 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (** (($ $ (-694)) NIL T ELT) (($ $ (-830)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ $ $) NIL T ELT))) +(((-830) (-13 (-718) (-663) (-10 -8 (-15 -3144 ($ $ $)) (-6 (-3996 "*"))))) (T -830)) +((-3144 (*1 *1 *1 *1) (-5 *1 (-830)))) +((-694) (|%ilt| 0 |#1|)) +((-3945 (((-265 |#1|) (-416)) 16 T ELT))) +(((-831 |#1|) (-10 -7 (-15 -3945 ((-265 |#1|) (-416)))) (-495)) (T -831)) +((-3945 (*1 *2 *3) (-12 (-5 *3 (-416)) (-5 *2 (-265 *4)) (-5 *1 (-831 *4)) (-4 *4 (-495))))) +((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) 55 T ELT)) (-2063 (($ $) 54 T ELT)) (-2061 (((-85) $) 52 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3723 (($) 23 T CONST)) (-3466 (((-3 $ "failed") $) 42 T ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) 66 T ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-1890 (($ $ $) 60 T ELT) (($ (-583 $)) 59 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) 58 T ELT)) (-3144 (($ $ $) 62 T ELT) (($ (-583 $)) 61 T ELT)) (-3465 (((-3 $ "failed") $ $) 56 T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) 65 T ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ $) 57 T ELT)) (-3126 (((-694)) 40 T CONST)) (-1264 (((-85) $ $) 6 T ELT)) (-2062 (((-85) $ $) 53 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT))) +(((-832) (-113)) (T -832)) +((-2741 (*1 *2 *3) (-12 (-4 *1 (-832)) (-5 *2 (-2 (|:| -3953 (-583 *1)) (|:| -2409 *1))) (-5 *3 (-583 *1)))) (-2740 (*1 *2 *3 *1) (-12 (-4 *1 (-832)) (-5 *2 (-632 (-583 *1))) (-5 *3 (-583 *1))))) +(-13 (-391) (-10 -8 (-15 -2741 ((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $))) (-15 -2740 ((-632 (-583 $)) (-583 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-555 (-484)) . T) ((-555 $) . T) ((-552 (-772)) . T) ((-146) . T) ((-246) . T) ((-391) . T) ((-495) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 $) . T) ((-590 $) . T) ((-582 $) . T) ((-654 $) . T) ((-663) . T) ((-963 $) . T) ((-968 $) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T)) +((-3105 (((-1084 |#2|) (-583 |#2|) (-583 |#2|)) 17 T ELT) (((-1147 |#1| |#2|) (-1147 |#1| |#2|) (-583 |#2|) (-583 |#2|)) 13 T ELT))) +(((-833 |#1| |#2|) (-10 -7 (-15 -3105 ((-1147 |#1| |#2|) (-1147 |#1| |#2|) (-583 |#2|) (-583 |#2|))) (-15 -3105 ((-1084 |#2|) (-583 |#2|) (-583 |#2|)))) (-1089) (-312)) (T -833)) +((-3105 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *5)) (-4 *5 (-312)) (-5 *2 (-1084 *5)) (-5 *1 (-833 *4 *5)) (-14 *4 (-1089)))) (-3105 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1147 *4 *5)) (-5 *3 (-583 *5)) (-14 *4 (-1089)) (-4 *5 (-312)) (-5 *1 (-833 *4 *5))))) +((-2742 ((|#2| (-583 |#1|) (-583 |#1|)) 28 T ELT))) +(((-834 |#1| |#2|) (-10 -7 (-15 -2742 (|#2| (-583 |#1|) (-583 |#1|)))) (-312) (-1154 |#1|)) (T -834)) +((-2742 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-312)) (-4 *2 (-1154 *4)) (-5 *1 (-834 *4 *2))))) +((-2744 (((-484) (-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-857 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1178 (-349 (-857 |#1|)))) (|:| -2012 (-583 (-1178 (-349 (-857 |#1|))))))))) (-1072)) 175 T ELT)) (-2763 ((|#4| |#4|) 194 T ELT)) (-2748 (((-583 (-349 (-857 |#1|))) (-583 (-1089))) 146 T ELT)) (-2762 (((-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-857 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1178 (-349 (-857 |#1|)))) (|:| -2012 (-583 (-1178 (-349 (-857 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-484))) (|:| |cols| (-583 (-484)))) (-630 |#4|) (-583 (-349 (-857 |#1|))) (-583 (-583 |#4|)) (-694) (-694) (-484)) 88 T ELT)) (-2752 (((-2 (|:| |partsol| (-1178 (-349 (-857 |#1|)))) (|:| -2012 (-583 (-1178 (-349 (-857 |#1|)))))) (-2 (|:| |partsol| (-1178 (-349 (-857 |#1|)))) (|:| -2012 (-583 (-1178 (-349 (-857 |#1|)))))) (-583 |#4|)) 69 T ELT)) (-2761 (((-630 |#4|) (-630 |#4|) (-583 |#4|)) 65 T ELT)) (-2745 (((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-857 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1178 (-349 (-857 |#1|)))) (|:| -2012 (-583 (-1178 (-349 (-857 |#1|))))))))) (-1072)) 187 T ELT)) (-2743 (((-484) (-630 |#4|) (-830) (-1072)) 167 T ELT) (((-484) (-630 |#4|) (-583 (-1089)) (-830) (-1072)) 166 T ELT) (((-484) (-630 |#4|) (-583 |#4|) (-830) (-1072)) 165 T ELT) (((-484) (-630 |#4|) (-1072)) 154 T ELT) (((-484) (-630 |#4|) (-583 (-1089)) (-1072)) 153 T ELT) (((-484) (-630 |#4|) (-583 |#4|) (-1072)) 152 T ELT) (((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-857 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1178 (-349 (-857 |#1|)))) (|:| -2012 (-583 (-1178 (-349 (-857 |#1|))))))))) (-630 |#4|) (-830)) 151 T ELT) (((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-857 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1178 (-349 (-857 |#1|)))) (|:| -2012 (-583 (-1178 (-349 (-857 |#1|))))))))) (-630 |#4|) (-583 (-1089)) (-830)) 150 T ELT) (((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-857 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1178 (-349 (-857 |#1|)))) (|:| -2012 (-583 (-1178 (-349 (-857 |#1|))))))))) (-630 |#4|) (-583 |#4|) (-830)) 149 T ELT) (((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-857 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1178 (-349 (-857 |#1|)))) (|:| -2012 (-583 (-1178 (-349 (-857 |#1|))))))))) (-630 |#4|)) 148 T ELT) (((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-857 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1178 (-349 (-857 |#1|)))) (|:| -2012 (-583 (-1178 (-349 (-857 |#1|))))))))) (-630 |#4|) (-583 (-1089))) 147 T ELT) (((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-857 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1178 (-349 (-857 |#1|)))) (|:| -2012 (-583 (-1178 (-349 (-857 |#1|))))))))) (-630 |#4|) (-583 |#4|)) 143 T ELT)) (-2749 ((|#4| (-857 |#1|)) 80 T ELT)) (-2759 (((-85) (-583 |#4|) (-583 (-583 |#4|))) 191 T ELT)) (-2758 (((-583 (-583 (-484))) (-484) (-484)) 161 T ELT)) (-2757 (((-583 (-583 |#4|)) (-583 (-583 |#4|))) 106 T ELT)) (-2756 (((-694) (-583 (-2 (|:| -3108 (-694)) (|:| |eqns| (-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-484))) (|:| |cols| (-583 (-484)))))) (|:| |fgb| (-583 |#4|))))) 100 T ELT)) (-2755 (((-694) (-583 (-2 (|:| -3108 (-694)) (|:| |eqns| (-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-484))) (|:| |cols| (-583 (-484)))))) (|:| |fgb| (-583 |#4|))))) 99 T ELT)) (-2764 (((-85) (-583 (-857 |#1|))) 19 T ELT) (((-85) (-583 |#4|)) 15 T ELT)) (-2750 (((-2 (|:| |sysok| (-85)) (|:| |z0| (-583 |#4|)) (|:| |n0| (-583 |#4|))) (-583 |#4|) (-583 |#4|)) 84 T ELT)) (-2754 (((-583 |#4|) |#4|) 57 T ELT)) (-2747 (((-583 (-349 (-857 |#1|))) (-583 |#4|)) 142 T ELT) (((-630 (-349 (-857 |#1|))) (-630 |#4|)) 66 T ELT) (((-349 (-857 |#1|)) |#4|) 139 T ELT)) (-2746 (((-2 (|:| |rgl| (-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-857 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1178 (-349 (-857 |#1|)))) (|:| -2012 (-583 (-1178 (-349 (-857 |#1|)))))))))) (|:| |rgsz| (-484))) (-630 |#4|) (-583 (-349 (-857 |#1|))) (-694) (-1072) (-484)) 112 T ELT)) (-2751 (((-583 (-2 (|:| -3108 (-694)) (|:| |eqns| (-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-484))) (|:| |cols| (-583 (-484)))))) (|:| |fgb| (-583 |#4|)))) (-630 |#4|) (-694)) 98 T ELT)) (-2760 (((-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-484))) (|:| |cols| (-583 (-484))))) (-630 |#4|) (-694)) 121 T ELT)) (-2753 (((-2 (|:| |partsol| (-1178 (-349 (-857 |#1|)))) (|:| -2012 (-583 (-1178 (-349 (-857 |#1|)))))) (-2 (|:| |mat| (-630 (-349 (-857 |#1|)))) (|:| |vec| (-583 (-349 (-857 |#1|)))) (|:| -3108 (-694)) (|:| |rows| (-583 (-484))) (|:| |cols| (-583 (-484))))) 56 T ELT))) +(((-835 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2743 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-857 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1178 (-349 (-857 |#1|)))) (|:| -2012 (-583 (-1178 (-349 (-857 |#1|))))))))) (-630 |#4|) (-583 |#4|))) (-15 -2743 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-857 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1178 (-349 (-857 |#1|)))) (|:| -2012 (-583 (-1178 (-349 (-857 |#1|))))))))) (-630 |#4|) (-583 (-1089)))) (-15 -2743 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-857 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1178 (-349 (-857 |#1|)))) (|:| -2012 (-583 (-1178 (-349 (-857 |#1|))))))))) (-630 |#4|))) (-15 -2743 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-857 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1178 (-349 (-857 |#1|)))) (|:| -2012 (-583 (-1178 (-349 (-857 |#1|))))))))) (-630 |#4|) (-583 |#4|) (-830))) (-15 -2743 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-857 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1178 (-349 (-857 |#1|)))) (|:| -2012 (-583 (-1178 (-349 (-857 |#1|))))))))) (-630 |#4|) (-583 (-1089)) (-830))) (-15 -2743 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-857 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1178 (-349 (-857 |#1|)))) (|:| -2012 (-583 (-1178 (-349 (-857 |#1|))))))))) (-630 |#4|) (-830))) (-15 -2743 ((-484) (-630 |#4|) (-583 |#4|) (-1072))) (-15 -2743 ((-484) (-630 |#4|) (-583 (-1089)) (-1072))) (-15 -2743 ((-484) (-630 |#4|) (-1072))) (-15 -2743 ((-484) (-630 |#4|) (-583 |#4|) (-830) (-1072))) (-15 -2743 ((-484) (-630 |#4|) (-583 (-1089)) (-830) (-1072))) (-15 -2743 ((-484) (-630 |#4|) (-830) (-1072))) (-15 -2744 ((-484) (-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-857 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1178 (-349 (-857 |#1|)))) (|:| -2012 (-583 (-1178 (-349 (-857 |#1|))))))))) (-1072))) (-15 -2745 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-857 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1178 (-349 (-857 |#1|)))) (|:| -2012 (-583 (-1178 (-349 (-857 |#1|))))))))) (-1072))) (-15 -2746 ((-2 (|:| |rgl| (-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-857 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1178 (-349 (-857 |#1|)))) (|:| -2012 (-583 (-1178 (-349 (-857 |#1|)))))))))) (|:| |rgsz| (-484))) (-630 |#4|) (-583 (-349 (-857 |#1|))) (-694) (-1072) (-484))) (-15 -2747 ((-349 (-857 |#1|)) |#4|)) (-15 -2747 ((-630 (-349 (-857 |#1|))) (-630 |#4|))) (-15 -2747 ((-583 (-349 (-857 |#1|))) (-583 |#4|))) (-15 -2748 ((-583 (-349 (-857 |#1|))) (-583 (-1089)))) (-15 -2749 (|#4| (-857 |#1|))) (-15 -2750 ((-2 (|:| |sysok| (-85)) (|:| |z0| (-583 |#4|)) (|:| |n0| (-583 |#4|))) (-583 |#4|) (-583 |#4|))) (-15 -2751 ((-583 (-2 (|:| -3108 (-694)) (|:| |eqns| (-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-484))) (|:| |cols| (-583 (-484)))))) (|:| |fgb| (-583 |#4|)))) (-630 |#4|) (-694))) (-15 -2752 ((-2 (|:| |partsol| (-1178 (-349 (-857 |#1|)))) (|:| -2012 (-583 (-1178 (-349 (-857 |#1|)))))) (-2 (|:| |partsol| (-1178 (-349 (-857 |#1|)))) (|:| -2012 (-583 (-1178 (-349 (-857 |#1|)))))) (-583 |#4|))) (-15 -2753 ((-2 (|:| |partsol| (-1178 (-349 (-857 |#1|)))) (|:| -2012 (-583 (-1178 (-349 (-857 |#1|)))))) (-2 (|:| |mat| (-630 (-349 (-857 |#1|)))) (|:| |vec| (-583 (-349 (-857 |#1|)))) (|:| -3108 (-694)) (|:| |rows| (-583 (-484))) (|:| |cols| (-583 (-484)))))) (-15 -2754 ((-583 |#4|) |#4|)) (-15 -2755 ((-694) (-583 (-2 (|:| -3108 (-694)) (|:| |eqns| (-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-484))) (|:| |cols| (-583 (-484)))))) (|:| |fgb| (-583 |#4|)))))) (-15 -2756 ((-694) (-583 (-2 (|:| -3108 (-694)) (|:| |eqns| (-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-484))) (|:| |cols| (-583 (-484)))))) (|:| |fgb| (-583 |#4|)))))) (-15 -2757 ((-583 (-583 |#4|)) (-583 (-583 |#4|)))) (-15 -2758 ((-583 (-583 (-484))) (-484) (-484))) (-15 -2759 ((-85) (-583 |#4|) (-583 (-583 |#4|)))) (-15 -2760 ((-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-484))) (|:| |cols| (-583 (-484))))) (-630 |#4|) (-694))) (-15 -2761 ((-630 |#4|) (-630 |#4|) (-583 |#4|))) (-15 -2762 ((-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-857 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1178 (-349 (-857 |#1|)))) (|:| -2012 (-583 (-1178 (-349 (-857 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-484))) (|:| |cols| (-583 (-484)))) (-630 |#4|) (-583 (-349 (-857 |#1|))) (-583 (-583 |#4|)) (-694) (-694) (-484))) (-15 -2763 (|#4| |#4|)) (-15 -2764 ((-85) (-583 |#4|))) (-15 -2764 ((-85) (-583 (-857 |#1|))))) (-13 (-258) (-120)) (-13 (-756) (-553 (-1089))) (-717) (-861 |#1| |#3| |#2|)) (T -835)) +((-2764 (*1 *2 *3) (-12 (-5 *3 (-583 (-857 *4))) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-756) (-553 (-1089)))) (-4 *6 (-717)) (-5 *2 (-85)) (-5 *1 (-835 *4 *5 *6 *7)) (-4 *7 (-861 *4 *6 *5)))) (-2764 (*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-861 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-756) (-553 (-1089)))) (-4 *6 (-717)) (-5 *2 (-85)) (-5 *1 (-835 *4 *5 *6 *7)))) (-2763 (*1 *2 *2) (-12 (-4 *3 (-13 (-258) (-120))) (-4 *4 (-13 (-756) (-553 (-1089)))) (-4 *5 (-717)) (-5 *1 (-835 *3 *4 *5 *2)) (-4 *2 (-861 *3 *5 *4)))) (-2762 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-583 (-484))) (|:| |cols| (-583 (-484))))) (-5 *4 (-630 *12)) (-5 *5 (-583 (-349 (-857 *9)))) (-5 *6 (-583 (-583 *12))) (-5 *7 (-694)) (-5 *8 (-484)) (-4 *9 (-13 (-258) (-120))) (-4 *12 (-861 *9 *11 *10)) (-4 *10 (-13 (-756) (-553 (-1089)))) (-4 *11 (-717)) (-5 *2 (-2 (|:| |eqzro| (-583 *12)) (|:| |neqzro| (-583 *12)) (|:| |wcond| (-583 (-857 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1178 (-349 (-857 *9)))) (|:| -2012 (-583 (-1178 (-349 (-857 *9))))))))) (-5 *1 (-835 *9 *10 *11 *12)))) (-2761 (*1 *2 *2 *3) (-12 (-5 *2 (-630 *7)) (-5 *3 (-583 *7)) (-4 *7 (-861 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-756) (-553 (-1089)))) (-4 *6 (-717)) (-5 *1 (-835 *4 *5 *6 *7)))) (-2760 (*1 *2 *3 *4) (-12 (-5 *3 (-630 *8)) (-5 *4 (-694)) (-4 *8 (-861 *5 *7 *6)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-756) (-553 (-1089)))) (-4 *7 (-717)) (-5 *2 (-583 (-2 (|:| |det| *8) (|:| |rows| (-583 (-484))) (|:| |cols| (-583 (-484)))))) (-5 *1 (-835 *5 *6 *7 *8)))) (-2759 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-583 *8))) (-5 *3 (-583 *8)) (-4 *8 (-861 *5 *7 *6)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-756) (-553 (-1089)))) (-4 *7 (-717)) (-5 *2 (-85)) (-5 *1 (-835 *5 *6 *7 *8)))) (-2758 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-756) (-553 (-1089)))) (-4 *6 (-717)) (-5 *2 (-583 (-583 (-484)))) (-5 *1 (-835 *4 *5 *6 *7)) (-5 *3 (-484)) (-4 *7 (-861 *4 *6 *5)))) (-2757 (*1 *2 *2) (-12 (-5 *2 (-583 (-583 *6))) (-4 *6 (-861 *3 *5 *4)) (-4 *3 (-13 (-258) (-120))) (-4 *4 (-13 (-756) (-553 (-1089)))) (-4 *5 (-717)) (-5 *1 (-835 *3 *4 *5 *6)))) (-2756 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3108 (-694)) (|:| |eqns| (-583 (-2 (|:| |det| *7) (|:| |rows| (-583 (-484))) (|:| |cols| (-583 (-484)))))) (|:| |fgb| (-583 *7))))) (-4 *7 (-861 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-756) (-553 (-1089)))) (-4 *6 (-717)) (-5 *2 (-694)) (-5 *1 (-835 *4 *5 *6 *7)))) (-2755 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3108 (-694)) (|:| |eqns| (-583 (-2 (|:| |det| *7) (|:| |rows| (-583 (-484))) (|:| |cols| (-583 (-484)))))) (|:| |fgb| (-583 *7))))) (-4 *7 (-861 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-756) (-553 (-1089)))) (-4 *6 (-717)) (-5 *2 (-694)) (-5 *1 (-835 *4 *5 *6 *7)))) (-2754 (*1 *2 *3) (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-756) (-553 (-1089)))) (-4 *6 (-717)) (-5 *2 (-583 *3)) (-5 *1 (-835 *4 *5 *6 *3)) (-4 *3 (-861 *4 *6 *5)))) (-2753 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |mat| (-630 (-349 (-857 *4)))) (|:| |vec| (-583 (-349 (-857 *4)))) (|:| -3108 (-694)) (|:| |rows| (-583 (-484))) (|:| |cols| (-583 (-484))))) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-756) (-553 (-1089)))) (-4 *6 (-717)) (-5 *2 (-2 (|:| |partsol| (-1178 (-349 (-857 *4)))) (|:| -2012 (-583 (-1178 (-349 (-857 *4))))))) (-5 *1 (-835 *4 *5 *6 *7)) (-4 *7 (-861 *4 *6 *5)))) (-2752 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1178 (-349 (-857 *4)))) (|:| -2012 (-583 (-1178 (-349 (-857 *4))))))) (-5 *3 (-583 *7)) (-4 *4 (-13 (-258) (-120))) (-4 *7 (-861 *4 *6 *5)) (-4 *5 (-13 (-756) (-553 (-1089)))) (-4 *6 (-717)) (-5 *1 (-835 *4 *5 *6 *7)))) (-2751 (*1 *2 *3 *4) (-12 (-5 *3 (-630 *8)) (-4 *8 (-861 *5 *7 *6)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-756) (-553 (-1089)))) (-4 *7 (-717)) (-5 *2 (-583 (-2 (|:| -3108 (-694)) (|:| |eqns| (-583 (-2 (|:| |det| *8) (|:| |rows| (-583 (-484))) (|:| |cols| (-583 (-484)))))) (|:| |fgb| (-583 *8))))) (-5 *1 (-835 *5 *6 *7 *8)) (-5 *4 (-694)))) (-2750 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-756) (-553 (-1089)))) (-4 *6 (-717)) (-4 *7 (-861 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-85)) (|:| |z0| (-583 *7)) (|:| |n0| (-583 *7)))) (-5 *1 (-835 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) (-2749 (*1 *2 *3) (-12 (-5 *3 (-857 *4)) (-4 *4 (-13 (-258) (-120))) (-4 *2 (-861 *4 *6 *5)) (-5 *1 (-835 *4 *5 *6 *2)) (-4 *5 (-13 (-756) (-553 (-1089)))) (-4 *6 (-717)))) (-2748 (*1 *2 *3) (-12 (-5 *3 (-583 (-1089))) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-756) (-553 (-1089)))) (-4 *6 (-717)) (-5 *2 (-583 (-349 (-857 *4)))) (-5 *1 (-835 *4 *5 *6 *7)) (-4 *7 (-861 *4 *6 *5)))) (-2747 (*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-861 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-756) (-553 (-1089)))) (-4 *6 (-717)) (-5 *2 (-583 (-349 (-857 *4)))) (-5 *1 (-835 *4 *5 *6 *7)))) (-2747 (*1 *2 *3) (-12 (-5 *3 (-630 *7)) (-4 *7 (-861 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-756) (-553 (-1089)))) (-4 *6 (-717)) (-5 *2 (-630 (-349 (-857 *4)))) (-5 *1 (-835 *4 *5 *6 *7)))) (-2747 (*1 *2 *3) (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-756) (-553 (-1089)))) (-4 *6 (-717)) (-5 *2 (-349 (-857 *4))) (-5 *1 (-835 *4 *5 *6 *3)) (-4 *3 (-861 *4 *6 *5)))) (-2746 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-630 *11)) (-5 *4 (-583 (-349 (-857 *8)))) (-5 *5 (-694)) (-5 *6 (-1072)) (-4 *8 (-13 (-258) (-120))) (-4 *11 (-861 *8 *10 *9)) (-4 *9 (-13 (-756) (-553 (-1089)))) (-4 *10 (-717)) (-5 *2 (-2 (|:| |rgl| (-583 (-2 (|:| |eqzro| (-583 *11)) (|:| |neqzro| (-583 *11)) (|:| |wcond| (-583 (-857 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1178 (-349 (-857 *8)))) (|:| -2012 (-583 (-1178 (-349 (-857 *8)))))))))) (|:| |rgsz| (-484)))) (-5 *1 (-835 *8 *9 *10 *11)) (-5 *7 (-484)))) (-2745 (*1 *2 *3) (-12 (-5 *3 (-1072)) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-756) (-553 (-1089)))) (-4 *6 (-717)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *7)) (|:| |neqzro| (-583 *7)) (|:| |wcond| (-583 (-857 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1178 (-349 (-857 *4)))) (|:| -2012 (-583 (-1178 (-349 (-857 *4)))))))))) (-5 *1 (-835 *4 *5 *6 *7)) (-4 *7 (-861 *4 *6 *5)))) (-2744 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-2 (|:| |eqzro| (-583 *8)) (|:| |neqzro| (-583 *8)) (|:| |wcond| (-583 (-857 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1178 (-349 (-857 *5)))) (|:| -2012 (-583 (-1178 (-349 (-857 *5)))))))))) (-5 *4 (-1072)) (-4 *5 (-13 (-258) (-120))) (-4 *8 (-861 *5 *7 *6)) (-4 *6 (-13 (-756) (-553 (-1089)))) (-4 *7 (-717)) (-5 *2 (-484)) (-5 *1 (-835 *5 *6 *7 *8)))) (-2743 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-630 *9)) (-5 *4 (-830)) (-5 *5 (-1072)) (-4 *9 (-861 *6 *8 *7)) (-4 *6 (-13 (-258) (-120))) (-4 *7 (-13 (-756) (-553 (-1089)))) (-4 *8 (-717)) (-5 *2 (-484)) (-5 *1 (-835 *6 *7 *8 *9)))) (-2743 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-630 *10)) (-5 *4 (-583 (-1089))) (-5 *5 (-830)) (-5 *6 (-1072)) (-4 *10 (-861 *7 *9 *8)) (-4 *7 (-13 (-258) (-120))) (-4 *8 (-13 (-756) (-553 (-1089)))) (-4 *9 (-717)) (-5 *2 (-484)) (-5 *1 (-835 *7 *8 *9 *10)))) (-2743 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-630 *10)) (-5 *4 (-583 *10)) (-5 *5 (-830)) (-5 *6 (-1072)) (-4 *10 (-861 *7 *9 *8)) (-4 *7 (-13 (-258) (-120))) (-4 *8 (-13 (-756) (-553 (-1089)))) (-4 *9 (-717)) (-5 *2 (-484)) (-5 *1 (-835 *7 *8 *9 *10)))) (-2743 (*1 *2 *3 *4) (-12 (-5 *3 (-630 *8)) (-5 *4 (-1072)) (-4 *8 (-861 *5 *7 *6)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-756) (-553 (-1089)))) (-4 *7 (-717)) (-5 *2 (-484)) (-5 *1 (-835 *5 *6 *7 *8)))) (-2743 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-630 *9)) (-5 *4 (-583 (-1089))) (-5 *5 (-1072)) (-4 *9 (-861 *6 *8 *7)) (-4 *6 (-13 (-258) (-120))) (-4 *7 (-13 (-756) (-553 (-1089)))) (-4 *8 (-717)) (-5 *2 (-484)) (-5 *1 (-835 *6 *7 *8 *9)))) (-2743 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-630 *9)) (-5 *4 (-583 *9)) (-5 *5 (-1072)) (-4 *9 (-861 *6 *8 *7)) (-4 *6 (-13 (-258) (-120))) (-4 *7 (-13 (-756) (-553 (-1089)))) (-4 *8 (-717)) (-5 *2 (-484)) (-5 *1 (-835 *6 *7 *8 *9)))) (-2743 (*1 *2 *3 *4) (-12 (-5 *3 (-630 *8)) (-5 *4 (-830)) (-4 *8 (-861 *5 *7 *6)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-756) (-553 (-1089)))) (-4 *7 (-717)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *8)) (|:| |neqzro| (-583 *8)) (|:| |wcond| (-583 (-857 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1178 (-349 (-857 *5)))) (|:| -2012 (-583 (-1178 (-349 (-857 *5)))))))))) (-5 *1 (-835 *5 *6 *7 *8)))) (-2743 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-630 *9)) (-5 *4 (-583 (-1089))) (-5 *5 (-830)) (-4 *9 (-861 *6 *8 *7)) (-4 *6 (-13 (-258) (-120))) (-4 *7 (-13 (-756) (-553 (-1089)))) (-4 *8 (-717)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *9)) (|:| |neqzro| (-583 *9)) (|:| |wcond| (-583 (-857 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1178 (-349 (-857 *6)))) (|:| -2012 (-583 (-1178 (-349 (-857 *6)))))))))) (-5 *1 (-835 *6 *7 *8 *9)))) (-2743 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-630 *9)) (-5 *5 (-830)) (-4 *9 (-861 *6 *8 *7)) (-4 *6 (-13 (-258) (-120))) (-4 *7 (-13 (-756) (-553 (-1089)))) (-4 *8 (-717)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *9)) (|:| |neqzro| (-583 *9)) (|:| |wcond| (-583 (-857 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1178 (-349 (-857 *6)))) (|:| -2012 (-583 (-1178 (-349 (-857 *6)))))))))) (-5 *1 (-835 *6 *7 *8 *9)) (-5 *4 (-583 *9)))) (-2743 (*1 *2 *3) (-12 (-5 *3 (-630 *7)) (-4 *7 (-861 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-756) (-553 (-1089)))) (-4 *6 (-717)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *7)) (|:| |neqzro| (-583 *7)) (|:| |wcond| (-583 (-857 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1178 (-349 (-857 *4)))) (|:| -2012 (-583 (-1178 (-349 (-857 *4)))))))))) (-5 *1 (-835 *4 *5 *6 *7)))) (-2743 (*1 *2 *3 *4) (-12 (-5 *3 (-630 *8)) (-5 *4 (-583 (-1089))) (-4 *8 (-861 *5 *7 *6)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-756) (-553 (-1089)))) (-4 *7 (-717)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *8)) (|:| |neqzro| (-583 *8)) (|:| |wcond| (-583 (-857 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1178 (-349 (-857 *5)))) (|:| -2012 (-583 (-1178 (-349 (-857 *5)))))))))) (-5 *1 (-835 *5 *6 *7 *8)))) (-2743 (*1 *2 *3 *4) (-12 (-5 *3 (-630 *8)) (-4 *8 (-861 *5 *7 *6)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-756) (-553 (-1089)))) (-4 *7 (-717)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *8)) (|:| |neqzro| (-583 *8)) (|:| |wcond| (-583 (-857 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1178 (-349 (-857 *5)))) (|:| -2012 (-583 (-1178 (-349 (-857 *5)))))))))) (-5 *1 (-835 *5 *6 *7 *8)) (-5 *4 (-583 *8))))) +((-3873 (($ $ (-1001 (-179))) 125 T ELT) (($ $ (-1001 (-179)) (-1001 (-179))) 126 T ELT)) (-2896 (((-1001 (-179)) $) 73 T ELT)) (-2897 (((-1001 (-179)) $) 72 T ELT)) (-2788 (((-1001 (-179)) $) 74 T ELT)) (-2769 (((-484) (-484)) 66 T ELT)) (-2773 (((-484) (-484)) 61 T ELT)) (-2771 (((-484) (-484)) 64 T ELT)) (-2767 (((-85) (-85)) 68 T ELT)) (-2770 (((-484)) 65 T ELT)) (-3134 (($ $ (-1001 (-179))) 129 T ELT) (($ $) 130 T ELT)) (-2790 (($ (-1 (-854 (-179)) (-179)) (-1001 (-179))) 148 T ELT) (($ (-1 (-854 (-179)) (-179)) (-1001 (-179)) (-1001 (-179)) (-1001 (-179))) 149 T ELT)) (-2776 (($ (-1 (-179) (-179)) (-1001 (-179))) 156 T ELT) (($ (-1 (-179) (-179))) 160 T ELT)) (-2789 (($ (-1 (-179) (-179)) (-1001 (-179))) 144 T ELT) (($ (-1 (-179) (-179)) (-1001 (-179)) (-1001 (-179))) 145 T ELT) (($ (-583 (-1 (-179) (-179))) (-1001 (-179))) 153 T ELT) (($ (-583 (-1 (-179) (-179))) (-1001 (-179)) (-1001 (-179))) 154 T ELT) (($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1001 (-179))) 146 T ELT) (($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1001 (-179)) (-1001 (-179)) (-1001 (-179))) 147 T ELT) (($ $ (-1001 (-179))) 131 T ELT)) (-2775 (((-85) $) 69 T ELT)) (-2766 (((-484)) 70 T ELT)) (-2774 (((-484)) 59 T ELT)) (-2772 (((-484)) 62 T ELT)) (-2898 (((-583 (-583 (-854 (-179)))) $) 35 T ELT)) (-2765 (((-85) (-85)) 71 T ELT)) (-3945 (((-772) $) 174 T ELT)) (-2768 (((-85)) 67 T ELT))) +(((-836) (-13 (-866) (-10 -8 (-15 -2789 ($ (-1 (-179) (-179)) (-1001 (-179)))) (-15 -2789 ($ (-1 (-179) (-179)) (-1001 (-179)) (-1001 (-179)))) (-15 -2789 ($ (-583 (-1 (-179) (-179))) (-1001 (-179)))) (-15 -2789 ($ (-583 (-1 (-179) (-179))) (-1001 (-179)) (-1001 (-179)))) (-15 -2789 ($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1001 (-179)))) (-15 -2789 ($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1001 (-179)) (-1001 (-179)) (-1001 (-179)))) (-15 -2790 ($ (-1 (-854 (-179)) (-179)) (-1001 (-179)))) (-15 -2790 ($ (-1 (-854 (-179)) (-179)) (-1001 (-179)) (-1001 (-179)) (-1001 (-179)))) (-15 -2776 ($ (-1 (-179) (-179)) (-1001 (-179)))) (-15 -2776 ($ (-1 (-179) (-179)))) (-15 -2789 ($ $ (-1001 (-179)))) (-15 -2775 ((-85) $)) (-15 -3873 ($ $ (-1001 (-179)))) (-15 -3873 ($ $ (-1001 (-179)) (-1001 (-179)))) (-15 -3134 ($ $ (-1001 (-179)))) (-15 -3134 ($ $)) (-15 -2788 ((-1001 (-179)) $)) (-15 -2774 ((-484))) (-15 -2773 ((-484) (-484))) (-15 -2772 ((-484))) (-15 -2771 ((-484) (-484))) (-15 -2770 ((-484))) (-15 -2769 ((-484) (-484))) (-15 -2768 ((-85))) (-15 -2767 ((-85) (-85))) (-15 -2766 ((-484))) (-15 -2765 ((-85) (-85)))))) (T -836)) +((-2789 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1001 (-179))) (-5 *1 (-836)))) (-2789 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1001 (-179))) (-5 *1 (-836)))) (-2789 (*1 *1 *2 *3) (-12 (-5 *2 (-583 (-1 (-179) (-179)))) (-5 *3 (-1001 (-179))) (-5 *1 (-836)))) (-2789 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-583 (-1 (-179) (-179)))) (-5 *3 (-1001 (-179))) (-5 *1 (-836)))) (-2789 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1001 (-179))) (-5 *1 (-836)))) (-2789 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1001 (-179))) (-5 *1 (-836)))) (-2790 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-854 (-179)) (-179))) (-5 *3 (-1001 (-179))) (-5 *1 (-836)))) (-2790 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-854 (-179)) (-179))) (-5 *3 (-1001 (-179))) (-5 *1 (-836)))) (-2776 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1001 (-179))) (-5 *1 (-836)))) (-2776 (*1 *1 *2) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *1 (-836)))) (-2789 (*1 *1 *1 *2) (-12 (-5 *2 (-1001 (-179))) (-5 *1 (-836)))) (-2775 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-836)))) (-3873 (*1 *1 *1 *2) (-12 (-5 *2 (-1001 (-179))) (-5 *1 (-836)))) (-3873 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1001 (-179))) (-5 *1 (-836)))) (-3134 (*1 *1 *1 *2) (-12 (-5 *2 (-1001 (-179))) (-5 *1 (-836)))) (-3134 (*1 *1 *1) (-5 *1 (-836))) (-2788 (*1 *2 *1) (-12 (-5 *2 (-1001 (-179))) (-5 *1 (-836)))) (-2774 (*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-836)))) (-2773 (*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-836)))) (-2772 (*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-836)))) (-2771 (*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-836)))) (-2770 (*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-836)))) (-2769 (*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-836)))) (-2768 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-836)))) (-2767 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-836)))) (-2766 (*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-836)))) (-2765 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-836))))) +((-2776 (((-836) |#1| (-1089)) 17 T ELT) (((-836) |#1| (-1089) (-1001 (-179))) 21 T ELT)) (-2789 (((-836) |#1| |#1| (-1089) (-1001 (-179))) 19 T ELT) (((-836) |#1| (-1089) (-1001 (-179))) 15 T ELT))) +(((-837 |#1|) (-10 -7 (-15 -2789 ((-836) |#1| (-1089) (-1001 (-179)))) (-15 -2789 ((-836) |#1| |#1| (-1089) (-1001 (-179)))) (-15 -2776 ((-836) |#1| (-1089) (-1001 (-179)))) (-15 -2776 ((-836) |#1| (-1089)))) (-553 (-473))) (T -837)) +((-2776 (*1 *2 *3 *4) (-12 (-5 *4 (-1089)) (-5 *2 (-836)) (-5 *1 (-837 *3)) (-4 *3 (-553 (-473))))) (-2776 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1089)) (-5 *5 (-1001 (-179))) (-5 *2 (-836)) (-5 *1 (-837 *3)) (-4 *3 (-553 (-473))))) (-2789 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1089)) (-5 *5 (-1001 (-179))) (-5 *2 (-836)) (-5 *1 (-837 *3)) (-4 *3 (-553 (-473))))) (-2789 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1089)) (-5 *5 (-1001 (-179))) (-5 *2 (-836)) (-5 *1 (-837 *3)) (-4 *3 (-553 (-473)))))) +((-3873 (($ $ (-1001 (-179)) (-1001 (-179)) (-1001 (-179))) 123 T ELT)) (-2895 (((-1001 (-179)) $) 64 T ELT)) (-2896 (((-1001 (-179)) $) 63 T ELT)) (-2897 (((-1001 (-179)) $) 62 T ELT)) (-2787 (((-583 (-583 (-179))) $) 69 T ELT)) (-2788 (((-1001 (-179)) $) 65 T ELT)) (-2781 (((-484) (-484)) 57 T ELT)) (-2785 (((-484) (-484)) 52 T ELT)) (-2783 (((-484) (-484)) 55 T ELT)) (-2779 (((-85) (-85)) 59 T ELT)) (-2782 (((-484)) 56 T ELT)) (-3134 (($ $ (-1001 (-179))) 126 T ELT) (($ $) 127 T ELT)) (-2790 (($ (-1 (-854 (-179)) (-179)) (-1001 (-179))) 133 T ELT) (($ (-1 (-854 (-179)) (-179)) (-1001 (-179)) (-1001 (-179)) (-1001 (-179)) (-1001 (-179))) 134 T ELT)) (-2789 (($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1001 (-179))) 140 T ELT) (($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1001 (-179)) (-1001 (-179)) (-1001 (-179)) (-1001 (-179))) 141 T ELT) (($ $ (-1001 (-179))) 129 T ELT)) (-2778 (((-484)) 60 T ELT)) (-2786 (((-484)) 50 T ELT)) (-2784 (((-484)) 53 T ELT)) (-2898 (((-583 (-583 (-854 (-179)))) $) 157 T ELT)) (-2777 (((-85) (-85)) 61 T ELT)) (-3945 (((-772) $) 155 T ELT)) (-2780 (((-85)) 58 T ELT))) +(((-838) (-13 (-887) (-10 -8 (-15 -2790 ($ (-1 (-854 (-179)) (-179)) (-1001 (-179)))) (-15 -2790 ($ (-1 (-854 (-179)) (-179)) (-1001 (-179)) (-1001 (-179)) (-1001 (-179)) (-1001 (-179)))) (-15 -2789 ($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1001 (-179)))) (-15 -2789 ($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1001 (-179)) (-1001 (-179)) (-1001 (-179)) (-1001 (-179)))) (-15 -2789 ($ $ (-1001 (-179)))) (-15 -3873 ($ $ (-1001 (-179)) (-1001 (-179)) (-1001 (-179)))) (-15 -3134 ($ $ (-1001 (-179)))) (-15 -3134 ($ $)) (-15 -2788 ((-1001 (-179)) $)) (-15 -2787 ((-583 (-583 (-179))) $)) (-15 -2786 ((-484))) (-15 -2785 ((-484) (-484))) (-15 -2784 ((-484))) (-15 -2783 ((-484) (-484))) (-15 -2782 ((-484))) (-15 -2781 ((-484) (-484))) (-15 -2780 ((-85))) (-15 -2779 ((-85) (-85))) (-15 -2778 ((-484))) (-15 -2777 ((-85) (-85)))))) (T -838)) +((-2790 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-854 (-179)) (-179))) (-5 *3 (-1001 (-179))) (-5 *1 (-838)))) (-2790 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-854 (-179)) (-179))) (-5 *3 (-1001 (-179))) (-5 *1 (-838)))) (-2789 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1001 (-179))) (-5 *1 (-838)))) (-2789 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1001 (-179))) (-5 *1 (-838)))) (-2789 (*1 *1 *1 *2) (-12 (-5 *2 (-1001 (-179))) (-5 *1 (-838)))) (-3873 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1001 (-179))) (-5 *1 (-838)))) (-3134 (*1 *1 *1 *2) (-12 (-5 *2 (-1001 (-179))) (-5 *1 (-838)))) (-3134 (*1 *1 *1) (-5 *1 (-838))) (-2788 (*1 *2 *1) (-12 (-5 *2 (-1001 (-179))) (-5 *1 (-838)))) (-2787 (*1 *2 *1) (-12 (-5 *2 (-583 (-583 (-179)))) (-5 *1 (-838)))) (-2786 (*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-838)))) (-2785 (*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-838)))) (-2784 (*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-838)))) (-2783 (*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-838)))) (-2782 (*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-838)))) (-2781 (*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-838)))) (-2780 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-838)))) (-2779 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-838)))) (-2778 (*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-838)))) (-2777 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-838))))) +((-2791 (((-583 (-1001 (-179))) (-583 (-583 (-854 (-179))))) 34 T ELT))) +(((-839) (-10 -7 (-15 -2791 ((-583 (-1001 (-179))) (-583 (-583 (-854 (-179)))))))) (T -839)) +((-2791 (*1 *2 *3) (-12 (-5 *3 (-583 (-583 (-854 (-179))))) (-5 *2 (-583 (-1001 (-179)))) (-5 *1 (-839))))) +((-2793 (((-265 (-484)) (-1089)) 16 T ELT)) (-2794 (((-265 (-484)) (-1089)) 14 T ELT)) (-3951 (((-265 (-484)) (-1089)) 12 T ELT)) (-2792 (((-265 (-484)) (-1089) (-446)) 19 T ELT))) +(((-840) (-10 -7 (-15 -2792 ((-265 (-484)) (-1089) (-446))) (-15 -3951 ((-265 (-484)) (-1089))) (-15 -2793 ((-265 (-484)) (-1089))) (-15 -2794 ((-265 (-484)) (-1089))))) (T -840)) +((-2794 (*1 *2 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-265 (-484))) (-5 *1 (-840)))) (-2793 (*1 *2 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-265 (-484))) (-5 *1 (-840)))) (-3951 (*1 *2 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-265 (-484))) (-5 *1 (-840)))) (-2792 (*1 *2 *3 *4) (-12 (-5 *3 (-1089)) (-5 *4 (-446)) (-5 *2 (-265 (-484))) (-5 *1 (-840))))) +((-2793 ((|#2| |#2|) 28 T ELT)) (-2794 ((|#2| |#2|) 29 T ELT)) (-3951 ((|#2| |#2|) 27 T ELT)) (-2792 ((|#2| |#2| (-446)) 26 T ELT))) +(((-841 |#1| |#2|) (-10 -7 (-15 -2792 (|#2| |#2| (-446))) (-15 -3951 (|#2| |#2|)) (-15 -2793 (|#2| |#2|)) (-15 -2794 (|#2| |#2|))) (-1013) (-363 |#1|)) (T -841)) +((-2794 (*1 *2 *2) (-12 (-4 *3 (-1013)) (-5 *1 (-841 *3 *2)) (-4 *2 (-363 *3)))) (-2793 (*1 *2 *2) (-12 (-4 *3 (-1013)) (-5 *1 (-841 *3 *2)) (-4 *2 (-363 *3)))) (-3951 (*1 *2 *2) (-12 (-4 *3 (-1013)) (-5 *1 (-841 *3 *2)) (-4 *2 (-363 *3)))) (-2792 (*1 *2 *2 *3) (-12 (-5 *3 (-446)) (-4 *4 (-1013)) (-5 *1 (-841 *4 *2)) (-4 *2 (-363 *4))))) +((-2796 (((-798 |#1| |#3|) |#2| (-800 |#1|) (-798 |#1| |#3|)) 25 T ELT)) (-2795 (((-1 (-85) |#2|) (-1 (-85) |#3|)) 13 T ELT))) +(((-842 |#1| |#2| |#3|) (-10 -7 (-15 -2795 ((-1 (-85) |#2|) (-1 (-85) |#3|))) (-15 -2796 ((-798 |#1| |#3|) |#2| (-800 |#1|) (-798 |#1| |#3|)))) (-1013) (-796 |#1|) (-13 (-1013) (-950 |#2|))) (T -842)) +((-2796 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-798 *5 *6)) (-5 *4 (-800 *5)) (-4 *5 (-1013)) (-4 *6 (-13 (-1013) (-950 *3))) (-4 *3 (-796 *5)) (-5 *1 (-842 *5 *3 *6)))) (-2795 (*1 *2 *3) (-12 (-5 *3 (-1 (-85) *6)) (-4 *6 (-13 (-1013) (-950 *5))) (-4 *5 (-796 *4)) (-4 *4 (-1013)) (-5 *2 (-1 (-85) *5)) (-5 *1 (-842 *4 *5 *6))))) +((-2796 (((-798 |#1| |#3|) |#3| (-800 |#1|) (-798 |#1| |#3|)) 30 T ELT))) +(((-843 |#1| |#2| |#3|) (-10 -7 (-15 -2796 ((-798 |#1| |#3|) |#3| (-800 |#1|) (-798 |#1| |#3|)))) (-1013) (-13 (-495) (-796 |#1|)) (-13 (-363 |#2|) (-553 (-800 |#1|)) (-796 |#1|) (-950 (-550 $)))) (T -843)) +((-2796 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-798 *5 *3)) (-4 *5 (-1013)) (-4 *3 (-13 (-363 *6) (-553 *4) (-796 *5) (-950 (-550 $)))) (-5 *4 (-800 *5)) (-4 *6 (-13 (-495) (-796 *5))) (-5 *1 (-843 *5 *6 *3))))) +((-2796 (((-798 (-484) |#1|) |#1| (-800 (-484)) (-798 (-484) |#1|)) 13 T ELT))) +(((-844 |#1|) (-10 -7 (-15 -2796 ((-798 (-484) |#1|) |#1| (-800 (-484)) (-798 (-484) |#1|)))) (-483)) (T -844)) +((-2796 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-798 (-484) *3)) (-5 *4 (-800 (-484))) (-4 *3 (-483)) (-5 *1 (-844 *3))))) +((-2796 (((-798 |#1| |#2|) (-550 |#2|) (-800 |#1|) (-798 |#1| |#2|)) 57 T ELT))) +(((-845 |#1| |#2|) (-10 -7 (-15 -2796 ((-798 |#1| |#2|) (-550 |#2|) (-800 |#1|) (-798 |#1| |#2|)))) (-1013) (-13 (-1013) (-950 (-550 $)) (-553 (-800 |#1|)) (-796 |#1|))) (T -845)) +((-2796 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-798 *5 *6)) (-5 *3 (-550 *6)) (-4 *5 (-1013)) (-4 *6 (-13 (-1013) (-950 (-550 $)) (-553 *4) (-796 *5))) (-5 *4 (-800 *5)) (-5 *1 (-845 *5 *6))))) +((-2796 (((-795 |#1| |#2| |#3|) |#3| (-800 |#1|) (-795 |#1| |#2| |#3|)) 17 T ELT))) +(((-846 |#1| |#2| |#3|) (-10 -7 (-15 -2796 ((-795 |#1| |#2| |#3|) |#3| (-800 |#1|) (-795 |#1| |#2| |#3|)))) (-1013) (-796 |#1|) (-608 |#2|)) (T -846)) +((-2796 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-795 *5 *6 *3)) (-5 *4 (-800 *5)) (-4 *5 (-1013)) (-4 *6 (-796 *5)) (-4 *3 (-608 *6)) (-5 *1 (-846 *5 *6 *3))))) +((-2796 (((-798 |#1| |#5|) |#5| (-800 |#1|) (-798 |#1| |#5|)) 17 (|has| |#3| (-796 |#1|)) ELT) (((-798 |#1| |#5|) |#5| (-800 |#1|) (-798 |#1| |#5|) (-1 (-798 |#1| |#5|) |#3| (-800 |#1|) (-798 |#1| |#5|))) 16 T ELT))) +(((-847 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2796 ((-798 |#1| |#5|) |#5| (-800 |#1|) (-798 |#1| |#5|) (-1 (-798 |#1| |#5|) |#3| (-800 |#1|) (-798 |#1| |#5|)))) (IF (|has| |#3| (-796 |#1|)) (-15 -2796 ((-798 |#1| |#5|) |#5| (-800 |#1|) (-798 |#1| |#5|))) |%noBranch|)) (-1013) (-717) (-756) (-13 (-961) (-796 |#1|)) (-13 (-861 |#4| |#2| |#3|) (-553 (-800 |#1|)))) (T -847)) +((-2796 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-798 *5 *3)) (-4 *5 (-1013)) (-4 *3 (-13 (-861 *8 *6 *7) (-553 *4))) (-5 *4 (-800 *5)) (-4 *7 (-796 *5)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *8 (-13 (-961) (-796 *5))) (-5 *1 (-847 *5 *6 *7 *8 *3)))) (-2796 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-798 *6 *3) *8 (-800 *6) (-798 *6 *3))) (-4 *8 (-756)) (-5 *2 (-798 *6 *3)) (-5 *4 (-800 *6)) (-4 *6 (-1013)) (-4 *3 (-13 (-861 *9 *7 *8) (-553 *4))) (-4 *7 (-717)) (-4 *9 (-13 (-961) (-796 *6))) (-5 *1 (-847 *6 *7 *8 *9 *3))))) +((-3209 (((-265 (-484)) (-1089) (-583 (-1 (-85) |#1|))) 18 T ELT) (((-265 (-484)) (-1089) (-1 (-85) |#1|)) 15 T ELT))) +(((-848 |#1|) (-10 -7 (-15 -3209 ((-265 (-484)) (-1089) (-1 (-85) |#1|))) (-15 -3209 ((-265 (-484)) (-1089) (-583 (-1 (-85) |#1|))))) (-1128)) (T -848)) +((-3209 (*1 *2 *3 *4) (-12 (-5 *3 (-1089)) (-5 *4 (-583 (-1 (-85) *5))) (-4 *5 (-1128)) (-5 *2 (-265 (-484))) (-5 *1 (-848 *5)))) (-3209 (*1 *2 *3 *4) (-12 (-5 *3 (-1089)) (-5 *4 (-1 (-85) *5)) (-4 *5 (-1128)) (-5 *2 (-265 (-484))) (-5 *1 (-848 *5))))) +((-3209 ((|#2| |#2| (-583 (-1 (-85) |#3|))) 12 T ELT) ((|#2| |#2| (-1 (-85) |#3|)) 13 T ELT))) +(((-849 |#1| |#2| |#3|) (-10 -7 (-15 -3209 (|#2| |#2| (-1 (-85) |#3|))) (-15 -3209 (|#2| |#2| (-583 (-1 (-85) |#3|))))) (-1013) (-363 |#1|) (-1128)) (T -849)) +((-3209 (*1 *2 *2 *3) (-12 (-5 *3 (-583 (-1 (-85) *5))) (-4 *5 (-1128)) (-4 *4 (-1013)) (-5 *1 (-849 *4 *2 *5)) (-4 *2 (-363 *4)))) (-3209 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-85) *5)) (-4 *5 (-1128)) (-4 *4 (-1013)) (-5 *1 (-849 *4 *2 *5)) (-4 *2 (-363 *4))))) +((-2796 (((-798 |#1| |#3|) |#3| (-800 |#1|) (-798 |#1| |#3|)) 25 T ELT))) +(((-850 |#1| |#2| |#3|) (-10 -7 (-15 -2796 ((-798 |#1| |#3|) |#3| (-800 |#1|) (-798 |#1| |#3|)))) (-1013) (-13 (-495) (-796 |#1|) (-553 (-800 |#1|))) (-904 |#2|)) (T -850)) +((-2796 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-798 *5 *3)) (-4 *5 (-1013)) (-4 *3 (-904 *6)) (-4 *6 (-13 (-495) (-796 *5) (-553 *4))) (-5 *4 (-800 *5)) (-5 *1 (-850 *5 *6 *3))))) +((-2796 (((-798 |#1| (-1089)) (-1089) (-800 |#1|) (-798 |#1| (-1089))) 18 T ELT))) +(((-851 |#1|) (-10 -7 (-15 -2796 ((-798 |#1| (-1089)) (-1089) (-800 |#1|) (-798 |#1| (-1089))))) (-1013)) (T -851)) +((-2796 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-798 *5 (-1089))) (-5 *3 (-1089)) (-5 *4 (-800 *5)) (-4 *5 (-1013)) (-5 *1 (-851 *5))))) +((-2797 (((-798 |#1| |#3|) (-583 |#3|) (-583 (-800 |#1|)) (-798 |#1| |#3|) (-1 (-798 |#1| |#3|) |#3| (-800 |#1|) (-798 |#1| |#3|))) 34 T ELT)) (-2796 (((-798 |#1| |#3|) (-583 |#3|) (-583 (-800 |#1|)) (-1 |#3| (-583 |#3|)) (-798 |#1| |#3|) (-1 (-798 |#1| |#3|) |#3| (-800 |#1|) (-798 |#1| |#3|))) 33 T ELT))) +(((-852 |#1| |#2| |#3|) (-10 -7 (-15 -2796 ((-798 |#1| |#3|) (-583 |#3|) (-583 (-800 |#1|)) (-1 |#3| (-583 |#3|)) (-798 |#1| |#3|) (-1 (-798 |#1| |#3|) |#3| (-800 |#1|) (-798 |#1| |#3|)))) (-15 -2797 ((-798 |#1| |#3|) (-583 |#3|) (-583 (-800 |#1|)) (-798 |#1| |#3|) (-1 (-798 |#1| |#3|) |#3| (-800 |#1|) (-798 |#1| |#3|))))) (-1013) (-961) (-13 (-961) (-553 (-800 |#1|)) (-950 |#2|))) (T -852)) +((-2797 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 (-800 *6))) (-5 *5 (-1 (-798 *6 *8) *8 (-800 *6) (-798 *6 *8))) (-4 *6 (-1013)) (-4 *8 (-13 (-961) (-553 (-800 *6)) (-950 *7))) (-5 *2 (-798 *6 *8)) (-4 *7 (-961)) (-5 *1 (-852 *6 *7 *8)))) (-2796 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-583 (-800 *7))) (-5 *5 (-1 *9 (-583 *9))) (-5 *6 (-1 (-798 *7 *9) *9 (-800 *7) (-798 *7 *9))) (-4 *7 (-1013)) (-4 *9 (-13 (-961) (-553 (-800 *7)) (-950 *8))) (-5 *2 (-798 *7 *9)) (-5 *3 (-583 *9)) (-4 *8 (-961)) (-5 *1 (-852 *7 *8 *9))))) +((-2805 (((-1084 (-349 (-484))) (-484)) 80 T ELT)) (-2804 (((-1084 (-484)) (-484)) 83 T ELT)) (-3333 (((-1084 (-484)) (-484)) 77 T ELT)) (-2803 (((-484) (-1084 (-484))) 73 T ELT)) (-2802 (((-1084 (-349 (-484))) (-484)) 66 T ELT)) (-2801 (((-1084 (-484)) (-484)) 49 T ELT)) (-2800 (((-1084 (-484)) (-484)) 85 T ELT)) (-2799 (((-1084 (-484)) (-484)) 84 T ELT)) (-2798 (((-1084 (-349 (-484))) (-484)) 68 T ELT))) +(((-853) (-10 -7 (-15 -2798 ((-1084 (-349 (-484))) (-484))) (-15 -2799 ((-1084 (-484)) (-484))) (-15 -2800 ((-1084 (-484)) (-484))) (-15 -2801 ((-1084 (-484)) (-484))) (-15 -2802 ((-1084 (-349 (-484))) (-484))) (-15 -2803 ((-484) (-1084 (-484)))) (-15 -3333 ((-1084 (-484)) (-484))) (-15 -2804 ((-1084 (-484)) (-484))) (-15 -2805 ((-1084 (-349 (-484))) (-484))))) (T -853)) +((-2805 (*1 *2 *3) (-12 (-5 *2 (-1084 (-349 (-484)))) (-5 *1 (-853)) (-5 *3 (-484)))) (-2804 (*1 *2 *3) (-12 (-5 *2 (-1084 (-484))) (-5 *1 (-853)) (-5 *3 (-484)))) (-3333 (*1 *2 *3) (-12 (-5 *2 (-1084 (-484))) (-5 *1 (-853)) (-5 *3 (-484)))) (-2803 (*1 *2 *3) (-12 (-5 *3 (-1084 (-484))) (-5 *2 (-484)) (-5 *1 (-853)))) (-2802 (*1 *2 *3) (-12 (-5 *2 (-1084 (-349 (-484)))) (-5 *1 (-853)) (-5 *3 (-484)))) (-2801 (*1 *2 *3) (-12 (-5 *2 (-1084 (-484))) (-5 *1 (-853)) (-5 *3 (-484)))) (-2800 (*1 *2 *3) (-12 (-5 *2 (-1084 (-484))) (-5 *1 (-853)) (-5 *3 (-484)))) (-2799 (*1 *2 *3) (-12 (-5 *2 (-1084 (-484))) (-5 *1 (-853)) (-5 *3 (-484)))) (-2798 (*1 *2 *3) (-12 (-5 *2 (-1084 (-349 (-484)))) (-5 *1 (-853)) (-5 *3 (-484))))) +((-2568 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3837 (($ (-694)) NIL (|has| |#1| (-23)) ELT)) (-2198 (((-1184) $ (-484) (-484)) NIL (|has| $ (-6 -3995)) ELT)) (-1731 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-756)) ELT)) (-1729 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-6 -3995)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-756))) ELT)) (-2909 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-756)) ELT)) (-3787 ((|#1| $ (-484) |#1|) NIL (|has| $ (-6 -3995)) ELT) ((|#1| $ (-1145 (-484)) |#1|) NIL (|has| $ (-6 -3995)) ELT)) (-3709 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3723 (($) NIL T CONST)) (-2297 (($ $) NIL (|has| $ (-6 -3995)) ELT)) (-2298 (($ $) NIL T ELT)) (-1352 (($ $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-3405 (($ |#1| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3841 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3994)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-1575 ((|#1| $ (-484) |#1|) NIL (|has| $ (-6 -3995)) ELT)) (-3112 ((|#1| $ (-484)) NIL T ELT)) (-3418 (((-484) (-1 (-85) |#1|) $) NIL T ELT) (((-484) |#1| $) NIL (|has| |#1| (-1013)) ELT) (((-484) |#1| $ (-484)) NIL (|has| |#1| (-1013)) ELT)) (-3705 (($ (-583 |#1|)) 9 T ELT)) (-2889 (((-583 |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3834 (((-630 |#1|) $ $) NIL (|has| |#1| (-961)) ELT)) (-3613 (($ (-694) |#1|) NIL T ELT)) (-2200 (((-484) $) NIL (|has| (-484) (-756)) ELT)) (-2531 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-3517 (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2608 (((-583 |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3245 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-2201 (((-484) $) NIL (|has| (-484) (-756)) ELT)) (-2857 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-1948 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3831 ((|#1| $) NIL (-12 (|has| |#1| (-915)) (|has| |#1| (-961))) ELT)) (-3832 ((|#1| $) NIL (-12 (|has| |#1| (-915)) (|has| |#1| (-961))) ELT)) (-3242 (((-1072) $) NIL (|has| |#1| (-1013)) ELT)) (-2304 (($ |#1| $ (-484)) NIL T ELT) (($ $ $ (-484)) NIL T ELT)) (-2203 (((-583 (-484)) $) NIL T ELT)) (-2204 (((-85) (-484) $) NIL T ELT)) (-3243 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-3800 ((|#1| $) NIL (|has| (-484) (-756)) ELT)) (-1353 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2199 (($ $ |#1|) NIL (|has| $ (-6 -3995)) ELT)) (-3768 (($ $ (-583 |#1|)) 25 T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3767 (($ $ (-583 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1221 (((-85) $ $) NIL T ELT)) (-2202 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-2205 (((-583 |#1|) $) NIL T ELT)) (-3402 (((-85) $) NIL T ELT)) (-3564 (($) NIL T ELT)) (-3799 ((|#1| $ (-484) |#1|) NIL T ELT) ((|#1| $ (-484)) 18 T ELT) (($ $ (-1145 (-484))) NIL T ELT)) (-3835 ((|#1| $ $) NIL (|has| |#1| (-961)) ELT)) (-3910 (((-830) $) 13 T ELT)) (-2305 (($ $ (-484)) NIL T ELT) (($ $ (-1145 (-484))) NIL T ELT)) (-3833 (($ $ $) 23 T ELT)) (-1945 (((-694) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT) (((-694) |#1| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-1730 (($ $ $ (-484)) NIL (|has| $ (-6 -3995)) ELT)) (-3399 (($ $) NIL T ELT)) (-3971 (((-473) $) NIL (|has| |#1| (-553 (-473))) ELT) (($ (-583 |#1|)) 14 T ELT)) (-3529 (($ (-583 |#1|)) NIL T ELT)) (-3801 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) 24 T ELT) (($ (-583 $)) NIL T ELT)) (-3945 (((-772) $) NIL (|has| |#1| (-552 (-772))) ELT)) (-1264 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-2566 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2567 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3056 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2684 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2685 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3836 (($ $) NIL (|has| |#1| (-21)) ELT) (($ $ $) NIL (|has| |#1| (-21)) ELT)) (-3838 (($ $ $) NIL (|has| |#1| (-25)) ELT)) (* (($ (-484) $) NIL (|has| |#1| (-21)) ELT) (($ |#1| $) NIL (|has| |#1| (-663)) ELT) (($ $ |#1|) NIL (|has| |#1| (-663)) ELT)) (-3956 (((-694) $) 11 (|has| $ (-6 -3994)) ELT))) +(((-854 |#1|) (-893 |#1|) (-961)) (T -854)) +NIL +((-2808 (((-420 |#1| |#2|) (-857 |#2|)) 22 T ELT)) (-2811 (((-206 |#1| |#2|) (-857 |#2|)) 35 T ELT)) (-2809 (((-857 |#2|) (-420 |#1| |#2|)) 27 T ELT)) (-2807 (((-206 |#1| |#2|) (-420 |#1| |#2|)) 57 T ELT)) (-2810 (((-857 |#2|) (-206 |#1| |#2|)) 32 T ELT)) (-2806 (((-420 |#1| |#2|) (-206 |#1| |#2|)) 48 T ELT))) +(((-855 |#1| |#2|) (-10 -7 (-15 -2806 ((-420 |#1| |#2|) (-206 |#1| |#2|))) (-15 -2807 ((-206 |#1| |#2|) (-420 |#1| |#2|))) (-15 -2808 ((-420 |#1| |#2|) (-857 |#2|))) (-15 -2809 ((-857 |#2|) (-420 |#1| |#2|))) (-15 -2810 ((-857 |#2|) (-206 |#1| |#2|))) (-15 -2811 ((-206 |#1| |#2|) (-857 |#2|)))) (-583 (-1089)) (-961)) (T -855)) +((-2811 (*1 *2 *3) (-12 (-5 *3 (-857 *5)) (-4 *5 (-961)) (-5 *2 (-206 *4 *5)) (-5 *1 (-855 *4 *5)) (-14 *4 (-583 (-1089))))) (-2810 (*1 *2 *3) (-12 (-5 *3 (-206 *4 *5)) (-14 *4 (-583 (-1089))) (-4 *5 (-961)) (-5 *2 (-857 *5)) (-5 *1 (-855 *4 *5)))) (-2809 (*1 *2 *3) (-12 (-5 *3 (-420 *4 *5)) (-14 *4 (-583 (-1089))) (-4 *5 (-961)) (-5 *2 (-857 *5)) (-5 *1 (-855 *4 *5)))) (-2808 (*1 *2 *3) (-12 (-5 *3 (-857 *5)) (-4 *5 (-961)) (-5 *2 (-420 *4 *5)) (-5 *1 (-855 *4 *5)) (-14 *4 (-583 (-1089))))) (-2807 (*1 *2 *3) (-12 (-5 *3 (-420 *4 *5)) (-14 *4 (-583 (-1089))) (-4 *5 (-961)) (-5 *2 (-206 *4 *5)) (-5 *1 (-855 *4 *5)))) (-2806 (*1 *2 *3) (-12 (-5 *3 (-206 *4 *5)) (-14 *4 (-583 (-1089))) (-4 *5 (-961)) (-5 *2 (-420 *4 *5)) (-5 *1 (-855 *4 *5))))) +((-2812 (((-583 |#2|) |#2| |#2|) 10 T ELT)) (-2815 (((-694) (-583 |#1|)) 47 (|has| |#1| (-755)) ELT)) (-2813 (((-583 |#2|) |#2|) 11 T ELT)) (-2816 (((-694) (-583 |#1|) (-484) (-484)) 45 (|has| |#1| (-755)) ELT)) (-2814 ((|#1| |#2|) 37 (|has| |#1| (-755)) ELT))) +(((-856 |#1| |#2|) (-10 -7 (-15 -2812 ((-583 |#2|) |#2| |#2|)) (-15 -2813 ((-583 |#2|) |#2|)) (IF (|has| |#1| (-755)) (PROGN (-15 -2814 (|#1| |#2|)) (-15 -2815 ((-694) (-583 |#1|))) (-15 -2816 ((-694) (-583 |#1|) (-484) (-484)))) |%noBranch|)) (-312) (-1154 |#1|)) (T -856)) +((-2816 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 *5)) (-5 *4 (-484)) (-4 *5 (-755)) (-4 *5 (-312)) (-5 *2 (-694)) (-5 *1 (-856 *5 *6)) (-4 *6 (-1154 *5)))) (-2815 (*1 *2 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-755)) (-4 *4 (-312)) (-5 *2 (-694)) (-5 *1 (-856 *4 *5)) (-4 *5 (-1154 *4)))) (-2814 (*1 *2 *3) (-12 (-4 *2 (-312)) (-4 *2 (-755)) (-5 *1 (-856 *2 *3)) (-4 *3 (-1154 *2)))) (-2813 (*1 *2 *3) (-12 (-4 *4 (-312)) (-5 *2 (-583 *3)) (-5 *1 (-856 *4 *3)) (-4 *3 (-1154 *4)))) (-2812 (*1 *2 *3 *3) (-12 (-4 *4 (-312)) (-5 *2 (-583 *3)) (-5 *1 (-856 *4 *3)) (-4 *3 (-1154 *4))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-3081 (((-583 (-1089)) $) 16 T ELT)) (-3083 (((-1084 $) $ (-1089)) 21 T ELT) (((-1084 |#1|) $) NIL T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2063 (($ $) NIL (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-2819 (((-694) $) NIL T ELT) (((-694) $ (-583 (-1089))) NIL T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2707 (((-347 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-821)) ELT)) (-3774 (($ $) NIL (|has| |#1| (-391)) ELT)) (-3970 (((-347 $) $) NIL (|has| |#1| (-391)) ELT)) (-2704 (((-3 (-583 (-1084 $)) #1#) (-583 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-821)) ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 |#1| #1#) $) 8 T ELT) (((-3 (-349 (-484)) #1#) $) NIL (|has| |#1| (-950 (-349 (-484)))) ELT) (((-3 (-484) #1#) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-3 (-1089) #1#) $) NIL T ELT)) (-3156 ((|#1| $) NIL T ELT) (((-349 (-484)) $) NIL (|has| |#1| (-950 (-349 (-484)))) ELT) (((-484) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-1089) $) NIL T ELT)) (-3755 (($ $ $ (-1089)) NIL (|has| |#1| (-146)) ELT)) (-3958 (($ $) NIL T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1178 |#1|))) (-630 $) (-1178 $)) NIL T ELT) (((-630 |#1|) (-630 $)) NIL T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-3502 (($ $) NIL (|has| |#1| (-391)) ELT) (($ $ (-1089)) NIL (|has| |#1| (-391)) ELT)) (-2818 (((-583 $) $) NIL T ELT)) (-3722 (((-85) $) NIL (|has| |#1| (-821)) ELT)) (-1623 (($ $ |#1| (-469 (-1089)) $) NIL T ELT)) (-2796 (((-798 (-329) $) $ (-800 (-329)) (-798 (-329) $)) NIL (-12 (|has| (-1089) (-796 (-329))) (|has| |#1| (-796 (-329)))) ELT) (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) NIL (-12 (|has| (-1089) (-796 (-484))) (|has| |#1| (-796 (-484)))) ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2420 (((-694) $) NIL T ELT)) (-3084 (($ (-1084 |#1|) (-1089)) NIL T ELT) (($ (-1084 $) (-1089)) NIL T ELT)) (-2821 (((-583 $) $) NIL T ELT)) (-3936 (((-85) $) NIL T ELT)) (-2893 (($ |#1| (-469 (-1089))) NIL T ELT) (($ $ (-1089) (-694)) NIL T ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL T ELT)) (-3762 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $ (-1089)) NIL T ELT)) (-2820 (((-469 (-1089)) $) NIL T ELT) (((-694) $ (-1089)) NIL T ELT) (((-583 (-694)) $ (-583 (-1089))) NIL T ELT)) (-1624 (($ (-1 (-469 (-1089)) (-469 (-1089))) $) NIL T ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3082 (((-3 (-1089) #1#) $) 19 T ELT)) (-2280 (((-630 (-484)) (-1178 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1178 |#1|))) (-1178 $) $) NIL T ELT) (((-630 |#1|) (-1178 $)) NIL T ELT)) (-2894 (($ $) NIL T ELT)) (-3174 ((|#1| $) NIL T ELT)) (-1890 (($ (-583 $)) NIL (|has| |#1| (-391)) ELT) (($ $ $) NIL (|has| |#1| (-391)) ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2823 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2822 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2824 (((-3 (-2 (|:| |var| (-1089)) (|:| -2401 (-694))) #1#) $) NIL T ELT)) (-3811 (($ $ (-1089)) 29 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1796 (((-85) $) NIL T ELT)) (-1795 ((|#1| $) NIL T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) NIL (|has| |#1| (-391)) ELT)) (-3144 (($ (-583 $)) NIL (|has| |#1| (-391)) ELT) (($ $ $) NIL (|has| |#1| (-391)) ELT)) (-2705 (((-347 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-821)) ELT)) (-2706 (((-347 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-821)) ELT)) (-3731 (((-347 $) $) NIL (|has| |#1| (-821)) ELT)) (-3465 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-495)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-495)) ELT)) (-3767 (($ $ (-583 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ (-1089) |#1|) NIL T ELT) (($ $ (-583 (-1089)) (-583 |#1|)) NIL T ELT) (($ $ (-1089) $) NIL T ELT) (($ $ (-583 (-1089)) (-583 $)) NIL T ELT)) (-3756 (($ $ (-1089)) NIL (|has| |#1| (-146)) ELT)) (-3757 (($ $ (-583 (-1089)) (-583 (-694))) NIL T ELT) (($ $ (-1089) (-694)) NIL T ELT) (($ $ (-583 (-1089))) NIL T ELT) (($ $ (-1089)) NIL T ELT)) (-3947 (((-469 (-1089)) $) NIL T ELT) (((-694) $ (-1089)) NIL T ELT) (((-583 (-694)) $ (-583 (-1089))) NIL T ELT)) (-3971 (((-800 (-329)) $) NIL (-12 (|has| (-1089) (-553 (-800 (-329)))) (|has| |#1| (-553 (-800 (-329))))) ELT) (((-800 (-484)) $) NIL (-12 (|has| (-1089) (-553 (-800 (-484)))) (|has| |#1| (-553 (-800 (-484))))) ELT) (((-473) $) NIL (-12 (|has| (-1089) (-553 (-473))) (|has| |#1| (-553 (-473)))) ELT)) (-2817 ((|#1| $) NIL (|has| |#1| (-391)) ELT) (($ $ (-1089)) NIL (|has| |#1| (-391)) ELT)) (-2703 (((-3 (-1178 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-821))) ELT)) (-3945 (((-772) $) 25 T ELT) (($ (-484)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-1089)) 27 T ELT) (($ (-349 (-484))) NIL (OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-950 (-349 (-484))))) ELT) (($ $) NIL (|has| |#1| (-495)) ELT)) (-3816 (((-583 |#1|) $) NIL T ELT)) (-3676 ((|#1| $ (-469 (-1089))) NIL T ELT) (($ $ (-1089) (-694)) NIL T ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL T ELT)) (-2702 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-821))) (|has| |#1| (-118))) ELT)) (-3126 (((-694)) NIL T CONST)) (-1622 (($ $ $ (-694)) NIL (|has| |#1| (-146)) ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) NIL T CONST)) (-2666 (($) NIL T CONST)) (-2669 (($ $ (-583 (-1089)) (-583 (-694))) NIL T ELT) (($ $ (-1089) (-694)) NIL T ELT) (($ $ (-583 (-1089))) NIL T ELT) (($ $ (-1089)) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3948 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-349 (-484))) NIL (|has| |#1| (-38 (-349 (-484)))) ELT) (($ (-349 (-484)) $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) +(((-857 |#1|) (-13 (-861 |#1| (-469 (-1089)) (-1089)) (-10 -8 (IF (|has| |#1| (-38 (-349 (-484)))) (-15 -3811 ($ $ (-1089))) |%noBranch|))) (-961)) (T -857)) +((-3811 (*1 *1 *1 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-857 *3)) (-4 *3 (-38 (-349 (-484)))) (-4 *3 (-961))))) +((-3957 (((-857 |#2|) (-1 |#2| |#1|) (-857 |#1|)) 19 T ELT))) +(((-858 |#1| |#2|) (-10 -7 (-15 -3957 ((-857 |#2|) (-1 |#2| |#1|) (-857 |#1|)))) (-961) (-961)) (T -858)) +((-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-857 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-5 *2 (-857 *6)) (-5 *1 (-858 *5 *6))))) +((-3083 (((-1147 |#1| (-857 |#2|)) (-857 |#2|) (-1175 |#1|)) 18 T ELT))) +(((-859 |#1| |#2|) (-10 -7 (-15 -3083 ((-1147 |#1| (-857 |#2|)) (-857 |#2|) (-1175 |#1|)))) (-1089) (-961)) (T -859)) +((-3083 (*1 *2 *3 *4) (-12 (-5 *4 (-1175 *5)) (-14 *5 (-1089)) (-4 *6 (-961)) (-5 *2 (-1147 *5 (-857 *6))) (-5 *1 (-859 *5 *6)) (-5 *3 (-857 *6))))) +((-2819 (((-694) $) 88 T ELT) (((-694) $ (-583 |#4|)) 93 T ELT)) (-3774 (($ $) 214 T ELT)) (-3970 (((-347 $) $) 206 T ELT)) (-2704 (((-3 (-583 (-1084 $)) #1="failed") (-583 (-1084 $)) (-1084 $)) 141 T ELT)) (-3157 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-349 (-484)) #1#) $) NIL T ELT) (((-3 (-484) #1#) $) NIL T ELT) (((-3 |#4| #1#) $) 74 T ELT)) (-3156 ((|#2| $) NIL T ELT) (((-349 (-484)) $) NIL T ELT) (((-484) $) NIL T ELT) ((|#4| $) 73 T ELT)) (-3755 (($ $ $ |#4|) 95 T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL T ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) NIL T ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1178 |#2|))) (-630 $) (-1178 $)) 131 T ELT) (((-630 |#2|) (-630 $)) 121 T ELT)) (-3502 (($ $) 221 T ELT) (($ $ |#4|) 224 T ELT)) (-2818 (((-583 $) $) 77 T ELT)) (-2796 (((-798 (-329) $) $ (-800 (-329)) (-798 (-329) $)) 240 T ELT) (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) 233 T ELT)) (-2821 (((-583 $) $) 34 T ELT)) (-2893 (($ |#2| |#3|) NIL T ELT) (($ $ |#4| (-694)) NIL T ELT) (($ $ (-583 |#4|) (-583 (-694))) 71 T ELT)) (-3762 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $ |#4|) 203 T ELT)) (-2823 (((-3 (-583 $) #1#) $) 52 T ELT)) (-2822 (((-3 (-583 $) #1#) $) 39 T ELT)) (-2824 (((-3 (-2 (|:| |var| |#4|) (|:| -2401 (-694))) #1#) $) 57 T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) 134 T ELT)) (-2705 (((-347 (-1084 $)) (-1084 $)) 147 T ELT)) (-2706 (((-347 (-1084 $)) (-1084 $)) 145 T ELT)) (-3731 (((-347 $) $) 165 T ELT)) (-3767 (($ $ (-583 (-249 $))) 24 T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ |#4| |#2|) NIL T ELT) (($ $ (-583 |#4|) (-583 |#2|)) NIL T ELT) (($ $ |#4| $) NIL T ELT) (($ $ (-583 |#4|) (-583 $)) NIL T ELT)) (-3756 (($ $ |#4|) 97 T ELT)) (-3971 (((-800 (-329)) $) 254 T ELT) (((-800 (-484)) $) 247 T ELT) (((-473) $) 262 T ELT)) (-2817 ((|#2| $) NIL T ELT) (($ $ |#4|) 216 T ELT)) (-2703 (((-3 (-1178 $) #1#) (-630 $)) 185 T ELT)) (-3676 ((|#2| $ |#3|) NIL T ELT) (($ $ |#4| (-694)) 62 T ELT) (($ $ (-583 |#4|) (-583 (-694))) 69 T ELT)) (-2702 (((-632 $) $) 195 T ELT)) (-1264 (((-85) $ $) 227 T ELT))) +(((-860 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2708 ((-1084 |#1|) (-1084 |#1|) (-1084 |#1|))) (-15 -3970 ((-347 |#1|) |#1|)) (-15 -3774 (|#1| |#1|)) (-15 -2702 ((-632 |#1|) |#1|)) (-15 -3971 ((-473) |#1|)) (-15 -3971 ((-800 (-484)) |#1|)) (-15 -3971 ((-800 (-329)) |#1|)) (-15 -2796 ((-798 (-484) |#1|) |#1| (-800 (-484)) (-798 (-484) |#1|))) (-15 -2796 ((-798 (-329) |#1|) |#1| (-800 (-329)) (-798 (-329) |#1|))) (-15 -3731 ((-347 |#1|) |#1|)) (-15 -2706 ((-347 (-1084 |#1|)) (-1084 |#1|))) (-15 -2705 ((-347 (-1084 |#1|)) (-1084 |#1|))) (-15 -2704 ((-3 (-583 (-1084 |#1|)) #1="failed") (-583 (-1084 |#1|)) (-1084 |#1|))) (-15 -2703 ((-3 (-1178 |#1|) #1#) (-630 |#1|))) (-15 -3502 (|#1| |#1| |#4|)) (-15 -2817 (|#1| |#1| |#4|)) (-15 -3756 (|#1| |#1| |#4|)) (-15 -3755 (|#1| |#1| |#1| |#4|)) (-15 -2818 ((-583 |#1|) |#1|)) (-15 -2819 ((-694) |#1| (-583 |#4|))) (-15 -2819 ((-694) |#1|)) (-15 -2824 ((-3 (-2 (|:| |var| |#4|) (|:| -2401 (-694))) #1#) |#1|)) (-15 -2823 ((-3 (-583 |#1|) #1#) |#1|)) (-15 -2822 ((-3 (-583 |#1|) #1#) |#1|)) (-15 -2893 (|#1| |#1| (-583 |#4|) (-583 (-694)))) (-15 -2893 (|#1| |#1| |#4| (-694))) (-15 -3762 ((-2 (|:| -1972 |#1|) (|:| -2902 |#1|)) |#1| |#1| |#4|)) (-15 -2821 ((-583 |#1|) |#1|)) (-15 -3676 (|#1| |#1| (-583 |#4|) (-583 (-694)))) (-15 -3676 (|#1| |#1| |#4| (-694))) (-15 -2279 ((-630 |#2|) (-630 |#1|))) (-15 -2279 ((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1178 |#2|))) (-630 |#1|) (-1178 |#1|))) (-15 -2279 ((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 |#1|) (-1178 |#1|))) (-15 -2279 ((-630 (-484)) (-630 |#1|))) (-15 -3157 ((-3 |#4| #1#) |#1|)) (-15 -3156 (|#4| |#1|)) (-15 -3767 (|#1| |#1| (-583 |#4|) (-583 |#1|))) (-15 -3767 (|#1| |#1| |#4| |#1|)) (-15 -3767 (|#1| |#1| (-583 |#4|) (-583 |#2|))) (-15 -3767 (|#1| |#1| |#4| |#2|)) (-15 -3767 (|#1| |#1| (-583 |#1|) (-583 |#1|))) (-15 -3767 (|#1| |#1| |#1| |#1|)) (-15 -3767 (|#1| |#1| (-249 |#1|))) (-15 -3767 (|#1| |#1| (-583 (-249 |#1|)))) (-15 -2893 (|#1| |#2| |#3|)) (-15 -3676 (|#2| |#1| |#3|)) (-15 -3157 ((-3 (-484) #1#) |#1|)) (-15 -3156 ((-484) |#1|)) (-15 -3157 ((-3 (-349 (-484)) #1#) |#1|)) (-15 -3156 ((-349 (-484)) |#1|)) (-15 -3156 (|#2| |#1|)) (-15 -3157 ((-3 |#2| #1#) |#1|)) (-15 -2817 (|#2| |#1|)) (-15 -3502 (|#1| |#1|)) (-15 -1264 ((-85) |#1| |#1|))) (-861 |#2| |#3| |#4|) (-961) (-717) (-756)) (T -860)) +NIL +((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-3081 (((-583 |#3|) $) 123 T ELT)) (-3083 (((-1084 $) $ |#3|) 138 T ELT) (((-1084 |#1|) $) 137 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) 100 (|has| |#1| (-495)) ELT)) (-2063 (($ $) 101 (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) 103 (|has| |#1| (-495)) ELT)) (-2819 (((-694) $) 125 T ELT) (((-694) $ (-583 |#3|)) 124 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-2707 (((-347 (-1084 $)) (-1084 $)) 113 (|has| |#1| (-821)) ELT)) (-3774 (($ $) 111 (|has| |#1| (-391)) ELT)) (-3970 (((-347 $) $) 110 (|has| |#1| (-391)) ELT)) (-2704 (((-3 (-583 (-1084 $)) #1="failed") (-583 (-1084 $)) (-1084 $)) 116 (|has| |#1| (-821)) ELT)) (-3723 (($) 23 T CONST)) (-3157 (((-3 |#1| #2="failed") $) 181 T ELT) (((-3 (-349 (-484)) #2#) $) 178 (|has| |#1| (-950 (-349 (-484)))) ELT) (((-3 (-484) #2#) $) 176 (|has| |#1| (-950 (-484))) ELT) (((-3 |#3| #2#) $) 153 T ELT)) (-3156 ((|#1| $) 180 T ELT) (((-349 (-484)) $) 179 (|has| |#1| (-950 (-349 (-484)))) ELT) (((-484) $) 177 (|has| |#1| (-950 (-484))) ELT) ((|#3| $) 154 T ELT)) (-3755 (($ $ $ |#3|) 121 (|has| |#1| (-146)) ELT)) (-3958 (($ $) 171 T ELT)) (-2279 (((-630 (-484)) (-630 $)) 149 (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) 148 (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1178 |#1|))) (-630 $) (-1178 $)) 147 T ELT) (((-630 |#1|) (-630 $)) 146 T ELT)) (-3466 (((-3 $ "failed") $) 42 T ELT)) (-3502 (($ $) 193 (|has| |#1| (-391)) ELT) (($ $ |#3|) 118 (|has| |#1| (-391)) ELT)) (-2818 (((-583 $) $) 122 T ELT)) (-3722 (((-85) $) 109 (|has| |#1| (-821)) ELT)) (-1623 (($ $ |#1| |#2| $) 189 T ELT)) (-2796 (((-798 (-329) $) $ (-800 (-329)) (-798 (-329) $)) 97 (-12 (|has| |#3| (-796 (-329))) (|has| |#1| (-796 (-329)))) ELT) (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) 96 (-12 (|has| |#3| (-796 (-484))) (|has| |#1| (-796 (-484)))) ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-2420 (((-694) $) 186 T ELT)) (-3084 (($ (-1084 |#1|) |#3|) 130 T ELT) (($ (-1084 $) |#3|) 129 T ELT)) (-2821 (((-583 $) $) 139 T ELT)) (-3936 (((-85) $) 169 T ELT)) (-2893 (($ |#1| |#2|) 170 T ELT) (($ $ |#3| (-694)) 132 T ELT) (($ $ (-583 |#3|) (-583 (-694))) 131 T ELT)) (-3762 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $ |#3|) 133 T ELT)) (-2820 ((|#2| $) 187 T ELT) (((-694) $ |#3|) 135 T ELT) (((-583 (-694)) $ (-583 |#3|)) 134 T ELT)) (-1624 (($ (-1 |#2| |#2|) $) 188 T ELT)) (-3957 (($ (-1 |#1| |#1|) $) 168 T ELT)) (-3082 (((-3 |#3| "failed") $) 136 T ELT)) (-2280 (((-630 (-484)) (-1178 $)) 151 (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) 150 (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1178 |#1|))) (-1178 $) $) 145 T ELT) (((-630 |#1|) (-1178 $)) 144 T ELT)) (-2894 (($ $) 166 T ELT)) (-3174 ((|#1| $) 165 T ELT)) (-1890 (($ (-583 $)) 107 (|has| |#1| (-391)) ELT) (($ $ $) 106 (|has| |#1| (-391)) ELT)) (-3242 (((-1072) $) 11 T ELT)) (-2823 (((-3 (-583 $) "failed") $) 127 T ELT)) (-2822 (((-3 (-583 $) "failed") $) 128 T ELT)) (-2824 (((-3 (-2 (|:| |var| |#3|) (|:| -2401 (-694))) "failed") $) 126 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-1796 (((-85) $) 183 T ELT)) (-1795 ((|#1| $) 184 T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) 108 (|has| |#1| (-391)) ELT)) (-3144 (($ (-583 $)) 105 (|has| |#1| (-391)) ELT) (($ $ $) 104 (|has| |#1| (-391)) ELT)) (-2705 (((-347 (-1084 $)) (-1084 $)) 115 (|has| |#1| (-821)) ELT)) (-2706 (((-347 (-1084 $)) (-1084 $)) 114 (|has| |#1| (-821)) ELT)) (-3731 (((-347 $) $) 112 (|has| |#1| (-821)) ELT)) (-3465 (((-3 $ "failed") $ |#1|) 191 (|has| |#1| (-495)) ELT) (((-3 $ "failed") $ $) 99 (|has| |#1| (-495)) ELT)) (-3767 (($ $ (-583 (-249 $))) 162 T ELT) (($ $ (-249 $)) 161 T ELT) (($ $ $ $) 160 T ELT) (($ $ (-583 $) (-583 $)) 159 T ELT) (($ $ |#3| |#1|) 158 T ELT) (($ $ (-583 |#3|) (-583 |#1|)) 157 T ELT) (($ $ |#3| $) 156 T ELT) (($ $ (-583 |#3|) (-583 $)) 155 T ELT)) (-3756 (($ $ |#3|) 120 (|has| |#1| (-146)) ELT)) (-3757 (($ $ (-583 |#3|) (-583 (-694))) 52 T ELT) (($ $ |#3| (-694)) 51 T ELT) (($ $ (-583 |#3|)) 50 T ELT) (($ $ |#3|) 48 T ELT)) (-3947 ((|#2| $) 167 T ELT) (((-694) $ |#3|) 143 T ELT) (((-583 (-694)) $ (-583 |#3|)) 142 T ELT)) (-3971 (((-800 (-329)) $) 95 (-12 (|has| |#3| (-553 (-800 (-329)))) (|has| |#1| (-553 (-800 (-329))))) ELT) (((-800 (-484)) $) 94 (-12 (|has| |#3| (-553 (-800 (-484)))) (|has| |#1| (-553 (-800 (-484))))) ELT) (((-473) $) 93 (-12 (|has| |#3| (-553 (-473))) (|has| |#1| (-553 (-473)))) ELT)) (-2817 ((|#1| $) 192 (|has| |#1| (-391)) ELT) (($ $ |#3|) 119 (|has| |#1| (-391)) ELT)) (-2703 (((-3 (-1178 $) #1#) (-630 $)) 117 (-2562 (|has| $ (-118)) (|has| |#1| (-821))) ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ |#1|) 182 T ELT) (($ |#3|) 152 T ELT) (($ $) 98 (|has| |#1| (-495)) ELT) (($ (-349 (-484))) 91 (OR (|has| |#1| (-950 (-349 (-484)))) (|has| |#1| (-38 (-349 (-484))))) ELT)) (-3816 (((-583 |#1|) $) 185 T ELT)) (-3676 ((|#1| $ |#2|) 172 T ELT) (($ $ |#3| (-694)) 141 T ELT) (($ $ (-583 |#3|) (-583 (-694))) 140 T ELT)) (-2702 (((-632 $) $) 92 (OR (-2562 (|has| $ (-118)) (|has| |#1| (-821))) (|has| |#1| (-118))) ELT)) (-3126 (((-694)) 40 T CONST)) (-1622 (($ $ $ (-694)) 190 (|has| |#1| (-146)) ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-2062 (((-85) $ $) 102 (|has| |#1| (-495)) ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-2669 (($ $ (-583 |#3|) (-583 (-694))) 55 T ELT) (($ $ |#3| (-694)) 54 T ELT) (($ $ (-583 |#3|)) 53 T ELT) (($ $ |#3|) 49 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-3948 (($ $ |#1|) 173 (|has| |#1| (-312)) ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-349 (-484))) 175 (|has| |#1| (-38 (-349 (-484)))) ELT) (($ (-349 (-484)) $) 174 (|has| |#1| (-38 (-349 (-484)))) ELT) (($ |#1| $) 164 T ELT) (($ $ |#1|) 163 T ELT))) +(((-861 |#1| |#2| |#3|) (-113) (-961) (-717) (-756)) (T -861)) +((-3502 (*1 *1 *1) (-12 (-4 *1 (-861 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *2 (-391)))) (-3947 (*1 *2 *1 *3) (-12 (-4 *1 (-861 *4 *5 *3)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *3 (-756)) (-5 *2 (-694)))) (-3947 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *6)) (-4 *1 (-861 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-583 (-694))))) (-3676 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-694)) (-4 *1 (-861 *4 *5 *2)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *2 (-756)))) (-3676 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *6)) (-5 *3 (-583 (-694))) (-4 *1 (-861 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *6 (-756)))) (-2821 (*1 *2 *1) (-12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-583 *1)) (-4 *1 (-861 *3 *4 *5)))) (-3083 (*1 *2 *1 *3) (-12 (-4 *4 (-961)) (-4 *5 (-717)) (-4 *3 (-756)) (-5 *2 (-1084 *1)) (-4 *1 (-861 *4 *5 *3)))) (-3083 (*1 *2 *1) (-12 (-4 *1 (-861 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-1084 *3)))) (-3082 (*1 *2 *1) (|partial| -12 (-4 *1 (-861 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)))) (-2820 (*1 *2 *1 *3) (-12 (-4 *1 (-861 *4 *5 *3)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *3 (-756)) (-5 *2 (-694)))) (-2820 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *6)) (-4 *1 (-861 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-583 (-694))))) (-3762 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-961)) (-4 *5 (-717)) (-4 *3 (-756)) (-5 *2 (-2 (|:| -1972 *1) (|:| -2902 *1))) (-4 *1 (-861 *4 *5 *3)))) (-2893 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-694)) (-4 *1 (-861 *4 *5 *2)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *2 (-756)))) (-2893 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *6)) (-5 *3 (-583 (-694))) (-4 *1 (-861 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *6 (-756)))) (-3084 (*1 *1 *2 *3) (-12 (-5 *2 (-1084 *4)) (-4 *4 (-961)) (-4 *1 (-861 *4 *5 *3)) (-4 *5 (-717)) (-4 *3 (-756)))) (-3084 (*1 *1 *2 *3) (-12 (-5 *2 (-1084 *1)) (-4 *1 (-861 *4 *5 *3)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *3 (-756)))) (-2822 (*1 *2 *1) (|partial| -12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-583 *1)) (-4 *1 (-861 *3 *4 *5)))) (-2823 (*1 *2 *1) (|partial| -12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-583 *1)) (-4 *1 (-861 *3 *4 *5)))) (-2824 (*1 *2 *1) (|partial| -12 (-4 *1 (-861 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-2 (|:| |var| *5) (|:| -2401 (-694)))))) (-2819 (*1 *2 *1) (-12 (-4 *1 (-861 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-694)))) (-2819 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *6)) (-4 *1 (-861 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-694)))) (-3081 (*1 *2 *1) (-12 (-4 *1 (-861 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-583 *5)))) (-2818 (*1 *2 *1) (-12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-583 *1)) (-4 *1 (-861 *3 *4 *5)))) (-3755 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-861 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)) (-4 *3 (-146)))) (-3756 (*1 *1 *1 *2) (-12 (-4 *1 (-861 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)) (-4 *3 (-146)))) (-2817 (*1 *1 *1 *2) (-12 (-4 *1 (-861 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)) (-4 *3 (-391)))) (-3502 (*1 *1 *1 *2) (-12 (-4 *1 (-861 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)) (-4 *3 (-391)))) (-3774 (*1 *1 *1) (-12 (-4 *1 (-861 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *2 (-391)))) (-3970 (*1 *2 *1) (-12 (-4 *3 (-391)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-347 *1)) (-4 *1 (-861 *3 *4 *5))))) +(-13 (-809 |t#3|) (-277 |t#1| |t#2|) (-260 $) (-455 |t#3| |t#1|) (-455 |t#3| $) (-950 |t#3|) (-328 |t#1|) (-10 -8 (-15 -3947 ((-694) $ |t#3|)) (-15 -3947 ((-583 (-694)) $ (-583 |t#3|))) (-15 -3676 ($ $ |t#3| (-694))) (-15 -3676 ($ $ (-583 |t#3|) (-583 (-694)))) (-15 -2821 ((-583 $) $)) (-15 -3083 ((-1084 $) $ |t#3|)) (-15 -3083 ((-1084 |t#1|) $)) (-15 -3082 ((-3 |t#3| "failed") $)) (-15 -2820 ((-694) $ |t#3|)) (-15 -2820 ((-583 (-694)) $ (-583 |t#3|))) (-15 -3762 ((-2 (|:| -1972 $) (|:| -2902 $)) $ $ |t#3|)) (-15 -2893 ($ $ |t#3| (-694))) (-15 -2893 ($ $ (-583 |t#3|) (-583 (-694)))) (-15 -3084 ($ (-1084 |t#1|) |t#3|)) (-15 -3084 ($ (-1084 $) |t#3|)) (-15 -2822 ((-3 (-583 $) "failed") $)) (-15 -2823 ((-3 (-583 $) "failed") $)) (-15 -2824 ((-3 (-2 (|:| |var| |t#3|) (|:| -2401 (-694))) "failed") $)) (-15 -2819 ((-694) $)) (-15 -2819 ((-694) $ (-583 |t#3|))) (-15 -3081 ((-583 |t#3|) $)) (-15 -2818 ((-583 $) $)) (IF (|has| |t#1| (-553 (-473))) (IF (|has| |t#3| (-553 (-473))) (-6 (-553 (-473))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-553 (-800 (-484)))) (IF (|has| |t#3| (-553 (-800 (-484)))) (-6 (-553 (-800 (-484)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-553 (-800 (-329)))) (IF (|has| |t#3| (-553 (-800 (-329)))) (-6 (-553 (-800 (-329)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-796 (-484))) (IF (|has| |t#3| (-796 (-484))) (-6 (-796 (-484))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-796 (-329))) (IF (|has| |t#3| (-796 (-329))) (-6 (-796 (-329))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-146)) (PROGN (-15 -3755 ($ $ $ |t#3|)) (-15 -3756 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-391)) (PROGN (-6 (-391)) (-15 -2817 ($ $ |t#3|)) (-15 -3502 ($ $)) (-15 -3502 ($ $ |t#3|)) (-15 -3970 ((-347 $) $)) (-15 -3774 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -3992)) (-6 -3992) |%noBranch|) (IF (|has| |t#1| (-821)) (-6 (-821)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-391))) ((-72) . T) ((-82 (-349 (-484)) (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-391)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-555 (-349 (-484))) OR (|has| |#1| (-950 (-349 (-484)))) (|has| |#1| (-38 (-349 (-484))))) ((-555 (-484)) . T) ((-555 |#1|) . T) ((-555 |#3|) . T) ((-555 $) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-391))) ((-552 (-772)) . T) ((-146) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-391)) (|has| |#1| (-146))) ((-553 (-473)) -12 (|has| |#1| (-553 (-473))) (|has| |#3| (-553 (-473)))) ((-553 (-800 (-329))) -12 (|has| |#1| (-553 (-800 (-329)))) (|has| |#3| (-553 (-800 (-329))))) ((-553 (-800 (-484))) -12 (|has| |#1| (-553 (-800 (-484)))) (|has| |#3| (-553 (-800 (-484))))) ((-246) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-391))) ((-260 $) . T) ((-277 |#1| |#2|) . T) ((-328 |#1|) . T) ((-354 |#1|) . T) ((-391) OR (|has| |#1| (-821)) (|has| |#1| (-391))) ((-455 |#3| |#1|) . T) ((-455 |#3| $) . T) ((-455 $ $) . T) ((-495) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-391))) ((-13) . T) ((-588 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-590 (-484)) |has| |#1| (-580 (-484))) ((-590 |#1|) . T) ((-590 $) . T) ((-582 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-582 |#1|) |has| |#1| (-146)) ((-582 $) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-391))) ((-580 (-484)) |has| |#1| (-580 (-484))) ((-580 |#1|) . T) ((-654 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-654 |#1|) |has| |#1| (-146)) ((-654 $) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-391))) ((-663) . T) ((-806 $ |#3|) . T) ((-809 |#3|) . T) ((-811 |#3|) . T) ((-796 (-329)) -12 (|has| |#1| (-796 (-329))) (|has| |#3| (-796 (-329)))) ((-796 (-484)) -12 (|has| |#1| (-796 (-484))) (|has| |#3| (-796 (-484)))) ((-821) |has| |#1| (-821)) ((-950 (-349 (-484))) |has| |#1| (-950 (-349 (-484)))) ((-950 (-484)) |has| |#1| (-950 (-484))) ((-950 |#1|) . T) ((-950 |#3|) . T) ((-963 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-963 |#1|) . T) ((-963 $) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-391)) (|has| |#1| (-146))) ((-968 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-968 |#1|) . T) ((-968 $) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-391)) (|has| |#1| (-146))) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T) ((-1133) |has| |#1| (-821))) +((-3081 (((-583 |#2|) |#5|) 40 T ELT)) (-3083 (((-1084 |#5|) |#5| |#2| (-1084 |#5|)) 23 T ELT) (((-349 (-1084 |#5|)) |#5| |#2|) 16 T ELT)) (-3084 ((|#5| (-349 (-1084 |#5|)) |#2|) 30 T ELT)) (-3082 (((-3 |#2| #1="failed") |#5|) 70 T ELT)) (-2823 (((-3 (-583 |#5|) #1#) |#5|) 64 T ELT)) (-2825 (((-3 (-2 (|:| |val| |#5|) (|:| -2401 (-484))) #1#) |#5|) 53 T ELT)) (-2822 (((-3 (-583 |#5|) #1#) |#5|) 66 T ELT)) (-2824 (((-3 (-2 (|:| |var| |#2|) (|:| -2401 (-484))) #1#) |#5|) 56 T ELT))) +(((-862 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3081 ((-583 |#2|) |#5|)) (-15 -3082 ((-3 |#2| #1="failed") |#5|)) (-15 -3083 ((-349 (-1084 |#5|)) |#5| |#2|)) (-15 -3084 (|#5| (-349 (-1084 |#5|)) |#2|)) (-15 -3083 ((-1084 |#5|) |#5| |#2| (-1084 |#5|))) (-15 -2822 ((-3 (-583 |#5|) #1#) |#5|)) (-15 -2823 ((-3 (-583 |#5|) #1#) |#5|)) (-15 -2824 ((-3 (-2 (|:| |var| |#2|) (|:| -2401 (-484))) #1#) |#5|)) (-15 -2825 ((-3 (-2 (|:| |val| |#5|) (|:| -2401 (-484))) #1#) |#5|))) (-717) (-756) (-961) (-861 |#3| |#1| |#2|) (-13 (-312) (-10 -8 (-15 -3945 ($ |#4|)) (-15 -2998 (|#4| $)) (-15 -2997 (|#4| $))))) (T -862)) +((-2825 (*1 *2 *3) (|partial| -12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-961)) (-4 *7 (-861 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2401 (-484)))) (-5 *1 (-862 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-312) (-10 -8 (-15 -3945 ($ *7)) (-15 -2998 (*7 $)) (-15 -2997 (*7 $))))))) (-2824 (*1 *2 *3) (|partial| -12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-961)) (-4 *7 (-861 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2401 (-484)))) (-5 *1 (-862 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-312) (-10 -8 (-15 -3945 ($ *7)) (-15 -2998 (*7 $)) (-15 -2997 (*7 $))))))) (-2823 (*1 *2 *3) (|partial| -12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-961)) (-4 *7 (-861 *6 *4 *5)) (-5 *2 (-583 *3)) (-5 *1 (-862 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-312) (-10 -8 (-15 -3945 ($ *7)) (-15 -2998 (*7 $)) (-15 -2997 (*7 $))))))) (-2822 (*1 *2 *3) (|partial| -12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-961)) (-4 *7 (-861 *6 *4 *5)) (-5 *2 (-583 *3)) (-5 *1 (-862 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-312) (-10 -8 (-15 -3945 ($ *7)) (-15 -2998 (*7 $)) (-15 -2997 (*7 $))))))) (-3083 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1084 *3)) (-4 *3 (-13 (-312) (-10 -8 (-15 -3945 ($ *7)) (-15 -2998 (*7 $)) (-15 -2997 (*7 $))))) (-4 *7 (-861 *6 *5 *4)) (-4 *5 (-717)) (-4 *4 (-756)) (-4 *6 (-961)) (-5 *1 (-862 *5 *4 *6 *7 *3)))) (-3084 (*1 *2 *3 *4) (-12 (-5 *3 (-349 (-1084 *2))) (-4 *5 (-717)) (-4 *4 (-756)) (-4 *6 (-961)) (-4 *2 (-13 (-312) (-10 -8 (-15 -3945 ($ *7)) (-15 -2998 (*7 $)) (-15 -2997 (*7 $))))) (-5 *1 (-862 *5 *4 *6 *7 *2)) (-4 *7 (-861 *6 *5 *4)))) (-3083 (*1 *2 *3 *4) (-12 (-4 *5 (-717)) (-4 *4 (-756)) (-4 *6 (-961)) (-4 *7 (-861 *6 *5 *4)) (-5 *2 (-349 (-1084 *3))) (-5 *1 (-862 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-312) (-10 -8 (-15 -3945 ($ *7)) (-15 -2998 (*7 $)) (-15 -2997 (*7 $))))))) (-3082 (*1 *2 *3) (|partial| -12 (-4 *4 (-717)) (-4 *5 (-961)) (-4 *6 (-861 *5 *4 *2)) (-4 *2 (-756)) (-5 *1 (-862 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-312) (-10 -8 (-15 -3945 ($ *6)) (-15 -2998 (*6 $)) (-15 -2997 (*6 $))))))) (-3081 (*1 *2 *3) (-12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-961)) (-4 *7 (-861 *6 *4 *5)) (-5 *2 (-583 *5)) (-5 *1 (-862 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-312) (-10 -8 (-15 -3945 ($ *7)) (-15 -2998 (*7 $)) (-15 -2997 (*7 $)))))))) +((-3957 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24 T ELT))) +(((-863 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3957 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-717) (-756) (-961) (-861 |#3| |#1| |#2|) (-13 (-1013) (-10 -8 (-15 -3838 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-694)))))) (T -863)) +((-3957 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-756)) (-4 *8 (-961)) (-4 *6 (-717)) (-4 *2 (-13 (-1013) (-10 -8 (-15 -3838 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-694)))))) (-5 *1 (-863 *6 *7 *8 *5 *2)) (-4 *5 (-861 *8 *6 *7))))) +((-2826 (((-2 (|:| -2401 (-694)) (|:| -3953 |#5|) (|:| |radicand| |#5|)) |#3| (-694)) 48 T ELT)) (-2827 (((-2 (|:| -2401 (-694)) (|:| -3953 |#5|) (|:| |radicand| |#5|)) (-349 (-484)) (-694)) 43 T ELT)) (-2829 (((-2 (|:| -2401 (-694)) (|:| -3953 |#4|) (|:| |radicand| (-583 |#4|))) |#4| (-694)) 64 T ELT)) (-2828 (((-2 (|:| -2401 (-694)) (|:| -3953 |#5|) (|:| |radicand| |#5|)) |#5| (-694)) 73 (|has| |#3| (-391)) ELT))) +(((-864 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2826 ((-2 (|:| -2401 (-694)) (|:| -3953 |#5|) (|:| |radicand| |#5|)) |#3| (-694))) (-15 -2827 ((-2 (|:| -2401 (-694)) (|:| -3953 |#5|) (|:| |radicand| |#5|)) (-349 (-484)) (-694))) (IF (|has| |#3| (-391)) (-15 -2828 ((-2 (|:| -2401 (-694)) (|:| -3953 |#5|) (|:| |radicand| |#5|)) |#5| (-694))) |%noBranch|) (-15 -2829 ((-2 (|:| -2401 (-694)) (|:| -3953 |#4|) (|:| |radicand| (-583 |#4|))) |#4| (-694)))) (-717) (-756) (-495) (-861 |#3| |#1| |#2|) (-13 (-312) (-10 -8 (-15 -3945 ($ |#4|)) (-15 -2998 (|#4| $)) (-15 -2997 (|#4| $))))) (T -864)) +((-2829 (*1 *2 *3 *4) (-12 (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-495)) (-4 *3 (-861 *7 *5 *6)) (-5 *2 (-2 (|:| -2401 (-694)) (|:| -3953 *3) (|:| |radicand| (-583 *3)))) (-5 *1 (-864 *5 *6 *7 *3 *8)) (-5 *4 (-694)) (-4 *8 (-13 (-312) (-10 -8 (-15 -3945 ($ *3)) (-15 -2998 (*3 $)) (-15 -2997 (*3 $))))))) (-2828 (*1 *2 *3 *4) (-12 (-4 *7 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-495)) (-4 *8 (-861 *7 *5 *6)) (-5 *2 (-2 (|:| -2401 (-694)) (|:| -3953 *3) (|:| |radicand| *3))) (-5 *1 (-864 *5 *6 *7 *8 *3)) (-5 *4 (-694)) (-4 *3 (-13 (-312) (-10 -8 (-15 -3945 ($ *8)) (-15 -2998 (*8 $)) (-15 -2997 (*8 $))))))) (-2827 (*1 *2 *3 *4) (-12 (-5 *3 (-349 (-484))) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-495)) (-4 *8 (-861 *7 *5 *6)) (-5 *2 (-2 (|:| -2401 (-694)) (|:| -3953 *9) (|:| |radicand| *9))) (-5 *1 (-864 *5 *6 *7 *8 *9)) (-5 *4 (-694)) (-4 *9 (-13 (-312) (-10 -8 (-15 -3945 ($ *8)) (-15 -2998 (*8 $)) (-15 -2997 (*8 $))))))) (-2826 (*1 *2 *3 *4) (-12 (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-495)) (-4 *7 (-861 *3 *5 *6)) (-5 *2 (-2 (|:| -2401 (-694)) (|:| -3953 *8) (|:| |radicand| *8))) (-5 *1 (-864 *5 *6 *3 *7 *8)) (-5 *4 (-694)) (-4 *8 (-13 (-312) (-10 -8 (-15 -3945 ($ *7)) (-15 -2998 (*7 $)) (-15 -2997 (*7 $)))))))) +((-2568 (((-85) $ $) NIL T ELT)) (-2830 (($ (-1033)) 8 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) 15 T ELT) (((-1033) $) 12 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 11 T ELT))) +(((-865) (-13 (-1013) (-552 (-1033)) (-10 -8 (-15 -2830 ($ (-1033)))))) (T -865)) +((-2830 (*1 *1 *2) (-12 (-5 *2 (-1033)) (-5 *1 (-865))))) +((-2896 (((-1001 (-179)) $) 8 T ELT)) (-2897 (((-1001 (-179)) $) 9 T ELT)) (-2898 (((-583 (-583 (-854 (-179)))) $) 10 T ELT)) (-3945 (((-772) $) 6 T ELT))) +(((-866) (-113)) (T -866)) +((-2898 (*1 *2 *1) (-12 (-4 *1 (-866)) (-5 *2 (-583 (-583 (-854 (-179))))))) (-2897 (*1 *2 *1) (-12 (-4 *1 (-866)) (-5 *2 (-1001 (-179))))) (-2896 (*1 *2 *1) (-12 (-4 *1 (-866)) (-5 *2 (-1001 (-179)))))) +(-13 (-552 (-772)) (-10 -8 (-15 -2898 ((-583 (-583 (-854 (-179)))) $)) (-15 -2897 ((-1001 (-179)) $)) (-15 -2896 ((-1001 (-179)) $)))) +(((-552 (-772)) . T)) +((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) 80 (|has| |#1| (-495)) ELT)) (-2063 (($ $) 81 (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 (-484) #1#) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-3 (-349 (-484)) #1#) $) NIL (|has| |#1| (-950 (-349 (-484)))) ELT) (((-3 |#1| #1#) $) 35 T ELT)) (-3156 (((-484) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-349 (-484)) $) NIL (|has| |#1| (-950 (-349 (-484)))) ELT) ((|#1| $) NIL T ELT)) (-3958 (($ $) 32 T ELT)) (-3466 (((-3 $ #1#) $) 43 T ELT)) (-3502 (($ $) NIL (|has| |#1| (-391)) ELT)) (-1623 (($ $ |#1| |#2| $) 64 T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2420 (((-694) $) 18 T ELT)) (-3936 (((-85) $) NIL T ELT)) (-2893 (($ |#1| |#2|) NIL T ELT)) (-2820 ((|#2| $) 25 T ELT)) (-1624 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2894 (($ $) 29 T ELT)) (-3174 ((|#1| $) 27 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1796 (((-85) $) 52 T ELT)) (-1795 ((|#1| $) NIL T ELT)) (-3737 (($ $ |#2| |#1| $) 90 (-12 (|has| |#2| (-104)) (|has| |#1| (-495))) ELT)) (-3465 (((-3 $ #1#) $ $) 92 (|has| |#1| (-495)) ELT) (((-3 $ #1#) $ |#1|) 87 (|has| |#1| (-495)) ELT)) (-3947 ((|#2| $) 23 T ELT)) (-2817 ((|#1| $) NIL (|has| |#1| (-391)) ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-484)) 47 T ELT) (($ $) NIL (|has| |#1| (-495)) ELT) (($ |#1|) 42 T ELT) (($ (-349 (-484))) NIL (OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-950 (-349 (-484))))) ELT)) (-3816 (((-583 |#1|) $) NIL T ELT)) (-3676 ((|#1| $ |#2|) 38 T ELT)) (-2702 (((-632 $) $) NIL (|has| |#1| (-118)) ELT)) (-3126 (((-694)) 15 T CONST)) (-1622 (($ $ $ (-694)) 76 (|has| |#1| (-146)) ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) 86 (|has| |#1| (-495)) ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) 28 T CONST)) (-2666 (($) 12 T CONST)) (-3056 (((-85) $ $) 85 T ELT)) (-3948 (($ $ |#1|) 93 (|has| |#1| (-312)) ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (** (($ $ (-830)) 71 T ELT) (($ $ (-694)) 69 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 68 T ELT) (($ $ |#1|) 66 T ELT) (($ |#1| $) 65 T ELT) (($ (-349 (-484)) $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $ (-349 (-484))) NIL (|has| |#1| (-38 (-349 (-484)))) ELT))) +(((-867 |#1| |#2|) (-13 (-277 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-495)) (IF (|has| |#2| (-104)) (-15 -3737 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -3992)) (-6 -3992) |%noBranch|))) (-961) (-716)) (T -867)) +((-3737 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-867 *3 *2)) (-4 *2 (-104)) (-4 *3 (-495)) (-4 *3 (-961)) (-4 *2 (-716))))) +((-2831 (((-3 (-630 |#1|) "failed") |#2| (-830)) 18 T ELT))) +(((-868 |#1| |#2|) (-10 -7 (-15 -2831 ((-3 (-630 |#1|) "failed") |#2| (-830)))) (-495) (-600 |#1|)) (T -868)) +((-2831 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-830)) (-4 *5 (-495)) (-5 *2 (-630 *5)) (-5 *1 (-868 *5 *3)) (-4 *3 (-600 *5))))) +((-2568 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2198 (((-1184) $ (-484) (-484)) NIL (|has| $ (-6 -3995)) ELT)) (-1731 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-756)) ELT)) (-1729 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-6 -3995)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-756))) ELT)) (-2909 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-756)) ELT)) (-3787 ((|#1| $ (-484) |#1|) 18 (|has| $ (-6 -3995)) ELT) ((|#1| $ (-1145 (-484)) |#1|) NIL (|has| $ (-6 -3995)) ELT)) (-3709 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3723 (($) NIL T CONST)) (-2297 (($ $) NIL (|has| $ (-6 -3995)) ELT)) (-2298 (($ $) NIL T ELT)) (-1352 (($ $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-3405 (($ |#1| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3841 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3994)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-1575 ((|#1| $ (-484) |#1|) 17 (|has| $ (-6 -3995)) ELT)) (-3112 ((|#1| $ (-484)) 15 T ELT)) (-3418 (((-484) (-1 (-85) |#1|) $) NIL T ELT) (((-484) |#1| $) NIL (|has| |#1| (-1013)) ELT) (((-484) |#1| $ (-484)) NIL (|has| |#1| (-1013)) ELT)) (-2889 (((-583 |#1|) $) 23 (|has| $ (-6 -3994)) ELT)) (-3613 (($ (-694) |#1|) 14 T ELT)) (-2200 (((-484) $) 10 (|has| (-484) (-756)) ELT)) (-2531 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-3517 (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2608 (((-583 |#1|) $) 24 (|has| $ (-6 -3994)) ELT)) (-3245 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-2201 (((-484) $) 22 (|has| (-484) (-756)) ELT)) (-2857 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-1948 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3242 (((-1072) $) NIL (|has| |#1| (-1013)) ELT)) (-2304 (($ |#1| $ (-484)) NIL T ELT) (($ $ $ (-484)) NIL T ELT)) (-2203 (((-583 (-484)) $) NIL T ELT)) (-2204 (((-85) (-484) $) NIL T ELT)) (-3243 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-3800 ((|#1| $) NIL (|has| (-484) (-756)) ELT)) (-1353 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2199 (($ $ |#1|) 19 (|has| $ (-6 -3995)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3767 (($ $ (-583 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1221 (((-85) $ $) NIL T ELT)) (-2202 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-2205 (((-583 |#1|) $) NIL T ELT)) (-3402 (((-85) $) NIL T ELT)) (-3564 (($) 11 T ELT)) (-3799 ((|#1| $ (-484) |#1|) NIL T ELT) ((|#1| $ (-484)) 16 T ELT) (($ $ (-1145 (-484))) NIL T ELT)) (-2305 (($ $ (-484)) NIL T ELT) (($ $ (-1145 (-484))) NIL T ELT)) (-1945 (((-694) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT) (((-694) |#1| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-1730 (($ $ $ (-484)) NIL (|has| $ (-6 -3995)) ELT)) (-3399 (($ $) 20 T ELT)) (-3971 (((-473) $) NIL (|has| |#1| (-553 (-473))) ELT)) (-3529 (($ (-583 |#1|)) 13 T ELT)) (-3801 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3945 (((-772) $) NIL (|has| |#1| (-552 (-772))) ELT)) (-1264 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-2566 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2567 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3056 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2684 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2685 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3956 (((-694) $) 8 (|has| $ (-6 -3994)) ELT))) +(((-869 |#1|) (-19 |#1|) (-1128)) (T -869)) +NIL +((-3840 (((-869 |#2|) (-1 |#2| |#1| |#2|) (-869 |#1|) |#2|) 16 T ELT)) (-3841 ((|#2| (-1 |#2| |#1| |#2|) (-869 |#1|) |#2|) 18 T ELT)) (-3957 (((-869 |#2|) (-1 |#2| |#1|) (-869 |#1|)) 13 T ELT))) +(((-870 |#1| |#2|) (-10 -7 (-15 -3840 ((-869 |#2|) (-1 |#2| |#1| |#2|) (-869 |#1|) |#2|)) (-15 -3841 (|#2| (-1 |#2| |#1| |#2|) (-869 |#1|) |#2|)) (-15 -3957 ((-869 |#2|) (-1 |#2| |#1|) (-869 |#1|)))) (-1128) (-1128)) (T -870)) +((-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-869 *5)) (-4 *5 (-1128)) (-4 *6 (-1128)) (-5 *2 (-869 *6)) (-5 *1 (-870 *5 *6)))) (-3841 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-869 *5)) (-4 *5 (-1128)) (-4 *2 (-1128)) (-5 *1 (-870 *5 *2)))) (-3840 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-869 *6)) (-4 *6 (-1128)) (-4 *5 (-1128)) (-5 *2 (-869 *5)) (-5 *1 (-870 *6 *5))))) +((-2832 (($ $ (-1004 $)) 7 T ELT) (($ $ (-1089)) 6 T ELT))) +(((-871) (-113)) (T -871)) +((-2832 (*1 *1 *1 *2) (-12 (-5 *2 (-1004 *1)) (-4 *1 (-871)))) (-2832 (*1 *1 *1 *2) (-12 (-4 *1 (-871)) (-5 *2 (-1089))))) +(-13 (-10 -8 (-15 -2832 ($ $ (-1089))) (-15 -2832 ($ $ (-1004 $))))) +((-2833 (((-2 (|:| -3953 (-583 (-484))) (|:| |poly| (-583 (-1084 |#1|))) (|:| |prim| (-1084 |#1|))) (-583 (-857 |#1|)) (-583 (-1089)) (-1089)) 26 T ELT) (((-2 (|:| -3953 (-583 (-484))) (|:| |poly| (-583 (-1084 |#1|))) (|:| |prim| (-1084 |#1|))) (-583 (-857 |#1|)) (-583 (-1089))) 27 T ELT) (((-2 (|:| |coef1| (-484)) (|:| |coef2| (-484)) (|:| |prim| (-1084 |#1|))) (-857 |#1|) (-1089) (-857 |#1|) (-1089)) 49 T ELT))) +(((-872 |#1|) (-10 -7 (-15 -2833 ((-2 (|:| |coef1| (-484)) (|:| |coef2| (-484)) (|:| |prim| (-1084 |#1|))) (-857 |#1|) (-1089) (-857 |#1|) (-1089))) (-15 -2833 ((-2 (|:| -3953 (-583 (-484))) (|:| |poly| (-583 (-1084 |#1|))) (|:| |prim| (-1084 |#1|))) (-583 (-857 |#1|)) (-583 (-1089)))) (-15 -2833 ((-2 (|:| -3953 (-583 (-484))) (|:| |poly| (-583 (-1084 |#1|))) (|:| |prim| (-1084 |#1|))) (-583 (-857 |#1|)) (-583 (-1089)) (-1089)))) (-13 (-312) (-120))) (T -872)) +((-2833 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 (-857 *6))) (-5 *4 (-583 (-1089))) (-5 *5 (-1089)) (-4 *6 (-13 (-312) (-120))) (-5 *2 (-2 (|:| -3953 (-583 (-484))) (|:| |poly| (-583 (-1084 *6))) (|:| |prim| (-1084 *6)))) (-5 *1 (-872 *6)))) (-2833 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-857 *5))) (-5 *4 (-583 (-1089))) (-4 *5 (-13 (-312) (-120))) (-5 *2 (-2 (|:| -3953 (-583 (-484))) (|:| |poly| (-583 (-1084 *5))) (|:| |prim| (-1084 *5)))) (-5 *1 (-872 *5)))) (-2833 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-857 *5)) (-5 *4 (-1089)) (-4 *5 (-13 (-312) (-120))) (-5 *2 (-2 (|:| |coef1| (-484)) (|:| |coef2| (-484)) (|:| |prim| (-1084 *5)))) (-5 *1 (-872 *5))))) +((-2836 (((-583 |#1|) |#1| |#1|) 47 T ELT)) (-3722 (((-85) |#1|) 44 T ELT)) (-2835 ((|#1| |#1|) 80 T ELT)) (-2834 ((|#1| |#1|) 79 T ELT))) +(((-873 |#1|) (-10 -7 (-15 -3722 ((-85) |#1|)) (-15 -2834 (|#1| |#1|)) (-15 -2835 (|#1| |#1|)) (-15 -2836 ((-583 |#1|) |#1| |#1|))) (-483)) (T -873)) +((-2836 (*1 *2 *3 *3) (-12 (-5 *2 (-583 *3)) (-5 *1 (-873 *3)) (-4 *3 (-483)))) (-2835 (*1 *2 *2) (-12 (-5 *1 (-873 *2)) (-4 *2 (-483)))) (-2834 (*1 *2 *2) (-12 (-5 *1 (-873 *2)) (-4 *2 (-483)))) (-3722 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-873 *3)) (-4 *3 (-483))))) +((-2837 (((-1184) (-772)) 9 T ELT))) +(((-874) (-10 -7 (-15 -2837 ((-1184) (-772))))) (T -874)) +((-2837 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1184)) (-5 *1 (-874))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-717)) (|has| |#2| (-717)))) ELT)) (-2483 (($ $ $) 65 (-12 (|has| |#1| (-717)) (|has| |#2| (-717))) ELT)) (-1311 (((-3 $ #1="failed") $ $) 52 (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-717)) (|has| |#2| (-717)))) ELT)) (-3136 (((-694)) 36 (-12 (|has| |#1| (-319)) (|has| |#2| (-319))) ELT)) (-2838 ((|#2| $) 22 T ELT)) (-2839 ((|#1| $) 21 T ELT)) (-3723 (($) NIL (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-412)) (|has| |#2| (-412))) (-12 (|has| |#1| (-663)) (|has| |#2| (-663))) (-12 (|has| |#1| (-717)) (|has| |#2| (-717)))) CONST)) (-3466 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#1| (-412)) (|has| |#2| (-412))) (-12 (|has| |#1| (-663)) (|has| |#2| (-663)))) ELT)) (-2994 (($) NIL (-12 (|has| |#1| (-319)) (|has| |#2| (-319))) ELT)) (-3186 (((-85) $) NIL (-12 (|has| |#1| (-717)) (|has| |#2| (-717))) ELT)) (-1213 (((-85) $ $) NIL (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-717)) (|has| |#2| (-717)))) ELT)) (-2410 (((-85) $) NIL (OR (-12 (|has| |#1| (-412)) (|has| |#2| (-412))) (-12 (|has| |#1| (-663)) (|has| |#2| (-663)))) ELT)) (-2531 (($ $ $) NIL (OR (-12 (|has| |#1| (-717)) (|has| |#2| (-717))) (-12 (|has| |#1| (-756)) (|has| |#2| (-756)))) ELT)) (-2857 (($ $ $) NIL (OR (-12 (|has| |#1| (-717)) (|has| |#2| (-717))) (-12 (|has| |#1| (-756)) (|has| |#2| (-756)))) ELT)) (-2840 (($ |#1| |#2|) 20 T ELT)) (-2010 (((-830) $) NIL (-12 (|has| |#1| (-319)) (|has| |#2| (-319))) ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2484 (($ $) 39 (-12 (|has| |#1| (-412)) (|has| |#2| (-412))) ELT)) (-2400 (($ (-830)) NIL (-12 (|has| |#1| (-319)) (|has| |#2| (-319))) ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3009 (($ $ $) NIL (-12 (|has| |#1| (-412)) (|has| |#2| (-412))) ELT)) (-2435 (($ $ $) NIL (-12 (|has| |#1| (-412)) (|has| |#2| (-412))) ELT)) (-3945 (((-772) $) 14 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2660 (($) 42 (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-717)) (|has| |#2| (-717)))) CONST)) (-2666 (($) 25 (OR (-12 (|has| |#1| (-412)) (|has| |#2| (-412))) (-12 (|has| |#1| (-663)) (|has| |#2| (-663)))) CONST)) (-2566 (((-85) $ $) NIL (OR (-12 (|has| |#1| (-717)) (|has| |#2| (-717))) (-12 (|has| |#1| (-756)) (|has| |#2| (-756)))) ELT)) (-2567 (((-85) $ $) NIL (OR (-12 (|has| |#1| (-717)) (|has| |#2| (-717))) (-12 (|has| |#1| (-756)) (|has| |#2| (-756)))) ELT)) (-3056 (((-85) $ $) 19 T ELT)) (-2684 (((-85) $ $) NIL (OR (-12 (|has| |#1| (-717)) (|has| |#2| (-717))) (-12 (|has| |#1| (-756)) (|has| |#2| (-756)))) ELT)) (-2685 (((-85) $ $) 69 (OR (-12 (|has| |#1| (-717)) (|has| |#2| (-717))) (-12 (|has| |#1| (-756)) (|has| |#2| (-756)))) ELT)) (-3948 (($ $ $) NIL (-12 (|has| |#1| (-412)) (|has| |#2| (-412))) ELT)) (-3836 (($ $ $) 58 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) ELT) (($ $) 55 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) ELT)) (-3838 (($ $ $) 45 (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-717)) (|has| |#2| (-717)))) ELT)) (** (($ $ (-484)) NIL (-12 (|has| |#1| (-412)) (|has| |#2| (-412))) ELT) (($ $ (-694)) 32 (OR (-12 (|has| |#1| (-412)) (|has| |#2| (-412))) (-12 (|has| |#1| (-663)) (|has| |#2| (-663)))) ELT) (($ $ (-830)) NIL (OR (-12 (|has| |#1| (-412)) (|has| |#2| (-412))) (-12 (|has| |#1| (-663)) (|has| |#2| (-663)))) ELT)) (* (($ (-484) $) 62 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) ELT) (($ (-694) $) 48 (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-717)) (|has| |#2| (-717)))) ELT) (($ (-830) $) NIL (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-717)) (|has| |#2| (-717)))) ELT) (($ $ $) 28 (OR (-12 (|has| |#1| (-412)) (|has| |#2| (-412))) (-12 (|has| |#1| (-663)) (|has| |#2| (-663)))) ELT))) +(((-875 |#1| |#2|) (-13 (-1013) (-10 -8 (IF (|has| |#1| (-319)) (IF (|has| |#2| (-319)) (-6 (-319)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-663)) (IF (|has| |#2| (-663)) (-6 (-663)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-104)) (IF (|has| |#2| (-104)) (-6 (-104)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-412)) (IF (|has| |#2| (-412)) (-6 (-412)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-717)) (IF (|has| |#2| (-717)) (-6 (-717)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-756)) (IF (|has| |#2| (-756)) (-6 (-756)) |%noBranch|) |%noBranch|) (-15 -2840 ($ |#1| |#2|)) (-15 -2839 (|#1| $)) (-15 -2838 (|#2| $)))) (-1013) (-1013)) (T -875)) +((-2840 (*1 *1 *2 *3) (-12 (-5 *1 (-875 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013)))) (-2839 (*1 *2 *1) (-12 (-4 *2 (-1013)) (-5 *1 (-875 *2 *3)) (-4 *3 (-1013)))) (-2838 (*1 *2 *1) (-12 (-4 *2 (-1013)) (-5 *1 (-875 *3 *2)) (-4 *3 (-1013))))) +((-3401 (((-1015) $) 13 T ELT)) (-2841 (($ (-446) (-1015)) 15 T ELT)) (-3541 (((-446) $) 11 T ELT)) (-3945 (((-772) $) 25 T ELT))) +(((-876) (-13 (-552 (-772)) (-10 -8 (-15 -3541 ((-446) $)) (-15 -3401 ((-1015) $)) (-15 -2841 ($ (-446) (-1015)))))) (T -876)) +((-3541 (*1 *2 *1) (-12 (-5 *2 (-446)) (-5 *1 (-876)))) (-3401 (*1 *2 *1) (-12 (-5 *2 (-1015)) (-5 *1 (-876)))) (-2841 (*1 *1 *2 *3) (-12 (-5 *2 (-446)) (-5 *3 (-1015)) (-5 *1 (-876))))) +((-2568 (((-85) $ $) NIL T ELT)) (-2313 (($ $) 29 T ELT)) (-2855 (($) 17 T CONST)) (-2561 (($ $ $) NIL T ELT)) (-2560 (($ $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2846 (((-632 (-782 $ $)) $) 62 T ELT)) (-2848 (((-632 $) $) 52 T ELT)) (-2845 (((-632 (-782 $ $)) $) 63 T ELT)) (-2844 (((-632 (-782 $ $)) $) 64 T ELT)) (-2849 (((-632 |#1|) $) 43 T ELT)) (-2847 (((-632 (-782 $ $)) $) 61 T ELT)) (-2853 (($ $ $) 38 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2854 (($) 16 T CONST)) (-2852 (($ $ $) 39 T ELT)) (-2842 (($ $ $) 36 T ELT)) (-2843 (($ $ $) 34 T ELT)) (-3945 (((-772) $) 66 T ELT) (($ |#1|) 12 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2562 (($ $ $) NIL T ELT)) (-2311 (($ $ $) 37 T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2312 (($ $ $) 35 T ELT))) +(((-877 |#1|) (-13 (-880) (-555 |#1|) (-10 -8 (-15 -2849 ((-632 |#1|) $)) (-15 -2848 ((-632 $) $)) (-15 -2847 ((-632 (-782 $ $)) $)) (-15 -2846 ((-632 (-782 $ $)) $)) (-15 -2845 ((-632 (-782 $ $)) $)) (-15 -2844 ((-632 (-782 $ $)) $)) (-15 -2843 ($ $ $)) (-15 -2842 ($ $ $)))) (-1013)) (T -877)) +((-2849 (*1 *2 *1) (-12 (-5 *2 (-632 *3)) (-5 *1 (-877 *3)) (-4 *3 (-1013)))) (-2848 (*1 *2 *1) (-12 (-5 *2 (-632 (-877 *3))) (-5 *1 (-877 *3)) (-4 *3 (-1013)))) (-2847 (*1 *2 *1) (-12 (-5 *2 (-632 (-782 (-877 *3) (-877 *3)))) (-5 *1 (-877 *3)) (-4 *3 (-1013)))) (-2846 (*1 *2 *1) (-12 (-5 *2 (-632 (-782 (-877 *3) (-877 *3)))) (-5 *1 (-877 *3)) (-4 *3 (-1013)))) (-2845 (*1 *2 *1) (-12 (-5 *2 (-632 (-782 (-877 *3) (-877 *3)))) (-5 *1 (-877 *3)) (-4 *3 (-1013)))) (-2844 (*1 *2 *1) (-12 (-5 *2 (-632 (-782 (-877 *3) (-877 *3)))) (-5 *1 (-877 *3)) (-4 *3 (-1013)))) (-2843 (*1 *1 *1 *1) (-12 (-5 *1 (-877 *2)) (-4 *2 (-1013)))) (-2842 (*1 *1 *1 *1) (-12 (-5 *1 (-877 *2)) (-4 *2 (-1013))))) +((-3648 (((-877 |#1|) (-877 |#1|)) 46 T ELT)) (-2851 (((-877 |#1|) (-877 |#1|)) 22 T ELT)) (-2850 (((-1009 |#1|) (-877 |#1|)) 41 T ELT))) +(((-878 |#1|) (-13 (-1128) (-10 -7 (-15 -2851 ((-877 |#1|) (-877 |#1|))) (-15 -2850 ((-1009 |#1|) (-877 |#1|))) (-15 -3648 ((-877 |#1|) (-877 |#1|))))) (-1013)) (T -878)) +((-2851 (*1 *2 *2) (-12 (-5 *2 (-877 *3)) (-4 *3 (-1013)) (-5 *1 (-878 *3)))) (-2850 (*1 *2 *3) (-12 (-5 *3 (-877 *4)) (-4 *4 (-1013)) (-5 *2 (-1009 *4)) (-5 *1 (-878 *4)))) (-3648 (*1 *2 *2) (-12 (-5 *2 (-877 *3)) (-4 *3 (-1013)) (-5 *1 (-878 *3))))) +((-3957 (((-877 |#2|) (-1 |#2| |#1|) (-877 |#1|)) 29 T ELT))) +(((-879 |#1| |#2|) (-13 (-1128) (-10 -7 (-15 -3957 ((-877 |#2|) (-1 |#2| |#1|) (-877 |#1|))))) (-1013) (-1013)) (T -879)) +((-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-877 *5)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-5 *2 (-877 *6)) (-5 *1 (-879 *5 *6))))) +((-2568 (((-85) $ $) 19 T ELT)) (-2313 (($ $) 8 T ELT)) (-2855 (($) 17 T CONST)) (-2561 (($ $ $) 9 T ELT)) (-2560 (($ $) 11 T ELT)) (-3242 (((-1072) $) 23 T ELT)) (-2853 (($ $ $) 15 T ELT)) (-3243 (((-1033) $) 22 T ELT)) (-2854 (($) 16 T CONST)) (-2852 (($ $ $) 14 T ELT)) (-3945 (((-772) $) 21 T ELT)) (-1264 (((-85) $ $) 20 T ELT)) (-2562 (($ $ $) 10 T ELT)) (-2311 (($ $ $) 6 T ELT)) (-3056 (((-85) $ $) 18 T ELT)) (-2312 (($ $ $) 7 T ELT))) +(((-880) (-113)) (T -880)) +((-2855 (*1 *1) (-4 *1 (-880))) (-2854 (*1 *1) (-4 *1 (-880))) (-2853 (*1 *1 *1 *1) (-4 *1 (-880))) (-2852 (*1 *1 *1 *1) (-4 *1 (-880)))) +(-13 (-84) (-1013) (-10 -8 (-15 -2855 ($) -3951) (-15 -2854 ($) -3951) (-15 -2853 ($ $ $)) (-15 -2852 ($ $ $)))) +(((-72) . T) ((-84) . T) ((-552 (-772)) . T) ((-13) . T) ((-604) . T) ((-1013) . T) ((-1128) . T)) +((-2568 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3723 (($) 7 T CONST)) (-2889 (((-583 |#1|) $) 30 (|has| $ (-6 -3994)) ELT)) (-2856 (($ $ $) 47 T ELT)) (-3517 (($ $ $) 48 T ELT)) (-2608 (((-583 |#1|) $) 29 (|has| $ (-6 -3994)) ELT)) (-3245 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-2857 ((|#1| $) 49 T ELT)) (-1948 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3242 (((-1072) $) 22 (|has| |#1| (-1013)) ELT)) (-1273 ((|#1| $) 43 T ELT)) (-3608 (($ |#1| $) 44 T ELT)) (-3243 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-1274 ((|#1| $) 45 T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3994)) ELT)) (-3767 (($ $ (-583 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1221 (((-85) $ $) 11 T ELT)) (-3402 (((-85) $) 8 T ELT)) (-3564 (($) 9 T ELT)) (-1945 (((-694) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3994)) ELT) (((-694) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-3399 (($ $) 10 T ELT)) (-3945 (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-1264 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1275 (($ (-583 |#1|)) 46 T ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3994)) ELT)) (-3056 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3956 (((-694) $) 6 (|has| $ (-6 -3994)) ELT))) +(((-881 |#1|) (-113) (-756)) (T -881)) +((-2857 (*1 *2 *1) (-12 (-4 *1 (-881 *2)) (-4 *2 (-756)))) (-3517 (*1 *1 *1 *1) (-12 (-4 *1 (-881 *2)) (-4 *2 (-756)))) (-2856 (*1 *1 *1 *1) (-12 (-4 *1 (-881 *2)) (-4 *2 (-756))))) +(-13 (-76 |t#1|) (-10 -8 (-6 -3994) (-15 -2857 (|t#1| $)) (-15 -3517 ($ $ $)) (-15 -2856 ($ $ $)))) +(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1013)) (|has| |#1| (-552 (-772)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-428 |#1|) . T) ((-455 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-1013) |has| |#1| (-1013)) ((-1128) . T)) +((-2869 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3144 |#2|)) |#2| |#2|) 105 T ELT)) (-3754 ((|#2| |#2| |#2|) 103 T ELT)) (-2870 (((-2 (|:| |coef2| |#2|) (|:| -3144 |#2|)) |#2| |#2|) 107 T ELT)) (-2871 (((-2 (|:| |coef1| |#2|) (|:| -3144 |#2|)) |#2| |#2|) 109 T ELT)) (-2878 (((-2 (|:| |coef2| |#2|) (|:| -2876 |#1|)) |#2| |#2|) 132 (|has| |#1| (-391)) ELT)) (-2885 (((-2 (|:| |coef2| |#2|) (|:| -3755 |#1|)) |#2| |#2|) 56 T ELT)) (-2859 (((-2 (|:| |coef2| |#2|) (|:| -3755 |#1|)) |#2| |#2|) 80 T ELT)) (-2860 (((-2 (|:| |coef1| |#2|) (|:| -3755 |#1|)) |#2| |#2|) 82 T ELT)) (-2868 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 96 T ELT)) (-2863 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-694)) 89 T ELT)) (-2873 (((-2 (|:| |coef2| |#2|) (|:| -3756 |#1|)) |#2|) 121 T ELT)) (-2866 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-694)) 92 T ELT)) (-2875 (((-583 (-694)) |#2| |#2|) 102 T ELT)) (-2883 ((|#1| |#2| |#2|) 50 T ELT)) (-2877 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2876 |#1|)) |#2| |#2|) 130 (|has| |#1| (-391)) ELT)) (-2876 ((|#1| |#2| |#2|) 128 (|has| |#1| (-391)) ELT)) (-2884 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3755 |#1|)) |#2| |#2|) 54 T ELT)) (-2858 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3755 |#1|)) |#2| |#2|) 79 T ELT)) (-3755 ((|#1| |#2| |#2|) 76 T ELT)) (-3751 (((-2 (|:| -3953 |#1|) (|:| -1972 |#2|) (|:| -2902 |#2|)) |#2| |#2|) 41 T ELT)) (-2882 ((|#2| |#2| |#2| |#2| |#1|) 67 T ELT)) (-2867 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 94 T ELT)) (-3190 ((|#2| |#2| |#2|) 93 T ELT)) (-2862 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-694)) 87 T ELT)) (-2861 ((|#2| |#2| |#2| (-694)) 85 T ELT)) (-3144 ((|#2| |#2| |#2|) 136 (|has| |#1| (-391)) ELT)) (-3465 (((-1178 |#2|) (-1178 |#2|) |#1|) 22 T ELT)) (-2879 (((-2 (|:| -1972 |#2|) (|:| -2902 |#2|)) |#2| |#2|) 46 T ELT)) (-2872 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3756 |#1|)) |#2|) 119 T ELT)) (-3756 ((|#1| |#2|) 116 T ELT)) (-2865 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-694)) 91 T ELT)) (-2864 ((|#2| |#2| |#2| (-694)) 90 T ELT)) (-2874 (((-583 |#2|) |#2| |#2|) 99 T ELT)) (-2881 ((|#2| |#2| |#1| |#1| (-694)) 62 T ELT)) (-2880 ((|#1| |#1| |#1| (-694)) 61 T ELT)) (* (((-1178 |#2|) |#1| (-1178 |#2|)) 17 T ELT))) +(((-882 |#1| |#2|) (-10 -7 (-15 -3755 (|#1| |#2| |#2|)) (-15 -2858 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3755 |#1|)) |#2| |#2|)) (-15 -2859 ((-2 (|:| |coef2| |#2|) (|:| -3755 |#1|)) |#2| |#2|)) (-15 -2860 ((-2 (|:| |coef1| |#2|) (|:| -3755 |#1|)) |#2| |#2|)) (-15 -2861 (|#2| |#2| |#2| (-694))) (-15 -2862 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-694))) (-15 -2863 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-694))) (-15 -2864 (|#2| |#2| |#2| (-694))) (-15 -2865 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-694))) (-15 -2866 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-694))) (-15 -3190 (|#2| |#2| |#2|)) (-15 -2867 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2868 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3754 (|#2| |#2| |#2|)) (-15 -2869 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3144 |#2|)) |#2| |#2|)) (-15 -2870 ((-2 (|:| |coef2| |#2|) (|:| -3144 |#2|)) |#2| |#2|)) (-15 -2871 ((-2 (|:| |coef1| |#2|) (|:| -3144 |#2|)) |#2| |#2|)) (-15 -3756 (|#1| |#2|)) (-15 -2872 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3756 |#1|)) |#2|)) (-15 -2873 ((-2 (|:| |coef2| |#2|) (|:| -3756 |#1|)) |#2|)) (-15 -2874 ((-583 |#2|) |#2| |#2|)) (-15 -2875 ((-583 (-694)) |#2| |#2|)) (IF (|has| |#1| (-391)) (PROGN (-15 -2876 (|#1| |#2| |#2|)) (-15 -2877 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2876 |#1|)) |#2| |#2|)) (-15 -2878 ((-2 (|:| |coef2| |#2|) (|:| -2876 |#1|)) |#2| |#2|)) (-15 -3144 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1178 |#2|) |#1| (-1178 |#2|))) (-15 -3465 ((-1178 |#2|) (-1178 |#2|) |#1|)) (-15 -3751 ((-2 (|:| -3953 |#1|) (|:| -1972 |#2|) (|:| -2902 |#2|)) |#2| |#2|)) (-15 -2879 ((-2 (|:| -1972 |#2|) (|:| -2902 |#2|)) |#2| |#2|)) (-15 -2880 (|#1| |#1| |#1| (-694))) (-15 -2881 (|#2| |#2| |#1| |#1| (-694))) (-15 -2882 (|#2| |#2| |#2| |#2| |#1|)) (-15 -2883 (|#1| |#2| |#2|)) (-15 -2884 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3755 |#1|)) |#2| |#2|)) (-15 -2885 ((-2 (|:| |coef2| |#2|) (|:| -3755 |#1|)) |#2| |#2|))) (-495) (-1154 |#1|)) (T -882)) +((-2885 (*1 *2 *3 *3) (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3755 *4))) (-5 *1 (-882 *4 *3)) (-4 *3 (-1154 *4)))) (-2884 (*1 *2 *3 *3) (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3755 *4))) (-5 *1 (-882 *4 *3)) (-4 *3 (-1154 *4)))) (-2883 (*1 *2 *3 *3) (-12 (-4 *2 (-495)) (-5 *1 (-882 *2 *3)) (-4 *3 (-1154 *2)))) (-2882 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-495)) (-5 *1 (-882 *3 *2)) (-4 *2 (-1154 *3)))) (-2881 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-694)) (-4 *3 (-495)) (-5 *1 (-882 *3 *2)) (-4 *2 (-1154 *3)))) (-2880 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-694)) (-4 *2 (-495)) (-5 *1 (-882 *2 *4)) (-4 *4 (-1154 *2)))) (-2879 (*1 *2 *3 *3) (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| -1972 *3) (|:| -2902 *3))) (-5 *1 (-882 *4 *3)) (-4 *3 (-1154 *4)))) (-3751 (*1 *2 *3 *3) (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| -3953 *4) (|:| -1972 *3) (|:| -2902 *3))) (-5 *1 (-882 *4 *3)) (-4 *3 (-1154 *4)))) (-3465 (*1 *2 *2 *3) (-12 (-5 *2 (-1178 *4)) (-4 *4 (-1154 *3)) (-4 *3 (-495)) (-5 *1 (-882 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1178 *4)) (-4 *4 (-1154 *3)) (-4 *3 (-495)) (-5 *1 (-882 *3 *4)))) (-3144 (*1 *2 *2 *2) (-12 (-4 *3 (-391)) (-4 *3 (-495)) (-5 *1 (-882 *3 *2)) (-4 *2 (-1154 *3)))) (-2878 (*1 *2 *3 *3) (-12 (-4 *4 (-391)) (-4 *4 (-495)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2876 *4))) (-5 *1 (-882 *4 *3)) (-4 *3 (-1154 *4)))) (-2877 (*1 *2 *3 *3) (-12 (-4 *4 (-391)) (-4 *4 (-495)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2876 *4))) (-5 *1 (-882 *4 *3)) (-4 *3 (-1154 *4)))) (-2876 (*1 *2 *3 *3) (-12 (-4 *2 (-495)) (-4 *2 (-391)) (-5 *1 (-882 *2 *3)) (-4 *3 (-1154 *2)))) (-2875 (*1 *2 *3 *3) (-12 (-4 *4 (-495)) (-5 *2 (-583 (-694))) (-5 *1 (-882 *4 *3)) (-4 *3 (-1154 *4)))) (-2874 (*1 *2 *3 *3) (-12 (-4 *4 (-495)) (-5 *2 (-583 *3)) (-5 *1 (-882 *4 *3)) (-4 *3 (-1154 *4)))) (-2873 (*1 *2 *3) (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3756 *4))) (-5 *1 (-882 *4 *3)) (-4 *3 (-1154 *4)))) (-2872 (*1 *2 *3) (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3756 *4))) (-5 *1 (-882 *4 *3)) (-4 *3 (-1154 *4)))) (-3756 (*1 *2 *3) (-12 (-4 *2 (-495)) (-5 *1 (-882 *2 *3)) (-4 *3 (-1154 *2)))) (-2871 (*1 *2 *3 *3) (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3144 *3))) (-5 *1 (-882 *4 *3)) (-4 *3 (-1154 *4)))) (-2870 (*1 *2 *3 *3) (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3144 *3))) (-5 *1 (-882 *4 *3)) (-4 *3 (-1154 *4)))) (-2869 (*1 *2 *3 *3) (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3144 *3))) (-5 *1 (-882 *4 *3)) (-4 *3 (-1154 *4)))) (-3754 (*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-882 *3 *2)) (-4 *2 (-1154 *3)))) (-2868 (*1 *2 *3 *3) (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-882 *4 *3)) (-4 *3 (-1154 *4)))) (-2867 (*1 *2 *3 *3) (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-882 *4 *3)) (-4 *3 (-1154 *4)))) (-3190 (*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-882 *3 *2)) (-4 *2 (-1154 *3)))) (-2866 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-694)) (-4 *5 (-495)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-882 *5 *3)) (-4 *3 (-1154 *5)))) (-2865 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-694)) (-4 *5 (-495)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-882 *5 *3)) (-4 *3 (-1154 *5)))) (-2864 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-694)) (-4 *4 (-495)) (-5 *1 (-882 *4 *2)) (-4 *2 (-1154 *4)))) (-2863 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-694)) (-4 *5 (-495)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-882 *5 *3)) (-4 *3 (-1154 *5)))) (-2862 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-694)) (-4 *5 (-495)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-882 *5 *3)) (-4 *3 (-1154 *5)))) (-2861 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-694)) (-4 *4 (-495)) (-5 *1 (-882 *4 *2)) (-4 *2 (-1154 *4)))) (-2860 (*1 *2 *3 *3) (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3755 *4))) (-5 *1 (-882 *4 *3)) (-4 *3 (-1154 *4)))) (-2859 (*1 *2 *3 *3) (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3755 *4))) (-5 *1 (-882 *4 *3)) (-4 *3 (-1154 *4)))) (-2858 (*1 *2 *3 *3) (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3755 *4))) (-5 *1 (-882 *4 *3)) (-4 *3 (-1154 *4)))) (-3755 (*1 *2 *3 *3) (-12 (-4 *2 (-495)) (-5 *1 (-882 *2 *3)) (-4 *3 (-1154 *2))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3318 (((-1129) $) 14 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3206 (((-1048) $) 11 T ELT)) (-3945 (((-772) $) 21 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT))) +(((-883) (-13 (-995) (-10 -8 (-15 -3206 ((-1048) $)) (-15 -3318 ((-1129) $))))) (T -883)) +((-3206 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-883)))) (-3318 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-883))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) 40 T ELT)) (-1311 (((-3 $ "failed") $ $) 54 T ELT)) (-3723 (($) NIL T CONST)) (-2887 (((-583 (-782 (-830) (-830))) $) 64 T ELT)) (-3186 (((-85) $) NIL T ELT)) (-2886 (((-830) $) 91 T ELT)) (-2889 (((-583 (-830)) $) 17 T ELT)) (-2888 (((-1068 $) (-694)) 39 T ELT)) (-2890 (($ (-583 (-830))) 16 T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2531 (($ $ $) NIL T ELT)) (-2857 (($ $ $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3009 (($ $) 67 T ELT)) (-3945 (((-772) $) 87 T ELT) (((-583 (-830)) $) 11 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2660 (($) 10 T CONST)) (-2566 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 44 T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) 42 T ELT)) (-3838 (($ $ $) 46 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) 49 T ELT)) (-3956 (((-694) $) 22 T ELT))) +(((-884) (-13 (-721) (-552 (-583 (-830))) (-10 -8 (-15 -2890 ($ (-583 (-830)))) (-15 -2889 ((-583 (-830)) $)) (-15 -3956 ((-694) $)) (-15 -2888 ((-1068 $) (-694))) (-15 -2887 ((-583 (-782 (-830) (-830))) $)) (-15 -2886 ((-830) $)) (-15 -3009 ($ $))))) (T -884)) +((-2890 (*1 *1 *2) (-12 (-5 *2 (-583 (-830))) (-5 *1 (-884)))) (-2889 (*1 *2 *1) (-12 (-5 *2 (-583 (-830))) (-5 *1 (-884)))) (-3956 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-884)))) (-2888 (*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1068 (-884))) (-5 *1 (-884)))) (-2887 (*1 *2 *1) (-12 (-5 *2 (-583 (-782 (-830) (-830)))) (-5 *1 (-884)))) (-2886 (*1 *2 *1) (-12 (-5 *2 (-830)) (-5 *1 (-884)))) (-3009 (*1 *1 *1) (-5 *1 (-884)))) +((-3948 (($ $ |#2|) 31 T ELT)) (-3836 (($ $) 23 T ELT) (($ $ $) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 17 T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) 21 T ELT) (($ |#2| $) 20 T ELT) (($ (-349 (-484)) $) 27 T ELT) (($ $ (-349 (-484))) 29 T ELT))) +(((-885 |#1| |#2| |#3| |#4|) (-10 -7 (-15 * (|#1| |#1| (-349 (-484)))) (-15 * (|#1| (-349 (-484)) |#1|)) (-15 -3948 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -3836 (|#1| |#1| |#1|)) (-15 -3836 (|#1| |#1|)) (-15 * (|#1| (-484) |#1|)) (-15 * (|#1| (-694) |#1|)) (-15 * (|#1| (-830) |#1|))) (-886 |#2| |#3| |#4|) (-961) (-716) (-756)) (T -885)) +NIL +((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-3081 (((-583 |#3|) $) 95 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) 71 (|has| |#1| (-495)) ELT)) (-2063 (($ $) 72 (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) 74 (|has| |#1| (-495)) ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3723 (($) 23 T CONST)) (-3958 (($ $) 80 T ELT)) (-3466 (((-3 $ "failed") $) 42 T ELT)) (-2892 (((-85) $) 94 T ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3936 (((-85) $) 82 T ELT)) (-2893 (($ |#1| |#2|) 81 T ELT) (($ $ |#3| |#2|) 97 T ELT) (($ $ (-583 |#3|) (-583 |#2|)) 96 T ELT)) (-3957 (($ (-1 |#1| |#1|) $) 83 T ELT)) (-2894 (($ $) 85 T ELT)) (-3174 ((|#1| $) 86 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3465 (((-3 $ "failed") $ $) 70 (|has| |#1| (-495)) ELT)) (-3947 ((|#2| $) 84 T ELT)) (-2891 (($ $) 93 T ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ (-349 (-484))) 77 (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $) 69 (|has| |#1| (-495)) ELT) (($ |#1|) 67 (|has| |#1| (-146)) ELT)) (-3676 ((|#1| $ |#2|) 79 T ELT)) (-2702 (((-632 $) $) 68 (|has| |#1| (-118)) ELT)) (-3126 (((-694)) 40 T CONST)) (-1264 (((-85) $ $) 6 T ELT)) (-2062 (((-85) $ $) 73 (|has| |#1| (-495)) ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3948 (($ $ |#1|) 78 (|has| |#1| (-312)) ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 88 T ELT) (($ |#1| $) 87 T ELT) (($ (-349 (-484)) $) 76 (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $ (-349 (-484))) 75 (|has| |#1| (-38 (-349 (-484)))) ELT))) +(((-886 |#1| |#2| |#3|) (-113) (-961) (-716) (-756)) (T -886)) +((-3174 (*1 *2 *1) (-12 (-4 *1 (-886 *2 *3 *4)) (-4 *3 (-716)) (-4 *4 (-756)) (-4 *2 (-961)))) (-2894 (*1 *1 *1) (-12 (-4 *1 (-886 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-716)) (-4 *4 (-756)))) (-3947 (*1 *2 *1) (-12 (-4 *1 (-886 *3 *2 *4)) (-4 *3 (-961)) (-4 *4 (-756)) (-4 *2 (-716)))) (-2893 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-886 *4 *3 *2)) (-4 *4 (-961)) (-4 *3 (-716)) (-4 *2 (-756)))) (-2893 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *6)) (-5 *3 (-583 *5)) (-4 *1 (-886 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-716)) (-4 *6 (-756)))) (-3081 (*1 *2 *1) (-12 (-4 *1 (-886 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-716)) (-4 *5 (-756)) (-5 *2 (-583 *5)))) (-2892 (*1 *2 *1) (-12 (-4 *1 (-886 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-716)) (-4 *5 (-756)) (-5 *2 (-85)))) (-2891 (*1 *1 *1) (-12 (-4 *1 (-886 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-716)) (-4 *4 (-756))))) +(-13 (-47 |t#1| |t#2|) (-10 -8 (-15 -2893 ($ $ |t#3| |t#2|)) (-15 -2893 ($ $ (-583 |t#3|) (-583 |t#2|))) (-15 -2894 ($ $)) (-15 -3174 (|t#1| $)) (-15 -3947 (|t#2| $)) (-15 -3081 ((-583 |t#3|) $)) (-15 -2892 ((-85) $)) (-15 -2891 ($ $)))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) |has| |#1| (-495)) ((-72) . T) ((-82 (-349 (-484)) (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-555 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-555 (-484)) . T) ((-555 |#1|) |has| |#1| (-146)) ((-555 $) |has| |#1| (-495)) ((-552 (-772)) . T) ((-146) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-246) |has| |#1| (-495)) ((-495) |has| |#1| (-495)) ((-13) . T) ((-588 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-590 |#1|) . T) ((-590 $) . T) ((-582 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-582 |#1|) |has| |#1| (-146)) ((-582 $) |has| |#1| (-495)) ((-654 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-654 |#1|) |has| |#1| (-146)) ((-654 $) |has| |#1| (-495)) ((-663) . T) ((-963 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-963 |#1|) . T) ((-963 $) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-968 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-968 |#1|) . T) ((-968 $) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T)) +((-2895 (((-1001 (-179)) $) 8 T ELT)) (-2896 (((-1001 (-179)) $) 9 T ELT)) (-2897 (((-1001 (-179)) $) 10 T ELT)) (-2898 (((-583 (-583 (-854 (-179)))) $) 11 T ELT)) (-3945 (((-772) $) 6 T ELT))) +(((-887) (-113)) (T -887)) +((-2898 (*1 *2 *1) (-12 (-4 *1 (-887)) (-5 *2 (-583 (-583 (-854 (-179))))))) (-2897 (*1 *2 *1) (-12 (-4 *1 (-887)) (-5 *2 (-1001 (-179))))) (-2896 (*1 *2 *1) (-12 (-4 *1 (-887)) (-5 *2 (-1001 (-179))))) (-2895 (*1 *2 *1) (-12 (-4 *1 (-887)) (-5 *2 (-1001 (-179)))))) +(-13 (-552 (-772)) (-10 -8 (-15 -2898 ((-583 (-583 (-854 (-179)))) $)) (-15 -2897 ((-1001 (-179)) $)) (-15 -2896 ((-1001 (-179)) $)) (-15 -2895 ((-1001 (-179)) $)))) +(((-552 (-772)) . T)) +((-3081 (((-583 |#4|) $) 23 T ELT)) (-2908 (((-85) $) 55 T ELT)) (-2899 (((-85) $) 54 T ELT)) (-2909 (((-2 (|:| |under| $) (|:| -3130 $) (|:| |upper| $)) $ |#4|) 42 T ELT)) (-2904 (((-85) $) 56 T ELT)) (-2906 (((-85) $ $) 62 T ELT)) (-2905 (((-85) $ $) 65 T ELT)) (-2907 (((-85) $) 60 T ELT)) (-2900 (((-583 |#5|) (-583 |#5|) $) 98 T ELT)) (-2901 (((-583 |#5|) (-583 |#5|) $) 95 T ELT)) (-2902 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 88 T ELT)) (-2914 (((-583 |#4|) $) 27 T ELT)) (-2913 (((-85) |#4| $) 34 T ELT)) (-2903 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 81 T ELT)) (-2910 (($ $ |#4|) 39 T ELT)) (-2912 (($ $ |#4|) 38 T ELT)) (-2911 (($ $ |#4|) 40 T ELT)) (-3056 (((-85) $ $) 46 T ELT))) +(((-888 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2899 ((-85) |#1|)) (-15 -2900 ((-583 |#5|) (-583 |#5|) |#1|)) (-15 -2901 ((-583 |#5|) (-583 |#5|) |#1|)) (-15 -2902 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2903 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2904 ((-85) |#1|)) (-15 -2905 ((-85) |#1| |#1|)) (-15 -2906 ((-85) |#1| |#1|)) (-15 -2907 ((-85) |#1|)) (-15 -2908 ((-85) |#1|)) (-15 -2909 ((-2 (|:| |under| |#1|) (|:| -3130 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -2910 (|#1| |#1| |#4|)) (-15 -2911 (|#1| |#1| |#4|)) (-15 -2912 (|#1| |#1| |#4|)) (-15 -2913 ((-85) |#4| |#1|)) (-15 -2914 ((-583 |#4|) |#1|)) (-15 -3081 ((-583 |#4|) |#1|)) (-15 -3056 ((-85) |#1| |#1|))) (-889 |#2| |#3| |#4| |#5|) (-961) (-717) (-756) (-977 |#2| |#3| |#4|)) (T -888)) +NIL +((-2568 (((-85) $ $) 7 T ELT)) (-3081 (((-583 |#3|) $) 37 T ELT)) (-2908 (((-85) $) 30 T ELT)) (-2899 (((-85) $) 21 (|has| |#1| (-495)) ELT)) (-2909 (((-2 (|:| |under| $) (|:| -3130 $) (|:| |upper| $)) $ |#3|) 31 T ELT)) (-3709 (($ (-1 (-85) |#4|) $) 66 (|has| $ (-6 -3994)) ELT)) (-3723 (($) 46 T CONST)) (-2904 (((-85) $) 26 (|has| |#1| (-495)) ELT)) (-2906 (((-85) $ $) 28 (|has| |#1| (-495)) ELT)) (-2905 (((-85) $ $) 27 (|has| |#1| (-495)) ELT)) (-2907 (((-85) $) 29 (|has| |#1| (-495)) ELT)) (-2900 (((-583 |#4|) (-583 |#4|) $) 22 (|has| |#1| (-495)) ELT)) (-2901 (((-583 |#4|) (-583 |#4|) $) 23 (|has| |#1| (-495)) ELT)) (-3157 (((-3 $ "failed") (-583 |#4|)) 40 T ELT)) (-3156 (($ (-583 |#4|)) 39 T ELT)) (-1352 (($ $) 69 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -3994))) ELT)) (-3405 (($ |#4| $) 68 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -3994))) ELT) (($ (-1 (-85) |#4|) $) 65 (|has| $ (-6 -3994)) ELT)) (-2902 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 24 (|has| |#1| (-495)) ELT)) (-3841 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -3994))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -3994)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -3994)) ELT)) (-2889 (((-583 |#4|) $) 53 (|has| $ (-6 -3994)) ELT)) (-3180 ((|#3| $) 38 T ELT)) (-2608 (((-583 |#4|) $) 54 (|has| $ (-6 -3994)) ELT)) (-3245 (((-85) |#4| $) 56 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -3994))) ELT)) (-1948 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-2914 (((-583 |#3|) $) 36 T ELT)) (-2913 (((-85) |#3| $) 35 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-2903 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-495)) ELT)) (-3243 (((-1033) $) 12 T ELT)) (-1353 (((-3 |#4| "failed") (-1 (-85) |#4|) $) 62 T ELT)) (-1946 (((-85) (-1 (-85) |#4|) $) 51 (|has| $ (-6 -3994)) ELT)) (-3767 (($ $ (-583 |#4|) (-583 |#4|)) 60 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-249 |#4|)) 58 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-583 (-249 |#4|))) 57 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT)) (-1221 (((-85) $ $) 42 T ELT)) (-3402 (((-85) $) 45 T ELT)) (-3564 (($) 44 T ELT)) (-1945 (((-694) |#4| $) 55 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -3994))) ELT) (((-694) (-1 (-85) |#4|) $) 52 (|has| $ (-6 -3994)) ELT)) (-3399 (($ $) 43 T ELT)) (-3971 (((-473) $) 70 (|has| |#4| (-553 (-473))) ELT)) (-3529 (($ (-583 |#4|)) 61 T ELT)) (-2910 (($ $ |#3|) 32 T ELT)) (-2912 (($ $ |#3|) 34 T ELT)) (-2911 (($ $ |#3|) 33 T ELT)) (-3945 (((-772) $) 13 T ELT) (((-583 |#4|) $) 41 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-1947 (((-85) (-1 (-85) |#4|) $) 50 (|has| $ (-6 -3994)) ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-3956 (((-694) $) 47 (|has| $ (-6 -3994)) ELT))) +(((-889 |#1| |#2| |#3| |#4|) (-113) (-961) (-717) (-756) (-977 |t#1| |t#2| |t#3|)) (T -889)) +((-3157 (*1 *1 *2) (|partial| -12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *1 (-889 *3 *4 *5 *6)))) (-3156 (*1 *1 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *1 (-889 *3 *4 *5 *6)))) (-3180 (*1 *2 *1) (-12 (-4 *1 (-889 *3 *4 *2 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-977 *3 *4 *2)) (-4 *2 (-756)))) (-3081 (*1 *2 *1) (-12 (-4 *1 (-889 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-583 *5)))) (-2914 (*1 *2 *1) (-12 (-4 *1 (-889 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-583 *5)))) (-2913 (*1 *2 *3 *1) (-12 (-4 *1 (-889 *4 *5 *3 *6)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *3 (-756)) (-4 *6 (-977 *4 *5 *3)) (-5 *2 (-85)))) (-2912 (*1 *1 *1 *2) (-12 (-4 *1 (-889 *3 *4 *2 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)) (-4 *5 (-977 *3 *4 *2)))) (-2911 (*1 *1 *1 *2) (-12 (-4 *1 (-889 *3 *4 *2 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)) (-4 *5 (-977 *3 *4 *2)))) (-2910 (*1 *1 *1 *2) (-12 (-4 *1 (-889 *3 *4 *2 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)) (-4 *5 (-977 *3 *4 *2)))) (-2909 (*1 *2 *1 *3) (-12 (-4 *4 (-961)) (-4 *5 (-717)) (-4 *3 (-756)) (-4 *6 (-977 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -3130 *1) (|:| |upper| *1))) (-4 *1 (-889 *4 *5 *3 *6)))) (-2908 (*1 *2 *1) (-12 (-4 *1 (-889 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-85)))) (-2907 (*1 *2 *1) (-12 (-4 *1 (-889 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-5 *2 (-85)))) (-2906 (*1 *2 *1 *1) (-12 (-4 *1 (-889 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-5 *2 (-85)))) (-2905 (*1 *2 *1 *1) (-12 (-4 *1 (-889 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-5 *2 (-85)))) (-2904 (*1 *2 *1) (-12 (-4 *1 (-889 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-5 *2 (-85)))) (-2903 (*1 *2 *3 *1) (-12 (-4 *1 (-889 *4 *5 *6 *3)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6)) (-4 *4 (-495)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-2902 (*1 *2 *3 *1) (-12 (-4 *1 (-889 *4 *5 *6 *3)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6)) (-4 *4 (-495)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-2901 (*1 *2 *2 *1) (-12 (-5 *2 (-583 *6)) (-4 *1 (-889 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)))) (-2900 (*1 *2 *2 *1) (-12 (-5 *2 (-583 *6)) (-4 *1 (-889 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)))) (-2899 (*1 *2 *1) (-12 (-4 *1 (-889 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-5 *2 (-85))))) +(-13 (-1013) (-124 |t#4|) (-552 (-583 |t#4|)) (-10 -8 (-6 -3994) (-15 -3157 ((-3 $ "failed") (-583 |t#4|))) (-15 -3156 ($ (-583 |t#4|))) (-15 -3180 (|t#3| $)) (-15 -3081 ((-583 |t#3|) $)) (-15 -2914 ((-583 |t#3|) $)) (-15 -2913 ((-85) |t#3| $)) (-15 -2912 ($ $ |t#3|)) (-15 -2911 ($ $ |t#3|)) (-15 -2910 ($ $ |t#3|)) (-15 -2909 ((-2 (|:| |under| $) (|:| -3130 $) (|:| |upper| $)) $ |t#3|)) (-15 -2908 ((-85) $)) (IF (|has| |t#1| (-495)) (PROGN (-15 -2907 ((-85) $)) (-15 -2906 ((-85) $ $)) (-15 -2905 ((-85) $ $)) (-15 -2904 ((-85) $)) (-15 -2903 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -2902 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -2901 ((-583 |t#4|) (-583 |t#4|) $)) (-15 -2900 ((-583 |t#4|) (-583 |t#4|) $)) (-15 -2899 ((-85) $))) |%noBranch|))) +(((-34) . T) ((-72) . T) ((-552 (-583 |#4|)) . T) ((-552 (-772)) . T) ((-124 |#4|) . T) ((-553 (-473)) |has| |#4| (-553 (-473))) ((-260 |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ((-428 |#4|) . T) ((-455 |#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ((-13) . T) ((-1013) . T) ((-1128) . T)) +((-2916 (((-583 |#4|) |#4| |#4|) 135 T ELT)) (-2939 (((-583 |#4|) (-583 |#4|) (-85)) 123 (|has| |#1| (-391)) ELT) (((-583 |#4|) (-583 |#4|)) 124 (|has| |#1| (-391)) ELT)) (-2926 (((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|)) 44 T ELT)) (-2925 (((-85) |#4|) 43 T ELT)) (-2938 (((-583 |#4|) |#4|) 120 (|has| |#1| (-391)) ELT)) (-2921 (((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-1 (-85) |#4|) (-583 |#4|)) 24 T ELT)) (-2922 (((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 (-1 (-85) |#4|)) (-583 |#4|)) 30 T ELT)) (-2923 (((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 (-1 (-85) |#4|)) (-583 |#4|)) 31 T ELT)) (-2934 (((-3 (-2 (|:| |bas| (-415 |#1| |#2| |#3| |#4|)) (|:| -3323 (-583 |#4|))) "failed") (-583 |#4|)) 90 T ELT)) (-2936 (((-583 |#4|) (-583 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|)) 103 T ELT)) (-2937 (((-583 |#4|) (-583 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|)) 127 T ELT)) (-2915 (((-583 |#4|) (-583 |#4|)) 126 T ELT)) (-2931 (((-583 |#4|) (-583 |#4|) (-583 |#4|) (-85)) 59 T ELT) (((-583 |#4|) (-583 |#4|) (-583 |#4|)) 61 T ELT)) (-2932 ((|#4| |#4| (-583 |#4|)) 60 T ELT)) (-2940 (((-583 |#4|) (-583 |#4|) (-583 |#4|)) 131 (|has| |#1| (-391)) ELT)) (-2942 (((-583 |#4|) (-583 |#4|) (-583 |#4|)) 134 (|has| |#1| (-391)) ELT)) (-2941 (((-583 |#4|) (-583 |#4|) (-583 |#4|)) 133 (|has| |#1| (-391)) ELT)) (-2917 (((-583 |#4|) (-583 |#4|) (-583 |#4|) (-1 (-583 |#4|) (-583 |#4|))) 105 T ELT) (((-583 |#4|) (-583 |#4|) (-583 |#4|)) 107 T ELT) (((-583 |#4|) (-583 |#4|) |#4|) 139 T ELT) (((-583 |#4|) |#4| |#4|) 136 T ELT) (((-583 |#4|) (-583 |#4|)) 106 T ELT)) (-2945 (((-583 |#4|) (-583 |#4|) (-583 |#4|)) 117 (-12 (|has| |#1| (-120)) (|has| |#1| (-258))) ELT)) (-2924 (((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|)) 52 T ELT)) (-2920 (((-85) (-583 |#4|)) 79 T ELT)) (-2919 (((-85) (-583 |#4|) (-583 (-583 |#4|))) 67 T ELT)) (-2928 (((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|)) 37 T ELT)) (-2927 (((-85) |#4|) 36 T ELT)) (-2944 (((-583 |#4|) (-583 |#4|)) 116 (-12 (|has| |#1| (-120)) (|has| |#1| (-258))) ELT)) (-2943 (((-583 |#4|) (-583 |#4|)) 115 (-12 (|has| |#1| (-120)) (|has| |#1| (-258))) ELT)) (-2933 (((-583 |#4|) (-583 |#4|)) 83 T ELT)) (-2935 (((-583 |#4|) (-583 |#4|)) 97 T ELT)) (-2918 (((-85) (-583 |#4|) (-583 |#4|)) 65 T ELT)) (-2930 (((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|)) 50 T ELT)) (-2929 (((-85) |#4|) 45 T ELT))) +(((-890 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2917 ((-583 |#4|) (-583 |#4|))) (-15 -2917 ((-583 |#4|) |#4| |#4|)) (-15 -2915 ((-583 |#4|) (-583 |#4|))) (-15 -2916 ((-583 |#4|) |#4| |#4|)) (-15 -2917 ((-583 |#4|) (-583 |#4|) |#4|)) (-15 -2917 ((-583 |#4|) (-583 |#4|) (-583 |#4|))) (-15 -2917 ((-583 |#4|) (-583 |#4|) (-583 |#4|) (-1 (-583 |#4|) (-583 |#4|)))) (-15 -2918 ((-85) (-583 |#4|) (-583 |#4|))) (-15 -2919 ((-85) (-583 |#4|) (-583 (-583 |#4|)))) (-15 -2920 ((-85) (-583 |#4|))) (-15 -2921 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-1 (-85) |#4|) (-583 |#4|))) (-15 -2922 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 (-1 (-85) |#4|)) (-583 |#4|))) (-15 -2923 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 (-1 (-85) |#4|)) (-583 |#4|))) (-15 -2924 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|))) (-15 -2925 ((-85) |#4|)) (-15 -2926 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|))) (-15 -2927 ((-85) |#4|)) (-15 -2928 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|))) (-15 -2929 ((-85) |#4|)) (-15 -2930 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|))) (-15 -2931 ((-583 |#4|) (-583 |#4|) (-583 |#4|))) (-15 -2931 ((-583 |#4|) (-583 |#4|) (-583 |#4|) (-85))) (-15 -2932 (|#4| |#4| (-583 |#4|))) (-15 -2933 ((-583 |#4|) (-583 |#4|))) (-15 -2934 ((-3 (-2 (|:| |bas| (-415 |#1| |#2| |#3| |#4|)) (|:| -3323 (-583 |#4|))) "failed") (-583 |#4|))) (-15 -2935 ((-583 |#4|) (-583 |#4|))) (-15 -2936 ((-583 |#4|) (-583 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2937 ((-583 |#4|) (-583 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-391)) (PROGN (-15 -2938 ((-583 |#4|) |#4|)) (-15 -2939 ((-583 |#4|) (-583 |#4|))) (-15 -2939 ((-583 |#4|) (-583 |#4|) (-85))) (-15 -2940 ((-583 |#4|) (-583 |#4|) (-583 |#4|))) (-15 -2941 ((-583 |#4|) (-583 |#4|) (-583 |#4|))) (-15 -2942 ((-583 |#4|) (-583 |#4|) (-583 |#4|)))) |%noBranch|) (IF (|has| |#1| (-258)) (IF (|has| |#1| (-120)) (PROGN (-15 -2943 ((-583 |#4|) (-583 |#4|))) (-15 -2944 ((-583 |#4|) (-583 |#4|))) (-15 -2945 ((-583 |#4|) (-583 |#4|) (-583 |#4|)))) |%noBranch|) |%noBranch|)) (-495) (-717) (-756) (-977 |#1| |#2| |#3|)) (T -890)) +((-2945 (*1 *2 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-120)) (-4 *3 (-258)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6)))) (-2944 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-120)) (-4 *3 (-258)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6)))) (-2943 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-120)) (-4 *3 (-258)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6)))) (-2942 (*1 *2 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-391)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6)))) (-2941 (*1 *2 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-391)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6)))) (-2940 (*1 *2 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-391)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6)))) (-2939 (*1 *2 *2 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-85)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-391)) (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-890 *4 *5 *6 *7)))) (-2939 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-391)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6)))) (-2938 (*1 *2 *3) (-12 (-4 *4 (-391)) (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-583 *3)) (-5 *1 (-890 *4 *5 *6 *3)) (-4 *3 (-977 *4 *5 *6)))) (-2937 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-583 *8)) (-5 *3 (-1 (-85) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-495)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *1 (-890 *5 *6 *7 *8)))) (-2936 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-583 *9)) (-5 *3 (-1 (-85) *9)) (-5 *4 (-1 (-85) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-977 *6 *7 *8)) (-4 *6 (-495)) (-4 *7 (-717)) (-4 *8 (-756)) (-5 *1 (-890 *6 *7 *8 *9)))) (-2935 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6)))) (-2934 (*1 *2 *3) (|partial| -12 (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-415 *4 *5 *6 *7)) (|:| -3323 (-583 *7)))) (-5 *1 (-890 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) (-2933 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6)))) (-2932 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-977 *4 *5 *6)) (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-890 *4 *5 *6 *2)))) (-2931 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-85)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-890 *4 *5 *6 *7)))) (-2931 (*1 *2 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6)))) (-2930 (*1 *2 *3) (-12 (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-583 *7)) (|:| |badPols| (-583 *7)))) (-5 *1 (-890 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) (-2929 (*1 *2 *3) (-12 (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-890 *4 *5 *6 *3)) (-4 *3 (-977 *4 *5 *6)))) (-2928 (*1 *2 *3) (-12 (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-583 *7)) (|:| |badPols| (-583 *7)))) (-5 *1 (-890 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) (-2927 (*1 *2 *3) (-12 (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-890 *4 *5 *6 *3)) (-4 *3 (-977 *4 *5 *6)))) (-2926 (*1 *2 *3) (-12 (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-583 *7)) (|:| |badPols| (-583 *7)))) (-5 *1 (-890 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) (-2925 (*1 *2 *3) (-12 (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-890 *4 *5 *6 *3)) (-4 *3 (-977 *4 *5 *6)))) (-2924 (*1 *2 *3) (-12 (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-583 *7)) (|:| |badPols| (-583 *7)))) (-5 *1 (-890 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) (-2923 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-1 (-85) *8))) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-495)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-2 (|:| |goodPols| (-583 *8)) (|:| |badPols| (-583 *8)))) (-5 *1 (-890 *5 *6 *7 *8)) (-5 *4 (-583 *8)))) (-2922 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-1 (-85) *8))) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-495)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-2 (|:| |goodPols| (-583 *8)) (|:| |badPols| (-583 *8)))) (-5 *1 (-890 *5 *6 *7 *8)) (-5 *4 (-583 *8)))) (-2921 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-85) *8)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-495)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-2 (|:| |goodPols| (-583 *8)) (|:| |badPols| (-583 *8)))) (-5 *1 (-890 *5 *6 *7 *8)) (-5 *4 (-583 *8)))) (-2920 (*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-890 *4 *5 *6 *7)))) (-2919 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-583 *8))) (-5 *3 (-583 *8)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-495)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-85)) (-5 *1 (-890 *5 *6 *7 *8)))) (-2918 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-890 *4 *5 *6 *7)))) (-2917 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-583 *7) (-583 *7))) (-5 *2 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-890 *4 *5 *6 *7)))) (-2917 (*1 *2 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6)))) (-2917 (*1 *2 *2 *3) (-12 (-5 *2 (-583 *3)) (-4 *3 (-977 *4 *5 *6)) (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-890 *4 *5 *6 *3)))) (-2916 (*1 *2 *3 *3) (-12 (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-583 *3)) (-5 *1 (-890 *4 *5 *6 *3)) (-4 *3 (-977 *4 *5 *6)))) (-2915 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6)))) (-2917 (*1 *2 *3 *3) (-12 (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-583 *3)) (-5 *1 (-890 *4 *5 *6 *3)) (-4 *3 (-977 *4 *5 *6)))) (-2917 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6))))) +((-2946 (((-2 (|:| R (-630 |#1|)) (|:| A (-630 |#1|)) (|:| |Ainv| (-630 |#1|))) (-630 |#1|) (-69 |#1|) (-1 |#1| |#1|)) 19 T ELT)) (-2948 (((-583 (-2 (|:| C (-630 |#1|)) (|:| |g| (-1178 |#1|)))) (-630 |#1|) (-1178 |#1|)) 45 T ELT)) (-2947 (((-630 |#1|) (-630 |#1|) (-630 |#1|) (-69 |#1|) (-1 |#1| |#1|)) 16 T ELT))) +(((-891 |#1|) (-10 -7 (-15 -2946 ((-2 (|:| R (-630 |#1|)) (|:| A (-630 |#1|)) (|:| |Ainv| (-630 |#1|))) (-630 |#1|) (-69 |#1|) (-1 |#1| |#1|))) (-15 -2947 ((-630 |#1|) (-630 |#1|) (-630 |#1|) (-69 |#1|) (-1 |#1| |#1|))) (-15 -2948 ((-583 (-2 (|:| C (-630 |#1|)) (|:| |g| (-1178 |#1|)))) (-630 |#1|) (-1178 |#1|)))) (-312)) (T -891)) +((-2948 (*1 *2 *3 *4) (-12 (-4 *5 (-312)) (-5 *2 (-583 (-2 (|:| C (-630 *5)) (|:| |g| (-1178 *5))))) (-5 *1 (-891 *5)) (-5 *3 (-630 *5)) (-5 *4 (-1178 *5)))) (-2947 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-630 *5)) (-5 *3 (-69 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-312)) (-5 *1 (-891 *5)))) (-2946 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-69 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-312)) (-5 *2 (-2 (|:| R (-630 *6)) (|:| A (-630 *6)) (|:| |Ainv| (-630 *6)))) (-5 *1 (-891 *6)) (-5 *3 (-630 *6))))) +((-3970 (((-347 |#4|) |#4|) 61 T ELT))) +(((-892 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3970 ((-347 |#4|) |#4|))) (-756) (-717) (-391) (-861 |#3| |#2| |#1|)) (T -892)) +((-3970 (*1 *2 *3) (-12 (-4 *4 (-756)) (-4 *5 (-717)) (-4 *6 (-391)) (-5 *2 (-347 *3)) (-5 *1 (-892 *4 *5 *6 *3)) (-4 *3 (-861 *6 *5 *4))))) +((-2568 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3837 (($ (-694)) 121 (|has| |#1| (-23)) ELT)) (-2198 (((-1184) $ (-484) (-484)) 44 (|has| $ (-6 -3995)) ELT)) (-1731 (((-85) (-1 (-85) |#1| |#1|) $) 107 T ELT) (((-85) $) 101 (|has| |#1| (-756)) ELT)) (-1729 (($ (-1 (-85) |#1| |#1|) $) 98 (|has| $ (-6 -3995)) ELT) (($ $) 97 (-12 (|has| |#1| (-756)) (|has| $ (-6 -3995))) ELT)) (-2909 (($ (-1 (-85) |#1| |#1|) $) 108 T ELT) (($ $) 102 (|has| |#1| (-756)) ELT)) (-3787 ((|#1| $ (-484) |#1|) 56 (|has| $ (-6 -3995)) ELT) ((|#1| $ (-1145 (-484)) |#1|) 64 (|has| $ (-6 -3995)) ELT)) (-3709 (($ (-1 (-85) |#1|) $) 81 (|has| $ (-6 -3994)) ELT)) (-3723 (($) 7 T CONST)) (-2297 (($ $) 99 (|has| $ (-6 -3995)) ELT)) (-2298 (($ $) 109 T ELT)) (-1352 (($ $) 84 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-3405 (($ |#1| $) 83 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT) (($ (-1 (-85) |#1|) $) 80 (|has| $ (-6 -3994)) ELT)) (-3841 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -3994)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -3994)) ELT)) (-1575 ((|#1| $ (-484) |#1|) 57 (|has| $ (-6 -3995)) ELT)) (-3112 ((|#1| $ (-484)) 55 T ELT)) (-3418 (((-484) (-1 (-85) |#1|) $) 106 T ELT) (((-484) |#1| $) 105 (|has| |#1| (-1013)) ELT) (((-484) |#1| $ (-484)) 104 (|has| |#1| (-1013)) ELT)) (-3705 (($ (-583 |#1|)) 127 T ELT)) (-2889 (((-583 |#1|) $) 30 (|has| $ (-6 -3994)) ELT)) (-3834 (((-630 |#1|) $ $) 114 (|has| |#1| (-961)) ELT)) (-3613 (($ (-694) |#1|) 74 T ELT)) (-2200 (((-484) $) 47 (|has| (-484) (-756)) ELT)) (-2531 (($ $ $) 91 (|has| |#1| (-756)) ELT)) (-3517 (($ (-1 (-85) |#1| |#1|) $ $) 110 T ELT) (($ $ $) 103 (|has| |#1| (-756)) ELT)) (-2608 (((-583 |#1|) $) 29 (|has| $ (-6 -3994)) ELT)) (-3245 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-2201 (((-484) $) 48 (|has| (-484) (-756)) ELT)) (-2857 (($ $ $) 92 (|has| |#1| (-756)) ELT)) (-1948 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-3831 ((|#1| $) 111 (-12 (|has| |#1| (-961)) (|has| |#1| (-915))) ELT)) (-3832 ((|#1| $) 112 (-12 (|has| |#1| (-961)) (|has| |#1| (-915))) ELT)) (-3242 (((-1072) $) 22 (|has| |#1| (-1013)) ELT)) (-2304 (($ |#1| $ (-484)) 66 T ELT) (($ $ $ (-484)) 65 T ELT)) (-2203 (((-583 (-484)) $) 50 T ELT)) (-2204 (((-85) (-484) $) 51 T ELT)) (-3243 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-3800 ((|#1| $) 46 (|has| (-484) (-756)) ELT)) (-1353 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 77 T ELT)) (-2199 (($ $ |#1|) 45 (|has| $ (-6 -3995)) ELT)) (-3768 (($ $ (-583 |#1|)) 125 T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3994)) ELT)) (-3767 (($ $ (-583 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1221 (((-85) $ $) 11 T ELT)) (-2202 (((-85) |#1| $) 49 (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-2205 (((-583 |#1|) $) 52 T ELT)) (-3402 (((-85) $) 8 T ELT)) (-3564 (($) 9 T ELT)) (-3799 ((|#1| $ (-484) |#1|) 54 T ELT) ((|#1| $ (-484)) 53 T ELT) (($ $ (-1145 (-484))) 75 T ELT)) (-3835 ((|#1| $ $) 115 (|has| |#1| (-961)) ELT)) (-3910 (((-830) $) 126 T ELT)) (-2305 (($ $ (-484)) 68 T ELT) (($ $ (-1145 (-484))) 67 T ELT)) (-3833 (($ $ $) 113 T ELT)) (-1945 (((-694) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3994)) ELT) (((-694) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-1730 (($ $ $ (-484)) 100 (|has| $ (-6 -3995)) ELT)) (-3399 (($ $) 10 T ELT)) (-3971 (((-473) $) 85 (|has| |#1| (-553 (-473))) ELT) (($ (-583 |#1|)) 128 T ELT)) (-3529 (($ (-583 |#1|)) 76 T ELT)) (-3801 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-583 $)) 70 T ELT)) (-3945 (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-1264 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3994)) ELT)) (-2566 (((-85) $ $) 93 (|has| |#1| (-756)) ELT)) (-2567 (((-85) $ $) 95 (|has| |#1| (-756)) ELT)) (-3056 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-2684 (((-85) $ $) 94 (|has| |#1| (-756)) ELT)) (-2685 (((-85) $ $) 96 (|has| |#1| (-756)) ELT)) (-3836 (($ $) 120 (|has| |#1| (-21)) ELT) (($ $ $) 119 (|has| |#1| (-21)) ELT)) (-3838 (($ $ $) 122 (|has| |#1| (-25)) ELT)) (* (($ (-484) $) 118 (|has| |#1| (-21)) ELT) (($ |#1| $) 117 (|has| |#1| (-663)) ELT) (($ $ |#1|) 116 (|has| |#1| (-663)) ELT)) (-3956 (((-694) $) 6 (|has| $ (-6 -3994)) ELT))) +(((-893 |#1|) (-113) (-961)) (T -893)) +((-3705 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-961)) (-4 *1 (-893 *3)))) (-3910 (*1 *2 *1) (-12 (-4 *1 (-893 *3)) (-4 *3 (-961)) (-5 *2 (-830)))) (-3833 (*1 *1 *1 *1) (-12 (-4 *1 (-893 *2)) (-4 *2 (-961)))) (-3768 (*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *1 (-893 *3)) (-4 *3 (-961))))) +(-13 (-1177 |t#1|) (-557 (-583 |t#1|)) (-10 -8 (-15 -3705 ($ (-583 |t#1|))) (-15 -3910 ((-830) $)) (-15 -3833 ($ $ $)) (-15 -3768 ($ $ (-583 |t#1|))))) +(((-34) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-756)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1013)) (|has| |#1| (-756)) (|has| |#1| (-552 (-772)))) ((-124 |#1|) . T) ((-557 (-583 |#1|)) . T) ((-553 (-473)) |has| |#1| (-553 (-473))) ((-241 (-484) |#1|) . T) ((-241 (-1145 (-484)) $) . T) ((-243 (-484) |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-323 |#1|) . T) ((-428 |#1|) . T) ((-538 (-484) |#1|) . T) ((-455 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-593 |#1|) . T) ((-19 |#1|) . T) ((-756) |has| |#1| (-756)) ((-759) |has| |#1| (-756)) ((-1013) OR (|has| |#1| (-1013)) (|has| |#1| (-756))) ((-1128) . T) ((-1177 |#1|) . T)) +((-3957 (((-854 |#2|) (-1 |#2| |#1|) (-854 |#1|)) 17 T ELT))) +(((-894 |#1| |#2|) (-10 -7 (-15 -3957 ((-854 |#2|) (-1 |#2| |#1|) (-854 |#1|)))) (-961) (-961)) (T -894)) +((-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-854 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-5 *2 (-854 *6)) (-5 *1 (-894 *5 *6))))) +((-2951 ((|#1| (-854 |#1|)) 14 T ELT)) (-2950 ((|#1| (-854 |#1|)) 13 T ELT)) (-2949 ((|#1| (-854 |#1|)) 12 T ELT)) (-2953 ((|#1| (-854 |#1|)) 16 T ELT)) (-2957 ((|#1| (-854 |#1|)) 24 T ELT)) (-2952 ((|#1| (-854 |#1|)) 15 T ELT)) (-2954 ((|#1| (-854 |#1|)) 17 T ELT)) (-2956 ((|#1| (-854 |#1|)) 23 T ELT)) (-2955 ((|#1| (-854 |#1|)) 22 T ELT))) +(((-895 |#1|) (-10 -7 (-15 -2949 (|#1| (-854 |#1|))) (-15 -2950 (|#1| (-854 |#1|))) (-15 -2951 (|#1| (-854 |#1|))) (-15 -2952 (|#1| (-854 |#1|))) (-15 -2953 (|#1| (-854 |#1|))) (-15 -2954 (|#1| (-854 |#1|))) (-15 -2955 (|#1| (-854 |#1|))) (-15 -2956 (|#1| (-854 |#1|))) (-15 -2957 (|#1| (-854 |#1|)))) (-961)) (T -895)) +((-2957 (*1 *2 *3) (-12 (-5 *3 (-854 *2)) (-5 *1 (-895 *2)) (-4 *2 (-961)))) (-2956 (*1 *2 *3) (-12 (-5 *3 (-854 *2)) (-5 *1 (-895 *2)) (-4 *2 (-961)))) (-2955 (*1 *2 *3) (-12 (-5 *3 (-854 *2)) (-5 *1 (-895 *2)) (-4 *2 (-961)))) (-2954 (*1 *2 *3) (-12 (-5 *3 (-854 *2)) (-5 *1 (-895 *2)) (-4 *2 (-961)))) (-2953 (*1 *2 *3) (-12 (-5 *3 (-854 *2)) (-5 *1 (-895 *2)) (-4 *2 (-961)))) (-2952 (*1 *2 *3) (-12 (-5 *3 (-854 *2)) (-5 *1 (-895 *2)) (-4 *2 (-961)))) (-2951 (*1 *2 *3) (-12 (-5 *3 (-854 *2)) (-5 *1 (-895 *2)) (-4 *2 (-961)))) (-2950 (*1 *2 *3) (-12 (-5 *3 (-854 *2)) (-5 *1 (-895 *2)) (-4 *2 (-961)))) (-2949 (*1 *2 *3) (-12 (-5 *3 (-854 *2)) (-5 *1 (-895 *2)) (-4 *2 (-961))))) +((-2975 (((-3 |#1| "failed") |#1|) 18 T ELT)) (-2963 (((-3 |#1| "failed") |#1|) 6 T ELT)) (-2973 (((-3 |#1| "failed") |#1|) 16 T ELT)) (-2961 (((-3 |#1| "failed") |#1|) 4 T ELT)) (-2977 (((-3 |#1| "failed") |#1|) 20 T ELT)) (-2965 (((-3 |#1| "failed") |#1|) 8 T ELT)) (-2958 (((-3 |#1| "failed") |#1| (-694)) 1 T ELT)) (-2960 (((-3 |#1| "failed") |#1|) 3 T ELT)) (-2959 (((-3 |#1| "failed") |#1|) 2 T ELT)) (-2978 (((-3 |#1| "failed") |#1|) 21 T ELT)) (-2966 (((-3 |#1| "failed") |#1|) 9 T ELT)) (-2976 (((-3 |#1| "failed") |#1|) 19 T ELT)) (-2964 (((-3 |#1| "failed") |#1|) 7 T ELT)) (-2974 (((-3 |#1| "failed") |#1|) 17 T ELT)) (-2962 (((-3 |#1| "failed") |#1|) 5 T ELT)) (-2981 (((-3 |#1| "failed") |#1|) 24 T ELT)) (-2969 (((-3 |#1| "failed") |#1|) 12 T ELT)) (-2979 (((-3 |#1| "failed") |#1|) 22 T ELT)) (-2967 (((-3 |#1| "failed") |#1|) 10 T ELT)) (-2983 (((-3 |#1| "failed") |#1|) 26 T ELT)) (-2971 (((-3 |#1| "failed") |#1|) 14 T ELT)) (-2984 (((-3 |#1| "failed") |#1|) 27 T ELT)) (-2972 (((-3 |#1| "failed") |#1|) 15 T ELT)) (-2982 (((-3 |#1| "failed") |#1|) 25 T ELT)) (-2970 (((-3 |#1| "failed") |#1|) 13 T ELT)) (-2980 (((-3 |#1| "failed") |#1|) 23 T ELT)) (-2968 (((-3 |#1| "failed") |#1|) 11 T ELT))) +(((-896 |#1|) (-113) (-1114)) (T -896)) +((-2984 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1114)))) (-2983 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1114)))) (-2982 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1114)))) (-2981 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1114)))) (-2980 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1114)))) (-2979 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1114)))) (-2978 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1114)))) (-2977 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1114)))) (-2976 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1114)))) (-2975 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1114)))) (-2974 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1114)))) (-2973 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1114)))) (-2972 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1114)))) (-2971 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1114)))) (-2970 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1114)))) (-2969 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1114)))) (-2968 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1114)))) (-2967 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1114)))) (-2966 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1114)))) (-2965 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1114)))) (-2964 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1114)))) (-2963 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1114)))) (-2962 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1114)))) (-2961 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1114)))) (-2960 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1114)))) (-2959 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1114)))) (-2958 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-694)) (-4 *1 (-896 *2)) (-4 *2 (-1114))))) +(-13 (-10 -7 (-15 -2958 ((-3 |t#1| "failed") |t#1| (-694))) (-15 -2959 ((-3 |t#1| "failed") |t#1|)) (-15 -2960 ((-3 |t#1| "failed") |t#1|)) (-15 -2961 ((-3 |t#1| "failed") |t#1|)) (-15 -2962 ((-3 |t#1| "failed") |t#1|)) (-15 -2963 ((-3 |t#1| "failed") |t#1|)) (-15 -2964 ((-3 |t#1| "failed") |t#1|)) (-15 -2965 ((-3 |t#1| "failed") |t#1|)) (-15 -2966 ((-3 |t#1| "failed") |t#1|)) (-15 -2967 ((-3 |t#1| "failed") |t#1|)) (-15 -2968 ((-3 |t#1| "failed") |t#1|)) (-15 -2969 ((-3 |t#1| "failed") |t#1|)) (-15 -2970 ((-3 |t#1| "failed") |t#1|)) (-15 -2971 ((-3 |t#1| "failed") |t#1|)) (-15 -2972 ((-3 |t#1| "failed") |t#1|)) (-15 -2973 ((-3 |t#1| "failed") |t#1|)) (-15 -2974 ((-3 |t#1| "failed") |t#1|)) (-15 -2975 ((-3 |t#1| "failed") |t#1|)) (-15 -2976 ((-3 |t#1| "failed") |t#1|)) (-15 -2977 ((-3 |t#1| "failed") |t#1|)) (-15 -2978 ((-3 |t#1| "failed") |t#1|)) (-15 -2979 ((-3 |t#1| "failed") |t#1|)) (-15 -2980 ((-3 |t#1| "failed") |t#1|)) (-15 -2981 ((-3 |t#1| "failed") |t#1|)) (-15 -2982 ((-3 |t#1| "failed") |t#1|)) (-15 -2983 ((-3 |t#1| "failed") |t#1|)) (-15 -2984 ((-3 |t#1| "failed") |t#1|)))) +((-2986 ((|#4| |#4| (-583 |#3|)) 57 T ELT) ((|#4| |#4| |#3|) 56 T ELT)) (-2985 ((|#4| |#4| (-583 |#3|)) 24 T ELT) ((|#4| |#4| |#3|) 20 T ELT)) (-3957 ((|#4| (-1 |#4| (-857 |#1|)) |#4|) 33 T ELT))) +(((-897 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2985 (|#4| |#4| |#3|)) (-15 -2985 (|#4| |#4| (-583 |#3|))) (-15 -2986 (|#4| |#4| |#3|)) (-15 -2986 (|#4| |#4| (-583 |#3|))) (-15 -3957 (|#4| (-1 |#4| (-857 |#1|)) |#4|))) (-961) (-717) (-13 (-756) (-10 -8 (-15 -3971 ((-1089) $)) (-15 -3830 ((-3 $ "failed") (-1089))))) (-861 (-857 |#1|) |#2| |#3|)) (T -897)) +((-3957 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-857 *4))) (-4 *4 (-961)) (-4 *2 (-861 (-857 *4) *5 *6)) (-4 *5 (-717)) (-4 *6 (-13 (-756) (-10 -8 (-15 -3971 ((-1089) $)) (-15 -3830 ((-3 $ #1="failed") (-1089)))))) (-5 *1 (-897 *4 *5 *6 *2)))) (-2986 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *6)) (-4 *6 (-13 (-756) (-10 -8 (-15 -3971 ((-1089) $)) (-15 -3830 ((-3 $ #1#) (-1089)))))) (-4 *4 (-961)) (-4 *5 (-717)) (-5 *1 (-897 *4 *5 *6 *2)) (-4 *2 (-861 (-857 *4) *5 *6)))) (-2986 (*1 *2 *2 *3) (-12 (-4 *4 (-961)) (-4 *5 (-717)) (-4 *3 (-13 (-756) (-10 -8 (-15 -3971 ((-1089) $)) (-15 -3830 ((-3 $ #1#) (-1089)))))) (-5 *1 (-897 *4 *5 *3 *2)) (-4 *2 (-861 (-857 *4) *5 *3)))) (-2985 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *6)) (-4 *6 (-13 (-756) (-10 -8 (-15 -3971 ((-1089) $)) (-15 -3830 ((-3 $ #1#) (-1089)))))) (-4 *4 (-961)) (-4 *5 (-717)) (-5 *1 (-897 *4 *5 *6 *2)) (-4 *2 (-861 (-857 *4) *5 *6)))) (-2985 (*1 *2 *2 *3) (-12 (-4 *4 (-961)) (-4 *5 (-717)) (-4 *3 (-13 (-756) (-10 -8 (-15 -3971 ((-1089) $)) (-15 -3830 ((-3 $ #1#) (-1089)))))) (-5 *1 (-897 *4 *5 *3 *2)) (-4 *2 (-861 (-857 *4) *5 *3))))) +((-2987 ((|#2| |#3|) 35 T ELT)) (-3918 (((-2 (|:| -2012 (-630 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-630 |#2|))) |#2|) 79 T ELT)) (-3917 (((-2 (|:| -2012 (-630 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-630 |#2|)))) 100 T ELT))) +(((-898 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3917 ((-2 (|:| -2012 (-630 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-630 |#2|))))) (-15 -3918 ((-2 (|:| -2012 (-630 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-630 |#2|))) |#2|)) (-15 -2987 (|#2| |#3|))) (-299) (-1154 |#1|) (-1154 |#2|) (-661 |#2| |#3|)) (T -898)) +((-2987 (*1 *2 *3) (-12 (-4 *3 (-1154 *2)) (-4 *2 (-1154 *4)) (-5 *1 (-898 *4 *2 *3 *5)) (-4 *4 (-299)) (-4 *5 (-661 *2 *3)))) (-3918 (*1 *2 *3) (-12 (-4 *4 (-299)) (-4 *3 (-1154 *4)) (-4 *5 (-1154 *3)) (-5 *2 (-2 (|:| -2012 (-630 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-630 *3)))) (-5 *1 (-898 *4 *3 *5 *6)) (-4 *6 (-661 *3 *5)))) (-3917 (*1 *2) (-12 (-4 *3 (-299)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 *4)) (-5 *2 (-2 (|:| -2012 (-630 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-630 *4)))) (-5 *1 (-898 *3 *4 *5 *6)) (-4 *6 (-661 *4 *5))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3400 (((-3 (-85) #1="failed") $) 71 T ELT)) (-3648 (($ $) 36 (-12 (|has| |#1| (-120)) (|has| |#1| (-258))) ELT)) (-2991 (($ $ (-3 (-85) #1#)) 72 T ELT)) (-2992 (($ (-583 |#4|) |#4|) 25 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2988 (($ $) 69 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3402 (((-85) $) 70 T ELT)) (-3564 (($) 30 T ELT)) (-2989 ((|#4| $) 74 T ELT)) (-2990 (((-583 |#4|) $) 73 T ELT)) (-3945 (((-772) $) 68 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT))) +(((-899 |#1| |#2| |#3| |#4|) (-13 (-1013) (-552 (-772)) (-10 -8 (-15 -3564 ($)) (-15 -2992 ($ (-583 |#4|) |#4|)) (-15 -3400 ((-3 (-85) #1="failed") $)) (-15 -2991 ($ $ (-3 (-85) #1#))) (-15 -3402 ((-85) $)) (-15 -2990 ((-583 |#4|) $)) (-15 -2989 (|#4| $)) (-15 -2988 ($ $)) (IF (|has| |#1| (-258)) (IF (|has| |#1| (-120)) (-15 -3648 ($ $)) |%noBranch|) |%noBranch|))) (-391) (-756) (-717) (-861 |#1| |#3| |#2|)) (T -899)) +((-3564 (*1 *1) (-12 (-4 *2 (-391)) (-4 *3 (-756)) (-4 *4 (-717)) (-5 *1 (-899 *2 *3 *4 *5)) (-4 *5 (-861 *2 *4 *3)))) (-2992 (*1 *1 *2 *3) (-12 (-5 *2 (-583 *3)) (-4 *3 (-861 *4 *6 *5)) (-4 *4 (-391)) (-4 *5 (-756)) (-4 *6 (-717)) (-5 *1 (-899 *4 *5 *6 *3)))) (-3400 (*1 *2 *1) (|partial| -12 (-4 *3 (-391)) (-4 *4 (-756)) (-4 *5 (-717)) (-5 *2 (-85)) (-5 *1 (-899 *3 *4 *5 *6)) (-4 *6 (-861 *3 *5 *4)))) (-2991 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-85) "failed")) (-4 *3 (-391)) (-4 *4 (-756)) (-4 *5 (-717)) (-5 *1 (-899 *3 *4 *5 *6)) (-4 *6 (-861 *3 *5 *4)))) (-3402 (*1 *2 *1) (-12 (-4 *3 (-391)) (-4 *4 (-756)) (-4 *5 (-717)) (-5 *2 (-85)) (-5 *1 (-899 *3 *4 *5 *6)) (-4 *6 (-861 *3 *5 *4)))) (-2990 (*1 *2 *1) (-12 (-4 *3 (-391)) (-4 *4 (-756)) (-4 *5 (-717)) (-5 *2 (-583 *6)) (-5 *1 (-899 *3 *4 *5 *6)) (-4 *6 (-861 *3 *5 *4)))) (-2989 (*1 *2 *1) (-12 (-4 *2 (-861 *3 *5 *4)) (-5 *1 (-899 *3 *4 *5 *2)) (-4 *3 (-391)) (-4 *4 (-756)) (-4 *5 (-717)))) (-2988 (*1 *1 *1) (-12 (-4 *2 (-391)) (-4 *3 (-756)) (-4 *4 (-717)) (-5 *1 (-899 *2 *3 *4 *5)) (-4 *5 (-861 *2 *4 *3)))) (-3648 (*1 *1 *1) (-12 (-4 *2 (-120)) (-4 *2 (-258)) (-4 *2 (-391)) (-4 *3 (-756)) (-4 *4 (-717)) (-5 *1 (-899 *2 *3 *4 *5)) (-4 *5 (-861 *2 *4 *3))))) +((-2993 (((-899 (-349 (-484)) (-773 |#1|) (-197 |#2| (-694)) (-206 |#1| (-349 (-484)))) (-899 (-349 (-484)) (-773 |#1|) (-197 |#2| (-694)) (-206 |#1| (-349 (-484))))) 82 T ELT))) +(((-900 |#1| |#2|) (-10 -7 (-15 -2993 ((-899 (-349 (-484)) (-773 |#1|) (-197 |#2| (-694)) (-206 |#1| (-349 (-484)))) (-899 (-349 (-484)) (-773 |#1|) (-197 |#2| (-694)) (-206 |#1| (-349 (-484))))))) (-583 (-1089)) (-694)) (T -900)) +((-2993 (*1 *2 *2) (-12 (-5 *2 (-899 (-349 (-484)) (-773 *3) (-197 *4 (-694)) (-206 *3 (-349 (-484))))) (-14 *3 (-583 (-1089))) (-14 *4 (-694)) (-5 *1 (-900 *3 *4))))) +((-3269 (((-85) |#5| |#5|) 44 T ELT)) (-3272 (((-85) |#5| |#5|) 59 T ELT)) (-3277 (((-85) |#5| (-583 |#5|)) 81 T ELT) (((-85) |#5| |#5|) 68 T ELT)) (-3273 (((-85) (-583 |#4|) (-583 |#4|)) 65 T ELT)) (-3279 (((-85) (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|)) (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|))) 70 T ELT)) (-3268 (((-1184)) 32 T ELT)) (-3267 (((-1184) (-1072) (-1072) (-1072)) 28 T ELT)) (-3278 (((-583 |#5|) (-583 |#5|)) 100 T ELT)) (-3280 (((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|)))) 92 T ELT)) (-3281 (((-583 (-2 (|:| -3266 (-583 |#4|)) (|:| -1599 |#5|) (|:| |ineq| (-583 |#4|)))) (-583 |#4|) (-583 |#5|) (-85) (-85)) 122 T ELT)) (-3271 (((-85) |#5| |#5|) 53 T ELT)) (-3276 (((-3 (-85) #1="failed") |#5| |#5|) 78 T ELT)) (-3274 (((-85) (-583 |#4|) (-583 |#4|)) 64 T ELT)) (-3275 (((-85) (-583 |#4|) (-583 |#4|)) 66 T ELT)) (-3698 (((-85) (-583 |#4|) (-583 |#4|)) 67 T ELT)) (-3282 (((-3 (-2 (|:| -3266 (-583 |#4|)) (|:| -1599 |#5|) (|:| |ineq| (-583 |#4|))) #1#) (-583 |#4|) |#5| (-583 |#4|) (-85) (-85) (-85) (-85) (-85)) 117 T ELT)) (-3270 (((-583 |#5|) (-583 |#5|)) 49 T ELT))) +(((-901 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3267 ((-1184) (-1072) (-1072) (-1072))) (-15 -3268 ((-1184))) (-15 -3269 ((-85) |#5| |#5|)) (-15 -3270 ((-583 |#5|) (-583 |#5|))) (-15 -3271 ((-85) |#5| |#5|)) (-15 -3272 ((-85) |#5| |#5|)) (-15 -3273 ((-85) (-583 |#4|) (-583 |#4|))) (-15 -3274 ((-85) (-583 |#4|) (-583 |#4|))) (-15 -3275 ((-85) (-583 |#4|) (-583 |#4|))) (-15 -3698 ((-85) (-583 |#4|) (-583 |#4|))) (-15 -3276 ((-3 (-85) #1="failed") |#5| |#5|)) (-15 -3277 ((-85) |#5| |#5|)) (-15 -3277 ((-85) |#5| (-583 |#5|))) (-15 -3278 ((-583 |#5|) (-583 |#5|))) (-15 -3279 ((-85) (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|)) (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|)))) (-15 -3280 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|))))) (-15 -3281 ((-583 (-2 (|:| -3266 (-583 |#4|)) (|:| -1599 |#5|) (|:| |ineq| (-583 |#4|)))) (-583 |#4|) (-583 |#5|) (-85) (-85))) (-15 -3282 ((-3 (-2 (|:| -3266 (-583 |#4|)) (|:| -1599 |#5|) (|:| |ineq| (-583 |#4|))) #1#) (-583 |#4|) |#5| (-583 |#4|) (-85) (-85) (-85) (-85) (-85)))) (-391) (-717) (-756) (-977 |#1| |#2| |#3|) (-983 |#1| |#2| |#3| |#4|)) (T -901)) +((-3282 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-85)) (-4 *6 (-391)) (-4 *7 (-717)) (-4 *8 (-756)) (-4 *9 (-977 *6 *7 *8)) (-5 *2 (-2 (|:| -3266 (-583 *9)) (|:| -1599 *4) (|:| |ineq| (-583 *9)))) (-5 *1 (-901 *6 *7 *8 *9 *4)) (-5 *3 (-583 *9)) (-4 *4 (-983 *6 *7 *8 *9)))) (-3281 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-583 *10)) (-5 *5 (-85)) (-4 *10 (-983 *6 *7 *8 *9)) (-4 *6 (-391)) (-4 *7 (-717)) (-4 *8 (-756)) (-4 *9 (-977 *6 *7 *8)) (-5 *2 (-583 (-2 (|:| -3266 (-583 *9)) (|:| -1599 *10) (|:| |ineq| (-583 *9))))) (-5 *1 (-901 *6 *7 *8 *9 *10)) (-5 *3 (-583 *9)))) (-3280 (*1 *2 *2) (-12 (-5 *2 (-583 (-2 (|:| |val| (-583 *6)) (|:| -1599 *7)))) (-4 *6 (-977 *3 *4 *5)) (-4 *7 (-983 *3 *4 *5 *6)) (-4 *3 (-391)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-901 *3 *4 *5 *6 *7)))) (-3279 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-583 *7)) (|:| -1599 *8))) (-4 *7 (-977 *4 *5 *6)) (-4 *8 (-983 *4 *5 *6 *7)) (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-901 *4 *5 *6 *7 *8)))) (-3278 (*1 *2 *2) (-12 (-5 *2 (-583 *7)) (-4 *7 (-983 *3 *4 *5 *6)) (-4 *3 (-391)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-5 *1 (-901 *3 *4 *5 *6 *7)))) (-3277 (*1 *2 *3 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-983 *5 *6 *7 *8)) (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *8 (-977 *5 *6 *7)) (-5 *2 (-85)) (-5 *1 (-901 *5 *6 *7 *8 *3)))) (-3277 (*1 *2 *3 *3) (-12 (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-901 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7)))) (-3276 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-901 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7)))) (-3698 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-901 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7)))) (-3275 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-901 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7)))) (-3274 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-901 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7)))) (-3273 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-901 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7)))) (-3272 (*1 *2 *3 *3) (-12 (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-901 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7)))) (-3271 (*1 *2 *3 *3) (-12 (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-901 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7)))) (-3270 (*1 *2 *2) (-12 (-5 *2 (-583 *7)) (-4 *7 (-983 *3 *4 *5 *6)) (-4 *3 (-391)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-5 *1 (-901 *3 *4 *5 *6 *7)))) (-3269 (*1 *2 *3 *3) (-12 (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-901 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7)))) (-3268 (*1 *2) (-12 (-4 *3 (-391)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-1184)) (-5 *1 (-901 *3 *4 *5 *6 *7)) (-4 *7 (-983 *3 *4 *5 *6)))) (-3267 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1072)) (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-1184)) (-5 *1 (-901 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7))))) +((-3830 (((-1089) $) 15 T ELT)) (-3401 (((-1072) $) 16 T ELT)) (-3226 (($ (-1089) (-1072)) 14 T ELT)) (-3945 (((-772) $) 13 T ELT))) +(((-902) (-13 (-552 (-772)) (-10 -8 (-15 -3226 ($ (-1089) (-1072))) (-15 -3830 ((-1089) $)) (-15 -3401 ((-1072) $))))) (T -902)) +((-3226 (*1 *1 *2 *3) (-12 (-5 *2 (-1089)) (-5 *3 (-1072)) (-5 *1 (-902)))) (-3830 (*1 *2 *1) (-12 (-5 *2 (-1089)) (-5 *1 (-902)))) (-3401 (*1 *2 *1) (-12 (-5 *2 (-1072)) (-5 *1 (-902))))) +((-3157 (((-3 |#2| #1="failed") $) NIL T ELT) (((-3 (-1089) #1#) $) 72 T ELT) (((-3 (-349 (-484)) #1#) $) NIL T ELT) (((-3 (-484) #1#) $) 102 T ELT)) (-3156 ((|#2| $) NIL T ELT) (((-1089) $) 67 T ELT) (((-349 (-484)) $) NIL T ELT) (((-484) $) 99 T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL T ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) NIL T ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1178 |#2|))) (-630 $) (-1178 $)) 121 T ELT) (((-630 |#2|) (-630 $)) 35 T ELT)) (-2994 (($) 105 T ELT)) (-2796 (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) 82 T ELT) (((-798 (-329) $) $ (-800 (-329)) (-798 (-329) $)) 91 T ELT)) (-2996 (($ $) 10 T ELT)) (-3444 (((-632 $) $) 27 T ELT)) (-3957 (($ (-1 |#2| |#2|) $) 29 T ELT)) (-3445 (($) 16 T CONST)) (-3128 (($ $) 61 T ELT)) (-3757 (($ $ (-1 |#2| |#2|)) 43 T ELT) (($ $ (-1 |#2| |#2|) (-694)) NIL T ELT) (($ $ (-1089)) NIL T ELT) (($ $ (-583 (-1089))) NIL T ELT) (($ $ (-1089) (-694)) NIL T ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL T ELT) (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-2995 (($ $) 12 T ELT)) (-3971 (((-800 (-484)) $) 77 T ELT) (((-800 (-329)) $) 86 T ELT) (((-473) $) 47 T ELT) (((-329) $) 51 T ELT) (((-179) $) 55 T ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-349 (-484))) 97 T ELT) (($ |#2|) NIL T ELT) (($ (-1089)) 64 T ELT)) (-3126 (((-694)) 38 T CONST)) (-2685 (((-85) $ $) 57 T ELT))) +(((-903 |#1| |#2|) (-10 -7 (-15 -2685 ((-85) |#1| |#1|)) (-15 -3757 (|#1| |#1| (-694))) (-15 -3757 (|#1| |#1|)) (-15 -3757 (|#1| |#1| (-583 (-1089)) (-583 (-694)))) (-15 -3757 (|#1| |#1| (-1089) (-694))) (-15 -3757 (|#1| |#1| (-583 (-1089)))) (-15 -3757 (|#1| |#1| (-1089))) (-15 -3445 (|#1|) -3951) (-15 -3444 ((-632 |#1|) |#1|)) (-15 -3157 ((-3 (-484) #1="failed") |#1|)) (-15 -3156 ((-484) |#1|)) (-15 -3157 ((-3 (-349 (-484)) #1#) |#1|)) (-15 -3156 ((-349 (-484)) |#1|)) (-15 -3971 ((-179) |#1|)) (-15 -3971 ((-329) |#1|)) (-15 -3971 ((-473) |#1|)) (-15 -3945 (|#1| (-1089))) (-15 -3157 ((-3 (-1089) #1#) |#1|)) (-15 -3156 ((-1089) |#1|)) (-15 -2994 (|#1|)) (-15 -3128 (|#1| |#1|)) (-15 -2995 (|#1| |#1|)) (-15 -2996 (|#1| |#1|)) (-15 -2796 ((-798 (-329) |#1|) |#1| (-800 (-329)) (-798 (-329) |#1|))) (-15 -2796 ((-798 (-484) |#1|) |#1| (-800 (-484)) (-798 (-484) |#1|))) (-15 -3971 ((-800 (-329)) |#1|)) (-15 -3971 ((-800 (-484)) |#1|)) (-15 -2279 ((-630 |#2|) (-630 |#1|))) (-15 -2279 ((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1178 |#2|))) (-630 |#1|) (-1178 |#1|))) (-15 -2279 ((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 |#1|) (-1178 |#1|))) (-15 -2279 ((-630 (-484)) (-630 |#1|))) (-15 -3757 (|#1| |#1| (-1 |#2| |#2|) (-694))) (-15 -3757 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3957 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3157 ((-3 |#2| #1#) |#1|)) (-15 -3156 (|#2| |#1|)) (-15 -3945 (|#1| |#2|)) (-15 -3945 (|#1| (-349 (-484)))) (-15 -3945 (|#1| |#1|)) (-15 -3126 ((-694)) -3951) (-15 -3945 (|#1| (-484))) (-15 -3945 ((-772) |#1|))) (-904 |#2|) (-495)) (T -903)) +((-3126 (*1 *2) (-12 (-4 *4 (-495)) (-5 *2 (-694)) (-5 *1 (-903 *3 *4)) (-4 *3 (-904 *4))))) +((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-3129 ((|#1| $) 173 (|has| |#1| (-258)) ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) 55 T ELT)) (-2063 (($ $) 54 T ELT)) (-2061 (((-85) $) 52 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-2707 (((-347 (-1084 $)) (-1084 $)) 164 (|has| |#1| (-821)) ELT)) (-3774 (($ $) 91 T ELT)) (-3970 (((-347 $) $) 90 T ELT)) (-2704 (((-3 (-583 (-1084 $)) #1="failed") (-583 (-1084 $)) (-1084 $)) 167 (|has| |#1| (-821)) ELT)) (-1607 (((-85) $ $) 75 T ELT)) (-3622 (((-484) $) 154 (|has| |#1| (-740)) ELT)) (-3723 (($) 23 T CONST)) (-3157 (((-3 |#1| #2="failed") $) 203 T ELT) (((-3 (-1089) #2#) $) 162 (|has| |#1| (-950 (-1089))) ELT) (((-3 (-349 (-484)) #2#) $) 145 (|has| |#1| (-950 (-484))) ELT) (((-3 (-484) #2#) $) 143 (|has| |#1| (-950 (-484))) ELT)) (-3156 ((|#1| $) 204 T ELT) (((-1089) $) 163 (|has| |#1| (-950 (-1089))) ELT) (((-349 (-484)) $) 146 (|has| |#1| (-950 (-484))) ELT) (((-484) $) 144 (|has| |#1| (-950 (-484))) ELT)) (-2564 (($ $ $) 71 T ELT)) (-2279 (((-630 (-484)) (-630 $)) 188 (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) 187 (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1178 |#1|))) (-630 $) (-1178 $)) 186 T ELT) (((-630 |#1|) (-630 $)) 185 T ELT)) (-3466 (((-3 $ "failed") $) 42 T ELT)) (-2994 (($) 171 (|has| |#1| (-483)) ELT)) (-2563 (($ $ $) 72 T ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) 66 T ELT)) (-3722 (((-85) $) 89 T ELT)) (-3186 (((-85) $) 156 (|has| |#1| (-740)) ELT)) (-2796 (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) 180 (|has| |#1| (-796 (-484))) ELT) (((-798 (-329) $) $ (-800 (-329)) (-798 (-329) $)) 179 (|has| |#1| (-796 (-329))) ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-2996 (($ $) 175 T ELT)) (-2998 ((|#1| $) 177 T ELT)) (-3444 (((-632 $) $) 142 (|has| |#1| (-1065)) ELT)) (-3187 (((-85) $) 155 (|has| |#1| (-740)) ELT)) (-1604 (((-3 (-583 $) #3="failed") (-583 $) $) 68 T ELT)) (-2531 (($ $ $) 147 (|has| |#1| (-756)) ELT)) (-2857 (($ $ $) 148 (|has| |#1| (-756)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) 195 T ELT)) (-2280 (((-630 (-484)) (-1178 $)) 190 (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) 189 (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1178 |#1|))) (-1178 $) $) 184 T ELT) (((-630 |#1|) (-1178 $)) 183 T ELT)) (-1890 (($ $ $) 60 T ELT) (($ (-583 $)) 59 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-2484 (($ $) 88 T ELT)) (-3445 (($) 141 (|has| |#1| (-1065)) CONST)) (-3243 (((-1033) $) 12 T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) 58 T ELT)) (-3144 (($ $ $) 62 T ELT) (($ (-583 $)) 61 T ELT)) (-3128 (($ $) 172 (|has| |#1| (-258)) ELT)) (-3130 ((|#1| $) 169 (|has| |#1| (-483)) ELT)) (-2705 (((-347 (-1084 $)) (-1084 $)) 166 (|has| |#1| (-821)) ELT)) (-2706 (((-347 (-1084 $)) (-1084 $)) 165 (|has| |#1| (-821)) ELT)) (-3731 (((-347 $) $) 92 T ELT)) (-1605 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 69 T ELT)) (-3465 (((-3 $ "failed") $ $) 56 T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) 65 T ELT)) (-3767 (($ $ (-583 |#1|) (-583 |#1|)) 201 (|has| |#1| (-260 |#1|)) ELT) (($ $ |#1| |#1|) 200 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-249 |#1|)) 199 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-583 (-249 |#1|))) 198 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-583 (-1089)) (-583 |#1|)) 197 (|has| |#1| (-455 (-1089) |#1|)) ELT) (($ $ (-1089) |#1|) 196 (|has| |#1| (-455 (-1089) |#1|)) ELT)) (-1606 (((-694) $) 74 T ELT)) (-3799 (($ $ |#1|) 202 (|has| |#1| (-241 |#1| |#1|)) ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 73 T ELT)) (-3757 (($ $ (-1 |#1| |#1|)) 194 T ELT) (($ $ (-1 |#1| |#1|) (-694)) 193 T ELT) (($ $) 140 (|has| |#1| (-189)) ELT) (($ $ (-694)) 138 (|has| |#1| (-189)) ELT) (($ $ (-1089)) 136 (|has| |#1| (-811 (-1089))) ELT) (($ $ (-583 (-1089))) 134 (|has| |#1| (-811 (-1089))) ELT) (($ $ (-1089) (-694)) 133 (|has| |#1| (-811 (-1089))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) 132 (|has| |#1| (-811 (-1089))) ELT)) (-2995 (($ $) 174 T ELT)) (-2997 ((|#1| $) 176 T ELT)) (-3971 (((-800 (-484)) $) 182 (|has| |#1| (-553 (-800 (-484)))) ELT) (((-800 (-329)) $) 181 (|has| |#1| (-553 (-800 (-329)))) ELT) (((-473) $) 159 (|has| |#1| (-553 (-473))) ELT) (((-329) $) 158 (|has| |#1| (-933)) ELT) (((-179) $) 157 (|has| |#1| (-933)) ELT)) (-2703 (((-3 (-1178 $) #1#) (-630 $)) 168 (-2562 (|has| $ (-118)) (|has| |#1| (-821))) ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ $) 57 T ELT) (($ (-349 (-484))) 84 T ELT) (($ |#1|) 207 T ELT) (($ (-1089)) 161 (|has| |#1| (-950 (-1089))) ELT)) (-2702 (((-632 $) $) 160 (OR (|has| |#1| (-118)) (-2562 (|has| $ (-118)) (|has| |#1| (-821)))) ELT)) (-3126 (((-694)) 40 T CONST)) (-3131 ((|#1| $) 170 (|has| |#1| (-483)) ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-2062 (((-85) $ $) 53 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-3382 (($ $) 153 (|has| |#1| (-740)) ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-2669 (($ $ (-1 |#1| |#1|)) 192 T ELT) (($ $ (-1 |#1| |#1|) (-694)) 191 T ELT) (($ $) 139 (|has| |#1| (-189)) ELT) (($ $ (-694)) 137 (|has| |#1| (-189)) ELT) (($ $ (-1089)) 135 (|has| |#1| (-811 (-1089))) ELT) (($ $ (-583 (-1089))) 131 (|has| |#1| (-811 (-1089))) ELT) (($ $ (-1089) (-694)) 130 (|has| |#1| (-811 (-1089))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) 129 (|has| |#1| (-811 (-1089))) ELT)) (-2566 (((-85) $ $) 149 (|has| |#1| (-756)) ELT)) (-2567 (((-85) $ $) 151 (|has| |#1| (-756)) ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-2684 (((-85) $ $) 150 (|has| |#1| (-756)) ELT)) (-2685 (((-85) $ $) 152 (|has| |#1| (-756)) ELT)) (-3948 (($ $ $) 83 T ELT) (($ |#1| |#1|) 178 T ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT) (($ $ (-484)) 87 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-349 (-484))) 86 T ELT) (($ (-349 (-484)) $) 85 T ELT) (($ |#1| $) 206 T ELT) (($ $ |#1|) 205 T ELT))) +(((-904 |#1|) (-113) (-495)) (T -904)) +((-3948 (*1 *1 *2 *2) (-12 (-4 *1 (-904 *2)) (-4 *2 (-495)))) (-2998 (*1 *2 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-495)))) (-2997 (*1 *2 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-495)))) (-2996 (*1 *1 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-495)))) (-2995 (*1 *1 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-495)))) (-3129 (*1 *2 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-495)) (-4 *2 (-258)))) (-3128 (*1 *1 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-495)) (-4 *2 (-258)))) (-2994 (*1 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-483)) (-4 *2 (-495)))) (-3131 (*1 *2 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-495)) (-4 *2 (-483)))) (-3130 (*1 *2 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-495)) (-4 *2 (-483))))) +(-13 (-312) (-38 |t#1|) (-950 |t#1|) (-288 |t#1|) (-184 |t#1|) (-328 |t#1|) (-794 |t#1|) (-342 |t#1|) (-10 -8 (-15 -3948 ($ |t#1| |t#1|)) (-15 -2998 (|t#1| $)) (-15 -2997 (|t#1| $)) (-15 -2996 ($ $)) (-15 -2995 ($ $)) (IF (|has| |t#1| (-1065)) (-6 (-1065)) |%noBranch|) (IF (|has| |t#1| (-950 (-484))) (PROGN (-6 (-950 (-484))) (-6 (-950 (-349 (-484))))) |%noBranch|) (IF (|has| |t#1| (-756)) (-6 (-756)) |%noBranch|) (IF (|has| |t#1| (-740)) (-6 (-740)) |%noBranch|) (IF (|has| |t#1| (-933)) (-6 (-933)) |%noBranch|) (IF (|has| |t#1| (-553 (-473))) (-6 (-553 (-473))) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-950 (-1089))) (-6 (-950 (-1089))) |%noBranch|) (IF (|has| |t#1| (-258)) (PROGN (-15 -3129 (|t#1| $)) (-15 -3128 ($ $))) |%noBranch|) (IF (|has| |t#1| (-483)) (PROGN (-15 -2994 ($)) (-15 -3131 (|t#1| $)) (-15 -3130 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-821)) (-6 (-821)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-349 (-484))) . T) ((-38 |#1|) . T) ((-38 $) . T) ((-72) . T) ((-82 (-349 (-484)) (-349 (-484))) . T) ((-82 |#1| |#1|) . T) ((-82 $ $) . T) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) OR (|has| |#1| (-740)) (|has| |#1| (-120))) ((-555 (-349 (-484))) . T) ((-555 (-484)) . T) ((-555 (-1089)) |has| |#1| (-950 (-1089))) ((-555 |#1|) . T) ((-555 $) . T) ((-552 (-772)) . T) ((-146) . T) ((-553 (-179)) |has| |#1| (-933)) ((-553 (-329)) |has| |#1| (-933)) ((-553 (-473)) |has| |#1| (-553 (-473))) ((-553 (-800 (-329))) |has| |#1| (-553 (-800 (-329)))) ((-553 (-800 (-484))) |has| |#1| (-553 (-800 (-484)))) ((-186 $) OR (|has| |#1| (-189)) (|has| |#1| (-190))) ((-184 |#1|) . T) ((-190) |has| |#1| (-190)) ((-189) OR (|has| |#1| (-189)) (|has| |#1| (-190))) ((-225 |#1|) . T) ((-201) . T) ((-241 |#1| $) |has| |#1| (-241 |#1| |#1|)) ((-246) . T) ((-258) . T) ((-260 |#1|) |has| |#1| (-260 |#1|)) ((-312) . T) ((-288 |#1|) . T) ((-328 |#1|) . T) ((-342 |#1|) . T) ((-391) . T) ((-455 (-1089) |#1|) |has| |#1| (-455 (-1089) |#1|)) ((-455 |#1| |#1|) |has| |#1| (-260 |#1|)) ((-495) . T) ((-13) . T) ((-588 (-349 (-484))) . T) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 (-349 (-484))) . T) ((-590 (-484)) |has| |#1| (-580 (-484))) ((-590 |#1|) . T) ((-590 $) . T) ((-582 (-349 (-484))) . T) ((-582 |#1|) . T) ((-582 $) . T) ((-580 (-484)) |has| |#1| (-580 (-484))) ((-580 |#1|) . T) ((-654 (-349 (-484))) . T) ((-654 |#1|) . T) ((-654 $) . T) ((-663) . T) ((-714) |has| |#1| (-740)) ((-716) |has| |#1| (-740)) ((-718) |has| |#1| (-740)) ((-721) |has| |#1| (-740)) ((-740) |has| |#1| (-740)) ((-755) |has| |#1| (-740)) ((-756) OR (|has| |#1| (-756)) (|has| |#1| (-740))) ((-759) OR (|has| |#1| (-756)) (|has| |#1| (-740))) ((-806 $ (-1089)) OR (|has| |#1| (-811 (-1089))) (|has| |#1| (-809 (-1089)))) ((-809 (-1089)) |has| |#1| (-809 (-1089))) ((-811 (-1089)) OR (|has| |#1| (-811 (-1089))) (|has| |#1| (-809 (-1089)))) ((-796 (-329)) |has| |#1| (-796 (-329))) ((-796 (-484)) |has| |#1| (-796 (-484))) ((-794 |#1|) . T) ((-821) |has| |#1| (-821)) ((-832) . T) ((-933) |has| |#1| (-933)) ((-950 (-349 (-484))) |has| |#1| (-950 (-484))) ((-950 (-484)) |has| |#1| (-950 (-484))) ((-950 (-1089)) |has| |#1| (-950 (-1089))) ((-950 |#1|) . T) ((-963 (-349 (-484))) . T) ((-963 |#1|) . T) ((-963 $) . T) ((-968 (-349 (-484))) . T) ((-968 |#1|) . T) ((-968 $) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1065) |has| |#1| (-1065)) ((-1128) . T) ((-1133) . T)) +((-3957 ((|#4| (-1 |#2| |#1|) |#3|) 14 T ELT))) +(((-905 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3957 (|#4| (-1 |#2| |#1|) |#3|))) (-495) (-495) (-904 |#1|) (-904 |#2|)) (T -905)) +((-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-495)) (-4 *6 (-495)) (-4 *2 (-904 *6)) (-5 *1 (-905 *5 *6 *4 *2)) (-4 *4 (-904 *5))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-1311 (((-3 $ "failed") $ $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-2999 (($ (-1055 |#1| |#2|)) 11 T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-3123 (((-1055 |#1| |#2|) $) 12 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3799 ((|#2| $ (-197 |#1| |#2|)) 16 T ELT)) (-3945 (((-772) $) NIL T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2660 (($) NIL T CONST)) (-3056 (((-85) $ $) NIL T ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT))) +(((-906 |#1| |#2|) (-13 (-21) (-241 (-197 |#1| |#2|) |#2|) (-10 -8 (-15 -2999 ($ (-1055 |#1| |#2|))) (-15 -3123 ((-1055 |#1| |#2|) $)))) (-830) (-312)) (T -906)) +((-2999 (*1 *1 *2) (-12 (-5 *2 (-1055 *3 *4)) (-14 *3 (-830)) (-4 *4 (-312)) (-5 *1 (-906 *3 *4)))) (-3123 (*1 *2 *1) (-12 (-5 *2 (-1055 *3 *4)) (-5 *1 (-906 *3 *4)) (-14 *3 (-830)) (-4 *4 (-312))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3206 (((-1048) $) 10 T ELT)) (-3945 (((-772) $) 16 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT))) +(((-907) (-13 (-995) (-10 -8 (-15 -3206 ((-1048) $))))) (T -907)) +((-3206 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-907))))) +((-2568 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3723 (($) 7 T CONST)) (-3002 (($ $) 50 T ELT)) (-2889 (((-583 |#1|) $) 30 (|has| $ (-6 -3994)) ELT)) (-2608 (((-583 |#1|) $) 29 (|has| $ (-6 -3994)) ELT)) (-3245 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-1948 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3832 (((-694) $) 49 T ELT)) (-3242 (((-1072) $) 22 (|has| |#1| (-1013)) ELT)) (-1273 ((|#1| $) 43 T ELT)) (-3608 (($ |#1| $) 44 T ELT)) (-3243 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-3001 ((|#1| $) 48 T ELT)) (-1274 ((|#1| $) 45 T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3994)) ELT)) (-3767 (($ $ (-583 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1221 (((-85) $ $) 11 T ELT)) (-3004 ((|#1| |#1| $) 52 T ELT)) (-3402 (((-85) $) 8 T ELT)) (-3564 (($) 9 T ELT)) (-3003 ((|#1| $) 51 T ELT)) (-1945 (((-694) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3994)) ELT) (((-694) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-3399 (($ $) 10 T ELT)) (-3945 (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-1264 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1275 (($ (-583 |#1|)) 46 T ELT)) (-3000 ((|#1| $) 47 T ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3994)) ELT)) (-3056 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3956 (((-694) $) 6 (|has| $ (-6 -3994)) ELT))) +(((-908 |#1|) (-113) (-1128)) (T -908)) +((-3004 (*1 *2 *2 *1) (-12 (-4 *1 (-908 *2)) (-4 *2 (-1128)))) (-3003 (*1 *2 *1) (-12 (-4 *1 (-908 *2)) (-4 *2 (-1128)))) (-3002 (*1 *1 *1) (-12 (-4 *1 (-908 *2)) (-4 *2 (-1128)))) (-3832 (*1 *2 *1) (-12 (-4 *1 (-908 *3)) (-4 *3 (-1128)) (-5 *2 (-694)))) (-3001 (*1 *2 *1) (-12 (-4 *1 (-908 *2)) (-4 *2 (-1128)))) (-3000 (*1 *2 *1) (-12 (-4 *1 (-908 *2)) (-4 *2 (-1128))))) +(-13 (-76 |t#1|) (-10 -8 (-6 -3994) (-15 -3004 (|t#1| |t#1| $)) (-15 -3003 (|t#1| $)) (-15 -3002 ($ $)) (-15 -3832 ((-694) $)) (-15 -3001 (|t#1| $)) (-15 -3000 (|t#1| $)))) +(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1013)) (|has| |#1| (-552 (-772)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-428 |#1|) . T) ((-455 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-1013) |has| |#1| (-1013)) ((-1128) . T)) +((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 (-484) #1#) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-3 (-349 (-484)) #1#) $) NIL (|has| |#1| (-950 (-349 (-484)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3156 (((-484) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-349 (-484)) $) NIL (|has| |#1| (-950 (-349 (-484)))) ELT) ((|#1| $) NIL T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1178 |#1|))) (-630 $) (-1178 $)) NIL T ELT) (((-630 |#1|) (-630 $)) NIL T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-3642 ((|#1| $) 12 T ELT)) (-3024 (((-3 (-349 (-484)) #1#) $) NIL (|has| |#1| (-483)) ELT)) (-3023 (((-85) $) NIL (|has| |#1| (-483)) ELT)) (-3022 (((-349 (-484)) $) NIL (|has| |#1| (-483)) ELT)) (-3005 (($ |#1| |#1| |#1| |#1|) 16 T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-3132 ((|#1| $) NIL T ELT)) (-2531 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2857 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2280 (((-630 (-484)) (-1178 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1178 |#1|))) (-1178 $) $) NIL T ELT) (((-630 |#1|) (-1178 $)) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2484 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3006 ((|#1| $) 15 T ELT)) (-3007 ((|#1| $) 14 T ELT)) (-3008 ((|#1| $) 13 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3767 (($ $ (-583 |#1|) (-583 |#1|)) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-249 |#1|)) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-583 (-249 |#1|))) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-583 (-1089)) (-583 |#1|)) NIL (|has| |#1| (-455 (-1089) |#1|)) ELT) (($ $ (-1089) |#1|) NIL (|has| |#1| (-455 (-1089) |#1|)) ELT)) (-3799 (($ $ |#1|) NIL (|has| |#1| (-241 |#1| |#1|)) ELT)) (-3757 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL T ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-694)) NIL (|has| |#1| (-189)) ELT) (($ $ (-1089)) NIL (|has| |#1| (-811 (-1089))) ELT) (($ $ (-583 (-1089))) NIL (|has| |#1| (-811 (-1089))) ELT) (($ $ (-1089) (-694)) NIL (|has| |#1| (-811 (-1089))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (|has| |#1| (-811 (-1089))) ELT)) (-3971 (((-473) $) NIL (|has| |#1| (-553 (-473))) ELT)) (-3009 (($ $) NIL T ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-349 (-484))) NIL (OR (|has| |#1| (-312)) (|has| |#1| (-950 (-349 (-484))))) ELT)) (-2702 (((-632 $) $) NIL (|has| |#1| (-118)) ELT)) (-3126 (((-694)) NIL T CONST)) (-1264 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-3382 ((|#1| $) NIL (|has| |#1| (-973)) ELT)) (-2660 (($) 8 T CONST)) (-2666 (($) 10 T CONST)) (-2669 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL T ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-694)) NIL (|has| |#1| (-189)) ELT) (($ $ (-1089)) NIL (|has| |#1| (-811 (-1089))) ELT) (($ $ (-583 (-1089))) NIL (|has| |#1| (-811 (-1089))) ELT) (($ $ (-1089) (-694)) NIL (|has| |#1| (-811 (-1089))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (|has| |#1| (-811 (-1089))) ELT)) (-2566 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2567 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2685 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL (|has| |#1| (-312)) ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 20 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ (-349 (-484))) NIL (|has| |#1| (-312)) ELT) (($ (-349 (-484)) $) NIL (|has| |#1| (-312)) ELT))) +(((-909 |#1|) (-911 |#1|) (-146)) (T -909)) +NIL +((-3188 (((-85) $) 43 T ELT)) (-3157 (((-3 (-484) #1="failed") $) NIL T ELT) (((-3 (-349 (-484)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 46 T ELT)) (-3156 (((-484) $) NIL T ELT) (((-349 (-484)) $) NIL T ELT) ((|#2| $) 44 T ELT)) (-3024 (((-3 (-349 (-484)) #1#) $) 78 T ELT)) (-3023 (((-85) $) 72 T ELT)) (-3022 (((-349 (-484)) $) 76 T ELT)) (-2410 (((-85) $) 42 T ELT)) (-3132 ((|#2| $) 22 T ELT)) (-3957 (($ (-1 |#2| |#2|) $) 19 T ELT)) (-2484 (($ $) 58 T ELT)) (-3757 (($ $ (-1 |#2| |#2|)) 35 T ELT) (($ $ (-1 |#2| |#2|) (-694)) NIL T ELT) (($ $ (-1089)) NIL T ELT) (($ $ (-583 (-1089))) NIL T ELT) (($ $ (-1089) (-694)) NIL T ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL T ELT) (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-3971 (((-473) $) 67 T ELT)) (-3009 (($ $) 17 T ELT)) (-3945 (((-772) $) 53 T ELT) (($ (-484)) 39 T ELT) (($ |#2|) 37 T ELT) (($ (-349 (-484))) NIL T ELT)) (-3126 (((-694)) 10 T CONST)) (-3382 ((|#2| $) 71 T ELT)) (-3056 (((-85) $ $) 26 T ELT)) (-2685 (((-85) $ $) 69 T ELT)) (-3836 (($ $) 30 T ELT) (($ $ $) 29 T ELT)) (-3838 (($ $ $) 27 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 34 T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 31 T ELT) (($ $ (-349 (-484))) NIL T ELT) (($ (-349 (-484)) $) NIL T ELT))) +(((-910 |#1| |#2|) (-10 -7 (-15 -3945 (|#1| (-349 (-484)))) (-15 -3757 (|#1| |#1| (-694))) (-15 -3757 (|#1| |#1|)) (-15 -3757 (|#1| |#1| (-583 (-1089)) (-583 (-694)))) (-15 -3757 (|#1| |#1| (-1089) (-694))) (-15 -3757 (|#1| |#1| (-583 (-1089)))) (-15 -3757 (|#1| |#1| (-1089))) (-15 -2685 ((-85) |#1| |#1|)) (-15 * (|#1| (-349 (-484)) |#1|)) (-15 * (|#1| |#1| (-349 (-484)))) (-15 -2484 (|#1| |#1|)) (-15 -3971 ((-473) |#1|)) (-15 -3024 ((-3 (-349 (-484)) #1="failed") |#1|)) (-15 -3022 ((-349 (-484)) |#1|)) (-15 -3023 ((-85) |#1|)) (-15 -3382 (|#2| |#1|)) (-15 -3132 (|#2| |#1|)) (-15 -3009 (|#1| |#1|)) (-15 -3957 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3757 (|#1| |#1| (-1 |#2| |#2|) (-694))) (-15 -3757 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3157 ((-3 |#2| #1#) |#1|)) (-15 -3156 (|#2| |#1|)) (-15 -3156 ((-349 (-484)) |#1|)) (-15 -3157 ((-3 (-349 (-484)) #1#) |#1|)) (-15 -3156 ((-484) |#1|)) (-15 -3157 ((-3 (-484) #1#) |#1|)) (-15 -3945 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3126 ((-694)) -3951) (-15 -3945 (|#1| (-484))) (-15 -2410 ((-85) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3836 (|#1| |#1| |#1|)) (-15 -3836 (|#1| |#1|)) (-15 * (|#1| (-484) |#1|)) (-15 * (|#1| (-694) |#1|)) (-15 -3188 ((-85) |#1|)) (-15 * (|#1| (-830) |#1|)) (-15 -3838 (|#1| |#1| |#1|)) (-15 -3945 ((-772) |#1|)) (-15 -3056 ((-85) |#1| |#1|))) (-911 |#2|) (-146)) (T -910)) +((-3126 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-694)) (-5 *1 (-910 *3 *4)) (-4 *3 (-911 *4))))) +((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3723 (($) 23 T CONST)) (-3157 (((-3 (-484) #1="failed") $) 143 (|has| |#1| (-950 (-484))) ELT) (((-3 (-349 (-484)) #1#) $) 141 (|has| |#1| (-950 (-349 (-484)))) ELT) (((-3 |#1| #1#) $) 138 T ELT)) (-3156 (((-484) $) 142 (|has| |#1| (-950 (-484))) ELT) (((-349 (-484)) $) 140 (|has| |#1| (-950 (-349 (-484)))) ELT) ((|#1| $) 139 T ELT)) (-2279 (((-630 (-484)) (-630 $)) 123 (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) 122 (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1178 |#1|))) (-630 $) (-1178 $)) 121 T ELT) (((-630 |#1|) (-630 $)) 120 T ELT)) (-3466 (((-3 $ "failed") $) 42 T ELT)) (-3642 ((|#1| $) 111 T ELT)) (-3024 (((-3 (-349 (-484)) "failed") $) 107 (|has| |#1| (-483)) ELT)) (-3023 (((-85) $) 109 (|has| |#1| (-483)) ELT)) (-3022 (((-349 (-484)) $) 108 (|has| |#1| (-483)) ELT)) (-3005 (($ |#1| |#1| |#1| |#1|) 112 T ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3132 ((|#1| $) 113 T ELT)) (-2531 (($ $ $) 95 (|has| |#1| (-756)) ELT)) (-2857 (($ $ $) 96 (|has| |#1| (-756)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) 126 T ELT)) (-2280 (((-630 (-484)) (-1178 $)) 125 (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) 124 (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1178 |#1|))) (-1178 $) $) 119 T ELT) (((-630 |#1|) (-1178 $)) 118 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-2484 (($ $) 104 (|has| |#1| (-312)) ELT)) (-3006 ((|#1| $) 114 T ELT)) (-3007 ((|#1| $) 115 T ELT)) (-3008 ((|#1| $) 116 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3767 (($ $ (-583 |#1|) (-583 |#1|)) 132 (|has| |#1| (-260 |#1|)) ELT) (($ $ |#1| |#1|) 131 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-249 |#1|)) 130 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-583 (-249 |#1|))) 129 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-583 (-1089)) (-583 |#1|)) 128 (|has| |#1| (-455 (-1089) |#1|)) ELT) (($ $ (-1089) |#1|) 127 (|has| |#1| (-455 (-1089) |#1|)) ELT)) (-3799 (($ $ |#1|) 133 (|has| |#1| (-241 |#1| |#1|)) ELT)) (-3757 (($ $ (-1 |#1| |#1|)) 137 T ELT) (($ $ (-1 |#1| |#1|) (-694)) 136 T ELT) (($ $) 94 (|has| |#1| (-189)) ELT) (($ $ (-694)) 92 (|has| |#1| (-189)) ELT) (($ $ (-1089)) 90 (|has| |#1| (-811 (-1089))) ELT) (($ $ (-583 (-1089))) 88 (|has| |#1| (-811 (-1089))) ELT) (($ $ (-1089) (-694)) 87 (|has| |#1| (-811 (-1089))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) 86 (|has| |#1| (-811 (-1089))) ELT)) (-3971 (((-473) $) 105 (|has| |#1| (-553 (-473))) ELT)) (-3009 (($ $) 117 T ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ |#1|) 52 T ELT) (($ (-349 (-484))) 82 (OR (|has| |#1| (-312)) (|has| |#1| (-950 (-349 (-484))))) ELT)) (-2702 (((-632 $) $) 106 (|has| |#1| (-118)) ELT)) (-3126 (((-694)) 40 T CONST)) (-1264 (((-85) $ $) 6 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-3382 ((|#1| $) 110 (|has| |#1| (-973)) ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-2669 (($ $ (-1 |#1| |#1|)) 135 T ELT) (($ $ (-1 |#1| |#1|) (-694)) 134 T ELT) (($ $) 93 (|has| |#1| (-189)) ELT) (($ $ (-694)) 91 (|has| |#1| (-189)) ELT) (($ $ (-1089)) 89 (|has| |#1| (-811 (-1089))) ELT) (($ $ (-583 (-1089))) 85 (|has| |#1| (-811 (-1089))) ELT) (($ $ (-1089) (-694)) 84 (|has| |#1| (-811 (-1089))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) 83 (|has| |#1| (-811 (-1089))) ELT)) (-2566 (((-85) $ $) 97 (|has| |#1| (-756)) ELT)) (-2567 (((-85) $ $) 99 (|has| |#1| (-756)) ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-2684 (((-85) $ $) 98 (|has| |#1| (-756)) ELT)) (-2685 (((-85) $ $) 100 (|has| |#1| (-756)) ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT) (($ $ (-484)) 103 (|has| |#1| (-312)) ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 54 T ELT) (($ |#1| $) 53 T ELT) (($ $ (-349 (-484))) 102 (|has| |#1| (-312)) ELT) (($ (-349 (-484)) $) 101 (|has| |#1| (-312)) ELT))) +(((-911 |#1|) (-113) (-146)) (T -911)) +((-3009 (*1 *1 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-146)))) (-3008 (*1 *2 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-146)))) (-3007 (*1 *2 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-146)))) (-3006 (*1 *2 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-146)))) (-3132 (*1 *2 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-146)))) (-3005 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-911 *2)) (-4 *2 (-146)))) (-3642 (*1 *2 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-146)))) (-3382 (*1 *2 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-146)) (-4 *2 (-973)))) (-3023 (*1 *2 *1) (-12 (-4 *1 (-911 *3)) (-4 *3 (-146)) (-4 *3 (-483)) (-5 *2 (-85)))) (-3022 (*1 *2 *1) (-12 (-4 *1 (-911 *3)) (-4 *3 (-146)) (-4 *3 (-483)) (-5 *2 (-349 (-484))))) (-3024 (*1 *2 *1) (|partial| -12 (-4 *1 (-911 *3)) (-4 *3 (-146)) (-4 *3 (-483)) (-5 *2 (-349 (-484)))))) +(-13 (-38 |t#1|) (-354 |t#1|) (-184 |t#1|) (-288 |t#1|) (-328 |t#1|) (-10 -8 (-15 -3009 ($ $)) (-15 -3008 (|t#1| $)) (-15 -3007 (|t#1| $)) (-15 -3006 (|t#1| $)) (-15 -3132 (|t#1| $)) (-15 -3005 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -3642 (|t#1| $)) (IF (|has| |t#1| (-246)) (-6 (-246)) |%noBranch|) (IF (|has| |t#1| (-756)) (-6 (-756)) |%noBranch|) (IF (|has| |t#1| (-312)) (-6 (-201)) |%noBranch|) (IF (|has| |t#1| (-553 (-473))) (-6 (-553 (-473))) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-973)) (-15 -3382 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-483)) (PROGN (-15 -3023 ((-85) $)) (-15 -3022 ((-349 (-484)) $)) (-15 -3024 ((-3 (-349 (-484)) "failed") $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-349 (-484))) |has| |#1| (-312)) ((-38 |#1|) . T) ((-72) . T) ((-82 (-349 (-484)) (-349 (-484))) |has| |#1| (-312)) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-312)) (|has| |#1| (-246))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-555 (-349 (-484))) OR (|has| |#1| (-950 (-349 (-484)))) (|has| |#1| (-312))) ((-555 (-484)) . T) ((-555 |#1|) . T) ((-552 (-772)) . T) ((-553 (-473)) |has| |#1| (-553 (-473))) ((-186 $) OR (|has| |#1| (-189)) (|has| |#1| (-190))) ((-184 |#1|) . T) ((-190) |has| |#1| (-190)) ((-189) OR (|has| |#1| (-189)) (|has| |#1| (-190))) ((-225 |#1|) . T) ((-201) |has| |#1| (-312)) ((-241 |#1| $) |has| |#1| (-241 |#1| |#1|)) ((-246) OR (|has| |#1| (-312)) (|has| |#1| (-246))) ((-260 |#1|) |has| |#1| (-260 |#1|)) ((-288 |#1|) . T) ((-328 |#1|) . T) ((-354 |#1|) . T) ((-455 (-1089) |#1|) |has| |#1| (-455 (-1089) |#1|)) ((-455 |#1| |#1|) |has| |#1| (-260 |#1|)) ((-13) . T) ((-588 (-349 (-484))) |has| |#1| (-312)) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 (-349 (-484))) |has| |#1| (-312)) ((-590 (-484)) |has| |#1| (-580 (-484))) ((-590 |#1|) . T) ((-590 $) . T) ((-582 (-349 (-484))) |has| |#1| (-312)) ((-582 |#1|) . T) ((-580 (-484)) |has| |#1| (-580 (-484))) ((-580 |#1|) . T) ((-654 (-349 (-484))) |has| |#1| (-312)) ((-654 |#1|) . T) ((-663) . T) ((-756) |has| |#1| (-756)) ((-759) |has| |#1| (-756)) ((-806 $ (-1089)) OR (|has| |#1| (-811 (-1089))) (|has| |#1| (-809 (-1089)))) ((-809 (-1089)) |has| |#1| (-809 (-1089))) ((-811 (-1089)) OR (|has| |#1| (-811 (-1089))) (|has| |#1| (-809 (-1089)))) ((-950 (-349 (-484))) |has| |#1| (-950 (-349 (-484)))) ((-950 (-484)) |has| |#1| (-950 (-484))) ((-950 |#1|) . T) ((-963 (-349 (-484))) |has| |#1| (-312)) ((-963 |#1|) . T) ((-963 $) OR (|has| |#1| (-312)) (|has| |#1| (-246))) ((-968 (-349 (-484))) |has| |#1| (-312)) ((-968 |#1|) . T) ((-968 $) OR (|has| |#1| (-312)) (|has| |#1| (-246))) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T)) +((-3957 ((|#3| (-1 |#4| |#2|) |#1|) 16 T ELT))) +(((-912 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3957 (|#3| (-1 |#4| |#2|) |#1|))) (-911 |#2|) (-146) (-911 |#4|) (-146)) (T -912)) +((-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-146)) (-4 *6 (-146)) (-4 *2 (-911 *6)) (-5 *1 (-912 *4 *5 *2 *6)) (-4 *4 (-911 *5))))) +((-2568 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3723 (($) NIL T CONST)) (-3002 (($ $) 24 T ELT)) (-3010 (($ (-583 |#1|)) 34 T ELT)) (-2889 (((-583 |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-2608 (((-583 |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3245 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-1948 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3832 (((-694) $) 27 T ELT)) (-3242 (((-1072) $) NIL (|has| |#1| (-1013)) ELT)) (-1273 ((|#1| $) 29 T ELT)) (-3608 (($ |#1| $) 18 T ELT)) (-3243 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-3001 ((|#1| $) 28 T ELT)) (-1274 ((|#1| $) 23 T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3767 (($ $ (-583 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1221 (((-85) $ $) NIL T ELT)) (-3004 ((|#1| |#1| $) 17 T ELT)) (-3402 (((-85) $) 19 T ELT)) (-3564 (($) NIL T ELT)) (-3003 ((|#1| $) 22 T ELT)) (-1945 (((-694) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT) (((-694) |#1| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-3399 (($ $) NIL T ELT)) (-3945 (((-772) $) NIL (|has| |#1| (-552 (-772))) ELT)) (-1264 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1275 (($ (-583 |#1|)) NIL T ELT)) (-3000 ((|#1| $) 31 T ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3056 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3956 (((-694) $) NIL (|has| $ (-6 -3994)) ELT))) +(((-913 |#1|) (-13 (-908 |#1|) (-10 -8 (-15 -3010 ($ (-583 |#1|))))) (-1013)) (T -913)) +((-3010 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1013)) (-5 *1 (-913 *3))))) +((-3037 (($ $) 12 T ELT)) (-3011 (($ $ (-484)) 13 T ELT))) +(((-914 |#1|) (-10 -7 (-15 -3037 (|#1| |#1|)) (-15 -3011 (|#1| |#1| (-484)))) (-915)) (T -914)) +NIL +((-3037 (($ $) 6 T ELT)) (-3011 (($ $ (-484)) 7 T ELT)) (** (($ $ (-349 (-484))) 8 T ELT))) +(((-915) (-113)) (T -915)) +((** (*1 *1 *1 *2) (-12 (-4 *1 (-915)) (-5 *2 (-349 (-484))))) (-3011 (*1 *1 *1 *2) (-12 (-4 *1 (-915)) (-5 *2 (-484)))) (-3037 (*1 *1 *1) (-4 *1 (-915)))) +(-13 (-10 -8 (-15 -3037 ($ $)) (-15 -3011 ($ $ (-484))) (-15 ** ($ $ (-349 (-484)))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-1646 (((-2 (|:| |num| (-1178 |#2|)) (|:| |den| |#2|)) $) NIL T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL (|has| (-349 |#2|) (-312)) ELT)) (-2063 (($ $) NIL (|has| (-349 |#2|) (-312)) ELT)) (-2061 (((-85) $) NIL (|has| (-349 |#2|) (-312)) ELT)) (-1781 (((-630 (-349 |#2|)) (-1178 $)) NIL T ELT) (((-630 (-349 |#2|))) NIL T ELT)) (-3329 (((-349 |#2|) $) NIL T ELT)) (-1674 (((-1101 (-830) (-694)) (-484)) NIL (|has| (-349 |#2|) (-299)) ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3774 (($ $) NIL (|has| (-349 |#2|) (-312)) ELT)) (-3970 (((-347 $) $) NIL (|has| (-349 |#2|) (-312)) ELT)) (-1607 (((-85) $ $) NIL (|has| (-349 |#2|) (-312)) ELT)) (-3136 (((-694)) NIL (|has| (-349 |#2|) (-319)) ELT)) (-1660 (((-85)) NIL T ELT)) (-1659 (((-85) |#1|) 162 T ELT) (((-85) |#2|) 166 T ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 (-484) #1#) $) NIL (|has| (-349 |#2|) (-950 (-484))) ELT) (((-3 (-349 (-484)) #1#) $) NIL (|has| (-349 |#2|) (-950 (-349 (-484)))) ELT) (((-3 (-349 |#2|) #1#) $) NIL T ELT)) (-3156 (((-484) $) NIL (|has| (-349 |#2|) (-950 (-484))) ELT) (((-349 (-484)) $) NIL (|has| (-349 |#2|) (-950 (-349 (-484)))) ELT) (((-349 |#2|) $) NIL T ELT)) (-1791 (($ (-1178 (-349 |#2|)) (-1178 $)) NIL T ELT) (($ (-1178 (-349 |#2|))) 79 T ELT) (($ (-1178 |#2|) |#2|) NIL T ELT)) (-1672 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-349 |#2|) (-299)) ELT)) (-2564 (($ $ $) NIL (|has| (-349 |#2|) (-312)) ELT)) (-1780 (((-630 (-349 |#2|)) $ (-1178 $)) NIL T ELT) (((-630 (-349 |#2|)) $) NIL T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (|has| (-349 |#2|) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) NIL (|has| (-349 |#2|) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-349 |#2|))) (|:| |vec| (-1178 (-349 |#2|)))) (-630 $) (-1178 $)) NIL T ELT) (((-630 (-349 |#2|)) (-630 $)) NIL T ELT)) (-1651 (((-1178 $) (-1178 $)) NIL T ELT)) (-3841 (($ |#3|) 73 T ELT) (((-3 $ #1#) (-349 |#3|)) NIL (|has| (-349 |#2|) (-312)) ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-1638 (((-583 (-583 |#1|))) NIL (|has| |#1| (-319)) ELT)) (-1663 (((-85) |#1| |#1|) NIL T ELT)) (-3108 (((-830)) NIL T ELT)) (-2994 (($) NIL (|has| (-349 |#2|) (-319)) ELT)) (-1658 (((-85)) NIL T ELT)) (-1657 (((-85) |#1|) 61 T ELT) (((-85) |#2|) 164 T ELT)) (-2563 (($ $ $) NIL (|has| (-349 |#2|) (-312)) ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) NIL (|has| (-349 |#2|) (-312)) ELT)) (-3502 (($ $) NIL T ELT)) (-2833 (($) NIL (|has| (-349 |#2|) (-299)) ELT)) (-1679 (((-85) $) NIL (|has| (-349 |#2|) (-299)) ELT)) (-1763 (($ $ (-694)) NIL (|has| (-349 |#2|) (-299)) ELT) (($ $) NIL (|has| (-349 |#2|) (-299)) ELT)) (-3722 (((-85) $) NIL (|has| (-349 |#2|) (-312)) ELT)) (-3771 (((-830) $) NIL (|has| (-349 |#2|) (-299)) ELT) (((-743 (-830)) $) NIL (|has| (-349 |#2|) (-299)) ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-3376 (((-694)) NIL T ELT)) (-1652 (((-1178 $) (-1178 $)) NIL T ELT)) (-3132 (((-349 |#2|) $) NIL T ELT)) (-1639 (((-583 (-857 |#1|)) (-1089)) NIL (|has| |#1| (-312)) ELT)) (-3444 (((-632 $) $) NIL (|has| (-349 |#2|) (-299)) ELT)) (-1604 (((-3 (-583 $) #1#) (-583 $) $) NIL (|has| (-349 |#2|) (-312)) ELT)) (-2014 ((|#3| $) NIL (|has| (-349 |#2|) (-312)) ELT)) (-2010 (((-830) $) NIL (|has| (-349 |#2|) (-319)) ELT)) (-3079 ((|#3| $) NIL T ELT)) (-2280 (((-630 (-484)) (-1178 $)) NIL (|has| (-349 |#2|) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (|has| (-349 |#2|) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-349 |#2|))) (|:| |vec| (-1178 (-349 |#2|)))) (-1178 $) $) NIL T ELT) (((-630 (-349 |#2|)) (-1178 $)) NIL T ELT)) (-1890 (($ (-583 $)) NIL (|has| (-349 |#2|) (-312)) ELT) (($ $ $) NIL (|has| (-349 |#2|) (-312)) ELT)) (-3242 (((-1072) $) NIL T ELT)) (-1647 (((-630 (-349 |#2|))) 57 T ELT)) (-1649 (((-630 (-349 |#2|))) 56 T ELT)) (-2484 (($ $) NIL (|has| (-349 |#2|) (-312)) ELT)) (-1644 (($ (-1178 |#2|) |#2|) 80 T ELT)) (-1648 (((-630 (-349 |#2|))) 55 T ELT)) (-1650 (((-630 (-349 |#2|))) 54 T ELT)) (-1643 (((-2 (|:| |num| (-630 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 95 T ELT)) (-1645 (((-2 (|:| |num| (-1178 |#2|)) (|:| |den| |#2|)) $) 86 T ELT)) (-1656 (((-1178 $)) 51 T ELT)) (-3917 (((-1178 $)) 50 T ELT)) (-1655 (((-85) $) NIL T ELT)) (-1654 (((-85) $) NIL T ELT) (((-85) $ |#1|) NIL T ELT) (((-85) $ |#2|) NIL T ELT)) (-3445 (($) NIL (|has| (-349 |#2|) (-299)) CONST)) (-2400 (($ (-830)) NIL (|has| (-349 |#2|) (-319)) ELT)) (-1641 (((-3 |#2| #1#)) 70 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1665 (((-694)) NIL T ELT)) (-2409 (($) NIL T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) NIL (|has| (-349 |#2|) (-312)) ELT)) (-3144 (($ (-583 $)) NIL (|has| (-349 |#2|) (-312)) ELT) (($ $ $) NIL (|has| (-349 |#2|) (-312)) ELT)) (-1675 (((-583 (-2 (|:| -3731 (-484)) (|:| -2401 (-484))))) NIL (|has| (-349 |#2|) (-299)) ELT)) (-3731 (((-347 $) $) NIL (|has| (-349 |#2|) (-312)) ELT)) (-1605 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| (-349 |#2|) (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL (|has| (-349 |#2|) (-312)) ELT)) (-3465 (((-3 $ #1#) $ $) NIL (|has| (-349 |#2|) (-312)) ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL (|has| (-349 |#2|) (-312)) ELT)) (-1606 (((-694) $) NIL (|has| (-349 |#2|) (-312)) ELT)) (-3799 ((|#1| $ |#1| |#1|) NIL T ELT)) (-1642 (((-3 |#2| #1#)) 68 T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL (|has| (-349 |#2|) (-312)) ELT)) (-3756 (((-349 |#2|) (-1178 $)) NIL T ELT) (((-349 |#2|)) 47 T ELT)) (-1764 (((-694) $) NIL (|has| (-349 |#2|) (-299)) ELT) (((-3 (-694) #1#) $ $) NIL (|has| (-349 |#2|) (-299)) ELT)) (-3757 (($ $ (-1 (-349 |#2|) (-349 |#2|))) NIL (|has| (-349 |#2|) (-312)) ELT) (($ $ (-1 (-349 |#2|) (-349 |#2|)) (-694)) NIL (|has| (-349 |#2|) (-312)) ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (OR (-12 (|has| (-349 |#2|) (-312)) (|has| (-349 |#2|) (-809 (-1089)))) (-12 (|has| (-349 |#2|) (-312)) (|has| (-349 |#2|) (-811 (-1089))))) ELT) (($ $ (-1089) (-694)) NIL (OR (-12 (|has| (-349 |#2|) (-312)) (|has| (-349 |#2|) (-809 (-1089)))) (-12 (|has| (-349 |#2|) (-312)) (|has| (-349 |#2|) (-811 (-1089))))) ELT) (($ $ (-583 (-1089))) NIL (OR (-12 (|has| (-349 |#2|) (-312)) (|has| (-349 |#2|) (-809 (-1089)))) (-12 (|has| (-349 |#2|) (-312)) (|has| (-349 |#2|) (-811 (-1089))))) ELT) (($ $ (-1089)) NIL (OR (-12 (|has| (-349 |#2|) (-312)) (|has| (-349 |#2|) (-809 (-1089)))) (-12 (|has| (-349 |#2|) (-312)) (|has| (-349 |#2|) (-811 (-1089))))) ELT) (($ $ (-694)) NIL (OR (-12 (|has| (-349 |#2|) (-190)) (|has| (-349 |#2|) (-312))) (-12 (|has| (-349 |#2|) (-189)) (|has| (-349 |#2|) (-312))) (|has| (-349 |#2|) (-299))) ELT) (($ $) NIL (OR (-12 (|has| (-349 |#2|) (-190)) (|has| (-349 |#2|) (-312))) (-12 (|has| (-349 |#2|) (-189)) (|has| (-349 |#2|) (-312))) (|has| (-349 |#2|) (-299))) ELT)) (-2408 (((-630 (-349 |#2|)) (-1178 $) (-1 (-349 |#2|) (-349 |#2|))) NIL (|has| (-349 |#2|) (-312)) ELT)) (-3185 ((|#3|) 58 T ELT)) (-1673 (($) NIL (|has| (-349 |#2|) (-299)) ELT)) (-3224 (((-1178 (-349 |#2|)) $ (-1178 $)) NIL T ELT) (((-630 (-349 |#2|)) (-1178 $) (-1178 $)) NIL T ELT) (((-1178 (-349 |#2|)) $) 81 T ELT) (((-630 (-349 |#2|)) (-1178 $)) NIL T ELT)) (-3971 (((-1178 (-349 |#2|)) $) NIL T ELT) (($ (-1178 (-349 |#2|))) NIL T ELT) ((|#3| $) NIL T ELT) (($ |#3|) NIL T ELT)) (-2703 (((-3 (-1178 $) #1#) (-630 $)) NIL (|has| (-349 |#2|) (-299)) ELT)) (-1653 (((-1178 $) (-1178 $)) NIL T ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ (-349 |#2|)) NIL T ELT) (($ (-349 (-484))) NIL (OR (|has| (-349 |#2|) (-312)) (|has| (-349 |#2|) (-950 (-349 (-484))))) ELT) (($ $) NIL (|has| (-349 |#2|) (-312)) ELT)) (-2702 (($ $) NIL (|has| (-349 |#2|) (-299)) ELT) (((-632 $) $) NIL (|has| (-349 |#2|) (-118)) ELT)) (-2449 ((|#3| $) NIL T ELT)) (-3126 (((-694)) NIL T CONST)) (-1662 (((-85)) 65 T ELT)) (-1661 (((-85) |#1|) 167 T ELT) (((-85) |#2|) 168 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2012 (((-1178 $)) NIL T ELT)) (-2062 (((-85) $ $) NIL (|has| (-349 |#2|) (-312)) ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-1640 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL T ELT)) (-1664 (((-85)) NIL T ELT)) (-2660 (($) NIL T CONST)) (-2666 (($) NIL T CONST)) (-2669 (($ $ (-1 (-349 |#2|) (-349 |#2|))) NIL (|has| (-349 |#2|) (-312)) ELT) (($ $ (-1 (-349 |#2|) (-349 |#2|)) (-694)) NIL (|has| (-349 |#2|) (-312)) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (OR (-12 (|has| (-349 |#2|) (-312)) (|has| (-349 |#2|) (-809 (-1089)))) (-12 (|has| (-349 |#2|) (-312)) (|has| (-349 |#2|) (-811 (-1089))))) ELT) (($ $ (-1089) (-694)) NIL (OR (-12 (|has| (-349 |#2|) (-312)) (|has| (-349 |#2|) (-809 (-1089)))) (-12 (|has| (-349 |#2|) (-312)) (|has| (-349 |#2|) (-811 (-1089))))) ELT) (($ $ (-583 (-1089))) NIL (OR (-12 (|has| (-349 |#2|) (-312)) (|has| (-349 |#2|) (-809 (-1089)))) (-12 (|has| (-349 |#2|) (-312)) (|has| (-349 |#2|) (-811 (-1089))))) ELT) (($ $ (-1089)) NIL (OR (-12 (|has| (-349 |#2|) (-312)) (|has| (-349 |#2|) (-809 (-1089)))) (-12 (|has| (-349 |#2|) (-312)) (|has| (-349 |#2|) (-811 (-1089))))) ELT) (($ $ (-694)) NIL (OR (-12 (|has| (-349 |#2|) (-190)) (|has| (-349 |#2|) (-312))) (-12 (|has| (-349 |#2|) (-189)) (|has| (-349 |#2|) (-312))) (|has| (-349 |#2|) (-299))) ELT) (($ $) NIL (OR (-12 (|has| (-349 |#2|) (-190)) (|has| (-349 |#2|) (-312))) (-12 (|has| (-349 |#2|) (-189)) (|has| (-349 |#2|) (-312))) (|has| (-349 |#2|) (-299))) ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3948 (($ $ $) NIL (|has| (-349 |#2|) (-312)) ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL (|has| (-349 |#2|) (-312)) ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-349 |#2|)) NIL T ELT) (($ (-349 |#2|) $) NIL T ELT) (($ (-349 (-484)) $) NIL (|has| (-349 |#2|) (-312)) ELT) (($ $ (-349 (-484))) NIL (|has| (-349 |#2|) (-312)) ELT))) +(((-916 |#1| |#2| |#3| |#4| |#5|) (-291 |#1| |#2| |#3|) (-1133) (-1154 |#1|) (-1154 (-349 |#2|)) (-349 |#2|) (-694)) (T -916)) +NIL +((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-3017 (((-583 (-484)) $) 73 T ELT)) (-3013 (($ (-583 (-484))) 81 T ELT)) (-3129 (((-484) $) 48 (|has| (-484) (-258)) ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2707 (((-347 (-1084 $)) (-1084 $)) NIL (|has| (-484) (-821)) ELT)) (-3774 (($ $) NIL T ELT)) (-3970 (((-347 $) $) NIL T ELT)) (-2704 (((-3 (-583 (-1084 $)) #1#) (-583 (-1084 $)) (-1084 $)) NIL (|has| (-484) (-821)) ELT)) (-1607 (((-85) $ $) NIL T ELT)) (-3622 (((-484) $) NIL (|has| (-484) (-740)) ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 (-484) #1#) $) 60 T ELT) (((-3 (-1089) #1#) $) NIL (|has| (-484) (-950 (-1089))) ELT) (((-3 (-349 (-484)) #1#) $) 57 (|has| (-484) (-950 (-484))) ELT) (((-3 (-484) #1#) $) 60 (|has| (-484) (-950 (-484))) ELT)) (-3156 (((-484) $) NIL T ELT) (((-1089) $) NIL (|has| (-484) (-950 (-1089))) ELT) (((-349 (-484)) $) NIL (|has| (-484) (-950 (-484))) ELT) (((-484) $) NIL (|has| (-484) (-950 (-484))) ELT)) (-2564 (($ $ $) NIL T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (|has| (-484) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) NIL (|has| (-484) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) NIL T ELT) (((-630 (-484)) (-630 $)) NIL T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-2994 (($) NIL (|has| (-484) (-483)) ELT)) (-2563 (($ $ $) NIL T ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-3722 (((-85) $) NIL T ELT)) (-3015 (((-583 (-484)) $) 79 T ELT)) (-3186 (((-85) $) NIL (|has| (-484) (-740)) ELT)) (-2796 (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) NIL (|has| (-484) (-796 (-484))) ELT) (((-798 (-329) $) $ (-800 (-329)) (-798 (-329) $)) NIL (|has| (-484) (-796 (-329))) ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2996 (($ $) NIL T ELT)) (-2998 (((-484) $) 45 T ELT)) (-3444 (((-632 $) $) NIL (|has| (-484) (-1065)) ELT)) (-3187 (((-85) $) NIL (|has| (-484) (-740)) ELT)) (-1604 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2531 (($ $ $) NIL (|has| (-484) (-756)) ELT)) (-2857 (($ $ $) NIL (|has| (-484) (-756)) ELT)) (-3957 (($ (-1 (-484) (-484)) $) NIL T ELT)) (-2280 (((-630 (-484)) (-1178 $)) NIL (|has| (-484) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (|has| (-484) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL T ELT) (((-630 (-484)) (-1178 $)) NIL T ELT)) (-1890 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2484 (($ $) NIL T ELT)) (-3445 (($) NIL (|has| (-484) (-1065)) CONST)) (-3243 (((-1033) $) NIL T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3144 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3128 (($ $) NIL (|has| (-484) (-258)) ELT) (((-349 (-484)) $) 50 T ELT)) (-3016 (((-1068 (-484)) $) 78 T ELT)) (-3012 (($ (-583 (-484)) (-583 (-484))) 82 T ELT)) (-3130 (((-484) $) 64 (|has| (-484) (-483)) ELT)) (-2705 (((-347 (-1084 $)) (-1084 $)) NIL (|has| (-484) (-821)) ELT)) (-2706 (((-347 (-1084 $)) (-1084 $)) NIL (|has| (-484) (-821)) ELT)) (-3731 (((-347 $) $) NIL T ELT)) (-1605 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3465 (((-3 $ #1#) $ $) NIL T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-3767 (($ $ (-583 (-484)) (-583 (-484))) NIL (|has| (-484) (-260 (-484))) ELT) (($ $ (-484) (-484)) NIL (|has| (-484) (-260 (-484))) ELT) (($ $ (-249 (-484))) NIL (|has| (-484) (-260 (-484))) ELT) (($ $ (-583 (-249 (-484)))) NIL (|has| (-484) (-260 (-484))) ELT) (($ $ (-583 (-1089)) (-583 (-484))) NIL (|has| (-484) (-455 (-1089) (-484))) ELT) (($ $ (-1089) (-484)) NIL (|has| (-484) (-455 (-1089) (-484))) ELT)) (-1606 (((-694) $) NIL T ELT)) (-3799 (($ $ (-484)) NIL (|has| (-484) (-241 (-484) (-484))) ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL T ELT)) (-3757 (($ $ (-1 (-484) (-484))) NIL T ELT) (($ $ (-1 (-484) (-484)) (-694)) NIL T ELT) (($ $ (-1089)) NIL (|has| (-484) (-811 (-1089))) ELT) (($ $ (-583 (-1089))) NIL (|has| (-484) (-811 (-1089))) ELT) (($ $ (-1089) (-694)) NIL (|has| (-484) (-811 (-1089))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (|has| (-484) (-811 (-1089))) ELT) (($ $) 15 (|has| (-484) (-189)) ELT) (($ $ (-694)) NIL (|has| (-484) (-189)) ELT)) (-2995 (($ $) NIL T ELT)) (-2997 (((-484) $) 47 T ELT)) (-3014 (((-583 (-484)) $) 80 T ELT)) (-3971 (((-800 (-484)) $) NIL (|has| (-484) (-553 (-800 (-484)))) ELT) (((-800 (-329)) $) NIL (|has| (-484) (-553 (-800 (-329)))) ELT) (((-473) $) NIL (|has| (-484) (-553 (-473))) ELT) (((-329) $) NIL (|has| (-484) (-933)) ELT) (((-179) $) NIL (|has| (-484) (-933)) ELT)) (-2703 (((-3 (-1178 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| (-484) (-821))) ELT)) (-3945 (((-772) $) 108 T ELT) (($ (-484)) 51 T ELT) (($ $) NIL T ELT) (($ (-349 (-484))) 27 T ELT) (($ (-484)) 51 T ELT) (($ (-1089)) NIL (|has| (-484) (-950 (-1089))) ELT) (((-349 (-484)) $) 25 T ELT)) (-2702 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-484) (-821))) (|has| (-484) (-118))) ELT)) (-3126 (((-694)) 13 T CONST)) (-3131 (((-484) $) 62 (|has| (-484) (-483)) ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-3382 (($ $) NIL (|has| (-484) (-740)) ELT)) (-2660 (($) 14 T CONST)) (-2666 (($) 17 T CONST)) (-2669 (($ $ (-1 (-484) (-484))) NIL T ELT) (($ $ (-1 (-484) (-484)) (-694)) NIL T ELT) (($ $ (-1089)) NIL (|has| (-484) (-811 (-1089))) ELT) (($ $ (-583 (-1089))) NIL (|has| (-484) (-811 (-1089))) ELT) (($ $ (-1089) (-694)) NIL (|has| (-484) (-811 (-1089))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (|has| (-484) (-811 (-1089))) ELT) (($ $) NIL (|has| (-484) (-189)) ELT) (($ $ (-694)) NIL (|has| (-484) (-189)) ELT)) (-2566 (((-85) $ $) NIL (|has| (-484) (-756)) ELT)) (-2567 (((-85) $ $) NIL (|has| (-484) (-756)) ELT)) (-3056 (((-85) $ $) 21 T ELT)) (-2684 (((-85) $ $) NIL (|has| (-484) (-756)) ELT)) (-2685 (((-85) $ $) 40 (|has| (-484) (-756)) ELT)) (-3948 (($ $ $) 36 T ELT) (($ (-484) (-484)) 38 T ELT)) (-3836 (($ $) 23 T ELT) (($ $ $) 30 T ELT)) (-3838 (($ $ $) 28 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 32 T ELT) (($ $ $) 34 T ELT) (($ $ (-349 (-484))) NIL T ELT) (($ (-349 (-484)) $) NIL T ELT) (($ (-484) $) 32 T ELT) (($ $ (-484)) NIL T ELT))) +(((-917 |#1|) (-13 (-904 (-484)) (-552 (-349 (-484))) (-10 -8 (-15 -3128 ((-349 (-484)) $)) (-15 -3017 ((-583 (-484)) $)) (-15 -3016 ((-1068 (-484)) $)) (-15 -3015 ((-583 (-484)) $)) (-15 -3014 ((-583 (-484)) $)) (-15 -3013 ($ (-583 (-484)))) (-15 -3012 ($ (-583 (-484)) (-583 (-484)))))) (-484)) (T -917)) +((-3128 (*1 *2 *1) (-12 (-5 *2 (-349 (-484))) (-5 *1 (-917 *3)) (-14 *3 (-484)))) (-3017 (*1 *2 *1) (-12 (-5 *2 (-583 (-484))) (-5 *1 (-917 *3)) (-14 *3 (-484)))) (-3016 (*1 *2 *1) (-12 (-5 *2 (-1068 (-484))) (-5 *1 (-917 *3)) (-14 *3 (-484)))) (-3015 (*1 *2 *1) (-12 (-5 *2 (-583 (-484))) (-5 *1 (-917 *3)) (-14 *3 (-484)))) (-3014 (*1 *2 *1) (-12 (-5 *2 (-583 (-484))) (-5 *1 (-917 *3)) (-14 *3 (-484)))) (-3013 (*1 *1 *2) (-12 (-5 *2 (-583 (-484))) (-5 *1 (-917 *3)) (-14 *3 (-484)))) (-3012 (*1 *1 *2 *2) (-12 (-5 *2 (-583 (-484))) (-5 *1 (-917 *3)) (-14 *3 (-484))))) +((-3018 (((-51) (-349 (-484)) (-484)) 9 T ELT))) +(((-918) (-10 -7 (-15 -3018 ((-51) (-349 (-484)) (-484))))) (T -918)) +((-3018 (*1 *2 *3 *4) (-12 (-5 *3 (-349 (-484))) (-5 *4 (-484)) (-5 *2 (-51)) (-5 *1 (-918))))) +((-3136 (((-484)) 21 T ELT)) (-3021 (((-484)) 26 T ELT)) (-3020 (((-1184) (-484)) 24 T ELT)) (-3019 (((-484) (-484)) 27 T ELT) (((-484)) 20 T ELT))) +(((-919) (-10 -7 (-15 -3019 ((-484))) (-15 -3136 ((-484))) (-15 -3019 ((-484) (-484))) (-15 -3020 ((-1184) (-484))) (-15 -3021 ((-484))))) (T -919)) +((-3021 (*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-919)))) (-3020 (*1 *2 *3) (-12 (-5 *3 (-484)) (-5 *2 (-1184)) (-5 *1 (-919)))) (-3019 (*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-919)))) (-3136 (*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-919)))) (-3019 (*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-919))))) +((-3732 (((-347 |#1|) |#1|) 43 T ELT)) (-3731 (((-347 |#1|) |#1|) 41 T ELT))) +(((-920 |#1|) (-10 -7 (-15 -3731 ((-347 |#1|) |#1|)) (-15 -3732 ((-347 |#1|) |#1|))) (-1154 (-349 (-484)))) (T -920)) +((-3732 (*1 *2 *3) (-12 (-5 *2 (-347 *3)) (-5 *1 (-920 *3)) (-4 *3 (-1154 (-349 (-484)))))) (-3731 (*1 *2 *3) (-12 (-5 *2 (-347 *3)) (-5 *1 (-920 *3)) (-4 *3 (-1154 (-349 (-484))))))) +((-3024 (((-3 (-349 (-484)) "failed") |#1|) 15 T ELT)) (-3023 (((-85) |#1|) 14 T ELT)) (-3022 (((-349 (-484)) |#1|) 10 T ELT))) +(((-921 |#1|) (-10 -7 (-15 -3022 ((-349 (-484)) |#1|)) (-15 -3023 ((-85) |#1|)) (-15 -3024 ((-3 (-349 (-484)) "failed") |#1|))) (-950 (-349 (-484)))) (T -921)) +((-3024 (*1 *2 *3) (|partial| -12 (-5 *2 (-349 (-484))) (-5 *1 (-921 *3)) (-4 *3 (-950 *2)))) (-3023 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-921 *3)) (-4 *3 (-950 (-349 (-484)))))) (-3022 (*1 *2 *3) (-12 (-5 *2 (-349 (-484))) (-5 *1 (-921 *3)) (-4 *3 (-950 *2))))) +((-3787 ((|#2| $ #1="value" |#2|) 12 T ELT)) (-3799 ((|#2| $ #1#) 10 T ELT)) (-3028 (((-85) $ $) 18 T ELT))) +(((-922 |#1| |#2|) (-10 -7 (-15 -3787 (|#2| |#1| #1="value" |#2|)) (-15 -3028 ((-85) |#1| |#1|)) (-15 -3799 (|#2| |#1| #1#))) (-923 |#2|) (-1128)) (T -922)) +NIL +((-2568 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3401 ((|#1| $) 52 T ELT)) (-3025 ((|#1| $ |#1|) 43 (|has| $ (-6 -3995)) ELT)) (-3787 ((|#1| $ "value" |#1|) 44 (|has| $ (-6 -3995)) ELT)) (-3026 (($ $ (-583 $)) 45 (|has| $ (-6 -3995)) ELT)) (-3723 (($) 7 T CONST)) (-2889 (((-583 |#1|) $) 30 (|has| $ (-6 -3994)) ELT)) (-3031 (((-583 $) $) 54 T ELT)) (-3027 (((-85) $ $) 46 (|has| |#1| (-1013)) ELT)) (-2608 (((-583 |#1|) $) 29 (|has| $ (-6 -3994)) ELT)) (-3245 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-1948 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3030 (((-583 |#1|) $) 49 T ELT)) (-3526 (((-85) $) 53 T ELT)) (-3242 (((-1072) $) 22 (|has| |#1| (-1013)) ELT)) (-3243 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3994)) ELT)) (-3767 (($ $ (-583 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1221 (((-85) $ $) 11 T ELT)) (-3402 (((-85) $) 8 T ELT)) (-3564 (($) 9 T ELT)) (-3799 ((|#1| $ "value") 51 T ELT)) (-3029 (((-484) $ $) 48 T ELT)) (-3632 (((-85) $) 50 T ELT)) (-1945 (((-694) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3994)) ELT) (((-694) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-3399 (($ $) 10 T ELT)) (-3945 (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-3521 (((-583 $) $) 55 T ELT)) (-3028 (((-85) $ $) 47 (|has| |#1| (-1013)) ELT)) (-1264 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3994)) ELT)) (-3056 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3956 (((-694) $) 6 (|has| $ (-6 -3994)) ELT))) +(((-923 |#1|) (-113) (-1128)) (T -923)) +((-3521 (*1 *2 *1) (-12 (-4 *3 (-1128)) (-5 *2 (-583 *1)) (-4 *1 (-923 *3)))) (-3031 (*1 *2 *1) (-12 (-4 *3 (-1128)) (-5 *2 (-583 *1)) (-4 *1 (-923 *3)))) (-3526 (*1 *2 *1) (-12 (-4 *1 (-923 *3)) (-4 *3 (-1128)) (-5 *2 (-85)))) (-3401 (*1 *2 *1) (-12 (-4 *1 (-923 *2)) (-4 *2 (-1128)))) (-3799 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-923 *2)) (-4 *2 (-1128)))) (-3632 (*1 *2 *1) (-12 (-4 *1 (-923 *3)) (-4 *3 (-1128)) (-5 *2 (-85)))) (-3030 (*1 *2 *1) (-12 (-4 *1 (-923 *3)) (-4 *3 (-1128)) (-5 *2 (-583 *3)))) (-3029 (*1 *2 *1 *1) (-12 (-4 *1 (-923 *3)) (-4 *3 (-1128)) (-5 *2 (-484)))) (-3028 (*1 *2 *1 *1) (-12 (-4 *1 (-923 *3)) (-4 *3 (-1128)) (-4 *3 (-1013)) (-5 *2 (-85)))) (-3027 (*1 *2 *1 *1) (-12 (-4 *1 (-923 *3)) (-4 *3 (-1128)) (-4 *3 (-1013)) (-5 *2 (-85)))) (-3026 (*1 *1 *1 *2) (-12 (-5 *2 (-583 *1)) (|has| *1 (-6 -3995)) (-4 *1 (-923 *3)) (-4 *3 (-1128)))) (-3787 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -3995)) (-4 *1 (-923 *2)) (-4 *2 (-1128)))) (-3025 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -3995)) (-4 *1 (-923 *2)) (-4 *2 (-1128))))) +(-13 (-428 |t#1|) (-10 -8 (-15 -3521 ((-583 $) $)) (-15 -3031 ((-583 $) $)) (-15 -3526 ((-85) $)) (-15 -3401 (|t#1| $)) (-15 -3799 (|t#1| $ "value")) (-15 -3632 ((-85) $)) (-15 -3030 ((-583 |t#1|) $)) (-15 -3029 ((-484) $ $)) (IF (|has| |t#1| (-1013)) (PROGN (-15 -3028 ((-85) $ $)) (-15 -3027 ((-85) $ $))) |%noBranch|) (IF (|has| $ (-6 -3995)) (PROGN (-15 -3026 ($ $ (-583 $))) (-15 -3787 (|t#1| $ "value" |t#1|)) (-15 -3025 (|t#1| $ |t#1|))) |%noBranch|))) +(((-34) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1013)) (|has| |#1| (-552 (-772)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-428 |#1|) . T) ((-455 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-1013) |has| |#1| (-1013)) ((-1128) . T)) +((-3037 (($ $) 9 T ELT) (($ $ (-830)) 49 T ELT) (($ (-349 (-484))) 13 T ELT) (($ (-484)) 15 T ELT)) (-3183 (((-3 $ #1="failed") (-1084 $) (-830) (-772)) 24 T ELT) (((-3 $ #1#) (-1084 $) (-830)) 32 T ELT)) (-3011 (($ $ (-484)) 58 T ELT)) (-3126 (((-694)) 18 T CONST)) (-3184 (((-583 $) (-1084 $)) NIL T ELT) (((-583 $) (-1084 (-349 (-484)))) 63 T ELT) (((-583 $) (-1084 (-484))) 68 T ELT) (((-583 $) (-857 $)) 72 T ELT) (((-583 $) (-857 (-349 (-484)))) 76 T ELT) (((-583 $) (-857 (-484))) 80 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL T ELT) (($ $ (-349 (-484))) 53 T ELT))) +(((-924 |#1|) (-10 -7 (-15 -3037 (|#1| (-484))) (-15 -3037 (|#1| (-349 (-484)))) (-15 -3037 (|#1| |#1| (-830))) (-15 -3184 ((-583 |#1|) (-857 (-484)))) (-15 -3184 ((-583 |#1|) (-857 (-349 (-484))))) (-15 -3184 ((-583 |#1|) (-857 |#1|))) (-15 -3184 ((-583 |#1|) (-1084 (-484)))) (-15 -3184 ((-583 |#1|) (-1084 (-349 (-484))))) (-15 -3184 ((-583 |#1|) (-1084 |#1|))) (-15 -3183 ((-3 |#1| #1="failed") (-1084 |#1|) (-830))) (-15 -3183 ((-3 |#1| #1#) (-1084 |#1|) (-830) (-772))) (-15 ** (|#1| |#1| (-349 (-484)))) (-15 -3011 (|#1| |#1| (-484))) (-15 -3037 (|#1| |#1|)) (-15 ** (|#1| |#1| (-484))) (-15 -3126 ((-694)) -3951) (-15 ** (|#1| |#1| (-694))) (-15 ** (|#1| |#1| (-830)))) (-925)) (T -924)) +((-3126 (*1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-924 *3)) (-4 *3 (-925))))) +((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) 111 T ELT)) (-2063 (($ $) 112 T ELT)) (-2061 (((-85) $) 114 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3774 (($ $) 131 T ELT)) (-3970 (((-347 $) $) 132 T ELT)) (-3037 (($ $) 95 T ELT) (($ $ (-830)) 81 T ELT) (($ (-349 (-484))) 80 T ELT) (($ (-484)) 79 T ELT)) (-1607 (((-85) $ $) 122 T ELT)) (-3622 (((-484) $) 148 T ELT)) (-3723 (($) 23 T CONST)) (-3183 (((-3 $ "failed") (-1084 $) (-830) (-772)) 89 T ELT) (((-3 $ "failed") (-1084 $) (-830)) 88 T ELT)) (-3157 (((-3 (-484) #1="failed") $) 108 (|has| (-349 (-484)) (-950 (-484))) ELT) (((-3 (-349 (-484)) #1#) $) 106 (|has| (-349 (-484)) (-950 (-349 (-484)))) ELT) (((-3 (-349 (-484)) #1#) $) 103 T ELT)) (-3156 (((-484) $) 107 (|has| (-349 (-484)) (-950 (-484))) ELT) (((-349 (-484)) $) 105 (|has| (-349 (-484)) (-950 (-349 (-484)))) ELT) (((-349 (-484)) $) 104 T ELT)) (-3033 (($ $ (-772)) 78 T ELT)) (-3032 (($ $ (-772)) 77 T ELT)) (-2564 (($ $ $) 126 T ELT)) (-3466 (((-3 $ "failed") $) 42 T ELT)) (-2563 (($ $ $) 125 T ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) 120 T ELT)) (-3722 (((-85) $) 133 T ELT)) (-3186 (((-85) $) 146 T ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3011 (($ $ (-484)) 94 T ELT)) (-3187 (((-85) $) 147 T ELT)) (-1604 (((-3 (-583 $) #2="failed") (-583 $) $) 129 T ELT)) (-2531 (($ $ $) 140 T ELT)) (-2857 (($ $ $) 141 T ELT)) (-3034 (((-3 (-1084 $) "failed") $) 90 T ELT)) (-3036 (((-3 (-772) "failed") $) 92 T ELT)) (-3035 (((-3 (-1084 $) "failed") $) 91 T ELT)) (-1890 (($ (-583 $)) 118 T ELT) (($ $ $) 117 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-2484 (($ $) 134 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) 119 T ELT)) (-3144 (($ (-583 $)) 116 T ELT) (($ $ $) 115 T ELT)) (-3731 (((-347 $) $) 130 T ELT)) (-1605 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 128 T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) 127 T ELT)) (-3465 (((-3 $ "failed") $ $) 110 T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) 121 T ELT)) (-1606 (((-694) $) 123 T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 124 T ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ (-349 (-484))) 138 T ELT) (($ $) 109 T ELT) (($ (-349 (-484))) 102 T ELT) (($ (-484)) 101 T ELT) (($ (-349 (-484))) 98 T ELT)) (-3126 (((-694)) 40 T CONST)) (-1264 (((-85) $ $) 6 T ELT)) (-2062 (((-85) $ $) 113 T ELT)) (-3769 (((-349 (-484)) $ $) 76 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-3184 (((-583 $) (-1084 $)) 87 T ELT) (((-583 $) (-1084 (-349 (-484)))) 86 T ELT) (((-583 $) (-1084 (-484))) 85 T ELT) (((-583 $) (-857 $)) 84 T ELT) (((-583 $) (-857 (-349 (-484)))) 83 T ELT) (((-583 $) (-857 (-484))) 82 T ELT)) (-3382 (($ $) 149 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-2566 (((-85) $ $) 142 T ELT)) (-2567 (((-85) $ $) 144 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-2684 (((-85) $ $) 143 T ELT)) (-2685 (((-85) $ $) 145 T ELT)) (-3948 (($ $ $) 139 T ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT) (($ $ (-484)) 135 T ELT) (($ $ (-349 (-484))) 93 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ (-349 (-484)) $) 137 T ELT) (($ $ (-349 (-484))) 136 T ELT) (($ (-484) $) 100 T ELT) (($ $ (-484)) 99 T ELT) (($ (-349 (-484)) $) 97 T ELT) (($ $ (-349 (-484))) 96 T ELT))) +(((-925) (-113)) (T -925)) +((-3037 (*1 *1 *1) (-4 *1 (-925))) (-3036 (*1 *2 *1) (|partial| -12 (-4 *1 (-925)) (-5 *2 (-772)))) (-3035 (*1 *2 *1) (|partial| -12 (-5 *2 (-1084 *1)) (-4 *1 (-925)))) (-3034 (*1 *2 *1) (|partial| -12 (-5 *2 (-1084 *1)) (-4 *1 (-925)))) (-3183 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1084 *1)) (-5 *3 (-830)) (-5 *4 (-772)) (-4 *1 (-925)))) (-3183 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1084 *1)) (-5 *3 (-830)) (-4 *1 (-925)))) (-3184 (*1 *2 *3) (-12 (-5 *3 (-1084 *1)) (-4 *1 (-925)) (-5 *2 (-583 *1)))) (-3184 (*1 *2 *3) (-12 (-5 *3 (-1084 (-349 (-484)))) (-5 *2 (-583 *1)) (-4 *1 (-925)))) (-3184 (*1 *2 *3) (-12 (-5 *3 (-1084 (-484))) (-5 *2 (-583 *1)) (-4 *1 (-925)))) (-3184 (*1 *2 *3) (-12 (-5 *3 (-857 *1)) (-4 *1 (-925)) (-5 *2 (-583 *1)))) (-3184 (*1 *2 *3) (-12 (-5 *3 (-857 (-349 (-484)))) (-5 *2 (-583 *1)) (-4 *1 (-925)))) (-3184 (*1 *2 *3) (-12 (-5 *3 (-857 (-484))) (-5 *2 (-583 *1)) (-4 *1 (-925)))) (-3037 (*1 *1 *1 *2) (-12 (-4 *1 (-925)) (-5 *2 (-830)))) (-3037 (*1 *1 *2) (-12 (-5 *2 (-349 (-484))) (-4 *1 (-925)))) (-3037 (*1 *1 *2) (-12 (-5 *2 (-484)) (-4 *1 (-925)))) (-3033 (*1 *1 *1 *2) (-12 (-4 *1 (-925)) (-5 *2 (-772)))) (-3032 (*1 *1 *1 *2) (-12 (-4 *1 (-925)) (-5 *2 (-772)))) (-3769 (*1 *2 *1 *1) (-12 (-4 *1 (-925)) (-5 *2 (-349 (-484)))))) +(-13 (-120) (-755) (-146) (-312) (-354 (-349 (-484))) (-38 (-484)) (-38 (-349 (-484))) (-915) (-10 -8 (-15 -3036 ((-3 (-772) "failed") $)) (-15 -3035 ((-3 (-1084 $) "failed") $)) (-15 -3034 ((-3 (-1084 $) "failed") $)) (-15 -3183 ((-3 $ "failed") (-1084 $) (-830) (-772))) (-15 -3183 ((-3 $ "failed") (-1084 $) (-830))) (-15 -3184 ((-583 $) (-1084 $))) (-15 -3184 ((-583 $) (-1084 (-349 (-484))))) (-15 -3184 ((-583 $) (-1084 (-484)))) (-15 -3184 ((-583 $) (-857 $))) (-15 -3184 ((-583 $) (-857 (-349 (-484))))) (-15 -3184 ((-583 $) (-857 (-484)))) (-15 -3037 ($ $ (-830))) (-15 -3037 ($ $)) (-15 -3037 ($ (-349 (-484)))) (-15 -3037 ($ (-484))) (-15 -3033 ($ $ (-772))) (-15 -3032 ($ $ (-772))) (-15 -3769 ((-349 (-484)) $ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-349 (-484))) . T) ((-38 (-484)) . T) ((-38 $) . T) ((-72) . T) ((-82 (-349 (-484)) (-349 (-484))) . T) ((-82 (-484) (-484)) . T) ((-82 $ $) . T) ((-104) . T) ((-120) . T) ((-555 (-349 (-484))) . T) ((-555 (-484)) . T) ((-555 $) . T) ((-552 (-772)) . T) ((-146) . T) ((-201) . T) ((-246) . T) ((-258) . T) ((-312) . T) ((-354 (-349 (-484))) . T) ((-391) . T) ((-495) . T) ((-13) . T) ((-588 (-349 (-484))) . T) ((-588 (-484)) . T) ((-588 $) . T) ((-590 (-349 (-484))) . T) ((-590 (-484)) . T) ((-590 $) . T) ((-582 (-349 (-484))) . T) ((-582 (-484)) . T) ((-582 $) . T) ((-654 (-349 (-484))) . T) ((-654 (-484)) . T) ((-654 $) . T) ((-663) . T) ((-714) . T) ((-716) . T) ((-718) . T) ((-721) . T) ((-755) . T) ((-756) . T) ((-759) . T) ((-832) . T) ((-915) . T) ((-950 (-349 (-484))) . T) ((-950 (-484)) |has| (-349 (-484)) (-950 (-484))) ((-963 (-349 (-484))) . T) ((-963 (-484)) . T) ((-963 $) . T) ((-968 (-349 (-484))) . T) ((-968 (-484)) . T) ((-968 $) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T) ((-1133) . T)) +((-3038 (((-2 (|:| |ans| |#2|) (|:| -3137 |#2|) (|:| |sol?| (-85))) (-484) |#2| |#2| (-1089) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-583 |#2|)) (-1 (-3 (-2 (|:| -2136 |#2|) (|:| |coeff| |#2|)) #1#) |#2| |#2|)) 67 T ELT))) +(((-926 |#1| |#2|) (-10 -7 (-15 -3038 ((-2 (|:| |ans| |#2|) (|:| -3137 |#2|) (|:| |sol?| (-85))) (-484) |#2| |#2| (-1089) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-583 |#2|)) (-1 (-3 (-2 (|:| -2136 |#2|) (|:| |coeff| |#2|)) #1#) |#2| |#2|)))) (-13 (-391) (-120) (-950 (-484)) (-580 (-484))) (-13 (-1114) (-27) (-363 |#1|))) (T -926)) +((-3038 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1089)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-583 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2136 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1114) (-27) (-363 *8))) (-4 *8 (-13 (-391) (-120) (-950 *3) (-580 *3))) (-5 *3 (-484)) (-5 *2 (-2 (|:| |ans| *4) (|:| -3137 *4) (|:| |sol?| (-85)))) (-5 *1 (-926 *8 *4))))) +((-3039 (((-3 (-583 |#2|) #1="failed") (-484) |#2| |#2| |#2| (-1089) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-583 |#2|)) (-1 (-3 (-2 (|:| -2136 |#2|) (|:| |coeff| |#2|)) #1#) |#2| |#2|)) 55 T ELT))) +(((-927 |#1| |#2|) (-10 -7 (-15 -3039 ((-3 (-583 |#2|) #1="failed") (-484) |#2| |#2| |#2| (-1089) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-583 |#2|)) (-1 (-3 (-2 (|:| -2136 |#2|) (|:| |coeff| |#2|)) #1#) |#2| |#2|)))) (-13 (-391) (-120) (-950 (-484)) (-580 (-484))) (-13 (-1114) (-27) (-363 |#1|))) (T -927)) +((-3039 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1089)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-583 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2136 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1114) (-27) (-363 *8))) (-4 *8 (-13 (-391) (-120) (-950 *3) (-580 *3))) (-5 *3 (-484)) (-5 *2 (-583 *4)) (-5 *1 (-927 *8 *4))))) +((-3042 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-85)))) (|:| -3266 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-484)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-484) (-1 |#2| |#2|)) 39 T ELT)) (-3040 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-349 |#2|)) (|:| |c| (-349 |#2|)) (|:| -3093 |#2|)) "failed") (-349 |#2|) (-349 |#2|) (-1 |#2| |#2|)) 71 T ELT)) (-3041 (((-2 (|:| |ans| (-349 |#2|)) (|:| |nosol| (-85))) (-349 |#2|) (-349 |#2|)) 76 T ELT))) +(((-928 |#1| |#2|) (-10 -7 (-15 -3040 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-349 |#2|)) (|:| |c| (-349 |#2|)) (|:| -3093 |#2|)) "failed") (-349 |#2|) (-349 |#2|) (-1 |#2| |#2|))) (-15 -3041 ((-2 (|:| |ans| (-349 |#2|)) (|:| |nosol| (-85))) (-349 |#2|) (-349 |#2|))) (-15 -3042 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-85)))) (|:| -3266 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-484)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-484) (-1 |#2| |#2|)))) (-13 (-312) (-120) (-950 (-484))) (-1154 |#1|)) (T -928)) +((-3042 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1154 *6)) (-4 *6 (-13 (-312) (-120) (-950 *4))) (-5 *4 (-484)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-85)))) (|:| -3266 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-928 *6 *3)))) (-3041 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-312) (-120) (-950 (-484)))) (-4 *5 (-1154 *4)) (-5 *2 (-2 (|:| |ans| (-349 *5)) (|:| |nosol| (-85)))) (-5 *1 (-928 *4 *5)) (-5 *3 (-349 *5)))) (-3040 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1154 *5)) (-4 *5 (-13 (-312) (-120) (-950 (-484)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-349 *6)) (|:| |c| (-349 *6)) (|:| -3093 *6))) (-5 *1 (-928 *5 *6)) (-5 *3 (-349 *6))))) +((-3043 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-349 |#2|)) (|:| |h| |#2|) (|:| |c1| (-349 |#2|)) (|:| |c2| (-349 |#2|)) (|:| -3093 |#2|)) #1="failed") (-349 |#2|) (-349 |#2|) (-349 |#2|) (-1 |#2| |#2|)) 22 T ELT)) (-3044 (((-3 (-583 (-349 |#2|)) #1#) (-349 |#2|) (-349 |#2|) (-349 |#2|)) 34 T ELT))) +(((-929 |#1| |#2|) (-10 -7 (-15 -3043 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-349 |#2|)) (|:| |h| |#2|) (|:| |c1| (-349 |#2|)) (|:| |c2| (-349 |#2|)) (|:| -3093 |#2|)) #1="failed") (-349 |#2|) (-349 |#2|) (-349 |#2|) (-1 |#2| |#2|))) (-15 -3044 ((-3 (-583 (-349 |#2|)) #1#) (-349 |#2|) (-349 |#2|) (-349 |#2|)))) (-13 (-312) (-120) (-950 (-484))) (-1154 |#1|)) (T -929)) +((-3044 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-312) (-120) (-950 (-484)))) (-4 *5 (-1154 *4)) (-5 *2 (-583 (-349 *5))) (-5 *1 (-929 *4 *5)) (-5 *3 (-349 *5)))) (-3043 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1154 *5)) (-4 *5 (-13 (-312) (-120) (-950 (-484)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-349 *6)) (|:| |h| *6) (|:| |c1| (-349 *6)) (|:| |c2| (-349 *6)) (|:| -3093 *6))) (-5 *1 (-929 *5 *6)) (-5 *3 (-349 *6))))) +((-3045 (((-1 |#1|) (-583 (-2 (|:| -3401 |#1|) (|:| -1521 (-484))))) 34 T ELT)) (-3100 (((-1 |#1|) (-1009 |#1|)) 42 T ELT)) (-3046 (((-1 |#1|) (-1178 |#1|) (-1178 (-484)) (-484)) 31 T ELT))) +(((-930 |#1|) (-10 -7 (-15 -3100 ((-1 |#1|) (-1009 |#1|))) (-15 -3045 ((-1 |#1|) (-583 (-2 (|:| -3401 |#1|) (|:| -1521 (-484)))))) (-15 -3046 ((-1 |#1|) (-1178 |#1|) (-1178 (-484)) (-484)))) (-1013)) (T -930)) +((-3046 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1178 *6)) (-5 *4 (-1178 (-484))) (-5 *5 (-484)) (-4 *6 (-1013)) (-5 *2 (-1 *6)) (-5 *1 (-930 *6)))) (-3045 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3401 *4) (|:| -1521 (-484))))) (-4 *4 (-1013)) (-5 *2 (-1 *4)) (-5 *1 (-930 *4)))) (-3100 (*1 *2 *3) (-12 (-5 *3 (-1009 *4)) (-4 *4 (-1013)) (-5 *2 (-1 *4)) (-5 *1 (-930 *4))))) +((-3771 (((-694) (-283 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23 T ELT))) +(((-931 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3771 ((-694) (-283 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-312) (-1154 |#1|) (-1154 (-349 |#2|)) (-291 |#1| |#2| |#3|) (-13 (-319) (-312))) (T -931)) +((-3771 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-283 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-312)) (-4 *7 (-1154 *6)) (-4 *4 (-1154 (-349 *7))) (-4 *8 (-291 *6 *7 *4)) (-4 *9 (-13 (-319) (-312))) (-5 *2 (-694)) (-5 *1 (-931 *6 *7 *4 *8 *9))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3594 (((-1048) $) 10 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-3233 (((-1048) $) 12 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT))) +(((-932) (-13 (-995) (-10 -8 (-15 -3594 ((-1048) $)) (-15 -3233 ((-1048) $))))) (T -932)) +((-3594 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-932)))) (-3233 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-932))))) +((-3971 (((-179) $) 6 T ELT) (((-329) $) 9 T ELT))) +(((-933) (-113)) (T -933)) +NIL +(-13 (-553 (-179)) (-553 (-329))) +(((-553 (-179)) . T) ((-553 (-329)) . T)) +((-3134 (((-3 (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484)))) "failed") |#1| (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484)))) (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484))))) 32 T ELT) (((-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484)))) |#1| (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484)))) (-349 (-484))) 29 T ELT)) (-3049 (((-583 (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484))))) |#1| (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484)))) (-349 (-484))) 34 T ELT) (((-583 (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484))))) |#1| (-349 (-484))) 30 T ELT) (((-583 (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484))))) |#1| (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484))))) 33 T ELT) (((-583 (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484))))) |#1|) 28 T ELT)) (-3048 (((-583 (-349 (-484))) (-583 (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484)))))) 20 T ELT)) (-3047 (((-349 (-484)) (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484))))) 17 T ELT))) +(((-934 |#1|) (-10 -7 (-15 -3049 ((-583 (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484))))) |#1|)) (-15 -3049 ((-583 (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484))))) |#1| (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484)))))) (-15 -3049 ((-583 (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484))))) |#1| (-349 (-484)))) (-15 -3049 ((-583 (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484))))) |#1| (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484)))) (-349 (-484)))) (-15 -3134 ((-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484)))) |#1| (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484)))) (-349 (-484)))) (-15 -3134 ((-3 (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484)))) "failed") |#1| (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484)))) (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484)))))) (-15 -3047 ((-349 (-484)) (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484)))))) (-15 -3048 ((-583 (-349 (-484))) (-583 (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484)))))))) (-1154 (-484))) (T -934)) +((-3048 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484)))))) (-5 *2 (-583 (-349 (-484)))) (-5 *1 (-934 *4)) (-4 *4 (-1154 (-484))))) (-3047 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484))))) (-5 *2 (-349 (-484))) (-5 *1 (-934 *4)) (-4 *4 (-1154 (-484))))) (-3134 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484))))) (-5 *1 (-934 *3)) (-4 *3 (-1154 (-484))))) (-3134 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484))))) (-5 *4 (-349 (-484))) (-5 *1 (-934 *3)) (-4 *3 (-1154 (-484))))) (-3049 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-349 (-484))) (-5 *2 (-583 (-2 (|:| -3138 *5) (|:| -3137 *5)))) (-5 *1 (-934 *3)) (-4 *3 (-1154 (-484))) (-5 *4 (-2 (|:| -3138 *5) (|:| -3137 *5))))) (-3049 (*1 *2 *3 *4) (-12 (-5 *2 (-583 (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484)))))) (-5 *1 (-934 *3)) (-4 *3 (-1154 (-484))) (-5 *4 (-349 (-484))))) (-3049 (*1 *2 *3 *4) (-12 (-5 *2 (-583 (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484)))))) (-5 *1 (-934 *3)) (-4 *3 (-1154 (-484))) (-5 *4 (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484))))))) (-3049 (*1 *2 *3) (-12 (-5 *2 (-583 (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484)))))) (-5 *1 (-934 *3)) (-4 *3 (-1154 (-484)))))) +((-3134 (((-3 (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484)))) "failed") |#1| (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484)))) (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484))))) 35 T ELT) (((-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484)))) |#1| (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484)))) (-349 (-484))) 32 T ELT)) (-3049 (((-583 (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484))))) |#1| (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484)))) (-349 (-484))) 30 T ELT) (((-583 (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484))))) |#1| (-349 (-484))) 26 T ELT) (((-583 (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484))))) |#1| (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484))))) 28 T ELT) (((-583 (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484))))) |#1|) 24 T ELT))) +(((-935 |#1|) (-10 -7 (-15 -3049 ((-583 (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484))))) |#1|)) (-15 -3049 ((-583 (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484))))) |#1| (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484)))))) (-15 -3049 ((-583 (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484))))) |#1| (-349 (-484)))) (-15 -3049 ((-583 (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484))))) |#1| (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484)))) (-349 (-484)))) (-15 -3134 ((-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484)))) |#1| (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484)))) (-349 (-484)))) (-15 -3134 ((-3 (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484)))) "failed") |#1| (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484)))) (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484))))))) (-1154 (-349 (-484)))) (T -935)) +((-3134 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484))))) (-5 *1 (-935 *3)) (-4 *3 (-1154 (-349 (-484)))))) (-3134 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484))))) (-5 *4 (-349 (-484))) (-5 *1 (-935 *3)) (-4 *3 (-1154 *4)))) (-3049 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-349 (-484))) (-5 *2 (-583 (-2 (|:| -3138 *5) (|:| -3137 *5)))) (-5 *1 (-935 *3)) (-4 *3 (-1154 *5)) (-5 *4 (-2 (|:| -3138 *5) (|:| -3137 *5))))) (-3049 (*1 *2 *3 *4) (-12 (-5 *4 (-349 (-484))) (-5 *2 (-583 (-2 (|:| -3138 *4) (|:| -3137 *4)))) (-5 *1 (-935 *3)) (-4 *3 (-1154 *4)))) (-3049 (*1 *2 *3 *4) (-12 (-5 *2 (-583 (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484)))))) (-5 *1 (-935 *3)) (-4 *3 (-1154 (-349 (-484)))) (-5 *4 (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484))))))) (-3049 (*1 *2 *3) (-12 (-5 *2 (-583 (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484)))))) (-5 *1 (-935 *3)) (-4 *3 (-1154 (-349 (-484))))))) +((-3572 (((-583 (-329)) (-857 (-484)) (-329)) 28 T ELT) (((-583 (-329)) (-857 (-349 (-484))) (-329)) 27 T ELT)) (-3968 (((-583 (-583 (-329))) (-583 (-857 (-484))) (-583 (-1089)) (-329)) 37 T ELT))) +(((-936) (-10 -7 (-15 -3572 ((-583 (-329)) (-857 (-349 (-484))) (-329))) (-15 -3572 ((-583 (-329)) (-857 (-484)) (-329))) (-15 -3968 ((-583 (-583 (-329))) (-583 (-857 (-484))) (-583 (-1089)) (-329))))) (T -936)) +((-3968 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 (-857 (-484)))) (-5 *4 (-583 (-1089))) (-5 *2 (-583 (-583 (-329)))) (-5 *1 (-936)) (-5 *5 (-329)))) (-3572 (*1 *2 *3 *4) (-12 (-5 *3 (-857 (-484))) (-5 *2 (-583 (-329))) (-5 *1 (-936)) (-5 *4 (-329)))) (-3572 (*1 *2 *3 *4) (-12 (-5 *3 (-857 (-349 (-484)))) (-5 *2 (-583 (-329))) (-5 *1 (-936)) (-5 *4 (-329))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) 75 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3774 (($ $) NIL T ELT)) (-3970 (((-347 $) $) NIL T ELT)) (-3037 (($ $) NIL T ELT) (($ $ (-830)) NIL T ELT) (($ (-349 (-484))) NIL T ELT) (($ (-484)) NIL T ELT)) (-1607 (((-85) $ $) NIL T ELT)) (-3622 (((-484) $) 70 T ELT)) (-3723 (($) NIL T CONST)) (-3183 (((-3 $ #1#) (-1084 $) (-830) (-772)) NIL T ELT) (((-3 $ #1#) (-1084 $) (-830)) 55 T ELT)) (-3157 (((-3 (-349 (-484)) #1#) $) NIL (|has| (-349 (-484)) (-950 (-349 (-484)))) ELT) (((-3 (-349 (-484)) #1#) $) NIL T ELT) (((-3 |#1| #1#) $) 115 T ELT) (((-3 (-484) #1#) $) NIL (OR (|has| (-349 (-484)) (-950 (-484))) (|has| |#1| (-950 (-484)))) ELT)) (-3156 (((-349 (-484)) $) 17 (|has| (-349 (-484)) (-950 (-349 (-484)))) ELT) (((-349 (-484)) $) 17 T ELT) ((|#1| $) 116 T ELT) (((-484) $) NIL (OR (|has| (-349 (-484)) (-950 (-484))) (|has| |#1| (-950 (-484)))) ELT)) (-3033 (($ $ (-772)) 47 T ELT)) (-3032 (($ $ (-772)) 48 T ELT)) (-2564 (($ $ $) NIL T ELT)) (-3182 (((-349 (-484)) $ $) 21 T ELT)) (-3466 (((-3 $ #1#) $) 88 T ELT)) (-2563 (($ $ $) NIL T ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-3722 (((-85) $) NIL T ELT)) (-3186 (((-85) $) 66 T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-3011 (($ $ (-484)) NIL T ELT)) (-3187 (((-85) $) 69 T ELT)) (-1604 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2531 (($ $ $) NIL T ELT)) (-2857 (($ $ $) NIL T ELT)) (-3034 (((-3 (-1084 $) #1#) $) 83 T ELT)) (-3036 (((-3 (-772) #1#) $) 82 T ELT)) (-3035 (((-3 (-1084 $) #1#) $) 80 T ELT)) (-3050 (((-3 (-974 $ (-1084 $)) #1#) $) 78 T ELT)) (-1890 (($ (-583 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2484 (($ $) 89 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3144 (($ (-583 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3731 (((-347 $) $) NIL T ELT)) (-1605 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT)) (-3465 (((-3 $ #1#) $ $) NIL T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-1606 (((-694) $) NIL T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL T ELT)) (-3945 (((-772) $) 87 T ELT) (($ (-484)) NIL T ELT) (($ (-349 (-484))) NIL T ELT) (($ $) 63 T ELT) (($ (-349 (-484))) NIL T ELT) (($ (-484)) NIL T ELT) (($ (-349 (-484))) NIL T ELT) (($ |#1|) 118 T ELT)) (-3126 (((-694)) NIL T CONST)) (-1264 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3769 (((-349 (-484)) $ $) 27 T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-3184 (((-583 $) (-1084 $)) 61 T ELT) (((-583 $) (-1084 (-349 (-484)))) NIL T ELT) (((-583 $) (-1084 (-484))) NIL T ELT) (((-583 $) (-857 $)) NIL T ELT) (((-583 $) (-857 (-349 (-484)))) NIL T ELT) (((-583 $) (-857 (-484))) NIL T ELT)) (-3051 (($ (-974 $ (-1084 $)) (-772)) 46 T ELT)) (-3382 (($ $) 22 T ELT)) (-2660 (($) 32 T CONST)) (-2666 (($) 39 T CONST)) (-2566 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 76 T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) 24 T ELT)) (-3948 (($ $ $) 37 T ELT)) (-3836 (($ $) 38 T ELT) (($ $ $) 74 T ELT)) (-3838 (($ $ $) 111 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL T ELT) (($ $ (-349 (-484))) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 71 T ELT) (($ $ $) 103 T ELT) (($ (-349 (-484)) $) NIL T ELT) (($ $ (-349 (-484))) NIL T ELT) (($ (-484) $) 71 T ELT) (($ $ (-484)) NIL T ELT) (($ (-349 (-484)) $) NIL T ELT) (($ $ (-349 (-484))) NIL T ELT) (($ |#1| $) 101 T ELT) (($ $ |#1|) NIL T ELT))) +(((-937 |#1|) (-13 (-925) (-354 |#1|) (-38 |#1|) (-10 -8 (-15 -3051 ($ (-974 $ (-1084 $)) (-772))) (-15 -3050 ((-3 (-974 $ (-1084 $)) "failed") $)) (-15 -3182 ((-349 (-484)) $ $)))) (-13 (-755) (-312) (-933))) (T -937)) +((-3051 (*1 *1 *2 *3) (-12 (-5 *2 (-974 (-937 *4) (-1084 (-937 *4)))) (-5 *3 (-772)) (-5 *1 (-937 *4)) (-4 *4 (-13 (-755) (-312) (-933))))) (-3050 (*1 *2 *1) (|partial| -12 (-5 *2 (-974 (-937 *3) (-1084 (-937 *3)))) (-5 *1 (-937 *3)) (-4 *3 (-13 (-755) (-312) (-933))))) (-3182 (*1 *2 *1 *1) (-12 (-5 *2 (-349 (-484))) (-5 *1 (-937 *3)) (-4 *3 (-13 (-755) (-312) (-933)))))) +((-3052 (((-2 (|:| -3266 |#2|) (|:| -2513 (-583 |#1|))) |#2| (-583 |#1|)) 32 T ELT) ((|#2| |#2| |#1|) 27 T ELT))) +(((-938 |#1| |#2|) (-10 -7 (-15 -3052 (|#2| |#2| |#1|)) (-15 -3052 ((-2 (|:| -3266 |#2|) (|:| -2513 (-583 |#1|))) |#2| (-583 |#1|)))) (-312) (-600 |#1|)) (T -938)) +((-3052 (*1 *2 *3 *4) (-12 (-4 *5 (-312)) (-5 *2 (-2 (|:| -3266 *3) (|:| -2513 (-583 *5)))) (-5 *1 (-938 *5 *3)) (-5 *4 (-583 *5)) (-4 *3 (-600 *5)))) (-3052 (*1 *2 *2 *3) (-12 (-4 *3 (-312)) (-5 *1 (-938 *3 *2)) (-4 *2 (-600 *3))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3053 ((|#1| $ |#1|) 12 T ELT)) (-3055 (($ |#1|) 10 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3054 ((|#1| $) 11 T ELT)) (-3945 (((-772) $) 17 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 9 T ELT))) +(((-939 |#1|) (-13 (-1013) (-10 -8 (-15 -3055 ($ |#1|)) (-15 -3054 (|#1| $)) (-15 -3053 (|#1| $ |#1|)) (-15 -3056 ((-85) $ $)))) (-1128)) (T -939)) +((-3056 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-939 *3)) (-4 *3 (-1128)))) (-3055 (*1 *1 *2) (-12 (-5 *1 (-939 *2)) (-4 *2 (-1128)))) (-3054 (*1 *2 *1) (-12 (-5 *1 (-939 *2)) (-4 *2 (-1128)))) (-3053 (*1 *2 *1 *2) (-12 (-5 *1 (-939 *2)) (-4 *2 (-1128))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3680 (((-583 (-2 (|:| -3860 $) (|:| -1701 (-583 |#4|)))) (-583 |#4|)) NIL T ELT)) (-3681 (((-583 $) (-583 |#4|)) 114 T ELT) (((-583 $) (-583 |#4|) (-85)) 115 T ELT) (((-583 $) (-583 |#4|) (-85) (-85)) 113 T ELT) (((-583 $) (-583 |#4|) (-85) (-85) (-85) (-85)) 116 T ELT)) (-3081 (((-583 |#3|) $) NIL T ELT)) (-2908 (((-85) $) NIL T ELT)) (-2899 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-3692 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3687 ((|#4| |#4| $) NIL T ELT)) (-3774 (((-583 (-2 (|:| |val| |#4|) (|:| -1599 $))) |#4| $) 108 T ELT)) (-2909 (((-2 (|:| |under| $) (|:| -3130 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3709 (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3994)) ELT) (((-3 |#4| #1="failed") $ |#3|) 63 T ELT)) (-3723 (($) NIL T CONST)) (-2904 (((-85) $) 29 (|has| |#1| (-495)) ELT)) (-2906 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-2905 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-2907 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-3688 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-2900 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-495)) ELT)) (-2901 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-495)) ELT)) (-3157 (((-3 $ #1#) (-583 |#4|)) NIL T ELT)) (-3156 (($ (-583 |#4|)) NIL T ELT)) (-3798 (((-3 $ #1#) $) 45 T ELT)) (-3684 ((|#4| |#4| $) 66 T ELT)) (-1352 (($ $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#4| (-1013))) ELT)) (-3405 (($ |#4| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#4| (-1013))) ELT) (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3994)) ELT)) (-2902 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 81 (|has| |#1| (-495)) ELT)) (-3693 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3682 ((|#4| |#4| $) NIL T ELT)) (-3841 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -3994)) (|has| |#4| (-1013))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -3994)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -3994)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3695 (((-2 (|:| -3860 (-583 |#4|)) (|:| -1701 (-583 |#4|))) $) NIL T ELT)) (-3197 (((-85) |#4| $) NIL T ELT)) (-3195 (((-85) |#4| $) NIL T ELT)) (-3198 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3437 (((-2 (|:| |val| (-583 |#4|)) (|:| |towers| (-583 $))) (-583 |#4|) (-85) (-85)) 129 T ELT)) (-2889 (((-583 |#4|) $) 18 (|has| $ (-6 -3994)) ELT)) (-3694 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3180 ((|#3| $) 38 T ELT)) (-2608 (((-583 |#4|) $) 19 (|has| $ (-6 -3994)) ELT)) (-3245 (((-85) |#4| $) 27 (-12 (|has| $ (-6 -3994)) (|has| |#4| (-1013))) ELT)) (-1948 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#4| |#4|) $) 23 T ELT)) (-2914 (((-583 |#3|) $) NIL T ELT)) (-2913 (((-85) |#3| $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3191 (((-3 |#4| (-583 $)) |#4| |#4| $) NIL T ELT)) (-3190 (((-583 (-2 (|:| |val| |#4|) (|:| -1599 $))) |#4| |#4| $) 106 T ELT)) (-3797 (((-3 |#4| #1#) $) 42 T ELT)) (-3192 (((-583 $) |#4| $) 89 T ELT)) (-3194 (((-3 (-85) (-583 $)) |#4| $) NIL T ELT)) (-3193 (((-583 (-2 (|:| |val| (-85)) (|:| -1599 $))) |#4| $) 99 T ELT) (((-85) |#4| $) 61 T ELT)) (-3238 (((-583 $) |#4| $) 111 T ELT) (((-583 $) (-583 |#4|) $) NIL T ELT) (((-583 $) (-583 |#4|) (-583 $)) 112 T ELT) (((-583 $) |#4| (-583 $)) NIL T ELT)) (-3438 (((-583 $) (-583 |#4|) (-85) (-85) (-85)) 124 T ELT)) (-3439 (($ |#4| $) 78 T ELT) (($ (-583 |#4|) $) 79 T ELT) (((-583 $) |#4| $ (-85) (-85) (-85) (-85) (-85)) 75 T ELT)) (-3696 (((-583 |#4|) $) NIL T ELT)) (-3690 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3685 ((|#4| |#4| $) NIL T ELT)) (-3698 (((-85) $ $) NIL T ELT)) (-2903 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-495)) ELT)) (-3691 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3686 ((|#4| |#4| $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3800 (((-3 |#4| #1#) $) 40 T ELT)) (-1353 (((-3 |#4| #1#) (-1 (-85) |#4|) $) NIL T ELT)) (-3678 (((-3 $ #1#) $ |#4|) 56 T ELT)) (-3768 (($ $ |#4|) NIL T ELT) (((-583 $) |#4| $) 91 T ELT) (((-583 $) |#4| (-583 $)) NIL T ELT) (((-583 $) (-583 |#4|) $) NIL T ELT) (((-583 $) (-583 |#4|) (-583 $)) 85 T ELT)) (-1946 (((-85) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3767 (($ $ (-583 |#4|) (-583 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-249 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-583 (-249 |#4|))) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT)) (-1221 (((-85) $ $) NIL T ELT)) (-3402 (((-85) $) 17 T ELT)) (-3564 (($) 14 T ELT)) (-3947 (((-694) $) NIL T ELT)) (-1945 (((-694) |#4| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#4| (-1013))) ELT) (((-694) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3399 (($ $) 13 T ELT)) (-3971 (((-473) $) NIL (|has| |#4| (-553 (-473))) ELT)) (-3529 (($ (-583 |#4|)) 22 T ELT)) (-2910 (($ $ |#3|) 49 T ELT)) (-2912 (($ $ |#3|) 51 T ELT)) (-3683 (($ $) NIL T ELT)) (-2911 (($ $ |#3|) NIL T ELT)) (-3945 (((-772) $) 35 T ELT) (((-583 |#4|) $) 46 T ELT)) (-3677 (((-694) $) NIL (|has| |#3| (-319)) ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3697 (((-3 (-2 (|:| |bas| $) (|:| -3323 (-583 |#4|))) #1#) (-583 |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3323 (-583 |#4|))) #1#) (-583 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3689 (((-85) $ (-1 (-85) |#4| (-583 |#4|))) NIL T ELT)) (-3189 (((-583 $) |#4| $) 88 T ELT) (((-583 $) |#4| (-583 $)) NIL T ELT) (((-583 $) (-583 |#4|) $) NIL T ELT) (((-583 $) (-583 |#4|) (-583 $)) NIL T ELT)) (-1947 (((-85) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3679 (((-583 |#3|) $) NIL T ELT)) (-3196 (((-85) |#4| $) NIL T ELT)) (-3932 (((-85) |#3| $) 62 T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3956 (((-694) $) NIL (|has| $ (-6 -3994)) ELT))) +(((-940 |#1| |#2| |#3| |#4|) (-13 (-983 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3439 ((-583 $) |#4| $ (-85) (-85) (-85) (-85) (-85))) (-15 -3681 ((-583 $) (-583 |#4|) (-85) (-85))) (-15 -3681 ((-583 $) (-583 |#4|) (-85) (-85) (-85) (-85))) (-15 -3438 ((-583 $) (-583 |#4|) (-85) (-85) (-85))) (-15 -3437 ((-2 (|:| |val| (-583 |#4|)) (|:| |towers| (-583 $))) (-583 |#4|) (-85) (-85))))) (-391) (-717) (-756) (-977 |#1| |#2| |#3|)) (T -940)) +((-3439 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-583 (-940 *5 *6 *7 *3))) (-5 *1 (-940 *5 *6 *7 *3)) (-4 *3 (-977 *5 *6 *7)))) (-3681 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-85)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-583 (-940 *5 *6 *7 *8))) (-5 *1 (-940 *5 *6 *7 *8)))) (-3681 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-85)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-583 (-940 *5 *6 *7 *8))) (-5 *1 (-940 *5 *6 *7 *8)))) (-3438 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-85)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-583 (-940 *5 *6 *7 *8))) (-5 *1 (-940 *5 *6 *7 *8)))) (-3437 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *8 (-977 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-583 *8)) (|:| |towers| (-583 (-940 *5 *6 *7 *8))))) (-5 *1 (-940 *5 *6 *7 *8)) (-5 *3 (-583 *8))))) +((-3057 (((-583 (-2 (|:| |radval| (-265 (-484))) (|:| |radmult| (-484)) (|:| |radvect| (-583 (-630 (-265 (-484))))))) (-630 (-349 (-857 (-484))))) 67 T ELT)) (-3058 (((-583 (-630 (-265 (-484)))) (-265 (-484)) (-630 (-349 (-857 (-484))))) 52 T ELT)) (-3059 (((-583 (-265 (-484))) (-630 (-349 (-857 (-484))))) 45 T ELT)) (-3063 (((-583 (-630 (-265 (-484)))) (-630 (-349 (-857 (-484))))) 85 T ELT)) (-3061 (((-630 (-265 (-484))) (-630 (-265 (-484)))) 38 T ELT)) (-3062 (((-583 (-630 (-265 (-484)))) (-583 (-630 (-265 (-484))))) 74 T ELT)) (-3060 (((-3 (-630 (-265 (-484))) "failed") (-630 (-349 (-857 (-484))))) 82 T ELT))) +(((-941) (-10 -7 (-15 -3057 ((-583 (-2 (|:| |radval| (-265 (-484))) (|:| |radmult| (-484)) (|:| |radvect| (-583 (-630 (-265 (-484))))))) (-630 (-349 (-857 (-484)))))) (-15 -3058 ((-583 (-630 (-265 (-484)))) (-265 (-484)) (-630 (-349 (-857 (-484)))))) (-15 -3059 ((-583 (-265 (-484))) (-630 (-349 (-857 (-484)))))) (-15 -3060 ((-3 (-630 (-265 (-484))) "failed") (-630 (-349 (-857 (-484)))))) (-15 -3061 ((-630 (-265 (-484))) (-630 (-265 (-484))))) (-15 -3062 ((-583 (-630 (-265 (-484)))) (-583 (-630 (-265 (-484)))))) (-15 -3063 ((-583 (-630 (-265 (-484)))) (-630 (-349 (-857 (-484)))))))) (T -941)) +((-3063 (*1 *2 *3) (-12 (-5 *3 (-630 (-349 (-857 (-484))))) (-5 *2 (-583 (-630 (-265 (-484))))) (-5 *1 (-941)))) (-3062 (*1 *2 *2) (-12 (-5 *2 (-583 (-630 (-265 (-484))))) (-5 *1 (-941)))) (-3061 (*1 *2 *2) (-12 (-5 *2 (-630 (-265 (-484)))) (-5 *1 (-941)))) (-3060 (*1 *2 *3) (|partial| -12 (-5 *3 (-630 (-349 (-857 (-484))))) (-5 *2 (-630 (-265 (-484)))) (-5 *1 (-941)))) (-3059 (*1 *2 *3) (-12 (-5 *3 (-630 (-349 (-857 (-484))))) (-5 *2 (-583 (-265 (-484)))) (-5 *1 (-941)))) (-3058 (*1 *2 *3 *4) (-12 (-5 *4 (-630 (-349 (-857 (-484))))) (-5 *2 (-583 (-630 (-265 (-484))))) (-5 *1 (-941)) (-5 *3 (-265 (-484))))) (-3057 (*1 *2 *3) (-12 (-5 *3 (-630 (-349 (-857 (-484))))) (-5 *2 (-583 (-2 (|:| |radval| (-265 (-484))) (|:| |radmult| (-484)) (|:| |radvect| (-583 (-630 (-265 (-484)))))))) (-5 *1 (-941))))) +((-3067 (((-583 (-630 |#1|)) (-583 (-630 |#1|))) 69 T ELT) (((-630 |#1|) (-630 |#1|)) 68 T ELT) (((-583 (-630 |#1|)) (-583 (-630 |#1|)) (-583 (-630 |#1|))) 67 T ELT) (((-630 |#1|) (-630 |#1|) (-630 |#1|)) 64 T ELT)) (-3066 (((-583 (-630 |#1|)) (-583 (-630 |#1|)) (-830)) 62 T ELT) (((-630 |#1|) (-630 |#1|) (-830)) 61 T ELT)) (-3068 (((-583 (-630 (-484))) (-583 (-583 (-484)))) 80 T ELT) (((-583 (-630 (-484))) (-583 (-813 (-484))) (-484)) 79 T ELT) (((-630 (-484)) (-583 (-484))) 76 T ELT) (((-630 (-484)) (-813 (-484)) (-484)) 74 T ELT)) (-3065 (((-630 (-857 |#1|)) (-694)) 94 T ELT)) (-3064 (((-583 (-630 |#1|)) (-583 (-630 |#1|)) (-830)) 48 (|has| |#1| (-6 (-3996 #1="*"))) ELT) (((-630 |#1|) (-630 |#1|) (-830)) 46 (|has| |#1| (-6 (-3996 #1#))) ELT))) +(((-942 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-3996 #1="*"))) (-15 -3064 ((-630 |#1|) (-630 |#1|) (-830))) |%noBranch|) (IF (|has| |#1| (-6 (-3996 #1#))) (-15 -3064 ((-583 (-630 |#1|)) (-583 (-630 |#1|)) (-830))) |%noBranch|) (-15 -3065 ((-630 (-857 |#1|)) (-694))) (-15 -3066 ((-630 |#1|) (-630 |#1|) (-830))) (-15 -3066 ((-583 (-630 |#1|)) (-583 (-630 |#1|)) (-830))) (-15 -3067 ((-630 |#1|) (-630 |#1|) (-630 |#1|))) (-15 -3067 ((-583 (-630 |#1|)) (-583 (-630 |#1|)) (-583 (-630 |#1|)))) (-15 -3067 ((-630 |#1|) (-630 |#1|))) (-15 -3067 ((-583 (-630 |#1|)) (-583 (-630 |#1|)))) (-15 -3068 ((-630 (-484)) (-813 (-484)) (-484))) (-15 -3068 ((-630 (-484)) (-583 (-484)))) (-15 -3068 ((-583 (-630 (-484))) (-583 (-813 (-484))) (-484))) (-15 -3068 ((-583 (-630 (-484))) (-583 (-583 (-484)))))) (-961)) (T -942)) +((-3068 (*1 *2 *3) (-12 (-5 *3 (-583 (-583 (-484)))) (-5 *2 (-583 (-630 (-484)))) (-5 *1 (-942 *4)) (-4 *4 (-961)))) (-3068 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-813 (-484)))) (-5 *4 (-484)) (-5 *2 (-583 (-630 *4))) (-5 *1 (-942 *5)) (-4 *5 (-961)))) (-3068 (*1 *2 *3) (-12 (-5 *3 (-583 (-484))) (-5 *2 (-630 (-484))) (-5 *1 (-942 *4)) (-4 *4 (-961)))) (-3068 (*1 *2 *3 *4) (-12 (-5 *3 (-813 (-484))) (-5 *4 (-484)) (-5 *2 (-630 *4)) (-5 *1 (-942 *5)) (-4 *5 (-961)))) (-3067 (*1 *2 *2) (-12 (-5 *2 (-583 (-630 *3))) (-4 *3 (-961)) (-5 *1 (-942 *3)))) (-3067 (*1 *2 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-961)) (-5 *1 (-942 *3)))) (-3067 (*1 *2 *2 *2) (-12 (-5 *2 (-583 (-630 *3))) (-4 *3 (-961)) (-5 *1 (-942 *3)))) (-3067 (*1 *2 *2 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-961)) (-5 *1 (-942 *3)))) (-3066 (*1 *2 *2 *3) (-12 (-5 *2 (-583 (-630 *4))) (-5 *3 (-830)) (-4 *4 (-961)) (-5 *1 (-942 *4)))) (-3066 (*1 *2 *2 *3) (-12 (-5 *2 (-630 *4)) (-5 *3 (-830)) (-4 *4 (-961)) (-5 *1 (-942 *4)))) (-3065 (*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-630 (-857 *4))) (-5 *1 (-942 *4)) (-4 *4 (-961)))) (-3064 (*1 *2 *2 *3) (-12 (-5 *2 (-583 (-630 *4))) (-5 *3 (-830)) (|has| *4 (-6 (-3996 "*"))) (-4 *4 (-961)) (-5 *1 (-942 *4)))) (-3064 (*1 *2 *2 *3) (-12 (-5 *2 (-630 *4)) (-5 *3 (-830)) (|has| *4 (-6 (-3996 "*"))) (-4 *4 (-961)) (-5 *1 (-942 *4))))) +((-3072 (((-630 |#1|) (-583 (-630 |#1|)) (-1178 |#1|)) 69 (|has| |#1| (-258)) ELT)) (-3417 (((-583 (-583 (-630 |#1|))) (-583 (-630 |#1|)) (-1178 (-1178 |#1|))) 107 (|has| |#1| (-312)) ELT) (((-583 (-583 (-630 |#1|))) (-583 (-630 |#1|)) (-1178 |#1|)) 104 (|has| |#1| (-312)) ELT)) (-3076 (((-1178 |#1|) (-583 (-1178 |#1|)) (-484)) 113 (-12 (|has| |#1| (-312)) (|has| |#1| (-319))) ELT)) (-3075 (((-583 (-583 (-630 |#1|))) (-583 (-630 |#1|)) (-830)) 119 (-12 (|has| |#1| (-312)) (|has| |#1| (-319))) ELT) (((-583 (-583 (-630 |#1|))) (-583 (-630 |#1|)) (-85)) 118 (-12 (|has| |#1| (-312)) (|has| |#1| (-319))) ELT) (((-583 (-583 (-630 |#1|))) (-583 (-630 |#1|))) 117 (-12 (|has| |#1| (-312)) (|has| |#1| (-319))) ELT) (((-583 (-583 (-630 |#1|))) (-583 (-630 |#1|)) (-85) (-484) (-484)) 116 (-12 (|has| |#1| (-312)) (|has| |#1| (-319))) ELT)) (-3074 (((-85) (-583 (-630 |#1|))) 101 (|has| |#1| (-312)) ELT) (((-85) (-583 (-630 |#1|)) (-484)) 100 (|has| |#1| (-312)) ELT)) (-3071 (((-1178 (-1178 |#1|)) (-583 (-630 |#1|)) (-1178 |#1|)) 66 (|has| |#1| (-258)) ELT)) (-3070 (((-630 |#1|) (-583 (-630 |#1|)) (-630 |#1|)) 46 T ELT)) (-3069 (((-630 |#1|) (-1178 (-1178 |#1|))) 39 T ELT)) (-3073 (((-630 |#1|) (-583 (-630 |#1|)) (-583 (-630 |#1|)) (-484)) 93 (|has| |#1| (-312)) ELT) (((-630 |#1|) (-583 (-630 |#1|)) (-583 (-630 |#1|))) 92 (|has| |#1| (-312)) ELT) (((-630 |#1|) (-583 (-630 |#1|)) (-583 (-630 |#1|)) (-85) (-484)) 91 (|has| |#1| (-312)) ELT))) +(((-943 |#1|) (-10 -7 (-15 -3069 ((-630 |#1|) (-1178 (-1178 |#1|)))) (-15 -3070 ((-630 |#1|) (-583 (-630 |#1|)) (-630 |#1|))) (IF (|has| |#1| (-258)) (PROGN (-15 -3071 ((-1178 (-1178 |#1|)) (-583 (-630 |#1|)) (-1178 |#1|))) (-15 -3072 ((-630 |#1|) (-583 (-630 |#1|)) (-1178 |#1|)))) |%noBranch|) (IF (|has| |#1| (-312)) (PROGN (-15 -3073 ((-630 |#1|) (-583 (-630 |#1|)) (-583 (-630 |#1|)) (-85) (-484))) (-15 -3073 ((-630 |#1|) (-583 (-630 |#1|)) (-583 (-630 |#1|)))) (-15 -3073 ((-630 |#1|) (-583 (-630 |#1|)) (-583 (-630 |#1|)) (-484))) (-15 -3074 ((-85) (-583 (-630 |#1|)) (-484))) (-15 -3074 ((-85) (-583 (-630 |#1|)))) (-15 -3417 ((-583 (-583 (-630 |#1|))) (-583 (-630 |#1|)) (-1178 |#1|))) (-15 -3417 ((-583 (-583 (-630 |#1|))) (-583 (-630 |#1|)) (-1178 (-1178 |#1|))))) |%noBranch|) (IF (|has| |#1| (-319)) (IF (|has| |#1| (-312)) (PROGN (-15 -3075 ((-583 (-583 (-630 |#1|))) (-583 (-630 |#1|)) (-85) (-484) (-484))) (-15 -3075 ((-583 (-583 (-630 |#1|))) (-583 (-630 |#1|)))) (-15 -3075 ((-583 (-583 (-630 |#1|))) (-583 (-630 |#1|)) (-85))) (-15 -3075 ((-583 (-583 (-630 |#1|))) (-583 (-630 |#1|)) (-830))) (-15 -3076 ((-1178 |#1|) (-583 (-1178 |#1|)) (-484)))) |%noBranch|) |%noBranch|)) (-961)) (T -943)) +((-3076 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-1178 *5))) (-5 *4 (-484)) (-5 *2 (-1178 *5)) (-5 *1 (-943 *5)) (-4 *5 (-312)) (-4 *5 (-319)) (-4 *5 (-961)))) (-3075 (*1 *2 *3 *4) (-12 (-5 *4 (-830)) (-4 *5 (-312)) (-4 *5 (-319)) (-4 *5 (-961)) (-5 *2 (-583 (-583 (-630 *5)))) (-5 *1 (-943 *5)) (-5 *3 (-583 (-630 *5))))) (-3075 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-312)) (-4 *5 (-319)) (-4 *5 (-961)) (-5 *2 (-583 (-583 (-630 *5)))) (-5 *1 (-943 *5)) (-5 *3 (-583 (-630 *5))))) (-3075 (*1 *2 *3) (-12 (-4 *4 (-312)) (-4 *4 (-319)) (-4 *4 (-961)) (-5 *2 (-583 (-583 (-630 *4)))) (-5 *1 (-943 *4)) (-5 *3 (-583 (-630 *4))))) (-3075 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-85)) (-5 *5 (-484)) (-4 *6 (-312)) (-4 *6 (-319)) (-4 *6 (-961)) (-5 *2 (-583 (-583 (-630 *6)))) (-5 *1 (-943 *6)) (-5 *3 (-583 (-630 *6))))) (-3417 (*1 *2 *3 *4) (-12 (-5 *4 (-1178 (-1178 *5))) (-4 *5 (-312)) (-4 *5 (-961)) (-5 *2 (-583 (-583 (-630 *5)))) (-5 *1 (-943 *5)) (-5 *3 (-583 (-630 *5))))) (-3417 (*1 *2 *3 *4) (-12 (-5 *4 (-1178 *5)) (-4 *5 (-312)) (-4 *5 (-961)) (-5 *2 (-583 (-583 (-630 *5)))) (-5 *1 (-943 *5)) (-5 *3 (-583 (-630 *5))))) (-3074 (*1 *2 *3) (-12 (-5 *3 (-583 (-630 *4))) (-4 *4 (-312)) (-4 *4 (-961)) (-5 *2 (-85)) (-5 *1 (-943 *4)))) (-3074 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-630 *5))) (-5 *4 (-484)) (-4 *5 (-312)) (-4 *5 (-961)) (-5 *2 (-85)) (-5 *1 (-943 *5)))) (-3073 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-583 (-630 *5))) (-5 *4 (-484)) (-5 *2 (-630 *5)) (-5 *1 (-943 *5)) (-4 *5 (-312)) (-4 *5 (-961)))) (-3073 (*1 *2 *3 *3) (-12 (-5 *3 (-583 (-630 *4))) (-5 *2 (-630 *4)) (-5 *1 (-943 *4)) (-4 *4 (-312)) (-4 *4 (-961)))) (-3073 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-583 (-630 *6))) (-5 *4 (-85)) (-5 *5 (-484)) (-5 *2 (-630 *6)) (-5 *1 (-943 *6)) (-4 *6 (-312)) (-4 *6 (-961)))) (-3072 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-630 *5))) (-5 *4 (-1178 *5)) (-4 *5 (-258)) (-4 *5 (-961)) (-5 *2 (-630 *5)) (-5 *1 (-943 *5)))) (-3071 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-630 *5))) (-4 *5 (-258)) (-4 *5 (-961)) (-5 *2 (-1178 (-1178 *5))) (-5 *1 (-943 *5)) (-5 *4 (-1178 *5)))) (-3070 (*1 *2 *3 *2) (-12 (-5 *3 (-583 (-630 *4))) (-5 *2 (-630 *4)) (-4 *4 (-961)) (-5 *1 (-943 *4)))) (-3069 (*1 *2 *3) (-12 (-5 *3 (-1178 (-1178 *4))) (-4 *4 (-961)) (-5 *2 (-630 *4)) (-5 *1 (-943 *4))))) +((-3077 ((|#1| (-830) |#1|) 18 T ELT))) +(((-944 |#1|) (-10 -7 (-15 -3077 (|#1| (-830) |#1|))) (-13 (-1013) (-10 -8 (-15 -3838 ($ $ $))))) (T -944)) +((-3077 (*1 *2 *3 *2) (-12 (-5 *3 (-830)) (-5 *1 (-944 *2)) (-4 *2 (-13 (-1013) (-10 -8 (-15 -3838 ($ $ $)))))))) +((-3078 ((|#1| |#1| (-830)) 18 T ELT))) +(((-945 |#1|) (-10 -7 (-15 -3078 (|#1| |#1| (-830)))) (-13 (-1013) (-10 -8 (-15 * ($ $ $))))) (T -945)) +((-3078 (*1 *2 *2 *3) (-12 (-5 *3 (-830)) (-5 *1 (-945 *2)) (-4 *2 (-13 (-1013) (-10 -8 (-15 * ($ $ $)))))))) +((-3945 ((|#1| (-262)) 11 T ELT) (((-1184) |#1|) 9 T ELT))) +(((-946 |#1|) (-10 -7 (-15 -3945 ((-1184) |#1|)) (-15 -3945 (|#1| (-262)))) (-1128)) (T -946)) +((-3945 (*1 *2 *3) (-12 (-5 *3 (-262)) (-5 *1 (-946 *2)) (-4 *2 (-1128)))) (-3945 (*1 *2 *3) (-12 (-5 *2 (-1184)) (-5 *1 (-946 *3)) (-4 *3 (-1128))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-3841 (($ |#4|) 24 T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-3079 ((|#4| $) 26 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) 45 T ELT) (($ (-484)) NIL T ELT) (($ |#1|) NIL T ELT) (($ |#4|) 25 T ELT)) (-3126 (((-694)) 42 T CONST)) (-1264 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) 21 T CONST)) (-2666 (($) 22 T CONST)) (-3056 (((-85) $ $) 39 T ELT)) (-3836 (($ $) 30 T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) 28 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 35 T ELT) (($ $ $) 32 T ELT) (($ |#1| $) 37 T ELT) (($ $ |#1|) NIL T ELT))) +(((-947 |#1| |#2| |#3| |#4| |#5|) (-13 (-146) (-38 |#1|) (-10 -8 (-15 -3841 ($ |#4|)) (-15 -3945 ($ |#4|)) (-15 -3079 (|#4| $)))) (-312) (-717) (-756) (-861 |#1| |#2| |#3|) (-583 |#4|)) (T -947)) +((-3841 (*1 *1 *2) (-12 (-4 *3 (-312)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-947 *3 *4 *5 *2 *6)) (-4 *2 (-861 *3 *4 *5)) (-14 *6 (-583 *2)))) (-3945 (*1 *1 *2) (-12 (-4 *3 (-312)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-947 *3 *4 *5 *2 *6)) (-4 *2 (-861 *3 *4 *5)) (-14 *6 (-583 *2)))) (-3079 (*1 *2 *1) (-12 (-4 *2 (-861 *3 *4 *5)) (-5 *1 (-947 *3 *4 *5 *2 *6)) (-4 *3 (-312)) (-4 *4 (-717)) (-4 *5 (-756)) (-14 *6 (-583 *2))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3206 (((-1048) $) 11 T ELT)) (-3945 (((-772) $) 17 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT))) +(((-948) (-13 (-995) (-10 -8 (-15 -3206 ((-1048) $))))) (T -948)) +((-3206 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-948))))) +((-3156 ((|#2| $) 10 T ELT))) +(((-949 |#1| |#2|) (-10 -7 (-15 -3156 (|#2| |#1|))) (-950 |#2|) (-1128)) (T -949)) +NIL +((-3157 (((-3 |#1| "failed") $) 9 T ELT)) (-3156 ((|#1| $) 8 T ELT)) (-3945 (($ |#1|) 6 T ELT))) +(((-950 |#1|) (-113) (-1128)) (T -950)) +((-3157 (*1 *2 *1) (|partial| -12 (-4 *1 (-950 *2)) (-4 *2 (-1128)))) (-3156 (*1 *2 *1) (-12 (-4 *1 (-950 *2)) (-4 *2 (-1128))))) +(-13 (-555 |t#1|) (-10 -8 (-15 -3157 ((-3 |t#1| "failed") $)) (-15 -3156 (|t#1| $)))) +(((-555 |#1|) . T)) +((-3080 (((-583 (-583 (-249 (-349 (-857 |#2|))))) (-583 (-857 |#2|)) (-583 (-1089))) 38 T ELT))) +(((-951 |#1| |#2|) (-10 -7 (-15 -3080 ((-583 (-583 (-249 (-349 (-857 |#2|))))) (-583 (-857 |#2|)) (-583 (-1089))))) (-495) (-13 (-495) (-950 |#1|))) (T -951)) +((-3080 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-857 *6))) (-5 *4 (-583 (-1089))) (-4 *6 (-13 (-495) (-950 *5))) (-4 *5 (-495)) (-5 *2 (-583 (-583 (-249 (-349 (-857 *6)))))) (-5 *1 (-951 *5 *6))))) +((-3081 (((-583 (-1089)) (-349 (-857 |#1|))) 17 T ELT)) (-3083 (((-349 (-1084 (-349 (-857 |#1|)))) (-349 (-857 |#1|)) (-1089)) 24 T ELT)) (-3084 (((-349 (-857 |#1|)) (-349 (-1084 (-349 (-857 |#1|)))) (-1089)) 26 T ELT)) (-3082 (((-3 (-1089) "failed") (-349 (-857 |#1|))) 20 T ELT)) (-3767 (((-349 (-857 |#1|)) (-349 (-857 |#1|)) (-583 (-249 (-349 (-857 |#1|))))) 32 T ELT) (((-349 (-857 |#1|)) (-349 (-857 |#1|)) (-249 (-349 (-857 |#1|)))) 33 T ELT) (((-349 (-857 |#1|)) (-349 (-857 |#1|)) (-583 (-1089)) (-583 (-349 (-857 |#1|)))) 28 T ELT) (((-349 (-857 |#1|)) (-349 (-857 |#1|)) (-1089) (-349 (-857 |#1|))) 29 T ELT)) (-3945 (((-349 (-857 |#1|)) |#1|) 11 T ELT))) +(((-952 |#1|) (-10 -7 (-15 -3081 ((-583 (-1089)) (-349 (-857 |#1|)))) (-15 -3082 ((-3 (-1089) "failed") (-349 (-857 |#1|)))) (-15 -3083 ((-349 (-1084 (-349 (-857 |#1|)))) (-349 (-857 |#1|)) (-1089))) (-15 -3084 ((-349 (-857 |#1|)) (-349 (-1084 (-349 (-857 |#1|)))) (-1089))) (-15 -3767 ((-349 (-857 |#1|)) (-349 (-857 |#1|)) (-1089) (-349 (-857 |#1|)))) (-15 -3767 ((-349 (-857 |#1|)) (-349 (-857 |#1|)) (-583 (-1089)) (-583 (-349 (-857 |#1|))))) (-15 -3767 ((-349 (-857 |#1|)) (-349 (-857 |#1|)) (-249 (-349 (-857 |#1|))))) (-15 -3767 ((-349 (-857 |#1|)) (-349 (-857 |#1|)) (-583 (-249 (-349 (-857 |#1|)))))) (-15 -3945 ((-349 (-857 |#1|)) |#1|))) (-495)) (T -952)) +((-3945 (*1 *2 *3) (-12 (-5 *2 (-349 (-857 *3))) (-5 *1 (-952 *3)) (-4 *3 (-495)))) (-3767 (*1 *2 *2 *3) (-12 (-5 *3 (-583 (-249 (-349 (-857 *4))))) (-5 *2 (-349 (-857 *4))) (-4 *4 (-495)) (-5 *1 (-952 *4)))) (-3767 (*1 *2 *2 *3) (-12 (-5 *3 (-249 (-349 (-857 *4)))) (-5 *2 (-349 (-857 *4))) (-4 *4 (-495)) (-5 *1 (-952 *4)))) (-3767 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-583 (-1089))) (-5 *4 (-583 (-349 (-857 *5)))) (-5 *2 (-349 (-857 *5))) (-4 *5 (-495)) (-5 *1 (-952 *5)))) (-3767 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-349 (-857 *4))) (-5 *3 (-1089)) (-4 *4 (-495)) (-5 *1 (-952 *4)))) (-3084 (*1 *2 *3 *4) (-12 (-5 *3 (-349 (-1084 (-349 (-857 *5))))) (-5 *4 (-1089)) (-5 *2 (-349 (-857 *5))) (-5 *1 (-952 *5)) (-4 *5 (-495)))) (-3083 (*1 *2 *3 *4) (-12 (-5 *4 (-1089)) (-4 *5 (-495)) (-5 *2 (-349 (-1084 (-349 (-857 *5))))) (-5 *1 (-952 *5)) (-5 *3 (-349 (-857 *5))))) (-3082 (*1 *2 *3) (|partial| -12 (-5 *3 (-349 (-857 *4))) (-4 *4 (-495)) (-5 *2 (-1089)) (-5 *1 (-952 *4)))) (-3081 (*1 *2 *3) (-12 (-5 *3 (-349 (-857 *4))) (-4 *4 (-495)) (-5 *2 (-583 (-1089))) (-5 *1 (-952 *4))))) +((-3085 (((-329)) 17 T ELT)) (-3100 (((-1 (-329)) (-329) (-329)) 22 T ELT)) (-3093 (((-1 (-329)) (-694)) 48 T ELT)) (-3086 (((-329)) 37 T ELT)) (-3089 (((-1 (-329)) (-329) (-329)) 38 T ELT)) (-3087 (((-329)) 29 T ELT)) (-3090 (((-1 (-329)) (-329)) 30 T ELT)) (-3088 (((-329) (-694)) 43 T ELT)) (-3091 (((-1 (-329)) (-694)) 44 T ELT)) (-3092 (((-1 (-329)) (-694) (-694)) 47 T ELT)) (-3383 (((-1 (-329)) (-694) (-694)) 45 T ELT))) +(((-953) (-10 -7 (-15 -3085 ((-329))) (-15 -3086 ((-329))) (-15 -3087 ((-329))) (-15 -3088 ((-329) (-694))) (-15 -3100 ((-1 (-329)) (-329) (-329))) (-15 -3089 ((-1 (-329)) (-329) (-329))) (-15 -3090 ((-1 (-329)) (-329))) (-15 -3091 ((-1 (-329)) (-694))) (-15 -3383 ((-1 (-329)) (-694) (-694))) (-15 -3092 ((-1 (-329)) (-694) (-694))) (-15 -3093 ((-1 (-329)) (-694))))) (T -953)) +((-3093 (*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1 (-329))) (-5 *1 (-953)))) (-3092 (*1 *2 *3 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1 (-329))) (-5 *1 (-953)))) (-3383 (*1 *2 *3 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1 (-329))) (-5 *1 (-953)))) (-3091 (*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1 (-329))) (-5 *1 (-953)))) (-3090 (*1 *2 *3) (-12 (-5 *2 (-1 (-329))) (-5 *1 (-953)) (-5 *3 (-329)))) (-3089 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-329))) (-5 *1 (-953)) (-5 *3 (-329)))) (-3100 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-329))) (-5 *1 (-953)) (-5 *3 (-329)))) (-3088 (*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-329)) (-5 *1 (-953)))) (-3087 (*1 *2) (-12 (-5 *2 (-329)) (-5 *1 (-953)))) (-3086 (*1 *2) (-12 (-5 *2 (-329)) (-5 *1 (-953)))) (-3085 (*1 *2) (-12 (-5 *2 (-329)) (-5 *1 (-953))))) +((-3731 (((-347 |#1|) |#1|) 33 T ELT))) +(((-954 |#1|) (-10 -7 (-15 -3731 ((-347 |#1|) |#1|))) (-1154 (-349 (-857 (-484))))) (T -954)) +((-3731 (*1 *2 *3) (-12 (-5 *2 (-347 *3)) (-5 *1 (-954 *3)) (-4 *3 (-1154 (-349 (-857 (-484)))))))) +((-3094 (((-349 (-347 (-857 |#1|))) (-349 (-857 |#1|))) 14 T ELT))) +(((-955 |#1|) (-10 -7 (-15 -3094 ((-349 (-347 (-857 |#1|))) (-349 (-857 |#1|))))) (-258)) (T -955)) +((-3094 (*1 *2 *3) (-12 (-5 *3 (-349 (-857 *4))) (-4 *4 (-258)) (-5 *2 (-349 (-347 (-857 *4)))) (-5 *1 (-955 *4))))) +((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-3723 (($) 23 T CONST)) (-3098 ((|#1| $) 29 T ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3097 ((|#1| $) 28 T ELT)) (-3095 ((|#1|) 26 T CONST)) (-3945 (((-772) $) 13 T ELT)) (-3096 ((|#1| $) 27 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-2660 (($) 24 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3838 (($ $ $) 18 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT))) (((-956 |#1|) (-113) (-23)) (T -956)) -((-3098 (*1 *1) (-12 (-4 *1 (-956 *2)) (-4 *2 (-23))))) -(-13 (-955 |t#1|) (-10 -8 (-15 -3098 ($) -3950))) -(((-23) . T) ((-25) . T) ((-72) . T) ((-551 (-771)) . T) ((-13) . T) ((-955 |#1|) . T) ((-1012) . T) ((-1127) . T)) -((-2567 (((-85) $ $) NIL T ELT)) (-3679 (((-582 (-2 (|:| -3859 $) (|:| -1700 (-582 (-702 |#1| (-772 |#2|)))))) (-582 (-702 |#1| (-772 |#2|)))) NIL T ELT)) (-3680 (((-582 $) (-582 (-702 |#1| (-772 |#2|)))) NIL T ELT) (((-582 $) (-582 (-702 |#1| (-772 |#2|))) (-85)) NIL T ELT) (((-582 $) (-582 (-702 |#1| (-772 |#2|))) (-85) (-85)) NIL T ELT)) (-3080 (((-582 (-772 |#2|)) $) NIL T ELT)) (-2907 (((-85) $) NIL T ELT)) (-2898 (((-85) $) NIL (|has| |#1| (-494)) ELT)) (-3691 (((-85) (-702 |#1| (-772 |#2|)) $) NIL T ELT) (((-85) $) NIL T ELT)) (-3686 (((-702 |#1| (-772 |#2|)) (-702 |#1| (-772 |#2|)) $) NIL T ELT)) (-3773 (((-582 (-2 (|:| |val| (-702 |#1| (-772 |#2|))) (|:| -1598 $))) (-702 |#1| (-772 |#2|)) $) NIL T ELT)) (-2908 (((-2 (|:| |under| $) (|:| -3129 $) (|:| |upper| $)) $ (-772 |#2|)) NIL T ELT)) (-3708 (($ (-1 (-85) (-702 |#1| (-772 |#2|))) $) NIL (|has| $ (-6 -3993)) ELT) (((-3 (-702 |#1| (-772 |#2|)) #1="failed") $ (-772 |#2|)) NIL T ELT)) (-3722 (($) NIL T CONST)) (-2903 (((-85) $) NIL (|has| |#1| (-494)) ELT)) (-2905 (((-85) $ $) NIL (|has| |#1| (-494)) ELT)) (-2904 (((-85) $ $) NIL (|has| |#1| (-494)) ELT)) (-2906 (((-85) $) NIL (|has| |#1| (-494)) ELT)) (-3687 (((-582 (-702 |#1| (-772 |#2|))) (-582 (-702 |#1| (-772 |#2|))) $ (-1 (-702 |#1| (-772 |#2|)) (-702 |#1| (-772 |#2|)) (-702 |#1| (-772 |#2|))) (-1 (-85) (-702 |#1| (-772 |#2|)) (-702 |#1| (-772 |#2|)))) NIL T ELT)) (-2899 (((-582 (-702 |#1| (-772 |#2|))) (-582 (-702 |#1| (-772 |#2|))) $) NIL (|has| |#1| (-494)) ELT)) (-2900 (((-582 (-702 |#1| (-772 |#2|))) (-582 (-702 |#1| (-772 |#2|))) $) NIL (|has| |#1| (-494)) ELT)) (-3156 (((-3 $ #1#) (-582 (-702 |#1| (-772 |#2|)))) NIL T ELT)) (-3155 (($ (-582 (-702 |#1| (-772 |#2|)))) NIL T ELT)) (-3797 (((-3 $ #1#) $) NIL T ELT)) (-3683 (((-702 |#1| (-772 |#2|)) (-702 |#1| (-772 |#2|)) $) NIL T ELT)) (-1351 (($ $) NIL (-12 (|has| $ (-6 -3993)) (|has| (-702 |#1| (-772 |#2|)) (-1012))) ELT)) (-3404 (($ (-702 |#1| (-772 |#2|)) $) NIL (-12 (|has| $ (-6 -3993)) (|has| (-702 |#1| (-772 |#2|)) (-1012))) ELT) (($ (-1 (-85) (-702 |#1| (-772 |#2|))) $) NIL (|has| $ (-6 -3993)) ELT)) (-2901 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-702 |#1| (-772 |#2|))) (|:| |den| |#1|)) (-702 |#1| (-772 |#2|)) $) NIL (|has| |#1| (-494)) ELT)) (-3692 (((-85) (-702 |#1| (-772 |#2|)) $ (-1 (-85) (-702 |#1| (-772 |#2|)) (-702 |#1| (-772 |#2|)))) NIL T ELT)) (-3681 (((-702 |#1| (-772 |#2|)) (-702 |#1| (-772 |#2|)) $) NIL T ELT)) (-3840 (((-702 |#1| (-772 |#2|)) (-1 (-702 |#1| (-772 |#2|)) (-702 |#1| (-772 |#2|)) (-702 |#1| (-772 |#2|))) $ (-702 |#1| (-772 |#2|)) (-702 |#1| (-772 |#2|))) NIL (-12 (|has| $ (-6 -3993)) (|has| (-702 |#1| (-772 |#2|)) (-1012))) ELT) (((-702 |#1| (-772 |#2|)) (-1 (-702 |#1| (-772 |#2|)) (-702 |#1| (-772 |#2|)) (-702 |#1| (-772 |#2|))) $ (-702 |#1| (-772 |#2|))) NIL (|has| $ (-6 -3993)) ELT) (((-702 |#1| (-772 |#2|)) (-1 (-702 |#1| (-772 |#2|)) (-702 |#1| (-772 |#2|)) (-702 |#1| (-772 |#2|))) $) NIL (|has| $ (-6 -3993)) ELT) (((-702 |#1| (-772 |#2|)) (-702 |#1| (-772 |#2|)) $ (-1 (-702 |#1| (-772 |#2|)) (-702 |#1| (-772 |#2|)) (-702 |#1| (-772 |#2|))) (-1 (-85) (-702 |#1| (-772 |#2|)) (-702 |#1| (-772 |#2|)))) NIL T ELT)) (-3694 (((-2 (|:| -3859 (-582 (-702 |#1| (-772 |#2|)))) (|:| -1700 (-582 (-702 |#1| (-772 |#2|))))) $) NIL T ELT)) (-3196 (((-85) (-702 |#1| (-772 |#2|)) $) NIL T ELT)) (-3194 (((-85) (-702 |#1| (-772 |#2|)) $) NIL T ELT)) (-3197 (((-85) (-702 |#1| (-772 |#2|)) $) NIL T ELT) (((-85) $) NIL T ELT)) (-2888 (((-582 (-702 |#1| (-772 |#2|))) $) NIL (|has| $ (-6 -3993)) ELT)) (-3693 (((-85) (-702 |#1| (-772 |#2|)) $) NIL T ELT) (((-85) $) NIL T ELT)) (-3179 (((-772 |#2|) $) NIL T ELT)) (-2607 (((-582 (-702 |#1| (-772 |#2|))) $) NIL (|has| $ (-6 -3993)) ELT)) (-3244 (((-85) (-702 |#1| (-772 |#2|)) $) NIL (-12 (|has| $ (-6 -3993)) (|has| (-702 |#1| (-772 |#2|)) (-1012))) ELT)) (-1947 (($ (-1 (-702 |#1| (-772 |#2|)) (-702 |#1| (-772 |#2|))) $) NIL (|has| $ (-6 -3994)) ELT)) (-3956 (($ (-1 (-702 |#1| (-772 |#2|)) (-702 |#1| (-772 |#2|))) $) NIL T ELT)) (-2913 (((-582 (-772 |#2|)) $) NIL T ELT)) (-2912 (((-85) (-772 |#2|) $) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3190 (((-3 (-702 |#1| (-772 |#2|)) (-582 $)) (-702 |#1| (-772 |#2|)) (-702 |#1| (-772 |#2|)) $) NIL T ELT)) (-3189 (((-582 (-2 (|:| |val| (-702 |#1| (-772 |#2|))) (|:| -1598 $))) (-702 |#1| (-772 |#2|)) (-702 |#1| (-772 |#2|)) $) NIL T ELT)) (-3796 (((-3 (-702 |#1| (-772 |#2|)) #1#) $) NIL T ELT)) (-3191 (((-582 $) (-702 |#1| (-772 |#2|)) $) NIL T ELT)) (-3193 (((-3 (-85) (-582 $)) (-702 |#1| (-772 |#2|)) $) NIL T ELT)) (-3192 (((-582 (-2 (|:| |val| (-85)) (|:| -1598 $))) (-702 |#1| (-772 |#2|)) $) NIL T ELT) (((-85) (-702 |#1| (-772 |#2|)) $) NIL T ELT)) (-3237 (((-582 $) (-702 |#1| (-772 |#2|)) $) NIL T ELT) (((-582 $) (-582 (-702 |#1| (-772 |#2|))) $) NIL T ELT) (((-582 $) (-582 (-702 |#1| (-772 |#2|))) (-582 $)) NIL T ELT) (((-582 $) (-702 |#1| (-772 |#2|)) (-582 $)) NIL T ELT)) (-3438 (($ (-702 |#1| (-772 |#2|)) $) NIL T ELT) (($ (-582 (-702 |#1| (-772 |#2|))) $) NIL T ELT)) (-3695 (((-582 (-702 |#1| (-772 |#2|))) $) NIL T ELT)) (-3689 (((-85) (-702 |#1| (-772 |#2|)) $) NIL T ELT) (((-85) $) NIL T ELT)) (-3684 (((-702 |#1| (-772 |#2|)) (-702 |#1| (-772 |#2|)) $) NIL T ELT)) (-3697 (((-85) $ $) NIL T ELT)) (-2902 (((-2 (|:| |num| (-702 |#1| (-772 |#2|))) (|:| |den| |#1|)) (-702 |#1| (-772 |#2|)) $) NIL (|has| |#1| (-494)) ELT)) (-3690 (((-85) (-702 |#1| (-772 |#2|)) $) NIL T ELT) (((-85) $) NIL T ELT)) (-3685 (((-702 |#1| (-772 |#2|)) (-702 |#1| (-772 |#2|)) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3799 (((-3 (-702 |#1| (-772 |#2|)) #1#) $) NIL T ELT)) (-1352 (((-3 (-702 |#1| (-772 |#2|)) #1#) (-1 (-85) (-702 |#1| (-772 |#2|))) $) NIL T ELT)) (-3677 (((-3 $ #1#) $ (-702 |#1| (-772 |#2|))) NIL T ELT)) (-3767 (($ $ (-702 |#1| (-772 |#2|))) NIL T ELT) (((-582 $) (-702 |#1| (-772 |#2|)) $) NIL T ELT) (((-582 $) (-702 |#1| (-772 |#2|)) (-582 $)) NIL T ELT) (((-582 $) (-582 (-702 |#1| (-772 |#2|))) $) NIL T ELT) (((-582 $) (-582 (-702 |#1| (-772 |#2|))) (-582 $)) NIL T ELT)) (-1945 (((-85) (-1 (-85) (-702 |#1| (-772 |#2|))) $) NIL (|has| $ (-6 -3993)) ELT)) (-3766 (($ $ (-582 (-702 |#1| (-772 |#2|))) (-582 (-702 |#1| (-772 |#2|)))) NIL (-12 (|has| (-702 |#1| (-772 |#2|)) (-260 (-702 |#1| (-772 |#2|)))) (|has| (-702 |#1| (-772 |#2|)) (-1012))) ELT) (($ $ (-702 |#1| (-772 |#2|)) (-702 |#1| (-772 |#2|))) NIL (-12 (|has| (-702 |#1| (-772 |#2|)) (-260 (-702 |#1| (-772 |#2|)))) (|has| (-702 |#1| (-772 |#2|)) (-1012))) ELT) (($ $ (-249 (-702 |#1| (-772 |#2|)))) NIL (-12 (|has| (-702 |#1| (-772 |#2|)) (-260 (-702 |#1| (-772 |#2|)))) (|has| (-702 |#1| (-772 |#2|)) (-1012))) ELT) (($ $ (-582 (-249 (-702 |#1| (-772 |#2|))))) NIL (-12 (|has| (-702 |#1| (-772 |#2|)) (-260 (-702 |#1| (-772 |#2|)))) (|has| (-702 |#1| (-772 |#2|)) (-1012))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-3401 (((-85) $) NIL T ELT)) (-3563 (($) NIL T ELT)) (-3946 (((-693) $) NIL T ELT)) (-1944 (((-693) (-702 |#1| (-772 |#2|)) $) NIL (-12 (|has| $ (-6 -3993)) (|has| (-702 |#1| (-772 |#2|)) (-1012))) ELT) (((-693) (-1 (-85) (-702 |#1| (-772 |#2|))) $) NIL (|has| $ (-6 -3993)) ELT)) (-3398 (($ $) NIL T ELT)) (-3970 (((-472) $) NIL (|has| (-702 |#1| (-772 |#2|)) (-552 (-472))) ELT)) (-3528 (($ (-582 (-702 |#1| (-772 |#2|)))) NIL T ELT)) (-2909 (($ $ (-772 |#2|)) NIL T ELT)) (-2911 (($ $ (-772 |#2|)) NIL T ELT)) (-3682 (($ $) NIL T ELT)) (-2910 (($ $ (-772 |#2|)) NIL T ELT)) (-3944 (((-771) $) NIL T ELT) (((-582 (-702 |#1| (-772 |#2|))) $) NIL T ELT)) (-3676 (((-693) $) NIL (|has| (-772 |#2|) (-318)) ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3696 (((-3 (-2 (|:| |bas| $) (|:| -3322 (-582 (-702 |#1| (-772 |#2|))))) #1#) (-582 (-702 |#1| (-772 |#2|))) (-1 (-85) (-702 |#1| (-772 |#2|)) (-702 |#1| (-772 |#2|)))) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3322 (-582 (-702 |#1| (-772 |#2|))))) #1#) (-582 (-702 |#1| (-772 |#2|))) (-1 (-85) (-702 |#1| (-772 |#2|))) (-1 (-85) (-702 |#1| (-772 |#2|)) (-702 |#1| (-772 |#2|)))) NIL T ELT)) (-3688 (((-85) $ (-1 (-85) (-702 |#1| (-772 |#2|)) (-582 (-702 |#1| (-772 |#2|))))) NIL T ELT)) (-3188 (((-582 $) (-702 |#1| (-772 |#2|)) $) NIL T ELT) (((-582 $) (-702 |#1| (-772 |#2|)) (-582 $)) NIL T ELT) (((-582 $) (-582 (-702 |#1| (-772 |#2|))) $) NIL T ELT) (((-582 $) (-582 (-702 |#1| (-772 |#2|))) (-582 $)) NIL T ELT)) (-1946 (((-85) (-1 (-85) (-702 |#1| (-772 |#2|))) $) NIL (|has| $ (-6 -3993)) ELT)) (-3678 (((-582 (-772 |#2|)) $) NIL T ELT)) (-3195 (((-85) (-702 |#1| (-772 |#2|)) $) NIL T ELT)) (-3931 (((-85) (-772 |#2|) $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-3955 (((-693) $) NIL (|has| $ (-6 -3993)) ELT))) -(((-957 |#1| |#2|) (-13 (-982 |#1| (-468 (-772 |#2|)) (-772 |#2|) (-702 |#1| (-772 |#2|))) (-10 -8 (-15 -3680 ((-582 $) (-582 (-702 |#1| (-772 |#2|))) (-85) (-85))))) (-390) (-582 (-1088))) (T -957)) -((-3680 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-582 (-702 *5 (-772 *6)))) (-5 *4 (-85)) (-4 *5 (-390)) (-14 *6 (-582 (-1088))) (-5 *2 (-582 (-957 *5 *6))) (-5 *1 (-957 *5 *6))))) -((-3099 (((-1 (-483)) (-1000 (-483))) 32 T ELT)) (-3103 (((-483) (-483) (-483) (-483) (-483)) 29 T ELT)) (-3101 (((-1 (-483)) |RationalNumber|) NIL T ELT)) (-3102 (((-1 (-483)) |RationalNumber|) NIL T ELT)) (-3100 (((-1 (-483)) (-483) |RationalNumber|) NIL T ELT))) -(((-958) (-10 -7 (-15 -3099 ((-1 (-483)) (-1000 (-483)))) (-15 -3100 ((-1 (-483)) (-483) |RationalNumber|)) (-15 -3101 ((-1 (-483)) |RationalNumber|)) (-15 -3102 ((-1 (-483)) |RationalNumber|)) (-15 -3103 ((-483) (-483) (-483) (-483) (-483))))) (T -958)) -((-3103 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-958)))) (-3102 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-483))) (-5 *1 (-958)))) (-3101 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-483))) (-5 *1 (-958)))) (-3100 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-483))) (-5 *1 (-958)) (-5 *3 (-483)))) (-3099 (*1 *2 *3) (-12 (-5 *3 (-1000 (-483))) (-5 *2 (-1 (-483))) (-5 *1 (-958))))) -((-3944 (((-771) $) NIL T ELT) (($ (-483)) 10 T ELT))) -(((-959 |#1|) (-10 -7 (-15 -3944 (|#1| (-483))) (-15 -3944 ((-771) |#1|))) (-960)) (T -959)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-3187 (((-85) $) 22 T ELT)) (-1310 (((-3 $ "failed") $ $) 26 T ELT)) (-3722 (($) 23 T CONST)) (-3465 (((-3 $ "failed") $) 42 T ELT)) (-1212 (((-85) $ $) 20 T ELT)) (-2409 (((-85) $) 44 T ELT)) (-3241 (((-1071) $) 11 T ELT)) (-3242 (((-1032) $) 12 T ELT)) (-3944 (((-771) $) 13 T ELT) (($ (-483)) 41 T ELT)) (-3125 (((-693)) 40 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-3124 (((-85) $ $) 33 T ELT)) (-2659 (($) 24 T CONST)) (-2665 (($) 45 T CONST)) (-3055 (((-85) $ $) 8 T ELT)) (-3835 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3837 (($ $ $) 18 T ELT)) (** (($ $ (-829)) 35 T ELT) (($ $ (-693)) 43 T ELT)) (* (($ (-829) $) 17 T ELT) (($ (-693) $) 21 T ELT) (($ (-483) $) 30 T ELT) (($ $ $) 34 T ELT))) -(((-960) (-113)) (T -960)) -((-3125 (*1 *2) (-12 (-4 *1 (-960)) (-5 *2 (-693))))) -(-13 (-969) (-1059) (-589 $) (-554 (-483)) (-10 -7 (-15 -3125 ((-693)) -3950) (-6 -3990))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-554 (-483)) . T) ((-551 (-771)) . T) ((-13) . T) ((-587 (-483)) . T) ((-587 $) . T) ((-589 $) . T) ((-662) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T)) -((-3104 (((-348 (-856 |#2|)) (-582 |#2|) (-582 |#2|) (-693) (-693)) 55 T ELT))) -(((-961 |#1| |#2|) (-10 -7 (-15 -3104 ((-348 (-856 |#2|)) (-582 |#2|) (-582 |#2|) (-693) (-693)))) (-1088) (-312)) (T -961)) -((-3104 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-582 *6)) (-5 *4 (-693)) (-4 *6 (-312)) (-5 *2 (-348 (-856 *6))) (-5 *1 (-961 *5 *6)) (-14 *5 (-1088))))) -((-2567 (((-85) $ $) 7 T ELT)) (-3241 (((-1071) $) 11 T ELT)) (-3242 (((-1032) $) 12 T ELT)) (-3944 (((-771) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-3055 (((-85) $ $) 8 T ELT)) (* (($ $ |#1|) 17 T ELT))) -(((-962 |#1|) (-113) (-1024)) (T -962)) -((* (*1 *1 *1 *2) (-12 (-4 *1 (-962 *2)) (-4 *2 (-1024))))) -(-13 (-1012) (-10 -8 (-15 * ($ $ |t#1|)))) -(((-72) . T) ((-551 (-771)) . T) ((-13) . T) ((-1012) . T) ((-1127) . T)) -((-3119 (((-85) $) 38 T ELT)) (-3121 (((-85) $) 17 T ELT)) (-3113 (((-693) $) 13 T ELT)) (-3112 (((-693) $) 14 T ELT)) (-3120 (((-85) $) 30 T ELT)) (-3118 (((-85) $) 40 T ELT))) -(((-963 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3112 ((-693) |#1|)) (-15 -3113 ((-693) |#1|)) (-15 -3118 ((-85) |#1|)) (-15 -3119 ((-85) |#1|)) (-15 -3120 ((-85) |#1|)) (-15 -3121 ((-85) |#1|))) (-964 |#2| |#3| |#4| |#5| |#6|) (-693) (-693) (-960) (-196 |#3| |#4|) (-196 |#2| |#4|)) (T -963)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-3187 (((-85) $) 22 T ELT)) (-3119 (((-85) $) 62 T ELT)) (-1310 (((-3 $ "failed") $ $) 26 T ELT)) (-3121 (((-85) $) 64 T ELT)) (-3722 (($) 23 T CONST)) (-3108 (($ $) 45 (|has| |#3| (-258)) ELT)) (-3110 ((|#4| $ (-483)) 50 T ELT)) (-3107 (((-693) $) 44 (|has| |#3| (-494)) ELT)) (-3111 ((|#3| $ (-483) (-483)) 52 T ELT)) (-2888 (((-582 |#3|) $) 76 (|has| $ (-6 -3993)) ELT)) (-1212 (((-85) $ $) 20 T ELT)) (-3106 (((-693) $) 43 (|has| |#3| (-494)) ELT)) (-3105 (((-582 |#5|) $) 42 (|has| |#3| (-494)) ELT)) (-3113 (((-693) $) 56 T ELT)) (-3112 (((-693) $) 55 T ELT)) (-3117 (((-483) $) 60 T ELT)) (-3115 (((-483) $) 58 T ELT)) (-2607 (((-582 |#3|) $) 77 (|has| $ (-6 -3993)) ELT)) (-3244 (((-85) |#3| $) 79 (-12 (|has| |#3| (-1012)) (|has| $ (-6 -3993))) ELT)) (-3116 (((-483) $) 59 T ELT)) (-3114 (((-483) $) 57 T ELT)) (-3122 (($ (-582 (-582 |#3|))) 65 T ELT)) (-1947 (($ (-1 |#3| |#3|) $) 72 (|has| $ (-6 -3994)) ELT)) (-3956 (($ (-1 |#3| |#3|) $) 71 T ELT) (($ (-1 |#3| |#3| |#3|) $ $) 48 T ELT)) (-3592 (((-582 (-582 |#3|)) $) 54 T ELT)) (-3241 (((-1071) $) 11 T ELT)) (-3242 (((-1032) $) 12 T ELT)) (-3464 (((-3 $ "failed") $ |#3|) 47 (|has| |#3| (-494)) ELT)) (-1945 (((-85) (-1 (-85) |#3|) $) 74 (|has| $ (-6 -3993)) ELT)) (-3766 (($ $ (-582 |#3|) (-582 |#3|)) 83 (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1012))) ELT) (($ $ |#3| |#3|) 82 (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1012))) ELT) (($ $ (-249 |#3|)) 81 (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1012))) ELT) (($ $ (-582 (-249 |#3|))) 80 (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1012))) ELT)) (-1220 (((-85) $ $) 66 T ELT)) (-3401 (((-85) $) 69 T ELT)) (-3563 (($) 68 T ELT)) (-3798 ((|#3| $ (-483) (-483)) 53 T ELT) ((|#3| $ (-483) (-483) |#3|) 51 T ELT)) (-3120 (((-85) $) 63 T ELT)) (-1944 (((-693) |#3| $) 78 (-12 (|has| |#3| (-1012)) (|has| $ (-6 -3993))) ELT) (((-693) (-1 (-85) |#3|) $) 75 (|has| $ (-6 -3993)) ELT)) (-3398 (($ $) 67 T ELT)) (-3109 ((|#5| $ (-483)) 49 T ELT)) (-3944 (((-771) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-1946 (((-85) (-1 (-85) |#3|) $) 73 (|has| $ (-6 -3993)) ELT)) (-3118 (((-85) $) 61 T ELT)) (-2659 (($) 24 T CONST)) (-3055 (((-85) $ $) 8 T ELT)) (-3947 (($ $ |#3|) 46 (|has| |#3| (-312)) ELT)) (-3835 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3837 (($ $ $) 18 T ELT)) (* (($ (-829) $) 17 T ELT) (($ (-693) $) 21 T ELT) (($ (-483) $) 30 T ELT) (($ |#3| $) 33 T ELT) (($ $ |#3|) 37 T ELT)) (-3955 (((-693) $) 70 (|has| $ (-6 -3993)) ELT))) -(((-964 |#1| |#2| |#3| |#4| |#5|) (-113) (-693) (-693) (-960) (-196 |t#2| |t#3|) (-196 |t#1| |t#3|)) (T -964)) -((-3956 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-960)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)))) (-3122 (*1 *1 *2) (-12 (-5 *2 (-582 (-582 *5))) (-4 *5 (-960)) (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)))) (-3121 (*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-960)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-85)))) (-3120 (*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-960)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-85)))) (-3119 (*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-960)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-85)))) (-3118 (*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-960)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-85)))) (-3117 (*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-960)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-483)))) (-3116 (*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-960)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-483)))) (-3115 (*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-960)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-483)))) (-3114 (*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-960)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-483)))) (-3113 (*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-960)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-693)))) (-3112 (*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-960)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-693)))) (-3592 (*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-960)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-582 (-582 *5))))) (-3798 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-483)) (-4 *1 (-964 *4 *5 *2 *6 *7)) (-4 *6 (-196 *5 *2)) (-4 *7 (-196 *4 *2)) (-4 *2 (-960)))) (-3111 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-483)) (-4 *1 (-964 *4 *5 *2 *6 *7)) (-4 *6 (-196 *5 *2)) (-4 *7 (-196 *4 *2)) (-4 *2 (-960)))) (-3798 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-483)) (-4 *1 (-964 *4 *5 *2 *6 *7)) (-4 *2 (-960)) (-4 *6 (-196 *5 *2)) (-4 *7 (-196 *4 *2)))) (-3110 (*1 *2 *1 *3) (-12 (-5 *3 (-483)) (-4 *1 (-964 *4 *5 *6 *2 *7)) (-4 *6 (-960)) (-4 *7 (-196 *4 *6)) (-4 *2 (-196 *5 *6)))) (-3109 (*1 *2 *1 *3) (-12 (-5 *3 (-483)) (-4 *1 (-964 *4 *5 *6 *7 *2)) (-4 *6 (-960)) (-4 *7 (-196 *5 *6)) (-4 *2 (-196 *4 *6)))) (-3956 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-960)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)))) (-3464 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-964 *3 *4 *2 *5 *6)) (-4 *2 (-960)) (-4 *5 (-196 *4 *2)) (-4 *6 (-196 *3 *2)) (-4 *2 (-494)))) (-3947 (*1 *1 *1 *2) (-12 (-4 *1 (-964 *3 *4 *2 *5 *6)) (-4 *2 (-960)) (-4 *5 (-196 *4 *2)) (-4 *6 (-196 *3 *2)) (-4 *2 (-312)))) (-3108 (*1 *1 *1) (-12 (-4 *1 (-964 *2 *3 *4 *5 *6)) (-4 *4 (-960)) (-4 *5 (-196 *3 *4)) (-4 *6 (-196 *2 *4)) (-4 *4 (-258)))) (-3107 (*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-960)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-4 *5 (-494)) (-5 *2 (-693)))) (-3106 (*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-960)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-4 *5 (-494)) (-5 *2 (-693)))) (-3105 (*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-960)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-4 *5 (-494)) (-5 *2 (-582 *7))))) -(-13 (-82 |t#3| |t#3|) (-427 |t#3|) (-10 -8 (-6 -3993) (IF (|has| |t#3| (-146)) (-6 (-653 |t#3|)) |%noBranch|) (-15 -3122 ($ (-582 (-582 |t#3|)))) (-15 -3121 ((-85) $)) (-15 -3120 ((-85) $)) (-15 -3119 ((-85) $)) (-15 -3118 ((-85) $)) (-15 -3117 ((-483) $)) (-15 -3116 ((-483) $)) (-15 -3115 ((-483) $)) (-15 -3114 ((-483) $)) (-15 -3113 ((-693) $)) (-15 -3112 ((-693) $)) (-15 -3592 ((-582 (-582 |t#3|)) $)) (-15 -3798 (|t#3| $ (-483) (-483))) (-15 -3111 (|t#3| $ (-483) (-483))) (-15 -3798 (|t#3| $ (-483) (-483) |t#3|)) (-15 -3110 (|t#4| $ (-483))) (-15 -3109 (|t#5| $ (-483))) (-15 -3956 ($ (-1 |t#3| |t#3|) $)) (-15 -3956 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-494)) (-15 -3464 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-312)) (-15 -3947 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-258)) (-15 -3108 ($ $)) |%noBranch|) (IF (|has| |t#3| (-494)) (PROGN (-15 -3107 ((-693) $)) (-15 -3106 ((-693) $)) (-15 -3105 ((-582 |t#5|) $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-72) . T) ((-82 |#3| |#3|) . T) ((-104) . T) ((-551 (-771)) . T) ((-260 |#3|) -12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1012))) ((-427 |#3|) . T) ((-454 |#3| |#3|) -12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1012))) ((-13) . T) ((-587 (-483)) . T) ((-587 |#3|) . T) ((-589 |#3|) . T) ((-581 |#3|) |has| |#3| (-146)) ((-653 |#3|) |has| |#3| (-146)) ((-962 |#3|) . T) ((-967 |#3|) . T) ((-1012) . T) ((-1127) . T)) -((-2567 (((-85) $ $) NIL T ELT)) (-3187 (((-85) $) NIL T ELT)) (-3119 (((-85) $) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3121 (((-85) $) NIL T ELT)) (-3722 (($) NIL T CONST)) (-3108 (($ $) 46 (|has| |#3| (-258)) ELT)) (-3110 (((-197 |#2| |#3|) $ (-483)) 35 T ELT)) (-3123 (($ (-629 |#3|)) 44 T ELT)) (-3107 (((-693) $) 48 (|has| |#3| (-494)) ELT)) (-3111 ((|#3| $ (-483) (-483)) NIL T ELT)) (-2888 (((-582 |#3|) $) NIL (|has| $ (-6 -3993)) ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-3106 (((-693) $) 50 (|has| |#3| (-494)) ELT)) (-3105 (((-582 (-197 |#1| |#3|)) $) 54 (|has| |#3| (-494)) ELT)) (-3113 (((-693) $) NIL T ELT)) (-3112 (((-693) $) NIL T ELT)) (-3117 (((-483) $) NIL T ELT)) (-3115 (((-483) $) NIL T ELT)) (-2607 (((-582 |#3|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3244 (((-85) |#3| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#3| (-1012))) ELT)) (-3116 (((-483) $) NIL T ELT)) (-3114 (((-483) $) NIL T ELT)) (-3122 (($ (-582 (-582 |#3|))) 30 T ELT)) (-1947 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3956 (($ (-1 |#3| |#3|) $) NIL T ELT) (($ (-1 |#3| |#3| |#3|) $ $) NIL T ELT)) (-3592 (((-582 (-582 |#3|)) $) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3464 (((-3 $ #1#) $ |#3|) NIL (|has| |#3| (-494)) ELT)) (-1945 (((-85) (-1 (-85) |#3|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3766 (($ $ (-582 |#3|) (-582 |#3|)) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1012))) ELT) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1012))) ELT) (($ $ (-249 |#3|)) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1012))) ELT) (($ $ (-582 (-249 |#3|))) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1012))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-3401 (((-85) $) NIL T ELT)) (-3563 (($) NIL T ELT)) (-3798 ((|#3| $ (-483) (-483)) NIL T ELT) ((|#3| $ (-483) (-483) |#3|) NIL T ELT)) (-3909 (((-107)) 58 (|has| |#3| (-312)) ELT)) (-3120 (((-85) $) NIL T ELT)) (-1944 (((-693) |#3| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#3| (-1012))) ELT) (((-693) (-1 (-85) |#3|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3398 (($ $) NIL T ELT)) (-3970 (((-472) $) 65 (|has| |#3| (-552 (-472))) ELT)) (-3109 (((-197 |#1| |#3|) $ (-483)) 39 T ELT)) (-3944 (((-771) $) 18 T ELT) (((-629 |#3|) $) 41 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-1946 (((-85) (-1 (-85) |#3|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3118 (((-85) $) NIL T ELT)) (-2659 (($) 15 T CONST)) (-3055 (((-85) $ $) NIL T ELT)) (-3947 (($ $ |#3|) NIL (|has| |#3| (-312)) ELT)) (-3835 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3837 (($ $ $) NIL T ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ |#3| $) NIL T ELT) (($ $ |#3|) NIL T ELT)) (-3955 (((-693) $) NIL (|has| $ (-6 -3993)) ELT))) -(((-965 |#1| |#2| |#3|) (-13 (-964 |#1| |#2| |#3| (-197 |#2| |#3|) (-197 |#1| |#3|)) (-551 (-629 |#3|)) (-10 -8 (IF (|has| |#3| (-312)) (-6 (-1185 |#3|)) |%noBranch|) (IF (|has| |#3| (-552 (-472))) (-6 (-552 (-472))) |%noBranch|) (-15 -3123 ($ (-629 |#3|))))) (-693) (-693) (-960)) (T -965)) -((-3123 (*1 *1 *2) (-12 (-5 *2 (-629 *5)) (-4 *5 (-960)) (-5 *1 (-965 *3 *4 *5)) (-14 *3 (-693)) (-14 *4 (-693))))) -((-3840 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 36 T ELT)) (-3956 ((|#10| (-1 |#7| |#3|) |#6|) 34 T ELT))) -(((-966 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -3956 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -3840 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-693) (-693) (-960) (-196 |#2| |#3|) (-196 |#1| |#3|) (-964 |#1| |#2| |#3| |#4| |#5|) (-960) (-196 |#2| |#7|) (-196 |#1| |#7|) (-964 |#1| |#2| |#7| |#8| |#9|)) (T -966)) -((-3840 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-960)) (-4 *2 (-960)) (-14 *5 (-693)) (-14 *6 (-693)) (-4 *8 (-196 *6 *7)) (-4 *9 (-196 *5 *7)) (-4 *10 (-196 *6 *2)) (-4 *11 (-196 *5 *2)) (-5 *1 (-966 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-964 *5 *6 *7 *8 *9)) (-4 *12 (-964 *5 *6 *2 *10 *11)))) (-3956 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-960)) (-4 *10 (-960)) (-14 *5 (-693)) (-14 *6 (-693)) (-4 *8 (-196 *6 *7)) (-4 *9 (-196 *5 *7)) (-4 *2 (-964 *5 *6 *10 *11 *12)) (-5 *1 (-966 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-964 *5 *6 *7 *8 *9)) (-4 *11 (-196 *6 *10)) (-4 *12 (-196 *5 *10))))) -((-2567 (((-85) $ $) 7 T ELT)) (-3187 (((-85) $) 22 T ELT)) (-1310 (((-3 $ "failed") $ $) 26 T ELT)) (-3722 (($) 23 T CONST)) (-1212 (((-85) $ $) 20 T ELT)) (-3241 (((-1071) $) 11 T ELT)) (-3242 (((-1032) $) 12 T ELT)) (-3944 (((-771) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2659 (($) 24 T CONST)) (-3055 (((-85) $ $) 8 T ELT)) (-3835 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3837 (($ $ $) 18 T ELT)) (* (($ (-829) $) 17 T ELT) (($ (-693) $) 21 T ELT) (($ (-483) $) 30 T ELT) (($ $ |#1|) 33 T ELT))) -(((-967 |#1|) (-113) (-969)) (T -967)) -NIL -(-13 (-21) (-962 |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-551 (-771)) . T) ((-13) . T) ((-587 (-483)) . T) ((-962 |#1|) . T) ((-1012) . T) ((-1127) . T)) -((-3124 (((-85) $ $) 10 T ELT))) -(((-968 |#1|) (-10 -7 (-15 -3124 ((-85) |#1| |#1|))) (-969)) (T -968)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-3187 (((-85) $) 22 T ELT)) (-1310 (((-3 $ "failed") $ $) 26 T ELT)) (-3722 (($) 23 T CONST)) (-1212 (((-85) $ $) 20 T ELT)) (-3241 (((-1071) $) 11 T ELT)) (-3242 (((-1032) $) 12 T ELT)) (-3944 (((-771) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-3124 (((-85) $ $) 33 T ELT)) (-2659 (($) 24 T CONST)) (-3055 (((-85) $ $) 8 T ELT)) (-3835 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3837 (($ $ $) 18 T ELT)) (** (($ $ (-829)) 35 T ELT)) (* (($ (-829) $) 17 T ELT) (($ (-693) $) 21 T ELT) (($ (-483) $) 30 T ELT) (($ $ $) 34 T ELT))) -(((-969) (-113)) (T -969)) -((-3124 (*1 *2 *1 *1) (-12 (-4 *1 (-969)) (-5 *2 (-85))))) -(-13 (-21) (-1024) (-10 -8 (-15 -3124 ((-85) $ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-551 (-771)) . T) ((-13) . T) ((-587 (-483)) . T) ((-1024) . T) ((-1012) . T) ((-1127) . T)) -((-2567 (((-85) $ $) NIL (|has| |#1| (-1012)) ELT)) (-3829 (((-1088) $) 11 T ELT)) (-3734 ((|#1| $) 12 T ELT)) (-3241 (((-1071) $) NIL (|has| |#1| (-1012)) ELT)) (-3242 (((-1032) $) NIL (|has| |#1| (-1012)) ELT)) (-3225 (($ (-1088) |#1|) 10 T ELT)) (-3944 (((-771) $) 22 (|has| |#1| (-1012)) ELT)) (-1263 (((-85) $ $) NIL (|has| |#1| (-1012)) ELT)) (-3055 (((-85) $ $) 17 (|has| |#1| (-1012)) ELT))) -(((-970 |#1| |#2|) (-13 (-1127) (-10 -8 (-15 -3225 ($ (-1088) |#1|)) (-15 -3829 ((-1088) $)) (-15 -3734 (|#1| $)) (IF (|has| |#1| (-1012)) (-6 (-1012)) |%noBranch|))) (-1005 |#2|) (-1127)) (T -970)) -((-3225 (*1 *1 *2 *3) (-12 (-5 *2 (-1088)) (-4 *4 (-1127)) (-5 *1 (-970 *3 *4)) (-4 *3 (-1005 *4)))) (-3829 (*1 *2 *1) (-12 (-4 *4 (-1127)) (-5 *2 (-1088)) (-5 *1 (-970 *3 *4)) (-4 *3 (-1005 *4)))) (-3734 (*1 *2 *1) (-12 (-4 *2 (-1005 *3)) (-5 *1 (-970 *2 *3)) (-4 *3 (-1127))))) -((-3769 (($ $) 17 T ELT)) (-3126 (($ $) 25 T ELT)) (-2795 (((-797 (-328) $) $ (-799 (-328)) (-797 (-328) $)) 54 T ELT)) (-3131 (($ $) 27 T ELT)) (-3127 (($ $) 12 T ELT)) (-3129 (($ $) 40 T ELT)) (-3970 (((-328) $) NIL T ELT) (((-179) $) NIL T ELT) (((-799 (-328)) $) 36 T ELT)) (-3944 (((-771) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ $) NIL T ELT) (($ (-348 (-483))) 31 T ELT) (($ (-483)) NIL T ELT) (($ (-348 (-483))) 31 T ELT)) (-3125 (((-693)) 9 T CONST)) (-3130 (($ $) 44 T ELT))) -(((-971 |#1|) (-10 -7 (-15 -3126 (|#1| |#1|)) (-15 -3769 (|#1| |#1|)) (-15 -3127 (|#1| |#1|)) (-15 -3129 (|#1| |#1|)) (-15 -3130 (|#1| |#1|)) (-15 -3131 (|#1| |#1|)) (-15 -2795 ((-797 (-328) |#1|) |#1| (-799 (-328)) (-797 (-328) |#1|))) (-15 -3970 ((-799 (-328)) |#1|)) (-15 -3944 (|#1| (-348 (-483)))) (-15 -3944 (|#1| (-483))) (-15 -3970 ((-179) |#1|)) (-15 -3970 ((-328) |#1|)) (-15 -3944 (|#1| (-348 (-483)))) (-15 -3944 (|#1| |#1|)) (-15 -3125 ((-693)) -3950) (-15 -3944 (|#1| (-483))) (-15 -3944 ((-771) |#1|))) (-972)) (T -971)) -((-3125 (*1 *2) (-12 (-5 *2 (-693)) (-5 *1 (-971 *3)) (-4 *3 (-972))))) -((-2567 (((-85) $ $) 7 T ELT)) (-3187 (((-85) $) 22 T ELT)) (-3128 (((-483) $) 108 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3980 $) (|:| |associate| $)) $) 55 T ELT)) (-2062 (($ $) 54 T ELT)) (-2060 (((-85) $) 52 T ELT)) (-3769 (($ $) 106 T ELT)) (-1310 (((-3 $ "failed") $ $) 26 T ELT)) (-3773 (($ $) 91 T ELT)) (-3969 (((-346 $) $) 90 T ELT)) (-3036 (($ $) 116 T ELT)) (-1606 (((-85) $ $) 75 T ELT)) (-3621 (((-483) $) 133 T ELT)) (-3722 (($) 23 T CONST)) (-3126 (($ $) 105 T ELT)) (-3156 (((-3 (-483) #1="failed") $) 121 T ELT) (((-3 (-348 (-483)) #1#) $) 118 T ELT)) (-3155 (((-483) $) 122 T ELT) (((-348 (-483)) $) 119 T ELT)) (-2563 (($ $ $) 71 T ELT)) (-3465 (((-3 $ "failed") $) 42 T ELT)) (-2562 (($ $ $) 72 T ELT)) (-2740 (((-2 (|:| -3952 (-582 $)) (|:| -2408 $)) (-582 $)) 66 T ELT)) (-3721 (((-85) $) 89 T ELT)) (-3185 (((-85) $) 131 T ELT)) (-2795 (((-797 (-328) $) $ (-799 (-328)) (-797 (-328) $)) 112 T ELT)) (-1212 (((-85) $ $) 20 T ELT)) (-2409 (((-85) $) 44 T ELT)) (-3010 (($ $ (-483)) 115 T ELT)) (-3131 (($ $) 111 T ELT)) (-3186 (((-85) $) 132 T ELT)) (-1603 (((-3 (-582 $) #2="failed") (-582 $) $) 68 T ELT)) (-2530 (($ $ $) 125 T ELT)) (-2856 (($ $ $) 126 T ELT)) (-1889 (($ $ $) 60 T ELT) (($ (-582 $)) 59 T ELT)) (-3241 (((-1071) $) 11 T ELT)) (-2483 (($ $) 88 T ELT)) (-3242 (((-1032) $) 12 T ELT)) (-2707 (((-1083 $) (-1083 $) (-1083 $)) 58 T ELT)) (-3143 (($ $ $) 62 T ELT) (($ (-582 $)) 61 T ELT)) (-3127 (($ $) 107 T ELT)) (-3129 (($ $) 109 T ELT)) (-3730 (((-346 $) $) 92 T ELT)) (-1604 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 69 T ELT)) (-3464 (((-3 $ "failed") $ $) 56 T ELT)) (-2739 (((-631 (-582 $)) (-582 $) $) 65 T ELT)) (-1605 (((-693) $) 74 T ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) 73 T ELT)) (-3970 (((-328) $) 124 T ELT) (((-179) $) 123 T ELT) (((-799 (-328)) $) 113 T ELT)) (-3944 (((-771) $) 13 T ELT) (($ (-483)) 41 T ELT) (($ $) 57 T ELT) (($ (-348 (-483))) 84 T ELT) (($ (-483)) 120 T ELT) (($ (-348 (-483))) 117 T ELT)) (-3125 (((-693)) 40 T CONST)) (-3130 (($ $) 110 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2061 (((-85) $ $) 53 T ELT)) (-3124 (((-85) $ $) 33 T ELT)) (-3381 (($ $) 134 T ELT)) (-2659 (($) 24 T CONST)) (-2665 (($) 45 T CONST)) (-2565 (((-85) $ $) 127 T ELT)) (-2566 (((-85) $ $) 129 T ELT)) (-3055 (((-85) $ $) 8 T ELT)) (-2683 (((-85) $ $) 128 T ELT)) (-2684 (((-85) $ $) 130 T ELT)) (-3947 (($ $ $) 83 T ELT)) (-3835 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3837 (($ $ $) 18 T ELT)) (** (($ $ (-829)) 35 T ELT) (($ $ (-693)) 43 T ELT) (($ $ (-483)) 87 T ELT) (($ $ (-348 (-483))) 114 T ELT)) (* (($ (-829) $) 17 T ELT) (($ (-693) $) 21 T ELT) (($ (-483) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-348 (-483))) 86 T ELT) (($ (-348 (-483)) $) 85 T ELT))) -(((-972) (-113)) (T -972)) -((-3131 (*1 *1 *1) (-4 *1 (-972))) (-3130 (*1 *1 *1) (-4 *1 (-972))) (-3129 (*1 *1 *1) (-4 *1 (-972))) (-3128 (*1 *2 *1) (-12 (-4 *1 (-972)) (-5 *2 (-483)))) (-3127 (*1 *1 *1) (-4 *1 (-972))) (-3769 (*1 *1 *1) (-4 *1 (-972))) (-3126 (*1 *1 *1) (-4 *1 (-972)))) -(-13 (-312) (-754) (-932) (-949 (-483)) (-949 (-348 (-483))) (-914) (-552 (-799 (-328))) (-795 (-328)) (-120) (-10 -8 (-15 -3131 ($ $)) (-15 -3130 ($ $)) (-15 -3129 ($ $)) (-15 -3128 ((-483) $)) (-15 -3127 ($ $)) (-15 -3769 ($ $)) (-15 -3126 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-348 (-483))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-348 (-483)) (-348 (-483))) . T) ((-82 $ $) . T) ((-104) . T) ((-120) . T) ((-554 (-348 (-483))) . T) ((-554 (-483)) . T) ((-554 $) . T) ((-551 (-771)) . T) ((-146) . T) ((-552 (-179)) . T) ((-552 (-328)) . T) ((-552 (-799 (-328))) . T) ((-201) . T) ((-246) . T) ((-258) . T) ((-312) . T) ((-390) . T) ((-494) . T) ((-13) . T) ((-587 (-348 (-483))) . T) ((-587 (-483)) . T) ((-587 $) . T) ((-589 (-348 (-483))) . T) ((-589 $) . T) ((-581 (-348 (-483))) . T) ((-581 $) . T) ((-653 (-348 (-483))) . T) ((-653 $) . T) ((-662) . T) ((-713) . T) ((-715) . T) ((-717) . T) ((-720) . T) ((-754) . T) ((-755) . T) ((-758) . T) ((-795 (-328)) . T) ((-831) . T) ((-914) . T) ((-932) . T) ((-949 (-348 (-483))) . T) ((-949 (-483)) . T) ((-962 (-348 (-483))) . T) ((-962 $) . T) ((-967 (-348 (-483))) . T) ((-967 $) . T) ((-960) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T) ((-1132) . T)) -((-2567 (((-85) $ $) NIL T ELT)) (-3187 (((-85) |#2| $) 26 T ELT)) (-3135 ((|#1| $) 10 T ELT)) (-3621 (((-483) |#2| $) 119 T ELT)) (-3182 (((-3 $ #1="failed") |#2| (-829)) 76 T ELT)) (-3136 ((|#1| $) 31 T ELT)) (-3181 ((|#1| |#2| $ |#1|) 40 T ELT)) (-3133 (($ $) 28 T ELT)) (-3465 (((-3 |#2| #1#) |#2| $) 113 T ELT)) (-3185 (((-85) |#2| $) NIL T ELT)) (-3186 (((-85) |#2| $) NIL T ELT)) (-3132 (((-85) |#2| $) 27 T ELT)) (-3134 ((|#1| $) 120 T ELT)) (-3137 ((|#1| $) 30 T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3184 ((|#2| $) 104 T ELT)) (-3944 (((-771) $) 95 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3768 ((|#1| |#2| $ |#1|) 41 T ELT)) (-3183 (((-582 $) |#2|) 78 T ELT)) (-3055 (((-85) $ $) 99 T ELT))) -(((-973 |#1| |#2|) (-13 (-979 |#1| |#2|) (-10 -8 (-15 -3137 (|#1| $)) (-15 -3136 (|#1| $)) (-15 -3135 (|#1| $)) (-15 -3134 (|#1| $)) (-15 -3133 ($ $)) (-15 -3132 ((-85) |#2| $)) (-15 -3181 (|#1| |#2| $ |#1|)))) (-13 (-754) (-312)) (-1153 |#1|)) (T -973)) -((-3181 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-754) (-312))) (-5 *1 (-973 *2 *3)) (-4 *3 (-1153 *2)))) (-3137 (*1 *2 *1) (-12 (-4 *2 (-13 (-754) (-312))) (-5 *1 (-973 *2 *3)) (-4 *3 (-1153 *2)))) (-3136 (*1 *2 *1) (-12 (-4 *2 (-13 (-754) (-312))) (-5 *1 (-973 *2 *3)) (-4 *3 (-1153 *2)))) (-3135 (*1 *2 *1) (-12 (-4 *2 (-13 (-754) (-312))) (-5 *1 (-973 *2 *3)) (-4 *3 (-1153 *2)))) (-3134 (*1 *2 *1) (-12 (-4 *2 (-13 (-754) (-312))) (-5 *1 (-973 *2 *3)) (-4 *3 (-1153 *2)))) (-3133 (*1 *1 *1) (-12 (-4 *2 (-13 (-754) (-312))) (-5 *1 (-973 *2 *3)) (-4 *3 (-1153 *2)))) (-3132 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-754) (-312))) (-5 *2 (-85)) (-5 *1 (-973 *4 *3)) (-4 *3 (-1153 *4))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3187 (((-85) $) NIL T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3980 $) (|:| |associate| $)) $) NIL T ELT)) (-2062 (($ $) NIL T ELT)) (-2060 (((-85) $) NIL T ELT)) (-2046 (($ $ $) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2041 (($ $ $ $) NIL T ELT)) (-3773 (($ $) NIL T ELT)) (-3969 (((-346 $) $) NIL T ELT)) (-1606 (((-85) $ $) NIL T ELT)) (-3621 (((-483) $) NIL T ELT)) (-2440 (($ $ $) NIL T ELT)) (-3722 (($) NIL T CONST)) (-3138 (($ (-1088)) 10 T ELT) (($ (-483)) 7 T ELT)) (-3156 (((-3 (-483) #1#) $) NIL T ELT)) (-3155 (((-483) $) NIL T ELT)) (-2563 (($ $ $) NIL T ELT)) (-2278 (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-629 $) (-1177 $)) NIL T ELT) (((-629 (-483)) (-629 $)) NIL T ELT)) (-3465 (((-3 $ #1#) $) NIL T ELT)) (-3023 (((-3 (-348 (-483)) #1#) $) NIL T ELT)) (-3022 (((-85) $) NIL T ELT)) (-3021 (((-348 (-483)) $) NIL T ELT)) (-2993 (($) NIL T ELT) (($ $) NIL T ELT)) (-2562 (($ $ $) NIL T ELT)) (-2740 (((-2 (|:| -3952 (-582 $)) (|:| -2408 $)) (-582 $)) NIL T ELT)) (-3721 (((-85) $) NIL T ELT)) (-2039 (($ $ $ $) NIL T ELT)) (-2047 (($ $ $) NIL T ELT)) (-3185 (((-85) $) NIL T ELT)) (-1367 (($ $ $) NIL T ELT)) (-2795 (((-797 (-483) $) $ (-799 (-483)) (-797 (-483) $)) NIL T ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-2409 (((-85) $) NIL T ELT)) (-2672 (((-85) $) NIL T ELT)) (-3443 (((-631 $) $) NIL T ELT)) (-3186 (((-85) $) NIL T ELT)) (-1603 (((-3 (-582 $) #1#) (-582 $) $) NIL T ELT)) (-2040 (($ $ $ $) NIL T ELT)) (-2530 (($ $ $) NIL T ELT)) (-2856 (($ $ $) NIL T ELT)) (-2043 (($ $) NIL T ELT)) (-3831 (($ $) NIL T ELT)) (-2279 (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL T ELT) (((-629 (-483)) (-1177 $)) NIL T ELT)) (-1889 (($ $ $) NIL T ELT) (($ (-582 $)) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-2038 (($ $ $) NIL T ELT)) (-3444 (($) NIL T CONST)) (-2045 (($ $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-2707 (((-1083 $) (-1083 $) (-1083 $)) NIL T ELT)) (-3143 (($ $ $) NIL T ELT) (($ (-582 $)) NIL T ELT)) (-1365 (($ $) NIL T ELT)) (-3730 (((-346 $) $) NIL T ELT)) (-1604 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL T ELT)) (-3464 (((-3 $ #1#) $ $) NIL T ELT)) (-2739 (((-631 (-582 $)) (-582 $) $) NIL T ELT)) (-2673 (((-85) $) NIL T ELT)) (-1605 (((-693) $) NIL T ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL T ELT)) (-3756 (($ $) NIL T ELT) (($ $ (-693)) NIL T ELT)) (-2044 (($ $) NIL T ELT)) (-3398 (($ $) NIL T ELT)) (-3970 (((-483) $) 16 T ELT) (((-472) $) NIL T ELT) (((-799 (-483)) $) NIL T ELT) (((-328) $) NIL T ELT) (((-179) $) NIL T ELT) (($ (-1088)) 9 T ELT)) (-3944 (((-771) $) 23 T ELT) (($ (-483)) 6 T ELT) (($ $) NIL T ELT) (($ (-483)) 6 T ELT)) (-3125 (((-693)) NIL T CONST)) (-2048 (((-85) $ $) NIL T ELT)) (-3100 (($ $ $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2693 (($) NIL T ELT)) (-2061 (((-85) $ $) NIL T ELT)) (-3124 (((-85) $ $) NIL T ELT)) (-2042 (($ $ $ $) NIL T ELT)) (-3381 (($ $) NIL T ELT)) (-2659 (($) NIL T CONST)) (-2665 (($) NIL T CONST)) (-2668 (($ $) NIL T ELT) (($ $ (-693)) NIL T ELT)) (-2565 (((-85) $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-2683 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-3835 (($ $) 22 T ELT) (($ $ $) NIL T ELT)) (-3837 (($ $ $) NIL T ELT)) (** (($ $ (-829)) NIL T ELT) (($ $ (-693)) NIL T ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-483) $) NIL T ELT))) -(((-974) (-13 (-482) (-556 (-1088)) (-10 -8 (-6 -3980) (-6 -3985) (-6 -3981) (-15 -3138 ($ (-1088))) (-15 -3138 ($ (-483)))))) (T -974)) -((-3138 (*1 *1 *2) (-12 (-5 *2 (-1088)) (-5 *1 (-974)))) (-3138 (*1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-974))))) -((-3795 (($ $) 46 T ELT)) (-3165 (((-85) $ $) 82 T ELT)) (-3156 (((-3 |#2| #1="failed") $) NIL T ELT) (((-3 (-348 (-483)) #1#) $) NIL T ELT) (((-3 (-483) #1#) $) NIL T ELT) (((-3 |#4| #1#) $) NIL T ELT) (((-3 $ #1#) (-856 (-348 (-483)))) 247 T ELT) (((-3 $ #1#) (-856 (-483))) 246 T ELT) (((-3 $ #1#) (-856 |#2|)) 249 T ELT)) (-3155 ((|#2| $) NIL T ELT) (((-348 (-483)) $) NIL T ELT) (((-483) $) NIL T ELT) ((|#4| $) NIL T ELT) (($ (-856 (-348 (-483)))) 235 T ELT) (($ (-856 (-483))) 231 T ELT) (($ (-856 |#2|)) 255 T ELT)) (-3957 (($ $) NIL T ELT) (($ $ |#4|) 44 T ELT)) (-3692 (((-85) $ $) 131 T ELT) (((-85) $ (-582 $)) 135 T ELT)) (-3171 (((-85) $) 60 T ELT)) (-3750 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) 125 T ELT)) (-3142 (($ $) 160 T ELT)) (-3153 (($ $) 156 T ELT)) (-3154 (($ $) 155 T ELT)) (-3164 (($ $ $) 87 T ELT) (($ $ $ |#4|) 92 T ELT)) (-3163 (($ $ $) 90 T ELT) (($ $ $ |#4|) 94 T ELT)) (-3693 (((-85) $ $) 143 T ELT) (((-85) $ (-582 $)) 144 T ELT)) (-3179 ((|#4| $) 32 T ELT)) (-3158 (($ $ $) 128 T ELT)) (-3172 (((-85) $) 59 T ELT)) (-3178 (((-693) $) 35 T ELT)) (-3139 (($ $) 174 T ELT)) (-3140 (($ $) 171 T ELT)) (-3167 (((-582 $) $) 72 T ELT)) (-3170 (($ $) 62 T ELT)) (-3141 (($ $) 167 T ELT)) (-3168 (((-582 $) $) 69 T ELT)) (-3169 (($ $) 64 T ELT)) (-3173 ((|#2| $) NIL T ELT) (($ $ |#4|) 39 T ELT)) (-3157 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3479 (-693))) $ $) 130 T ELT)) (-3159 (((-2 (|:| -3952 $) (|:| |gap| (-693)) (|:| -1971 $) (|:| -2901 $)) $ $) 126 T ELT) (((-2 (|:| -3952 $) (|:| |gap| (-693)) (|:| -1971 $) (|:| -2901 $)) $ $ |#4|) 127 T ELT)) (-3160 (((-2 (|:| -3952 $) (|:| |gap| (-693)) (|:| -2901 $)) $ $) 121 T ELT) (((-2 (|:| -3952 $) (|:| |gap| (-693)) (|:| -2901 $)) $ $ |#4|) 123 T ELT)) (-3162 (($ $ $) 97 T ELT) (($ $ $ |#4|) 106 T ELT)) (-3161 (($ $ $) 98 T ELT) (($ $ $ |#4|) 107 T ELT)) (-3175 (((-582 $) $) 54 T ELT)) (-3689 (((-85) $ $) 140 T ELT) (((-85) $ (-582 $)) 141 T ELT)) (-3684 (($ $ $) 116 T ELT)) (-3444 (($ $) 37 T ELT)) (-3697 (((-85) $ $) 80 T ELT)) (-3690 (((-85) $ $) 136 T ELT) (((-85) $ (-582 $)) 138 T ELT)) (-3685 (($ $ $) 112 T ELT)) (-3177 (($ $) 41 T ELT)) (-3143 ((|#2| |#2| $) 164 T ELT) (($ (-582 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3151 (($ $ |#2|) NIL T ELT) (($ $ $) 153 T ELT)) (-3152 (($ $ |#2|) 148 T ELT) (($ $ $) 151 T ELT)) (-3176 (($ $) 49 T ELT)) (-3174 (($ $) 55 T ELT)) (-3970 (((-799 (-328)) $) NIL T ELT) (((-799 (-483)) $) NIL T ELT) (((-472) $) NIL T ELT) (($ (-856 (-348 (-483)))) 237 T ELT) (($ (-856 (-483))) 233 T ELT) (($ (-856 |#2|)) 248 T ELT) (((-1071) $) 278 T ELT) (((-856 |#2|) $) 184 T ELT)) (-3944 (((-771) $) 29 T ELT) (($ (-483)) NIL T ELT) (($ |#2|) NIL T ELT) (($ |#4|) NIL T ELT) (((-856 |#2|) $) 185 T ELT) (($ (-348 (-483))) NIL T ELT) (($ $) NIL T ELT)) (-3166 (((-3 (-85) #1#) $ $) 79 T ELT))) -(((-975 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3944 (|#1| |#1|)) (-15 -3143 (|#1| |#1| |#1|)) (-15 -3143 (|#1| (-582 |#1|))) (-15 -3944 (|#1| (-348 (-483)))) (-15 -3944 ((-856 |#2|) |#1|)) (-15 -3970 ((-856 |#2|) |#1|)) (-15 -3970 ((-1071) |#1|)) (-15 -3139 (|#1| |#1|)) (-15 -3140 (|#1| |#1|)) (-15 -3141 (|#1| |#1|)) (-15 -3142 (|#1| |#1|)) (-15 -3143 (|#2| |#2| |#1|)) (-15 -3151 (|#1| |#1| |#1|)) (-15 -3152 (|#1| |#1| |#1|)) (-15 -3151 (|#1| |#1| |#2|)) (-15 -3152 (|#1| |#1| |#2|)) (-15 -3153 (|#1| |#1|)) (-15 -3154 (|#1| |#1|)) (-15 -3970 (|#1| (-856 |#2|))) (-15 -3155 (|#1| (-856 |#2|))) (-15 -3156 ((-3 |#1| #1="failed") (-856 |#2|))) (-15 -3970 (|#1| (-856 (-483)))) (-15 -3155 (|#1| (-856 (-483)))) (-15 -3156 ((-3 |#1| #1#) (-856 (-483)))) (-15 -3970 (|#1| (-856 (-348 (-483))))) (-15 -3155 (|#1| (-856 (-348 (-483))))) (-15 -3156 ((-3 |#1| #1#) (-856 (-348 (-483))))) (-15 -3684 (|#1| |#1| |#1|)) (-15 -3685 (|#1| |#1| |#1|)) (-15 -3157 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3479 (-693))) |#1| |#1|)) (-15 -3158 (|#1| |#1| |#1|)) (-15 -3750 ((-2 (|:| -1971 |#1|) (|:| -2901 |#1|)) |#1| |#1|)) (-15 -3159 ((-2 (|:| -3952 |#1|) (|:| |gap| (-693)) (|:| -1971 |#1|) (|:| -2901 |#1|)) |#1| |#1| |#4|)) (-15 -3159 ((-2 (|:| -3952 |#1|) (|:| |gap| (-693)) (|:| -1971 |#1|) (|:| -2901 |#1|)) |#1| |#1|)) (-15 -3160 ((-2 (|:| -3952 |#1|) (|:| |gap| (-693)) (|:| -2901 |#1|)) |#1| |#1| |#4|)) (-15 -3160 ((-2 (|:| -3952 |#1|) (|:| |gap| (-693)) (|:| -2901 |#1|)) |#1| |#1|)) (-15 -3161 (|#1| |#1| |#1| |#4|)) (-15 -3162 (|#1| |#1| |#1| |#4|)) (-15 -3161 (|#1| |#1| |#1|)) (-15 -3162 (|#1| |#1| |#1|)) (-15 -3163 (|#1| |#1| |#1| |#4|)) (-15 -3164 (|#1| |#1| |#1| |#4|)) (-15 -3163 (|#1| |#1| |#1|)) (-15 -3164 (|#1| |#1| |#1|)) (-15 -3693 ((-85) |#1| (-582 |#1|))) (-15 -3693 ((-85) |#1| |#1|)) (-15 -3689 ((-85) |#1| (-582 |#1|))) (-15 -3689 ((-85) |#1| |#1|)) (-15 -3690 ((-85) |#1| (-582 |#1|))) (-15 -3690 ((-85) |#1| |#1|)) (-15 -3692 ((-85) |#1| (-582 |#1|))) (-15 -3692 ((-85) |#1| |#1|)) (-15 -3165 ((-85) |#1| |#1|)) (-15 -3697 ((-85) |#1| |#1|)) (-15 -3166 ((-3 (-85) #1#) |#1| |#1|)) (-15 -3167 ((-582 |#1|) |#1|)) (-15 -3168 ((-582 |#1|) |#1|)) (-15 -3169 (|#1| |#1|)) (-15 -3170 (|#1| |#1|)) (-15 -3171 ((-85) |#1|)) (-15 -3172 ((-85) |#1|)) (-15 -3957 (|#1| |#1| |#4|)) (-15 -3173 (|#1| |#1| |#4|)) (-15 -3174 (|#1| |#1|)) (-15 -3175 ((-582 |#1|) |#1|)) (-15 -3176 (|#1| |#1|)) (-15 -3795 (|#1| |#1|)) (-15 -3177 (|#1| |#1|)) (-15 -3444 (|#1| |#1|)) (-15 -3178 ((-693) |#1|)) (-15 -3179 (|#4| |#1|)) (-15 -3970 ((-472) |#1|)) (-15 -3970 ((-799 (-483)) |#1|)) (-15 -3970 ((-799 (-328)) |#1|)) (-15 -3944 (|#1| |#4|)) (-15 -3156 ((-3 |#4| #1#) |#1|)) (-15 -3155 (|#4| |#1|)) (-15 -3173 (|#2| |#1|)) (-15 -3957 (|#1| |#1|)) (-15 -3156 ((-3 (-483) #1#) |#1|)) (-15 -3155 ((-483) |#1|)) (-15 -3156 ((-3 (-348 (-483)) #1#) |#1|)) (-15 -3155 ((-348 (-483)) |#1|)) (-15 -3155 (|#2| |#1|)) (-15 -3156 ((-3 |#2| #1#) |#1|)) (-15 -3944 (|#1| |#2|)) (-15 -3944 (|#1| (-483))) (-15 -3944 ((-771) |#1|))) (-976 |#2| |#3| |#4|) (-960) (-716) (-755)) (T -975)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-3187 (((-85) $) 22 T ELT)) (-3080 (((-582 |#3|) $) 123 T ELT)) (-3082 (((-1083 $) $ |#3|) 138 T ELT) (((-1083 |#1|) $) 137 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3980 $) (|:| |associate| $)) $) 100 (|has| |#1| (-494)) ELT)) (-2062 (($ $) 101 (|has| |#1| (-494)) ELT)) (-2060 (((-85) $) 103 (|has| |#1| (-494)) ELT)) (-2818 (((-693) $) 125 T ELT) (((-693) $ (-582 |#3|)) 124 T ELT)) (-3795 (($ $) 293 T ELT)) (-3165 (((-85) $ $) 279 T ELT)) (-1310 (((-3 $ "failed") $ $) 26 T ELT)) (-3753 (($ $ $) 238 (|has| |#1| (-494)) ELT)) (-3147 (((-582 $) $ $) 233 (|has| |#1| (-494)) ELT)) (-2706 (((-346 (-1083 $)) (-1083 $)) 113 (|has| |#1| (-820)) ELT)) (-3773 (($ $) 111 (|has| |#1| (-390)) ELT)) (-3969 (((-346 $) $) 110 (|has| |#1| (-390)) ELT)) (-2703 (((-3 (-582 (-1083 $)) #1="failed") (-582 (-1083 $)) (-1083 $)) 116 (|has| |#1| (-820)) ELT)) (-3722 (($) 23 T CONST)) (-3156 (((-3 |#1| #2="failed") $) 181 T ELT) (((-3 (-348 (-483)) #2#) $) 178 (|has| |#1| (-949 (-348 (-483)))) ELT) (((-3 (-483) #2#) $) 176 (|has| |#1| (-949 (-483))) ELT) (((-3 |#3| #2#) $) 153 T ELT) (((-3 $ "failed") (-856 (-348 (-483)))) 253 (-12 (|has| |#1| (-38 (-348 (-483)))) (|has| |#3| (-552 (-1088)))) ELT) (((-3 $ "failed") (-856 (-483))) 250 (OR (-12 (-2559 (|has| |#1| (-38 (-348 (-483))))) (|has| |#1| (-38 (-483))) (|has| |#3| (-552 (-1088)))) (-12 (|has| |#1| (-38 (-348 (-483)))) (|has| |#3| (-552 (-1088))))) ELT) (((-3 $ "failed") (-856 |#1|)) 247 (OR (-12 (-2559 (|has| |#1| (-38 (-348 (-483))))) (-2559 (|has| |#1| (-38 (-483)))) (|has| |#3| (-552 (-1088)))) (-12 (-2559 (|has| |#1| (-482))) (-2559 (|has| |#1| (-38 (-348 (-483))))) (|has| |#1| (-38 (-483))) (|has| |#3| (-552 (-1088)))) (-12 (-2559 (|has| |#1| (-903 (-483)))) (|has| |#1| (-38 (-348 (-483)))) (|has| |#3| (-552 (-1088))))) ELT)) (-3155 ((|#1| $) 180 T ELT) (((-348 (-483)) $) 179 (|has| |#1| (-949 (-348 (-483)))) ELT) (((-483) $) 177 (|has| |#1| (-949 (-483))) ELT) ((|#3| $) 154 T ELT) (($ (-856 (-348 (-483)))) 252 (-12 (|has| |#1| (-38 (-348 (-483)))) (|has| |#3| (-552 (-1088)))) ELT) (($ (-856 (-483))) 249 (OR (-12 (-2559 (|has| |#1| (-38 (-348 (-483))))) (|has| |#1| (-38 (-483))) (|has| |#3| (-552 (-1088)))) (-12 (|has| |#1| (-38 (-348 (-483)))) (|has| |#3| (-552 (-1088))))) ELT) (($ (-856 |#1|)) 246 (OR (-12 (-2559 (|has| |#1| (-38 (-348 (-483))))) (-2559 (|has| |#1| (-38 (-483)))) (|has| |#3| (-552 (-1088)))) (-12 (-2559 (|has| |#1| (-482))) (-2559 (|has| |#1| (-38 (-348 (-483))))) (|has| |#1| (-38 (-483))) (|has| |#3| (-552 (-1088)))) (-12 (-2559 (|has| |#1| (-903 (-483)))) (|has| |#1| (-38 (-348 (-483)))) (|has| |#3| (-552 (-1088))))) ELT)) (-3754 (($ $ $ |#3|) 121 (|has| |#1| (-146)) ELT) (($ $ $) 234 (|has| |#1| (-494)) ELT)) (-3957 (($ $) 171 T ELT) (($ $ |#3|) 288 T ELT)) (-2278 (((-629 (-483)) (-629 $)) 149 (|has| |#1| (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-629 $) (-1177 $)) 148 (|has| |#1| (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 |#1|)) (|:| |vec| (-1177 |#1|))) (-629 $) (-1177 $)) 147 T ELT) (((-629 |#1|) (-629 $)) 146 T ELT)) (-3692 (((-85) $ $) 278 T ELT) (((-85) $ (-582 $)) 277 T ELT)) (-3465 (((-3 $ "failed") $) 42 T ELT)) (-3171 (((-85) $) 286 T ELT)) (-3750 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) 258 T ELT)) (-3142 (($ $) 227 (|has| |#1| (-390)) ELT)) (-3501 (($ $) 193 (|has| |#1| (-390)) ELT) (($ $ |#3|) 118 (|has| |#1| (-390)) ELT)) (-2817 (((-582 $) $) 122 T ELT)) (-3721 (((-85) $) 109 (|has| |#1| (-820)) ELT)) (-3153 (($ $) 243 (|has| |#1| (-494)) ELT)) (-3154 (($ $) 244 (|has| |#1| (-494)) ELT)) (-3164 (($ $ $) 270 T ELT) (($ $ $ |#3|) 268 T ELT)) (-3163 (($ $ $) 269 T ELT) (($ $ $ |#3|) 267 T ELT)) (-1622 (($ $ |#1| |#2| $) 189 T ELT)) (-2795 (((-797 (-328) $) $ (-799 (-328)) (-797 (-328) $)) 97 (-12 (|has| |#3| (-795 (-328))) (|has| |#1| (-795 (-328)))) ELT) (((-797 (-483) $) $ (-799 (-483)) (-797 (-483) $)) 96 (-12 (|has| |#3| (-795 (-483))) (|has| |#1| (-795 (-483)))) ELT)) (-1212 (((-85) $ $) 20 T ELT)) (-2409 (((-85) $) 44 T ELT)) (-2419 (((-693) $) 186 T ELT)) (-3693 (((-85) $ $) 272 T ELT) (((-85) $ (-582 $)) 271 T ELT)) (-3144 (($ $ $ $ $) 229 (|has| |#1| (-494)) ELT)) (-3179 ((|#3| $) 297 T ELT)) (-3083 (($ (-1083 |#1|) |#3|) 130 T ELT) (($ (-1083 $) |#3|) 129 T ELT)) (-2820 (((-582 $) $) 139 T ELT)) (-3935 (((-85) $) 169 T ELT)) (-2892 (($ |#1| |#2|) 170 T ELT) (($ $ |#3| (-693)) 132 T ELT) (($ $ (-582 |#3|) (-582 (-693))) 131 T ELT)) (-3158 (($ $ $) 257 T ELT)) (-3761 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $ |#3|) 133 T ELT)) (-3172 (((-85) $) 287 T ELT)) (-2819 ((|#2| $) 187 T ELT) (((-693) $ |#3|) 135 T ELT) (((-582 (-693)) $ (-582 |#3|)) 134 T ELT)) (-3178 (((-693) $) 296 T ELT)) (-1623 (($ (-1 |#2| |#2|) $) 188 T ELT)) (-3956 (($ (-1 |#1| |#1|) $) 168 T ELT)) (-3081 (((-3 |#3| #3="failed") $) 136 T ELT)) (-3139 (($ $) 224 (|has| |#1| (-390)) ELT)) (-3140 (($ $) 225 (|has| |#1| (-390)) ELT)) (-3167 (((-582 $) $) 282 T ELT)) (-3170 (($ $) 285 T ELT)) (-3141 (($ $) 226 (|has| |#1| (-390)) ELT)) (-3168 (((-582 $) $) 283 T ELT)) (-2279 (((-629 (-483)) (-1177 $)) 151 (|has| |#1| (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) 150 (|has| |#1| (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 |#1|)) (|:| |vec| (-1177 |#1|))) (-1177 $) $) 145 T ELT) (((-629 |#1|) (-1177 $)) 144 T ELT)) (-3169 (($ $) 284 T ELT)) (-2893 (($ $) 166 T ELT)) (-3173 ((|#1| $) 165 T ELT) (($ $ |#3|) 289 T ELT)) (-1889 (($ (-582 $)) 107 (|has| |#1| (-390)) ELT) (($ $ $) 106 (|has| |#1| (-390)) ELT)) (-3157 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3479 (-693))) $ $) 256 T ELT)) (-3159 (((-2 (|:| -3952 $) (|:| |gap| (-693)) (|:| -1971 $) (|:| -2901 $)) $ $) 260 T ELT) (((-2 (|:| -3952 $) (|:| |gap| (-693)) (|:| -1971 $) (|:| -2901 $)) $ $ |#3|) 259 T ELT)) (-3160 (((-2 (|:| -3952 $) (|:| |gap| (-693)) (|:| -2901 $)) $ $) 262 T ELT) (((-2 (|:| -3952 $) (|:| |gap| (-693)) (|:| -2901 $)) $ $ |#3|) 261 T ELT)) (-3162 (($ $ $) 266 T ELT) (($ $ $ |#3|) 264 T ELT)) (-3161 (($ $ $) 265 T ELT) (($ $ $ |#3|) 263 T ELT)) (-3241 (((-1071) $) 11 T ELT)) (-3189 (($ $ $) 232 (|has| |#1| (-494)) ELT)) (-3175 (((-582 $) $) 291 T ELT)) (-2822 (((-3 (-582 $) #3#) $) 127 T ELT)) (-2821 (((-3 (-582 $) #3#) $) 128 T ELT)) (-2823 (((-3 (-2 (|:| |var| |#3|) (|:| -2400 (-693))) #3#) $) 126 T ELT)) (-3689 (((-85) $ $) 274 T ELT) (((-85) $ (-582 $)) 273 T ELT)) (-3684 (($ $ $) 254 T ELT)) (-3444 (($ $) 295 T ELT)) (-3697 (((-85) $ $) 280 T ELT)) (-3690 (((-85) $ $) 276 T ELT) (((-85) $ (-582 $)) 275 T ELT)) (-3685 (($ $ $) 255 T ELT)) (-3177 (($ $) 294 T ELT)) (-3242 (((-1032) $) 12 T ELT)) (-3148 (((-2 (|:| -3143 $) (|:| |coef2| $)) $ $) 235 (|has| |#1| (-494)) ELT)) (-3149 (((-2 (|:| -3143 $) (|:| |coef1| $)) $ $) 236 (|has| |#1| (-494)) ELT)) (-1795 (((-85) $) 183 T ELT)) (-1794 ((|#1| $) 184 T ELT)) (-2707 (((-1083 $) (-1083 $) (-1083 $)) 108 (|has| |#1| (-390)) ELT)) (-3143 ((|#1| |#1| $) 228 (|has| |#1| (-390)) ELT) (($ (-582 $)) 105 (|has| |#1| (-390)) ELT) (($ $ $) 104 (|has| |#1| (-390)) ELT)) (-2704 (((-346 (-1083 $)) (-1083 $)) 115 (|has| |#1| (-820)) ELT)) (-2705 (((-346 (-1083 $)) (-1083 $)) 114 (|has| |#1| (-820)) ELT)) (-3730 (((-346 $) $) 112 (|has| |#1| (-820)) ELT)) (-3150 (((-2 (|:| -3143 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 237 (|has| |#1| (-494)) ELT)) (-3464 (((-3 $ "failed") $ |#1|) 191 (|has| |#1| (-494)) ELT) (((-3 $ "failed") $ $) 99 (|has| |#1| (-494)) ELT)) (-3151 (($ $ |#1|) 241 (|has| |#1| (-494)) ELT) (($ $ $) 239 (|has| |#1| (-494)) ELT)) (-3152 (($ $ |#1|) 242 (|has| |#1| (-494)) ELT) (($ $ $) 240 (|has| |#1| (-494)) ELT)) (-3766 (($ $ (-582 (-249 $))) 162 T ELT) (($ $ (-249 $)) 161 T ELT) (($ $ $ $) 160 T ELT) (($ $ (-582 $) (-582 $)) 159 T ELT) (($ $ |#3| |#1|) 158 T ELT) (($ $ (-582 |#3|) (-582 |#1|)) 157 T ELT) (($ $ |#3| $) 156 T ELT) (($ $ (-582 |#3|) (-582 $)) 155 T ELT)) (-3755 (($ $ |#3|) 120 (|has| |#1| (-146)) ELT)) (-3756 (($ $ (-582 |#3|) (-582 (-693))) 52 T ELT) (($ $ |#3| (-693)) 51 T ELT) (($ $ (-582 |#3|)) 50 T ELT) (($ $ |#3|) 48 T ELT)) (-3946 ((|#2| $) 167 T ELT) (((-693) $ |#3|) 143 T ELT) (((-582 (-693)) $ (-582 |#3|)) 142 T ELT)) (-3176 (($ $) 292 T ELT)) (-3174 (($ $) 290 T ELT)) (-3970 (((-799 (-328)) $) 95 (-12 (|has| |#3| (-552 (-799 (-328)))) (|has| |#1| (-552 (-799 (-328))))) ELT) (((-799 (-483)) $) 94 (-12 (|has| |#3| (-552 (-799 (-483)))) (|has| |#1| (-552 (-799 (-483))))) ELT) (((-472) $) 93 (-12 (|has| |#3| (-552 (-472))) (|has| |#1| (-552 (-472)))) ELT) (($ (-856 (-348 (-483)))) 251 (-12 (|has| |#1| (-38 (-348 (-483)))) (|has| |#3| (-552 (-1088)))) ELT) (($ (-856 (-483))) 248 (OR (-12 (-2559 (|has| |#1| (-38 (-348 (-483))))) (|has| |#1| (-38 (-483))) (|has| |#3| (-552 (-1088)))) (-12 (|has| |#1| (-38 (-348 (-483)))) (|has| |#3| (-552 (-1088))))) ELT) (($ (-856 |#1|)) 245 (|has| |#3| (-552 (-1088))) ELT) (((-1071) $) 223 (-12 (|has| |#1| (-949 (-483))) (|has| |#3| (-552 (-1088)))) ELT) (((-856 |#1|) $) 222 (|has| |#3| (-552 (-1088))) ELT)) (-2816 ((|#1| $) 192 (|has| |#1| (-390)) ELT) (($ $ |#3|) 119 (|has| |#1| (-390)) ELT)) (-2702 (((-3 (-1177 $) #1#) (-629 $)) 117 (-2561 (|has| $ (-118)) (|has| |#1| (-820))) ELT)) (-3944 (((-771) $) 13 T ELT) (($ (-483)) 41 T ELT) (($ |#1|) 182 T ELT) (($ |#3|) 152 T ELT) (((-856 |#1|) $) 221 (|has| |#3| (-552 (-1088))) ELT) (($ (-348 (-483))) 91 (OR (|has| |#1| (-949 (-348 (-483)))) (|has| |#1| (-38 (-348 (-483))))) ELT) (($ $) 98 (|has| |#1| (-494)) ELT)) (-3815 (((-582 |#1|) $) 185 T ELT)) (-3675 ((|#1| $ |#2|) 172 T ELT) (($ $ |#3| (-693)) 141 T ELT) (($ $ (-582 |#3|) (-582 (-693))) 140 T ELT)) (-2701 (((-631 $) $) 92 (OR (-2561 (|has| $ (-118)) (|has| |#1| (-820))) (|has| |#1| (-118))) ELT)) (-3125 (((-693)) 40 T CONST)) (-1621 (($ $ $ (-693)) 190 (|has| |#1| (-146)) ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2061 (((-85) $ $) 102 (|has| |#1| (-494)) ELT)) (-3124 (((-85) $ $) 33 T ELT)) (-2659 (($) 24 T CONST)) (-3166 (((-3 (-85) "failed") $ $) 281 T ELT)) (-2665 (($) 45 T CONST)) (-3145 (($ $ $ $ (-693)) 230 (|has| |#1| (-494)) ELT)) (-3146 (($ $ $ (-693)) 231 (|has| |#1| (-494)) ELT)) (-2668 (($ $ (-582 |#3|) (-582 (-693))) 55 T ELT) (($ $ |#3| (-693)) 54 T ELT) (($ $ (-582 |#3|)) 53 T ELT) (($ $ |#3|) 49 T ELT)) (-3055 (((-85) $ $) 8 T ELT)) (-3947 (($ $ |#1|) 173 (|has| |#1| (-312)) ELT)) (-3835 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3837 (($ $ $) 18 T ELT)) (** (($ $ (-829)) 35 T ELT) (($ $ (-693)) 43 T ELT)) (* (($ (-829) $) 17 T ELT) (($ (-693) $) 21 T ELT) (($ (-483) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-348 (-483))) 175 (|has| |#1| (-38 (-348 (-483)))) ELT) (($ (-348 (-483)) $) 174 (|has| |#1| (-38 (-348 (-483)))) ELT) (($ |#1| $) 164 T ELT) (($ $ |#1|) 163 T ELT))) -(((-976 |#1| |#2| |#3|) (-113) (-960) (-716) (-755)) (T -976)) -((-3179 (*1 *2 *1) (-12 (-4 *1 (-976 *3 *4 *2)) (-4 *3 (-960)) (-4 *4 (-716)) (-4 *2 (-755)))) (-3178 (*1 *2 *1) (-12 (-4 *1 (-976 *3 *4 *5)) (-4 *3 (-960)) (-4 *4 (-716)) (-4 *5 (-755)) (-5 *2 (-693)))) (-3444 (*1 *1 *1) (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-960)) (-4 *3 (-716)) (-4 *4 (-755)))) (-3177 (*1 *1 *1) (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-960)) (-4 *3 (-716)) (-4 *4 (-755)))) (-3795 (*1 *1 *1) (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-960)) (-4 *3 (-716)) (-4 *4 (-755)))) (-3176 (*1 *1 *1) (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-960)) (-4 *3 (-716)) (-4 *4 (-755)))) (-3175 (*1 *2 *1) (-12 (-4 *3 (-960)) (-4 *4 (-716)) (-4 *5 (-755)) (-5 *2 (-582 *1)) (-4 *1 (-976 *3 *4 *5)))) (-3174 (*1 *1 *1) (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-960)) (-4 *3 (-716)) (-4 *4 (-755)))) (-3173 (*1 *1 *1 *2) (-12 (-4 *1 (-976 *3 *4 *2)) (-4 *3 (-960)) (-4 *4 (-716)) (-4 *2 (-755)))) (-3957 (*1 *1 *1 *2) (-12 (-4 *1 (-976 *3 *4 *2)) (-4 *3 (-960)) (-4 *4 (-716)) (-4 *2 (-755)))) (-3172 (*1 *2 *1) (-12 (-4 *1 (-976 *3 *4 *5)) (-4 *3 (-960)) (-4 *4 (-716)) (-4 *5 (-755)) (-5 *2 (-85)))) (-3171 (*1 *2 *1) (-12 (-4 *1 (-976 *3 *4 *5)) (-4 *3 (-960)) (-4 *4 (-716)) (-4 *5 (-755)) (-5 *2 (-85)))) (-3170 (*1 *1 *1) (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-960)) (-4 *3 (-716)) (-4 *4 (-755)))) (-3169 (*1 *1 *1) (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-960)) (-4 *3 (-716)) (-4 *4 (-755)))) (-3168 (*1 *2 *1) (-12 (-4 *3 (-960)) (-4 *4 (-716)) (-4 *5 (-755)) (-5 *2 (-582 *1)) (-4 *1 (-976 *3 *4 *5)))) (-3167 (*1 *2 *1) (-12 (-4 *3 (-960)) (-4 *4 (-716)) (-4 *5 (-755)) (-5 *2 (-582 *1)) (-4 *1 (-976 *3 *4 *5)))) (-3166 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-976 *3 *4 *5)) (-4 *3 (-960)) (-4 *4 (-716)) (-4 *5 (-755)) (-5 *2 (-85)))) (-3697 (*1 *2 *1 *1) (-12 (-4 *1 (-976 *3 *4 *5)) (-4 *3 (-960)) (-4 *4 (-716)) (-4 *5 (-755)) (-5 *2 (-85)))) (-3165 (*1 *2 *1 *1) (-12 (-4 *1 (-976 *3 *4 *5)) (-4 *3 (-960)) (-4 *4 (-716)) (-4 *5 (-755)) (-5 *2 (-85)))) (-3692 (*1 *2 *1 *1) (-12 (-4 *1 (-976 *3 *4 *5)) (-4 *3 (-960)) (-4 *4 (-716)) (-4 *5 (-755)) (-5 *2 (-85)))) (-3692 (*1 *2 *1 *3) (-12 (-5 *3 (-582 *1)) (-4 *1 (-976 *4 *5 *6)) (-4 *4 (-960)) (-4 *5 (-716)) (-4 *6 (-755)) (-5 *2 (-85)))) (-3690 (*1 *2 *1 *1) (-12 (-4 *1 (-976 *3 *4 *5)) (-4 *3 (-960)) (-4 *4 (-716)) (-4 *5 (-755)) (-5 *2 (-85)))) (-3690 (*1 *2 *1 *3) (-12 (-5 *3 (-582 *1)) (-4 *1 (-976 *4 *5 *6)) (-4 *4 (-960)) (-4 *5 (-716)) (-4 *6 (-755)) (-5 *2 (-85)))) (-3689 (*1 *2 *1 *1) (-12 (-4 *1 (-976 *3 *4 *5)) (-4 *3 (-960)) (-4 *4 (-716)) (-4 *5 (-755)) (-5 *2 (-85)))) (-3689 (*1 *2 *1 *3) (-12 (-5 *3 (-582 *1)) (-4 *1 (-976 *4 *5 *6)) (-4 *4 (-960)) (-4 *5 (-716)) (-4 *6 (-755)) (-5 *2 (-85)))) (-3693 (*1 *2 *1 *1) (-12 (-4 *1 (-976 *3 *4 *5)) (-4 *3 (-960)) (-4 *4 (-716)) (-4 *5 (-755)) (-5 *2 (-85)))) (-3693 (*1 *2 *1 *3) (-12 (-5 *3 (-582 *1)) (-4 *1 (-976 *4 *5 *6)) (-4 *4 (-960)) (-4 *5 (-716)) (-4 *6 (-755)) (-5 *2 (-85)))) (-3164 (*1 *1 *1 *1) (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-960)) (-4 *3 (-716)) (-4 *4 (-755)))) (-3163 (*1 *1 *1 *1) (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-960)) (-4 *3 (-716)) (-4 *4 (-755)))) (-3164 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-976 *3 *4 *2)) (-4 *3 (-960)) (-4 *4 (-716)) (-4 *2 (-755)))) (-3163 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-976 *3 *4 *2)) (-4 *3 (-960)) (-4 *4 (-716)) (-4 *2 (-755)))) (-3162 (*1 *1 *1 *1) (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-960)) (-4 *3 (-716)) (-4 *4 (-755)))) (-3161 (*1 *1 *1 *1) (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-960)) (-4 *3 (-716)) (-4 *4 (-755)))) (-3162 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-976 *3 *4 *2)) (-4 *3 (-960)) (-4 *4 (-716)) (-4 *2 (-755)))) (-3161 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-976 *3 *4 *2)) (-4 *3 (-960)) (-4 *4 (-716)) (-4 *2 (-755)))) (-3160 (*1 *2 *1 *1) (-12 (-4 *3 (-960)) (-4 *4 (-716)) (-4 *5 (-755)) (-5 *2 (-2 (|:| -3952 *1) (|:| |gap| (-693)) (|:| -2901 *1))) (-4 *1 (-976 *3 *4 *5)))) (-3160 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-960)) (-4 *5 (-716)) (-4 *3 (-755)) (-5 *2 (-2 (|:| -3952 *1) (|:| |gap| (-693)) (|:| -2901 *1))) (-4 *1 (-976 *4 *5 *3)))) (-3159 (*1 *2 *1 *1) (-12 (-4 *3 (-960)) (-4 *4 (-716)) (-4 *5 (-755)) (-5 *2 (-2 (|:| -3952 *1) (|:| |gap| (-693)) (|:| -1971 *1) (|:| -2901 *1))) (-4 *1 (-976 *3 *4 *5)))) (-3159 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-960)) (-4 *5 (-716)) (-4 *3 (-755)) (-5 *2 (-2 (|:| -3952 *1) (|:| |gap| (-693)) (|:| -1971 *1) (|:| -2901 *1))) (-4 *1 (-976 *4 *5 *3)))) (-3750 (*1 *2 *1 *1) (-12 (-4 *3 (-960)) (-4 *4 (-716)) (-4 *5 (-755)) (-5 *2 (-2 (|:| -1971 *1) (|:| -2901 *1))) (-4 *1 (-976 *3 *4 *5)))) (-3158 (*1 *1 *1 *1) (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-960)) (-4 *3 (-716)) (-4 *4 (-755)))) (-3157 (*1 *2 *1 *1) (-12 (-4 *3 (-960)) (-4 *4 (-716)) (-4 *5 (-755)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3479 (-693)))) (-4 *1 (-976 *3 *4 *5)))) (-3685 (*1 *1 *1 *1) (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-960)) (-4 *3 (-716)) (-4 *4 (-755)))) (-3684 (*1 *1 *1 *1) (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-960)) (-4 *3 (-716)) (-4 *4 (-755)))) (-3156 (*1 *1 *2) (|partial| -12 (-5 *2 (-856 (-348 (-483)))) (-4 *1 (-976 *3 *4 *5)) (-4 *3 (-38 (-348 (-483)))) (-4 *5 (-552 (-1088))) (-4 *3 (-960)) (-4 *4 (-716)) (-4 *5 (-755)))) (-3155 (*1 *1 *2) (-12 (-5 *2 (-856 (-348 (-483)))) (-4 *1 (-976 *3 *4 *5)) (-4 *3 (-38 (-348 (-483)))) (-4 *5 (-552 (-1088))) (-4 *3 (-960)) (-4 *4 (-716)) (-4 *5 (-755)))) (-3970 (*1 *1 *2) (-12 (-5 *2 (-856 (-348 (-483)))) (-4 *1 (-976 *3 *4 *5)) (-4 *3 (-38 (-348 (-483)))) (-4 *5 (-552 (-1088))) (-4 *3 (-960)) (-4 *4 (-716)) (-4 *5 (-755)))) (-3156 (*1 *1 *2) (|partial| OR (-12 (-5 *2 (-856 (-483))) (-4 *1 (-976 *3 *4 *5)) (-12 (-2559 (-4 *3 (-38 (-348 (-483))))) (-4 *3 (-38 (-483))) (-4 *5 (-552 (-1088)))) (-4 *3 (-960)) (-4 *4 (-716)) (-4 *5 (-755))) (-12 (-5 *2 (-856 (-483))) (-4 *1 (-976 *3 *4 *5)) (-12 (-4 *3 (-38 (-348 (-483)))) (-4 *5 (-552 (-1088)))) (-4 *3 (-960)) (-4 *4 (-716)) (-4 *5 (-755))))) (-3155 (*1 *1 *2) (OR (-12 (-5 *2 (-856 (-483))) (-4 *1 (-976 *3 *4 *5)) (-12 (-2559 (-4 *3 (-38 (-348 (-483))))) (-4 *3 (-38 (-483))) (-4 *5 (-552 (-1088)))) (-4 *3 (-960)) (-4 *4 (-716)) (-4 *5 (-755))) (-12 (-5 *2 (-856 (-483))) (-4 *1 (-976 *3 *4 *5)) (-12 (-4 *3 (-38 (-348 (-483)))) (-4 *5 (-552 (-1088)))) (-4 *3 (-960)) (-4 *4 (-716)) (-4 *5 (-755))))) (-3970 (*1 *1 *2) (OR (-12 (-5 *2 (-856 (-483))) (-4 *1 (-976 *3 *4 *5)) (-12 (-2559 (-4 *3 (-38 (-348 (-483))))) (-4 *3 (-38 (-483))) (-4 *5 (-552 (-1088)))) (-4 *3 (-960)) (-4 *4 (-716)) (-4 *5 (-755))) (-12 (-5 *2 (-856 (-483))) (-4 *1 (-976 *3 *4 *5)) (-12 (-4 *3 (-38 (-348 (-483)))) (-4 *5 (-552 (-1088)))) (-4 *3 (-960)) (-4 *4 (-716)) (-4 *5 (-755))))) (-3156 (*1 *1 *2) (|partial| OR (-12 (-5 *2 (-856 *3)) (-12 (-2559 (-4 *3 (-38 (-348 (-483))))) (-2559 (-4 *3 (-38 (-483)))) (-4 *5 (-552 (-1088)))) (-4 *3 (-960)) (-4 *1 (-976 *3 *4 *5)) (-4 *4 (-716)) (-4 *5 (-755))) (-12 (-5 *2 (-856 *3)) (-12 (-2559 (-4 *3 (-482))) (-2559 (-4 *3 (-38 (-348 (-483))))) (-4 *3 (-38 (-483))) (-4 *5 (-552 (-1088)))) (-4 *3 (-960)) (-4 *1 (-976 *3 *4 *5)) (-4 *4 (-716)) (-4 *5 (-755))) (-12 (-5 *2 (-856 *3)) (-12 (-2559 (-4 *3 (-903 (-483)))) (-4 *3 (-38 (-348 (-483)))) (-4 *5 (-552 (-1088)))) (-4 *3 (-960)) (-4 *1 (-976 *3 *4 *5)) (-4 *4 (-716)) (-4 *5 (-755))))) (-3155 (*1 *1 *2) (OR (-12 (-5 *2 (-856 *3)) (-12 (-2559 (-4 *3 (-38 (-348 (-483))))) (-2559 (-4 *3 (-38 (-483)))) (-4 *5 (-552 (-1088)))) (-4 *3 (-960)) (-4 *1 (-976 *3 *4 *5)) (-4 *4 (-716)) (-4 *5 (-755))) (-12 (-5 *2 (-856 *3)) (-12 (-2559 (-4 *3 (-482))) (-2559 (-4 *3 (-38 (-348 (-483))))) (-4 *3 (-38 (-483))) (-4 *5 (-552 (-1088)))) (-4 *3 (-960)) (-4 *1 (-976 *3 *4 *5)) (-4 *4 (-716)) (-4 *5 (-755))) (-12 (-5 *2 (-856 *3)) (-12 (-2559 (-4 *3 (-903 (-483)))) (-4 *3 (-38 (-348 (-483)))) (-4 *5 (-552 (-1088)))) (-4 *3 (-960)) (-4 *1 (-976 *3 *4 *5)) (-4 *4 (-716)) (-4 *5 (-755))))) (-3970 (*1 *1 *2) (-12 (-5 *2 (-856 *3)) (-4 *3 (-960)) (-4 *1 (-976 *3 *4 *5)) (-4 *5 (-552 (-1088))) (-4 *4 (-716)) (-4 *5 (-755)))) (-3154 (*1 *1 *1) (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-960)) (-4 *3 (-716)) (-4 *4 (-755)) (-4 *2 (-494)))) (-3153 (*1 *1 *1) (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-960)) (-4 *3 (-716)) (-4 *4 (-755)) (-4 *2 (-494)))) (-3152 (*1 *1 *1 *2) (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-960)) (-4 *3 (-716)) (-4 *4 (-755)) (-4 *2 (-494)))) (-3151 (*1 *1 *1 *2) (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-960)) (-4 *3 (-716)) (-4 *4 (-755)) (-4 *2 (-494)))) (-3152 (*1 *1 *1 *1) (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-960)) (-4 *3 (-716)) (-4 *4 (-755)) (-4 *2 (-494)))) (-3151 (*1 *1 *1 *1) (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-960)) (-4 *3 (-716)) (-4 *4 (-755)) (-4 *2 (-494)))) (-3753 (*1 *1 *1 *1) (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-960)) (-4 *3 (-716)) (-4 *4 (-755)) (-4 *2 (-494)))) (-3150 (*1 *2 *1 *1) (-12 (-4 *3 (-494)) (-4 *3 (-960)) (-4 *4 (-716)) (-4 *5 (-755)) (-5 *2 (-2 (|:| -3143 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-976 *3 *4 *5)))) (-3149 (*1 *2 *1 *1) (-12 (-4 *3 (-494)) (-4 *3 (-960)) (-4 *4 (-716)) (-4 *5 (-755)) (-5 *2 (-2 (|:| -3143 *1) (|:| |coef1| *1))) (-4 *1 (-976 *3 *4 *5)))) (-3148 (*1 *2 *1 *1) (-12 (-4 *3 (-494)) (-4 *3 (-960)) (-4 *4 (-716)) (-4 *5 (-755)) (-5 *2 (-2 (|:| -3143 *1) (|:| |coef2| *1))) (-4 *1 (-976 *3 *4 *5)))) (-3754 (*1 *1 *1 *1) (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-960)) (-4 *3 (-716)) (-4 *4 (-755)) (-4 *2 (-494)))) (-3147 (*1 *2 *1 *1) (-12 (-4 *3 (-494)) (-4 *3 (-960)) (-4 *4 (-716)) (-4 *5 (-755)) (-5 *2 (-582 *1)) (-4 *1 (-976 *3 *4 *5)))) (-3189 (*1 *1 *1 *1) (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-960)) (-4 *3 (-716)) (-4 *4 (-755)) (-4 *2 (-494)))) (-3146 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-693)) (-4 *1 (-976 *3 *4 *5)) (-4 *3 (-960)) (-4 *4 (-716)) (-4 *5 (-755)) (-4 *3 (-494)))) (-3145 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-693)) (-4 *1 (-976 *3 *4 *5)) (-4 *3 (-960)) (-4 *4 (-716)) (-4 *5 (-755)) (-4 *3 (-494)))) (-3144 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-960)) (-4 *3 (-716)) (-4 *4 (-755)) (-4 *2 (-494)))) (-3143 (*1 *2 *2 *1) (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-960)) (-4 *3 (-716)) (-4 *4 (-755)) (-4 *2 (-390)))) (-3142 (*1 *1 *1) (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-960)) (-4 *3 (-716)) (-4 *4 (-755)) (-4 *2 (-390)))) (-3141 (*1 *1 *1) (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-960)) (-4 *3 (-716)) (-4 *4 (-755)) (-4 *2 (-390)))) (-3140 (*1 *1 *1) (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-960)) (-4 *3 (-716)) (-4 *4 (-755)) (-4 *2 (-390)))) (-3139 (*1 *1 *1) (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-960)) (-4 *3 (-716)) (-4 *4 (-755)) (-4 *2 (-390))))) -(-13 (-860 |t#1| |t#2| |t#3|) (-10 -8 (-15 -3179 (|t#3| $)) (-15 -3178 ((-693) $)) (-15 -3444 ($ $)) (-15 -3177 ($ $)) (-15 -3795 ($ $)) (-15 -3176 ($ $)) (-15 -3175 ((-582 $) $)) (-15 -3174 ($ $)) (-15 -3173 ($ $ |t#3|)) (-15 -3957 ($ $ |t#3|)) (-15 -3172 ((-85) $)) (-15 -3171 ((-85) $)) (-15 -3170 ($ $)) (-15 -3169 ($ $)) (-15 -3168 ((-582 $) $)) (-15 -3167 ((-582 $) $)) (-15 -3166 ((-3 (-85) "failed") $ $)) (-15 -3697 ((-85) $ $)) (-15 -3165 ((-85) $ $)) (-15 -3692 ((-85) $ $)) (-15 -3692 ((-85) $ (-582 $))) (-15 -3690 ((-85) $ $)) (-15 -3690 ((-85) $ (-582 $))) (-15 -3689 ((-85) $ $)) (-15 -3689 ((-85) $ (-582 $))) (-15 -3693 ((-85) $ $)) (-15 -3693 ((-85) $ (-582 $))) (-15 -3164 ($ $ $)) (-15 -3163 ($ $ $)) (-15 -3164 ($ $ $ |t#3|)) (-15 -3163 ($ $ $ |t#3|)) (-15 -3162 ($ $ $)) (-15 -3161 ($ $ $)) (-15 -3162 ($ $ $ |t#3|)) (-15 -3161 ($ $ $ |t#3|)) (-15 -3160 ((-2 (|:| -3952 $) (|:| |gap| (-693)) (|:| -2901 $)) $ $)) (-15 -3160 ((-2 (|:| -3952 $) (|:| |gap| (-693)) (|:| -2901 $)) $ $ |t#3|)) (-15 -3159 ((-2 (|:| -3952 $) (|:| |gap| (-693)) (|:| -1971 $) (|:| -2901 $)) $ $)) (-15 -3159 ((-2 (|:| -3952 $) (|:| |gap| (-693)) (|:| -1971 $) (|:| -2901 $)) $ $ |t#3|)) (-15 -3750 ((-2 (|:| -1971 $) (|:| -2901 $)) $ $)) (-15 -3158 ($ $ $)) (-15 -3157 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3479 (-693))) $ $)) (-15 -3685 ($ $ $)) (-15 -3684 ($ $ $)) (IF (|has| |t#3| (-552 (-1088))) (PROGN (-6 (-551 (-856 |t#1|))) (-6 (-552 (-856 |t#1|))) (IF (|has| |t#1| (-38 (-348 (-483)))) (PROGN (-15 -3156 ((-3 $ "failed") (-856 (-348 (-483))))) (-15 -3155 ($ (-856 (-348 (-483))))) (-15 -3970 ($ (-856 (-348 (-483))))) (-15 -3156 ((-3 $ "failed") (-856 (-483)))) (-15 -3155 ($ (-856 (-483)))) (-15 -3970 ($ (-856 (-483)))) (IF (|has| |t#1| (-903 (-483))) |%noBranch| (PROGN (-15 -3156 ((-3 $ "failed") (-856 |t#1|))) (-15 -3155 ($ (-856 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-38 (-483))) (IF (|has| |t#1| (-38 (-348 (-483)))) |%noBranch| (PROGN (-15 -3156 ((-3 $ "failed") (-856 (-483)))) (-15 -3155 ($ (-856 (-483)))) (-15 -3970 ($ (-856 (-483)))) (IF (|has| |t#1| (-482)) |%noBranch| (PROGN (-15 -3156 ((-3 $ "failed") (-856 |t#1|))) (-15 -3155 ($ (-856 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-38 (-483))) |%noBranch| (IF (|has| |t#1| (-38 (-348 (-483)))) |%noBranch| (PROGN (-15 -3156 ((-3 $ "failed") (-856 |t#1|))) (-15 -3155 ($ (-856 |t#1|)))))) (-15 -3970 ($ (-856 |t#1|))) (IF (|has| |t#1| (-949 (-483))) (-6 (-552 (-1071))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-494)) (PROGN (-15 -3154 ($ $)) (-15 -3153 ($ $)) (-15 -3152 ($ $ |t#1|)) (-15 -3151 ($ $ |t#1|)) (-15 -3152 ($ $ $)) (-15 -3151 ($ $ $)) (-15 -3753 ($ $ $)) (-15 -3150 ((-2 (|:| -3143 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3149 ((-2 (|:| -3143 $) (|:| |coef1| $)) $ $)) (-15 -3148 ((-2 (|:| -3143 $) (|:| |coef2| $)) $ $)) (-15 -3754 ($ $ $)) (-15 -3147 ((-582 $) $ $)) (-15 -3189 ($ $ $)) (-15 -3146 ($ $ $ (-693))) (-15 -3145 ($ $ $ $ (-693))) (-15 -3144 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-390)) (PROGN (-15 -3143 (|t#1| |t#1| $)) (-15 -3142 ($ $)) (-15 -3141 ($ $)) (-15 -3140 ($ $)) (-15 -3139 ($ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-348 (-483))) |has| |#1| (-38 (-348 (-483)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) OR (|has| |#1| (-820)) (|has| |#1| (-494)) (|has| |#1| (-390))) ((-72) . T) ((-82 (-348 (-483)) (-348 (-483))) |has| |#1| (-38 (-348 (-483)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-820)) (|has| |#1| (-494)) (|has| |#1| (-390)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-554 (-348 (-483))) OR (|has| |#1| (-949 (-348 (-483)))) (|has| |#1| (-38 (-348 (-483))))) ((-554 (-483)) . T) ((-554 |#1|) . T) ((-554 |#3|) . T) ((-554 $) OR (|has| |#1| (-820)) (|has| |#1| (-494)) (|has| |#1| (-390))) ((-551 (-771)) . T) ((-551 (-856 |#1|)) |has| |#3| (-552 (-1088))) ((-146) OR (|has| |#1| (-820)) (|has| |#1| (-494)) (|has| |#1| (-390)) (|has| |#1| (-146))) ((-552 (-472)) -12 (|has| |#1| (-552 (-472))) (|has| |#3| (-552 (-472)))) ((-552 (-799 (-328))) -12 (|has| |#1| (-552 (-799 (-328)))) (|has| |#3| (-552 (-799 (-328))))) ((-552 (-799 (-483))) -12 (|has| |#1| (-552 (-799 (-483)))) (|has| |#3| (-552 (-799 (-483))))) ((-552 (-856 |#1|)) |has| |#3| (-552 (-1088))) ((-552 (-1071)) -12 (|has| |#1| (-949 (-483))) (|has| |#3| (-552 (-1088)))) ((-246) OR (|has| |#1| (-820)) (|has| |#1| (-494)) (|has| |#1| (-390))) ((-260 $) . T) ((-277 |#1| |#2|) . T) ((-327 |#1|) . T) ((-353 |#1|) . T) ((-390) OR (|has| |#1| (-820)) (|has| |#1| (-390))) ((-454 |#3| |#1|) . T) ((-454 |#3| $) . T) ((-454 $ $) . T) ((-494) OR (|has| |#1| (-820)) (|has| |#1| (-494)) (|has| |#1| (-390))) ((-13) . T) ((-587 (-348 (-483))) |has| |#1| (-38 (-348 (-483)))) ((-587 (-483)) . T) ((-587 |#1|) . T) ((-587 $) . T) ((-589 (-348 (-483))) |has| |#1| (-38 (-348 (-483)))) ((-589 (-483)) |has| |#1| (-579 (-483))) ((-589 |#1|) . T) ((-589 $) . T) ((-581 (-348 (-483))) |has| |#1| (-38 (-348 (-483)))) ((-581 |#1|) |has| |#1| (-146)) ((-581 $) OR (|has| |#1| (-820)) (|has| |#1| (-494)) (|has| |#1| (-390))) ((-579 (-483)) |has| |#1| (-579 (-483))) ((-579 |#1|) . T) ((-653 (-348 (-483))) |has| |#1| (-38 (-348 (-483)))) ((-653 |#1|) |has| |#1| (-146)) ((-653 $) OR (|has| |#1| (-820)) (|has| |#1| (-494)) (|has| |#1| (-390))) ((-662) . T) ((-805 $ |#3|) . T) ((-808 |#3|) . T) ((-810 |#3|) . T) ((-795 (-328)) -12 (|has| |#1| (-795 (-328))) (|has| |#3| (-795 (-328)))) ((-795 (-483)) -12 (|has| |#1| (-795 (-483))) (|has| |#3| (-795 (-483)))) ((-860 |#1| |#2| |#3|) . T) ((-820) |has| |#1| (-820)) ((-949 (-348 (-483))) |has| |#1| (-949 (-348 (-483)))) ((-949 (-483)) |has| |#1| (-949 (-483))) ((-949 |#1|) . T) ((-949 |#3|) . T) ((-962 (-348 (-483))) |has| |#1| (-38 (-348 (-483)))) ((-962 |#1|) . T) ((-962 $) OR (|has| |#1| (-820)) (|has| |#1| (-494)) (|has| |#1| (-390)) (|has| |#1| (-146))) ((-967 (-348 (-483))) |has| |#1| (-38 (-348 (-483)))) ((-967 |#1|) . T) ((-967 $) OR (|has| |#1| (-820)) (|has| |#1| (-494)) (|has| |#1| (-390)) (|has| |#1| (-146))) ((-960) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T) ((-1132) |has| |#1| (-820))) -((-2567 (((-85) $ $) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3180 (((-582 (-1047)) $) 18 T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3944 (((-771) $) 27 T ELT) (($ (-1093)) NIL T ELT) (((-1093) $) NIL T ELT)) (-3232 (((-1047) $) 20 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-977) (-13 (-994) (-10 -8 (-15 -3180 ((-582 (-1047)) $)) (-15 -3232 ((-1047) $))))) (T -977)) -((-3180 (*1 *2 *1) (-12 (-5 *2 (-582 (-1047))) (-5 *1 (-977)))) (-3232 (*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-977))))) -((-3187 (((-85) |#3| $) 15 T ELT)) (-3182 (((-3 $ #1="failed") |#3| (-829)) 29 T ELT)) (-3465 (((-3 |#3| #1#) |#3| $) 45 T ELT)) (-3185 (((-85) |#3| $) 19 T ELT)) (-3186 (((-85) |#3| $) 17 T ELT))) -(((-978 |#1| |#2| |#3|) (-10 -7 (-15 -3182 ((-3 |#1| #1="failed") |#3| (-829))) (-15 -3465 ((-3 |#3| #1#) |#3| |#1|)) (-15 -3185 ((-85) |#3| |#1|)) (-15 -3186 ((-85) |#3| |#1|)) (-15 -3187 ((-85) |#3| |#1|))) (-979 |#2| |#3|) (-13 (-754) (-312)) (-1153 |#2|)) (T -978)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-3187 (((-85) |#2| $) 25 T ELT)) (-3621 (((-483) |#2| $) 26 T ELT)) (-3182 (((-3 $ "failed") |#2| (-829)) 19 T ELT)) (-3181 ((|#1| |#2| $ |#1|) 17 T ELT)) (-3465 (((-3 |#2| "failed") |#2| $) 22 T ELT)) (-3185 (((-85) |#2| $) 23 T ELT)) (-3186 (((-85) |#2| $) 24 T ELT)) (-3241 (((-1071) $) 11 T ELT)) (-3242 (((-1032) $) 12 T ELT)) (-3184 ((|#2| $) 21 T ELT)) (-3944 (((-771) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-3768 ((|#1| |#2| $ |#1|) 18 T ELT)) (-3183 (((-582 $) |#2|) 20 T ELT)) (-3055 (((-85) $ $) 8 T ELT))) -(((-979 |#1| |#2|) (-113) (-13 (-754) (-312)) (-1153 |t#1|)) (T -979)) -((-3621 (*1 *2 *3 *1) (-12 (-4 *1 (-979 *4 *3)) (-4 *4 (-13 (-754) (-312))) (-4 *3 (-1153 *4)) (-5 *2 (-483)))) (-3187 (*1 *2 *3 *1) (-12 (-4 *1 (-979 *4 *3)) (-4 *4 (-13 (-754) (-312))) (-4 *3 (-1153 *4)) (-5 *2 (-85)))) (-3186 (*1 *2 *3 *1) (-12 (-4 *1 (-979 *4 *3)) (-4 *4 (-13 (-754) (-312))) (-4 *3 (-1153 *4)) (-5 *2 (-85)))) (-3185 (*1 *2 *3 *1) (-12 (-4 *1 (-979 *4 *3)) (-4 *4 (-13 (-754) (-312))) (-4 *3 (-1153 *4)) (-5 *2 (-85)))) (-3465 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-979 *3 *2)) (-4 *3 (-13 (-754) (-312))) (-4 *2 (-1153 *3)))) (-3184 (*1 *2 *1) (-12 (-4 *1 (-979 *3 *2)) (-4 *3 (-13 (-754) (-312))) (-4 *2 (-1153 *3)))) (-3183 (*1 *2 *3) (-12 (-4 *4 (-13 (-754) (-312))) (-4 *3 (-1153 *4)) (-5 *2 (-582 *1)) (-4 *1 (-979 *4 *3)))) (-3182 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-829)) (-4 *4 (-13 (-754) (-312))) (-4 *1 (-979 *4 *2)) (-4 *2 (-1153 *4)))) (-3768 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-979 *2 *3)) (-4 *2 (-13 (-754) (-312))) (-4 *3 (-1153 *2)))) (-3181 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-979 *2 *3)) (-4 *2 (-13 (-754) (-312))) (-4 *3 (-1153 *2))))) -(-13 (-1012) (-10 -8 (-15 -3621 ((-483) |t#2| $)) (-15 -3187 ((-85) |t#2| $)) (-15 -3186 ((-85) |t#2| $)) (-15 -3185 ((-85) |t#2| $)) (-15 -3465 ((-3 |t#2| "failed") |t#2| $)) (-15 -3184 (|t#2| $)) (-15 -3183 ((-582 $) |t#2|)) (-15 -3182 ((-3 $ "failed") |t#2| (-829))) (-15 -3768 (|t#1| |t#2| $ |t#1|)) (-15 -3181 (|t#1| |t#2| $ |t#1|)))) -(((-72) . T) ((-551 (-771)) . T) ((-13) . T) ((-1012) . T) ((-1127) . T)) -((-3434 (((-582 (-2 (|:| |val| (-582 |#4|)) (|:| -1598 |#5|))) (-582 |#4|) (-582 |#5|) (-582 (-2 (|:| |val| (-582 |#4|)) (|:| -1598 |#5|))) (-2 (|:| |done| (-582 |#5|)) (|:| |todo| (-582 (-2 (|:| |val| (-582 |#4|)) (|:| -1598 |#5|))))) (-693)) 114 T ELT)) (-3431 (((-2 (|:| |done| (-582 |#5|)) (|:| |todo| (-582 (-2 (|:| |val| (-582 |#4|)) (|:| -1598 |#5|))))) |#4| |#5|) 64 T ELT) (((-2 (|:| |done| (-582 |#5|)) (|:| |todo| (-582 (-2 (|:| |val| (-582 |#4|)) (|:| -1598 |#5|))))) |#4| |#5| (-693)) 63 T ELT)) (-3435 (((-1183) (-582 (-2 (|:| |val| (-582 |#4|)) (|:| -1598 |#5|))) (-693)) 99 T ELT)) (-3429 (((-693) (-582 |#4|) (-582 |#5|)) 30 T ELT)) (-3432 (((-2 (|:| |done| (-582 |#5|)) (|:| |todo| (-582 (-2 (|:| |val| (-582 |#4|)) (|:| -1598 |#5|))))) |#4| |#5|) 66 T ELT) (((-2 (|:| |done| (-582 |#5|)) (|:| |todo| (-582 (-2 (|:| |val| (-582 |#4|)) (|:| -1598 |#5|))))) |#4| |#5| (-693)) 65 T ELT) (((-2 (|:| |done| (-582 |#5|)) (|:| |todo| (-582 (-2 (|:| |val| (-582 |#4|)) (|:| -1598 |#5|))))) |#4| |#5| (-693) (-85)) 67 T ELT)) (-3433 (((-582 |#5|) (-582 |#4|) (-582 |#5|) (-85) (-85) (-85) (-85) (-85)) 86 T ELT) (((-582 |#5|) (-582 |#4|) (-582 |#5|) (-85) (-85)) 87 T ELT)) (-3970 (((-1071) (-2 (|:| |val| (-582 |#4|)) (|:| -1598 |#5|))) 92 T ELT)) (-3430 (((-2 (|:| |done| (-582 |#5|)) (|:| |todo| (-582 (-2 (|:| |val| (-582 |#4|)) (|:| -1598 |#5|))))) |#4| |#5| (-85)) 62 T ELT)) (-3428 (((-693) (-582 |#4|) (-582 |#5|)) 21 T ELT))) -(((-980 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3428 ((-693) (-582 |#4|) (-582 |#5|))) (-15 -3429 ((-693) (-582 |#4|) (-582 |#5|))) (-15 -3430 ((-2 (|:| |done| (-582 |#5|)) (|:| |todo| (-582 (-2 (|:| |val| (-582 |#4|)) (|:| -1598 |#5|))))) |#4| |#5| (-85))) (-15 -3431 ((-2 (|:| |done| (-582 |#5|)) (|:| |todo| (-582 (-2 (|:| |val| (-582 |#4|)) (|:| -1598 |#5|))))) |#4| |#5| (-693))) (-15 -3431 ((-2 (|:| |done| (-582 |#5|)) (|:| |todo| (-582 (-2 (|:| |val| (-582 |#4|)) (|:| -1598 |#5|))))) |#4| |#5|)) (-15 -3432 ((-2 (|:| |done| (-582 |#5|)) (|:| |todo| (-582 (-2 (|:| |val| (-582 |#4|)) (|:| -1598 |#5|))))) |#4| |#5| (-693) (-85))) (-15 -3432 ((-2 (|:| |done| (-582 |#5|)) (|:| |todo| (-582 (-2 (|:| |val| (-582 |#4|)) (|:| -1598 |#5|))))) |#4| |#5| (-693))) (-15 -3432 ((-2 (|:| |done| (-582 |#5|)) (|:| |todo| (-582 (-2 (|:| |val| (-582 |#4|)) (|:| -1598 |#5|))))) |#4| |#5|)) (-15 -3433 ((-582 |#5|) (-582 |#4|) (-582 |#5|) (-85) (-85))) (-15 -3433 ((-582 |#5|) (-582 |#4|) (-582 |#5|) (-85) (-85) (-85) (-85) (-85))) (-15 -3434 ((-582 (-2 (|:| |val| (-582 |#4|)) (|:| -1598 |#5|))) (-582 |#4|) (-582 |#5|) (-582 (-2 (|:| |val| (-582 |#4|)) (|:| -1598 |#5|))) (-2 (|:| |done| (-582 |#5|)) (|:| |todo| (-582 (-2 (|:| |val| (-582 |#4|)) (|:| -1598 |#5|))))) (-693))) (-15 -3970 ((-1071) (-2 (|:| |val| (-582 |#4|)) (|:| -1598 |#5|)))) (-15 -3435 ((-1183) (-582 (-2 (|:| |val| (-582 |#4|)) (|:| -1598 |#5|))) (-693)))) (-390) (-716) (-755) (-976 |#1| |#2| |#3|) (-982 |#1| |#2| |#3| |#4|)) (T -980)) -((-3435 (*1 *2 *3 *4) (-12 (-5 *3 (-582 (-2 (|:| |val| (-582 *8)) (|:| -1598 *9)))) (-5 *4 (-693)) (-4 *8 (-976 *5 *6 *7)) (-4 *9 (-982 *5 *6 *7 *8)) (-4 *5 (-390)) (-4 *6 (-716)) (-4 *7 (-755)) (-5 *2 (-1183)) (-5 *1 (-980 *5 *6 *7 *8 *9)))) (-3970 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-582 *7)) (|:| -1598 *8))) (-4 *7 (-976 *4 *5 *6)) (-4 *8 (-982 *4 *5 *6 *7)) (-4 *4 (-390)) (-4 *5 (-716)) (-4 *6 (-755)) (-5 *2 (-1071)) (-5 *1 (-980 *4 *5 *6 *7 *8)))) (-3434 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-582 *11)) (|:| |todo| (-582 (-2 (|:| |val| *3) (|:| -1598 *11)))))) (-5 *6 (-693)) (-5 *2 (-582 (-2 (|:| |val| (-582 *10)) (|:| -1598 *11)))) (-5 *3 (-582 *10)) (-5 *4 (-582 *11)) (-4 *10 (-976 *7 *8 *9)) (-4 *11 (-982 *7 *8 *9 *10)) (-4 *7 (-390)) (-4 *8 (-716)) (-4 *9 (-755)) (-5 *1 (-980 *7 *8 *9 *10 *11)))) (-3433 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-582 *9)) (-5 *3 (-582 *8)) (-5 *4 (-85)) (-4 *8 (-976 *5 *6 *7)) (-4 *9 (-982 *5 *6 *7 *8)) (-4 *5 (-390)) (-4 *6 (-716)) (-4 *7 (-755)) (-5 *1 (-980 *5 *6 *7 *8 *9)))) (-3433 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-582 *9)) (-5 *3 (-582 *8)) (-5 *4 (-85)) (-4 *8 (-976 *5 *6 *7)) (-4 *9 (-982 *5 *6 *7 *8)) (-4 *5 (-390)) (-4 *6 (-716)) (-4 *7 (-755)) (-5 *1 (-980 *5 *6 *7 *8 *9)))) (-3432 (*1 *2 *3 *4) (-12 (-4 *5 (-390)) (-4 *6 (-716)) (-4 *7 (-755)) (-4 *3 (-976 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-582 *4)) (|:| |todo| (-582 (-2 (|:| |val| (-582 *3)) (|:| -1598 *4)))))) (-5 *1 (-980 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))) (-3432 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-693)) (-4 *6 (-390)) (-4 *7 (-716)) (-4 *8 (-755)) (-4 *3 (-976 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-582 *4)) (|:| |todo| (-582 (-2 (|:| |val| (-582 *3)) (|:| -1598 *4)))))) (-5 *1 (-980 *6 *7 *8 *3 *4)) (-4 *4 (-982 *6 *7 *8 *3)))) (-3432 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-693)) (-5 *6 (-85)) (-4 *7 (-390)) (-4 *8 (-716)) (-4 *9 (-755)) (-4 *3 (-976 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-582 *4)) (|:| |todo| (-582 (-2 (|:| |val| (-582 *3)) (|:| -1598 *4)))))) (-5 *1 (-980 *7 *8 *9 *3 *4)) (-4 *4 (-982 *7 *8 *9 *3)))) (-3431 (*1 *2 *3 *4) (-12 (-4 *5 (-390)) (-4 *6 (-716)) (-4 *7 (-755)) (-4 *3 (-976 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-582 *4)) (|:| |todo| (-582 (-2 (|:| |val| (-582 *3)) (|:| -1598 *4)))))) (-5 *1 (-980 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))) (-3431 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-693)) (-4 *6 (-390)) (-4 *7 (-716)) (-4 *8 (-755)) (-4 *3 (-976 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-582 *4)) (|:| |todo| (-582 (-2 (|:| |val| (-582 *3)) (|:| -1598 *4)))))) (-5 *1 (-980 *6 *7 *8 *3 *4)) (-4 *4 (-982 *6 *7 *8 *3)))) (-3430 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-85)) (-4 *6 (-390)) (-4 *7 (-716)) (-4 *8 (-755)) (-4 *3 (-976 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-582 *4)) (|:| |todo| (-582 (-2 (|:| |val| (-582 *3)) (|:| -1598 *4)))))) (-5 *1 (-980 *6 *7 *8 *3 *4)) (-4 *4 (-982 *6 *7 *8 *3)))) (-3429 (*1 *2 *3 *4) (-12 (-5 *3 (-582 *8)) (-5 *4 (-582 *9)) (-4 *8 (-976 *5 *6 *7)) (-4 *9 (-982 *5 *6 *7 *8)) (-4 *5 (-390)) (-4 *6 (-716)) (-4 *7 (-755)) (-5 *2 (-693)) (-5 *1 (-980 *5 *6 *7 *8 *9)))) (-3428 (*1 *2 *3 *4) (-12 (-5 *3 (-582 *8)) (-5 *4 (-582 *9)) (-4 *8 (-976 *5 *6 *7)) (-4 *9 (-982 *5 *6 *7 *8)) (-4 *5 (-390)) (-4 *6 (-716)) (-4 *7 (-755)) (-5 *2 (-693)) (-5 *1 (-980 *5 *6 *7 *8 *9))))) -((-3196 (((-85) |#5| $) 26 T ELT)) (-3194 (((-85) |#5| $) 29 T ELT)) (-3197 (((-85) |#5| $) 18 T ELT) (((-85) $) 52 T ELT)) (-3237 (((-582 $) |#5| $) NIL T ELT) (((-582 $) (-582 |#5|) $) 94 T ELT) (((-582 $) (-582 |#5|) (-582 $)) 92 T ELT) (((-582 $) |#5| (-582 $)) 95 T ELT)) (-3767 (($ $ |#5|) NIL T ELT) (((-582 $) |#5| $) NIL T ELT) (((-582 $) |#5| (-582 $)) 73 T ELT) (((-582 $) (-582 |#5|) $) 75 T ELT) (((-582 $) (-582 |#5|) (-582 $)) 77 T ELT)) (-3188 (((-582 $) |#5| $) NIL T ELT) (((-582 $) |#5| (-582 $)) 64 T ELT) (((-582 $) (-582 |#5|) $) 69 T ELT) (((-582 $) (-582 |#5|) (-582 $)) 71 T ELT)) (-3195 (((-85) |#5| $) 32 T ELT))) -(((-981 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3767 ((-582 |#1|) (-582 |#5|) (-582 |#1|))) (-15 -3767 ((-582 |#1|) (-582 |#5|) |#1|)) (-15 -3767 ((-582 |#1|) |#5| (-582 |#1|))) (-15 -3767 ((-582 |#1|) |#5| |#1|)) (-15 -3188 ((-582 |#1|) (-582 |#5|) (-582 |#1|))) (-15 -3188 ((-582 |#1|) (-582 |#5|) |#1|)) (-15 -3188 ((-582 |#1|) |#5| (-582 |#1|))) (-15 -3188 ((-582 |#1|) |#5| |#1|)) (-15 -3237 ((-582 |#1|) |#5| (-582 |#1|))) (-15 -3237 ((-582 |#1|) (-582 |#5|) (-582 |#1|))) (-15 -3237 ((-582 |#1|) (-582 |#5|) |#1|)) (-15 -3237 ((-582 |#1|) |#5| |#1|)) (-15 -3194 ((-85) |#5| |#1|)) (-15 -3197 ((-85) |#1|)) (-15 -3195 ((-85) |#5| |#1|)) (-15 -3196 ((-85) |#5| |#1|)) (-15 -3197 ((-85) |#5| |#1|)) (-15 -3767 (|#1| |#1| |#5|))) (-982 |#2| |#3| |#4| |#5|) (-390) (-716) (-755) (-976 |#2| |#3| |#4|)) (T -981)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-3679 (((-582 (-2 (|:| -3859 $) (|:| -1700 (-582 |#4|)))) (-582 |#4|)) 90 T ELT)) (-3680 (((-582 $) (-582 |#4|)) 91 T ELT) (((-582 $) (-582 |#4|) (-85)) 118 T ELT)) (-3080 (((-582 |#3|) $) 37 T ELT)) (-2907 (((-85) $) 30 T ELT)) (-2898 (((-85) $) 21 (|has| |#1| (-494)) ELT)) (-3691 (((-85) |#4| $) 106 T ELT) (((-85) $) 102 T ELT)) (-3686 ((|#4| |#4| $) 97 T ELT)) (-3773 (((-582 (-2 (|:| |val| |#4|) (|:| -1598 $))) |#4| $) 133 T ELT)) (-2908 (((-2 (|:| |under| $) (|:| -3129 $) (|:| |upper| $)) $ |#3|) 31 T ELT)) (-3708 (($ (-1 (-85) |#4|) $) 66 (|has| $ (-6 -3993)) ELT) (((-3 |#4| #1="failed") $ |#3|) 84 T ELT)) (-3722 (($) 46 T CONST)) (-2903 (((-85) $) 26 (|has| |#1| (-494)) ELT)) (-2905 (((-85) $ $) 28 (|has| |#1| (-494)) ELT)) (-2904 (((-85) $ $) 27 (|has| |#1| (-494)) ELT)) (-2906 (((-85) $) 29 (|has| |#1| (-494)) ELT)) (-3687 (((-582 |#4|) (-582 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 98 T ELT)) (-2899 (((-582 |#4|) (-582 |#4|) $) 22 (|has| |#1| (-494)) ELT)) (-2900 (((-582 |#4|) (-582 |#4|) $) 23 (|has| |#1| (-494)) ELT)) (-3156 (((-3 $ "failed") (-582 |#4|)) 40 T ELT)) (-3155 (($ (-582 |#4|)) 39 T ELT)) (-3797 (((-3 $ #1#) $) 87 T ELT)) (-3683 ((|#4| |#4| $) 94 T ELT)) (-1351 (($ $) 69 (-12 (|has| |#4| (-1012)) (|has| $ (-6 -3993))) ELT)) (-3404 (($ |#4| $) 68 (-12 (|has| |#4| (-1012)) (|has| $ (-6 -3993))) ELT) (($ (-1 (-85) |#4|) $) 65 (|has| $ (-6 -3993)) ELT)) (-2901 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 24 (|has| |#1| (-494)) ELT)) (-3692 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) 107 T ELT)) (-3681 ((|#4| |#4| $) 92 T ELT)) (-3840 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1012)) (|has| $ (-6 -3993))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -3993)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -3993)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 99 T ELT)) (-3694 (((-2 (|:| -3859 (-582 |#4|)) (|:| -1700 (-582 |#4|))) $) 110 T ELT)) (-3196 (((-85) |#4| $) 143 T ELT)) (-3194 (((-85) |#4| $) 140 T ELT)) (-3197 (((-85) |#4| $) 144 T ELT) (((-85) $) 141 T ELT)) (-2888 (((-582 |#4|) $) 53 (|has| $ (-6 -3993)) ELT)) (-3693 (((-85) |#4| $) 109 T ELT) (((-85) $) 108 T ELT)) (-3179 ((|#3| $) 38 T ELT)) (-2607 (((-582 |#4|) $) 54 (|has| $ (-6 -3993)) ELT)) (-3244 (((-85) |#4| $) 56 (-12 (|has| |#4| (-1012)) (|has| $ (-6 -3993))) ELT)) (-1947 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -3994)) ELT)) (-3956 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-2913 (((-582 |#3|) $) 36 T ELT)) (-2912 (((-85) |#3| $) 35 T ELT)) (-3241 (((-1071) $) 11 T ELT)) (-3190 (((-3 |#4| (-582 $)) |#4| |#4| $) 135 T ELT)) (-3189 (((-582 (-2 (|:| |val| |#4|) (|:| -1598 $))) |#4| |#4| $) 134 T ELT)) (-3796 (((-3 |#4| #1#) $) 88 T ELT)) (-3191 (((-582 $) |#4| $) 136 T ELT)) (-3193 (((-3 (-85) (-582 $)) |#4| $) 139 T ELT)) (-3192 (((-582 (-2 (|:| |val| (-85)) (|:| -1598 $))) |#4| $) 138 T ELT) (((-85) |#4| $) 137 T ELT)) (-3237 (((-582 $) |#4| $) 132 T ELT) (((-582 $) (-582 |#4|) $) 131 T ELT) (((-582 $) (-582 |#4|) (-582 $)) 130 T ELT) (((-582 $) |#4| (-582 $)) 129 T ELT)) (-3438 (($ |#4| $) 124 T ELT) (($ (-582 |#4|) $) 123 T ELT)) (-3695 (((-582 |#4|) $) 112 T ELT)) (-3689 (((-85) |#4| $) 104 T ELT) (((-85) $) 100 T ELT)) (-3684 ((|#4| |#4| $) 95 T ELT)) (-3697 (((-85) $ $) 115 T ELT)) (-2902 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-494)) ELT)) (-3690 (((-85) |#4| $) 105 T ELT) (((-85) $) 101 T ELT)) (-3685 ((|#4| |#4| $) 96 T ELT)) (-3242 (((-1032) $) 12 T ELT)) (-3799 (((-3 |#4| #1#) $) 89 T ELT)) (-1352 (((-3 |#4| "failed") (-1 (-85) |#4|) $) 62 T ELT)) (-3677 (((-3 $ #1#) $ |#4|) 83 T ELT)) (-3767 (($ $ |#4|) 82 T ELT) (((-582 $) |#4| $) 122 T ELT) (((-582 $) |#4| (-582 $)) 121 T ELT) (((-582 $) (-582 |#4|) $) 120 T ELT) (((-582 $) (-582 |#4|) (-582 $)) 119 T ELT)) (-1945 (((-85) (-1 (-85) |#4|) $) 51 (|has| $ (-6 -3993)) ELT)) (-3766 (($ $ (-582 |#4|) (-582 |#4|)) 60 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1012))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1012))) ELT) (($ $ (-249 |#4|)) 58 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1012))) ELT) (($ $ (-582 (-249 |#4|))) 57 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1012))) ELT)) (-1220 (((-85) $ $) 42 T ELT)) (-3401 (((-85) $) 45 T ELT)) (-3563 (($) 44 T ELT)) (-3946 (((-693) $) 111 T ELT)) (-1944 (((-693) |#4| $) 55 (-12 (|has| |#4| (-1012)) (|has| $ (-6 -3993))) ELT) (((-693) (-1 (-85) |#4|) $) 52 (|has| $ (-6 -3993)) ELT)) (-3398 (($ $) 43 T ELT)) (-3970 (((-472) $) 70 (|has| |#4| (-552 (-472))) ELT)) (-3528 (($ (-582 |#4|)) 61 T ELT)) (-2909 (($ $ |#3|) 32 T ELT)) (-2911 (($ $ |#3|) 34 T ELT)) (-3682 (($ $) 93 T ELT)) (-2910 (($ $ |#3|) 33 T ELT)) (-3944 (((-771) $) 13 T ELT) (((-582 |#4|) $) 41 T ELT)) (-3676 (((-693) $) 81 (|has| |#3| (-318)) ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-3696 (((-3 (-2 (|:| |bas| $) (|:| -3322 (-582 |#4|))) #1#) (-582 |#4|) (-1 (-85) |#4| |#4|)) 114 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3322 (-582 |#4|))) #1#) (-582 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) 113 T ELT)) (-3688 (((-85) $ (-1 (-85) |#4| (-582 |#4|))) 103 T ELT)) (-3188 (((-582 $) |#4| $) 128 T ELT) (((-582 $) |#4| (-582 $)) 127 T ELT) (((-582 $) (-582 |#4|) $) 126 T ELT) (((-582 $) (-582 |#4|) (-582 $)) 125 T ELT)) (-1946 (((-85) (-1 (-85) |#4|) $) 50 (|has| $ (-6 -3993)) ELT)) (-3678 (((-582 |#3|) $) 86 T ELT)) (-3195 (((-85) |#4| $) 142 T ELT)) (-3931 (((-85) |#3| $) 85 T ELT)) (-3055 (((-85) $ $) 8 T ELT)) (-3955 (((-693) $) 47 (|has| $ (-6 -3993)) ELT))) -(((-982 |#1| |#2| |#3| |#4|) (-113) (-390) (-716) (-755) (-976 |t#1| |t#2| |t#3|)) (T -982)) -((-3197 (*1 *2 *3 *1) (-12 (-4 *1 (-982 *4 *5 *6 *3)) (-4 *4 (-390)) (-4 *5 (-716)) (-4 *6 (-755)) (-4 *3 (-976 *4 *5 *6)) (-5 *2 (-85)))) (-3196 (*1 *2 *3 *1) (-12 (-4 *1 (-982 *4 *5 *6 *3)) (-4 *4 (-390)) (-4 *5 (-716)) (-4 *6 (-755)) (-4 *3 (-976 *4 *5 *6)) (-5 *2 (-85)))) (-3195 (*1 *2 *3 *1) (-12 (-4 *1 (-982 *4 *5 *6 *3)) (-4 *4 (-390)) (-4 *5 (-716)) (-4 *6 (-755)) (-4 *3 (-976 *4 *5 *6)) (-5 *2 (-85)))) (-3197 (*1 *2 *1) (-12 (-4 *1 (-982 *3 *4 *5 *6)) (-4 *3 (-390)) (-4 *4 (-716)) (-4 *5 (-755)) (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-85)))) (-3194 (*1 *2 *3 *1) (-12 (-4 *1 (-982 *4 *5 *6 *3)) (-4 *4 (-390)) (-4 *5 (-716)) (-4 *6 (-755)) (-4 *3 (-976 *4 *5 *6)) (-5 *2 (-85)))) (-3193 (*1 *2 *3 *1) (-12 (-4 *4 (-390)) (-4 *5 (-716)) (-4 *6 (-755)) (-4 *3 (-976 *4 *5 *6)) (-5 *2 (-3 (-85) (-582 *1))) (-4 *1 (-982 *4 *5 *6 *3)))) (-3192 (*1 *2 *3 *1) (-12 (-4 *4 (-390)) (-4 *5 (-716)) (-4 *6 (-755)) (-4 *3 (-976 *4 *5 *6)) (-5 *2 (-582 (-2 (|:| |val| (-85)) (|:| -1598 *1)))) (-4 *1 (-982 *4 *5 *6 *3)))) (-3192 (*1 *2 *3 *1) (-12 (-4 *1 (-982 *4 *5 *6 *3)) (-4 *4 (-390)) (-4 *5 (-716)) (-4 *6 (-755)) (-4 *3 (-976 *4 *5 *6)) (-5 *2 (-85)))) (-3191 (*1 *2 *3 *1) (-12 (-4 *4 (-390)) (-4 *5 (-716)) (-4 *6 (-755)) (-4 *3 (-976 *4 *5 *6)) (-5 *2 (-582 *1)) (-4 *1 (-982 *4 *5 *6 *3)))) (-3190 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-390)) (-4 *5 (-716)) (-4 *6 (-755)) (-4 *3 (-976 *4 *5 *6)) (-5 *2 (-3 *3 (-582 *1))) (-4 *1 (-982 *4 *5 *6 *3)))) (-3189 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-390)) (-4 *5 (-716)) (-4 *6 (-755)) (-4 *3 (-976 *4 *5 *6)) (-5 *2 (-582 (-2 (|:| |val| *3) (|:| -1598 *1)))) (-4 *1 (-982 *4 *5 *6 *3)))) (-3773 (*1 *2 *3 *1) (-12 (-4 *4 (-390)) (-4 *5 (-716)) (-4 *6 (-755)) (-4 *3 (-976 *4 *5 *6)) (-5 *2 (-582 (-2 (|:| |val| *3) (|:| -1598 *1)))) (-4 *1 (-982 *4 *5 *6 *3)))) (-3237 (*1 *2 *3 *1) (-12 (-4 *4 (-390)) (-4 *5 (-716)) (-4 *6 (-755)) (-4 *3 (-976 *4 *5 *6)) (-5 *2 (-582 *1)) (-4 *1 (-982 *4 *5 *6 *3)))) (-3237 (*1 *2 *3 *1) (-12 (-5 *3 (-582 *7)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-390)) (-4 *5 (-716)) (-4 *6 (-755)) (-5 *2 (-582 *1)) (-4 *1 (-982 *4 *5 *6 *7)))) (-3237 (*1 *2 *3 *2) (-12 (-5 *2 (-582 *1)) (-5 *3 (-582 *7)) (-4 *1 (-982 *4 *5 *6 *7)) (-4 *4 (-390)) (-4 *5 (-716)) (-4 *6 (-755)) (-4 *7 (-976 *4 *5 *6)))) (-3237 (*1 *2 *3 *2) (-12 (-5 *2 (-582 *1)) (-4 *1 (-982 *4 *5 *6 *3)) (-4 *4 (-390)) (-4 *5 (-716)) (-4 *6 (-755)) (-4 *3 (-976 *4 *5 *6)))) (-3188 (*1 *2 *3 *1) (-12 (-4 *4 (-390)) (-4 *5 (-716)) (-4 *6 (-755)) (-4 *3 (-976 *4 *5 *6)) (-5 *2 (-582 *1)) (-4 *1 (-982 *4 *5 *6 *3)))) (-3188 (*1 *2 *3 *2) (-12 (-5 *2 (-582 *1)) (-4 *1 (-982 *4 *5 *6 *3)) (-4 *4 (-390)) (-4 *5 (-716)) (-4 *6 (-755)) (-4 *3 (-976 *4 *5 *6)))) (-3188 (*1 *2 *3 *1) (-12 (-5 *3 (-582 *7)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-390)) (-4 *5 (-716)) (-4 *6 (-755)) (-5 *2 (-582 *1)) (-4 *1 (-982 *4 *5 *6 *7)))) (-3188 (*1 *2 *3 *2) (-12 (-5 *2 (-582 *1)) (-5 *3 (-582 *7)) (-4 *1 (-982 *4 *5 *6 *7)) (-4 *4 (-390)) (-4 *5 (-716)) (-4 *6 (-755)) (-4 *7 (-976 *4 *5 *6)))) (-3438 (*1 *1 *2 *1) (-12 (-4 *1 (-982 *3 *4 *5 *2)) (-4 *3 (-390)) (-4 *4 (-716)) (-4 *5 (-755)) (-4 *2 (-976 *3 *4 *5)))) (-3438 (*1 *1 *2 *1) (-12 (-5 *2 (-582 *6)) (-4 *1 (-982 *3 *4 *5 *6)) (-4 *3 (-390)) (-4 *4 (-716)) (-4 *5 (-755)) (-4 *6 (-976 *3 *4 *5)))) (-3767 (*1 *2 *3 *1) (-12 (-4 *4 (-390)) (-4 *5 (-716)) (-4 *6 (-755)) (-4 *3 (-976 *4 *5 *6)) (-5 *2 (-582 *1)) (-4 *1 (-982 *4 *5 *6 *3)))) (-3767 (*1 *2 *3 *2) (-12 (-5 *2 (-582 *1)) (-4 *1 (-982 *4 *5 *6 *3)) (-4 *4 (-390)) (-4 *5 (-716)) (-4 *6 (-755)) (-4 *3 (-976 *4 *5 *6)))) (-3767 (*1 *2 *3 *1) (-12 (-5 *3 (-582 *7)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-390)) (-4 *5 (-716)) (-4 *6 (-755)) (-5 *2 (-582 *1)) (-4 *1 (-982 *4 *5 *6 *7)))) (-3767 (*1 *2 *3 *2) (-12 (-5 *2 (-582 *1)) (-5 *3 (-582 *7)) (-4 *1 (-982 *4 *5 *6 *7)) (-4 *4 (-390)) (-4 *5 (-716)) (-4 *6 (-755)) (-4 *7 (-976 *4 *5 *6)))) (-3680 (*1 *2 *3 *4) (-12 (-5 *3 (-582 *8)) (-5 *4 (-85)) (-4 *8 (-976 *5 *6 *7)) (-4 *5 (-390)) (-4 *6 (-716)) (-4 *7 (-755)) (-5 *2 (-582 *1)) (-4 *1 (-982 *5 *6 *7 *8))))) -(-13 (-1122 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -3197 ((-85) |t#4| $)) (-15 -3196 ((-85) |t#4| $)) (-15 -3195 ((-85) |t#4| $)) (-15 -3197 ((-85) $)) (-15 -3194 ((-85) |t#4| $)) (-15 -3193 ((-3 (-85) (-582 $)) |t#4| $)) (-15 -3192 ((-582 (-2 (|:| |val| (-85)) (|:| -1598 $))) |t#4| $)) (-15 -3192 ((-85) |t#4| $)) (-15 -3191 ((-582 $) |t#4| $)) (-15 -3190 ((-3 |t#4| (-582 $)) |t#4| |t#4| $)) (-15 -3189 ((-582 (-2 (|:| |val| |t#4|) (|:| -1598 $))) |t#4| |t#4| $)) (-15 -3773 ((-582 (-2 (|:| |val| |t#4|) (|:| -1598 $))) |t#4| $)) (-15 -3237 ((-582 $) |t#4| $)) (-15 -3237 ((-582 $) (-582 |t#4|) $)) (-15 -3237 ((-582 $) (-582 |t#4|) (-582 $))) (-15 -3237 ((-582 $) |t#4| (-582 $))) (-15 -3188 ((-582 $) |t#4| $)) (-15 -3188 ((-582 $) |t#4| (-582 $))) (-15 -3188 ((-582 $) (-582 |t#4|) $)) (-15 -3188 ((-582 $) (-582 |t#4|) (-582 $))) (-15 -3438 ($ |t#4| $)) (-15 -3438 ($ (-582 |t#4|) $)) (-15 -3767 ((-582 $) |t#4| $)) (-15 -3767 ((-582 $) |t#4| (-582 $))) (-15 -3767 ((-582 $) (-582 |t#4|) $)) (-15 -3767 ((-582 $) (-582 |t#4|) (-582 $))) (-15 -3680 ((-582 $) (-582 |t#4|) (-85))))) -(((-34) . T) ((-72) . T) ((-551 (-582 |#4|)) . T) ((-551 (-771)) . T) ((-124 |#4|) . T) ((-552 (-472)) |has| |#4| (-552 (-472))) ((-260 |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1012))) ((-427 |#4|) . T) ((-454 |#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1012))) ((-13) . T) ((-888 |#1| |#2| |#3| |#4|) . T) ((-1012) . T) ((-1122 |#1| |#2| |#3| |#4|) . T) ((-1127) . T)) -((-3204 (((-582 (-2 (|:| |val| |#4|) (|:| -1598 |#5|))) |#4| |#5|) 86 T ELT)) (-3201 (((-582 (-2 (|:| |val| |#4|) (|:| -1598 |#5|))) |#4| |#4| |#5|) 125 T ELT)) (-3203 (((-582 |#5|) |#4| |#5|) 74 T ELT)) (-3202 (((-582 (-2 (|:| |val| (-85)) (|:| -1598 |#5|))) |#4| |#5|) 47 T ELT) (((-85) |#4| |#5|) 55 T ELT)) (-3285 (((-1183)) 36 T ELT)) (-3283 (((-1183)) 25 T ELT)) (-3284 (((-1183) (-1071) (-1071) (-1071)) 32 T ELT)) (-3282 (((-1183) (-1071) (-1071) (-1071)) 21 T ELT)) (-3198 (((-582 (-2 (|:| |val| (-582 |#4|)) (|:| -1598 |#5|))) |#4| |#4| |#5|) 106 T ELT)) (-3199 (((-582 (-2 (|:| |val| |#4|) (|:| -1598 |#5|))) (-582 (-2 (|:| |val| (-582 |#4|)) (|:| -1598 |#5|))) |#3| (-85)) 117 T ELT) (((-582 (-2 (|:| |val| |#4|) (|:| -1598 |#5|))) |#4| |#4| |#5| (-85) (-85)) 52 T ELT)) (-3200 (((-582 (-2 (|:| |val| |#4|) (|:| -1598 |#5|))) |#4| |#4| |#5|) 112 T ELT))) -(((-983 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3282 ((-1183) (-1071) (-1071) (-1071))) (-15 -3283 ((-1183))) (-15 -3284 ((-1183) (-1071) (-1071) (-1071))) (-15 -3285 ((-1183))) (-15 -3198 ((-582 (-2 (|:| |val| (-582 |#4|)) (|:| -1598 |#5|))) |#4| |#4| |#5|)) (-15 -3199 ((-582 (-2 (|:| |val| |#4|) (|:| -1598 |#5|))) |#4| |#4| |#5| (-85) (-85))) (-15 -3199 ((-582 (-2 (|:| |val| |#4|) (|:| -1598 |#5|))) (-582 (-2 (|:| |val| (-582 |#4|)) (|:| -1598 |#5|))) |#3| (-85))) (-15 -3200 ((-582 (-2 (|:| |val| |#4|) (|:| -1598 |#5|))) |#4| |#4| |#5|)) (-15 -3201 ((-582 (-2 (|:| |val| |#4|) (|:| -1598 |#5|))) |#4| |#4| |#5|)) (-15 -3202 ((-85) |#4| |#5|)) (-15 -3202 ((-582 (-2 (|:| |val| (-85)) (|:| -1598 |#5|))) |#4| |#5|)) (-15 -3203 ((-582 |#5|) |#4| |#5|)) (-15 -3204 ((-582 (-2 (|:| |val| |#4|) (|:| -1598 |#5|))) |#4| |#5|))) (-390) (-716) (-755) (-976 |#1| |#2| |#3|) (-982 |#1| |#2| |#3| |#4|)) (T -983)) -((-3204 (*1 *2 *3 *4) (-12 (-4 *5 (-390)) (-4 *6 (-716)) (-4 *7 (-755)) (-4 *3 (-976 *5 *6 *7)) (-5 *2 (-582 (-2 (|:| |val| *3) (|:| -1598 *4)))) (-5 *1 (-983 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))) (-3203 (*1 *2 *3 *4) (-12 (-4 *5 (-390)) (-4 *6 (-716)) (-4 *7 (-755)) (-4 *3 (-976 *5 *6 *7)) (-5 *2 (-582 *4)) (-5 *1 (-983 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))) (-3202 (*1 *2 *3 *4) (-12 (-4 *5 (-390)) (-4 *6 (-716)) (-4 *7 (-755)) (-4 *3 (-976 *5 *6 *7)) (-5 *2 (-582 (-2 (|:| |val| (-85)) (|:| -1598 *4)))) (-5 *1 (-983 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))) (-3202 (*1 *2 *3 *4) (-12 (-4 *5 (-390)) (-4 *6 (-716)) (-4 *7 (-755)) (-4 *3 (-976 *5 *6 *7)) (-5 *2 (-85)) (-5 *1 (-983 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))) (-3201 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-390)) (-4 *6 (-716)) (-4 *7 (-755)) (-4 *3 (-976 *5 *6 *7)) (-5 *2 (-582 (-2 (|:| |val| *3) (|:| -1598 *4)))) (-5 *1 (-983 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))) (-3200 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-390)) (-4 *6 (-716)) (-4 *7 (-755)) (-4 *3 (-976 *5 *6 *7)) (-5 *2 (-582 (-2 (|:| |val| *3) (|:| -1598 *4)))) (-5 *1 (-983 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))) (-3199 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-582 (-2 (|:| |val| (-582 *8)) (|:| -1598 *9)))) (-5 *5 (-85)) (-4 *8 (-976 *6 *7 *4)) (-4 *9 (-982 *6 *7 *4 *8)) (-4 *6 (-390)) (-4 *7 (-716)) (-4 *4 (-755)) (-5 *2 (-582 (-2 (|:| |val| *8) (|:| -1598 *9)))) (-5 *1 (-983 *6 *7 *4 *8 *9)))) (-3199 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-85)) (-4 *6 (-390)) (-4 *7 (-716)) (-4 *8 (-755)) (-4 *3 (-976 *6 *7 *8)) (-5 *2 (-582 (-2 (|:| |val| *3) (|:| -1598 *4)))) (-5 *1 (-983 *6 *7 *8 *3 *4)) (-4 *4 (-982 *6 *7 *8 *3)))) (-3198 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-390)) (-4 *6 (-716)) (-4 *7 (-755)) (-4 *3 (-976 *5 *6 *7)) (-5 *2 (-582 (-2 (|:| |val| (-582 *3)) (|:| -1598 *4)))) (-5 *1 (-983 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))) (-3285 (*1 *2) (-12 (-4 *3 (-390)) (-4 *4 (-716)) (-4 *5 (-755)) (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-1183)) (-5 *1 (-983 *3 *4 *5 *6 *7)) (-4 *7 (-982 *3 *4 *5 *6)))) (-3284 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1071)) (-4 *4 (-390)) (-4 *5 (-716)) (-4 *6 (-755)) (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-1183)) (-5 *1 (-983 *4 *5 *6 *7 *8)) (-4 *8 (-982 *4 *5 *6 *7)))) (-3283 (*1 *2) (-12 (-4 *3 (-390)) (-4 *4 (-716)) (-4 *5 (-755)) (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-1183)) (-5 *1 (-983 *3 *4 *5 *6 *7)) (-4 *7 (-982 *3 *4 *5 *6)))) (-3282 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1071)) (-4 *4 (-390)) (-4 *5 (-716)) (-4 *6 (-755)) (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-1183)) (-5 *1 (-983 *4 *5 *6 *7 *8)) (-4 *8 (-982 *4 *5 *6 *7))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3317 (((-1128) $) 14 T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3205 (((-1047) $) 11 T ELT)) (-3944 (((-771) $) 21 T ELT) (($ (-1093)) NIL T ELT) (((-1093) $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-984) (-13 (-994) (-10 -8 (-15 -3205 ((-1047) $)) (-15 -3317 ((-1128) $))))) (T -984)) -((-3205 (*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-984)))) (-3317 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-984))))) -((-3265 (((-85) $ $) 7 T ELT))) -(((-985) (-13 (-1127) (-10 -8 (-15 -3265 ((-85) $ $))))) (T -985)) -((-3265 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-985))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3208 (($ $ (-582 (-1088)) (-1 (-85) (-582 |#3|))) 34 T ELT)) (-3209 (($ |#3| |#3|) 23 T ELT) (($ |#3| |#3| (-582 (-1088))) 21 T ELT)) (-3526 ((|#3| $) 13 T ELT)) (-3156 (((-3 (-249 |#3|) "failed") $) 60 T ELT)) (-3155 (((-249 |#3|) $) NIL T ELT)) (-3206 (((-582 (-1088)) $) 16 T ELT)) (-3207 (((-799 |#1|) $) 11 T ELT)) (-3527 ((|#3| $) 12 T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3798 ((|#3| $ |#3|) 28 T ELT) ((|#3| $ |#3| (-829)) 41 T ELT)) (-3944 (((-771) $) 89 T ELT) (($ (-249 |#3|)) 22 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) 38 T ELT))) -(((-986 |#1| |#2| |#3|) (-13 (-1012) (-241 |#3| |#3|) (-949 (-249 |#3|)) (-10 -8 (-15 -3209 ($ |#3| |#3|)) (-15 -3209 ($ |#3| |#3| (-582 (-1088)))) (-15 -3208 ($ $ (-582 (-1088)) (-1 (-85) (-582 |#3|)))) (-15 -3207 ((-799 |#1|) $)) (-15 -3527 (|#3| $)) (-15 -3526 (|#3| $)) (-15 -3798 (|#3| $ |#3| (-829))) (-15 -3206 ((-582 (-1088)) $)))) (-1012) (-13 (-960) (-795 |#1|) (-552 (-799 |#1|))) (-13 (-362 |#2|) (-795 |#1|) (-552 (-799 |#1|)))) (T -986)) -((-3209 (*1 *1 *2 *2) (-12 (-4 *3 (-1012)) (-4 *4 (-13 (-960) (-795 *3) (-552 (-799 *3)))) (-5 *1 (-986 *3 *4 *2)) (-4 *2 (-13 (-362 *4) (-795 *3) (-552 (-799 *3)))))) (-3209 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-582 (-1088))) (-4 *4 (-1012)) (-4 *5 (-13 (-960) (-795 *4) (-552 (-799 *4)))) (-5 *1 (-986 *4 *5 *2)) (-4 *2 (-13 (-362 *5) (-795 *4) (-552 (-799 *4)))))) (-3208 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-582 (-1088))) (-5 *3 (-1 (-85) (-582 *6))) (-4 *6 (-13 (-362 *5) (-795 *4) (-552 (-799 *4)))) (-4 *4 (-1012)) (-4 *5 (-13 (-960) (-795 *4) (-552 (-799 *4)))) (-5 *1 (-986 *4 *5 *6)))) (-3207 (*1 *2 *1) (-12 (-4 *3 (-1012)) (-4 *4 (-13 (-960) (-795 *3) (-552 *2))) (-5 *2 (-799 *3)) (-5 *1 (-986 *3 *4 *5)) (-4 *5 (-13 (-362 *4) (-795 *3) (-552 *2))))) (-3527 (*1 *2 *1) (-12 (-4 *3 (-1012)) (-4 *2 (-13 (-362 *4) (-795 *3) (-552 (-799 *3)))) (-5 *1 (-986 *3 *4 *2)) (-4 *4 (-13 (-960) (-795 *3) (-552 (-799 *3)))))) (-3526 (*1 *2 *1) (-12 (-4 *3 (-1012)) (-4 *2 (-13 (-362 *4) (-795 *3) (-552 (-799 *3)))) (-5 *1 (-986 *3 *4 *2)) (-4 *4 (-13 (-960) (-795 *3) (-552 (-799 *3)))))) (-3798 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-829)) (-4 *4 (-1012)) (-4 *5 (-13 (-960) (-795 *4) (-552 (-799 *4)))) (-5 *1 (-986 *4 *5 *2)) (-4 *2 (-13 (-362 *5) (-795 *4) (-552 (-799 *4)))))) (-3206 (*1 *2 *1) (-12 (-4 *3 (-1012)) (-4 *4 (-13 (-960) (-795 *3) (-552 (-799 *3)))) (-5 *2 (-582 (-1088))) (-5 *1 (-986 *3 *4 *5)) (-4 *5 (-13 (-362 *4) (-795 *3) (-552 (-799 *3))))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3540 (((-1088) $) 8 T ELT)) (-3241 (((-1071) $) 17 T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3944 (((-771) $) 11 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) 14 T ELT))) -(((-987 |#1|) (-13 (-1012) (-10 -8 (-15 -3540 ((-1088) $)))) (-1088)) (T -987)) -((-3540 (*1 *2 *1) (-12 (-5 *2 (-1088)) (-5 *1 (-987 *3)) (-14 *3 *2)))) -((-2567 (((-85) $ $) NIL T ELT)) (-3211 (($ (-582 (-986 |#1| |#2| |#3|))) 15 T ELT)) (-3210 (((-582 (-986 |#1| |#2| |#3|)) $) 22 T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3798 ((|#3| $ |#3|) 25 T ELT) ((|#3| $ |#3| (-829)) 28 T ELT)) (-3944 (((-771) $) 18 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) 21 T ELT))) -(((-988 |#1| |#2| |#3|) (-13 (-1012) (-241 |#3| |#3|) (-10 -8 (-15 -3211 ($ (-582 (-986 |#1| |#2| |#3|)))) (-15 -3210 ((-582 (-986 |#1| |#2| |#3|)) $)) (-15 -3798 (|#3| $ |#3| (-829))))) (-1012) (-13 (-960) (-795 |#1|) (-552 (-799 |#1|))) (-13 (-362 |#2|) (-795 |#1|) (-552 (-799 |#1|)))) (T -988)) -((-3211 (*1 *1 *2) (-12 (-5 *2 (-582 (-986 *3 *4 *5))) (-4 *3 (-1012)) (-4 *4 (-13 (-960) (-795 *3) (-552 (-799 *3)))) (-4 *5 (-13 (-362 *4) (-795 *3) (-552 (-799 *3)))) (-5 *1 (-988 *3 *4 *5)))) (-3210 (*1 *2 *1) (-12 (-4 *3 (-1012)) (-4 *4 (-13 (-960) (-795 *3) (-552 (-799 *3)))) (-5 *2 (-582 (-986 *3 *4 *5))) (-5 *1 (-988 *3 *4 *5)) (-4 *5 (-13 (-362 *4) (-795 *3) (-552 (-799 *3)))))) (-3798 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-829)) (-4 *4 (-1012)) (-4 *5 (-13 (-960) (-795 *4) (-552 (-799 *4)))) (-5 *1 (-988 *4 *5 *2)) (-4 *2 (-13 (-362 *5) (-795 *4) (-552 (-799 *4))))))) -((-3212 (((-582 (-2 (|:| -1745 (-1083 |#1|)) (|:| -3223 (-582 (-856 |#1|))))) (-582 (-856 |#1|)) (-85) (-85)) 88 T ELT) (((-582 (-2 (|:| -1745 (-1083 |#1|)) (|:| -3223 (-582 (-856 |#1|))))) (-582 (-856 |#1|))) 92 T ELT) (((-582 (-2 (|:| -1745 (-1083 |#1|)) (|:| -3223 (-582 (-856 |#1|))))) (-582 (-856 |#1|)) (-85)) 90 T ELT))) -(((-989 |#1| |#2|) (-10 -7 (-15 -3212 ((-582 (-2 (|:| -1745 (-1083 |#1|)) (|:| -3223 (-582 (-856 |#1|))))) (-582 (-856 |#1|)) (-85))) (-15 -3212 ((-582 (-2 (|:| -1745 (-1083 |#1|)) (|:| -3223 (-582 (-856 |#1|))))) (-582 (-856 |#1|)))) (-15 -3212 ((-582 (-2 (|:| -1745 (-1083 |#1|)) (|:| -3223 (-582 (-856 |#1|))))) (-582 (-856 |#1|)) (-85) (-85)))) (-13 (-258) (-120)) (-582 (-1088))) (T -989)) -((-3212 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-582 (-2 (|:| -1745 (-1083 *5)) (|:| -3223 (-582 (-856 *5)))))) (-5 *1 (-989 *5 *6)) (-5 *3 (-582 (-856 *5))) (-14 *6 (-582 (-1088))))) (-3212 (*1 *2 *3) (-12 (-4 *4 (-13 (-258) (-120))) (-5 *2 (-582 (-2 (|:| -1745 (-1083 *4)) (|:| -3223 (-582 (-856 *4)))))) (-5 *1 (-989 *4 *5)) (-5 *3 (-582 (-856 *4))) (-14 *5 (-582 (-1088))))) (-3212 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-582 (-2 (|:| -1745 (-1083 *5)) (|:| -3223 (-582 (-856 *5)))))) (-5 *1 (-989 *5 *6)) (-5 *3 (-582 (-856 *5))) (-14 *6 (-582 (-1088)))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3187 (((-85) $) 132 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3980 $) (|:| |associate| $)) $) NIL (|has| |#1| (-312)) ELT)) (-2062 (($ $) NIL (|has| |#1| (-312)) ELT)) (-2060 (((-85) $) NIL (|has| |#1| (-312)) ELT)) (-1780 (((-629 |#1|) (-1177 $)) NIL T ELT) (((-629 |#1|)) 117 T ELT)) (-3328 ((|#1| $) 121 T ELT)) (-1673 (((-1100 (-829) (-693)) (-483)) NIL (|has| |#1| (-299)) ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3773 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3969 (((-346 $) $) NIL (|has| |#1| (-312)) ELT)) (-1606 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3135 (((-693)) 43 (|has| |#1| (-318)) ELT)) (-3722 (($) NIL T CONST)) (-3156 (((-3 (-483) #1#) $) NIL (|has| |#1| (-949 (-483))) ELT) (((-3 (-348 (-483)) #1#) $) NIL (|has| |#1| (-949 (-348 (-483)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3155 (((-483) $) NIL (|has| |#1| (-949 (-483))) ELT) (((-348 (-483)) $) NIL (|has| |#1| (-949 (-348 (-483)))) ELT) ((|#1| $) NIL T ELT)) (-1790 (($ (-1177 |#1|) (-1177 $)) NIL T ELT) (($ (-1177 |#1|)) 46 T ELT)) (-1671 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-299)) ELT)) (-2563 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-1779 (((-629 |#1|) $ (-1177 $)) NIL T ELT) (((-629 |#1|) $) NIL T ELT)) (-2278 (((-629 (-483)) (-629 $)) NIL (|has| |#1| (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-629 $) (-1177 $)) NIL (|has| |#1| (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 |#1|)) (|:| |vec| (-1177 |#1|))) (-629 $) (-1177 $)) 109 T ELT) (((-629 |#1|) (-629 $)) 104 T ELT)) (-3840 (($ |#2|) 62 T ELT) (((-3 $ #1#) (-348 |#2|)) NIL (|has| |#1| (-312)) ELT)) (-3465 (((-3 $ #1#) $) NIL T ELT)) (-3107 (((-829)) 80 T ELT)) (-2993 (($) 47 (|has| |#1| (-318)) ELT)) (-2562 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2740 (((-2 (|:| -3952 (-582 $)) (|:| -2408 $)) (-582 $)) NIL (|has| |#1| (-312)) ELT)) (-2832 (($) NIL (|has| |#1| (-299)) ELT)) (-1678 (((-85) $) NIL (|has| |#1| (-299)) ELT)) (-1762 (($ $ (-693)) NIL (|has| |#1| (-299)) ELT) (($ $) NIL (|has| |#1| (-299)) ELT)) (-3721 (((-85) $) NIL (|has| |#1| (-312)) ELT)) (-3770 (((-829) $) NIL (|has| |#1| (-299)) ELT) (((-742 (-829)) $) NIL (|has| |#1| (-299)) ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-2409 (((-85) $) NIL T ELT)) (-3131 ((|#1| $) NIL T ELT)) (-3443 (((-631 $) $) NIL (|has| |#1| (-299)) ELT)) (-1603 (((-3 (-582 $) #1#) (-582 $) $) NIL (|has| |#1| (-312)) ELT)) (-2013 ((|#2| $) 87 (|has| |#1| (-312)) ELT)) (-2009 (((-829) $) 140 (|has| |#1| (-318)) ELT)) (-3078 ((|#2| $) 59 T ELT)) (-2279 (((-629 (-483)) (-1177 $)) NIL (|has| |#1| (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL (|has| |#1| (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 |#1|)) (|:| |vec| (-1177 |#1|))) (-1177 $) $) NIL T ELT) (((-629 |#1|) (-1177 $)) NIL T ELT)) (-1889 (($ (-582 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3241 (((-1071) $) NIL T ELT)) (-2483 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3444 (($) NIL (|has| |#1| (-299)) CONST)) (-2399 (($ (-829)) 131 (|has| |#1| (-318)) ELT)) (-3242 (((-1032) $) NIL T ELT)) (-2408 (($) 123 T ELT)) (-2707 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#1| (-312)) ELT)) (-3143 (($ (-582 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-1674 (((-582 (-2 (|:| -3730 (-483)) (|:| -2400 (-483))))) NIL (|has| |#1| (-299)) ELT)) (-3730 (((-346 $) $) NIL (|has| |#1| (-312)) ELT)) (-1604 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3464 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-2739 (((-631 (-582 $)) (-582 $) $) NIL (|has| |#1| (-312)) ELT)) (-1605 (((-693) $) NIL (|has| |#1| (-312)) ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3755 ((|#1| (-1177 $)) NIL T ELT) ((|#1|) 113 T ELT)) (-1763 (((-693) $) NIL (|has| |#1| (-299)) ELT) (((-3 (-693) #1#) $ $) NIL (|has| |#1| (-299)) ELT)) (-3756 (($ $ (-693)) NIL (OR (-12 (|has| |#1| (-189)) (|has| |#1| (-312))) (|has| |#1| (-299))) ELT) (($ $) NIL (OR (-12 (|has| |#1| (-189)) (|has| |#1| (-312))) (|has| |#1| (-299))) ELT) (($ $ (-582 (-1088)) (-582 (-693))) NIL (-12 (|has| |#1| (-312)) (|has| |#1| (-810 (-1088)))) ELT) (($ $ (-1088) (-693)) NIL (-12 (|has| |#1| (-312)) (|has| |#1| (-810 (-1088)))) ELT) (($ $ (-582 (-1088))) NIL (-12 (|has| |#1| (-312)) (|has| |#1| (-810 (-1088)))) ELT) (($ $ (-1088)) NIL (-12 (|has| |#1| (-312)) (|has| |#1| (-810 (-1088)))) ELT) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-312)) ELT) (($ $ (-1 |#1| |#1|) (-693)) NIL (|has| |#1| (-312)) ELT)) (-2407 (((-629 |#1|) (-1177 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-312)) ELT)) (-3184 ((|#2|) 77 T ELT)) (-1672 (($) NIL (|has| |#1| (-299)) ELT)) (-3223 (((-1177 |#1|) $ (-1177 $)) 92 T ELT) (((-629 |#1|) (-1177 $) (-1177 $)) NIL T ELT) (((-1177 |#1|) $) 72 T ELT) (((-629 |#1|) (-1177 $)) 88 T ELT)) (-3970 (((-1177 |#1|) $) NIL T ELT) (($ (-1177 |#1|)) NIL T ELT) ((|#2| $) NIL T ELT) (($ |#2|) NIL T ELT)) (-2702 (((-3 (-1177 $) #1#) (-629 $)) NIL (|has| |#1| (-299)) ELT)) (-3944 (((-771) $) 58 T ELT) (($ (-483)) 53 T ELT) (($ |#1|) 55 T ELT) (($ $) NIL (|has| |#1| (-312)) ELT) (($ (-348 (-483))) NIL (OR (|has| |#1| (-312)) (|has| |#1| (-949 (-348 (-483))))) ELT)) (-2701 (($ $) NIL (|has| |#1| (-299)) ELT) (((-631 $) $) NIL (|has| |#1| (-118)) ELT)) (-2448 ((|#2| $) 85 T ELT)) (-3125 (((-693)) 79 T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-2011 (((-1177 $)) 84 T ELT)) (-2061 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3124 (((-85) $ $) NIL T ELT)) (-2659 (($) 32 T CONST)) (-2665 (($) 19 T CONST)) (-2668 (($ $ (-693)) NIL (OR (-12 (|has| |#1| (-189)) (|has| |#1| (-312))) (|has| |#1| (-299))) ELT) (($ $) NIL (OR (-12 (|has| |#1| (-189)) (|has| |#1| (-312))) (|has| |#1| (-299))) ELT) (($ $ (-582 (-1088)) (-582 (-693))) NIL (-12 (|has| |#1| (-312)) (|has| |#1| (-810 (-1088)))) ELT) (($ $ (-1088) (-693)) NIL (-12 (|has| |#1| (-312)) (|has| |#1| (-810 (-1088)))) ELT) (($ $ (-582 (-1088))) NIL (-12 (|has| |#1| (-312)) (|has| |#1| (-810 (-1088)))) ELT) (($ $ (-1088)) NIL (-12 (|has| |#1| (-312)) (|has| |#1| (-810 (-1088)))) ELT) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-312)) ELT) (($ $ (-1 |#1| |#1|) (-693)) NIL (|has| |#1| (-312)) ELT)) (-3055 (((-85) $ $) 64 T ELT)) (-3947 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3835 (($ $) 68 T ELT) (($ $ $) NIL T ELT)) (-3837 (($ $ $) 66 T ELT)) (** (($ $ (-829)) NIL T ELT) (($ $ (-693)) NIL T ELT) (($ $ (-483)) NIL (|has| |#1| (-312)) ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-483) $) 51 T ELT) (($ $ $) 70 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 48 T ELT) (($ (-348 (-483)) $) NIL (|has| |#1| (-312)) ELT) (($ $ (-348 (-483))) NIL (|has| |#1| (-312)) ELT))) -(((-990 |#1| |#2| |#3|) (-660 |#1| |#2|) (-146) (-1153 |#1|) |#2|) (T -990)) -NIL -((-3730 (((-346 |#3|) |#3|) 18 T ELT))) -(((-991 |#1| |#2| |#3|) (-10 -7 (-15 -3730 ((-346 |#3|) |#3|))) (-1153 (-348 (-483))) (-13 (-312) (-120) (-660 (-348 (-483)) |#1|)) (-1153 |#2|)) (T -991)) -((-3730 (*1 *2 *3) (-12 (-4 *4 (-1153 (-348 (-483)))) (-4 *5 (-13 (-312) (-120) (-660 (-348 (-483)) *4))) (-5 *2 (-346 *3)) (-5 *1 (-991 *4 *5 *3)) (-4 *3 (-1153 *5))))) -((-3730 (((-346 |#3|) |#3|) 19 T ELT))) -(((-992 |#1| |#2| |#3|) (-10 -7 (-15 -3730 ((-346 |#3|) |#3|))) (-1153 (-348 (-856 (-483)))) (-13 (-312) (-120) (-660 (-348 (-856 (-483))) |#1|)) (-1153 |#2|)) (T -992)) -((-3730 (*1 *2 *3) (-12 (-4 *4 (-1153 (-348 (-856 (-483))))) (-4 *5 (-13 (-312) (-120) (-660 (-348 (-856 (-483))) *4))) (-5 *2 (-346 *3)) (-5 *1 (-992 *4 *5 *3)) (-4 *3 (-1153 *5))))) -((-2567 (((-85) $ $) NIL T ELT)) (-2530 (($ $ $) 16 T ELT)) (-2856 (($ $ $) 17 T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3213 (($) 6 T ELT)) (-3970 (((-1088) $) 20 T ELT)) (-3944 (((-771) $) 13 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2565 (((-85) $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) 15 T ELT)) (-2683 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) 9 T ELT))) -(((-993) (-13 (-755) (-552 (-1088)) (-10 -8 (-15 -3213 ($))))) (T -993)) -((-3213 (*1 *1) (-5 *1 (-993)))) -((-2567 (((-85) $ $) 7 T ELT)) (-3241 (((-1071) $) 11 T ELT)) (-3242 (((-1032) $) 12 T ELT)) (-3944 (((-771) $) 13 T ELT) (($ (-1093)) 20 T ELT) (((-1093) $) 19 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-3055 (((-85) $ $) 8 T ELT))) -(((-994) (-113)) (T -994)) +((-3098 (*1 *2 *1) (-12 (-4 *1 (-956 *2)) (-4 *2 (-23)))) (-3097 (*1 *2 *1) (-12 (-4 *1 (-956 *2)) (-4 *2 (-23)))) (-3096 (*1 *2 *1) (-12 (-4 *1 (-956 *2)) (-4 *2 (-23)))) (-3095 (*1 *2) (-12 (-4 *1 (-956 *2)) (-4 *2 (-23))))) +(-13 (-23) (-10 -8 (-15 -3098 (|t#1| $)) (-15 -3097 (|t#1| $)) (-15 -3096 (|t#1| $)) (-15 -3095 (|t#1|) -3951))) +(((-23) . T) ((-25) . T) ((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-1013) . T) ((-1128) . T)) +((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-3099 (($) 31 T CONST)) (-3723 (($) 23 T CONST)) (-3098 ((|#1| $) 29 T ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3097 ((|#1| $) 28 T ELT)) (-3095 ((|#1|) 26 T CONST)) (-3945 (((-772) $) 13 T ELT)) (-3096 ((|#1| $) 27 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-2660 (($) 24 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3838 (($ $ $) 18 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT))) +(((-957 |#1|) (-113) (-23)) (T -957)) +((-3099 (*1 *1) (-12 (-4 *1 (-957 *2)) (-4 *2 (-23))))) +(-13 (-956 |t#1|) (-10 -8 (-15 -3099 ($) -3951))) +(((-23) . T) ((-25) . T) ((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-956 |#1|) . T) ((-1013) . T) ((-1128) . T)) +((-2568 (((-85) $ $) NIL T ELT)) (-3680 (((-583 (-2 (|:| -3860 $) (|:| -1701 (-583 (-703 |#1| (-773 |#2|)))))) (-583 (-703 |#1| (-773 |#2|)))) NIL T ELT)) (-3681 (((-583 $) (-583 (-703 |#1| (-773 |#2|)))) NIL T ELT) (((-583 $) (-583 (-703 |#1| (-773 |#2|))) (-85)) NIL T ELT) (((-583 $) (-583 (-703 |#1| (-773 |#2|))) (-85) (-85)) NIL T ELT)) (-3081 (((-583 (-773 |#2|)) $) NIL T ELT)) (-2908 (((-85) $) NIL T ELT)) (-2899 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-3692 (((-85) (-703 |#1| (-773 |#2|)) $) NIL T ELT) (((-85) $) NIL T ELT)) (-3687 (((-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|)) $) NIL T ELT)) (-3774 (((-583 (-2 (|:| |val| (-703 |#1| (-773 |#2|))) (|:| -1599 $))) (-703 |#1| (-773 |#2|)) $) NIL T ELT)) (-2909 (((-2 (|:| |under| $) (|:| -3130 $) (|:| |upper| $)) $ (-773 |#2|)) NIL T ELT)) (-3709 (($ (-1 (-85) (-703 |#1| (-773 |#2|))) $) NIL (|has| $ (-6 -3994)) ELT) (((-3 (-703 |#1| (-773 |#2|)) #1="failed") $ (-773 |#2|)) NIL T ELT)) (-3723 (($) NIL T CONST)) (-2904 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-2906 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-2905 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-2907 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-3688 (((-583 (-703 |#1| (-773 |#2|))) (-583 (-703 |#1| (-773 |#2|))) $ (-1 (-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|))) (-1 (-85) (-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|)))) NIL T ELT)) (-2900 (((-583 (-703 |#1| (-773 |#2|))) (-583 (-703 |#1| (-773 |#2|))) $) NIL (|has| |#1| (-495)) ELT)) (-2901 (((-583 (-703 |#1| (-773 |#2|))) (-583 (-703 |#1| (-773 |#2|))) $) NIL (|has| |#1| (-495)) ELT)) (-3157 (((-3 $ #1#) (-583 (-703 |#1| (-773 |#2|)))) NIL T ELT)) (-3156 (($ (-583 (-703 |#1| (-773 |#2|)))) NIL T ELT)) (-3798 (((-3 $ #1#) $) NIL T ELT)) (-3684 (((-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|)) $) NIL T ELT)) (-1352 (($ $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-703 |#1| (-773 |#2|)) (-1013))) ELT)) (-3405 (($ (-703 |#1| (-773 |#2|)) $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-703 |#1| (-773 |#2|)) (-1013))) ELT) (($ (-1 (-85) (-703 |#1| (-773 |#2|))) $) NIL (|has| $ (-6 -3994)) ELT)) (-2902 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-703 |#1| (-773 |#2|))) (|:| |den| |#1|)) (-703 |#1| (-773 |#2|)) $) NIL (|has| |#1| (-495)) ELT)) (-3693 (((-85) (-703 |#1| (-773 |#2|)) $ (-1 (-85) (-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|)))) NIL T ELT)) (-3682 (((-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|)) $) NIL T ELT)) (-3841 (((-703 |#1| (-773 |#2|)) (-1 (-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|))) $ (-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|))) NIL (-12 (|has| $ (-6 -3994)) (|has| (-703 |#1| (-773 |#2|)) (-1013))) ELT) (((-703 |#1| (-773 |#2|)) (-1 (-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|))) $ (-703 |#1| (-773 |#2|))) NIL (|has| $ (-6 -3994)) ELT) (((-703 |#1| (-773 |#2|)) (-1 (-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|))) $) NIL (|has| $ (-6 -3994)) ELT) (((-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|)) $ (-1 (-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|))) (-1 (-85) (-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|)))) NIL T ELT)) (-3695 (((-2 (|:| -3860 (-583 (-703 |#1| (-773 |#2|)))) (|:| -1701 (-583 (-703 |#1| (-773 |#2|))))) $) NIL T ELT)) (-3197 (((-85) (-703 |#1| (-773 |#2|)) $) NIL T ELT)) (-3195 (((-85) (-703 |#1| (-773 |#2|)) $) NIL T ELT)) (-3198 (((-85) (-703 |#1| (-773 |#2|)) $) NIL T ELT) (((-85) $) NIL T ELT)) (-2889 (((-583 (-703 |#1| (-773 |#2|))) $) NIL (|has| $ (-6 -3994)) ELT)) (-3694 (((-85) (-703 |#1| (-773 |#2|)) $) NIL T ELT) (((-85) $) NIL T ELT)) (-3180 (((-773 |#2|) $) NIL T ELT)) (-2608 (((-583 (-703 |#1| (-773 |#2|))) $) NIL (|has| $ (-6 -3994)) ELT)) (-3245 (((-85) (-703 |#1| (-773 |#2|)) $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-703 |#1| (-773 |#2|)) (-1013))) ELT)) (-1948 (($ (-1 (-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|))) $) NIL (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 (-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|))) $) NIL T ELT)) (-2914 (((-583 (-773 |#2|)) $) NIL T ELT)) (-2913 (((-85) (-773 |#2|) $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3191 (((-3 (-703 |#1| (-773 |#2|)) (-583 $)) (-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|)) $) NIL T ELT)) (-3190 (((-583 (-2 (|:| |val| (-703 |#1| (-773 |#2|))) (|:| -1599 $))) (-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|)) $) NIL T ELT)) (-3797 (((-3 (-703 |#1| (-773 |#2|)) #1#) $) NIL T ELT)) (-3192 (((-583 $) (-703 |#1| (-773 |#2|)) $) NIL T ELT)) (-3194 (((-3 (-85) (-583 $)) (-703 |#1| (-773 |#2|)) $) NIL T ELT)) (-3193 (((-583 (-2 (|:| |val| (-85)) (|:| -1599 $))) (-703 |#1| (-773 |#2|)) $) NIL T ELT) (((-85) (-703 |#1| (-773 |#2|)) $) NIL T ELT)) (-3238 (((-583 $) (-703 |#1| (-773 |#2|)) $) NIL T ELT) (((-583 $) (-583 (-703 |#1| (-773 |#2|))) $) NIL T ELT) (((-583 $) (-583 (-703 |#1| (-773 |#2|))) (-583 $)) NIL T ELT) (((-583 $) (-703 |#1| (-773 |#2|)) (-583 $)) NIL T ELT)) (-3439 (($ (-703 |#1| (-773 |#2|)) $) NIL T ELT) (($ (-583 (-703 |#1| (-773 |#2|))) $) NIL T ELT)) (-3696 (((-583 (-703 |#1| (-773 |#2|))) $) NIL T ELT)) (-3690 (((-85) (-703 |#1| (-773 |#2|)) $) NIL T ELT) (((-85) $) NIL T ELT)) (-3685 (((-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|)) $) NIL T ELT)) (-3698 (((-85) $ $) NIL T ELT)) (-2903 (((-2 (|:| |num| (-703 |#1| (-773 |#2|))) (|:| |den| |#1|)) (-703 |#1| (-773 |#2|)) $) NIL (|has| |#1| (-495)) ELT)) (-3691 (((-85) (-703 |#1| (-773 |#2|)) $) NIL T ELT) (((-85) $) NIL T ELT)) (-3686 (((-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|)) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3800 (((-3 (-703 |#1| (-773 |#2|)) #1#) $) NIL T ELT)) (-1353 (((-3 (-703 |#1| (-773 |#2|)) #1#) (-1 (-85) (-703 |#1| (-773 |#2|))) $) NIL T ELT)) (-3678 (((-3 $ #1#) $ (-703 |#1| (-773 |#2|))) NIL T ELT)) (-3768 (($ $ (-703 |#1| (-773 |#2|))) NIL T ELT) (((-583 $) (-703 |#1| (-773 |#2|)) $) NIL T ELT) (((-583 $) (-703 |#1| (-773 |#2|)) (-583 $)) NIL T ELT) (((-583 $) (-583 (-703 |#1| (-773 |#2|))) $) NIL T ELT) (((-583 $) (-583 (-703 |#1| (-773 |#2|))) (-583 $)) NIL T ELT)) (-1946 (((-85) (-1 (-85) (-703 |#1| (-773 |#2|))) $) NIL (|has| $ (-6 -3994)) ELT)) (-3767 (($ $ (-583 (-703 |#1| (-773 |#2|))) (-583 (-703 |#1| (-773 |#2|)))) NIL (-12 (|has| (-703 |#1| (-773 |#2|)) (-260 (-703 |#1| (-773 |#2|)))) (|has| (-703 |#1| (-773 |#2|)) (-1013))) ELT) (($ $ (-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|))) NIL (-12 (|has| (-703 |#1| (-773 |#2|)) (-260 (-703 |#1| (-773 |#2|)))) (|has| (-703 |#1| (-773 |#2|)) (-1013))) ELT) (($ $ (-249 (-703 |#1| (-773 |#2|)))) NIL (-12 (|has| (-703 |#1| (-773 |#2|)) (-260 (-703 |#1| (-773 |#2|)))) (|has| (-703 |#1| (-773 |#2|)) (-1013))) ELT) (($ $ (-583 (-249 (-703 |#1| (-773 |#2|))))) NIL (-12 (|has| (-703 |#1| (-773 |#2|)) (-260 (-703 |#1| (-773 |#2|)))) (|has| (-703 |#1| (-773 |#2|)) (-1013))) ELT)) (-1221 (((-85) $ $) NIL T ELT)) (-3402 (((-85) $) NIL T ELT)) (-3564 (($) NIL T ELT)) (-3947 (((-694) $) NIL T ELT)) (-1945 (((-694) (-703 |#1| (-773 |#2|)) $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-703 |#1| (-773 |#2|)) (-1013))) ELT) (((-694) (-1 (-85) (-703 |#1| (-773 |#2|))) $) NIL (|has| $ (-6 -3994)) ELT)) (-3399 (($ $) NIL T ELT)) (-3971 (((-473) $) NIL (|has| (-703 |#1| (-773 |#2|)) (-553 (-473))) ELT)) (-3529 (($ (-583 (-703 |#1| (-773 |#2|)))) NIL T ELT)) (-2910 (($ $ (-773 |#2|)) NIL T ELT)) (-2912 (($ $ (-773 |#2|)) NIL T ELT)) (-3683 (($ $) NIL T ELT)) (-2911 (($ $ (-773 |#2|)) NIL T ELT)) (-3945 (((-772) $) NIL T ELT) (((-583 (-703 |#1| (-773 |#2|))) $) NIL T ELT)) (-3677 (((-694) $) NIL (|has| (-773 |#2|) (-319)) ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3697 (((-3 (-2 (|:| |bas| $) (|:| -3323 (-583 (-703 |#1| (-773 |#2|))))) #1#) (-583 (-703 |#1| (-773 |#2|))) (-1 (-85) (-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|)))) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3323 (-583 (-703 |#1| (-773 |#2|))))) #1#) (-583 (-703 |#1| (-773 |#2|))) (-1 (-85) (-703 |#1| (-773 |#2|))) (-1 (-85) (-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|)))) NIL T ELT)) (-3689 (((-85) $ (-1 (-85) (-703 |#1| (-773 |#2|)) (-583 (-703 |#1| (-773 |#2|))))) NIL T ELT)) (-3189 (((-583 $) (-703 |#1| (-773 |#2|)) $) NIL T ELT) (((-583 $) (-703 |#1| (-773 |#2|)) (-583 $)) NIL T ELT) (((-583 $) (-583 (-703 |#1| (-773 |#2|))) $) NIL T ELT) (((-583 $) (-583 (-703 |#1| (-773 |#2|))) (-583 $)) NIL T ELT)) (-1947 (((-85) (-1 (-85) (-703 |#1| (-773 |#2|))) $) NIL (|has| $ (-6 -3994)) ELT)) (-3679 (((-583 (-773 |#2|)) $) NIL T ELT)) (-3196 (((-85) (-703 |#1| (-773 |#2|)) $) NIL T ELT)) (-3932 (((-85) (-773 |#2|) $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3956 (((-694) $) NIL (|has| $ (-6 -3994)) ELT))) +(((-958 |#1| |#2|) (-13 (-983 |#1| (-469 (-773 |#2|)) (-773 |#2|) (-703 |#1| (-773 |#2|))) (-10 -8 (-15 -3681 ((-583 $) (-583 (-703 |#1| (-773 |#2|))) (-85) (-85))))) (-391) (-583 (-1089))) (T -958)) +((-3681 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 (-703 *5 (-773 *6)))) (-5 *4 (-85)) (-4 *5 (-391)) (-14 *6 (-583 (-1089))) (-5 *2 (-583 (-958 *5 *6))) (-5 *1 (-958 *5 *6))))) +((-3100 (((-1 (-484)) (-1001 (-484))) 32 T ELT)) (-3104 (((-484) (-484) (-484) (-484) (-484)) 29 T ELT)) (-3102 (((-1 (-484)) |RationalNumber|) NIL T ELT)) (-3103 (((-1 (-484)) |RationalNumber|) NIL T ELT)) (-3101 (((-1 (-484)) (-484) |RationalNumber|) NIL T ELT))) +(((-959) (-10 -7 (-15 -3100 ((-1 (-484)) (-1001 (-484)))) (-15 -3101 ((-1 (-484)) (-484) |RationalNumber|)) (-15 -3102 ((-1 (-484)) |RationalNumber|)) (-15 -3103 ((-1 (-484)) |RationalNumber|)) (-15 -3104 ((-484) (-484) (-484) (-484) (-484))))) (T -959)) +((-3104 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-959)))) (-3103 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-484))) (-5 *1 (-959)))) (-3102 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-484))) (-5 *1 (-959)))) (-3101 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-484))) (-5 *1 (-959)) (-5 *3 (-484)))) (-3100 (*1 *2 *3) (-12 (-5 *3 (-1001 (-484))) (-5 *2 (-1 (-484))) (-5 *1 (-959))))) +((-3945 (((-772) $) NIL T ELT) (($ (-484)) 10 T ELT))) +(((-960 |#1|) (-10 -7 (-15 -3945 (|#1| (-484))) (-15 -3945 ((-772) |#1|))) (-961)) (T -960)) +NIL +((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3723 (($) 23 T CONST)) (-3466 (((-3 $ "failed") $) 42 T ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT)) (-3126 (((-694)) 40 T CONST)) (-1264 (((-85) $ $) 6 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT))) +(((-961) (-113)) (T -961)) +((-3126 (*1 *2) (-12 (-4 *1 (-961)) (-5 *2 (-694))))) +(-13 (-970) (-1060) (-590 $) (-555 (-484)) (-10 -7 (-15 -3126 ((-694)) -3951) (-6 -3991))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-555 (-484)) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 $) . T) ((-590 $) . T) ((-663) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T)) +((-3105 (((-349 (-857 |#2|)) (-583 |#2|) (-583 |#2|) (-694) (-694)) 55 T ELT))) +(((-962 |#1| |#2|) (-10 -7 (-15 -3105 ((-349 (-857 |#2|)) (-583 |#2|) (-583 |#2|) (-694) (-694)))) (-1089) (-312)) (T -962)) +((-3105 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-583 *6)) (-5 *4 (-694)) (-4 *6 (-312)) (-5 *2 (-349 (-857 *6))) (-5 *1 (-962 *5 *6)) (-14 *5 (-1089))))) +((-2568 (((-85) $ $) 7 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3945 (((-772) $) 13 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (* (($ $ |#1|) 17 T ELT))) +(((-963 |#1|) (-113) (-1025)) (T -963)) +((* (*1 *1 *1 *2) (-12 (-4 *1 (-963 *2)) (-4 *2 (-1025))))) +(-13 (-1013) (-10 -8 (-15 * ($ $ |t#1|)))) +(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-1013) . T) ((-1128) . T)) +((-3120 (((-85) $) 38 T ELT)) (-3122 (((-85) $) 17 T ELT)) (-3114 (((-694) $) 13 T ELT)) (-3113 (((-694) $) 14 T ELT)) (-3121 (((-85) $) 30 T ELT)) (-3119 (((-85) $) 40 T ELT))) +(((-964 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3113 ((-694) |#1|)) (-15 -3114 ((-694) |#1|)) (-15 -3119 ((-85) |#1|)) (-15 -3120 ((-85) |#1|)) (-15 -3121 ((-85) |#1|)) (-15 -3122 ((-85) |#1|))) (-965 |#2| |#3| |#4| |#5| |#6|) (-694) (-694) (-961) (-196 |#3| |#4|) (-196 |#2| |#4|)) (T -964)) +NIL +((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-3120 (((-85) $) 62 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3122 (((-85) $) 64 T ELT)) (-3723 (($) 23 T CONST)) (-3109 (($ $) 45 (|has| |#3| (-258)) ELT)) (-3111 ((|#4| $ (-484)) 50 T ELT)) (-3108 (((-694) $) 44 (|has| |#3| (-495)) ELT)) (-3112 ((|#3| $ (-484) (-484)) 52 T ELT)) (-2889 (((-583 |#3|) $) 76 (|has| $ (-6 -3994)) ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-3107 (((-694) $) 43 (|has| |#3| (-495)) ELT)) (-3106 (((-583 |#5|) $) 42 (|has| |#3| (-495)) ELT)) (-3114 (((-694) $) 56 T ELT)) (-3113 (((-694) $) 55 T ELT)) (-3118 (((-484) $) 60 T ELT)) (-3116 (((-484) $) 58 T ELT)) (-2608 (((-583 |#3|) $) 77 (|has| $ (-6 -3994)) ELT)) (-3245 (((-85) |#3| $) 79 (-12 (|has| |#3| (-1013)) (|has| $ (-6 -3994))) ELT)) (-3117 (((-484) $) 59 T ELT)) (-3115 (((-484) $) 57 T ELT)) (-3123 (($ (-583 (-583 |#3|))) 65 T ELT)) (-1948 (($ (-1 |#3| |#3|) $) 72 (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#3| |#3|) $) 71 T ELT) (($ (-1 |#3| |#3| |#3|) $ $) 48 T ELT)) (-3593 (((-583 (-583 |#3|)) $) 54 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3465 (((-3 $ "failed") $ |#3|) 47 (|has| |#3| (-495)) ELT)) (-1946 (((-85) (-1 (-85) |#3|) $) 74 (|has| $ (-6 -3994)) ELT)) (-3767 (($ $ (-583 |#3|) (-583 |#3|)) 83 (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1013))) ELT) (($ $ |#3| |#3|) 82 (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1013))) ELT) (($ $ (-249 |#3|)) 81 (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1013))) ELT) (($ $ (-583 (-249 |#3|))) 80 (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1013))) ELT)) (-1221 (((-85) $ $) 66 T ELT)) (-3402 (((-85) $) 69 T ELT)) (-3564 (($) 68 T ELT)) (-3799 ((|#3| $ (-484) (-484)) 53 T ELT) ((|#3| $ (-484) (-484) |#3|) 51 T ELT)) (-3121 (((-85) $) 63 T ELT)) (-1945 (((-694) |#3| $) 78 (-12 (|has| |#3| (-1013)) (|has| $ (-6 -3994))) ELT) (((-694) (-1 (-85) |#3|) $) 75 (|has| $ (-6 -3994)) ELT)) (-3399 (($ $) 67 T ELT)) (-3110 ((|#5| $ (-484)) 49 T ELT)) (-3945 (((-772) $) 13 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-1947 (((-85) (-1 (-85) |#3|) $) 73 (|has| $ (-6 -3994)) ELT)) (-3119 (((-85) $) 61 T ELT)) (-2660 (($) 24 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3948 (($ $ |#3|) 46 (|has| |#3| (-312)) ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ |#3| $) 33 T ELT) (($ $ |#3|) 37 T ELT)) (-3956 (((-694) $) 70 (|has| $ (-6 -3994)) ELT))) +(((-965 |#1| |#2| |#3| |#4| |#5|) (-113) (-694) (-694) (-961) (-196 |t#2| |t#3|) (-196 |t#1| |t#3|)) (T -965)) +((-3957 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)))) (-3123 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 *5))) (-4 *5 (-961)) (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)))) (-3122 (*1 *2 *1) (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-85)))) (-3121 (*1 *2 *1) (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-85)))) (-3120 (*1 *2 *1) (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-85)))) (-3119 (*1 *2 *1) (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-85)))) (-3118 (*1 *2 *1) (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-484)))) (-3117 (*1 *2 *1) (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-484)))) (-3116 (*1 *2 *1) (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-484)))) (-3115 (*1 *2 *1) (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-484)))) (-3114 (*1 *2 *1) (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-694)))) (-3113 (*1 *2 *1) (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-694)))) (-3593 (*1 *2 *1) (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-583 (-583 *5))))) (-3799 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-484)) (-4 *1 (-965 *4 *5 *2 *6 *7)) (-4 *6 (-196 *5 *2)) (-4 *7 (-196 *4 *2)) (-4 *2 (-961)))) (-3112 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-484)) (-4 *1 (-965 *4 *5 *2 *6 *7)) (-4 *6 (-196 *5 *2)) (-4 *7 (-196 *4 *2)) (-4 *2 (-961)))) (-3799 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-484)) (-4 *1 (-965 *4 *5 *2 *6 *7)) (-4 *2 (-961)) (-4 *6 (-196 *5 *2)) (-4 *7 (-196 *4 *2)))) (-3111 (*1 *2 *1 *3) (-12 (-5 *3 (-484)) (-4 *1 (-965 *4 *5 *6 *2 *7)) (-4 *6 (-961)) (-4 *7 (-196 *4 *6)) (-4 *2 (-196 *5 *6)))) (-3110 (*1 *2 *1 *3) (-12 (-5 *3 (-484)) (-4 *1 (-965 *4 *5 *6 *7 *2)) (-4 *6 (-961)) (-4 *7 (-196 *5 *6)) (-4 *2 (-196 *4 *6)))) (-3957 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)))) (-3465 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-965 *3 *4 *2 *5 *6)) (-4 *2 (-961)) (-4 *5 (-196 *4 *2)) (-4 *6 (-196 *3 *2)) (-4 *2 (-495)))) (-3948 (*1 *1 *1 *2) (-12 (-4 *1 (-965 *3 *4 *2 *5 *6)) (-4 *2 (-961)) (-4 *5 (-196 *4 *2)) (-4 *6 (-196 *3 *2)) (-4 *2 (-312)))) (-3109 (*1 *1 *1) (-12 (-4 *1 (-965 *2 *3 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-196 *3 *4)) (-4 *6 (-196 *2 *4)) (-4 *4 (-258)))) (-3108 (*1 *2 *1) (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-4 *5 (-495)) (-5 *2 (-694)))) (-3107 (*1 *2 *1) (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-4 *5 (-495)) (-5 *2 (-694)))) (-3106 (*1 *2 *1) (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-4 *5 (-495)) (-5 *2 (-583 *7))))) +(-13 (-82 |t#3| |t#3|) (-428 |t#3|) (-10 -8 (-6 -3994) (IF (|has| |t#3| (-146)) (-6 (-654 |t#3|)) |%noBranch|) (-15 -3123 ($ (-583 (-583 |t#3|)))) (-15 -3122 ((-85) $)) (-15 -3121 ((-85) $)) (-15 -3120 ((-85) $)) (-15 -3119 ((-85) $)) (-15 -3118 ((-484) $)) (-15 -3117 ((-484) $)) (-15 -3116 ((-484) $)) (-15 -3115 ((-484) $)) (-15 -3114 ((-694) $)) (-15 -3113 ((-694) $)) (-15 -3593 ((-583 (-583 |t#3|)) $)) (-15 -3799 (|t#3| $ (-484) (-484))) (-15 -3112 (|t#3| $ (-484) (-484))) (-15 -3799 (|t#3| $ (-484) (-484) |t#3|)) (-15 -3111 (|t#4| $ (-484))) (-15 -3110 (|t#5| $ (-484))) (-15 -3957 ($ (-1 |t#3| |t#3|) $)) (-15 -3957 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-495)) (-15 -3465 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-312)) (-15 -3948 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-258)) (-15 -3109 ($ $)) |%noBranch|) (IF (|has| |t#3| (-495)) (PROGN (-15 -3108 ((-694) $)) (-15 -3107 ((-694) $)) (-15 -3106 ((-583 |t#5|) $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-72) . T) ((-82 |#3| |#3|) . T) ((-104) . T) ((-552 (-772)) . T) ((-260 |#3|) -12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1013))) ((-428 |#3|) . T) ((-455 |#3| |#3|) -12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1013))) ((-13) . T) ((-588 (-484)) . T) ((-588 |#3|) . T) ((-590 |#3|) . T) ((-582 |#3|) |has| |#3| (-146)) ((-654 |#3|) |has| |#3| (-146)) ((-963 |#3|) . T) ((-968 |#3|) . T) ((-1013) . T) ((-1128) . T)) +((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-3120 (((-85) $) NIL T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3122 (((-85) $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-3109 (($ $) 46 (|has| |#3| (-258)) ELT)) (-3111 (((-197 |#2| |#3|) $ (-484)) 35 T ELT)) (-3124 (($ (-630 |#3|)) 44 T ELT)) (-3108 (((-694) $) 48 (|has| |#3| (-495)) ELT)) (-3112 ((|#3| $ (-484) (-484)) NIL T ELT)) (-2889 (((-583 |#3|) $) NIL (|has| $ (-6 -3994)) ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-3107 (((-694) $) 50 (|has| |#3| (-495)) ELT)) (-3106 (((-583 (-197 |#1| |#3|)) $) 54 (|has| |#3| (-495)) ELT)) (-3114 (((-694) $) NIL T ELT)) (-3113 (((-694) $) NIL T ELT)) (-3118 (((-484) $) NIL T ELT)) (-3116 (((-484) $) NIL T ELT)) (-2608 (((-583 |#3|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3245 (((-85) |#3| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#3| (-1013))) ELT)) (-3117 (((-484) $) NIL T ELT)) (-3115 (((-484) $) NIL T ELT)) (-3123 (($ (-583 (-583 |#3|))) 30 T ELT)) (-1948 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#3| |#3|) $) NIL T ELT) (($ (-1 |#3| |#3| |#3|) $ $) NIL T ELT)) (-3593 (((-583 (-583 |#3|)) $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3465 (((-3 $ #1#) $ |#3|) NIL (|has| |#3| (-495)) ELT)) (-1946 (((-85) (-1 (-85) |#3|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3767 (($ $ (-583 |#3|) (-583 |#3|)) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1013))) ELT) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1013))) ELT) (($ $ (-249 |#3|)) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1013))) ELT) (($ $ (-583 (-249 |#3|))) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1013))) ELT)) (-1221 (((-85) $ $) NIL T ELT)) (-3402 (((-85) $) NIL T ELT)) (-3564 (($) NIL T ELT)) (-3799 ((|#3| $ (-484) (-484)) NIL T ELT) ((|#3| $ (-484) (-484) |#3|) NIL T ELT)) (-3910 (((-107)) 58 (|has| |#3| (-312)) ELT)) (-3121 (((-85) $) NIL T ELT)) (-1945 (((-694) |#3| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#3| (-1013))) ELT) (((-694) (-1 (-85) |#3|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3399 (($ $) NIL T ELT)) (-3971 (((-473) $) 65 (|has| |#3| (-553 (-473))) ELT)) (-3110 (((-197 |#1| |#3|) $ (-484)) 39 T ELT)) (-3945 (((-772) $) 18 T ELT) (((-630 |#3|) $) 41 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-1947 (((-85) (-1 (-85) |#3|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3119 (((-85) $) NIL T ELT)) (-2660 (($) 15 T CONST)) (-3056 (((-85) $ $) NIL T ELT)) (-3948 (($ $ |#3|) NIL (|has| |#3| (-312)) ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ |#3| $) NIL T ELT) (($ $ |#3|) NIL T ELT)) (-3956 (((-694) $) NIL (|has| $ (-6 -3994)) ELT))) +(((-966 |#1| |#2| |#3|) (-13 (-965 |#1| |#2| |#3| (-197 |#2| |#3|) (-197 |#1| |#3|)) (-552 (-630 |#3|)) (-10 -8 (IF (|has| |#3| (-312)) (-6 (-1186 |#3|)) |%noBranch|) (IF (|has| |#3| (-553 (-473))) (-6 (-553 (-473))) |%noBranch|) (-15 -3124 ($ (-630 |#3|))))) (-694) (-694) (-961)) (T -966)) +((-3124 (*1 *1 *2) (-12 (-5 *2 (-630 *5)) (-4 *5 (-961)) (-5 *1 (-966 *3 *4 *5)) (-14 *3 (-694)) (-14 *4 (-694))))) +((-3841 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 36 T ELT)) (-3957 ((|#10| (-1 |#7| |#3|) |#6|) 34 T ELT))) +(((-967 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -3957 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -3841 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-694) (-694) (-961) (-196 |#2| |#3|) (-196 |#1| |#3|) (-965 |#1| |#2| |#3| |#4| |#5|) (-961) (-196 |#2| |#7|) (-196 |#1| |#7|) (-965 |#1| |#2| |#7| |#8| |#9|)) (T -967)) +((-3841 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-961)) (-4 *2 (-961)) (-14 *5 (-694)) (-14 *6 (-694)) (-4 *8 (-196 *6 *7)) (-4 *9 (-196 *5 *7)) (-4 *10 (-196 *6 *2)) (-4 *11 (-196 *5 *2)) (-5 *1 (-967 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-965 *5 *6 *7 *8 *9)) (-4 *12 (-965 *5 *6 *2 *10 *11)))) (-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-961)) (-4 *10 (-961)) (-14 *5 (-694)) (-14 *6 (-694)) (-4 *8 (-196 *6 *7)) (-4 *9 (-196 *5 *7)) (-4 *2 (-965 *5 *6 *10 *11 *12)) (-5 *1 (-967 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-965 *5 *6 *7 *8 *9)) (-4 *11 (-196 *6 *10)) (-4 *12 (-196 *5 *10))))) +((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3723 (($) 23 T CONST)) (-1213 (((-85) $ $) 20 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3945 (((-772) $) 13 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-2660 (($) 24 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ |#1|) 33 T ELT))) +(((-968 |#1|) (-113) (-970)) (T -968)) +NIL +(-13 (-21) (-963 |t#1|)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-963 |#1|) . T) ((-1013) . T) ((-1128) . T)) +((-3125 (((-85) $ $) 10 T ELT))) +(((-969 |#1|) (-10 -7 (-15 -3125 ((-85) |#1| |#1|))) (-970)) (T -969)) +NIL +((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3723 (($) 23 T CONST)) (-1213 (((-85) $ $) 20 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3945 (((-772) $) 13 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT))) +(((-970) (-113)) (T -970)) +((-3125 (*1 *2 *1 *1) (-12 (-4 *1 (-970)) (-5 *2 (-85))))) +(-13 (-21) (-1025) (-10 -8 (-15 -3125 ((-85) $ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-1025) . T) ((-1013) . T) ((-1128) . T)) +((-2568 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-3830 (((-1089) $) 11 T ELT)) (-3735 ((|#1| $) 12 T ELT)) (-3242 (((-1072) $) NIL (|has| |#1| (-1013)) ELT)) (-3243 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-3226 (($ (-1089) |#1|) 10 T ELT)) (-3945 (((-772) $) 22 (|has| |#1| (-1013)) ELT)) (-1264 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-3056 (((-85) $ $) 17 (|has| |#1| (-1013)) ELT))) +(((-971 |#1| |#2|) (-13 (-1128) (-10 -8 (-15 -3226 ($ (-1089) |#1|)) (-15 -3830 ((-1089) $)) (-15 -3735 (|#1| $)) (IF (|has| |#1| (-1013)) (-6 (-1013)) |%noBranch|))) (-1006 |#2|) (-1128)) (T -971)) +((-3226 (*1 *1 *2 *3) (-12 (-5 *2 (-1089)) (-4 *4 (-1128)) (-5 *1 (-971 *3 *4)) (-4 *3 (-1006 *4)))) (-3830 (*1 *2 *1) (-12 (-4 *4 (-1128)) (-5 *2 (-1089)) (-5 *1 (-971 *3 *4)) (-4 *3 (-1006 *4)))) (-3735 (*1 *2 *1) (-12 (-4 *2 (-1006 *3)) (-5 *1 (-971 *2 *3)) (-4 *3 (-1128))))) +((-3770 (($ $) 17 T ELT)) (-3127 (($ $) 25 T ELT)) (-2796 (((-798 (-329) $) $ (-800 (-329)) (-798 (-329) $)) 54 T ELT)) (-3132 (($ $) 27 T ELT)) (-3128 (($ $) 12 T ELT)) (-3130 (($ $) 40 T ELT)) (-3971 (((-329) $) NIL T ELT) (((-179) $) NIL T ELT) (((-800 (-329)) $) 36 T ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-349 (-484))) 31 T ELT) (($ (-484)) NIL T ELT) (($ (-349 (-484))) 31 T ELT)) (-3126 (((-694)) 9 T CONST)) (-3131 (($ $) 44 T ELT))) +(((-972 |#1|) (-10 -7 (-15 -3127 (|#1| |#1|)) (-15 -3770 (|#1| |#1|)) (-15 -3128 (|#1| |#1|)) (-15 -3130 (|#1| |#1|)) (-15 -3131 (|#1| |#1|)) (-15 -3132 (|#1| |#1|)) (-15 -2796 ((-798 (-329) |#1|) |#1| (-800 (-329)) (-798 (-329) |#1|))) (-15 -3971 ((-800 (-329)) |#1|)) (-15 -3945 (|#1| (-349 (-484)))) (-15 -3945 (|#1| (-484))) (-15 -3971 ((-179) |#1|)) (-15 -3971 ((-329) |#1|)) (-15 -3945 (|#1| (-349 (-484)))) (-15 -3945 (|#1| |#1|)) (-15 -3126 ((-694)) -3951) (-15 -3945 (|#1| (-484))) (-15 -3945 ((-772) |#1|))) (-973)) (T -972)) +((-3126 (*1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-972 *3)) (-4 *3 (-973))))) +((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-3129 (((-484) $) 108 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) 55 T ELT)) (-2063 (($ $) 54 T ELT)) (-2061 (((-85) $) 52 T ELT)) (-3770 (($ $) 106 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3774 (($ $) 91 T ELT)) (-3970 (((-347 $) $) 90 T ELT)) (-3037 (($ $) 116 T ELT)) (-1607 (((-85) $ $) 75 T ELT)) (-3622 (((-484) $) 133 T ELT)) (-3723 (($) 23 T CONST)) (-3127 (($ $) 105 T ELT)) (-3157 (((-3 (-484) #1="failed") $) 121 T ELT) (((-3 (-349 (-484)) #1#) $) 118 T ELT)) (-3156 (((-484) $) 122 T ELT) (((-349 (-484)) $) 119 T ELT)) (-2564 (($ $ $) 71 T ELT)) (-3466 (((-3 $ "failed") $) 42 T ELT)) (-2563 (($ $ $) 72 T ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) 66 T ELT)) (-3722 (((-85) $) 89 T ELT)) (-3186 (((-85) $) 131 T ELT)) (-2796 (((-798 (-329) $) $ (-800 (-329)) (-798 (-329) $)) 112 T ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3011 (($ $ (-484)) 115 T ELT)) (-3132 (($ $) 111 T ELT)) (-3187 (((-85) $) 132 T ELT)) (-1604 (((-3 (-583 $) #2="failed") (-583 $) $) 68 T ELT)) (-2531 (($ $ $) 125 T ELT)) (-2857 (($ $ $) 126 T ELT)) (-1890 (($ $ $) 60 T ELT) (($ (-583 $)) 59 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-2484 (($ $) 88 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) 58 T ELT)) (-3144 (($ $ $) 62 T ELT) (($ (-583 $)) 61 T ELT)) (-3128 (($ $) 107 T ELT)) (-3130 (($ $) 109 T ELT)) (-3731 (((-347 $) $) 92 T ELT)) (-1605 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 69 T ELT)) (-3465 (((-3 $ "failed") $ $) 56 T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) 65 T ELT)) (-1606 (((-694) $) 74 T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 73 T ELT)) (-3971 (((-329) $) 124 T ELT) (((-179) $) 123 T ELT) (((-800 (-329)) $) 113 T ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ $) 57 T ELT) (($ (-349 (-484))) 84 T ELT) (($ (-484)) 120 T ELT) (($ (-349 (-484))) 117 T ELT)) (-3126 (((-694)) 40 T CONST)) (-3131 (($ $) 110 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-2062 (((-85) $ $) 53 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-3382 (($ $) 134 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-2566 (((-85) $ $) 127 T ELT)) (-2567 (((-85) $ $) 129 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-2684 (((-85) $ $) 128 T ELT)) (-2685 (((-85) $ $) 130 T ELT)) (-3948 (($ $ $) 83 T ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT) (($ $ (-484)) 87 T ELT) (($ $ (-349 (-484))) 114 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-349 (-484))) 86 T ELT) (($ (-349 (-484)) $) 85 T ELT))) +(((-973) (-113)) (T -973)) +((-3132 (*1 *1 *1) (-4 *1 (-973))) (-3131 (*1 *1 *1) (-4 *1 (-973))) (-3130 (*1 *1 *1) (-4 *1 (-973))) (-3129 (*1 *2 *1) (-12 (-4 *1 (-973)) (-5 *2 (-484)))) (-3128 (*1 *1 *1) (-4 *1 (-973))) (-3770 (*1 *1 *1) (-4 *1 (-973))) (-3127 (*1 *1 *1) (-4 *1 (-973)))) +(-13 (-312) (-755) (-933) (-950 (-484)) (-950 (-349 (-484))) (-915) (-553 (-800 (-329))) (-796 (-329)) (-120) (-10 -8 (-15 -3132 ($ $)) (-15 -3131 ($ $)) (-15 -3130 ($ $)) (-15 -3129 ((-484) $)) (-15 -3128 ($ $)) (-15 -3770 ($ $)) (-15 -3127 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-349 (-484))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-349 (-484)) (-349 (-484))) . T) ((-82 $ $) . T) ((-104) . T) ((-120) . T) ((-555 (-349 (-484))) . T) ((-555 (-484)) . T) ((-555 $) . T) ((-552 (-772)) . T) ((-146) . T) ((-553 (-179)) . T) ((-553 (-329)) . T) ((-553 (-800 (-329))) . T) ((-201) . T) ((-246) . T) ((-258) . T) ((-312) . T) ((-391) . T) ((-495) . T) ((-13) . T) ((-588 (-349 (-484))) . T) ((-588 (-484)) . T) ((-588 $) . T) ((-590 (-349 (-484))) . T) ((-590 $) . T) ((-582 (-349 (-484))) . T) ((-582 $) . T) ((-654 (-349 (-484))) . T) ((-654 $) . T) ((-663) . T) ((-714) . T) ((-716) . T) ((-718) . T) ((-721) . T) ((-755) . T) ((-756) . T) ((-759) . T) ((-796 (-329)) . T) ((-832) . T) ((-915) . T) ((-933) . T) ((-950 (-349 (-484))) . T) ((-950 (-484)) . T) ((-963 (-349 (-484))) . T) ((-963 $) . T) ((-968 (-349 (-484))) . T) ((-968 $) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T) ((-1133) . T)) +((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) |#2| $) 26 T ELT)) (-3136 ((|#1| $) 10 T ELT)) (-3622 (((-484) |#2| $) 119 T ELT)) (-3183 (((-3 $ #1="failed") |#2| (-830)) 76 T ELT)) (-3137 ((|#1| $) 31 T ELT)) (-3182 ((|#1| |#2| $ |#1|) 40 T ELT)) (-3134 (($ $) 28 T ELT)) (-3466 (((-3 |#2| #1#) |#2| $) 113 T ELT)) (-3186 (((-85) |#2| $) NIL T ELT)) (-3187 (((-85) |#2| $) NIL T ELT)) (-3133 (((-85) |#2| $) 27 T ELT)) (-3135 ((|#1| $) 120 T ELT)) (-3138 ((|#1| $) 30 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3185 ((|#2| $) 104 T ELT)) (-3945 (((-772) $) 95 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3769 ((|#1| |#2| $ |#1|) 41 T ELT)) (-3184 (((-583 $) |#2|) 78 T ELT)) (-3056 (((-85) $ $) 99 T ELT))) +(((-974 |#1| |#2|) (-13 (-980 |#1| |#2|) (-10 -8 (-15 -3138 (|#1| $)) (-15 -3137 (|#1| $)) (-15 -3136 (|#1| $)) (-15 -3135 (|#1| $)) (-15 -3134 ($ $)) (-15 -3133 ((-85) |#2| $)) (-15 -3182 (|#1| |#2| $ |#1|)))) (-13 (-755) (-312)) (-1154 |#1|)) (T -974)) +((-3182 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-755) (-312))) (-5 *1 (-974 *2 *3)) (-4 *3 (-1154 *2)))) (-3138 (*1 *2 *1) (-12 (-4 *2 (-13 (-755) (-312))) (-5 *1 (-974 *2 *3)) (-4 *3 (-1154 *2)))) (-3137 (*1 *2 *1) (-12 (-4 *2 (-13 (-755) (-312))) (-5 *1 (-974 *2 *3)) (-4 *3 (-1154 *2)))) (-3136 (*1 *2 *1) (-12 (-4 *2 (-13 (-755) (-312))) (-5 *1 (-974 *2 *3)) (-4 *3 (-1154 *2)))) (-3135 (*1 *2 *1) (-12 (-4 *2 (-13 (-755) (-312))) (-5 *1 (-974 *2 *3)) (-4 *3 (-1154 *2)))) (-3134 (*1 *1 *1) (-12 (-4 *2 (-13 (-755) (-312))) (-5 *1 (-974 *2 *3)) (-4 *3 (-1154 *2)))) (-3133 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-755) (-312))) (-5 *2 (-85)) (-5 *1 (-974 *4 *3)) (-4 *3 (-1154 *4))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-2047 (($ $ $) NIL T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2042 (($ $ $ $) NIL T ELT)) (-3774 (($ $) NIL T ELT)) (-3970 (((-347 $) $) NIL T ELT)) (-1607 (((-85) $ $) NIL T ELT)) (-3622 (((-484) $) NIL T ELT)) (-2441 (($ $ $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-3139 (($ (-1089)) 10 T ELT) (($ (-484)) 7 T ELT)) (-3157 (((-3 (-484) #1#) $) NIL T ELT)) (-3156 (((-484) $) NIL T ELT)) (-2564 (($ $ $) NIL T ELT)) (-2279 (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) NIL T ELT) (((-630 (-484)) (-630 $)) NIL T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-3024 (((-3 (-349 (-484)) #1#) $) NIL T ELT)) (-3023 (((-85) $) NIL T ELT)) (-3022 (((-349 (-484)) $) NIL T ELT)) (-2994 (($) NIL T ELT) (($ $) NIL T ELT)) (-2563 (($ $ $) NIL T ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-3722 (((-85) $) NIL T ELT)) (-2040 (($ $ $ $) NIL T ELT)) (-2048 (($ $ $) NIL T ELT)) (-3186 (((-85) $) NIL T ELT)) (-1368 (($ $ $) NIL T ELT)) (-2796 (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) NIL T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2673 (((-85) $) NIL T ELT)) (-3444 (((-632 $) $) NIL T ELT)) (-3187 (((-85) $) NIL T ELT)) (-1604 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2041 (($ $ $ $) NIL T ELT)) (-2531 (($ $ $) NIL T ELT)) (-2857 (($ $ $) NIL T ELT)) (-2044 (($ $) NIL T ELT)) (-3832 (($ $) NIL T ELT)) (-2280 (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL T ELT) (((-630 (-484)) (-1178 $)) NIL T ELT)) (-1890 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2039 (($ $ $) NIL T ELT)) (-3445 (($) NIL T CONST)) (-2046 (($ $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3144 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-1366 (($ $) NIL T ELT)) (-3731 (((-347 $) $) NIL T ELT)) (-1605 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT)) (-3465 (((-3 $ #1#) $ $) NIL T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-2674 (((-85) $) NIL T ELT)) (-1606 (((-694) $) NIL T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL T ELT)) (-3757 (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-2045 (($ $) NIL T ELT)) (-3399 (($ $) NIL T ELT)) (-3971 (((-484) $) 16 T ELT) (((-473) $) NIL T ELT) (((-800 (-484)) $) NIL T ELT) (((-329) $) NIL T ELT) (((-179) $) NIL T ELT) (($ (-1089)) 9 T ELT)) (-3945 (((-772) $) 23 T ELT) (($ (-484)) 6 T ELT) (($ $) NIL T ELT) (($ (-484)) 6 T ELT)) (-3126 (((-694)) NIL T CONST)) (-2049 (((-85) $ $) NIL T ELT)) (-3101 (($ $ $) NIL T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2694 (($) NIL T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2043 (($ $ $ $) NIL T ELT)) (-3382 (($ $) NIL T ELT)) (-2660 (($) NIL T CONST)) (-2666 (($) NIL T CONST)) (-2669 (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-3836 (($ $) 22 T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-484) $) NIL T ELT))) +(((-975) (-13 (-483) (-557 (-1089)) (-10 -8 (-6 -3981) (-6 -3986) (-6 -3982) (-15 -3139 ($ (-1089))) (-15 -3139 ($ (-484)))))) (T -975)) +((-3139 (*1 *1 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-975)))) (-3139 (*1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-975))))) +((-3796 (($ $) 46 T ELT)) (-3166 (((-85) $ $) 82 T ELT)) (-3157 (((-3 |#2| #1="failed") $) NIL T ELT) (((-3 (-349 (-484)) #1#) $) NIL T ELT) (((-3 (-484) #1#) $) NIL T ELT) (((-3 |#4| #1#) $) NIL T ELT) (((-3 $ #1#) (-857 (-349 (-484)))) 247 T ELT) (((-3 $ #1#) (-857 (-484))) 246 T ELT) (((-3 $ #1#) (-857 |#2|)) 249 T ELT)) (-3156 ((|#2| $) NIL T ELT) (((-349 (-484)) $) NIL T ELT) (((-484) $) NIL T ELT) ((|#4| $) NIL T ELT) (($ (-857 (-349 (-484)))) 235 T ELT) (($ (-857 (-484))) 231 T ELT) (($ (-857 |#2|)) 255 T ELT)) (-3958 (($ $) NIL T ELT) (($ $ |#4|) 44 T ELT)) (-3693 (((-85) $ $) 131 T ELT) (((-85) $ (-583 $)) 135 T ELT)) (-3172 (((-85) $) 60 T ELT)) (-3751 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 125 T ELT)) (-3143 (($ $) 160 T ELT)) (-3154 (($ $) 156 T ELT)) (-3155 (($ $) 155 T ELT)) (-3165 (($ $ $) 87 T ELT) (($ $ $ |#4|) 92 T ELT)) (-3164 (($ $ $) 90 T ELT) (($ $ $ |#4|) 94 T ELT)) (-3694 (((-85) $ $) 143 T ELT) (((-85) $ (-583 $)) 144 T ELT)) (-3180 ((|#4| $) 32 T ELT)) (-3159 (($ $ $) 128 T ELT)) (-3173 (((-85) $) 59 T ELT)) (-3179 (((-694) $) 35 T ELT)) (-3140 (($ $) 174 T ELT)) (-3141 (($ $) 171 T ELT)) (-3168 (((-583 $) $) 72 T ELT)) (-3171 (($ $) 62 T ELT)) (-3142 (($ $) 167 T ELT)) (-3169 (((-583 $) $) 69 T ELT)) (-3170 (($ $) 64 T ELT)) (-3174 ((|#2| $) NIL T ELT) (($ $ |#4|) 39 T ELT)) (-3158 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3480 (-694))) $ $) 130 T ELT)) (-3160 (((-2 (|:| -3953 $) (|:| |gap| (-694)) (|:| -1972 $) (|:| -2902 $)) $ $) 126 T ELT) (((-2 (|:| -3953 $) (|:| |gap| (-694)) (|:| -1972 $) (|:| -2902 $)) $ $ |#4|) 127 T ELT)) (-3161 (((-2 (|:| -3953 $) (|:| |gap| (-694)) (|:| -2902 $)) $ $) 121 T ELT) (((-2 (|:| -3953 $) (|:| |gap| (-694)) (|:| -2902 $)) $ $ |#4|) 123 T ELT)) (-3163 (($ $ $) 97 T ELT) (($ $ $ |#4|) 106 T ELT)) (-3162 (($ $ $) 98 T ELT) (($ $ $ |#4|) 107 T ELT)) (-3176 (((-583 $) $) 54 T ELT)) (-3690 (((-85) $ $) 140 T ELT) (((-85) $ (-583 $)) 141 T ELT)) (-3685 (($ $ $) 116 T ELT)) (-3445 (($ $) 37 T ELT)) (-3698 (((-85) $ $) 80 T ELT)) (-3691 (((-85) $ $) 136 T ELT) (((-85) $ (-583 $)) 138 T ELT)) (-3686 (($ $ $) 112 T ELT)) (-3178 (($ $) 41 T ELT)) (-3144 ((|#2| |#2| $) 164 T ELT) (($ (-583 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3152 (($ $ |#2|) NIL T ELT) (($ $ $) 153 T ELT)) (-3153 (($ $ |#2|) 148 T ELT) (($ $ $) 151 T ELT)) (-3177 (($ $) 49 T ELT)) (-3175 (($ $) 55 T ELT)) (-3971 (((-800 (-329)) $) NIL T ELT) (((-800 (-484)) $) NIL T ELT) (((-473) $) NIL T ELT) (($ (-857 (-349 (-484)))) 237 T ELT) (($ (-857 (-484))) 233 T ELT) (($ (-857 |#2|)) 248 T ELT) (((-1072) $) 278 T ELT) (((-857 |#2|) $) 184 T ELT)) (-3945 (((-772) $) 29 T ELT) (($ (-484)) NIL T ELT) (($ |#2|) NIL T ELT) (($ |#4|) NIL T ELT) (((-857 |#2|) $) 185 T ELT) (($ (-349 (-484))) NIL T ELT) (($ $) NIL T ELT)) (-3167 (((-3 (-85) #1#) $ $) 79 T ELT))) +(((-976 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3945 (|#1| |#1|)) (-15 -3144 (|#1| |#1| |#1|)) (-15 -3144 (|#1| (-583 |#1|))) (-15 -3945 (|#1| (-349 (-484)))) (-15 -3945 ((-857 |#2|) |#1|)) (-15 -3971 ((-857 |#2|) |#1|)) (-15 -3971 ((-1072) |#1|)) (-15 -3140 (|#1| |#1|)) (-15 -3141 (|#1| |#1|)) (-15 -3142 (|#1| |#1|)) (-15 -3143 (|#1| |#1|)) (-15 -3144 (|#2| |#2| |#1|)) (-15 -3152 (|#1| |#1| |#1|)) (-15 -3153 (|#1| |#1| |#1|)) (-15 -3152 (|#1| |#1| |#2|)) (-15 -3153 (|#1| |#1| |#2|)) (-15 -3154 (|#1| |#1|)) (-15 -3155 (|#1| |#1|)) (-15 -3971 (|#1| (-857 |#2|))) (-15 -3156 (|#1| (-857 |#2|))) (-15 -3157 ((-3 |#1| #1="failed") (-857 |#2|))) (-15 -3971 (|#1| (-857 (-484)))) (-15 -3156 (|#1| (-857 (-484)))) (-15 -3157 ((-3 |#1| #1#) (-857 (-484)))) (-15 -3971 (|#1| (-857 (-349 (-484))))) (-15 -3156 (|#1| (-857 (-349 (-484))))) (-15 -3157 ((-3 |#1| #1#) (-857 (-349 (-484))))) (-15 -3685 (|#1| |#1| |#1|)) (-15 -3686 (|#1| |#1| |#1|)) (-15 -3158 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3480 (-694))) |#1| |#1|)) (-15 -3159 (|#1| |#1| |#1|)) (-15 -3751 ((-2 (|:| -1972 |#1|) (|:| -2902 |#1|)) |#1| |#1|)) (-15 -3160 ((-2 (|:| -3953 |#1|) (|:| |gap| (-694)) (|:| -1972 |#1|) (|:| -2902 |#1|)) |#1| |#1| |#4|)) (-15 -3160 ((-2 (|:| -3953 |#1|) (|:| |gap| (-694)) (|:| -1972 |#1|) (|:| -2902 |#1|)) |#1| |#1|)) (-15 -3161 ((-2 (|:| -3953 |#1|) (|:| |gap| (-694)) (|:| -2902 |#1|)) |#1| |#1| |#4|)) (-15 -3161 ((-2 (|:| -3953 |#1|) (|:| |gap| (-694)) (|:| -2902 |#1|)) |#1| |#1|)) (-15 -3162 (|#1| |#1| |#1| |#4|)) (-15 -3163 (|#1| |#1| |#1| |#4|)) (-15 -3162 (|#1| |#1| |#1|)) (-15 -3163 (|#1| |#1| |#1|)) (-15 -3164 (|#1| |#1| |#1| |#4|)) (-15 -3165 (|#1| |#1| |#1| |#4|)) (-15 -3164 (|#1| |#1| |#1|)) (-15 -3165 (|#1| |#1| |#1|)) (-15 -3694 ((-85) |#1| (-583 |#1|))) (-15 -3694 ((-85) |#1| |#1|)) (-15 -3690 ((-85) |#1| (-583 |#1|))) (-15 -3690 ((-85) |#1| |#1|)) (-15 -3691 ((-85) |#1| (-583 |#1|))) (-15 -3691 ((-85) |#1| |#1|)) (-15 -3693 ((-85) |#1| (-583 |#1|))) (-15 -3693 ((-85) |#1| |#1|)) (-15 -3166 ((-85) |#1| |#1|)) (-15 -3698 ((-85) |#1| |#1|)) (-15 -3167 ((-3 (-85) #1#) |#1| |#1|)) (-15 -3168 ((-583 |#1|) |#1|)) (-15 -3169 ((-583 |#1|) |#1|)) (-15 -3170 (|#1| |#1|)) (-15 -3171 (|#1| |#1|)) (-15 -3172 ((-85) |#1|)) (-15 -3173 ((-85) |#1|)) (-15 -3958 (|#1| |#1| |#4|)) (-15 -3174 (|#1| |#1| |#4|)) (-15 -3175 (|#1| |#1|)) (-15 -3176 ((-583 |#1|) |#1|)) (-15 -3177 (|#1| |#1|)) (-15 -3796 (|#1| |#1|)) (-15 -3178 (|#1| |#1|)) (-15 -3445 (|#1| |#1|)) (-15 -3179 ((-694) |#1|)) (-15 -3180 (|#4| |#1|)) (-15 -3971 ((-473) |#1|)) (-15 -3971 ((-800 (-484)) |#1|)) (-15 -3971 ((-800 (-329)) |#1|)) (-15 -3945 (|#1| |#4|)) (-15 -3157 ((-3 |#4| #1#) |#1|)) (-15 -3156 (|#4| |#1|)) (-15 -3174 (|#2| |#1|)) (-15 -3958 (|#1| |#1|)) (-15 -3157 ((-3 (-484) #1#) |#1|)) (-15 -3156 ((-484) |#1|)) (-15 -3157 ((-3 (-349 (-484)) #1#) |#1|)) (-15 -3156 ((-349 (-484)) |#1|)) (-15 -3156 (|#2| |#1|)) (-15 -3157 ((-3 |#2| #1#) |#1|)) (-15 -3945 (|#1| |#2|)) (-15 -3945 (|#1| (-484))) (-15 -3945 ((-772) |#1|))) (-977 |#2| |#3| |#4|) (-961) (-717) (-756)) (T -976)) +NIL +((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-3081 (((-583 |#3|) $) 123 T ELT)) (-3083 (((-1084 $) $ |#3|) 138 T ELT) (((-1084 |#1|) $) 137 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) 100 (|has| |#1| (-495)) ELT)) (-2063 (($ $) 101 (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) 103 (|has| |#1| (-495)) ELT)) (-2819 (((-694) $) 125 T ELT) (((-694) $ (-583 |#3|)) 124 T ELT)) (-3796 (($ $) 293 T ELT)) (-3166 (((-85) $ $) 279 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3754 (($ $ $) 238 (|has| |#1| (-495)) ELT)) (-3148 (((-583 $) $ $) 233 (|has| |#1| (-495)) ELT)) (-2707 (((-347 (-1084 $)) (-1084 $)) 113 (|has| |#1| (-821)) ELT)) (-3774 (($ $) 111 (|has| |#1| (-391)) ELT)) (-3970 (((-347 $) $) 110 (|has| |#1| (-391)) ELT)) (-2704 (((-3 (-583 (-1084 $)) #1="failed") (-583 (-1084 $)) (-1084 $)) 116 (|has| |#1| (-821)) ELT)) (-3723 (($) 23 T CONST)) (-3157 (((-3 |#1| #2="failed") $) 181 T ELT) (((-3 (-349 (-484)) #2#) $) 178 (|has| |#1| (-950 (-349 (-484)))) ELT) (((-3 (-484) #2#) $) 176 (|has| |#1| (-950 (-484))) ELT) (((-3 |#3| #2#) $) 153 T ELT) (((-3 $ "failed") (-857 (-349 (-484)))) 253 (-12 (|has| |#1| (-38 (-349 (-484)))) (|has| |#3| (-553 (-1089)))) ELT) (((-3 $ "failed") (-857 (-484))) 250 (OR (-12 (-2560 (|has| |#1| (-38 (-349 (-484))))) (|has| |#1| (-38 (-484))) (|has| |#3| (-553 (-1089)))) (-12 (|has| |#1| (-38 (-349 (-484)))) (|has| |#3| (-553 (-1089))))) ELT) (((-3 $ "failed") (-857 |#1|)) 247 (OR (-12 (-2560 (|has| |#1| (-38 (-349 (-484))))) (-2560 (|has| |#1| (-38 (-484)))) (|has| |#3| (-553 (-1089)))) (-12 (-2560 (|has| |#1| (-483))) (-2560 (|has| |#1| (-38 (-349 (-484))))) (|has| |#1| (-38 (-484))) (|has| |#3| (-553 (-1089)))) (-12 (-2560 (|has| |#1| (-904 (-484)))) (|has| |#1| (-38 (-349 (-484)))) (|has| |#3| (-553 (-1089))))) ELT)) (-3156 ((|#1| $) 180 T ELT) (((-349 (-484)) $) 179 (|has| |#1| (-950 (-349 (-484)))) ELT) (((-484) $) 177 (|has| |#1| (-950 (-484))) ELT) ((|#3| $) 154 T ELT) (($ (-857 (-349 (-484)))) 252 (-12 (|has| |#1| (-38 (-349 (-484)))) (|has| |#3| (-553 (-1089)))) ELT) (($ (-857 (-484))) 249 (OR (-12 (-2560 (|has| |#1| (-38 (-349 (-484))))) (|has| |#1| (-38 (-484))) (|has| |#3| (-553 (-1089)))) (-12 (|has| |#1| (-38 (-349 (-484)))) (|has| |#3| (-553 (-1089))))) ELT) (($ (-857 |#1|)) 246 (OR (-12 (-2560 (|has| |#1| (-38 (-349 (-484))))) (-2560 (|has| |#1| (-38 (-484)))) (|has| |#3| (-553 (-1089)))) (-12 (-2560 (|has| |#1| (-483))) (-2560 (|has| |#1| (-38 (-349 (-484))))) (|has| |#1| (-38 (-484))) (|has| |#3| (-553 (-1089)))) (-12 (-2560 (|has| |#1| (-904 (-484)))) (|has| |#1| (-38 (-349 (-484)))) (|has| |#3| (-553 (-1089))))) ELT)) (-3755 (($ $ $ |#3|) 121 (|has| |#1| (-146)) ELT) (($ $ $) 234 (|has| |#1| (-495)) ELT)) (-3958 (($ $) 171 T ELT) (($ $ |#3|) 288 T ELT)) (-2279 (((-630 (-484)) (-630 $)) 149 (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) 148 (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1178 |#1|))) (-630 $) (-1178 $)) 147 T ELT) (((-630 |#1|) (-630 $)) 146 T ELT)) (-3693 (((-85) $ $) 278 T ELT) (((-85) $ (-583 $)) 277 T ELT)) (-3466 (((-3 $ "failed") $) 42 T ELT)) (-3172 (((-85) $) 286 T ELT)) (-3751 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 258 T ELT)) (-3143 (($ $) 227 (|has| |#1| (-391)) ELT)) (-3502 (($ $) 193 (|has| |#1| (-391)) ELT) (($ $ |#3|) 118 (|has| |#1| (-391)) ELT)) (-2818 (((-583 $) $) 122 T ELT)) (-3722 (((-85) $) 109 (|has| |#1| (-821)) ELT)) (-3154 (($ $) 243 (|has| |#1| (-495)) ELT)) (-3155 (($ $) 244 (|has| |#1| (-495)) ELT)) (-3165 (($ $ $) 270 T ELT) (($ $ $ |#3|) 268 T ELT)) (-3164 (($ $ $) 269 T ELT) (($ $ $ |#3|) 267 T ELT)) (-1623 (($ $ |#1| |#2| $) 189 T ELT)) (-2796 (((-798 (-329) $) $ (-800 (-329)) (-798 (-329) $)) 97 (-12 (|has| |#3| (-796 (-329))) (|has| |#1| (-796 (-329)))) ELT) (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) 96 (-12 (|has| |#3| (-796 (-484))) (|has| |#1| (-796 (-484)))) ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-2420 (((-694) $) 186 T ELT)) (-3694 (((-85) $ $) 272 T ELT) (((-85) $ (-583 $)) 271 T ELT)) (-3145 (($ $ $ $ $) 229 (|has| |#1| (-495)) ELT)) (-3180 ((|#3| $) 297 T ELT)) (-3084 (($ (-1084 |#1|) |#3|) 130 T ELT) (($ (-1084 $) |#3|) 129 T ELT)) (-2821 (((-583 $) $) 139 T ELT)) (-3936 (((-85) $) 169 T ELT)) (-2893 (($ |#1| |#2|) 170 T ELT) (($ $ |#3| (-694)) 132 T ELT) (($ $ (-583 |#3|) (-583 (-694))) 131 T ELT)) (-3159 (($ $ $) 257 T ELT)) (-3762 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $ |#3|) 133 T ELT)) (-3173 (((-85) $) 287 T ELT)) (-2820 ((|#2| $) 187 T ELT) (((-694) $ |#3|) 135 T ELT) (((-583 (-694)) $ (-583 |#3|)) 134 T ELT)) (-3179 (((-694) $) 296 T ELT)) (-1624 (($ (-1 |#2| |#2|) $) 188 T ELT)) (-3957 (($ (-1 |#1| |#1|) $) 168 T ELT)) (-3082 (((-3 |#3| #3="failed") $) 136 T ELT)) (-3140 (($ $) 224 (|has| |#1| (-391)) ELT)) (-3141 (($ $) 225 (|has| |#1| (-391)) ELT)) (-3168 (((-583 $) $) 282 T ELT)) (-3171 (($ $) 285 T ELT)) (-3142 (($ $) 226 (|has| |#1| (-391)) ELT)) (-3169 (((-583 $) $) 283 T ELT)) (-2280 (((-630 (-484)) (-1178 $)) 151 (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) 150 (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1178 |#1|))) (-1178 $) $) 145 T ELT) (((-630 |#1|) (-1178 $)) 144 T ELT)) (-3170 (($ $) 284 T ELT)) (-2894 (($ $) 166 T ELT)) (-3174 ((|#1| $) 165 T ELT) (($ $ |#3|) 289 T ELT)) (-1890 (($ (-583 $)) 107 (|has| |#1| (-391)) ELT) (($ $ $) 106 (|has| |#1| (-391)) ELT)) (-3158 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3480 (-694))) $ $) 256 T ELT)) (-3160 (((-2 (|:| -3953 $) (|:| |gap| (-694)) (|:| -1972 $) (|:| -2902 $)) $ $) 260 T ELT) (((-2 (|:| -3953 $) (|:| |gap| (-694)) (|:| -1972 $) (|:| -2902 $)) $ $ |#3|) 259 T ELT)) (-3161 (((-2 (|:| -3953 $) (|:| |gap| (-694)) (|:| -2902 $)) $ $) 262 T ELT) (((-2 (|:| -3953 $) (|:| |gap| (-694)) (|:| -2902 $)) $ $ |#3|) 261 T ELT)) (-3163 (($ $ $) 266 T ELT) (($ $ $ |#3|) 264 T ELT)) (-3162 (($ $ $) 265 T ELT) (($ $ $ |#3|) 263 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3190 (($ $ $) 232 (|has| |#1| (-495)) ELT)) (-3176 (((-583 $) $) 291 T ELT)) (-2823 (((-3 (-583 $) #3#) $) 127 T ELT)) (-2822 (((-3 (-583 $) #3#) $) 128 T ELT)) (-2824 (((-3 (-2 (|:| |var| |#3|) (|:| -2401 (-694))) #3#) $) 126 T ELT)) (-3690 (((-85) $ $) 274 T ELT) (((-85) $ (-583 $)) 273 T ELT)) (-3685 (($ $ $) 254 T ELT)) (-3445 (($ $) 295 T ELT)) (-3698 (((-85) $ $) 280 T ELT)) (-3691 (((-85) $ $) 276 T ELT) (((-85) $ (-583 $)) 275 T ELT)) (-3686 (($ $ $) 255 T ELT)) (-3178 (($ $) 294 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3149 (((-2 (|:| -3144 $) (|:| |coef2| $)) $ $) 235 (|has| |#1| (-495)) ELT)) (-3150 (((-2 (|:| -3144 $) (|:| |coef1| $)) $ $) 236 (|has| |#1| (-495)) ELT)) (-1796 (((-85) $) 183 T ELT)) (-1795 ((|#1| $) 184 T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) 108 (|has| |#1| (-391)) ELT)) (-3144 ((|#1| |#1| $) 228 (|has| |#1| (-391)) ELT) (($ (-583 $)) 105 (|has| |#1| (-391)) ELT) (($ $ $) 104 (|has| |#1| (-391)) ELT)) (-2705 (((-347 (-1084 $)) (-1084 $)) 115 (|has| |#1| (-821)) ELT)) (-2706 (((-347 (-1084 $)) (-1084 $)) 114 (|has| |#1| (-821)) ELT)) (-3731 (((-347 $) $) 112 (|has| |#1| (-821)) ELT)) (-3151 (((-2 (|:| -3144 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 237 (|has| |#1| (-495)) ELT)) (-3465 (((-3 $ "failed") $ |#1|) 191 (|has| |#1| (-495)) ELT) (((-3 $ "failed") $ $) 99 (|has| |#1| (-495)) ELT)) (-3152 (($ $ |#1|) 241 (|has| |#1| (-495)) ELT) (($ $ $) 239 (|has| |#1| (-495)) ELT)) (-3153 (($ $ |#1|) 242 (|has| |#1| (-495)) ELT) (($ $ $) 240 (|has| |#1| (-495)) ELT)) (-3767 (($ $ (-583 (-249 $))) 162 T ELT) (($ $ (-249 $)) 161 T ELT) (($ $ $ $) 160 T ELT) (($ $ (-583 $) (-583 $)) 159 T ELT) (($ $ |#3| |#1|) 158 T ELT) (($ $ (-583 |#3|) (-583 |#1|)) 157 T ELT) (($ $ |#3| $) 156 T ELT) (($ $ (-583 |#3|) (-583 $)) 155 T ELT)) (-3756 (($ $ |#3|) 120 (|has| |#1| (-146)) ELT)) (-3757 (($ $ (-583 |#3|) (-583 (-694))) 52 T ELT) (($ $ |#3| (-694)) 51 T ELT) (($ $ (-583 |#3|)) 50 T ELT) (($ $ |#3|) 48 T ELT)) (-3947 ((|#2| $) 167 T ELT) (((-694) $ |#3|) 143 T ELT) (((-583 (-694)) $ (-583 |#3|)) 142 T ELT)) (-3177 (($ $) 292 T ELT)) (-3175 (($ $) 290 T ELT)) (-3971 (((-800 (-329)) $) 95 (-12 (|has| |#3| (-553 (-800 (-329)))) (|has| |#1| (-553 (-800 (-329))))) ELT) (((-800 (-484)) $) 94 (-12 (|has| |#3| (-553 (-800 (-484)))) (|has| |#1| (-553 (-800 (-484))))) ELT) (((-473) $) 93 (-12 (|has| |#3| (-553 (-473))) (|has| |#1| (-553 (-473)))) ELT) (($ (-857 (-349 (-484)))) 251 (-12 (|has| |#1| (-38 (-349 (-484)))) (|has| |#3| (-553 (-1089)))) ELT) (($ (-857 (-484))) 248 (OR (-12 (-2560 (|has| |#1| (-38 (-349 (-484))))) (|has| |#1| (-38 (-484))) (|has| |#3| (-553 (-1089)))) (-12 (|has| |#1| (-38 (-349 (-484)))) (|has| |#3| (-553 (-1089))))) ELT) (($ (-857 |#1|)) 245 (|has| |#3| (-553 (-1089))) ELT) (((-1072) $) 223 (-12 (|has| |#1| (-950 (-484))) (|has| |#3| (-553 (-1089)))) ELT) (((-857 |#1|) $) 222 (|has| |#3| (-553 (-1089))) ELT)) (-2817 ((|#1| $) 192 (|has| |#1| (-391)) ELT) (($ $ |#3|) 119 (|has| |#1| (-391)) ELT)) (-2703 (((-3 (-1178 $) #1#) (-630 $)) 117 (-2562 (|has| $ (-118)) (|has| |#1| (-821))) ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ |#1|) 182 T ELT) (($ |#3|) 152 T ELT) (((-857 |#1|) $) 221 (|has| |#3| (-553 (-1089))) ELT) (($ (-349 (-484))) 91 (OR (|has| |#1| (-950 (-349 (-484)))) (|has| |#1| (-38 (-349 (-484))))) ELT) (($ $) 98 (|has| |#1| (-495)) ELT)) (-3816 (((-583 |#1|) $) 185 T ELT)) (-3676 ((|#1| $ |#2|) 172 T ELT) (($ $ |#3| (-694)) 141 T ELT) (($ $ (-583 |#3|) (-583 (-694))) 140 T ELT)) (-2702 (((-632 $) $) 92 (OR (-2562 (|has| $ (-118)) (|has| |#1| (-821))) (|has| |#1| (-118))) ELT)) (-3126 (((-694)) 40 T CONST)) (-1622 (($ $ $ (-694)) 190 (|has| |#1| (-146)) ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-2062 (((-85) $ $) 102 (|has| |#1| (-495)) ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-3167 (((-3 (-85) "failed") $ $) 281 T ELT)) (-2666 (($) 45 T CONST)) (-3146 (($ $ $ $ (-694)) 230 (|has| |#1| (-495)) ELT)) (-3147 (($ $ $ (-694)) 231 (|has| |#1| (-495)) ELT)) (-2669 (($ $ (-583 |#3|) (-583 (-694))) 55 T ELT) (($ $ |#3| (-694)) 54 T ELT) (($ $ (-583 |#3|)) 53 T ELT) (($ $ |#3|) 49 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-3948 (($ $ |#1|) 173 (|has| |#1| (-312)) ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-349 (-484))) 175 (|has| |#1| (-38 (-349 (-484)))) ELT) (($ (-349 (-484)) $) 174 (|has| |#1| (-38 (-349 (-484)))) ELT) (($ |#1| $) 164 T ELT) (($ $ |#1|) 163 T ELT))) +(((-977 |#1| |#2| |#3|) (-113) (-961) (-717) (-756)) (T -977)) +((-3180 (*1 *2 *1) (-12 (-4 *1 (-977 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)))) (-3179 (*1 *2 *1) (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-694)))) (-3445 (*1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)))) (-3178 (*1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)))) (-3796 (*1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)))) (-3177 (*1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)))) (-3176 (*1 *2 *1) (-12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-583 *1)) (-4 *1 (-977 *3 *4 *5)))) (-3175 (*1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)))) (-3174 (*1 *1 *1 *2) (-12 (-4 *1 (-977 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)))) (-3958 (*1 *1 *1 *2) (-12 (-4 *1 (-977 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)))) (-3173 (*1 *2 *1) (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85)))) (-3172 (*1 *2 *1) (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85)))) (-3171 (*1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)))) (-3170 (*1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)))) (-3169 (*1 *2 *1) (-12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-583 *1)) (-4 *1 (-977 *3 *4 *5)))) (-3168 (*1 *2 *1) (-12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-583 *1)) (-4 *1 (-977 *3 *4 *5)))) (-3167 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85)))) (-3698 (*1 *2 *1 *1) (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85)))) (-3166 (*1 *2 *1 *1) (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85)))) (-3693 (*1 *2 *1 *1) (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85)))) (-3693 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *1)) (-4 *1 (-977 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)))) (-3691 (*1 *2 *1 *1) (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85)))) (-3691 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *1)) (-4 *1 (-977 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)))) (-3690 (*1 *2 *1 *1) (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85)))) (-3690 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *1)) (-4 *1 (-977 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)))) (-3694 (*1 *2 *1 *1) (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85)))) (-3694 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *1)) (-4 *1 (-977 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)))) (-3165 (*1 *1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)))) (-3164 (*1 *1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)))) (-3165 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-977 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)))) (-3164 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-977 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)))) (-3163 (*1 *1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)))) (-3162 (*1 *1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)))) (-3163 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-977 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)))) (-3162 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-977 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)))) (-3161 (*1 *2 *1 *1) (-12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-2 (|:| -3953 *1) (|:| |gap| (-694)) (|:| -2902 *1))) (-4 *1 (-977 *3 *4 *5)))) (-3161 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-961)) (-4 *5 (-717)) (-4 *3 (-756)) (-5 *2 (-2 (|:| -3953 *1) (|:| |gap| (-694)) (|:| -2902 *1))) (-4 *1 (-977 *4 *5 *3)))) (-3160 (*1 *2 *1 *1) (-12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-2 (|:| -3953 *1) (|:| |gap| (-694)) (|:| -1972 *1) (|:| -2902 *1))) (-4 *1 (-977 *3 *4 *5)))) (-3160 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-961)) (-4 *5 (-717)) (-4 *3 (-756)) (-5 *2 (-2 (|:| -3953 *1) (|:| |gap| (-694)) (|:| -1972 *1) (|:| -2902 *1))) (-4 *1 (-977 *4 *5 *3)))) (-3751 (*1 *2 *1 *1) (-12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-2 (|:| -1972 *1) (|:| -2902 *1))) (-4 *1 (-977 *3 *4 *5)))) (-3159 (*1 *1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)))) (-3158 (*1 *2 *1 *1) (-12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3480 (-694)))) (-4 *1 (-977 *3 *4 *5)))) (-3686 (*1 *1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)))) (-3685 (*1 *1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)))) (-3157 (*1 *1 *2) (|partial| -12 (-5 *2 (-857 (-349 (-484)))) (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-38 (-349 (-484)))) (-4 *5 (-553 (-1089))) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)))) (-3156 (*1 *1 *2) (-12 (-5 *2 (-857 (-349 (-484)))) (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-38 (-349 (-484)))) (-4 *5 (-553 (-1089))) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)))) (-3971 (*1 *1 *2) (-12 (-5 *2 (-857 (-349 (-484)))) (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-38 (-349 (-484)))) (-4 *5 (-553 (-1089))) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)))) (-3157 (*1 *1 *2) (|partial| OR (-12 (-5 *2 (-857 (-484))) (-4 *1 (-977 *3 *4 *5)) (-12 (-2560 (-4 *3 (-38 (-349 (-484))))) (-4 *3 (-38 (-484))) (-4 *5 (-553 (-1089)))) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))) (-12 (-5 *2 (-857 (-484))) (-4 *1 (-977 *3 *4 *5)) (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *5 (-553 (-1089)))) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))))) (-3156 (*1 *1 *2) (OR (-12 (-5 *2 (-857 (-484))) (-4 *1 (-977 *3 *4 *5)) (-12 (-2560 (-4 *3 (-38 (-349 (-484))))) (-4 *3 (-38 (-484))) (-4 *5 (-553 (-1089)))) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))) (-12 (-5 *2 (-857 (-484))) (-4 *1 (-977 *3 *4 *5)) (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *5 (-553 (-1089)))) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))))) (-3971 (*1 *1 *2) (OR (-12 (-5 *2 (-857 (-484))) (-4 *1 (-977 *3 *4 *5)) (-12 (-2560 (-4 *3 (-38 (-349 (-484))))) (-4 *3 (-38 (-484))) (-4 *5 (-553 (-1089)))) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))) (-12 (-5 *2 (-857 (-484))) (-4 *1 (-977 *3 *4 *5)) (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *5 (-553 (-1089)))) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))))) (-3157 (*1 *1 *2) (|partial| OR (-12 (-5 *2 (-857 *3)) (-12 (-2560 (-4 *3 (-38 (-349 (-484))))) (-2560 (-4 *3 (-38 (-484)))) (-4 *5 (-553 (-1089)))) (-4 *3 (-961)) (-4 *1 (-977 *3 *4 *5)) (-4 *4 (-717)) (-4 *5 (-756))) (-12 (-5 *2 (-857 *3)) (-12 (-2560 (-4 *3 (-483))) (-2560 (-4 *3 (-38 (-349 (-484))))) (-4 *3 (-38 (-484))) (-4 *5 (-553 (-1089)))) (-4 *3 (-961)) (-4 *1 (-977 *3 *4 *5)) (-4 *4 (-717)) (-4 *5 (-756))) (-12 (-5 *2 (-857 *3)) (-12 (-2560 (-4 *3 (-904 (-484)))) (-4 *3 (-38 (-349 (-484)))) (-4 *5 (-553 (-1089)))) (-4 *3 (-961)) (-4 *1 (-977 *3 *4 *5)) (-4 *4 (-717)) (-4 *5 (-756))))) (-3156 (*1 *1 *2) (OR (-12 (-5 *2 (-857 *3)) (-12 (-2560 (-4 *3 (-38 (-349 (-484))))) (-2560 (-4 *3 (-38 (-484)))) (-4 *5 (-553 (-1089)))) (-4 *3 (-961)) (-4 *1 (-977 *3 *4 *5)) (-4 *4 (-717)) (-4 *5 (-756))) (-12 (-5 *2 (-857 *3)) (-12 (-2560 (-4 *3 (-483))) (-2560 (-4 *3 (-38 (-349 (-484))))) (-4 *3 (-38 (-484))) (-4 *5 (-553 (-1089)))) (-4 *3 (-961)) (-4 *1 (-977 *3 *4 *5)) (-4 *4 (-717)) (-4 *5 (-756))) (-12 (-5 *2 (-857 *3)) (-12 (-2560 (-4 *3 (-904 (-484)))) (-4 *3 (-38 (-349 (-484)))) (-4 *5 (-553 (-1089)))) (-4 *3 (-961)) (-4 *1 (-977 *3 *4 *5)) (-4 *4 (-717)) (-4 *5 (-756))))) (-3971 (*1 *1 *2) (-12 (-5 *2 (-857 *3)) (-4 *3 (-961)) (-4 *1 (-977 *3 *4 *5)) (-4 *5 (-553 (-1089))) (-4 *4 (-717)) (-4 *5 (-756)))) (-3155 (*1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *2 (-495)))) (-3154 (*1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *2 (-495)))) (-3153 (*1 *1 *1 *2) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *2 (-495)))) (-3152 (*1 *1 *1 *2) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *2 (-495)))) (-3153 (*1 *1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *2 (-495)))) (-3152 (*1 *1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *2 (-495)))) (-3754 (*1 *1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *2 (-495)))) (-3151 (*1 *2 *1 *1) (-12 (-4 *3 (-495)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-2 (|:| -3144 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-977 *3 *4 *5)))) (-3150 (*1 *2 *1 *1) (-12 (-4 *3 (-495)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-2 (|:| -3144 *1) (|:| |coef1| *1))) (-4 *1 (-977 *3 *4 *5)))) (-3149 (*1 *2 *1 *1) (-12 (-4 *3 (-495)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-2 (|:| -3144 *1) (|:| |coef2| *1))) (-4 *1 (-977 *3 *4 *5)))) (-3755 (*1 *1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *2 (-495)))) (-3148 (*1 *2 *1 *1) (-12 (-4 *3 (-495)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-583 *1)) (-4 *1 (-977 *3 *4 *5)))) (-3190 (*1 *1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *2 (-495)))) (-3147 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *3 (-495)))) (-3146 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *3 (-495)))) (-3145 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *2 (-495)))) (-3144 (*1 *2 *2 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *2 (-391)))) (-3143 (*1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *2 (-391)))) (-3142 (*1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *2 (-391)))) (-3141 (*1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *2 (-391)))) (-3140 (*1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *2 (-391))))) +(-13 (-861 |t#1| |t#2| |t#3|) (-10 -8 (-15 -3180 (|t#3| $)) (-15 -3179 ((-694) $)) (-15 -3445 ($ $)) (-15 -3178 ($ $)) (-15 -3796 ($ $)) (-15 -3177 ($ $)) (-15 -3176 ((-583 $) $)) (-15 -3175 ($ $)) (-15 -3174 ($ $ |t#3|)) (-15 -3958 ($ $ |t#3|)) (-15 -3173 ((-85) $)) (-15 -3172 ((-85) $)) (-15 -3171 ($ $)) (-15 -3170 ($ $)) (-15 -3169 ((-583 $) $)) (-15 -3168 ((-583 $) $)) (-15 -3167 ((-3 (-85) "failed") $ $)) (-15 -3698 ((-85) $ $)) (-15 -3166 ((-85) $ $)) (-15 -3693 ((-85) $ $)) (-15 -3693 ((-85) $ (-583 $))) (-15 -3691 ((-85) $ $)) (-15 -3691 ((-85) $ (-583 $))) (-15 -3690 ((-85) $ $)) (-15 -3690 ((-85) $ (-583 $))) (-15 -3694 ((-85) $ $)) (-15 -3694 ((-85) $ (-583 $))) (-15 -3165 ($ $ $)) (-15 -3164 ($ $ $)) (-15 -3165 ($ $ $ |t#3|)) (-15 -3164 ($ $ $ |t#3|)) (-15 -3163 ($ $ $)) (-15 -3162 ($ $ $)) (-15 -3163 ($ $ $ |t#3|)) (-15 -3162 ($ $ $ |t#3|)) (-15 -3161 ((-2 (|:| -3953 $) (|:| |gap| (-694)) (|:| -2902 $)) $ $)) (-15 -3161 ((-2 (|:| -3953 $) (|:| |gap| (-694)) (|:| -2902 $)) $ $ |t#3|)) (-15 -3160 ((-2 (|:| -3953 $) (|:| |gap| (-694)) (|:| -1972 $) (|:| -2902 $)) $ $)) (-15 -3160 ((-2 (|:| -3953 $) (|:| |gap| (-694)) (|:| -1972 $) (|:| -2902 $)) $ $ |t#3|)) (-15 -3751 ((-2 (|:| -1972 $) (|:| -2902 $)) $ $)) (-15 -3159 ($ $ $)) (-15 -3158 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3480 (-694))) $ $)) (-15 -3686 ($ $ $)) (-15 -3685 ($ $ $)) (IF (|has| |t#3| (-553 (-1089))) (PROGN (-6 (-552 (-857 |t#1|))) (-6 (-553 (-857 |t#1|))) (IF (|has| |t#1| (-38 (-349 (-484)))) (PROGN (-15 -3157 ((-3 $ "failed") (-857 (-349 (-484))))) (-15 -3156 ($ (-857 (-349 (-484))))) (-15 -3971 ($ (-857 (-349 (-484))))) (-15 -3157 ((-3 $ "failed") (-857 (-484)))) (-15 -3156 ($ (-857 (-484)))) (-15 -3971 ($ (-857 (-484)))) (IF (|has| |t#1| (-904 (-484))) |%noBranch| (PROGN (-15 -3157 ((-3 $ "failed") (-857 |t#1|))) (-15 -3156 ($ (-857 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-38 (-484))) (IF (|has| |t#1| (-38 (-349 (-484)))) |%noBranch| (PROGN (-15 -3157 ((-3 $ "failed") (-857 (-484)))) (-15 -3156 ($ (-857 (-484)))) (-15 -3971 ($ (-857 (-484)))) (IF (|has| |t#1| (-483)) |%noBranch| (PROGN (-15 -3157 ((-3 $ "failed") (-857 |t#1|))) (-15 -3156 ($ (-857 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-38 (-484))) |%noBranch| (IF (|has| |t#1| (-38 (-349 (-484)))) |%noBranch| (PROGN (-15 -3157 ((-3 $ "failed") (-857 |t#1|))) (-15 -3156 ($ (-857 |t#1|)))))) (-15 -3971 ($ (-857 |t#1|))) (IF (|has| |t#1| (-950 (-484))) (-6 (-553 (-1072))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-495)) (PROGN (-15 -3155 ($ $)) (-15 -3154 ($ $)) (-15 -3153 ($ $ |t#1|)) (-15 -3152 ($ $ |t#1|)) (-15 -3153 ($ $ $)) (-15 -3152 ($ $ $)) (-15 -3754 ($ $ $)) (-15 -3151 ((-2 (|:| -3144 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3150 ((-2 (|:| -3144 $) (|:| |coef1| $)) $ $)) (-15 -3149 ((-2 (|:| -3144 $) (|:| |coef2| $)) $ $)) (-15 -3755 ($ $ $)) (-15 -3148 ((-583 $) $ $)) (-15 -3190 ($ $ $)) (-15 -3147 ($ $ $ (-694))) (-15 -3146 ($ $ $ $ (-694))) (-15 -3145 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-391)) (PROGN (-15 -3144 (|t#1| |t#1| $)) (-15 -3143 ($ $)) (-15 -3142 ($ $)) (-15 -3141 ($ $)) (-15 -3140 ($ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-391))) ((-72) . T) ((-82 (-349 (-484)) (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-391)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-555 (-349 (-484))) OR (|has| |#1| (-950 (-349 (-484)))) (|has| |#1| (-38 (-349 (-484))))) ((-555 (-484)) . T) ((-555 |#1|) . T) ((-555 |#3|) . T) ((-555 $) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-391))) ((-552 (-772)) . T) ((-552 (-857 |#1|)) |has| |#3| (-553 (-1089))) ((-146) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-391)) (|has| |#1| (-146))) ((-553 (-473)) -12 (|has| |#1| (-553 (-473))) (|has| |#3| (-553 (-473)))) ((-553 (-800 (-329))) -12 (|has| |#1| (-553 (-800 (-329)))) (|has| |#3| (-553 (-800 (-329))))) ((-553 (-800 (-484))) -12 (|has| |#1| (-553 (-800 (-484)))) (|has| |#3| (-553 (-800 (-484))))) ((-553 (-857 |#1|)) |has| |#3| (-553 (-1089))) ((-553 (-1072)) -12 (|has| |#1| (-950 (-484))) (|has| |#3| (-553 (-1089)))) ((-246) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-391))) ((-260 $) . T) ((-277 |#1| |#2|) . T) ((-328 |#1|) . T) ((-354 |#1|) . T) ((-391) OR (|has| |#1| (-821)) (|has| |#1| (-391))) ((-455 |#3| |#1|) . T) ((-455 |#3| $) . T) ((-455 $ $) . T) ((-495) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-391))) ((-13) . T) ((-588 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-590 (-484)) |has| |#1| (-580 (-484))) ((-590 |#1|) . T) ((-590 $) . T) ((-582 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-582 |#1|) |has| |#1| (-146)) ((-582 $) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-391))) ((-580 (-484)) |has| |#1| (-580 (-484))) ((-580 |#1|) . T) ((-654 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-654 |#1|) |has| |#1| (-146)) ((-654 $) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-391))) ((-663) . T) ((-806 $ |#3|) . T) ((-809 |#3|) . T) ((-811 |#3|) . T) ((-796 (-329)) -12 (|has| |#1| (-796 (-329))) (|has| |#3| (-796 (-329)))) ((-796 (-484)) -12 (|has| |#1| (-796 (-484))) (|has| |#3| (-796 (-484)))) ((-861 |#1| |#2| |#3|) . T) ((-821) |has| |#1| (-821)) ((-950 (-349 (-484))) |has| |#1| (-950 (-349 (-484)))) ((-950 (-484)) |has| |#1| (-950 (-484))) ((-950 |#1|) . T) ((-950 |#3|) . T) ((-963 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-963 |#1|) . T) ((-963 $) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-391)) (|has| |#1| (-146))) ((-968 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-968 |#1|) . T) ((-968 $) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-391)) (|has| |#1| (-146))) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T) ((-1133) |has| |#1| (-821))) +((-2568 (((-85) $ $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3181 (((-583 (-1048)) $) 18 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) 27 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-3233 (((-1048) $) 20 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT))) +(((-978) (-13 (-995) (-10 -8 (-15 -3181 ((-583 (-1048)) $)) (-15 -3233 ((-1048) $))))) (T -978)) +((-3181 (*1 *2 *1) (-12 (-5 *2 (-583 (-1048))) (-5 *1 (-978)))) (-3233 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-978))))) +((-3188 (((-85) |#3| $) 15 T ELT)) (-3183 (((-3 $ #1="failed") |#3| (-830)) 29 T ELT)) (-3466 (((-3 |#3| #1#) |#3| $) 45 T ELT)) (-3186 (((-85) |#3| $) 19 T ELT)) (-3187 (((-85) |#3| $) 17 T ELT))) +(((-979 |#1| |#2| |#3|) (-10 -7 (-15 -3183 ((-3 |#1| #1="failed") |#3| (-830))) (-15 -3466 ((-3 |#3| #1#) |#3| |#1|)) (-15 -3186 ((-85) |#3| |#1|)) (-15 -3187 ((-85) |#3| |#1|)) (-15 -3188 ((-85) |#3| |#1|))) (-980 |#2| |#3|) (-13 (-755) (-312)) (-1154 |#2|)) (T -979)) +NIL +((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) |#2| $) 25 T ELT)) (-3622 (((-484) |#2| $) 26 T ELT)) (-3183 (((-3 $ "failed") |#2| (-830)) 19 T ELT)) (-3182 ((|#1| |#2| $ |#1|) 17 T ELT)) (-3466 (((-3 |#2| "failed") |#2| $) 22 T ELT)) (-3186 (((-85) |#2| $) 23 T ELT)) (-3187 (((-85) |#2| $) 24 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3185 ((|#2| $) 21 T ELT)) (-3945 (((-772) $) 13 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-3769 ((|#1| |#2| $ |#1|) 18 T ELT)) (-3184 (((-583 $) |#2|) 20 T ELT)) (-3056 (((-85) $ $) 8 T ELT))) +(((-980 |#1| |#2|) (-113) (-13 (-755) (-312)) (-1154 |t#1|)) (T -980)) +((-3622 (*1 *2 *3 *1) (-12 (-4 *1 (-980 *4 *3)) (-4 *4 (-13 (-755) (-312))) (-4 *3 (-1154 *4)) (-5 *2 (-484)))) (-3188 (*1 *2 *3 *1) (-12 (-4 *1 (-980 *4 *3)) (-4 *4 (-13 (-755) (-312))) (-4 *3 (-1154 *4)) (-5 *2 (-85)))) (-3187 (*1 *2 *3 *1) (-12 (-4 *1 (-980 *4 *3)) (-4 *4 (-13 (-755) (-312))) (-4 *3 (-1154 *4)) (-5 *2 (-85)))) (-3186 (*1 *2 *3 *1) (-12 (-4 *1 (-980 *4 *3)) (-4 *4 (-13 (-755) (-312))) (-4 *3 (-1154 *4)) (-5 *2 (-85)))) (-3466 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-980 *3 *2)) (-4 *3 (-13 (-755) (-312))) (-4 *2 (-1154 *3)))) (-3185 (*1 *2 *1) (-12 (-4 *1 (-980 *3 *2)) (-4 *3 (-13 (-755) (-312))) (-4 *2 (-1154 *3)))) (-3184 (*1 *2 *3) (-12 (-4 *4 (-13 (-755) (-312))) (-4 *3 (-1154 *4)) (-5 *2 (-583 *1)) (-4 *1 (-980 *4 *3)))) (-3183 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-830)) (-4 *4 (-13 (-755) (-312))) (-4 *1 (-980 *4 *2)) (-4 *2 (-1154 *4)))) (-3769 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-980 *2 *3)) (-4 *2 (-13 (-755) (-312))) (-4 *3 (-1154 *2)))) (-3182 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-980 *2 *3)) (-4 *2 (-13 (-755) (-312))) (-4 *3 (-1154 *2))))) +(-13 (-1013) (-10 -8 (-15 -3622 ((-484) |t#2| $)) (-15 -3188 ((-85) |t#2| $)) (-15 -3187 ((-85) |t#2| $)) (-15 -3186 ((-85) |t#2| $)) (-15 -3466 ((-3 |t#2| "failed") |t#2| $)) (-15 -3185 (|t#2| $)) (-15 -3184 ((-583 $) |t#2|)) (-15 -3183 ((-3 $ "failed") |t#2| (-830))) (-15 -3769 (|t#1| |t#2| $ |t#1|)) (-15 -3182 (|t#1| |t#2| $ |t#1|)))) +(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-1013) . T) ((-1128) . T)) +((-3435 (((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|))) (-583 |#4|) (-583 |#5|) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|))) (-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|))))) (-694)) 114 T ELT)) (-3432 (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|))))) |#4| |#5|) 64 T ELT) (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|))))) |#4| |#5| (-694)) 63 T ELT)) (-3436 (((-1184) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|))) (-694)) 99 T ELT)) (-3430 (((-694) (-583 |#4|) (-583 |#5|)) 30 T ELT)) (-3433 (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|))))) |#4| |#5|) 66 T ELT) (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|))))) |#4| |#5| (-694)) 65 T ELT) (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|))))) |#4| |#5| (-694) (-85)) 67 T ELT)) (-3434 (((-583 |#5|) (-583 |#4|) (-583 |#5|) (-85) (-85) (-85) (-85) (-85)) 86 T ELT) (((-583 |#5|) (-583 |#4|) (-583 |#5|) (-85) (-85)) 87 T ELT)) (-3971 (((-1072) (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|))) 92 T ELT)) (-3431 (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|))))) |#4| |#5| (-85)) 62 T ELT)) (-3429 (((-694) (-583 |#4|) (-583 |#5|)) 21 T ELT))) +(((-981 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3429 ((-694) (-583 |#4|) (-583 |#5|))) (-15 -3430 ((-694) (-583 |#4|) (-583 |#5|))) (-15 -3431 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|))))) |#4| |#5| (-85))) (-15 -3432 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|))))) |#4| |#5| (-694))) (-15 -3432 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|))))) |#4| |#5|)) (-15 -3433 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|))))) |#4| |#5| (-694) (-85))) (-15 -3433 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|))))) |#4| |#5| (-694))) (-15 -3433 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|))))) |#4| |#5|)) (-15 -3434 ((-583 |#5|) (-583 |#4|) (-583 |#5|) (-85) (-85))) (-15 -3434 ((-583 |#5|) (-583 |#4|) (-583 |#5|) (-85) (-85) (-85) (-85) (-85))) (-15 -3435 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|))) (-583 |#4|) (-583 |#5|) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|))) (-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|))))) (-694))) (-15 -3971 ((-1072) (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|)))) (-15 -3436 ((-1184) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|))) (-694)))) (-391) (-717) (-756) (-977 |#1| |#2| |#3|) (-983 |#1| |#2| |#3| |#4|)) (T -981)) +((-3436 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-2 (|:| |val| (-583 *8)) (|:| -1599 *9)))) (-5 *4 (-694)) (-4 *8 (-977 *5 *6 *7)) (-4 *9 (-983 *5 *6 *7 *8)) (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-1184)) (-5 *1 (-981 *5 *6 *7 *8 *9)))) (-3971 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-583 *7)) (|:| -1599 *8))) (-4 *7 (-977 *4 *5 *6)) (-4 *8 (-983 *4 *5 *6 *7)) (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-1072)) (-5 *1 (-981 *4 *5 *6 *7 *8)))) (-3435 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-583 *11)) (|:| |todo| (-583 (-2 (|:| |val| *3) (|:| -1599 *11)))))) (-5 *6 (-694)) (-5 *2 (-583 (-2 (|:| |val| (-583 *10)) (|:| -1599 *11)))) (-5 *3 (-583 *10)) (-5 *4 (-583 *11)) (-4 *10 (-977 *7 *8 *9)) (-4 *11 (-983 *7 *8 *9 *10)) (-4 *7 (-391)) (-4 *8 (-717)) (-4 *9 (-756)) (-5 *1 (-981 *7 *8 *9 *10 *11)))) (-3434 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-583 *9)) (-5 *3 (-583 *8)) (-5 *4 (-85)) (-4 *8 (-977 *5 *6 *7)) (-4 *9 (-983 *5 *6 *7 *8)) (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *1 (-981 *5 *6 *7 *8 *9)))) (-3434 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-583 *9)) (-5 *3 (-583 *8)) (-5 *4 (-85)) (-4 *8 (-977 *5 *6 *7)) (-4 *9 (-983 *5 *6 *7 *8)) (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *1 (-981 *5 *6 *7 *8 *9)))) (-3433 (*1 *2 *3 *4) (-12 (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1599 *4)))))) (-5 *1 (-981 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-3433 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-694)) (-4 *6 (-391)) (-4 *7 (-717)) (-4 *8 (-756)) (-4 *3 (-977 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1599 *4)))))) (-5 *1 (-981 *6 *7 *8 *3 *4)) (-4 *4 (-983 *6 *7 *8 *3)))) (-3433 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-694)) (-5 *6 (-85)) (-4 *7 (-391)) (-4 *8 (-717)) (-4 *9 (-756)) (-4 *3 (-977 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1599 *4)))))) (-5 *1 (-981 *7 *8 *9 *3 *4)) (-4 *4 (-983 *7 *8 *9 *3)))) (-3432 (*1 *2 *3 *4) (-12 (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1599 *4)))))) (-5 *1 (-981 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-3432 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-694)) (-4 *6 (-391)) (-4 *7 (-717)) (-4 *8 (-756)) (-4 *3 (-977 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1599 *4)))))) (-5 *1 (-981 *6 *7 *8 *3 *4)) (-4 *4 (-983 *6 *7 *8 *3)))) (-3431 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-85)) (-4 *6 (-391)) (-4 *7 (-717)) (-4 *8 (-756)) (-4 *3 (-977 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1599 *4)))))) (-5 *1 (-981 *6 *7 *8 *3 *4)) (-4 *4 (-983 *6 *7 *8 *3)))) (-3430 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *9)) (-4 *8 (-977 *5 *6 *7)) (-4 *9 (-983 *5 *6 *7 *8)) (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-694)) (-5 *1 (-981 *5 *6 *7 *8 *9)))) (-3429 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *9)) (-4 *8 (-977 *5 *6 *7)) (-4 *9 (-983 *5 *6 *7 *8)) (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-694)) (-5 *1 (-981 *5 *6 *7 *8 *9))))) +((-3197 (((-85) |#5| $) 26 T ELT)) (-3195 (((-85) |#5| $) 29 T ELT)) (-3198 (((-85) |#5| $) 18 T ELT) (((-85) $) 52 T ELT)) (-3238 (((-583 $) |#5| $) NIL T ELT) (((-583 $) (-583 |#5|) $) 94 T ELT) (((-583 $) (-583 |#5|) (-583 $)) 92 T ELT) (((-583 $) |#5| (-583 $)) 95 T ELT)) (-3768 (($ $ |#5|) NIL T ELT) (((-583 $) |#5| $) NIL T ELT) (((-583 $) |#5| (-583 $)) 73 T ELT) (((-583 $) (-583 |#5|) $) 75 T ELT) (((-583 $) (-583 |#5|) (-583 $)) 77 T ELT)) (-3189 (((-583 $) |#5| $) NIL T ELT) (((-583 $) |#5| (-583 $)) 64 T ELT) (((-583 $) (-583 |#5|) $) 69 T ELT) (((-583 $) (-583 |#5|) (-583 $)) 71 T ELT)) (-3196 (((-85) |#5| $) 32 T ELT))) +(((-982 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3768 ((-583 |#1|) (-583 |#5|) (-583 |#1|))) (-15 -3768 ((-583 |#1|) (-583 |#5|) |#1|)) (-15 -3768 ((-583 |#1|) |#5| (-583 |#1|))) (-15 -3768 ((-583 |#1|) |#5| |#1|)) (-15 -3189 ((-583 |#1|) (-583 |#5|) (-583 |#1|))) (-15 -3189 ((-583 |#1|) (-583 |#5|) |#1|)) (-15 -3189 ((-583 |#1|) |#5| (-583 |#1|))) (-15 -3189 ((-583 |#1|) |#5| |#1|)) (-15 -3238 ((-583 |#1|) |#5| (-583 |#1|))) (-15 -3238 ((-583 |#1|) (-583 |#5|) (-583 |#1|))) (-15 -3238 ((-583 |#1|) (-583 |#5|) |#1|)) (-15 -3238 ((-583 |#1|) |#5| |#1|)) (-15 -3195 ((-85) |#5| |#1|)) (-15 -3198 ((-85) |#1|)) (-15 -3196 ((-85) |#5| |#1|)) (-15 -3197 ((-85) |#5| |#1|)) (-15 -3198 ((-85) |#5| |#1|)) (-15 -3768 (|#1| |#1| |#5|))) (-983 |#2| |#3| |#4| |#5|) (-391) (-717) (-756) (-977 |#2| |#3| |#4|)) (T -982)) +NIL +((-2568 (((-85) $ $) 7 T ELT)) (-3680 (((-583 (-2 (|:| -3860 $) (|:| -1701 (-583 |#4|)))) (-583 |#4|)) 90 T ELT)) (-3681 (((-583 $) (-583 |#4|)) 91 T ELT) (((-583 $) (-583 |#4|) (-85)) 118 T ELT)) (-3081 (((-583 |#3|) $) 37 T ELT)) (-2908 (((-85) $) 30 T ELT)) (-2899 (((-85) $) 21 (|has| |#1| (-495)) ELT)) (-3692 (((-85) |#4| $) 106 T ELT) (((-85) $) 102 T ELT)) (-3687 ((|#4| |#4| $) 97 T ELT)) (-3774 (((-583 (-2 (|:| |val| |#4|) (|:| -1599 $))) |#4| $) 133 T ELT)) (-2909 (((-2 (|:| |under| $) (|:| -3130 $) (|:| |upper| $)) $ |#3|) 31 T ELT)) (-3709 (($ (-1 (-85) |#4|) $) 66 (|has| $ (-6 -3994)) ELT) (((-3 |#4| #1="failed") $ |#3|) 84 T ELT)) (-3723 (($) 46 T CONST)) (-2904 (((-85) $) 26 (|has| |#1| (-495)) ELT)) (-2906 (((-85) $ $) 28 (|has| |#1| (-495)) ELT)) (-2905 (((-85) $ $) 27 (|has| |#1| (-495)) ELT)) (-2907 (((-85) $) 29 (|has| |#1| (-495)) ELT)) (-3688 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 98 T ELT)) (-2900 (((-583 |#4|) (-583 |#4|) $) 22 (|has| |#1| (-495)) ELT)) (-2901 (((-583 |#4|) (-583 |#4|) $) 23 (|has| |#1| (-495)) ELT)) (-3157 (((-3 $ "failed") (-583 |#4|)) 40 T ELT)) (-3156 (($ (-583 |#4|)) 39 T ELT)) (-3798 (((-3 $ #1#) $) 87 T ELT)) (-3684 ((|#4| |#4| $) 94 T ELT)) (-1352 (($ $) 69 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -3994))) ELT)) (-3405 (($ |#4| $) 68 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -3994))) ELT) (($ (-1 (-85) |#4|) $) 65 (|has| $ (-6 -3994)) ELT)) (-2902 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 24 (|has| |#1| (-495)) ELT)) (-3693 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) 107 T ELT)) (-3682 ((|#4| |#4| $) 92 T ELT)) (-3841 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -3994))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -3994)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -3994)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 99 T ELT)) (-3695 (((-2 (|:| -3860 (-583 |#4|)) (|:| -1701 (-583 |#4|))) $) 110 T ELT)) (-3197 (((-85) |#4| $) 143 T ELT)) (-3195 (((-85) |#4| $) 140 T ELT)) (-3198 (((-85) |#4| $) 144 T ELT) (((-85) $) 141 T ELT)) (-2889 (((-583 |#4|) $) 53 (|has| $ (-6 -3994)) ELT)) (-3694 (((-85) |#4| $) 109 T ELT) (((-85) $) 108 T ELT)) (-3180 ((|#3| $) 38 T ELT)) (-2608 (((-583 |#4|) $) 54 (|has| $ (-6 -3994)) ELT)) (-3245 (((-85) |#4| $) 56 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -3994))) ELT)) (-1948 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-2914 (((-583 |#3|) $) 36 T ELT)) (-2913 (((-85) |#3| $) 35 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3191 (((-3 |#4| (-583 $)) |#4| |#4| $) 135 T ELT)) (-3190 (((-583 (-2 (|:| |val| |#4|) (|:| -1599 $))) |#4| |#4| $) 134 T ELT)) (-3797 (((-3 |#4| #1#) $) 88 T ELT)) (-3192 (((-583 $) |#4| $) 136 T ELT)) (-3194 (((-3 (-85) (-583 $)) |#4| $) 139 T ELT)) (-3193 (((-583 (-2 (|:| |val| (-85)) (|:| -1599 $))) |#4| $) 138 T ELT) (((-85) |#4| $) 137 T ELT)) (-3238 (((-583 $) |#4| $) 132 T ELT) (((-583 $) (-583 |#4|) $) 131 T ELT) (((-583 $) (-583 |#4|) (-583 $)) 130 T ELT) (((-583 $) |#4| (-583 $)) 129 T ELT)) (-3439 (($ |#4| $) 124 T ELT) (($ (-583 |#4|) $) 123 T ELT)) (-3696 (((-583 |#4|) $) 112 T ELT)) (-3690 (((-85) |#4| $) 104 T ELT) (((-85) $) 100 T ELT)) (-3685 ((|#4| |#4| $) 95 T ELT)) (-3698 (((-85) $ $) 115 T ELT)) (-2903 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-495)) ELT)) (-3691 (((-85) |#4| $) 105 T ELT) (((-85) $) 101 T ELT)) (-3686 ((|#4| |#4| $) 96 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3800 (((-3 |#4| #1#) $) 89 T ELT)) (-1353 (((-3 |#4| "failed") (-1 (-85) |#4|) $) 62 T ELT)) (-3678 (((-3 $ #1#) $ |#4|) 83 T ELT)) (-3768 (($ $ |#4|) 82 T ELT) (((-583 $) |#4| $) 122 T ELT) (((-583 $) |#4| (-583 $)) 121 T ELT) (((-583 $) (-583 |#4|) $) 120 T ELT) (((-583 $) (-583 |#4|) (-583 $)) 119 T ELT)) (-1946 (((-85) (-1 (-85) |#4|) $) 51 (|has| $ (-6 -3994)) ELT)) (-3767 (($ $ (-583 |#4|) (-583 |#4|)) 60 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-249 |#4|)) 58 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-583 (-249 |#4|))) 57 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT)) (-1221 (((-85) $ $) 42 T ELT)) (-3402 (((-85) $) 45 T ELT)) (-3564 (($) 44 T ELT)) (-3947 (((-694) $) 111 T ELT)) (-1945 (((-694) |#4| $) 55 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -3994))) ELT) (((-694) (-1 (-85) |#4|) $) 52 (|has| $ (-6 -3994)) ELT)) (-3399 (($ $) 43 T ELT)) (-3971 (((-473) $) 70 (|has| |#4| (-553 (-473))) ELT)) (-3529 (($ (-583 |#4|)) 61 T ELT)) (-2910 (($ $ |#3|) 32 T ELT)) (-2912 (($ $ |#3|) 34 T ELT)) (-3683 (($ $) 93 T ELT)) (-2911 (($ $ |#3|) 33 T ELT)) (-3945 (((-772) $) 13 T ELT) (((-583 |#4|) $) 41 T ELT)) (-3677 (((-694) $) 81 (|has| |#3| (-319)) ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-3697 (((-3 (-2 (|:| |bas| $) (|:| -3323 (-583 |#4|))) #1#) (-583 |#4|) (-1 (-85) |#4| |#4|)) 114 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3323 (-583 |#4|))) #1#) (-583 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) 113 T ELT)) (-3689 (((-85) $ (-1 (-85) |#4| (-583 |#4|))) 103 T ELT)) (-3189 (((-583 $) |#4| $) 128 T ELT) (((-583 $) |#4| (-583 $)) 127 T ELT) (((-583 $) (-583 |#4|) $) 126 T ELT) (((-583 $) (-583 |#4|) (-583 $)) 125 T ELT)) (-1947 (((-85) (-1 (-85) |#4|) $) 50 (|has| $ (-6 -3994)) ELT)) (-3679 (((-583 |#3|) $) 86 T ELT)) (-3196 (((-85) |#4| $) 142 T ELT)) (-3932 (((-85) |#3| $) 85 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-3956 (((-694) $) 47 (|has| $ (-6 -3994)) ELT))) +(((-983 |#1| |#2| |#3| |#4|) (-113) (-391) (-717) (-756) (-977 |t#1| |t#2| |t#3|)) (T -983)) +((-3198 (*1 *2 *3 *1) (-12 (-4 *1 (-983 *4 *5 *6 *3)) (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-85)))) (-3197 (*1 *2 *3 *1) (-12 (-4 *1 (-983 *4 *5 *6 *3)) (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-85)))) (-3196 (*1 *2 *3 *1) (-12 (-4 *1 (-983 *4 *5 *6 *3)) (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-85)))) (-3198 (*1 *2 *1) (-12 (-4 *1 (-983 *3 *4 *5 *6)) (-4 *3 (-391)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-85)))) (-3195 (*1 *2 *3 *1) (-12 (-4 *1 (-983 *4 *5 *6 *3)) (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-85)))) (-3194 (*1 *2 *3 *1) (-12 (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-3 (-85) (-583 *1))) (-4 *1 (-983 *4 *5 *6 *3)))) (-3193 (*1 *2 *3 *1) (-12 (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-583 (-2 (|:| |val| (-85)) (|:| -1599 *1)))) (-4 *1 (-983 *4 *5 *6 *3)))) (-3193 (*1 *2 *3 *1) (-12 (-4 *1 (-983 *4 *5 *6 *3)) (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-85)))) (-3192 (*1 *2 *3 *1) (-12 (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-583 *1)) (-4 *1 (-983 *4 *5 *6 *3)))) (-3191 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-3 *3 (-583 *1))) (-4 *1 (-983 *4 *5 *6 *3)))) (-3190 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1599 *1)))) (-4 *1 (-983 *4 *5 *6 *3)))) (-3774 (*1 *2 *3 *1) (-12 (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1599 *1)))) (-4 *1 (-983 *4 *5 *6 *3)))) (-3238 (*1 *2 *3 *1) (-12 (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-583 *1)) (-4 *1 (-983 *4 *5 *6 *3)))) (-3238 (*1 *2 *3 *1) (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-583 *1)) (-4 *1 (-983 *4 *5 *6 *7)))) (-3238 (*1 *2 *3 *2) (-12 (-5 *2 (-583 *1)) (-5 *3 (-583 *7)) (-4 *1 (-983 *4 *5 *6 *7)) (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)))) (-3238 (*1 *2 *3 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-983 *4 *5 *6 *3)) (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6)))) (-3189 (*1 *2 *3 *1) (-12 (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-583 *1)) (-4 *1 (-983 *4 *5 *6 *3)))) (-3189 (*1 *2 *3 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-983 *4 *5 *6 *3)) (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6)))) (-3189 (*1 *2 *3 *1) (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-583 *1)) (-4 *1 (-983 *4 *5 *6 *7)))) (-3189 (*1 *2 *3 *2) (-12 (-5 *2 (-583 *1)) (-5 *3 (-583 *7)) (-4 *1 (-983 *4 *5 *6 *7)) (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)))) (-3439 (*1 *1 *2 *1) (-12 (-4 *1 (-983 *3 *4 *5 *2)) (-4 *3 (-391)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *2 (-977 *3 *4 *5)))) (-3439 (*1 *1 *2 *1) (-12 (-5 *2 (-583 *6)) (-4 *1 (-983 *3 *4 *5 *6)) (-4 *3 (-391)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)))) (-3768 (*1 *2 *3 *1) (-12 (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-583 *1)) (-4 *1 (-983 *4 *5 *6 *3)))) (-3768 (*1 *2 *3 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-983 *4 *5 *6 *3)) (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6)))) (-3768 (*1 *2 *3 *1) (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-583 *1)) (-4 *1 (-983 *4 *5 *6 *7)))) (-3768 (*1 *2 *3 *2) (-12 (-5 *2 (-583 *1)) (-5 *3 (-583 *7)) (-4 *1 (-983 *4 *5 *6 *7)) (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)))) (-3681 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-85)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-583 *1)) (-4 *1 (-983 *5 *6 *7 *8))))) +(-13 (-1123 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -3198 ((-85) |t#4| $)) (-15 -3197 ((-85) |t#4| $)) (-15 -3196 ((-85) |t#4| $)) (-15 -3198 ((-85) $)) (-15 -3195 ((-85) |t#4| $)) (-15 -3194 ((-3 (-85) (-583 $)) |t#4| $)) (-15 -3193 ((-583 (-2 (|:| |val| (-85)) (|:| -1599 $))) |t#4| $)) (-15 -3193 ((-85) |t#4| $)) (-15 -3192 ((-583 $) |t#4| $)) (-15 -3191 ((-3 |t#4| (-583 $)) |t#4| |t#4| $)) (-15 -3190 ((-583 (-2 (|:| |val| |t#4|) (|:| -1599 $))) |t#4| |t#4| $)) (-15 -3774 ((-583 (-2 (|:| |val| |t#4|) (|:| -1599 $))) |t#4| $)) (-15 -3238 ((-583 $) |t#4| $)) (-15 -3238 ((-583 $) (-583 |t#4|) $)) (-15 -3238 ((-583 $) (-583 |t#4|) (-583 $))) (-15 -3238 ((-583 $) |t#4| (-583 $))) (-15 -3189 ((-583 $) |t#4| $)) (-15 -3189 ((-583 $) |t#4| (-583 $))) (-15 -3189 ((-583 $) (-583 |t#4|) $)) (-15 -3189 ((-583 $) (-583 |t#4|) (-583 $))) (-15 -3439 ($ |t#4| $)) (-15 -3439 ($ (-583 |t#4|) $)) (-15 -3768 ((-583 $) |t#4| $)) (-15 -3768 ((-583 $) |t#4| (-583 $))) (-15 -3768 ((-583 $) (-583 |t#4|) $)) (-15 -3768 ((-583 $) (-583 |t#4|) (-583 $))) (-15 -3681 ((-583 $) (-583 |t#4|) (-85))))) +(((-34) . T) ((-72) . T) ((-552 (-583 |#4|)) . T) ((-552 (-772)) . T) ((-124 |#4|) . T) ((-553 (-473)) |has| |#4| (-553 (-473))) ((-260 |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ((-428 |#4|) . T) ((-455 |#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ((-13) . T) ((-889 |#1| |#2| |#3| |#4|) . T) ((-1013) . T) ((-1123 |#1| |#2| |#3| |#4|) . T) ((-1128) . T)) +((-3205 (((-583 (-2 (|:| |val| |#4|) (|:| -1599 |#5|))) |#4| |#5|) 86 T ELT)) (-3202 (((-583 (-2 (|:| |val| |#4|) (|:| -1599 |#5|))) |#4| |#4| |#5|) 125 T ELT)) (-3204 (((-583 |#5|) |#4| |#5|) 74 T ELT)) (-3203 (((-583 (-2 (|:| |val| (-85)) (|:| -1599 |#5|))) |#4| |#5|) 47 T ELT) (((-85) |#4| |#5|) 55 T ELT)) (-3286 (((-1184)) 36 T ELT)) (-3284 (((-1184)) 25 T ELT)) (-3285 (((-1184) (-1072) (-1072) (-1072)) 32 T ELT)) (-3283 (((-1184) (-1072) (-1072) (-1072)) 21 T ELT)) (-3199 (((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|))) |#4| |#4| |#5|) 106 T ELT)) (-3200 (((-583 (-2 (|:| |val| |#4|) (|:| -1599 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|))) |#3| (-85)) 117 T ELT) (((-583 (-2 (|:| |val| |#4|) (|:| -1599 |#5|))) |#4| |#4| |#5| (-85) (-85)) 52 T ELT)) (-3201 (((-583 (-2 (|:| |val| |#4|) (|:| -1599 |#5|))) |#4| |#4| |#5|) 112 T ELT))) +(((-984 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3283 ((-1184) (-1072) (-1072) (-1072))) (-15 -3284 ((-1184))) (-15 -3285 ((-1184) (-1072) (-1072) (-1072))) (-15 -3286 ((-1184))) (-15 -3199 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|))) |#4| |#4| |#5|)) (-15 -3200 ((-583 (-2 (|:| |val| |#4|) (|:| -1599 |#5|))) |#4| |#4| |#5| (-85) (-85))) (-15 -3200 ((-583 (-2 (|:| |val| |#4|) (|:| -1599 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|))) |#3| (-85))) (-15 -3201 ((-583 (-2 (|:| |val| |#4|) (|:| -1599 |#5|))) |#4| |#4| |#5|)) (-15 -3202 ((-583 (-2 (|:| |val| |#4|) (|:| -1599 |#5|))) |#4| |#4| |#5|)) (-15 -3203 ((-85) |#4| |#5|)) (-15 -3203 ((-583 (-2 (|:| |val| (-85)) (|:| -1599 |#5|))) |#4| |#5|)) (-15 -3204 ((-583 |#5|) |#4| |#5|)) (-15 -3205 ((-583 (-2 (|:| |val| |#4|) (|:| -1599 |#5|))) |#4| |#5|))) (-391) (-717) (-756) (-977 |#1| |#2| |#3|) (-983 |#1| |#2| |#3| |#4|)) (T -984)) +((-3205 (*1 *2 *3 *4) (-12 (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1599 *4)))) (-5 *1 (-984 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-3204 (*1 *2 *3 *4) (-12 (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-583 *4)) (-5 *1 (-984 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-3203 (*1 *2 *3 *4) (-12 (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-85)) (|:| -1599 *4)))) (-5 *1 (-984 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-3203 (*1 *2 *3 *4) (-12 (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-85)) (-5 *1 (-984 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-3202 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1599 *4)))) (-5 *1 (-984 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-3201 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1599 *4)))) (-5 *1 (-984 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-3200 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 (-2 (|:| |val| (-583 *8)) (|:| -1599 *9)))) (-5 *5 (-85)) (-4 *8 (-977 *6 *7 *4)) (-4 *9 (-983 *6 *7 *4 *8)) (-4 *6 (-391)) (-4 *7 (-717)) (-4 *4 (-756)) (-5 *2 (-583 (-2 (|:| |val| *8) (|:| -1599 *9)))) (-5 *1 (-984 *6 *7 *4 *8 *9)))) (-3200 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-85)) (-4 *6 (-391)) (-4 *7 (-717)) (-4 *8 (-756)) (-4 *3 (-977 *6 *7 *8)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1599 *4)))) (-5 *1 (-984 *6 *7 *8 *3 *4)) (-4 *4 (-983 *6 *7 *8 *3)))) (-3199 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-583 *3)) (|:| -1599 *4)))) (-5 *1 (-984 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-3286 (*1 *2) (-12 (-4 *3 (-391)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-1184)) (-5 *1 (-984 *3 *4 *5 *6 *7)) (-4 *7 (-983 *3 *4 *5 *6)))) (-3285 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1072)) (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-1184)) (-5 *1 (-984 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7)))) (-3284 (*1 *2) (-12 (-4 *3 (-391)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-1184)) (-5 *1 (-984 *3 *4 *5 *6 *7)) (-4 *7 (-983 *3 *4 *5 *6)))) (-3283 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1072)) (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-1184)) (-5 *1 (-984 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3318 (((-1129) $) 14 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3206 (((-1048) $) 11 T ELT)) (-3945 (((-772) $) 21 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT))) +(((-985) (-13 (-995) (-10 -8 (-15 -3206 ((-1048) $)) (-15 -3318 ((-1129) $))))) (T -985)) +((-3206 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-985)))) (-3318 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-985))))) +((-3266 (((-85) $ $) 7 T ELT))) +(((-986) (-13 (-1128) (-10 -8 (-15 -3266 ((-85) $ $))))) (T -986)) +((-3266 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-986))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3209 (($ $ (-583 (-1089)) (-1 (-85) (-583 |#3|))) 34 T ELT)) (-3210 (($ |#3| |#3|) 23 T ELT) (($ |#3| |#3| (-583 (-1089))) 21 T ELT)) (-3527 ((|#3| $) 13 T ELT)) (-3157 (((-3 (-249 |#3|) "failed") $) 60 T ELT)) (-3156 (((-249 |#3|) $) NIL T ELT)) (-3207 (((-583 (-1089)) $) 16 T ELT)) (-3208 (((-800 |#1|) $) 11 T ELT)) (-3528 ((|#3| $) 12 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3799 ((|#3| $ |#3|) 28 T ELT) ((|#3| $ |#3| (-830)) 41 T ELT)) (-3945 (((-772) $) 89 T ELT) (($ (-249 |#3|)) 22 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 38 T ELT))) +(((-987 |#1| |#2| |#3|) (-13 (-1013) (-241 |#3| |#3|) (-950 (-249 |#3|)) (-10 -8 (-15 -3210 ($ |#3| |#3|)) (-15 -3210 ($ |#3| |#3| (-583 (-1089)))) (-15 -3209 ($ $ (-583 (-1089)) (-1 (-85) (-583 |#3|)))) (-15 -3208 ((-800 |#1|) $)) (-15 -3528 (|#3| $)) (-15 -3527 (|#3| $)) (-15 -3799 (|#3| $ |#3| (-830))) (-15 -3207 ((-583 (-1089)) $)))) (-1013) (-13 (-961) (-796 |#1|) (-553 (-800 |#1|))) (-13 (-363 |#2|) (-796 |#1|) (-553 (-800 |#1|)))) (T -987)) +((-3210 (*1 *1 *2 *2) (-12 (-4 *3 (-1013)) (-4 *4 (-13 (-961) (-796 *3) (-553 (-800 *3)))) (-5 *1 (-987 *3 *4 *2)) (-4 *2 (-13 (-363 *4) (-796 *3) (-553 (-800 *3)))))) (-3210 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-583 (-1089))) (-4 *4 (-1013)) (-4 *5 (-13 (-961) (-796 *4) (-553 (-800 *4)))) (-5 *1 (-987 *4 *5 *2)) (-4 *2 (-13 (-363 *5) (-796 *4) (-553 (-800 *4)))))) (-3209 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-1089))) (-5 *3 (-1 (-85) (-583 *6))) (-4 *6 (-13 (-363 *5) (-796 *4) (-553 (-800 *4)))) (-4 *4 (-1013)) (-4 *5 (-13 (-961) (-796 *4) (-553 (-800 *4)))) (-5 *1 (-987 *4 *5 *6)))) (-3208 (*1 *2 *1) (-12 (-4 *3 (-1013)) (-4 *4 (-13 (-961) (-796 *3) (-553 *2))) (-5 *2 (-800 *3)) (-5 *1 (-987 *3 *4 *5)) (-4 *5 (-13 (-363 *4) (-796 *3) (-553 *2))))) (-3528 (*1 *2 *1) (-12 (-4 *3 (-1013)) (-4 *2 (-13 (-363 *4) (-796 *3) (-553 (-800 *3)))) (-5 *1 (-987 *3 *4 *2)) (-4 *4 (-13 (-961) (-796 *3) (-553 (-800 *3)))))) (-3527 (*1 *2 *1) (-12 (-4 *3 (-1013)) (-4 *2 (-13 (-363 *4) (-796 *3) (-553 (-800 *3)))) (-5 *1 (-987 *3 *4 *2)) (-4 *4 (-13 (-961) (-796 *3) (-553 (-800 *3)))))) (-3799 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-830)) (-4 *4 (-1013)) (-4 *5 (-13 (-961) (-796 *4) (-553 (-800 *4)))) (-5 *1 (-987 *4 *5 *2)) (-4 *2 (-13 (-363 *5) (-796 *4) (-553 (-800 *4)))))) (-3207 (*1 *2 *1) (-12 (-4 *3 (-1013)) (-4 *4 (-13 (-961) (-796 *3) (-553 (-800 *3)))) (-5 *2 (-583 (-1089))) (-5 *1 (-987 *3 *4 *5)) (-4 *5 (-13 (-363 *4) (-796 *3) (-553 (-800 *3))))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3541 (((-1089) $) 8 T ELT)) (-3242 (((-1072) $) 17 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) 11 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 14 T ELT))) +(((-988 |#1|) (-13 (-1013) (-10 -8 (-15 -3541 ((-1089) $)))) (-1089)) (T -988)) +((-3541 (*1 *2 *1) (-12 (-5 *2 (-1089)) (-5 *1 (-988 *3)) (-14 *3 *2)))) +((-2568 (((-85) $ $) NIL T ELT)) (-3212 (($ (-583 (-987 |#1| |#2| |#3|))) 15 T ELT)) (-3211 (((-583 (-987 |#1| |#2| |#3|)) $) 22 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3799 ((|#3| $ |#3|) 25 T ELT) ((|#3| $ |#3| (-830)) 28 T ELT)) (-3945 (((-772) $) 18 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 21 T ELT))) +(((-989 |#1| |#2| |#3|) (-13 (-1013) (-241 |#3| |#3|) (-10 -8 (-15 -3212 ($ (-583 (-987 |#1| |#2| |#3|)))) (-15 -3211 ((-583 (-987 |#1| |#2| |#3|)) $)) (-15 -3799 (|#3| $ |#3| (-830))))) (-1013) (-13 (-961) (-796 |#1|) (-553 (-800 |#1|))) (-13 (-363 |#2|) (-796 |#1|) (-553 (-800 |#1|)))) (T -989)) +((-3212 (*1 *1 *2) (-12 (-5 *2 (-583 (-987 *3 *4 *5))) (-4 *3 (-1013)) (-4 *4 (-13 (-961) (-796 *3) (-553 (-800 *3)))) (-4 *5 (-13 (-363 *4) (-796 *3) (-553 (-800 *3)))) (-5 *1 (-989 *3 *4 *5)))) (-3211 (*1 *2 *1) (-12 (-4 *3 (-1013)) (-4 *4 (-13 (-961) (-796 *3) (-553 (-800 *3)))) (-5 *2 (-583 (-987 *3 *4 *5))) (-5 *1 (-989 *3 *4 *5)) (-4 *5 (-13 (-363 *4) (-796 *3) (-553 (-800 *3)))))) (-3799 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-830)) (-4 *4 (-1013)) (-4 *5 (-13 (-961) (-796 *4) (-553 (-800 *4)))) (-5 *1 (-989 *4 *5 *2)) (-4 *2 (-13 (-363 *5) (-796 *4) (-553 (-800 *4))))))) +((-3213 (((-583 (-2 (|:| -1746 (-1084 |#1|)) (|:| -3224 (-583 (-857 |#1|))))) (-583 (-857 |#1|)) (-85) (-85)) 88 T ELT) (((-583 (-2 (|:| -1746 (-1084 |#1|)) (|:| -3224 (-583 (-857 |#1|))))) (-583 (-857 |#1|))) 92 T ELT) (((-583 (-2 (|:| -1746 (-1084 |#1|)) (|:| -3224 (-583 (-857 |#1|))))) (-583 (-857 |#1|)) (-85)) 90 T ELT))) +(((-990 |#1| |#2|) (-10 -7 (-15 -3213 ((-583 (-2 (|:| -1746 (-1084 |#1|)) (|:| -3224 (-583 (-857 |#1|))))) (-583 (-857 |#1|)) (-85))) (-15 -3213 ((-583 (-2 (|:| -1746 (-1084 |#1|)) (|:| -3224 (-583 (-857 |#1|))))) (-583 (-857 |#1|)))) (-15 -3213 ((-583 (-2 (|:| -1746 (-1084 |#1|)) (|:| -3224 (-583 (-857 |#1|))))) (-583 (-857 |#1|)) (-85) (-85)))) (-13 (-258) (-120)) (-583 (-1089))) (T -990)) +((-3213 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-583 (-2 (|:| -1746 (-1084 *5)) (|:| -3224 (-583 (-857 *5)))))) (-5 *1 (-990 *5 *6)) (-5 *3 (-583 (-857 *5))) (-14 *6 (-583 (-1089))))) (-3213 (*1 *2 *3) (-12 (-4 *4 (-13 (-258) (-120))) (-5 *2 (-583 (-2 (|:| -1746 (-1084 *4)) (|:| -3224 (-583 (-857 *4)))))) (-5 *1 (-990 *4 *5)) (-5 *3 (-583 (-857 *4))) (-14 *5 (-583 (-1089))))) (-3213 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-583 (-2 (|:| -1746 (-1084 *5)) (|:| -3224 (-583 (-857 *5)))))) (-5 *1 (-990 *5 *6)) (-5 *3 (-583 (-857 *5))) (-14 *6 (-583 (-1089)))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) 132 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL (|has| |#1| (-312)) ELT)) (-2063 (($ $) NIL (|has| |#1| (-312)) ELT)) (-2061 (((-85) $) NIL (|has| |#1| (-312)) ELT)) (-1781 (((-630 |#1|) (-1178 $)) NIL T ELT) (((-630 |#1|)) 117 T ELT)) (-3329 ((|#1| $) 121 T ELT)) (-1674 (((-1101 (-830) (-694)) (-484)) NIL (|has| |#1| (-299)) ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3774 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3970 (((-347 $) $) NIL (|has| |#1| (-312)) ELT)) (-1607 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3136 (((-694)) 43 (|has| |#1| (-319)) ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 (-484) #1#) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-3 (-349 (-484)) #1#) $) NIL (|has| |#1| (-950 (-349 (-484)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3156 (((-484) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-349 (-484)) $) NIL (|has| |#1| (-950 (-349 (-484)))) ELT) ((|#1| $) NIL T ELT)) (-1791 (($ (-1178 |#1|) (-1178 $)) NIL T ELT) (($ (-1178 |#1|)) 46 T ELT)) (-1672 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-299)) ELT)) (-2564 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-1780 (((-630 |#1|) $ (-1178 $)) NIL T ELT) (((-630 |#1|) $) NIL T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1178 |#1|))) (-630 $) (-1178 $)) 109 T ELT) (((-630 |#1|) (-630 $)) 104 T ELT)) (-3841 (($ |#2|) 62 T ELT) (((-3 $ #1#) (-349 |#2|)) NIL (|has| |#1| (-312)) ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-3108 (((-830)) 80 T ELT)) (-2994 (($) 47 (|has| |#1| (-319)) ELT)) (-2563 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) NIL (|has| |#1| (-312)) ELT)) (-2833 (($) NIL (|has| |#1| (-299)) ELT)) (-1679 (((-85) $) NIL (|has| |#1| (-299)) ELT)) (-1763 (($ $ (-694)) NIL (|has| |#1| (-299)) ELT) (($ $) NIL (|has| |#1| (-299)) ELT)) (-3722 (((-85) $) NIL (|has| |#1| (-312)) ELT)) (-3771 (((-830) $) NIL (|has| |#1| (-299)) ELT) (((-743 (-830)) $) NIL (|has| |#1| (-299)) ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-3132 ((|#1| $) NIL T ELT)) (-3444 (((-632 $) $) NIL (|has| |#1| (-299)) ELT)) (-1604 (((-3 (-583 $) #1#) (-583 $) $) NIL (|has| |#1| (-312)) ELT)) (-2014 ((|#2| $) 87 (|has| |#1| (-312)) ELT)) (-2010 (((-830) $) 140 (|has| |#1| (-319)) ELT)) (-3079 ((|#2| $) 59 T ELT)) (-2280 (((-630 (-484)) (-1178 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1178 |#1|))) (-1178 $) $) NIL T ELT) (((-630 |#1|) (-1178 $)) NIL T ELT)) (-1890 (($ (-583 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2484 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3445 (($) NIL (|has| |#1| (-299)) CONST)) (-2400 (($ (-830)) 131 (|has| |#1| (-319)) ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2409 (($) 123 T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) NIL (|has| |#1| (-312)) ELT)) (-3144 (($ (-583 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-1675 (((-583 (-2 (|:| -3731 (-484)) (|:| -2401 (-484))))) NIL (|has| |#1| (-299)) ELT)) (-3731 (((-347 $) $) NIL (|has| |#1| (-312)) ELT)) (-1605 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3465 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL (|has| |#1| (-312)) ELT)) (-1606 (((-694) $) NIL (|has| |#1| (-312)) ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3756 ((|#1| (-1178 $)) NIL T ELT) ((|#1|) 113 T ELT)) (-1764 (((-694) $) NIL (|has| |#1| (-299)) ELT) (((-3 (-694) #1#) $ $) NIL (|has| |#1| (-299)) ELT)) (-3757 (($ $ (-694)) NIL (OR (-12 (|has| |#1| (-189)) (|has| |#1| (-312))) (|has| |#1| (-299))) ELT) (($ $) NIL (OR (-12 (|has| |#1| (-189)) (|has| |#1| (-312))) (|has| |#1| (-299))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (-12 (|has| |#1| (-312)) (|has| |#1| (-811 (-1089)))) ELT) (($ $ (-1089) (-694)) NIL (-12 (|has| |#1| (-312)) (|has| |#1| (-811 (-1089)))) ELT) (($ $ (-583 (-1089))) NIL (-12 (|has| |#1| (-312)) (|has| |#1| (-811 (-1089)))) ELT) (($ $ (-1089)) NIL (-12 (|has| |#1| (-312)) (|has| |#1| (-811 (-1089)))) ELT) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-312)) ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL (|has| |#1| (-312)) ELT)) (-2408 (((-630 |#1|) (-1178 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-312)) ELT)) (-3185 ((|#2|) 77 T ELT)) (-1673 (($) NIL (|has| |#1| (-299)) ELT)) (-3224 (((-1178 |#1|) $ (-1178 $)) 92 T ELT) (((-630 |#1|) (-1178 $) (-1178 $)) NIL T ELT) (((-1178 |#1|) $) 72 T ELT) (((-630 |#1|) (-1178 $)) 88 T ELT)) (-3971 (((-1178 |#1|) $) NIL T ELT) (($ (-1178 |#1|)) NIL T ELT) ((|#2| $) NIL T ELT) (($ |#2|) NIL T ELT)) (-2703 (((-3 (-1178 $) #1#) (-630 $)) NIL (|has| |#1| (-299)) ELT)) (-3945 (((-772) $) 58 T ELT) (($ (-484)) 53 T ELT) (($ |#1|) 55 T ELT) (($ $) NIL (|has| |#1| (-312)) ELT) (($ (-349 (-484))) NIL (OR (|has| |#1| (-312)) (|has| |#1| (-950 (-349 (-484))))) ELT)) (-2702 (($ $) NIL (|has| |#1| (-299)) ELT) (((-632 $) $) NIL (|has| |#1| (-118)) ELT)) (-2449 ((|#2| $) 85 T ELT)) (-3126 (((-694)) 79 T CONST)) (-1264 (((-85) $ $) NIL T ELT)) (-2012 (((-1178 $)) 84 T ELT)) (-2062 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) 32 T CONST)) (-2666 (($) 19 T CONST)) (-2669 (($ $ (-694)) NIL (OR (-12 (|has| |#1| (-189)) (|has| |#1| (-312))) (|has| |#1| (-299))) ELT) (($ $) NIL (OR (-12 (|has| |#1| (-189)) (|has| |#1| (-312))) (|has| |#1| (-299))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (-12 (|has| |#1| (-312)) (|has| |#1| (-811 (-1089)))) ELT) (($ $ (-1089) (-694)) NIL (-12 (|has| |#1| (-312)) (|has| |#1| (-811 (-1089)))) ELT) (($ $ (-583 (-1089))) NIL (-12 (|has| |#1| (-312)) (|has| |#1| (-811 (-1089)))) ELT) (($ $ (-1089)) NIL (-12 (|has| |#1| (-312)) (|has| |#1| (-811 (-1089)))) ELT) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-312)) ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL (|has| |#1| (-312)) ELT)) (-3056 (((-85) $ $) 64 T ELT)) (-3948 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3836 (($ $) 68 T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) 66 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL (|has| |#1| (-312)) ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 51 T ELT) (($ $ $) 70 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 48 T ELT) (($ (-349 (-484)) $) NIL (|has| |#1| (-312)) ELT) (($ $ (-349 (-484))) NIL (|has| |#1| (-312)) ELT))) +(((-991 |#1| |#2| |#3|) (-661 |#1| |#2|) (-146) (-1154 |#1|) |#2|) (T -991)) +NIL +((-3731 (((-347 |#3|) |#3|) 18 T ELT))) +(((-992 |#1| |#2| |#3|) (-10 -7 (-15 -3731 ((-347 |#3|) |#3|))) (-1154 (-349 (-484))) (-13 (-312) (-120) (-661 (-349 (-484)) |#1|)) (-1154 |#2|)) (T -992)) +((-3731 (*1 *2 *3) (-12 (-4 *4 (-1154 (-349 (-484)))) (-4 *5 (-13 (-312) (-120) (-661 (-349 (-484)) *4))) (-5 *2 (-347 *3)) (-5 *1 (-992 *4 *5 *3)) (-4 *3 (-1154 *5))))) +((-3731 (((-347 |#3|) |#3|) 19 T ELT))) +(((-993 |#1| |#2| |#3|) (-10 -7 (-15 -3731 ((-347 |#3|) |#3|))) (-1154 (-349 (-857 (-484)))) (-13 (-312) (-120) (-661 (-349 (-857 (-484))) |#1|)) (-1154 |#2|)) (T -993)) +((-3731 (*1 *2 *3) (-12 (-4 *4 (-1154 (-349 (-857 (-484))))) (-4 *5 (-13 (-312) (-120) (-661 (-349 (-857 (-484))) *4))) (-5 *2 (-347 *3)) (-5 *1 (-993 *4 *5 *3)) (-4 *3 (-1154 *5))))) +((-2568 (((-85) $ $) NIL T ELT)) (-2531 (($ $ $) 16 T ELT)) (-2857 (($ $ $) 17 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3214 (($) 6 T ELT)) (-3971 (((-1089) $) 20 T ELT)) (-3945 (((-772) $) 13 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 15 T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) 9 T ELT))) +(((-994) (-13 (-756) (-553 (-1089)) (-10 -8 (-15 -3214 ($))))) (T -994)) +((-3214 (*1 *1) (-5 *1 (-994)))) +((-2568 (((-85) $ $) 7 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-1094)) 20 T ELT) (((-1094) $) 19 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-3056 (((-85) $ $) 8 T ELT))) +(((-995) (-113)) (T -995)) NIL (-13 (-64)) -(((-64) . T) ((-72) . T) ((-554 (-1093)) . T) ((-551 (-771)) . T) ((-551 (-1093)) . T) ((-428 (-1093)) . T) ((-13) . T) ((-1012) . T) ((-1127) . T)) -((-3216 ((|#1| |#1| (-1 (-483) |#1| |#1|)) 41 T ELT) ((|#1| |#1| (-1 (-85) |#1|)) 33 T ELT)) (-3214 (((-1183)) 21 T ELT)) (-3215 (((-582 |#1|)) 13 T ELT))) -(((-995 |#1|) (-10 -7 (-15 -3214 ((-1183))) (-15 -3215 ((-582 |#1|))) (-15 -3216 (|#1| |#1| (-1 (-85) |#1|))) (-15 -3216 (|#1| |#1| (-1 (-483) |#1| |#1|)))) (-105)) (T -995)) -((-3216 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-483) *2 *2)) (-4 *2 (-105)) (-5 *1 (-995 *2)))) (-3216 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-85) *2)) (-4 *2 (-105)) (-5 *1 (-995 *2)))) (-3215 (*1 *2) (-12 (-5 *2 (-582 *3)) (-5 *1 (-995 *3)) (-4 *3 (-105)))) (-3214 (*1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-995 *3)) (-4 *3 (-105))))) -((-3219 (($ (-78) $) 20 T ELT)) (-3220 (((-631 (-78)) (-445) $) 19 T ELT)) (-3563 (($) 7 T ELT)) (-3218 (($) 21 T ELT)) (-3217 (($) 22 T ELT)) (-3221 (((-582 (-149)) $) 10 T ELT)) (-3944 (((-771) $) 25 T ELT))) -(((-996) (-13 (-551 (-771)) (-10 -8 (-15 -3563 ($)) (-15 -3221 ((-582 (-149)) $)) (-15 -3220 ((-631 (-78)) (-445) $)) (-15 -3219 ($ (-78) $)) (-15 -3218 ($)) (-15 -3217 ($))))) (T -996)) -((-3563 (*1 *1) (-5 *1 (-996))) (-3221 (*1 *2 *1) (-12 (-5 *2 (-582 (-149))) (-5 *1 (-996)))) (-3220 (*1 *2 *3 *1) (-12 (-5 *3 (-445)) (-5 *2 (-631 (-78))) (-5 *1 (-996)))) (-3219 (*1 *1 *2 *1) (-12 (-5 *2 (-78)) (-5 *1 (-996)))) (-3218 (*1 *1) (-5 *1 (-996))) (-3217 (*1 *1) (-5 *1 (-996)))) -((-3222 (((-1177 (-629 |#1|)) (-582 (-629 |#1|))) 45 T ELT) (((-1177 (-629 (-856 |#1|))) (-582 (-1088)) (-629 (-856 |#1|))) 75 T ELT) (((-1177 (-629 (-348 (-856 |#1|)))) (-582 (-1088)) (-629 (-348 (-856 |#1|)))) 92 T ELT)) (-3223 (((-1177 |#1|) (-629 |#1|) (-582 (-629 |#1|))) 39 T ELT))) -(((-997 |#1|) (-10 -7 (-15 -3222 ((-1177 (-629 (-348 (-856 |#1|)))) (-582 (-1088)) (-629 (-348 (-856 |#1|))))) (-15 -3222 ((-1177 (-629 (-856 |#1|))) (-582 (-1088)) (-629 (-856 |#1|)))) (-15 -3222 ((-1177 (-629 |#1|)) (-582 (-629 |#1|)))) (-15 -3223 ((-1177 |#1|) (-629 |#1|) (-582 (-629 |#1|))))) (-312)) (T -997)) -((-3223 (*1 *2 *3 *4) (-12 (-5 *4 (-582 (-629 *5))) (-5 *3 (-629 *5)) (-4 *5 (-312)) (-5 *2 (-1177 *5)) (-5 *1 (-997 *5)))) (-3222 (*1 *2 *3) (-12 (-5 *3 (-582 (-629 *4))) (-4 *4 (-312)) (-5 *2 (-1177 (-629 *4))) (-5 *1 (-997 *4)))) (-3222 (*1 *2 *3 *4) (-12 (-5 *3 (-582 (-1088))) (-4 *5 (-312)) (-5 *2 (-1177 (-629 (-856 *5)))) (-5 *1 (-997 *5)) (-5 *4 (-629 (-856 *5))))) (-3222 (*1 *2 *3 *4) (-12 (-5 *3 (-582 (-1088))) (-4 *5 (-312)) (-5 *2 (-1177 (-629 (-348 (-856 *5))))) (-5 *1 (-997 *5)) (-5 *4 (-629 (-348 (-856 *5))))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3187 (((-85) $) NIL T ELT)) (-1486 (((-582 (-693)) $) NIL T ELT) (((-582 (-693)) $ (-1088)) NIL T ELT)) (-1520 (((-693) $) NIL T ELT) (((-693) $ (-1088)) NIL T ELT)) (-3080 (((-582 (-999 (-1088))) $) NIL T ELT)) (-3082 (((-1083 $) $ (-999 (-1088))) NIL T ELT) (((-1083 |#1|) $) NIL T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3980 $) (|:| |associate| $)) $) NIL (|has| |#1| (-494)) ELT)) (-2062 (($ $) NIL (|has| |#1| (-494)) ELT)) (-2060 (((-85) $) NIL (|has| |#1| (-494)) ELT)) (-2818 (((-693) $) NIL T ELT) (((-693) $ (-582 (-999 (-1088)))) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2706 (((-346 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-820)) ELT)) (-3773 (($ $) NIL (|has| |#1| (-390)) ELT)) (-3969 (((-346 $) $) NIL (|has| |#1| (-390)) ELT)) (-2703 (((-3 (-582 (-1083 $)) #1#) (-582 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-820)) ELT)) (-1482 (($ $) NIL T ELT)) (-3722 (($) NIL T CONST)) (-3156 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-348 (-483)) #1#) $) NIL (|has| |#1| (-949 (-348 (-483)))) ELT) (((-3 (-483) #1#) $) NIL (|has| |#1| (-949 (-483))) ELT) (((-3 (-999 (-1088)) #1#) $) NIL T ELT) (((-3 (-1088) #1#) $) NIL T ELT) (((-3 (-1037 |#1| (-1088)) #1#) $) NIL T ELT)) (-3155 ((|#1| $) NIL T ELT) (((-348 (-483)) $) NIL (|has| |#1| (-949 (-348 (-483)))) ELT) (((-483) $) NIL (|has| |#1| (-949 (-483))) ELT) (((-999 (-1088)) $) NIL T ELT) (((-1088) $) NIL T ELT) (((-1037 |#1| (-1088)) $) NIL T ELT)) (-3754 (($ $ $ (-999 (-1088))) NIL (|has| |#1| (-146)) ELT)) (-3957 (($ $) NIL T ELT)) (-2278 (((-629 (-483)) (-629 $)) NIL (|has| |#1| (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-629 $) (-1177 $)) NIL (|has| |#1| (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 |#1|)) (|:| |vec| (-1177 |#1|))) (-629 $) (-1177 $)) NIL T ELT) (((-629 |#1|) (-629 $)) NIL T ELT)) (-3465 (((-3 $ #1#) $) NIL T ELT)) (-3501 (($ $) NIL (|has| |#1| (-390)) ELT) (($ $ (-999 (-1088))) NIL (|has| |#1| (-390)) ELT)) (-2817 (((-582 $) $) NIL T ELT)) (-3721 (((-85) $) NIL (|has| |#1| (-820)) ELT)) (-1622 (($ $ |#1| (-468 (-999 (-1088))) $) NIL T ELT)) (-2795 (((-797 (-328) $) $ (-799 (-328)) (-797 (-328) $)) NIL (-12 (|has| (-999 (-1088)) (-795 (-328))) (|has| |#1| (-795 (-328)))) ELT) (((-797 (-483) $) $ (-799 (-483)) (-797 (-483) $)) NIL (-12 (|has| (-999 (-1088)) (-795 (-483))) (|has| |#1| (-795 (-483)))) ELT)) (-3770 (((-693) $ (-1088)) NIL T ELT) (((-693) $) NIL T ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-2409 (((-85) $) NIL T ELT)) (-2419 (((-693) $) NIL T ELT)) (-3083 (($ (-1083 |#1|) (-999 (-1088))) NIL T ELT) (($ (-1083 $) (-999 (-1088))) NIL T ELT)) (-2820 (((-582 $) $) NIL T ELT)) (-3935 (((-85) $) NIL T ELT)) (-2892 (($ |#1| (-468 (-999 (-1088)))) NIL T ELT) (($ $ (-999 (-1088)) (-693)) NIL T ELT) (($ $ (-582 (-999 (-1088))) (-582 (-693))) NIL T ELT)) (-3761 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $ (-999 (-1088))) NIL T ELT)) (-2819 (((-468 (-999 (-1088))) $) NIL T ELT) (((-693) $ (-999 (-1088))) NIL T ELT) (((-582 (-693)) $ (-582 (-999 (-1088)))) NIL T ELT)) (-1623 (($ (-1 (-468 (-999 (-1088))) (-468 (-999 (-1088)))) $) NIL T ELT)) (-3956 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1521 (((-1 $ (-693)) (-1088)) NIL T ELT) (((-1 $ (-693)) $) NIL (|has| |#1| (-190)) ELT)) (-3081 (((-3 (-999 (-1088)) #1#) $) NIL T ELT)) (-2279 (((-629 (-483)) (-1177 $)) NIL (|has| |#1| (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL (|has| |#1| (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 |#1|)) (|:| |vec| (-1177 |#1|))) (-1177 $) $) NIL T ELT) (((-629 |#1|) (-1177 $)) NIL T ELT)) (-2893 (($ $) NIL T ELT)) (-3173 ((|#1| $) NIL T ELT)) (-1484 (((-999 (-1088)) $) NIL T ELT)) (-1889 (($ (-582 $)) NIL (|has| |#1| (-390)) ELT) (($ $ $) NIL (|has| |#1| (-390)) ELT)) (-3241 (((-1071) $) NIL T ELT)) (-1485 (((-85) $) NIL T ELT)) (-2822 (((-3 (-582 $) #1#) $) NIL T ELT)) (-2821 (((-3 (-582 $) #1#) $) NIL T ELT)) (-2823 (((-3 (-2 (|:| |var| (-999 (-1088))) (|:| -2400 (-693))) #1#) $) NIL T ELT)) (-1483 (($ $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-1795 (((-85) $) NIL T ELT)) (-1794 ((|#1| $) NIL T ELT)) (-2707 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#1| (-390)) ELT)) (-3143 (($ (-582 $)) NIL (|has| |#1| (-390)) ELT) (($ $ $) NIL (|has| |#1| (-390)) ELT)) (-2704 (((-346 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-820)) ELT)) (-2705 (((-346 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-820)) ELT)) (-3730 (((-346 $) $) NIL (|has| |#1| (-820)) ELT)) (-3464 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-494)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-494)) ELT)) (-3766 (($ $ (-582 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-582 $) (-582 $)) NIL T ELT) (($ $ (-999 (-1088)) |#1|) NIL T ELT) (($ $ (-582 (-999 (-1088))) (-582 |#1|)) NIL T ELT) (($ $ (-999 (-1088)) $) NIL T ELT) (($ $ (-582 (-999 (-1088))) (-582 $)) NIL T ELT) (($ $ (-1088) $) NIL (|has| |#1| (-190)) ELT) (($ $ (-582 (-1088)) (-582 $)) NIL (|has| |#1| (-190)) ELT) (($ $ (-1088) |#1|) NIL (|has| |#1| (-190)) ELT) (($ $ (-582 (-1088)) (-582 |#1|)) NIL (|has| |#1| (-190)) ELT)) (-3755 (($ $ (-999 (-1088))) NIL (|has| |#1| (-146)) ELT)) (-3756 (($ $ (-582 (-999 (-1088))) (-582 (-693))) NIL T ELT) (($ $ (-999 (-1088)) (-693)) NIL T ELT) (($ $ (-582 (-999 (-1088)))) NIL T ELT) (($ $ (-999 (-1088))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-693)) NIL T ELT) (($ $ (-1088)) NIL (|has| |#1| (-810 (-1088))) ELT) (($ $ (-582 (-1088))) NIL (|has| |#1| (-810 (-1088))) ELT) (($ $ (-1088) (-693)) NIL (|has| |#1| (-810 (-1088))) ELT) (($ $ (-582 (-1088)) (-582 (-693))) NIL (|has| |#1| (-810 (-1088))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-693)) NIL (|has| |#1| (-189)) ELT)) (-1487 (((-582 (-1088)) $) NIL T ELT)) (-3946 (((-468 (-999 (-1088))) $) NIL T ELT) (((-693) $ (-999 (-1088))) NIL T ELT) (((-582 (-693)) $ (-582 (-999 (-1088)))) NIL T ELT) (((-693) $ (-1088)) NIL T ELT)) (-3970 (((-799 (-328)) $) NIL (-12 (|has| (-999 (-1088)) (-552 (-799 (-328)))) (|has| |#1| (-552 (-799 (-328))))) ELT) (((-799 (-483)) $) NIL (-12 (|has| (-999 (-1088)) (-552 (-799 (-483)))) (|has| |#1| (-552 (-799 (-483))))) ELT) (((-472) $) NIL (-12 (|has| (-999 (-1088)) (-552 (-472))) (|has| |#1| (-552 (-472)))) ELT)) (-2816 ((|#1| $) NIL (|has| |#1| (-390)) ELT) (($ $ (-999 (-1088))) NIL (|has| |#1| (-390)) ELT)) (-2702 (((-3 (-1177 $) #1#) (-629 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-820))) ELT)) (-3944 (((-771) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-999 (-1088))) NIL T ELT) (($ (-1088)) NIL T ELT) (($ (-1037 |#1| (-1088))) NIL T ELT) (($ (-348 (-483))) NIL (OR (|has| |#1| (-38 (-348 (-483)))) (|has| |#1| (-949 (-348 (-483))))) ELT) (($ $) NIL (|has| |#1| (-494)) ELT)) (-3815 (((-582 |#1|) $) NIL T ELT)) (-3675 ((|#1| $ (-468 (-999 (-1088)))) NIL T ELT) (($ $ (-999 (-1088)) (-693)) NIL T ELT) (($ $ (-582 (-999 (-1088))) (-582 (-693))) NIL T ELT)) (-2701 (((-631 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-820))) (|has| |#1| (-118))) ELT)) (-3125 (((-693)) NIL T CONST)) (-1621 (($ $ $ (-693)) NIL (|has| |#1| (-146)) ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2061 (((-85) $ $) NIL (|has| |#1| (-494)) ELT)) (-3124 (((-85) $ $) NIL T ELT)) (-2659 (($) NIL T CONST)) (-2665 (($) NIL T CONST)) (-2668 (($ $ (-582 (-999 (-1088))) (-582 (-693))) NIL T ELT) (($ $ (-999 (-1088)) (-693)) NIL T ELT) (($ $ (-582 (-999 (-1088)))) NIL T ELT) (($ $ (-999 (-1088))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-693)) NIL T ELT) (($ $ (-1088)) NIL (|has| |#1| (-810 (-1088))) ELT) (($ $ (-582 (-1088))) NIL (|has| |#1| (-810 (-1088))) ELT) (($ $ (-1088) (-693)) NIL (|has| |#1| (-810 (-1088))) ELT) (($ $ (-582 (-1088)) (-582 (-693))) NIL (|has| |#1| (-810 (-1088))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-693)) NIL (|has| |#1| (-189)) ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-3947 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3835 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3837 (($ $ $) NIL T ELT)) (** (($ $ (-829)) NIL T ELT) (($ $ (-693)) NIL T ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-348 (-483))) NIL (|has| |#1| (-38 (-348 (-483)))) ELT) (($ (-348 (-483)) $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) -(((-998 |#1|) (-13 (-213 |#1| (-1088) (-999 (-1088)) (-468 (-999 (-1088)))) (-949 (-1037 |#1| (-1088)))) (-960)) (T -998)) -NIL -((-2567 (((-85) $ $) NIL T ELT)) (-1520 (((-693) $) NIL T ELT)) (-3829 ((|#1| $) 10 T ELT)) (-3156 (((-3 |#1| "failed") $) NIL T ELT)) (-3155 ((|#1| $) NIL T ELT)) (-3770 (((-693) $) 11 T ELT)) (-2530 (($ $ $) NIL T ELT)) (-2856 (($ $ $) NIL T ELT)) (-1521 (($ |#1| (-693)) 9 T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3756 (($ $ (-693)) NIL T ELT) (($ $) NIL T ELT)) (-3944 (((-771) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2668 (($ $ (-693)) NIL T ELT) (($ $) NIL T ELT)) (-2565 (((-85) $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-2683 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) 16 T ELT))) -(((-999 |#1|) (-228 |#1|) (-755)) (T -999)) -NIL -((-2567 (((-85) $ $) NIL (|has| |#1| (-1012)) ELT)) (-3734 (($ |#1| |#1|) 16 T ELT)) (-3956 (((-582 |#1|) (-1 |#1| |#1|) $) 44 (|has| |#1| (-754)) ELT)) (-3228 ((|#1| $) 12 T ELT)) (-3230 ((|#1| $) 11 T ELT)) (-3241 (((-1071) $) NIL (|has| |#1| (-1012)) ELT)) (-3226 (((-483) $) 15 T ELT)) (-3227 ((|#1| $) 14 T ELT)) (-3229 ((|#1| $) 13 T ELT)) (-3242 (((-1032) $) NIL (|has| |#1| (-1012)) ELT)) (-3961 (((-582 |#1|) $) 42 (|has| |#1| (-754)) ELT) (((-582 |#1|) (-582 $)) 41 (|has| |#1| (-754)) ELT)) (-3970 (($ |#1|) 29 T ELT)) (-3944 (((-771) $) 28 (|has| |#1| (-1012)) ELT)) (-1263 (((-85) $ $) NIL (|has| |#1| (-1012)) ELT)) (-3735 (($ |#1| |#1|) 10 T ELT)) (-3231 (($ $ (-483)) 17 T ELT)) (-3055 (((-85) $ $) 22 (|has| |#1| (-1012)) ELT))) -(((-1000 |#1|) (-13 (-1005 |#1|) (-10 -7 (IF (|has| |#1| (-1012)) (-6 (-1012)) |%noBranch|) (IF (|has| |#1| (-754)) (-6 (-1006 |#1| (-582 |#1|))) |%noBranch|))) (-1127)) (T -1000)) -NIL -((-3956 (((-582 |#2|) (-1 |#2| |#1|) (-1000 |#1|)) 27 (|has| |#1| (-754)) ELT) (((-1000 |#2|) (-1 |#2| |#1|) (-1000 |#1|)) 14 T ELT))) -(((-1001 |#1| |#2|) (-10 -7 (-15 -3956 ((-1000 |#2|) (-1 |#2| |#1|) (-1000 |#1|))) (IF (|has| |#1| (-754)) (-15 -3956 ((-582 |#2|) (-1 |#2| |#1|) (-1000 |#1|))) |%noBranch|)) (-1127) (-1127)) (T -1001)) -((-3956 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1000 *5)) (-4 *5 (-754)) (-4 *5 (-1127)) (-4 *6 (-1127)) (-5 *2 (-582 *6)) (-5 *1 (-1001 *5 *6)))) (-3956 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1000 *5)) (-4 *5 (-1127)) (-4 *6 (-1127)) (-5 *2 (-1000 *6)) (-5 *1 (-1001 *5 *6))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3944 (((-771) $) 16 T ELT) (($ (-1093)) NIL T ELT) (((-1093) $) NIL T ELT)) (-3224 (((-582 (-1047)) $) 10 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-1002) (-13 (-994) (-10 -8 (-15 -3224 ((-582 (-1047)) $))))) (T -1002)) -((-3224 (*1 *2 *1) (-12 (-5 *2 (-582 (-1047))) (-5 *1 (-1002))))) -((-2567 (((-85) $ $) NIL (|has| (-1000 |#1|) (-1012)) ELT)) (-3829 (((-1088) $) NIL T ELT)) (-3734 (((-1000 |#1|) $) NIL T ELT)) (-3241 (((-1071) $) NIL (|has| (-1000 |#1|) (-1012)) ELT)) (-3242 (((-1032) $) NIL (|has| (-1000 |#1|) (-1012)) ELT)) (-3225 (($ (-1088) (-1000 |#1|)) NIL T ELT)) (-3944 (((-771) $) NIL (|has| (-1000 |#1|) (-1012)) ELT)) (-1263 (((-85) $ $) NIL (|has| (-1000 |#1|) (-1012)) ELT)) (-3055 (((-85) $ $) NIL (|has| (-1000 |#1|) (-1012)) ELT))) -(((-1003 |#1|) (-13 (-1127) (-10 -8 (-15 -3225 ($ (-1088) (-1000 |#1|))) (-15 -3829 ((-1088) $)) (-15 -3734 ((-1000 |#1|) $)) (IF (|has| (-1000 |#1|) (-1012)) (-6 (-1012)) |%noBranch|))) (-1127)) (T -1003)) -((-3225 (*1 *1 *2 *3) (-12 (-5 *2 (-1088)) (-5 *3 (-1000 *4)) (-4 *4 (-1127)) (-5 *1 (-1003 *4)))) (-3829 (*1 *2 *1) (-12 (-5 *2 (-1088)) (-5 *1 (-1003 *3)) (-4 *3 (-1127)))) (-3734 (*1 *2 *1) (-12 (-5 *2 (-1000 *3)) (-5 *1 (-1003 *3)) (-4 *3 (-1127))))) -((-3956 (((-1003 |#2|) (-1 |#2| |#1|) (-1003 |#1|)) 19 T ELT))) -(((-1004 |#1| |#2|) (-10 -7 (-15 -3956 ((-1003 |#2|) (-1 |#2| |#1|) (-1003 |#1|)))) (-1127) (-1127)) (T -1004)) -((-3956 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1003 *5)) (-4 *5 (-1127)) (-4 *6 (-1127)) (-5 *2 (-1003 *6)) (-5 *1 (-1004 *5 *6))))) -((-3734 (($ |#1| |#1|) 8 T ELT)) (-3228 ((|#1| $) 11 T ELT)) (-3230 ((|#1| $) 13 T ELT)) (-3226 (((-483) $) 9 T ELT)) (-3227 ((|#1| $) 10 T ELT)) (-3229 ((|#1| $) 12 T ELT)) (-3970 (($ |#1|) 6 T ELT)) (-3735 (($ |#1| |#1|) 15 T ELT)) (-3231 (($ $ (-483)) 14 T ELT))) -(((-1005 |#1|) (-113) (-1127)) (T -1005)) -((-3735 (*1 *1 *2 *2) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-1127)))) (-3231 (*1 *1 *1 *2) (-12 (-5 *2 (-483)) (-4 *1 (-1005 *3)) (-4 *3 (-1127)))) (-3230 (*1 *2 *1) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-1127)))) (-3229 (*1 *2 *1) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-1127)))) (-3228 (*1 *2 *1) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-1127)))) (-3227 (*1 *2 *1) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-1127)))) (-3226 (*1 *2 *1) (-12 (-4 *1 (-1005 *3)) (-4 *3 (-1127)) (-5 *2 (-483)))) (-3734 (*1 *1 *2 *2) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-1127))))) -(-13 (-556 |t#1|) (-10 -8 (-15 -3735 ($ |t#1| |t#1|)) (-15 -3231 ($ $ (-483))) (-15 -3230 (|t#1| $)) (-15 -3229 (|t#1| $)) (-15 -3228 (|t#1| $)) (-15 -3227 (|t#1| $)) (-15 -3226 ((-483) $)) (-15 -3734 ($ |t#1| |t#1|)))) -(((-556 |#1|) . T)) -((-3734 (($ |#1| |#1|) 8 T ELT)) (-3956 ((|#2| (-1 |#1| |#1|) $) 17 T ELT)) (-3228 ((|#1| $) 11 T ELT)) (-3230 ((|#1| $) 13 T ELT)) (-3226 (((-483) $) 9 T ELT)) (-3227 ((|#1| $) 10 T ELT)) (-3229 ((|#1| $) 12 T ELT)) (-3961 ((|#2| (-582 $)) 19 T ELT) ((|#2| $) 18 T ELT)) (-3970 (($ |#1|) 6 T ELT)) (-3735 (($ |#1| |#1|) 15 T ELT)) (-3231 (($ $ (-483)) 14 T ELT))) -(((-1006 |#1| |#2|) (-113) (-754) (-1062 |t#1|)) (T -1006)) -((-3961 (*1 *2 *3) (-12 (-5 *3 (-582 *1)) (-4 *1 (-1006 *4 *2)) (-4 *4 (-754)) (-4 *2 (-1062 *4)))) (-3961 (*1 *2 *1) (-12 (-4 *1 (-1006 *3 *2)) (-4 *3 (-754)) (-4 *2 (-1062 *3)))) (-3956 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1006 *4 *2)) (-4 *4 (-754)) (-4 *2 (-1062 *4))))) -(-13 (-1005 |t#1|) (-10 -8 (-15 -3961 (|t#2| (-582 $))) (-15 -3961 (|t#2| $)) (-15 -3956 (|t#2| (-1 |t#1| |t#1|) $)))) -(((-556 |#1|) . T) ((-1005 |#1|) . T)) -((-2567 (((-85) $ $) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3796 (((-1047) $) 14 T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3944 (((-771) $) 20 T ELT) (($ (-1093)) NIL T ELT) (((-1093) $) NIL T ELT)) (-3232 (((-582 (-1047)) $) 12 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-1007) (-13 (-994) (-10 -8 (-15 -3232 ((-582 (-1047)) $)) (-15 -3796 ((-1047) $))))) (T -1007)) -((-3232 (*1 *2 *1) (-12 (-5 *2 (-582 (-1047))) (-5 *1 (-1007)))) (-3796 (*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-1007))))) -((-2567 (((-85) $ $) NIL T ELT)) (-1800 (($) NIL (|has| |#1| (-318)) ELT)) (-3233 (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ $ $) 84 T ELT)) (-3235 (($ $ $) 81 T ELT)) (-3234 (((-85) $ $) 83 T ELT)) (-3135 (((-693)) NIL (|has| |#1| (-318)) ELT)) (-3238 (($ (-582 |#1|)) NIL T ELT) (($) 14 T ELT)) (-1568 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3708 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3722 (($) NIL T CONST)) (-1351 (($ $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#1| (-1012))) ELT)) (-3403 (($ |#1| $) 75 (|has| $ (-6 -3993)) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3404 (($ |#1| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#1| (-1012))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3840 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 44 (-12 (|has| $ (-6 -3993)) (|has| |#1| (-1012))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 42 (|has| $ (-6 -3993)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 40 (|has| $ (-6 -3993)) ELT)) (-2993 (($) NIL (|has| |#1| (-318)) ELT)) (-2888 (((-582 |#1|) $) 20 (|has| $ (-6 -3993)) ELT)) (-3240 (((-85) $ $) NIL T ELT)) (-2530 ((|#1| $) 56 (|has| |#1| (-755)) ELT)) (-2607 (((-582 |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3244 (((-85) |#1| $) 74 (-12 (|has| $ (-6 -3993)) (|has| |#1| (-1012))) ELT)) (-2856 ((|#1| $) 54 (|has| |#1| (-755)) ELT)) (-1947 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3994)) ELT)) (-3956 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-2009 (((-829) $) NIL (|has| |#1| (-318)) ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3237 (($ $ $) 79 T ELT)) (-1272 ((|#1| $) 26 T ELT)) (-3607 (($ |#1| $) 70 T ELT)) (-2399 (($ (-829)) NIL (|has| |#1| (-318)) ELT)) (-3242 (((-1032) $) NIL T ELT)) (-1352 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 32 T ELT)) (-1273 ((|#1| $) 28 T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3766 (($ $ (-582 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-582 |#1|) (-582 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-3401 (((-85) $) 22 T ELT)) (-3563 (($) 12 T ELT)) (-3236 (($ $ |#1|) NIL T ELT) (($ $ $) 80 T ELT)) (-1464 (($) NIL T ELT) (($ (-582 |#1|)) NIL T ELT)) (-1944 (((-693) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3993)) ELT) (((-693) |#1| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#1| (-1012))) ELT)) (-3398 (($ $) 17 T ELT)) (-3970 (((-472) $) 51 (|has| |#1| (-552 (-472))) ELT)) (-3528 (($ (-582 |#1|)) 63 T ELT)) (-1801 (($ $) NIL (|has| |#1| (-318)) ELT)) (-3944 (((-771) $) NIL T ELT)) (-1802 (((-693) $) NIL T ELT)) (-3239 (($ (-582 |#1|)) NIL T ELT) (($) 13 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-1274 (($ (-582 |#1|)) NIL T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3055 (((-85) $ $) 53 T ELT)) (-3955 (((-693) $) 11 (|has| $ (-6 -3993)) ELT))) -(((-1008 |#1|) (-367 |#1|) (-1012)) (T -1008)) -NIL -((-3233 (($ $ $) NIL T ELT) (($ $ |#2|) 13 T ELT) (($ |#2| $) 14 T ELT)) (-3235 (($ $ $) 10 T ELT)) (-3236 (($ $ $) NIL T ELT) (($ $ |#2|) 15 T ELT))) -(((-1009 |#1| |#2|) (-10 -7 (-15 -3233 (|#1| |#2| |#1|)) (-15 -3233 (|#1| |#1| |#2|)) (-15 -3233 (|#1| |#1| |#1|)) (-15 -3235 (|#1| |#1| |#1|)) (-15 -3236 (|#1| |#1| |#2|)) (-15 -3236 (|#1| |#1| |#1|))) (-1010 |#2|) (-1012)) (T -1009)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-3233 (($ $ $) 22 T ELT) (($ $ |#1|) 21 T ELT) (($ |#1| $) 20 T ELT)) (-3235 (($ $ $) 24 T ELT)) (-3234 (((-85) $ $) 23 T ELT)) (-3238 (($) 29 T ELT) (($ (-582 |#1|)) 28 T ELT)) (-3708 (($ (-1 (-85) |#1|) $) 57 (|has| $ (-6 -3993)) ELT)) (-3722 (($) 37 T CONST)) (-1351 (($ $) 60 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3993))) ELT)) (-3404 (($ |#1| $) 59 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3993))) ELT) (($ (-1 (-85) |#1|) $) 56 (|has| $ (-6 -3993)) ELT)) (-3840 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 58 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3993))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 55 (|has| $ (-6 -3993)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 54 (|has| $ (-6 -3993)) ELT)) (-2888 (((-582 |#1|) $) 44 (|has| $ (-6 -3993)) ELT)) (-3240 (((-85) $ $) 32 T ELT)) (-2607 (((-582 |#1|) $) 45 (|has| $ (-6 -3993)) ELT)) (-3244 (((-85) |#1| $) 47 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3993))) ELT)) (-1947 (($ (-1 |#1| |#1|) $) 40 (|has| $ (-6 -3994)) ELT)) (-3956 (($ (-1 |#1| |#1|) $) 39 T ELT)) (-3241 (((-1071) $) 11 T ELT)) (-3237 (($ $ $) 27 T ELT)) (-3242 (((-1032) $) 12 T ELT)) (-1352 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 53 T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 42 (|has| $ (-6 -3993)) ELT)) (-3766 (($ $ (-582 |#1|) (-582 |#1|)) 51 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) 50 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-249 |#1|)) 49 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-582 (-249 |#1|))) 48 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT)) (-1220 (((-85) $ $) 33 T ELT)) (-3401 (((-85) $) 36 T ELT)) (-3563 (($) 35 T ELT)) (-3236 (($ $ $) 26 T ELT) (($ $ |#1|) 25 T ELT)) (-1944 (((-693) |#1| $) 46 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3993))) ELT) (((-693) (-1 (-85) |#1|) $) 43 (|has| $ (-6 -3993)) ELT)) (-3398 (($ $) 34 T ELT)) (-3970 (((-472) $) 61 (|has| |#1| (-552 (-472))) ELT)) (-3528 (($ (-582 |#1|)) 52 T ELT)) (-3944 (((-771) $) 13 T ELT)) (-3239 (($) 31 T ELT) (($ (-582 |#1|)) 30 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 41 (|has| $ (-6 -3993)) ELT)) (-3055 (((-85) $ $) 8 T ELT)) (-3955 (((-693) $) 38 (|has| $ (-6 -3993)) ELT))) -(((-1010 |#1|) (-113) (-1012)) (T -1010)) -((-3240 (*1 *2 *1 *1) (-12 (-4 *1 (-1010 *3)) (-4 *3 (-1012)) (-5 *2 (-85)))) (-3239 (*1 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1012)))) (-3239 (*1 *1 *2) (-12 (-5 *2 (-582 *3)) (-4 *3 (-1012)) (-4 *1 (-1010 *3)))) (-3238 (*1 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1012)))) (-3238 (*1 *1 *2) (-12 (-5 *2 (-582 *3)) (-4 *3 (-1012)) (-4 *1 (-1010 *3)))) (-3237 (*1 *1 *1 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1012)))) (-3236 (*1 *1 *1 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1012)))) (-3236 (*1 *1 *1 *2) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1012)))) (-3235 (*1 *1 *1 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1012)))) (-3234 (*1 *2 *1 *1) (-12 (-4 *1 (-1010 *3)) (-4 *3 (-1012)) (-5 *2 (-85)))) (-3233 (*1 *1 *1 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1012)))) (-3233 (*1 *1 *1 *2) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1012)))) (-3233 (*1 *1 *2 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1012))))) -(-13 (-1012) (-124 |t#1|) (-10 -8 (-6 -3983) (-15 -3240 ((-85) $ $)) (-15 -3239 ($)) (-15 -3239 ($ (-582 |t#1|))) (-15 -3238 ($)) (-15 -3238 ($ (-582 |t#1|))) (-15 -3237 ($ $ $)) (-15 -3236 ($ $ $)) (-15 -3236 ($ $ |t#1|)) (-15 -3235 ($ $ $)) (-15 -3234 ((-85) $ $)) (-15 -3233 ($ $ $)) (-15 -3233 ($ $ |t#1|)) (-15 -3233 ($ |t#1| $)))) -(((-34) . T) ((-72) . T) ((-551 (-771)) . T) ((-124 |#1|) . T) ((-552 (-472)) |has| |#1| (-552 (-472))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ((-427 |#1|) . T) ((-454 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ((-13) . T) ((-1012) . T) ((-1127) . T)) -((-3241 (((-1071) $) 10 T ELT)) (-3242 (((-1032) $) 8 T ELT))) -(((-1011 |#1|) (-10 -7 (-15 -3241 ((-1071) |#1|)) (-15 -3242 ((-1032) |#1|))) (-1012)) (T -1011)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-3241 (((-1071) $) 11 T ELT)) (-3242 (((-1032) $) 12 T ELT)) (-3944 (((-771) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-3055 (((-85) $ $) 8 T ELT))) -(((-1012) (-113)) (T -1012)) -((-3242 (*1 *2 *1) (-12 (-4 *1 (-1012)) (-5 *2 (-1032)))) (-3241 (*1 *2 *1) (-12 (-4 *1 (-1012)) (-5 *2 (-1071))))) -(-13 (-72) (-551 (-771)) (-10 -8 (-15 -3242 ((-1032) $)) (-15 -3241 ((-1071) $)))) -(((-72) . T) ((-551 (-771)) . T) ((-13) . T) ((-1127) . T)) -((-2567 (((-85) $ $) NIL T ELT)) (-3135 (((-693)) 36 T ELT)) (-3246 (($ (-582 (-829))) 70 T ELT)) (-3248 (((-3 $ #1="failed") $ (-829) (-829)) 81 T ELT)) (-2993 (($) 40 T ELT)) (-3244 (((-85) (-829) $) 42 T ELT)) (-2009 (((-829) $) 64 T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-2399 (($ (-829)) 39 T ELT)) (-3249 (((-3 $ #1#) $ (-829)) 77 T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3245 (((-1177 $)) 47 T ELT)) (-3247 (((-582 (-829)) $) 27 T ELT)) (-3243 (((-693) $ (-829) (-829)) 78 T ELT)) (-3944 (((-771) $) 32 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) 24 T ELT))) -(((-1013 |#1| |#2|) (-13 (-318) (-10 -8 (-15 -3249 ((-3 $ #1="failed") $ (-829))) (-15 -3248 ((-3 $ #1#) $ (-829) (-829))) (-15 -3247 ((-582 (-829)) $)) (-15 -3246 ($ (-582 (-829)))) (-15 -3245 ((-1177 $))) (-15 -3244 ((-85) (-829) $)) (-15 -3243 ((-693) $ (-829) (-829))))) (-829) (-829)) (T -1013)) -((-3249 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-829)) (-5 *1 (-1013 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3248 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-829)) (-5 *1 (-1013 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3247 (*1 *2 *1) (-12 (-5 *2 (-582 (-829))) (-5 *1 (-1013 *3 *4)) (-14 *3 (-829)) (-14 *4 (-829)))) (-3246 (*1 *1 *2) (-12 (-5 *2 (-582 (-829))) (-5 *1 (-1013 *3 *4)) (-14 *3 (-829)) (-14 *4 (-829)))) (-3245 (*1 *2) (-12 (-5 *2 (-1177 (-1013 *3 *4))) (-5 *1 (-1013 *3 *4)) (-14 *3 (-829)) (-14 *4 (-829)))) (-3244 (*1 *2 *3 *1) (-12 (-5 *3 (-829)) (-5 *2 (-85)) (-5 *1 (-1013 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-3243 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-829)) (-5 *2 (-693)) (-5 *1 (-1013 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) -((-2567 (((-85) $ $) NIL T ELT)) (-3259 (((-85) $) NIL T ELT)) (-3255 (((-1088) $) NIL T ELT)) (-3260 (((-85) $) NIL T ELT)) (-3533 (((-1071) $) NIL T ELT)) (-3262 (((-85) $) NIL T ELT)) (-3264 (((-85) $) NIL T ELT)) (-3261 (((-85) $) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3258 (((-85) $) NIL T ELT)) (-3254 (((-483) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3257 (((-85) $) NIL T ELT)) (-3253 (((-179) $) NIL T ELT)) (-3252 (((-771) $) NIL T ELT)) (-3265 (((-85) $ $) NIL T ELT)) (-3798 (($ $ (-483)) NIL T ELT) (($ $ (-582 (-483))) NIL T ELT)) (-3256 (((-582 $) $) NIL T ELT)) (-3970 (($ (-1071)) NIL T ELT) (($ (-1088)) NIL T ELT) (($ (-483)) NIL T ELT) (($ (-179)) NIL T ELT) (($ (-771)) NIL T ELT) (($ (-582 $)) NIL T ELT)) (-3944 (((-771) $) NIL T ELT)) (-3250 (($ $) NIL T ELT)) (-3251 (($ $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3263 (((-85) $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-3955 (((-483) $) NIL T ELT))) -(((-1014) (-1015 (-1071) (-1088) (-483) (-179) (-771))) (T -1014)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-3259 (((-85) $) 36 T ELT)) (-3255 ((|#2| $) 31 T ELT)) (-3260 (((-85) $) 37 T ELT)) (-3533 ((|#1| $) 32 T ELT)) (-3262 (((-85) $) 39 T ELT)) (-3264 (((-85) $) 41 T ELT)) (-3261 (((-85) $) 38 T ELT)) (-3241 (((-1071) $) 11 T ELT)) (-3258 (((-85) $) 35 T ELT)) (-3254 ((|#3| $) 30 T ELT)) (-3242 (((-1032) $) 12 T ELT)) (-3257 (((-85) $) 34 T ELT)) (-3253 ((|#4| $) 29 T ELT)) (-3252 ((|#5| $) 28 T ELT)) (-3265 (((-85) $ $) 42 T ELT)) (-3798 (($ $ (-483)) 44 T ELT) (($ $ (-582 (-483))) 43 T ELT)) (-3256 (((-582 $) $) 33 T ELT)) (-3970 (($ |#1|) 50 T ELT) (($ |#2|) 49 T ELT) (($ |#3|) 48 T ELT) (($ |#4|) 47 T ELT) (($ |#5|) 46 T ELT) (($ (-582 $)) 45 T ELT)) (-3944 (((-771) $) 13 T ELT)) (-3250 (($ $) 26 T ELT)) (-3251 (($ $) 27 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-3263 (((-85) $) 40 T ELT)) (-3055 (((-85) $ $) 8 T ELT)) (-3955 (((-483) $) 25 T ELT))) -(((-1015 |#1| |#2| |#3| |#4| |#5|) (-113) (-1012) (-1012) (-1012) (-1012) (-1012)) (T -1015)) -((-3265 (*1 *2 *1 *1) (-12 (-4 *1 (-1015 *3 *4 *5 *6 *7)) (-4 *3 (-1012)) (-4 *4 (-1012)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *7 (-1012)) (-5 *2 (-85)))) (-3264 (*1 *2 *1) (-12 (-4 *1 (-1015 *3 *4 *5 *6 *7)) (-4 *3 (-1012)) (-4 *4 (-1012)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *7 (-1012)) (-5 *2 (-85)))) (-3263 (*1 *2 *1) (-12 (-4 *1 (-1015 *3 *4 *5 *6 *7)) (-4 *3 (-1012)) (-4 *4 (-1012)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *7 (-1012)) (-5 *2 (-85)))) (-3262 (*1 *2 *1) (-12 (-4 *1 (-1015 *3 *4 *5 *6 *7)) (-4 *3 (-1012)) (-4 *4 (-1012)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *7 (-1012)) (-5 *2 (-85)))) (-3261 (*1 *2 *1) (-12 (-4 *1 (-1015 *3 *4 *5 *6 *7)) (-4 *3 (-1012)) (-4 *4 (-1012)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *7 (-1012)) (-5 *2 (-85)))) (-3260 (*1 *2 *1) (-12 (-4 *1 (-1015 *3 *4 *5 *6 *7)) (-4 *3 (-1012)) (-4 *4 (-1012)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *7 (-1012)) (-5 *2 (-85)))) (-3259 (*1 *2 *1) (-12 (-4 *1 (-1015 *3 *4 *5 *6 *7)) (-4 *3 (-1012)) (-4 *4 (-1012)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *7 (-1012)) (-5 *2 (-85)))) (-3258 (*1 *2 *1) (-12 (-4 *1 (-1015 *3 *4 *5 *6 *7)) (-4 *3 (-1012)) (-4 *4 (-1012)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *7 (-1012)) (-5 *2 (-85)))) (-3257 (*1 *2 *1) (-12 (-4 *1 (-1015 *3 *4 *5 *6 *7)) (-4 *3 (-1012)) (-4 *4 (-1012)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *7 (-1012)) (-5 *2 (-85)))) (-3256 (*1 *2 *1) (-12 (-4 *3 (-1012)) (-4 *4 (-1012)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *7 (-1012)) (-5 *2 (-582 *1)) (-4 *1 (-1015 *3 *4 *5 *6 *7)))) (-3533 (*1 *2 *1) (-12 (-4 *1 (-1015 *2 *3 *4 *5 *6)) (-4 *3 (-1012)) (-4 *4 (-1012)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *2 (-1012)))) (-3255 (*1 *2 *1) (-12 (-4 *1 (-1015 *3 *2 *4 *5 *6)) (-4 *3 (-1012)) (-4 *4 (-1012)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *2 (-1012)))) (-3254 (*1 *2 *1) (-12 (-4 *1 (-1015 *3 *4 *2 *5 *6)) (-4 *3 (-1012)) (-4 *4 (-1012)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *2 (-1012)))) (-3253 (*1 *2 *1) (-12 (-4 *1 (-1015 *3 *4 *5 *2 *6)) (-4 *3 (-1012)) (-4 *4 (-1012)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *2 (-1012)))) (-3252 (*1 *2 *1) (-12 (-4 *1 (-1015 *3 *4 *5 *6 *2)) (-4 *3 (-1012)) (-4 *4 (-1012)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *2 (-1012)))) (-3251 (*1 *1 *1) (-12 (-4 *1 (-1015 *2 *3 *4 *5 *6)) (-4 *2 (-1012)) (-4 *3 (-1012)) (-4 *4 (-1012)) (-4 *5 (-1012)) (-4 *6 (-1012)))) (-3250 (*1 *1 *1) (-12 (-4 *1 (-1015 *2 *3 *4 *5 *6)) (-4 *2 (-1012)) (-4 *3 (-1012)) (-4 *4 (-1012)) (-4 *5 (-1012)) (-4 *6 (-1012)))) (-3955 (*1 *2 *1) (-12 (-4 *1 (-1015 *3 *4 *5 *6 *7)) (-4 *3 (-1012)) (-4 *4 (-1012)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *7 (-1012)) (-5 *2 (-483))))) -(-13 (-1012) (-556 |t#1|) (-556 |t#2|) (-556 |t#3|) (-556 |t#4|) (-556 |t#4|) (-556 |t#5|) (-556 (-582 $)) (-241 (-483) $) (-241 (-582 (-483)) $) (-10 -8 (-15 -3265 ((-85) $ $)) (-15 -3264 ((-85) $)) (-15 -3263 ((-85) $)) (-15 -3262 ((-85) $)) (-15 -3261 ((-85) $)) (-15 -3260 ((-85) $)) (-15 -3259 ((-85) $)) (-15 -3258 ((-85) $)) (-15 -3257 ((-85) $)) (-15 -3256 ((-582 $) $)) (-15 -3533 (|t#1| $)) (-15 -3255 (|t#2| $)) (-15 -3254 (|t#3| $)) (-15 -3253 (|t#4| $)) (-15 -3252 (|t#5| $)) (-15 -3251 ($ $)) (-15 -3250 ($ $)) (-15 -3955 ((-483) $)))) -(((-72) . T) ((-551 (-771)) . T) ((-556 (-582 $)) . T) ((-556 |#1|) . T) ((-556 |#2|) . T) ((-556 |#3|) . T) ((-556 |#4|) . T) ((-556 |#5|) . T) ((-241 (-483) $) . T) ((-241 (-582 (-483)) $) . T) ((-13) . T) ((-1012) . T) ((-1127) . T)) -((-2567 (((-85) $ $) NIL T ELT)) (-3259 (((-85) $) 45 T ELT)) (-3255 ((|#2| $) 48 T ELT)) (-3260 (((-85) $) 20 T ELT)) (-3533 ((|#1| $) 21 T ELT)) (-3262 (((-85) $) 42 T ELT)) (-3264 (((-85) $) 14 T ELT)) (-3261 (((-85) $) 44 T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3258 (((-85) $) 46 T ELT)) (-3254 ((|#3| $) 50 T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3257 (((-85) $) 47 T ELT)) (-3253 ((|#4| $) 49 T ELT)) (-3252 ((|#5| $) 51 T ELT)) (-3265 (((-85) $ $) 41 T ELT)) (-3798 (($ $ (-483)) 62 T ELT) (($ $ (-582 (-483))) 64 T ELT)) (-3256 (((-582 $) $) 27 T ELT)) (-3970 (($ |#1|) 53 T ELT) (($ |#2|) 54 T ELT) (($ |#3|) 55 T ELT) (($ |#4|) 56 T ELT) (($ |#5|) 57 T ELT) (($ (-582 $)) 52 T ELT)) (-3944 (((-771) $) 28 T ELT)) (-3250 (($ $) 26 T ELT)) (-3251 (($ $) 58 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3263 (((-85) $) 23 T ELT)) (-3055 (((-85) $ $) 40 T ELT)) (-3955 (((-483) $) 60 T ELT))) -(((-1016 |#1| |#2| |#3| |#4| |#5|) (-1015 |#1| |#2| |#3| |#4| |#5|) (-1012) (-1012) (-1012) (-1012) (-1012)) (T -1016)) -NIL -((-3268 (((-85) |#5| |#5|) 44 T ELT)) (-3271 (((-85) |#5| |#5|) 59 T ELT)) (-3276 (((-85) |#5| (-582 |#5|)) 82 T ELT) (((-85) |#5| |#5|) 68 T ELT)) (-3272 (((-85) (-582 |#4|) (-582 |#4|)) 65 T ELT)) (-3278 (((-85) (-2 (|:| |val| (-582 |#4|)) (|:| -1598 |#5|)) (-2 (|:| |val| (-582 |#4|)) (|:| -1598 |#5|))) 70 T ELT)) (-3267 (((-1183)) 32 T ELT)) (-3266 (((-1183) (-1071) (-1071) (-1071)) 28 T ELT)) (-3277 (((-582 |#5|) (-582 |#5|)) 101 T ELT)) (-3279 (((-582 (-2 (|:| |val| (-582 |#4|)) (|:| -1598 |#5|))) (-582 (-2 (|:| |val| (-582 |#4|)) (|:| -1598 |#5|)))) 93 T ELT)) (-3280 (((-582 (-2 (|:| -3265 (-582 |#4|)) (|:| -1598 |#5|) (|:| |ineq| (-582 |#4|)))) (-582 |#4|) (-582 |#5|) (-85) (-85)) 123 T ELT)) (-3270 (((-85) |#5| |#5|) 53 T ELT)) (-3275 (((-3 (-85) #1="failed") |#5| |#5|) 78 T ELT)) (-3273 (((-85) (-582 |#4|) (-582 |#4|)) 64 T ELT)) (-3274 (((-85) (-582 |#4|) (-582 |#4|)) 66 T ELT)) (-3697 (((-85) (-582 |#4|) (-582 |#4|)) 67 T ELT)) (-3281 (((-3 (-2 (|:| -3265 (-582 |#4|)) (|:| -1598 |#5|) (|:| |ineq| (-582 |#4|))) #1#) (-582 |#4|) |#5| (-582 |#4|) (-85) (-85) (-85) (-85) (-85)) 118 T ELT)) (-3269 (((-582 |#5|) (-582 |#5|)) 49 T ELT))) -(((-1017 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3266 ((-1183) (-1071) (-1071) (-1071))) (-15 -3267 ((-1183))) (-15 -3268 ((-85) |#5| |#5|)) (-15 -3269 ((-582 |#5|) (-582 |#5|))) (-15 -3270 ((-85) |#5| |#5|)) (-15 -3271 ((-85) |#5| |#5|)) (-15 -3272 ((-85) (-582 |#4|) (-582 |#4|))) (-15 -3273 ((-85) (-582 |#4|) (-582 |#4|))) (-15 -3274 ((-85) (-582 |#4|) (-582 |#4|))) (-15 -3697 ((-85) (-582 |#4|) (-582 |#4|))) (-15 -3275 ((-3 (-85) #1="failed") |#5| |#5|)) (-15 -3276 ((-85) |#5| |#5|)) (-15 -3276 ((-85) |#5| (-582 |#5|))) (-15 -3277 ((-582 |#5|) (-582 |#5|))) (-15 -3278 ((-85) (-2 (|:| |val| (-582 |#4|)) (|:| -1598 |#5|)) (-2 (|:| |val| (-582 |#4|)) (|:| -1598 |#5|)))) (-15 -3279 ((-582 (-2 (|:| |val| (-582 |#4|)) (|:| -1598 |#5|))) (-582 (-2 (|:| |val| (-582 |#4|)) (|:| -1598 |#5|))))) (-15 -3280 ((-582 (-2 (|:| -3265 (-582 |#4|)) (|:| -1598 |#5|) (|:| |ineq| (-582 |#4|)))) (-582 |#4|) (-582 |#5|) (-85) (-85))) (-15 -3281 ((-3 (-2 (|:| -3265 (-582 |#4|)) (|:| -1598 |#5|) (|:| |ineq| (-582 |#4|))) #1#) (-582 |#4|) |#5| (-582 |#4|) (-85) (-85) (-85) (-85) (-85)))) (-390) (-716) (-755) (-976 |#1| |#2| |#3|) (-982 |#1| |#2| |#3| |#4|)) (T -1017)) -((-3281 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-85)) (-4 *6 (-390)) (-4 *7 (-716)) (-4 *8 (-755)) (-4 *9 (-976 *6 *7 *8)) (-5 *2 (-2 (|:| -3265 (-582 *9)) (|:| -1598 *4) (|:| |ineq| (-582 *9)))) (-5 *1 (-1017 *6 *7 *8 *9 *4)) (-5 *3 (-582 *9)) (-4 *4 (-982 *6 *7 *8 *9)))) (-3280 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-582 *10)) (-5 *5 (-85)) (-4 *10 (-982 *6 *7 *8 *9)) (-4 *6 (-390)) (-4 *7 (-716)) (-4 *8 (-755)) (-4 *9 (-976 *6 *7 *8)) (-5 *2 (-582 (-2 (|:| -3265 (-582 *9)) (|:| -1598 *10) (|:| |ineq| (-582 *9))))) (-5 *1 (-1017 *6 *7 *8 *9 *10)) (-5 *3 (-582 *9)))) (-3279 (*1 *2 *2) (-12 (-5 *2 (-582 (-2 (|:| |val| (-582 *6)) (|:| -1598 *7)))) (-4 *6 (-976 *3 *4 *5)) (-4 *7 (-982 *3 *4 *5 *6)) (-4 *3 (-390)) (-4 *4 (-716)) (-4 *5 (-755)) (-5 *1 (-1017 *3 *4 *5 *6 *7)))) (-3278 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-582 *7)) (|:| -1598 *8))) (-4 *7 (-976 *4 *5 *6)) (-4 *8 (-982 *4 *5 *6 *7)) (-4 *4 (-390)) (-4 *5 (-716)) (-4 *6 (-755)) (-5 *2 (-85)) (-5 *1 (-1017 *4 *5 *6 *7 *8)))) (-3277 (*1 *2 *2) (-12 (-5 *2 (-582 *7)) (-4 *7 (-982 *3 *4 *5 *6)) (-4 *3 (-390)) (-4 *4 (-716)) (-4 *5 (-755)) (-4 *6 (-976 *3 *4 *5)) (-5 *1 (-1017 *3 *4 *5 *6 *7)))) (-3276 (*1 *2 *3 *4) (-12 (-5 *4 (-582 *3)) (-4 *3 (-982 *5 *6 *7 *8)) (-4 *5 (-390)) (-4 *6 (-716)) (-4 *7 (-755)) (-4 *8 (-976 *5 *6 *7)) (-5 *2 (-85)) (-5 *1 (-1017 *5 *6 *7 *8 *3)))) (-3276 (*1 *2 *3 *3) (-12 (-4 *4 (-390)) (-4 *5 (-716)) (-4 *6 (-755)) (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-1017 *4 *5 *6 *7 *3)) (-4 *3 (-982 *4 *5 *6 *7)))) (-3275 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-390)) (-4 *5 (-716)) (-4 *6 (-755)) (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-1017 *4 *5 *6 *7 *3)) (-4 *3 (-982 *4 *5 *6 *7)))) (-3697 (*1 *2 *3 *3) (-12 (-5 *3 (-582 *7)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-390)) (-4 *5 (-716)) (-4 *6 (-755)) (-5 *2 (-85)) (-5 *1 (-1017 *4 *5 *6 *7 *8)) (-4 *8 (-982 *4 *5 *6 *7)))) (-3274 (*1 *2 *3 *3) (-12 (-5 *3 (-582 *7)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-390)) (-4 *5 (-716)) (-4 *6 (-755)) (-5 *2 (-85)) (-5 *1 (-1017 *4 *5 *6 *7 *8)) (-4 *8 (-982 *4 *5 *6 *7)))) (-3273 (*1 *2 *3 *3) (-12 (-5 *3 (-582 *7)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-390)) (-4 *5 (-716)) (-4 *6 (-755)) (-5 *2 (-85)) (-5 *1 (-1017 *4 *5 *6 *7 *8)) (-4 *8 (-982 *4 *5 *6 *7)))) (-3272 (*1 *2 *3 *3) (-12 (-5 *3 (-582 *7)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-390)) (-4 *5 (-716)) (-4 *6 (-755)) (-5 *2 (-85)) (-5 *1 (-1017 *4 *5 *6 *7 *8)) (-4 *8 (-982 *4 *5 *6 *7)))) (-3271 (*1 *2 *3 *3) (-12 (-4 *4 (-390)) (-4 *5 (-716)) (-4 *6 (-755)) (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-1017 *4 *5 *6 *7 *3)) (-4 *3 (-982 *4 *5 *6 *7)))) (-3270 (*1 *2 *3 *3) (-12 (-4 *4 (-390)) (-4 *5 (-716)) (-4 *6 (-755)) (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-1017 *4 *5 *6 *7 *3)) (-4 *3 (-982 *4 *5 *6 *7)))) (-3269 (*1 *2 *2) (-12 (-5 *2 (-582 *7)) (-4 *7 (-982 *3 *4 *5 *6)) (-4 *3 (-390)) (-4 *4 (-716)) (-4 *5 (-755)) (-4 *6 (-976 *3 *4 *5)) (-5 *1 (-1017 *3 *4 *5 *6 *7)))) (-3268 (*1 *2 *3 *3) (-12 (-4 *4 (-390)) (-4 *5 (-716)) (-4 *6 (-755)) (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-1017 *4 *5 *6 *7 *3)) (-4 *3 (-982 *4 *5 *6 *7)))) (-3267 (*1 *2) (-12 (-4 *3 (-390)) (-4 *4 (-716)) (-4 *5 (-755)) (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-1183)) (-5 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *7 (-982 *3 *4 *5 *6)))) (-3266 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1071)) (-4 *4 (-390)) (-4 *5 (-716)) (-4 *6 (-755)) (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-1183)) (-5 *1 (-1017 *4 *5 *6 *7 *8)) (-4 *8 (-982 *4 *5 *6 *7))))) -((-3296 (((-582 (-2 (|:| |val| |#4|) (|:| -1598 |#5|))) |#4| |#5|) 106 T ELT)) (-3286 (((-582 (-2 (|:| |val| (-582 |#4|)) (|:| -1598 |#5|))) |#4| |#4| |#5|) 79 T ELT)) (-3289 (((-582 (-2 (|:| |val| |#4|) (|:| -1598 |#5|))) |#4| |#4| |#5|) 100 T ELT)) (-3291 (((-582 |#5|) |#4| |#5|) 122 T ELT)) (-3293 (((-582 |#5|) |#4| |#5|) 129 T ELT)) (-3295 (((-582 |#5|) |#4| |#5|) 130 T ELT)) (-3290 (((-582 (-2 (|:| |val| (-85)) (|:| -1598 |#5|))) |#4| |#5|) 107 T ELT)) (-3292 (((-582 (-2 (|:| |val| (-85)) (|:| -1598 |#5|))) |#4| |#5|) 128 T ELT)) (-3294 (((-582 (-2 (|:| |val| (-85)) (|:| -1598 |#5|))) |#4| |#5|) 47 T ELT) (((-85) |#4| |#5|) 55 T ELT)) (-3287 (((-582 (-2 (|:| |val| |#4|) (|:| -1598 |#5|))) (-582 (-2 (|:| |val| (-582 |#4|)) (|:| -1598 |#5|))) |#3| (-85)) 91 T ELT) (((-582 (-2 (|:| |val| |#4|) (|:| -1598 |#5|))) |#4| |#4| |#5| (-85) (-85)) 52 T ELT)) (-3288 (((-582 (-2 (|:| |val| |#4|) (|:| -1598 |#5|))) |#4| |#4| |#5|) 86 T ELT)) (-3285 (((-1183)) 36 T ELT)) (-3283 (((-1183)) 25 T ELT)) (-3284 (((-1183) (-1071) (-1071) (-1071)) 32 T ELT)) (-3282 (((-1183) (-1071) (-1071) (-1071)) 21 T ELT))) -(((-1018 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3282 ((-1183) (-1071) (-1071) (-1071))) (-15 -3283 ((-1183))) (-15 -3284 ((-1183) (-1071) (-1071) (-1071))) (-15 -3285 ((-1183))) (-15 -3286 ((-582 (-2 (|:| |val| (-582 |#4|)) (|:| -1598 |#5|))) |#4| |#4| |#5|)) (-15 -3287 ((-582 (-2 (|:| |val| |#4|) (|:| -1598 |#5|))) |#4| |#4| |#5| (-85) (-85))) (-15 -3287 ((-582 (-2 (|:| |val| |#4|) (|:| -1598 |#5|))) (-582 (-2 (|:| |val| (-582 |#4|)) (|:| -1598 |#5|))) |#3| (-85))) (-15 -3288 ((-582 (-2 (|:| |val| |#4|) (|:| -1598 |#5|))) |#4| |#4| |#5|)) (-15 -3289 ((-582 (-2 (|:| |val| |#4|) (|:| -1598 |#5|))) |#4| |#4| |#5|)) (-15 -3294 ((-85) |#4| |#5|)) (-15 -3290 ((-582 (-2 (|:| |val| (-85)) (|:| -1598 |#5|))) |#4| |#5|)) (-15 -3291 ((-582 |#5|) |#4| |#5|)) (-15 -3292 ((-582 (-2 (|:| |val| (-85)) (|:| -1598 |#5|))) |#4| |#5|)) (-15 -3293 ((-582 |#5|) |#4| |#5|)) (-15 -3294 ((-582 (-2 (|:| |val| (-85)) (|:| -1598 |#5|))) |#4| |#5|)) (-15 -3295 ((-582 |#5|) |#4| |#5|)) (-15 -3296 ((-582 (-2 (|:| |val| |#4|) (|:| -1598 |#5|))) |#4| |#5|))) (-390) (-716) (-755) (-976 |#1| |#2| |#3|) (-982 |#1| |#2| |#3| |#4|)) (T -1018)) -((-3296 (*1 *2 *3 *4) (-12 (-4 *5 (-390)) (-4 *6 (-716)) (-4 *7 (-755)) (-4 *3 (-976 *5 *6 *7)) (-5 *2 (-582 (-2 (|:| |val| *3) (|:| -1598 *4)))) (-5 *1 (-1018 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))) (-3295 (*1 *2 *3 *4) (-12 (-4 *5 (-390)) (-4 *6 (-716)) (-4 *7 (-755)) (-4 *3 (-976 *5 *6 *7)) (-5 *2 (-582 *4)) (-5 *1 (-1018 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))) (-3294 (*1 *2 *3 *4) (-12 (-4 *5 (-390)) (-4 *6 (-716)) (-4 *7 (-755)) (-4 *3 (-976 *5 *6 *7)) (-5 *2 (-582 (-2 (|:| |val| (-85)) (|:| -1598 *4)))) (-5 *1 (-1018 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))) (-3293 (*1 *2 *3 *4) (-12 (-4 *5 (-390)) (-4 *6 (-716)) (-4 *7 (-755)) (-4 *3 (-976 *5 *6 *7)) (-5 *2 (-582 *4)) (-5 *1 (-1018 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))) (-3292 (*1 *2 *3 *4) (-12 (-4 *5 (-390)) (-4 *6 (-716)) (-4 *7 (-755)) (-4 *3 (-976 *5 *6 *7)) (-5 *2 (-582 (-2 (|:| |val| (-85)) (|:| -1598 *4)))) (-5 *1 (-1018 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))) (-3291 (*1 *2 *3 *4) (-12 (-4 *5 (-390)) (-4 *6 (-716)) (-4 *7 (-755)) (-4 *3 (-976 *5 *6 *7)) (-5 *2 (-582 *4)) (-5 *1 (-1018 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))) (-3290 (*1 *2 *3 *4) (-12 (-4 *5 (-390)) (-4 *6 (-716)) (-4 *7 (-755)) (-4 *3 (-976 *5 *6 *7)) (-5 *2 (-582 (-2 (|:| |val| (-85)) (|:| -1598 *4)))) (-5 *1 (-1018 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))) (-3294 (*1 *2 *3 *4) (-12 (-4 *5 (-390)) (-4 *6 (-716)) (-4 *7 (-755)) (-4 *3 (-976 *5 *6 *7)) (-5 *2 (-85)) (-5 *1 (-1018 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))) (-3289 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-390)) (-4 *6 (-716)) (-4 *7 (-755)) (-4 *3 (-976 *5 *6 *7)) (-5 *2 (-582 (-2 (|:| |val| *3) (|:| -1598 *4)))) (-5 *1 (-1018 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))) (-3288 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-390)) (-4 *6 (-716)) (-4 *7 (-755)) (-4 *3 (-976 *5 *6 *7)) (-5 *2 (-582 (-2 (|:| |val| *3) (|:| -1598 *4)))) (-5 *1 (-1018 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))) (-3287 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-582 (-2 (|:| |val| (-582 *8)) (|:| -1598 *9)))) (-5 *5 (-85)) (-4 *8 (-976 *6 *7 *4)) (-4 *9 (-982 *6 *7 *4 *8)) (-4 *6 (-390)) (-4 *7 (-716)) (-4 *4 (-755)) (-5 *2 (-582 (-2 (|:| |val| *8) (|:| -1598 *9)))) (-5 *1 (-1018 *6 *7 *4 *8 *9)))) (-3287 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-85)) (-4 *6 (-390)) (-4 *7 (-716)) (-4 *8 (-755)) (-4 *3 (-976 *6 *7 *8)) (-5 *2 (-582 (-2 (|:| |val| *3) (|:| -1598 *4)))) (-5 *1 (-1018 *6 *7 *8 *3 *4)) (-4 *4 (-982 *6 *7 *8 *3)))) (-3286 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-390)) (-4 *6 (-716)) (-4 *7 (-755)) (-4 *3 (-976 *5 *6 *7)) (-5 *2 (-582 (-2 (|:| |val| (-582 *3)) (|:| -1598 *4)))) (-5 *1 (-1018 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))) (-3285 (*1 *2) (-12 (-4 *3 (-390)) (-4 *4 (-716)) (-4 *5 (-755)) (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-1183)) (-5 *1 (-1018 *3 *4 *5 *6 *7)) (-4 *7 (-982 *3 *4 *5 *6)))) (-3284 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1071)) (-4 *4 (-390)) (-4 *5 (-716)) (-4 *6 (-755)) (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-1183)) (-5 *1 (-1018 *4 *5 *6 *7 *8)) (-4 *8 (-982 *4 *5 *6 *7)))) (-3283 (*1 *2) (-12 (-4 *3 (-390)) (-4 *4 (-716)) (-4 *5 (-755)) (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-1183)) (-5 *1 (-1018 *3 *4 *5 *6 *7)) (-4 *7 (-982 *3 *4 *5 *6)))) (-3282 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1071)) (-4 *4 (-390)) (-4 *5 (-716)) (-4 *6 (-755)) (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-1183)) (-5 *1 (-1018 *4 *5 *6 *7 *8)) (-4 *8 (-982 *4 *5 *6 *7))))) -((-2567 (((-85) $ $) 7 T ELT)) (-3679 (((-582 (-2 (|:| -3859 $) (|:| -1700 (-582 |#4|)))) (-582 |#4|)) 90 T ELT)) (-3680 (((-582 $) (-582 |#4|)) 91 T ELT) (((-582 $) (-582 |#4|) (-85)) 118 T ELT)) (-3080 (((-582 |#3|) $) 37 T ELT)) (-2907 (((-85) $) 30 T ELT)) (-2898 (((-85) $) 21 (|has| |#1| (-494)) ELT)) (-3691 (((-85) |#4| $) 106 T ELT) (((-85) $) 102 T ELT)) (-3686 ((|#4| |#4| $) 97 T ELT)) (-3773 (((-582 (-2 (|:| |val| |#4|) (|:| -1598 $))) |#4| $) 133 T ELT)) (-2908 (((-2 (|:| |under| $) (|:| -3129 $) (|:| |upper| $)) $ |#3|) 31 T ELT)) (-3708 (($ (-1 (-85) |#4|) $) 66 (|has| $ (-6 -3993)) ELT) (((-3 |#4| #1="failed") $ |#3|) 84 T ELT)) (-3722 (($) 46 T CONST)) (-2903 (((-85) $) 26 (|has| |#1| (-494)) ELT)) (-2905 (((-85) $ $) 28 (|has| |#1| (-494)) ELT)) (-2904 (((-85) $ $) 27 (|has| |#1| (-494)) ELT)) (-2906 (((-85) $) 29 (|has| |#1| (-494)) ELT)) (-3687 (((-582 |#4|) (-582 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 98 T ELT)) (-2899 (((-582 |#4|) (-582 |#4|) $) 22 (|has| |#1| (-494)) ELT)) (-2900 (((-582 |#4|) (-582 |#4|) $) 23 (|has| |#1| (-494)) ELT)) (-3156 (((-3 $ "failed") (-582 |#4|)) 40 T ELT)) (-3155 (($ (-582 |#4|)) 39 T ELT)) (-3797 (((-3 $ #1#) $) 87 T ELT)) (-3683 ((|#4| |#4| $) 94 T ELT)) (-1351 (($ $) 69 (-12 (|has| |#4| (-1012)) (|has| $ (-6 -3993))) ELT)) (-3404 (($ |#4| $) 68 (-12 (|has| |#4| (-1012)) (|has| $ (-6 -3993))) ELT) (($ (-1 (-85) |#4|) $) 65 (|has| $ (-6 -3993)) ELT)) (-2901 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 24 (|has| |#1| (-494)) ELT)) (-3692 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) 107 T ELT)) (-3681 ((|#4| |#4| $) 92 T ELT)) (-3840 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1012)) (|has| $ (-6 -3993))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -3993)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -3993)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 99 T ELT)) (-3694 (((-2 (|:| -3859 (-582 |#4|)) (|:| -1700 (-582 |#4|))) $) 110 T ELT)) (-3196 (((-85) |#4| $) 143 T ELT)) (-3194 (((-85) |#4| $) 140 T ELT)) (-3197 (((-85) |#4| $) 144 T ELT) (((-85) $) 141 T ELT)) (-2888 (((-582 |#4|) $) 53 (|has| $ (-6 -3993)) ELT)) (-3693 (((-85) |#4| $) 109 T ELT) (((-85) $) 108 T ELT)) (-3179 ((|#3| $) 38 T ELT)) (-2607 (((-582 |#4|) $) 54 (|has| $ (-6 -3993)) ELT)) (-3244 (((-85) |#4| $) 56 (-12 (|has| |#4| (-1012)) (|has| $ (-6 -3993))) ELT)) (-1947 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -3994)) ELT)) (-3956 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-2913 (((-582 |#3|) $) 36 T ELT)) (-2912 (((-85) |#3| $) 35 T ELT)) (-3241 (((-1071) $) 11 T ELT)) (-3190 (((-3 |#4| (-582 $)) |#4| |#4| $) 135 T ELT)) (-3189 (((-582 (-2 (|:| |val| |#4|) (|:| -1598 $))) |#4| |#4| $) 134 T ELT)) (-3796 (((-3 |#4| #1#) $) 88 T ELT)) (-3191 (((-582 $) |#4| $) 136 T ELT)) (-3193 (((-3 (-85) (-582 $)) |#4| $) 139 T ELT)) (-3192 (((-582 (-2 (|:| |val| (-85)) (|:| -1598 $))) |#4| $) 138 T ELT) (((-85) |#4| $) 137 T ELT)) (-3237 (((-582 $) |#4| $) 132 T ELT) (((-582 $) (-582 |#4|) $) 131 T ELT) (((-582 $) (-582 |#4|) (-582 $)) 130 T ELT) (((-582 $) |#4| (-582 $)) 129 T ELT)) (-3438 (($ |#4| $) 124 T ELT) (($ (-582 |#4|) $) 123 T ELT)) (-3695 (((-582 |#4|) $) 112 T ELT)) (-3689 (((-85) |#4| $) 104 T ELT) (((-85) $) 100 T ELT)) (-3684 ((|#4| |#4| $) 95 T ELT)) (-3697 (((-85) $ $) 115 T ELT)) (-2902 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-494)) ELT)) (-3690 (((-85) |#4| $) 105 T ELT) (((-85) $) 101 T ELT)) (-3685 ((|#4| |#4| $) 96 T ELT)) (-3242 (((-1032) $) 12 T ELT)) (-3799 (((-3 |#4| #1#) $) 89 T ELT)) (-1352 (((-3 |#4| "failed") (-1 (-85) |#4|) $) 62 T ELT)) (-3677 (((-3 $ #1#) $ |#4|) 83 T ELT)) (-3767 (($ $ |#4|) 82 T ELT) (((-582 $) |#4| $) 122 T ELT) (((-582 $) |#4| (-582 $)) 121 T ELT) (((-582 $) (-582 |#4|) $) 120 T ELT) (((-582 $) (-582 |#4|) (-582 $)) 119 T ELT)) (-1945 (((-85) (-1 (-85) |#4|) $) 51 (|has| $ (-6 -3993)) ELT)) (-3766 (($ $ (-582 |#4|) (-582 |#4|)) 60 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1012))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1012))) ELT) (($ $ (-249 |#4|)) 58 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1012))) ELT) (($ $ (-582 (-249 |#4|))) 57 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1012))) ELT)) (-1220 (((-85) $ $) 42 T ELT)) (-3401 (((-85) $) 45 T ELT)) (-3563 (($) 44 T ELT)) (-3946 (((-693) $) 111 T ELT)) (-1944 (((-693) |#4| $) 55 (-12 (|has| |#4| (-1012)) (|has| $ (-6 -3993))) ELT) (((-693) (-1 (-85) |#4|) $) 52 (|has| $ (-6 -3993)) ELT)) (-3398 (($ $) 43 T ELT)) (-3970 (((-472) $) 70 (|has| |#4| (-552 (-472))) ELT)) (-3528 (($ (-582 |#4|)) 61 T ELT)) (-2909 (($ $ |#3|) 32 T ELT)) (-2911 (($ $ |#3|) 34 T ELT)) (-3682 (($ $) 93 T ELT)) (-2910 (($ $ |#3|) 33 T ELT)) (-3944 (((-771) $) 13 T ELT) (((-582 |#4|) $) 41 T ELT)) (-3676 (((-693) $) 81 (|has| |#3| (-318)) ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-3696 (((-3 (-2 (|:| |bas| $) (|:| -3322 (-582 |#4|))) #1#) (-582 |#4|) (-1 (-85) |#4| |#4|)) 114 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3322 (-582 |#4|))) #1#) (-582 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) 113 T ELT)) (-3688 (((-85) $ (-1 (-85) |#4| (-582 |#4|))) 103 T ELT)) (-3188 (((-582 $) |#4| $) 128 T ELT) (((-582 $) |#4| (-582 $)) 127 T ELT) (((-582 $) (-582 |#4|) $) 126 T ELT) (((-582 $) (-582 |#4|) (-582 $)) 125 T ELT)) (-1946 (((-85) (-1 (-85) |#4|) $) 50 (|has| $ (-6 -3993)) ELT)) (-3678 (((-582 |#3|) $) 86 T ELT)) (-3195 (((-85) |#4| $) 142 T ELT)) (-3931 (((-85) |#3| $) 85 T ELT)) (-3055 (((-85) $ $) 8 T ELT)) (-3955 (((-693) $) 47 (|has| $ (-6 -3993)) ELT))) -(((-1019 |#1| |#2| |#3| |#4|) (-113) (-390) (-716) (-755) (-976 |t#1| |t#2| |t#3|)) (T -1019)) -NIL -(-13 (-982 |t#1| |t#2| |t#3| |t#4|)) -(((-34) . T) ((-72) . T) ((-551 (-582 |#4|)) . T) ((-551 (-771)) . T) ((-124 |#4|) . T) ((-552 (-472)) |has| |#4| (-552 (-472))) ((-260 |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1012))) ((-427 |#4|) . T) ((-454 |#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1012))) ((-13) . T) ((-888 |#1| |#2| |#3| |#4|) . T) ((-982 |#1| |#2| |#3| |#4|) . T) ((-1012) . T) ((-1122 |#1| |#2| |#3| |#4|) . T) ((-1127) . T)) -((-3307 (((-582 (-483)) (-483) (-483) (-483)) 40 T ELT)) (-3306 (((-582 (-483)) (-483) (-483) (-483)) 30 T ELT)) (-3305 (((-582 (-483)) (-483) (-483) (-483)) 35 T ELT)) (-3304 (((-483) (-483) (-483)) 22 T ELT)) (-3303 (((-1177 (-483)) (-582 (-483)) (-1177 (-483)) (-483)) 78 T ELT) (((-1177 (-483)) (-1177 (-483)) (-1177 (-483)) (-483)) 73 T ELT)) (-3302 (((-582 (-483)) (-582 (-829)) (-582 (-483)) (-85)) 56 T ELT)) (-3301 (((-629 (-483)) (-582 (-483)) (-582 (-483)) (-629 (-483))) 77 T ELT)) (-3300 (((-629 (-483)) (-582 (-829)) (-582 (-483))) 61 T ELT)) (-3299 (((-582 (-629 (-483))) (-582 (-829))) 66 T ELT)) (-3298 (((-582 (-483)) (-582 (-483)) (-582 (-483)) (-629 (-483))) 81 T ELT)) (-3297 (((-629 (-483)) (-582 (-483)) (-582 (-483)) (-582 (-483))) 91 T ELT))) -(((-1020) (-10 -7 (-15 -3297 ((-629 (-483)) (-582 (-483)) (-582 (-483)) (-582 (-483)))) (-15 -3298 ((-582 (-483)) (-582 (-483)) (-582 (-483)) (-629 (-483)))) (-15 -3299 ((-582 (-629 (-483))) (-582 (-829)))) (-15 -3300 ((-629 (-483)) (-582 (-829)) (-582 (-483)))) (-15 -3301 ((-629 (-483)) (-582 (-483)) (-582 (-483)) (-629 (-483)))) (-15 -3302 ((-582 (-483)) (-582 (-829)) (-582 (-483)) (-85))) (-15 -3303 ((-1177 (-483)) (-1177 (-483)) (-1177 (-483)) (-483))) (-15 -3303 ((-1177 (-483)) (-582 (-483)) (-1177 (-483)) (-483))) (-15 -3304 ((-483) (-483) (-483))) (-15 -3305 ((-582 (-483)) (-483) (-483) (-483))) (-15 -3306 ((-582 (-483)) (-483) (-483) (-483))) (-15 -3307 ((-582 (-483)) (-483) (-483) (-483))))) (T -1020)) -((-3307 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-582 (-483))) (-5 *1 (-1020)) (-5 *3 (-483)))) (-3306 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-582 (-483))) (-5 *1 (-1020)) (-5 *3 (-483)))) (-3305 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-582 (-483))) (-5 *1 (-1020)) (-5 *3 (-483)))) (-3304 (*1 *2 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-1020)))) (-3303 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1177 (-483))) (-5 *3 (-582 (-483))) (-5 *4 (-483)) (-5 *1 (-1020)))) (-3303 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1177 (-483))) (-5 *3 (-483)) (-5 *1 (-1020)))) (-3302 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-582 (-483))) (-5 *3 (-582 (-829))) (-5 *4 (-85)) (-5 *1 (-1020)))) (-3301 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-629 (-483))) (-5 *3 (-582 (-483))) (-5 *1 (-1020)))) (-3300 (*1 *2 *3 *4) (-12 (-5 *3 (-582 (-829))) (-5 *4 (-582 (-483))) (-5 *2 (-629 (-483))) (-5 *1 (-1020)))) (-3299 (*1 *2 *3) (-12 (-5 *3 (-582 (-829))) (-5 *2 (-582 (-629 (-483)))) (-5 *1 (-1020)))) (-3298 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-582 (-483))) (-5 *3 (-629 (-483))) (-5 *1 (-1020)))) (-3297 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-582 (-483))) (-5 *2 (-629 (-483))) (-5 *1 (-1020))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3308 (($ (-1 |#1| |#1| |#1|)) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3798 ((|#1| $ |#1| |#1|) NIL T ELT)) (-3944 (((-771) $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-1021 |#1|) (-13 (-1022 |#1|) (-1012) (-10 -8 (-15 -3308 ($ (-1 |#1| |#1| |#1|))))) (-72)) (T -1021)) -((-3308 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *3 (-72)) (-5 *1 (-1021 *3))))) -((-3798 ((|#1| $ |#1| |#1|) 6 T ELT))) -(((-1022 |#1|) (-113) (-72)) (T -1022)) -NIL -(-13 (-80 |t#1|) (-10 -8 (-6 (|%Rule| |associativity| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |t#1|) (|:| |y| |t#1|) (|:| |z| |t#1|)) (-3055 (|f| (|f| |x| |y|) |z|) (|f| |x| (|f| |y| |z|)))))))) -(((-80 |#1|) . T) ((|MappingCategory| |#1| |#1| |#1|) . T) ((-1127) . T)) -((** (($ $ (-829)) 10 T ELT))) -(((-1023 |#1|) (-10 -7 (-15 ** (|#1| |#1| (-829)))) (-1024)) (T -1023)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-3241 (((-1071) $) 11 T ELT)) (-3242 (((-1032) $) 12 T ELT)) (-3944 (((-771) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-3055 (((-85) $ $) 8 T ELT)) (** (($ $ (-829)) 17 T ELT)) (* (($ $ $) 18 T ELT))) -(((-1024) (-113)) (T -1024)) -((* (*1 *1 *1 *1) (-4 *1 (-1024))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1024)) (-5 *2 (-829))))) -(-13 (-1012) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-829))))) -(((-72) . T) ((-551 (-771)) . T) ((-13) . T) ((-1012) . T) ((-1127) . T)) -((-2567 (((-85) $ $) NIL (|has| |#3| (-72)) ELT)) (-3187 (((-85) $) NIL (|has| |#3| (-23)) ELT)) (-3705 (($ (-829)) NIL (|has| |#3| (-960)) ELT)) (-2197 (((-1183) $ (-483) (-483)) NIL (|has| $ (-6 -3994)) ELT)) (-2482 (($ $ $) NIL (|has| |#3| (-716)) ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL (|has| |#3| (-104)) ELT)) (-3135 (((-693)) NIL (|has| |#3| (-318)) ELT)) (-3786 ((|#3| $ (-483) |#3|) NIL (|has| $ (-6 -3994)) ELT)) (-3722 (($) NIL T CONST)) (-3156 (((-3 (-483) #1#) $) NIL (-12 (|has| |#3| (-949 (-483))) (|has| |#3| (-1012))) ELT) (((-3 (-348 (-483)) #1#) $) NIL (-12 (|has| |#3| (-949 (-348 (-483)))) (|has| |#3| (-1012))) ELT) (((-3 |#3| #1#) $) NIL (|has| |#3| (-1012)) ELT)) (-3155 (((-483) $) NIL (-12 (|has| |#3| (-949 (-483))) (|has| |#3| (-1012))) ELT) (((-348 (-483)) $) NIL (-12 (|has| |#3| (-949 (-348 (-483)))) (|has| |#3| (-1012))) ELT) ((|#3| $) NIL (|has| |#3| (-1012)) ELT)) (-2278 (((-629 (-483)) (-629 $)) NIL (-12 (|has| |#3| (-579 (-483))) (|has| |#3| (-960))) ELT) (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-629 $) (-1177 $)) NIL (-12 (|has| |#3| (-579 (-483))) (|has| |#3| (-960))) ELT) (((-2 (|:| |mat| (-629 |#3|)) (|:| |vec| (-1177 |#3|))) (-629 $) (-1177 $)) NIL (|has| |#3| (-960)) ELT) (((-629 |#3|) (-629 $)) NIL (|has| |#3| (-960)) ELT)) (-3465 (((-3 $ #1#) $) NIL (|has| |#3| (-960)) ELT)) (-2993 (($) NIL (|has| |#3| (-318)) ELT)) (-1574 ((|#3| $ (-483) |#3|) NIL (|has| $ (-6 -3994)) ELT)) (-3111 ((|#3| $ (-483)) 12 T ELT)) (-3185 (((-85) $) NIL (|has| |#3| (-716)) ELT)) (-2888 (((-582 |#3|) $) NIL (|has| $ (-6 -3993)) ELT)) (-1212 (((-85) $ $) NIL (|has| |#3| (-23)) ELT)) (-2409 (((-85) $) NIL (|has| |#3| (-960)) ELT)) (-2199 (((-483) $) NIL (|has| (-483) (-755)) ELT)) (-2530 (($ $ $) NIL (|has| |#3| (-755)) ELT)) (-2607 (((-582 |#3|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3244 (((-85) |#3| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#3| (-1012))) ELT)) (-2200 (((-483) $) NIL (|has| (-483) (-755)) ELT)) (-2856 (($ $ $) NIL (|has| |#3| (-755)) ELT)) (-1947 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3956 (($ (-1 |#3| |#3|) $) NIL T ELT)) (-2009 (((-829) $) NIL (|has| |#3| (-318)) ELT)) (-2279 (((-629 (-483)) (-1177 $)) NIL (-12 (|has| |#3| (-579 (-483))) (|has| |#3| (-960))) ELT) (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL (-12 (|has| |#3| (-579 (-483))) (|has| |#3| (-960))) ELT) (((-2 (|:| |mat| (-629 |#3|)) (|:| |vec| (-1177 |#3|))) (-1177 $) $) NIL (|has| |#3| (-960)) ELT) (((-629 |#3|) (-1177 $)) NIL (|has| |#3| (-960)) ELT)) (-3241 (((-1071) $) NIL (|has| |#3| (-1012)) ELT)) (-2202 (((-582 (-483)) $) NIL T ELT)) (-2203 (((-85) (-483) $) NIL T ELT)) (-2399 (($ (-829)) NIL (|has| |#3| (-318)) ELT)) (-3242 (((-1032) $) NIL (|has| |#3| (-1012)) ELT)) (-3799 ((|#3| $) NIL (|has| (-483) (-755)) ELT)) (-2198 (($ $ |#3|) NIL (|has| $ (-6 -3994)) ELT)) (-1945 (((-85) (-1 (-85) |#3|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3766 (($ $ (-582 (-249 |#3|))) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1012))) ELT) (($ $ (-249 |#3|)) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1012))) ELT) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1012))) ELT) (($ $ (-582 |#3|) (-582 |#3|)) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1012))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-2201 (((-85) |#3| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#3| (-1012))) ELT)) (-2204 (((-582 |#3|) $) NIL T ELT)) (-3401 (((-85) $) NIL T ELT)) (-3563 (($) NIL T ELT)) (-3798 ((|#3| $ (-483) |#3|) NIL T ELT) ((|#3| $ (-483)) NIL T ELT)) (-3834 ((|#3| $ $) NIL (|has| |#3| (-960)) ELT)) (-1466 (($ (-1177 |#3|)) NIL T ELT)) (-3909 (((-107)) NIL (|has| |#3| (-312)) ELT)) (-3756 (($ $ (-693)) NIL (-12 (|has| |#3| (-189)) (|has| |#3| (-960))) ELT) (($ $) NIL (-12 (|has| |#3| (-189)) (|has| |#3| (-960))) ELT) (($ $ (-582 (-1088)) (-582 (-693))) NIL (-12 (|has| |#3| (-810 (-1088))) (|has| |#3| (-960))) ELT) (($ $ (-1088) (-693)) NIL (-12 (|has| |#3| (-810 (-1088))) (|has| |#3| (-960))) ELT) (($ $ (-582 (-1088))) NIL (-12 (|has| |#3| (-810 (-1088))) (|has| |#3| (-960))) ELT) (($ $ (-1088)) NIL (-12 (|has| |#3| (-810 (-1088))) (|has| |#3| (-960))) ELT) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-960)) ELT) (($ $ (-1 |#3| |#3|) (-693)) NIL (|has| |#3| (-960)) ELT)) (-1944 (((-693) (-1 (-85) |#3|) $) NIL (|has| $ (-6 -3993)) ELT) (((-693) |#3| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#3| (-1012))) ELT)) (-3398 (($ $) NIL T ELT)) (-3944 (((-1177 |#3|) $) NIL T ELT) (($ (-483)) NIL (OR (-12 (|has| |#3| (-949 (-483))) (|has| |#3| (-1012))) (|has| |#3| (-960))) ELT) (($ (-348 (-483))) NIL (-12 (|has| |#3| (-949 (-348 (-483)))) (|has| |#3| (-1012))) ELT) (($ |#3|) NIL (|has| |#3| (-1012)) ELT) (((-771) $) NIL (|has| |#3| (-551 (-771))) ELT)) (-3125 (((-693)) NIL (|has| |#3| (-960)) CONST)) (-1263 (((-85) $ $) NIL (|has| |#3| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#3|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3124 (((-85) $ $) NIL (|has| |#3| (-960)) ELT)) (-2659 (($) NIL (|has| |#3| (-23)) CONST)) (-2665 (($) NIL (|has| |#3| (-960)) CONST)) (-2668 (($ $ (-693)) NIL (-12 (|has| |#3| (-189)) (|has| |#3| (-960))) ELT) (($ $) NIL (-12 (|has| |#3| (-189)) (|has| |#3| (-960))) ELT) (($ $ (-582 (-1088)) (-582 (-693))) NIL (-12 (|has| |#3| (-810 (-1088))) (|has| |#3| (-960))) ELT) (($ $ (-1088) (-693)) NIL (-12 (|has| |#3| (-810 (-1088))) (|has| |#3| (-960))) ELT) (($ $ (-582 (-1088))) NIL (-12 (|has| |#3| (-810 (-1088))) (|has| |#3| (-960))) ELT) (($ $ (-1088)) NIL (-12 (|has| |#3| (-810 (-1088))) (|has| |#3| (-960))) ELT) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-960)) ELT) (($ $ (-1 |#3| |#3|) (-693)) NIL (|has| |#3| (-960)) ELT)) (-2565 (((-85) $ $) NIL (|has| |#3| (-755)) ELT)) (-2566 (((-85) $ $) NIL (|has| |#3| (-755)) ELT)) (-3055 (((-85) $ $) NIL (|has| |#3| (-72)) ELT)) (-2683 (((-85) $ $) NIL (|has| |#3| (-755)) ELT)) (-2684 (((-85) $ $) 24 (|has| |#3| (-755)) ELT)) (-3947 (($ $ |#3|) NIL (|has| |#3| (-312)) ELT)) (-3835 (($ $ $) NIL (|has| |#3| (-21)) ELT) (($ $) NIL (|has| |#3| (-21)) ELT)) (-3837 (($ $ $) NIL (|has| |#3| (-25)) ELT)) (** (($ $ (-693)) NIL (|has| |#3| (-960)) ELT) (($ $ (-829)) NIL (|has| |#3| (-960)) ELT)) (* (($ $ $) NIL (|has| |#3| (-960)) ELT) (($ $ |#3|) NIL (|has| |#3| (-662)) ELT) (($ |#3| $) NIL (|has| |#3| (-662)) ELT) (($ (-483) $) NIL (|has| |#3| (-21)) ELT) (($ (-693) $) NIL (|has| |#3| (-23)) ELT) (($ (-829) $) NIL (|has| |#3| (-25)) ELT)) (-3955 (((-693) $) NIL (|has| $ (-6 -3993)) ELT))) -(((-1025 |#1| |#2| |#3|) (-196 |#1| |#3|) (-693) (-693) (-716)) (T -1025)) -NIL -((-3309 (((-582 (-1146 |#2| |#1|)) (-1146 |#2| |#1|) (-1146 |#2| |#1|)) 50 T ELT)) (-3315 (((-483) (-1146 |#2| |#1|)) 95 (|has| |#1| (-390)) ELT)) (-3313 (((-483) (-1146 |#2| |#1|)) 79 T ELT)) (-3310 (((-582 (-1146 |#2| |#1|)) (-1146 |#2| |#1|) (-1146 |#2| |#1|)) 58 T ELT)) (-3314 (((-483) (-1146 |#2| |#1|) (-1146 |#2| |#1|)) 81 (|has| |#1| (-390)) ELT)) (-3311 (((-582 |#1|) (-1146 |#2| |#1|) (-1146 |#2| |#1|)) 61 T ELT)) (-3312 (((-483) (-1146 |#2| |#1|) (-1146 |#2| |#1|)) 78 T ELT))) -(((-1026 |#1| |#2|) (-10 -7 (-15 -3309 ((-582 (-1146 |#2| |#1|)) (-1146 |#2| |#1|) (-1146 |#2| |#1|))) (-15 -3310 ((-582 (-1146 |#2| |#1|)) (-1146 |#2| |#1|) (-1146 |#2| |#1|))) (-15 -3311 ((-582 |#1|) (-1146 |#2| |#1|) (-1146 |#2| |#1|))) (-15 -3312 ((-483) (-1146 |#2| |#1|) (-1146 |#2| |#1|))) (-15 -3313 ((-483) (-1146 |#2| |#1|))) (IF (|has| |#1| (-390)) (PROGN (-15 -3314 ((-483) (-1146 |#2| |#1|) (-1146 |#2| |#1|))) (-15 -3315 ((-483) (-1146 |#2| |#1|)))) |%noBranch|)) (-739) (-1088)) (T -1026)) -((-3315 (*1 *2 *3) (-12 (-5 *3 (-1146 *5 *4)) (-4 *4 (-390)) (-4 *4 (-739)) (-14 *5 (-1088)) (-5 *2 (-483)) (-5 *1 (-1026 *4 *5)))) (-3314 (*1 *2 *3 *3) (-12 (-5 *3 (-1146 *5 *4)) (-4 *4 (-390)) (-4 *4 (-739)) (-14 *5 (-1088)) (-5 *2 (-483)) (-5 *1 (-1026 *4 *5)))) (-3313 (*1 *2 *3) (-12 (-5 *3 (-1146 *5 *4)) (-4 *4 (-739)) (-14 *5 (-1088)) (-5 *2 (-483)) (-5 *1 (-1026 *4 *5)))) (-3312 (*1 *2 *3 *3) (-12 (-5 *3 (-1146 *5 *4)) (-4 *4 (-739)) (-14 *5 (-1088)) (-5 *2 (-483)) (-5 *1 (-1026 *4 *5)))) (-3311 (*1 *2 *3 *3) (-12 (-5 *3 (-1146 *5 *4)) (-4 *4 (-739)) (-14 *5 (-1088)) (-5 *2 (-582 *4)) (-5 *1 (-1026 *4 *5)))) (-3310 (*1 *2 *3 *3) (-12 (-4 *4 (-739)) (-14 *5 (-1088)) (-5 *2 (-582 (-1146 *5 *4))) (-5 *1 (-1026 *4 *5)) (-5 *3 (-1146 *5 *4)))) (-3309 (*1 *2 *3 *3) (-12 (-4 *4 (-739)) (-14 *5 (-1088)) (-5 *2 (-582 (-1146 *5 *4))) (-5 *1 (-1026 *4 *5)) (-5 *3 (-1146 *5 *4))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3317 (((-1093) $) 12 T ELT)) (-3316 (((-582 (-1093)) $) 14 T ELT)) (-3318 (($ (-582 (-1093)) (-1093)) 10 T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3944 (((-771) $) 29 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) 17 T ELT))) -(((-1027) (-13 (-1012) (-10 -8 (-15 -3318 ($ (-582 (-1093)) (-1093))) (-15 -3317 ((-1093) $)) (-15 -3316 ((-582 (-1093)) $))))) (T -1027)) -((-3318 (*1 *1 *2 *3) (-12 (-5 *2 (-582 (-1093))) (-5 *3 (-1093)) (-5 *1 (-1027)))) (-3317 (*1 *2 *1) (-12 (-5 *2 (-1093)) (-5 *1 (-1027)))) (-3316 (*1 *2 *1) (-12 (-5 *2 (-582 (-1093))) (-5 *1 (-1027))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3319 (($ (-445) (-1027)) 14 T ELT)) (-3318 (((-1027) $) 20 T ELT)) (-3540 (((-445) $) 17 T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3944 (((-771) $) 27 T ELT) (($ (-1093)) NIL T ELT) (((-1093) $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-1028) (-13 (-994) (-10 -8 (-15 -3319 ($ (-445) (-1027))) (-15 -3540 ((-445) $)) (-15 -3318 ((-1027) $))))) (T -1028)) -((-3319 (*1 *1 *2 *3) (-12 (-5 *2 (-445)) (-5 *3 (-1027)) (-5 *1 (-1028)))) (-3540 (*1 *2 *1) (-12 (-5 *2 (-445)) (-5 *1 (-1028)))) (-3318 (*1 *2 *1) (-12 (-5 *2 (-1027)) (-5 *1 (-1028))))) -((-3621 (((-3 (-483) #1="failed") |#2| (-1088) |#2| (-1071)) 19 T ELT) (((-3 (-483) #1#) |#2| (-1088) (-749 |#2|)) 17 T ELT) (((-3 (-483) #1#) |#2|) 60 T ELT))) -(((-1029 |#1| |#2|) (-10 -7 (-15 -3621 ((-3 (-483) #1="failed") |#2|)) (-15 -3621 ((-3 (-483) #1#) |#2| (-1088) (-749 |#2|))) (-15 -3621 ((-3 (-483) #1#) |#2| (-1088) |#2| (-1071)))) (-13 (-494) (-949 (-483)) (-579 (-483)) (-390)) (-13 (-27) (-1113) (-362 |#1|))) (T -1029)) -((-3621 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1088)) (-5 *5 (-1071)) (-4 *6 (-13 (-494) (-949 *2) (-579 *2) (-390))) (-5 *2 (-483)) (-5 *1 (-1029 *6 *3)) (-4 *3 (-13 (-27) (-1113) (-362 *6))))) (-3621 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1088)) (-5 *5 (-749 *3)) (-4 *3 (-13 (-27) (-1113) (-362 *6))) (-4 *6 (-13 (-494) (-949 *2) (-579 *2) (-390))) (-5 *2 (-483)) (-5 *1 (-1029 *6 *3)))) (-3621 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-494) (-949 *2) (-579 *2) (-390))) (-5 *2 (-483)) (-5 *1 (-1029 *4 *3)) (-4 *3 (-13 (-27) (-1113) (-362 *4)))))) -((-3621 (((-3 (-483) #1="failed") (-348 (-856 |#1|)) (-1088) (-348 (-856 |#1|)) (-1071)) 38 T ELT) (((-3 (-483) #1#) (-348 (-856 |#1|)) (-1088) (-749 (-348 (-856 |#1|)))) 33 T ELT) (((-3 (-483) #1#) (-348 (-856 |#1|))) 14 T ELT))) -(((-1030 |#1|) (-10 -7 (-15 -3621 ((-3 (-483) #1="failed") (-348 (-856 |#1|)))) (-15 -3621 ((-3 (-483) #1#) (-348 (-856 |#1|)) (-1088) (-749 (-348 (-856 |#1|))))) (-15 -3621 ((-3 (-483) #1#) (-348 (-856 |#1|)) (-1088) (-348 (-856 |#1|)) (-1071)))) (-390)) (T -1030)) -((-3621 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-348 (-856 *6))) (-5 *4 (-1088)) (-5 *5 (-1071)) (-4 *6 (-390)) (-5 *2 (-483)) (-5 *1 (-1030 *6)))) (-3621 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1088)) (-5 *5 (-749 (-348 (-856 *6)))) (-5 *3 (-348 (-856 *6))) (-4 *6 (-390)) (-5 *2 (-483)) (-5 *1 (-1030 *6)))) (-3621 (*1 *2 *3) (|partial| -12 (-5 *3 (-348 (-856 *4))) (-4 *4 (-390)) (-5 *2 (-483)) (-5 *1 (-1030 *4))))) -((-3647 (((-265 (-483)) (-48)) 12 T ELT))) -(((-1031) (-10 -7 (-15 -3647 ((-265 (-483)) (-48))))) (T -1031)) -((-3647 (*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-265 (-483))) (-5 *1 (-1031))))) -((-2567 (((-85) $ $) NIL T ELT)) (-2312 (($ $) 22 T ELT)) (-3187 (((-85) $) 49 T ELT)) (-3320 (($ $ $) 28 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3980 $) (|:| |associate| $)) $) 75 T ELT)) (-2062 (($ $) NIL T ELT)) (-2060 (((-85) $) NIL T ELT)) (-2046 (($ $ $) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2041 (($ $ $ $) 59 T ELT)) (-3773 (($ $) NIL T ELT)) (-3969 (((-346 $) $) NIL T ELT)) (-1606 (((-85) $ $) NIL T ELT)) (-3135 (((-693)) 61 T ELT)) (-3621 (((-483) $) NIL T ELT)) (-2440 (($ $ $) 56 T ELT)) (-3722 (($) NIL T CONST)) (-3156 (((-3 (-483) #1#) $) NIL T ELT)) (-3155 (((-483) $) NIL T ELT)) (-2563 (($ $ $) 42 T ELT)) (-2278 (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-629 $) (-1177 $)) 70 T ELT) (((-629 (-483)) (-629 $)) 8 T ELT)) (-3465 (((-3 $ #1#) $) NIL T ELT)) (-3023 (((-3 (-348 (-483)) #1#) $) NIL T ELT)) (-3022 (((-85) $) NIL T ELT)) (-3021 (((-348 (-483)) $) NIL T ELT)) (-2993 (($) 73 T ELT) (($ $) 72 T ELT)) (-2562 (($ $ $) 41 T ELT)) (-2740 (((-2 (|:| -3952 (-582 $)) (|:| -2408 $)) (-582 $)) NIL T ELT)) (-3721 (((-85) $) NIL T ELT)) (-2039 (($ $ $ $) NIL T ELT)) (-2047 (($ $ $) 71 T ELT)) (-3185 (((-85) $) 76 T ELT)) (-1367 (($ $ $) NIL T ELT)) (-2795 (((-797 (-483) $) $ (-799 (-483)) (-797 (-483) $)) NIL T ELT)) (-2560 (($ $ $) 27 T ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-2409 (((-85) $) 50 T ELT)) (-2672 (((-85) $) 47 T ELT)) (-2559 (($ $) 23 T ELT)) (-3443 (((-631 $) $) NIL T ELT)) (-3186 (((-85) $) 60 T ELT)) (-1603 (((-3 (-582 $) #1#) (-582 $) $) NIL T ELT)) (-2040 (($ $ $ $) 57 T ELT)) (-2530 (($ $ $) 52 T ELT) (($) 19 T CONST)) (-2856 (($ $ $) 51 T ELT) (($) 18 T CONST)) (-2043 (($ $) NIL T ELT)) (-2009 (((-829) $) 66 T ELT)) (-3831 (($ $) 55 T ELT)) (-2279 (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL T ELT) (((-629 (-483)) (-1177 $)) NIL T ELT)) (-1889 (($ $ $) NIL T ELT) (($ (-582 $)) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-2038 (($ $ $) NIL T ELT)) (-3444 (($) NIL T CONST)) (-2399 (($ (-829)) 65 T ELT)) (-2045 (($ $) 33 T ELT)) (-3242 (((-1032) $) 54 T ELT)) (-2707 (((-1083 $) (-1083 $) (-1083 $)) NIL T ELT)) (-3143 (($ $ $) 45 T ELT) (($ (-582 $)) NIL T ELT)) (-1365 (($ $) NIL T ELT)) (-3730 (((-346 $) $) NIL T ELT)) (-1604 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL T ELT)) (-3464 (((-3 $ #1#) $ $) NIL T ELT)) (-2739 (((-631 (-582 $)) (-582 $) $) NIL T ELT)) (-2673 (((-85) $) 48 T ELT)) (-1605 (((-693) $) NIL T ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) 44 T ELT)) (-3756 (($ $) NIL T ELT) (($ $ (-693)) NIL T ELT)) (-2044 (($ $) 34 T ELT)) (-3398 (($ $) NIL T ELT)) (-3970 (((-483) $) 12 T ELT) (((-472) $) NIL T ELT) (((-799 (-483)) $) NIL T ELT) (((-328) $) NIL T ELT) (((-179) $) NIL T ELT)) (-3944 (((-771) $) 11 T ELT) (($ (-483)) 13 T ELT) (($ $) NIL T ELT) (($ (-483)) 13 T ELT)) (-3125 (((-693)) NIL T CONST)) (-2048 (((-85) $ $) NIL T ELT)) (-3100 (($ $ $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2693 (($) 17 T ELT)) (-2061 (((-85) $ $) NIL T ELT)) (-3124 (((-85) $ $) NIL T ELT)) (-2561 (($ $ $) 26 T ELT)) (-2042 (($ $ $ $) 58 T ELT)) (-3381 (($ $) 46 T ELT)) (-2310 (($ $ $) 25 T ELT)) (-2659 (($) 15 T CONST)) (-2665 (($) 16 T CONST)) (-2668 (($ $) NIL T ELT) (($ $ (-693)) NIL T ELT)) (-2565 (((-85) $ $) 32 T ELT)) (-2566 (((-85) $ $) 30 T ELT)) (-3055 (((-85) $ $) 21 T ELT)) (-2683 (((-85) $ $) 31 T ELT)) (-2684 (((-85) $ $) 29 T ELT)) (-2311 (($ $ $) 24 T ELT)) (-3835 (($ $) 35 T ELT) (($ $ $) 37 T ELT)) (-3837 (($ $ $) 36 T ELT)) (** (($ $ (-829)) NIL T ELT) (($ $ (-693)) 40 T ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-483) $) 14 T ELT) (($ $ $) 38 T ELT) (($ (-483) $) 14 T ELT))) -(((-1032) (-13 (-482) (-751) (-84) (-10 -8 (-6 -3980) (-6 -3985) (-6 -3981) (-15 -3320 ($ $ $))))) (T -1032)) -((-3320 (*1 *1 *1 *1) (-5 *1 (-1032)))) -((-483) (|%ismall?| |#1|)) -((-2567 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3322 ((|#1| $) 48 T ELT)) (-3722 (($) 7 T CONST)) (-3324 ((|#1| |#1| $) 50 T ELT)) (-3323 ((|#1| $) 49 T ELT)) (-2888 (((-582 |#1|) $) 30 (|has| $ (-6 -3993)) ELT)) (-2607 (((-582 |#1|) $) 29 (|has| $ (-6 -3993)) ELT)) (-3244 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3993))) ELT)) (-1947 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3994)) ELT)) (-3956 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3241 (((-1071) $) 22 (|has| |#1| (-1012)) ELT)) (-1272 ((|#1| $) 43 T ELT)) (-3607 (($ |#1| $) 44 T ELT)) (-3242 (((-1032) $) 21 (|has| |#1| (-1012)) ELT)) (-1273 ((|#1| $) 45 T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3993)) ELT)) (-3766 (($ $ (-582 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-582 |#1|) (-582 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT)) (-1220 (((-85) $ $) 11 T ELT)) (-3401 (((-85) $) 8 T ELT)) (-3563 (($) 9 T ELT)) (-3321 (((-693) $) 47 T ELT)) (-1944 (((-693) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3993)) ELT) (((-693) |#1| $) 28 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3993))) ELT)) (-3398 (($ $) 10 T ELT)) (-3944 (((-771) $) 17 (|has| |#1| (-551 (-771))) ELT)) (-1263 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1274 (($ (-582 |#1|)) 46 T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3993)) ELT)) (-3055 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3955 (((-693) $) 6 (|has| $ (-6 -3993)) ELT))) -(((-1033 |#1|) (-113) (-1127)) (T -1033)) -((-3324 (*1 *2 *2 *1) (-12 (-4 *1 (-1033 *2)) (-4 *2 (-1127)))) (-3323 (*1 *2 *1) (-12 (-4 *1 (-1033 *2)) (-4 *2 (-1127)))) (-3322 (*1 *2 *1) (-12 (-4 *1 (-1033 *2)) (-4 *2 (-1127)))) (-3321 (*1 *2 *1) (-12 (-4 *1 (-1033 *3)) (-4 *3 (-1127)) (-5 *2 (-693))))) -(-13 (-76 |t#1|) (-10 -8 (-6 -3993) (-15 -3324 (|t#1| |t#1| $)) (-15 -3323 (|t#1| $)) (-15 -3322 (|t#1| $)) (-15 -3321 ((-693) $)))) -(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1012)) (|has| |#1| (-72))) ((-551 (-771)) OR (|has| |#1| (-1012)) (|has| |#1| (-551 (-771)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ((-427 |#1|) . T) ((-454 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ((-13) . T) ((-1012) |has| |#1| (-1012)) ((-1127) . T)) -((-3328 ((|#3| $) 87 T ELT)) (-3156 (((-3 (-483) #1="failed") $) NIL T ELT) (((-3 (-348 (-483)) #1#) $) NIL T ELT) (((-3 |#3| #1#) $) 50 T ELT)) (-3155 (((-483) $) NIL T ELT) (((-348 (-483)) $) NIL T ELT) ((|#3| $) 47 T ELT)) (-2278 (((-629 (-483)) (-629 $)) NIL T ELT) (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-629 $) (-1177 $)) NIL T ELT) (((-2 (|:| |mat| (-629 |#3|)) (|:| |vec| (-1177 |#3|))) (-629 $) (-1177 $)) 84 T ELT) (((-629 |#3|) (-629 $)) 76 T ELT)) (-3756 (($ $ (-1 |#3| |#3|) (-693)) NIL T ELT) (($ $ (-1 |#3| |#3|)) 28 T ELT) (($ $) NIL T ELT) (($ $ (-693)) NIL T ELT) (($ $ (-1088)) NIL T ELT) (($ $ (-582 (-1088))) NIL T ELT) (($ $ (-1088) (-693)) NIL T ELT) (($ $ (-582 (-1088)) (-582 (-693))) NIL T ELT)) (-3327 ((|#3| $) 89 T ELT)) (-3329 ((|#4| $) 43 T ELT)) (-3944 (((-771) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ (-348 (-483))) NIL T ELT) (($ |#3|) 25 T ELT)) (** (($ $ (-829)) NIL T ELT) (($ $ (-693)) 24 T ELT) (($ $ (-483)) 95 T ELT))) -(((-1034 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3756 (|#1| |#1| (-582 (-1088)) (-582 (-693)))) (-15 -3756 (|#1| |#1| (-1088) (-693))) (-15 -3756 (|#1| |#1| (-582 (-1088)))) (-15 -3756 (|#1| |#1| (-1088))) (-15 -3756 (|#1| |#1| (-693))) (-15 -3756 (|#1| |#1|)) (-15 ** (|#1| |#1| (-483))) (-15 -3327 (|#3| |#1|)) (-15 -3328 (|#3| |#1|)) (-15 -3329 (|#4| |#1|)) (-15 -2278 ((-629 |#3|) (-629 |#1|))) (-15 -2278 ((-2 (|:| |mat| (-629 |#3|)) (|:| |vec| (-1177 |#3|))) (-629 |#1|) (-1177 |#1|))) (-15 -2278 ((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-629 |#1|) (-1177 |#1|))) (-15 -2278 ((-629 (-483)) (-629 |#1|))) (-15 -3944 (|#1| |#3|)) (-15 -3156 ((-3 |#3| #1="failed") |#1|)) (-15 -3155 (|#3| |#1|)) (-15 -3155 ((-348 (-483)) |#1|)) (-15 -3156 ((-3 (-348 (-483)) #1#) |#1|)) (-15 -3944 (|#1| (-348 (-483)))) (-15 -3155 ((-483) |#1|)) (-15 -3156 ((-3 (-483) #1#) |#1|)) (-15 -3756 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3756 (|#1| |#1| (-1 |#3| |#3|) (-693))) (-15 -3944 (|#1| (-483))) (-15 ** (|#1| |#1| (-693))) (-15 ** (|#1| |#1| (-829))) (-15 -3944 ((-771) |#1|))) (-1035 |#2| |#3| |#4| |#5|) (-693) (-960) (-196 |#2| |#3|) (-196 |#2| |#3|)) (T -1034)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-3187 (((-85) $) 22 T ELT)) (-3328 ((|#2| $) 90 T ELT)) (-3119 (((-85) $) 131 T ELT)) (-1310 (((-3 $ "failed") $ $) 26 T ELT)) (-3121 (((-85) $) 129 T ELT)) (-3331 (($ |#2|) 93 T ELT)) (-3722 (($) 23 T CONST)) (-3108 (($ $) 148 (|has| |#2| (-258)) ELT)) (-3110 ((|#3| $ (-483)) 143 T ELT)) (-3156 (((-3 (-483) #1="failed") $) 109 (|has| |#2| (-949 (-483))) ELT) (((-3 (-348 (-483)) #1#) $) 106 (|has| |#2| (-949 (-348 (-483)))) ELT) (((-3 |#2| #1#) $) 103 T ELT)) (-3155 (((-483) $) 108 (|has| |#2| (-949 (-483))) ELT) (((-348 (-483)) $) 105 (|has| |#2| (-949 (-348 (-483)))) ELT) ((|#2| $) 104 T ELT)) (-2278 (((-629 (-483)) (-629 $)) 99 (|has| |#2| (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-629 $) (-1177 $)) 98 (|has| |#2| (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 |#2|)) (|:| |vec| (-1177 |#2|))) (-629 $) (-1177 $)) 97 T ELT) (((-629 |#2|) (-629 $)) 96 T ELT)) (-3465 (((-3 $ "failed") $) 42 T ELT)) (-3107 (((-693) $) 149 (|has| |#2| (-494)) ELT)) (-3111 ((|#2| $ (-483) (-483)) 141 T ELT)) (-2888 (((-582 |#2|) $) 117 (|has| $ (-6 -3993)) ELT)) (-1212 (((-85) $ $) 20 T ELT)) (-2409 (((-85) $) 44 T ELT)) (-3106 (((-693) $) 150 (|has| |#2| (-494)) ELT)) (-3105 (((-582 |#4|) $) 151 (|has| |#2| (-494)) ELT)) (-3113 (((-693) $) 137 T ELT)) (-3112 (((-693) $) 138 T ELT)) (-3325 ((|#2| $) 85 (|has| |#2| (-6 (-3995 #2="*"))) ELT)) (-3117 (((-483) $) 133 T ELT)) (-3115 (((-483) $) 135 T ELT)) (-2607 (((-582 |#2|) $) 116 (|has| $ (-6 -3993)) ELT)) (-3244 (((-85) |#2| $) 114 (-12 (|has| |#2| (-1012)) (|has| $ (-6 -3993))) ELT)) (-3116 (((-483) $) 134 T ELT)) (-3114 (((-483) $) 136 T ELT)) (-3122 (($ (-582 (-582 |#2|))) 128 T ELT)) (-1947 (($ (-1 |#2| |#2|) $) 121 (|has| $ (-6 -3994)) ELT)) (-3956 (($ (-1 |#2| |#2| |#2|) $ $) 145 T ELT) (($ (-1 |#2| |#2|) $) 122 T ELT)) (-3592 (((-582 (-582 |#2|)) $) 139 T ELT)) (-2279 (((-629 (-483)) (-1177 $)) 101 (|has| |#2| (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) 100 (|has| |#2| (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 |#2|)) (|:| |vec| (-1177 |#2|))) (-1177 $) $) 95 T ELT) (((-629 |#2|) (-1177 $)) 94 T ELT)) (-3241 (((-1071) $) 11 T ELT)) (-3588 (((-3 $ "failed") $) 84 (|has| |#2| (-312)) ELT)) (-3242 (((-1032) $) 12 T ELT)) (-3464 (((-3 $ "failed") $ |#2|) 146 (|has| |#2| (-494)) ELT)) (-1945 (((-85) (-1 (-85) |#2|) $) 119 (|has| $ (-6 -3993)) ELT)) (-3766 (($ $ (-582 (-249 |#2|))) 113 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ (-249 |#2|)) 112 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ |#2| |#2|) 111 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ (-582 |#2|) (-582 |#2|)) 110 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1012))) ELT)) (-1220 (((-85) $ $) 127 T ELT)) (-3401 (((-85) $) 124 T ELT)) (-3563 (($) 125 T ELT)) (-3798 ((|#2| $ (-483) (-483) |#2|) 142 T ELT) ((|#2| $ (-483) (-483)) 140 T ELT)) (-3756 (($ $ (-1 |#2| |#2|) (-693)) 65 T ELT) (($ $ (-1 |#2| |#2|)) 64 T ELT) (($ $) 55 (|has| |#2| (-189)) ELT) (($ $ (-693)) 53 (|has| |#2| (-189)) ELT) (($ $ (-1088)) 63 (|has| |#2| (-810 (-1088))) ELT) (($ $ (-582 (-1088))) 61 (|has| |#2| (-810 (-1088))) ELT) (($ $ (-1088) (-693)) 60 (|has| |#2| (-810 (-1088))) ELT) (($ $ (-582 (-1088)) (-582 (-693))) 59 (|has| |#2| (-810 (-1088))) ELT)) (-3327 ((|#2| $) 89 T ELT)) (-3330 (($ (-582 |#2|)) 92 T ELT)) (-3120 (((-85) $) 130 T ELT)) (-3329 ((|#3| $) 91 T ELT)) (-3326 ((|#2| $) 86 (|has| |#2| (-6 (-3995 #2#))) ELT)) (-1944 (((-693) (-1 (-85) |#2|) $) 118 (|has| $ (-6 -3993)) ELT) (((-693) |#2| $) 115 (-12 (|has| |#2| (-1012)) (|has| $ (-6 -3993))) ELT)) (-3398 (($ $) 126 T ELT)) (-3109 ((|#4| $ (-483)) 144 T ELT)) (-3944 (((-771) $) 13 T ELT) (($ (-483)) 41 T ELT) (($ (-348 (-483))) 107 (|has| |#2| (-949 (-348 (-483)))) ELT) (($ |#2|) 102 T ELT)) (-3125 (((-693)) 40 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-1946 (((-85) (-1 (-85) |#2|) $) 120 (|has| $ (-6 -3993)) ELT)) (-3118 (((-85) $) 132 T ELT)) (-3124 (((-85) $ $) 33 T ELT)) (-2659 (($) 24 T CONST)) (-2665 (($) 45 T CONST)) (-2668 (($ $ (-1 |#2| |#2|) (-693)) 67 T ELT) (($ $ (-1 |#2| |#2|)) 66 T ELT) (($ $) 54 (|has| |#2| (-189)) ELT) (($ $ (-693)) 52 (|has| |#2| (-189)) ELT) (($ $ (-1088)) 62 (|has| |#2| (-810 (-1088))) ELT) (($ $ (-582 (-1088))) 58 (|has| |#2| (-810 (-1088))) ELT) (($ $ (-1088) (-693)) 57 (|has| |#2| (-810 (-1088))) ELT) (($ $ (-582 (-1088)) (-582 (-693))) 56 (|has| |#2| (-810 (-1088))) ELT)) (-3055 (((-85) $ $) 8 T ELT)) (-3947 (($ $ |#2|) 147 (|has| |#2| (-312)) ELT)) (-3835 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3837 (($ $ $) 18 T ELT)) (** (($ $ (-829)) 35 T ELT) (($ $ (-693)) 43 T ELT) (($ $ (-483)) 83 (|has| |#2| (-312)) ELT)) (* (($ (-829) $) 17 T ELT) (($ (-693) $) 21 T ELT) (($ (-483) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#2|) 153 T ELT) (($ |#2| $) 152 T ELT) ((|#4| $ |#4|) 88 T ELT) ((|#3| |#3| $) 87 T ELT)) (-3955 (((-693) $) 123 (|has| $ (-6 -3993)) ELT))) -(((-1035 |#1| |#2| |#3| |#4|) (-113) (-693) (-960) (-196 |t#1| |t#2|) (-196 |t#1| |t#2|)) (T -1035)) -((-3331 (*1 *1 *2) (-12 (-4 *2 (-960)) (-4 *1 (-1035 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2)))) (-3330 (*1 *1 *2) (-12 (-5 *2 (-582 *4)) (-4 *4 (-960)) (-4 *1 (-1035 *3 *4 *5 *6)) (-4 *5 (-196 *3 *4)) (-4 *6 (-196 *3 *4)))) (-3329 (*1 *2 *1) (-12 (-4 *1 (-1035 *3 *4 *2 *5)) (-4 *4 (-960)) (-4 *5 (-196 *3 *4)) (-4 *2 (-196 *3 *4)))) (-3328 (*1 *2 *1) (-12 (-4 *1 (-1035 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2)) (-4 *2 (-960)))) (-3327 (*1 *2 *1) (-12 (-4 *1 (-1035 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2)) (-4 *2 (-960)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1035 *3 *4 *5 *2)) (-4 *4 (-960)) (-4 *5 (-196 *3 *4)) (-4 *2 (-196 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1035 *3 *4 *2 *5)) (-4 *4 (-960)) (-4 *2 (-196 *3 *4)) (-4 *5 (-196 *3 *4)))) (-3326 (*1 *2 *1) (-12 (-4 *1 (-1035 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2)) (|has| *2 (-6 (-3995 #1="*"))) (-4 *2 (-960)))) (-3325 (*1 *2 *1) (-12 (-4 *1 (-1035 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2)) (|has| *2 (-6 (-3995 #1#))) (-4 *2 (-960)))) (-3588 (*1 *1 *1) (|partial| -12 (-4 *1 (-1035 *2 *3 *4 *5)) (-4 *3 (-960)) (-4 *4 (-196 *2 *3)) (-4 *5 (-196 *2 *3)) (-4 *3 (-312)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-483)) (-4 *1 (-1035 *3 *4 *5 *6)) (-4 *4 (-960)) (-4 *5 (-196 *3 *4)) (-4 *6 (-196 *3 *4)) (-4 *4 (-312))))) -(-13 (-184 |t#2|) (-82 |t#2| |t#2|) (-964 |t#1| |t#1| |t#2| |t#3| |t#4|) (-353 |t#2|) (-327 |t#2|) (-10 -8 (IF (|has| |t#2| (-146)) (-6 (-653 |t#2|)) |%noBranch|) (-15 -3331 ($ |t#2|)) (-15 -3330 ($ (-582 |t#2|))) (-15 -3329 (|t#3| $)) (-15 -3328 (|t#2| $)) (-15 -3327 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-3995 "*"))) (PROGN (-6 (-38 |t#2|)) (-15 -3326 (|t#2| $)) (-15 -3325 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-312)) (PROGN (-15 -3588 ((-3 $ "failed") $)) (-15 ** ($ $ (-483)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-38 |#2|) |has| |#2| (-6 (-3995 #1="*"))) ((-72) . T) ((-82 |#2| |#2|) . T) ((-104) . T) ((-554 (-348 (-483))) |has| |#2| (-949 (-348 (-483)))) ((-554 (-483)) . T) ((-554 |#2|) . T) ((-551 (-771)) . T) ((-186 $) OR (|has| |#2| (-189)) (|has| |#2| (-190))) ((-184 |#2|) . T) ((-190) |has| |#2| (-190)) ((-189) OR (|has| |#2| (-189)) (|has| |#2| (-190))) ((-225 |#2|) . T) ((-260 |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1012))) ((-327 |#2|) . T) ((-353 |#2|) . T) ((-427 |#2|) . T) ((-454 |#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1012))) ((-13) . T) ((-587 (-483)) . T) ((-587 |#2|) . T) ((-587 $) . T) ((-589 (-483)) |has| |#2| (-579 (-483))) ((-589 |#2|) . T) ((-589 $) . T) ((-581 |#2|) OR (|has| |#2| (-146)) (|has| |#2| (-6 (-3995 #1#)))) ((-579 (-483)) |has| |#2| (-579 (-483))) ((-579 |#2|) . T) ((-653 |#2|) OR (|has| |#2| (-146)) (|has| |#2| (-6 (-3995 #1#)))) ((-662) . T) ((-805 $ (-1088)) OR (|has| |#2| (-810 (-1088))) (|has| |#2| (-808 (-1088)))) ((-808 (-1088)) |has| |#2| (-808 (-1088))) ((-810 (-1088)) OR (|has| |#2| (-810 (-1088))) (|has| |#2| (-808 (-1088)))) ((-964 |#1| |#1| |#2| |#3| |#4|) . T) ((-949 (-348 (-483))) |has| |#2| (-949 (-348 (-483)))) ((-949 (-483)) |has| |#2| (-949 (-483))) ((-949 |#2|) . T) ((-962 |#2|) . T) ((-967 |#2|) . T) ((-960) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T)) -((-3334 ((|#4| |#4|) 81 T ELT)) (-3332 ((|#4| |#4|) 76 T ELT)) (-3336 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2011 (-582 |#3|))) |#4| |#3|) 91 T ELT)) (-3335 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 80 T ELT)) (-3333 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 78 T ELT))) -(((-1036 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3332 (|#4| |#4|)) (-15 -3333 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -3334 (|#4| |#4|)) (-15 -3335 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3336 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2011 (-582 |#3|))) |#4| |#3|))) (-258) (-322 |#1|) (-322 |#1|) (-626 |#1| |#2| |#3|)) (T -1036)) -((-3336 (*1 *2 *3 *4) (-12 (-4 *5 (-258)) (-4 *6 (-322 *5)) (-4 *4 (-322 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2011 (-582 *4)))) (-5 *1 (-1036 *5 *6 *4 *3)) (-4 *3 (-626 *5 *6 *4)))) (-3335 (*1 *2 *3) (-12 (-4 *4 (-258)) (-4 *5 (-322 *4)) (-4 *6 (-322 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1036 *4 *5 *6 *3)) (-4 *3 (-626 *4 *5 *6)))) (-3334 (*1 *2 *2) (-12 (-4 *3 (-258)) (-4 *4 (-322 *3)) (-4 *5 (-322 *3)) (-5 *1 (-1036 *3 *4 *5 *2)) (-4 *2 (-626 *3 *4 *5)))) (-3333 (*1 *2 *3) (-12 (-4 *4 (-258)) (-4 *5 (-322 *4)) (-4 *6 (-322 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1036 *4 *5 *6 *3)) (-4 *3 (-626 *4 *5 *6)))) (-3332 (*1 *2 *2) (-12 (-4 *3 (-258)) (-4 *4 (-322 *3)) (-4 *5 (-322 *3)) (-5 *1 (-1036 *3 *4 *5 *2)) (-4 *2 (-626 *3 *4 *5))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3187 (((-85) $) 18 T ELT)) (-3080 (((-582 |#2|) $) 174 T ELT)) (-3082 (((-1083 $) $ |#2|) 60 T ELT) (((-1083 |#1|) $) 49 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3980 $) (|:| |associate| $)) $) 116 (|has| |#1| (-494)) ELT)) (-2062 (($ $) 118 (|has| |#1| (-494)) ELT)) (-2060 (((-85) $) 120 (|has| |#1| (-494)) ELT)) (-2818 (((-693) $) NIL T ELT) (((-693) $ (-582 |#2|)) 214 T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2706 (((-346 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-820)) ELT)) (-3773 (($ $) NIL (|has| |#1| (-390)) ELT)) (-3969 (((-346 $) $) NIL (|has| |#1| (-390)) ELT)) (-2703 (((-3 (-582 (-1083 $)) #1#) (-582 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-820)) ELT)) (-3722 (($) NIL T CONST)) (-3156 (((-3 |#1| #1#) $) 167 T ELT) (((-3 (-348 (-483)) #1#) $) NIL (|has| |#1| (-949 (-348 (-483)))) ELT) (((-3 (-483) #1#) $) NIL (|has| |#1| (-949 (-483))) ELT) (((-3 |#2| #1#) $) NIL T ELT)) (-3155 ((|#1| $) 165 T ELT) (((-348 (-483)) $) NIL (|has| |#1| (-949 (-348 (-483)))) ELT) (((-483) $) NIL (|has| |#1| (-949 (-483))) ELT) ((|#2| $) NIL T ELT)) (-3754 (($ $ $ |#2|) NIL (|has| |#1| (-146)) ELT)) (-3957 (($ $) 218 T ELT)) (-2278 (((-629 (-483)) (-629 $)) NIL (|has| |#1| (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-629 $) (-1177 $)) NIL (|has| |#1| (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 |#1|)) (|:| |vec| (-1177 |#1|))) (-629 $) (-1177 $)) NIL T ELT) (((-629 |#1|) (-629 $)) NIL T ELT)) (-3465 (((-3 $ #1#) $) 90 T ELT)) (-3501 (($ $) NIL (|has| |#1| (-390)) ELT) (($ $ |#2|) NIL (|has| |#1| (-390)) ELT)) (-2817 (((-582 $) $) NIL T ELT)) (-3721 (((-85) $) NIL (|has| |#1| (-820)) ELT)) (-1622 (($ $ |#1| (-468 |#2|) $) NIL T ELT)) (-2795 (((-797 (-328) $) $ (-799 (-328)) (-797 (-328) $)) NIL (-12 (|has| |#1| (-795 (-328))) (|has| |#2| (-795 (-328)))) ELT) (((-797 (-483) $) $ (-799 (-483)) (-797 (-483) $)) NIL (-12 (|has| |#1| (-795 (-483))) (|has| |#2| (-795 (-483)))) ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-2409 (((-85) $) 20 T ELT)) (-2419 (((-693) $) 30 T ELT)) (-3083 (($ (-1083 |#1|) |#2|) 54 T ELT) (($ (-1083 $) |#2|) 71 T ELT)) (-2820 (((-582 $) $) NIL T ELT)) (-3935 (((-85) $) 38 T ELT)) (-2892 (($ |#1| (-468 |#2|)) 78 T ELT) (($ $ |#2| (-693)) 58 T ELT) (($ $ (-582 |#2|) (-582 (-693))) NIL T ELT)) (-3761 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $ |#2|) NIL T ELT)) (-2819 (((-468 |#2|) $) 205 T ELT) (((-693) $ |#2|) 206 T ELT) (((-582 (-693)) $ (-582 |#2|)) 207 T ELT)) (-1623 (($ (-1 (-468 |#2|) (-468 |#2|)) $) NIL T ELT)) (-3956 (($ (-1 |#1| |#1|) $) 128 T ELT)) (-3081 (((-3 |#2| #1#) $) 177 T ELT)) (-2279 (((-629 (-483)) (-1177 $)) NIL (|has| |#1| (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL (|has| |#1| (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 |#1|)) (|:| |vec| (-1177 |#1|))) (-1177 $) $) NIL T ELT) (((-629 |#1|) (-1177 $)) NIL T ELT)) (-2893 (($ $) 217 T ELT)) (-3173 ((|#1| $) 43 T ELT)) (-1889 (($ (-582 $)) NIL (|has| |#1| (-390)) ELT) (($ $ $) NIL (|has| |#1| (-390)) ELT)) (-3241 (((-1071) $) NIL T ELT)) (-2822 (((-3 (-582 $) #1#) $) NIL T ELT)) (-2821 (((-3 (-582 $) #1#) $) NIL T ELT)) (-2823 (((-3 (-2 (|:| |var| |#2|) (|:| -2400 (-693))) #1#) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-1795 (((-85) $) 39 T ELT)) (-1794 ((|#1| $) NIL T ELT)) (-2707 (((-1083 $) (-1083 $) (-1083 $)) 148 (|has| |#1| (-390)) ELT)) (-3143 (($ (-582 $)) 153 (|has| |#1| (-390)) ELT) (($ $ $) 138 (|has| |#1| (-390)) ELT)) (-2704 (((-346 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-820)) ELT)) (-2705 (((-346 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-820)) ELT)) (-3730 (((-346 $) $) NIL (|has| |#1| (-820)) ELT)) (-3464 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-494)) ELT) (((-3 $ #1#) $ $) 126 (|has| |#1| (-494)) ELT)) (-3766 (($ $ (-582 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-582 $) (-582 $)) NIL T ELT) (($ $ |#2| |#1|) 180 T ELT) (($ $ (-582 |#2|) (-582 |#1|)) 195 T ELT) (($ $ |#2| $) 179 T ELT) (($ $ (-582 |#2|) (-582 $)) 194 T ELT)) (-3755 (($ $ |#2|) NIL (|has| |#1| (-146)) ELT)) (-3756 (($ $ (-582 |#2|) (-582 (-693))) NIL T ELT) (($ $ |#2| (-693)) NIL T ELT) (($ $ (-582 |#2|)) NIL T ELT) (($ $ |#2|) 216 T ELT)) (-3946 (((-468 |#2|) $) 201 T ELT) (((-693) $ |#2|) 196 T ELT) (((-582 (-693)) $ (-582 |#2|)) 199 T ELT)) (-3970 (((-799 (-328)) $) NIL (-12 (|has| |#1| (-552 (-799 (-328)))) (|has| |#2| (-552 (-799 (-328))))) ELT) (((-799 (-483)) $) NIL (-12 (|has| |#1| (-552 (-799 (-483)))) (|has| |#2| (-552 (-799 (-483))))) ELT) (((-472) $) NIL (-12 (|has| |#1| (-552 (-472))) (|has| |#2| (-552 (-472)))) ELT)) (-2816 ((|#1| $) 134 (|has| |#1| (-390)) ELT) (($ $ |#2|) 137 (|has| |#1| (-390)) ELT)) (-2702 (((-3 (-1177 $) #1#) (-629 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-820))) ELT)) (-3944 (((-771) $) 159 T ELT) (($ (-483)) 84 T ELT) (($ |#1|) 85 T ELT) (($ |#2|) 33 T ELT) (($ $) NIL (|has| |#1| (-494)) ELT) (($ (-348 (-483))) NIL (OR (|has| |#1| (-38 (-348 (-483)))) (|has| |#1| (-949 (-348 (-483))))) ELT)) (-3815 (((-582 |#1|) $) 162 T ELT)) (-3675 ((|#1| $ (-468 |#2|)) 80 T ELT) (($ $ |#2| (-693)) NIL T ELT) (($ $ (-582 |#2|) (-582 (-693))) NIL T ELT)) (-2701 (((-631 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-820))) (|has| |#1| (-118))) ELT)) (-3125 (((-693)) 87 T CONST)) (-1621 (($ $ $ (-693)) NIL (|has| |#1| (-146)) ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2061 (((-85) $ $) 123 (|has| |#1| (-494)) ELT)) (-3124 (((-85) $ $) NIL T ELT)) (-2659 (($) 12 T CONST)) (-2665 (($) 14 T CONST)) (-2668 (($ $ (-582 |#2|) (-582 (-693))) NIL T ELT) (($ $ |#2| (-693)) NIL T ELT) (($ $ (-582 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-3055 (((-85) $ $) 106 T ELT)) (-3947 (($ $ |#1|) 132 (|has| |#1| (-312)) ELT)) (-3835 (($ $) 93 T ELT) (($ $ $) 104 T ELT)) (-3837 (($ $ $) 55 T ELT)) (** (($ $ (-829)) 110 T ELT) (($ $ (-693)) 109 T ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-483) $) 96 T ELT) (($ $ $) 72 T ELT) (($ $ (-348 (-483))) NIL (|has| |#1| (-38 (-348 (-483)))) ELT) (($ (-348 (-483)) $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT) (($ |#1| $) 99 T ELT) (($ $ |#1|) NIL T ELT))) -(((-1037 |#1| |#2|) (-860 |#1| (-468 |#2|) |#2|) (-960) (-755)) (T -1037)) -NIL -((-2567 (((-85) $ $) NIL T ELT)) (-3187 (((-85) $) NIL T ELT)) (-3080 (((-582 |#2|) $) NIL T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3980 $) (|:| |associate| $)) $) NIL (|has| |#1| (-494)) ELT)) (-2062 (($ $) NIL (|has| |#1| (-494)) ELT)) (-2060 (((-85) $) NIL (|has| |#1| (-494)) ELT)) (-3490 (($ $) 149 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3637 (($ $) 125 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3036 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3488 (($ $) 145 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3636 (($ $) 121 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3492 (($ $) 153 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3635 (($ $) 129 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3722 (($) NIL T CONST)) (-3957 (($ $) NIL T ELT)) (-3465 (((-3 $ #1#) $) NIL T ELT)) (-3812 (((-856 |#1|) $ (-693)) NIL T ELT) (((-856 |#1|) $ (-693) (-693)) NIL T ELT)) (-2891 (((-85) $) NIL T ELT)) (-3625 (($) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3770 (((-693) $ |#2|) NIL T ELT) (((-693) $ |#2| (-693)) NIL T ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-2409 (((-85) $) NIL T ELT)) (-3010 (($ $ (-483)) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3935 (((-85) $) NIL T ELT)) (-2892 (($ $ (-582 |#2|) (-582 (-468 |#2|))) NIL T ELT) (($ $ |#2| (-468 |#2|)) NIL T ELT) (($ |#1| (-468 |#2|)) NIL T ELT) (($ $ |#2| (-693)) 63 T ELT) (($ $ (-582 |#2|) (-582 (-693))) NIL T ELT)) (-3956 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3940 (($ $) 119 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-2893 (($ $) NIL T ELT)) (-3173 ((|#1| $) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3810 (($ $ |#2|) NIL (|has| |#1| (-38 (-348 (-483)))) ELT) (($ $ |#2| |#1|) 171 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3674 (($ (-1 $) |#2| |#1|) 170 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3767 (($ $ (-693)) 17 T ELT)) (-3464 (((-3 $ #1#) $ $) NIL (|has| |#1| (-494)) ELT)) (-3941 (($ $) 117 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3766 (($ $ |#2| $) 104 T ELT) (($ $ (-582 |#2|) (-582 $)) 99 T ELT) (($ $ (-582 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-582 $) (-582 $)) NIL T ELT)) (-3756 (($ $ (-582 |#2|) (-582 (-693))) NIL T ELT) (($ $ |#2| (-693)) NIL T ELT) (($ $ (-582 |#2|)) NIL T ELT) (($ $ |#2|) 106 T ELT)) (-3946 (((-468 |#2|) $) NIL T ELT)) (-3337 (((-1 (-1067 |#3|) |#3|) (-582 |#2|) (-582 (-1067 |#3|))) 87 T ELT)) (-3493 (($ $) 155 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3634 (($ $) 131 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3491 (($ $) 151 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3633 (($ $) 127 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3489 (($ $) 147 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3632 (($ $) 123 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-2890 (($ $) 19 T ELT)) (-3944 (((-771) $) 194 T ELT) (($ (-483)) NIL T ELT) (($ |#1|) 45 (|has| |#1| (-146)) ELT) (($ $) NIL (|has| |#1| (-494)) ELT) (($ (-348 (-483))) NIL (|has| |#1| (-38 (-348 (-483)))) ELT) (($ |#2|) 70 T ELT) (($ |#3|) 68 T ELT)) (-3675 ((|#1| $ (-468 |#2|)) NIL T ELT) (($ $ |#2| (-693)) NIL T ELT) (($ $ (-582 |#2|) (-582 (-693))) NIL T ELT) ((|#3| $ (-693)) 43 T ELT)) (-2701 (((-631 $) $) NIL (|has| |#1| (-118)) ELT)) (-3125 (((-693)) NIL T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-3496 (($ $) 161 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3484 (($ $) 137 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-2061 (((-85) $ $) NIL (|has| |#1| (-494)) ELT)) (-3494 (($ $) 157 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3482 (($ $) 133 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3498 (($ $) 165 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3486 (($ $) 141 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3124 (((-85) $ $) NIL T ELT)) (-3499 (($ $) 167 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3487 (($ $) 143 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3497 (($ $) 163 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3485 (($ $) 139 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3495 (($ $) 159 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3483 (($ $) 135 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-2659 (($) 52 T CONST)) (-2665 (($) 62 T CONST)) (-2668 (($ $ (-582 |#2|) (-582 (-693))) NIL T ELT) (($ $ |#2| (-693)) NIL T ELT) (($ $ (-582 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-3947 (($ $ |#1|) 196 (|has| |#1| (-312)) ELT)) (-3835 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3837 (($ $ $) 66 T ELT)) (** (($ $ (-829)) NIL T ELT) (($ $ (-693)) 77 T ELT) (($ $ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT) (($ $ (-348 (-483))) 109 (|has| |#1| (-38 (-348 (-483)))) ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) 65 T ELT) (($ $ (-348 (-483))) 114 (|has| |#1| (-38 (-348 (-483)))) ELT) (($ (-348 (-483)) $) 112 (|has| |#1| (-38 (-348 (-483)))) ELT) (($ |#1| $) 48 T ELT) (($ $ |#1|) 49 T ELT) (($ |#3| $) 47 T ELT))) -(((-1038 |#1| |#2| |#3|) (-13 (-678 |#1| |#2|) (-10 -8 (-15 -3675 (|#3| $ (-693))) (-15 -3944 ($ |#2|)) (-15 -3944 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -3337 ((-1 (-1067 |#3|) |#3|) (-582 |#2|) (-582 (-1067 |#3|)))) (IF (|has| |#1| (-38 (-348 (-483)))) (PROGN (-15 -3810 ($ $ |#2| |#1|)) (-15 -3674 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-960) (-755) (-860 |#1| (-468 |#2|) |#2|)) (T -1038)) -((-3675 (*1 *2 *1 *3) (-12 (-5 *3 (-693)) (-4 *2 (-860 *4 (-468 *5) *5)) (-5 *1 (-1038 *4 *5 *2)) (-4 *4 (-960)) (-4 *5 (-755)))) (-3944 (*1 *1 *2) (-12 (-4 *3 (-960)) (-4 *2 (-755)) (-5 *1 (-1038 *3 *2 *4)) (-4 *4 (-860 *3 (-468 *2) *2)))) (-3944 (*1 *1 *2) (-12 (-4 *3 (-960)) (-4 *4 (-755)) (-5 *1 (-1038 *3 *4 *2)) (-4 *2 (-860 *3 (-468 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-960)) (-4 *4 (-755)) (-5 *1 (-1038 *3 *4 *2)) (-4 *2 (-860 *3 (-468 *4) *4)))) (-3337 (*1 *2 *3 *4) (-12 (-5 *3 (-582 *6)) (-5 *4 (-582 (-1067 *7))) (-4 *6 (-755)) (-4 *7 (-860 *5 (-468 *6) *6)) (-4 *5 (-960)) (-5 *2 (-1 (-1067 *7) *7)) (-5 *1 (-1038 *5 *6 *7)))) (-3810 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-38 (-348 (-483)))) (-4 *3 (-960)) (-4 *2 (-755)) (-5 *1 (-1038 *3 *2 *4)) (-4 *4 (-860 *3 (-468 *2) *2)))) (-3674 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1038 *4 *3 *5))) (-4 *4 (-38 (-348 (-483)))) (-4 *4 (-960)) (-4 *3 (-755)) (-5 *1 (-1038 *4 *3 *5)) (-4 *5 (-860 *4 (-468 *3) *3))))) -((-2567 (((-85) $ $) 7 T ELT)) (-3679 (((-582 (-2 (|:| -3859 $) (|:| -1700 (-582 |#4|)))) (-582 |#4|)) 90 T ELT)) (-3680 (((-582 $) (-582 |#4|)) 91 T ELT) (((-582 $) (-582 |#4|) (-85)) 118 T ELT)) (-3080 (((-582 |#3|) $) 37 T ELT)) (-2907 (((-85) $) 30 T ELT)) (-2898 (((-85) $) 21 (|has| |#1| (-494)) ELT)) (-3691 (((-85) |#4| $) 106 T ELT) (((-85) $) 102 T ELT)) (-3686 ((|#4| |#4| $) 97 T ELT)) (-3773 (((-582 (-2 (|:| |val| |#4|) (|:| -1598 $))) |#4| $) 133 T ELT)) (-2908 (((-2 (|:| |under| $) (|:| -3129 $) (|:| |upper| $)) $ |#3|) 31 T ELT)) (-3708 (($ (-1 (-85) |#4|) $) 66 (|has| $ (-6 -3993)) ELT) (((-3 |#4| #1="failed") $ |#3|) 84 T ELT)) (-3722 (($) 46 T CONST)) (-2903 (((-85) $) 26 (|has| |#1| (-494)) ELT)) (-2905 (((-85) $ $) 28 (|has| |#1| (-494)) ELT)) (-2904 (((-85) $ $) 27 (|has| |#1| (-494)) ELT)) (-2906 (((-85) $) 29 (|has| |#1| (-494)) ELT)) (-3687 (((-582 |#4|) (-582 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 98 T ELT)) (-2899 (((-582 |#4|) (-582 |#4|) $) 22 (|has| |#1| (-494)) ELT)) (-2900 (((-582 |#4|) (-582 |#4|) $) 23 (|has| |#1| (-494)) ELT)) (-3156 (((-3 $ "failed") (-582 |#4|)) 40 T ELT)) (-3155 (($ (-582 |#4|)) 39 T ELT)) (-3797 (((-3 $ #1#) $) 87 T ELT)) (-3683 ((|#4| |#4| $) 94 T ELT)) (-1351 (($ $) 69 (-12 (|has| |#4| (-1012)) (|has| $ (-6 -3993))) ELT)) (-3404 (($ |#4| $) 68 (-12 (|has| |#4| (-1012)) (|has| $ (-6 -3993))) ELT) (($ (-1 (-85) |#4|) $) 65 (|has| $ (-6 -3993)) ELT)) (-2901 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 24 (|has| |#1| (-494)) ELT)) (-3692 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) 107 T ELT)) (-3681 ((|#4| |#4| $) 92 T ELT)) (-3840 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1012)) (|has| $ (-6 -3993))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -3993)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -3993)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 99 T ELT)) (-3694 (((-2 (|:| -3859 (-582 |#4|)) (|:| -1700 (-582 |#4|))) $) 110 T ELT)) (-3196 (((-85) |#4| $) 143 T ELT)) (-3194 (((-85) |#4| $) 140 T ELT)) (-3197 (((-85) |#4| $) 144 T ELT) (((-85) $) 141 T ELT)) (-2888 (((-582 |#4|) $) 53 (|has| $ (-6 -3993)) ELT)) (-3693 (((-85) |#4| $) 109 T ELT) (((-85) $) 108 T ELT)) (-3179 ((|#3| $) 38 T ELT)) (-2607 (((-582 |#4|) $) 54 (|has| $ (-6 -3993)) ELT)) (-3244 (((-85) |#4| $) 56 (-12 (|has| |#4| (-1012)) (|has| $ (-6 -3993))) ELT)) (-1947 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -3994)) ELT)) (-3956 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-2913 (((-582 |#3|) $) 36 T ELT)) (-2912 (((-85) |#3| $) 35 T ELT)) (-3241 (((-1071) $) 11 T ELT)) (-3190 (((-3 |#4| (-582 $)) |#4| |#4| $) 135 T ELT)) (-3189 (((-582 (-2 (|:| |val| |#4|) (|:| -1598 $))) |#4| |#4| $) 134 T ELT)) (-3796 (((-3 |#4| #1#) $) 88 T ELT)) (-3191 (((-582 $) |#4| $) 136 T ELT)) (-3193 (((-3 (-85) (-582 $)) |#4| $) 139 T ELT)) (-3192 (((-582 (-2 (|:| |val| (-85)) (|:| -1598 $))) |#4| $) 138 T ELT) (((-85) |#4| $) 137 T ELT)) (-3237 (((-582 $) |#4| $) 132 T ELT) (((-582 $) (-582 |#4|) $) 131 T ELT) (((-582 $) (-582 |#4|) (-582 $)) 130 T ELT) (((-582 $) |#4| (-582 $)) 129 T ELT)) (-3438 (($ |#4| $) 124 T ELT) (($ (-582 |#4|) $) 123 T ELT)) (-3695 (((-582 |#4|) $) 112 T ELT)) (-3689 (((-85) |#4| $) 104 T ELT) (((-85) $) 100 T ELT)) (-3684 ((|#4| |#4| $) 95 T ELT)) (-3697 (((-85) $ $) 115 T ELT)) (-2902 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-494)) ELT)) (-3690 (((-85) |#4| $) 105 T ELT) (((-85) $) 101 T ELT)) (-3685 ((|#4| |#4| $) 96 T ELT)) (-3242 (((-1032) $) 12 T ELT)) (-3799 (((-3 |#4| #1#) $) 89 T ELT)) (-1352 (((-3 |#4| "failed") (-1 (-85) |#4|) $) 62 T ELT)) (-3677 (((-3 $ #1#) $ |#4|) 83 T ELT)) (-3767 (($ $ |#4|) 82 T ELT) (((-582 $) |#4| $) 122 T ELT) (((-582 $) |#4| (-582 $)) 121 T ELT) (((-582 $) (-582 |#4|) $) 120 T ELT) (((-582 $) (-582 |#4|) (-582 $)) 119 T ELT)) (-1945 (((-85) (-1 (-85) |#4|) $) 51 (|has| $ (-6 -3993)) ELT)) (-3766 (($ $ (-582 |#4|) (-582 |#4|)) 60 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1012))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1012))) ELT) (($ $ (-249 |#4|)) 58 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1012))) ELT) (($ $ (-582 (-249 |#4|))) 57 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1012))) ELT)) (-1220 (((-85) $ $) 42 T ELT)) (-3401 (((-85) $) 45 T ELT)) (-3563 (($) 44 T ELT)) (-3946 (((-693) $) 111 T ELT)) (-1944 (((-693) |#4| $) 55 (-12 (|has| |#4| (-1012)) (|has| $ (-6 -3993))) ELT) (((-693) (-1 (-85) |#4|) $) 52 (|has| $ (-6 -3993)) ELT)) (-3398 (($ $) 43 T ELT)) (-3970 (((-472) $) 70 (|has| |#4| (-552 (-472))) ELT)) (-3528 (($ (-582 |#4|)) 61 T ELT)) (-2909 (($ $ |#3|) 32 T ELT)) (-2911 (($ $ |#3|) 34 T ELT)) (-3682 (($ $) 93 T ELT)) (-2910 (($ $ |#3|) 33 T ELT)) (-3944 (((-771) $) 13 T ELT) (((-582 |#4|) $) 41 T ELT)) (-3676 (((-693) $) 81 (|has| |#3| (-318)) ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-3696 (((-3 (-2 (|:| |bas| $) (|:| -3322 (-582 |#4|))) #1#) (-582 |#4|) (-1 (-85) |#4| |#4|)) 114 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3322 (-582 |#4|))) #1#) (-582 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) 113 T ELT)) (-3688 (((-85) $ (-1 (-85) |#4| (-582 |#4|))) 103 T ELT)) (-3188 (((-582 $) |#4| $) 128 T ELT) (((-582 $) |#4| (-582 $)) 127 T ELT) (((-582 $) (-582 |#4|) $) 126 T ELT) (((-582 $) (-582 |#4|) (-582 $)) 125 T ELT)) (-1946 (((-85) (-1 (-85) |#4|) $) 50 (|has| $ (-6 -3993)) ELT)) (-3678 (((-582 |#3|) $) 86 T ELT)) (-3195 (((-85) |#4| $) 142 T ELT)) (-3931 (((-85) |#3| $) 85 T ELT)) (-3055 (((-85) $ $) 8 T ELT)) (-3955 (((-693) $) 47 (|has| $ (-6 -3993)) ELT))) -(((-1039 |#1| |#2| |#3| |#4|) (-113) (-390) (-716) (-755) (-976 |t#1| |t#2| |t#3|)) (T -1039)) -NIL -(-13 (-1019 |t#1| |t#2| |t#3| |t#4|) (-706 |t#1| |t#2| |t#3| |t#4|)) -(((-34) . T) ((-72) . T) ((-551 (-582 |#4|)) . T) ((-551 (-771)) . T) ((-124 |#4|) . T) ((-552 (-472)) |has| |#4| (-552 (-472))) ((-260 |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1012))) ((-427 |#4|) . T) ((-454 |#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1012))) ((-13) . T) ((-706 |#1| |#2| |#3| |#4|) . T) ((-888 |#1| |#2| |#3| |#4|) . T) ((-982 |#1| |#2| |#3| |#4|) . T) ((-1012) . T) ((-1019 |#1| |#2| |#3| |#4|) . T) ((-1122 |#1| |#2| |#3| |#4|) . T) ((-1127) . T)) -((-3571 (((-582 |#2|) |#1|) 15 T ELT)) (-3343 (((-582 |#2|) |#2| |#2| |#2| |#2| |#2|) 47 T ELT) (((-582 |#2|) |#1|) 61 T ELT)) (-3341 (((-582 |#2|) |#2| |#2| |#2|) 45 T ELT) (((-582 |#2|) |#1|) 59 T ELT)) (-3338 ((|#2| |#1|) 54 T ELT)) (-3339 (((-2 (|:| |solns| (-582 |#2|)) (|:| |maps| (-582 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 20 T ELT)) (-3340 (((-582 |#2|) |#2| |#2|) 42 T ELT) (((-582 |#2|) |#1|) 58 T ELT)) (-3342 (((-582 |#2|) |#2| |#2| |#2| |#2|) 46 T ELT) (((-582 |#2|) |#1|) 60 T ELT)) (-3347 ((|#2| |#2| |#2| |#2| |#2| |#2|) 53 T ELT)) (-3345 ((|#2| |#2| |#2| |#2|) 51 T ELT)) (-3344 ((|#2| |#2| |#2|) 50 T ELT)) (-3346 ((|#2| |#2| |#2| |#2| |#2|) 52 T ELT))) -(((-1040 |#1| |#2|) (-10 -7 (-15 -3571 ((-582 |#2|) |#1|)) (-15 -3338 (|#2| |#1|)) (-15 -3339 ((-2 (|:| |solns| (-582 |#2|)) (|:| |maps| (-582 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3340 ((-582 |#2|) |#1|)) (-15 -3341 ((-582 |#2|) |#1|)) (-15 -3342 ((-582 |#2|) |#1|)) (-15 -3343 ((-582 |#2|) |#1|)) (-15 -3340 ((-582 |#2|) |#2| |#2|)) (-15 -3341 ((-582 |#2|) |#2| |#2| |#2|)) (-15 -3342 ((-582 |#2|) |#2| |#2| |#2| |#2|)) (-15 -3343 ((-582 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3344 (|#2| |#2| |#2|)) (-15 -3345 (|#2| |#2| |#2| |#2|)) (-15 -3346 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3347 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1153 |#2|) (-13 (-312) (-10 -8 (-15 ** ($ $ (-348 (-483))))))) (T -1040)) -((-3347 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-312) (-10 -8 (-15 ** ($ $ (-348 (-483))))))) (-5 *1 (-1040 *3 *2)) (-4 *3 (-1153 *2)))) (-3346 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-312) (-10 -8 (-15 ** ($ $ (-348 (-483))))))) (-5 *1 (-1040 *3 *2)) (-4 *3 (-1153 *2)))) (-3345 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-312) (-10 -8 (-15 ** ($ $ (-348 (-483))))))) (-5 *1 (-1040 *3 *2)) (-4 *3 (-1153 *2)))) (-3344 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-312) (-10 -8 (-15 ** ($ $ (-348 (-483))))))) (-5 *1 (-1040 *3 *2)) (-4 *3 (-1153 *2)))) (-3343 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-312) (-10 -8 (-15 ** ($ $ (-348 (-483))))))) (-5 *2 (-582 *3)) (-5 *1 (-1040 *4 *3)) (-4 *4 (-1153 *3)))) (-3342 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-312) (-10 -8 (-15 ** ($ $ (-348 (-483))))))) (-5 *2 (-582 *3)) (-5 *1 (-1040 *4 *3)) (-4 *4 (-1153 *3)))) (-3341 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-312) (-10 -8 (-15 ** ($ $ (-348 (-483))))))) (-5 *2 (-582 *3)) (-5 *1 (-1040 *4 *3)) (-4 *4 (-1153 *3)))) (-3340 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-312) (-10 -8 (-15 ** ($ $ (-348 (-483))))))) (-5 *2 (-582 *3)) (-5 *1 (-1040 *4 *3)) (-4 *4 (-1153 *3)))) (-3343 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-10 -8 (-15 ** ($ $ (-348 (-483))))))) (-5 *2 (-582 *4)) (-5 *1 (-1040 *3 *4)) (-4 *3 (-1153 *4)))) (-3342 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-10 -8 (-15 ** ($ $ (-348 (-483))))))) (-5 *2 (-582 *4)) (-5 *1 (-1040 *3 *4)) (-4 *3 (-1153 *4)))) (-3341 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-10 -8 (-15 ** ($ $ (-348 (-483))))))) (-5 *2 (-582 *4)) (-5 *1 (-1040 *3 *4)) (-4 *3 (-1153 *4)))) (-3340 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-10 -8 (-15 ** ($ $ (-348 (-483))))))) (-5 *2 (-582 *4)) (-5 *1 (-1040 *3 *4)) (-4 *3 (-1153 *4)))) (-3339 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-312) (-10 -8 (-15 ** ($ $ (-348 (-483))))))) (-5 *2 (-2 (|:| |solns| (-582 *5)) (|:| |maps| (-582 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1040 *3 *5)) (-4 *3 (-1153 *5)))) (-3338 (*1 *2 *3) (-12 (-4 *2 (-13 (-312) (-10 -8 (-15 ** ($ $ (-348 (-483))))))) (-5 *1 (-1040 *3 *2)) (-4 *3 (-1153 *2)))) (-3571 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-10 -8 (-15 ** ($ $ (-348 (-483))))))) (-5 *2 (-582 *4)) (-5 *1 (-1040 *3 *4)) (-4 *3 (-1153 *4))))) -((-3348 (((-582 (-582 (-249 (-265 |#1|)))) (-582 (-249 (-348 (-856 |#1|))))) 119 T ELT) (((-582 (-582 (-249 (-265 |#1|)))) (-582 (-249 (-348 (-856 |#1|)))) (-582 (-1088))) 118 T ELT) (((-582 (-582 (-249 (-265 |#1|)))) (-582 (-348 (-856 |#1|)))) 116 T ELT) (((-582 (-582 (-249 (-265 |#1|)))) (-582 (-348 (-856 |#1|))) (-582 (-1088))) 113 T ELT) (((-582 (-249 (-265 |#1|))) (-249 (-348 (-856 |#1|)))) 97 T ELT) (((-582 (-249 (-265 |#1|))) (-249 (-348 (-856 |#1|))) (-1088)) 98 T ELT) (((-582 (-249 (-265 |#1|))) (-348 (-856 |#1|))) 92 T ELT) (((-582 (-249 (-265 |#1|))) (-348 (-856 |#1|)) (-1088)) 82 T ELT)) (-3349 (((-582 (-582 (-265 |#1|))) (-582 (-348 (-856 |#1|))) (-582 (-1088))) 111 T ELT) (((-582 (-265 |#1|)) (-348 (-856 |#1|)) (-1088)) 54 T ELT)) (-3350 (((-1078 (-582 (-265 |#1|)) (-582 (-249 (-265 |#1|)))) (-348 (-856 |#1|)) (-1088)) 123 T ELT) (((-1078 (-582 (-265 |#1|)) (-582 (-249 (-265 |#1|)))) (-249 (-348 (-856 |#1|))) (-1088)) 122 T ELT))) -(((-1041 |#1|) (-10 -7 (-15 -3348 ((-582 (-249 (-265 |#1|))) (-348 (-856 |#1|)) (-1088))) (-15 -3348 ((-582 (-249 (-265 |#1|))) (-348 (-856 |#1|)))) (-15 -3348 ((-582 (-249 (-265 |#1|))) (-249 (-348 (-856 |#1|))) (-1088))) (-15 -3348 ((-582 (-249 (-265 |#1|))) (-249 (-348 (-856 |#1|))))) (-15 -3348 ((-582 (-582 (-249 (-265 |#1|)))) (-582 (-348 (-856 |#1|))) (-582 (-1088)))) (-15 -3348 ((-582 (-582 (-249 (-265 |#1|)))) (-582 (-348 (-856 |#1|))))) (-15 -3348 ((-582 (-582 (-249 (-265 |#1|)))) (-582 (-249 (-348 (-856 |#1|)))) (-582 (-1088)))) (-15 -3348 ((-582 (-582 (-249 (-265 |#1|)))) (-582 (-249 (-348 (-856 |#1|)))))) (-15 -3349 ((-582 (-265 |#1|)) (-348 (-856 |#1|)) (-1088))) (-15 -3349 ((-582 (-582 (-265 |#1|))) (-582 (-348 (-856 |#1|))) (-582 (-1088)))) (-15 -3350 ((-1078 (-582 (-265 |#1|)) (-582 (-249 (-265 |#1|)))) (-249 (-348 (-856 |#1|))) (-1088))) (-15 -3350 ((-1078 (-582 (-265 |#1|)) (-582 (-249 (-265 |#1|)))) (-348 (-856 |#1|)) (-1088)))) (-13 (-258) (-120))) (T -1041)) -((-3350 (*1 *2 *3 *4) (-12 (-5 *3 (-348 (-856 *5))) (-5 *4 (-1088)) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-1078 (-582 (-265 *5)) (-582 (-249 (-265 *5))))) (-5 *1 (-1041 *5)))) (-3350 (*1 *2 *3 *4) (-12 (-5 *3 (-249 (-348 (-856 *5)))) (-5 *4 (-1088)) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-1078 (-582 (-265 *5)) (-582 (-249 (-265 *5))))) (-5 *1 (-1041 *5)))) (-3349 (*1 *2 *3 *4) (-12 (-5 *3 (-582 (-348 (-856 *5)))) (-5 *4 (-582 (-1088))) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-582 (-582 (-265 *5)))) (-5 *1 (-1041 *5)))) (-3349 (*1 *2 *3 *4) (-12 (-5 *3 (-348 (-856 *5))) (-5 *4 (-1088)) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-582 (-265 *5))) (-5 *1 (-1041 *5)))) (-3348 (*1 *2 *3) (-12 (-5 *3 (-582 (-249 (-348 (-856 *4))))) (-4 *4 (-13 (-258) (-120))) (-5 *2 (-582 (-582 (-249 (-265 *4))))) (-5 *1 (-1041 *4)))) (-3348 (*1 *2 *3 *4) (-12 (-5 *3 (-582 (-249 (-348 (-856 *5))))) (-5 *4 (-582 (-1088))) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-582 (-582 (-249 (-265 *5))))) (-5 *1 (-1041 *5)))) (-3348 (*1 *2 *3) (-12 (-5 *3 (-582 (-348 (-856 *4)))) (-4 *4 (-13 (-258) (-120))) (-5 *2 (-582 (-582 (-249 (-265 *4))))) (-5 *1 (-1041 *4)))) (-3348 (*1 *2 *3 *4) (-12 (-5 *3 (-582 (-348 (-856 *5)))) (-5 *4 (-582 (-1088))) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-582 (-582 (-249 (-265 *5))))) (-5 *1 (-1041 *5)))) (-3348 (*1 *2 *3) (-12 (-5 *3 (-249 (-348 (-856 *4)))) (-4 *4 (-13 (-258) (-120))) (-5 *2 (-582 (-249 (-265 *4)))) (-5 *1 (-1041 *4)))) (-3348 (*1 *2 *3 *4) (-12 (-5 *3 (-249 (-348 (-856 *5)))) (-5 *4 (-1088)) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-582 (-249 (-265 *5)))) (-5 *1 (-1041 *5)))) (-3348 (*1 *2 *3) (-12 (-5 *3 (-348 (-856 *4))) (-4 *4 (-13 (-258) (-120))) (-5 *2 (-582 (-249 (-265 *4)))) (-5 *1 (-1041 *4)))) (-3348 (*1 *2 *3 *4) (-12 (-5 *3 (-348 (-856 *5))) (-5 *4 (-1088)) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-582 (-249 (-265 *5)))) (-5 *1 (-1041 *5))))) -((-3352 (((-348 (-1083 (-265 |#1|))) (-1177 (-265 |#1|)) (-348 (-1083 (-265 |#1|))) (-483)) 36 T ELT)) (-3351 (((-348 (-1083 (-265 |#1|))) (-348 (-1083 (-265 |#1|))) (-348 (-1083 (-265 |#1|))) (-348 (-1083 (-265 |#1|)))) 48 T ELT))) -(((-1042 |#1|) (-10 -7 (-15 -3351 ((-348 (-1083 (-265 |#1|))) (-348 (-1083 (-265 |#1|))) (-348 (-1083 (-265 |#1|))) (-348 (-1083 (-265 |#1|))))) (-15 -3352 ((-348 (-1083 (-265 |#1|))) (-1177 (-265 |#1|)) (-348 (-1083 (-265 |#1|))) (-483)))) (-494)) (T -1042)) -((-3352 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-348 (-1083 (-265 *5)))) (-5 *3 (-1177 (-265 *5))) (-5 *4 (-483)) (-4 *5 (-494)) (-5 *1 (-1042 *5)))) (-3351 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-348 (-1083 (-265 *3)))) (-4 *3 (-494)) (-5 *1 (-1042 *3))))) -((-3571 (((-582 (-582 (-249 (-265 |#1|)))) (-582 (-249 (-265 |#1|))) (-582 (-1088))) 244 T ELT) (((-582 (-249 (-265 |#1|))) (-265 |#1|) (-1088)) 23 T ELT) (((-582 (-249 (-265 |#1|))) (-249 (-265 |#1|)) (-1088)) 29 T ELT) (((-582 (-249 (-265 |#1|))) (-249 (-265 |#1|))) 28 T ELT) (((-582 (-249 (-265 |#1|))) (-265 |#1|)) 24 T ELT))) -(((-1043 |#1|) (-10 -7 (-15 -3571 ((-582 (-249 (-265 |#1|))) (-265 |#1|))) (-15 -3571 ((-582 (-249 (-265 |#1|))) (-249 (-265 |#1|)))) (-15 -3571 ((-582 (-249 (-265 |#1|))) (-249 (-265 |#1|)) (-1088))) (-15 -3571 ((-582 (-249 (-265 |#1|))) (-265 |#1|) (-1088))) (-15 -3571 ((-582 (-582 (-249 (-265 |#1|)))) (-582 (-249 (-265 |#1|))) (-582 (-1088))))) (-13 (-258) (-949 (-483)) (-579 (-483)) (-120))) (T -1043)) -((-3571 (*1 *2 *3 *4) (-12 (-5 *4 (-582 (-1088))) (-4 *5 (-13 (-258) (-949 (-483)) (-579 (-483)) (-120))) (-5 *2 (-582 (-582 (-249 (-265 *5))))) (-5 *1 (-1043 *5)) (-5 *3 (-582 (-249 (-265 *5)))))) (-3571 (*1 *2 *3 *4) (-12 (-5 *4 (-1088)) (-4 *5 (-13 (-258) (-949 (-483)) (-579 (-483)) (-120))) (-5 *2 (-582 (-249 (-265 *5)))) (-5 *1 (-1043 *5)) (-5 *3 (-265 *5)))) (-3571 (*1 *2 *3 *4) (-12 (-5 *4 (-1088)) (-4 *5 (-13 (-258) (-949 (-483)) (-579 (-483)) (-120))) (-5 *2 (-582 (-249 (-265 *5)))) (-5 *1 (-1043 *5)) (-5 *3 (-249 (-265 *5))))) (-3571 (*1 *2 *3) (-12 (-4 *4 (-13 (-258) (-949 (-483)) (-579 (-483)) (-120))) (-5 *2 (-582 (-249 (-265 *4)))) (-5 *1 (-1043 *4)) (-5 *3 (-249 (-265 *4))))) (-3571 (*1 *2 *3) (-12 (-4 *4 (-13 (-258) (-949 (-483)) (-579 (-483)) (-120))) (-5 *2 (-582 (-249 (-265 *4)))) (-5 *1 (-1043 *4)) (-5 *3 (-265 *4))))) -((-3354 ((|#2| |#2|) 28 (|has| |#1| (-755)) ELT) ((|#2| |#2| (-1 (-85) |#1| |#1|)) 25 T ELT)) (-3353 ((|#2| |#2|) 27 (|has| |#1| (-755)) ELT) ((|#2| |#2| (-1 (-85) |#1| |#1|)) 22 T ELT))) -(((-1044 |#1| |#2|) (-10 -7 (-15 -3353 (|#2| |#2| (-1 (-85) |#1| |#1|))) (-15 -3354 (|#2| |#2| (-1 (-85) |#1| |#1|))) (IF (|has| |#1| (-755)) (PROGN (-15 -3353 (|#2| |#2|)) (-15 -3354 (|#2| |#2|))) |%noBranch|)) (-1127) (-13 (-537 (-483) |#1|) (-10 -7 (-6 -3993) (-6 -3994)))) (T -1044)) -((-3354 (*1 *2 *2) (-12 (-4 *3 (-755)) (-4 *3 (-1127)) (-5 *1 (-1044 *3 *2)) (-4 *2 (-13 (-537 (-483) *3) (-10 -7 (-6 -3993) (-6 -3994)))))) (-3353 (*1 *2 *2) (-12 (-4 *3 (-755)) (-4 *3 (-1127)) (-5 *1 (-1044 *3 *2)) (-4 *2 (-13 (-537 (-483) *3) (-10 -7 (-6 -3993) (-6 -3994)))))) (-3354 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1127)) (-5 *1 (-1044 *4 *2)) (-4 *2 (-13 (-537 (-483) *4) (-10 -7 (-6 -3993) (-6 -3994)))))) (-3353 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1127)) (-5 *1 (-1044 *4 *2)) (-4 *2 (-13 (-537 (-483) *4) (-10 -7 (-6 -3993) (-6 -3994))))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3886 (((-1077 3 |#1|) $) 141 T ELT)) (-3364 (((-85) $) 101 T ELT)) (-3365 (($ $ (-582 (-853 |#1|))) 44 T ELT) (($ $ (-582 (-582 |#1|))) 104 T ELT) (($ (-582 (-853 |#1|))) 103 T ELT) (((-582 (-853 |#1|)) $) 102 T ELT)) (-3370 (((-85) $) 72 T ELT)) (-3704 (($ $ (-853 |#1|)) 76 T ELT) (($ $ (-582 |#1|)) 81 T ELT) (($ $ (-693)) 83 T ELT) (($ (-853 |#1|)) 77 T ELT) (((-853 |#1|) $) 75 T ELT)) (-3356 (((-2 (|:| -3848 (-693)) (|:| |curves| (-693)) (|:| |polygons| (-693)) (|:| |constructs| (-693))) $) 139 T ELT)) (-3374 (((-693) $) 53 T ELT)) (-3375 (((-693) $) 52 T ELT)) (-3885 (($ $ (-693) (-853 |#1|)) 67 T ELT)) (-3362 (((-85) $) 111 T ELT)) (-3363 (($ $ (-582 (-582 (-853 |#1|))) (-582 (-145)) (-145)) 118 T ELT) (($ $ (-582 (-582 (-582 |#1|))) (-582 (-145)) (-145)) 120 T ELT) (($ $ (-582 (-582 (-853 |#1|))) (-85) (-85)) 115 T ELT) (($ $ (-582 (-582 (-582 |#1|))) (-85) (-85)) 127 T ELT) (($ (-582 (-582 (-853 |#1|)))) 116 T ELT) (($ (-582 (-582 (-853 |#1|))) (-85) (-85)) 117 T ELT) (((-582 (-582 (-853 |#1|))) $) 114 T ELT)) (-3516 (($ (-582 $)) 56 T ELT) (($ $ $) 57 T ELT)) (-3357 (((-582 (-145)) $) 133 T ELT)) (-3361 (((-582 (-853 |#1|)) $) 130 T ELT)) (-3358 (((-582 (-582 (-145))) $) 132 T ELT)) (-3359 (((-582 (-582 (-582 (-853 |#1|)))) $) NIL T ELT)) (-3360 (((-582 (-582 (-582 (-693)))) $) 131 T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3371 (((-693) $ (-582 (-853 |#1|))) 65 T ELT)) (-3368 (((-85) $) 84 T ELT)) (-3369 (($ $ (-582 (-853 |#1|))) 86 T ELT) (($ $ (-582 (-582 |#1|))) 92 T ELT) (($ (-582 (-853 |#1|))) 87 T ELT) (((-582 (-853 |#1|)) $) 85 T ELT)) (-3376 (($) 48 T ELT) (($ (-1077 3 |#1|)) 49 T ELT)) (-3398 (($ $) 63 T ELT)) (-3372 (((-582 $) $) 62 T ELT)) (-3752 (($ (-582 $)) 59 T ELT)) (-3373 (((-582 $) $) 61 T ELT)) (-3944 (((-771) $) 146 T ELT)) (-3366 (((-85) $) 94 T ELT)) (-3367 (($ $ (-582 (-853 |#1|))) 96 T ELT) (($ $ (-582 (-582 |#1|))) 99 T ELT) (($ (-582 (-853 |#1|))) 97 T ELT) (((-582 (-853 |#1|)) $) 95 T ELT)) (-3355 (($ $) 140 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-1045 |#1|) (-1046 |#1|) (-960)) (T -1045)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-3886 (((-1077 3 |#1|) $) 17 T ELT)) (-3364 (((-85) $) 33 T ELT)) (-3365 (($ $ (-582 (-853 |#1|))) 37 T ELT) (($ $ (-582 (-582 |#1|))) 36 T ELT) (($ (-582 (-853 |#1|))) 35 T ELT) (((-582 (-853 |#1|)) $) 34 T ELT)) (-3370 (((-85) $) 48 T ELT)) (-3704 (($ $ (-853 |#1|)) 53 T ELT) (($ $ (-582 |#1|)) 52 T ELT) (($ $ (-693)) 51 T ELT) (($ (-853 |#1|)) 50 T ELT) (((-853 |#1|) $) 49 T ELT)) (-3356 (((-2 (|:| -3848 (-693)) (|:| |curves| (-693)) (|:| |polygons| (-693)) (|:| |constructs| (-693))) $) 19 T ELT)) (-3374 (((-693) $) 62 T ELT)) (-3375 (((-693) $) 63 T ELT)) (-3885 (($ $ (-693) (-853 |#1|)) 54 T ELT)) (-3362 (((-85) $) 25 T ELT)) (-3363 (($ $ (-582 (-582 (-853 |#1|))) (-582 (-145)) (-145)) 32 T ELT) (($ $ (-582 (-582 (-582 |#1|))) (-582 (-145)) (-145)) 31 T ELT) (($ $ (-582 (-582 (-853 |#1|))) (-85) (-85)) 30 T ELT) (($ $ (-582 (-582 (-582 |#1|))) (-85) (-85)) 29 T ELT) (($ (-582 (-582 (-853 |#1|)))) 28 T ELT) (($ (-582 (-582 (-853 |#1|))) (-85) (-85)) 27 T ELT) (((-582 (-582 (-853 |#1|))) $) 26 T ELT)) (-3516 (($ (-582 $)) 61 T ELT) (($ $ $) 60 T ELT)) (-3357 (((-582 (-145)) $) 20 T ELT)) (-3361 (((-582 (-853 |#1|)) $) 24 T ELT)) (-3358 (((-582 (-582 (-145))) $) 21 T ELT)) (-3359 (((-582 (-582 (-582 (-853 |#1|)))) $) 22 T ELT)) (-3360 (((-582 (-582 (-582 (-693)))) $) 23 T ELT)) (-3241 (((-1071) $) 11 T ELT)) (-3242 (((-1032) $) 12 T ELT)) (-3371 (((-693) $ (-582 (-853 |#1|))) 55 T ELT)) (-3368 (((-85) $) 43 T ELT)) (-3369 (($ $ (-582 (-853 |#1|))) 47 T ELT) (($ $ (-582 (-582 |#1|))) 46 T ELT) (($ (-582 (-853 |#1|))) 45 T ELT) (((-582 (-853 |#1|)) $) 44 T ELT)) (-3376 (($) 65 T ELT) (($ (-1077 3 |#1|)) 64 T ELT)) (-3398 (($ $) 56 T ELT)) (-3372 (((-582 $) $) 57 T ELT)) (-3752 (($ (-582 $)) 59 T ELT)) (-3373 (((-582 $) $) 58 T ELT)) (-3944 (((-771) $) 13 T ELT)) (-3366 (((-85) $) 38 T ELT)) (-3367 (($ $ (-582 (-853 |#1|))) 42 T ELT) (($ $ (-582 (-582 |#1|))) 41 T ELT) (($ (-582 (-853 |#1|))) 40 T ELT) (((-582 (-853 |#1|)) $) 39 T ELT)) (-3355 (($ $) 18 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-3055 (((-85) $ $) 8 T ELT))) -(((-1046 |#1|) (-113) (-960)) (T -1046)) -((-3944 (*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-960)) (-5 *2 (-771)))) (-3376 (*1 *1) (-12 (-4 *1 (-1046 *2)) (-4 *2 (-960)))) (-3376 (*1 *1 *2) (-12 (-5 *2 (-1077 3 *3)) (-4 *3 (-960)) (-4 *1 (-1046 *3)))) (-3375 (*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-960)) (-5 *2 (-693)))) (-3374 (*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-960)) (-5 *2 (-693)))) (-3516 (*1 *1 *2) (-12 (-5 *2 (-582 *1)) (-4 *1 (-1046 *3)) (-4 *3 (-960)))) (-3516 (*1 *1 *1 *1) (-12 (-4 *1 (-1046 *2)) (-4 *2 (-960)))) (-3752 (*1 *1 *2) (-12 (-5 *2 (-582 *1)) (-4 *1 (-1046 *3)) (-4 *3 (-960)))) (-3373 (*1 *2 *1) (-12 (-4 *3 (-960)) (-5 *2 (-582 *1)) (-4 *1 (-1046 *3)))) (-3372 (*1 *2 *1) (-12 (-4 *3 (-960)) (-5 *2 (-582 *1)) (-4 *1 (-1046 *3)))) (-3398 (*1 *1 *1) (-12 (-4 *1 (-1046 *2)) (-4 *2 (-960)))) (-3371 (*1 *2 *1 *3) (-12 (-5 *3 (-582 (-853 *4))) (-4 *1 (-1046 *4)) (-4 *4 (-960)) (-5 *2 (-693)))) (-3885 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-693)) (-5 *3 (-853 *4)) (-4 *1 (-1046 *4)) (-4 *4 (-960)))) (-3704 (*1 *1 *1 *2) (-12 (-5 *2 (-853 *3)) (-4 *1 (-1046 *3)) (-4 *3 (-960)))) (-3704 (*1 *1 *1 *2) (-12 (-5 *2 (-582 *3)) (-4 *1 (-1046 *3)) (-4 *3 (-960)))) (-3704 (*1 *1 *1 *2) (-12 (-5 *2 (-693)) (-4 *1 (-1046 *3)) (-4 *3 (-960)))) (-3704 (*1 *1 *2) (-12 (-5 *2 (-853 *3)) (-4 *3 (-960)) (-4 *1 (-1046 *3)))) (-3704 (*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-960)) (-5 *2 (-853 *3)))) (-3370 (*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-960)) (-5 *2 (-85)))) (-3369 (*1 *1 *1 *2) (-12 (-5 *2 (-582 (-853 *3))) (-4 *1 (-1046 *3)) (-4 *3 (-960)))) (-3369 (*1 *1 *1 *2) (-12 (-5 *2 (-582 (-582 *3))) (-4 *1 (-1046 *3)) (-4 *3 (-960)))) (-3369 (*1 *1 *2) (-12 (-5 *2 (-582 (-853 *3))) (-4 *3 (-960)) (-4 *1 (-1046 *3)))) (-3369 (*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-960)) (-5 *2 (-582 (-853 *3))))) (-3368 (*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-960)) (-5 *2 (-85)))) (-3367 (*1 *1 *1 *2) (-12 (-5 *2 (-582 (-853 *3))) (-4 *1 (-1046 *3)) (-4 *3 (-960)))) (-3367 (*1 *1 *1 *2) (-12 (-5 *2 (-582 (-582 *3))) (-4 *1 (-1046 *3)) (-4 *3 (-960)))) (-3367 (*1 *1 *2) (-12 (-5 *2 (-582 (-853 *3))) (-4 *3 (-960)) (-4 *1 (-1046 *3)))) (-3367 (*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-960)) (-5 *2 (-582 (-853 *3))))) (-3366 (*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-960)) (-5 *2 (-85)))) (-3365 (*1 *1 *1 *2) (-12 (-5 *2 (-582 (-853 *3))) (-4 *1 (-1046 *3)) (-4 *3 (-960)))) (-3365 (*1 *1 *1 *2) (-12 (-5 *2 (-582 (-582 *3))) (-4 *1 (-1046 *3)) (-4 *3 (-960)))) (-3365 (*1 *1 *2) (-12 (-5 *2 (-582 (-853 *3))) (-4 *3 (-960)) (-4 *1 (-1046 *3)))) (-3365 (*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-960)) (-5 *2 (-582 (-853 *3))))) (-3364 (*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-960)) (-5 *2 (-85)))) (-3363 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-582 (-582 (-853 *5)))) (-5 *3 (-582 (-145))) (-5 *4 (-145)) (-4 *1 (-1046 *5)) (-4 *5 (-960)))) (-3363 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-582 (-582 (-582 *5)))) (-5 *3 (-582 (-145))) (-5 *4 (-145)) (-4 *1 (-1046 *5)) (-4 *5 (-960)))) (-3363 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-582 (-582 (-853 *4)))) (-5 *3 (-85)) (-4 *1 (-1046 *4)) (-4 *4 (-960)))) (-3363 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-582 (-582 (-582 *4)))) (-5 *3 (-85)) (-4 *1 (-1046 *4)) (-4 *4 (-960)))) (-3363 (*1 *1 *2) (-12 (-5 *2 (-582 (-582 (-853 *3)))) (-4 *3 (-960)) (-4 *1 (-1046 *3)))) (-3363 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-582 (-582 (-853 *4)))) (-5 *3 (-85)) (-4 *4 (-960)) (-4 *1 (-1046 *4)))) (-3363 (*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-960)) (-5 *2 (-582 (-582 (-853 *3)))))) (-3362 (*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-960)) (-5 *2 (-85)))) (-3361 (*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-960)) (-5 *2 (-582 (-853 *3))))) (-3360 (*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-960)) (-5 *2 (-582 (-582 (-582 (-693))))))) (-3359 (*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-960)) (-5 *2 (-582 (-582 (-582 (-853 *3))))))) (-3358 (*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-960)) (-5 *2 (-582 (-582 (-145)))))) (-3357 (*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-960)) (-5 *2 (-582 (-145))))) (-3356 (*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-960)) (-5 *2 (-2 (|:| -3848 (-693)) (|:| |curves| (-693)) (|:| |polygons| (-693)) (|:| |constructs| (-693)))))) (-3355 (*1 *1 *1) (-12 (-4 *1 (-1046 *2)) (-4 *2 (-960)))) (-3886 (*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-960)) (-5 *2 (-1077 3 *3))))) -(-13 (-1012) (-10 -8 (-15 -3376 ($)) (-15 -3376 ($ (-1077 3 |t#1|))) (-15 -3375 ((-693) $)) (-15 -3374 ((-693) $)) (-15 -3516 ($ (-582 $))) (-15 -3516 ($ $ $)) (-15 -3752 ($ (-582 $))) (-15 -3373 ((-582 $) $)) (-15 -3372 ((-582 $) $)) (-15 -3398 ($ $)) (-15 -3371 ((-693) $ (-582 (-853 |t#1|)))) (-15 -3885 ($ $ (-693) (-853 |t#1|))) (-15 -3704 ($ $ (-853 |t#1|))) (-15 -3704 ($ $ (-582 |t#1|))) (-15 -3704 ($ $ (-693))) (-15 -3704 ($ (-853 |t#1|))) (-15 -3704 ((-853 |t#1|) $)) (-15 -3370 ((-85) $)) (-15 -3369 ($ $ (-582 (-853 |t#1|)))) (-15 -3369 ($ $ (-582 (-582 |t#1|)))) (-15 -3369 ($ (-582 (-853 |t#1|)))) (-15 -3369 ((-582 (-853 |t#1|)) $)) (-15 -3368 ((-85) $)) (-15 -3367 ($ $ (-582 (-853 |t#1|)))) (-15 -3367 ($ $ (-582 (-582 |t#1|)))) (-15 -3367 ($ (-582 (-853 |t#1|)))) (-15 -3367 ((-582 (-853 |t#1|)) $)) (-15 -3366 ((-85) $)) (-15 -3365 ($ $ (-582 (-853 |t#1|)))) (-15 -3365 ($ $ (-582 (-582 |t#1|)))) (-15 -3365 ($ (-582 (-853 |t#1|)))) (-15 -3365 ((-582 (-853 |t#1|)) $)) (-15 -3364 ((-85) $)) (-15 -3363 ($ $ (-582 (-582 (-853 |t#1|))) (-582 (-145)) (-145))) (-15 -3363 ($ $ (-582 (-582 (-582 |t#1|))) (-582 (-145)) (-145))) (-15 -3363 ($ $ (-582 (-582 (-853 |t#1|))) (-85) (-85))) (-15 -3363 ($ $ (-582 (-582 (-582 |t#1|))) (-85) (-85))) (-15 -3363 ($ (-582 (-582 (-853 |t#1|))))) (-15 -3363 ($ (-582 (-582 (-853 |t#1|))) (-85) (-85))) (-15 -3363 ((-582 (-582 (-853 |t#1|))) $)) (-15 -3362 ((-85) $)) (-15 -3361 ((-582 (-853 |t#1|)) $)) (-15 -3360 ((-582 (-582 (-582 (-693)))) $)) (-15 -3359 ((-582 (-582 (-582 (-853 |t#1|)))) $)) (-15 -3358 ((-582 (-582 (-145))) $)) (-15 -3357 ((-582 (-145)) $)) (-15 -3356 ((-2 (|:| -3848 (-693)) (|:| |curves| (-693)) (|:| |polygons| (-693)) (|:| |constructs| (-693))) $)) (-15 -3355 ($ $)) (-15 -3886 ((-1077 3 |t#1|) $)) (-15 -3944 ((-771) $)))) -(((-72) . T) ((-551 (-771)) . T) ((-13) . T) ((-1012) . T) ((-1127) . T)) -((-2567 (((-85) $ $) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3944 (((-771) $) 185 T ELT) (($ (-1093)) NIL T ELT) (((-1093) $) 7 T ELT)) (-3564 (((-85) $ (|[\|\|]| (-461))) 19 T ELT) (((-85) $ (|[\|\|]| (-172))) 23 T ELT) (((-85) $ (|[\|\|]| (-616))) 27 T ELT) (((-85) $ (|[\|\|]| (-1188))) 31 T ELT) (((-85) $ (|[\|\|]| (-111))) 35 T ELT) (((-85) $ (|[\|\|]| (-538))) 39 T ELT) (((-85) $ (|[\|\|]| (-106))) 43 T ELT) (((-85) $ (|[\|\|]| (-1028))) 47 T ELT) (((-85) $ (|[\|\|]| (-67))) 51 T ELT) (((-85) $ (|[\|\|]| (-621))) 55 T ELT) (((-85) $ (|[\|\|]| (-457))) 59 T ELT) (((-85) $ (|[\|\|]| (-977))) 63 T ELT) (((-85) $ (|[\|\|]| (-1189))) 67 T ELT) (((-85) $ (|[\|\|]| (-462))) 71 T ELT) (((-85) $ (|[\|\|]| (-1065))) 75 T ELT) (((-85) $ (|[\|\|]| (-127))) 79 T ELT) (((-85) $ (|[\|\|]| (-612))) 83 T ELT) (((-85) $ (|[\|\|]| (-263))) 87 T ELT) (((-85) $ (|[\|\|]| (-947))) 91 T ELT) (((-85) $ (|[\|\|]| (-154))) 95 T ELT) (((-85) $ (|[\|\|]| (-882))) 99 T ELT) (((-85) $ (|[\|\|]| (-984))) 103 T ELT) (((-85) $ (|[\|\|]| (-1002))) 107 T ELT) (((-85) $ (|[\|\|]| (-1007))) 111 T ELT) (((-85) $ (|[\|\|]| (-564))) 116 T ELT) (((-85) $ (|[\|\|]| (-1079))) 120 T ELT) (((-85) $ (|[\|\|]| (-129))) 124 T ELT) (((-85) $ (|[\|\|]| (-110))) 128 T ELT) (((-85) $ (|[\|\|]| (-416))) 132 T ELT) (((-85) $ (|[\|\|]| (-527))) 136 T ELT) (((-85) $ (|[\|\|]| (-445))) 140 T ELT) (((-85) $ (|[\|\|]| (-1071))) 144 T ELT) (((-85) $ (|[\|\|]| (-483))) 148 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3570 (((-461) $) 20 T ELT) (((-172) $) 24 T ELT) (((-616) $) 28 T ELT) (((-1188) $) 32 T ELT) (((-111) $) 36 T ELT) (((-538) $) 40 T ELT) (((-106) $) 44 T ELT) (((-1028) $) 48 T ELT) (((-67) $) 52 T ELT) (((-621) $) 56 T ELT) (((-457) $) 60 T ELT) (((-977) $) 64 T ELT) (((-1189) $) 68 T ELT) (((-462) $) 72 T ELT) (((-1065) $) 76 T ELT) (((-127) $) 80 T ELT) (((-612) $) 84 T ELT) (((-263) $) 88 T ELT) (((-947) $) 92 T ELT) (((-154) $) 96 T ELT) (((-882) $) 100 T ELT) (((-984) $) 104 T ELT) (((-1002) $) 108 T ELT) (((-1007) $) 112 T ELT) (((-564) $) 117 T ELT) (((-1079) $) 121 T ELT) (((-129) $) 125 T ELT) (((-110) $) 129 T ELT) (((-416) $) 133 T ELT) (((-527) $) 137 T ELT) (((-445) $) 141 T ELT) (((-1071) $) 145 T ELT) (((-483) $) 149 T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-1047) (-1049)) (T -1047)) -NIL -((-3377 (((-582 (-1093)) (-1071)) 9 T ELT))) -(((-1048) (-10 -7 (-15 -3377 ((-582 (-1093)) (-1071))))) (T -1048)) -((-3377 (*1 *2 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-582 (-1093))) (-5 *1 (-1048))))) -((-2567 (((-85) $ $) 7 T ELT)) (-3241 (((-1071) $) 11 T ELT)) (-3242 (((-1032) $) 12 T ELT)) (-3944 (((-771) $) 13 T ELT) (($ (-1093)) 20 T ELT) (((-1093) $) 19 T ELT)) (-3564 (((-85) $ (|[\|\|]| (-461))) 88 T ELT) (((-85) $ (|[\|\|]| (-172))) 86 T ELT) (((-85) $ (|[\|\|]| (-616))) 84 T ELT) (((-85) $ (|[\|\|]| (-1188))) 82 T ELT) (((-85) $ (|[\|\|]| (-111))) 80 T ELT) (((-85) $ (|[\|\|]| (-538))) 78 T ELT) (((-85) $ (|[\|\|]| (-106))) 76 T ELT) (((-85) $ (|[\|\|]| (-1028))) 74 T ELT) (((-85) $ (|[\|\|]| (-67))) 72 T ELT) (((-85) $ (|[\|\|]| (-621))) 70 T ELT) (((-85) $ (|[\|\|]| (-457))) 68 T ELT) (((-85) $ (|[\|\|]| (-977))) 66 T ELT) (((-85) $ (|[\|\|]| (-1189))) 64 T ELT) (((-85) $ (|[\|\|]| (-462))) 62 T ELT) (((-85) $ (|[\|\|]| (-1065))) 60 T ELT) (((-85) $ (|[\|\|]| (-127))) 58 T ELT) (((-85) $ (|[\|\|]| (-612))) 56 T ELT) (((-85) $ (|[\|\|]| (-263))) 54 T ELT) (((-85) $ (|[\|\|]| (-947))) 52 T ELT) (((-85) $ (|[\|\|]| (-154))) 50 T ELT) (((-85) $ (|[\|\|]| (-882))) 48 T ELT) (((-85) $ (|[\|\|]| (-984))) 46 T ELT) (((-85) $ (|[\|\|]| (-1002))) 44 T ELT) (((-85) $ (|[\|\|]| (-1007))) 42 T ELT) (((-85) $ (|[\|\|]| (-564))) 40 T ELT) (((-85) $ (|[\|\|]| (-1079))) 38 T ELT) (((-85) $ (|[\|\|]| (-129))) 36 T ELT) (((-85) $ (|[\|\|]| (-110))) 34 T ELT) (((-85) $ (|[\|\|]| (-416))) 32 T ELT) (((-85) $ (|[\|\|]| (-527))) 30 T ELT) (((-85) $ (|[\|\|]| (-445))) 28 T ELT) (((-85) $ (|[\|\|]| (-1071))) 26 T ELT) (((-85) $ (|[\|\|]| (-483))) 24 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-3570 (((-461) $) 87 T ELT) (((-172) $) 85 T ELT) (((-616) $) 83 T ELT) (((-1188) $) 81 T ELT) (((-111) $) 79 T ELT) (((-538) $) 77 T ELT) (((-106) $) 75 T ELT) (((-1028) $) 73 T ELT) (((-67) $) 71 T ELT) (((-621) $) 69 T ELT) (((-457) $) 67 T ELT) (((-977) $) 65 T ELT) (((-1189) $) 63 T ELT) (((-462) $) 61 T ELT) (((-1065) $) 59 T ELT) (((-127) $) 57 T ELT) (((-612) $) 55 T ELT) (((-263) $) 53 T ELT) (((-947) $) 51 T ELT) (((-154) $) 49 T ELT) (((-882) $) 47 T ELT) (((-984) $) 45 T ELT) (((-1002) $) 43 T ELT) (((-1007) $) 41 T ELT) (((-564) $) 39 T ELT) (((-1079) $) 37 T ELT) (((-129) $) 35 T ELT) (((-110) $) 33 T ELT) (((-416) $) 31 T ELT) (((-527) $) 29 T ELT) (((-445) $) 27 T ELT) (((-1071) $) 25 T ELT) (((-483) $) 23 T ELT)) (-3055 (((-85) $ $) 8 T ELT))) -(((-1049) (-113)) (T -1049)) -((-3564 (*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-461))) (-5 *2 (-85)))) (-3570 (*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-461)))) (-3564 (*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-172))) (-5 *2 (-85)))) (-3570 (*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-172)))) (-3564 (*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-616))) (-5 *2 (-85)))) (-3570 (*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-616)))) (-3564 (*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-1188))) (-5 *2 (-85)))) (-3570 (*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-1188)))) (-3564 (*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-111))) (-5 *2 (-85)))) (-3570 (*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-111)))) (-3564 (*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-538))) (-5 *2 (-85)))) (-3570 (*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-538)))) (-3564 (*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-106))) (-5 *2 (-85)))) (-3570 (*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-106)))) (-3564 (*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-1028))) (-5 *2 (-85)))) (-3570 (*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-1028)))) (-3564 (*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-67))) (-5 *2 (-85)))) (-3570 (*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-67)))) (-3564 (*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-621))) (-5 *2 (-85)))) (-3570 (*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-621)))) (-3564 (*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-457))) (-5 *2 (-85)))) (-3570 (*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-457)))) (-3564 (*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-977))) (-5 *2 (-85)))) (-3570 (*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-977)))) (-3564 (*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-1189))) (-5 *2 (-85)))) (-3570 (*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-1189)))) (-3564 (*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-462))) (-5 *2 (-85)))) (-3570 (*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-462)))) (-3564 (*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-1065))) (-5 *2 (-85)))) (-3570 (*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-1065)))) (-3564 (*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-127))) (-5 *2 (-85)))) (-3570 (*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-127)))) (-3564 (*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-612))) (-5 *2 (-85)))) (-3570 (*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-612)))) (-3564 (*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-263))) (-5 *2 (-85)))) (-3570 (*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-263)))) (-3564 (*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-947))) (-5 *2 (-85)))) (-3570 (*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-947)))) (-3564 (*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-154))) (-5 *2 (-85)))) (-3570 (*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-154)))) (-3564 (*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-882))) (-5 *2 (-85)))) (-3570 (*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-882)))) (-3564 (*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-984))) (-5 *2 (-85)))) (-3570 (*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-984)))) (-3564 (*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-1002))) (-5 *2 (-85)))) (-3570 (*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-1002)))) (-3564 (*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-1007))) (-5 *2 (-85)))) (-3570 (*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-1007)))) (-3564 (*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-564))) (-5 *2 (-85)))) (-3570 (*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-564)))) (-3564 (*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-1079))) (-5 *2 (-85)))) (-3570 (*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-1079)))) (-3564 (*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-129))) (-5 *2 (-85)))) (-3570 (*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-129)))) (-3564 (*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-110))) (-5 *2 (-85)))) (-3570 (*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-110)))) (-3564 (*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-416))) (-5 *2 (-85)))) (-3570 (*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-416)))) (-3564 (*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-527))) (-5 *2 (-85)))) (-3570 (*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-527)))) (-3564 (*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-445))) (-5 *2 (-85)))) (-3570 (*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-445)))) (-3564 (*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-1071))) (-5 *2 (-85)))) (-3570 (*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-1071)))) (-3564 (*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-483))) (-5 *2 (-85)))) (-3570 (*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-483))))) -(-13 (-994) (-1173) (-10 -8 (-15 -3564 ((-85) $ (|[\|\|]| (-461)))) (-15 -3570 ((-461) $)) (-15 -3564 ((-85) $ (|[\|\|]| (-172)))) (-15 -3570 ((-172) $)) (-15 -3564 ((-85) $ (|[\|\|]| (-616)))) (-15 -3570 ((-616) $)) (-15 -3564 ((-85) $ (|[\|\|]| (-1188)))) (-15 -3570 ((-1188) $)) (-15 -3564 ((-85) $ (|[\|\|]| (-111)))) (-15 -3570 ((-111) $)) (-15 -3564 ((-85) $ (|[\|\|]| (-538)))) (-15 -3570 ((-538) $)) (-15 -3564 ((-85) $ (|[\|\|]| (-106)))) (-15 -3570 ((-106) $)) (-15 -3564 ((-85) $ (|[\|\|]| (-1028)))) (-15 -3570 ((-1028) $)) (-15 -3564 ((-85) $ (|[\|\|]| (-67)))) (-15 -3570 ((-67) $)) (-15 -3564 ((-85) $ (|[\|\|]| (-621)))) (-15 -3570 ((-621) $)) (-15 -3564 ((-85) $ (|[\|\|]| (-457)))) (-15 -3570 ((-457) $)) (-15 -3564 ((-85) $ (|[\|\|]| (-977)))) (-15 -3570 ((-977) $)) (-15 -3564 ((-85) $ (|[\|\|]| (-1189)))) (-15 -3570 ((-1189) $)) (-15 -3564 ((-85) $ (|[\|\|]| (-462)))) (-15 -3570 ((-462) $)) (-15 -3564 ((-85) $ (|[\|\|]| (-1065)))) (-15 -3570 ((-1065) $)) (-15 -3564 ((-85) $ (|[\|\|]| (-127)))) (-15 -3570 ((-127) $)) (-15 -3564 ((-85) $ (|[\|\|]| (-612)))) (-15 -3570 ((-612) $)) (-15 -3564 ((-85) $ (|[\|\|]| (-263)))) (-15 -3570 ((-263) $)) (-15 -3564 ((-85) $ (|[\|\|]| (-947)))) (-15 -3570 ((-947) $)) (-15 -3564 ((-85) $ (|[\|\|]| (-154)))) (-15 -3570 ((-154) $)) (-15 -3564 ((-85) $ (|[\|\|]| (-882)))) (-15 -3570 ((-882) $)) (-15 -3564 ((-85) $ (|[\|\|]| (-984)))) (-15 -3570 ((-984) $)) (-15 -3564 ((-85) $ (|[\|\|]| (-1002)))) (-15 -3570 ((-1002) $)) (-15 -3564 ((-85) $ (|[\|\|]| (-1007)))) (-15 -3570 ((-1007) $)) (-15 -3564 ((-85) $ (|[\|\|]| (-564)))) (-15 -3570 ((-564) $)) (-15 -3564 ((-85) $ (|[\|\|]| (-1079)))) (-15 -3570 ((-1079) $)) (-15 -3564 ((-85) $ (|[\|\|]| (-129)))) (-15 -3570 ((-129) $)) (-15 -3564 ((-85) $ (|[\|\|]| (-110)))) (-15 -3570 ((-110) $)) (-15 -3564 ((-85) $ (|[\|\|]| (-416)))) (-15 -3570 ((-416) $)) (-15 -3564 ((-85) $ (|[\|\|]| (-527)))) (-15 -3570 ((-527) $)) (-15 -3564 ((-85) $ (|[\|\|]| (-445)))) (-15 -3570 ((-445) $)) (-15 -3564 ((-85) $ (|[\|\|]| (-1071)))) (-15 -3570 ((-1071) $)) (-15 -3564 ((-85) $ (|[\|\|]| (-483)))) (-15 -3570 ((-483) $)))) -(((-64) . T) ((-72) . T) ((-554 (-1093)) . T) ((-551 (-771)) . T) ((-551 (-1093)) . T) ((-428 (-1093)) . T) ((-13) . T) ((-1012) . T) ((-994) . T) ((-1127) . T) ((-1173) . T)) -((-3380 (((-1183) (-582 (-771))) 22 T ELT) (((-1183) (-771)) 21 T ELT)) (-3379 (((-1183) (-582 (-771))) 20 T ELT) (((-1183) (-771)) 19 T ELT)) (-3378 (((-1183) (-582 (-771))) 18 T ELT) (((-1183) (-771)) 10 T ELT) (((-1183) (-1071) (-771)) 16 T ELT))) -(((-1050) (-10 -7 (-15 -3378 ((-1183) (-1071) (-771))) (-15 -3378 ((-1183) (-771))) (-15 -3379 ((-1183) (-771))) (-15 -3380 ((-1183) (-771))) (-15 -3378 ((-1183) (-582 (-771)))) (-15 -3379 ((-1183) (-582 (-771)))) (-15 -3380 ((-1183) (-582 (-771)))))) (T -1050)) -((-3380 (*1 *2 *3) (-12 (-5 *3 (-582 (-771))) (-5 *2 (-1183)) (-5 *1 (-1050)))) (-3379 (*1 *2 *3) (-12 (-5 *3 (-582 (-771))) (-5 *2 (-1183)) (-5 *1 (-1050)))) (-3378 (*1 *2 *3) (-12 (-5 *3 (-582 (-771))) (-5 *2 (-1183)) (-5 *1 (-1050)))) (-3380 (*1 *2 *3) (-12 (-5 *3 (-771)) (-5 *2 (-1183)) (-5 *1 (-1050)))) (-3379 (*1 *2 *3) (-12 (-5 *3 (-771)) (-5 *2 (-1183)) (-5 *1 (-1050)))) (-3378 (*1 *2 *3) (-12 (-5 *3 (-771)) (-5 *2 (-1183)) (-5 *1 (-1050)))) (-3378 (*1 *2 *3 *4) (-12 (-5 *3 (-1071)) (-5 *4 (-771)) (-5 *2 (-1183)) (-5 *1 (-1050))))) -((-3384 (($ $ $) 10 T ELT)) (-3383 (($ $) 9 T ELT)) (-3387 (($ $ $) 13 T ELT)) (-3389 (($ $ $) 15 T ELT)) (-3386 (($ $ $) 12 T ELT)) (-3388 (($ $ $) 14 T ELT)) (-3391 (($ $) 17 T ELT)) (-3390 (($ $) 16 T ELT)) (-3381 (($ $) 6 T ELT)) (-3385 (($ $ $) 11 T ELT) (($ $) 7 T ELT)) (-3382 (($ $ $) 8 T ELT))) -(((-1051) (-113)) (T -1051)) -((-3391 (*1 *1 *1) (-4 *1 (-1051))) (-3390 (*1 *1 *1) (-4 *1 (-1051))) (-3389 (*1 *1 *1 *1) (-4 *1 (-1051))) (-3388 (*1 *1 *1 *1) (-4 *1 (-1051))) (-3387 (*1 *1 *1 *1) (-4 *1 (-1051))) (-3386 (*1 *1 *1 *1) (-4 *1 (-1051))) (-3385 (*1 *1 *1 *1) (-4 *1 (-1051))) (-3384 (*1 *1 *1 *1) (-4 *1 (-1051))) (-3383 (*1 *1 *1) (-4 *1 (-1051))) (-3382 (*1 *1 *1 *1) (-4 *1 (-1051))) (-3385 (*1 *1 *1) (-4 *1 (-1051))) (-3381 (*1 *1 *1) (-4 *1 (-1051)))) -(-13 (-10 -8 (-15 -3381 ($ $)) (-15 -3385 ($ $)) (-15 -3382 ($ $ $)) (-15 -3383 ($ $)) (-15 -3384 ($ $ $)) (-15 -3385 ($ $ $)) (-15 -3386 ($ $ $)) (-15 -3387 ($ $ $)) (-15 -3388 ($ $ $)) (-15 -3389 ($ $ $)) (-15 -3390 ($ $)) (-15 -3391 ($ $)))) -((-2567 (((-85) $ $) 44 T ELT)) (-3400 ((|#1| $) 17 T ELT)) (-3392 (((-85) $ $ (-1 (-85) |#2| |#2|)) 39 T ELT)) (-3399 (((-85) $) 19 T ELT)) (-3397 (($ $ |#1|) 30 T ELT)) (-3395 (($ $ (-85)) 32 T ELT)) (-3394 (($ $) 33 T ELT)) (-3396 (($ $ |#2|) 31 T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3393 (((-85) $ $ (-1 (-85) |#1| |#1|) (-1 (-85) |#2| |#2|)) 38 T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3401 (((-85) $) 16 T ELT)) (-3563 (($) 13 T ELT)) (-3398 (($ $) 29 T ELT)) (-3528 (($ |#1| |#2| (-85)) 20 T ELT) (($ |#1| |#2|) 21 T ELT) (($ (-2 (|:| |val| |#1|) (|:| -1598 |#2|))) 23 T ELT) (((-582 $) (-582 (-2 (|:| |val| |#1|) (|:| -1598 |#2|)))) 26 T ELT) (((-582 $) |#1| (-582 |#2|)) 28 T ELT)) (-3920 ((|#2| $) 18 T ELT)) (-3944 (((-771) $) 53 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) 42 T ELT))) -(((-1052 |#1| |#2|) (-13 (-1012) (-10 -8 (-15 -3563 ($)) (-15 -3401 ((-85) $)) (-15 -3400 (|#1| $)) (-15 -3920 (|#2| $)) (-15 -3399 ((-85) $)) (-15 -3528 ($ |#1| |#2| (-85))) (-15 -3528 ($ |#1| |#2|)) (-15 -3528 ($ (-2 (|:| |val| |#1|) (|:| -1598 |#2|)))) (-15 -3528 ((-582 $) (-582 (-2 (|:| |val| |#1|) (|:| -1598 |#2|))))) (-15 -3528 ((-582 $) |#1| (-582 |#2|))) (-15 -3398 ($ $)) (-15 -3397 ($ $ |#1|)) (-15 -3396 ($ $ |#2|)) (-15 -3395 ($ $ (-85))) (-15 -3394 ($ $)) (-15 -3393 ((-85) $ $ (-1 (-85) |#1| |#1|) (-1 (-85) |#2| |#2|))) (-15 -3392 ((-85) $ $ (-1 (-85) |#2| |#2|))))) (-13 (-1012) (-34)) (-13 (-1012) (-34))) (T -1052)) -((-3563 (*1 *1) (-12 (-5 *1 (-1052 *2 *3)) (-4 *2 (-13 (-1012) (-34))) (-4 *3 (-13 (-1012) (-34))))) (-3401 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1052 *3 *4)) (-4 *3 (-13 (-1012) (-34))) (-4 *4 (-13 (-1012) (-34))))) (-3400 (*1 *2 *1) (-12 (-4 *2 (-13 (-1012) (-34))) (-5 *1 (-1052 *2 *3)) (-4 *3 (-13 (-1012) (-34))))) (-3920 (*1 *2 *1) (-12 (-4 *2 (-13 (-1012) (-34))) (-5 *1 (-1052 *3 *2)) (-4 *3 (-13 (-1012) (-34))))) (-3399 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1052 *3 *4)) (-4 *3 (-13 (-1012) (-34))) (-4 *4 (-13 (-1012) (-34))))) (-3528 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-85)) (-5 *1 (-1052 *2 *3)) (-4 *2 (-13 (-1012) (-34))) (-4 *3 (-13 (-1012) (-34))))) (-3528 (*1 *1 *2 *3) (-12 (-5 *1 (-1052 *2 *3)) (-4 *2 (-13 (-1012) (-34))) (-4 *3 (-13 (-1012) (-34))))) (-3528 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1598 *4))) (-4 *3 (-13 (-1012) (-34))) (-4 *4 (-13 (-1012) (-34))) (-5 *1 (-1052 *3 *4)))) (-3528 (*1 *2 *3) (-12 (-5 *3 (-582 (-2 (|:| |val| *4) (|:| -1598 *5)))) (-4 *4 (-13 (-1012) (-34))) (-4 *5 (-13 (-1012) (-34))) (-5 *2 (-582 (-1052 *4 *5))) (-5 *1 (-1052 *4 *5)))) (-3528 (*1 *2 *3 *4) (-12 (-5 *4 (-582 *5)) (-4 *5 (-13 (-1012) (-34))) (-5 *2 (-582 (-1052 *3 *5))) (-5 *1 (-1052 *3 *5)) (-4 *3 (-13 (-1012) (-34))))) (-3398 (*1 *1 *1) (-12 (-5 *1 (-1052 *2 *3)) (-4 *2 (-13 (-1012) (-34))) (-4 *3 (-13 (-1012) (-34))))) (-3397 (*1 *1 *1 *2) (-12 (-5 *1 (-1052 *2 *3)) (-4 *2 (-13 (-1012) (-34))) (-4 *3 (-13 (-1012) (-34))))) (-3396 (*1 *1 *1 *2) (-12 (-5 *1 (-1052 *3 *2)) (-4 *3 (-13 (-1012) (-34))) (-4 *2 (-13 (-1012) (-34))))) (-3395 (*1 *1 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1052 *3 *4)) (-4 *3 (-13 (-1012) (-34))) (-4 *4 (-13 (-1012) (-34))))) (-3394 (*1 *1 *1) (-12 (-5 *1 (-1052 *2 *3)) (-4 *2 (-13 (-1012) (-34))) (-4 *3 (-13 (-1012) (-34))))) (-3393 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-85) *5 *5)) (-5 *4 (-1 (-85) *6 *6)) (-4 *5 (-13 (-1012) (-34))) (-4 *6 (-13 (-1012) (-34))) (-5 *2 (-85)) (-5 *1 (-1052 *5 *6)))) (-3392 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-85) *5 *5)) (-4 *5 (-13 (-1012) (-34))) (-5 *2 (-85)) (-5 *1 (-1052 *4 *5)) (-4 *4 (-13 (-1012) (-34)))))) -((-2567 (((-85) $ $) NIL (|has| (-1052 |#1| |#2|) (-72)) ELT)) (-3400 (((-1052 |#1| |#2|) $) 27 T ELT)) (-3409 (($ $) 91 T ELT)) (-3405 (((-85) (-1052 |#1| |#2|) $ (-1 (-85) |#2| |#2|)) 100 T ELT)) (-3402 (($ $ $ (-582 (-1052 |#1| |#2|))) 108 T ELT) (($ $ $ (-582 (-1052 |#1| |#2|)) (-1 (-85) |#2| |#2|)) 109 T ELT)) (-3024 (((-1052 |#1| |#2|) $ (-1052 |#1| |#2|)) 46 (|has| $ (-6 -3994)) ELT)) (-3786 (((-1052 |#1| |#2|) $ #1="value" (-1052 |#1| |#2|)) NIL (|has| $ (-6 -3994)) ELT)) (-3025 (($ $ (-582 $)) 44 (|has| $ (-6 -3994)) ELT)) (-3722 (($) NIL T CONST)) (-3407 (((-582 (-2 (|:| |val| |#1|) (|:| -1598 |#2|))) $) 95 T ELT)) (-3403 (($ (-1052 |#1| |#2|) $) 42 T ELT)) (-3404 (($ (-1052 |#1| |#2|) $) 34 T ELT)) (-2888 (((-582 (-1052 |#1| |#2|)) $) NIL (|has| $ (-6 -3993)) ELT)) (-3030 (((-582 $) $) 54 T ELT)) (-3406 (((-85) (-1052 |#1| |#2|) $) 97 T ELT)) (-3026 (((-85) $ $) NIL (|has| (-1052 |#1| |#2|) (-1012)) ELT)) (-2607 (((-582 (-1052 |#1| |#2|)) $) 58 (|has| $ (-6 -3993)) ELT)) (-3244 (((-85) (-1052 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -3993)) (|has| (-1052 |#1| |#2|) (-1012))) ELT)) (-1947 (($ (-1 (-1052 |#1| |#2|) (-1052 |#1| |#2|)) $) 50 (|has| $ (-6 -3994)) ELT)) (-3956 (($ (-1 (-1052 |#1| |#2|) (-1052 |#1| |#2|)) $) 49 T ELT)) (-3029 (((-582 (-1052 |#1| |#2|)) $) 56 T ELT)) (-3525 (((-85) $) 45 T ELT)) (-3241 (((-1071) $) NIL (|has| (-1052 |#1| |#2|) (-1012)) ELT)) (-3242 (((-1032) $) NIL (|has| (-1052 |#1| |#2|) (-1012)) ELT)) (-3410 (((-3 $ "failed") $) 89 T ELT)) (-1945 (((-85) (-1 (-85) (-1052 |#1| |#2|)) $) NIL (|has| $ (-6 -3993)) ELT)) (-3766 (($ $ (-582 (-249 (-1052 |#1| |#2|)))) NIL (-12 (|has| (-1052 |#1| |#2|) (-260 (-1052 |#1| |#2|))) (|has| (-1052 |#1| |#2|) (-1012))) ELT) (($ $ (-249 (-1052 |#1| |#2|))) NIL (-12 (|has| (-1052 |#1| |#2|) (-260 (-1052 |#1| |#2|))) (|has| (-1052 |#1| |#2|) (-1012))) ELT) (($ $ (-1052 |#1| |#2|) (-1052 |#1| |#2|)) NIL (-12 (|has| (-1052 |#1| |#2|) (-260 (-1052 |#1| |#2|))) (|has| (-1052 |#1| |#2|) (-1012))) ELT) (($ $ (-582 (-1052 |#1| |#2|)) (-582 (-1052 |#1| |#2|))) NIL (-12 (|has| (-1052 |#1| |#2|) (-260 (-1052 |#1| |#2|))) (|has| (-1052 |#1| |#2|) (-1012))) ELT)) (-1220 (((-85) $ $) 53 T ELT)) (-3401 (((-85) $) 24 T ELT)) (-3563 (($) 26 T ELT)) (-3798 (((-1052 |#1| |#2|) $ #1#) NIL T ELT)) (-3028 (((-483) $ $) NIL T ELT)) (-3631 (((-85) $) 47 T ELT)) (-1944 (((-693) (-1 (-85) (-1052 |#1| |#2|)) $) NIL (|has| $ (-6 -3993)) ELT) (((-693) (-1052 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -3993)) (|has| (-1052 |#1| |#2|) (-1012))) ELT)) (-3398 (($ $) 52 T ELT)) (-3528 (($ (-1052 |#1| |#2|)) 10 T ELT) (($ |#1| |#2| (-582 $)) 13 T ELT) (($ |#1| |#2| (-582 (-1052 |#1| |#2|))) 15 T ELT) (($ |#1| |#2| |#1| (-582 |#2|)) 18 T ELT)) (-3408 (((-582 |#2|) $) 96 T ELT)) (-3944 (((-771) $) 87 (|has| (-1052 |#1| |#2|) (-551 (-771))) ELT)) (-3520 (((-582 $) $) 31 T ELT)) (-3027 (((-85) $ $) NIL (|has| (-1052 |#1| |#2|) (-1012)) ELT)) (-1263 (((-85) $ $) NIL (|has| (-1052 |#1| |#2|) (-72)) ELT)) (-1946 (((-85) (-1 (-85) (-1052 |#1| |#2|)) $) NIL (|has| $ (-6 -3993)) ELT)) (-3055 (((-85) $ $) 70 (|has| (-1052 |#1| |#2|) (-72)) ELT)) (-3955 (((-693) $) 64 (|has| $ (-6 -3993)) ELT))) -(((-1053 |#1| |#2|) (-13 (-922 (-1052 |#1| |#2|)) (-10 -8 (-6 -3994) (-6 -3993) (-15 -3410 ((-3 $ "failed") $)) (-15 -3409 ($ $)) (-15 -3528 ($ (-1052 |#1| |#2|))) (-15 -3528 ($ |#1| |#2| (-582 $))) (-15 -3528 ($ |#1| |#2| (-582 (-1052 |#1| |#2|)))) (-15 -3528 ($ |#1| |#2| |#1| (-582 |#2|))) (-15 -3408 ((-582 |#2|) $)) (-15 -3407 ((-582 (-2 (|:| |val| |#1|) (|:| -1598 |#2|))) $)) (-15 -3406 ((-85) (-1052 |#1| |#2|) $)) (-15 -3405 ((-85) (-1052 |#1| |#2|) $ (-1 (-85) |#2| |#2|))) (-15 -3404 ($ (-1052 |#1| |#2|) $)) (-15 -3403 ($ (-1052 |#1| |#2|) $)) (-15 -3402 ($ $ $ (-582 (-1052 |#1| |#2|)))) (-15 -3402 ($ $ $ (-582 (-1052 |#1| |#2|)) (-1 (-85) |#2| |#2|))))) (-13 (-1012) (-34)) (-13 (-1012) (-34))) (T -1053)) -((-3410 (*1 *1 *1) (|partial| -12 (-5 *1 (-1053 *2 *3)) (-4 *2 (-13 (-1012) (-34))) (-4 *3 (-13 (-1012) (-34))))) (-3409 (*1 *1 *1) (-12 (-5 *1 (-1053 *2 *3)) (-4 *2 (-13 (-1012) (-34))) (-4 *3 (-13 (-1012) (-34))))) (-3528 (*1 *1 *2) (-12 (-5 *2 (-1052 *3 *4)) (-4 *3 (-13 (-1012) (-34))) (-4 *4 (-13 (-1012) (-34))) (-5 *1 (-1053 *3 *4)))) (-3528 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-582 (-1053 *2 *3))) (-5 *1 (-1053 *2 *3)) (-4 *2 (-13 (-1012) (-34))) (-4 *3 (-13 (-1012) (-34))))) (-3528 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-582 (-1052 *2 *3))) (-4 *2 (-13 (-1012) (-34))) (-4 *3 (-13 (-1012) (-34))) (-5 *1 (-1053 *2 *3)))) (-3528 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-582 *3)) (-4 *3 (-13 (-1012) (-34))) (-5 *1 (-1053 *2 *3)) (-4 *2 (-13 (-1012) (-34))))) (-3408 (*1 *2 *1) (-12 (-5 *2 (-582 *4)) (-5 *1 (-1053 *3 *4)) (-4 *3 (-13 (-1012) (-34))) (-4 *4 (-13 (-1012) (-34))))) (-3407 (*1 *2 *1) (-12 (-5 *2 (-582 (-2 (|:| |val| *3) (|:| -1598 *4)))) (-5 *1 (-1053 *3 *4)) (-4 *3 (-13 (-1012) (-34))) (-4 *4 (-13 (-1012) (-34))))) (-3406 (*1 *2 *3 *1) (-12 (-5 *3 (-1052 *4 *5)) (-4 *4 (-13 (-1012) (-34))) (-4 *5 (-13 (-1012) (-34))) (-5 *2 (-85)) (-5 *1 (-1053 *4 *5)))) (-3405 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1052 *5 *6)) (-5 *4 (-1 (-85) *6 *6)) (-4 *5 (-13 (-1012) (-34))) (-4 *6 (-13 (-1012) (-34))) (-5 *2 (-85)) (-5 *1 (-1053 *5 *6)))) (-3404 (*1 *1 *2 *1) (-12 (-5 *2 (-1052 *3 *4)) (-4 *3 (-13 (-1012) (-34))) (-4 *4 (-13 (-1012) (-34))) (-5 *1 (-1053 *3 *4)))) (-3403 (*1 *1 *2 *1) (-12 (-5 *2 (-1052 *3 *4)) (-4 *3 (-13 (-1012) (-34))) (-4 *4 (-13 (-1012) (-34))) (-5 *1 (-1053 *3 *4)))) (-3402 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-582 (-1052 *3 *4))) (-4 *3 (-13 (-1012) (-34))) (-4 *4 (-13 (-1012) (-34))) (-5 *1 (-1053 *3 *4)))) (-3402 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-582 (-1052 *4 *5))) (-5 *3 (-1 (-85) *5 *5)) (-4 *4 (-13 (-1012) (-34))) (-4 *5 (-13 (-1012) (-34))) (-5 *1 (-1053 *4 *5))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3187 (((-85) $) NIL T ELT)) (-3412 (($ $) NIL T ELT)) (-3328 ((|#2| $) NIL T ELT)) (-3119 (((-85) $) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3411 (($ (-629 |#2|)) 53 T ELT)) (-3121 (((-85) $) NIL T ELT)) (-3331 (($ |#2|) 14 T ELT)) (-3722 (($) NIL T CONST)) (-3108 (($ $) 66 (|has| |#2| (-258)) ELT)) (-3110 (((-197 |#1| |#2|) $ (-483)) 40 T ELT)) (-3156 (((-3 (-483) #1#) $) NIL (|has| |#2| (-949 (-483))) ELT) (((-3 (-348 (-483)) #1#) $) NIL (|has| |#2| (-949 (-348 (-483)))) ELT) (((-3 |#2| #1#) $) NIL T ELT)) (-3155 (((-483) $) NIL (|has| |#2| (-949 (-483))) ELT) (((-348 (-483)) $) NIL (|has| |#2| (-949 (-348 (-483)))) ELT) ((|#2| $) NIL T ELT)) (-2278 (((-629 (-483)) (-629 $)) NIL (|has| |#2| (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-629 $) (-1177 $)) NIL (|has| |#2| (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 |#2|)) (|:| |vec| (-1177 |#2|))) (-629 $) (-1177 $)) NIL T ELT) (((-629 |#2|) (-629 $)) NIL T ELT)) (-3465 (((-3 $ #1#) $) 80 T ELT)) (-3107 (((-693) $) 68 (|has| |#2| (-494)) ELT)) (-3111 ((|#2| $ (-483) (-483)) NIL T ELT)) (-2888 (((-582 |#2|) $) NIL (|has| $ (-6 -3993)) ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-2409 (((-85) $) NIL T ELT)) (-3106 (((-693) $) 70 (|has| |#2| (-494)) ELT)) (-3105 (((-582 (-197 |#1| |#2|)) $) 74 (|has| |#2| (-494)) ELT)) (-3113 (((-693) $) NIL T ELT)) (-3612 (($ |#2|) 23 T ELT)) (-3112 (((-693) $) NIL T ELT)) (-3325 ((|#2| $) 64 (|has| |#2| (-6 (-3995 #2="*"))) ELT)) (-3117 (((-483) $) NIL T ELT)) (-3115 (((-483) $) NIL T ELT)) (-2607 (((-582 |#2|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3244 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#2| (-1012))) ELT)) (-3116 (((-483) $) NIL T ELT)) (-3114 (((-483) $) NIL T ELT)) (-3122 (($ (-582 (-582 |#2|))) 35 T ELT)) (-1947 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3956 (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3592 (((-582 (-582 |#2|)) $) NIL T ELT)) (-2279 (((-629 (-483)) (-1177 $)) NIL (|has| |#2| (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL (|has| |#2| (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 |#2|)) (|:| |vec| (-1177 |#2|))) (-1177 $) $) NIL T ELT) (((-629 |#2|) (-1177 $)) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3588 (((-3 $ #1#) $) 77 (|has| |#2| (-312)) ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3464 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-494)) ELT)) (-1945 (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3766 (($ $ (-582 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ (-582 |#2|) (-582 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1012))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-3401 (((-85) $) NIL T ELT)) (-3563 (($) NIL T ELT)) (-3798 ((|#2| $ (-483) (-483) |#2|) NIL T ELT) ((|#2| $ (-483) (-483)) NIL T ELT)) (-3756 (($ $ (-1 |#2| |#2|) (-693)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-693)) NIL (|has| |#2| (-189)) ELT) (($ $ (-1088)) NIL (|has| |#2| (-810 (-1088))) ELT) (($ $ (-582 (-1088))) NIL (|has| |#2| (-810 (-1088))) ELT) (($ $ (-1088) (-693)) NIL (|has| |#2| (-810 (-1088))) ELT) (($ $ (-582 (-1088)) (-582 (-693))) NIL (|has| |#2| (-810 (-1088))) ELT)) (-3327 ((|#2| $) NIL T ELT)) (-3330 (($ (-582 |#2|)) 48 T ELT)) (-3120 (((-85) $) NIL T ELT)) (-3329 (((-197 |#1| |#2|) $) NIL T ELT)) (-3326 ((|#2| $) 62 (|has| |#2| (-6 (-3995 #2#))) ELT)) (-1944 (((-693) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3993)) ELT) (((-693) |#2| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#2| (-1012))) ELT)) (-3398 (($ $) NIL T ELT)) (-3970 (((-472) $) 87 (|has| |#2| (-552 (-472))) ELT)) (-3109 (((-197 |#1| |#2|) $ (-483)) 42 T ELT)) (-3944 (((-771) $) 45 T ELT) (($ (-483)) NIL T ELT) (($ (-348 (-483))) NIL (|has| |#2| (-949 (-348 (-483)))) ELT) (($ |#2|) NIL T ELT) (((-629 |#2|) $) 50 T ELT)) (-3125 (((-693)) 21 T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-1946 (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3118 (((-85) $) NIL T ELT)) (-3124 (((-85) $ $) NIL T ELT)) (-2659 (($) 15 T CONST)) (-2665 (($) 19 T CONST)) (-2668 (($ $ (-1 |#2| |#2|) (-693)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-693)) NIL (|has| |#2| (-189)) ELT) (($ $ (-1088)) NIL (|has| |#2| (-810 (-1088))) ELT) (($ $ (-582 (-1088))) NIL (|has| |#2| (-810 (-1088))) ELT) (($ $ (-1088) (-693)) NIL (|has| |#2| (-810 (-1088))) ELT) (($ $ (-582 (-1088)) (-582 (-693))) NIL (|has| |#2| (-810 (-1088))) ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-3947 (($ $ |#2|) NIL (|has| |#2| (-312)) ELT)) (-3835 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3837 (($ $ $) NIL T ELT)) (** (($ $ (-829)) NIL T ELT) (($ $ (-693)) 60 T ELT) (($ $ (-483)) 79 (|has| |#2| (-312)) ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (((-197 |#1| |#2|) $ (-197 |#1| |#2|)) 56 T ELT) (((-197 |#1| |#2|) (-197 |#1| |#2|) $) 58 T ELT)) (-3955 (((-693) $) NIL (|has| $ (-6 -3993)) ELT))) -(((-1054 |#1| |#2|) (-13 (-1035 |#1| |#2| (-197 |#1| |#2|) (-197 |#1| |#2|)) (-551 (-629 |#2|)) (-10 -8 (-15 -3612 ($ |#2|)) (-15 -3412 ($ $)) (-15 -3411 ($ (-629 |#2|))) (IF (|has| |#2| (-6 (-3995 #1="*"))) (-6 -3982) |%noBranch|) (IF (|has| |#2| (-6 (-3995 #1#))) (IF (|has| |#2| (-6 -3990)) (-6 -3990) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-552 (-472))) (-6 (-552 (-472))) |%noBranch|))) (-693) (-960)) (T -1054)) -((-3612 (*1 *1 *2) (-12 (-5 *1 (-1054 *3 *2)) (-14 *3 (-693)) (-4 *2 (-960)))) (-3412 (*1 *1 *1) (-12 (-5 *1 (-1054 *2 *3)) (-14 *2 (-693)) (-4 *3 (-960)))) (-3411 (*1 *1 *2) (-12 (-5 *2 (-629 *4)) (-4 *4 (-960)) (-5 *1 (-1054 *3 *4)) (-14 *3 (-693))))) -((-3425 (($ $) 19 T ELT)) (-3415 (($ $ (-117)) 10 T ELT) (($ $ (-114)) 14 T ELT)) (-3423 (((-85) $ $) 24 T ELT)) (-3427 (($ $) 17 T ELT)) (-3798 (((-117) $ (-483) (-117)) NIL T ELT) (((-117) $ (-483)) NIL T ELT) (($ $ (-1144 (-483))) NIL T ELT) (($ $ $) 31 T ELT)) (-3944 (($ (-117)) 29 T ELT) (((-771) $) NIL T ELT))) -(((-1055 |#1|) (-10 -7 (-15 -3944 ((-771) |#1|)) (-15 -3798 (|#1| |#1| |#1|)) (-15 -3415 (|#1| |#1| (-114))) (-15 -3415 (|#1| |#1| (-117))) (-15 -3944 (|#1| (-117))) (-15 -3423 ((-85) |#1| |#1|)) (-15 -3425 (|#1| |#1|)) (-15 -3427 (|#1| |#1|)) (-15 -3798 (|#1| |#1| (-1144 (-483)))) (-15 -3798 ((-117) |#1| (-483))) (-15 -3798 ((-117) |#1| (-483) (-117)))) (-1056)) (T -1055)) -NIL -((-2567 (((-85) $ $) 19 (|has| (-117) (-72)) ELT)) (-3424 (($ $) 129 T ELT)) (-3425 (($ $) 130 T ELT)) (-3415 (($ $ (-117)) 117 T ELT) (($ $ (-114)) 116 T ELT)) (-2197 (((-1183) $ (-483) (-483)) 44 (|has| $ (-6 -3994)) ELT)) (-3422 (((-85) $ $) 127 T ELT)) (-3421 (((-85) $ $ (-483)) 126 T ELT)) (-3416 (((-582 $) $ (-117)) 119 T ELT) (((-582 $) $ (-114)) 118 T ELT)) (-1730 (((-85) (-1 (-85) (-117) (-117)) $) 107 T ELT) (((-85) $) 101 (|has| (-117) (-755)) ELT)) (-1728 (($ (-1 (-85) (-117) (-117)) $) 98 (|has| $ (-6 -3994)) ELT) (($ $) 97 (-12 (|has| (-117) (-755)) (|has| $ (-6 -3994))) ELT)) (-2908 (($ (-1 (-85) (-117) (-117)) $) 108 T ELT) (($ $) 102 (|has| (-117) (-755)) ELT)) (-3786 (((-117) $ (-483) (-117)) 56 (|has| $ (-6 -3994)) ELT) (((-117) $ (-1144 (-483)) (-117)) 64 (|has| $ (-6 -3994)) ELT)) (-3708 (($ (-1 (-85) (-117)) $) 81 (|has| $ (-6 -3993)) ELT)) (-3722 (($) 7 T CONST)) (-3413 (($ $ (-117)) 113 T ELT) (($ $ (-114)) 112 T ELT)) (-2296 (($ $) 99 (|has| $ (-6 -3994)) ELT)) (-2297 (($ $) 109 T ELT)) (-3418 (($ $ (-1144 (-483)) $) 123 T ELT)) (-1351 (($ $) 84 (-12 (|has| (-117) (-1012)) (|has| $ (-6 -3993))) ELT)) (-3404 (($ (-117) $) 83 (-12 (|has| (-117) (-1012)) (|has| $ (-6 -3993))) ELT) (($ (-1 (-85) (-117)) $) 80 (|has| $ (-6 -3993)) ELT)) (-3840 (((-117) (-1 (-117) (-117) (-117)) $ (-117) (-117)) 82 (-12 (|has| (-117) (-1012)) (|has| $ (-6 -3993))) ELT) (((-117) (-1 (-117) (-117) (-117)) $ (-117)) 79 (|has| $ (-6 -3993)) ELT) (((-117) (-1 (-117) (-117) (-117)) $) 78 (|has| $ (-6 -3993)) ELT)) (-1574 (((-117) $ (-483) (-117)) 57 (|has| $ (-6 -3994)) ELT)) (-3111 (((-117) $ (-483)) 55 T ELT)) (-3423 (((-85) $ $) 128 T ELT)) (-3417 (((-483) (-1 (-85) (-117)) $) 106 T ELT) (((-483) (-117) $) 105 (|has| (-117) (-1012)) ELT) (((-483) (-117) $ (-483)) 104 (|has| (-117) (-1012)) ELT) (((-483) $ $ (-483)) 122 T ELT) (((-483) (-114) $ (-483)) 121 T ELT)) (-2888 (((-582 (-117)) $) 30 (|has| $ (-6 -3993)) ELT)) (-3612 (($ (-693) (-117)) 74 T ELT)) (-2199 (((-483) $) 47 (|has| (-483) (-755)) ELT)) (-2530 (($ $ $) 91 (|has| (-117) (-755)) ELT)) (-3516 (($ (-1 (-85) (-117) (-117)) $ $) 110 T ELT) (($ $ $) 103 (|has| (-117) (-755)) ELT)) (-2607 (((-582 (-117)) $) 29 (|has| $ (-6 -3993)) ELT)) (-3244 (((-85) (-117) $) 27 (-12 (|has| (-117) (-1012)) (|has| $ (-6 -3993))) ELT)) (-2200 (((-483) $) 48 (|has| (-483) (-755)) ELT)) (-2856 (($ $ $) 92 (|has| (-117) (-755)) ELT)) (-3419 (((-85) $ $ (-117)) 124 T ELT)) (-3420 (((-693) $ $ (-117)) 125 T ELT)) (-1947 (($ (-1 (-117) (-117)) $) 34 (|has| $ (-6 -3994)) ELT)) (-3956 (($ (-1 (-117) (-117)) $) 35 T ELT) (($ (-1 (-117) (-117) (-117)) $ $) 69 T ELT)) (-3426 (($ $) 131 T ELT)) (-3427 (($ $) 132 T ELT)) (-3414 (($ $ (-117)) 115 T ELT) (($ $ (-114)) 114 T ELT)) (-3241 (((-1071) $) 22 (|has| (-117) (-1012)) ELT)) (-2303 (($ (-117) $ (-483)) 66 T ELT) (($ $ $ (-483)) 65 T ELT)) (-2202 (((-582 (-483)) $) 50 T ELT)) (-2203 (((-85) (-483) $) 51 T ELT)) (-3242 (((-1032) $) 21 (|has| (-117) (-1012)) ELT)) (-3799 (((-117) $) 46 (|has| (-483) (-755)) ELT)) (-1352 (((-3 (-117) "failed") (-1 (-85) (-117)) $) 77 T ELT)) (-2198 (($ $ (-117)) 45 (|has| $ (-6 -3994)) ELT)) (-1945 (((-85) (-1 (-85) (-117)) $) 32 (|has| $ (-6 -3993)) ELT)) (-3766 (($ $ (-582 (-249 (-117)))) 26 (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1012))) ELT) (($ $ (-249 (-117))) 25 (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1012))) ELT) (($ $ (-117) (-117)) 24 (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1012))) ELT) (($ $ (-582 (-117)) (-582 (-117))) 23 (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1012))) ELT)) (-1220 (((-85) $ $) 11 T ELT)) (-2201 (((-85) (-117) $) 49 (-12 (|has| $ (-6 -3993)) (|has| (-117) (-1012))) ELT)) (-2204 (((-582 (-117)) $) 52 T ELT)) (-3401 (((-85) $) 8 T ELT)) (-3563 (($) 9 T ELT)) (-3798 (((-117) $ (-483) (-117)) 54 T ELT) (((-117) $ (-483)) 53 T ELT) (($ $ (-1144 (-483))) 75 T ELT) (($ $ $) 111 T ELT)) (-2304 (($ $ (-483)) 68 T ELT) (($ $ (-1144 (-483))) 67 T ELT)) (-1944 (((-693) (-1 (-85) (-117)) $) 31 (|has| $ (-6 -3993)) ELT) (((-693) (-117) $) 28 (-12 (|has| (-117) (-1012)) (|has| $ (-6 -3993))) ELT)) (-1729 (($ $ $ (-483)) 100 (|has| $ (-6 -3994)) ELT)) (-3398 (($ $) 10 T ELT)) (-3970 (((-472) $) 85 (|has| (-117) (-552 (-472))) ELT)) (-3528 (($ (-582 (-117))) 76 T ELT)) (-3800 (($ $ (-117)) 73 T ELT) (($ (-117) $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-582 $)) 70 T ELT)) (-3944 (($ (-117)) 120 T ELT) (((-771) $) 17 (|has| (-117) (-551 (-771))) ELT)) (-1263 (((-85) $ $) 20 (|has| (-117) (-72)) ELT)) (-1946 (((-85) (-1 (-85) (-117)) $) 33 (|has| $ (-6 -3993)) ELT)) (-2565 (((-85) $ $) 93 (|has| (-117) (-755)) ELT)) (-2566 (((-85) $ $) 95 (|has| (-117) (-755)) ELT)) (-3055 (((-85) $ $) 18 (|has| (-117) (-72)) ELT)) (-2683 (((-85) $ $) 94 (|has| (-117) (-755)) ELT)) (-2684 (((-85) $ $) 96 (|has| (-117) (-755)) ELT)) (-3955 (((-693) $) 6 (|has| $ (-6 -3993)) ELT))) -(((-1056) (-113)) (T -1056)) -((-3427 (*1 *1 *1) (-4 *1 (-1056))) (-3426 (*1 *1 *1) (-4 *1 (-1056))) (-3425 (*1 *1 *1) (-4 *1 (-1056))) (-3424 (*1 *1 *1) (-4 *1 (-1056))) (-3423 (*1 *2 *1 *1) (-12 (-4 *1 (-1056)) (-5 *2 (-85)))) (-3422 (*1 *2 *1 *1) (-12 (-4 *1 (-1056)) (-5 *2 (-85)))) (-3421 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1056)) (-5 *3 (-483)) (-5 *2 (-85)))) (-3420 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1056)) (-5 *3 (-117)) (-5 *2 (-693)))) (-3419 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1056)) (-5 *3 (-117)) (-5 *2 (-85)))) (-3418 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1056)) (-5 *2 (-1144 (-483))))) (-3417 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1056)) (-5 *2 (-483)))) (-3417 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1056)) (-5 *2 (-483)) (-5 *3 (-114)))) (-3944 (*1 *1 *2) (-12 (-5 *2 (-117)) (-4 *1 (-1056)))) (-3416 (*1 *2 *1 *3) (-12 (-5 *3 (-117)) (-5 *2 (-582 *1)) (-4 *1 (-1056)))) (-3416 (*1 *2 *1 *3) (-12 (-5 *3 (-114)) (-5 *2 (-582 *1)) (-4 *1 (-1056)))) (-3415 (*1 *1 *1 *2) (-12 (-4 *1 (-1056)) (-5 *2 (-117)))) (-3415 (*1 *1 *1 *2) (-12 (-4 *1 (-1056)) (-5 *2 (-114)))) (-3414 (*1 *1 *1 *2) (-12 (-4 *1 (-1056)) (-5 *2 (-117)))) (-3414 (*1 *1 *1 *2) (-12 (-4 *1 (-1056)) (-5 *2 (-114)))) (-3413 (*1 *1 *1 *2) (-12 (-4 *1 (-1056)) (-5 *2 (-117)))) (-3413 (*1 *1 *1 *2) (-12 (-4 *1 (-1056)) (-5 *2 (-114)))) (-3798 (*1 *1 *1 *1) (-4 *1 (-1056)))) -(-13 (-19 (-117)) (-10 -8 (-15 -3427 ($ $)) (-15 -3426 ($ $)) (-15 -3425 ($ $)) (-15 -3424 ($ $)) (-15 -3423 ((-85) $ $)) (-15 -3422 ((-85) $ $)) (-15 -3421 ((-85) $ $ (-483))) (-15 -3420 ((-693) $ $ (-117))) (-15 -3419 ((-85) $ $ (-117))) (-15 -3418 ($ $ (-1144 (-483)) $)) (-15 -3417 ((-483) $ $ (-483))) (-15 -3417 ((-483) (-114) $ (-483))) (-15 -3944 ($ (-117))) (-15 -3416 ((-582 $) $ (-117))) (-15 -3416 ((-582 $) $ (-114))) (-15 -3415 ($ $ (-117))) (-15 -3415 ($ $ (-114))) (-15 -3414 ($ $ (-117))) (-15 -3414 ($ $ (-114))) (-15 -3413 ($ $ (-117))) (-15 -3413 ($ $ (-114))) (-15 -3798 ($ $ $)))) -(((-34) . T) ((-72) OR (|has| (-117) (-1012)) (|has| (-117) (-755)) (|has| (-117) (-72))) ((-551 (-771)) OR (|has| (-117) (-1012)) (|has| (-117) (-755)) (|has| (-117) (-551 (-771)))) ((-124 (-117)) . T) ((-552 (-472)) |has| (-117) (-552 (-472))) ((-241 (-483) (-117)) . T) ((-241 (-1144 (-483)) $) . T) ((-243 (-483) (-117)) . T) ((-260 (-117)) -12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1012))) ((-322 (-117)) . T) ((-427 (-117)) . T) ((-537 (-483) (-117)) . T) ((-454 (-117) (-117)) -12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1012))) ((-13) . T) ((-592 (-117)) . T) ((-19 (-117)) . T) ((-755) |has| (-117) (-755)) ((-758) |has| (-117) (-755)) ((-1012) OR (|has| (-117) (-1012)) (|has| (-117) (-755))) ((-1127) . T)) -((-3434 (((-582 (-2 (|:| |val| (-582 |#4|)) (|:| -1598 |#5|))) (-582 |#4|) (-582 |#5|) (-582 (-2 (|:| |val| (-582 |#4|)) (|:| -1598 |#5|))) (-2 (|:| |done| (-582 |#5|)) (|:| |todo| (-582 (-2 (|:| |val| (-582 |#4|)) (|:| -1598 |#5|))))) (-693)) 112 T ELT)) (-3431 (((-2 (|:| |done| (-582 |#5|)) (|:| |todo| (-582 (-2 (|:| |val| (-582 |#4|)) (|:| -1598 |#5|))))) |#4| |#5|) 62 T ELT) (((-2 (|:| |done| (-582 |#5|)) (|:| |todo| (-582 (-2 (|:| |val| (-582 |#4|)) (|:| -1598 |#5|))))) |#4| |#5| (-693)) 61 T ELT)) (-3435 (((-1183) (-582 (-2 (|:| |val| (-582 |#4|)) (|:| -1598 |#5|))) (-693)) 97 T ELT)) (-3429 (((-693) (-582 |#4|) (-582 |#5|)) 30 T ELT)) (-3432 (((-2 (|:| |done| (-582 |#5|)) (|:| |todo| (-582 (-2 (|:| |val| (-582 |#4|)) (|:| -1598 |#5|))))) |#4| |#5|) 64 T ELT) (((-2 (|:| |done| (-582 |#5|)) (|:| |todo| (-582 (-2 (|:| |val| (-582 |#4|)) (|:| -1598 |#5|))))) |#4| |#5| (-693)) 63 T ELT) (((-2 (|:| |done| (-582 |#5|)) (|:| |todo| (-582 (-2 (|:| |val| (-582 |#4|)) (|:| -1598 |#5|))))) |#4| |#5| (-693) (-85)) 65 T ELT)) (-3433 (((-582 |#5|) (-582 |#4|) (-582 |#5|) (-85) (-85) (-85) (-85) (-85)) 84 T ELT) (((-582 |#5|) (-582 |#4|) (-582 |#5|) (-85) (-85)) 85 T ELT)) (-3970 (((-1071) (-2 (|:| |val| (-582 |#4|)) (|:| -1598 |#5|))) 90 T ELT)) (-3430 (((-2 (|:| |done| (-582 |#5|)) (|:| |todo| (-582 (-2 (|:| |val| (-582 |#4|)) (|:| -1598 |#5|))))) |#4| |#5|) 60 T ELT)) (-3428 (((-693) (-582 |#4|) (-582 |#5|)) 21 T ELT))) -(((-1057 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3428 ((-693) (-582 |#4|) (-582 |#5|))) (-15 -3429 ((-693) (-582 |#4|) (-582 |#5|))) (-15 -3430 ((-2 (|:| |done| (-582 |#5|)) (|:| |todo| (-582 (-2 (|:| |val| (-582 |#4|)) (|:| -1598 |#5|))))) |#4| |#5|)) (-15 -3431 ((-2 (|:| |done| (-582 |#5|)) (|:| |todo| (-582 (-2 (|:| |val| (-582 |#4|)) (|:| -1598 |#5|))))) |#4| |#5| (-693))) (-15 -3431 ((-2 (|:| |done| (-582 |#5|)) (|:| |todo| (-582 (-2 (|:| |val| (-582 |#4|)) (|:| -1598 |#5|))))) |#4| |#5|)) (-15 -3432 ((-2 (|:| |done| (-582 |#5|)) (|:| |todo| (-582 (-2 (|:| |val| (-582 |#4|)) (|:| -1598 |#5|))))) |#4| |#5| (-693) (-85))) (-15 -3432 ((-2 (|:| |done| (-582 |#5|)) (|:| |todo| (-582 (-2 (|:| |val| (-582 |#4|)) (|:| -1598 |#5|))))) |#4| |#5| (-693))) (-15 -3432 ((-2 (|:| |done| (-582 |#5|)) (|:| |todo| (-582 (-2 (|:| |val| (-582 |#4|)) (|:| -1598 |#5|))))) |#4| |#5|)) (-15 -3433 ((-582 |#5|) (-582 |#4|) (-582 |#5|) (-85) (-85))) (-15 -3433 ((-582 |#5|) (-582 |#4|) (-582 |#5|) (-85) (-85) (-85) (-85) (-85))) (-15 -3434 ((-582 (-2 (|:| |val| (-582 |#4|)) (|:| -1598 |#5|))) (-582 |#4|) (-582 |#5|) (-582 (-2 (|:| |val| (-582 |#4|)) (|:| -1598 |#5|))) (-2 (|:| |done| (-582 |#5|)) (|:| |todo| (-582 (-2 (|:| |val| (-582 |#4|)) (|:| -1598 |#5|))))) (-693))) (-15 -3970 ((-1071) (-2 (|:| |val| (-582 |#4|)) (|:| -1598 |#5|)))) (-15 -3435 ((-1183) (-582 (-2 (|:| |val| (-582 |#4|)) (|:| -1598 |#5|))) (-693)))) (-390) (-716) (-755) (-976 |#1| |#2| |#3|) (-1019 |#1| |#2| |#3| |#4|)) (T -1057)) -((-3435 (*1 *2 *3 *4) (-12 (-5 *3 (-582 (-2 (|:| |val| (-582 *8)) (|:| -1598 *9)))) (-5 *4 (-693)) (-4 *8 (-976 *5 *6 *7)) (-4 *9 (-1019 *5 *6 *7 *8)) (-4 *5 (-390)) (-4 *6 (-716)) (-4 *7 (-755)) (-5 *2 (-1183)) (-5 *1 (-1057 *5 *6 *7 *8 *9)))) (-3970 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-582 *7)) (|:| -1598 *8))) (-4 *7 (-976 *4 *5 *6)) (-4 *8 (-1019 *4 *5 *6 *7)) (-4 *4 (-390)) (-4 *5 (-716)) (-4 *6 (-755)) (-5 *2 (-1071)) (-5 *1 (-1057 *4 *5 *6 *7 *8)))) (-3434 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-582 *11)) (|:| |todo| (-582 (-2 (|:| |val| *3) (|:| -1598 *11)))))) (-5 *6 (-693)) (-5 *2 (-582 (-2 (|:| |val| (-582 *10)) (|:| -1598 *11)))) (-5 *3 (-582 *10)) (-5 *4 (-582 *11)) (-4 *10 (-976 *7 *8 *9)) (-4 *11 (-1019 *7 *8 *9 *10)) (-4 *7 (-390)) (-4 *8 (-716)) (-4 *9 (-755)) (-5 *1 (-1057 *7 *8 *9 *10 *11)))) (-3433 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-582 *9)) (-5 *3 (-582 *8)) (-5 *4 (-85)) (-4 *8 (-976 *5 *6 *7)) (-4 *9 (-1019 *5 *6 *7 *8)) (-4 *5 (-390)) (-4 *6 (-716)) (-4 *7 (-755)) (-5 *1 (-1057 *5 *6 *7 *8 *9)))) (-3433 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-582 *9)) (-5 *3 (-582 *8)) (-5 *4 (-85)) (-4 *8 (-976 *5 *6 *7)) (-4 *9 (-1019 *5 *6 *7 *8)) (-4 *5 (-390)) (-4 *6 (-716)) (-4 *7 (-755)) (-5 *1 (-1057 *5 *6 *7 *8 *9)))) (-3432 (*1 *2 *3 *4) (-12 (-4 *5 (-390)) (-4 *6 (-716)) (-4 *7 (-755)) (-4 *3 (-976 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-582 *4)) (|:| |todo| (-582 (-2 (|:| |val| (-582 *3)) (|:| -1598 *4)))))) (-5 *1 (-1057 *5 *6 *7 *3 *4)) (-4 *4 (-1019 *5 *6 *7 *3)))) (-3432 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-693)) (-4 *6 (-390)) (-4 *7 (-716)) (-4 *8 (-755)) (-4 *3 (-976 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-582 *4)) (|:| |todo| (-582 (-2 (|:| |val| (-582 *3)) (|:| -1598 *4)))))) (-5 *1 (-1057 *6 *7 *8 *3 *4)) (-4 *4 (-1019 *6 *7 *8 *3)))) (-3432 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-693)) (-5 *6 (-85)) (-4 *7 (-390)) (-4 *8 (-716)) (-4 *9 (-755)) (-4 *3 (-976 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-582 *4)) (|:| |todo| (-582 (-2 (|:| |val| (-582 *3)) (|:| -1598 *4)))))) (-5 *1 (-1057 *7 *8 *9 *3 *4)) (-4 *4 (-1019 *7 *8 *9 *3)))) (-3431 (*1 *2 *3 *4) (-12 (-4 *5 (-390)) (-4 *6 (-716)) (-4 *7 (-755)) (-4 *3 (-976 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-582 *4)) (|:| |todo| (-582 (-2 (|:| |val| (-582 *3)) (|:| -1598 *4)))))) (-5 *1 (-1057 *5 *6 *7 *3 *4)) (-4 *4 (-1019 *5 *6 *7 *3)))) (-3431 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-693)) (-4 *6 (-390)) (-4 *7 (-716)) (-4 *8 (-755)) (-4 *3 (-976 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-582 *4)) (|:| |todo| (-582 (-2 (|:| |val| (-582 *3)) (|:| -1598 *4)))))) (-5 *1 (-1057 *6 *7 *8 *3 *4)) (-4 *4 (-1019 *6 *7 *8 *3)))) (-3430 (*1 *2 *3 *4) (-12 (-4 *5 (-390)) (-4 *6 (-716)) (-4 *7 (-755)) (-4 *3 (-976 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-582 *4)) (|:| |todo| (-582 (-2 (|:| |val| (-582 *3)) (|:| -1598 *4)))))) (-5 *1 (-1057 *5 *6 *7 *3 *4)) (-4 *4 (-1019 *5 *6 *7 *3)))) (-3429 (*1 *2 *3 *4) (-12 (-5 *3 (-582 *8)) (-5 *4 (-582 *9)) (-4 *8 (-976 *5 *6 *7)) (-4 *9 (-1019 *5 *6 *7 *8)) (-4 *5 (-390)) (-4 *6 (-716)) (-4 *7 (-755)) (-5 *2 (-693)) (-5 *1 (-1057 *5 *6 *7 *8 *9)))) (-3428 (*1 *2 *3 *4) (-12 (-5 *3 (-582 *8)) (-5 *4 (-582 *9)) (-4 *8 (-976 *5 *6 *7)) (-4 *9 (-1019 *5 *6 *7 *8)) (-4 *5 (-390)) (-4 *6 (-716)) (-4 *7 (-755)) (-5 *2 (-693)) (-5 *1 (-1057 *5 *6 *7 *8 *9))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3679 (((-582 (-2 (|:| -3859 $) (|:| -1700 (-582 |#4|)))) (-582 |#4|)) NIL T ELT)) (-3680 (((-582 $) (-582 |#4|)) 118 T ELT) (((-582 $) (-582 |#4|) (-85)) 119 T ELT) (((-582 $) (-582 |#4|) (-85) (-85)) 117 T ELT) (((-582 $) (-582 |#4|) (-85) (-85) (-85) (-85)) 120 T ELT)) (-3080 (((-582 |#3|) $) NIL T ELT)) (-2907 (((-85) $) NIL T ELT)) (-2898 (((-85) $) NIL (|has| |#1| (-494)) ELT)) (-3691 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3686 ((|#4| |#4| $) NIL T ELT)) (-3773 (((-582 (-2 (|:| |val| |#4|) (|:| -1598 $))) |#4| $) 91 T ELT)) (-2908 (((-2 (|:| |under| $) (|:| -3129 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3708 (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3993)) ELT) (((-3 |#4| #1="failed") $ |#3|) 70 T ELT)) (-3722 (($) NIL T CONST)) (-2903 (((-85) $) 29 (|has| |#1| (-494)) ELT)) (-2905 (((-85) $ $) NIL (|has| |#1| (-494)) ELT)) (-2904 (((-85) $ $) NIL (|has| |#1| (-494)) ELT)) (-2906 (((-85) $) NIL (|has| |#1| (-494)) ELT)) (-3687 (((-582 |#4|) (-582 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-2899 (((-582 |#4|) (-582 |#4|) $) NIL (|has| |#1| (-494)) ELT)) (-2900 (((-582 |#4|) (-582 |#4|) $) NIL (|has| |#1| (-494)) ELT)) (-3156 (((-3 $ #1#) (-582 |#4|)) NIL T ELT)) (-3155 (($ (-582 |#4|)) NIL T ELT)) (-3797 (((-3 $ #1#) $) 45 T ELT)) (-3683 ((|#4| |#4| $) 73 T ELT)) (-1351 (($ $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#4| (-1012))) ELT)) (-3404 (($ |#4| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#4| (-1012))) ELT) (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3993)) ELT)) (-2901 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 85 (|has| |#1| (-494)) ELT)) (-3692 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3681 ((|#4| |#4| $) NIL T ELT)) (-3840 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -3993)) (|has| |#4| (-1012))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -3993)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -3993)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3694 (((-2 (|:| -3859 (-582 |#4|)) (|:| -1700 (-582 |#4|))) $) NIL T ELT)) (-3196 (((-85) |#4| $) NIL T ELT)) (-3194 (((-85) |#4| $) NIL T ELT)) (-3197 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3436 (((-2 (|:| |val| (-582 |#4|)) (|:| |towers| (-582 $))) (-582 |#4|) (-85) (-85)) 133 T ELT)) (-2888 (((-582 |#4|) $) 18 (|has| $ (-6 -3993)) ELT)) (-3693 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3179 ((|#3| $) 38 T ELT)) (-2607 (((-582 |#4|) $) 19 (|has| $ (-6 -3993)) ELT)) (-3244 (((-85) |#4| $) 27 (-12 (|has| $ (-6 -3993)) (|has| |#4| (-1012))) ELT)) (-1947 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -3994)) ELT)) (-3956 (($ (-1 |#4| |#4|) $) 23 T ELT)) (-2913 (((-582 |#3|) $) NIL T ELT)) (-2912 (((-85) |#3| $) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3190 (((-3 |#4| (-582 $)) |#4| |#4| $) NIL T ELT)) (-3189 (((-582 (-2 (|:| |val| |#4|) (|:| -1598 $))) |#4| |#4| $) 111 T ELT)) (-3796 (((-3 |#4| #1#) $) 42 T ELT)) (-3191 (((-582 $) |#4| $) 96 T ELT)) (-3193 (((-3 (-85) (-582 $)) |#4| $) NIL T ELT)) (-3192 (((-582 (-2 (|:| |val| (-85)) (|:| -1598 $))) |#4| $) 106 T ELT) (((-85) |#4| $) 62 T ELT)) (-3237 (((-582 $) |#4| $) 115 T ELT) (((-582 $) (-582 |#4|) $) NIL T ELT) (((-582 $) (-582 |#4|) (-582 $)) 116 T ELT) (((-582 $) |#4| (-582 $)) NIL T ELT)) (-3437 (((-582 $) (-582 |#4|) (-85) (-85) (-85)) 128 T ELT)) (-3438 (($ |#4| $) 82 T ELT) (($ (-582 |#4|) $) 83 T ELT) (((-582 $) |#4| $ (-85) (-85) (-85) (-85) (-85)) 81 T ELT)) (-3695 (((-582 |#4|) $) NIL T ELT)) (-3689 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3684 ((|#4| |#4| $) NIL T ELT)) (-3697 (((-85) $ $) NIL T ELT)) (-2902 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-494)) ELT)) (-3690 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3685 ((|#4| |#4| $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3799 (((-3 |#4| #1#) $) 40 T ELT)) (-1352 (((-3 |#4| #1#) (-1 (-85) |#4|) $) NIL T ELT)) (-3677 (((-3 $ #1#) $ |#4|) 56 T ELT)) (-3767 (($ $ |#4|) NIL T ELT) (((-582 $) |#4| $) 98 T ELT) (((-582 $) |#4| (-582 $)) NIL T ELT) (((-582 $) (-582 |#4|) $) NIL T ELT) (((-582 $) (-582 |#4|) (-582 $)) 93 T ELT)) (-1945 (((-85) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3766 (($ $ (-582 |#4|) (-582 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1012))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1012))) ELT) (($ $ (-249 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1012))) ELT) (($ $ (-582 (-249 |#4|))) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1012))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-3401 (((-85) $) 17 T ELT)) (-3563 (($) 14 T ELT)) (-3946 (((-693) $) NIL T ELT)) (-1944 (((-693) |#4| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#4| (-1012))) ELT) (((-693) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3398 (($ $) 13 T ELT)) (-3970 (((-472) $) NIL (|has| |#4| (-552 (-472))) ELT)) (-3528 (($ (-582 |#4|)) 22 T ELT)) (-2909 (($ $ |#3|) 49 T ELT)) (-2911 (($ $ |#3|) 51 T ELT)) (-3682 (($ $) NIL T ELT)) (-2910 (($ $ |#3|) NIL T ELT)) (-3944 (((-771) $) 35 T ELT) (((-582 |#4|) $) 46 T ELT)) (-3676 (((-693) $) NIL (|has| |#3| (-318)) ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3696 (((-3 (-2 (|:| |bas| $) (|:| -3322 (-582 |#4|))) #1#) (-582 |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3322 (-582 |#4|))) #1#) (-582 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3688 (((-85) $ (-1 (-85) |#4| (-582 |#4|))) NIL T ELT)) (-3188 (((-582 $) |#4| $) 63 T ELT) (((-582 $) |#4| (-582 $)) NIL T ELT) (((-582 $) (-582 |#4|) $) NIL T ELT) (((-582 $) (-582 |#4|) (-582 $)) NIL T ELT)) (-1946 (((-85) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3678 (((-582 |#3|) $) NIL T ELT)) (-3195 (((-85) |#4| $) NIL T ELT)) (-3931 (((-85) |#3| $) 69 T ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-3955 (((-693) $) NIL (|has| $ (-6 -3993)) ELT))) -(((-1058 |#1| |#2| |#3| |#4|) (-13 (-1019 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3438 ((-582 $) |#4| $ (-85) (-85) (-85) (-85) (-85))) (-15 -3680 ((-582 $) (-582 |#4|) (-85) (-85))) (-15 -3680 ((-582 $) (-582 |#4|) (-85) (-85) (-85) (-85))) (-15 -3437 ((-582 $) (-582 |#4|) (-85) (-85) (-85))) (-15 -3436 ((-2 (|:| |val| (-582 |#4|)) (|:| |towers| (-582 $))) (-582 |#4|) (-85) (-85))))) (-390) (-716) (-755) (-976 |#1| |#2| |#3|)) (T -1058)) -((-3438 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-390)) (-4 *6 (-716)) (-4 *7 (-755)) (-5 *2 (-582 (-1058 *5 *6 *7 *3))) (-5 *1 (-1058 *5 *6 *7 *3)) (-4 *3 (-976 *5 *6 *7)))) (-3680 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-582 *8)) (-5 *4 (-85)) (-4 *8 (-976 *5 *6 *7)) (-4 *5 (-390)) (-4 *6 (-716)) (-4 *7 (-755)) (-5 *2 (-582 (-1058 *5 *6 *7 *8))) (-5 *1 (-1058 *5 *6 *7 *8)))) (-3680 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-582 *8)) (-5 *4 (-85)) (-4 *8 (-976 *5 *6 *7)) (-4 *5 (-390)) (-4 *6 (-716)) (-4 *7 (-755)) (-5 *2 (-582 (-1058 *5 *6 *7 *8))) (-5 *1 (-1058 *5 *6 *7 *8)))) (-3437 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-582 *8)) (-5 *4 (-85)) (-4 *8 (-976 *5 *6 *7)) (-4 *5 (-390)) (-4 *6 (-716)) (-4 *7 (-755)) (-5 *2 (-582 (-1058 *5 *6 *7 *8))) (-5 *1 (-1058 *5 *6 *7 *8)))) (-3436 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-390)) (-4 *6 (-716)) (-4 *7 (-755)) (-4 *8 (-976 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-582 *8)) (|:| |towers| (-582 (-1058 *5 *6 *7 *8))))) (-5 *1 (-1058 *5 *6 *7 *8)) (-5 *3 (-582 *8))))) -((-2567 (((-85) $ $) 7 T ELT)) (-3187 (((-85) $) 22 T ELT)) (-3722 (($) 23 T CONST)) (-3465 (((-3 $ "failed") $) 32 T ELT)) (-1212 (((-85) $ $) 20 T ELT)) (-2409 (((-85) $) 30 T ELT)) (-3241 (((-1071) $) 11 T ELT)) (-3242 (((-1032) $) 12 T ELT)) (-3944 (((-771) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2659 (($) 24 T CONST)) (-2665 (($) 29 T CONST)) (-3055 (((-85) $ $) 8 T ELT)) (-3837 (($ $ $) 18 T ELT)) (** (($ $ (-693)) 31 T ELT) (($ $ (-829)) 28 T ELT)) (* (($ (-829) $) 17 T ELT) (($ (-693) $) 21 T ELT) (($ $ $) 27 T ELT))) -(((-1059) (-113)) (T -1059)) -NIL -(-13 (-23) (-662)) -(((-23) . T) ((-25) . T) ((-72) . T) ((-551 (-771)) . T) ((-13) . T) ((-662) . T) ((-1024) . T) ((-1012) . T) ((-1127) . T)) -((-2567 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3322 ((|#1| $) 38 T ELT)) (-3439 (($ (-582 |#1|)) 46 T ELT)) (-3722 (($) NIL T CONST)) (-3324 ((|#1| |#1| $) 41 T ELT)) (-3323 ((|#1| $) 36 T ELT)) (-2888 (((-582 |#1|) $) 19 (|has| $ (-6 -3993)) ELT)) (-2607 (((-582 |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3244 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#1| (-1012))) ELT)) (-1947 (($ (-1 |#1| |#1|) $) 26 (|has| $ (-6 -3994)) ELT)) (-3956 (($ (-1 |#1| |#1|) $) 23 T ELT)) (-3241 (((-1071) $) NIL (|has| |#1| (-1012)) ELT)) (-1272 ((|#1| $) 39 T ELT)) (-3607 (($ |#1| $) 42 T ELT)) (-3242 (((-1032) $) NIL (|has| |#1| (-1012)) ELT)) (-1273 ((|#1| $) 37 T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3766 (($ $ (-582 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-582 |#1|) (-582 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-3401 (((-85) $) 33 T ELT)) (-3563 (($) 44 T ELT)) (-3321 (((-693) $) 31 T ELT)) (-1944 (((-693) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3993)) ELT) (((-693) |#1| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#1| (-1012))) ELT)) (-3398 (($ $) 28 T ELT)) (-3944 (((-771) $) 15 (|has| |#1| (-551 (-771))) ELT)) (-1263 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1274 (($ (-582 |#1|)) NIL T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3055 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3955 (((-693) $) 32 (|has| $ (-6 -3993)) ELT))) -(((-1060 |#1|) (-13 (-1033 |#1|) (-10 -8 (-15 -3439 ($ (-582 |#1|))))) (-1127)) (T -1060)) -((-3439 (*1 *1 *2) (-12 (-5 *2 (-582 *3)) (-4 *3 (-1127)) (-5 *1 (-1060 *3))))) -((-3786 ((|#2| $ #1="value" |#2|) NIL T ELT) ((|#2| $ #2="first" |#2|) NIL T ELT) (($ $ #3="rest" $) NIL T ELT) ((|#2| $ #4="last" |#2|) NIL T ELT) ((|#2| $ (-1144 (-483)) |#2|) 53 T ELT) ((|#2| $ (-483) |#2|) 50 T ELT)) (-3441 (((-85) $) 12 T ELT)) (-1947 (($ (-1 |#2| |#2|) $) 48 T ELT)) (-3799 ((|#2| $) NIL T ELT) (($ $ (-693)) 17 T ELT)) (-2198 (($ $ |#2|) 49 T ELT)) (-3442 (((-85) $) 11 T ELT)) (-3798 ((|#2| $ #1#) NIL T ELT) ((|#2| $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT) ((|#2| $ #4#) NIL T ELT) (($ $ (-1144 (-483))) 36 T ELT) ((|#2| $ (-483)) 25 T ELT) ((|#2| $ (-483) |#2|) NIL T ELT)) (-3789 (($ $ $) 56 T ELT) (($ $ |#2|) NIL T ELT)) (-3800 (($ $ $) 38 T ELT) (($ |#2| $) NIL T ELT) (($ (-582 $)) 45 T ELT) (($ $ |#2|) NIL T ELT))) -(((-1061 |#1| |#2|) (-10 -7 (-15 -3441 ((-85) |#1|)) (-15 -3442 ((-85) |#1|)) (-15 -3786 (|#2| |#1| (-483) |#2|)) (-15 -3798 (|#2| |#1| (-483) |#2|)) (-15 -3798 (|#2| |#1| (-483))) (-15 -2198 (|#1| |#1| |#2|)) (-15 -3798 (|#1| |#1| (-1144 (-483)))) (-15 -3800 (|#1| |#1| |#2|)) (-15 -3800 (|#1| (-582 |#1|))) (-15 -3786 (|#2| |#1| (-1144 (-483)) |#2|)) (-15 -3786 (|#2| |#1| #1="last" |#2|)) (-15 -3786 (|#1| |#1| #2="rest" |#1|)) (-15 -3786 (|#2| |#1| #3="first" |#2|)) (-15 -3789 (|#1| |#1| |#2|)) (-15 -3789 (|#1| |#1| |#1|)) (-15 -3798 (|#2| |#1| #1#)) (-15 -3798 (|#1| |#1| #2#)) (-15 -3799 (|#1| |#1| (-693))) (-15 -3798 (|#2| |#1| #3#)) (-15 -3799 (|#2| |#1|)) (-15 -3800 (|#1| |#2| |#1|)) (-15 -3800 (|#1| |#1| |#1|)) (-15 -3786 (|#2| |#1| #4="value" |#2|)) (-15 -3798 (|#2| |#1| #4#)) (-15 -1947 (|#1| (-1 |#2| |#2|) |#1|))) (-1062 |#2|) (-1127)) (T -1061)) -NIL -((-2567 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3400 ((|#1| $) 52 T ELT)) (-3793 ((|#1| $) 71 T ELT)) (-3795 (($ $) 73 T ELT)) (-2197 (((-1183) $ (-483) (-483)) 107 (|has| $ (-6 -3994)) ELT)) (-3783 (($ $ (-483)) 58 (|has| $ (-6 -3994)) ELT)) (-3440 (((-85) $ (-693)) 90 T ELT)) (-3024 ((|#1| $ |#1|) 43 (|has| $ (-6 -3994)) ELT)) (-3785 (($ $ $) 62 (|has| $ (-6 -3994)) ELT)) (-3784 ((|#1| $ |#1|) 60 (|has| $ (-6 -3994)) ELT)) (-3787 ((|#1| $ |#1|) 64 (|has| $ (-6 -3994)) ELT)) (-3786 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -3994)) ELT) ((|#1| $ #2="first" |#1|) 63 (|has| $ (-6 -3994)) ELT) (($ $ #3="rest" $) 61 (|has| $ (-6 -3994)) ELT) ((|#1| $ #4="last" |#1|) 59 (|has| $ (-6 -3994)) ELT) ((|#1| $ (-1144 (-483)) |#1|) 127 (|has| $ (-6 -3994)) ELT) ((|#1| $ (-483) |#1|) 96 (|has| $ (-6 -3994)) ELT)) (-3025 (($ $ (-582 $)) 45 (|has| $ (-6 -3994)) ELT)) (-3708 (($ (-1 (-85) |#1|) $) 112 (|has| $ (-6 -3993)) ELT)) (-3794 ((|#1| $) 72 T ELT)) (-3722 (($) 7 T CONST)) (-3797 (($ $) 79 T ELT) (($ $ (-693)) 77 T ELT)) (-1351 (($ $) 109 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3993))) ELT)) (-3404 (($ (-1 (-85) |#1|) $) 113 (|has| $ (-6 -3993)) ELT) (($ |#1| $) 110 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3993))) ELT)) (-3840 ((|#1| (-1 |#1| |#1| |#1|) $) 115 (|has| $ (-6 -3993)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 114 (|has| $ (-6 -3993)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 111 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3993))) ELT)) (-1574 ((|#1| $ (-483) |#1|) 95 (|has| $ (-6 -3994)) ELT)) (-3111 ((|#1| $ (-483)) 97 T ELT)) (-3441 (((-85) $) 93 T ELT)) (-2888 (((-582 |#1|) $) 30 (|has| $ (-6 -3993)) ELT)) (-3030 (((-582 $) $) 54 T ELT)) (-3026 (((-85) $ $) 46 (|has| |#1| (-1012)) ELT)) (-3612 (($ (-693) |#1|) 119 T ELT)) (-3717 (((-85) $ (-693)) 91 T ELT)) (-2199 (((-483) $) 105 (|has| (-483) (-755)) ELT)) (-2607 (((-582 |#1|) $) 29 (|has| $ (-6 -3993)) ELT)) (-3244 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3993))) ELT)) (-2200 (((-483) $) 104 (|has| (-483) (-755)) ELT)) (-1947 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3994)) ELT)) (-3956 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 122 T ELT)) (-3714 (((-85) $ (-693)) 92 T ELT)) (-3029 (((-582 |#1|) $) 49 T ELT)) (-3525 (((-85) $) 53 T ELT)) (-3241 (((-1071) $) 22 (|has| |#1| (-1012)) ELT)) (-3796 ((|#1| $) 76 T ELT) (($ $ (-693)) 74 T ELT)) (-2303 (($ $ $ (-483)) 126 T ELT) (($ |#1| $ (-483)) 125 T ELT)) (-2202 (((-582 (-483)) $) 102 T ELT)) (-2203 (((-85) (-483) $) 101 T ELT)) (-3242 (((-1032) $) 21 (|has| |#1| (-1012)) ELT)) (-3799 ((|#1| $) 82 T ELT) (($ $ (-693)) 80 T ELT)) (-1352 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 116 T ELT)) (-2198 (($ $ |#1|) 106 (|has| $ (-6 -3994)) ELT)) (-3442 (((-85) $) 94 T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3993)) ELT)) (-3766 (($ $ (-582 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-582 |#1|) (-582 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT)) (-1220 (((-85) $ $) 11 T ELT)) (-2201 (((-85) |#1| $) 103 (-12 (|has| $ (-6 -3993)) (|has| |#1| (-1012))) ELT)) (-2204 (((-582 |#1|) $) 100 T ELT)) (-3401 (((-85) $) 8 T ELT)) (-3563 (($) 9 T ELT)) (-3798 ((|#1| $ #1#) 51 T ELT) ((|#1| $ #2#) 81 T ELT) (($ $ #3#) 78 T ELT) ((|#1| $ #4#) 75 T ELT) (($ $ (-1144 (-483))) 118 T ELT) ((|#1| $ (-483)) 99 T ELT) ((|#1| $ (-483) |#1|) 98 T ELT)) (-3028 (((-483) $ $) 48 T ELT)) (-2304 (($ $ (-1144 (-483))) 124 T ELT) (($ $ (-483)) 123 T ELT)) (-3631 (((-85) $) 50 T ELT)) (-3790 (($ $) 68 T ELT)) (-3788 (($ $) 65 (|has| $ (-6 -3994)) ELT)) (-3791 (((-693) $) 69 T ELT)) (-3792 (($ $) 70 T ELT)) (-1944 (((-693) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3993)) ELT) (((-693) |#1| $) 28 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3993))) ELT)) (-3398 (($ $) 10 T ELT)) (-3970 (((-472) $) 108 (|has| |#1| (-552 (-472))) ELT)) (-3528 (($ (-582 |#1|)) 117 T ELT)) (-3789 (($ $ $) 67 (|has| $ (-6 -3994)) ELT) (($ $ |#1|) 66 (|has| $ (-6 -3994)) ELT)) (-3800 (($ $ $) 84 T ELT) (($ |#1| $) 83 T ELT) (($ (-582 $)) 121 T ELT) (($ $ |#1|) 120 T ELT)) (-3944 (((-771) $) 17 (|has| |#1| (-551 (-771))) ELT)) (-3520 (((-582 $) $) 55 T ELT)) (-3027 (((-85) $ $) 47 (|has| |#1| (-1012)) ELT)) (-1263 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3993)) ELT)) (-3055 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3955 (((-693) $) 6 (|has| $ (-6 -3993)) ELT))) -(((-1062 |#1|) (-113) (-1127)) (T -1062)) -((-3442 (*1 *2 *1) (-12 (-4 *1 (-1062 *3)) (-4 *3 (-1127)) (-5 *2 (-85)))) (-3441 (*1 *2 *1) (-12 (-4 *1 (-1062 *3)) (-4 *3 (-1127)) (-5 *2 (-85)))) (-3714 (*1 *2 *1 *3) (-12 (-5 *3 (-693)) (-4 *1 (-1062 *4)) (-4 *4 (-1127)) (-5 *2 (-85)))) (-3717 (*1 *2 *1 *3) (-12 (-5 *3 (-693)) (-4 *1 (-1062 *4)) (-4 *4 (-1127)) (-5 *2 (-85)))) (-3440 (*1 *2 *1 *3) (-12 (-5 *3 (-693)) (-4 *1 (-1062 *4)) (-4 *4 (-1127)) (-5 *2 (-85))))) -(-13 (-1166 |t#1|) (-592 |t#1|) (-10 -8 (-15 -3442 ((-85) $)) (-15 -3441 ((-85) $)) (-15 -3714 ((-85) $ (-693))) (-15 -3717 ((-85) $ (-693))) (-15 -3440 ((-85) $ (-693))))) -(((-34) . T) ((-72) OR (|has| |#1| (-1012)) (|has| |#1| (-72))) ((-551 (-771)) OR (|has| |#1| (-1012)) (|has| |#1| (-551 (-771)))) ((-124 |#1|) . T) ((-552 (-472)) |has| |#1| (-552 (-472))) ((-241 (-483) |#1|) . T) ((-241 (-1144 (-483)) $) . T) ((-243 (-483) |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ((-427 |#1|) . T) ((-537 (-483) |#1|) . T) ((-454 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ((-13) . T) ((-592 |#1|) . T) ((-922 |#1|) . T) ((-1012) |has| |#1| (-1012)) ((-1127) . T) ((-1166 |#1|) . T)) -((-2567 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3597 (($) NIL T ELT) (($ (-582 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2197 (((-1183) $ |#1| |#1|) NIL (|has| $ (-6 -3994)) ELT)) (-3786 ((|#2| $ |#1| |#2|) NIL T ELT)) (-1568 (($ (-1 (-85) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3993)) ELT)) (-3708 (($ (-1 (-85) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3993)) ELT)) (-2230 (((-3 |#2| #1="failed") |#1| $) NIL T ELT)) (-3722 (($) NIL T CONST)) (-1351 (($ $) NIL (-12 (|has| $ (-6 -3993)) (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012))) ELT)) (-3403 (($ (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-6 -3993)) ELT) (($ (-1 (-85) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3993)) ELT) (((-3 |#2| #1#) |#1| $) NIL T ELT)) (-3404 (($ (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3993)) (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ (-1 (-85) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3993)) ELT)) (-3840 (((-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -3993)) (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (((-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3993)) ELT) (((-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3993)) ELT)) (-1574 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3994)) ELT)) (-3111 ((|#2| $ |#1|) NIL T ELT)) (-2888 (((-582 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3993)) ELT) (((-582 |#2|) $) NIL (|has| $ (-6 -3993)) ELT)) (-2199 ((|#1| $) NIL (|has| |#1| (-755)) ELT)) (-2607 (((-582 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3993)) ELT) (((-582 |#2|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3244 (((-85) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3993)) (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#2| (-1012))) ELT)) (-2200 ((|#1| $) NIL (|has| |#1| (-755)) ELT)) (-1947 (($ (-1 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3956 (($ (-1 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3241 (((-1071) $) NIL (OR (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| |#2| (-1012))) ELT)) (-2231 (((-582 |#1|) $) NIL T ELT)) (-2232 (((-85) |#1| $) NIL T ELT)) (-1272 (((-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3607 (($ (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2202 (((-582 |#1|) $) NIL T ELT)) (-2203 (((-85) |#1| $) NIL T ELT)) (-3242 (((-1032) $) NIL (OR (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| |#2| (-1012))) ELT)) (-3799 ((|#2| $) NIL (|has| |#1| (-755)) ELT)) (-1352 (((-3 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-85) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2198 (($ $ |#2|) NIL (|has| $ (-6 -3994)) ELT)) (-1273 (((-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1945 (((-85) (-1 (-85) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3993)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3766 (($ $ (-582 (-249 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-249 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-582 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) (-582 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-582 |#2|) (-582 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ (-582 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1012))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-2201 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#2| (-1012))) ELT)) (-2204 (((-582 |#2|) $) NIL T ELT)) (-3401 (((-85) $) NIL T ELT)) (-3563 (($) NIL T ELT)) (-3798 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1464 (($) NIL T ELT) (($ (-582 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1944 (((-693) (-1 (-85) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3993)) ELT) (((-693) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3993)) (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (((-693) |#2| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#2| (-1012))) ELT) (((-693) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3398 (($ $) NIL T ELT)) (-3970 (((-472) $) NIL (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-552 (-472))) ELT)) (-3528 (($ (-582 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3944 (((-771) $) NIL (OR (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-551 (-771))) (|has| |#2| (-551 (-771)))) ELT)) (-1263 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1274 (($ (-582 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1946 (((-85) (-1 (-85) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3993)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3055 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3955 (((-693) $) NIL (|has| $ (-6 -3993)) ELT))) -(((-1063 |#1| |#2| |#3|) (-1105 |#1| |#2|) (-1012) (-1012) |#2|) (T -1063)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-3443 (((-631 $) $) 17 T ELT)) (-3241 (((-1071) $) 11 T ELT)) (-3444 (($) 18 T CONST)) (-3242 (((-1032) $) 12 T ELT)) (-3944 (((-771) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-3055 (((-85) $ $) 8 T ELT))) -(((-1064) (-113)) (T -1064)) -((-3444 (*1 *1) (-4 *1 (-1064))) (-3443 (*1 *2 *1) (-12 (-5 *2 (-631 *1)) (-4 *1 (-1064))))) -(-13 (-1012) (-10 -8 (-15 -3444 ($) -3950) (-15 -3443 ((-631 $) $)))) -(((-72) . T) ((-551 (-771)) . T) ((-13) . T) ((-1012) . T) ((-1127) . T)) -((-2567 (((-85) $ $) NIL T ELT)) (-3446 (((-631 (-1047)) $) 28 T ELT)) (-3445 (((-1047) $) 16 T ELT)) (-3447 (((-1047) $) 18 T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3448 (((-445) $) 14 T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3944 (((-771) $) 38 T ELT) (($ (-1093)) NIL T ELT) (((-1093) $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-1065) (-13 (-994) (-10 -8 (-15 -3448 ((-445) $)) (-15 -3447 ((-1047) $)) (-15 -3446 ((-631 (-1047)) $)) (-15 -3445 ((-1047) $))))) (T -1065)) -((-3448 (*1 *2 *1) (-12 (-5 *2 (-445)) (-5 *1 (-1065)))) (-3447 (*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-1065)))) (-3446 (*1 *2 *1) (-12 (-5 *2 (-631 (-1047))) (-5 *1 (-1065)))) (-3445 (*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-1065))))) -((-3451 (((-1067 |#1|) (-1067 |#1|)) 17 T ELT)) (-3449 (((-1067 |#1|) (-1067 |#1|)) 13 T ELT)) (-3452 (((-1067 |#1|) (-1067 |#1|) (-483) (-483)) 20 T ELT)) (-3450 (((-1067 |#1|) (-1067 |#1|)) 15 T ELT))) -(((-1066 |#1|) (-10 -7 (-15 -3449 ((-1067 |#1|) (-1067 |#1|))) (-15 -3450 ((-1067 |#1|) (-1067 |#1|))) (-15 -3451 ((-1067 |#1|) (-1067 |#1|))) (-15 -3452 ((-1067 |#1|) (-1067 |#1|) (-483) (-483)))) (-13 (-494) (-120))) (T -1066)) -((-3452 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1067 *4)) (-5 *3 (-483)) (-4 *4 (-13 (-494) (-120))) (-5 *1 (-1066 *4)))) (-3451 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-13 (-494) (-120))) (-5 *1 (-1066 *3)))) (-3450 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-13 (-494) (-120))) (-5 *1 (-1066 *3)))) (-3449 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-13 (-494) (-120))) (-5 *1 (-1066 *3))))) -((-2567 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3400 ((|#1| $) NIL T ELT)) (-3793 ((|#1| $) NIL T ELT)) (-3795 (($ $) 60 T ELT)) (-2197 (((-1183) $ (-483) (-483)) 93 (|has| $ (-6 -3994)) ELT)) (-3783 (($ $ (-483)) 122 (|has| $ (-6 -3994)) ELT)) (-3440 (((-85) $ (-693)) NIL T ELT)) (-3457 (((-771) $) 46 (|has| |#1| (-1012)) ELT)) (-3456 (((-85)) 49 (|has| |#1| (-1012)) ELT)) (-3024 ((|#1| $ |#1|) NIL (|has| $ (-6 -3994)) ELT)) (-3785 (($ $ $) 109 (|has| $ (-6 -3994)) ELT) (($ $ (-483) $) 135 T ELT)) (-3784 ((|#1| $ |#1|) 119 (|has| $ (-6 -3994)) ELT)) (-3787 ((|#1| $ |#1|) 114 (|has| $ (-6 -3994)) ELT)) (-3786 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3994)) ELT) ((|#1| $ #2="first" |#1|) 116 (|has| $ (-6 -3994)) ELT) (($ $ #3="rest" $) 118 (|has| $ (-6 -3994)) ELT) ((|#1| $ #4="last" |#1|) 121 (|has| $ (-6 -3994)) ELT) ((|#1| $ (-1144 (-483)) |#1|) 106 (|has| $ (-6 -3994)) ELT) ((|#1| $ (-483) |#1|) 72 (|has| $ (-6 -3994)) ELT)) (-3025 (($ $ (-582 $)) NIL (|has| $ (-6 -3994)) ELT)) (-3708 (($ (-1 (-85) |#1|) $) 75 T ELT)) (-3794 ((|#1| $) NIL T ELT)) (-3722 (($) NIL T CONST)) (-2322 (($ $) 11 T ELT)) (-3797 (($ $) 35 T ELT) (($ $ (-693)) 105 T ELT)) (-3462 (((-85) (-582 |#1|) $) 128 (|has| |#1| (-1012)) ELT)) (-3463 (($ (-582 |#1|)) 124 T ELT)) (-1351 (($ $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#1| (-1012))) ELT)) (-3404 (($ |#1| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#1| (-1012))) ELT) (($ (-1 (-85) |#1|) $) 74 T ELT)) (-3840 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3993)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3993)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3993)) (|has| |#1| (-1012))) ELT)) (-1574 ((|#1| $ (-483) |#1|) NIL (|has| $ (-6 -3994)) ELT)) (-3111 ((|#1| $ (-483)) NIL T ELT)) (-3441 (((-85) $) NIL T ELT)) (-2888 (((-582 |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3458 (((-1183) (-483) $) 133 (|has| |#1| (-1012)) ELT)) (-2321 (((-693) $) 131 T ELT)) (-3030 (((-582 $) $) NIL T ELT)) (-3026 (((-85) $ $) NIL (|has| |#1| (-1012)) ELT)) (-3612 (($ (-693) |#1|) NIL T ELT)) (-3717 (((-85) $ (-693)) NIL T ELT)) (-2199 (((-483) $) NIL (|has| (-483) (-755)) ELT)) (-2607 (((-582 |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3244 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#1| (-1012))) ELT)) (-2200 (((-483) $) NIL (|has| (-483) (-755)) ELT)) (-1947 (($ (-1 |#1| |#1|) $) 89 (|has| $ (-6 -3994)) ELT)) (-3956 (($ (-1 |#1| |#1|) $) 80 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 84 T ELT)) (-3714 (((-85) $ (-693)) NIL T ELT)) (-3029 (((-582 |#1|) $) NIL T ELT)) (-3525 (((-85) $) NIL T ELT)) (-2324 (($ $) 107 T ELT)) (-2325 (((-85) $) 10 T ELT)) (-3241 (((-1071) $) NIL (|has| |#1| (-1012)) ELT)) (-3796 ((|#1| $) NIL T ELT) (($ $ (-693)) NIL T ELT)) (-2303 (($ $ $ (-483)) NIL T ELT) (($ |#1| $ (-483)) NIL T ELT)) (-2202 (((-582 (-483)) $) NIL T ELT)) (-2203 (((-85) (-483) $) 90 T ELT)) (-3242 (((-1032) $) NIL (|has| |#1| (-1012)) ELT)) (-3455 (($ (-1 |#1|)) 137 T ELT) (($ (-1 |#1| |#1|) |#1|) 138 T ELT)) (-2323 ((|#1| $) 7 T ELT)) (-3799 ((|#1| $) 34 T ELT) (($ $ (-693)) 58 T ELT)) (-3461 (((-2 (|:| |cycle?| (-85)) (|:| -2594 (-693)) (|:| |period| (-693))) (-693) $) 29 T ELT)) (-1352 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-3454 (($ (-1 (-85) |#1|) $) 139 T ELT)) (-3453 (($ (-1 (-85) |#1|) $) 140 T ELT)) (-2198 (($ $ |#1|) 85 (|has| $ (-6 -3994)) ELT)) (-3767 (($ $ (-483)) 40 T ELT)) (-3442 (((-85) $) 88 T ELT)) (-2326 (((-85) $) 9 T ELT)) (-2327 (((-85) $) 130 T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3766 (($ $ (-582 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-582 |#1|) (-582 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT)) (-1220 (((-85) $ $) 25 T ELT)) (-2201 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#1| (-1012))) ELT)) (-2204 (((-582 |#1|) $) NIL T ELT)) (-3401 (((-85) $) 14 T ELT)) (-3563 (($) 53 T ELT)) (-3798 ((|#1| $ #1#) NIL T ELT) ((|#1| $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT) ((|#1| $ #4#) NIL T ELT) (($ $ (-1144 (-483))) NIL T ELT) ((|#1| $ (-483)) 70 T ELT) ((|#1| $ (-483) |#1|) NIL T ELT)) (-3028 (((-483) $ $) 57 T ELT)) (-2304 (($ $ (-1144 (-483))) NIL T ELT) (($ $ (-483)) NIL T ELT)) (-3460 (($ (-1 $)) 56 T ELT)) (-3631 (((-85) $) 86 T ELT)) (-3790 (($ $) 87 T ELT)) (-3788 (($ $) 110 (|has| $ (-6 -3994)) ELT)) (-3791 (((-693) $) NIL T ELT)) (-3792 (($ $) NIL T ELT)) (-1944 (((-693) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3993)) ELT) (((-693) |#1| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#1| (-1012))) ELT)) (-3398 (($ $) 52 T ELT)) (-3970 (((-472) $) NIL (|has| |#1| (-552 (-472))) ELT)) (-3528 (($ (-582 |#1|)) 68 T ELT)) (-3459 (($ |#1| $) 108 T ELT)) (-3789 (($ $ $) 112 (|has| $ (-6 -3994)) ELT) (($ $ |#1|) 113 (|has| $ (-6 -3994)) ELT)) (-3800 (($ $ $) 95 T ELT) (($ |#1| $) 54 T ELT) (($ (-582 $)) 100 T ELT) (($ $ |#1|) 94 T ELT)) (-2890 (($ $) 59 T ELT)) (-3944 (($ (-582 |#1|)) 123 T ELT) (((-771) $) 50 (|has| |#1| (-551 (-771))) ELT)) (-3520 (((-582 $) $) NIL T ELT)) (-3027 (((-85) $ $) NIL (|has| |#1| (-1012)) ELT)) (-1263 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3055 (((-85) $ $) 126 (|has| |#1| (-72)) ELT)) (-3955 (((-693) $) NIL (|has| $ (-6 -3993)) ELT))) -(((-1067 |#1|) (-13 (-615 |#1|) (-554 (-582 |#1|)) (-10 -8 (-6 -3994) (-15 -3463 ($ (-582 |#1|))) (IF (|has| |#1| (-1012)) (-15 -3462 ((-85) (-582 |#1|) $)) |%noBranch|) (-15 -3461 ((-2 (|:| |cycle?| (-85)) (|:| -2594 (-693)) (|:| |period| (-693))) (-693) $)) (-15 -3460 ($ (-1 $))) (-15 -3459 ($ |#1| $)) (IF (|has| |#1| (-1012)) (PROGN (-15 -3458 ((-1183) (-483) $)) (-15 -3457 ((-771) $)) (-15 -3456 ((-85)))) |%noBranch|) (-15 -3785 ($ $ (-483) $)) (-15 -3455 ($ (-1 |#1|))) (-15 -3455 ($ (-1 |#1| |#1|) |#1|)) (-15 -3454 ($ (-1 (-85) |#1|) $)) (-15 -3453 ($ (-1 (-85) |#1|) $)))) (-1127)) (T -1067)) -((-3463 (*1 *1 *2) (-12 (-5 *2 (-582 *3)) (-4 *3 (-1127)) (-5 *1 (-1067 *3)))) (-3462 (*1 *2 *3 *1) (-12 (-5 *3 (-582 *4)) (-4 *4 (-1012)) (-4 *4 (-1127)) (-5 *2 (-85)) (-5 *1 (-1067 *4)))) (-3461 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-85)) (|:| -2594 (-693)) (|:| |period| (-693)))) (-5 *1 (-1067 *4)) (-4 *4 (-1127)) (-5 *3 (-693)))) (-3460 (*1 *1 *2) (-12 (-5 *2 (-1 (-1067 *3))) (-5 *1 (-1067 *3)) (-4 *3 (-1127)))) (-3459 (*1 *1 *2 *1) (-12 (-5 *1 (-1067 *2)) (-4 *2 (-1127)))) (-3458 (*1 *2 *3 *1) (-12 (-5 *3 (-483)) (-5 *2 (-1183)) (-5 *1 (-1067 *4)) (-4 *4 (-1012)) (-4 *4 (-1127)))) (-3457 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-1067 *3)) (-4 *3 (-1012)) (-4 *3 (-1127)))) (-3456 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1067 *3)) (-4 *3 (-1012)) (-4 *3 (-1127)))) (-3785 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-1067 *3)) (-4 *3 (-1127)))) (-3455 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1127)) (-5 *1 (-1067 *3)))) (-3455 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1127)) (-5 *1 (-1067 *3)))) (-3454 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1127)) (-5 *1 (-1067 *3)))) (-3453 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1127)) (-5 *1 (-1067 *3))))) -((-3800 (((-1067 |#1|) (-1067 (-1067 |#1|))) 15 T ELT))) -(((-1068 |#1|) (-10 -7 (-15 -3800 ((-1067 |#1|) (-1067 (-1067 |#1|))))) (-1127)) (T -1068)) -((-3800 (*1 *2 *3) (-12 (-5 *3 (-1067 (-1067 *4))) (-5 *2 (-1067 *4)) (-5 *1 (-1068 *4)) (-4 *4 (-1127))))) -((-3839 (((-1067 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1067 |#1|)) 25 T ELT)) (-3840 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1067 |#1|)) 26 T ELT)) (-3956 (((-1067 |#2|) (-1 |#2| |#1|) (-1067 |#1|)) 16 T ELT))) -(((-1069 |#1| |#2|) (-10 -7 (-15 -3956 ((-1067 |#2|) (-1 |#2| |#1|) (-1067 |#1|))) (-15 -3839 ((-1067 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1067 |#1|))) (-15 -3840 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1067 |#1|)))) (-1127) (-1127)) (T -1069)) -((-3840 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1067 *5)) (-4 *5 (-1127)) (-4 *2 (-1127)) (-5 *1 (-1069 *5 *2)))) (-3839 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1067 *6)) (-4 *6 (-1127)) (-4 *3 (-1127)) (-5 *2 (-1067 *3)) (-5 *1 (-1069 *6 *3)))) (-3956 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1067 *5)) (-4 *5 (-1127)) (-4 *6 (-1127)) (-5 *2 (-1067 *6)) (-5 *1 (-1069 *5 *6))))) -((-3956 (((-1067 |#3|) (-1 |#3| |#1| |#2|) (-1067 |#1|) (-1067 |#2|)) 21 T ELT))) -(((-1070 |#1| |#2| |#3|) (-10 -7 (-15 -3956 ((-1067 |#3|) (-1 |#3| |#1| |#2|) (-1067 |#1|) (-1067 |#2|)))) (-1127) (-1127) (-1127)) (T -1070)) -((-3956 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1067 *6)) (-5 *5 (-1067 *7)) (-4 *6 (-1127)) (-4 *7 (-1127)) (-4 *8 (-1127)) (-5 *2 (-1067 *8)) (-5 *1 (-1070 *6 *7 *8))))) -((-2567 (((-85) $ $) NIL (|has| (-117) (-72)) ELT)) (-3424 (($ $) 42 T ELT)) (-3425 (($ $) NIL T ELT)) (-3415 (($ $ (-117)) NIL T ELT) (($ $ (-114)) NIL T ELT)) (-2197 (((-1183) $ (-483) (-483)) NIL (|has| $ (-6 -3994)) ELT)) (-3422 (((-85) $ $) 67 T ELT)) (-3421 (((-85) $ $ (-483)) 62 T ELT)) (-3533 (($ (-483)) 7 T ELT) (($ (-179)) 9 T ELT) (($ (-445)) 11 T ELT)) (-3416 (((-582 $) $ (-117)) 76 T ELT) (((-582 $) $ (-114)) 77 T ELT)) (-1730 (((-85) (-1 (-85) (-117) (-117)) $) NIL T ELT) (((-85) $) NIL (|has| (-117) (-755)) ELT)) (-1728 (($ (-1 (-85) (-117) (-117)) $) NIL (|has| $ (-6 -3994)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-117) (-755))) ELT)) (-2908 (($ (-1 (-85) (-117) (-117)) $) NIL T ELT) (($ $) NIL (|has| (-117) (-755)) ELT)) (-3786 (((-117) $ (-483) (-117)) 59 (|has| $ (-6 -3994)) ELT) (((-117) $ (-1144 (-483)) (-117)) NIL (|has| $ (-6 -3994)) ELT)) (-3708 (($ (-1 (-85) (-117)) $) NIL (|has| $ (-6 -3993)) ELT)) (-3722 (($) NIL T CONST)) (-3413 (($ $ (-117)) 80 T ELT) (($ $ (-114)) 81 T ELT)) (-2296 (($ $) NIL (|has| $ (-6 -3994)) ELT)) (-2297 (($ $) NIL T ELT)) (-3418 (($ $ (-1144 (-483)) $) 57 T ELT)) (-1351 (($ $) NIL (-12 (|has| $ (-6 -3993)) (|has| (-117) (-1012))) ELT)) (-3404 (($ (-117) $) NIL (-12 (|has| $ (-6 -3993)) (|has| (-117) (-1012))) ELT) (($ (-1 (-85) (-117)) $) NIL (|has| $ (-6 -3993)) ELT)) (-3840 (((-117) (-1 (-117) (-117) (-117)) $ (-117) (-117)) NIL (-12 (|has| $ (-6 -3993)) (|has| (-117) (-1012))) ELT) (((-117) (-1 (-117) (-117) (-117)) $ (-117)) NIL (|has| $ (-6 -3993)) ELT) (((-117) (-1 (-117) (-117) (-117)) $) NIL (|has| $ (-6 -3993)) ELT)) (-1574 (((-117) $ (-483) (-117)) NIL (|has| $ (-6 -3994)) ELT)) (-3111 (((-117) $ (-483)) NIL T ELT)) (-3423 (((-85) $ $) 91 T ELT)) (-3417 (((-483) (-1 (-85) (-117)) $) NIL T ELT) (((-483) (-117) $) NIL (|has| (-117) (-1012)) ELT) (((-483) (-117) $ (-483)) 64 (|has| (-117) (-1012)) ELT) (((-483) $ $ (-483)) 63 T ELT) (((-483) (-114) $ (-483)) 66 T ELT)) (-2888 (((-582 (-117)) $) NIL (|has| $ (-6 -3993)) ELT)) (-3612 (($ (-693) (-117)) 14 T ELT)) (-2199 (((-483) $) 36 (|has| (-483) (-755)) ELT)) (-2530 (($ $ $) NIL (|has| (-117) (-755)) ELT)) (-3516 (($ (-1 (-85) (-117) (-117)) $ $) NIL T ELT) (($ $ $) NIL (|has| (-117) (-755)) ELT)) (-2607 (((-582 (-117)) $) NIL (|has| $ (-6 -3993)) ELT)) (-3244 (((-85) (-117) $) NIL (-12 (|has| $ (-6 -3993)) (|has| (-117) (-1012))) ELT)) (-2200 (((-483) $) 50 (|has| (-483) (-755)) ELT)) (-2856 (($ $ $) NIL (|has| (-117) (-755)) ELT)) (-3419 (((-85) $ $ (-117)) 92 T ELT)) (-3420 (((-693) $ $ (-117)) 88 T ELT)) (-1947 (($ (-1 (-117) (-117)) $) 41 (|has| $ (-6 -3994)) ELT)) (-3956 (($ (-1 (-117) (-117)) $) NIL T ELT) (($ (-1 (-117) (-117) (-117)) $ $) NIL T ELT)) (-3426 (($ $) 45 T ELT)) (-3427 (($ $) NIL T ELT)) (-3414 (($ $ (-117)) 78 T ELT) (($ $ (-114)) 79 T ELT)) (-3241 (((-1071) $) 46 (|has| (-117) (-1012)) ELT)) (-2303 (($ (-117) $ (-483)) NIL T ELT) (($ $ $ (-483)) 31 T ELT)) (-2202 (((-582 (-483)) $) NIL T ELT)) (-2203 (((-85) (-483) $) NIL T ELT)) (-3242 (((-1032) $) 87 (|has| (-117) (-1012)) ELT)) (-3799 (((-117) $) NIL (|has| (-483) (-755)) ELT)) (-1352 (((-3 (-117) "failed") (-1 (-85) (-117)) $) NIL T ELT)) (-2198 (($ $ (-117)) NIL (|has| $ (-6 -3994)) ELT)) (-1945 (((-85) (-1 (-85) (-117)) $) NIL (|has| $ (-6 -3993)) ELT)) (-3766 (($ $ (-582 (-249 (-117)))) NIL (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1012))) ELT) (($ $ (-249 (-117))) NIL (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1012))) ELT) (($ $ (-117) (-117)) NIL (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1012))) ELT) (($ $ (-582 (-117)) (-582 (-117))) NIL (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1012))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-2201 (((-85) (-117) $) NIL (-12 (|has| $ (-6 -3993)) (|has| (-117) (-1012))) ELT)) (-2204 (((-582 (-117)) $) NIL T ELT)) (-3401 (((-85) $) 19 T ELT)) (-3563 (($) 16 T ELT)) (-3798 (((-117) $ (-483) (-117)) NIL T ELT) (((-117) $ (-483)) 69 T ELT) (($ $ (-1144 (-483))) 29 T ELT) (($ $ $) NIL T ELT)) (-2304 (($ $ (-483)) NIL T ELT) (($ $ (-1144 (-483))) NIL T ELT)) (-1944 (((-693) (-1 (-85) (-117)) $) NIL (|has| $ (-6 -3993)) ELT) (((-693) (-117) $) NIL (-12 (|has| $ (-6 -3993)) (|has| (-117) (-1012))) ELT)) (-1729 (($ $ $ (-483)) 83 (|has| $ (-6 -3994)) ELT)) (-3398 (($ $) 24 T ELT)) (-3970 (((-472) $) NIL (|has| (-117) (-552 (-472))) ELT)) (-3528 (($ (-582 (-117))) NIL T ELT)) (-3800 (($ $ (-117)) NIL T ELT) (($ (-117) $) NIL T ELT) (($ $ $) 23 T ELT) (($ (-582 $)) 84 T ELT)) (-3944 (($ (-117)) NIL T ELT) (((-771) $) 35 (|has| (-117) (-551 (-771))) ELT)) (-1263 (((-85) $ $) NIL (|has| (-117) (-72)) ELT)) (-1946 (((-85) (-1 (-85) (-117)) $) NIL (|has| $ (-6 -3993)) ELT)) (-2565 (((-85) $ $) NIL (|has| (-117) (-755)) ELT)) (-2566 (((-85) $ $) NIL (|has| (-117) (-755)) ELT)) (-3055 (((-85) $ $) 21 (|has| (-117) (-72)) ELT)) (-2683 (((-85) $ $) NIL (|has| (-117) (-755)) ELT)) (-2684 (((-85) $ $) 22 (|has| (-117) (-755)) ELT)) (-3955 (((-693) $) 20 (|has| $ (-6 -3993)) ELT))) -(((-1071) (-13 (-1056) (-10 -8 (-15 -3533 ($ (-483))) (-15 -3533 ($ (-179))) (-15 -3533 ($ (-445)))))) (T -1071)) -((-3533 (*1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-1071)))) (-3533 (*1 *1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-1071)))) (-3533 (*1 *1 *2) (-12 (-5 *2 (-445)) (-5 *1 (-1071))))) -((-2567 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|)) (-72)) (|has| |#1| (-72))) ELT)) (-3597 (($) NIL T ELT) (($ (-582 (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|)))) NIL T ELT)) (-2197 (((-1183) $ (-1071) (-1071)) NIL (|has| $ (-6 -3994)) ELT)) (-3786 ((|#1| $ (-1071) |#1|) NIL T ELT)) (-1568 (($ (-1 (-85) (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3993)) ELT)) (-3708 (($ (-1 (-85) (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3993)) ELT)) (-2230 (((-3 |#1| #1="failed") (-1071) $) NIL T ELT)) (-3722 (($) NIL T CONST)) (-1351 (($ $) NIL (-12 (|has| $ (-6 -3993)) (|has| (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|)) (-1012))) ELT)) (-3403 (($ (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|)) $) NIL (|has| $ (-6 -3993)) ELT) (($ (-1 (-85) (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3993)) ELT) (((-3 |#1| #1#) (-1071) $) NIL T ELT)) (-3404 (($ (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|)) $) NIL (-12 (|has| $ (-6 -3993)) (|has| (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|)) (-1012))) ELT) (($ (-1 (-85) (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3993)) ELT)) (-3840 (((-2 (|:| -3858 (-1071)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|)) (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|)) (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|))) $ (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|)) (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|))) NIL (-12 (|has| $ (-6 -3993)) (|has| (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|)) (-1012))) ELT) (((-2 (|:| -3858 (-1071)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|)) (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|)) (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|))) $ (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|))) NIL (|has| $ (-6 -3993)) ELT) (((-2 (|:| -3858 (-1071)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|)) (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|)) (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3993)) ELT)) (-1574 ((|#1| $ (-1071) |#1|) NIL (|has| $ (-6 -3994)) ELT)) (-3111 ((|#1| $ (-1071)) NIL T ELT)) (-2888 (((-582 (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3993)) ELT) (((-582 |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-2199 (((-1071) $) NIL (|has| (-1071) (-755)) ELT)) (-2607 (((-582 (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3993)) ELT) (((-582 |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3244 (((-85) (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|)) $) NIL (-12 (|has| $ (-6 -3993)) (|has| (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|)) (-1012))) ELT) (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#1| (-1012))) ELT)) (-2200 (((-1071) $) NIL (|has| (-1071) (-755)) ELT)) (-1947 (($ (-1 (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|)) (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3994)) ELT) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3956 (($ (-1 (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|)) (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|))) $) NIL T ELT) (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3241 (((-1071) $) NIL (OR (|has| (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|)) (-1012)) (|has| |#1| (-1012))) ELT)) (-2231 (((-582 (-1071)) $) NIL T ELT)) (-2232 (((-85) (-1071) $) NIL T ELT)) (-1272 (((-2 (|:| -3858 (-1071)) (|:| |entry| |#1|)) $) NIL T ELT)) (-3607 (($ (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|)) $) NIL T ELT)) (-2202 (((-582 (-1071)) $) NIL T ELT)) (-2203 (((-85) (-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL (OR (|has| (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|)) (-1012)) (|has| |#1| (-1012))) ELT)) (-3799 ((|#1| $) NIL (|has| (-1071) (-755)) ELT)) (-1352 (((-3 (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|)) #1#) (-1 (-85) (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|))) $) NIL T ELT)) (-2198 (($ $ |#1|) NIL (|has| $ (-6 -3994)) ELT)) (-1273 (((-2 (|:| -3858 (-1071)) (|:| |entry| |#1|)) $) NIL T ELT)) (-1945 (((-85) (-1 (-85) (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3993)) ELT) (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3766 (($ $ (-582 (-249 (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|))))) NIL (-12 (|has| (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|)) (-1012))) ELT) (($ $ (-249 (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|)))) NIL (-12 (|has| (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|)) (-1012))) ELT) (($ $ (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|)) (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|))) NIL (-12 (|has| (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|)) (-1012))) ELT) (($ $ (-582 (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|))) (-582 (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|)))) NIL (-12 (|has| (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|)) (-1012))) ELT) (($ $ (-582 |#1|) (-582 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-582 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-2201 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#1| (-1012))) ELT)) (-2204 (((-582 |#1|) $) NIL T ELT)) (-3401 (((-85) $) NIL T ELT)) (-3563 (($) NIL T ELT)) (-3798 ((|#1| $ (-1071)) NIL T ELT) ((|#1| $ (-1071) |#1|) NIL T ELT)) (-1464 (($) NIL T ELT) (($ (-582 (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|)))) NIL T ELT)) (-1944 (((-693) (-1 (-85) (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3993)) ELT) (((-693) (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|)) $) NIL (-12 (|has| $ (-6 -3993)) (|has| (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|)) (-1012))) ELT) (((-693) |#1| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#1| (-1012))) ELT) (((-693) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3398 (($ $) NIL T ELT)) (-3970 (((-472) $) NIL (|has| (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|)) (-552 (-472))) ELT)) (-3528 (($ (-582 (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|)))) NIL T ELT)) (-3944 (((-771) $) NIL (OR (|has| (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|)) (-551 (-771))) (|has| |#1| (-551 (-771)))) ELT)) (-1263 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|)) (-72)) (|has| |#1| (-72))) ELT)) (-1274 (($ (-582 (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|)))) NIL T ELT)) (-1946 (((-85) (-1 (-85) (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3993)) ELT) (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3055 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3858 (-1071)) (|:| |entry| |#1|)) (-72)) (|has| |#1| (-72))) ELT)) (-3955 (((-693) $) NIL (|has| $ (-6 -3993)) ELT))) -(((-1072 |#1|) (-13 (-1105 (-1071) |#1|) (-10 -7 (-6 -3993))) (-1012)) (T -1072)) -NIL -((-3803 (((-1067 |#1|) (-1067 |#1|)) 83 T ELT)) (-3465 (((-3 (-1067 |#1|) #1="failed") (-1067 |#1|)) 39 T ELT)) (-3476 (((-1067 |#1|) (-348 (-483)) (-1067 |#1|)) 131 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3479 (((-1067 |#1|) |#1| (-1067 |#1|)) 135 (|has| |#1| (-312)) ELT)) (-3806 (((-1067 |#1|) (-1067 |#1|)) 97 T ELT)) (-3467 (((-1067 (-483)) (-483)) 63 T ELT)) (-3475 (((-1067 |#1|) (-1067 (-1067 |#1|))) 116 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3802 (((-1067 |#1|) (-483) (-483) (-1067 |#1|)) 103 T ELT)) (-3936 (((-1067 |#1|) |#1| (-483)) 51 T ELT)) (-3469 (((-1067 |#1|) (-1067 |#1|) (-1067 |#1|)) 66 T ELT)) (-3477 (((-1067 |#1|) (-1067 |#1|) (-1067 |#1|)) 133 (|has| |#1| (-312)) ELT)) (-3474 (((-1067 |#1|) |#1| (-1 (-1067 |#1|))) 115 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3478 (((-1067 |#1|) (-1 |#1| (-483)) |#1| (-1 (-1067 |#1|))) 134 (|has| |#1| (-312)) ELT)) (-3807 (((-1067 |#1|) (-1067 |#1|)) 96 T ELT)) (-3808 (((-1067 |#1|) (-1067 |#1|)) 82 T ELT)) (-3801 (((-1067 |#1|) (-483) (-483) (-1067 |#1|)) 104 T ELT)) (-3810 (((-1067 |#1|) |#1| (-1067 |#1|)) 113 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3466 (((-1067 (-483)) (-483)) 62 T ELT)) (-3468 (((-1067 |#1|) |#1|) 65 T ELT)) (-3804 (((-1067 |#1|) (-1067 |#1|) (-483) (-483)) 100 T ELT)) (-3471 (((-1067 |#1|) (-1 |#1| (-483)) (-1067 |#1|)) 72 T ELT)) (-3464 (((-3 (-1067 |#1|) #1#) (-1067 |#1|) (-1067 |#1|)) 37 T ELT)) (-3805 (((-1067 |#1|) (-1067 |#1|)) 98 T ELT)) (-3766 (((-1067 |#1|) (-1067 |#1|) |#1|) 77 T ELT)) (-3470 (((-1067 |#1|) (-1067 |#1|)) 68 T ELT)) (-3472 (((-1067 |#1|) (-1067 |#1|) (-1067 |#1|)) 78 T ELT)) (-3944 (((-1067 |#1|) |#1|) 73 T ELT)) (-3473 (((-1067 |#1|) (-1067 (-1067 |#1|))) 88 T ELT)) (-3947 (((-1067 |#1|) (-1067 |#1|) (-1067 |#1|)) 38 T ELT)) (-3835 (((-1067 |#1|) (-1067 |#1|)) 21 T ELT) (((-1067 |#1|) (-1067 |#1|) (-1067 |#1|)) 23 T ELT)) (-3837 (((-1067 |#1|) (-1067 |#1|) (-1067 |#1|)) 17 T ELT)) (* (((-1067 |#1|) (-1067 |#1|) |#1|) 29 T ELT) (((-1067 |#1|) |#1| (-1067 |#1|)) 26 T ELT) (((-1067 |#1|) (-1067 |#1|) (-1067 |#1|)) 27 T ELT))) -(((-1073 |#1|) (-10 -7 (-15 -3837 ((-1067 |#1|) (-1067 |#1|) (-1067 |#1|))) (-15 -3835 ((-1067 |#1|) (-1067 |#1|) (-1067 |#1|))) (-15 -3835 ((-1067 |#1|) (-1067 |#1|))) (-15 * ((-1067 |#1|) (-1067 |#1|) (-1067 |#1|))) (-15 * ((-1067 |#1|) |#1| (-1067 |#1|))) (-15 * ((-1067 |#1|) (-1067 |#1|) |#1|)) (-15 -3464 ((-3 (-1067 |#1|) #1="failed") (-1067 |#1|) (-1067 |#1|))) (-15 -3947 ((-1067 |#1|) (-1067 |#1|) (-1067 |#1|))) (-15 -3465 ((-3 (-1067 |#1|) #1#) (-1067 |#1|))) (-15 -3936 ((-1067 |#1|) |#1| (-483))) (-15 -3466 ((-1067 (-483)) (-483))) (-15 -3467 ((-1067 (-483)) (-483))) (-15 -3468 ((-1067 |#1|) |#1|)) (-15 -3469 ((-1067 |#1|) (-1067 |#1|) (-1067 |#1|))) (-15 -3470 ((-1067 |#1|) (-1067 |#1|))) (-15 -3471 ((-1067 |#1|) (-1 |#1| (-483)) (-1067 |#1|))) (-15 -3944 ((-1067 |#1|) |#1|)) (-15 -3766 ((-1067 |#1|) (-1067 |#1|) |#1|)) (-15 -3472 ((-1067 |#1|) (-1067 |#1|) (-1067 |#1|))) (-15 -3808 ((-1067 |#1|) (-1067 |#1|))) (-15 -3803 ((-1067 |#1|) (-1067 |#1|))) (-15 -3473 ((-1067 |#1|) (-1067 (-1067 |#1|)))) (-15 -3807 ((-1067 |#1|) (-1067 |#1|))) (-15 -3806 ((-1067 |#1|) (-1067 |#1|))) (-15 -3805 ((-1067 |#1|) (-1067 |#1|))) (-15 -3804 ((-1067 |#1|) (-1067 |#1|) (-483) (-483))) (-15 -3802 ((-1067 |#1|) (-483) (-483) (-1067 |#1|))) (-15 -3801 ((-1067 |#1|) (-483) (-483) (-1067 |#1|))) (IF (|has| |#1| (-38 (-348 (-483)))) (PROGN (-15 -3810 ((-1067 |#1|) |#1| (-1067 |#1|))) (-15 -3474 ((-1067 |#1|) |#1| (-1 (-1067 |#1|)))) (-15 -3475 ((-1067 |#1|) (-1067 (-1067 |#1|)))) (-15 -3476 ((-1067 |#1|) (-348 (-483)) (-1067 |#1|)))) |%noBranch|) (IF (|has| |#1| (-312)) (PROGN (-15 -3477 ((-1067 |#1|) (-1067 |#1|) (-1067 |#1|))) (-15 -3478 ((-1067 |#1|) (-1 |#1| (-483)) |#1| (-1 (-1067 |#1|)))) (-15 -3479 ((-1067 |#1|) |#1| (-1067 |#1|)))) |%noBranch|)) (-960)) (T -1073)) -((-3479 (*1 *2 *3 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-312)) (-4 *3 (-960)) (-5 *1 (-1073 *3)))) (-3478 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-483))) (-5 *5 (-1 (-1067 *4))) (-4 *4 (-312)) (-4 *4 (-960)) (-5 *2 (-1067 *4)) (-5 *1 (-1073 *4)))) (-3477 (*1 *2 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-312)) (-4 *3 (-960)) (-5 *1 (-1073 *3)))) (-3476 (*1 *2 *3 *2) (-12 (-5 *2 (-1067 *4)) (-4 *4 (-38 *3)) (-4 *4 (-960)) (-5 *3 (-348 (-483))) (-5 *1 (-1073 *4)))) (-3475 (*1 *2 *3) (-12 (-5 *3 (-1067 (-1067 *4))) (-5 *2 (-1067 *4)) (-5 *1 (-1073 *4)) (-4 *4 (-38 (-348 (-483)))) (-4 *4 (-960)))) (-3474 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1067 *3))) (-5 *2 (-1067 *3)) (-5 *1 (-1073 *3)) (-4 *3 (-38 (-348 (-483)))) (-4 *3 (-960)))) (-3810 (*1 *2 *3 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-348 (-483)))) (-4 *3 (-960)) (-5 *1 (-1073 *3)))) (-3801 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1067 *4)) (-5 *3 (-483)) (-4 *4 (-960)) (-5 *1 (-1073 *4)))) (-3802 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1067 *4)) (-5 *3 (-483)) (-4 *4 (-960)) (-5 *1 (-1073 *4)))) (-3804 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1067 *4)) (-5 *3 (-483)) (-4 *4 (-960)) (-5 *1 (-1073 *4)))) (-3805 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-960)) (-5 *1 (-1073 *3)))) (-3806 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-960)) (-5 *1 (-1073 *3)))) (-3807 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-960)) (-5 *1 (-1073 *3)))) (-3473 (*1 *2 *3) (-12 (-5 *3 (-1067 (-1067 *4))) (-5 *2 (-1067 *4)) (-5 *1 (-1073 *4)) (-4 *4 (-960)))) (-3803 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-960)) (-5 *1 (-1073 *3)))) (-3808 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-960)) (-5 *1 (-1073 *3)))) (-3472 (*1 *2 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-960)) (-5 *1 (-1073 *3)))) (-3766 (*1 *2 *2 *3) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-960)) (-5 *1 (-1073 *3)))) (-3944 (*1 *2 *3) (-12 (-5 *2 (-1067 *3)) (-5 *1 (-1073 *3)) (-4 *3 (-960)))) (-3471 (*1 *2 *3 *2) (-12 (-5 *2 (-1067 *4)) (-5 *3 (-1 *4 (-483))) (-4 *4 (-960)) (-5 *1 (-1073 *4)))) (-3470 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-960)) (-5 *1 (-1073 *3)))) (-3469 (*1 *2 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-960)) (-5 *1 (-1073 *3)))) (-3468 (*1 *2 *3) (-12 (-5 *2 (-1067 *3)) (-5 *1 (-1073 *3)) (-4 *3 (-960)))) (-3467 (*1 *2 *3) (-12 (-5 *2 (-1067 (-483))) (-5 *1 (-1073 *4)) (-4 *4 (-960)) (-5 *3 (-483)))) (-3466 (*1 *2 *3) (-12 (-5 *2 (-1067 (-483))) (-5 *1 (-1073 *4)) (-4 *4 (-960)) (-5 *3 (-483)))) (-3936 (*1 *2 *3 *4) (-12 (-5 *4 (-483)) (-5 *2 (-1067 *3)) (-5 *1 (-1073 *3)) (-4 *3 (-960)))) (-3465 (*1 *2 *2) (|partial| -12 (-5 *2 (-1067 *3)) (-4 *3 (-960)) (-5 *1 (-1073 *3)))) (-3947 (*1 *2 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-960)) (-5 *1 (-1073 *3)))) (-3464 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1067 *3)) (-4 *3 (-960)) (-5 *1 (-1073 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-960)) (-5 *1 (-1073 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-960)) (-5 *1 (-1073 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-960)) (-5 *1 (-1073 *3)))) (-3835 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-960)) (-5 *1 (-1073 *3)))) (-3835 (*1 *2 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-960)) (-5 *1 (-1073 *3)))) (-3837 (*1 *2 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-960)) (-5 *1 (-1073 *3))))) -((-3490 (((-1067 |#1|) (-1067 |#1|)) 102 T ELT)) (-3637 (((-1067 |#1|) (-1067 |#1|)) 59 T ELT)) (-3481 (((-2 (|:| -3488 (-1067 |#1|)) (|:| -3489 (-1067 |#1|))) (-1067 |#1|)) 98 T ELT)) (-3488 (((-1067 |#1|) (-1067 |#1|)) 99 T ELT)) (-3480 (((-2 (|:| -3636 (-1067 |#1|)) (|:| -3632 (-1067 |#1|))) (-1067 |#1|)) 54 T ELT)) (-3636 (((-1067 |#1|) (-1067 |#1|)) 55 T ELT)) (-3492 (((-1067 |#1|) (-1067 |#1|)) 104 T ELT)) (-3635 (((-1067 |#1|) (-1067 |#1|)) 66 T ELT)) (-3940 (((-1067 |#1|) (-1067 |#1|)) 40 T ELT)) (-3941 (((-1067 |#1|) (-1067 |#1|)) 37 T ELT)) (-3493 (((-1067 |#1|) (-1067 |#1|)) 105 T ELT)) (-3634 (((-1067 |#1|) (-1067 |#1|)) 67 T ELT)) (-3491 (((-1067 |#1|) (-1067 |#1|)) 103 T ELT)) (-3633 (((-1067 |#1|) (-1067 |#1|)) 62 T ELT)) (-3489 (((-1067 |#1|) (-1067 |#1|)) 100 T ELT)) (-3632 (((-1067 |#1|) (-1067 |#1|)) 56 T ELT)) (-3496 (((-1067 |#1|) (-1067 |#1|)) 113 T ELT)) (-3484 (((-1067 |#1|) (-1067 |#1|)) 88 T ELT)) (-3494 (((-1067 |#1|) (-1067 |#1|)) 107 T ELT)) (-3482 (((-1067 |#1|) (-1067 |#1|)) 84 T ELT)) (-3498 (((-1067 |#1|) (-1067 |#1|)) 117 T ELT)) (-3486 (((-1067 |#1|) (-1067 |#1|)) 92 T ELT)) (-3499 (((-1067 |#1|) (-1067 |#1|)) 119 T ELT)) (-3487 (((-1067 |#1|) (-1067 |#1|)) 94 T ELT)) (-3497 (((-1067 |#1|) (-1067 |#1|)) 115 T ELT)) (-3485 (((-1067 |#1|) (-1067 |#1|)) 90 T ELT)) (-3495 (((-1067 |#1|) (-1067 |#1|)) 109 T ELT)) (-3483 (((-1067 |#1|) (-1067 |#1|)) 86 T ELT)) (** (((-1067 |#1|) (-1067 |#1|) (-1067 |#1|)) 41 T ELT))) -(((-1074 |#1|) (-10 -7 (-15 -3941 ((-1067 |#1|) (-1067 |#1|))) (-15 -3940 ((-1067 |#1|) (-1067 |#1|))) (-15 ** ((-1067 |#1|) (-1067 |#1|) (-1067 |#1|))) (-15 -3480 ((-2 (|:| -3636 (-1067 |#1|)) (|:| -3632 (-1067 |#1|))) (-1067 |#1|))) (-15 -3636 ((-1067 |#1|) (-1067 |#1|))) (-15 -3632 ((-1067 |#1|) (-1067 |#1|))) (-15 -3637 ((-1067 |#1|) (-1067 |#1|))) (-15 -3633 ((-1067 |#1|) (-1067 |#1|))) (-15 -3635 ((-1067 |#1|) (-1067 |#1|))) (-15 -3634 ((-1067 |#1|) (-1067 |#1|))) (-15 -3482 ((-1067 |#1|) (-1067 |#1|))) (-15 -3483 ((-1067 |#1|) (-1067 |#1|))) (-15 -3484 ((-1067 |#1|) (-1067 |#1|))) (-15 -3485 ((-1067 |#1|) (-1067 |#1|))) (-15 -3486 ((-1067 |#1|) (-1067 |#1|))) (-15 -3487 ((-1067 |#1|) (-1067 |#1|))) (-15 -3481 ((-2 (|:| -3488 (-1067 |#1|)) (|:| -3489 (-1067 |#1|))) (-1067 |#1|))) (-15 -3488 ((-1067 |#1|) (-1067 |#1|))) (-15 -3489 ((-1067 |#1|) (-1067 |#1|))) (-15 -3490 ((-1067 |#1|) (-1067 |#1|))) (-15 -3491 ((-1067 |#1|) (-1067 |#1|))) (-15 -3492 ((-1067 |#1|) (-1067 |#1|))) (-15 -3493 ((-1067 |#1|) (-1067 |#1|))) (-15 -3494 ((-1067 |#1|) (-1067 |#1|))) (-15 -3495 ((-1067 |#1|) (-1067 |#1|))) (-15 -3496 ((-1067 |#1|) (-1067 |#1|))) (-15 -3497 ((-1067 |#1|) (-1067 |#1|))) (-15 -3498 ((-1067 |#1|) (-1067 |#1|))) (-15 -3499 ((-1067 |#1|) (-1067 |#1|)))) (-38 (-348 (-483)))) (T -1074)) -((-3499 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-348 (-483)))) (-5 *1 (-1074 *3)))) (-3498 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-348 (-483)))) (-5 *1 (-1074 *3)))) (-3497 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-348 (-483)))) (-5 *1 (-1074 *3)))) (-3496 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-348 (-483)))) (-5 *1 (-1074 *3)))) (-3495 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-348 (-483)))) (-5 *1 (-1074 *3)))) (-3494 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-348 (-483)))) (-5 *1 (-1074 *3)))) (-3493 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-348 (-483)))) (-5 *1 (-1074 *3)))) (-3492 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-348 (-483)))) (-5 *1 (-1074 *3)))) (-3491 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-348 (-483)))) (-5 *1 (-1074 *3)))) (-3490 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-348 (-483)))) (-5 *1 (-1074 *3)))) (-3489 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-348 (-483)))) (-5 *1 (-1074 *3)))) (-3488 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-348 (-483)))) (-5 *1 (-1074 *3)))) (-3481 (*1 *2 *3) (-12 (-4 *4 (-38 (-348 (-483)))) (-5 *2 (-2 (|:| -3488 (-1067 *4)) (|:| -3489 (-1067 *4)))) (-5 *1 (-1074 *4)) (-5 *3 (-1067 *4)))) (-3487 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-348 (-483)))) (-5 *1 (-1074 *3)))) (-3486 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-348 (-483)))) (-5 *1 (-1074 *3)))) (-3485 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-348 (-483)))) (-5 *1 (-1074 *3)))) (-3484 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-348 (-483)))) (-5 *1 (-1074 *3)))) (-3483 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-348 (-483)))) (-5 *1 (-1074 *3)))) (-3482 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-348 (-483)))) (-5 *1 (-1074 *3)))) (-3634 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-348 (-483)))) (-5 *1 (-1074 *3)))) (-3635 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-348 (-483)))) (-5 *1 (-1074 *3)))) (-3633 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-348 (-483)))) (-5 *1 (-1074 *3)))) (-3637 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-348 (-483)))) (-5 *1 (-1074 *3)))) (-3632 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-348 (-483)))) (-5 *1 (-1074 *3)))) (-3636 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-348 (-483)))) (-5 *1 (-1074 *3)))) (-3480 (*1 *2 *3) (-12 (-4 *4 (-38 (-348 (-483)))) (-5 *2 (-2 (|:| -3636 (-1067 *4)) (|:| -3632 (-1067 *4)))) (-5 *1 (-1074 *4)) (-5 *3 (-1067 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-348 (-483)))) (-5 *1 (-1074 *3)))) (-3940 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-348 (-483)))) (-5 *1 (-1074 *3)))) (-3941 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-348 (-483)))) (-5 *1 (-1074 *3))))) -((-3490 (((-1067 |#1|) (-1067 |#1|)) 60 T ELT)) (-3637 (((-1067 |#1|) (-1067 |#1|)) 42 T ELT)) (-3488 (((-1067 |#1|) (-1067 |#1|)) 56 T ELT)) (-3636 (((-1067 |#1|) (-1067 |#1|)) 38 T ELT)) (-3492 (((-1067 |#1|) (-1067 |#1|)) 63 T ELT)) (-3635 (((-1067 |#1|) (-1067 |#1|)) 45 T ELT)) (-3940 (((-1067 |#1|) (-1067 |#1|)) 34 T ELT)) (-3941 (((-1067 |#1|) (-1067 |#1|)) 29 T ELT)) (-3493 (((-1067 |#1|) (-1067 |#1|)) 64 T ELT)) (-3634 (((-1067 |#1|) (-1067 |#1|)) 46 T ELT)) (-3491 (((-1067 |#1|) (-1067 |#1|)) 61 T ELT)) (-3633 (((-1067 |#1|) (-1067 |#1|)) 43 T ELT)) (-3489 (((-1067 |#1|) (-1067 |#1|)) 58 T ELT)) (-3632 (((-1067 |#1|) (-1067 |#1|)) 40 T ELT)) (-3496 (((-1067 |#1|) (-1067 |#1|)) 68 T ELT)) (-3484 (((-1067 |#1|) (-1067 |#1|)) 50 T ELT)) (-3494 (((-1067 |#1|) (-1067 |#1|)) 66 T ELT)) (-3482 (((-1067 |#1|) (-1067 |#1|)) 48 T ELT)) (-3498 (((-1067 |#1|) (-1067 |#1|)) 71 T ELT)) (-3486 (((-1067 |#1|) (-1067 |#1|)) 53 T ELT)) (-3499 (((-1067 |#1|) (-1067 |#1|)) 72 T ELT)) (-3487 (((-1067 |#1|) (-1067 |#1|)) 54 T ELT)) (-3497 (((-1067 |#1|) (-1067 |#1|)) 70 T ELT)) (-3485 (((-1067 |#1|) (-1067 |#1|)) 52 T ELT)) (-3495 (((-1067 |#1|) (-1067 |#1|)) 69 T ELT)) (-3483 (((-1067 |#1|) (-1067 |#1|)) 51 T ELT)) (** (((-1067 |#1|) (-1067 |#1|) (-1067 |#1|)) 36 T ELT))) -(((-1075 |#1|) (-10 -7 (-15 -3941 ((-1067 |#1|) (-1067 |#1|))) (-15 -3940 ((-1067 |#1|) (-1067 |#1|))) (-15 ** ((-1067 |#1|) (-1067 |#1|) (-1067 |#1|))) (-15 -3636 ((-1067 |#1|) (-1067 |#1|))) (-15 -3632 ((-1067 |#1|) (-1067 |#1|))) (-15 -3637 ((-1067 |#1|) (-1067 |#1|))) (-15 -3633 ((-1067 |#1|) (-1067 |#1|))) (-15 -3635 ((-1067 |#1|) (-1067 |#1|))) (-15 -3634 ((-1067 |#1|) (-1067 |#1|))) (-15 -3482 ((-1067 |#1|) (-1067 |#1|))) (-15 -3483 ((-1067 |#1|) (-1067 |#1|))) (-15 -3484 ((-1067 |#1|) (-1067 |#1|))) (-15 -3485 ((-1067 |#1|) (-1067 |#1|))) (-15 -3486 ((-1067 |#1|) (-1067 |#1|))) (-15 -3487 ((-1067 |#1|) (-1067 |#1|))) (-15 -3488 ((-1067 |#1|) (-1067 |#1|))) (-15 -3489 ((-1067 |#1|) (-1067 |#1|))) (-15 -3490 ((-1067 |#1|) (-1067 |#1|))) (-15 -3491 ((-1067 |#1|) (-1067 |#1|))) (-15 -3492 ((-1067 |#1|) (-1067 |#1|))) (-15 -3493 ((-1067 |#1|) (-1067 |#1|))) (-15 -3494 ((-1067 |#1|) (-1067 |#1|))) (-15 -3495 ((-1067 |#1|) (-1067 |#1|))) (-15 -3496 ((-1067 |#1|) (-1067 |#1|))) (-15 -3497 ((-1067 |#1|) (-1067 |#1|))) (-15 -3498 ((-1067 |#1|) (-1067 |#1|))) (-15 -3499 ((-1067 |#1|) (-1067 |#1|)))) (-38 (-348 (-483)))) (T -1075)) -((-3499 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-348 (-483)))) (-5 *1 (-1075 *3)))) (-3498 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-348 (-483)))) (-5 *1 (-1075 *3)))) (-3497 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-348 (-483)))) (-5 *1 (-1075 *3)))) (-3496 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-348 (-483)))) (-5 *1 (-1075 *3)))) (-3495 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-348 (-483)))) (-5 *1 (-1075 *3)))) (-3494 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-348 (-483)))) (-5 *1 (-1075 *3)))) (-3493 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-348 (-483)))) (-5 *1 (-1075 *3)))) (-3492 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-348 (-483)))) (-5 *1 (-1075 *3)))) (-3491 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-348 (-483)))) (-5 *1 (-1075 *3)))) (-3490 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-348 (-483)))) (-5 *1 (-1075 *3)))) (-3489 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-348 (-483)))) (-5 *1 (-1075 *3)))) (-3488 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-348 (-483)))) (-5 *1 (-1075 *3)))) (-3487 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-348 (-483)))) (-5 *1 (-1075 *3)))) (-3486 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-348 (-483)))) (-5 *1 (-1075 *3)))) (-3485 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-348 (-483)))) (-5 *1 (-1075 *3)))) (-3484 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-348 (-483)))) (-5 *1 (-1075 *3)))) (-3483 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-348 (-483)))) (-5 *1 (-1075 *3)))) (-3482 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-348 (-483)))) (-5 *1 (-1075 *3)))) (-3634 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-348 (-483)))) (-5 *1 (-1075 *3)))) (-3635 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-348 (-483)))) (-5 *1 (-1075 *3)))) (-3633 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-348 (-483)))) (-5 *1 (-1075 *3)))) (-3637 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-348 (-483)))) (-5 *1 (-1075 *3)))) (-3632 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-348 (-483)))) (-5 *1 (-1075 *3)))) (-3636 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-348 (-483)))) (-5 *1 (-1075 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-348 (-483)))) (-5 *1 (-1075 *3)))) (-3940 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-348 (-483)))) (-5 *1 (-1075 *3)))) (-3941 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-348 (-483)))) (-5 *1 (-1075 *3))))) -((-3500 (((-868 |#2|) |#2| |#2|) 51 T ELT)) (-3501 ((|#2| |#2| |#1|) 19 (|has| |#1| (-258)) ELT))) -(((-1076 |#1| |#2|) (-10 -7 (-15 -3500 ((-868 |#2|) |#2| |#2|)) (IF (|has| |#1| (-258)) (-15 -3501 (|#2| |#2| |#1|)) |%noBranch|)) (-494) (-1153 |#1|)) (T -1076)) -((-3501 (*1 *2 *2 *3) (-12 (-4 *3 (-258)) (-4 *3 (-494)) (-5 *1 (-1076 *3 *2)) (-4 *2 (-1153 *3)))) (-3500 (*1 *2 *3 *3) (-12 (-4 *4 (-494)) (-5 *2 (-868 *3)) (-5 *1 (-1076 *4 *3)) (-4 *3 (-1153 *4))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3509 (($ $ (-582 (-693))) 79 T ELT)) (-3886 (($) 33 T ELT)) (-3518 (($ $) 51 T ELT)) (-3749 (((-582 $) $) 60 T ELT)) (-3524 (((-85) $) 19 T ELT)) (-3502 (((-582 (-853 |#2|)) $) 86 T ELT)) (-3503 (($ $) 80 T ELT)) (-3519 (((-693) $) 47 T ELT)) (-3612 (($) 32 T ELT)) (-3512 (($ $ (-582 (-693)) (-853 |#2|)) 72 T ELT) (($ $ (-582 (-693)) (-693)) 73 T ELT) (($ $ (-693) (-853 |#2|)) 75 T ELT)) (-3516 (($ $ $) 57 T ELT) (($ (-582 $)) 59 T ELT)) (-3504 (((-693) $) 87 T ELT)) (-3525 (((-85) $) 15 T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3523 (((-85) $) 22 T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3505 (((-145) $) 85 T ELT)) (-3508 (((-853 |#2|) $) 81 T ELT)) (-3507 (((-693) $) 82 T ELT)) (-3506 (((-85) $) 84 T ELT)) (-3510 (($ $ (-582 (-693)) (-145)) 78 T ELT)) (-3517 (($ $) 52 T ELT)) (-3944 (((-771) $) 99 T ELT)) (-3511 (($ $ (-582 (-693)) (-85)) 77 T ELT)) (-3520 (((-582 $) $) 11 T ELT)) (-3521 (($ $ (-693)) 46 T ELT)) (-3522 (($ $) 43 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3513 (($ $ $ (-853 |#2|) (-693)) 68 T ELT)) (-3514 (($ $ (-853 |#2|)) 67 T ELT)) (-3515 (($ $ (-582 (-693)) (-853 |#2|)) 66 T ELT) (($ $ (-582 (-693)) (-693)) 70 T ELT) (((-693) $ (-853 |#2|)) 71 T ELT)) (-3055 (((-85) $ $) 92 T ELT))) -(((-1077 |#1| |#2|) (-13 (-1012) (-10 -8 (-15 -3525 ((-85) $)) (-15 -3524 ((-85) $)) (-15 -3523 ((-85) $)) (-15 -3612 ($)) (-15 -3886 ($)) (-15 -3522 ($ $)) (-15 -3521 ($ $ (-693))) (-15 -3520 ((-582 $) $)) (-15 -3519 ((-693) $)) (-15 -3518 ($ $)) (-15 -3517 ($ $)) (-15 -3516 ($ $ $)) (-15 -3516 ($ (-582 $))) (-15 -3749 ((-582 $) $)) (-15 -3515 ($ $ (-582 (-693)) (-853 |#2|))) (-15 -3514 ($ $ (-853 |#2|))) (-15 -3513 ($ $ $ (-853 |#2|) (-693))) (-15 -3512 ($ $ (-582 (-693)) (-853 |#2|))) (-15 -3515 ($ $ (-582 (-693)) (-693))) (-15 -3512 ($ $ (-582 (-693)) (-693))) (-15 -3515 ((-693) $ (-853 |#2|))) (-15 -3512 ($ $ (-693) (-853 |#2|))) (-15 -3511 ($ $ (-582 (-693)) (-85))) (-15 -3510 ($ $ (-582 (-693)) (-145))) (-15 -3509 ($ $ (-582 (-693)))) (-15 -3508 ((-853 |#2|) $)) (-15 -3507 ((-693) $)) (-15 -3506 ((-85) $)) (-15 -3505 ((-145) $)) (-15 -3504 ((-693) $)) (-15 -3503 ($ $)) (-15 -3502 ((-582 (-853 |#2|)) $)))) (-829) (-960)) (T -1077)) -((-3525 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1077 *3 *4)) (-14 *3 (-829)) (-4 *4 (-960)))) (-3524 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1077 *3 *4)) (-14 *3 (-829)) (-4 *4 (-960)))) (-3523 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1077 *3 *4)) (-14 *3 (-829)) (-4 *4 (-960)))) (-3612 (*1 *1) (-12 (-5 *1 (-1077 *2 *3)) (-14 *2 (-829)) (-4 *3 (-960)))) (-3886 (*1 *1) (-12 (-5 *1 (-1077 *2 *3)) (-14 *2 (-829)) (-4 *3 (-960)))) (-3522 (*1 *1 *1) (-12 (-5 *1 (-1077 *2 *3)) (-14 *2 (-829)) (-4 *3 (-960)))) (-3521 (*1 *1 *1 *2) (-12 (-5 *2 (-693)) (-5 *1 (-1077 *3 *4)) (-14 *3 (-829)) (-4 *4 (-960)))) (-3520 (*1 *2 *1) (-12 (-5 *2 (-582 (-1077 *3 *4))) (-5 *1 (-1077 *3 *4)) (-14 *3 (-829)) (-4 *4 (-960)))) (-3519 (*1 *2 *1) (-12 (-5 *2 (-693)) (-5 *1 (-1077 *3 *4)) (-14 *3 (-829)) (-4 *4 (-960)))) (-3518 (*1 *1 *1) (-12 (-5 *1 (-1077 *2 *3)) (-14 *2 (-829)) (-4 *3 (-960)))) (-3517 (*1 *1 *1) (-12 (-5 *1 (-1077 *2 *3)) (-14 *2 (-829)) (-4 *3 (-960)))) (-3516 (*1 *1 *1 *1) (-12 (-5 *1 (-1077 *2 *3)) (-14 *2 (-829)) (-4 *3 (-960)))) (-3516 (*1 *1 *2) (-12 (-5 *2 (-582 (-1077 *3 *4))) (-5 *1 (-1077 *3 *4)) (-14 *3 (-829)) (-4 *4 (-960)))) (-3749 (*1 *2 *1) (-12 (-5 *2 (-582 (-1077 *3 *4))) (-5 *1 (-1077 *3 *4)) (-14 *3 (-829)) (-4 *4 (-960)))) (-3515 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-582 (-693))) (-5 *3 (-853 *5)) (-4 *5 (-960)) (-5 *1 (-1077 *4 *5)) (-14 *4 (-829)))) (-3514 (*1 *1 *1 *2) (-12 (-5 *2 (-853 *4)) (-4 *4 (-960)) (-5 *1 (-1077 *3 *4)) (-14 *3 (-829)))) (-3513 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-853 *5)) (-5 *3 (-693)) (-4 *5 (-960)) (-5 *1 (-1077 *4 *5)) (-14 *4 (-829)))) (-3512 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-582 (-693))) (-5 *3 (-853 *5)) (-4 *5 (-960)) (-5 *1 (-1077 *4 *5)) (-14 *4 (-829)))) (-3515 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-582 (-693))) (-5 *3 (-693)) (-5 *1 (-1077 *4 *5)) (-14 *4 (-829)) (-4 *5 (-960)))) (-3512 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-582 (-693))) (-5 *3 (-693)) (-5 *1 (-1077 *4 *5)) (-14 *4 (-829)) (-4 *5 (-960)))) (-3515 (*1 *2 *1 *3) (-12 (-5 *3 (-853 *5)) (-4 *5 (-960)) (-5 *2 (-693)) (-5 *1 (-1077 *4 *5)) (-14 *4 (-829)))) (-3512 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-693)) (-5 *3 (-853 *5)) (-4 *5 (-960)) (-5 *1 (-1077 *4 *5)) (-14 *4 (-829)))) (-3511 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-582 (-693))) (-5 *3 (-85)) (-5 *1 (-1077 *4 *5)) (-14 *4 (-829)) (-4 *5 (-960)))) (-3510 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-582 (-693))) (-5 *3 (-145)) (-5 *1 (-1077 *4 *5)) (-14 *4 (-829)) (-4 *5 (-960)))) (-3509 (*1 *1 *1 *2) (-12 (-5 *2 (-582 (-693))) (-5 *1 (-1077 *3 *4)) (-14 *3 (-829)) (-4 *4 (-960)))) (-3508 (*1 *2 *1) (-12 (-5 *2 (-853 *4)) (-5 *1 (-1077 *3 *4)) (-14 *3 (-829)) (-4 *4 (-960)))) (-3507 (*1 *2 *1) (-12 (-5 *2 (-693)) (-5 *1 (-1077 *3 *4)) (-14 *3 (-829)) (-4 *4 (-960)))) (-3506 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1077 *3 *4)) (-14 *3 (-829)) (-4 *4 (-960)))) (-3505 (*1 *2 *1) (-12 (-5 *2 (-145)) (-5 *1 (-1077 *3 *4)) (-14 *3 (-829)) (-4 *4 (-960)))) (-3504 (*1 *2 *1) (-12 (-5 *2 (-693)) (-5 *1 (-1077 *3 *4)) (-14 *3 (-829)) (-4 *4 (-960)))) (-3503 (*1 *1 *1) (-12 (-5 *1 (-1077 *2 *3)) (-14 *2 (-829)) (-4 *3 (-960)))) (-3502 (*1 *2 *1) (-12 (-5 *2 (-582 (-853 *4))) (-5 *1 (-1077 *3 *4)) (-14 *3 (-829)) (-4 *4 (-960))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3526 ((|#2| $) 11 T ELT)) (-3527 ((|#1| $) 10 T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3528 (($ |#1| |#2|) 9 T ELT)) (-3944 (((-771) $) 16 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-1078 |#1| |#2|) (-13 (-1012) (-10 -8 (-15 -3528 ($ |#1| |#2|)) (-15 -3527 (|#1| $)) (-15 -3526 (|#2| $)))) (-1012) (-1012)) (T -1078)) -((-3528 (*1 *1 *2 *3) (-12 (-5 *1 (-1078 *2 *3)) (-4 *2 (-1012)) (-4 *3 (-1012)))) (-3527 (*1 *2 *1) (-12 (-4 *2 (-1012)) (-5 *1 (-1078 *2 *3)) (-4 *3 (-1012)))) (-3526 (*1 *2 *1) (-12 (-4 *2 (-1012)) (-5 *1 (-1078 *3 *2)) (-4 *3 (-1012))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3529 (((-1047) $) 10 T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3944 (((-771) $) 16 T ELT) (($ (-1093)) NIL T ELT) (((-1093) $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-1079) (-13 (-994) (-10 -8 (-15 -3529 ((-1047) $))))) (T -1079)) -((-3529 (*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-1079))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3187 (((-85) $) NIL T ELT)) (-3128 (((-1087 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-258)) (|has| |#1| (-312))) ELT)) (-3080 (((-582 (-993)) $) NIL T ELT)) (-3829 (((-1088) $) 11 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3980 $) (|:| |associate| $)) $) NIL (OR (-12 (|has| (-1087 |#1| |#2| |#3|) (-820)) (|has| |#1| (-312))) (-12 (|has| (-1087 |#1| |#2| |#3|) (-739)) (|has| |#1| (-312))) (|has| |#1| (-494))) ELT)) (-2062 (($ $) NIL (OR (-12 (|has| (-1087 |#1| |#2| |#3|) (-820)) (|has| |#1| (-312))) (-12 (|has| (-1087 |#1| |#2| |#3|) (-739)) (|has| |#1| (-312))) (|has| |#1| (-494))) ELT)) (-2060 (((-85) $) NIL (OR (-12 (|has| (-1087 |#1| |#2| |#3|) (-820)) (|has| |#1| (-312))) (-12 (|has| (-1087 |#1| |#2| |#3|) (-739)) (|has| |#1| (-312))) (|has| |#1| (-494))) ELT)) (-3769 (($ $ (-483)) NIL T ELT) (($ $ (-483) (-483)) 75 T ELT)) (-3772 (((-1067 (-2 (|:| |k| (-483)) (|:| |c| |#1|))) $) NIL T ELT)) (-3729 (((-1087 |#1| |#2| |#3|) $) 42 T ELT)) (-3726 (((-3 (-1087 |#1| |#2| |#3|) #1="failed") $) 32 T ELT)) (-3727 (((-1087 |#1| |#2| |#3|) $) 33 T ELT)) (-3490 (($ $) 116 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3637 (($ $) 92 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-1310 (((-3 $ #1#) $ $) NIL T ELT)) (-2706 (((-346 (-1083 $)) (-1083 $)) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-820)) (|has| |#1| (-312))) ELT)) (-3773 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3969 (((-346 $) $) NIL (|has| |#1| (-312)) ELT)) (-3036 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-2703 (((-3 (-582 (-1083 $)) #1#) (-582 (-1083 $)) (-1083 $)) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-820)) (|has| |#1| (-312))) ELT)) (-1606 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3488 (($ $) 112 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3636 (($ $) 88 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3621 (((-483) $) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-739)) (|has| |#1| (-312))) ELT)) (-3816 (($ (-1067 (-2 (|:| |k| (-483)) (|:| |c| |#1|)))) NIL T ELT)) (-3492 (($ $) 120 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3635 (($ $) 96 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3722 (($) NIL T CONST)) (-3156 (((-3 (-1087 |#1| |#2| |#3|) #1#) $) 34 T ELT) (((-3 (-1088) #1#) $) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-949 (-1088))) (|has| |#1| (-312))) ELT) (((-3 (-348 (-483)) #1#) $) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-949 (-483))) (|has| |#1| (-312))) ELT) (((-3 (-483) #1#) $) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-949 (-483))) (|has| |#1| (-312))) ELT)) (-3155 (((-1087 |#1| |#2| |#3|) $) 140 T ELT) (((-1088) $) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-949 (-1088))) (|has| |#1| (-312))) ELT) (((-348 (-483)) $) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-949 (-483))) (|has| |#1| (-312))) ELT) (((-483) $) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-949 (-483))) (|has| |#1| (-312))) ELT)) (-3728 (($ $) 37 T ELT) (($ (-483) $) 38 T ELT)) (-2563 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3957 (($ $) NIL T ELT)) (-2278 (((-629 (-1087 |#1| |#2| |#3|)) (-629 $)) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-629 (-1087 |#1| |#2| |#3|))) (|:| |vec| (-1177 (-1087 |#1| |#2| |#3|)))) (-629 $) (-1177 $)) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-629 $) (-1177 $)) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-579 (-483))) (|has| |#1| (-312))) ELT) (((-629 (-483)) (-629 $)) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-579 (-483))) (|has| |#1| (-312))) ELT)) (-3465 (((-3 $ #1#) $) 54 T ELT)) (-3725 (((-348 (-856 |#1|)) $ (-483)) 74 (|has| |#1| (-494)) ELT) (((-348 (-856 |#1|)) $ (-483) (-483)) 76 (|has| |#1| (-494)) ELT)) (-2993 (($) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-482)) (|has| |#1| (-312))) ELT)) (-2562 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2740 (((-2 (|:| -3952 (-582 $)) (|:| -2408 $)) (-582 $)) NIL (|has| |#1| (-312)) ELT)) (-3721 (((-85) $) NIL (|has| |#1| (-312)) ELT)) (-3185 (((-85) $) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-739)) (|has| |#1| (-312))) ELT)) (-2891 (((-85) $) 28 T ELT)) (-3625 (($) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-2795 (((-797 (-328) $) $ (-799 (-328)) (-797 (-328) $)) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-795 (-328))) (|has| |#1| (-312))) ELT) (((-797 (-483) $) $ (-799 (-483)) (-797 (-483) $)) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-795 (-483))) (|has| |#1| (-312))) ELT)) (-3770 (((-483) $) NIL T ELT) (((-483) $ (-483)) 26 T ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-2409 (((-85) $) NIL T ELT)) (-2995 (($ $) NIL (|has| |#1| (-312)) ELT)) (-2997 (((-1087 |#1| |#2| |#3|) $) 44 (|has| |#1| (-312)) ELT)) (-3010 (($ $ (-483)) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3443 (((-631 $) $) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-1064)) (|has| |#1| (-312))) ELT)) (-3186 (((-85) $) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-739)) (|has| |#1| (-312))) ELT)) (-3775 (($ $ (-829)) NIL T ELT)) (-3813 (($ (-1 |#1| (-483)) $) NIL T ELT)) (-1603 (((-3 (-582 $) #1#) (-582 $) $) NIL (|has| |#1| (-312)) ELT)) (-3935 (((-85) $) NIL T ELT)) (-2892 (($ |#1| (-483)) 19 T ELT) (($ $ (-993) (-483)) NIL T ELT) (($ $ (-582 (-993)) (-582 (-483))) NIL T ELT)) (-2530 (($ $ $) NIL (OR (-12 (|has| (-1087 |#1| |#2| |#3|) (-739)) (|has| |#1| (-312))) (-12 (|has| (-1087 |#1| |#2| |#3|) (-755)) (|has| |#1| (-312)))) ELT)) (-2856 (($ $ $) NIL (OR (-12 (|has| (-1087 |#1| |#2| |#3|) (-739)) (|has| |#1| (-312))) (-12 (|has| (-1087 |#1| |#2| |#3|) (-755)) (|has| |#1| (-312)))) ELT)) (-3956 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 (-1087 |#1| |#2| |#3|) (-1087 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-312)) ELT)) (-3940 (($ $) 81 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-2279 (((-629 (-1087 |#1| |#2| |#3|)) (-1177 $)) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-629 (-1087 |#1| |#2| |#3|))) (|:| |vec| (-1177 (-1087 |#1| |#2| |#3|)))) (-1177 $) $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-579 (-483))) (|has| |#1| (-312))) ELT) (((-629 (-483)) (-1177 $)) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-579 (-483))) (|has| |#1| (-312))) ELT)) (-2893 (($ $) NIL T ELT)) (-3173 ((|#1| $) NIL T ELT)) (-1889 (($ (-582 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3777 (($ (-483) (-1087 |#1| |#2| |#3|)) 36 T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-2483 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3810 (($ $) 79 (|has| |#1| (-38 (-348 (-483)))) ELT) (($ $ (-1088)) NIL (OR (-12 (|has| |#1| (-38 (-348 (-483)))) (|has| |#1| (-29 (-483))) (|has| |#1| (-870)) (|has| |#1| (-1113))) (-12 (|has| |#1| (-38 (-348 (-483)))) (|has| |#1| (-15 -3810 (|#1| |#1| (-1088)))) (|has| |#1| (-15 -3080 ((-582 (-1088)) |#1|))))) ELT) (($ $ (-1174 |#2|)) 80 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3444 (($) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-1064)) (|has| |#1| (-312))) CONST)) (-3242 (((-1032) $) NIL T ELT)) (-2707 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#1| (-312)) ELT)) (-3143 (($ (-582 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3127 (($ $) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-258)) (|has| |#1| (-312))) ELT)) (-3129 (((-1087 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-482)) (|has| |#1| (-312))) ELT)) (-2704 (((-346 (-1083 $)) (-1083 $)) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-820)) (|has| |#1| (-312))) ELT)) (-2705 (((-346 (-1083 $)) (-1083 $)) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-820)) (|has| |#1| (-312))) ELT)) (-3730 (((-346 $) $) NIL (|has| |#1| (-312)) ELT)) (-1604 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3767 (($ $ (-483)) 158 T ELT)) (-3464 (((-3 $ #1#) $ $) 55 (OR (-12 (|has| (-1087 |#1| |#2| |#3|) (-820)) (|has| |#1| (-312))) (-12 (|has| (-1087 |#1| |#2| |#3|) (-739)) (|has| |#1| (-312))) (|has| |#1| (-494))) ELT)) (-2739 (((-631 (-582 $)) (-582 $) $) NIL (|has| |#1| (-312)) ELT)) (-3941 (($ $) 82 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3766 (((-1067 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-483)))) ELT) (($ $ (-1088) (-1087 |#1| |#2| |#3|)) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-454 (-1088) (-1087 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT) (($ $ (-582 (-1088)) (-582 (-1087 |#1| |#2| |#3|))) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-454 (-1088) (-1087 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT) (($ $ (-582 (-249 (-1087 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-260 (-1087 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT) (($ $ (-249 (-1087 |#1| |#2| |#3|))) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-260 (-1087 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT) (($ $ (-1087 |#1| |#2| |#3|) (-1087 |#1| |#2| |#3|)) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-260 (-1087 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT) (($ $ (-582 (-1087 |#1| |#2| |#3|)) (-582 (-1087 |#1| |#2| |#3|))) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-260 (-1087 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT)) (-1605 (((-693) $) NIL (|has| |#1| (-312)) ELT)) (-3798 ((|#1| $ (-483)) NIL T ELT) (($ $ $) 61 (|has| (-483) (-1024)) ELT) (($ $ (-1087 |#1| |#2| |#3|)) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-241 (-1087 |#1| |#2| |#3|) (-1087 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3756 (($ $ (-1 (-1087 |#1| |#2| |#3|) (-1087 |#1| |#2| |#3|)) (-693)) NIL (|has| |#1| (-312)) ELT) (($ $ (-1 (-1087 |#1| |#2| |#3|) (-1087 |#1| |#2| |#3|))) NIL (|has| |#1| (-312)) ELT) (($ $ (-1174 |#2|)) 57 T ELT) (($ $) 56 (OR (-12 (|has| (-1087 |#1| |#2| |#3|) (-190)) (|has| |#1| (-312))) (-12 (|has| (-1087 |#1| |#2| |#3|) (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) ELT) (($ $ (-693)) NIL (OR (-12 (|has| (-1087 |#1| |#2| |#3|) (-190)) (|has| |#1| (-312))) (-12 (|has| (-1087 |#1| |#2| |#3|) (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) ELT) (($ $ (-1088)) NIL (OR (-12 (|has| (-1087 |#1| |#2| |#3|) (-808 (-1088))) (|has| |#1| (-312))) (-12 (|has| (-1087 |#1| |#2| |#3|) (-810 (-1088))) (|has| |#1| (-312))) (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|))))) ELT) (($ $ (-582 (-1088))) NIL (OR (-12 (|has| (-1087 |#1| |#2| |#3|) (-808 (-1088))) (|has| |#1| (-312))) (-12 (|has| (-1087 |#1| |#2| |#3|) (-810 (-1088))) (|has| |#1| (-312))) (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|))))) ELT) (($ $ (-1088) (-693)) NIL (OR (-12 (|has| (-1087 |#1| |#2| |#3|) (-808 (-1088))) (|has| |#1| (-312))) (-12 (|has| (-1087 |#1| |#2| |#3|) (-810 (-1088))) (|has| |#1| (-312))) (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|))))) ELT) (($ $ (-582 (-1088)) (-582 (-693))) NIL (OR (-12 (|has| (-1087 |#1| |#2| |#3|) (-808 (-1088))) (|has| |#1| (-312))) (-12 (|has| (-1087 |#1| |#2| |#3|) (-810 (-1088))) (|has| |#1| (-312))) (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|))))) ELT)) (-2994 (($ $) NIL (|has| |#1| (-312)) ELT)) (-2996 (((-1087 |#1| |#2| |#3|) $) 46 (|has| |#1| (-312)) ELT)) (-3946 (((-483) $) 43 T ELT)) (-3493 (($ $) 122 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3634 (($ $) 98 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3491 (($ $) 118 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3633 (($ $) 94 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3489 (($ $) 114 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3632 (($ $) 90 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3970 (((-472) $) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-552 (-472))) (|has| |#1| (-312))) ELT) (((-328) $) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-932)) (|has| |#1| (-312))) ELT) (((-179) $) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-932)) (|has| |#1| (-312))) ELT) (((-799 (-328)) $) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-552 (-799 (-328)))) (|has| |#1| (-312))) ELT) (((-799 (-483)) $) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-552 (-799 (-483)))) (|has| |#1| (-312))) ELT)) (-2702 (((-3 (-1177 $) #1#) (-629 $)) NIL (-12 (|has| $ (-118)) (|has| (-1087 |#1| |#2| |#3|) (-820)) (|has| |#1| (-312))) ELT)) (-2890 (($ $) NIL T ELT)) (-3944 (((-771) $) 162 T ELT) (($ (-483)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT) (($ (-1087 |#1| |#2| |#3|)) 30 T ELT) (($ (-1174 |#2|)) 25 T ELT) (($ (-1088)) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-949 (-1088))) (|has| |#1| (-312))) ELT) (($ $) NIL (OR (-12 (|has| (-1087 |#1| |#2| |#3|) (-820)) (|has| |#1| (-312))) (-12 (|has| (-1087 |#1| |#2| |#3|) (-739)) (|has| |#1| (-312))) (|has| |#1| (-494))) ELT) (($ (-348 (-483))) NIL (OR (-12 (|has| (-1087 |#1| |#2| |#3|) (-949 (-483))) (|has| |#1| (-312))) (|has| |#1| (-38 (-348 (-483))))) ELT)) (-3675 ((|#1| $ (-483)) 77 T ELT)) (-2701 (((-631 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-1087 |#1| |#2| |#3|) (-820)) (|has| |#1| (-312))) (-12 (|has| (-1087 |#1| |#2| |#3|) (-118)) (|has| |#1| (-312))) (|has| |#1| (-118))) ELT)) (-3125 (((-693)) NIL T CONST)) (-3771 ((|#1| $) 12 T ELT)) (-3130 (((-1087 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-482)) (|has| |#1| (-312))) ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3496 (($ $) 128 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3484 (($ $) 104 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-2061 (((-85) $ $) NIL (OR (-12 (|has| (-1087 |#1| |#2| |#3|) (-820)) (|has| |#1| (-312))) (-12 (|has| (-1087 |#1| |#2| |#3|) (-739)) (|has| |#1| (-312))) (|has| |#1| (-494))) ELT)) (-3494 (($ $) 124 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3482 (($ $) 100 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3498 (($ $) 132 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3486 (($ $) 108 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3768 ((|#1| $ (-483)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-483)))) (|has| |#1| (-15 -3944 (|#1| (-1088))))) ELT)) (-3124 (((-85) $ $) NIL T ELT)) (-3499 (($ $) 134 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3487 (($ $) 110 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3497 (($ $) 130 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3485 (($ $) 106 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3495 (($ $) 126 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3483 (($ $) 102 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3381 (($ $) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-739)) (|has| |#1| (-312))) ELT)) (-2659 (($) 21 T CONST)) (-2665 (($) 16 T CONST)) (-2668 (($ $ (-1 (-1087 |#1| |#2| |#3|) (-1087 |#1| |#2| |#3|)) (-693)) NIL (|has| |#1| (-312)) ELT) (($ $ (-1 (-1087 |#1| |#2| |#3|) (-1087 |#1| |#2| |#3|))) NIL (|has| |#1| (-312)) ELT) (($ $ (-1174 |#2|)) NIL T ELT) (($ $) NIL (OR (-12 (|has| (-1087 |#1| |#2| |#3|) (-190)) (|has| |#1| (-312))) (-12 (|has| (-1087 |#1| |#2| |#3|) (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) ELT) (($ $ (-693)) NIL (OR (-12 (|has| (-1087 |#1| |#2| |#3|) (-190)) (|has| |#1| (-312))) (-12 (|has| (-1087 |#1| |#2| |#3|) (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) ELT) (($ $ (-1088)) NIL (OR (-12 (|has| (-1087 |#1| |#2| |#3|) (-808 (-1088))) (|has| |#1| (-312))) (-12 (|has| (-1087 |#1| |#2| |#3|) (-810 (-1088))) (|has| |#1| (-312))) (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|))))) ELT) (($ $ (-582 (-1088))) NIL (OR (-12 (|has| (-1087 |#1| |#2| |#3|) (-808 (-1088))) (|has| |#1| (-312))) (-12 (|has| (-1087 |#1| |#2| |#3|) (-810 (-1088))) (|has| |#1| (-312))) (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|))))) ELT) (($ $ (-1088) (-693)) NIL (OR (-12 (|has| (-1087 |#1| |#2| |#3|) (-808 (-1088))) (|has| |#1| (-312))) (-12 (|has| (-1087 |#1| |#2| |#3|) (-810 (-1088))) (|has| |#1| (-312))) (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|))))) ELT) (($ $ (-582 (-1088)) (-582 (-693))) NIL (OR (-12 (|has| (-1087 |#1| |#2| |#3|) (-808 (-1088))) (|has| |#1| (-312))) (-12 (|has| (-1087 |#1| |#2| |#3|) (-810 (-1088))) (|has| |#1| (-312))) (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|))))) ELT)) (-2565 (((-85) $ $) NIL (OR (-12 (|has| (-1087 |#1| |#2| |#3|) (-739)) (|has| |#1| (-312))) (-12 (|has| (-1087 |#1| |#2| |#3|) (-755)) (|has| |#1| (-312)))) ELT)) (-2566 (((-85) $ $) NIL (OR (-12 (|has| (-1087 |#1| |#2| |#3|) (-739)) (|has| |#1| (-312))) (-12 (|has| (-1087 |#1| |#2| |#3|) (-755)) (|has| |#1| (-312)))) ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-2683 (((-85) $ $) NIL (OR (-12 (|has| (-1087 |#1| |#2| |#3|) (-739)) (|has| |#1| (-312))) (-12 (|has| (-1087 |#1| |#2| |#3|) (-755)) (|has| |#1| (-312)))) ELT)) (-2684 (((-85) $ $) NIL (OR (-12 (|has| (-1087 |#1| |#2| |#3|) (-739)) (|has| |#1| (-312))) (-12 (|has| (-1087 |#1| |#2| |#3|) (-755)) (|has| |#1| (-312)))) ELT)) (-3947 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT) (($ $ $) 49 (|has| |#1| (-312)) ELT) (($ (-1087 |#1| |#2| |#3|) (-1087 |#1| |#2| |#3|)) 50 (|has| |#1| (-312)) ELT)) (-3835 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3837 (($ $ $) 23 T ELT)) (** (($ $ (-829)) NIL T ELT) (($ $ (-693)) 60 T ELT) (($ $ (-483)) NIL (|has| |#1| (-312)) ELT) (($ $ $) 83 (|has| |#1| (-38 (-348 (-483)))) ELT) (($ $ (-348 (-483))) 137 (|has| |#1| (-38 (-348 (-483)))) ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) 35 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ (-1087 |#1| |#2| |#3|)) 48 (|has| |#1| (-312)) ELT) (($ (-1087 |#1| |#2| |#3|) $) 47 (|has| |#1| (-312)) ELT) (($ (-348 (-483)) $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT) (($ $ (-348 (-483))) NIL (|has| |#1| (-38 (-348 (-483)))) ELT))) -(((-1080 |#1| |#2| |#3|) (-13 (-1141 |#1| (-1087 |#1| |#2| |#3|)) (-805 $ (-1174 |#2|)) (-10 -8 (-15 -3944 ($ (-1174 |#2|))) (IF (|has| |#1| (-38 (-348 (-483)))) (-15 -3810 ($ $ (-1174 |#2|))) |%noBranch|))) (-960) (-1088) |#1|) (T -1080)) -((-3944 (*1 *1 *2) (-12 (-5 *2 (-1174 *4)) (-14 *4 (-1088)) (-5 *1 (-1080 *3 *4 *5)) (-4 *3 (-960)) (-14 *5 *3))) (-3810 (*1 *1 *1 *2) (-12 (-5 *2 (-1174 *4)) (-14 *4 (-1088)) (-5 *1 (-1080 *3 *4 *5)) (-4 *3 (-38 (-348 (-483)))) (-4 *3 (-960)) (-14 *5 *3)))) -((-3530 ((|#2| |#2| (-1003 |#2|)) 26 T ELT) ((|#2| |#2| (-1088)) 28 T ELT))) -(((-1081 |#1| |#2|) (-10 -7 (-15 -3530 (|#2| |#2| (-1088))) (-15 -3530 (|#2| |#2| (-1003 |#2|)))) (-13 (-494) (-949 (-483)) (-579 (-483))) (-13 (-362 |#1|) (-133) (-27) (-1113))) (T -1081)) -((-3530 (*1 *2 *2 *3) (-12 (-5 *3 (-1003 *2)) (-4 *2 (-13 (-362 *4) (-133) (-27) (-1113))) (-4 *4 (-13 (-494) (-949 (-483)) (-579 (-483)))) (-5 *1 (-1081 *4 *2)))) (-3530 (*1 *2 *2 *3) (-12 (-5 *3 (-1088)) (-4 *4 (-13 (-494) (-949 (-483)) (-579 (-483)))) (-5 *1 (-1081 *4 *2)) (-4 *2 (-13 (-362 *4) (-133) (-27) (-1113)))))) -((-3530 (((-3 (-348 (-856 |#1|)) (-265 |#1|)) (-348 (-856 |#1|)) (-1003 (-348 (-856 |#1|)))) 31 T ELT) (((-348 (-856 |#1|)) (-856 |#1|) (-1003 (-856 |#1|))) 44 T ELT) (((-3 (-348 (-856 |#1|)) (-265 |#1|)) (-348 (-856 |#1|)) (-1088)) 33 T ELT) (((-348 (-856 |#1|)) (-856 |#1|) (-1088)) 36 T ELT))) -(((-1082 |#1|) (-10 -7 (-15 -3530 ((-348 (-856 |#1|)) (-856 |#1|) (-1088))) (-15 -3530 ((-3 (-348 (-856 |#1|)) (-265 |#1|)) (-348 (-856 |#1|)) (-1088))) (-15 -3530 ((-348 (-856 |#1|)) (-856 |#1|) (-1003 (-856 |#1|)))) (-15 -3530 ((-3 (-348 (-856 |#1|)) (-265 |#1|)) (-348 (-856 |#1|)) (-1003 (-348 (-856 |#1|)))))) (-13 (-494) (-949 (-483)))) (T -1082)) -((-3530 (*1 *2 *3 *4) (-12 (-5 *4 (-1003 (-348 (-856 *5)))) (-5 *3 (-348 (-856 *5))) (-4 *5 (-13 (-494) (-949 (-483)))) (-5 *2 (-3 *3 (-265 *5))) (-5 *1 (-1082 *5)))) (-3530 (*1 *2 *3 *4) (-12 (-5 *4 (-1003 (-856 *5))) (-5 *3 (-856 *5)) (-4 *5 (-13 (-494) (-949 (-483)))) (-5 *2 (-348 *3)) (-5 *1 (-1082 *5)))) (-3530 (*1 *2 *3 *4) (-12 (-5 *4 (-1088)) (-4 *5 (-13 (-494) (-949 (-483)))) (-5 *2 (-3 (-348 (-856 *5)) (-265 *5))) (-5 *1 (-1082 *5)) (-5 *3 (-348 (-856 *5))))) (-3530 (*1 *2 *3 *4) (-12 (-5 *4 (-1088)) (-4 *5 (-13 (-494) (-949 (-483)))) (-5 *2 (-348 (-856 *5))) (-5 *1 (-1082 *5)) (-5 *3 (-856 *5))))) -((-2567 (((-85) $ $) 172 T ELT)) (-3187 (((-85) $) 44 T ELT)) (-3765 (((-1177 |#1|) $ (-693)) NIL T ELT)) (-3080 (((-582 (-993)) $) NIL T ELT)) (-3763 (($ (-1083 |#1|)) NIL T ELT)) (-3082 (((-1083 $) $ (-993)) 83 T ELT) (((-1083 |#1|) $) 72 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3980 $) (|:| |associate| $)) $) NIL (|has| |#1| (-494)) ELT)) (-2062 (($ $) 166 (|has| |#1| (-494)) ELT)) (-2060 (((-85) $) NIL (|has| |#1| (-494)) ELT)) (-2818 (((-693) $) NIL T ELT) (((-693) $ (-582 (-993))) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3753 (($ $ $) 160 (|has| |#1| (-494)) ELT)) (-2706 (((-346 (-1083 $)) (-1083 $)) 97 (|has| |#1| (-820)) ELT)) (-3773 (($ $) NIL (|has| |#1| (-390)) ELT)) (-3969 (((-346 $) $) NIL (|has| |#1| (-390)) ELT)) (-2703 (((-3 (-582 (-1083 $)) #1#) (-582 (-1083 $)) (-1083 $)) 117 (|has| |#1| (-820)) ELT)) (-1606 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3759 (($ $ (-693)) 62 T ELT)) (-3758 (($ $ (-693)) 64 T ELT)) (-3749 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-390)) ELT)) (-3722 (($) NIL T CONST)) (-3156 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-348 (-483)) #1#) $) NIL (|has| |#1| (-949 (-348 (-483)))) ELT) (((-3 (-483) #1#) $) NIL (|has| |#1| (-949 (-483))) ELT) (((-3 (-993) #1#) $) NIL T ELT)) (-3155 ((|#1| $) NIL T ELT) (((-348 (-483)) $) NIL (|has| |#1| (-949 (-348 (-483)))) ELT) (((-483) $) NIL (|has| |#1| (-949 (-483))) ELT) (((-993) $) NIL T ELT)) (-3754 (($ $ $ (-993)) NIL (|has| |#1| (-146)) ELT) ((|#1| $ $) 162 (|has| |#1| (-146)) ELT)) (-2563 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3957 (($ $) 81 T ELT)) (-2278 (((-629 (-483)) (-629 $)) NIL (|has| |#1| (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-629 $) (-1177 $)) NIL (|has| |#1| (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 |#1|)) (|:| |vec| (-1177 |#1|))) (-629 $) (-1177 $)) NIL T ELT) (((-629 |#1|) (-629 $)) NIL T ELT)) (-3465 (((-3 $ #1#) $) NIL T ELT)) (-2562 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3757 (($ $ $) 133 T ELT)) (-3751 (($ $ $) NIL (|has| |#1| (-494)) ELT)) (-3750 (((-2 (|:| -3952 |#1|) (|:| -1971 $) (|:| -2901 $)) $ $) NIL (|has| |#1| (-494)) ELT)) (-2740 (((-2 (|:| -3952 (-582 $)) (|:| -2408 $)) (-582 $)) NIL (|has| |#1| (-312)) ELT)) (-3501 (($ $) 167 (|has| |#1| (-390)) ELT) (($ $ (-993)) NIL (|has| |#1| (-390)) ELT)) (-2817 (((-582 $) $) NIL T ELT)) (-3721 (((-85) $) NIL (|has| |#1| (-820)) ELT)) (-1622 (($ $ |#1| (-693) $) 70 T ELT)) (-2795 (((-797 (-328) $) $ (-799 (-328)) (-797 (-328) $)) NIL (-12 (|has| (-993) (-795 (-328))) (|has| |#1| (-795 (-328)))) ELT) (((-797 (-483) $) $ (-799 (-483)) (-797 (-483) $)) NIL (-12 (|has| (-993) (-795 (-483))) (|has| |#1| (-795 (-483)))) ELT)) (-3531 (((-771) $ (-771)) 150 T ELT)) (-3770 (((-693) $ $) NIL (|has| |#1| (-494)) ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-2409 (((-85) $) 49 T ELT)) (-2419 (((-693) $) NIL T ELT)) (-3443 (((-631 $) $) NIL (|has| |#1| (-1064)) ELT)) (-3083 (($ (-1083 |#1|) (-993)) 74 T ELT) (($ (-1083 $) (-993)) 91 T ELT)) (-3775 (($ $ (-693)) 52 T ELT)) (-1603 (((-3 (-582 $) #1#) (-582 $) $) NIL (|has| |#1| (-312)) ELT)) (-2820 (((-582 $) $) NIL T ELT)) (-3935 (((-85) $) NIL T ELT)) (-2892 (($ |#1| (-693)) 89 T ELT) (($ $ (-993) (-693)) NIL T ELT) (($ $ (-582 (-993)) (-582 (-693))) NIL T ELT)) (-3761 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $ (-993)) NIL T ELT) (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) 155 T ELT)) (-2819 (((-693) $) NIL T ELT) (((-693) $ (-993)) NIL T ELT) (((-582 (-693)) $ (-582 (-993))) NIL T ELT)) (-1623 (($ (-1 (-693) (-693)) $) NIL T ELT)) (-3956 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3764 (((-1083 |#1|) $) NIL T ELT)) (-3081 (((-3 (-993) #1#) $) NIL T ELT)) (-2279 (((-629 (-483)) (-1177 $)) NIL (|has| |#1| (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL (|has| |#1| (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 |#1|)) (|:| |vec| (-1177 |#1|))) (-1177 $) $) NIL T ELT) (((-629 |#1|) (-1177 $)) NIL T ELT)) (-2893 (($ $) NIL T ELT)) (-3173 ((|#1| $) 77 T ELT)) (-1889 (($ (-582 $)) NIL (|has| |#1| (-390)) ELT) (($ $ $) NIL (|has| |#1| (-390)) ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3760 (((-2 (|:| -1971 $) (|:| -2901 $)) $ (-693)) 61 T ELT)) (-2822 (((-3 (-582 $) #1#) $) NIL T ELT)) (-2821 (((-3 (-582 $) #1#) $) NIL T ELT)) (-2823 (((-3 (-2 (|:| |var| (-993)) (|:| -2400 (-693))) #1#) $) NIL T ELT)) (-3810 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3444 (($) NIL (|has| |#1| (-1064)) CONST)) (-3242 (((-1032) $) NIL T ELT)) (-1795 (((-85) $) 51 T ELT)) (-1794 ((|#1| $) NIL T ELT)) (-2707 (((-1083 $) (-1083 $) (-1083 $)) 105 (|has| |#1| (-390)) ELT)) (-3143 (($ (-582 $)) NIL (|has| |#1| (-390)) ELT) (($ $ $) 169 (|has| |#1| (-390)) ELT)) (-3736 (($ $ (-693) |#1| $) 125 T ELT)) (-2704 (((-346 (-1083 $)) (-1083 $)) 103 (|has| |#1| (-820)) ELT)) (-2705 (((-346 (-1083 $)) (-1083 $)) 102 (|has| |#1| (-820)) ELT)) (-3730 (((-346 $) $) 110 (|has| |#1| (-820)) ELT)) (-1604 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3464 (((-3 $ #1#) $ |#1|) 165 (|has| |#1| (-494)) ELT) (((-3 $ #1#) $ $) 126 (|has| |#1| (-494)) ELT)) (-2739 (((-631 (-582 $)) (-582 $) $) NIL (|has| |#1| (-312)) ELT)) (-3766 (($ $ (-582 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-582 $) (-582 $)) NIL T ELT) (($ $ (-993) |#1|) NIL T ELT) (($ $ (-582 (-993)) (-582 |#1|)) NIL T ELT) (($ $ (-993) $) NIL T ELT) (($ $ (-582 (-993)) (-582 $)) NIL T ELT)) (-1605 (((-693) $) NIL (|has| |#1| (-312)) ELT)) (-3798 ((|#1| $ |#1|) 152 T ELT) (($ $ $) 153 T ELT) (((-348 $) (-348 $) (-348 $)) NIL (|has| |#1| (-494)) ELT) ((|#1| (-348 $) |#1|) NIL (|has| |#1| (-312)) ELT) (((-348 $) $ (-348 $)) NIL (|has| |#1| (-494)) ELT)) (-3762 (((-3 $ #1#) $ (-693)) 55 T ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) 173 (|has| |#1| (-312)) ELT)) (-3755 (($ $ (-993)) NIL (|has| |#1| (-146)) ELT) ((|#1| $) 158 (|has| |#1| (-146)) ELT)) (-3756 (($ $ (-582 (-993)) (-582 (-693))) NIL T ELT) (($ $ (-993) (-693)) NIL T ELT) (($ $ (-582 (-993))) NIL T ELT) (($ $ (-993)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-693)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-693)) NIL T ELT) (($ $ (-1 |#1| |#1|) $) NIL T ELT) (($ $ (-1088)) NIL (|has| |#1| (-810 (-1088))) ELT) (($ $ (-582 (-1088))) NIL (|has| |#1| (-810 (-1088))) ELT) (($ $ (-1088) (-693)) NIL (|has| |#1| (-810 (-1088))) ELT) (($ $ (-582 (-1088)) (-582 (-693))) NIL (|has| |#1| (-810 (-1088))) ELT)) (-3946 (((-693) $) 79 T ELT) (((-693) $ (-993)) NIL T ELT) (((-582 (-693)) $ (-582 (-993))) NIL T ELT)) (-3970 (((-799 (-328)) $) NIL (-12 (|has| (-993) (-552 (-799 (-328)))) (|has| |#1| (-552 (-799 (-328))))) ELT) (((-799 (-483)) $) NIL (-12 (|has| (-993) (-552 (-799 (-483)))) (|has| |#1| (-552 (-799 (-483))))) ELT) (((-472) $) NIL (-12 (|has| (-993) (-552 (-472))) (|has| |#1| (-552 (-472)))) ELT)) (-2816 ((|#1| $) 164 (|has| |#1| (-390)) ELT) (($ $ (-993)) NIL (|has| |#1| (-390)) ELT)) (-2702 (((-3 (-1177 $) #1#) (-629 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-820))) ELT)) (-3752 (((-3 $ #1#) $ $) NIL (|has| |#1| (-494)) ELT) (((-3 (-348 $) #1#) (-348 $) $) NIL (|has| |#1| (-494)) ELT)) (-3944 (((-771) $) 151 T ELT) (($ (-483)) NIL T ELT) (($ |#1|) 78 T ELT) (($ (-993)) NIL T ELT) (($ (-348 (-483))) NIL (OR (|has| |#1| (-38 (-348 (-483)))) (|has| |#1| (-949 (-348 (-483))))) ELT) (($ $) NIL (|has| |#1| (-494)) ELT)) (-3815 (((-582 |#1|) $) NIL T ELT)) (-3675 ((|#1| $ (-693)) NIL T ELT) (($ $ (-993) (-693)) NIL T ELT) (($ $ (-582 (-993)) (-582 (-693))) NIL T ELT)) (-2701 (((-631 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-820))) (|has| |#1| (-118))) ELT)) (-3125 (((-693)) NIL T CONST)) (-1621 (($ $ $ (-693)) 42 (|has| |#1| (-146)) ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2061 (((-85) $ $) NIL (|has| |#1| (-494)) ELT)) (-3124 (((-85) $ $) NIL T ELT)) (-2659 (($) 18 T CONST)) (-2665 (($) 20 T CONST)) (-2668 (($ $ (-582 (-993)) (-582 (-693))) NIL T ELT) (($ $ (-993) (-693)) NIL T ELT) (($ $ (-582 (-993))) NIL T ELT) (($ $ (-993)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-693)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-693)) NIL T ELT) (($ $ (-1088)) NIL (|has| |#1| (-810 (-1088))) ELT) (($ $ (-582 (-1088))) NIL (|has| |#1| (-810 (-1088))) ELT) (($ $ (-1088) (-693)) NIL (|has| |#1| (-810 (-1088))) ELT) (($ $ (-582 (-1088)) (-582 (-693))) NIL (|has| |#1| (-810 (-1088))) ELT)) (-3055 (((-85) $ $) 122 T ELT)) (-3947 (($ $ |#1|) 174 (|has| |#1| (-312)) ELT)) (-3835 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3837 (($ $ $) 92 T ELT)) (** (($ $ (-829)) 14 T ELT) (($ $ (-693)) 12 T ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) 40 T ELT) (($ $ (-348 (-483))) NIL (|has| |#1| (-38 (-348 (-483)))) ELT) (($ (-348 (-483)) $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT) (($ |#1| $) 131 T ELT) (($ $ |#1|) NIL T ELT))) -(((-1083 |#1|) (-13 (-1153 |#1|) (-10 -8 (-15 -3531 ((-771) $ (-771))) (-15 -3736 ($ $ (-693) |#1| $)))) (-960)) (T -1083)) -((-3531 (*1 *2 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-1083 *3)) (-4 *3 (-960)))) (-3736 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-693)) (-5 *1 (-1083 *3)) (-4 *3 (-960))))) -((-3956 (((-1083 |#2|) (-1 |#2| |#1|) (-1083 |#1|)) 13 T ELT))) -(((-1084 |#1| |#2|) (-10 -7 (-15 -3956 ((-1083 |#2|) (-1 |#2| |#1|) (-1083 |#1|)))) (-960) (-960)) (T -1084)) -((-3956 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1083 *5)) (-4 *5 (-960)) (-4 *6 (-960)) (-5 *2 (-1083 *6)) (-5 *1 (-1084 *5 *6))))) -((-3969 (((-346 (-1083 (-348 |#4|))) (-1083 (-348 |#4|))) 51 T ELT)) (-3730 (((-346 (-1083 (-348 |#4|))) (-1083 (-348 |#4|))) 52 T ELT))) -(((-1085 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3730 ((-346 (-1083 (-348 |#4|))) (-1083 (-348 |#4|)))) (-15 -3969 ((-346 (-1083 (-348 |#4|))) (-1083 (-348 |#4|))))) (-716) (-755) (-390) (-860 |#3| |#1| |#2|)) (T -1085)) -((-3969 (*1 *2 *3) (-12 (-4 *4 (-716)) (-4 *5 (-755)) (-4 *6 (-390)) (-4 *7 (-860 *6 *4 *5)) (-5 *2 (-346 (-1083 (-348 *7)))) (-5 *1 (-1085 *4 *5 *6 *7)) (-5 *3 (-1083 (-348 *7))))) (-3730 (*1 *2 *3) (-12 (-4 *4 (-716)) (-4 *5 (-755)) (-4 *6 (-390)) (-4 *7 (-860 *6 *4 *5)) (-5 *2 (-346 (-1083 (-348 *7)))) (-5 *1 (-1085 *4 *5 *6 *7)) (-5 *3 (-1083 (-348 *7)))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3187 (((-85) $) NIL T ELT)) (-3080 (((-582 (-993)) $) NIL T ELT)) (-3829 (((-1088) $) 11 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3980 $) (|:| |associate| $)) $) NIL (|has| |#1| (-494)) ELT)) (-2062 (($ $) NIL (|has| |#1| (-494)) ELT)) (-2060 (((-85) $) NIL (|has| |#1| (-494)) ELT)) (-3769 (($ $ (-348 (-483))) NIL T ELT) (($ $ (-348 (-483)) (-348 (-483))) NIL T ELT)) (-3772 (((-1067 (-2 (|:| |k| (-348 (-483))) (|:| |c| |#1|))) $) NIL T ELT)) (-3490 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3637 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3773 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3969 (((-346 $) $) NIL (|has| |#1| (-312)) ELT)) (-3036 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-1606 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3488 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3636 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3816 (($ (-693) (-1067 (-2 (|:| |k| (-348 (-483))) (|:| |c| |#1|)))) NIL T ELT)) (-3492 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3635 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3722 (($) NIL T CONST)) (-3156 (((-3 (-1080 |#1| |#2| |#3|) #1#) $) 33 T ELT) (((-3 (-1087 |#1| |#2| |#3|) #1#) $) 36 T ELT)) (-3155 (((-1080 |#1| |#2| |#3|) $) NIL T ELT) (((-1087 |#1| |#2| |#3|) $) NIL T ELT)) (-2563 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3957 (($ $) NIL T ELT)) (-3465 (((-3 $ #1#) $) NIL T ELT)) (-3779 (((-348 (-483)) $) 59 T ELT)) (-2562 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3780 (($ (-348 (-483)) (-1080 |#1| |#2| |#3|)) NIL T ELT)) (-2740 (((-2 (|:| -3952 (-582 $)) (|:| -2408 $)) (-582 $)) NIL (|has| |#1| (-312)) ELT)) (-3721 (((-85) $) NIL (|has| |#1| (-312)) ELT)) (-2891 (((-85) $) NIL T ELT)) (-3625 (($) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3770 (((-348 (-483)) $) NIL T ELT) (((-348 (-483)) $ (-348 (-483))) NIL T ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-2409 (((-85) $) NIL T ELT)) (-3010 (($ $ (-483)) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3775 (($ $ (-829)) NIL T ELT) (($ $ (-348 (-483))) NIL T ELT)) (-1603 (((-3 (-582 $) #1#) (-582 $) $) NIL (|has| |#1| (-312)) ELT)) (-3935 (((-85) $) NIL T ELT)) (-2892 (($ |#1| (-348 (-483))) 20 T ELT) (($ $ (-993) (-348 (-483))) NIL T ELT) (($ $ (-582 (-993)) (-582 (-348 (-483)))) NIL T ELT)) (-3956 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3940 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-2893 (($ $) NIL T ELT)) (-3173 ((|#1| $) NIL T ELT)) (-1889 (($ (-582 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3778 (((-1080 |#1| |#2| |#3|) $) 41 T ELT)) (-3776 (((-3 (-1080 |#1| |#2| |#3|) #1#) $) NIL T ELT)) (-3777 (((-1080 |#1| |#2| |#3|) $) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-2483 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3810 (($ $) 39 (|has| |#1| (-38 (-348 (-483)))) ELT) (($ $ (-1088)) NIL (OR (-12 (|has| |#1| (-38 (-348 (-483)))) (|has| |#1| (-29 (-483))) (|has| |#1| (-870)) (|has| |#1| (-1113))) (-12 (|has| |#1| (-38 (-348 (-483)))) (|has| |#1| (-15 -3810 (|#1| |#1| (-1088)))) (|has| |#1| (-15 -3080 ((-582 (-1088)) |#1|))))) ELT) (($ $ (-1174 |#2|)) 40 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3242 (((-1032) $) NIL T ELT)) (-2707 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#1| (-312)) ELT)) (-3143 (($ (-582 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3730 (((-346 $) $) NIL (|has| |#1| (-312)) ELT)) (-1604 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3767 (($ $ (-348 (-483))) NIL T ELT)) (-3464 (((-3 $ #1#) $ $) NIL (|has| |#1| (-494)) ELT)) (-2739 (((-631 (-582 $)) (-582 $) $) NIL (|has| |#1| (-312)) ELT)) (-3941 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3766 (((-1067 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-348 (-483))))) ELT)) (-1605 (((-693) $) NIL (|has| |#1| (-312)) ELT)) (-3798 ((|#1| $ (-348 (-483))) NIL T ELT) (($ $ $) NIL (|has| (-348 (-483)) (-1024)) ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3756 (($ $ (-1088)) NIL (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-348 (-483)) |#1|)))) ELT) (($ $ (-582 (-1088))) NIL (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-348 (-483)) |#1|)))) ELT) (($ $ (-1088) (-693)) NIL (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-348 (-483)) |#1|)))) ELT) (($ $ (-582 (-1088)) (-582 (-693))) NIL (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-348 (-483)) |#1|)))) ELT) (($ $) 37 (|has| |#1| (-15 * (|#1| (-348 (-483)) |#1|))) ELT) (($ $ (-693)) NIL (|has| |#1| (-15 * (|#1| (-348 (-483)) |#1|))) ELT) (($ $ (-1174 |#2|)) 38 T ELT)) (-3946 (((-348 (-483)) $) NIL T ELT)) (-3493 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3634 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3491 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3633 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3489 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3632 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-2890 (($ $) NIL T ELT)) (-3944 (((-771) $) 62 T ELT) (($ (-483)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT) (($ (-1080 |#1| |#2| |#3|)) 30 T ELT) (($ (-1087 |#1| |#2| |#3|)) 31 T ELT) (($ (-1174 |#2|)) 26 T ELT) (($ (-348 (-483))) NIL (|has| |#1| (-38 (-348 (-483)))) ELT) (($ $) NIL (|has| |#1| (-494)) ELT)) (-3675 ((|#1| $ (-348 (-483))) NIL T ELT)) (-2701 (((-631 $) $) NIL (|has| |#1| (-118)) ELT)) (-3125 (((-693)) NIL T CONST)) (-3771 ((|#1| $) 12 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3496 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3484 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-2061 (((-85) $ $) NIL (|has| |#1| (-494)) ELT)) (-3494 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3482 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3498 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3486 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3768 ((|#1| $ (-348 (-483))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-348 (-483))))) (|has| |#1| (-15 -3944 (|#1| (-1088))))) ELT)) (-3124 (((-85) $ $) NIL T ELT)) (-3499 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3487 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3497 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3485 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3495 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3483 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-2659 (($) 22 T CONST)) (-2665 (($) 16 T CONST)) (-2668 (($ $ (-1088)) NIL (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-348 (-483)) |#1|)))) ELT) (($ $ (-582 (-1088))) NIL (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-348 (-483)) |#1|)))) ELT) (($ $ (-1088) (-693)) NIL (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-348 (-483)) |#1|)))) ELT) (($ $ (-582 (-1088)) (-582 (-693))) NIL (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-348 (-483)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-348 (-483)) |#1|))) ELT) (($ $ (-693)) NIL (|has| |#1| (-15 * (|#1| (-348 (-483)) |#1|))) ELT) (($ $ (-1174 |#2|)) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-3947 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3835 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3837 (($ $ $) 24 T ELT)) (** (($ $ (-829)) NIL T ELT) (($ $ (-693)) NIL T ELT) (($ $ (-483)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT) (($ $ (-348 (-483))) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-348 (-483)) $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT) (($ $ (-348 (-483))) NIL (|has| |#1| (-38 (-348 (-483)))) ELT))) -(((-1086 |#1| |#2| |#3|) (-13 (-1162 |#1| (-1080 |#1| |#2| |#3|)) (-805 $ (-1174 |#2|)) (-949 (-1087 |#1| |#2| |#3|)) (-554 (-1174 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-348 (-483)))) (-15 -3810 ($ $ (-1174 |#2|))) |%noBranch|))) (-960) (-1088) |#1|) (T -1086)) -((-3810 (*1 *1 *1 *2) (-12 (-5 *2 (-1174 *4)) (-14 *4 (-1088)) (-5 *1 (-1086 *3 *4 *5)) (-4 *3 (-38 (-348 (-483)))) (-4 *3 (-960)) (-14 *5 *3)))) -((-2567 (((-85) $ $) NIL T ELT)) (-3187 (((-85) $) 129 T ELT)) (-3080 (((-582 (-993)) $) NIL T ELT)) (-3829 (((-1088) $) 119 T ELT)) (-3809 (((-1146 |#2| |#1|) $ (-693)) 69 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3980 $) (|:| |associate| $)) $) NIL (|has| |#1| (-494)) ELT)) (-2062 (($ $) NIL (|has| |#1| (-494)) ELT)) (-2060 (((-85) $) NIL (|has| |#1| (-494)) ELT)) (-3769 (($ $ (-693)) 85 T ELT) (($ $ (-693) (-693)) 82 T ELT)) (-3772 (((-1067 (-2 (|:| |k| (-693)) (|:| |c| |#1|))) $) 105 T ELT)) (-3490 (($ $) 173 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3637 (($ $) 149 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3036 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3488 (($ $) 169 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3636 (($ $) 145 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3816 (($ (-1067 (-2 (|:| |k| (-693)) (|:| |c| |#1|)))) 118 T ELT) (($ (-1067 |#1|)) 113 T ELT)) (-3492 (($ $) 177 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3635 (($ $) 153 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3722 (($) NIL T CONST)) (-3957 (($ $) NIL T ELT)) (-3465 (((-3 $ #1#) $) 25 T ELT)) (-3814 (($ $) 28 T ELT)) (-3812 (((-856 |#1|) $ (-693)) 81 T ELT) (((-856 |#1|) $ (-693) (-693)) 83 T ELT)) (-2891 (((-85) $) 124 T ELT)) (-3625 (($) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3770 (((-693) $) 126 T ELT) (((-693) $ (-693)) 128 T ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-2409 (((-85) $) NIL T ELT)) (-3010 (($ $ (-483)) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3775 (($ $ (-829)) NIL T ELT)) (-3813 (($ (-1 |#1| (-483)) $) NIL T ELT)) (-3935 (((-85) $) NIL T ELT)) (-2892 (($ |#1| (-693)) 13 T ELT) (($ $ (-993) (-693)) NIL T ELT) (($ $ (-582 (-993)) (-582 (-693))) NIL T ELT)) (-3956 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3940 (($ $) 135 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-2893 (($ $) NIL T ELT)) (-3173 ((|#1| $) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3810 (($ $) 133 (|has| |#1| (-38 (-348 (-483)))) ELT) (($ $ (-1088)) NIL (OR (-12 (|has| |#1| (-38 (-348 (-483)))) (|has| |#1| (-29 (-483))) (|has| |#1| (-870)) (|has| |#1| (-1113))) (-12 (|has| |#1| (-38 (-348 (-483)))) (|has| |#1| (-15 -3810 (|#1| |#1| (-1088)))) (|has| |#1| (-15 -3080 ((-582 (-1088)) |#1|))))) ELT) (($ $ (-1174 |#2|)) 134 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3767 (($ $ (-693)) 15 T ELT)) (-3464 (((-3 $ #1#) $ $) 26 (|has| |#1| (-494)) ELT)) (-3941 (($ $) 137 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3766 (((-1067 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-693)))) ELT)) (-3798 ((|#1| $ (-693)) 122 T ELT) (($ $ $) 132 (|has| (-693) (-1024)) ELT)) (-3756 (($ $ (-1088)) NIL (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-693) |#1|)))) ELT) (($ $ (-582 (-1088))) NIL (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-693) |#1|)))) ELT) (($ $ (-1088) (-693)) NIL (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-693) |#1|)))) ELT) (($ $ (-582 (-1088)) (-582 (-693))) NIL (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-693) |#1|)))) ELT) (($ $) 29 (|has| |#1| (-15 * (|#1| (-693) |#1|))) ELT) (($ $ (-693)) NIL (|has| |#1| (-15 * (|#1| (-693) |#1|))) ELT) (($ $ (-1174 |#2|)) 31 T ELT)) (-3946 (((-693) $) NIL T ELT)) (-3493 (($ $) 179 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3634 (($ $) 155 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3491 (($ $) 175 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3633 (($ $) 151 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3489 (($ $) 171 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3632 (($ $) 147 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-2890 (($ $) NIL T ELT)) (-3944 (((-771) $) 206 T ELT) (($ (-483)) NIL T ELT) (($ (-348 (-483))) NIL (|has| |#1| (-38 (-348 (-483)))) ELT) (($ $) NIL (|has| |#1| (-494)) ELT) (($ |#1|) 130 (|has| |#1| (-146)) ELT) (($ (-1146 |#2| |#1|)) 55 T ELT) (($ (-1174 |#2|)) 36 T ELT)) (-3815 (((-1067 |#1|) $) 101 T ELT)) (-3675 ((|#1| $ (-693)) 121 T ELT)) (-2701 (((-631 $) $) NIL (|has| |#1| (-118)) ELT)) (-3125 (((-693)) NIL T CONST)) (-3771 ((|#1| $) 58 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3496 (($ $) 185 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3484 (($ $) 161 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-2061 (((-85) $ $) NIL (|has| |#1| (-494)) ELT)) (-3494 (($ $) 181 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3482 (($ $) 157 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3498 (($ $) 189 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3486 (($ $) 165 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3768 ((|#1| $ (-693)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-693)))) (|has| |#1| (-15 -3944 (|#1| (-1088))))) ELT)) (-3124 (((-85) $ $) NIL T ELT)) (-3499 (($ $) 191 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3487 (($ $) 167 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3497 (($ $) 187 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3485 (($ $) 163 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3495 (($ $) 183 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3483 (($ $) 159 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-2659 (($) 17 T CONST)) (-2665 (($) 20 T CONST)) (-2668 (($ $ (-1088)) NIL (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-693) |#1|)))) ELT) (($ $ (-582 (-1088))) NIL (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-693) |#1|)))) ELT) (($ $ (-1088) (-693)) NIL (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-693) |#1|)))) ELT) (($ $ (-582 (-1088)) (-582 (-693))) NIL (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-693) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-693) |#1|))) ELT) (($ $ (-693)) NIL (|has| |#1| (-15 * (|#1| (-693) |#1|))) ELT) (($ $ (-1174 |#2|)) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-3947 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3835 (($ $) NIL T ELT) (($ $ $) 198 T ELT)) (-3837 (($ $ $) 35 T ELT)) (** (($ $ (-829)) NIL T ELT) (($ $ (-693)) NIL T ELT) (($ $ |#1|) 203 (|has| |#1| (-312)) ELT) (($ $ $) 138 (|has| |#1| (-38 (-348 (-483)))) ELT) (($ $ (-348 (-483))) 141 (|has| |#1| (-38 (-348 (-483)))) ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) 136 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-348 (-483)) $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT) (($ $ (-348 (-483))) NIL (|has| |#1| (-38 (-348 (-483)))) ELT))) -(((-1087 |#1| |#2| |#3|) (-13 (-1170 |#1|) (-805 $ (-1174 |#2|)) (-10 -8 (-15 -3944 ($ (-1146 |#2| |#1|))) (-15 -3809 ((-1146 |#2| |#1|) $ (-693))) (-15 -3944 ($ (-1174 |#2|))) (IF (|has| |#1| (-38 (-348 (-483)))) (-15 -3810 ($ $ (-1174 |#2|))) |%noBranch|))) (-960) (-1088) |#1|) (T -1087)) -((-3944 (*1 *1 *2) (-12 (-5 *2 (-1146 *4 *3)) (-4 *3 (-960)) (-14 *4 (-1088)) (-14 *5 *3) (-5 *1 (-1087 *3 *4 *5)))) (-3809 (*1 *2 *1 *3) (-12 (-5 *3 (-693)) (-5 *2 (-1146 *5 *4)) (-5 *1 (-1087 *4 *5 *6)) (-4 *4 (-960)) (-14 *5 (-1088)) (-14 *6 *4))) (-3944 (*1 *1 *2) (-12 (-5 *2 (-1174 *4)) (-14 *4 (-1088)) (-5 *1 (-1087 *3 *4 *5)) (-4 *3 (-960)) (-14 *5 *3))) (-3810 (*1 *1 *1 *2) (-12 (-5 *2 (-1174 *4)) (-14 *4 (-1088)) (-5 *1 (-1087 *3 *4 *5)) (-4 *3 (-38 (-348 (-483)))) (-4 *3 (-960)) (-14 *5 *3)))) -((-2567 (((-85) $ $) NIL T ELT)) (-3535 (($ $ (-582 (-771))) 48 T ELT)) (-3536 (($ $ (-582 (-771))) 46 T ELT)) (-3533 (((-1071) $) 88 T ELT)) (-3538 (((-2 (|:| -2583 (-582 (-771))) (|:| -2482 (-582 (-771))) (|:| |presup| (-582 (-771))) (|:| -2581 (-582 (-771))) (|:| |args| (-582 (-771)))) $) 95 T ELT)) (-3539 (((-85) $) 86 T ELT)) (-3537 (($ $ (-582 (-582 (-771)))) 45 T ELT) (($ $ (-2 (|:| -2583 (-582 (-771))) (|:| -2482 (-582 (-771))) (|:| |presup| (-582 (-771))) (|:| -2581 (-582 (-771))) (|:| |args| (-582 (-771))))) 85 T ELT)) (-3722 (($) 151 T CONST)) (-3156 (((-3 (-445) "failed") $) 155 T ELT)) (-3155 (((-445) $) NIL T ELT)) (-3541 (((-1183)) 123 T ELT)) (-2795 (((-797 (-483) $) $ (-799 (-483)) (-797 (-483) $)) 55 T ELT) (((-797 (-328) $) $ (-799 (-328)) (-797 (-328) $)) 62 T ELT)) (-3612 (($) 109 T ELT) (($ $) 118 T ELT)) (-3540 (($ $) 87 T ELT)) (-2530 (($ $ $) NIL T ELT)) (-2856 (($ $ $) NIL T ELT)) (-3532 (((-582 $) $) 124 T ELT)) (-3241 (((-1071) $) 101 T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3798 (($ $ (-582 (-771))) 47 T ELT)) (-3970 (((-472) $) 33 T ELT) (((-1088) $) 34 T ELT) (((-799 (-483)) $) 66 T ELT) (((-799 (-328)) $) 64 T ELT)) (-3944 (((-771) $) 41 T ELT) (($ (-1071)) 35 T ELT) (($ (-445)) 153 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3534 (($ $ (-582 (-771))) 49 T ELT)) (-2565 (((-85) $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) 37 T ELT)) (-2683 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) 38 T ELT))) -(((-1088) (-13 (-755) (-552 (-472)) (-552 (-1088)) (-554 (-1071)) (-949 (-445)) (-552 (-799 (-483))) (-552 (-799 (-328))) (-795 (-483)) (-795 (-328)) (-10 -8 (-15 -3612 ($)) (-15 -3612 ($ $)) (-15 -3541 ((-1183))) (-15 -3540 ($ $)) (-15 -3539 ((-85) $)) (-15 -3538 ((-2 (|:| -2583 (-582 (-771))) (|:| -2482 (-582 (-771))) (|:| |presup| (-582 (-771))) (|:| -2581 (-582 (-771))) (|:| |args| (-582 (-771)))) $)) (-15 -3537 ($ $ (-582 (-582 (-771))))) (-15 -3537 ($ $ (-2 (|:| -2583 (-582 (-771))) (|:| -2482 (-582 (-771))) (|:| |presup| (-582 (-771))) (|:| -2581 (-582 (-771))) (|:| |args| (-582 (-771)))))) (-15 -3536 ($ $ (-582 (-771)))) (-15 -3535 ($ $ (-582 (-771)))) (-15 -3534 ($ $ (-582 (-771)))) (-15 -3798 ($ $ (-582 (-771)))) (-15 -3533 ((-1071) $)) (-15 -3532 ((-582 $) $)) (-15 -3722 ($) -3950)))) (T -1088)) -((-3612 (*1 *1) (-5 *1 (-1088))) (-3612 (*1 *1 *1) (-5 *1 (-1088))) (-3541 (*1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-1088)))) (-3540 (*1 *1 *1) (-5 *1 (-1088))) (-3539 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1088)))) (-3538 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2583 (-582 (-771))) (|:| -2482 (-582 (-771))) (|:| |presup| (-582 (-771))) (|:| -2581 (-582 (-771))) (|:| |args| (-582 (-771))))) (-5 *1 (-1088)))) (-3537 (*1 *1 *1 *2) (-12 (-5 *2 (-582 (-582 (-771)))) (-5 *1 (-1088)))) (-3537 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -2583 (-582 (-771))) (|:| -2482 (-582 (-771))) (|:| |presup| (-582 (-771))) (|:| -2581 (-582 (-771))) (|:| |args| (-582 (-771))))) (-5 *1 (-1088)))) (-3536 (*1 *1 *1 *2) (-12 (-5 *2 (-582 (-771))) (-5 *1 (-1088)))) (-3535 (*1 *1 *1 *2) (-12 (-5 *2 (-582 (-771))) (-5 *1 (-1088)))) (-3534 (*1 *1 *1 *2) (-12 (-5 *2 (-582 (-771))) (-5 *1 (-1088)))) (-3798 (*1 *1 *1 *2) (-12 (-5 *2 (-582 (-771))) (-5 *1 (-1088)))) (-3533 (*1 *2 *1) (-12 (-5 *2 (-1071)) (-5 *1 (-1088)))) (-3532 (*1 *2 *1) (-12 (-5 *2 (-582 (-1088))) (-5 *1 (-1088)))) (-3722 (*1 *1) (-5 *1 (-1088)))) -((-3542 (((-1177 |#1|) |#1| (-829)) 18 T ELT) (((-1177 |#1|) (-582 |#1|)) 25 T ELT))) -(((-1089 |#1|) (-10 -7 (-15 -3542 ((-1177 |#1|) (-582 |#1|))) (-15 -3542 ((-1177 |#1|) |#1| (-829)))) (-960)) (T -1089)) -((-3542 (*1 *2 *3 *4) (-12 (-5 *4 (-829)) (-5 *2 (-1177 *3)) (-5 *1 (-1089 *3)) (-4 *3 (-960)))) (-3542 (*1 *2 *3) (-12 (-5 *3 (-582 *4)) (-4 *4 (-960)) (-5 *2 (-1177 *4)) (-5 *1 (-1089 *4))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3187 (((-85) $) NIL T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3980 $) (|:| |associate| $)) $) NIL (|has| |#1| (-494)) ELT)) (-2062 (($ $) NIL (|has| |#1| (-494)) ELT)) (-2060 (((-85) $) NIL (|has| |#1| (-494)) ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3722 (($) NIL T CONST)) (-3156 (((-3 (-483) #1#) $) NIL (|has| |#1| (-949 (-483))) ELT) (((-3 (-348 (-483)) #1#) $) NIL (|has| |#1| (-949 (-348 (-483)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3155 (((-483) $) NIL (|has| |#1| (-949 (-483))) ELT) (((-348 (-483)) $) NIL (|has| |#1| (-949 (-348 (-483)))) ELT) ((|#1| $) NIL T ELT)) (-3957 (($ $) NIL T ELT)) (-3465 (((-3 $ #1#) $) NIL T ELT)) (-3501 (($ $) NIL (|has| |#1| (-390)) ELT)) (-1622 (($ $ |#1| (-883) $) NIL T ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-2409 (((-85) $) 18 T ELT)) (-2419 (((-693) $) NIL T ELT)) (-3935 (((-85) $) NIL T ELT)) (-2892 (($ |#1| (-883)) NIL T ELT)) (-2819 (((-883) $) NIL T ELT)) (-1623 (($ (-1 (-883) (-883)) $) NIL T ELT)) (-3956 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2893 (($ $) NIL T ELT)) (-3173 ((|#1| $) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-1795 (((-85) $) NIL T ELT)) (-1794 ((|#1| $) NIL T ELT)) (-3736 (($ $ (-883) |#1| $) NIL (-12 (|has| (-883) (-104)) (|has| |#1| (-494))) ELT)) (-3464 (((-3 $ #1#) $ $) NIL (|has| |#1| (-494)) ELT) (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-494)) ELT)) (-3946 (((-883) $) NIL T ELT)) (-2816 ((|#1| $) NIL (|has| |#1| (-390)) ELT)) (-3944 (((-771) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ $) NIL (|has| |#1| (-494)) ELT) (($ |#1|) NIL T ELT) (($ (-348 (-483))) NIL (OR (|has| |#1| (-38 (-348 (-483)))) (|has| |#1| (-949 (-348 (-483))))) ELT)) (-3815 (((-582 |#1|) $) NIL T ELT)) (-3675 ((|#1| $ (-883)) NIL T ELT)) (-2701 (((-631 $) $) NIL (|has| |#1| (-118)) ELT)) (-3125 (((-693)) NIL T CONST)) (-1621 (($ $ $ (-693)) NIL (|has| |#1| (-146)) ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2061 (((-85) $ $) NIL (|has| |#1| (-494)) ELT)) (-3124 (((-85) $ $) NIL T ELT)) (-2659 (($) 13 T CONST)) (-2665 (($) NIL T CONST)) (-3055 (((-85) $ $) NIL T ELT)) (-3947 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3835 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3837 (($ $ $) 22 T ELT)) (** (($ $ (-829)) NIL T ELT) (($ $ (-693)) NIL T ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) 23 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 17 T ELT) (($ (-348 (-483)) $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT) (($ $ (-348 (-483))) NIL (|has| |#1| (-38 (-348 (-483)))) ELT))) -(((-1090 |#1|) (-13 (-277 |#1| (-883)) (-10 -8 (IF (|has| |#1| (-494)) (IF (|has| (-883) (-104)) (-15 -3736 ($ $ (-883) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -3991)) (-6 -3991) |%noBranch|))) (-960)) (T -1090)) -((-3736 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-883)) (-4 *2 (-104)) (-5 *1 (-1090 *3)) (-4 *3 (-494)) (-4 *3 (-960))))) -((-3543 (((-1092) (-1088) $) 26 T ELT)) (-3553 (($) 30 T ELT)) (-3545 (((-3 (|:| |fst| (-375)) (|:| -3908 #1="void")) (-1088) $) 23 T ELT)) (-3547 (((-1183) (-1088) (-3 (|:| |fst| (-375)) (|:| -3908 #1#)) $) 42 T ELT) (((-1183) (-1088) (-3 (|:| |fst| (-375)) (|:| -3908 #1#))) 43 T ELT) (((-1183) (-3 (|:| |fst| (-375)) (|:| -3908 #1#))) 44 T ELT)) (-3555 (((-1183) (-1088)) 59 T ELT)) (-3546 (((-1183) (-1088) $) 56 T ELT) (((-1183) (-1088)) 57 T ELT) (((-1183)) 58 T ELT)) (-3551 (((-1183) (-1088)) 38 T ELT)) (-3549 (((-1088)) 37 T ELT)) (-3563 (($) 35 T ELT)) (-3562 (((-377) (-1088) (-377) (-1088) $) 46 T ELT) (((-377) (-582 (-1088)) (-377) (-1088) $) 50 T ELT) (((-377) (-1088) (-377)) 47 T ELT) (((-377) (-1088) (-377) (-1088)) 51 T ELT)) (-3550 (((-1088)) 36 T ELT)) (-3944 (((-771) $) 29 T ELT)) (-3552 (((-1183)) 31 T ELT) (((-1183) (-1088)) 34 T ELT)) (-3544 (((-582 (-1088)) (-1088) $) 25 T ELT)) (-3548 (((-1183) (-1088) (-582 (-1088)) $) 39 T ELT) (((-1183) (-1088) (-582 (-1088))) 40 T ELT) (((-1183) (-582 (-1088))) 41 T ELT))) -(((-1091) (-13 (-551 (-771)) (-10 -8 (-15 -3553 ($)) (-15 -3552 ((-1183))) (-15 -3552 ((-1183) (-1088))) (-15 -3562 ((-377) (-1088) (-377) (-1088) $)) (-15 -3562 ((-377) (-582 (-1088)) (-377) (-1088) $)) (-15 -3562 ((-377) (-1088) (-377))) (-15 -3562 ((-377) (-1088) (-377) (-1088))) (-15 -3551 ((-1183) (-1088))) (-15 -3550 ((-1088))) (-15 -3549 ((-1088))) (-15 -3548 ((-1183) (-1088) (-582 (-1088)) $)) (-15 -3548 ((-1183) (-1088) (-582 (-1088)))) (-15 -3548 ((-1183) (-582 (-1088)))) (-15 -3547 ((-1183) (-1088) (-3 (|:| |fst| (-375)) (|:| -3908 #1="void")) $)) (-15 -3547 ((-1183) (-1088) (-3 (|:| |fst| (-375)) (|:| -3908 #1#)))) (-15 -3547 ((-1183) (-3 (|:| |fst| (-375)) (|:| -3908 #1#)))) (-15 -3546 ((-1183) (-1088) $)) (-15 -3546 ((-1183) (-1088))) (-15 -3546 ((-1183))) (-15 -3555 ((-1183) (-1088))) (-15 -3563 ($)) (-15 -3545 ((-3 (|:| |fst| (-375)) (|:| -3908 #1#)) (-1088) $)) (-15 -3544 ((-582 (-1088)) (-1088) $)) (-15 -3543 ((-1092) (-1088) $))))) (T -1091)) -((-3553 (*1 *1) (-5 *1 (-1091))) (-3552 (*1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-1091)))) (-3552 (*1 *2 *3) (-12 (-5 *3 (-1088)) (-5 *2 (-1183)) (-5 *1 (-1091)))) (-3562 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-377)) (-5 *3 (-1088)) (-5 *1 (-1091)))) (-3562 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-377)) (-5 *3 (-582 (-1088))) (-5 *4 (-1088)) (-5 *1 (-1091)))) (-3562 (*1 *2 *3 *2) (-12 (-5 *2 (-377)) (-5 *3 (-1088)) (-5 *1 (-1091)))) (-3562 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-377)) (-5 *3 (-1088)) (-5 *1 (-1091)))) (-3551 (*1 *2 *3) (-12 (-5 *3 (-1088)) (-5 *2 (-1183)) (-5 *1 (-1091)))) (-3550 (*1 *2) (-12 (-5 *2 (-1088)) (-5 *1 (-1091)))) (-3549 (*1 *2) (-12 (-5 *2 (-1088)) (-5 *1 (-1091)))) (-3548 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-582 (-1088))) (-5 *3 (-1088)) (-5 *2 (-1183)) (-5 *1 (-1091)))) (-3548 (*1 *2 *3 *4) (-12 (-5 *4 (-582 (-1088))) (-5 *3 (-1088)) (-5 *2 (-1183)) (-5 *1 (-1091)))) (-3548 (*1 *2 *3) (-12 (-5 *3 (-582 (-1088))) (-5 *2 (-1183)) (-5 *1 (-1091)))) (-3547 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1088)) (-5 *4 (-3 (|:| |fst| (-375)) (|:| -3908 #1="void"))) (-5 *2 (-1183)) (-5 *1 (-1091)))) (-3547 (*1 *2 *3 *4) (-12 (-5 *3 (-1088)) (-5 *4 (-3 (|:| |fst| (-375)) (|:| -3908 #1#))) (-5 *2 (-1183)) (-5 *1 (-1091)))) (-3547 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-375)) (|:| -3908 #1#))) (-5 *2 (-1183)) (-5 *1 (-1091)))) (-3546 (*1 *2 *3 *1) (-12 (-5 *3 (-1088)) (-5 *2 (-1183)) (-5 *1 (-1091)))) (-3546 (*1 *2 *3) (-12 (-5 *3 (-1088)) (-5 *2 (-1183)) (-5 *1 (-1091)))) (-3546 (*1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-1091)))) (-3555 (*1 *2 *3) (-12 (-5 *3 (-1088)) (-5 *2 (-1183)) (-5 *1 (-1091)))) (-3563 (*1 *1) (-5 *1 (-1091))) (-3545 (*1 *2 *3 *1) (-12 (-5 *3 (-1088)) (-5 *2 (-3 (|:| |fst| (-375)) (|:| -3908 #1#))) (-5 *1 (-1091)))) (-3544 (*1 *2 *3 *1) (-12 (-5 *2 (-582 (-1088))) (-5 *1 (-1091)) (-5 *3 (-1088)))) (-3543 (*1 *2 *3 *1) (-12 (-5 *3 (-1088)) (-5 *2 (-1092)) (-5 *1 (-1091))))) -((-3557 (((-582 (-582 (-3 (|:| -3540 (-1088)) (|:| -3224 (-582 (-3 (|:| S (-1088)) (|:| P (-856 (-483))))))))) $) 66 T ELT)) (-3559 (((-582 (-3 (|:| -3540 (-1088)) (|:| -3224 (-582 (-3 (|:| S (-1088)) (|:| P (-856 (-483)))))))) (-375) $) 47 T ELT)) (-3554 (($ (-582 (-2 (|:| -3858 (-1088)) (|:| |entry| (-377))))) 17 T ELT)) (-3555 (((-1183) $) 73 T ELT)) (-3560 (((-582 (-1088)) $) 22 T ELT)) (-3556 (((-1014) $) 60 T ELT)) (-3561 (((-377) (-1088) $) 27 T ELT)) (-3558 (((-582 (-1088)) $) 30 T ELT)) (-3563 (($) 19 T ELT)) (-3562 (((-377) (-582 (-1088)) (-377) $) 25 T ELT) (((-377) (-1088) (-377) $) 24 T ELT)) (-3944 (((-771) $) 12 T ELT) (((-1100 (-1088) (-377)) $) 13 T ELT))) -(((-1092) (-13 (-551 (-771)) (-10 -8 (-15 -3944 ((-1100 (-1088) (-377)) $)) (-15 -3563 ($)) (-15 -3562 ((-377) (-582 (-1088)) (-377) $)) (-15 -3562 ((-377) (-1088) (-377) $)) (-15 -3561 ((-377) (-1088) $)) (-15 -3560 ((-582 (-1088)) $)) (-15 -3559 ((-582 (-3 (|:| -3540 (-1088)) (|:| -3224 (-582 (-3 (|:| S (-1088)) (|:| P (-856 (-483)))))))) (-375) $)) (-15 -3558 ((-582 (-1088)) $)) (-15 -3557 ((-582 (-582 (-3 (|:| -3540 (-1088)) (|:| -3224 (-582 (-3 (|:| S (-1088)) (|:| P (-856 (-483))))))))) $)) (-15 -3556 ((-1014) $)) (-15 -3555 ((-1183) $)) (-15 -3554 ($ (-582 (-2 (|:| -3858 (-1088)) (|:| |entry| (-377))))))))) (T -1092)) -((-3944 (*1 *2 *1) (-12 (-5 *2 (-1100 (-1088) (-377))) (-5 *1 (-1092)))) (-3563 (*1 *1) (-5 *1 (-1092))) (-3562 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-377)) (-5 *3 (-582 (-1088))) (-5 *1 (-1092)))) (-3562 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-377)) (-5 *3 (-1088)) (-5 *1 (-1092)))) (-3561 (*1 *2 *3 *1) (-12 (-5 *3 (-1088)) (-5 *2 (-377)) (-5 *1 (-1092)))) (-3560 (*1 *2 *1) (-12 (-5 *2 (-582 (-1088))) (-5 *1 (-1092)))) (-3559 (*1 *2 *3 *1) (-12 (-5 *3 (-375)) (-5 *2 (-582 (-3 (|:| -3540 (-1088)) (|:| -3224 (-582 (-3 (|:| S (-1088)) (|:| P (-856 (-483))))))))) (-5 *1 (-1092)))) (-3558 (*1 *2 *1) (-12 (-5 *2 (-582 (-1088))) (-5 *1 (-1092)))) (-3557 (*1 *2 *1) (-12 (-5 *2 (-582 (-582 (-3 (|:| -3540 (-1088)) (|:| -3224 (-582 (-3 (|:| S (-1088)) (|:| P (-856 (-483)))))))))) (-5 *1 (-1092)))) (-3556 (*1 *2 *1) (-12 (-5 *2 (-1014)) (-5 *1 (-1092)))) (-3555 (*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-1092)))) (-3554 (*1 *1 *2) (-12 (-5 *2 (-582 (-2 (|:| -3858 (-1088)) (|:| |entry| (-377))))) (-5 *1 (-1092))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3156 (((-3 (-483) #1="failed") $) 29 T ELT) (((-3 (-179) #1#) $) 35 T ELT) (((-3 (-445) #1#) $) 43 T ELT) (((-3 (-1071) #1#) $) 47 T ELT)) (-3155 (((-483) $) 30 T ELT) (((-179) $) 36 T ELT) (((-445) $) 40 T ELT) (((-1071) $) 48 T ELT)) (-3568 (((-85) $) 53 T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3567 (((-3 (-483) (-179) (-445) (-1071) $) $) 56 T ELT)) (-3566 (((-582 $) $) 58 T ELT)) (-3970 (((-1014) $) 24 T ELT) (($ (-1014)) 25 T ELT)) (-3565 (((-85) $) 57 T ELT)) (-3944 (((-771) $) 23 T ELT) (($ (-483)) 26 T ELT) (($ (-179)) 32 T ELT) (($ (-445)) 38 T ELT) (($ (-1071)) 44 T ELT) (((-472) $) 60 T ELT) (((-483) $) 31 T ELT) (((-179) $) 37 T ELT) (((-445) $) 41 T ELT) (((-1071) $) 49 T ELT)) (-3564 (((-85) $ (|[\|\|]| (-483))) 10 T ELT) (((-85) $ (|[\|\|]| (-179))) 13 T ELT) (((-85) $ (|[\|\|]| (-445))) 19 T ELT) (((-85) $ (|[\|\|]| (-1071))) 16 T ELT)) (-3569 (($ (-445) (-582 $)) 51 T ELT) (($ $ (-582 $)) 52 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3570 (((-483) $) 27 T ELT) (((-179) $) 33 T ELT) (((-445) $) 39 T ELT) (((-1071) $) 45 T ELT)) (-3055 (((-85) $ $) 7 T ELT))) -(((-1093) (-13 (-1173) (-1012) (-949 (-483)) (-949 (-179)) (-949 (-445)) (-949 (-1071)) (-551 (-472)) (-10 -8 (-15 -3970 ((-1014) $)) (-15 -3970 ($ (-1014))) (-15 -3944 ((-483) $)) (-15 -3570 ((-483) $)) (-15 -3944 ((-179) $)) (-15 -3570 ((-179) $)) (-15 -3944 ((-445) $)) (-15 -3570 ((-445) $)) (-15 -3944 ((-1071) $)) (-15 -3570 ((-1071) $)) (-15 -3569 ($ (-445) (-582 $))) (-15 -3569 ($ $ (-582 $))) (-15 -3568 ((-85) $)) (-15 -3567 ((-3 (-483) (-179) (-445) (-1071) $) $)) (-15 -3566 ((-582 $) $)) (-15 -3565 ((-85) $)) (-15 -3564 ((-85) $ (|[\|\|]| (-483)))) (-15 -3564 ((-85) $ (|[\|\|]| (-179)))) (-15 -3564 ((-85) $ (|[\|\|]| (-445)))) (-15 -3564 ((-85) $ (|[\|\|]| (-1071))))))) (T -1093)) -((-3970 (*1 *2 *1) (-12 (-5 *2 (-1014)) (-5 *1 (-1093)))) (-3970 (*1 *1 *2) (-12 (-5 *2 (-1014)) (-5 *1 (-1093)))) (-3944 (*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-1093)))) (-3570 (*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-1093)))) (-3944 (*1 *2 *1) (-12 (-5 *2 (-179)) (-5 *1 (-1093)))) (-3570 (*1 *2 *1) (-12 (-5 *2 (-179)) (-5 *1 (-1093)))) (-3944 (*1 *2 *1) (-12 (-5 *2 (-445)) (-5 *1 (-1093)))) (-3570 (*1 *2 *1) (-12 (-5 *2 (-445)) (-5 *1 (-1093)))) (-3944 (*1 *2 *1) (-12 (-5 *2 (-1071)) (-5 *1 (-1093)))) (-3570 (*1 *2 *1) (-12 (-5 *2 (-1071)) (-5 *1 (-1093)))) (-3569 (*1 *1 *2 *3) (-12 (-5 *2 (-445)) (-5 *3 (-582 (-1093))) (-5 *1 (-1093)))) (-3569 (*1 *1 *1 *2) (-12 (-5 *2 (-582 (-1093))) (-5 *1 (-1093)))) (-3568 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1093)))) (-3567 (*1 *2 *1) (-12 (-5 *2 (-3 (-483) (-179) (-445) (-1071) (-1093))) (-5 *1 (-1093)))) (-3566 (*1 *2 *1) (-12 (-5 *2 (-582 (-1093))) (-5 *1 (-1093)))) (-3565 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1093)))) (-3564 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-483))) (-5 *2 (-85)) (-5 *1 (-1093)))) (-3564 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-179))) (-5 *2 (-85)) (-5 *1 (-1093)))) (-3564 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-445))) (-5 *2 (-85)) (-5 *1 (-1093)))) (-3564 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1071))) (-5 *2 (-85)) (-5 *1 (-1093))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3135 (((-693)) 21 T ELT)) (-3722 (($) 10 T CONST)) (-2993 (($) 25 T ELT)) (-2530 (($ $ $) NIL T ELT) (($) 18 T CONST)) (-2856 (($ $ $) NIL T ELT) (($) 19 T CONST)) (-2009 (((-829) $) 23 T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-2399 (($ (-829)) 22 T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3944 (((-771) $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2565 (((-85) $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-2683 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL T ELT))) -(((-1094 |#1|) (-13 (-751) (-10 -8 (-15 -3722 ($) -3950))) (-829)) (T -1094)) -((-3722 (*1 *1) (-12 (-5 *1 (-1094 *2)) (-14 *2 (-829))))) -((-483) (|%not| (|%ilt| @1 (|%ilength| |#1|)))) -((-2567 (((-85) $ $) NIL T ELT)) (-2312 (($ $) 24 T ELT)) (-3135 (((-693)) NIL T ELT)) (-3722 (($) 18 T CONST)) (-2993 (($) NIL T ELT)) (-2530 (($ $ $) NIL T ELT) (($) 11 T CONST)) (-2856 (($ $ $) NIL T ELT) (($) 17 T CONST)) (-2009 (((-829) $) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-2399 (($ (-829)) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3944 (((-771) $) NIL T ELT)) (-3723 (($ $ $) 20 T ELT)) (-3724 (($ $ $) 19 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2310 (($ $ $) 22 T ELT)) (-2565 (((-85) $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-2683 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2311 (($ $ $) 21 T ELT))) -(((-1095 |#1|) (-13 (-751) (-603) (-10 -8 (-15 -3724 ($ $ $)) (-15 -3723 ($ $ $)) (-15 -3722 ($) -3950))) (-829)) (T -1095)) -((-3724 (*1 *1 *1 *1) (-12 (-5 *1 (-1095 *2)) (-14 *2 (-829)))) (-3723 (*1 *1 *1 *1) (-12 (-5 *1 (-1095 *2)) (-14 *2 (-829)))) (-3722 (*1 *1) (-12 (-5 *1 (-1095 *2)) (-14 *2 (-829))))) -((-693) (|%not| (|%ilt| @1 (|%ilength| |#1|)))) -((-2567 (((-85) $ $) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3944 (((-771) $) 9 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) 7 T ELT))) -(((-1096) (-1012)) (T -1096)) -NIL -((-3572 (((-582 (-582 (-856 |#1|))) (-582 (-348 (-856 |#1|))) (-582 (-1088))) 69 T ELT)) (-3571 (((-582 (-249 (-348 (-856 |#1|)))) (-249 (-348 (-856 |#1|)))) 81 T ELT) (((-582 (-249 (-348 (-856 |#1|)))) (-348 (-856 |#1|))) 77 T ELT) (((-582 (-249 (-348 (-856 |#1|)))) (-249 (-348 (-856 |#1|))) (-1088)) 82 T ELT) (((-582 (-249 (-348 (-856 |#1|)))) (-348 (-856 |#1|)) (-1088)) 76 T ELT) (((-582 (-582 (-249 (-348 (-856 |#1|))))) (-582 (-249 (-348 (-856 |#1|))))) 108 T ELT) (((-582 (-582 (-249 (-348 (-856 |#1|))))) (-582 (-348 (-856 |#1|)))) 107 T ELT) (((-582 (-582 (-249 (-348 (-856 |#1|))))) (-582 (-249 (-348 (-856 |#1|)))) (-582 (-1088))) 109 T ELT) (((-582 (-582 (-249 (-348 (-856 |#1|))))) (-582 (-348 (-856 |#1|))) (-582 (-1088))) 106 T ELT))) -(((-1097 |#1|) (-10 -7 (-15 -3571 ((-582 (-582 (-249 (-348 (-856 |#1|))))) (-582 (-348 (-856 |#1|))) (-582 (-1088)))) (-15 -3571 ((-582 (-582 (-249 (-348 (-856 |#1|))))) (-582 (-249 (-348 (-856 |#1|)))) (-582 (-1088)))) (-15 -3571 ((-582 (-582 (-249 (-348 (-856 |#1|))))) (-582 (-348 (-856 |#1|))))) (-15 -3571 ((-582 (-582 (-249 (-348 (-856 |#1|))))) (-582 (-249 (-348 (-856 |#1|)))))) (-15 -3571 ((-582 (-249 (-348 (-856 |#1|)))) (-348 (-856 |#1|)) (-1088))) (-15 -3571 ((-582 (-249 (-348 (-856 |#1|)))) (-249 (-348 (-856 |#1|))) (-1088))) (-15 -3571 ((-582 (-249 (-348 (-856 |#1|)))) (-348 (-856 |#1|)))) (-15 -3571 ((-582 (-249 (-348 (-856 |#1|)))) (-249 (-348 (-856 |#1|))))) (-15 -3572 ((-582 (-582 (-856 |#1|))) (-582 (-348 (-856 |#1|))) (-582 (-1088))))) (-494)) (T -1097)) -((-3572 (*1 *2 *3 *4) (-12 (-5 *3 (-582 (-348 (-856 *5)))) (-5 *4 (-582 (-1088))) (-4 *5 (-494)) (-5 *2 (-582 (-582 (-856 *5)))) (-5 *1 (-1097 *5)))) (-3571 (*1 *2 *3) (-12 (-4 *4 (-494)) (-5 *2 (-582 (-249 (-348 (-856 *4))))) (-5 *1 (-1097 *4)) (-5 *3 (-249 (-348 (-856 *4)))))) (-3571 (*1 *2 *3) (-12 (-4 *4 (-494)) (-5 *2 (-582 (-249 (-348 (-856 *4))))) (-5 *1 (-1097 *4)) (-5 *3 (-348 (-856 *4))))) (-3571 (*1 *2 *3 *4) (-12 (-5 *4 (-1088)) (-4 *5 (-494)) (-5 *2 (-582 (-249 (-348 (-856 *5))))) (-5 *1 (-1097 *5)) (-5 *3 (-249 (-348 (-856 *5)))))) (-3571 (*1 *2 *3 *4) (-12 (-5 *4 (-1088)) (-4 *5 (-494)) (-5 *2 (-582 (-249 (-348 (-856 *5))))) (-5 *1 (-1097 *5)) (-5 *3 (-348 (-856 *5))))) (-3571 (*1 *2 *3) (-12 (-4 *4 (-494)) (-5 *2 (-582 (-582 (-249 (-348 (-856 *4)))))) (-5 *1 (-1097 *4)) (-5 *3 (-582 (-249 (-348 (-856 *4))))))) (-3571 (*1 *2 *3) (-12 (-5 *3 (-582 (-348 (-856 *4)))) (-4 *4 (-494)) (-5 *2 (-582 (-582 (-249 (-348 (-856 *4)))))) (-5 *1 (-1097 *4)))) (-3571 (*1 *2 *3 *4) (-12 (-5 *4 (-582 (-1088))) (-4 *5 (-494)) (-5 *2 (-582 (-582 (-249 (-348 (-856 *5)))))) (-5 *1 (-1097 *5)) (-5 *3 (-582 (-249 (-348 (-856 *5))))))) (-3571 (*1 *2 *3 *4) (-12 (-5 *3 (-582 (-348 (-856 *5)))) (-5 *4 (-582 (-1088))) (-4 *5 (-494)) (-5 *2 (-582 (-582 (-249 (-348 (-856 *5)))))) (-5 *1 (-1097 *5))))) -((-3577 (((-1071)) 7 T ELT)) (-3574 (((-1071)) 11 T CONST)) (-3573 (((-1183) (-1071)) 13 T ELT)) (-3576 (((-1071)) 8 T CONST)) (-3575 (((-103)) 10 T CONST))) -(((-1098) (-13 (-1127) (-10 -7 (-15 -3577 ((-1071))) (-15 -3576 ((-1071)) -3950) (-15 -3575 ((-103)) -3950) (-15 -3574 ((-1071)) -3950) (-15 -3573 ((-1183) (-1071)))))) (T -1098)) -((-3577 (*1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-1098)))) (-3576 (*1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-1098)))) (-3575 (*1 *2) (-12 (-5 *2 (-103)) (-5 *1 (-1098)))) (-3574 (*1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-1098)))) (-3573 (*1 *2 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-1183)) (-5 *1 (-1098))))) -((-3581 (((-582 (-582 |#1|)) (-582 (-582 |#1|)) (-582 (-582 (-582 |#1|)))) 56 T ELT)) (-3584 (((-582 (-582 (-582 |#1|))) (-582 (-582 |#1|))) 38 T ELT)) (-3585 (((-1101 (-582 |#1|)) (-582 |#1|)) 49 T ELT)) (-3587 (((-582 (-582 |#1|)) (-582 |#1|)) 45 T ELT)) (-3590 (((-2 (|:| |f1| (-582 |#1|)) (|:| |f2| (-582 (-582 (-582 |#1|)))) (|:| |f3| (-582 (-582 |#1|))) (|:| |f4| (-582 (-582 (-582 |#1|))))) (-582 (-582 (-582 |#1|)))) 53 T ELT)) (-3589 (((-2 (|:| |f1| (-582 |#1|)) (|:| |f2| (-582 (-582 (-582 |#1|)))) (|:| |f3| (-582 (-582 |#1|))) (|:| |f4| (-582 (-582 (-582 |#1|))))) (-582 |#1|) (-582 (-582 (-582 |#1|))) (-582 (-582 |#1|)) (-582 (-582 (-582 |#1|))) (-582 (-582 (-582 |#1|))) (-582 (-582 (-582 |#1|)))) 52 T ELT)) (-3586 (((-582 (-582 |#1|)) (-582 (-582 |#1|))) 43 T ELT)) (-3588 (((-582 |#1|) (-582 |#1|)) 46 T ELT)) (-3580 (((-582 (-582 (-582 |#1|))) (-582 |#1|) (-582 (-582 (-582 |#1|)))) 32 T ELT)) (-3579 (((-582 (-582 (-582 |#1|))) (-1 (-85) |#1| |#1|) (-582 |#1|) (-582 (-582 (-582 |#1|)))) 29 T ELT)) (-3578 (((-2 (|:| |fs| (-85)) (|:| |sd| (-582 |#1|)) (|:| |td| (-582 (-582 |#1|)))) (-1 (-85) |#1| |#1|) (-582 |#1|) (-582 (-582 |#1|))) 24 T ELT)) (-3582 (((-582 (-582 |#1|)) (-582 (-582 (-582 |#1|)))) 58 T ELT)) (-3583 (((-582 (-582 |#1|)) (-1101 (-582 |#1|))) 60 T ELT))) -(((-1099 |#1|) (-10 -7 (-15 -3578 ((-2 (|:| |fs| (-85)) (|:| |sd| (-582 |#1|)) (|:| |td| (-582 (-582 |#1|)))) (-1 (-85) |#1| |#1|) (-582 |#1|) (-582 (-582 |#1|)))) (-15 -3579 ((-582 (-582 (-582 |#1|))) (-1 (-85) |#1| |#1|) (-582 |#1|) (-582 (-582 (-582 |#1|))))) (-15 -3580 ((-582 (-582 (-582 |#1|))) (-582 |#1|) (-582 (-582 (-582 |#1|))))) (-15 -3581 ((-582 (-582 |#1|)) (-582 (-582 |#1|)) (-582 (-582 (-582 |#1|))))) (-15 -3582 ((-582 (-582 |#1|)) (-582 (-582 (-582 |#1|))))) (-15 -3583 ((-582 (-582 |#1|)) (-1101 (-582 |#1|)))) (-15 -3584 ((-582 (-582 (-582 |#1|))) (-582 (-582 |#1|)))) (-15 -3585 ((-1101 (-582 |#1|)) (-582 |#1|))) (-15 -3586 ((-582 (-582 |#1|)) (-582 (-582 |#1|)))) (-15 -3587 ((-582 (-582 |#1|)) (-582 |#1|))) (-15 -3588 ((-582 |#1|) (-582 |#1|))) (-15 -3589 ((-2 (|:| |f1| (-582 |#1|)) (|:| |f2| (-582 (-582 (-582 |#1|)))) (|:| |f3| (-582 (-582 |#1|))) (|:| |f4| (-582 (-582 (-582 |#1|))))) (-582 |#1|) (-582 (-582 (-582 |#1|))) (-582 (-582 |#1|)) (-582 (-582 (-582 |#1|))) (-582 (-582 (-582 |#1|))) (-582 (-582 (-582 |#1|))))) (-15 -3590 ((-2 (|:| |f1| (-582 |#1|)) (|:| |f2| (-582 (-582 (-582 |#1|)))) (|:| |f3| (-582 (-582 |#1|))) (|:| |f4| (-582 (-582 (-582 |#1|))))) (-582 (-582 (-582 |#1|)))))) (-755)) (T -1099)) -((-3590 (*1 *2 *3) (-12 (-4 *4 (-755)) (-5 *2 (-2 (|:| |f1| (-582 *4)) (|:| |f2| (-582 (-582 (-582 *4)))) (|:| |f3| (-582 (-582 *4))) (|:| |f4| (-582 (-582 (-582 *4)))))) (-5 *1 (-1099 *4)) (-5 *3 (-582 (-582 (-582 *4)))))) (-3589 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-755)) (-5 *3 (-582 *6)) (-5 *5 (-582 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-582 *5)) (|:| |f3| *5) (|:| |f4| (-582 *5)))) (-5 *1 (-1099 *6)) (-5 *4 (-582 *5)))) (-3588 (*1 *2 *2) (-12 (-5 *2 (-582 *3)) (-4 *3 (-755)) (-5 *1 (-1099 *3)))) (-3587 (*1 *2 *3) (-12 (-4 *4 (-755)) (-5 *2 (-582 (-582 *4))) (-5 *1 (-1099 *4)) (-5 *3 (-582 *4)))) (-3586 (*1 *2 *2) (-12 (-5 *2 (-582 (-582 *3))) (-4 *3 (-755)) (-5 *1 (-1099 *3)))) (-3585 (*1 *2 *3) (-12 (-4 *4 (-755)) (-5 *2 (-1101 (-582 *4))) (-5 *1 (-1099 *4)) (-5 *3 (-582 *4)))) (-3584 (*1 *2 *3) (-12 (-4 *4 (-755)) (-5 *2 (-582 (-582 (-582 *4)))) (-5 *1 (-1099 *4)) (-5 *3 (-582 (-582 *4))))) (-3583 (*1 *2 *3) (-12 (-5 *3 (-1101 (-582 *4))) (-4 *4 (-755)) (-5 *2 (-582 (-582 *4))) (-5 *1 (-1099 *4)))) (-3582 (*1 *2 *3) (-12 (-5 *3 (-582 (-582 (-582 *4)))) (-5 *2 (-582 (-582 *4))) (-5 *1 (-1099 *4)) (-4 *4 (-755)))) (-3581 (*1 *2 *2 *3) (-12 (-5 *3 (-582 (-582 (-582 *4)))) (-5 *2 (-582 (-582 *4))) (-4 *4 (-755)) (-5 *1 (-1099 *4)))) (-3580 (*1 *2 *3 *2) (-12 (-5 *2 (-582 (-582 (-582 *4)))) (-5 *3 (-582 *4)) (-4 *4 (-755)) (-5 *1 (-1099 *4)))) (-3579 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-582 (-582 (-582 *5)))) (-5 *3 (-1 (-85) *5 *5)) (-5 *4 (-582 *5)) (-4 *5 (-755)) (-5 *1 (-1099 *5)))) (-3578 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-85) *6 *6)) (-4 *6 (-755)) (-5 *4 (-582 *6)) (-5 *2 (-2 (|:| |fs| (-85)) (|:| |sd| *4) (|:| |td| (-582 *4)))) (-5 *1 (-1099 *6)) (-5 *5 (-582 *4))))) -((-2567 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3597 (($) NIL T ELT) (($ (-582 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2197 (((-1183) $ |#1| |#1|) NIL (|has| $ (-6 -3994)) ELT)) (-3786 ((|#2| $ |#1| |#2|) NIL T ELT)) (-1568 (($ (-1 (-85) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3993)) ELT)) (-3708 (($ (-1 (-85) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3993)) ELT)) (-2230 (((-3 |#2| #1="failed") |#1| $) NIL T ELT)) (-3722 (($) NIL T CONST)) (-1351 (($ $) NIL (-12 (|has| $ (-6 -3993)) (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012))) ELT)) (-3403 (($ (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-6 -3993)) ELT) (($ (-1 (-85) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3993)) ELT) (((-3 |#2| #1#) |#1| $) NIL T ELT)) (-3404 (($ (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3993)) (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ (-1 (-85) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3993)) ELT)) (-3840 (((-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -3993)) (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (((-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3993)) ELT) (((-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3993)) ELT)) (-1574 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3994)) ELT)) (-3111 ((|#2| $ |#1|) NIL T ELT)) (-2888 (((-582 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3993)) ELT) (((-582 |#2|) $) NIL (|has| $ (-6 -3993)) ELT)) (-2199 ((|#1| $) NIL (|has| |#1| (-755)) ELT)) (-2607 (((-582 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3993)) ELT) (((-582 |#2|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3244 (((-85) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3993)) (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#2| (-1012))) ELT)) (-2200 ((|#1| $) NIL (|has| |#1| (-755)) ELT)) (-1947 (($ (-1 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3956 (($ (-1 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3241 (((-1071) $) NIL (OR (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| |#2| (-1012))) ELT)) (-2231 (((-582 |#1|) $) NIL T ELT)) (-2232 (((-85) |#1| $) NIL T ELT)) (-1272 (((-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3607 (($ (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2202 (((-582 |#1|) $) NIL T ELT)) (-2203 (((-85) |#1| $) NIL T ELT)) (-3242 (((-1032) $) NIL (OR (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| |#2| (-1012))) ELT)) (-3799 ((|#2| $) NIL (|has| |#1| (-755)) ELT)) (-1352 (((-3 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-85) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2198 (($ $ |#2|) NIL (|has| $ (-6 -3994)) ELT)) (-1273 (((-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1945 (((-85) (-1 (-85) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3993)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3766 (($ $ (-582 (-249 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-249 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-582 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) (-582 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-582 |#2|) (-582 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ (-582 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1012))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-2201 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#2| (-1012))) ELT)) (-2204 (((-582 |#2|) $) NIL T ELT)) (-3401 (((-85) $) NIL T ELT)) (-3563 (($) NIL T ELT)) (-3798 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1464 (($) NIL T ELT) (($ (-582 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1944 (((-693) (-1 (-85) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3993)) ELT) (((-693) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3993)) (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (((-693) |#2| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#2| (-1012))) ELT) (((-693) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3398 (($ $) NIL T ELT)) (-3970 (((-472) $) NIL (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-552 (-472))) ELT)) (-3528 (($ (-582 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3944 (((-771) $) NIL (OR (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-551 (-771))) (|has| |#2| (-551 (-771)))) ELT)) (-1263 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1274 (($ (-582 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1946 (((-85) (-1 (-85) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3993)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3055 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3955 (((-693) $) NIL (|has| $ (-6 -3993)) ELT))) -(((-1100 |#1| |#2|) (-13 (-1105 |#1| |#2|) (-10 -7 (-6 -3993))) (-1012) (-1012)) (T -1100)) -NIL -((-3591 (($ (-582 (-582 |#1|))) 10 T ELT)) (-3592 (((-582 (-582 |#1|)) $) 11 T ELT)) (-3944 (((-771) $) 33 T ELT))) -(((-1101 |#1|) (-10 -8 (-15 -3591 ($ (-582 (-582 |#1|)))) (-15 -3592 ((-582 (-582 |#1|)) $)) (-15 -3944 ((-771) $))) (-1012)) (T -1101)) -((-3944 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-1101 *3)) (-4 *3 (-1012)))) (-3592 (*1 *2 *1) (-12 (-5 *2 (-582 (-582 *3))) (-5 *1 (-1101 *3)) (-4 *3 (-1012)))) (-3591 (*1 *1 *2) (-12 (-5 *2 (-582 (-582 *3))) (-4 *3 (-1012)) (-5 *1 (-1101 *3))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3593 (($ |#1| (-55)) 11 T ELT)) (-3540 ((|#1| $) 13 T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-2632 (((-85) $ |#1|) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3944 (((-771) $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2520 (((-55) $) 15 T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-1102 |#1|) (-13 (-746 |#1|) (-10 -8 (-15 -3593 ($ |#1| (-55))))) (-1012)) (T -1102)) -((-3593 (*1 *1 *2 *3) (-12 (-5 *3 (-55)) (-5 *1 (-1102 *2)) (-4 *2 (-1012))))) -((-3594 ((|#1| (-582 |#1|)) 46 T ELT)) (-3596 ((|#1| |#1| (-483)) 24 T ELT)) (-3595 (((-1083 |#1|) |#1| (-829)) 20 T ELT))) -(((-1103 |#1|) (-10 -7 (-15 -3594 (|#1| (-582 |#1|))) (-15 -3595 ((-1083 |#1|) |#1| (-829))) (-15 -3596 (|#1| |#1| (-483)))) (-312)) (T -1103)) -((-3596 (*1 *2 *2 *3) (-12 (-5 *3 (-483)) (-5 *1 (-1103 *2)) (-4 *2 (-312)))) (-3595 (*1 *2 *3 *4) (-12 (-5 *4 (-829)) (-5 *2 (-1083 *3)) (-5 *1 (-1103 *3)) (-4 *3 (-312)))) (-3594 (*1 *2 *3) (-12 (-5 *3 (-582 *2)) (-5 *1 (-1103 *2)) (-4 *2 (-312))))) -((-3597 (($) 10 T ELT) (($ (-582 (-2 (|:| -3858 |#2|) (|:| |entry| |#3|)))) 14 T ELT)) (-3403 (($ (-2 (|:| -3858 |#2|) (|:| |entry| |#3|)) $) 67 T ELT) (($ (-1 (-85) (-2 (|:| -3858 |#2|) (|:| |entry| |#3|))) $) NIL T ELT) (((-3 |#3| #1="failed") |#2| $) NIL T ELT)) (-2888 (((-582 (-2 (|:| -3858 |#2|) (|:| |entry| |#3|))) $) 39 T ELT) (((-582 |#3|) $) 41 T ELT)) (-1947 (($ (-1 (-2 (|:| -3858 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3858 |#2|) (|:| |entry| |#3|))) $) 57 T ELT) (($ (-1 |#3| |#3|) $) 33 T ELT)) (-3956 (($ (-1 (-2 (|:| -3858 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3858 |#2|) (|:| |entry| |#3|))) $) 53 T ELT) (($ (-1 |#3| |#3|) $) NIL T ELT) (($ (-1 |#3| |#3| |#3|) $ $) 38 T ELT)) (-1272 (((-2 (|:| -3858 |#2|) (|:| |entry| |#3|)) $) 60 T ELT)) (-3607 (($ (-2 (|:| -3858 |#2|) (|:| |entry| |#3|)) $) 16 T ELT)) (-2202 (((-582 |#2|) $) 19 T ELT)) (-2203 (((-85) |#2| $) 65 T ELT)) (-1352 (((-3 (-2 (|:| -3858 |#2|) (|:| |entry| |#3|)) #1#) (-1 (-85) (-2 (|:| -3858 |#2|) (|:| |entry| |#3|))) $) 64 T ELT)) (-1273 (((-2 (|:| -3858 |#2|) (|:| |entry| |#3|)) $) 69 T ELT)) (-1945 (((-85) (-1 (-85) (-2 (|:| -3858 |#2|) (|:| |entry| |#3|))) $) NIL T ELT) (((-85) (-1 (-85) |#3|) $) 73 T ELT)) (-2204 (((-582 |#3|) $) 43 T ELT)) (-3798 ((|#3| $ |#2|) 30 T ELT) ((|#3| $ |#2| |#3|) 31 T ELT)) (-1944 (((-693) (-1 (-85) (-2 (|:| -3858 |#2|) (|:| |entry| |#3|))) $) NIL T ELT) (((-693) (-2 (|:| -3858 |#2|) (|:| |entry| |#3|)) $) NIL T ELT) (((-693) |#3| $) NIL T ELT) (((-693) (-1 (-85) |#3|) $) 79 T ELT)) (-3944 (((-771) $) 27 T ELT)) (-1946 (((-85) (-1 (-85) (-2 (|:| -3858 |#2|) (|:| |entry| |#3|))) $) NIL T ELT) (((-85) (-1 (-85) |#3|) $) 71 T ELT)) (-3055 (((-85) $ $) 51 T ELT))) -(((-1104 |#1| |#2| |#3|) (-10 -7 (-15 -3055 ((-85) |#1| |#1|)) (-15 -3944 ((-771) |#1|)) (-15 -3956 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3597 (|#1| (-582 (-2 (|:| -3858 |#2|) (|:| |entry| |#3|))))) (-15 -3597 (|#1|)) (-15 -3956 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1947 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1946 ((-85) (-1 (-85) |#3|) |#1|)) (-15 -1945 ((-85) (-1 (-85) |#3|) |#1|)) (-15 -1944 ((-693) (-1 (-85) |#3|) |#1|)) (-15 -2888 ((-582 |#3|) |#1|)) (-15 -1944 ((-693) |#3| |#1|)) (-15 -3798 (|#3| |#1| |#2| |#3|)) (-15 -3798 (|#3| |#1| |#2|)) (-15 -2204 ((-582 |#3|) |#1|)) (-15 -2203 ((-85) |#2| |#1|)) (-15 -2202 ((-582 |#2|) |#1|)) (-15 -3403 ((-3 |#3| #1="failed") |#2| |#1|)) (-15 -3403 (|#1| (-1 (-85) (-2 (|:| -3858 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -3403 (|#1| (-2 (|:| -3858 |#2|) (|:| |entry| |#3|)) |#1|)) (-15 -1352 ((-3 (-2 (|:| -3858 |#2|) (|:| |entry| |#3|)) #1#) (-1 (-85) (-2 (|:| -3858 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -1272 ((-2 (|:| -3858 |#2|) (|:| |entry| |#3|)) |#1|)) (-15 -3607 (|#1| (-2 (|:| -3858 |#2|) (|:| |entry| |#3|)) |#1|)) (-15 -1273 ((-2 (|:| -3858 |#2|) (|:| |entry| |#3|)) |#1|)) (-15 -1944 ((-693) (-2 (|:| -3858 |#2|) (|:| |entry| |#3|)) |#1|)) (-15 -2888 ((-582 (-2 (|:| -3858 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -1944 ((-693) (-1 (-85) (-2 (|:| -3858 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -1945 ((-85) (-1 (-85) (-2 (|:| -3858 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -1946 ((-85) (-1 (-85) (-2 (|:| -3858 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -1947 (|#1| (-1 (-2 (|:| -3858 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3858 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -3956 (|#1| (-1 (-2 (|:| -3858 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3858 |#2|) (|:| |entry| |#3|))) |#1|))) (-1105 |#2| |#3|) (-1012) (-1012)) (T -1104)) -NIL -((-2567 (((-85) $ $) 19 (OR (|has| |#2| (-72)) (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-3597 (($) 77 T ELT) (($ (-582 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)))) 76 T ELT)) (-2197 (((-1183) $ |#1| |#1|) 104 (|has| $ (-6 -3994)) ELT)) (-3786 ((|#2| $ |#1| |#2|) 78 T ELT)) (-1568 (($ (-1 (-85) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) 49 (|has| $ (-6 -3993)) ELT)) (-3708 (($ (-1 (-85) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) 59 (|has| $ (-6 -3993)) ELT)) (-2230 (((-3 |#2| #1="failed") |#1| $) 65 T ELT)) (-3722 (($) 7 T CONST)) (-1351 (($ $) 62 (-12 (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| $ (-6 -3993))) ELT)) (-3403 (($ (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $) 51 (|has| $ (-6 -3993)) ELT) (($ (-1 (-85) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) 50 (|has| $ (-6 -3993)) ELT) (((-3 |#2| #1#) |#1| $) 66 T ELT)) (-3404 (($ (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $) 61 (-12 (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| $ (-6 -3993))) ELT) (($ (-1 (-85) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) 58 (|has| $ (-6 -3993)) ELT)) (-3840 (((-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) 60 (-12 (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| $ (-6 -3993))) ELT) (((-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) 57 (|has| $ (-6 -3993)) ELT) (((-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) 56 (|has| $ (-6 -3993)) ELT)) (-1574 ((|#2| $ |#1| |#2|) 92 (|has| $ (-6 -3994)) ELT)) (-3111 ((|#2| $ |#1|) 93 T ELT)) (-2888 (((-582 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) 30 (|has| $ (-6 -3993)) ELT) (((-582 |#2|) $) 84 (|has| $ (-6 -3993)) ELT)) (-2199 ((|#1| $) 101 (|has| |#1| (-755)) ELT)) (-2607 (((-582 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) 29 (|has| $ (-6 -3993)) ELT) (((-582 |#2|) $) 85 (|has| $ (-6 -3993)) ELT)) (-3244 (((-85) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $) 27 (-12 (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| $ (-6 -3993))) ELT) (((-85) |#2| $) 87 (-12 (|has| |#2| (-1012)) (|has| $ (-6 -3993))) ELT)) (-2200 ((|#1| $) 100 (|has| |#1| (-755)) ELT)) (-1947 (($ (-1 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) 34 (|has| $ (-6 -3994)) ELT) (($ (-1 |#2| |#2|) $) 80 (|has| $ (-6 -3994)) ELT)) (-3956 (($ (-1 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) 35 T ELT) (($ (-1 |#2| |#2|) $) 79 T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 75 T ELT)) (-3241 (((-1071) $) 22 (OR (|has| |#2| (-1012)) (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012))) ELT)) (-2231 (((-582 |#1|) $) 67 T ELT)) (-2232 (((-85) |#1| $) 68 T ELT)) (-1272 (((-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $) 43 T ELT)) (-3607 (($ (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $) 44 T ELT)) (-2202 (((-582 |#1|) $) 98 T ELT)) (-2203 (((-85) |#1| $) 97 T ELT)) (-3242 (((-1032) $) 21 (OR (|has| |#2| (-1012)) (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012))) ELT)) (-3799 ((|#2| $) 102 (|has| |#1| (-755)) ELT)) (-1352 (((-3 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) "failed") (-1 (-85) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) 55 T ELT)) (-2198 (($ $ |#2|) 103 (|has| $ (-6 -3994)) ELT)) (-1273 (((-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $) 45 T ELT)) (-1945 (((-85) (-1 (-85) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) 32 (|has| $ (-6 -3993)) ELT) (((-85) (-1 (-85) |#2|) $) 82 (|has| $ (-6 -3993)) ELT)) (-3766 (($ $ (-582 (-249 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))))) 26 (-12 (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-249 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)))) 25 (-12 (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) 24 (-12 (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-582 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) (-582 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)))) 23 (-12 (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-582 |#2|) (-582 |#2|)) 91 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ |#2| |#2|) 90 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ (-249 |#2|)) 89 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ (-582 (-249 |#2|))) 88 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1012))) ELT)) (-1220 (((-85) $ $) 11 T ELT)) (-2201 (((-85) |#2| $) 99 (-12 (|has| $ (-6 -3993)) (|has| |#2| (-1012))) ELT)) (-2204 (((-582 |#2|) $) 96 T ELT)) (-3401 (((-85) $) 8 T ELT)) (-3563 (($) 9 T ELT)) (-3798 ((|#2| $ |#1|) 95 T ELT) ((|#2| $ |#1| |#2|) 94 T ELT)) (-1464 (($) 53 T ELT) (($ (-582 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)))) 52 T ELT)) (-1944 (((-693) (-1 (-85) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) 31 (|has| $ (-6 -3993)) ELT) (((-693) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) $) 28 (-12 (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| $ (-6 -3993))) ELT) (((-693) |#2| $) 86 (-12 (|has| |#2| (-1012)) (|has| $ (-6 -3993))) ELT) (((-693) (-1 (-85) |#2|) $) 83 (|has| $ (-6 -3993)) ELT)) (-3398 (($ $) 10 T ELT)) (-3970 (((-472) $) 63 (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-552 (-472))) ELT)) (-3528 (($ (-582 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)))) 54 T ELT)) (-3944 (((-771) $) 17 (OR (|has| |#2| (-551 (-771))) (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-551 (-771)))) ELT)) (-1263 (((-85) $ $) 20 (OR (|has| |#2| (-72)) (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-1274 (($ (-582 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)))) 46 T ELT)) (-1946 (((-85) (-1 (-85) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) $) 33 (|has| $ (-6 -3993)) ELT) (((-85) (-1 (-85) |#2|) $) 81 (|has| $ (-6 -3993)) ELT)) (-3055 (((-85) $ $) 18 (OR (|has| |#2| (-72)) (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-3955 (((-693) $) 6 (|has| $ (-6 -3993)) ELT))) -(((-1105 |#1| |#2|) (-113) (-1012) (-1012)) (T -1105)) -((-3786 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1105 *3 *2)) (-4 *3 (-1012)) (-4 *2 (-1012)))) (-3597 (*1 *1) (-12 (-4 *1 (-1105 *2 *3)) (-4 *2 (-1012)) (-4 *3 (-1012)))) (-3597 (*1 *1 *2) (-12 (-5 *2 (-582 (-2 (|:| -3858 *3) (|:| |entry| *4)))) (-4 *3 (-1012)) (-4 *4 (-1012)) (-4 *1 (-1105 *3 *4)))) (-3956 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1105 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1012))))) -(-13 (-548 |t#1| |t#2|) (-537 |t#1| |t#2|) (-10 -8 (-15 -3786 (|t#2| $ |t#1| |t#2|)) (-15 -3597 ($)) (-15 -3597 ($ (-582 (-2 (|:| -3858 |t#1|) (|:| |entry| |t#2|))))) (-15 -3956 ($ (-1 |t#2| |t#2| |t#2|) $ $)))) -(((-34) . T) ((-76 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) . T) ((-72) OR (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-1012)) (|has| |#2| (-72))) ((-551 (-771)) OR (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-551 (-771))) (|has| |#2| (-1012)) (|has| |#2| (-551 (-771)))) ((-124 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) . T) ((-552 (-472)) |has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-552 (-472))) ((-183 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) . T) ((-193 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) . T) ((-241 |#1| |#2|) . T) ((-243 |#1| |#2|) . T) ((-260 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012))) ((-260 |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1012))) ((-427 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) . T) ((-427 |#2|) . T) ((-537 |#1| |#2|) . T) ((-454 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3858 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012))) ((-454 |#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1012))) ((-13) . T) ((-548 |#1| |#2|) . T) ((-1012) OR (|has| (-2 (|:| -3858 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| |#2| (-1012))) ((-1127) . T)) -((-3603 (((-85)) 29 T ELT)) (-3600 (((-1183) (-1071)) 31 T ELT)) (-3604 (((-85)) 41 T ELT)) (-3601 (((-1183)) 39 T ELT)) (-3599 (((-1183) (-1071) (-1071)) 30 T ELT)) (-3605 (((-85)) 42 T ELT)) (-3607 (((-1183) |#1| |#2|) 53 T ELT)) (-3598 (((-1183)) 26 T ELT)) (-3606 (((-3 |#2| "failed") |#1|) 51 T ELT)) (-3602 (((-1183)) 40 T ELT))) -(((-1106 |#1| |#2|) (-10 -7 (-15 -3598 ((-1183))) (-15 -3599 ((-1183) (-1071) (-1071))) (-15 -3600 ((-1183) (-1071))) (-15 -3601 ((-1183))) (-15 -3602 ((-1183))) (-15 -3603 ((-85))) (-15 -3604 ((-85))) (-15 -3605 ((-85))) (-15 -3606 ((-3 |#2| "failed") |#1|)) (-15 -3607 ((-1183) |#1| |#2|))) (-1012) (-1012)) (T -1106)) -((-3607 (*1 *2 *3 *4) (-12 (-5 *2 (-1183)) (-5 *1 (-1106 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1012)))) (-3606 (*1 *2 *3) (|partial| -12 (-4 *2 (-1012)) (-5 *1 (-1106 *3 *2)) (-4 *3 (-1012)))) (-3605 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1106 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1012)))) (-3604 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1106 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1012)))) (-3603 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1106 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1012)))) (-3602 (*1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-1106 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1012)))) (-3601 (*1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-1106 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1012)))) (-3600 (*1 *2 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-1183)) (-5 *1 (-1106 *4 *5)) (-4 *4 (-1012)) (-4 *5 (-1012)))) (-3599 (*1 *2 *3 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-1183)) (-5 *1 (-1106 *4 *5)) (-4 *4 (-1012)) (-4 *5 (-1012)))) (-3598 (*1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-1106 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1012))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3613 (((-582 (-1071)) $) 37 T ELT)) (-3609 (((-582 (-1071)) $ (-582 (-1071))) 40 T ELT)) (-3608 (((-582 (-1071)) $ (-582 (-1071))) 39 T ELT)) (-3610 (((-582 (-1071)) $ (-582 (-1071))) 41 T ELT)) (-3611 (((-582 (-1071)) $) 36 T ELT)) (-3612 (($) 26 T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3614 (((-582 (-1071)) $) 38 T ELT)) (-3615 (((-1183) $ (-483)) 33 T ELT) (((-1183) $) 34 T ELT)) (-3970 (($ (-771) (-483)) 31 T ELT) (($ (-771) (-483) (-771)) NIL T ELT)) (-3944 (((-771) $) 47 T ELT) (($ (-771)) 30 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-1107) (-13 (-1012) (-554 (-771)) (-10 -8 (-15 -3970 ($ (-771) (-483))) (-15 -3970 ($ (-771) (-483) (-771))) (-15 -3615 ((-1183) $ (-483))) (-15 -3615 ((-1183) $)) (-15 -3614 ((-582 (-1071)) $)) (-15 -3613 ((-582 (-1071)) $)) (-15 -3612 ($)) (-15 -3611 ((-582 (-1071)) $)) (-15 -3610 ((-582 (-1071)) $ (-582 (-1071)))) (-15 -3609 ((-582 (-1071)) $ (-582 (-1071)))) (-15 -3608 ((-582 (-1071)) $ (-582 (-1071))))))) (T -1107)) -((-3970 (*1 *1 *2 *3) (-12 (-5 *2 (-771)) (-5 *3 (-483)) (-5 *1 (-1107)))) (-3970 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-771)) (-5 *3 (-483)) (-5 *1 (-1107)))) (-3615 (*1 *2 *1 *3) (-12 (-5 *3 (-483)) (-5 *2 (-1183)) (-5 *1 (-1107)))) (-3615 (*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-1107)))) (-3614 (*1 *2 *1) (-12 (-5 *2 (-582 (-1071))) (-5 *1 (-1107)))) (-3613 (*1 *2 *1) (-12 (-5 *2 (-582 (-1071))) (-5 *1 (-1107)))) (-3612 (*1 *1) (-5 *1 (-1107))) (-3611 (*1 *2 *1) (-12 (-5 *2 (-582 (-1071))) (-5 *1 (-1107)))) (-3610 (*1 *2 *1 *2) (-12 (-5 *2 (-582 (-1071))) (-5 *1 (-1107)))) (-3609 (*1 *2 *1 *2) (-12 (-5 *2 (-582 (-1071))) (-5 *1 (-1107)))) (-3608 (*1 *2 *1 *2) (-12 (-5 *2 (-582 (-1071))) (-5 *1 (-1107))))) -((-3944 (((-1107) |#1|) 11 T ELT))) -(((-1108 |#1|) (-10 -7 (-15 -3944 ((-1107) |#1|))) (-1012)) (T -1108)) -((-3944 (*1 *2 *3) (-12 (-5 *2 (-1107)) (-5 *1 (-1108 *3)) (-4 *3 (-1012))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3620 (((-1071) $ (-1071)) 21 T ELT) (((-1071) $) 20 T ELT)) (-1695 (((-1071) $ (-1071)) 19 T ELT)) (-1699 (($ $ (-1071)) NIL T ELT)) (-3618 (((-3 (-1071) #1="failed") $) 11 T ELT)) (-3619 (((-1071) $) 8 T ELT)) (-3617 (((-3 (-1071) #1#) $) 12 T ELT)) (-1696 (((-1071) $) 9 T ELT)) (-1700 (($ (-336)) NIL T ELT) (($ (-336) (-1071)) NIL T ELT)) (-3540 (((-336) $) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-1697 (((-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3616 (((-85) $) 25 T ELT)) (-3944 (((-771) $) NIL T ELT)) (-1698 (($ $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-1109) (-13 (-314 (-336) (-1071)) (-10 -8 (-15 -3620 ((-1071) $ (-1071))) (-15 -3620 ((-1071) $)) (-15 -3619 ((-1071) $)) (-15 -3618 ((-3 (-1071) #1="failed") $)) (-15 -3617 ((-3 (-1071) #1#) $)) (-15 -3616 ((-85) $))))) (T -1109)) -((-3620 (*1 *2 *1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-1109)))) (-3620 (*1 *2 *1) (-12 (-5 *2 (-1071)) (-5 *1 (-1109)))) (-3619 (*1 *2 *1) (-12 (-5 *2 (-1071)) (-5 *1 (-1109)))) (-3618 (*1 *2 *1) (|partial| -12 (-5 *2 (-1071)) (-5 *1 (-1109)))) (-3617 (*1 *2 *1) (|partial| -12 (-5 *2 (-1071)) (-5 *1 (-1109)))) (-3616 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1109))))) -((-3621 (((-3 (-483) #1="failed") |#1|) 19 T ELT)) (-3622 (((-3 (-483) #1#) |#1|) 14 T ELT)) (-3623 (((-483) (-1071)) 33 T ELT))) -(((-1110 |#1|) (-10 -7 (-15 -3621 ((-3 (-483) #1="failed") |#1|)) (-15 -3622 ((-3 (-483) #1#) |#1|)) (-15 -3623 ((-483) (-1071)))) (-960)) (T -1110)) -((-3623 (*1 *2 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-483)) (-5 *1 (-1110 *4)) (-4 *4 (-960)))) (-3622 (*1 *2 *3) (|partial| -12 (-5 *2 (-483)) (-5 *1 (-1110 *3)) (-4 *3 (-960)))) (-3621 (*1 *2 *3) (|partial| -12 (-5 *2 (-483)) (-5 *1 (-1110 *3)) (-4 *3 (-960))))) -((-3624 (((-1045 (-179))) 9 T ELT))) -(((-1111) (-10 -7 (-15 -3624 ((-1045 (-179)))))) (T -1111)) -((-3624 (*1 *2) (-12 (-5 *2 (-1045 (-179))) (-5 *1 (-1111))))) -((-3625 (($) 12 T ELT)) (-3496 (($ $) 36 T ELT)) (-3494 (($ $) 34 T ELT)) (-3482 (($ $) 26 T ELT)) (-3498 (($ $) 18 T ELT)) (-3499 (($ $) 16 T ELT)) (-3497 (($ $) 20 T ELT)) (-3485 (($ $) 31 T ELT)) (-3495 (($ $) 35 T ELT)) (-3483 (($ $) 30 T ELT))) -(((-1112 |#1|) (-10 -7 (-15 -3625 (|#1|)) (-15 -3496 (|#1| |#1|)) (-15 -3494 (|#1| |#1|)) (-15 -3498 (|#1| |#1|)) (-15 -3499 (|#1| |#1|)) (-15 -3497 (|#1| |#1|)) (-15 -3495 (|#1| |#1|)) (-15 -3482 (|#1| |#1|)) (-15 -3485 (|#1| |#1|)) (-15 -3483 (|#1| |#1|))) (-1113)) (T -1112)) -NIL -((-3490 (($ $) 26 T ELT)) (-3637 (($ $) 11 T ELT)) (-3488 (($ $) 27 T ELT)) (-3636 (($ $) 10 T ELT)) (-3492 (($ $) 28 T ELT)) (-3635 (($ $) 9 T ELT)) (-3625 (($) 16 T ELT)) (-3940 (($ $) 19 T ELT)) (-3941 (($ $) 18 T ELT)) (-3493 (($ $) 29 T ELT)) (-3634 (($ $) 8 T ELT)) (-3491 (($ $) 30 T ELT)) (-3633 (($ $) 7 T ELT)) (-3489 (($ $) 31 T ELT)) (-3632 (($ $) 6 T ELT)) (-3496 (($ $) 20 T ELT)) (-3484 (($ $) 32 T ELT)) (-3494 (($ $) 21 T ELT)) (-3482 (($ $) 33 T ELT)) (-3498 (($ $) 22 T ELT)) (-3486 (($ $) 34 T ELT)) (-3499 (($ $) 23 T ELT)) (-3487 (($ $) 35 T ELT)) (-3497 (($ $) 24 T ELT)) (-3485 (($ $) 36 T ELT)) (-3495 (($ $) 25 T ELT)) (-3483 (($ $) 37 T ELT)) (** (($ $ $) 17 T ELT))) -(((-1113) (-113)) (T -1113)) -((-3625 (*1 *1) (-4 *1 (-1113)))) -(-13 (-1116) (-66) (-431) (-35) (-239) (-10 -8 (-15 -3625 ($)))) -(((-35) . T) ((-66) . T) ((-239) . T) ((-431) . T) ((-1116) . T)) -((-2567 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3400 ((|#1| $) 19 T ELT)) (-3630 (($ |#1| (-582 $)) 28 T ELT) (($ (-582 |#1|)) 35 T ELT) (($ |#1|) 30 T ELT)) (-3024 ((|#1| $ |#1|) 14 (|has| $ (-6 -3994)) ELT)) (-3786 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3994)) ELT)) (-3025 (($ $ (-582 $)) 13 (|has| $ (-6 -3994)) ELT)) (-3722 (($) NIL T CONST)) (-2888 (((-582 |#1|) $) 70 (|has| $ (-6 -3993)) ELT)) (-3030 (((-582 $) $) 59 T ELT)) (-3026 (((-85) $ $) 50 (|has| |#1| (-1012)) ELT)) (-2607 (((-582 |#1|) $) 71 (|has| $ (-6 -3993)) ELT)) (-3244 (((-85) |#1| $) 69 (-12 (|has| $ (-6 -3993)) (|has| |#1| (-1012))) ELT)) (-1947 (($ (-1 |#1| |#1|) $) 29 (|has| $ (-6 -3994)) ELT)) (-3956 (($ (-1 |#1| |#1|) $) 27 T ELT)) (-3029 (((-582 |#1|) $) 55 T ELT)) (-3525 (((-85) $) 53 T ELT)) (-3241 (((-1071) $) NIL (|has| |#1| (-1012)) ELT)) (-3242 (((-1032) $) NIL (|has| |#1| (-1012)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 67 (|has| $ (-6 -3993)) ELT)) (-3766 (($ $ (-582 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-582 |#1|) (-582 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT)) (-1220 (((-85) $ $) 102 T ELT)) (-3401 (((-85) $) 9 T ELT)) (-3563 (($) 10 T ELT)) (-3798 ((|#1| $ #1#) NIL T ELT)) (-3028 (((-483) $ $) 48 T ELT)) (-3626 (((-582 $) $) 84 T ELT)) (-3627 (((-85) $ $) 105 T ELT)) (-3628 (((-582 $) $) 100 T ELT)) (-3629 (($ $) 101 T ELT)) (-3631 (((-85) $) 77 T ELT)) (-1944 (((-693) (-1 (-85) |#1|) $) 25 (|has| $ (-6 -3993)) ELT) (((-693) |#1| $) 17 (-12 (|has| $ (-6 -3993)) (|has| |#1| (-1012))) ELT)) (-3398 (($ $) 83 T ELT)) (-3944 (((-771) $) 86 (|has| |#1| (-551 (-771))) ELT)) (-3520 (((-582 $) $) 12 T ELT)) (-3027 (((-85) $ $) 39 (|has| |#1| (-1012)) ELT)) (-1263 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 66 (|has| $ (-6 -3993)) ELT)) (-3055 (((-85) $ $) 37 (|has| |#1| (-72)) ELT)) (-3955 (((-693) $) 81 (|has| $ (-6 -3993)) ELT))) -(((-1114 |#1|) (-13 (-922 |#1|) (-10 -8 (-6 -3993) (-6 -3994) (-15 -3630 ($ |#1| (-582 $))) (-15 -3630 ($ (-582 |#1|))) (-15 -3630 ($ |#1|)) (-15 -3631 ((-85) $)) (-15 -3629 ($ $)) (-15 -3628 ((-582 $) $)) (-15 -3627 ((-85) $ $)) (-15 -3626 ((-582 $) $)))) (-1012)) (T -1114)) -((-3631 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1114 *3)) (-4 *3 (-1012)))) (-3630 (*1 *1 *2 *3) (-12 (-5 *3 (-582 (-1114 *2))) (-5 *1 (-1114 *2)) (-4 *2 (-1012)))) (-3630 (*1 *1 *2) (-12 (-5 *2 (-582 *3)) (-4 *3 (-1012)) (-5 *1 (-1114 *3)))) (-3630 (*1 *1 *2) (-12 (-5 *1 (-1114 *2)) (-4 *2 (-1012)))) (-3629 (*1 *1 *1) (-12 (-5 *1 (-1114 *2)) (-4 *2 (-1012)))) (-3628 (*1 *2 *1) (-12 (-5 *2 (-582 (-1114 *3))) (-5 *1 (-1114 *3)) (-4 *3 (-1012)))) (-3627 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1114 *3)) (-4 *3 (-1012)))) (-3626 (*1 *2 *1) (-12 (-5 *2 (-582 (-1114 *3))) (-5 *1 (-1114 *3)) (-4 *3 (-1012))))) -((-3637 (($ $) 15 T ELT)) (-3635 (($ $) 12 T ELT)) (-3634 (($ $) 10 T ELT)) (-3633 (($ $) 17 T ELT))) -(((-1115 |#1|) (-10 -7 (-15 -3633 (|#1| |#1|)) (-15 -3634 (|#1| |#1|)) (-15 -3635 (|#1| |#1|)) (-15 -3637 (|#1| |#1|))) (-1116)) (T -1115)) -NIL -((-3637 (($ $) 11 T ELT)) (-3636 (($ $) 10 T ELT)) (-3635 (($ $) 9 T ELT)) (-3634 (($ $) 8 T ELT)) (-3633 (($ $) 7 T ELT)) (-3632 (($ $) 6 T ELT))) -(((-1116) (-113)) (T -1116)) -((-3637 (*1 *1 *1) (-4 *1 (-1116))) (-3636 (*1 *1 *1) (-4 *1 (-1116))) (-3635 (*1 *1 *1) (-4 *1 (-1116))) (-3634 (*1 *1 *1) (-4 *1 (-1116))) (-3633 (*1 *1 *1) (-4 *1 (-1116))) (-3632 (*1 *1 *1) (-4 *1 (-1116)))) -(-13 (-10 -8 (-15 -3632 ($ $)) (-15 -3633 ($ $)) (-15 -3634 ($ $)) (-15 -3635 ($ $)) (-15 -3636 ($ $)) (-15 -3637 ($ $)))) -((-3640 ((|#2| |#2|) 95 T ELT)) (-3643 (((-85) |#2|) 29 T ELT)) (-3641 ((|#2| |#2|) 33 T ELT)) (-3642 ((|#2| |#2|) 35 T ELT)) (-3638 ((|#2| |#2| (-1088)) 89 T ELT) ((|#2| |#2|) 90 T ELT)) (-3644 (((-142 |#2|) |#2|) 31 T ELT)) (-3639 ((|#2| |#2| (-1088)) 91 T ELT) ((|#2| |#2|) 92 T ELT))) -(((-1117 |#1| |#2|) (-10 -7 (-15 -3638 (|#2| |#2|)) (-15 -3638 (|#2| |#2| (-1088))) (-15 -3639 (|#2| |#2|)) (-15 -3639 (|#2| |#2| (-1088))) (-15 -3640 (|#2| |#2|)) (-15 -3641 (|#2| |#2|)) (-15 -3642 (|#2| |#2|)) (-15 -3643 ((-85) |#2|)) (-15 -3644 ((-142 |#2|) |#2|))) (-13 (-390) (-949 (-483)) (-579 (-483))) (-13 (-27) (-1113) (-362 |#1|))) (T -1117)) -((-3644 (*1 *2 *3) (-12 (-4 *4 (-13 (-390) (-949 (-483)) (-579 (-483)))) (-5 *2 (-142 *3)) (-5 *1 (-1117 *4 *3)) (-4 *3 (-13 (-27) (-1113) (-362 *4))))) (-3643 (*1 *2 *3) (-12 (-4 *4 (-13 (-390) (-949 (-483)) (-579 (-483)))) (-5 *2 (-85)) (-5 *1 (-1117 *4 *3)) (-4 *3 (-13 (-27) (-1113) (-362 *4))))) (-3642 (*1 *2 *2) (-12 (-4 *3 (-13 (-390) (-949 (-483)) (-579 (-483)))) (-5 *1 (-1117 *3 *2)) (-4 *2 (-13 (-27) (-1113) (-362 *3))))) (-3641 (*1 *2 *2) (-12 (-4 *3 (-13 (-390) (-949 (-483)) (-579 (-483)))) (-5 *1 (-1117 *3 *2)) (-4 *2 (-13 (-27) (-1113) (-362 *3))))) (-3640 (*1 *2 *2) (-12 (-4 *3 (-13 (-390) (-949 (-483)) (-579 (-483)))) (-5 *1 (-1117 *3 *2)) (-4 *2 (-13 (-27) (-1113) (-362 *3))))) (-3639 (*1 *2 *2 *3) (-12 (-5 *3 (-1088)) (-4 *4 (-13 (-390) (-949 (-483)) (-579 (-483)))) (-5 *1 (-1117 *4 *2)) (-4 *2 (-13 (-27) (-1113) (-362 *4))))) (-3639 (*1 *2 *2) (-12 (-4 *3 (-13 (-390) (-949 (-483)) (-579 (-483)))) (-5 *1 (-1117 *3 *2)) (-4 *2 (-13 (-27) (-1113) (-362 *3))))) (-3638 (*1 *2 *2 *3) (-12 (-5 *3 (-1088)) (-4 *4 (-13 (-390) (-949 (-483)) (-579 (-483)))) (-5 *1 (-1117 *4 *2)) (-4 *2 (-13 (-27) (-1113) (-362 *4))))) (-3638 (*1 *2 *2) (-12 (-4 *3 (-13 (-390) (-949 (-483)) (-579 (-483)))) (-5 *1 (-1117 *3 *2)) (-4 *2 (-13 (-27) (-1113) (-362 *3)))))) -((-3645 ((|#4| |#4| |#1|) 31 T ELT)) (-3646 ((|#4| |#4| |#1|) 32 T ELT))) -(((-1118 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3645 (|#4| |#4| |#1|)) (-15 -3646 (|#4| |#4| |#1|))) (-494) (-322 |#1|) (-322 |#1|) (-626 |#1| |#2| |#3|)) (T -1118)) -((-3646 (*1 *2 *2 *3) (-12 (-4 *3 (-494)) (-4 *4 (-322 *3)) (-4 *5 (-322 *3)) (-5 *1 (-1118 *3 *4 *5 *2)) (-4 *2 (-626 *3 *4 *5)))) (-3645 (*1 *2 *2 *3) (-12 (-4 *3 (-494)) (-4 *4 (-322 *3)) (-4 *5 (-322 *3)) (-5 *1 (-1118 *3 *4 *5 *2)) (-4 *2 (-626 *3 *4 *5))))) -((-3664 ((|#2| |#2|) 148 T ELT)) (-3666 ((|#2| |#2|) 145 T ELT)) (-3663 ((|#2| |#2|) 136 T ELT)) (-3665 ((|#2| |#2|) 133 T ELT)) (-3662 ((|#2| |#2|) 141 T ELT)) (-3661 ((|#2| |#2|) 129 T ELT)) (-3650 ((|#2| |#2|) 44 T ELT)) (-3649 ((|#2| |#2|) 105 T ELT)) (-3647 ((|#2| |#2|) 88 T ELT)) (-3660 ((|#2| |#2|) 143 T ELT)) (-3659 ((|#2| |#2|) 131 T ELT)) (-3672 ((|#2| |#2|) 153 T ELT)) (-3670 ((|#2| |#2|) 151 T ELT)) (-3671 ((|#2| |#2|) 152 T ELT)) (-3669 ((|#2| |#2|) 150 T ELT)) (-3648 ((|#2| |#2|) 163 T ELT)) (-3673 ((|#2| |#2|) 30 (-12 (|has| |#2| (-552 (-799 |#1|))) (|has| |#2| (-795 |#1|)) (|has| |#1| (-552 (-799 |#1|))) (|has| |#1| (-795 |#1|))) ELT)) (-3651 ((|#2| |#2|) 89 T ELT)) (-3652 ((|#2| |#2|) 154 T ELT)) (-3961 ((|#2| |#2|) 155 T ELT)) (-3658 ((|#2| |#2|) 142 T ELT)) (-3657 ((|#2| |#2|) 130 T ELT)) (-3656 ((|#2| |#2|) 149 T ELT)) (-3668 ((|#2| |#2|) 147 T ELT)) (-3655 ((|#2| |#2|) 137 T ELT)) (-3667 ((|#2| |#2|) 135 T ELT)) (-3654 ((|#2| |#2|) 139 T ELT)) (-3653 ((|#2| |#2|) 127 T ELT))) -(((-1119 |#1| |#2|) (-10 -7 (-15 -3961 (|#2| |#2|)) (-15 -3647 (|#2| |#2|)) (-15 -3648 (|#2| |#2|)) (-15 -3649 (|#2| |#2|)) (-15 -3650 (|#2| |#2|)) (-15 -3651 (|#2| |#2|)) (-15 -3652 (|#2| |#2|)) (-15 -3653 (|#2| |#2|)) (-15 -3654 (|#2| |#2|)) (-15 -3655 (|#2| |#2|)) (-15 -3656 (|#2| |#2|)) (-15 -3657 (|#2| |#2|)) (-15 -3658 (|#2| |#2|)) (-15 -3659 (|#2| |#2|)) (-15 -3660 (|#2| |#2|)) (-15 -3661 (|#2| |#2|)) (-15 -3662 (|#2| |#2|)) (-15 -3663 (|#2| |#2|)) (-15 -3664 (|#2| |#2|)) (-15 -3665 (|#2| |#2|)) (-15 -3666 (|#2| |#2|)) (-15 -3667 (|#2| |#2|)) (-15 -3668 (|#2| |#2|)) (-15 -3669 (|#2| |#2|)) (-15 -3670 (|#2| |#2|)) (-15 -3671 (|#2| |#2|)) (-15 -3672 (|#2| |#2|)) (IF (|has| |#1| (-795 |#1|)) (IF (|has| |#1| (-552 (-799 |#1|))) (IF (|has| |#2| (-552 (-799 |#1|))) (IF (|has| |#2| (-795 |#1|)) (-15 -3673 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-390) (-13 (-362 |#1|) (-1113))) (T -1119)) -((-3673 (*1 *2 *2) (-12 (-4 *3 (-552 (-799 *3))) (-4 *3 (-795 *3)) (-4 *3 (-390)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-552 (-799 *3))) (-4 *2 (-795 *3)) (-4 *2 (-13 (-362 *3) (-1113))))) (-3672 (*1 *2 *2) (-12 (-4 *3 (-390)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-362 *3) (-1113))))) (-3671 (*1 *2 *2) (-12 (-4 *3 (-390)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-362 *3) (-1113))))) (-3670 (*1 *2 *2) (-12 (-4 *3 (-390)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-362 *3) (-1113))))) (-3669 (*1 *2 *2) (-12 (-4 *3 (-390)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-362 *3) (-1113))))) (-3668 (*1 *2 *2) (-12 (-4 *3 (-390)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-362 *3) (-1113))))) (-3667 (*1 *2 *2) (-12 (-4 *3 (-390)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-362 *3) (-1113))))) (-3666 (*1 *2 *2) (-12 (-4 *3 (-390)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-362 *3) (-1113))))) (-3665 (*1 *2 *2) (-12 (-4 *3 (-390)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-362 *3) (-1113))))) (-3664 (*1 *2 *2) (-12 (-4 *3 (-390)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-362 *3) (-1113))))) (-3663 (*1 *2 *2) (-12 (-4 *3 (-390)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-362 *3) (-1113))))) (-3662 (*1 *2 *2) (-12 (-4 *3 (-390)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-362 *3) (-1113))))) (-3661 (*1 *2 *2) (-12 (-4 *3 (-390)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-362 *3) (-1113))))) (-3660 (*1 *2 *2) (-12 (-4 *3 (-390)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-362 *3) (-1113))))) (-3659 (*1 *2 *2) (-12 (-4 *3 (-390)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-362 *3) (-1113))))) (-3658 (*1 *2 *2) (-12 (-4 *3 (-390)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-362 *3) (-1113))))) (-3657 (*1 *2 *2) (-12 (-4 *3 (-390)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-362 *3) (-1113))))) (-3656 (*1 *2 *2) (-12 (-4 *3 (-390)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-362 *3) (-1113))))) (-3655 (*1 *2 *2) (-12 (-4 *3 (-390)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-362 *3) (-1113))))) (-3654 (*1 *2 *2) (-12 (-4 *3 (-390)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-362 *3) (-1113))))) (-3653 (*1 *2 *2) (-12 (-4 *3 (-390)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-362 *3) (-1113))))) (-3652 (*1 *2 *2) (-12 (-4 *3 (-390)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-362 *3) (-1113))))) (-3651 (*1 *2 *2) (-12 (-4 *3 (-390)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-362 *3) (-1113))))) (-3650 (*1 *2 *2) (-12 (-4 *3 (-390)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-362 *3) (-1113))))) (-3649 (*1 *2 *2) (-12 (-4 *3 (-390)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-362 *3) (-1113))))) (-3648 (*1 *2 *2) (-12 (-4 *3 (-390)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-362 *3) (-1113))))) (-3647 (*1 *2 *2) (-12 (-4 *3 (-390)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-362 *3) (-1113))))) (-3961 (*1 *2 *2) (-12 (-4 *3 (-390)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-362 *3) (-1113)))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3187 (((-85) $) NIL T ELT)) (-3080 (((-582 (-1088)) $) NIL T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3980 $) (|:| |associate| $)) $) NIL (|has| |#1| (-494)) ELT)) (-2062 (($ $) NIL (|has| |#1| (-494)) ELT)) (-2060 (((-85) $) NIL (|has| |#1| (-494)) ELT)) (-3490 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3637 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3036 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3488 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3636 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3492 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3635 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3722 (($) NIL T CONST)) (-3957 (($ $) NIL T ELT)) (-3465 (((-3 $ #1#) $) NIL T ELT)) (-3812 (((-856 |#1|) $ (-693)) 18 T ELT) (((-856 |#1|) $ (-693) (-693)) NIL T ELT)) (-2891 (((-85) $) NIL T ELT)) (-3625 (($) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3770 (((-693) $ (-1088)) NIL T ELT) (((-693) $ (-1088) (-693)) NIL T ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-2409 (((-85) $) NIL T ELT)) (-3010 (($ $ (-483)) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3935 (((-85) $) NIL T ELT)) (-2892 (($ $ (-582 (-1088)) (-582 (-468 (-1088)))) NIL T ELT) (($ $ (-1088) (-468 (-1088))) NIL T ELT) (($ |#1| (-468 (-1088))) NIL T ELT) (($ $ (-1088) (-693)) NIL T ELT) (($ $ (-582 (-1088)) (-582 (-693))) NIL T ELT)) (-3956 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3940 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-2893 (($ $) NIL T ELT)) (-3173 ((|#1| $) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3810 (($ $ (-1088)) NIL (|has| |#1| (-38 (-348 (-483)))) ELT) (($ $ (-1088) |#1|) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3674 (($ (-1 $) (-1088) |#1|) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3767 (($ $ (-693)) NIL T ELT)) (-3464 (((-3 $ #1#) $ $) NIL (|has| |#1| (-494)) ELT)) (-3941 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3766 (($ $ (-1088) $) NIL T ELT) (($ $ (-582 (-1088)) (-582 $)) NIL T ELT) (($ $ (-582 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-582 $) (-582 $)) NIL T ELT)) (-3756 (($ $ (-582 (-1088)) (-582 (-693))) NIL T ELT) (($ $ (-1088) (-693)) NIL T ELT) (($ $ (-582 (-1088))) NIL T ELT) (($ $ (-1088)) NIL T ELT)) (-3946 (((-468 (-1088)) $) NIL T ELT)) (-3493 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3634 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3491 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3633 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3489 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3632 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-2890 (($ $) NIL T ELT)) (-3944 (((-771) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT) (($ $) NIL (|has| |#1| (-494)) ELT) (($ (-348 (-483))) NIL (|has| |#1| (-38 (-348 (-483)))) ELT) (($ (-1088)) NIL T ELT) (($ (-856 |#1|)) NIL T ELT)) (-3675 ((|#1| $ (-468 (-1088))) NIL T ELT) (($ $ (-1088) (-693)) NIL T ELT) (($ $ (-582 (-1088)) (-582 (-693))) NIL T ELT) (((-856 |#1|) $ (-693)) NIL T ELT)) (-2701 (((-631 $) $) NIL (|has| |#1| (-118)) ELT)) (-3125 (((-693)) NIL T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-3496 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3484 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-2061 (((-85) $ $) NIL (|has| |#1| (-494)) ELT)) (-3494 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3482 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3498 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3486 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3124 (((-85) $ $) NIL T ELT)) (-3499 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3487 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3497 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3485 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3495 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3483 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-2659 (($) NIL T CONST)) (-2665 (($) NIL T CONST)) (-2668 (($ $ (-582 (-1088)) (-582 (-693))) NIL T ELT) (($ $ (-1088) (-693)) NIL T ELT) (($ $ (-582 (-1088))) NIL T ELT) (($ $ (-1088)) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-3947 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3835 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3837 (($ $ $) NIL T ELT)) (** (($ $ (-829)) NIL T ELT) (($ $ (-693)) NIL T ELT) (($ $ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT) (($ $ (-348 (-483))) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-348 (-483))) NIL (|has| |#1| (-38 (-348 (-483)))) ELT) (($ (-348 (-483)) $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) -(((-1120 |#1|) (-13 (-678 |#1| (-1088)) (-10 -8 (-15 -3675 ((-856 |#1|) $ (-693))) (-15 -3944 ($ (-1088))) (-15 -3944 ($ (-856 |#1|))) (IF (|has| |#1| (-38 (-348 (-483)))) (PROGN (-15 -3810 ($ $ (-1088) |#1|)) (-15 -3674 ($ (-1 $) (-1088) |#1|))) |%noBranch|))) (-960)) (T -1120)) -((-3675 (*1 *2 *1 *3) (-12 (-5 *3 (-693)) (-5 *2 (-856 *4)) (-5 *1 (-1120 *4)) (-4 *4 (-960)))) (-3944 (*1 *1 *2) (-12 (-5 *2 (-1088)) (-5 *1 (-1120 *3)) (-4 *3 (-960)))) (-3944 (*1 *1 *2) (-12 (-5 *2 (-856 *3)) (-4 *3 (-960)) (-5 *1 (-1120 *3)))) (-3810 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1088)) (-5 *1 (-1120 *3)) (-4 *3 (-38 (-348 (-483)))) (-4 *3 (-960)))) (-3674 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1120 *4))) (-5 *3 (-1088)) (-5 *1 (-1120 *4)) (-4 *4 (-38 (-348 (-483)))) (-4 *4 (-960))))) -((-3691 (((-85) |#5| $) 68 T ELT) (((-85) $) 109 T ELT)) (-3686 ((|#5| |#5| $) 83 T ELT)) (-3708 (($ (-1 (-85) |#5|) $) NIL T ELT) (((-3 |#5| #1="failed") $ |#4|) 126 T ELT)) (-3687 (((-582 |#5|) (-582 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-85) |#5| |#5|)) 81 T ELT)) (-3156 (((-3 $ #1#) (-582 |#5|)) 134 T ELT)) (-3797 (((-3 $ #1#) $) 119 T ELT)) (-3683 ((|#5| |#5| $) 101 T ELT)) (-3692 (((-85) |#5| $ (-1 (-85) |#5| |#5|)) 36 T ELT)) (-3681 ((|#5| |#5| $) 105 T ELT)) (-3840 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL T ELT) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL T ELT) ((|#5| (-1 |#5| |#5| |#5|) $) NIL T ELT) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-85) |#5| |#5|)) 77 T ELT)) (-3694 (((-2 (|:| -3859 (-582 |#5|)) (|:| -1700 (-582 |#5|))) $) 63 T ELT)) (-3693 (((-85) |#5| $) 66 T ELT) (((-85) $) 110 T ELT)) (-3179 ((|#4| $) 115 T ELT)) (-3796 (((-3 |#5| #1#) $) 117 T ELT)) (-3695 (((-582 |#5|) $) 55 T ELT)) (-3689 (((-85) |#5| $) 75 T ELT) (((-85) $) 114 T ELT)) (-3684 ((|#5| |#5| $) 89 T ELT)) (-3697 (((-85) $ $) 29 T ELT)) (-3690 (((-85) |#5| $) 71 T ELT) (((-85) $) 112 T ELT)) (-3685 ((|#5| |#5| $) 86 T ELT)) (-3799 (((-3 |#5| #1#) $) 116 T ELT)) (-3767 (($ $ |#5|) 135 T ELT)) (-3946 (((-693) $) 60 T ELT)) (-3528 (($ (-582 |#5|)) 132 T ELT)) (-2909 (($ $ |#4|) 130 T ELT)) (-2911 (($ $ |#4|) 128 T ELT)) (-3682 (($ $) 127 T ELT)) (-3944 (((-771) $) NIL T ELT) (((-582 |#5|) $) 120 T ELT)) (-3676 (((-693) $) 139 T ELT)) (-3696 (((-3 (-2 (|:| |bas| $) (|:| -3322 (-582 |#5|))) #1#) (-582 |#5|) (-1 (-85) |#5| |#5|)) 49 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3322 (-582 |#5|))) #1#) (-582 |#5|) (-1 (-85) |#5|) (-1 (-85) |#5| |#5|)) 51 T ELT)) (-3688 (((-85) $ (-1 (-85) |#5| (-582 |#5|))) 107 T ELT)) (-3678 (((-582 |#4|) $) 122 T ELT)) (-3931 (((-85) |#4| $) 125 T ELT)) (-3055 (((-85) $ $) 20 T ELT))) -(((-1121 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3676 ((-693) |#1|)) (-15 -3767 (|#1| |#1| |#5|)) (-15 -3708 ((-3 |#5| #1="failed") |#1| |#4|)) (-15 -3931 ((-85) |#4| |#1|)) (-15 -3678 ((-582 |#4|) |#1|)) (-15 -3797 ((-3 |#1| #1#) |#1|)) (-15 -3796 ((-3 |#5| #1#) |#1|)) (-15 -3799 ((-3 |#5| #1#) |#1|)) (-15 -3681 (|#5| |#5| |#1|)) (-15 -3682 (|#1| |#1|)) (-15 -3683 (|#5| |#5| |#1|)) (-15 -3684 (|#5| |#5| |#1|)) (-15 -3685 (|#5| |#5| |#1|)) (-15 -3686 (|#5| |#5| |#1|)) (-15 -3687 ((-582 |#5|) (-582 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-85) |#5| |#5|))) (-15 -3840 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-85) |#5| |#5|))) (-15 -3689 ((-85) |#1|)) (-15 -3690 ((-85) |#1|)) (-15 -3691 ((-85) |#1|)) (-15 -3688 ((-85) |#1| (-1 (-85) |#5| (-582 |#5|)))) (-15 -3689 ((-85) |#5| |#1|)) (-15 -3690 ((-85) |#5| |#1|)) (-15 -3691 ((-85) |#5| |#1|)) (-15 -3692 ((-85) |#5| |#1| (-1 (-85) |#5| |#5|))) (-15 -3693 ((-85) |#1|)) (-15 -3693 ((-85) |#5| |#1|)) (-15 -3694 ((-2 (|:| -3859 (-582 |#5|)) (|:| -1700 (-582 |#5|))) |#1|)) (-15 -3946 ((-693) |#1|)) (-15 -3695 ((-582 |#5|) |#1|)) (-15 -3696 ((-3 (-2 (|:| |bas| |#1|) (|:| -3322 (-582 |#5|))) #1#) (-582 |#5|) (-1 (-85) |#5|) (-1 (-85) |#5| |#5|))) (-15 -3696 ((-3 (-2 (|:| |bas| |#1|) (|:| -3322 (-582 |#5|))) #1#) (-582 |#5|) (-1 (-85) |#5| |#5|))) (-15 -3697 ((-85) |#1| |#1|)) (-15 -2909 (|#1| |#1| |#4|)) (-15 -2911 (|#1| |#1| |#4|)) (-15 -3179 (|#4| |#1|)) (-15 -3156 ((-3 |#1| #1#) (-582 |#5|))) (-15 -3944 ((-582 |#5|) |#1|)) (-15 -3528 (|#1| (-582 |#5|))) (-15 -3840 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -3840 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -3708 (|#1| (-1 (-85) |#5|) |#1|)) (-15 -3840 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -3944 ((-771) |#1|)) (-15 -3055 ((-85) |#1| |#1|))) (-1122 |#2| |#3| |#4| |#5|) (-494) (-716) (-755) (-976 |#2| |#3| |#4|)) (T -1121)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-3679 (((-582 (-2 (|:| -3859 $) (|:| -1700 (-582 |#4|)))) (-582 |#4|)) 90 T ELT)) (-3680 (((-582 $) (-582 |#4|)) 91 T ELT)) (-3080 (((-582 |#3|) $) 37 T ELT)) (-2907 (((-85) $) 30 T ELT)) (-2898 (((-85) $) 21 (|has| |#1| (-494)) ELT)) (-3691 (((-85) |#4| $) 106 T ELT) (((-85) $) 102 T ELT)) (-3686 ((|#4| |#4| $) 97 T ELT)) (-2908 (((-2 (|:| |under| $) (|:| -3129 $) (|:| |upper| $)) $ |#3|) 31 T ELT)) (-3708 (($ (-1 (-85) |#4|) $) 66 (|has| $ (-6 -3993)) ELT) (((-3 |#4| "failed") $ |#3|) 84 T ELT)) (-3722 (($) 46 T CONST)) (-2903 (((-85) $) 26 (|has| |#1| (-494)) ELT)) (-2905 (((-85) $ $) 28 (|has| |#1| (-494)) ELT)) (-2904 (((-85) $ $) 27 (|has| |#1| (-494)) ELT)) (-2906 (((-85) $) 29 (|has| |#1| (-494)) ELT)) (-3687 (((-582 |#4|) (-582 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 98 T ELT)) (-2899 (((-582 |#4|) (-582 |#4|) $) 22 (|has| |#1| (-494)) ELT)) (-2900 (((-582 |#4|) (-582 |#4|) $) 23 (|has| |#1| (-494)) ELT)) (-3156 (((-3 $ "failed") (-582 |#4|)) 40 T ELT)) (-3155 (($ (-582 |#4|)) 39 T ELT)) (-3797 (((-3 $ "failed") $) 87 T ELT)) (-3683 ((|#4| |#4| $) 94 T ELT)) (-1351 (($ $) 69 (-12 (|has| |#4| (-1012)) (|has| $ (-6 -3993))) ELT)) (-3404 (($ |#4| $) 68 (-12 (|has| |#4| (-1012)) (|has| $ (-6 -3993))) ELT) (($ (-1 (-85) |#4|) $) 65 (|has| $ (-6 -3993)) ELT)) (-2901 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 24 (|has| |#1| (-494)) ELT)) (-3692 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) 107 T ELT)) (-3681 ((|#4| |#4| $) 92 T ELT)) (-3840 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1012)) (|has| $ (-6 -3993))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -3993)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -3993)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 99 T ELT)) (-3694 (((-2 (|:| -3859 (-582 |#4|)) (|:| -1700 (-582 |#4|))) $) 110 T ELT)) (-2888 (((-582 |#4|) $) 53 (|has| $ (-6 -3993)) ELT)) (-3693 (((-85) |#4| $) 109 T ELT) (((-85) $) 108 T ELT)) (-3179 ((|#3| $) 38 T ELT)) (-2607 (((-582 |#4|) $) 54 (|has| $ (-6 -3993)) ELT)) (-3244 (((-85) |#4| $) 56 (-12 (|has| |#4| (-1012)) (|has| $ (-6 -3993))) ELT)) (-1947 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -3994)) ELT)) (-3956 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-2913 (((-582 |#3|) $) 36 T ELT)) (-2912 (((-85) |#3| $) 35 T ELT)) (-3241 (((-1071) $) 11 T ELT)) (-3796 (((-3 |#4| "failed") $) 88 T ELT)) (-3695 (((-582 |#4|) $) 112 T ELT)) (-3689 (((-85) |#4| $) 104 T ELT) (((-85) $) 100 T ELT)) (-3684 ((|#4| |#4| $) 95 T ELT)) (-3697 (((-85) $ $) 115 T ELT)) (-2902 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-494)) ELT)) (-3690 (((-85) |#4| $) 105 T ELT) (((-85) $) 101 T ELT)) (-3685 ((|#4| |#4| $) 96 T ELT)) (-3242 (((-1032) $) 12 T ELT)) (-3799 (((-3 |#4| "failed") $) 89 T ELT)) (-1352 (((-3 |#4| "failed") (-1 (-85) |#4|) $) 62 T ELT)) (-3677 (((-3 $ "failed") $ |#4|) 83 T ELT)) (-3767 (($ $ |#4|) 82 T ELT)) (-1945 (((-85) (-1 (-85) |#4|) $) 51 (|has| $ (-6 -3993)) ELT)) (-3766 (($ $ (-582 |#4|) (-582 |#4|)) 60 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1012))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1012))) ELT) (($ $ (-249 |#4|)) 58 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1012))) ELT) (($ $ (-582 (-249 |#4|))) 57 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1012))) ELT)) (-1220 (((-85) $ $) 42 T ELT)) (-3401 (((-85) $) 45 T ELT)) (-3563 (($) 44 T ELT)) (-3946 (((-693) $) 111 T ELT)) (-1944 (((-693) |#4| $) 55 (-12 (|has| |#4| (-1012)) (|has| $ (-6 -3993))) ELT) (((-693) (-1 (-85) |#4|) $) 52 (|has| $ (-6 -3993)) ELT)) (-3398 (($ $) 43 T ELT)) (-3970 (((-472) $) 70 (|has| |#4| (-552 (-472))) ELT)) (-3528 (($ (-582 |#4|)) 61 T ELT)) (-2909 (($ $ |#3|) 32 T ELT)) (-2911 (($ $ |#3|) 34 T ELT)) (-3682 (($ $) 93 T ELT)) (-2910 (($ $ |#3|) 33 T ELT)) (-3944 (((-771) $) 13 T ELT) (((-582 |#4|) $) 41 T ELT)) (-3676 (((-693) $) 81 (|has| |#3| (-318)) ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-3696 (((-3 (-2 (|:| |bas| $) (|:| -3322 (-582 |#4|))) "failed") (-582 |#4|) (-1 (-85) |#4| |#4|)) 114 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3322 (-582 |#4|))) "failed") (-582 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) 113 T ELT)) (-3688 (((-85) $ (-1 (-85) |#4| (-582 |#4|))) 103 T ELT)) (-1946 (((-85) (-1 (-85) |#4|) $) 50 (|has| $ (-6 -3993)) ELT)) (-3678 (((-582 |#3|) $) 86 T ELT)) (-3931 (((-85) |#3| $) 85 T ELT)) (-3055 (((-85) $ $) 8 T ELT)) (-3955 (((-693) $) 47 (|has| $ (-6 -3993)) ELT))) -(((-1122 |#1| |#2| |#3| |#4|) (-113) (-494) (-716) (-755) (-976 |t#1| |t#2| |t#3|)) (T -1122)) -((-3697 (*1 *2 *1 *1) (-12 (-4 *1 (-1122 *3 *4 *5 *6)) (-4 *3 (-494)) (-4 *4 (-716)) (-4 *5 (-755)) (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-85)))) (-3696 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-85) *8 *8)) (-4 *8 (-976 *5 *6 *7)) (-4 *5 (-494)) (-4 *6 (-716)) (-4 *7 (-755)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3322 (-582 *8)))) (-5 *3 (-582 *8)) (-4 *1 (-1122 *5 *6 *7 *8)))) (-3696 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-85) *9)) (-5 *5 (-1 (-85) *9 *9)) (-4 *9 (-976 *6 *7 *8)) (-4 *6 (-494)) (-4 *7 (-716)) (-4 *8 (-755)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3322 (-582 *9)))) (-5 *3 (-582 *9)) (-4 *1 (-1122 *6 *7 *8 *9)))) (-3695 (*1 *2 *1) (-12 (-4 *1 (-1122 *3 *4 *5 *6)) (-4 *3 (-494)) (-4 *4 (-716)) (-4 *5 (-755)) (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-582 *6)))) (-3946 (*1 *2 *1) (-12 (-4 *1 (-1122 *3 *4 *5 *6)) (-4 *3 (-494)) (-4 *4 (-716)) (-4 *5 (-755)) (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-693)))) (-3694 (*1 *2 *1) (-12 (-4 *1 (-1122 *3 *4 *5 *6)) (-4 *3 (-494)) (-4 *4 (-716)) (-4 *5 (-755)) (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-2 (|:| -3859 (-582 *6)) (|:| -1700 (-582 *6)))))) (-3693 (*1 *2 *3 *1) (-12 (-4 *1 (-1122 *4 *5 *6 *3)) (-4 *4 (-494)) (-4 *5 (-716)) (-4 *6 (-755)) (-4 *3 (-976 *4 *5 *6)) (-5 *2 (-85)))) (-3693 (*1 *2 *1) (-12 (-4 *1 (-1122 *3 *4 *5 *6)) (-4 *3 (-494)) (-4 *4 (-716)) (-4 *5 (-755)) (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-85)))) (-3692 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-85) *3 *3)) (-4 *1 (-1122 *5 *6 *7 *3)) (-4 *5 (-494)) (-4 *6 (-716)) (-4 *7 (-755)) (-4 *3 (-976 *5 *6 *7)) (-5 *2 (-85)))) (-3691 (*1 *2 *3 *1) (-12 (-4 *1 (-1122 *4 *5 *6 *3)) (-4 *4 (-494)) (-4 *5 (-716)) (-4 *6 (-755)) (-4 *3 (-976 *4 *5 *6)) (-5 *2 (-85)))) (-3690 (*1 *2 *3 *1) (-12 (-4 *1 (-1122 *4 *5 *6 *3)) (-4 *4 (-494)) (-4 *5 (-716)) (-4 *6 (-755)) (-4 *3 (-976 *4 *5 *6)) (-5 *2 (-85)))) (-3689 (*1 *2 *3 *1) (-12 (-4 *1 (-1122 *4 *5 *6 *3)) (-4 *4 (-494)) (-4 *5 (-716)) (-4 *6 (-755)) (-4 *3 (-976 *4 *5 *6)) (-5 *2 (-85)))) (-3688 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-85) *7 (-582 *7))) (-4 *1 (-1122 *4 *5 *6 *7)) (-4 *4 (-494)) (-4 *5 (-716)) (-4 *6 (-755)) (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-85)))) (-3691 (*1 *2 *1) (-12 (-4 *1 (-1122 *3 *4 *5 *6)) (-4 *3 (-494)) (-4 *4 (-716)) (-4 *5 (-755)) (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-85)))) (-3690 (*1 *2 *1) (-12 (-4 *1 (-1122 *3 *4 *5 *6)) (-4 *3 (-494)) (-4 *4 (-716)) (-4 *5 (-755)) (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-85)))) (-3689 (*1 *2 *1) (-12 (-4 *1 (-1122 *3 *4 *5 *6)) (-4 *3 (-494)) (-4 *4 (-716)) (-4 *5 (-755)) (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-85)))) (-3840 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-85) *2 *2)) (-4 *1 (-1122 *5 *6 *7 *2)) (-4 *5 (-494)) (-4 *6 (-716)) (-4 *7 (-755)) (-4 *2 (-976 *5 *6 *7)))) (-3687 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-582 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-85) *8 *8)) (-4 *1 (-1122 *5 *6 *7 *8)) (-4 *5 (-494)) (-4 *6 (-716)) (-4 *7 (-755)) (-4 *8 (-976 *5 *6 *7)))) (-3686 (*1 *2 *2 *1) (-12 (-4 *1 (-1122 *3 *4 *5 *2)) (-4 *3 (-494)) (-4 *4 (-716)) (-4 *5 (-755)) (-4 *2 (-976 *3 *4 *5)))) (-3685 (*1 *2 *2 *1) (-12 (-4 *1 (-1122 *3 *4 *5 *2)) (-4 *3 (-494)) (-4 *4 (-716)) (-4 *5 (-755)) (-4 *2 (-976 *3 *4 *5)))) (-3684 (*1 *2 *2 *1) (-12 (-4 *1 (-1122 *3 *4 *5 *2)) (-4 *3 (-494)) (-4 *4 (-716)) (-4 *5 (-755)) (-4 *2 (-976 *3 *4 *5)))) (-3683 (*1 *2 *2 *1) (-12 (-4 *1 (-1122 *3 *4 *5 *2)) (-4 *3 (-494)) (-4 *4 (-716)) (-4 *5 (-755)) (-4 *2 (-976 *3 *4 *5)))) (-3682 (*1 *1 *1) (-12 (-4 *1 (-1122 *2 *3 *4 *5)) (-4 *2 (-494)) (-4 *3 (-716)) (-4 *4 (-755)) (-4 *5 (-976 *2 *3 *4)))) (-3681 (*1 *2 *2 *1) (-12 (-4 *1 (-1122 *3 *4 *5 *2)) (-4 *3 (-494)) (-4 *4 (-716)) (-4 *5 (-755)) (-4 *2 (-976 *3 *4 *5)))) (-3680 (*1 *2 *3) (-12 (-5 *3 (-582 *7)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-494)) (-4 *5 (-716)) (-4 *6 (-755)) (-5 *2 (-582 *1)) (-4 *1 (-1122 *4 *5 *6 *7)))) (-3679 (*1 *2 *3) (-12 (-4 *4 (-494)) (-4 *5 (-716)) (-4 *6 (-755)) (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-582 (-2 (|:| -3859 *1) (|:| -1700 (-582 *7))))) (-5 *3 (-582 *7)) (-4 *1 (-1122 *4 *5 *6 *7)))) (-3799 (*1 *2 *1) (|partial| -12 (-4 *1 (-1122 *3 *4 *5 *2)) (-4 *3 (-494)) (-4 *4 (-716)) (-4 *5 (-755)) (-4 *2 (-976 *3 *4 *5)))) (-3796 (*1 *2 *1) (|partial| -12 (-4 *1 (-1122 *3 *4 *5 *2)) (-4 *3 (-494)) (-4 *4 (-716)) (-4 *5 (-755)) (-4 *2 (-976 *3 *4 *5)))) (-3797 (*1 *1 *1) (|partial| -12 (-4 *1 (-1122 *2 *3 *4 *5)) (-4 *2 (-494)) (-4 *3 (-716)) (-4 *4 (-755)) (-4 *5 (-976 *2 *3 *4)))) (-3678 (*1 *2 *1) (-12 (-4 *1 (-1122 *3 *4 *5 *6)) (-4 *3 (-494)) (-4 *4 (-716)) (-4 *5 (-755)) (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-582 *5)))) (-3931 (*1 *2 *3 *1) (-12 (-4 *1 (-1122 *4 *5 *3 *6)) (-4 *4 (-494)) (-4 *5 (-716)) (-4 *3 (-755)) (-4 *6 (-976 *4 *5 *3)) (-5 *2 (-85)))) (-3708 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1122 *4 *5 *3 *2)) (-4 *4 (-494)) (-4 *5 (-716)) (-4 *3 (-755)) (-4 *2 (-976 *4 *5 *3)))) (-3677 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1122 *3 *4 *5 *2)) (-4 *3 (-494)) (-4 *4 (-716)) (-4 *5 (-755)) (-4 *2 (-976 *3 *4 *5)))) (-3767 (*1 *1 *1 *2) (-12 (-4 *1 (-1122 *3 *4 *5 *2)) (-4 *3 (-494)) (-4 *4 (-716)) (-4 *5 (-755)) (-4 *2 (-976 *3 *4 *5)))) (-3676 (*1 *2 *1) (-12 (-4 *1 (-1122 *3 *4 *5 *6)) (-4 *3 (-494)) (-4 *4 (-716)) (-4 *5 (-755)) (-4 *6 (-976 *3 *4 *5)) (-4 *5 (-318)) (-5 *2 (-693))))) -(-13 (-888 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -3993) (-6 -3994) (-15 -3697 ((-85) $ $)) (-15 -3696 ((-3 (-2 (|:| |bas| $) (|:| -3322 (-582 |t#4|))) "failed") (-582 |t#4|) (-1 (-85) |t#4| |t#4|))) (-15 -3696 ((-3 (-2 (|:| |bas| $) (|:| -3322 (-582 |t#4|))) "failed") (-582 |t#4|) (-1 (-85) |t#4|) (-1 (-85) |t#4| |t#4|))) (-15 -3695 ((-582 |t#4|) $)) (-15 -3946 ((-693) $)) (-15 -3694 ((-2 (|:| -3859 (-582 |t#4|)) (|:| -1700 (-582 |t#4|))) $)) (-15 -3693 ((-85) |t#4| $)) (-15 -3693 ((-85) $)) (-15 -3692 ((-85) |t#4| $ (-1 (-85) |t#4| |t#4|))) (-15 -3691 ((-85) |t#4| $)) (-15 -3690 ((-85) |t#4| $)) (-15 -3689 ((-85) |t#4| $)) (-15 -3688 ((-85) $ (-1 (-85) |t#4| (-582 |t#4|)))) (-15 -3691 ((-85) $)) (-15 -3690 ((-85) $)) (-15 -3689 ((-85) $)) (-15 -3840 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-85) |t#4| |t#4|))) (-15 -3687 ((-582 |t#4|) (-582 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-85) |t#4| |t#4|))) (-15 -3686 (|t#4| |t#4| $)) (-15 -3685 (|t#4| |t#4| $)) (-15 -3684 (|t#4| |t#4| $)) (-15 -3683 (|t#4| |t#4| $)) (-15 -3682 ($ $)) (-15 -3681 (|t#4| |t#4| $)) (-15 -3680 ((-582 $) (-582 |t#4|))) (-15 -3679 ((-582 (-2 (|:| -3859 $) (|:| -1700 (-582 |t#4|)))) (-582 |t#4|))) (-15 -3799 ((-3 |t#4| "failed") $)) (-15 -3796 ((-3 |t#4| "failed") $)) (-15 -3797 ((-3 $ "failed") $)) (-15 -3678 ((-582 |t#3|) $)) (-15 -3931 ((-85) |t#3| $)) (-15 -3708 ((-3 |t#4| "failed") $ |t#3|)) (-15 -3677 ((-3 $ "failed") $ |t#4|)) (-15 -3767 ($ $ |t#4|)) (IF (|has| |t#3| (-318)) (-15 -3676 ((-693) $)) |%noBranch|))) -(((-34) . T) ((-72) . T) ((-551 (-582 |#4|)) . T) ((-551 (-771)) . T) ((-124 |#4|) . T) ((-552 (-472)) |has| |#4| (-552 (-472))) ((-260 |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1012))) ((-427 |#4|) . T) ((-454 |#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1012))) ((-13) . T) ((-888 |#1| |#2| |#3| |#4|) . T) ((-1012) . T) ((-1127) . T)) -((-3703 (($ |#1| (-582 (-582 (-853 (-179)))) (-85)) 19 T ELT)) (-3702 (((-85) $ (-85)) 18 T ELT)) (-3701 (((-85) $) 17 T ELT)) (-3699 (((-582 (-582 (-853 (-179)))) $) 13 T ELT)) (-3698 ((|#1| $) 8 T ELT)) (-3700 (((-85) $) 15 T ELT))) -(((-1123 |#1|) (-10 -8 (-15 -3698 (|#1| $)) (-15 -3699 ((-582 (-582 (-853 (-179)))) $)) (-15 -3700 ((-85) $)) (-15 -3701 ((-85) $)) (-15 -3702 ((-85) $ (-85))) (-15 -3703 ($ |#1| (-582 (-582 (-853 (-179)))) (-85)))) (-886)) (T -1123)) -((-3703 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-582 (-582 (-853 (-179))))) (-5 *4 (-85)) (-5 *1 (-1123 *2)) (-4 *2 (-886)))) (-3702 (*1 *2 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1123 *3)) (-4 *3 (-886)))) (-3701 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1123 *3)) (-4 *3 (-886)))) (-3700 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1123 *3)) (-4 *3 (-886)))) (-3699 (*1 *2 *1) (-12 (-5 *2 (-582 (-582 (-853 (-179))))) (-5 *1 (-1123 *3)) (-4 *3 (-886)))) (-3698 (*1 *2 *1) (-12 (-5 *1 (-1123 *2)) (-4 *2 (-886))))) -((-3705 (((-853 (-179)) (-853 (-179))) 31 T ELT)) (-3704 (((-853 (-179)) (-179) (-179) (-179) (-179)) 10 T ELT)) (-3707 (((-582 (-853 (-179))) (-853 (-179)) (-853 (-179)) (-853 (-179)) (-179) (-582 (-582 (-179)))) 57 T ELT)) (-3834 (((-179) (-853 (-179)) (-853 (-179))) 27 T ELT)) (-3832 (((-853 (-179)) (-853 (-179)) (-853 (-179))) 28 T ELT)) (-3706 (((-582 (-582 (-179))) (-483)) 45 T ELT)) (-3835 (((-853 (-179)) (-853 (-179)) (-853 (-179))) 26 T ELT)) (-3837 (((-853 (-179)) (-853 (-179)) (-853 (-179))) 24 T ELT)) (* (((-853 (-179)) (-179) (-853 (-179))) 22 T ELT))) -(((-1124) (-10 -7 (-15 -3704 ((-853 (-179)) (-179) (-179) (-179) (-179))) (-15 * ((-853 (-179)) (-179) (-853 (-179)))) (-15 -3837 ((-853 (-179)) (-853 (-179)) (-853 (-179)))) (-15 -3835 ((-853 (-179)) (-853 (-179)) (-853 (-179)))) (-15 -3834 ((-179) (-853 (-179)) (-853 (-179)))) (-15 -3832 ((-853 (-179)) (-853 (-179)) (-853 (-179)))) (-15 -3705 ((-853 (-179)) (-853 (-179)))) (-15 -3706 ((-582 (-582 (-179))) (-483))) (-15 -3707 ((-582 (-853 (-179))) (-853 (-179)) (-853 (-179)) (-853 (-179)) (-179) (-582 (-582 (-179))))))) (T -1124)) -((-3707 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-582 (-582 (-179)))) (-5 *4 (-179)) (-5 *2 (-582 (-853 *4))) (-5 *1 (-1124)) (-5 *3 (-853 *4)))) (-3706 (*1 *2 *3) (-12 (-5 *3 (-483)) (-5 *2 (-582 (-582 (-179)))) (-5 *1 (-1124)))) (-3705 (*1 *2 *2) (-12 (-5 *2 (-853 (-179))) (-5 *1 (-1124)))) (-3832 (*1 *2 *2 *2) (-12 (-5 *2 (-853 (-179))) (-5 *1 (-1124)))) (-3834 (*1 *2 *3 *3) (-12 (-5 *3 (-853 (-179))) (-5 *2 (-179)) (-5 *1 (-1124)))) (-3835 (*1 *2 *2 *2) (-12 (-5 *2 (-853 (-179))) (-5 *1 (-1124)))) (-3837 (*1 *2 *2 *2) (-12 (-5 *2 (-853 (-179))) (-5 *1 (-1124)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-853 (-179))) (-5 *3 (-179)) (-5 *1 (-1124)))) (-3704 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-853 (-179))) (-5 *1 (-1124)) (-5 *3 (-179))))) -((-2567 (((-85) $ $) NIL (|has| |#1| (-1012)) ELT)) (-3708 ((|#1| $ (-693)) 18 T ELT)) (-3831 (((-693) $) 13 T ELT)) (-3241 (((-1071) $) NIL (|has| |#1| (-1012)) ELT)) (-3242 (((-1032) $) NIL (|has| |#1| (-1012)) ELT)) (-3944 (((-868 |#1|) $) 12 T ELT) (($ (-868 |#1|)) 11 T ELT) (((-771) $) 29 (|has| |#1| (-551 (-771))) ELT)) (-1263 (((-85) $ $) NIL (|has| |#1| (-1012)) ELT)) (-3055 (((-85) $ $) 22 (|has| |#1| (-1012)) ELT))) -(((-1125 |#1|) (-13 (-428 (-868 |#1|)) (-10 -8 (-15 -3708 (|#1| $ (-693))) (-15 -3831 ((-693) $)) (IF (|has| |#1| (-551 (-771))) (-6 (-551 (-771))) |%noBranch|) (IF (|has| |#1| (-1012)) (-6 (-1012)) |%noBranch|))) (-1127)) (T -1125)) -((-3708 (*1 *2 *1 *3) (-12 (-5 *3 (-693)) (-5 *1 (-1125 *2)) (-4 *2 (-1127)))) (-3831 (*1 *2 *1) (-12 (-5 *2 (-693)) (-5 *1 (-1125 *3)) (-4 *3 (-1127))))) -((-3711 (((-346 (-1083 (-1083 |#1|))) (-1083 (-1083 |#1|)) (-483)) 92 T ELT)) (-3709 (((-346 (-1083 (-1083 |#1|))) (-1083 (-1083 |#1|))) 84 T ELT)) (-3710 (((-346 (-1083 (-1083 |#1|))) (-1083 (-1083 |#1|))) 68 T ELT))) -(((-1126 |#1|) (-10 -7 (-15 -3709 ((-346 (-1083 (-1083 |#1|))) (-1083 (-1083 |#1|)))) (-15 -3710 ((-346 (-1083 (-1083 |#1|))) (-1083 (-1083 |#1|)))) (-15 -3711 ((-346 (-1083 (-1083 |#1|))) (-1083 (-1083 |#1|)) (-483)))) (-299)) (T -1126)) -((-3711 (*1 *2 *3 *4) (-12 (-5 *4 (-483)) (-4 *5 (-299)) (-5 *2 (-346 (-1083 (-1083 *5)))) (-5 *1 (-1126 *5)) (-5 *3 (-1083 (-1083 *5))))) (-3710 (*1 *2 *3) (-12 (-4 *4 (-299)) (-5 *2 (-346 (-1083 (-1083 *4)))) (-5 *1 (-1126 *4)) (-5 *3 (-1083 (-1083 *4))))) (-3709 (*1 *2 *3) (-12 (-4 *4 (-299)) (-5 *2 (-346 (-1083 (-1083 *4)))) (-5 *1 (-1126 *4)) (-5 *3 (-1083 (-1083 *4)))))) -NIL -(((-1127) (-113)) (T -1127)) +(((-64) . T) ((-72) . T) ((-555 (-1094)) . T) ((-552 (-772)) . T) ((-552 (-1094)) . T) ((-429 (-1094)) . T) ((-13) . T) ((-1013) . T) ((-1128) . T)) +((-3217 ((|#1| |#1| (-1 (-484) |#1| |#1|)) 41 T ELT) ((|#1| |#1| (-1 (-85) |#1|)) 33 T ELT)) (-3215 (((-1184)) 21 T ELT)) (-3216 (((-583 |#1|)) 13 T ELT))) +(((-996 |#1|) (-10 -7 (-15 -3215 ((-1184))) (-15 -3216 ((-583 |#1|))) (-15 -3217 (|#1| |#1| (-1 (-85) |#1|))) (-15 -3217 (|#1| |#1| (-1 (-484) |#1| |#1|)))) (-105)) (T -996)) +((-3217 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-484) *2 *2)) (-4 *2 (-105)) (-5 *1 (-996 *2)))) (-3217 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-85) *2)) (-4 *2 (-105)) (-5 *1 (-996 *2)))) (-3216 (*1 *2) (-12 (-5 *2 (-583 *3)) (-5 *1 (-996 *3)) (-4 *3 (-105)))) (-3215 (*1 *2) (-12 (-5 *2 (-1184)) (-5 *1 (-996 *3)) (-4 *3 (-105))))) +((-3220 (($ (-78) $) 20 T ELT)) (-3221 (((-632 (-78)) (-446) $) 19 T ELT)) (-3564 (($) 7 T ELT)) (-3219 (($) 21 T ELT)) (-3218 (($) 22 T ELT)) (-3222 (((-583 (-149)) $) 10 T ELT)) (-3945 (((-772) $) 25 T ELT))) +(((-997) (-13 (-552 (-772)) (-10 -8 (-15 -3564 ($)) (-15 -3222 ((-583 (-149)) $)) (-15 -3221 ((-632 (-78)) (-446) $)) (-15 -3220 ($ (-78) $)) (-15 -3219 ($)) (-15 -3218 ($))))) (T -997)) +((-3564 (*1 *1) (-5 *1 (-997))) (-3222 (*1 *2 *1) (-12 (-5 *2 (-583 (-149))) (-5 *1 (-997)))) (-3221 (*1 *2 *3 *1) (-12 (-5 *3 (-446)) (-5 *2 (-632 (-78))) (-5 *1 (-997)))) (-3220 (*1 *1 *2 *1) (-12 (-5 *2 (-78)) (-5 *1 (-997)))) (-3219 (*1 *1) (-5 *1 (-997))) (-3218 (*1 *1) (-5 *1 (-997)))) +((-3223 (((-1178 (-630 |#1|)) (-583 (-630 |#1|))) 45 T ELT) (((-1178 (-630 (-857 |#1|))) (-583 (-1089)) (-630 (-857 |#1|))) 75 T ELT) (((-1178 (-630 (-349 (-857 |#1|)))) (-583 (-1089)) (-630 (-349 (-857 |#1|)))) 92 T ELT)) (-3224 (((-1178 |#1|) (-630 |#1|) (-583 (-630 |#1|))) 39 T ELT))) +(((-998 |#1|) (-10 -7 (-15 -3223 ((-1178 (-630 (-349 (-857 |#1|)))) (-583 (-1089)) (-630 (-349 (-857 |#1|))))) (-15 -3223 ((-1178 (-630 (-857 |#1|))) (-583 (-1089)) (-630 (-857 |#1|)))) (-15 -3223 ((-1178 (-630 |#1|)) (-583 (-630 |#1|)))) (-15 -3224 ((-1178 |#1|) (-630 |#1|) (-583 (-630 |#1|))))) (-312)) (T -998)) +((-3224 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-630 *5))) (-5 *3 (-630 *5)) (-4 *5 (-312)) (-5 *2 (-1178 *5)) (-5 *1 (-998 *5)))) (-3223 (*1 *2 *3) (-12 (-5 *3 (-583 (-630 *4))) (-4 *4 (-312)) (-5 *2 (-1178 (-630 *4))) (-5 *1 (-998 *4)))) (-3223 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-1089))) (-4 *5 (-312)) (-5 *2 (-1178 (-630 (-857 *5)))) (-5 *1 (-998 *5)) (-5 *4 (-630 (-857 *5))))) (-3223 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-1089))) (-4 *5 (-312)) (-5 *2 (-1178 (-630 (-349 (-857 *5))))) (-5 *1 (-998 *5)) (-5 *4 (-630 (-349 (-857 *5))))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-1487 (((-583 (-694)) $) NIL T ELT) (((-583 (-694)) $ (-1089)) NIL T ELT)) (-1521 (((-694) $) NIL T ELT) (((-694) $ (-1089)) NIL T ELT)) (-3081 (((-583 (-1000 (-1089))) $) NIL T ELT)) (-3083 (((-1084 $) $ (-1000 (-1089))) NIL T ELT) (((-1084 |#1|) $) NIL T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2063 (($ $) NIL (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-2819 (((-694) $) NIL T ELT) (((-694) $ (-583 (-1000 (-1089)))) NIL T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2707 (((-347 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-821)) ELT)) (-3774 (($ $) NIL (|has| |#1| (-391)) ELT)) (-3970 (((-347 $) $) NIL (|has| |#1| (-391)) ELT)) (-2704 (((-3 (-583 (-1084 $)) #1#) (-583 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-821)) ELT)) (-1483 (($ $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-349 (-484)) #1#) $) NIL (|has| |#1| (-950 (-349 (-484)))) ELT) (((-3 (-484) #1#) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-3 (-1000 (-1089)) #1#) $) NIL T ELT) (((-3 (-1089) #1#) $) NIL T ELT) (((-3 (-1038 |#1| (-1089)) #1#) $) NIL T ELT)) (-3156 ((|#1| $) NIL T ELT) (((-349 (-484)) $) NIL (|has| |#1| (-950 (-349 (-484)))) ELT) (((-484) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-1000 (-1089)) $) NIL T ELT) (((-1089) $) NIL T ELT) (((-1038 |#1| (-1089)) $) NIL T ELT)) (-3755 (($ $ $ (-1000 (-1089))) NIL (|has| |#1| (-146)) ELT)) (-3958 (($ $) NIL T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1178 |#1|))) (-630 $) (-1178 $)) NIL T ELT) (((-630 |#1|) (-630 $)) NIL T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-3502 (($ $) NIL (|has| |#1| (-391)) ELT) (($ $ (-1000 (-1089))) NIL (|has| |#1| (-391)) ELT)) (-2818 (((-583 $) $) NIL T ELT)) (-3722 (((-85) $) NIL (|has| |#1| (-821)) ELT)) (-1623 (($ $ |#1| (-469 (-1000 (-1089))) $) NIL T ELT)) (-2796 (((-798 (-329) $) $ (-800 (-329)) (-798 (-329) $)) NIL (-12 (|has| (-1000 (-1089)) (-796 (-329))) (|has| |#1| (-796 (-329)))) ELT) (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) NIL (-12 (|has| (-1000 (-1089)) (-796 (-484))) (|has| |#1| (-796 (-484)))) ELT)) (-3771 (((-694) $ (-1089)) NIL T ELT) (((-694) $) NIL T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2420 (((-694) $) NIL T ELT)) (-3084 (($ (-1084 |#1|) (-1000 (-1089))) NIL T ELT) (($ (-1084 $) (-1000 (-1089))) NIL T ELT)) (-2821 (((-583 $) $) NIL T ELT)) (-3936 (((-85) $) NIL T ELT)) (-2893 (($ |#1| (-469 (-1000 (-1089)))) NIL T ELT) (($ $ (-1000 (-1089)) (-694)) NIL T ELT) (($ $ (-583 (-1000 (-1089))) (-583 (-694))) NIL T ELT)) (-3762 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $ (-1000 (-1089))) NIL T ELT)) (-2820 (((-469 (-1000 (-1089))) $) NIL T ELT) (((-694) $ (-1000 (-1089))) NIL T ELT) (((-583 (-694)) $ (-583 (-1000 (-1089)))) NIL T ELT)) (-1624 (($ (-1 (-469 (-1000 (-1089))) (-469 (-1000 (-1089)))) $) NIL T ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1522 (((-1 $ (-694)) (-1089)) NIL T ELT) (((-1 $ (-694)) $) NIL (|has| |#1| (-190)) ELT)) (-3082 (((-3 (-1000 (-1089)) #1#) $) NIL T ELT)) (-2280 (((-630 (-484)) (-1178 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1178 |#1|))) (-1178 $) $) NIL T ELT) (((-630 |#1|) (-1178 $)) NIL T ELT)) (-2894 (($ $) NIL T ELT)) (-3174 ((|#1| $) NIL T ELT)) (-1485 (((-1000 (-1089)) $) NIL T ELT)) (-1890 (($ (-583 $)) NIL (|has| |#1| (-391)) ELT) (($ $ $) NIL (|has| |#1| (-391)) ELT)) (-3242 (((-1072) $) NIL T ELT)) (-1486 (((-85) $) NIL T ELT)) (-2823 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2822 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2824 (((-3 (-2 (|:| |var| (-1000 (-1089))) (|:| -2401 (-694))) #1#) $) NIL T ELT)) (-1484 (($ $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1796 (((-85) $) NIL T ELT)) (-1795 ((|#1| $) NIL T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) NIL (|has| |#1| (-391)) ELT)) (-3144 (($ (-583 $)) NIL (|has| |#1| (-391)) ELT) (($ $ $) NIL (|has| |#1| (-391)) ELT)) (-2705 (((-347 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-821)) ELT)) (-2706 (((-347 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-821)) ELT)) (-3731 (((-347 $) $) NIL (|has| |#1| (-821)) ELT)) (-3465 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-495)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-495)) ELT)) (-3767 (($ $ (-583 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ (-1000 (-1089)) |#1|) NIL T ELT) (($ $ (-583 (-1000 (-1089))) (-583 |#1|)) NIL T ELT) (($ $ (-1000 (-1089)) $) NIL T ELT) (($ $ (-583 (-1000 (-1089))) (-583 $)) NIL T ELT) (($ $ (-1089) $) NIL (|has| |#1| (-190)) ELT) (($ $ (-583 (-1089)) (-583 $)) NIL (|has| |#1| (-190)) ELT) (($ $ (-1089) |#1|) NIL (|has| |#1| (-190)) ELT) (($ $ (-583 (-1089)) (-583 |#1|)) NIL (|has| |#1| (-190)) ELT)) (-3756 (($ $ (-1000 (-1089))) NIL (|has| |#1| (-146)) ELT)) (-3757 (($ $ (-583 (-1000 (-1089))) (-583 (-694))) NIL T ELT) (($ $ (-1000 (-1089)) (-694)) NIL T ELT) (($ $ (-583 (-1000 (-1089)))) NIL T ELT) (($ $ (-1000 (-1089))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL T ELT) (($ $ (-1089)) NIL (|has| |#1| (-811 (-1089))) ELT) (($ $ (-583 (-1089))) NIL (|has| |#1| (-811 (-1089))) ELT) (($ $ (-1089) (-694)) NIL (|has| |#1| (-811 (-1089))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (|has| |#1| (-811 (-1089))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-694)) NIL (|has| |#1| (-189)) ELT)) (-1488 (((-583 (-1089)) $) NIL T ELT)) (-3947 (((-469 (-1000 (-1089))) $) NIL T ELT) (((-694) $ (-1000 (-1089))) NIL T ELT) (((-583 (-694)) $ (-583 (-1000 (-1089)))) NIL T ELT) (((-694) $ (-1089)) NIL T ELT)) (-3971 (((-800 (-329)) $) NIL (-12 (|has| (-1000 (-1089)) (-553 (-800 (-329)))) (|has| |#1| (-553 (-800 (-329))))) ELT) (((-800 (-484)) $) NIL (-12 (|has| (-1000 (-1089)) (-553 (-800 (-484)))) (|has| |#1| (-553 (-800 (-484))))) ELT) (((-473) $) NIL (-12 (|has| (-1000 (-1089)) (-553 (-473))) (|has| |#1| (-553 (-473)))) ELT)) (-2817 ((|#1| $) NIL (|has| |#1| (-391)) ELT) (($ $ (-1000 (-1089))) NIL (|has| |#1| (-391)) ELT)) (-2703 (((-3 (-1178 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-821))) ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-1000 (-1089))) NIL T ELT) (($ (-1089)) NIL T ELT) (($ (-1038 |#1| (-1089))) NIL T ELT) (($ (-349 (-484))) NIL (OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-950 (-349 (-484))))) ELT) (($ $) NIL (|has| |#1| (-495)) ELT)) (-3816 (((-583 |#1|) $) NIL T ELT)) (-3676 ((|#1| $ (-469 (-1000 (-1089)))) NIL T ELT) (($ $ (-1000 (-1089)) (-694)) NIL T ELT) (($ $ (-583 (-1000 (-1089))) (-583 (-694))) NIL T ELT)) (-2702 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-821))) (|has| |#1| (-118))) ELT)) (-3126 (((-694)) NIL T CONST)) (-1622 (($ $ $ (-694)) NIL (|has| |#1| (-146)) ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) NIL T CONST)) (-2666 (($) NIL T CONST)) (-2669 (($ $ (-583 (-1000 (-1089))) (-583 (-694))) NIL T ELT) (($ $ (-1000 (-1089)) (-694)) NIL T ELT) (($ $ (-583 (-1000 (-1089)))) NIL T ELT) (($ $ (-1000 (-1089))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL T ELT) (($ $ (-1089)) NIL (|has| |#1| (-811 (-1089))) ELT) (($ $ (-583 (-1089))) NIL (|has| |#1| (-811 (-1089))) ELT) (($ $ (-1089) (-694)) NIL (|has| |#1| (-811 (-1089))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (|has| |#1| (-811 (-1089))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-694)) NIL (|has| |#1| (-189)) ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3948 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-349 (-484))) NIL (|has| |#1| (-38 (-349 (-484)))) ELT) (($ (-349 (-484)) $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) +(((-999 |#1|) (-13 (-213 |#1| (-1089) (-1000 (-1089)) (-469 (-1000 (-1089)))) (-950 (-1038 |#1| (-1089)))) (-961)) (T -999)) +NIL +((-2568 (((-85) $ $) NIL T ELT)) (-1521 (((-694) $) NIL T ELT)) (-3830 ((|#1| $) 10 T ELT)) (-3157 (((-3 |#1| "failed") $) NIL T ELT)) (-3156 ((|#1| $) NIL T ELT)) (-3771 (((-694) $) 11 T ELT)) (-2531 (($ $ $) NIL T ELT)) (-2857 (($ $ $) NIL T ELT)) (-1522 (($ |#1| (-694)) 9 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3757 (($ $ (-694)) NIL T ELT) (($ $) NIL T ELT)) (-3945 (((-772) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2669 (($ $ (-694)) NIL T ELT) (($ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) 16 T ELT))) +(((-1000 |#1|) (-228 |#1|) (-756)) (T -1000)) +NIL +((-2568 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-3735 (($ |#1| |#1|) 16 T ELT)) (-3957 (((-583 |#1|) (-1 |#1| |#1|) $) 44 (|has| |#1| (-755)) ELT)) (-3229 ((|#1| $) 12 T ELT)) (-3231 ((|#1| $) 11 T ELT)) (-3242 (((-1072) $) NIL (|has| |#1| (-1013)) ELT)) (-3227 (((-484) $) 15 T ELT)) (-3228 ((|#1| $) 14 T ELT)) (-3230 ((|#1| $) 13 T ELT)) (-3243 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-3962 (((-583 |#1|) $) 42 (|has| |#1| (-755)) ELT) (((-583 |#1|) (-583 $)) 41 (|has| |#1| (-755)) ELT)) (-3971 (($ |#1|) 29 T ELT)) (-3945 (((-772) $) 28 (|has| |#1| (-1013)) ELT)) (-1264 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-3736 (($ |#1| |#1|) 10 T ELT)) (-3232 (($ $ (-484)) 17 T ELT)) (-3056 (((-85) $ $) 22 (|has| |#1| (-1013)) ELT))) +(((-1001 |#1|) (-13 (-1006 |#1|) (-10 -7 (IF (|has| |#1| (-1013)) (-6 (-1013)) |%noBranch|) (IF (|has| |#1| (-755)) (-6 (-1007 |#1| (-583 |#1|))) |%noBranch|))) (-1128)) (T -1001)) +NIL +((-3957 (((-583 |#2|) (-1 |#2| |#1|) (-1001 |#1|)) 27 (|has| |#1| (-755)) ELT) (((-1001 |#2|) (-1 |#2| |#1|) (-1001 |#1|)) 14 T ELT))) +(((-1002 |#1| |#2|) (-10 -7 (-15 -3957 ((-1001 |#2|) (-1 |#2| |#1|) (-1001 |#1|))) (IF (|has| |#1| (-755)) (-15 -3957 ((-583 |#2|) (-1 |#2| |#1|) (-1001 |#1|))) |%noBranch|)) (-1128) (-1128)) (T -1002)) +((-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1001 *5)) (-4 *5 (-755)) (-4 *5 (-1128)) (-4 *6 (-1128)) (-5 *2 (-583 *6)) (-5 *1 (-1002 *5 *6)))) (-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1001 *5)) (-4 *5 (-1128)) (-4 *6 (-1128)) (-5 *2 (-1001 *6)) (-5 *1 (-1002 *5 *6))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) 16 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-3225 (((-583 (-1048)) $) 10 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT))) +(((-1003) (-13 (-995) (-10 -8 (-15 -3225 ((-583 (-1048)) $))))) (T -1003)) +((-3225 (*1 *2 *1) (-12 (-5 *2 (-583 (-1048))) (-5 *1 (-1003))))) +((-2568 (((-85) $ $) NIL (|has| (-1001 |#1|) (-1013)) ELT)) (-3830 (((-1089) $) NIL T ELT)) (-3735 (((-1001 |#1|) $) NIL T ELT)) (-3242 (((-1072) $) NIL (|has| (-1001 |#1|) (-1013)) ELT)) (-3243 (((-1033) $) NIL (|has| (-1001 |#1|) (-1013)) ELT)) (-3226 (($ (-1089) (-1001 |#1|)) NIL T ELT)) (-3945 (((-772) $) NIL (|has| (-1001 |#1|) (-1013)) ELT)) (-1264 (((-85) $ $) NIL (|has| (-1001 |#1|) (-1013)) ELT)) (-3056 (((-85) $ $) NIL (|has| (-1001 |#1|) (-1013)) ELT))) +(((-1004 |#1|) (-13 (-1128) (-10 -8 (-15 -3226 ($ (-1089) (-1001 |#1|))) (-15 -3830 ((-1089) $)) (-15 -3735 ((-1001 |#1|) $)) (IF (|has| (-1001 |#1|) (-1013)) (-6 (-1013)) |%noBranch|))) (-1128)) (T -1004)) +((-3226 (*1 *1 *2 *3) (-12 (-5 *2 (-1089)) (-5 *3 (-1001 *4)) (-4 *4 (-1128)) (-5 *1 (-1004 *4)))) (-3830 (*1 *2 *1) (-12 (-5 *2 (-1089)) (-5 *1 (-1004 *3)) (-4 *3 (-1128)))) (-3735 (*1 *2 *1) (-12 (-5 *2 (-1001 *3)) (-5 *1 (-1004 *3)) (-4 *3 (-1128))))) +((-3957 (((-1004 |#2|) (-1 |#2| |#1|) (-1004 |#1|)) 19 T ELT))) +(((-1005 |#1| |#2|) (-10 -7 (-15 -3957 ((-1004 |#2|) (-1 |#2| |#1|) (-1004 |#1|)))) (-1128) (-1128)) (T -1005)) +((-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1004 *5)) (-4 *5 (-1128)) (-4 *6 (-1128)) (-5 *2 (-1004 *6)) (-5 *1 (-1005 *5 *6))))) +((-3735 (($ |#1| |#1|) 8 T ELT)) (-3229 ((|#1| $) 11 T ELT)) (-3231 ((|#1| $) 13 T ELT)) (-3227 (((-484) $) 9 T ELT)) (-3228 ((|#1| $) 10 T ELT)) (-3230 ((|#1| $) 12 T ELT)) (-3971 (($ |#1|) 6 T ELT)) (-3736 (($ |#1| |#1|) 15 T ELT)) (-3232 (($ $ (-484)) 14 T ELT))) +(((-1006 |#1|) (-113) (-1128)) (T -1006)) +((-3736 (*1 *1 *2 *2) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-1128)))) (-3232 (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-4 *1 (-1006 *3)) (-4 *3 (-1128)))) (-3231 (*1 *2 *1) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-1128)))) (-3230 (*1 *2 *1) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-1128)))) (-3229 (*1 *2 *1) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-1128)))) (-3228 (*1 *2 *1) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-1128)))) (-3227 (*1 *2 *1) (-12 (-4 *1 (-1006 *3)) (-4 *3 (-1128)) (-5 *2 (-484)))) (-3735 (*1 *1 *2 *2) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-1128))))) +(-13 (-557 |t#1|) (-10 -8 (-15 -3736 ($ |t#1| |t#1|)) (-15 -3232 ($ $ (-484))) (-15 -3231 (|t#1| $)) (-15 -3230 (|t#1| $)) (-15 -3229 (|t#1| $)) (-15 -3228 (|t#1| $)) (-15 -3227 ((-484) $)) (-15 -3735 ($ |t#1| |t#1|)))) +(((-557 |#1|) . T)) +((-3735 (($ |#1| |#1|) 8 T ELT)) (-3957 ((|#2| (-1 |#1| |#1|) $) 17 T ELT)) (-3229 ((|#1| $) 11 T ELT)) (-3231 ((|#1| $) 13 T ELT)) (-3227 (((-484) $) 9 T ELT)) (-3228 ((|#1| $) 10 T ELT)) (-3230 ((|#1| $) 12 T ELT)) (-3962 ((|#2| (-583 $)) 19 T ELT) ((|#2| $) 18 T ELT)) (-3971 (($ |#1|) 6 T ELT)) (-3736 (($ |#1| |#1|) 15 T ELT)) (-3232 (($ $ (-484)) 14 T ELT))) +(((-1007 |#1| |#2|) (-113) (-755) (-1063 |t#1|)) (T -1007)) +((-3962 (*1 *2 *3) (-12 (-5 *3 (-583 *1)) (-4 *1 (-1007 *4 *2)) (-4 *4 (-755)) (-4 *2 (-1063 *4)))) (-3962 (*1 *2 *1) (-12 (-4 *1 (-1007 *3 *2)) (-4 *3 (-755)) (-4 *2 (-1063 *3)))) (-3957 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1007 *4 *2)) (-4 *4 (-755)) (-4 *2 (-1063 *4))))) +(-13 (-1006 |t#1|) (-10 -8 (-15 -3962 (|t#2| (-583 $))) (-15 -3962 (|t#2| $)) (-15 -3957 (|t#2| (-1 |t#1| |t#1|) $)))) +(((-557 |#1|) . T) ((-1006 |#1|) . T)) +((-2568 (((-85) $ $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3797 (((-1048) $) 14 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) 20 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-3233 (((-583 (-1048)) $) 12 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT))) +(((-1008) (-13 (-995) (-10 -8 (-15 -3233 ((-583 (-1048)) $)) (-15 -3797 ((-1048) $))))) (T -1008)) +((-3233 (*1 *2 *1) (-12 (-5 *2 (-583 (-1048))) (-5 *1 (-1008)))) (-3797 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-1008))))) +((-2568 (((-85) $ $) NIL T ELT)) (-1801 (($) NIL (|has| |#1| (-319)) ELT)) (-3234 (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ $ $) 84 T ELT)) (-3236 (($ $ $) 81 T ELT)) (-3235 (((-85) $ $) 83 T ELT)) (-3136 (((-694)) NIL (|has| |#1| (-319)) ELT)) (-3239 (($ (-583 |#1|)) NIL T ELT) (($) 14 T ELT)) (-1569 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3709 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3723 (($) NIL T CONST)) (-1352 (($ $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-3404 (($ |#1| $) 75 (|has| $ (-6 -3994)) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3405 (($ |#1| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3841 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 44 (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 42 (|has| $ (-6 -3994)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 40 (|has| $ (-6 -3994)) ELT)) (-2994 (($) NIL (|has| |#1| (-319)) ELT)) (-2889 (((-583 |#1|) $) 20 (|has| $ (-6 -3994)) ELT)) (-3241 (((-85) $ $) NIL T ELT)) (-2531 ((|#1| $) 56 (|has| |#1| (-756)) ELT)) (-2608 (((-583 |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3245 (((-85) |#1| $) 74 (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-2857 ((|#1| $) 54 (|has| |#1| (-756)) ELT)) (-1948 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-2010 (((-830) $) NIL (|has| |#1| (-319)) ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3238 (($ $ $) 79 T ELT)) (-1273 ((|#1| $) 26 T ELT)) (-3608 (($ |#1| $) 70 T ELT)) (-2400 (($ (-830)) NIL (|has| |#1| (-319)) ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1353 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 32 T ELT)) (-1274 ((|#1| $) 28 T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3767 (($ $ (-583 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1221 (((-85) $ $) NIL T ELT)) (-3402 (((-85) $) 22 T ELT)) (-3564 (($) 12 T ELT)) (-3237 (($ $ |#1|) NIL T ELT) (($ $ $) 80 T ELT)) (-1465 (($) NIL T ELT) (($ (-583 |#1|)) NIL T ELT)) (-1945 (((-694) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT) (((-694) |#1| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-3399 (($ $) 17 T ELT)) (-3971 (((-473) $) 51 (|has| |#1| (-553 (-473))) ELT)) (-3529 (($ (-583 |#1|)) 63 T ELT)) (-1802 (($ $) NIL (|has| |#1| (-319)) ELT)) (-3945 (((-772) $) NIL T ELT)) (-1803 (((-694) $) NIL T ELT)) (-3240 (($ (-583 |#1|)) NIL T ELT) (($) 13 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-1275 (($ (-583 |#1|)) NIL T ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3056 (((-85) $ $) 53 T ELT)) (-3956 (((-694) $) 11 (|has| $ (-6 -3994)) ELT))) +(((-1009 |#1|) (-368 |#1|) (-1013)) (T -1009)) +NIL +((-3234 (($ $ $) NIL T ELT) (($ $ |#2|) 13 T ELT) (($ |#2| $) 14 T ELT)) (-3236 (($ $ $) 10 T ELT)) (-3237 (($ $ $) NIL T ELT) (($ $ |#2|) 15 T ELT))) +(((-1010 |#1| |#2|) (-10 -7 (-15 -3234 (|#1| |#2| |#1|)) (-15 -3234 (|#1| |#1| |#2|)) (-15 -3234 (|#1| |#1| |#1|)) (-15 -3236 (|#1| |#1| |#1|)) (-15 -3237 (|#1| |#1| |#2|)) (-15 -3237 (|#1| |#1| |#1|))) (-1011 |#2|) (-1013)) (T -1010)) +NIL +((-2568 (((-85) $ $) 7 T ELT)) (-3234 (($ $ $) 22 T ELT) (($ $ |#1|) 21 T ELT) (($ |#1| $) 20 T ELT)) (-3236 (($ $ $) 24 T ELT)) (-3235 (((-85) $ $) 23 T ELT)) (-3239 (($) 29 T ELT) (($ (-583 |#1|)) 28 T ELT)) (-3709 (($ (-1 (-85) |#1|) $) 57 (|has| $ (-6 -3994)) ELT)) (-3723 (($) 37 T CONST)) (-1352 (($ $) 60 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-3405 (($ |#1| $) 59 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT) (($ (-1 (-85) |#1|) $) 56 (|has| $ (-6 -3994)) ELT)) (-3841 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 58 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 55 (|has| $ (-6 -3994)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 54 (|has| $ (-6 -3994)) ELT)) (-2889 (((-583 |#1|) $) 44 (|has| $ (-6 -3994)) ELT)) (-3241 (((-85) $ $) 32 T ELT)) (-2608 (((-583 |#1|) $) 45 (|has| $ (-6 -3994)) ELT)) (-3245 (((-85) |#1| $) 47 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-1948 (($ (-1 |#1| |#1|) $) 40 (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) 39 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3238 (($ $ $) 27 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-1353 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 53 T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 42 (|has| $ (-6 -3994)) ELT)) (-3767 (($ $ (-583 |#1|) (-583 |#1|)) 51 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 50 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) 49 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 (-249 |#1|))) 48 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1221 (((-85) $ $) 33 T ELT)) (-3402 (((-85) $) 36 T ELT)) (-3564 (($) 35 T ELT)) (-3237 (($ $ $) 26 T ELT) (($ $ |#1|) 25 T ELT)) (-1945 (((-694) |#1| $) 46 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT) (((-694) (-1 (-85) |#1|) $) 43 (|has| $ (-6 -3994)) ELT)) (-3399 (($ $) 34 T ELT)) (-3971 (((-473) $) 61 (|has| |#1| (-553 (-473))) ELT)) (-3529 (($ (-583 |#1|)) 52 T ELT)) (-3945 (((-772) $) 13 T ELT)) (-3240 (($) 31 T ELT) (($ (-583 |#1|)) 30 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) 41 (|has| $ (-6 -3994)) ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-3956 (((-694) $) 38 (|has| $ (-6 -3994)) ELT))) +(((-1011 |#1|) (-113) (-1013)) (T -1011)) +((-3241 (*1 *2 *1 *1) (-12 (-4 *1 (-1011 *3)) (-4 *3 (-1013)) (-5 *2 (-85)))) (-3240 (*1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013)))) (-3240 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1013)) (-4 *1 (-1011 *3)))) (-3239 (*1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013)))) (-3239 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1013)) (-4 *1 (-1011 *3)))) (-3238 (*1 *1 *1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013)))) (-3237 (*1 *1 *1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013)))) (-3237 (*1 *1 *1 *2) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013)))) (-3236 (*1 *1 *1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013)))) (-3235 (*1 *2 *1 *1) (-12 (-4 *1 (-1011 *3)) (-4 *3 (-1013)) (-5 *2 (-85)))) (-3234 (*1 *1 *1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013)))) (-3234 (*1 *1 *1 *2) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013)))) (-3234 (*1 *1 *2 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013))))) +(-13 (-1013) (-124 |t#1|) (-10 -8 (-6 -3984) (-15 -3241 ((-85) $ $)) (-15 -3240 ($)) (-15 -3240 ($ (-583 |t#1|))) (-15 -3239 ($)) (-15 -3239 ($ (-583 |t#1|))) (-15 -3238 ($ $ $)) (-15 -3237 ($ $ $)) (-15 -3237 ($ $ |t#1|)) (-15 -3236 ($ $ $)) (-15 -3235 ((-85) $ $)) (-15 -3234 ($ $ $)) (-15 -3234 ($ $ |t#1|)) (-15 -3234 ($ |t#1| $)))) +(((-34) . T) ((-72) . T) ((-552 (-772)) . T) ((-124 |#1|) . T) ((-553 (-473)) |has| |#1| (-553 (-473))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-428 |#1|) . T) ((-455 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-1013) . T) ((-1128) . T)) +((-3242 (((-1072) $) 10 T ELT)) (-3243 (((-1033) $) 8 T ELT))) +(((-1012 |#1|) (-10 -7 (-15 -3242 ((-1072) |#1|)) (-15 -3243 ((-1033) |#1|))) (-1013)) (T -1012)) +NIL +((-2568 (((-85) $ $) 7 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3945 (((-772) $) 13 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-3056 (((-85) $ $) 8 T ELT))) +(((-1013) (-113)) (T -1013)) +((-3243 (*1 *2 *1) (-12 (-4 *1 (-1013)) (-5 *2 (-1033)))) (-3242 (*1 *2 *1) (-12 (-4 *1 (-1013)) (-5 *2 (-1072))))) +(-13 (-72) (-552 (-772)) (-10 -8 (-15 -3243 ((-1033) $)) (-15 -3242 ((-1072) $)))) +(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-1128) . T)) +((-2568 (((-85) $ $) NIL T ELT)) (-3136 (((-694)) 36 T ELT)) (-3247 (($ (-583 (-830))) 70 T ELT)) (-3249 (((-3 $ #1="failed") $ (-830) (-830)) 81 T ELT)) (-2994 (($) 40 T ELT)) (-3245 (((-85) (-830) $) 42 T ELT)) (-2010 (((-830) $) 64 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2400 (($ (-830)) 39 T ELT)) (-3250 (((-3 $ #1#) $ (-830)) 77 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3246 (((-1178 $)) 47 T ELT)) (-3248 (((-583 (-830)) $) 27 T ELT)) (-3244 (((-694) $ (-830) (-830)) 78 T ELT)) (-3945 (((-772) $) 32 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 24 T ELT))) +(((-1014 |#1| |#2|) (-13 (-319) (-10 -8 (-15 -3250 ((-3 $ #1="failed") $ (-830))) (-15 -3249 ((-3 $ #1#) $ (-830) (-830))) (-15 -3248 ((-583 (-830)) $)) (-15 -3247 ($ (-583 (-830)))) (-15 -3246 ((-1178 $))) (-15 -3245 ((-85) (-830) $)) (-15 -3244 ((-694) $ (-830) (-830))))) (-830) (-830)) (T -1014)) +((-3250 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-830)) (-5 *1 (-1014 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3249 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-830)) (-5 *1 (-1014 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3248 (*1 *2 *1) (-12 (-5 *2 (-583 (-830))) (-5 *1 (-1014 *3 *4)) (-14 *3 (-830)) (-14 *4 (-830)))) (-3247 (*1 *1 *2) (-12 (-5 *2 (-583 (-830))) (-5 *1 (-1014 *3 *4)) (-14 *3 (-830)) (-14 *4 (-830)))) (-3246 (*1 *2) (-12 (-5 *2 (-1178 (-1014 *3 *4))) (-5 *1 (-1014 *3 *4)) (-14 *3 (-830)) (-14 *4 (-830)))) (-3245 (*1 *2 *3 *1) (-12 (-5 *3 (-830)) (-5 *2 (-85)) (-5 *1 (-1014 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-3244 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-830)) (-5 *2 (-694)) (-5 *1 (-1014 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) +((-2568 (((-85) $ $) NIL T ELT)) (-3260 (((-85) $) NIL T ELT)) (-3256 (((-1089) $) NIL T ELT)) (-3261 (((-85) $) NIL T ELT)) (-3534 (((-1072) $) NIL T ELT)) (-3263 (((-85) $) NIL T ELT)) (-3265 (((-85) $) NIL T ELT)) (-3262 (((-85) $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3259 (((-85) $) NIL T ELT)) (-3255 (((-484) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3258 (((-85) $) NIL T ELT)) (-3254 (((-179) $) NIL T ELT)) (-3253 (((-772) $) NIL T ELT)) (-3266 (((-85) $ $) NIL T ELT)) (-3799 (($ $ (-484)) NIL T ELT) (($ $ (-583 (-484))) NIL T ELT)) (-3257 (((-583 $) $) NIL T ELT)) (-3971 (($ (-1072)) NIL T ELT) (($ (-1089)) NIL T ELT) (($ (-484)) NIL T ELT) (($ (-179)) NIL T ELT) (($ (-772)) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3945 (((-772) $) NIL T ELT)) (-3251 (($ $) NIL T ELT)) (-3252 (($ $) NIL T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3264 (((-85) $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3956 (((-484) $) NIL T ELT))) +(((-1015) (-1016 (-1072) (-1089) (-484) (-179) (-772))) (T -1015)) +NIL +((-2568 (((-85) $ $) 7 T ELT)) (-3260 (((-85) $) 36 T ELT)) (-3256 ((|#2| $) 31 T ELT)) (-3261 (((-85) $) 37 T ELT)) (-3534 ((|#1| $) 32 T ELT)) (-3263 (((-85) $) 39 T ELT)) (-3265 (((-85) $) 41 T ELT)) (-3262 (((-85) $) 38 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3259 (((-85) $) 35 T ELT)) (-3255 ((|#3| $) 30 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3258 (((-85) $) 34 T ELT)) (-3254 ((|#4| $) 29 T ELT)) (-3253 ((|#5| $) 28 T ELT)) (-3266 (((-85) $ $) 42 T ELT)) (-3799 (($ $ (-484)) 44 T ELT) (($ $ (-583 (-484))) 43 T ELT)) (-3257 (((-583 $) $) 33 T ELT)) (-3971 (($ |#1|) 50 T ELT) (($ |#2|) 49 T ELT) (($ |#3|) 48 T ELT) (($ |#4|) 47 T ELT) (($ |#5|) 46 T ELT) (($ (-583 $)) 45 T ELT)) (-3945 (((-772) $) 13 T ELT)) (-3251 (($ $) 26 T ELT)) (-3252 (($ $) 27 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-3264 (((-85) $) 40 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-3956 (((-484) $) 25 T ELT))) +(((-1016 |#1| |#2| |#3| |#4| |#5|) (-113) (-1013) (-1013) (-1013) (-1013) (-1013)) (T -1016)) +((-3266 (*1 *2 *1 *1) (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-85)))) (-3265 (*1 *2 *1) (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-85)))) (-3264 (*1 *2 *1) (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-85)))) (-3263 (*1 *2 *1) (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-85)))) (-3262 (*1 *2 *1) (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-85)))) (-3261 (*1 *2 *1) (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-85)))) (-3260 (*1 *2 *1) (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-85)))) (-3259 (*1 *2 *1) (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-85)))) (-3258 (*1 *2 *1) (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-85)))) (-3257 (*1 *2 *1) (-12 (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-583 *1)) (-4 *1 (-1016 *3 *4 *5 *6 *7)))) (-3534 (*1 *2 *1) (-12 (-4 *1 (-1016 *2 *3 *4 *5 *6)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *2 (-1013)))) (-3256 (*1 *2 *1) (-12 (-4 *1 (-1016 *3 *2 *4 *5 *6)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *2 (-1013)))) (-3255 (*1 *2 *1) (-12 (-4 *1 (-1016 *3 *4 *2 *5 *6)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *2 (-1013)))) (-3254 (*1 *2 *1) (-12 (-4 *1 (-1016 *3 *4 *5 *2 *6)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *2 (-1013)))) (-3253 (*1 *2 *1) (-12 (-4 *1 (-1016 *3 *4 *5 *6 *2)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *2 (-1013)))) (-3252 (*1 *1 *1) (-12 (-4 *1 (-1016 *2 *3 *4 *5 *6)) (-4 *2 (-1013)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)))) (-3251 (*1 *1 *1) (-12 (-4 *1 (-1016 *2 *3 *4 *5 *6)) (-4 *2 (-1013)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)))) (-3956 (*1 *2 *1) (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-484))))) +(-13 (-1013) (-557 |t#1|) (-557 |t#2|) (-557 |t#3|) (-557 |t#4|) (-557 |t#4|) (-557 |t#5|) (-557 (-583 $)) (-241 (-484) $) (-241 (-583 (-484)) $) (-10 -8 (-15 -3266 ((-85) $ $)) (-15 -3265 ((-85) $)) (-15 -3264 ((-85) $)) (-15 -3263 ((-85) $)) (-15 -3262 ((-85) $)) (-15 -3261 ((-85) $)) (-15 -3260 ((-85) $)) (-15 -3259 ((-85) $)) (-15 -3258 ((-85) $)) (-15 -3257 ((-583 $) $)) (-15 -3534 (|t#1| $)) (-15 -3256 (|t#2| $)) (-15 -3255 (|t#3| $)) (-15 -3254 (|t#4| $)) (-15 -3253 (|t#5| $)) (-15 -3252 ($ $)) (-15 -3251 ($ $)) (-15 -3956 ((-484) $)))) +(((-72) . T) ((-552 (-772)) . T) ((-557 (-583 $)) . T) ((-557 |#1|) . T) ((-557 |#2|) . T) ((-557 |#3|) . T) ((-557 |#4|) . T) ((-557 |#5|) . T) ((-241 (-484) $) . T) ((-241 (-583 (-484)) $) . T) ((-13) . T) ((-1013) . T) ((-1128) . T)) +((-2568 (((-85) $ $) NIL T ELT)) (-3260 (((-85) $) 45 T ELT)) (-3256 ((|#2| $) 48 T ELT)) (-3261 (((-85) $) 20 T ELT)) (-3534 ((|#1| $) 21 T ELT)) (-3263 (((-85) $) 42 T ELT)) (-3265 (((-85) $) 14 T ELT)) (-3262 (((-85) $) 44 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3259 (((-85) $) 46 T ELT)) (-3255 ((|#3| $) 50 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3258 (((-85) $) 47 T ELT)) (-3254 ((|#4| $) 49 T ELT)) (-3253 ((|#5| $) 51 T ELT)) (-3266 (((-85) $ $) 41 T ELT)) (-3799 (($ $ (-484)) 62 T ELT) (($ $ (-583 (-484))) 64 T ELT)) (-3257 (((-583 $) $) 27 T ELT)) (-3971 (($ |#1|) 53 T ELT) (($ |#2|) 54 T ELT) (($ |#3|) 55 T ELT) (($ |#4|) 56 T ELT) (($ |#5|) 57 T ELT) (($ (-583 $)) 52 T ELT)) (-3945 (((-772) $) 28 T ELT)) (-3251 (($ $) 26 T ELT)) (-3252 (($ $) 58 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3264 (((-85) $) 23 T ELT)) (-3056 (((-85) $ $) 40 T ELT)) (-3956 (((-484) $) 60 T ELT))) +(((-1017 |#1| |#2| |#3| |#4| |#5|) (-1016 |#1| |#2| |#3| |#4| |#5|) (-1013) (-1013) (-1013) (-1013) (-1013)) (T -1017)) +NIL +((-3269 (((-85) |#5| |#5|) 44 T ELT)) (-3272 (((-85) |#5| |#5|) 59 T ELT)) (-3277 (((-85) |#5| (-583 |#5|)) 82 T ELT) (((-85) |#5| |#5|) 68 T ELT)) (-3273 (((-85) (-583 |#4|) (-583 |#4|)) 65 T ELT)) (-3279 (((-85) (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|)) (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|))) 70 T ELT)) (-3268 (((-1184)) 32 T ELT)) (-3267 (((-1184) (-1072) (-1072) (-1072)) 28 T ELT)) (-3278 (((-583 |#5|) (-583 |#5|)) 101 T ELT)) (-3280 (((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|)))) 93 T ELT)) (-3281 (((-583 (-2 (|:| -3266 (-583 |#4|)) (|:| -1599 |#5|) (|:| |ineq| (-583 |#4|)))) (-583 |#4|) (-583 |#5|) (-85) (-85)) 123 T ELT)) (-3271 (((-85) |#5| |#5|) 53 T ELT)) (-3276 (((-3 (-85) #1="failed") |#5| |#5|) 78 T ELT)) (-3274 (((-85) (-583 |#4|) (-583 |#4|)) 64 T ELT)) (-3275 (((-85) (-583 |#4|) (-583 |#4|)) 66 T ELT)) (-3698 (((-85) (-583 |#4|) (-583 |#4|)) 67 T ELT)) (-3282 (((-3 (-2 (|:| -3266 (-583 |#4|)) (|:| -1599 |#5|) (|:| |ineq| (-583 |#4|))) #1#) (-583 |#4|) |#5| (-583 |#4|) (-85) (-85) (-85) (-85) (-85)) 118 T ELT)) (-3270 (((-583 |#5|) (-583 |#5|)) 49 T ELT))) +(((-1018 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3267 ((-1184) (-1072) (-1072) (-1072))) (-15 -3268 ((-1184))) (-15 -3269 ((-85) |#5| |#5|)) (-15 -3270 ((-583 |#5|) (-583 |#5|))) (-15 -3271 ((-85) |#5| |#5|)) (-15 -3272 ((-85) |#5| |#5|)) (-15 -3273 ((-85) (-583 |#4|) (-583 |#4|))) (-15 -3274 ((-85) (-583 |#4|) (-583 |#4|))) (-15 -3275 ((-85) (-583 |#4|) (-583 |#4|))) (-15 -3698 ((-85) (-583 |#4|) (-583 |#4|))) (-15 -3276 ((-3 (-85) #1="failed") |#5| |#5|)) (-15 -3277 ((-85) |#5| |#5|)) (-15 -3277 ((-85) |#5| (-583 |#5|))) (-15 -3278 ((-583 |#5|) (-583 |#5|))) (-15 -3279 ((-85) (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|)) (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|)))) (-15 -3280 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|))))) (-15 -3281 ((-583 (-2 (|:| -3266 (-583 |#4|)) (|:| -1599 |#5|) (|:| |ineq| (-583 |#4|)))) (-583 |#4|) (-583 |#5|) (-85) (-85))) (-15 -3282 ((-3 (-2 (|:| -3266 (-583 |#4|)) (|:| -1599 |#5|) (|:| |ineq| (-583 |#4|))) #1#) (-583 |#4|) |#5| (-583 |#4|) (-85) (-85) (-85) (-85) (-85)))) (-391) (-717) (-756) (-977 |#1| |#2| |#3|) (-983 |#1| |#2| |#3| |#4|)) (T -1018)) +((-3282 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-85)) (-4 *6 (-391)) (-4 *7 (-717)) (-4 *8 (-756)) (-4 *9 (-977 *6 *7 *8)) (-5 *2 (-2 (|:| -3266 (-583 *9)) (|:| -1599 *4) (|:| |ineq| (-583 *9)))) (-5 *1 (-1018 *6 *7 *8 *9 *4)) (-5 *3 (-583 *9)) (-4 *4 (-983 *6 *7 *8 *9)))) (-3281 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-583 *10)) (-5 *5 (-85)) (-4 *10 (-983 *6 *7 *8 *9)) (-4 *6 (-391)) (-4 *7 (-717)) (-4 *8 (-756)) (-4 *9 (-977 *6 *7 *8)) (-5 *2 (-583 (-2 (|:| -3266 (-583 *9)) (|:| -1599 *10) (|:| |ineq| (-583 *9))))) (-5 *1 (-1018 *6 *7 *8 *9 *10)) (-5 *3 (-583 *9)))) (-3280 (*1 *2 *2) (-12 (-5 *2 (-583 (-2 (|:| |val| (-583 *6)) (|:| -1599 *7)))) (-4 *6 (-977 *3 *4 *5)) (-4 *7 (-983 *3 *4 *5 *6)) (-4 *3 (-391)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-1018 *3 *4 *5 *6 *7)))) (-3279 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-583 *7)) (|:| -1599 *8))) (-4 *7 (-977 *4 *5 *6)) (-4 *8 (-983 *4 *5 *6 *7)) (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-1018 *4 *5 *6 *7 *8)))) (-3278 (*1 *2 *2) (-12 (-5 *2 (-583 *7)) (-4 *7 (-983 *3 *4 *5 *6)) (-4 *3 (-391)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-5 *1 (-1018 *3 *4 *5 *6 *7)))) (-3277 (*1 *2 *3 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-983 *5 *6 *7 *8)) (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *8 (-977 *5 *6 *7)) (-5 *2 (-85)) (-5 *1 (-1018 *5 *6 *7 *8 *3)))) (-3277 (*1 *2 *3 *3) (-12 (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-1018 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7)))) (-3276 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-1018 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7)))) (-3698 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-1018 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7)))) (-3275 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-1018 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7)))) (-3274 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-1018 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7)))) (-3273 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-1018 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7)))) (-3272 (*1 *2 *3 *3) (-12 (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-1018 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7)))) (-3271 (*1 *2 *3 *3) (-12 (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-1018 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7)))) (-3270 (*1 *2 *2) (-12 (-5 *2 (-583 *7)) (-4 *7 (-983 *3 *4 *5 *6)) (-4 *3 (-391)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-5 *1 (-1018 *3 *4 *5 *6 *7)))) (-3269 (*1 *2 *3 *3) (-12 (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-1018 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7)))) (-3268 (*1 *2) (-12 (-4 *3 (-391)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-1184)) (-5 *1 (-1018 *3 *4 *5 *6 *7)) (-4 *7 (-983 *3 *4 *5 *6)))) (-3267 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1072)) (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-1184)) (-5 *1 (-1018 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7))))) +((-3297 (((-583 (-2 (|:| |val| |#4|) (|:| -1599 |#5|))) |#4| |#5|) 106 T ELT)) (-3287 (((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|))) |#4| |#4| |#5|) 79 T ELT)) (-3290 (((-583 (-2 (|:| |val| |#4|) (|:| -1599 |#5|))) |#4| |#4| |#5|) 100 T ELT)) (-3292 (((-583 |#5|) |#4| |#5|) 122 T ELT)) (-3294 (((-583 |#5|) |#4| |#5|) 129 T ELT)) (-3296 (((-583 |#5|) |#4| |#5|) 130 T ELT)) (-3291 (((-583 (-2 (|:| |val| (-85)) (|:| -1599 |#5|))) |#4| |#5|) 107 T ELT)) (-3293 (((-583 (-2 (|:| |val| (-85)) (|:| -1599 |#5|))) |#4| |#5|) 128 T ELT)) (-3295 (((-583 (-2 (|:| |val| (-85)) (|:| -1599 |#5|))) |#4| |#5|) 47 T ELT) (((-85) |#4| |#5|) 55 T ELT)) (-3288 (((-583 (-2 (|:| |val| |#4|) (|:| -1599 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|))) |#3| (-85)) 91 T ELT) (((-583 (-2 (|:| |val| |#4|) (|:| -1599 |#5|))) |#4| |#4| |#5| (-85) (-85)) 52 T ELT)) (-3289 (((-583 (-2 (|:| |val| |#4|) (|:| -1599 |#5|))) |#4| |#4| |#5|) 86 T ELT)) (-3286 (((-1184)) 36 T ELT)) (-3284 (((-1184)) 25 T ELT)) (-3285 (((-1184) (-1072) (-1072) (-1072)) 32 T ELT)) (-3283 (((-1184) (-1072) (-1072) (-1072)) 21 T ELT))) +(((-1019 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3283 ((-1184) (-1072) (-1072) (-1072))) (-15 -3284 ((-1184))) (-15 -3285 ((-1184) (-1072) (-1072) (-1072))) (-15 -3286 ((-1184))) (-15 -3287 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|))) |#4| |#4| |#5|)) (-15 -3288 ((-583 (-2 (|:| |val| |#4|) (|:| -1599 |#5|))) |#4| |#4| |#5| (-85) (-85))) (-15 -3288 ((-583 (-2 (|:| |val| |#4|) (|:| -1599 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|))) |#3| (-85))) (-15 -3289 ((-583 (-2 (|:| |val| |#4|) (|:| -1599 |#5|))) |#4| |#4| |#5|)) (-15 -3290 ((-583 (-2 (|:| |val| |#4|) (|:| -1599 |#5|))) |#4| |#4| |#5|)) (-15 -3295 ((-85) |#4| |#5|)) (-15 -3291 ((-583 (-2 (|:| |val| (-85)) (|:| -1599 |#5|))) |#4| |#5|)) (-15 -3292 ((-583 |#5|) |#4| |#5|)) (-15 -3293 ((-583 (-2 (|:| |val| (-85)) (|:| -1599 |#5|))) |#4| |#5|)) (-15 -3294 ((-583 |#5|) |#4| |#5|)) (-15 -3295 ((-583 (-2 (|:| |val| (-85)) (|:| -1599 |#5|))) |#4| |#5|)) (-15 -3296 ((-583 |#5|) |#4| |#5|)) (-15 -3297 ((-583 (-2 (|:| |val| |#4|) (|:| -1599 |#5|))) |#4| |#5|))) (-391) (-717) (-756) (-977 |#1| |#2| |#3|) (-983 |#1| |#2| |#3| |#4|)) (T -1019)) +((-3297 (*1 *2 *3 *4) (-12 (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1599 *4)))) (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-3296 (*1 *2 *3 *4) (-12 (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-583 *4)) (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-3295 (*1 *2 *3 *4) (-12 (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-85)) (|:| -1599 *4)))) (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-3294 (*1 *2 *3 *4) (-12 (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-583 *4)) (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-3293 (*1 *2 *3 *4) (-12 (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-85)) (|:| -1599 *4)))) (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-3292 (*1 *2 *3 *4) (-12 (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-583 *4)) (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-3291 (*1 *2 *3 *4) (-12 (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-85)) (|:| -1599 *4)))) (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-3295 (*1 *2 *3 *4) (-12 (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-85)) (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-3290 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1599 *4)))) (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-3289 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1599 *4)))) (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-3288 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 (-2 (|:| |val| (-583 *8)) (|:| -1599 *9)))) (-5 *5 (-85)) (-4 *8 (-977 *6 *7 *4)) (-4 *9 (-983 *6 *7 *4 *8)) (-4 *6 (-391)) (-4 *7 (-717)) (-4 *4 (-756)) (-5 *2 (-583 (-2 (|:| |val| *8) (|:| -1599 *9)))) (-5 *1 (-1019 *6 *7 *4 *8 *9)))) (-3288 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-85)) (-4 *6 (-391)) (-4 *7 (-717)) (-4 *8 (-756)) (-4 *3 (-977 *6 *7 *8)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1599 *4)))) (-5 *1 (-1019 *6 *7 *8 *3 *4)) (-4 *4 (-983 *6 *7 *8 *3)))) (-3287 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-583 *3)) (|:| -1599 *4)))) (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-3286 (*1 *2) (-12 (-4 *3 (-391)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-1184)) (-5 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *7 (-983 *3 *4 *5 *6)))) (-3285 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1072)) (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-1184)) (-5 *1 (-1019 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7)))) (-3284 (*1 *2) (-12 (-4 *3 (-391)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-1184)) (-5 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *7 (-983 *3 *4 *5 *6)))) (-3283 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1072)) (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-1184)) (-5 *1 (-1019 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7))))) +((-2568 (((-85) $ $) 7 T ELT)) (-3680 (((-583 (-2 (|:| -3860 $) (|:| -1701 (-583 |#4|)))) (-583 |#4|)) 90 T ELT)) (-3681 (((-583 $) (-583 |#4|)) 91 T ELT) (((-583 $) (-583 |#4|) (-85)) 118 T ELT)) (-3081 (((-583 |#3|) $) 37 T ELT)) (-2908 (((-85) $) 30 T ELT)) (-2899 (((-85) $) 21 (|has| |#1| (-495)) ELT)) (-3692 (((-85) |#4| $) 106 T ELT) (((-85) $) 102 T ELT)) (-3687 ((|#4| |#4| $) 97 T ELT)) (-3774 (((-583 (-2 (|:| |val| |#4|) (|:| -1599 $))) |#4| $) 133 T ELT)) (-2909 (((-2 (|:| |under| $) (|:| -3130 $) (|:| |upper| $)) $ |#3|) 31 T ELT)) (-3709 (($ (-1 (-85) |#4|) $) 66 (|has| $ (-6 -3994)) ELT) (((-3 |#4| #1="failed") $ |#3|) 84 T ELT)) (-3723 (($) 46 T CONST)) (-2904 (((-85) $) 26 (|has| |#1| (-495)) ELT)) (-2906 (((-85) $ $) 28 (|has| |#1| (-495)) ELT)) (-2905 (((-85) $ $) 27 (|has| |#1| (-495)) ELT)) (-2907 (((-85) $) 29 (|has| |#1| (-495)) ELT)) (-3688 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 98 T ELT)) (-2900 (((-583 |#4|) (-583 |#4|) $) 22 (|has| |#1| (-495)) ELT)) (-2901 (((-583 |#4|) (-583 |#4|) $) 23 (|has| |#1| (-495)) ELT)) (-3157 (((-3 $ "failed") (-583 |#4|)) 40 T ELT)) (-3156 (($ (-583 |#4|)) 39 T ELT)) (-3798 (((-3 $ #1#) $) 87 T ELT)) (-3684 ((|#4| |#4| $) 94 T ELT)) (-1352 (($ $) 69 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -3994))) ELT)) (-3405 (($ |#4| $) 68 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -3994))) ELT) (($ (-1 (-85) |#4|) $) 65 (|has| $ (-6 -3994)) ELT)) (-2902 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 24 (|has| |#1| (-495)) ELT)) (-3693 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) 107 T ELT)) (-3682 ((|#4| |#4| $) 92 T ELT)) (-3841 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -3994))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -3994)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -3994)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 99 T ELT)) (-3695 (((-2 (|:| -3860 (-583 |#4|)) (|:| -1701 (-583 |#4|))) $) 110 T ELT)) (-3197 (((-85) |#4| $) 143 T ELT)) (-3195 (((-85) |#4| $) 140 T ELT)) (-3198 (((-85) |#4| $) 144 T ELT) (((-85) $) 141 T ELT)) (-2889 (((-583 |#4|) $) 53 (|has| $ (-6 -3994)) ELT)) (-3694 (((-85) |#4| $) 109 T ELT) (((-85) $) 108 T ELT)) (-3180 ((|#3| $) 38 T ELT)) (-2608 (((-583 |#4|) $) 54 (|has| $ (-6 -3994)) ELT)) (-3245 (((-85) |#4| $) 56 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -3994))) ELT)) (-1948 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-2914 (((-583 |#3|) $) 36 T ELT)) (-2913 (((-85) |#3| $) 35 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3191 (((-3 |#4| (-583 $)) |#4| |#4| $) 135 T ELT)) (-3190 (((-583 (-2 (|:| |val| |#4|) (|:| -1599 $))) |#4| |#4| $) 134 T ELT)) (-3797 (((-3 |#4| #1#) $) 88 T ELT)) (-3192 (((-583 $) |#4| $) 136 T ELT)) (-3194 (((-3 (-85) (-583 $)) |#4| $) 139 T ELT)) (-3193 (((-583 (-2 (|:| |val| (-85)) (|:| -1599 $))) |#4| $) 138 T ELT) (((-85) |#4| $) 137 T ELT)) (-3238 (((-583 $) |#4| $) 132 T ELT) (((-583 $) (-583 |#4|) $) 131 T ELT) (((-583 $) (-583 |#4|) (-583 $)) 130 T ELT) (((-583 $) |#4| (-583 $)) 129 T ELT)) (-3439 (($ |#4| $) 124 T ELT) (($ (-583 |#4|) $) 123 T ELT)) (-3696 (((-583 |#4|) $) 112 T ELT)) (-3690 (((-85) |#4| $) 104 T ELT) (((-85) $) 100 T ELT)) (-3685 ((|#4| |#4| $) 95 T ELT)) (-3698 (((-85) $ $) 115 T ELT)) (-2903 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-495)) ELT)) (-3691 (((-85) |#4| $) 105 T ELT) (((-85) $) 101 T ELT)) (-3686 ((|#4| |#4| $) 96 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3800 (((-3 |#4| #1#) $) 89 T ELT)) (-1353 (((-3 |#4| "failed") (-1 (-85) |#4|) $) 62 T ELT)) (-3678 (((-3 $ #1#) $ |#4|) 83 T ELT)) (-3768 (($ $ |#4|) 82 T ELT) (((-583 $) |#4| $) 122 T ELT) (((-583 $) |#4| (-583 $)) 121 T ELT) (((-583 $) (-583 |#4|) $) 120 T ELT) (((-583 $) (-583 |#4|) (-583 $)) 119 T ELT)) (-1946 (((-85) (-1 (-85) |#4|) $) 51 (|has| $ (-6 -3994)) ELT)) (-3767 (($ $ (-583 |#4|) (-583 |#4|)) 60 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-249 |#4|)) 58 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-583 (-249 |#4|))) 57 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT)) (-1221 (((-85) $ $) 42 T ELT)) (-3402 (((-85) $) 45 T ELT)) (-3564 (($) 44 T ELT)) (-3947 (((-694) $) 111 T ELT)) (-1945 (((-694) |#4| $) 55 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -3994))) ELT) (((-694) (-1 (-85) |#4|) $) 52 (|has| $ (-6 -3994)) ELT)) (-3399 (($ $) 43 T ELT)) (-3971 (((-473) $) 70 (|has| |#4| (-553 (-473))) ELT)) (-3529 (($ (-583 |#4|)) 61 T ELT)) (-2910 (($ $ |#3|) 32 T ELT)) (-2912 (($ $ |#3|) 34 T ELT)) (-3683 (($ $) 93 T ELT)) (-2911 (($ $ |#3|) 33 T ELT)) (-3945 (((-772) $) 13 T ELT) (((-583 |#4|) $) 41 T ELT)) (-3677 (((-694) $) 81 (|has| |#3| (-319)) ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-3697 (((-3 (-2 (|:| |bas| $) (|:| -3323 (-583 |#4|))) #1#) (-583 |#4|) (-1 (-85) |#4| |#4|)) 114 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3323 (-583 |#4|))) #1#) (-583 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) 113 T ELT)) (-3689 (((-85) $ (-1 (-85) |#4| (-583 |#4|))) 103 T ELT)) (-3189 (((-583 $) |#4| $) 128 T ELT) (((-583 $) |#4| (-583 $)) 127 T ELT) (((-583 $) (-583 |#4|) $) 126 T ELT) (((-583 $) (-583 |#4|) (-583 $)) 125 T ELT)) (-1947 (((-85) (-1 (-85) |#4|) $) 50 (|has| $ (-6 -3994)) ELT)) (-3679 (((-583 |#3|) $) 86 T ELT)) (-3196 (((-85) |#4| $) 142 T ELT)) (-3932 (((-85) |#3| $) 85 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-3956 (((-694) $) 47 (|has| $ (-6 -3994)) ELT))) +(((-1020 |#1| |#2| |#3| |#4|) (-113) (-391) (-717) (-756) (-977 |t#1| |t#2| |t#3|)) (T -1020)) +NIL +(-13 (-983 |t#1| |t#2| |t#3| |t#4|)) +(((-34) . T) ((-72) . T) ((-552 (-583 |#4|)) . T) ((-552 (-772)) . T) ((-124 |#4|) . T) ((-553 (-473)) |has| |#4| (-553 (-473))) ((-260 |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ((-428 |#4|) . T) ((-455 |#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ((-13) . T) ((-889 |#1| |#2| |#3| |#4|) . T) ((-983 |#1| |#2| |#3| |#4|) . T) ((-1013) . T) ((-1123 |#1| |#2| |#3| |#4|) . T) ((-1128) . T)) +((-3308 (((-583 (-484)) (-484) (-484) (-484)) 40 T ELT)) (-3307 (((-583 (-484)) (-484) (-484) (-484)) 30 T ELT)) (-3306 (((-583 (-484)) (-484) (-484) (-484)) 35 T ELT)) (-3305 (((-484) (-484) (-484)) 22 T ELT)) (-3304 (((-1178 (-484)) (-583 (-484)) (-1178 (-484)) (-484)) 78 T ELT) (((-1178 (-484)) (-1178 (-484)) (-1178 (-484)) (-484)) 73 T ELT)) (-3303 (((-583 (-484)) (-583 (-830)) (-583 (-484)) (-85)) 56 T ELT)) (-3302 (((-630 (-484)) (-583 (-484)) (-583 (-484)) (-630 (-484))) 77 T ELT)) (-3301 (((-630 (-484)) (-583 (-830)) (-583 (-484))) 61 T ELT)) (-3300 (((-583 (-630 (-484))) (-583 (-830))) 66 T ELT)) (-3299 (((-583 (-484)) (-583 (-484)) (-583 (-484)) (-630 (-484))) 81 T ELT)) (-3298 (((-630 (-484)) (-583 (-484)) (-583 (-484)) (-583 (-484))) 91 T ELT))) +(((-1021) (-10 -7 (-15 -3298 ((-630 (-484)) (-583 (-484)) (-583 (-484)) (-583 (-484)))) (-15 -3299 ((-583 (-484)) (-583 (-484)) (-583 (-484)) (-630 (-484)))) (-15 -3300 ((-583 (-630 (-484))) (-583 (-830)))) (-15 -3301 ((-630 (-484)) (-583 (-830)) (-583 (-484)))) (-15 -3302 ((-630 (-484)) (-583 (-484)) (-583 (-484)) (-630 (-484)))) (-15 -3303 ((-583 (-484)) (-583 (-830)) (-583 (-484)) (-85))) (-15 -3304 ((-1178 (-484)) (-1178 (-484)) (-1178 (-484)) (-484))) (-15 -3304 ((-1178 (-484)) (-583 (-484)) (-1178 (-484)) (-484))) (-15 -3305 ((-484) (-484) (-484))) (-15 -3306 ((-583 (-484)) (-484) (-484) (-484))) (-15 -3307 ((-583 (-484)) (-484) (-484) (-484))) (-15 -3308 ((-583 (-484)) (-484) (-484) (-484))))) (T -1021)) +((-3308 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-583 (-484))) (-5 *1 (-1021)) (-5 *3 (-484)))) (-3307 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-583 (-484))) (-5 *1 (-1021)) (-5 *3 (-484)))) (-3306 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-583 (-484))) (-5 *1 (-1021)) (-5 *3 (-484)))) (-3305 (*1 *2 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-1021)))) (-3304 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1178 (-484))) (-5 *3 (-583 (-484))) (-5 *4 (-484)) (-5 *1 (-1021)))) (-3304 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1178 (-484))) (-5 *3 (-484)) (-5 *1 (-1021)))) (-3303 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-583 (-484))) (-5 *3 (-583 (-830))) (-5 *4 (-85)) (-5 *1 (-1021)))) (-3302 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-630 (-484))) (-5 *3 (-583 (-484))) (-5 *1 (-1021)))) (-3301 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-830))) (-5 *4 (-583 (-484))) (-5 *2 (-630 (-484))) (-5 *1 (-1021)))) (-3300 (*1 *2 *3) (-12 (-5 *3 (-583 (-830))) (-5 *2 (-583 (-630 (-484)))) (-5 *1 (-1021)))) (-3299 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-583 (-484))) (-5 *3 (-630 (-484))) (-5 *1 (-1021)))) (-3298 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-583 (-484))) (-5 *2 (-630 (-484))) (-5 *1 (-1021))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3309 (($ (-1 |#1| |#1| |#1|)) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3799 ((|#1| $ |#1| |#1|) NIL T ELT)) (-3945 (((-772) $) NIL T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT))) +(((-1022 |#1|) (-13 (-1023 |#1|) (-1013) (-10 -8 (-15 -3309 ($ (-1 |#1| |#1| |#1|))))) (-72)) (T -1022)) +((-3309 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *3 (-72)) (-5 *1 (-1022 *3))))) +((-3799 ((|#1| $ |#1| |#1|) 6 T ELT))) +(((-1023 |#1|) (-113) (-72)) (T -1023)) +NIL +(-13 (-80 |t#1|) (-10 -8 (-6 (|%Rule| |associativity| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |t#1|) (|:| |y| |t#1|) (|:| |z| |t#1|)) (-3056 (|f| (|f| |x| |y|) |z|) (|f| |x| (|f| |y| |z|)))))))) +(((-80 |#1|) . T) ((|MappingCategory| |#1| |#1| |#1|) . T) ((-1128) . T)) +((** (($ $ (-830)) 10 T ELT))) +(((-1024 |#1|) (-10 -7 (-15 ** (|#1| |#1| (-830)))) (-1025)) (T -1024)) +NIL +((-2568 (((-85) $ $) 7 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3945 (((-772) $) 13 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (** (($ $ (-830)) 17 T ELT)) (* (($ $ $) 18 T ELT))) +(((-1025) (-113)) (T -1025)) +((* (*1 *1 *1 *1) (-4 *1 (-1025))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1025)) (-5 *2 (-830))))) +(-13 (-1013) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-830))))) +(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-1013) . T) ((-1128) . T)) +((-2568 (((-85) $ $) NIL (|has| |#3| (-72)) ELT)) (-3188 (((-85) $) NIL (|has| |#3| (-23)) ELT)) (-3706 (($ (-830)) NIL (|has| |#3| (-961)) ELT)) (-2198 (((-1184) $ (-484) (-484)) NIL (|has| $ (-6 -3995)) ELT)) (-2483 (($ $ $) NIL (|has| |#3| (-717)) ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL (|has| |#3| (-104)) ELT)) (-3136 (((-694)) NIL (|has| |#3| (-319)) ELT)) (-3787 ((|#3| $ (-484) |#3|) NIL (|has| $ (-6 -3995)) ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 (-484) #1#) $) NIL (-12 (|has| |#3| (-950 (-484))) (|has| |#3| (-1013))) ELT) (((-3 (-349 (-484)) #1#) $) NIL (-12 (|has| |#3| (-950 (-349 (-484)))) (|has| |#3| (-1013))) ELT) (((-3 |#3| #1#) $) NIL (|has| |#3| (-1013)) ELT)) (-3156 (((-484) $) NIL (-12 (|has| |#3| (-950 (-484))) (|has| |#3| (-1013))) ELT) (((-349 (-484)) $) NIL (-12 (|has| |#3| (-950 (-349 (-484)))) (|has| |#3| (-1013))) ELT) ((|#3| $) NIL (|has| |#3| (-1013)) ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (-12 (|has| |#3| (-580 (-484))) (|has| |#3| (-961))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) NIL (-12 (|has| |#3| (-580 (-484))) (|has| |#3| (-961))) ELT) (((-2 (|:| |mat| (-630 |#3|)) (|:| |vec| (-1178 |#3|))) (-630 $) (-1178 $)) NIL (|has| |#3| (-961)) ELT) (((-630 |#3|) (-630 $)) NIL (|has| |#3| (-961)) ELT)) (-3466 (((-3 $ #1#) $) NIL (|has| |#3| (-961)) ELT)) (-2994 (($) NIL (|has| |#3| (-319)) ELT)) (-1575 ((|#3| $ (-484) |#3|) NIL (|has| $ (-6 -3995)) ELT)) (-3112 ((|#3| $ (-484)) 12 T ELT)) (-3186 (((-85) $) NIL (|has| |#3| (-717)) ELT)) (-2889 (((-583 |#3|) $) NIL (|has| $ (-6 -3994)) ELT)) (-1213 (((-85) $ $) NIL (|has| |#3| (-23)) ELT)) (-2410 (((-85) $) NIL (|has| |#3| (-961)) ELT)) (-2200 (((-484) $) NIL (|has| (-484) (-756)) ELT)) (-2531 (($ $ $) NIL (|has| |#3| (-756)) ELT)) (-2608 (((-583 |#3|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3245 (((-85) |#3| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#3| (-1013))) ELT)) (-2201 (((-484) $) NIL (|has| (-484) (-756)) ELT)) (-2857 (($ $ $) NIL (|has| |#3| (-756)) ELT)) (-1948 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#3| |#3|) $) NIL T ELT)) (-2010 (((-830) $) NIL (|has| |#3| (-319)) ELT)) (-2280 (((-630 (-484)) (-1178 $)) NIL (-12 (|has| |#3| (-580 (-484))) (|has| |#3| (-961))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (-12 (|has| |#3| (-580 (-484))) (|has| |#3| (-961))) ELT) (((-2 (|:| |mat| (-630 |#3|)) (|:| |vec| (-1178 |#3|))) (-1178 $) $) NIL (|has| |#3| (-961)) ELT) (((-630 |#3|) (-1178 $)) NIL (|has| |#3| (-961)) ELT)) (-3242 (((-1072) $) NIL (|has| |#3| (-1013)) ELT)) (-2203 (((-583 (-484)) $) NIL T ELT)) (-2204 (((-85) (-484) $) NIL T ELT)) (-2400 (($ (-830)) NIL (|has| |#3| (-319)) ELT)) (-3243 (((-1033) $) NIL (|has| |#3| (-1013)) ELT)) (-3800 ((|#3| $) NIL (|has| (-484) (-756)) ELT)) (-2199 (($ $ |#3|) NIL (|has| $ (-6 -3995)) ELT)) (-1946 (((-85) (-1 (-85) |#3|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3767 (($ $ (-583 (-249 |#3|))) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1013))) ELT) (($ $ (-249 |#3|)) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1013))) ELT) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1013))) ELT) (($ $ (-583 |#3|) (-583 |#3|)) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1013))) ELT)) (-1221 (((-85) $ $) NIL T ELT)) (-2202 (((-85) |#3| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#3| (-1013))) ELT)) (-2205 (((-583 |#3|) $) NIL T ELT)) (-3402 (((-85) $) NIL T ELT)) (-3564 (($) NIL T ELT)) (-3799 ((|#3| $ (-484) |#3|) NIL T ELT) ((|#3| $ (-484)) NIL T ELT)) (-3835 ((|#3| $ $) NIL (|has| |#3| (-961)) ELT)) (-1467 (($ (-1178 |#3|)) NIL T ELT)) (-3910 (((-107)) NIL (|has| |#3| (-312)) ELT)) (-3757 (($ $ (-694)) NIL (-12 (|has| |#3| (-189)) (|has| |#3| (-961))) ELT) (($ $) NIL (-12 (|has| |#3| (-189)) (|has| |#3| (-961))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (-12 (|has| |#3| (-811 (-1089))) (|has| |#3| (-961))) ELT) (($ $ (-1089) (-694)) NIL (-12 (|has| |#3| (-811 (-1089))) (|has| |#3| (-961))) ELT) (($ $ (-583 (-1089))) NIL (-12 (|has| |#3| (-811 (-1089))) (|has| |#3| (-961))) ELT) (($ $ (-1089)) NIL (-12 (|has| |#3| (-811 (-1089))) (|has| |#3| (-961))) ELT) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-961)) ELT) (($ $ (-1 |#3| |#3|) (-694)) NIL (|has| |#3| (-961)) ELT)) (-1945 (((-694) (-1 (-85) |#3|) $) NIL (|has| $ (-6 -3994)) ELT) (((-694) |#3| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#3| (-1013))) ELT)) (-3399 (($ $) NIL T ELT)) (-3945 (((-1178 |#3|) $) NIL T ELT) (($ (-484)) NIL (OR (-12 (|has| |#3| (-950 (-484))) (|has| |#3| (-1013))) (|has| |#3| (-961))) ELT) (($ (-349 (-484))) NIL (-12 (|has| |#3| (-950 (-349 (-484)))) (|has| |#3| (-1013))) ELT) (($ |#3|) NIL (|has| |#3| (-1013)) ELT) (((-772) $) NIL (|has| |#3| (-552 (-772))) ELT)) (-3126 (((-694)) NIL (|has| |#3| (-961)) CONST)) (-1264 (((-85) $ $) NIL (|has| |#3| (-72)) ELT)) (-1947 (((-85) (-1 (-85) |#3|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3125 (((-85) $ $) NIL (|has| |#3| (-961)) ELT)) (-2660 (($) NIL (|has| |#3| (-23)) CONST)) (-2666 (($) NIL (|has| |#3| (-961)) CONST)) (-2669 (($ $ (-694)) NIL (-12 (|has| |#3| (-189)) (|has| |#3| (-961))) ELT) (($ $) NIL (-12 (|has| |#3| (-189)) (|has| |#3| (-961))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (-12 (|has| |#3| (-811 (-1089))) (|has| |#3| (-961))) ELT) (($ $ (-1089) (-694)) NIL (-12 (|has| |#3| (-811 (-1089))) (|has| |#3| (-961))) ELT) (($ $ (-583 (-1089))) NIL (-12 (|has| |#3| (-811 (-1089))) (|has| |#3| (-961))) ELT) (($ $ (-1089)) NIL (-12 (|has| |#3| (-811 (-1089))) (|has| |#3| (-961))) ELT) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-961)) ELT) (($ $ (-1 |#3| |#3|) (-694)) NIL (|has| |#3| (-961)) ELT)) (-2566 (((-85) $ $) NIL (|has| |#3| (-756)) ELT)) (-2567 (((-85) $ $) NIL (|has| |#3| (-756)) ELT)) (-3056 (((-85) $ $) NIL (|has| |#3| (-72)) ELT)) (-2684 (((-85) $ $) NIL (|has| |#3| (-756)) ELT)) (-2685 (((-85) $ $) 24 (|has| |#3| (-756)) ELT)) (-3948 (($ $ |#3|) NIL (|has| |#3| (-312)) ELT)) (-3836 (($ $ $) NIL (|has| |#3| (-21)) ELT) (($ $) NIL (|has| |#3| (-21)) ELT)) (-3838 (($ $ $) NIL (|has| |#3| (-25)) ELT)) (** (($ $ (-694)) NIL (|has| |#3| (-961)) ELT) (($ $ (-830)) NIL (|has| |#3| (-961)) ELT)) (* (($ $ $) NIL (|has| |#3| (-961)) ELT) (($ $ |#3|) NIL (|has| |#3| (-663)) ELT) (($ |#3| $) NIL (|has| |#3| (-663)) ELT) (($ (-484) $) NIL (|has| |#3| (-21)) ELT) (($ (-694) $) NIL (|has| |#3| (-23)) ELT) (($ (-830) $) NIL (|has| |#3| (-25)) ELT)) (-3956 (((-694) $) NIL (|has| $ (-6 -3994)) ELT))) +(((-1026 |#1| |#2| |#3|) (-196 |#1| |#3|) (-694) (-694) (-717)) (T -1026)) +NIL +((-3310 (((-583 (-1147 |#2| |#1|)) (-1147 |#2| |#1|) (-1147 |#2| |#1|)) 50 T ELT)) (-3316 (((-484) (-1147 |#2| |#1|)) 95 (|has| |#1| (-391)) ELT)) (-3314 (((-484) (-1147 |#2| |#1|)) 79 T ELT)) (-3311 (((-583 (-1147 |#2| |#1|)) (-1147 |#2| |#1|) (-1147 |#2| |#1|)) 58 T ELT)) (-3315 (((-484) (-1147 |#2| |#1|) (-1147 |#2| |#1|)) 81 (|has| |#1| (-391)) ELT)) (-3312 (((-583 |#1|) (-1147 |#2| |#1|) (-1147 |#2| |#1|)) 61 T ELT)) (-3313 (((-484) (-1147 |#2| |#1|) (-1147 |#2| |#1|)) 78 T ELT))) +(((-1027 |#1| |#2|) (-10 -7 (-15 -3310 ((-583 (-1147 |#2| |#1|)) (-1147 |#2| |#1|) (-1147 |#2| |#1|))) (-15 -3311 ((-583 (-1147 |#2| |#1|)) (-1147 |#2| |#1|) (-1147 |#2| |#1|))) (-15 -3312 ((-583 |#1|) (-1147 |#2| |#1|) (-1147 |#2| |#1|))) (-15 -3313 ((-484) (-1147 |#2| |#1|) (-1147 |#2| |#1|))) (-15 -3314 ((-484) (-1147 |#2| |#1|))) (IF (|has| |#1| (-391)) (PROGN (-15 -3315 ((-484) (-1147 |#2| |#1|) (-1147 |#2| |#1|))) (-15 -3316 ((-484) (-1147 |#2| |#1|)))) |%noBranch|)) (-740) (-1089)) (T -1027)) +((-3316 (*1 *2 *3) (-12 (-5 *3 (-1147 *5 *4)) (-4 *4 (-391)) (-4 *4 (-740)) (-14 *5 (-1089)) (-5 *2 (-484)) (-5 *1 (-1027 *4 *5)))) (-3315 (*1 *2 *3 *3) (-12 (-5 *3 (-1147 *5 *4)) (-4 *4 (-391)) (-4 *4 (-740)) (-14 *5 (-1089)) (-5 *2 (-484)) (-5 *1 (-1027 *4 *5)))) (-3314 (*1 *2 *3) (-12 (-5 *3 (-1147 *5 *4)) (-4 *4 (-740)) (-14 *5 (-1089)) (-5 *2 (-484)) (-5 *1 (-1027 *4 *5)))) (-3313 (*1 *2 *3 *3) (-12 (-5 *3 (-1147 *5 *4)) (-4 *4 (-740)) (-14 *5 (-1089)) (-5 *2 (-484)) (-5 *1 (-1027 *4 *5)))) (-3312 (*1 *2 *3 *3) (-12 (-5 *3 (-1147 *5 *4)) (-4 *4 (-740)) (-14 *5 (-1089)) (-5 *2 (-583 *4)) (-5 *1 (-1027 *4 *5)))) (-3311 (*1 *2 *3 *3) (-12 (-4 *4 (-740)) (-14 *5 (-1089)) (-5 *2 (-583 (-1147 *5 *4))) (-5 *1 (-1027 *4 *5)) (-5 *3 (-1147 *5 *4)))) (-3310 (*1 *2 *3 *3) (-12 (-4 *4 (-740)) (-14 *5 (-1089)) (-5 *2 (-583 (-1147 *5 *4))) (-5 *1 (-1027 *4 *5)) (-5 *3 (-1147 *5 *4))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3318 (((-1094) $) 12 T ELT)) (-3317 (((-583 (-1094)) $) 14 T ELT)) (-3319 (($ (-583 (-1094)) (-1094)) 10 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) 29 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 17 T ELT))) +(((-1028) (-13 (-1013) (-10 -8 (-15 -3319 ($ (-583 (-1094)) (-1094))) (-15 -3318 ((-1094) $)) (-15 -3317 ((-583 (-1094)) $))))) (T -1028)) +((-3319 (*1 *1 *2 *3) (-12 (-5 *2 (-583 (-1094))) (-5 *3 (-1094)) (-5 *1 (-1028)))) (-3318 (*1 *2 *1) (-12 (-5 *2 (-1094)) (-5 *1 (-1028)))) (-3317 (*1 *2 *1) (-12 (-5 *2 (-583 (-1094))) (-5 *1 (-1028))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3320 (($ (-446) (-1028)) 14 T ELT)) (-3319 (((-1028) $) 20 T ELT)) (-3541 (((-446) $) 17 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) 27 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT))) +(((-1029) (-13 (-995) (-10 -8 (-15 -3320 ($ (-446) (-1028))) (-15 -3541 ((-446) $)) (-15 -3319 ((-1028) $))))) (T -1029)) +((-3320 (*1 *1 *2 *3) (-12 (-5 *2 (-446)) (-5 *3 (-1028)) (-5 *1 (-1029)))) (-3541 (*1 *2 *1) (-12 (-5 *2 (-446)) (-5 *1 (-1029)))) (-3319 (*1 *2 *1) (-12 (-5 *2 (-1028)) (-5 *1 (-1029))))) +((-3622 (((-3 (-484) #1="failed") |#2| (-1089) |#2| (-1072)) 19 T ELT) (((-3 (-484) #1#) |#2| (-1089) (-750 |#2|)) 17 T ELT) (((-3 (-484) #1#) |#2|) 60 T ELT))) +(((-1030 |#1| |#2|) (-10 -7 (-15 -3622 ((-3 (-484) #1="failed") |#2|)) (-15 -3622 ((-3 (-484) #1#) |#2| (-1089) (-750 |#2|))) (-15 -3622 ((-3 (-484) #1#) |#2| (-1089) |#2| (-1072)))) (-13 (-495) (-950 (-484)) (-580 (-484)) (-391)) (-13 (-27) (-1114) (-363 |#1|))) (T -1030)) +((-3622 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1089)) (-5 *5 (-1072)) (-4 *6 (-13 (-495) (-950 *2) (-580 *2) (-391))) (-5 *2 (-484)) (-5 *1 (-1030 *6 *3)) (-4 *3 (-13 (-27) (-1114) (-363 *6))))) (-3622 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1089)) (-5 *5 (-750 *3)) (-4 *3 (-13 (-27) (-1114) (-363 *6))) (-4 *6 (-13 (-495) (-950 *2) (-580 *2) (-391))) (-5 *2 (-484)) (-5 *1 (-1030 *6 *3)))) (-3622 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-495) (-950 *2) (-580 *2) (-391))) (-5 *2 (-484)) (-5 *1 (-1030 *4 *3)) (-4 *3 (-13 (-27) (-1114) (-363 *4)))))) +((-3622 (((-3 (-484) #1="failed") (-349 (-857 |#1|)) (-1089) (-349 (-857 |#1|)) (-1072)) 38 T ELT) (((-3 (-484) #1#) (-349 (-857 |#1|)) (-1089) (-750 (-349 (-857 |#1|)))) 33 T ELT) (((-3 (-484) #1#) (-349 (-857 |#1|))) 14 T ELT))) +(((-1031 |#1|) (-10 -7 (-15 -3622 ((-3 (-484) #1="failed") (-349 (-857 |#1|)))) (-15 -3622 ((-3 (-484) #1#) (-349 (-857 |#1|)) (-1089) (-750 (-349 (-857 |#1|))))) (-15 -3622 ((-3 (-484) #1#) (-349 (-857 |#1|)) (-1089) (-349 (-857 |#1|)) (-1072)))) (-391)) (T -1031)) +((-3622 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-349 (-857 *6))) (-5 *4 (-1089)) (-5 *5 (-1072)) (-4 *6 (-391)) (-5 *2 (-484)) (-5 *1 (-1031 *6)))) (-3622 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1089)) (-5 *5 (-750 (-349 (-857 *6)))) (-5 *3 (-349 (-857 *6))) (-4 *6 (-391)) (-5 *2 (-484)) (-5 *1 (-1031 *6)))) (-3622 (*1 *2 *3) (|partial| -12 (-5 *3 (-349 (-857 *4))) (-4 *4 (-391)) (-5 *2 (-484)) (-5 *1 (-1031 *4))))) +((-3648 (((-265 (-484)) (-48)) 12 T ELT))) +(((-1032) (-10 -7 (-15 -3648 ((-265 (-484)) (-48))))) (T -1032)) +((-3648 (*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-265 (-484))) (-5 *1 (-1032))))) +((-2568 (((-85) $ $) NIL T ELT)) (-2313 (($ $) 22 T ELT)) (-3188 (((-85) $) 49 T ELT)) (-3321 (($ $ $) 28 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) 75 T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-2047 (($ $ $) NIL T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2042 (($ $ $ $) 59 T ELT)) (-3774 (($ $) NIL T ELT)) (-3970 (((-347 $) $) NIL T ELT)) (-1607 (((-85) $ $) NIL T ELT)) (-3136 (((-694)) 61 T ELT)) (-3622 (((-484) $) NIL T ELT)) (-2441 (($ $ $) 56 T ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 (-484) #1#) $) NIL T ELT)) (-3156 (((-484) $) NIL T ELT)) (-2564 (($ $ $) 42 T ELT)) (-2279 (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) 70 T ELT) (((-630 (-484)) (-630 $)) 8 T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-3024 (((-3 (-349 (-484)) #1#) $) NIL T ELT)) (-3023 (((-85) $) NIL T ELT)) (-3022 (((-349 (-484)) $) NIL T ELT)) (-2994 (($) 73 T ELT) (($ $) 72 T ELT)) (-2563 (($ $ $) 41 T ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-3722 (((-85) $) NIL T ELT)) (-2040 (($ $ $ $) NIL T ELT)) (-2048 (($ $ $) 71 T ELT)) (-3186 (((-85) $) 76 T ELT)) (-1368 (($ $ $) NIL T ELT)) (-2796 (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) NIL T ELT)) (-2561 (($ $ $) 27 T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) 50 T ELT)) (-2673 (((-85) $) 47 T ELT)) (-2560 (($ $) 23 T ELT)) (-3444 (((-632 $) $) NIL T ELT)) (-3187 (((-85) $) 60 T ELT)) (-1604 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2041 (($ $ $ $) 57 T ELT)) (-2531 (($ $ $) 52 T ELT) (($) 19 T CONST)) (-2857 (($ $ $) 51 T ELT) (($) 18 T CONST)) (-2044 (($ $) NIL T ELT)) (-2010 (((-830) $) 66 T ELT)) (-3832 (($ $) 55 T ELT)) (-2280 (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL T ELT) (((-630 (-484)) (-1178 $)) NIL T ELT)) (-1890 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2039 (($ $ $) NIL T ELT)) (-3445 (($) NIL T CONST)) (-2400 (($ (-830)) 65 T ELT)) (-2046 (($ $) 33 T ELT)) (-3243 (((-1033) $) 54 T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3144 (($ $ $) 45 T ELT) (($ (-583 $)) NIL T ELT)) (-1366 (($ $) NIL T ELT)) (-3731 (((-347 $) $) NIL T ELT)) (-1605 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT)) (-3465 (((-3 $ #1#) $ $) NIL T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-2674 (((-85) $) 48 T ELT)) (-1606 (((-694) $) NIL T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 44 T ELT)) (-3757 (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-2045 (($ $) 34 T ELT)) (-3399 (($ $) NIL T ELT)) (-3971 (((-484) $) 12 T ELT) (((-473) $) NIL T ELT) (((-800 (-484)) $) NIL T ELT) (((-329) $) NIL T ELT) (((-179) $) NIL T ELT)) (-3945 (((-772) $) 11 T ELT) (($ (-484)) 13 T ELT) (($ $) NIL T ELT) (($ (-484)) 13 T ELT)) (-3126 (((-694)) NIL T CONST)) (-2049 (((-85) $ $) NIL T ELT)) (-3101 (($ $ $) NIL T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2694 (($) 17 T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2562 (($ $ $) 26 T ELT)) (-2043 (($ $ $ $) 58 T ELT)) (-3382 (($ $) 46 T ELT)) (-2311 (($ $ $) 25 T ELT)) (-2660 (($) 15 T CONST)) (-2666 (($) 16 T CONST)) (-2669 (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-2566 (((-85) $ $) 32 T ELT)) (-2567 (((-85) $ $) 30 T ELT)) (-3056 (((-85) $ $) 21 T ELT)) (-2684 (((-85) $ $) 31 T ELT)) (-2685 (((-85) $ $) 29 T ELT)) (-2312 (($ $ $) 24 T ELT)) (-3836 (($ $) 35 T ELT) (($ $ $) 37 T ELT)) (-3838 (($ $ $) 36 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) 40 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 14 T ELT) (($ $ $) 38 T ELT) (($ (-484) $) 14 T ELT))) +(((-1033) (-13 (-483) (-752) (-84) (-10 -8 (-6 -3981) (-6 -3986) (-6 -3982) (-15 -3321 ($ $ $))))) (T -1033)) +((-3321 (*1 *1 *1 *1) (-5 *1 (-1033)))) +((-484) (|%ismall?| |#1|)) +((-2568 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3323 ((|#1| $) 48 T ELT)) (-3723 (($) 7 T CONST)) (-3325 ((|#1| |#1| $) 50 T ELT)) (-3324 ((|#1| $) 49 T ELT)) (-2889 (((-583 |#1|) $) 30 (|has| $ (-6 -3994)) ELT)) (-2608 (((-583 |#1|) $) 29 (|has| $ (-6 -3994)) ELT)) (-3245 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-1948 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3242 (((-1072) $) 22 (|has| |#1| (-1013)) ELT)) (-1273 ((|#1| $) 43 T ELT)) (-3608 (($ |#1| $) 44 T ELT)) (-3243 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-1274 ((|#1| $) 45 T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3994)) ELT)) (-3767 (($ $ (-583 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1221 (((-85) $ $) 11 T ELT)) (-3402 (((-85) $) 8 T ELT)) (-3564 (($) 9 T ELT)) (-3322 (((-694) $) 47 T ELT)) (-1945 (((-694) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3994)) ELT) (((-694) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-3399 (($ $) 10 T ELT)) (-3945 (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-1264 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1275 (($ (-583 |#1|)) 46 T ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3994)) ELT)) (-3056 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3956 (((-694) $) 6 (|has| $ (-6 -3994)) ELT))) +(((-1034 |#1|) (-113) (-1128)) (T -1034)) +((-3325 (*1 *2 *2 *1) (-12 (-4 *1 (-1034 *2)) (-4 *2 (-1128)))) (-3324 (*1 *2 *1) (-12 (-4 *1 (-1034 *2)) (-4 *2 (-1128)))) (-3323 (*1 *2 *1) (-12 (-4 *1 (-1034 *2)) (-4 *2 (-1128)))) (-3322 (*1 *2 *1) (-12 (-4 *1 (-1034 *3)) (-4 *3 (-1128)) (-5 *2 (-694))))) +(-13 (-76 |t#1|) (-10 -8 (-6 -3994) (-15 -3325 (|t#1| |t#1| $)) (-15 -3324 (|t#1| $)) (-15 -3323 (|t#1| $)) (-15 -3322 ((-694) $)))) +(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1013)) (|has| |#1| (-552 (-772)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-428 |#1|) . T) ((-455 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-1013) |has| |#1| (-1013)) ((-1128) . T)) +((-3329 ((|#3| $) 87 T ELT)) (-3157 (((-3 (-484) #1="failed") $) NIL T ELT) (((-3 (-349 (-484)) #1#) $) NIL T ELT) (((-3 |#3| #1#) $) 50 T ELT)) (-3156 (((-484) $) NIL T ELT) (((-349 (-484)) $) NIL T ELT) ((|#3| $) 47 T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL T ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) NIL T ELT) (((-2 (|:| |mat| (-630 |#3|)) (|:| |vec| (-1178 |#3|))) (-630 $) (-1178 $)) 84 T ELT) (((-630 |#3|) (-630 $)) 76 T ELT)) (-3757 (($ $ (-1 |#3| |#3|) (-694)) NIL T ELT) (($ $ (-1 |#3| |#3|)) 28 T ELT) (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-1089)) NIL T ELT) (($ $ (-583 (-1089))) NIL T ELT) (($ $ (-1089) (-694)) NIL T ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL T ELT)) (-3328 ((|#3| $) 89 T ELT)) (-3330 ((|#4| $) 43 T ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ (-349 (-484))) NIL T ELT) (($ |#3|) 25 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) 24 T ELT) (($ $ (-484)) 95 T ELT))) +(((-1035 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3757 (|#1| |#1| (-583 (-1089)) (-583 (-694)))) (-15 -3757 (|#1| |#1| (-1089) (-694))) (-15 -3757 (|#1| |#1| (-583 (-1089)))) (-15 -3757 (|#1| |#1| (-1089))) (-15 -3757 (|#1| |#1| (-694))) (-15 -3757 (|#1| |#1|)) (-15 ** (|#1| |#1| (-484))) (-15 -3328 (|#3| |#1|)) (-15 -3329 (|#3| |#1|)) (-15 -3330 (|#4| |#1|)) (-15 -2279 ((-630 |#3|) (-630 |#1|))) (-15 -2279 ((-2 (|:| |mat| (-630 |#3|)) (|:| |vec| (-1178 |#3|))) (-630 |#1|) (-1178 |#1|))) (-15 -2279 ((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 |#1|) (-1178 |#1|))) (-15 -2279 ((-630 (-484)) (-630 |#1|))) (-15 -3945 (|#1| |#3|)) (-15 -3157 ((-3 |#3| #1="failed") |#1|)) (-15 -3156 (|#3| |#1|)) (-15 -3156 ((-349 (-484)) |#1|)) (-15 -3157 ((-3 (-349 (-484)) #1#) |#1|)) (-15 -3945 (|#1| (-349 (-484)))) (-15 -3156 ((-484) |#1|)) (-15 -3157 ((-3 (-484) #1#) |#1|)) (-15 -3757 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3757 (|#1| |#1| (-1 |#3| |#3|) (-694))) (-15 -3945 (|#1| (-484))) (-15 ** (|#1| |#1| (-694))) (-15 ** (|#1| |#1| (-830))) (-15 -3945 ((-772) |#1|))) (-1036 |#2| |#3| |#4| |#5|) (-694) (-961) (-196 |#2| |#3|) (-196 |#2| |#3|)) (T -1035)) +NIL +((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-3329 ((|#2| $) 90 T ELT)) (-3120 (((-85) $) 131 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3122 (((-85) $) 129 T ELT)) (-3332 (($ |#2|) 93 T ELT)) (-3723 (($) 23 T CONST)) (-3109 (($ $) 148 (|has| |#2| (-258)) ELT)) (-3111 ((|#3| $ (-484)) 143 T ELT)) (-3157 (((-3 (-484) #1="failed") $) 109 (|has| |#2| (-950 (-484))) ELT) (((-3 (-349 (-484)) #1#) $) 106 (|has| |#2| (-950 (-349 (-484)))) ELT) (((-3 |#2| #1#) $) 103 T ELT)) (-3156 (((-484) $) 108 (|has| |#2| (-950 (-484))) ELT) (((-349 (-484)) $) 105 (|has| |#2| (-950 (-349 (-484)))) ELT) ((|#2| $) 104 T ELT)) (-2279 (((-630 (-484)) (-630 $)) 99 (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) 98 (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1178 |#2|))) (-630 $) (-1178 $)) 97 T ELT) (((-630 |#2|) (-630 $)) 96 T ELT)) (-3466 (((-3 $ "failed") $) 42 T ELT)) (-3108 (((-694) $) 149 (|has| |#2| (-495)) ELT)) (-3112 ((|#2| $ (-484) (-484)) 141 T ELT)) (-2889 (((-583 |#2|) $) 117 (|has| $ (-6 -3994)) ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3107 (((-694) $) 150 (|has| |#2| (-495)) ELT)) (-3106 (((-583 |#4|) $) 151 (|has| |#2| (-495)) ELT)) (-3114 (((-694) $) 137 T ELT)) (-3113 (((-694) $) 138 T ELT)) (-3326 ((|#2| $) 85 (|has| |#2| (-6 (-3996 #2="*"))) ELT)) (-3118 (((-484) $) 133 T ELT)) (-3116 (((-484) $) 135 T ELT)) (-2608 (((-583 |#2|) $) 116 (|has| $ (-6 -3994)) ELT)) (-3245 (((-85) |#2| $) 114 (-12 (|has| |#2| (-1013)) (|has| $ (-6 -3994))) ELT)) (-3117 (((-484) $) 134 T ELT)) (-3115 (((-484) $) 136 T ELT)) (-3123 (($ (-583 (-583 |#2|))) 128 T ELT)) (-1948 (($ (-1 |#2| |#2|) $) 121 (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#2| |#2| |#2|) $ $) 145 T ELT) (($ (-1 |#2| |#2|) $) 122 T ELT)) (-3593 (((-583 (-583 |#2|)) $) 139 T ELT)) (-2280 (((-630 (-484)) (-1178 $)) 101 (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) 100 (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1178 |#2|))) (-1178 $) $) 95 T ELT) (((-630 |#2|) (-1178 $)) 94 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3589 (((-3 $ "failed") $) 84 (|has| |#2| (-312)) ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3465 (((-3 $ "failed") $ |#2|) 146 (|has| |#2| (-495)) ELT)) (-1946 (((-85) (-1 (-85) |#2|) $) 119 (|has| $ (-6 -3994)) ELT)) (-3767 (($ $ (-583 (-249 |#2|))) 113 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-249 |#2|)) 112 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ |#2| |#2|) 111 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-583 |#2|) (-583 |#2|)) 110 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT)) (-1221 (((-85) $ $) 127 T ELT)) (-3402 (((-85) $) 124 T ELT)) (-3564 (($) 125 T ELT)) (-3799 ((|#2| $ (-484) (-484) |#2|) 142 T ELT) ((|#2| $ (-484) (-484)) 140 T ELT)) (-3757 (($ $ (-1 |#2| |#2|) (-694)) 65 T ELT) (($ $ (-1 |#2| |#2|)) 64 T ELT) (($ $) 55 (|has| |#2| (-189)) ELT) (($ $ (-694)) 53 (|has| |#2| (-189)) ELT) (($ $ (-1089)) 63 (|has| |#2| (-811 (-1089))) ELT) (($ $ (-583 (-1089))) 61 (|has| |#2| (-811 (-1089))) ELT) (($ $ (-1089) (-694)) 60 (|has| |#2| (-811 (-1089))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) 59 (|has| |#2| (-811 (-1089))) ELT)) (-3328 ((|#2| $) 89 T ELT)) (-3331 (($ (-583 |#2|)) 92 T ELT)) (-3121 (((-85) $) 130 T ELT)) (-3330 ((|#3| $) 91 T ELT)) (-3327 ((|#2| $) 86 (|has| |#2| (-6 (-3996 #2#))) ELT)) (-1945 (((-694) (-1 (-85) |#2|) $) 118 (|has| $ (-6 -3994)) ELT) (((-694) |#2| $) 115 (-12 (|has| |#2| (-1013)) (|has| $ (-6 -3994))) ELT)) (-3399 (($ $) 126 T ELT)) (-3110 ((|#4| $ (-484)) 144 T ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ (-349 (-484))) 107 (|has| |#2| (-950 (-349 (-484)))) ELT) (($ |#2|) 102 T ELT)) (-3126 (((-694)) 40 T CONST)) (-1264 (((-85) $ $) 6 T ELT)) (-1947 (((-85) (-1 (-85) |#2|) $) 120 (|has| $ (-6 -3994)) ELT)) (-3119 (((-85) $) 132 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-2669 (($ $ (-1 |#2| |#2|) (-694)) 67 T ELT) (($ $ (-1 |#2| |#2|)) 66 T ELT) (($ $) 54 (|has| |#2| (-189)) ELT) (($ $ (-694)) 52 (|has| |#2| (-189)) ELT) (($ $ (-1089)) 62 (|has| |#2| (-811 (-1089))) ELT) (($ $ (-583 (-1089))) 58 (|has| |#2| (-811 (-1089))) ELT) (($ $ (-1089) (-694)) 57 (|has| |#2| (-811 (-1089))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) 56 (|has| |#2| (-811 (-1089))) ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-3948 (($ $ |#2|) 147 (|has| |#2| (-312)) ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT) (($ $ (-484)) 83 (|has| |#2| (-312)) ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#2|) 153 T ELT) (($ |#2| $) 152 T ELT) ((|#4| $ |#4|) 88 T ELT) ((|#3| |#3| $) 87 T ELT)) (-3956 (((-694) $) 123 (|has| $ (-6 -3994)) ELT))) +(((-1036 |#1| |#2| |#3| |#4|) (-113) (-694) (-961) (-196 |t#1| |t#2|) (-196 |t#1| |t#2|)) (T -1036)) +((-3332 (*1 *1 *2) (-12 (-4 *2 (-961)) (-4 *1 (-1036 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2)))) (-3331 (*1 *1 *2) (-12 (-5 *2 (-583 *4)) (-4 *4 (-961)) (-4 *1 (-1036 *3 *4 *5 *6)) (-4 *5 (-196 *3 *4)) (-4 *6 (-196 *3 *4)))) (-3330 (*1 *2 *1) (-12 (-4 *1 (-1036 *3 *4 *2 *5)) (-4 *4 (-961)) (-4 *5 (-196 *3 *4)) (-4 *2 (-196 *3 *4)))) (-3329 (*1 *2 *1) (-12 (-4 *1 (-1036 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2)) (-4 *2 (-961)))) (-3328 (*1 *2 *1) (-12 (-4 *1 (-1036 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2)) (-4 *2 (-961)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1036 *3 *4 *5 *2)) (-4 *4 (-961)) (-4 *5 (-196 *3 *4)) (-4 *2 (-196 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1036 *3 *4 *2 *5)) (-4 *4 (-961)) (-4 *2 (-196 *3 *4)) (-4 *5 (-196 *3 *4)))) (-3327 (*1 *2 *1) (-12 (-4 *1 (-1036 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2)) (|has| *2 (-6 (-3996 #1="*"))) (-4 *2 (-961)))) (-3326 (*1 *2 *1) (-12 (-4 *1 (-1036 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2)) (|has| *2 (-6 (-3996 #1#))) (-4 *2 (-961)))) (-3589 (*1 *1 *1) (|partial| -12 (-4 *1 (-1036 *2 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-196 *2 *3)) (-4 *5 (-196 *2 *3)) (-4 *3 (-312)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-4 *1 (-1036 *3 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-196 *3 *4)) (-4 *6 (-196 *3 *4)) (-4 *4 (-312))))) +(-13 (-184 |t#2|) (-82 |t#2| |t#2|) (-965 |t#1| |t#1| |t#2| |t#3| |t#4|) (-354 |t#2|) (-328 |t#2|) (-10 -8 (IF (|has| |t#2| (-146)) (-6 (-654 |t#2|)) |%noBranch|) (-15 -3332 ($ |t#2|)) (-15 -3331 ($ (-583 |t#2|))) (-15 -3330 (|t#3| $)) (-15 -3329 (|t#2| $)) (-15 -3328 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-3996 "*"))) (PROGN (-6 (-38 |t#2|)) (-15 -3327 (|t#2| $)) (-15 -3326 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-312)) (PROGN (-15 -3589 ((-3 $ "failed") $)) (-15 ** ($ $ (-484)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-38 |#2|) |has| |#2| (-6 (-3996 #1="*"))) ((-72) . T) ((-82 |#2| |#2|) . T) ((-104) . T) ((-555 (-349 (-484))) |has| |#2| (-950 (-349 (-484)))) ((-555 (-484)) . T) ((-555 |#2|) . T) ((-552 (-772)) . T) ((-186 $) OR (|has| |#2| (-189)) (|has| |#2| (-190))) ((-184 |#2|) . T) ((-190) |has| |#2| (-190)) ((-189) OR (|has| |#2| (-189)) (|has| |#2| (-190))) ((-225 |#2|) . T) ((-260 |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ((-328 |#2|) . T) ((-354 |#2|) . T) ((-428 |#2|) . T) ((-455 |#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ((-13) . T) ((-588 (-484)) . T) ((-588 |#2|) . T) ((-588 $) . T) ((-590 (-484)) |has| |#2| (-580 (-484))) ((-590 |#2|) . T) ((-590 $) . T) ((-582 |#2|) OR (|has| |#2| (-146)) (|has| |#2| (-6 (-3996 #1#)))) ((-580 (-484)) |has| |#2| (-580 (-484))) ((-580 |#2|) . T) ((-654 |#2|) OR (|has| |#2| (-146)) (|has| |#2| (-6 (-3996 #1#)))) ((-663) . T) ((-806 $ (-1089)) OR (|has| |#2| (-811 (-1089))) (|has| |#2| (-809 (-1089)))) ((-809 (-1089)) |has| |#2| (-809 (-1089))) ((-811 (-1089)) OR (|has| |#2| (-811 (-1089))) (|has| |#2| (-809 (-1089)))) ((-965 |#1| |#1| |#2| |#3| |#4|) . T) ((-950 (-349 (-484))) |has| |#2| (-950 (-349 (-484)))) ((-950 (-484)) |has| |#2| (-950 (-484))) ((-950 |#2|) . T) ((-963 |#2|) . T) ((-968 |#2|) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T)) +((-3335 ((|#4| |#4|) 81 T ELT)) (-3333 ((|#4| |#4|) 76 T ELT)) (-3337 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2012 (-583 |#3|))) |#4| |#3|) 91 T ELT)) (-3336 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 80 T ELT)) (-3334 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 78 T ELT))) +(((-1037 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3333 (|#4| |#4|)) (-15 -3334 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -3335 (|#4| |#4|)) (-15 -3336 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3337 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2012 (-583 |#3|))) |#4| |#3|))) (-258) (-323 |#1|) (-323 |#1|) (-627 |#1| |#2| |#3|)) (T -1037)) +((-3337 (*1 *2 *3 *4) (-12 (-4 *5 (-258)) (-4 *6 (-323 *5)) (-4 *4 (-323 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2012 (-583 *4)))) (-5 *1 (-1037 *5 *6 *4 *3)) (-4 *3 (-627 *5 *6 *4)))) (-3336 (*1 *2 *3) (-12 (-4 *4 (-258)) (-4 *5 (-323 *4)) (-4 *6 (-323 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1037 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6)))) (-3335 (*1 *2 *2) (-12 (-4 *3 (-258)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)) (-5 *1 (-1037 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5)))) (-3334 (*1 *2 *3) (-12 (-4 *4 (-258)) (-4 *5 (-323 *4)) (-4 *6 (-323 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1037 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6)))) (-3333 (*1 *2 *2) (-12 (-4 *3 (-258)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)) (-5 *1 (-1037 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) 18 T ELT)) (-3081 (((-583 |#2|) $) 174 T ELT)) (-3083 (((-1084 $) $ |#2|) 60 T ELT) (((-1084 |#1|) $) 49 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) 116 (|has| |#1| (-495)) ELT)) (-2063 (($ $) 118 (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) 120 (|has| |#1| (-495)) ELT)) (-2819 (((-694) $) NIL T ELT) (((-694) $ (-583 |#2|)) 214 T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2707 (((-347 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-821)) ELT)) (-3774 (($ $) NIL (|has| |#1| (-391)) ELT)) (-3970 (((-347 $) $) NIL (|has| |#1| (-391)) ELT)) (-2704 (((-3 (-583 (-1084 $)) #1#) (-583 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-821)) ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 |#1| #1#) $) 167 T ELT) (((-3 (-349 (-484)) #1#) $) NIL (|has| |#1| (-950 (-349 (-484)))) ELT) (((-3 (-484) #1#) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-3 |#2| #1#) $) NIL T ELT)) (-3156 ((|#1| $) 165 T ELT) (((-349 (-484)) $) NIL (|has| |#1| (-950 (-349 (-484)))) ELT) (((-484) $) NIL (|has| |#1| (-950 (-484))) ELT) ((|#2| $) NIL T ELT)) (-3755 (($ $ $ |#2|) NIL (|has| |#1| (-146)) ELT)) (-3958 (($ $) 218 T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1178 |#1|))) (-630 $) (-1178 $)) NIL T ELT) (((-630 |#1|) (-630 $)) NIL T ELT)) (-3466 (((-3 $ #1#) $) 90 T ELT)) (-3502 (($ $) NIL (|has| |#1| (-391)) ELT) (($ $ |#2|) NIL (|has| |#1| (-391)) ELT)) (-2818 (((-583 $) $) NIL T ELT)) (-3722 (((-85) $) NIL (|has| |#1| (-821)) ELT)) (-1623 (($ $ |#1| (-469 |#2|) $) NIL T ELT)) (-2796 (((-798 (-329) $) $ (-800 (-329)) (-798 (-329) $)) NIL (-12 (|has| |#1| (-796 (-329))) (|has| |#2| (-796 (-329)))) ELT) (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) NIL (-12 (|has| |#1| (-796 (-484))) (|has| |#2| (-796 (-484)))) ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) 20 T ELT)) (-2420 (((-694) $) 30 T ELT)) (-3084 (($ (-1084 |#1|) |#2|) 54 T ELT) (($ (-1084 $) |#2|) 71 T ELT)) (-2821 (((-583 $) $) NIL T ELT)) (-3936 (((-85) $) 38 T ELT)) (-2893 (($ |#1| (-469 |#2|)) 78 T ELT) (($ $ |#2| (-694)) 58 T ELT) (($ $ (-583 |#2|) (-583 (-694))) NIL T ELT)) (-3762 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $ |#2|) NIL T ELT)) (-2820 (((-469 |#2|) $) 205 T ELT) (((-694) $ |#2|) 206 T ELT) (((-583 (-694)) $ (-583 |#2|)) 207 T ELT)) (-1624 (($ (-1 (-469 |#2|) (-469 |#2|)) $) NIL T ELT)) (-3957 (($ (-1 |#1| |#1|) $) 128 T ELT)) (-3082 (((-3 |#2| #1#) $) 177 T ELT)) (-2280 (((-630 (-484)) (-1178 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1178 |#1|))) (-1178 $) $) NIL T ELT) (((-630 |#1|) (-1178 $)) NIL T ELT)) (-2894 (($ $) 217 T ELT)) (-3174 ((|#1| $) 43 T ELT)) (-1890 (($ (-583 $)) NIL (|has| |#1| (-391)) ELT) (($ $ $) NIL (|has| |#1| (-391)) ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2823 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2822 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2824 (((-3 (-2 (|:| |var| |#2|) (|:| -2401 (-694))) #1#) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1796 (((-85) $) 39 T ELT)) (-1795 ((|#1| $) NIL T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) 148 (|has| |#1| (-391)) ELT)) (-3144 (($ (-583 $)) 153 (|has| |#1| (-391)) ELT) (($ $ $) 138 (|has| |#1| (-391)) ELT)) (-2705 (((-347 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-821)) ELT)) (-2706 (((-347 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-821)) ELT)) (-3731 (((-347 $) $) NIL (|has| |#1| (-821)) ELT)) (-3465 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-495)) ELT) (((-3 $ #1#) $ $) 126 (|has| |#1| (-495)) ELT)) (-3767 (($ $ (-583 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ |#2| |#1|) 180 T ELT) (($ $ (-583 |#2|) (-583 |#1|)) 195 T ELT) (($ $ |#2| $) 179 T ELT) (($ $ (-583 |#2|) (-583 $)) 194 T ELT)) (-3756 (($ $ |#2|) NIL (|has| |#1| (-146)) ELT)) (-3757 (($ $ (-583 |#2|) (-583 (-694))) NIL T ELT) (($ $ |#2| (-694)) NIL T ELT) (($ $ (-583 |#2|)) NIL T ELT) (($ $ |#2|) 216 T ELT)) (-3947 (((-469 |#2|) $) 201 T ELT) (((-694) $ |#2|) 196 T ELT) (((-583 (-694)) $ (-583 |#2|)) 199 T ELT)) (-3971 (((-800 (-329)) $) NIL (-12 (|has| |#1| (-553 (-800 (-329)))) (|has| |#2| (-553 (-800 (-329))))) ELT) (((-800 (-484)) $) NIL (-12 (|has| |#1| (-553 (-800 (-484)))) (|has| |#2| (-553 (-800 (-484))))) ELT) (((-473) $) NIL (-12 (|has| |#1| (-553 (-473))) (|has| |#2| (-553 (-473)))) ELT)) (-2817 ((|#1| $) 134 (|has| |#1| (-391)) ELT) (($ $ |#2|) 137 (|has| |#1| (-391)) ELT)) (-2703 (((-3 (-1178 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-821))) ELT)) (-3945 (((-772) $) 159 T ELT) (($ (-484)) 84 T ELT) (($ |#1|) 85 T ELT) (($ |#2|) 33 T ELT) (($ $) NIL (|has| |#1| (-495)) ELT) (($ (-349 (-484))) NIL (OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-950 (-349 (-484))))) ELT)) (-3816 (((-583 |#1|) $) 162 T ELT)) (-3676 ((|#1| $ (-469 |#2|)) 80 T ELT) (($ $ |#2| (-694)) NIL T ELT) (($ $ (-583 |#2|) (-583 (-694))) NIL T ELT)) (-2702 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-821))) (|has| |#1| (-118))) ELT)) (-3126 (((-694)) 87 T CONST)) (-1622 (($ $ $ (-694)) NIL (|has| |#1| (-146)) ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) 123 (|has| |#1| (-495)) ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) 12 T CONST)) (-2666 (($) 14 T CONST)) (-2669 (($ $ (-583 |#2|) (-583 (-694))) NIL T ELT) (($ $ |#2| (-694)) NIL T ELT) (($ $ (-583 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-3056 (((-85) $ $) 106 T ELT)) (-3948 (($ $ |#1|) 132 (|has| |#1| (-312)) ELT)) (-3836 (($ $) 93 T ELT) (($ $ $) 104 T ELT)) (-3838 (($ $ $) 55 T ELT)) (** (($ $ (-830)) 110 T ELT) (($ $ (-694)) 109 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 96 T ELT) (($ $ $) 72 T ELT) (($ $ (-349 (-484))) NIL (|has| |#1| (-38 (-349 (-484)))) ELT) (($ (-349 (-484)) $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT) (($ |#1| $) 99 T ELT) (($ $ |#1|) NIL T ELT))) +(((-1038 |#1| |#2|) (-861 |#1| (-469 |#2|) |#2|) (-961) (-756)) (T -1038)) +NIL +((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-3081 (((-583 |#2|) $) NIL T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2063 (($ $) NIL (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-3491 (($ $) 149 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3638 (($ $) 125 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3037 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3489 (($ $) 145 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3637 (($ $) 121 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3493 (($ $) 153 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3636 (($ $) 129 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3723 (($) NIL T CONST)) (-3958 (($ $) NIL T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-3813 (((-857 |#1|) $ (-694)) NIL T ELT) (((-857 |#1|) $ (-694) (-694)) NIL T ELT)) (-2892 (((-85) $) NIL T ELT)) (-3626 (($) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3771 (((-694) $ |#2|) NIL T ELT) (((-694) $ |#2| (-694)) NIL T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-3011 (($ $ (-484)) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3936 (((-85) $) NIL T ELT)) (-2893 (($ $ (-583 |#2|) (-583 (-469 |#2|))) NIL T ELT) (($ $ |#2| (-469 |#2|)) NIL T ELT) (($ |#1| (-469 |#2|)) NIL T ELT) (($ $ |#2| (-694)) 63 T ELT) (($ $ (-583 |#2|) (-583 (-694))) NIL T ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3941 (($ $) 119 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2894 (($ $) NIL T ELT)) (-3174 ((|#1| $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3811 (($ $ |#2|) NIL (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $ |#2| |#1|) 171 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3675 (($ (-1 $) |#2| |#1|) 170 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3768 (($ $ (-694)) 17 T ELT)) (-3465 (((-3 $ #1#) $ $) NIL (|has| |#1| (-495)) ELT)) (-3942 (($ $) 117 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3767 (($ $ |#2| $) 104 T ELT) (($ $ (-583 |#2|) (-583 $)) 99 T ELT) (($ $ (-583 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT)) (-3757 (($ $ (-583 |#2|) (-583 (-694))) NIL T ELT) (($ $ |#2| (-694)) NIL T ELT) (($ $ (-583 |#2|)) NIL T ELT) (($ $ |#2|) 106 T ELT)) (-3947 (((-469 |#2|) $) NIL T ELT)) (-3338 (((-1 (-1068 |#3|) |#3|) (-583 |#2|) (-583 (-1068 |#3|))) 87 T ELT)) (-3494 (($ $) 155 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3635 (($ $) 131 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3492 (($ $) 151 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3634 (($ $) 127 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3490 (($ $) 147 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3633 (($ $) 123 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2891 (($ $) 19 T ELT)) (-3945 (((-772) $) 194 T ELT) (($ (-484)) NIL T ELT) (($ |#1|) 45 (|has| |#1| (-146)) ELT) (($ $) NIL (|has| |#1| (-495)) ELT) (($ (-349 (-484))) NIL (|has| |#1| (-38 (-349 (-484)))) ELT) (($ |#2|) 70 T ELT) (($ |#3|) 68 T ELT)) (-3676 ((|#1| $ (-469 |#2|)) NIL T ELT) (($ $ |#2| (-694)) NIL T ELT) (($ $ (-583 |#2|) (-583 (-694))) NIL T ELT) ((|#3| $ (-694)) 43 T ELT)) (-2702 (((-632 $) $) NIL (|has| |#1| (-118)) ELT)) (-3126 (((-694)) NIL T CONST)) (-1264 (((-85) $ $) NIL T ELT)) (-3497 (($ $) 161 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3485 (($ $) 137 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2062 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-3495 (($ $) 157 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3483 (($ $) 133 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3499 (($ $) 165 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3487 (($ $) 141 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-3500 (($ $) 167 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3488 (($ $) 143 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3498 (($ $) 163 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3486 (($ $) 139 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3496 (($ $) 159 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3484 (($ $) 135 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2660 (($) 52 T CONST)) (-2666 (($) 62 T CONST)) (-2669 (($ $ (-583 |#2|) (-583 (-694))) NIL T ELT) (($ $ |#2| (-694)) NIL T ELT) (($ $ (-583 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3948 (($ $ |#1|) 196 (|has| |#1| (-312)) ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) 66 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) 77 T ELT) (($ $ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $ (-349 (-484))) 109 (|has| |#1| (-38 (-349 (-484)))) ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 65 T ELT) (($ $ (-349 (-484))) 114 (|has| |#1| (-38 (-349 (-484)))) ELT) (($ (-349 (-484)) $) 112 (|has| |#1| (-38 (-349 (-484)))) ELT) (($ |#1| $) 48 T ELT) (($ $ |#1|) 49 T ELT) (($ |#3| $) 47 T ELT))) +(((-1039 |#1| |#2| |#3|) (-13 (-679 |#1| |#2|) (-10 -8 (-15 -3676 (|#3| $ (-694))) (-15 -3945 ($ |#2|)) (-15 -3945 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -3338 ((-1 (-1068 |#3|) |#3|) (-583 |#2|) (-583 (-1068 |#3|)))) (IF (|has| |#1| (-38 (-349 (-484)))) (PROGN (-15 -3811 ($ $ |#2| |#1|)) (-15 -3675 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-961) (-756) (-861 |#1| (-469 |#2|) |#2|)) (T -1039)) +((-3676 (*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-4 *2 (-861 *4 (-469 *5) *5)) (-5 *1 (-1039 *4 *5 *2)) (-4 *4 (-961)) (-4 *5 (-756)))) (-3945 (*1 *1 *2) (-12 (-4 *3 (-961)) (-4 *2 (-756)) (-5 *1 (-1039 *3 *2 *4)) (-4 *4 (-861 *3 (-469 *2) *2)))) (-3945 (*1 *1 *2) (-12 (-4 *3 (-961)) (-4 *4 (-756)) (-5 *1 (-1039 *3 *4 *2)) (-4 *2 (-861 *3 (-469 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-961)) (-4 *4 (-756)) (-5 *1 (-1039 *3 *4 *2)) (-4 *2 (-861 *3 (-469 *4) *4)))) (-3338 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *6)) (-5 *4 (-583 (-1068 *7))) (-4 *6 (-756)) (-4 *7 (-861 *5 (-469 *6) *6)) (-4 *5 (-961)) (-5 *2 (-1 (-1068 *7) *7)) (-5 *1 (-1039 *5 *6 *7)))) (-3811 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *3 (-961)) (-4 *2 (-756)) (-5 *1 (-1039 *3 *2 *4)) (-4 *4 (-861 *3 (-469 *2) *2)))) (-3675 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1039 *4 *3 *5))) (-4 *4 (-38 (-349 (-484)))) (-4 *4 (-961)) (-4 *3 (-756)) (-5 *1 (-1039 *4 *3 *5)) (-4 *5 (-861 *4 (-469 *3) *3))))) +((-2568 (((-85) $ $) 7 T ELT)) (-3680 (((-583 (-2 (|:| -3860 $) (|:| -1701 (-583 |#4|)))) (-583 |#4|)) 90 T ELT)) (-3681 (((-583 $) (-583 |#4|)) 91 T ELT) (((-583 $) (-583 |#4|) (-85)) 118 T ELT)) (-3081 (((-583 |#3|) $) 37 T ELT)) (-2908 (((-85) $) 30 T ELT)) (-2899 (((-85) $) 21 (|has| |#1| (-495)) ELT)) (-3692 (((-85) |#4| $) 106 T ELT) (((-85) $) 102 T ELT)) (-3687 ((|#4| |#4| $) 97 T ELT)) (-3774 (((-583 (-2 (|:| |val| |#4|) (|:| -1599 $))) |#4| $) 133 T ELT)) (-2909 (((-2 (|:| |under| $) (|:| -3130 $) (|:| |upper| $)) $ |#3|) 31 T ELT)) (-3709 (($ (-1 (-85) |#4|) $) 66 (|has| $ (-6 -3994)) ELT) (((-3 |#4| #1="failed") $ |#3|) 84 T ELT)) (-3723 (($) 46 T CONST)) (-2904 (((-85) $) 26 (|has| |#1| (-495)) ELT)) (-2906 (((-85) $ $) 28 (|has| |#1| (-495)) ELT)) (-2905 (((-85) $ $) 27 (|has| |#1| (-495)) ELT)) (-2907 (((-85) $) 29 (|has| |#1| (-495)) ELT)) (-3688 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 98 T ELT)) (-2900 (((-583 |#4|) (-583 |#4|) $) 22 (|has| |#1| (-495)) ELT)) (-2901 (((-583 |#4|) (-583 |#4|) $) 23 (|has| |#1| (-495)) ELT)) (-3157 (((-3 $ "failed") (-583 |#4|)) 40 T ELT)) (-3156 (($ (-583 |#4|)) 39 T ELT)) (-3798 (((-3 $ #1#) $) 87 T ELT)) (-3684 ((|#4| |#4| $) 94 T ELT)) (-1352 (($ $) 69 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -3994))) ELT)) (-3405 (($ |#4| $) 68 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -3994))) ELT) (($ (-1 (-85) |#4|) $) 65 (|has| $ (-6 -3994)) ELT)) (-2902 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 24 (|has| |#1| (-495)) ELT)) (-3693 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) 107 T ELT)) (-3682 ((|#4| |#4| $) 92 T ELT)) (-3841 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -3994))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -3994)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -3994)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 99 T ELT)) (-3695 (((-2 (|:| -3860 (-583 |#4|)) (|:| -1701 (-583 |#4|))) $) 110 T ELT)) (-3197 (((-85) |#4| $) 143 T ELT)) (-3195 (((-85) |#4| $) 140 T ELT)) (-3198 (((-85) |#4| $) 144 T ELT) (((-85) $) 141 T ELT)) (-2889 (((-583 |#4|) $) 53 (|has| $ (-6 -3994)) ELT)) (-3694 (((-85) |#4| $) 109 T ELT) (((-85) $) 108 T ELT)) (-3180 ((|#3| $) 38 T ELT)) (-2608 (((-583 |#4|) $) 54 (|has| $ (-6 -3994)) ELT)) (-3245 (((-85) |#4| $) 56 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -3994))) ELT)) (-1948 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-2914 (((-583 |#3|) $) 36 T ELT)) (-2913 (((-85) |#3| $) 35 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3191 (((-3 |#4| (-583 $)) |#4| |#4| $) 135 T ELT)) (-3190 (((-583 (-2 (|:| |val| |#4|) (|:| -1599 $))) |#4| |#4| $) 134 T ELT)) (-3797 (((-3 |#4| #1#) $) 88 T ELT)) (-3192 (((-583 $) |#4| $) 136 T ELT)) (-3194 (((-3 (-85) (-583 $)) |#4| $) 139 T ELT)) (-3193 (((-583 (-2 (|:| |val| (-85)) (|:| -1599 $))) |#4| $) 138 T ELT) (((-85) |#4| $) 137 T ELT)) (-3238 (((-583 $) |#4| $) 132 T ELT) (((-583 $) (-583 |#4|) $) 131 T ELT) (((-583 $) (-583 |#4|) (-583 $)) 130 T ELT) (((-583 $) |#4| (-583 $)) 129 T ELT)) (-3439 (($ |#4| $) 124 T ELT) (($ (-583 |#4|) $) 123 T ELT)) (-3696 (((-583 |#4|) $) 112 T ELT)) (-3690 (((-85) |#4| $) 104 T ELT) (((-85) $) 100 T ELT)) (-3685 ((|#4| |#4| $) 95 T ELT)) (-3698 (((-85) $ $) 115 T ELT)) (-2903 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-495)) ELT)) (-3691 (((-85) |#4| $) 105 T ELT) (((-85) $) 101 T ELT)) (-3686 ((|#4| |#4| $) 96 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3800 (((-3 |#4| #1#) $) 89 T ELT)) (-1353 (((-3 |#4| "failed") (-1 (-85) |#4|) $) 62 T ELT)) (-3678 (((-3 $ #1#) $ |#4|) 83 T ELT)) (-3768 (($ $ |#4|) 82 T ELT) (((-583 $) |#4| $) 122 T ELT) (((-583 $) |#4| (-583 $)) 121 T ELT) (((-583 $) (-583 |#4|) $) 120 T ELT) (((-583 $) (-583 |#4|) (-583 $)) 119 T ELT)) (-1946 (((-85) (-1 (-85) |#4|) $) 51 (|has| $ (-6 -3994)) ELT)) (-3767 (($ $ (-583 |#4|) (-583 |#4|)) 60 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-249 |#4|)) 58 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-583 (-249 |#4|))) 57 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT)) (-1221 (((-85) $ $) 42 T ELT)) (-3402 (((-85) $) 45 T ELT)) (-3564 (($) 44 T ELT)) (-3947 (((-694) $) 111 T ELT)) (-1945 (((-694) |#4| $) 55 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -3994))) ELT) (((-694) (-1 (-85) |#4|) $) 52 (|has| $ (-6 -3994)) ELT)) (-3399 (($ $) 43 T ELT)) (-3971 (((-473) $) 70 (|has| |#4| (-553 (-473))) ELT)) (-3529 (($ (-583 |#4|)) 61 T ELT)) (-2910 (($ $ |#3|) 32 T ELT)) (-2912 (($ $ |#3|) 34 T ELT)) (-3683 (($ $) 93 T ELT)) (-2911 (($ $ |#3|) 33 T ELT)) (-3945 (((-772) $) 13 T ELT) (((-583 |#4|) $) 41 T ELT)) (-3677 (((-694) $) 81 (|has| |#3| (-319)) ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-3697 (((-3 (-2 (|:| |bas| $) (|:| -3323 (-583 |#4|))) #1#) (-583 |#4|) (-1 (-85) |#4| |#4|)) 114 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3323 (-583 |#4|))) #1#) (-583 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) 113 T ELT)) (-3689 (((-85) $ (-1 (-85) |#4| (-583 |#4|))) 103 T ELT)) (-3189 (((-583 $) |#4| $) 128 T ELT) (((-583 $) |#4| (-583 $)) 127 T ELT) (((-583 $) (-583 |#4|) $) 126 T ELT) (((-583 $) (-583 |#4|) (-583 $)) 125 T ELT)) (-1947 (((-85) (-1 (-85) |#4|) $) 50 (|has| $ (-6 -3994)) ELT)) (-3679 (((-583 |#3|) $) 86 T ELT)) (-3196 (((-85) |#4| $) 142 T ELT)) (-3932 (((-85) |#3| $) 85 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-3956 (((-694) $) 47 (|has| $ (-6 -3994)) ELT))) +(((-1040 |#1| |#2| |#3| |#4|) (-113) (-391) (-717) (-756) (-977 |t#1| |t#2| |t#3|)) (T -1040)) +NIL +(-13 (-1020 |t#1| |t#2| |t#3| |t#4|) (-707 |t#1| |t#2| |t#3| |t#4|)) +(((-34) . T) ((-72) . T) ((-552 (-583 |#4|)) . T) ((-552 (-772)) . T) ((-124 |#4|) . T) ((-553 (-473)) |has| |#4| (-553 (-473))) ((-260 |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ((-428 |#4|) . T) ((-455 |#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ((-13) . T) ((-707 |#1| |#2| |#3| |#4|) . T) ((-889 |#1| |#2| |#3| |#4|) . T) ((-983 |#1| |#2| |#3| |#4|) . T) ((-1013) . T) ((-1020 |#1| |#2| |#3| |#4|) . T) ((-1123 |#1| |#2| |#3| |#4|) . T) ((-1128) . T)) +((-3572 (((-583 |#2|) |#1|) 15 T ELT)) (-3344 (((-583 |#2|) |#2| |#2| |#2| |#2| |#2|) 47 T ELT) (((-583 |#2|) |#1|) 61 T ELT)) (-3342 (((-583 |#2|) |#2| |#2| |#2|) 45 T ELT) (((-583 |#2|) |#1|) 59 T ELT)) (-3339 ((|#2| |#1|) 54 T ELT)) (-3340 (((-2 (|:| |solns| (-583 |#2|)) (|:| |maps| (-583 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 20 T ELT)) (-3341 (((-583 |#2|) |#2| |#2|) 42 T ELT) (((-583 |#2|) |#1|) 58 T ELT)) (-3343 (((-583 |#2|) |#2| |#2| |#2| |#2|) 46 T ELT) (((-583 |#2|) |#1|) 60 T ELT)) (-3348 ((|#2| |#2| |#2| |#2| |#2| |#2|) 53 T ELT)) (-3346 ((|#2| |#2| |#2| |#2|) 51 T ELT)) (-3345 ((|#2| |#2| |#2|) 50 T ELT)) (-3347 ((|#2| |#2| |#2| |#2| |#2|) 52 T ELT))) +(((-1041 |#1| |#2|) (-10 -7 (-15 -3572 ((-583 |#2|) |#1|)) (-15 -3339 (|#2| |#1|)) (-15 -3340 ((-2 (|:| |solns| (-583 |#2|)) (|:| |maps| (-583 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3341 ((-583 |#2|) |#1|)) (-15 -3342 ((-583 |#2|) |#1|)) (-15 -3343 ((-583 |#2|) |#1|)) (-15 -3344 ((-583 |#2|) |#1|)) (-15 -3341 ((-583 |#2|) |#2| |#2|)) (-15 -3342 ((-583 |#2|) |#2| |#2| |#2|)) (-15 -3343 ((-583 |#2|) |#2| |#2| |#2| |#2|)) (-15 -3344 ((-583 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3345 (|#2| |#2| |#2|)) (-15 -3346 (|#2| |#2| |#2| |#2|)) (-15 -3347 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3348 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1154 |#2|) (-13 (-312) (-10 -8 (-15 ** ($ $ (-349 (-484))))))) (T -1041)) +((-3348 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-312) (-10 -8 (-15 ** ($ $ (-349 (-484))))))) (-5 *1 (-1041 *3 *2)) (-4 *3 (-1154 *2)))) (-3347 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-312) (-10 -8 (-15 ** ($ $ (-349 (-484))))))) (-5 *1 (-1041 *3 *2)) (-4 *3 (-1154 *2)))) (-3346 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-312) (-10 -8 (-15 ** ($ $ (-349 (-484))))))) (-5 *1 (-1041 *3 *2)) (-4 *3 (-1154 *2)))) (-3345 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-312) (-10 -8 (-15 ** ($ $ (-349 (-484))))))) (-5 *1 (-1041 *3 *2)) (-4 *3 (-1154 *2)))) (-3344 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-312) (-10 -8 (-15 ** ($ $ (-349 (-484))))))) (-5 *2 (-583 *3)) (-5 *1 (-1041 *4 *3)) (-4 *4 (-1154 *3)))) (-3343 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-312) (-10 -8 (-15 ** ($ $ (-349 (-484))))))) (-5 *2 (-583 *3)) (-5 *1 (-1041 *4 *3)) (-4 *4 (-1154 *3)))) (-3342 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-312) (-10 -8 (-15 ** ($ $ (-349 (-484))))))) (-5 *2 (-583 *3)) (-5 *1 (-1041 *4 *3)) (-4 *4 (-1154 *3)))) (-3341 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-312) (-10 -8 (-15 ** ($ $ (-349 (-484))))))) (-5 *2 (-583 *3)) (-5 *1 (-1041 *4 *3)) (-4 *4 (-1154 *3)))) (-3344 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-10 -8 (-15 ** ($ $ (-349 (-484))))))) (-5 *2 (-583 *4)) (-5 *1 (-1041 *3 *4)) (-4 *3 (-1154 *4)))) (-3343 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-10 -8 (-15 ** ($ $ (-349 (-484))))))) (-5 *2 (-583 *4)) (-5 *1 (-1041 *3 *4)) (-4 *3 (-1154 *4)))) (-3342 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-10 -8 (-15 ** ($ $ (-349 (-484))))))) (-5 *2 (-583 *4)) (-5 *1 (-1041 *3 *4)) (-4 *3 (-1154 *4)))) (-3341 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-10 -8 (-15 ** ($ $ (-349 (-484))))))) (-5 *2 (-583 *4)) (-5 *1 (-1041 *3 *4)) (-4 *3 (-1154 *4)))) (-3340 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-312) (-10 -8 (-15 ** ($ $ (-349 (-484))))))) (-5 *2 (-2 (|:| |solns| (-583 *5)) (|:| |maps| (-583 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1041 *3 *5)) (-4 *3 (-1154 *5)))) (-3339 (*1 *2 *3) (-12 (-4 *2 (-13 (-312) (-10 -8 (-15 ** ($ $ (-349 (-484))))))) (-5 *1 (-1041 *3 *2)) (-4 *3 (-1154 *2)))) (-3572 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-10 -8 (-15 ** ($ $ (-349 (-484))))))) (-5 *2 (-583 *4)) (-5 *1 (-1041 *3 *4)) (-4 *3 (-1154 *4))))) +((-3349 (((-583 (-583 (-249 (-265 |#1|)))) (-583 (-249 (-349 (-857 |#1|))))) 119 T ELT) (((-583 (-583 (-249 (-265 |#1|)))) (-583 (-249 (-349 (-857 |#1|)))) (-583 (-1089))) 118 T ELT) (((-583 (-583 (-249 (-265 |#1|)))) (-583 (-349 (-857 |#1|)))) 116 T ELT) (((-583 (-583 (-249 (-265 |#1|)))) (-583 (-349 (-857 |#1|))) (-583 (-1089))) 113 T ELT) (((-583 (-249 (-265 |#1|))) (-249 (-349 (-857 |#1|)))) 97 T ELT) (((-583 (-249 (-265 |#1|))) (-249 (-349 (-857 |#1|))) (-1089)) 98 T ELT) (((-583 (-249 (-265 |#1|))) (-349 (-857 |#1|))) 92 T ELT) (((-583 (-249 (-265 |#1|))) (-349 (-857 |#1|)) (-1089)) 82 T ELT)) (-3350 (((-583 (-583 (-265 |#1|))) (-583 (-349 (-857 |#1|))) (-583 (-1089))) 111 T ELT) (((-583 (-265 |#1|)) (-349 (-857 |#1|)) (-1089)) 54 T ELT)) (-3351 (((-1079 (-583 (-265 |#1|)) (-583 (-249 (-265 |#1|)))) (-349 (-857 |#1|)) (-1089)) 123 T ELT) (((-1079 (-583 (-265 |#1|)) (-583 (-249 (-265 |#1|)))) (-249 (-349 (-857 |#1|))) (-1089)) 122 T ELT))) +(((-1042 |#1|) (-10 -7 (-15 -3349 ((-583 (-249 (-265 |#1|))) (-349 (-857 |#1|)) (-1089))) (-15 -3349 ((-583 (-249 (-265 |#1|))) (-349 (-857 |#1|)))) (-15 -3349 ((-583 (-249 (-265 |#1|))) (-249 (-349 (-857 |#1|))) (-1089))) (-15 -3349 ((-583 (-249 (-265 |#1|))) (-249 (-349 (-857 |#1|))))) (-15 -3349 ((-583 (-583 (-249 (-265 |#1|)))) (-583 (-349 (-857 |#1|))) (-583 (-1089)))) (-15 -3349 ((-583 (-583 (-249 (-265 |#1|)))) (-583 (-349 (-857 |#1|))))) (-15 -3349 ((-583 (-583 (-249 (-265 |#1|)))) (-583 (-249 (-349 (-857 |#1|)))) (-583 (-1089)))) (-15 -3349 ((-583 (-583 (-249 (-265 |#1|)))) (-583 (-249 (-349 (-857 |#1|)))))) (-15 -3350 ((-583 (-265 |#1|)) (-349 (-857 |#1|)) (-1089))) (-15 -3350 ((-583 (-583 (-265 |#1|))) (-583 (-349 (-857 |#1|))) (-583 (-1089)))) (-15 -3351 ((-1079 (-583 (-265 |#1|)) (-583 (-249 (-265 |#1|)))) (-249 (-349 (-857 |#1|))) (-1089))) (-15 -3351 ((-1079 (-583 (-265 |#1|)) (-583 (-249 (-265 |#1|)))) (-349 (-857 |#1|)) (-1089)))) (-13 (-258) (-120))) (T -1042)) +((-3351 (*1 *2 *3 *4) (-12 (-5 *3 (-349 (-857 *5))) (-5 *4 (-1089)) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-1079 (-583 (-265 *5)) (-583 (-249 (-265 *5))))) (-5 *1 (-1042 *5)))) (-3351 (*1 *2 *3 *4) (-12 (-5 *3 (-249 (-349 (-857 *5)))) (-5 *4 (-1089)) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-1079 (-583 (-265 *5)) (-583 (-249 (-265 *5))))) (-5 *1 (-1042 *5)))) (-3350 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-349 (-857 *5)))) (-5 *4 (-583 (-1089))) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-583 (-583 (-265 *5)))) (-5 *1 (-1042 *5)))) (-3350 (*1 *2 *3 *4) (-12 (-5 *3 (-349 (-857 *5))) (-5 *4 (-1089)) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-583 (-265 *5))) (-5 *1 (-1042 *5)))) (-3349 (*1 *2 *3) (-12 (-5 *3 (-583 (-249 (-349 (-857 *4))))) (-4 *4 (-13 (-258) (-120))) (-5 *2 (-583 (-583 (-249 (-265 *4))))) (-5 *1 (-1042 *4)))) (-3349 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-249 (-349 (-857 *5))))) (-5 *4 (-583 (-1089))) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-583 (-583 (-249 (-265 *5))))) (-5 *1 (-1042 *5)))) (-3349 (*1 *2 *3) (-12 (-5 *3 (-583 (-349 (-857 *4)))) (-4 *4 (-13 (-258) (-120))) (-5 *2 (-583 (-583 (-249 (-265 *4))))) (-5 *1 (-1042 *4)))) (-3349 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-349 (-857 *5)))) (-5 *4 (-583 (-1089))) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-583 (-583 (-249 (-265 *5))))) (-5 *1 (-1042 *5)))) (-3349 (*1 *2 *3) (-12 (-5 *3 (-249 (-349 (-857 *4)))) (-4 *4 (-13 (-258) (-120))) (-5 *2 (-583 (-249 (-265 *4)))) (-5 *1 (-1042 *4)))) (-3349 (*1 *2 *3 *4) (-12 (-5 *3 (-249 (-349 (-857 *5)))) (-5 *4 (-1089)) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-583 (-249 (-265 *5)))) (-5 *1 (-1042 *5)))) (-3349 (*1 *2 *3) (-12 (-5 *3 (-349 (-857 *4))) (-4 *4 (-13 (-258) (-120))) (-5 *2 (-583 (-249 (-265 *4)))) (-5 *1 (-1042 *4)))) (-3349 (*1 *2 *3 *4) (-12 (-5 *3 (-349 (-857 *5))) (-5 *4 (-1089)) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-583 (-249 (-265 *5)))) (-5 *1 (-1042 *5))))) +((-3353 (((-349 (-1084 (-265 |#1|))) (-1178 (-265 |#1|)) (-349 (-1084 (-265 |#1|))) (-484)) 36 T ELT)) (-3352 (((-349 (-1084 (-265 |#1|))) (-349 (-1084 (-265 |#1|))) (-349 (-1084 (-265 |#1|))) (-349 (-1084 (-265 |#1|)))) 48 T ELT))) +(((-1043 |#1|) (-10 -7 (-15 -3352 ((-349 (-1084 (-265 |#1|))) (-349 (-1084 (-265 |#1|))) (-349 (-1084 (-265 |#1|))) (-349 (-1084 (-265 |#1|))))) (-15 -3353 ((-349 (-1084 (-265 |#1|))) (-1178 (-265 |#1|)) (-349 (-1084 (-265 |#1|))) (-484)))) (-495)) (T -1043)) +((-3353 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-349 (-1084 (-265 *5)))) (-5 *3 (-1178 (-265 *5))) (-5 *4 (-484)) (-4 *5 (-495)) (-5 *1 (-1043 *5)))) (-3352 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-349 (-1084 (-265 *3)))) (-4 *3 (-495)) (-5 *1 (-1043 *3))))) +((-3572 (((-583 (-583 (-249 (-265 |#1|)))) (-583 (-249 (-265 |#1|))) (-583 (-1089))) 244 T ELT) (((-583 (-249 (-265 |#1|))) (-265 |#1|) (-1089)) 23 T ELT) (((-583 (-249 (-265 |#1|))) (-249 (-265 |#1|)) (-1089)) 29 T ELT) (((-583 (-249 (-265 |#1|))) (-249 (-265 |#1|))) 28 T ELT) (((-583 (-249 (-265 |#1|))) (-265 |#1|)) 24 T ELT))) +(((-1044 |#1|) (-10 -7 (-15 -3572 ((-583 (-249 (-265 |#1|))) (-265 |#1|))) (-15 -3572 ((-583 (-249 (-265 |#1|))) (-249 (-265 |#1|)))) (-15 -3572 ((-583 (-249 (-265 |#1|))) (-249 (-265 |#1|)) (-1089))) (-15 -3572 ((-583 (-249 (-265 |#1|))) (-265 |#1|) (-1089))) (-15 -3572 ((-583 (-583 (-249 (-265 |#1|)))) (-583 (-249 (-265 |#1|))) (-583 (-1089))))) (-13 (-258) (-950 (-484)) (-580 (-484)) (-120))) (T -1044)) +((-3572 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-1089))) (-4 *5 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120))) (-5 *2 (-583 (-583 (-249 (-265 *5))))) (-5 *1 (-1044 *5)) (-5 *3 (-583 (-249 (-265 *5)))))) (-3572 (*1 *2 *3 *4) (-12 (-5 *4 (-1089)) (-4 *5 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120))) (-5 *2 (-583 (-249 (-265 *5)))) (-5 *1 (-1044 *5)) (-5 *3 (-265 *5)))) (-3572 (*1 *2 *3 *4) (-12 (-5 *4 (-1089)) (-4 *5 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120))) (-5 *2 (-583 (-249 (-265 *5)))) (-5 *1 (-1044 *5)) (-5 *3 (-249 (-265 *5))))) (-3572 (*1 *2 *3) (-12 (-4 *4 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120))) (-5 *2 (-583 (-249 (-265 *4)))) (-5 *1 (-1044 *4)) (-5 *3 (-249 (-265 *4))))) (-3572 (*1 *2 *3) (-12 (-4 *4 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120))) (-5 *2 (-583 (-249 (-265 *4)))) (-5 *1 (-1044 *4)) (-5 *3 (-265 *4))))) +((-3355 ((|#2| |#2|) 28 (|has| |#1| (-756)) ELT) ((|#2| |#2| (-1 (-85) |#1| |#1|)) 25 T ELT)) (-3354 ((|#2| |#2|) 27 (|has| |#1| (-756)) ELT) ((|#2| |#2| (-1 (-85) |#1| |#1|)) 22 T ELT))) +(((-1045 |#1| |#2|) (-10 -7 (-15 -3354 (|#2| |#2| (-1 (-85) |#1| |#1|))) (-15 -3355 (|#2| |#2| (-1 (-85) |#1| |#1|))) (IF (|has| |#1| (-756)) (PROGN (-15 -3354 (|#2| |#2|)) (-15 -3355 (|#2| |#2|))) |%noBranch|)) (-1128) (-13 (-538 (-484) |#1|) (-10 -7 (-6 -3994) (-6 -3995)))) (T -1045)) +((-3355 (*1 *2 *2) (-12 (-4 *3 (-756)) (-4 *3 (-1128)) (-5 *1 (-1045 *3 *2)) (-4 *2 (-13 (-538 (-484) *3) (-10 -7 (-6 -3994) (-6 -3995)))))) (-3354 (*1 *2 *2) (-12 (-4 *3 (-756)) (-4 *3 (-1128)) (-5 *1 (-1045 *3 *2)) (-4 *2 (-13 (-538 (-484) *3) (-10 -7 (-6 -3994) (-6 -3995)))))) (-3355 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1128)) (-5 *1 (-1045 *4 *2)) (-4 *2 (-13 (-538 (-484) *4) (-10 -7 (-6 -3994) (-6 -3995)))))) (-3354 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1128)) (-5 *1 (-1045 *4 *2)) (-4 *2 (-13 (-538 (-484) *4) (-10 -7 (-6 -3994) (-6 -3995))))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3887 (((-1078 3 |#1|) $) 141 T ELT)) (-3365 (((-85) $) 101 T ELT)) (-3366 (($ $ (-583 (-854 |#1|))) 44 T ELT) (($ $ (-583 (-583 |#1|))) 104 T ELT) (($ (-583 (-854 |#1|))) 103 T ELT) (((-583 (-854 |#1|)) $) 102 T ELT)) (-3371 (((-85) $) 72 T ELT)) (-3705 (($ $ (-854 |#1|)) 76 T ELT) (($ $ (-583 |#1|)) 81 T ELT) (($ $ (-694)) 83 T ELT) (($ (-854 |#1|)) 77 T ELT) (((-854 |#1|) $) 75 T ELT)) (-3357 (((-2 (|:| -3849 (-694)) (|:| |curves| (-694)) (|:| |polygons| (-694)) (|:| |constructs| (-694))) $) 139 T ELT)) (-3375 (((-694) $) 53 T ELT)) (-3376 (((-694) $) 52 T ELT)) (-3886 (($ $ (-694) (-854 |#1|)) 67 T ELT)) (-3363 (((-85) $) 111 T ELT)) (-3364 (($ $ (-583 (-583 (-854 |#1|))) (-583 (-145)) (-145)) 118 T ELT) (($ $ (-583 (-583 (-583 |#1|))) (-583 (-145)) (-145)) 120 T ELT) (($ $ (-583 (-583 (-854 |#1|))) (-85) (-85)) 115 T ELT) (($ $ (-583 (-583 (-583 |#1|))) (-85) (-85)) 127 T ELT) (($ (-583 (-583 (-854 |#1|)))) 116 T ELT) (($ (-583 (-583 (-854 |#1|))) (-85) (-85)) 117 T ELT) (((-583 (-583 (-854 |#1|))) $) 114 T ELT)) (-3517 (($ (-583 $)) 56 T ELT) (($ $ $) 57 T ELT)) (-3358 (((-583 (-145)) $) 133 T ELT)) (-3362 (((-583 (-854 |#1|)) $) 130 T ELT)) (-3359 (((-583 (-583 (-145))) $) 132 T ELT)) (-3360 (((-583 (-583 (-583 (-854 |#1|)))) $) NIL T ELT)) (-3361 (((-583 (-583 (-583 (-694)))) $) 131 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3372 (((-694) $ (-583 (-854 |#1|))) 65 T ELT)) (-3369 (((-85) $) 84 T ELT)) (-3370 (($ $ (-583 (-854 |#1|))) 86 T ELT) (($ $ (-583 (-583 |#1|))) 92 T ELT) (($ (-583 (-854 |#1|))) 87 T ELT) (((-583 (-854 |#1|)) $) 85 T ELT)) (-3377 (($) 48 T ELT) (($ (-1078 3 |#1|)) 49 T ELT)) (-3399 (($ $) 63 T ELT)) (-3373 (((-583 $) $) 62 T ELT)) (-3753 (($ (-583 $)) 59 T ELT)) (-3374 (((-583 $) $) 61 T ELT)) (-3945 (((-772) $) 146 T ELT)) (-3367 (((-85) $) 94 T ELT)) (-3368 (($ $ (-583 (-854 |#1|))) 96 T ELT) (($ $ (-583 (-583 |#1|))) 99 T ELT) (($ (-583 (-854 |#1|))) 97 T ELT) (((-583 (-854 |#1|)) $) 95 T ELT)) (-3356 (($ $) 140 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT))) +(((-1046 |#1|) (-1047 |#1|) (-961)) (T -1046)) +NIL +((-2568 (((-85) $ $) 7 T ELT)) (-3887 (((-1078 3 |#1|) $) 17 T ELT)) (-3365 (((-85) $) 33 T ELT)) (-3366 (($ $ (-583 (-854 |#1|))) 37 T ELT) (($ $ (-583 (-583 |#1|))) 36 T ELT) (($ (-583 (-854 |#1|))) 35 T ELT) (((-583 (-854 |#1|)) $) 34 T ELT)) (-3371 (((-85) $) 48 T ELT)) (-3705 (($ $ (-854 |#1|)) 53 T ELT) (($ $ (-583 |#1|)) 52 T ELT) (($ $ (-694)) 51 T ELT) (($ (-854 |#1|)) 50 T ELT) (((-854 |#1|) $) 49 T ELT)) (-3357 (((-2 (|:| -3849 (-694)) (|:| |curves| (-694)) (|:| |polygons| (-694)) (|:| |constructs| (-694))) $) 19 T ELT)) (-3375 (((-694) $) 62 T ELT)) (-3376 (((-694) $) 63 T ELT)) (-3886 (($ $ (-694) (-854 |#1|)) 54 T ELT)) (-3363 (((-85) $) 25 T ELT)) (-3364 (($ $ (-583 (-583 (-854 |#1|))) (-583 (-145)) (-145)) 32 T ELT) (($ $ (-583 (-583 (-583 |#1|))) (-583 (-145)) (-145)) 31 T ELT) (($ $ (-583 (-583 (-854 |#1|))) (-85) (-85)) 30 T ELT) (($ $ (-583 (-583 (-583 |#1|))) (-85) (-85)) 29 T ELT) (($ (-583 (-583 (-854 |#1|)))) 28 T ELT) (($ (-583 (-583 (-854 |#1|))) (-85) (-85)) 27 T ELT) (((-583 (-583 (-854 |#1|))) $) 26 T ELT)) (-3517 (($ (-583 $)) 61 T ELT) (($ $ $) 60 T ELT)) (-3358 (((-583 (-145)) $) 20 T ELT)) (-3362 (((-583 (-854 |#1|)) $) 24 T ELT)) (-3359 (((-583 (-583 (-145))) $) 21 T ELT)) (-3360 (((-583 (-583 (-583 (-854 |#1|)))) $) 22 T ELT)) (-3361 (((-583 (-583 (-583 (-694)))) $) 23 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3372 (((-694) $ (-583 (-854 |#1|))) 55 T ELT)) (-3369 (((-85) $) 43 T ELT)) (-3370 (($ $ (-583 (-854 |#1|))) 47 T ELT) (($ $ (-583 (-583 |#1|))) 46 T ELT) (($ (-583 (-854 |#1|))) 45 T ELT) (((-583 (-854 |#1|)) $) 44 T ELT)) (-3377 (($) 65 T ELT) (($ (-1078 3 |#1|)) 64 T ELT)) (-3399 (($ $) 56 T ELT)) (-3373 (((-583 $) $) 57 T ELT)) (-3753 (($ (-583 $)) 59 T ELT)) (-3374 (((-583 $) $) 58 T ELT)) (-3945 (((-772) $) 13 T ELT)) (-3367 (((-85) $) 38 T ELT)) (-3368 (($ $ (-583 (-854 |#1|))) 42 T ELT) (($ $ (-583 (-583 |#1|))) 41 T ELT) (($ (-583 (-854 |#1|))) 40 T ELT) (((-583 (-854 |#1|)) $) 39 T ELT)) (-3356 (($ $) 18 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-3056 (((-85) $ $) 8 T ELT))) +(((-1047 |#1|) (-113) (-961)) (T -1047)) +((-3945 (*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-961)) (-5 *2 (-772)))) (-3377 (*1 *1) (-12 (-4 *1 (-1047 *2)) (-4 *2 (-961)))) (-3377 (*1 *1 *2) (-12 (-5 *2 (-1078 3 *3)) (-4 *3 (-961)) (-4 *1 (-1047 *3)))) (-3376 (*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-961)) (-5 *2 (-694)))) (-3375 (*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-961)) (-5 *2 (-694)))) (-3517 (*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-1047 *3)) (-4 *3 (-961)))) (-3517 (*1 *1 *1 *1) (-12 (-4 *1 (-1047 *2)) (-4 *2 (-961)))) (-3753 (*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-1047 *3)) (-4 *3 (-961)))) (-3374 (*1 *2 *1) (-12 (-4 *3 (-961)) (-5 *2 (-583 *1)) (-4 *1 (-1047 *3)))) (-3373 (*1 *2 *1) (-12 (-4 *3 (-961)) (-5 *2 (-583 *1)) (-4 *1 (-1047 *3)))) (-3399 (*1 *1 *1) (-12 (-4 *1 (-1047 *2)) (-4 *2 (-961)))) (-3372 (*1 *2 *1 *3) (-12 (-5 *3 (-583 (-854 *4))) (-4 *1 (-1047 *4)) (-4 *4 (-961)) (-5 *2 (-694)))) (-3886 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-694)) (-5 *3 (-854 *4)) (-4 *1 (-1047 *4)) (-4 *4 (-961)))) (-3705 (*1 *1 *1 *2) (-12 (-5 *2 (-854 *3)) (-4 *1 (-1047 *3)) (-4 *3 (-961)))) (-3705 (*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *1 (-1047 *3)) (-4 *3 (-961)))) (-3705 (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-1047 *3)) (-4 *3 (-961)))) (-3705 (*1 *1 *2) (-12 (-5 *2 (-854 *3)) (-4 *3 (-961)) (-4 *1 (-1047 *3)))) (-3705 (*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-961)) (-5 *2 (-854 *3)))) (-3371 (*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-961)) (-5 *2 (-85)))) (-3370 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-854 *3))) (-4 *1 (-1047 *3)) (-4 *3 (-961)))) (-3370 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *1 (-1047 *3)) (-4 *3 (-961)))) (-3370 (*1 *1 *2) (-12 (-5 *2 (-583 (-854 *3))) (-4 *3 (-961)) (-4 *1 (-1047 *3)))) (-3370 (*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-854 *3))))) (-3369 (*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-961)) (-5 *2 (-85)))) (-3368 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-854 *3))) (-4 *1 (-1047 *3)) (-4 *3 (-961)))) (-3368 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *1 (-1047 *3)) (-4 *3 (-961)))) (-3368 (*1 *1 *2) (-12 (-5 *2 (-583 (-854 *3))) (-4 *3 (-961)) (-4 *1 (-1047 *3)))) (-3368 (*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-854 *3))))) (-3367 (*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-961)) (-5 *2 (-85)))) (-3366 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-854 *3))) (-4 *1 (-1047 *3)) (-4 *3 (-961)))) (-3366 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *1 (-1047 *3)) (-4 *3 (-961)))) (-3366 (*1 *1 *2) (-12 (-5 *2 (-583 (-854 *3))) (-4 *3 (-961)) (-4 *1 (-1047 *3)))) (-3366 (*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-854 *3))))) (-3365 (*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-961)) (-5 *2 (-85)))) (-3364 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-583 (-583 (-854 *5)))) (-5 *3 (-583 (-145))) (-5 *4 (-145)) (-4 *1 (-1047 *5)) (-4 *5 (-961)))) (-3364 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-583 (-583 (-583 *5)))) (-5 *3 (-583 (-145))) (-5 *4 (-145)) (-4 *1 (-1047 *5)) (-4 *5 (-961)))) (-3364 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-583 (-583 (-854 *4)))) (-5 *3 (-85)) (-4 *1 (-1047 *4)) (-4 *4 (-961)))) (-3364 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-583 (-583 (-583 *4)))) (-5 *3 (-85)) (-4 *1 (-1047 *4)) (-4 *4 (-961)))) (-3364 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 (-854 *3)))) (-4 *3 (-961)) (-4 *1 (-1047 *3)))) (-3364 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-583 (-583 (-854 *4)))) (-5 *3 (-85)) (-4 *4 (-961)) (-4 *1 (-1047 *4)))) (-3364 (*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-583 (-854 *3)))))) (-3363 (*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-961)) (-5 *2 (-85)))) (-3362 (*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-854 *3))))) (-3361 (*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-583 (-583 (-694))))))) (-3360 (*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-583 (-583 (-854 *3))))))) (-3359 (*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-583 (-145)))))) (-3358 (*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-145))))) (-3357 (*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-961)) (-5 *2 (-2 (|:| -3849 (-694)) (|:| |curves| (-694)) (|:| |polygons| (-694)) (|:| |constructs| (-694)))))) (-3356 (*1 *1 *1) (-12 (-4 *1 (-1047 *2)) (-4 *2 (-961)))) (-3887 (*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-961)) (-5 *2 (-1078 3 *3))))) +(-13 (-1013) (-10 -8 (-15 -3377 ($)) (-15 -3377 ($ (-1078 3 |t#1|))) (-15 -3376 ((-694) $)) (-15 -3375 ((-694) $)) (-15 -3517 ($ (-583 $))) (-15 -3517 ($ $ $)) (-15 -3753 ($ (-583 $))) (-15 -3374 ((-583 $) $)) (-15 -3373 ((-583 $) $)) (-15 -3399 ($ $)) (-15 -3372 ((-694) $ (-583 (-854 |t#1|)))) (-15 -3886 ($ $ (-694) (-854 |t#1|))) (-15 -3705 ($ $ (-854 |t#1|))) (-15 -3705 ($ $ (-583 |t#1|))) (-15 -3705 ($ $ (-694))) (-15 -3705 ($ (-854 |t#1|))) (-15 -3705 ((-854 |t#1|) $)) (-15 -3371 ((-85) $)) (-15 -3370 ($ $ (-583 (-854 |t#1|)))) (-15 -3370 ($ $ (-583 (-583 |t#1|)))) (-15 -3370 ($ (-583 (-854 |t#1|)))) (-15 -3370 ((-583 (-854 |t#1|)) $)) (-15 -3369 ((-85) $)) (-15 -3368 ($ $ (-583 (-854 |t#1|)))) (-15 -3368 ($ $ (-583 (-583 |t#1|)))) (-15 -3368 ($ (-583 (-854 |t#1|)))) (-15 -3368 ((-583 (-854 |t#1|)) $)) (-15 -3367 ((-85) $)) (-15 -3366 ($ $ (-583 (-854 |t#1|)))) (-15 -3366 ($ $ (-583 (-583 |t#1|)))) (-15 -3366 ($ (-583 (-854 |t#1|)))) (-15 -3366 ((-583 (-854 |t#1|)) $)) (-15 -3365 ((-85) $)) (-15 -3364 ($ $ (-583 (-583 (-854 |t#1|))) (-583 (-145)) (-145))) (-15 -3364 ($ $ (-583 (-583 (-583 |t#1|))) (-583 (-145)) (-145))) (-15 -3364 ($ $ (-583 (-583 (-854 |t#1|))) (-85) (-85))) (-15 -3364 ($ $ (-583 (-583 (-583 |t#1|))) (-85) (-85))) (-15 -3364 ($ (-583 (-583 (-854 |t#1|))))) (-15 -3364 ($ (-583 (-583 (-854 |t#1|))) (-85) (-85))) (-15 -3364 ((-583 (-583 (-854 |t#1|))) $)) (-15 -3363 ((-85) $)) (-15 -3362 ((-583 (-854 |t#1|)) $)) (-15 -3361 ((-583 (-583 (-583 (-694)))) $)) (-15 -3360 ((-583 (-583 (-583 (-854 |t#1|)))) $)) (-15 -3359 ((-583 (-583 (-145))) $)) (-15 -3358 ((-583 (-145)) $)) (-15 -3357 ((-2 (|:| -3849 (-694)) (|:| |curves| (-694)) (|:| |polygons| (-694)) (|:| |constructs| (-694))) $)) (-15 -3356 ($ $)) (-15 -3887 ((-1078 3 |t#1|) $)) (-15 -3945 ((-772) $)))) +(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-1013) . T) ((-1128) . T)) +((-2568 (((-85) $ $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) 185 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) 7 T ELT)) (-3565 (((-85) $ (|[\|\|]| (-462))) 19 T ELT) (((-85) $ (|[\|\|]| (-172))) 23 T ELT) (((-85) $ (|[\|\|]| (-617))) 27 T ELT) (((-85) $ (|[\|\|]| (-1189))) 31 T ELT) (((-85) $ (|[\|\|]| (-111))) 35 T ELT) (((-85) $ (|[\|\|]| (-539))) 39 T ELT) (((-85) $ (|[\|\|]| (-106))) 43 T ELT) (((-85) $ (|[\|\|]| (-1029))) 47 T ELT) (((-85) $ (|[\|\|]| (-67))) 51 T ELT) (((-85) $ (|[\|\|]| (-622))) 55 T ELT) (((-85) $ (|[\|\|]| (-458))) 59 T ELT) (((-85) $ (|[\|\|]| (-978))) 63 T ELT) (((-85) $ (|[\|\|]| (-1190))) 67 T ELT) (((-85) $ (|[\|\|]| (-463))) 71 T ELT) (((-85) $ (|[\|\|]| (-1066))) 75 T ELT) (((-85) $ (|[\|\|]| (-127))) 79 T ELT) (((-85) $ (|[\|\|]| (-613))) 83 T ELT) (((-85) $ (|[\|\|]| (-263))) 87 T ELT) (((-85) $ (|[\|\|]| (-948))) 91 T ELT) (((-85) $ (|[\|\|]| (-154))) 95 T ELT) (((-85) $ (|[\|\|]| (-883))) 99 T ELT) (((-85) $ (|[\|\|]| (-985))) 103 T ELT) (((-85) $ (|[\|\|]| (-1003))) 107 T ELT) (((-85) $ (|[\|\|]| (-1008))) 111 T ELT) (((-85) $ (|[\|\|]| (-565))) 116 T ELT) (((-85) $ (|[\|\|]| (-1080))) 120 T ELT) (((-85) $ (|[\|\|]| (-129))) 124 T ELT) (((-85) $ (|[\|\|]| (-110))) 128 T ELT) (((-85) $ (|[\|\|]| (-417))) 132 T ELT) (((-85) $ (|[\|\|]| (-528))) 136 T ELT) (((-85) $ (|[\|\|]| (-446))) 140 T ELT) (((-85) $ (|[\|\|]| (-1072))) 144 T ELT) (((-85) $ (|[\|\|]| (-484))) 148 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3571 (((-462) $) 20 T ELT) (((-172) $) 24 T ELT) (((-617) $) 28 T ELT) (((-1189) $) 32 T ELT) (((-111) $) 36 T ELT) (((-539) $) 40 T ELT) (((-106) $) 44 T ELT) (((-1029) $) 48 T ELT) (((-67) $) 52 T ELT) (((-622) $) 56 T ELT) (((-458) $) 60 T ELT) (((-978) $) 64 T ELT) (((-1190) $) 68 T ELT) (((-463) $) 72 T ELT) (((-1066) $) 76 T ELT) (((-127) $) 80 T ELT) (((-613) $) 84 T ELT) (((-263) $) 88 T ELT) (((-948) $) 92 T ELT) (((-154) $) 96 T ELT) (((-883) $) 100 T ELT) (((-985) $) 104 T ELT) (((-1003) $) 108 T ELT) (((-1008) $) 112 T ELT) (((-565) $) 117 T ELT) (((-1080) $) 121 T ELT) (((-129) $) 125 T ELT) (((-110) $) 129 T ELT) (((-417) $) 133 T ELT) (((-528) $) 137 T ELT) (((-446) $) 141 T ELT) (((-1072) $) 145 T ELT) (((-484) $) 149 T ELT)) (-3056 (((-85) $ $) NIL T ELT))) +(((-1048) (-1050)) (T -1048)) +NIL +((-3378 (((-583 (-1094)) (-1072)) 9 T ELT))) +(((-1049) (-10 -7 (-15 -3378 ((-583 (-1094)) (-1072))))) (T -1049)) +((-3378 (*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-583 (-1094))) (-5 *1 (-1049))))) +((-2568 (((-85) $ $) 7 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-1094)) 20 T ELT) (((-1094) $) 19 T ELT)) (-3565 (((-85) $ (|[\|\|]| (-462))) 88 T ELT) (((-85) $ (|[\|\|]| (-172))) 86 T ELT) (((-85) $ (|[\|\|]| (-617))) 84 T ELT) (((-85) $ (|[\|\|]| (-1189))) 82 T ELT) (((-85) $ (|[\|\|]| (-111))) 80 T ELT) (((-85) $ (|[\|\|]| (-539))) 78 T ELT) (((-85) $ (|[\|\|]| (-106))) 76 T ELT) (((-85) $ (|[\|\|]| (-1029))) 74 T ELT) (((-85) $ (|[\|\|]| (-67))) 72 T ELT) (((-85) $ (|[\|\|]| (-622))) 70 T ELT) (((-85) $ (|[\|\|]| (-458))) 68 T ELT) (((-85) $ (|[\|\|]| (-978))) 66 T ELT) (((-85) $ (|[\|\|]| (-1190))) 64 T ELT) (((-85) $ (|[\|\|]| (-463))) 62 T ELT) (((-85) $ (|[\|\|]| (-1066))) 60 T ELT) (((-85) $ (|[\|\|]| (-127))) 58 T ELT) (((-85) $ (|[\|\|]| (-613))) 56 T ELT) (((-85) $ (|[\|\|]| (-263))) 54 T ELT) (((-85) $ (|[\|\|]| (-948))) 52 T ELT) (((-85) $ (|[\|\|]| (-154))) 50 T ELT) (((-85) $ (|[\|\|]| (-883))) 48 T ELT) (((-85) $ (|[\|\|]| (-985))) 46 T ELT) (((-85) $ (|[\|\|]| (-1003))) 44 T ELT) (((-85) $ (|[\|\|]| (-1008))) 42 T ELT) (((-85) $ (|[\|\|]| (-565))) 40 T ELT) (((-85) $ (|[\|\|]| (-1080))) 38 T ELT) (((-85) $ (|[\|\|]| (-129))) 36 T ELT) (((-85) $ (|[\|\|]| (-110))) 34 T ELT) (((-85) $ (|[\|\|]| (-417))) 32 T ELT) (((-85) $ (|[\|\|]| (-528))) 30 T ELT) (((-85) $ (|[\|\|]| (-446))) 28 T ELT) (((-85) $ (|[\|\|]| (-1072))) 26 T ELT) (((-85) $ (|[\|\|]| (-484))) 24 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-3571 (((-462) $) 87 T ELT) (((-172) $) 85 T ELT) (((-617) $) 83 T ELT) (((-1189) $) 81 T ELT) (((-111) $) 79 T ELT) (((-539) $) 77 T ELT) (((-106) $) 75 T ELT) (((-1029) $) 73 T ELT) (((-67) $) 71 T ELT) (((-622) $) 69 T ELT) (((-458) $) 67 T ELT) (((-978) $) 65 T ELT) (((-1190) $) 63 T ELT) (((-463) $) 61 T ELT) (((-1066) $) 59 T ELT) (((-127) $) 57 T ELT) (((-613) $) 55 T ELT) (((-263) $) 53 T ELT) (((-948) $) 51 T ELT) (((-154) $) 49 T ELT) (((-883) $) 47 T ELT) (((-985) $) 45 T ELT) (((-1003) $) 43 T ELT) (((-1008) $) 41 T ELT) (((-565) $) 39 T ELT) (((-1080) $) 37 T ELT) (((-129) $) 35 T ELT) (((-110) $) 33 T ELT) (((-417) $) 31 T ELT) (((-528) $) 29 T ELT) (((-446) $) 27 T ELT) (((-1072) $) 25 T ELT) (((-484) $) 23 T ELT)) (-3056 (((-85) $ $) 8 T ELT))) +(((-1050) (-113)) (T -1050)) +((-3565 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-462))) (-5 *2 (-85)))) (-3571 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-462)))) (-3565 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-172))) (-5 *2 (-85)))) (-3571 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-172)))) (-3565 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-617))) (-5 *2 (-85)))) (-3571 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-617)))) (-3565 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-1189))) (-5 *2 (-85)))) (-3571 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-1189)))) (-3565 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-111))) (-5 *2 (-85)))) (-3571 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-111)))) (-3565 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-539))) (-5 *2 (-85)))) (-3571 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-539)))) (-3565 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-106))) (-5 *2 (-85)))) (-3571 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-106)))) (-3565 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-1029))) (-5 *2 (-85)))) (-3571 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-1029)))) (-3565 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-67))) (-5 *2 (-85)))) (-3571 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-67)))) (-3565 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-622))) (-5 *2 (-85)))) (-3571 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-622)))) (-3565 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-458))) (-5 *2 (-85)))) (-3571 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-458)))) (-3565 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-978))) (-5 *2 (-85)))) (-3571 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-978)))) (-3565 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-1190))) (-5 *2 (-85)))) (-3571 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-1190)))) (-3565 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-463))) (-5 *2 (-85)))) (-3571 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-463)))) (-3565 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-1066))) (-5 *2 (-85)))) (-3571 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-1066)))) (-3565 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-127))) (-5 *2 (-85)))) (-3571 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-127)))) (-3565 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-613))) (-5 *2 (-85)))) (-3571 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-613)))) (-3565 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-263))) (-5 *2 (-85)))) (-3571 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-263)))) (-3565 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-948))) (-5 *2 (-85)))) (-3571 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-948)))) (-3565 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-154))) (-5 *2 (-85)))) (-3571 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-154)))) (-3565 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-883))) (-5 *2 (-85)))) (-3571 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-883)))) (-3565 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-985))) (-5 *2 (-85)))) (-3571 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-985)))) (-3565 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-1003))) (-5 *2 (-85)))) (-3571 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-1003)))) (-3565 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-1008))) (-5 *2 (-85)))) (-3571 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-1008)))) (-3565 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-565))) (-5 *2 (-85)))) (-3571 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-565)))) (-3565 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-1080))) (-5 *2 (-85)))) (-3571 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-1080)))) (-3565 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-129))) (-5 *2 (-85)))) (-3571 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-129)))) (-3565 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-110))) (-5 *2 (-85)))) (-3571 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-110)))) (-3565 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-417))) (-5 *2 (-85)))) (-3571 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-417)))) (-3565 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-528))) (-5 *2 (-85)))) (-3571 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-528)))) (-3565 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-446))) (-5 *2 (-85)))) (-3571 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-446)))) (-3565 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-1072))) (-5 *2 (-85)))) (-3571 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-1072)))) (-3565 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-484))) (-5 *2 (-85)))) (-3571 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-484))))) +(-13 (-995) (-1174) (-10 -8 (-15 -3565 ((-85) $ (|[\|\|]| (-462)))) (-15 -3571 ((-462) $)) (-15 -3565 ((-85) $ (|[\|\|]| (-172)))) (-15 -3571 ((-172) $)) (-15 -3565 ((-85) $ (|[\|\|]| (-617)))) (-15 -3571 ((-617) $)) (-15 -3565 ((-85) $ (|[\|\|]| (-1189)))) (-15 -3571 ((-1189) $)) (-15 -3565 ((-85) $ (|[\|\|]| (-111)))) (-15 -3571 ((-111) $)) (-15 -3565 ((-85) $ (|[\|\|]| (-539)))) (-15 -3571 ((-539) $)) (-15 -3565 ((-85) $ (|[\|\|]| (-106)))) (-15 -3571 ((-106) $)) (-15 -3565 ((-85) $ (|[\|\|]| (-1029)))) (-15 -3571 ((-1029) $)) (-15 -3565 ((-85) $ (|[\|\|]| (-67)))) (-15 -3571 ((-67) $)) (-15 -3565 ((-85) $ (|[\|\|]| (-622)))) (-15 -3571 ((-622) $)) (-15 -3565 ((-85) $ (|[\|\|]| (-458)))) (-15 -3571 ((-458) $)) (-15 -3565 ((-85) $ (|[\|\|]| (-978)))) (-15 -3571 ((-978) $)) (-15 -3565 ((-85) $ (|[\|\|]| (-1190)))) (-15 -3571 ((-1190) $)) (-15 -3565 ((-85) $ (|[\|\|]| (-463)))) (-15 -3571 ((-463) $)) (-15 -3565 ((-85) $ (|[\|\|]| (-1066)))) (-15 -3571 ((-1066) $)) (-15 -3565 ((-85) $ (|[\|\|]| (-127)))) (-15 -3571 ((-127) $)) (-15 -3565 ((-85) $ (|[\|\|]| (-613)))) (-15 -3571 ((-613) $)) (-15 -3565 ((-85) $ (|[\|\|]| (-263)))) (-15 -3571 ((-263) $)) (-15 -3565 ((-85) $ (|[\|\|]| (-948)))) (-15 -3571 ((-948) $)) (-15 -3565 ((-85) $ (|[\|\|]| (-154)))) (-15 -3571 ((-154) $)) (-15 -3565 ((-85) $ (|[\|\|]| (-883)))) (-15 -3571 ((-883) $)) (-15 -3565 ((-85) $ (|[\|\|]| (-985)))) (-15 -3571 ((-985) $)) (-15 -3565 ((-85) $ (|[\|\|]| (-1003)))) (-15 -3571 ((-1003) $)) (-15 -3565 ((-85) $ (|[\|\|]| (-1008)))) (-15 -3571 ((-1008) $)) (-15 -3565 ((-85) $ (|[\|\|]| (-565)))) (-15 -3571 ((-565) $)) (-15 -3565 ((-85) $ (|[\|\|]| (-1080)))) (-15 -3571 ((-1080) $)) (-15 -3565 ((-85) $ (|[\|\|]| (-129)))) (-15 -3571 ((-129) $)) (-15 -3565 ((-85) $ (|[\|\|]| (-110)))) (-15 -3571 ((-110) $)) (-15 -3565 ((-85) $ (|[\|\|]| (-417)))) (-15 -3571 ((-417) $)) (-15 -3565 ((-85) $ (|[\|\|]| (-528)))) (-15 -3571 ((-528) $)) (-15 -3565 ((-85) $ (|[\|\|]| (-446)))) (-15 -3571 ((-446) $)) (-15 -3565 ((-85) $ (|[\|\|]| (-1072)))) (-15 -3571 ((-1072) $)) (-15 -3565 ((-85) $ (|[\|\|]| (-484)))) (-15 -3571 ((-484) $)))) +(((-64) . T) ((-72) . T) ((-555 (-1094)) . T) ((-552 (-772)) . T) ((-552 (-1094)) . T) ((-429 (-1094)) . T) ((-13) . T) ((-1013) . T) ((-995) . T) ((-1128) . T) ((-1174) . T)) +((-3381 (((-1184) (-583 (-772))) 22 T ELT) (((-1184) (-772)) 21 T ELT)) (-3380 (((-1184) (-583 (-772))) 20 T ELT) (((-1184) (-772)) 19 T ELT)) (-3379 (((-1184) (-583 (-772))) 18 T ELT) (((-1184) (-772)) 10 T ELT) (((-1184) (-1072) (-772)) 16 T ELT))) +(((-1051) (-10 -7 (-15 -3379 ((-1184) (-1072) (-772))) (-15 -3379 ((-1184) (-772))) (-15 -3380 ((-1184) (-772))) (-15 -3381 ((-1184) (-772))) (-15 -3379 ((-1184) (-583 (-772)))) (-15 -3380 ((-1184) (-583 (-772)))) (-15 -3381 ((-1184) (-583 (-772)))))) (T -1051)) +((-3381 (*1 *2 *3) (-12 (-5 *3 (-583 (-772))) (-5 *2 (-1184)) (-5 *1 (-1051)))) (-3380 (*1 *2 *3) (-12 (-5 *3 (-583 (-772))) (-5 *2 (-1184)) (-5 *1 (-1051)))) (-3379 (*1 *2 *3) (-12 (-5 *3 (-583 (-772))) (-5 *2 (-1184)) (-5 *1 (-1051)))) (-3381 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1184)) (-5 *1 (-1051)))) (-3380 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1184)) (-5 *1 (-1051)))) (-3379 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1184)) (-5 *1 (-1051)))) (-3379 (*1 *2 *3 *4) (-12 (-5 *3 (-1072)) (-5 *4 (-772)) (-5 *2 (-1184)) (-5 *1 (-1051))))) +((-3385 (($ $ $) 10 T ELT)) (-3384 (($ $) 9 T ELT)) (-3388 (($ $ $) 13 T ELT)) (-3390 (($ $ $) 15 T ELT)) (-3387 (($ $ $) 12 T ELT)) (-3389 (($ $ $) 14 T ELT)) (-3392 (($ $) 17 T ELT)) (-3391 (($ $) 16 T ELT)) (-3382 (($ $) 6 T ELT)) (-3386 (($ $ $) 11 T ELT) (($ $) 7 T ELT)) (-3383 (($ $ $) 8 T ELT))) +(((-1052) (-113)) (T -1052)) +((-3392 (*1 *1 *1) (-4 *1 (-1052))) (-3391 (*1 *1 *1) (-4 *1 (-1052))) (-3390 (*1 *1 *1 *1) (-4 *1 (-1052))) (-3389 (*1 *1 *1 *1) (-4 *1 (-1052))) (-3388 (*1 *1 *1 *1) (-4 *1 (-1052))) (-3387 (*1 *1 *1 *1) (-4 *1 (-1052))) (-3386 (*1 *1 *1 *1) (-4 *1 (-1052))) (-3385 (*1 *1 *1 *1) (-4 *1 (-1052))) (-3384 (*1 *1 *1) (-4 *1 (-1052))) (-3383 (*1 *1 *1 *1) (-4 *1 (-1052))) (-3386 (*1 *1 *1) (-4 *1 (-1052))) (-3382 (*1 *1 *1) (-4 *1 (-1052)))) +(-13 (-10 -8 (-15 -3382 ($ $)) (-15 -3386 ($ $)) (-15 -3383 ($ $ $)) (-15 -3384 ($ $)) (-15 -3385 ($ $ $)) (-15 -3386 ($ $ $)) (-15 -3387 ($ $ $)) (-15 -3388 ($ $ $)) (-15 -3389 ($ $ $)) (-15 -3390 ($ $ $)) (-15 -3391 ($ $)) (-15 -3392 ($ $)))) +((-2568 (((-85) $ $) 44 T ELT)) (-3401 ((|#1| $) 17 T ELT)) (-3393 (((-85) $ $ (-1 (-85) |#2| |#2|)) 39 T ELT)) (-3400 (((-85) $) 19 T ELT)) (-3398 (($ $ |#1|) 30 T ELT)) (-3396 (($ $ (-85)) 32 T ELT)) (-3395 (($ $) 33 T ELT)) (-3397 (($ $ |#2|) 31 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3394 (((-85) $ $ (-1 (-85) |#1| |#1|) (-1 (-85) |#2| |#2|)) 38 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3402 (((-85) $) 16 T ELT)) (-3564 (($) 13 T ELT)) (-3399 (($ $) 29 T ELT)) (-3529 (($ |#1| |#2| (-85)) 20 T ELT) (($ |#1| |#2|) 21 T ELT) (($ (-2 (|:| |val| |#1|) (|:| -1599 |#2|))) 23 T ELT) (((-583 $) (-583 (-2 (|:| |val| |#1|) (|:| -1599 |#2|)))) 26 T ELT) (((-583 $) |#1| (-583 |#2|)) 28 T ELT)) (-3921 ((|#2| $) 18 T ELT)) (-3945 (((-772) $) 53 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 42 T ELT))) +(((-1053 |#1| |#2|) (-13 (-1013) (-10 -8 (-15 -3564 ($)) (-15 -3402 ((-85) $)) (-15 -3401 (|#1| $)) (-15 -3921 (|#2| $)) (-15 -3400 ((-85) $)) (-15 -3529 ($ |#1| |#2| (-85))) (-15 -3529 ($ |#1| |#2|)) (-15 -3529 ($ (-2 (|:| |val| |#1|) (|:| -1599 |#2|)))) (-15 -3529 ((-583 $) (-583 (-2 (|:| |val| |#1|) (|:| -1599 |#2|))))) (-15 -3529 ((-583 $) |#1| (-583 |#2|))) (-15 -3399 ($ $)) (-15 -3398 ($ $ |#1|)) (-15 -3397 ($ $ |#2|)) (-15 -3396 ($ $ (-85))) (-15 -3395 ($ $)) (-15 -3394 ((-85) $ $ (-1 (-85) |#1| |#1|) (-1 (-85) |#2| |#2|))) (-15 -3393 ((-85) $ $ (-1 (-85) |#2| |#2|))))) (-13 (-1013) (-34)) (-13 (-1013) (-34))) (T -1053)) +((-3564 (*1 *1) (-12 (-5 *1 (-1053 *2 *3)) (-4 *2 (-13 (-1013) (-34))) (-4 *3 (-13 (-1013) (-34))))) (-3402 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1053 *3 *4)) (-4 *3 (-13 (-1013) (-34))) (-4 *4 (-13 (-1013) (-34))))) (-3401 (*1 *2 *1) (-12 (-4 *2 (-13 (-1013) (-34))) (-5 *1 (-1053 *2 *3)) (-4 *3 (-13 (-1013) (-34))))) (-3921 (*1 *2 *1) (-12 (-4 *2 (-13 (-1013) (-34))) (-5 *1 (-1053 *3 *2)) (-4 *3 (-13 (-1013) (-34))))) (-3400 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1053 *3 *4)) (-4 *3 (-13 (-1013) (-34))) (-4 *4 (-13 (-1013) (-34))))) (-3529 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-85)) (-5 *1 (-1053 *2 *3)) (-4 *2 (-13 (-1013) (-34))) (-4 *3 (-13 (-1013) (-34))))) (-3529 (*1 *1 *2 *3) (-12 (-5 *1 (-1053 *2 *3)) (-4 *2 (-13 (-1013) (-34))) (-4 *3 (-13 (-1013) (-34))))) (-3529 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1599 *4))) (-4 *3 (-13 (-1013) (-34))) (-4 *4 (-13 (-1013) (-34))) (-5 *1 (-1053 *3 *4)))) (-3529 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| |val| *4) (|:| -1599 *5)))) (-4 *4 (-13 (-1013) (-34))) (-4 *5 (-13 (-1013) (-34))) (-5 *2 (-583 (-1053 *4 *5))) (-5 *1 (-1053 *4 *5)))) (-3529 (*1 *2 *3 *4) (-12 (-5 *4 (-583 *5)) (-4 *5 (-13 (-1013) (-34))) (-5 *2 (-583 (-1053 *3 *5))) (-5 *1 (-1053 *3 *5)) (-4 *3 (-13 (-1013) (-34))))) (-3399 (*1 *1 *1) (-12 (-5 *1 (-1053 *2 *3)) (-4 *2 (-13 (-1013) (-34))) (-4 *3 (-13 (-1013) (-34))))) (-3398 (*1 *1 *1 *2) (-12 (-5 *1 (-1053 *2 *3)) (-4 *2 (-13 (-1013) (-34))) (-4 *3 (-13 (-1013) (-34))))) (-3397 (*1 *1 *1 *2) (-12 (-5 *1 (-1053 *3 *2)) (-4 *3 (-13 (-1013) (-34))) (-4 *2 (-13 (-1013) (-34))))) (-3396 (*1 *1 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1053 *3 *4)) (-4 *3 (-13 (-1013) (-34))) (-4 *4 (-13 (-1013) (-34))))) (-3395 (*1 *1 *1) (-12 (-5 *1 (-1053 *2 *3)) (-4 *2 (-13 (-1013) (-34))) (-4 *3 (-13 (-1013) (-34))))) (-3394 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-85) *5 *5)) (-5 *4 (-1 (-85) *6 *6)) (-4 *5 (-13 (-1013) (-34))) (-4 *6 (-13 (-1013) (-34))) (-5 *2 (-85)) (-5 *1 (-1053 *5 *6)))) (-3393 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-85) *5 *5)) (-4 *5 (-13 (-1013) (-34))) (-5 *2 (-85)) (-5 *1 (-1053 *4 *5)) (-4 *4 (-13 (-1013) (-34)))))) +((-2568 (((-85) $ $) NIL (|has| (-1053 |#1| |#2|) (-72)) ELT)) (-3401 (((-1053 |#1| |#2|) $) 27 T ELT)) (-3410 (($ $) 91 T ELT)) (-3406 (((-85) (-1053 |#1| |#2|) $ (-1 (-85) |#2| |#2|)) 100 T ELT)) (-3403 (($ $ $ (-583 (-1053 |#1| |#2|))) 108 T ELT) (($ $ $ (-583 (-1053 |#1| |#2|)) (-1 (-85) |#2| |#2|)) 109 T ELT)) (-3025 (((-1053 |#1| |#2|) $ (-1053 |#1| |#2|)) 46 (|has| $ (-6 -3995)) ELT)) (-3787 (((-1053 |#1| |#2|) $ #1="value" (-1053 |#1| |#2|)) NIL (|has| $ (-6 -3995)) ELT)) (-3026 (($ $ (-583 $)) 44 (|has| $ (-6 -3995)) ELT)) (-3723 (($) NIL T CONST)) (-3408 (((-583 (-2 (|:| |val| |#1|) (|:| -1599 |#2|))) $) 95 T ELT)) (-3404 (($ (-1053 |#1| |#2|) $) 42 T ELT)) (-3405 (($ (-1053 |#1| |#2|) $) 34 T ELT)) (-2889 (((-583 (-1053 |#1| |#2|)) $) NIL (|has| $ (-6 -3994)) ELT)) (-3031 (((-583 $) $) 54 T ELT)) (-3407 (((-85) (-1053 |#1| |#2|) $) 97 T ELT)) (-3027 (((-85) $ $) NIL (|has| (-1053 |#1| |#2|) (-1013)) ELT)) (-2608 (((-583 (-1053 |#1| |#2|)) $) 58 (|has| $ (-6 -3994)) ELT)) (-3245 (((-85) (-1053 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-1053 |#1| |#2|) (-1013))) ELT)) (-1948 (($ (-1 (-1053 |#1| |#2|) (-1053 |#1| |#2|)) $) 50 (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 (-1053 |#1| |#2|) (-1053 |#1| |#2|)) $) 49 T ELT)) (-3030 (((-583 (-1053 |#1| |#2|)) $) 56 T ELT)) (-3526 (((-85) $) 45 T ELT)) (-3242 (((-1072) $) NIL (|has| (-1053 |#1| |#2|) (-1013)) ELT)) (-3243 (((-1033) $) NIL (|has| (-1053 |#1| |#2|) (-1013)) ELT)) (-3411 (((-3 $ "failed") $) 89 T ELT)) (-1946 (((-85) (-1 (-85) (-1053 |#1| |#2|)) $) NIL (|has| $ (-6 -3994)) ELT)) (-3767 (($ $ (-583 (-249 (-1053 |#1| |#2|)))) NIL (-12 (|has| (-1053 |#1| |#2|) (-260 (-1053 |#1| |#2|))) (|has| (-1053 |#1| |#2|) (-1013))) ELT) (($ $ (-249 (-1053 |#1| |#2|))) NIL (-12 (|has| (-1053 |#1| |#2|) (-260 (-1053 |#1| |#2|))) (|has| (-1053 |#1| |#2|) (-1013))) ELT) (($ $ (-1053 |#1| |#2|) (-1053 |#1| |#2|)) NIL (-12 (|has| (-1053 |#1| |#2|) (-260 (-1053 |#1| |#2|))) (|has| (-1053 |#1| |#2|) (-1013))) ELT) (($ $ (-583 (-1053 |#1| |#2|)) (-583 (-1053 |#1| |#2|))) NIL (-12 (|has| (-1053 |#1| |#2|) (-260 (-1053 |#1| |#2|))) (|has| (-1053 |#1| |#2|) (-1013))) ELT)) (-1221 (((-85) $ $) 53 T ELT)) (-3402 (((-85) $) 24 T ELT)) (-3564 (($) 26 T ELT)) (-3799 (((-1053 |#1| |#2|) $ #1#) NIL T ELT)) (-3029 (((-484) $ $) NIL T ELT)) (-3632 (((-85) $) 47 T ELT)) (-1945 (((-694) (-1 (-85) (-1053 |#1| |#2|)) $) NIL (|has| $ (-6 -3994)) ELT) (((-694) (-1053 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-1053 |#1| |#2|) (-1013))) ELT)) (-3399 (($ $) 52 T ELT)) (-3529 (($ (-1053 |#1| |#2|)) 10 T ELT) (($ |#1| |#2| (-583 $)) 13 T ELT) (($ |#1| |#2| (-583 (-1053 |#1| |#2|))) 15 T ELT) (($ |#1| |#2| |#1| (-583 |#2|)) 18 T ELT)) (-3409 (((-583 |#2|) $) 96 T ELT)) (-3945 (((-772) $) 87 (|has| (-1053 |#1| |#2|) (-552 (-772))) ELT)) (-3521 (((-583 $) $) 31 T ELT)) (-3028 (((-85) $ $) NIL (|has| (-1053 |#1| |#2|) (-1013)) ELT)) (-1264 (((-85) $ $) NIL (|has| (-1053 |#1| |#2|) (-72)) ELT)) (-1947 (((-85) (-1 (-85) (-1053 |#1| |#2|)) $) NIL (|has| $ (-6 -3994)) ELT)) (-3056 (((-85) $ $) 70 (|has| (-1053 |#1| |#2|) (-72)) ELT)) (-3956 (((-694) $) 64 (|has| $ (-6 -3994)) ELT))) +(((-1054 |#1| |#2|) (-13 (-923 (-1053 |#1| |#2|)) (-10 -8 (-6 -3995) (-6 -3994) (-15 -3411 ((-3 $ "failed") $)) (-15 -3410 ($ $)) (-15 -3529 ($ (-1053 |#1| |#2|))) (-15 -3529 ($ |#1| |#2| (-583 $))) (-15 -3529 ($ |#1| |#2| (-583 (-1053 |#1| |#2|)))) (-15 -3529 ($ |#1| |#2| |#1| (-583 |#2|))) (-15 -3409 ((-583 |#2|) $)) (-15 -3408 ((-583 (-2 (|:| |val| |#1|) (|:| -1599 |#2|))) $)) (-15 -3407 ((-85) (-1053 |#1| |#2|) $)) (-15 -3406 ((-85) (-1053 |#1| |#2|) $ (-1 (-85) |#2| |#2|))) (-15 -3405 ($ (-1053 |#1| |#2|) $)) (-15 -3404 ($ (-1053 |#1| |#2|) $)) (-15 -3403 ($ $ $ (-583 (-1053 |#1| |#2|)))) (-15 -3403 ($ $ $ (-583 (-1053 |#1| |#2|)) (-1 (-85) |#2| |#2|))))) (-13 (-1013) (-34)) (-13 (-1013) (-34))) (T -1054)) +((-3411 (*1 *1 *1) (|partial| -12 (-5 *1 (-1054 *2 *3)) (-4 *2 (-13 (-1013) (-34))) (-4 *3 (-13 (-1013) (-34))))) (-3410 (*1 *1 *1) (-12 (-5 *1 (-1054 *2 *3)) (-4 *2 (-13 (-1013) (-34))) (-4 *3 (-13 (-1013) (-34))))) (-3529 (*1 *1 *2) (-12 (-5 *2 (-1053 *3 *4)) (-4 *3 (-13 (-1013) (-34))) (-4 *4 (-13 (-1013) (-34))) (-5 *1 (-1054 *3 *4)))) (-3529 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-583 (-1054 *2 *3))) (-5 *1 (-1054 *2 *3)) (-4 *2 (-13 (-1013) (-34))) (-4 *3 (-13 (-1013) (-34))))) (-3529 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-583 (-1053 *2 *3))) (-4 *2 (-13 (-1013) (-34))) (-4 *3 (-13 (-1013) (-34))) (-5 *1 (-1054 *2 *3)))) (-3529 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-13 (-1013) (-34))) (-5 *1 (-1054 *2 *3)) (-4 *2 (-13 (-1013) (-34))))) (-3409 (*1 *2 *1) (-12 (-5 *2 (-583 *4)) (-5 *1 (-1054 *3 *4)) (-4 *3 (-13 (-1013) (-34))) (-4 *4 (-13 (-1013) (-34))))) (-3408 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1599 *4)))) (-5 *1 (-1054 *3 *4)) (-4 *3 (-13 (-1013) (-34))) (-4 *4 (-13 (-1013) (-34))))) (-3407 (*1 *2 *3 *1) (-12 (-5 *3 (-1053 *4 *5)) (-4 *4 (-13 (-1013) (-34))) (-4 *5 (-13 (-1013) (-34))) (-5 *2 (-85)) (-5 *1 (-1054 *4 *5)))) (-3406 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1053 *5 *6)) (-5 *4 (-1 (-85) *6 *6)) (-4 *5 (-13 (-1013) (-34))) (-4 *6 (-13 (-1013) (-34))) (-5 *2 (-85)) (-5 *1 (-1054 *5 *6)))) (-3405 (*1 *1 *2 *1) (-12 (-5 *2 (-1053 *3 *4)) (-4 *3 (-13 (-1013) (-34))) (-4 *4 (-13 (-1013) (-34))) (-5 *1 (-1054 *3 *4)))) (-3404 (*1 *1 *2 *1) (-12 (-5 *2 (-1053 *3 *4)) (-4 *3 (-13 (-1013) (-34))) (-4 *4 (-13 (-1013) (-34))) (-5 *1 (-1054 *3 *4)))) (-3403 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-583 (-1053 *3 *4))) (-4 *3 (-13 (-1013) (-34))) (-4 *4 (-13 (-1013) (-34))) (-5 *1 (-1054 *3 *4)))) (-3403 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-1053 *4 *5))) (-5 *3 (-1 (-85) *5 *5)) (-4 *4 (-13 (-1013) (-34))) (-4 *5 (-13 (-1013) (-34))) (-5 *1 (-1054 *4 *5))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-3413 (($ $) NIL T ELT)) (-3329 ((|#2| $) NIL T ELT)) (-3120 (((-85) $) NIL T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3412 (($ (-630 |#2|)) 53 T ELT)) (-3122 (((-85) $) NIL T ELT)) (-3332 (($ |#2|) 14 T ELT)) (-3723 (($) NIL T CONST)) (-3109 (($ $) 66 (|has| |#2| (-258)) ELT)) (-3111 (((-197 |#1| |#2|) $ (-484)) 40 T ELT)) (-3157 (((-3 (-484) #1#) $) NIL (|has| |#2| (-950 (-484))) ELT) (((-3 (-349 (-484)) #1#) $) NIL (|has| |#2| (-950 (-349 (-484)))) ELT) (((-3 |#2| #1#) $) NIL T ELT)) (-3156 (((-484) $) NIL (|has| |#2| (-950 (-484))) ELT) (((-349 (-484)) $) NIL (|has| |#2| (-950 (-349 (-484)))) ELT) ((|#2| $) NIL T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) NIL (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1178 |#2|))) (-630 $) (-1178 $)) NIL T ELT) (((-630 |#2|) (-630 $)) NIL T ELT)) (-3466 (((-3 $ #1#) $) 80 T ELT)) (-3108 (((-694) $) 68 (|has| |#2| (-495)) ELT)) (-3112 ((|#2| $ (-484) (-484)) NIL T ELT)) (-2889 (((-583 |#2|) $) NIL (|has| $ (-6 -3994)) ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-3107 (((-694) $) 70 (|has| |#2| (-495)) ELT)) (-3106 (((-583 (-197 |#1| |#2|)) $) 74 (|has| |#2| (-495)) ELT)) (-3114 (((-694) $) NIL T ELT)) (-3613 (($ |#2|) 23 T ELT)) (-3113 (((-694) $) NIL T ELT)) (-3326 ((|#2| $) 64 (|has| |#2| (-6 (-3996 #2="*"))) ELT)) (-3118 (((-484) $) NIL T ELT)) (-3116 (((-484) $) NIL T ELT)) (-2608 (((-583 |#2|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3245 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#2| (-1013))) ELT)) (-3117 (((-484) $) NIL T ELT)) (-3115 (((-484) $) NIL T ELT)) (-3123 (($ (-583 (-583 |#2|))) 35 T ELT)) (-1948 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3593 (((-583 (-583 |#2|)) $) NIL T ELT)) (-2280 (((-630 (-484)) (-1178 $)) NIL (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1178 |#2|))) (-1178 $) $) NIL T ELT) (((-630 |#2|) (-1178 $)) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3589 (((-3 $ #1#) $) 77 (|has| |#2| (-312)) ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3465 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-495)) ELT)) (-1946 (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3767 (($ $ (-583 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT)) (-1221 (((-85) $ $) NIL T ELT)) (-3402 (((-85) $) NIL T ELT)) (-3564 (($) NIL T ELT)) (-3799 ((|#2| $ (-484) (-484) |#2|) NIL T ELT) ((|#2| $ (-484) (-484)) NIL T ELT)) (-3757 (($ $ (-1 |#2| |#2|) (-694)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-694)) NIL (|has| |#2| (-189)) ELT) (($ $ (-1089)) NIL (|has| |#2| (-811 (-1089))) ELT) (($ $ (-583 (-1089))) NIL (|has| |#2| (-811 (-1089))) ELT) (($ $ (-1089) (-694)) NIL (|has| |#2| (-811 (-1089))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (|has| |#2| (-811 (-1089))) ELT)) (-3328 ((|#2| $) NIL T ELT)) (-3331 (($ (-583 |#2|)) 48 T ELT)) (-3121 (((-85) $) NIL T ELT)) (-3330 (((-197 |#1| |#2|) $) NIL T ELT)) (-3327 ((|#2| $) 62 (|has| |#2| (-6 (-3996 #2#))) ELT)) (-1945 (((-694) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3994)) ELT) (((-694) |#2| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#2| (-1013))) ELT)) (-3399 (($ $) NIL T ELT)) (-3971 (((-473) $) 87 (|has| |#2| (-553 (-473))) ELT)) (-3110 (((-197 |#1| |#2|) $ (-484)) 42 T ELT)) (-3945 (((-772) $) 45 T ELT) (($ (-484)) NIL T ELT) (($ (-349 (-484))) NIL (|has| |#2| (-950 (-349 (-484)))) ELT) (($ |#2|) NIL T ELT) (((-630 |#2|) $) 50 T ELT)) (-3126 (((-694)) 21 T CONST)) (-1264 (((-85) $ $) NIL T ELT)) (-1947 (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3119 (((-85) $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) 15 T CONST)) (-2666 (($) 19 T CONST)) (-2669 (($ $ (-1 |#2| |#2|) (-694)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-694)) NIL (|has| |#2| (-189)) ELT) (($ $ (-1089)) NIL (|has| |#2| (-811 (-1089))) ELT) (($ $ (-583 (-1089))) NIL (|has| |#2| (-811 (-1089))) ELT) (($ $ (-1089) (-694)) NIL (|has| |#2| (-811 (-1089))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (|has| |#2| (-811 (-1089))) ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3948 (($ $ |#2|) NIL (|has| |#2| (-312)) ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) 60 T ELT) (($ $ (-484)) 79 (|has| |#2| (-312)) ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (((-197 |#1| |#2|) $ (-197 |#1| |#2|)) 56 T ELT) (((-197 |#1| |#2|) (-197 |#1| |#2|) $) 58 T ELT)) (-3956 (((-694) $) NIL (|has| $ (-6 -3994)) ELT))) +(((-1055 |#1| |#2|) (-13 (-1036 |#1| |#2| (-197 |#1| |#2|) (-197 |#1| |#2|)) (-552 (-630 |#2|)) (-10 -8 (-15 -3613 ($ |#2|)) (-15 -3413 ($ $)) (-15 -3412 ($ (-630 |#2|))) (IF (|has| |#2| (-6 (-3996 #1="*"))) (-6 -3983) |%noBranch|) (IF (|has| |#2| (-6 (-3996 #1#))) (IF (|has| |#2| (-6 -3991)) (-6 -3991) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-553 (-473))) (-6 (-553 (-473))) |%noBranch|))) (-694) (-961)) (T -1055)) +((-3613 (*1 *1 *2) (-12 (-5 *1 (-1055 *3 *2)) (-14 *3 (-694)) (-4 *2 (-961)))) (-3413 (*1 *1 *1) (-12 (-5 *1 (-1055 *2 *3)) (-14 *2 (-694)) (-4 *3 (-961)))) (-3412 (*1 *1 *2) (-12 (-5 *2 (-630 *4)) (-4 *4 (-961)) (-5 *1 (-1055 *3 *4)) (-14 *3 (-694))))) +((-3426 (($ $) 19 T ELT)) (-3416 (($ $ (-117)) 10 T ELT) (($ $ (-114)) 14 T ELT)) (-3424 (((-85) $ $) 24 T ELT)) (-3428 (($ $) 17 T ELT)) (-3799 (((-117) $ (-484) (-117)) NIL T ELT) (((-117) $ (-484)) NIL T ELT) (($ $ (-1145 (-484))) NIL T ELT) (($ $ $) 31 T ELT)) (-3945 (($ (-117)) 29 T ELT) (((-772) $) NIL T ELT))) +(((-1056 |#1|) (-10 -7 (-15 -3945 ((-772) |#1|)) (-15 -3799 (|#1| |#1| |#1|)) (-15 -3416 (|#1| |#1| (-114))) (-15 -3416 (|#1| |#1| (-117))) (-15 -3945 (|#1| (-117))) (-15 -3424 ((-85) |#1| |#1|)) (-15 -3426 (|#1| |#1|)) (-15 -3428 (|#1| |#1|)) (-15 -3799 (|#1| |#1| (-1145 (-484)))) (-15 -3799 ((-117) |#1| (-484))) (-15 -3799 ((-117) |#1| (-484) (-117)))) (-1057)) (T -1056)) +NIL +((-2568 (((-85) $ $) 19 (|has| (-117) (-72)) ELT)) (-3425 (($ $) 129 T ELT)) (-3426 (($ $) 130 T ELT)) (-3416 (($ $ (-117)) 117 T ELT) (($ $ (-114)) 116 T ELT)) (-2198 (((-1184) $ (-484) (-484)) 44 (|has| $ (-6 -3995)) ELT)) (-3423 (((-85) $ $) 127 T ELT)) (-3422 (((-85) $ $ (-484)) 126 T ELT)) (-3417 (((-583 $) $ (-117)) 119 T ELT) (((-583 $) $ (-114)) 118 T ELT)) (-1731 (((-85) (-1 (-85) (-117) (-117)) $) 107 T ELT) (((-85) $) 101 (|has| (-117) (-756)) ELT)) (-1729 (($ (-1 (-85) (-117) (-117)) $) 98 (|has| $ (-6 -3995)) ELT) (($ $) 97 (-12 (|has| (-117) (-756)) (|has| $ (-6 -3995))) ELT)) (-2909 (($ (-1 (-85) (-117) (-117)) $) 108 T ELT) (($ $) 102 (|has| (-117) (-756)) ELT)) (-3787 (((-117) $ (-484) (-117)) 56 (|has| $ (-6 -3995)) ELT) (((-117) $ (-1145 (-484)) (-117)) 64 (|has| $ (-6 -3995)) ELT)) (-3709 (($ (-1 (-85) (-117)) $) 81 (|has| $ (-6 -3994)) ELT)) (-3723 (($) 7 T CONST)) (-3414 (($ $ (-117)) 113 T ELT) (($ $ (-114)) 112 T ELT)) (-2297 (($ $) 99 (|has| $ (-6 -3995)) ELT)) (-2298 (($ $) 109 T ELT)) (-3419 (($ $ (-1145 (-484)) $) 123 T ELT)) (-1352 (($ $) 84 (-12 (|has| (-117) (-1013)) (|has| $ (-6 -3994))) ELT)) (-3405 (($ (-117) $) 83 (-12 (|has| (-117) (-1013)) (|has| $ (-6 -3994))) ELT) (($ (-1 (-85) (-117)) $) 80 (|has| $ (-6 -3994)) ELT)) (-3841 (((-117) (-1 (-117) (-117) (-117)) $ (-117) (-117)) 82 (-12 (|has| (-117) (-1013)) (|has| $ (-6 -3994))) ELT) (((-117) (-1 (-117) (-117) (-117)) $ (-117)) 79 (|has| $ (-6 -3994)) ELT) (((-117) (-1 (-117) (-117) (-117)) $) 78 (|has| $ (-6 -3994)) ELT)) (-1575 (((-117) $ (-484) (-117)) 57 (|has| $ (-6 -3995)) ELT)) (-3112 (((-117) $ (-484)) 55 T ELT)) (-3424 (((-85) $ $) 128 T ELT)) (-3418 (((-484) (-1 (-85) (-117)) $) 106 T ELT) (((-484) (-117) $) 105 (|has| (-117) (-1013)) ELT) (((-484) (-117) $ (-484)) 104 (|has| (-117) (-1013)) ELT) (((-484) $ $ (-484)) 122 T ELT) (((-484) (-114) $ (-484)) 121 T ELT)) (-2889 (((-583 (-117)) $) 30 (|has| $ (-6 -3994)) ELT)) (-3613 (($ (-694) (-117)) 74 T ELT)) (-2200 (((-484) $) 47 (|has| (-484) (-756)) ELT)) (-2531 (($ $ $) 91 (|has| (-117) (-756)) ELT)) (-3517 (($ (-1 (-85) (-117) (-117)) $ $) 110 T ELT) (($ $ $) 103 (|has| (-117) (-756)) ELT)) (-2608 (((-583 (-117)) $) 29 (|has| $ (-6 -3994)) ELT)) (-3245 (((-85) (-117) $) 27 (-12 (|has| (-117) (-1013)) (|has| $ (-6 -3994))) ELT)) (-2201 (((-484) $) 48 (|has| (-484) (-756)) ELT)) (-2857 (($ $ $) 92 (|has| (-117) (-756)) ELT)) (-3420 (((-85) $ $ (-117)) 124 T ELT)) (-3421 (((-694) $ $ (-117)) 125 T ELT)) (-1948 (($ (-1 (-117) (-117)) $) 34 (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 (-117) (-117)) $) 35 T ELT) (($ (-1 (-117) (-117) (-117)) $ $) 69 T ELT)) (-3427 (($ $) 131 T ELT)) (-3428 (($ $) 132 T ELT)) (-3415 (($ $ (-117)) 115 T ELT) (($ $ (-114)) 114 T ELT)) (-3242 (((-1072) $) 22 (|has| (-117) (-1013)) ELT)) (-2304 (($ (-117) $ (-484)) 66 T ELT) (($ $ $ (-484)) 65 T ELT)) (-2203 (((-583 (-484)) $) 50 T ELT)) (-2204 (((-85) (-484) $) 51 T ELT)) (-3243 (((-1033) $) 21 (|has| (-117) (-1013)) ELT)) (-3800 (((-117) $) 46 (|has| (-484) (-756)) ELT)) (-1353 (((-3 (-117) "failed") (-1 (-85) (-117)) $) 77 T ELT)) (-2199 (($ $ (-117)) 45 (|has| $ (-6 -3995)) ELT)) (-1946 (((-85) (-1 (-85) (-117)) $) 32 (|has| $ (-6 -3994)) ELT)) (-3767 (($ $ (-583 (-249 (-117)))) 26 (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1013))) ELT) (($ $ (-249 (-117))) 25 (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1013))) ELT) (($ $ (-117) (-117)) 24 (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1013))) ELT) (($ $ (-583 (-117)) (-583 (-117))) 23 (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1013))) ELT)) (-1221 (((-85) $ $) 11 T ELT)) (-2202 (((-85) (-117) $) 49 (-12 (|has| $ (-6 -3994)) (|has| (-117) (-1013))) ELT)) (-2205 (((-583 (-117)) $) 52 T ELT)) (-3402 (((-85) $) 8 T ELT)) (-3564 (($) 9 T ELT)) (-3799 (((-117) $ (-484) (-117)) 54 T ELT) (((-117) $ (-484)) 53 T ELT) (($ $ (-1145 (-484))) 75 T ELT) (($ $ $) 111 T ELT)) (-2305 (($ $ (-484)) 68 T ELT) (($ $ (-1145 (-484))) 67 T ELT)) (-1945 (((-694) (-1 (-85) (-117)) $) 31 (|has| $ (-6 -3994)) ELT) (((-694) (-117) $) 28 (-12 (|has| (-117) (-1013)) (|has| $ (-6 -3994))) ELT)) (-1730 (($ $ $ (-484)) 100 (|has| $ (-6 -3995)) ELT)) (-3399 (($ $) 10 T ELT)) (-3971 (((-473) $) 85 (|has| (-117) (-553 (-473))) ELT)) (-3529 (($ (-583 (-117))) 76 T ELT)) (-3801 (($ $ (-117)) 73 T ELT) (($ (-117) $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-583 $)) 70 T ELT)) (-3945 (($ (-117)) 120 T ELT) (((-772) $) 17 (|has| (-117) (-552 (-772))) ELT)) (-1264 (((-85) $ $) 20 (|has| (-117) (-72)) ELT)) (-1947 (((-85) (-1 (-85) (-117)) $) 33 (|has| $ (-6 -3994)) ELT)) (-2566 (((-85) $ $) 93 (|has| (-117) (-756)) ELT)) (-2567 (((-85) $ $) 95 (|has| (-117) (-756)) ELT)) (-3056 (((-85) $ $) 18 (|has| (-117) (-72)) ELT)) (-2684 (((-85) $ $) 94 (|has| (-117) (-756)) ELT)) (-2685 (((-85) $ $) 96 (|has| (-117) (-756)) ELT)) (-3956 (((-694) $) 6 (|has| $ (-6 -3994)) ELT))) +(((-1057) (-113)) (T -1057)) +((-3428 (*1 *1 *1) (-4 *1 (-1057))) (-3427 (*1 *1 *1) (-4 *1 (-1057))) (-3426 (*1 *1 *1) (-4 *1 (-1057))) (-3425 (*1 *1 *1) (-4 *1 (-1057))) (-3424 (*1 *2 *1 *1) (-12 (-4 *1 (-1057)) (-5 *2 (-85)))) (-3423 (*1 *2 *1 *1) (-12 (-4 *1 (-1057)) (-5 *2 (-85)))) (-3422 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1057)) (-5 *3 (-484)) (-5 *2 (-85)))) (-3421 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1057)) (-5 *3 (-117)) (-5 *2 (-694)))) (-3420 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1057)) (-5 *3 (-117)) (-5 *2 (-85)))) (-3419 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1057)) (-5 *2 (-1145 (-484))))) (-3418 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1057)) (-5 *2 (-484)))) (-3418 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1057)) (-5 *2 (-484)) (-5 *3 (-114)))) (-3945 (*1 *1 *2) (-12 (-5 *2 (-117)) (-4 *1 (-1057)))) (-3417 (*1 *2 *1 *3) (-12 (-5 *3 (-117)) (-5 *2 (-583 *1)) (-4 *1 (-1057)))) (-3417 (*1 *2 *1 *3) (-12 (-5 *3 (-114)) (-5 *2 (-583 *1)) (-4 *1 (-1057)))) (-3416 (*1 *1 *1 *2) (-12 (-4 *1 (-1057)) (-5 *2 (-117)))) (-3416 (*1 *1 *1 *2) (-12 (-4 *1 (-1057)) (-5 *2 (-114)))) (-3415 (*1 *1 *1 *2) (-12 (-4 *1 (-1057)) (-5 *2 (-117)))) (-3415 (*1 *1 *1 *2) (-12 (-4 *1 (-1057)) (-5 *2 (-114)))) (-3414 (*1 *1 *1 *2) (-12 (-4 *1 (-1057)) (-5 *2 (-117)))) (-3414 (*1 *1 *1 *2) (-12 (-4 *1 (-1057)) (-5 *2 (-114)))) (-3799 (*1 *1 *1 *1) (-4 *1 (-1057)))) +(-13 (-19 (-117)) (-10 -8 (-15 -3428 ($ $)) (-15 -3427 ($ $)) (-15 -3426 ($ $)) (-15 -3425 ($ $)) (-15 -3424 ((-85) $ $)) (-15 -3423 ((-85) $ $)) (-15 -3422 ((-85) $ $ (-484))) (-15 -3421 ((-694) $ $ (-117))) (-15 -3420 ((-85) $ $ (-117))) (-15 -3419 ($ $ (-1145 (-484)) $)) (-15 -3418 ((-484) $ $ (-484))) (-15 -3418 ((-484) (-114) $ (-484))) (-15 -3945 ($ (-117))) (-15 -3417 ((-583 $) $ (-117))) (-15 -3417 ((-583 $) $ (-114))) (-15 -3416 ($ $ (-117))) (-15 -3416 ($ $ (-114))) (-15 -3415 ($ $ (-117))) (-15 -3415 ($ $ (-114))) (-15 -3414 ($ $ (-117))) (-15 -3414 ($ $ (-114))) (-15 -3799 ($ $ $)))) +(((-34) . T) ((-72) OR (|has| (-117) (-1013)) (|has| (-117) (-756)) (|has| (-117) (-72))) ((-552 (-772)) OR (|has| (-117) (-1013)) (|has| (-117) (-756)) (|has| (-117) (-552 (-772)))) ((-124 (-117)) . T) ((-553 (-473)) |has| (-117) (-553 (-473))) ((-241 (-484) (-117)) . T) ((-241 (-1145 (-484)) $) . T) ((-243 (-484) (-117)) . T) ((-260 (-117)) -12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1013))) ((-323 (-117)) . T) ((-428 (-117)) . T) ((-538 (-484) (-117)) . T) ((-455 (-117) (-117)) -12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1013))) ((-13) . T) ((-593 (-117)) . T) ((-19 (-117)) . T) ((-756) |has| (-117) (-756)) ((-759) |has| (-117) (-756)) ((-1013) OR (|has| (-117) (-1013)) (|has| (-117) (-756))) ((-1128) . T)) +((-3435 (((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|))) (-583 |#4|) (-583 |#5|) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|))) (-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|))))) (-694)) 112 T ELT)) (-3432 (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|))))) |#4| |#5|) 62 T ELT) (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|))))) |#4| |#5| (-694)) 61 T ELT)) (-3436 (((-1184) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|))) (-694)) 97 T ELT)) (-3430 (((-694) (-583 |#4|) (-583 |#5|)) 30 T ELT)) (-3433 (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|))))) |#4| |#5|) 64 T ELT) (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|))))) |#4| |#5| (-694)) 63 T ELT) (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|))))) |#4| |#5| (-694) (-85)) 65 T ELT)) (-3434 (((-583 |#5|) (-583 |#4|) (-583 |#5|) (-85) (-85) (-85) (-85) (-85)) 84 T ELT) (((-583 |#5|) (-583 |#4|) (-583 |#5|) (-85) (-85)) 85 T ELT)) (-3971 (((-1072) (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|))) 90 T ELT)) (-3431 (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|))))) |#4| |#5|) 60 T ELT)) (-3429 (((-694) (-583 |#4|) (-583 |#5|)) 21 T ELT))) +(((-1058 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3429 ((-694) (-583 |#4|) (-583 |#5|))) (-15 -3430 ((-694) (-583 |#4|) (-583 |#5|))) (-15 -3431 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|))))) |#4| |#5|)) (-15 -3432 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|))))) |#4| |#5| (-694))) (-15 -3432 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|))))) |#4| |#5|)) (-15 -3433 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|))))) |#4| |#5| (-694) (-85))) (-15 -3433 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|))))) |#4| |#5| (-694))) (-15 -3433 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|))))) |#4| |#5|)) (-15 -3434 ((-583 |#5|) (-583 |#4|) (-583 |#5|) (-85) (-85))) (-15 -3434 ((-583 |#5|) (-583 |#4|) (-583 |#5|) (-85) (-85) (-85) (-85) (-85))) (-15 -3435 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|))) (-583 |#4|) (-583 |#5|) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|))) (-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|))))) (-694))) (-15 -3971 ((-1072) (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|)))) (-15 -3436 ((-1184) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1599 |#5|))) (-694)))) (-391) (-717) (-756) (-977 |#1| |#2| |#3|) (-1020 |#1| |#2| |#3| |#4|)) (T -1058)) +((-3436 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-2 (|:| |val| (-583 *8)) (|:| -1599 *9)))) (-5 *4 (-694)) (-4 *8 (-977 *5 *6 *7)) (-4 *9 (-1020 *5 *6 *7 *8)) (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-1184)) (-5 *1 (-1058 *5 *6 *7 *8 *9)))) (-3971 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-583 *7)) (|:| -1599 *8))) (-4 *7 (-977 *4 *5 *6)) (-4 *8 (-1020 *4 *5 *6 *7)) (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-1072)) (-5 *1 (-1058 *4 *5 *6 *7 *8)))) (-3435 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-583 *11)) (|:| |todo| (-583 (-2 (|:| |val| *3) (|:| -1599 *11)))))) (-5 *6 (-694)) (-5 *2 (-583 (-2 (|:| |val| (-583 *10)) (|:| -1599 *11)))) (-5 *3 (-583 *10)) (-5 *4 (-583 *11)) (-4 *10 (-977 *7 *8 *9)) (-4 *11 (-1020 *7 *8 *9 *10)) (-4 *7 (-391)) (-4 *8 (-717)) (-4 *9 (-756)) (-5 *1 (-1058 *7 *8 *9 *10 *11)))) (-3434 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-583 *9)) (-5 *3 (-583 *8)) (-5 *4 (-85)) (-4 *8 (-977 *5 *6 *7)) (-4 *9 (-1020 *5 *6 *7 *8)) (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *1 (-1058 *5 *6 *7 *8 *9)))) (-3434 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-583 *9)) (-5 *3 (-583 *8)) (-5 *4 (-85)) (-4 *8 (-977 *5 *6 *7)) (-4 *9 (-1020 *5 *6 *7 *8)) (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *1 (-1058 *5 *6 *7 *8 *9)))) (-3433 (*1 *2 *3 *4) (-12 (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1599 *4)))))) (-5 *1 (-1058 *5 *6 *7 *3 *4)) (-4 *4 (-1020 *5 *6 *7 *3)))) (-3433 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-694)) (-4 *6 (-391)) (-4 *7 (-717)) (-4 *8 (-756)) (-4 *3 (-977 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1599 *4)))))) (-5 *1 (-1058 *6 *7 *8 *3 *4)) (-4 *4 (-1020 *6 *7 *8 *3)))) (-3433 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-694)) (-5 *6 (-85)) (-4 *7 (-391)) (-4 *8 (-717)) (-4 *9 (-756)) (-4 *3 (-977 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1599 *4)))))) (-5 *1 (-1058 *7 *8 *9 *3 *4)) (-4 *4 (-1020 *7 *8 *9 *3)))) (-3432 (*1 *2 *3 *4) (-12 (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1599 *4)))))) (-5 *1 (-1058 *5 *6 *7 *3 *4)) (-4 *4 (-1020 *5 *6 *7 *3)))) (-3432 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-694)) (-4 *6 (-391)) (-4 *7 (-717)) (-4 *8 (-756)) (-4 *3 (-977 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1599 *4)))))) (-5 *1 (-1058 *6 *7 *8 *3 *4)) (-4 *4 (-1020 *6 *7 *8 *3)))) (-3431 (*1 *2 *3 *4) (-12 (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1599 *4)))))) (-5 *1 (-1058 *5 *6 *7 *3 *4)) (-4 *4 (-1020 *5 *6 *7 *3)))) (-3430 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *9)) (-4 *8 (-977 *5 *6 *7)) (-4 *9 (-1020 *5 *6 *7 *8)) (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-694)) (-5 *1 (-1058 *5 *6 *7 *8 *9)))) (-3429 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *9)) (-4 *8 (-977 *5 *6 *7)) (-4 *9 (-1020 *5 *6 *7 *8)) (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-694)) (-5 *1 (-1058 *5 *6 *7 *8 *9))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3680 (((-583 (-2 (|:| -3860 $) (|:| -1701 (-583 |#4|)))) (-583 |#4|)) NIL T ELT)) (-3681 (((-583 $) (-583 |#4|)) 118 T ELT) (((-583 $) (-583 |#4|) (-85)) 119 T ELT) (((-583 $) (-583 |#4|) (-85) (-85)) 117 T ELT) (((-583 $) (-583 |#4|) (-85) (-85) (-85) (-85)) 120 T ELT)) (-3081 (((-583 |#3|) $) NIL T ELT)) (-2908 (((-85) $) NIL T ELT)) (-2899 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-3692 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3687 ((|#4| |#4| $) NIL T ELT)) (-3774 (((-583 (-2 (|:| |val| |#4|) (|:| -1599 $))) |#4| $) 91 T ELT)) (-2909 (((-2 (|:| |under| $) (|:| -3130 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3709 (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3994)) ELT) (((-3 |#4| #1="failed") $ |#3|) 70 T ELT)) (-3723 (($) NIL T CONST)) (-2904 (((-85) $) 29 (|has| |#1| (-495)) ELT)) (-2906 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-2905 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-2907 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-3688 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-2900 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-495)) ELT)) (-2901 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-495)) ELT)) (-3157 (((-3 $ #1#) (-583 |#4|)) NIL T ELT)) (-3156 (($ (-583 |#4|)) NIL T ELT)) (-3798 (((-3 $ #1#) $) 45 T ELT)) (-3684 ((|#4| |#4| $) 73 T ELT)) (-1352 (($ $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#4| (-1013))) ELT)) (-3405 (($ |#4| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#4| (-1013))) ELT) (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3994)) ELT)) (-2902 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 85 (|has| |#1| (-495)) ELT)) (-3693 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3682 ((|#4| |#4| $) NIL T ELT)) (-3841 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -3994)) (|has| |#4| (-1013))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -3994)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -3994)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3695 (((-2 (|:| -3860 (-583 |#4|)) (|:| -1701 (-583 |#4|))) $) NIL T ELT)) (-3197 (((-85) |#4| $) NIL T ELT)) (-3195 (((-85) |#4| $) NIL T ELT)) (-3198 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3437 (((-2 (|:| |val| (-583 |#4|)) (|:| |towers| (-583 $))) (-583 |#4|) (-85) (-85)) 133 T ELT)) (-2889 (((-583 |#4|) $) 18 (|has| $ (-6 -3994)) ELT)) (-3694 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3180 ((|#3| $) 38 T ELT)) (-2608 (((-583 |#4|) $) 19 (|has| $ (-6 -3994)) ELT)) (-3245 (((-85) |#4| $) 27 (-12 (|has| $ (-6 -3994)) (|has| |#4| (-1013))) ELT)) (-1948 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#4| |#4|) $) 23 T ELT)) (-2914 (((-583 |#3|) $) NIL T ELT)) (-2913 (((-85) |#3| $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3191 (((-3 |#4| (-583 $)) |#4| |#4| $) NIL T ELT)) (-3190 (((-583 (-2 (|:| |val| |#4|) (|:| -1599 $))) |#4| |#4| $) 111 T ELT)) (-3797 (((-3 |#4| #1#) $) 42 T ELT)) (-3192 (((-583 $) |#4| $) 96 T ELT)) (-3194 (((-3 (-85) (-583 $)) |#4| $) NIL T ELT)) (-3193 (((-583 (-2 (|:| |val| (-85)) (|:| -1599 $))) |#4| $) 106 T ELT) (((-85) |#4| $) 62 T ELT)) (-3238 (((-583 $) |#4| $) 115 T ELT) (((-583 $) (-583 |#4|) $) NIL T ELT) (((-583 $) (-583 |#4|) (-583 $)) 116 T ELT) (((-583 $) |#4| (-583 $)) NIL T ELT)) (-3438 (((-583 $) (-583 |#4|) (-85) (-85) (-85)) 128 T ELT)) (-3439 (($ |#4| $) 82 T ELT) (($ (-583 |#4|) $) 83 T ELT) (((-583 $) |#4| $ (-85) (-85) (-85) (-85) (-85)) 81 T ELT)) (-3696 (((-583 |#4|) $) NIL T ELT)) (-3690 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3685 ((|#4| |#4| $) NIL T ELT)) (-3698 (((-85) $ $) NIL T ELT)) (-2903 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-495)) ELT)) (-3691 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3686 ((|#4| |#4| $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3800 (((-3 |#4| #1#) $) 40 T ELT)) (-1353 (((-3 |#4| #1#) (-1 (-85) |#4|) $) NIL T ELT)) (-3678 (((-3 $ #1#) $ |#4|) 56 T ELT)) (-3768 (($ $ |#4|) NIL T ELT) (((-583 $) |#4| $) 98 T ELT) (((-583 $) |#4| (-583 $)) NIL T ELT) (((-583 $) (-583 |#4|) $) NIL T ELT) (((-583 $) (-583 |#4|) (-583 $)) 93 T ELT)) (-1946 (((-85) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3767 (($ $ (-583 |#4|) (-583 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-249 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-583 (-249 |#4|))) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT)) (-1221 (((-85) $ $) NIL T ELT)) (-3402 (((-85) $) 17 T ELT)) (-3564 (($) 14 T ELT)) (-3947 (((-694) $) NIL T ELT)) (-1945 (((-694) |#4| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#4| (-1013))) ELT) (((-694) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3399 (($ $) 13 T ELT)) (-3971 (((-473) $) NIL (|has| |#4| (-553 (-473))) ELT)) (-3529 (($ (-583 |#4|)) 22 T ELT)) (-2910 (($ $ |#3|) 49 T ELT)) (-2912 (($ $ |#3|) 51 T ELT)) (-3683 (($ $) NIL T ELT)) (-2911 (($ $ |#3|) NIL T ELT)) (-3945 (((-772) $) 35 T ELT) (((-583 |#4|) $) 46 T ELT)) (-3677 (((-694) $) NIL (|has| |#3| (-319)) ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3697 (((-3 (-2 (|:| |bas| $) (|:| -3323 (-583 |#4|))) #1#) (-583 |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3323 (-583 |#4|))) #1#) (-583 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3689 (((-85) $ (-1 (-85) |#4| (-583 |#4|))) NIL T ELT)) (-3189 (((-583 $) |#4| $) 63 T ELT) (((-583 $) |#4| (-583 $)) NIL T ELT) (((-583 $) (-583 |#4|) $) NIL T ELT) (((-583 $) (-583 |#4|) (-583 $)) NIL T ELT)) (-1947 (((-85) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3679 (((-583 |#3|) $) NIL T ELT)) (-3196 (((-85) |#4| $) NIL T ELT)) (-3932 (((-85) |#3| $) 69 T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3956 (((-694) $) NIL (|has| $ (-6 -3994)) ELT))) +(((-1059 |#1| |#2| |#3| |#4|) (-13 (-1020 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3439 ((-583 $) |#4| $ (-85) (-85) (-85) (-85) (-85))) (-15 -3681 ((-583 $) (-583 |#4|) (-85) (-85))) (-15 -3681 ((-583 $) (-583 |#4|) (-85) (-85) (-85) (-85))) (-15 -3438 ((-583 $) (-583 |#4|) (-85) (-85) (-85))) (-15 -3437 ((-2 (|:| |val| (-583 |#4|)) (|:| |towers| (-583 $))) (-583 |#4|) (-85) (-85))))) (-391) (-717) (-756) (-977 |#1| |#2| |#3|)) (T -1059)) +((-3439 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-583 (-1059 *5 *6 *7 *3))) (-5 *1 (-1059 *5 *6 *7 *3)) (-4 *3 (-977 *5 *6 *7)))) (-3681 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-85)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-583 (-1059 *5 *6 *7 *8))) (-5 *1 (-1059 *5 *6 *7 *8)))) (-3681 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-85)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-583 (-1059 *5 *6 *7 *8))) (-5 *1 (-1059 *5 *6 *7 *8)))) (-3438 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-85)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-583 (-1059 *5 *6 *7 *8))) (-5 *1 (-1059 *5 *6 *7 *8)))) (-3437 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *8 (-977 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-583 *8)) (|:| |towers| (-583 (-1059 *5 *6 *7 *8))))) (-5 *1 (-1059 *5 *6 *7 *8)) (-5 *3 (-583 *8))))) +((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-3723 (($) 23 T CONST)) (-3466 (((-3 $ "failed") $) 32 T ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 30 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3945 (((-772) $) 13 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 29 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-694)) 31 T ELT) (($ $ (-830)) 28 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ $ $) 27 T ELT))) +(((-1060) (-113)) (T -1060)) +NIL +(-13 (-23) (-663)) +(((-23) . T) ((-25) . T) ((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-663) . T) ((-1025) . T) ((-1013) . T) ((-1128) . T)) +((-2568 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3323 ((|#1| $) 38 T ELT)) (-3440 (($ (-583 |#1|)) 46 T ELT)) (-3723 (($) NIL T CONST)) (-3325 ((|#1| |#1| $) 41 T ELT)) (-3324 ((|#1| $) 36 T ELT)) (-2889 (((-583 |#1|) $) 19 (|has| $ (-6 -3994)) ELT)) (-2608 (((-583 |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3245 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-1948 (($ (-1 |#1| |#1|) $) 26 (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) 23 T ELT)) (-3242 (((-1072) $) NIL (|has| |#1| (-1013)) ELT)) (-1273 ((|#1| $) 39 T ELT)) (-3608 (($ |#1| $) 42 T ELT)) (-3243 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-1274 ((|#1| $) 37 T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3767 (($ $ (-583 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1221 (((-85) $ $) NIL T ELT)) (-3402 (((-85) $) 33 T ELT)) (-3564 (($) 44 T ELT)) (-3322 (((-694) $) 31 T ELT)) (-1945 (((-694) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT) (((-694) |#1| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-3399 (($ $) 28 T ELT)) (-3945 (((-772) $) 15 (|has| |#1| (-552 (-772))) ELT)) (-1264 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1275 (($ (-583 |#1|)) NIL T ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3056 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3956 (((-694) $) 32 (|has| $ (-6 -3994)) ELT))) +(((-1061 |#1|) (-13 (-1034 |#1|) (-10 -8 (-15 -3440 ($ (-583 |#1|))))) (-1128)) (T -1061)) +((-3440 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1128)) (-5 *1 (-1061 *3))))) +((-3787 ((|#2| $ #1="value" |#2|) NIL T ELT) ((|#2| $ #2="first" |#2|) NIL T ELT) (($ $ #3="rest" $) NIL T ELT) ((|#2| $ #4="last" |#2|) NIL T ELT) ((|#2| $ (-1145 (-484)) |#2|) 53 T ELT) ((|#2| $ (-484) |#2|) 50 T ELT)) (-3442 (((-85) $) 12 T ELT)) (-1948 (($ (-1 |#2| |#2|) $) 48 T ELT)) (-3800 ((|#2| $) NIL T ELT) (($ $ (-694)) 17 T ELT)) (-2199 (($ $ |#2|) 49 T ELT)) (-3443 (((-85) $) 11 T ELT)) (-3799 ((|#2| $ #1#) NIL T ELT) ((|#2| $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT) ((|#2| $ #4#) NIL T ELT) (($ $ (-1145 (-484))) 36 T ELT) ((|#2| $ (-484)) 25 T ELT) ((|#2| $ (-484) |#2|) NIL T ELT)) (-3790 (($ $ $) 56 T ELT) (($ $ |#2|) NIL T ELT)) (-3801 (($ $ $) 38 T ELT) (($ |#2| $) NIL T ELT) (($ (-583 $)) 45 T ELT) (($ $ |#2|) NIL T ELT))) +(((-1062 |#1| |#2|) (-10 -7 (-15 -3442 ((-85) |#1|)) (-15 -3443 ((-85) |#1|)) (-15 -3787 (|#2| |#1| (-484) |#2|)) (-15 -3799 (|#2| |#1| (-484) |#2|)) (-15 -3799 (|#2| |#1| (-484))) (-15 -2199 (|#1| |#1| |#2|)) (-15 -3799 (|#1| |#1| (-1145 (-484)))) (-15 -3801 (|#1| |#1| |#2|)) (-15 -3801 (|#1| (-583 |#1|))) (-15 -3787 (|#2| |#1| (-1145 (-484)) |#2|)) (-15 -3787 (|#2| |#1| #1="last" |#2|)) (-15 -3787 (|#1| |#1| #2="rest" |#1|)) (-15 -3787 (|#2| |#1| #3="first" |#2|)) (-15 -3790 (|#1| |#1| |#2|)) (-15 -3790 (|#1| |#1| |#1|)) (-15 -3799 (|#2| |#1| #1#)) (-15 -3799 (|#1| |#1| #2#)) (-15 -3800 (|#1| |#1| (-694))) (-15 -3799 (|#2| |#1| #3#)) (-15 -3800 (|#2| |#1|)) (-15 -3801 (|#1| |#2| |#1|)) (-15 -3801 (|#1| |#1| |#1|)) (-15 -3787 (|#2| |#1| #4="value" |#2|)) (-15 -3799 (|#2| |#1| #4#)) (-15 -1948 (|#1| (-1 |#2| |#2|) |#1|))) (-1063 |#2|) (-1128)) (T -1062)) +NIL +((-2568 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3401 ((|#1| $) 52 T ELT)) (-3794 ((|#1| $) 71 T ELT)) (-3796 (($ $) 73 T ELT)) (-2198 (((-1184) $ (-484) (-484)) 107 (|has| $ (-6 -3995)) ELT)) (-3784 (($ $ (-484)) 58 (|has| $ (-6 -3995)) ELT)) (-3441 (((-85) $ (-694)) 90 T ELT)) (-3025 ((|#1| $ |#1|) 43 (|has| $ (-6 -3995)) ELT)) (-3786 (($ $ $) 62 (|has| $ (-6 -3995)) ELT)) (-3785 ((|#1| $ |#1|) 60 (|has| $ (-6 -3995)) ELT)) (-3788 ((|#1| $ |#1|) 64 (|has| $ (-6 -3995)) ELT)) (-3787 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -3995)) ELT) ((|#1| $ #2="first" |#1|) 63 (|has| $ (-6 -3995)) ELT) (($ $ #3="rest" $) 61 (|has| $ (-6 -3995)) ELT) ((|#1| $ #4="last" |#1|) 59 (|has| $ (-6 -3995)) ELT) ((|#1| $ (-1145 (-484)) |#1|) 127 (|has| $ (-6 -3995)) ELT) ((|#1| $ (-484) |#1|) 96 (|has| $ (-6 -3995)) ELT)) (-3026 (($ $ (-583 $)) 45 (|has| $ (-6 -3995)) ELT)) (-3709 (($ (-1 (-85) |#1|) $) 112 (|has| $ (-6 -3994)) ELT)) (-3795 ((|#1| $) 72 T ELT)) (-3723 (($) 7 T CONST)) (-3798 (($ $) 79 T ELT) (($ $ (-694)) 77 T ELT)) (-1352 (($ $) 109 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-3405 (($ (-1 (-85) |#1|) $) 113 (|has| $ (-6 -3994)) ELT) (($ |#1| $) 110 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-3841 ((|#1| (-1 |#1| |#1| |#1|) $) 115 (|has| $ (-6 -3994)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 114 (|has| $ (-6 -3994)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 111 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-1575 ((|#1| $ (-484) |#1|) 95 (|has| $ (-6 -3995)) ELT)) (-3112 ((|#1| $ (-484)) 97 T ELT)) (-3442 (((-85) $) 93 T ELT)) (-2889 (((-583 |#1|) $) 30 (|has| $ (-6 -3994)) ELT)) (-3031 (((-583 $) $) 54 T ELT)) (-3027 (((-85) $ $) 46 (|has| |#1| (-1013)) ELT)) (-3613 (($ (-694) |#1|) 119 T ELT)) (-3718 (((-85) $ (-694)) 91 T ELT)) (-2200 (((-484) $) 105 (|has| (-484) (-756)) ELT)) (-2608 (((-583 |#1|) $) 29 (|has| $ (-6 -3994)) ELT)) (-3245 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-2201 (((-484) $) 104 (|has| (-484) (-756)) ELT)) (-1948 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 122 T ELT)) (-3715 (((-85) $ (-694)) 92 T ELT)) (-3030 (((-583 |#1|) $) 49 T ELT)) (-3526 (((-85) $) 53 T ELT)) (-3242 (((-1072) $) 22 (|has| |#1| (-1013)) ELT)) (-3797 ((|#1| $) 76 T ELT) (($ $ (-694)) 74 T ELT)) (-2304 (($ $ $ (-484)) 126 T ELT) (($ |#1| $ (-484)) 125 T ELT)) (-2203 (((-583 (-484)) $) 102 T ELT)) (-2204 (((-85) (-484) $) 101 T ELT)) (-3243 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-3800 ((|#1| $) 82 T ELT) (($ $ (-694)) 80 T ELT)) (-1353 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 116 T ELT)) (-2199 (($ $ |#1|) 106 (|has| $ (-6 -3995)) ELT)) (-3443 (((-85) $) 94 T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3994)) ELT)) (-3767 (($ $ (-583 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1221 (((-85) $ $) 11 T ELT)) (-2202 (((-85) |#1| $) 103 (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-2205 (((-583 |#1|) $) 100 T ELT)) (-3402 (((-85) $) 8 T ELT)) (-3564 (($) 9 T ELT)) (-3799 ((|#1| $ #1#) 51 T ELT) ((|#1| $ #2#) 81 T ELT) (($ $ #3#) 78 T ELT) ((|#1| $ #4#) 75 T ELT) (($ $ (-1145 (-484))) 118 T ELT) ((|#1| $ (-484)) 99 T ELT) ((|#1| $ (-484) |#1|) 98 T ELT)) (-3029 (((-484) $ $) 48 T ELT)) (-2305 (($ $ (-1145 (-484))) 124 T ELT) (($ $ (-484)) 123 T ELT)) (-3632 (((-85) $) 50 T ELT)) (-3791 (($ $) 68 T ELT)) (-3789 (($ $) 65 (|has| $ (-6 -3995)) ELT)) (-3792 (((-694) $) 69 T ELT)) (-3793 (($ $) 70 T ELT)) (-1945 (((-694) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3994)) ELT) (((-694) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-3399 (($ $) 10 T ELT)) (-3971 (((-473) $) 108 (|has| |#1| (-553 (-473))) ELT)) (-3529 (($ (-583 |#1|)) 117 T ELT)) (-3790 (($ $ $) 67 (|has| $ (-6 -3995)) ELT) (($ $ |#1|) 66 (|has| $ (-6 -3995)) ELT)) (-3801 (($ $ $) 84 T ELT) (($ |#1| $) 83 T ELT) (($ (-583 $)) 121 T ELT) (($ $ |#1|) 120 T ELT)) (-3945 (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-3521 (((-583 $) $) 55 T ELT)) (-3028 (((-85) $ $) 47 (|has| |#1| (-1013)) ELT)) (-1264 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3994)) ELT)) (-3056 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3956 (((-694) $) 6 (|has| $ (-6 -3994)) ELT))) +(((-1063 |#1|) (-113) (-1128)) (T -1063)) +((-3443 (*1 *2 *1) (-12 (-4 *1 (-1063 *3)) (-4 *3 (-1128)) (-5 *2 (-85)))) (-3442 (*1 *2 *1) (-12 (-4 *1 (-1063 *3)) (-4 *3 (-1128)) (-5 *2 (-85)))) (-3715 (*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-4 *1 (-1063 *4)) (-4 *4 (-1128)) (-5 *2 (-85)))) (-3718 (*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-4 *1 (-1063 *4)) (-4 *4 (-1128)) (-5 *2 (-85)))) (-3441 (*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-4 *1 (-1063 *4)) (-4 *4 (-1128)) (-5 *2 (-85))))) +(-13 (-1167 |t#1|) (-593 |t#1|) (-10 -8 (-15 -3443 ((-85) $)) (-15 -3442 ((-85) $)) (-15 -3715 ((-85) $ (-694))) (-15 -3718 ((-85) $ (-694))) (-15 -3441 ((-85) $ (-694))))) +(((-34) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1013)) (|has| |#1| (-552 (-772)))) ((-124 |#1|) . T) ((-553 (-473)) |has| |#1| (-553 (-473))) ((-241 (-484) |#1|) . T) ((-241 (-1145 (-484)) $) . T) ((-243 (-484) |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-428 |#1|) . T) ((-538 (-484) |#1|) . T) ((-455 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-593 |#1|) . T) ((-923 |#1|) . T) ((-1013) |has| |#1| (-1013)) ((-1128) . T) ((-1167 |#1|) . T)) +((-2568 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3598 (($) NIL T ELT) (($ (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2198 (((-1184) $ |#1| |#1|) NIL (|has| $ (-6 -3995)) ELT)) (-3787 ((|#2| $ |#1| |#2|) NIL T ELT)) (-1569 (($ (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT)) (-3709 (($ (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT)) (-2231 (((-3 |#2| #1="failed") |#1| $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-1352 (($ $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT)) (-3404 (($ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-6 -3994)) ELT) (($ (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT) (((-3 |#2| #1#) |#1| $) NIL T ELT)) (-3405 (($ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT)) (-3841 (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -3994)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3994)) ELT) (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT)) (-1575 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3995)) ELT)) (-3112 ((|#2| $ |#1|) NIL T ELT)) (-2889 (((-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT) (((-583 |#2|) $) NIL (|has| $ (-6 -3994)) ELT)) (-2200 ((|#1| $) NIL (|has| |#1| (-756)) ELT)) (-2608 (((-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT) (((-583 |#2|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3245 (((-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#2| (-1013))) ELT)) (-2201 ((|#1| $) NIL (|has| |#1| (-756)) ELT)) (-1948 (($ (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3242 (((-1072) $) NIL (OR (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| |#2| (-1013))) ELT)) (-2232 (((-583 |#1|) $) NIL T ELT)) (-2233 (((-85) |#1| $) NIL T ELT)) (-1273 (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3608 (($ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2203 (((-583 |#1|) $) NIL T ELT)) (-2204 (((-85) |#1| $) NIL T ELT)) (-3243 (((-1033) $) NIL (OR (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| |#2| (-1013))) ELT)) (-3800 ((|#2| $) NIL (|has| |#1| (-756)) ELT)) (-1353 (((-3 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2199 (($ $ |#2|) NIL (|has| $ (-6 -3995)) ELT)) (-1274 (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1946 (((-85) (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3767 (($ $ (-583 (-249 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-249 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-583 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT)) (-1221 (((-85) $ $) NIL T ELT)) (-2202 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#2| (-1013))) ELT)) (-2205 (((-583 |#2|) $) NIL T ELT)) (-3402 (((-85) $) NIL T ELT)) (-3564 (($) NIL T ELT)) (-3799 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1465 (($) NIL T ELT) (($ (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1945 (((-694) (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT) (((-694) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (((-694) |#2| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#2| (-1013))) ELT) (((-694) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3399 (($ $) NIL T ELT)) (-3971 (((-473) $) NIL (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-553 (-473))) ELT)) (-3529 (($ (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3945 (((-772) $) NIL (OR (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-552 (-772))) (|has| |#2| (-552 (-772)))) ELT)) (-1264 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1275 (($ (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1947 (((-85) (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3056 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3956 (((-694) $) NIL (|has| $ (-6 -3994)) ELT))) +(((-1064 |#1| |#2| |#3|) (-1106 |#1| |#2|) (-1013) (-1013) |#2|) (T -1064)) +NIL +((-2568 (((-85) $ $) 7 T ELT)) (-3444 (((-632 $) $) 17 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3445 (($) 18 T CONST)) (-3243 (((-1033) $) 12 T ELT)) (-3945 (((-772) $) 13 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-3056 (((-85) $ $) 8 T ELT))) +(((-1065) (-113)) (T -1065)) +((-3445 (*1 *1) (-4 *1 (-1065))) (-3444 (*1 *2 *1) (-12 (-5 *2 (-632 *1)) (-4 *1 (-1065))))) +(-13 (-1013) (-10 -8 (-15 -3445 ($) -3951) (-15 -3444 ((-632 $) $)))) +(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-1013) . T) ((-1128) . T)) +((-2568 (((-85) $ $) NIL T ELT)) (-3447 (((-632 (-1048)) $) 28 T ELT)) (-3446 (((-1048) $) 16 T ELT)) (-3448 (((-1048) $) 18 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3449 (((-446) $) 14 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) 38 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT))) +(((-1066) (-13 (-995) (-10 -8 (-15 -3449 ((-446) $)) (-15 -3448 ((-1048) $)) (-15 -3447 ((-632 (-1048)) $)) (-15 -3446 ((-1048) $))))) (T -1066)) +((-3449 (*1 *2 *1) (-12 (-5 *2 (-446)) (-5 *1 (-1066)))) (-3448 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-1066)))) (-3447 (*1 *2 *1) (-12 (-5 *2 (-632 (-1048))) (-5 *1 (-1066)))) (-3446 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-1066))))) +((-3452 (((-1068 |#1|) (-1068 |#1|)) 17 T ELT)) (-3450 (((-1068 |#1|) (-1068 |#1|)) 13 T ELT)) (-3453 (((-1068 |#1|) (-1068 |#1|) (-484) (-484)) 20 T ELT)) (-3451 (((-1068 |#1|) (-1068 |#1|)) 15 T ELT))) +(((-1067 |#1|) (-10 -7 (-15 -3450 ((-1068 |#1|) (-1068 |#1|))) (-15 -3451 ((-1068 |#1|) (-1068 |#1|))) (-15 -3452 ((-1068 |#1|) (-1068 |#1|))) (-15 -3453 ((-1068 |#1|) (-1068 |#1|) (-484) (-484)))) (-13 (-495) (-120))) (T -1067)) +((-3453 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1068 *4)) (-5 *3 (-484)) (-4 *4 (-13 (-495) (-120))) (-5 *1 (-1067 *4)))) (-3452 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-13 (-495) (-120))) (-5 *1 (-1067 *3)))) (-3451 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-13 (-495) (-120))) (-5 *1 (-1067 *3)))) (-3450 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-13 (-495) (-120))) (-5 *1 (-1067 *3))))) +((-2568 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3401 ((|#1| $) NIL T ELT)) (-3794 ((|#1| $) NIL T ELT)) (-3796 (($ $) 60 T ELT)) (-2198 (((-1184) $ (-484) (-484)) 93 (|has| $ (-6 -3995)) ELT)) (-3784 (($ $ (-484)) 122 (|has| $ (-6 -3995)) ELT)) (-3441 (((-85) $ (-694)) NIL T ELT)) (-3458 (((-772) $) 46 (|has| |#1| (-1013)) ELT)) (-3457 (((-85)) 49 (|has| |#1| (-1013)) ELT)) (-3025 ((|#1| $ |#1|) NIL (|has| $ (-6 -3995)) ELT)) (-3786 (($ $ $) 109 (|has| $ (-6 -3995)) ELT) (($ $ (-484) $) 135 T ELT)) (-3785 ((|#1| $ |#1|) 119 (|has| $ (-6 -3995)) ELT)) (-3788 ((|#1| $ |#1|) 114 (|has| $ (-6 -3995)) ELT)) (-3787 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3995)) ELT) ((|#1| $ #2="first" |#1|) 116 (|has| $ (-6 -3995)) ELT) (($ $ #3="rest" $) 118 (|has| $ (-6 -3995)) ELT) ((|#1| $ #4="last" |#1|) 121 (|has| $ (-6 -3995)) ELT) ((|#1| $ (-1145 (-484)) |#1|) 106 (|has| $ (-6 -3995)) ELT) ((|#1| $ (-484) |#1|) 72 (|has| $ (-6 -3995)) ELT)) (-3026 (($ $ (-583 $)) NIL (|has| $ (-6 -3995)) ELT)) (-3709 (($ (-1 (-85) |#1|) $) 75 T ELT)) (-3795 ((|#1| $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-2323 (($ $) 11 T ELT)) (-3798 (($ $) 35 T ELT) (($ $ (-694)) 105 T ELT)) (-3463 (((-85) (-583 |#1|) $) 128 (|has| |#1| (-1013)) ELT)) (-3464 (($ (-583 |#1|)) 124 T ELT)) (-1352 (($ $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-3405 (($ |#1| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT) (($ (-1 (-85) |#1|) $) 74 T ELT)) (-3841 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3994)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3994)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-1575 ((|#1| $ (-484) |#1|) NIL (|has| $ (-6 -3995)) ELT)) (-3112 ((|#1| $ (-484)) NIL T ELT)) (-3442 (((-85) $) NIL T ELT)) (-2889 (((-583 |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3459 (((-1184) (-484) $) 133 (|has| |#1| (-1013)) ELT)) (-2322 (((-694) $) 131 T ELT)) (-3031 (((-583 $) $) NIL T ELT)) (-3027 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-3613 (($ (-694) |#1|) NIL T ELT)) (-3718 (((-85) $ (-694)) NIL T ELT)) (-2200 (((-484) $) NIL (|has| (-484) (-756)) ELT)) (-2608 (((-583 |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3245 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-2201 (((-484) $) NIL (|has| (-484) (-756)) ELT)) (-1948 (($ (-1 |#1| |#1|) $) 89 (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) 80 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 84 T ELT)) (-3715 (((-85) $ (-694)) NIL T ELT)) (-3030 (((-583 |#1|) $) NIL T ELT)) (-3526 (((-85) $) NIL T ELT)) (-2325 (($ $) 107 T ELT)) (-2326 (((-85) $) 10 T ELT)) (-3242 (((-1072) $) NIL (|has| |#1| (-1013)) ELT)) (-3797 ((|#1| $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-2304 (($ $ $ (-484)) NIL T ELT) (($ |#1| $ (-484)) NIL T ELT)) (-2203 (((-583 (-484)) $) NIL T ELT)) (-2204 (((-85) (-484) $) 90 T ELT)) (-3243 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-3456 (($ (-1 |#1|)) 137 T ELT) (($ (-1 |#1| |#1|) |#1|) 138 T ELT)) (-2324 ((|#1| $) 7 T ELT)) (-3800 ((|#1| $) 34 T ELT) (($ $ (-694)) 58 T ELT)) (-3462 (((-2 (|:| |cycle?| (-85)) (|:| -2595 (-694)) (|:| |period| (-694))) (-694) $) 29 T ELT)) (-1353 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-3455 (($ (-1 (-85) |#1|) $) 139 T ELT)) (-3454 (($ (-1 (-85) |#1|) $) 140 T ELT)) (-2199 (($ $ |#1|) 85 (|has| $ (-6 -3995)) ELT)) (-3768 (($ $ (-484)) 40 T ELT)) (-3443 (((-85) $) 88 T ELT)) (-2327 (((-85) $) 9 T ELT)) (-2328 (((-85) $) 130 T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3767 (($ $ (-583 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1221 (((-85) $ $) 25 T ELT)) (-2202 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-2205 (((-583 |#1|) $) NIL T ELT)) (-3402 (((-85) $) 14 T ELT)) (-3564 (($) 53 T ELT)) (-3799 ((|#1| $ #1#) NIL T ELT) ((|#1| $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT) ((|#1| $ #4#) NIL T ELT) (($ $ (-1145 (-484))) NIL T ELT) ((|#1| $ (-484)) 70 T ELT) ((|#1| $ (-484) |#1|) NIL T ELT)) (-3029 (((-484) $ $) 57 T ELT)) (-2305 (($ $ (-1145 (-484))) NIL T ELT) (($ $ (-484)) NIL T ELT)) (-3461 (($ (-1 $)) 56 T ELT)) (-3632 (((-85) $) 86 T ELT)) (-3791 (($ $) 87 T ELT)) (-3789 (($ $) 110 (|has| $ (-6 -3995)) ELT)) (-3792 (((-694) $) NIL T ELT)) (-3793 (($ $) NIL T ELT)) (-1945 (((-694) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT) (((-694) |#1| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-3399 (($ $) 52 T ELT)) (-3971 (((-473) $) NIL (|has| |#1| (-553 (-473))) ELT)) (-3529 (($ (-583 |#1|)) 68 T ELT)) (-3460 (($ |#1| $) 108 T ELT)) (-3790 (($ $ $) 112 (|has| $ (-6 -3995)) ELT) (($ $ |#1|) 113 (|has| $ (-6 -3995)) ELT)) (-3801 (($ $ $) 95 T ELT) (($ |#1| $) 54 T ELT) (($ (-583 $)) 100 T ELT) (($ $ |#1|) 94 T ELT)) (-2891 (($ $) 59 T ELT)) (-3945 (($ (-583 |#1|)) 123 T ELT) (((-772) $) 50 (|has| |#1| (-552 (-772))) ELT)) (-3521 (((-583 $) $) NIL T ELT)) (-3028 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-1264 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3056 (((-85) $ $) 126 (|has| |#1| (-72)) ELT)) (-3956 (((-694) $) NIL (|has| $ (-6 -3994)) ELT))) +(((-1068 |#1|) (-13 (-616 |#1|) (-555 (-583 |#1|)) (-10 -8 (-6 -3995) (-15 -3464 ($ (-583 |#1|))) (IF (|has| |#1| (-1013)) (-15 -3463 ((-85) (-583 |#1|) $)) |%noBranch|) (-15 -3462 ((-2 (|:| |cycle?| (-85)) (|:| -2595 (-694)) (|:| |period| (-694))) (-694) $)) (-15 -3461 ($ (-1 $))) (-15 -3460 ($ |#1| $)) (IF (|has| |#1| (-1013)) (PROGN (-15 -3459 ((-1184) (-484) $)) (-15 -3458 ((-772) $)) (-15 -3457 ((-85)))) |%noBranch|) (-15 -3786 ($ $ (-484) $)) (-15 -3456 ($ (-1 |#1|))) (-15 -3456 ($ (-1 |#1| |#1|) |#1|)) (-15 -3455 ($ (-1 (-85) |#1|) $)) (-15 -3454 ($ (-1 (-85) |#1|) $)))) (-1128)) (T -1068)) +((-3464 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1128)) (-5 *1 (-1068 *3)))) (-3463 (*1 *2 *3 *1) (-12 (-5 *3 (-583 *4)) (-4 *4 (-1013)) (-4 *4 (-1128)) (-5 *2 (-85)) (-5 *1 (-1068 *4)))) (-3462 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-85)) (|:| -2595 (-694)) (|:| |period| (-694)))) (-5 *1 (-1068 *4)) (-4 *4 (-1128)) (-5 *3 (-694)))) (-3461 (*1 *1 *2) (-12 (-5 *2 (-1 (-1068 *3))) (-5 *1 (-1068 *3)) (-4 *3 (-1128)))) (-3460 (*1 *1 *2 *1) (-12 (-5 *1 (-1068 *2)) (-4 *2 (-1128)))) (-3459 (*1 *2 *3 *1) (-12 (-5 *3 (-484)) (-5 *2 (-1184)) (-5 *1 (-1068 *4)) (-4 *4 (-1013)) (-4 *4 (-1128)))) (-3458 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-1068 *3)) (-4 *3 (-1013)) (-4 *3 (-1128)))) (-3457 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1068 *3)) (-4 *3 (-1013)) (-4 *3 (-1128)))) (-3786 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-1068 *3)) (-4 *3 (-1128)))) (-3456 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1128)) (-5 *1 (-1068 *3)))) (-3456 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1128)) (-5 *1 (-1068 *3)))) (-3455 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1128)) (-5 *1 (-1068 *3)))) (-3454 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1128)) (-5 *1 (-1068 *3))))) +((-3801 (((-1068 |#1|) (-1068 (-1068 |#1|))) 15 T ELT))) +(((-1069 |#1|) (-10 -7 (-15 -3801 ((-1068 |#1|) (-1068 (-1068 |#1|))))) (-1128)) (T -1069)) +((-3801 (*1 *2 *3) (-12 (-5 *3 (-1068 (-1068 *4))) (-5 *2 (-1068 *4)) (-5 *1 (-1069 *4)) (-4 *4 (-1128))))) +((-3840 (((-1068 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1068 |#1|)) 25 T ELT)) (-3841 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1068 |#1|)) 26 T ELT)) (-3957 (((-1068 |#2|) (-1 |#2| |#1|) (-1068 |#1|)) 16 T ELT))) +(((-1070 |#1| |#2|) (-10 -7 (-15 -3957 ((-1068 |#2|) (-1 |#2| |#1|) (-1068 |#1|))) (-15 -3840 ((-1068 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1068 |#1|))) (-15 -3841 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1068 |#1|)))) (-1128) (-1128)) (T -1070)) +((-3841 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1068 *5)) (-4 *5 (-1128)) (-4 *2 (-1128)) (-5 *1 (-1070 *5 *2)))) (-3840 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1068 *6)) (-4 *6 (-1128)) (-4 *3 (-1128)) (-5 *2 (-1068 *3)) (-5 *1 (-1070 *6 *3)))) (-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1068 *5)) (-4 *5 (-1128)) (-4 *6 (-1128)) (-5 *2 (-1068 *6)) (-5 *1 (-1070 *5 *6))))) +((-3957 (((-1068 |#3|) (-1 |#3| |#1| |#2|) (-1068 |#1|) (-1068 |#2|)) 21 T ELT))) +(((-1071 |#1| |#2| |#3|) (-10 -7 (-15 -3957 ((-1068 |#3|) (-1 |#3| |#1| |#2|) (-1068 |#1|) (-1068 |#2|)))) (-1128) (-1128) (-1128)) (T -1071)) +((-3957 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1068 *6)) (-5 *5 (-1068 *7)) (-4 *6 (-1128)) (-4 *7 (-1128)) (-4 *8 (-1128)) (-5 *2 (-1068 *8)) (-5 *1 (-1071 *6 *7 *8))))) +((-2568 (((-85) $ $) NIL (|has| (-117) (-72)) ELT)) (-3425 (($ $) 42 T ELT)) (-3426 (($ $) NIL T ELT)) (-3416 (($ $ (-117)) NIL T ELT) (($ $ (-114)) NIL T ELT)) (-2198 (((-1184) $ (-484) (-484)) NIL (|has| $ (-6 -3995)) ELT)) (-3423 (((-85) $ $) 67 T ELT)) (-3422 (((-85) $ $ (-484)) 62 T ELT)) (-3534 (($ (-484)) 7 T ELT) (($ (-179)) 9 T ELT) (($ (-446)) 11 T ELT)) (-3417 (((-583 $) $ (-117)) 76 T ELT) (((-583 $) $ (-114)) 77 T ELT)) (-1731 (((-85) (-1 (-85) (-117) (-117)) $) NIL T ELT) (((-85) $) NIL (|has| (-117) (-756)) ELT)) (-1729 (($ (-1 (-85) (-117) (-117)) $) NIL (|has| $ (-6 -3995)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3995)) (|has| (-117) (-756))) ELT)) (-2909 (($ (-1 (-85) (-117) (-117)) $) NIL T ELT) (($ $) NIL (|has| (-117) (-756)) ELT)) (-3787 (((-117) $ (-484) (-117)) 59 (|has| $ (-6 -3995)) ELT) (((-117) $ (-1145 (-484)) (-117)) NIL (|has| $ (-6 -3995)) ELT)) (-3709 (($ (-1 (-85) (-117)) $) NIL (|has| $ (-6 -3994)) ELT)) (-3723 (($) NIL T CONST)) (-3414 (($ $ (-117)) 80 T ELT) (($ $ (-114)) 81 T ELT)) (-2297 (($ $) NIL (|has| $ (-6 -3995)) ELT)) (-2298 (($ $) NIL T ELT)) (-3419 (($ $ (-1145 (-484)) $) 57 T ELT)) (-1352 (($ $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-117) (-1013))) ELT)) (-3405 (($ (-117) $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-117) (-1013))) ELT) (($ (-1 (-85) (-117)) $) NIL (|has| $ (-6 -3994)) ELT)) (-3841 (((-117) (-1 (-117) (-117) (-117)) $ (-117) (-117)) NIL (-12 (|has| $ (-6 -3994)) (|has| (-117) (-1013))) ELT) (((-117) (-1 (-117) (-117) (-117)) $ (-117)) NIL (|has| $ (-6 -3994)) ELT) (((-117) (-1 (-117) (-117) (-117)) $) NIL (|has| $ (-6 -3994)) ELT)) (-1575 (((-117) $ (-484) (-117)) NIL (|has| $ (-6 -3995)) ELT)) (-3112 (((-117) $ (-484)) NIL T ELT)) (-3424 (((-85) $ $) 91 T ELT)) (-3418 (((-484) (-1 (-85) (-117)) $) NIL T ELT) (((-484) (-117) $) NIL (|has| (-117) (-1013)) ELT) (((-484) (-117) $ (-484)) 64 (|has| (-117) (-1013)) ELT) (((-484) $ $ (-484)) 63 T ELT) (((-484) (-114) $ (-484)) 66 T ELT)) (-2889 (((-583 (-117)) $) NIL (|has| $ (-6 -3994)) ELT)) (-3613 (($ (-694) (-117)) 14 T ELT)) (-2200 (((-484) $) 36 (|has| (-484) (-756)) ELT)) (-2531 (($ $ $) NIL (|has| (-117) (-756)) ELT)) (-3517 (($ (-1 (-85) (-117) (-117)) $ $) NIL T ELT) (($ $ $) NIL (|has| (-117) (-756)) ELT)) (-2608 (((-583 (-117)) $) NIL (|has| $ (-6 -3994)) ELT)) (-3245 (((-85) (-117) $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-117) (-1013))) ELT)) (-2201 (((-484) $) 50 (|has| (-484) (-756)) ELT)) (-2857 (($ $ $) NIL (|has| (-117) (-756)) ELT)) (-3420 (((-85) $ $ (-117)) 92 T ELT)) (-3421 (((-694) $ $ (-117)) 88 T ELT)) (-1948 (($ (-1 (-117) (-117)) $) 41 (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 (-117) (-117)) $) NIL T ELT) (($ (-1 (-117) (-117) (-117)) $ $) NIL T ELT)) (-3427 (($ $) 45 T ELT)) (-3428 (($ $) NIL T ELT)) (-3415 (($ $ (-117)) 78 T ELT) (($ $ (-114)) 79 T ELT)) (-3242 (((-1072) $) 46 (|has| (-117) (-1013)) ELT)) (-2304 (($ (-117) $ (-484)) NIL T ELT) (($ $ $ (-484)) 31 T ELT)) (-2203 (((-583 (-484)) $) NIL T ELT)) (-2204 (((-85) (-484) $) NIL T ELT)) (-3243 (((-1033) $) 87 (|has| (-117) (-1013)) ELT)) (-3800 (((-117) $) NIL (|has| (-484) (-756)) ELT)) (-1353 (((-3 (-117) "failed") (-1 (-85) (-117)) $) NIL T ELT)) (-2199 (($ $ (-117)) NIL (|has| $ (-6 -3995)) ELT)) (-1946 (((-85) (-1 (-85) (-117)) $) NIL (|has| $ (-6 -3994)) ELT)) (-3767 (($ $ (-583 (-249 (-117)))) NIL (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1013))) ELT) (($ $ (-249 (-117))) NIL (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1013))) ELT) (($ $ (-117) (-117)) NIL (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1013))) ELT) (($ $ (-583 (-117)) (-583 (-117))) NIL (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1013))) ELT)) (-1221 (((-85) $ $) NIL T ELT)) (-2202 (((-85) (-117) $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-117) (-1013))) ELT)) (-2205 (((-583 (-117)) $) NIL T ELT)) (-3402 (((-85) $) 19 T ELT)) (-3564 (($) 16 T ELT)) (-3799 (((-117) $ (-484) (-117)) NIL T ELT) (((-117) $ (-484)) 69 T ELT) (($ $ (-1145 (-484))) 29 T ELT) (($ $ $) NIL T ELT)) (-2305 (($ $ (-484)) NIL T ELT) (($ $ (-1145 (-484))) NIL T ELT)) (-1945 (((-694) (-1 (-85) (-117)) $) NIL (|has| $ (-6 -3994)) ELT) (((-694) (-117) $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-117) (-1013))) ELT)) (-1730 (($ $ $ (-484)) 83 (|has| $ (-6 -3995)) ELT)) (-3399 (($ $) 24 T ELT)) (-3971 (((-473) $) NIL (|has| (-117) (-553 (-473))) ELT)) (-3529 (($ (-583 (-117))) NIL T ELT)) (-3801 (($ $ (-117)) NIL T ELT) (($ (-117) $) NIL T ELT) (($ $ $) 23 T ELT) (($ (-583 $)) 84 T ELT)) (-3945 (($ (-117)) NIL T ELT) (((-772) $) 35 (|has| (-117) (-552 (-772))) ELT)) (-1264 (((-85) $ $) NIL (|has| (-117) (-72)) ELT)) (-1947 (((-85) (-1 (-85) (-117)) $) NIL (|has| $ (-6 -3994)) ELT)) (-2566 (((-85) $ $) NIL (|has| (-117) (-756)) ELT)) (-2567 (((-85) $ $) NIL (|has| (-117) (-756)) ELT)) (-3056 (((-85) $ $) 21 (|has| (-117) (-72)) ELT)) (-2684 (((-85) $ $) NIL (|has| (-117) (-756)) ELT)) (-2685 (((-85) $ $) 22 (|has| (-117) (-756)) ELT)) (-3956 (((-694) $) 20 (|has| $ (-6 -3994)) ELT))) +(((-1072) (-13 (-1057) (-10 -8 (-15 -3534 ($ (-484))) (-15 -3534 ($ (-179))) (-15 -3534 ($ (-446)))))) (T -1072)) +((-3534 (*1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-1072)))) (-3534 (*1 *1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-1072)))) (-3534 (*1 *1 *2) (-12 (-5 *2 (-446)) (-5 *1 (-1072))))) +((-2568 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-72)) (|has| |#1| (-72))) ELT)) (-3598 (($) NIL T ELT) (($ (-583 (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)))) NIL T ELT)) (-2198 (((-1184) $ (-1072) (-1072)) NIL (|has| $ (-6 -3995)) ELT)) (-3787 ((|#1| $ (-1072) |#1|) NIL T ELT)) (-1569 (($ (-1 (-85) (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3994)) ELT)) (-3709 (($ (-1 (-85) (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3994)) ELT)) (-2231 (((-3 |#1| #1="failed") (-1072) $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-1352 (($ $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-1013))) ELT)) (-3404 (($ (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) $) NIL (|has| $ (-6 -3994)) ELT) (($ (-1 (-85) (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3994)) ELT) (((-3 |#1| #1#) (-1072) $) NIL T ELT)) (-3405 (($ (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-1013))) ELT) (($ (-1 (-85) (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3994)) ELT)) (-3841 (((-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))) $ (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))) NIL (-12 (|has| $ (-6 -3994)) (|has| (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-1013))) ELT) (((-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))) $ (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))) NIL (|has| $ (-6 -3994)) ELT) (((-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3994)) ELT)) (-1575 ((|#1| $ (-1072) |#1|) NIL (|has| $ (-6 -3995)) ELT)) (-3112 ((|#1| $ (-1072)) NIL T ELT)) (-2889 (((-583 (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3994)) ELT) (((-583 |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-2200 (((-1072) $) NIL (|has| (-1072) (-756)) ELT)) (-2608 (((-583 (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3994)) ELT) (((-583 |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3245 (((-85) (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-1013))) ELT) (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-2201 (((-1072) $) NIL (|has| (-1072) (-756)) ELT)) (-1948 (($ (-1 (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3995)) ELT) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))) $) NIL T ELT) (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3242 (((-1072) $) NIL (OR (|has| (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-1013)) (|has| |#1| (-1013))) ELT)) (-2232 (((-583 (-1072)) $) NIL T ELT)) (-2233 (((-85) (-1072) $) NIL T ELT)) (-1273 (((-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) $) NIL T ELT)) (-3608 (($ (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) $) NIL T ELT)) (-2203 (((-583 (-1072)) $) NIL T ELT)) (-2204 (((-85) (-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL (OR (|has| (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-1013)) (|has| |#1| (-1013))) ELT)) (-3800 ((|#1| $) NIL (|has| (-1072) (-756)) ELT)) (-1353 (((-3 (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) #1#) (-1 (-85) (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))) $) NIL T ELT)) (-2199 (($ $ |#1|) NIL (|has| $ (-6 -3995)) ELT)) (-1274 (((-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) $) NIL T ELT)) (-1946 (((-85) (-1 (-85) (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3994)) ELT) (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3767 (($ $ (-583 (-249 (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))))) NIL (-12 (|has| (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-1013))) ELT) (($ $ (-249 (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)))) NIL (-12 (|has| (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-1013))) ELT) (($ $ (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))) NIL (-12 (|has| (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-1013))) ELT) (($ $ (-583 (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))) (-583 (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)))) NIL (-12 (|has| (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1221 (((-85) $ $) NIL T ELT)) (-2202 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-2205 (((-583 |#1|) $) NIL T ELT)) (-3402 (((-85) $) NIL T ELT)) (-3564 (($) NIL T ELT)) (-3799 ((|#1| $ (-1072)) NIL T ELT) ((|#1| $ (-1072) |#1|) NIL T ELT)) (-1465 (($) NIL T ELT) (($ (-583 (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)))) NIL T ELT)) (-1945 (((-694) (-1 (-85) (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3994)) ELT) (((-694) (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-1013))) ELT) (((-694) |#1| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT) (((-694) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3399 (($ $) NIL T ELT)) (-3971 (((-473) $) NIL (|has| (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-553 (-473))) ELT)) (-3529 (($ (-583 (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)))) NIL T ELT)) (-3945 (((-772) $) NIL (OR (|has| (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-552 (-772))) (|has| |#1| (-552 (-772)))) ELT)) (-1264 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-72)) (|has| |#1| (-72))) ELT)) (-1275 (($ (-583 (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)))) NIL T ELT)) (-1947 (((-85) (-1 (-85) (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3994)) ELT) (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3056 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3859 (-1072)) (|:| |entry| |#1|)) (-72)) (|has| |#1| (-72))) ELT)) (-3956 (((-694) $) NIL (|has| $ (-6 -3994)) ELT))) +(((-1073 |#1|) (-13 (-1106 (-1072) |#1|) (-10 -7 (-6 -3994))) (-1013)) (T -1073)) +NIL +((-3804 (((-1068 |#1|) (-1068 |#1|)) 83 T ELT)) (-3466 (((-3 (-1068 |#1|) #1="failed") (-1068 |#1|)) 39 T ELT)) (-3477 (((-1068 |#1|) (-349 (-484)) (-1068 |#1|)) 131 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3480 (((-1068 |#1|) |#1| (-1068 |#1|)) 135 (|has| |#1| (-312)) ELT)) (-3807 (((-1068 |#1|) (-1068 |#1|)) 97 T ELT)) (-3468 (((-1068 (-484)) (-484)) 63 T ELT)) (-3476 (((-1068 |#1|) (-1068 (-1068 |#1|))) 116 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3803 (((-1068 |#1|) (-484) (-484) (-1068 |#1|)) 103 T ELT)) (-3937 (((-1068 |#1|) |#1| (-484)) 51 T ELT)) (-3470 (((-1068 |#1|) (-1068 |#1|) (-1068 |#1|)) 66 T ELT)) (-3478 (((-1068 |#1|) (-1068 |#1|) (-1068 |#1|)) 133 (|has| |#1| (-312)) ELT)) (-3475 (((-1068 |#1|) |#1| (-1 (-1068 |#1|))) 115 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3479 (((-1068 |#1|) (-1 |#1| (-484)) |#1| (-1 (-1068 |#1|))) 134 (|has| |#1| (-312)) ELT)) (-3808 (((-1068 |#1|) (-1068 |#1|)) 96 T ELT)) (-3809 (((-1068 |#1|) (-1068 |#1|)) 82 T ELT)) (-3802 (((-1068 |#1|) (-484) (-484) (-1068 |#1|)) 104 T ELT)) (-3811 (((-1068 |#1|) |#1| (-1068 |#1|)) 113 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3467 (((-1068 (-484)) (-484)) 62 T ELT)) (-3469 (((-1068 |#1|) |#1|) 65 T ELT)) (-3805 (((-1068 |#1|) (-1068 |#1|) (-484) (-484)) 100 T ELT)) (-3472 (((-1068 |#1|) (-1 |#1| (-484)) (-1068 |#1|)) 72 T ELT)) (-3465 (((-3 (-1068 |#1|) #1#) (-1068 |#1|) (-1068 |#1|)) 37 T ELT)) (-3806 (((-1068 |#1|) (-1068 |#1|)) 98 T ELT)) (-3767 (((-1068 |#1|) (-1068 |#1|) |#1|) 77 T ELT)) (-3471 (((-1068 |#1|) (-1068 |#1|)) 68 T ELT)) (-3473 (((-1068 |#1|) (-1068 |#1|) (-1068 |#1|)) 78 T ELT)) (-3945 (((-1068 |#1|) |#1|) 73 T ELT)) (-3474 (((-1068 |#1|) (-1068 (-1068 |#1|))) 88 T ELT)) (-3948 (((-1068 |#1|) (-1068 |#1|) (-1068 |#1|)) 38 T ELT)) (-3836 (((-1068 |#1|) (-1068 |#1|)) 21 T ELT) (((-1068 |#1|) (-1068 |#1|) (-1068 |#1|)) 23 T ELT)) (-3838 (((-1068 |#1|) (-1068 |#1|) (-1068 |#1|)) 17 T ELT)) (* (((-1068 |#1|) (-1068 |#1|) |#1|) 29 T ELT) (((-1068 |#1|) |#1| (-1068 |#1|)) 26 T ELT) (((-1068 |#1|) (-1068 |#1|) (-1068 |#1|)) 27 T ELT))) +(((-1074 |#1|) (-10 -7 (-15 -3838 ((-1068 |#1|) (-1068 |#1|) (-1068 |#1|))) (-15 -3836 ((-1068 |#1|) (-1068 |#1|) (-1068 |#1|))) (-15 -3836 ((-1068 |#1|) (-1068 |#1|))) (-15 * ((-1068 |#1|) (-1068 |#1|) (-1068 |#1|))) (-15 * ((-1068 |#1|) |#1| (-1068 |#1|))) (-15 * ((-1068 |#1|) (-1068 |#1|) |#1|)) (-15 -3465 ((-3 (-1068 |#1|) #1="failed") (-1068 |#1|) (-1068 |#1|))) (-15 -3948 ((-1068 |#1|) (-1068 |#1|) (-1068 |#1|))) (-15 -3466 ((-3 (-1068 |#1|) #1#) (-1068 |#1|))) (-15 -3937 ((-1068 |#1|) |#1| (-484))) (-15 -3467 ((-1068 (-484)) (-484))) (-15 -3468 ((-1068 (-484)) (-484))) (-15 -3469 ((-1068 |#1|) |#1|)) (-15 -3470 ((-1068 |#1|) (-1068 |#1|) (-1068 |#1|))) (-15 -3471 ((-1068 |#1|) (-1068 |#1|))) (-15 -3472 ((-1068 |#1|) (-1 |#1| (-484)) (-1068 |#1|))) (-15 -3945 ((-1068 |#1|) |#1|)) (-15 -3767 ((-1068 |#1|) (-1068 |#1|) |#1|)) (-15 -3473 ((-1068 |#1|) (-1068 |#1|) (-1068 |#1|))) (-15 -3809 ((-1068 |#1|) (-1068 |#1|))) (-15 -3804 ((-1068 |#1|) (-1068 |#1|))) (-15 -3474 ((-1068 |#1|) (-1068 (-1068 |#1|)))) (-15 -3808 ((-1068 |#1|) (-1068 |#1|))) (-15 -3807 ((-1068 |#1|) (-1068 |#1|))) (-15 -3806 ((-1068 |#1|) (-1068 |#1|))) (-15 -3805 ((-1068 |#1|) (-1068 |#1|) (-484) (-484))) (-15 -3803 ((-1068 |#1|) (-484) (-484) (-1068 |#1|))) (-15 -3802 ((-1068 |#1|) (-484) (-484) (-1068 |#1|))) (IF (|has| |#1| (-38 (-349 (-484)))) (PROGN (-15 -3811 ((-1068 |#1|) |#1| (-1068 |#1|))) (-15 -3475 ((-1068 |#1|) |#1| (-1 (-1068 |#1|)))) (-15 -3476 ((-1068 |#1|) (-1068 (-1068 |#1|)))) (-15 -3477 ((-1068 |#1|) (-349 (-484)) (-1068 |#1|)))) |%noBranch|) (IF (|has| |#1| (-312)) (PROGN (-15 -3478 ((-1068 |#1|) (-1068 |#1|) (-1068 |#1|))) (-15 -3479 ((-1068 |#1|) (-1 |#1| (-484)) |#1| (-1 (-1068 |#1|)))) (-15 -3480 ((-1068 |#1|) |#1| (-1068 |#1|)))) |%noBranch|)) (-961)) (T -1074)) +((-3480 (*1 *2 *3 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-312)) (-4 *3 (-961)) (-5 *1 (-1074 *3)))) (-3479 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-484))) (-5 *5 (-1 (-1068 *4))) (-4 *4 (-312)) (-4 *4 (-961)) (-5 *2 (-1068 *4)) (-5 *1 (-1074 *4)))) (-3478 (*1 *2 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-312)) (-4 *3 (-961)) (-5 *1 (-1074 *3)))) (-3477 (*1 *2 *3 *2) (-12 (-5 *2 (-1068 *4)) (-4 *4 (-38 *3)) (-4 *4 (-961)) (-5 *3 (-349 (-484))) (-5 *1 (-1074 *4)))) (-3476 (*1 *2 *3) (-12 (-5 *3 (-1068 (-1068 *4))) (-5 *2 (-1068 *4)) (-5 *1 (-1074 *4)) (-4 *4 (-38 (-349 (-484)))) (-4 *4 (-961)))) (-3475 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1068 *3))) (-5 *2 (-1068 *3)) (-5 *1 (-1074 *3)) (-4 *3 (-38 (-349 (-484)))) (-4 *3 (-961)))) (-3811 (*1 *2 *3 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-4 *3 (-961)) (-5 *1 (-1074 *3)))) (-3802 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1068 *4)) (-5 *3 (-484)) (-4 *4 (-961)) (-5 *1 (-1074 *4)))) (-3803 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1068 *4)) (-5 *3 (-484)) (-4 *4 (-961)) (-5 *1 (-1074 *4)))) (-3805 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1068 *4)) (-5 *3 (-484)) (-4 *4 (-961)) (-5 *1 (-1074 *4)))) (-3806 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-961)) (-5 *1 (-1074 *3)))) (-3807 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-961)) (-5 *1 (-1074 *3)))) (-3808 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-961)) (-5 *1 (-1074 *3)))) (-3474 (*1 *2 *3) (-12 (-5 *3 (-1068 (-1068 *4))) (-5 *2 (-1068 *4)) (-5 *1 (-1074 *4)) (-4 *4 (-961)))) (-3804 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-961)) (-5 *1 (-1074 *3)))) (-3809 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-961)) (-5 *1 (-1074 *3)))) (-3473 (*1 *2 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-961)) (-5 *1 (-1074 *3)))) (-3767 (*1 *2 *2 *3) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-961)) (-5 *1 (-1074 *3)))) (-3945 (*1 *2 *3) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-1074 *3)) (-4 *3 (-961)))) (-3472 (*1 *2 *3 *2) (-12 (-5 *2 (-1068 *4)) (-5 *3 (-1 *4 (-484))) (-4 *4 (-961)) (-5 *1 (-1074 *4)))) (-3471 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-961)) (-5 *1 (-1074 *3)))) (-3470 (*1 *2 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-961)) (-5 *1 (-1074 *3)))) (-3469 (*1 *2 *3) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-1074 *3)) (-4 *3 (-961)))) (-3468 (*1 *2 *3) (-12 (-5 *2 (-1068 (-484))) (-5 *1 (-1074 *4)) (-4 *4 (-961)) (-5 *3 (-484)))) (-3467 (*1 *2 *3) (-12 (-5 *2 (-1068 (-484))) (-5 *1 (-1074 *4)) (-4 *4 (-961)) (-5 *3 (-484)))) (-3937 (*1 *2 *3 *4) (-12 (-5 *4 (-484)) (-5 *2 (-1068 *3)) (-5 *1 (-1074 *3)) (-4 *3 (-961)))) (-3466 (*1 *2 *2) (|partial| -12 (-5 *2 (-1068 *3)) (-4 *3 (-961)) (-5 *1 (-1074 *3)))) (-3948 (*1 *2 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-961)) (-5 *1 (-1074 *3)))) (-3465 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1068 *3)) (-4 *3 (-961)) (-5 *1 (-1074 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-961)) (-5 *1 (-1074 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-961)) (-5 *1 (-1074 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-961)) (-5 *1 (-1074 *3)))) (-3836 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-961)) (-5 *1 (-1074 *3)))) (-3836 (*1 *2 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-961)) (-5 *1 (-1074 *3)))) (-3838 (*1 *2 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-961)) (-5 *1 (-1074 *3))))) +((-3491 (((-1068 |#1|) (-1068 |#1|)) 102 T ELT)) (-3638 (((-1068 |#1|) (-1068 |#1|)) 59 T ELT)) (-3482 (((-2 (|:| -3489 (-1068 |#1|)) (|:| -3490 (-1068 |#1|))) (-1068 |#1|)) 98 T ELT)) (-3489 (((-1068 |#1|) (-1068 |#1|)) 99 T ELT)) (-3481 (((-2 (|:| -3637 (-1068 |#1|)) (|:| -3633 (-1068 |#1|))) (-1068 |#1|)) 54 T ELT)) (-3637 (((-1068 |#1|) (-1068 |#1|)) 55 T ELT)) (-3493 (((-1068 |#1|) (-1068 |#1|)) 104 T ELT)) (-3636 (((-1068 |#1|) (-1068 |#1|)) 66 T ELT)) (-3941 (((-1068 |#1|) (-1068 |#1|)) 40 T ELT)) (-3942 (((-1068 |#1|) (-1068 |#1|)) 37 T ELT)) (-3494 (((-1068 |#1|) (-1068 |#1|)) 105 T ELT)) (-3635 (((-1068 |#1|) (-1068 |#1|)) 67 T ELT)) (-3492 (((-1068 |#1|) (-1068 |#1|)) 103 T ELT)) (-3634 (((-1068 |#1|) (-1068 |#1|)) 62 T ELT)) (-3490 (((-1068 |#1|) (-1068 |#1|)) 100 T ELT)) (-3633 (((-1068 |#1|) (-1068 |#1|)) 56 T ELT)) (-3497 (((-1068 |#1|) (-1068 |#1|)) 113 T ELT)) (-3485 (((-1068 |#1|) (-1068 |#1|)) 88 T ELT)) (-3495 (((-1068 |#1|) (-1068 |#1|)) 107 T ELT)) (-3483 (((-1068 |#1|) (-1068 |#1|)) 84 T ELT)) (-3499 (((-1068 |#1|) (-1068 |#1|)) 117 T ELT)) (-3487 (((-1068 |#1|) (-1068 |#1|)) 92 T ELT)) (-3500 (((-1068 |#1|) (-1068 |#1|)) 119 T ELT)) (-3488 (((-1068 |#1|) (-1068 |#1|)) 94 T ELT)) (-3498 (((-1068 |#1|) (-1068 |#1|)) 115 T ELT)) (-3486 (((-1068 |#1|) (-1068 |#1|)) 90 T ELT)) (-3496 (((-1068 |#1|) (-1068 |#1|)) 109 T ELT)) (-3484 (((-1068 |#1|) (-1068 |#1|)) 86 T ELT)) (** (((-1068 |#1|) (-1068 |#1|) (-1068 |#1|)) 41 T ELT))) +(((-1075 |#1|) (-10 -7 (-15 -3942 ((-1068 |#1|) (-1068 |#1|))) (-15 -3941 ((-1068 |#1|) (-1068 |#1|))) (-15 ** ((-1068 |#1|) (-1068 |#1|) (-1068 |#1|))) (-15 -3481 ((-2 (|:| -3637 (-1068 |#1|)) (|:| -3633 (-1068 |#1|))) (-1068 |#1|))) (-15 -3637 ((-1068 |#1|) (-1068 |#1|))) (-15 -3633 ((-1068 |#1|) (-1068 |#1|))) (-15 -3638 ((-1068 |#1|) (-1068 |#1|))) (-15 -3634 ((-1068 |#1|) (-1068 |#1|))) (-15 -3636 ((-1068 |#1|) (-1068 |#1|))) (-15 -3635 ((-1068 |#1|) (-1068 |#1|))) (-15 -3483 ((-1068 |#1|) (-1068 |#1|))) (-15 -3484 ((-1068 |#1|) (-1068 |#1|))) (-15 -3485 ((-1068 |#1|) (-1068 |#1|))) (-15 -3486 ((-1068 |#1|) (-1068 |#1|))) (-15 -3487 ((-1068 |#1|) (-1068 |#1|))) (-15 -3488 ((-1068 |#1|) (-1068 |#1|))) (-15 -3482 ((-2 (|:| -3489 (-1068 |#1|)) (|:| -3490 (-1068 |#1|))) (-1068 |#1|))) (-15 -3489 ((-1068 |#1|) (-1068 |#1|))) (-15 -3490 ((-1068 |#1|) (-1068 |#1|))) (-15 -3491 ((-1068 |#1|) (-1068 |#1|))) (-15 -3492 ((-1068 |#1|) (-1068 |#1|))) (-15 -3493 ((-1068 |#1|) (-1068 |#1|))) (-15 -3494 ((-1068 |#1|) (-1068 |#1|))) (-15 -3495 ((-1068 |#1|) (-1068 |#1|))) (-15 -3496 ((-1068 |#1|) (-1068 |#1|))) (-15 -3497 ((-1068 |#1|) (-1068 |#1|))) (-15 -3498 ((-1068 |#1|) (-1068 |#1|))) (-15 -3499 ((-1068 |#1|) (-1068 |#1|))) (-15 -3500 ((-1068 |#1|) (-1068 |#1|)))) (-38 (-349 (-484)))) (T -1075)) +((-3500 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1075 *3)))) (-3499 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1075 *3)))) (-3498 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1075 *3)))) (-3497 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1075 *3)))) (-3496 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1075 *3)))) (-3495 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1075 *3)))) (-3494 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1075 *3)))) (-3493 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1075 *3)))) (-3492 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1075 *3)))) (-3491 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1075 *3)))) (-3490 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1075 *3)))) (-3489 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1075 *3)))) (-3482 (*1 *2 *3) (-12 (-4 *4 (-38 (-349 (-484)))) (-5 *2 (-2 (|:| -3489 (-1068 *4)) (|:| -3490 (-1068 *4)))) (-5 *1 (-1075 *4)) (-5 *3 (-1068 *4)))) (-3488 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1075 *3)))) (-3487 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1075 *3)))) (-3486 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1075 *3)))) (-3485 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1075 *3)))) (-3484 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1075 *3)))) (-3483 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1075 *3)))) (-3635 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1075 *3)))) (-3636 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1075 *3)))) (-3634 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1075 *3)))) (-3638 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1075 *3)))) (-3633 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1075 *3)))) (-3637 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1075 *3)))) (-3481 (*1 *2 *3) (-12 (-4 *4 (-38 (-349 (-484)))) (-5 *2 (-2 (|:| -3637 (-1068 *4)) (|:| -3633 (-1068 *4)))) (-5 *1 (-1075 *4)) (-5 *3 (-1068 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1075 *3)))) (-3941 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1075 *3)))) (-3942 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1075 *3))))) +((-3491 (((-1068 |#1|) (-1068 |#1|)) 60 T ELT)) (-3638 (((-1068 |#1|) (-1068 |#1|)) 42 T ELT)) (-3489 (((-1068 |#1|) (-1068 |#1|)) 56 T ELT)) (-3637 (((-1068 |#1|) (-1068 |#1|)) 38 T ELT)) (-3493 (((-1068 |#1|) (-1068 |#1|)) 63 T ELT)) (-3636 (((-1068 |#1|) (-1068 |#1|)) 45 T ELT)) (-3941 (((-1068 |#1|) (-1068 |#1|)) 34 T ELT)) (-3942 (((-1068 |#1|) (-1068 |#1|)) 29 T ELT)) (-3494 (((-1068 |#1|) (-1068 |#1|)) 64 T ELT)) (-3635 (((-1068 |#1|) (-1068 |#1|)) 46 T ELT)) (-3492 (((-1068 |#1|) (-1068 |#1|)) 61 T ELT)) (-3634 (((-1068 |#1|) (-1068 |#1|)) 43 T ELT)) (-3490 (((-1068 |#1|) (-1068 |#1|)) 58 T ELT)) (-3633 (((-1068 |#1|) (-1068 |#1|)) 40 T ELT)) (-3497 (((-1068 |#1|) (-1068 |#1|)) 68 T ELT)) (-3485 (((-1068 |#1|) (-1068 |#1|)) 50 T ELT)) (-3495 (((-1068 |#1|) (-1068 |#1|)) 66 T ELT)) (-3483 (((-1068 |#1|) (-1068 |#1|)) 48 T ELT)) (-3499 (((-1068 |#1|) (-1068 |#1|)) 71 T ELT)) (-3487 (((-1068 |#1|) (-1068 |#1|)) 53 T ELT)) (-3500 (((-1068 |#1|) (-1068 |#1|)) 72 T ELT)) (-3488 (((-1068 |#1|) (-1068 |#1|)) 54 T ELT)) (-3498 (((-1068 |#1|) (-1068 |#1|)) 70 T ELT)) (-3486 (((-1068 |#1|) (-1068 |#1|)) 52 T ELT)) (-3496 (((-1068 |#1|) (-1068 |#1|)) 69 T ELT)) (-3484 (((-1068 |#1|) (-1068 |#1|)) 51 T ELT)) (** (((-1068 |#1|) (-1068 |#1|) (-1068 |#1|)) 36 T ELT))) +(((-1076 |#1|) (-10 -7 (-15 -3942 ((-1068 |#1|) (-1068 |#1|))) (-15 -3941 ((-1068 |#1|) (-1068 |#1|))) (-15 ** ((-1068 |#1|) (-1068 |#1|) (-1068 |#1|))) (-15 -3637 ((-1068 |#1|) (-1068 |#1|))) (-15 -3633 ((-1068 |#1|) (-1068 |#1|))) (-15 -3638 ((-1068 |#1|) (-1068 |#1|))) (-15 -3634 ((-1068 |#1|) (-1068 |#1|))) (-15 -3636 ((-1068 |#1|) (-1068 |#1|))) (-15 -3635 ((-1068 |#1|) (-1068 |#1|))) (-15 -3483 ((-1068 |#1|) (-1068 |#1|))) (-15 -3484 ((-1068 |#1|) (-1068 |#1|))) (-15 -3485 ((-1068 |#1|) (-1068 |#1|))) (-15 -3486 ((-1068 |#1|) (-1068 |#1|))) (-15 -3487 ((-1068 |#1|) (-1068 |#1|))) (-15 -3488 ((-1068 |#1|) (-1068 |#1|))) (-15 -3489 ((-1068 |#1|) (-1068 |#1|))) (-15 -3490 ((-1068 |#1|) (-1068 |#1|))) (-15 -3491 ((-1068 |#1|) (-1068 |#1|))) (-15 -3492 ((-1068 |#1|) (-1068 |#1|))) (-15 -3493 ((-1068 |#1|) (-1068 |#1|))) (-15 -3494 ((-1068 |#1|) (-1068 |#1|))) (-15 -3495 ((-1068 |#1|) (-1068 |#1|))) (-15 -3496 ((-1068 |#1|) (-1068 |#1|))) (-15 -3497 ((-1068 |#1|) (-1068 |#1|))) (-15 -3498 ((-1068 |#1|) (-1068 |#1|))) (-15 -3499 ((-1068 |#1|) (-1068 |#1|))) (-15 -3500 ((-1068 |#1|) (-1068 |#1|)))) (-38 (-349 (-484)))) (T -1076)) +((-3500 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1076 *3)))) (-3499 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1076 *3)))) (-3498 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1076 *3)))) (-3497 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1076 *3)))) (-3496 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1076 *3)))) (-3495 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1076 *3)))) (-3494 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1076 *3)))) (-3493 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1076 *3)))) (-3492 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1076 *3)))) (-3491 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1076 *3)))) (-3490 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1076 *3)))) (-3489 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1076 *3)))) (-3488 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1076 *3)))) (-3487 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1076 *3)))) (-3486 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1076 *3)))) (-3485 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1076 *3)))) (-3484 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1076 *3)))) (-3483 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1076 *3)))) (-3635 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1076 *3)))) (-3636 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1076 *3)))) (-3634 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1076 *3)))) (-3638 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1076 *3)))) (-3633 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1076 *3)))) (-3637 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1076 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1076 *3)))) (-3941 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1076 *3)))) (-3942 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1076 *3))))) +((-3501 (((-869 |#2|) |#2| |#2|) 51 T ELT)) (-3502 ((|#2| |#2| |#1|) 19 (|has| |#1| (-258)) ELT))) +(((-1077 |#1| |#2|) (-10 -7 (-15 -3501 ((-869 |#2|) |#2| |#2|)) (IF (|has| |#1| (-258)) (-15 -3502 (|#2| |#2| |#1|)) |%noBranch|)) (-495) (-1154 |#1|)) (T -1077)) +((-3502 (*1 *2 *2 *3) (-12 (-4 *3 (-258)) (-4 *3 (-495)) (-5 *1 (-1077 *3 *2)) (-4 *2 (-1154 *3)))) (-3501 (*1 *2 *3 *3) (-12 (-4 *4 (-495)) (-5 *2 (-869 *3)) (-5 *1 (-1077 *4 *3)) (-4 *3 (-1154 *4))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3510 (($ $ (-583 (-694))) 79 T ELT)) (-3887 (($) 33 T ELT)) (-3519 (($ $) 51 T ELT)) (-3750 (((-583 $) $) 60 T ELT)) (-3525 (((-85) $) 19 T ELT)) (-3503 (((-583 (-854 |#2|)) $) 86 T ELT)) (-3504 (($ $) 80 T ELT)) (-3520 (((-694) $) 47 T ELT)) (-3613 (($) 32 T ELT)) (-3513 (($ $ (-583 (-694)) (-854 |#2|)) 72 T ELT) (($ $ (-583 (-694)) (-694)) 73 T ELT) (($ $ (-694) (-854 |#2|)) 75 T ELT)) (-3517 (($ $ $) 57 T ELT) (($ (-583 $)) 59 T ELT)) (-3505 (((-694) $) 87 T ELT)) (-3526 (((-85) $) 15 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3524 (((-85) $) 22 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3506 (((-145) $) 85 T ELT)) (-3509 (((-854 |#2|) $) 81 T ELT)) (-3508 (((-694) $) 82 T ELT)) (-3507 (((-85) $) 84 T ELT)) (-3511 (($ $ (-583 (-694)) (-145)) 78 T ELT)) (-3518 (($ $) 52 T ELT)) (-3945 (((-772) $) 99 T ELT)) (-3512 (($ $ (-583 (-694)) (-85)) 77 T ELT)) (-3521 (((-583 $) $) 11 T ELT)) (-3522 (($ $ (-694)) 46 T ELT)) (-3523 (($ $) 43 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3514 (($ $ $ (-854 |#2|) (-694)) 68 T ELT)) (-3515 (($ $ (-854 |#2|)) 67 T ELT)) (-3516 (($ $ (-583 (-694)) (-854 |#2|)) 66 T ELT) (($ $ (-583 (-694)) (-694)) 70 T ELT) (((-694) $ (-854 |#2|)) 71 T ELT)) (-3056 (((-85) $ $) 92 T ELT))) +(((-1078 |#1| |#2|) (-13 (-1013) (-10 -8 (-15 -3526 ((-85) $)) (-15 -3525 ((-85) $)) (-15 -3524 ((-85) $)) (-15 -3613 ($)) (-15 -3887 ($)) (-15 -3523 ($ $)) (-15 -3522 ($ $ (-694))) (-15 -3521 ((-583 $) $)) (-15 -3520 ((-694) $)) (-15 -3519 ($ $)) (-15 -3518 ($ $)) (-15 -3517 ($ $ $)) (-15 -3517 ($ (-583 $))) (-15 -3750 ((-583 $) $)) (-15 -3516 ($ $ (-583 (-694)) (-854 |#2|))) (-15 -3515 ($ $ (-854 |#2|))) (-15 -3514 ($ $ $ (-854 |#2|) (-694))) (-15 -3513 ($ $ (-583 (-694)) (-854 |#2|))) (-15 -3516 ($ $ (-583 (-694)) (-694))) (-15 -3513 ($ $ (-583 (-694)) (-694))) (-15 -3516 ((-694) $ (-854 |#2|))) (-15 -3513 ($ $ (-694) (-854 |#2|))) (-15 -3512 ($ $ (-583 (-694)) (-85))) (-15 -3511 ($ $ (-583 (-694)) (-145))) (-15 -3510 ($ $ (-583 (-694)))) (-15 -3509 ((-854 |#2|) $)) (-15 -3508 ((-694) $)) (-15 -3507 ((-85) $)) (-15 -3506 ((-145) $)) (-15 -3505 ((-694) $)) (-15 -3504 ($ $)) (-15 -3503 ((-583 (-854 |#2|)) $)))) (-830) (-961)) (T -1078)) +((-3526 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1078 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961)))) (-3525 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1078 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961)))) (-3524 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1078 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961)))) (-3613 (*1 *1) (-12 (-5 *1 (-1078 *2 *3)) (-14 *2 (-830)) (-4 *3 (-961)))) (-3887 (*1 *1) (-12 (-5 *1 (-1078 *2 *3)) (-14 *2 (-830)) (-4 *3 (-961)))) (-3523 (*1 *1 *1) (-12 (-5 *1 (-1078 *2 *3)) (-14 *2 (-830)) (-4 *3 (-961)))) (-3522 (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-1078 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961)))) (-3521 (*1 *2 *1) (-12 (-5 *2 (-583 (-1078 *3 *4))) (-5 *1 (-1078 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961)))) (-3520 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-1078 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961)))) (-3519 (*1 *1 *1) (-12 (-5 *1 (-1078 *2 *3)) (-14 *2 (-830)) (-4 *3 (-961)))) (-3518 (*1 *1 *1) (-12 (-5 *1 (-1078 *2 *3)) (-14 *2 (-830)) (-4 *3 (-961)))) (-3517 (*1 *1 *1 *1) (-12 (-5 *1 (-1078 *2 *3)) (-14 *2 (-830)) (-4 *3 (-961)))) (-3517 (*1 *1 *2) (-12 (-5 *2 (-583 (-1078 *3 *4))) (-5 *1 (-1078 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961)))) (-3750 (*1 *2 *1) (-12 (-5 *2 (-583 (-1078 *3 *4))) (-5 *1 (-1078 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961)))) (-3516 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-694))) (-5 *3 (-854 *5)) (-4 *5 (-961)) (-5 *1 (-1078 *4 *5)) (-14 *4 (-830)))) (-3515 (*1 *1 *1 *2) (-12 (-5 *2 (-854 *4)) (-4 *4 (-961)) (-5 *1 (-1078 *3 *4)) (-14 *3 (-830)))) (-3514 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-854 *5)) (-5 *3 (-694)) (-4 *5 (-961)) (-5 *1 (-1078 *4 *5)) (-14 *4 (-830)))) (-3513 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-694))) (-5 *3 (-854 *5)) (-4 *5 (-961)) (-5 *1 (-1078 *4 *5)) (-14 *4 (-830)))) (-3516 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-694))) (-5 *3 (-694)) (-5 *1 (-1078 *4 *5)) (-14 *4 (-830)) (-4 *5 (-961)))) (-3513 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-694))) (-5 *3 (-694)) (-5 *1 (-1078 *4 *5)) (-14 *4 (-830)) (-4 *5 (-961)))) (-3516 (*1 *2 *1 *3) (-12 (-5 *3 (-854 *5)) (-4 *5 (-961)) (-5 *2 (-694)) (-5 *1 (-1078 *4 *5)) (-14 *4 (-830)))) (-3513 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-694)) (-5 *3 (-854 *5)) (-4 *5 (-961)) (-5 *1 (-1078 *4 *5)) (-14 *4 (-830)))) (-3512 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-694))) (-5 *3 (-85)) (-5 *1 (-1078 *4 *5)) (-14 *4 (-830)) (-4 *5 (-961)))) (-3511 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-694))) (-5 *3 (-145)) (-5 *1 (-1078 *4 *5)) (-14 *4 (-830)) (-4 *5 (-961)))) (-3510 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-694))) (-5 *1 (-1078 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961)))) (-3509 (*1 *2 *1) (-12 (-5 *2 (-854 *4)) (-5 *1 (-1078 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961)))) (-3508 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-1078 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961)))) (-3507 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1078 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961)))) (-3506 (*1 *2 *1) (-12 (-5 *2 (-145)) (-5 *1 (-1078 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961)))) (-3505 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-1078 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961)))) (-3504 (*1 *1 *1) (-12 (-5 *1 (-1078 *2 *3)) (-14 *2 (-830)) (-4 *3 (-961)))) (-3503 (*1 *2 *1) (-12 (-5 *2 (-583 (-854 *4))) (-5 *1 (-1078 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3527 ((|#2| $) 11 T ELT)) (-3528 ((|#1| $) 10 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3529 (($ |#1| |#2|) 9 T ELT)) (-3945 (((-772) $) 16 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT))) +(((-1079 |#1| |#2|) (-13 (-1013) (-10 -8 (-15 -3529 ($ |#1| |#2|)) (-15 -3528 (|#1| $)) (-15 -3527 (|#2| $)))) (-1013) (-1013)) (T -1079)) +((-3529 (*1 *1 *2 *3) (-12 (-5 *1 (-1079 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013)))) (-3528 (*1 *2 *1) (-12 (-4 *2 (-1013)) (-5 *1 (-1079 *2 *3)) (-4 *3 (-1013)))) (-3527 (*1 *2 *1) (-12 (-4 *2 (-1013)) (-5 *1 (-1079 *3 *2)) (-4 *3 (-1013))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3530 (((-1048) $) 10 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) 16 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT))) +(((-1080) (-13 (-995) (-10 -8 (-15 -3530 ((-1048) $))))) (T -1080)) +((-3530 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-1080))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-3129 (((-1088 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-258)) (|has| |#1| (-312))) ELT)) (-3081 (((-583 (-994)) $) NIL T ELT)) (-3830 (((-1089) $) 11 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL (OR (-12 (|has| (-1088 |#1| |#2| |#3|) (-821)) (|has| |#1| (-312))) (-12 (|has| (-1088 |#1| |#2| |#3|) (-740)) (|has| |#1| (-312))) (|has| |#1| (-495))) ELT)) (-2063 (($ $) NIL (OR (-12 (|has| (-1088 |#1| |#2| |#3|) (-821)) (|has| |#1| (-312))) (-12 (|has| (-1088 |#1| |#2| |#3|) (-740)) (|has| |#1| (-312))) (|has| |#1| (-495))) ELT)) (-2061 (((-85) $) NIL (OR (-12 (|has| (-1088 |#1| |#2| |#3|) (-821)) (|has| |#1| (-312))) (-12 (|has| (-1088 |#1| |#2| |#3|) (-740)) (|has| |#1| (-312))) (|has| |#1| (-495))) ELT)) (-3770 (($ $ (-484)) NIL T ELT) (($ $ (-484) (-484)) 75 T ELT)) (-3773 (((-1068 (-2 (|:| |k| (-484)) (|:| |c| |#1|))) $) NIL T ELT)) (-3730 (((-1088 |#1| |#2| |#3|) $) 42 T ELT)) (-3727 (((-3 (-1088 |#1| |#2| |#3|) #1="failed") $) 32 T ELT)) (-3728 (((-1088 |#1| |#2| |#3|) $) 33 T ELT)) (-3491 (($ $) 116 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3638 (($ $) 92 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-1311 (((-3 $ #1#) $ $) NIL T ELT)) (-2707 (((-347 (-1084 $)) (-1084 $)) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-821)) (|has| |#1| (-312))) ELT)) (-3774 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3970 (((-347 $) $) NIL (|has| |#1| (-312)) ELT)) (-3037 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2704 (((-3 (-583 (-1084 $)) #1#) (-583 (-1084 $)) (-1084 $)) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-821)) (|has| |#1| (-312))) ELT)) (-1607 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3489 (($ $) 112 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3637 (($ $) 88 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3622 (((-484) $) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-740)) (|has| |#1| (-312))) ELT)) (-3817 (($ (-1068 (-2 (|:| |k| (-484)) (|:| |c| |#1|)))) NIL T ELT)) (-3493 (($ $) 120 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3636 (($ $) 96 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 (-1088 |#1| |#2| |#3|) #1#) $) 34 T ELT) (((-3 (-1089) #1#) $) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-950 (-1089))) (|has| |#1| (-312))) ELT) (((-3 (-349 (-484)) #1#) $) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-950 (-484))) (|has| |#1| (-312))) ELT) (((-3 (-484) #1#) $) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-950 (-484))) (|has| |#1| (-312))) ELT)) (-3156 (((-1088 |#1| |#2| |#3|) $) 140 T ELT) (((-1089) $) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-950 (-1089))) (|has| |#1| (-312))) ELT) (((-349 (-484)) $) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-950 (-484))) (|has| |#1| (-312))) ELT) (((-484) $) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-950 (-484))) (|has| |#1| (-312))) ELT)) (-3729 (($ $) 37 T ELT) (($ (-484) $) 38 T ELT)) (-2564 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3958 (($ $) NIL T ELT)) (-2279 (((-630 (-1088 |#1| |#2| |#3|)) (-630 $)) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-630 (-1088 |#1| |#2| |#3|))) (|:| |vec| (-1178 (-1088 |#1| |#2| |#3|)))) (-630 $) (-1178 $)) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-580 (-484))) (|has| |#1| (-312))) ELT) (((-630 (-484)) (-630 $)) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-580 (-484))) (|has| |#1| (-312))) ELT)) (-3466 (((-3 $ #1#) $) 54 T ELT)) (-3726 (((-349 (-857 |#1|)) $ (-484)) 74 (|has| |#1| (-495)) ELT) (((-349 (-857 |#1|)) $ (-484) (-484)) 76 (|has| |#1| (-495)) ELT)) (-2994 (($) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-483)) (|has| |#1| (-312))) ELT)) (-2563 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) NIL (|has| |#1| (-312)) ELT)) (-3722 (((-85) $) NIL (|has| |#1| (-312)) ELT)) (-3186 (((-85) $) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-740)) (|has| |#1| (-312))) ELT)) (-2892 (((-85) $) 28 T ELT)) (-3626 (($) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2796 (((-798 (-329) $) $ (-800 (-329)) (-798 (-329) $)) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-796 (-329))) (|has| |#1| (-312))) ELT) (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-796 (-484))) (|has| |#1| (-312))) ELT)) (-3771 (((-484) $) NIL T ELT) (((-484) $ (-484)) 26 T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2996 (($ $) NIL (|has| |#1| (-312)) ELT)) (-2998 (((-1088 |#1| |#2| |#3|) $) 44 (|has| |#1| (-312)) ELT)) (-3011 (($ $ (-484)) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3444 (((-632 $) $) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-1065)) (|has| |#1| (-312))) ELT)) (-3187 (((-85) $) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-740)) (|has| |#1| (-312))) ELT)) (-3776 (($ $ (-830)) NIL T ELT)) (-3814 (($ (-1 |#1| (-484)) $) NIL T ELT)) (-1604 (((-3 (-583 $) #1#) (-583 $) $) NIL (|has| |#1| (-312)) ELT)) (-3936 (((-85) $) NIL T ELT)) (-2893 (($ |#1| (-484)) 19 T ELT) (($ $ (-994) (-484)) NIL T ELT) (($ $ (-583 (-994)) (-583 (-484))) NIL T ELT)) (-2531 (($ $ $) NIL (OR (-12 (|has| (-1088 |#1| |#2| |#3|) (-740)) (|has| |#1| (-312))) (-12 (|has| (-1088 |#1| |#2| |#3|) (-756)) (|has| |#1| (-312)))) ELT)) (-2857 (($ $ $) NIL (OR (-12 (|has| (-1088 |#1| |#2| |#3|) (-740)) (|has| |#1| (-312))) (-12 (|has| (-1088 |#1| |#2| |#3|) (-756)) (|has| |#1| (-312)))) ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 (-1088 |#1| |#2| |#3|) (-1088 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-312)) ELT)) (-3941 (($ $) 81 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2280 (((-630 (-1088 |#1| |#2| |#3|)) (-1178 $)) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-630 (-1088 |#1| |#2| |#3|))) (|:| |vec| (-1178 (-1088 |#1| |#2| |#3|)))) (-1178 $) $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-580 (-484))) (|has| |#1| (-312))) ELT) (((-630 (-484)) (-1178 $)) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-580 (-484))) (|has| |#1| (-312))) ELT)) (-2894 (($ $) NIL T ELT)) (-3174 ((|#1| $) NIL T ELT)) (-1890 (($ (-583 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3778 (($ (-484) (-1088 |#1| |#2| |#3|)) 36 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2484 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3811 (($ $) 79 (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $ (-1089)) NIL (OR (-12 (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-29 (-484))) (|has| |#1| (-871)) (|has| |#1| (-1114))) (-12 (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-15 -3811 (|#1| |#1| (-1089)))) (|has| |#1| (-15 -3081 ((-583 (-1089)) |#1|))))) ELT) (($ $ (-1175 |#2|)) 80 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3445 (($) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-1065)) (|has| |#1| (-312))) CONST)) (-3243 (((-1033) $) NIL T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) NIL (|has| |#1| (-312)) ELT)) (-3144 (($ (-583 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3128 (($ $) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-258)) (|has| |#1| (-312))) ELT)) (-3130 (((-1088 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-483)) (|has| |#1| (-312))) ELT)) (-2705 (((-347 (-1084 $)) (-1084 $)) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-821)) (|has| |#1| (-312))) ELT)) (-2706 (((-347 (-1084 $)) (-1084 $)) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-821)) (|has| |#1| (-312))) ELT)) (-3731 (((-347 $) $) NIL (|has| |#1| (-312)) ELT)) (-1605 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3768 (($ $ (-484)) 158 T ELT)) (-3465 (((-3 $ #1#) $ $) 55 (OR (-12 (|has| (-1088 |#1| |#2| |#3|) (-821)) (|has| |#1| (-312))) (-12 (|has| (-1088 |#1| |#2| |#3|) (-740)) (|has| |#1| (-312))) (|has| |#1| (-495))) ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL (|has| |#1| (-312)) ELT)) (-3942 (($ $) 82 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3767 (((-1068 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-484)))) ELT) (($ $ (-1089) (-1088 |#1| |#2| |#3|)) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-455 (-1089) (-1088 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT) (($ $ (-583 (-1089)) (-583 (-1088 |#1| |#2| |#3|))) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-455 (-1089) (-1088 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT) (($ $ (-583 (-249 (-1088 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-260 (-1088 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT) (($ $ (-249 (-1088 |#1| |#2| |#3|))) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-260 (-1088 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT) (($ $ (-1088 |#1| |#2| |#3|) (-1088 |#1| |#2| |#3|)) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-260 (-1088 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT) (($ $ (-583 (-1088 |#1| |#2| |#3|)) (-583 (-1088 |#1| |#2| |#3|))) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-260 (-1088 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT)) (-1606 (((-694) $) NIL (|has| |#1| (-312)) ELT)) (-3799 ((|#1| $ (-484)) NIL T ELT) (($ $ $) 61 (|has| (-484) (-1025)) ELT) (($ $ (-1088 |#1| |#2| |#3|)) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-241 (-1088 |#1| |#2| |#3|) (-1088 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3757 (($ $ (-1 (-1088 |#1| |#2| |#3|) (-1088 |#1| |#2| |#3|)) (-694)) NIL (|has| |#1| (-312)) ELT) (($ $ (-1 (-1088 |#1| |#2| |#3|) (-1088 |#1| |#2| |#3|))) NIL (|has| |#1| (-312)) ELT) (($ $ (-1175 |#2|)) 57 T ELT) (($ $) 56 (OR (-12 (|has| (-1088 |#1| |#2| |#3|) (-190)) (|has| |#1| (-312))) (-12 (|has| (-1088 |#1| |#2| |#3|) (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-694)) NIL (OR (-12 (|has| (-1088 |#1| |#2| |#3|) (-190)) (|has| |#1| (-312))) (-12 (|has| (-1088 |#1| |#2| |#3|) (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-1089)) NIL (OR (-12 (|has| (-1088 |#1| |#2| |#3|) (-809 (-1089))) (|has| |#1| (-312))) (-12 (|has| (-1088 |#1| |#2| |#3|) (-811 (-1089))) (|has| |#1| (-312))) (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT) (($ $ (-583 (-1089))) NIL (OR (-12 (|has| (-1088 |#1| |#2| |#3|) (-809 (-1089))) (|has| |#1| (-312))) (-12 (|has| (-1088 |#1| |#2| |#3|) (-811 (-1089))) (|has| |#1| (-312))) (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT) (($ $ (-1089) (-694)) NIL (OR (-12 (|has| (-1088 |#1| |#2| |#3|) (-809 (-1089))) (|has| |#1| (-312))) (-12 (|has| (-1088 |#1| |#2| |#3|) (-811 (-1089))) (|has| |#1| (-312))) (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (OR (-12 (|has| (-1088 |#1| |#2| |#3|) (-809 (-1089))) (|has| |#1| (-312))) (-12 (|has| (-1088 |#1| |#2| |#3|) (-811 (-1089))) (|has| |#1| (-312))) (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT)) (-2995 (($ $) NIL (|has| |#1| (-312)) ELT)) (-2997 (((-1088 |#1| |#2| |#3|) $) 46 (|has| |#1| (-312)) ELT)) (-3947 (((-484) $) 43 T ELT)) (-3494 (($ $) 122 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3635 (($ $) 98 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3492 (($ $) 118 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3634 (($ $) 94 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3490 (($ $) 114 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3633 (($ $) 90 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3971 (((-473) $) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-553 (-473))) (|has| |#1| (-312))) ELT) (((-329) $) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-933)) (|has| |#1| (-312))) ELT) (((-179) $) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-933)) (|has| |#1| (-312))) ELT) (((-800 (-329)) $) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-553 (-800 (-329)))) (|has| |#1| (-312))) ELT) (((-800 (-484)) $) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-553 (-800 (-484)))) (|has| |#1| (-312))) ELT)) (-2703 (((-3 (-1178 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| (-1088 |#1| |#2| |#3|) (-821)) (|has| |#1| (-312))) ELT)) (-2891 (($ $) NIL T ELT)) (-3945 (((-772) $) 162 T ELT) (($ (-484)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT) (($ (-1088 |#1| |#2| |#3|)) 30 T ELT) (($ (-1175 |#2|)) 25 T ELT) (($ (-1089)) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-950 (-1089))) (|has| |#1| (-312))) ELT) (($ $) NIL (OR (-12 (|has| (-1088 |#1| |#2| |#3|) (-821)) (|has| |#1| (-312))) (-12 (|has| (-1088 |#1| |#2| |#3|) (-740)) (|has| |#1| (-312))) (|has| |#1| (-495))) ELT) (($ (-349 (-484))) NIL (OR (-12 (|has| (-1088 |#1| |#2| |#3|) (-950 (-484))) (|has| |#1| (-312))) (|has| |#1| (-38 (-349 (-484))))) ELT)) (-3676 ((|#1| $ (-484)) 77 T ELT)) (-2702 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-1088 |#1| |#2| |#3|) (-821)) (|has| |#1| (-312))) (-12 (|has| (-1088 |#1| |#2| |#3|) (-118)) (|has| |#1| (-312))) (|has| |#1| (-118))) ELT)) (-3126 (((-694)) NIL T CONST)) (-3772 ((|#1| $) 12 T ELT)) (-3131 (((-1088 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-483)) (|has| |#1| (-312))) ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3497 (($ $) 128 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3485 (($ $) 104 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2062 (((-85) $ $) NIL (OR (-12 (|has| (-1088 |#1| |#2| |#3|) (-821)) (|has| |#1| (-312))) (-12 (|has| (-1088 |#1| |#2| |#3|) (-740)) (|has| |#1| (-312))) (|has| |#1| (-495))) ELT)) (-3495 (($ $) 124 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3483 (($ $) 100 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3499 (($ $) 132 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3487 (($ $) 108 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3769 ((|#1| $ (-484)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-484)))) (|has| |#1| (-15 -3945 (|#1| (-1089))))) ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-3500 (($ $) 134 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3488 (($ $) 110 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3498 (($ $) 130 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3486 (($ $) 106 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3496 (($ $) 126 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3484 (($ $) 102 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3382 (($ $) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-740)) (|has| |#1| (-312))) ELT)) (-2660 (($) 21 T CONST)) (-2666 (($) 16 T CONST)) (-2669 (($ $ (-1 (-1088 |#1| |#2| |#3|) (-1088 |#1| |#2| |#3|)) (-694)) NIL (|has| |#1| (-312)) ELT) (($ $ (-1 (-1088 |#1| |#2| |#3|) (-1088 |#1| |#2| |#3|))) NIL (|has| |#1| (-312)) ELT) (($ $ (-1175 |#2|)) NIL T ELT) (($ $) NIL (OR (-12 (|has| (-1088 |#1| |#2| |#3|) (-190)) (|has| |#1| (-312))) (-12 (|has| (-1088 |#1| |#2| |#3|) (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-694)) NIL (OR (-12 (|has| (-1088 |#1| |#2| |#3|) (-190)) (|has| |#1| (-312))) (-12 (|has| (-1088 |#1| |#2| |#3|) (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-1089)) NIL (OR (-12 (|has| (-1088 |#1| |#2| |#3|) (-809 (-1089))) (|has| |#1| (-312))) (-12 (|has| (-1088 |#1| |#2| |#3|) (-811 (-1089))) (|has| |#1| (-312))) (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT) (($ $ (-583 (-1089))) NIL (OR (-12 (|has| (-1088 |#1| |#2| |#3|) (-809 (-1089))) (|has| |#1| (-312))) (-12 (|has| (-1088 |#1| |#2| |#3|) (-811 (-1089))) (|has| |#1| (-312))) (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT) (($ $ (-1089) (-694)) NIL (OR (-12 (|has| (-1088 |#1| |#2| |#3|) (-809 (-1089))) (|has| |#1| (-312))) (-12 (|has| (-1088 |#1| |#2| |#3|) (-811 (-1089))) (|has| |#1| (-312))) (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (OR (-12 (|has| (-1088 |#1| |#2| |#3|) (-809 (-1089))) (|has| |#1| (-312))) (-12 (|has| (-1088 |#1| |#2| |#3|) (-811 (-1089))) (|has| |#1| (-312))) (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT)) (-2566 (((-85) $ $) NIL (OR (-12 (|has| (-1088 |#1| |#2| |#3|) (-740)) (|has| |#1| (-312))) (-12 (|has| (-1088 |#1| |#2| |#3|) (-756)) (|has| |#1| (-312)))) ELT)) (-2567 (((-85) $ $) NIL (OR (-12 (|has| (-1088 |#1| |#2| |#3|) (-740)) (|has| |#1| (-312))) (-12 (|has| (-1088 |#1| |#2| |#3|) (-756)) (|has| |#1| (-312)))) ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL (OR (-12 (|has| (-1088 |#1| |#2| |#3|) (-740)) (|has| |#1| (-312))) (-12 (|has| (-1088 |#1| |#2| |#3|) (-756)) (|has| |#1| (-312)))) ELT)) (-2685 (((-85) $ $) NIL (OR (-12 (|has| (-1088 |#1| |#2| |#3|) (-740)) (|has| |#1| (-312))) (-12 (|has| (-1088 |#1| |#2| |#3|) (-756)) (|has| |#1| (-312)))) ELT)) (-3948 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT) (($ $ $) 49 (|has| |#1| (-312)) ELT) (($ (-1088 |#1| |#2| |#3|) (-1088 |#1| |#2| |#3|)) 50 (|has| |#1| (-312)) ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) 23 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) 60 T ELT) (($ $ (-484)) NIL (|has| |#1| (-312)) ELT) (($ $ $) 83 (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $ (-349 (-484))) 137 (|has| |#1| (-38 (-349 (-484)))) ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 35 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ (-1088 |#1| |#2| |#3|)) 48 (|has| |#1| (-312)) ELT) (($ (-1088 |#1| |#2| |#3|) $) 47 (|has| |#1| (-312)) ELT) (($ (-349 (-484)) $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $ (-349 (-484))) NIL (|has| |#1| (-38 (-349 (-484)))) ELT))) +(((-1081 |#1| |#2| |#3|) (-13 (-1142 |#1| (-1088 |#1| |#2| |#3|)) (-806 $ (-1175 |#2|)) (-10 -8 (-15 -3945 ($ (-1175 |#2|))) (IF (|has| |#1| (-38 (-349 (-484)))) (-15 -3811 ($ $ (-1175 |#2|))) |%noBranch|))) (-961) (-1089) |#1|) (T -1081)) +((-3945 (*1 *1 *2) (-12 (-5 *2 (-1175 *4)) (-14 *4 (-1089)) (-5 *1 (-1081 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) (-3811 (*1 *1 *1 *2) (-12 (-5 *2 (-1175 *4)) (-14 *4 (-1089)) (-5 *1 (-1081 *3 *4 *5)) (-4 *3 (-38 (-349 (-484)))) (-4 *3 (-961)) (-14 *5 *3)))) +((-3531 ((|#2| |#2| (-1004 |#2|)) 26 T ELT) ((|#2| |#2| (-1089)) 28 T ELT))) +(((-1082 |#1| |#2|) (-10 -7 (-15 -3531 (|#2| |#2| (-1089))) (-15 -3531 (|#2| |#2| (-1004 |#2|)))) (-13 (-495) (-950 (-484)) (-580 (-484))) (-13 (-363 |#1|) (-133) (-27) (-1114))) (T -1082)) +((-3531 (*1 *2 *2 *3) (-12 (-5 *3 (-1004 *2)) (-4 *2 (-13 (-363 *4) (-133) (-27) (-1114))) (-4 *4 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *1 (-1082 *4 *2)))) (-3531 (*1 *2 *2 *3) (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *1 (-1082 *4 *2)) (-4 *2 (-13 (-363 *4) (-133) (-27) (-1114)))))) +((-3531 (((-3 (-349 (-857 |#1|)) (-265 |#1|)) (-349 (-857 |#1|)) (-1004 (-349 (-857 |#1|)))) 31 T ELT) (((-349 (-857 |#1|)) (-857 |#1|) (-1004 (-857 |#1|))) 44 T ELT) (((-3 (-349 (-857 |#1|)) (-265 |#1|)) (-349 (-857 |#1|)) (-1089)) 33 T ELT) (((-349 (-857 |#1|)) (-857 |#1|) (-1089)) 36 T ELT))) +(((-1083 |#1|) (-10 -7 (-15 -3531 ((-349 (-857 |#1|)) (-857 |#1|) (-1089))) (-15 -3531 ((-3 (-349 (-857 |#1|)) (-265 |#1|)) (-349 (-857 |#1|)) (-1089))) (-15 -3531 ((-349 (-857 |#1|)) (-857 |#1|) (-1004 (-857 |#1|)))) (-15 -3531 ((-3 (-349 (-857 |#1|)) (-265 |#1|)) (-349 (-857 |#1|)) (-1004 (-349 (-857 |#1|)))))) (-13 (-495) (-950 (-484)))) (T -1083)) +((-3531 (*1 *2 *3 *4) (-12 (-5 *4 (-1004 (-349 (-857 *5)))) (-5 *3 (-349 (-857 *5))) (-4 *5 (-13 (-495) (-950 (-484)))) (-5 *2 (-3 *3 (-265 *5))) (-5 *1 (-1083 *5)))) (-3531 (*1 *2 *3 *4) (-12 (-5 *4 (-1004 (-857 *5))) (-5 *3 (-857 *5)) (-4 *5 (-13 (-495) (-950 (-484)))) (-5 *2 (-349 *3)) (-5 *1 (-1083 *5)))) (-3531 (*1 *2 *3 *4) (-12 (-5 *4 (-1089)) (-4 *5 (-13 (-495) (-950 (-484)))) (-5 *2 (-3 (-349 (-857 *5)) (-265 *5))) (-5 *1 (-1083 *5)) (-5 *3 (-349 (-857 *5))))) (-3531 (*1 *2 *3 *4) (-12 (-5 *4 (-1089)) (-4 *5 (-13 (-495) (-950 (-484)))) (-5 *2 (-349 (-857 *5))) (-5 *1 (-1083 *5)) (-5 *3 (-857 *5))))) +((-2568 (((-85) $ $) 172 T ELT)) (-3188 (((-85) $) 44 T ELT)) (-3766 (((-1178 |#1|) $ (-694)) NIL T ELT)) (-3081 (((-583 (-994)) $) NIL T ELT)) (-3764 (($ (-1084 |#1|)) NIL T ELT)) (-3083 (((-1084 $) $ (-994)) 83 T ELT) (((-1084 |#1|) $) 72 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2063 (($ $) 166 (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-2819 (((-694) $) NIL T ELT) (((-694) $ (-583 (-994))) NIL T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3754 (($ $ $) 160 (|has| |#1| (-495)) ELT)) (-2707 (((-347 (-1084 $)) (-1084 $)) 97 (|has| |#1| (-821)) ELT)) (-3774 (($ $) NIL (|has| |#1| (-391)) ELT)) (-3970 (((-347 $) $) NIL (|has| |#1| (-391)) ELT)) (-2704 (((-3 (-583 (-1084 $)) #1#) (-583 (-1084 $)) (-1084 $)) 117 (|has| |#1| (-821)) ELT)) (-1607 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3760 (($ $ (-694)) 62 T ELT)) (-3759 (($ $ (-694)) 64 T ELT)) (-3750 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-391)) ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-349 (-484)) #1#) $) NIL (|has| |#1| (-950 (-349 (-484)))) ELT) (((-3 (-484) #1#) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-3 (-994) #1#) $) NIL T ELT)) (-3156 ((|#1| $) NIL T ELT) (((-349 (-484)) $) NIL (|has| |#1| (-950 (-349 (-484)))) ELT) (((-484) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-994) $) NIL T ELT)) (-3755 (($ $ $ (-994)) NIL (|has| |#1| (-146)) ELT) ((|#1| $ $) 162 (|has| |#1| (-146)) ELT)) (-2564 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3958 (($ $) 81 T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1178 |#1|))) (-630 $) (-1178 $)) NIL T ELT) (((-630 |#1|) (-630 $)) NIL T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-2563 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3758 (($ $ $) 133 T ELT)) (-3752 (($ $ $) NIL (|has| |#1| (-495)) ELT)) (-3751 (((-2 (|:| -3953 |#1|) (|:| -1972 $) (|:| -2902 $)) $ $) NIL (|has| |#1| (-495)) ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) NIL (|has| |#1| (-312)) ELT)) (-3502 (($ $) 167 (|has| |#1| (-391)) ELT) (($ $ (-994)) NIL (|has| |#1| (-391)) ELT)) (-2818 (((-583 $) $) NIL T ELT)) (-3722 (((-85) $) NIL (|has| |#1| (-821)) ELT)) (-1623 (($ $ |#1| (-694) $) 70 T ELT)) (-2796 (((-798 (-329) $) $ (-800 (-329)) (-798 (-329) $)) NIL (-12 (|has| (-994) (-796 (-329))) (|has| |#1| (-796 (-329)))) ELT) (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) NIL (-12 (|has| (-994) (-796 (-484))) (|has| |#1| (-796 (-484)))) ELT)) (-3532 (((-772) $ (-772)) 150 T ELT)) (-3771 (((-694) $ $) NIL (|has| |#1| (-495)) ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) 49 T ELT)) (-2420 (((-694) $) NIL T ELT)) (-3444 (((-632 $) $) NIL (|has| |#1| (-1065)) ELT)) (-3084 (($ (-1084 |#1|) (-994)) 74 T ELT) (($ (-1084 $) (-994)) 91 T ELT)) (-3776 (($ $ (-694)) 52 T ELT)) (-1604 (((-3 (-583 $) #1#) (-583 $) $) NIL (|has| |#1| (-312)) ELT)) (-2821 (((-583 $) $) NIL T ELT)) (-3936 (((-85) $) NIL T ELT)) (-2893 (($ |#1| (-694)) 89 T ELT) (($ $ (-994) (-694)) NIL T ELT) (($ $ (-583 (-994)) (-583 (-694))) NIL T ELT)) (-3762 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $ (-994)) NIL T ELT) (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 155 T ELT)) (-2820 (((-694) $) NIL T ELT) (((-694) $ (-994)) NIL T ELT) (((-583 (-694)) $ (-583 (-994))) NIL T ELT)) (-1624 (($ (-1 (-694) (-694)) $) NIL T ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3765 (((-1084 |#1|) $) NIL T ELT)) (-3082 (((-3 (-994) #1#) $) NIL T ELT)) (-2280 (((-630 (-484)) (-1178 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1178 |#1|))) (-1178 $) $) NIL T ELT) (((-630 |#1|) (-1178 $)) NIL T ELT)) (-2894 (($ $) NIL T ELT)) (-3174 ((|#1| $) 77 T ELT)) (-1890 (($ (-583 $)) NIL (|has| |#1| (-391)) ELT) (($ $ $) NIL (|has| |#1| (-391)) ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3761 (((-2 (|:| -1972 $) (|:| -2902 $)) $ (-694)) 61 T ELT)) (-2823 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2822 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2824 (((-3 (-2 (|:| |var| (-994)) (|:| -2401 (-694))) #1#) $) NIL T ELT)) (-3811 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3445 (($) NIL (|has| |#1| (-1065)) CONST)) (-3243 (((-1033) $) NIL T ELT)) (-1796 (((-85) $) 51 T ELT)) (-1795 ((|#1| $) NIL T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) 105 (|has| |#1| (-391)) ELT)) (-3144 (($ (-583 $)) NIL (|has| |#1| (-391)) ELT) (($ $ $) 169 (|has| |#1| (-391)) ELT)) (-3737 (($ $ (-694) |#1| $) 125 T ELT)) (-2705 (((-347 (-1084 $)) (-1084 $)) 103 (|has| |#1| (-821)) ELT)) (-2706 (((-347 (-1084 $)) (-1084 $)) 102 (|has| |#1| (-821)) ELT)) (-3731 (((-347 $) $) 110 (|has| |#1| (-821)) ELT)) (-1605 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3465 (((-3 $ #1#) $ |#1|) 165 (|has| |#1| (-495)) ELT) (((-3 $ #1#) $ $) 126 (|has| |#1| (-495)) ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL (|has| |#1| (-312)) ELT)) (-3767 (($ $ (-583 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ (-994) |#1|) NIL T ELT) (($ $ (-583 (-994)) (-583 |#1|)) NIL T ELT) (($ $ (-994) $) NIL T ELT) (($ $ (-583 (-994)) (-583 $)) NIL T ELT)) (-1606 (((-694) $) NIL (|has| |#1| (-312)) ELT)) (-3799 ((|#1| $ |#1|) 152 T ELT) (($ $ $) 153 T ELT) (((-349 $) (-349 $) (-349 $)) NIL (|has| |#1| (-495)) ELT) ((|#1| (-349 $) |#1|) NIL (|has| |#1| (-312)) ELT) (((-349 $) $ (-349 $)) NIL (|has| |#1| (-495)) ELT)) (-3763 (((-3 $ #1#) $ (-694)) 55 T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 173 (|has| |#1| (-312)) ELT)) (-3756 (($ $ (-994)) NIL (|has| |#1| (-146)) ELT) ((|#1| $) 158 (|has| |#1| (-146)) ELT)) (-3757 (($ $ (-583 (-994)) (-583 (-694))) NIL T ELT) (($ $ (-994) (-694)) NIL T ELT) (($ $ (-583 (-994))) NIL T ELT) (($ $ (-994)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL T ELT) (($ $ (-1 |#1| |#1|) $) NIL T ELT) (($ $ (-1089)) NIL (|has| |#1| (-811 (-1089))) ELT) (($ $ (-583 (-1089))) NIL (|has| |#1| (-811 (-1089))) ELT) (($ $ (-1089) (-694)) NIL (|has| |#1| (-811 (-1089))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (|has| |#1| (-811 (-1089))) ELT)) (-3947 (((-694) $) 79 T ELT) (((-694) $ (-994)) NIL T ELT) (((-583 (-694)) $ (-583 (-994))) NIL T ELT)) (-3971 (((-800 (-329)) $) NIL (-12 (|has| (-994) (-553 (-800 (-329)))) (|has| |#1| (-553 (-800 (-329))))) ELT) (((-800 (-484)) $) NIL (-12 (|has| (-994) (-553 (-800 (-484)))) (|has| |#1| (-553 (-800 (-484))))) ELT) (((-473) $) NIL (-12 (|has| (-994) (-553 (-473))) (|has| |#1| (-553 (-473)))) ELT)) (-2817 ((|#1| $) 164 (|has| |#1| (-391)) ELT) (($ $ (-994)) NIL (|has| |#1| (-391)) ELT)) (-2703 (((-3 (-1178 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-821))) ELT)) (-3753 (((-3 $ #1#) $ $) NIL (|has| |#1| (-495)) ELT) (((-3 (-349 $) #1#) (-349 $) $) NIL (|has| |#1| (-495)) ELT)) (-3945 (((-772) $) 151 T ELT) (($ (-484)) NIL T ELT) (($ |#1|) 78 T ELT) (($ (-994)) NIL T ELT) (($ (-349 (-484))) NIL (OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-950 (-349 (-484))))) ELT) (($ $) NIL (|has| |#1| (-495)) ELT)) (-3816 (((-583 |#1|) $) NIL T ELT)) (-3676 ((|#1| $ (-694)) NIL T ELT) (($ $ (-994) (-694)) NIL T ELT) (($ $ (-583 (-994)) (-583 (-694))) NIL T ELT)) (-2702 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-821))) (|has| |#1| (-118))) ELT)) (-3126 (((-694)) NIL T CONST)) (-1622 (($ $ $ (-694)) 42 (|has| |#1| (-146)) ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) 18 T CONST)) (-2666 (($) 20 T CONST)) (-2669 (($ $ (-583 (-994)) (-583 (-694))) NIL T ELT) (($ $ (-994) (-694)) NIL T ELT) (($ $ (-583 (-994))) NIL T ELT) (($ $ (-994)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL T ELT) (($ $ (-1089)) NIL (|has| |#1| (-811 (-1089))) ELT) (($ $ (-583 (-1089))) NIL (|has| |#1| (-811 (-1089))) ELT) (($ $ (-1089) (-694)) NIL (|has| |#1| (-811 (-1089))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (|has| |#1| (-811 (-1089))) ELT)) (-3056 (((-85) $ $) 122 T ELT)) (-3948 (($ $ |#1|) 174 (|has| |#1| (-312)) ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) 92 T ELT)) (** (($ $ (-830)) 14 T ELT) (($ $ (-694)) 12 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 40 T ELT) (($ $ (-349 (-484))) NIL (|has| |#1| (-38 (-349 (-484)))) ELT) (($ (-349 (-484)) $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT) (($ |#1| $) 131 T ELT) (($ $ |#1|) NIL T ELT))) +(((-1084 |#1|) (-13 (-1154 |#1|) (-10 -8 (-15 -3532 ((-772) $ (-772))) (-15 -3737 ($ $ (-694) |#1| $)))) (-961)) (T -1084)) +((-3532 (*1 *2 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-1084 *3)) (-4 *3 (-961)))) (-3737 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-694)) (-5 *1 (-1084 *3)) (-4 *3 (-961))))) +((-3957 (((-1084 |#2|) (-1 |#2| |#1|) (-1084 |#1|)) 13 T ELT))) +(((-1085 |#1| |#2|) (-10 -7 (-15 -3957 ((-1084 |#2|) (-1 |#2| |#1|) (-1084 |#1|)))) (-961) (-961)) (T -1085)) +((-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1084 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-5 *2 (-1084 *6)) (-5 *1 (-1085 *5 *6))))) +((-3970 (((-347 (-1084 (-349 |#4|))) (-1084 (-349 |#4|))) 51 T ELT)) (-3731 (((-347 (-1084 (-349 |#4|))) (-1084 (-349 |#4|))) 52 T ELT))) +(((-1086 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3731 ((-347 (-1084 (-349 |#4|))) (-1084 (-349 |#4|)))) (-15 -3970 ((-347 (-1084 (-349 |#4|))) (-1084 (-349 |#4|))))) (-717) (-756) (-391) (-861 |#3| |#1| |#2|)) (T -1086)) +((-3970 (*1 *2 *3) (-12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-391)) (-4 *7 (-861 *6 *4 *5)) (-5 *2 (-347 (-1084 (-349 *7)))) (-5 *1 (-1086 *4 *5 *6 *7)) (-5 *3 (-1084 (-349 *7))))) (-3731 (*1 *2 *3) (-12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-391)) (-4 *7 (-861 *6 *4 *5)) (-5 *2 (-347 (-1084 (-349 *7)))) (-5 *1 (-1086 *4 *5 *6 *7)) (-5 *3 (-1084 (-349 *7)))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-3081 (((-583 (-994)) $) NIL T ELT)) (-3830 (((-1089) $) 11 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2063 (($ $) NIL (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-3770 (($ $ (-349 (-484))) NIL T ELT) (($ $ (-349 (-484)) (-349 (-484))) NIL T ELT)) (-3773 (((-1068 (-2 (|:| |k| (-349 (-484))) (|:| |c| |#1|))) $) NIL T ELT)) (-3491 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3638 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3774 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3970 (((-347 $) $) NIL (|has| |#1| (-312)) ELT)) (-3037 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-1607 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3489 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3637 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3817 (($ (-694) (-1068 (-2 (|:| |k| (-349 (-484))) (|:| |c| |#1|)))) NIL T ELT)) (-3493 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3636 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 (-1081 |#1| |#2| |#3|) #1#) $) 33 T ELT) (((-3 (-1088 |#1| |#2| |#3|) #1#) $) 36 T ELT)) (-3156 (((-1081 |#1| |#2| |#3|) $) NIL T ELT) (((-1088 |#1| |#2| |#3|) $) NIL T ELT)) (-2564 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3958 (($ $) NIL T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-3780 (((-349 (-484)) $) 59 T ELT)) (-2563 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3781 (($ (-349 (-484)) (-1081 |#1| |#2| |#3|)) NIL T ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) NIL (|has| |#1| (-312)) ELT)) (-3722 (((-85) $) NIL (|has| |#1| (-312)) ELT)) (-2892 (((-85) $) NIL T ELT)) (-3626 (($) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3771 (((-349 (-484)) $) NIL T ELT) (((-349 (-484)) $ (-349 (-484))) NIL T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-3011 (($ $ (-484)) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3776 (($ $ (-830)) NIL T ELT) (($ $ (-349 (-484))) NIL T ELT)) (-1604 (((-3 (-583 $) #1#) (-583 $) $) NIL (|has| |#1| (-312)) ELT)) (-3936 (((-85) $) NIL T ELT)) (-2893 (($ |#1| (-349 (-484))) 20 T ELT) (($ $ (-994) (-349 (-484))) NIL T ELT) (($ $ (-583 (-994)) (-583 (-349 (-484)))) NIL T ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3941 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2894 (($ $) NIL T ELT)) (-3174 ((|#1| $) NIL T ELT)) (-1890 (($ (-583 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3779 (((-1081 |#1| |#2| |#3|) $) 41 T ELT)) (-3777 (((-3 (-1081 |#1| |#2| |#3|) #1#) $) NIL T ELT)) (-3778 (((-1081 |#1| |#2| |#3|) $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2484 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3811 (($ $) 39 (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $ (-1089)) NIL (OR (-12 (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-29 (-484))) (|has| |#1| (-871)) (|has| |#1| (-1114))) (-12 (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-15 -3811 (|#1| |#1| (-1089)))) (|has| |#1| (-15 -3081 ((-583 (-1089)) |#1|))))) ELT) (($ $ (-1175 |#2|)) 40 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) NIL (|has| |#1| (-312)) ELT)) (-3144 (($ (-583 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3731 (((-347 $) $) NIL (|has| |#1| (-312)) ELT)) (-1605 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3768 (($ $ (-349 (-484))) NIL T ELT)) (-3465 (((-3 $ #1#) $ $) NIL (|has| |#1| (-495)) ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL (|has| |#1| (-312)) ELT)) (-3942 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3767 (((-1068 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-349 (-484))))) ELT)) (-1606 (((-694) $) NIL (|has| |#1| (-312)) ELT)) (-3799 ((|#1| $ (-349 (-484))) NIL T ELT) (($ $ $) NIL (|has| (-349 (-484)) (-1025)) ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3757 (($ $ (-1089)) NIL (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))) ELT) (($ $ (-583 (-1089))) NIL (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))) ELT) (($ $ (-1089) (-694)) NIL (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))) ELT) (($ $) 37 (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|))) ELT) (($ $ (-694)) NIL (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|))) ELT) (($ $ (-1175 |#2|)) 38 T ELT)) (-3947 (((-349 (-484)) $) NIL T ELT)) (-3494 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3635 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3492 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3634 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3490 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3633 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2891 (($ $) NIL T ELT)) (-3945 (((-772) $) 62 T ELT) (($ (-484)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT) (($ (-1081 |#1| |#2| |#3|)) 30 T ELT) (($ (-1088 |#1| |#2| |#3|)) 31 T ELT) (($ (-1175 |#2|)) 26 T ELT) (($ (-349 (-484))) NIL (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $) NIL (|has| |#1| (-495)) ELT)) (-3676 ((|#1| $ (-349 (-484))) NIL T ELT)) (-2702 (((-632 $) $) NIL (|has| |#1| (-118)) ELT)) (-3126 (((-694)) NIL T CONST)) (-3772 ((|#1| $) 12 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3497 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3485 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2062 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-3495 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3483 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3499 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3487 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3769 ((|#1| $ (-349 (-484))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-349 (-484))))) (|has| |#1| (-15 -3945 (|#1| (-1089))))) ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-3500 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3488 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3498 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3486 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3496 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3484 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2660 (($) 22 T CONST)) (-2666 (($) 16 T CONST)) (-2669 (($ $ (-1089)) NIL (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))) ELT) (($ $ (-583 (-1089))) NIL (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))) ELT) (($ $ (-1089) (-694)) NIL (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|))) ELT) (($ $ (-694)) NIL (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|))) ELT) (($ $ (-1175 |#2|)) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3948 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) 24 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $ (-349 (-484))) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-349 (-484)) $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $ (-349 (-484))) NIL (|has| |#1| (-38 (-349 (-484)))) ELT))) +(((-1087 |#1| |#2| |#3|) (-13 (-1163 |#1| (-1081 |#1| |#2| |#3|)) (-806 $ (-1175 |#2|)) (-950 (-1088 |#1| |#2| |#3|)) (-555 (-1175 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-349 (-484)))) (-15 -3811 ($ $ (-1175 |#2|))) |%noBranch|))) (-961) (-1089) |#1|) (T -1087)) +((-3811 (*1 *1 *1 *2) (-12 (-5 *2 (-1175 *4)) (-14 *4 (-1089)) (-5 *1 (-1087 *3 *4 *5)) (-4 *3 (-38 (-349 (-484)))) (-4 *3 (-961)) (-14 *5 *3)))) +((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) 129 T ELT)) (-3081 (((-583 (-994)) $) NIL T ELT)) (-3830 (((-1089) $) 119 T ELT)) (-3810 (((-1147 |#2| |#1|) $ (-694)) 69 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2063 (($ $) NIL (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-3770 (($ $ (-694)) 85 T ELT) (($ $ (-694) (-694)) 82 T ELT)) (-3773 (((-1068 (-2 (|:| |k| (-694)) (|:| |c| |#1|))) $) 105 T ELT)) (-3491 (($ $) 173 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3638 (($ $) 149 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3037 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3489 (($ $) 169 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3637 (($ $) 145 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3817 (($ (-1068 (-2 (|:| |k| (-694)) (|:| |c| |#1|)))) 118 T ELT) (($ (-1068 |#1|)) 113 T ELT)) (-3493 (($ $) 177 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3636 (($ $) 153 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3723 (($) NIL T CONST)) (-3958 (($ $) NIL T ELT)) (-3466 (((-3 $ #1#) $) 25 T ELT)) (-3815 (($ $) 28 T ELT)) (-3813 (((-857 |#1|) $ (-694)) 81 T ELT) (((-857 |#1|) $ (-694) (-694)) 83 T ELT)) (-2892 (((-85) $) 124 T ELT)) (-3626 (($) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3771 (((-694) $) 126 T ELT) (((-694) $ (-694)) 128 T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-3011 (($ $ (-484)) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3776 (($ $ (-830)) NIL T ELT)) (-3814 (($ (-1 |#1| (-484)) $) NIL T ELT)) (-3936 (((-85) $) NIL T ELT)) (-2893 (($ |#1| (-694)) 13 T ELT) (($ $ (-994) (-694)) NIL T ELT) (($ $ (-583 (-994)) (-583 (-694))) NIL T ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3941 (($ $) 135 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2894 (($ $) NIL T ELT)) (-3174 ((|#1| $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3811 (($ $) 133 (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $ (-1089)) NIL (OR (-12 (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-29 (-484))) (|has| |#1| (-871)) (|has| |#1| (-1114))) (-12 (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-15 -3811 (|#1| |#1| (-1089)))) (|has| |#1| (-15 -3081 ((-583 (-1089)) |#1|))))) ELT) (($ $ (-1175 |#2|)) 134 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3768 (($ $ (-694)) 15 T ELT)) (-3465 (((-3 $ #1#) $ $) 26 (|has| |#1| (-495)) ELT)) (-3942 (($ $) 137 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3767 (((-1068 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-694)))) ELT)) (-3799 ((|#1| $ (-694)) 122 T ELT) (($ $ $) 132 (|has| (-694) (-1025)) ELT)) (-3757 (($ $ (-1089)) NIL (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $ (-583 (-1089))) NIL (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $ (-1089) (-694)) NIL (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $) 29 (|has| |#1| (-15 * (|#1| (-694) |#1|))) ELT) (($ $ (-694)) NIL (|has| |#1| (-15 * (|#1| (-694) |#1|))) ELT) (($ $ (-1175 |#2|)) 31 T ELT)) (-3947 (((-694) $) NIL T ELT)) (-3494 (($ $) 179 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3635 (($ $) 155 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3492 (($ $) 175 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3634 (($ $) 151 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3490 (($ $) 171 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3633 (($ $) 147 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2891 (($ $) NIL T ELT)) (-3945 (((-772) $) 206 T ELT) (($ (-484)) NIL T ELT) (($ (-349 (-484))) NIL (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $) NIL (|has| |#1| (-495)) ELT) (($ |#1|) 130 (|has| |#1| (-146)) ELT) (($ (-1147 |#2| |#1|)) 55 T ELT) (($ (-1175 |#2|)) 36 T ELT)) (-3816 (((-1068 |#1|) $) 101 T ELT)) (-3676 ((|#1| $ (-694)) 121 T ELT)) (-2702 (((-632 $) $) NIL (|has| |#1| (-118)) ELT)) (-3126 (((-694)) NIL T CONST)) (-3772 ((|#1| $) 58 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3497 (($ $) 185 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3485 (($ $) 161 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2062 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-3495 (($ $) 181 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3483 (($ $) 157 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3499 (($ $) 189 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3487 (($ $) 165 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3769 ((|#1| $ (-694)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-694)))) (|has| |#1| (-15 -3945 (|#1| (-1089))))) ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-3500 (($ $) 191 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3488 (($ $) 167 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3498 (($ $) 187 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3486 (($ $) 163 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3496 (($ $) 183 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3484 (($ $) 159 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2660 (($) 17 T CONST)) (-2666 (($) 20 T CONST)) (-2669 (($ $ (-1089)) NIL (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $ (-583 (-1089))) NIL (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $ (-1089) (-694)) NIL (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-694) |#1|))) ELT) (($ $ (-694)) NIL (|has| |#1| (-15 * (|#1| (-694) |#1|))) ELT) (($ $ (-1175 |#2|)) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3948 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) 198 T ELT)) (-3838 (($ $ $) 35 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ |#1|) 203 (|has| |#1| (-312)) ELT) (($ $ $) 138 (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $ (-349 (-484))) 141 (|has| |#1| (-38 (-349 (-484)))) ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 136 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-349 (-484)) $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $ (-349 (-484))) NIL (|has| |#1| (-38 (-349 (-484)))) ELT))) +(((-1088 |#1| |#2| |#3|) (-13 (-1171 |#1|) (-806 $ (-1175 |#2|)) (-10 -8 (-15 -3945 ($ (-1147 |#2| |#1|))) (-15 -3810 ((-1147 |#2| |#1|) $ (-694))) (-15 -3945 ($ (-1175 |#2|))) (IF (|has| |#1| (-38 (-349 (-484)))) (-15 -3811 ($ $ (-1175 |#2|))) |%noBranch|))) (-961) (-1089) |#1|) (T -1088)) +((-3945 (*1 *1 *2) (-12 (-5 *2 (-1147 *4 *3)) (-4 *3 (-961)) (-14 *4 (-1089)) (-14 *5 *3) (-5 *1 (-1088 *3 *4 *5)))) (-3810 (*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1147 *5 *4)) (-5 *1 (-1088 *4 *5 *6)) (-4 *4 (-961)) (-14 *5 (-1089)) (-14 *6 *4))) (-3945 (*1 *1 *2) (-12 (-5 *2 (-1175 *4)) (-14 *4 (-1089)) (-5 *1 (-1088 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) (-3811 (*1 *1 *1 *2) (-12 (-5 *2 (-1175 *4)) (-14 *4 (-1089)) (-5 *1 (-1088 *3 *4 *5)) (-4 *3 (-38 (-349 (-484)))) (-4 *3 (-961)) (-14 *5 *3)))) +((-2568 (((-85) $ $) NIL T ELT)) (-3536 (($ $ (-583 (-772))) 48 T ELT)) (-3537 (($ $ (-583 (-772))) 46 T ELT)) (-3534 (((-1072) $) 88 T ELT)) (-3539 (((-2 (|:| -2584 (-583 (-772))) (|:| -2483 (-583 (-772))) (|:| |presup| (-583 (-772))) (|:| -2582 (-583 (-772))) (|:| |args| (-583 (-772)))) $) 95 T ELT)) (-3540 (((-85) $) 86 T ELT)) (-3538 (($ $ (-583 (-583 (-772)))) 45 T ELT) (($ $ (-2 (|:| -2584 (-583 (-772))) (|:| -2483 (-583 (-772))) (|:| |presup| (-583 (-772))) (|:| -2582 (-583 (-772))) (|:| |args| (-583 (-772))))) 85 T ELT)) (-3723 (($) 151 T CONST)) (-3157 (((-3 (-446) "failed") $) 155 T ELT)) (-3156 (((-446) $) NIL T ELT)) (-3542 (((-1184)) 123 T ELT)) (-2796 (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) 55 T ELT) (((-798 (-329) $) $ (-800 (-329)) (-798 (-329) $)) 62 T ELT)) (-3613 (($) 109 T ELT) (($ $) 118 T ELT)) (-3541 (($ $) 87 T ELT)) (-2531 (($ $ $) NIL T ELT)) (-2857 (($ $ $) NIL T ELT)) (-3533 (((-583 $) $) 124 T ELT)) (-3242 (((-1072) $) 101 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3799 (($ $ (-583 (-772))) 47 T ELT)) (-3971 (((-473) $) 33 T ELT) (((-1089) $) 34 T ELT) (((-800 (-484)) $) 66 T ELT) (((-800 (-329)) $) 64 T ELT)) (-3945 (((-772) $) 41 T ELT) (($ (-1072)) 35 T ELT) (($ (-446)) 153 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3535 (($ $ (-583 (-772))) 49 T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 37 T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) 38 T ELT))) +(((-1089) (-13 (-756) (-553 (-473)) (-553 (-1089)) (-555 (-1072)) (-950 (-446)) (-553 (-800 (-484))) (-553 (-800 (-329))) (-796 (-484)) (-796 (-329)) (-10 -8 (-15 -3613 ($)) (-15 -3613 ($ $)) (-15 -3542 ((-1184))) (-15 -3541 ($ $)) (-15 -3540 ((-85) $)) (-15 -3539 ((-2 (|:| -2584 (-583 (-772))) (|:| -2483 (-583 (-772))) (|:| |presup| (-583 (-772))) (|:| -2582 (-583 (-772))) (|:| |args| (-583 (-772)))) $)) (-15 -3538 ($ $ (-583 (-583 (-772))))) (-15 -3538 ($ $ (-2 (|:| -2584 (-583 (-772))) (|:| -2483 (-583 (-772))) (|:| |presup| (-583 (-772))) (|:| -2582 (-583 (-772))) (|:| |args| (-583 (-772)))))) (-15 -3537 ($ $ (-583 (-772)))) (-15 -3536 ($ $ (-583 (-772)))) (-15 -3535 ($ $ (-583 (-772)))) (-15 -3799 ($ $ (-583 (-772)))) (-15 -3534 ((-1072) $)) (-15 -3533 ((-583 $) $)) (-15 -3723 ($) -3951)))) (T -1089)) +((-3613 (*1 *1) (-5 *1 (-1089))) (-3613 (*1 *1 *1) (-5 *1 (-1089))) (-3542 (*1 *2) (-12 (-5 *2 (-1184)) (-5 *1 (-1089)))) (-3541 (*1 *1 *1) (-5 *1 (-1089))) (-3540 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1089)))) (-3539 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2584 (-583 (-772))) (|:| -2483 (-583 (-772))) (|:| |presup| (-583 (-772))) (|:| -2582 (-583 (-772))) (|:| |args| (-583 (-772))))) (-5 *1 (-1089)))) (-3538 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-583 (-772)))) (-5 *1 (-1089)))) (-3538 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -2584 (-583 (-772))) (|:| -2483 (-583 (-772))) (|:| |presup| (-583 (-772))) (|:| -2582 (-583 (-772))) (|:| |args| (-583 (-772))))) (-5 *1 (-1089)))) (-3537 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-1089)))) (-3536 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-1089)))) (-3535 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-1089)))) (-3799 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-1089)))) (-3534 (*1 *2 *1) (-12 (-5 *2 (-1072)) (-5 *1 (-1089)))) (-3533 (*1 *2 *1) (-12 (-5 *2 (-583 (-1089))) (-5 *1 (-1089)))) (-3723 (*1 *1) (-5 *1 (-1089)))) +((-3543 (((-1178 |#1|) |#1| (-830)) 18 T ELT) (((-1178 |#1|) (-583 |#1|)) 25 T ELT))) +(((-1090 |#1|) (-10 -7 (-15 -3543 ((-1178 |#1|) (-583 |#1|))) (-15 -3543 ((-1178 |#1|) |#1| (-830)))) (-961)) (T -1090)) +((-3543 (*1 *2 *3 *4) (-12 (-5 *4 (-830)) (-5 *2 (-1178 *3)) (-5 *1 (-1090 *3)) (-4 *3 (-961)))) (-3543 (*1 *2 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-961)) (-5 *2 (-1178 *4)) (-5 *1 (-1090 *4))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2063 (($ $) NIL (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 (-484) #1#) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-3 (-349 (-484)) #1#) $) NIL (|has| |#1| (-950 (-349 (-484)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3156 (((-484) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-349 (-484)) $) NIL (|has| |#1| (-950 (-349 (-484)))) ELT) ((|#1| $) NIL T ELT)) (-3958 (($ $) NIL T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-3502 (($ $) NIL (|has| |#1| (-391)) ELT)) (-1623 (($ $ |#1| (-884) $) NIL T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) 18 T ELT)) (-2420 (((-694) $) NIL T ELT)) (-3936 (((-85) $) NIL T ELT)) (-2893 (($ |#1| (-884)) NIL T ELT)) (-2820 (((-884) $) NIL T ELT)) (-1624 (($ (-1 (-884) (-884)) $) NIL T ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2894 (($ $) NIL T ELT)) (-3174 ((|#1| $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1796 (((-85) $) NIL T ELT)) (-1795 ((|#1| $) NIL T ELT)) (-3737 (($ $ (-884) |#1| $) NIL (-12 (|has| (-884) (-104)) (|has| |#1| (-495))) ELT)) (-3465 (((-3 $ #1#) $ $) NIL (|has| |#1| (-495)) ELT) (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-495)) ELT)) (-3947 (((-884) $) NIL T ELT)) (-2817 ((|#1| $) NIL (|has| |#1| (-391)) ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL (|has| |#1| (-495)) ELT) (($ |#1|) NIL T ELT) (($ (-349 (-484))) NIL (OR (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-950 (-349 (-484))))) ELT)) (-3816 (((-583 |#1|) $) NIL T ELT)) (-3676 ((|#1| $ (-884)) NIL T ELT)) (-2702 (((-632 $) $) NIL (|has| |#1| (-118)) ELT)) (-3126 (((-694)) NIL T CONST)) (-1622 (($ $ $ (-694)) NIL (|has| |#1| (-146)) ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) 13 T CONST)) (-2666 (($) NIL T CONST)) (-3056 (((-85) $ $) NIL T ELT)) (-3948 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) 22 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 23 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 17 T ELT) (($ (-349 (-484)) $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $ (-349 (-484))) NIL (|has| |#1| (-38 (-349 (-484)))) ELT))) +(((-1091 |#1|) (-13 (-277 |#1| (-884)) (-10 -8 (IF (|has| |#1| (-495)) (IF (|has| (-884) (-104)) (-15 -3737 ($ $ (-884) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -3992)) (-6 -3992) |%noBranch|))) (-961)) (T -1091)) +((-3737 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-884)) (-4 *2 (-104)) (-5 *1 (-1091 *3)) (-4 *3 (-495)) (-4 *3 (-961))))) +((-3544 (((-1093) (-1089) $) 26 T ELT)) (-3554 (($) 30 T ELT)) (-3546 (((-3 (|:| |fst| (-376)) (|:| -3909 #1="void")) (-1089) $) 23 T ELT)) (-3548 (((-1184) (-1089) (-3 (|:| |fst| (-376)) (|:| -3909 #1#)) $) 42 T ELT) (((-1184) (-1089) (-3 (|:| |fst| (-376)) (|:| -3909 #1#))) 43 T ELT) (((-1184) (-3 (|:| |fst| (-376)) (|:| -3909 #1#))) 44 T ELT)) (-3556 (((-1184) (-1089)) 59 T ELT)) (-3547 (((-1184) (-1089) $) 56 T ELT) (((-1184) (-1089)) 57 T ELT) (((-1184)) 58 T ELT)) (-3552 (((-1184) (-1089)) 38 T ELT)) (-3550 (((-1089)) 37 T ELT)) (-3564 (($) 35 T ELT)) (-3563 (((-378) (-1089) (-378) (-1089) $) 46 T ELT) (((-378) (-583 (-1089)) (-378) (-1089) $) 50 T ELT) (((-378) (-1089) (-378)) 47 T ELT) (((-378) (-1089) (-378) (-1089)) 51 T ELT)) (-3551 (((-1089)) 36 T ELT)) (-3945 (((-772) $) 29 T ELT)) (-3553 (((-1184)) 31 T ELT) (((-1184) (-1089)) 34 T ELT)) (-3545 (((-583 (-1089)) (-1089) $) 25 T ELT)) (-3549 (((-1184) (-1089) (-583 (-1089)) $) 39 T ELT) (((-1184) (-1089) (-583 (-1089))) 40 T ELT) (((-1184) (-583 (-1089))) 41 T ELT))) +(((-1092) (-13 (-552 (-772)) (-10 -8 (-15 -3554 ($)) (-15 -3553 ((-1184))) (-15 -3553 ((-1184) (-1089))) (-15 -3563 ((-378) (-1089) (-378) (-1089) $)) (-15 -3563 ((-378) (-583 (-1089)) (-378) (-1089) $)) (-15 -3563 ((-378) (-1089) (-378))) (-15 -3563 ((-378) (-1089) (-378) (-1089))) (-15 -3552 ((-1184) (-1089))) (-15 -3551 ((-1089))) (-15 -3550 ((-1089))) (-15 -3549 ((-1184) (-1089) (-583 (-1089)) $)) (-15 -3549 ((-1184) (-1089) (-583 (-1089)))) (-15 -3549 ((-1184) (-583 (-1089)))) (-15 -3548 ((-1184) (-1089) (-3 (|:| |fst| (-376)) (|:| -3909 #1="void")) $)) (-15 -3548 ((-1184) (-1089) (-3 (|:| |fst| (-376)) (|:| -3909 #1#)))) (-15 -3548 ((-1184) (-3 (|:| |fst| (-376)) (|:| -3909 #1#)))) (-15 -3547 ((-1184) (-1089) $)) (-15 -3547 ((-1184) (-1089))) (-15 -3547 ((-1184))) (-15 -3556 ((-1184) (-1089))) (-15 -3564 ($)) (-15 -3546 ((-3 (|:| |fst| (-376)) (|:| -3909 #1#)) (-1089) $)) (-15 -3545 ((-583 (-1089)) (-1089) $)) (-15 -3544 ((-1093) (-1089) $))))) (T -1092)) +((-3554 (*1 *1) (-5 *1 (-1092))) (-3553 (*1 *2) (-12 (-5 *2 (-1184)) (-5 *1 (-1092)))) (-3553 (*1 *2 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-1184)) (-5 *1 (-1092)))) (-3563 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-378)) (-5 *3 (-1089)) (-5 *1 (-1092)))) (-3563 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-378)) (-5 *3 (-583 (-1089))) (-5 *4 (-1089)) (-5 *1 (-1092)))) (-3563 (*1 *2 *3 *2) (-12 (-5 *2 (-378)) (-5 *3 (-1089)) (-5 *1 (-1092)))) (-3563 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-378)) (-5 *3 (-1089)) (-5 *1 (-1092)))) (-3552 (*1 *2 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-1184)) (-5 *1 (-1092)))) (-3551 (*1 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-1092)))) (-3550 (*1 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-1092)))) (-3549 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-583 (-1089))) (-5 *3 (-1089)) (-5 *2 (-1184)) (-5 *1 (-1092)))) (-3549 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-1089))) (-5 *3 (-1089)) (-5 *2 (-1184)) (-5 *1 (-1092)))) (-3549 (*1 *2 *3) (-12 (-5 *3 (-583 (-1089))) (-5 *2 (-1184)) (-5 *1 (-1092)))) (-3548 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1089)) (-5 *4 (-3 (|:| |fst| (-376)) (|:| -3909 #1="void"))) (-5 *2 (-1184)) (-5 *1 (-1092)))) (-3548 (*1 *2 *3 *4) (-12 (-5 *3 (-1089)) (-5 *4 (-3 (|:| |fst| (-376)) (|:| -3909 #1#))) (-5 *2 (-1184)) (-5 *1 (-1092)))) (-3548 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-376)) (|:| -3909 #1#))) (-5 *2 (-1184)) (-5 *1 (-1092)))) (-3547 (*1 *2 *3 *1) (-12 (-5 *3 (-1089)) (-5 *2 (-1184)) (-5 *1 (-1092)))) (-3547 (*1 *2 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-1184)) (-5 *1 (-1092)))) (-3547 (*1 *2) (-12 (-5 *2 (-1184)) (-5 *1 (-1092)))) (-3556 (*1 *2 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-1184)) (-5 *1 (-1092)))) (-3564 (*1 *1) (-5 *1 (-1092))) (-3546 (*1 *2 *3 *1) (-12 (-5 *3 (-1089)) (-5 *2 (-3 (|:| |fst| (-376)) (|:| -3909 #1#))) (-5 *1 (-1092)))) (-3545 (*1 *2 *3 *1) (-12 (-5 *2 (-583 (-1089))) (-5 *1 (-1092)) (-5 *3 (-1089)))) (-3544 (*1 *2 *3 *1) (-12 (-5 *3 (-1089)) (-5 *2 (-1093)) (-5 *1 (-1092))))) +((-3558 (((-583 (-583 (-3 (|:| -3541 (-1089)) (|:| -3225 (-583 (-3 (|:| S (-1089)) (|:| P (-857 (-484))))))))) $) 66 T ELT)) (-3560 (((-583 (-3 (|:| -3541 (-1089)) (|:| -3225 (-583 (-3 (|:| S (-1089)) (|:| P (-857 (-484)))))))) (-376) $) 47 T ELT)) (-3555 (($ (-583 (-2 (|:| -3859 (-1089)) (|:| |entry| (-378))))) 17 T ELT)) (-3556 (((-1184) $) 73 T ELT)) (-3561 (((-583 (-1089)) $) 22 T ELT)) (-3557 (((-1015) $) 60 T ELT)) (-3562 (((-378) (-1089) $) 27 T ELT)) (-3559 (((-583 (-1089)) $) 30 T ELT)) (-3564 (($) 19 T ELT)) (-3563 (((-378) (-583 (-1089)) (-378) $) 25 T ELT) (((-378) (-1089) (-378) $) 24 T ELT)) (-3945 (((-772) $) 12 T ELT) (((-1101 (-1089) (-378)) $) 13 T ELT))) +(((-1093) (-13 (-552 (-772)) (-10 -8 (-15 -3945 ((-1101 (-1089) (-378)) $)) (-15 -3564 ($)) (-15 -3563 ((-378) (-583 (-1089)) (-378) $)) (-15 -3563 ((-378) (-1089) (-378) $)) (-15 -3562 ((-378) (-1089) $)) (-15 -3561 ((-583 (-1089)) $)) (-15 -3560 ((-583 (-3 (|:| -3541 (-1089)) (|:| -3225 (-583 (-3 (|:| S (-1089)) (|:| P (-857 (-484)))))))) (-376) $)) (-15 -3559 ((-583 (-1089)) $)) (-15 -3558 ((-583 (-583 (-3 (|:| -3541 (-1089)) (|:| -3225 (-583 (-3 (|:| S (-1089)) (|:| P (-857 (-484))))))))) $)) (-15 -3557 ((-1015) $)) (-15 -3556 ((-1184) $)) (-15 -3555 ($ (-583 (-2 (|:| -3859 (-1089)) (|:| |entry| (-378))))))))) (T -1093)) +((-3945 (*1 *2 *1) (-12 (-5 *2 (-1101 (-1089) (-378))) (-5 *1 (-1093)))) (-3564 (*1 *1) (-5 *1 (-1093))) (-3563 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-378)) (-5 *3 (-583 (-1089))) (-5 *1 (-1093)))) (-3563 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-378)) (-5 *3 (-1089)) (-5 *1 (-1093)))) (-3562 (*1 *2 *3 *1) (-12 (-5 *3 (-1089)) (-5 *2 (-378)) (-5 *1 (-1093)))) (-3561 (*1 *2 *1) (-12 (-5 *2 (-583 (-1089))) (-5 *1 (-1093)))) (-3560 (*1 *2 *3 *1) (-12 (-5 *3 (-376)) (-5 *2 (-583 (-3 (|:| -3541 (-1089)) (|:| -3225 (-583 (-3 (|:| S (-1089)) (|:| P (-857 (-484))))))))) (-5 *1 (-1093)))) (-3559 (*1 *2 *1) (-12 (-5 *2 (-583 (-1089))) (-5 *1 (-1093)))) (-3558 (*1 *2 *1) (-12 (-5 *2 (-583 (-583 (-3 (|:| -3541 (-1089)) (|:| -3225 (-583 (-3 (|:| S (-1089)) (|:| P (-857 (-484)))))))))) (-5 *1 (-1093)))) (-3557 (*1 *2 *1) (-12 (-5 *2 (-1015)) (-5 *1 (-1093)))) (-3556 (*1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-1093)))) (-3555 (*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| -3859 (-1089)) (|:| |entry| (-378))))) (-5 *1 (-1093))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3157 (((-3 (-484) #1="failed") $) 29 T ELT) (((-3 (-179) #1#) $) 35 T ELT) (((-3 (-446) #1#) $) 43 T ELT) (((-3 (-1072) #1#) $) 47 T ELT)) (-3156 (((-484) $) 30 T ELT) (((-179) $) 36 T ELT) (((-446) $) 40 T ELT) (((-1072) $) 48 T ELT)) (-3569 (((-85) $) 53 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3568 (((-3 (-484) (-179) (-446) (-1072) $) $) 56 T ELT)) (-3567 (((-583 $) $) 58 T ELT)) (-3971 (((-1015) $) 24 T ELT) (($ (-1015)) 25 T ELT)) (-3566 (((-85) $) 57 T ELT)) (-3945 (((-772) $) 23 T ELT) (($ (-484)) 26 T ELT) (($ (-179)) 32 T ELT) (($ (-446)) 38 T ELT) (($ (-1072)) 44 T ELT) (((-473) $) 60 T ELT) (((-484) $) 31 T ELT) (((-179) $) 37 T ELT) (((-446) $) 41 T ELT) (((-1072) $) 49 T ELT)) (-3565 (((-85) $ (|[\|\|]| (-484))) 10 T ELT) (((-85) $ (|[\|\|]| (-179))) 13 T ELT) (((-85) $ (|[\|\|]| (-446))) 19 T ELT) (((-85) $ (|[\|\|]| (-1072))) 16 T ELT)) (-3570 (($ (-446) (-583 $)) 51 T ELT) (($ $ (-583 $)) 52 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3571 (((-484) $) 27 T ELT) (((-179) $) 33 T ELT) (((-446) $) 39 T ELT) (((-1072) $) 45 T ELT)) (-3056 (((-85) $ $) 7 T ELT))) +(((-1094) (-13 (-1174) (-1013) (-950 (-484)) (-950 (-179)) (-950 (-446)) (-950 (-1072)) (-552 (-473)) (-10 -8 (-15 -3971 ((-1015) $)) (-15 -3971 ($ (-1015))) (-15 -3945 ((-484) $)) (-15 -3571 ((-484) $)) (-15 -3945 ((-179) $)) (-15 -3571 ((-179) $)) (-15 -3945 ((-446) $)) (-15 -3571 ((-446) $)) (-15 -3945 ((-1072) $)) (-15 -3571 ((-1072) $)) (-15 -3570 ($ (-446) (-583 $))) (-15 -3570 ($ $ (-583 $))) (-15 -3569 ((-85) $)) (-15 -3568 ((-3 (-484) (-179) (-446) (-1072) $) $)) (-15 -3567 ((-583 $) $)) (-15 -3566 ((-85) $)) (-15 -3565 ((-85) $ (|[\|\|]| (-484)))) (-15 -3565 ((-85) $ (|[\|\|]| (-179)))) (-15 -3565 ((-85) $ (|[\|\|]| (-446)))) (-15 -3565 ((-85) $ (|[\|\|]| (-1072))))))) (T -1094)) +((-3971 (*1 *2 *1) (-12 (-5 *2 (-1015)) (-5 *1 (-1094)))) (-3971 (*1 *1 *2) (-12 (-5 *2 (-1015)) (-5 *1 (-1094)))) (-3945 (*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-1094)))) (-3571 (*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-1094)))) (-3945 (*1 *2 *1) (-12 (-5 *2 (-179)) (-5 *1 (-1094)))) (-3571 (*1 *2 *1) (-12 (-5 *2 (-179)) (-5 *1 (-1094)))) (-3945 (*1 *2 *1) (-12 (-5 *2 (-446)) (-5 *1 (-1094)))) (-3571 (*1 *2 *1) (-12 (-5 *2 (-446)) (-5 *1 (-1094)))) (-3945 (*1 *2 *1) (-12 (-5 *2 (-1072)) (-5 *1 (-1094)))) (-3571 (*1 *2 *1) (-12 (-5 *2 (-1072)) (-5 *1 (-1094)))) (-3570 (*1 *1 *2 *3) (-12 (-5 *2 (-446)) (-5 *3 (-583 (-1094))) (-5 *1 (-1094)))) (-3570 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-1094))) (-5 *1 (-1094)))) (-3569 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1094)))) (-3568 (*1 *2 *1) (-12 (-5 *2 (-3 (-484) (-179) (-446) (-1072) (-1094))) (-5 *1 (-1094)))) (-3567 (*1 *2 *1) (-12 (-5 *2 (-583 (-1094))) (-5 *1 (-1094)))) (-3566 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1094)))) (-3565 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-484))) (-5 *2 (-85)) (-5 *1 (-1094)))) (-3565 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-179))) (-5 *2 (-85)) (-5 *1 (-1094)))) (-3565 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-446))) (-5 *2 (-85)) (-5 *1 (-1094)))) (-3565 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1072))) (-5 *2 (-85)) (-5 *1 (-1094))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3136 (((-694)) 21 T ELT)) (-3723 (($) 10 T CONST)) (-2994 (($) 25 T ELT)) (-2531 (($ $ $) NIL T ELT) (($) 18 T CONST)) (-2857 (($ $ $) NIL T ELT) (($) 19 T CONST)) (-2010 (((-830) $) 23 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2400 (($ (-830)) 22 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) NIL T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT))) +(((-1095 |#1|) (-13 (-752) (-10 -8 (-15 -3723 ($) -3951))) (-830)) (T -1095)) +((-3723 (*1 *1) (-12 (-5 *1 (-1095 *2)) (-14 *2 (-830))))) +((-484) (|%not| (|%ilt| @1 (|%ilength| |#1|)))) +((-2568 (((-85) $ $) NIL T ELT)) (-2313 (($ $) 24 T ELT)) (-3136 (((-694)) NIL T ELT)) (-3723 (($) 18 T CONST)) (-2994 (($) NIL T ELT)) (-2531 (($ $ $) NIL T ELT) (($) 11 T CONST)) (-2857 (($ $ $) NIL T ELT) (($) 17 T CONST)) (-2010 (((-830) $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2400 (($ (-830)) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) NIL T ELT)) (-3724 (($ $ $) 20 T ELT)) (-3725 (($ $ $) 19 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2311 (($ $ $) 22 T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2312 (($ $ $) 21 T ELT))) +(((-1096 |#1|) (-13 (-752) (-604) (-10 -8 (-15 -3725 ($ $ $)) (-15 -3724 ($ $ $)) (-15 -3723 ($) -3951))) (-830)) (T -1096)) +((-3725 (*1 *1 *1 *1) (-12 (-5 *1 (-1096 *2)) (-14 *2 (-830)))) (-3724 (*1 *1 *1 *1) (-12 (-5 *1 (-1096 *2)) (-14 *2 (-830)))) (-3723 (*1 *1) (-12 (-5 *1 (-1096 *2)) (-14 *2 (-830))))) +((-694) (|%not| (|%ilt| @1 (|%ilength| |#1|)))) +((-2568 (((-85) $ $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) 9 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 7 T ELT))) +(((-1097) (-1013)) (T -1097)) +NIL +((-3573 (((-583 (-583 (-857 |#1|))) (-583 (-349 (-857 |#1|))) (-583 (-1089))) 69 T ELT)) (-3572 (((-583 (-249 (-349 (-857 |#1|)))) (-249 (-349 (-857 |#1|)))) 81 T ELT) (((-583 (-249 (-349 (-857 |#1|)))) (-349 (-857 |#1|))) 77 T ELT) (((-583 (-249 (-349 (-857 |#1|)))) (-249 (-349 (-857 |#1|))) (-1089)) 82 T ELT) (((-583 (-249 (-349 (-857 |#1|)))) (-349 (-857 |#1|)) (-1089)) 76 T ELT) (((-583 (-583 (-249 (-349 (-857 |#1|))))) (-583 (-249 (-349 (-857 |#1|))))) 108 T ELT) (((-583 (-583 (-249 (-349 (-857 |#1|))))) (-583 (-349 (-857 |#1|)))) 107 T ELT) (((-583 (-583 (-249 (-349 (-857 |#1|))))) (-583 (-249 (-349 (-857 |#1|)))) (-583 (-1089))) 109 T ELT) (((-583 (-583 (-249 (-349 (-857 |#1|))))) (-583 (-349 (-857 |#1|))) (-583 (-1089))) 106 T ELT))) +(((-1098 |#1|) (-10 -7 (-15 -3572 ((-583 (-583 (-249 (-349 (-857 |#1|))))) (-583 (-349 (-857 |#1|))) (-583 (-1089)))) (-15 -3572 ((-583 (-583 (-249 (-349 (-857 |#1|))))) (-583 (-249 (-349 (-857 |#1|)))) (-583 (-1089)))) (-15 -3572 ((-583 (-583 (-249 (-349 (-857 |#1|))))) (-583 (-349 (-857 |#1|))))) (-15 -3572 ((-583 (-583 (-249 (-349 (-857 |#1|))))) (-583 (-249 (-349 (-857 |#1|)))))) (-15 -3572 ((-583 (-249 (-349 (-857 |#1|)))) (-349 (-857 |#1|)) (-1089))) (-15 -3572 ((-583 (-249 (-349 (-857 |#1|)))) (-249 (-349 (-857 |#1|))) (-1089))) (-15 -3572 ((-583 (-249 (-349 (-857 |#1|)))) (-349 (-857 |#1|)))) (-15 -3572 ((-583 (-249 (-349 (-857 |#1|)))) (-249 (-349 (-857 |#1|))))) (-15 -3573 ((-583 (-583 (-857 |#1|))) (-583 (-349 (-857 |#1|))) (-583 (-1089))))) (-495)) (T -1098)) +((-3573 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-349 (-857 *5)))) (-5 *4 (-583 (-1089))) (-4 *5 (-495)) (-5 *2 (-583 (-583 (-857 *5)))) (-5 *1 (-1098 *5)))) (-3572 (*1 *2 *3) (-12 (-4 *4 (-495)) (-5 *2 (-583 (-249 (-349 (-857 *4))))) (-5 *1 (-1098 *4)) (-5 *3 (-249 (-349 (-857 *4)))))) (-3572 (*1 *2 *3) (-12 (-4 *4 (-495)) (-5 *2 (-583 (-249 (-349 (-857 *4))))) (-5 *1 (-1098 *4)) (-5 *3 (-349 (-857 *4))))) (-3572 (*1 *2 *3 *4) (-12 (-5 *4 (-1089)) (-4 *5 (-495)) (-5 *2 (-583 (-249 (-349 (-857 *5))))) (-5 *1 (-1098 *5)) (-5 *3 (-249 (-349 (-857 *5)))))) (-3572 (*1 *2 *3 *4) (-12 (-5 *4 (-1089)) (-4 *5 (-495)) (-5 *2 (-583 (-249 (-349 (-857 *5))))) (-5 *1 (-1098 *5)) (-5 *3 (-349 (-857 *5))))) (-3572 (*1 *2 *3) (-12 (-4 *4 (-495)) (-5 *2 (-583 (-583 (-249 (-349 (-857 *4)))))) (-5 *1 (-1098 *4)) (-5 *3 (-583 (-249 (-349 (-857 *4))))))) (-3572 (*1 *2 *3) (-12 (-5 *3 (-583 (-349 (-857 *4)))) (-4 *4 (-495)) (-5 *2 (-583 (-583 (-249 (-349 (-857 *4)))))) (-5 *1 (-1098 *4)))) (-3572 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-1089))) (-4 *5 (-495)) (-5 *2 (-583 (-583 (-249 (-349 (-857 *5)))))) (-5 *1 (-1098 *5)) (-5 *3 (-583 (-249 (-349 (-857 *5))))))) (-3572 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-349 (-857 *5)))) (-5 *4 (-583 (-1089))) (-4 *5 (-495)) (-5 *2 (-583 (-583 (-249 (-349 (-857 *5)))))) (-5 *1 (-1098 *5))))) +((-3578 (((-1072)) 7 T ELT)) (-3575 (((-1072)) 11 T CONST)) (-3574 (((-1184) (-1072)) 13 T ELT)) (-3577 (((-1072)) 8 T CONST)) (-3576 (((-103)) 10 T CONST))) +(((-1099) (-13 (-1128) (-10 -7 (-15 -3578 ((-1072))) (-15 -3577 ((-1072)) -3951) (-15 -3576 ((-103)) -3951) (-15 -3575 ((-1072)) -3951) (-15 -3574 ((-1184) (-1072)))))) (T -1099)) +((-3578 (*1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-1099)))) (-3577 (*1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-1099)))) (-3576 (*1 *2) (-12 (-5 *2 (-103)) (-5 *1 (-1099)))) (-3575 (*1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-1099)))) (-3574 (*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1099))))) +((-3582 (((-583 (-583 |#1|)) (-583 (-583 |#1|)) (-583 (-583 (-583 |#1|)))) 56 T ELT)) (-3585 (((-583 (-583 (-583 |#1|))) (-583 (-583 |#1|))) 38 T ELT)) (-3586 (((-1102 (-583 |#1|)) (-583 |#1|)) 49 T ELT)) (-3588 (((-583 (-583 |#1|)) (-583 |#1|)) 45 T ELT)) (-3591 (((-2 (|:| |f1| (-583 |#1|)) (|:| |f2| (-583 (-583 (-583 |#1|)))) (|:| |f3| (-583 (-583 |#1|))) (|:| |f4| (-583 (-583 (-583 |#1|))))) (-583 (-583 (-583 |#1|)))) 53 T ELT)) (-3590 (((-2 (|:| |f1| (-583 |#1|)) (|:| |f2| (-583 (-583 (-583 |#1|)))) (|:| |f3| (-583 (-583 |#1|))) (|:| |f4| (-583 (-583 (-583 |#1|))))) (-583 |#1|) (-583 (-583 (-583 |#1|))) (-583 (-583 |#1|)) (-583 (-583 (-583 |#1|))) (-583 (-583 (-583 |#1|))) (-583 (-583 (-583 |#1|)))) 52 T ELT)) (-3587 (((-583 (-583 |#1|)) (-583 (-583 |#1|))) 43 T ELT)) (-3589 (((-583 |#1|) (-583 |#1|)) 46 T ELT)) (-3581 (((-583 (-583 (-583 |#1|))) (-583 |#1|) (-583 (-583 (-583 |#1|)))) 32 T ELT)) (-3580 (((-583 (-583 (-583 |#1|))) (-1 (-85) |#1| |#1|) (-583 |#1|) (-583 (-583 (-583 |#1|)))) 29 T ELT)) (-3579 (((-2 (|:| |fs| (-85)) (|:| |sd| (-583 |#1|)) (|:| |td| (-583 (-583 |#1|)))) (-1 (-85) |#1| |#1|) (-583 |#1|) (-583 (-583 |#1|))) 24 T ELT)) (-3583 (((-583 (-583 |#1|)) (-583 (-583 (-583 |#1|)))) 58 T ELT)) (-3584 (((-583 (-583 |#1|)) (-1102 (-583 |#1|))) 60 T ELT))) +(((-1100 |#1|) (-10 -7 (-15 -3579 ((-2 (|:| |fs| (-85)) (|:| |sd| (-583 |#1|)) (|:| |td| (-583 (-583 |#1|)))) (-1 (-85) |#1| |#1|) (-583 |#1|) (-583 (-583 |#1|)))) (-15 -3580 ((-583 (-583 (-583 |#1|))) (-1 (-85) |#1| |#1|) (-583 |#1|) (-583 (-583 (-583 |#1|))))) (-15 -3581 ((-583 (-583 (-583 |#1|))) (-583 |#1|) (-583 (-583 (-583 |#1|))))) (-15 -3582 ((-583 (-583 |#1|)) (-583 (-583 |#1|)) (-583 (-583 (-583 |#1|))))) (-15 -3583 ((-583 (-583 |#1|)) (-583 (-583 (-583 |#1|))))) (-15 -3584 ((-583 (-583 |#1|)) (-1102 (-583 |#1|)))) (-15 -3585 ((-583 (-583 (-583 |#1|))) (-583 (-583 |#1|)))) (-15 -3586 ((-1102 (-583 |#1|)) (-583 |#1|))) (-15 -3587 ((-583 (-583 |#1|)) (-583 (-583 |#1|)))) (-15 -3588 ((-583 (-583 |#1|)) (-583 |#1|))) (-15 -3589 ((-583 |#1|) (-583 |#1|))) (-15 -3590 ((-2 (|:| |f1| (-583 |#1|)) (|:| |f2| (-583 (-583 (-583 |#1|)))) (|:| |f3| (-583 (-583 |#1|))) (|:| |f4| (-583 (-583 (-583 |#1|))))) (-583 |#1|) (-583 (-583 (-583 |#1|))) (-583 (-583 |#1|)) (-583 (-583 (-583 |#1|))) (-583 (-583 (-583 |#1|))) (-583 (-583 (-583 |#1|))))) (-15 -3591 ((-2 (|:| |f1| (-583 |#1|)) (|:| |f2| (-583 (-583 (-583 |#1|)))) (|:| |f3| (-583 (-583 |#1|))) (|:| |f4| (-583 (-583 (-583 |#1|))))) (-583 (-583 (-583 |#1|)))))) (-756)) (T -1100)) +((-3591 (*1 *2 *3) (-12 (-4 *4 (-756)) (-5 *2 (-2 (|:| |f1| (-583 *4)) (|:| |f2| (-583 (-583 (-583 *4)))) (|:| |f3| (-583 (-583 *4))) (|:| |f4| (-583 (-583 (-583 *4)))))) (-5 *1 (-1100 *4)) (-5 *3 (-583 (-583 (-583 *4)))))) (-3590 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-756)) (-5 *3 (-583 *6)) (-5 *5 (-583 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-583 *5)) (|:| |f3| *5) (|:| |f4| (-583 *5)))) (-5 *1 (-1100 *6)) (-5 *4 (-583 *5)))) (-3589 (*1 *2 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-756)) (-5 *1 (-1100 *3)))) (-3588 (*1 *2 *3) (-12 (-4 *4 (-756)) (-5 *2 (-583 (-583 *4))) (-5 *1 (-1100 *4)) (-5 *3 (-583 *4)))) (-3587 (*1 *2 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-756)) (-5 *1 (-1100 *3)))) (-3586 (*1 *2 *3) (-12 (-4 *4 (-756)) (-5 *2 (-1102 (-583 *4))) (-5 *1 (-1100 *4)) (-5 *3 (-583 *4)))) (-3585 (*1 *2 *3) (-12 (-4 *4 (-756)) (-5 *2 (-583 (-583 (-583 *4)))) (-5 *1 (-1100 *4)) (-5 *3 (-583 (-583 *4))))) (-3584 (*1 *2 *3) (-12 (-5 *3 (-1102 (-583 *4))) (-4 *4 (-756)) (-5 *2 (-583 (-583 *4))) (-5 *1 (-1100 *4)))) (-3583 (*1 *2 *3) (-12 (-5 *3 (-583 (-583 (-583 *4)))) (-5 *2 (-583 (-583 *4))) (-5 *1 (-1100 *4)) (-4 *4 (-756)))) (-3582 (*1 *2 *2 *3) (-12 (-5 *3 (-583 (-583 (-583 *4)))) (-5 *2 (-583 (-583 *4))) (-4 *4 (-756)) (-5 *1 (-1100 *4)))) (-3581 (*1 *2 *3 *2) (-12 (-5 *2 (-583 (-583 (-583 *4)))) (-5 *3 (-583 *4)) (-4 *4 (-756)) (-5 *1 (-1100 *4)))) (-3580 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-583 (-583 (-583 *5)))) (-5 *3 (-1 (-85) *5 *5)) (-5 *4 (-583 *5)) (-4 *5 (-756)) (-5 *1 (-1100 *5)))) (-3579 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-85) *6 *6)) (-4 *6 (-756)) (-5 *4 (-583 *6)) (-5 *2 (-2 (|:| |fs| (-85)) (|:| |sd| *4) (|:| |td| (-583 *4)))) (-5 *1 (-1100 *6)) (-5 *5 (-583 *4))))) +((-2568 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3598 (($) NIL T ELT) (($ (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2198 (((-1184) $ |#1| |#1|) NIL (|has| $ (-6 -3995)) ELT)) (-3787 ((|#2| $ |#1| |#2|) NIL T ELT)) (-1569 (($ (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT)) (-3709 (($ (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT)) (-2231 (((-3 |#2| #1="failed") |#1| $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-1352 (($ $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT)) (-3404 (($ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-6 -3994)) ELT) (($ (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT) (((-3 |#2| #1#) |#1| $) NIL T ELT)) (-3405 (($ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT)) (-3841 (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -3994)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3994)) ELT) (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT)) (-1575 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3995)) ELT)) (-3112 ((|#2| $ |#1|) NIL T ELT)) (-2889 (((-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT) (((-583 |#2|) $) NIL (|has| $ (-6 -3994)) ELT)) (-2200 ((|#1| $) NIL (|has| |#1| (-756)) ELT)) (-2608 (((-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT) (((-583 |#2|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3245 (((-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#2| (-1013))) ELT)) (-2201 ((|#1| $) NIL (|has| |#1| (-756)) ELT)) (-1948 (($ (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3242 (((-1072) $) NIL (OR (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| |#2| (-1013))) ELT)) (-2232 (((-583 |#1|) $) NIL T ELT)) (-2233 (((-85) |#1| $) NIL T ELT)) (-1273 (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3608 (($ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2203 (((-583 |#1|) $) NIL T ELT)) (-2204 (((-85) |#1| $) NIL T ELT)) (-3243 (((-1033) $) NIL (OR (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| |#2| (-1013))) ELT)) (-3800 ((|#2| $) NIL (|has| |#1| (-756)) ELT)) (-1353 (((-3 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2199 (($ $ |#2|) NIL (|has| $ (-6 -3995)) ELT)) (-1274 (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1946 (((-85) (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3767 (($ $ (-583 (-249 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-249 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-583 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT)) (-1221 (((-85) $ $) NIL T ELT)) (-2202 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#2| (-1013))) ELT)) (-2205 (((-583 |#2|) $) NIL T ELT)) (-3402 (((-85) $) NIL T ELT)) (-3564 (($) NIL T ELT)) (-3799 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1465 (($) NIL T ELT) (($ (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1945 (((-694) (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT) (((-694) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3994)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (((-694) |#2| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#2| (-1013))) ELT) (((-694) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3399 (($ $) NIL T ELT)) (-3971 (((-473) $) NIL (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-553 (-473))) ELT)) (-3529 (($ (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3945 (((-772) $) NIL (OR (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-552 (-772))) (|has| |#2| (-552 (-772)))) ELT)) (-1264 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1275 (($ (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1947 (((-85) (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3994)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3056 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3956 (((-694) $) NIL (|has| $ (-6 -3994)) ELT))) +(((-1101 |#1| |#2|) (-13 (-1106 |#1| |#2|) (-10 -7 (-6 -3994))) (-1013) (-1013)) (T -1101)) +NIL +((-3592 (($ (-583 (-583 |#1|))) 10 T ELT)) (-3593 (((-583 (-583 |#1|)) $) 11 T ELT)) (-3945 (((-772) $) 33 T ELT))) +(((-1102 |#1|) (-10 -8 (-15 -3592 ($ (-583 (-583 |#1|)))) (-15 -3593 ((-583 (-583 |#1|)) $)) (-15 -3945 ((-772) $))) (-1013)) (T -1102)) +((-3945 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-1102 *3)) (-4 *3 (-1013)))) (-3593 (*1 *2 *1) (-12 (-5 *2 (-583 (-583 *3))) (-5 *1 (-1102 *3)) (-4 *3 (-1013)))) (-3592 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1013)) (-5 *1 (-1102 *3))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3594 (($ |#1| (-55)) 11 T ELT)) (-3541 ((|#1| $) 13 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2633 (((-85) $ |#1|) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) NIL T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2521 (((-55) $) 15 T ELT)) (-3056 (((-85) $ $) NIL T ELT))) +(((-1103 |#1|) (-13 (-747 |#1|) (-10 -8 (-15 -3594 ($ |#1| (-55))))) (-1013)) (T -1103)) +((-3594 (*1 *1 *2 *3) (-12 (-5 *3 (-55)) (-5 *1 (-1103 *2)) (-4 *2 (-1013))))) +((-3595 ((|#1| (-583 |#1|)) 46 T ELT)) (-3597 ((|#1| |#1| (-484)) 24 T ELT)) (-3596 (((-1084 |#1|) |#1| (-830)) 20 T ELT))) +(((-1104 |#1|) (-10 -7 (-15 -3595 (|#1| (-583 |#1|))) (-15 -3596 ((-1084 |#1|) |#1| (-830))) (-15 -3597 (|#1| |#1| (-484)))) (-312)) (T -1104)) +((-3597 (*1 *2 *2 *3) (-12 (-5 *3 (-484)) (-5 *1 (-1104 *2)) (-4 *2 (-312)))) (-3596 (*1 *2 *3 *4) (-12 (-5 *4 (-830)) (-5 *2 (-1084 *3)) (-5 *1 (-1104 *3)) (-4 *3 (-312)))) (-3595 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-5 *1 (-1104 *2)) (-4 *2 (-312))))) +((-3598 (($) 10 T ELT) (($ (-583 (-2 (|:| -3859 |#2|) (|:| |entry| |#3|)))) 14 T ELT)) (-3404 (($ (-2 (|:| -3859 |#2|) (|:| |entry| |#3|)) $) 67 T ELT) (($ (-1 (-85) (-2 (|:| -3859 |#2|) (|:| |entry| |#3|))) $) NIL T ELT) (((-3 |#3| #1="failed") |#2| $) NIL T ELT)) (-2889 (((-583 (-2 (|:| -3859 |#2|) (|:| |entry| |#3|))) $) 39 T ELT) (((-583 |#3|) $) 41 T ELT)) (-1948 (($ (-1 (-2 (|:| -3859 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3859 |#2|) (|:| |entry| |#3|))) $) 57 T ELT) (($ (-1 |#3| |#3|) $) 33 T ELT)) (-3957 (($ (-1 (-2 (|:| -3859 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3859 |#2|) (|:| |entry| |#3|))) $) 53 T ELT) (($ (-1 |#3| |#3|) $) NIL T ELT) (($ (-1 |#3| |#3| |#3|) $ $) 38 T ELT)) (-1273 (((-2 (|:| -3859 |#2|) (|:| |entry| |#3|)) $) 60 T ELT)) (-3608 (($ (-2 (|:| -3859 |#2|) (|:| |entry| |#3|)) $) 16 T ELT)) (-2203 (((-583 |#2|) $) 19 T ELT)) (-2204 (((-85) |#2| $) 65 T ELT)) (-1353 (((-3 (-2 (|:| -3859 |#2|) (|:| |entry| |#3|)) #1#) (-1 (-85) (-2 (|:| -3859 |#2|) (|:| |entry| |#3|))) $) 64 T ELT)) (-1274 (((-2 (|:| -3859 |#2|) (|:| |entry| |#3|)) $) 69 T ELT)) (-1946 (((-85) (-1 (-85) (-2 (|:| -3859 |#2|) (|:| |entry| |#3|))) $) NIL T ELT) (((-85) (-1 (-85) |#3|) $) 73 T ELT)) (-2205 (((-583 |#3|) $) 43 T ELT)) (-3799 ((|#3| $ |#2|) 30 T ELT) ((|#3| $ |#2| |#3|) 31 T ELT)) (-1945 (((-694) (-1 (-85) (-2 (|:| -3859 |#2|) (|:| |entry| |#3|))) $) NIL T ELT) (((-694) (-2 (|:| -3859 |#2|) (|:| |entry| |#3|)) $) NIL T ELT) (((-694) |#3| $) NIL T ELT) (((-694) (-1 (-85) |#3|) $) 79 T ELT)) (-3945 (((-772) $) 27 T ELT)) (-1947 (((-85) (-1 (-85) (-2 (|:| -3859 |#2|) (|:| |entry| |#3|))) $) NIL T ELT) (((-85) (-1 (-85) |#3|) $) 71 T ELT)) (-3056 (((-85) $ $) 51 T ELT))) +(((-1105 |#1| |#2| |#3|) (-10 -7 (-15 -3056 ((-85) |#1| |#1|)) (-15 -3945 ((-772) |#1|)) (-15 -3957 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3598 (|#1| (-583 (-2 (|:| -3859 |#2|) (|:| |entry| |#3|))))) (-15 -3598 (|#1|)) (-15 -3957 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1948 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1947 ((-85) (-1 (-85) |#3|) |#1|)) (-15 -1946 ((-85) (-1 (-85) |#3|) |#1|)) (-15 -1945 ((-694) (-1 (-85) |#3|) |#1|)) (-15 -2889 ((-583 |#3|) |#1|)) (-15 -1945 ((-694) |#3| |#1|)) (-15 -3799 (|#3| |#1| |#2| |#3|)) (-15 -3799 (|#3| |#1| |#2|)) (-15 -2205 ((-583 |#3|) |#1|)) (-15 -2204 ((-85) |#2| |#1|)) (-15 -2203 ((-583 |#2|) |#1|)) (-15 -3404 ((-3 |#3| #1="failed") |#2| |#1|)) (-15 -3404 (|#1| (-1 (-85) (-2 (|:| -3859 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -3404 (|#1| (-2 (|:| -3859 |#2|) (|:| |entry| |#3|)) |#1|)) (-15 -1353 ((-3 (-2 (|:| -3859 |#2|) (|:| |entry| |#3|)) #1#) (-1 (-85) (-2 (|:| -3859 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -1273 ((-2 (|:| -3859 |#2|) (|:| |entry| |#3|)) |#1|)) (-15 -3608 (|#1| (-2 (|:| -3859 |#2|) (|:| |entry| |#3|)) |#1|)) (-15 -1274 ((-2 (|:| -3859 |#2|) (|:| |entry| |#3|)) |#1|)) (-15 -1945 ((-694) (-2 (|:| -3859 |#2|) (|:| |entry| |#3|)) |#1|)) (-15 -2889 ((-583 (-2 (|:| -3859 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -1945 ((-694) (-1 (-85) (-2 (|:| -3859 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -1946 ((-85) (-1 (-85) (-2 (|:| -3859 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -1947 ((-85) (-1 (-85) (-2 (|:| -3859 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -1948 (|#1| (-1 (-2 (|:| -3859 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3859 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -3957 (|#1| (-1 (-2 (|:| -3859 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3859 |#2|) (|:| |entry| |#3|))) |#1|))) (-1106 |#2| |#3|) (-1013) (-1013)) (T -1105)) +NIL +((-2568 (((-85) $ $) 19 (OR (|has| |#2| (-72)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-3598 (($) 77 T ELT) (($ (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) 76 T ELT)) (-2198 (((-1184) $ |#1| |#1|) 104 (|has| $ (-6 -3995)) ELT)) (-3787 ((|#2| $ |#1| |#2|) 78 T ELT)) (-1569 (($ (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 49 (|has| $ (-6 -3994)) ELT)) (-3709 (($ (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 59 (|has| $ (-6 -3994)) ELT)) (-2231 (((-3 |#2| #1="failed") |#1| $) 65 T ELT)) (-3723 (($) 7 T CONST)) (-1352 (($ $) 62 (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| $ (-6 -3994))) ELT)) (-3404 (($ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) 51 (|has| $ (-6 -3994)) ELT) (($ (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 50 (|has| $ (-6 -3994)) ELT) (((-3 |#2| #1#) |#1| $) 66 T ELT)) (-3405 (($ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) 61 (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| $ (-6 -3994))) ELT) (($ (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 58 (|has| $ (-6 -3994)) ELT)) (-3841 (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) 60 (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| $ (-6 -3994))) ELT) (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) 57 (|has| $ (-6 -3994)) ELT) (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 56 (|has| $ (-6 -3994)) ELT)) (-1575 ((|#2| $ |#1| |#2|) 92 (|has| $ (-6 -3995)) ELT)) (-3112 ((|#2| $ |#1|) 93 T ELT)) (-2889 (((-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 30 (|has| $ (-6 -3994)) ELT) (((-583 |#2|) $) 84 (|has| $ (-6 -3994)) ELT)) (-2200 ((|#1| $) 101 (|has| |#1| (-756)) ELT)) (-2608 (((-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 29 (|has| $ (-6 -3994)) ELT) (((-583 |#2|) $) 85 (|has| $ (-6 -3994)) ELT)) (-3245 (((-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) 27 (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| $ (-6 -3994))) ELT) (((-85) |#2| $) 87 (-12 (|has| |#2| (-1013)) (|has| $ (-6 -3994))) ELT)) (-2201 ((|#1| $) 100 (|has| |#1| (-756)) ELT)) (-1948 (($ (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 34 (|has| $ (-6 -3995)) ELT) (($ (-1 |#2| |#2|) $) 80 (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 35 T ELT) (($ (-1 |#2| |#2|) $) 79 T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 75 T ELT)) (-3242 (((-1072) $) 22 (OR (|has| |#2| (-1013)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT)) (-2232 (((-583 |#1|) $) 67 T ELT)) (-2233 (((-85) |#1| $) 68 T ELT)) (-1273 (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) 43 T ELT)) (-3608 (($ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) 44 T ELT)) (-2203 (((-583 |#1|) $) 98 T ELT)) (-2204 (((-85) |#1| $) 97 T ELT)) (-3243 (((-1033) $) 21 (OR (|has| |#2| (-1013)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT)) (-3800 ((|#2| $) 102 (|has| |#1| (-756)) ELT)) (-1353 (((-3 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) "failed") (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 55 T ELT)) (-2199 (($ $ |#2|) 103 (|has| $ (-6 -3995)) ELT)) (-1274 (((-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) 45 T ELT)) (-1946 (((-85) (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 32 (|has| $ (-6 -3994)) ELT) (((-85) (-1 (-85) |#2|) $) 82 (|has| $ (-6 -3994)) ELT)) (-3767 (($ $ (-583 (-249 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))))) 26 (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-249 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) 25 (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) 24 (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) 23 (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-583 |#2|) (-583 |#2|)) 91 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ |#2| |#2|) 90 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-249 |#2|)) 89 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-583 (-249 |#2|))) 88 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT)) (-1221 (((-85) $ $) 11 T ELT)) (-2202 (((-85) |#2| $) 99 (-12 (|has| $ (-6 -3994)) (|has| |#2| (-1013))) ELT)) (-2205 (((-583 |#2|) $) 96 T ELT)) (-3402 (((-85) $) 8 T ELT)) (-3564 (($) 9 T ELT)) (-3799 ((|#2| $ |#1|) 95 T ELT) ((|#2| $ |#1| |#2|) 94 T ELT)) (-1465 (($) 53 T ELT) (($ (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) 52 T ELT)) (-1945 (((-694) (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 31 (|has| $ (-6 -3994)) ELT) (((-694) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) $) 28 (-12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| $ (-6 -3994))) ELT) (((-694) |#2| $) 86 (-12 (|has| |#2| (-1013)) (|has| $ (-6 -3994))) ELT) (((-694) (-1 (-85) |#2|) $) 83 (|has| $ (-6 -3994)) ELT)) (-3399 (($ $) 10 T ELT)) (-3971 (((-473) $) 63 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-553 (-473))) ELT)) (-3529 (($ (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) 54 T ELT)) (-3945 (((-772) $) 17 (OR (|has| |#2| (-552 (-772))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-552 (-772)))) ELT)) (-1264 (((-85) $ $) 20 (OR (|has| |#2| (-72)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-1275 (($ (-583 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) 46 T ELT)) (-1947 (((-85) (-1 (-85) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) $) 33 (|has| $ (-6 -3994)) ELT) (((-85) (-1 (-85) |#2|) $) 81 (|has| $ (-6 -3994)) ELT)) (-3056 (((-85) $ $) 18 (OR (|has| |#2| (-72)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-3956 (((-694) $) 6 (|has| $ (-6 -3994)) ELT))) +(((-1106 |#1| |#2|) (-113) (-1013) (-1013)) (T -1106)) +((-3787 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1106 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1013)))) (-3598 (*1 *1) (-12 (-4 *1 (-1106 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013)))) (-3598 (*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| -3859 *3) (|:| |entry| *4)))) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *1 (-1106 *3 *4)))) (-3957 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1106 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013))))) +(-13 (-549 |t#1| |t#2|) (-538 |t#1| |t#2|) (-10 -8 (-15 -3787 (|t#2| $ |t#1| |t#2|)) (-15 -3598 ($)) (-15 -3598 ($ (-583 (-2 (|:| -3859 |t#1|) (|:| |entry| |t#2|))))) (-15 -3957 ($ (-1 |t#2| |t#2| |t#2|) $ $)))) +(((-34) . T) ((-76 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T) ((-72) OR (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-1013)) (|has| |#2| (-72))) ((-552 (-772)) OR (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-552 (-772))) (|has| |#2| (-1013)) (|has| |#2| (-552 (-772)))) ((-124 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T) ((-553 (-473)) |has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-553 (-473))) ((-183 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T) ((-193 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T) ((-241 |#1| |#2|) . T) ((-243 |#1| |#2|) . T) ((-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ((-260 |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ((-428 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) . T) ((-428 |#2|) . T) ((-538 |#1| |#2|) . T) ((-455 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3859 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013))) ((-455 |#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ((-13) . T) ((-549 |#1| |#2|) . T) ((-1013) OR (|has| (-2 (|:| -3859 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| |#2| (-1013))) ((-1128) . T)) +((-3604 (((-85)) 29 T ELT)) (-3601 (((-1184) (-1072)) 31 T ELT)) (-3605 (((-85)) 41 T ELT)) (-3602 (((-1184)) 39 T ELT)) (-3600 (((-1184) (-1072) (-1072)) 30 T ELT)) (-3606 (((-85)) 42 T ELT)) (-3608 (((-1184) |#1| |#2|) 53 T ELT)) (-3599 (((-1184)) 26 T ELT)) (-3607 (((-3 |#2| "failed") |#1|) 51 T ELT)) (-3603 (((-1184)) 40 T ELT))) +(((-1107 |#1| |#2|) (-10 -7 (-15 -3599 ((-1184))) (-15 -3600 ((-1184) (-1072) (-1072))) (-15 -3601 ((-1184) (-1072))) (-15 -3602 ((-1184))) (-15 -3603 ((-1184))) (-15 -3604 ((-85))) (-15 -3605 ((-85))) (-15 -3606 ((-85))) (-15 -3607 ((-3 |#2| "failed") |#1|)) (-15 -3608 ((-1184) |#1| |#2|))) (-1013) (-1013)) (T -1107)) +((-3608 (*1 *2 *3 *4) (-12 (-5 *2 (-1184)) (-5 *1 (-1107 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)))) (-3607 (*1 *2 *3) (|partial| -12 (-4 *2 (-1013)) (-5 *1 (-1107 *3 *2)) (-4 *3 (-1013)))) (-3606 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1107 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)))) (-3605 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1107 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)))) (-3604 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1107 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)))) (-3603 (*1 *2) (-12 (-5 *2 (-1184)) (-5 *1 (-1107 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)))) (-3602 (*1 *2) (-12 (-5 *2 (-1184)) (-5 *1 (-1107 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)))) (-3601 (*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1107 *4 *5)) (-4 *4 (-1013)) (-4 *5 (-1013)))) (-3600 (*1 *2 *3 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1107 *4 *5)) (-4 *4 (-1013)) (-4 *5 (-1013)))) (-3599 (*1 *2) (-12 (-5 *2 (-1184)) (-5 *1 (-1107 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3614 (((-583 (-1072)) $) 37 T ELT)) (-3610 (((-583 (-1072)) $ (-583 (-1072))) 40 T ELT)) (-3609 (((-583 (-1072)) $ (-583 (-1072))) 39 T ELT)) (-3611 (((-583 (-1072)) $ (-583 (-1072))) 41 T ELT)) (-3612 (((-583 (-1072)) $) 36 T ELT)) (-3613 (($) 26 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3615 (((-583 (-1072)) $) 38 T ELT)) (-3616 (((-1184) $ (-484)) 33 T ELT) (((-1184) $) 34 T ELT)) (-3971 (($ (-772) (-484)) 31 T ELT) (($ (-772) (-484) (-772)) NIL T ELT)) (-3945 (((-772) $) 47 T ELT) (($ (-772)) 30 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT))) +(((-1108) (-13 (-1013) (-555 (-772)) (-10 -8 (-15 -3971 ($ (-772) (-484))) (-15 -3971 ($ (-772) (-484) (-772))) (-15 -3616 ((-1184) $ (-484))) (-15 -3616 ((-1184) $)) (-15 -3615 ((-583 (-1072)) $)) (-15 -3614 ((-583 (-1072)) $)) (-15 -3613 ($)) (-15 -3612 ((-583 (-1072)) $)) (-15 -3611 ((-583 (-1072)) $ (-583 (-1072)))) (-15 -3610 ((-583 (-1072)) $ (-583 (-1072)))) (-15 -3609 ((-583 (-1072)) $ (-583 (-1072))))))) (T -1108)) +((-3971 (*1 *1 *2 *3) (-12 (-5 *2 (-772)) (-5 *3 (-484)) (-5 *1 (-1108)))) (-3971 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-772)) (-5 *3 (-484)) (-5 *1 (-1108)))) (-3616 (*1 *2 *1 *3) (-12 (-5 *3 (-484)) (-5 *2 (-1184)) (-5 *1 (-1108)))) (-3616 (*1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-1108)))) (-3615 (*1 *2 *1) (-12 (-5 *2 (-583 (-1072))) (-5 *1 (-1108)))) (-3614 (*1 *2 *1) (-12 (-5 *2 (-583 (-1072))) (-5 *1 (-1108)))) (-3613 (*1 *1) (-5 *1 (-1108))) (-3612 (*1 *2 *1) (-12 (-5 *2 (-583 (-1072))) (-5 *1 (-1108)))) (-3611 (*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1072))) (-5 *1 (-1108)))) (-3610 (*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1072))) (-5 *1 (-1108)))) (-3609 (*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1072))) (-5 *1 (-1108))))) +((-3945 (((-1108) |#1|) 11 T ELT))) +(((-1109 |#1|) (-10 -7 (-15 -3945 ((-1108) |#1|))) (-1013)) (T -1109)) +((-3945 (*1 *2 *3) (-12 (-5 *2 (-1108)) (-5 *1 (-1109 *3)) (-4 *3 (-1013))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3621 (((-1072) $ (-1072)) 21 T ELT) (((-1072) $) 20 T ELT)) (-1696 (((-1072) $ (-1072)) 19 T ELT)) (-1700 (($ $ (-1072)) NIL T ELT)) (-3619 (((-3 (-1072) #1="failed") $) 11 T ELT)) (-3620 (((-1072) $) 8 T ELT)) (-3618 (((-3 (-1072) #1#) $) 12 T ELT)) (-1697 (((-1072) $) 9 T ELT)) (-1701 (($ (-337)) NIL T ELT) (($ (-337) (-1072)) NIL T ELT)) (-3541 (((-337) $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-1698 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3617 (((-85) $) 25 T ELT)) (-3945 (((-772) $) NIL T ELT)) (-1699 (($ $) NIL T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT))) +(((-1110) (-13 (-314 (-337) (-1072)) (-10 -8 (-15 -3621 ((-1072) $ (-1072))) (-15 -3621 ((-1072) $)) (-15 -3620 ((-1072) $)) (-15 -3619 ((-3 (-1072) #1="failed") $)) (-15 -3618 ((-3 (-1072) #1#) $)) (-15 -3617 ((-85) $))))) (T -1110)) +((-3621 (*1 *2 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-1110)))) (-3621 (*1 *2 *1) (-12 (-5 *2 (-1072)) (-5 *1 (-1110)))) (-3620 (*1 *2 *1) (-12 (-5 *2 (-1072)) (-5 *1 (-1110)))) (-3619 (*1 *2 *1) (|partial| -12 (-5 *2 (-1072)) (-5 *1 (-1110)))) (-3618 (*1 *2 *1) (|partial| -12 (-5 *2 (-1072)) (-5 *1 (-1110)))) (-3617 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1110))))) +((-3622 (((-3 (-484) #1="failed") |#1|) 19 T ELT)) (-3623 (((-3 (-484) #1#) |#1|) 14 T ELT)) (-3624 (((-484) (-1072)) 33 T ELT))) +(((-1111 |#1|) (-10 -7 (-15 -3622 ((-3 (-484) #1="failed") |#1|)) (-15 -3623 ((-3 (-484) #1#) |#1|)) (-15 -3624 ((-484) (-1072)))) (-961)) (T -1111)) +((-3624 (*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-484)) (-5 *1 (-1111 *4)) (-4 *4 (-961)))) (-3623 (*1 *2 *3) (|partial| -12 (-5 *2 (-484)) (-5 *1 (-1111 *3)) (-4 *3 (-961)))) (-3622 (*1 *2 *3) (|partial| -12 (-5 *2 (-484)) (-5 *1 (-1111 *3)) (-4 *3 (-961))))) +((-3625 (((-1046 (-179))) 9 T ELT))) +(((-1112) (-10 -7 (-15 -3625 ((-1046 (-179)))))) (T -1112)) +((-3625 (*1 *2) (-12 (-5 *2 (-1046 (-179))) (-5 *1 (-1112))))) +((-3626 (($) 12 T ELT)) (-3497 (($ $) 36 T ELT)) (-3495 (($ $) 34 T ELT)) (-3483 (($ $) 26 T ELT)) (-3499 (($ $) 18 T ELT)) (-3500 (($ $) 16 T ELT)) (-3498 (($ $) 20 T ELT)) (-3486 (($ $) 31 T ELT)) (-3496 (($ $) 35 T ELT)) (-3484 (($ $) 30 T ELT))) +(((-1113 |#1|) (-10 -7 (-15 -3626 (|#1|)) (-15 -3497 (|#1| |#1|)) (-15 -3495 (|#1| |#1|)) (-15 -3499 (|#1| |#1|)) (-15 -3500 (|#1| |#1|)) (-15 -3498 (|#1| |#1|)) (-15 -3496 (|#1| |#1|)) (-15 -3483 (|#1| |#1|)) (-15 -3486 (|#1| |#1|)) (-15 -3484 (|#1| |#1|))) (-1114)) (T -1113)) +NIL +((-3491 (($ $) 26 T ELT)) (-3638 (($ $) 11 T ELT)) (-3489 (($ $) 27 T ELT)) (-3637 (($ $) 10 T ELT)) (-3493 (($ $) 28 T ELT)) (-3636 (($ $) 9 T ELT)) (-3626 (($) 16 T ELT)) (-3941 (($ $) 19 T ELT)) (-3942 (($ $) 18 T ELT)) (-3494 (($ $) 29 T ELT)) (-3635 (($ $) 8 T ELT)) (-3492 (($ $) 30 T ELT)) (-3634 (($ $) 7 T ELT)) (-3490 (($ $) 31 T ELT)) (-3633 (($ $) 6 T ELT)) (-3497 (($ $) 20 T ELT)) (-3485 (($ $) 32 T ELT)) (-3495 (($ $) 21 T ELT)) (-3483 (($ $) 33 T ELT)) (-3499 (($ $) 22 T ELT)) (-3487 (($ $) 34 T ELT)) (-3500 (($ $) 23 T ELT)) (-3488 (($ $) 35 T ELT)) (-3498 (($ $) 24 T ELT)) (-3486 (($ $) 36 T ELT)) (-3496 (($ $) 25 T ELT)) (-3484 (($ $) 37 T ELT)) (** (($ $ $) 17 T ELT))) +(((-1114) (-113)) (T -1114)) +((-3626 (*1 *1) (-4 *1 (-1114)))) +(-13 (-1117) (-66) (-432) (-35) (-239) (-10 -8 (-15 -3626 ($)))) +(((-35) . T) ((-66) . T) ((-239) . T) ((-432) . T) ((-1117) . T)) +((-2568 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3401 ((|#1| $) 19 T ELT)) (-3631 (($ |#1| (-583 $)) 28 T ELT) (($ (-583 |#1|)) 35 T ELT) (($ |#1|) 30 T ELT)) (-3025 ((|#1| $ |#1|) 14 (|has| $ (-6 -3995)) ELT)) (-3787 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3995)) ELT)) (-3026 (($ $ (-583 $)) 13 (|has| $ (-6 -3995)) ELT)) (-3723 (($) NIL T CONST)) (-2889 (((-583 |#1|) $) 70 (|has| $ (-6 -3994)) ELT)) (-3031 (((-583 $) $) 59 T ELT)) (-3027 (((-85) $ $) 50 (|has| |#1| (-1013)) ELT)) (-2608 (((-583 |#1|) $) 71 (|has| $ (-6 -3994)) ELT)) (-3245 (((-85) |#1| $) 69 (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-1948 (($ (-1 |#1| |#1|) $) 29 (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) 27 T ELT)) (-3030 (((-583 |#1|) $) 55 T ELT)) (-3526 (((-85) $) 53 T ELT)) (-3242 (((-1072) $) NIL (|has| |#1| (-1013)) ELT)) (-3243 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 67 (|has| $ (-6 -3994)) ELT)) (-3767 (($ $ (-583 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1221 (((-85) $ $) 102 T ELT)) (-3402 (((-85) $) 9 T ELT)) (-3564 (($) 10 T ELT)) (-3799 ((|#1| $ #1#) NIL T ELT)) (-3029 (((-484) $ $) 48 T ELT)) (-3627 (((-583 $) $) 84 T ELT)) (-3628 (((-85) $ $) 105 T ELT)) (-3629 (((-583 $) $) 100 T ELT)) (-3630 (($ $) 101 T ELT)) (-3632 (((-85) $) 77 T ELT)) (-1945 (((-694) (-1 (-85) |#1|) $) 25 (|has| $ (-6 -3994)) ELT) (((-694) |#1| $) 17 (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-3399 (($ $) 83 T ELT)) (-3945 (((-772) $) 86 (|has| |#1| (-552 (-772))) ELT)) (-3521 (((-583 $) $) 12 T ELT)) (-3028 (((-85) $ $) 39 (|has| |#1| (-1013)) ELT)) (-1264 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) 66 (|has| $ (-6 -3994)) ELT)) (-3056 (((-85) $ $) 37 (|has| |#1| (-72)) ELT)) (-3956 (((-694) $) 81 (|has| $ (-6 -3994)) ELT))) +(((-1115 |#1|) (-13 (-923 |#1|) (-10 -8 (-6 -3994) (-6 -3995) (-15 -3631 ($ |#1| (-583 $))) (-15 -3631 ($ (-583 |#1|))) (-15 -3631 ($ |#1|)) (-15 -3632 ((-85) $)) (-15 -3630 ($ $)) (-15 -3629 ((-583 $) $)) (-15 -3628 ((-85) $ $)) (-15 -3627 ((-583 $) $)))) (-1013)) (T -1115)) +((-3632 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1115 *3)) (-4 *3 (-1013)))) (-3631 (*1 *1 *2 *3) (-12 (-5 *3 (-583 (-1115 *2))) (-5 *1 (-1115 *2)) (-4 *2 (-1013)))) (-3631 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1013)) (-5 *1 (-1115 *3)))) (-3631 (*1 *1 *2) (-12 (-5 *1 (-1115 *2)) (-4 *2 (-1013)))) (-3630 (*1 *1 *1) (-12 (-5 *1 (-1115 *2)) (-4 *2 (-1013)))) (-3629 (*1 *2 *1) (-12 (-5 *2 (-583 (-1115 *3))) (-5 *1 (-1115 *3)) (-4 *3 (-1013)))) (-3628 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1115 *3)) (-4 *3 (-1013)))) (-3627 (*1 *2 *1) (-12 (-5 *2 (-583 (-1115 *3))) (-5 *1 (-1115 *3)) (-4 *3 (-1013))))) +((-3638 (($ $) 15 T ELT)) (-3636 (($ $) 12 T ELT)) (-3635 (($ $) 10 T ELT)) (-3634 (($ $) 17 T ELT))) +(((-1116 |#1|) (-10 -7 (-15 -3634 (|#1| |#1|)) (-15 -3635 (|#1| |#1|)) (-15 -3636 (|#1| |#1|)) (-15 -3638 (|#1| |#1|))) (-1117)) (T -1116)) +NIL +((-3638 (($ $) 11 T ELT)) (-3637 (($ $) 10 T ELT)) (-3636 (($ $) 9 T ELT)) (-3635 (($ $) 8 T ELT)) (-3634 (($ $) 7 T ELT)) (-3633 (($ $) 6 T ELT))) +(((-1117) (-113)) (T -1117)) +((-3638 (*1 *1 *1) (-4 *1 (-1117))) (-3637 (*1 *1 *1) (-4 *1 (-1117))) (-3636 (*1 *1 *1) (-4 *1 (-1117))) (-3635 (*1 *1 *1) (-4 *1 (-1117))) (-3634 (*1 *1 *1) (-4 *1 (-1117))) (-3633 (*1 *1 *1) (-4 *1 (-1117)))) +(-13 (-10 -8 (-15 -3633 ($ $)) (-15 -3634 ($ $)) (-15 -3635 ($ $)) (-15 -3636 ($ $)) (-15 -3637 ($ $)) (-15 -3638 ($ $)))) +((-3641 ((|#2| |#2|) 95 T ELT)) (-3644 (((-85) |#2|) 29 T ELT)) (-3642 ((|#2| |#2|) 33 T ELT)) (-3643 ((|#2| |#2|) 35 T ELT)) (-3639 ((|#2| |#2| (-1089)) 89 T ELT) ((|#2| |#2|) 90 T ELT)) (-3645 (((-142 |#2|) |#2|) 31 T ELT)) (-3640 ((|#2| |#2| (-1089)) 91 T ELT) ((|#2| |#2|) 92 T ELT))) +(((-1118 |#1| |#2|) (-10 -7 (-15 -3639 (|#2| |#2|)) (-15 -3639 (|#2| |#2| (-1089))) (-15 -3640 (|#2| |#2|)) (-15 -3640 (|#2| |#2| (-1089))) (-15 -3641 (|#2| |#2|)) (-15 -3642 (|#2| |#2|)) (-15 -3643 (|#2| |#2|)) (-15 -3644 ((-85) |#2|)) (-15 -3645 ((-142 |#2|) |#2|))) (-13 (-391) (-950 (-484)) (-580 (-484))) (-13 (-27) (-1114) (-363 |#1|))) (T -1118)) +((-3645 (*1 *2 *3) (-12 (-4 *4 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *2 (-142 *3)) (-5 *1 (-1118 *4 *3)) (-4 *3 (-13 (-27) (-1114) (-363 *4))))) (-3644 (*1 *2 *3) (-12 (-4 *4 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *2 (-85)) (-5 *1 (-1118 *4 *3)) (-4 *3 (-13 (-27) (-1114) (-363 *4))))) (-3643 (*1 *2 *2) (-12 (-4 *3 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *1 (-1118 *3 *2)) (-4 *2 (-13 (-27) (-1114) (-363 *3))))) (-3642 (*1 *2 *2) (-12 (-4 *3 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *1 (-1118 *3 *2)) (-4 *2 (-13 (-27) (-1114) (-363 *3))))) (-3641 (*1 *2 *2) (-12 (-4 *3 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *1 (-1118 *3 *2)) (-4 *2 (-13 (-27) (-1114) (-363 *3))))) (-3640 (*1 *2 *2 *3) (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *1 (-1118 *4 *2)) (-4 *2 (-13 (-27) (-1114) (-363 *4))))) (-3640 (*1 *2 *2) (-12 (-4 *3 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *1 (-1118 *3 *2)) (-4 *2 (-13 (-27) (-1114) (-363 *3))))) (-3639 (*1 *2 *2 *3) (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *1 (-1118 *4 *2)) (-4 *2 (-13 (-27) (-1114) (-363 *4))))) (-3639 (*1 *2 *2) (-12 (-4 *3 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *1 (-1118 *3 *2)) (-4 *2 (-13 (-27) (-1114) (-363 *3)))))) +((-3646 ((|#4| |#4| |#1|) 31 T ELT)) (-3647 ((|#4| |#4| |#1|) 32 T ELT))) +(((-1119 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3646 (|#4| |#4| |#1|)) (-15 -3647 (|#4| |#4| |#1|))) (-495) (-323 |#1|) (-323 |#1|) (-627 |#1| |#2| |#3|)) (T -1119)) +((-3647 (*1 *2 *2 *3) (-12 (-4 *3 (-495)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)) (-5 *1 (-1119 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5)))) (-3646 (*1 *2 *2 *3) (-12 (-4 *3 (-495)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)) (-5 *1 (-1119 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5))))) +((-3665 ((|#2| |#2|) 148 T ELT)) (-3667 ((|#2| |#2|) 145 T ELT)) (-3664 ((|#2| |#2|) 136 T ELT)) (-3666 ((|#2| |#2|) 133 T ELT)) (-3663 ((|#2| |#2|) 141 T ELT)) (-3662 ((|#2| |#2|) 129 T ELT)) (-3651 ((|#2| |#2|) 44 T ELT)) (-3650 ((|#2| |#2|) 105 T ELT)) (-3648 ((|#2| |#2|) 88 T ELT)) (-3661 ((|#2| |#2|) 143 T ELT)) (-3660 ((|#2| |#2|) 131 T ELT)) (-3673 ((|#2| |#2|) 153 T ELT)) (-3671 ((|#2| |#2|) 151 T ELT)) (-3672 ((|#2| |#2|) 152 T ELT)) (-3670 ((|#2| |#2|) 150 T ELT)) (-3649 ((|#2| |#2|) 163 T ELT)) (-3674 ((|#2| |#2|) 30 (-12 (|has| |#2| (-553 (-800 |#1|))) (|has| |#2| (-796 |#1|)) (|has| |#1| (-553 (-800 |#1|))) (|has| |#1| (-796 |#1|))) ELT)) (-3652 ((|#2| |#2|) 89 T ELT)) (-3653 ((|#2| |#2|) 154 T ELT)) (-3962 ((|#2| |#2|) 155 T ELT)) (-3659 ((|#2| |#2|) 142 T ELT)) (-3658 ((|#2| |#2|) 130 T ELT)) (-3657 ((|#2| |#2|) 149 T ELT)) (-3669 ((|#2| |#2|) 147 T ELT)) (-3656 ((|#2| |#2|) 137 T ELT)) (-3668 ((|#2| |#2|) 135 T ELT)) (-3655 ((|#2| |#2|) 139 T ELT)) (-3654 ((|#2| |#2|) 127 T ELT))) +(((-1120 |#1| |#2|) (-10 -7 (-15 -3962 (|#2| |#2|)) (-15 -3648 (|#2| |#2|)) (-15 -3649 (|#2| |#2|)) (-15 -3650 (|#2| |#2|)) (-15 -3651 (|#2| |#2|)) (-15 -3652 (|#2| |#2|)) (-15 -3653 (|#2| |#2|)) (-15 -3654 (|#2| |#2|)) (-15 -3655 (|#2| |#2|)) (-15 -3656 (|#2| |#2|)) (-15 -3657 (|#2| |#2|)) (-15 -3658 (|#2| |#2|)) (-15 -3659 (|#2| |#2|)) (-15 -3660 (|#2| |#2|)) (-15 -3661 (|#2| |#2|)) (-15 -3662 (|#2| |#2|)) (-15 -3663 (|#2| |#2|)) (-15 -3664 (|#2| |#2|)) (-15 -3665 (|#2| |#2|)) (-15 -3666 (|#2| |#2|)) (-15 -3667 (|#2| |#2|)) (-15 -3668 (|#2| |#2|)) (-15 -3669 (|#2| |#2|)) (-15 -3670 (|#2| |#2|)) (-15 -3671 (|#2| |#2|)) (-15 -3672 (|#2| |#2|)) (-15 -3673 (|#2| |#2|)) (IF (|has| |#1| (-796 |#1|)) (IF (|has| |#1| (-553 (-800 |#1|))) (IF (|has| |#2| (-553 (-800 |#1|))) (IF (|has| |#2| (-796 |#1|)) (-15 -3674 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-391) (-13 (-363 |#1|) (-1114))) (T -1120)) +((-3674 (*1 *2 *2) (-12 (-4 *3 (-553 (-800 *3))) (-4 *3 (-796 *3)) (-4 *3 (-391)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-553 (-800 *3))) (-4 *2 (-796 *3)) (-4 *2 (-13 (-363 *3) (-1114))))) (-3673 (*1 *2 *2) (-12 (-4 *3 (-391)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-363 *3) (-1114))))) (-3672 (*1 *2 *2) (-12 (-4 *3 (-391)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-363 *3) (-1114))))) (-3671 (*1 *2 *2) (-12 (-4 *3 (-391)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-363 *3) (-1114))))) (-3670 (*1 *2 *2) (-12 (-4 *3 (-391)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-363 *3) (-1114))))) (-3669 (*1 *2 *2) (-12 (-4 *3 (-391)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-363 *3) (-1114))))) (-3668 (*1 *2 *2) (-12 (-4 *3 (-391)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-363 *3) (-1114))))) (-3667 (*1 *2 *2) (-12 (-4 *3 (-391)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-363 *3) (-1114))))) (-3666 (*1 *2 *2) (-12 (-4 *3 (-391)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-363 *3) (-1114))))) (-3665 (*1 *2 *2) (-12 (-4 *3 (-391)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-363 *3) (-1114))))) (-3664 (*1 *2 *2) (-12 (-4 *3 (-391)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-363 *3) (-1114))))) (-3663 (*1 *2 *2) (-12 (-4 *3 (-391)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-363 *3) (-1114))))) (-3662 (*1 *2 *2) (-12 (-4 *3 (-391)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-363 *3) (-1114))))) (-3661 (*1 *2 *2) (-12 (-4 *3 (-391)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-363 *3) (-1114))))) (-3660 (*1 *2 *2) (-12 (-4 *3 (-391)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-363 *3) (-1114))))) (-3659 (*1 *2 *2) (-12 (-4 *3 (-391)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-363 *3) (-1114))))) (-3658 (*1 *2 *2) (-12 (-4 *3 (-391)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-363 *3) (-1114))))) (-3657 (*1 *2 *2) (-12 (-4 *3 (-391)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-363 *3) (-1114))))) (-3656 (*1 *2 *2) (-12 (-4 *3 (-391)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-363 *3) (-1114))))) (-3655 (*1 *2 *2) (-12 (-4 *3 (-391)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-363 *3) (-1114))))) (-3654 (*1 *2 *2) (-12 (-4 *3 (-391)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-363 *3) (-1114))))) (-3653 (*1 *2 *2) (-12 (-4 *3 (-391)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-363 *3) (-1114))))) (-3652 (*1 *2 *2) (-12 (-4 *3 (-391)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-363 *3) (-1114))))) (-3651 (*1 *2 *2) (-12 (-4 *3 (-391)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-363 *3) (-1114))))) (-3650 (*1 *2 *2) (-12 (-4 *3 (-391)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-363 *3) (-1114))))) (-3649 (*1 *2 *2) (-12 (-4 *3 (-391)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-363 *3) (-1114))))) (-3648 (*1 *2 *2) (-12 (-4 *3 (-391)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-363 *3) (-1114))))) (-3962 (*1 *2 *2) (-12 (-4 *3 (-391)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-363 *3) (-1114)))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-3081 (((-583 (-1089)) $) NIL T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2063 (($ $) NIL (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-3491 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3638 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3037 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3489 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3637 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3493 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3636 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3723 (($) NIL T CONST)) (-3958 (($ $) NIL T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-3813 (((-857 |#1|) $ (-694)) 18 T ELT) (((-857 |#1|) $ (-694) (-694)) NIL T ELT)) (-2892 (((-85) $) NIL T ELT)) (-3626 (($) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3771 (((-694) $ (-1089)) NIL T ELT) (((-694) $ (-1089) (-694)) NIL T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-3011 (($ $ (-484)) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3936 (((-85) $) NIL T ELT)) (-2893 (($ $ (-583 (-1089)) (-583 (-469 (-1089)))) NIL T ELT) (($ $ (-1089) (-469 (-1089))) NIL T ELT) (($ |#1| (-469 (-1089))) NIL T ELT) (($ $ (-1089) (-694)) NIL T ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL T ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3941 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2894 (($ $) NIL T ELT)) (-3174 ((|#1| $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3811 (($ $ (-1089)) NIL (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $ (-1089) |#1|) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3675 (($ (-1 $) (-1089) |#1|) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3768 (($ $ (-694)) NIL T ELT)) (-3465 (((-3 $ #1#) $ $) NIL (|has| |#1| (-495)) ELT)) (-3942 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3767 (($ $ (-1089) $) NIL T ELT) (($ $ (-583 (-1089)) (-583 $)) NIL T ELT) (($ $ (-583 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT)) (-3757 (($ $ (-583 (-1089)) (-583 (-694))) NIL T ELT) (($ $ (-1089) (-694)) NIL T ELT) (($ $ (-583 (-1089))) NIL T ELT) (($ $ (-1089)) NIL T ELT)) (-3947 (((-469 (-1089)) $) NIL T ELT)) (-3494 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3635 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3492 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3634 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3490 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3633 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2891 (($ $) NIL T ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT) (($ $) NIL (|has| |#1| (-495)) ELT) (($ (-349 (-484))) NIL (|has| |#1| (-38 (-349 (-484)))) ELT) (($ (-1089)) NIL T ELT) (($ (-857 |#1|)) NIL T ELT)) (-3676 ((|#1| $ (-469 (-1089))) NIL T ELT) (($ $ (-1089) (-694)) NIL T ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL T ELT) (((-857 |#1|) $ (-694)) NIL T ELT)) (-2702 (((-632 $) $) NIL (|has| |#1| (-118)) ELT)) (-3126 (((-694)) NIL T CONST)) (-1264 (((-85) $ $) NIL T ELT)) (-3497 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3485 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2062 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-3495 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3483 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3499 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3487 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-3500 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3488 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3498 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3486 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3496 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3484 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2660 (($) NIL T CONST)) (-2666 (($) NIL T CONST)) (-2669 (($ $ (-583 (-1089)) (-583 (-694))) NIL T ELT) (($ $ (-1089) (-694)) NIL T ELT) (($ $ (-583 (-1089))) NIL T ELT) (($ $ (-1089)) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3948 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $ (-349 (-484))) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-349 (-484))) NIL (|has| |#1| (-38 (-349 (-484)))) ELT) (($ (-349 (-484)) $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) +(((-1121 |#1|) (-13 (-679 |#1| (-1089)) (-10 -8 (-15 -3676 ((-857 |#1|) $ (-694))) (-15 -3945 ($ (-1089))) (-15 -3945 ($ (-857 |#1|))) (IF (|has| |#1| (-38 (-349 (-484)))) (PROGN (-15 -3811 ($ $ (-1089) |#1|)) (-15 -3675 ($ (-1 $) (-1089) |#1|))) |%noBranch|))) (-961)) (T -1121)) +((-3676 (*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-5 *2 (-857 *4)) (-5 *1 (-1121 *4)) (-4 *4 (-961)))) (-3945 (*1 *1 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-1121 *3)) (-4 *3 (-961)))) (-3945 (*1 *1 *2) (-12 (-5 *2 (-857 *3)) (-4 *3 (-961)) (-5 *1 (-1121 *3)))) (-3811 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1089)) (-5 *1 (-1121 *3)) (-4 *3 (-38 (-349 (-484)))) (-4 *3 (-961)))) (-3675 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1121 *4))) (-5 *3 (-1089)) (-5 *1 (-1121 *4)) (-4 *4 (-38 (-349 (-484)))) (-4 *4 (-961))))) +((-3692 (((-85) |#5| $) 68 T ELT) (((-85) $) 109 T ELT)) (-3687 ((|#5| |#5| $) 83 T ELT)) (-3709 (($ (-1 (-85) |#5|) $) NIL T ELT) (((-3 |#5| #1="failed") $ |#4|) 126 T ELT)) (-3688 (((-583 |#5|) (-583 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-85) |#5| |#5|)) 81 T ELT)) (-3157 (((-3 $ #1#) (-583 |#5|)) 134 T ELT)) (-3798 (((-3 $ #1#) $) 119 T ELT)) (-3684 ((|#5| |#5| $) 101 T ELT)) (-3693 (((-85) |#5| $ (-1 (-85) |#5| |#5|)) 36 T ELT)) (-3682 ((|#5| |#5| $) 105 T ELT)) (-3841 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL T ELT) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL T ELT) ((|#5| (-1 |#5| |#5| |#5|) $) NIL T ELT) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-85) |#5| |#5|)) 77 T ELT)) (-3695 (((-2 (|:| -3860 (-583 |#5|)) (|:| -1701 (-583 |#5|))) $) 63 T ELT)) (-3694 (((-85) |#5| $) 66 T ELT) (((-85) $) 110 T ELT)) (-3180 ((|#4| $) 115 T ELT)) (-3797 (((-3 |#5| #1#) $) 117 T ELT)) (-3696 (((-583 |#5|) $) 55 T ELT)) (-3690 (((-85) |#5| $) 75 T ELT) (((-85) $) 114 T ELT)) (-3685 ((|#5| |#5| $) 89 T ELT)) (-3698 (((-85) $ $) 29 T ELT)) (-3691 (((-85) |#5| $) 71 T ELT) (((-85) $) 112 T ELT)) (-3686 ((|#5| |#5| $) 86 T ELT)) (-3800 (((-3 |#5| #1#) $) 116 T ELT)) (-3768 (($ $ |#5|) 135 T ELT)) (-3947 (((-694) $) 60 T ELT)) (-3529 (($ (-583 |#5|)) 132 T ELT)) (-2910 (($ $ |#4|) 130 T ELT)) (-2912 (($ $ |#4|) 128 T ELT)) (-3683 (($ $) 127 T ELT)) (-3945 (((-772) $) NIL T ELT) (((-583 |#5|) $) 120 T ELT)) (-3677 (((-694) $) 139 T ELT)) (-3697 (((-3 (-2 (|:| |bas| $) (|:| -3323 (-583 |#5|))) #1#) (-583 |#5|) (-1 (-85) |#5| |#5|)) 49 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3323 (-583 |#5|))) #1#) (-583 |#5|) (-1 (-85) |#5|) (-1 (-85) |#5| |#5|)) 51 T ELT)) (-3689 (((-85) $ (-1 (-85) |#5| (-583 |#5|))) 107 T ELT)) (-3679 (((-583 |#4|) $) 122 T ELT)) (-3932 (((-85) |#4| $) 125 T ELT)) (-3056 (((-85) $ $) 20 T ELT))) +(((-1122 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3677 ((-694) |#1|)) (-15 -3768 (|#1| |#1| |#5|)) (-15 -3709 ((-3 |#5| #1="failed") |#1| |#4|)) (-15 -3932 ((-85) |#4| |#1|)) (-15 -3679 ((-583 |#4|) |#1|)) (-15 -3798 ((-3 |#1| #1#) |#1|)) (-15 -3797 ((-3 |#5| #1#) |#1|)) (-15 -3800 ((-3 |#5| #1#) |#1|)) (-15 -3682 (|#5| |#5| |#1|)) (-15 -3683 (|#1| |#1|)) (-15 -3684 (|#5| |#5| |#1|)) (-15 -3685 (|#5| |#5| |#1|)) (-15 -3686 (|#5| |#5| |#1|)) (-15 -3687 (|#5| |#5| |#1|)) (-15 -3688 ((-583 |#5|) (-583 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-85) |#5| |#5|))) (-15 -3841 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-85) |#5| |#5|))) (-15 -3690 ((-85) |#1|)) (-15 -3691 ((-85) |#1|)) (-15 -3692 ((-85) |#1|)) (-15 -3689 ((-85) |#1| (-1 (-85) |#5| (-583 |#5|)))) (-15 -3690 ((-85) |#5| |#1|)) (-15 -3691 ((-85) |#5| |#1|)) (-15 -3692 ((-85) |#5| |#1|)) (-15 -3693 ((-85) |#5| |#1| (-1 (-85) |#5| |#5|))) (-15 -3694 ((-85) |#1|)) (-15 -3694 ((-85) |#5| |#1|)) (-15 -3695 ((-2 (|:| -3860 (-583 |#5|)) (|:| -1701 (-583 |#5|))) |#1|)) (-15 -3947 ((-694) |#1|)) (-15 -3696 ((-583 |#5|) |#1|)) (-15 -3697 ((-3 (-2 (|:| |bas| |#1|) (|:| -3323 (-583 |#5|))) #1#) (-583 |#5|) (-1 (-85) |#5|) (-1 (-85) |#5| |#5|))) (-15 -3697 ((-3 (-2 (|:| |bas| |#1|) (|:| -3323 (-583 |#5|))) #1#) (-583 |#5|) (-1 (-85) |#5| |#5|))) (-15 -3698 ((-85) |#1| |#1|)) (-15 -2910 (|#1| |#1| |#4|)) (-15 -2912 (|#1| |#1| |#4|)) (-15 -3180 (|#4| |#1|)) (-15 -3157 ((-3 |#1| #1#) (-583 |#5|))) (-15 -3945 ((-583 |#5|) |#1|)) (-15 -3529 (|#1| (-583 |#5|))) (-15 -3841 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -3841 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -3709 (|#1| (-1 (-85) |#5|) |#1|)) (-15 -3841 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -3945 ((-772) |#1|)) (-15 -3056 ((-85) |#1| |#1|))) (-1123 |#2| |#3| |#4| |#5|) (-495) (-717) (-756) (-977 |#2| |#3| |#4|)) (T -1122)) +NIL +((-2568 (((-85) $ $) 7 T ELT)) (-3680 (((-583 (-2 (|:| -3860 $) (|:| -1701 (-583 |#4|)))) (-583 |#4|)) 90 T ELT)) (-3681 (((-583 $) (-583 |#4|)) 91 T ELT)) (-3081 (((-583 |#3|) $) 37 T ELT)) (-2908 (((-85) $) 30 T ELT)) (-2899 (((-85) $) 21 (|has| |#1| (-495)) ELT)) (-3692 (((-85) |#4| $) 106 T ELT) (((-85) $) 102 T ELT)) (-3687 ((|#4| |#4| $) 97 T ELT)) (-2909 (((-2 (|:| |under| $) (|:| -3130 $) (|:| |upper| $)) $ |#3|) 31 T ELT)) (-3709 (($ (-1 (-85) |#4|) $) 66 (|has| $ (-6 -3994)) ELT) (((-3 |#4| "failed") $ |#3|) 84 T ELT)) (-3723 (($) 46 T CONST)) (-2904 (((-85) $) 26 (|has| |#1| (-495)) ELT)) (-2906 (((-85) $ $) 28 (|has| |#1| (-495)) ELT)) (-2905 (((-85) $ $) 27 (|has| |#1| (-495)) ELT)) (-2907 (((-85) $) 29 (|has| |#1| (-495)) ELT)) (-3688 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 98 T ELT)) (-2900 (((-583 |#4|) (-583 |#4|) $) 22 (|has| |#1| (-495)) ELT)) (-2901 (((-583 |#4|) (-583 |#4|) $) 23 (|has| |#1| (-495)) ELT)) (-3157 (((-3 $ "failed") (-583 |#4|)) 40 T ELT)) (-3156 (($ (-583 |#4|)) 39 T ELT)) (-3798 (((-3 $ "failed") $) 87 T ELT)) (-3684 ((|#4| |#4| $) 94 T ELT)) (-1352 (($ $) 69 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -3994))) ELT)) (-3405 (($ |#4| $) 68 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -3994))) ELT) (($ (-1 (-85) |#4|) $) 65 (|has| $ (-6 -3994)) ELT)) (-2902 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 24 (|has| |#1| (-495)) ELT)) (-3693 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) 107 T ELT)) (-3682 ((|#4| |#4| $) 92 T ELT)) (-3841 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -3994))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -3994)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -3994)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 99 T ELT)) (-3695 (((-2 (|:| -3860 (-583 |#4|)) (|:| -1701 (-583 |#4|))) $) 110 T ELT)) (-2889 (((-583 |#4|) $) 53 (|has| $ (-6 -3994)) ELT)) (-3694 (((-85) |#4| $) 109 T ELT) (((-85) $) 108 T ELT)) (-3180 ((|#3| $) 38 T ELT)) (-2608 (((-583 |#4|) $) 54 (|has| $ (-6 -3994)) ELT)) (-3245 (((-85) |#4| $) 56 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -3994))) ELT)) (-1948 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-2914 (((-583 |#3|) $) 36 T ELT)) (-2913 (((-85) |#3| $) 35 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3797 (((-3 |#4| "failed") $) 88 T ELT)) (-3696 (((-583 |#4|) $) 112 T ELT)) (-3690 (((-85) |#4| $) 104 T ELT) (((-85) $) 100 T ELT)) (-3685 ((|#4| |#4| $) 95 T ELT)) (-3698 (((-85) $ $) 115 T ELT)) (-2903 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-495)) ELT)) (-3691 (((-85) |#4| $) 105 T ELT) (((-85) $) 101 T ELT)) (-3686 ((|#4| |#4| $) 96 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3800 (((-3 |#4| "failed") $) 89 T ELT)) (-1353 (((-3 |#4| "failed") (-1 (-85) |#4|) $) 62 T ELT)) (-3678 (((-3 $ "failed") $ |#4|) 83 T ELT)) (-3768 (($ $ |#4|) 82 T ELT)) (-1946 (((-85) (-1 (-85) |#4|) $) 51 (|has| $ (-6 -3994)) ELT)) (-3767 (($ $ (-583 |#4|) (-583 |#4|)) 60 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-249 |#4|)) 58 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-583 (-249 |#4|))) 57 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT)) (-1221 (((-85) $ $) 42 T ELT)) (-3402 (((-85) $) 45 T ELT)) (-3564 (($) 44 T ELT)) (-3947 (((-694) $) 111 T ELT)) (-1945 (((-694) |#4| $) 55 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -3994))) ELT) (((-694) (-1 (-85) |#4|) $) 52 (|has| $ (-6 -3994)) ELT)) (-3399 (($ $) 43 T ELT)) (-3971 (((-473) $) 70 (|has| |#4| (-553 (-473))) ELT)) (-3529 (($ (-583 |#4|)) 61 T ELT)) (-2910 (($ $ |#3|) 32 T ELT)) (-2912 (($ $ |#3|) 34 T ELT)) (-3683 (($ $) 93 T ELT)) (-2911 (($ $ |#3|) 33 T ELT)) (-3945 (((-772) $) 13 T ELT) (((-583 |#4|) $) 41 T ELT)) (-3677 (((-694) $) 81 (|has| |#3| (-319)) ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-3697 (((-3 (-2 (|:| |bas| $) (|:| -3323 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-85) |#4| |#4|)) 114 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3323 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) 113 T ELT)) (-3689 (((-85) $ (-1 (-85) |#4| (-583 |#4|))) 103 T ELT)) (-1947 (((-85) (-1 (-85) |#4|) $) 50 (|has| $ (-6 -3994)) ELT)) (-3679 (((-583 |#3|) $) 86 T ELT)) (-3932 (((-85) |#3| $) 85 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-3956 (((-694) $) 47 (|has| $ (-6 -3994)) ELT))) +(((-1123 |#1| |#2| |#3| |#4|) (-113) (-495) (-717) (-756) (-977 |t#1| |t#2| |t#3|)) (T -1123)) +((-3698 (*1 *2 *1 *1) (-12 (-4 *1 (-1123 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-85)))) (-3697 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-85) *8 *8)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-495)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3323 (-583 *8)))) (-5 *3 (-583 *8)) (-4 *1 (-1123 *5 *6 *7 *8)))) (-3697 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-85) *9)) (-5 *5 (-1 (-85) *9 *9)) (-4 *9 (-977 *6 *7 *8)) (-4 *6 (-495)) (-4 *7 (-717)) (-4 *8 (-756)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3323 (-583 *9)))) (-5 *3 (-583 *9)) (-4 *1 (-1123 *6 *7 *8 *9)))) (-3696 (*1 *2 *1) (-12 (-4 *1 (-1123 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-583 *6)))) (-3947 (*1 *2 *1) (-12 (-4 *1 (-1123 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-694)))) (-3695 (*1 *2 *1) (-12 (-4 *1 (-1123 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-2 (|:| -3860 (-583 *6)) (|:| -1701 (-583 *6)))))) (-3694 (*1 *2 *3 *1) (-12 (-4 *1 (-1123 *4 *5 *6 *3)) (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-85)))) (-3694 (*1 *2 *1) (-12 (-4 *1 (-1123 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-85)))) (-3693 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-85) *3 *3)) (-4 *1 (-1123 *5 *6 *7 *3)) (-4 *5 (-495)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-85)))) (-3692 (*1 *2 *3 *1) (-12 (-4 *1 (-1123 *4 *5 *6 *3)) (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-85)))) (-3691 (*1 *2 *3 *1) (-12 (-4 *1 (-1123 *4 *5 *6 *3)) (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-85)))) (-3690 (*1 *2 *3 *1) (-12 (-4 *1 (-1123 *4 *5 *6 *3)) (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-85)))) (-3689 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-85) *7 (-583 *7))) (-4 *1 (-1123 *4 *5 *6 *7)) (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-85)))) (-3692 (*1 *2 *1) (-12 (-4 *1 (-1123 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-85)))) (-3691 (*1 *2 *1) (-12 (-4 *1 (-1123 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-85)))) (-3690 (*1 *2 *1) (-12 (-4 *1 (-1123 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-85)))) (-3841 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-85) *2 *2)) (-4 *1 (-1123 *5 *6 *7 *2)) (-4 *5 (-495)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *2 (-977 *5 *6 *7)))) (-3688 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-583 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-85) *8 *8)) (-4 *1 (-1123 *5 *6 *7 *8)) (-4 *5 (-495)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *8 (-977 *5 *6 *7)))) (-3687 (*1 *2 *2 *1) (-12 (-4 *1 (-1123 *3 *4 *5 *2)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *2 (-977 *3 *4 *5)))) (-3686 (*1 *2 *2 *1) (-12 (-4 *1 (-1123 *3 *4 *5 *2)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *2 (-977 *3 *4 *5)))) (-3685 (*1 *2 *2 *1) (-12 (-4 *1 (-1123 *3 *4 *5 *2)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *2 (-977 *3 *4 *5)))) (-3684 (*1 *2 *2 *1) (-12 (-4 *1 (-1123 *3 *4 *5 *2)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *2 (-977 *3 *4 *5)))) (-3683 (*1 *1 *1) (-12 (-4 *1 (-1123 *2 *3 *4 *5)) (-4 *2 (-495)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *5 (-977 *2 *3 *4)))) (-3682 (*1 *2 *2 *1) (-12 (-4 *1 (-1123 *3 *4 *5 *2)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *2 (-977 *3 *4 *5)))) (-3681 (*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-583 *1)) (-4 *1 (-1123 *4 *5 *6 *7)))) (-3680 (*1 *2 *3) (-12 (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-583 (-2 (|:| -3860 *1) (|:| -1701 (-583 *7))))) (-5 *3 (-583 *7)) (-4 *1 (-1123 *4 *5 *6 *7)))) (-3800 (*1 *2 *1) (|partial| -12 (-4 *1 (-1123 *3 *4 *5 *2)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *2 (-977 *3 *4 *5)))) (-3797 (*1 *2 *1) (|partial| -12 (-4 *1 (-1123 *3 *4 *5 *2)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *2 (-977 *3 *4 *5)))) (-3798 (*1 *1 *1) (|partial| -12 (-4 *1 (-1123 *2 *3 *4 *5)) (-4 *2 (-495)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *5 (-977 *2 *3 *4)))) (-3679 (*1 *2 *1) (-12 (-4 *1 (-1123 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-583 *5)))) (-3932 (*1 *2 *3 *1) (-12 (-4 *1 (-1123 *4 *5 *3 *6)) (-4 *4 (-495)) (-4 *5 (-717)) (-4 *3 (-756)) (-4 *6 (-977 *4 *5 *3)) (-5 *2 (-85)))) (-3709 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1123 *4 *5 *3 *2)) (-4 *4 (-495)) (-4 *5 (-717)) (-4 *3 (-756)) (-4 *2 (-977 *4 *5 *3)))) (-3678 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1123 *3 *4 *5 *2)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *2 (-977 *3 *4 *5)))) (-3768 (*1 *1 *1 *2) (-12 (-4 *1 (-1123 *3 *4 *5 *2)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *2 (-977 *3 *4 *5)))) (-3677 (*1 *2 *1) (-12 (-4 *1 (-1123 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-4 *5 (-319)) (-5 *2 (-694))))) +(-13 (-889 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -3994) (-6 -3995) (-15 -3698 ((-85) $ $)) (-15 -3697 ((-3 (-2 (|:| |bas| $) (|:| -3323 (-583 |t#4|))) "failed") (-583 |t#4|) (-1 (-85) |t#4| |t#4|))) (-15 -3697 ((-3 (-2 (|:| |bas| $) (|:| -3323 (-583 |t#4|))) "failed") (-583 |t#4|) (-1 (-85) |t#4|) (-1 (-85) |t#4| |t#4|))) (-15 -3696 ((-583 |t#4|) $)) (-15 -3947 ((-694) $)) (-15 -3695 ((-2 (|:| -3860 (-583 |t#4|)) (|:| -1701 (-583 |t#4|))) $)) (-15 -3694 ((-85) |t#4| $)) (-15 -3694 ((-85) $)) (-15 -3693 ((-85) |t#4| $ (-1 (-85) |t#4| |t#4|))) (-15 -3692 ((-85) |t#4| $)) (-15 -3691 ((-85) |t#4| $)) (-15 -3690 ((-85) |t#4| $)) (-15 -3689 ((-85) $ (-1 (-85) |t#4| (-583 |t#4|)))) (-15 -3692 ((-85) $)) (-15 -3691 ((-85) $)) (-15 -3690 ((-85) $)) (-15 -3841 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-85) |t#4| |t#4|))) (-15 -3688 ((-583 |t#4|) (-583 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-85) |t#4| |t#4|))) (-15 -3687 (|t#4| |t#4| $)) (-15 -3686 (|t#4| |t#4| $)) (-15 -3685 (|t#4| |t#4| $)) (-15 -3684 (|t#4| |t#4| $)) (-15 -3683 ($ $)) (-15 -3682 (|t#4| |t#4| $)) (-15 -3681 ((-583 $) (-583 |t#4|))) (-15 -3680 ((-583 (-2 (|:| -3860 $) (|:| -1701 (-583 |t#4|)))) (-583 |t#4|))) (-15 -3800 ((-3 |t#4| "failed") $)) (-15 -3797 ((-3 |t#4| "failed") $)) (-15 -3798 ((-3 $ "failed") $)) (-15 -3679 ((-583 |t#3|) $)) (-15 -3932 ((-85) |t#3| $)) (-15 -3709 ((-3 |t#4| "failed") $ |t#3|)) (-15 -3678 ((-3 $ "failed") $ |t#4|)) (-15 -3768 ($ $ |t#4|)) (IF (|has| |t#3| (-319)) (-15 -3677 ((-694) $)) |%noBranch|))) +(((-34) . T) ((-72) . T) ((-552 (-583 |#4|)) . T) ((-552 (-772)) . T) ((-124 |#4|) . T) ((-553 (-473)) |has| |#4| (-553 (-473))) ((-260 |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ((-428 |#4|) . T) ((-455 |#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ((-13) . T) ((-889 |#1| |#2| |#3| |#4|) . T) ((-1013) . T) ((-1128) . T)) +((-3704 (($ |#1| (-583 (-583 (-854 (-179)))) (-85)) 19 T ELT)) (-3703 (((-85) $ (-85)) 18 T ELT)) (-3702 (((-85) $) 17 T ELT)) (-3700 (((-583 (-583 (-854 (-179)))) $) 13 T ELT)) (-3699 ((|#1| $) 8 T ELT)) (-3701 (((-85) $) 15 T ELT))) +(((-1124 |#1|) (-10 -8 (-15 -3699 (|#1| $)) (-15 -3700 ((-583 (-583 (-854 (-179)))) $)) (-15 -3701 ((-85) $)) (-15 -3702 ((-85) $)) (-15 -3703 ((-85) $ (-85))) (-15 -3704 ($ |#1| (-583 (-583 (-854 (-179)))) (-85)))) (-887)) (T -1124)) +((-3704 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-583 (-583 (-854 (-179))))) (-5 *4 (-85)) (-5 *1 (-1124 *2)) (-4 *2 (-887)))) (-3703 (*1 *2 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1124 *3)) (-4 *3 (-887)))) (-3702 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1124 *3)) (-4 *3 (-887)))) (-3701 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1124 *3)) (-4 *3 (-887)))) (-3700 (*1 *2 *1) (-12 (-5 *2 (-583 (-583 (-854 (-179))))) (-5 *1 (-1124 *3)) (-4 *3 (-887)))) (-3699 (*1 *2 *1) (-12 (-5 *1 (-1124 *2)) (-4 *2 (-887))))) +((-3706 (((-854 (-179)) (-854 (-179))) 31 T ELT)) (-3705 (((-854 (-179)) (-179) (-179) (-179) (-179)) 10 T ELT)) (-3708 (((-583 (-854 (-179))) (-854 (-179)) (-854 (-179)) (-854 (-179)) (-179) (-583 (-583 (-179)))) 57 T ELT)) (-3835 (((-179) (-854 (-179)) (-854 (-179))) 27 T ELT)) (-3833 (((-854 (-179)) (-854 (-179)) (-854 (-179))) 28 T ELT)) (-3707 (((-583 (-583 (-179))) (-484)) 45 T ELT)) (-3836 (((-854 (-179)) (-854 (-179)) (-854 (-179))) 26 T ELT)) (-3838 (((-854 (-179)) (-854 (-179)) (-854 (-179))) 24 T ELT)) (* (((-854 (-179)) (-179) (-854 (-179))) 22 T ELT))) +(((-1125) (-10 -7 (-15 -3705 ((-854 (-179)) (-179) (-179) (-179) (-179))) (-15 * ((-854 (-179)) (-179) (-854 (-179)))) (-15 -3838 ((-854 (-179)) (-854 (-179)) (-854 (-179)))) (-15 -3836 ((-854 (-179)) (-854 (-179)) (-854 (-179)))) (-15 -3835 ((-179) (-854 (-179)) (-854 (-179)))) (-15 -3833 ((-854 (-179)) (-854 (-179)) (-854 (-179)))) (-15 -3706 ((-854 (-179)) (-854 (-179)))) (-15 -3707 ((-583 (-583 (-179))) (-484))) (-15 -3708 ((-583 (-854 (-179))) (-854 (-179)) (-854 (-179)) (-854 (-179)) (-179) (-583 (-583 (-179))))))) (T -1125)) +((-3708 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-583 (-583 (-179)))) (-5 *4 (-179)) (-5 *2 (-583 (-854 *4))) (-5 *1 (-1125)) (-5 *3 (-854 *4)))) (-3707 (*1 *2 *3) (-12 (-5 *3 (-484)) (-5 *2 (-583 (-583 (-179)))) (-5 *1 (-1125)))) (-3706 (*1 *2 *2) (-12 (-5 *2 (-854 (-179))) (-5 *1 (-1125)))) (-3833 (*1 *2 *2 *2) (-12 (-5 *2 (-854 (-179))) (-5 *1 (-1125)))) (-3835 (*1 *2 *3 *3) (-12 (-5 *3 (-854 (-179))) (-5 *2 (-179)) (-5 *1 (-1125)))) (-3836 (*1 *2 *2 *2) (-12 (-5 *2 (-854 (-179))) (-5 *1 (-1125)))) (-3838 (*1 *2 *2 *2) (-12 (-5 *2 (-854 (-179))) (-5 *1 (-1125)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-854 (-179))) (-5 *3 (-179)) (-5 *1 (-1125)))) (-3705 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-854 (-179))) (-5 *1 (-1125)) (-5 *3 (-179))))) +((-2568 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-3709 ((|#1| $ (-694)) 18 T ELT)) (-3832 (((-694) $) 13 T ELT)) (-3242 (((-1072) $) NIL (|has| |#1| (-1013)) ELT)) (-3243 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-3945 (((-869 |#1|) $) 12 T ELT) (($ (-869 |#1|)) 11 T ELT) (((-772) $) 29 (|has| |#1| (-552 (-772))) ELT)) (-1264 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-3056 (((-85) $ $) 22 (|has| |#1| (-1013)) ELT))) +(((-1126 |#1|) (-13 (-429 (-869 |#1|)) (-10 -8 (-15 -3709 (|#1| $ (-694))) (-15 -3832 ((-694) $)) (IF (|has| |#1| (-552 (-772))) (-6 (-552 (-772))) |%noBranch|) (IF (|has| |#1| (-1013)) (-6 (-1013)) |%noBranch|))) (-1128)) (T -1126)) +((-3709 (*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-5 *1 (-1126 *2)) (-4 *2 (-1128)))) (-3832 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-1126 *3)) (-4 *3 (-1128))))) +((-3712 (((-347 (-1084 (-1084 |#1|))) (-1084 (-1084 |#1|)) (-484)) 92 T ELT)) (-3710 (((-347 (-1084 (-1084 |#1|))) (-1084 (-1084 |#1|))) 84 T ELT)) (-3711 (((-347 (-1084 (-1084 |#1|))) (-1084 (-1084 |#1|))) 68 T ELT))) +(((-1127 |#1|) (-10 -7 (-15 -3710 ((-347 (-1084 (-1084 |#1|))) (-1084 (-1084 |#1|)))) (-15 -3711 ((-347 (-1084 (-1084 |#1|))) (-1084 (-1084 |#1|)))) (-15 -3712 ((-347 (-1084 (-1084 |#1|))) (-1084 (-1084 |#1|)) (-484)))) (-299)) (T -1127)) +((-3712 (*1 *2 *3 *4) (-12 (-5 *4 (-484)) (-4 *5 (-299)) (-5 *2 (-347 (-1084 (-1084 *5)))) (-5 *1 (-1127 *5)) (-5 *3 (-1084 (-1084 *5))))) (-3711 (*1 *2 *3) (-12 (-4 *4 (-299)) (-5 *2 (-347 (-1084 (-1084 *4)))) (-5 *1 (-1127 *4)) (-5 *3 (-1084 (-1084 *4))))) (-3710 (*1 *2 *3) (-12 (-4 *4 (-299)) (-5 *2 (-347 (-1084 (-1084 *4)))) (-5 *1 (-1127 *4)) (-5 *3 (-1084 (-1084 *4)))))) +NIL +(((-1128) (-113)) (T -1128)) NIL (-13) (((-13) . T)) -((-2567 (((-85) $ $) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3944 (((-771) $) 9 T ELT) (($ (-1093)) NIL T ELT) (((-1093) $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-1128) (-994)) (T -1128)) -NIL -((-3715 (((-85)) 18 T ELT)) (-3712 (((-1183) (-582 |#1|) (-582 |#1|)) 22 T ELT) (((-1183) (-582 |#1|)) 23 T ELT)) (-3717 (((-85) |#1| |#1|) 37 (|has| |#1| (-755)) ELT)) (-3714 (((-85) |#1| |#1| (-1 (-85) |#1| |#1|)) 29 T ELT) (((-3 (-85) "failed") |#1| |#1|) 27 T ELT)) (-3716 ((|#1| (-582 |#1|)) 38 (|has| |#1| (-755)) ELT) ((|#1| (-582 |#1|) (-1 (-85) |#1| |#1|)) 32 T ELT)) (-3713 (((-2 (|:| -3228 (-582 |#1|)) (|:| -3227 (-582 |#1|)))) 20 T ELT))) -(((-1129 |#1|) (-10 -7 (-15 -3712 ((-1183) (-582 |#1|))) (-15 -3712 ((-1183) (-582 |#1|) (-582 |#1|))) (-15 -3713 ((-2 (|:| -3228 (-582 |#1|)) (|:| -3227 (-582 |#1|))))) (-15 -3714 ((-3 (-85) "failed") |#1| |#1|)) (-15 -3714 ((-85) |#1| |#1| (-1 (-85) |#1| |#1|))) (-15 -3716 (|#1| (-582 |#1|) (-1 (-85) |#1| |#1|))) (-15 -3715 ((-85))) (IF (|has| |#1| (-755)) (PROGN (-15 -3716 (|#1| (-582 |#1|))) (-15 -3717 ((-85) |#1| |#1|))) |%noBranch|)) (-1012)) (T -1129)) -((-3717 (*1 *2 *3 *3) (-12 (-5 *2 (-85)) (-5 *1 (-1129 *3)) (-4 *3 (-755)) (-4 *3 (-1012)))) (-3716 (*1 *2 *3) (-12 (-5 *3 (-582 *2)) (-4 *2 (-1012)) (-4 *2 (-755)) (-5 *1 (-1129 *2)))) (-3715 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1129 *3)) (-4 *3 (-1012)))) (-3716 (*1 *2 *3 *4) (-12 (-5 *3 (-582 *2)) (-5 *4 (-1 (-85) *2 *2)) (-5 *1 (-1129 *2)) (-4 *2 (-1012)))) (-3714 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-85) *3 *3)) (-4 *3 (-1012)) (-5 *2 (-85)) (-5 *1 (-1129 *3)))) (-3714 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-85)) (-5 *1 (-1129 *3)) (-4 *3 (-1012)))) (-3713 (*1 *2) (-12 (-5 *2 (-2 (|:| -3228 (-582 *3)) (|:| -3227 (-582 *3)))) (-5 *1 (-1129 *3)) (-4 *3 (-1012)))) (-3712 (*1 *2 *3 *3) (-12 (-5 *3 (-582 *4)) (-4 *4 (-1012)) (-5 *2 (-1183)) (-5 *1 (-1129 *4)))) (-3712 (*1 *2 *3) (-12 (-5 *3 (-582 *4)) (-4 *4 (-1012)) (-5 *2 (-1183)) (-5 *1 (-1129 *4))))) -((-3718 (((-1183) (-582 (-1088)) (-582 (-1088))) 14 T ELT) (((-1183) (-582 (-1088))) 12 T ELT)) (-3720 (((-1183)) 16 T ELT)) (-3719 (((-2 (|:| -3227 (-582 (-1088))) (|:| -3228 (-582 (-1088))))) 20 T ELT))) -(((-1130) (-10 -7 (-15 -3718 ((-1183) (-582 (-1088)))) (-15 -3718 ((-1183) (-582 (-1088)) (-582 (-1088)))) (-15 -3719 ((-2 (|:| -3227 (-582 (-1088))) (|:| -3228 (-582 (-1088)))))) (-15 -3720 ((-1183))))) (T -1130)) -((-3720 (*1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-1130)))) (-3719 (*1 *2) (-12 (-5 *2 (-2 (|:| -3227 (-582 (-1088))) (|:| -3228 (-582 (-1088))))) (-5 *1 (-1130)))) (-3718 (*1 *2 *3 *3) (-12 (-5 *3 (-582 (-1088))) (-5 *2 (-1183)) (-5 *1 (-1130)))) (-3718 (*1 *2 *3) (-12 (-5 *3 (-582 (-1088))) (-5 *2 (-1183)) (-5 *1 (-1130))))) -((-3773 (($ $) 17 T ELT)) (-3721 (((-85) $) 27 T ELT))) -(((-1131 |#1|) (-10 -7 (-15 -3773 (|#1| |#1|)) (-15 -3721 ((-85) |#1|))) (-1132)) (T -1131)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-3187 (((-85) $) 22 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3980 $) (|:| |associate| $)) $) 55 T ELT)) (-2062 (($ $) 54 T ELT)) (-2060 (((-85) $) 52 T ELT)) (-1310 (((-3 $ "failed") $ $) 26 T ELT)) (-3773 (($ $) 66 T ELT)) (-3969 (((-346 $) $) 67 T ELT)) (-3722 (($) 23 T CONST)) (-3465 (((-3 $ "failed") $) 42 T ELT)) (-3721 (((-85) $) 68 T ELT)) (-1212 (((-85) $ $) 20 T ELT)) (-2409 (((-85) $) 44 T ELT)) (-1889 (($ $ $) 60 T ELT) (($ (-582 $)) 59 T ELT)) (-3241 (((-1071) $) 11 T ELT)) (-3242 (((-1032) $) 12 T ELT)) (-2707 (((-1083 $) (-1083 $) (-1083 $)) 58 T ELT)) (-3143 (($ $ $) 62 T ELT) (($ (-582 $)) 61 T ELT)) (-3730 (((-346 $) $) 65 T ELT)) (-3464 (((-3 $ "failed") $ $) 56 T ELT)) (-3944 (((-771) $) 13 T ELT) (($ (-483)) 41 T ELT) (($ $) 57 T ELT)) (-3125 (((-693)) 40 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-2061 (((-85) $ $) 53 T ELT)) (-3124 (((-85) $ $) 33 T ELT)) (-2659 (($) 24 T CONST)) (-2665 (($) 45 T CONST)) (-3055 (((-85) $ $) 8 T ELT)) (-3835 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3837 (($ $ $) 18 T ELT)) (** (($ $ (-829)) 35 T ELT) (($ $ (-693)) 43 T ELT)) (* (($ (-829) $) 17 T ELT) (($ (-693) $) 21 T ELT) (($ (-483) $) 30 T ELT) (($ $ $) 34 T ELT))) -(((-1132) (-113)) (T -1132)) -((-3721 (*1 *2 *1) (-12 (-4 *1 (-1132)) (-5 *2 (-85)))) (-3969 (*1 *2 *1) (-12 (-5 *2 (-346 *1)) (-4 *1 (-1132)))) (-3773 (*1 *1 *1) (-4 *1 (-1132))) (-3730 (*1 *2 *1) (-12 (-5 *2 (-346 *1)) (-4 *1 (-1132))))) -(-13 (-390) (-10 -8 (-15 -3721 ((-85) $)) (-15 -3969 ((-346 $) $)) (-15 -3773 ($ $)) (-15 -3730 ((-346 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-554 (-483)) . T) ((-554 $) . T) ((-551 (-771)) . T) ((-146) . T) ((-246) . T) ((-390) . T) ((-494) . T) ((-13) . T) ((-587 (-483)) . T) ((-587 $) . T) ((-589 $) . T) ((-581 $) . T) ((-653 $) . T) ((-662) . T) ((-962 $) . T) ((-967 $) . T) ((-960) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T)) -((-2567 (((-85) $ $) NIL T ELT)) (-2312 (($ $) NIL T ELT)) (-3135 (((-693)) NIL T ELT)) (-3722 (($) NIL T CONST)) (-2993 (($) NIL T ELT)) (-2530 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2856 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2009 (((-829) $) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-2399 (($ (-829)) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3944 (((-771) $) NIL T ELT)) (-3723 (($ $ $) NIL T ELT)) (-3724 (($ $ $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2310 (($ $ $) NIL T ELT)) (-2565 (((-85) $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-2683 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2311 (($ $ $) NIL T ELT))) -(((-1133) (-13 (-751) (-603) (-10 -8 (-15 -3724 ($ $ $)) (-15 -3723 ($ $ $)) (-15 -3722 ($) -3950)))) (T -1133)) -((-3724 (*1 *1 *1 *1) (-5 *1 (-1133))) (-3723 (*1 *1 *1 *1) (-5 *1 (-1133))) (-3722 (*1 *1) (-5 *1 (-1133)))) -((-693) (|%not| (|%ilt| 16 (|%ilength| |#1|)))) -((-2567 (((-85) $ $) NIL T ELT)) (-2312 (($ $) NIL T ELT)) (-3135 (((-693)) NIL T ELT)) (-3722 (($) NIL T CONST)) (-2993 (($) NIL T ELT)) (-2530 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2856 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2009 (((-829) $) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-2399 (($ (-829)) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3944 (((-771) $) NIL T ELT)) (-3723 (($ $ $) NIL T ELT)) (-3724 (($ $ $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2310 (($ $ $) NIL T ELT)) (-2565 (((-85) $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-2683 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2311 (($ $ $) NIL T ELT))) -(((-1134) (-13 (-751) (-603) (-10 -8 (-15 -3724 ($ $ $)) (-15 -3723 ($ $ $)) (-15 -3722 ($) -3950)))) (T -1134)) -((-3724 (*1 *1 *1 *1) (-5 *1 (-1134))) (-3723 (*1 *1 *1 *1) (-5 *1 (-1134))) (-3722 (*1 *1) (-5 *1 (-1134)))) -((-693) (|%not| (|%ilt| 32 (|%ilength| |#1|)))) -((-2567 (((-85) $ $) NIL T ELT)) (-2312 (($ $) NIL T ELT)) (-3135 (((-693)) NIL T ELT)) (-3722 (($) NIL T CONST)) (-2993 (($) NIL T ELT)) (-2530 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2856 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2009 (((-829) $) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-2399 (($ (-829)) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3944 (((-771) $) NIL T ELT)) (-3723 (($ $ $) NIL T ELT)) (-3724 (($ $ $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2310 (($ $ $) NIL T ELT)) (-2565 (((-85) $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-2683 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2311 (($ $ $) NIL T ELT))) -(((-1135) (-13 (-751) (-603) (-10 -8 (-15 -3724 ($ $ $)) (-15 -3723 ($ $ $)) (-15 -3722 ($) -3950)))) (T -1135)) -((-3724 (*1 *1 *1 *1) (-5 *1 (-1135))) (-3723 (*1 *1 *1 *1) (-5 *1 (-1135))) (-3722 (*1 *1) (-5 *1 (-1135)))) -((-693) (|%not| (|%ilt| 64 (|%ilength| |#1|)))) -((-2567 (((-85) $ $) NIL T ELT)) (-2312 (($ $) NIL T ELT)) (-3135 (((-693)) NIL T ELT)) (-3722 (($) NIL T CONST)) (-2993 (($) NIL T ELT)) (-2530 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2856 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2009 (((-829) $) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-2399 (($ (-829)) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3944 (((-771) $) NIL T ELT)) (-3723 (($ $ $) NIL T ELT)) (-3724 (($ $ $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2310 (($ $ $) NIL T ELT)) (-2565 (((-85) $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-2683 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2311 (($ $ $) NIL T ELT))) -(((-1136) (-13 (-751) (-603) (-10 -8 (-15 -3724 ($ $ $)) (-15 -3723 ($ $ $)) (-15 -3722 ($) -3950)))) (T -1136)) -((-3724 (*1 *1 *1 *1) (-5 *1 (-1136))) (-3723 (*1 *1 *1 *1) (-5 *1 (-1136))) (-3722 (*1 *1) (-5 *1 (-1136)))) -((-693) (|%not| (|%ilt| 8 (|%ilength| |#1|)))) -((-2567 (((-85) $ $) NIL T ELT)) (-3187 (((-85) $) NIL T ELT)) (-3128 (((-1167 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-258)) (|has| |#1| (-312))) ELT)) (-3080 (((-582 (-993)) $) NIL T ELT)) (-3829 (((-1088) $) 10 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3980 $) (|:| |associate| $)) $) NIL (OR (-12 (|has| (-1167 |#1| |#2| |#3|) (-739)) (|has| |#1| (-312))) (-12 (|has| (-1167 |#1| |#2| |#3|) (-820)) (|has| |#1| (-312))) (|has| |#1| (-494))) ELT)) (-2062 (($ $) NIL (OR (-12 (|has| (-1167 |#1| |#2| |#3|) (-739)) (|has| |#1| (-312))) (-12 (|has| (-1167 |#1| |#2| |#3|) (-820)) (|has| |#1| (-312))) (|has| |#1| (-494))) ELT)) (-2060 (((-85) $) NIL (OR (-12 (|has| (-1167 |#1| |#2| |#3|) (-739)) (|has| |#1| (-312))) (-12 (|has| (-1167 |#1| |#2| |#3|) (-820)) (|has| |#1| (-312))) (|has| |#1| (-494))) ELT)) (-3769 (($ $ (-483)) NIL T ELT) (($ $ (-483) (-483)) NIL T ELT)) (-3772 (((-1067 (-2 (|:| |k| (-483)) (|:| |c| |#1|))) $) NIL T ELT)) (-3729 (((-1167 |#1| |#2| |#3|) $) NIL T ELT)) (-3726 (((-3 (-1167 |#1| |#2| |#3|) #1="failed") $) NIL T ELT)) (-3727 (((-1167 |#1| |#2| |#3|) $) NIL T ELT)) (-3490 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3637 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-1310 (((-3 $ #1#) $ $) NIL T ELT)) (-2706 (((-346 (-1083 $)) (-1083 $)) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-820)) (|has| |#1| (-312))) ELT)) (-3773 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3969 (((-346 $) $) NIL (|has| |#1| (-312)) ELT)) (-3036 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-2703 (((-3 (-582 (-1083 $)) #1#) (-582 (-1083 $)) (-1083 $)) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-820)) (|has| |#1| (-312))) ELT)) (-1606 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3488 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3636 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3621 (((-483) $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-739)) (|has| |#1| (-312))) ELT)) (-3816 (($ (-1067 (-2 (|:| |k| (-483)) (|:| |c| |#1|)))) NIL T ELT)) (-3492 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3635 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3722 (($) NIL T CONST)) (-3156 (((-3 (-1167 |#1| |#2| |#3|) #1#) $) NIL T ELT) (((-3 (-1088) #1#) $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-949 (-1088))) (|has| |#1| (-312))) ELT) (((-3 (-348 (-483)) #1#) $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-949 (-483))) (|has| |#1| (-312))) ELT) (((-3 (-483) #1#) $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-949 (-483))) (|has| |#1| (-312))) ELT)) (-3155 (((-1167 |#1| |#2| |#3|) $) NIL T ELT) (((-1088) $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-949 (-1088))) (|has| |#1| (-312))) ELT) (((-348 (-483)) $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-949 (-483))) (|has| |#1| (-312))) ELT) (((-483) $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-949 (-483))) (|has| |#1| (-312))) ELT)) (-3728 (($ $) NIL T ELT) (($ (-483) $) NIL T ELT)) (-2563 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3957 (($ $) NIL T ELT)) (-2278 (((-629 (-1167 |#1| |#2| |#3|)) (-629 $)) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-629 (-1167 |#1| |#2| |#3|))) (|:| |vec| (-1177 (-1167 |#1| |#2| |#3|)))) (-629 $) (-1177 $)) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-629 $) (-1177 $)) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-579 (-483))) (|has| |#1| (-312))) ELT) (((-629 (-483)) (-629 $)) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-579 (-483))) (|has| |#1| (-312))) ELT)) (-3465 (((-3 $ #1#) $) NIL T ELT)) (-3725 (((-348 (-856 |#1|)) $ (-483)) NIL (|has| |#1| (-494)) ELT) (((-348 (-856 |#1|)) $ (-483) (-483)) NIL (|has| |#1| (-494)) ELT)) (-2993 (($) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-482)) (|has| |#1| (-312))) ELT)) (-2562 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2740 (((-2 (|:| -3952 (-582 $)) (|:| -2408 $)) (-582 $)) NIL (|has| |#1| (-312)) ELT)) (-3721 (((-85) $) NIL (|has| |#1| (-312)) ELT)) (-3185 (((-85) $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-739)) (|has| |#1| (-312))) ELT)) (-2891 (((-85) $) NIL T ELT)) (-3625 (($) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-2795 (((-797 (-328) $) $ (-799 (-328)) (-797 (-328) $)) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-795 (-328))) (|has| |#1| (-312))) ELT) (((-797 (-483) $) $ (-799 (-483)) (-797 (-483) $)) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-795 (-483))) (|has| |#1| (-312))) ELT)) (-3770 (((-483) $) NIL T ELT) (((-483) $ (-483)) NIL T ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-2409 (((-85) $) NIL T ELT)) (-2995 (($ $) NIL (|has| |#1| (-312)) ELT)) (-2997 (((-1167 |#1| |#2| |#3|) $) NIL (|has| |#1| (-312)) ELT)) (-3010 (($ $ (-483)) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3443 (((-631 $) $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-1064)) (|has| |#1| (-312))) ELT)) (-3186 (((-85) $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-739)) (|has| |#1| (-312))) ELT)) (-3775 (($ $ (-829)) NIL T ELT)) (-3813 (($ (-1 |#1| (-483)) $) NIL T ELT)) (-1603 (((-3 (-582 $) #1#) (-582 $) $) NIL (|has| |#1| (-312)) ELT)) (-3935 (((-85) $) NIL T ELT)) (-2892 (($ |#1| (-483)) 18 T ELT) (($ $ (-993) (-483)) NIL T ELT) (($ $ (-582 (-993)) (-582 (-483))) NIL T ELT)) (-2530 (($ $ $) NIL (OR (-12 (|has| (-1167 |#1| |#2| |#3|) (-739)) (|has| |#1| (-312))) (-12 (|has| (-1167 |#1| |#2| |#3|) (-755)) (|has| |#1| (-312)))) ELT)) (-2856 (($ $ $) NIL (OR (-12 (|has| (-1167 |#1| |#2| |#3|) (-739)) (|has| |#1| (-312))) (-12 (|has| (-1167 |#1| |#2| |#3|) (-755)) (|has| |#1| (-312)))) ELT)) (-3956 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 (-1167 |#1| |#2| |#3|) (-1167 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-312)) ELT)) (-3940 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-2279 (((-629 (-1167 |#1| |#2| |#3|)) (-1177 $)) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-629 (-1167 |#1| |#2| |#3|))) (|:| |vec| (-1177 (-1167 |#1| |#2| |#3|)))) (-1177 $) $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-579 (-483))) (|has| |#1| (-312))) ELT) (((-629 (-483)) (-1177 $)) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-579 (-483))) (|has| |#1| (-312))) ELT)) (-2893 (($ $) NIL T ELT)) (-3173 ((|#1| $) NIL T ELT)) (-1889 (($ (-582 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3777 (($ (-483) (-1167 |#1| |#2| |#3|)) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-2483 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3810 (($ $) 27 (|has| |#1| (-38 (-348 (-483)))) ELT) (($ $ (-1088)) NIL (OR (-12 (|has| |#1| (-38 (-348 (-483)))) (|has| |#1| (-29 (-483))) (|has| |#1| (-870)) (|has| |#1| (-1113))) (-12 (|has| |#1| (-38 (-348 (-483)))) (|has| |#1| (-15 -3810 (|#1| |#1| (-1088)))) (|has| |#1| (-15 -3080 ((-582 (-1088)) |#1|))))) ELT) (($ $ (-1174 |#2|)) 28 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3444 (($) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-1064)) (|has| |#1| (-312))) CONST)) (-3242 (((-1032) $) NIL T ELT)) (-2707 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#1| (-312)) ELT)) (-3143 (($ (-582 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3127 (($ $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-258)) (|has| |#1| (-312))) ELT)) (-3129 (((-1167 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-482)) (|has| |#1| (-312))) ELT)) (-2704 (((-346 (-1083 $)) (-1083 $)) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-820)) (|has| |#1| (-312))) ELT)) (-2705 (((-346 (-1083 $)) (-1083 $)) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-820)) (|has| |#1| (-312))) ELT)) (-3730 (((-346 $) $) NIL (|has| |#1| (-312)) ELT)) (-1604 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3767 (($ $ (-483)) NIL T ELT)) (-3464 (((-3 $ #1#) $ $) NIL (OR (-12 (|has| (-1167 |#1| |#2| |#3|) (-739)) (|has| |#1| (-312))) (-12 (|has| (-1167 |#1| |#2| |#3|) (-820)) (|has| |#1| (-312))) (|has| |#1| (-494))) ELT)) (-2739 (((-631 (-582 $)) (-582 $) $) NIL (|has| |#1| (-312)) ELT)) (-3941 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3766 (((-1067 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-483)))) ELT) (($ $ (-1088) (-1167 |#1| |#2| |#3|)) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-454 (-1088) (-1167 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT) (($ $ (-582 (-1088)) (-582 (-1167 |#1| |#2| |#3|))) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-454 (-1088) (-1167 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT) (($ $ (-582 (-249 (-1167 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-260 (-1167 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT) (($ $ (-249 (-1167 |#1| |#2| |#3|))) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-260 (-1167 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT) (($ $ (-1167 |#1| |#2| |#3|) (-1167 |#1| |#2| |#3|)) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-260 (-1167 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT) (($ $ (-582 (-1167 |#1| |#2| |#3|)) (-582 (-1167 |#1| |#2| |#3|))) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-260 (-1167 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT)) (-1605 (((-693) $) NIL (|has| |#1| (-312)) ELT)) (-3798 ((|#1| $ (-483)) NIL T ELT) (($ $ $) NIL (|has| (-483) (-1024)) ELT) (($ $ (-1167 |#1| |#2| |#3|)) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-241 (-1167 |#1| |#2| |#3|) (-1167 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3756 (($ $ (-1 (-1167 |#1| |#2| |#3|) (-1167 |#1| |#2| |#3|)) (-693)) NIL (|has| |#1| (-312)) ELT) (($ $ (-1 (-1167 |#1| |#2| |#3|) (-1167 |#1| |#2| |#3|))) NIL (|has| |#1| (-312)) ELT) (($ $ (-1174 |#2|)) 26 T ELT) (($ $) 25 (OR (-12 (|has| (-1167 |#1| |#2| |#3|) (-190)) (|has| |#1| (-312))) (-12 (|has| (-1167 |#1| |#2| |#3|) (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) ELT) (($ $ (-693)) NIL (OR (-12 (|has| (-1167 |#1| |#2| |#3|) (-190)) (|has| |#1| (-312))) (-12 (|has| (-1167 |#1| |#2| |#3|) (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) ELT) (($ $ (-1088)) NIL (OR (-12 (|has| (-1167 |#1| |#2| |#3|) (-808 (-1088))) (|has| |#1| (-312))) (-12 (|has| (-1167 |#1| |#2| |#3|) (-810 (-1088))) (|has| |#1| (-312))) (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|))))) ELT) (($ $ (-582 (-1088))) NIL (OR (-12 (|has| (-1167 |#1| |#2| |#3|) (-808 (-1088))) (|has| |#1| (-312))) (-12 (|has| (-1167 |#1| |#2| |#3|) (-810 (-1088))) (|has| |#1| (-312))) (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|))))) ELT) (($ $ (-1088) (-693)) NIL (OR (-12 (|has| (-1167 |#1| |#2| |#3|) (-808 (-1088))) (|has| |#1| (-312))) (-12 (|has| (-1167 |#1| |#2| |#3|) (-810 (-1088))) (|has| |#1| (-312))) (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|))))) ELT) (($ $ (-582 (-1088)) (-582 (-693))) NIL (OR (-12 (|has| (-1167 |#1| |#2| |#3|) (-808 (-1088))) (|has| |#1| (-312))) (-12 (|has| (-1167 |#1| |#2| |#3|) (-810 (-1088))) (|has| |#1| (-312))) (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|))))) ELT)) (-2994 (($ $) NIL (|has| |#1| (-312)) ELT)) (-2996 (((-1167 |#1| |#2| |#3|) $) NIL (|has| |#1| (-312)) ELT)) (-3946 (((-483) $) NIL T ELT)) (-3493 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3634 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3491 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3633 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3489 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3632 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3970 (((-472) $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-552 (-472))) (|has| |#1| (-312))) ELT) (((-328) $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-932)) (|has| |#1| (-312))) ELT) (((-179) $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-932)) (|has| |#1| (-312))) ELT) (((-799 (-328)) $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-552 (-799 (-328)))) (|has| |#1| (-312))) ELT) (((-799 (-483)) $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-552 (-799 (-483)))) (|has| |#1| (-312))) ELT)) (-2702 (((-3 (-1177 $) #1#) (-629 $)) NIL (-12 (|has| $ (-118)) (|has| (-1167 |#1| |#2| |#3|) (-820)) (|has| |#1| (-312))) ELT)) (-2890 (($ $) NIL T ELT)) (-3944 (((-771) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT) (($ (-1167 |#1| |#2| |#3|)) NIL T ELT) (($ (-1174 |#2|)) 24 T ELT) (($ (-1088)) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-949 (-1088))) (|has| |#1| (-312))) ELT) (($ $) NIL (OR (-12 (|has| (-1167 |#1| |#2| |#3|) (-739)) (|has| |#1| (-312))) (-12 (|has| (-1167 |#1| |#2| |#3|) (-820)) (|has| |#1| (-312))) (|has| |#1| (-494))) ELT) (($ (-348 (-483))) NIL (OR (-12 (|has| (-1167 |#1| |#2| |#3|) (-949 (-483))) (|has| |#1| (-312))) (|has| |#1| (-38 (-348 (-483))))) ELT)) (-3675 ((|#1| $ (-483)) NIL T ELT)) (-2701 (((-631 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-1167 |#1| |#2| |#3|) (-820)) (|has| |#1| (-312))) (-12 (|has| (-1167 |#1| |#2| |#3|) (-118)) (|has| |#1| (-312))) (|has| |#1| (-118))) ELT)) (-3125 (((-693)) NIL T CONST)) (-3771 ((|#1| $) 11 T ELT)) (-3130 (((-1167 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-482)) (|has| |#1| (-312))) ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3496 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3484 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-2061 (((-85) $ $) NIL (OR (-12 (|has| (-1167 |#1| |#2| |#3|) (-739)) (|has| |#1| (-312))) (-12 (|has| (-1167 |#1| |#2| |#3|) (-820)) (|has| |#1| (-312))) (|has| |#1| (-494))) ELT)) (-3494 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3482 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3498 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3486 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3768 ((|#1| $ (-483)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-483)))) (|has| |#1| (-15 -3944 (|#1| (-1088))))) ELT)) (-3124 (((-85) $ $) NIL T ELT)) (-3499 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3487 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3497 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3485 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3495 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3483 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3381 (($ $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-739)) (|has| |#1| (-312))) ELT)) (-2659 (($) 20 T CONST)) (-2665 (($) 15 T CONST)) (-2668 (($ $ (-1 (-1167 |#1| |#2| |#3|) (-1167 |#1| |#2| |#3|)) (-693)) NIL (|has| |#1| (-312)) ELT) (($ $ (-1 (-1167 |#1| |#2| |#3|) (-1167 |#1| |#2| |#3|))) NIL (|has| |#1| (-312)) ELT) (($ $ (-1174 |#2|)) NIL T ELT) (($ $) NIL (OR (-12 (|has| (-1167 |#1| |#2| |#3|) (-190)) (|has| |#1| (-312))) (-12 (|has| (-1167 |#1| |#2| |#3|) (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) ELT) (($ $ (-693)) NIL (OR (-12 (|has| (-1167 |#1| |#2| |#3|) (-190)) (|has| |#1| (-312))) (-12 (|has| (-1167 |#1| |#2| |#3|) (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) ELT) (($ $ (-1088)) NIL (OR (-12 (|has| (-1167 |#1| |#2| |#3|) (-808 (-1088))) (|has| |#1| (-312))) (-12 (|has| (-1167 |#1| |#2| |#3|) (-810 (-1088))) (|has| |#1| (-312))) (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|))))) ELT) (($ $ (-582 (-1088))) NIL (OR (-12 (|has| (-1167 |#1| |#2| |#3|) (-808 (-1088))) (|has| |#1| (-312))) (-12 (|has| (-1167 |#1| |#2| |#3|) (-810 (-1088))) (|has| |#1| (-312))) (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|))))) ELT) (($ $ (-1088) (-693)) NIL (OR (-12 (|has| (-1167 |#1| |#2| |#3|) (-808 (-1088))) (|has| |#1| (-312))) (-12 (|has| (-1167 |#1| |#2| |#3|) (-810 (-1088))) (|has| |#1| (-312))) (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|))))) ELT) (($ $ (-582 (-1088)) (-582 (-693))) NIL (OR (-12 (|has| (-1167 |#1| |#2| |#3|) (-808 (-1088))) (|has| |#1| (-312))) (-12 (|has| (-1167 |#1| |#2| |#3|) (-810 (-1088))) (|has| |#1| (-312))) (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|))))) ELT)) (-2565 (((-85) $ $) NIL (OR (-12 (|has| (-1167 |#1| |#2| |#3|) (-739)) (|has| |#1| (-312))) (-12 (|has| (-1167 |#1| |#2| |#3|) (-755)) (|has| |#1| (-312)))) ELT)) (-2566 (((-85) $ $) NIL (OR (-12 (|has| (-1167 |#1| |#2| |#3|) (-739)) (|has| |#1| (-312))) (-12 (|has| (-1167 |#1| |#2| |#3|) (-755)) (|has| |#1| (-312)))) ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-2683 (((-85) $ $) NIL (OR (-12 (|has| (-1167 |#1| |#2| |#3|) (-739)) (|has| |#1| (-312))) (-12 (|has| (-1167 |#1| |#2| |#3|) (-755)) (|has| |#1| (-312)))) ELT)) (-2684 (((-85) $ $) NIL (OR (-12 (|has| (-1167 |#1| |#2| |#3|) (-739)) (|has| |#1| (-312))) (-12 (|has| (-1167 |#1| |#2| |#3|) (-755)) (|has| |#1| (-312)))) ELT)) (-3947 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT) (($ (-1167 |#1| |#2| |#3|) (-1167 |#1| |#2| |#3|)) NIL (|has| |#1| (-312)) ELT)) (-3835 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3837 (($ $ $) 22 T ELT)) (** (($ $ (-829)) NIL T ELT) (($ $ (-693)) NIL T ELT) (($ $ (-483)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT) (($ $ (-348 (-483))) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ (-1167 |#1| |#2| |#3|)) NIL (|has| |#1| (-312)) ELT) (($ (-1167 |#1| |#2| |#3|) $) NIL (|has| |#1| (-312)) ELT) (($ (-348 (-483)) $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT) (($ $ (-348 (-483))) NIL (|has| |#1| (-38 (-348 (-483)))) ELT))) -(((-1137 |#1| |#2| |#3|) (-13 (-1141 |#1| (-1167 |#1| |#2| |#3|)) (-805 $ (-1174 |#2|)) (-10 -8 (-15 -3944 ($ (-1174 |#2|))) (IF (|has| |#1| (-38 (-348 (-483)))) (-15 -3810 ($ $ (-1174 |#2|))) |%noBranch|))) (-960) (-1088) |#1|) (T -1137)) -((-3944 (*1 *1 *2) (-12 (-5 *2 (-1174 *4)) (-14 *4 (-1088)) (-5 *1 (-1137 *3 *4 *5)) (-4 *3 (-960)) (-14 *5 *3))) (-3810 (*1 *1 *1 *2) (-12 (-5 *2 (-1174 *4)) (-14 *4 (-1088)) (-5 *1 (-1137 *3 *4 *5)) (-4 *3 (-38 (-348 (-483)))) (-4 *3 (-960)) (-14 *5 *3)))) -((-3956 (((-1137 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1137 |#1| |#3| |#5|)) 23 T ELT))) -(((-1138 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3956 ((-1137 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1137 |#1| |#3| |#5|)))) (-960) (-960) (-1088) (-1088) |#1| |#2|) (T -1138)) -((-3956 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1137 *5 *7 *9)) (-4 *5 (-960)) (-4 *6 (-960)) (-14 *7 (-1088)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1137 *6 *8 *10)) (-5 *1 (-1138 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1088))))) -((-2567 (((-85) $ $) 7 T ELT)) (-3187 (((-85) $) 22 T ELT)) (-3080 (((-582 (-993)) $) 95 T ELT)) (-3829 (((-1088) $) 129 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3980 $) (|:| |associate| $)) $) 71 (|has| |#1| (-494)) ELT)) (-2062 (($ $) 72 (|has| |#1| (-494)) ELT)) (-2060 (((-85) $) 74 (|has| |#1| (-494)) ELT)) (-3769 (($ $ (-483)) 124 T ELT) (($ $ (-483) (-483)) 123 T ELT)) (-3772 (((-1067 (-2 (|:| |k| (-483)) (|:| |c| |#1|))) $) 130 T ELT)) (-3490 (($ $) 163 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3637 (($ $) 146 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-1310 (((-3 $ "failed") $ $) 26 T ELT)) (-3773 (($ $) 190 (|has| |#1| (-312)) ELT)) (-3969 (((-346 $) $) 191 (|has| |#1| (-312)) ELT)) (-3036 (($ $) 145 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-1606 (((-85) $ $) 181 (|has| |#1| (-312)) ELT)) (-3488 (($ $) 162 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3636 (($ $) 147 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3816 (($ (-1067 (-2 (|:| |k| (-483)) (|:| |c| |#1|)))) 201 T ELT)) (-3492 (($ $) 161 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3635 (($ $) 148 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3722 (($) 23 T CONST)) (-2563 (($ $ $) 185 (|has| |#1| (-312)) ELT)) (-3957 (($ $) 80 T ELT)) (-3465 (((-3 $ "failed") $) 42 T ELT)) (-3725 (((-348 (-856 |#1|)) $ (-483)) 199 (|has| |#1| (-494)) ELT) (((-348 (-856 |#1|)) $ (-483) (-483)) 198 (|has| |#1| (-494)) ELT)) (-2562 (($ $ $) 184 (|has| |#1| (-312)) ELT)) (-2740 (((-2 (|:| -3952 (-582 $)) (|:| -2408 $)) (-582 $)) 179 (|has| |#1| (-312)) ELT)) (-3721 (((-85) $) 192 (|has| |#1| (-312)) ELT)) (-2891 (((-85) $) 94 T ELT)) (-3625 (($) 173 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3770 (((-483) $) 126 T ELT) (((-483) $ (-483)) 125 T ELT)) (-1212 (((-85) $ $) 20 T ELT)) (-2409 (((-85) $) 44 T ELT)) (-3010 (($ $ (-483)) 144 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3775 (($ $ (-829)) 127 T ELT)) (-3813 (($ (-1 |#1| (-483)) $) 200 T ELT)) (-1603 (((-3 (-582 $) #1="failed") (-582 $) $) 188 (|has| |#1| (-312)) ELT)) (-3935 (((-85) $) 82 T ELT)) (-2892 (($ |#1| (-483)) 81 T ELT) (($ $ (-993) (-483)) 97 T ELT) (($ $ (-582 (-993)) (-582 (-483))) 96 T ELT)) (-3956 (($ (-1 |#1| |#1|) $) 83 T ELT)) (-3940 (($ $) 170 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-2893 (($ $) 85 T ELT)) (-3173 ((|#1| $) 86 T ELT)) (-1889 (($ (-582 $)) 177 (|has| |#1| (-312)) ELT) (($ $ $) 176 (|has| |#1| (-312)) ELT)) (-3241 (((-1071) $) 11 T ELT)) (-2483 (($ $) 193 (|has| |#1| (-312)) ELT)) (-3810 (($ $) 197 (|has| |#1| (-38 (-348 (-483)))) ELT) (($ $ (-1088)) 196 (OR (-12 (|has| |#1| (-29 (-483))) (|has| |#1| (-870)) (|has| |#1| (-1113)) (|has| |#1| (-38 (-348 (-483))))) (-12 (|has| |#1| (-15 -3080 ((-582 (-1088)) |#1|))) (|has| |#1| (-15 -3810 (|#1| |#1| (-1088)))) (|has| |#1| (-38 (-348 (-483)))))) ELT)) (-3242 (((-1032) $) 12 T ELT)) (-2707 (((-1083 $) (-1083 $) (-1083 $)) 178 (|has| |#1| (-312)) ELT)) (-3143 (($ (-582 $)) 175 (|has| |#1| (-312)) ELT) (($ $ $) 174 (|has| |#1| (-312)) ELT)) (-3730 (((-346 $) $) 189 (|has| |#1| (-312)) ELT)) (-1604 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 187 (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) 186 (|has| |#1| (-312)) ELT)) (-3767 (($ $ (-483)) 121 T ELT)) (-3464 (((-3 $ "failed") $ $) 70 (|has| |#1| (-494)) ELT)) (-2739 (((-631 (-582 $)) (-582 $) $) 180 (|has| |#1| (-312)) ELT)) (-3941 (($ $) 171 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3766 (((-1067 |#1|) $ |#1|) 120 (|has| |#1| (-15 ** (|#1| |#1| (-483)))) ELT)) (-1605 (((-693) $) 182 (|has| |#1| (-312)) ELT)) (-3798 ((|#1| $ (-483)) 131 T ELT) (($ $ $) 107 (|has| (-483) (-1024)) ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) 183 (|has| |#1| (-312)) ELT)) (-3756 (($ $ (-1088)) 119 (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) ELT) (($ $ (-582 (-1088))) 117 (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) ELT) (($ $ (-1088) (-693)) 116 (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) ELT) (($ $ (-582 (-1088)) (-582 (-693))) 115 (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) ELT) (($ $) 111 (|has| |#1| (-15 * (|#1| (-483) |#1|))) ELT) (($ $ (-693)) 109 (|has| |#1| (-15 * (|#1| (-483) |#1|))) ELT)) (-3946 (((-483) $) 84 T ELT)) (-3493 (($ $) 160 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3634 (($ $) 149 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3491 (($ $) 159 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3633 (($ $) 150 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3489 (($ $) 158 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3632 (($ $) 151 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-2890 (($ $) 93 T ELT)) (-3944 (((-771) $) 13 T ELT) (($ (-483)) 41 T ELT) (($ |#1|) 67 (|has| |#1| (-146)) ELT) (($ (-348 (-483))) 77 (|has| |#1| (-38 (-348 (-483)))) ELT) (($ $) 69 (|has| |#1| (-494)) ELT)) (-3675 ((|#1| $ (-483)) 79 T ELT)) (-2701 (((-631 $) $) 68 (|has| |#1| (-118)) ELT)) (-3125 (((-693)) 40 T CONST)) (-3771 ((|#1| $) 128 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-3496 (($ $) 169 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3484 (($ $) 157 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-2061 (((-85) $ $) 73 (|has| |#1| (-494)) ELT)) (-3494 (($ $) 168 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3482 (($ $) 156 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3498 (($ $) 167 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3486 (($ $) 155 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3768 ((|#1| $ (-483)) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-483)))) (|has| |#1| (-15 -3944 (|#1| (-1088))))) ELT)) (-3124 (((-85) $ $) 33 T ELT)) (-3499 (($ $) 166 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3487 (($ $) 154 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3497 (($ $) 165 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3485 (($ $) 153 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3495 (($ $) 164 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3483 (($ $) 152 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-2659 (($) 24 T CONST)) (-2665 (($) 45 T CONST)) (-2668 (($ $ (-1088)) 118 (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) ELT) (($ $ (-582 (-1088))) 114 (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) ELT) (($ $ (-1088) (-693)) 113 (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) ELT) (($ $ (-582 (-1088)) (-582 (-693))) 112 (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) ELT) (($ $) 110 (|has| |#1| (-15 * (|#1| (-483) |#1|))) ELT) (($ $ (-693)) 108 (|has| |#1| (-15 * (|#1| (-483) |#1|))) ELT)) (-3055 (((-85) $ $) 8 T ELT)) (-3947 (($ $ |#1|) 78 (|has| |#1| (-312)) ELT) (($ $ $) 195 (|has| |#1| (-312)) ELT)) (-3835 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3837 (($ $ $) 18 T ELT)) (** (($ $ (-829)) 35 T ELT) (($ $ (-693)) 43 T ELT) (($ $ (-483)) 194 (|has| |#1| (-312)) ELT) (($ $ $) 172 (|has| |#1| (-38 (-348 (-483)))) ELT) (($ $ (-348 (-483))) 143 (|has| |#1| (-38 (-348 (-483)))) ELT)) (* (($ (-829) $) 17 T ELT) (($ (-693) $) 21 T ELT) (($ (-483) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 88 T ELT) (($ |#1| $) 87 T ELT) (($ (-348 (-483)) $) 76 (|has| |#1| (-38 (-348 (-483)))) ELT) (($ $ (-348 (-483))) 75 (|has| |#1| (-38 (-348 (-483)))) ELT))) -(((-1139 |#1|) (-113) (-960)) (T -1139)) -((-3816 (*1 *1 *2) (-12 (-5 *2 (-1067 (-2 (|:| |k| (-483)) (|:| |c| *3)))) (-4 *3 (-960)) (-4 *1 (-1139 *3)))) (-3813 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-483))) (-4 *1 (-1139 *3)) (-4 *3 (-960)))) (-3725 (*1 *2 *1 *3) (-12 (-5 *3 (-483)) (-4 *1 (-1139 *4)) (-4 *4 (-960)) (-4 *4 (-494)) (-5 *2 (-348 (-856 *4))))) (-3725 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-483)) (-4 *1 (-1139 *4)) (-4 *4 (-960)) (-4 *4 (-494)) (-5 *2 (-348 (-856 *4))))) (-3810 (*1 *1 *1) (-12 (-4 *1 (-1139 *2)) (-4 *2 (-960)) (-4 *2 (-38 (-348 (-483)))))) (-3810 (*1 *1 *1 *2) (OR (-12 (-5 *2 (-1088)) (-4 *1 (-1139 *3)) (-4 *3 (-960)) (-12 (-4 *3 (-29 (-483))) (-4 *3 (-870)) (-4 *3 (-1113)) (-4 *3 (-38 (-348 (-483)))))) (-12 (-5 *2 (-1088)) (-4 *1 (-1139 *3)) (-4 *3 (-960)) (-12 (|has| *3 (-15 -3080 ((-582 *2) *3))) (|has| *3 (-15 -3810 (*3 *3 *2))) (-4 *3 (-38 (-348 (-483))))))))) -(-13 (-1156 |t#1| (-483)) (-10 -8 (-15 -3816 ($ (-1067 (-2 (|:| |k| (-483)) (|:| |c| |t#1|))))) (-15 -3813 ($ (-1 |t#1| (-483)) $)) (IF (|has| |t#1| (-494)) (PROGN (-15 -3725 ((-348 (-856 |t#1|)) $ (-483))) (-15 -3725 ((-348 (-856 |t#1|)) $ (-483) (-483)))) |%noBranch|) (IF (|has| |t#1| (-38 (-348 (-483)))) (PROGN (-15 -3810 ($ $)) (IF (|has| |t#1| (-15 -3810 (|t#1| |t#1| (-1088)))) (IF (|has| |t#1| (-15 -3080 ((-582 (-1088)) |t#1|))) (-15 -3810 ($ $ (-1088))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1113)) (IF (|has| |t#1| (-870)) (IF (|has| |t#1| (-29 (-483))) (-15 -3810 ($ $ (-1088))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-914)) (-6 (-1113))) |%noBranch|) (IF (|has| |t#1| (-312)) (-6 (-312)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| (-483)) . T) ((-25) . T) ((-38 (-348 (-483))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-348 (-483))))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) OR (|has| |#1| (-494)) (|has| |#1| (-312))) ((-35) |has| |#1| (-38 (-348 (-483)))) ((-66) |has| |#1| (-38 (-348 (-483)))) ((-72) . T) ((-82 (-348 (-483)) (-348 (-483))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-348 (-483))))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-494)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-554 (-348 (-483))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-348 (-483))))) ((-554 (-483)) . T) ((-554 |#1|) |has| |#1| (-146)) ((-554 $) OR (|has| |#1| (-494)) (|has| |#1| (-312))) ((-551 (-771)) . T) ((-146) OR (|has| |#1| (-494)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-186 $) |has| |#1| (-15 * (|#1| (-483) |#1|))) ((-190) |has| |#1| (-15 * (|#1| (-483) |#1|))) ((-189) |has| |#1| (-15 * (|#1| (-483) |#1|))) ((-201) |has| |#1| (-312)) ((-239) |has| |#1| (-38 (-348 (-483)))) ((-241 (-483) |#1|) . T) ((-241 $ $) |has| (-483) (-1024)) ((-246) OR (|has| |#1| (-494)) (|has| |#1| (-312))) ((-258) |has| |#1| (-312)) ((-312) |has| |#1| (-312)) ((-390) |has| |#1| (-312)) ((-431) |has| |#1| (-38 (-348 (-483)))) ((-494) OR (|has| |#1| (-494)) (|has| |#1| (-312))) ((-13) . T) ((-587 (-348 (-483))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-348 (-483))))) ((-587 (-483)) . T) ((-587 |#1|) . T) ((-587 $) . T) ((-589 (-348 (-483))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-348 (-483))))) ((-589 |#1|) . T) ((-589 $) . T) ((-581 (-348 (-483))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-348 (-483))))) ((-581 |#1|) |has| |#1| (-146)) ((-581 $) OR (|has| |#1| (-494)) (|has| |#1| (-312))) ((-653 (-348 (-483))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-348 (-483))))) ((-653 |#1|) |has| |#1| (-146)) ((-653 $) OR (|has| |#1| (-494)) (|has| |#1| (-312))) ((-662) . T) ((-805 $ (-1088)) -12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) ((-808 (-1088)) -12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) ((-810 (-1088)) -12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) ((-885 |#1| (-483) (-993)) . T) ((-831) |has| |#1| (-312)) ((-914) |has| |#1| (-38 (-348 (-483)))) ((-962 (-348 (-483))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-348 (-483))))) ((-962 |#1|) . T) ((-962 $) OR (|has| |#1| (-494)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-967 (-348 (-483))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-348 (-483))))) ((-967 |#1|) . T) ((-967 $) OR (|has| |#1| (-494)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-960) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1113) |has| |#1| (-38 (-348 (-483)))) ((-1116) |has| |#1| (-38 (-348 (-483)))) ((-1127) . T) ((-1132) |has| |#1| (-312)) ((-1156 |#1| (-483)) . T)) -((-3187 (((-85) $) 12 T ELT)) (-3156 (((-3 |#3| #1="failed") $) 17 T ELT) (((-3 (-1088) #1#) $) NIL T ELT) (((-3 (-348 (-483)) #1#) $) NIL T ELT) (((-3 (-483) #1#) $) NIL T ELT)) (-3155 ((|#3| $) 14 T ELT) (((-1088) $) NIL T ELT) (((-348 (-483)) $) NIL T ELT) (((-483) $) NIL T ELT))) -(((-1140 |#1| |#2| |#3|) (-10 -7 (-15 -3156 ((-3 (-483) #1="failed") |#1|)) (-15 -3155 ((-483) |#1|)) (-15 -3156 ((-3 (-348 (-483)) #1#) |#1|)) (-15 -3155 ((-348 (-483)) |#1|)) (-15 -3156 ((-3 (-1088) #1#) |#1|)) (-15 -3155 ((-1088) |#1|)) (-15 -3156 ((-3 |#3| #1#) |#1|)) (-15 -3155 (|#3| |#1|)) (-15 -3187 ((-85) |#1|))) (-1141 |#2| |#3|) (-960) (-1170 |#2|)) (T -1140)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-3187 (((-85) $) 22 T ELT)) (-3128 ((|#2| $) 266 (-2561 (|has| |#2| (-258)) (|has| |#1| (-312))) ELT)) (-3080 (((-582 (-993)) $) 95 T ELT)) (-3829 (((-1088) $) 129 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3980 $) (|:| |associate| $)) $) 71 (|has| |#1| (-494)) ELT)) (-2062 (($ $) 72 (|has| |#1| (-494)) ELT)) (-2060 (((-85) $) 74 (|has| |#1| (-494)) ELT)) (-3769 (($ $ (-483)) 124 T ELT) (($ $ (-483) (-483)) 123 T ELT)) (-3772 (((-1067 (-2 (|:| |k| (-483)) (|:| |c| |#1|))) $) 130 T ELT)) (-3729 ((|#2| $) 302 T ELT)) (-3726 (((-3 |#2| "failed") $) 298 T ELT)) (-3727 ((|#2| $) 299 T ELT)) (-3490 (($ $) 163 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3637 (($ $) 146 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-1310 (((-3 $ "failed") $ $) 26 T ELT)) (-2706 (((-346 (-1083 $)) (-1083 $)) 275 (-2561 (|has| |#2| (-820)) (|has| |#1| (-312))) ELT)) (-3773 (($ $) 190 (|has| |#1| (-312)) ELT)) (-3969 (((-346 $) $) 191 (|has| |#1| (-312)) ELT)) (-3036 (($ $) 145 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-2703 (((-3 (-582 (-1083 $)) #1="failed") (-582 (-1083 $)) (-1083 $)) 272 (-2561 (|has| |#2| (-820)) (|has| |#1| (-312))) ELT)) (-1606 (((-85) $ $) 181 (|has| |#1| (-312)) ELT)) (-3488 (($ $) 162 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3636 (($ $) 147 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3621 (((-483) $) 284 (-2561 (|has| |#2| (-739)) (|has| |#1| (-312))) ELT)) (-3816 (($ (-1067 (-2 (|:| |k| (-483)) (|:| |c| |#1|)))) 201 T ELT)) (-3492 (($ $) 161 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3635 (($ $) 148 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3722 (($) 23 T CONST)) (-3156 (((-3 |#2| #2="failed") $) 305 T ELT) (((-3 (-483) #2#) $) 295 (-2561 (|has| |#2| (-949 (-483))) (|has| |#1| (-312))) ELT) (((-3 (-348 (-483)) #2#) $) 293 (-2561 (|has| |#2| (-949 (-483))) (|has| |#1| (-312))) ELT) (((-3 (-1088) #2#) $) 277 (-2561 (|has| |#2| (-949 (-1088))) (|has| |#1| (-312))) ELT)) (-3155 ((|#2| $) 306 T ELT) (((-483) $) 294 (-2561 (|has| |#2| (-949 (-483))) (|has| |#1| (-312))) ELT) (((-348 (-483)) $) 292 (-2561 (|has| |#2| (-949 (-483))) (|has| |#1| (-312))) ELT) (((-1088) $) 276 (-2561 (|has| |#2| (-949 (-1088))) (|has| |#1| (-312))) ELT)) (-3728 (($ $) 301 T ELT) (($ (-483) $) 300 T ELT)) (-2563 (($ $ $) 185 (|has| |#1| (-312)) ELT)) (-3957 (($ $) 80 T ELT)) (-2278 (((-629 |#2|) (-629 $)) 254 (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-629 |#2|)) (|:| |vec| (-1177 |#2|))) (-629 $) (-1177 $)) 253 (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-629 $) (-1177 $)) 252 (-2561 (|has| |#2| (-579 (-483))) (|has| |#1| (-312))) ELT) (((-629 (-483)) (-629 $)) 251 (-2561 (|has| |#2| (-579 (-483))) (|has| |#1| (-312))) ELT)) (-3465 (((-3 $ "failed") $) 42 T ELT)) (-3725 (((-348 (-856 |#1|)) $ (-483)) 199 (|has| |#1| (-494)) ELT) (((-348 (-856 |#1|)) $ (-483) (-483)) 198 (|has| |#1| (-494)) ELT)) (-2993 (($) 268 (-2561 (|has| |#2| (-482)) (|has| |#1| (-312))) ELT)) (-2562 (($ $ $) 184 (|has| |#1| (-312)) ELT)) (-2740 (((-2 (|:| -3952 (-582 $)) (|:| -2408 $)) (-582 $)) 179 (|has| |#1| (-312)) ELT)) (-3721 (((-85) $) 192 (|has| |#1| (-312)) ELT)) (-3185 (((-85) $) 282 (-2561 (|has| |#2| (-739)) (|has| |#1| (-312))) ELT)) (-2891 (((-85) $) 94 T ELT)) (-3625 (($) 173 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-2795 (((-797 (-328) $) $ (-799 (-328)) (-797 (-328) $)) 260 (-2561 (|has| |#2| (-795 (-328))) (|has| |#1| (-312))) ELT) (((-797 (-483) $) $ (-799 (-483)) (-797 (-483) $)) 259 (-2561 (|has| |#2| (-795 (-483))) (|has| |#1| (-312))) ELT)) (-3770 (((-483) $) 126 T ELT) (((-483) $ (-483)) 125 T ELT)) (-1212 (((-85) $ $) 20 T ELT)) (-2409 (((-85) $) 44 T ELT)) (-2995 (($ $) 264 (|has| |#1| (-312)) ELT)) (-2997 ((|#2| $) 262 (|has| |#1| (-312)) ELT)) (-3010 (($ $ (-483)) 144 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3443 (((-631 $) $) 296 (-2561 (|has| |#2| (-1064)) (|has| |#1| (-312))) ELT)) (-3186 (((-85) $) 283 (-2561 (|has| |#2| (-739)) (|has| |#1| (-312))) ELT)) (-3775 (($ $ (-829)) 127 T ELT)) (-3813 (($ (-1 |#1| (-483)) $) 200 T ELT)) (-1603 (((-3 (-582 $) #3="failed") (-582 $) $) 188 (|has| |#1| (-312)) ELT)) (-3935 (((-85) $) 82 T ELT)) (-2892 (($ |#1| (-483)) 81 T ELT) (($ $ (-993) (-483)) 97 T ELT) (($ $ (-582 (-993)) (-582 (-483))) 96 T ELT)) (-2530 (($ $ $) 291 (-2561 (|has| |#2| (-755)) (|has| |#1| (-312))) ELT)) (-2856 (($ $ $) 290 (-2561 (|has| |#2| (-755)) (|has| |#1| (-312))) ELT)) (-3956 (($ (-1 |#1| |#1|) $) 83 T ELT) (($ (-1 |#2| |#2|) $) 244 (|has| |#1| (-312)) ELT)) (-3940 (($ $) 170 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-2279 (((-629 |#2|) (-1177 $)) 256 (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-629 |#2|)) (|:| |vec| (-1177 |#2|))) (-1177 $) $) 255 (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) 250 (-2561 (|has| |#2| (-579 (-483))) (|has| |#1| (-312))) ELT) (((-629 (-483)) (-1177 $)) 249 (-2561 (|has| |#2| (-579 (-483))) (|has| |#1| (-312))) ELT)) (-2893 (($ $) 85 T ELT)) (-3173 ((|#1| $) 86 T ELT)) (-1889 (($ (-582 $)) 177 (|has| |#1| (-312)) ELT) (($ $ $) 176 (|has| |#1| (-312)) ELT)) (-3777 (($ (-483) |#2|) 303 T ELT)) (-3241 (((-1071) $) 11 T ELT)) (-2483 (($ $) 193 (|has| |#1| (-312)) ELT)) (-3810 (($ $) 197 (|has| |#1| (-38 (-348 (-483)))) ELT) (($ $ (-1088)) 196 (OR (-12 (|has| |#1| (-29 (-483))) (|has| |#1| (-870)) (|has| |#1| (-1113)) (|has| |#1| (-38 (-348 (-483))))) (-12 (|has| |#1| (-15 -3080 ((-582 (-1088)) |#1|))) (|has| |#1| (-15 -3810 (|#1| |#1| (-1088)))) (|has| |#1| (-38 (-348 (-483)))))) ELT)) (-3444 (($) 297 (-2561 (|has| |#2| (-1064)) (|has| |#1| (-312))) CONST)) (-3242 (((-1032) $) 12 T ELT)) (-2707 (((-1083 $) (-1083 $) (-1083 $)) 178 (|has| |#1| (-312)) ELT)) (-3143 (($ (-582 $)) 175 (|has| |#1| (-312)) ELT) (($ $ $) 174 (|has| |#1| (-312)) ELT)) (-3127 (($ $) 267 (-2561 (|has| |#2| (-258)) (|has| |#1| (-312))) ELT)) (-3129 ((|#2| $) 270 (-2561 (|has| |#2| (-482)) (|has| |#1| (-312))) ELT)) (-2704 (((-346 (-1083 $)) (-1083 $)) 273 (-2561 (|has| |#2| (-820)) (|has| |#1| (-312))) ELT)) (-2705 (((-346 (-1083 $)) (-1083 $)) 274 (-2561 (|has| |#2| (-820)) (|has| |#1| (-312))) ELT)) (-3730 (((-346 $) $) 189 (|has| |#1| (-312)) ELT)) (-1604 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 187 (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) 186 (|has| |#1| (-312)) ELT)) (-3767 (($ $ (-483)) 121 T ELT)) (-3464 (((-3 $ "failed") $ $) 70 (|has| |#1| (-494)) ELT)) (-2739 (((-631 (-582 $)) (-582 $) $) 180 (|has| |#1| (-312)) ELT)) (-3941 (($ $) 171 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3766 (((-1067 |#1|) $ |#1|) 120 (|has| |#1| (-15 ** (|#1| |#1| (-483)))) ELT) (($ $ (-1088) |#2|) 243 (-2561 (|has| |#2| (-454 (-1088) |#2|)) (|has| |#1| (-312))) ELT) (($ $ (-582 (-1088)) (-582 |#2|)) 242 (-2561 (|has| |#2| (-454 (-1088) |#2|)) (|has| |#1| (-312))) ELT) (($ $ (-582 (-249 |#2|))) 241 (-2561 (|has| |#2| (-260 |#2|)) (|has| |#1| (-312))) ELT) (($ $ (-249 |#2|)) 240 (-2561 (|has| |#2| (-260 |#2|)) (|has| |#1| (-312))) ELT) (($ $ |#2| |#2|) 239 (-2561 (|has| |#2| (-260 |#2|)) (|has| |#1| (-312))) ELT) (($ $ (-582 |#2|) (-582 |#2|)) 238 (-2561 (|has| |#2| (-260 |#2|)) (|has| |#1| (-312))) ELT)) (-1605 (((-693) $) 182 (|has| |#1| (-312)) ELT)) (-3798 ((|#1| $ (-483)) 131 T ELT) (($ $ $) 107 (|has| (-483) (-1024)) ELT) (($ $ |#2|) 237 (-2561 (|has| |#2| (-241 |#2| |#2|)) (|has| |#1| (-312))) ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) 183 (|has| |#1| (-312)) ELT)) (-3756 (($ $ (-1 |#2| |#2|) (-693)) 246 (|has| |#1| (-312)) ELT) (($ $ (-1 |#2| |#2|)) 245 (|has| |#1| (-312)) ELT) (($ $) 111 (OR (-2561 (|has| |#2| (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) ELT) (($ $ (-693)) 109 (OR (-2561 (|has| |#2| (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) ELT) (($ $ (-1088)) 119 (OR (-2561 (|has| |#2| (-810 (-1088))) (|has| |#1| (-312))) (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|))))) ELT) (($ $ (-582 (-1088))) 117 (OR (-2561 (|has| |#2| (-810 (-1088))) (|has| |#1| (-312))) (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|))))) ELT) (($ $ (-1088) (-693)) 116 (OR (-2561 (|has| |#2| (-810 (-1088))) (|has| |#1| (-312))) (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|))))) ELT) (($ $ (-582 (-1088)) (-582 (-693))) 115 (OR (-2561 (|has| |#2| (-810 (-1088))) (|has| |#1| (-312))) (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|))))) ELT)) (-2994 (($ $) 265 (|has| |#1| (-312)) ELT)) (-2996 ((|#2| $) 263 (|has| |#1| (-312)) ELT)) (-3946 (((-483) $) 84 T ELT)) (-3493 (($ $) 160 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3634 (($ $) 149 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3491 (($ $) 159 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3633 (($ $) 150 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3489 (($ $) 158 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3632 (($ $) 151 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3970 (((-179) $) 281 (-2561 (|has| |#2| (-932)) (|has| |#1| (-312))) ELT) (((-328) $) 280 (-2561 (|has| |#2| (-932)) (|has| |#1| (-312))) ELT) (((-472) $) 279 (-2561 (|has| |#2| (-552 (-472))) (|has| |#1| (-312))) ELT) (((-799 (-328)) $) 258 (-2561 (|has| |#2| (-552 (-799 (-328)))) (|has| |#1| (-312))) ELT) (((-799 (-483)) $) 257 (-2561 (|has| |#2| (-552 (-799 (-483)))) (|has| |#1| (-312))) ELT)) (-2702 (((-3 (-1177 $) #1#) (-629 $)) 271 (-2561 (-2561 (|has| $ (-118)) (|has| |#2| (-820))) (|has| |#1| (-312))) ELT)) (-2890 (($ $) 93 T ELT)) (-3944 (((-771) $) 13 T ELT) (($ (-483)) 41 T ELT) (($ |#1|) 67 (|has| |#1| (-146)) ELT) (($ |#2|) 304 T ELT) (($ (-1088)) 278 (-2561 (|has| |#2| (-949 (-1088))) (|has| |#1| (-312))) ELT) (($ (-348 (-483))) 77 (|has| |#1| (-38 (-348 (-483)))) ELT) (($ $) 69 (|has| |#1| (-494)) ELT)) (-3675 ((|#1| $ (-483)) 79 T ELT)) (-2701 (((-631 $) $) 68 (OR (-2561 (OR (|has| |#2| (-118)) (-2561 (|has| $ (-118)) (|has| |#2| (-820)))) (|has| |#1| (-312))) (|has| |#1| (-118))) ELT)) (-3125 (((-693)) 40 T CONST)) (-3771 ((|#1| $) 128 T ELT)) (-3130 ((|#2| $) 269 (-2561 (|has| |#2| (-482)) (|has| |#1| (-312))) ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-3496 (($ $) 169 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3484 (($ $) 157 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-2061 (((-85) $ $) 73 (|has| |#1| (-494)) ELT)) (-3494 (($ $) 168 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3482 (($ $) 156 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3498 (($ $) 167 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3486 (($ $) 155 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3768 ((|#1| $ (-483)) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-483)))) (|has| |#1| (-15 -3944 (|#1| (-1088))))) ELT)) (-3124 (((-85) $ $) 33 T ELT)) (-3499 (($ $) 166 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3487 (($ $) 154 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3497 (($ $) 165 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3485 (($ $) 153 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3495 (($ $) 164 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3483 (($ $) 152 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3381 (($ $) 285 (-2561 (|has| |#2| (-739)) (|has| |#1| (-312))) ELT)) (-2659 (($) 24 T CONST)) (-2665 (($) 45 T CONST)) (-2668 (($ $ (-1 |#2| |#2|) (-693)) 248 (|has| |#1| (-312)) ELT) (($ $ (-1 |#2| |#2|)) 247 (|has| |#1| (-312)) ELT) (($ $) 110 (OR (-2561 (|has| |#2| (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) ELT) (($ $ (-693)) 108 (OR (-2561 (|has| |#2| (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) ELT) (($ $ (-1088)) 118 (OR (-2561 (|has| |#2| (-810 (-1088))) (|has| |#1| (-312))) (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|))))) ELT) (($ $ (-582 (-1088))) 114 (OR (-2561 (|has| |#2| (-810 (-1088))) (|has| |#1| (-312))) (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|))))) ELT) (($ $ (-1088) (-693)) 113 (OR (-2561 (|has| |#2| (-810 (-1088))) (|has| |#1| (-312))) (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|))))) ELT) (($ $ (-582 (-1088)) (-582 (-693))) 112 (OR (-2561 (|has| |#2| (-810 (-1088))) (|has| |#1| (-312))) (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|))))) ELT)) (-2565 (((-85) $ $) 289 (-2561 (|has| |#2| (-755)) (|has| |#1| (-312))) ELT)) (-2566 (((-85) $ $) 287 (-2561 (|has| |#2| (-755)) (|has| |#1| (-312))) ELT)) (-3055 (((-85) $ $) 8 T ELT)) (-2683 (((-85) $ $) 288 (-2561 (|has| |#2| (-755)) (|has| |#1| (-312))) ELT)) (-2684 (((-85) $ $) 286 (-2561 (|has| |#2| (-755)) (|has| |#1| (-312))) ELT)) (-3947 (($ $ |#1|) 78 (|has| |#1| (-312)) ELT) (($ $ $) 195 (|has| |#1| (-312)) ELT) (($ |#2| |#2|) 261 (|has| |#1| (-312)) ELT)) (-3835 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3837 (($ $ $) 18 T ELT)) (** (($ $ (-829)) 35 T ELT) (($ $ (-693)) 43 T ELT) (($ $ (-483)) 194 (|has| |#1| (-312)) ELT) (($ $ $) 172 (|has| |#1| (-38 (-348 (-483)))) ELT) (($ $ (-348 (-483))) 143 (|has| |#1| (-38 (-348 (-483)))) ELT)) (* (($ (-829) $) 17 T ELT) (($ (-693) $) 21 T ELT) (($ (-483) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 88 T ELT) (($ |#1| $) 87 T ELT) (($ $ |#2|) 236 (|has| |#1| (-312)) ELT) (($ |#2| $) 235 (|has| |#1| (-312)) ELT) (($ (-348 (-483)) $) 76 (|has| |#1| (-38 (-348 (-483)))) ELT) (($ $ (-348 (-483))) 75 (|has| |#1| (-38 (-348 (-483)))) ELT))) -(((-1141 |#1| |#2|) (-113) (-960) (-1170 |t#1|)) (T -1141)) -((-3946 (*1 *2 *1) (-12 (-4 *1 (-1141 *3 *4)) (-4 *3 (-960)) (-4 *4 (-1170 *3)) (-5 *2 (-483)))) (-3777 (*1 *1 *2 *3) (-12 (-5 *2 (-483)) (-4 *4 (-960)) (-4 *1 (-1141 *4 *3)) (-4 *3 (-1170 *4)))) (-3729 (*1 *2 *1) (-12 (-4 *1 (-1141 *3 *2)) (-4 *3 (-960)) (-4 *2 (-1170 *3)))) (-3728 (*1 *1 *1) (-12 (-4 *1 (-1141 *2 *3)) (-4 *2 (-960)) (-4 *3 (-1170 *2)))) (-3728 (*1 *1 *2 *1) (-12 (-5 *2 (-483)) (-4 *1 (-1141 *3 *4)) (-4 *3 (-960)) (-4 *4 (-1170 *3)))) (-3727 (*1 *2 *1) (-12 (-4 *1 (-1141 *3 *2)) (-4 *3 (-960)) (-4 *2 (-1170 *3)))) (-3726 (*1 *2 *1) (|partial| -12 (-4 *1 (-1141 *3 *2)) (-4 *3 (-960)) (-4 *2 (-1170 *3))))) -(-13 (-1139 |t#1|) (-949 |t#2|) (-554 |t#2|) (-10 -8 (-15 -3777 ($ (-483) |t#2|)) (-15 -3946 ((-483) $)) (-15 -3729 (|t#2| $)) (-15 -3728 ($ $)) (-15 -3728 ($ (-483) $)) (-15 -3727 (|t#2| $)) (-15 -3726 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-312)) (-6 (-903 |t#2|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| (-483)) . T) ((-25) . T) ((-38 (-348 (-483))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-348 (-483))))) ((-38 |#1|) |has| |#1| (-146)) ((-38 |#2|) |has| |#1| (-312)) ((-38 $) OR (|has| |#1| (-494)) (|has| |#1| (-312))) ((-35) |has| |#1| (-38 (-348 (-483)))) ((-66) |has| |#1| (-38 (-348 (-483)))) ((-72) . T) ((-82 (-348 (-483)) (-348 (-483))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-348 (-483))))) ((-82 |#1| |#1|) . T) ((-82 |#2| |#2|) |has| |#1| (-312)) ((-82 $ $) OR (|has| |#1| (-494)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-104) . T) ((-118) OR (-12 (|has| |#1| (-312)) (|has| |#2| (-118))) (|has| |#1| (-118))) ((-120) OR (-12 (|has| |#1| (-312)) (|has| |#2| (-739))) (-12 (|has| |#1| (-312)) (|has| |#2| (-120))) (|has| |#1| (-120))) ((-554 (-348 (-483))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-348 (-483))))) ((-554 (-483)) . T) ((-554 (-1088)) -12 (|has| |#1| (-312)) (|has| |#2| (-949 (-1088)))) ((-554 |#1|) |has| |#1| (-146)) ((-554 |#2|) . T) ((-554 $) OR (|has| |#1| (-494)) (|has| |#1| (-312))) ((-551 (-771)) . T) ((-146) OR (|has| |#1| (-494)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-552 (-179)) -12 (|has| |#1| (-312)) (|has| |#2| (-932))) ((-552 (-328)) -12 (|has| |#1| (-312)) (|has| |#2| (-932))) ((-552 (-472)) -12 (|has| |#1| (-312)) (|has| |#2| (-552 (-472)))) ((-552 (-799 (-328))) -12 (|has| |#1| (-312)) (|has| |#2| (-552 (-799 (-328))))) ((-552 (-799 (-483))) -12 (|has| |#1| (-312)) (|has| |#2| (-552 (-799 (-483))))) ((-186 $) OR (|has| |#1| (-15 * (|#1| (-483) |#1|))) (-12 (|has| |#1| (-312)) (|has| |#2| (-189))) (-12 (|has| |#1| (-312)) (|has| |#2| (-190)))) ((-184 |#2|) |has| |#1| (-312)) ((-190) OR (|has| |#1| (-15 * (|#1| (-483) |#1|))) (-12 (|has| |#1| (-312)) (|has| |#2| (-190)))) ((-189) OR (|has| |#1| (-15 * (|#1| (-483) |#1|))) (-12 (|has| |#1| (-312)) (|has| |#2| (-189))) (-12 (|has| |#1| (-312)) (|has| |#2| (-190)))) ((-225 |#2|) |has| |#1| (-312)) ((-201) |has| |#1| (-312)) ((-239) |has| |#1| (-38 (-348 (-483)))) ((-241 (-483) |#1|) . T) ((-241 |#2| $) -12 (|has| |#1| (-312)) (|has| |#2| (-241 |#2| |#2|))) ((-241 $ $) |has| (-483) (-1024)) ((-246) OR (|has| |#1| (-494)) (|has| |#1| (-312))) ((-258) |has| |#1| (-312)) ((-260 |#2|) -12 (|has| |#1| (-312)) (|has| |#2| (-260 |#2|))) ((-312) |has| |#1| (-312)) ((-288 |#2|) |has| |#1| (-312)) ((-327 |#2|) |has| |#1| (-312)) ((-341 |#2|) |has| |#1| (-312)) ((-390) |has| |#1| (-312)) ((-431) |has| |#1| (-38 (-348 (-483)))) ((-454 (-1088) |#2|) -12 (|has| |#1| (-312)) (|has| |#2| (-454 (-1088) |#2|))) ((-454 |#2| |#2|) -12 (|has| |#1| (-312)) (|has| |#2| (-260 |#2|))) ((-494) OR (|has| |#1| (-494)) (|has| |#1| (-312))) ((-13) . T) ((-587 (-348 (-483))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-348 (-483))))) ((-587 (-483)) . T) ((-587 |#1|) . T) ((-587 |#2|) |has| |#1| (-312)) ((-587 $) . T) ((-589 (-348 (-483))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-348 (-483))))) ((-589 (-483)) -12 (|has| |#1| (-312)) (|has| |#2| (-579 (-483)))) ((-589 |#1|) . T) ((-589 |#2|) |has| |#1| (-312)) ((-589 $) . T) ((-581 (-348 (-483))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-348 (-483))))) ((-581 |#1|) |has| |#1| (-146)) ((-581 |#2|) |has| |#1| (-312)) ((-581 $) OR (|has| |#1| (-494)) (|has| |#1| (-312))) ((-579 (-483)) -12 (|has| |#1| (-312)) (|has| |#2| (-579 (-483)))) ((-579 |#2|) |has| |#1| (-312)) ((-653 (-348 (-483))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-348 (-483))))) ((-653 |#1|) |has| |#1| (-146)) ((-653 |#2|) |has| |#1| (-312)) ((-653 $) OR (|has| |#1| (-494)) (|has| |#1| (-312))) ((-662) . T) ((-713) -12 (|has| |#1| (-312)) (|has| |#2| (-739))) ((-715) -12 (|has| |#1| (-312)) (|has| |#2| (-739))) ((-717) -12 (|has| |#1| (-312)) (|has| |#2| (-739))) ((-720) -12 (|has| |#1| (-312)) (|has| |#2| (-739))) ((-739) -12 (|has| |#1| (-312)) (|has| |#2| (-739))) ((-754) -12 (|has| |#1| (-312)) (|has| |#2| (-739))) ((-755) OR (-12 (|has| |#1| (-312)) (|has| |#2| (-755))) (-12 (|has| |#1| (-312)) (|has| |#2| (-739)))) ((-758) OR (-12 (|has| |#1| (-312)) (|has| |#2| (-755))) (-12 (|has| |#1| (-312)) (|has| |#2| (-739)))) ((-805 $ (-1088)) OR (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-810 (-1088)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-808 (-1088))))) ((-808 (-1088)) OR (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-808 (-1088))))) ((-810 (-1088)) OR (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-810 (-1088)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-808 (-1088))))) ((-795 (-328)) -12 (|has| |#1| (-312)) (|has| |#2| (-795 (-328)))) ((-795 (-483)) -12 (|has| |#1| (-312)) (|has| |#2| (-795 (-483)))) ((-793 |#2|) |has| |#1| (-312)) ((-820) -12 (|has| |#1| (-312)) (|has| |#2| (-820))) ((-885 |#1| (-483) (-993)) . T) ((-831) |has| |#1| (-312)) ((-903 |#2|) |has| |#1| (-312)) ((-914) |has| |#1| (-38 (-348 (-483)))) ((-932) -12 (|has| |#1| (-312)) (|has| |#2| (-932))) ((-949 (-348 (-483))) -12 (|has| |#1| (-312)) (|has| |#2| (-949 (-483)))) ((-949 (-483)) -12 (|has| |#1| (-312)) (|has| |#2| (-949 (-483)))) ((-949 (-1088)) -12 (|has| |#1| (-312)) (|has| |#2| (-949 (-1088)))) ((-949 |#2|) . T) ((-962 (-348 (-483))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-348 (-483))))) ((-962 |#1|) . T) ((-962 |#2|) |has| |#1| (-312)) ((-962 $) OR (|has| |#1| (-494)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-967 (-348 (-483))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-348 (-483))))) ((-967 |#1|) . T) ((-967 |#2|) |has| |#1| (-312)) ((-967 $) OR (|has| |#1| (-494)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-960) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1064) -12 (|has| |#1| (-312)) (|has| |#2| (-1064))) ((-1113) |has| |#1| (-38 (-348 (-483)))) ((-1116) |has| |#1| (-38 (-348 (-483)))) ((-1127) . T) ((-1132) |has| |#1| (-312)) ((-1139 |#1|) . T) ((-1156 |#1| (-483)) . T)) -((-2567 (((-85) $ $) NIL T ELT)) (-3187 (((-85) $) 83 T ELT)) (-3128 ((|#2| $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-258))) ELT)) (-3080 (((-582 (-993)) $) NIL T ELT)) (-3829 (((-1088) $) 102 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3980 $) (|:| |associate| $)) $) NIL (|has| |#1| (-494)) ELT)) (-2062 (($ $) NIL (|has| |#1| (-494)) ELT)) (-2060 (((-85) $) NIL (|has| |#1| (-494)) ELT)) (-3769 (($ $ (-483)) 111 T ELT) (($ $ (-483) (-483)) 114 T ELT)) (-3772 (((-1067 (-2 (|:| |k| (-483)) (|:| |c| |#1|))) $) 51 T ELT)) (-3729 ((|#2| $) 11 T ELT)) (-3726 (((-3 |#2| #1="failed") $) 35 T ELT)) (-3727 ((|#2| $) 36 T ELT)) (-3490 (($ $) 208 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3637 (($ $) 184 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-1310 (((-3 $ #1#) $ $) NIL T ELT)) (-2706 (((-346 (-1083 $)) (-1083 $)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-820))) ELT)) (-3773 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3969 (((-346 $) $) NIL (|has| |#1| (-312)) ELT)) (-3036 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-2703 (((-3 (-582 (-1083 $)) #1#) (-582 (-1083 $)) (-1083 $)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-820))) ELT)) (-1606 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3488 (($ $) 204 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3636 (($ $) 180 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3621 (((-483) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-739))) ELT)) (-3816 (($ (-1067 (-2 (|:| |k| (-483)) (|:| |c| |#1|)))) 59 T ELT)) (-3492 (($ $) 212 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3635 (($ $) 188 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3722 (($) NIL T CONST)) (-3156 (((-3 |#2| #1#) $) 159 T ELT) (((-3 (-483) #1#) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-949 (-483)))) ELT) (((-3 (-348 (-483)) #1#) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-949 (-483)))) ELT) (((-3 (-1088) #1#) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-949 (-1088)))) ELT)) (-3155 ((|#2| $) 158 T ELT) (((-483) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-949 (-483)))) ELT) (((-348 (-483)) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-949 (-483)))) ELT) (((-1088) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-949 (-1088)))) ELT)) (-3728 (($ $) 65 T ELT) (($ (-483) $) 28 T ELT)) (-2563 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3957 (($ $) NIL T ELT)) (-2278 (((-629 |#2|) (-629 $)) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-629 |#2|)) (|:| |vec| (-1177 |#2|))) (-629 $) (-1177 $)) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-629 $) (-1177 $)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-579 (-483)))) ELT) (((-629 (-483)) (-629 $)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-579 (-483)))) ELT)) (-3465 (((-3 $ #1#) $) 90 T ELT)) (-3725 (((-348 (-856 |#1|)) $ (-483)) 126 (|has| |#1| (-494)) ELT) (((-348 (-856 |#1|)) $ (-483) (-483)) 128 (|has| |#1| (-494)) ELT)) (-2993 (($) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-482))) ELT)) (-2562 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2740 (((-2 (|:| -3952 (-582 $)) (|:| -2408 $)) (-582 $)) NIL (|has| |#1| (-312)) ELT)) (-3721 (((-85) $) NIL (|has| |#1| (-312)) ELT)) (-3185 (((-85) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-739))) ELT)) (-2891 (((-85) $) 76 T ELT)) (-3625 (($) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-2795 (((-797 (-328) $) $ (-799 (-328)) (-797 (-328) $)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-795 (-328)))) ELT) (((-797 (-483) $) $ (-799 (-483)) (-797 (-483) $)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-795 (-483)))) ELT)) (-3770 (((-483) $) 107 T ELT) (((-483) $ (-483)) 109 T ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-2409 (((-85) $) NIL T ELT)) (-2995 (($ $) NIL (|has| |#1| (-312)) ELT)) (-2997 ((|#2| $) 167 (|has| |#1| (-312)) ELT)) (-3010 (($ $ (-483)) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3443 (((-631 $) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-1064))) ELT)) (-3186 (((-85) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-739))) ELT)) (-3775 (($ $ (-829)) 150 T ELT)) (-3813 (($ (-1 |#1| (-483)) $) 146 T ELT)) (-1603 (((-3 (-582 $) #1#) (-582 $) $) NIL (|has| |#1| (-312)) ELT)) (-3935 (((-85) $) NIL T ELT)) (-2892 (($ |#1| (-483)) 20 T ELT) (($ $ (-993) (-483)) NIL T ELT) (($ $ (-582 (-993)) (-582 (-483))) NIL T ELT)) (-2530 (($ $ $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-755))) ELT)) (-2856 (($ $ $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-755))) ELT)) (-3956 (($ (-1 |#1| |#1|) $) 143 T ELT) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-312)) ELT)) (-3940 (($ $) 178 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-2279 (((-629 |#2|) (-1177 $)) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-629 |#2|)) (|:| |vec| (-1177 |#2|))) (-1177 $) $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-579 (-483)))) ELT) (((-629 (-483)) (-1177 $)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-579 (-483)))) ELT)) (-2893 (($ $) NIL T ELT)) (-3173 ((|#1| $) NIL T ELT)) (-1889 (($ (-582 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3777 (($ (-483) |#2|) 10 T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-2483 (($ $) 161 (|has| |#1| (-312)) ELT)) (-3810 (($ $) 230 (|has| |#1| (-38 (-348 (-483)))) ELT) (($ $ (-1088)) 235 (OR (-12 (|has| |#1| (-38 (-348 (-483)))) (|has| |#1| (-29 (-483))) (|has| |#1| (-870)) (|has| |#1| (-1113))) (-12 (|has| |#1| (-38 (-348 (-483)))) (|has| |#1| (-15 -3810 (|#1| |#1| (-1088)))) (|has| |#1| (-15 -3080 ((-582 (-1088)) |#1|))))) ELT)) (-3444 (($) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-1064))) CONST)) (-3242 (((-1032) $) NIL T ELT)) (-2707 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#1| (-312)) ELT)) (-3143 (($ (-582 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3127 (($ $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-258))) ELT)) (-3129 ((|#2| $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-482))) ELT)) (-2704 (((-346 (-1083 $)) (-1083 $)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-820))) ELT)) (-2705 (((-346 (-1083 $)) (-1083 $)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-820))) ELT)) (-3730 (((-346 $) $) NIL (|has| |#1| (-312)) ELT)) (-1604 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3767 (($ $ (-483)) 140 T ELT)) (-3464 (((-3 $ #1#) $ $) 130 (|has| |#1| (-494)) ELT)) (-2739 (((-631 (-582 $)) (-582 $) $) NIL (|has| |#1| (-312)) ELT)) (-3941 (($ $) 176 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3766 (((-1067 |#1|) $ |#1|) 99 (|has| |#1| (-15 ** (|#1| |#1| (-483)))) ELT) (($ $ (-1088) |#2|) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-454 (-1088) |#2|))) ELT) (($ $ (-582 (-1088)) (-582 |#2|)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-454 (-1088) |#2|))) ELT) (($ $ (-582 (-249 |#2|))) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-260 |#2|))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-260 |#2|))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-260 |#2|))) ELT) (($ $ (-582 |#2|) (-582 |#2|)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-260 |#2|))) ELT)) (-1605 (((-693) $) NIL (|has| |#1| (-312)) ELT)) (-3798 ((|#1| $ (-483)) 105 T ELT) (($ $ $) 92 (|has| (-483) (-1024)) ELT) (($ $ |#2|) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-241 |#2| |#2|))) ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3756 (($ $ (-1 |#2| |#2|) (-693)) NIL (|has| |#1| (-312)) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-312)) ELT) (($ $) 151 (OR (-12 (|has| |#1| (-312)) (|has| |#2| (-189))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) ELT) (($ $ (-693)) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#2| (-189))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) ELT) (($ $ (-1088)) 155 (OR (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-810 (-1088))))) ELT) (($ $ (-582 (-1088))) NIL (OR (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-810 (-1088))))) ELT) (($ $ (-1088) (-693)) NIL (OR (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-810 (-1088))))) ELT) (($ $ (-582 (-1088)) (-582 (-693))) NIL (OR (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-810 (-1088))))) ELT)) (-2994 (($ $) NIL (|has| |#1| (-312)) ELT)) (-2996 ((|#2| $) 168 (|has| |#1| (-312)) ELT)) (-3946 (((-483) $) 12 T ELT)) (-3493 (($ $) 214 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3634 (($ $) 190 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3491 (($ $) 210 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3633 (($ $) 186 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3489 (($ $) 206 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3632 (($ $) 182 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3970 (((-179) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-932))) ELT) (((-328) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-932))) ELT) (((-472) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-552 (-472)))) ELT) (((-799 (-328)) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-552 (-799 (-328))))) ELT) (((-799 (-483)) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-552 (-799 (-483))))) ELT)) (-2702 (((-3 (-1177 $) #1#) (-629 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-312)) (|has| |#2| (-820))) ELT)) (-2890 (($ $) 138 T ELT)) (-3944 (((-771) $) 268 T ELT) (($ (-483)) 24 T ELT) (($ |#1|) 22 (|has| |#1| (-146)) ELT) (($ |#2|) 21 T ELT) (($ (-1088)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-949 (-1088)))) ELT) (($ (-348 (-483))) 171 (|has| |#1| (-38 (-348 (-483)))) ELT) (($ $) NIL (|has| |#1| (-494)) ELT)) (-3675 ((|#1| $ (-483)) 87 T ELT)) (-2701 (((-631 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-312)) (|has| |#2| (-820))) (|has| |#1| (-118)) (-12 (|has| |#1| (-312)) (|has| |#2| (-118)))) ELT)) (-3125 (((-693)) 157 T CONST)) (-3771 ((|#1| $) 104 T ELT)) (-3130 ((|#2| $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-482))) ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3496 (($ $) 220 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3484 (($ $) 196 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-2061 (((-85) $ $) NIL (|has| |#1| (-494)) ELT)) (-3494 (($ $) 216 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3482 (($ $) 192 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3498 (($ $) 224 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3486 (($ $) 200 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3768 ((|#1| $ (-483)) 136 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-483)))) (|has| |#1| (-15 -3944 (|#1| (-1088))))) ELT)) (-3124 (((-85) $ $) NIL T ELT)) (-3499 (($ $) 226 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3487 (($ $) 202 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3497 (($ $) 222 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3485 (($ $) 198 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3495 (($ $) 218 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3483 (($ $) 194 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3381 (($ $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-739))) ELT)) (-2659 (($) 13 T CONST)) (-2665 (($) 18 T CONST)) (-2668 (($ $ (-1 |#2| |#2|) (-693)) NIL (|has| |#1| (-312)) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-312)) ELT) (($ $) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#2| (-189))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) ELT) (($ $ (-693)) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#2| (-189))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) ELT) (($ $ (-1088)) NIL (OR (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-810 (-1088))))) ELT) (($ $ (-582 (-1088))) NIL (OR (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-810 (-1088))))) ELT) (($ $ (-1088) (-693)) NIL (OR (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-810 (-1088))))) ELT) (($ $ (-582 (-1088)) (-582 (-693))) NIL (OR (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-810 (-1088))))) ELT)) (-2565 (((-85) $ $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-755))) ELT)) (-2566 (((-85) $ $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-755))) ELT)) (-3055 (((-85) $ $) 74 T ELT)) (-2683 (((-85) $ $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-755))) ELT)) (-2684 (((-85) $ $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-755))) ELT)) (-3947 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT) (($ $ $) 165 (|has| |#1| (-312)) ELT) (($ |#2| |#2|) 166 (|has| |#1| (-312)) ELT)) (-3835 (($ $) 229 T ELT) (($ $ $) 80 T ELT)) (-3837 (($ $ $) 78 T ELT)) (** (($ $ (-829)) NIL T ELT) (($ $ (-693)) 86 T ELT) (($ $ (-483)) 162 (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT) (($ $ (-348 (-483))) 174 (|has| |#1| (-38 (-348 (-483)))) ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) 81 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 154 T ELT) (($ $ |#2|) 164 (|has| |#1| (-312)) ELT) (($ |#2| $) 163 (|has| |#1| (-312)) ELT) (($ (-348 (-483)) $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT) (($ $ (-348 (-483))) NIL (|has| |#1| (-38 (-348 (-483)))) ELT))) -(((-1142 |#1| |#2|) (-1141 |#1| |#2|) (-960) (-1170 |#1|)) (T -1142)) -NIL -((-3732 (((-2 (|:| |contp| (-483)) (|:| -1777 (-582 (-2 (|:| |irr| |#1|) (|:| -2394 (-483)))))) |#1| (-85)) 13 T ELT)) (-3731 (((-346 |#1|) |#1|) 26 T ELT)) (-3730 (((-346 |#1|) |#1|) 24 T ELT))) -(((-1143 |#1|) (-10 -7 (-15 -3730 ((-346 |#1|) |#1|)) (-15 -3731 ((-346 |#1|) |#1|)) (-15 -3732 ((-2 (|:| |contp| (-483)) (|:| -1777 (-582 (-2 (|:| |irr| |#1|) (|:| -2394 (-483)))))) |#1| (-85)))) (-1153 (-483))) (T -1143)) -((-3732 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-5 *2 (-2 (|:| |contp| (-483)) (|:| -1777 (-582 (-2 (|:| |irr| *3) (|:| -2394 (-483))))))) (-5 *1 (-1143 *3)) (-4 *3 (-1153 (-483))))) (-3731 (*1 *2 *3) (-12 (-5 *2 (-346 *3)) (-5 *1 (-1143 *3)) (-4 *3 (-1153 (-483))))) (-3730 (*1 *2 *3) (-12 (-5 *2 (-346 *3)) (-5 *1 (-1143 *3)) (-4 *3 (-1153 (-483)))))) -((-2567 (((-85) $ $) NIL (|has| |#1| (-1012)) ELT)) (-3734 (($ |#1| |#1|) 11 T ELT) (($ |#1|) 10 T ELT)) (-3956 (((-1067 |#1|) (-1 |#1| |#1|) $) 44 (|has| |#1| (-754)) ELT)) (-3228 ((|#1| $) 15 T ELT)) (-3230 ((|#1| $) 12 T ELT)) (-3241 (((-1071) $) NIL (|has| |#1| (-1012)) ELT)) (-3226 (((-483) $) 19 T ELT)) (-3227 ((|#1| $) 18 T ELT)) (-3229 ((|#1| $) 13 T ELT)) (-3242 (((-1032) $) NIL (|has| |#1| (-1012)) ELT)) (-3733 (((-85) $) 17 T ELT)) (-3961 (((-1067 |#1|) $) 41 (|has| |#1| (-754)) ELT) (((-1067 |#1|) (-582 $)) 40 (|has| |#1| (-754)) ELT)) (-3970 (($ |#1|) 26 T ELT)) (-3944 (($ (-1000 |#1|)) 25 T ELT) (((-771) $) 37 (|has| |#1| (-1012)) ELT)) (-1263 (((-85) $ $) NIL (|has| |#1| (-1012)) ELT)) (-3735 (($ |#1| |#1|) 21 T ELT) (($ |#1|) 20 T ELT)) (-3231 (($ $ (-483)) 14 T ELT)) (-3055 (((-85) $ $) 30 (|has| |#1| (-1012)) ELT))) -(((-1144 |#1|) (-13 (-1005 |#1|) (-10 -8 (-15 -3735 ($ |#1|)) (-15 -3734 ($ |#1|)) (-15 -3944 ($ (-1000 |#1|))) (-15 -3733 ((-85) $)) (IF (|has| |#1| (-1012)) (-6 (-1012)) |%noBranch|) (IF (|has| |#1| (-754)) (-6 (-1006 |#1| (-1067 |#1|))) |%noBranch|))) (-1127)) (T -1144)) -((-3735 (*1 *1 *2) (-12 (-5 *1 (-1144 *2)) (-4 *2 (-1127)))) (-3734 (*1 *1 *2) (-12 (-5 *1 (-1144 *2)) (-4 *2 (-1127)))) (-3944 (*1 *1 *2) (-12 (-5 *2 (-1000 *3)) (-4 *3 (-1127)) (-5 *1 (-1144 *3)))) (-3733 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1144 *3)) (-4 *3 (-1127))))) -((-3956 (((-1067 |#2|) (-1 |#2| |#1|) (-1144 |#1|)) 23 (|has| |#1| (-754)) ELT) (((-1144 |#2|) (-1 |#2| |#1|) (-1144 |#1|)) 17 T ELT))) -(((-1145 |#1| |#2|) (-10 -7 (-15 -3956 ((-1144 |#2|) (-1 |#2| |#1|) (-1144 |#1|))) (IF (|has| |#1| (-754)) (-15 -3956 ((-1067 |#2|) (-1 |#2| |#1|) (-1144 |#1|))) |%noBranch|)) (-1127) (-1127)) (T -1145)) -((-3956 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1144 *5)) (-4 *5 (-754)) (-4 *5 (-1127)) (-4 *6 (-1127)) (-5 *2 (-1067 *6)) (-5 *1 (-1145 *5 *6)))) (-3956 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1144 *5)) (-4 *5 (-1127)) (-4 *6 (-1127)) (-5 *2 (-1144 *6)) (-5 *1 (-1145 *5 *6))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3187 (((-85) $) NIL T ELT)) (-3765 (((-1177 |#2|) $ (-693)) NIL T ELT)) (-3080 (((-582 (-993)) $) NIL T ELT)) (-3763 (($ (-1083 |#2|)) NIL T ELT)) (-3082 (((-1083 $) $ (-993)) NIL T ELT) (((-1083 |#2|) $) NIL T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3980 $) (|:| |associate| $)) $) NIL (|has| |#2| (-494)) ELT)) (-2062 (($ $) NIL (|has| |#2| (-494)) ELT)) (-2060 (((-85) $) NIL (|has| |#2| (-494)) ELT)) (-2818 (((-693) $) NIL T ELT) (((-693) $ (-582 (-993))) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3753 (($ $ $) NIL (|has| |#2| (-494)) ELT)) (-2706 (((-346 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-820)) ELT)) (-3773 (($ $) NIL (|has| |#2| (-390)) ELT)) (-3969 (((-346 $) $) NIL (|has| |#2| (-390)) ELT)) (-2703 (((-3 (-582 (-1083 $)) #1#) (-582 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-820)) ELT)) (-1606 (((-85) $ $) NIL (|has| |#2| (-312)) ELT)) (-3759 (($ $ (-693)) NIL T ELT)) (-3758 (($ $ (-693)) NIL T ELT)) (-3749 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-390)) ELT)) (-3722 (($) NIL T CONST)) (-3156 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-348 (-483)) #1#) $) NIL (|has| |#2| (-949 (-348 (-483)))) ELT) (((-3 (-483) #1#) $) NIL (|has| |#2| (-949 (-483))) ELT) (((-3 (-993) #1#) $) NIL T ELT)) (-3155 ((|#2| $) NIL T ELT) (((-348 (-483)) $) NIL (|has| |#2| (-949 (-348 (-483)))) ELT) (((-483) $) NIL (|has| |#2| (-949 (-483))) ELT) (((-993) $) NIL T ELT)) (-3754 (($ $ $ (-993)) NIL (|has| |#2| (-146)) ELT) ((|#2| $ $) NIL (|has| |#2| (-146)) ELT)) (-2563 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-3957 (($ $) NIL T ELT)) (-2278 (((-629 (-483)) (-629 $)) NIL (|has| |#2| (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-629 $) (-1177 $)) NIL (|has| |#2| (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 |#2|)) (|:| |vec| (-1177 |#2|))) (-629 $) (-1177 $)) NIL T ELT) (((-629 |#2|) (-629 $)) NIL T ELT)) (-3465 (((-3 $ #1#) $) NIL T ELT)) (-2562 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-3757 (($ $ $) NIL T ELT)) (-3751 (($ $ $) NIL (|has| |#2| (-494)) ELT)) (-3750 (((-2 (|:| -3952 |#2|) (|:| -1971 $) (|:| -2901 $)) $ $) NIL (|has| |#2| (-494)) ELT)) (-2740 (((-2 (|:| -3952 (-582 $)) (|:| -2408 $)) (-582 $)) NIL (|has| |#2| (-312)) ELT)) (-3501 (($ $) NIL (|has| |#2| (-390)) ELT) (($ $ (-993)) NIL (|has| |#2| (-390)) ELT)) (-2817 (((-582 $) $) NIL T ELT)) (-3721 (((-85) $) NIL (|has| |#2| (-820)) ELT)) (-1622 (($ $ |#2| (-693) $) NIL T ELT)) (-2795 (((-797 (-328) $) $ (-799 (-328)) (-797 (-328) $)) NIL (-12 (|has| (-993) (-795 (-328))) (|has| |#2| (-795 (-328)))) ELT) (((-797 (-483) $) $ (-799 (-483)) (-797 (-483) $)) NIL (-12 (|has| (-993) (-795 (-483))) (|has| |#2| (-795 (-483)))) ELT)) (-3770 (((-693) $ $) NIL (|has| |#2| (-494)) ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-2409 (((-85) $) NIL T ELT)) (-2419 (((-693) $) NIL T ELT)) (-3443 (((-631 $) $) NIL (|has| |#2| (-1064)) ELT)) (-3083 (($ (-1083 |#2|) (-993)) NIL T ELT) (($ (-1083 $) (-993)) NIL T ELT)) (-3775 (($ $ (-693)) NIL T ELT)) (-1603 (((-3 (-582 $) #1#) (-582 $) $) NIL (|has| |#2| (-312)) ELT)) (-2820 (((-582 $) $) NIL T ELT)) (-3935 (((-85) $) NIL T ELT)) (-2892 (($ |#2| (-693)) 18 T ELT) (($ $ (-993) (-693)) NIL T ELT) (($ $ (-582 (-993)) (-582 (-693))) NIL T ELT)) (-3761 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $ (-993)) NIL T ELT) (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL T ELT)) (-2819 (((-693) $) NIL T ELT) (((-693) $ (-993)) NIL T ELT) (((-582 (-693)) $ (-582 (-993))) NIL T ELT)) (-1623 (($ (-1 (-693) (-693)) $) NIL T ELT)) (-3956 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3764 (((-1083 |#2|) $) NIL T ELT)) (-3081 (((-3 (-993) #1#) $) NIL T ELT)) (-2279 (((-629 (-483)) (-1177 $)) NIL (|has| |#2| (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL (|has| |#2| (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 |#2|)) (|:| |vec| (-1177 |#2|))) (-1177 $) $) NIL T ELT) (((-629 |#2|) (-1177 $)) NIL T ELT)) (-2893 (($ $) NIL T ELT)) (-3173 ((|#2| $) NIL T ELT)) (-1889 (($ (-582 $)) NIL (|has| |#2| (-390)) ELT) (($ $ $) NIL (|has| |#2| (-390)) ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3760 (((-2 (|:| -1971 $) (|:| -2901 $)) $ (-693)) NIL T ELT)) (-2822 (((-3 (-582 $) #1#) $) NIL T ELT)) (-2821 (((-3 (-582 $) #1#) $) NIL T ELT)) (-2823 (((-3 (-2 (|:| |var| (-993)) (|:| -2400 (-693))) #1#) $) NIL T ELT)) (-3810 (($ $) NIL (|has| |#2| (-38 (-348 (-483)))) ELT)) (-3444 (($) NIL (|has| |#2| (-1064)) CONST)) (-3242 (((-1032) $) NIL T ELT)) (-1795 (((-85) $) NIL T ELT)) (-1794 ((|#2| $) NIL T ELT)) (-2707 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#2| (-390)) ELT)) (-3143 (($ (-582 $)) NIL (|has| |#2| (-390)) ELT) (($ $ $) NIL (|has| |#2| (-390)) ELT)) (-3736 (($ $ (-693) |#2| $) NIL T ELT)) (-2704 (((-346 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-820)) ELT)) (-2705 (((-346 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-820)) ELT)) (-3730 (((-346 $) $) NIL (|has| |#2| (-820)) ELT)) (-1604 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#2| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL (|has| |#2| (-312)) ELT)) (-3464 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-494)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-494)) ELT)) (-2739 (((-631 (-582 $)) (-582 $) $) NIL (|has| |#2| (-312)) ELT)) (-3766 (($ $ (-582 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-582 $) (-582 $)) NIL T ELT) (($ $ (-993) |#2|) NIL T ELT) (($ $ (-582 (-993)) (-582 |#2|)) NIL T ELT) (($ $ (-993) $) NIL T ELT) (($ $ (-582 (-993)) (-582 $)) NIL T ELT)) (-1605 (((-693) $) NIL (|has| |#2| (-312)) ELT)) (-3798 ((|#2| $ |#2|) NIL T ELT) (($ $ $) NIL T ELT) (((-348 $) (-348 $) (-348 $)) NIL (|has| |#2| (-494)) ELT) ((|#2| (-348 $) |#2|) NIL (|has| |#2| (-312)) ELT) (((-348 $) $ (-348 $)) NIL (|has| |#2| (-494)) ELT)) (-3762 (((-3 $ #1#) $ (-693)) NIL T ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL (|has| |#2| (-312)) ELT)) (-3755 (($ $ (-993)) NIL (|has| |#2| (-146)) ELT) ((|#2| $) NIL (|has| |#2| (-146)) ELT)) (-3756 (($ $ (-582 (-993)) (-582 (-693))) NIL T ELT) (($ $ (-993) (-693)) NIL T ELT) (($ $ (-582 (-993))) NIL T ELT) (($ $ (-993)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-693)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-693)) NIL T ELT) (($ $ (-1 |#2| |#2|) $) NIL T ELT) (($ $ (-1088)) NIL (|has| |#2| (-810 (-1088))) ELT) (($ $ (-582 (-1088))) NIL (|has| |#2| (-810 (-1088))) ELT) (($ $ (-1088) (-693)) NIL (|has| |#2| (-810 (-1088))) ELT) (($ $ (-582 (-1088)) (-582 (-693))) NIL (|has| |#2| (-810 (-1088))) ELT)) (-3946 (((-693) $) NIL T ELT) (((-693) $ (-993)) NIL T ELT) (((-582 (-693)) $ (-582 (-993))) NIL T ELT)) (-3970 (((-799 (-328)) $) NIL (-12 (|has| (-993) (-552 (-799 (-328)))) (|has| |#2| (-552 (-799 (-328))))) ELT) (((-799 (-483)) $) NIL (-12 (|has| (-993) (-552 (-799 (-483)))) (|has| |#2| (-552 (-799 (-483))))) ELT) (((-472) $) NIL (-12 (|has| (-993) (-552 (-472))) (|has| |#2| (-552 (-472)))) ELT)) (-2816 ((|#2| $) NIL (|has| |#2| (-390)) ELT) (($ $ (-993)) NIL (|has| |#2| (-390)) ELT)) (-2702 (((-3 (-1177 $) #1#) (-629 $)) NIL (-12 (|has| $ (-118)) (|has| |#2| (-820))) ELT)) (-3752 (((-3 $ #1#) $ $) NIL (|has| |#2| (-494)) ELT) (((-3 (-348 $) #1#) (-348 $) $) NIL (|has| |#2| (-494)) ELT)) (-3944 (((-771) $) 13 T ELT) (($ (-483)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-993)) NIL T ELT) (($ (-1174 |#1|)) 20 T ELT) (($ (-348 (-483))) NIL (OR (|has| |#2| (-38 (-348 (-483)))) (|has| |#2| (-949 (-348 (-483))))) ELT) (($ $) NIL (|has| |#2| (-494)) ELT)) (-3815 (((-582 |#2|) $) NIL T ELT)) (-3675 ((|#2| $ (-693)) NIL T ELT) (($ $ (-993) (-693)) NIL T ELT) (($ $ (-582 (-993)) (-582 (-693))) NIL T ELT)) (-2701 (((-631 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#2| (-820))) (|has| |#2| (-118))) ELT)) (-3125 (((-693)) NIL T CONST)) (-1621 (($ $ $ (-693)) NIL (|has| |#2| (-146)) ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2061 (((-85) $ $) NIL (|has| |#2| (-494)) ELT)) (-3124 (((-85) $ $) NIL T ELT)) (-2659 (($) NIL T CONST)) (-2665 (($) 14 T CONST)) (-2668 (($ $ (-582 (-993)) (-582 (-693))) NIL T ELT) (($ $ (-993) (-693)) NIL T ELT) (($ $ (-582 (-993))) NIL T ELT) (($ $ (-993)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-693)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-693)) NIL T ELT) (($ $ (-1088)) NIL (|has| |#2| (-810 (-1088))) ELT) (($ $ (-582 (-1088))) NIL (|has| |#2| (-810 (-1088))) ELT) (($ $ (-1088) (-693)) NIL (|has| |#2| (-810 (-1088))) ELT) (($ $ (-582 (-1088)) (-582 (-693))) NIL (|has| |#2| (-810 (-1088))) ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-3947 (($ $ |#2|) NIL (|has| |#2| (-312)) ELT)) (-3835 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3837 (($ $ $) NIL T ELT)) (** (($ $ (-829)) NIL T ELT) (($ $ (-693)) NIL T ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-348 (-483))) NIL (|has| |#2| (-38 (-348 (-483)))) ELT) (($ (-348 (-483)) $) NIL (|has| |#2| (-38 (-348 (-483)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT))) -(((-1146 |#1| |#2|) (-13 (-1153 |#2|) (-554 (-1174 |#1|)) (-10 -8 (-15 -3736 ($ $ (-693) |#2| $)))) (-1088) (-960)) (T -1146)) -((-3736 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-693)) (-5 *1 (-1146 *4 *3)) (-14 *4 (-1088)) (-4 *3 (-960))))) -((-3956 (((-1146 |#3| |#4|) (-1 |#4| |#2|) (-1146 |#1| |#2|)) 15 T ELT))) -(((-1147 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3956 ((-1146 |#3| |#4|) (-1 |#4| |#2|) (-1146 |#1| |#2|)))) (-1088) (-960) (-1088) (-960)) (T -1147)) -((-3956 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1146 *5 *6)) (-14 *5 (-1088)) (-4 *6 (-960)) (-4 *8 (-960)) (-5 *2 (-1146 *7 *8)) (-5 *1 (-1147 *5 *6 *7 *8)) (-14 *7 (-1088))))) -((-3739 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21 T ELT)) (-3737 ((|#1| |#3|) 13 T ELT)) (-3738 ((|#3| |#3|) 19 T ELT))) -(((-1148 |#1| |#2| |#3|) (-10 -7 (-15 -3737 (|#1| |#3|)) (-15 -3738 (|#3| |#3|)) (-15 -3739 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-494) (-903 |#1|) (-1153 |#2|)) (T -1148)) -((-3739 (*1 *2 *3) (-12 (-4 *4 (-494)) (-4 *5 (-903 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1148 *4 *5 *3)) (-4 *3 (-1153 *5)))) (-3738 (*1 *2 *2) (-12 (-4 *3 (-494)) (-4 *4 (-903 *3)) (-5 *1 (-1148 *3 *4 *2)) (-4 *2 (-1153 *4)))) (-3737 (*1 *2 *3) (-12 (-4 *4 (-903 *2)) (-4 *2 (-494)) (-5 *1 (-1148 *2 *4 *3)) (-4 *3 (-1153 *4))))) -((-3741 (((-3 |#2| #1="failed") |#2| (-693) |#1|) 35 T ELT)) (-3740 (((-3 |#2| #1#) |#2| (-693)) 36 T ELT)) (-3743 (((-3 (-2 (|:| -3137 |#2|) (|:| -3136 |#2|)) #1#) |#2|) 50 T ELT)) (-3744 (((-582 |#2|) |#2|) 52 T ELT)) (-3742 (((-3 |#2| #1#) |#2| |#2|) 46 T ELT))) -(((-1149 |#1| |#2|) (-10 -7 (-15 -3740 ((-3 |#2| #1="failed") |#2| (-693))) (-15 -3741 ((-3 |#2| #1#) |#2| (-693) |#1|)) (-15 -3742 ((-3 |#2| #1#) |#2| |#2|)) (-15 -3743 ((-3 (-2 (|:| -3137 |#2|) (|:| -3136 |#2|)) #1#) |#2|)) (-15 -3744 ((-582 |#2|) |#2|))) (-13 (-494) (-120)) (-1153 |#1|)) (T -1149)) -((-3744 (*1 *2 *3) (-12 (-4 *4 (-13 (-494) (-120))) (-5 *2 (-582 *3)) (-5 *1 (-1149 *4 *3)) (-4 *3 (-1153 *4)))) (-3743 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-494) (-120))) (-5 *2 (-2 (|:| -3137 *3) (|:| -3136 *3))) (-5 *1 (-1149 *4 *3)) (-4 *3 (-1153 *4)))) (-3742 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-494) (-120))) (-5 *1 (-1149 *3 *2)) (-4 *2 (-1153 *3)))) (-3741 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-693)) (-4 *4 (-13 (-494) (-120))) (-5 *1 (-1149 *4 *2)) (-4 *2 (-1153 *4)))) (-3740 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-693)) (-4 *4 (-13 (-494) (-120))) (-5 *1 (-1149 *4 *2)) (-4 *2 (-1153 *4))))) -((-3745 (((-3 (-2 (|:| -1971 |#2|) (|:| -2901 |#2|)) "failed") |#2| |#2|) 30 T ELT))) -(((-1150 |#1| |#2|) (-10 -7 (-15 -3745 ((-3 (-2 (|:| -1971 |#2|) (|:| -2901 |#2|)) "failed") |#2| |#2|))) (-494) (-1153 |#1|)) (T -1150)) -((-3745 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-494)) (-5 *2 (-2 (|:| -1971 *3) (|:| -2901 *3))) (-5 *1 (-1150 *4 *3)) (-4 *3 (-1153 *4))))) -((-3746 ((|#2| |#2| |#2|) 22 T ELT)) (-3747 ((|#2| |#2| |#2|) 36 T ELT)) (-3748 ((|#2| |#2| |#2| (-693) (-693)) 44 T ELT))) -(((-1151 |#1| |#2|) (-10 -7 (-15 -3746 (|#2| |#2| |#2|)) (-15 -3747 (|#2| |#2| |#2|)) (-15 -3748 (|#2| |#2| |#2| (-693) (-693)))) (-960) (-1153 |#1|)) (T -1151)) -((-3748 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-693)) (-4 *4 (-960)) (-5 *1 (-1151 *4 *2)) (-4 *2 (-1153 *4)))) (-3747 (*1 *2 *2 *2) (-12 (-4 *3 (-960)) (-5 *1 (-1151 *3 *2)) (-4 *2 (-1153 *3)))) (-3746 (*1 *2 *2 *2) (-12 (-4 *3 (-960)) (-5 *1 (-1151 *3 *2)) (-4 *2 (-1153 *3))))) -((-3765 (((-1177 |#2|) $ (-693)) 129 T ELT)) (-3080 (((-582 (-993)) $) 16 T ELT)) (-3763 (($ (-1083 |#2|)) 80 T ELT)) (-2818 (((-693) $) NIL T ELT) (((-693) $ (-582 (-993))) 21 T ELT)) (-2706 (((-346 (-1083 $)) (-1083 $)) 217 T ELT)) (-3773 (($ $) 207 T ELT)) (-3969 (((-346 $) $) 205 T ELT)) (-2703 (((-3 (-582 (-1083 $)) #1="failed") (-582 (-1083 $)) (-1083 $)) 95 T ELT)) (-3759 (($ $ (-693)) 84 T ELT)) (-3758 (($ $ (-693)) 86 T ELT)) (-3749 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 157 T ELT)) (-3156 (((-3 |#2| #1#) $) 132 T ELT) (((-3 (-348 (-483)) #1#) $) NIL T ELT) (((-3 (-483) #1#) $) NIL T ELT) (((-3 (-993) #1#) $) NIL T ELT)) (-3155 ((|#2| $) 130 T ELT) (((-348 (-483)) $) NIL T ELT) (((-483) $) NIL T ELT) (((-993) $) NIL T ELT)) (-3751 (($ $ $) 182 T ELT)) (-3750 (((-2 (|:| -3952 |#2|) (|:| -1971 $) (|:| -2901 $)) $ $) 185 T ELT)) (-3770 (((-693) $ $) 202 T ELT)) (-3443 (((-631 $) $) 149 T ELT)) (-2892 (($ |#2| (-693)) NIL T ELT) (($ $ (-993) (-693)) 59 T ELT) (($ $ (-582 (-993)) (-582 (-693))) NIL T ELT)) (-2819 (((-693) $) NIL T ELT) (((-693) $ (-993)) 54 T ELT) (((-582 (-693)) $ (-582 (-993))) 55 T ELT)) (-3764 (((-1083 |#2|) $) 72 T ELT)) (-3081 (((-3 (-993) #1#) $) 52 T ELT)) (-3760 (((-2 (|:| -1971 $) (|:| -2901 $)) $ (-693)) 83 T ELT)) (-3810 (($ $) 232 T ELT)) (-3444 (($) 134 T CONST)) (-2707 (((-1083 $) (-1083 $) (-1083 $)) 214 T ELT)) (-2704 (((-346 (-1083 $)) (-1083 $)) 101 T ELT)) (-2705 (((-346 (-1083 $)) (-1083 $)) 99 T ELT)) (-3730 (((-346 $) $) 120 T ELT)) (-3766 (($ $ (-582 (-249 $))) 51 T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-582 $) (-582 $)) NIL T ELT) (($ $ (-993) |#2|) 39 T ELT) (($ $ (-582 (-993)) (-582 |#2|)) 36 T ELT) (($ $ (-993) $) 32 T ELT) (($ $ (-582 (-993)) (-582 $)) 30 T ELT)) (-1605 (((-693) $) 220 T ELT)) (-3798 ((|#2| $ |#2|) NIL T ELT) (($ $ $) NIL T ELT) (((-348 $) (-348 $) (-348 $)) 176 T ELT) ((|#2| (-348 $) |#2|) 219 T ELT) (((-348 $) $ (-348 $)) 201 T ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) 225 T ELT)) (-3756 (($ $ (-582 (-993)) (-582 (-693))) NIL T ELT) (($ $ (-993) (-693)) NIL T ELT) (($ $ (-582 (-993))) NIL T ELT) (($ $ (-993)) 169 T ELT) (($ $) 167 T ELT) (($ $ (-693)) NIL T ELT) (($ $ (-1 |#2| |#2|)) 166 T ELT) (($ $ (-1 |#2| |#2|) (-693)) NIL T ELT) (($ $ (-1 |#2| |#2|) $) 161 T ELT) (($ $ (-1088)) NIL T ELT) (($ $ (-582 (-1088))) NIL T ELT) (($ $ (-1088) (-693)) NIL T ELT) (($ $ (-582 (-1088)) (-582 (-693))) NIL T ELT)) (-3946 (((-693) $) NIL T ELT) (((-693) $ (-993)) 17 T ELT) (((-582 (-693)) $ (-582 (-993))) 23 T ELT)) (-2816 ((|#2| $) NIL T ELT) (($ $ (-993)) 151 T ELT)) (-3752 (((-3 $ #1#) $ $) 193 T ELT) (((-3 (-348 $) #1#) (-348 $) $) 189 T ELT)) (-3944 (((-771) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-993)) 64 T ELT) (($ (-348 (-483))) NIL T ELT) (($ $) NIL T ELT))) -(((-1152 |#1| |#2|) (-10 -7 (-15 -3944 (|#1| |#1|)) (-15 -2707 ((-1083 |#1|) (-1083 |#1|) (-1083 |#1|))) (-15 -3756 (|#1| |#1| (-582 (-1088)) (-582 (-693)))) (-15 -3756 (|#1| |#1| (-1088) (-693))) (-15 -3756 (|#1| |#1| (-582 (-1088)))) (-15 -3756 (|#1| |#1| (-1088))) (-15 -3969 ((-346 |#1|) |#1|)) (-15 -3773 (|#1| |#1|)) (-15 -3944 (|#1| (-348 (-483)))) (-15 -3444 (|#1|) -3950) (-15 -3443 ((-631 |#1|) |#1|)) (-15 -3798 ((-348 |#1|) |#1| (-348 |#1|))) (-15 -1605 ((-693) |#1|)) (-15 -2878 ((-2 (|:| -1971 |#1|) (|:| -2901 |#1|)) |#1| |#1|)) (-15 -3810 (|#1| |#1|)) (-15 -3798 (|#2| (-348 |#1|) |#2|)) (-15 -3749 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -3750 ((-2 (|:| -3952 |#2|) (|:| -1971 |#1|) (|:| -2901 |#1|)) |#1| |#1|)) (-15 -3751 (|#1| |#1| |#1|)) (-15 -3752 ((-3 (-348 |#1|) #1="failed") (-348 |#1|) |#1|)) (-15 -3752 ((-3 |#1| #1#) |#1| |#1|)) (-15 -3770 ((-693) |#1| |#1|)) (-15 -3798 ((-348 |#1|) (-348 |#1|) (-348 |#1|))) (-15 -3756 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -3758 (|#1| |#1| (-693))) (-15 -3759 (|#1| |#1| (-693))) (-15 -3760 ((-2 (|:| -1971 |#1|) (|:| -2901 |#1|)) |#1| (-693))) (-15 -3763 (|#1| (-1083 |#2|))) (-15 -3764 ((-1083 |#2|) |#1|)) (-15 -3765 ((-1177 |#2|) |#1| (-693))) (-15 -3756 (|#1| |#1| (-1 |#2| |#2|) (-693))) (-15 -3756 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3756 (|#1| |#1| (-693))) (-15 -3756 (|#1| |#1|)) (-15 -3798 (|#1| |#1| |#1|)) (-15 -3798 (|#2| |#1| |#2|)) (-15 -3730 ((-346 |#1|) |#1|)) (-15 -2706 ((-346 (-1083 |#1|)) (-1083 |#1|))) (-15 -2705 ((-346 (-1083 |#1|)) (-1083 |#1|))) (-15 -2704 ((-346 (-1083 |#1|)) (-1083 |#1|))) (-15 -2703 ((-3 (-582 (-1083 |#1|)) #1#) (-582 (-1083 |#1|)) (-1083 |#1|))) (-15 -2816 (|#1| |#1| (-993))) (-15 -3080 ((-582 (-993)) |#1|)) (-15 -2818 ((-693) |#1| (-582 (-993)))) (-15 -2818 ((-693) |#1|)) (-15 -2892 (|#1| |#1| (-582 (-993)) (-582 (-693)))) (-15 -2892 (|#1| |#1| (-993) (-693))) (-15 -2819 ((-582 (-693)) |#1| (-582 (-993)))) (-15 -2819 ((-693) |#1| (-993))) (-15 -3081 ((-3 (-993) #1#) |#1|)) (-15 -3946 ((-582 (-693)) |#1| (-582 (-993)))) (-15 -3946 ((-693) |#1| (-993))) (-15 -3944 (|#1| (-993))) (-15 -3156 ((-3 (-993) #1#) |#1|)) (-15 -3155 ((-993) |#1|)) (-15 -3766 (|#1| |#1| (-582 (-993)) (-582 |#1|))) (-15 -3766 (|#1| |#1| (-993) |#1|)) (-15 -3766 (|#1| |#1| (-582 (-993)) (-582 |#2|))) (-15 -3766 (|#1| |#1| (-993) |#2|)) (-15 -3766 (|#1| |#1| (-582 |#1|) (-582 |#1|))) (-15 -3766 (|#1| |#1| |#1| |#1|)) (-15 -3766 (|#1| |#1| (-249 |#1|))) (-15 -3766 (|#1| |#1| (-582 (-249 |#1|)))) (-15 -3946 ((-693) |#1|)) (-15 -2892 (|#1| |#2| (-693))) (-15 -3156 ((-3 (-483) #1#) |#1|)) (-15 -3155 ((-483) |#1|)) (-15 -3156 ((-3 (-348 (-483)) #1#) |#1|)) (-15 -3155 ((-348 (-483)) |#1|)) (-15 -3155 (|#2| |#1|)) (-15 -3156 ((-3 |#2| #1#) |#1|)) (-15 -3944 (|#1| |#2|)) (-15 -2819 ((-693) |#1|)) (-15 -2816 (|#2| |#1|)) (-15 -3756 (|#1| |#1| (-993))) (-15 -3756 (|#1| |#1| (-582 (-993)))) (-15 -3756 (|#1| |#1| (-993) (-693))) (-15 -3756 (|#1| |#1| (-582 (-993)) (-582 (-693)))) (-15 -3944 (|#1| (-483))) (-15 -3944 ((-771) |#1|))) (-1153 |#2|) (-960)) (T -1152)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-3187 (((-85) $) 22 T ELT)) (-3765 (((-1177 |#1|) $ (-693)) 271 T ELT)) (-3080 (((-582 (-993)) $) 123 T ELT)) (-3763 (($ (-1083 |#1|)) 269 T ELT)) (-3082 (((-1083 $) $ (-993)) 138 T ELT) (((-1083 |#1|) $) 137 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3980 $) (|:| |associate| $)) $) 100 (|has| |#1| (-494)) ELT)) (-2062 (($ $) 101 (|has| |#1| (-494)) ELT)) (-2060 (((-85) $) 103 (|has| |#1| (-494)) ELT)) (-2818 (((-693) $) 125 T ELT) (((-693) $ (-582 (-993))) 124 T ELT)) (-1310 (((-3 $ "failed") $ $) 26 T ELT)) (-3753 (($ $ $) 256 (|has| |#1| (-494)) ELT)) (-2706 (((-346 (-1083 $)) (-1083 $)) 113 (|has| |#1| (-820)) ELT)) (-3773 (($ $) 111 (|has| |#1| (-390)) ELT)) (-3969 (((-346 $) $) 110 (|has| |#1| (-390)) ELT)) (-2703 (((-3 (-582 (-1083 $)) #1="failed") (-582 (-1083 $)) (-1083 $)) 116 (|has| |#1| (-820)) ELT)) (-1606 (((-85) $ $) 241 (|has| |#1| (-312)) ELT)) (-3759 (($ $ (-693)) 264 T ELT)) (-3758 (($ $ (-693)) 263 T ELT)) (-3749 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 251 (|has| |#1| (-390)) ELT)) (-3722 (($) 23 T CONST)) (-3156 (((-3 |#1| #2="failed") $) 181 T ELT) (((-3 (-348 (-483)) #2#) $) 178 (|has| |#1| (-949 (-348 (-483)))) ELT) (((-3 (-483) #2#) $) 176 (|has| |#1| (-949 (-483))) ELT) (((-3 (-993) #2#) $) 153 T ELT)) (-3155 ((|#1| $) 180 T ELT) (((-348 (-483)) $) 179 (|has| |#1| (-949 (-348 (-483)))) ELT) (((-483) $) 177 (|has| |#1| (-949 (-483))) ELT) (((-993) $) 154 T ELT)) (-3754 (($ $ $ (-993)) 121 (|has| |#1| (-146)) ELT) ((|#1| $ $) 259 (|has| |#1| (-146)) ELT)) (-2563 (($ $ $) 245 (|has| |#1| (-312)) ELT)) (-3957 (($ $) 171 T ELT)) (-2278 (((-629 (-483)) (-629 $)) 149 (|has| |#1| (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-629 $) (-1177 $)) 148 (|has| |#1| (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 |#1|)) (|:| |vec| (-1177 |#1|))) (-629 $) (-1177 $)) 147 T ELT) (((-629 |#1|) (-629 $)) 146 T ELT)) (-3465 (((-3 $ "failed") $) 42 T ELT)) (-2562 (($ $ $) 244 (|has| |#1| (-312)) ELT)) (-3757 (($ $ $) 262 T ELT)) (-3751 (($ $ $) 253 (|has| |#1| (-494)) ELT)) (-3750 (((-2 (|:| -3952 |#1|) (|:| -1971 $) (|:| -2901 $)) $ $) 252 (|has| |#1| (-494)) ELT)) (-2740 (((-2 (|:| -3952 (-582 $)) (|:| -2408 $)) (-582 $)) 239 (|has| |#1| (-312)) ELT)) (-3501 (($ $) 193 (|has| |#1| (-390)) ELT) (($ $ (-993)) 118 (|has| |#1| (-390)) ELT)) (-2817 (((-582 $) $) 122 T ELT)) (-3721 (((-85) $) 109 (|has| |#1| (-820)) ELT)) (-1622 (($ $ |#1| (-693) $) 189 T ELT)) (-2795 (((-797 (-328) $) $ (-799 (-328)) (-797 (-328) $)) 97 (-12 (|has| (-993) (-795 (-328))) (|has| |#1| (-795 (-328)))) ELT) (((-797 (-483) $) $ (-799 (-483)) (-797 (-483) $)) 96 (-12 (|has| (-993) (-795 (-483))) (|has| |#1| (-795 (-483)))) ELT)) (-3770 (((-693) $ $) 257 (|has| |#1| (-494)) ELT)) (-1212 (((-85) $ $) 20 T ELT)) (-2409 (((-85) $) 44 T ELT)) (-2419 (((-693) $) 186 T ELT)) (-3443 (((-631 $) $) 237 (|has| |#1| (-1064)) ELT)) (-3083 (($ (-1083 |#1|) (-993)) 130 T ELT) (($ (-1083 $) (-993)) 129 T ELT)) (-3775 (($ $ (-693)) 268 T ELT)) (-1603 (((-3 (-582 $) #3="failed") (-582 $) $) 248 (|has| |#1| (-312)) ELT)) (-2820 (((-582 $) $) 139 T ELT)) (-3935 (((-85) $) 169 T ELT)) (-2892 (($ |#1| (-693)) 170 T ELT) (($ $ (-993) (-693)) 132 T ELT) (($ $ (-582 (-993)) (-582 (-693))) 131 T ELT)) (-3761 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $ (-993)) 133 T ELT) (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) 266 T ELT)) (-2819 (((-693) $) 187 T ELT) (((-693) $ (-993)) 135 T ELT) (((-582 (-693)) $ (-582 (-993))) 134 T ELT)) (-1623 (($ (-1 (-693) (-693)) $) 188 T ELT)) (-3956 (($ (-1 |#1| |#1|) $) 168 T ELT)) (-3764 (((-1083 |#1|) $) 270 T ELT)) (-3081 (((-3 (-993) #4="failed") $) 136 T ELT)) (-2279 (((-629 (-483)) (-1177 $)) 151 (|has| |#1| (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) 150 (|has| |#1| (-579 (-483))) ELT) (((-2 (|:| |mat| (-629 |#1|)) (|:| |vec| (-1177 |#1|))) (-1177 $) $) 145 T ELT) (((-629 |#1|) (-1177 $)) 144 T ELT)) (-2893 (($ $) 166 T ELT)) (-3173 ((|#1| $) 165 T ELT)) (-1889 (($ (-582 $)) 107 (|has| |#1| (-390)) ELT) (($ $ $) 106 (|has| |#1| (-390)) ELT)) (-3241 (((-1071) $) 11 T ELT)) (-3760 (((-2 (|:| -1971 $) (|:| -2901 $)) $ (-693)) 265 T ELT)) (-2822 (((-3 (-582 $) #4#) $) 127 T ELT)) (-2821 (((-3 (-582 $) #4#) $) 128 T ELT)) (-2823 (((-3 (-2 (|:| |var| (-993)) (|:| -2400 (-693))) #4#) $) 126 T ELT)) (-3810 (($ $) 249 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3444 (($) 236 (|has| |#1| (-1064)) CONST)) (-3242 (((-1032) $) 12 T ELT)) (-1795 (((-85) $) 183 T ELT)) (-1794 ((|#1| $) 184 T ELT)) (-2707 (((-1083 $) (-1083 $) (-1083 $)) 108 (|has| |#1| (-390)) ELT)) (-3143 (($ (-582 $)) 105 (|has| |#1| (-390)) ELT) (($ $ $) 104 (|has| |#1| (-390)) ELT)) (-2704 (((-346 (-1083 $)) (-1083 $)) 115 (|has| |#1| (-820)) ELT)) (-2705 (((-346 (-1083 $)) (-1083 $)) 114 (|has| |#1| (-820)) ELT)) (-3730 (((-346 $) $) 112 (|has| |#1| (-820)) ELT)) (-1604 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 247 (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) 246 (|has| |#1| (-312)) ELT)) (-3464 (((-3 $ "failed") $ |#1|) 191 (|has| |#1| (-494)) ELT) (((-3 $ "failed") $ $) 99 (|has| |#1| (-494)) ELT)) (-2739 (((-631 (-582 $)) (-582 $) $) 240 (|has| |#1| (-312)) ELT)) (-3766 (($ $ (-582 (-249 $))) 162 T ELT) (($ $ (-249 $)) 161 T ELT) (($ $ $ $) 160 T ELT) (($ $ (-582 $) (-582 $)) 159 T ELT) (($ $ (-993) |#1|) 158 T ELT) (($ $ (-582 (-993)) (-582 |#1|)) 157 T ELT) (($ $ (-993) $) 156 T ELT) (($ $ (-582 (-993)) (-582 $)) 155 T ELT)) (-1605 (((-693) $) 242 (|has| |#1| (-312)) ELT)) (-3798 ((|#1| $ |#1|) 281 T ELT) (($ $ $) 280 T ELT) (((-348 $) (-348 $) (-348 $)) 258 (|has| |#1| (-494)) ELT) ((|#1| (-348 $) |#1|) 250 (|has| |#1| (-312)) ELT) (((-348 $) $ (-348 $)) 238 (|has| |#1| (-494)) ELT)) (-3762 (((-3 $ "failed") $ (-693)) 267 T ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) 243 (|has| |#1| (-312)) ELT)) (-3755 (($ $ (-993)) 120 (|has| |#1| (-146)) ELT) ((|#1| $) 260 (|has| |#1| (-146)) ELT)) (-3756 (($ $ (-582 (-993)) (-582 (-693))) 52 T ELT) (($ $ (-993) (-693)) 51 T ELT) (($ $ (-582 (-993))) 50 T ELT) (($ $ (-993)) 48 T ELT) (($ $) 279 T ELT) (($ $ (-693)) 277 T ELT) (($ $ (-1 |#1| |#1|)) 275 T ELT) (($ $ (-1 |#1| |#1|) (-693)) 274 T ELT) (($ $ (-1 |#1| |#1|) $) 261 T ELT) (($ $ (-1088)) 235 (|has| |#1| (-810 (-1088))) ELT) (($ $ (-582 (-1088))) 233 (|has| |#1| (-810 (-1088))) ELT) (($ $ (-1088) (-693)) 232 (|has| |#1| (-810 (-1088))) ELT) (($ $ (-582 (-1088)) (-582 (-693))) 231 (|has| |#1| (-810 (-1088))) ELT)) (-3946 (((-693) $) 167 T ELT) (((-693) $ (-993)) 143 T ELT) (((-582 (-693)) $ (-582 (-993))) 142 T ELT)) (-3970 (((-799 (-328)) $) 95 (-12 (|has| (-993) (-552 (-799 (-328)))) (|has| |#1| (-552 (-799 (-328))))) ELT) (((-799 (-483)) $) 94 (-12 (|has| (-993) (-552 (-799 (-483)))) (|has| |#1| (-552 (-799 (-483))))) ELT) (((-472) $) 93 (-12 (|has| (-993) (-552 (-472))) (|has| |#1| (-552 (-472)))) ELT)) (-2816 ((|#1| $) 192 (|has| |#1| (-390)) ELT) (($ $ (-993)) 119 (|has| |#1| (-390)) ELT)) (-2702 (((-3 (-1177 $) #1#) (-629 $)) 117 (-2561 (|has| $ (-118)) (|has| |#1| (-820))) ELT)) (-3752 (((-3 $ "failed") $ $) 255 (|has| |#1| (-494)) ELT) (((-3 (-348 $) "failed") (-348 $) $) 254 (|has| |#1| (-494)) ELT)) (-3944 (((-771) $) 13 T ELT) (($ (-483)) 41 T ELT) (($ |#1|) 182 T ELT) (($ (-993)) 152 T ELT) (($ (-348 (-483))) 91 (OR (|has| |#1| (-949 (-348 (-483)))) (|has| |#1| (-38 (-348 (-483))))) ELT) (($ $) 98 (|has| |#1| (-494)) ELT)) (-3815 (((-582 |#1|) $) 185 T ELT)) (-3675 ((|#1| $ (-693)) 172 T ELT) (($ $ (-993) (-693)) 141 T ELT) (($ $ (-582 (-993)) (-582 (-693))) 140 T ELT)) (-2701 (((-631 $) $) 92 (OR (-2561 (|has| $ (-118)) (|has| |#1| (-820))) (|has| |#1| (-118))) ELT)) (-3125 (((-693)) 40 T CONST)) (-1621 (($ $ $ (-693)) 190 (|has| |#1| (-146)) ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2061 (((-85) $ $) 102 (|has| |#1| (-494)) ELT)) (-3124 (((-85) $ $) 33 T ELT)) (-2659 (($) 24 T CONST)) (-2665 (($) 45 T CONST)) (-2668 (($ $ (-582 (-993)) (-582 (-693))) 55 T ELT) (($ $ (-993) (-693)) 54 T ELT) (($ $ (-582 (-993))) 53 T ELT) (($ $ (-993)) 49 T ELT) (($ $) 278 T ELT) (($ $ (-693)) 276 T ELT) (($ $ (-1 |#1| |#1|)) 273 T ELT) (($ $ (-1 |#1| |#1|) (-693)) 272 T ELT) (($ $ (-1088)) 234 (|has| |#1| (-810 (-1088))) ELT) (($ $ (-582 (-1088))) 230 (|has| |#1| (-810 (-1088))) ELT) (($ $ (-1088) (-693)) 229 (|has| |#1| (-810 (-1088))) ELT) (($ $ (-582 (-1088)) (-582 (-693))) 228 (|has| |#1| (-810 (-1088))) ELT)) (-3055 (((-85) $ $) 8 T ELT)) (-3947 (($ $ |#1|) 173 (|has| |#1| (-312)) ELT)) (-3835 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3837 (($ $ $) 18 T ELT)) (** (($ $ (-829)) 35 T ELT) (($ $ (-693)) 43 T ELT)) (* (($ (-829) $) 17 T ELT) (($ (-693) $) 21 T ELT) (($ (-483) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-348 (-483))) 175 (|has| |#1| (-38 (-348 (-483)))) ELT) (($ (-348 (-483)) $) 174 (|has| |#1| (-38 (-348 (-483)))) ELT) (($ |#1| $) 164 T ELT) (($ $ |#1|) 163 T ELT))) -(((-1153 |#1|) (-113) (-960)) (T -1153)) -((-3765 (*1 *2 *1 *3) (-12 (-5 *3 (-693)) (-4 *1 (-1153 *4)) (-4 *4 (-960)) (-5 *2 (-1177 *4)))) (-3764 (*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-960)) (-5 *2 (-1083 *3)))) (-3763 (*1 *1 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-960)) (-4 *1 (-1153 *3)))) (-3775 (*1 *1 *1 *2) (-12 (-5 *2 (-693)) (-4 *1 (-1153 *3)) (-4 *3 (-960)))) (-3762 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-693)) (-4 *1 (-1153 *3)) (-4 *3 (-960)))) (-3761 (*1 *2 *1 *1) (-12 (-4 *3 (-960)) (-5 *2 (-2 (|:| -1971 *1) (|:| -2901 *1))) (-4 *1 (-1153 *3)))) (-3760 (*1 *2 *1 *3) (-12 (-5 *3 (-693)) (-4 *4 (-960)) (-5 *2 (-2 (|:| -1971 *1) (|:| -2901 *1))) (-4 *1 (-1153 *4)))) (-3759 (*1 *1 *1 *2) (-12 (-5 *2 (-693)) (-4 *1 (-1153 *3)) (-4 *3 (-960)))) (-3758 (*1 *1 *1 *2) (-12 (-5 *2 (-693)) (-4 *1 (-1153 *3)) (-4 *3 (-960)))) (-3757 (*1 *1 *1 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-960)))) (-3756 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1153 *3)) (-4 *3 (-960)))) (-3755 (*1 *2 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-960)) (-4 *2 (-146)))) (-3754 (*1 *2 *1 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-960)) (-4 *2 (-146)))) (-3798 (*1 *2 *2 *2) (-12 (-5 *2 (-348 *1)) (-4 *1 (-1153 *3)) (-4 *3 (-960)) (-4 *3 (-494)))) (-3770 (*1 *2 *1 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-960)) (-4 *3 (-494)) (-5 *2 (-693)))) (-3753 (*1 *1 *1 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-960)) (-4 *2 (-494)))) (-3752 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1153 *2)) (-4 *2 (-960)) (-4 *2 (-494)))) (-3752 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-348 *1)) (-4 *1 (-1153 *3)) (-4 *3 (-960)) (-4 *3 (-494)))) (-3751 (*1 *1 *1 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-960)) (-4 *2 (-494)))) (-3750 (*1 *2 *1 *1) (-12 (-4 *3 (-494)) (-4 *3 (-960)) (-5 *2 (-2 (|:| -3952 *3) (|:| -1971 *1) (|:| -2901 *1))) (-4 *1 (-1153 *3)))) (-3749 (*1 *2 *1 *1) (-12 (-4 *3 (-390)) (-4 *3 (-960)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1153 *3)))) (-3798 (*1 *2 *3 *2) (-12 (-5 *3 (-348 *1)) (-4 *1 (-1153 *2)) (-4 *2 (-960)) (-4 *2 (-312)))) (-3810 (*1 *1 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-960)) (-4 *2 (-38 (-348 (-483))))))) -(-13 (-860 |t#1| (-693) (-993)) (-241 |t#1| |t#1|) (-241 $ $) (-190) (-184 |t#1|) (-10 -8 (-15 -3765 ((-1177 |t#1|) $ (-693))) (-15 -3764 ((-1083 |t#1|) $)) (-15 -3763 ($ (-1083 |t#1|))) (-15 -3775 ($ $ (-693))) (-15 -3762 ((-3 $ "failed") $ (-693))) (-15 -3761 ((-2 (|:| -1971 $) (|:| -2901 $)) $ $)) (-15 -3760 ((-2 (|:| -1971 $) (|:| -2901 $)) $ (-693))) (-15 -3759 ($ $ (-693))) (-15 -3758 ($ $ (-693))) (-15 -3757 ($ $ $)) (-15 -3756 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1064)) (-6 (-1064)) |%noBranch|) (IF (|has| |t#1| (-146)) (PROGN (-15 -3755 (|t#1| $)) (-15 -3754 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-494)) (PROGN (-6 (-241 (-348 $) (-348 $))) (-15 -3798 ((-348 $) (-348 $) (-348 $))) (-15 -3770 ((-693) $ $)) (-15 -3753 ($ $ $)) (-15 -3752 ((-3 $ "failed") $ $)) (-15 -3752 ((-3 (-348 $) "failed") (-348 $) $)) (-15 -3751 ($ $ $)) (-15 -3750 ((-2 (|:| -3952 |t#1|) (|:| -1971 $) (|:| -2901 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-390)) (-15 -3749 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-312)) (PROGN (-6 (-258)) (-6 -3989) (-15 -3798 (|t#1| (-348 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-38 (-348 (-483)))) (-15 -3810 ($ $)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| (-693)) . T) ((-25) . T) ((-38 (-348 (-483))) |has| |#1| (-38 (-348 (-483)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) OR (|has| |#1| (-820)) (|has| |#1| (-494)) (|has| |#1| (-390)) (|has| |#1| (-312))) ((-72) . T) ((-82 (-348 (-483)) (-348 (-483))) |has| |#1| (-38 (-348 (-483)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-820)) (|has| |#1| (-494)) (|has| |#1| (-390)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-554 (-348 (-483))) OR (|has| |#1| (-949 (-348 (-483)))) (|has| |#1| (-38 (-348 (-483))))) ((-554 (-483)) . T) ((-554 (-993)) . T) ((-554 |#1|) . T) ((-554 $) OR (|has| |#1| (-820)) (|has| |#1| (-494)) (|has| |#1| (-390)) (|has| |#1| (-312))) ((-551 (-771)) . T) ((-146) OR (|has| |#1| (-820)) (|has| |#1| (-494)) (|has| |#1| (-390)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-552 (-472)) -12 (|has| |#1| (-552 (-472))) (|has| (-993) (-552 (-472)))) ((-552 (-799 (-328))) -12 (|has| |#1| (-552 (-799 (-328)))) (|has| (-993) (-552 (-799 (-328))))) ((-552 (-799 (-483))) -12 (|has| |#1| (-552 (-799 (-483)))) (|has| (-993) (-552 (-799 (-483))))) ((-186 $) . T) ((-184 |#1|) . T) ((-190) . T) ((-189) . T) ((-225 |#1|) . T) ((-241 (-348 $) (-348 $)) |has| |#1| (-494)) ((-241 |#1| |#1|) . T) ((-241 $ $) . T) ((-246) OR (|has| |#1| (-820)) (|has| |#1| (-494)) (|has| |#1| (-390)) (|has| |#1| (-312))) ((-258) |has| |#1| (-312)) ((-260 $) . T) ((-277 |#1| (-693)) . T) ((-327 |#1|) . T) ((-353 |#1|) . T) ((-390) OR (|has| |#1| (-820)) (|has| |#1| (-390)) (|has| |#1| (-312))) ((-454 (-993) |#1|) . T) ((-454 (-993) $) . T) ((-454 $ $) . T) ((-494) OR (|has| |#1| (-820)) (|has| |#1| (-494)) (|has| |#1| (-390)) (|has| |#1| (-312))) ((-13) . T) ((-587 (-348 (-483))) |has| |#1| (-38 (-348 (-483)))) ((-587 (-483)) . T) ((-587 |#1|) . T) ((-587 $) . T) ((-589 (-348 (-483))) |has| |#1| (-38 (-348 (-483)))) ((-589 (-483)) |has| |#1| (-579 (-483))) ((-589 |#1|) . T) ((-589 $) . T) ((-581 (-348 (-483))) |has| |#1| (-38 (-348 (-483)))) ((-581 |#1|) |has| |#1| (-146)) ((-581 $) OR (|has| |#1| (-820)) (|has| |#1| (-494)) (|has| |#1| (-390)) (|has| |#1| (-312))) ((-579 (-483)) |has| |#1| (-579 (-483))) ((-579 |#1|) . T) ((-653 (-348 (-483))) |has| |#1| (-38 (-348 (-483)))) ((-653 |#1|) |has| |#1| (-146)) ((-653 $) OR (|has| |#1| (-820)) (|has| |#1| (-494)) (|has| |#1| (-390)) (|has| |#1| (-312))) ((-662) . T) ((-805 $ (-993)) . T) ((-805 $ (-1088)) OR (|has| |#1| (-810 (-1088))) (|has| |#1| (-808 (-1088)))) ((-808 (-993)) . T) ((-808 (-1088)) |has| |#1| (-808 (-1088))) ((-810 (-993)) . T) ((-810 (-1088)) OR (|has| |#1| (-810 (-1088))) (|has| |#1| (-808 (-1088)))) ((-795 (-328)) -12 (|has| |#1| (-795 (-328))) (|has| (-993) (-795 (-328)))) ((-795 (-483)) -12 (|has| |#1| (-795 (-483))) (|has| (-993) (-795 (-483)))) ((-860 |#1| (-693) (-993)) . T) ((-820) |has| |#1| (-820)) ((-831) |has| |#1| (-312)) ((-949 (-348 (-483))) |has| |#1| (-949 (-348 (-483)))) ((-949 (-483)) |has| |#1| (-949 (-483))) ((-949 (-993)) . T) ((-949 |#1|) . T) ((-962 (-348 (-483))) |has| |#1| (-38 (-348 (-483)))) ((-962 |#1|) . T) ((-962 $) OR (|has| |#1| (-820)) (|has| |#1| (-494)) (|has| |#1| (-390)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-967 (-348 (-483))) |has| |#1| (-38 (-348 (-483)))) ((-967 |#1|) . T) ((-967 $) OR (|has| |#1| (-820)) (|has| |#1| (-494)) (|has| |#1| (-390)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-960) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1064) |has| |#1| (-1064)) ((-1127) . T) ((-1132) |has| |#1| (-820))) -((-3956 ((|#4| (-1 |#3| |#1|) |#2|) 22 T ELT))) -(((-1154 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3956 (|#4| (-1 |#3| |#1|) |#2|))) (-960) (-1153 |#1|) (-960) (-1153 |#3|)) (T -1154)) -((-3956 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-960)) (-4 *6 (-960)) (-4 *2 (-1153 *6)) (-5 *1 (-1154 *5 *4 *6 *2)) (-4 *4 (-1153 *5))))) -((-3080 (((-582 (-993)) $) 34 T ELT)) (-3957 (($ $) 31 T ELT)) (-2892 (($ |#2| |#3|) NIL T ELT) (($ $ (-993) |#3|) 28 T ELT) (($ $ (-582 (-993)) (-582 |#3|)) 27 T ELT)) (-2893 (($ $) 14 T ELT)) (-3173 ((|#2| $) 12 T ELT)) (-3946 ((|#3| $) 10 T ELT))) -(((-1155 |#1| |#2| |#3|) (-10 -7 (-15 -3080 ((-582 (-993)) |#1|)) (-15 -2892 (|#1| |#1| (-582 (-993)) (-582 |#3|))) (-15 -2892 (|#1| |#1| (-993) |#3|)) (-15 -3957 (|#1| |#1|)) (-15 -2892 (|#1| |#2| |#3|)) (-15 -3946 (|#3| |#1|)) (-15 -2893 (|#1| |#1|)) (-15 -3173 (|#2| |#1|))) (-1156 |#2| |#3|) (-960) (-715)) (T -1155)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-3187 (((-85) $) 22 T ELT)) (-3080 (((-582 (-993)) $) 95 T ELT)) (-3829 (((-1088) $) 129 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3980 $) (|:| |associate| $)) $) 71 (|has| |#1| (-494)) ELT)) (-2062 (($ $) 72 (|has| |#1| (-494)) ELT)) (-2060 (((-85) $) 74 (|has| |#1| (-494)) ELT)) (-3769 (($ $ |#2|) 124 T ELT) (($ $ |#2| |#2|) 123 T ELT)) (-3772 (((-1067 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 130 T ELT)) (-1310 (((-3 $ "failed") $ $) 26 T ELT)) (-3722 (($) 23 T CONST)) (-3957 (($ $) 80 T ELT)) (-3465 (((-3 $ "failed") $) 42 T ELT)) (-2891 (((-85) $) 94 T ELT)) (-3770 ((|#2| $) 126 T ELT) ((|#2| $ |#2|) 125 T ELT)) (-1212 (((-85) $ $) 20 T ELT)) (-2409 (((-85) $) 44 T ELT)) (-3775 (($ $ (-829)) 127 T ELT)) (-3935 (((-85) $) 82 T ELT)) (-2892 (($ |#1| |#2|) 81 T ELT) (($ $ (-993) |#2|) 97 T ELT) (($ $ (-582 (-993)) (-582 |#2|)) 96 T ELT)) (-3956 (($ (-1 |#1| |#1|) $) 83 T ELT)) (-2893 (($ $) 85 T ELT)) (-3173 ((|#1| $) 86 T ELT)) (-3241 (((-1071) $) 11 T ELT)) (-3242 (((-1032) $) 12 T ELT)) (-3767 (($ $ |#2|) 121 T ELT)) (-3464 (((-3 $ "failed") $ $) 70 (|has| |#1| (-494)) ELT)) (-3766 (((-1067 |#1|) $ |#1|) 120 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) ELT)) (-3798 ((|#1| $ |#2|) 131 T ELT) (($ $ $) 107 (|has| |#2| (-1024)) ELT)) (-3756 (($ $ (-1088)) 119 (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-582 (-1088))) 117 (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-1088) (-693)) 116 (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-582 (-1088)) (-582 (-693))) 115 (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $) 111 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT) (($ $ (-693)) 109 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT)) (-3946 ((|#2| $) 84 T ELT)) (-2890 (($ $) 93 T ELT)) (-3944 (((-771) $) 13 T ELT) (($ (-483)) 41 T ELT) (($ (-348 (-483))) 77 (|has| |#1| (-38 (-348 (-483)))) ELT) (($ $) 69 (|has| |#1| (-494)) ELT) (($ |#1|) 67 (|has| |#1| (-146)) ELT)) (-3675 ((|#1| $ |#2|) 79 T ELT)) (-2701 (((-631 $) $) 68 (|has| |#1| (-118)) ELT)) (-3125 (((-693)) 40 T CONST)) (-3771 ((|#1| $) 128 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2061 (((-85) $ $) 73 (|has| |#1| (-494)) ELT)) (-3768 ((|#1| $ |#2|) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -3944 (|#1| (-1088))))) ELT)) (-3124 (((-85) $ $) 33 T ELT)) (-2659 (($) 24 T CONST)) (-2665 (($) 45 T CONST)) (-2668 (($ $ (-1088)) 118 (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-582 (-1088))) 114 (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-1088) (-693)) 113 (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-582 (-1088)) (-582 (-693))) 112 (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $) 110 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT) (($ $ (-693)) 108 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT)) (-3055 (((-85) $ $) 8 T ELT)) (-3947 (($ $ |#1|) 78 (|has| |#1| (-312)) ELT)) (-3835 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3837 (($ $ $) 18 T ELT)) (** (($ $ (-829)) 35 T ELT) (($ $ (-693)) 43 T ELT)) (* (($ (-829) $) 17 T ELT) (($ (-693) $) 21 T ELT) (($ (-483) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 88 T ELT) (($ |#1| $) 87 T ELT) (($ (-348 (-483)) $) 76 (|has| |#1| (-38 (-348 (-483)))) ELT) (($ $ (-348 (-483))) 75 (|has| |#1| (-38 (-348 (-483)))) ELT))) -(((-1156 |#1| |#2|) (-113) (-960) (-715)) (T -1156)) -((-3772 (*1 *2 *1) (-12 (-4 *1 (-1156 *3 *4)) (-4 *3 (-960)) (-4 *4 (-715)) (-5 *2 (-1067 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-3829 (*1 *2 *1) (-12 (-4 *1 (-1156 *3 *4)) (-4 *3 (-960)) (-4 *4 (-715)) (-5 *2 (-1088)))) (-3771 (*1 *2 *1) (-12 (-4 *1 (-1156 *2 *3)) (-4 *3 (-715)) (-4 *2 (-960)))) (-3775 (*1 *1 *1 *2) (-12 (-5 *2 (-829)) (-4 *1 (-1156 *3 *4)) (-4 *3 (-960)) (-4 *4 (-715)))) (-3770 (*1 *2 *1) (-12 (-4 *1 (-1156 *3 *2)) (-4 *3 (-960)) (-4 *2 (-715)))) (-3770 (*1 *2 *1 *2) (-12 (-4 *1 (-1156 *3 *2)) (-4 *3 (-960)) (-4 *2 (-715)))) (-3769 (*1 *1 *1 *2) (-12 (-4 *1 (-1156 *3 *2)) (-4 *3 (-960)) (-4 *2 (-715)))) (-3769 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1156 *3 *2)) (-4 *3 (-960)) (-4 *2 (-715)))) (-3768 (*1 *2 *1 *3) (-12 (-4 *1 (-1156 *2 *3)) (-4 *3 (-715)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -3944 (*2 (-1088)))) (-4 *2 (-960)))) (-3767 (*1 *1 *1 *2) (-12 (-4 *1 (-1156 *3 *2)) (-4 *3 (-960)) (-4 *2 (-715)))) (-3766 (*1 *2 *1 *3) (-12 (-4 *1 (-1156 *3 *4)) (-4 *3 (-960)) (-4 *4 (-715)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1067 *3))))) -(-13 (-885 |t#1| |t#2| (-993)) (-241 |t#2| |t#1|) (-10 -8 (-15 -3772 ((-1067 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -3829 ((-1088) $)) (-15 -3771 (|t#1| $)) (-15 -3775 ($ $ (-829))) (-15 -3770 (|t#2| $)) (-15 -3770 (|t#2| $ |t#2|)) (-15 -3769 ($ $ |t#2|)) (-15 -3769 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -3944 (|t#1| (-1088)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -3768 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -3767 ($ $ |t#2|)) (IF (|has| |t#2| (-1024)) (-6 (-241 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-190)) (IF (|has| |t#1| (-808 (-1088))) (-6 (-808 (-1088))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -3766 ((-1067 |t#1|) $ |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-348 (-483))) |has| |#1| (-38 (-348 (-483)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) |has| |#1| (-494)) ((-72) . T) ((-82 (-348 (-483)) (-348 (-483))) |has| |#1| (-38 (-348 (-483)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-494)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-554 (-348 (-483))) |has| |#1| (-38 (-348 (-483)))) ((-554 (-483)) . T) ((-554 |#1|) |has| |#1| (-146)) ((-554 $) |has| |#1| (-494)) ((-551 (-771)) . T) ((-146) OR (|has| |#1| (-494)) (|has| |#1| (-146))) ((-186 $) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-190) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-189) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-241 |#2| |#1|) . T) ((-241 $ $) |has| |#2| (-1024)) ((-246) |has| |#1| (-494)) ((-494) |has| |#1| (-494)) ((-13) . T) ((-587 (-348 (-483))) |has| |#1| (-38 (-348 (-483)))) ((-587 (-483)) . T) ((-587 |#1|) . T) ((-587 $) . T) ((-589 (-348 (-483))) |has| |#1| (-38 (-348 (-483)))) ((-589 |#1|) . T) ((-589 $) . T) ((-581 (-348 (-483))) |has| |#1| (-38 (-348 (-483)))) ((-581 |#1|) |has| |#1| (-146)) ((-581 $) |has| |#1| (-494)) ((-653 (-348 (-483))) |has| |#1| (-38 (-348 (-483)))) ((-653 |#1|) |has| |#1| (-146)) ((-653 $) |has| |#1| (-494)) ((-662) . T) ((-805 $ (-1088)) -12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ((-808 (-1088)) -12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ((-810 (-1088)) -12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ((-885 |#1| |#2| (-993)) . T) ((-962 (-348 (-483))) |has| |#1| (-38 (-348 (-483)))) ((-962 |#1|) . T) ((-962 $) OR (|has| |#1| (-494)) (|has| |#1| (-146))) ((-967 (-348 (-483))) |has| |#1| (-38 (-348 (-483)))) ((-967 |#1|) . T) ((-967 $) OR (|has| |#1| (-494)) (|has| |#1| (-146))) ((-960) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T)) -((-3773 ((|#2| |#2|) 12 T ELT)) (-3969 (((-346 |#2|) |#2|) 14 T ELT)) (-3774 (((-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-483))) (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (-483)))) 30 T ELT))) -(((-1157 |#1| |#2|) (-10 -7 (-15 -3969 ((-346 |#2|) |#2|)) (-15 -3773 (|#2| |#2|)) (-15 -3774 ((-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-483))) (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (-483)))))) (-494) (-13 (-1153 |#1|) (-494) (-10 -8 (-15 -3143 ($ $ $))))) (T -1157)) -((-3774 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-483)))) (-4 *4 (-13 (-1153 *3) (-494) (-10 -8 (-15 -3143 ($ $ $))))) (-4 *3 (-494)) (-5 *1 (-1157 *3 *4)))) (-3773 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-1157 *3 *2)) (-4 *2 (-13 (-1153 *3) (-494) (-10 -8 (-15 -3143 ($ $ $))))))) (-3969 (*1 *2 *3) (-12 (-4 *4 (-494)) (-5 *2 (-346 *3)) (-5 *1 (-1157 *4 *3)) (-4 *3 (-13 (-1153 *4) (-494) (-10 -8 (-15 -3143 ($ $ $)))))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3187 (((-85) $) NIL T ELT)) (-3080 (((-582 (-993)) $) NIL T ELT)) (-3829 (((-1088) $) 11 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3980 $) (|:| |associate| $)) $) NIL (|has| |#1| (-494)) ELT)) (-2062 (($ $) NIL (|has| |#1| (-494)) ELT)) (-2060 (((-85) $) NIL (|has| |#1| (-494)) ELT)) (-3769 (($ $ (-348 (-483))) NIL T ELT) (($ $ (-348 (-483)) (-348 (-483))) NIL T ELT)) (-3772 (((-1067 (-2 (|:| |k| (-348 (-483))) (|:| |c| |#1|))) $) NIL T ELT)) (-3490 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3637 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3773 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3969 (((-346 $) $) NIL (|has| |#1| (-312)) ELT)) (-3036 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-1606 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3488 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3636 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3816 (($ (-693) (-1067 (-2 (|:| |k| (-348 (-483))) (|:| |c| |#1|)))) NIL T ELT)) (-3492 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3635 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3722 (($) NIL T CONST)) (-3156 (((-3 (-1137 |#1| |#2| |#3|) #1#) $) 19 T ELT) (((-3 (-1167 |#1| |#2| |#3|) #1#) $) 22 T ELT)) (-3155 (((-1137 |#1| |#2| |#3|) $) NIL T ELT) (((-1167 |#1| |#2| |#3|) $) NIL T ELT)) (-2563 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3957 (($ $) NIL T ELT)) (-3465 (((-3 $ #1#) $) NIL T ELT)) (-3779 (((-348 (-483)) $) 68 T ELT)) (-2562 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3780 (($ (-348 (-483)) (-1137 |#1| |#2| |#3|)) NIL T ELT)) (-2740 (((-2 (|:| -3952 (-582 $)) (|:| -2408 $)) (-582 $)) NIL (|has| |#1| (-312)) ELT)) (-3721 (((-85) $) NIL (|has| |#1| (-312)) ELT)) (-2891 (((-85) $) NIL T ELT)) (-3625 (($) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3770 (((-348 (-483)) $) NIL T ELT) (((-348 (-483)) $ (-348 (-483))) NIL T ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-2409 (((-85) $) NIL T ELT)) (-3010 (($ $ (-483)) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3775 (($ $ (-829)) NIL T ELT) (($ $ (-348 (-483))) NIL T ELT)) (-1603 (((-3 (-582 $) #1#) (-582 $) $) NIL (|has| |#1| (-312)) ELT)) (-3935 (((-85) $) NIL T ELT)) (-2892 (($ |#1| (-348 (-483))) 30 T ELT) (($ $ (-993) (-348 (-483))) NIL T ELT) (($ $ (-582 (-993)) (-582 (-348 (-483)))) NIL T ELT)) (-3956 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3940 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-2893 (($ $) NIL T ELT)) (-3173 ((|#1| $) NIL T ELT)) (-1889 (($ (-582 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3778 (((-1137 |#1| |#2| |#3|) $) 71 T ELT)) (-3776 (((-3 (-1137 |#1| |#2| |#3|) #1#) $) NIL T ELT)) (-3777 (((-1137 |#1| |#2| |#3|) $) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-2483 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3810 (($ $) 39 (|has| |#1| (-38 (-348 (-483)))) ELT) (($ $ (-1088)) NIL (OR (-12 (|has| |#1| (-38 (-348 (-483)))) (|has| |#1| (-29 (-483))) (|has| |#1| (-870)) (|has| |#1| (-1113))) (-12 (|has| |#1| (-38 (-348 (-483)))) (|has| |#1| (-15 -3810 (|#1| |#1| (-1088)))) (|has| |#1| (-15 -3080 ((-582 (-1088)) |#1|))))) ELT) (($ $ (-1174 |#2|)) 40 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3242 (((-1032) $) NIL T ELT)) (-2707 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#1| (-312)) ELT)) (-3143 (($ (-582 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3730 (((-346 $) $) NIL (|has| |#1| (-312)) ELT)) (-1604 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3767 (($ $ (-348 (-483))) NIL T ELT)) (-3464 (((-3 $ #1#) $ $) NIL (|has| |#1| (-494)) ELT)) (-2739 (((-631 (-582 $)) (-582 $) $) NIL (|has| |#1| (-312)) ELT)) (-3941 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3766 (((-1067 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-348 (-483))))) ELT)) (-1605 (((-693) $) NIL (|has| |#1| (-312)) ELT)) (-3798 ((|#1| $ (-348 (-483))) NIL T ELT) (($ $ $) NIL (|has| (-348 (-483)) (-1024)) ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3756 (($ $ (-1088)) NIL (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-348 (-483)) |#1|)))) ELT) (($ $ (-582 (-1088))) NIL (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-348 (-483)) |#1|)))) ELT) (($ $ (-1088) (-693)) NIL (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-348 (-483)) |#1|)))) ELT) (($ $ (-582 (-1088)) (-582 (-693))) NIL (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-348 (-483)) |#1|)))) ELT) (($ $) 37 (|has| |#1| (-15 * (|#1| (-348 (-483)) |#1|))) ELT) (($ $ (-693)) NIL (|has| |#1| (-15 * (|#1| (-348 (-483)) |#1|))) ELT) (($ $ (-1174 |#2|)) 38 T ELT)) (-3946 (((-348 (-483)) $) NIL T ELT)) (-3493 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3634 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3491 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3633 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3489 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3632 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-2890 (($ $) NIL T ELT)) (-3944 (((-771) $) 107 T ELT) (($ (-483)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT) (($ (-1137 |#1| |#2| |#3|)) 16 T ELT) (($ (-1167 |#1| |#2| |#3|)) 17 T ELT) (($ (-1174 |#2|)) 36 T ELT) (($ (-348 (-483))) NIL (|has| |#1| (-38 (-348 (-483)))) ELT) (($ $) NIL (|has| |#1| (-494)) ELT)) (-3675 ((|#1| $ (-348 (-483))) NIL T ELT)) (-2701 (((-631 $) $) NIL (|has| |#1| (-118)) ELT)) (-3125 (((-693)) NIL T CONST)) (-3771 ((|#1| $) 12 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3496 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3484 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-2061 (((-85) $ $) NIL (|has| |#1| (-494)) ELT)) (-3494 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3482 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3498 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3486 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3768 ((|#1| $ (-348 (-483))) 73 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-348 (-483))))) (|has| |#1| (-15 -3944 (|#1| (-1088))))) ELT)) (-3124 (((-85) $ $) NIL T ELT)) (-3499 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3487 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3497 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3485 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3495 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3483 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-2659 (($) 32 T CONST)) (-2665 (($) 26 T CONST)) (-2668 (($ $ (-1088)) NIL (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-348 (-483)) |#1|)))) ELT) (($ $ (-582 (-1088))) NIL (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-348 (-483)) |#1|)))) ELT) (($ $ (-1088) (-693)) NIL (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-348 (-483)) |#1|)))) ELT) (($ $ (-582 (-1088)) (-582 (-693))) NIL (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-348 (-483)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-348 (-483)) |#1|))) ELT) (($ $ (-693)) NIL (|has| |#1| (-15 * (|#1| (-348 (-483)) |#1|))) ELT) (($ $ (-1174 |#2|)) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-3947 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3835 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3837 (($ $ $) 34 T ELT)) (** (($ $ (-829)) NIL T ELT) (($ $ (-693)) NIL T ELT) (($ $ (-483)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT) (($ $ (-348 (-483))) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-348 (-483)) $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT) (($ $ (-348 (-483))) NIL (|has| |#1| (-38 (-348 (-483)))) ELT))) -(((-1158 |#1| |#2| |#3|) (-13 (-1162 |#1| (-1137 |#1| |#2| |#3|)) (-805 $ (-1174 |#2|)) (-949 (-1167 |#1| |#2| |#3|)) (-554 (-1174 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-348 (-483)))) (-15 -3810 ($ $ (-1174 |#2|))) |%noBranch|))) (-960) (-1088) |#1|) (T -1158)) -((-3810 (*1 *1 *1 *2) (-12 (-5 *2 (-1174 *4)) (-14 *4 (-1088)) (-5 *1 (-1158 *3 *4 *5)) (-4 *3 (-38 (-348 (-483)))) (-4 *3 (-960)) (-14 *5 *3)))) -((-3956 (((-1158 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1158 |#1| |#3| |#5|)) 24 T ELT))) -(((-1159 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3956 ((-1158 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1158 |#1| |#3| |#5|)))) (-960) (-960) (-1088) (-1088) |#1| |#2|) (T -1159)) -((-3956 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1158 *5 *7 *9)) (-4 *5 (-960)) (-4 *6 (-960)) (-14 *7 (-1088)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1158 *6 *8 *10)) (-5 *1 (-1159 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1088))))) -((-2567 (((-85) $ $) 7 T ELT)) (-3187 (((-85) $) 22 T ELT)) (-3080 (((-582 (-993)) $) 95 T ELT)) (-3829 (((-1088) $) 129 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3980 $) (|:| |associate| $)) $) 71 (|has| |#1| (-494)) ELT)) (-2062 (($ $) 72 (|has| |#1| (-494)) ELT)) (-2060 (((-85) $) 74 (|has| |#1| (-494)) ELT)) (-3769 (($ $ (-348 (-483))) 124 T ELT) (($ $ (-348 (-483)) (-348 (-483))) 123 T ELT)) (-3772 (((-1067 (-2 (|:| |k| (-348 (-483))) (|:| |c| |#1|))) $) 130 T ELT)) (-3490 (($ $) 163 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3637 (($ $) 146 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-1310 (((-3 $ "failed") $ $) 26 T ELT)) (-3773 (($ $) 190 (|has| |#1| (-312)) ELT)) (-3969 (((-346 $) $) 191 (|has| |#1| (-312)) ELT)) (-3036 (($ $) 145 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-1606 (((-85) $ $) 181 (|has| |#1| (-312)) ELT)) (-3488 (($ $) 162 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3636 (($ $) 147 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3816 (($ (-693) (-1067 (-2 (|:| |k| (-348 (-483))) (|:| |c| |#1|)))) 199 T ELT)) (-3492 (($ $) 161 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3635 (($ $) 148 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3722 (($) 23 T CONST)) (-2563 (($ $ $) 185 (|has| |#1| (-312)) ELT)) (-3957 (($ $) 80 T ELT)) (-3465 (((-3 $ "failed") $) 42 T ELT)) (-2562 (($ $ $) 184 (|has| |#1| (-312)) ELT)) (-2740 (((-2 (|:| -3952 (-582 $)) (|:| -2408 $)) (-582 $)) 179 (|has| |#1| (-312)) ELT)) (-3721 (((-85) $) 192 (|has| |#1| (-312)) ELT)) (-2891 (((-85) $) 94 T ELT)) (-3625 (($) 173 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3770 (((-348 (-483)) $) 126 T ELT) (((-348 (-483)) $ (-348 (-483))) 125 T ELT)) (-1212 (((-85) $ $) 20 T ELT)) (-2409 (((-85) $) 44 T ELT)) (-3010 (($ $ (-483)) 144 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3775 (($ $ (-829)) 127 T ELT) (($ $ (-348 (-483))) 198 T ELT)) (-1603 (((-3 (-582 $) #1="failed") (-582 $) $) 188 (|has| |#1| (-312)) ELT)) (-3935 (((-85) $) 82 T ELT)) (-2892 (($ |#1| (-348 (-483))) 81 T ELT) (($ $ (-993) (-348 (-483))) 97 T ELT) (($ $ (-582 (-993)) (-582 (-348 (-483)))) 96 T ELT)) (-3956 (($ (-1 |#1| |#1|) $) 83 T ELT)) (-3940 (($ $) 170 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-2893 (($ $) 85 T ELT)) (-3173 ((|#1| $) 86 T ELT)) (-1889 (($ (-582 $)) 177 (|has| |#1| (-312)) ELT) (($ $ $) 176 (|has| |#1| (-312)) ELT)) (-3241 (((-1071) $) 11 T ELT)) (-2483 (($ $) 193 (|has| |#1| (-312)) ELT)) (-3810 (($ $) 197 (|has| |#1| (-38 (-348 (-483)))) ELT) (($ $ (-1088)) 196 (OR (-12 (|has| |#1| (-29 (-483))) (|has| |#1| (-870)) (|has| |#1| (-1113)) (|has| |#1| (-38 (-348 (-483))))) (-12 (|has| |#1| (-15 -3080 ((-582 (-1088)) |#1|))) (|has| |#1| (-15 -3810 (|#1| |#1| (-1088)))) (|has| |#1| (-38 (-348 (-483)))))) ELT)) (-3242 (((-1032) $) 12 T ELT)) (-2707 (((-1083 $) (-1083 $) (-1083 $)) 178 (|has| |#1| (-312)) ELT)) (-3143 (($ (-582 $)) 175 (|has| |#1| (-312)) ELT) (($ $ $) 174 (|has| |#1| (-312)) ELT)) (-3730 (((-346 $) $) 189 (|has| |#1| (-312)) ELT)) (-1604 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 187 (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) 186 (|has| |#1| (-312)) ELT)) (-3767 (($ $ (-348 (-483))) 121 T ELT)) (-3464 (((-3 $ "failed") $ $) 70 (|has| |#1| (-494)) ELT)) (-2739 (((-631 (-582 $)) (-582 $) $) 180 (|has| |#1| (-312)) ELT)) (-3941 (($ $) 171 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3766 (((-1067 |#1|) $ |#1|) 120 (|has| |#1| (-15 ** (|#1| |#1| (-348 (-483))))) ELT)) (-1605 (((-693) $) 182 (|has| |#1| (-312)) ELT)) (-3798 ((|#1| $ (-348 (-483))) 131 T ELT) (($ $ $) 107 (|has| (-348 (-483)) (-1024)) ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) 183 (|has| |#1| (-312)) ELT)) (-3756 (($ $ (-1088)) 119 (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-348 (-483)) |#1|)))) ELT) (($ $ (-582 (-1088))) 117 (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-348 (-483)) |#1|)))) ELT) (($ $ (-1088) (-693)) 116 (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-348 (-483)) |#1|)))) ELT) (($ $ (-582 (-1088)) (-582 (-693))) 115 (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-348 (-483)) |#1|)))) ELT) (($ $) 111 (|has| |#1| (-15 * (|#1| (-348 (-483)) |#1|))) ELT) (($ $ (-693)) 109 (|has| |#1| (-15 * (|#1| (-348 (-483)) |#1|))) ELT)) (-3946 (((-348 (-483)) $) 84 T ELT)) (-3493 (($ $) 160 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3634 (($ $) 149 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3491 (($ $) 159 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3633 (($ $) 150 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3489 (($ $) 158 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3632 (($ $) 151 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-2890 (($ $) 93 T ELT)) (-3944 (((-771) $) 13 T ELT) (($ (-483)) 41 T ELT) (($ |#1|) 67 (|has| |#1| (-146)) ELT) (($ (-348 (-483))) 77 (|has| |#1| (-38 (-348 (-483)))) ELT) (($ $) 69 (|has| |#1| (-494)) ELT)) (-3675 ((|#1| $ (-348 (-483))) 79 T ELT)) (-2701 (((-631 $) $) 68 (|has| |#1| (-118)) ELT)) (-3125 (((-693)) 40 T CONST)) (-3771 ((|#1| $) 128 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-3496 (($ $) 169 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3484 (($ $) 157 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-2061 (((-85) $ $) 73 (|has| |#1| (-494)) ELT)) (-3494 (($ $) 168 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3482 (($ $) 156 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3498 (($ $) 167 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3486 (($ $) 155 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3768 ((|#1| $ (-348 (-483))) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-348 (-483))))) (|has| |#1| (-15 -3944 (|#1| (-1088))))) ELT)) (-3124 (((-85) $ $) 33 T ELT)) (-3499 (($ $) 166 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3487 (($ $) 154 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3497 (($ $) 165 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3485 (($ $) 153 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3495 (($ $) 164 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3483 (($ $) 152 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-2659 (($) 24 T CONST)) (-2665 (($) 45 T CONST)) (-2668 (($ $ (-1088)) 118 (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-348 (-483)) |#1|)))) ELT) (($ $ (-582 (-1088))) 114 (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-348 (-483)) |#1|)))) ELT) (($ $ (-1088) (-693)) 113 (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-348 (-483)) |#1|)))) ELT) (($ $ (-582 (-1088)) (-582 (-693))) 112 (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-348 (-483)) |#1|)))) ELT) (($ $) 110 (|has| |#1| (-15 * (|#1| (-348 (-483)) |#1|))) ELT) (($ $ (-693)) 108 (|has| |#1| (-15 * (|#1| (-348 (-483)) |#1|))) ELT)) (-3055 (((-85) $ $) 8 T ELT)) (-3947 (($ $ |#1|) 78 (|has| |#1| (-312)) ELT) (($ $ $) 195 (|has| |#1| (-312)) ELT)) (-3835 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3837 (($ $ $) 18 T ELT)) (** (($ $ (-829)) 35 T ELT) (($ $ (-693)) 43 T ELT) (($ $ (-483)) 194 (|has| |#1| (-312)) ELT) (($ $ $) 172 (|has| |#1| (-38 (-348 (-483)))) ELT) (($ $ (-348 (-483))) 143 (|has| |#1| (-38 (-348 (-483)))) ELT)) (* (($ (-829) $) 17 T ELT) (($ (-693) $) 21 T ELT) (($ (-483) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 88 T ELT) (($ |#1| $) 87 T ELT) (($ (-348 (-483)) $) 76 (|has| |#1| (-38 (-348 (-483)))) ELT) (($ $ (-348 (-483))) 75 (|has| |#1| (-38 (-348 (-483)))) ELT))) -(((-1160 |#1|) (-113) (-960)) (T -1160)) -((-3816 (*1 *1 *2 *3) (-12 (-5 *2 (-693)) (-5 *3 (-1067 (-2 (|:| |k| (-348 (-483))) (|:| |c| *4)))) (-4 *4 (-960)) (-4 *1 (-1160 *4)))) (-3775 (*1 *1 *1 *2) (-12 (-5 *2 (-348 (-483))) (-4 *1 (-1160 *3)) (-4 *3 (-960)))) (-3810 (*1 *1 *1) (-12 (-4 *1 (-1160 *2)) (-4 *2 (-960)) (-4 *2 (-38 (-348 (-483)))))) (-3810 (*1 *1 *1 *2) (OR (-12 (-5 *2 (-1088)) (-4 *1 (-1160 *3)) (-4 *3 (-960)) (-12 (-4 *3 (-29 (-483))) (-4 *3 (-870)) (-4 *3 (-1113)) (-4 *3 (-38 (-348 (-483)))))) (-12 (-5 *2 (-1088)) (-4 *1 (-1160 *3)) (-4 *3 (-960)) (-12 (|has| *3 (-15 -3080 ((-582 *2) *3))) (|has| *3 (-15 -3810 (*3 *3 *2))) (-4 *3 (-38 (-348 (-483))))))))) -(-13 (-1156 |t#1| (-348 (-483))) (-10 -8 (-15 -3816 ($ (-693) (-1067 (-2 (|:| |k| (-348 (-483))) (|:| |c| |t#1|))))) (-15 -3775 ($ $ (-348 (-483)))) (IF (|has| |t#1| (-38 (-348 (-483)))) (PROGN (-15 -3810 ($ $)) (IF (|has| |t#1| (-15 -3810 (|t#1| |t#1| (-1088)))) (IF (|has| |t#1| (-15 -3080 ((-582 (-1088)) |t#1|))) (-15 -3810 ($ $ (-1088))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1113)) (IF (|has| |t#1| (-870)) (IF (|has| |t#1| (-29 (-483))) (-15 -3810 ($ $ (-1088))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-914)) (-6 (-1113))) |%noBranch|) (IF (|has| |t#1| (-312)) (-6 (-312)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| (-348 (-483))) . T) ((-25) . T) ((-38 (-348 (-483))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-348 (-483))))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) OR (|has| |#1| (-494)) (|has| |#1| (-312))) ((-35) |has| |#1| (-38 (-348 (-483)))) ((-66) |has| |#1| (-38 (-348 (-483)))) ((-72) . T) ((-82 (-348 (-483)) (-348 (-483))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-348 (-483))))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-494)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-554 (-348 (-483))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-348 (-483))))) ((-554 (-483)) . T) ((-554 |#1|) |has| |#1| (-146)) ((-554 $) OR (|has| |#1| (-494)) (|has| |#1| (-312))) ((-551 (-771)) . T) ((-146) OR (|has| |#1| (-494)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-186 $) |has| |#1| (-15 * (|#1| (-348 (-483)) |#1|))) ((-190) |has| |#1| (-15 * (|#1| (-348 (-483)) |#1|))) ((-189) |has| |#1| (-15 * (|#1| (-348 (-483)) |#1|))) ((-201) |has| |#1| (-312)) ((-239) |has| |#1| (-38 (-348 (-483)))) ((-241 (-348 (-483)) |#1|) . T) ((-241 $ $) |has| (-348 (-483)) (-1024)) ((-246) OR (|has| |#1| (-494)) (|has| |#1| (-312))) ((-258) |has| |#1| (-312)) ((-312) |has| |#1| (-312)) ((-390) |has| |#1| (-312)) ((-431) |has| |#1| (-38 (-348 (-483)))) ((-494) OR (|has| |#1| (-494)) (|has| |#1| (-312))) ((-13) . T) ((-587 (-348 (-483))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-348 (-483))))) ((-587 (-483)) . T) ((-587 |#1|) . T) ((-587 $) . T) ((-589 (-348 (-483))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-348 (-483))))) ((-589 |#1|) . T) ((-589 $) . T) ((-581 (-348 (-483))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-348 (-483))))) ((-581 |#1|) |has| |#1| (-146)) ((-581 $) OR (|has| |#1| (-494)) (|has| |#1| (-312))) ((-653 (-348 (-483))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-348 (-483))))) ((-653 |#1|) |has| |#1| (-146)) ((-653 $) OR (|has| |#1| (-494)) (|has| |#1| (-312))) ((-662) . T) ((-805 $ (-1088)) -12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-348 (-483)) |#1|)))) ((-808 (-1088)) -12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-348 (-483)) |#1|)))) ((-810 (-1088)) -12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-348 (-483)) |#1|)))) ((-885 |#1| (-348 (-483)) (-993)) . T) ((-831) |has| |#1| (-312)) ((-914) |has| |#1| (-38 (-348 (-483)))) ((-962 (-348 (-483))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-348 (-483))))) ((-962 |#1|) . T) ((-962 $) OR (|has| |#1| (-494)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-967 (-348 (-483))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-348 (-483))))) ((-967 |#1|) . T) ((-967 $) OR (|has| |#1| (-494)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-960) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1113) |has| |#1| (-38 (-348 (-483)))) ((-1116) |has| |#1| (-38 (-348 (-483)))) ((-1127) . T) ((-1132) |has| |#1| (-312)) ((-1156 |#1| (-348 (-483))) . T)) -((-3187 (((-85) $) 12 T ELT)) (-3156 (((-3 |#3| "failed") $) 17 T ELT)) (-3155 ((|#3| $) 14 T ELT))) -(((-1161 |#1| |#2| |#3|) (-10 -7 (-15 -3156 ((-3 |#3| "failed") |#1|)) (-15 -3155 (|#3| |#1|)) (-15 -3187 ((-85) |#1|))) (-1162 |#2| |#3|) (-960) (-1139 |#2|)) (T -1161)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-3187 (((-85) $) 22 T ELT)) (-3080 (((-582 (-993)) $) 95 T ELT)) (-3829 (((-1088) $) 129 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3980 $) (|:| |associate| $)) $) 71 (|has| |#1| (-494)) ELT)) (-2062 (($ $) 72 (|has| |#1| (-494)) ELT)) (-2060 (((-85) $) 74 (|has| |#1| (-494)) ELT)) (-3769 (($ $ (-348 (-483))) 124 T ELT) (($ $ (-348 (-483)) (-348 (-483))) 123 T ELT)) (-3772 (((-1067 (-2 (|:| |k| (-348 (-483))) (|:| |c| |#1|))) $) 130 T ELT)) (-3490 (($ $) 163 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3637 (($ $) 146 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-1310 (((-3 $ "failed") $ $) 26 T ELT)) (-3773 (($ $) 190 (|has| |#1| (-312)) ELT)) (-3969 (((-346 $) $) 191 (|has| |#1| (-312)) ELT)) (-3036 (($ $) 145 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-1606 (((-85) $ $) 181 (|has| |#1| (-312)) ELT)) (-3488 (($ $) 162 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3636 (($ $) 147 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3816 (($ (-693) (-1067 (-2 (|:| |k| (-348 (-483))) (|:| |c| |#1|)))) 199 T ELT)) (-3492 (($ $) 161 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3635 (($ $) 148 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3722 (($) 23 T CONST)) (-3156 (((-3 |#2| "failed") $) 212 T ELT)) (-3155 ((|#2| $) 213 T ELT)) (-2563 (($ $ $) 185 (|has| |#1| (-312)) ELT)) (-3957 (($ $) 80 T ELT)) (-3465 (((-3 $ "failed") $) 42 T ELT)) (-3779 (((-348 (-483)) $) 209 T ELT)) (-2562 (($ $ $) 184 (|has| |#1| (-312)) ELT)) (-3780 (($ (-348 (-483)) |#2|) 210 T ELT)) (-2740 (((-2 (|:| -3952 (-582 $)) (|:| -2408 $)) (-582 $)) 179 (|has| |#1| (-312)) ELT)) (-3721 (((-85) $) 192 (|has| |#1| (-312)) ELT)) (-2891 (((-85) $) 94 T ELT)) (-3625 (($) 173 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3770 (((-348 (-483)) $) 126 T ELT) (((-348 (-483)) $ (-348 (-483))) 125 T ELT)) (-1212 (((-85) $ $) 20 T ELT)) (-2409 (((-85) $) 44 T ELT)) (-3010 (($ $ (-483)) 144 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3775 (($ $ (-829)) 127 T ELT) (($ $ (-348 (-483))) 198 T ELT)) (-1603 (((-3 (-582 $) #1="failed") (-582 $) $) 188 (|has| |#1| (-312)) ELT)) (-3935 (((-85) $) 82 T ELT)) (-2892 (($ |#1| (-348 (-483))) 81 T ELT) (($ $ (-993) (-348 (-483))) 97 T ELT) (($ $ (-582 (-993)) (-582 (-348 (-483)))) 96 T ELT)) (-3956 (($ (-1 |#1| |#1|) $) 83 T ELT)) (-3940 (($ $) 170 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-2893 (($ $) 85 T ELT)) (-3173 ((|#1| $) 86 T ELT)) (-1889 (($ (-582 $)) 177 (|has| |#1| (-312)) ELT) (($ $ $) 176 (|has| |#1| (-312)) ELT)) (-3778 ((|#2| $) 208 T ELT)) (-3776 (((-3 |#2| "failed") $) 206 T ELT)) (-3777 ((|#2| $) 207 T ELT)) (-3241 (((-1071) $) 11 T ELT)) (-2483 (($ $) 193 (|has| |#1| (-312)) ELT)) (-3810 (($ $) 197 (|has| |#1| (-38 (-348 (-483)))) ELT) (($ $ (-1088)) 196 (OR (-12 (|has| |#1| (-29 (-483))) (|has| |#1| (-870)) (|has| |#1| (-1113)) (|has| |#1| (-38 (-348 (-483))))) (-12 (|has| |#1| (-15 -3080 ((-582 (-1088)) |#1|))) (|has| |#1| (-15 -3810 (|#1| |#1| (-1088)))) (|has| |#1| (-38 (-348 (-483)))))) ELT)) (-3242 (((-1032) $) 12 T ELT)) (-2707 (((-1083 $) (-1083 $) (-1083 $)) 178 (|has| |#1| (-312)) ELT)) (-3143 (($ (-582 $)) 175 (|has| |#1| (-312)) ELT) (($ $ $) 174 (|has| |#1| (-312)) ELT)) (-3730 (((-346 $) $) 189 (|has| |#1| (-312)) ELT)) (-1604 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 187 (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) 186 (|has| |#1| (-312)) ELT)) (-3767 (($ $ (-348 (-483))) 121 T ELT)) (-3464 (((-3 $ "failed") $ $) 70 (|has| |#1| (-494)) ELT)) (-2739 (((-631 (-582 $)) (-582 $) $) 180 (|has| |#1| (-312)) ELT)) (-3941 (($ $) 171 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3766 (((-1067 |#1|) $ |#1|) 120 (|has| |#1| (-15 ** (|#1| |#1| (-348 (-483))))) ELT)) (-1605 (((-693) $) 182 (|has| |#1| (-312)) ELT)) (-3798 ((|#1| $ (-348 (-483))) 131 T ELT) (($ $ $) 107 (|has| (-348 (-483)) (-1024)) ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) 183 (|has| |#1| (-312)) ELT)) (-3756 (($ $ (-1088)) 119 (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-348 (-483)) |#1|)))) ELT) (($ $ (-582 (-1088))) 117 (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-348 (-483)) |#1|)))) ELT) (($ $ (-1088) (-693)) 116 (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-348 (-483)) |#1|)))) ELT) (($ $ (-582 (-1088)) (-582 (-693))) 115 (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-348 (-483)) |#1|)))) ELT) (($ $) 111 (|has| |#1| (-15 * (|#1| (-348 (-483)) |#1|))) ELT) (($ $ (-693)) 109 (|has| |#1| (-15 * (|#1| (-348 (-483)) |#1|))) ELT)) (-3946 (((-348 (-483)) $) 84 T ELT)) (-3493 (($ $) 160 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3634 (($ $) 149 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3491 (($ $) 159 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3633 (($ $) 150 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3489 (($ $) 158 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3632 (($ $) 151 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-2890 (($ $) 93 T ELT)) (-3944 (((-771) $) 13 T ELT) (($ (-483)) 41 T ELT) (($ |#1|) 67 (|has| |#1| (-146)) ELT) (($ |#2|) 211 T ELT) (($ (-348 (-483))) 77 (|has| |#1| (-38 (-348 (-483)))) ELT) (($ $) 69 (|has| |#1| (-494)) ELT)) (-3675 ((|#1| $ (-348 (-483))) 79 T ELT)) (-2701 (((-631 $) $) 68 (|has| |#1| (-118)) ELT)) (-3125 (((-693)) 40 T CONST)) (-3771 ((|#1| $) 128 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-3496 (($ $) 169 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3484 (($ $) 157 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-2061 (((-85) $ $) 73 (|has| |#1| (-494)) ELT)) (-3494 (($ $) 168 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3482 (($ $) 156 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3498 (($ $) 167 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3486 (($ $) 155 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3768 ((|#1| $ (-348 (-483))) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-348 (-483))))) (|has| |#1| (-15 -3944 (|#1| (-1088))))) ELT)) (-3124 (((-85) $ $) 33 T ELT)) (-3499 (($ $) 166 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3487 (($ $) 154 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3497 (($ $) 165 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3485 (($ $) 153 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3495 (($ $) 164 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3483 (($ $) 152 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-2659 (($) 24 T CONST)) (-2665 (($) 45 T CONST)) (-2668 (($ $ (-1088)) 118 (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-348 (-483)) |#1|)))) ELT) (($ $ (-582 (-1088))) 114 (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-348 (-483)) |#1|)))) ELT) (($ $ (-1088) (-693)) 113 (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-348 (-483)) |#1|)))) ELT) (($ $ (-582 (-1088)) (-582 (-693))) 112 (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-348 (-483)) |#1|)))) ELT) (($ $) 110 (|has| |#1| (-15 * (|#1| (-348 (-483)) |#1|))) ELT) (($ $ (-693)) 108 (|has| |#1| (-15 * (|#1| (-348 (-483)) |#1|))) ELT)) (-3055 (((-85) $ $) 8 T ELT)) (-3947 (($ $ |#1|) 78 (|has| |#1| (-312)) ELT) (($ $ $) 195 (|has| |#1| (-312)) ELT)) (-3835 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3837 (($ $ $) 18 T ELT)) (** (($ $ (-829)) 35 T ELT) (($ $ (-693)) 43 T ELT) (($ $ (-483)) 194 (|has| |#1| (-312)) ELT) (($ $ $) 172 (|has| |#1| (-38 (-348 (-483)))) ELT) (($ $ (-348 (-483))) 143 (|has| |#1| (-38 (-348 (-483)))) ELT)) (* (($ (-829) $) 17 T ELT) (($ (-693) $) 21 T ELT) (($ (-483) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 88 T ELT) (($ |#1| $) 87 T ELT) (($ (-348 (-483)) $) 76 (|has| |#1| (-38 (-348 (-483)))) ELT) (($ $ (-348 (-483))) 75 (|has| |#1| (-38 (-348 (-483)))) ELT))) -(((-1162 |#1| |#2|) (-113) (-960) (-1139 |t#1|)) (T -1162)) -((-3946 (*1 *2 *1) (-12 (-4 *1 (-1162 *3 *4)) (-4 *3 (-960)) (-4 *4 (-1139 *3)) (-5 *2 (-348 (-483))))) (-3780 (*1 *1 *2 *3) (-12 (-5 *2 (-348 (-483))) (-4 *4 (-960)) (-4 *1 (-1162 *4 *3)) (-4 *3 (-1139 *4)))) (-3779 (*1 *2 *1) (-12 (-4 *1 (-1162 *3 *4)) (-4 *3 (-960)) (-4 *4 (-1139 *3)) (-5 *2 (-348 (-483))))) (-3778 (*1 *2 *1) (-12 (-4 *1 (-1162 *3 *2)) (-4 *3 (-960)) (-4 *2 (-1139 *3)))) (-3777 (*1 *2 *1) (-12 (-4 *1 (-1162 *3 *2)) (-4 *3 (-960)) (-4 *2 (-1139 *3)))) (-3776 (*1 *2 *1) (|partial| -12 (-4 *1 (-1162 *3 *2)) (-4 *3 (-960)) (-4 *2 (-1139 *3))))) -(-13 (-1160 |t#1|) (-949 |t#2|) (-554 |t#2|) (-10 -8 (-15 -3780 ($ (-348 (-483)) |t#2|)) (-15 -3779 ((-348 (-483)) $)) (-15 -3778 (|t#2| $)) (-15 -3946 ((-348 (-483)) $)) (-15 -3777 (|t#2| $)) (-15 -3776 ((-3 |t#2| "failed") $)))) -(((-21) . T) ((-23) . T) ((-47 |#1| (-348 (-483))) . T) ((-25) . T) ((-38 (-348 (-483))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-348 (-483))))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) OR (|has| |#1| (-494)) (|has| |#1| (-312))) ((-35) |has| |#1| (-38 (-348 (-483)))) ((-66) |has| |#1| (-38 (-348 (-483)))) ((-72) . T) ((-82 (-348 (-483)) (-348 (-483))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-348 (-483))))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-494)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-554 (-348 (-483))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-348 (-483))))) ((-554 (-483)) . T) ((-554 |#1|) |has| |#1| (-146)) ((-554 |#2|) . T) ((-554 $) OR (|has| |#1| (-494)) (|has| |#1| (-312))) ((-551 (-771)) . T) ((-146) OR (|has| |#1| (-494)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-186 $) |has| |#1| (-15 * (|#1| (-348 (-483)) |#1|))) ((-190) |has| |#1| (-15 * (|#1| (-348 (-483)) |#1|))) ((-189) |has| |#1| (-15 * (|#1| (-348 (-483)) |#1|))) ((-201) |has| |#1| (-312)) ((-239) |has| |#1| (-38 (-348 (-483)))) ((-241 (-348 (-483)) |#1|) . T) ((-241 $ $) |has| (-348 (-483)) (-1024)) ((-246) OR (|has| |#1| (-494)) (|has| |#1| (-312))) ((-258) |has| |#1| (-312)) ((-312) |has| |#1| (-312)) ((-390) |has| |#1| (-312)) ((-431) |has| |#1| (-38 (-348 (-483)))) ((-494) OR (|has| |#1| (-494)) (|has| |#1| (-312))) ((-13) . T) ((-587 (-348 (-483))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-348 (-483))))) ((-587 (-483)) . T) ((-587 |#1|) . T) ((-587 $) . T) ((-589 (-348 (-483))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-348 (-483))))) ((-589 |#1|) . T) ((-589 $) . T) ((-581 (-348 (-483))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-348 (-483))))) ((-581 |#1|) |has| |#1| (-146)) ((-581 $) OR (|has| |#1| (-494)) (|has| |#1| (-312))) ((-653 (-348 (-483))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-348 (-483))))) ((-653 |#1|) |has| |#1| (-146)) ((-653 $) OR (|has| |#1| (-494)) (|has| |#1| (-312))) ((-662) . T) ((-805 $ (-1088)) -12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-348 (-483)) |#1|)))) ((-808 (-1088)) -12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-348 (-483)) |#1|)))) ((-810 (-1088)) -12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-348 (-483)) |#1|)))) ((-885 |#1| (-348 (-483)) (-993)) . T) ((-831) |has| |#1| (-312)) ((-914) |has| |#1| (-38 (-348 (-483)))) ((-949 |#2|) . T) ((-962 (-348 (-483))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-348 (-483))))) ((-962 |#1|) . T) ((-962 $) OR (|has| |#1| (-494)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-967 (-348 (-483))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-348 (-483))))) ((-967 |#1|) . T) ((-967 $) OR (|has| |#1| (-494)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-960) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1113) |has| |#1| (-38 (-348 (-483)))) ((-1116) |has| |#1| (-38 (-348 (-483)))) ((-1127) . T) ((-1132) |has| |#1| (-312)) ((-1156 |#1| (-348 (-483))) . T) ((-1160 |#1|) . T)) -((-2567 (((-85) $ $) NIL T ELT)) (-3187 (((-85) $) NIL T ELT)) (-3080 (((-582 (-993)) $) NIL T ELT)) (-3829 (((-1088) $) 104 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3980 $) (|:| |associate| $)) $) NIL (|has| |#1| (-494)) ELT)) (-2062 (($ $) NIL (|has| |#1| (-494)) ELT)) (-2060 (((-85) $) NIL (|has| |#1| (-494)) ELT)) (-3769 (($ $ (-348 (-483))) 116 T ELT) (($ $ (-348 (-483)) (-348 (-483))) 118 T ELT)) (-3772 (((-1067 (-2 (|:| |k| (-348 (-483))) (|:| |c| |#1|))) $) 54 T ELT)) (-3490 (($ $) 192 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3637 (($ $) 168 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3773 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3969 (((-346 $) $) NIL (|has| |#1| (-312)) ELT)) (-3036 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-1606 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3488 (($ $) 188 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3636 (($ $) 164 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3816 (($ (-693) (-1067 (-2 (|:| |k| (-348 (-483))) (|:| |c| |#1|)))) 65 T ELT)) (-3492 (($ $) 196 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3635 (($ $) 172 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3722 (($) NIL T CONST)) (-3156 (((-3 |#2| #1#) $) NIL T ELT)) (-3155 ((|#2| $) NIL T ELT)) (-2563 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3957 (($ $) NIL T ELT)) (-3465 (((-3 $ #1#) $) 85 T ELT)) (-3779 (((-348 (-483)) $) 13 T ELT)) (-2562 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3780 (($ (-348 (-483)) |#2|) 11 T ELT)) (-2740 (((-2 (|:| -3952 (-582 $)) (|:| -2408 $)) (-582 $)) NIL (|has| |#1| (-312)) ELT)) (-3721 (((-85) $) NIL (|has| |#1| (-312)) ELT)) (-2891 (((-85) $) 74 T ELT)) (-3625 (($) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3770 (((-348 (-483)) $) 113 T ELT) (((-348 (-483)) $ (-348 (-483))) 114 T ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-2409 (((-85) $) NIL T ELT)) (-3010 (($ $ (-483)) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3775 (($ $ (-829)) 130 T ELT) (($ $ (-348 (-483))) 128 T ELT)) (-1603 (((-3 (-582 $) #1#) (-582 $) $) NIL (|has| |#1| (-312)) ELT)) (-3935 (((-85) $) NIL T ELT)) (-2892 (($ |#1| (-348 (-483))) 33 T ELT) (($ $ (-993) (-348 (-483))) NIL T ELT) (($ $ (-582 (-993)) (-582 (-348 (-483)))) NIL T ELT)) (-3956 (($ (-1 |#1| |#1|) $) 125 T ELT)) (-3940 (($ $) 162 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-2893 (($ $) NIL T ELT)) (-3173 ((|#1| $) NIL T ELT)) (-1889 (($ (-582 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3778 ((|#2| $) 12 T ELT)) (-3776 (((-3 |#2| #1#) $) 44 T ELT)) (-3777 ((|#2| $) 45 T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-2483 (($ $) 101 (|has| |#1| (-312)) ELT)) (-3810 (($ $) 146 (|has| |#1| (-38 (-348 (-483)))) ELT) (($ $ (-1088)) 151 (OR (-12 (|has| |#1| (-38 (-348 (-483)))) (|has| |#1| (-29 (-483))) (|has| |#1| (-870)) (|has| |#1| (-1113))) (-12 (|has| |#1| (-38 (-348 (-483)))) (|has| |#1| (-15 -3810 (|#1| |#1| (-1088)))) (|has| |#1| (-15 -3080 ((-582 (-1088)) |#1|))))) ELT)) (-3242 (((-1032) $) NIL T ELT)) (-2707 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#1| (-312)) ELT)) (-3143 (($ (-582 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3730 (((-346 $) $) NIL (|has| |#1| (-312)) ELT)) (-1604 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3767 (($ $ (-348 (-483))) 122 T ELT)) (-3464 (((-3 $ #1#) $ $) NIL (|has| |#1| (-494)) ELT)) (-2739 (((-631 (-582 $)) (-582 $) $) NIL (|has| |#1| (-312)) ELT)) (-3941 (($ $) 160 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3766 (((-1067 |#1|) $ |#1|) 98 (|has| |#1| (-15 ** (|#1| |#1| (-348 (-483))))) ELT)) (-1605 (((-693) $) NIL (|has| |#1| (-312)) ELT)) (-3798 ((|#1| $ (-348 (-483))) 108 T ELT) (($ $ $) 94 (|has| (-348 (-483)) (-1024)) ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3756 (($ $ (-1088)) 138 (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-348 (-483)) |#1|)))) ELT) (($ $ (-582 (-1088))) NIL (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-348 (-483)) |#1|)))) ELT) (($ $ (-1088) (-693)) NIL (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-348 (-483)) |#1|)))) ELT) (($ $ (-582 (-1088)) (-582 (-693))) NIL (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-348 (-483)) |#1|)))) ELT) (($ $) 134 (|has| |#1| (-15 * (|#1| (-348 (-483)) |#1|))) ELT) (($ $ (-693)) NIL (|has| |#1| (-15 * (|#1| (-348 (-483)) |#1|))) ELT)) (-3946 (((-348 (-483)) $) 16 T ELT)) (-3493 (($ $) 198 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3634 (($ $) 174 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3491 (($ $) 194 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3633 (($ $) 170 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3489 (($ $) 190 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3632 (($ $) 166 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-2890 (($ $) 120 T ELT)) (-3944 (((-771) $) NIL T ELT) (($ (-483)) 37 T ELT) (($ |#1|) 27 (|has| |#1| (-146)) ELT) (($ |#2|) 34 T ELT) (($ (-348 (-483))) 139 (|has| |#1| (-38 (-348 (-483)))) ELT) (($ $) NIL (|has| |#1| (-494)) ELT)) (-3675 ((|#1| $ (-348 (-483))) 107 T ELT)) (-2701 (((-631 $) $) NIL (|has| |#1| (-118)) ELT)) (-3125 (((-693)) 127 T CONST)) (-3771 ((|#1| $) 106 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3496 (($ $) 204 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3484 (($ $) 180 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-2061 (((-85) $ $) NIL (|has| |#1| (-494)) ELT)) (-3494 (($ $) 200 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3482 (($ $) 176 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3498 (($ $) 208 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3486 (($ $) 184 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3768 ((|#1| $ (-348 (-483))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-348 (-483))))) (|has| |#1| (-15 -3944 (|#1| (-1088))))) ELT)) (-3124 (((-85) $ $) NIL T ELT)) (-3499 (($ $) 210 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3487 (($ $) 186 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3497 (($ $) 206 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3485 (($ $) 182 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3495 (($ $) 202 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3483 (($ $) 178 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-2659 (($) 21 T CONST)) (-2665 (($) 17 T CONST)) (-2668 (($ $ (-1088)) NIL (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-348 (-483)) |#1|)))) ELT) (($ $ (-582 (-1088))) NIL (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-348 (-483)) |#1|)))) ELT) (($ $ (-1088) (-693)) NIL (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-348 (-483)) |#1|)))) ELT) (($ $ (-582 (-1088)) (-582 (-693))) NIL (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-348 (-483)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-348 (-483)) |#1|))) ELT) (($ $ (-693)) NIL (|has| |#1| (-15 * (|#1| (-348 (-483)) |#1|))) ELT)) (-3055 (((-85) $ $) 72 T ELT)) (-3947 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT) (($ $ $) 100 (|has| |#1| (-312)) ELT)) (-3835 (($ $) 142 T ELT) (($ $ $) 78 T ELT)) (-3837 (($ $ $) 76 T ELT)) (** (($ $ (-829)) NIL T ELT) (($ $ (-693)) 82 T ELT) (($ $ (-483)) 157 (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT) (($ $ (-348 (-483))) 158 (|has| |#1| (-38 (-348 (-483)))) ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) 80 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 137 T ELT) (($ (-348 (-483)) $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT) (($ $ (-348 (-483))) NIL (|has| |#1| (-38 (-348 (-483)))) ELT))) -(((-1163 |#1| |#2|) (-1162 |#1| |#2|) (-960) (-1139 |#1|)) (T -1163)) -NIL -((-2567 (((-85) $ $) NIL T ELT)) (-3187 (((-85) $) 37 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3980 $) (|:| |associate| $)) $) NIL T ELT)) (-2062 (($ $) NIL T ELT)) (-2060 (((-85) $) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3722 (($) NIL T CONST)) (-3156 (((-3 (-483) #1#) $) NIL (|has| (-1158 |#2| |#3| |#4|) (-949 (-483))) ELT) (((-3 (-348 (-483)) #1#) $) NIL (|has| (-1158 |#2| |#3| |#4|) (-949 (-348 (-483)))) ELT) (((-3 (-1158 |#2| |#3| |#4|) #1#) $) 22 T ELT)) (-3155 (((-483) $) NIL (|has| (-1158 |#2| |#3| |#4|) (-949 (-483))) ELT) (((-348 (-483)) $) NIL (|has| (-1158 |#2| |#3| |#4|) (-949 (-348 (-483)))) ELT) (((-1158 |#2| |#3| |#4|) $) NIL T ELT)) (-3957 (($ $) 41 T ELT)) (-3465 (((-3 $ #1#) $) 27 T ELT)) (-3501 (($ $) NIL (|has| (-1158 |#2| |#3| |#4|) (-390)) ELT)) (-1622 (($ $ (-1158 |#2| |#3| |#4|) (-270 |#2| |#3| |#4|) $) NIL T ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-2409 (((-85) $) NIL T ELT)) (-2419 (((-693) $) 11 T ELT)) (-3935 (((-85) $) NIL T ELT)) (-2892 (($ (-1158 |#2| |#3| |#4|) (-270 |#2| |#3| |#4|)) 25 T ELT)) (-2819 (((-270 |#2| |#3| |#4|) $) NIL T ELT)) (-1623 (($ (-1 (-270 |#2| |#3| |#4|) (-270 |#2| |#3| |#4|)) $) NIL T ELT)) (-3956 (($ (-1 (-1158 |#2| |#3| |#4|) (-1158 |#2| |#3| |#4|)) $) NIL T ELT)) (-3782 (((-3 (-749 |#2|) #1#) $) 91 T ELT)) (-2893 (($ $) NIL T ELT)) (-3173 (((-1158 |#2| |#3| |#4|) $) 20 T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-1795 (((-85) $) NIL T ELT)) (-1794 (((-1158 |#2| |#3| |#4|) $) NIL T ELT)) (-3464 (((-3 $ #1#) $ (-1158 |#2| |#3| |#4|)) NIL (|has| (-1158 |#2| |#3| |#4|) (-494)) ELT) (((-3 $ #1#) $ $) NIL T ELT)) (-3781 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1158 |#2| |#3| |#4|)) (|:| |%expon| (-270 |#2| |#3| |#4|)) (|:| |%expTerms| (-582 (-2 (|:| |k| (-348 (-483))) (|:| |c| |#2|)))))) (|:| |%type| (-1071))) #1#) $) 74 T ELT)) (-3946 (((-270 |#2| |#3| |#4|) $) 17 T ELT)) (-2816 (((-1158 |#2| |#3| |#4|) $) NIL (|has| (-1158 |#2| |#3| |#4|) (-390)) ELT)) (-3944 (((-771) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ (-1158 |#2| |#3| |#4|)) NIL T ELT) (($ $) NIL T ELT) (($ (-348 (-483))) NIL (OR (|has| (-1158 |#2| |#3| |#4|) (-949 (-348 (-483)))) (|has| (-1158 |#2| |#3| |#4|) (-38 (-348 (-483))))) ELT)) (-3815 (((-582 (-1158 |#2| |#3| |#4|)) $) NIL T ELT)) (-3675 (((-1158 |#2| |#3| |#4|) $ (-270 |#2| |#3| |#4|)) NIL T ELT)) (-2701 (((-631 $) $) NIL (|has| (-1158 |#2| |#3| |#4|) (-118)) ELT)) (-3125 (((-693)) NIL T CONST)) (-1621 (($ $ $ (-693)) NIL (|has| (-1158 |#2| |#3| |#4|) (-146)) ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2061 (((-85) $ $) NIL T ELT)) (-3124 (((-85) $ $) NIL T ELT)) (-2659 (($) NIL T CONST)) (-2665 (($) NIL T CONST)) (-3055 (((-85) $ $) NIL T ELT)) (-3947 (($ $ (-1158 |#2| |#3| |#4|)) NIL (|has| (-1158 |#2| |#3| |#4|) (-312)) ELT)) (-3835 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3837 (($ $ $) NIL T ELT)) (** (($ $ (-829)) NIL T ELT) (($ $ (-693)) NIL T ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-1158 |#2| |#3| |#4|)) NIL T ELT) (($ (-1158 |#2| |#3| |#4|) $) NIL T ELT) (($ (-348 (-483)) $) NIL (|has| (-1158 |#2| |#3| |#4|) (-38 (-348 (-483)))) ELT) (($ $ (-348 (-483))) NIL (|has| (-1158 |#2| |#3| |#4|) (-38 (-348 (-483)))) ELT))) -(((-1164 |#1| |#2| |#3| |#4|) (-13 (-277 (-1158 |#2| |#3| |#4|) (-270 |#2| |#3| |#4|)) (-494) (-10 -8 (-15 -3782 ((-3 (-749 |#2|) #1="failed") $)) (-15 -3781 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1158 |#2| |#3| |#4|)) (|:| |%expon| (-270 |#2| |#3| |#4|)) (|:| |%expTerms| (-582 (-2 (|:| |k| (-348 (-483))) (|:| |c| |#2|)))))) (|:| |%type| (-1071))) #1#) $)))) (-13 (-949 (-483)) (-579 (-483)) (-390)) (-13 (-27) (-1113) (-362 |#1|)) (-1088) |#2|) (T -1164)) -((-3782 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-949 (-483)) (-579 (-483)) (-390))) (-5 *2 (-749 *4)) (-5 *1 (-1164 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1113) (-362 *3))) (-14 *5 (-1088)) (-14 *6 *4))) (-3781 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-949 (-483)) (-579 (-483)) (-390))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1158 *4 *5 *6)) (|:| |%expon| (-270 *4 *5 *6)) (|:| |%expTerms| (-582 (-2 (|:| |k| (-348 (-483))) (|:| |c| *4)))))) (|:| |%type| (-1071)))) (-5 *1 (-1164 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1113) (-362 *3))) (-14 *5 (-1088)) (-14 *6 *4)))) -((-3400 ((|#2| $) 34 T ELT)) (-3793 ((|#2| $) 18 T ELT)) (-3795 (($ $) 44 T ELT)) (-3783 (($ $ (-483)) 79 T ELT)) (-3024 ((|#2| $ |#2|) 76 T ELT)) (-3784 ((|#2| $ |#2|) 72 T ELT)) (-3786 ((|#2| $ #1="value" |#2|) NIL T ELT) ((|#2| $ #2="first" |#2|) 65 T ELT) (($ $ #3="rest" $) 69 T ELT) ((|#2| $ #4="last" |#2|) 67 T ELT)) (-3025 (($ $ (-582 $)) 75 T ELT)) (-3794 ((|#2| $) 17 T ELT)) (-3797 (($ $) NIL T ELT) (($ $ (-693)) 52 T ELT)) (-3030 (((-582 $) $) 31 T ELT)) (-3026 (((-85) $ $) 63 T ELT)) (-3525 (((-85) $) 33 T ELT)) (-3796 ((|#2| $) 25 T ELT) (($ $ (-693)) 58 T ELT)) (-3798 ((|#2| $ #1#) NIL T ELT) ((|#2| $ #2#) 10 T ELT) (($ $ #3#) 16 T ELT) ((|#2| $ #4#) 13 T ELT)) (-3631 (((-85) $) 23 T ELT)) (-3790 (($ $) 47 T ELT)) (-3788 (($ $) 80 T ELT)) (-3791 (((-693) $) 51 T ELT)) (-3792 (($ $) 50 T ELT)) (-3800 (($ $ $) 71 T ELT) (($ |#2| $) NIL T ELT)) (-3520 (((-582 $) $) 32 T ELT)) (-3055 (((-85) $ $) 61 T ELT)) (-3955 (((-693) $) 43 T ELT))) -(((-1165 |#1| |#2|) (-10 -7 (-15 -3055 ((-85) |#1| |#1|)) (-15 -3783 (|#1| |#1| (-483))) (-15 -3786 (|#2| |#1| #1="last" |#2|)) (-15 -3784 (|#2| |#1| |#2|)) (-15 -3786 (|#1| |#1| #2="rest" |#1|)) (-15 -3786 (|#2| |#1| #3="first" |#2|)) (-15 -3788 (|#1| |#1|)) (-15 -3790 (|#1| |#1|)) (-15 -3791 ((-693) |#1|)) (-15 -3792 (|#1| |#1|)) (-15 -3793 (|#2| |#1|)) (-15 -3794 (|#2| |#1|)) (-15 -3795 (|#1| |#1|)) (-15 -3796 (|#1| |#1| (-693))) (-15 -3798 (|#2| |#1| #1#)) (-15 -3796 (|#2| |#1|)) (-15 -3797 (|#1| |#1| (-693))) (-15 -3798 (|#1| |#1| #2#)) (-15 -3797 (|#1| |#1|)) (-15 -3798 (|#2| |#1| #3#)) (-15 -3800 (|#1| |#2| |#1|)) (-15 -3800 (|#1| |#1| |#1|)) (-15 -3024 (|#2| |#1| |#2|)) (-15 -3786 (|#2| |#1| #4="value" |#2|)) (-15 -3025 (|#1| |#1| (-582 |#1|))) (-15 -3026 ((-85) |#1| |#1|)) (-15 -3631 ((-85) |#1|)) (-15 -3798 (|#2| |#1| #4#)) (-15 -3400 (|#2| |#1|)) (-15 -3525 ((-85) |#1|)) (-15 -3030 ((-582 |#1|) |#1|)) (-15 -3520 ((-582 |#1|) |#1|)) (-15 -3955 ((-693) |#1|))) (-1166 |#2|) (-1127)) (T -1165)) -NIL -((-2567 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3400 ((|#1| $) 52 T ELT)) (-3793 ((|#1| $) 71 T ELT)) (-3795 (($ $) 73 T ELT)) (-3783 (($ $ (-483)) 58 (|has| $ (-6 -3994)) ELT)) (-3024 ((|#1| $ |#1|) 43 (|has| $ (-6 -3994)) ELT)) (-3785 (($ $ $) 62 (|has| $ (-6 -3994)) ELT)) (-3784 ((|#1| $ |#1|) 60 (|has| $ (-6 -3994)) ELT)) (-3787 ((|#1| $ |#1|) 64 (|has| $ (-6 -3994)) ELT)) (-3786 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -3994)) ELT) ((|#1| $ "first" |#1|) 63 (|has| $ (-6 -3994)) ELT) (($ $ "rest" $) 61 (|has| $ (-6 -3994)) ELT) ((|#1| $ "last" |#1|) 59 (|has| $ (-6 -3994)) ELT)) (-3025 (($ $ (-582 $)) 45 (|has| $ (-6 -3994)) ELT)) (-3794 ((|#1| $) 72 T ELT)) (-3722 (($) 7 T CONST)) (-3797 (($ $) 79 T ELT) (($ $ (-693)) 77 T ELT)) (-2888 (((-582 |#1|) $) 30 (|has| $ (-6 -3993)) ELT)) (-3030 (((-582 $) $) 54 T ELT)) (-3026 (((-85) $ $) 46 (|has| |#1| (-1012)) ELT)) (-2607 (((-582 |#1|) $) 29 (|has| $ (-6 -3993)) ELT)) (-3244 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3993))) ELT)) (-1947 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3994)) ELT)) (-3956 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3029 (((-582 |#1|) $) 49 T ELT)) (-3525 (((-85) $) 53 T ELT)) (-3241 (((-1071) $) 22 (|has| |#1| (-1012)) ELT)) (-3796 ((|#1| $) 76 T ELT) (($ $ (-693)) 74 T ELT)) (-3242 (((-1032) $) 21 (|has| |#1| (-1012)) ELT)) (-3799 ((|#1| $) 82 T ELT) (($ $ (-693)) 80 T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3993)) ELT)) (-3766 (($ $ (-582 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-582 |#1|) (-582 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT)) (-1220 (((-85) $ $) 11 T ELT)) (-3401 (((-85) $) 8 T ELT)) (-3563 (($) 9 T ELT)) (-3798 ((|#1| $ #1#) 51 T ELT) ((|#1| $ "first") 81 T ELT) (($ $ "rest") 78 T ELT) ((|#1| $ "last") 75 T ELT)) (-3028 (((-483) $ $) 48 T ELT)) (-3631 (((-85) $) 50 T ELT)) (-3790 (($ $) 68 T ELT)) (-3788 (($ $) 65 (|has| $ (-6 -3994)) ELT)) (-3791 (((-693) $) 69 T ELT)) (-3792 (($ $) 70 T ELT)) (-1944 (((-693) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3993)) ELT) (((-693) |#1| $) 28 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3993))) ELT)) (-3398 (($ $) 10 T ELT)) (-3789 (($ $ $) 67 (|has| $ (-6 -3994)) ELT) (($ $ |#1|) 66 (|has| $ (-6 -3994)) ELT)) (-3800 (($ $ $) 84 T ELT) (($ |#1| $) 83 T ELT)) (-3944 (((-771) $) 17 (|has| |#1| (-551 (-771))) ELT)) (-3520 (((-582 $) $) 55 T ELT)) (-3027 (((-85) $ $) 47 (|has| |#1| (-1012)) ELT)) (-1263 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3993)) ELT)) (-3055 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3955 (((-693) $) 6 (|has| $ (-6 -3993)) ELT))) -(((-1166 |#1|) (-113) (-1127)) (T -1166)) -((-3800 (*1 *1 *1 *1) (-12 (-4 *1 (-1166 *2)) (-4 *2 (-1127)))) (-3800 (*1 *1 *2 *1) (-12 (-4 *1 (-1166 *2)) (-4 *2 (-1127)))) (-3799 (*1 *2 *1) (-12 (-4 *1 (-1166 *2)) (-4 *2 (-1127)))) (-3798 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1166 *2)) (-4 *2 (-1127)))) (-3799 (*1 *1 *1 *2) (-12 (-5 *2 (-693)) (-4 *1 (-1166 *3)) (-4 *3 (-1127)))) (-3797 (*1 *1 *1) (-12 (-4 *1 (-1166 *2)) (-4 *2 (-1127)))) (-3798 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1166 *3)) (-4 *3 (-1127)))) (-3797 (*1 *1 *1 *2) (-12 (-5 *2 (-693)) (-4 *1 (-1166 *3)) (-4 *3 (-1127)))) (-3796 (*1 *2 *1) (-12 (-4 *1 (-1166 *2)) (-4 *2 (-1127)))) (-3798 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1166 *2)) (-4 *2 (-1127)))) (-3796 (*1 *1 *1 *2) (-12 (-5 *2 (-693)) (-4 *1 (-1166 *3)) (-4 *3 (-1127)))) (-3795 (*1 *1 *1) (-12 (-4 *1 (-1166 *2)) (-4 *2 (-1127)))) (-3794 (*1 *2 *1) (-12 (-4 *1 (-1166 *2)) (-4 *2 (-1127)))) (-3793 (*1 *2 *1) (-12 (-4 *1 (-1166 *2)) (-4 *2 (-1127)))) (-3792 (*1 *1 *1) (-12 (-4 *1 (-1166 *2)) (-4 *2 (-1127)))) (-3791 (*1 *2 *1) (-12 (-4 *1 (-1166 *3)) (-4 *3 (-1127)) (-5 *2 (-693)))) (-3790 (*1 *1 *1) (-12 (-4 *1 (-1166 *2)) (-4 *2 (-1127)))) (-3789 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -3994)) (-4 *1 (-1166 *2)) (-4 *2 (-1127)))) (-3789 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -3994)) (-4 *1 (-1166 *2)) (-4 *2 (-1127)))) (-3788 (*1 *1 *1) (-12 (|has| *1 (-6 -3994)) (-4 *1 (-1166 *2)) (-4 *2 (-1127)))) (-3787 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -3994)) (-4 *1 (-1166 *2)) (-4 *2 (-1127)))) (-3786 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -3994)) (-4 *1 (-1166 *2)) (-4 *2 (-1127)))) (-3785 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -3994)) (-4 *1 (-1166 *2)) (-4 *2 (-1127)))) (-3786 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -3994)) (-4 *1 (-1166 *3)) (-4 *3 (-1127)))) (-3784 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -3994)) (-4 *1 (-1166 *2)) (-4 *2 (-1127)))) (-3786 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -3994)) (-4 *1 (-1166 *2)) (-4 *2 (-1127)))) (-3783 (*1 *1 *1 *2) (-12 (-5 *2 (-483)) (|has| *1 (-6 -3994)) (-4 *1 (-1166 *3)) (-4 *3 (-1127))))) -(-13 (-922 |t#1|) (-10 -8 (-15 -3800 ($ $ $)) (-15 -3800 ($ |t#1| $)) (-15 -3799 (|t#1| $)) (-15 -3798 (|t#1| $ "first")) (-15 -3799 ($ $ (-693))) (-15 -3797 ($ $)) (-15 -3798 ($ $ "rest")) (-15 -3797 ($ $ (-693))) (-15 -3796 (|t#1| $)) (-15 -3798 (|t#1| $ "last")) (-15 -3796 ($ $ (-693))) (-15 -3795 ($ $)) (-15 -3794 (|t#1| $)) (-15 -3793 (|t#1| $)) (-15 -3792 ($ $)) (-15 -3791 ((-693) $)) (-15 -3790 ($ $)) (IF (|has| $ (-6 -3994)) (PROGN (-15 -3789 ($ $ $)) (-15 -3789 ($ $ |t#1|)) (-15 -3788 ($ $)) (-15 -3787 (|t#1| $ |t#1|)) (-15 -3786 (|t#1| $ "first" |t#1|)) (-15 -3785 ($ $ $)) (-15 -3786 ($ $ "rest" $)) (-15 -3784 (|t#1| $ |t#1|)) (-15 -3786 (|t#1| $ "last" |t#1|)) (-15 -3783 ($ $ (-483)))) |%noBranch|))) -(((-34) . T) ((-72) OR (|has| |#1| (-1012)) (|has| |#1| (-72))) ((-551 (-771)) OR (|has| |#1| (-1012)) (|has| |#1| (-551 (-771)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ((-427 |#1|) . T) ((-454 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ((-13) . T) ((-922 |#1|) . T) ((-1012) |has| |#1| (-1012)) ((-1127) . T)) -((-2567 (((-85) $ $) NIL T ELT)) (-3187 (((-85) $) NIL T ELT)) (-3080 (((-582 (-993)) $) NIL T ELT)) (-3829 (((-1088) $) 87 T ELT)) (-3809 (((-1146 |#2| |#1|) $ (-693)) 70 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3980 $) (|:| |associate| $)) $) NIL (|has| |#1| (-494)) ELT)) (-2062 (($ $) NIL (|has| |#1| (-494)) ELT)) (-2060 (((-85) $) 139 (|has| |#1| (-494)) ELT)) (-3769 (($ $ (-693)) 125 T ELT) (($ $ (-693) (-693)) 127 T ELT)) (-3772 (((-1067 (-2 (|:| |k| (-693)) (|:| |c| |#1|))) $) 42 T ELT)) (-3490 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3637 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3036 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3488 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3636 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3816 (($ (-1067 (-2 (|:| |k| (-693)) (|:| |c| |#1|)))) 49 T ELT) (($ (-1067 |#1|)) NIL T ELT)) (-3492 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3635 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3722 (($) NIL T CONST)) (-3803 (($ $) 131 T ELT)) (-3957 (($ $) NIL T ELT)) (-3465 (((-3 $ #1#) $) NIL T ELT)) (-3814 (($ $) 137 T ELT)) (-3812 (((-856 |#1|) $ (-693)) 60 T ELT) (((-856 |#1|) $ (-693) (-693)) 62 T ELT)) (-2891 (((-85) $) NIL T ELT)) (-3625 (($) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3770 (((-693) $) NIL T ELT) (((-693) $ (-693)) NIL T ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-2409 (((-85) $) NIL T ELT)) (-3806 (($ $) 115 T ELT)) (-3010 (($ $ (-483)) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3802 (($ (-483) (-483) $) 133 T ELT)) (-3775 (($ $ (-829)) 136 T ELT)) (-3813 (($ (-1 |#1| (-483)) $) 109 T ELT)) (-3935 (((-85) $) NIL T ELT)) (-2892 (($ |#1| (-693)) 16 T ELT) (($ $ (-993) (-693)) NIL T ELT) (($ $ (-582 (-993)) (-582 (-693))) NIL T ELT)) (-3956 (($ (-1 |#1| |#1|) $) 96 T ELT)) (-3940 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-2893 (($ $) NIL T ELT)) (-3173 ((|#1| $) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3807 (($ $) 113 T ELT)) (-3808 (($ $) 111 T ELT)) (-3801 (($ (-483) (-483) $) 135 T ELT)) (-3810 (($ $) 147 (|has| |#1| (-38 (-348 (-483)))) ELT) (($ $ (-1088)) 153 (OR (-12 (|has| |#1| (-38 (-348 (-483)))) (|has| |#1| (-29 (-483))) (|has| |#1| (-870)) (|has| |#1| (-1113))) (-12 (|has| |#1| (-38 (-348 (-483)))) (|has| |#1| (-15 -3810 (|#1| |#1| (-1088)))) (|has| |#1| (-15 -3080 ((-582 (-1088)) |#1|))))) ELT) (($ $ (-1174 |#2|)) 148 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3804 (($ $ (-483) (-483)) 119 T ELT)) (-3767 (($ $ (-693)) 121 T ELT)) (-3464 (((-3 $ #1#) $ $) NIL (|has| |#1| (-494)) ELT)) (-3941 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3805 (($ $) 117 T ELT)) (-3766 (((-1067 |#1|) $ |#1|) 98 (|has| |#1| (-15 ** (|#1| |#1| (-693)))) ELT)) (-3798 ((|#1| $ (-693)) 93 T ELT) (($ $ $) 129 (|has| (-693) (-1024)) ELT)) (-3756 (($ $ (-1088)) 106 (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-693) |#1|)))) ELT) (($ $ (-582 (-1088))) NIL (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-693) |#1|)))) ELT) (($ $ (-1088) (-693)) NIL (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-693) |#1|)))) ELT) (($ $ (-582 (-1088)) (-582 (-693))) NIL (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-693) |#1|)))) ELT) (($ $) 100 (|has| |#1| (-15 * (|#1| (-693) |#1|))) ELT) (($ $ (-693)) NIL (|has| |#1| (-15 * (|#1| (-693) |#1|))) ELT) (($ $ (-1174 |#2|)) 101 T ELT)) (-3946 (((-693) $) NIL T ELT)) (-3493 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3634 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3491 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3633 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3489 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3632 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-2890 (($ $) 123 T ELT)) (-3944 (((-771) $) NIL T ELT) (($ (-483)) 26 T ELT) (($ (-348 (-483))) 145 (|has| |#1| (-38 (-348 (-483)))) ELT) (($ $) NIL (|has| |#1| (-494)) ELT) (($ |#1|) 25 (|has| |#1| (-146)) ELT) (($ (-1146 |#2| |#1|)) 78 T ELT) (($ (-1174 |#2|)) 22 T ELT)) (-3815 (((-1067 |#1|) $) NIL T ELT)) (-3675 ((|#1| $ (-693)) 92 T ELT)) (-2701 (((-631 $) $) NIL (|has| |#1| (-118)) ELT)) (-3125 (((-693)) NIL T CONST)) (-3771 ((|#1| $) 88 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3496 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3484 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-2061 (((-85) $ $) NIL (|has| |#1| (-494)) ELT)) (-3494 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3482 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3498 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3486 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3768 ((|#1| $ (-693)) 86 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-693)))) (|has| |#1| (-15 -3944 (|#1| (-1088))))) ELT)) (-3124 (((-85) $ $) NIL T ELT)) (-3499 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3487 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3497 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3485 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3495 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3483 (($ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (-2659 (($) 18 T CONST)) (-2665 (($) 13 T CONST)) (-2668 (($ $ (-1088)) NIL (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-693) |#1|)))) ELT) (($ $ (-582 (-1088))) NIL (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-693) |#1|)))) ELT) (($ $ (-1088) (-693)) NIL (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-693) |#1|)))) ELT) (($ $ (-582 (-1088)) (-582 (-693))) NIL (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-693) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-693) |#1|))) ELT) (($ $ (-693)) NIL (|has| |#1| (-15 * (|#1| (-693) |#1|))) ELT) (($ $ (-1174 |#2|)) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-3947 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3835 (($ $) NIL T ELT) (($ $ $) 105 T ELT)) (-3837 (($ $ $) 20 T ELT)) (** (($ $ (-829)) NIL T ELT) (($ $ (-693)) NIL T ELT) (($ $ |#1|) 142 (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT) (($ $ (-348 (-483))) NIL (|has| |#1| (-38 (-348 (-483)))) ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 104 T ELT) (($ (-348 (-483)) $) NIL (|has| |#1| (-38 (-348 (-483)))) ELT) (($ $ (-348 (-483))) NIL (|has| |#1| (-38 (-348 (-483)))) ELT))) -(((-1167 |#1| |#2| |#3|) (-13 (-1170 |#1|) (-805 $ (-1174 |#2|)) (-10 -8 (-15 -3944 ($ (-1146 |#2| |#1|))) (-15 -3809 ((-1146 |#2| |#1|) $ (-693))) (-15 -3944 ($ (-1174 |#2|))) (-15 -3808 ($ $)) (-15 -3807 ($ $)) (-15 -3806 ($ $)) (-15 -3805 ($ $)) (-15 -3804 ($ $ (-483) (-483))) (-15 -3803 ($ $)) (-15 -3802 ($ (-483) (-483) $)) (-15 -3801 ($ (-483) (-483) $)) (IF (|has| |#1| (-38 (-348 (-483)))) (-15 -3810 ($ $ (-1174 |#2|))) |%noBranch|))) (-960) (-1088) |#1|) (T -1167)) -((-3944 (*1 *1 *2) (-12 (-5 *2 (-1146 *4 *3)) (-4 *3 (-960)) (-14 *4 (-1088)) (-14 *5 *3) (-5 *1 (-1167 *3 *4 *5)))) (-3809 (*1 *2 *1 *3) (-12 (-5 *3 (-693)) (-5 *2 (-1146 *5 *4)) (-5 *1 (-1167 *4 *5 *6)) (-4 *4 (-960)) (-14 *5 (-1088)) (-14 *6 *4))) (-3944 (*1 *1 *2) (-12 (-5 *2 (-1174 *4)) (-14 *4 (-1088)) (-5 *1 (-1167 *3 *4 *5)) (-4 *3 (-960)) (-14 *5 *3))) (-3808 (*1 *1 *1) (-12 (-5 *1 (-1167 *2 *3 *4)) (-4 *2 (-960)) (-14 *3 (-1088)) (-14 *4 *2))) (-3807 (*1 *1 *1) (-12 (-5 *1 (-1167 *2 *3 *4)) (-4 *2 (-960)) (-14 *3 (-1088)) (-14 *4 *2))) (-3806 (*1 *1 *1) (-12 (-5 *1 (-1167 *2 *3 *4)) (-4 *2 (-960)) (-14 *3 (-1088)) (-14 *4 *2))) (-3805 (*1 *1 *1) (-12 (-5 *1 (-1167 *2 *3 *4)) (-4 *2 (-960)) (-14 *3 (-1088)) (-14 *4 *2))) (-3804 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-1167 *3 *4 *5)) (-4 *3 (-960)) (-14 *4 (-1088)) (-14 *5 *3))) (-3803 (*1 *1 *1) (-12 (-5 *1 (-1167 *2 *3 *4)) (-4 *2 (-960)) (-14 *3 (-1088)) (-14 *4 *2))) (-3802 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-1167 *3 *4 *5)) (-4 *3 (-960)) (-14 *4 (-1088)) (-14 *5 *3))) (-3801 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-1167 *3 *4 *5)) (-4 *3 (-960)) (-14 *4 (-1088)) (-14 *5 *3))) (-3810 (*1 *1 *1 *2) (-12 (-5 *2 (-1174 *4)) (-14 *4 (-1088)) (-5 *1 (-1167 *3 *4 *5)) (-4 *3 (-38 (-348 (-483)))) (-4 *3 (-960)) (-14 *5 *3)))) -((-3956 ((|#4| (-1 |#2| |#1|) |#3|) 17 T ELT))) -(((-1168 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3956 (|#4| (-1 |#2| |#1|) |#3|))) (-960) (-960) (-1170 |#1|) (-1170 |#2|)) (T -1168)) -((-3956 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-960)) (-4 *6 (-960)) (-4 *2 (-1170 *6)) (-5 *1 (-1168 *5 *6 *4 *2)) (-4 *4 (-1170 *5))))) -((-3187 (((-85) $) 17 T ELT)) (-3490 (($ $) 105 T ELT)) (-3637 (($ $) 81 T ELT)) (-3488 (($ $) 101 T ELT)) (-3636 (($ $) 77 T ELT)) (-3492 (($ $) 109 T ELT)) (-3635 (($ $) 85 T ELT)) (-3940 (($ $) 75 T ELT)) (-3941 (($ $) 73 T ELT)) (-3493 (($ $) 111 T ELT)) (-3634 (($ $) 87 T ELT)) (-3491 (($ $) 107 T ELT)) (-3633 (($ $) 83 T ELT)) (-3489 (($ $) 103 T ELT)) (-3632 (($ $) 79 T ELT)) (-3944 (((-771) $) 61 T ELT) (($ (-483)) NIL T ELT) (($ (-348 (-483))) NIL T ELT) (($ $) NIL T ELT) (($ |#2|) NIL T ELT)) (-3496 (($ $) 117 T ELT)) (-3484 (($ $) 93 T ELT)) (-3494 (($ $) 113 T ELT)) (-3482 (($ $) 89 T ELT)) (-3498 (($ $) 121 T ELT)) (-3486 (($ $) 97 T ELT)) (-3499 (($ $) 123 T ELT)) (-3487 (($ $) 99 T ELT)) (-3497 (($ $) 119 T ELT)) (-3485 (($ $) 95 T ELT)) (-3495 (($ $) 115 T ELT)) (-3483 (($ $) 91 T ELT)) (** (($ $ (-829)) NIL T ELT) (($ $ (-693)) NIL T ELT) (($ $ |#2|) 65 T ELT) (($ $ $) 68 T ELT) (($ $ (-348 (-483))) 71 T ELT))) -(((-1169 |#1| |#2|) (-10 -7 (-15 ** (|#1| |#1| (-348 (-483)))) (-15 -3637 (|#1| |#1|)) (-15 -3636 (|#1| |#1|)) (-15 -3635 (|#1| |#1|)) (-15 -3634 (|#1| |#1|)) (-15 -3633 (|#1| |#1|)) (-15 -3632 (|#1| |#1|)) (-15 -3483 (|#1| |#1|)) (-15 -3485 (|#1| |#1|)) (-15 -3487 (|#1| |#1|)) (-15 -3486 (|#1| |#1|)) (-15 -3482 (|#1| |#1|)) (-15 -3484 (|#1| |#1|)) (-15 -3489 (|#1| |#1|)) (-15 -3491 (|#1| |#1|)) (-15 -3493 (|#1| |#1|)) (-15 -3492 (|#1| |#1|)) (-15 -3488 (|#1| |#1|)) (-15 -3490 (|#1| |#1|)) (-15 -3495 (|#1| |#1|)) (-15 -3497 (|#1| |#1|)) (-15 -3499 (|#1| |#1|)) (-15 -3498 (|#1| |#1|)) (-15 -3494 (|#1| |#1|)) (-15 -3496 (|#1| |#1|)) (-15 -3940 (|#1| |#1|)) (-15 -3941 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -3944 (|#1| |#2|)) (-15 -3944 (|#1| |#1|)) (-15 -3944 (|#1| (-348 (-483)))) (-15 -3944 (|#1| (-483))) (-15 ** (|#1| |#1| (-693))) (-15 ** (|#1| |#1| (-829))) (-15 -3187 ((-85) |#1|)) (-15 -3944 ((-771) |#1|))) (-1170 |#2|) (-960)) (T -1169)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-3187 (((-85) $) 22 T ELT)) (-3080 (((-582 (-993)) $) 95 T ELT)) (-3829 (((-1088) $) 129 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3980 $) (|:| |associate| $)) $) 71 (|has| |#1| (-494)) ELT)) (-2062 (($ $) 72 (|has| |#1| (-494)) ELT)) (-2060 (((-85) $) 74 (|has| |#1| (-494)) ELT)) (-3769 (($ $ (-693)) 124 T ELT) (($ $ (-693) (-693)) 123 T ELT)) (-3772 (((-1067 (-2 (|:| |k| (-693)) (|:| |c| |#1|))) $) 130 T ELT)) (-3490 (($ $) 163 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3637 (($ $) 146 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-1310 (((-3 $ "failed") $ $) 26 T ELT)) (-3036 (($ $) 145 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3488 (($ $) 162 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3636 (($ $) 147 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3816 (($ (-1067 (-2 (|:| |k| (-693)) (|:| |c| |#1|)))) 183 T ELT) (($ (-1067 |#1|)) 181 T ELT)) (-3492 (($ $) 161 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3635 (($ $) 148 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3722 (($) 23 T CONST)) (-3957 (($ $) 80 T ELT)) (-3465 (((-3 $ "failed") $) 42 T ELT)) (-3814 (($ $) 180 T ELT)) (-3812 (((-856 |#1|) $ (-693)) 178 T ELT) (((-856 |#1|) $ (-693) (-693)) 177 T ELT)) (-2891 (((-85) $) 94 T ELT)) (-3625 (($) 173 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3770 (((-693) $) 126 T ELT) (((-693) $ (-693)) 125 T ELT)) (-1212 (((-85) $ $) 20 T ELT)) (-2409 (((-85) $) 44 T ELT)) (-3010 (($ $ (-483)) 144 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3775 (($ $ (-829)) 127 T ELT)) (-3813 (($ (-1 |#1| (-483)) $) 179 T ELT)) (-3935 (((-85) $) 82 T ELT)) (-2892 (($ |#1| (-693)) 81 T ELT) (($ $ (-993) (-693)) 97 T ELT) (($ $ (-582 (-993)) (-582 (-693))) 96 T ELT)) (-3956 (($ (-1 |#1| |#1|) $) 83 T ELT)) (-3940 (($ $) 170 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-2893 (($ $) 85 T ELT)) (-3173 ((|#1| $) 86 T ELT)) (-3241 (((-1071) $) 11 T ELT)) (-3810 (($ $) 175 (|has| |#1| (-38 (-348 (-483)))) ELT) (($ $ (-1088)) 174 (OR (-12 (|has| |#1| (-29 (-483))) (|has| |#1| (-870)) (|has| |#1| (-1113)) (|has| |#1| (-38 (-348 (-483))))) (-12 (|has| |#1| (-15 -3080 ((-582 (-1088)) |#1|))) (|has| |#1| (-15 -3810 (|#1| |#1| (-1088)))) (|has| |#1| (-38 (-348 (-483)))))) ELT)) (-3242 (((-1032) $) 12 T ELT)) (-3767 (($ $ (-693)) 121 T ELT)) (-3464 (((-3 $ "failed") $ $) 70 (|has| |#1| (-494)) ELT)) (-3941 (($ $) 171 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3766 (((-1067 |#1|) $ |#1|) 120 (|has| |#1| (-15 ** (|#1| |#1| (-693)))) ELT)) (-3798 ((|#1| $ (-693)) 131 T ELT) (($ $ $) 107 (|has| (-693) (-1024)) ELT)) (-3756 (($ $ (-1088)) 119 (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-693) |#1|)))) ELT) (($ $ (-582 (-1088))) 117 (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-693) |#1|)))) ELT) (($ $ (-1088) (-693)) 116 (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-693) |#1|)))) ELT) (($ $ (-582 (-1088)) (-582 (-693))) 115 (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-693) |#1|)))) ELT) (($ $) 111 (|has| |#1| (-15 * (|#1| (-693) |#1|))) ELT) (($ $ (-693)) 109 (|has| |#1| (-15 * (|#1| (-693) |#1|))) ELT)) (-3946 (((-693) $) 84 T ELT)) (-3493 (($ $) 160 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3634 (($ $) 149 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3491 (($ $) 159 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3633 (($ $) 150 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3489 (($ $) 158 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3632 (($ $) 151 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-2890 (($ $) 93 T ELT)) (-3944 (((-771) $) 13 T ELT) (($ (-483)) 41 T ELT) (($ (-348 (-483))) 77 (|has| |#1| (-38 (-348 (-483)))) ELT) (($ $) 69 (|has| |#1| (-494)) ELT) (($ |#1|) 67 (|has| |#1| (-146)) ELT)) (-3815 (((-1067 |#1|) $) 182 T ELT)) (-3675 ((|#1| $ (-693)) 79 T ELT)) (-2701 (((-631 $) $) 68 (|has| |#1| (-118)) ELT)) (-3125 (((-693)) 40 T CONST)) (-3771 ((|#1| $) 128 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-3496 (($ $) 169 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3484 (($ $) 157 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-2061 (((-85) $ $) 73 (|has| |#1| (-494)) ELT)) (-3494 (($ $) 168 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3482 (($ $) 156 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3498 (($ $) 167 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3486 (($ $) 155 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3768 ((|#1| $ (-693)) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-693)))) (|has| |#1| (-15 -3944 (|#1| (-1088))))) ELT)) (-3124 (((-85) $ $) 33 T ELT)) (-3499 (($ $) 166 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3487 (($ $) 154 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3497 (($ $) 165 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3485 (($ $) 153 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3495 (($ $) 164 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-3483 (($ $) 152 (|has| |#1| (-38 (-348 (-483)))) ELT)) (-2659 (($) 24 T CONST)) (-2665 (($) 45 T CONST)) (-2668 (($ $ (-1088)) 118 (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-693) |#1|)))) ELT) (($ $ (-582 (-1088))) 114 (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-693) |#1|)))) ELT) (($ $ (-1088) (-693)) 113 (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-693) |#1|)))) ELT) (($ $ (-582 (-1088)) (-582 (-693))) 112 (-12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-693) |#1|)))) ELT) (($ $) 110 (|has| |#1| (-15 * (|#1| (-693) |#1|))) ELT) (($ $ (-693)) 108 (|has| |#1| (-15 * (|#1| (-693) |#1|))) ELT)) (-3055 (((-85) $ $) 8 T ELT)) (-3947 (($ $ |#1|) 78 (|has| |#1| (-312)) ELT)) (-3835 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3837 (($ $ $) 18 T ELT)) (** (($ $ (-829)) 35 T ELT) (($ $ (-693)) 43 T ELT) (($ $ |#1|) 176 (|has| |#1| (-312)) ELT) (($ $ $) 172 (|has| |#1| (-38 (-348 (-483)))) ELT) (($ $ (-348 (-483))) 143 (|has| |#1| (-38 (-348 (-483)))) ELT)) (* (($ (-829) $) 17 T ELT) (($ (-693) $) 21 T ELT) (($ (-483) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 88 T ELT) (($ |#1| $) 87 T ELT) (($ (-348 (-483)) $) 76 (|has| |#1| (-38 (-348 (-483)))) ELT) (($ $ (-348 (-483))) 75 (|has| |#1| (-38 (-348 (-483)))) ELT))) -(((-1170 |#1|) (-113) (-960)) (T -1170)) -((-3816 (*1 *1 *2) (-12 (-5 *2 (-1067 (-2 (|:| |k| (-693)) (|:| |c| *3)))) (-4 *3 (-960)) (-4 *1 (-1170 *3)))) (-3815 (*1 *2 *1) (-12 (-4 *1 (-1170 *3)) (-4 *3 (-960)) (-5 *2 (-1067 *3)))) (-3816 (*1 *1 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-960)) (-4 *1 (-1170 *3)))) (-3814 (*1 *1 *1) (-12 (-4 *1 (-1170 *2)) (-4 *2 (-960)))) (-3813 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-483))) (-4 *1 (-1170 *3)) (-4 *3 (-960)))) (-3812 (*1 *2 *1 *3) (-12 (-5 *3 (-693)) (-4 *1 (-1170 *4)) (-4 *4 (-960)) (-5 *2 (-856 *4)))) (-3812 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-693)) (-4 *1 (-1170 *4)) (-4 *4 (-960)) (-5 *2 (-856 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1170 *2)) (-4 *2 (-960)) (-4 *2 (-312)))) (-3810 (*1 *1 *1) (-12 (-4 *1 (-1170 *2)) (-4 *2 (-960)) (-4 *2 (-38 (-348 (-483)))))) (-3810 (*1 *1 *1 *2) (OR (-12 (-5 *2 (-1088)) (-4 *1 (-1170 *3)) (-4 *3 (-960)) (-12 (-4 *3 (-29 (-483))) (-4 *3 (-870)) (-4 *3 (-1113)) (-4 *3 (-38 (-348 (-483)))))) (-12 (-5 *2 (-1088)) (-4 *1 (-1170 *3)) (-4 *3 (-960)) (-12 (|has| *3 (-15 -3080 ((-582 *2) *3))) (|has| *3 (-15 -3810 (*3 *3 *2))) (-4 *3 (-38 (-348 (-483))))))))) -(-13 (-1156 |t#1| (-693)) (-10 -8 (-15 -3816 ($ (-1067 (-2 (|:| |k| (-693)) (|:| |c| |t#1|))))) (-15 -3815 ((-1067 |t#1|) $)) (-15 -3816 ($ (-1067 |t#1|))) (-15 -3814 ($ $)) (-15 -3813 ($ (-1 |t#1| (-483)) $)) (-15 -3812 ((-856 |t#1|) $ (-693))) (-15 -3812 ((-856 |t#1|) $ (-693) (-693))) (IF (|has| |t#1| (-312)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-38 (-348 (-483)))) (PROGN (-15 -3810 ($ $)) (IF (|has| |t#1| (-15 -3810 (|t#1| |t#1| (-1088)))) (IF (|has| |t#1| (-15 -3080 ((-582 (-1088)) |t#1|))) (-15 -3810 ($ $ (-1088))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1113)) (IF (|has| |t#1| (-870)) (IF (|has| |t#1| (-29 (-483))) (-15 -3810 ($ $ (-1088))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-914)) (-6 (-1113))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| (-693)) . T) ((-25) . T) ((-38 (-348 (-483))) |has| |#1| (-38 (-348 (-483)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) |has| |#1| (-494)) ((-35) |has| |#1| (-38 (-348 (-483)))) ((-66) |has| |#1| (-38 (-348 (-483)))) ((-72) . T) ((-82 (-348 (-483)) (-348 (-483))) |has| |#1| (-38 (-348 (-483)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-494)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-554 (-348 (-483))) |has| |#1| (-38 (-348 (-483)))) ((-554 (-483)) . T) ((-554 |#1|) |has| |#1| (-146)) ((-554 $) |has| |#1| (-494)) ((-551 (-771)) . T) ((-146) OR (|has| |#1| (-494)) (|has| |#1| (-146))) ((-186 $) |has| |#1| (-15 * (|#1| (-693) |#1|))) ((-190) |has| |#1| (-15 * (|#1| (-693) |#1|))) ((-189) |has| |#1| (-15 * (|#1| (-693) |#1|))) ((-239) |has| |#1| (-38 (-348 (-483)))) ((-241 (-693) |#1|) . T) ((-241 $ $) |has| (-693) (-1024)) ((-246) |has| |#1| (-494)) ((-431) |has| |#1| (-38 (-348 (-483)))) ((-494) |has| |#1| (-494)) ((-13) . T) ((-587 (-348 (-483))) |has| |#1| (-38 (-348 (-483)))) ((-587 (-483)) . T) ((-587 |#1|) . T) ((-587 $) . T) ((-589 (-348 (-483))) |has| |#1| (-38 (-348 (-483)))) ((-589 |#1|) . T) ((-589 $) . T) ((-581 (-348 (-483))) |has| |#1| (-38 (-348 (-483)))) ((-581 |#1|) |has| |#1| (-146)) ((-581 $) |has| |#1| (-494)) ((-653 (-348 (-483))) |has| |#1| (-38 (-348 (-483)))) ((-653 |#1|) |has| |#1| (-146)) ((-653 $) |has| |#1| (-494)) ((-662) . T) ((-805 $ (-1088)) -12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-693) |#1|)))) ((-808 (-1088)) -12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-693) |#1|)))) ((-810 (-1088)) -12 (|has| |#1| (-808 (-1088))) (|has| |#1| (-15 * (|#1| (-693) |#1|)))) ((-885 |#1| (-693) (-993)) . T) ((-914) |has| |#1| (-38 (-348 (-483)))) ((-962 (-348 (-483))) |has| |#1| (-38 (-348 (-483)))) ((-962 |#1|) . T) ((-962 $) OR (|has| |#1| (-494)) (|has| |#1| (-146))) ((-967 (-348 (-483))) |has| |#1| (-38 (-348 (-483)))) ((-967 |#1|) . T) ((-967 $) OR (|has| |#1| (-494)) (|has| |#1| (-146))) ((-960) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1113) |has| |#1| (-38 (-348 (-483)))) ((-1116) |has| |#1| (-38 (-348 (-483)))) ((-1127) . T) ((-1156 |#1| (-693)) . T)) -((-3819 (((-1 (-1067 |#1|) (-582 (-1067 |#1|))) (-1 |#2| (-582 |#2|))) 24 T ELT)) (-3818 (((-1 (-1067 |#1|) (-1067 |#1|) (-1067 |#1|)) (-1 |#2| |#2| |#2|)) 16 T ELT)) (-3817 (((-1 (-1067 |#1|) (-1067 |#1|)) (-1 |#2| |#2|)) 13 T ELT)) (-3822 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48 T ELT)) (-3821 ((|#2| (-1 |#2| |#2|) |#1|) 46 T ELT)) (-3823 ((|#2| (-1 |#2| (-582 |#2|)) (-582 |#1|)) 60 T ELT)) (-3824 (((-582 |#2|) (-582 |#1|) (-582 (-1 |#2| (-582 |#2|)))) 66 T ELT)) (-3820 ((|#2| |#2| |#2|) 43 T ELT))) -(((-1171 |#1| |#2|) (-10 -7 (-15 -3817 ((-1 (-1067 |#1|) (-1067 |#1|)) (-1 |#2| |#2|))) (-15 -3818 ((-1 (-1067 |#1|) (-1067 |#1|) (-1067 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -3819 ((-1 (-1067 |#1|) (-582 (-1067 |#1|))) (-1 |#2| (-582 |#2|)))) (-15 -3820 (|#2| |#2| |#2|)) (-15 -3821 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -3822 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3823 (|#2| (-1 |#2| (-582 |#2|)) (-582 |#1|))) (-15 -3824 ((-582 |#2|) (-582 |#1|) (-582 (-1 |#2| (-582 |#2|)))))) (-38 (-348 (-483))) (-1170 |#1|)) (T -1171)) -((-3824 (*1 *2 *3 *4) (-12 (-5 *3 (-582 *5)) (-5 *4 (-582 (-1 *6 (-582 *6)))) (-4 *5 (-38 (-348 (-483)))) (-4 *6 (-1170 *5)) (-5 *2 (-582 *6)) (-5 *1 (-1171 *5 *6)))) (-3823 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-582 *2))) (-5 *4 (-582 *5)) (-4 *5 (-38 (-348 (-483)))) (-4 *2 (-1170 *5)) (-5 *1 (-1171 *5 *2)))) (-3822 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1170 *4)) (-5 *1 (-1171 *4 *2)) (-4 *4 (-38 (-348 (-483)))))) (-3821 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1170 *4)) (-5 *1 (-1171 *4 *2)) (-4 *4 (-38 (-348 (-483)))))) (-3820 (*1 *2 *2 *2) (-12 (-4 *3 (-38 (-348 (-483)))) (-5 *1 (-1171 *3 *2)) (-4 *2 (-1170 *3)))) (-3819 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-582 *5))) (-4 *5 (-1170 *4)) (-4 *4 (-38 (-348 (-483)))) (-5 *2 (-1 (-1067 *4) (-582 (-1067 *4)))) (-5 *1 (-1171 *4 *5)))) (-3818 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1170 *4)) (-4 *4 (-38 (-348 (-483)))) (-5 *2 (-1 (-1067 *4) (-1067 *4) (-1067 *4))) (-5 *1 (-1171 *4 *5)))) (-3817 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1170 *4)) (-4 *4 (-38 (-348 (-483)))) (-5 *2 (-1 (-1067 *4) (-1067 *4))) (-5 *1 (-1171 *4 *5))))) -((-3826 ((|#2| |#4| (-693)) 31 T ELT)) (-3825 ((|#4| |#2|) 26 T ELT)) (-3828 ((|#4| (-348 |#2|)) 49 (|has| |#1| (-494)) ELT)) (-3827 (((-1 |#4| (-582 |#4|)) |#3|) 43 T ELT))) -(((-1172 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3825 (|#4| |#2|)) (-15 -3826 (|#2| |#4| (-693))) (-15 -3827 ((-1 |#4| (-582 |#4|)) |#3|)) (IF (|has| |#1| (-494)) (-15 -3828 (|#4| (-348 |#2|))) |%noBranch|)) (-960) (-1153 |#1|) (-599 |#2|) (-1170 |#1|)) (T -1172)) -((-3828 (*1 *2 *3) (-12 (-5 *3 (-348 *5)) (-4 *5 (-1153 *4)) (-4 *4 (-494)) (-4 *4 (-960)) (-4 *2 (-1170 *4)) (-5 *1 (-1172 *4 *5 *6 *2)) (-4 *6 (-599 *5)))) (-3827 (*1 *2 *3) (-12 (-4 *4 (-960)) (-4 *5 (-1153 *4)) (-5 *2 (-1 *6 (-582 *6))) (-5 *1 (-1172 *4 *5 *3 *6)) (-4 *3 (-599 *5)) (-4 *6 (-1170 *4)))) (-3826 (*1 *2 *3 *4) (-12 (-5 *4 (-693)) (-4 *5 (-960)) (-4 *2 (-1153 *5)) (-5 *1 (-1172 *5 *2 *6 *3)) (-4 *6 (-599 *2)) (-4 *3 (-1170 *5)))) (-3825 (*1 *2 *3) (-12 (-4 *4 (-960)) (-4 *3 (-1153 *4)) (-4 *2 (-1170 *4)) (-5 *1 (-1172 *4 *3 *5 *2)) (-4 *5 (-599 *3))))) -NIL -(((-1173) (-113)) (T -1173)) -NIL -(-13 (-10 -7 (-6 -2286))) -((-2567 (((-85) $ $) NIL T ELT)) (-3829 (((-1088)) 12 T ELT)) (-3241 (((-1071) $) 18 T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3944 (((-771) $) 11 T ELT) (((-1088) $) 8 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) 15 T ELT))) -(((-1174 |#1|) (-13 (-1012) (-551 (-1088)) (-10 -8 (-15 -3944 ((-1088) $)) (-15 -3829 ((-1088))))) (-1088)) (T -1174)) -((-3944 (*1 *2 *1) (-12 (-5 *2 (-1088)) (-5 *1 (-1174 *3)) (-14 *3 *2))) (-3829 (*1 *2) (-12 (-5 *2 (-1088)) (-5 *1 (-1174 *3)) (-14 *3 *2)))) -((-3836 (($ (-693)) 19 T ELT)) (-3833 (((-629 |#2|) $ $) 41 T ELT)) (-3830 ((|#2| $) 51 T ELT)) (-3831 ((|#2| $) 50 T ELT)) (-3834 ((|#2| $ $) 36 T ELT)) (-3832 (($ $ $) 47 T ELT)) (-3835 (($ $) 23 T ELT) (($ $ $) 29 T ELT)) (-3837 (($ $ $) 15 T ELT)) (* (($ (-483) $) 26 T ELT) (($ |#2| $) 32 T ELT) (($ $ |#2|) 31 T ELT))) -(((-1175 |#1| |#2|) (-10 -7 (-15 -3830 (|#2| |#1|)) (-15 -3831 (|#2| |#1|)) (-15 -3832 (|#1| |#1| |#1|)) (-15 -3833 ((-629 |#2|) |#1| |#1|)) (-15 -3834 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-483) |#1|)) (-15 -3835 (|#1| |#1| |#1|)) (-15 -3835 (|#1| |#1|)) (-15 -3836 (|#1| (-693))) (-15 -3837 (|#1| |#1| |#1|))) (-1176 |#2|) (-1127)) (T -1175)) -NIL -((-2567 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3836 (($ (-693)) 121 (|has| |#1| (-23)) ELT)) (-2197 (((-1183) $ (-483) (-483)) 44 (|has| $ (-6 -3994)) ELT)) (-1730 (((-85) (-1 (-85) |#1| |#1|) $) 107 T ELT) (((-85) $) 101 (|has| |#1| (-755)) ELT)) (-1728 (($ (-1 (-85) |#1| |#1|) $) 98 (|has| $ (-6 -3994)) ELT) (($ $) 97 (-12 (|has| |#1| (-755)) (|has| $ (-6 -3994))) ELT)) (-2908 (($ (-1 (-85) |#1| |#1|) $) 108 T ELT) (($ $) 102 (|has| |#1| (-755)) ELT)) (-3786 ((|#1| $ (-483) |#1|) 56 (|has| $ (-6 -3994)) ELT) ((|#1| $ (-1144 (-483)) |#1|) 64 (|has| $ (-6 -3994)) ELT)) (-3708 (($ (-1 (-85) |#1|) $) 81 (|has| $ (-6 -3993)) ELT)) (-3722 (($) 7 T CONST)) (-2296 (($ $) 99 (|has| $ (-6 -3994)) ELT)) (-2297 (($ $) 109 T ELT)) (-1351 (($ $) 84 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3993))) ELT)) (-3404 (($ |#1| $) 83 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3993))) ELT) (($ (-1 (-85) |#1|) $) 80 (|has| $ (-6 -3993)) ELT)) (-3840 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3993))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -3993)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -3993)) ELT)) (-1574 ((|#1| $ (-483) |#1|) 57 (|has| $ (-6 -3994)) ELT)) (-3111 ((|#1| $ (-483)) 55 T ELT)) (-3417 (((-483) (-1 (-85) |#1|) $) 106 T ELT) (((-483) |#1| $) 105 (|has| |#1| (-1012)) ELT) (((-483) |#1| $ (-483)) 104 (|has| |#1| (-1012)) ELT)) (-2888 (((-582 |#1|) $) 30 (|has| $ (-6 -3993)) ELT)) (-3833 (((-629 |#1|) $ $) 114 (|has| |#1| (-960)) ELT)) (-3612 (($ (-693) |#1|) 74 T ELT)) (-2199 (((-483) $) 47 (|has| (-483) (-755)) ELT)) (-2530 (($ $ $) 91 (|has| |#1| (-755)) ELT)) (-3516 (($ (-1 (-85) |#1| |#1|) $ $) 110 T ELT) (($ $ $) 103 (|has| |#1| (-755)) ELT)) (-2607 (((-582 |#1|) $) 29 (|has| $ (-6 -3993)) ELT)) (-3244 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3993))) ELT)) (-2200 (((-483) $) 48 (|has| (-483) (-755)) ELT)) (-2856 (($ $ $) 92 (|has| |#1| (-755)) ELT)) (-1947 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3994)) ELT)) (-3956 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-3830 ((|#1| $) 111 (-12 (|has| |#1| (-960)) (|has| |#1| (-914))) ELT)) (-3831 ((|#1| $) 112 (-12 (|has| |#1| (-960)) (|has| |#1| (-914))) ELT)) (-3241 (((-1071) $) 22 (|has| |#1| (-1012)) ELT)) (-2303 (($ |#1| $ (-483)) 66 T ELT) (($ $ $ (-483)) 65 T ELT)) (-2202 (((-582 (-483)) $) 50 T ELT)) (-2203 (((-85) (-483) $) 51 T ELT)) (-3242 (((-1032) $) 21 (|has| |#1| (-1012)) ELT)) (-3799 ((|#1| $) 46 (|has| (-483) (-755)) ELT)) (-1352 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 77 T ELT)) (-2198 (($ $ |#1|) 45 (|has| $ (-6 -3994)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3993)) ELT)) (-3766 (($ $ (-582 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-582 |#1|) (-582 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT)) (-1220 (((-85) $ $) 11 T ELT)) (-2201 (((-85) |#1| $) 49 (-12 (|has| $ (-6 -3993)) (|has| |#1| (-1012))) ELT)) (-2204 (((-582 |#1|) $) 52 T ELT)) (-3401 (((-85) $) 8 T ELT)) (-3563 (($) 9 T ELT)) (-3798 ((|#1| $ (-483) |#1|) 54 T ELT) ((|#1| $ (-483)) 53 T ELT) (($ $ (-1144 (-483))) 75 T ELT)) (-3834 ((|#1| $ $) 115 (|has| |#1| (-960)) ELT)) (-2304 (($ $ (-483)) 68 T ELT) (($ $ (-1144 (-483))) 67 T ELT)) (-3832 (($ $ $) 113 (|has| |#1| (-960)) ELT)) (-1944 (((-693) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3993)) ELT) (((-693) |#1| $) 28 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3993))) ELT)) (-1729 (($ $ $ (-483)) 100 (|has| $ (-6 -3994)) ELT)) (-3398 (($ $) 10 T ELT)) (-3970 (((-472) $) 85 (|has| |#1| (-552 (-472))) ELT)) (-3528 (($ (-582 |#1|)) 76 T ELT)) (-3800 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-582 $)) 70 T ELT)) (-3944 (((-771) $) 17 (|has| |#1| (-551 (-771))) ELT)) (-1263 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3993)) ELT)) (-2565 (((-85) $ $) 93 (|has| |#1| (-755)) ELT)) (-2566 (((-85) $ $) 95 (|has| |#1| (-755)) ELT)) (-3055 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-2683 (((-85) $ $) 94 (|has| |#1| (-755)) ELT)) (-2684 (((-85) $ $) 96 (|has| |#1| (-755)) ELT)) (-3835 (($ $) 120 (|has| |#1| (-21)) ELT) (($ $ $) 119 (|has| |#1| (-21)) ELT)) (-3837 (($ $ $) 122 (|has| |#1| (-25)) ELT)) (* (($ (-483) $) 118 (|has| |#1| (-21)) ELT) (($ |#1| $) 117 (|has| |#1| (-662)) ELT) (($ $ |#1|) 116 (|has| |#1| (-662)) ELT)) (-3955 (((-693) $) 6 (|has| $ (-6 -3993)) ELT))) -(((-1176 |#1|) (-113) (-1127)) (T -1176)) -((-3837 (*1 *1 *1 *1) (-12 (-4 *1 (-1176 *2)) (-4 *2 (-1127)) (-4 *2 (-25)))) (-3836 (*1 *1 *2) (-12 (-5 *2 (-693)) (-4 *1 (-1176 *3)) (-4 *3 (-23)) (-4 *3 (-1127)))) (-3835 (*1 *1 *1) (-12 (-4 *1 (-1176 *2)) (-4 *2 (-1127)) (-4 *2 (-21)))) (-3835 (*1 *1 *1 *1) (-12 (-4 *1 (-1176 *2)) (-4 *2 (-1127)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-483)) (-4 *1 (-1176 *3)) (-4 *3 (-1127)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1176 *2)) (-4 *2 (-1127)) (-4 *2 (-662)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1176 *2)) (-4 *2 (-1127)) (-4 *2 (-662)))) (-3834 (*1 *2 *1 *1) (-12 (-4 *1 (-1176 *2)) (-4 *2 (-1127)) (-4 *2 (-960)))) (-3833 (*1 *2 *1 *1) (-12 (-4 *1 (-1176 *3)) (-4 *3 (-1127)) (-4 *3 (-960)) (-5 *2 (-629 *3)))) (-3832 (*1 *1 *1 *1) (-12 (-4 *1 (-1176 *2)) (-4 *2 (-1127)) (-4 *2 (-960)))) (-3831 (*1 *2 *1) (-12 (-4 *1 (-1176 *2)) (-4 *2 (-1127)) (-4 *2 (-914)) (-4 *2 (-960)))) (-3830 (*1 *2 *1) (-12 (-4 *1 (-1176 *2)) (-4 *2 (-1127)) (-4 *2 (-914)) (-4 *2 (-960))))) -(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -3837 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -3836 ($ (-693))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -3835 ($ $)) (-15 -3835 ($ $ $)) (-15 * ($ (-483) $))) |%noBranch|) (IF (|has| |t#1| (-662)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-960)) (PROGN (-15 -3834 (|t#1| $ $)) (-15 -3833 ((-629 |t#1|) $ $)) (-15 -3832 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-914)) (IF (|has| |t#1| (-960)) (PROGN (-15 -3831 (|t#1| $)) (-15 -3830 (|t#1| $))) |%noBranch|) |%noBranch|))) -(((-34) . T) ((-72) OR (|has| |#1| (-1012)) (|has| |#1| (-755)) (|has| |#1| (-72))) ((-551 (-771)) OR (|has| |#1| (-1012)) (|has| |#1| (-755)) (|has| |#1| (-551 (-771)))) ((-124 |#1|) . T) ((-552 (-472)) |has| |#1| (-552 (-472))) ((-241 (-483) |#1|) . T) ((-241 (-1144 (-483)) $) . T) ((-243 (-483) |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ((-322 |#1|) . T) ((-427 |#1|) . T) ((-537 (-483) |#1|) . T) ((-454 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ((-13) . T) ((-592 |#1|) . T) ((-19 |#1|) . T) ((-755) |has| |#1| (-755)) ((-758) |has| |#1| (-755)) ((-1012) OR (|has| |#1| (-1012)) (|has| |#1| (-755))) ((-1127) . T)) -((-2567 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3836 (($ (-693)) NIL (|has| |#1| (-23)) ELT)) (-3838 (($ (-582 |#1|)) 9 T ELT)) (-2197 (((-1183) $ (-483) (-483)) NIL (|has| $ (-6 -3994)) ELT)) (-1730 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-755)) ELT)) (-1728 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-6 -3994)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-755))) ELT)) (-2908 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-755)) ELT)) (-3786 ((|#1| $ (-483) |#1|) NIL (|has| $ (-6 -3994)) ELT) ((|#1| $ (-1144 (-483)) |#1|) NIL (|has| $ (-6 -3994)) ELT)) (-3708 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3722 (($) NIL T CONST)) (-2296 (($ $) NIL (|has| $ (-6 -3994)) ELT)) (-2297 (($ $) NIL T ELT)) (-1351 (($ $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#1| (-1012))) ELT)) (-3404 (($ |#1| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#1| (-1012))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3840 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3993)) (|has| |#1| (-1012))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3993)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-1574 ((|#1| $ (-483) |#1|) NIL (|has| $ (-6 -3994)) ELT)) (-3111 ((|#1| $ (-483)) NIL T ELT)) (-3417 (((-483) (-1 (-85) |#1|) $) NIL T ELT) (((-483) |#1| $) NIL (|has| |#1| (-1012)) ELT) (((-483) |#1| $ (-483)) NIL (|has| |#1| (-1012)) ELT)) (-2888 (((-582 |#1|) $) 15 (|has| $ (-6 -3993)) ELT)) (-3833 (((-629 |#1|) $ $) NIL (|has| |#1| (-960)) ELT)) (-3612 (($ (-693) |#1|) NIL T ELT)) (-2199 (((-483) $) NIL (|has| (-483) (-755)) ELT)) (-2530 (($ $ $) NIL (|has| |#1| (-755)) ELT)) (-3516 (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-755)) ELT)) (-2607 (((-582 |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3244 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#1| (-1012))) ELT)) (-2200 (((-483) $) 11 (|has| (-483) (-755)) ELT)) (-2856 (($ $ $) NIL (|has| |#1| (-755)) ELT)) (-1947 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3956 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3830 ((|#1| $) NIL (-12 (|has| |#1| (-914)) (|has| |#1| (-960))) ELT)) (-3831 ((|#1| $) NIL (-12 (|has| |#1| (-914)) (|has| |#1| (-960))) ELT)) (-3241 (((-1071) $) NIL (|has| |#1| (-1012)) ELT)) (-2303 (($ |#1| $ (-483)) NIL T ELT) (($ $ $ (-483)) NIL T ELT)) (-2202 (((-582 (-483)) $) NIL T ELT)) (-2203 (((-85) (-483) $) NIL T ELT)) (-3242 (((-1032) $) NIL (|has| |#1| (-1012)) ELT)) (-3799 ((|#1| $) NIL (|has| (-483) (-755)) ELT)) (-1352 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2198 (($ $ |#1|) NIL (|has| $ (-6 -3994)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3766 (($ $ (-582 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-582 |#1|) (-582 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1012))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-2201 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#1| (-1012))) ELT)) (-2204 (((-582 |#1|) $) NIL T ELT)) (-3401 (((-85) $) NIL T ELT)) (-3563 (($) NIL T ELT)) (-3798 ((|#1| $ (-483) |#1|) NIL T ELT) ((|#1| $ (-483)) NIL T ELT) (($ $ (-1144 (-483))) NIL T ELT)) (-3834 ((|#1| $ $) NIL (|has| |#1| (-960)) ELT)) (-2304 (($ $ (-483)) NIL T ELT) (($ $ (-1144 (-483))) NIL T ELT)) (-3832 (($ $ $) NIL (|has| |#1| (-960)) ELT)) (-1944 (((-693) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3993)) ELT) (((-693) |#1| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#1| (-1012))) ELT)) (-1729 (($ $ $ (-483)) NIL (|has| $ (-6 -3994)) ELT)) (-3398 (($ $) NIL T ELT)) (-3970 (((-472) $) 19 (|has| |#1| (-552 (-472))) ELT)) (-3528 (($ (-582 |#1|)) 8 T ELT)) (-3800 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-582 $)) NIL T ELT)) (-3944 (((-771) $) NIL (|has| |#1| (-551 (-771))) ELT)) (-1263 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-2565 (((-85) $ $) NIL (|has| |#1| (-755)) ELT)) (-2566 (((-85) $ $) NIL (|has| |#1| (-755)) ELT)) (-3055 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2683 (((-85) $ $) NIL (|has| |#1| (-755)) ELT)) (-2684 (((-85) $ $) NIL (|has| |#1| (-755)) ELT)) (-3835 (($ $) NIL (|has| |#1| (-21)) ELT) (($ $ $) NIL (|has| |#1| (-21)) ELT)) (-3837 (($ $ $) NIL (|has| |#1| (-25)) ELT)) (* (($ (-483) $) NIL (|has| |#1| (-21)) ELT) (($ |#1| $) NIL (|has| |#1| (-662)) ELT) (($ $ |#1|) NIL (|has| |#1| (-662)) ELT)) (-3955 (((-693) $) NIL (|has| $ (-6 -3993)) ELT))) -(((-1177 |#1|) (-13 (-1176 |#1|) (-10 -8 (-15 -3838 ($ (-582 |#1|))))) (-1127)) (T -1177)) -((-3838 (*1 *1 *2) (-12 (-5 *2 (-582 *3)) (-4 *3 (-1127)) (-5 *1 (-1177 *3))))) -((-3839 (((-1177 |#2|) (-1 |#2| |#1| |#2|) (-1177 |#1|) |#2|) 13 T ELT)) (-3840 ((|#2| (-1 |#2| |#1| |#2|) (-1177 |#1|) |#2|) 15 T ELT)) (-3956 (((-3 (-1177 |#2|) #1="failed") (-1 (-3 |#2| #1#) |#1|) (-1177 |#1|)) 30 T ELT) (((-1177 |#2|) (-1 |#2| |#1|) (-1177 |#1|)) 18 T ELT))) -(((-1178 |#1| |#2|) (-10 -7 (-15 -3839 ((-1177 |#2|) (-1 |#2| |#1| |#2|) (-1177 |#1|) |#2|)) (-15 -3840 (|#2| (-1 |#2| |#1| |#2|) (-1177 |#1|) |#2|)) (-15 -3956 ((-1177 |#2|) (-1 |#2| |#1|) (-1177 |#1|))) (-15 -3956 ((-3 (-1177 |#2|) #1="failed") (-1 (-3 |#2| #1#) |#1|) (-1177 |#1|)))) (-1127) (-1127)) (T -1178)) -((-3956 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1177 *5)) (-4 *5 (-1127)) (-4 *6 (-1127)) (-5 *2 (-1177 *6)) (-5 *1 (-1178 *5 *6)))) (-3956 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1177 *5)) (-4 *5 (-1127)) (-4 *6 (-1127)) (-5 *2 (-1177 *6)) (-5 *1 (-1178 *5 *6)))) (-3840 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1177 *5)) (-4 *5 (-1127)) (-4 *2 (-1127)) (-5 *1 (-1178 *5 *2)))) (-3839 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1177 *6)) (-4 *6 (-1127)) (-4 *5 (-1127)) (-5 *2 (-1177 *5)) (-5 *1 (-1178 *6 *5))))) -((-3841 (((-406) (-582 (-582 (-853 (-179)))) (-582 (-221))) 22 T ELT) (((-406) (-582 (-582 (-853 (-179))))) 21 T ELT) (((-406) (-582 (-582 (-853 (-179)))) (-782) (-782) (-829) (-582 (-221))) 20 T ELT)) (-3842 (((-1180) (-582 (-582 (-853 (-179)))) (-582 (-221))) 30 T ELT) (((-1180) (-582 (-582 (-853 (-179)))) (-782) (-782) (-829) (-582 (-221))) 29 T ELT)) (-3944 (((-1180) (-406)) 46 T ELT))) -(((-1179) (-10 -7 (-15 -3841 ((-406) (-582 (-582 (-853 (-179)))) (-782) (-782) (-829) (-582 (-221)))) (-15 -3841 ((-406) (-582 (-582 (-853 (-179)))))) (-15 -3841 ((-406) (-582 (-582 (-853 (-179)))) (-582 (-221)))) (-15 -3842 ((-1180) (-582 (-582 (-853 (-179)))) (-782) (-782) (-829) (-582 (-221)))) (-15 -3842 ((-1180) (-582 (-582 (-853 (-179)))) (-582 (-221)))) (-15 -3944 ((-1180) (-406))))) (T -1179)) -((-3944 (*1 *2 *3) (-12 (-5 *3 (-406)) (-5 *2 (-1180)) (-5 *1 (-1179)))) (-3842 (*1 *2 *3 *4) (-12 (-5 *3 (-582 (-582 (-853 (-179))))) (-5 *4 (-582 (-221))) (-5 *2 (-1180)) (-5 *1 (-1179)))) (-3842 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-582 (-582 (-853 (-179))))) (-5 *4 (-782)) (-5 *5 (-829)) (-5 *6 (-582 (-221))) (-5 *2 (-1180)) (-5 *1 (-1179)))) (-3841 (*1 *2 *3 *4) (-12 (-5 *3 (-582 (-582 (-853 (-179))))) (-5 *4 (-582 (-221))) (-5 *2 (-406)) (-5 *1 (-1179)))) (-3841 (*1 *2 *3) (-12 (-5 *3 (-582 (-582 (-853 (-179))))) (-5 *2 (-406)) (-5 *1 (-1179)))) (-3841 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-582 (-582 (-853 (-179))))) (-5 *4 (-782)) (-5 *5 (-829)) (-5 *6 (-582 (-221))) (-5 *2 (-406)) (-5 *1 (-1179))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3860 (((-1071) $ (-1071)) 107 T ELT) (((-1071) $ (-1071) (-1071)) 105 T ELT) (((-1071) $ (-1071) (-582 (-1071))) 104 T ELT)) (-3856 (($) 69 T ELT)) (-3843 (((-1183) $ (-406) (-829)) 54 T ELT)) (-3849 (((-1183) $ (-829) (-1071)) 89 T ELT) (((-1183) $ (-829) (-782)) 90 T ELT)) (-3871 (((-1183) $ (-829) (-328) (-328)) 57 T ELT)) (-3881 (((-1183) $ (-1071)) 84 T ELT)) (-3844 (((-1183) $ (-829) (-1071)) 94 T ELT)) (-3845 (((-1183) $ (-829) (-328) (-328)) 58 T ELT)) (-3882 (((-1183) $ (-829) (-829)) 55 T ELT)) (-3862 (((-1183) $) 85 T ELT)) (-3847 (((-1183) $ (-829) (-1071)) 93 T ELT)) (-3851 (((-1183) $ (-406) (-829)) 41 T ELT)) (-3848 (((-1183) $ (-829) (-1071)) 92 T ELT)) (-3884 (((-582 (-221)) $) 29 T ELT) (($ $ (-582 (-221))) 30 T ELT)) (-3883 (((-1183) $ (-693) (-693)) 52 T ELT)) (-3855 (($ $) 70 T ELT) (($ (-406) (-582 (-221))) 71 T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3858 (((-483) $) 48 T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3852 (((-1177 (-3 (-406) "undefined")) $) 47 T ELT)) (-3853 (((-1177 (-2 (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)) (|:| -3848 (-483)) (|:| -3846 (-483)) (|:| |spline| (-483)) (|:| -3877 (-483)) (|:| |axesColor| (-782)) (|:| -3849 (-483)) (|:| |unitsColor| (-782)) (|:| |showing| (-483)))) $) 46 T ELT)) (-3854 (((-1183) $ (-829) (-179) (-179) (-179) (-179) (-483) (-483) (-483) (-483) (-782) (-483) (-782) (-483)) 83 T ELT)) (-3857 (((-582 (-853 (-179))) $) NIL T ELT)) (-3850 (((-406) $ (-829)) 43 T ELT)) (-3880 (((-1183) $ (-693) (-693) (-829) (-829)) 50 T ELT)) (-3878 (((-1183) $ (-1071)) 95 T ELT)) (-3846 (((-1183) $ (-829) (-1071)) 91 T ELT)) (-3944 (((-771) $) 102 T ELT)) (-3859 (((-1183) $) 96 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3877 (((-1183) $ (-829) (-1071)) 87 T ELT) (((-1183) $ (-829) (-782)) 88 T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-1180) (-13 (-1012) (-10 -8 (-15 -3857 ((-582 (-853 (-179))) $)) (-15 -3856 ($)) (-15 -3855 ($ $)) (-15 -3884 ((-582 (-221)) $)) (-15 -3884 ($ $ (-582 (-221)))) (-15 -3855 ($ (-406) (-582 (-221)))) (-15 -3854 ((-1183) $ (-829) (-179) (-179) (-179) (-179) (-483) (-483) (-483) (-483) (-782) (-483) (-782) (-483))) (-15 -3853 ((-1177 (-2 (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)) (|:| -3848 (-483)) (|:| -3846 (-483)) (|:| |spline| (-483)) (|:| -3877 (-483)) (|:| |axesColor| (-782)) (|:| -3849 (-483)) (|:| |unitsColor| (-782)) (|:| |showing| (-483)))) $)) (-15 -3852 ((-1177 (-3 (-406) "undefined")) $)) (-15 -3881 ((-1183) $ (-1071))) (-15 -3851 ((-1183) $ (-406) (-829))) (-15 -3850 ((-406) $ (-829))) (-15 -3877 ((-1183) $ (-829) (-1071))) (-15 -3877 ((-1183) $ (-829) (-782))) (-15 -3849 ((-1183) $ (-829) (-1071))) (-15 -3849 ((-1183) $ (-829) (-782))) (-15 -3848 ((-1183) $ (-829) (-1071))) (-15 -3847 ((-1183) $ (-829) (-1071))) (-15 -3846 ((-1183) $ (-829) (-1071))) (-15 -3878 ((-1183) $ (-1071))) (-15 -3859 ((-1183) $)) (-15 -3880 ((-1183) $ (-693) (-693) (-829) (-829))) (-15 -3845 ((-1183) $ (-829) (-328) (-328))) (-15 -3871 ((-1183) $ (-829) (-328) (-328))) (-15 -3844 ((-1183) $ (-829) (-1071))) (-15 -3883 ((-1183) $ (-693) (-693))) (-15 -3843 ((-1183) $ (-406) (-829))) (-15 -3882 ((-1183) $ (-829) (-829))) (-15 -3860 ((-1071) $ (-1071))) (-15 -3860 ((-1071) $ (-1071) (-1071))) (-15 -3860 ((-1071) $ (-1071) (-582 (-1071)))) (-15 -3862 ((-1183) $)) (-15 -3858 ((-483) $)) (-15 -3944 ((-771) $))))) (T -1180)) -((-3944 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-1180)))) (-3857 (*1 *2 *1) (-12 (-5 *2 (-582 (-853 (-179)))) (-5 *1 (-1180)))) (-3856 (*1 *1) (-5 *1 (-1180))) (-3855 (*1 *1 *1) (-5 *1 (-1180))) (-3884 (*1 *2 *1) (-12 (-5 *2 (-582 (-221))) (-5 *1 (-1180)))) (-3884 (*1 *1 *1 *2) (-12 (-5 *2 (-582 (-221))) (-5 *1 (-1180)))) (-3855 (*1 *1 *2 *3) (-12 (-5 *2 (-406)) (-5 *3 (-582 (-221))) (-5 *1 (-1180)))) (-3854 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-829)) (-5 *4 (-179)) (-5 *5 (-483)) (-5 *6 (-782)) (-5 *2 (-1183)) (-5 *1 (-1180)))) (-3853 (*1 *2 *1) (-12 (-5 *2 (-1177 (-2 (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)) (|:| -3848 (-483)) (|:| -3846 (-483)) (|:| |spline| (-483)) (|:| -3877 (-483)) (|:| |axesColor| (-782)) (|:| -3849 (-483)) (|:| |unitsColor| (-782)) (|:| |showing| (-483))))) (-5 *1 (-1180)))) (-3852 (*1 *2 *1) (-12 (-5 *2 (-1177 (-3 (-406) "undefined"))) (-5 *1 (-1180)))) (-3881 (*1 *2 *1 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-1183)) (-5 *1 (-1180)))) (-3851 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-406)) (-5 *4 (-829)) (-5 *2 (-1183)) (-5 *1 (-1180)))) (-3850 (*1 *2 *1 *3) (-12 (-5 *3 (-829)) (-5 *2 (-406)) (-5 *1 (-1180)))) (-3877 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-829)) (-5 *4 (-1071)) (-5 *2 (-1183)) (-5 *1 (-1180)))) (-3877 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-829)) (-5 *4 (-782)) (-5 *2 (-1183)) (-5 *1 (-1180)))) (-3849 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-829)) (-5 *4 (-1071)) (-5 *2 (-1183)) (-5 *1 (-1180)))) (-3849 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-829)) (-5 *4 (-782)) (-5 *2 (-1183)) (-5 *1 (-1180)))) (-3848 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-829)) (-5 *4 (-1071)) (-5 *2 (-1183)) (-5 *1 (-1180)))) (-3847 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-829)) (-5 *4 (-1071)) (-5 *2 (-1183)) (-5 *1 (-1180)))) (-3846 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-829)) (-5 *4 (-1071)) (-5 *2 (-1183)) (-5 *1 (-1180)))) (-3878 (*1 *2 *1 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-1183)) (-5 *1 (-1180)))) (-3859 (*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-1180)))) (-3880 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-693)) (-5 *4 (-829)) (-5 *2 (-1183)) (-5 *1 (-1180)))) (-3845 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-829)) (-5 *4 (-328)) (-5 *2 (-1183)) (-5 *1 (-1180)))) (-3871 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-829)) (-5 *4 (-328)) (-5 *2 (-1183)) (-5 *1 (-1180)))) (-3844 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-829)) (-5 *4 (-1071)) (-5 *2 (-1183)) (-5 *1 (-1180)))) (-3883 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-693)) (-5 *2 (-1183)) (-5 *1 (-1180)))) (-3843 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-406)) (-5 *4 (-829)) (-5 *2 (-1183)) (-5 *1 (-1180)))) (-3882 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-829)) (-5 *2 (-1183)) (-5 *1 (-1180)))) (-3860 (*1 *2 *1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-1180)))) (-3860 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-1180)))) (-3860 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-582 (-1071))) (-5 *2 (-1071)) (-5 *1 (-1180)))) (-3862 (*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-1180)))) (-3858 (*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-1180))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3872 (((-1183) $ (-328)) 168 T ELT) (((-1183) $ (-328) (-328) (-328)) 169 T ELT)) (-3860 (((-1071) $ (-1071)) 177 T ELT) (((-1071) $ (-1071) (-1071)) 175 T ELT) (((-1071) $ (-1071) (-582 (-1071))) 174 T ELT)) (-3888 (($) 67 T ELT)) (-3879 (((-1183) $ (-328) (-328) (-328) (-328) (-328)) 140 T ELT) (((-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3845 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179))) $) 138 T ELT) (((-1183) $ (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3845 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) 139 T ELT) (((-1183) $ (-483) (-483) (-328) (-328) (-328)) 143 T ELT) (((-1183) $ (-328) (-328)) 144 T ELT) (((-1183) $ (-328) (-328) (-328)) 151 T ELT)) (-3891 (((-328)) 121 T ELT) (((-328) (-328)) 122 T ELT)) (-3893 (((-328)) 116 T ELT) (((-328) (-328)) 118 T ELT)) (-3892 (((-328)) 119 T ELT) (((-328) (-328)) 120 T ELT)) (-3889 (((-328)) 125 T ELT) (((-328) (-328)) 126 T ELT)) (-3890 (((-328)) 123 T ELT) (((-328) (-328)) 124 T ELT)) (-3871 (((-1183) $ (-328) (-328)) 170 T ELT)) (-3881 (((-1183) $ (-1071)) 152 T ELT)) (-3886 (((-1045 (-179)) $) 68 T ELT) (($ $ (-1045 (-179))) 69 T ELT)) (-3867 (((-1183) $ (-1071)) 186 T ELT)) (-3866 (((-1183) $ (-1071)) 187 T ELT)) (-3873 (((-1183) $ (-328) (-328)) 150 T ELT) (((-1183) $ (-483) (-483)) 167 T ELT)) (-3882 (((-1183) $ (-829) (-829)) 159 T ELT)) (-3862 (((-1183) $) 136 T ELT)) (-3870 (((-1183) $ (-1071)) 185 T ELT)) (-3875 (((-1183) $ (-1071)) 133 T ELT)) (-3884 (((-582 (-221)) $) 70 T ELT) (($ $ (-582 (-221))) 71 T ELT)) (-3883 (((-1183) $ (-693) (-693)) 158 T ELT)) (-3885 (((-1183) $ (-693) (-853 (-179))) 192 T ELT)) (-3887 (($ $) 73 T ELT) (($ (-1045 (-179)) (-1071)) 74 T ELT) (($ (-1045 (-179)) (-582 (-221))) 75 T ELT)) (-3864 (((-1183) $ (-328) (-328) (-328)) 130 T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3858 (((-483) $) 127 T ELT)) (-3863 (((-1183) $ (-328)) 172 T ELT)) (-3868 (((-1183) $ (-328)) 190 T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3869 (((-1183) $ (-328)) 189 T ELT)) (-3874 (((-1183) $ (-1071)) 135 T ELT)) (-3880 (((-1183) $ (-693) (-693) (-829) (-829)) 157 T ELT)) (-3876 (((-1183) $ (-1071)) 132 T ELT)) (-3878 (((-1183) $ (-1071)) 134 T ELT)) (-3861 (((-1183) $ (-130) (-130)) 156 T ELT)) (-3944 (((-771) $) 165 T ELT)) (-3859 (((-1183) $) 137 T ELT)) (-3865 (((-1183) $ (-1071)) 188 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3877 (((-1183) $ (-1071)) 131 T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-1181) (-13 (-1012) (-10 -8 (-15 -3893 ((-328))) (-15 -3893 ((-328) (-328))) (-15 -3892 ((-328))) (-15 -3892 ((-328) (-328))) (-15 -3891 ((-328))) (-15 -3891 ((-328) (-328))) (-15 -3890 ((-328))) (-15 -3890 ((-328) (-328))) (-15 -3889 ((-328))) (-15 -3889 ((-328) (-328))) (-15 -3888 ($)) (-15 -3887 ($ $)) (-15 -3887 ($ (-1045 (-179)) (-1071))) (-15 -3887 ($ (-1045 (-179)) (-582 (-221)))) (-15 -3886 ((-1045 (-179)) $)) (-15 -3886 ($ $ (-1045 (-179)))) (-15 -3885 ((-1183) $ (-693) (-853 (-179)))) (-15 -3884 ((-582 (-221)) $)) (-15 -3884 ($ $ (-582 (-221)))) (-15 -3883 ((-1183) $ (-693) (-693))) (-15 -3882 ((-1183) $ (-829) (-829))) (-15 -3881 ((-1183) $ (-1071))) (-15 -3880 ((-1183) $ (-693) (-693) (-829) (-829))) (-15 -3879 ((-1183) $ (-328) (-328) (-328) (-328) (-328))) (-15 -3879 ((-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3845 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179))) $)) (-15 -3879 ((-1183) $ (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3845 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179))))) (-15 -3879 ((-1183) $ (-483) (-483) (-328) (-328) (-328))) (-15 -3879 ((-1183) $ (-328) (-328))) (-15 -3879 ((-1183) $ (-328) (-328) (-328))) (-15 -3878 ((-1183) $ (-1071))) (-15 -3877 ((-1183) $ (-1071))) (-15 -3876 ((-1183) $ (-1071))) (-15 -3875 ((-1183) $ (-1071))) (-15 -3874 ((-1183) $ (-1071))) (-15 -3873 ((-1183) $ (-328) (-328))) (-15 -3873 ((-1183) $ (-483) (-483))) (-15 -3872 ((-1183) $ (-328))) (-15 -3872 ((-1183) $ (-328) (-328) (-328))) (-15 -3871 ((-1183) $ (-328) (-328))) (-15 -3870 ((-1183) $ (-1071))) (-15 -3869 ((-1183) $ (-328))) (-15 -3868 ((-1183) $ (-328))) (-15 -3867 ((-1183) $ (-1071))) (-15 -3866 ((-1183) $ (-1071))) (-15 -3865 ((-1183) $ (-1071))) (-15 -3864 ((-1183) $ (-328) (-328) (-328))) (-15 -3863 ((-1183) $ (-328))) (-15 -3862 ((-1183) $)) (-15 -3861 ((-1183) $ (-130) (-130))) (-15 -3860 ((-1071) $ (-1071))) (-15 -3860 ((-1071) $ (-1071) (-1071))) (-15 -3860 ((-1071) $ (-1071) (-582 (-1071)))) (-15 -3859 ((-1183) $)) (-15 -3858 ((-483) $))))) (T -1181)) -((-3893 (*1 *2) (-12 (-5 *2 (-328)) (-5 *1 (-1181)))) (-3893 (*1 *2 *2) (-12 (-5 *2 (-328)) (-5 *1 (-1181)))) (-3892 (*1 *2) (-12 (-5 *2 (-328)) (-5 *1 (-1181)))) (-3892 (*1 *2 *2) (-12 (-5 *2 (-328)) (-5 *1 (-1181)))) (-3891 (*1 *2) (-12 (-5 *2 (-328)) (-5 *1 (-1181)))) (-3891 (*1 *2 *2) (-12 (-5 *2 (-328)) (-5 *1 (-1181)))) (-3890 (*1 *2) (-12 (-5 *2 (-328)) (-5 *1 (-1181)))) (-3890 (*1 *2 *2) (-12 (-5 *2 (-328)) (-5 *1 (-1181)))) (-3889 (*1 *2) (-12 (-5 *2 (-328)) (-5 *1 (-1181)))) (-3889 (*1 *2 *2) (-12 (-5 *2 (-328)) (-5 *1 (-1181)))) (-3888 (*1 *1) (-5 *1 (-1181))) (-3887 (*1 *1 *1) (-5 *1 (-1181))) (-3887 (*1 *1 *2 *3) (-12 (-5 *2 (-1045 (-179))) (-5 *3 (-1071)) (-5 *1 (-1181)))) (-3887 (*1 *1 *2 *3) (-12 (-5 *2 (-1045 (-179))) (-5 *3 (-582 (-221))) (-5 *1 (-1181)))) (-3886 (*1 *2 *1) (-12 (-5 *2 (-1045 (-179))) (-5 *1 (-1181)))) (-3886 (*1 *1 *1 *2) (-12 (-5 *2 (-1045 (-179))) (-5 *1 (-1181)))) (-3885 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-693)) (-5 *4 (-853 (-179))) (-5 *2 (-1183)) (-5 *1 (-1181)))) (-3884 (*1 *2 *1) (-12 (-5 *2 (-582 (-221))) (-5 *1 (-1181)))) (-3884 (*1 *1 *1 *2) (-12 (-5 *2 (-582 (-221))) (-5 *1 (-1181)))) (-3883 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-693)) (-5 *2 (-1183)) (-5 *1 (-1181)))) (-3882 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-829)) (-5 *2 (-1183)) (-5 *1 (-1181)))) (-3881 (*1 *2 *1 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-1183)) (-5 *1 (-1181)))) (-3880 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-693)) (-5 *4 (-829)) (-5 *2 (-1183)) (-5 *1 (-1181)))) (-3879 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-328)) (-5 *2 (-1183)) (-5 *1 (-1181)))) (-3879 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3845 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) (-5 *1 (-1181)))) (-3879 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3845 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) (-5 *2 (-1183)) (-5 *1 (-1181)))) (-3879 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-483)) (-5 *4 (-328)) (-5 *2 (-1183)) (-5 *1 (-1181)))) (-3879 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-328)) (-5 *2 (-1183)) (-5 *1 (-1181)))) (-3879 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-328)) (-5 *2 (-1183)) (-5 *1 (-1181)))) (-3878 (*1 *2 *1 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-1183)) (-5 *1 (-1181)))) (-3877 (*1 *2 *1 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-1183)) (-5 *1 (-1181)))) (-3876 (*1 *2 *1 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-1183)) (-5 *1 (-1181)))) (-3875 (*1 *2 *1 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-1183)) (-5 *1 (-1181)))) (-3874 (*1 *2 *1 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-1183)) (-5 *1 (-1181)))) (-3873 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-328)) (-5 *2 (-1183)) (-5 *1 (-1181)))) (-3873 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-483)) (-5 *2 (-1183)) (-5 *1 (-1181)))) (-3872 (*1 *2 *1 *3) (-12 (-5 *3 (-328)) (-5 *2 (-1183)) (-5 *1 (-1181)))) (-3872 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-328)) (-5 *2 (-1183)) (-5 *1 (-1181)))) (-3871 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-328)) (-5 *2 (-1183)) (-5 *1 (-1181)))) (-3870 (*1 *2 *1 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-1183)) (-5 *1 (-1181)))) (-3869 (*1 *2 *1 *3) (-12 (-5 *3 (-328)) (-5 *2 (-1183)) (-5 *1 (-1181)))) (-3868 (*1 *2 *1 *3) (-12 (-5 *3 (-328)) (-5 *2 (-1183)) (-5 *1 (-1181)))) (-3867 (*1 *2 *1 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-1183)) (-5 *1 (-1181)))) (-3866 (*1 *2 *1 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-1183)) (-5 *1 (-1181)))) (-3865 (*1 *2 *1 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-1183)) (-5 *1 (-1181)))) (-3864 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-328)) (-5 *2 (-1183)) (-5 *1 (-1181)))) (-3863 (*1 *2 *1 *3) (-12 (-5 *3 (-328)) (-5 *2 (-1183)) (-5 *1 (-1181)))) (-3862 (*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-1181)))) (-3861 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-130)) (-5 *2 (-1183)) (-5 *1 (-1181)))) (-3860 (*1 *2 *1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-1181)))) (-3860 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-1181)))) (-3860 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-582 (-1071))) (-5 *2 (-1071)) (-5 *1 (-1181)))) (-3859 (*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-1181)))) (-3858 (*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-1181))))) -((-3902 (((-582 (-1071)) (-582 (-1071))) 103 T ELT) (((-582 (-1071))) 96 T ELT)) (-3903 (((-582 (-1071))) 94 T ELT)) (-3900 (((-582 (-829)) (-582 (-829))) 69 T ELT) (((-582 (-829))) 64 T ELT)) (-3899 (((-582 (-693)) (-582 (-693))) 61 T ELT) (((-582 (-693))) 55 T ELT)) (-3901 (((-1183)) 71 T ELT)) (-3905 (((-829) (-829)) 87 T ELT) (((-829)) 86 T ELT)) (-3904 (((-829) (-829)) 85 T ELT) (((-829)) 84 T ELT)) (-3897 (((-782) (-782)) 81 T ELT) (((-782)) 80 T ELT)) (-3907 (((-179)) 91 T ELT) (((-179) (-328)) 93 T ELT)) (-3906 (((-829)) 88 T ELT) (((-829) (-829)) 89 T ELT)) (-3898 (((-829) (-829)) 83 T ELT) (((-829)) 82 T ELT)) (-3894 (((-782) (-782)) 75 T ELT) (((-782)) 73 T ELT)) (-3895 (((-782) (-782)) 77 T ELT) (((-782)) 76 T ELT)) (-3896 (((-782) (-782)) 79 T ELT) (((-782)) 78 T ELT))) -(((-1182) (-10 -7 (-15 -3894 ((-782))) (-15 -3894 ((-782) (-782))) (-15 -3895 ((-782))) (-15 -3895 ((-782) (-782))) (-15 -3896 ((-782))) (-15 -3896 ((-782) (-782))) (-15 -3897 ((-782))) (-15 -3897 ((-782) (-782))) (-15 -3898 ((-829))) (-15 -3898 ((-829) (-829))) (-15 -3899 ((-582 (-693)))) (-15 -3899 ((-582 (-693)) (-582 (-693)))) (-15 -3900 ((-582 (-829)))) (-15 -3900 ((-582 (-829)) (-582 (-829)))) (-15 -3901 ((-1183))) (-15 -3902 ((-582 (-1071)))) (-15 -3902 ((-582 (-1071)) (-582 (-1071)))) (-15 -3903 ((-582 (-1071)))) (-15 -3904 ((-829))) (-15 -3905 ((-829))) (-15 -3904 ((-829) (-829))) (-15 -3905 ((-829) (-829))) (-15 -3906 ((-829) (-829))) (-15 -3906 ((-829))) (-15 -3907 ((-179) (-328))) (-15 -3907 ((-179))))) (T -1182)) -((-3907 (*1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-1182)))) (-3907 (*1 *2 *3) (-12 (-5 *3 (-328)) (-5 *2 (-179)) (-5 *1 (-1182)))) (-3906 (*1 *2) (-12 (-5 *2 (-829)) (-5 *1 (-1182)))) (-3906 (*1 *2 *2) (-12 (-5 *2 (-829)) (-5 *1 (-1182)))) (-3905 (*1 *2 *2) (-12 (-5 *2 (-829)) (-5 *1 (-1182)))) (-3904 (*1 *2 *2) (-12 (-5 *2 (-829)) (-5 *1 (-1182)))) (-3905 (*1 *2) (-12 (-5 *2 (-829)) (-5 *1 (-1182)))) (-3904 (*1 *2) (-12 (-5 *2 (-829)) (-5 *1 (-1182)))) (-3903 (*1 *2) (-12 (-5 *2 (-582 (-1071))) (-5 *1 (-1182)))) (-3902 (*1 *2 *2) (-12 (-5 *2 (-582 (-1071))) (-5 *1 (-1182)))) (-3902 (*1 *2) (-12 (-5 *2 (-582 (-1071))) (-5 *1 (-1182)))) (-3901 (*1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-1182)))) (-3900 (*1 *2 *2) (-12 (-5 *2 (-582 (-829))) (-5 *1 (-1182)))) (-3900 (*1 *2) (-12 (-5 *2 (-582 (-829))) (-5 *1 (-1182)))) (-3899 (*1 *2 *2) (-12 (-5 *2 (-582 (-693))) (-5 *1 (-1182)))) (-3899 (*1 *2) (-12 (-5 *2 (-582 (-693))) (-5 *1 (-1182)))) (-3898 (*1 *2 *2) (-12 (-5 *2 (-829)) (-5 *1 (-1182)))) (-3898 (*1 *2) (-12 (-5 *2 (-829)) (-5 *1 (-1182)))) (-3897 (*1 *2 *2) (-12 (-5 *2 (-782)) (-5 *1 (-1182)))) (-3897 (*1 *2) (-12 (-5 *2 (-782)) (-5 *1 (-1182)))) (-3896 (*1 *2 *2) (-12 (-5 *2 (-782)) (-5 *1 (-1182)))) (-3896 (*1 *2) (-12 (-5 *2 (-782)) (-5 *1 (-1182)))) (-3895 (*1 *2 *2) (-12 (-5 *2 (-782)) (-5 *1 (-1182)))) (-3895 (*1 *2) (-12 (-5 *2 (-782)) (-5 *1 (-1182)))) (-3894 (*1 *2 *2) (-12 (-5 *2 (-782)) (-5 *1 (-1182)))) (-3894 (*1 *2) (-12 (-5 *2 (-782)) (-5 *1 (-1182))))) -((-3908 (($) 6 T ELT)) (-3944 (((-771) $) 9 T ELT))) -(((-1183) (-13 (-551 (-771)) (-10 -8 (-15 -3908 ($))))) (T -1183)) -((-3908 (*1 *1) (-5 *1 (-1183)))) -((-3947 (($ $ |#2|) 10 T ELT))) -(((-1184 |#1| |#2|) (-10 -7 (-15 -3947 (|#1| |#1| |#2|))) (-1185 |#2|) (-312)) (T -1184)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-3187 (((-85) $) 22 T ELT)) (-1310 (((-3 $ "failed") $ $) 26 T ELT)) (-3722 (($) 23 T CONST)) (-1212 (((-85) $ $) 20 T ELT)) (-3241 (((-1071) $) 11 T ELT)) (-3242 (((-1032) $) 12 T ELT)) (-3909 (((-107)) 39 T ELT)) (-3944 (((-771) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2659 (($) 24 T CONST)) (-3055 (((-85) $ $) 8 T ELT)) (-3947 (($ $ |#1|) 40 T ELT)) (-3835 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3837 (($ $ $) 18 T ELT)) (* (($ (-829) $) 17 T ELT) (($ (-693) $) 21 T ELT) (($ (-483) $) 30 T ELT) (($ |#1| $) 33 T ELT) (($ $ |#1|) 37 T ELT))) -(((-1185 |#1|) (-113) (-312)) (T -1185)) -((-3947 (*1 *1 *1 *2) (-12 (-4 *1 (-1185 *2)) (-4 *2 (-312)))) (-3909 (*1 *2) (-12 (-4 *1 (-1185 *3)) (-4 *3 (-312)) (-5 *2 (-107))))) -(-13 (-653 |t#1|) (-10 -8 (-15 -3947 ($ $ |t#1|)) (-15 -3909 ((-107))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-551 (-771)) . T) ((-13) . T) ((-587 (-483)) . T) ((-587 |#1|) . T) ((-589 |#1|) . T) ((-581 |#1|) . T) ((-653 |#1|) . T) ((-962 |#1|) . T) ((-967 |#1|) . T) ((-1012) . T) ((-1127) . T)) -((-3914 (((-582 (-1120 |#1|)) (-1088) (-1120 |#1|)) 83 T ELT)) (-3912 (((-1067 (-1067 (-856 |#1|))) (-1088) (-1067 (-856 |#1|))) 63 T ELT)) (-3915 (((-1 (-1067 (-1120 |#1|)) (-1067 (-1120 |#1|))) (-693) (-1120 |#1|) (-1067 (-1120 |#1|))) 74 T ELT)) (-3910 (((-1 (-1067 (-856 |#1|)) (-1067 (-856 |#1|))) (-693)) 65 T ELT)) (-3913 (((-1 (-1083 (-856 |#1|)) (-856 |#1|)) (-1088)) 32 T ELT)) (-3911 (((-1 (-1067 (-856 |#1|)) (-1067 (-856 |#1|))) (-693)) 64 T ELT))) -(((-1186 |#1|) (-10 -7 (-15 -3910 ((-1 (-1067 (-856 |#1|)) (-1067 (-856 |#1|))) (-693))) (-15 -3911 ((-1 (-1067 (-856 |#1|)) (-1067 (-856 |#1|))) (-693))) (-15 -3912 ((-1067 (-1067 (-856 |#1|))) (-1088) (-1067 (-856 |#1|)))) (-15 -3913 ((-1 (-1083 (-856 |#1|)) (-856 |#1|)) (-1088))) (-15 -3914 ((-582 (-1120 |#1|)) (-1088) (-1120 |#1|))) (-15 -3915 ((-1 (-1067 (-1120 |#1|)) (-1067 (-1120 |#1|))) (-693) (-1120 |#1|) (-1067 (-1120 |#1|))))) (-312)) (T -1186)) -((-3915 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-693)) (-4 *6 (-312)) (-5 *4 (-1120 *6)) (-5 *2 (-1 (-1067 *4) (-1067 *4))) (-5 *1 (-1186 *6)) (-5 *5 (-1067 *4)))) (-3914 (*1 *2 *3 *4) (-12 (-5 *3 (-1088)) (-4 *5 (-312)) (-5 *2 (-582 (-1120 *5))) (-5 *1 (-1186 *5)) (-5 *4 (-1120 *5)))) (-3913 (*1 *2 *3) (-12 (-5 *3 (-1088)) (-5 *2 (-1 (-1083 (-856 *4)) (-856 *4))) (-5 *1 (-1186 *4)) (-4 *4 (-312)))) (-3912 (*1 *2 *3 *4) (-12 (-5 *3 (-1088)) (-4 *5 (-312)) (-5 *2 (-1067 (-1067 (-856 *5)))) (-5 *1 (-1186 *5)) (-5 *4 (-1067 (-856 *5))))) (-3911 (*1 *2 *3) (-12 (-5 *3 (-693)) (-5 *2 (-1 (-1067 (-856 *4)) (-1067 (-856 *4)))) (-5 *1 (-1186 *4)) (-4 *4 (-312)))) (-3910 (*1 *2 *3) (-12 (-5 *3 (-693)) (-5 *2 (-1 (-1067 (-856 *4)) (-1067 (-856 *4)))) (-5 *1 (-1186 *4)) (-4 *4 (-312))))) -((-3917 (((-2 (|:| -2011 (-629 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-629 |#2|))) |#2|) 80 T ELT)) (-3916 (((-2 (|:| -2011 (-629 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-629 |#2|)))) 79 T ELT))) -(((-1187 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3916 ((-2 (|:| -2011 (-629 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-629 |#2|))))) (-15 -3917 ((-2 (|:| -2011 (-629 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-629 |#2|))) |#2|))) (-299) (-1153 |#1|) (-1153 |#2|) (-351 |#2| |#3|)) (T -1187)) -((-3917 (*1 *2 *3) (-12 (-4 *4 (-299)) (-4 *3 (-1153 *4)) (-4 *5 (-1153 *3)) (-5 *2 (-2 (|:| -2011 (-629 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-629 *3)))) (-5 *1 (-1187 *4 *3 *5 *6)) (-4 *6 (-351 *3 *5)))) (-3916 (*1 *2) (-12 (-4 *3 (-299)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 *4)) (-5 *2 (-2 (|:| -2011 (-629 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-629 *4)))) (-5 *1 (-1187 *3 *4 *5 *6)) (-4 *6 (-351 *4 *5))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3918 (((-1047) $) 12 T ELT)) (-3919 (((-1047) $) 10 T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3944 (((-771) $) 18 T ELT) (($ (-1093)) NIL T ELT) (((-1093) $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-1188) (-13 (-994) (-10 -8 (-15 -3919 ((-1047) $)) (-15 -3918 ((-1047) $))))) (T -1188)) -((-3919 (*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-1188)))) (-3918 (*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-1188))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3920 (((-1047) $) 11 T ELT)) (-3944 (((-771) $) 17 T ELT) (($ (-1093)) NIL T ELT) (((-1093) $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-1189) (-13 (-994) (-10 -8 (-15 -3920 ((-1047) $))))) (T -1189)) -((-3920 (*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-1189))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3187 (((-85) $) 59 T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3722 (($) NIL T CONST)) (-3465 (((-3 $ #1#) $) NIL T ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-2409 (((-85) $) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3944 (((-771) $) 82 T ELT) (($ (-483)) NIL T ELT) (($ |#4|) 66 T ELT) ((|#4| $) 71 T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT)) (-3125 (((-693)) NIL T CONST)) (-3921 (((-1183) (-693)) 16 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3124 (((-85) $ $) NIL T ELT)) (-2659 (($) 36 T CONST)) (-2665 (($) 85 T CONST)) (-3055 (((-85) $ $) 88 T ELT)) (-3947 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-3835 (($ $) 90 T ELT) (($ $ $) NIL T ELT)) (-3837 (($ $ $) 64 T ELT)) (** (($ $ (-829)) NIL T ELT) (($ $ (-693)) NIL T ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) 92 T ELT) (($ |#1| $) NIL (|has| |#1| (-146)) ELT) (($ $ |#1|) NIL (|has| |#1| (-146)) ELT))) -(((-1190 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-960) (-428 |#4|) (-10 -8 (IF (|has| |#1| (-146)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-312)) (-15 -3947 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3921 ((-1183) (-693))))) (-960) (-755) (-716) (-860 |#1| |#3| |#2|) (-582 |#2|) (-582 (-693)) (-693)) (T -1190)) -((-3947 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-312)) (-4 *2 (-960)) (-4 *3 (-755)) (-4 *4 (-716)) (-14 *6 (-582 *3)) (-5 *1 (-1190 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-860 *2 *4 *3)) (-14 *7 (-582 (-693))) (-14 *8 (-693)))) (-3921 (*1 *2 *3) (-12 (-5 *3 (-693)) (-4 *4 (-960)) (-4 *5 (-755)) (-4 *6 (-716)) (-14 *8 (-582 *5)) (-5 *2 (-1183)) (-5 *1 (-1190 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-860 *4 *6 *5)) (-14 *9 (-582 *3)) (-14 *10 *3)))) -((-2567 (((-85) $ $) NIL T ELT)) (-3679 (((-582 (-2 (|:| -3859 $) (|:| -1700 (-582 |#4|)))) (-582 |#4|)) NIL T ELT)) (-3680 (((-582 $) (-582 |#4|)) 95 T ELT)) (-3080 (((-582 |#3|) $) NIL T ELT)) (-2907 (((-85) $) NIL T ELT)) (-2898 (((-85) $) NIL (|has| |#1| (-494)) ELT)) (-3691 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3686 ((|#4| |#4| $) NIL T ELT)) (-2908 (((-2 (|:| |under| $) (|:| -3129 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3708 (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3993)) ELT) (((-3 |#4| #1="failed") $ |#3|) NIL T ELT)) (-3722 (($) NIL T CONST)) (-2903 (((-85) $) NIL (|has| |#1| (-494)) ELT)) (-2905 (((-85) $ $) NIL (|has| |#1| (-494)) ELT)) (-2904 (((-85) $ $) NIL (|has| |#1| (-494)) ELT)) (-2906 (((-85) $) NIL (|has| |#1| (-494)) ELT)) (-3687 (((-582 |#4|) (-582 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 31 T ELT)) (-2899 (((-582 |#4|) (-582 |#4|) $) 28 (|has| |#1| (-494)) ELT)) (-2900 (((-582 |#4|) (-582 |#4|) $) NIL (|has| |#1| (-494)) ELT)) (-3156 (((-3 $ #1#) (-582 |#4|)) NIL T ELT)) (-3155 (($ (-582 |#4|)) NIL T ELT)) (-3797 (((-3 $ #1#) $) 77 T ELT)) (-3683 ((|#4| |#4| $) 82 T ELT)) (-1351 (($ $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#4| (-1012))) ELT)) (-3404 (($ |#4| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#4| (-1012))) ELT) (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3993)) ELT)) (-2901 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-494)) ELT)) (-3692 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3681 ((|#4| |#4| $) NIL T ELT)) (-3840 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -3993)) (|has| |#4| (-1012))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -3993)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -3993)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3694 (((-2 (|:| -3859 (-582 |#4|)) (|:| -1700 (-582 |#4|))) $) NIL T ELT)) (-2888 (((-582 |#4|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3693 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3179 ((|#3| $) 83 T ELT)) (-2607 (((-582 |#4|) $) 32 (|has| $ (-6 -3993)) ELT)) (-3244 (((-85) |#4| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#4| (-1012))) ELT)) (-3924 (((-3 $ #1#) (-582 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|)) 35 T ELT) (((-3 $ #1#) (-582 |#4|)) 38 T ELT)) (-1947 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3956 (($ (-1 |#4| |#4|) $) NIL T ELT)) (-2913 (((-582 |#3|) $) NIL T ELT)) (-2912 (((-85) |#3| $) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3796 (((-3 |#4| #1#) $) NIL T ELT)) (-3695 (((-582 |#4|) $) 53 T ELT)) (-3689 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3684 ((|#4| |#4| $) 81 T ELT)) (-3697 (((-85) $ $) 92 T ELT)) (-2902 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-494)) ELT)) (-3690 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3685 ((|#4| |#4| $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3799 (((-3 |#4| #1#) $) 76 T ELT)) (-1352 (((-3 |#4| #1#) (-1 (-85) |#4|) $) NIL T ELT)) (-3677 (((-3 $ #1#) $ |#4|) NIL T ELT)) (-3767 (($ $ |#4|) NIL T ELT)) (-1945 (((-85) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3766 (($ $ (-582 |#4|) (-582 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1012))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1012))) ELT) (($ $ (-249 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1012))) ELT) (($ $ (-582 (-249 |#4|))) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1012))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-3401 (((-85) $) 74 T ELT)) (-3563 (($) 45 T ELT)) (-3946 (((-693) $) NIL T ELT)) (-1944 (((-693) |#4| $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#4| (-1012))) ELT) (((-693) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3398 (($ $) NIL T ELT)) (-3970 (((-472) $) NIL (|has| |#4| (-552 (-472))) ELT)) (-3528 (($ (-582 |#4|)) NIL T ELT)) (-2909 (($ $ |#3|) NIL T ELT)) (-2911 (($ $ |#3|) NIL T ELT)) (-3682 (($ $) NIL T ELT)) (-2910 (($ $ |#3|) NIL T ELT)) (-3944 (((-771) $) NIL T ELT) (((-582 |#4|) $) 62 T ELT)) (-3676 (((-693) $) NIL (|has| |#3| (-318)) ELT)) (-3923 (((-3 $ #1#) (-582 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|)) 43 T ELT) (((-3 $ #1#) (-582 |#4|)) 44 T ELT)) (-3922 (((-582 $) (-582 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|)) 72 T ELT) (((-582 $) (-582 |#4|)) 73 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3696 (((-3 (-2 (|:| |bas| $) (|:| -3322 (-582 |#4|))) #1#) (-582 |#4|) (-1 (-85) |#4| |#4|)) 27 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3322 (-582 |#4|))) #1#) (-582 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3688 (((-85) $ (-1 (-85) |#4| (-582 |#4|))) NIL T ELT)) (-1946 (((-85) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3678 (((-582 |#3|) $) NIL T ELT)) (-3931 (((-85) |#3| $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-3955 (((-693) $) NIL (|has| $ (-6 -3993)) ELT))) -(((-1191 |#1| |#2| |#3| |#4|) (-13 (-1122 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3924 ((-3 $ #1="failed") (-582 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3924 ((-3 $ #1#) (-582 |#4|))) (-15 -3923 ((-3 $ #1#) (-582 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3923 ((-3 $ #1#) (-582 |#4|))) (-15 -3922 ((-582 $) (-582 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3922 ((-582 $) (-582 |#4|))))) (-494) (-716) (-755) (-976 |#1| |#2| |#3|)) (T -1191)) -((-3924 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-582 *8)) (-5 *3 (-1 (-85) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-976 *5 *6 *7)) (-4 *5 (-494)) (-4 *6 (-716)) (-4 *7 (-755)) (-5 *1 (-1191 *5 *6 *7 *8)))) (-3924 (*1 *1 *2) (|partial| -12 (-5 *2 (-582 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-494)) (-4 *4 (-716)) (-4 *5 (-755)) (-5 *1 (-1191 *3 *4 *5 *6)))) (-3923 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-582 *8)) (-5 *3 (-1 (-85) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-976 *5 *6 *7)) (-4 *5 (-494)) (-4 *6 (-716)) (-4 *7 (-755)) (-5 *1 (-1191 *5 *6 *7 *8)))) (-3923 (*1 *1 *2) (|partial| -12 (-5 *2 (-582 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-494)) (-4 *4 (-716)) (-4 *5 (-755)) (-5 *1 (-1191 *3 *4 *5 *6)))) (-3922 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-582 *9)) (-5 *4 (-1 (-85) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-976 *6 *7 *8)) (-4 *6 (-494)) (-4 *7 (-716)) (-4 *8 (-755)) (-5 *2 (-582 (-1191 *6 *7 *8 *9))) (-5 *1 (-1191 *6 *7 *8 *9)))) (-3922 (*1 *2 *3) (-12 (-5 *3 (-582 *7)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-494)) (-4 *5 (-716)) (-4 *6 (-755)) (-5 *2 (-582 (-1191 *4 *5 *6 *7))) (-5 *1 (-1191 *4 *5 *6 *7))))) -((-2567 (((-85) $ $) 7 T ELT)) (-3187 (((-85) $) 22 T ELT)) (-1310 (((-3 $ "failed") $ $) 26 T ELT)) (-3722 (($) 23 T CONST)) (-3465 (((-3 $ "failed") $) 42 T ELT)) (-1212 (((-85) $ $) 20 T ELT)) (-2409 (((-85) $) 44 T ELT)) (-3241 (((-1071) $) 11 T ELT)) (-3242 (((-1032) $) 12 T ELT)) (-3944 (((-771) $) 13 T ELT) (($ (-483)) 41 T ELT) (($ |#1|) 53 T ELT)) (-3125 (((-693)) 40 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-3124 (((-85) $ $) 33 T ELT)) (-2659 (($) 24 T CONST)) (-2665 (($) 45 T CONST)) (-3055 (((-85) $ $) 8 T ELT)) (-3835 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3837 (($ $ $) 18 T ELT)) (** (($ $ (-829)) 35 T ELT) (($ $ (-693)) 43 T ELT)) (* (($ (-829) $) 17 T ELT) (($ (-693) $) 21 T ELT) (($ (-483) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 55 T ELT) (($ |#1| $) 54 T ELT))) -(((-1192 |#1|) (-113) (-960)) (T -1192)) -NIL -(-13 (-960) (-82 |t#1| |t#1|) (-554 |t#1|) (-10 -7 (IF (|has| |t#1| (-146)) (-6 (-38 |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-146)) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-554 (-483)) . T) ((-554 |#1|) . T) ((-551 (-771)) . T) ((-13) . T) ((-587 (-483)) . T) ((-587 |#1|) . T) ((-587 $) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-581 |#1|) |has| |#1| (-146)) ((-653 |#1|) |has| |#1| (-146)) ((-662) . T) ((-962 |#1|) . T) ((-967 |#1|) . T) ((-960) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T)) -((-2567 (((-85) $ $) 69 T ELT)) (-3187 (((-85) $) NIL T ELT)) (-3932 (((-582 |#1|) $) 54 T ELT)) (-3945 (($ $ (-693)) 47 T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3933 (($ $ (-693)) 25 (|has| |#2| (-146)) ELT) (($ $ $) 26 (|has| |#2| (-146)) ELT)) (-3722 (($) NIL T CONST)) (-3937 (($ $ $) 72 T ELT) (($ $ (-738 |#1|)) 58 T ELT) (($ $ |#1|) 62 T ELT)) (-3156 (((-3 (-738 |#1|) #1#) $) NIL T ELT)) (-3155 (((-738 |#1|) $) NIL T ELT)) (-3957 (($ $) 40 T ELT)) (-3465 (((-3 $ #1#) $) NIL T ELT)) (-3949 (((-85) $) NIL T ELT)) (-3948 (($ $) NIL T ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-2409 (((-85) $) NIL T ELT)) (-2419 (((-693) $) NIL T ELT)) (-2820 (((-582 $) $) NIL T ELT)) (-3935 (((-85) $) NIL T ELT)) (-3936 (($ (-738 |#1|) |#2|) 39 T ELT)) (-3934 (($ $) 41 T ELT)) (-3939 (((-2 (|:| |k| (-738 |#1|)) (|:| |c| |#2|)) $) 13 T ELT)) (-3953 (((-738 |#1|) $) NIL T ELT)) (-3954 (((-738 |#1|) $) 42 T ELT)) (-3956 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3938 (($ $ $) 71 T ELT) (($ $ (-738 |#1|)) 60 T ELT) (($ $ |#1|) 64 T ELT)) (-1747 (((-2 (|:| |k| (-738 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-2893 (((-738 |#1|) $) 36 T ELT)) (-3173 ((|#2| $) 38 T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3946 (((-693) $) 44 T ELT)) (-3951 (((-85) $) 48 T ELT)) (-3950 ((|#2| $) NIL T ELT)) (-3944 (((-771) $) NIL T ELT) (($ (-738 |#1|)) 31 T ELT) (($ |#1|) 32 T ELT) (($ |#2|) NIL T ELT) (($ (-483)) NIL T ELT)) (-3815 (((-582 |#2|) $) NIL T ELT)) (-3675 ((|#2| $ (-738 |#1|)) NIL T ELT)) (-3952 ((|#2| $ $) 78 T ELT) ((|#2| $ (-738 |#1|)) NIL T ELT)) (-3125 (((-693)) NIL T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-3124 (((-85) $ $) NIL T ELT)) (-2659 (($) 14 T CONST)) (-2665 (($) 20 T CONST)) (-2664 (((-582 (-2 (|:| |k| (-738 |#1|)) (|:| |c| |#2|))) $) NIL T ELT)) (-3055 (((-85) $ $) 45 T ELT)) (-3835 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3837 (($ $ $) 29 T ELT)) (** (($ $ (-693)) NIL T ELT) (($ $ (-829)) NIL T ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ |#2| $) 28 T ELT) (($ $ |#2|) 70 T ELT) (($ |#2| (-738 |#1|)) NIL T ELT) (($ |#1| $) 34 T ELT) (($ $ $) NIL T ELT))) -(((-1193 |#1| |#2|) (-13 (-333 |#2| (-738 |#1|)) (-1200 |#1| |#2|)) (-755) (-960)) (T -1193)) -NIL -((-3940 ((|#3| |#3| (-693)) 28 T ELT)) (-3941 ((|#3| |#3| (-693)) 34 T ELT)) (-3925 ((|#3| |#3| |#3| (-693)) 35 T ELT))) -(((-1194 |#1| |#2| |#3|) (-10 -7 (-15 -3941 (|#3| |#3| (-693))) (-15 -3940 (|#3| |#3| (-693))) (-15 -3925 (|#3| |#3| |#3| (-693)))) (-13 (-960) (-653 (-348 (-483)))) (-755) (-1200 |#2| |#1|)) (T -1194)) -((-3925 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-693)) (-4 *4 (-13 (-960) (-653 (-348 (-483))))) (-4 *5 (-755)) (-5 *1 (-1194 *4 *5 *2)) (-4 *2 (-1200 *5 *4)))) (-3940 (*1 *2 *2 *3) (-12 (-5 *3 (-693)) (-4 *4 (-13 (-960) (-653 (-348 (-483))))) (-4 *5 (-755)) (-5 *1 (-1194 *4 *5 *2)) (-4 *2 (-1200 *5 *4)))) (-3941 (*1 *2 *2 *3) (-12 (-5 *3 (-693)) (-4 *4 (-13 (-960) (-653 (-348 (-483))))) (-4 *5 (-755)) (-5 *1 (-1194 *4 *5 *2)) (-4 *2 (-1200 *5 *4))))) -((-3930 (((-85) $) 15 T ELT)) (-3931 (((-85) $) 14 T ELT)) (-3926 (($ $) 19 T ELT) (($ $ (-693)) 21 T ELT))) -(((-1195 |#1| |#2|) (-10 -7 (-15 -3926 (|#1| |#1| (-693))) (-15 -3926 (|#1| |#1|)) (-15 -3930 ((-85) |#1|)) (-15 -3931 ((-85) |#1|))) (-1196 |#2|) (-312)) (T -1195)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-3187 (((-85) $) 22 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3980 $) (|:| |associate| $)) $) 55 T ELT)) (-2062 (($ $) 54 T ELT)) (-2060 (((-85) $) 52 T ELT)) (-3930 (((-85) $) 114 T ELT)) (-3927 (((-693)) 110 T ELT)) (-1310 (((-3 $ "failed") $ $) 26 T ELT)) (-3773 (($ $) 91 T ELT)) (-3969 (((-346 $) $) 90 T ELT)) (-1606 (((-85) $ $) 75 T ELT)) (-3722 (($) 23 T CONST)) (-3156 (((-3 |#1| "failed") $) 121 T ELT)) (-3155 ((|#1| $) 122 T ELT)) (-2563 (($ $ $) 71 T ELT)) (-3465 (((-3 $ "failed") $) 42 T ELT)) (-2562 (($ $ $) 72 T ELT)) (-2740 (((-2 (|:| -3952 (-582 $)) (|:| -2408 $)) (-582 $)) 66 T ELT)) (-1762 (($ $ (-693)) 107 (OR (|has| |#1| (-118)) (|has| |#1| (-318))) ELT) (($ $) 106 (OR (|has| |#1| (-118)) (|has| |#1| (-318))) ELT)) (-3721 (((-85) $) 89 T ELT)) (-3770 (((-742 (-829)) $) 104 (OR (|has| |#1| (-118)) (|has| |#1| (-318))) ELT)) (-1212 (((-85) $ $) 20 T ELT)) (-2409 (((-85) $) 44 T ELT)) (-1603 (((-3 (-582 $) #1="failed") (-582 $) $) 68 T ELT)) (-1889 (($ $ $) 60 T ELT) (($ (-582 $)) 59 T ELT)) (-3241 (((-1071) $) 11 T ELT)) (-2483 (($ $) 88 T ELT)) (-3929 (((-85) $) 113 T ELT)) (-3242 (((-1032) $) 12 T ELT)) (-2707 (((-1083 $) (-1083 $) (-1083 $)) 58 T ELT)) (-3143 (($ $ $) 62 T ELT) (($ (-582 $)) 61 T ELT)) (-3730 (((-346 $) $) 92 T ELT)) (-3928 (((-742 (-829))) 111 T ELT)) (-1604 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 69 T ELT)) (-3464 (((-3 $ "failed") $ $) 56 T ELT)) (-2739 (((-631 (-582 $)) (-582 $) $) 65 T ELT)) (-1605 (((-693) $) 74 T ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) 73 T ELT)) (-1763 (((-3 (-693) "failed") $ $) 105 (OR (|has| |#1| (-118)) (|has| |#1| (-318))) ELT)) (-3909 (((-107)) 119 T ELT)) (-3946 (((-742 (-829)) $) 112 T ELT)) (-3944 (((-771) $) 13 T ELT) (($ (-483)) 41 T ELT) (($ $) 57 T ELT) (($ (-348 (-483))) 84 T ELT) (($ |#1|) 120 T ELT)) (-2701 (((-631 $) $) 103 (OR (|has| |#1| (-118)) (|has| |#1| (-318))) ELT)) (-3125 (((-693)) 40 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-2061 (((-85) $ $) 53 T ELT)) (-3124 (((-85) $ $) 33 T ELT)) (-3931 (((-85) $) 115 T ELT)) (-2659 (($) 24 T CONST)) (-2665 (($) 45 T CONST)) (-3926 (($ $) 109 (|has| |#1| (-318)) ELT) (($ $ (-693)) 108 (|has| |#1| (-318)) ELT)) (-3055 (((-85) $ $) 8 T ELT)) (-3947 (($ $ $) 83 T ELT) (($ $ |#1|) 118 T ELT)) (-3835 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3837 (($ $ $) 18 T ELT)) (** (($ $ (-829)) 35 T ELT) (($ $ (-693)) 43 T ELT) (($ $ (-483)) 87 T ELT)) (* (($ (-829) $) 17 T ELT) (($ (-693) $) 21 T ELT) (($ (-483) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-348 (-483))) 86 T ELT) (($ (-348 (-483)) $) 85 T ELT) (($ $ |#1|) 117 T ELT) (($ |#1| $) 116 T ELT))) -(((-1196 |#1|) (-113) (-312)) (T -1196)) -((-3931 (*1 *2 *1) (-12 (-4 *1 (-1196 *3)) (-4 *3 (-312)) (-5 *2 (-85)))) (-3930 (*1 *2 *1) (-12 (-4 *1 (-1196 *3)) (-4 *3 (-312)) (-5 *2 (-85)))) (-3929 (*1 *2 *1) (-12 (-4 *1 (-1196 *3)) (-4 *3 (-312)) (-5 *2 (-85)))) (-3946 (*1 *2 *1) (-12 (-4 *1 (-1196 *3)) (-4 *3 (-312)) (-5 *2 (-742 (-829))))) (-3928 (*1 *2) (-12 (-4 *1 (-1196 *3)) (-4 *3 (-312)) (-5 *2 (-742 (-829))))) (-3927 (*1 *2) (-12 (-4 *1 (-1196 *3)) (-4 *3 (-312)) (-5 *2 (-693)))) (-3926 (*1 *1 *1) (-12 (-4 *1 (-1196 *2)) (-4 *2 (-312)) (-4 *2 (-318)))) (-3926 (*1 *1 *1 *2) (-12 (-5 *2 (-693)) (-4 *1 (-1196 *3)) (-4 *3 (-312)) (-4 *3 (-318))))) -(-13 (-312) (-949 |t#1|) (-1185 |t#1|) (-10 -8 (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-343)) |%noBranch|) (-15 -3931 ((-85) $)) (-15 -3930 ((-85) $)) (-15 -3929 ((-85) $)) (-15 -3946 ((-742 (-829)) $)) (-15 -3928 ((-742 (-829)))) (-15 -3927 ((-693))) (IF (|has| |t#1| (-318)) (PROGN (-6 (-343)) (-15 -3926 ($ $)) (-15 -3926 ($ $ (-693)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-348 (-483))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-348 (-483)) (-348 (-483))) . T) ((-82 |#1| |#1|) . T) ((-82 $ $) . T) ((-104) . T) ((-118) OR (|has| |#1| (-318)) (|has| |#1| (-118))) ((-120) |has| |#1| (-120)) ((-554 (-348 (-483))) . T) ((-554 (-483)) . T) ((-554 |#1|) . T) ((-554 $) . T) ((-551 (-771)) . T) ((-146) . T) ((-201) . T) ((-246) . T) ((-258) . T) ((-312) . T) ((-343) OR (|has| |#1| (-318)) (|has| |#1| (-118))) ((-390) . T) ((-494) . T) ((-13) . T) ((-587 (-348 (-483))) . T) ((-587 (-483)) . T) ((-587 |#1|) . T) ((-587 $) . T) ((-589 (-348 (-483))) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-581 (-348 (-483))) . T) ((-581 |#1|) . T) ((-581 $) . T) ((-653 (-348 (-483))) . T) ((-653 |#1|) . T) ((-653 $) . T) ((-662) . T) ((-831) . T) ((-949 |#1|) . T) ((-962 (-348 (-483))) . T) ((-962 |#1|) . T) ((-962 $) . T) ((-967 (-348 (-483))) . T) ((-967 |#1|) . T) ((-967 $) . T) ((-960) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T) ((-1132) . T) ((-1185 |#1|) . T)) -((-2567 (((-85) $ $) 7 T ELT)) (-3187 (((-85) $) 22 T ELT)) (-3932 (((-582 |#1|) $) 55 T ELT)) (-1310 (((-3 $ "failed") $ $) 26 T ELT)) (-3933 (($ $ $) 58 (|has| |#2| (-146)) ELT) (($ $ (-693)) 57 (|has| |#2| (-146)) ELT)) (-3722 (($) 23 T CONST)) (-3937 (($ $ |#1|) 69 T ELT) (($ $ (-738 |#1|)) 68 T ELT) (($ $ $) 67 T ELT)) (-3156 (((-3 (-738 |#1|) "failed") $) 79 T ELT)) (-3155 (((-738 |#1|) $) 80 T ELT)) (-3465 (((-3 $ "failed") $) 42 T ELT)) (-3949 (((-85) $) 60 T ELT)) (-3948 (($ $) 59 T ELT)) (-1212 (((-85) $ $) 20 T ELT)) (-2409 (((-85) $) 44 T ELT)) (-3935 (((-85) $) 65 T ELT)) (-3936 (($ (-738 |#1|) |#2|) 66 T ELT)) (-3934 (($ $) 64 T ELT)) (-3939 (((-2 (|:| |k| (-738 |#1|)) (|:| |c| |#2|)) $) 75 T ELT)) (-3953 (((-738 |#1|) $) 76 T ELT)) (-3956 (($ (-1 |#2| |#2|) $) 56 T ELT)) (-3938 (($ $ |#1|) 72 T ELT) (($ $ (-738 |#1|)) 71 T ELT) (($ $ $) 70 T ELT)) (-3241 (((-1071) $) 11 T ELT)) (-3242 (((-1032) $) 12 T ELT)) (-3951 (((-85) $) 62 T ELT)) (-3950 ((|#2| $) 61 T ELT)) (-3944 (((-771) $) 13 T ELT) (($ (-483)) 41 T ELT) (($ |#2|) 83 T ELT) (($ (-738 |#1|)) 78 T ELT) (($ |#1|) 63 T ELT)) (-3952 ((|#2| $ (-738 |#1|)) 74 T ELT) ((|#2| $ $) 73 T ELT)) (-3125 (((-693)) 40 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-3124 (((-85) $ $) 33 T ELT)) (-2659 (($) 24 T CONST)) (-2665 (($) 45 T CONST)) (-3055 (((-85) $ $) 8 T ELT)) (-3835 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3837 (($ $ $) 18 T ELT)) (** (($ $ (-829)) 35 T ELT) (($ $ (-693)) 43 T ELT)) (* (($ (-829) $) 17 T ELT) (($ (-693) $) 21 T ELT) (($ (-483) $) 30 T ELT) (($ $ $) 34 T ELT) (($ |#2| $) 82 T ELT) (($ $ |#2|) 81 T ELT) (($ |#1| $) 77 T ELT))) -(((-1197 |#1| |#2|) (-113) (-755) (-960)) (T -1197)) -((* (*1 *1 *1 *2) (-12 (-4 *1 (-1197 *3 *2)) (-4 *3 (-755)) (-4 *2 (-960)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1197 *2 *3)) (-4 *2 (-755)) (-4 *3 (-960)))) (-3953 (*1 *2 *1) (-12 (-4 *1 (-1197 *3 *4)) (-4 *3 (-755)) (-4 *4 (-960)) (-5 *2 (-738 *3)))) (-3939 (*1 *2 *1) (-12 (-4 *1 (-1197 *3 *4)) (-4 *3 (-755)) (-4 *4 (-960)) (-5 *2 (-2 (|:| |k| (-738 *3)) (|:| |c| *4))))) (-3952 (*1 *2 *1 *3) (-12 (-5 *3 (-738 *4)) (-4 *1 (-1197 *4 *2)) (-4 *4 (-755)) (-4 *2 (-960)))) (-3952 (*1 *2 *1 *1) (-12 (-4 *1 (-1197 *3 *2)) (-4 *3 (-755)) (-4 *2 (-960)))) (-3938 (*1 *1 *1 *2) (-12 (-4 *1 (-1197 *2 *3)) (-4 *2 (-755)) (-4 *3 (-960)))) (-3938 (*1 *1 *1 *2) (-12 (-5 *2 (-738 *3)) (-4 *1 (-1197 *3 *4)) (-4 *3 (-755)) (-4 *4 (-960)))) (-3938 (*1 *1 *1 *1) (-12 (-4 *1 (-1197 *2 *3)) (-4 *2 (-755)) (-4 *3 (-960)))) (-3937 (*1 *1 *1 *2) (-12 (-4 *1 (-1197 *2 *3)) (-4 *2 (-755)) (-4 *3 (-960)))) (-3937 (*1 *1 *1 *2) (-12 (-5 *2 (-738 *3)) (-4 *1 (-1197 *3 *4)) (-4 *3 (-755)) (-4 *4 (-960)))) (-3937 (*1 *1 *1 *1) (-12 (-4 *1 (-1197 *2 *3)) (-4 *2 (-755)) (-4 *3 (-960)))) (-3936 (*1 *1 *2 *3) (-12 (-5 *2 (-738 *4)) (-4 *4 (-755)) (-4 *1 (-1197 *4 *3)) (-4 *3 (-960)))) (-3935 (*1 *2 *1) (-12 (-4 *1 (-1197 *3 *4)) (-4 *3 (-755)) (-4 *4 (-960)) (-5 *2 (-85)))) (-3934 (*1 *1 *1) (-12 (-4 *1 (-1197 *2 *3)) (-4 *2 (-755)) (-4 *3 (-960)))) (-3944 (*1 *1 *2) (-12 (-4 *1 (-1197 *2 *3)) (-4 *2 (-755)) (-4 *3 (-960)))) (-3951 (*1 *2 *1) (-12 (-4 *1 (-1197 *3 *4)) (-4 *3 (-755)) (-4 *4 (-960)) (-5 *2 (-85)))) (-3950 (*1 *2 *1) (-12 (-4 *1 (-1197 *3 *2)) (-4 *3 (-755)) (-4 *2 (-960)))) (-3949 (*1 *2 *1) (-12 (-4 *1 (-1197 *3 *4)) (-4 *3 (-755)) (-4 *4 (-960)) (-5 *2 (-85)))) (-3948 (*1 *1 *1) (-12 (-4 *1 (-1197 *2 *3)) (-4 *2 (-755)) (-4 *3 (-960)))) (-3933 (*1 *1 *1 *1) (-12 (-4 *1 (-1197 *2 *3)) (-4 *2 (-755)) (-4 *3 (-960)) (-4 *3 (-146)))) (-3933 (*1 *1 *1 *2) (-12 (-5 *2 (-693)) (-4 *1 (-1197 *3 *4)) (-4 *3 (-755)) (-4 *4 (-960)) (-4 *4 (-146)))) (-3956 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1197 *3 *4)) (-4 *3 (-755)) (-4 *4 (-960)))) (-3932 (*1 *2 *1) (-12 (-4 *1 (-1197 *3 *4)) (-4 *3 (-755)) (-4 *4 (-960)) (-5 *2 (-582 *3))))) -(-13 (-960) (-1192 |t#2|) (-949 (-738 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -3953 ((-738 |t#1|) $)) (-15 -3939 ((-2 (|:| |k| (-738 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -3952 (|t#2| $ (-738 |t#1|))) (-15 -3952 (|t#2| $ $)) (-15 -3938 ($ $ |t#1|)) (-15 -3938 ($ $ (-738 |t#1|))) (-15 -3938 ($ $ $)) (-15 -3937 ($ $ |t#1|)) (-15 -3937 ($ $ (-738 |t#1|))) (-15 -3937 ($ $ $)) (-15 -3936 ($ (-738 |t#1|) |t#2|)) (-15 -3935 ((-85) $)) (-15 -3934 ($ $)) (-15 -3944 ($ |t#1|)) (-15 -3951 ((-85) $)) (-15 -3950 (|t#2| $)) (-15 -3949 ((-85) $)) (-15 -3948 ($ $)) (IF (|has| |t#2| (-146)) (PROGN (-15 -3933 ($ $ $)) (-15 -3933 ($ $ (-693)))) |%noBranch|) (-15 -3956 ($ (-1 |t#2| |t#2|) $)) (-15 -3932 ((-582 |t#1|) $)) (IF (|has| |t#2| (-6 -3986)) (-6 -3986) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-146)) ((-72) . T) ((-82 |#2| |#2|) . T) ((-104) . T) ((-554 (-483)) . T) ((-554 (-738 |#1|)) . T) ((-554 |#2|) . T) ((-551 (-771)) . T) ((-13) . T) ((-587 (-483)) . T) ((-587 |#2|) . T) ((-587 $) . T) ((-589 |#2|) . T) ((-589 $) . T) ((-581 |#2|) |has| |#2| (-146)) ((-653 |#2|) |has| |#2| (-146)) ((-662) . T) ((-949 (-738 |#1|)) . T) ((-962 |#2|) . T) ((-967 |#2|) . T) ((-960) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T) ((-1192 |#2|) . T)) -((-2567 (((-85) $ $) NIL T ELT)) (-3187 (((-85) $) NIL T ELT)) (-3932 (((-582 |#1|) $) 99 T ELT)) (-3945 (($ $ (-693)) 103 T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3933 (($ $ $) NIL (|has| |#2| (-146)) ELT) (($ $ (-693)) NIL (|has| |#2| (-146)) ELT)) (-3722 (($) NIL T CONST)) (-3937 (($ $ |#1|) NIL T ELT) (($ $ (-738 |#1|)) NIL T ELT) (($ $ $) NIL T ELT)) (-3156 (((-3 (-738 |#1|) #1#) $) NIL T ELT) (((-3 (-802 |#1|) #1#) $) NIL T ELT)) (-3155 (((-738 |#1|) $) NIL T ELT) (((-802 |#1|) $) NIL T ELT)) (-3957 (($ $) 102 T ELT)) (-3465 (((-3 $ #1#) $) NIL T ELT)) (-3949 (((-85) $) 90 T ELT)) (-3948 (($ $) 93 T ELT)) (-3942 (($ $ $ (-693)) 104 T ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-2409 (((-85) $) NIL T ELT)) (-2419 (((-693) $) NIL T ELT)) (-2820 (((-582 $) $) NIL T ELT)) (-3935 (((-85) $) NIL T ELT)) (-3936 (($ (-738 |#1|) |#2|) NIL T ELT) (($ (-802 |#1|) |#2|) 28 T ELT)) (-3934 (($ $) 120 T ELT)) (-3939 (((-2 (|:| |k| (-738 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-3953 (((-738 |#1|) $) NIL T ELT)) (-3954 (((-738 |#1|) $) NIL T ELT)) (-3956 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3938 (($ $ |#1|) NIL T ELT) (($ $ (-738 |#1|)) NIL T ELT) (($ $ $) NIL T ELT)) (-3940 (($ $ (-693)) 113 (|has| |#2| (-653 (-348 (-483)))) ELT)) (-1747 (((-2 (|:| |k| (-802 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-2893 (((-802 |#1|) $) 84 T ELT)) (-3173 ((|#2| $) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3941 (($ $ (-693)) 110 (|has| |#2| (-653 (-348 (-483)))) ELT)) (-3946 (((-693) $) 100 T ELT)) (-3951 (((-85) $) 85 T ELT)) (-3950 ((|#2| $) 88 T ELT)) (-3944 (((-771) $) 70 T ELT) (($ (-483)) NIL T ELT) (($ |#2|) 59 T ELT) (($ (-738 |#1|)) NIL T ELT) (($ |#1|) 72 T ELT) (($ (-802 |#1|)) NIL T ELT) (($ (-605 |#1| |#2|)) 47 T ELT) (((-1193 |#1| |#2|) $) 77 T ELT) (((-1202 |#1| |#2|) $) 82 T ELT)) (-3815 (((-582 |#2|) $) NIL T ELT)) (-3675 ((|#2| $ (-802 |#1|)) NIL T ELT)) (-3952 ((|#2| $ (-738 |#1|)) NIL T ELT) ((|#2| $ $) NIL T ELT)) (-3125 (((-693)) NIL T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-3124 (((-85) $ $) NIL T ELT)) (-2659 (($) 21 T CONST)) (-2665 (($) 27 T CONST)) (-2664 (((-582 (-2 (|:| |k| (-802 |#1|)) (|:| |c| |#2|))) $) NIL T ELT)) (-3943 (((-3 (-605 |#1| |#2|) #1#) $) 119 T ELT)) (-3055 (((-85) $ $) 78 T ELT)) (-3835 (($ $) 112 T ELT) (($ $ $) 111 T ELT)) (-3837 (($ $ $) 20 T ELT)) (** (($ $ (-829)) NIL T ELT) (($ $ (-693)) NIL T ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) 48 T ELT) (($ |#2| $) 19 T ELT) (($ $ |#2|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ |#2| (-802 |#1|)) NIL T ELT))) -(((-1198 |#1| |#2|) (-13 (-1200 |#1| |#2|) (-333 |#2| (-802 |#1|)) (-10 -8 (-15 -3944 ($ (-605 |#1| |#2|))) (-15 -3944 ((-1193 |#1| |#2|) $)) (-15 -3944 ((-1202 |#1| |#2|) $)) (-15 -3943 ((-3 (-605 |#1| |#2|) "failed") $)) (-15 -3942 ($ $ $ (-693))) (IF (|has| |#2| (-653 (-348 (-483)))) (PROGN (-15 -3941 ($ $ (-693))) (-15 -3940 ($ $ (-693)))) |%noBranch|))) (-755) (-146)) (T -1198)) -((-3944 (*1 *1 *2) (-12 (-5 *2 (-605 *3 *4)) (-4 *3 (-755)) (-4 *4 (-146)) (-5 *1 (-1198 *3 *4)))) (-3944 (*1 *2 *1) (-12 (-5 *2 (-1193 *3 *4)) (-5 *1 (-1198 *3 *4)) (-4 *3 (-755)) (-4 *4 (-146)))) (-3944 (*1 *2 *1) (-12 (-5 *2 (-1202 *3 *4)) (-5 *1 (-1198 *3 *4)) (-4 *3 (-755)) (-4 *4 (-146)))) (-3943 (*1 *2 *1) (|partial| -12 (-5 *2 (-605 *3 *4)) (-5 *1 (-1198 *3 *4)) (-4 *3 (-755)) (-4 *4 (-146)))) (-3942 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-693)) (-5 *1 (-1198 *3 *4)) (-4 *3 (-755)) (-4 *4 (-146)))) (-3941 (*1 *1 *1 *2) (-12 (-5 *2 (-693)) (-5 *1 (-1198 *3 *4)) (-4 *4 (-653 (-348 (-483)))) (-4 *3 (-755)) (-4 *4 (-146)))) (-3940 (*1 *1 *1 *2) (-12 (-5 *2 (-693)) (-5 *1 (-1198 *3 *4)) (-4 *4 (-653 (-348 (-483)))) (-4 *3 (-755)) (-4 *4 (-146))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3187 (((-85) $) NIL T ELT)) (-3932 (((-582 (-1088)) $) NIL T ELT)) (-3960 (($ (-1193 (-1088) |#1|)) NIL T ELT)) (-3945 (($ $ (-693)) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3933 (($ $ $) NIL (|has| |#1| (-146)) ELT) (($ $ (-693)) NIL (|has| |#1| (-146)) ELT)) (-3722 (($) NIL T CONST)) (-3937 (($ $ (-1088)) NIL T ELT) (($ $ (-738 (-1088))) NIL T ELT) (($ $ $) NIL T ELT)) (-3156 (((-3 (-738 (-1088)) #1#) $) NIL T ELT)) (-3155 (((-738 (-1088)) $) NIL T ELT)) (-3465 (((-3 $ #1#) $) NIL T ELT)) (-3949 (((-85) $) NIL T ELT)) (-3948 (($ $) NIL T ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-2409 (((-85) $) NIL T ELT)) (-3935 (((-85) $) NIL T ELT)) (-3936 (($ (-738 (-1088)) |#1|) NIL T ELT)) (-3934 (($ $) NIL T ELT)) (-3939 (((-2 (|:| |k| (-738 (-1088))) (|:| |c| |#1|)) $) NIL T ELT)) (-3953 (((-738 (-1088)) $) NIL T ELT)) (-3954 (((-738 (-1088)) $) NIL T ELT)) (-3956 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3938 (($ $ (-1088)) NIL T ELT) (($ $ (-738 (-1088))) NIL T ELT) (($ $ $) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3961 (((-1193 (-1088) |#1|) $) NIL T ELT)) (-3946 (((-693) $) NIL T ELT)) (-3951 (((-85) $) NIL T ELT)) (-3950 ((|#1| $) NIL T ELT)) (-3944 (((-771) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-738 (-1088))) NIL T ELT) (($ (-1088)) NIL T ELT)) (-3952 ((|#1| $ (-738 (-1088))) NIL T ELT) ((|#1| $ $) NIL T ELT)) (-3125 (((-693)) NIL T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-3124 (((-85) $ $) NIL T ELT)) (-2659 (($) NIL T CONST)) (-3959 (((-582 (-2 (|:| |k| (-1088)) (|:| |c| $))) $) NIL T ELT)) (-2665 (($) NIL T CONST)) (-3055 (((-85) $ $) NIL T ELT)) (-3835 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3837 (($ $ $) NIL T ELT)) (** (($ $ (-829)) NIL T ELT) (($ $ (-693)) NIL T ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ (-1088) $) NIL T ELT))) -(((-1199 |#1|) (-13 (-1200 (-1088) |#1|) (-10 -8 (-15 -3961 ((-1193 (-1088) |#1|) $)) (-15 -3960 ($ (-1193 (-1088) |#1|))) (-15 -3959 ((-582 (-2 (|:| |k| (-1088)) (|:| |c| $))) $)))) (-960)) (T -1199)) -((-3961 (*1 *2 *1) (-12 (-5 *2 (-1193 (-1088) *3)) (-5 *1 (-1199 *3)) (-4 *3 (-960)))) (-3960 (*1 *1 *2) (-12 (-5 *2 (-1193 (-1088) *3)) (-4 *3 (-960)) (-5 *1 (-1199 *3)))) (-3959 (*1 *2 *1) (-12 (-5 *2 (-582 (-2 (|:| |k| (-1088)) (|:| |c| (-1199 *3))))) (-5 *1 (-1199 *3)) (-4 *3 (-960))))) -((-2567 (((-85) $ $) 7 T ELT)) (-3187 (((-85) $) 22 T ELT)) (-3932 (((-582 |#1|) $) 55 T ELT)) (-3945 (($ $ (-693)) 89 T ELT)) (-1310 (((-3 $ "failed") $ $) 26 T ELT)) (-3933 (($ $ $) 58 (|has| |#2| (-146)) ELT) (($ $ (-693)) 57 (|has| |#2| (-146)) ELT)) (-3722 (($) 23 T CONST)) (-3937 (($ $ |#1|) 69 T ELT) (($ $ (-738 |#1|)) 68 T ELT) (($ $ $) 67 T ELT)) (-3156 (((-3 (-738 |#1|) "failed") $) 79 T ELT)) (-3155 (((-738 |#1|) $) 80 T ELT)) (-3465 (((-3 $ "failed") $) 42 T ELT)) (-3949 (((-85) $) 60 T ELT)) (-3948 (($ $) 59 T ELT)) (-1212 (((-85) $ $) 20 T ELT)) (-2409 (((-85) $) 44 T ELT)) (-3935 (((-85) $) 65 T ELT)) (-3936 (($ (-738 |#1|) |#2|) 66 T ELT)) (-3934 (($ $) 64 T ELT)) (-3939 (((-2 (|:| |k| (-738 |#1|)) (|:| |c| |#2|)) $) 75 T ELT)) (-3953 (((-738 |#1|) $) 76 T ELT)) (-3954 (((-738 |#1|) $) 91 T ELT)) (-3956 (($ (-1 |#2| |#2|) $) 56 T ELT)) (-3938 (($ $ |#1|) 72 T ELT) (($ $ (-738 |#1|)) 71 T ELT) (($ $ $) 70 T ELT)) (-3241 (((-1071) $) 11 T ELT)) (-3242 (((-1032) $) 12 T ELT)) (-3946 (((-693) $) 90 T ELT)) (-3951 (((-85) $) 62 T ELT)) (-3950 ((|#2| $) 61 T ELT)) (-3944 (((-771) $) 13 T ELT) (($ (-483)) 41 T ELT) (($ |#2|) 83 T ELT) (($ (-738 |#1|)) 78 T ELT) (($ |#1|) 63 T ELT)) (-3952 ((|#2| $ (-738 |#1|)) 74 T ELT) ((|#2| $ $) 73 T ELT)) (-3125 (((-693)) 40 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-3124 (((-85) $ $) 33 T ELT)) (-2659 (($) 24 T CONST)) (-2665 (($) 45 T CONST)) (-3055 (((-85) $ $) 8 T ELT)) (-3835 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3837 (($ $ $) 18 T ELT)) (** (($ $ (-829)) 35 T ELT) (($ $ (-693)) 43 T ELT)) (* (($ (-829) $) 17 T ELT) (($ (-693) $) 21 T ELT) (($ (-483) $) 30 T ELT) (($ $ $) 34 T ELT) (($ |#2| $) 82 T ELT) (($ $ |#2|) 81 T ELT) (($ |#1| $) 77 T ELT))) -(((-1200 |#1| |#2|) (-113) (-755) (-960)) (T -1200)) -((-3954 (*1 *2 *1) (-12 (-4 *1 (-1200 *3 *4)) (-4 *3 (-755)) (-4 *4 (-960)) (-5 *2 (-738 *3)))) (-3946 (*1 *2 *1) (-12 (-4 *1 (-1200 *3 *4)) (-4 *3 (-755)) (-4 *4 (-960)) (-5 *2 (-693)))) (-3945 (*1 *1 *1 *2) (-12 (-5 *2 (-693)) (-4 *1 (-1200 *3 *4)) (-4 *3 (-755)) (-4 *4 (-960))))) -(-13 (-1197 |t#1| |t#2|) (-10 -8 (-15 -3954 ((-738 |t#1|) $)) (-15 -3946 ((-693) $)) (-15 -3945 ($ $ (-693))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-146)) ((-72) . T) ((-82 |#2| |#2|) . T) ((-104) . T) ((-554 (-483)) . T) ((-554 (-738 |#1|)) . T) ((-554 |#2|) . T) ((-551 (-771)) . T) ((-13) . T) ((-587 (-483)) . T) ((-587 |#2|) . T) ((-587 $) . T) ((-589 |#2|) . T) ((-589 $) . T) ((-581 |#2|) |has| |#2| (-146)) ((-653 |#2|) |has| |#2| (-146)) ((-662) . T) ((-949 (-738 |#1|)) . T) ((-962 |#2|) . T) ((-967 |#2|) . T) ((-960) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T) ((-1192 |#2|) . T) ((-1197 |#1| |#2|) . T)) -((-2567 (((-85) $ $) NIL T ELT)) (-3187 (((-85) $) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3722 (($) NIL T CONST)) (-3156 (((-3 |#2| #1#) $) NIL T ELT)) (-3155 ((|#2| $) NIL T ELT)) (-3957 (($ $) NIL T ELT)) (-3465 (((-3 $ #1#) $) 43 T ELT)) (-3949 (((-85) $) 37 T ELT)) (-3948 (($ $) 38 T ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-2409 (((-85) $) NIL T ELT)) (-2419 (((-693) $) NIL T ELT)) (-2820 (((-582 $) $) NIL T ELT)) (-3935 (((-85) $) NIL T ELT)) (-3936 (($ |#2| |#1|) NIL T ELT)) (-3953 ((|#2| $) 25 T ELT)) (-3954 ((|#2| $) 23 T ELT)) (-3956 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1747 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL T ELT)) (-2893 ((|#2| $) NIL T ELT)) (-3173 ((|#1| $) NIL T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3951 (((-85) $) 33 T ELT)) (-3950 ((|#1| $) 34 T ELT)) (-3944 (((-771) $) 66 T ELT) (($ (-483)) 47 T ELT) (($ |#1|) 42 T ELT) (($ |#2|) NIL T ELT)) (-3815 (((-582 |#1|) $) NIL T ELT)) (-3675 ((|#1| $ |#2|) NIL T ELT)) (-3952 ((|#1| $ |#2|) 29 T ELT)) (-3125 (((-693)) 14 T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-3124 (((-85) $ $) NIL T ELT)) (-2659 (($) 30 T CONST)) (-2665 (($) 11 T CONST)) (-2664 (((-582 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL T ELT)) (-3055 (((-85) $ $) 31 T ELT)) (-3947 (($ $ |#1|) 68 (|has| |#1| (-312)) ELT)) (-3835 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3837 (($ $ $) 51 T ELT)) (** (($ $ (-829)) NIL T ELT) (($ $ (-693)) 53 T ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) 52 T ELT) (($ |#1| $) 48 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| |#2|) NIL T ELT)) (-3955 (((-693) $) 18 T ELT))) -(((-1201 |#1| |#2|) (-13 (-960) (-1192 |#1|) (-333 |#1| |#2|) (-554 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -3955 ((-693) $)) (-15 -3954 (|#2| $)) (-15 -3953 (|#2| $)) (-15 -3957 ($ $)) (-15 -3952 (|#1| $ |#2|)) (-15 -3951 ((-85) $)) (-15 -3950 (|#1| $)) (-15 -3949 ((-85) $)) (-15 -3948 ($ $)) (-15 -3956 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-312)) (-15 -3947 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -3986)) (-6 -3986) |%noBranch|) (IF (|has| |#1| (-6 -3990)) (-6 -3990) |%noBranch|) (IF (|has| |#1| (-6 -3991)) (-6 -3991) |%noBranch|))) (-960) (-753)) (T -1201)) -((* (*1 *1 *1 *2) (-12 (-5 *1 (-1201 *2 *3)) (-4 *2 (-960)) (-4 *3 (-753)))) (-3957 (*1 *1 *1) (-12 (-5 *1 (-1201 *2 *3)) (-4 *2 (-960)) (-4 *3 (-753)))) (-3956 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-960)) (-5 *1 (-1201 *3 *4)) (-4 *4 (-753)))) (-3955 (*1 *2 *1) (-12 (-5 *2 (-693)) (-5 *1 (-1201 *3 *4)) (-4 *3 (-960)) (-4 *4 (-753)))) (-3954 (*1 *2 *1) (-12 (-4 *2 (-753)) (-5 *1 (-1201 *3 *2)) (-4 *3 (-960)))) (-3953 (*1 *2 *1) (-12 (-4 *2 (-753)) (-5 *1 (-1201 *3 *2)) (-4 *3 (-960)))) (-3952 (*1 *2 *1 *3) (-12 (-4 *2 (-960)) (-5 *1 (-1201 *2 *3)) (-4 *3 (-753)))) (-3951 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1201 *3 *4)) (-4 *3 (-960)) (-4 *4 (-753)))) (-3950 (*1 *2 *1) (-12 (-4 *2 (-960)) (-5 *1 (-1201 *2 *3)) (-4 *3 (-753)))) (-3949 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1201 *3 *4)) (-4 *3 (-960)) (-4 *4 (-753)))) (-3948 (*1 *1 *1) (-12 (-5 *1 (-1201 *2 *3)) (-4 *2 (-960)) (-4 *3 (-753)))) (-3947 (*1 *1 *1 *2) (-12 (-5 *1 (-1201 *2 *3)) (-4 *2 (-312)) (-4 *2 (-960)) (-4 *3 (-753))))) -((-2567 (((-85) $ $) 27 T ELT)) (-3187 (((-85) $) NIL T ELT)) (-3932 (((-582 |#1|) $) 132 T ELT)) (-3960 (($ (-1193 |#1| |#2|)) 50 T ELT)) (-3945 (($ $ (-693)) 38 T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3933 (($ $ $) 54 (|has| |#2| (-146)) ELT) (($ $ (-693)) 52 (|has| |#2| (-146)) ELT)) (-3722 (($) NIL T CONST)) (-3937 (($ $ |#1|) 114 T ELT) (($ $ (-738 |#1|)) 115 T ELT) (($ $ $) 26 T ELT)) (-3156 (((-3 (-738 |#1|) #1#) $) NIL T ELT)) (-3155 (((-738 |#1|) $) NIL T ELT)) (-3465 (((-3 $ #1#) $) 122 T ELT)) (-3949 (((-85) $) 117 T ELT)) (-3948 (($ $) 118 T ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-2409 (((-85) $) NIL T ELT)) (-3935 (((-85) $) NIL T ELT)) (-3936 (($ (-738 |#1|) |#2|) 20 T ELT)) (-3934 (($ $) NIL T ELT)) (-3939 (((-2 (|:| |k| (-738 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-3953 (((-738 |#1|) $) 123 T ELT)) (-3954 (((-738 |#1|) $) 126 T ELT)) (-3956 (($ (-1 |#2| |#2|) $) 131 T ELT)) (-3938 (($ $ |#1|) 112 T ELT) (($ $ (-738 |#1|)) 113 T ELT) (($ $ $) 62 T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3961 (((-1193 |#1| |#2|) $) 94 T ELT)) (-3946 (((-693) $) 129 T ELT)) (-3951 (((-85) $) 81 T ELT)) (-3950 ((|#2| $) 32 T ELT)) (-3944 (((-771) $) 73 T ELT) (($ (-483)) 87 T ELT) (($ |#2|) 85 T ELT) (($ (-738 |#1|)) 18 T ELT) (($ |#1|) 84 T ELT)) (-3952 ((|#2| $ (-738 |#1|)) 116 T ELT) ((|#2| $ $) 28 T ELT)) (-3125 (((-693)) 120 T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-3124 (((-85) $ $) NIL T ELT)) (-2659 (($) 15 T CONST)) (-3959 (((-582 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 59 T ELT)) (-2665 (($) 33 T CONST)) (-3055 (((-85) $ $) 14 T ELT)) (-3835 (($ $) 98 T ELT) (($ $ $) 101 T ELT)) (-3837 (($ $ $) 61 T ELT)) (** (($ $ (-829)) NIL T ELT) (($ $ (-693)) 55 T ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) 53 T ELT) (($ (-483) $) 106 T ELT) (($ $ $) 22 T ELT) (($ |#2| $) 19 T ELT) (($ $ |#2|) 21 T ELT) (($ |#1| $) 92 T ELT))) -(((-1202 |#1| |#2|) (-13 (-1200 |#1| |#2|) (-10 -8 (-15 -3961 ((-1193 |#1| |#2|) $)) (-15 -3960 ($ (-1193 |#1| |#2|))) (-15 -3959 ((-582 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-755) (-960)) (T -1202)) -((-3961 (*1 *2 *1) (-12 (-5 *2 (-1193 *3 *4)) (-5 *1 (-1202 *3 *4)) (-4 *3 (-755)) (-4 *4 (-960)))) (-3960 (*1 *1 *2) (-12 (-5 *2 (-1193 *3 *4)) (-4 *3 (-755)) (-4 *4 (-960)) (-5 *1 (-1202 *3 *4)))) (-3959 (*1 *2 *1) (-12 (-5 *2 (-582 (-2 (|:| |k| *3) (|:| |c| (-1202 *3 *4))))) (-5 *1 (-1202 *3 *4)) (-4 *3 (-755)) (-4 *4 (-960))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3963 (($ (-582 (-829))) 11 T ELT)) (-3962 (((-883) $) 12 T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3944 (((-771) $) 25 T ELT) (($ (-883)) 14 T ELT) (((-883) $) 13 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) 17 T ELT))) -(((-1203) (-13 (-1012) (-428 (-883)) (-10 -8 (-15 -3963 ($ (-582 (-829)))) (-15 -3962 ((-883) $))))) (T -1203)) -((-3963 (*1 *1 *2) (-12 (-5 *2 (-582 (-829))) (-5 *1 (-1203)))) (-3962 (*1 *2 *1) (-12 (-5 *2 (-883)) (-5 *1 (-1203))))) -((-3964 (((-582 (-1067 |#1|)) (-1 (-582 (-1067 |#1|)) (-582 (-1067 |#1|))) (-483)) 16 T ELT) (((-1067 |#1|) (-1 (-1067 |#1|) (-1067 |#1|))) 13 T ELT))) -(((-1204 |#1|) (-10 -7 (-15 -3964 ((-1067 |#1|) (-1 (-1067 |#1|) (-1067 |#1|)))) (-15 -3964 ((-582 (-1067 |#1|)) (-1 (-582 (-1067 |#1|)) (-582 (-1067 |#1|))) (-483)))) (-1127)) (T -1204)) -((-3964 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-582 (-1067 *5)) (-582 (-1067 *5)))) (-5 *4 (-483)) (-5 *2 (-582 (-1067 *5))) (-5 *1 (-1204 *5)) (-4 *5 (-1127)))) (-3964 (*1 *2 *3) (-12 (-5 *3 (-1 (-1067 *4) (-1067 *4))) (-5 *2 (-1067 *4)) (-5 *1 (-1204 *4)) (-4 *4 (-1127))))) -((-3966 (((-582 (-2 (|:| -1745 (-1083 |#1|)) (|:| -3223 (-582 (-856 |#1|))))) (-582 (-856 |#1|))) 174 T ELT) (((-582 (-2 (|:| -1745 (-1083 |#1|)) (|:| -3223 (-582 (-856 |#1|))))) (-582 (-856 |#1|)) (-85)) 173 T ELT) (((-582 (-2 (|:| -1745 (-1083 |#1|)) (|:| -3223 (-582 (-856 |#1|))))) (-582 (-856 |#1|)) (-85) (-85)) 172 T ELT) (((-582 (-2 (|:| -1745 (-1083 |#1|)) (|:| -3223 (-582 (-856 |#1|))))) (-582 (-856 |#1|)) (-85) (-85) (-85)) 171 T ELT) (((-582 (-2 (|:| -1745 (-1083 |#1|)) (|:| -3223 (-582 (-856 |#1|))))) (-957 |#1| |#2|)) 156 T ELT)) (-3965 (((-582 (-957 |#1| |#2|)) (-582 (-856 |#1|))) 85 T ELT) (((-582 (-957 |#1| |#2|)) (-582 (-856 |#1|)) (-85)) 84 T ELT) (((-582 (-957 |#1| |#2|)) (-582 (-856 |#1|)) (-85) (-85)) 83 T ELT)) (-3969 (((-582 (-1058 |#1| (-468 (-772 |#3|)) (-772 |#3|) (-702 |#1| (-772 |#3|)))) (-957 |#1| |#2|)) 73 T ELT)) (-3967 (((-582 (-582 (-936 (-348 |#1|)))) (-582 (-856 |#1|))) 140 T ELT) (((-582 (-582 (-936 (-348 |#1|)))) (-582 (-856 |#1|)) (-85)) 139 T ELT) (((-582 (-582 (-936 (-348 |#1|)))) (-582 (-856 |#1|)) (-85) (-85)) 138 T ELT) (((-582 (-582 (-936 (-348 |#1|)))) (-582 (-856 |#1|)) (-85) (-85) (-85)) 137 T ELT) (((-582 (-582 (-936 (-348 |#1|)))) (-957 |#1| |#2|)) 132 T ELT)) (-3968 (((-582 (-582 (-936 (-348 |#1|)))) (-582 (-856 |#1|))) 145 T ELT) (((-582 (-582 (-936 (-348 |#1|)))) (-582 (-856 |#1|)) (-85)) 144 T ELT) (((-582 (-582 (-936 (-348 |#1|)))) (-582 (-856 |#1|)) (-85) (-85)) 143 T ELT) (((-582 (-582 (-936 (-348 |#1|)))) (-957 |#1| |#2|)) 142 T ELT)) (-3970 (((-582 (-702 |#1| (-772 |#3|))) (-1058 |#1| (-468 (-772 |#3|)) (-772 |#3|) (-702 |#1| (-772 |#3|)))) 111 T ELT) (((-1083 (-936 (-348 |#1|))) (-1083 |#1|)) 102 T ELT) (((-856 (-936 (-348 |#1|))) (-702 |#1| (-772 |#3|))) 109 T ELT) (((-856 (-936 (-348 |#1|))) (-856 |#1|)) 107 T ELT) (((-702 |#1| (-772 |#3|)) (-702 |#1| (-772 |#2|))) 33 T ELT))) -(((-1205 |#1| |#2| |#3|) (-10 -7 (-15 -3965 ((-582 (-957 |#1| |#2|)) (-582 (-856 |#1|)) (-85) (-85))) (-15 -3965 ((-582 (-957 |#1| |#2|)) (-582 (-856 |#1|)) (-85))) (-15 -3965 ((-582 (-957 |#1| |#2|)) (-582 (-856 |#1|)))) (-15 -3966 ((-582 (-2 (|:| -1745 (-1083 |#1|)) (|:| -3223 (-582 (-856 |#1|))))) (-957 |#1| |#2|))) (-15 -3966 ((-582 (-2 (|:| -1745 (-1083 |#1|)) (|:| -3223 (-582 (-856 |#1|))))) (-582 (-856 |#1|)) (-85) (-85) (-85))) (-15 -3966 ((-582 (-2 (|:| -1745 (-1083 |#1|)) (|:| -3223 (-582 (-856 |#1|))))) (-582 (-856 |#1|)) (-85) (-85))) (-15 -3966 ((-582 (-2 (|:| -1745 (-1083 |#1|)) (|:| -3223 (-582 (-856 |#1|))))) (-582 (-856 |#1|)) (-85))) (-15 -3966 ((-582 (-2 (|:| -1745 (-1083 |#1|)) (|:| -3223 (-582 (-856 |#1|))))) (-582 (-856 |#1|)))) (-15 -3967 ((-582 (-582 (-936 (-348 |#1|)))) (-957 |#1| |#2|))) (-15 -3967 ((-582 (-582 (-936 (-348 |#1|)))) (-582 (-856 |#1|)) (-85) (-85) (-85))) (-15 -3967 ((-582 (-582 (-936 (-348 |#1|)))) (-582 (-856 |#1|)) (-85) (-85))) (-15 -3967 ((-582 (-582 (-936 (-348 |#1|)))) (-582 (-856 |#1|)) (-85))) (-15 -3967 ((-582 (-582 (-936 (-348 |#1|)))) (-582 (-856 |#1|)))) (-15 -3968 ((-582 (-582 (-936 (-348 |#1|)))) (-957 |#1| |#2|))) (-15 -3968 ((-582 (-582 (-936 (-348 |#1|)))) (-582 (-856 |#1|)) (-85) (-85))) (-15 -3968 ((-582 (-582 (-936 (-348 |#1|)))) (-582 (-856 |#1|)) (-85))) (-15 -3968 ((-582 (-582 (-936 (-348 |#1|)))) (-582 (-856 |#1|)))) (-15 -3969 ((-582 (-1058 |#1| (-468 (-772 |#3|)) (-772 |#3|) (-702 |#1| (-772 |#3|)))) (-957 |#1| |#2|))) (-15 -3970 ((-702 |#1| (-772 |#3|)) (-702 |#1| (-772 |#2|)))) (-15 -3970 ((-856 (-936 (-348 |#1|))) (-856 |#1|))) (-15 -3970 ((-856 (-936 (-348 |#1|))) (-702 |#1| (-772 |#3|)))) (-15 -3970 ((-1083 (-936 (-348 |#1|))) (-1083 |#1|))) (-15 -3970 ((-582 (-702 |#1| (-772 |#3|))) (-1058 |#1| (-468 (-772 |#3|)) (-772 |#3|) (-702 |#1| (-772 |#3|)))))) (-13 (-754) (-258) (-120) (-932)) (-582 (-1088)) (-582 (-1088))) (T -1205)) -((-3970 (*1 *2 *3) (-12 (-5 *3 (-1058 *4 (-468 (-772 *6)) (-772 *6) (-702 *4 (-772 *6)))) (-4 *4 (-13 (-754) (-258) (-120) (-932))) (-14 *6 (-582 (-1088))) (-5 *2 (-582 (-702 *4 (-772 *6)))) (-5 *1 (-1205 *4 *5 *6)) (-14 *5 (-582 (-1088))))) (-3970 (*1 *2 *3) (-12 (-5 *3 (-1083 *4)) (-4 *4 (-13 (-754) (-258) (-120) (-932))) (-5 *2 (-1083 (-936 (-348 *4)))) (-5 *1 (-1205 *4 *5 *6)) (-14 *5 (-582 (-1088))) (-14 *6 (-582 (-1088))))) (-3970 (*1 *2 *3) (-12 (-5 *3 (-702 *4 (-772 *6))) (-4 *4 (-13 (-754) (-258) (-120) (-932))) (-14 *6 (-582 (-1088))) (-5 *2 (-856 (-936 (-348 *4)))) (-5 *1 (-1205 *4 *5 *6)) (-14 *5 (-582 (-1088))))) (-3970 (*1 *2 *3) (-12 (-5 *3 (-856 *4)) (-4 *4 (-13 (-754) (-258) (-120) (-932))) (-5 *2 (-856 (-936 (-348 *4)))) (-5 *1 (-1205 *4 *5 *6)) (-14 *5 (-582 (-1088))) (-14 *6 (-582 (-1088))))) (-3970 (*1 *2 *3) (-12 (-5 *3 (-702 *4 (-772 *5))) (-4 *4 (-13 (-754) (-258) (-120) (-932))) (-14 *5 (-582 (-1088))) (-5 *2 (-702 *4 (-772 *6))) (-5 *1 (-1205 *4 *5 *6)) (-14 *6 (-582 (-1088))))) (-3969 (*1 *2 *3) (-12 (-5 *3 (-957 *4 *5)) (-4 *4 (-13 (-754) (-258) (-120) (-932))) (-14 *5 (-582 (-1088))) (-5 *2 (-582 (-1058 *4 (-468 (-772 *6)) (-772 *6) (-702 *4 (-772 *6))))) (-5 *1 (-1205 *4 *5 *6)) (-14 *6 (-582 (-1088))))) (-3968 (*1 *2 *3) (-12 (-5 *3 (-582 (-856 *4))) (-4 *4 (-13 (-754) (-258) (-120) (-932))) (-5 *2 (-582 (-582 (-936 (-348 *4))))) (-5 *1 (-1205 *4 *5 *6)) (-14 *5 (-582 (-1088))) (-14 *6 (-582 (-1088))))) (-3968 (*1 *2 *3 *4) (-12 (-5 *3 (-582 (-856 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-754) (-258) (-120) (-932))) (-5 *2 (-582 (-582 (-936 (-348 *5))))) (-5 *1 (-1205 *5 *6 *7)) (-14 *6 (-582 (-1088))) (-14 *7 (-582 (-1088))))) (-3968 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-582 (-856 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-754) (-258) (-120) (-932))) (-5 *2 (-582 (-582 (-936 (-348 *5))))) (-5 *1 (-1205 *5 *6 *7)) (-14 *6 (-582 (-1088))) (-14 *7 (-582 (-1088))))) (-3968 (*1 *2 *3) (-12 (-5 *3 (-957 *4 *5)) (-4 *4 (-13 (-754) (-258) (-120) (-932))) (-14 *5 (-582 (-1088))) (-5 *2 (-582 (-582 (-936 (-348 *4))))) (-5 *1 (-1205 *4 *5 *6)) (-14 *6 (-582 (-1088))))) (-3967 (*1 *2 *3) (-12 (-5 *3 (-582 (-856 *4))) (-4 *4 (-13 (-754) (-258) (-120) (-932))) (-5 *2 (-582 (-582 (-936 (-348 *4))))) (-5 *1 (-1205 *4 *5 *6)) (-14 *5 (-582 (-1088))) (-14 *6 (-582 (-1088))))) (-3967 (*1 *2 *3 *4) (-12 (-5 *3 (-582 (-856 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-754) (-258) (-120) (-932))) (-5 *2 (-582 (-582 (-936 (-348 *5))))) (-5 *1 (-1205 *5 *6 *7)) (-14 *6 (-582 (-1088))) (-14 *7 (-582 (-1088))))) (-3967 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-582 (-856 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-754) (-258) (-120) (-932))) (-5 *2 (-582 (-582 (-936 (-348 *5))))) (-5 *1 (-1205 *5 *6 *7)) (-14 *6 (-582 (-1088))) (-14 *7 (-582 (-1088))))) (-3967 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-582 (-856 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-754) (-258) (-120) (-932))) (-5 *2 (-582 (-582 (-936 (-348 *5))))) (-5 *1 (-1205 *5 *6 *7)) (-14 *6 (-582 (-1088))) (-14 *7 (-582 (-1088))))) (-3967 (*1 *2 *3) (-12 (-5 *3 (-957 *4 *5)) (-4 *4 (-13 (-754) (-258) (-120) (-932))) (-14 *5 (-582 (-1088))) (-5 *2 (-582 (-582 (-936 (-348 *4))))) (-5 *1 (-1205 *4 *5 *6)) (-14 *6 (-582 (-1088))))) (-3966 (*1 *2 *3) (-12 (-4 *4 (-13 (-754) (-258) (-120) (-932))) (-5 *2 (-582 (-2 (|:| -1745 (-1083 *4)) (|:| -3223 (-582 (-856 *4)))))) (-5 *1 (-1205 *4 *5 *6)) (-5 *3 (-582 (-856 *4))) (-14 *5 (-582 (-1088))) (-14 *6 (-582 (-1088))))) (-3966 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-754) (-258) (-120) (-932))) (-5 *2 (-582 (-2 (|:| -1745 (-1083 *5)) (|:| -3223 (-582 (-856 *5)))))) (-5 *1 (-1205 *5 *6 *7)) (-5 *3 (-582 (-856 *5))) (-14 *6 (-582 (-1088))) (-14 *7 (-582 (-1088))))) (-3966 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-754) (-258) (-120) (-932))) (-5 *2 (-582 (-2 (|:| -1745 (-1083 *5)) (|:| -3223 (-582 (-856 *5)))))) (-5 *1 (-1205 *5 *6 *7)) (-5 *3 (-582 (-856 *5))) (-14 *6 (-582 (-1088))) (-14 *7 (-582 (-1088))))) (-3966 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-754) (-258) (-120) (-932))) (-5 *2 (-582 (-2 (|:| -1745 (-1083 *5)) (|:| -3223 (-582 (-856 *5)))))) (-5 *1 (-1205 *5 *6 *7)) (-5 *3 (-582 (-856 *5))) (-14 *6 (-582 (-1088))) (-14 *7 (-582 (-1088))))) (-3966 (*1 *2 *3) (-12 (-5 *3 (-957 *4 *5)) (-4 *4 (-13 (-754) (-258) (-120) (-932))) (-14 *5 (-582 (-1088))) (-5 *2 (-582 (-2 (|:| -1745 (-1083 *4)) (|:| -3223 (-582 (-856 *4)))))) (-5 *1 (-1205 *4 *5 *6)) (-14 *6 (-582 (-1088))))) (-3965 (*1 *2 *3) (-12 (-5 *3 (-582 (-856 *4))) (-4 *4 (-13 (-754) (-258) (-120) (-932))) (-5 *2 (-582 (-957 *4 *5))) (-5 *1 (-1205 *4 *5 *6)) (-14 *5 (-582 (-1088))) (-14 *6 (-582 (-1088))))) (-3965 (*1 *2 *3 *4) (-12 (-5 *3 (-582 (-856 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-754) (-258) (-120) (-932))) (-5 *2 (-582 (-957 *5 *6))) (-5 *1 (-1205 *5 *6 *7)) (-14 *6 (-582 (-1088))) (-14 *7 (-582 (-1088))))) (-3965 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-582 (-856 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-754) (-258) (-120) (-932))) (-5 *2 (-582 (-957 *5 *6))) (-5 *1 (-1205 *5 *6 *7)) (-14 *6 (-582 (-1088))) (-14 *7 (-582 (-1088)))))) -((-3973 (((-3 (-1177 (-348 (-483))) #1="failed") (-1177 |#1|) |#1|) 21 T ELT)) (-3971 (((-85) (-1177 |#1|)) 12 T ELT)) (-3972 (((-3 (-1177 (-483)) #1#) (-1177 |#1|)) 16 T ELT))) -(((-1206 |#1|) (-10 -7 (-15 -3971 ((-85) (-1177 |#1|))) (-15 -3972 ((-3 (-1177 (-483)) #1="failed") (-1177 |#1|))) (-15 -3973 ((-3 (-1177 (-348 (-483))) #1#) (-1177 |#1|) |#1|))) (-13 (-960) (-579 (-483)))) (T -1206)) -((-3973 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1177 *4)) (-4 *4 (-13 (-960) (-579 (-483)))) (-5 *2 (-1177 (-348 (-483)))) (-5 *1 (-1206 *4)))) (-3972 (*1 *2 *3) (|partial| -12 (-5 *3 (-1177 *4)) (-4 *4 (-13 (-960) (-579 (-483)))) (-5 *2 (-1177 (-483))) (-5 *1 (-1206 *4)))) (-3971 (*1 *2 *3) (-12 (-5 *3 (-1177 *4)) (-4 *4 (-13 (-960) (-579 (-483)))) (-5 *2 (-85)) (-5 *1 (-1206 *4))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3187 (((-85) $) 12 T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3135 (((-693)) 9 T ELT)) (-3722 (($) NIL T CONST)) (-3465 (((-3 $ #1#) $) 57 T ELT)) (-2993 (($) 46 T ELT)) (-1212 (((-85) $ $) NIL T ELT)) (-2409 (((-85) $) 38 T ELT)) (-3443 (((-631 $) $) 36 T ELT)) (-2009 (((-829) $) 14 T ELT)) (-3241 (((-1071) $) NIL T ELT)) (-3444 (($) 26 T CONST)) (-2399 (($ (-829)) 47 T ELT)) (-3242 (((-1032) $) NIL T ELT)) (-3970 (((-483) $) 16 T ELT)) (-3944 (((-771) $) 21 T ELT) (($ (-483)) 18 T ELT)) (-3125 (((-693)) 10 T CONST)) (-1263 (((-85) $ $) 59 T ELT)) (-3124 (((-85) $ $) NIL T ELT)) (-2659 (($) 23 T CONST)) (-2665 (($) 25 T CONST)) (-3055 (((-85) $ $) 31 T ELT)) (-3835 (($ $) 50 T ELT) (($ $ $) 44 T ELT)) (-3837 (($ $ $) 29 T ELT)) (** (($ $ (-829)) NIL T ELT) (($ $ (-693)) 52 T ELT)) (* (($ (-829) $) NIL T ELT) (($ (-693) $) NIL T ELT) (($ (-483) $) 41 T ELT) (($ $ $) 40 T ELT))) -(((-1207 |#1|) (-13 (-146) (-318) (-552 (-483)) (-1064)) (-829)) (T -1207)) -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -((-3 2809120 2809125 2809130 NIL NIL NIL (NIL) -8 NIL NIL NIL) (-2 2809105 2809110 2809115 NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1 2809090 2809095 2809100 NIL NIL NIL (NIL) -8 NIL NIL NIL) (0 2809075 2809080 2809085 NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1207 2808054 2808993 2809070 "ZMOD" NIL ZMOD (NIL NIL) -8 NIL NIL NIL) (-1206 2807269 2807448 2807667 "ZLINDEP" NIL ZLINDEP (NIL T) -7 NIL NIL NIL) (-1205 2798428 2800297 2802231 "ZDSOLVE" NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL NIL) (-1204 2797816 2797969 2798158 "YSTREAM" NIL YSTREAM (NIL T) -7 NIL NIL NIL) (-1203 2797278 2797581 2797694 "YDIAGRAM" NIL YDIAGRAM (NIL) -8 NIL NIL NIL) (-1202 2794838 2796740 2796943 "XRPOLY" NIL XRPOLY (NIL T T) -8 NIL NIL NIL) (-1201 2791602 2793255 2793826 "XPR" NIL XPR (NIL T T) -8 NIL NIL NIL) (-1200 2788859 2790589 2790643 "XPOLYC" 2790928 XPOLYC (NIL T T) -9 NIL 2791041 NIL) (-1199 2786378 2788363 2788566 "XPOLY" NIL XPOLY (NIL T) -8 NIL NIL NIL) (-1198 2782626 2785237 2785625 "XPBWPOLY" NIL XPBWPOLY (NIL T T) -8 NIL NIL NIL) (-1197 2777473 2779106 2779160 "XFALG" 2781305 XFALG (NIL T T) -9 NIL 2782089 NIL) (-1196 2772629 2775362 2775404 "XF" 2776022 XF (NIL T) -9 NIL 2776418 NIL) (-1195 2772347 2772457 2772624 "XF-" NIL XF- (NIL T T) -7 NIL NIL NIL) (-1194 2771574 2771696 2771900 "XEXPPKG" NIL XEXPPKG (NIL T T T) -7 NIL NIL NIL) (-1193 2769316 2771474 2771569 "XDPOLY" NIL XDPOLY (NIL T T) -8 NIL NIL NIL) (-1192 2767897 2768692 2768734 "XALG" 2768739 XALG (NIL T) -9 NIL 2768848 NIL) (-1191 2761454 2766307 2766785 "WUTSET" NIL WUTSET (NIL T T T T) -8 NIL NIL NIL) (-1190 2759697 2760699 2761020 "WP" NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL NIL) (-1189 2759296 2759568 2759637 "WHILEAST" NIL WHILEAST (NIL) -8 NIL NIL NIL) (-1188 2758783 2759086 2759179 "WHEREAST" NIL WHEREAST (NIL) -8 NIL NIL NIL) (-1187 2757860 2758070 2758365 "WFFINTBS" NIL WFFINTBS (NIL T T T T) -7 NIL NIL NIL) (-1186 2756156 2756619 2757081 "WEIER" NIL WEIER (NIL T) -7 NIL NIL NIL) (-1185 2755045 2755630 2755672 "VSPACE" 2755808 VSPACE (NIL T) -9 NIL 2755882 NIL) (-1184 2754916 2754949 2755040 "VSPACE-" NIL VSPACE- (NIL T T) -7 NIL NIL NIL) (-1183 2754759 2754813 2754881 "VOID" NIL VOID (NIL) -8 NIL NIL NIL) (-1182 2751742 2752537 2753274 "VIEWDEF" NIL VIEWDEF (NIL) -7 NIL NIL NIL) (-1181 2742840 2745441 2747614 "VIEW3D" NIL VIEW3D (NIL) -8 NIL NIL NIL) (-1180 2736417 2738308 2739887 "VIEW2D" NIL VIEW2D (NIL) -8 NIL NIL NIL) (-1179 2734901 2735296 2735702 "VIEW" NIL VIEW (NIL) -7 NIL NIL NIL) (-1178 2733728 2734009 2734325 "VECTOR2" NIL VECTOR2 (NIL T T) -7 NIL NIL NIL) (-1177 2728844 2733555 2733647 "VECTOR" NIL VECTOR (NIL T) -8 NIL NIL NIL) (-1176 2721946 2726554 2726597 "VECTCAT" 2727585 VECTCAT (NIL T) -9 NIL 2728169 NIL) (-1175 2721225 2721551 2721941 "VECTCAT-" NIL VECTCAT- (NIL T T) -7 NIL NIL NIL) (-1174 2720719 2720961 2721081 "VARIABLE" NIL VARIABLE (NIL NIL) -8 NIL NIL NIL) (-1173 2720652 2720657 2720687 "UTYPE" 2720692 UTYPE (NIL) -9 NIL NIL NIL) (-1172 2719639 2719815 2720076 "UTSODETL" NIL UTSODETL (NIL T T T T) -7 NIL NIL NIL) (-1171 2717490 2717998 2718522 "UTSODE" NIL UTSODE (NIL T T) -7 NIL NIL NIL) (-1170 2707372 2713342 2713384 "UTSCAT" 2714482 UTSCAT (NIL T) -9 NIL 2715239 NIL) (-1169 2705437 2706380 2707367 "UTSCAT-" NIL UTSCAT- (NIL T T) -7 NIL NIL NIL) (-1168 2705111 2705160 2705291 "UTS2" NIL UTS2 (NIL T T T T) -7 NIL NIL NIL) (-1167 2696822 2703307 2703786 "UTS" NIL UTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1166 2690817 2693630 2693673 "URAGG" 2695743 URAGG (NIL T) -9 NIL 2696465 NIL) (-1165 2688832 2689794 2690812 "URAGG-" NIL URAGG- (NIL T T) -7 NIL NIL NIL) (-1164 2684539 2687808 2688270 "UPXSSING" NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL NIL) (-1163 2676968 2684463 2684534 "UPXSCONS" NIL UPXSCONS (NIL T T) -8 NIL NIL NIL) (-1162 2665619 2673106 2673167 "UPXSCCA" 2673735 UPXSCCA (NIL T T) -9 NIL 2673967 NIL) (-1161 2665340 2665442 2665614 "UPXSCCA-" NIL UPXSCCA- (NIL T T T) -7 NIL NIL NIL) (-1160 2653892 2661104 2661146 "UPXSCAT" 2661786 UPXSCAT (NIL T) -9 NIL 2662394 NIL) (-1159 2653405 2653490 2653667 "UPXS2" NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1158 2645091 2652996 2653258 "UPXS" NIL UPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1157 2643986 2644256 2644606 "UPSQFREE" NIL UPSQFREE (NIL T T) -7 NIL NIL NIL) (-1156 2636689 2640174 2640228 "UPSCAT" 2641297 UPSCAT (NIL T T) -9 NIL 2642061 NIL) (-1155 2636109 2636361 2636684 "UPSCAT-" NIL UPSCAT- (NIL T T T) -7 NIL NIL NIL) (-1154 2635783 2635832 2635963 "UPOLYC2" NIL UPOLYC2 (NIL T T T T) -7 NIL NIL NIL) (-1153 2619913 2628867 2628909 "UPOLYC" 2630987 UPOLYC (NIL T) -9 NIL 2632207 NIL) (-1152 2613968 2616816 2619908 "UPOLYC-" NIL UPOLYC- (NIL T T) -7 NIL NIL NIL) (-1151 2613404 2613529 2613692 "UPMP" NIL UPMP (NIL T T) -7 NIL NIL NIL) (-1150 2613038 2613125 2613264 "UPDIVP" NIL UPDIVP (NIL T T) -7 NIL NIL NIL) (-1149 2611851 2612118 2612422 "UPDECOMP" NIL UPDECOMP (NIL T T) -7 NIL NIL NIL) (-1148 2611184 2611314 2611499 "UPCDEN" NIL UPCDEN (NIL T T T) -7 NIL NIL NIL) (-1147 2610776 2610851 2610998 "UP2" NIL UP2 (NIL NIL T NIL T) -7 NIL NIL NIL) (-1146 2601540 2610542 2610670 "UP" NIL UP (NIL NIL T) -8 NIL NIL NIL) (-1145 2600902 2601039 2601244 "UNISEG2" NIL UNISEG2 (NIL T T) -7 NIL NIL NIL) (-1144 2599503 2600350 2600626 "UNISEG" NIL UNISEG (NIL T) -8 NIL NIL NIL) (-1143 2598732 2598929 2599154 "UNIFACT" NIL UNIFACT (NIL T) -7 NIL NIL NIL) (-1142 2585542 2598656 2598727 "ULSCONS" NIL ULSCONS (NIL T T) -8 NIL NIL NIL) (-1141 2565348 2578583 2578644 "ULSCCAT" 2579275 ULSCCAT (NIL T T) -9 NIL 2579562 NIL) (-1140 2564683 2564969 2565343 "ULSCCAT-" NIL ULSCCAT- (NIL T T T) -7 NIL NIL NIL) (-1139 2553055 2560189 2560231 "ULSCAT" 2561084 ULSCAT (NIL T) -9 NIL 2561814 NIL) (-1138 2552568 2552653 2552830 "ULS2" NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1137 2534685 2552067 2552308 "ULS" NIL ULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1136 2533719 2534412 2534526 "UINT8" NIL UINT8 (NIL) -8 NIL NIL 2534637) (-1135 2532752 2533445 2533559 "UINT64" NIL UINT64 (NIL) -8 NIL NIL 2533670) (-1134 2531785 2532478 2532592 "UINT32" NIL UINT32 (NIL) -8 NIL NIL 2532703) (-1133 2530818 2531511 2531625 "UINT16" NIL UINT16 (NIL) -8 NIL NIL 2531736) (-1132 2528825 2530046 2530076 "UFD" 2530287 UFD (NIL) -9 NIL 2530400 NIL) (-1131 2528669 2528726 2528820 "UFD-" NIL UFD- (NIL T) -7 NIL NIL NIL) (-1130 2527921 2528128 2528344 "UDVO" NIL UDVO (NIL) -7 NIL NIL NIL) (-1129 2526141 2526594 2527059 "UDPO" NIL UDPO (NIL T) -7 NIL NIL NIL) (-1128 2525866 2526106 2526136 "TYPEAST" NIL TYPEAST (NIL) -8 NIL NIL NIL) (-1127 2525804 2525809 2525839 "TYPE" 2525844 TYPE (NIL) -9 NIL 2525851 NIL) (-1126 2524963 2525183 2525423 "TWOFACT" NIL TWOFACT (NIL T) -7 NIL NIL NIL) (-1125 2524141 2524572 2524807 "TUPLE" NIL TUPLE (NIL T) -8 NIL NIL NIL) (-1124 2522295 2522868 2523407 "TUBETOOL" NIL TUBETOOL (NIL) -7 NIL NIL NIL) (-1123 2521329 2521565 2521801 "TUBE" NIL TUBE (NIL T) -8 NIL NIL NIL) (-1122 2509683 2514151 2514247 "TSETCAT" 2519462 TSETCAT (NIL T T T T) -9 NIL 2520974 NIL) (-1121 2506020 2507836 2509678 "TSETCAT-" NIL TSETCAT- (NIL T T T T T) -7 NIL NIL NIL) (-1120 2500412 2505246 2505528 "TS" NIL TS (NIL T) -8 NIL NIL NIL) (-1119 2495749 2496762 2497691 "TRMANIP" NIL TRMANIP (NIL T T) -7 NIL NIL NIL) (-1118 2495246 2495321 2495484 "TRIMAT" NIL TRIMAT (NIL T T T T) -7 NIL NIL NIL) (-1117 2493322 2493612 2493967 "TRIGMNIP" NIL TRIGMNIP (NIL T T) -7 NIL NIL NIL) (-1116 2492806 2492955 2492985 "TRIGCAT" 2493198 TRIGCAT (NIL) -9 NIL NIL NIL) (-1115 2492557 2492660 2492801 "TRIGCAT-" NIL TRIGCAT- (NIL T) -7 NIL NIL NIL) (-1114 2489553 2491666 2491944 "TREE" NIL TREE (NIL T) -8 NIL NIL NIL) (-1113 2488659 2489355 2489385 "TRANFUN" 2489420 TRANFUN (NIL) -9 NIL 2489486 NIL) (-1112 2488123 2488374 2488654 "TRANFUN-" NIL TRANFUN- (NIL T) -7 NIL NIL NIL) (-1111 2487960 2487998 2488059 "TOPSP" NIL TOPSP (NIL) -7 NIL NIL NIL) (-1110 2487417 2487548 2487699 "TOOLSIGN" NIL TOOLSIGN (NIL T) -7 NIL NIL NIL) (-1109 2486158 2486815 2487051 "TEXTFILE" NIL TEXTFILE (NIL) -8 NIL NIL NIL) (-1108 2485970 2486007 2486079 "TEX1" NIL TEX1 (NIL T) -7 NIL NIL NIL) (-1107 2484184 2484830 2485259 "TEX" NIL TEX (NIL) -8 NIL NIL NIL) (-1106 2482564 2482901 2483223 "TBCMPPK" NIL TBCMPPK (NIL T T) -7 NIL NIL NIL) (-1105 2473622 2480365 2480421 "TBAGG" 2480823 TBAGG (NIL T T) -9 NIL 2481036 NIL) (-1104 2470153 2471845 2473617 "TBAGG-" NIL TBAGG- (NIL T T T) -7 NIL NIL NIL) (-1103 2469630 2469755 2469900 "TANEXP" NIL TANEXP (NIL T) -7 NIL NIL NIL) (-1102 2469140 2469460 2469550 "TALGOP" NIL TALGOP (NIL T) -8 NIL NIL NIL) (-1101 2468637 2468754 2468892 "TABLEAU" NIL TABLEAU (NIL T) -8 NIL NIL NIL) (-1100 2461724 2468539 2468632 "TABLE" NIL TABLE (NIL T T) -8 NIL NIL NIL) (-1099 2457477 2458772 2460017 "TABLBUMP" NIL TABLBUMP (NIL T) -7 NIL NIL NIL) (-1098 2456846 2457005 2457186 "SYSTEM" NIL SYSTEM (NIL) -7 NIL NIL NIL) (-1097 2454000 2454753 2455536 "SYSSOLP" NIL SYSSOLP (NIL T) -7 NIL NIL NIL) (-1096 2453774 2453964 2453995 "SYSPTR" NIL SYSPTR (NIL) -8 NIL NIL NIL) (-1095 2452728 2453413 2453539 "SYSNNI" NIL SYSNNI (NIL NIL) -8 NIL NIL 2453725) (-1094 2451992 2452540 2452619 "SYSINT" NIL SYSINT (NIL NIL) -8 NIL NIL 2452679) (-1093 2448815 2449974 2450674 "SYNTAX" NIL SYNTAX (NIL) -8 NIL NIL NIL) (-1092 2446498 2447181 2447815 "SYMTAB" NIL SYMTAB (NIL) -8 NIL NIL NIL) (-1091 2442576 2443622 2444599 "SYMS" NIL SYMS (NIL) -8 NIL NIL NIL) (-1090 2439675 2442231 2442460 "SYMPOLY" NIL SYMPOLY (NIL T) -8 NIL NIL NIL) (-1089 2439271 2439358 2439480 "SYMFUNC" NIL SYMFUNC (NIL T) -7 NIL NIL NIL) (-1088 2435895 2437369 2438188 "SYMBOL" NIL SYMBOL (NIL) -8 NIL NIL NIL) (-1087 2428855 2435092 2435385 "SUTS" NIL SUTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1086 2420541 2428446 2428708 "SUPXS" NIL SUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1085 2419820 2419959 2420176 "SUPFRACF" NIL SUPFRACF (NIL T T T T) -7 NIL NIL NIL) (-1084 2419504 2419569 2419680 "SUP2" NIL SUP2 (NIL T T) -7 NIL NIL NIL) (-1083 2410227 2419216 2419341 "SUP" NIL SUP (NIL T) -8 NIL NIL NIL) (-1082 2408957 2409255 2409610 "SUMRF" NIL SUMRF (NIL T) -7 NIL NIL NIL) (-1081 2408362 2408440 2408631 "SUMFS" NIL SUMFS (NIL T T) -7 NIL NIL NIL) (-1080 2390514 2407861 2408102 "SULS" NIL SULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1079 2390113 2390385 2390454 "SUCHTAST" NIL SUCHTAST (NIL) -8 NIL NIL NIL) (-1078 2389449 2389730 2389870 "SUCH" NIL SUCH (NIL T T) -8 NIL NIL NIL) (-1077 2384051 2385310 2386263 "SUBSPACE" NIL SUBSPACE (NIL NIL T) -8 NIL NIL NIL) (-1076 2383583 2383683 2383847 "SUBRESP" NIL SUBRESP (NIL T T) -7 NIL NIL NIL) (-1075 2378694 2379976 2381123 "STTFNC" NIL STTFNC (NIL T) -7 NIL NIL NIL) (-1074 2373152 2374623 2375934 "STTF" NIL STTF (NIL T) -7 NIL NIL NIL) (-1073 2366067 2368131 2369922 "STTAYLOR" NIL STTAYLOR (NIL T) -7 NIL NIL NIL) (-1072 2358897 2365979 2366062 "STRTBL" NIL STRTBL (NIL T) -8 NIL NIL NIL) (-1071 2353591 2358611 2358726 "STRING" NIL STRING (NIL) -8 NIL NIL NIL) (-1070 2353178 2353261 2353405 "STREAM3" NIL STREAM3 (NIL T T T) -7 NIL NIL NIL) (-1069 2352329 2352530 2352765 "STREAM2" NIL STREAM2 (NIL T T) -7 NIL NIL NIL) (-1068 2352069 2352127 2352220 "STREAM1" NIL STREAM1 (NIL T) -7 NIL NIL NIL) (-1067 2344807 2350274 2350880 "STREAM" NIL STREAM (NIL T) -8 NIL NIL NIL) (-1066 2343983 2344188 2344419 "STINPROD" NIL STINPROD (NIL T) -7 NIL NIL NIL) (-1065 2343228 2343599 2343746 "STEPAST" NIL STEPAST (NIL) -8 NIL NIL NIL) (-1064 2342716 2342958 2342988 "STEP" 2343082 STEP (NIL) -9 NIL 2343153 NIL) (-1063 2335819 2342634 2342711 "STBL" NIL STBL (NIL T T NIL) -8 NIL NIL NIL) (-1062 2330034 2334617 2334660 "STAGG" 2335087 STAGG (NIL T) -9 NIL 2335261 NIL) (-1061 2328413 2329161 2330029 "STAGG-" NIL STAGG- (NIL T T) -7 NIL NIL NIL) (-1060 2326570 2328240 2328332 "STACK" NIL STACK (NIL T) -8 NIL NIL NIL) (-1059 2325850 2326389 2326419 "SRING" 2326424 SRING (NIL) -9 NIL 2326444 NIL) (-1058 2318472 2324388 2324827 "SREGSET" NIL SREGSET (NIL T T T T) -8 NIL NIL NIL) (-1057 2312246 2313685 2315189 "SRDCMPK" NIL SRDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1056 2304671 2309582 2309612 "SRAGG" 2310911 SRAGG (NIL) -9 NIL 2311515 NIL) (-1055 2303968 2304288 2304666 "SRAGG-" NIL SRAGG- (NIL T) -7 NIL NIL NIL) (-1054 2298023 2303290 2303713 "SQMATRIX" NIL SQMATRIX (NIL NIL T) -8 NIL NIL NIL) (-1053 2292236 2295405 2296127 "SPLTREE" NIL SPLTREE (NIL T T) -8 NIL NIL NIL) (-1052 2288665 2289484 2290121 "SPLNODE" NIL SPLNODE (NIL T T) -8 NIL NIL NIL) (-1051 2287640 2287945 2287975 "SPFCAT" 2288419 SPFCAT (NIL) -9 NIL NIL NIL) (-1050 2286577 2286829 2287093 "SPECOUT" NIL SPECOUT (NIL) -7 NIL NIL NIL) (-1049 2277335 2279609 2279639 "SPADXPT" 2284276 SPADXPT (NIL) -9 NIL 2286400 NIL) (-1048 2277137 2277183 2277252 "SPADPRSR" NIL SPADPRSR (NIL) -7 NIL NIL NIL) (-1047 2274793 2277101 2277132 "SPADAST" NIL SPADAST (NIL) -8 NIL NIL NIL) (-1046 2266467 2268556 2268598 "SPACEC" 2272913 SPACEC (NIL T) -9 NIL 2274718 NIL) (-1045 2264296 2266414 2266462 "SPACE3" NIL SPACE3 (NIL T) -8 NIL NIL NIL) (-1044 2263229 2263418 2263707 "SORTPAK" NIL SORTPAK (NIL T T) -7 NIL NIL NIL) (-1043 2261633 2261966 2262377 "SOLVETRA" NIL SOLVETRA (NIL T) -7 NIL NIL NIL) (-1042 2260898 2261132 2261393 "SOLVESER" NIL SOLVESER (NIL T) -7 NIL NIL NIL) (-1041 2257078 2258038 2259033 "SOLVERAD" NIL SOLVERAD (NIL T) -7 NIL NIL NIL) (-1040 2253436 2254135 2254864 "SOLVEFOR" NIL SOLVEFOR (NIL T T) -7 NIL NIL NIL) (-1039 2247222 2252776 2252872 "SNTSCAT" 2252877 SNTSCAT (NIL T T T T) -9 NIL 2252947 NIL) (-1038 2241043 2245863 2246253 "SMTS" NIL SMTS (NIL T T T) -8 NIL NIL NIL) (-1037 2234815 2240962 2241038 "SMP" NIL SMP (NIL T T) -8 NIL NIL NIL) (-1036 2233247 2233578 2233976 "SMITH" NIL SMITH (NIL T T T T) -7 NIL NIL NIL) (-1035 2224852 2229831 2229933 "SMATCAT" 2231276 SMATCAT (NIL NIL T T T) -9 NIL 2231824 NIL) (-1034 2222693 2223677 2224847 "SMATCAT-" NIL SMATCAT- (NIL T NIL T T T) -7 NIL NIL NIL) (-1033 2220285 2221899 2221942 "SKAGG" 2222203 SKAGG (NIL T) -9 NIL 2222337 NIL) (-1032 2216331 2220105 2220216 "SINT" NIL SINT (NIL) -8 NIL NIL 2220257) (-1031 2216141 2216185 2216251 "SIMPAN" NIL SIMPAN (NIL) -7 NIL NIL NIL) (-1030 2215216 2215448 2215716 "SIGNRF" NIL SIGNRF (NIL T) -7 NIL NIL NIL) (-1029 2214220 2214382 2214658 "SIGNEF" NIL SIGNEF (NIL T T) -7 NIL NIL NIL) (-1028 2213566 2213906 2214029 "SIGAST" NIL SIGAST (NIL) -8 NIL NIL NIL) (-1027 2212912 2213219 2213359 "SIG" NIL SIG (NIL) -8 NIL NIL NIL) (-1026 2211023 2211515 2212021 "SHP" NIL SHP (NIL T NIL) -7 NIL NIL NIL) (-1025 2204463 2210942 2211018 "SHDP" NIL SHDP (NIL NIL NIL T) -8 NIL NIL NIL) (-1024 2203966 2204203 2204233 "SGROUP" 2204326 SGROUP (NIL) -9 NIL 2204388 NIL) (-1023 2203856 2203888 2203961 "SGROUP-" NIL SGROUP- (NIL T) -7 NIL NIL NIL) (-1022 2203494 2203534 2203575 "SGPOPC" 2203580 SGPOPC (NIL T) -9 NIL 2203781 NIL) (-1021 2203028 2203305 2203411 "SGPOP" NIL SGPOP (NIL T) -8 NIL NIL NIL) (-1020 2200451 2201220 2201942 "SGCF" NIL SGCF (NIL) -7 NIL NIL NIL) (-1019 2194336 2199890 2199986 "SFRTCAT" 2199991 SFRTCAT (NIL T T T T) -9 NIL 2200029 NIL) (-1018 2188728 2189841 2190968 "SFRGCD" NIL SFRGCD (NIL T T T T T) -7 NIL NIL NIL) (-1017 2182904 2184065 2185229 "SFQCMPK" NIL SFQCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1016 2181876 2182778 2182899 "SEXOF" NIL SEXOF (NIL T T T T T) -8 NIL NIL NIL) (-1015 2177484 2178379 2178474 "SEXCAT" 2181087 SEXCAT (NIL T T T T T) -9 NIL 2181638 NIL) (-1014 2176457 2177411 2177479 "SEX" NIL SEX (NIL) -8 NIL NIL NIL) (-1013 2174848 2175433 2175735 "SETMN" NIL SETMN (NIL NIL NIL) -8 NIL NIL NIL) (-1012 2174371 2174556 2174586 "SETCAT" 2174703 SETCAT (NIL) -9 NIL 2174787 NIL) (-1011 2174203 2174267 2174366 "SETCAT-" NIL SETCAT- (NIL T) -7 NIL NIL NIL) (-1010 2170426 2172657 2172700 "SETAGG" 2173568 SETAGG (NIL T) -9 NIL 2173906 NIL) (-1009 2170032 2170184 2170421 "SETAGG-" NIL SETAGG- (NIL T T) -7 NIL NIL NIL) (-1008 2166986 2169979 2170027 "SET" NIL SET (NIL T) -8 NIL NIL NIL) (-1007 2166452 2166762 2166862 "SEQAST" NIL SEQAST (NIL) -8 NIL NIL NIL) (-1006 2165579 2165945 2166006 "SEGXCAT" 2166292 SEGXCAT (NIL T T) -9 NIL 2166412 NIL) (-1005 2164504 2164772 2164815 "SEGCAT" 2165337 SEGCAT (NIL T) -9 NIL 2165558 NIL) (-1004 2164184 2164249 2164362 "SEGBIND2" NIL SEGBIND2 (NIL T T) -7 NIL NIL NIL) (-1003 2163250 2163720 2163928 "SEGBIND" NIL SEGBIND (NIL T) -8 NIL NIL NIL) (-1002 2162828 2163107 2163183 "SEGAST" NIL SEGAST (NIL) -8 NIL NIL NIL) (-1001 2162193 2162329 2162533 "SEG2" NIL SEG2 (NIL T T) -7 NIL NIL NIL) (-1000 2161259 2162006 2162188 "SEG" NIL SEG (NIL T) -8 NIL NIL NIL) (-999 2160514 2161209 2161254 "SDVAR" NIL SDVAR (NIL T) -8 NIL NIL NIL) (-998 2152051 2160385 2160509 "SDPOL" NIL SDPOL (NIL T) -8 NIL NIL NIL) (-997 2150911 2151201 2151518 "SCPKG" NIL SCPKG (NIL T) -7 NIL NIL NIL) (-996 2150217 2150429 2150617 "SCOPE" NIL SCOPE (NIL) -8 NIL NIL NIL) (-995 2149567 2149724 2149900 "SCACHE" NIL SCACHE (NIL T) -7 NIL NIL NIL) (-994 2149140 2149371 2149399 "SASTCAT" 2149404 SASTCAT (NIL) -9 NIL 2149417 NIL) (-993 2148607 2149032 2149106 "SAOS" NIL SAOS (NIL) -8 NIL NIL NIL) (-992 2148210 2148251 2148422 "SAERFFC" NIL SAERFFC (NIL T T T) -7 NIL NIL NIL) (-991 2147841 2147882 2148039 "SAEFACT" NIL SAEFACT (NIL T T T) -7 NIL NIL NIL) (-990 2140922 2147758 2147836 "SAE" NIL SAE (NIL T T NIL) -8 NIL NIL NIL) (-989 2139572 2139901 2140297 "RURPK" NIL RURPK (NIL T NIL) -7 NIL NIL NIL) (-988 2138333 2138694 2138994 "RULESET" NIL RULESET (NIL T T T) -8 NIL NIL NIL) (-987 2137957 2138178 2138259 "RULECOLD" NIL RULECOLD (NIL NIL) -8 NIL NIL NIL) (-986 2135417 2136051 2136504 "RULE" NIL RULE (NIL T T T) -8 NIL NIL NIL) (-985 2135256 2135289 2135357 "RTVALUE" NIL RTVALUE (NIL) -8 NIL NIL NIL) (-984 2134747 2135050 2135141 "RSTRCAST" NIL RSTRCAST (NIL) -8 NIL NIL NIL) (-983 2130375 2131243 2132154 "RSETGCD" NIL RSETGCD (NIL T T T T T) -7 NIL NIL NIL) (-982 2119194 2124748 2124842 "RSETCAT" 2128898 RSETCAT (NIL T T T T) -9 NIL 2129986 NIL) (-981 2117732 2118374 2119189 "RSETCAT-" NIL RSETCAT- (NIL T T T T T) -7 NIL NIL NIL) (-980 2111506 2112951 2114458 "RSDCMPK" NIL RSDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-979 2109388 2109945 2110017 "RRCC" 2111090 RRCC (NIL T T) -9 NIL 2111431 NIL) (-978 2108913 2109112 2109383 "RRCC-" NIL RRCC- (NIL T T T) -7 NIL NIL NIL) (-977 2108383 2108693 2108791 "RPTAST" NIL RPTAST (NIL) -8 NIL NIL NIL) (-976 2080935 2091648 2091712 "RPOLCAT" 2102186 RPOLCAT (NIL T T T) -9 NIL 2105331 NIL) (-975 2075034 2077857 2080930 "RPOLCAT-" NIL RPOLCAT- (NIL T T T T) -7 NIL NIL NIL) (-974 2071201 2074782 2074920 "ROMAN" NIL ROMAN (NIL) -8 NIL NIL NIL) (-973 2069529 2070268 2070524 "ROIRC" NIL ROIRC (NIL T T) -8 NIL NIL NIL) (-972 2065172 2067984 2068012 "RNS" 2068274 RNS (NIL) -9 NIL 2068526 NIL) (-971 2064075 2064562 2065099 "RNS-" NIL RNS- (NIL T) -7 NIL NIL NIL) (-970 2063193 2063594 2063794 "RNGBIND" NIL RNGBIND (NIL T T) -8 NIL NIL NIL) (-969 2062331 2062893 2062921 "RNG" 2062981 RNG (NIL) -9 NIL 2063035 NIL) (-968 2062220 2062254 2062326 "RNG-" NIL RNG- (NIL T) -7 NIL NIL NIL) (-967 2061482 2061987 2062027 "RMODULE" 2062032 RMODULE (NIL T) -9 NIL 2062058 NIL) (-966 2060421 2060527 2060857 "RMCAT2" NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL NIL) (-965 2057267 2060011 2060304 "RMATRIX" NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL NIL) (-964 2049916 2052408 2052520 "RMATCAT" 2055825 RMATCAT (NIL NIL NIL T T T) -9 NIL 2056802 NIL) (-963 2049433 2049612 2049911 "RMATCAT-" NIL RMATCAT- (NIL T NIL NIL T T T) -7 NIL NIL NIL) (-962 2049001 2049212 2049253 "RLINSET" 2049314 RLINSET (NIL T) -9 NIL 2049358 NIL) (-961 2048646 2048727 2048853 "RINTERP" NIL RINTERP (NIL NIL T) -7 NIL NIL NIL) (-960 2047492 2048223 2048251 "RING" 2048306 RING (NIL) -9 NIL 2048398 NIL) (-959 2047337 2047393 2047487 "RING-" NIL RING- (NIL T) -7 NIL NIL NIL) (-958 2046391 2046658 2046914 "RIDIST" NIL RIDIST (NIL) -7 NIL NIL NIL) (-957 2037378 2046019 2046220 "RGCHAIN" NIL RGCHAIN (NIL T NIL) -8 NIL NIL NIL) (-956 2036603 2037114 2037153 "RGBCSPC" 2037210 RGBCSPC (NIL T) -9 NIL 2037261 NIL) (-955 2035637 2036123 2036162 "RGBCMDL" 2036390 RGBCMDL (NIL T) -9 NIL 2036504 NIL) (-954 2035349 2035418 2035519 "RFFACTOR" NIL RFFACTOR (NIL T) -7 NIL NIL NIL) (-953 2035112 2035153 2035248 "RFFACT" NIL RFFACT (NIL T) -7 NIL NIL NIL) (-952 2033536 2033966 2034346 "RFDIST" NIL RFDIST (NIL) -7 NIL NIL NIL) (-951 2031123 2031791 2032459 "RF" NIL RF (NIL T) -7 NIL NIL NIL) (-950 2030673 2030771 2030931 "RETSOL" NIL RETSOL (NIL T T) -7 NIL NIL NIL) (-949 2030295 2030393 2030434 "RETRACT" 2030565 RETRACT (NIL T) -9 NIL 2030652 NIL) (-948 2030175 2030206 2030290 "RETRACT-" NIL RETRACT- (NIL T T) -7 NIL NIL NIL) (-947 2029777 2030049 2030116 "RETAST" NIL RETAST (NIL) -8 NIL NIL NIL) (-946 2028257 2029148 2029345 "RESRING" NIL RESRING (NIL T T T T NIL) -8 NIL NIL NIL) (-945 2027948 2028009 2028105 "RESLATC" NIL RESLATC (NIL T) -7 NIL NIL NIL) (-944 2027691 2027732 2027837 "REPSQ" NIL REPSQ (NIL T) -7 NIL NIL NIL) (-943 2027426 2027467 2027576 "REPDB" NIL REPDB (NIL T) -7 NIL NIL NIL) (-942 2022497 2023948 2025163 "REP2" NIL REP2 (NIL T) -7 NIL NIL NIL) (-941 2019596 2020354 2021162 "REP1" NIL REP1 (NIL T) -7 NIL NIL NIL) (-940 2017565 2018187 2018787 "REP" NIL REP (NIL) -7 NIL NIL NIL) (-939 2010200 2016116 2016552 "REGSET" NIL REGSET (NIL T T T T) -8 NIL NIL NIL) (-938 2009512 2009792 2009941 "REF" NIL REF (NIL T) -8 NIL NIL NIL) (-937 2008997 2009112 2009277 "REDORDER" NIL REDORDER (NIL T T) -7 NIL NIL NIL) (-936 2004590 2008400 2008621 "RECLOS" NIL RECLOS (NIL T) -8 NIL NIL NIL) (-935 2003822 2004021 2004234 "REALSOLV" NIL REALSOLV (NIL) -7 NIL NIL NIL) (-934 2001112 2001950 2002832 "REAL0Q" NIL REAL0Q (NIL T) -7 NIL NIL NIL) (-933 1997694 1998730 1999789 "REAL0" NIL REAL0 (NIL T) -7 NIL NIL NIL) (-932 1997530 1997583 1997611 "REAL" 1997616 REAL (NIL) -9 NIL 1997651 NIL) (-931 1997020 1997324 1997415 "RDUCEAST" NIL RDUCEAST (NIL) -8 NIL NIL NIL) (-930 1996500 1996578 1996783 "RDIV" NIL RDIV (NIL T T T T T) -7 NIL NIL NIL) (-929 1995733 1995925 1996136 "RDIST" NIL RDIST (NIL T) -7 NIL NIL NIL) (-928 1994621 1994918 1995285 "RDETRS" NIL RDETRS (NIL T T) -7 NIL NIL NIL) (-927 1992888 1993358 1993891 "RDETR" NIL RDETR (NIL T T) -7 NIL NIL NIL) (-926 1991810 1992087 1992474 "RDEEFS" NIL RDEEFS (NIL T T) -7 NIL NIL NIL) (-925 1990637 1990946 1991365 "RDEEF" NIL RDEEF (NIL T T) -7 NIL NIL NIL) (-924 1983985 1987497 1987525 "RCFIELD" 1988802 RCFIELD (NIL) -9 NIL 1989532 NIL) (-923 1982603 1983215 1983912 "RCFIELD-" NIL RCFIELD- (NIL T) -7 NIL NIL NIL) (-922 1978803 1980695 1980736 "RCAGG" 1981803 RCAGG (NIL T) -9 NIL 1982264 NIL) (-921 1978530 1978640 1978798 "RCAGG-" NIL RCAGG- (NIL T T) -7 NIL NIL NIL) (-920 1977975 1978104 1978265 "RATRET" NIL RATRET (NIL T) -7 NIL NIL NIL) (-919 1977592 1977671 1977790 "RATFACT" NIL RATFACT (NIL T) -7 NIL NIL NIL) (-918 1977007 1977157 1977307 "RANDSRC" NIL RANDSRC (NIL) -7 NIL NIL NIL) (-917 1976789 1976839 1976910 "RADUTIL" NIL RADUTIL (NIL) -7 NIL NIL NIL) (-916 1969231 1975907 1976215 "RADIX" NIL RADIX (NIL NIL) -8 NIL NIL NIL) (-915 1958933 1969098 1969226 "RADFF" NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL NIL) (-914 1958567 1958660 1958688 "RADCAT" 1958845 RADCAT (NIL) -9 NIL NIL NIL) (-913 1958405 1958465 1958562 "RADCAT-" NIL RADCAT- (NIL T) -7 NIL NIL NIL) (-912 1956505 1958236 1958325 "QUEUE" NIL QUEUE (NIL T) -8 NIL NIL NIL) (-911 1956186 1956235 1956362 "QUATCT2" NIL QUATCT2 (NIL T T T T) -7 NIL NIL NIL) (-910 1948473 1952557 1952597 "QUATCAT" 1953375 QUATCAT (NIL T) -9 NIL 1954139 NIL) (-909 1945723 1947003 1948379 "QUATCAT-" NIL QUATCAT- (NIL T T) -7 NIL NIL NIL) (-908 1941563 1945673 1945718 "QUAT" NIL QUAT (NIL T) -8 NIL NIL NIL) (-907 1938950 1940617 1940658 "QUAGG" 1941033 QUAGG (NIL T) -9 NIL 1941207 NIL) (-906 1938552 1938824 1938891 "QQUTAST" NIL QQUTAST (NIL) -8 NIL NIL NIL) (-905 1937558 1938188 1938351 "QFORM" NIL QFORM (NIL NIL T) -8 NIL NIL NIL) (-904 1937239 1937288 1937415 "QFCAT2" NIL QFCAT2 (NIL T T T T) -7 NIL NIL NIL) (-903 1926839 1933008 1933048 "QFCAT" 1933706 QFCAT (NIL T) -9 NIL 1934699 NIL) (-902 1923723 1925162 1926745 "QFCAT-" NIL QFCAT- (NIL T T) -7 NIL NIL NIL) (-901 1923269 1923403 1923533 "QEQUAT" NIL QEQUAT (NIL) -8 NIL NIL NIL) (-900 1917465 1918626 1919788 "QCMPACK" NIL QCMPACK (NIL T T T T T) -7 NIL NIL NIL) (-899 1916884 1917064 1917296 "QALGSET2" NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL NIL) (-898 1914706 1915234 1915657 "QALGSET" NIL QALGSET (NIL T T T T) -8 NIL NIL NIL) (-897 1913605 1913847 1914164 "PWFFINTB" NIL PWFFINTB (NIL T T T T) -7 NIL NIL NIL) (-896 1911966 1912164 1912517 "PUSHVAR" NIL PUSHVAR (NIL T T T T) -7 NIL NIL NIL) (-895 1907722 1908938 1908979 "PTRANFN" 1910863 PTRANFN (NIL T) -9 NIL NIL NIL) (-894 1906369 1906714 1907035 "PTPACK" NIL PTPACK (NIL T) -7 NIL NIL NIL) (-893 1906062 1906125 1906232 "PTFUNC2" NIL PTFUNC2 (NIL T T) -7 NIL NIL NIL) (-892 1900135 1904858 1904898 "PTCAT" 1905190 PTCAT (NIL T) -9 NIL 1905343 NIL) (-891 1899828 1899869 1899993 "PSQFR" NIL PSQFR (NIL T T T T) -7 NIL NIL NIL) (-890 1898707 1899023 1899357 "PSEUDLIN" NIL PSEUDLIN (NIL T) -7 NIL NIL NIL) (-889 1887586 1890147 1892456 "PSETPK" NIL PSETPK (NIL T T T T) -7 NIL NIL NIL) (-888 1880493 1883389 1883483 "PSETCAT" 1886457 PSETCAT (NIL T T T T) -9 NIL 1887264 NIL) (-887 1878943 1879677 1880488 "PSETCAT-" NIL PSETCAT- (NIL T T T T T) -7 NIL NIL NIL) (-886 1878262 1878457 1878485 "PSCURVE" 1878753 PSCURVE (NIL) -9 NIL 1878920 NIL) (-885 1873864 1875684 1875748 "PSCAT" 1876583 PSCAT (NIL T T T) -9 NIL 1876822 NIL) (-884 1873178 1873460 1873859 "PSCAT-" NIL PSCAT- (NIL T T T T) -7 NIL NIL NIL) (-883 1871575 1872490 1872753 "PRTITION" NIL PRTITION (NIL) -8 NIL NIL NIL) (-882 1871066 1871369 1871460 "PRTDAST" NIL PRTDAST (NIL) -8 NIL NIL NIL) (-881 1862086 1864508 1866696 "PRS" NIL PRS (NIL T T) -7 NIL NIL NIL) (-880 1859829 1861406 1861446 "PRQAGG" 1861629 PRQAGG (NIL T) -9 NIL 1861730 NIL) (-879 1859002 1859448 1859476 "PROPLOG" 1859615 PROPLOG (NIL) -9 NIL 1859729 NIL) (-878 1858677 1858740 1858863 "PROPFUN2" NIL PROPFUN2 (NIL T T) -7 NIL NIL NIL) (-877 1858113 1858252 1858424 "PROPFUN1" NIL PROPFUN1 (NIL T) -7 NIL NIL NIL) (-876 1856361 1857124 1857421 "PROPFRML" NIL PROPFRML (NIL T) -8 NIL NIL NIL) (-875 1855913 1856045 1856173 "PROPERTY" NIL PROPERTY (NIL) -8 NIL NIL NIL) (-874 1850354 1854853 1855673 "PRODUCT" NIL PRODUCT (NIL T T) -8 NIL NIL NIL) (-873 1850183 1850221 1850280 "PRINT" NIL PRINT (NIL) -7 NIL NIL NIL) (-872 1849622 1849762 1849913 "PRIMES" NIL PRIMES (NIL T) -7 NIL NIL NIL) (-871 1848090 1848509 1848975 "PRIMELT" NIL PRIMELT (NIL T) -7 NIL NIL NIL) (-870 1847807 1847868 1847896 "PRIMCAT" 1848020 PRIMCAT (NIL) -9 NIL NIL NIL) (-869 1846978 1847174 1847402 "PRIMARR2" NIL PRIMARR2 (NIL T T) -7 NIL NIL NIL) (-868 1842859 1846928 1846973 "PRIMARR" NIL PRIMARR (NIL T) -8 NIL NIL NIL) (-867 1842558 1842620 1842731 "PREASSOC" NIL PREASSOC (NIL T T) -7 NIL NIL NIL) (-866 1839694 1842207 1842440 "PR" NIL PR (NIL T T) -8 NIL NIL NIL) (-865 1839145 1839302 1839330 "PPCURVE" 1839535 PPCURVE (NIL) -9 NIL 1839671 NIL) (-864 1838758 1839003 1839086 "PORTNUM" NIL PORTNUM (NIL) -8 NIL NIL NIL) (-863 1836514 1836935 1837527 "POLYROOT" NIL POLYROOT (NIL T T T T T) -7 NIL NIL NIL) (-862 1835957 1836021 1836254 "POLYLIFT" NIL POLYLIFT (NIL T T T T T) -7 NIL NIL NIL) (-861 1832677 1833163 1833774 "POLYCATQ" NIL POLYCATQ (NIL T T T T T) -7 NIL NIL NIL) (-860 1818268 1824397 1824461 "POLYCAT" 1827946 POLYCAT (NIL T T T) -9 NIL 1829823 NIL) (-859 1813778 1815925 1818263 "POLYCAT-" NIL POLYCAT- (NIL T T T T) -7 NIL NIL NIL) (-858 1813435 1813509 1813628 "POLY2UP" NIL POLY2UP (NIL NIL T) -7 NIL NIL NIL) (-857 1813128 1813191 1813298 "POLY2" NIL POLY2 (NIL T T) -7 NIL NIL NIL) (-856 1806491 1812861 1813020 "POLY" NIL POLY (NIL T) -8 NIL NIL NIL) (-855 1805378 1805641 1805917 "POLUTIL" NIL POLUTIL (NIL T T) -7 NIL NIL NIL) (-854 1803982 1804295 1804625 "POLTOPOL" NIL POLTOPOL (NIL NIL T) -7 NIL NIL NIL) (-853 1799144 1803932 1803977 "POINT" NIL POINT (NIL T) -8 NIL NIL NIL) (-852 1797632 1798043 1798418 "PNTHEORY" NIL PNTHEORY (NIL) -7 NIL NIL NIL) (-851 1796389 1796698 1797094 "PMTOOLS" NIL PMTOOLS (NIL T T T) -7 NIL NIL NIL) (-850 1796060 1796144 1796261 "PMSYM" NIL PMSYM (NIL T) -7 NIL NIL NIL) (-849 1795639 1795714 1795888 "PMQFCAT" NIL PMQFCAT (NIL T T T) -7 NIL NIL NIL) (-848 1795125 1795221 1795381 "PMPREDFS" NIL PMPREDFS (NIL T T T) -7 NIL NIL NIL) (-847 1794597 1794717 1794871 "PMPRED" NIL PMPRED (NIL T) -7 NIL NIL NIL) (-846 1793492 1793710 1794087 "PMPLCAT" NIL PMPLCAT (NIL T T T T T) -7 NIL NIL NIL) (-845 1793103 1793188 1793340 "PMLSAGG" NIL PMLSAGG (NIL T T T) -7 NIL NIL NIL) (-844 1792654 1792736 1792917 "PMKERNEL" NIL PMKERNEL (NIL T T) -7 NIL NIL NIL) (-843 1792346 1792427 1792540 "PMINS" NIL PMINS (NIL T) -7 NIL NIL NIL) (-842 1791859 1791934 1792142 "PMFS" NIL PMFS (NIL T T T) -7 NIL NIL NIL) (-841 1791207 1791335 1791537 "PMDOWN" NIL PMDOWN (NIL T T T) -7 NIL NIL NIL) (-840 1790569 1790703 1790866 "PMASSFS" NIL PMASSFS (NIL T T) -7 NIL NIL NIL) (-839 1789873 1790055 1790236 "PMASS" NIL PMASS (NIL) -7 NIL NIL NIL) (-838 1789596 1789670 1789764 "PLOTTOOL" NIL PLOTTOOL (NIL) -7 NIL NIL NIL) (-837 1786164 1787353 1788269 "PLOT3D" NIL PLOT3D (NIL) -8 NIL NIL NIL) (-836 1785248 1785449 1785684 "PLOT1" NIL PLOT1 (NIL T) -7 NIL NIL NIL) (-835 1780813 1782197 1783339 "PLOT" NIL PLOT (NIL) -8 NIL NIL NIL) (-834 1760734 1765621 1770468 "PLEQN" NIL PLEQN (NIL T T T T) -7 NIL NIL NIL) (-833 1760474 1760527 1760630 "PINTERPA" NIL PINTERPA (NIL T T) -7 NIL NIL NIL) (-832 1759915 1760049 1760229 "PINTERP" NIL PINTERP (NIL NIL T) -7 NIL NIL NIL) (-831 1757924 1759145 1759173 "PID" 1759370 PID (NIL) -9 NIL 1759497 NIL) (-830 1757712 1757755 1757830 "PICOERCE" NIL PICOERCE (NIL T) -7 NIL NIL NIL) (-829 1756899 1757559 1757646 "PI" NIL PI (NIL) -8 NIL NIL 1757686) (-828 1756351 1756502 1756678 "PGROEB" NIL PGROEB (NIL T) -7 NIL NIL NIL) (-827 1752679 1753637 1754542 "PGE" NIL PGE (NIL) -7 NIL NIL NIL) (-826 1751043 1751332 1751698 "PGCD" NIL PGCD (NIL T T T T) -7 NIL NIL NIL) (-825 1750485 1750600 1750761 "PFRPAC" NIL PFRPAC (NIL T) -7 NIL NIL NIL) (-824 1747026 1749354 1749707 "PFR" NIL PFR (NIL T) -8 NIL NIL NIL) (-823 1745632 1745912 1746237 "PFOTOOLS" NIL PFOTOOLS (NIL T T) -7 NIL NIL NIL) (-822 1744397 1744651 1744999 "PFOQ" NIL PFOQ (NIL T T T) -7 NIL NIL NIL) (-821 1743107 1743334 1743686 "PFO" NIL PFO (NIL T T T T T) -7 NIL NIL NIL) (-820 1740117 1741677 1741705 "PFECAT" 1742298 PFECAT (NIL) -9 NIL 1742675 NIL) (-819 1739740 1739905 1740112 "PFECAT-" NIL PFECAT- (NIL T) -7 NIL NIL NIL) (-818 1738564 1738846 1739147 "PFBRU" NIL PFBRU (NIL T T) -7 NIL NIL NIL) (-817 1736746 1737133 1737563 "PFBR" NIL PFBR (NIL T T T T) -7 NIL NIL NIL) (-816 1732716 1736672 1736741 "PF" NIL PF (NIL NIL) -8 NIL NIL NIL) (-815 1728619 1729766 1730633 "PERMGRP" NIL PERMGRP (NIL T) -8 NIL NIL NIL) (-814 1726551 1727640 1727681 "PERMCAT" 1728080 PERMCAT (NIL T) -9 NIL 1728377 NIL) (-813 1726247 1726294 1726417 "PERMAN" NIL PERMAN (NIL NIL T) -7 NIL NIL NIL) (-812 1722696 1724377 1725022 "PERM" NIL PERM (NIL T) -8 NIL NIL NIL) (-811 1720161 1722451 1722572 "PENDTREE" NIL PENDTREE (NIL T) -8 NIL NIL NIL) (-810 1719030 1719293 1719334 "PDSPC" 1719867 PDSPC (NIL T) -9 NIL 1720112 NIL) (-809 1718397 1718663 1719025 "PDSPC-" NIL PDSPC- (NIL T T) -7 NIL NIL NIL) (-808 1717032 1718025 1718066 "PDRING" 1718071 PDRING (NIL T) -9 NIL 1718098 NIL) (-807 1715742 1716531 1716584 "PDMOD" 1716589 PDMOD (NIL T T) -9 NIL 1716692 NIL) (-806 1714835 1715047 1715296 "PDECOMP" NIL PDECOMP (NIL T T) -7 NIL NIL NIL) (-805 1714440 1714507 1714561 "PDDOM" 1714726 PDDOM (NIL T T) -9 NIL 1714806 NIL) (-804 1714292 1714328 1714435 "PDDOM-" NIL PDDOM- (NIL T T T) -7 NIL NIL NIL) (-803 1714078 1714117 1714206 "PCOMP" NIL PCOMP (NIL T T) -7 NIL NIL NIL) (-802 1712395 1713149 1713448 "PBWLB" NIL PBWLB (NIL T) -8 NIL NIL NIL) (-801 1712084 1712147 1712256 "PATTERN2" NIL PATTERN2 (NIL T T) -7 NIL NIL NIL) (-800 1710222 1710652 1711103 "PATTERN1" NIL PATTERN1 (NIL T T) -7 NIL NIL NIL) (-799 1703842 1705671 1706963 "PATTERN" NIL PATTERN (NIL T) -8 NIL NIL NIL) (-798 1703473 1703546 1703678 "PATRES2" NIL PATRES2 (NIL T T T) -7 NIL NIL NIL) (-797 1701175 1701855 1702336 "PATRES" NIL PATRES (NIL T T) -8 NIL NIL NIL) (-796 1699379 1699807 1700210 "PATMATCH" NIL PATMATCH (NIL T T T) -7 NIL NIL NIL) (-795 1698825 1699073 1699114 "PATMAB" 1699221 PATMAB (NIL T) -9 NIL 1699304 NIL) (-794 1697472 1697876 1698133 "PATLRES" NIL PATLRES (NIL T T T) -8 NIL NIL NIL) (-793 1697010 1697141 1697182 "PATAB" 1697187 PATAB (NIL T) -9 NIL 1697359 NIL) (-792 1695553 1695990 1696413 "PARTPERM" NIL PARTPERM (NIL) -7 NIL NIL NIL) (-791 1695231 1695306 1695408 "PARSURF" NIL PARSURF (NIL T) -8 NIL NIL NIL) (-790 1694920 1694983 1695092 "PARSU2" NIL PARSU2 (NIL T T) -7 NIL NIL NIL) (-789 1694725 1694771 1694838 "PARSER" NIL PARSER (NIL) -7 NIL NIL NIL) (-788 1694403 1694478 1694580 "PARSCURV" NIL PARSCURV (NIL T) -8 NIL NIL NIL) (-787 1694092 1694155 1694264 "PARSC2" NIL PARSC2 (NIL T T) -7 NIL NIL NIL) (-786 1693783 1693853 1693950 "PARPCURV" NIL PARPCURV (NIL T) -8 NIL NIL NIL) (-785 1693472 1693535 1693644 "PARPC2" NIL PARPC2 (NIL T T) -7 NIL NIL NIL) (-784 1692633 1693012 1693191 "PARAMAST" NIL PARAMAST (NIL) -8 NIL NIL NIL) (-783 1692240 1692338 1692457 "PAN2EXPR" NIL PAN2EXPR (NIL) -7 NIL NIL NIL) (-782 1691208 1691633 1691852 "PALETTE" NIL PALETTE (NIL) -8 NIL NIL NIL) (-781 1689873 1690527 1690887 "PAIR" NIL PAIR (NIL T T) -8 NIL NIL NIL) (-780 1682963 1689277 1689471 "PADICRC" NIL PADICRC (NIL NIL T) -8 NIL NIL NIL) (-779 1675384 1682461 1682645 "PADICRAT" NIL PADICRAT (NIL NIL) -8 NIL NIL NIL) (-778 1672109 1674024 1674064 "PADICCT" 1674645 PADICCT (NIL NIL) -9 NIL 1674927 NIL) (-777 1670099 1672059 1672104 "PADIC" NIL PADIC (NIL NIL) -8 NIL NIL NIL) (-776 1669261 1669471 1669737 "PADEPAC" NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL NIL) (-775 1668603 1668746 1668950 "PADE" NIL PADE (NIL T T T) -7 NIL NIL NIL) (-774 1666984 1668011 1668289 "OWP" NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-773 1666508 1666767 1666864 "OVERSET" NIL OVERSET (NIL) -8 NIL NIL NIL) (-772 1665567 1666245 1666417 "OVAR" NIL OVAR (NIL NIL) -8 NIL NIL NIL) (-771 1655989 1658858 1661057 "OUTFORM" NIL OUTFORM (NIL) -8 NIL NIL NIL) (-770 1655381 1655695 1655821 "OUTBFILE" NIL OUTBFILE (NIL) -8 NIL NIL NIL) (-769 1654658 1654853 1654881 "OUTBCON" 1655199 OUTBCON (NIL) -9 NIL 1655365 NIL) (-768 1654366 1654496 1654653 "OUTBCON-" NIL OUTBCON- (NIL T) -7 NIL NIL NIL) (-767 1653747 1653892 1654053 "OUT" NIL OUT (NIL) -7 NIL NIL NIL) (-766 1653118 1653545 1653634 "OSI" NIL OSI (NIL) -8 NIL NIL NIL) (-765 1652533 1652948 1652976 "OSGROUP" 1652981 OSGROUP (NIL) -9 NIL 1653003 NIL) (-764 1651497 1651758 1652043 "ORTHPOL" NIL ORTHPOL (NIL T) -7 NIL NIL NIL) (-763 1648766 1651372 1651492 "OREUP" NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL NIL) (-762 1645907 1648517 1648643 "ORESUP" NIL ORESUP (NIL T NIL NIL) -8 NIL NIL NIL) (-761 1643925 1644453 1645013 "OREPCTO" NIL OREPCTO (NIL T T) -7 NIL NIL NIL) (-760 1637267 1639807 1639847 "OREPCAT" 1642168 OREPCAT (NIL T) -9 NIL 1643270 NIL) (-759 1635293 1636227 1637262 "OREPCAT-" NIL OREPCAT- (NIL T T) -7 NIL NIL NIL) (-758 1634490 1634761 1634789 "ORDTYPE" 1635094 ORDTYPE (NIL) -9 NIL 1635252 NIL) (-757 1634024 1634235 1634485 "ORDTYPE-" NIL ORDTYPE- (NIL T) -7 NIL NIL NIL) (-756 1633486 1633862 1634019 "ORDSTRCT" NIL ORDSTRCT (NIL T NIL) -8 NIL NIL NIL) (-755 1632980 1633343 1633371 "ORDSET" 1633376 ORDSET (NIL) -9 NIL 1633398 NIL) (-754 1631545 1632567 1632595 "ORDRING" 1632600 ORDRING (NIL) -9 NIL 1632628 NIL) (-753 1630793 1631350 1631378 "ORDMON" 1631383 ORDMON (NIL) -9 NIL 1631404 NIL) (-752 1630097 1630259 1630451 "ORDFUNS" NIL ORDFUNS (NIL NIL T) -7 NIL NIL NIL) (-751 1629308 1629816 1629844 "ORDFIN" 1629909 ORDFIN (NIL) -9 NIL 1629983 NIL) (-750 1628702 1628841 1629027 "ORDCOMP2" NIL ORDCOMP2 (NIL T T) -7 NIL NIL NIL) (-749 1625377 1627670 1628076 "ORDCOMP" NIL ORDCOMP (NIL T) -8 NIL NIL NIL) (-748 1624784 1625139 1625244 "OPSIG" NIL OPSIG (NIL) -8 NIL NIL NIL) (-747 1624592 1624637 1624703 "OPQUERY" NIL OPQUERY (NIL) -7 NIL NIL NIL) (-746 1623893 1624169 1624210 "OPERCAT" 1624421 OPERCAT (NIL T) -9 NIL 1624517 NIL) (-745 1623705 1623772 1623888 "OPERCAT-" NIL OPERCAT- (NIL T T) -7 NIL NIL NIL) (-744 1621071 1622507 1623003 "OP" NIL OP (NIL T) -8 NIL NIL NIL) (-743 1620492 1620619 1620793 "ONECOMP2" NIL ONECOMP2 (NIL T T) -7 NIL NIL NIL) (-742 1617393 1619631 1619997 "ONECOMP" NIL ONECOMP (NIL T) -8 NIL NIL NIL) (-741 1614024 1616823 1616863 "OMSAGG" 1616924 OMSAGG (NIL T) -9 NIL 1616988 NIL) (-740 1612436 1613695 1613863 "OMLO" NIL OMLO (NIL T T) -8 NIL NIL NIL) (-739 1610632 1611873 1611901 "OINTDOM" 1611906 OINTDOM (NIL) -9 NIL 1611927 NIL) (-738 1608062 1609634 1609963 "OFMONOID" NIL OFMONOID (NIL T) -8 NIL NIL NIL) (-737 1607316 1608012 1608057 "ODVAR" NIL ODVAR (NIL T) -8 NIL NIL NIL) (-736 1604518 1607157 1607311 "ODR" NIL ODR (NIL T T NIL) -8 NIL NIL NIL) (-735 1596055 1604389 1604513 "ODPOL" NIL ODPOL (NIL T) -8 NIL NIL NIL) (-734 1589466 1595946 1596050 "ODP" NIL ODP (NIL NIL T NIL) -8 NIL NIL NIL) (-733 1588438 1588675 1588948 "ODETOOLS" NIL ODETOOLS (NIL T T) -7 NIL NIL NIL) (-732 1586072 1586742 1587446 "ODESYS" NIL ODESYS (NIL T T) -7 NIL NIL NIL) (-731 1581849 1582809 1583832 "ODERTRIC" NIL ODERTRIC (NIL T T) -7 NIL NIL NIL) (-730 1581357 1581445 1581639 "ODERED" NIL ODERED (NIL T T T T T) -7 NIL NIL NIL) (-729 1578806 1579388 1580061 "ODERAT" NIL ODERAT (NIL T T) -7 NIL NIL NIL) (-728 1576201 1576709 1577305 "ODEPRRIC" NIL ODEPRRIC (NIL T T T T) -7 NIL NIL NIL) (-727 1573198 1573737 1574383 "ODEPRIM" NIL ODEPRIM (NIL T T T T) -7 NIL NIL NIL) (-726 1572553 1572661 1572919 "ODEPAL" NIL ODEPAL (NIL T T T T) -7 NIL NIL NIL) (-725 1571711 1571836 1572057 "ODEINT" NIL ODEINT (NIL T T) -7 NIL NIL NIL) (-724 1567995 1568791 1569704 "ODEEF" NIL ODEEF (NIL T T) -7 NIL NIL NIL) (-723 1567435 1567530 1567752 "ODECONST" NIL ODECONST (NIL T T T) -7 NIL NIL NIL) (-722 1567116 1567165 1567292 "OCTCT2" NIL OCTCT2 (NIL T T T T) -7 NIL NIL NIL) (-721 1563719 1566915 1567034 "OCT" NIL OCT (NIL T) -8 NIL NIL NIL) (-720 1562879 1563501 1563529 "OCAMON" 1563534 OCAMON (NIL) -9 NIL 1563555 NIL) (-719 1557091 1559905 1559945 "OC" 1561040 OC (NIL T) -9 NIL 1561896 NIL) (-718 1555091 1556017 1556997 "OC-" NIL OC- (NIL T T) -7 NIL NIL NIL) (-717 1554507 1554925 1554953 "OASGP" 1554958 OASGP (NIL) -9 NIL 1554978 NIL) (-716 1553570 1554219 1554247 "OAMONS" 1554287 OAMONS (NIL) -9 NIL 1554330 NIL) (-715 1552715 1553296 1553324 "OAMON" 1553381 OAMON (NIL) -9 NIL 1553432 NIL) (-714 1552611 1552643 1552710 "OAMON-" NIL OAMON- (NIL T) -7 NIL NIL NIL) (-713 1551362 1552136 1552164 "OAGROUP" 1552310 OAGROUP (NIL) -9 NIL 1552402 NIL) (-712 1551153 1551240 1551357 "OAGROUP-" NIL OAGROUP- (NIL T) -7 NIL NIL NIL) (-711 1550893 1550949 1551037 "NUMTUBE" NIL NUMTUBE (NIL T) -7 NIL NIL NIL) (-710 1545955 1547518 1549045 "NUMQUAD" NIL NUMQUAD (NIL) -7 NIL NIL NIL) (-709 1542650 1543684 1544719 "NUMODE" NIL NUMODE (NIL) -7 NIL NIL NIL) (-708 1541760 1541993 1542211 "NUMFMT" NIL NUMFMT (NIL) -7 NIL NIL NIL) (-707 1530621 1533649 1536097 "NUMERIC" NIL NUMERIC (NIL T) -7 NIL NIL NIL) (-706 1524508 1530062 1530156 "NTSCAT" 1530161 NTSCAT (NIL T T T T) -9 NIL 1530199 NIL) (-705 1523849 1524028 1524221 "NTPOLFN" NIL NTPOLFN (NIL T) -7 NIL NIL NIL) (-704 1523542 1523605 1523712 "NSUP2" NIL NSUP2 (NIL T T) -7 NIL NIL NIL) (-703 1511209 1521162 1521972 "NSUP" NIL NSUP (NIL T) -8 NIL NIL NIL) (-702 1500218 1511074 1511204 "NSMP" NIL NSMP (NIL T T) -8 NIL NIL NIL) (-701 1498938 1499263 1499620 "NREP" NIL NREP (NIL T) -7 NIL NIL NIL) (-700 1497774 1498038 1498396 "NPCOEF" NIL NPCOEF (NIL T T T T T) -7 NIL NIL NIL) (-699 1496941 1497074 1497290 "NORMRETR" NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL NIL) (-698 1495259 1495578 1495984 "NORMPK" NIL NORMPK (NIL T T T T T) -7 NIL NIL NIL) (-697 1494972 1495006 1495130 "NORMMA" NIL NORMMA (NIL T T T T) -7 NIL NIL NIL) (-696 1494791 1494826 1494895 "NONE1" NIL NONE1 (NIL T) -7 NIL NIL NIL) (-695 1494567 1494757 1494786 "NONE" NIL NONE (NIL) -8 NIL NIL NIL) (-694 1494131 1494198 1494375 "NODE1" NIL NODE1 (NIL T T) -7 NIL NIL NIL) (-693 1492417 1493494 1493749 "NNI" NIL NNI (NIL) -8 NIL NIL 1494096) (-692 1491145 1491482 1491846 "NLINSOL" NIL NLINSOL (NIL T) -7 NIL NIL NIL) (-691 1490122 1490374 1490676 "NFINTBAS" NIL NFINTBAS (NIL T T) -7 NIL NIL NIL) (-690 1489209 1489774 1489815 "NETCLT" 1489986 NETCLT (NIL T) -9 NIL 1490067 NIL) (-689 1488113 1488380 1488661 "NCODIV" NIL NCODIV (NIL T T) -7 NIL NIL NIL) (-688 1487912 1487955 1488030 "NCNTFRAC" NIL NCNTFRAC (NIL T) -7 NIL NIL NIL) (-687 1486443 1486831 1487251 "NCEP" NIL NCEP (NIL T) -7 NIL NIL NIL) (-686 1485076 1486042 1486070 "NASRING" 1486180 NASRING (NIL) -9 NIL 1486260 NIL) (-685 1484921 1484977 1485071 "NASRING-" NIL NASRING- (NIL T) -7 NIL NIL NIL) (-684 1483850 1484528 1484556 "NARNG" 1484673 NARNG (NIL) -9 NIL 1484764 NIL) (-683 1483626 1483711 1483845 "NARNG-" NIL NARNG- (NIL T) -7 NIL NIL NIL) (-682 1482392 1483146 1483186 "NAALG" 1483265 NAALG (NIL T) -9 NIL 1483326 NIL) (-681 1482262 1482297 1482387 "NAALG-" NIL NAALG- (NIL T T) -7 NIL NIL NIL) (-680 1477241 1478426 1479612 "MULTSQFR" NIL MULTSQFR (NIL T T T T) -7 NIL NIL NIL) (-679 1476636 1476723 1476907 "MULTFACT" NIL MULTFACT (NIL T T T T) -7 NIL NIL NIL) (-678 1468646 1473140 1473192 "MTSCAT" 1474252 MTSCAT (NIL T T) -9 NIL 1474766 NIL) (-677 1468412 1468472 1468564 "MTHING" NIL MTHING (NIL T) -7 NIL NIL NIL) (-676 1468238 1468277 1468337 "MSYSCMD" NIL MSYSCMD (NIL) -7 NIL NIL NIL) (-675 1465100 1467789 1467830 "MSETAGG" 1467835 MSETAGG (NIL T) -9 NIL 1467869 NIL) (-674 1461237 1464146 1464464 "MSET" NIL MSET (NIL T) -8 NIL NIL NIL) (-673 1457511 1459334 1460074 "MRING" NIL MRING (NIL T T) -8 NIL NIL NIL) (-672 1457148 1457221 1457350 "MRF2" NIL MRF2 (NIL T T T) -7 NIL NIL NIL) (-671 1456801 1456842 1456986 "MRATFAC" NIL MRATFAC (NIL T T T T) -7 NIL NIL NIL) (-670 1454666 1455003 1455434 "MPRFF" NIL MPRFF (NIL T T T T) -7 NIL NIL NIL) (-669 1448064 1454565 1454661 "MPOLY" NIL MPOLY (NIL NIL T) -8 NIL NIL NIL) (-668 1447589 1447630 1447838 "MPCPF" NIL MPCPF (NIL T T T T) -7 NIL NIL NIL) (-667 1447148 1447197 1447380 "MPC3" NIL MPC3 (NIL T T T T T T T) -7 NIL NIL NIL) (-666 1446422 1446515 1446734 "MPC2" NIL MPC2 (NIL T T T T T T T) -7 NIL NIL NIL) (-665 1445039 1445400 1445790 "MONOTOOL" NIL MONOTOOL (NIL T T) -7 NIL NIL NIL) (-664 1444560 1444627 1444666 "MONOPC" 1444726 MONOPC (NIL T) -9 NIL 1444945 NIL) (-663 1444011 1444347 1444475 "MONOP" NIL MONOP (NIL T) -8 NIL NIL NIL) (-662 1443153 1443532 1443560 "MONOID" 1443778 MONOID (NIL) -9 NIL 1443922 NIL) (-661 1442812 1442962 1443148 "MONOID-" NIL MONOID- (NIL T) -7 NIL NIL NIL) (-660 1431750 1438620 1438679 "MONOGEN" 1439353 MONOGEN (NIL T T) -9 NIL 1439809 NIL) (-659 1429762 1430648 1431631 "MONOGEN-" NIL MONOGEN- (NIL T T T) -7 NIL NIL NIL) (-658 1428476 1429020 1429048 "MONADWU" 1429439 MONADWU (NIL) -9 NIL 1429674 NIL) (-657 1428024 1428224 1428471 "MONADWU-" NIL MONADWU- (NIL T) -7 NIL NIL NIL) (-656 1427301 1427602 1427630 "MONAD" 1427837 MONAD (NIL) -9 NIL 1427949 NIL) (-655 1427068 1427164 1427296 "MONAD-" NIL MONAD- (NIL T) -7 NIL NIL NIL) (-654 1425458 1426228 1426507 "MOEBIUS" NIL MOEBIUS (NIL T) -8 NIL NIL NIL) (-653 1424592 1425119 1425159 "MODULE" 1425164 MODULE (NIL T) -9 NIL 1425202 NIL) (-652 1424271 1424397 1424587 "MODULE-" NIL MODULE- (NIL T T) -7 NIL NIL NIL) (-651 1421982 1422868 1423182 "MODRING" NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-650 1419161 1420578 1421091 "MODOP" NIL MODOP (NIL T T) -8 NIL NIL NIL) (-649 1417795 1418369 1418645 "MODMONOM" NIL MODMONOM (NIL T T NIL) -8 NIL NIL NIL) (-648 1407014 1416460 1416873 "MODMON" NIL MODMON (NIL T T) -8 NIL NIL NIL) (-647 1403970 1406014 1406283 "MODFIELD" NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-646 1403054 1403421 1403611 "MMLFORM" NIL MMLFORM (NIL) -8 NIL NIL NIL) (-645 1402623 1402672 1402851 "MMAP" NIL MMAP (NIL T T T T T T) -7 NIL NIL NIL) (-644 1400448 1401444 1401484 "MLO" 1401901 MLO (NIL T) -9 NIL 1402141 NIL) (-643 1398329 1398856 1399451 "MLIFT" NIL MLIFT (NIL T T T T) -7 NIL NIL NIL) (-642 1397797 1397893 1398047 "MKUCFUNC" NIL MKUCFUNC (NIL T T T) -7 NIL NIL NIL) (-641 1397467 1397543 1397666 "MKRECORD" NIL MKRECORD (NIL T T) -7 NIL NIL NIL) (-640 1396679 1396865 1397093 "MKFUNC" NIL MKFUNC (NIL T) -7 NIL NIL NIL) (-639 1396172 1396288 1396444 "MKFLCFN" NIL MKFLCFN (NIL T) -7 NIL NIL NIL) (-638 1395544 1395658 1395843 "MKBCFUNC" NIL MKBCFUNC (NIL T T T T) -7 NIL NIL NIL) (-637 1394571 1394844 1395121 "MHROWRED" NIL MHROWRED (NIL T) -7 NIL NIL NIL) (-636 1394004 1394092 1394263 "MFINFACT" NIL MFINFACT (NIL T T T T) -7 NIL NIL NIL) (-635 1391162 1392041 1392920 "MESH" NIL MESH (NIL) -7 NIL NIL NIL) (-634 1389829 1390177 1390530 "MDDFACT" NIL MDDFACT (NIL T) -7 NIL NIL NIL) (-633 1386486 1388953 1388994 "MDAGG" 1389251 MDAGG (NIL T) -9 NIL 1389396 NIL) (-632 1385760 1385924 1386124 "MCDEN" NIL MCDEN (NIL T T) -7 NIL NIL NIL) (-631 1384838 1385124 1385354 "MAYBE" NIL MAYBE (NIL T) -8 NIL NIL NIL) (-630 1382935 1383512 1384073 "MATSTOR" NIL MATSTOR (NIL T) -7 NIL NIL NIL) (-629 1378688 1382525 1382772 "MATRIX" NIL MATRIX (NIL T) -8 NIL NIL NIL) (-628 1375037 1375806 1376540 "MATLIN" NIL MATLIN (NIL T T T T) -7 NIL NIL NIL) (-627 1373790 1373959 1374288 "MATCAT2" NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-626 1363306 1366914 1366990 "MATCAT" 1371978 MATCAT (NIL T T T) -9 NIL 1373424 NIL) (-625 1360587 1361893 1363301 "MATCAT-" NIL MATCAT- (NIL T T T T) -7 NIL NIL NIL) (-624 1358988 1359348 1359732 "MAPPKG3" NIL MAPPKG3 (NIL T T T) -7 NIL NIL NIL) (-623 1358121 1358318 1358540 "MAPPKG2" NIL MAPPKG2 (NIL T T) -7 NIL NIL NIL) (-622 1356872 1357198 1357525 "MAPPKG1" NIL MAPPKG1 (NIL T) -7 NIL NIL NIL) (-621 1356034 1356436 1356612 "MAPPAST" NIL MAPPAST (NIL) -8 NIL NIL NIL) (-620 1355703 1355767 1355890 "MAPHACK3" NIL MAPHACK3 (NIL T T T) -7 NIL NIL NIL) (-619 1355351 1355424 1355538 "MAPHACK2" NIL MAPHACK2 (NIL T T) -7 NIL NIL NIL) (-618 1354886 1355001 1355143 "MAPHACK1" NIL MAPHACK1 (NIL T) -7 NIL NIL NIL) (-617 1353095 1353863 1354164 "MAGMA" NIL MAGMA (NIL T) -8 NIL NIL NIL) (-616 1352589 1352891 1352981 "MACROAST" NIL MACROAST (NIL) -8 NIL NIL NIL) (-615 1346098 1350904 1350945 "LZSTAGG" 1351722 LZSTAGG (NIL T) -9 NIL 1352012 NIL) (-614 1343217 1344651 1346093 "LZSTAGG-" NIL LZSTAGG- (NIL T T) -7 NIL NIL NIL) (-613 1340604 1341570 1342053 "LWORD" NIL LWORD (NIL T) -8 NIL NIL NIL) (-612 1340185 1340464 1340538 "LSTAST" NIL LSTAST (NIL) -8 NIL NIL NIL) (-611 1332349 1340046 1340180 "LSQM" NIL LSQM (NIL NIL T) -8 NIL NIL NIL) (-610 1331712 1331857 1332085 "LSPP" NIL LSPP (NIL T T T T) -7 NIL NIL NIL) (-609 1329196 1329894 1330606 "LSMP1" NIL LSMP1 (NIL T) -7 NIL NIL NIL) (-608 1327308 1327631 1328079 "LSMP" NIL LSMP (NIL T T T T) -7 NIL NIL NIL) (-607 1320477 1326395 1326436 "LSAGG" 1326498 LSAGG (NIL T) -9 NIL 1326576 NIL) (-606 1318171 1319270 1320472 "LSAGG-" NIL LSAGG- (NIL T T) -7 NIL NIL NIL) (-605 1315651 1317520 1317769 "LPOLY" NIL LPOLY (NIL T T) -8 NIL NIL NIL) (-604 1315318 1315409 1315532 "LPEFRAC" NIL LPEFRAC (NIL T) -7 NIL NIL NIL) (-603 1314989 1315068 1315096 "LOGIC" 1315207 LOGIC (NIL) -9 NIL 1315289 NIL) (-602 1314884 1314913 1314984 "LOGIC-" NIL LOGIC- (NIL T) -7 NIL NIL NIL) (-601 1314203 1314361 1314554 "LODOOPS" NIL LODOOPS (NIL T T) -7 NIL NIL NIL) (-600 1312988 1313237 1313588 "LODOF" NIL LODOF (NIL T T) -7 NIL NIL NIL) (-599 1308810 1311609 1311649 "LODOCAT" 1312081 LODOCAT (NIL T) -9 NIL 1312292 NIL) (-598 1308603 1308679 1308805 "LODOCAT-" NIL LODOCAT- (NIL T T) -7 NIL NIL NIL) (-597 1305603 1308480 1308598 "LODO2" NIL LODO2 (NIL T T) -8 NIL NIL NIL) (-596 1302701 1305553 1305598 "LODO1" NIL LODO1 (NIL T) -8 NIL NIL NIL) (-595 1299788 1302631 1302696 "LODO" NIL LODO (NIL T NIL) -8 NIL NIL NIL) (-594 1298841 1299016 1299318 "LODEEF" NIL LODEEF (NIL T T T) -7 NIL NIL NIL) (-593 1296973 1298103 1298356 "LO" NIL LO (NIL T T T) -8 NIL NIL NIL) (-592 1292068 1295132 1295173 "LNAGG" 1296035 LNAGG (NIL T) -9 NIL 1296470 NIL) (-591 1291455 1291722 1292063 "LNAGG-" NIL LNAGG- (NIL T T) -7 NIL NIL NIL) (-590 1288027 1288968 1289605 "LMOPS" NIL LMOPS (NIL T T NIL) -8 NIL NIL NIL) (-589 1287289 1287794 1287834 "LMODULE" 1287839 LMODULE (NIL T) -9 NIL 1287865 NIL) (-588 1284468 1287026 1287148 "LMDICT" NIL LMDICT (NIL T) -8 NIL NIL NIL) (-587 1284036 1284247 1284288 "LLINSET" 1284349 LLINSET (NIL T) -9 NIL 1284393 NIL) (-586 1283712 1283972 1284031 "LITERAL" NIL LITERAL (NIL T) -8 NIL NIL NIL) (-585 1283311 1283391 1283530 "LIST3" NIL LIST3 (NIL T T T) -7 NIL NIL NIL) (-584 1281762 1282110 1282509 "LIST2MAP" NIL LIST2MAP (NIL T T) -7 NIL NIL NIL) (-583 1280933 1281129 1281357 "LIST2" NIL LIST2 (NIL T T) -7 NIL NIL NIL) (-582 1273979 1280189 1280443 "LIST" NIL LIST (NIL T) -8 NIL NIL NIL) (-581 1273556 1273789 1273830 "LINSET" 1273835 LINSET (NIL T) -9 NIL 1273868 NIL) (-580 1272457 1273179 1273346 "LINFORM" NIL LINFORM (NIL T NIL) -8 NIL NIL NIL) (-579 1270723 1271478 1271518 "LINEXP" 1272004 LINEXP (NIL T) -9 NIL 1272277 NIL) (-578 1269345 1270332 1270513 "LINELT" NIL LINELT (NIL T NIL) -8 NIL NIL NIL) (-577 1268172 1268444 1268746 "LINDEP" NIL LINDEP (NIL T T) -7 NIL NIL NIL) (-576 1267385 1267974 1268084 "LINBASIS" NIL LINBASIS (NIL NIL) -8 NIL NIL NIL) (-575 1264935 1265657 1266407 "LIMITRF" NIL LIMITRF (NIL T) -7 NIL NIL NIL) (-574 1263565 1263862 1264253 "LIMITPS" NIL LIMITPS (NIL T T) -7 NIL NIL NIL) (-573 1262358 1262960 1263000 "LIECAT" 1263140 LIECAT (NIL T) -9 NIL 1263291 NIL) (-572 1262232 1262265 1262353 "LIECAT-" NIL LIECAT- (NIL T T) -7 NIL NIL NIL) (-571 1256488 1261922 1262150 "LIE" NIL LIE (NIL T T) -8 NIL NIL NIL) (-570 1248837 1256164 1256320 "LIB" NIL LIB (NIL) -8 NIL NIL NIL) (-569 1245289 1246238 1247173 "LGROBP" NIL LGROBP (NIL NIL T) -7 NIL NIL NIL) (-568 1243913 1244821 1244849 "LFCAT" 1245056 LFCAT (NIL) -9 NIL 1245195 NIL) (-567 1242152 1242482 1242827 "LF" NIL LF (NIL T T) -7 NIL NIL NIL) (-566 1239669 1240334 1241015 "LEXTRIPK" NIL LEXTRIPK (NIL T NIL) -7 NIL NIL NIL) (-565 1236681 1237659 1238162 "LEXP" NIL LEXP (NIL T T NIL) -8 NIL NIL NIL) (-564 1236172 1236475 1236566 "LETAST" NIL LETAST (NIL) -8 NIL NIL NIL) (-563 1234879 1235203 1235603 "LEADCDET" NIL LEADCDET (NIL T T T T) -7 NIL NIL NIL) (-562 1234145 1234230 1234456 "LAZM3PK" NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL NIL) (-561 1229148 1232713 1233249 "LAUPOL" NIL LAUPOL (NIL T T) -8 NIL NIL NIL) (-560 1228773 1228823 1228983 "LAPLACE" NIL LAPLACE (NIL T T) -7 NIL NIL NIL) (-559 1227544 1228317 1228357 "LALG" 1228418 LALG (NIL T) -9 NIL 1228476 NIL) (-558 1227327 1227404 1227539 "LALG-" NIL LALG- (NIL T T) -7 NIL NIL NIL) (-557 1225180 1226595 1226846 "LA" NIL LA (NIL T T T) -8 NIL NIL NIL) (-556 1225009 1225039 1225080 "KVTFROM" 1225142 KVTFROM (NIL T) -9 NIL NIL NIL) (-555 1223825 1224540 1224729 "KTVLOGIC" NIL KTVLOGIC (NIL) -8 NIL NIL NIL) (-554 1223654 1223684 1223725 "KRCFROM" 1223787 KRCFROM (NIL T) -9 NIL NIL NIL) (-553 1222756 1222953 1223248 "KOVACIC" NIL KOVACIC (NIL T T) -7 NIL NIL NIL) (-552 1222585 1222615 1222656 "KONVERT" 1222718 KONVERT (NIL T) -9 NIL NIL NIL) (-551 1222414 1222444 1222485 "KOERCE" 1222547 KOERCE (NIL T) -9 NIL NIL NIL) (-550 1221984 1222077 1222209 "KERNEL2" NIL KERNEL2 (NIL T T) -7 NIL NIL NIL) (-549 1220037 1220931 1221303 "KERNEL" NIL KERNEL (NIL T) -8 NIL NIL NIL) (-548 1213214 1218229 1218283 "KDAGG" 1218659 KDAGG (NIL T T) -9 NIL 1218866 NIL) (-547 1212862 1213004 1213209 "KDAGG-" NIL KDAGG- (NIL T T T) -7 NIL NIL NIL) (-546 1205692 1212643 1212800 "KAFILE" NIL KAFILE (NIL T) -8 NIL NIL NIL) (-545 1205342 1205624 1205687 "JVMOP" NIL JVMOP (NIL) -8 NIL NIL NIL) (-544 1204312 1204811 1205060 "JVMMDACC" NIL JVMMDACC (NIL) -8 NIL NIL NIL) (-543 1203438 1203887 1204092 "JVMFDACC" NIL JVMFDACC (NIL) -8 NIL NIL NIL) (-542 1202302 1202794 1203094 "JVMCSTTG" NIL JVMCSTTG (NIL) -8 NIL NIL NIL) (-541 1201584 1201983 1202144 "JVMCFACC" NIL JVMCFACC (NIL) -8 NIL NIL NIL) (-540 1201294 1201530 1201579 "JVMBCODE" NIL JVMBCODE (NIL) -8 NIL NIL NIL) (-539 1195549 1200984 1201212 "JORDAN" NIL JORDAN (NIL T T) -8 NIL NIL NIL) (-538 1194967 1195300 1195420 "JOINAST" NIL JOINAST (NIL) -8 NIL NIL NIL) (-537 1191129 1193144 1193198 "IXAGG" 1194125 IXAGG (NIL T T) -9 NIL 1194582 NIL) (-536 1190335 1190706 1191124 "IXAGG-" NIL IXAGG- (NIL T T T) -7 NIL NIL NIL) (-535 1189302 1189577 1189840 "ITUPLE" NIL ITUPLE (NIL T) -8 NIL NIL NIL) (-534 1187964 1188171 1188464 "ITRIGMNP" NIL ITRIGMNP (NIL T T T) -7 NIL NIL NIL) (-533 1186915 1187137 1187420 "ITFUN3" NIL ITFUN3 (NIL T T T) -7 NIL NIL NIL) (-532 1186590 1186653 1186776 "ITFUN2" NIL ITFUN2 (NIL T T) -7 NIL NIL NIL) (-531 1185852 1186224 1186398 "ITFORM" NIL ITFORM (NIL) -8 NIL NIL NIL) (-530 1183828 1185128 1185402 "ITAYLOR" NIL ITAYLOR (NIL T) -8 NIL NIL NIL) (-529 1173376 1179145 1180302 "ISUPS" NIL ISUPS (NIL T) -8 NIL NIL NIL) (-528 1172621 1172773 1173009 "ISUMP" NIL ISUMP (NIL T T T T) -7 NIL NIL NIL) (-527 1172112 1172415 1172506 "ISAST" NIL ISAST (NIL) -8 NIL NIL NIL) (-526 1171405 1171496 1171709 "IRURPK" NIL IRURPK (NIL T T T T T) -7 NIL NIL NIL) (-525 1170537 1170762 1171002 "IRSN" NIL IRSN (NIL) -7 NIL NIL NIL) (-524 1168950 1169331 1169759 "IRRF2F" NIL IRRF2F (NIL T) -7 NIL NIL NIL) (-523 1168735 1168779 1168855 "IRREDFFX" NIL IRREDFFX (NIL T) -7 NIL NIL NIL) (-522 1167585 1167882 1168177 "IROOT" NIL IROOT (NIL T) -7 NIL NIL NIL) (-521 1166858 1167209 1167360 "IRFORM" NIL IRFORM (NIL) -8 NIL NIL NIL) (-520 1166061 1166192 1166405 "IR2F" NIL IR2F (NIL T T) -7 NIL NIL NIL) (-519 1164216 1164713 1165257 "IR2" NIL IR2 (NIL T T) -7 NIL NIL NIL) (-518 1161297 1162565 1163254 "IR" NIL IR (NIL T) -8 NIL NIL NIL) (-517 1161122 1161162 1161222 "IPRNTPK" NIL IPRNTPK (NIL) -7 NIL NIL NIL) (-516 1157120 1161048 1161117 "IPF" NIL IPF (NIL NIL) -8 NIL NIL NIL) (-515 1155123 1157059 1157115 "IPADIC" NIL IPADIC (NIL NIL NIL) -8 NIL NIL NIL) (-514 1154494 1154793 1154923 "IP4ADDR" NIL IP4ADDR (NIL) -8 NIL NIL NIL) (-513 1153947 1154235 1154367 "IOMODE" NIL IOMODE (NIL) -8 NIL NIL NIL) (-512 1153028 1153653 1153779 "IOBFILE" NIL IOBFILE (NIL) -8 NIL NIL NIL) (-511 1152438 1152932 1152960 "IOBCON" 1152965 IOBCON (NIL) -9 NIL 1152986 NIL) (-510 1152009 1152073 1152255 "INVLAPLA" NIL INVLAPLA (NIL T T) -7 NIL NIL NIL) (-509 1144053 1146424 1148749 "INTTR" NIL INTTR (NIL T T) -7 NIL NIL NIL) (-508 1141164 1141947 1142811 "INTTOOLS" NIL INTTOOLS (NIL T T) -7 NIL NIL NIL) (-507 1140841 1140938 1141055 "INTSLPE" NIL INTSLPE (NIL) -7 NIL NIL NIL) (-506 1138283 1140777 1140836 "INTRVL" NIL INTRVL (NIL T) -8 NIL NIL NIL) (-505 1136395 1136924 1137491 "INTRF" NIL INTRF (NIL T) -7 NIL NIL NIL) (-504 1135897 1136011 1136151 "INTRET" NIL INTRET (NIL T) -7 NIL NIL NIL) (-503 1134281 1134687 1135149 "INTRAT" NIL INTRAT (NIL T T) -7 NIL NIL NIL) (-502 1132060 1132654 1133265 "INTPM" NIL INTPM (NIL T T) -7 NIL NIL NIL) (-501 1129433 1130043 1130763 "INTPAF" NIL INTPAF (NIL T T T) -7 NIL NIL NIL) (-500 1128837 1128995 1129203 "INTHERTR" NIL INTHERTR (NIL T T) -7 NIL NIL NIL) (-499 1128356 1128442 1128630 "INTHERAL" NIL INTHERAL (NIL T T T T) -7 NIL NIL NIL) (-498 1126561 1127082 1127539 "INTHEORY" NIL INTHEORY (NIL) -7 NIL NIL NIL) (-497 1119643 1121296 1123025 "INTG0" NIL INTG0 (NIL T T T) -7 NIL NIL NIL) (-496 1119009 1119171 1119344 "INTFACT" NIL INTFACT (NIL T) -7 NIL NIL NIL) (-495 1116882 1117346 1117890 "INTEF" NIL INTEF (NIL T T) -7 NIL NIL NIL) (-494 1115008 1115958 1115986 "INTDOM" 1116285 INTDOM (NIL) -9 NIL 1116490 NIL) (-493 1114561 1114763 1115003 "INTDOM-" NIL INTDOM- (NIL T) -7 NIL NIL NIL) (-492 1110368 1112840 1112894 "INTCAT" 1113690 INTCAT (NIL T) -9 NIL 1114006 NIL) (-491 1109933 1110053 1110180 "INTBIT" NIL INTBIT (NIL) -7 NIL NIL NIL) (-490 1108773 1108945 1109251 "INTALG" NIL INTALG (NIL T T T T T) -7 NIL NIL NIL) (-489 1108346 1108442 1108599 "INTAF" NIL INTAF (NIL T T) -7 NIL NIL NIL) (-488 1101386 1108201 1108341 "INTABL" NIL INTABL (NIL T T T) -8 NIL NIL NIL) (-487 1100684 1101239 1101304 "INT8" NIL INT8 (NIL) -8 NIL NIL 1101338) (-486 1099981 1100536 1100601 "INT64" NIL INT64 (NIL) -8 NIL NIL 1100635) (-485 1099278 1099833 1099898 "INT32" NIL INT32 (NIL) -8 NIL NIL 1099932) (-484 1098575 1099130 1099195 "INT16" NIL INT16 (NIL) -8 NIL NIL 1099229) (-483 1095038 1098494 1098570 "INT" NIL INT (NIL) -8 NIL NIL NIL) (-482 1089095 1092578 1092606 "INS" 1093536 INS (NIL) -9 NIL 1094195 NIL) (-481 1087157 1088075 1089022 "INS-" NIL INS- (NIL T) -7 NIL NIL NIL) (-480 1086216 1086439 1086714 "INPSIGN" NIL INPSIGN (NIL T T) -7 NIL NIL NIL) (-479 1085430 1085571 1085768 "INPRODPF" NIL INPRODPF (NIL T T) -7 NIL NIL NIL) (-478 1084420 1084561 1084798 "INPRODFF" NIL INPRODFF (NIL T T T T) -7 NIL NIL NIL) (-477 1083572 1083736 1083996 "INNMFACT" NIL INNMFACT (NIL T T T T) -7 NIL NIL NIL) (-476 1082852 1082967 1083155 "INMODGCD" NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL NIL) (-475 1081591 1081860 1082184 "INFSP" NIL INFSP (NIL T T T) -7 NIL NIL NIL) (-474 1080871 1081012 1081195 "INFPROD0" NIL INFPROD0 (NIL T T) -7 NIL NIL NIL) (-473 1080534 1080606 1080704 "INFORM1" NIL INFORM1 (NIL T) -7 NIL NIL NIL) (-472 1077612 1079098 1079621 "INFORM" NIL INFORM (NIL) -8 NIL NIL NIL) (-471 1077211 1077318 1077432 "INFINITY" NIL INFINITY (NIL) -7 NIL NIL NIL) (-470 1076367 1077012 1077113 "INETCLTS" NIL INETCLTS (NIL) -8 NIL NIL NIL) (-469 1075217 1075485 1075806 "INEP" NIL INEP (NIL T T T) -7 NIL NIL NIL) (-468 1074207 1075147 1075212 "INDE" NIL INDE (NIL T) -8 NIL NIL NIL) (-467 1073832 1073912 1074029 "INCRMAPS" NIL INCRMAPS (NIL T) -7 NIL NIL NIL) (-466 1072746 1073291 1073495 "INBFILE" NIL INBFILE (NIL) -8 NIL NIL NIL) (-465 1068841 1069896 1070839 "INBFF" NIL INBFF (NIL T) -7 NIL NIL NIL) (-464 1067695 1068018 1068046 "INBCON" 1068559 INBCON (NIL) -9 NIL 1068825 NIL) (-463 1067149 1067414 1067690 "INBCON-" NIL INBCON- (NIL T) -7 NIL NIL NIL) (-462 1066643 1066945 1067035 "INAST" NIL INAST (NIL) -8 NIL NIL NIL) (-461 1066100 1066409 1066514 "IMPTAST" NIL IMPTAST (NIL) -8 NIL NIL NIL) (-460 1064940 1065079 1065394 "IMATQF" NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL NIL) (-459 1063364 1063631 1063968 "IMATLIN" NIL IMATLIN (NIL T T T T) -7 NIL NIL NIL) (-458 1058207 1063295 1063359 "IFF" NIL IFF (NIL NIL NIL) -8 NIL NIL NIL) (-457 1057587 1057921 1058036 "IFAST" NIL IFAST (NIL) -8 NIL NIL NIL) (-456 1052394 1057025 1057211 "IFARRAY" NIL IFARRAY (NIL T NIL) -8 NIL NIL NIL) (-455 1051424 1052316 1052389 "IFAMON" NIL IFAMON (NIL T T NIL) -8 NIL NIL NIL) (-454 1050996 1051073 1051127 "IEVALAB" 1051334 IEVALAB (NIL T T) -9 NIL NIL NIL) (-453 1050751 1050831 1050991 "IEVALAB-" NIL IEVALAB- (NIL T T T) -7 NIL NIL NIL) (-452 1050136 1050363 1050520 "IDPT" NIL IDPT (NIL T T) -8 NIL NIL NIL) (-451 1049129 1050056 1050131 "IDPOAMS" NIL IDPOAMS (NIL T T) -8 NIL NIL NIL) (-450 1048192 1049049 1049124 "IDPOAM" NIL IDPOAM (NIL T T) -8 NIL NIL NIL) (-449 1047274 1047921 1048058 "IDPO" NIL IDPO (NIL T T) -8 NIL NIL NIL) (-448 1045637 1046208 1046259 "IDPC" 1046765 IDPC (NIL T T) -9 NIL 1047078 NIL) (-447 1044925 1045559 1045632 "IDPAM" NIL IDPAM (NIL T T) -8 NIL NIL NIL) (-446 1044095 1044847 1044920 "IDPAG" NIL IDPAG (NIL T T) -8 NIL NIL NIL) (-445 1043788 1044001 1044061 "IDENT" NIL IDENT (NIL) -8 NIL NIL NIL) (-444 1043492 1043532 1043571 "IDEMOPC" 1043576 IDEMOPC (NIL T) -9 NIL 1043713 NIL) (-443 1040563 1041444 1042336 "IDECOMP" NIL IDECOMP (NIL NIL NIL) -7 NIL NIL NIL) (-442 1034189 1035466 1036505 "IDEAL" NIL IDEAL (NIL T T T T) -8 NIL NIL NIL) (-441 1033451 1033581 1033780 "ICDEN" NIL ICDEN (NIL T T T T) -7 NIL NIL NIL) (-440 1032624 1033123 1033261 "ICARD" NIL ICARD (NIL) -8 NIL NIL NIL) (-439 1031013 1031344 1031735 "IBPTOOLS" NIL IBPTOOLS (NIL T T T T) -7 NIL NIL NIL) (-438 1026782 1030969 1031008 "IBITS" NIL IBITS (NIL NIL) -8 NIL NIL NIL) (-437 1024040 1024664 1025359 "IBATOOL" NIL IBATOOL (NIL T T T) -7 NIL NIL NIL) (-436 1022266 1022746 1023279 "IBACHIN" NIL IBACHIN (NIL T T T) -7 NIL NIL NIL) (-435 1020095 1022172 1022261 "IARRAY2" NIL IARRAY2 (NIL T T T) -8 NIL NIL NIL) (-434 1015956 1020033 1020090 "IARRAY1" NIL IARRAY1 (NIL T NIL) -8 NIL NIL NIL) (-433 1009535 1014920 1015388 "IAN" NIL IAN (NIL) -8 NIL NIL NIL) (-432 1009103 1009166 1009339 "IALGFACT" NIL IALGFACT (NIL T T T T) -7 NIL NIL NIL) (-431 1008595 1008744 1008772 "HYPCAT" 1008979 HYPCAT (NIL) -9 NIL NIL NIL) (-430 1008251 1008404 1008590 "HYPCAT-" NIL HYPCAT- (NIL T) -7 NIL NIL NIL) (-429 1007864 1008109 1008192 "HOSTNAME" NIL HOSTNAME (NIL) -8 NIL NIL NIL) (-428 1007697 1007746 1007787 "HOMOTOP" 1007792 HOMOTOP (NIL T) -9 NIL 1007825 NIL) (-427 1004265 1005639 1005680 "HOAGG" 1006655 HOAGG (NIL T) -9 NIL 1007376 NIL) (-426 1003271 1003741 1004260 "HOAGG-" NIL HOAGG- (NIL T T) -7 NIL NIL NIL) (-425 996471 1002996 1003144 "HEXADEC" NIL HEXADEC (NIL) -8 NIL NIL NIL) (-424 995406 995664 995927 "HEUGCD" NIL HEUGCD (NIL T) -7 NIL NIL NIL) (-423 994341 995271 995401 "HELLFDIV" NIL HELLFDIV (NIL T T T T) -8 NIL NIL NIL) (-422 992535 994174 994262 "HEAP" NIL HEAP (NIL T) -8 NIL NIL NIL) (-421 991850 992202 992335 "HEADAST" NIL HEADAST (NIL) -8 NIL NIL NIL) (-420 985304 991783 991845 "HDP" NIL HDP (NIL NIL T) -8 NIL NIL NIL) (-419 978443 985040 985191 "HDMP" NIL HDMP (NIL NIL T) -8 NIL NIL NIL) (-418 977896 978053 978216 "HB" NIL HB (NIL) -7 NIL NIL NIL) (-417 970979 977787 977891 "HASHTBL" NIL HASHTBL (NIL T T NIL) -8 NIL NIL NIL) (-416 970470 970773 970864 "HASAST" NIL HASAST (NIL) -8 NIL NIL NIL) (-415 968020 970257 970436 "HACKPI" NIL HACKPI (NIL) -8 NIL NIL NIL) (-414 963413 967903 968015 "GTSET" NIL GTSET (NIL T T T T) -8 NIL NIL NIL) (-413 956499 963310 963408 "GSTBL" NIL GSTBL (NIL T T T NIL) -8 NIL NIL NIL) (-412 948436 955868 956123 "GSERIES" NIL GSERIES (NIL T NIL NIL) -8 NIL NIL NIL) (-411 947460 947969 947997 "GROUP" 948200 GROUP (NIL) -9 NIL 948334 NIL) (-410 947003 947204 947455 "GROUP-" NIL GROUP- (NIL T) -7 NIL NIL NIL) (-409 945675 946014 946401 "GROEBSOL" NIL GROEBSOL (NIL NIL T T) -7 NIL NIL NIL) (-408 944497 944854 944905 "GRMOD" 945434 GRMOD (NIL T T) -9 NIL 945600 NIL) (-407 944316 944364 944492 "GRMOD-" NIL GRMOD- (NIL T T T) -7 NIL NIL NIL) (-406 940439 941650 942650 "GRIMAGE" NIL GRIMAGE (NIL) -8 NIL NIL NIL) (-405 939161 939485 939800 "GRDEF" NIL GRDEF (NIL) -7 NIL NIL NIL) (-404 938714 938842 938983 "GRAY" NIL GRAY (NIL) -7 NIL NIL NIL) (-403 937787 938286 938337 "GRALG" 938490 GRALG (NIL T T) -9 NIL 938580 NIL) (-402 937506 937607 937782 "GRALG-" NIL GRALG- (NIL T T T) -7 NIL NIL NIL) (-401 934223 937188 937364 "GPOLSET" NIL GPOLSET (NIL T T T T) -8 NIL NIL NIL) (-400 933636 933699 933956 "GOSPER" NIL GOSPER (NIL T T T T T) -7 NIL NIL NIL) (-399 929490 930386 930911 "GMODPOL" NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL NIL) (-398 928665 928867 929105 "GHENSEL" NIL GHENSEL (NIL T T) -7 NIL NIL NIL) (-397 923668 924595 925614 "GENUPS" NIL GENUPS (NIL T T) -7 NIL NIL NIL) (-396 923416 923473 923562 "GENUFACT" NIL GENUFACT (NIL T) -7 NIL NIL NIL) (-395 922898 922987 923152 "GENPGCD" NIL GENPGCD (NIL T T T T) -7 NIL NIL NIL) (-394 922407 922448 922661 "GENMFACT" NIL GENMFACT (NIL T T T T T) -7 NIL NIL NIL) (-393 921208 921491 921795 "GENEEZ" NIL GENEEZ (NIL T T) -7 NIL NIL NIL) (-392 914483 920898 921059 "GDMP" NIL GDMP (NIL NIL T T) -8 NIL NIL NIL) (-391 904266 909273 910377 "GCNAALG" NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-390 902318 903421 903449 "GCDDOM" 903704 GCDDOM (NIL) -9 NIL 903861 NIL) (-389 901941 902098 902313 "GCDDOM-" NIL GCDDOM- (NIL T) -7 NIL NIL NIL) (-388 892734 895204 897592 "GBINTERN" NIL GBINTERN (NIL T T T T) -7 NIL NIL NIL) (-387 890869 891194 891612 "GBF" NIL GBF (NIL T T T T) -7 NIL NIL NIL) (-386 889810 889999 890266 "GBEUCLID" NIL GBEUCLID (NIL T T T T) -7 NIL NIL NIL) (-385 888681 888888 889192 "GB" NIL GB (NIL T T T T) -7 NIL NIL NIL) (-384 888144 888286 888434 "GAUSSFAC" NIL GAUSSFAC (NIL) -7 NIL NIL NIL) (-383 886756 887104 887417 "GALUTIL" NIL GALUTIL (NIL T) -7 NIL NIL NIL) (-382 885301 885622 885944 "GALPOLYU" NIL GALPOLYU (NIL T T) -7 NIL NIL NIL) (-381 882927 883283 883688 "GALFACTU" NIL GALFACTU (NIL T T T) -7 NIL NIL NIL) (-380 876179 877840 879418 "GALFACT" NIL GALFACT (NIL T) -7 NIL NIL NIL) (-379 875831 876052 876120 "FUNDESC" NIL FUNDESC (NIL) -8 NIL NIL NIL) (-378 875455 875676 875757 "FUNCTION" NIL FUNCTION (NIL NIL) -8 NIL NIL NIL) (-377 873552 874235 874695 "FT" NIL FT (NIL) -8 NIL NIL NIL) (-376 872145 872452 872844 "FSUPFACT" NIL FSUPFACT (NIL T T T) -7 NIL NIL NIL) (-375 870800 871159 871483 "FST" NIL FST (NIL) -8 NIL NIL NIL) (-374 870103 870227 870414 "FSRED" NIL FSRED (NIL T T) -7 NIL NIL NIL) (-373 869077 869343 869690 "FSPRMELT" NIL FSPRMELT (NIL T T) -7 NIL NIL NIL) (-372 866735 867265 867747 "FSPECF" NIL FSPECF (NIL T T) -7 NIL NIL NIL) (-371 866318 866378 866547 "FSINT" NIL FSINT (NIL T T) -7 NIL NIL NIL) (-370 864618 865532 865835 "FSERIES" NIL FSERIES (NIL T T) -8 NIL NIL NIL) (-369 863766 863900 864123 "FSCINT" NIL FSCINT (NIL T T) -7 NIL NIL NIL) (-368 862937 863098 863325 "FSAGG2" NIL FSAGG2 (NIL T T T T) -7 NIL NIL NIL) (-367 858920 861871 861912 "FSAGG" 862282 FSAGG (NIL T) -9 NIL 862541 NIL) (-366 857274 858033 858825 "FSAGG-" NIL FSAGG- (NIL T T) -7 NIL NIL NIL) (-365 855230 855526 856070 "FS2UPS" NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL NIL) (-364 854277 854459 854759 "FS2EXPXP" NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL NIL) (-363 853958 854007 854134 "FS2" NIL FS2 (NIL T T T T) -7 NIL NIL NIL) (-362 834114 843615 843656 "FS" 847526 FS (NIL T) -9 NIL 849804 NIL) (-361 826345 829838 833817 "FS-" NIL FS- (NIL T T) -7 NIL NIL NIL) (-360 825879 826006 826158 "FRUTIL" NIL FRUTIL (NIL T) -7 NIL NIL NIL) (-359 820402 823560 823600 "FRNAALG" 824920 FRNAALG (NIL T) -9 NIL 825518 NIL) (-358 817143 818394 819652 "FRNAALG-" NIL FRNAALG- (NIL T T) -7 NIL NIL NIL) (-357 816824 816873 817000 "FRNAAF2" NIL FRNAAF2 (NIL T T T T) -7 NIL NIL NIL) (-356 815311 815868 816162 "FRMOD" NIL FRMOD (NIL T T T T NIL) -8 NIL NIL NIL) (-355 814597 814690 814977 "FRIDEAL2" NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-354 812431 813197 813513 "FRIDEAL" NIL FRIDEAL (NIL T T T T) -8 NIL NIL NIL) (-353 811540 811983 812024 "FRETRCT" 812029 FRETRCT (NIL T) -9 NIL 812200 NIL) (-352 810913 811191 811535 "FRETRCT-" NIL FRETRCT- (NIL T T) -7 NIL NIL NIL) (-351 807657 809177 809236 "FRAMALG" 810118 FRAMALG (NIL T T) -9 NIL 810410 NIL) (-350 806253 806804 807434 "FRAMALG-" NIL FRAMALG- (NIL T T T) -7 NIL NIL NIL) (-349 805946 806009 806116 "FRAC2" NIL FRAC2 (NIL T T) -7 NIL NIL NIL) (-348 799587 805751 805941 "FRAC" NIL FRAC (NIL T) -8 NIL NIL NIL) (-347 799280 799343 799450 "FR2" NIL FR2 (NIL T T) -7 NIL NIL NIL) (-346 791588 796159 797487 "FR" NIL FR (NIL T) -8 NIL NIL NIL) (-345 785366 788869 788897 "FPS" 790016 FPS (NIL) -9 NIL 790572 NIL) (-344 784923 785056 785220 "FPS-" NIL FPS- (NIL T) -7 NIL NIL NIL) (-343 781733 783776 783804 "FPC" 784029 FPC (NIL) -9 NIL 784171 NIL) (-342 781579 781631 781728 "FPC-" NIL FPC- (NIL T) -7 NIL NIL NIL) (-341 780356 781065 781106 "FPATMAB" 781111 FPATMAB (NIL T) -9 NIL 781263 NIL) (-340 778786 779382 779729 "FPARFRAC" NIL FPARFRAC (NIL T T) -8 NIL NIL NIL) (-339 778361 778419 778592 "FORDER" NIL FORDER (NIL T T T T) -7 NIL NIL NIL) (-338 776864 777759 777933 "FNLA" NIL FNLA (NIL NIL NIL T) -8 NIL NIL NIL) (-337 775479 775984 776012 "FNCAT" 776469 FNCAT (NIL) -9 NIL 776726 NIL) (-336 774936 775446 775474 "FNAME" NIL FNAME (NIL) -8 NIL NIL NIL) (-335 773523 774885 774931 "FMONOID" NIL FMONOID (NIL T) -8 NIL NIL NIL) (-334 770111 771469 771510 "FMONCAT" 772727 FMONCAT (NIL T) -9 NIL 773331 NIL) (-333 766969 768047 768100 "FMCAT" 769281 FMCAT (NIL T T) -9 NIL 769773 NIL) (-332 765669 766792 766891 "FM1" NIL FM1 (NIL T T) -8 NIL NIL NIL) (-331 764717 765517 765664 "FM" NIL FM (NIL T T) -8 NIL NIL NIL) (-330 762904 763356 763850 "FLOATRP" NIL FLOATRP (NIL T) -7 NIL NIL NIL) (-329 760839 761375 761953 "FLOATCP" NIL FLOATCP (NIL T) -7 NIL NIL NIL) (-328 754225 759176 759790 "FLOAT" NIL FLOAT (NIL) -8 NIL NIL NIL) (-327 752706 753807 753847 "FLINEXP" 753852 FLINEXP (NIL T) -9 NIL 753945 NIL) (-326 752115 752374 752701 "FLINEXP-" NIL FLINEXP- (NIL T T) -7 NIL NIL NIL) (-325 751330 751489 751710 "FLASORT" NIL FLASORT (NIL T T) -7 NIL NIL NIL) (-324 748213 749292 749344 "FLALG" 750571 FLALG (NIL T T) -9 NIL 751038 NIL) (-323 747384 747545 747772 "FLAGG2" NIL FLAGG2 (NIL T T T T) -7 NIL NIL NIL) (-322 740793 744803 744844 "FLAGG" 746099 FLAGG (NIL T) -9 NIL 746744 NIL) (-321 739901 740305 740788 "FLAGG-" NIL FLAGG- (NIL T T) -7 NIL NIL NIL) (-320 736462 737726 737785 "FINRALG" 738913 FINRALG (NIL T T) -9 NIL 739421 NIL) (-319 735853 736118 736457 "FINRALG-" NIL FINRALG- (NIL T T T) -7 NIL NIL NIL) (-318 735151 735447 735475 "FINITE" 735671 FINITE (NIL) -9 NIL 735778 NIL) (-317 735059 735085 735146 "FINITE-" NIL FINITE- (NIL T) -7 NIL NIL NIL) (-316 727020 729611 729651 "FINAALG" 733303 FINAALG (NIL T) -9 NIL 734741 NIL) (-315 723287 724532 725655 "FINAALG-" NIL FINAALG- (NIL T T) -7 NIL NIL NIL) (-314 721839 722258 722312 "FILECAT" 722996 FILECAT (NIL T T) -9 NIL 723212 NIL) (-313 721190 721664 721767 "FILE" NIL FILE (NIL T) -8 NIL NIL NIL) (-312 718438 720316 720344 "FIELD" 720384 FIELD (NIL) -9 NIL 720464 NIL) (-311 717463 717924 718433 "FIELD-" NIL FIELD- (NIL T) -7 NIL NIL NIL) (-310 715467 716413 716759 "FGROUP" NIL FGROUP (NIL T) -8 NIL NIL NIL) (-309 714710 714891 715110 "FGLMICPK" NIL FGLMICPK (NIL T NIL) -7 NIL NIL NIL) (-308 709980 714648 714705 "FFX" NIL FFX (NIL T NIL) -8 NIL NIL NIL) (-307 709642 709709 709844 "FFSLPE" NIL FFSLPE (NIL T T T) -7 NIL NIL NIL) (-306 709182 709224 709433 "FFPOLY2" NIL FFPOLY2 (NIL T T) -7 NIL NIL NIL) (-305 705862 706739 707516 "FFPOLY" NIL FFPOLY (NIL T) -7 NIL NIL NIL) (-304 701146 705794 705857 "FFP" NIL FFP (NIL T NIL) -8 NIL NIL NIL) (-303 695825 700635 700825 "FFNBX" NIL FFNBX (NIL T NIL) -8 NIL NIL NIL) (-302 690306 695106 695364 "FFNBP" NIL FFNBP (NIL T NIL) -8 NIL NIL NIL) (-301 684513 689757 689968 "FFNB" NIL FFNB (NIL NIL NIL) -8 NIL NIL NIL) (-300 683536 683746 684061 "FFINTBAS" NIL FFINTBAS (NIL T T T) -7 NIL NIL NIL) (-299 678976 681681 681709 "FFIELDC" 682328 FFIELDC (NIL) -9 NIL 682703 NIL) (-298 678045 678485 678971 "FFIELDC-" NIL FFIELDC- (NIL T) -7 NIL NIL NIL) (-297 677660 677718 677842 "FFHOM" NIL FFHOM (NIL T T T) -7 NIL NIL NIL) (-296 675804 676327 676844 "FFF" NIL FFF (NIL T) -7 NIL NIL NIL) (-295 670898 675603 675704 "FFCGX" NIL FFCGX (NIL T NIL) -8 NIL NIL NIL) (-294 665998 670687 670794 "FFCGP" NIL FFCGP (NIL T NIL) -8 NIL NIL NIL) (-293 660664 665789 665897 "FFCG" NIL FFCG (NIL NIL NIL) -8 NIL NIL NIL) (-292 660118 660167 660402 "FFCAT2" NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-291 638693 649727 649813 "FFCAT" 654963 FFCAT (NIL T T T) -9 NIL 656399 NIL) (-290 634933 636159 637465 "FFCAT-" NIL FFCAT- (NIL T T T T) -7 NIL NIL NIL) (-289 629776 634864 634928 "FF" NIL FF (NIL NIL NIL) -8 NIL NIL NIL) (-288 628668 629137 629178 "FEVALAB" 629262 FEVALAB (NIL T) -9 NIL 629523 NIL) (-287 628073 628325 628663 "FEVALAB-" NIL FEVALAB- (NIL T T) -7 NIL NIL NIL) (-286 624900 625811 625926 "FDIVCAT" 627493 FDIVCAT (NIL T T T T) -9 NIL 627929 NIL) (-285 624694 624726 624895 "FDIVCAT-" NIL FDIVCAT- (NIL T T T T T) -7 NIL NIL NIL) (-284 624001 624094 624371 "FDIV2" NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-283 622487 623485 623688 "FDIV" NIL FDIV (NIL T T T T) -8 NIL NIL NIL) (-282 621580 621964 622166 "FCTRDATA" NIL FCTRDATA (NIL) -8 NIL NIL NIL) (-281 620702 621191 621331 "FCOMP" NIL FCOMP (NIL T) -8 NIL NIL NIL) (-280 612289 616932 616972 "FAXF" 618773 FAXF (NIL T) -9 NIL 619463 NIL) (-279 610205 611009 611824 "FAXF-" NIL FAXF- (NIL T T) -7 NIL NIL NIL) (-278 605069 609727 609901 "FARRAY" NIL FARRAY (NIL T) -8 NIL NIL NIL) (-277 599527 601950 602002 "FAMR" 603013 FAMR (NIL T T) -9 NIL 603472 NIL) (-276 598726 599091 599522 "FAMR-" NIL FAMR- (NIL T T T) -7 NIL NIL NIL) (-275 597747 598668 598721 "FAMONOID" NIL FAMONOID (NIL T) -8 NIL NIL NIL) (-274 595341 596220 596273 "FAMONC" 597214 FAMONC (NIL T T) -9 NIL 597599 NIL) (-273 593897 595199 595336 "FAGROUP" NIL FAGROUP (NIL T) -8 NIL NIL NIL) (-272 591977 592338 592740 "FACUTIL" NIL FACUTIL (NIL T T T T) -7 NIL NIL NIL) (-271 591254 591451 591673 "FACTFUNC" NIL FACTFUNC (NIL T) -7 NIL NIL NIL) (-270 583114 590701 590900 "EXPUPXS" NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-269 581133 581703 582289 "EXPRTUBE" NIL EXPRTUBE (NIL) -7 NIL NIL NIL) (-268 578035 578677 579397 "EXPRODE" NIL EXPRODE (NIL T T) -7 NIL NIL NIL) (-267 573192 573899 574704 "EXPR2UPS" NIL EXPR2UPS (NIL T T) -7 NIL NIL NIL) (-266 572881 572944 573053 "EXPR2" NIL EXPR2 (NIL T T) -7 NIL NIL NIL) (-265 557674 571930 572356 "EXPR" NIL EXPR (NIL T) -8 NIL NIL NIL) (-264 548201 556994 557282 "EXPEXPAN" NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL NIL) (-263 547695 547997 548087 "EXITAST" NIL EXITAST (NIL) -8 NIL NIL NIL) (-262 547471 547661 547690 "EXIT" NIL EXIT (NIL) -8 NIL NIL NIL) (-261 547160 547228 547341 "EVALCYC" NIL EVALCYC (NIL T) -7 NIL NIL NIL) (-260 546677 546819 546860 "EVALAB" 547030 EVALAB (NIL T) -9 NIL 547134 NIL) (-259 546305 546451 546672 "EVALAB-" NIL EVALAB- (NIL T T) -7 NIL NIL NIL) (-258 543348 544943 544971 "EUCDOM" 545525 EUCDOM (NIL) -9 NIL 545874 NIL) (-257 542275 542768 543343 "EUCDOM-" NIL EUCDOM- (NIL T) -7 NIL NIL NIL) (-256 542000 542056 542156 "ES2" NIL ES2 (NIL T T) -7 NIL NIL NIL) (-255 541688 541752 541861 "ES1" NIL ES1 (NIL T T) -7 NIL NIL NIL) (-254 535459 537359 537387 "ES" 540129 ES (NIL) -9 NIL 541513 NIL) (-253 531974 533506 535298 "ES-" NIL ES- (NIL T) -7 NIL NIL NIL) (-252 531322 531475 531651 "ERROR" NIL ERROR (NIL) -7 NIL NIL NIL) (-251 524411 531226 531317 "EQTBL" NIL EQTBL (NIL T T) -8 NIL NIL NIL) (-250 524100 524163 524272 "EQ2" NIL EQ2 (NIL T T) -7 NIL NIL NIL) (-249 517727 520852 522285 "EQ" NIL EQ (NIL T) -8 NIL NIL NIL) (-248 514030 515126 516219 "EP" NIL EP (NIL T) -7 NIL NIL NIL) (-247 512859 513209 513514 "ENV" NIL ENV (NIL) -8 NIL NIL NIL) (-246 511744 512475 512503 "ENTIRER" 512508 ENTIRER (NIL) -9 NIL 512552 NIL) (-245 511633 511667 511739 "ENTIRER-" NIL ENTIRER- (NIL T) -7 NIL NIL NIL) (-244 508266 510063 510412 "EMR" NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL NIL) (-243 507358 507569 507623 "ELTAGG" 508003 ELTAGG (NIL T T) -9 NIL 508214 NIL) (-242 507138 507212 507353 "ELTAGG-" NIL ELTAGG- (NIL T T T) -7 NIL NIL NIL) (-241 506884 506919 506973 "ELTAB" 507057 ELTAB (NIL T T) -9 NIL 507109 NIL) (-240 506135 506305 506504 "ELFUTS" NIL ELFUTS (NIL T T) -7 NIL NIL NIL) (-239 505859 505933 505961 "ELEMFUN" 506066 ELEMFUN (NIL) -9 NIL NIL NIL) (-238 505759 505786 505854 "ELEMFUN-" NIL ELEMFUN- (NIL T) -7 NIL NIL NIL) (-237 500305 503800 503841 "ELAGG" 504778 ELAGG (NIL T) -9 NIL 505238 NIL) (-236 499103 499641 500300 "ELAGG-" NIL ELAGG- (NIL T T) -7 NIL NIL NIL) (-235 498521 498688 498844 "ELABOR" NIL ELABOR (NIL) -8 NIL NIL NIL) (-234 497434 497753 498032 "ELABEXPR" NIL ELABEXPR (NIL) -8 NIL NIL NIL) (-233 490827 492825 493652 "EFUPXS" NIL EFUPXS (NIL T T T T) -7 NIL NIL NIL) (-232 484806 486802 487612 "EFULS" NIL EFULS (NIL T T T) -7 NIL NIL NIL) (-231 482620 483026 483497 "EFSTRUC" NIL EFSTRUC (NIL T T) -7 NIL NIL NIL) (-230 473620 475533 477074 "EF" NIL EF (NIL T T) -7 NIL NIL NIL) (-229 472733 473234 473383 "EAB" NIL EAB (NIL) -8 NIL NIL NIL) (-228 471431 472105 472145 "DVARCAT" 472428 DVARCAT (NIL T) -9 NIL 472568 NIL) (-227 470850 471114 471426 "DVARCAT-" NIL DVARCAT- (NIL T T) -7 NIL NIL NIL) (-226 462917 470718 470845 "DSMP" NIL DSMP (NIL T T T) -8 NIL NIL NIL) (-225 461255 462046 462087 "DSEXT" 462450 DSEXT (NIL T) -9 NIL 462744 NIL) (-224 460060 460584 461250 "DSEXT-" NIL DSEXT- (NIL T T) -7 NIL NIL NIL) (-223 459784 459849 459947 "DROPT1" NIL DROPT1 (NIL T) -7 NIL NIL NIL) (-222 455935 457151 458282 "DROPT0" NIL DROPT0 (NIL) -7 NIL NIL NIL) (-221 451581 452936 454000 "DROPT" NIL DROPT (NIL) -8 NIL NIL NIL) (-220 450256 450617 451003 "DRAWPT" NIL DRAWPT (NIL) -7 NIL NIL NIL) (-219 449942 450001 450119 "DRAWHACK" NIL DRAWHACK (NIL T) -7 NIL NIL NIL) (-218 448917 449215 449505 "DRAWCX" NIL DRAWCX (NIL) -7 NIL NIL NIL) (-217 448502 448577 448727 "DRAWCURV" NIL DRAWCURV (NIL T T) -7 NIL NIL NIL) (-216 440915 443027 445142 "DRAWCFUN" NIL DRAWCFUN (NIL) -7 NIL NIL NIL) (-215 436432 437451 438530 "DRAW" NIL DRAW (NIL T) -7 NIL NIL NIL) (-214 433027 435096 435137 "DQAGG" 435766 DQAGG (NIL T) -9 NIL 436039 NIL) (-213 419570 427210 427292 "DPOLCAT" 429129 DPOLCAT (NIL T T T T) -9 NIL 429672 NIL) (-212 415978 417626 419565 "DPOLCAT-" NIL DPOLCAT- (NIL T T T T T) -7 NIL NIL NIL) (-211 408983 415876 415973 "DPMO" NIL DPMO (NIL NIL T T) -8 NIL NIL NIL) (-210 401897 408812 408978 "DPMM" NIL DPMM (NIL NIL T T T) -8 NIL NIL NIL) (-209 401490 401750 401839 "DOMTMPLT" NIL DOMTMPLT (NIL) -8 NIL NIL NIL) (-208 400904 401352 401432 "DOMCTOR" NIL DOMCTOR (NIL) -8 NIL NIL NIL) (-207 400190 400515 400666 "DOMAIN" NIL DOMAIN (NIL) -8 NIL NIL NIL) (-206 393329 399926 400077 "DMP" NIL DMP (NIL NIL T) -8 NIL NIL NIL) (-205 391078 392395 392435 "DMEXT" 392440 DMEXT (NIL T) -9 NIL 392615 NIL) (-204 390734 390796 390940 "DLP" NIL DLP (NIL T) -7 NIL NIL NIL) (-203 384059 390219 390409 "DLIST" NIL DLIST (NIL T) -8 NIL NIL NIL) (-202 380725 382882 382923 "DLAGG" 383473 DLAGG (NIL T) -9 NIL 383702 NIL) (-201 379076 379947 379975 "DIVRING" 380067 DIVRING (NIL) -9 NIL 380150 NIL) (-200 378527 378771 379071 "DIVRING-" NIL DIVRING- (NIL T) -7 NIL NIL NIL) (-199 376955 377372 377778 "DISPLAY" NIL DISPLAY (NIL) -7 NIL NIL NIL) (-198 375992 376213 376478 "DIRPROD2" NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL NIL) (-197 369466 375924 375987 "DIRPROD" NIL DIRPROD (NIL NIL T) -8 NIL NIL NIL) (-196 357786 364246 364299 "DIRPCAT" 364555 DIRPCAT (NIL NIL T) -9 NIL 365428 NIL) (-195 355792 356562 357449 "DIRPCAT-" NIL DIRPCAT- (NIL T NIL T) -7 NIL NIL NIL) (-194 355239 355405 355591 "DIOSP" NIL DIOSP (NIL) -7 NIL NIL NIL) (-193 351785 354125 354166 "DIOPS" 354598 DIOPS (NIL T) -9 NIL 354824 NIL) (-192 351445 351589 351780 "DIOPS-" NIL DIOPS- (NIL T T) -7 NIL NIL NIL) (-191 350452 351198 351226 "DIOID" 351231 DIOID (NIL) -9 NIL 351253 NIL) (-190 349280 350109 350137 "DIFRING" 350142 DIFRING (NIL) -9 NIL 350163 NIL) (-189 348916 349014 349042 "DIFFSPC" 349161 DIFFSPC (NIL) -9 NIL 349236 NIL) (-188 348657 348759 348911 "DIFFSPC-" NIL DIFFSPC- (NIL T) -7 NIL NIL NIL) (-187 347560 348185 348225 "DIFFMOD" 348230 DIFFMOD (NIL T) -9 NIL 348327 NIL) (-186 347244 347301 347342 "DIFFDOM" 347463 DIFFDOM (NIL T) -9 NIL 347531 NIL) (-185 347125 347155 347239 "DIFFDOM-" NIL DIFFDOM- (NIL T T) -7 NIL NIL NIL) (-184 344798 346319 346359 "DIFEXT" 346364 DIFEXT (NIL T) -9 NIL 346516 NIL) (-183 341959 344299 344340 "DIAGG" 344345 DIAGG (NIL T) -9 NIL 344365 NIL) (-182 341515 341705 341954 "DIAGG-" NIL DIAGG- (NIL T T) -7 NIL NIL NIL) (-181 336708 340705 340982 "DHMATRIX" NIL DHMATRIX (NIL T) -8 NIL NIL NIL) (-180 333166 334219 335229 "DFSFUN" NIL DFSFUN (NIL) -7 NIL NIL NIL) (-179 327716 332320 332647 "DFLOAT" NIL DFLOAT (NIL) -8 NIL NIL NIL) (-178 326282 326574 326949 "DFINTTLS" NIL DFINTTLS (NIL T T) -7 NIL NIL NIL) (-177 323402 324654 325050 "DERHAM" NIL DERHAM (NIL T NIL) -8 NIL NIL NIL) (-176 321122 323233 323322 "DEQUEUE" NIL DEQUEUE (NIL T) -8 NIL NIL NIL) (-175 320505 320650 320832 "DEGRED" NIL DEGRED (NIL T T) -7 NIL NIL NIL) (-174 317823 318547 319347 "DEFINTRF" NIL DEFINTRF (NIL T) -7 NIL NIL NIL) (-173 315932 316390 316952 "DEFINTEF" NIL DEFINTEF (NIL T T) -7 NIL NIL NIL) (-172 315315 315648 315762 "DEFAST" NIL DEFAST (NIL) -8 NIL NIL NIL) (-171 308515 315040 315188 "DECIMAL" NIL DECIMAL (NIL) -8 NIL NIL NIL) (-170 306435 306945 307449 "DDFACT" NIL DDFACT (NIL T T) -7 NIL NIL NIL) (-169 306074 306123 306274 "DBLRESP" NIL DBLRESP (NIL T T T T) -7 NIL NIL NIL) (-168 305333 305895 305986 "DBASIS" NIL DBASIS (NIL NIL) -8 NIL NIL NIL) (-167 303357 303799 304159 "DBASE" NIL DBASE (NIL T) -8 NIL NIL NIL) (-166 302649 302938 303084 "DATAARY" NIL DATAARY (NIL NIL T) -8 NIL NIL NIL) (-165 302100 302246 302398 "CYCLOTOM" NIL CYCLOTOM (NIL) -7 NIL NIL NIL) (-164 299462 300255 300982 "CYCLES" NIL CYCLES (NIL) -7 NIL NIL NIL) (-163 298901 299047 299218 "CVMP" NIL CVMP (NIL T) -7 NIL NIL NIL) (-162 296973 297284 297651 "CTRIGMNP" NIL CTRIGMNP (NIL T T) -7 NIL NIL NIL) (-161 296530 296785 296886 "CTORKIND" NIL CTORKIND (NIL) -8 NIL NIL NIL) (-160 295731 296114 296142 "CTORCAT" 296323 CTORCAT (NIL) -9 NIL 296435 NIL) (-159 295434 295568 295726 "CTORCAT-" NIL CTORCAT- (NIL T) -7 NIL NIL NIL) (-158 294927 295184 295292 "CTORCALL" NIL CTORCALL (NIL T) -8 NIL NIL NIL) (-157 294343 294774 294847 "CTOR" NIL CTOR (NIL) -8 NIL NIL NIL) (-156 293802 293919 294072 "CSTTOOLS" NIL CSTTOOLS (NIL T T) -7 NIL NIL NIL) (-155 290196 290952 291707 "CRFP" NIL CRFP (NIL T T) -7 NIL NIL NIL) (-154 289687 289990 290081 "CRCEAST" NIL CRCEAST (NIL) -8 NIL NIL NIL) (-153 288906 289115 289343 "CRAPACK" NIL CRAPACK (NIL T) -7 NIL NIL NIL) (-152 288410 288515 288719 "CPMATCH" NIL CPMATCH (NIL T T T) -7 NIL NIL NIL) (-151 288163 288197 288303 "CPIMA" NIL CPIMA (NIL T T T) -7 NIL NIL NIL) (-150 285102 285864 286582 "COORDSYS" NIL COORDSYS (NIL T) -7 NIL NIL NIL) (-149 284621 284763 284902 "CONTOUR" NIL CONTOUR (NIL) -8 NIL NIL NIL) (-148 280514 283084 283576 "CONTFRAC" NIL CONTFRAC (NIL T) -8 NIL NIL NIL) (-147 280388 280415 280443 "CONDUIT" 280480 CONDUIT (NIL) -9 NIL NIL NIL) (-146 279267 279998 280026 "COMRING" 280031 COMRING (NIL) -9 NIL 280081 NIL) (-145 278432 278799 278977 "COMPPROP" NIL COMPPROP (NIL) -8 NIL NIL NIL) (-144 278128 278169 278297 "COMPLPAT" NIL COMPLPAT (NIL T T T) -7 NIL NIL NIL) (-143 277821 277884 277991 "COMPLEX2" NIL COMPLEX2 (NIL T T) -7 NIL NIL NIL) (-142 266663 277771 277816 "COMPLEX" NIL COMPLEX (NIL T) -8 NIL NIL NIL) (-141 266124 266263 266423 "COMPILER" NIL COMPILER (NIL) -7 NIL NIL NIL) (-140 265877 265918 266016 "COMPFACT" NIL COMPFACT (NIL T T) -7 NIL NIL NIL) (-139 247308 259558 259598 "COMPCAT" 260599 COMPCAT (NIL T) -9 NIL 261941 NIL) (-138 239846 243359 246952 "COMPCAT-" NIL COMPCAT- (NIL T T) -7 NIL NIL NIL) (-137 239605 239639 239741 "COMMUPC" NIL COMMUPC (NIL T T T) -7 NIL NIL NIL) (-136 239435 239474 239532 "COMMONOP" NIL COMMONOP (NIL) -7 NIL NIL NIL) (-135 239016 239295 239369 "COMMAAST" NIL COMMAAST (NIL) -8 NIL NIL NIL) (-134 238593 238834 238921 "COMM" NIL COMM (NIL) -8 NIL NIL NIL) (-133 237788 238036 238064 "COMBOPC" 238402 COMBOPC (NIL) -9 NIL 238577 NIL) (-132 236852 237104 237346 "COMBINAT" NIL COMBINAT (NIL T) -7 NIL NIL NIL) (-131 233784 234468 235091 "COMBF" NIL COMBF (NIL T T) -7 NIL NIL NIL) (-130 232664 233115 233350 "COLOR" NIL COLOR (NIL) -8 NIL NIL NIL) (-129 232155 232458 232549 "COLONAST" NIL COLONAST (NIL) -8 NIL NIL NIL) (-128 231842 231895 232020 "CMPLXRT" NIL CMPLXRT (NIL T T) -7 NIL NIL NIL) (-127 231312 231622 231720 "CLLCTAST" NIL CLLCTAST (NIL) -8 NIL NIL NIL) (-126 227832 228902 229982 "CLIP" NIL CLIP (NIL) -7 NIL NIL NIL) (-125 226127 227112 227350 "CLIF" NIL CLIF (NIL NIL T NIL) -8 NIL NIL NIL) (-124 222239 224247 224288 "CLAGG" 225214 CLAGG (NIL T) -9 NIL 225747 NIL) (-123 221132 221659 222234 "CLAGG-" NIL CLAGG- (NIL T T) -7 NIL NIL NIL) (-122 220761 220852 220992 "CINTSLPE" NIL CINTSLPE (NIL T T) -7 NIL NIL NIL) (-121 218698 219205 219753 "CHVAR" NIL CHVAR (NIL T T T) -7 NIL NIL NIL) (-120 217659 218390 218418 "CHARZ" 218423 CHARZ (NIL) -9 NIL 218437 NIL) (-119 217453 217499 217577 "CHARPOL" NIL CHARPOL (NIL T) -7 NIL NIL NIL) (-118 216292 217055 217083 "CHARNZ" 217144 CHARNZ (NIL) -9 NIL 217192 NIL) (-117 213770 214867 215390 "CHAR" NIL CHAR (NIL) -8 NIL NIL NIL) (-116 213478 213557 213585 "CFCAT" 213696 CFCAT (NIL) -9 NIL NIL NIL) (-115 212821 212950 213132 "CDEN" NIL CDEN (NIL T T T) -7 NIL NIL NIL) (-114 208810 212234 212514 "CCLASS" NIL CCLASS (NIL) -8 NIL NIL NIL) (-113 208188 208375 208552 "CATEGORY" NIL -10 (NIL) -8 NIL NIL NIL) (-112 207716 208135 208183 "CATCTOR" NIL CATCTOR (NIL) -8 NIL NIL NIL) (-111 207189 207498 207595 "CATAST" NIL CATAST (NIL) -8 NIL NIL NIL) (-110 206680 206983 207074 "CASEAST" NIL CASEAST (NIL) -8 NIL NIL NIL) (-109 205929 206089 206310 "CARTEN2" NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL NIL) (-108 202029 203286 203994 "CARTEN" NIL CARTEN (NIL NIL NIL T) -8 NIL NIL NIL) (-107 200395 201426 201677 "CARD" NIL CARD (NIL) -8 NIL NIL NIL) (-106 199976 200255 200329 "CAPSLAST" NIL CAPSLAST (NIL) -8 NIL NIL NIL) (-105 199410 199663 199691 "CACHSET" 199823 CACHSET (NIL) -9 NIL 199901 NIL) (-104 198762 199177 199205 "CABMON" 199255 CABMON (NIL) -9 NIL 199311 NIL) (-103 198292 198556 198666 "BYTEORD" NIL BYTEORD (NIL) -8 NIL NIL NIL) (-102 193515 197949 198121 "BYTEBUF" NIL BYTEBUF (NIL) -8 NIL NIL NIL) (-101 192485 193189 193324 "BYTE" NIL BYTE (NIL) -8 NIL NIL 193487) (-100 189956 192252 192358 "BTREE" NIL BTREE (NIL T) -8 NIL NIL NIL) (-99 187387 189699 189818 "BTOURN" NIL BTOURN (NIL T) -8 NIL NIL NIL) (-98 184627 186831 186870 "BTCAT" 186937 BTCAT (NIL T) -9 NIL 187013 NIL) (-97 184378 184476 184622 "BTCAT-" NIL BTCAT- (NIL T T) -7 NIL NIL NIL) (-96 179488 183609 183635 "BTAGG" 183746 BTAGG (NIL) -9 NIL 183854 NIL) (-95 179119 179280 179483 "BTAGG-" NIL BTAGG- (NIL T) -7 NIL NIL NIL) (-94 176181 178589 178801 "BSTREE" NIL BSTREE (NIL T) -8 NIL NIL NIL) (-93 175451 175603 175781 "BRILL" NIL BRILL (NIL T) -7 NIL NIL NIL) (-92 171984 174157 174196 "BRAGG" 174837 BRAGG (NIL T) -9 NIL 175094 NIL) (-91 170939 171434 171979 "BRAGG-" NIL BRAGG- (NIL T T) -7 NIL NIL NIL) (-90 163473 170444 170625 "BPADICRT" NIL BPADICRT (NIL NIL) -8 NIL NIL NIL) (-89 161465 163425 163468 "BPADIC" NIL BPADIC (NIL NIL) -8 NIL NIL NIL) (-88 161198 161234 161345 "BOUNDZRO" NIL BOUNDZRO (NIL T T) -7 NIL NIL NIL) (-87 159437 159870 160318 "BOP1" NIL BOP1 (NIL T) -7 NIL NIL NIL) (-86 155403 156819 157709 "BOP" NIL BOP (NIL) -8 NIL NIL NIL) (-85 154279 155170 155292 "BOOLEAN" NIL BOOLEAN (NIL) -8 NIL NIL NIL) (-84 153865 154022 154048 "BOOLE" 154156 BOOLE (NIL) -9 NIL 154237 NIL) (-83 153658 153739 153860 "BOOLE-" NIL BOOLE- (NIL T) -7 NIL NIL NIL) (-82 152796 153323 153373 "BMODULE" 153378 BMODULE (NIL T T) -9 NIL 153442 NIL) (-81 148413 152653 152722 "BITS" NIL BITS (NIL) -8 NIL NIL NIL) (-80 148226 148266 148305 "BINOPC" 148310 BINOPC (NIL T) -9 NIL 148355 NIL) (-79 147768 148041 148143 "BINOP" NIL BINOP (NIL T) -8 NIL NIL NIL) (-78 147289 147433 147571 "BINDING" NIL BINDING (NIL) -8 NIL NIL NIL) (-77 140495 147019 147164 "BINARY" NIL BINARY (NIL) -8 NIL NIL NIL) (-76 138229 139724 139763 "BGAGG" 140019 BGAGG (NIL T) -9 NIL 140156 NIL) (-75 138098 138136 138224 "BGAGG-" NIL BGAGG- (NIL T T) -7 NIL NIL NIL) (-74 136949 137150 137435 "BEZOUT" NIL BEZOUT (NIL T T T T T) -7 NIL NIL NIL) (-73 133587 136107 136434 "BBTREE" NIL BBTREE (NIL T) -8 NIL NIL NIL) (-72 133172 133265 133291 "BASTYPE" 133462 BASTYPE (NIL) -9 NIL 133558 NIL) (-71 132942 133038 133167 "BASTYPE-" NIL BASTYPE- (NIL T) -7 NIL NIL NIL) (-70 132457 132545 132695 "BALFACT" NIL BALFACT (NIL T T) -7 NIL NIL NIL) (-69 131356 132031 132216 "AUTOMOR" NIL AUTOMOR (NIL T) -8 NIL NIL NIL) (-68 131082 131087 131113 "ATTREG" 131118 ATTREG (NIL) -9 NIL NIL NIL) (-67 130687 130959 131024 "ATTRAST" NIL ATTRAST (NIL) -8 NIL NIL NIL) (-66 130187 130336 130362 "ATRIG" 130563 ATRIG (NIL) -9 NIL NIL NIL) (-65 130042 130095 130182 "ATRIG-" NIL ATRIG- (NIL T) -7 NIL NIL NIL) (-64 129612 129843 129869 "ASTCAT" 129874 ASTCAT (NIL) -9 NIL 129904 NIL) (-63 129411 129488 129607 "ASTCAT-" NIL ASTCAT- (NIL T) -7 NIL NIL NIL) (-62 127570 129244 129332 "ASTACK" NIL ASTACK (NIL T) -8 NIL NIL NIL) (-61 126377 126690 127055 "ASSOCEQ" NIL ASSOCEQ (NIL T T) -7 NIL NIL NIL) (-60 124184 126307 126372 "ARRAY2" NIL ARRAY2 (NIL T) -8 NIL NIL NIL) (-59 123375 123566 123787 "ARRAY12" NIL ARRAY12 (NIL T T) -7 NIL NIL NIL) (-58 118962 123106 123220 "ARRAY1" NIL ARRAY1 (NIL T) -8 NIL NIL NIL) (-57 113256 115307 115382 "ARR2CAT" 117894 ARR2CAT (NIL T T T) -9 NIL 118623 NIL) (-56 112217 112699 113251 "ARR2CAT-" NIL ARR2CAT- (NIL T T T T) -7 NIL NIL NIL) (-55 111585 111956 112078 "ARITY" NIL ARITY (NIL) -8 NIL NIL NIL) (-54 110517 110685 110981 "APPRULE" NIL APPRULE (NIL T T T) -7 NIL NIL NIL) (-53 110218 110272 110390 "APPLYORE" NIL APPLYORE (NIL T T T) -7 NIL NIL NIL) (-52 109601 109747 109903 "ANY1" NIL ANY1 (NIL T) -7 NIL NIL NIL) (-51 109006 109296 109416 "ANY" NIL ANY (NIL) -8 NIL NIL NIL) (-50 106574 107735 108058 "ANTISYM" NIL ANTISYM (NIL T NIL) -8 NIL NIL NIL) (-49 106099 106359 106455 "ANON" NIL ANON (NIL) -8 NIL NIL NIL) (-48 99794 105161 105603 "AN" NIL AN (NIL) -8 NIL NIL NIL) (-47 95328 96991 97041 "AMR" 97779 AMR (NIL T T) -9 NIL 98376 NIL) (-46 94682 94962 95323 "AMR-" NIL AMR- (NIL T T T) -7 NIL NIL NIL) (-45 77862 94616 94677 "ALIST" NIL ALIST (NIL T T) -8 NIL NIL NIL) (-44 74265 77538 77707 "ALGSC" NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-43 71275 71935 72542 "ALGPKG" NIL ALGPKG (NIL T T) -7 NIL NIL NIL) (-42 70654 70767 70951 "ALGMFACT" NIL ALGMFACT (NIL T T T) -7 NIL NIL NIL) (-41 67066 67691 68283 "ALGMANIP" NIL ALGMANIP (NIL T T) -7 NIL NIL NIL) (-40 56555 66759 66909 "ALGFF" NIL ALGFF (NIL T T T NIL) -8 NIL NIL NIL) (-39 55872 56026 56204 "ALGFACT" NIL ALGFACT (NIL T) -7 NIL NIL NIL) (-38 54585 55380 55418 "ALGEBRA" 55423 ALGEBRA (NIL T) -9 NIL 55463 NIL) (-37 54371 54448 54580 "ALGEBRA-" NIL ALGEBRA- (NIL T T) -7 NIL NIL NIL) (-36 34368 51577 51629 "ALAGG" 51767 ALAGG (NIL T T) -9 NIL 51932 NIL) (-35 33868 34017 34043 "AHYP" 34244 AHYP (NIL) -9 NIL NIL NIL) (-34 33164 33345 33371 "AGG" 33652 AGG (NIL) -9 NIL 33839 NIL) (-33 32953 33040 33159 "AGG-" NIL AGG- (NIL T) -7 NIL NIL NIL) (-32 31092 31552 31952 "AF" NIL AF (NIL T T) -7 NIL NIL NIL) (-31 30587 30890 30979 "ADDAST" NIL ADDAST (NIL) -8 NIL NIL NIL) (-30 29957 30252 30408 "ACPLOT" NIL ACPLOT (NIL) -8 NIL NIL NIL) (-29 17515 26794 26832 "ACFS" 27439 ACFS (NIL T) -9 NIL 27678 NIL) (-28 16138 16748 17510 "ACFS-" NIL ACFS- (NIL T T) -7 NIL NIL NIL) (-27 11690 14069 14095 "ACF" 14974 ACF (NIL) -9 NIL 15386 NIL) (-26 10786 11192 11685 "ACF-" NIL ACF- (NIL T) -7 NIL NIL NIL) (-25 10288 10528 10554 "ABELSG" 10646 ABELSG (NIL) -9 NIL 10711 NIL) (-24 10186 10217 10283 "ABELSG-" NIL ABELSG- (NIL T) -7 NIL NIL NIL) (-23 9341 9715 9741 "ABELMON" 9966 ABELMON (NIL) -9 NIL 10099 NIL) (-22 9023 9163 9336 "ABELMON-" NIL ABELMON- (NIL T) -7 NIL NIL NIL) (-21 8235 8718 8744 "ABELGRP" 8816 ABELGRP (NIL) -9 NIL 8891 NIL) (-20 7788 7984 8230 "ABELGRP-" NIL ABELGRP- (NIL T) -7 NIL NIL NIL) (-19 3036 7046 7085 "A1AGG" 7090 A1AGG (NIL T) -9 NIL 7130 NIL) (-18 30 1483 3031 "A1AGG-" NIL A1AGG- (NIL T T) -7 NIL NIL NIL))
\ No newline at end of file +((-2568 (((-85) $ $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) 9 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT))) +(((-1129) (-995)) (T -1129)) +NIL +((-3716 (((-85)) 18 T ELT)) (-3713 (((-1184) (-583 |#1|) (-583 |#1|)) 22 T ELT) (((-1184) (-583 |#1|)) 23 T ELT)) (-3718 (((-85) |#1| |#1|) 37 (|has| |#1| (-756)) ELT)) (-3715 (((-85) |#1| |#1| (-1 (-85) |#1| |#1|)) 29 T ELT) (((-3 (-85) "failed") |#1| |#1|) 27 T ELT)) (-3717 ((|#1| (-583 |#1|)) 38 (|has| |#1| (-756)) ELT) ((|#1| (-583 |#1|) (-1 (-85) |#1| |#1|)) 32 T ELT)) (-3714 (((-2 (|:| -3229 (-583 |#1|)) (|:| -3228 (-583 |#1|)))) 20 T ELT))) +(((-1130 |#1|) (-10 -7 (-15 -3713 ((-1184) (-583 |#1|))) (-15 -3713 ((-1184) (-583 |#1|) (-583 |#1|))) (-15 -3714 ((-2 (|:| -3229 (-583 |#1|)) (|:| -3228 (-583 |#1|))))) (-15 -3715 ((-3 (-85) "failed") |#1| |#1|)) (-15 -3715 ((-85) |#1| |#1| (-1 (-85) |#1| |#1|))) (-15 -3717 (|#1| (-583 |#1|) (-1 (-85) |#1| |#1|))) (-15 -3716 ((-85))) (IF (|has| |#1| (-756)) (PROGN (-15 -3717 (|#1| (-583 |#1|))) (-15 -3718 ((-85) |#1| |#1|))) |%noBranch|)) (-1013)) (T -1130)) +((-3718 (*1 *2 *3 *3) (-12 (-5 *2 (-85)) (-5 *1 (-1130 *3)) (-4 *3 (-756)) (-4 *3 (-1013)))) (-3717 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-1013)) (-4 *2 (-756)) (-5 *1 (-1130 *2)))) (-3716 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1130 *3)) (-4 *3 (-1013)))) (-3717 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *2)) (-5 *4 (-1 (-85) *2 *2)) (-5 *1 (-1130 *2)) (-4 *2 (-1013)))) (-3715 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-85) *3 *3)) (-4 *3 (-1013)) (-5 *2 (-85)) (-5 *1 (-1130 *3)))) (-3715 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-85)) (-5 *1 (-1130 *3)) (-4 *3 (-1013)))) (-3714 (*1 *2) (-12 (-5 *2 (-2 (|:| -3229 (-583 *3)) (|:| -3228 (-583 *3)))) (-5 *1 (-1130 *3)) (-4 *3 (-1013)))) (-3713 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-1013)) (-5 *2 (-1184)) (-5 *1 (-1130 *4)))) (-3713 (*1 *2 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-1013)) (-5 *2 (-1184)) (-5 *1 (-1130 *4))))) +((-3719 (((-1184) (-583 (-1089)) (-583 (-1089))) 14 T ELT) (((-1184) (-583 (-1089))) 12 T ELT)) (-3721 (((-1184)) 16 T ELT)) (-3720 (((-2 (|:| -3228 (-583 (-1089))) (|:| -3229 (-583 (-1089))))) 20 T ELT))) +(((-1131) (-10 -7 (-15 -3719 ((-1184) (-583 (-1089)))) (-15 -3719 ((-1184) (-583 (-1089)) (-583 (-1089)))) (-15 -3720 ((-2 (|:| -3228 (-583 (-1089))) (|:| -3229 (-583 (-1089)))))) (-15 -3721 ((-1184))))) (T -1131)) +((-3721 (*1 *2) (-12 (-5 *2 (-1184)) (-5 *1 (-1131)))) (-3720 (*1 *2) (-12 (-5 *2 (-2 (|:| -3228 (-583 (-1089))) (|:| -3229 (-583 (-1089))))) (-5 *1 (-1131)))) (-3719 (*1 *2 *3 *3) (-12 (-5 *3 (-583 (-1089))) (-5 *2 (-1184)) (-5 *1 (-1131)))) (-3719 (*1 *2 *3) (-12 (-5 *3 (-583 (-1089))) (-5 *2 (-1184)) (-5 *1 (-1131))))) +((-3774 (($ $) 17 T ELT)) (-3722 (((-85) $) 27 T ELT))) +(((-1132 |#1|) (-10 -7 (-15 -3774 (|#1| |#1|)) (-15 -3722 ((-85) |#1|))) (-1133)) (T -1132)) +NIL +((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) 55 T ELT)) (-2063 (($ $) 54 T ELT)) (-2061 (((-85) $) 52 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3774 (($ $) 66 T ELT)) (-3970 (((-347 $) $) 67 T ELT)) (-3723 (($) 23 T CONST)) (-3466 (((-3 $ "failed") $) 42 T ELT)) (-3722 (((-85) $) 68 T ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-1890 (($ $ $) 60 T ELT) (($ (-583 $)) 59 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) 58 T ELT)) (-3144 (($ $ $) 62 T ELT) (($ (-583 $)) 61 T ELT)) (-3731 (((-347 $) $) 65 T ELT)) (-3465 (((-3 $ "failed") $ $) 56 T ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ $) 57 T ELT)) (-3126 (((-694)) 40 T CONST)) (-1264 (((-85) $ $) 6 T ELT)) (-2062 (((-85) $ $) 53 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT))) +(((-1133) (-113)) (T -1133)) +((-3722 (*1 *2 *1) (-12 (-4 *1 (-1133)) (-5 *2 (-85)))) (-3970 (*1 *2 *1) (-12 (-5 *2 (-347 *1)) (-4 *1 (-1133)))) (-3774 (*1 *1 *1) (-4 *1 (-1133))) (-3731 (*1 *2 *1) (-12 (-5 *2 (-347 *1)) (-4 *1 (-1133))))) +(-13 (-391) (-10 -8 (-15 -3722 ((-85) $)) (-15 -3970 ((-347 $) $)) (-15 -3774 ($ $)) (-15 -3731 ((-347 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-555 (-484)) . T) ((-555 $) . T) ((-552 (-772)) . T) ((-146) . T) ((-246) . T) ((-391) . T) ((-495) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 $) . T) ((-590 $) . T) ((-582 $) . T) ((-654 $) . T) ((-663) . T) ((-963 $) . T) ((-968 $) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T)) +((-2568 (((-85) $ $) NIL T ELT)) (-2313 (($ $) NIL T ELT)) (-3136 (((-694)) NIL T ELT)) (-3723 (($) NIL T CONST)) (-2994 (($) NIL T ELT)) (-2531 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2857 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2010 (((-830) $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2400 (($ (-830)) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) NIL T ELT)) (-3724 (($ $ $) NIL T ELT)) (-3725 (($ $ $) NIL T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2311 (($ $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2312 (($ $ $) NIL T ELT))) +(((-1134) (-13 (-752) (-604) (-10 -8 (-15 -3725 ($ $ $)) (-15 -3724 ($ $ $)) (-15 -3723 ($) -3951)))) (T -1134)) +((-3725 (*1 *1 *1 *1) (-5 *1 (-1134))) (-3724 (*1 *1 *1 *1) (-5 *1 (-1134))) (-3723 (*1 *1) (-5 *1 (-1134)))) +((-694) (|%not| (|%ilt| 16 (|%ilength| |#1|)))) +((-2568 (((-85) $ $) NIL T ELT)) (-2313 (($ $) NIL T ELT)) (-3136 (((-694)) NIL T ELT)) (-3723 (($) NIL T CONST)) (-2994 (($) NIL T ELT)) (-2531 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2857 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2010 (((-830) $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2400 (($ (-830)) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) NIL T ELT)) (-3724 (($ $ $) NIL T ELT)) (-3725 (($ $ $) NIL T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2311 (($ $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2312 (($ $ $) NIL T ELT))) +(((-1135) (-13 (-752) (-604) (-10 -8 (-15 -3725 ($ $ $)) (-15 -3724 ($ $ $)) (-15 -3723 ($) -3951)))) (T -1135)) +((-3725 (*1 *1 *1 *1) (-5 *1 (-1135))) (-3724 (*1 *1 *1 *1) (-5 *1 (-1135))) (-3723 (*1 *1) (-5 *1 (-1135)))) +((-694) (|%not| (|%ilt| 32 (|%ilength| |#1|)))) +((-2568 (((-85) $ $) NIL T ELT)) (-2313 (($ $) NIL T ELT)) (-3136 (((-694)) NIL T ELT)) (-3723 (($) NIL T CONST)) (-2994 (($) NIL T ELT)) (-2531 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2857 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2010 (((-830) $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2400 (($ (-830)) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) NIL T ELT)) (-3724 (($ $ $) NIL T ELT)) (-3725 (($ $ $) NIL T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2311 (($ $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2312 (($ $ $) NIL T ELT))) +(((-1136) (-13 (-752) (-604) (-10 -8 (-15 -3725 ($ $ $)) (-15 -3724 ($ $ $)) (-15 -3723 ($) -3951)))) (T -1136)) +((-3725 (*1 *1 *1 *1) (-5 *1 (-1136))) (-3724 (*1 *1 *1 *1) (-5 *1 (-1136))) (-3723 (*1 *1) (-5 *1 (-1136)))) +((-694) (|%not| (|%ilt| 64 (|%ilength| |#1|)))) +((-2568 (((-85) $ $) NIL T ELT)) (-2313 (($ $) NIL T ELT)) (-3136 (((-694)) NIL T ELT)) (-3723 (($) NIL T CONST)) (-2994 (($) NIL T ELT)) (-2531 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2857 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2010 (((-830) $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2400 (($ (-830)) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) NIL T ELT)) (-3724 (($ $ $) NIL T ELT)) (-3725 (($ $ $) NIL T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2311 (($ $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2312 (($ $ $) NIL T ELT))) +(((-1137) (-13 (-752) (-604) (-10 -8 (-15 -3725 ($ $ $)) (-15 -3724 ($ $ $)) (-15 -3723 ($) -3951)))) (T -1137)) +((-3725 (*1 *1 *1 *1) (-5 *1 (-1137))) (-3724 (*1 *1 *1 *1) (-5 *1 (-1137))) (-3723 (*1 *1) (-5 *1 (-1137)))) +((-694) (|%not| (|%ilt| 8 (|%ilength| |#1|)))) +((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-3129 (((-1168 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-258)) (|has| |#1| (-312))) ELT)) (-3081 (((-583 (-994)) $) NIL T ELT)) (-3830 (((-1089) $) 10 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL (OR (-12 (|has| (-1168 |#1| |#2| |#3|) (-740)) (|has| |#1| (-312))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-821)) (|has| |#1| (-312))) (|has| |#1| (-495))) ELT)) (-2063 (($ $) NIL (OR (-12 (|has| (-1168 |#1| |#2| |#3|) (-740)) (|has| |#1| (-312))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-821)) (|has| |#1| (-312))) (|has| |#1| (-495))) ELT)) (-2061 (((-85) $) NIL (OR (-12 (|has| (-1168 |#1| |#2| |#3|) (-740)) (|has| |#1| (-312))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-821)) (|has| |#1| (-312))) (|has| |#1| (-495))) ELT)) (-3770 (($ $ (-484)) NIL T ELT) (($ $ (-484) (-484)) NIL T ELT)) (-3773 (((-1068 (-2 (|:| |k| (-484)) (|:| |c| |#1|))) $) NIL T ELT)) (-3730 (((-1168 |#1| |#2| |#3|) $) NIL T ELT)) (-3727 (((-3 (-1168 |#1| |#2| |#3|) #1="failed") $) NIL T ELT)) (-3728 (((-1168 |#1| |#2| |#3|) $) NIL T ELT)) (-3491 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3638 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-1311 (((-3 $ #1#) $ $) NIL T ELT)) (-2707 (((-347 (-1084 $)) (-1084 $)) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-821)) (|has| |#1| (-312))) ELT)) (-3774 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3970 (((-347 $) $) NIL (|has| |#1| (-312)) ELT)) (-3037 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2704 (((-3 (-583 (-1084 $)) #1#) (-583 (-1084 $)) (-1084 $)) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-821)) (|has| |#1| (-312))) ELT)) (-1607 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3489 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3637 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3622 (((-484) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-740)) (|has| |#1| (-312))) ELT)) (-3817 (($ (-1068 (-2 (|:| |k| (-484)) (|:| |c| |#1|)))) NIL T ELT)) (-3493 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3636 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 (-1168 |#1| |#2| |#3|) #1#) $) NIL T ELT) (((-3 (-1089) #1#) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-950 (-1089))) (|has| |#1| (-312))) ELT) (((-3 (-349 (-484)) #1#) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-950 (-484))) (|has| |#1| (-312))) ELT) (((-3 (-484) #1#) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-950 (-484))) (|has| |#1| (-312))) ELT)) (-3156 (((-1168 |#1| |#2| |#3|) $) NIL T ELT) (((-1089) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-950 (-1089))) (|has| |#1| (-312))) ELT) (((-349 (-484)) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-950 (-484))) (|has| |#1| (-312))) ELT) (((-484) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-950 (-484))) (|has| |#1| (-312))) ELT)) (-3729 (($ $) NIL T ELT) (($ (-484) $) NIL T ELT)) (-2564 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3958 (($ $) NIL T ELT)) (-2279 (((-630 (-1168 |#1| |#2| |#3|)) (-630 $)) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-630 (-1168 |#1| |#2| |#3|))) (|:| |vec| (-1178 (-1168 |#1| |#2| |#3|)))) (-630 $) (-1178 $)) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-580 (-484))) (|has| |#1| (-312))) ELT) (((-630 (-484)) (-630 $)) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-580 (-484))) (|has| |#1| (-312))) ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-3726 (((-349 (-857 |#1|)) $ (-484)) NIL (|has| |#1| (-495)) ELT) (((-349 (-857 |#1|)) $ (-484) (-484)) NIL (|has| |#1| (-495)) ELT)) (-2994 (($) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-483)) (|has| |#1| (-312))) ELT)) (-2563 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) NIL (|has| |#1| (-312)) ELT)) (-3722 (((-85) $) NIL (|has| |#1| (-312)) ELT)) (-3186 (((-85) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-740)) (|has| |#1| (-312))) ELT)) (-2892 (((-85) $) NIL T ELT)) (-3626 (($) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2796 (((-798 (-329) $) $ (-800 (-329)) (-798 (-329) $)) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-796 (-329))) (|has| |#1| (-312))) ELT) (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-796 (-484))) (|has| |#1| (-312))) ELT)) (-3771 (((-484) $) NIL T ELT) (((-484) $ (-484)) NIL T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2996 (($ $) NIL (|has| |#1| (-312)) ELT)) (-2998 (((-1168 |#1| |#2| |#3|) $) NIL (|has| |#1| (-312)) ELT)) (-3011 (($ $ (-484)) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3444 (((-632 $) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-1065)) (|has| |#1| (-312))) ELT)) (-3187 (((-85) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-740)) (|has| |#1| (-312))) ELT)) (-3776 (($ $ (-830)) NIL T ELT)) (-3814 (($ (-1 |#1| (-484)) $) NIL T ELT)) (-1604 (((-3 (-583 $) #1#) (-583 $) $) NIL (|has| |#1| (-312)) ELT)) (-3936 (((-85) $) NIL T ELT)) (-2893 (($ |#1| (-484)) 18 T ELT) (($ $ (-994) (-484)) NIL T ELT) (($ $ (-583 (-994)) (-583 (-484))) NIL T ELT)) (-2531 (($ $ $) NIL (OR (-12 (|has| (-1168 |#1| |#2| |#3|) (-740)) (|has| |#1| (-312))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-756)) (|has| |#1| (-312)))) ELT)) (-2857 (($ $ $) NIL (OR (-12 (|has| (-1168 |#1| |#2| |#3|) (-740)) (|has| |#1| (-312))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-756)) (|has| |#1| (-312)))) ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 (-1168 |#1| |#2| |#3|) (-1168 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-312)) ELT)) (-3941 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2280 (((-630 (-1168 |#1| |#2| |#3|)) (-1178 $)) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-630 (-1168 |#1| |#2| |#3|))) (|:| |vec| (-1178 (-1168 |#1| |#2| |#3|)))) (-1178 $) $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-580 (-484))) (|has| |#1| (-312))) ELT) (((-630 (-484)) (-1178 $)) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-580 (-484))) (|has| |#1| (-312))) ELT)) (-2894 (($ $) NIL T ELT)) (-3174 ((|#1| $) NIL T ELT)) (-1890 (($ (-583 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3778 (($ (-484) (-1168 |#1| |#2| |#3|)) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2484 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3811 (($ $) 27 (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $ (-1089)) NIL (OR (-12 (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-29 (-484))) (|has| |#1| (-871)) (|has| |#1| (-1114))) (-12 (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-15 -3811 (|#1| |#1| (-1089)))) (|has| |#1| (-15 -3081 ((-583 (-1089)) |#1|))))) ELT) (($ $ (-1175 |#2|)) 28 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3445 (($) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-1065)) (|has| |#1| (-312))) CONST)) (-3243 (((-1033) $) NIL T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) NIL (|has| |#1| (-312)) ELT)) (-3144 (($ (-583 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3128 (($ $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-258)) (|has| |#1| (-312))) ELT)) (-3130 (((-1168 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-483)) (|has| |#1| (-312))) ELT)) (-2705 (((-347 (-1084 $)) (-1084 $)) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-821)) (|has| |#1| (-312))) ELT)) (-2706 (((-347 (-1084 $)) (-1084 $)) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-821)) (|has| |#1| (-312))) ELT)) (-3731 (((-347 $) $) NIL (|has| |#1| (-312)) ELT)) (-1605 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3768 (($ $ (-484)) NIL T ELT)) (-3465 (((-3 $ #1#) $ $) NIL (OR (-12 (|has| (-1168 |#1| |#2| |#3|) (-740)) (|has| |#1| (-312))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-821)) (|has| |#1| (-312))) (|has| |#1| (-495))) ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL (|has| |#1| (-312)) ELT)) (-3942 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3767 (((-1068 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-484)))) ELT) (($ $ (-1089) (-1168 |#1| |#2| |#3|)) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-455 (-1089) (-1168 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT) (($ $ (-583 (-1089)) (-583 (-1168 |#1| |#2| |#3|))) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-455 (-1089) (-1168 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT) (($ $ (-583 (-249 (-1168 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-260 (-1168 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT) (($ $ (-249 (-1168 |#1| |#2| |#3|))) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-260 (-1168 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT) (($ $ (-1168 |#1| |#2| |#3|) (-1168 |#1| |#2| |#3|)) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-260 (-1168 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT) (($ $ (-583 (-1168 |#1| |#2| |#3|)) (-583 (-1168 |#1| |#2| |#3|))) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-260 (-1168 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT)) (-1606 (((-694) $) NIL (|has| |#1| (-312)) ELT)) (-3799 ((|#1| $ (-484)) NIL T ELT) (($ $ $) NIL (|has| (-484) (-1025)) ELT) (($ $ (-1168 |#1| |#2| |#3|)) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-241 (-1168 |#1| |#2| |#3|) (-1168 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3757 (($ $ (-1 (-1168 |#1| |#2| |#3|) (-1168 |#1| |#2| |#3|)) (-694)) NIL (|has| |#1| (-312)) ELT) (($ $ (-1 (-1168 |#1| |#2| |#3|) (-1168 |#1| |#2| |#3|))) NIL (|has| |#1| (-312)) ELT) (($ $ (-1175 |#2|)) 26 T ELT) (($ $) 25 (OR (-12 (|has| (-1168 |#1| |#2| |#3|) (-190)) (|has| |#1| (-312))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-694)) NIL (OR (-12 (|has| (-1168 |#1| |#2| |#3|) (-190)) (|has| |#1| (-312))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-1089)) NIL (OR (-12 (|has| (-1168 |#1| |#2| |#3|) (-809 (-1089))) (|has| |#1| (-312))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-811 (-1089))) (|has| |#1| (-312))) (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT) (($ $ (-583 (-1089))) NIL (OR (-12 (|has| (-1168 |#1| |#2| |#3|) (-809 (-1089))) (|has| |#1| (-312))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-811 (-1089))) (|has| |#1| (-312))) (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT) (($ $ (-1089) (-694)) NIL (OR (-12 (|has| (-1168 |#1| |#2| |#3|) (-809 (-1089))) (|has| |#1| (-312))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-811 (-1089))) (|has| |#1| (-312))) (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (OR (-12 (|has| (-1168 |#1| |#2| |#3|) (-809 (-1089))) (|has| |#1| (-312))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-811 (-1089))) (|has| |#1| (-312))) (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT)) (-2995 (($ $) NIL (|has| |#1| (-312)) ELT)) (-2997 (((-1168 |#1| |#2| |#3|) $) NIL (|has| |#1| (-312)) ELT)) (-3947 (((-484) $) NIL T ELT)) (-3494 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3635 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3492 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3634 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3490 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3633 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3971 (((-473) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-553 (-473))) (|has| |#1| (-312))) ELT) (((-329) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-933)) (|has| |#1| (-312))) ELT) (((-179) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-933)) (|has| |#1| (-312))) ELT) (((-800 (-329)) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-553 (-800 (-329)))) (|has| |#1| (-312))) ELT) (((-800 (-484)) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-553 (-800 (-484)))) (|has| |#1| (-312))) ELT)) (-2703 (((-3 (-1178 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| (-1168 |#1| |#2| |#3|) (-821)) (|has| |#1| (-312))) ELT)) (-2891 (($ $) NIL T ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT) (($ (-1168 |#1| |#2| |#3|)) NIL T ELT) (($ (-1175 |#2|)) 24 T ELT) (($ (-1089)) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-950 (-1089))) (|has| |#1| (-312))) ELT) (($ $) NIL (OR (-12 (|has| (-1168 |#1| |#2| |#3|) (-740)) (|has| |#1| (-312))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-821)) (|has| |#1| (-312))) (|has| |#1| (-495))) ELT) (($ (-349 (-484))) NIL (OR (-12 (|has| (-1168 |#1| |#2| |#3|) (-950 (-484))) (|has| |#1| (-312))) (|has| |#1| (-38 (-349 (-484))))) ELT)) (-3676 ((|#1| $ (-484)) NIL T ELT)) (-2702 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-1168 |#1| |#2| |#3|) (-821)) (|has| |#1| (-312))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-118)) (|has| |#1| (-312))) (|has| |#1| (-118))) ELT)) (-3126 (((-694)) NIL T CONST)) (-3772 ((|#1| $) 11 T ELT)) (-3131 (((-1168 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-483)) (|has| |#1| (-312))) ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3497 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3485 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2062 (((-85) $ $) NIL (OR (-12 (|has| (-1168 |#1| |#2| |#3|) (-740)) (|has| |#1| (-312))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-821)) (|has| |#1| (-312))) (|has| |#1| (-495))) ELT)) (-3495 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3483 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3499 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3487 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3769 ((|#1| $ (-484)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-484)))) (|has| |#1| (-15 -3945 (|#1| (-1089))))) ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-3500 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3488 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3498 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3486 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3496 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3484 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3382 (($ $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-740)) (|has| |#1| (-312))) ELT)) (-2660 (($) 20 T CONST)) (-2666 (($) 15 T CONST)) (-2669 (($ $ (-1 (-1168 |#1| |#2| |#3|) (-1168 |#1| |#2| |#3|)) (-694)) NIL (|has| |#1| (-312)) ELT) (($ $ (-1 (-1168 |#1| |#2| |#3|) (-1168 |#1| |#2| |#3|))) NIL (|has| |#1| (-312)) ELT) (($ $ (-1175 |#2|)) NIL T ELT) (($ $) NIL (OR (-12 (|has| (-1168 |#1| |#2| |#3|) (-190)) (|has| |#1| (-312))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-694)) NIL (OR (-12 (|has| (-1168 |#1| |#2| |#3|) (-190)) (|has| |#1| (-312))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-1089)) NIL (OR (-12 (|has| (-1168 |#1| |#2| |#3|) (-809 (-1089))) (|has| |#1| (-312))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-811 (-1089))) (|has| |#1| (-312))) (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT) (($ $ (-583 (-1089))) NIL (OR (-12 (|has| (-1168 |#1| |#2| |#3|) (-809 (-1089))) (|has| |#1| (-312))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-811 (-1089))) (|has| |#1| (-312))) (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT) (($ $ (-1089) (-694)) NIL (OR (-12 (|has| (-1168 |#1| |#2| |#3|) (-809 (-1089))) (|has| |#1| (-312))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-811 (-1089))) (|has| |#1| (-312))) (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (OR (-12 (|has| (-1168 |#1| |#2| |#3|) (-809 (-1089))) (|has| |#1| (-312))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-811 (-1089))) (|has| |#1| (-312))) (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT)) (-2566 (((-85) $ $) NIL (OR (-12 (|has| (-1168 |#1| |#2| |#3|) (-740)) (|has| |#1| (-312))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-756)) (|has| |#1| (-312)))) ELT)) (-2567 (((-85) $ $) NIL (OR (-12 (|has| (-1168 |#1| |#2| |#3|) (-740)) (|has| |#1| (-312))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-756)) (|has| |#1| (-312)))) ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL (OR (-12 (|has| (-1168 |#1| |#2| |#3|) (-740)) (|has| |#1| (-312))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-756)) (|has| |#1| (-312)))) ELT)) (-2685 (((-85) $ $) NIL (OR (-12 (|has| (-1168 |#1| |#2| |#3|) (-740)) (|has| |#1| (-312))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-756)) (|has| |#1| (-312)))) ELT)) (-3948 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT) (($ (-1168 |#1| |#2| |#3|) (-1168 |#1| |#2| |#3|)) NIL (|has| |#1| (-312)) ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) 22 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $ (-349 (-484))) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ (-1168 |#1| |#2| |#3|)) NIL (|has| |#1| (-312)) ELT) (($ (-1168 |#1| |#2| |#3|) $) NIL (|has| |#1| (-312)) ELT) (($ (-349 (-484)) $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $ (-349 (-484))) NIL (|has| |#1| (-38 (-349 (-484)))) ELT))) +(((-1138 |#1| |#2| |#3|) (-13 (-1142 |#1| (-1168 |#1| |#2| |#3|)) (-806 $ (-1175 |#2|)) (-10 -8 (-15 -3945 ($ (-1175 |#2|))) (IF (|has| |#1| (-38 (-349 (-484)))) (-15 -3811 ($ $ (-1175 |#2|))) |%noBranch|))) (-961) (-1089) |#1|) (T -1138)) +((-3945 (*1 *1 *2) (-12 (-5 *2 (-1175 *4)) (-14 *4 (-1089)) (-5 *1 (-1138 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) (-3811 (*1 *1 *1 *2) (-12 (-5 *2 (-1175 *4)) (-14 *4 (-1089)) (-5 *1 (-1138 *3 *4 *5)) (-4 *3 (-38 (-349 (-484)))) (-4 *3 (-961)) (-14 *5 *3)))) +((-3957 (((-1138 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1138 |#1| |#3| |#5|)) 23 T ELT))) +(((-1139 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3957 ((-1138 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1138 |#1| |#3| |#5|)))) (-961) (-961) (-1089) (-1089) |#1| |#2|) (T -1139)) +((-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1138 *5 *7 *9)) (-4 *5 (-961)) (-4 *6 (-961)) (-14 *7 (-1089)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1138 *6 *8 *10)) (-5 *1 (-1139 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1089))))) +((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-3081 (((-583 (-994)) $) 95 T ELT)) (-3830 (((-1089) $) 129 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) 71 (|has| |#1| (-495)) ELT)) (-2063 (($ $) 72 (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) 74 (|has| |#1| (-495)) ELT)) (-3770 (($ $ (-484)) 124 T ELT) (($ $ (-484) (-484)) 123 T ELT)) (-3773 (((-1068 (-2 (|:| |k| (-484)) (|:| |c| |#1|))) $) 130 T ELT)) (-3491 (($ $) 163 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3638 (($ $) 146 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3774 (($ $) 190 (|has| |#1| (-312)) ELT)) (-3970 (((-347 $) $) 191 (|has| |#1| (-312)) ELT)) (-3037 (($ $) 145 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-1607 (((-85) $ $) 181 (|has| |#1| (-312)) ELT)) (-3489 (($ $) 162 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3637 (($ $) 147 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3817 (($ (-1068 (-2 (|:| |k| (-484)) (|:| |c| |#1|)))) 201 T ELT)) (-3493 (($ $) 161 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3636 (($ $) 148 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3723 (($) 23 T CONST)) (-2564 (($ $ $) 185 (|has| |#1| (-312)) ELT)) (-3958 (($ $) 80 T ELT)) (-3466 (((-3 $ "failed") $) 42 T ELT)) (-3726 (((-349 (-857 |#1|)) $ (-484)) 199 (|has| |#1| (-495)) ELT) (((-349 (-857 |#1|)) $ (-484) (-484)) 198 (|has| |#1| (-495)) ELT)) (-2563 (($ $ $) 184 (|has| |#1| (-312)) ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) 179 (|has| |#1| (-312)) ELT)) (-3722 (((-85) $) 192 (|has| |#1| (-312)) ELT)) (-2892 (((-85) $) 94 T ELT)) (-3626 (($) 173 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3771 (((-484) $) 126 T ELT) (((-484) $ (-484)) 125 T ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3011 (($ $ (-484)) 144 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3776 (($ $ (-830)) 127 T ELT)) (-3814 (($ (-1 |#1| (-484)) $) 200 T ELT)) (-1604 (((-3 (-583 $) #1="failed") (-583 $) $) 188 (|has| |#1| (-312)) ELT)) (-3936 (((-85) $) 82 T ELT)) (-2893 (($ |#1| (-484)) 81 T ELT) (($ $ (-994) (-484)) 97 T ELT) (($ $ (-583 (-994)) (-583 (-484))) 96 T ELT)) (-3957 (($ (-1 |#1| |#1|) $) 83 T ELT)) (-3941 (($ $) 170 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2894 (($ $) 85 T ELT)) (-3174 ((|#1| $) 86 T ELT)) (-1890 (($ (-583 $)) 177 (|has| |#1| (-312)) ELT) (($ $ $) 176 (|has| |#1| (-312)) ELT)) (-3242 (((-1072) $) 11 T ELT)) (-2484 (($ $) 193 (|has| |#1| (-312)) ELT)) (-3811 (($ $) 197 (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $ (-1089)) 196 (OR (-12 (|has| |#1| (-29 (-484))) (|has| |#1| (-871)) (|has| |#1| (-1114)) (|has| |#1| (-38 (-349 (-484))))) (-12 (|has| |#1| (-15 -3081 ((-583 (-1089)) |#1|))) (|has| |#1| (-15 -3811 (|#1| |#1| (-1089)))) (|has| |#1| (-38 (-349 (-484)))))) ELT)) (-3243 (((-1033) $) 12 T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) 178 (|has| |#1| (-312)) ELT)) (-3144 (($ (-583 $)) 175 (|has| |#1| (-312)) ELT) (($ $ $) 174 (|has| |#1| (-312)) ELT)) (-3731 (((-347 $) $) 189 (|has| |#1| (-312)) ELT)) (-1605 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 187 (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) 186 (|has| |#1| (-312)) ELT)) (-3768 (($ $ (-484)) 121 T ELT)) (-3465 (((-3 $ "failed") $ $) 70 (|has| |#1| (-495)) ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) 180 (|has| |#1| (-312)) ELT)) (-3942 (($ $) 171 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3767 (((-1068 |#1|) $ |#1|) 120 (|has| |#1| (-15 ** (|#1| |#1| (-484)))) ELT)) (-1606 (((-694) $) 182 (|has| |#1| (-312)) ELT)) (-3799 ((|#1| $ (-484)) 131 T ELT) (($ $ $) 107 (|has| (-484) (-1025)) ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 183 (|has| |#1| (-312)) ELT)) (-3757 (($ $ (-1089)) 119 (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-583 (-1089))) 117 (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-1089) (-694)) 116 (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) 115 (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $) 111 (|has| |#1| (-15 * (|#1| (-484) |#1|))) ELT) (($ $ (-694)) 109 (|has| |#1| (-15 * (|#1| (-484) |#1|))) ELT)) (-3947 (((-484) $) 84 T ELT)) (-3494 (($ $) 160 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3635 (($ $) 149 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3492 (($ $) 159 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3634 (($ $) 150 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3490 (($ $) 158 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3633 (($ $) 151 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2891 (($ $) 93 T ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ |#1|) 67 (|has| |#1| (-146)) ELT) (($ (-349 (-484))) 77 (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $) 69 (|has| |#1| (-495)) ELT)) (-3676 ((|#1| $ (-484)) 79 T ELT)) (-2702 (((-632 $) $) 68 (|has| |#1| (-118)) ELT)) (-3126 (((-694)) 40 T CONST)) (-3772 ((|#1| $) 128 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-3497 (($ $) 169 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3485 (($ $) 157 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2062 (((-85) $ $) 73 (|has| |#1| (-495)) ELT)) (-3495 (($ $) 168 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3483 (($ $) 156 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3499 (($ $) 167 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3487 (($ $) 155 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3769 ((|#1| $ (-484)) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-484)))) (|has| |#1| (-15 -3945 (|#1| (-1089))))) ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-3500 (($ $) 166 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3488 (($ $) 154 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3498 (($ $) 165 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3486 (($ $) 153 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3496 (($ $) 164 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3484 (($ $) 152 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-2669 (($ $ (-1089)) 118 (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-583 (-1089))) 114 (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-1089) (-694)) 113 (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) 112 (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $) 110 (|has| |#1| (-15 * (|#1| (-484) |#1|))) ELT) (($ $ (-694)) 108 (|has| |#1| (-15 * (|#1| (-484) |#1|))) ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-3948 (($ $ |#1|) 78 (|has| |#1| (-312)) ELT) (($ $ $) 195 (|has| |#1| (-312)) ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT) (($ $ (-484)) 194 (|has| |#1| (-312)) ELT) (($ $ $) 172 (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $ (-349 (-484))) 143 (|has| |#1| (-38 (-349 (-484)))) ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 88 T ELT) (($ |#1| $) 87 T ELT) (($ (-349 (-484)) $) 76 (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $ (-349 (-484))) 75 (|has| |#1| (-38 (-349 (-484)))) ELT))) +(((-1140 |#1|) (-113) (-961)) (T -1140)) +((-3817 (*1 *1 *2) (-12 (-5 *2 (-1068 (-2 (|:| |k| (-484)) (|:| |c| *3)))) (-4 *3 (-961)) (-4 *1 (-1140 *3)))) (-3814 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-484))) (-4 *1 (-1140 *3)) (-4 *3 (-961)))) (-3726 (*1 *2 *1 *3) (-12 (-5 *3 (-484)) (-4 *1 (-1140 *4)) (-4 *4 (-961)) (-4 *4 (-495)) (-5 *2 (-349 (-857 *4))))) (-3726 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-484)) (-4 *1 (-1140 *4)) (-4 *4 (-961)) (-4 *4 (-495)) (-5 *2 (-349 (-857 *4))))) (-3811 (*1 *1 *1) (-12 (-4 *1 (-1140 *2)) (-4 *2 (-961)) (-4 *2 (-38 (-349 (-484)))))) (-3811 (*1 *1 *1 *2) (OR (-12 (-5 *2 (-1089)) (-4 *1 (-1140 *3)) (-4 *3 (-961)) (-12 (-4 *3 (-29 (-484))) (-4 *3 (-871)) (-4 *3 (-1114)) (-4 *3 (-38 (-349 (-484)))))) (-12 (-5 *2 (-1089)) (-4 *1 (-1140 *3)) (-4 *3 (-961)) (-12 (|has| *3 (-15 -3081 ((-583 *2) *3))) (|has| *3 (-15 -3811 (*3 *3 *2))) (-4 *3 (-38 (-349 (-484))))))))) +(-13 (-1157 |t#1| (-484)) (-10 -8 (-15 -3817 ($ (-1068 (-2 (|:| |k| (-484)) (|:| |c| |t#1|))))) (-15 -3814 ($ (-1 |t#1| (-484)) $)) (IF (|has| |t#1| (-495)) (PROGN (-15 -3726 ((-349 (-857 |t#1|)) $ (-484))) (-15 -3726 ((-349 (-857 |t#1|)) $ (-484) (-484)))) |%noBranch|) (IF (|has| |t#1| (-38 (-349 (-484)))) (PROGN (-15 -3811 ($ $)) (IF (|has| |t#1| (-15 -3811 (|t#1| |t#1| (-1089)))) (IF (|has| |t#1| (-15 -3081 ((-583 (-1089)) |t#1|))) (-15 -3811 ($ $ (-1089))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1114)) (IF (|has| |t#1| (-871)) (IF (|has| |t#1| (-29 (-484))) (-15 -3811 ($ $ (-1089))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-915)) (-6 (-1114))) |%noBranch|) (IF (|has| |t#1| (-312)) (-6 (-312)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| (-484)) . T) ((-25) . T) ((-38 (-349 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-349 (-484))))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) OR (|has| |#1| (-495)) (|has| |#1| (-312))) ((-35) |has| |#1| (-38 (-349 (-484)))) ((-66) |has| |#1| (-38 (-349 (-484)))) ((-72) . T) ((-82 (-349 (-484)) (-349 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-349 (-484))))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-495)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-555 (-349 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-349 (-484))))) ((-555 (-484)) . T) ((-555 |#1|) |has| |#1| (-146)) ((-555 $) OR (|has| |#1| (-495)) (|has| |#1| (-312))) ((-552 (-772)) . T) ((-146) OR (|has| |#1| (-495)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-186 $) |has| |#1| (-15 * (|#1| (-484) |#1|))) ((-190) |has| |#1| (-15 * (|#1| (-484) |#1|))) ((-189) |has| |#1| (-15 * (|#1| (-484) |#1|))) ((-201) |has| |#1| (-312)) ((-239) |has| |#1| (-38 (-349 (-484)))) ((-241 (-484) |#1|) . T) ((-241 $ $) |has| (-484) (-1025)) ((-246) OR (|has| |#1| (-495)) (|has| |#1| (-312))) ((-258) |has| |#1| (-312)) ((-312) |has| |#1| (-312)) ((-391) |has| |#1| (-312)) ((-432) |has| |#1| (-38 (-349 (-484)))) ((-495) OR (|has| |#1| (-495)) (|has| |#1| (-312))) ((-13) . T) ((-588 (-349 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-349 (-484))))) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 (-349 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-349 (-484))))) ((-590 |#1|) . T) ((-590 $) . T) ((-582 (-349 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-349 (-484))))) ((-582 |#1|) |has| |#1| (-146)) ((-582 $) OR (|has| |#1| (-495)) (|has| |#1| (-312))) ((-654 (-349 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-349 (-484))))) ((-654 |#1|) |has| |#1| (-146)) ((-654 $) OR (|has| |#1| (-495)) (|has| |#1| (-312))) ((-663) . T) ((-806 $ (-1089)) -12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ((-809 (-1089)) -12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ((-811 (-1089)) -12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ((-886 |#1| (-484) (-994)) . T) ((-832) |has| |#1| (-312)) ((-915) |has| |#1| (-38 (-349 (-484)))) ((-963 (-349 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-349 (-484))))) ((-963 |#1|) . T) ((-963 $) OR (|has| |#1| (-495)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-968 (-349 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-349 (-484))))) ((-968 |#1|) . T) ((-968 $) OR (|has| |#1| (-495)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1114) |has| |#1| (-38 (-349 (-484)))) ((-1117) |has| |#1| (-38 (-349 (-484)))) ((-1128) . T) ((-1133) |has| |#1| (-312)) ((-1157 |#1| (-484)) . T)) +((-3188 (((-85) $) 12 T ELT)) (-3157 (((-3 |#3| #1="failed") $) 17 T ELT) (((-3 (-1089) #1#) $) NIL T ELT) (((-3 (-349 (-484)) #1#) $) NIL T ELT) (((-3 (-484) #1#) $) NIL T ELT)) (-3156 ((|#3| $) 14 T ELT) (((-1089) $) NIL T ELT) (((-349 (-484)) $) NIL T ELT) (((-484) $) NIL T ELT))) +(((-1141 |#1| |#2| |#3|) (-10 -7 (-15 -3157 ((-3 (-484) #1="failed") |#1|)) (-15 -3156 ((-484) |#1|)) (-15 -3157 ((-3 (-349 (-484)) #1#) |#1|)) (-15 -3156 ((-349 (-484)) |#1|)) (-15 -3157 ((-3 (-1089) #1#) |#1|)) (-15 -3156 ((-1089) |#1|)) (-15 -3157 ((-3 |#3| #1#) |#1|)) (-15 -3156 (|#3| |#1|)) (-15 -3188 ((-85) |#1|))) (-1142 |#2| |#3|) (-961) (-1171 |#2|)) (T -1141)) +NIL +((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-3129 ((|#2| $) 266 (-2562 (|has| |#2| (-258)) (|has| |#1| (-312))) ELT)) (-3081 (((-583 (-994)) $) 95 T ELT)) (-3830 (((-1089) $) 129 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) 71 (|has| |#1| (-495)) ELT)) (-2063 (($ $) 72 (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) 74 (|has| |#1| (-495)) ELT)) (-3770 (($ $ (-484)) 124 T ELT) (($ $ (-484) (-484)) 123 T ELT)) (-3773 (((-1068 (-2 (|:| |k| (-484)) (|:| |c| |#1|))) $) 130 T ELT)) (-3730 ((|#2| $) 302 T ELT)) (-3727 (((-3 |#2| "failed") $) 298 T ELT)) (-3728 ((|#2| $) 299 T ELT)) (-3491 (($ $) 163 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3638 (($ $) 146 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-2707 (((-347 (-1084 $)) (-1084 $)) 275 (-2562 (|has| |#2| (-821)) (|has| |#1| (-312))) ELT)) (-3774 (($ $) 190 (|has| |#1| (-312)) ELT)) (-3970 (((-347 $) $) 191 (|has| |#1| (-312)) ELT)) (-3037 (($ $) 145 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2704 (((-3 (-583 (-1084 $)) #1="failed") (-583 (-1084 $)) (-1084 $)) 272 (-2562 (|has| |#2| (-821)) (|has| |#1| (-312))) ELT)) (-1607 (((-85) $ $) 181 (|has| |#1| (-312)) ELT)) (-3489 (($ $) 162 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3637 (($ $) 147 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3622 (((-484) $) 284 (-2562 (|has| |#2| (-740)) (|has| |#1| (-312))) ELT)) (-3817 (($ (-1068 (-2 (|:| |k| (-484)) (|:| |c| |#1|)))) 201 T ELT)) (-3493 (($ $) 161 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3636 (($ $) 148 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3723 (($) 23 T CONST)) (-3157 (((-3 |#2| #2="failed") $) 305 T ELT) (((-3 (-484) #2#) $) 295 (-2562 (|has| |#2| (-950 (-484))) (|has| |#1| (-312))) ELT) (((-3 (-349 (-484)) #2#) $) 293 (-2562 (|has| |#2| (-950 (-484))) (|has| |#1| (-312))) ELT) (((-3 (-1089) #2#) $) 277 (-2562 (|has| |#2| (-950 (-1089))) (|has| |#1| (-312))) ELT)) (-3156 ((|#2| $) 306 T ELT) (((-484) $) 294 (-2562 (|has| |#2| (-950 (-484))) (|has| |#1| (-312))) ELT) (((-349 (-484)) $) 292 (-2562 (|has| |#2| (-950 (-484))) (|has| |#1| (-312))) ELT) (((-1089) $) 276 (-2562 (|has| |#2| (-950 (-1089))) (|has| |#1| (-312))) ELT)) (-3729 (($ $) 301 T ELT) (($ (-484) $) 300 T ELT)) (-2564 (($ $ $) 185 (|has| |#1| (-312)) ELT)) (-3958 (($ $) 80 T ELT)) (-2279 (((-630 |#2|) (-630 $)) 254 (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1178 |#2|))) (-630 $) (-1178 $)) 253 (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) 252 (-2562 (|has| |#2| (-580 (-484))) (|has| |#1| (-312))) ELT) (((-630 (-484)) (-630 $)) 251 (-2562 (|has| |#2| (-580 (-484))) (|has| |#1| (-312))) ELT)) (-3466 (((-3 $ "failed") $) 42 T ELT)) (-3726 (((-349 (-857 |#1|)) $ (-484)) 199 (|has| |#1| (-495)) ELT) (((-349 (-857 |#1|)) $ (-484) (-484)) 198 (|has| |#1| (-495)) ELT)) (-2994 (($) 268 (-2562 (|has| |#2| (-483)) (|has| |#1| (-312))) ELT)) (-2563 (($ $ $) 184 (|has| |#1| (-312)) ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) 179 (|has| |#1| (-312)) ELT)) (-3722 (((-85) $) 192 (|has| |#1| (-312)) ELT)) (-3186 (((-85) $) 282 (-2562 (|has| |#2| (-740)) (|has| |#1| (-312))) ELT)) (-2892 (((-85) $) 94 T ELT)) (-3626 (($) 173 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2796 (((-798 (-329) $) $ (-800 (-329)) (-798 (-329) $)) 260 (-2562 (|has| |#2| (-796 (-329))) (|has| |#1| (-312))) ELT) (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) 259 (-2562 (|has| |#2| (-796 (-484))) (|has| |#1| (-312))) ELT)) (-3771 (((-484) $) 126 T ELT) (((-484) $ (-484)) 125 T ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-2996 (($ $) 264 (|has| |#1| (-312)) ELT)) (-2998 ((|#2| $) 262 (|has| |#1| (-312)) ELT)) (-3011 (($ $ (-484)) 144 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3444 (((-632 $) $) 296 (-2562 (|has| |#2| (-1065)) (|has| |#1| (-312))) ELT)) (-3187 (((-85) $) 283 (-2562 (|has| |#2| (-740)) (|has| |#1| (-312))) ELT)) (-3776 (($ $ (-830)) 127 T ELT)) (-3814 (($ (-1 |#1| (-484)) $) 200 T ELT)) (-1604 (((-3 (-583 $) #3="failed") (-583 $) $) 188 (|has| |#1| (-312)) ELT)) (-3936 (((-85) $) 82 T ELT)) (-2893 (($ |#1| (-484)) 81 T ELT) (($ $ (-994) (-484)) 97 T ELT) (($ $ (-583 (-994)) (-583 (-484))) 96 T ELT)) (-2531 (($ $ $) 291 (-2562 (|has| |#2| (-756)) (|has| |#1| (-312))) ELT)) (-2857 (($ $ $) 290 (-2562 (|has| |#2| (-756)) (|has| |#1| (-312))) ELT)) (-3957 (($ (-1 |#1| |#1|) $) 83 T ELT) (($ (-1 |#2| |#2|) $) 244 (|has| |#1| (-312)) ELT)) (-3941 (($ $) 170 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2280 (((-630 |#2|) (-1178 $)) 256 (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1178 |#2|))) (-1178 $) $) 255 (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) 250 (-2562 (|has| |#2| (-580 (-484))) (|has| |#1| (-312))) ELT) (((-630 (-484)) (-1178 $)) 249 (-2562 (|has| |#2| (-580 (-484))) (|has| |#1| (-312))) ELT)) (-2894 (($ $) 85 T ELT)) (-3174 ((|#1| $) 86 T ELT)) (-1890 (($ (-583 $)) 177 (|has| |#1| (-312)) ELT) (($ $ $) 176 (|has| |#1| (-312)) ELT)) (-3778 (($ (-484) |#2|) 303 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-2484 (($ $) 193 (|has| |#1| (-312)) ELT)) (-3811 (($ $) 197 (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $ (-1089)) 196 (OR (-12 (|has| |#1| (-29 (-484))) (|has| |#1| (-871)) (|has| |#1| (-1114)) (|has| |#1| (-38 (-349 (-484))))) (-12 (|has| |#1| (-15 -3081 ((-583 (-1089)) |#1|))) (|has| |#1| (-15 -3811 (|#1| |#1| (-1089)))) (|has| |#1| (-38 (-349 (-484)))))) ELT)) (-3445 (($) 297 (-2562 (|has| |#2| (-1065)) (|has| |#1| (-312))) CONST)) (-3243 (((-1033) $) 12 T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) 178 (|has| |#1| (-312)) ELT)) (-3144 (($ (-583 $)) 175 (|has| |#1| (-312)) ELT) (($ $ $) 174 (|has| |#1| (-312)) ELT)) (-3128 (($ $) 267 (-2562 (|has| |#2| (-258)) (|has| |#1| (-312))) ELT)) (-3130 ((|#2| $) 270 (-2562 (|has| |#2| (-483)) (|has| |#1| (-312))) ELT)) (-2705 (((-347 (-1084 $)) (-1084 $)) 273 (-2562 (|has| |#2| (-821)) (|has| |#1| (-312))) ELT)) (-2706 (((-347 (-1084 $)) (-1084 $)) 274 (-2562 (|has| |#2| (-821)) (|has| |#1| (-312))) ELT)) (-3731 (((-347 $) $) 189 (|has| |#1| (-312)) ELT)) (-1605 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 187 (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) 186 (|has| |#1| (-312)) ELT)) (-3768 (($ $ (-484)) 121 T ELT)) (-3465 (((-3 $ "failed") $ $) 70 (|has| |#1| (-495)) ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) 180 (|has| |#1| (-312)) ELT)) (-3942 (($ $) 171 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3767 (((-1068 |#1|) $ |#1|) 120 (|has| |#1| (-15 ** (|#1| |#1| (-484)))) ELT) (($ $ (-1089) |#2|) 243 (-2562 (|has| |#2| (-455 (-1089) |#2|)) (|has| |#1| (-312))) ELT) (($ $ (-583 (-1089)) (-583 |#2|)) 242 (-2562 (|has| |#2| (-455 (-1089) |#2|)) (|has| |#1| (-312))) ELT) (($ $ (-583 (-249 |#2|))) 241 (-2562 (|has| |#2| (-260 |#2|)) (|has| |#1| (-312))) ELT) (($ $ (-249 |#2|)) 240 (-2562 (|has| |#2| (-260 |#2|)) (|has| |#1| (-312))) ELT) (($ $ |#2| |#2|) 239 (-2562 (|has| |#2| (-260 |#2|)) (|has| |#1| (-312))) ELT) (($ $ (-583 |#2|) (-583 |#2|)) 238 (-2562 (|has| |#2| (-260 |#2|)) (|has| |#1| (-312))) ELT)) (-1606 (((-694) $) 182 (|has| |#1| (-312)) ELT)) (-3799 ((|#1| $ (-484)) 131 T ELT) (($ $ $) 107 (|has| (-484) (-1025)) ELT) (($ $ |#2|) 237 (-2562 (|has| |#2| (-241 |#2| |#2|)) (|has| |#1| (-312))) ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 183 (|has| |#1| (-312)) ELT)) (-3757 (($ $ (-1 |#2| |#2|) (-694)) 246 (|has| |#1| (-312)) ELT) (($ $ (-1 |#2| |#2|)) 245 (|has| |#1| (-312)) ELT) (($ $) 111 (OR (-2562 (|has| |#2| (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-694)) 109 (OR (-2562 (|has| |#2| (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-1089)) 119 (OR (-2562 (|has| |#2| (-811 (-1089))) (|has| |#1| (-312))) (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT) (($ $ (-583 (-1089))) 117 (OR (-2562 (|has| |#2| (-811 (-1089))) (|has| |#1| (-312))) (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT) (($ $ (-1089) (-694)) 116 (OR (-2562 (|has| |#2| (-811 (-1089))) (|has| |#1| (-312))) (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) 115 (OR (-2562 (|has| |#2| (-811 (-1089))) (|has| |#1| (-312))) (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT)) (-2995 (($ $) 265 (|has| |#1| (-312)) ELT)) (-2997 ((|#2| $) 263 (|has| |#1| (-312)) ELT)) (-3947 (((-484) $) 84 T ELT)) (-3494 (($ $) 160 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3635 (($ $) 149 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3492 (($ $) 159 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3634 (($ $) 150 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3490 (($ $) 158 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3633 (($ $) 151 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3971 (((-179) $) 281 (-2562 (|has| |#2| (-933)) (|has| |#1| (-312))) ELT) (((-329) $) 280 (-2562 (|has| |#2| (-933)) (|has| |#1| (-312))) ELT) (((-473) $) 279 (-2562 (|has| |#2| (-553 (-473))) (|has| |#1| (-312))) ELT) (((-800 (-329)) $) 258 (-2562 (|has| |#2| (-553 (-800 (-329)))) (|has| |#1| (-312))) ELT) (((-800 (-484)) $) 257 (-2562 (|has| |#2| (-553 (-800 (-484)))) (|has| |#1| (-312))) ELT)) (-2703 (((-3 (-1178 $) #1#) (-630 $)) 271 (-2562 (-2562 (|has| $ (-118)) (|has| |#2| (-821))) (|has| |#1| (-312))) ELT)) (-2891 (($ $) 93 T ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ |#1|) 67 (|has| |#1| (-146)) ELT) (($ |#2|) 304 T ELT) (($ (-1089)) 278 (-2562 (|has| |#2| (-950 (-1089))) (|has| |#1| (-312))) ELT) (($ (-349 (-484))) 77 (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $) 69 (|has| |#1| (-495)) ELT)) (-3676 ((|#1| $ (-484)) 79 T ELT)) (-2702 (((-632 $) $) 68 (OR (-2562 (OR (|has| |#2| (-118)) (-2562 (|has| $ (-118)) (|has| |#2| (-821)))) (|has| |#1| (-312))) (|has| |#1| (-118))) ELT)) (-3126 (((-694)) 40 T CONST)) (-3772 ((|#1| $) 128 T ELT)) (-3131 ((|#2| $) 269 (-2562 (|has| |#2| (-483)) (|has| |#1| (-312))) ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-3497 (($ $) 169 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3485 (($ $) 157 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2062 (((-85) $ $) 73 (|has| |#1| (-495)) ELT)) (-3495 (($ $) 168 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3483 (($ $) 156 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3499 (($ $) 167 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3487 (($ $) 155 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3769 ((|#1| $ (-484)) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-484)))) (|has| |#1| (-15 -3945 (|#1| (-1089))))) ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-3500 (($ $) 166 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3488 (($ $) 154 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3498 (($ $) 165 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3486 (($ $) 153 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3496 (($ $) 164 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3484 (($ $) 152 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3382 (($ $) 285 (-2562 (|has| |#2| (-740)) (|has| |#1| (-312))) ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-2669 (($ $ (-1 |#2| |#2|) (-694)) 248 (|has| |#1| (-312)) ELT) (($ $ (-1 |#2| |#2|)) 247 (|has| |#1| (-312)) ELT) (($ $) 110 (OR (-2562 (|has| |#2| (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-694)) 108 (OR (-2562 (|has| |#2| (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-1089)) 118 (OR (-2562 (|has| |#2| (-811 (-1089))) (|has| |#1| (-312))) (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT) (($ $ (-583 (-1089))) 114 (OR (-2562 (|has| |#2| (-811 (-1089))) (|has| |#1| (-312))) (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT) (($ $ (-1089) (-694)) 113 (OR (-2562 (|has| |#2| (-811 (-1089))) (|has| |#1| (-312))) (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) 112 (OR (-2562 (|has| |#2| (-811 (-1089))) (|has| |#1| (-312))) (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT)) (-2566 (((-85) $ $) 289 (-2562 (|has| |#2| (-756)) (|has| |#1| (-312))) ELT)) (-2567 (((-85) $ $) 287 (-2562 (|has| |#2| (-756)) (|has| |#1| (-312))) ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-2684 (((-85) $ $) 288 (-2562 (|has| |#2| (-756)) (|has| |#1| (-312))) ELT)) (-2685 (((-85) $ $) 286 (-2562 (|has| |#2| (-756)) (|has| |#1| (-312))) ELT)) (-3948 (($ $ |#1|) 78 (|has| |#1| (-312)) ELT) (($ $ $) 195 (|has| |#1| (-312)) ELT) (($ |#2| |#2|) 261 (|has| |#1| (-312)) ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT) (($ $ (-484)) 194 (|has| |#1| (-312)) ELT) (($ $ $) 172 (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $ (-349 (-484))) 143 (|has| |#1| (-38 (-349 (-484)))) ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 88 T ELT) (($ |#1| $) 87 T ELT) (($ $ |#2|) 236 (|has| |#1| (-312)) ELT) (($ |#2| $) 235 (|has| |#1| (-312)) ELT) (($ (-349 (-484)) $) 76 (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $ (-349 (-484))) 75 (|has| |#1| (-38 (-349 (-484)))) ELT))) +(((-1142 |#1| |#2|) (-113) (-961) (-1171 |t#1|)) (T -1142)) +((-3947 (*1 *2 *1) (-12 (-4 *1 (-1142 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1171 *3)) (-5 *2 (-484)))) (-3778 (*1 *1 *2 *3) (-12 (-5 *2 (-484)) (-4 *4 (-961)) (-4 *1 (-1142 *4 *3)) (-4 *3 (-1171 *4)))) (-3730 (*1 *2 *1) (-12 (-4 *1 (-1142 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1171 *3)))) (-3729 (*1 *1 *1) (-12 (-4 *1 (-1142 *2 *3)) (-4 *2 (-961)) (-4 *3 (-1171 *2)))) (-3729 (*1 *1 *2 *1) (-12 (-5 *2 (-484)) (-4 *1 (-1142 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1171 *3)))) (-3728 (*1 *2 *1) (-12 (-4 *1 (-1142 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1171 *3)))) (-3727 (*1 *2 *1) (|partial| -12 (-4 *1 (-1142 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1171 *3))))) +(-13 (-1140 |t#1|) (-950 |t#2|) (-555 |t#2|) (-10 -8 (-15 -3778 ($ (-484) |t#2|)) (-15 -3947 ((-484) $)) (-15 -3730 (|t#2| $)) (-15 -3729 ($ $)) (-15 -3729 ($ (-484) $)) (-15 -3728 (|t#2| $)) (-15 -3727 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-312)) (-6 (-904 |t#2|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| (-484)) . T) ((-25) . T) ((-38 (-349 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-349 (-484))))) ((-38 |#1|) |has| |#1| (-146)) ((-38 |#2|) |has| |#1| (-312)) ((-38 $) OR (|has| |#1| (-495)) (|has| |#1| (-312))) ((-35) |has| |#1| (-38 (-349 (-484)))) ((-66) |has| |#1| (-38 (-349 (-484)))) ((-72) . T) ((-82 (-349 (-484)) (-349 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-349 (-484))))) ((-82 |#1| |#1|) . T) ((-82 |#2| |#2|) |has| |#1| (-312)) ((-82 $ $) OR (|has| |#1| (-495)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-104) . T) ((-118) OR (-12 (|has| |#1| (-312)) (|has| |#2| (-118))) (|has| |#1| (-118))) ((-120) OR (-12 (|has| |#1| (-312)) (|has| |#2| (-740))) (-12 (|has| |#1| (-312)) (|has| |#2| (-120))) (|has| |#1| (-120))) ((-555 (-349 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-349 (-484))))) ((-555 (-484)) . T) ((-555 (-1089)) -12 (|has| |#1| (-312)) (|has| |#2| (-950 (-1089)))) ((-555 |#1|) |has| |#1| (-146)) ((-555 |#2|) . T) ((-555 $) OR (|has| |#1| (-495)) (|has| |#1| (-312))) ((-552 (-772)) . T) ((-146) OR (|has| |#1| (-495)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-553 (-179)) -12 (|has| |#1| (-312)) (|has| |#2| (-933))) ((-553 (-329)) -12 (|has| |#1| (-312)) (|has| |#2| (-933))) ((-553 (-473)) -12 (|has| |#1| (-312)) (|has| |#2| (-553 (-473)))) ((-553 (-800 (-329))) -12 (|has| |#1| (-312)) (|has| |#2| (-553 (-800 (-329))))) ((-553 (-800 (-484))) -12 (|has| |#1| (-312)) (|has| |#2| (-553 (-800 (-484))))) ((-186 $) OR (|has| |#1| (-15 * (|#1| (-484) |#1|))) (-12 (|has| |#1| (-312)) (|has| |#2| (-189))) (-12 (|has| |#1| (-312)) (|has| |#2| (-190)))) ((-184 |#2|) |has| |#1| (-312)) ((-190) OR (|has| |#1| (-15 * (|#1| (-484) |#1|))) (-12 (|has| |#1| (-312)) (|has| |#2| (-190)))) ((-189) OR (|has| |#1| (-15 * (|#1| (-484) |#1|))) (-12 (|has| |#1| (-312)) (|has| |#2| (-189))) (-12 (|has| |#1| (-312)) (|has| |#2| (-190)))) ((-225 |#2|) |has| |#1| (-312)) ((-201) |has| |#1| (-312)) ((-239) |has| |#1| (-38 (-349 (-484)))) ((-241 (-484) |#1|) . T) ((-241 |#2| $) -12 (|has| |#1| (-312)) (|has| |#2| (-241 |#2| |#2|))) ((-241 $ $) |has| (-484) (-1025)) ((-246) OR (|has| |#1| (-495)) (|has| |#1| (-312))) ((-258) |has| |#1| (-312)) ((-260 |#2|) -12 (|has| |#1| (-312)) (|has| |#2| (-260 |#2|))) ((-312) |has| |#1| (-312)) ((-288 |#2|) |has| |#1| (-312)) ((-328 |#2|) |has| |#1| (-312)) ((-342 |#2|) |has| |#1| (-312)) ((-391) |has| |#1| (-312)) ((-432) |has| |#1| (-38 (-349 (-484)))) ((-455 (-1089) |#2|) -12 (|has| |#1| (-312)) (|has| |#2| (-455 (-1089) |#2|))) ((-455 |#2| |#2|) -12 (|has| |#1| (-312)) (|has| |#2| (-260 |#2|))) ((-495) OR (|has| |#1| (-495)) (|has| |#1| (-312))) ((-13) . T) ((-588 (-349 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-349 (-484))))) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-588 |#2|) |has| |#1| (-312)) ((-588 $) . T) ((-590 (-349 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-349 (-484))))) ((-590 (-484)) -12 (|has| |#1| (-312)) (|has| |#2| (-580 (-484)))) ((-590 |#1|) . T) ((-590 |#2|) |has| |#1| (-312)) ((-590 $) . T) ((-582 (-349 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-349 (-484))))) ((-582 |#1|) |has| |#1| (-146)) ((-582 |#2|) |has| |#1| (-312)) ((-582 $) OR (|has| |#1| (-495)) (|has| |#1| (-312))) ((-580 (-484)) -12 (|has| |#1| (-312)) (|has| |#2| (-580 (-484)))) ((-580 |#2|) |has| |#1| (-312)) ((-654 (-349 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-349 (-484))))) ((-654 |#1|) |has| |#1| (-146)) ((-654 |#2|) |has| |#1| (-312)) ((-654 $) OR (|has| |#1| (-495)) (|has| |#1| (-312))) ((-663) . T) ((-714) -12 (|has| |#1| (-312)) (|has| |#2| (-740))) ((-716) -12 (|has| |#1| (-312)) (|has| |#2| (-740))) ((-718) -12 (|has| |#1| (-312)) (|has| |#2| (-740))) ((-721) -12 (|has| |#1| (-312)) (|has| |#2| (-740))) ((-740) -12 (|has| |#1| (-312)) (|has| |#2| (-740))) ((-755) -12 (|has| |#1| (-312)) (|has| |#2| (-740))) ((-756) OR (-12 (|has| |#1| (-312)) (|has| |#2| (-756))) (-12 (|has| |#1| (-312)) (|has| |#2| (-740)))) ((-759) OR (-12 (|has| |#1| (-312)) (|has| |#2| (-756))) (-12 (|has| |#1| (-312)) (|has| |#2| (-740)))) ((-806 $ (-1089)) OR (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-811 (-1089)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-809 (-1089))))) ((-809 (-1089)) OR (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-809 (-1089))))) ((-811 (-1089)) OR (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-811 (-1089)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-809 (-1089))))) ((-796 (-329)) -12 (|has| |#1| (-312)) (|has| |#2| (-796 (-329)))) ((-796 (-484)) -12 (|has| |#1| (-312)) (|has| |#2| (-796 (-484)))) ((-794 |#2|) |has| |#1| (-312)) ((-821) -12 (|has| |#1| (-312)) (|has| |#2| (-821))) ((-886 |#1| (-484) (-994)) . T) ((-832) |has| |#1| (-312)) ((-904 |#2|) |has| |#1| (-312)) ((-915) |has| |#1| (-38 (-349 (-484)))) ((-933) -12 (|has| |#1| (-312)) (|has| |#2| (-933))) ((-950 (-349 (-484))) -12 (|has| |#1| (-312)) (|has| |#2| (-950 (-484)))) ((-950 (-484)) -12 (|has| |#1| (-312)) (|has| |#2| (-950 (-484)))) ((-950 (-1089)) -12 (|has| |#1| (-312)) (|has| |#2| (-950 (-1089)))) ((-950 |#2|) . T) ((-963 (-349 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-349 (-484))))) ((-963 |#1|) . T) ((-963 |#2|) |has| |#1| (-312)) ((-963 $) OR (|has| |#1| (-495)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-968 (-349 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-349 (-484))))) ((-968 |#1|) . T) ((-968 |#2|) |has| |#1| (-312)) ((-968 $) OR (|has| |#1| (-495)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1065) -12 (|has| |#1| (-312)) (|has| |#2| (-1065))) ((-1114) |has| |#1| (-38 (-349 (-484)))) ((-1117) |has| |#1| (-38 (-349 (-484)))) ((-1128) . T) ((-1133) |has| |#1| (-312)) ((-1140 |#1|) . T) ((-1157 |#1| (-484)) . T)) +((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) 83 T ELT)) (-3129 ((|#2| $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-258))) ELT)) (-3081 (((-583 (-994)) $) NIL T ELT)) (-3830 (((-1089) $) 102 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2063 (($ $) NIL (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-3770 (($ $ (-484)) 111 T ELT) (($ $ (-484) (-484)) 114 T ELT)) (-3773 (((-1068 (-2 (|:| |k| (-484)) (|:| |c| |#1|))) $) 51 T ELT)) (-3730 ((|#2| $) 11 T ELT)) (-3727 (((-3 |#2| #1="failed") $) 35 T ELT)) (-3728 ((|#2| $) 36 T ELT)) (-3491 (($ $) 208 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3638 (($ $) 184 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-1311 (((-3 $ #1#) $ $) NIL T ELT)) (-2707 (((-347 (-1084 $)) (-1084 $)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-821))) ELT)) (-3774 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3970 (((-347 $) $) NIL (|has| |#1| (-312)) ELT)) (-3037 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2704 (((-3 (-583 (-1084 $)) #1#) (-583 (-1084 $)) (-1084 $)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-821))) ELT)) (-1607 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3489 (($ $) 204 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3637 (($ $) 180 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3622 (((-484) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-740))) ELT)) (-3817 (($ (-1068 (-2 (|:| |k| (-484)) (|:| |c| |#1|)))) 59 T ELT)) (-3493 (($ $) 212 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3636 (($ $) 188 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 |#2| #1#) $) 159 T ELT) (((-3 (-484) #1#) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-950 (-484)))) ELT) (((-3 (-349 (-484)) #1#) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-950 (-484)))) ELT) (((-3 (-1089) #1#) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-950 (-1089)))) ELT)) (-3156 ((|#2| $) 158 T ELT) (((-484) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-950 (-484)))) ELT) (((-349 (-484)) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-950 (-484)))) ELT) (((-1089) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-950 (-1089)))) ELT)) (-3729 (($ $) 65 T ELT) (($ (-484) $) 28 T ELT)) (-2564 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3958 (($ $) NIL T ELT)) (-2279 (((-630 |#2|) (-630 $)) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1178 |#2|))) (-630 $) (-1178 $)) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-580 (-484)))) ELT) (((-630 (-484)) (-630 $)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-580 (-484)))) ELT)) (-3466 (((-3 $ #1#) $) 90 T ELT)) (-3726 (((-349 (-857 |#1|)) $ (-484)) 126 (|has| |#1| (-495)) ELT) (((-349 (-857 |#1|)) $ (-484) (-484)) 128 (|has| |#1| (-495)) ELT)) (-2994 (($) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-483))) ELT)) (-2563 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) NIL (|has| |#1| (-312)) ELT)) (-3722 (((-85) $) NIL (|has| |#1| (-312)) ELT)) (-3186 (((-85) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-740))) ELT)) (-2892 (((-85) $) 76 T ELT)) (-3626 (($) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2796 (((-798 (-329) $) $ (-800 (-329)) (-798 (-329) $)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-796 (-329)))) ELT) (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-796 (-484)))) ELT)) (-3771 (((-484) $) 107 T ELT) (((-484) $ (-484)) 109 T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2996 (($ $) NIL (|has| |#1| (-312)) ELT)) (-2998 ((|#2| $) 167 (|has| |#1| (-312)) ELT)) (-3011 (($ $ (-484)) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3444 (((-632 $) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-1065))) ELT)) (-3187 (((-85) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-740))) ELT)) (-3776 (($ $ (-830)) 150 T ELT)) (-3814 (($ (-1 |#1| (-484)) $) 146 T ELT)) (-1604 (((-3 (-583 $) #1#) (-583 $) $) NIL (|has| |#1| (-312)) ELT)) (-3936 (((-85) $) NIL T ELT)) (-2893 (($ |#1| (-484)) 20 T ELT) (($ $ (-994) (-484)) NIL T ELT) (($ $ (-583 (-994)) (-583 (-484))) NIL T ELT)) (-2531 (($ $ $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-756))) ELT)) (-2857 (($ $ $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-756))) ELT)) (-3957 (($ (-1 |#1| |#1|) $) 143 T ELT) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-312)) ELT)) (-3941 (($ $) 178 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2280 (((-630 |#2|) (-1178 $)) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1178 |#2|))) (-1178 $) $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-580 (-484)))) ELT) (((-630 (-484)) (-1178 $)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-580 (-484)))) ELT)) (-2894 (($ $) NIL T ELT)) (-3174 ((|#1| $) NIL T ELT)) (-1890 (($ (-583 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3778 (($ (-484) |#2|) 10 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2484 (($ $) 161 (|has| |#1| (-312)) ELT)) (-3811 (($ $) 230 (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $ (-1089)) 235 (OR (-12 (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-29 (-484))) (|has| |#1| (-871)) (|has| |#1| (-1114))) (-12 (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-15 -3811 (|#1| |#1| (-1089)))) (|has| |#1| (-15 -3081 ((-583 (-1089)) |#1|))))) ELT)) (-3445 (($) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-1065))) CONST)) (-3243 (((-1033) $) NIL T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) NIL (|has| |#1| (-312)) ELT)) (-3144 (($ (-583 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3128 (($ $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-258))) ELT)) (-3130 ((|#2| $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-483))) ELT)) (-2705 (((-347 (-1084 $)) (-1084 $)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-821))) ELT)) (-2706 (((-347 (-1084 $)) (-1084 $)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-821))) ELT)) (-3731 (((-347 $) $) NIL (|has| |#1| (-312)) ELT)) (-1605 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3768 (($ $ (-484)) 140 T ELT)) (-3465 (((-3 $ #1#) $ $) 130 (|has| |#1| (-495)) ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL (|has| |#1| (-312)) ELT)) (-3942 (($ $) 176 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3767 (((-1068 |#1|) $ |#1|) 99 (|has| |#1| (-15 ** (|#1| |#1| (-484)))) ELT) (($ $ (-1089) |#2|) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-455 (-1089) |#2|))) ELT) (($ $ (-583 (-1089)) (-583 |#2|)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-455 (-1089) |#2|))) ELT) (($ $ (-583 (-249 |#2|))) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-260 |#2|))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-260 |#2|))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-260 |#2|))) ELT) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-260 |#2|))) ELT)) (-1606 (((-694) $) NIL (|has| |#1| (-312)) ELT)) (-3799 ((|#1| $ (-484)) 105 T ELT) (($ $ $) 92 (|has| (-484) (-1025)) ELT) (($ $ |#2|) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-241 |#2| |#2|))) ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3757 (($ $ (-1 |#2| |#2|) (-694)) NIL (|has| |#1| (-312)) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-312)) ELT) (($ $) 151 (OR (-12 (|has| |#1| (-312)) (|has| |#2| (-189))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-694)) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#2| (-189))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-1089)) 155 (OR (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-811 (-1089))))) ELT) (($ $ (-583 (-1089))) NIL (OR (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-811 (-1089))))) ELT) (($ $ (-1089) (-694)) NIL (OR (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-811 (-1089))))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (OR (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-811 (-1089))))) ELT)) (-2995 (($ $) NIL (|has| |#1| (-312)) ELT)) (-2997 ((|#2| $) 168 (|has| |#1| (-312)) ELT)) (-3947 (((-484) $) 12 T ELT)) (-3494 (($ $) 214 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3635 (($ $) 190 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3492 (($ $) 210 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3634 (($ $) 186 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3490 (($ $) 206 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3633 (($ $) 182 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3971 (((-179) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-933))) ELT) (((-329) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-933))) ELT) (((-473) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-553 (-473)))) ELT) (((-800 (-329)) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-553 (-800 (-329))))) ELT) (((-800 (-484)) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-553 (-800 (-484))))) ELT)) (-2703 (((-3 (-1178 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-312)) (|has| |#2| (-821))) ELT)) (-2891 (($ $) 138 T ELT)) (-3945 (((-772) $) 268 T ELT) (($ (-484)) 24 T ELT) (($ |#1|) 22 (|has| |#1| (-146)) ELT) (($ |#2|) 21 T ELT) (($ (-1089)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-950 (-1089)))) ELT) (($ (-349 (-484))) 171 (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $) NIL (|has| |#1| (-495)) ELT)) (-3676 ((|#1| $ (-484)) 87 T ELT)) (-2702 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-312)) (|has| |#2| (-821))) (|has| |#1| (-118)) (-12 (|has| |#1| (-312)) (|has| |#2| (-118)))) ELT)) (-3126 (((-694)) 157 T CONST)) (-3772 ((|#1| $) 104 T ELT)) (-3131 ((|#2| $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-483))) ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3497 (($ $) 220 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3485 (($ $) 196 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2062 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-3495 (($ $) 216 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3483 (($ $) 192 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3499 (($ $) 224 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3487 (($ $) 200 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3769 ((|#1| $ (-484)) 136 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-484)))) (|has| |#1| (-15 -3945 (|#1| (-1089))))) ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-3500 (($ $) 226 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3488 (($ $) 202 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3498 (($ $) 222 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3486 (($ $) 198 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3496 (($ $) 218 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3484 (($ $) 194 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3382 (($ $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-740))) ELT)) (-2660 (($) 13 T CONST)) (-2666 (($) 18 T CONST)) (-2669 (($ $ (-1 |#2| |#2|) (-694)) NIL (|has| |#1| (-312)) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-312)) ELT) (($ $) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#2| (-189))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-694)) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#2| (-189))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-1089)) NIL (OR (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-811 (-1089))))) ELT) (($ $ (-583 (-1089))) NIL (OR (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-811 (-1089))))) ELT) (($ $ (-1089) (-694)) NIL (OR (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-811 (-1089))))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (OR (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-811 (-1089))))) ELT)) (-2566 (((-85) $ $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-756))) ELT)) (-2567 (((-85) $ $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-756))) ELT)) (-3056 (((-85) $ $) 74 T ELT)) (-2684 (((-85) $ $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-756))) ELT)) (-2685 (((-85) $ $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-756))) ELT)) (-3948 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT) (($ $ $) 165 (|has| |#1| (-312)) ELT) (($ |#2| |#2|) 166 (|has| |#1| (-312)) ELT)) (-3836 (($ $) 229 T ELT) (($ $ $) 80 T ELT)) (-3838 (($ $ $) 78 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) 86 T ELT) (($ $ (-484)) 162 (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $ (-349 (-484))) 174 (|has| |#1| (-38 (-349 (-484)))) ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 81 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 154 T ELT) (($ $ |#2|) 164 (|has| |#1| (-312)) ELT) (($ |#2| $) 163 (|has| |#1| (-312)) ELT) (($ (-349 (-484)) $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $ (-349 (-484))) NIL (|has| |#1| (-38 (-349 (-484)))) ELT))) +(((-1143 |#1| |#2|) (-1142 |#1| |#2|) (-961) (-1171 |#1|)) (T -1143)) +NIL +((-3733 (((-2 (|:| |contp| (-484)) (|:| -1778 (-583 (-2 (|:| |irr| |#1|) (|:| -2395 (-484)))))) |#1| (-85)) 13 T ELT)) (-3732 (((-347 |#1|) |#1|) 26 T ELT)) (-3731 (((-347 |#1|) |#1|) 24 T ELT))) +(((-1144 |#1|) (-10 -7 (-15 -3731 ((-347 |#1|) |#1|)) (-15 -3732 ((-347 |#1|) |#1|)) (-15 -3733 ((-2 (|:| |contp| (-484)) (|:| -1778 (-583 (-2 (|:| |irr| |#1|) (|:| -2395 (-484)))))) |#1| (-85)))) (-1154 (-484))) (T -1144)) +((-3733 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-5 *2 (-2 (|:| |contp| (-484)) (|:| -1778 (-583 (-2 (|:| |irr| *3) (|:| -2395 (-484))))))) (-5 *1 (-1144 *3)) (-4 *3 (-1154 (-484))))) (-3732 (*1 *2 *3) (-12 (-5 *2 (-347 *3)) (-5 *1 (-1144 *3)) (-4 *3 (-1154 (-484))))) (-3731 (*1 *2 *3) (-12 (-5 *2 (-347 *3)) (-5 *1 (-1144 *3)) (-4 *3 (-1154 (-484)))))) +((-2568 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-3735 (($ |#1| |#1|) 11 T ELT) (($ |#1|) 10 T ELT)) (-3957 (((-1068 |#1|) (-1 |#1| |#1|) $) 44 (|has| |#1| (-755)) ELT)) (-3229 ((|#1| $) 15 T ELT)) (-3231 ((|#1| $) 12 T ELT)) (-3242 (((-1072) $) NIL (|has| |#1| (-1013)) ELT)) (-3227 (((-484) $) 19 T ELT)) (-3228 ((|#1| $) 18 T ELT)) (-3230 ((|#1| $) 13 T ELT)) (-3243 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-3734 (((-85) $) 17 T ELT)) (-3962 (((-1068 |#1|) $) 41 (|has| |#1| (-755)) ELT) (((-1068 |#1|) (-583 $)) 40 (|has| |#1| (-755)) ELT)) (-3971 (($ |#1|) 26 T ELT)) (-3945 (($ (-1001 |#1|)) 25 T ELT) (((-772) $) 37 (|has| |#1| (-1013)) ELT)) (-1264 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-3736 (($ |#1| |#1|) 21 T ELT) (($ |#1|) 20 T ELT)) (-3232 (($ $ (-484)) 14 T ELT)) (-3056 (((-85) $ $) 30 (|has| |#1| (-1013)) ELT))) +(((-1145 |#1|) (-13 (-1006 |#1|) (-10 -8 (-15 -3736 ($ |#1|)) (-15 -3735 ($ |#1|)) (-15 -3945 ($ (-1001 |#1|))) (-15 -3734 ((-85) $)) (IF (|has| |#1| (-1013)) (-6 (-1013)) |%noBranch|) (IF (|has| |#1| (-755)) (-6 (-1007 |#1| (-1068 |#1|))) |%noBranch|))) (-1128)) (T -1145)) +((-3736 (*1 *1 *2) (-12 (-5 *1 (-1145 *2)) (-4 *2 (-1128)))) (-3735 (*1 *1 *2) (-12 (-5 *1 (-1145 *2)) (-4 *2 (-1128)))) (-3945 (*1 *1 *2) (-12 (-5 *2 (-1001 *3)) (-4 *3 (-1128)) (-5 *1 (-1145 *3)))) (-3734 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1145 *3)) (-4 *3 (-1128))))) +((-3957 (((-1068 |#2|) (-1 |#2| |#1|) (-1145 |#1|)) 23 (|has| |#1| (-755)) ELT) (((-1145 |#2|) (-1 |#2| |#1|) (-1145 |#1|)) 17 T ELT))) +(((-1146 |#1| |#2|) (-10 -7 (-15 -3957 ((-1145 |#2|) (-1 |#2| |#1|) (-1145 |#1|))) (IF (|has| |#1| (-755)) (-15 -3957 ((-1068 |#2|) (-1 |#2| |#1|) (-1145 |#1|))) |%noBranch|)) (-1128) (-1128)) (T -1146)) +((-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1145 *5)) (-4 *5 (-755)) (-4 *5 (-1128)) (-4 *6 (-1128)) (-5 *2 (-1068 *6)) (-5 *1 (-1146 *5 *6)))) (-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1145 *5)) (-4 *5 (-1128)) (-4 *6 (-1128)) (-5 *2 (-1145 *6)) (-5 *1 (-1146 *5 *6))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-3766 (((-1178 |#2|) $ (-694)) NIL T ELT)) (-3081 (((-583 (-994)) $) NIL T ELT)) (-3764 (($ (-1084 |#2|)) NIL T ELT)) (-3083 (((-1084 $) $ (-994)) NIL T ELT) (((-1084 |#2|) $) NIL T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL (|has| |#2| (-495)) ELT)) (-2063 (($ $) NIL (|has| |#2| (-495)) ELT)) (-2061 (((-85) $) NIL (|has| |#2| (-495)) ELT)) (-2819 (((-694) $) NIL T ELT) (((-694) $ (-583 (-994))) NIL T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3754 (($ $ $) NIL (|has| |#2| (-495)) ELT)) (-2707 (((-347 (-1084 $)) (-1084 $)) NIL (|has| |#2| (-821)) ELT)) (-3774 (($ $) NIL (|has| |#2| (-391)) ELT)) (-3970 (((-347 $) $) NIL (|has| |#2| (-391)) ELT)) (-2704 (((-3 (-583 (-1084 $)) #1#) (-583 (-1084 $)) (-1084 $)) NIL (|has| |#2| (-821)) ELT)) (-1607 (((-85) $ $) NIL (|has| |#2| (-312)) ELT)) (-3760 (($ $ (-694)) NIL T ELT)) (-3759 (($ $ (-694)) NIL T ELT)) (-3750 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-391)) ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-349 (-484)) #1#) $) NIL (|has| |#2| (-950 (-349 (-484)))) ELT) (((-3 (-484) #1#) $) NIL (|has| |#2| (-950 (-484))) ELT) (((-3 (-994) #1#) $) NIL T ELT)) (-3156 ((|#2| $) NIL T ELT) (((-349 (-484)) $) NIL (|has| |#2| (-950 (-349 (-484)))) ELT) (((-484) $) NIL (|has| |#2| (-950 (-484))) ELT) (((-994) $) NIL T ELT)) (-3755 (($ $ $ (-994)) NIL (|has| |#2| (-146)) ELT) ((|#2| $ $) NIL (|has| |#2| (-146)) ELT)) (-2564 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-3958 (($ $) NIL T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) NIL (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1178 |#2|))) (-630 $) (-1178 $)) NIL T ELT) (((-630 |#2|) (-630 $)) NIL T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-2563 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-3758 (($ $ $) NIL T ELT)) (-3752 (($ $ $) NIL (|has| |#2| (-495)) ELT)) (-3751 (((-2 (|:| -3953 |#2|) (|:| -1972 $) (|:| -2902 $)) $ $) NIL (|has| |#2| (-495)) ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) NIL (|has| |#2| (-312)) ELT)) (-3502 (($ $) NIL (|has| |#2| (-391)) ELT) (($ $ (-994)) NIL (|has| |#2| (-391)) ELT)) (-2818 (((-583 $) $) NIL T ELT)) (-3722 (((-85) $) NIL (|has| |#2| (-821)) ELT)) (-1623 (($ $ |#2| (-694) $) NIL T ELT)) (-2796 (((-798 (-329) $) $ (-800 (-329)) (-798 (-329) $)) NIL (-12 (|has| (-994) (-796 (-329))) (|has| |#2| (-796 (-329)))) ELT) (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) NIL (-12 (|has| (-994) (-796 (-484))) (|has| |#2| (-796 (-484)))) ELT)) (-3771 (((-694) $ $) NIL (|has| |#2| (-495)) ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2420 (((-694) $) NIL T ELT)) (-3444 (((-632 $) $) NIL (|has| |#2| (-1065)) ELT)) (-3084 (($ (-1084 |#2|) (-994)) NIL T ELT) (($ (-1084 $) (-994)) NIL T ELT)) (-3776 (($ $ (-694)) NIL T ELT)) (-1604 (((-3 (-583 $) #1#) (-583 $) $) NIL (|has| |#2| (-312)) ELT)) (-2821 (((-583 $) $) NIL T ELT)) (-3936 (((-85) $) NIL T ELT)) (-2893 (($ |#2| (-694)) 18 T ELT) (($ $ (-994) (-694)) NIL T ELT) (($ $ (-583 (-994)) (-583 (-694))) NIL T ELT)) (-3762 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $ (-994)) NIL T ELT) (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL T ELT)) (-2820 (((-694) $) NIL T ELT) (((-694) $ (-994)) NIL T ELT) (((-583 (-694)) $ (-583 (-994))) NIL T ELT)) (-1624 (($ (-1 (-694) (-694)) $) NIL T ELT)) (-3957 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3765 (((-1084 |#2|) $) NIL T ELT)) (-3082 (((-3 (-994) #1#) $) NIL T ELT)) (-2280 (((-630 (-484)) (-1178 $)) NIL (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1178 |#2|))) (-1178 $) $) NIL T ELT) (((-630 |#2|) (-1178 $)) NIL T ELT)) (-2894 (($ $) NIL T ELT)) (-3174 ((|#2| $) NIL T ELT)) (-1890 (($ (-583 $)) NIL (|has| |#2| (-391)) ELT) (($ $ $) NIL (|has| |#2| (-391)) ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3761 (((-2 (|:| -1972 $) (|:| -2902 $)) $ (-694)) NIL T ELT)) (-2823 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2822 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2824 (((-3 (-2 (|:| |var| (-994)) (|:| -2401 (-694))) #1#) $) NIL T ELT)) (-3811 (($ $) NIL (|has| |#2| (-38 (-349 (-484)))) ELT)) (-3445 (($) NIL (|has| |#2| (-1065)) CONST)) (-3243 (((-1033) $) NIL T ELT)) (-1796 (((-85) $) NIL T ELT)) (-1795 ((|#2| $) NIL T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) NIL (|has| |#2| (-391)) ELT)) (-3144 (($ (-583 $)) NIL (|has| |#2| (-391)) ELT) (($ $ $) NIL (|has| |#2| (-391)) ELT)) (-3737 (($ $ (-694) |#2| $) NIL T ELT)) (-2705 (((-347 (-1084 $)) (-1084 $)) NIL (|has| |#2| (-821)) ELT)) (-2706 (((-347 (-1084 $)) (-1084 $)) NIL (|has| |#2| (-821)) ELT)) (-3731 (((-347 $) $) NIL (|has| |#2| (-821)) ELT)) (-1605 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#2| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL (|has| |#2| (-312)) ELT)) (-3465 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-495)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-495)) ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL (|has| |#2| (-312)) ELT)) (-3767 (($ $ (-583 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ (-994) |#2|) NIL T ELT) (($ $ (-583 (-994)) (-583 |#2|)) NIL T ELT) (($ $ (-994) $) NIL T ELT) (($ $ (-583 (-994)) (-583 $)) NIL T ELT)) (-1606 (((-694) $) NIL (|has| |#2| (-312)) ELT)) (-3799 ((|#2| $ |#2|) NIL T ELT) (($ $ $) NIL T ELT) (((-349 $) (-349 $) (-349 $)) NIL (|has| |#2| (-495)) ELT) ((|#2| (-349 $) |#2|) NIL (|has| |#2| (-312)) ELT) (((-349 $) $ (-349 $)) NIL (|has| |#2| (-495)) ELT)) (-3763 (((-3 $ #1#) $ (-694)) NIL T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL (|has| |#2| (-312)) ELT)) (-3756 (($ $ (-994)) NIL (|has| |#2| (-146)) ELT) ((|#2| $) NIL (|has| |#2| (-146)) ELT)) (-3757 (($ $ (-583 (-994)) (-583 (-694))) NIL T ELT) (($ $ (-994) (-694)) NIL T ELT) (($ $ (-583 (-994))) NIL T ELT) (($ $ (-994)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-694)) NIL T ELT) (($ $ (-1 |#2| |#2|) $) NIL T ELT) (($ $ (-1089)) NIL (|has| |#2| (-811 (-1089))) ELT) (($ $ (-583 (-1089))) NIL (|has| |#2| (-811 (-1089))) ELT) (($ $ (-1089) (-694)) NIL (|has| |#2| (-811 (-1089))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (|has| |#2| (-811 (-1089))) ELT)) (-3947 (((-694) $) NIL T ELT) (((-694) $ (-994)) NIL T ELT) (((-583 (-694)) $ (-583 (-994))) NIL T ELT)) (-3971 (((-800 (-329)) $) NIL (-12 (|has| (-994) (-553 (-800 (-329)))) (|has| |#2| (-553 (-800 (-329))))) ELT) (((-800 (-484)) $) NIL (-12 (|has| (-994) (-553 (-800 (-484)))) (|has| |#2| (-553 (-800 (-484))))) ELT) (((-473) $) NIL (-12 (|has| (-994) (-553 (-473))) (|has| |#2| (-553 (-473)))) ELT)) (-2817 ((|#2| $) NIL (|has| |#2| (-391)) ELT) (($ $ (-994)) NIL (|has| |#2| (-391)) ELT)) (-2703 (((-3 (-1178 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| |#2| (-821))) ELT)) (-3753 (((-3 $ #1#) $ $) NIL (|has| |#2| (-495)) ELT) (((-3 (-349 $) #1#) (-349 $) $) NIL (|has| |#2| (-495)) ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-484)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-994)) NIL T ELT) (($ (-1175 |#1|)) 20 T ELT) (($ (-349 (-484))) NIL (OR (|has| |#2| (-38 (-349 (-484)))) (|has| |#2| (-950 (-349 (-484))))) ELT) (($ $) NIL (|has| |#2| (-495)) ELT)) (-3816 (((-583 |#2|) $) NIL T ELT)) (-3676 ((|#2| $ (-694)) NIL T ELT) (($ $ (-994) (-694)) NIL T ELT) (($ $ (-583 (-994)) (-583 (-694))) NIL T ELT)) (-2702 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#2| (-821))) (|has| |#2| (-118))) ELT)) (-3126 (((-694)) NIL T CONST)) (-1622 (($ $ $ (-694)) NIL (|has| |#2| (-146)) ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL (|has| |#2| (-495)) ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) NIL T CONST)) (-2666 (($) 14 T CONST)) (-2669 (($ $ (-583 (-994)) (-583 (-694))) NIL T ELT) (($ $ (-994) (-694)) NIL T ELT) (($ $ (-583 (-994))) NIL T ELT) (($ $ (-994)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-694)) NIL T ELT) (($ $ (-1089)) NIL (|has| |#2| (-811 (-1089))) ELT) (($ $ (-583 (-1089))) NIL (|has| |#2| (-811 (-1089))) ELT) (($ $ (-1089) (-694)) NIL (|has| |#2| (-811 (-1089))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (|has| |#2| (-811 (-1089))) ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3948 (($ $ |#2|) NIL (|has| |#2| (-312)) ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-349 (-484))) NIL (|has| |#2| (-38 (-349 (-484)))) ELT) (($ (-349 (-484)) $) NIL (|has| |#2| (-38 (-349 (-484)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT))) +(((-1147 |#1| |#2|) (-13 (-1154 |#2|) (-555 (-1175 |#1|)) (-10 -8 (-15 -3737 ($ $ (-694) |#2| $)))) (-1089) (-961)) (T -1147)) +((-3737 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-694)) (-5 *1 (-1147 *4 *3)) (-14 *4 (-1089)) (-4 *3 (-961))))) +((-3957 (((-1147 |#3| |#4|) (-1 |#4| |#2|) (-1147 |#1| |#2|)) 15 T ELT))) +(((-1148 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3957 ((-1147 |#3| |#4|) (-1 |#4| |#2|) (-1147 |#1| |#2|)))) (-1089) (-961) (-1089) (-961)) (T -1148)) +((-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1147 *5 *6)) (-14 *5 (-1089)) (-4 *6 (-961)) (-4 *8 (-961)) (-5 *2 (-1147 *7 *8)) (-5 *1 (-1148 *5 *6 *7 *8)) (-14 *7 (-1089))))) +((-3740 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21 T ELT)) (-3738 ((|#1| |#3|) 13 T ELT)) (-3739 ((|#3| |#3|) 19 T ELT))) +(((-1149 |#1| |#2| |#3|) (-10 -7 (-15 -3738 (|#1| |#3|)) (-15 -3739 (|#3| |#3|)) (-15 -3740 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-495) (-904 |#1|) (-1154 |#2|)) (T -1149)) +((-3740 (*1 *2 *3) (-12 (-4 *4 (-495)) (-4 *5 (-904 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1149 *4 *5 *3)) (-4 *3 (-1154 *5)))) (-3739 (*1 *2 *2) (-12 (-4 *3 (-495)) (-4 *4 (-904 *3)) (-5 *1 (-1149 *3 *4 *2)) (-4 *2 (-1154 *4)))) (-3738 (*1 *2 *3) (-12 (-4 *4 (-904 *2)) (-4 *2 (-495)) (-5 *1 (-1149 *2 *4 *3)) (-4 *3 (-1154 *4))))) +((-3742 (((-3 |#2| #1="failed") |#2| (-694) |#1|) 35 T ELT)) (-3741 (((-3 |#2| #1#) |#2| (-694)) 36 T ELT)) (-3744 (((-3 (-2 (|:| -3138 |#2|) (|:| -3137 |#2|)) #1#) |#2|) 50 T ELT)) (-3745 (((-583 |#2|) |#2|) 52 T ELT)) (-3743 (((-3 |#2| #1#) |#2| |#2|) 46 T ELT))) +(((-1150 |#1| |#2|) (-10 -7 (-15 -3741 ((-3 |#2| #1="failed") |#2| (-694))) (-15 -3742 ((-3 |#2| #1#) |#2| (-694) |#1|)) (-15 -3743 ((-3 |#2| #1#) |#2| |#2|)) (-15 -3744 ((-3 (-2 (|:| -3138 |#2|) (|:| -3137 |#2|)) #1#) |#2|)) (-15 -3745 ((-583 |#2|) |#2|))) (-13 (-495) (-120)) (-1154 |#1|)) (T -1150)) +((-3745 (*1 *2 *3) (-12 (-4 *4 (-13 (-495) (-120))) (-5 *2 (-583 *3)) (-5 *1 (-1150 *4 *3)) (-4 *3 (-1154 *4)))) (-3744 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-495) (-120))) (-5 *2 (-2 (|:| -3138 *3) (|:| -3137 *3))) (-5 *1 (-1150 *4 *3)) (-4 *3 (-1154 *4)))) (-3743 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-495) (-120))) (-5 *1 (-1150 *3 *2)) (-4 *2 (-1154 *3)))) (-3742 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-694)) (-4 *4 (-13 (-495) (-120))) (-5 *1 (-1150 *4 *2)) (-4 *2 (-1154 *4)))) (-3741 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-694)) (-4 *4 (-13 (-495) (-120))) (-5 *1 (-1150 *4 *2)) (-4 *2 (-1154 *4))))) +((-3746 (((-3 (-2 (|:| -1972 |#2|) (|:| -2902 |#2|)) "failed") |#2| |#2|) 30 T ELT))) +(((-1151 |#1| |#2|) (-10 -7 (-15 -3746 ((-3 (-2 (|:| -1972 |#2|) (|:| -2902 |#2|)) "failed") |#2| |#2|))) (-495) (-1154 |#1|)) (T -1151)) +((-3746 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-495)) (-5 *2 (-2 (|:| -1972 *3) (|:| -2902 *3))) (-5 *1 (-1151 *4 *3)) (-4 *3 (-1154 *4))))) +((-3747 ((|#2| |#2| |#2|) 22 T ELT)) (-3748 ((|#2| |#2| |#2|) 36 T ELT)) (-3749 ((|#2| |#2| |#2| (-694) (-694)) 44 T ELT))) +(((-1152 |#1| |#2|) (-10 -7 (-15 -3747 (|#2| |#2| |#2|)) (-15 -3748 (|#2| |#2| |#2|)) (-15 -3749 (|#2| |#2| |#2| (-694) (-694)))) (-961) (-1154 |#1|)) (T -1152)) +((-3749 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-694)) (-4 *4 (-961)) (-5 *1 (-1152 *4 *2)) (-4 *2 (-1154 *4)))) (-3748 (*1 *2 *2 *2) (-12 (-4 *3 (-961)) (-5 *1 (-1152 *3 *2)) (-4 *2 (-1154 *3)))) (-3747 (*1 *2 *2 *2) (-12 (-4 *3 (-961)) (-5 *1 (-1152 *3 *2)) (-4 *2 (-1154 *3))))) +((-3766 (((-1178 |#2|) $ (-694)) 129 T ELT)) (-3081 (((-583 (-994)) $) 16 T ELT)) (-3764 (($ (-1084 |#2|)) 80 T ELT)) (-2819 (((-694) $) NIL T ELT) (((-694) $ (-583 (-994))) 21 T ELT)) (-2707 (((-347 (-1084 $)) (-1084 $)) 217 T ELT)) (-3774 (($ $) 207 T ELT)) (-3970 (((-347 $) $) 205 T ELT)) (-2704 (((-3 (-583 (-1084 $)) #1="failed") (-583 (-1084 $)) (-1084 $)) 95 T ELT)) (-3760 (($ $ (-694)) 84 T ELT)) (-3759 (($ $ (-694)) 86 T ELT)) (-3750 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 157 T ELT)) (-3157 (((-3 |#2| #1#) $) 132 T ELT) (((-3 (-349 (-484)) #1#) $) NIL T ELT) (((-3 (-484) #1#) $) NIL T ELT) (((-3 (-994) #1#) $) NIL T ELT)) (-3156 ((|#2| $) 130 T ELT) (((-349 (-484)) $) NIL T ELT) (((-484) $) NIL T ELT) (((-994) $) NIL T ELT)) (-3752 (($ $ $) 182 T ELT)) (-3751 (((-2 (|:| -3953 |#2|) (|:| -1972 $) (|:| -2902 $)) $ $) 185 T ELT)) (-3771 (((-694) $ $) 202 T ELT)) (-3444 (((-632 $) $) 149 T ELT)) (-2893 (($ |#2| (-694)) NIL T ELT) (($ $ (-994) (-694)) 59 T ELT) (($ $ (-583 (-994)) (-583 (-694))) NIL T ELT)) (-2820 (((-694) $) NIL T ELT) (((-694) $ (-994)) 54 T ELT) (((-583 (-694)) $ (-583 (-994))) 55 T ELT)) (-3765 (((-1084 |#2|) $) 72 T ELT)) (-3082 (((-3 (-994) #1#) $) 52 T ELT)) (-3761 (((-2 (|:| -1972 $) (|:| -2902 $)) $ (-694)) 83 T ELT)) (-3811 (($ $) 232 T ELT)) (-3445 (($) 134 T CONST)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) 214 T ELT)) (-2705 (((-347 (-1084 $)) (-1084 $)) 101 T ELT)) (-2706 (((-347 (-1084 $)) (-1084 $)) 99 T ELT)) (-3731 (((-347 $) $) 120 T ELT)) (-3767 (($ $ (-583 (-249 $))) 51 T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ (-994) |#2|) 39 T ELT) (($ $ (-583 (-994)) (-583 |#2|)) 36 T ELT) (($ $ (-994) $) 32 T ELT) (($ $ (-583 (-994)) (-583 $)) 30 T ELT)) (-1606 (((-694) $) 220 T ELT)) (-3799 ((|#2| $ |#2|) NIL T ELT) (($ $ $) NIL T ELT) (((-349 $) (-349 $) (-349 $)) 176 T ELT) ((|#2| (-349 $) |#2|) 219 T ELT) (((-349 $) $ (-349 $)) 201 T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 225 T ELT)) (-3757 (($ $ (-583 (-994)) (-583 (-694))) NIL T ELT) (($ $ (-994) (-694)) NIL T ELT) (($ $ (-583 (-994))) NIL T ELT) (($ $ (-994)) 169 T ELT) (($ $) 167 T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-1 |#2| |#2|)) 166 T ELT) (($ $ (-1 |#2| |#2|) (-694)) NIL T ELT) (($ $ (-1 |#2| |#2|) $) 161 T ELT) (($ $ (-1089)) NIL T ELT) (($ $ (-583 (-1089))) NIL T ELT) (($ $ (-1089) (-694)) NIL T ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL T ELT)) (-3947 (((-694) $) NIL T ELT) (((-694) $ (-994)) 17 T ELT) (((-583 (-694)) $ (-583 (-994))) 23 T ELT)) (-2817 ((|#2| $) NIL T ELT) (($ $ (-994)) 151 T ELT)) (-3753 (((-3 $ #1#) $ $) 193 T ELT) (((-3 (-349 $) #1#) (-349 $) $) 189 T ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-994)) 64 T ELT) (($ (-349 (-484))) NIL T ELT) (($ $) NIL T ELT))) +(((-1153 |#1| |#2|) (-10 -7 (-15 -3945 (|#1| |#1|)) (-15 -2708 ((-1084 |#1|) (-1084 |#1|) (-1084 |#1|))) (-15 -3757 (|#1| |#1| (-583 (-1089)) (-583 (-694)))) (-15 -3757 (|#1| |#1| (-1089) (-694))) (-15 -3757 (|#1| |#1| (-583 (-1089)))) (-15 -3757 (|#1| |#1| (-1089))) (-15 -3970 ((-347 |#1|) |#1|)) (-15 -3774 (|#1| |#1|)) (-15 -3945 (|#1| (-349 (-484)))) (-15 -3445 (|#1|) -3951) (-15 -3444 ((-632 |#1|) |#1|)) (-15 -3799 ((-349 |#1|) |#1| (-349 |#1|))) (-15 -1606 ((-694) |#1|)) (-15 -2879 ((-2 (|:| -1972 |#1|) (|:| -2902 |#1|)) |#1| |#1|)) (-15 -3811 (|#1| |#1|)) (-15 -3799 (|#2| (-349 |#1|) |#2|)) (-15 -3750 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -3751 ((-2 (|:| -3953 |#2|) (|:| -1972 |#1|) (|:| -2902 |#1|)) |#1| |#1|)) (-15 -3752 (|#1| |#1| |#1|)) (-15 -3753 ((-3 (-349 |#1|) #1="failed") (-349 |#1|) |#1|)) (-15 -3753 ((-3 |#1| #1#) |#1| |#1|)) (-15 -3771 ((-694) |#1| |#1|)) (-15 -3799 ((-349 |#1|) (-349 |#1|) (-349 |#1|))) (-15 -3757 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -3759 (|#1| |#1| (-694))) (-15 -3760 (|#1| |#1| (-694))) (-15 -3761 ((-2 (|:| -1972 |#1|) (|:| -2902 |#1|)) |#1| (-694))) (-15 -3764 (|#1| (-1084 |#2|))) (-15 -3765 ((-1084 |#2|) |#1|)) (-15 -3766 ((-1178 |#2|) |#1| (-694))) (-15 -3757 (|#1| |#1| (-1 |#2| |#2|) (-694))) (-15 -3757 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3757 (|#1| |#1| (-694))) (-15 -3757 (|#1| |#1|)) (-15 -3799 (|#1| |#1| |#1|)) (-15 -3799 (|#2| |#1| |#2|)) (-15 -3731 ((-347 |#1|) |#1|)) (-15 -2707 ((-347 (-1084 |#1|)) (-1084 |#1|))) (-15 -2706 ((-347 (-1084 |#1|)) (-1084 |#1|))) (-15 -2705 ((-347 (-1084 |#1|)) (-1084 |#1|))) (-15 -2704 ((-3 (-583 (-1084 |#1|)) #1#) (-583 (-1084 |#1|)) (-1084 |#1|))) (-15 -2817 (|#1| |#1| (-994))) (-15 -3081 ((-583 (-994)) |#1|)) (-15 -2819 ((-694) |#1| (-583 (-994)))) (-15 -2819 ((-694) |#1|)) (-15 -2893 (|#1| |#1| (-583 (-994)) (-583 (-694)))) (-15 -2893 (|#1| |#1| (-994) (-694))) (-15 -2820 ((-583 (-694)) |#1| (-583 (-994)))) (-15 -2820 ((-694) |#1| (-994))) (-15 -3082 ((-3 (-994) #1#) |#1|)) (-15 -3947 ((-583 (-694)) |#1| (-583 (-994)))) (-15 -3947 ((-694) |#1| (-994))) (-15 -3945 (|#1| (-994))) (-15 -3157 ((-3 (-994) #1#) |#1|)) (-15 -3156 ((-994) |#1|)) (-15 -3767 (|#1| |#1| (-583 (-994)) (-583 |#1|))) (-15 -3767 (|#1| |#1| (-994) |#1|)) (-15 -3767 (|#1| |#1| (-583 (-994)) (-583 |#2|))) (-15 -3767 (|#1| |#1| (-994) |#2|)) (-15 -3767 (|#1| |#1| (-583 |#1|) (-583 |#1|))) (-15 -3767 (|#1| |#1| |#1| |#1|)) (-15 -3767 (|#1| |#1| (-249 |#1|))) (-15 -3767 (|#1| |#1| (-583 (-249 |#1|)))) (-15 -3947 ((-694) |#1|)) (-15 -2893 (|#1| |#2| (-694))) (-15 -3157 ((-3 (-484) #1#) |#1|)) (-15 -3156 ((-484) |#1|)) (-15 -3157 ((-3 (-349 (-484)) #1#) |#1|)) (-15 -3156 ((-349 (-484)) |#1|)) (-15 -3156 (|#2| |#1|)) (-15 -3157 ((-3 |#2| #1#) |#1|)) (-15 -3945 (|#1| |#2|)) (-15 -2820 ((-694) |#1|)) (-15 -2817 (|#2| |#1|)) (-15 -3757 (|#1| |#1| (-994))) (-15 -3757 (|#1| |#1| (-583 (-994)))) (-15 -3757 (|#1| |#1| (-994) (-694))) (-15 -3757 (|#1| |#1| (-583 (-994)) (-583 (-694)))) (-15 -3945 (|#1| (-484))) (-15 -3945 ((-772) |#1|))) (-1154 |#2|) (-961)) (T -1153)) +NIL +((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-3766 (((-1178 |#1|) $ (-694)) 271 T ELT)) (-3081 (((-583 (-994)) $) 123 T ELT)) (-3764 (($ (-1084 |#1|)) 269 T ELT)) (-3083 (((-1084 $) $ (-994)) 138 T ELT) (((-1084 |#1|) $) 137 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) 100 (|has| |#1| (-495)) ELT)) (-2063 (($ $) 101 (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) 103 (|has| |#1| (-495)) ELT)) (-2819 (((-694) $) 125 T ELT) (((-694) $ (-583 (-994))) 124 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3754 (($ $ $) 256 (|has| |#1| (-495)) ELT)) (-2707 (((-347 (-1084 $)) (-1084 $)) 113 (|has| |#1| (-821)) ELT)) (-3774 (($ $) 111 (|has| |#1| (-391)) ELT)) (-3970 (((-347 $) $) 110 (|has| |#1| (-391)) ELT)) (-2704 (((-3 (-583 (-1084 $)) #1="failed") (-583 (-1084 $)) (-1084 $)) 116 (|has| |#1| (-821)) ELT)) (-1607 (((-85) $ $) 241 (|has| |#1| (-312)) ELT)) (-3760 (($ $ (-694)) 264 T ELT)) (-3759 (($ $ (-694)) 263 T ELT)) (-3750 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 251 (|has| |#1| (-391)) ELT)) (-3723 (($) 23 T CONST)) (-3157 (((-3 |#1| #2="failed") $) 181 T ELT) (((-3 (-349 (-484)) #2#) $) 178 (|has| |#1| (-950 (-349 (-484)))) ELT) (((-3 (-484) #2#) $) 176 (|has| |#1| (-950 (-484))) ELT) (((-3 (-994) #2#) $) 153 T ELT)) (-3156 ((|#1| $) 180 T ELT) (((-349 (-484)) $) 179 (|has| |#1| (-950 (-349 (-484)))) ELT) (((-484) $) 177 (|has| |#1| (-950 (-484))) ELT) (((-994) $) 154 T ELT)) (-3755 (($ $ $ (-994)) 121 (|has| |#1| (-146)) ELT) ((|#1| $ $) 259 (|has| |#1| (-146)) ELT)) (-2564 (($ $ $) 245 (|has| |#1| (-312)) ELT)) (-3958 (($ $) 171 T ELT)) (-2279 (((-630 (-484)) (-630 $)) 149 (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-630 $) (-1178 $)) 148 (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1178 |#1|))) (-630 $) (-1178 $)) 147 T ELT) (((-630 |#1|) (-630 $)) 146 T ELT)) (-3466 (((-3 $ "failed") $) 42 T ELT)) (-2563 (($ $ $) 244 (|has| |#1| (-312)) ELT)) (-3758 (($ $ $) 262 T ELT)) (-3752 (($ $ $) 253 (|has| |#1| (-495)) ELT)) (-3751 (((-2 (|:| -3953 |#1|) (|:| -1972 $) (|:| -2902 $)) $ $) 252 (|has| |#1| (-495)) ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) 239 (|has| |#1| (-312)) ELT)) (-3502 (($ $) 193 (|has| |#1| (-391)) ELT) (($ $ (-994)) 118 (|has| |#1| (-391)) ELT)) (-2818 (((-583 $) $) 122 T ELT)) (-3722 (((-85) $) 109 (|has| |#1| (-821)) ELT)) (-1623 (($ $ |#1| (-694) $) 189 T ELT)) (-2796 (((-798 (-329) $) $ (-800 (-329)) (-798 (-329) $)) 97 (-12 (|has| (-994) (-796 (-329))) (|has| |#1| (-796 (-329)))) ELT) (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) 96 (-12 (|has| (-994) (-796 (-484))) (|has| |#1| (-796 (-484)))) ELT)) (-3771 (((-694) $ $) 257 (|has| |#1| (-495)) ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-2420 (((-694) $) 186 T ELT)) (-3444 (((-632 $) $) 237 (|has| |#1| (-1065)) ELT)) (-3084 (($ (-1084 |#1|) (-994)) 130 T ELT) (($ (-1084 $) (-994)) 129 T ELT)) (-3776 (($ $ (-694)) 268 T ELT)) (-1604 (((-3 (-583 $) #3="failed") (-583 $) $) 248 (|has| |#1| (-312)) ELT)) (-2821 (((-583 $) $) 139 T ELT)) (-3936 (((-85) $) 169 T ELT)) (-2893 (($ |#1| (-694)) 170 T ELT) (($ $ (-994) (-694)) 132 T ELT) (($ $ (-583 (-994)) (-583 (-694))) 131 T ELT)) (-3762 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $ (-994)) 133 T ELT) (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 266 T ELT)) (-2820 (((-694) $) 187 T ELT) (((-694) $ (-994)) 135 T ELT) (((-583 (-694)) $ (-583 (-994))) 134 T ELT)) (-1624 (($ (-1 (-694) (-694)) $) 188 T ELT)) (-3957 (($ (-1 |#1| |#1|) $) 168 T ELT)) (-3765 (((-1084 |#1|) $) 270 T ELT)) (-3082 (((-3 (-994) #4="failed") $) 136 T ELT)) (-2280 (((-630 (-484)) (-1178 $)) 151 (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) 150 (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1178 |#1|))) (-1178 $) $) 145 T ELT) (((-630 |#1|) (-1178 $)) 144 T ELT)) (-2894 (($ $) 166 T ELT)) (-3174 ((|#1| $) 165 T ELT)) (-1890 (($ (-583 $)) 107 (|has| |#1| (-391)) ELT) (($ $ $) 106 (|has| |#1| (-391)) ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3761 (((-2 (|:| -1972 $) (|:| -2902 $)) $ (-694)) 265 T ELT)) (-2823 (((-3 (-583 $) #4#) $) 127 T ELT)) (-2822 (((-3 (-583 $) #4#) $) 128 T ELT)) (-2824 (((-3 (-2 (|:| |var| (-994)) (|:| -2401 (-694))) #4#) $) 126 T ELT)) (-3811 (($ $) 249 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3445 (($) 236 (|has| |#1| (-1065)) CONST)) (-3243 (((-1033) $) 12 T ELT)) (-1796 (((-85) $) 183 T ELT)) (-1795 ((|#1| $) 184 T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) 108 (|has| |#1| (-391)) ELT)) (-3144 (($ (-583 $)) 105 (|has| |#1| (-391)) ELT) (($ $ $) 104 (|has| |#1| (-391)) ELT)) (-2705 (((-347 (-1084 $)) (-1084 $)) 115 (|has| |#1| (-821)) ELT)) (-2706 (((-347 (-1084 $)) (-1084 $)) 114 (|has| |#1| (-821)) ELT)) (-3731 (((-347 $) $) 112 (|has| |#1| (-821)) ELT)) (-1605 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 247 (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) 246 (|has| |#1| (-312)) ELT)) (-3465 (((-3 $ "failed") $ |#1|) 191 (|has| |#1| (-495)) ELT) (((-3 $ "failed") $ $) 99 (|has| |#1| (-495)) ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) 240 (|has| |#1| (-312)) ELT)) (-3767 (($ $ (-583 (-249 $))) 162 T ELT) (($ $ (-249 $)) 161 T ELT) (($ $ $ $) 160 T ELT) (($ $ (-583 $) (-583 $)) 159 T ELT) (($ $ (-994) |#1|) 158 T ELT) (($ $ (-583 (-994)) (-583 |#1|)) 157 T ELT) (($ $ (-994) $) 156 T ELT) (($ $ (-583 (-994)) (-583 $)) 155 T ELT)) (-1606 (((-694) $) 242 (|has| |#1| (-312)) ELT)) (-3799 ((|#1| $ |#1|) 281 T ELT) (($ $ $) 280 T ELT) (((-349 $) (-349 $) (-349 $)) 258 (|has| |#1| (-495)) ELT) ((|#1| (-349 $) |#1|) 250 (|has| |#1| (-312)) ELT) (((-349 $) $ (-349 $)) 238 (|has| |#1| (-495)) ELT)) (-3763 (((-3 $ "failed") $ (-694)) 267 T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 243 (|has| |#1| (-312)) ELT)) (-3756 (($ $ (-994)) 120 (|has| |#1| (-146)) ELT) ((|#1| $) 260 (|has| |#1| (-146)) ELT)) (-3757 (($ $ (-583 (-994)) (-583 (-694))) 52 T ELT) (($ $ (-994) (-694)) 51 T ELT) (($ $ (-583 (-994))) 50 T ELT) (($ $ (-994)) 48 T ELT) (($ $) 279 T ELT) (($ $ (-694)) 277 T ELT) (($ $ (-1 |#1| |#1|)) 275 T ELT) (($ $ (-1 |#1| |#1|) (-694)) 274 T ELT) (($ $ (-1 |#1| |#1|) $) 261 T ELT) (($ $ (-1089)) 235 (|has| |#1| (-811 (-1089))) ELT) (($ $ (-583 (-1089))) 233 (|has| |#1| (-811 (-1089))) ELT) (($ $ (-1089) (-694)) 232 (|has| |#1| (-811 (-1089))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) 231 (|has| |#1| (-811 (-1089))) ELT)) (-3947 (((-694) $) 167 T ELT) (((-694) $ (-994)) 143 T ELT) (((-583 (-694)) $ (-583 (-994))) 142 T ELT)) (-3971 (((-800 (-329)) $) 95 (-12 (|has| (-994) (-553 (-800 (-329)))) (|has| |#1| (-553 (-800 (-329))))) ELT) (((-800 (-484)) $) 94 (-12 (|has| (-994) (-553 (-800 (-484)))) (|has| |#1| (-553 (-800 (-484))))) ELT) (((-473) $) 93 (-12 (|has| (-994) (-553 (-473))) (|has| |#1| (-553 (-473)))) ELT)) (-2817 ((|#1| $) 192 (|has| |#1| (-391)) ELT) (($ $ (-994)) 119 (|has| |#1| (-391)) ELT)) (-2703 (((-3 (-1178 $) #1#) (-630 $)) 117 (-2562 (|has| $ (-118)) (|has| |#1| (-821))) ELT)) (-3753 (((-3 $ "failed") $ $) 255 (|has| |#1| (-495)) ELT) (((-3 (-349 $) "failed") (-349 $) $) 254 (|has| |#1| (-495)) ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ |#1|) 182 T ELT) (($ (-994)) 152 T ELT) (($ (-349 (-484))) 91 (OR (|has| |#1| (-950 (-349 (-484)))) (|has| |#1| (-38 (-349 (-484))))) ELT) (($ $) 98 (|has| |#1| (-495)) ELT)) (-3816 (((-583 |#1|) $) 185 T ELT)) (-3676 ((|#1| $ (-694)) 172 T ELT) (($ $ (-994) (-694)) 141 T ELT) (($ $ (-583 (-994)) (-583 (-694))) 140 T ELT)) (-2702 (((-632 $) $) 92 (OR (-2562 (|has| $ (-118)) (|has| |#1| (-821))) (|has| |#1| (-118))) ELT)) (-3126 (((-694)) 40 T CONST)) (-1622 (($ $ $ (-694)) 190 (|has| |#1| (-146)) ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-2062 (((-85) $ $) 102 (|has| |#1| (-495)) ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-2669 (($ $ (-583 (-994)) (-583 (-694))) 55 T ELT) (($ $ (-994) (-694)) 54 T ELT) (($ $ (-583 (-994))) 53 T ELT) (($ $ (-994)) 49 T ELT) (($ $) 278 T ELT) (($ $ (-694)) 276 T ELT) (($ $ (-1 |#1| |#1|)) 273 T ELT) (($ $ (-1 |#1| |#1|) (-694)) 272 T ELT) (($ $ (-1089)) 234 (|has| |#1| (-811 (-1089))) ELT) (($ $ (-583 (-1089))) 230 (|has| |#1| (-811 (-1089))) ELT) (($ $ (-1089) (-694)) 229 (|has| |#1| (-811 (-1089))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) 228 (|has| |#1| (-811 (-1089))) ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-3948 (($ $ |#1|) 173 (|has| |#1| (-312)) ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-349 (-484))) 175 (|has| |#1| (-38 (-349 (-484)))) ELT) (($ (-349 (-484)) $) 174 (|has| |#1| (-38 (-349 (-484)))) ELT) (($ |#1| $) 164 T ELT) (($ $ |#1|) 163 T ELT))) +(((-1154 |#1|) (-113) (-961)) (T -1154)) +((-3766 (*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-4 *1 (-1154 *4)) (-4 *4 (-961)) (-5 *2 (-1178 *4)))) (-3765 (*1 *2 *1) (-12 (-4 *1 (-1154 *3)) (-4 *3 (-961)) (-5 *2 (-1084 *3)))) (-3764 (*1 *1 *2) (-12 (-5 *2 (-1084 *3)) (-4 *3 (-961)) (-4 *1 (-1154 *3)))) (-3776 (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-1154 *3)) (-4 *3 (-961)))) (-3763 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-694)) (-4 *1 (-1154 *3)) (-4 *3 (-961)))) (-3762 (*1 *2 *1 *1) (-12 (-4 *3 (-961)) (-5 *2 (-2 (|:| -1972 *1) (|:| -2902 *1))) (-4 *1 (-1154 *3)))) (-3761 (*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-4 *4 (-961)) (-5 *2 (-2 (|:| -1972 *1) (|:| -2902 *1))) (-4 *1 (-1154 *4)))) (-3760 (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-1154 *3)) (-4 *3 (-961)))) (-3759 (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-1154 *3)) (-4 *3 (-961)))) (-3758 (*1 *1 *1 *1) (-12 (-4 *1 (-1154 *2)) (-4 *2 (-961)))) (-3757 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1154 *3)) (-4 *3 (-961)))) (-3756 (*1 *2 *1) (-12 (-4 *1 (-1154 *2)) (-4 *2 (-961)) (-4 *2 (-146)))) (-3755 (*1 *2 *1 *1) (-12 (-4 *1 (-1154 *2)) (-4 *2 (-961)) (-4 *2 (-146)))) (-3799 (*1 *2 *2 *2) (-12 (-5 *2 (-349 *1)) (-4 *1 (-1154 *3)) (-4 *3 (-961)) (-4 *3 (-495)))) (-3771 (*1 *2 *1 *1) (-12 (-4 *1 (-1154 *3)) (-4 *3 (-961)) (-4 *3 (-495)) (-5 *2 (-694)))) (-3754 (*1 *1 *1 *1) (-12 (-4 *1 (-1154 *2)) (-4 *2 (-961)) (-4 *2 (-495)))) (-3753 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1154 *2)) (-4 *2 (-961)) (-4 *2 (-495)))) (-3753 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-349 *1)) (-4 *1 (-1154 *3)) (-4 *3 (-961)) (-4 *3 (-495)))) (-3752 (*1 *1 *1 *1) (-12 (-4 *1 (-1154 *2)) (-4 *2 (-961)) (-4 *2 (-495)))) (-3751 (*1 *2 *1 *1) (-12 (-4 *3 (-495)) (-4 *3 (-961)) (-5 *2 (-2 (|:| -3953 *3) (|:| -1972 *1) (|:| -2902 *1))) (-4 *1 (-1154 *3)))) (-3750 (*1 *2 *1 *1) (-12 (-4 *3 (-391)) (-4 *3 (-961)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1154 *3)))) (-3799 (*1 *2 *3 *2) (-12 (-5 *3 (-349 *1)) (-4 *1 (-1154 *2)) (-4 *2 (-961)) (-4 *2 (-312)))) (-3811 (*1 *1 *1) (-12 (-4 *1 (-1154 *2)) (-4 *2 (-961)) (-4 *2 (-38 (-349 (-484))))))) +(-13 (-861 |t#1| (-694) (-994)) (-241 |t#1| |t#1|) (-241 $ $) (-190) (-184 |t#1|) (-10 -8 (-15 -3766 ((-1178 |t#1|) $ (-694))) (-15 -3765 ((-1084 |t#1|) $)) (-15 -3764 ($ (-1084 |t#1|))) (-15 -3776 ($ $ (-694))) (-15 -3763 ((-3 $ "failed") $ (-694))) (-15 -3762 ((-2 (|:| -1972 $) (|:| -2902 $)) $ $)) (-15 -3761 ((-2 (|:| -1972 $) (|:| -2902 $)) $ (-694))) (-15 -3760 ($ $ (-694))) (-15 -3759 ($ $ (-694))) (-15 -3758 ($ $ $)) (-15 -3757 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1065)) (-6 (-1065)) |%noBranch|) (IF (|has| |t#1| (-146)) (PROGN (-15 -3756 (|t#1| $)) (-15 -3755 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-495)) (PROGN (-6 (-241 (-349 $) (-349 $))) (-15 -3799 ((-349 $) (-349 $) (-349 $))) (-15 -3771 ((-694) $ $)) (-15 -3754 ($ $ $)) (-15 -3753 ((-3 $ "failed") $ $)) (-15 -3753 ((-3 (-349 $) "failed") (-349 $) $)) (-15 -3752 ($ $ $)) (-15 -3751 ((-2 (|:| -3953 |t#1|) (|:| -1972 $) (|:| -2902 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-391)) (-15 -3750 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-312)) (PROGN (-6 (-258)) (-6 -3990) (-15 -3799 (|t#1| (-349 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-38 (-349 (-484)))) (-15 -3811 ($ $)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| (-694)) . T) ((-25) . T) ((-38 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-391)) (|has| |#1| (-312))) ((-72) . T) ((-82 (-349 (-484)) (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-391)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-555 (-349 (-484))) OR (|has| |#1| (-950 (-349 (-484)))) (|has| |#1| (-38 (-349 (-484))))) ((-555 (-484)) . T) ((-555 (-994)) . T) ((-555 |#1|) . T) ((-555 $) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-391)) (|has| |#1| (-312))) ((-552 (-772)) . T) ((-146) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-391)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-553 (-473)) -12 (|has| |#1| (-553 (-473))) (|has| (-994) (-553 (-473)))) ((-553 (-800 (-329))) -12 (|has| |#1| (-553 (-800 (-329)))) (|has| (-994) (-553 (-800 (-329))))) ((-553 (-800 (-484))) -12 (|has| |#1| (-553 (-800 (-484)))) (|has| (-994) (-553 (-800 (-484))))) ((-186 $) . T) ((-184 |#1|) . T) ((-190) . T) ((-189) . T) ((-225 |#1|) . T) ((-241 (-349 $) (-349 $)) |has| |#1| (-495)) ((-241 |#1| |#1|) . T) ((-241 $ $) . T) ((-246) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-391)) (|has| |#1| (-312))) ((-258) |has| |#1| (-312)) ((-260 $) . T) ((-277 |#1| (-694)) . T) ((-328 |#1|) . T) ((-354 |#1|) . T) ((-391) OR (|has| |#1| (-821)) (|has| |#1| (-391)) (|has| |#1| (-312))) ((-455 (-994) |#1|) . T) ((-455 (-994) $) . T) ((-455 $ $) . T) ((-495) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-391)) (|has| |#1| (-312))) ((-13) . T) ((-588 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-590 (-484)) |has| |#1| (-580 (-484))) ((-590 |#1|) . T) ((-590 $) . T) ((-582 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-582 |#1|) |has| |#1| (-146)) ((-582 $) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-391)) (|has| |#1| (-312))) ((-580 (-484)) |has| |#1| (-580 (-484))) ((-580 |#1|) . T) ((-654 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-654 |#1|) |has| |#1| (-146)) ((-654 $) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-391)) (|has| |#1| (-312))) ((-663) . T) ((-806 $ (-994)) . T) ((-806 $ (-1089)) OR (|has| |#1| (-811 (-1089))) (|has| |#1| (-809 (-1089)))) ((-809 (-994)) . T) ((-809 (-1089)) |has| |#1| (-809 (-1089))) ((-811 (-994)) . T) ((-811 (-1089)) OR (|has| |#1| (-811 (-1089))) (|has| |#1| (-809 (-1089)))) ((-796 (-329)) -12 (|has| |#1| (-796 (-329))) (|has| (-994) (-796 (-329)))) ((-796 (-484)) -12 (|has| |#1| (-796 (-484))) (|has| (-994) (-796 (-484)))) ((-861 |#1| (-694) (-994)) . T) ((-821) |has| |#1| (-821)) ((-832) |has| |#1| (-312)) ((-950 (-349 (-484))) |has| |#1| (-950 (-349 (-484)))) ((-950 (-484)) |has| |#1| (-950 (-484))) ((-950 (-994)) . T) ((-950 |#1|) . T) ((-963 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-963 |#1|) . T) ((-963 $) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-391)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-968 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-968 |#1|) . T) ((-968 $) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-391)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1065) |has| |#1| (-1065)) ((-1128) . T) ((-1133) |has| |#1| (-821))) +((-3957 ((|#4| (-1 |#3| |#1|) |#2|) 22 T ELT))) +(((-1155 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3957 (|#4| (-1 |#3| |#1|) |#2|))) (-961) (-1154 |#1|) (-961) (-1154 |#3|)) (T -1155)) +((-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-4 *2 (-1154 *6)) (-5 *1 (-1155 *5 *4 *6 *2)) (-4 *4 (-1154 *5))))) +((-3081 (((-583 (-994)) $) 34 T ELT)) (-3958 (($ $) 31 T ELT)) (-2893 (($ |#2| |#3|) NIL T ELT) (($ $ (-994) |#3|) 28 T ELT) (($ $ (-583 (-994)) (-583 |#3|)) 27 T ELT)) (-2894 (($ $) 14 T ELT)) (-3174 ((|#2| $) 12 T ELT)) (-3947 ((|#3| $) 10 T ELT))) +(((-1156 |#1| |#2| |#3|) (-10 -7 (-15 -3081 ((-583 (-994)) |#1|)) (-15 -2893 (|#1| |#1| (-583 (-994)) (-583 |#3|))) (-15 -2893 (|#1| |#1| (-994) |#3|)) (-15 -3958 (|#1| |#1|)) (-15 -2893 (|#1| |#2| |#3|)) (-15 -3947 (|#3| |#1|)) (-15 -2894 (|#1| |#1|)) (-15 -3174 (|#2| |#1|))) (-1157 |#2| |#3|) (-961) (-716)) (T -1156)) +NIL +((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-3081 (((-583 (-994)) $) 95 T ELT)) (-3830 (((-1089) $) 129 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) 71 (|has| |#1| (-495)) ELT)) (-2063 (($ $) 72 (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) 74 (|has| |#1| (-495)) ELT)) (-3770 (($ $ |#2|) 124 T ELT) (($ $ |#2| |#2|) 123 T ELT)) (-3773 (((-1068 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 130 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3723 (($) 23 T CONST)) (-3958 (($ $) 80 T ELT)) (-3466 (((-3 $ "failed") $) 42 T ELT)) (-2892 (((-85) $) 94 T ELT)) (-3771 ((|#2| $) 126 T ELT) ((|#2| $ |#2|) 125 T ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3776 (($ $ (-830)) 127 T ELT)) (-3936 (((-85) $) 82 T ELT)) (-2893 (($ |#1| |#2|) 81 T ELT) (($ $ (-994) |#2|) 97 T ELT) (($ $ (-583 (-994)) (-583 |#2|)) 96 T ELT)) (-3957 (($ (-1 |#1| |#1|) $) 83 T ELT)) (-2894 (($ $) 85 T ELT)) (-3174 ((|#1| $) 86 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3768 (($ $ |#2|) 121 T ELT)) (-3465 (((-3 $ "failed") $ $) 70 (|has| |#1| (-495)) ELT)) (-3767 (((-1068 |#1|) $ |#1|) 120 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) ELT)) (-3799 ((|#1| $ |#2|) 131 T ELT) (($ $ $) 107 (|has| |#2| (-1025)) ELT)) (-3757 (($ $ (-1089)) 119 (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-583 (-1089))) 117 (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-1089) (-694)) 116 (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) 115 (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $) 111 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT) (($ $ (-694)) 109 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT)) (-3947 ((|#2| $) 84 T ELT)) (-2891 (($ $) 93 T ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ (-349 (-484))) 77 (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $) 69 (|has| |#1| (-495)) ELT) (($ |#1|) 67 (|has| |#1| (-146)) ELT)) (-3676 ((|#1| $ |#2|) 79 T ELT)) (-2702 (((-632 $) $) 68 (|has| |#1| (-118)) ELT)) (-3126 (((-694)) 40 T CONST)) (-3772 ((|#1| $) 128 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-2062 (((-85) $ $) 73 (|has| |#1| (-495)) ELT)) (-3769 ((|#1| $ |#2|) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -3945 (|#1| (-1089))))) ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-2669 (($ $ (-1089)) 118 (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-583 (-1089))) 114 (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-1089) (-694)) 113 (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) 112 (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $) 110 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT) (($ $ (-694)) 108 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-3948 (($ $ |#1|) 78 (|has| |#1| (-312)) ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 88 T ELT) (($ |#1| $) 87 T ELT) (($ (-349 (-484)) $) 76 (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $ (-349 (-484))) 75 (|has| |#1| (-38 (-349 (-484)))) ELT))) +(((-1157 |#1| |#2|) (-113) (-961) (-716)) (T -1157)) +((-3773 (*1 *2 *1) (-12 (-4 *1 (-1157 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716)) (-5 *2 (-1068 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-3830 (*1 *2 *1) (-12 (-4 *1 (-1157 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716)) (-5 *2 (-1089)))) (-3772 (*1 *2 *1) (-12 (-4 *1 (-1157 *2 *3)) (-4 *3 (-716)) (-4 *2 (-961)))) (-3776 (*1 *1 *1 *2) (-12 (-5 *2 (-830)) (-4 *1 (-1157 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716)))) (-3771 (*1 *2 *1) (-12 (-4 *1 (-1157 *3 *2)) (-4 *3 (-961)) (-4 *2 (-716)))) (-3771 (*1 *2 *1 *2) (-12 (-4 *1 (-1157 *3 *2)) (-4 *3 (-961)) (-4 *2 (-716)))) (-3770 (*1 *1 *1 *2) (-12 (-4 *1 (-1157 *3 *2)) (-4 *3 (-961)) (-4 *2 (-716)))) (-3770 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1157 *3 *2)) (-4 *3 (-961)) (-4 *2 (-716)))) (-3769 (*1 *2 *1 *3) (-12 (-4 *1 (-1157 *2 *3)) (-4 *3 (-716)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -3945 (*2 (-1089)))) (-4 *2 (-961)))) (-3768 (*1 *1 *1 *2) (-12 (-4 *1 (-1157 *3 *2)) (-4 *3 (-961)) (-4 *2 (-716)))) (-3767 (*1 *2 *1 *3) (-12 (-4 *1 (-1157 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1068 *3))))) +(-13 (-886 |t#1| |t#2| (-994)) (-241 |t#2| |t#1|) (-10 -8 (-15 -3773 ((-1068 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -3830 ((-1089) $)) (-15 -3772 (|t#1| $)) (-15 -3776 ($ $ (-830))) (-15 -3771 (|t#2| $)) (-15 -3771 (|t#2| $ |t#2|)) (-15 -3770 ($ $ |t#2|)) (-15 -3770 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -3945 (|t#1| (-1089)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -3769 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -3768 ($ $ |t#2|)) (IF (|has| |t#2| (-1025)) (-6 (-241 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-190)) (IF (|has| |t#1| (-809 (-1089))) (-6 (-809 (-1089))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -3767 ((-1068 |t#1|) $ |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) |has| |#1| (-495)) ((-72) . T) ((-82 (-349 (-484)) (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-555 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-555 (-484)) . T) ((-555 |#1|) |has| |#1| (-146)) ((-555 $) |has| |#1| (-495)) ((-552 (-772)) . T) ((-146) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-186 $) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-190) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-189) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-241 |#2| |#1|) . T) ((-241 $ $) |has| |#2| (-1025)) ((-246) |has| |#1| (-495)) ((-495) |has| |#1| (-495)) ((-13) . T) ((-588 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-590 |#1|) . T) ((-590 $) . T) ((-582 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-582 |#1|) |has| |#1| (-146)) ((-582 $) |has| |#1| (-495)) ((-654 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-654 |#1|) |has| |#1| (-146)) ((-654 $) |has| |#1| (-495)) ((-663) . T) ((-806 $ (-1089)) -12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ((-809 (-1089)) -12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ((-811 (-1089)) -12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ((-886 |#1| |#2| (-994)) . T) ((-963 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-963 |#1|) . T) ((-963 $) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-968 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-968 |#1|) . T) ((-968 $) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T)) +((-3774 ((|#2| |#2|) 12 T ELT)) (-3970 (((-347 |#2|) |#2|) 14 T ELT)) (-3775 (((-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-484))) (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (-484)))) 30 T ELT))) +(((-1158 |#1| |#2|) (-10 -7 (-15 -3970 ((-347 |#2|) |#2|)) (-15 -3774 (|#2| |#2|)) (-15 -3775 ((-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-484))) (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (-484)))))) (-495) (-13 (-1154 |#1|) (-495) (-10 -8 (-15 -3144 ($ $ $))))) (T -1158)) +((-3775 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-484)))) (-4 *4 (-13 (-1154 *3) (-495) (-10 -8 (-15 -3144 ($ $ $))))) (-4 *3 (-495)) (-5 *1 (-1158 *3 *4)))) (-3774 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-1158 *3 *2)) (-4 *2 (-13 (-1154 *3) (-495) (-10 -8 (-15 -3144 ($ $ $))))))) (-3970 (*1 *2 *3) (-12 (-4 *4 (-495)) (-5 *2 (-347 *3)) (-5 *1 (-1158 *4 *3)) (-4 *3 (-13 (-1154 *4) (-495) (-10 -8 (-15 -3144 ($ $ $)))))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-3081 (((-583 (-994)) $) NIL T ELT)) (-3830 (((-1089) $) 11 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2063 (($ $) NIL (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-3770 (($ $ (-349 (-484))) NIL T ELT) (($ $ (-349 (-484)) (-349 (-484))) NIL T ELT)) (-3773 (((-1068 (-2 (|:| |k| (-349 (-484))) (|:| |c| |#1|))) $) NIL T ELT)) (-3491 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3638 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3774 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3970 (((-347 $) $) NIL (|has| |#1| (-312)) ELT)) (-3037 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-1607 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3489 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3637 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3817 (($ (-694) (-1068 (-2 (|:| |k| (-349 (-484))) (|:| |c| |#1|)))) NIL T ELT)) (-3493 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3636 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 (-1138 |#1| |#2| |#3|) #1#) $) 19 T ELT) (((-3 (-1168 |#1| |#2| |#3|) #1#) $) 22 T ELT)) (-3156 (((-1138 |#1| |#2| |#3|) $) NIL T ELT) (((-1168 |#1| |#2| |#3|) $) NIL T ELT)) (-2564 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3958 (($ $) NIL T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-3780 (((-349 (-484)) $) 68 T ELT)) (-2563 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3781 (($ (-349 (-484)) (-1138 |#1| |#2| |#3|)) NIL T ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) NIL (|has| |#1| (-312)) ELT)) (-3722 (((-85) $) NIL (|has| |#1| (-312)) ELT)) (-2892 (((-85) $) NIL T ELT)) (-3626 (($) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3771 (((-349 (-484)) $) NIL T ELT) (((-349 (-484)) $ (-349 (-484))) NIL T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-3011 (($ $ (-484)) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3776 (($ $ (-830)) NIL T ELT) (($ $ (-349 (-484))) NIL T ELT)) (-1604 (((-3 (-583 $) #1#) (-583 $) $) NIL (|has| |#1| (-312)) ELT)) (-3936 (((-85) $) NIL T ELT)) (-2893 (($ |#1| (-349 (-484))) 30 T ELT) (($ $ (-994) (-349 (-484))) NIL T ELT) (($ $ (-583 (-994)) (-583 (-349 (-484)))) NIL T ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3941 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2894 (($ $) NIL T ELT)) (-3174 ((|#1| $) NIL T ELT)) (-1890 (($ (-583 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3779 (((-1138 |#1| |#2| |#3|) $) 71 T ELT)) (-3777 (((-3 (-1138 |#1| |#2| |#3|) #1#) $) NIL T ELT)) (-3778 (((-1138 |#1| |#2| |#3|) $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2484 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3811 (($ $) 39 (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $ (-1089)) NIL (OR (-12 (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-29 (-484))) (|has| |#1| (-871)) (|has| |#1| (-1114))) (-12 (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-15 -3811 (|#1| |#1| (-1089)))) (|has| |#1| (-15 -3081 ((-583 (-1089)) |#1|))))) ELT) (($ $ (-1175 |#2|)) 40 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) NIL (|has| |#1| (-312)) ELT)) (-3144 (($ (-583 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3731 (((-347 $) $) NIL (|has| |#1| (-312)) ELT)) (-1605 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3768 (($ $ (-349 (-484))) NIL T ELT)) (-3465 (((-3 $ #1#) $ $) NIL (|has| |#1| (-495)) ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL (|has| |#1| (-312)) ELT)) (-3942 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3767 (((-1068 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-349 (-484))))) ELT)) (-1606 (((-694) $) NIL (|has| |#1| (-312)) ELT)) (-3799 ((|#1| $ (-349 (-484))) NIL T ELT) (($ $ $) NIL (|has| (-349 (-484)) (-1025)) ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3757 (($ $ (-1089)) NIL (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))) ELT) (($ $ (-583 (-1089))) NIL (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))) ELT) (($ $ (-1089) (-694)) NIL (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))) ELT) (($ $) 37 (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|))) ELT) (($ $ (-694)) NIL (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|))) ELT) (($ $ (-1175 |#2|)) 38 T ELT)) (-3947 (((-349 (-484)) $) NIL T ELT)) (-3494 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3635 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3492 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3634 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3490 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3633 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2891 (($ $) NIL T ELT)) (-3945 (((-772) $) 107 T ELT) (($ (-484)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT) (($ (-1138 |#1| |#2| |#3|)) 16 T ELT) (($ (-1168 |#1| |#2| |#3|)) 17 T ELT) (($ (-1175 |#2|)) 36 T ELT) (($ (-349 (-484))) NIL (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $) NIL (|has| |#1| (-495)) ELT)) (-3676 ((|#1| $ (-349 (-484))) NIL T ELT)) (-2702 (((-632 $) $) NIL (|has| |#1| (-118)) ELT)) (-3126 (((-694)) NIL T CONST)) (-3772 ((|#1| $) 12 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3497 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3485 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2062 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-3495 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3483 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3499 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3487 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3769 ((|#1| $ (-349 (-484))) 73 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-349 (-484))))) (|has| |#1| (-15 -3945 (|#1| (-1089))))) ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-3500 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3488 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3498 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3486 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3496 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3484 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2660 (($) 32 T CONST)) (-2666 (($) 26 T CONST)) (-2669 (($ $ (-1089)) NIL (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))) ELT) (($ $ (-583 (-1089))) NIL (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))) ELT) (($ $ (-1089) (-694)) NIL (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|))) ELT) (($ $ (-694)) NIL (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|))) ELT) (($ $ (-1175 |#2|)) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3948 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) 34 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $ (-349 (-484))) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-349 (-484)) $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $ (-349 (-484))) NIL (|has| |#1| (-38 (-349 (-484)))) ELT))) +(((-1159 |#1| |#2| |#3|) (-13 (-1163 |#1| (-1138 |#1| |#2| |#3|)) (-806 $ (-1175 |#2|)) (-950 (-1168 |#1| |#2| |#3|)) (-555 (-1175 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-349 (-484)))) (-15 -3811 ($ $ (-1175 |#2|))) |%noBranch|))) (-961) (-1089) |#1|) (T -1159)) +((-3811 (*1 *1 *1 *2) (-12 (-5 *2 (-1175 *4)) (-14 *4 (-1089)) (-5 *1 (-1159 *3 *4 *5)) (-4 *3 (-38 (-349 (-484)))) (-4 *3 (-961)) (-14 *5 *3)))) +((-3957 (((-1159 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1159 |#1| |#3| |#5|)) 24 T ELT))) +(((-1160 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3957 ((-1159 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1159 |#1| |#3| |#5|)))) (-961) (-961) (-1089) (-1089) |#1| |#2|) (T -1160)) +((-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1159 *5 *7 *9)) (-4 *5 (-961)) (-4 *6 (-961)) (-14 *7 (-1089)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1159 *6 *8 *10)) (-5 *1 (-1160 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1089))))) +((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-3081 (((-583 (-994)) $) 95 T ELT)) (-3830 (((-1089) $) 129 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) 71 (|has| |#1| (-495)) ELT)) (-2063 (($ $) 72 (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) 74 (|has| |#1| (-495)) ELT)) (-3770 (($ $ (-349 (-484))) 124 T ELT) (($ $ (-349 (-484)) (-349 (-484))) 123 T ELT)) (-3773 (((-1068 (-2 (|:| |k| (-349 (-484))) (|:| |c| |#1|))) $) 130 T ELT)) (-3491 (($ $) 163 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3638 (($ $) 146 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3774 (($ $) 190 (|has| |#1| (-312)) ELT)) (-3970 (((-347 $) $) 191 (|has| |#1| (-312)) ELT)) (-3037 (($ $) 145 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-1607 (((-85) $ $) 181 (|has| |#1| (-312)) ELT)) (-3489 (($ $) 162 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3637 (($ $) 147 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3817 (($ (-694) (-1068 (-2 (|:| |k| (-349 (-484))) (|:| |c| |#1|)))) 199 T ELT)) (-3493 (($ $) 161 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3636 (($ $) 148 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3723 (($) 23 T CONST)) (-2564 (($ $ $) 185 (|has| |#1| (-312)) ELT)) (-3958 (($ $) 80 T ELT)) (-3466 (((-3 $ "failed") $) 42 T ELT)) (-2563 (($ $ $) 184 (|has| |#1| (-312)) ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) 179 (|has| |#1| (-312)) ELT)) (-3722 (((-85) $) 192 (|has| |#1| (-312)) ELT)) (-2892 (((-85) $) 94 T ELT)) (-3626 (($) 173 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3771 (((-349 (-484)) $) 126 T ELT) (((-349 (-484)) $ (-349 (-484))) 125 T ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3011 (($ $ (-484)) 144 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3776 (($ $ (-830)) 127 T ELT) (($ $ (-349 (-484))) 198 T ELT)) (-1604 (((-3 (-583 $) #1="failed") (-583 $) $) 188 (|has| |#1| (-312)) ELT)) (-3936 (((-85) $) 82 T ELT)) (-2893 (($ |#1| (-349 (-484))) 81 T ELT) (($ $ (-994) (-349 (-484))) 97 T ELT) (($ $ (-583 (-994)) (-583 (-349 (-484)))) 96 T ELT)) (-3957 (($ (-1 |#1| |#1|) $) 83 T ELT)) (-3941 (($ $) 170 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2894 (($ $) 85 T ELT)) (-3174 ((|#1| $) 86 T ELT)) (-1890 (($ (-583 $)) 177 (|has| |#1| (-312)) ELT) (($ $ $) 176 (|has| |#1| (-312)) ELT)) (-3242 (((-1072) $) 11 T ELT)) (-2484 (($ $) 193 (|has| |#1| (-312)) ELT)) (-3811 (($ $) 197 (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $ (-1089)) 196 (OR (-12 (|has| |#1| (-29 (-484))) (|has| |#1| (-871)) (|has| |#1| (-1114)) (|has| |#1| (-38 (-349 (-484))))) (-12 (|has| |#1| (-15 -3081 ((-583 (-1089)) |#1|))) (|has| |#1| (-15 -3811 (|#1| |#1| (-1089)))) (|has| |#1| (-38 (-349 (-484)))))) ELT)) (-3243 (((-1033) $) 12 T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) 178 (|has| |#1| (-312)) ELT)) (-3144 (($ (-583 $)) 175 (|has| |#1| (-312)) ELT) (($ $ $) 174 (|has| |#1| (-312)) ELT)) (-3731 (((-347 $) $) 189 (|has| |#1| (-312)) ELT)) (-1605 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 187 (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) 186 (|has| |#1| (-312)) ELT)) (-3768 (($ $ (-349 (-484))) 121 T ELT)) (-3465 (((-3 $ "failed") $ $) 70 (|has| |#1| (-495)) ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) 180 (|has| |#1| (-312)) ELT)) (-3942 (($ $) 171 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3767 (((-1068 |#1|) $ |#1|) 120 (|has| |#1| (-15 ** (|#1| |#1| (-349 (-484))))) ELT)) (-1606 (((-694) $) 182 (|has| |#1| (-312)) ELT)) (-3799 ((|#1| $ (-349 (-484))) 131 T ELT) (($ $ $) 107 (|has| (-349 (-484)) (-1025)) ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 183 (|has| |#1| (-312)) ELT)) (-3757 (($ $ (-1089)) 119 (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))) ELT) (($ $ (-583 (-1089))) 117 (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))) ELT) (($ $ (-1089) (-694)) 116 (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) 115 (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))) ELT) (($ $) 111 (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|))) ELT) (($ $ (-694)) 109 (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|))) ELT)) (-3947 (((-349 (-484)) $) 84 T ELT)) (-3494 (($ $) 160 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3635 (($ $) 149 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3492 (($ $) 159 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3634 (($ $) 150 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3490 (($ $) 158 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3633 (($ $) 151 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2891 (($ $) 93 T ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ |#1|) 67 (|has| |#1| (-146)) ELT) (($ (-349 (-484))) 77 (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $) 69 (|has| |#1| (-495)) ELT)) (-3676 ((|#1| $ (-349 (-484))) 79 T ELT)) (-2702 (((-632 $) $) 68 (|has| |#1| (-118)) ELT)) (-3126 (((-694)) 40 T CONST)) (-3772 ((|#1| $) 128 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-3497 (($ $) 169 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3485 (($ $) 157 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2062 (((-85) $ $) 73 (|has| |#1| (-495)) ELT)) (-3495 (($ $) 168 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3483 (($ $) 156 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3499 (($ $) 167 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3487 (($ $) 155 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3769 ((|#1| $ (-349 (-484))) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-349 (-484))))) (|has| |#1| (-15 -3945 (|#1| (-1089))))) ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-3500 (($ $) 166 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3488 (($ $) 154 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3498 (($ $) 165 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3486 (($ $) 153 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3496 (($ $) 164 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3484 (($ $) 152 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-2669 (($ $ (-1089)) 118 (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))) ELT) (($ $ (-583 (-1089))) 114 (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))) ELT) (($ $ (-1089) (-694)) 113 (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) 112 (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))) ELT) (($ $) 110 (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|))) ELT) (($ $ (-694)) 108 (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|))) ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-3948 (($ $ |#1|) 78 (|has| |#1| (-312)) ELT) (($ $ $) 195 (|has| |#1| (-312)) ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT) (($ $ (-484)) 194 (|has| |#1| (-312)) ELT) (($ $ $) 172 (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $ (-349 (-484))) 143 (|has| |#1| (-38 (-349 (-484)))) ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 88 T ELT) (($ |#1| $) 87 T ELT) (($ (-349 (-484)) $) 76 (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $ (-349 (-484))) 75 (|has| |#1| (-38 (-349 (-484)))) ELT))) +(((-1161 |#1|) (-113) (-961)) (T -1161)) +((-3817 (*1 *1 *2 *3) (-12 (-5 *2 (-694)) (-5 *3 (-1068 (-2 (|:| |k| (-349 (-484))) (|:| |c| *4)))) (-4 *4 (-961)) (-4 *1 (-1161 *4)))) (-3776 (*1 *1 *1 *2) (-12 (-5 *2 (-349 (-484))) (-4 *1 (-1161 *3)) (-4 *3 (-961)))) (-3811 (*1 *1 *1) (-12 (-4 *1 (-1161 *2)) (-4 *2 (-961)) (-4 *2 (-38 (-349 (-484)))))) (-3811 (*1 *1 *1 *2) (OR (-12 (-5 *2 (-1089)) (-4 *1 (-1161 *3)) (-4 *3 (-961)) (-12 (-4 *3 (-29 (-484))) (-4 *3 (-871)) (-4 *3 (-1114)) (-4 *3 (-38 (-349 (-484)))))) (-12 (-5 *2 (-1089)) (-4 *1 (-1161 *3)) (-4 *3 (-961)) (-12 (|has| *3 (-15 -3081 ((-583 *2) *3))) (|has| *3 (-15 -3811 (*3 *3 *2))) (-4 *3 (-38 (-349 (-484))))))))) +(-13 (-1157 |t#1| (-349 (-484))) (-10 -8 (-15 -3817 ($ (-694) (-1068 (-2 (|:| |k| (-349 (-484))) (|:| |c| |t#1|))))) (-15 -3776 ($ $ (-349 (-484)))) (IF (|has| |t#1| (-38 (-349 (-484)))) (PROGN (-15 -3811 ($ $)) (IF (|has| |t#1| (-15 -3811 (|t#1| |t#1| (-1089)))) (IF (|has| |t#1| (-15 -3081 ((-583 (-1089)) |t#1|))) (-15 -3811 ($ $ (-1089))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1114)) (IF (|has| |t#1| (-871)) (IF (|has| |t#1| (-29 (-484))) (-15 -3811 ($ $ (-1089))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-915)) (-6 (-1114))) |%noBranch|) (IF (|has| |t#1| (-312)) (-6 (-312)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| (-349 (-484))) . T) ((-25) . T) ((-38 (-349 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-349 (-484))))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) OR (|has| |#1| (-495)) (|has| |#1| (-312))) ((-35) |has| |#1| (-38 (-349 (-484)))) ((-66) |has| |#1| (-38 (-349 (-484)))) ((-72) . T) ((-82 (-349 (-484)) (-349 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-349 (-484))))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-495)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-555 (-349 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-349 (-484))))) ((-555 (-484)) . T) ((-555 |#1|) |has| |#1| (-146)) ((-555 $) OR (|has| |#1| (-495)) (|has| |#1| (-312))) ((-552 (-772)) . T) ((-146) OR (|has| |#1| (-495)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-186 $) |has| |#1| (-15 * (|#1| (-349 (-484)) |#1|))) ((-190) |has| |#1| (-15 * (|#1| (-349 (-484)) |#1|))) ((-189) |has| |#1| (-15 * (|#1| (-349 (-484)) |#1|))) ((-201) |has| |#1| (-312)) ((-239) |has| |#1| (-38 (-349 (-484)))) ((-241 (-349 (-484)) |#1|) . T) ((-241 $ $) |has| (-349 (-484)) (-1025)) ((-246) OR (|has| |#1| (-495)) (|has| |#1| (-312))) ((-258) |has| |#1| (-312)) ((-312) |has| |#1| (-312)) ((-391) |has| |#1| (-312)) ((-432) |has| |#1| (-38 (-349 (-484)))) ((-495) OR (|has| |#1| (-495)) (|has| |#1| (-312))) ((-13) . T) ((-588 (-349 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-349 (-484))))) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 (-349 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-349 (-484))))) ((-590 |#1|) . T) ((-590 $) . T) ((-582 (-349 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-349 (-484))))) ((-582 |#1|) |has| |#1| (-146)) ((-582 $) OR (|has| |#1| (-495)) (|has| |#1| (-312))) ((-654 (-349 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-349 (-484))))) ((-654 |#1|) |has| |#1| (-146)) ((-654 $) OR (|has| |#1| (-495)) (|has| |#1| (-312))) ((-663) . T) ((-806 $ (-1089)) -12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))) ((-809 (-1089)) -12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))) ((-811 (-1089)) -12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))) ((-886 |#1| (-349 (-484)) (-994)) . T) ((-832) |has| |#1| (-312)) ((-915) |has| |#1| (-38 (-349 (-484)))) ((-963 (-349 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-349 (-484))))) ((-963 |#1|) . T) ((-963 $) OR (|has| |#1| (-495)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-968 (-349 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-349 (-484))))) ((-968 |#1|) . T) ((-968 $) OR (|has| |#1| (-495)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1114) |has| |#1| (-38 (-349 (-484)))) ((-1117) |has| |#1| (-38 (-349 (-484)))) ((-1128) . T) ((-1133) |has| |#1| (-312)) ((-1157 |#1| (-349 (-484))) . T)) +((-3188 (((-85) $) 12 T ELT)) (-3157 (((-3 |#3| "failed") $) 17 T ELT)) (-3156 ((|#3| $) 14 T ELT))) +(((-1162 |#1| |#2| |#3|) (-10 -7 (-15 -3157 ((-3 |#3| "failed") |#1|)) (-15 -3156 (|#3| |#1|)) (-15 -3188 ((-85) |#1|))) (-1163 |#2| |#3|) (-961) (-1140 |#2|)) (T -1162)) +NIL +((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-3081 (((-583 (-994)) $) 95 T ELT)) (-3830 (((-1089) $) 129 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) 71 (|has| |#1| (-495)) ELT)) (-2063 (($ $) 72 (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) 74 (|has| |#1| (-495)) ELT)) (-3770 (($ $ (-349 (-484))) 124 T ELT) (($ $ (-349 (-484)) (-349 (-484))) 123 T ELT)) (-3773 (((-1068 (-2 (|:| |k| (-349 (-484))) (|:| |c| |#1|))) $) 130 T ELT)) (-3491 (($ $) 163 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3638 (($ $) 146 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3774 (($ $) 190 (|has| |#1| (-312)) ELT)) (-3970 (((-347 $) $) 191 (|has| |#1| (-312)) ELT)) (-3037 (($ $) 145 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-1607 (((-85) $ $) 181 (|has| |#1| (-312)) ELT)) (-3489 (($ $) 162 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3637 (($ $) 147 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3817 (($ (-694) (-1068 (-2 (|:| |k| (-349 (-484))) (|:| |c| |#1|)))) 199 T ELT)) (-3493 (($ $) 161 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3636 (($ $) 148 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3723 (($) 23 T CONST)) (-3157 (((-3 |#2| "failed") $) 212 T ELT)) (-3156 ((|#2| $) 213 T ELT)) (-2564 (($ $ $) 185 (|has| |#1| (-312)) ELT)) (-3958 (($ $) 80 T ELT)) (-3466 (((-3 $ "failed") $) 42 T ELT)) (-3780 (((-349 (-484)) $) 209 T ELT)) (-2563 (($ $ $) 184 (|has| |#1| (-312)) ELT)) (-3781 (($ (-349 (-484)) |#2|) 210 T ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) 179 (|has| |#1| (-312)) ELT)) (-3722 (((-85) $) 192 (|has| |#1| (-312)) ELT)) (-2892 (((-85) $) 94 T ELT)) (-3626 (($) 173 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3771 (((-349 (-484)) $) 126 T ELT) (((-349 (-484)) $ (-349 (-484))) 125 T ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3011 (($ $ (-484)) 144 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3776 (($ $ (-830)) 127 T ELT) (($ $ (-349 (-484))) 198 T ELT)) (-1604 (((-3 (-583 $) #1="failed") (-583 $) $) 188 (|has| |#1| (-312)) ELT)) (-3936 (((-85) $) 82 T ELT)) (-2893 (($ |#1| (-349 (-484))) 81 T ELT) (($ $ (-994) (-349 (-484))) 97 T ELT) (($ $ (-583 (-994)) (-583 (-349 (-484)))) 96 T ELT)) (-3957 (($ (-1 |#1| |#1|) $) 83 T ELT)) (-3941 (($ $) 170 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2894 (($ $) 85 T ELT)) (-3174 ((|#1| $) 86 T ELT)) (-1890 (($ (-583 $)) 177 (|has| |#1| (-312)) ELT) (($ $ $) 176 (|has| |#1| (-312)) ELT)) (-3779 ((|#2| $) 208 T ELT)) (-3777 (((-3 |#2| "failed") $) 206 T ELT)) (-3778 ((|#2| $) 207 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-2484 (($ $) 193 (|has| |#1| (-312)) ELT)) (-3811 (($ $) 197 (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $ (-1089)) 196 (OR (-12 (|has| |#1| (-29 (-484))) (|has| |#1| (-871)) (|has| |#1| (-1114)) (|has| |#1| (-38 (-349 (-484))))) (-12 (|has| |#1| (-15 -3081 ((-583 (-1089)) |#1|))) (|has| |#1| (-15 -3811 (|#1| |#1| (-1089)))) (|has| |#1| (-38 (-349 (-484)))))) ELT)) (-3243 (((-1033) $) 12 T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) 178 (|has| |#1| (-312)) ELT)) (-3144 (($ (-583 $)) 175 (|has| |#1| (-312)) ELT) (($ $ $) 174 (|has| |#1| (-312)) ELT)) (-3731 (((-347 $) $) 189 (|has| |#1| (-312)) ELT)) (-1605 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 187 (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) 186 (|has| |#1| (-312)) ELT)) (-3768 (($ $ (-349 (-484))) 121 T ELT)) (-3465 (((-3 $ "failed") $ $) 70 (|has| |#1| (-495)) ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) 180 (|has| |#1| (-312)) ELT)) (-3942 (($ $) 171 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3767 (((-1068 |#1|) $ |#1|) 120 (|has| |#1| (-15 ** (|#1| |#1| (-349 (-484))))) ELT)) (-1606 (((-694) $) 182 (|has| |#1| (-312)) ELT)) (-3799 ((|#1| $ (-349 (-484))) 131 T ELT) (($ $ $) 107 (|has| (-349 (-484)) (-1025)) ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 183 (|has| |#1| (-312)) ELT)) (-3757 (($ $ (-1089)) 119 (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))) ELT) (($ $ (-583 (-1089))) 117 (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))) ELT) (($ $ (-1089) (-694)) 116 (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) 115 (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))) ELT) (($ $) 111 (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|))) ELT) (($ $ (-694)) 109 (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|))) ELT)) (-3947 (((-349 (-484)) $) 84 T ELT)) (-3494 (($ $) 160 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3635 (($ $) 149 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3492 (($ $) 159 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3634 (($ $) 150 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3490 (($ $) 158 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3633 (($ $) 151 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2891 (($ $) 93 T ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ |#1|) 67 (|has| |#1| (-146)) ELT) (($ |#2|) 211 T ELT) (($ (-349 (-484))) 77 (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $) 69 (|has| |#1| (-495)) ELT)) (-3676 ((|#1| $ (-349 (-484))) 79 T ELT)) (-2702 (((-632 $) $) 68 (|has| |#1| (-118)) ELT)) (-3126 (((-694)) 40 T CONST)) (-3772 ((|#1| $) 128 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-3497 (($ $) 169 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3485 (($ $) 157 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2062 (((-85) $ $) 73 (|has| |#1| (-495)) ELT)) (-3495 (($ $) 168 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3483 (($ $) 156 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3499 (($ $) 167 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3487 (($ $) 155 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3769 ((|#1| $ (-349 (-484))) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-349 (-484))))) (|has| |#1| (-15 -3945 (|#1| (-1089))))) ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-3500 (($ $) 166 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3488 (($ $) 154 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3498 (($ $) 165 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3486 (($ $) 153 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3496 (($ $) 164 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3484 (($ $) 152 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-2669 (($ $ (-1089)) 118 (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))) ELT) (($ $ (-583 (-1089))) 114 (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))) ELT) (($ $ (-1089) (-694)) 113 (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) 112 (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))) ELT) (($ $) 110 (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|))) ELT) (($ $ (-694)) 108 (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|))) ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-3948 (($ $ |#1|) 78 (|has| |#1| (-312)) ELT) (($ $ $) 195 (|has| |#1| (-312)) ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT) (($ $ (-484)) 194 (|has| |#1| (-312)) ELT) (($ $ $) 172 (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $ (-349 (-484))) 143 (|has| |#1| (-38 (-349 (-484)))) ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 88 T ELT) (($ |#1| $) 87 T ELT) (($ (-349 (-484)) $) 76 (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $ (-349 (-484))) 75 (|has| |#1| (-38 (-349 (-484)))) ELT))) +(((-1163 |#1| |#2|) (-113) (-961) (-1140 |t#1|)) (T -1163)) +((-3947 (*1 *2 *1) (-12 (-4 *1 (-1163 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1140 *3)) (-5 *2 (-349 (-484))))) (-3781 (*1 *1 *2 *3) (-12 (-5 *2 (-349 (-484))) (-4 *4 (-961)) (-4 *1 (-1163 *4 *3)) (-4 *3 (-1140 *4)))) (-3780 (*1 *2 *1) (-12 (-4 *1 (-1163 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1140 *3)) (-5 *2 (-349 (-484))))) (-3779 (*1 *2 *1) (-12 (-4 *1 (-1163 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1140 *3)))) (-3778 (*1 *2 *1) (-12 (-4 *1 (-1163 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1140 *3)))) (-3777 (*1 *2 *1) (|partial| -12 (-4 *1 (-1163 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1140 *3))))) +(-13 (-1161 |t#1|) (-950 |t#2|) (-555 |t#2|) (-10 -8 (-15 -3781 ($ (-349 (-484)) |t#2|)) (-15 -3780 ((-349 (-484)) $)) (-15 -3779 (|t#2| $)) (-15 -3947 ((-349 (-484)) $)) (-15 -3778 (|t#2| $)) (-15 -3777 ((-3 |t#2| "failed") $)))) +(((-21) . T) ((-23) . T) ((-47 |#1| (-349 (-484))) . T) ((-25) . T) ((-38 (-349 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-349 (-484))))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) OR (|has| |#1| (-495)) (|has| |#1| (-312))) ((-35) |has| |#1| (-38 (-349 (-484)))) ((-66) |has| |#1| (-38 (-349 (-484)))) ((-72) . T) ((-82 (-349 (-484)) (-349 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-349 (-484))))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-495)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-555 (-349 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-349 (-484))))) ((-555 (-484)) . T) ((-555 |#1|) |has| |#1| (-146)) ((-555 |#2|) . T) ((-555 $) OR (|has| |#1| (-495)) (|has| |#1| (-312))) ((-552 (-772)) . T) ((-146) OR (|has| |#1| (-495)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-186 $) |has| |#1| (-15 * (|#1| (-349 (-484)) |#1|))) ((-190) |has| |#1| (-15 * (|#1| (-349 (-484)) |#1|))) ((-189) |has| |#1| (-15 * (|#1| (-349 (-484)) |#1|))) ((-201) |has| |#1| (-312)) ((-239) |has| |#1| (-38 (-349 (-484)))) ((-241 (-349 (-484)) |#1|) . T) ((-241 $ $) |has| (-349 (-484)) (-1025)) ((-246) OR (|has| |#1| (-495)) (|has| |#1| (-312))) ((-258) |has| |#1| (-312)) ((-312) |has| |#1| (-312)) ((-391) |has| |#1| (-312)) ((-432) |has| |#1| (-38 (-349 (-484)))) ((-495) OR (|has| |#1| (-495)) (|has| |#1| (-312))) ((-13) . T) ((-588 (-349 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-349 (-484))))) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 (-349 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-349 (-484))))) ((-590 |#1|) . T) ((-590 $) . T) ((-582 (-349 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-349 (-484))))) ((-582 |#1|) |has| |#1| (-146)) ((-582 $) OR (|has| |#1| (-495)) (|has| |#1| (-312))) ((-654 (-349 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-349 (-484))))) ((-654 |#1|) |has| |#1| (-146)) ((-654 $) OR (|has| |#1| (-495)) (|has| |#1| (-312))) ((-663) . T) ((-806 $ (-1089)) -12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))) ((-809 (-1089)) -12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))) ((-811 (-1089)) -12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))) ((-886 |#1| (-349 (-484)) (-994)) . T) ((-832) |has| |#1| (-312)) ((-915) |has| |#1| (-38 (-349 (-484)))) ((-950 |#2|) . T) ((-963 (-349 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-349 (-484))))) ((-963 |#1|) . T) ((-963 $) OR (|has| |#1| (-495)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-968 (-349 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-349 (-484))))) ((-968 |#1|) . T) ((-968 $) OR (|has| |#1| (-495)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1114) |has| |#1| (-38 (-349 (-484)))) ((-1117) |has| |#1| (-38 (-349 (-484)))) ((-1128) . T) ((-1133) |has| |#1| (-312)) ((-1157 |#1| (-349 (-484))) . T) ((-1161 |#1|) . T)) +((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-3081 (((-583 (-994)) $) NIL T ELT)) (-3830 (((-1089) $) 104 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2063 (($ $) NIL (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-3770 (($ $ (-349 (-484))) 116 T ELT) (($ $ (-349 (-484)) (-349 (-484))) 118 T ELT)) (-3773 (((-1068 (-2 (|:| |k| (-349 (-484))) (|:| |c| |#1|))) $) 54 T ELT)) (-3491 (($ $) 192 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3638 (($ $) 168 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3774 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3970 (((-347 $) $) NIL (|has| |#1| (-312)) ELT)) (-3037 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-1607 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3489 (($ $) 188 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3637 (($ $) 164 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3817 (($ (-694) (-1068 (-2 (|:| |k| (-349 (-484))) (|:| |c| |#1|)))) 65 T ELT)) (-3493 (($ $) 196 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3636 (($ $) 172 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 |#2| #1#) $) NIL T ELT)) (-3156 ((|#2| $) NIL T ELT)) (-2564 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3958 (($ $) NIL T ELT)) (-3466 (((-3 $ #1#) $) 85 T ELT)) (-3780 (((-349 (-484)) $) 13 T ELT)) (-2563 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3781 (($ (-349 (-484)) |#2|) 11 T ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) NIL (|has| |#1| (-312)) ELT)) (-3722 (((-85) $) NIL (|has| |#1| (-312)) ELT)) (-2892 (((-85) $) 74 T ELT)) (-3626 (($) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3771 (((-349 (-484)) $) 113 T ELT) (((-349 (-484)) $ (-349 (-484))) 114 T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-3011 (($ $ (-484)) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3776 (($ $ (-830)) 130 T ELT) (($ $ (-349 (-484))) 128 T ELT)) (-1604 (((-3 (-583 $) #1#) (-583 $) $) NIL (|has| |#1| (-312)) ELT)) (-3936 (((-85) $) NIL T ELT)) (-2893 (($ |#1| (-349 (-484))) 33 T ELT) (($ $ (-994) (-349 (-484))) NIL T ELT) (($ $ (-583 (-994)) (-583 (-349 (-484)))) NIL T ELT)) (-3957 (($ (-1 |#1| |#1|) $) 125 T ELT)) (-3941 (($ $) 162 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2894 (($ $) NIL T ELT)) (-3174 ((|#1| $) NIL T ELT)) (-1890 (($ (-583 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3779 ((|#2| $) 12 T ELT)) (-3777 (((-3 |#2| #1#) $) 44 T ELT)) (-3778 ((|#2| $) 45 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-2484 (($ $) 101 (|has| |#1| (-312)) ELT)) (-3811 (($ $) 146 (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $ (-1089)) 151 (OR (-12 (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-29 (-484))) (|has| |#1| (-871)) (|has| |#1| (-1114))) (-12 (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-15 -3811 (|#1| |#1| (-1089)))) (|has| |#1| (-15 -3081 ((-583 (-1089)) |#1|))))) ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) NIL (|has| |#1| (-312)) ELT)) (-3144 (($ (-583 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3731 (((-347 $) $) NIL (|has| |#1| (-312)) ELT)) (-1605 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3768 (($ $ (-349 (-484))) 122 T ELT)) (-3465 (((-3 $ #1#) $ $) NIL (|has| |#1| (-495)) ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL (|has| |#1| (-312)) ELT)) (-3942 (($ $) 160 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3767 (((-1068 |#1|) $ |#1|) 98 (|has| |#1| (-15 ** (|#1| |#1| (-349 (-484))))) ELT)) (-1606 (((-694) $) NIL (|has| |#1| (-312)) ELT)) (-3799 ((|#1| $ (-349 (-484))) 108 T ELT) (($ $ $) 94 (|has| (-349 (-484)) (-1025)) ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3757 (($ $ (-1089)) 138 (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))) ELT) (($ $ (-583 (-1089))) NIL (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))) ELT) (($ $ (-1089) (-694)) NIL (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))) ELT) (($ $) 134 (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|))) ELT) (($ $ (-694)) NIL (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|))) ELT)) (-3947 (((-349 (-484)) $) 16 T ELT)) (-3494 (($ $) 198 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3635 (($ $) 174 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3492 (($ $) 194 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3634 (($ $) 170 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3490 (($ $) 190 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3633 (($ $) 166 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2891 (($ $) 120 T ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-484)) 37 T ELT) (($ |#1|) 27 (|has| |#1| (-146)) ELT) (($ |#2|) 34 T ELT) (($ (-349 (-484))) 139 (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $) NIL (|has| |#1| (-495)) ELT)) (-3676 ((|#1| $ (-349 (-484))) 107 T ELT)) (-2702 (((-632 $) $) NIL (|has| |#1| (-118)) ELT)) (-3126 (((-694)) 127 T CONST)) (-3772 ((|#1| $) 106 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3497 (($ $) 204 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3485 (($ $) 180 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2062 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-3495 (($ $) 200 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3483 (($ $) 176 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3499 (($ $) 208 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3487 (($ $) 184 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3769 ((|#1| $ (-349 (-484))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-349 (-484))))) (|has| |#1| (-15 -3945 (|#1| (-1089))))) ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-3500 (($ $) 210 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3488 (($ $) 186 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3498 (($ $) 206 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3486 (($ $) 182 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3496 (($ $) 202 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3484 (($ $) 178 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2660 (($) 21 T CONST)) (-2666 (($) 17 T CONST)) (-2669 (($ $ (-1089)) NIL (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))) ELT) (($ $ (-583 (-1089))) NIL (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))) ELT) (($ $ (-1089) (-694)) NIL (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|))) ELT) (($ $ (-694)) NIL (|has| |#1| (-15 * (|#1| (-349 (-484)) |#1|))) ELT)) (-3056 (((-85) $ $) 72 T ELT)) (-3948 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT) (($ $ $) 100 (|has| |#1| (-312)) ELT)) (-3836 (($ $) 142 T ELT) (($ $ $) 78 T ELT)) (-3838 (($ $ $) 76 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) 82 T ELT) (($ $ (-484)) 157 (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $ (-349 (-484))) 158 (|has| |#1| (-38 (-349 (-484)))) ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 80 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 137 T ELT) (($ (-349 (-484)) $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $ (-349 (-484))) NIL (|has| |#1| (-38 (-349 (-484)))) ELT))) +(((-1164 |#1| |#2|) (-1163 |#1| |#2|) (-961) (-1140 |#1|)) (T -1164)) +NIL +((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) 37 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 (-484) #1#) $) NIL (|has| (-1159 |#2| |#3| |#4|) (-950 (-484))) ELT) (((-3 (-349 (-484)) #1#) $) NIL (|has| (-1159 |#2| |#3| |#4|) (-950 (-349 (-484)))) ELT) (((-3 (-1159 |#2| |#3| |#4|) #1#) $) 22 T ELT)) (-3156 (((-484) $) NIL (|has| (-1159 |#2| |#3| |#4|) (-950 (-484))) ELT) (((-349 (-484)) $) NIL (|has| (-1159 |#2| |#3| |#4|) (-950 (-349 (-484)))) ELT) (((-1159 |#2| |#3| |#4|) $) NIL T ELT)) (-3958 (($ $) 41 T ELT)) (-3466 (((-3 $ #1#) $) 27 T ELT)) (-3502 (($ $) NIL (|has| (-1159 |#2| |#3| |#4|) (-391)) ELT)) (-1623 (($ $ (-1159 |#2| |#3| |#4|) (-270 |#2| |#3| |#4|) $) NIL T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2420 (((-694) $) 11 T ELT)) (-3936 (((-85) $) NIL T ELT)) (-2893 (($ (-1159 |#2| |#3| |#4|) (-270 |#2| |#3| |#4|)) 25 T ELT)) (-2820 (((-270 |#2| |#3| |#4|) $) NIL T ELT)) (-1624 (($ (-1 (-270 |#2| |#3| |#4|) (-270 |#2| |#3| |#4|)) $) NIL T ELT)) (-3957 (($ (-1 (-1159 |#2| |#3| |#4|) (-1159 |#2| |#3| |#4|)) $) NIL T ELT)) (-3783 (((-3 (-750 |#2|) #1#) $) 91 T ELT)) (-2894 (($ $) NIL T ELT)) (-3174 (((-1159 |#2| |#3| |#4|) $) 20 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1796 (((-85) $) NIL T ELT)) (-1795 (((-1159 |#2| |#3| |#4|) $) NIL T ELT)) (-3465 (((-3 $ #1#) $ (-1159 |#2| |#3| |#4|)) NIL (|has| (-1159 |#2| |#3| |#4|) (-495)) ELT) (((-3 $ #1#) $ $) NIL T ELT)) (-3782 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1159 |#2| |#3| |#4|)) (|:| |%expon| (-270 |#2| |#3| |#4|)) (|:| |%expTerms| (-583 (-2 (|:| |k| (-349 (-484))) (|:| |c| |#2|)))))) (|:| |%type| (-1072))) #1#) $) 74 T ELT)) (-3947 (((-270 |#2| |#3| |#4|) $) 17 T ELT)) (-2817 (((-1159 |#2| |#3| |#4|) $) NIL (|has| (-1159 |#2| |#3| |#4|) (-391)) ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ (-1159 |#2| |#3| |#4|)) NIL T ELT) (($ $) NIL T ELT) (($ (-349 (-484))) NIL (OR (|has| (-1159 |#2| |#3| |#4|) (-950 (-349 (-484)))) (|has| (-1159 |#2| |#3| |#4|) (-38 (-349 (-484))))) ELT)) (-3816 (((-583 (-1159 |#2| |#3| |#4|)) $) NIL T ELT)) (-3676 (((-1159 |#2| |#3| |#4|) $ (-270 |#2| |#3| |#4|)) NIL T ELT)) (-2702 (((-632 $) $) NIL (|has| (-1159 |#2| |#3| |#4|) (-118)) ELT)) (-3126 (((-694)) NIL T CONST)) (-1622 (($ $ $ (-694)) NIL (|has| (-1159 |#2| |#3| |#4|) (-146)) ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) NIL T CONST)) (-2666 (($) NIL T CONST)) (-3056 (((-85) $ $) NIL T ELT)) (-3948 (($ $ (-1159 |#2| |#3| |#4|)) NIL (|has| (-1159 |#2| |#3| |#4|) (-312)) ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-1159 |#2| |#3| |#4|)) NIL T ELT) (($ (-1159 |#2| |#3| |#4|) $) NIL T ELT) (($ (-349 (-484)) $) NIL (|has| (-1159 |#2| |#3| |#4|) (-38 (-349 (-484)))) ELT) (($ $ (-349 (-484))) NIL (|has| (-1159 |#2| |#3| |#4|) (-38 (-349 (-484)))) ELT))) +(((-1165 |#1| |#2| |#3| |#4|) (-13 (-277 (-1159 |#2| |#3| |#4|) (-270 |#2| |#3| |#4|)) (-495) (-10 -8 (-15 -3783 ((-3 (-750 |#2|) #1="failed") $)) (-15 -3782 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1159 |#2| |#3| |#4|)) (|:| |%expon| (-270 |#2| |#3| |#4|)) (|:| |%expTerms| (-583 (-2 (|:| |k| (-349 (-484))) (|:| |c| |#2|)))))) (|:| |%type| (-1072))) #1#) $)))) (-13 (-950 (-484)) (-580 (-484)) (-391)) (-13 (-27) (-1114) (-363 |#1|)) (-1089) |#2|) (T -1165)) +((-3783 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-950 (-484)) (-580 (-484)) (-391))) (-5 *2 (-750 *4)) (-5 *1 (-1165 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1114) (-363 *3))) (-14 *5 (-1089)) (-14 *6 *4))) (-3782 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-950 (-484)) (-580 (-484)) (-391))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1159 *4 *5 *6)) (|:| |%expon| (-270 *4 *5 *6)) (|:| |%expTerms| (-583 (-2 (|:| |k| (-349 (-484))) (|:| |c| *4)))))) (|:| |%type| (-1072)))) (-5 *1 (-1165 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1114) (-363 *3))) (-14 *5 (-1089)) (-14 *6 *4)))) +((-3401 ((|#2| $) 34 T ELT)) (-3794 ((|#2| $) 18 T ELT)) (-3796 (($ $) 44 T ELT)) (-3784 (($ $ (-484)) 79 T ELT)) (-3025 ((|#2| $ |#2|) 76 T ELT)) (-3785 ((|#2| $ |#2|) 72 T ELT)) (-3787 ((|#2| $ #1="value" |#2|) NIL T ELT) ((|#2| $ #2="first" |#2|) 65 T ELT) (($ $ #3="rest" $) 69 T ELT) ((|#2| $ #4="last" |#2|) 67 T ELT)) (-3026 (($ $ (-583 $)) 75 T ELT)) (-3795 ((|#2| $) 17 T ELT)) (-3798 (($ $) NIL T ELT) (($ $ (-694)) 52 T ELT)) (-3031 (((-583 $) $) 31 T ELT)) (-3027 (((-85) $ $) 63 T ELT)) (-3526 (((-85) $) 33 T ELT)) (-3797 ((|#2| $) 25 T ELT) (($ $ (-694)) 58 T ELT)) (-3799 ((|#2| $ #1#) NIL T ELT) ((|#2| $ #2#) 10 T ELT) (($ $ #3#) 16 T ELT) ((|#2| $ #4#) 13 T ELT)) (-3632 (((-85) $) 23 T ELT)) (-3791 (($ $) 47 T ELT)) (-3789 (($ $) 80 T ELT)) (-3792 (((-694) $) 51 T ELT)) (-3793 (($ $) 50 T ELT)) (-3801 (($ $ $) 71 T ELT) (($ |#2| $) NIL T ELT)) (-3521 (((-583 $) $) 32 T ELT)) (-3056 (((-85) $ $) 61 T ELT)) (-3956 (((-694) $) 43 T ELT))) +(((-1166 |#1| |#2|) (-10 -7 (-15 -3056 ((-85) |#1| |#1|)) (-15 -3784 (|#1| |#1| (-484))) (-15 -3787 (|#2| |#1| #1="last" |#2|)) (-15 -3785 (|#2| |#1| |#2|)) (-15 -3787 (|#1| |#1| #2="rest" |#1|)) (-15 -3787 (|#2| |#1| #3="first" |#2|)) (-15 -3789 (|#1| |#1|)) (-15 -3791 (|#1| |#1|)) (-15 -3792 ((-694) |#1|)) (-15 -3793 (|#1| |#1|)) (-15 -3794 (|#2| |#1|)) (-15 -3795 (|#2| |#1|)) (-15 -3796 (|#1| |#1|)) (-15 -3797 (|#1| |#1| (-694))) (-15 -3799 (|#2| |#1| #1#)) (-15 -3797 (|#2| |#1|)) (-15 -3798 (|#1| |#1| (-694))) (-15 -3799 (|#1| |#1| #2#)) (-15 -3798 (|#1| |#1|)) (-15 -3799 (|#2| |#1| #3#)) (-15 -3801 (|#1| |#2| |#1|)) (-15 -3801 (|#1| |#1| |#1|)) (-15 -3025 (|#2| |#1| |#2|)) (-15 -3787 (|#2| |#1| #4="value" |#2|)) (-15 -3026 (|#1| |#1| (-583 |#1|))) (-15 -3027 ((-85) |#1| |#1|)) (-15 -3632 ((-85) |#1|)) (-15 -3799 (|#2| |#1| #4#)) (-15 -3401 (|#2| |#1|)) (-15 -3526 ((-85) |#1|)) (-15 -3031 ((-583 |#1|) |#1|)) (-15 -3521 ((-583 |#1|) |#1|)) (-15 -3956 ((-694) |#1|))) (-1167 |#2|) (-1128)) (T -1166)) +NIL +((-2568 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3401 ((|#1| $) 52 T ELT)) (-3794 ((|#1| $) 71 T ELT)) (-3796 (($ $) 73 T ELT)) (-3784 (($ $ (-484)) 58 (|has| $ (-6 -3995)) ELT)) (-3025 ((|#1| $ |#1|) 43 (|has| $ (-6 -3995)) ELT)) (-3786 (($ $ $) 62 (|has| $ (-6 -3995)) ELT)) (-3785 ((|#1| $ |#1|) 60 (|has| $ (-6 -3995)) ELT)) (-3788 ((|#1| $ |#1|) 64 (|has| $ (-6 -3995)) ELT)) (-3787 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -3995)) ELT) ((|#1| $ "first" |#1|) 63 (|has| $ (-6 -3995)) ELT) (($ $ "rest" $) 61 (|has| $ (-6 -3995)) ELT) ((|#1| $ "last" |#1|) 59 (|has| $ (-6 -3995)) ELT)) (-3026 (($ $ (-583 $)) 45 (|has| $ (-6 -3995)) ELT)) (-3795 ((|#1| $) 72 T ELT)) (-3723 (($) 7 T CONST)) (-3798 (($ $) 79 T ELT) (($ $ (-694)) 77 T ELT)) (-2889 (((-583 |#1|) $) 30 (|has| $ (-6 -3994)) ELT)) (-3031 (((-583 $) $) 54 T ELT)) (-3027 (((-85) $ $) 46 (|has| |#1| (-1013)) ELT)) (-2608 (((-583 |#1|) $) 29 (|has| $ (-6 -3994)) ELT)) (-3245 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-1948 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3030 (((-583 |#1|) $) 49 T ELT)) (-3526 (((-85) $) 53 T ELT)) (-3242 (((-1072) $) 22 (|has| |#1| (-1013)) ELT)) (-3797 ((|#1| $) 76 T ELT) (($ $ (-694)) 74 T ELT)) (-3243 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-3800 ((|#1| $) 82 T ELT) (($ $ (-694)) 80 T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3994)) ELT)) (-3767 (($ $ (-583 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1221 (((-85) $ $) 11 T ELT)) (-3402 (((-85) $) 8 T ELT)) (-3564 (($) 9 T ELT)) (-3799 ((|#1| $ #1#) 51 T ELT) ((|#1| $ "first") 81 T ELT) (($ $ "rest") 78 T ELT) ((|#1| $ "last") 75 T ELT)) (-3029 (((-484) $ $) 48 T ELT)) (-3632 (((-85) $) 50 T ELT)) (-3791 (($ $) 68 T ELT)) (-3789 (($ $) 65 (|has| $ (-6 -3995)) ELT)) (-3792 (((-694) $) 69 T ELT)) (-3793 (($ $) 70 T ELT)) (-1945 (((-694) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3994)) ELT) (((-694) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-3399 (($ $) 10 T ELT)) (-3790 (($ $ $) 67 (|has| $ (-6 -3995)) ELT) (($ $ |#1|) 66 (|has| $ (-6 -3995)) ELT)) (-3801 (($ $ $) 84 T ELT) (($ |#1| $) 83 T ELT)) (-3945 (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-3521 (((-583 $) $) 55 T ELT)) (-3028 (((-85) $ $) 47 (|has| |#1| (-1013)) ELT)) (-1264 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3994)) ELT)) (-3056 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3956 (((-694) $) 6 (|has| $ (-6 -3994)) ELT))) +(((-1167 |#1|) (-113) (-1128)) (T -1167)) +((-3801 (*1 *1 *1 *1) (-12 (-4 *1 (-1167 *2)) (-4 *2 (-1128)))) (-3801 (*1 *1 *2 *1) (-12 (-4 *1 (-1167 *2)) (-4 *2 (-1128)))) (-3800 (*1 *2 *1) (-12 (-4 *1 (-1167 *2)) (-4 *2 (-1128)))) (-3799 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1167 *2)) (-4 *2 (-1128)))) (-3800 (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-1167 *3)) (-4 *3 (-1128)))) (-3798 (*1 *1 *1) (-12 (-4 *1 (-1167 *2)) (-4 *2 (-1128)))) (-3799 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1167 *3)) (-4 *3 (-1128)))) (-3798 (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-1167 *3)) (-4 *3 (-1128)))) (-3797 (*1 *2 *1) (-12 (-4 *1 (-1167 *2)) (-4 *2 (-1128)))) (-3799 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1167 *2)) (-4 *2 (-1128)))) (-3797 (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-1167 *3)) (-4 *3 (-1128)))) (-3796 (*1 *1 *1) (-12 (-4 *1 (-1167 *2)) (-4 *2 (-1128)))) (-3795 (*1 *2 *1) (-12 (-4 *1 (-1167 *2)) (-4 *2 (-1128)))) (-3794 (*1 *2 *1) (-12 (-4 *1 (-1167 *2)) (-4 *2 (-1128)))) (-3793 (*1 *1 *1) (-12 (-4 *1 (-1167 *2)) (-4 *2 (-1128)))) (-3792 (*1 *2 *1) (-12 (-4 *1 (-1167 *3)) (-4 *3 (-1128)) (-5 *2 (-694)))) (-3791 (*1 *1 *1) (-12 (-4 *1 (-1167 *2)) (-4 *2 (-1128)))) (-3790 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -3995)) (-4 *1 (-1167 *2)) (-4 *2 (-1128)))) (-3790 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -3995)) (-4 *1 (-1167 *2)) (-4 *2 (-1128)))) (-3789 (*1 *1 *1) (-12 (|has| *1 (-6 -3995)) (-4 *1 (-1167 *2)) (-4 *2 (-1128)))) (-3788 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -3995)) (-4 *1 (-1167 *2)) (-4 *2 (-1128)))) (-3787 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -3995)) (-4 *1 (-1167 *2)) (-4 *2 (-1128)))) (-3786 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -3995)) (-4 *1 (-1167 *2)) (-4 *2 (-1128)))) (-3787 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -3995)) (-4 *1 (-1167 *3)) (-4 *3 (-1128)))) (-3785 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -3995)) (-4 *1 (-1167 *2)) (-4 *2 (-1128)))) (-3787 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -3995)) (-4 *1 (-1167 *2)) (-4 *2 (-1128)))) (-3784 (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (|has| *1 (-6 -3995)) (-4 *1 (-1167 *3)) (-4 *3 (-1128))))) +(-13 (-923 |t#1|) (-10 -8 (-15 -3801 ($ $ $)) (-15 -3801 ($ |t#1| $)) (-15 -3800 (|t#1| $)) (-15 -3799 (|t#1| $ "first")) (-15 -3800 ($ $ (-694))) (-15 -3798 ($ $)) (-15 -3799 ($ $ "rest")) (-15 -3798 ($ $ (-694))) (-15 -3797 (|t#1| $)) (-15 -3799 (|t#1| $ "last")) (-15 -3797 ($ $ (-694))) (-15 -3796 ($ $)) (-15 -3795 (|t#1| $)) (-15 -3794 (|t#1| $)) (-15 -3793 ($ $)) (-15 -3792 ((-694) $)) (-15 -3791 ($ $)) (IF (|has| $ (-6 -3995)) (PROGN (-15 -3790 ($ $ $)) (-15 -3790 ($ $ |t#1|)) (-15 -3789 ($ $)) (-15 -3788 (|t#1| $ |t#1|)) (-15 -3787 (|t#1| $ "first" |t#1|)) (-15 -3786 ($ $ $)) (-15 -3787 ($ $ "rest" $)) (-15 -3785 (|t#1| $ |t#1|)) (-15 -3787 (|t#1| $ "last" |t#1|)) (-15 -3784 ($ $ (-484)))) |%noBranch|))) +(((-34) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1013)) (|has| |#1| (-552 (-772)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-428 |#1|) . T) ((-455 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-923 |#1|) . T) ((-1013) |has| |#1| (-1013)) ((-1128) . T)) +((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-3081 (((-583 (-994)) $) NIL T ELT)) (-3830 (((-1089) $) 87 T ELT)) (-3810 (((-1147 |#2| |#1|) $ (-694)) 70 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2063 (($ $) NIL (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) 139 (|has| |#1| (-495)) ELT)) (-3770 (($ $ (-694)) 125 T ELT) (($ $ (-694) (-694)) 127 T ELT)) (-3773 (((-1068 (-2 (|:| |k| (-694)) (|:| |c| |#1|))) $) 42 T ELT)) (-3491 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3638 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3037 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3489 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3637 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3817 (($ (-1068 (-2 (|:| |k| (-694)) (|:| |c| |#1|)))) 49 T ELT) (($ (-1068 |#1|)) NIL T ELT)) (-3493 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3636 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3723 (($) NIL T CONST)) (-3804 (($ $) 131 T ELT)) (-3958 (($ $) NIL T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-3815 (($ $) 137 T ELT)) (-3813 (((-857 |#1|) $ (-694)) 60 T ELT) (((-857 |#1|) $ (-694) (-694)) 62 T ELT)) (-2892 (((-85) $) NIL T ELT)) (-3626 (($) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3771 (((-694) $) NIL T ELT) (((-694) $ (-694)) NIL T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-3807 (($ $) 115 T ELT)) (-3011 (($ $ (-484)) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3803 (($ (-484) (-484) $) 133 T ELT)) (-3776 (($ $ (-830)) 136 T ELT)) (-3814 (($ (-1 |#1| (-484)) $) 109 T ELT)) (-3936 (((-85) $) NIL T ELT)) (-2893 (($ |#1| (-694)) 16 T ELT) (($ $ (-994) (-694)) NIL T ELT) (($ $ (-583 (-994)) (-583 (-694))) NIL T ELT)) (-3957 (($ (-1 |#1| |#1|) $) 96 T ELT)) (-3941 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2894 (($ $) NIL T ELT)) (-3174 ((|#1| $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3808 (($ $) 113 T ELT)) (-3809 (($ $) 111 T ELT)) (-3802 (($ (-484) (-484) $) 135 T ELT)) (-3811 (($ $) 147 (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $ (-1089)) 153 (OR (-12 (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-29 (-484))) (|has| |#1| (-871)) (|has| |#1| (-1114))) (-12 (|has| |#1| (-38 (-349 (-484)))) (|has| |#1| (-15 -3811 (|#1| |#1| (-1089)))) (|has| |#1| (-15 -3081 ((-583 (-1089)) |#1|))))) ELT) (($ $ (-1175 |#2|)) 148 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3805 (($ $ (-484) (-484)) 119 T ELT)) (-3768 (($ $ (-694)) 121 T ELT)) (-3465 (((-3 $ #1#) $ $) NIL (|has| |#1| (-495)) ELT)) (-3942 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3806 (($ $) 117 T ELT)) (-3767 (((-1068 |#1|) $ |#1|) 98 (|has| |#1| (-15 ** (|#1| |#1| (-694)))) ELT)) (-3799 ((|#1| $ (-694)) 93 T ELT) (($ $ $) 129 (|has| (-694) (-1025)) ELT)) (-3757 (($ $ (-1089)) 106 (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $ (-583 (-1089))) NIL (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $ (-1089) (-694)) NIL (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $) 100 (|has| |#1| (-15 * (|#1| (-694) |#1|))) ELT) (($ $ (-694)) NIL (|has| |#1| (-15 * (|#1| (-694) |#1|))) ELT) (($ $ (-1175 |#2|)) 101 T ELT)) (-3947 (((-694) $) NIL T ELT)) (-3494 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3635 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3492 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3634 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3490 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3633 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2891 (($ $) 123 T ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-484)) 26 T ELT) (($ (-349 (-484))) 145 (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $) NIL (|has| |#1| (-495)) ELT) (($ |#1|) 25 (|has| |#1| (-146)) ELT) (($ (-1147 |#2| |#1|)) 78 T ELT) (($ (-1175 |#2|)) 22 T ELT)) (-3816 (((-1068 |#1|) $) NIL T ELT)) (-3676 ((|#1| $ (-694)) 92 T ELT)) (-2702 (((-632 $) $) NIL (|has| |#1| (-118)) ELT)) (-3126 (((-694)) NIL T CONST)) (-3772 ((|#1| $) 88 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3497 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3485 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2062 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-3495 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3483 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3499 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3487 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3769 ((|#1| $ (-694)) 86 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-694)))) (|has| |#1| (-15 -3945 (|#1| (-1089))))) ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-3500 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3488 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3498 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3486 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3496 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3484 (($ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2660 (($) 18 T CONST)) (-2666 (($) 13 T CONST)) (-2669 (($ $ (-1089)) NIL (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $ (-583 (-1089))) NIL (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $ (-1089) (-694)) NIL (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) NIL (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-694) |#1|))) ELT) (($ $ (-694)) NIL (|has| |#1| (-15 * (|#1| (-694) |#1|))) ELT) (($ $ (-1175 |#2|)) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3948 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) 105 T ELT)) (-3838 (($ $ $) 20 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ |#1|) 142 (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $ (-349 (-484))) NIL (|has| |#1| (-38 (-349 (-484)))) ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 104 T ELT) (($ (-349 (-484)) $) NIL (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $ (-349 (-484))) NIL (|has| |#1| (-38 (-349 (-484)))) ELT))) +(((-1168 |#1| |#2| |#3|) (-13 (-1171 |#1|) (-806 $ (-1175 |#2|)) (-10 -8 (-15 -3945 ($ (-1147 |#2| |#1|))) (-15 -3810 ((-1147 |#2| |#1|) $ (-694))) (-15 -3945 ($ (-1175 |#2|))) (-15 -3809 ($ $)) (-15 -3808 ($ $)) (-15 -3807 ($ $)) (-15 -3806 ($ $)) (-15 -3805 ($ $ (-484) (-484))) (-15 -3804 ($ $)) (-15 -3803 ($ (-484) (-484) $)) (-15 -3802 ($ (-484) (-484) $)) (IF (|has| |#1| (-38 (-349 (-484)))) (-15 -3811 ($ $ (-1175 |#2|))) |%noBranch|))) (-961) (-1089) |#1|) (T -1168)) +((-3945 (*1 *1 *2) (-12 (-5 *2 (-1147 *4 *3)) (-4 *3 (-961)) (-14 *4 (-1089)) (-14 *5 *3) (-5 *1 (-1168 *3 *4 *5)))) (-3810 (*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1147 *5 *4)) (-5 *1 (-1168 *4 *5 *6)) (-4 *4 (-961)) (-14 *5 (-1089)) (-14 *6 *4))) (-3945 (*1 *1 *2) (-12 (-5 *2 (-1175 *4)) (-14 *4 (-1089)) (-5 *1 (-1168 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) (-3809 (*1 *1 *1) (-12 (-5 *1 (-1168 *2 *3 *4)) (-4 *2 (-961)) (-14 *3 (-1089)) (-14 *4 *2))) (-3808 (*1 *1 *1) (-12 (-5 *1 (-1168 *2 *3 *4)) (-4 *2 (-961)) (-14 *3 (-1089)) (-14 *4 *2))) (-3807 (*1 *1 *1) (-12 (-5 *1 (-1168 *2 *3 *4)) (-4 *2 (-961)) (-14 *3 (-1089)) (-14 *4 *2))) (-3806 (*1 *1 *1) (-12 (-5 *1 (-1168 *2 *3 *4)) (-4 *2 (-961)) (-14 *3 (-1089)) (-14 *4 *2))) (-3805 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-1168 *3 *4 *5)) (-4 *3 (-961)) (-14 *4 (-1089)) (-14 *5 *3))) (-3804 (*1 *1 *1) (-12 (-5 *1 (-1168 *2 *3 *4)) (-4 *2 (-961)) (-14 *3 (-1089)) (-14 *4 *2))) (-3803 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-1168 *3 *4 *5)) (-4 *3 (-961)) (-14 *4 (-1089)) (-14 *5 *3))) (-3802 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-1168 *3 *4 *5)) (-4 *3 (-961)) (-14 *4 (-1089)) (-14 *5 *3))) (-3811 (*1 *1 *1 *2) (-12 (-5 *2 (-1175 *4)) (-14 *4 (-1089)) (-5 *1 (-1168 *3 *4 *5)) (-4 *3 (-38 (-349 (-484)))) (-4 *3 (-961)) (-14 *5 *3)))) +((-3957 ((|#4| (-1 |#2| |#1|) |#3|) 17 T ELT))) +(((-1169 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3957 (|#4| (-1 |#2| |#1|) |#3|))) (-961) (-961) (-1171 |#1|) (-1171 |#2|)) (T -1169)) +((-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-4 *2 (-1171 *6)) (-5 *1 (-1169 *5 *6 *4 *2)) (-4 *4 (-1171 *5))))) +((-3188 (((-85) $) 17 T ELT)) (-3491 (($ $) 105 T ELT)) (-3638 (($ $) 81 T ELT)) (-3489 (($ $) 101 T ELT)) (-3637 (($ $) 77 T ELT)) (-3493 (($ $) 109 T ELT)) (-3636 (($ $) 85 T ELT)) (-3941 (($ $) 75 T ELT)) (-3942 (($ $) 73 T ELT)) (-3494 (($ $) 111 T ELT)) (-3635 (($ $) 87 T ELT)) (-3492 (($ $) 107 T ELT)) (-3634 (($ $) 83 T ELT)) (-3490 (($ $) 103 T ELT)) (-3633 (($ $) 79 T ELT)) (-3945 (((-772) $) 61 T ELT) (($ (-484)) NIL T ELT) (($ (-349 (-484))) NIL T ELT) (($ $) NIL T ELT) (($ |#2|) NIL T ELT)) (-3497 (($ $) 117 T ELT)) (-3485 (($ $) 93 T ELT)) (-3495 (($ $) 113 T ELT)) (-3483 (($ $) 89 T ELT)) (-3499 (($ $) 121 T ELT)) (-3487 (($ $) 97 T ELT)) (-3500 (($ $) 123 T ELT)) (-3488 (($ $) 99 T ELT)) (-3498 (($ $) 119 T ELT)) (-3486 (($ $) 95 T ELT)) (-3496 (($ $) 115 T ELT)) (-3484 (($ $) 91 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ |#2|) 65 T ELT) (($ $ $) 68 T ELT) (($ $ (-349 (-484))) 71 T ELT))) +(((-1170 |#1| |#2|) (-10 -7 (-15 ** (|#1| |#1| (-349 (-484)))) (-15 -3638 (|#1| |#1|)) (-15 -3637 (|#1| |#1|)) (-15 -3636 (|#1| |#1|)) (-15 -3635 (|#1| |#1|)) (-15 -3634 (|#1| |#1|)) (-15 -3633 (|#1| |#1|)) (-15 -3484 (|#1| |#1|)) (-15 -3486 (|#1| |#1|)) (-15 -3488 (|#1| |#1|)) (-15 -3487 (|#1| |#1|)) (-15 -3483 (|#1| |#1|)) (-15 -3485 (|#1| |#1|)) (-15 -3490 (|#1| |#1|)) (-15 -3492 (|#1| |#1|)) (-15 -3494 (|#1| |#1|)) (-15 -3493 (|#1| |#1|)) (-15 -3489 (|#1| |#1|)) (-15 -3491 (|#1| |#1|)) (-15 -3496 (|#1| |#1|)) (-15 -3498 (|#1| |#1|)) (-15 -3500 (|#1| |#1|)) (-15 -3499 (|#1| |#1|)) (-15 -3495 (|#1| |#1|)) (-15 -3497 (|#1| |#1|)) (-15 -3941 (|#1| |#1|)) (-15 -3942 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -3945 (|#1| |#2|)) (-15 -3945 (|#1| |#1|)) (-15 -3945 (|#1| (-349 (-484)))) (-15 -3945 (|#1| (-484))) (-15 ** (|#1| |#1| (-694))) (-15 ** (|#1| |#1| (-830))) (-15 -3188 ((-85) |#1|)) (-15 -3945 ((-772) |#1|))) (-1171 |#2|) (-961)) (T -1170)) +NIL +((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-3081 (((-583 (-994)) $) 95 T ELT)) (-3830 (((-1089) $) 129 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) 71 (|has| |#1| (-495)) ELT)) (-2063 (($ $) 72 (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) 74 (|has| |#1| (-495)) ELT)) (-3770 (($ $ (-694)) 124 T ELT) (($ $ (-694) (-694)) 123 T ELT)) (-3773 (((-1068 (-2 (|:| |k| (-694)) (|:| |c| |#1|))) $) 130 T ELT)) (-3491 (($ $) 163 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3638 (($ $) 146 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3037 (($ $) 145 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3489 (($ $) 162 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3637 (($ $) 147 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3817 (($ (-1068 (-2 (|:| |k| (-694)) (|:| |c| |#1|)))) 183 T ELT) (($ (-1068 |#1|)) 181 T ELT)) (-3493 (($ $) 161 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3636 (($ $) 148 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3723 (($) 23 T CONST)) (-3958 (($ $) 80 T ELT)) (-3466 (((-3 $ "failed") $) 42 T ELT)) (-3815 (($ $) 180 T ELT)) (-3813 (((-857 |#1|) $ (-694)) 178 T ELT) (((-857 |#1|) $ (-694) (-694)) 177 T ELT)) (-2892 (((-85) $) 94 T ELT)) (-3626 (($) 173 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3771 (((-694) $) 126 T ELT) (((-694) $ (-694)) 125 T ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3011 (($ $ (-484)) 144 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3776 (($ $ (-830)) 127 T ELT)) (-3814 (($ (-1 |#1| (-484)) $) 179 T ELT)) (-3936 (((-85) $) 82 T ELT)) (-2893 (($ |#1| (-694)) 81 T ELT) (($ $ (-994) (-694)) 97 T ELT) (($ $ (-583 (-994)) (-583 (-694))) 96 T ELT)) (-3957 (($ (-1 |#1| |#1|) $) 83 T ELT)) (-3941 (($ $) 170 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2894 (($ $) 85 T ELT)) (-3174 ((|#1| $) 86 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3811 (($ $) 175 (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $ (-1089)) 174 (OR (-12 (|has| |#1| (-29 (-484))) (|has| |#1| (-871)) (|has| |#1| (-1114)) (|has| |#1| (-38 (-349 (-484))))) (-12 (|has| |#1| (-15 -3081 ((-583 (-1089)) |#1|))) (|has| |#1| (-15 -3811 (|#1| |#1| (-1089)))) (|has| |#1| (-38 (-349 (-484)))))) ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3768 (($ $ (-694)) 121 T ELT)) (-3465 (((-3 $ "failed") $ $) 70 (|has| |#1| (-495)) ELT)) (-3942 (($ $) 171 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3767 (((-1068 |#1|) $ |#1|) 120 (|has| |#1| (-15 ** (|#1| |#1| (-694)))) ELT)) (-3799 ((|#1| $ (-694)) 131 T ELT) (($ $ $) 107 (|has| (-694) (-1025)) ELT)) (-3757 (($ $ (-1089)) 119 (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $ (-583 (-1089))) 117 (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $ (-1089) (-694)) 116 (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) 115 (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $) 111 (|has| |#1| (-15 * (|#1| (-694) |#1|))) ELT) (($ $ (-694)) 109 (|has| |#1| (-15 * (|#1| (-694) |#1|))) ELT)) (-3947 (((-694) $) 84 T ELT)) (-3494 (($ $) 160 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3635 (($ $) 149 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3492 (($ $) 159 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3634 (($ $) 150 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3490 (($ $) 158 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3633 (($ $) 151 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2891 (($ $) 93 T ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ (-349 (-484))) 77 (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $) 69 (|has| |#1| (-495)) ELT) (($ |#1|) 67 (|has| |#1| (-146)) ELT)) (-3816 (((-1068 |#1|) $) 182 T ELT)) (-3676 ((|#1| $ (-694)) 79 T ELT)) (-2702 (((-632 $) $) 68 (|has| |#1| (-118)) ELT)) (-3126 (((-694)) 40 T CONST)) (-3772 ((|#1| $) 128 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-3497 (($ $) 169 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3485 (($ $) 157 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2062 (((-85) $ $) 73 (|has| |#1| (-495)) ELT)) (-3495 (($ $) 168 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3483 (($ $) 156 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3499 (($ $) 167 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3487 (($ $) 155 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3769 ((|#1| $ (-694)) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-694)))) (|has| |#1| (-15 -3945 (|#1| (-1089))))) ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-3500 (($ $) 166 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3488 (($ $) 154 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3498 (($ $) 165 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3486 (($ $) 153 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3496 (($ $) 164 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-3484 (($ $) 152 (|has| |#1| (-38 (-349 (-484)))) ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-2669 (($ $ (-1089)) 118 (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $ (-583 (-1089))) 114 (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $ (-1089) (-694)) 113 (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $ (-583 (-1089)) (-583 (-694))) 112 (-12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $) 110 (|has| |#1| (-15 * (|#1| (-694) |#1|))) ELT) (($ $ (-694)) 108 (|has| |#1| (-15 * (|#1| (-694) |#1|))) ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-3948 (($ $ |#1|) 78 (|has| |#1| (-312)) ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT) (($ $ |#1|) 176 (|has| |#1| (-312)) ELT) (($ $ $) 172 (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $ (-349 (-484))) 143 (|has| |#1| (-38 (-349 (-484)))) ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 88 T ELT) (($ |#1| $) 87 T ELT) (($ (-349 (-484)) $) 76 (|has| |#1| (-38 (-349 (-484)))) ELT) (($ $ (-349 (-484))) 75 (|has| |#1| (-38 (-349 (-484)))) ELT))) +(((-1171 |#1|) (-113) (-961)) (T -1171)) +((-3817 (*1 *1 *2) (-12 (-5 *2 (-1068 (-2 (|:| |k| (-694)) (|:| |c| *3)))) (-4 *3 (-961)) (-4 *1 (-1171 *3)))) (-3816 (*1 *2 *1) (-12 (-4 *1 (-1171 *3)) (-4 *3 (-961)) (-5 *2 (-1068 *3)))) (-3817 (*1 *1 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-961)) (-4 *1 (-1171 *3)))) (-3815 (*1 *1 *1) (-12 (-4 *1 (-1171 *2)) (-4 *2 (-961)))) (-3814 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-484))) (-4 *1 (-1171 *3)) (-4 *3 (-961)))) (-3813 (*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-4 *1 (-1171 *4)) (-4 *4 (-961)) (-5 *2 (-857 *4)))) (-3813 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-694)) (-4 *1 (-1171 *4)) (-4 *4 (-961)) (-5 *2 (-857 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1171 *2)) (-4 *2 (-961)) (-4 *2 (-312)))) (-3811 (*1 *1 *1) (-12 (-4 *1 (-1171 *2)) (-4 *2 (-961)) (-4 *2 (-38 (-349 (-484)))))) (-3811 (*1 *1 *1 *2) (OR (-12 (-5 *2 (-1089)) (-4 *1 (-1171 *3)) (-4 *3 (-961)) (-12 (-4 *3 (-29 (-484))) (-4 *3 (-871)) (-4 *3 (-1114)) (-4 *3 (-38 (-349 (-484)))))) (-12 (-5 *2 (-1089)) (-4 *1 (-1171 *3)) (-4 *3 (-961)) (-12 (|has| *3 (-15 -3081 ((-583 *2) *3))) (|has| *3 (-15 -3811 (*3 *3 *2))) (-4 *3 (-38 (-349 (-484))))))))) +(-13 (-1157 |t#1| (-694)) (-10 -8 (-15 -3817 ($ (-1068 (-2 (|:| |k| (-694)) (|:| |c| |t#1|))))) (-15 -3816 ((-1068 |t#1|) $)) (-15 -3817 ($ (-1068 |t#1|))) (-15 -3815 ($ $)) (-15 -3814 ($ (-1 |t#1| (-484)) $)) (-15 -3813 ((-857 |t#1|) $ (-694))) (-15 -3813 ((-857 |t#1|) $ (-694) (-694))) (IF (|has| |t#1| (-312)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-38 (-349 (-484)))) (PROGN (-15 -3811 ($ $)) (IF (|has| |t#1| (-15 -3811 (|t#1| |t#1| (-1089)))) (IF (|has| |t#1| (-15 -3081 ((-583 (-1089)) |t#1|))) (-15 -3811 ($ $ (-1089))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1114)) (IF (|has| |t#1| (-871)) (IF (|has| |t#1| (-29 (-484))) (-15 -3811 ($ $ (-1089))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-915)) (-6 (-1114))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| (-694)) . T) ((-25) . T) ((-38 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) |has| |#1| (-495)) ((-35) |has| |#1| (-38 (-349 (-484)))) ((-66) |has| |#1| (-38 (-349 (-484)))) ((-72) . T) ((-82 (-349 (-484)) (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-555 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-555 (-484)) . T) ((-555 |#1|) |has| |#1| (-146)) ((-555 $) |has| |#1| (-495)) ((-552 (-772)) . T) ((-146) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-186 $) |has| |#1| (-15 * (|#1| (-694) |#1|))) ((-190) |has| |#1| (-15 * (|#1| (-694) |#1|))) ((-189) |has| |#1| (-15 * (|#1| (-694) |#1|))) ((-239) |has| |#1| (-38 (-349 (-484)))) ((-241 (-694) |#1|) . T) ((-241 $ $) |has| (-694) (-1025)) ((-246) |has| |#1| (-495)) ((-432) |has| |#1| (-38 (-349 (-484)))) ((-495) |has| |#1| (-495)) ((-13) . T) ((-588 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-590 |#1|) . T) ((-590 $) . T) ((-582 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-582 |#1|) |has| |#1| (-146)) ((-582 $) |has| |#1| (-495)) ((-654 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-654 |#1|) |has| |#1| (-146)) ((-654 $) |has| |#1| (-495)) ((-663) . T) ((-806 $ (-1089)) -12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ((-809 (-1089)) -12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ((-811 (-1089)) -12 (|has| |#1| (-809 (-1089))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ((-886 |#1| (-694) (-994)) . T) ((-915) |has| |#1| (-38 (-349 (-484)))) ((-963 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-963 |#1|) . T) ((-963 $) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-968 (-349 (-484))) |has| |#1| (-38 (-349 (-484)))) ((-968 |#1|) . T) ((-968 $) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1114) |has| |#1| (-38 (-349 (-484)))) ((-1117) |has| |#1| (-38 (-349 (-484)))) ((-1128) . T) ((-1157 |#1| (-694)) . T)) +((-3820 (((-1 (-1068 |#1|) (-583 (-1068 |#1|))) (-1 |#2| (-583 |#2|))) 24 T ELT)) (-3819 (((-1 (-1068 |#1|) (-1068 |#1|) (-1068 |#1|)) (-1 |#2| |#2| |#2|)) 16 T ELT)) (-3818 (((-1 (-1068 |#1|) (-1068 |#1|)) (-1 |#2| |#2|)) 13 T ELT)) (-3823 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48 T ELT)) (-3822 ((|#2| (-1 |#2| |#2|) |#1|) 46 T ELT)) (-3824 ((|#2| (-1 |#2| (-583 |#2|)) (-583 |#1|)) 60 T ELT)) (-3825 (((-583 |#2|) (-583 |#1|) (-583 (-1 |#2| (-583 |#2|)))) 66 T ELT)) (-3821 ((|#2| |#2| |#2|) 43 T ELT))) +(((-1172 |#1| |#2|) (-10 -7 (-15 -3818 ((-1 (-1068 |#1|) (-1068 |#1|)) (-1 |#2| |#2|))) (-15 -3819 ((-1 (-1068 |#1|) (-1068 |#1|) (-1068 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -3820 ((-1 (-1068 |#1|) (-583 (-1068 |#1|))) (-1 |#2| (-583 |#2|)))) (-15 -3821 (|#2| |#2| |#2|)) (-15 -3822 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -3823 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3824 (|#2| (-1 |#2| (-583 |#2|)) (-583 |#1|))) (-15 -3825 ((-583 |#2|) (-583 |#1|) (-583 (-1 |#2| (-583 |#2|)))))) (-38 (-349 (-484))) (-1171 |#1|)) (T -1172)) +((-3825 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 (-1 *6 (-583 *6)))) (-4 *5 (-38 (-349 (-484)))) (-4 *6 (-1171 *5)) (-5 *2 (-583 *6)) (-5 *1 (-1172 *5 *6)))) (-3824 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-583 *2))) (-5 *4 (-583 *5)) (-4 *5 (-38 (-349 (-484)))) (-4 *2 (-1171 *5)) (-5 *1 (-1172 *5 *2)))) (-3823 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1171 *4)) (-5 *1 (-1172 *4 *2)) (-4 *4 (-38 (-349 (-484)))))) (-3822 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1171 *4)) (-5 *1 (-1172 *4 *2)) (-4 *4 (-38 (-349 (-484)))))) (-3821 (*1 *2 *2 *2) (-12 (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1172 *3 *2)) (-4 *2 (-1171 *3)))) (-3820 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-583 *5))) (-4 *5 (-1171 *4)) (-4 *4 (-38 (-349 (-484)))) (-5 *2 (-1 (-1068 *4) (-583 (-1068 *4)))) (-5 *1 (-1172 *4 *5)))) (-3819 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1171 *4)) (-4 *4 (-38 (-349 (-484)))) (-5 *2 (-1 (-1068 *4) (-1068 *4) (-1068 *4))) (-5 *1 (-1172 *4 *5)))) (-3818 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1171 *4)) (-4 *4 (-38 (-349 (-484)))) (-5 *2 (-1 (-1068 *4) (-1068 *4))) (-5 *1 (-1172 *4 *5))))) +((-3827 ((|#2| |#4| (-694)) 31 T ELT)) (-3826 ((|#4| |#2|) 26 T ELT)) (-3829 ((|#4| (-349 |#2|)) 49 (|has| |#1| (-495)) ELT)) (-3828 (((-1 |#4| (-583 |#4|)) |#3|) 43 T ELT))) +(((-1173 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3826 (|#4| |#2|)) (-15 -3827 (|#2| |#4| (-694))) (-15 -3828 ((-1 |#4| (-583 |#4|)) |#3|)) (IF (|has| |#1| (-495)) (-15 -3829 (|#4| (-349 |#2|))) |%noBranch|)) (-961) (-1154 |#1|) (-600 |#2|) (-1171 |#1|)) (T -1173)) +((-3829 (*1 *2 *3) (-12 (-5 *3 (-349 *5)) (-4 *5 (-1154 *4)) (-4 *4 (-495)) (-4 *4 (-961)) (-4 *2 (-1171 *4)) (-5 *1 (-1173 *4 *5 *6 *2)) (-4 *6 (-600 *5)))) (-3828 (*1 *2 *3) (-12 (-4 *4 (-961)) (-4 *5 (-1154 *4)) (-5 *2 (-1 *6 (-583 *6))) (-5 *1 (-1173 *4 *5 *3 *6)) (-4 *3 (-600 *5)) (-4 *6 (-1171 *4)))) (-3827 (*1 *2 *3 *4) (-12 (-5 *4 (-694)) (-4 *5 (-961)) (-4 *2 (-1154 *5)) (-5 *1 (-1173 *5 *2 *6 *3)) (-4 *6 (-600 *2)) (-4 *3 (-1171 *5)))) (-3826 (*1 *2 *3) (-12 (-4 *4 (-961)) (-4 *3 (-1154 *4)) (-4 *2 (-1171 *4)) (-5 *1 (-1173 *4 *3 *5 *2)) (-4 *5 (-600 *3))))) +NIL +(((-1174) (-113)) (T -1174)) +NIL +(-13 (-10 -7 (-6 -2287))) +((-2568 (((-85) $ $) NIL T ELT)) (-3830 (((-1089)) 12 T ELT)) (-3242 (((-1072) $) 18 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) 11 T ELT) (((-1089) $) 8 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 15 T ELT))) +(((-1175 |#1|) (-13 (-1013) (-552 (-1089)) (-10 -8 (-15 -3945 ((-1089) $)) (-15 -3830 ((-1089))))) (-1089)) (T -1175)) +((-3945 (*1 *2 *1) (-12 (-5 *2 (-1089)) (-5 *1 (-1175 *3)) (-14 *3 *2))) (-3830 (*1 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-1175 *3)) (-14 *3 *2)))) +((-3837 (($ (-694)) 19 T ELT)) (-3834 (((-630 |#2|) $ $) 41 T ELT)) (-3831 ((|#2| $) 51 T ELT)) (-3832 ((|#2| $) 50 T ELT)) (-3835 ((|#2| $ $) 36 T ELT)) (-3833 (($ $ $) 47 T ELT)) (-3836 (($ $) 23 T ELT) (($ $ $) 29 T ELT)) (-3838 (($ $ $) 15 T ELT)) (* (($ (-484) $) 26 T ELT) (($ |#2| $) 32 T ELT) (($ $ |#2|) 31 T ELT))) +(((-1176 |#1| |#2|) (-10 -7 (-15 -3831 (|#2| |#1|)) (-15 -3832 (|#2| |#1|)) (-15 -3833 (|#1| |#1| |#1|)) (-15 -3834 ((-630 |#2|) |#1| |#1|)) (-15 -3835 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-484) |#1|)) (-15 -3836 (|#1| |#1| |#1|)) (-15 -3836 (|#1| |#1|)) (-15 -3837 (|#1| (-694))) (-15 -3838 (|#1| |#1| |#1|))) (-1177 |#2|) (-1128)) (T -1176)) +NIL +((-2568 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3837 (($ (-694)) 121 (|has| |#1| (-23)) ELT)) (-2198 (((-1184) $ (-484) (-484)) 44 (|has| $ (-6 -3995)) ELT)) (-1731 (((-85) (-1 (-85) |#1| |#1|) $) 107 T ELT) (((-85) $) 101 (|has| |#1| (-756)) ELT)) (-1729 (($ (-1 (-85) |#1| |#1|) $) 98 (|has| $ (-6 -3995)) ELT) (($ $) 97 (-12 (|has| |#1| (-756)) (|has| $ (-6 -3995))) ELT)) (-2909 (($ (-1 (-85) |#1| |#1|) $) 108 T ELT) (($ $) 102 (|has| |#1| (-756)) ELT)) (-3787 ((|#1| $ (-484) |#1|) 56 (|has| $ (-6 -3995)) ELT) ((|#1| $ (-1145 (-484)) |#1|) 64 (|has| $ (-6 -3995)) ELT)) (-3709 (($ (-1 (-85) |#1|) $) 81 (|has| $ (-6 -3994)) ELT)) (-3723 (($) 7 T CONST)) (-2297 (($ $) 99 (|has| $ (-6 -3995)) ELT)) (-2298 (($ $) 109 T ELT)) (-1352 (($ $) 84 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-3405 (($ |#1| $) 83 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT) (($ (-1 (-85) |#1|) $) 80 (|has| $ (-6 -3994)) ELT)) (-3841 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -3994)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -3994)) ELT)) (-1575 ((|#1| $ (-484) |#1|) 57 (|has| $ (-6 -3995)) ELT)) (-3112 ((|#1| $ (-484)) 55 T ELT)) (-3418 (((-484) (-1 (-85) |#1|) $) 106 T ELT) (((-484) |#1| $) 105 (|has| |#1| (-1013)) ELT) (((-484) |#1| $ (-484)) 104 (|has| |#1| (-1013)) ELT)) (-2889 (((-583 |#1|) $) 30 (|has| $ (-6 -3994)) ELT)) (-3834 (((-630 |#1|) $ $) 114 (|has| |#1| (-961)) ELT)) (-3613 (($ (-694) |#1|) 74 T ELT)) (-2200 (((-484) $) 47 (|has| (-484) (-756)) ELT)) (-2531 (($ $ $) 91 (|has| |#1| (-756)) ELT)) (-3517 (($ (-1 (-85) |#1| |#1|) $ $) 110 T ELT) (($ $ $) 103 (|has| |#1| (-756)) ELT)) (-2608 (((-583 |#1|) $) 29 (|has| $ (-6 -3994)) ELT)) (-3245 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-2201 (((-484) $) 48 (|has| (-484) (-756)) ELT)) (-2857 (($ $ $) 92 (|has| |#1| (-756)) ELT)) (-1948 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-3831 ((|#1| $) 111 (-12 (|has| |#1| (-961)) (|has| |#1| (-915))) ELT)) (-3832 ((|#1| $) 112 (-12 (|has| |#1| (-961)) (|has| |#1| (-915))) ELT)) (-3242 (((-1072) $) 22 (|has| |#1| (-1013)) ELT)) (-2304 (($ |#1| $ (-484)) 66 T ELT) (($ $ $ (-484)) 65 T ELT)) (-2203 (((-583 (-484)) $) 50 T ELT)) (-2204 (((-85) (-484) $) 51 T ELT)) (-3243 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-3800 ((|#1| $) 46 (|has| (-484) (-756)) ELT)) (-1353 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 77 T ELT)) (-2199 (($ $ |#1|) 45 (|has| $ (-6 -3995)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3994)) ELT)) (-3767 (($ $ (-583 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1221 (((-85) $ $) 11 T ELT)) (-2202 (((-85) |#1| $) 49 (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-2205 (((-583 |#1|) $) 52 T ELT)) (-3402 (((-85) $) 8 T ELT)) (-3564 (($) 9 T ELT)) (-3799 ((|#1| $ (-484) |#1|) 54 T ELT) ((|#1| $ (-484)) 53 T ELT) (($ $ (-1145 (-484))) 75 T ELT)) (-3835 ((|#1| $ $) 115 (|has| |#1| (-961)) ELT)) (-2305 (($ $ (-484)) 68 T ELT) (($ $ (-1145 (-484))) 67 T ELT)) (-3833 (($ $ $) 113 (|has| |#1| (-961)) ELT)) (-1945 (((-694) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3994)) ELT) (((-694) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3994))) ELT)) (-1730 (($ $ $ (-484)) 100 (|has| $ (-6 -3995)) ELT)) (-3399 (($ $) 10 T ELT)) (-3971 (((-473) $) 85 (|has| |#1| (-553 (-473))) ELT)) (-3529 (($ (-583 |#1|)) 76 T ELT)) (-3801 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-583 $)) 70 T ELT)) (-3945 (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-1264 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3994)) ELT)) (-2566 (((-85) $ $) 93 (|has| |#1| (-756)) ELT)) (-2567 (((-85) $ $) 95 (|has| |#1| (-756)) ELT)) (-3056 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-2684 (((-85) $ $) 94 (|has| |#1| (-756)) ELT)) (-2685 (((-85) $ $) 96 (|has| |#1| (-756)) ELT)) (-3836 (($ $) 120 (|has| |#1| (-21)) ELT) (($ $ $) 119 (|has| |#1| (-21)) ELT)) (-3838 (($ $ $) 122 (|has| |#1| (-25)) ELT)) (* (($ (-484) $) 118 (|has| |#1| (-21)) ELT) (($ |#1| $) 117 (|has| |#1| (-663)) ELT) (($ $ |#1|) 116 (|has| |#1| (-663)) ELT)) (-3956 (((-694) $) 6 (|has| $ (-6 -3994)) ELT))) +(((-1177 |#1|) (-113) (-1128)) (T -1177)) +((-3838 (*1 *1 *1 *1) (-12 (-4 *1 (-1177 *2)) (-4 *2 (-1128)) (-4 *2 (-25)))) (-3837 (*1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-1177 *3)) (-4 *3 (-23)) (-4 *3 (-1128)))) (-3836 (*1 *1 *1) (-12 (-4 *1 (-1177 *2)) (-4 *2 (-1128)) (-4 *2 (-21)))) (-3836 (*1 *1 *1 *1) (-12 (-4 *1 (-1177 *2)) (-4 *2 (-1128)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-484)) (-4 *1 (-1177 *3)) (-4 *3 (-1128)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1177 *2)) (-4 *2 (-1128)) (-4 *2 (-663)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1177 *2)) (-4 *2 (-1128)) (-4 *2 (-663)))) (-3835 (*1 *2 *1 *1) (-12 (-4 *1 (-1177 *2)) (-4 *2 (-1128)) (-4 *2 (-961)))) (-3834 (*1 *2 *1 *1) (-12 (-4 *1 (-1177 *3)) (-4 *3 (-1128)) (-4 *3 (-961)) (-5 *2 (-630 *3)))) (-3833 (*1 *1 *1 *1) (-12 (-4 *1 (-1177 *2)) (-4 *2 (-1128)) (-4 *2 (-961)))) (-3832 (*1 *2 *1) (-12 (-4 *1 (-1177 *2)) (-4 *2 (-1128)) (-4 *2 (-915)) (-4 *2 (-961)))) (-3831 (*1 *2 *1) (-12 (-4 *1 (-1177 *2)) (-4 *2 (-1128)) (-4 *2 (-915)) (-4 *2 (-961))))) +(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -3838 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -3837 ($ (-694))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -3836 ($ $)) (-15 -3836 ($ $ $)) (-15 * ($ (-484) $))) |%noBranch|) (IF (|has| |t#1| (-663)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-961)) (PROGN (-15 -3835 (|t#1| $ $)) (-15 -3834 ((-630 |t#1|) $ $)) (-15 -3833 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-915)) (IF (|has| |t#1| (-961)) (PROGN (-15 -3832 (|t#1| $)) (-15 -3831 (|t#1| $))) |%noBranch|) |%noBranch|))) +(((-34) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-756)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1013)) (|has| |#1| (-756)) (|has| |#1| (-552 (-772)))) ((-124 |#1|) . T) ((-553 (-473)) |has| |#1| (-553 (-473))) ((-241 (-484) |#1|) . T) ((-241 (-1145 (-484)) $) . T) ((-243 (-484) |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-323 |#1|) . T) ((-428 |#1|) . T) ((-538 (-484) |#1|) . T) ((-455 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-593 |#1|) . T) ((-19 |#1|) . T) ((-756) |has| |#1| (-756)) ((-759) |has| |#1| (-756)) ((-1013) OR (|has| |#1| (-1013)) (|has| |#1| (-756))) ((-1128) . T)) +((-2568 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3837 (($ (-694)) NIL (|has| |#1| (-23)) ELT)) (-3839 (($ (-583 |#1|)) 9 T ELT)) (-2198 (((-1184) $ (-484) (-484)) NIL (|has| $ (-6 -3995)) ELT)) (-1731 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-756)) ELT)) (-1729 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-6 -3995)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-756))) ELT)) (-2909 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-756)) ELT)) (-3787 ((|#1| $ (-484) |#1|) NIL (|has| $ (-6 -3995)) ELT) ((|#1| $ (-1145 (-484)) |#1|) NIL (|has| $ (-6 -3995)) ELT)) (-3709 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3723 (($) NIL T CONST)) (-2297 (($ $) NIL (|has| $ (-6 -3995)) ELT)) (-2298 (($ $) NIL T ELT)) (-1352 (($ $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-3405 (($ |#1| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3841 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3994)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-1575 ((|#1| $ (-484) |#1|) NIL (|has| $ (-6 -3995)) ELT)) (-3112 ((|#1| $ (-484)) NIL T ELT)) (-3418 (((-484) (-1 (-85) |#1|) $) NIL T ELT) (((-484) |#1| $) NIL (|has| |#1| (-1013)) ELT) (((-484) |#1| $ (-484)) NIL (|has| |#1| (-1013)) ELT)) (-2889 (((-583 |#1|) $) 15 (|has| $ (-6 -3994)) ELT)) (-3834 (((-630 |#1|) $ $) NIL (|has| |#1| (-961)) ELT)) (-3613 (($ (-694) |#1|) NIL T ELT)) (-2200 (((-484) $) NIL (|has| (-484) (-756)) ELT)) (-2531 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-3517 (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2608 (((-583 |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3245 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-2201 (((-484) $) 11 (|has| (-484) (-756)) ELT)) (-2857 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-1948 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3831 ((|#1| $) NIL (-12 (|has| |#1| (-915)) (|has| |#1| (-961))) ELT)) (-3832 ((|#1| $) NIL (-12 (|has| |#1| (-915)) (|has| |#1| (-961))) ELT)) (-3242 (((-1072) $) NIL (|has| |#1| (-1013)) ELT)) (-2304 (($ |#1| $ (-484)) NIL T ELT) (($ $ $ (-484)) NIL T ELT)) (-2203 (((-583 (-484)) $) NIL T ELT)) (-2204 (((-85) (-484) $) NIL T ELT)) (-3243 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-3800 ((|#1| $) NIL (|has| (-484) (-756)) ELT)) (-1353 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2199 (($ $ |#1|) NIL (|has| $ (-6 -3995)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3767 (($ $ (-583 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1221 (((-85) $ $) NIL T ELT)) (-2202 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-2205 (((-583 |#1|) $) NIL T ELT)) (-3402 (((-85) $) NIL T ELT)) (-3564 (($) NIL T ELT)) (-3799 ((|#1| $ (-484) |#1|) NIL T ELT) ((|#1| $ (-484)) NIL T ELT) (($ $ (-1145 (-484))) NIL T ELT)) (-3835 ((|#1| $ $) NIL (|has| |#1| (-961)) ELT)) (-2305 (($ $ (-484)) NIL T ELT) (($ $ (-1145 (-484))) NIL T ELT)) (-3833 (($ $ $) NIL (|has| |#1| (-961)) ELT)) (-1945 (((-694) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT) (((-694) |#1| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#1| (-1013))) ELT)) (-1730 (($ $ $ (-484)) NIL (|has| $ (-6 -3995)) ELT)) (-3399 (($ $) NIL T ELT)) (-3971 (((-473) $) 19 (|has| |#1| (-553 (-473))) ELT)) (-3529 (($ (-583 |#1|)) 8 T ELT)) (-3801 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3945 (((-772) $) NIL (|has| |#1| (-552 (-772))) ELT)) (-1264 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3994)) ELT)) (-2566 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2567 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3056 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2684 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2685 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3836 (($ $) NIL (|has| |#1| (-21)) ELT) (($ $ $) NIL (|has| |#1| (-21)) ELT)) (-3838 (($ $ $) NIL (|has| |#1| (-25)) ELT)) (* (($ (-484) $) NIL (|has| |#1| (-21)) ELT) (($ |#1| $) NIL (|has| |#1| (-663)) ELT) (($ $ |#1|) NIL (|has| |#1| (-663)) ELT)) (-3956 (((-694) $) NIL (|has| $ (-6 -3994)) ELT))) +(((-1178 |#1|) (-13 (-1177 |#1|) (-10 -8 (-15 -3839 ($ (-583 |#1|))))) (-1128)) (T -1178)) +((-3839 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1128)) (-5 *1 (-1178 *3))))) +((-3840 (((-1178 |#2|) (-1 |#2| |#1| |#2|) (-1178 |#1|) |#2|) 13 T ELT)) (-3841 ((|#2| (-1 |#2| |#1| |#2|) (-1178 |#1|) |#2|) 15 T ELT)) (-3957 (((-3 (-1178 |#2|) #1="failed") (-1 (-3 |#2| #1#) |#1|) (-1178 |#1|)) 30 T ELT) (((-1178 |#2|) (-1 |#2| |#1|) (-1178 |#1|)) 18 T ELT))) +(((-1179 |#1| |#2|) (-10 -7 (-15 -3840 ((-1178 |#2|) (-1 |#2| |#1| |#2|) (-1178 |#1|) |#2|)) (-15 -3841 (|#2| (-1 |#2| |#1| |#2|) (-1178 |#1|) |#2|)) (-15 -3957 ((-1178 |#2|) (-1 |#2| |#1|) (-1178 |#1|))) (-15 -3957 ((-3 (-1178 |#2|) #1="failed") (-1 (-3 |#2| #1#) |#1|) (-1178 |#1|)))) (-1128) (-1128)) (T -1179)) +((-3957 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1178 *5)) (-4 *5 (-1128)) (-4 *6 (-1128)) (-5 *2 (-1178 *6)) (-5 *1 (-1179 *5 *6)))) (-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1178 *5)) (-4 *5 (-1128)) (-4 *6 (-1128)) (-5 *2 (-1178 *6)) (-5 *1 (-1179 *5 *6)))) (-3841 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1178 *5)) (-4 *5 (-1128)) (-4 *2 (-1128)) (-5 *1 (-1179 *5 *2)))) (-3840 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1178 *6)) (-4 *6 (-1128)) (-4 *5 (-1128)) (-5 *2 (-1178 *5)) (-5 *1 (-1179 *6 *5))))) +((-3842 (((-407) (-583 (-583 (-854 (-179)))) (-583 (-221))) 22 T ELT) (((-407) (-583 (-583 (-854 (-179))))) 21 T ELT) (((-407) (-583 (-583 (-854 (-179)))) (-783) (-783) (-830) (-583 (-221))) 20 T ELT)) (-3843 (((-1181) (-583 (-583 (-854 (-179)))) (-583 (-221))) 30 T ELT) (((-1181) (-583 (-583 (-854 (-179)))) (-783) (-783) (-830) (-583 (-221))) 29 T ELT)) (-3945 (((-1181) (-407)) 46 T ELT))) +(((-1180) (-10 -7 (-15 -3842 ((-407) (-583 (-583 (-854 (-179)))) (-783) (-783) (-830) (-583 (-221)))) (-15 -3842 ((-407) (-583 (-583 (-854 (-179)))))) (-15 -3842 ((-407) (-583 (-583 (-854 (-179)))) (-583 (-221)))) (-15 -3843 ((-1181) (-583 (-583 (-854 (-179)))) (-783) (-783) (-830) (-583 (-221)))) (-15 -3843 ((-1181) (-583 (-583 (-854 (-179)))) (-583 (-221)))) (-15 -3945 ((-1181) (-407))))) (T -1180)) +((-3945 (*1 *2 *3) (-12 (-5 *3 (-407)) (-5 *2 (-1181)) (-5 *1 (-1180)))) (-3843 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-583 (-854 (-179))))) (-5 *4 (-583 (-221))) (-5 *2 (-1181)) (-5 *1 (-1180)))) (-3843 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-583 (-583 (-854 (-179))))) (-5 *4 (-783)) (-5 *5 (-830)) (-5 *6 (-583 (-221))) (-5 *2 (-1181)) (-5 *1 (-1180)))) (-3842 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-583 (-854 (-179))))) (-5 *4 (-583 (-221))) (-5 *2 (-407)) (-5 *1 (-1180)))) (-3842 (*1 *2 *3) (-12 (-5 *3 (-583 (-583 (-854 (-179))))) (-5 *2 (-407)) (-5 *1 (-1180)))) (-3842 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-583 (-583 (-854 (-179))))) (-5 *4 (-783)) (-5 *5 (-830)) (-5 *6 (-583 (-221))) (-5 *2 (-407)) (-5 *1 (-1180))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3861 (((-1072) $ (-1072)) 107 T ELT) (((-1072) $ (-1072) (-1072)) 105 T ELT) (((-1072) $ (-1072) (-583 (-1072))) 104 T ELT)) (-3857 (($) 69 T ELT)) (-3844 (((-1184) $ (-407) (-830)) 54 T ELT)) (-3850 (((-1184) $ (-830) (-1072)) 89 T ELT) (((-1184) $ (-830) (-783)) 90 T ELT)) (-3872 (((-1184) $ (-830) (-329) (-329)) 57 T ELT)) (-3882 (((-1184) $ (-1072)) 84 T ELT)) (-3845 (((-1184) $ (-830) (-1072)) 94 T ELT)) (-3846 (((-1184) $ (-830) (-329) (-329)) 58 T ELT)) (-3883 (((-1184) $ (-830) (-830)) 55 T ELT)) (-3863 (((-1184) $) 85 T ELT)) (-3848 (((-1184) $ (-830) (-1072)) 93 T ELT)) (-3852 (((-1184) $ (-407) (-830)) 41 T ELT)) (-3849 (((-1184) $ (-830) (-1072)) 92 T ELT)) (-3885 (((-583 (-221)) $) 29 T ELT) (($ $ (-583 (-221))) 30 T ELT)) (-3884 (((-1184) $ (-694) (-694)) 52 T ELT)) (-3856 (($ $) 70 T ELT) (($ (-407) (-583 (-221))) 71 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3859 (((-484) $) 48 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3853 (((-1178 (-3 (-407) "undefined")) $) 47 T ELT)) (-3854 (((-1178 (-2 (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)) (|:| -3849 (-484)) (|:| -3847 (-484)) (|:| |spline| (-484)) (|:| -3878 (-484)) (|:| |axesColor| (-783)) (|:| -3850 (-484)) (|:| |unitsColor| (-783)) (|:| |showing| (-484)))) $) 46 T ELT)) (-3855 (((-1184) $ (-830) (-179) (-179) (-179) (-179) (-484) (-484) (-484) (-484) (-783) (-484) (-783) (-484)) 83 T ELT)) (-3858 (((-583 (-854 (-179))) $) NIL T ELT)) (-3851 (((-407) $ (-830)) 43 T ELT)) (-3881 (((-1184) $ (-694) (-694) (-830) (-830)) 50 T ELT)) (-3879 (((-1184) $ (-1072)) 95 T ELT)) (-3847 (((-1184) $ (-830) (-1072)) 91 T ELT)) (-3945 (((-772) $) 102 T ELT)) (-3860 (((-1184) $) 96 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3878 (((-1184) $ (-830) (-1072)) 87 T ELT) (((-1184) $ (-830) (-783)) 88 T ELT)) (-3056 (((-85) $ $) NIL T ELT))) +(((-1181) (-13 (-1013) (-10 -8 (-15 -3858 ((-583 (-854 (-179))) $)) (-15 -3857 ($)) (-15 -3856 ($ $)) (-15 -3885 ((-583 (-221)) $)) (-15 -3885 ($ $ (-583 (-221)))) (-15 -3856 ($ (-407) (-583 (-221)))) (-15 -3855 ((-1184) $ (-830) (-179) (-179) (-179) (-179) (-484) (-484) (-484) (-484) (-783) (-484) (-783) (-484))) (-15 -3854 ((-1178 (-2 (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)) (|:| -3849 (-484)) (|:| -3847 (-484)) (|:| |spline| (-484)) (|:| -3878 (-484)) (|:| |axesColor| (-783)) (|:| -3850 (-484)) (|:| |unitsColor| (-783)) (|:| |showing| (-484)))) $)) (-15 -3853 ((-1178 (-3 (-407) "undefined")) $)) (-15 -3882 ((-1184) $ (-1072))) (-15 -3852 ((-1184) $ (-407) (-830))) (-15 -3851 ((-407) $ (-830))) (-15 -3878 ((-1184) $ (-830) (-1072))) (-15 -3878 ((-1184) $ (-830) (-783))) (-15 -3850 ((-1184) $ (-830) (-1072))) (-15 -3850 ((-1184) $ (-830) (-783))) (-15 -3849 ((-1184) $ (-830) (-1072))) (-15 -3848 ((-1184) $ (-830) (-1072))) (-15 -3847 ((-1184) $ (-830) (-1072))) (-15 -3879 ((-1184) $ (-1072))) (-15 -3860 ((-1184) $)) (-15 -3881 ((-1184) $ (-694) (-694) (-830) (-830))) (-15 -3846 ((-1184) $ (-830) (-329) (-329))) (-15 -3872 ((-1184) $ (-830) (-329) (-329))) (-15 -3845 ((-1184) $ (-830) (-1072))) (-15 -3884 ((-1184) $ (-694) (-694))) (-15 -3844 ((-1184) $ (-407) (-830))) (-15 -3883 ((-1184) $ (-830) (-830))) (-15 -3861 ((-1072) $ (-1072))) (-15 -3861 ((-1072) $ (-1072) (-1072))) (-15 -3861 ((-1072) $ (-1072) (-583 (-1072)))) (-15 -3863 ((-1184) $)) (-15 -3859 ((-484) $)) (-15 -3945 ((-772) $))))) (T -1181)) +((-3945 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-1181)))) (-3858 (*1 *2 *1) (-12 (-5 *2 (-583 (-854 (-179)))) (-5 *1 (-1181)))) (-3857 (*1 *1) (-5 *1 (-1181))) (-3856 (*1 *1 *1) (-5 *1 (-1181))) (-3885 (*1 *2 *1) (-12 (-5 *2 (-583 (-221))) (-5 *1 (-1181)))) (-3885 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-221))) (-5 *1 (-1181)))) (-3856 (*1 *1 *2 *3) (-12 (-5 *2 (-407)) (-5 *3 (-583 (-221))) (-5 *1 (-1181)))) (-3855 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-830)) (-5 *4 (-179)) (-5 *5 (-484)) (-5 *6 (-783)) (-5 *2 (-1184)) (-5 *1 (-1181)))) (-3854 (*1 *2 *1) (-12 (-5 *2 (-1178 (-2 (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)) (|:| -3849 (-484)) (|:| -3847 (-484)) (|:| |spline| (-484)) (|:| -3878 (-484)) (|:| |axesColor| (-783)) (|:| -3850 (-484)) (|:| |unitsColor| (-783)) (|:| |showing| (-484))))) (-5 *1 (-1181)))) (-3853 (*1 *2 *1) (-12 (-5 *2 (-1178 (-3 (-407) "undefined"))) (-5 *1 (-1181)))) (-3882 (*1 *2 *1 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1181)))) (-3852 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-407)) (-5 *4 (-830)) (-5 *2 (-1184)) (-5 *1 (-1181)))) (-3851 (*1 *2 *1 *3) (-12 (-5 *3 (-830)) (-5 *2 (-407)) (-5 *1 (-1181)))) (-3878 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-830)) (-5 *4 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1181)))) (-3878 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-830)) (-5 *4 (-783)) (-5 *2 (-1184)) (-5 *1 (-1181)))) (-3850 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-830)) (-5 *4 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1181)))) (-3850 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-830)) (-5 *4 (-783)) (-5 *2 (-1184)) (-5 *1 (-1181)))) (-3849 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-830)) (-5 *4 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1181)))) (-3848 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-830)) (-5 *4 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1181)))) (-3847 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-830)) (-5 *4 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1181)))) (-3879 (*1 *2 *1 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1181)))) (-3860 (*1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-1181)))) (-3881 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-694)) (-5 *4 (-830)) (-5 *2 (-1184)) (-5 *1 (-1181)))) (-3846 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-830)) (-5 *4 (-329)) (-5 *2 (-1184)) (-5 *1 (-1181)))) (-3872 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-830)) (-5 *4 (-329)) (-5 *2 (-1184)) (-5 *1 (-1181)))) (-3845 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-830)) (-5 *4 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1181)))) (-3884 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1184)) (-5 *1 (-1181)))) (-3844 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-407)) (-5 *4 (-830)) (-5 *2 (-1184)) (-5 *1 (-1181)))) (-3883 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1184)) (-5 *1 (-1181)))) (-3861 (*1 *2 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-1181)))) (-3861 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-1181)))) (-3861 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-583 (-1072))) (-5 *2 (-1072)) (-5 *1 (-1181)))) (-3863 (*1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-1181)))) (-3859 (*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-1181))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3873 (((-1184) $ (-329)) 168 T ELT) (((-1184) $ (-329) (-329) (-329)) 169 T ELT)) (-3861 (((-1072) $ (-1072)) 177 T ELT) (((-1072) $ (-1072) (-1072)) 175 T ELT) (((-1072) $ (-1072) (-583 (-1072))) 174 T ELT)) (-3889 (($) 67 T ELT)) (-3880 (((-1184) $ (-329) (-329) (-329) (-329) (-329)) 140 T ELT) (((-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3846 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179))) $) 138 T ELT) (((-1184) $ (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3846 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) 139 T ELT) (((-1184) $ (-484) (-484) (-329) (-329) (-329)) 143 T ELT) (((-1184) $ (-329) (-329)) 144 T ELT) (((-1184) $ (-329) (-329) (-329)) 151 T ELT)) (-3892 (((-329)) 121 T ELT) (((-329) (-329)) 122 T ELT)) (-3894 (((-329)) 116 T ELT) (((-329) (-329)) 118 T ELT)) (-3893 (((-329)) 119 T ELT) (((-329) (-329)) 120 T ELT)) (-3890 (((-329)) 125 T ELT) (((-329) (-329)) 126 T ELT)) (-3891 (((-329)) 123 T ELT) (((-329) (-329)) 124 T ELT)) (-3872 (((-1184) $ (-329) (-329)) 170 T ELT)) (-3882 (((-1184) $ (-1072)) 152 T ELT)) (-3887 (((-1046 (-179)) $) 68 T ELT) (($ $ (-1046 (-179))) 69 T ELT)) (-3868 (((-1184) $ (-1072)) 186 T ELT)) (-3867 (((-1184) $ (-1072)) 187 T ELT)) (-3874 (((-1184) $ (-329) (-329)) 150 T ELT) (((-1184) $ (-484) (-484)) 167 T ELT)) (-3883 (((-1184) $ (-830) (-830)) 159 T ELT)) (-3863 (((-1184) $) 136 T ELT)) (-3871 (((-1184) $ (-1072)) 185 T ELT)) (-3876 (((-1184) $ (-1072)) 133 T ELT)) (-3885 (((-583 (-221)) $) 70 T ELT) (($ $ (-583 (-221))) 71 T ELT)) (-3884 (((-1184) $ (-694) (-694)) 158 T ELT)) (-3886 (((-1184) $ (-694) (-854 (-179))) 192 T ELT)) (-3888 (($ $) 73 T ELT) (($ (-1046 (-179)) (-1072)) 74 T ELT) (($ (-1046 (-179)) (-583 (-221))) 75 T ELT)) (-3865 (((-1184) $ (-329) (-329) (-329)) 130 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3859 (((-484) $) 127 T ELT)) (-3864 (((-1184) $ (-329)) 172 T ELT)) (-3869 (((-1184) $ (-329)) 190 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3870 (((-1184) $ (-329)) 189 T ELT)) (-3875 (((-1184) $ (-1072)) 135 T ELT)) (-3881 (((-1184) $ (-694) (-694) (-830) (-830)) 157 T ELT)) (-3877 (((-1184) $ (-1072)) 132 T ELT)) (-3879 (((-1184) $ (-1072)) 134 T ELT)) (-3862 (((-1184) $ (-130) (-130)) 156 T ELT)) (-3945 (((-772) $) 165 T ELT)) (-3860 (((-1184) $) 137 T ELT)) (-3866 (((-1184) $ (-1072)) 188 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3878 (((-1184) $ (-1072)) 131 T ELT)) (-3056 (((-85) $ $) NIL T ELT))) +(((-1182) (-13 (-1013) (-10 -8 (-15 -3894 ((-329))) (-15 -3894 ((-329) (-329))) (-15 -3893 ((-329))) (-15 -3893 ((-329) (-329))) (-15 -3892 ((-329))) (-15 -3892 ((-329) (-329))) (-15 -3891 ((-329))) (-15 -3891 ((-329) (-329))) (-15 -3890 ((-329))) (-15 -3890 ((-329) (-329))) (-15 -3889 ($)) (-15 -3888 ($ $)) (-15 -3888 ($ (-1046 (-179)) (-1072))) (-15 -3888 ($ (-1046 (-179)) (-583 (-221)))) (-15 -3887 ((-1046 (-179)) $)) (-15 -3887 ($ $ (-1046 (-179)))) (-15 -3886 ((-1184) $ (-694) (-854 (-179)))) (-15 -3885 ((-583 (-221)) $)) (-15 -3885 ($ $ (-583 (-221)))) (-15 -3884 ((-1184) $ (-694) (-694))) (-15 -3883 ((-1184) $ (-830) (-830))) (-15 -3882 ((-1184) $ (-1072))) (-15 -3881 ((-1184) $ (-694) (-694) (-830) (-830))) (-15 -3880 ((-1184) $ (-329) (-329) (-329) (-329) (-329))) (-15 -3880 ((-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3846 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179))) $)) (-15 -3880 ((-1184) $ (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3846 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179))))) (-15 -3880 ((-1184) $ (-484) (-484) (-329) (-329) (-329))) (-15 -3880 ((-1184) $ (-329) (-329))) (-15 -3880 ((-1184) $ (-329) (-329) (-329))) (-15 -3879 ((-1184) $ (-1072))) (-15 -3878 ((-1184) $ (-1072))) (-15 -3877 ((-1184) $ (-1072))) (-15 -3876 ((-1184) $ (-1072))) (-15 -3875 ((-1184) $ (-1072))) (-15 -3874 ((-1184) $ (-329) (-329))) (-15 -3874 ((-1184) $ (-484) (-484))) (-15 -3873 ((-1184) $ (-329))) (-15 -3873 ((-1184) $ (-329) (-329) (-329))) (-15 -3872 ((-1184) $ (-329) (-329))) (-15 -3871 ((-1184) $ (-1072))) (-15 -3870 ((-1184) $ (-329))) (-15 -3869 ((-1184) $ (-329))) (-15 -3868 ((-1184) $ (-1072))) (-15 -3867 ((-1184) $ (-1072))) (-15 -3866 ((-1184) $ (-1072))) (-15 -3865 ((-1184) $ (-329) (-329) (-329))) (-15 -3864 ((-1184) $ (-329))) (-15 -3863 ((-1184) $)) (-15 -3862 ((-1184) $ (-130) (-130))) (-15 -3861 ((-1072) $ (-1072))) (-15 -3861 ((-1072) $ (-1072) (-1072))) (-15 -3861 ((-1072) $ (-1072) (-583 (-1072)))) (-15 -3860 ((-1184) $)) (-15 -3859 ((-484) $))))) (T -1182)) +((-3894 (*1 *2) (-12 (-5 *2 (-329)) (-5 *1 (-1182)))) (-3894 (*1 *2 *2) (-12 (-5 *2 (-329)) (-5 *1 (-1182)))) (-3893 (*1 *2) (-12 (-5 *2 (-329)) (-5 *1 (-1182)))) (-3893 (*1 *2 *2) (-12 (-5 *2 (-329)) (-5 *1 (-1182)))) (-3892 (*1 *2) (-12 (-5 *2 (-329)) (-5 *1 (-1182)))) (-3892 (*1 *2 *2) (-12 (-5 *2 (-329)) (-5 *1 (-1182)))) (-3891 (*1 *2) (-12 (-5 *2 (-329)) (-5 *1 (-1182)))) (-3891 (*1 *2 *2) (-12 (-5 *2 (-329)) (-5 *1 (-1182)))) (-3890 (*1 *2) (-12 (-5 *2 (-329)) (-5 *1 (-1182)))) (-3890 (*1 *2 *2) (-12 (-5 *2 (-329)) (-5 *1 (-1182)))) (-3889 (*1 *1) (-5 *1 (-1182))) (-3888 (*1 *1 *1) (-5 *1 (-1182))) (-3888 (*1 *1 *2 *3) (-12 (-5 *2 (-1046 (-179))) (-5 *3 (-1072)) (-5 *1 (-1182)))) (-3888 (*1 *1 *2 *3) (-12 (-5 *2 (-1046 (-179))) (-5 *3 (-583 (-221))) (-5 *1 (-1182)))) (-3887 (*1 *2 *1) (-12 (-5 *2 (-1046 (-179))) (-5 *1 (-1182)))) (-3887 (*1 *1 *1 *2) (-12 (-5 *2 (-1046 (-179))) (-5 *1 (-1182)))) (-3886 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-694)) (-5 *4 (-854 (-179))) (-5 *2 (-1184)) (-5 *1 (-1182)))) (-3885 (*1 *2 *1) (-12 (-5 *2 (-583 (-221))) (-5 *1 (-1182)))) (-3885 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-221))) (-5 *1 (-1182)))) (-3884 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1184)) (-5 *1 (-1182)))) (-3883 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1184)) (-5 *1 (-1182)))) (-3882 (*1 *2 *1 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1182)))) (-3881 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-694)) (-5 *4 (-830)) (-5 *2 (-1184)) (-5 *1 (-1182)))) (-3880 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-329)) (-5 *2 (-1184)) (-5 *1 (-1182)))) (-3880 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3846 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) (-5 *1 (-1182)))) (-3880 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3846 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) (-5 *2 (-1184)) (-5 *1 (-1182)))) (-3880 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-484)) (-5 *4 (-329)) (-5 *2 (-1184)) (-5 *1 (-1182)))) (-3880 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-329)) (-5 *2 (-1184)) (-5 *1 (-1182)))) (-3880 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-329)) (-5 *2 (-1184)) (-5 *1 (-1182)))) (-3879 (*1 *2 *1 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1182)))) (-3878 (*1 *2 *1 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1182)))) (-3877 (*1 *2 *1 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1182)))) (-3876 (*1 *2 *1 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1182)))) (-3875 (*1 *2 *1 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1182)))) (-3874 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-329)) (-5 *2 (-1184)) (-5 *1 (-1182)))) (-3874 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-484)) (-5 *2 (-1184)) (-5 *1 (-1182)))) (-3873 (*1 *2 *1 *3) (-12 (-5 *3 (-329)) (-5 *2 (-1184)) (-5 *1 (-1182)))) (-3873 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-329)) (-5 *2 (-1184)) (-5 *1 (-1182)))) (-3872 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-329)) (-5 *2 (-1184)) (-5 *1 (-1182)))) (-3871 (*1 *2 *1 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1182)))) (-3870 (*1 *2 *1 *3) (-12 (-5 *3 (-329)) (-5 *2 (-1184)) (-5 *1 (-1182)))) (-3869 (*1 *2 *1 *3) (-12 (-5 *3 (-329)) (-5 *2 (-1184)) (-5 *1 (-1182)))) (-3868 (*1 *2 *1 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1182)))) (-3867 (*1 *2 *1 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1182)))) (-3866 (*1 *2 *1 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1182)))) (-3865 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-329)) (-5 *2 (-1184)) (-5 *1 (-1182)))) (-3864 (*1 *2 *1 *3) (-12 (-5 *3 (-329)) (-5 *2 (-1184)) (-5 *1 (-1182)))) (-3863 (*1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-1182)))) (-3862 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-130)) (-5 *2 (-1184)) (-5 *1 (-1182)))) (-3861 (*1 *2 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-1182)))) (-3861 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-1182)))) (-3861 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-583 (-1072))) (-5 *2 (-1072)) (-5 *1 (-1182)))) (-3860 (*1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-1182)))) (-3859 (*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-1182))))) +((-3903 (((-583 (-1072)) (-583 (-1072))) 103 T ELT) (((-583 (-1072))) 96 T ELT)) (-3904 (((-583 (-1072))) 94 T ELT)) (-3901 (((-583 (-830)) (-583 (-830))) 69 T ELT) (((-583 (-830))) 64 T ELT)) (-3900 (((-583 (-694)) (-583 (-694))) 61 T ELT) (((-583 (-694))) 55 T ELT)) (-3902 (((-1184)) 71 T ELT)) (-3906 (((-830) (-830)) 87 T ELT) (((-830)) 86 T ELT)) (-3905 (((-830) (-830)) 85 T ELT) (((-830)) 84 T ELT)) (-3898 (((-783) (-783)) 81 T ELT) (((-783)) 80 T ELT)) (-3908 (((-179)) 91 T ELT) (((-179) (-329)) 93 T ELT)) (-3907 (((-830)) 88 T ELT) (((-830) (-830)) 89 T ELT)) (-3899 (((-830) (-830)) 83 T ELT) (((-830)) 82 T ELT)) (-3895 (((-783) (-783)) 75 T ELT) (((-783)) 73 T ELT)) (-3896 (((-783) (-783)) 77 T ELT) (((-783)) 76 T ELT)) (-3897 (((-783) (-783)) 79 T ELT) (((-783)) 78 T ELT))) +(((-1183) (-10 -7 (-15 -3895 ((-783))) (-15 -3895 ((-783) (-783))) (-15 -3896 ((-783))) (-15 -3896 ((-783) (-783))) (-15 -3897 ((-783))) (-15 -3897 ((-783) (-783))) (-15 -3898 ((-783))) (-15 -3898 ((-783) (-783))) (-15 -3899 ((-830))) (-15 -3899 ((-830) (-830))) (-15 -3900 ((-583 (-694)))) (-15 -3900 ((-583 (-694)) (-583 (-694)))) (-15 -3901 ((-583 (-830)))) (-15 -3901 ((-583 (-830)) (-583 (-830)))) (-15 -3902 ((-1184))) (-15 -3903 ((-583 (-1072)))) (-15 -3903 ((-583 (-1072)) (-583 (-1072)))) (-15 -3904 ((-583 (-1072)))) (-15 -3905 ((-830))) (-15 -3906 ((-830))) (-15 -3905 ((-830) (-830))) (-15 -3906 ((-830) (-830))) (-15 -3907 ((-830) (-830))) (-15 -3907 ((-830))) (-15 -3908 ((-179) (-329))) (-15 -3908 ((-179))))) (T -1183)) +((-3908 (*1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-1183)))) (-3908 (*1 *2 *3) (-12 (-5 *3 (-329)) (-5 *2 (-179)) (-5 *1 (-1183)))) (-3907 (*1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-1183)))) (-3907 (*1 *2 *2) (-12 (-5 *2 (-830)) (-5 *1 (-1183)))) (-3906 (*1 *2 *2) (-12 (-5 *2 (-830)) (-5 *1 (-1183)))) (-3905 (*1 *2 *2) (-12 (-5 *2 (-830)) (-5 *1 (-1183)))) (-3906 (*1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-1183)))) (-3905 (*1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-1183)))) (-3904 (*1 *2) (-12 (-5 *2 (-583 (-1072))) (-5 *1 (-1183)))) (-3903 (*1 *2 *2) (-12 (-5 *2 (-583 (-1072))) (-5 *1 (-1183)))) (-3903 (*1 *2) (-12 (-5 *2 (-583 (-1072))) (-5 *1 (-1183)))) (-3902 (*1 *2) (-12 (-5 *2 (-1184)) (-5 *1 (-1183)))) (-3901 (*1 *2 *2) (-12 (-5 *2 (-583 (-830))) (-5 *1 (-1183)))) (-3901 (*1 *2) (-12 (-5 *2 (-583 (-830))) (-5 *1 (-1183)))) (-3900 (*1 *2 *2) (-12 (-5 *2 (-583 (-694))) (-5 *1 (-1183)))) (-3900 (*1 *2) (-12 (-5 *2 (-583 (-694))) (-5 *1 (-1183)))) (-3899 (*1 *2 *2) (-12 (-5 *2 (-830)) (-5 *1 (-1183)))) (-3899 (*1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-1183)))) (-3898 (*1 *2 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1183)))) (-3898 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1183)))) (-3897 (*1 *2 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1183)))) (-3897 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1183)))) (-3896 (*1 *2 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1183)))) (-3896 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1183)))) (-3895 (*1 *2 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1183)))) (-3895 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1183))))) +((-3909 (($) 6 T ELT)) (-3945 (((-772) $) 9 T ELT))) +(((-1184) (-13 (-552 (-772)) (-10 -8 (-15 -3909 ($))))) (T -1184)) +((-3909 (*1 *1) (-5 *1 (-1184)))) +((-3948 (($ $ |#2|) 10 T ELT))) +(((-1185 |#1| |#2|) (-10 -7 (-15 -3948 (|#1| |#1| |#2|))) (-1186 |#2|) (-312)) (T -1185)) +NIL +((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3723 (($) 23 T CONST)) (-1213 (((-85) $ $) 20 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3910 (((-107)) 39 T ELT)) (-3945 (((-772) $) 13 T ELT)) (-1264 (((-85) $ $) 6 T ELT)) (-2660 (($) 24 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3948 (($ $ |#1|) 40 T ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ |#1| $) 33 T ELT) (($ $ |#1|) 37 T ELT))) +(((-1186 |#1|) (-113) (-312)) (T -1186)) +((-3948 (*1 *1 *1 *2) (-12 (-4 *1 (-1186 *2)) (-4 *2 (-312)))) (-3910 (*1 *2) (-12 (-4 *1 (-1186 *3)) (-4 *3 (-312)) (-5 *2 (-107))))) +(-13 (-654 |t#1|) (-10 -8 (-15 -3948 ($ $ |t#1|)) (-15 -3910 ((-107))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-590 |#1|) . T) ((-582 |#1|) . T) ((-654 |#1|) . T) ((-963 |#1|) . T) ((-968 |#1|) . T) ((-1013) . T) ((-1128) . T)) +((-3915 (((-583 (-1121 |#1|)) (-1089) (-1121 |#1|)) 83 T ELT)) (-3913 (((-1068 (-1068 (-857 |#1|))) (-1089) (-1068 (-857 |#1|))) 63 T ELT)) (-3916 (((-1 (-1068 (-1121 |#1|)) (-1068 (-1121 |#1|))) (-694) (-1121 |#1|) (-1068 (-1121 |#1|))) 74 T ELT)) (-3911 (((-1 (-1068 (-857 |#1|)) (-1068 (-857 |#1|))) (-694)) 65 T ELT)) (-3914 (((-1 (-1084 (-857 |#1|)) (-857 |#1|)) (-1089)) 32 T ELT)) (-3912 (((-1 (-1068 (-857 |#1|)) (-1068 (-857 |#1|))) (-694)) 64 T ELT))) +(((-1187 |#1|) (-10 -7 (-15 -3911 ((-1 (-1068 (-857 |#1|)) (-1068 (-857 |#1|))) (-694))) (-15 -3912 ((-1 (-1068 (-857 |#1|)) (-1068 (-857 |#1|))) (-694))) (-15 -3913 ((-1068 (-1068 (-857 |#1|))) (-1089) (-1068 (-857 |#1|)))) (-15 -3914 ((-1 (-1084 (-857 |#1|)) (-857 |#1|)) (-1089))) (-15 -3915 ((-583 (-1121 |#1|)) (-1089) (-1121 |#1|))) (-15 -3916 ((-1 (-1068 (-1121 |#1|)) (-1068 (-1121 |#1|))) (-694) (-1121 |#1|) (-1068 (-1121 |#1|))))) (-312)) (T -1187)) +((-3916 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-694)) (-4 *6 (-312)) (-5 *4 (-1121 *6)) (-5 *2 (-1 (-1068 *4) (-1068 *4))) (-5 *1 (-1187 *6)) (-5 *5 (-1068 *4)))) (-3915 (*1 *2 *3 *4) (-12 (-5 *3 (-1089)) (-4 *5 (-312)) (-5 *2 (-583 (-1121 *5))) (-5 *1 (-1187 *5)) (-5 *4 (-1121 *5)))) (-3914 (*1 *2 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-1 (-1084 (-857 *4)) (-857 *4))) (-5 *1 (-1187 *4)) (-4 *4 (-312)))) (-3913 (*1 *2 *3 *4) (-12 (-5 *3 (-1089)) (-4 *5 (-312)) (-5 *2 (-1068 (-1068 (-857 *5)))) (-5 *1 (-1187 *5)) (-5 *4 (-1068 (-857 *5))))) (-3912 (*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1 (-1068 (-857 *4)) (-1068 (-857 *4)))) (-5 *1 (-1187 *4)) (-4 *4 (-312)))) (-3911 (*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1 (-1068 (-857 *4)) (-1068 (-857 *4)))) (-5 *1 (-1187 *4)) (-4 *4 (-312))))) +((-3918 (((-2 (|:| -2012 (-630 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-630 |#2|))) |#2|) 80 T ELT)) (-3917 (((-2 (|:| -2012 (-630 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-630 |#2|)))) 79 T ELT))) +(((-1188 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3917 ((-2 (|:| -2012 (-630 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-630 |#2|))))) (-15 -3918 ((-2 (|:| -2012 (-630 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-630 |#2|))) |#2|))) (-299) (-1154 |#1|) (-1154 |#2|) (-352 |#2| |#3|)) (T -1188)) +((-3918 (*1 *2 *3) (-12 (-4 *4 (-299)) (-4 *3 (-1154 *4)) (-4 *5 (-1154 *3)) (-5 *2 (-2 (|:| -2012 (-630 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-630 *3)))) (-5 *1 (-1188 *4 *3 *5 *6)) (-4 *6 (-352 *3 *5)))) (-3917 (*1 *2) (-12 (-4 *3 (-299)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 *4)) (-5 *2 (-2 (|:| -2012 (-630 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-630 *4)))) (-5 *1 (-1188 *3 *4 *5 *6)) (-4 *6 (-352 *4 *5))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3919 (((-1048) $) 12 T ELT)) (-3920 (((-1048) $) 10 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) 18 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT))) +(((-1189) (-13 (-995) (-10 -8 (-15 -3920 ((-1048) $)) (-15 -3919 ((-1048) $))))) (T -1189)) +((-3920 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-1189)))) (-3919 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-1189))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3921 (((-1048) $) 11 T ELT)) (-3945 (((-772) $) 17 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT))) +(((-1190) (-13 (-995) (-10 -8 (-15 -3921 ((-1048) $))))) (T -1190)) +((-3921 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-1190))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) 59 T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) 82 T ELT) (($ (-484)) NIL T ELT) (($ |#4|) 66 T ELT) ((|#4| $) 71 T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT)) (-3126 (((-694)) NIL T CONST)) (-3922 (((-1184) (-694)) 16 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) 36 T CONST)) (-2666 (($) 85 T CONST)) (-3056 (((-85) $ $) 88 T ELT)) (-3948 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-3836 (($ $) 90 T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) 64 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 92 T ELT) (($ |#1| $) NIL (|has| |#1| (-146)) ELT) (($ $ |#1|) NIL (|has| |#1| (-146)) ELT))) +(((-1191 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-961) (-429 |#4|) (-10 -8 (IF (|has| |#1| (-146)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-312)) (-15 -3948 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3922 ((-1184) (-694))))) (-961) (-756) (-717) (-861 |#1| |#3| |#2|) (-583 |#2|) (-583 (-694)) (-694)) (T -1191)) +((-3948 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-312)) (-4 *2 (-961)) (-4 *3 (-756)) (-4 *4 (-717)) (-14 *6 (-583 *3)) (-5 *1 (-1191 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-861 *2 *4 *3)) (-14 *7 (-583 (-694))) (-14 *8 (-694)))) (-3922 (*1 *2 *3) (-12 (-5 *3 (-694)) (-4 *4 (-961)) (-4 *5 (-756)) (-4 *6 (-717)) (-14 *8 (-583 *5)) (-5 *2 (-1184)) (-5 *1 (-1191 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-861 *4 *6 *5)) (-14 *9 (-583 *3)) (-14 *10 *3)))) +((-2568 (((-85) $ $) NIL T ELT)) (-3680 (((-583 (-2 (|:| -3860 $) (|:| -1701 (-583 |#4|)))) (-583 |#4|)) NIL T ELT)) (-3681 (((-583 $) (-583 |#4|)) 95 T ELT)) (-3081 (((-583 |#3|) $) NIL T ELT)) (-2908 (((-85) $) NIL T ELT)) (-2899 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-3692 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3687 ((|#4| |#4| $) NIL T ELT)) (-2909 (((-2 (|:| |under| $) (|:| -3130 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3709 (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3994)) ELT) (((-3 |#4| #1="failed") $ |#3|) NIL T ELT)) (-3723 (($) NIL T CONST)) (-2904 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-2906 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-2905 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-2907 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-3688 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 31 T ELT)) (-2900 (((-583 |#4|) (-583 |#4|) $) 28 (|has| |#1| (-495)) ELT)) (-2901 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-495)) ELT)) (-3157 (((-3 $ #1#) (-583 |#4|)) NIL T ELT)) (-3156 (($ (-583 |#4|)) NIL T ELT)) (-3798 (((-3 $ #1#) $) 77 T ELT)) (-3684 ((|#4| |#4| $) 82 T ELT)) (-1352 (($ $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#4| (-1013))) ELT)) (-3405 (($ |#4| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#4| (-1013))) ELT) (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3994)) ELT)) (-2902 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-495)) ELT)) (-3693 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3682 ((|#4| |#4| $) NIL T ELT)) (-3841 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -3994)) (|has| |#4| (-1013))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -3994)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -3994)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3695 (((-2 (|:| -3860 (-583 |#4|)) (|:| -1701 (-583 |#4|))) $) NIL T ELT)) (-2889 (((-583 |#4|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3694 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3180 ((|#3| $) 83 T ELT)) (-2608 (((-583 |#4|) $) 32 (|has| $ (-6 -3994)) ELT)) (-3245 (((-85) |#4| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#4| (-1013))) ELT)) (-3925 (((-3 $ #1#) (-583 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|)) 35 T ELT) (((-3 $ #1#) (-583 |#4|)) 38 T ELT)) (-1948 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3957 (($ (-1 |#4| |#4|) $) NIL T ELT)) (-2914 (((-583 |#3|) $) NIL T ELT)) (-2913 (((-85) |#3| $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3797 (((-3 |#4| #1#) $) NIL T ELT)) (-3696 (((-583 |#4|) $) 53 T ELT)) (-3690 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3685 ((|#4| |#4| $) 81 T ELT)) (-3698 (((-85) $ $) 92 T ELT)) (-2903 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-495)) ELT)) (-3691 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3686 ((|#4| |#4| $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3800 (((-3 |#4| #1#) $) 76 T ELT)) (-1353 (((-3 |#4| #1#) (-1 (-85) |#4|) $) NIL T ELT)) (-3678 (((-3 $ #1#) $ |#4|) NIL T ELT)) (-3768 (($ $ |#4|) NIL T ELT)) (-1946 (((-85) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3767 (($ $ (-583 |#4|) (-583 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-249 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-583 (-249 |#4|))) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT)) (-1221 (((-85) $ $) NIL T ELT)) (-3402 (((-85) $) 74 T ELT)) (-3564 (($) 45 T ELT)) (-3947 (((-694) $) NIL T ELT)) (-1945 (((-694) |#4| $) NIL (-12 (|has| $ (-6 -3994)) (|has| |#4| (-1013))) ELT) (((-694) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3399 (($ $) NIL T ELT)) (-3971 (((-473) $) NIL (|has| |#4| (-553 (-473))) ELT)) (-3529 (($ (-583 |#4|)) NIL T ELT)) (-2910 (($ $ |#3|) NIL T ELT)) (-2912 (($ $ |#3|) NIL T ELT)) (-3683 (($ $) NIL T ELT)) (-2911 (($ $ |#3|) NIL T ELT)) (-3945 (((-772) $) NIL T ELT) (((-583 |#4|) $) 62 T ELT)) (-3677 (((-694) $) NIL (|has| |#3| (-319)) ELT)) (-3924 (((-3 $ #1#) (-583 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|)) 43 T ELT) (((-3 $ #1#) (-583 |#4|)) 44 T ELT)) (-3923 (((-583 $) (-583 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|)) 72 T ELT) (((-583 $) (-583 |#4|)) 73 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3697 (((-3 (-2 (|:| |bas| $) (|:| -3323 (-583 |#4|))) #1#) (-583 |#4|) (-1 (-85) |#4| |#4|)) 27 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3323 (-583 |#4|))) #1#) (-583 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3689 (((-85) $ (-1 (-85) |#4| (-583 |#4|))) NIL T ELT)) (-1947 (((-85) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3994)) ELT)) (-3679 (((-583 |#3|) $) NIL T ELT)) (-3932 (((-85) |#3| $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3956 (((-694) $) NIL (|has| $ (-6 -3994)) ELT))) +(((-1192 |#1| |#2| |#3| |#4|) (-13 (-1123 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3925 ((-3 $ #1="failed") (-583 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3925 ((-3 $ #1#) (-583 |#4|))) (-15 -3924 ((-3 $ #1#) (-583 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3924 ((-3 $ #1#) (-583 |#4|))) (-15 -3923 ((-583 $) (-583 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3923 ((-583 $) (-583 |#4|))))) (-495) (-717) (-756) (-977 |#1| |#2| |#3|)) (T -1192)) +((-3925 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-583 *8)) (-5 *3 (-1 (-85) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-495)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *1 (-1192 *5 *6 *7 *8)))) (-3925 (*1 *1 *2) (|partial| -12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-1192 *3 *4 *5 *6)))) (-3924 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-583 *8)) (-5 *3 (-1 (-85) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-495)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *1 (-1192 *5 *6 *7 *8)))) (-3924 (*1 *1 *2) (|partial| -12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-1192 *3 *4 *5 *6)))) (-3923 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 *9)) (-5 *4 (-1 (-85) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-977 *6 *7 *8)) (-4 *6 (-495)) (-4 *7 (-717)) (-4 *8 (-756)) (-5 *2 (-583 (-1192 *6 *7 *8 *9))) (-5 *1 (-1192 *6 *7 *8 *9)))) (-3923 (*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-583 (-1192 *4 *5 *6 *7))) (-5 *1 (-1192 *4 *5 *6 *7))))) +((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3723 (($) 23 T CONST)) (-3466 (((-3 $ "failed") $) 42 T ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ |#1|) 53 T ELT)) (-3126 (((-694)) 40 T CONST)) (-1264 (((-85) $ $) 6 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 55 T ELT) (($ |#1| $) 54 T ELT))) +(((-1193 |#1|) (-113) (-961)) (T -1193)) +NIL +(-13 (-961) (-82 |t#1| |t#1|) (-555 |t#1|) (-10 -7 (IF (|has| |t#1| (-146)) (-6 (-38 |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-146)) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-555 (-484)) . T) ((-555 |#1|) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-582 |#1|) |has| |#1| (-146)) ((-654 |#1|) |has| |#1| (-146)) ((-663) . T) ((-963 |#1|) . T) ((-968 |#1|) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T)) +((-2568 (((-85) $ $) 69 T ELT)) (-3188 (((-85) $) NIL T ELT)) (-3933 (((-583 |#1|) $) 54 T ELT)) (-3946 (($ $ (-694)) 47 T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3934 (($ $ (-694)) 25 (|has| |#2| (-146)) ELT) (($ $ $) 26 (|has| |#2| (-146)) ELT)) (-3723 (($) NIL T CONST)) (-3938 (($ $ $) 72 T ELT) (($ $ (-739 |#1|)) 58 T ELT) (($ $ |#1|) 62 T ELT)) (-3157 (((-3 (-739 |#1|) #1#) $) NIL T ELT)) (-3156 (((-739 |#1|) $) NIL T ELT)) (-3958 (($ $) 40 T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-3950 (((-85) $) NIL T ELT)) (-3949 (($ $) NIL T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2420 (((-694) $) NIL T ELT)) (-2821 (((-583 $) $) NIL T ELT)) (-3936 (((-85) $) NIL T ELT)) (-3937 (($ (-739 |#1|) |#2|) 39 T ELT)) (-3935 (($ $) 41 T ELT)) (-3940 (((-2 (|:| |k| (-739 |#1|)) (|:| |c| |#2|)) $) 13 T ELT)) (-3954 (((-739 |#1|) $) NIL T ELT)) (-3955 (((-739 |#1|) $) 42 T ELT)) (-3957 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3939 (($ $ $) 71 T ELT) (($ $ (-739 |#1|)) 60 T ELT) (($ $ |#1|) 64 T ELT)) (-1748 (((-2 (|:| |k| (-739 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-2894 (((-739 |#1|) $) 36 T ELT)) (-3174 ((|#2| $) 38 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3947 (((-694) $) 44 T ELT)) (-3952 (((-85) $) 48 T ELT)) (-3951 ((|#2| $) NIL T ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-739 |#1|)) 31 T ELT) (($ |#1|) 32 T ELT) (($ |#2|) NIL T ELT) (($ (-484)) NIL T ELT)) (-3816 (((-583 |#2|) $) NIL T ELT)) (-3676 ((|#2| $ (-739 |#1|)) NIL T ELT)) (-3953 ((|#2| $ $) 78 T ELT) ((|#2| $ (-739 |#1|)) NIL T ELT)) (-3126 (((-694)) NIL T CONST)) (-1264 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) 14 T CONST)) (-2666 (($) 20 T CONST)) (-2665 (((-583 (-2 (|:| |k| (-739 |#1|)) (|:| |c| |#2|))) $) NIL T ELT)) (-3056 (((-85) $ $) 45 T ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) 29 T ELT)) (** (($ $ (-694)) NIL T ELT) (($ $ (-830)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ |#2| $) 28 T ELT) (($ $ |#2|) 70 T ELT) (($ |#2| (-739 |#1|)) NIL T ELT) (($ |#1| $) 34 T ELT) (($ $ $) NIL T ELT))) +(((-1194 |#1| |#2|) (-13 (-334 |#2| (-739 |#1|)) (-1201 |#1| |#2|)) (-756) (-961)) (T -1194)) +NIL +((-3941 ((|#3| |#3| (-694)) 28 T ELT)) (-3942 ((|#3| |#3| (-694)) 34 T ELT)) (-3926 ((|#3| |#3| |#3| (-694)) 35 T ELT))) +(((-1195 |#1| |#2| |#3|) (-10 -7 (-15 -3942 (|#3| |#3| (-694))) (-15 -3941 (|#3| |#3| (-694))) (-15 -3926 (|#3| |#3| |#3| (-694)))) (-13 (-961) (-654 (-349 (-484)))) (-756) (-1201 |#2| |#1|)) (T -1195)) +((-3926 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-694)) (-4 *4 (-13 (-961) (-654 (-349 (-484))))) (-4 *5 (-756)) (-5 *1 (-1195 *4 *5 *2)) (-4 *2 (-1201 *5 *4)))) (-3941 (*1 *2 *2 *3) (-12 (-5 *3 (-694)) (-4 *4 (-13 (-961) (-654 (-349 (-484))))) (-4 *5 (-756)) (-5 *1 (-1195 *4 *5 *2)) (-4 *2 (-1201 *5 *4)))) (-3942 (*1 *2 *2 *3) (-12 (-5 *3 (-694)) (-4 *4 (-13 (-961) (-654 (-349 (-484))))) (-4 *5 (-756)) (-5 *1 (-1195 *4 *5 *2)) (-4 *2 (-1201 *5 *4))))) +((-3931 (((-85) $) 15 T ELT)) (-3932 (((-85) $) 14 T ELT)) (-3927 (($ $) 19 T ELT) (($ $ (-694)) 21 T ELT))) +(((-1196 |#1| |#2|) (-10 -7 (-15 -3927 (|#1| |#1| (-694))) (-15 -3927 (|#1| |#1|)) (-15 -3931 ((-85) |#1|)) (-15 -3932 ((-85) |#1|))) (-1197 |#2|) (-312)) (T -1196)) +NIL +((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-2064 (((-2 (|:| -1771 $) (|:| -3981 $) (|:| |associate| $)) $) 55 T ELT)) (-2063 (($ $) 54 T ELT)) (-2061 (((-85) $) 52 T ELT)) (-3931 (((-85) $) 114 T ELT)) (-3928 (((-694)) 110 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3774 (($ $) 91 T ELT)) (-3970 (((-347 $) $) 90 T ELT)) (-1607 (((-85) $ $) 75 T ELT)) (-3723 (($) 23 T CONST)) (-3157 (((-3 |#1| "failed") $) 121 T ELT)) (-3156 ((|#1| $) 122 T ELT)) (-2564 (($ $ $) 71 T ELT)) (-3466 (((-3 $ "failed") $) 42 T ELT)) (-2563 (($ $ $) 72 T ELT)) (-2741 (((-2 (|:| -3953 (-583 $)) (|:| -2409 $)) (-583 $)) 66 T ELT)) (-1763 (($ $ (-694)) 107 (OR (|has| |#1| (-118)) (|has| |#1| (-319))) ELT) (($ $) 106 (OR (|has| |#1| (-118)) (|has| |#1| (-319))) ELT)) (-3722 (((-85) $) 89 T ELT)) (-3771 (((-743 (-830)) $) 104 (OR (|has| |#1| (-118)) (|has| |#1| (-319))) ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-1604 (((-3 (-583 $) #1="failed") (-583 $) $) 68 T ELT)) (-1890 (($ $ $) 60 T ELT) (($ (-583 $)) 59 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-2484 (($ $) 88 T ELT)) (-3930 (((-85) $) 113 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-2708 (((-1084 $) (-1084 $) (-1084 $)) 58 T ELT)) (-3144 (($ $ $) 62 T ELT) (($ (-583 $)) 61 T ELT)) (-3731 (((-347 $) $) 92 T ELT)) (-3929 (((-743 (-830))) 111 T ELT)) (-1605 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 69 T ELT)) (-3465 (((-3 $ "failed") $ $) 56 T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) 65 T ELT)) (-1606 (((-694) $) 74 T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 73 T ELT)) (-1764 (((-3 (-694) "failed") $ $) 105 (OR (|has| |#1| (-118)) (|has| |#1| (-319))) ELT)) (-3910 (((-107)) 119 T ELT)) (-3947 (((-743 (-830)) $) 112 T ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ $) 57 T ELT) (($ (-349 (-484))) 84 T ELT) (($ |#1|) 120 T ELT)) (-2702 (((-632 $) $) 103 (OR (|has| |#1| (-118)) (|has| |#1| (-319))) ELT)) (-3126 (((-694)) 40 T CONST)) (-1264 (((-85) $ $) 6 T ELT)) (-2062 (((-85) $ $) 53 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-3932 (((-85) $) 115 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-3927 (($ $) 109 (|has| |#1| (-319)) ELT) (($ $ (-694)) 108 (|has| |#1| (-319)) ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-3948 (($ $ $) 83 T ELT) (($ $ |#1|) 118 T ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT) (($ $ (-484)) 87 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-349 (-484))) 86 T ELT) (($ (-349 (-484)) $) 85 T ELT) (($ $ |#1|) 117 T ELT) (($ |#1| $) 116 T ELT))) +(((-1197 |#1|) (-113) (-312)) (T -1197)) +((-3932 (*1 *2 *1) (-12 (-4 *1 (-1197 *3)) (-4 *3 (-312)) (-5 *2 (-85)))) (-3931 (*1 *2 *1) (-12 (-4 *1 (-1197 *3)) (-4 *3 (-312)) (-5 *2 (-85)))) (-3930 (*1 *2 *1) (-12 (-4 *1 (-1197 *3)) (-4 *3 (-312)) (-5 *2 (-85)))) (-3947 (*1 *2 *1) (-12 (-4 *1 (-1197 *3)) (-4 *3 (-312)) (-5 *2 (-743 (-830))))) (-3929 (*1 *2) (-12 (-4 *1 (-1197 *3)) (-4 *3 (-312)) (-5 *2 (-743 (-830))))) (-3928 (*1 *2) (-12 (-4 *1 (-1197 *3)) (-4 *3 (-312)) (-5 *2 (-694)))) (-3927 (*1 *1 *1) (-12 (-4 *1 (-1197 *2)) (-4 *2 (-312)) (-4 *2 (-319)))) (-3927 (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-1197 *3)) (-4 *3 (-312)) (-4 *3 (-319))))) +(-13 (-312) (-950 |t#1|) (-1186 |t#1|) (-10 -8 (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-344)) |%noBranch|) (-15 -3932 ((-85) $)) (-15 -3931 ((-85) $)) (-15 -3930 ((-85) $)) (-15 -3947 ((-743 (-830)) $)) (-15 -3929 ((-743 (-830)))) (-15 -3928 ((-694))) (IF (|has| |t#1| (-319)) (PROGN (-6 (-344)) (-15 -3927 ($ $)) (-15 -3927 ($ $ (-694)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-349 (-484))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-349 (-484)) (-349 (-484))) . T) ((-82 |#1| |#1|) . T) ((-82 $ $) . T) ((-104) . T) ((-118) OR (|has| |#1| (-319)) (|has| |#1| (-118))) ((-120) |has| |#1| (-120)) ((-555 (-349 (-484))) . T) ((-555 (-484)) . T) ((-555 |#1|) . T) ((-555 $) . T) ((-552 (-772)) . T) ((-146) . T) ((-201) . T) ((-246) . T) ((-258) . T) ((-312) . T) ((-344) OR (|has| |#1| (-319)) (|has| |#1| (-118))) ((-391) . T) ((-495) . T) ((-13) . T) ((-588 (-349 (-484))) . T) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 (-349 (-484))) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-582 (-349 (-484))) . T) ((-582 |#1|) . T) ((-582 $) . T) ((-654 (-349 (-484))) . T) ((-654 |#1|) . T) ((-654 $) . T) ((-663) . T) ((-832) . T) ((-950 |#1|) . T) ((-963 (-349 (-484))) . T) ((-963 |#1|) . T) ((-963 $) . T) ((-968 (-349 (-484))) . T) ((-968 |#1|) . T) ((-968 $) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T) ((-1133) . T) ((-1186 |#1|) . T)) +((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-3933 (((-583 |#1|) $) 55 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3934 (($ $ $) 58 (|has| |#2| (-146)) ELT) (($ $ (-694)) 57 (|has| |#2| (-146)) ELT)) (-3723 (($) 23 T CONST)) (-3938 (($ $ |#1|) 69 T ELT) (($ $ (-739 |#1|)) 68 T ELT) (($ $ $) 67 T ELT)) (-3157 (((-3 (-739 |#1|) "failed") $) 79 T ELT)) (-3156 (((-739 |#1|) $) 80 T ELT)) (-3466 (((-3 $ "failed") $) 42 T ELT)) (-3950 (((-85) $) 60 T ELT)) (-3949 (($ $) 59 T ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3936 (((-85) $) 65 T ELT)) (-3937 (($ (-739 |#1|) |#2|) 66 T ELT)) (-3935 (($ $) 64 T ELT)) (-3940 (((-2 (|:| |k| (-739 |#1|)) (|:| |c| |#2|)) $) 75 T ELT)) (-3954 (((-739 |#1|) $) 76 T ELT)) (-3957 (($ (-1 |#2| |#2|) $) 56 T ELT)) (-3939 (($ $ |#1|) 72 T ELT) (($ $ (-739 |#1|)) 71 T ELT) (($ $ $) 70 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3952 (((-85) $) 62 T ELT)) (-3951 ((|#2| $) 61 T ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ |#2|) 83 T ELT) (($ (-739 |#1|)) 78 T ELT) (($ |#1|) 63 T ELT)) (-3953 ((|#2| $ (-739 |#1|)) 74 T ELT) ((|#2| $ $) 73 T ELT)) (-3126 (((-694)) 40 T CONST)) (-1264 (((-85) $ $) 6 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ |#2| $) 82 T ELT) (($ $ |#2|) 81 T ELT) (($ |#1| $) 77 T ELT))) +(((-1198 |#1| |#2|) (-113) (-756) (-961)) (T -1198)) +((* (*1 *1 *1 *2) (-12 (-4 *1 (-1198 *3 *2)) (-4 *3 (-756)) (-4 *2 (-961)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1198 *2 *3)) (-4 *2 (-756)) (-4 *3 (-961)))) (-3954 (*1 *2 *1) (-12 (-4 *1 (-1198 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)) (-5 *2 (-739 *3)))) (-3940 (*1 *2 *1) (-12 (-4 *1 (-1198 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)) (-5 *2 (-2 (|:| |k| (-739 *3)) (|:| |c| *4))))) (-3953 (*1 *2 *1 *3) (-12 (-5 *3 (-739 *4)) (-4 *1 (-1198 *4 *2)) (-4 *4 (-756)) (-4 *2 (-961)))) (-3953 (*1 *2 *1 *1) (-12 (-4 *1 (-1198 *3 *2)) (-4 *3 (-756)) (-4 *2 (-961)))) (-3939 (*1 *1 *1 *2) (-12 (-4 *1 (-1198 *2 *3)) (-4 *2 (-756)) (-4 *3 (-961)))) (-3939 (*1 *1 *1 *2) (-12 (-5 *2 (-739 *3)) (-4 *1 (-1198 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)))) (-3939 (*1 *1 *1 *1) (-12 (-4 *1 (-1198 *2 *3)) (-4 *2 (-756)) (-4 *3 (-961)))) (-3938 (*1 *1 *1 *2) (-12 (-4 *1 (-1198 *2 *3)) (-4 *2 (-756)) (-4 *3 (-961)))) (-3938 (*1 *1 *1 *2) (-12 (-5 *2 (-739 *3)) (-4 *1 (-1198 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)))) (-3938 (*1 *1 *1 *1) (-12 (-4 *1 (-1198 *2 *3)) (-4 *2 (-756)) (-4 *3 (-961)))) (-3937 (*1 *1 *2 *3) (-12 (-5 *2 (-739 *4)) (-4 *4 (-756)) (-4 *1 (-1198 *4 *3)) (-4 *3 (-961)))) (-3936 (*1 *2 *1) (-12 (-4 *1 (-1198 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)) (-5 *2 (-85)))) (-3935 (*1 *1 *1) (-12 (-4 *1 (-1198 *2 *3)) (-4 *2 (-756)) (-4 *3 (-961)))) (-3945 (*1 *1 *2) (-12 (-4 *1 (-1198 *2 *3)) (-4 *2 (-756)) (-4 *3 (-961)))) (-3952 (*1 *2 *1) (-12 (-4 *1 (-1198 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)) (-5 *2 (-85)))) (-3951 (*1 *2 *1) (-12 (-4 *1 (-1198 *3 *2)) (-4 *3 (-756)) (-4 *2 (-961)))) (-3950 (*1 *2 *1) (-12 (-4 *1 (-1198 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)) (-5 *2 (-85)))) (-3949 (*1 *1 *1) (-12 (-4 *1 (-1198 *2 *3)) (-4 *2 (-756)) (-4 *3 (-961)))) (-3934 (*1 *1 *1 *1) (-12 (-4 *1 (-1198 *2 *3)) (-4 *2 (-756)) (-4 *3 (-961)) (-4 *3 (-146)))) (-3934 (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-1198 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)) (-4 *4 (-146)))) (-3957 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1198 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)))) (-3933 (*1 *2 *1) (-12 (-4 *1 (-1198 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)) (-5 *2 (-583 *3))))) +(-13 (-961) (-1193 |t#2|) (-950 (-739 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -3954 ((-739 |t#1|) $)) (-15 -3940 ((-2 (|:| |k| (-739 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -3953 (|t#2| $ (-739 |t#1|))) (-15 -3953 (|t#2| $ $)) (-15 -3939 ($ $ |t#1|)) (-15 -3939 ($ $ (-739 |t#1|))) (-15 -3939 ($ $ $)) (-15 -3938 ($ $ |t#1|)) (-15 -3938 ($ $ (-739 |t#1|))) (-15 -3938 ($ $ $)) (-15 -3937 ($ (-739 |t#1|) |t#2|)) (-15 -3936 ((-85) $)) (-15 -3935 ($ $)) (-15 -3945 ($ |t#1|)) (-15 -3952 ((-85) $)) (-15 -3951 (|t#2| $)) (-15 -3950 ((-85) $)) (-15 -3949 ($ $)) (IF (|has| |t#2| (-146)) (PROGN (-15 -3934 ($ $ $)) (-15 -3934 ($ $ (-694)))) |%noBranch|) (-15 -3957 ($ (-1 |t#2| |t#2|) $)) (-15 -3933 ((-583 |t#1|) $)) (IF (|has| |t#2| (-6 -3987)) (-6 -3987) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-146)) ((-72) . T) ((-82 |#2| |#2|) . T) ((-104) . T) ((-555 (-484)) . T) ((-555 (-739 |#1|)) . T) ((-555 |#2|) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 |#2|) . T) ((-588 $) . T) ((-590 |#2|) . T) ((-590 $) . T) ((-582 |#2|) |has| |#2| (-146)) ((-654 |#2|) |has| |#2| (-146)) ((-663) . T) ((-950 (-739 |#1|)) . T) ((-963 |#2|) . T) ((-968 |#2|) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T) ((-1193 |#2|) . T)) +((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-3933 (((-583 |#1|) $) 99 T ELT)) (-3946 (($ $ (-694)) 103 T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3934 (($ $ $) NIL (|has| |#2| (-146)) ELT) (($ $ (-694)) NIL (|has| |#2| (-146)) ELT)) (-3723 (($) NIL T CONST)) (-3938 (($ $ |#1|) NIL T ELT) (($ $ (-739 |#1|)) NIL T ELT) (($ $ $) NIL T ELT)) (-3157 (((-3 (-739 |#1|) #1#) $) NIL T ELT) (((-3 (-803 |#1|) #1#) $) NIL T ELT)) (-3156 (((-739 |#1|) $) NIL T ELT) (((-803 |#1|) $) NIL T ELT)) (-3958 (($ $) 102 T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-3950 (((-85) $) 90 T ELT)) (-3949 (($ $) 93 T ELT)) (-3943 (($ $ $ (-694)) 104 T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2420 (((-694) $) NIL T ELT)) (-2821 (((-583 $) $) NIL T ELT)) (-3936 (((-85) $) NIL T ELT)) (-3937 (($ (-739 |#1|) |#2|) NIL T ELT) (($ (-803 |#1|) |#2|) 28 T ELT)) (-3935 (($ $) 120 T ELT)) (-3940 (((-2 (|:| |k| (-739 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-3954 (((-739 |#1|) $) NIL T ELT)) (-3955 (((-739 |#1|) $) NIL T ELT)) (-3957 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3939 (($ $ |#1|) NIL T ELT) (($ $ (-739 |#1|)) NIL T ELT) (($ $ $) NIL T ELT)) (-3941 (($ $ (-694)) 113 (|has| |#2| (-654 (-349 (-484)))) ELT)) (-1748 (((-2 (|:| |k| (-803 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-2894 (((-803 |#1|) $) 84 T ELT)) (-3174 ((|#2| $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3942 (($ $ (-694)) 110 (|has| |#2| (-654 (-349 (-484)))) ELT)) (-3947 (((-694) $) 100 T ELT)) (-3952 (((-85) $) 85 T ELT)) (-3951 ((|#2| $) 88 T ELT)) (-3945 (((-772) $) 70 T ELT) (($ (-484)) NIL T ELT) (($ |#2|) 59 T ELT) (($ (-739 |#1|)) NIL T ELT) (($ |#1|) 72 T ELT) (($ (-803 |#1|)) NIL T ELT) (($ (-606 |#1| |#2|)) 47 T ELT) (((-1194 |#1| |#2|) $) 77 T ELT) (((-1203 |#1| |#2|) $) 82 T ELT)) (-3816 (((-583 |#2|) $) NIL T ELT)) (-3676 ((|#2| $ (-803 |#1|)) NIL T ELT)) (-3953 ((|#2| $ (-739 |#1|)) NIL T ELT) ((|#2| $ $) NIL T ELT)) (-3126 (((-694)) NIL T CONST)) (-1264 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) 21 T CONST)) (-2666 (($) 27 T CONST)) (-2665 (((-583 (-2 (|:| |k| (-803 |#1|)) (|:| |c| |#2|))) $) NIL T ELT)) (-3944 (((-3 (-606 |#1| |#2|) #1#) $) 119 T ELT)) (-3056 (((-85) $ $) 78 T ELT)) (-3836 (($ $) 112 T ELT) (($ $ $) 111 T ELT)) (-3838 (($ $ $) 20 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 48 T ELT) (($ |#2| $) 19 T ELT) (($ $ |#2|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ |#2| (-803 |#1|)) NIL T ELT))) +(((-1199 |#1| |#2|) (-13 (-1201 |#1| |#2|) (-334 |#2| (-803 |#1|)) (-10 -8 (-15 -3945 ($ (-606 |#1| |#2|))) (-15 -3945 ((-1194 |#1| |#2|) $)) (-15 -3945 ((-1203 |#1| |#2|) $)) (-15 -3944 ((-3 (-606 |#1| |#2|) "failed") $)) (-15 -3943 ($ $ $ (-694))) (IF (|has| |#2| (-654 (-349 (-484)))) (PROGN (-15 -3942 ($ $ (-694))) (-15 -3941 ($ $ (-694)))) |%noBranch|))) (-756) (-146)) (T -1199)) +((-3945 (*1 *1 *2) (-12 (-5 *2 (-606 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146)) (-5 *1 (-1199 *3 *4)))) (-3945 (*1 *2 *1) (-12 (-5 *2 (-1194 *3 *4)) (-5 *1 (-1199 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146)))) (-3945 (*1 *2 *1) (-12 (-5 *2 (-1203 *3 *4)) (-5 *1 (-1199 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146)))) (-3944 (*1 *2 *1) (|partial| -12 (-5 *2 (-606 *3 *4)) (-5 *1 (-1199 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146)))) (-3943 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-1199 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146)))) (-3942 (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-1199 *3 *4)) (-4 *4 (-654 (-349 (-484)))) (-4 *3 (-756)) (-4 *4 (-146)))) (-3941 (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-1199 *3 *4)) (-4 *4 (-654 (-349 (-484)))) (-4 *3 (-756)) (-4 *4 (-146))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-3933 (((-583 (-1089)) $) NIL T ELT)) (-3961 (($ (-1194 (-1089) |#1|)) NIL T ELT)) (-3946 (($ $ (-694)) NIL T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3934 (($ $ $) NIL (|has| |#1| (-146)) ELT) (($ $ (-694)) NIL (|has| |#1| (-146)) ELT)) (-3723 (($) NIL T CONST)) (-3938 (($ $ (-1089)) NIL T ELT) (($ $ (-739 (-1089))) NIL T ELT) (($ $ $) NIL T ELT)) (-3157 (((-3 (-739 (-1089)) #1#) $) NIL T ELT)) (-3156 (((-739 (-1089)) $) NIL T ELT)) (-3466 (((-3 $ #1#) $) NIL T ELT)) (-3950 (((-85) $) NIL T ELT)) (-3949 (($ $) NIL T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-3936 (((-85) $) NIL T ELT)) (-3937 (($ (-739 (-1089)) |#1|) NIL T ELT)) (-3935 (($ $) NIL T ELT)) (-3940 (((-2 (|:| |k| (-739 (-1089))) (|:| |c| |#1|)) $) NIL T ELT)) (-3954 (((-739 (-1089)) $) NIL T ELT)) (-3955 (((-739 (-1089)) $) NIL T ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3939 (($ $ (-1089)) NIL T ELT) (($ $ (-739 (-1089))) NIL T ELT) (($ $ $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3962 (((-1194 (-1089) |#1|) $) NIL T ELT)) (-3947 (((-694) $) NIL T ELT)) (-3952 (((-85) $) NIL T ELT)) (-3951 ((|#1| $) NIL T ELT)) (-3945 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-739 (-1089))) NIL T ELT) (($ (-1089)) NIL T ELT)) (-3953 ((|#1| $ (-739 (-1089))) NIL T ELT) ((|#1| $ $) NIL T ELT)) (-3126 (((-694)) NIL T CONST)) (-1264 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) NIL T CONST)) (-3960 (((-583 (-2 (|:| |k| (-1089)) (|:| |c| $))) $) NIL T ELT)) (-2666 (($) NIL T CONST)) (-3056 (((-85) $ $) NIL T ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ (-1089) $) NIL T ELT))) +(((-1200 |#1|) (-13 (-1201 (-1089) |#1|) (-10 -8 (-15 -3962 ((-1194 (-1089) |#1|) $)) (-15 -3961 ($ (-1194 (-1089) |#1|))) (-15 -3960 ((-583 (-2 (|:| |k| (-1089)) (|:| |c| $))) $)))) (-961)) (T -1200)) +((-3962 (*1 *2 *1) (-12 (-5 *2 (-1194 (-1089) *3)) (-5 *1 (-1200 *3)) (-4 *3 (-961)))) (-3961 (*1 *1 *2) (-12 (-5 *2 (-1194 (-1089) *3)) (-4 *3 (-961)) (-5 *1 (-1200 *3)))) (-3960 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |k| (-1089)) (|:| |c| (-1200 *3))))) (-5 *1 (-1200 *3)) (-4 *3 (-961))))) +((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-3933 (((-583 |#1|) $) 55 T ELT)) (-3946 (($ $ (-694)) 89 T ELT)) (-1311 (((-3 $ "failed") $ $) 26 T ELT)) (-3934 (($ $ $) 58 (|has| |#2| (-146)) ELT) (($ $ (-694)) 57 (|has| |#2| (-146)) ELT)) (-3723 (($) 23 T CONST)) (-3938 (($ $ |#1|) 69 T ELT) (($ $ (-739 |#1|)) 68 T ELT) (($ $ $) 67 T ELT)) (-3157 (((-3 (-739 |#1|) "failed") $) 79 T ELT)) (-3156 (((-739 |#1|) $) 80 T ELT)) (-3466 (((-3 $ "failed") $) 42 T ELT)) (-3950 (((-85) $) 60 T ELT)) (-3949 (($ $) 59 T ELT)) (-1213 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3936 (((-85) $) 65 T ELT)) (-3937 (($ (-739 |#1|) |#2|) 66 T ELT)) (-3935 (($ $) 64 T ELT)) (-3940 (((-2 (|:| |k| (-739 |#1|)) (|:| |c| |#2|)) $) 75 T ELT)) (-3954 (((-739 |#1|) $) 76 T ELT)) (-3955 (((-739 |#1|) $) 91 T ELT)) (-3957 (($ (-1 |#2| |#2|) $) 56 T ELT)) (-3939 (($ $ |#1|) 72 T ELT) (($ $ (-739 |#1|)) 71 T ELT) (($ $ $) 70 T ELT)) (-3242 (((-1072) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3947 (((-694) $) 90 T ELT)) (-3952 (((-85) $) 62 T ELT)) (-3951 ((|#2| $) 61 T ELT)) (-3945 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ |#2|) 83 T ELT) (($ (-739 |#1|)) 78 T ELT) (($ |#1|) 63 T ELT)) (-3953 ((|#2| $ (-739 |#1|)) 74 T ELT) ((|#2| $ $) 73 T ELT)) (-3126 (((-694)) 40 T CONST)) (-1264 (((-85) $ $) 6 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3836 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3838 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ |#2| $) 82 T ELT) (($ $ |#2|) 81 T ELT) (($ |#1| $) 77 T ELT))) +(((-1201 |#1| |#2|) (-113) (-756) (-961)) (T -1201)) +((-3955 (*1 *2 *1) (-12 (-4 *1 (-1201 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)) (-5 *2 (-739 *3)))) (-3947 (*1 *2 *1) (-12 (-4 *1 (-1201 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)) (-5 *2 (-694)))) (-3946 (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-1201 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961))))) +(-13 (-1198 |t#1| |t#2|) (-10 -8 (-15 -3955 ((-739 |t#1|) $)) (-15 -3947 ((-694) $)) (-15 -3946 ($ $ (-694))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-146)) ((-72) . T) ((-82 |#2| |#2|) . T) ((-104) . T) ((-555 (-484)) . T) ((-555 (-739 |#1|)) . T) ((-555 |#2|) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 |#2|) . T) ((-588 $) . T) ((-590 |#2|) . T) ((-590 $) . T) ((-582 |#2|) |has| |#2| (-146)) ((-654 |#2|) |has| |#2| (-146)) ((-663) . T) ((-950 (-739 |#1|)) . T) ((-963 |#2|) . T) ((-968 |#2|) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T) ((-1193 |#2|) . T) ((-1198 |#1| |#2|) . T)) +((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3723 (($) NIL T CONST)) (-3157 (((-3 |#2| #1#) $) NIL T ELT)) (-3156 ((|#2| $) NIL T ELT)) (-3958 (($ $) NIL T ELT)) (-3466 (((-3 $ #1#) $) 43 T ELT)) (-3950 (((-85) $) 37 T ELT)) (-3949 (($ $) 38 T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2420 (((-694) $) NIL T ELT)) (-2821 (((-583 $) $) NIL T ELT)) (-3936 (((-85) $) NIL T ELT)) (-3937 (($ |#2| |#1|) NIL T ELT)) (-3954 ((|#2| $) 25 T ELT)) (-3955 ((|#2| $) 23 T ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1748 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL T ELT)) (-2894 ((|#2| $) NIL T ELT)) (-3174 ((|#1| $) NIL T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3952 (((-85) $) 33 T ELT)) (-3951 ((|#1| $) 34 T ELT)) (-3945 (((-772) $) 66 T ELT) (($ (-484)) 47 T ELT) (($ |#1|) 42 T ELT) (($ |#2|) NIL T ELT)) (-3816 (((-583 |#1|) $) NIL T ELT)) (-3676 ((|#1| $ |#2|) NIL T ELT)) (-3953 ((|#1| $ |#2|) 29 T ELT)) (-3126 (((-694)) 14 T CONST)) (-1264 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) 30 T CONST)) (-2666 (($) 11 T CONST)) (-2665 (((-583 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL T ELT)) (-3056 (((-85) $ $) 31 T ELT)) (-3948 (($ $ |#1|) 68 (|has| |#1| (-312)) ELT)) (-3836 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3838 (($ $ $) 51 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) 53 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 52 T ELT) (($ |#1| $) 48 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| |#2|) NIL T ELT)) (-3956 (((-694) $) 18 T ELT))) +(((-1202 |#1| |#2|) (-13 (-961) (-1193 |#1|) (-334 |#1| |#2|) (-555 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -3956 ((-694) $)) (-15 -3955 (|#2| $)) (-15 -3954 (|#2| $)) (-15 -3958 ($ $)) (-15 -3953 (|#1| $ |#2|)) (-15 -3952 ((-85) $)) (-15 -3951 (|#1| $)) (-15 -3950 ((-85) $)) (-15 -3949 ($ $)) (-15 -3957 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-312)) (-15 -3948 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -3987)) (-6 -3987) |%noBranch|) (IF (|has| |#1| (-6 -3991)) (-6 -3991) |%noBranch|) (IF (|has| |#1| (-6 -3992)) (-6 -3992) |%noBranch|))) (-961) (-754)) (T -1202)) +((* (*1 *1 *1 *2) (-12 (-5 *1 (-1202 *2 *3)) (-4 *2 (-961)) (-4 *3 (-754)))) (-3958 (*1 *1 *1) (-12 (-5 *1 (-1202 *2 *3)) (-4 *2 (-961)) (-4 *3 (-754)))) (-3957 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-1202 *3 *4)) (-4 *4 (-754)))) (-3956 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-1202 *3 *4)) (-4 *3 (-961)) (-4 *4 (-754)))) (-3955 (*1 *2 *1) (-12 (-4 *2 (-754)) (-5 *1 (-1202 *3 *2)) (-4 *3 (-961)))) (-3954 (*1 *2 *1) (-12 (-4 *2 (-754)) (-5 *1 (-1202 *3 *2)) (-4 *3 (-961)))) (-3953 (*1 *2 *1 *3) (-12 (-4 *2 (-961)) (-5 *1 (-1202 *2 *3)) (-4 *3 (-754)))) (-3952 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1202 *3 *4)) (-4 *3 (-961)) (-4 *4 (-754)))) (-3951 (*1 *2 *1) (-12 (-4 *2 (-961)) (-5 *1 (-1202 *2 *3)) (-4 *3 (-754)))) (-3950 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1202 *3 *4)) (-4 *3 (-961)) (-4 *4 (-754)))) (-3949 (*1 *1 *1) (-12 (-5 *1 (-1202 *2 *3)) (-4 *2 (-961)) (-4 *3 (-754)))) (-3948 (*1 *1 *1 *2) (-12 (-5 *1 (-1202 *2 *3)) (-4 *2 (-312)) (-4 *2 (-961)) (-4 *3 (-754))))) +((-2568 (((-85) $ $) 27 T ELT)) (-3188 (((-85) $) NIL T ELT)) (-3933 (((-583 |#1|) $) 132 T ELT)) (-3961 (($ (-1194 |#1| |#2|)) 50 T ELT)) (-3946 (($ $ (-694)) 38 T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3934 (($ $ $) 54 (|has| |#2| (-146)) ELT) (($ $ (-694)) 52 (|has| |#2| (-146)) ELT)) (-3723 (($) NIL T CONST)) (-3938 (($ $ |#1|) 114 T ELT) (($ $ (-739 |#1|)) 115 T ELT) (($ $ $) 26 T ELT)) (-3157 (((-3 (-739 |#1|) #1#) $) NIL T ELT)) (-3156 (((-739 |#1|) $) NIL T ELT)) (-3466 (((-3 $ #1#) $) 122 T ELT)) (-3950 (((-85) $) 117 T ELT)) (-3949 (($ $) 118 T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-3936 (((-85) $) NIL T ELT)) (-3937 (($ (-739 |#1|) |#2|) 20 T ELT)) (-3935 (($ $) NIL T ELT)) (-3940 (((-2 (|:| |k| (-739 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-3954 (((-739 |#1|) $) 123 T ELT)) (-3955 (((-739 |#1|) $) 126 T ELT)) (-3957 (($ (-1 |#2| |#2|) $) 131 T ELT)) (-3939 (($ $ |#1|) 112 T ELT) (($ $ (-739 |#1|)) 113 T ELT) (($ $ $) 62 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3962 (((-1194 |#1| |#2|) $) 94 T ELT)) (-3947 (((-694) $) 129 T ELT)) (-3952 (((-85) $) 81 T ELT)) (-3951 ((|#2| $) 32 T ELT)) (-3945 (((-772) $) 73 T ELT) (($ (-484)) 87 T ELT) (($ |#2|) 85 T ELT) (($ (-739 |#1|)) 18 T ELT) (($ |#1|) 84 T ELT)) (-3953 ((|#2| $ (-739 |#1|)) 116 T ELT) ((|#2| $ $) 28 T ELT)) (-3126 (((-694)) 120 T CONST)) (-1264 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) 15 T CONST)) (-3960 (((-583 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 59 T ELT)) (-2666 (($) 33 T CONST)) (-3056 (((-85) $ $) 14 T ELT)) (-3836 (($ $) 98 T ELT) (($ $ $) 101 T ELT)) (-3838 (($ $ $) 61 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) 55 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) 53 T ELT) (($ (-484) $) 106 T ELT) (($ $ $) 22 T ELT) (($ |#2| $) 19 T ELT) (($ $ |#2|) 21 T ELT) (($ |#1| $) 92 T ELT))) +(((-1203 |#1| |#2|) (-13 (-1201 |#1| |#2|) (-10 -8 (-15 -3962 ((-1194 |#1| |#2|) $)) (-15 -3961 ($ (-1194 |#1| |#2|))) (-15 -3960 ((-583 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-756) (-961)) (T -1203)) +((-3962 (*1 *2 *1) (-12 (-5 *2 (-1194 *3 *4)) (-5 *1 (-1203 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)))) (-3961 (*1 *1 *2) (-12 (-5 *2 (-1194 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)) (-5 *1 (-1203 *3 *4)))) (-3960 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |k| *3) (|:| |c| (-1203 *3 *4))))) (-5 *1 (-1203 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3964 (($ (-583 (-830))) 11 T ELT)) (-3963 (((-884) $) 12 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3945 (((-772) $) 25 T ELT) (($ (-884)) 14 T ELT) (((-884) $) 13 T ELT)) (-1264 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 17 T ELT))) +(((-1204) (-13 (-1013) (-429 (-884)) (-10 -8 (-15 -3964 ($ (-583 (-830)))) (-15 -3963 ((-884) $))))) (T -1204)) +((-3964 (*1 *1 *2) (-12 (-5 *2 (-583 (-830))) (-5 *1 (-1204)))) (-3963 (*1 *2 *1) (-12 (-5 *2 (-884)) (-5 *1 (-1204))))) +((-3965 (((-583 (-1068 |#1|)) (-1 (-583 (-1068 |#1|)) (-583 (-1068 |#1|))) (-484)) 16 T ELT) (((-1068 |#1|) (-1 (-1068 |#1|) (-1068 |#1|))) 13 T ELT))) +(((-1205 |#1|) (-10 -7 (-15 -3965 ((-1068 |#1|) (-1 (-1068 |#1|) (-1068 |#1|)))) (-15 -3965 ((-583 (-1068 |#1|)) (-1 (-583 (-1068 |#1|)) (-583 (-1068 |#1|))) (-484)))) (-1128)) (T -1205)) +((-3965 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-583 (-1068 *5)) (-583 (-1068 *5)))) (-5 *4 (-484)) (-5 *2 (-583 (-1068 *5))) (-5 *1 (-1205 *5)) (-4 *5 (-1128)))) (-3965 (*1 *2 *3) (-12 (-5 *3 (-1 (-1068 *4) (-1068 *4))) (-5 *2 (-1068 *4)) (-5 *1 (-1205 *4)) (-4 *4 (-1128))))) +((-3967 (((-583 (-2 (|:| -1746 (-1084 |#1|)) (|:| -3224 (-583 (-857 |#1|))))) (-583 (-857 |#1|))) 174 T ELT) (((-583 (-2 (|:| -1746 (-1084 |#1|)) (|:| -3224 (-583 (-857 |#1|))))) (-583 (-857 |#1|)) (-85)) 173 T ELT) (((-583 (-2 (|:| -1746 (-1084 |#1|)) (|:| -3224 (-583 (-857 |#1|))))) (-583 (-857 |#1|)) (-85) (-85)) 172 T ELT) (((-583 (-2 (|:| -1746 (-1084 |#1|)) (|:| -3224 (-583 (-857 |#1|))))) (-583 (-857 |#1|)) (-85) (-85) (-85)) 171 T ELT) (((-583 (-2 (|:| -1746 (-1084 |#1|)) (|:| -3224 (-583 (-857 |#1|))))) (-958 |#1| |#2|)) 156 T ELT)) (-3966 (((-583 (-958 |#1| |#2|)) (-583 (-857 |#1|))) 85 T ELT) (((-583 (-958 |#1| |#2|)) (-583 (-857 |#1|)) (-85)) 84 T ELT) (((-583 (-958 |#1| |#2|)) (-583 (-857 |#1|)) (-85) (-85)) 83 T ELT)) (-3970 (((-583 (-1059 |#1| (-469 (-773 |#3|)) (-773 |#3|) (-703 |#1| (-773 |#3|)))) (-958 |#1| |#2|)) 73 T ELT)) (-3968 (((-583 (-583 (-937 (-349 |#1|)))) (-583 (-857 |#1|))) 140 T ELT) (((-583 (-583 (-937 (-349 |#1|)))) (-583 (-857 |#1|)) (-85)) 139 T ELT) (((-583 (-583 (-937 (-349 |#1|)))) (-583 (-857 |#1|)) (-85) (-85)) 138 T ELT) (((-583 (-583 (-937 (-349 |#1|)))) (-583 (-857 |#1|)) (-85) (-85) (-85)) 137 T ELT) (((-583 (-583 (-937 (-349 |#1|)))) (-958 |#1| |#2|)) 132 T ELT)) (-3969 (((-583 (-583 (-937 (-349 |#1|)))) (-583 (-857 |#1|))) 145 T ELT) (((-583 (-583 (-937 (-349 |#1|)))) (-583 (-857 |#1|)) (-85)) 144 T ELT) (((-583 (-583 (-937 (-349 |#1|)))) (-583 (-857 |#1|)) (-85) (-85)) 143 T ELT) (((-583 (-583 (-937 (-349 |#1|)))) (-958 |#1| |#2|)) 142 T ELT)) (-3971 (((-583 (-703 |#1| (-773 |#3|))) (-1059 |#1| (-469 (-773 |#3|)) (-773 |#3|) (-703 |#1| (-773 |#3|)))) 111 T ELT) (((-1084 (-937 (-349 |#1|))) (-1084 |#1|)) 102 T ELT) (((-857 (-937 (-349 |#1|))) (-703 |#1| (-773 |#3|))) 109 T ELT) (((-857 (-937 (-349 |#1|))) (-857 |#1|)) 107 T ELT) (((-703 |#1| (-773 |#3|)) (-703 |#1| (-773 |#2|))) 33 T ELT))) +(((-1206 |#1| |#2| |#3|) (-10 -7 (-15 -3966 ((-583 (-958 |#1| |#2|)) (-583 (-857 |#1|)) (-85) (-85))) (-15 -3966 ((-583 (-958 |#1| |#2|)) (-583 (-857 |#1|)) (-85))) (-15 -3966 ((-583 (-958 |#1| |#2|)) (-583 (-857 |#1|)))) (-15 -3967 ((-583 (-2 (|:| -1746 (-1084 |#1|)) (|:| -3224 (-583 (-857 |#1|))))) (-958 |#1| |#2|))) (-15 -3967 ((-583 (-2 (|:| -1746 (-1084 |#1|)) (|:| -3224 (-583 (-857 |#1|))))) (-583 (-857 |#1|)) (-85) (-85) (-85))) (-15 -3967 ((-583 (-2 (|:| -1746 (-1084 |#1|)) (|:| -3224 (-583 (-857 |#1|))))) (-583 (-857 |#1|)) (-85) (-85))) (-15 -3967 ((-583 (-2 (|:| -1746 (-1084 |#1|)) (|:| -3224 (-583 (-857 |#1|))))) (-583 (-857 |#1|)) (-85))) (-15 -3967 ((-583 (-2 (|:| -1746 (-1084 |#1|)) (|:| -3224 (-583 (-857 |#1|))))) (-583 (-857 |#1|)))) (-15 -3968 ((-583 (-583 (-937 (-349 |#1|)))) (-958 |#1| |#2|))) (-15 -3968 ((-583 (-583 (-937 (-349 |#1|)))) (-583 (-857 |#1|)) (-85) (-85) (-85))) (-15 -3968 ((-583 (-583 (-937 (-349 |#1|)))) (-583 (-857 |#1|)) (-85) (-85))) (-15 -3968 ((-583 (-583 (-937 (-349 |#1|)))) (-583 (-857 |#1|)) (-85))) (-15 -3968 ((-583 (-583 (-937 (-349 |#1|)))) (-583 (-857 |#1|)))) (-15 -3969 ((-583 (-583 (-937 (-349 |#1|)))) (-958 |#1| |#2|))) (-15 -3969 ((-583 (-583 (-937 (-349 |#1|)))) (-583 (-857 |#1|)) (-85) (-85))) (-15 -3969 ((-583 (-583 (-937 (-349 |#1|)))) (-583 (-857 |#1|)) (-85))) (-15 -3969 ((-583 (-583 (-937 (-349 |#1|)))) (-583 (-857 |#1|)))) (-15 -3970 ((-583 (-1059 |#1| (-469 (-773 |#3|)) (-773 |#3|) (-703 |#1| (-773 |#3|)))) (-958 |#1| |#2|))) (-15 -3971 ((-703 |#1| (-773 |#3|)) (-703 |#1| (-773 |#2|)))) (-15 -3971 ((-857 (-937 (-349 |#1|))) (-857 |#1|))) (-15 -3971 ((-857 (-937 (-349 |#1|))) (-703 |#1| (-773 |#3|)))) (-15 -3971 ((-1084 (-937 (-349 |#1|))) (-1084 |#1|))) (-15 -3971 ((-583 (-703 |#1| (-773 |#3|))) (-1059 |#1| (-469 (-773 |#3|)) (-773 |#3|) (-703 |#1| (-773 |#3|)))))) (-13 (-755) (-258) (-120) (-933)) (-583 (-1089)) (-583 (-1089))) (T -1206)) +((-3971 (*1 *2 *3) (-12 (-5 *3 (-1059 *4 (-469 (-773 *6)) (-773 *6) (-703 *4 (-773 *6)))) (-4 *4 (-13 (-755) (-258) (-120) (-933))) (-14 *6 (-583 (-1089))) (-5 *2 (-583 (-703 *4 (-773 *6)))) (-5 *1 (-1206 *4 *5 *6)) (-14 *5 (-583 (-1089))))) (-3971 (*1 *2 *3) (-12 (-5 *3 (-1084 *4)) (-4 *4 (-13 (-755) (-258) (-120) (-933))) (-5 *2 (-1084 (-937 (-349 *4)))) (-5 *1 (-1206 *4 *5 *6)) (-14 *5 (-583 (-1089))) (-14 *6 (-583 (-1089))))) (-3971 (*1 *2 *3) (-12 (-5 *3 (-703 *4 (-773 *6))) (-4 *4 (-13 (-755) (-258) (-120) (-933))) (-14 *6 (-583 (-1089))) (-5 *2 (-857 (-937 (-349 *4)))) (-5 *1 (-1206 *4 *5 *6)) (-14 *5 (-583 (-1089))))) (-3971 (*1 *2 *3) (-12 (-5 *3 (-857 *4)) (-4 *4 (-13 (-755) (-258) (-120) (-933))) (-5 *2 (-857 (-937 (-349 *4)))) (-5 *1 (-1206 *4 *5 *6)) (-14 *5 (-583 (-1089))) (-14 *6 (-583 (-1089))))) (-3971 (*1 *2 *3) (-12 (-5 *3 (-703 *4 (-773 *5))) (-4 *4 (-13 (-755) (-258) (-120) (-933))) (-14 *5 (-583 (-1089))) (-5 *2 (-703 *4 (-773 *6))) (-5 *1 (-1206 *4 *5 *6)) (-14 *6 (-583 (-1089))))) (-3970 (*1 *2 *3) (-12 (-5 *3 (-958 *4 *5)) (-4 *4 (-13 (-755) (-258) (-120) (-933))) (-14 *5 (-583 (-1089))) (-5 *2 (-583 (-1059 *4 (-469 (-773 *6)) (-773 *6) (-703 *4 (-773 *6))))) (-5 *1 (-1206 *4 *5 *6)) (-14 *6 (-583 (-1089))))) (-3969 (*1 *2 *3) (-12 (-5 *3 (-583 (-857 *4))) (-4 *4 (-13 (-755) (-258) (-120) (-933))) (-5 *2 (-583 (-583 (-937 (-349 *4))))) (-5 *1 (-1206 *4 *5 *6)) (-14 *5 (-583 (-1089))) (-14 *6 (-583 (-1089))))) (-3969 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-857 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-755) (-258) (-120) (-933))) (-5 *2 (-583 (-583 (-937 (-349 *5))))) (-5 *1 (-1206 *5 *6 *7)) (-14 *6 (-583 (-1089))) (-14 *7 (-583 (-1089))))) (-3969 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 (-857 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-755) (-258) (-120) (-933))) (-5 *2 (-583 (-583 (-937 (-349 *5))))) (-5 *1 (-1206 *5 *6 *7)) (-14 *6 (-583 (-1089))) (-14 *7 (-583 (-1089))))) (-3969 (*1 *2 *3) (-12 (-5 *3 (-958 *4 *5)) (-4 *4 (-13 (-755) (-258) (-120) (-933))) (-14 *5 (-583 (-1089))) (-5 *2 (-583 (-583 (-937 (-349 *4))))) (-5 *1 (-1206 *4 *5 *6)) (-14 *6 (-583 (-1089))))) (-3968 (*1 *2 *3) (-12 (-5 *3 (-583 (-857 *4))) (-4 *4 (-13 (-755) (-258) (-120) (-933))) (-5 *2 (-583 (-583 (-937 (-349 *4))))) (-5 *1 (-1206 *4 *5 *6)) (-14 *5 (-583 (-1089))) (-14 *6 (-583 (-1089))))) (-3968 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-857 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-755) (-258) (-120) (-933))) (-5 *2 (-583 (-583 (-937 (-349 *5))))) (-5 *1 (-1206 *5 *6 *7)) (-14 *6 (-583 (-1089))) (-14 *7 (-583 (-1089))))) (-3968 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 (-857 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-755) (-258) (-120) (-933))) (-5 *2 (-583 (-583 (-937 (-349 *5))))) (-5 *1 (-1206 *5 *6 *7)) (-14 *6 (-583 (-1089))) (-14 *7 (-583 (-1089))))) (-3968 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-583 (-857 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-755) (-258) (-120) (-933))) (-5 *2 (-583 (-583 (-937 (-349 *5))))) (-5 *1 (-1206 *5 *6 *7)) (-14 *6 (-583 (-1089))) (-14 *7 (-583 (-1089))))) (-3968 (*1 *2 *3) (-12 (-5 *3 (-958 *4 *5)) (-4 *4 (-13 (-755) (-258) (-120) (-933))) (-14 *5 (-583 (-1089))) (-5 *2 (-583 (-583 (-937 (-349 *4))))) (-5 *1 (-1206 *4 *5 *6)) (-14 *6 (-583 (-1089))))) (-3967 (*1 *2 *3) (-12 (-4 *4 (-13 (-755) (-258) (-120) (-933))) (-5 *2 (-583 (-2 (|:| -1746 (-1084 *4)) (|:| -3224 (-583 (-857 *4)))))) (-5 *1 (-1206 *4 *5 *6)) (-5 *3 (-583 (-857 *4))) (-14 *5 (-583 (-1089))) (-14 *6 (-583 (-1089))))) (-3967 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-755) (-258) (-120) (-933))) (-5 *2 (-583 (-2 (|:| -1746 (-1084 *5)) (|:| -3224 (-583 (-857 *5)))))) (-5 *1 (-1206 *5 *6 *7)) (-5 *3 (-583 (-857 *5))) (-14 *6 (-583 (-1089))) (-14 *7 (-583 (-1089))))) (-3967 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-755) (-258) (-120) (-933))) (-5 *2 (-583 (-2 (|:| -1746 (-1084 *5)) (|:| -3224 (-583 (-857 *5)))))) (-5 *1 (-1206 *5 *6 *7)) (-5 *3 (-583 (-857 *5))) (-14 *6 (-583 (-1089))) (-14 *7 (-583 (-1089))))) (-3967 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-755) (-258) (-120) (-933))) (-5 *2 (-583 (-2 (|:| -1746 (-1084 *5)) (|:| -3224 (-583 (-857 *5)))))) (-5 *1 (-1206 *5 *6 *7)) (-5 *3 (-583 (-857 *5))) (-14 *6 (-583 (-1089))) (-14 *7 (-583 (-1089))))) (-3967 (*1 *2 *3) (-12 (-5 *3 (-958 *4 *5)) (-4 *4 (-13 (-755) (-258) (-120) (-933))) (-14 *5 (-583 (-1089))) (-5 *2 (-583 (-2 (|:| -1746 (-1084 *4)) (|:| -3224 (-583 (-857 *4)))))) (-5 *1 (-1206 *4 *5 *6)) (-14 *6 (-583 (-1089))))) (-3966 (*1 *2 *3) (-12 (-5 *3 (-583 (-857 *4))) (-4 *4 (-13 (-755) (-258) (-120) (-933))) (-5 *2 (-583 (-958 *4 *5))) (-5 *1 (-1206 *4 *5 *6)) (-14 *5 (-583 (-1089))) (-14 *6 (-583 (-1089))))) (-3966 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-857 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-755) (-258) (-120) (-933))) (-5 *2 (-583 (-958 *5 *6))) (-5 *1 (-1206 *5 *6 *7)) (-14 *6 (-583 (-1089))) (-14 *7 (-583 (-1089))))) (-3966 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 (-857 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-755) (-258) (-120) (-933))) (-5 *2 (-583 (-958 *5 *6))) (-5 *1 (-1206 *5 *6 *7)) (-14 *6 (-583 (-1089))) (-14 *7 (-583 (-1089)))))) +((-3974 (((-3 (-1178 (-349 (-484))) #1="failed") (-1178 |#1|) |#1|) 21 T ELT)) (-3972 (((-85) (-1178 |#1|)) 12 T ELT)) (-3973 (((-3 (-1178 (-484)) #1#) (-1178 |#1|)) 16 T ELT))) +(((-1207 |#1|) (-10 -7 (-15 -3972 ((-85) (-1178 |#1|))) (-15 -3973 ((-3 (-1178 (-484)) #1="failed") (-1178 |#1|))) (-15 -3974 ((-3 (-1178 (-349 (-484))) #1#) (-1178 |#1|) |#1|))) (-13 (-961) (-580 (-484)))) (T -1207)) +((-3974 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1178 *4)) (-4 *4 (-13 (-961) (-580 (-484)))) (-5 *2 (-1178 (-349 (-484)))) (-5 *1 (-1207 *4)))) (-3973 (*1 *2 *3) (|partial| -12 (-5 *3 (-1178 *4)) (-4 *4 (-13 (-961) (-580 (-484)))) (-5 *2 (-1178 (-484))) (-5 *1 (-1207 *4)))) (-3972 (*1 *2 *3) (-12 (-5 *3 (-1178 *4)) (-4 *4 (-13 (-961) (-580 (-484)))) (-5 *2 (-85)) (-5 *1 (-1207 *4))))) +((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) 12 T ELT)) (-1311 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3136 (((-694)) 9 T ELT)) (-3723 (($) NIL T CONST)) (-3466 (((-3 $ #1#) $) 57 T ELT)) (-2994 (($) 46 T ELT)) (-1213 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) 38 T ELT)) (-3444 (((-632 $) $) 36 T ELT)) (-2010 (((-830) $) 14 T ELT)) (-3242 (((-1072) $) NIL T ELT)) (-3445 (($) 26 T CONST)) (-2400 (($ (-830)) 47 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3971 (((-484) $) 16 T ELT)) (-3945 (((-772) $) 21 T ELT) (($ (-484)) 18 T ELT)) (-3126 (((-694)) 10 T CONST)) (-1264 (((-85) $ $) 59 T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) 23 T CONST)) (-2666 (($) 25 T CONST)) (-3056 (((-85) $ $) 31 T ELT)) (-3836 (($ $) 50 T ELT) (($ $ $) 44 T ELT)) (-3838 (($ $ $) 29 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) 52 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 41 T ELT) (($ $ $) 40 T ELT))) +(((-1208 |#1|) (-13 (-146) (-319) (-553 (-484)) (-1065)) (-830)) (T -1208)) +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +((-3 2811714 2811719 2811724 NIL NIL NIL (NIL) -8 NIL NIL NIL) (-2 2811699 2811704 2811709 NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1 2811684 2811689 2811694 NIL NIL NIL (NIL) -8 NIL NIL NIL) (0 2811669 2811674 2811679 NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1208 2810648 2811587 2811664 "ZMOD" NIL ZMOD (NIL NIL) -8 NIL NIL NIL) (-1207 2809863 2810042 2810261 "ZLINDEP" NIL ZLINDEP (NIL T) -7 NIL NIL NIL) (-1206 2801022 2802891 2804825 "ZDSOLVE" NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL NIL) (-1205 2800410 2800563 2800752 "YSTREAM" NIL YSTREAM (NIL T) -7 NIL NIL NIL) (-1204 2799872 2800175 2800288 "YDIAGRAM" NIL YDIAGRAM (NIL) -8 NIL NIL NIL) (-1203 2797432 2799334 2799537 "XRPOLY" NIL XRPOLY (NIL T T) -8 NIL NIL NIL) (-1202 2794196 2795849 2796420 "XPR" NIL XPR (NIL T T) -8 NIL NIL NIL) (-1201 2791453 2793183 2793237 "XPOLYC" 2793522 XPOLYC (NIL T T) -9 NIL 2793635 NIL) (-1200 2788972 2790957 2791160 "XPOLY" NIL XPOLY (NIL T) -8 NIL NIL NIL) (-1199 2785220 2787831 2788219 "XPBWPOLY" NIL XPBWPOLY (NIL T T) -8 NIL NIL NIL) (-1198 2780067 2781700 2781754 "XFALG" 2783899 XFALG (NIL T T) -9 NIL 2784683 NIL) (-1197 2775223 2777956 2777998 "XF" 2778616 XF (NIL T) -9 NIL 2779012 NIL) (-1196 2774941 2775051 2775218 "XF-" NIL XF- (NIL T T) -7 NIL NIL NIL) (-1195 2774168 2774290 2774494 "XEXPPKG" NIL XEXPPKG (NIL T T T) -7 NIL NIL NIL) (-1194 2771910 2774068 2774163 "XDPOLY" NIL XDPOLY (NIL T T) -8 NIL NIL NIL) (-1193 2770491 2771286 2771328 "XALG" 2771333 XALG (NIL T) -9 NIL 2771442 NIL) (-1192 2764048 2768901 2769379 "WUTSET" NIL WUTSET (NIL T T T T) -8 NIL NIL NIL) (-1191 2762291 2763293 2763614 "WP" NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL NIL) (-1190 2761890 2762162 2762231 "WHILEAST" NIL WHILEAST (NIL) -8 NIL NIL NIL) (-1189 2761377 2761680 2761773 "WHEREAST" NIL WHEREAST (NIL) -8 NIL NIL NIL) (-1188 2760454 2760664 2760959 "WFFINTBS" NIL WFFINTBS (NIL T T T T) -7 NIL NIL NIL) (-1187 2758750 2759213 2759675 "WEIER" NIL WEIER (NIL T) -7 NIL NIL NIL) (-1186 2757639 2758224 2758266 "VSPACE" 2758402 VSPACE (NIL T) -9 NIL 2758476 NIL) (-1185 2757510 2757543 2757634 "VSPACE-" NIL VSPACE- (NIL T T) -7 NIL NIL NIL) (-1184 2757353 2757407 2757475 "VOID" NIL VOID (NIL) -8 NIL NIL NIL) (-1183 2754336 2755131 2755868 "VIEWDEF" NIL VIEWDEF (NIL) -7 NIL NIL NIL) (-1182 2745434 2748035 2750208 "VIEW3D" NIL VIEW3D (NIL) -8 NIL NIL NIL) (-1181 2739011 2740902 2742481 "VIEW2D" NIL VIEW2D (NIL) -8 NIL NIL NIL) (-1180 2737495 2737890 2738296 "VIEW" NIL VIEW (NIL) -7 NIL NIL NIL) (-1179 2736322 2736603 2736919 "VECTOR2" NIL VECTOR2 (NIL T T) -7 NIL NIL NIL) (-1178 2731438 2736149 2736241 "VECTOR" NIL VECTOR (NIL T) -8 NIL NIL NIL) (-1177 2724540 2729148 2729191 "VECTCAT" 2730179 VECTCAT (NIL T) -9 NIL 2730763 NIL) (-1176 2723819 2724145 2724535 "VECTCAT-" NIL VECTCAT- (NIL T T) -7 NIL NIL NIL) (-1175 2723313 2723555 2723675 "VARIABLE" NIL VARIABLE (NIL NIL) -8 NIL NIL NIL) (-1174 2723246 2723251 2723281 "UTYPE" 2723286 UTYPE (NIL) -9 NIL NIL NIL) (-1173 2722233 2722409 2722670 "UTSODETL" NIL UTSODETL (NIL T T T T) -7 NIL NIL NIL) (-1172 2720084 2720592 2721116 "UTSODE" NIL UTSODE (NIL T T) -7 NIL NIL NIL) (-1171 2709966 2715936 2715978 "UTSCAT" 2717076 UTSCAT (NIL T) -9 NIL 2717833 NIL) (-1170 2708031 2708974 2709961 "UTSCAT-" NIL UTSCAT- (NIL T T) -7 NIL NIL NIL) (-1169 2707705 2707754 2707885 "UTS2" NIL UTS2 (NIL T T T T) -7 NIL NIL NIL) (-1168 2699416 2705901 2706380 "UTS" NIL UTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1167 2693411 2696224 2696267 "URAGG" 2698337 URAGG (NIL T) -9 NIL 2699059 NIL) (-1166 2691426 2692388 2693406 "URAGG-" NIL URAGG- (NIL T T) -7 NIL NIL NIL) (-1165 2687133 2690402 2690864 "UPXSSING" NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL NIL) (-1164 2679562 2687057 2687128 "UPXSCONS" NIL UPXSCONS (NIL T T) -8 NIL NIL NIL) (-1163 2668213 2675700 2675761 "UPXSCCA" 2676329 UPXSCCA (NIL T T) -9 NIL 2676561 NIL) (-1162 2667934 2668036 2668208 "UPXSCCA-" NIL UPXSCCA- (NIL T T T) -7 NIL NIL NIL) (-1161 2656486 2663698 2663740 "UPXSCAT" 2664380 UPXSCAT (NIL T) -9 NIL 2664988 NIL) (-1160 2655999 2656084 2656261 "UPXS2" NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1159 2647685 2655590 2655852 "UPXS" NIL UPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1158 2646580 2646850 2647200 "UPSQFREE" NIL UPSQFREE (NIL T T) -7 NIL NIL NIL) (-1157 2639283 2642768 2642822 "UPSCAT" 2643891 UPSCAT (NIL T T) -9 NIL 2644655 NIL) (-1156 2638703 2638955 2639278 "UPSCAT-" NIL UPSCAT- (NIL T T T) -7 NIL NIL NIL) (-1155 2638377 2638426 2638557 "UPOLYC2" NIL UPOLYC2 (NIL T T T T) -7 NIL NIL NIL) (-1154 2622507 2631461 2631503 "UPOLYC" 2633581 UPOLYC (NIL T) -9 NIL 2634801 NIL) (-1153 2616562 2619410 2622502 "UPOLYC-" NIL UPOLYC- (NIL T T) -7 NIL NIL NIL) (-1152 2615998 2616123 2616286 "UPMP" NIL UPMP (NIL T T) -7 NIL NIL NIL) (-1151 2615632 2615719 2615858 "UPDIVP" NIL UPDIVP (NIL T T) -7 NIL NIL NIL) (-1150 2614445 2614712 2615016 "UPDECOMP" NIL UPDECOMP (NIL T T) -7 NIL NIL NIL) (-1149 2613778 2613908 2614093 "UPCDEN" NIL UPCDEN (NIL T T T) -7 NIL NIL NIL) (-1148 2613370 2613445 2613592 "UP2" NIL UP2 (NIL NIL T NIL T) -7 NIL NIL NIL) (-1147 2604134 2613136 2613264 "UP" NIL UP (NIL NIL T) -8 NIL NIL NIL) (-1146 2603496 2603633 2603838 "UNISEG2" NIL UNISEG2 (NIL T T) -7 NIL NIL NIL) (-1145 2602097 2602944 2603220 "UNISEG" NIL UNISEG (NIL T) -8 NIL NIL NIL) (-1144 2601326 2601523 2601748 "UNIFACT" NIL UNIFACT (NIL T) -7 NIL NIL NIL) (-1143 2588136 2601250 2601321 "ULSCONS" NIL ULSCONS (NIL T T) -8 NIL NIL NIL) (-1142 2567942 2581177 2581238 "ULSCCAT" 2581869 ULSCCAT (NIL T T) -9 NIL 2582156 NIL) (-1141 2567277 2567563 2567937 "ULSCCAT-" NIL ULSCCAT- (NIL T T T) -7 NIL NIL NIL) (-1140 2555649 2562783 2562825 "ULSCAT" 2563678 ULSCAT (NIL T) -9 NIL 2564408 NIL) (-1139 2555162 2555247 2555424 "ULS2" NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1138 2537279 2554661 2554902 "ULS" NIL ULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1137 2536313 2537006 2537120 "UINT8" NIL UINT8 (NIL) -8 NIL NIL 2537231) (-1136 2535346 2536039 2536153 "UINT64" NIL UINT64 (NIL) -8 NIL NIL 2536264) (-1135 2534379 2535072 2535186 "UINT32" NIL UINT32 (NIL) -8 NIL NIL 2535297) (-1134 2533412 2534105 2534219 "UINT16" NIL UINT16 (NIL) -8 NIL NIL 2534330) (-1133 2531419 2532640 2532670 "UFD" 2532881 UFD (NIL) -9 NIL 2532994 NIL) (-1132 2531263 2531320 2531414 "UFD-" NIL UFD- (NIL T) -7 NIL NIL NIL) (-1131 2530515 2530722 2530938 "UDVO" NIL UDVO (NIL) -7 NIL NIL NIL) (-1130 2528735 2529188 2529653 "UDPO" NIL UDPO (NIL T) -7 NIL NIL NIL) (-1129 2528460 2528700 2528730 "TYPEAST" NIL TYPEAST (NIL) -8 NIL NIL NIL) (-1128 2528398 2528403 2528433 "TYPE" 2528438 TYPE (NIL) -9 NIL 2528445 NIL) (-1127 2527557 2527777 2528017 "TWOFACT" NIL TWOFACT (NIL T) -7 NIL NIL NIL) (-1126 2526735 2527166 2527401 "TUPLE" NIL TUPLE (NIL T) -8 NIL NIL NIL) (-1125 2524889 2525462 2526001 "TUBETOOL" NIL TUBETOOL (NIL) -7 NIL NIL NIL) (-1124 2523923 2524159 2524395 "TUBE" NIL TUBE (NIL T) -8 NIL NIL NIL) (-1123 2512277 2516745 2516841 "TSETCAT" 2522056 TSETCAT (NIL T T T T) -9 NIL 2523568 NIL) (-1122 2508614 2510430 2512272 "TSETCAT-" NIL TSETCAT- (NIL T T T T T) -7 NIL NIL NIL) (-1121 2503006 2507840 2508122 "TS" NIL TS (NIL T) -8 NIL NIL NIL) (-1120 2498343 2499356 2500285 "TRMANIP" NIL TRMANIP (NIL T T) -7 NIL NIL NIL) (-1119 2497840 2497915 2498078 "TRIMAT" NIL TRIMAT (NIL T T T T) -7 NIL NIL NIL) (-1118 2495916 2496206 2496561 "TRIGMNIP" NIL TRIGMNIP (NIL T T) -7 NIL NIL NIL) (-1117 2495400 2495549 2495579 "TRIGCAT" 2495792 TRIGCAT (NIL) -9 NIL NIL NIL) (-1116 2495151 2495254 2495395 "TRIGCAT-" NIL TRIGCAT- (NIL T) -7 NIL NIL NIL) (-1115 2492147 2494260 2494538 "TREE" NIL TREE (NIL T) -8 NIL NIL NIL) (-1114 2491253 2491949 2491979 "TRANFUN" 2492014 TRANFUN (NIL) -9 NIL 2492080 NIL) (-1113 2490717 2490968 2491248 "TRANFUN-" NIL TRANFUN- (NIL T) -7 NIL NIL NIL) (-1112 2490554 2490592 2490653 "TOPSP" NIL TOPSP (NIL) -7 NIL NIL NIL) (-1111 2490011 2490142 2490293 "TOOLSIGN" NIL TOOLSIGN (NIL T) -7 NIL NIL NIL) (-1110 2488752 2489409 2489645 "TEXTFILE" NIL TEXTFILE (NIL) -8 NIL NIL NIL) (-1109 2488564 2488601 2488673 "TEX1" NIL TEX1 (NIL T) -7 NIL NIL NIL) (-1108 2486778 2487424 2487853 "TEX" NIL TEX (NIL) -8 NIL NIL NIL) (-1107 2485158 2485495 2485817 "TBCMPPK" NIL TBCMPPK (NIL T T) -7 NIL NIL NIL) (-1106 2476216 2482959 2483015 "TBAGG" 2483417 TBAGG (NIL T T) -9 NIL 2483630 NIL) (-1105 2472747 2474439 2476211 "TBAGG-" NIL TBAGG- (NIL T T T) -7 NIL NIL NIL) (-1104 2472224 2472349 2472494 "TANEXP" NIL TANEXP (NIL T) -7 NIL NIL NIL) (-1103 2471734 2472054 2472144 "TALGOP" NIL TALGOP (NIL T) -8 NIL NIL NIL) (-1102 2471231 2471348 2471486 "TABLEAU" NIL TABLEAU (NIL T) -8 NIL NIL NIL) (-1101 2464318 2471133 2471226 "TABLE" NIL TABLE (NIL T T) -8 NIL NIL NIL) (-1100 2460071 2461366 2462611 "TABLBUMP" NIL TABLBUMP (NIL T) -7 NIL NIL NIL) (-1099 2459440 2459599 2459780 "SYSTEM" NIL SYSTEM (NIL) -7 NIL NIL NIL) (-1098 2456594 2457347 2458130 "SYSSOLP" NIL SYSSOLP (NIL T) -7 NIL NIL NIL) (-1097 2456368 2456558 2456589 "SYSPTR" NIL SYSPTR (NIL) -8 NIL NIL NIL) (-1096 2455322 2456007 2456133 "SYSNNI" NIL SYSNNI (NIL NIL) -8 NIL NIL 2456319) (-1095 2454586 2455134 2455213 "SYSINT" NIL SYSINT (NIL NIL) -8 NIL NIL 2455273) (-1094 2451409 2452568 2453268 "SYNTAX" NIL SYNTAX (NIL) -8 NIL NIL NIL) (-1093 2449092 2449775 2450409 "SYMTAB" NIL SYMTAB (NIL) -8 NIL NIL NIL) (-1092 2445170 2446216 2447193 "SYMS" NIL SYMS (NIL) -8 NIL NIL NIL) (-1091 2442269 2444825 2445054 "SYMPOLY" NIL SYMPOLY (NIL T) -8 NIL NIL NIL) (-1090 2441865 2441952 2442074 "SYMFUNC" NIL SYMFUNC (NIL T) -7 NIL NIL NIL) (-1089 2438489 2439963 2440782 "SYMBOL" NIL SYMBOL (NIL) -8 NIL NIL NIL) (-1088 2431449 2437686 2437979 "SUTS" NIL SUTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1087 2423135 2431040 2431302 "SUPXS" NIL SUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1086 2422414 2422553 2422770 "SUPFRACF" NIL SUPFRACF (NIL T T T T) -7 NIL NIL NIL) (-1085 2422098 2422163 2422274 "SUP2" NIL SUP2 (NIL T T) -7 NIL NIL NIL) (-1084 2412821 2421810 2421935 "SUP" NIL SUP (NIL T) -8 NIL NIL NIL) (-1083 2411551 2411849 2412204 "SUMRF" NIL SUMRF (NIL T) -7 NIL NIL NIL) (-1082 2410956 2411034 2411225 "SUMFS" NIL SUMFS (NIL T T) -7 NIL NIL NIL) (-1081 2393108 2410455 2410696 "SULS" NIL SULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1080 2392707 2392979 2393048 "SUCHTAST" NIL SUCHTAST (NIL) -8 NIL NIL NIL) (-1079 2392043 2392324 2392464 "SUCH" NIL SUCH (NIL T T) -8 NIL NIL NIL) (-1078 2386645 2387904 2388857 "SUBSPACE" NIL SUBSPACE (NIL NIL T) -8 NIL NIL NIL) (-1077 2386177 2386277 2386441 "SUBRESP" NIL SUBRESP (NIL T T) -7 NIL NIL NIL) (-1076 2381288 2382570 2383717 "STTFNC" NIL STTFNC (NIL T) -7 NIL NIL NIL) (-1075 2375746 2377217 2378528 "STTF" NIL STTF (NIL T) -7 NIL NIL NIL) (-1074 2368661 2370725 2372516 "STTAYLOR" NIL STTAYLOR (NIL T) -7 NIL NIL NIL) (-1073 2361491 2368573 2368656 "STRTBL" NIL STRTBL (NIL T) -8 NIL NIL NIL) (-1072 2356185 2361205 2361320 "STRING" NIL STRING (NIL) -8 NIL NIL NIL) (-1071 2355772 2355855 2355999 "STREAM3" NIL STREAM3 (NIL T T T) -7 NIL NIL NIL) (-1070 2354923 2355124 2355359 "STREAM2" NIL STREAM2 (NIL T T) -7 NIL NIL NIL) (-1069 2354663 2354721 2354814 "STREAM1" NIL STREAM1 (NIL T) -7 NIL NIL NIL) (-1068 2347401 2352868 2353474 "STREAM" NIL STREAM (NIL T) -8 NIL NIL NIL) (-1067 2346577 2346782 2347013 "STINPROD" NIL STINPROD (NIL T) -7 NIL NIL NIL) (-1066 2345822 2346193 2346340 "STEPAST" NIL STEPAST (NIL) -8 NIL NIL NIL) (-1065 2345310 2345552 2345582 "STEP" 2345676 STEP (NIL) -9 NIL 2345747 NIL) (-1064 2338413 2345228 2345305 "STBL" NIL STBL (NIL T T NIL) -8 NIL NIL NIL) (-1063 2332628 2337211 2337254 "STAGG" 2337681 STAGG (NIL T) -9 NIL 2337855 NIL) (-1062 2331007 2331755 2332623 "STAGG-" NIL STAGG- (NIL T T) -7 NIL NIL NIL) (-1061 2329164 2330834 2330926 "STACK" NIL STACK (NIL T) -8 NIL NIL NIL) (-1060 2328444 2328983 2329013 "SRING" 2329018 SRING (NIL) -9 NIL 2329038 NIL) (-1059 2321066 2326982 2327421 "SREGSET" NIL SREGSET (NIL T T T T) -8 NIL NIL NIL) (-1058 2314840 2316279 2317783 "SRDCMPK" NIL SRDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1057 2307265 2312176 2312206 "SRAGG" 2313505 SRAGG (NIL) -9 NIL 2314109 NIL) (-1056 2306562 2306882 2307260 "SRAGG-" NIL SRAGG- (NIL T) -7 NIL NIL NIL) (-1055 2300617 2305884 2306307 "SQMATRIX" NIL SQMATRIX (NIL NIL T) -8 NIL NIL NIL) (-1054 2294830 2297999 2298721 "SPLTREE" NIL SPLTREE (NIL T T) -8 NIL NIL NIL) (-1053 2291259 2292078 2292715 "SPLNODE" NIL SPLNODE (NIL T T) -8 NIL NIL NIL) (-1052 2290234 2290539 2290569 "SPFCAT" 2291013 SPFCAT (NIL) -9 NIL NIL NIL) (-1051 2289171 2289423 2289687 "SPECOUT" NIL SPECOUT (NIL) -7 NIL NIL NIL) (-1050 2279929 2282203 2282233 "SPADXPT" 2286870 SPADXPT (NIL) -9 NIL 2288994 NIL) (-1049 2279731 2279777 2279846 "SPADPRSR" NIL SPADPRSR (NIL) -7 NIL NIL NIL) (-1048 2277387 2279695 2279726 "SPADAST" NIL SPADAST (NIL) -8 NIL NIL NIL) (-1047 2269061 2271150 2271192 "SPACEC" 2275507 SPACEC (NIL T) -9 NIL 2277312 NIL) (-1046 2266890 2269008 2269056 "SPACE3" NIL SPACE3 (NIL T) -8 NIL NIL NIL) (-1045 2265823 2266012 2266301 "SORTPAK" NIL SORTPAK (NIL T T) -7 NIL NIL NIL) (-1044 2264227 2264560 2264971 "SOLVETRA" NIL SOLVETRA (NIL T) -7 NIL NIL NIL) (-1043 2263492 2263726 2263987 "SOLVESER" NIL SOLVESER (NIL T) -7 NIL NIL NIL) (-1042 2259672 2260632 2261627 "SOLVERAD" NIL SOLVERAD (NIL T) -7 NIL NIL NIL) (-1041 2256030 2256729 2257458 "SOLVEFOR" NIL SOLVEFOR (NIL T T) -7 NIL NIL NIL) (-1040 2249816 2255370 2255466 "SNTSCAT" 2255471 SNTSCAT (NIL T T T T) -9 NIL 2255541 NIL) (-1039 2243637 2248457 2248847 "SMTS" NIL SMTS (NIL T T T) -8 NIL NIL NIL) (-1038 2237409 2243556 2243632 "SMP" NIL SMP (NIL T T) -8 NIL NIL NIL) (-1037 2235841 2236172 2236570 "SMITH" NIL SMITH (NIL T T T T) -7 NIL NIL NIL) (-1036 2227446 2232425 2232527 "SMATCAT" 2233870 SMATCAT (NIL NIL T T T) -9 NIL 2234418 NIL) (-1035 2225287 2226271 2227441 "SMATCAT-" NIL SMATCAT- (NIL T NIL T T T) -7 NIL NIL NIL) (-1034 2222879 2224493 2224536 "SKAGG" 2224797 SKAGG (NIL T) -9 NIL 2224931 NIL) (-1033 2218925 2222699 2222810 "SINT" NIL SINT (NIL) -8 NIL NIL 2222851) (-1032 2218735 2218779 2218845 "SIMPAN" NIL SIMPAN (NIL) -7 NIL NIL NIL) (-1031 2217810 2218042 2218310 "SIGNRF" NIL SIGNRF (NIL T) -7 NIL NIL NIL) (-1030 2216814 2216976 2217252 "SIGNEF" NIL SIGNEF (NIL T T) -7 NIL NIL NIL) (-1029 2216160 2216500 2216623 "SIGAST" NIL SIGAST (NIL) -8 NIL NIL NIL) (-1028 2215506 2215813 2215953 "SIG" NIL SIG (NIL) -8 NIL NIL NIL) (-1027 2213617 2214109 2214615 "SHP" NIL SHP (NIL T NIL) -7 NIL NIL NIL) (-1026 2207057 2213536 2213612 "SHDP" NIL SHDP (NIL NIL NIL T) -8 NIL NIL NIL) (-1025 2206560 2206797 2206827 "SGROUP" 2206920 SGROUP (NIL) -9 NIL 2206982 NIL) (-1024 2206450 2206482 2206555 "SGROUP-" NIL SGROUP- (NIL T) -7 NIL NIL NIL) (-1023 2206088 2206128 2206169 "SGPOPC" 2206174 SGPOPC (NIL T) -9 NIL 2206375 NIL) (-1022 2205622 2205899 2206005 "SGPOP" NIL SGPOP (NIL T) -8 NIL NIL NIL) (-1021 2203045 2203814 2204536 "SGCF" NIL SGCF (NIL) -7 NIL NIL NIL) (-1020 2196930 2202484 2202580 "SFRTCAT" 2202585 SFRTCAT (NIL T T T T) -9 NIL 2202623 NIL) (-1019 2191322 2192435 2193562 "SFRGCD" NIL SFRGCD (NIL T T T T T) -7 NIL NIL NIL) (-1018 2185498 2186659 2187823 "SFQCMPK" NIL SFQCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1017 2184470 2185372 2185493 "SEXOF" NIL SEXOF (NIL T T T T T) -8 NIL NIL NIL) (-1016 2180078 2180973 2181068 "SEXCAT" 2183681 SEXCAT (NIL T T T T T) -9 NIL 2184232 NIL) (-1015 2179051 2180005 2180073 "SEX" NIL SEX (NIL) -8 NIL NIL NIL) (-1014 2177442 2178027 2178329 "SETMN" NIL SETMN (NIL NIL NIL) -8 NIL NIL NIL) (-1013 2176965 2177150 2177180 "SETCAT" 2177297 SETCAT (NIL) -9 NIL 2177381 NIL) (-1012 2176797 2176861 2176960 "SETCAT-" NIL SETCAT- (NIL T) -7 NIL NIL NIL) (-1011 2173020 2175251 2175294 "SETAGG" 2176162 SETAGG (NIL T) -9 NIL 2176500 NIL) (-1010 2172626 2172778 2173015 "SETAGG-" NIL SETAGG- (NIL T T) -7 NIL NIL NIL) (-1009 2169580 2172573 2172621 "SET" NIL SET (NIL T) -8 NIL NIL NIL) (-1008 2169046 2169356 2169456 "SEQAST" NIL SEQAST (NIL) -8 NIL NIL NIL) (-1007 2168173 2168539 2168600 "SEGXCAT" 2168886 SEGXCAT (NIL T T) -9 NIL 2169006 NIL) (-1006 2167098 2167366 2167409 "SEGCAT" 2167931 SEGCAT (NIL T) -9 NIL 2168152 NIL) (-1005 2166778 2166843 2166956 "SEGBIND2" NIL SEGBIND2 (NIL T T) -7 NIL NIL NIL) (-1004 2165844 2166314 2166522 "SEGBIND" NIL SEGBIND (NIL T) -8 NIL NIL NIL) (-1003 2165422 2165701 2165777 "SEGAST" NIL SEGAST (NIL) -8 NIL NIL NIL) (-1002 2164787 2164923 2165127 "SEG2" NIL SEG2 (NIL T T) -7 NIL NIL NIL) (-1001 2163853 2164600 2164782 "SEG" NIL SEG (NIL T) -8 NIL NIL NIL) (-1000 2163106 2163801 2163848 "SDVAR" NIL SDVAR (NIL T) -8 NIL NIL NIL) (-999 2154593 2162975 2163101 "SDPOL" NIL SDPOL (NIL T) -8 NIL NIL NIL) (-998 2153453 2153743 2154060 "SCPKG" NIL SCPKG (NIL T) -7 NIL NIL NIL) (-997 2152759 2152971 2153159 "SCOPE" NIL SCOPE (NIL) -8 NIL NIL NIL) (-996 2152109 2152266 2152442 "SCACHE" NIL SCACHE (NIL T) -7 NIL NIL NIL) (-995 2151682 2151913 2151941 "SASTCAT" 2151946 SASTCAT (NIL) -9 NIL 2151959 NIL) (-994 2151149 2151574 2151648 "SAOS" NIL SAOS (NIL) -8 NIL NIL NIL) (-993 2150752 2150793 2150964 "SAERFFC" NIL SAERFFC (NIL T T T) -7 NIL NIL NIL) (-992 2150383 2150424 2150581 "SAEFACT" NIL SAEFACT (NIL T T T) -7 NIL NIL NIL) (-991 2143464 2150300 2150378 "SAE" NIL SAE (NIL T T NIL) -8 NIL NIL NIL) (-990 2142114 2142443 2142839 "RURPK" NIL RURPK (NIL T NIL) -7 NIL NIL NIL) (-989 2140875 2141236 2141536 "RULESET" NIL RULESET (NIL T T T) -8 NIL NIL NIL) (-988 2140499 2140720 2140801 "RULECOLD" NIL RULECOLD (NIL NIL) -8 NIL NIL NIL) (-987 2137959 2138593 2139046 "RULE" NIL RULE (NIL T T T) -8 NIL NIL NIL) (-986 2137798 2137831 2137899 "RTVALUE" NIL RTVALUE (NIL) -8 NIL NIL NIL) (-985 2137289 2137592 2137683 "RSTRCAST" NIL RSTRCAST (NIL) -8 NIL NIL NIL) (-984 2132917 2133785 2134696 "RSETGCD" NIL RSETGCD (NIL T T T T T) -7 NIL NIL NIL) (-983 2121736 2127290 2127384 "RSETCAT" 2131440 RSETCAT (NIL T T T T) -9 NIL 2132528 NIL) (-982 2120274 2120916 2121731 "RSETCAT-" NIL RSETCAT- (NIL T T T T T) -7 NIL NIL NIL) (-981 2114048 2115493 2117000 "RSDCMPK" NIL RSDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-980 2111930 2112487 2112559 "RRCC" 2113632 RRCC (NIL T T) -9 NIL 2113973 NIL) (-979 2111455 2111654 2111925 "RRCC-" NIL RRCC- (NIL T T T) -7 NIL NIL NIL) (-978 2110925 2111235 2111333 "RPTAST" NIL RPTAST (NIL) -8 NIL NIL NIL) (-977 2083477 2094190 2094254 "RPOLCAT" 2104728 RPOLCAT (NIL T T T) -9 NIL 2107873 NIL) (-976 2077576 2080399 2083472 "RPOLCAT-" NIL RPOLCAT- (NIL T T T T) -7 NIL NIL NIL) (-975 2073743 2077324 2077462 "ROMAN" NIL ROMAN (NIL) -8 NIL NIL NIL) (-974 2072071 2072810 2073066 "ROIRC" NIL ROIRC (NIL T T) -8 NIL NIL NIL) (-973 2067714 2070526 2070554 "RNS" 2070816 RNS (NIL) -9 NIL 2071068 NIL) (-972 2066617 2067104 2067641 "RNS-" NIL RNS- (NIL T) -7 NIL NIL NIL) (-971 2065735 2066136 2066336 "RNGBIND" NIL RNGBIND (NIL T T) -8 NIL NIL NIL) (-970 2064873 2065435 2065463 "RNG" 2065523 RNG (NIL) -9 NIL 2065577 NIL) (-969 2064762 2064796 2064868 "RNG-" NIL RNG- (NIL T) -7 NIL NIL NIL) (-968 2064024 2064529 2064569 "RMODULE" 2064574 RMODULE (NIL T) -9 NIL 2064600 NIL) (-967 2062963 2063069 2063399 "RMCAT2" NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL NIL) (-966 2059809 2062553 2062846 "RMATRIX" NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL NIL) (-965 2052458 2054950 2055062 "RMATCAT" 2058367 RMATCAT (NIL NIL NIL T T T) -9 NIL 2059344 NIL) (-964 2051975 2052154 2052453 "RMATCAT-" NIL RMATCAT- (NIL T NIL NIL T T T) -7 NIL NIL NIL) (-963 2051543 2051754 2051795 "RLINSET" 2051856 RLINSET (NIL T) -9 NIL 2051900 NIL) (-962 2051188 2051269 2051395 "RINTERP" NIL RINTERP (NIL NIL T) -7 NIL NIL NIL) (-961 2050034 2050765 2050793 "RING" 2050848 RING (NIL) -9 NIL 2050940 NIL) (-960 2049879 2049935 2050029 "RING-" NIL RING- (NIL T) -7 NIL NIL NIL) (-959 2048933 2049200 2049456 "RIDIST" NIL RIDIST (NIL) -7 NIL NIL NIL) (-958 2039920 2048561 2048762 "RGCHAIN" NIL RGCHAIN (NIL T NIL) -8 NIL NIL NIL) (-957 2039145 2039656 2039695 "RGBCSPC" 2039752 RGBCSPC (NIL T) -9 NIL 2039803 NIL) (-956 2038179 2038665 2038704 "RGBCMDL" 2038932 RGBCMDL (NIL T) -9 NIL 2039046 NIL) (-955 2037891 2037960 2038061 "RFFACTOR" NIL RFFACTOR (NIL T) -7 NIL NIL NIL) (-954 2037654 2037695 2037790 "RFFACT" NIL RFFACT (NIL T) -7 NIL NIL NIL) (-953 2036078 2036508 2036888 "RFDIST" NIL RFDIST (NIL) -7 NIL NIL NIL) (-952 2033665 2034333 2035001 "RF" NIL RF (NIL T) -7 NIL NIL NIL) (-951 2033215 2033313 2033473 "RETSOL" NIL RETSOL (NIL T T) -7 NIL NIL NIL) (-950 2032837 2032935 2032976 "RETRACT" 2033107 RETRACT (NIL T) -9 NIL 2033194 NIL) (-949 2032717 2032748 2032832 "RETRACT-" NIL RETRACT- (NIL T T) -7 NIL NIL NIL) (-948 2032319 2032591 2032658 "RETAST" NIL RETAST (NIL) -8 NIL NIL NIL) (-947 2030799 2031690 2031887 "RESRING" NIL RESRING (NIL T T T T NIL) -8 NIL NIL NIL) (-946 2030490 2030551 2030647 "RESLATC" NIL RESLATC (NIL T) -7 NIL NIL NIL) (-945 2030233 2030274 2030379 "REPSQ" NIL REPSQ (NIL T) -7 NIL NIL NIL) (-944 2029968 2030009 2030118 "REPDB" NIL REPDB (NIL T) -7 NIL NIL NIL) (-943 2025039 2026490 2027705 "REP2" NIL REP2 (NIL T) -7 NIL NIL NIL) (-942 2022138 2022896 2023704 "REP1" NIL REP1 (NIL T) -7 NIL NIL NIL) (-941 2020107 2020729 2021329 "REP" NIL REP (NIL) -7 NIL NIL NIL) (-940 2012742 2018658 2019094 "REGSET" NIL REGSET (NIL T T T T) -8 NIL NIL NIL) (-939 2012054 2012334 2012483 "REF" NIL REF (NIL T) -8 NIL NIL NIL) (-938 2011539 2011654 2011819 "REDORDER" NIL REDORDER (NIL T T) -7 NIL NIL NIL) (-937 2007132 2010942 2011163 "RECLOS" NIL RECLOS (NIL T) -8 NIL NIL NIL) (-936 2006364 2006563 2006776 "REALSOLV" NIL REALSOLV (NIL) -7 NIL NIL NIL) (-935 2003654 2004492 2005374 "REAL0Q" NIL REAL0Q (NIL T) -7 NIL NIL NIL) (-934 2000236 2001272 2002331 "REAL0" NIL REAL0 (NIL T) -7 NIL NIL NIL) (-933 2000072 2000125 2000153 "REAL" 2000158 REAL (NIL) -9 NIL 2000193 NIL) (-932 1999562 1999866 1999957 "RDUCEAST" NIL RDUCEAST (NIL) -8 NIL NIL NIL) (-931 1999042 1999120 1999325 "RDIV" NIL RDIV (NIL T T T T T) -7 NIL NIL NIL) (-930 1998275 1998467 1998678 "RDIST" NIL RDIST (NIL T) -7 NIL NIL NIL) (-929 1997163 1997460 1997827 "RDETRS" NIL RDETRS (NIL T T) -7 NIL NIL NIL) (-928 1995430 1995900 1996433 "RDETR" NIL RDETR (NIL T T) -7 NIL NIL NIL) (-927 1994352 1994629 1995016 "RDEEFS" NIL RDEEFS (NIL T T) -7 NIL NIL NIL) (-926 1993179 1993488 1993907 "RDEEF" NIL RDEEF (NIL T T) -7 NIL NIL NIL) (-925 1986527 1990039 1990067 "RCFIELD" 1991344 RCFIELD (NIL) -9 NIL 1992074 NIL) (-924 1985145 1985757 1986454 "RCFIELD-" NIL RCFIELD- (NIL T) -7 NIL NIL NIL) (-923 1981345 1983237 1983278 "RCAGG" 1984345 RCAGG (NIL T) -9 NIL 1984806 NIL) (-922 1981072 1981182 1981340 "RCAGG-" NIL RCAGG- (NIL T T) -7 NIL NIL NIL) (-921 1980517 1980646 1980807 "RATRET" NIL RATRET (NIL T) -7 NIL NIL NIL) (-920 1980134 1980213 1980332 "RATFACT" NIL RATFACT (NIL T) -7 NIL NIL NIL) (-919 1979549 1979699 1979849 "RANDSRC" NIL RANDSRC (NIL) -7 NIL NIL NIL) (-918 1979331 1979381 1979452 "RADUTIL" NIL RADUTIL (NIL) -7 NIL NIL NIL) (-917 1971773 1978449 1978757 "RADIX" NIL RADIX (NIL NIL) -8 NIL NIL NIL) (-916 1961475 1971640 1971768 "RADFF" NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL NIL) (-915 1961109 1961202 1961230 "RADCAT" 1961387 RADCAT (NIL) -9 NIL NIL NIL) (-914 1960947 1961007 1961104 "RADCAT-" NIL RADCAT- (NIL T) -7 NIL NIL NIL) (-913 1959047 1960778 1960867 "QUEUE" NIL QUEUE (NIL T) -8 NIL NIL NIL) (-912 1958728 1958777 1958904 "QUATCT2" NIL QUATCT2 (NIL T T T T) -7 NIL NIL NIL) (-911 1951015 1955099 1955139 "QUATCAT" 1955917 QUATCAT (NIL T) -9 NIL 1956681 NIL) (-910 1948265 1949545 1950921 "QUATCAT-" NIL QUATCAT- (NIL T T) -7 NIL NIL NIL) (-909 1944105 1948215 1948260 "QUAT" NIL QUAT (NIL T) -8 NIL NIL NIL) (-908 1941492 1943159 1943200 "QUAGG" 1943575 QUAGG (NIL T) -9 NIL 1943749 NIL) (-907 1941094 1941366 1941433 "QQUTAST" NIL QQUTAST (NIL) -8 NIL NIL NIL) (-906 1940100 1940730 1940893 "QFORM" NIL QFORM (NIL NIL T) -8 NIL NIL NIL) (-905 1939781 1939830 1939957 "QFCAT2" NIL QFCAT2 (NIL T T T T) -7 NIL NIL NIL) (-904 1929381 1935550 1935590 "QFCAT" 1936248 QFCAT (NIL T) -9 NIL 1937241 NIL) (-903 1926265 1927704 1929287 "QFCAT-" NIL QFCAT- (NIL T T) -7 NIL NIL NIL) (-902 1925811 1925945 1926075 "QEQUAT" NIL QEQUAT (NIL) -8 NIL NIL NIL) (-901 1920007 1921168 1922330 "QCMPACK" NIL QCMPACK (NIL T T T T T) -7 NIL NIL NIL) (-900 1919426 1919606 1919838 "QALGSET2" NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL NIL) (-899 1917248 1917776 1918199 "QALGSET" NIL QALGSET (NIL T T T T) -8 NIL NIL NIL) (-898 1916147 1916389 1916706 "PWFFINTB" NIL PWFFINTB (NIL T T T T) -7 NIL NIL NIL) (-897 1914508 1914706 1915059 "PUSHVAR" NIL PUSHVAR (NIL T T T T) -7 NIL NIL NIL) (-896 1910264 1911480 1911521 "PTRANFN" 1913405 PTRANFN (NIL T) -9 NIL NIL NIL) (-895 1908911 1909256 1909577 "PTPACK" NIL PTPACK (NIL T) -7 NIL NIL NIL) (-894 1908604 1908667 1908774 "PTFUNC2" NIL PTFUNC2 (NIL T T) -7 NIL NIL NIL) (-893 1902677 1907400 1907440 "PTCAT" 1907732 PTCAT (NIL T) -9 NIL 1907885 NIL) (-892 1902370 1902411 1902535 "PSQFR" NIL PSQFR (NIL T T T T) -7 NIL NIL NIL) (-891 1901249 1901565 1901899 "PSEUDLIN" NIL PSEUDLIN (NIL T) -7 NIL NIL NIL) (-890 1890128 1892689 1894998 "PSETPK" NIL PSETPK (NIL T T T T) -7 NIL NIL NIL) (-889 1883035 1885931 1886025 "PSETCAT" 1888999 PSETCAT (NIL T T T T) -9 NIL 1889806 NIL) (-888 1881485 1882219 1883030 "PSETCAT-" NIL PSETCAT- (NIL T T T T T) -7 NIL NIL NIL) (-887 1880804 1880999 1881027 "PSCURVE" 1881295 PSCURVE (NIL) -9 NIL 1881462 NIL) (-886 1876406 1878226 1878290 "PSCAT" 1879125 PSCAT (NIL T T T) -9 NIL 1879364 NIL) (-885 1875720 1876002 1876401 "PSCAT-" NIL PSCAT- (NIL T T T T) -7 NIL NIL NIL) (-884 1874117 1875032 1875295 "PRTITION" NIL PRTITION (NIL) -8 NIL NIL NIL) (-883 1873608 1873911 1874002 "PRTDAST" NIL PRTDAST (NIL) -8 NIL NIL NIL) (-882 1864628 1867050 1869238 "PRS" NIL PRS (NIL T T) -7 NIL NIL NIL) (-881 1862371 1863948 1863988 "PRQAGG" 1864171 PRQAGG (NIL T) -9 NIL 1864272 NIL) (-880 1861544 1861990 1862018 "PROPLOG" 1862157 PROPLOG (NIL) -9 NIL 1862271 NIL) (-879 1861219 1861282 1861405 "PROPFUN2" NIL PROPFUN2 (NIL T T) -7 NIL NIL NIL) (-878 1860655 1860794 1860966 "PROPFUN1" NIL PROPFUN1 (NIL T) -7 NIL NIL NIL) (-877 1858903 1859666 1859963 "PROPFRML" NIL PROPFRML (NIL T) -8 NIL NIL NIL) (-876 1858455 1858587 1858715 "PROPERTY" NIL PROPERTY (NIL) -8 NIL NIL NIL) (-875 1852896 1857395 1858215 "PRODUCT" NIL PRODUCT (NIL T T) -8 NIL NIL NIL) (-874 1852725 1852763 1852822 "PRINT" NIL PRINT (NIL) -7 NIL NIL NIL) (-873 1852164 1852304 1852455 "PRIMES" NIL PRIMES (NIL T) -7 NIL NIL NIL) (-872 1850632 1851051 1851517 "PRIMELT" NIL PRIMELT (NIL T) -7 NIL NIL NIL) (-871 1850349 1850410 1850438 "PRIMCAT" 1850562 PRIMCAT (NIL) -9 NIL NIL NIL) (-870 1849520 1849716 1849944 "PRIMARR2" NIL PRIMARR2 (NIL T T) -7 NIL NIL NIL) (-869 1845401 1849470 1849515 "PRIMARR" NIL PRIMARR (NIL T) -8 NIL NIL NIL) (-868 1845100 1845162 1845273 "PREASSOC" NIL PREASSOC (NIL T T) -7 NIL NIL NIL) (-867 1842236 1844749 1844982 "PR" NIL PR (NIL T T) -8 NIL NIL NIL) (-866 1841687 1841844 1841872 "PPCURVE" 1842077 PPCURVE (NIL) -9 NIL 1842213 NIL) (-865 1841300 1841545 1841628 "PORTNUM" NIL PORTNUM (NIL) -8 NIL NIL NIL) (-864 1839056 1839477 1840069 "POLYROOT" NIL POLYROOT (NIL T T T T T) -7 NIL NIL NIL) (-863 1838499 1838563 1838796 "POLYLIFT" NIL POLYLIFT (NIL T T T T T) -7 NIL NIL NIL) (-862 1835219 1835705 1836316 "POLYCATQ" NIL POLYCATQ (NIL T T T T T) -7 NIL NIL NIL) (-861 1820810 1826939 1827003 "POLYCAT" 1830488 POLYCAT (NIL T T T) -9 NIL 1832365 NIL) (-860 1816320 1818467 1820805 "POLYCAT-" NIL POLYCAT- (NIL T T T T) -7 NIL NIL NIL) (-859 1815977 1816051 1816170 "POLY2UP" NIL POLY2UP (NIL NIL T) -7 NIL NIL NIL) (-858 1815670 1815733 1815840 "POLY2" NIL POLY2 (NIL T T) -7 NIL NIL NIL) (-857 1809033 1815403 1815562 "POLY" NIL POLY (NIL T) -8 NIL NIL NIL) (-856 1807920 1808183 1808459 "POLUTIL" NIL POLUTIL (NIL T T) -7 NIL NIL NIL) (-855 1806524 1806837 1807167 "POLTOPOL" NIL POLTOPOL (NIL NIL T) -7 NIL NIL NIL) (-854 1801686 1806474 1806519 "POINT" NIL POINT (NIL T) -8 NIL NIL NIL) (-853 1800174 1800585 1800960 "PNTHEORY" NIL PNTHEORY (NIL) -7 NIL NIL NIL) (-852 1798931 1799240 1799636 "PMTOOLS" NIL PMTOOLS (NIL T T T) -7 NIL NIL NIL) (-851 1798602 1798686 1798803 "PMSYM" NIL PMSYM (NIL T) -7 NIL NIL NIL) (-850 1798181 1798256 1798430 "PMQFCAT" NIL PMQFCAT (NIL T T T) -7 NIL NIL NIL) (-849 1797667 1797763 1797923 "PMPREDFS" NIL PMPREDFS (NIL T T T) -7 NIL NIL NIL) (-848 1797139 1797259 1797413 "PMPRED" NIL PMPRED (NIL T) -7 NIL NIL NIL) (-847 1796034 1796252 1796629 "PMPLCAT" NIL PMPLCAT (NIL T T T T T) -7 NIL NIL NIL) (-846 1795645 1795730 1795882 "PMLSAGG" NIL PMLSAGG (NIL T T T) -7 NIL NIL NIL) (-845 1795196 1795278 1795459 "PMKERNEL" NIL PMKERNEL (NIL T T) -7 NIL NIL NIL) (-844 1794888 1794969 1795082 "PMINS" NIL PMINS (NIL T) -7 NIL NIL NIL) (-843 1794401 1794476 1794684 "PMFS" NIL PMFS (NIL T T T) -7 NIL NIL NIL) (-842 1793749 1793877 1794079 "PMDOWN" NIL PMDOWN (NIL T T T) -7 NIL NIL NIL) (-841 1793111 1793245 1793408 "PMASSFS" NIL PMASSFS (NIL T T) -7 NIL NIL NIL) (-840 1792415 1792597 1792778 "PMASS" NIL PMASS (NIL) -7 NIL NIL NIL) (-839 1792138 1792212 1792306 "PLOTTOOL" NIL PLOTTOOL (NIL) -7 NIL NIL NIL) (-838 1788706 1789895 1790811 "PLOT3D" NIL PLOT3D (NIL) -8 NIL NIL NIL) (-837 1787790 1787991 1788226 "PLOT1" NIL PLOT1 (NIL T) -7 NIL NIL NIL) (-836 1783355 1784739 1785881 "PLOT" NIL PLOT (NIL) -8 NIL NIL NIL) (-835 1763276 1768163 1773010 "PLEQN" NIL PLEQN (NIL T T T T) -7 NIL NIL NIL) (-834 1763016 1763069 1763172 "PINTERPA" NIL PINTERPA (NIL T T) -7 NIL NIL NIL) (-833 1762457 1762591 1762771 "PINTERP" NIL PINTERP (NIL NIL T) -7 NIL NIL NIL) (-832 1760466 1761687 1761715 "PID" 1761912 PID (NIL) -9 NIL 1762039 NIL) (-831 1760254 1760297 1760372 "PICOERCE" NIL PICOERCE (NIL T) -7 NIL NIL NIL) (-830 1759441 1760101 1760188 "PI" NIL PI (NIL) -8 NIL NIL 1760228) (-829 1758893 1759044 1759220 "PGROEB" NIL PGROEB (NIL T) -7 NIL NIL NIL) (-828 1755221 1756179 1757084 "PGE" NIL PGE (NIL) -7 NIL NIL NIL) (-827 1753585 1753874 1754240 "PGCD" NIL PGCD (NIL T T T T) -7 NIL NIL NIL) (-826 1753027 1753142 1753303 "PFRPAC" NIL PFRPAC (NIL T) -7 NIL NIL NIL) (-825 1749568 1751896 1752249 "PFR" NIL PFR (NIL T) -8 NIL NIL NIL) (-824 1748174 1748454 1748779 "PFOTOOLS" NIL PFOTOOLS (NIL T T) -7 NIL NIL NIL) (-823 1746939 1747193 1747541 "PFOQ" NIL PFOQ (NIL T T T) -7 NIL NIL NIL) (-822 1745649 1745876 1746228 "PFO" NIL PFO (NIL T T T T T) -7 NIL NIL NIL) (-821 1742659 1744219 1744247 "PFECAT" 1744840 PFECAT (NIL) -9 NIL 1745217 NIL) (-820 1742282 1742447 1742654 "PFECAT-" NIL PFECAT- (NIL T) -7 NIL NIL NIL) (-819 1741106 1741388 1741689 "PFBRU" NIL PFBRU (NIL T T) -7 NIL NIL NIL) (-818 1739288 1739675 1740105 "PFBR" NIL PFBR (NIL T T T T) -7 NIL NIL NIL) (-817 1735258 1739214 1739283 "PF" NIL PF (NIL NIL) -8 NIL NIL NIL) (-816 1731161 1732308 1733175 "PERMGRP" NIL PERMGRP (NIL T) -8 NIL NIL NIL) (-815 1729093 1730182 1730223 "PERMCAT" 1730622 PERMCAT (NIL T) -9 NIL 1730919 NIL) (-814 1728789 1728836 1728959 "PERMAN" NIL PERMAN (NIL NIL T) -7 NIL NIL NIL) (-813 1725238 1726919 1727564 "PERM" NIL PERM (NIL T) -8 NIL NIL NIL) (-812 1722703 1724993 1725114 "PENDTREE" NIL PENDTREE (NIL T) -8 NIL NIL NIL) (-811 1721572 1721835 1721876 "PDSPC" 1722409 PDSPC (NIL T) -9 NIL 1722654 NIL) (-810 1720939 1721205 1721567 "PDSPC-" NIL PDSPC- (NIL T T) -7 NIL NIL NIL) (-809 1719574 1720567 1720608 "PDRING" 1720613 PDRING (NIL T) -9 NIL 1720640 NIL) (-808 1718284 1719073 1719126 "PDMOD" 1719131 PDMOD (NIL T T) -9 NIL 1719234 NIL) (-807 1717377 1717589 1717838 "PDECOMP" NIL PDECOMP (NIL T T) -7 NIL NIL NIL) (-806 1716982 1717049 1717103 "PDDOM" 1717268 PDDOM (NIL T T) -9 NIL 1717348 NIL) (-805 1716834 1716870 1716977 "PDDOM-" NIL PDDOM- (NIL T T T) -7 NIL NIL NIL) (-804 1716620 1716659 1716748 "PCOMP" NIL PCOMP (NIL T T) -7 NIL NIL NIL) (-803 1714937 1715691 1715990 "PBWLB" NIL PBWLB (NIL T) -8 NIL NIL NIL) (-802 1714626 1714689 1714798 "PATTERN2" NIL PATTERN2 (NIL T T) -7 NIL NIL NIL) (-801 1712764 1713194 1713645 "PATTERN1" NIL PATTERN1 (NIL T T) -7 NIL NIL NIL) (-800 1706384 1708213 1709505 "PATTERN" NIL PATTERN (NIL T) -8 NIL NIL NIL) (-799 1706015 1706088 1706220 "PATRES2" NIL PATRES2 (NIL T T T) -7 NIL NIL NIL) (-798 1703717 1704397 1704878 "PATRES" NIL PATRES (NIL T T) -8 NIL NIL NIL) (-797 1701921 1702349 1702752 "PATMATCH" NIL PATMATCH (NIL T T T) -7 NIL NIL NIL) (-796 1701367 1701615 1701656 "PATMAB" 1701763 PATMAB (NIL T) -9 NIL 1701846 NIL) (-795 1700014 1700418 1700675 "PATLRES" NIL PATLRES (NIL T T T) -8 NIL NIL NIL) (-794 1699552 1699683 1699724 "PATAB" 1699729 PATAB (NIL T) -9 NIL 1699901 NIL) (-793 1698095 1698532 1698955 "PARTPERM" NIL PARTPERM (NIL) -7 NIL NIL NIL) (-792 1697773 1697848 1697950 "PARSURF" NIL PARSURF (NIL T) -8 NIL NIL NIL) (-791 1697462 1697525 1697634 "PARSU2" NIL PARSU2 (NIL T T) -7 NIL NIL NIL) (-790 1697267 1697313 1697380 "PARSER" NIL PARSER (NIL) -7 NIL NIL NIL) (-789 1696945 1697020 1697122 "PARSCURV" NIL PARSCURV (NIL T) -8 NIL NIL NIL) (-788 1696634 1696697 1696806 "PARSC2" NIL PARSC2 (NIL T T) -7 NIL NIL NIL) (-787 1696325 1696395 1696492 "PARPCURV" NIL PARPCURV (NIL T) -8 NIL NIL NIL) (-786 1696014 1696077 1696186 "PARPC2" NIL PARPC2 (NIL T T) -7 NIL NIL NIL) (-785 1695175 1695554 1695733 "PARAMAST" NIL PARAMAST (NIL) -8 NIL NIL NIL) (-784 1694782 1694880 1694999 "PAN2EXPR" NIL PAN2EXPR (NIL) -7 NIL NIL NIL) (-783 1693750 1694175 1694394 "PALETTE" NIL PALETTE (NIL) -8 NIL NIL NIL) (-782 1692415 1693069 1693429 "PAIR" NIL PAIR (NIL T T) -8 NIL NIL NIL) (-781 1685505 1691819 1692013 "PADICRC" NIL PADICRC (NIL NIL T) -8 NIL NIL NIL) (-780 1677926 1685003 1685187 "PADICRAT" NIL PADICRAT (NIL NIL) -8 NIL NIL NIL) (-779 1674651 1676566 1676606 "PADICCT" 1677187 PADICCT (NIL NIL) -9 NIL 1677469 NIL) (-778 1672641 1674601 1674646 "PADIC" NIL PADIC (NIL NIL) -8 NIL NIL NIL) (-777 1671803 1672013 1672279 "PADEPAC" NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL NIL) (-776 1671145 1671288 1671492 "PADE" NIL PADE (NIL T T T) -7 NIL NIL NIL) (-775 1669526 1670553 1670831 "OWP" NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-774 1669050 1669309 1669406 "OVERSET" NIL OVERSET (NIL) -8 NIL NIL NIL) (-773 1668109 1668787 1668959 "OVAR" NIL OVAR (NIL NIL) -8 NIL NIL NIL) (-772 1658531 1661400 1663599 "OUTFORM" NIL OUTFORM (NIL) -8 NIL NIL NIL) (-771 1657923 1658237 1658363 "OUTBFILE" NIL OUTBFILE (NIL) -8 NIL NIL NIL) (-770 1657200 1657395 1657423 "OUTBCON" 1657741 OUTBCON (NIL) -9 NIL 1657907 NIL) (-769 1656908 1657038 1657195 "OUTBCON-" NIL OUTBCON- (NIL T) -7 NIL NIL NIL) (-768 1656289 1656434 1656595 "OUT" NIL OUT (NIL) -7 NIL NIL NIL) (-767 1655660 1656087 1656176 "OSI" NIL OSI (NIL) -8 NIL NIL NIL) (-766 1655075 1655490 1655518 "OSGROUP" 1655523 OSGROUP (NIL) -9 NIL 1655545 NIL) (-765 1654039 1654300 1654585 "ORTHPOL" NIL ORTHPOL (NIL T) -7 NIL NIL NIL) (-764 1651308 1653914 1654034 "OREUP" NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL NIL) (-763 1648449 1651059 1651185 "ORESUP" NIL ORESUP (NIL T NIL NIL) -8 NIL NIL NIL) (-762 1646467 1646995 1647555 "OREPCTO" NIL OREPCTO (NIL T T) -7 NIL NIL NIL) (-761 1639809 1642349 1642389 "OREPCAT" 1644710 OREPCAT (NIL T) -9 NIL 1645812 NIL) (-760 1637835 1638769 1639804 "OREPCAT-" NIL OREPCAT- (NIL T T) -7 NIL NIL NIL) (-759 1637032 1637303 1637331 "ORDTYPE" 1637636 ORDTYPE (NIL) -9 NIL 1637794 NIL) (-758 1636566 1636777 1637027 "ORDTYPE-" NIL ORDTYPE- (NIL T) -7 NIL NIL NIL) (-757 1636028 1636404 1636561 "ORDSTRCT" NIL ORDSTRCT (NIL T NIL) -8 NIL NIL NIL) (-756 1635522 1635885 1635913 "ORDSET" 1635918 ORDSET (NIL) -9 NIL 1635940 NIL) (-755 1634087 1635109 1635137 "ORDRING" 1635142 ORDRING (NIL) -9 NIL 1635170 NIL) (-754 1633335 1633892 1633920 "ORDMON" 1633925 ORDMON (NIL) -9 NIL 1633946 NIL) (-753 1632639 1632801 1632993 "ORDFUNS" NIL ORDFUNS (NIL NIL T) -7 NIL NIL NIL) (-752 1631850 1632358 1632386 "ORDFIN" 1632451 ORDFIN (NIL) -9 NIL 1632525 NIL) (-751 1631244 1631383 1631569 "ORDCOMP2" NIL ORDCOMP2 (NIL T T) -7 NIL NIL NIL) (-750 1627919 1630212 1630618 "ORDCOMP" NIL ORDCOMP (NIL T) -8 NIL NIL NIL) (-749 1627326 1627681 1627786 "OPSIG" NIL OPSIG (NIL) -8 NIL NIL NIL) (-748 1627134 1627179 1627245 "OPQUERY" NIL OPQUERY (NIL) -7 NIL NIL NIL) (-747 1626435 1626711 1626752 "OPERCAT" 1626963 OPERCAT (NIL T) -9 NIL 1627059 NIL) (-746 1626247 1626314 1626430 "OPERCAT-" NIL OPERCAT- (NIL T T) -7 NIL NIL NIL) (-745 1623613 1625049 1625545 "OP" NIL OP (NIL T) -8 NIL NIL NIL) (-744 1623034 1623161 1623335 "ONECOMP2" NIL ONECOMP2 (NIL T T) -7 NIL NIL NIL) (-743 1619935 1622173 1622539 "ONECOMP" NIL ONECOMP (NIL T) -8 NIL NIL NIL) (-742 1616566 1619365 1619405 "OMSAGG" 1619466 OMSAGG (NIL T) -9 NIL 1619530 NIL) (-741 1614978 1616237 1616405 "OMLO" NIL OMLO (NIL T T) -8 NIL NIL NIL) (-740 1613174 1614415 1614443 "OINTDOM" 1614448 OINTDOM (NIL) -9 NIL 1614469 NIL) (-739 1610604 1612176 1612505 "OFMONOID" NIL OFMONOID (NIL T) -8 NIL NIL NIL) (-738 1609858 1610554 1610599 "ODVAR" NIL ODVAR (NIL T) -8 NIL NIL NIL) (-737 1607060 1609699 1609853 "ODR" NIL ODR (NIL T T NIL) -8 NIL NIL NIL) (-736 1598597 1606931 1607055 "ODPOL" NIL ODPOL (NIL T) -8 NIL NIL NIL) (-735 1592008 1598488 1598592 "ODP" NIL ODP (NIL NIL T NIL) -8 NIL NIL NIL) (-734 1590980 1591217 1591490 "ODETOOLS" NIL ODETOOLS (NIL T T) -7 NIL NIL NIL) (-733 1588614 1589284 1589988 "ODESYS" NIL ODESYS (NIL T T) -7 NIL NIL NIL) (-732 1584391 1585351 1586374 "ODERTRIC" NIL ODERTRIC (NIL T T) -7 NIL NIL NIL) (-731 1583899 1583987 1584181 "ODERED" NIL ODERED (NIL T T T T T) -7 NIL NIL NIL) (-730 1581348 1581930 1582603 "ODERAT" NIL ODERAT (NIL T T) -7 NIL NIL NIL) (-729 1578743 1579251 1579847 "ODEPRRIC" NIL ODEPRRIC (NIL T T T T) -7 NIL NIL NIL) (-728 1575740 1576279 1576925 "ODEPRIM" NIL ODEPRIM (NIL T T T T) -7 NIL NIL NIL) (-727 1575095 1575203 1575461 "ODEPAL" NIL ODEPAL (NIL T T T T) -7 NIL NIL NIL) (-726 1574253 1574378 1574599 "ODEINT" NIL ODEINT (NIL T T) -7 NIL NIL NIL) (-725 1570537 1571333 1572246 "ODEEF" NIL ODEEF (NIL T T) -7 NIL NIL NIL) (-724 1569977 1570072 1570294 "ODECONST" NIL ODECONST (NIL T T T) -7 NIL NIL NIL) (-723 1569658 1569707 1569834 "OCTCT2" NIL OCTCT2 (NIL T T T T) -7 NIL NIL NIL) (-722 1566261 1569457 1569576 "OCT" NIL OCT (NIL T) -8 NIL NIL NIL) (-721 1565421 1566043 1566071 "OCAMON" 1566076 OCAMON (NIL) -9 NIL 1566097 NIL) (-720 1559633 1562447 1562487 "OC" 1563582 OC (NIL T) -9 NIL 1564438 NIL) (-719 1557633 1558559 1559539 "OC-" NIL OC- (NIL T T) -7 NIL NIL NIL) (-718 1557049 1557467 1557495 "OASGP" 1557500 OASGP (NIL) -9 NIL 1557520 NIL) (-717 1556112 1556761 1556789 "OAMONS" 1556829 OAMONS (NIL) -9 NIL 1556872 NIL) (-716 1555257 1555838 1555866 "OAMON" 1555923 OAMON (NIL) -9 NIL 1555974 NIL) (-715 1555153 1555185 1555252 "OAMON-" NIL OAMON- (NIL T) -7 NIL NIL NIL) (-714 1553904 1554678 1554706 "OAGROUP" 1554852 OAGROUP (NIL) -9 NIL 1554944 NIL) (-713 1553695 1553782 1553899 "OAGROUP-" NIL OAGROUP- (NIL T) -7 NIL NIL NIL) (-712 1553435 1553491 1553579 "NUMTUBE" NIL NUMTUBE (NIL T) -7 NIL NIL NIL) (-711 1548497 1550060 1551587 "NUMQUAD" NIL NUMQUAD (NIL) -7 NIL NIL NIL) (-710 1545192 1546226 1547261 "NUMODE" NIL NUMODE (NIL) -7 NIL NIL NIL) (-709 1544302 1544535 1544753 "NUMFMT" NIL NUMFMT (NIL) -7 NIL NIL NIL) (-708 1533163 1536191 1538639 "NUMERIC" NIL NUMERIC (NIL T) -7 NIL NIL NIL) (-707 1527050 1532604 1532698 "NTSCAT" 1532703 NTSCAT (NIL T T T T) -9 NIL 1532741 NIL) (-706 1526391 1526570 1526763 "NTPOLFN" NIL NTPOLFN (NIL T) -7 NIL NIL NIL) (-705 1526084 1526147 1526254 "NSUP2" NIL NSUP2 (NIL T T) -7 NIL NIL NIL) (-704 1513751 1523704 1524514 "NSUP" NIL NSUP (NIL T) -8 NIL NIL NIL) (-703 1502760 1513616 1513746 "NSMP" NIL NSMP (NIL T T) -8 NIL NIL NIL) (-702 1501480 1501805 1502162 "NREP" NIL NREP (NIL T) -7 NIL NIL NIL) (-701 1500316 1500580 1500938 "NPCOEF" NIL NPCOEF (NIL T T T T T) -7 NIL NIL NIL) (-700 1499483 1499616 1499832 "NORMRETR" NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL NIL) (-699 1497801 1498120 1498526 "NORMPK" NIL NORMPK (NIL T T T T T) -7 NIL NIL NIL) (-698 1497514 1497548 1497672 "NORMMA" NIL NORMMA (NIL T T T T) -7 NIL NIL NIL) (-697 1497333 1497368 1497437 "NONE1" NIL NONE1 (NIL T) -7 NIL NIL NIL) (-696 1497109 1497299 1497328 "NONE" NIL NONE (NIL) -8 NIL NIL NIL) (-695 1496673 1496740 1496917 "NODE1" NIL NODE1 (NIL T T) -7 NIL NIL NIL) (-694 1494959 1496036 1496291 "NNI" NIL NNI (NIL) -8 NIL NIL 1496638) (-693 1493687 1494024 1494388 "NLINSOL" NIL NLINSOL (NIL T) -7 NIL NIL NIL) (-692 1492664 1492916 1493218 "NFINTBAS" NIL NFINTBAS (NIL T T) -7 NIL NIL NIL) (-691 1491751 1492316 1492357 "NETCLT" 1492528 NETCLT (NIL T) -9 NIL 1492609 NIL) (-690 1490655 1490922 1491203 "NCODIV" NIL NCODIV (NIL T T) -7 NIL NIL NIL) (-689 1490454 1490497 1490572 "NCNTFRAC" NIL NCNTFRAC (NIL T) -7 NIL NIL NIL) (-688 1488985 1489373 1489793 "NCEP" NIL NCEP (NIL T) -7 NIL NIL NIL) (-687 1487618 1488584 1488612 "NASRING" 1488722 NASRING (NIL) -9 NIL 1488802 NIL) (-686 1487463 1487519 1487613 "NASRING-" NIL NASRING- (NIL T) -7 NIL NIL NIL) (-685 1486392 1487070 1487098 "NARNG" 1487215 NARNG (NIL) -9 NIL 1487306 NIL) (-684 1486168 1486253 1486387 "NARNG-" NIL NARNG- (NIL T) -7 NIL NIL NIL) (-683 1484934 1485688 1485728 "NAALG" 1485807 NAALG (NIL T) -9 NIL 1485868 NIL) (-682 1484804 1484839 1484929 "NAALG-" NIL NAALG- (NIL T T) -7 NIL NIL NIL) (-681 1479783 1480968 1482154 "MULTSQFR" NIL MULTSQFR (NIL T T T T) -7 NIL NIL NIL) (-680 1479178 1479265 1479449 "MULTFACT" NIL MULTFACT (NIL T T T T) -7 NIL NIL NIL) (-679 1471188 1475682 1475734 "MTSCAT" 1476794 MTSCAT (NIL T T) -9 NIL 1477308 NIL) (-678 1470954 1471014 1471106 "MTHING" NIL MTHING (NIL T) -7 NIL NIL NIL) (-677 1470780 1470819 1470879 "MSYSCMD" NIL MSYSCMD (NIL) -7 NIL NIL NIL) (-676 1467642 1470331 1470372 "MSETAGG" 1470377 MSETAGG (NIL T) -9 NIL 1470411 NIL) (-675 1463779 1466688 1467006 "MSET" NIL MSET (NIL T) -8 NIL NIL NIL) (-674 1460053 1461876 1462616 "MRING" NIL MRING (NIL T T) -8 NIL NIL NIL) (-673 1459690 1459763 1459892 "MRF2" NIL MRF2 (NIL T T T) -7 NIL NIL NIL) (-672 1459343 1459384 1459528 "MRATFAC" NIL MRATFAC (NIL T T T T) -7 NIL NIL NIL) (-671 1457208 1457545 1457976 "MPRFF" NIL MPRFF (NIL T T T T) -7 NIL NIL NIL) (-670 1450606 1457107 1457203 "MPOLY" NIL MPOLY (NIL NIL T) -8 NIL NIL NIL) (-669 1450131 1450172 1450380 "MPCPF" NIL MPCPF (NIL T T T T) -7 NIL NIL NIL) (-668 1449690 1449739 1449922 "MPC3" NIL MPC3 (NIL T T T T T T T) -7 NIL NIL NIL) (-667 1448964 1449057 1449276 "MPC2" NIL MPC2 (NIL T T T T T T T) -7 NIL NIL NIL) (-666 1447581 1447942 1448332 "MONOTOOL" NIL MONOTOOL (NIL T T) -7 NIL NIL NIL) (-665 1447102 1447169 1447208 "MONOPC" 1447268 MONOPC (NIL T) -9 NIL 1447487 NIL) (-664 1446553 1446889 1447017 "MONOP" NIL MONOP (NIL T) -8 NIL NIL NIL) (-663 1445695 1446074 1446102 "MONOID" 1446320 MONOID (NIL) -9 NIL 1446464 NIL) (-662 1445354 1445504 1445690 "MONOID-" NIL MONOID- (NIL T) -7 NIL NIL NIL) (-661 1434292 1441162 1441221 "MONOGEN" 1441895 MONOGEN (NIL T T) -9 NIL 1442351 NIL) (-660 1432304 1433190 1434173 "MONOGEN-" NIL MONOGEN- (NIL T T T) -7 NIL NIL NIL) (-659 1431018 1431562 1431590 "MONADWU" 1431981 MONADWU (NIL) -9 NIL 1432216 NIL) (-658 1430566 1430766 1431013 "MONADWU-" NIL MONADWU- (NIL T) -7 NIL NIL NIL) (-657 1429843 1430144 1430172 "MONAD" 1430379 MONAD (NIL) -9 NIL 1430491 NIL) (-656 1429610 1429706 1429838 "MONAD-" NIL MONAD- (NIL T) -7 NIL NIL NIL) (-655 1428000 1428770 1429049 "MOEBIUS" NIL MOEBIUS (NIL T) -8 NIL NIL NIL) (-654 1427134 1427661 1427701 "MODULE" 1427706 MODULE (NIL T) -9 NIL 1427744 NIL) (-653 1426813 1426939 1427129 "MODULE-" NIL MODULE- (NIL T T) -7 NIL NIL NIL) (-652 1424524 1425410 1425724 "MODRING" NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-651 1421703 1423120 1423633 "MODOP" NIL MODOP (NIL T T) -8 NIL NIL NIL) (-650 1420337 1420911 1421187 "MODMONOM" NIL MODMONOM (NIL T T NIL) -8 NIL NIL NIL) (-649 1409556 1419002 1419415 "MODMON" NIL MODMON (NIL T T) -8 NIL NIL NIL) (-648 1406512 1408556 1408825 "MODFIELD" NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-647 1405596 1405963 1406153 "MMLFORM" NIL MMLFORM (NIL) -8 NIL NIL NIL) (-646 1405165 1405214 1405393 "MMAP" NIL MMAP (NIL T T T T T T) -7 NIL NIL NIL) (-645 1402990 1403986 1404026 "MLO" 1404443 MLO (NIL T) -9 NIL 1404683 NIL) (-644 1400871 1401398 1401993 "MLIFT" NIL MLIFT (NIL T T T T) -7 NIL NIL NIL) (-643 1400339 1400435 1400589 "MKUCFUNC" NIL MKUCFUNC (NIL T T T) -7 NIL NIL NIL) (-642 1400009 1400085 1400208 "MKRECORD" NIL MKRECORD (NIL T T) -7 NIL NIL NIL) (-641 1399221 1399407 1399635 "MKFUNC" NIL MKFUNC (NIL T) -7 NIL NIL NIL) (-640 1398714 1398830 1398986 "MKFLCFN" NIL MKFLCFN (NIL T) -7 NIL NIL NIL) (-639 1398086 1398200 1398385 "MKBCFUNC" NIL MKBCFUNC (NIL T T T T) -7 NIL NIL NIL) (-638 1397113 1397386 1397663 "MHROWRED" NIL MHROWRED (NIL T) -7 NIL NIL NIL) (-637 1396546 1396634 1396805 "MFINFACT" NIL MFINFACT (NIL T T T T) -7 NIL NIL NIL) (-636 1393704 1394583 1395462 "MESH" NIL MESH (NIL) -7 NIL NIL NIL) (-635 1392371 1392719 1393072 "MDDFACT" NIL MDDFACT (NIL T) -7 NIL NIL NIL) (-634 1389028 1391495 1391536 "MDAGG" 1391793 MDAGG (NIL T) -9 NIL 1391938 NIL) (-633 1388302 1388466 1388666 "MCDEN" NIL MCDEN (NIL T T) -7 NIL NIL NIL) (-632 1387380 1387666 1387896 "MAYBE" NIL MAYBE (NIL T) -8 NIL NIL NIL) (-631 1385477 1386054 1386615 "MATSTOR" NIL MATSTOR (NIL T) -7 NIL NIL NIL) (-630 1381230 1385067 1385314 "MATRIX" NIL MATRIX (NIL T) -8 NIL NIL NIL) (-629 1377579 1378348 1379082 "MATLIN" NIL MATLIN (NIL T T T T) -7 NIL NIL NIL) (-628 1376332 1376501 1376830 "MATCAT2" NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-627 1365848 1369456 1369532 "MATCAT" 1374520 MATCAT (NIL T T T) -9 NIL 1375966 NIL) (-626 1363129 1364435 1365843 "MATCAT-" NIL MATCAT- (NIL T T T T) -7 NIL NIL NIL) (-625 1361530 1361890 1362274 "MAPPKG3" NIL MAPPKG3 (NIL T T T) -7 NIL NIL NIL) (-624 1360663 1360860 1361082 "MAPPKG2" NIL MAPPKG2 (NIL T T) -7 NIL NIL NIL) (-623 1359414 1359740 1360067 "MAPPKG1" NIL MAPPKG1 (NIL T) -7 NIL NIL NIL) (-622 1358576 1358978 1359154 "MAPPAST" NIL MAPPAST (NIL) -8 NIL NIL NIL) (-621 1358245 1358309 1358432 "MAPHACK3" NIL MAPHACK3 (NIL T T T) -7 NIL NIL NIL) (-620 1357893 1357966 1358080 "MAPHACK2" NIL MAPHACK2 (NIL T T) -7 NIL NIL NIL) (-619 1357428 1357543 1357685 "MAPHACK1" NIL MAPHACK1 (NIL T) -7 NIL NIL NIL) (-618 1355637 1356405 1356706 "MAGMA" NIL MAGMA (NIL T) -8 NIL NIL NIL) (-617 1355131 1355433 1355523 "MACROAST" NIL MACROAST (NIL) -8 NIL NIL NIL) (-616 1348640 1353446 1353487 "LZSTAGG" 1354264 LZSTAGG (NIL T) -9 NIL 1354554 NIL) (-615 1345759 1347193 1348635 "LZSTAGG-" NIL LZSTAGG- (NIL T T) -7 NIL NIL NIL) (-614 1343146 1344112 1344595 "LWORD" NIL LWORD (NIL T) -8 NIL NIL NIL) (-613 1342727 1343006 1343080 "LSTAST" NIL LSTAST (NIL) -8 NIL NIL NIL) (-612 1334891 1342588 1342722 "LSQM" NIL LSQM (NIL NIL T) -8 NIL NIL NIL) (-611 1334254 1334399 1334627 "LSPP" NIL LSPP (NIL T T T T) -7 NIL NIL NIL) (-610 1331738 1332436 1333148 "LSMP1" NIL LSMP1 (NIL T) -7 NIL NIL NIL) (-609 1329850 1330173 1330621 "LSMP" NIL LSMP (NIL T T T T) -7 NIL NIL NIL) (-608 1323019 1328937 1328978 "LSAGG" 1329040 LSAGG (NIL T) -9 NIL 1329118 NIL) (-607 1320713 1321812 1323014 "LSAGG-" NIL LSAGG- (NIL T T) -7 NIL NIL NIL) (-606 1318193 1320062 1320311 "LPOLY" NIL LPOLY (NIL T T) -8 NIL NIL NIL) (-605 1317860 1317951 1318074 "LPEFRAC" NIL LPEFRAC (NIL T) -7 NIL NIL NIL) (-604 1317531 1317610 1317638 "LOGIC" 1317749 LOGIC (NIL) -9 NIL 1317831 NIL) (-603 1317426 1317455 1317526 "LOGIC-" NIL LOGIC- (NIL T) -7 NIL NIL NIL) (-602 1316745 1316903 1317096 "LODOOPS" NIL LODOOPS (NIL T T) -7 NIL NIL NIL) (-601 1315530 1315779 1316130 "LODOF" NIL LODOF (NIL T T) -7 NIL NIL NIL) (-600 1311352 1314151 1314191 "LODOCAT" 1314623 LODOCAT (NIL T) -9 NIL 1314834 NIL) (-599 1311145 1311221 1311347 "LODOCAT-" NIL LODOCAT- (NIL T T) -7 NIL NIL NIL) (-598 1308145 1311022 1311140 "LODO2" NIL LODO2 (NIL T T) -8 NIL NIL NIL) (-597 1305243 1308095 1308140 "LODO1" NIL LODO1 (NIL T) -8 NIL NIL NIL) (-596 1302330 1305173 1305238 "LODO" NIL LODO (NIL T NIL) -8 NIL NIL NIL) (-595 1301383 1301558 1301860 "LODEEF" NIL LODEEF (NIL T T T) -7 NIL NIL NIL) (-594 1299515 1300645 1300898 "LO" NIL LO (NIL T T T) -8 NIL NIL NIL) (-593 1294610 1297674 1297715 "LNAGG" 1298577 LNAGG (NIL T) -9 NIL 1299012 NIL) (-592 1293997 1294264 1294605 "LNAGG-" NIL LNAGG- (NIL T T) -7 NIL NIL NIL) (-591 1290569 1291510 1292147 "LMOPS" NIL LMOPS (NIL T T NIL) -8 NIL NIL NIL) (-590 1289831 1290336 1290376 "LMODULE" 1290381 LMODULE (NIL T) -9 NIL 1290407 NIL) (-589 1287010 1289568 1289690 "LMDICT" NIL LMDICT (NIL T) -8 NIL NIL NIL) (-588 1286578 1286789 1286830 "LLINSET" 1286891 LLINSET (NIL T) -9 NIL 1286935 NIL) (-587 1286254 1286514 1286573 "LITERAL" NIL LITERAL (NIL T) -8 NIL NIL NIL) (-586 1285853 1285933 1286072 "LIST3" NIL LIST3 (NIL T T T) -7 NIL NIL NIL) (-585 1284304 1284652 1285051 "LIST2MAP" NIL LIST2MAP (NIL T T) -7 NIL NIL NIL) (-584 1283475 1283671 1283899 "LIST2" NIL LIST2 (NIL T T) -7 NIL NIL NIL) (-583 1276521 1282731 1282985 "LIST" NIL LIST (NIL T) -8 NIL NIL NIL) (-582 1276098 1276331 1276372 "LINSET" 1276377 LINSET (NIL T) -9 NIL 1276410 NIL) (-581 1274999 1275721 1275888 "LINFORM" NIL LINFORM (NIL T NIL) -8 NIL NIL NIL) (-580 1273265 1274020 1274060 "LINEXP" 1274546 LINEXP (NIL T) -9 NIL 1274819 NIL) (-579 1271887 1272874 1273055 "LINELT" NIL LINELT (NIL T NIL) -8 NIL NIL NIL) (-578 1270714 1270986 1271288 "LINDEP" NIL LINDEP (NIL T T) -7 NIL NIL NIL) (-577 1269927 1270516 1270626 "LINBASIS" NIL LINBASIS (NIL NIL) -8 NIL NIL NIL) (-576 1267477 1268199 1268949 "LIMITRF" NIL LIMITRF (NIL T) -7 NIL NIL NIL) (-575 1266107 1266404 1266795 "LIMITPS" NIL LIMITPS (NIL T T) -7 NIL NIL NIL) (-574 1264900 1265502 1265542 "LIECAT" 1265682 LIECAT (NIL T) -9 NIL 1265833 NIL) (-573 1264774 1264807 1264895 "LIECAT-" NIL LIECAT- (NIL T T) -7 NIL NIL NIL) (-572 1259030 1264464 1264692 "LIE" NIL LIE (NIL T T) -8 NIL NIL NIL) (-571 1251379 1258706 1258862 "LIB" NIL LIB (NIL) -8 NIL NIL NIL) (-570 1247831 1248780 1249715 "LGROBP" NIL LGROBP (NIL NIL T) -7 NIL NIL NIL) (-569 1246455 1247363 1247391 "LFCAT" 1247598 LFCAT (NIL) -9 NIL 1247737 NIL) (-568 1244694 1245024 1245369 "LF" NIL LF (NIL T T) -7 NIL NIL NIL) (-567 1242211 1242876 1243557 "LEXTRIPK" NIL LEXTRIPK (NIL T NIL) -7 NIL NIL NIL) (-566 1239223 1240201 1240704 "LEXP" NIL LEXP (NIL T T NIL) -8 NIL NIL NIL) (-565 1238714 1239017 1239108 "LETAST" NIL LETAST (NIL) -8 NIL NIL NIL) (-564 1237421 1237745 1238145 "LEADCDET" NIL LEADCDET (NIL T T T T) -7 NIL NIL NIL) (-563 1236687 1236772 1236998 "LAZM3PK" NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL NIL) (-562 1231690 1235255 1235791 "LAUPOL" NIL LAUPOL (NIL T T) -8 NIL NIL NIL) (-561 1231315 1231365 1231525 "LAPLACE" NIL LAPLACE (NIL T T) -7 NIL NIL NIL) (-560 1230086 1230859 1230899 "LALG" 1230960 LALG (NIL T) -9 NIL 1231018 NIL) (-559 1229869 1229946 1230081 "LALG-" NIL LALG- (NIL T T) -7 NIL NIL NIL) (-558 1227722 1229137 1229388 "LA" NIL LA (NIL T T T) -8 NIL NIL NIL) (-557 1227551 1227581 1227622 "KVTFROM" 1227684 KVTFROM (NIL T) -9 NIL NIL NIL) (-556 1226367 1227082 1227271 "KTVLOGIC" NIL KTVLOGIC (NIL) -8 NIL NIL NIL) (-555 1226196 1226226 1226267 "KRCFROM" 1226329 KRCFROM (NIL T) -9 NIL NIL NIL) (-554 1225298 1225495 1225790 "KOVACIC" NIL KOVACIC (NIL T T) -7 NIL NIL NIL) (-553 1225127 1225157 1225198 "KONVERT" 1225260 KONVERT (NIL T) -9 NIL NIL NIL) (-552 1224956 1224986 1225027 "KOERCE" 1225089 KOERCE (NIL T) -9 NIL NIL NIL) (-551 1224526 1224619 1224751 "KERNEL2" NIL KERNEL2 (NIL T T) -7 NIL NIL NIL) (-550 1222579 1223473 1223845 "KERNEL" NIL KERNEL (NIL T) -8 NIL NIL NIL) (-549 1215756 1220771 1220825 "KDAGG" 1221201 KDAGG (NIL T T) -9 NIL 1221408 NIL) (-548 1215404 1215546 1215751 "KDAGG-" NIL KDAGG- (NIL T T T) -7 NIL NIL NIL) (-547 1208234 1215185 1215342 "KAFILE" NIL KAFILE (NIL T) -8 NIL NIL NIL) (-546 1207884 1208166 1208229 "JVMOP" NIL JVMOP (NIL) -8 NIL NIL NIL) (-545 1206854 1207353 1207602 "JVMMDACC" NIL JVMMDACC (NIL) -8 NIL NIL NIL) (-544 1205980 1206429 1206634 "JVMFDACC" NIL JVMFDACC (NIL) -8 NIL NIL NIL) (-543 1204844 1205336 1205636 "JVMCSTTG" NIL JVMCSTTG (NIL) -8 NIL NIL NIL) (-542 1204126 1204525 1204686 "JVMCFACC" NIL JVMCFACC (NIL) -8 NIL NIL NIL) (-541 1203836 1204072 1204121 "JVMBCODE" NIL JVMBCODE (NIL) -8 NIL NIL NIL) (-540 1198091 1203526 1203754 "JORDAN" NIL JORDAN (NIL T T) -8 NIL NIL NIL) (-539 1197509 1197842 1197962 "JOINAST" NIL JOINAST (NIL) -8 NIL NIL NIL) (-538 1193671 1195686 1195740 "IXAGG" 1196667 IXAGG (NIL T T) -9 NIL 1197124 NIL) (-537 1192877 1193248 1193666 "IXAGG-" NIL IXAGG- (NIL T T T) -7 NIL NIL NIL) (-536 1191844 1192119 1192382 "ITUPLE" NIL ITUPLE (NIL T) -8 NIL NIL NIL) (-535 1190506 1190713 1191006 "ITRIGMNP" NIL ITRIGMNP (NIL T T T) -7 NIL NIL NIL) (-534 1189457 1189679 1189962 "ITFUN3" NIL ITFUN3 (NIL T T T) -7 NIL NIL NIL) (-533 1189132 1189195 1189318 "ITFUN2" NIL ITFUN2 (NIL T T) -7 NIL NIL NIL) (-532 1188394 1188766 1188940 "ITFORM" NIL ITFORM (NIL) -8 NIL NIL NIL) (-531 1186370 1187670 1187944 "ITAYLOR" NIL ITAYLOR (NIL T) -8 NIL NIL NIL) (-530 1175918 1181687 1182844 "ISUPS" NIL ISUPS (NIL T) -8 NIL NIL NIL) (-529 1175163 1175315 1175551 "ISUMP" NIL ISUMP (NIL T T T T) -7 NIL NIL NIL) (-528 1174654 1174957 1175048 "ISAST" NIL ISAST (NIL) -8 NIL NIL NIL) (-527 1173947 1174038 1174251 "IRURPK" NIL IRURPK (NIL T T T T T) -7 NIL NIL NIL) (-526 1173079 1173304 1173544 "IRSN" NIL IRSN (NIL) -7 NIL NIL NIL) (-525 1171492 1171873 1172301 "IRRF2F" NIL IRRF2F (NIL T) -7 NIL NIL NIL) (-524 1171277 1171321 1171397 "IRREDFFX" NIL IRREDFFX (NIL T) -7 NIL NIL NIL) (-523 1170127 1170424 1170719 "IROOT" NIL IROOT (NIL T) -7 NIL NIL NIL) (-522 1169400 1169751 1169902 "IRFORM" NIL IRFORM (NIL) -8 NIL NIL NIL) (-521 1168603 1168734 1168947 "IR2F" NIL IR2F (NIL T T) -7 NIL NIL NIL) (-520 1166758 1167255 1167799 "IR2" NIL IR2 (NIL T T) -7 NIL NIL NIL) (-519 1163839 1165107 1165796 "IR" NIL IR (NIL T) -8 NIL NIL NIL) (-518 1163664 1163704 1163764 "IPRNTPK" NIL IPRNTPK (NIL) -7 NIL NIL NIL) (-517 1159662 1163590 1163659 "IPF" NIL IPF (NIL NIL) -8 NIL NIL NIL) (-516 1157665 1159601 1159657 "IPADIC" NIL IPADIC (NIL NIL NIL) -8 NIL NIL NIL) (-515 1157036 1157335 1157465 "IP4ADDR" NIL IP4ADDR (NIL) -8 NIL NIL NIL) (-514 1156489 1156777 1156909 "IOMODE" NIL IOMODE (NIL) -8 NIL NIL NIL) (-513 1155570 1156195 1156321 "IOBFILE" NIL IOBFILE (NIL) -8 NIL NIL NIL) (-512 1154980 1155474 1155502 "IOBCON" 1155507 IOBCON (NIL) -9 NIL 1155528 NIL) (-511 1154551 1154615 1154797 "INVLAPLA" NIL INVLAPLA (NIL T T) -7 NIL NIL NIL) (-510 1146595 1148966 1151291 "INTTR" NIL INTTR (NIL T T) -7 NIL NIL NIL) (-509 1143706 1144489 1145353 "INTTOOLS" NIL INTTOOLS (NIL T T) -7 NIL NIL NIL) (-508 1143383 1143480 1143597 "INTSLPE" NIL INTSLPE (NIL) -7 NIL NIL NIL) (-507 1140825 1143319 1143378 "INTRVL" NIL INTRVL (NIL T) -8 NIL NIL NIL) (-506 1138937 1139466 1140033 "INTRF" NIL INTRF (NIL T) -7 NIL NIL NIL) (-505 1138439 1138553 1138693 "INTRET" NIL INTRET (NIL T) -7 NIL NIL NIL) (-504 1136823 1137229 1137691 "INTRAT" NIL INTRAT (NIL T T) -7 NIL NIL NIL) (-503 1134602 1135196 1135807 "INTPM" NIL INTPM (NIL T T) -7 NIL NIL NIL) (-502 1131975 1132585 1133305 "INTPAF" NIL INTPAF (NIL T T T) -7 NIL NIL NIL) (-501 1131379 1131537 1131745 "INTHERTR" NIL INTHERTR (NIL T T) -7 NIL NIL NIL) (-500 1130898 1130984 1131172 "INTHERAL" NIL INTHERAL (NIL T T T T) -7 NIL NIL NIL) (-499 1129103 1129624 1130081 "INTHEORY" NIL INTHEORY (NIL) -7 NIL NIL NIL) (-498 1122185 1123838 1125567 "INTG0" NIL INTG0 (NIL T T T) -7 NIL NIL NIL) (-497 1121551 1121713 1121886 "INTFACT" NIL INTFACT (NIL T) -7 NIL NIL NIL) (-496 1119424 1119888 1120432 "INTEF" NIL INTEF (NIL T T) -7 NIL NIL NIL) (-495 1117550 1118500 1118528 "INTDOM" 1118827 INTDOM (NIL) -9 NIL 1119032 NIL) (-494 1117103 1117305 1117545 "INTDOM-" NIL INTDOM- (NIL T) -7 NIL NIL NIL) (-493 1112910 1115382 1115436 "INTCAT" 1116232 INTCAT (NIL T) -9 NIL 1116548 NIL) (-492 1112475 1112595 1112722 "INTBIT" NIL INTBIT (NIL) -7 NIL NIL NIL) (-491 1111315 1111487 1111793 "INTALG" NIL INTALG (NIL T T T T T) -7 NIL NIL NIL) (-490 1110888 1110984 1111141 "INTAF" NIL INTAF (NIL T T) -7 NIL NIL NIL) (-489 1103928 1110743 1110883 "INTABL" NIL INTABL (NIL T T T) -8 NIL NIL NIL) (-488 1103226 1103781 1103846 "INT8" NIL INT8 (NIL) -8 NIL NIL 1103880) (-487 1102523 1103078 1103143 "INT64" NIL INT64 (NIL) -8 NIL NIL 1103177) (-486 1101820 1102375 1102440 "INT32" NIL INT32 (NIL) -8 NIL NIL 1102474) (-485 1101117 1101672 1101737 "INT16" NIL INT16 (NIL) -8 NIL NIL 1101771) (-484 1097580 1101036 1101112 "INT" NIL INT (NIL) -8 NIL NIL NIL) (-483 1091637 1095120 1095148 "INS" 1096078 INS (NIL) -9 NIL 1096737 NIL) (-482 1089699 1090617 1091564 "INS-" NIL INS- (NIL T) -7 NIL NIL NIL) (-481 1088758 1088981 1089256 "INPSIGN" NIL INPSIGN (NIL T T) -7 NIL NIL NIL) (-480 1087972 1088113 1088310 "INPRODPF" NIL INPRODPF (NIL T T) -7 NIL NIL NIL) (-479 1086962 1087103 1087340 "INPRODFF" NIL INPRODFF (NIL T T T T) -7 NIL NIL NIL) (-478 1086114 1086278 1086538 "INNMFACT" NIL INNMFACT (NIL T T T T) -7 NIL NIL NIL) (-477 1085394 1085509 1085697 "INMODGCD" NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL NIL) (-476 1084133 1084402 1084726 "INFSP" NIL INFSP (NIL T T T) -7 NIL NIL NIL) (-475 1083413 1083554 1083737 "INFPROD0" NIL INFPROD0 (NIL T T) -7 NIL NIL NIL) (-474 1083076 1083148 1083246 "INFORM1" NIL INFORM1 (NIL T) -7 NIL NIL NIL) (-473 1080154 1081640 1082163 "INFORM" NIL INFORM (NIL) -8 NIL NIL NIL) (-472 1079753 1079860 1079974 "INFINITY" NIL INFINITY (NIL) -7 NIL NIL NIL) (-471 1078909 1079554 1079655 "INETCLTS" NIL INETCLTS (NIL) -8 NIL NIL NIL) (-470 1077759 1078027 1078348 "INEP" NIL INEP (NIL T T T) -7 NIL NIL NIL) (-469 1076749 1077689 1077754 "INDE" NIL INDE (NIL T) -8 NIL NIL NIL) (-468 1076374 1076454 1076571 "INCRMAPS" NIL INCRMAPS (NIL T) -7 NIL NIL NIL) (-467 1075288 1075833 1076037 "INBFILE" NIL INBFILE (NIL) -8 NIL NIL NIL) (-466 1071383 1072438 1073381 "INBFF" NIL INBFF (NIL T) -7 NIL NIL NIL) (-465 1070237 1070560 1070588 "INBCON" 1071101 INBCON (NIL) -9 NIL 1071367 NIL) (-464 1069691 1069956 1070232 "INBCON-" NIL INBCON- (NIL T) -7 NIL NIL NIL) (-463 1069185 1069487 1069577 "INAST" NIL INAST (NIL) -8 NIL NIL NIL) (-462 1068642 1068951 1069056 "IMPTAST" NIL IMPTAST (NIL) -8 NIL NIL NIL) (-461 1067482 1067621 1067936 "IMATQF" NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL NIL) (-460 1065906 1066173 1066510 "IMATLIN" NIL IMATLIN (NIL T T T T) -7 NIL NIL NIL) (-459 1060749 1065837 1065901 "IFF" NIL IFF (NIL NIL NIL) -8 NIL NIL NIL) (-458 1060129 1060463 1060578 "IFAST" NIL IFAST (NIL) -8 NIL NIL NIL) (-457 1054936 1059567 1059753 "IFARRAY" NIL IFARRAY (NIL T NIL) -8 NIL NIL NIL) (-456 1053966 1054858 1054931 "IFAMON" NIL IFAMON (NIL T T NIL) -8 NIL NIL NIL) (-455 1053538 1053615 1053669 "IEVALAB" 1053876 IEVALAB (NIL T T) -9 NIL NIL NIL) (-454 1053293 1053373 1053533 "IEVALAB-" NIL IEVALAB- (NIL T T T) -7 NIL NIL NIL) (-453 1052678 1052905 1053062 "IDPT" NIL IDPT (NIL T T) -8 NIL NIL NIL) (-452 1051671 1052598 1052673 "IDPOAMS" NIL IDPOAMS (NIL T T) -8 NIL NIL NIL) (-451 1050734 1051591 1051666 "IDPOAM" NIL IDPOAM (NIL T T) -8 NIL NIL NIL) (-450 1049816 1050463 1050600 "IDPO" NIL IDPO (NIL T T) -8 NIL NIL NIL) (-449 1048179 1048750 1048801 "IDPC" 1049307 IDPC (NIL T T) -9 NIL 1049620 NIL) (-448 1047467 1048101 1048174 "IDPAM" NIL IDPAM (NIL T T) -8 NIL NIL NIL) (-447 1046637 1047389 1047462 "IDPAG" NIL IDPAG (NIL T T) -8 NIL NIL NIL) (-446 1046330 1046543 1046603 "IDENT" NIL IDENT (NIL) -8 NIL NIL NIL) (-445 1046034 1046074 1046113 "IDEMOPC" 1046118 IDEMOPC (NIL T) -9 NIL 1046255 NIL) (-444 1043105 1043986 1044878 "IDECOMP" NIL IDECOMP (NIL NIL NIL) -7 NIL NIL NIL) (-443 1036731 1038008 1039047 "IDEAL" NIL IDEAL (NIL T T T T) -8 NIL NIL NIL) (-442 1035993 1036123 1036322 "ICDEN" NIL ICDEN (NIL T T T T) -7 NIL NIL NIL) (-441 1035166 1035665 1035803 "ICARD" NIL ICARD (NIL) -8 NIL NIL NIL) (-440 1033555 1033886 1034277 "IBPTOOLS" NIL IBPTOOLS (NIL T T T T) -7 NIL NIL NIL) (-439 1029324 1033511 1033550 "IBITS" NIL IBITS (NIL NIL) -8 NIL NIL NIL) (-438 1026582 1027206 1027901 "IBATOOL" NIL IBATOOL (NIL T T T) -7 NIL NIL NIL) (-437 1024808 1025288 1025821 "IBACHIN" NIL IBACHIN (NIL T T T) -7 NIL NIL NIL) (-436 1022637 1024714 1024803 "IARRAY2" NIL IARRAY2 (NIL T T T) -8 NIL NIL NIL) (-435 1018498 1022575 1022632 "IARRAY1" NIL IARRAY1 (NIL T NIL) -8 NIL NIL NIL) (-434 1012077 1017462 1017930 "IAN" NIL IAN (NIL) -8 NIL NIL NIL) (-433 1011645 1011708 1011881 "IALGFACT" NIL IALGFACT (NIL T T T T) -7 NIL NIL NIL) (-432 1011137 1011286 1011314 "HYPCAT" 1011521 HYPCAT (NIL) -9 NIL NIL NIL) (-431 1010793 1010946 1011132 "HYPCAT-" NIL HYPCAT- (NIL T) -7 NIL NIL NIL) (-430 1010406 1010651 1010734 "HOSTNAME" NIL HOSTNAME (NIL) -8 NIL NIL NIL) (-429 1010239 1010288 1010329 "HOMOTOP" 1010334 HOMOTOP (NIL T) -9 NIL 1010367 NIL) (-428 1006807 1008181 1008222 "HOAGG" 1009197 HOAGG (NIL T) -9 NIL 1009918 NIL) (-427 1005813 1006283 1006802 "HOAGG-" NIL HOAGG- (NIL T T) -7 NIL NIL NIL) (-426 999013 1005538 1005686 "HEXADEC" NIL HEXADEC (NIL) -8 NIL NIL NIL) (-425 997948 998206 998469 "HEUGCD" NIL HEUGCD (NIL T) -7 NIL NIL NIL) (-424 996883 997813 997943 "HELLFDIV" NIL HELLFDIV (NIL T T T T) -8 NIL NIL NIL) (-423 995077 996716 996804 "HEAP" NIL HEAP (NIL T) -8 NIL NIL NIL) (-422 994392 994744 994877 "HEADAST" NIL HEADAST (NIL) -8 NIL NIL NIL) (-421 987846 994325 994387 "HDP" NIL HDP (NIL NIL T) -8 NIL NIL NIL) (-420 980985 987582 987733 "HDMP" NIL HDMP (NIL NIL T) -8 NIL NIL NIL) (-419 980438 980595 980758 "HB" NIL HB (NIL) -7 NIL NIL NIL) (-418 973521 980329 980433 "HASHTBL" NIL HASHTBL (NIL T T NIL) -8 NIL NIL NIL) (-417 973012 973315 973406 "HASAST" NIL HASAST (NIL) -8 NIL NIL NIL) (-416 970562 972799 972978 "HACKPI" NIL HACKPI (NIL) -8 NIL NIL NIL) (-415 965955 970445 970557 "GTSET" NIL GTSET (NIL T T T T) -8 NIL NIL NIL) (-414 959041 965852 965950 "GSTBL" NIL GSTBL (NIL T T T NIL) -8 NIL NIL NIL) (-413 950978 958410 958665 "GSERIES" NIL GSERIES (NIL T NIL NIL) -8 NIL NIL NIL) (-412 950002 950511 950539 "GROUP" 950742 GROUP (NIL) -9 NIL 950876 NIL) (-411 949545 949746 949997 "GROUP-" NIL GROUP- (NIL T) -7 NIL NIL NIL) (-410 948217 948556 948943 "GROEBSOL" NIL GROEBSOL (NIL NIL T T) -7 NIL NIL NIL) (-409 947039 947396 947447 "GRMOD" 947976 GRMOD (NIL T T) -9 NIL 948142 NIL) (-408 946858 946906 947034 "GRMOD-" NIL GRMOD- (NIL T T T) -7 NIL NIL NIL) (-407 942981 944192 945192 "GRIMAGE" NIL GRIMAGE (NIL) -8 NIL NIL NIL) (-406 941703 942027 942342 "GRDEF" NIL GRDEF (NIL) -7 NIL NIL NIL) (-405 941256 941384 941525 "GRAY" NIL GRAY (NIL) -7 NIL NIL NIL) (-404 940329 940828 940879 "GRALG" 941032 GRALG (NIL T T) -9 NIL 941122 NIL) (-403 940048 940149 940324 "GRALG-" NIL GRALG- (NIL T T T) -7 NIL NIL NIL) (-402 936765 939730 939906 "GPOLSET" NIL GPOLSET (NIL T T T T) -8 NIL NIL NIL) (-401 936178 936241 936498 "GOSPER" NIL GOSPER (NIL T T T T T) -7 NIL NIL NIL) (-400 932032 932928 933453 "GMODPOL" NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL NIL) (-399 931207 931409 931647 "GHENSEL" NIL GHENSEL (NIL T T) -7 NIL NIL NIL) (-398 926210 927137 928156 "GENUPS" NIL GENUPS (NIL T T) -7 NIL NIL NIL) (-397 925958 926015 926104 "GENUFACT" NIL GENUFACT (NIL T) -7 NIL NIL NIL) (-396 925440 925529 925694 "GENPGCD" NIL GENPGCD (NIL T T T T) -7 NIL NIL NIL) (-395 924949 924990 925203 "GENMFACT" NIL GENMFACT (NIL T T T T T) -7 NIL NIL NIL) (-394 923750 924033 924337 "GENEEZ" NIL GENEEZ (NIL T T) -7 NIL NIL NIL) (-393 917025 923440 923601 "GDMP" NIL GDMP (NIL NIL T T) -8 NIL NIL NIL) (-392 906808 911815 912919 "GCNAALG" NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-391 904860 905963 905991 "GCDDOM" 906246 GCDDOM (NIL) -9 NIL 906403 NIL) (-390 904483 904640 904855 "GCDDOM-" NIL GCDDOM- (NIL T) -7 NIL NIL NIL) (-389 895276 897746 900134 "GBINTERN" NIL GBINTERN (NIL T T T T) -7 NIL NIL NIL) (-388 893411 893736 894154 "GBF" NIL GBF (NIL T T T T) -7 NIL NIL NIL) (-387 892352 892541 892808 "GBEUCLID" NIL GBEUCLID (NIL T T T T) -7 NIL NIL NIL) (-386 891223 891430 891734 "GB" NIL GB (NIL T T T T) -7 NIL NIL NIL) (-385 890686 890828 890976 "GAUSSFAC" NIL GAUSSFAC (NIL) -7 NIL NIL NIL) (-384 889298 889646 889959 "GALUTIL" NIL GALUTIL (NIL T) -7 NIL NIL NIL) (-383 887843 888164 888486 "GALPOLYU" NIL GALPOLYU (NIL T T) -7 NIL NIL NIL) (-382 885469 885825 886230 "GALFACTU" NIL GALFACTU (NIL T T T) -7 NIL NIL NIL) (-381 878721 880382 881960 "GALFACT" NIL GALFACT (NIL T) -7 NIL NIL NIL) (-380 878373 878594 878662 "FUNDESC" NIL FUNDESC (NIL) -8 NIL NIL NIL) (-379 877997 878218 878299 "FUNCTION" NIL FUNCTION (NIL NIL) -8 NIL NIL NIL) (-378 876094 876777 877237 "FT" NIL FT (NIL) -8 NIL NIL NIL) (-377 874687 874994 875386 "FSUPFACT" NIL FSUPFACT (NIL T T T) -7 NIL NIL NIL) (-376 873342 873701 874025 "FST" NIL FST (NIL) -8 NIL NIL NIL) (-375 872645 872769 872956 "FSRED" NIL FSRED (NIL T T) -7 NIL NIL NIL) (-374 871619 871885 872232 "FSPRMELT" NIL FSPRMELT (NIL T T) -7 NIL NIL NIL) (-373 869277 869807 870289 "FSPECF" NIL FSPECF (NIL T T) -7 NIL NIL NIL) (-372 868860 868920 869089 "FSINT" NIL FSINT (NIL T T) -7 NIL NIL NIL) (-371 867160 868074 868377 "FSERIES" NIL FSERIES (NIL T T) -8 NIL NIL NIL) (-370 866308 866442 866665 "FSCINT" NIL FSCINT (NIL T T) -7 NIL NIL NIL) (-369 865479 865640 865867 "FSAGG2" NIL FSAGG2 (NIL T T T T) -7 NIL NIL NIL) (-368 861462 864413 864454 "FSAGG" 864824 FSAGG (NIL T) -9 NIL 865083 NIL) (-367 859816 860575 861367 "FSAGG-" NIL FSAGG- (NIL T T) -7 NIL NIL NIL) (-366 857772 858068 858612 "FS2UPS" NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL NIL) (-365 856819 857001 857301 "FS2EXPXP" NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL NIL) (-364 856500 856549 856676 "FS2" NIL FS2 (NIL T T T T) -7 NIL NIL NIL) (-363 836656 846157 846198 "FS" 850068 FS (NIL T) -9 NIL 852346 NIL) (-362 828887 832380 836359 "FS-" NIL FS- (NIL T T) -7 NIL NIL NIL) (-361 828421 828548 828700 "FRUTIL" NIL FRUTIL (NIL T) -7 NIL NIL NIL) (-360 822944 826102 826142 "FRNAALG" 827462 FRNAALG (NIL T) -9 NIL 828060 NIL) (-359 819685 820936 822194 "FRNAALG-" NIL FRNAALG- (NIL T T) -7 NIL NIL NIL) (-358 819366 819415 819542 "FRNAAF2" NIL FRNAAF2 (NIL T T T T) -7 NIL NIL NIL) (-357 817853 818410 818704 "FRMOD" NIL FRMOD (NIL T T T T NIL) -8 NIL NIL NIL) (-356 817139 817232 817519 "FRIDEAL2" NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-355 814973 815739 816055 "FRIDEAL" NIL FRIDEAL (NIL T T T T) -8 NIL NIL NIL) (-354 814082 814525 814566 "FRETRCT" 814571 FRETRCT (NIL T) -9 NIL 814742 NIL) (-353 813455 813733 814077 "FRETRCT-" NIL FRETRCT- (NIL T T) -7 NIL NIL NIL) (-352 810199 811719 811778 "FRAMALG" 812660 FRAMALG (NIL T T) -9 NIL 812952 NIL) (-351 808795 809346 809976 "FRAMALG-" NIL FRAMALG- (NIL T T T) -7 NIL NIL NIL) (-350 808488 808551 808658 "FRAC2" NIL FRAC2 (NIL T T) -7 NIL NIL NIL) (-349 802129 808293 808483 "FRAC" NIL FRAC (NIL T) -8 NIL NIL NIL) (-348 801822 801885 801992 "FR2" NIL FR2 (NIL T T) -7 NIL NIL NIL) (-347 794130 798701 800029 "FR" NIL FR (NIL T) -8 NIL NIL NIL) (-346 787908 791411 791439 "FPS" 792558 FPS (NIL) -9 NIL 793114 NIL) (-345 787465 787598 787762 "FPS-" NIL FPS- (NIL T) -7 NIL NIL NIL) (-344 784275 786318 786346 "FPC" 786571 FPC (NIL) -9 NIL 786713 NIL) (-343 784121 784173 784270 "FPC-" NIL FPC- (NIL T) -7 NIL NIL NIL) (-342 782898 783607 783648 "FPATMAB" 783653 FPATMAB (NIL T) -9 NIL 783805 NIL) (-341 781328 781924 782271 "FPARFRAC" NIL FPARFRAC (NIL T T) -8 NIL NIL NIL) (-340 780903 780961 781134 "FORDER" NIL FORDER (NIL T T T T) -7 NIL NIL NIL) (-339 779406 780301 780475 "FNLA" NIL FNLA (NIL NIL NIL T) -8 NIL NIL NIL) (-338 778021 778526 778554 "FNCAT" 779011 FNCAT (NIL) -9 NIL 779268 NIL) (-337 777478 777988 778016 "FNAME" NIL FNAME (NIL) -8 NIL NIL NIL) (-336 776065 777427 777473 "FMONOID" NIL FMONOID (NIL T) -8 NIL NIL NIL) (-335 772653 774011 774052 "FMONCAT" 775269 FMONCAT (NIL T) -9 NIL 775873 NIL) (-334 769511 770589 770642 "FMCAT" 771823 FMCAT (NIL T T) -9 NIL 772315 NIL) (-333 768211 769334 769433 "FM1" NIL FM1 (NIL T T) -8 NIL NIL NIL) (-332 767259 768059 768206 "FM" NIL FM (NIL T T) -8 NIL NIL NIL) (-331 765446 765898 766392 "FLOATRP" NIL FLOATRP (NIL T) -7 NIL NIL NIL) (-330 763381 763917 764495 "FLOATCP" NIL FLOATCP (NIL T) -7 NIL NIL NIL) (-329 756767 761718 762332 "FLOAT" NIL FLOAT (NIL) -8 NIL NIL NIL) (-328 755248 756349 756389 "FLINEXP" 756394 FLINEXP (NIL T) -9 NIL 756487 NIL) (-327 754657 754916 755243 "FLINEXP-" NIL FLINEXP- (NIL T T) -7 NIL NIL NIL) (-326 753872 754031 754252 "FLASORT" NIL FLASORT (NIL T T) -7 NIL NIL NIL) (-325 750755 751834 751886 "FLALG" 753113 FLALG (NIL T T) -9 NIL 753580 NIL) (-324 749926 750087 750314 "FLAGG2" NIL FLAGG2 (NIL T T T T) -7 NIL NIL NIL) (-323 743335 747345 747386 "FLAGG" 748641 FLAGG (NIL T) -9 NIL 749286 NIL) (-322 742443 742847 743330 "FLAGG-" NIL FLAGG- (NIL T T) -7 NIL NIL NIL) (-321 739004 740268 740327 "FINRALG" 741455 FINRALG (NIL T T) -9 NIL 741963 NIL) (-320 738395 738660 738999 "FINRALG-" NIL FINRALG- (NIL T T T) -7 NIL NIL NIL) (-319 737693 737989 738017 "FINITE" 738213 FINITE (NIL) -9 NIL 738320 NIL) (-318 737601 737627 737688 "FINITE-" NIL FINITE- (NIL T) -7 NIL NIL NIL) (-317 735059 736284 736325 "FINAGG" 736959 FINAGG (NIL T) -9 NIL 737262 NIL) (-316 727020 729611 729651 "FINAALG" 733303 FINAALG (NIL T) -9 NIL 734741 NIL) (-315 723287 724532 725655 "FINAALG-" NIL FINAALG- (NIL T T) -7 NIL NIL NIL) (-314 721839 722258 722312 "FILECAT" 722996 FILECAT (NIL T T) -9 NIL 723212 NIL) (-313 721190 721664 721767 "FILE" NIL FILE (NIL T) -8 NIL NIL NIL) (-312 718438 720316 720344 "FIELD" 720384 FIELD (NIL) -9 NIL 720464 NIL) (-311 717463 717924 718433 "FIELD-" NIL FIELD- (NIL T) -7 NIL NIL NIL) (-310 715467 716413 716759 "FGROUP" NIL FGROUP (NIL T) -8 NIL NIL NIL) (-309 714710 714891 715110 "FGLMICPK" NIL FGLMICPK (NIL T NIL) -7 NIL NIL NIL) (-308 709980 714648 714705 "FFX" NIL FFX (NIL T NIL) -8 NIL NIL NIL) (-307 709642 709709 709844 "FFSLPE" NIL FFSLPE (NIL T T T) -7 NIL NIL NIL) (-306 709182 709224 709433 "FFPOLY2" NIL FFPOLY2 (NIL T T) -7 NIL NIL NIL) (-305 705862 706739 707516 "FFPOLY" NIL FFPOLY (NIL T) -7 NIL NIL NIL) (-304 701146 705794 705857 "FFP" NIL FFP (NIL T NIL) -8 NIL NIL NIL) (-303 695825 700635 700825 "FFNBX" NIL FFNBX (NIL T NIL) -8 NIL NIL NIL) (-302 690306 695106 695364 "FFNBP" NIL FFNBP (NIL T NIL) -8 NIL NIL NIL) (-301 684513 689757 689968 "FFNB" NIL FFNB (NIL NIL NIL) -8 NIL NIL NIL) (-300 683536 683746 684061 "FFINTBAS" NIL FFINTBAS (NIL T T T) -7 NIL NIL NIL) (-299 678976 681681 681709 "FFIELDC" 682328 FFIELDC (NIL) -9 NIL 682703 NIL) (-298 678045 678485 678971 "FFIELDC-" NIL FFIELDC- (NIL T) -7 NIL NIL NIL) (-297 677660 677718 677842 "FFHOM" NIL FFHOM (NIL T T T) -7 NIL NIL NIL) (-296 675804 676327 676844 "FFF" NIL FFF (NIL T) -7 NIL NIL NIL) (-295 670898 675603 675704 "FFCGX" NIL FFCGX (NIL T NIL) -8 NIL NIL NIL) (-294 665998 670687 670794 "FFCGP" NIL FFCGP (NIL T NIL) -8 NIL NIL NIL) (-293 660664 665789 665897 "FFCG" NIL FFCG (NIL NIL NIL) -8 NIL NIL NIL) (-292 660118 660167 660402 "FFCAT2" NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-291 638693 649727 649813 "FFCAT" 654963 FFCAT (NIL T T T) -9 NIL 656399 NIL) (-290 634933 636159 637465 "FFCAT-" NIL FFCAT- (NIL T T T T) -7 NIL NIL NIL) (-289 629776 634864 634928 "FF" NIL FF (NIL NIL NIL) -8 NIL NIL NIL) (-288 628668 629137 629178 "FEVALAB" 629262 FEVALAB (NIL T) -9 NIL 629523 NIL) (-287 628073 628325 628663 "FEVALAB-" NIL FEVALAB- (NIL T T) -7 NIL NIL NIL) (-286 624900 625811 625926 "FDIVCAT" 627493 FDIVCAT (NIL T T T T) -9 NIL 627929 NIL) (-285 624694 624726 624895 "FDIVCAT-" NIL FDIVCAT- (NIL T T T T T) -7 NIL NIL NIL) (-284 624001 624094 624371 "FDIV2" NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-283 622487 623485 623688 "FDIV" NIL FDIV (NIL T T T T) -8 NIL NIL NIL) (-282 621580 621964 622166 "FCTRDATA" NIL FCTRDATA (NIL) -8 NIL NIL NIL) (-281 620702 621191 621331 "FCOMP" NIL FCOMP (NIL T) -8 NIL NIL NIL) (-280 612289 616932 616972 "FAXF" 618773 FAXF (NIL T) -9 NIL 619463 NIL) (-279 610205 611009 611824 "FAXF-" NIL FAXF- (NIL T T) -7 NIL NIL NIL) (-278 605069 609727 609901 "FARRAY" NIL FARRAY (NIL T) -8 NIL NIL NIL) (-277 599527 601950 602002 "FAMR" 603013 FAMR (NIL T T) -9 NIL 603472 NIL) (-276 598726 599091 599522 "FAMR-" NIL FAMR- (NIL T T T) -7 NIL NIL NIL) (-275 597747 598668 598721 "FAMONOID" NIL FAMONOID (NIL T) -8 NIL NIL NIL) (-274 595341 596220 596273 "FAMONC" 597214 FAMONC (NIL T T) -9 NIL 597599 NIL) (-273 593897 595199 595336 "FAGROUP" NIL FAGROUP (NIL T) -8 NIL NIL NIL) (-272 591977 592338 592740 "FACUTIL" NIL FACUTIL (NIL T T T T) -7 NIL NIL NIL) (-271 591254 591451 591673 "FACTFUNC" NIL FACTFUNC (NIL T) -7 NIL NIL NIL) (-270 583114 590701 590900 "EXPUPXS" NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-269 581133 581703 582289 "EXPRTUBE" NIL EXPRTUBE (NIL) -7 NIL NIL NIL) (-268 578035 578677 579397 "EXPRODE" NIL EXPRODE (NIL T T) -7 NIL NIL NIL) (-267 573192 573899 574704 "EXPR2UPS" NIL EXPR2UPS (NIL T T) -7 NIL NIL NIL) (-266 572881 572944 573053 "EXPR2" NIL EXPR2 (NIL T T) -7 NIL NIL NIL) (-265 557674 571930 572356 "EXPR" NIL EXPR (NIL T) -8 NIL NIL NIL) (-264 548201 556994 557282 "EXPEXPAN" NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL NIL) (-263 547695 547997 548087 "EXITAST" NIL EXITAST (NIL) -8 NIL NIL NIL) (-262 547471 547661 547690 "EXIT" NIL EXIT (NIL) -8 NIL NIL NIL) (-261 547160 547228 547341 "EVALCYC" NIL EVALCYC (NIL T) -7 NIL NIL NIL) (-260 546677 546819 546860 "EVALAB" 547030 EVALAB (NIL T) -9 NIL 547134 NIL) (-259 546305 546451 546672 "EVALAB-" NIL EVALAB- (NIL T T) -7 NIL NIL NIL) (-258 543348 544943 544971 "EUCDOM" 545525 EUCDOM (NIL) -9 NIL 545874 NIL) (-257 542275 542768 543343 "EUCDOM-" NIL EUCDOM- (NIL T) -7 NIL NIL NIL) (-256 542000 542056 542156 "ES2" NIL ES2 (NIL T T) -7 NIL NIL NIL) (-255 541688 541752 541861 "ES1" NIL ES1 (NIL T T) -7 NIL NIL NIL) (-254 535459 537359 537387 "ES" 540129 ES (NIL) -9 NIL 541513 NIL) (-253 531974 533506 535298 "ES-" NIL ES- (NIL T) -7 NIL NIL NIL) (-252 531322 531475 531651 "ERROR" NIL ERROR (NIL) -7 NIL NIL NIL) (-251 524411 531226 531317 "EQTBL" NIL EQTBL (NIL T T) -8 NIL NIL NIL) (-250 524100 524163 524272 "EQ2" NIL EQ2 (NIL T T) -7 NIL NIL NIL) (-249 517727 520852 522285 "EQ" NIL EQ (NIL T) -8 NIL NIL NIL) (-248 514030 515126 516219 "EP" NIL EP (NIL T) -7 NIL NIL NIL) (-247 512859 513209 513514 "ENV" NIL ENV (NIL) -8 NIL NIL NIL) (-246 511744 512475 512503 "ENTIRER" 512508 ENTIRER (NIL) -9 NIL 512552 NIL) (-245 511633 511667 511739 "ENTIRER-" NIL ENTIRER- (NIL T) -7 NIL NIL NIL) (-244 508266 510063 510412 "EMR" NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL NIL) (-243 507358 507569 507623 "ELTAGG" 508003 ELTAGG (NIL T T) -9 NIL 508214 NIL) (-242 507138 507212 507353 "ELTAGG-" NIL ELTAGG- (NIL T T T) -7 NIL NIL NIL) (-241 506884 506919 506973 "ELTAB" 507057 ELTAB (NIL T T) -9 NIL 507109 NIL) (-240 506135 506305 506504 "ELFUTS" NIL ELFUTS (NIL T T) -7 NIL NIL NIL) (-239 505859 505933 505961 "ELEMFUN" 506066 ELEMFUN (NIL) -9 NIL NIL NIL) (-238 505759 505786 505854 "ELEMFUN-" NIL ELEMFUN- (NIL T) -7 NIL NIL NIL) (-237 500305 503800 503841 "ELAGG" 504778 ELAGG (NIL T) -9 NIL 505238 NIL) (-236 499103 499641 500300 "ELAGG-" NIL ELAGG- (NIL T T) -7 NIL NIL NIL) (-235 498521 498688 498844 "ELABOR" NIL ELABOR (NIL) -8 NIL NIL NIL) (-234 497434 497753 498032 "ELABEXPR" NIL ELABEXPR (NIL) -8 NIL NIL NIL) (-233 490827 492825 493652 "EFUPXS" NIL EFUPXS (NIL T T T T) -7 NIL NIL NIL) (-232 484806 486802 487612 "EFULS" NIL EFULS (NIL T T T) -7 NIL NIL NIL) (-231 482620 483026 483497 "EFSTRUC" NIL EFSTRUC (NIL T T) -7 NIL NIL NIL) (-230 473620 475533 477074 "EF" NIL EF (NIL T T) -7 NIL NIL NIL) (-229 472733 473234 473383 "EAB" NIL EAB (NIL) -8 NIL NIL NIL) (-228 471431 472105 472145 "DVARCAT" 472428 DVARCAT (NIL T) -9 NIL 472568 NIL) (-227 470850 471114 471426 "DVARCAT-" NIL DVARCAT- (NIL T T) -7 NIL NIL NIL) (-226 462917 470718 470845 "DSMP" NIL DSMP (NIL T T T) -8 NIL NIL NIL) (-225 461255 462046 462087 "DSEXT" 462450 DSEXT (NIL T) -9 NIL 462744 NIL) (-224 460060 460584 461250 "DSEXT-" NIL DSEXT- (NIL T T) -7 NIL NIL NIL) (-223 459784 459849 459947 "DROPT1" NIL DROPT1 (NIL T) -7 NIL NIL NIL) (-222 455935 457151 458282 "DROPT0" NIL DROPT0 (NIL) -7 NIL NIL NIL) (-221 451581 452936 454000 "DROPT" NIL DROPT (NIL) -8 NIL NIL NIL) (-220 450256 450617 451003 "DRAWPT" NIL DRAWPT (NIL) -7 NIL NIL NIL) (-219 449942 450001 450119 "DRAWHACK" NIL DRAWHACK (NIL T) -7 NIL NIL NIL) (-218 448917 449215 449505 "DRAWCX" NIL DRAWCX (NIL) -7 NIL NIL NIL) (-217 448502 448577 448727 "DRAWCURV" NIL DRAWCURV (NIL T T) -7 NIL NIL NIL) (-216 440915 443027 445142 "DRAWCFUN" NIL DRAWCFUN (NIL) -7 NIL NIL NIL) (-215 436432 437451 438530 "DRAW" NIL DRAW (NIL T) -7 NIL NIL NIL) (-214 433027 435096 435137 "DQAGG" 435766 DQAGG (NIL T) -9 NIL 436039 NIL) (-213 419570 427210 427292 "DPOLCAT" 429129 DPOLCAT (NIL T T T T) -9 NIL 429672 NIL) (-212 415978 417626 419565 "DPOLCAT-" NIL DPOLCAT- (NIL T T T T T) -7 NIL NIL NIL) (-211 408983 415876 415973 "DPMO" NIL DPMO (NIL NIL T T) -8 NIL NIL NIL) (-210 401897 408812 408978 "DPMM" NIL DPMM (NIL NIL T T T) -8 NIL NIL NIL) (-209 401490 401750 401839 "DOMTMPLT" NIL DOMTMPLT (NIL) -8 NIL NIL NIL) (-208 400904 401352 401432 "DOMCTOR" NIL DOMCTOR (NIL) -8 NIL NIL NIL) (-207 400190 400515 400666 "DOMAIN" NIL DOMAIN (NIL) -8 NIL NIL NIL) (-206 393329 399926 400077 "DMP" NIL DMP (NIL NIL T) -8 NIL NIL NIL) (-205 391078 392395 392435 "DMEXT" 392440 DMEXT (NIL T) -9 NIL 392615 NIL) (-204 390734 390796 390940 "DLP" NIL DLP (NIL T) -7 NIL NIL NIL) (-203 384059 390219 390409 "DLIST" NIL DLIST (NIL T) -8 NIL NIL NIL) (-202 380725 382882 382923 "DLAGG" 383473 DLAGG (NIL T) -9 NIL 383702 NIL) (-201 379076 379947 379975 "DIVRING" 380067 DIVRING (NIL) -9 NIL 380150 NIL) (-200 378527 378771 379071 "DIVRING-" NIL DIVRING- (NIL T) -7 NIL NIL NIL) (-199 376955 377372 377778 "DISPLAY" NIL DISPLAY (NIL) -7 NIL NIL NIL) (-198 375992 376213 376478 "DIRPROD2" NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL NIL) (-197 369466 375924 375987 "DIRPROD" NIL DIRPROD (NIL NIL T) -8 NIL NIL NIL) (-196 357786 364246 364299 "DIRPCAT" 364555 DIRPCAT (NIL NIL T) -9 NIL 365428 NIL) (-195 355792 356562 357449 "DIRPCAT-" NIL DIRPCAT- (NIL T NIL T) -7 NIL NIL NIL) (-194 355239 355405 355591 "DIOSP" NIL DIOSP (NIL) -7 NIL NIL NIL) (-193 351785 354125 354166 "DIOPS" 354598 DIOPS (NIL T) -9 NIL 354824 NIL) (-192 351445 351589 351780 "DIOPS-" NIL DIOPS- (NIL T T) -7 NIL NIL NIL) (-191 350452 351198 351226 "DIOID" 351231 DIOID (NIL) -9 NIL 351253 NIL) (-190 349280 350109 350137 "DIFRING" 350142 DIFRING (NIL) -9 NIL 350163 NIL) (-189 348916 349014 349042 "DIFFSPC" 349161 DIFFSPC (NIL) -9 NIL 349236 NIL) (-188 348657 348759 348911 "DIFFSPC-" NIL DIFFSPC- (NIL T) -7 NIL NIL NIL) (-187 347560 348185 348225 "DIFFMOD" 348230 DIFFMOD (NIL T) -9 NIL 348327 NIL) (-186 347244 347301 347342 "DIFFDOM" 347463 DIFFDOM (NIL T) -9 NIL 347531 NIL) (-185 347125 347155 347239 "DIFFDOM-" NIL DIFFDOM- (NIL T T) -7 NIL NIL NIL) (-184 344798 346319 346359 "DIFEXT" 346364 DIFEXT (NIL T) -9 NIL 346516 NIL) (-183 341959 344299 344340 "DIAGG" 344345 DIAGG (NIL T) -9 NIL 344365 NIL) (-182 341515 341705 341954 "DIAGG-" NIL DIAGG- (NIL T T) -7 NIL NIL NIL) (-181 336708 340705 340982 "DHMATRIX" NIL DHMATRIX (NIL T) -8 NIL NIL NIL) (-180 333166 334219 335229 "DFSFUN" NIL DFSFUN (NIL) -7 NIL NIL NIL) (-179 327716 332320 332647 "DFLOAT" NIL DFLOAT (NIL) -8 NIL NIL NIL) (-178 326282 326574 326949 "DFINTTLS" NIL DFINTTLS (NIL T T) -7 NIL NIL NIL) (-177 323402 324654 325050 "DERHAM" NIL DERHAM (NIL T NIL) -8 NIL NIL NIL) (-176 321122 323233 323322 "DEQUEUE" NIL DEQUEUE (NIL T) -8 NIL NIL NIL) (-175 320505 320650 320832 "DEGRED" NIL DEGRED (NIL T T) -7 NIL NIL NIL) (-174 317823 318547 319347 "DEFINTRF" NIL DEFINTRF (NIL T) -7 NIL NIL NIL) (-173 315932 316390 316952 "DEFINTEF" NIL DEFINTEF (NIL T T) -7 NIL NIL NIL) (-172 315315 315648 315762 "DEFAST" NIL DEFAST (NIL) -8 NIL NIL NIL) (-171 308515 315040 315188 "DECIMAL" NIL DECIMAL (NIL) -8 NIL NIL NIL) (-170 306435 306945 307449 "DDFACT" NIL DDFACT (NIL T T) -7 NIL NIL NIL) (-169 306074 306123 306274 "DBLRESP" NIL DBLRESP (NIL T T T T) -7 NIL NIL NIL) (-168 305333 305895 305986 "DBASIS" NIL DBASIS (NIL NIL) -8 NIL NIL NIL) (-167 303357 303799 304159 "DBASE" NIL DBASE (NIL T) -8 NIL NIL NIL) (-166 302649 302938 303084 "DATAARY" NIL DATAARY (NIL NIL T) -8 NIL NIL NIL) (-165 302100 302246 302398 "CYCLOTOM" NIL CYCLOTOM (NIL) -7 NIL NIL NIL) (-164 299462 300255 300982 "CYCLES" NIL CYCLES (NIL) -7 NIL NIL NIL) (-163 298901 299047 299218 "CVMP" NIL CVMP (NIL T) -7 NIL NIL NIL) (-162 296973 297284 297651 "CTRIGMNP" NIL CTRIGMNP (NIL T T) -7 NIL NIL NIL) (-161 296530 296785 296886 "CTORKIND" NIL CTORKIND (NIL) -8 NIL NIL NIL) (-160 295731 296114 296142 "CTORCAT" 296323 CTORCAT (NIL) -9 NIL 296435 NIL) (-159 295434 295568 295726 "CTORCAT-" NIL CTORCAT- (NIL T) -7 NIL NIL NIL) (-158 294927 295184 295292 "CTORCALL" NIL CTORCALL (NIL T) -8 NIL NIL NIL) (-157 294343 294774 294847 "CTOR" NIL CTOR (NIL) -8 NIL NIL NIL) (-156 293802 293919 294072 "CSTTOOLS" NIL CSTTOOLS (NIL T T) -7 NIL NIL NIL) (-155 290196 290952 291707 "CRFP" NIL CRFP (NIL T T) -7 NIL NIL NIL) (-154 289687 289990 290081 "CRCEAST" NIL CRCEAST (NIL) -8 NIL NIL NIL) (-153 288906 289115 289343 "CRAPACK" NIL CRAPACK (NIL T) -7 NIL NIL NIL) (-152 288410 288515 288719 "CPMATCH" NIL CPMATCH (NIL T T T) -7 NIL NIL NIL) (-151 288163 288197 288303 "CPIMA" NIL CPIMA (NIL T T T) -7 NIL NIL NIL) (-150 285102 285864 286582 "COORDSYS" NIL COORDSYS (NIL T) -7 NIL NIL NIL) (-149 284621 284763 284902 "CONTOUR" NIL CONTOUR (NIL) -8 NIL NIL NIL) (-148 280514 283084 283576 "CONTFRAC" NIL CONTFRAC (NIL T) -8 NIL NIL NIL) (-147 280388 280415 280443 "CONDUIT" 280480 CONDUIT (NIL) -9 NIL NIL NIL) (-146 279267 279998 280026 "COMRING" 280031 COMRING (NIL) -9 NIL 280081 NIL) (-145 278432 278799 278977 "COMPPROP" NIL COMPPROP (NIL) -8 NIL NIL NIL) (-144 278128 278169 278297 "COMPLPAT" NIL COMPLPAT (NIL T T T) -7 NIL NIL NIL) (-143 277821 277884 277991 "COMPLEX2" NIL COMPLEX2 (NIL T T) -7 NIL NIL NIL) (-142 266663 277771 277816 "COMPLEX" NIL COMPLEX (NIL T) -8 NIL NIL NIL) (-141 266124 266263 266423 "COMPILER" NIL COMPILER (NIL) -7 NIL NIL NIL) (-140 265877 265918 266016 "COMPFACT" NIL COMPFACT (NIL T T) -7 NIL NIL NIL) (-139 247308 259558 259598 "COMPCAT" 260599 COMPCAT (NIL T) -9 NIL 261941 NIL) (-138 239846 243359 246952 "COMPCAT-" NIL COMPCAT- (NIL T T) -7 NIL NIL NIL) (-137 239605 239639 239741 "COMMUPC" NIL COMMUPC (NIL T T T) -7 NIL NIL NIL) (-136 239435 239474 239532 "COMMONOP" NIL COMMONOP (NIL) -7 NIL NIL NIL) (-135 239016 239295 239369 "COMMAAST" NIL COMMAAST (NIL) -8 NIL NIL NIL) (-134 238593 238834 238921 "COMM" NIL COMM (NIL) -8 NIL NIL NIL) (-133 237788 238036 238064 "COMBOPC" 238402 COMBOPC (NIL) -9 NIL 238577 NIL) (-132 236852 237104 237346 "COMBINAT" NIL COMBINAT (NIL T) -7 NIL NIL NIL) (-131 233784 234468 235091 "COMBF" NIL COMBF (NIL T T) -7 NIL NIL NIL) (-130 232664 233115 233350 "COLOR" NIL COLOR (NIL) -8 NIL NIL NIL) (-129 232155 232458 232549 "COLONAST" NIL COLONAST (NIL) -8 NIL NIL NIL) (-128 231842 231895 232020 "CMPLXRT" NIL CMPLXRT (NIL T T) -7 NIL NIL NIL) (-127 231312 231622 231720 "CLLCTAST" NIL CLLCTAST (NIL) -8 NIL NIL NIL) (-126 227832 228902 229982 "CLIP" NIL CLIP (NIL) -7 NIL NIL NIL) (-125 226127 227112 227350 "CLIF" NIL CLIF (NIL NIL T NIL) -8 NIL NIL NIL) (-124 222239 224247 224288 "CLAGG" 225214 CLAGG (NIL T) -9 NIL 225747 NIL) (-123 221132 221659 222234 "CLAGG-" NIL CLAGG- (NIL T T) -7 NIL NIL NIL) (-122 220761 220852 220992 "CINTSLPE" NIL CINTSLPE (NIL T T) -7 NIL NIL NIL) (-121 218698 219205 219753 "CHVAR" NIL CHVAR (NIL T T T) -7 NIL NIL NIL) (-120 217659 218390 218418 "CHARZ" 218423 CHARZ (NIL) -9 NIL 218437 NIL) (-119 217453 217499 217577 "CHARPOL" NIL CHARPOL (NIL T) -7 NIL NIL NIL) (-118 216292 217055 217083 "CHARNZ" 217144 CHARNZ (NIL) -9 NIL 217192 NIL) (-117 213770 214867 215390 "CHAR" NIL CHAR (NIL) -8 NIL NIL NIL) (-116 213478 213557 213585 "CFCAT" 213696 CFCAT (NIL) -9 NIL NIL NIL) (-115 212821 212950 213132 "CDEN" NIL CDEN (NIL T T T) -7 NIL NIL NIL) (-114 208810 212234 212514 "CCLASS" NIL CCLASS (NIL) -8 NIL NIL NIL) (-113 208188 208375 208552 "CATEGORY" NIL -10 (NIL) -8 NIL NIL NIL) (-112 207716 208135 208183 "CATCTOR" NIL CATCTOR (NIL) -8 NIL NIL NIL) (-111 207189 207498 207595 "CATAST" NIL CATAST (NIL) -8 NIL NIL NIL) (-110 206680 206983 207074 "CASEAST" NIL CASEAST (NIL) -8 NIL NIL NIL) (-109 205929 206089 206310 "CARTEN2" NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL NIL) (-108 202029 203286 203994 "CARTEN" NIL CARTEN (NIL NIL NIL T) -8 NIL NIL NIL) (-107 200395 201426 201677 "CARD" NIL CARD (NIL) -8 NIL NIL NIL) (-106 199976 200255 200329 "CAPSLAST" NIL CAPSLAST (NIL) -8 NIL NIL NIL) (-105 199410 199663 199691 "CACHSET" 199823 CACHSET (NIL) -9 NIL 199901 NIL) (-104 198762 199177 199205 "CABMON" 199255 CABMON (NIL) -9 NIL 199311 NIL) (-103 198292 198556 198666 "BYTEORD" NIL BYTEORD (NIL) -8 NIL NIL NIL) (-102 193515 197949 198121 "BYTEBUF" NIL BYTEBUF (NIL) -8 NIL NIL NIL) (-101 192485 193189 193324 "BYTE" NIL BYTE (NIL) -8 NIL NIL 193487) (-100 189956 192252 192358 "BTREE" NIL BTREE (NIL T) -8 NIL NIL NIL) (-99 187387 189699 189818 "BTOURN" NIL BTOURN (NIL T) -8 NIL NIL NIL) (-98 184627 186831 186870 "BTCAT" 186937 BTCAT (NIL T) -9 NIL 187013 NIL) (-97 184378 184476 184622 "BTCAT-" NIL BTCAT- (NIL T T) -7 NIL NIL NIL) (-96 179488 183609 183635 "BTAGG" 183746 BTAGG (NIL) -9 NIL 183854 NIL) (-95 179119 179280 179483 "BTAGG-" NIL BTAGG- (NIL T) -7 NIL NIL NIL) (-94 176181 178589 178801 "BSTREE" NIL BSTREE (NIL T) -8 NIL NIL NIL) (-93 175451 175603 175781 "BRILL" NIL BRILL (NIL T) -7 NIL NIL NIL) (-92 171984 174157 174196 "BRAGG" 174837 BRAGG (NIL T) -9 NIL 175094 NIL) (-91 170939 171434 171979 "BRAGG-" NIL BRAGG- (NIL T T) -7 NIL NIL NIL) (-90 163473 170444 170625 "BPADICRT" NIL BPADICRT (NIL NIL) -8 NIL NIL NIL) (-89 161465 163425 163468 "BPADIC" NIL BPADIC (NIL NIL) -8 NIL NIL NIL) (-88 161198 161234 161345 "BOUNDZRO" NIL BOUNDZRO (NIL T T) -7 NIL NIL NIL) (-87 159437 159870 160318 "BOP1" NIL BOP1 (NIL T) -7 NIL NIL NIL) (-86 155403 156819 157709 "BOP" NIL BOP (NIL) -8 NIL NIL NIL) (-85 154279 155170 155292 "BOOLEAN" NIL BOOLEAN (NIL) -8 NIL NIL NIL) (-84 153865 154022 154048 "BOOLE" 154156 BOOLE (NIL) -9 NIL 154237 NIL) (-83 153658 153739 153860 "BOOLE-" NIL BOOLE- (NIL T) -7 NIL NIL NIL) (-82 152796 153323 153373 "BMODULE" 153378 BMODULE (NIL T T) -9 NIL 153442 NIL) (-81 148413 152653 152722 "BITS" NIL BITS (NIL) -8 NIL NIL NIL) (-80 148226 148266 148305 "BINOPC" 148310 BINOPC (NIL T) -9 NIL 148355 NIL) (-79 147768 148041 148143 "BINOP" NIL BINOP (NIL T) -8 NIL NIL NIL) (-78 147289 147433 147571 "BINDING" NIL BINDING (NIL) -8 NIL NIL NIL) (-77 140495 147019 147164 "BINARY" NIL BINARY (NIL) -8 NIL NIL NIL) (-76 138229 139724 139763 "BGAGG" 140019 BGAGG (NIL T) -9 NIL 140156 NIL) (-75 138098 138136 138224 "BGAGG-" NIL BGAGG- (NIL T T) -7 NIL NIL NIL) (-74 136949 137150 137435 "BEZOUT" NIL BEZOUT (NIL T T T T T) -7 NIL NIL NIL) (-73 133587 136107 136434 "BBTREE" NIL BBTREE (NIL T) -8 NIL NIL NIL) (-72 133172 133265 133291 "BASTYPE" 133462 BASTYPE (NIL) -9 NIL 133558 NIL) (-71 132942 133038 133167 "BASTYPE-" NIL BASTYPE- (NIL T) -7 NIL NIL NIL) (-70 132457 132545 132695 "BALFACT" NIL BALFACT (NIL T T) -7 NIL NIL NIL) (-69 131356 132031 132216 "AUTOMOR" NIL AUTOMOR (NIL T) -8 NIL NIL NIL) (-68 131082 131087 131113 "ATTREG" 131118 ATTREG (NIL) -9 NIL NIL NIL) (-67 130687 130959 131024 "ATTRAST" NIL ATTRAST (NIL) -8 NIL NIL NIL) (-66 130187 130336 130362 "ATRIG" 130563 ATRIG (NIL) -9 NIL NIL NIL) (-65 130042 130095 130182 "ATRIG-" NIL ATRIG- (NIL T) -7 NIL NIL NIL) (-64 129612 129843 129869 "ASTCAT" 129874 ASTCAT (NIL) -9 NIL 129904 NIL) (-63 129411 129488 129607 "ASTCAT-" NIL ASTCAT- (NIL T) -7 NIL NIL NIL) (-62 127570 129244 129332 "ASTACK" NIL ASTACK (NIL T) -8 NIL NIL NIL) (-61 126377 126690 127055 "ASSOCEQ" NIL ASSOCEQ (NIL T T) -7 NIL NIL NIL) (-60 124184 126307 126372 "ARRAY2" NIL ARRAY2 (NIL T) -8 NIL NIL NIL) (-59 123375 123566 123787 "ARRAY12" NIL ARRAY12 (NIL T T) -7 NIL NIL NIL) (-58 118962 123106 123220 "ARRAY1" NIL ARRAY1 (NIL T) -8 NIL NIL NIL) (-57 113256 115307 115382 "ARR2CAT" 117894 ARR2CAT (NIL T T T) -9 NIL 118623 NIL) (-56 112217 112699 113251 "ARR2CAT-" NIL ARR2CAT- (NIL T T T T) -7 NIL NIL NIL) (-55 111585 111956 112078 "ARITY" NIL ARITY (NIL) -8 NIL NIL NIL) (-54 110517 110685 110981 "APPRULE" NIL APPRULE (NIL T T T) -7 NIL NIL NIL) (-53 110218 110272 110390 "APPLYORE" NIL APPLYORE (NIL T T T) -7 NIL NIL NIL) (-52 109601 109747 109903 "ANY1" NIL ANY1 (NIL T) -7 NIL NIL NIL) (-51 109006 109296 109416 "ANY" NIL ANY (NIL) -8 NIL NIL NIL) (-50 106574 107735 108058 "ANTISYM" NIL ANTISYM (NIL T NIL) -8 NIL NIL NIL) (-49 106099 106359 106455 "ANON" NIL ANON (NIL) -8 NIL NIL NIL) (-48 99794 105161 105603 "AN" NIL AN (NIL) -8 NIL NIL NIL) (-47 95328 96991 97041 "AMR" 97779 AMR (NIL T T) -9 NIL 98376 NIL) (-46 94682 94962 95323 "AMR-" NIL AMR- (NIL T T T) -7 NIL NIL NIL) (-45 77862 94616 94677 "ALIST" NIL ALIST (NIL T T) -8 NIL NIL NIL) (-44 74265 77538 77707 "ALGSC" NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-43 71275 71935 72542 "ALGPKG" NIL ALGPKG (NIL T T) -7 NIL NIL NIL) (-42 70654 70767 70951 "ALGMFACT" NIL ALGMFACT (NIL T T T) -7 NIL NIL NIL) (-41 67066 67691 68283 "ALGMANIP" NIL ALGMANIP (NIL T T) -7 NIL NIL NIL) (-40 56555 66759 66909 "ALGFF" NIL ALGFF (NIL T T T NIL) -8 NIL NIL NIL) (-39 55872 56026 56204 "ALGFACT" NIL ALGFACT (NIL T) -7 NIL NIL NIL) (-38 54585 55380 55418 "ALGEBRA" 55423 ALGEBRA (NIL T) -9 NIL 55463 NIL) (-37 54371 54448 54580 "ALGEBRA-" NIL ALGEBRA- (NIL T T) -7 NIL NIL NIL) (-36 34368 51577 51629 "ALAGG" 51767 ALAGG (NIL T T) -9 NIL 51932 NIL) (-35 33868 34017 34043 "AHYP" 34244 AHYP (NIL) -9 NIL NIL NIL) (-34 33164 33345 33371 "AGG" 33652 AGG (NIL) -9 NIL 33839 NIL) (-33 32953 33040 33159 "AGG-" NIL AGG- (NIL T) -7 NIL NIL NIL) (-32 31092 31552 31952 "AF" NIL AF (NIL T T) -7 NIL NIL NIL) (-31 30587 30890 30979 "ADDAST" NIL ADDAST (NIL) -8 NIL NIL NIL) (-30 29957 30252 30408 "ACPLOT" NIL ACPLOT (NIL) -8 NIL NIL NIL) (-29 17515 26794 26832 "ACFS" 27439 ACFS (NIL T) -9 NIL 27678 NIL) (-28 16138 16748 17510 "ACFS-" NIL ACFS- (NIL T T) -7 NIL NIL NIL) (-27 11690 14069 14095 "ACF" 14974 ACF (NIL) -9 NIL 15386 NIL) (-26 10786 11192 11685 "ACF-" NIL ACF- (NIL T) -7 NIL NIL NIL) (-25 10288 10528 10554 "ABELSG" 10646 ABELSG (NIL) -9 NIL 10711 NIL) (-24 10186 10217 10283 "ABELSG-" NIL ABELSG- (NIL T) -7 NIL NIL NIL) (-23 9341 9715 9741 "ABELMON" 9966 ABELMON (NIL) -9 NIL 10099 NIL) (-22 9023 9163 9336 "ABELMON-" NIL ABELMON- (NIL T) -7 NIL NIL NIL) (-21 8235 8718 8744 "ABELGRP" 8816 ABELGRP (NIL) -9 NIL 8891 NIL) (-20 7788 7984 8230 "ABELGRP-" NIL ABELGRP- (NIL T) -7 NIL NIL NIL) (-19 3036 7046 7085 "A1AGG" 7090 A1AGG (NIL T) -9 NIL 7130 NIL) (-18 30 1483 3031 "A1AGG-" NIL A1AGG- (NIL T T) -7 NIL NIL NIL))
\ No newline at end of file diff --git a/src/share/algebra/operation.daase b/src/share/algebra/operation.daase index d43080c9..b908f729 100644 --- a/src/share/algebra/operation.daase +++ b/src/share/algebra/operation.daase @@ -1,793 +1,794 @@ -(630940 . 3577545199) +(631546 . 3577666331) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1177 *4)) (-4 *4 (-13 (-960) (-579 (-483)))) - (-5 *2 (-1177 (-348 (-483)))) (-5 *1 (-1206 *4))))) + (|partial| -12 (-5 *3 (-1178 *4)) (-4 *4 (-13 (-961) (-580 (-484)))) + (-5 *2 (-1178 (-349 (-484)))) (-5 *1 (-1207 *4))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-1177 *4)) (-4 *4 (-13 (-960) (-579 (-483)))) - (-5 *2 (-1177 (-483))) (-5 *1 (-1206 *4))))) + (|partial| -12 (-5 *3 (-1178 *4)) (-4 *4 (-13 (-961) (-580 (-484)))) + (-5 *2 (-1178 (-484))) (-5 *1 (-1207 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1177 *4)) (-4 *4 (-13 (-960) (-579 (-483)))) (-5 *2 (-85)) - (-5 *1 (-1206 *4))))) + (-12 (-5 *3 (-1178 *4)) (-4 *4 (-13 (-961) (-580 (-484)))) (-5 *2 (-85)) + (-5 *1 (-1207 *4))))) (((*1 *2 *3) - (-12 (-4 *5 (-13 (-552 *2) (-146))) (-5 *2 (-799 *4)) (-5 *1 (-144 *4 *5 *3)) - (-4 *4 (-1012)) (-4 *3 (-139 *5)))) + (-12 (-4 *5 (-13 (-553 *2) (-146))) (-5 *2 (-800 *4)) (-5 *1 (-144 *4 *5 *3)) + (-4 *4 (-1013)) (-4 *3 (-139 *5)))) ((*1 *1 *2) - (-12 (-5 *2 (-1177 *3)) (-4 *3 (-146)) (-4 *1 (-351 *3 *4)) - (-4 *4 (-1153 *3)))) + (-12 (-5 *2 (-1178 *3)) (-4 *3 (-146)) (-4 *1 (-352 *3 *4)) + (-4 *4 (-1154 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-351 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1153 *3)) - (-5 *2 (-1177 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-146)) (-4 *1 (-359 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-359 *3)) (-4 *3 (-146)) (-5 *2 (-1177 *3)))) + (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1154 *3)) + (-5 *2 (-1178 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-146)) (-4 *1 (-360 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-360 *3)) (-4 *3 (-146)) (-5 *2 (-1178 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-346 *1)) (-4 *1 (-362 *3)) (-4 *3 (-494)) (-4 *3 (-1012)))) + (-12 (-5 *2 (-347 *1)) (-4 *1 (-363 *3)) (-4 *3 (-495)) (-4 *3 (-1013)))) ((*1 *1 *2) - (-12 (-5 *2 (-582 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-960)) (-4 *4 (-716)) - (-4 *5 (-755)) (-5 *1 (-401 *3 *4 *5 *6)))) - ((*1 *1 *2) (-12 (-5 *2 (-1014)) (-5 *1 (-472)))) - ((*1 *2 *1) (-12 (-4 *1 (-552 *2)) (-4 *2 (-1127)))) - ((*1 *1 *2) (-12 (-4 *1 (-556 *2)) (-4 *2 (-1127)))) - ((*1 *1 *2) (-12 (-4 *3 (-146)) (-4 *1 (-660 *3 *2)) (-4 *2 (-1153 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-582 (-799 *3))) (-5 *1 (-799 *3)) (-4 *3 (-1012)))) + (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) + (-4 *5 (-756)) (-5 *1 (-402 *3 *4 *5 *6)))) + ((*1 *1 *2) (-12 (-5 *2 (-1015)) (-5 *1 (-473)))) + ((*1 *2 *1) (-12 (-4 *1 (-553 *2)) (-4 *2 (-1128)))) + ((*1 *1 *2) (-12 (-4 *1 (-557 *2)) (-4 *2 (-1128)))) + ((*1 *1 *2) (-12 (-4 *3 (-146)) (-4 *1 (-661 *3 *2)) (-4 *2 (-1154 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-583 (-800 *3))) (-5 *1 (-800 *3)) (-4 *3 (-1013)))) ((*1 *1 *2) - (-12 (-5 *2 (-856 *3)) (-4 *3 (-960)) (-4 *1 (-976 *3 *4 *5)) - (-4 *5 (-552 (-1088))) (-4 *4 (-716)) (-4 *5 (-755)))) + (-12 (-5 *2 (-857 *3)) (-4 *3 (-961)) (-4 *1 (-977 *3 *4 *5)) + (-4 *5 (-553 (-1089))) (-4 *4 (-717)) (-4 *5 (-756)))) ((*1 *1 *2) (OR - (-12 (-5 *2 (-856 (-483))) (-4 *1 (-976 *3 *4 *5)) - (-12 (-2559 (-4 *3 (-38 (-348 (-483))))) (-4 *3 (-38 (-483))) - (-4 *5 (-552 (-1088)))) - (-4 *3 (-960)) (-4 *4 (-716)) (-4 *5 (-755))) - (-12 (-5 *2 (-856 (-483))) (-4 *1 (-976 *3 *4 *5)) - (-12 (-4 *3 (-38 (-348 (-483)))) (-4 *5 (-552 (-1088)))) (-4 *3 (-960)) - (-4 *4 (-716)) (-4 *5 (-755))))) + (-12 (-5 *2 (-857 (-484))) (-4 *1 (-977 *3 *4 *5)) + (-12 (-2560 (-4 *3 (-38 (-349 (-484))))) (-4 *3 (-38 (-484))) + (-4 *5 (-553 (-1089)))) + (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))) + (-12 (-5 *2 (-857 (-484))) (-4 *1 (-977 *3 *4 *5)) + (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *5 (-553 (-1089)))) (-4 *3 (-961)) + (-4 *4 (-717)) (-4 *5 (-756))))) ((*1 *1 *2) - (-12 (-5 *2 (-856 (-348 (-483)))) (-4 *1 (-976 *3 *4 *5)) - (-4 *3 (-38 (-348 (-483)))) (-4 *5 (-552 (-1088))) (-4 *3 (-960)) - (-4 *4 (-716)) (-4 *5 (-755)))) - ((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| |val| (-582 *7)) (|:| -1598 *8))) - (-4 *7 (-976 *4 *5 *6)) (-4 *8 (-982 *4 *5 *6 *7)) (-4 *4 (-390)) - (-4 *5 (-716)) (-4 *6 (-755)) (-5 *2 (-1071)) - (-5 *1 (-980 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| |val| (-582 *7)) (|:| -1598 *8))) - (-4 *7 (-976 *4 *5 *6)) (-4 *8 (-1019 *4 *5 *6 *7)) (-4 *4 (-390)) - (-4 *5 (-716)) (-4 *6 (-755)) (-5 *2 (-1071)) - (-5 *1 (-1057 *4 *5 *6 *7 *8)))) - ((*1 *1 *2) (-12 (-5 *2 (-1014)) (-5 *1 (-1093)))) - ((*1 *2 *1) (-12 (-5 *2 (-1014)) (-5 *1 (-1093)))) - ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-771)) (-5 *3 (-483)) (-5 *1 (-1107)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-771)) (-5 *3 (-483)) (-5 *1 (-1107)))) - ((*1 *2 *3) - (-12 (-5 *3 (-702 *4 (-772 *5))) (-4 *4 (-13 (-754) (-258) (-120) (-932))) - (-14 *5 (-582 (-1088))) (-5 *2 (-702 *4 (-772 *6))) (-5 *1 (-1205 *4 *5 *6)) - (-14 *6 (-582 (-1088))))) - ((*1 *2 *3) - (-12 (-5 *3 (-856 *4)) (-4 *4 (-13 (-754) (-258) (-120) (-932))) - (-5 *2 (-856 (-936 (-348 *4)))) (-5 *1 (-1205 *4 *5 *6)) - (-14 *5 (-582 (-1088))) (-14 *6 (-582 (-1088))))) - ((*1 *2 *3) - (-12 (-5 *3 (-702 *4 (-772 *6))) (-4 *4 (-13 (-754) (-258) (-120) (-932))) - (-14 *6 (-582 (-1088))) (-5 *2 (-856 (-936 (-348 *4)))) - (-5 *1 (-1205 *4 *5 *6)) (-14 *5 (-582 (-1088))))) - ((*1 *2 *3) - (-12 (-5 *3 (-1083 *4)) (-4 *4 (-13 (-754) (-258) (-120) (-932))) - (-5 *2 (-1083 (-936 (-348 *4)))) (-5 *1 (-1205 *4 *5 *6)) - (-14 *5 (-582 (-1088))) (-14 *6 (-582 (-1088))))) - ((*1 *2 *3) - (-12 (-5 *3 (-1058 *4 (-468 (-772 *6)) (-772 *6) (-702 *4 (-772 *6)))) - (-4 *4 (-13 (-754) (-258) (-120) (-932))) (-14 *6 (-582 (-1088))) - (-5 *2 (-582 (-702 *4 (-772 *6)))) (-5 *1 (-1205 *4 *5 *6)) - (-14 *5 (-582 (-1088)))))) -(((*1 *2 *3) (-12 (-5 *2 (-346 *3)) (-5 *1 (-496 *3)) (-4 *3 (-482)))) - ((*1 *2 *3) - (-12 (-4 *4 (-716)) (-4 *5 (-755)) (-4 *6 (-258)) (-5 *2 (-346 *3)) - (-5 *1 (-680 *4 *5 *6 *3)) (-4 *3 (-860 *6 *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-716)) (-4 *5 (-755)) (-4 *6 (-258)) (-4 *7 (-860 *6 *4 *5)) - (-5 *2 (-346 (-1083 *7))) (-5 *1 (-680 *4 *5 *6 *7)) (-5 *3 (-1083 *7)))) - ((*1 *2 *1) - (-12 (-4 *3 (-390)) (-4 *3 (-960)) (-4 *4 (-716)) (-4 *5 (-755)) - (-5 *2 (-346 *1)) (-4 *1 (-860 *3 *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-755)) (-4 *5 (-716)) (-4 *6 (-390)) (-5 *2 (-346 *3)) - (-5 *1 (-891 *4 *5 *6 *3)) (-4 *3 (-860 *6 *5 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-716)) (-4 *5 (-755)) (-4 *6 (-390)) (-4 *7 (-860 *6 *4 *5)) - (-5 *2 (-346 (-1083 (-348 *7)))) (-5 *1 (-1085 *4 *5 *6 *7)) - (-5 *3 (-1083 (-348 *7))))) - ((*1 *2 *1) (-12 (-5 *2 (-346 *1)) (-4 *1 (-1132)))) - ((*1 *2 *3) - (-12 (-4 *4 (-494)) (-5 *2 (-346 *3)) (-5 *1 (-1157 *4 *3)) - (-4 *3 (-13 (-1153 *4) (-494) (-10 -8 (-15 -3143 ($ $ $))))))) - ((*1 *2 *3) - (-12 (-5 *3 (-957 *4 *5)) (-4 *4 (-13 (-754) (-258) (-120) (-932))) - (-14 *5 (-582 (-1088))) - (-5 *2 (-582 (-1058 *4 (-468 (-772 *6)) (-772 *6) (-702 *4 (-772 *6))))) - (-5 *1 (-1205 *4 *5 *6)) (-14 *6 (-582 (-1088)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-957 *4 *5)) (-4 *4 (-13 (-754) (-258) (-120) (-932))) - (-14 *5 (-582 (-1088))) (-5 *2 (-582 (-582 (-936 (-348 *4))))) - (-5 *1 (-1205 *4 *5 *6)) (-14 *6 (-582 (-1088))))) + (-12 (-5 *2 (-857 (-349 (-484)))) (-4 *1 (-977 *3 *4 *5)) + (-4 *3 (-38 (-349 (-484)))) (-4 *5 (-553 (-1089))) (-4 *3 (-961)) + (-4 *4 (-717)) (-4 *5 (-756)))) + ((*1 *2 *3) + (-12 (-5 *3 (-2 (|:| |val| (-583 *7)) (|:| -1599 *8))) + (-4 *7 (-977 *4 *5 *6)) (-4 *8 (-983 *4 *5 *6 *7)) (-4 *4 (-391)) + (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-1072)) + (-5 *1 (-981 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (-12 (-5 *3 (-2 (|:| |val| (-583 *7)) (|:| -1599 *8))) + (-4 *7 (-977 *4 *5 *6)) (-4 *8 (-1020 *4 *5 *6 *7)) (-4 *4 (-391)) + (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-1072)) + (-5 *1 (-1058 *4 *5 *6 *7 *8)))) + ((*1 *1 *2) (-12 (-5 *2 (-1015)) (-5 *1 (-1094)))) + ((*1 *2 *1) (-12 (-5 *2 (-1015)) (-5 *1 (-1094)))) + ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-772)) (-5 *3 (-484)) (-5 *1 (-1108)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-772)) (-5 *3 (-484)) (-5 *1 (-1108)))) + ((*1 *2 *3) + (-12 (-5 *3 (-703 *4 (-773 *5))) (-4 *4 (-13 (-755) (-258) (-120) (-933))) + (-14 *5 (-583 (-1089))) (-5 *2 (-703 *4 (-773 *6))) (-5 *1 (-1206 *4 *5 *6)) + (-14 *6 (-583 (-1089))))) + ((*1 *2 *3) + (-12 (-5 *3 (-857 *4)) (-4 *4 (-13 (-755) (-258) (-120) (-933))) + (-5 *2 (-857 (-937 (-349 *4)))) (-5 *1 (-1206 *4 *5 *6)) + (-14 *5 (-583 (-1089))) (-14 *6 (-583 (-1089))))) + ((*1 *2 *3) + (-12 (-5 *3 (-703 *4 (-773 *6))) (-4 *4 (-13 (-755) (-258) (-120) (-933))) + (-14 *6 (-583 (-1089))) (-5 *2 (-857 (-937 (-349 *4)))) + (-5 *1 (-1206 *4 *5 *6)) (-14 *5 (-583 (-1089))))) + ((*1 *2 *3) + (-12 (-5 *3 (-1084 *4)) (-4 *4 (-13 (-755) (-258) (-120) (-933))) + (-5 *2 (-1084 (-937 (-349 *4)))) (-5 *1 (-1206 *4 *5 *6)) + (-14 *5 (-583 (-1089))) (-14 *6 (-583 (-1089))))) + ((*1 *2 *3) + (-12 (-5 *3 (-1059 *4 (-469 (-773 *6)) (-773 *6) (-703 *4 (-773 *6)))) + (-4 *4 (-13 (-755) (-258) (-120) (-933))) (-14 *6 (-583 (-1089))) + (-5 *2 (-583 (-703 *4 (-773 *6)))) (-5 *1 (-1206 *4 *5 *6)) + (-14 *5 (-583 (-1089)))))) +(((*1 *2 *3) (-12 (-5 *2 (-347 *3)) (-5 *1 (-497 *3)) (-4 *3 (-483)))) + ((*1 *2 *3) + (-12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-258)) (-5 *2 (-347 *3)) + (-5 *1 (-681 *4 *5 *6 *3)) (-4 *3 (-861 *6 *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-258)) (-4 *7 (-861 *6 *4 *5)) + (-5 *2 (-347 (-1084 *7))) (-5 *1 (-681 *4 *5 *6 *7)) (-5 *3 (-1084 *7)))) + ((*1 *2 *1) + (-12 (-4 *3 (-391)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) + (-5 *2 (-347 *1)) (-4 *1 (-861 *3 *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-756)) (-4 *5 (-717)) (-4 *6 (-391)) (-5 *2 (-347 *3)) + (-5 *1 (-892 *4 *5 *6 *3)) (-4 *3 (-861 *6 *5 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-391)) (-4 *7 (-861 *6 *4 *5)) + (-5 *2 (-347 (-1084 (-349 *7)))) (-5 *1 (-1086 *4 *5 *6 *7)) + (-5 *3 (-1084 (-349 *7))))) + ((*1 *2 *1) (-12 (-5 *2 (-347 *1)) (-4 *1 (-1133)))) + ((*1 *2 *3) + (-12 (-4 *4 (-495)) (-5 *2 (-347 *3)) (-5 *1 (-1158 *4 *3)) + (-4 *3 (-13 (-1154 *4) (-495) (-10 -8 (-15 -3144 ($ $ $))))))) + ((*1 *2 *3) + (-12 (-5 *3 (-958 *4 *5)) (-4 *4 (-13 (-755) (-258) (-120) (-933))) + (-14 *5 (-583 (-1089))) + (-5 *2 (-583 (-1059 *4 (-469 (-773 *6)) (-773 *6) (-703 *4 (-773 *6))))) + (-5 *1 (-1206 *4 *5 *6)) (-14 *6 (-583 (-1089)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-958 *4 *5)) (-4 *4 (-13 (-755) (-258) (-120) (-933))) + (-14 *5 (-583 (-1089))) (-5 *2 (-583 (-583 (-937 (-349 *4))))) + (-5 *1 (-1206 *4 *5 *6)) (-14 *6 (-583 (-1089))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-582 (-856 *5))) (-5 *4 (-85)) - (-4 *5 (-13 (-754) (-258) (-120) (-932))) - (-5 *2 (-582 (-582 (-936 (-348 *5))))) (-5 *1 (-1205 *5 *6 *7)) - (-14 *6 (-582 (-1088))) (-14 *7 (-582 (-1088))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-582 (-856 *5))) (-5 *4 (-85)) - (-4 *5 (-13 (-754) (-258) (-120) (-932))) - (-5 *2 (-582 (-582 (-936 (-348 *5))))) (-5 *1 (-1205 *5 *6 *7)) - (-14 *6 (-582 (-1088))) (-14 *7 (-582 (-1088))))) - ((*1 *2 *3) - (-12 (-5 *3 (-582 (-856 *4))) (-4 *4 (-13 (-754) (-258) (-120) (-932))) - (-5 *2 (-582 (-582 (-936 (-348 *4))))) (-5 *1 (-1205 *4 *5 *6)) - (-14 *5 (-582 (-1088))) (-14 *6 (-582 (-1088)))))) + (-12 (-5 *3 (-583 (-857 *5))) (-5 *4 (-85)) + (-4 *5 (-13 (-755) (-258) (-120) (-933))) + (-5 *2 (-583 (-583 (-937 (-349 *5))))) (-5 *1 (-1206 *5 *6 *7)) + (-14 *6 (-583 (-1089))) (-14 *7 (-583 (-1089))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-583 (-857 *5))) (-5 *4 (-85)) + (-4 *5 (-13 (-755) (-258) (-120) (-933))) + (-5 *2 (-583 (-583 (-937 (-349 *5))))) (-5 *1 (-1206 *5 *6 *7)) + (-14 *6 (-583 (-1089))) (-14 *7 (-583 (-1089))))) + ((*1 *2 *3) + (-12 (-5 *3 (-583 (-857 *4))) (-4 *4 (-13 (-755) (-258) (-120) (-933))) + (-5 *2 (-583 (-583 (-937 (-349 *4))))) (-5 *1 (-1206 *4 *5 *6)) + (-14 *5 (-583 (-1089))) (-14 *6 (-583 (-1089)))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-582 (-856 (-483)))) (-5 *4 (-582 (-1088))) - (-5 *2 (-582 (-582 (-328)))) (-5 *1 (-935)) (-5 *5 (-328)))) + (-12 (-5 *3 (-583 (-857 (-484)))) (-5 *4 (-583 (-1089))) + (-5 *2 (-583 (-583 (-329)))) (-5 *1 (-936)) (-5 *5 (-329)))) ((*1 *2 *3) - (-12 (-5 *3 (-957 *4 *5)) (-4 *4 (-13 (-754) (-258) (-120) (-932))) - (-14 *5 (-582 (-1088))) (-5 *2 (-582 (-582 (-936 (-348 *4))))) - (-5 *1 (-1205 *4 *5 *6)) (-14 *6 (-582 (-1088))))) + (-12 (-5 *3 (-958 *4 *5)) (-4 *4 (-13 (-755) (-258) (-120) (-933))) + (-14 *5 (-583 (-1089))) (-5 *2 (-583 (-583 (-937 (-349 *4))))) + (-5 *1 (-1206 *4 *5 *6)) (-14 *6 (-583 (-1089))))) ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-582 (-856 *5))) (-5 *4 (-85)) - (-4 *5 (-13 (-754) (-258) (-120) (-932))) - (-5 *2 (-582 (-582 (-936 (-348 *5))))) (-5 *1 (-1205 *5 *6 *7)) - (-14 *6 (-582 (-1088))) (-14 *7 (-582 (-1088))))) + (-12 (-5 *3 (-583 (-857 *5))) (-5 *4 (-85)) + (-4 *5 (-13 (-755) (-258) (-120) (-933))) + (-5 *2 (-583 (-583 (-937 (-349 *5))))) (-5 *1 (-1206 *5 *6 *7)) + (-14 *6 (-583 (-1089))) (-14 *7 (-583 (-1089))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-582 (-856 *5))) (-5 *4 (-85)) - (-4 *5 (-13 (-754) (-258) (-120) (-932))) - (-5 *2 (-582 (-582 (-936 (-348 *5))))) (-5 *1 (-1205 *5 *6 *7)) - (-14 *6 (-582 (-1088))) (-14 *7 (-582 (-1088))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-582 (-856 *5))) (-5 *4 (-85)) - (-4 *5 (-13 (-754) (-258) (-120) (-932))) - (-5 *2 (-582 (-582 (-936 (-348 *5))))) (-5 *1 (-1205 *5 *6 *7)) - (-14 *6 (-582 (-1088))) (-14 *7 (-582 (-1088))))) - ((*1 *2 *3) - (-12 (-5 *3 (-582 (-856 *4))) (-4 *4 (-13 (-754) (-258) (-120) (-932))) - (-5 *2 (-582 (-582 (-936 (-348 *4))))) (-5 *1 (-1205 *4 *5 *6)) - (-14 *5 (-582 (-1088))) (-14 *6 (-582 (-1088)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-957 *4 *5)) (-4 *4 (-13 (-754) (-258) (-120) (-932))) - (-14 *5 (-582 (-1088))) - (-5 *2 (-582 (-2 (|:| -1745 (-1083 *4)) (|:| -3223 (-582 (-856 *4)))))) - (-5 *1 (-1205 *4 *5 *6)) (-14 *6 (-582 (-1088))))) + (-12 (-5 *3 (-583 (-857 *5))) (-5 *4 (-85)) + (-4 *5 (-13 (-755) (-258) (-120) (-933))) + (-5 *2 (-583 (-583 (-937 (-349 *5))))) (-5 *1 (-1206 *5 *6 *7)) + (-14 *6 (-583 (-1089))) (-14 *7 (-583 (-1089))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-583 (-857 *5))) (-5 *4 (-85)) + (-4 *5 (-13 (-755) (-258) (-120) (-933))) + (-5 *2 (-583 (-583 (-937 (-349 *5))))) (-5 *1 (-1206 *5 *6 *7)) + (-14 *6 (-583 (-1089))) (-14 *7 (-583 (-1089))))) + ((*1 *2 *3) + (-12 (-5 *3 (-583 (-857 *4))) (-4 *4 (-13 (-755) (-258) (-120) (-933))) + (-5 *2 (-583 (-583 (-937 (-349 *4))))) (-5 *1 (-1206 *4 *5 *6)) + (-14 *5 (-583 (-1089))) (-14 *6 (-583 (-1089)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-958 *4 *5)) (-4 *4 (-13 (-755) (-258) (-120) (-933))) + (-14 *5 (-583 (-1089))) + (-5 *2 (-583 (-2 (|:| -1746 (-1084 *4)) (|:| -3224 (-583 (-857 *4)))))) + (-5 *1 (-1206 *4 *5 *6)) (-14 *6 (-583 (-1089))))) ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *4 (-85)) (-4 *5 (-13 (-754) (-258) (-120) (-932))) - (-5 *2 (-582 (-2 (|:| -1745 (-1083 *5)) (|:| -3223 (-582 (-856 *5)))))) - (-5 *1 (-1205 *5 *6 *7)) (-5 *3 (-582 (-856 *5))) (-14 *6 (-582 (-1088))) - (-14 *7 (-582 (-1088))))) + (-12 (-5 *4 (-85)) (-4 *5 (-13 (-755) (-258) (-120) (-933))) + (-5 *2 (-583 (-2 (|:| -1746 (-1084 *5)) (|:| -3224 (-583 (-857 *5)))))) + (-5 *1 (-1206 *5 *6 *7)) (-5 *3 (-583 (-857 *5))) (-14 *6 (-583 (-1089))) + (-14 *7 (-583 (-1089))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-85)) (-4 *5 (-13 (-754) (-258) (-120) (-932))) - (-5 *2 (-582 (-2 (|:| -1745 (-1083 *5)) (|:| -3223 (-582 (-856 *5)))))) - (-5 *1 (-1205 *5 *6 *7)) (-5 *3 (-582 (-856 *5))) (-14 *6 (-582 (-1088))) - (-14 *7 (-582 (-1088))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-85)) (-4 *5 (-13 (-754) (-258) (-120) (-932))) - (-5 *2 (-582 (-2 (|:| -1745 (-1083 *5)) (|:| -3223 (-582 (-856 *5)))))) - (-5 *1 (-1205 *5 *6 *7)) (-5 *3 (-582 (-856 *5))) (-14 *6 (-582 (-1088))) - (-14 *7 (-582 (-1088))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-754) (-258) (-120) (-932))) - (-5 *2 (-582 (-2 (|:| -1745 (-1083 *4)) (|:| -3223 (-582 (-856 *4)))))) - (-5 *1 (-1205 *4 *5 *6)) (-5 *3 (-582 (-856 *4))) (-14 *5 (-582 (-1088))) - (-14 *6 (-582 (-1088)))))) + (-12 (-5 *4 (-85)) (-4 *5 (-13 (-755) (-258) (-120) (-933))) + (-5 *2 (-583 (-2 (|:| -1746 (-1084 *5)) (|:| -3224 (-583 (-857 *5)))))) + (-5 *1 (-1206 *5 *6 *7)) (-5 *3 (-583 (-857 *5))) (-14 *6 (-583 (-1089))) + (-14 *7 (-583 (-1089))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-85)) (-4 *5 (-13 (-755) (-258) (-120) (-933))) + (-5 *2 (-583 (-2 (|:| -1746 (-1084 *5)) (|:| -3224 (-583 (-857 *5)))))) + (-5 *1 (-1206 *5 *6 *7)) (-5 *3 (-583 (-857 *5))) (-14 *6 (-583 (-1089))) + (-14 *7 (-583 (-1089))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-755) (-258) (-120) (-933))) + (-5 *2 (-583 (-2 (|:| -1746 (-1084 *4)) (|:| -3224 (-583 (-857 *4)))))) + (-5 *1 (-1206 *4 *5 *6)) (-5 *3 (-583 (-857 *4))) (-14 *5 (-583 (-1089))) + (-14 *6 (-583 (-1089)))))) (((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-582 (-856 *5))) (-5 *4 (-85)) - (-4 *5 (-13 (-754) (-258) (-120) (-932))) (-5 *2 (-582 (-957 *5 *6))) - (-5 *1 (-1205 *5 *6 *7)) (-14 *6 (-582 (-1088))) (-14 *7 (-582 (-1088))))) + (-12 (-5 *3 (-583 (-857 *5))) (-5 *4 (-85)) + (-4 *5 (-13 (-755) (-258) (-120) (-933))) (-5 *2 (-583 (-958 *5 *6))) + (-5 *1 (-1206 *5 *6 *7)) (-14 *6 (-583 (-1089))) (-14 *7 (-583 (-1089))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-582 (-856 *5))) (-5 *4 (-85)) - (-4 *5 (-13 (-754) (-258) (-120) (-932))) (-5 *2 (-582 (-957 *5 *6))) - (-5 *1 (-1205 *5 *6 *7)) (-14 *6 (-582 (-1088))) (-14 *7 (-582 (-1088))))) + (-12 (-5 *3 (-583 (-857 *5))) (-5 *4 (-85)) + (-4 *5 (-13 (-755) (-258) (-120) (-933))) (-5 *2 (-583 (-958 *5 *6))) + (-5 *1 (-1206 *5 *6 *7)) (-14 *6 (-583 (-1089))) (-14 *7 (-583 (-1089))))) ((*1 *2 *3) - (-12 (-5 *3 (-582 (-856 *4))) (-4 *4 (-13 (-754) (-258) (-120) (-932))) - (-5 *2 (-582 (-957 *4 *5))) (-5 *1 (-1205 *4 *5 *6)) (-14 *5 (-582 (-1088))) - (-14 *6 (-582 (-1088)))))) + (-12 (-5 *3 (-583 (-857 *4))) (-4 *4 (-13 (-755) (-258) (-120) (-933))) + (-5 *2 (-583 (-958 *4 *5))) (-5 *1 (-1206 *4 *5 *6)) (-14 *5 (-583 (-1089))) + (-14 *6 (-583 (-1089)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 (-1067 *4) (-1067 *4))) (-5 *2 (-1067 *4)) (-5 *1 (-1204 *4)) - (-4 *4 (-1127)))) + (-12 (-5 *3 (-1 (-1068 *4) (-1068 *4))) (-5 *2 (-1068 *4)) (-5 *1 (-1205 *4)) + (-4 *4 (-1128)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-582 (-1067 *5)) (-582 (-1067 *5)))) (-5 *4 (-483)) - (-5 *2 (-582 (-1067 *5))) (-5 *1 (-1204 *5)) (-4 *5 (-1127))))) -(((*1 *1 *2) (-12 (-5 *2 (-582 (-829))) (-5 *1 (-1203))))) -(((*1 *2 *1) (-12 (-5 *2 (-883)) (-5 *1 (-1203))))) + (-12 (-5 *3 (-1 (-583 (-1068 *5)) (-583 (-1068 *5)))) (-5 *4 (-484)) + (-5 *2 (-583 (-1068 *5))) (-5 *1 (-1205 *5)) (-4 *5 (-1128))))) +(((*1 *1 *2) (-12 (-5 *2 (-583 (-830))) (-5 *1 (-1204))))) +(((*1 *2 *1) (-12 (-5 *2 (-884)) (-5 *1 (-1204))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-829)) (-4 *6 (-494)) (-5 *2 (-582 (-265 *6))) - (-5 *1 (-175 *5 *6)) (-5 *3 (-265 *6)) (-4 *5 (-960)))) - ((*1 *2 *1) (-12 (-5 *1 (-346 *2)) (-4 *2 (-494)))) + (-12 (-5 *4 (-830)) (-4 *6 (-495)) (-5 *2 (-583 (-265 *6))) + (-5 *1 (-175 *5 *6)) (-5 *3 (-265 *6)) (-4 *5 (-961)))) + ((*1 *2 *1) (-12 (-5 *1 (-347 *2)) (-4 *2 (-495)))) ((*1 *2 *3) - (-12 (-5 *3 (-518 *5)) (-4 *5 (-13 (-29 *4) (-1113))) - (-4 *4 (-13 (-390) (-949 (-483)) (-579 (-483)))) (-5 *2 (-582 *5)) - (-5 *1 (-520 *4 *5)))) + (-12 (-5 *3 (-519 *5)) (-4 *5 (-13 (-29 *4) (-1114))) + (-4 *4 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *2 (-583 *5)) + (-5 *1 (-521 *4 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-518 (-348 (-856 *4)))) - (-4 *4 (-13 (-390) (-949 (-483)) (-579 (-483)))) (-5 *2 (-582 (-265 *4))) - (-5 *1 (-524 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-1006 *3 *2)) (-4 *3 (-754)) (-4 *2 (-1062 *3)))) + (-12 (-5 *3 (-519 (-349 (-857 *4)))) + (-4 *4 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *2 (-583 (-265 *4))) + (-5 *1 (-525 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-1007 *3 *2)) (-4 *3 (-755)) (-4 *2 (-1063 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-582 *1)) (-4 *1 (-1006 *4 *2)) (-4 *4 (-754)) - (-4 *2 (-1062 *4)))) + (-12 (-5 *3 (-583 *1)) (-4 *1 (-1007 *4 *2)) (-4 *4 (-755)) + (-4 *2 (-1063 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-390)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-362 *3) (-1113))))) + (-12 (-4 *3 (-391)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-363 *3) (-1114))))) ((*1 *2 *1) - (-12 (-5 *2 (-1193 (-1088) *3)) (-5 *1 (-1199 *3)) (-4 *3 (-960)))) + (-12 (-5 *2 (-1194 (-1089) *3)) (-5 *1 (-1200 *3)) (-4 *3 (-961)))) ((*1 *2 *1) - (-12 (-5 *2 (-1193 *3 *4)) (-5 *1 (-1202 *3 *4)) (-4 *3 (-755)) - (-4 *4 (-960))))) + (-12 (-5 *2 (-1194 *3 *4)) (-5 *1 (-1203 *3 *4)) (-4 *3 (-756)) + (-4 *4 (-961))))) (((*1 *1 *2) - (-12 (-5 *2 (-1193 (-1088) *3)) (-4 *3 (-960)) (-5 *1 (-1199 *3)))) + (-12 (-5 *2 (-1194 (-1089) *3)) (-4 *3 (-961)) (-5 *1 (-1200 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1193 *3 *4)) (-4 *3 (-755)) (-4 *4 (-960)) - (-5 *1 (-1202 *3 *4))))) + (-12 (-5 *2 (-1194 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)) + (-5 *1 (-1203 *3 *4))))) (((*1 *2 *1) - (-12 (-5 *2 (-582 (-2 (|:| |k| (-1088)) (|:| |c| (-1199 *3))))) - (-5 *1 (-1199 *3)) (-4 *3 (-960)))) + (-12 (-5 *2 (-583 (-2 (|:| |k| (-1089)) (|:| |c| (-1200 *3))))) + (-5 *1 (-1200 *3)) (-4 *3 (-961)))) ((*1 *2 *1) - (-12 (-5 *2 (-582 (-2 (|:| |k| *3) (|:| |c| (-1202 *3 *4))))) - (-5 *1 (-1202 *3 *4)) (-4 *3 (-755)) (-4 *4 (-960))))) -(((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-693)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-829)))) + (-12 (-5 *2 (-583 (-2 (|:| |k| *3) (|:| |c| (-1203 *3 *4))))) + (-5 *1 (-1203 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961))))) +(((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-694)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-830)))) ((*1 *1 *1 *1) - (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-483)) (-14 *3 (-693)) (-4 *4 (-146)))) + (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-484)) (-14 *3 (-694)) (-4 *4 (-146)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-179)) (-5 *1 (-130)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-829)) (-5 *1 (-130)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-830)) (-5 *1 (-130)))) ((*1 *2 *1 *2) - (-12 (-5 *2 (-853 *3)) (-4 *3 (-13 (-312) (-1113))) (-5 *1 (-181 *3)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1024)) (-4 *2 (-1127)))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1024)) (-4 *2 (-1127)))) - ((*1 *1 *2 *3) (-12 (-4 *1 (-274 *3 *2)) (-4 *3 (-1012)) (-4 *2 (-104)))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-310 *2)) (-4 *2 (-1012)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-310 *2)) (-4 *2 (-1012)))) - ((*1 *1 *2 *3) (-12 (-5 *1 (-332 *3 *2)) (-4 *3 (-960)) (-4 *2 (-755)))) - ((*1 *1 *2 *3) (-12 (-4 *1 (-333 *2 *3)) (-4 *2 (-960)) (-4 *3 (-1012)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-334 *2)) (-4 *2 (-1012)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-334 *2)) (-4 *2 (-1012)))) + (-12 (-5 *2 (-854 *3)) (-4 *3 (-13 (-312) (-1114))) (-5 *1 (-181 *3)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1025)) (-4 *2 (-1128)))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1025)) (-4 *2 (-1128)))) + ((*1 *1 *2 *3) (-12 (-4 *1 (-274 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-104)))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-310 *2)) (-4 *2 (-1013)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-310 *2)) (-4 *2 (-1013)))) + ((*1 *1 *2 *3) (-12 (-5 *1 (-333 *3 *2)) (-4 *3 (-961)) (-4 *2 (-756)))) + ((*1 *1 *2 *3) (-12 (-4 *1 (-334 *2 *3)) (-4 *2 (-961)) (-4 *3 (-1013)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-335 *2)) (-4 *2 (-1013)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-335 *2)) (-4 *2 (-1013)))) ((*1 *1 *2 *1) - (-12 (-14 *3 (-582 (-1088))) (-4 *4 (-146)) (-4 *6 (-196 (-3955 *3) (-693))) + (-12 (-14 *3 (-583 (-1089))) (-4 *4 (-146)) (-4 *6 (-196 (-3956 *3) (-694))) (-14 *7 - (-1 (-85) (-2 (|:| -2399 *5) (|:| -2400 *6)) - (-2 (|:| -2399 *5) (|:| -2400 *6)))) - (-5 *1 (-399 *3 *4 *5 *6 *7 *2)) (-4 *5 (-755)) - (-4 *2 (-860 *4 *6 (-772 *3))))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-408 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-408 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) + (-1 (-85) (-2 (|:| -2400 *5) (|:| -2401 *6)) + (-2 (|:| -2400 *5) (|:| -2401 *6)))) + (-5 *1 (-400 *3 *4 *5 *6 *7 *2)) (-4 *5 (-756)) + (-4 *2 (-861 *4 *6 (-773 *3))))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-409 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-409 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-312)) (-4 *3 (-716)) (-4 *4 (-755)) (-5 *1 (-442 *2 *3 *4 *5)) - (-4 *5 (-860 *2 *3 *4)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-299)) (-5 *1 (-465 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-472))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-530 *3)) (-4 *3 (-960)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-587 *2)) (-4 *2 (-1024)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-617 *2)) (-4 *2 (-755)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1012)) (-4 *6 (-1012)) - (-4 *7 (-1012)) (-5 *2 (-1 *7 *5)) (-5 *1 (-624 *5 *6 *7)))) + (-12 (-4 *2 (-312)) (-4 *3 (-717)) (-4 *4 (-756)) (-5 *1 (-443 *2 *3 *4 *5)) + (-4 *5 (-861 *2 *3 *4)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-299)) (-5 *1 (-466 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-473))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-531 *3)) (-4 *3 (-961)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-588 *2)) (-4 *2 (-1025)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-756)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1013)) (-4 *6 (-1013)) + (-4 *7 (-1013)) (-5 *2 (-1 *7 *5)) (-5 *1 (-625 *5 *6 *7)))) ((*1 *2 *2 *1) - (-12 (-4 *1 (-626 *3 *2 *4)) (-4 *3 (-960)) (-4 *2 (-322 *3)) - (-4 *4 (-322 *3)))) + (-12 (-4 *1 (-627 *3 *2 *4)) (-4 *3 (-961)) (-4 *2 (-323 *3)) + (-4 *4 (-323 *3)))) ((*1 *2 *1 *2) - (-12 (-4 *1 (-626 *3 *4 *2)) (-4 *3 (-960)) (-4 *4 (-322 *3)) - (-4 *2 (-322 *3)))) + (-12 (-4 *1 (-627 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-323 *3)) + (-4 *2 (-323 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-483)) (-4 *1 (-626 *3 *4 *5)) (-4 *3 (-960)) (-4 *4 (-322 *3)) - (-4 *5 (-322 *3)))) + (-12 (-5 *2 (-484)) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-323 *3)) + (-4 *5 (-323 *3)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-626 *2 *3 *4)) (-4 *2 (-960)) (-4 *3 (-322 *2)) - (-4 *4 (-322 *2)))) + (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-323 *2)) + (-4 *4 (-323 *2)))) ((*1 *1 *2 *1) - (-12 (-4 *1 (-626 *2 *3 *4)) (-4 *2 (-960)) (-4 *3 (-322 *2)) - (-4 *4 (-322 *2)))) + (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-323 *2)) + (-4 *4 (-323 *2)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-626 *2 *3 *4)) (-4 *2 (-960)) (-4 *3 (-322 *2)) - (-4 *4 (-322 *2)))) - ((*1 *1 *1 *1) (-4 *1 (-656))) ((*1 *1 *1 *1) (-5 *1 (-771))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-799 *2)) (-4 *2 (-1012)))) + (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-323 *2)) + (-4 *4 (-323 *2)))) + ((*1 *1 *1 *1) (-4 *1 (-657))) ((*1 *1 *1 *1) (-5 *1 (-772))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-800 *2)) (-4 *2 (-1013)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-1177 *4)) (-4 *4 (-1153 *3)) (-4 *3 (-494)) - (-5 *1 (-881 *3 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-962 *2)) (-4 *2 (-1024)))) - ((*1 *1 *1 *1) (-4 *1 (-1024))) + (-12 (-5 *2 (-1178 *4)) (-4 *4 (-1154 *3)) (-4 *3 (-495)) + (-5 *1 (-882 *3 *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-963 *2)) (-4 *2 (-1025)))) + ((*1 *1 *1 *1) (-4 *1 (-1025))) ((*1 *2 *2 *1) - (-12 (-4 *1 (-1035 *3 *4 *2 *5)) (-4 *4 (-960)) (-4 *2 (-196 *3 *4)) + (-12 (-4 *1 (-1036 *3 *4 *2 *5)) (-4 *4 (-961)) (-4 *2 (-196 *3 *4)) (-4 *5 (-196 *3 *4)))) ((*1 *2 *1 *2) - (-12 (-4 *1 (-1035 *3 *4 *5 *2)) (-4 *4 (-960)) (-4 *5 (-196 *3 *4)) + (-12 (-4 *1 (-1036 *3 *4 *5 *2)) (-4 *4 (-961)) (-4 *5 (-196 *3 *4)) (-4 *2 (-196 *3 *4)))) ((*1 *1 *2 *1) - (-12 (-4 *3 (-960)) (-4 *4 (-755)) (-5 *1 (-1038 *3 *4 *2)) - (-4 *2 (-860 *3 (-468 *4) *4)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-960)) (-5 *1 (-1073 *3)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-960)) (-5 *1 (-1073 *3)))) - ((*1 *2 *2 *3) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-960)) (-5 *1 (-1073 *3)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-853 (-179))) (-5 *3 (-179)) (-5 *1 (-1124)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1176 *2)) (-4 *2 (-1127)) (-4 *2 (-662)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-1176 *2)) (-4 *2 (-1127)) (-4 *2 (-662)))) + (-12 (-4 *3 (-961)) (-4 *4 (-756)) (-5 *1 (-1039 *3 *4 *2)) + (-4 *2 (-861 *3 (-469 *4) *4)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-961)) (-5 *1 (-1074 *3)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-961)) (-5 *1 (-1074 *3)))) + ((*1 *2 *2 *3) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-961)) (-5 *1 (-1074 *3)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-854 (-179))) (-5 *3 (-179)) (-5 *1 (-1125)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1177 *2)) (-4 *2 (-1128)) (-4 *2 (-663)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-1177 *2)) (-4 *2 (-1128)) (-4 *2 (-663)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-483)) (-4 *1 (-1176 *3)) (-4 *3 (-1127)) (-4 *3 (-21)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-1197 *2 *3)) (-4 *2 (-755)) (-4 *3 (-960)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1197 *3 *2)) (-4 *3 (-755)) (-4 *2 (-960)))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-1201 *2 *3)) (-4 *2 (-960)) (-4 *3 (-753))))) -(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-960)) (-4 *3 (-715)))) - ((*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-960)) (-14 *3 (-582 (-1088))))) + (-12 (-5 *2 (-484)) (-4 *1 (-1177 *3)) (-4 *3 (-1128)) (-4 *3 (-21)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-1198 *2 *3)) (-4 *2 (-756)) (-4 *3 (-961)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1198 *3 *2)) (-4 *3 (-756)) (-4 *2 (-961)))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-1202 *2 *3)) (-4 *2 (-961)) (-4 *3 (-754))))) +(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-961)) (-4 *3 (-716)))) + ((*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-961)) (-14 *3 (-583 (-1089))))) ((*1 *1 *1) - (-12 (-5 *1 (-177 *2 *3)) (-4 *2 (-13 (-960) (-755))) - (-14 *3 (-582 (-1088))))) - ((*1 *1 *1) (-12 (-4 *1 (-333 *2 *3)) (-4 *2 (-960)) (-4 *3 (-1012)))) + (-12 (-5 *1 (-177 *2 *3)) (-4 *2 (-13 (-961) (-756))) + (-14 *3 (-583 (-1089))))) + ((*1 *1 *1) (-12 (-4 *1 (-334 *2 *3)) (-4 *2 (-961)) (-4 *3 (-1013)))) ((*1 *1 *1) - (-12 (-14 *2 (-582 (-1088))) (-4 *3 (-146)) (-4 *5 (-196 (-3955 *2) (-693))) + (-12 (-14 *2 (-583 (-1089))) (-4 *3 (-146)) (-4 *5 (-196 (-3956 *2) (-694))) (-14 *6 - (-1 (-85) (-2 (|:| -2399 *4) (|:| -2400 *5)) - (-2 (|:| -2399 *4) (|:| -2400 *5)))) - (-5 *1 (-399 *2 *3 *4 *5 *6 *7)) (-4 *4 (-755)) - (-4 *7 (-860 *3 *5 (-772 *2))))) - ((*1 *1 *1) (-12 (-4 *1 (-448 *2 *3)) (-4 *2 (-72)) (-4 *3 (-758)))) - ((*1 *1 *1) (-12 (-4 *2 (-494)) (-5 *1 (-561 *2 *3)) (-4 *3 (-1153 *2)))) - ((*1 *1 *1) (-12 (-4 *1 (-644 *2)) (-4 *2 (-960)))) + (-1 (-85) (-2 (|:| -2400 *4) (|:| -2401 *5)) + (-2 (|:| -2400 *4) (|:| -2401 *5)))) + (-5 *1 (-400 *2 *3 *4 *5 *6 *7)) (-4 *4 (-756)) + (-4 *7 (-861 *3 *5 (-773 *2))))) + ((*1 *1 *1) (-12 (-4 *1 (-449 *2 *3)) (-4 *2 (-72)) (-4 *3 (-759)))) + ((*1 *1 *1) (-12 (-4 *2 (-495)) (-5 *1 (-562 *2 *3)) (-4 *3 (-1154 *2)))) + ((*1 *1 *1) (-12 (-4 *1 (-645 *2)) (-4 *2 (-961)))) ((*1 *1 *1) - (-12 (-5 *1 (-673 *2 *3)) (-4 *3 (-755)) (-4 *2 (-960)) (-4 *3 (-662)))) - ((*1 *1 *1) (-12 (-4 *1 (-760 *2)) (-4 *2 (-960)))) + (-12 (-5 *1 (-674 *2 *3)) (-4 *3 (-756)) (-4 *2 (-961)) (-4 *3 (-663)))) + ((*1 *1 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-976 *3 *4 *2)) (-4 *3 (-960)) (-4 *4 (-716)) (-4 *2 (-755)))) - ((*1 *1 *1) (-12 (-5 *1 (-1201 *2 *3)) (-4 *2 (-960)) (-4 *3 (-753))))) + (-12 (-4 *1 (-977 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)))) + ((*1 *1 *1) (-12 (-5 *1 (-1202 *2 *3)) (-4 *2 (-961)) (-4 *3 (-754))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-960)) (-4 *4 (-715)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-960)) (-5 *1 (-50 *3 *4)) - (-14 *4 (-582 (-1088))))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-50 *3 *4)) + (-14 *4 (-583 (-1089))))) ((*1 *1 *2 *1 *1 *3) - (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1127)) - (-4 *4 (-322 *3)) (-4 *5 (-322 *3)))) + (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1128)) + (-4 *4 (-323 *3)) (-4 *5 (-323 *3)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1127)) - (-4 *4 (-322 *3)) (-4 *5 (-322 *3)))) + (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1128)) + (-4 *4 (-323 *3)) (-4 *5 (-323 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1127)) - (-4 *4 (-322 *3)) (-4 *5 (-322 *3)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1128)) + (-4 *4 (-323 *3)) (-4 *5 (-323 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-58 *5)) (-4 *5 (-1127)) (-4 *6 (-1127)) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-58 *5)) (-4 *5 (-1128)) (-4 *6 (-1128)) (-5 *2 (-58 *6)) (-5 *1 (-59 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-108 *5 *6 *7)) (-14 *5 (-483)) - (-14 *6 (-693)) (-4 *7 (-146)) (-4 *8 (-146)) (-5 *2 (-108 *5 *6 *8)) + (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-108 *5 *6 *7)) (-14 *5 (-484)) + (-14 *6 (-694)) (-4 *7 (-146)) (-4 *8 (-146)) (-5 *2 (-108 *5 *6 *8)) (-5 *1 (-109 *5 *6 *7 *8)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-142 *5)) (-4 *5 (-146)) (-4 *6 (-146)) (-5 *2 (-142 *6)) (-5 *1 (-143 *5 *6)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-265 *3) (-265 *3))) (-4 *3 (-13 (-960) (-755))) - (-5 *1 (-177 *3 *4)) (-14 *4 (-582 (-1088))))) + (-12 (-5 *2 (-1 (-265 *3) (-265 *3))) (-4 *3 (-13 (-961) (-756))) + (-5 *1 (-177 *3 *4)) (-14 *4 (-583 (-1089))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-197 *5 *6)) (-14 *5 (-693)) (-4 *6 (-1127)) - (-4 *7 (-1127)) (-5 *2 (-197 *5 *7)) (-5 *1 (-198 *5 *6 *7)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1127)) (-5 *1 (-249 *3)))) + (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-197 *5 *6)) (-14 *5 (-694)) (-4 *6 (-1128)) + (-4 *7 (-1128)) (-5 *2 (-197 *5 *7)) (-5 *1 (-198 *5 *6 *7)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1128)) (-5 *1 (-249 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-249 *5)) (-4 *5 (-1127)) (-4 *6 (-1127)) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-249 *5)) (-4 *5 (-1128)) (-4 *6 (-1128)) (-5 *2 (-249 *6)) (-5 *1 (-250 *5 *6)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-549 *1)) (-4 *1 (-254)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-550 *1)) (-4 *1 (-254)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1071)) (-5 *5 (-549 *6)) (-4 *6 (-254)) - (-4 *2 (-1127)) (-5 *1 (-255 *6 *2)))) + (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1072)) (-5 *5 (-550 *6)) (-4 *6 (-254)) + (-4 *2 (-1128)) (-5 *1 (-255 *6 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-549 *5)) (-4 *5 (-254)) (-4 *2 (-254)) + (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-550 *5)) (-4 *5 (-254)) (-4 *2 (-254)) (-5 *1 (-256 *5 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-265 *5)) (-4 *5 (-1012)) (-4 *6 (-1012)) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-265 *5)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-5 *2 (-265 *6)) (-5 *1 (-266 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-283 *5 *6 *7 *8)) (-4 *5 (-312)) - (-4 *6 (-1153 *5)) (-4 *7 (-1153 (-348 *6))) (-4 *8 (-291 *5 *6 *7)) - (-4 *9 (-312)) (-4 *10 (-1153 *9)) (-4 *11 (-1153 (-348 *10))) + (-4 *6 (-1154 *5)) (-4 *7 (-1154 (-349 *6))) (-4 *8 (-291 *5 *6 *7)) + (-4 *9 (-312)) (-4 *10 (-1154 *9)) (-4 *11 (-1154 (-349 *10))) (-5 *2 (-283 *9 *10 *11 *12)) (-5 *1 (-284 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-291 *9 *10 *11)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-288 *3)) (-4 *3 (-1012)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-288 *3)) (-4 *3 (-1013)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1132)) (-4 *8 (-1132)) (-4 *6 (-1153 *5)) - (-4 *7 (-1153 (-348 *6))) (-4 *9 (-1153 *8)) (-4 *2 (-291 *8 *9 *10)) + (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1133)) (-4 *8 (-1133)) (-4 *6 (-1154 *5)) + (-4 *7 (-1154 (-349 *6))) (-4 *9 (-1154 *8)) (-4 *2 (-291 *8 *9 *10)) (-5 *1 (-292 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-291 *5 *6 *7)) - (-4 *10 (-1153 (-348 *9))))) + (-4 *10 (-1154 (-349 *9))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1127)) (-4 *6 (-1127)) (-4 *2 (-322 *6)) - (-5 *1 (-323 *5 *4 *6 *2)) (-4 *4 (-322 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1128)) (-4 *6 (-1128)) (-4 *2 (-323 *6)) + (-5 *1 (-324 *5 *4 *6 *2)) (-4 *4 (-323 *5)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-333 *3 *4)) (-4 *3 (-960)) (-4 *4 (-1012)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-494)) (-5 *1 (-346 *3)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-334 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1013)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-495)) (-5 *1 (-347 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-346 *5)) (-4 *5 (-494)) (-4 *6 (-494)) - (-5 *2 (-346 *6)) (-5 *1 (-347 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-347 *5)) (-4 *5 (-495)) (-4 *6 (-495)) + (-5 *2 (-347 *6)) (-5 *1 (-348 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-348 *5)) (-4 *5 (-494)) (-4 *6 (-494)) - (-5 *2 (-348 *6)) (-5 *1 (-349 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-349 *5)) (-4 *5 (-495)) (-4 *6 (-495)) + (-5 *2 (-349 *6)) (-5 *1 (-350 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-354 *5 *6 *7 *8)) (-4 *5 (-258)) - (-4 *6 (-903 *5)) (-4 *7 (-1153 *6)) (-4 *8 (-13 (-351 *6 *7) (-949 *6))) - (-4 *9 (-258)) (-4 *10 (-903 *9)) (-4 *11 (-1153 *10)) - (-5 *2 (-354 *9 *10 *11 *12)) (-5 *1 (-355 *5 *6 *7 *8 *9 *10 *11 *12)) - (-4 *12 (-13 (-351 *10 *11) (-949 *10))))) + (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-355 *5 *6 *7 *8)) (-4 *5 (-258)) + (-4 *6 (-904 *5)) (-4 *7 (-1154 *6)) (-4 *8 (-13 (-352 *6 *7) (-950 *6))) + (-4 *9 (-258)) (-4 *10 (-904 *9)) (-4 *11 (-1154 *10)) + (-5 *2 (-355 *9 *10 *11 *12)) (-5 *1 (-356 *5 *6 *7 *8 *9 *10 *11 *12)) + (-4 *12 (-13 (-352 *10 *11) (-950 *10))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-146)) (-4 *6 (-146)) (-4 *2 (-359 *6)) - (-5 *1 (-357 *4 *5 *2 *6)) (-4 *4 (-359 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-146)) (-4 *6 (-146)) (-4 *2 (-360 *6)) + (-5 *1 (-358 *4 *5 *2 *6)) (-4 *4 (-360 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-960)) (-4 *6 (-960)) (-4 *2 (-362 *6)) - (-5 *1 (-363 *5 *4 *6 *2)) (-4 *4 (-362 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-4 *2 (-363 *6)) + (-5 *1 (-364 *5 *4 *6 *2)) (-4 *4 (-363 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *2 (-367 *6)) - (-5 *1 (-368 *5 *4 *6 *2)) (-4 *4 (-367 *5)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-427 *3)) (-4 *3 (-1127)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *2 (-368 *6)) + (-5 *1 (-369 *5 *4 *6 *2)) (-4 *4 (-368 *5)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-428 *3)) (-4 *3 (-1128)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-448 *3 *4)) (-4 *3 (-72)) (-4 *4 (-758)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-449 *3 *4)) (-4 *3 (-72)) (-4 *4 (-759)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-518 *5)) (-4 *5 (-312)) (-4 *6 (-312)) - (-5 *2 (-518 *6)) (-5 *1 (-519 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-519 *5)) (-4 *5 (-312)) (-4 *6 (-312)) + (-5 *2 (-519 *6)) (-5 *1 (-520 *5 *6)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) - (-5 *4 (-3 (-2 (|:| -2135 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-312)) - (-4 *6 (-312)) (-5 *2 (-2 (|:| -2135 *6) (|:| |coeff| *6))) - (-5 *1 (-519 *5 *6)))) + (-5 *4 (-3 (-2 (|:| -2136 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-312)) + (-4 *6 (-312)) (-5 *2 (-2 (|:| -2136 *6) (|:| |coeff| *6))) + (-5 *1 (-520 *5 *6)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-312)) - (-4 *2 (-312)) (-5 *1 (-519 *5 *2)))) + (-4 *2 (-312)) (-5 *1 (-520 *5 *2)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) - (|:| |limitedlogs| (-582 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) + (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-312)) (-4 *6 (-312)) (-5 *2 (-2 (|:| |mainpart| *6) - (|:| |limitedlogs| (-582 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) - (-5 *1 (-519 *5 *6)))) + (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) + (-5 *1 (-520 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-535 *5)) (-4 *5 (-1127)) (-4 *6 (-1127)) - (-5 *2 (-535 *6)) (-5 *1 (-532 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-536 *5)) (-4 *5 (-1128)) (-4 *6 (-1128)) + (-5 *2 (-536 *6)) (-5 *1 (-533 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-535 *6)) (-5 *5 (-535 *7)) - (-4 *6 (-1127)) (-4 *7 (-1127)) (-4 *8 (-1127)) (-5 *2 (-535 *8)) - (-5 *1 (-533 *6 *7 *8)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-536 *6)) (-5 *5 (-536 *7)) + (-4 *6 (-1128)) (-4 *7 (-1128)) (-4 *8 (-1128)) (-5 *2 (-536 *8)) + (-5 *1 (-534 *6 *7 *8)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1067 *6)) (-5 *5 (-535 *7)) - (-4 *6 (-1127)) (-4 *7 (-1127)) (-4 *8 (-1127)) (-5 *2 (-1067 *8)) - (-5 *1 (-533 *6 *7 *8)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1068 *6)) (-5 *5 (-536 *7)) + (-4 *6 (-1128)) (-4 *7 (-1128)) (-4 *8 (-1128)) (-5 *2 (-1068 *8)) + (-5 *1 (-534 *6 *7 *8)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-535 *6)) (-5 *5 (-1067 *7)) - (-4 *6 (-1127)) (-4 *7 (-1127)) (-4 *8 (-1127)) (-5 *2 (-1067 *8)) - (-5 *1 (-533 *6 *7 *8)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1127)) (-5 *1 (-535 *3)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-536 *6)) (-5 *5 (-1068 *7)) + (-4 *6 (-1128)) (-4 *7 (-1128)) (-4 *8 (-1128)) (-5 *2 (-1068 *8)) + (-5 *1 (-534 *6 *7 *8)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1128)) (-5 *1 (-536 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-582 *5)) (-4 *5 (-1127)) (-4 *6 (-1127)) - (-5 *2 (-582 *6)) (-5 *1 (-583 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-583 *5)) (-4 *5 (-1128)) (-4 *6 (-1128)) + (-5 *2 (-583 *6)) (-5 *1 (-584 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-582 *6)) (-5 *5 (-582 *7)) - (-4 *6 (-1127)) (-4 *7 (-1127)) (-4 *8 (-1127)) (-5 *2 (-582 *8)) - (-5 *1 (-585 *6 *7 *8)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-583 *6)) (-5 *5 (-583 *7)) + (-4 *6 (-1128)) (-4 *7 (-1128)) (-4 *8 (-1128)) (-5 *2 (-583 *8)) + (-5 *1 (-586 *6 *7 *8)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-592 *3)) (-4 *3 (-1127)))) + (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-593 *3)) (-4 *3 (-1128)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-960)) (-4 *8 (-960)) (-4 *6 (-322 *5)) - (-4 *7 (-322 *5)) (-4 *2 (-626 *8 *9 *10)) - (-5 *1 (-627 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-626 *5 *6 *7)) - (-4 *9 (-322 *8)) (-4 *10 (-322 *8)))) + (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-961)) (-4 *8 (-961)) (-4 *6 (-323 *5)) + (-4 *7 (-323 *5)) (-4 *2 (-627 *8 *9 *10)) + (-5 *1 (-628 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-627 *5 *6 *7)) + (-4 *9 (-323 *8)) (-4 *10 (-323 *8)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-960)) (-4 *8 (-960)) - (-4 *6 (-322 *5)) (-4 *7 (-322 *5)) (-4 *2 (-626 *8 *9 *10)) - (-5 *1 (-627 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-626 *5 *6 *7)) - (-4 *9 (-322 *8)) (-4 *10 (-322 *8)))) + (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-961)) (-4 *8 (-961)) + (-4 *6 (-323 *5)) (-4 *7 (-323 *5)) (-4 *2 (-627 *8 *9 *10)) + (-5 *1 (-628 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-627 *5 *6 *7)) + (-4 *9 (-323 *8)) (-4 *10 (-323 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-494)) (-4 *7 (-494)) (-4 *6 (-1153 *5)) - (-4 *2 (-1153 (-348 *8))) (-5 *1 (-645 *5 *6 *4 *7 *8 *2)) - (-4 *4 (-1153 (-348 *6))) (-4 *8 (-1153 *7)))) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-495)) (-4 *7 (-495)) (-4 *6 (-1154 *5)) + (-4 *2 (-1154 (-349 *8))) (-5 *1 (-646 *5 *6 *4 *7 *8 *2)) + (-4 *4 (-1154 (-349 *6))) (-4 *8 (-1154 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-960)) (-4 *9 (-960)) (-4 *5 (-755)) - (-4 *6 (-716)) (-4 *2 (-860 *9 *7 *5)) (-5 *1 (-666 *5 *6 *7 *8 *9 *4 *2)) - (-4 *7 (-716)) (-4 *4 (-860 *8 *6 *5)))) + (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-961)) (-4 *9 (-961)) (-4 *5 (-756)) + (-4 *6 (-717)) (-4 *2 (-861 *9 *7 *5)) (-5 *1 (-667 *5 *6 *7 *8 *9 *4 *2)) + (-4 *7 (-717)) (-4 *4 (-861 *8 *6 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-755)) (-4 *6 (-755)) (-4 *7 (-716)) - (-4 *9 (-960)) (-4 *2 (-860 *9 *8 *6)) (-5 *1 (-667 *5 *6 *7 *8 *9 *4 *2)) - (-4 *8 (-716)) (-4 *4 (-860 *9 *7 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-756)) (-4 *6 (-756)) (-4 *7 (-717)) + (-4 *9 (-961)) (-4 *2 (-861 *9 *8 *6)) (-5 *1 (-668 *5 *6 *7 *8 *9 *4 *2)) + (-4 *8 (-717)) (-4 *4 (-861 *9 *7 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-673 *5 *7)) (-4 *5 (-960)) (-4 *6 (-960)) - (-4 *7 (-662)) (-5 *2 (-673 *6 *7)) (-5 *1 (-672 *5 *6 *7)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-674 *5 *7)) (-4 *5 (-961)) (-4 *6 (-961)) + (-4 *7 (-663)) (-5 *2 (-674 *6 *7)) (-5 *1 (-673 *5 *6 *7)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-960)) (-5 *1 (-673 *3 *4)) (-4 *4 (-662)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-674 *3 *4)) (-4 *4 (-663)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-703 *5)) (-4 *5 (-960)) (-4 *6 (-960)) - (-5 *2 (-703 *6)) (-5 *1 (-704 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-704 *5)) (-4 *5 (-961)) (-4 *6 (-961)) + (-5 *2 (-704 *6)) (-5 *1 (-705 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-146)) (-4 *6 (-146)) (-4 *2 (-719 *6)) - (-5 *1 (-722 *4 *5 *2 *6)) (-4 *4 (-719 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-146)) (-4 *6 (-146)) (-4 *2 (-720 *6)) + (-5 *1 (-723 *4 *5 *2 *6)) (-4 *4 (-720 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-742 *5)) (-4 *5 (-1012)) (-4 *6 (-1012)) - (-5 *2 (-742 *6)) (-5 *1 (-743 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-743 *5)) (-4 *5 (-1013)) (-4 *6 (-1013)) + (-5 *2 (-743 *6)) (-5 *1 (-744 *5 *6)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-742 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-742 *5)) (-4 *5 (-1012)) - (-4 *6 (-1012)) (-5 *1 (-743 *5 *6)))) + (-12 (-5 *2 (-743 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-743 *5)) (-4 *5 (-1013)) + (-4 *6 (-1013)) (-5 *1 (-744 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-749 *5)) (-4 *5 (-1012)) (-4 *6 (-1012)) - (-5 *2 (-749 *6)) (-5 *1 (-750 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-750 *5)) (-4 *5 (-1013)) (-4 *6 (-1013)) + (-5 *2 (-750 *6)) (-5 *1 (-751 *5 *6)))) ((*1 *2 *3 *4 *2 *2) - (-12 (-5 *2 (-749 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-749 *5)) (-4 *5 (-1012)) - (-4 *6 (-1012)) (-5 *1 (-750 *5 *6)))) + (-12 (-5 *2 (-750 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-750 *5)) (-4 *5 (-1013)) + (-4 *6 (-1013)) (-5 *1 (-751 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-786 *5)) (-4 *5 (-1127)) (-4 *6 (-1127)) - (-5 *2 (-786 *6)) (-5 *1 (-785 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-787 *5)) (-4 *5 (-1128)) (-4 *6 (-1128)) + (-5 *2 (-787 *6)) (-5 *1 (-786 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-788 *5)) (-4 *5 (-1127)) (-4 *6 (-1127)) - (-5 *2 (-788 *6)) (-5 *1 (-787 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-789 *5)) (-4 *5 (-1128)) (-4 *6 (-1128)) + (-5 *2 (-789 *6)) (-5 *1 (-788 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-791 *5)) (-4 *5 (-1127)) (-4 *6 (-1127)) - (-5 *2 (-791 *6)) (-5 *1 (-790 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-792 *5)) (-4 *5 (-1128)) (-4 *6 (-1128)) + (-5 *2 (-792 *6)) (-5 *1 (-791 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-797 *5 *6)) (-4 *5 (-1012)) (-4 *6 (-1012)) - (-4 *7 (-1012)) (-5 *2 (-797 *5 *7)) (-5 *1 (-798 *5 *6 *7)))) + (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-798 *5 *6)) (-4 *5 (-1013)) (-4 *6 (-1013)) + (-4 *7 (-1013)) (-5 *2 (-798 *5 *7)) (-5 *1 (-799 *5 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-799 *5)) (-4 *5 (-1012)) (-4 *6 (-1012)) - (-5 *2 (-799 *6)) (-5 *1 (-801 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-800 *5)) (-4 *5 (-1013)) (-4 *6 (-1013)) + (-5 *2 (-800 *6)) (-5 *1 (-802 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-856 *5)) (-4 *5 (-960)) (-4 *6 (-960)) - (-5 *2 (-856 *6)) (-5 *1 (-857 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-857 *5)) (-4 *5 (-961)) (-4 *6 (-961)) + (-5 *2 (-857 *6)) (-5 *1 (-858 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-755)) (-4 *8 (-960)) - (-4 *6 (-716)) + (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-756)) (-4 *8 (-961)) + (-4 *6 (-717)) (-4 *2 - (-13 (-1012) - (-10 -8 (-15 -3837 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-693)))))) - (-5 *1 (-862 *6 *7 *8 *5 *2)) (-4 *5 (-860 *8 *6 *7)))) + (-13 (-1013) + (-10 -8 (-15 -3838 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-694)))))) + (-5 *1 (-863 *6 *7 *8 *5 *2)) (-4 *5 (-861 *8 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-868 *5)) (-4 *5 (-1127)) (-4 *6 (-1127)) - (-5 *2 (-868 *6)) (-5 *1 (-869 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-869 *5)) (-4 *5 (-1128)) (-4 *6 (-1128)) + (-5 *2 (-869 *6)) (-5 *1 (-870 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-876 *5)) (-4 *5 (-1012)) (-4 *6 (-1012)) - (-5 *2 (-876 *6)) (-5 *1 (-878 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-877 *5)) (-4 *5 (-1013)) (-4 *6 (-1013)) + (-5 *2 (-877 *6)) (-5 *1 (-879 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-853 *5)) (-4 *5 (-960)) (-4 *6 (-960)) - (-5 *2 (-853 *6)) (-5 *1 (-893 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-854 *5)) (-4 *5 (-961)) (-4 *6 (-961)) + (-5 *2 (-854 *6)) (-5 *1 (-894 *5 *6)))) ((*1 *2 *3 *2) - (-12 (-5 *3 (-1 *2 (-856 *4))) (-4 *4 (-960)) (-4 *2 (-860 (-856 *4) *5 *6)) - (-4 *5 (-716)) + (-12 (-5 *3 (-1 *2 (-857 *4))) (-4 *4 (-961)) (-4 *2 (-861 (-857 *4) *5 *6)) + (-4 *5 (-717)) (-4 *6 - (-13 (-755) - (-10 -8 (-15 -3970 ((-1088) $)) (-15 -3829 ((-3 $ "failed") (-1088)))))) - (-5 *1 (-896 *4 *5 *6 *2)))) + (-13 (-756) + (-10 -8 (-15 -3971 ((-1089) $)) (-15 -3830 ((-3 $ "failed") (-1089)))))) + (-5 *1 (-897 *4 *5 *6 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-494)) (-4 *6 (-494)) (-4 *2 (-903 *6)) - (-5 *1 (-904 *5 *6 *4 *2)) (-4 *4 (-903 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-495)) (-4 *6 (-495)) (-4 *2 (-904 *6)) + (-5 *1 (-905 *5 *6 *4 *2)) (-4 *4 (-904 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-146)) (-4 *6 (-146)) (-4 *2 (-910 *6)) - (-5 *1 (-911 *4 *5 *2 *6)) (-4 *4 (-910 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-146)) (-4 *6 (-146)) (-4 *2 (-911 *6)) + (-5 *1 (-912 *4 *5 *2 *6)) (-4 *4 (-911 *5)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-960)) + (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-960)) + (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-960)) (-4 *10 (-960)) (-14 *5 (-693)) - (-14 *6 (-693)) (-4 *8 (-196 *6 *7)) (-4 *9 (-196 *5 *7)) - (-4 *2 (-964 *5 *6 *10 *11 *12)) - (-5 *1 (-966 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) - (-4 *4 (-964 *5 *6 *7 *8 *9)) (-4 *11 (-196 *6 *10)) + (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-961)) (-4 *10 (-961)) (-14 *5 (-694)) + (-14 *6 (-694)) (-4 *8 (-196 *6 *7)) (-4 *9 (-196 *5 *7)) + (-4 *2 (-965 *5 *6 *10 *11 *12)) + (-5 *1 (-967 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) + (-4 *4 (-965 *5 *6 *7 *8 *9)) (-4 *11 (-196 *6 *10)) (-4 *12 (-196 *5 *10)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1000 *5)) (-4 *5 (-1127)) (-4 *6 (-1127)) - (-5 *2 (-1000 *6)) (-5 *1 (-1001 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1001 *5)) (-4 *5 (-1128)) (-4 *6 (-1128)) + (-5 *2 (-1001 *6)) (-5 *1 (-1002 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1000 *5)) (-4 *5 (-754)) (-4 *5 (-1127)) - (-4 *6 (-1127)) (-5 *2 (-582 *6)) (-5 *1 (-1001 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1001 *5)) (-4 *5 (-755)) (-4 *5 (-1128)) + (-4 *6 (-1128)) (-5 *2 (-583 *6)) (-5 *1 (-1002 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1003 *5)) (-4 *5 (-1127)) (-4 *6 (-1127)) - (-5 *2 (-1003 *6)) (-5 *1 (-1004 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1004 *5)) (-4 *5 (-1128)) (-4 *6 (-1128)) + (-5 *2 (-1004 *6)) (-5 *1 (-1005 *5 *6)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1006 *4 *2)) (-4 *4 (-754)) - (-4 *2 (-1062 *4)))) + (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1007 *4 *2)) (-4 *4 (-755)) + (-4 *2 (-1063 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1067 *5)) (-4 *5 (-1127)) (-4 *6 (-1127)) - (-5 *2 (-1067 *6)) (-5 *1 (-1069 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1068 *5)) (-4 *5 (-1128)) (-4 *6 (-1128)) + (-5 *2 (-1068 *6)) (-5 *1 (-1070 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1067 *6)) (-5 *5 (-1067 *7)) - (-4 *6 (-1127)) (-4 *7 (-1127)) (-4 *8 (-1127)) (-5 *2 (-1067 *8)) - (-5 *1 (-1070 *6 *7 *8)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1068 *6)) (-5 *5 (-1068 *7)) + (-4 *6 (-1128)) (-4 *7 (-1128)) (-4 *8 (-1128)) (-5 *2 (-1068 *8)) + (-5 *1 (-1071 *6 *7 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1083 *5)) (-4 *5 (-960)) (-4 *6 (-960)) - (-5 *2 (-1083 *6)) (-5 *1 (-1084 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1084 *5)) (-4 *5 (-961)) (-4 *6 (-961)) + (-5 *2 (-1084 *6)) (-5 *1 (-1085 *5 *6)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1105 *3 *4)) (-4 *3 (-1012)) - (-4 *4 (-1012)))) + (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1106 *3 *4)) (-4 *3 (-1013)) + (-4 *4 (-1013)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1137 *5 *7 *9)) (-4 *5 (-960)) - (-4 *6 (-960)) (-14 *7 (-1088)) (-14 *9 *5) (-14 *10 *6) - (-5 *2 (-1137 *6 *8 *10)) (-5 *1 (-1138 *5 *6 *7 *8 *9 *10)) - (-14 *8 (-1088)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1138 *5 *7 *9)) (-4 *5 (-961)) + (-4 *6 (-961)) (-14 *7 (-1089)) (-14 *9 *5) (-14 *10 *6) + (-5 *2 (-1138 *6 *8 *10)) (-5 *1 (-1139 *5 *6 *7 *8 *9 *10)) + (-14 *8 (-1089)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1144 *5)) (-4 *5 (-1127)) (-4 *6 (-1127)) - (-5 *2 (-1144 *6)) (-5 *1 (-1145 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1145 *5)) (-4 *5 (-1128)) (-4 *6 (-1128)) + (-5 *2 (-1145 *6)) (-5 *1 (-1146 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1144 *5)) (-4 *5 (-754)) (-4 *5 (-1127)) - (-4 *6 (-1127)) (-5 *2 (-1067 *6)) (-5 *1 (-1145 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1145 *5)) (-4 *5 (-755)) (-4 *5 (-1128)) + (-4 *6 (-1128)) (-5 *2 (-1068 *6)) (-5 *1 (-1146 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1146 *5 *6)) (-14 *5 (-1088)) (-4 *6 (-960)) - (-4 *8 (-960)) (-5 *2 (-1146 *7 *8)) (-5 *1 (-1147 *5 *6 *7 *8)) - (-14 *7 (-1088)))) + (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1147 *5 *6)) (-14 *5 (-1089)) (-4 *6 (-961)) + (-4 *8 (-961)) (-5 *2 (-1147 *7 *8)) (-5 *1 (-1148 *5 *6 *7 *8)) + (-14 *7 (-1089)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-960)) (-4 *6 (-960)) (-4 *2 (-1153 *6)) - (-5 *1 (-1154 *5 *4 *6 *2)) (-4 *4 (-1153 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-4 *2 (-1154 *6)) + (-5 *1 (-1155 *5 *4 *6 *2)) (-4 *4 (-1154 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1158 *5 *7 *9)) (-4 *5 (-960)) - (-4 *6 (-960)) (-14 *7 (-1088)) (-14 *9 *5) (-14 *10 *6) - (-5 *2 (-1158 *6 *8 *10)) (-5 *1 (-1159 *5 *6 *7 *8 *9 *10)) - (-14 *8 (-1088)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1159 *5 *7 *9)) (-4 *5 (-961)) + (-4 *6 (-961)) (-14 *7 (-1089)) (-14 *9 *5) (-14 *10 *6) + (-5 *2 (-1159 *6 *8 *10)) (-5 *1 (-1160 *5 *6 *7 *8 *9 *10)) + (-14 *8 (-1089)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-960)) (-4 *6 (-960)) (-4 *2 (-1170 *6)) - (-5 *1 (-1168 *5 *6 *4 *2)) (-4 *4 (-1170 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-4 *2 (-1171 *6)) + (-5 *1 (-1169 *5 *6 *4 *2)) (-4 *4 (-1171 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1177 *5)) (-4 *5 (-1127)) (-4 *6 (-1127)) - (-5 *2 (-1177 *6)) (-5 *1 (-1178 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1178 *5)) (-4 *5 (-1128)) (-4 *6 (-1128)) + (-5 *2 (-1178 *6)) (-5 *1 (-1179 *5 *6)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1177 *5)) - (-4 *5 (-1127)) (-4 *6 (-1127)) (-5 *2 (-1177 *6)) (-5 *1 (-1178 *5 *6)))) + (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1178 *5)) + (-4 *5 (-1128)) (-4 *6 (-1128)) (-5 *2 (-1178 *6)) (-5 *1 (-1179 *5 *6)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1197 *3 *4)) (-4 *3 (-755)) (-4 *4 (-960)))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1198 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-960)) (-5 *1 (-1201 *3 *4)) (-4 *4 (-753))))) -(((*1 *2 *1) (-12 (|has| *1 (-6 -3993)) (-4 *1 (-34)) (-5 *2 (-693)))) - ((*1 *2 *1) (-12 (-5 *2 (-693)) (-5 *1 (-209)))) - ((*1 *2 *1) (-12 (-5 *2 (-693)) (-5 *1 (-883)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-1202 *3 *4)) (-4 *4 (-754))))) +(((*1 *2 *1) (-12 (|has| *1 (-6 -3994)) (-4 *1 (-34)) (-5 *2 (-694)))) + ((*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-209)))) + ((*1 *2 *1) (-12 (-4 *1 (-317 *3)) (-4 *3 (-1128)) (-5 *2 (-694)))) + ((*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-884)))) ((*1 *2 *1) - (-12 (-4 *1 (-1015 *3 *4 *5 *6 *7)) (-4 *3 (-1012)) (-4 *4 (-1012)) - (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *7 (-1012)) (-5 *2 (-483)))) + (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013)) + (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-484)))) ((*1 *2 *1) - (-12 (-5 *2 (-693)) (-5 *1 (-1201 *3 *4)) (-4 *3 (-960)) (-4 *4 (-753))))) + (-12 (-5 *2 (-694)) (-5 *1 (-1202 *3 *4)) (-4 *3 (-961)) (-4 *4 (-754))))) (((*1 *2 *1) - (-12 (-4 *1 (-1200 *3 *4)) (-4 *3 (-755)) (-4 *4 (-960)) (-5 *2 (-738 *3)))) - ((*1 *2 *1) (-12 (-4 *2 (-753)) (-5 *1 (-1201 *3 *2)) (-4 *3 (-960))))) + (-12 (-4 *1 (-1201 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)) (-5 *2 (-739 *3)))) + ((*1 *2 *1) (-12 (-4 *2 (-754)) (-5 *1 (-1202 *3 *2)) (-4 *3 (-961))))) (((*1 *2 *1) - (-12 (-4 *1 (-1197 *3 *4)) (-4 *3 (-755)) (-4 *4 (-960)) (-5 *2 (-738 *3)))) - ((*1 *2 *1) (-12 (-4 *2 (-753)) (-5 *1 (-1201 *3 *2)) (-4 *3 (-960))))) + (-12 (-4 *1 (-1198 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)) (-5 *2 (-739 *3)))) + ((*1 *2 *1) (-12 (-4 *2 (-754)) (-5 *1 (-1202 *3 *2)) (-4 *3 (-961))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-1202 *4 *2)) (-4 *1 (-324 *4 *2)) (-4 *4 (-755)) + (-12 (-5 *3 (-1203 *4 *2)) (-4 *1 (-325 *4 *2)) (-4 *4 (-756)) (-4 *2 (-146)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-1197 *3 *2)) (-4 *3 (-755)) (-4 *2 (-960)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-1198 *3 *2)) (-4 *3 (-756)) (-4 *2 (-961)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-738 *4)) (-4 *1 (-1197 *4 *2)) (-4 *4 (-755)) (-4 *2 (-960)))) - ((*1 *2 *1 *3) (-12 (-4 *2 (-960)) (-5 *1 (-1201 *2 *3)) (-4 *3 (-753))))) + (-12 (-5 *3 (-739 *4)) (-4 *1 (-1198 *4 *2)) (-4 *4 (-756)) (-4 *2 (-961)))) + ((*1 *2 *1 *3) (-12 (-4 *2 (-961)) (-5 *1 (-1202 *2 *3)) (-4 *3 (-754))))) (((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-234)))) - ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-799 *3)) (-4 *3 (-1012)))) + ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-800 *3)) (-4 *3 (-1013)))) ((*1 *2 *1) - (-12 (-4 *1 (-1197 *3 *4)) (-4 *3 (-755)) (-4 *4 (-960)) (-5 *2 (-85)))) + (-12 (-4 *1 (-1198 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)) (-5 *2 (-85)))) ((*1 *2 *1) - (-12 (-5 *2 (-85)) (-5 *1 (-1201 *3 *4)) (-4 *3 (-960)) (-4 *4 (-753))))) + (-12 (-5 *2 (-85)) (-5 *1 (-1202 *3 *4)) (-4 *3 (-961)) (-4 *4 (-754))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5)) (-4 *5 (-1012)) (-5 *2 (-1 *5 *4)) (-5 *1 (-623 *4 *5)) - (-4 *4 (-1012)))) - ((*1 *2 *3) (-12 (-5 *3 (-1088)) (-5 *2 (-265 (-483))) (-5 *1 (-839)))) - ((*1 *2 *2) (-12 (-4 *3 (-1012)) (-5 *1 (-840 *3 *2)) (-4 *2 (-362 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-1197 *3 *2)) (-4 *3 (-755)) (-4 *2 (-960)))) - ((*1 *2 *1) (-12 (-4 *2 (-960)) (-5 *1 (-1201 *2 *3)) (-4 *3 (-753))))) + (-12 (-5 *3 (-1 *5)) (-4 *5 (-1013)) (-5 *2 (-1 *5 *4)) (-5 *1 (-624 *4 *5)) + (-4 *4 (-1013)))) + ((*1 *2 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-265 (-484))) (-5 *1 (-840)))) + ((*1 *2 *2) (-12 (-4 *3 (-1013)) (-5 *1 (-841 *3 *2)) (-4 *2 (-363 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-1198 *3 *2)) (-4 *3 (-756)) (-4 *2 (-961)))) + ((*1 *2 *1) (-12 (-4 *2 (-961)) (-5 *1 (-1202 *2 *3)) (-4 *3 (-754))))) (((*1 *2 *1) - (-12 (-4 *1 (-1197 *3 *4)) (-4 *3 (-755)) (-4 *4 (-960)) (-5 *2 (-85)))) + (-12 (-4 *1 (-1198 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)) (-5 *2 (-85)))) ((*1 *2 *1) - (-12 (-5 *2 (-85)) (-5 *1 (-1201 *3 *4)) (-4 *3 (-960)) (-4 *4 (-753))))) -(((*1 *1 *1) (-12 (-4 *1 (-1197 *2 *3)) (-4 *2 (-755)) (-4 *3 (-960)))) - ((*1 *1 *1) (-12 (-5 *1 (-1201 *2 *3)) (-4 *2 (-960)) (-4 *3 (-753))))) + (-12 (-5 *2 (-85)) (-5 *1 (-1202 *3 *4)) (-4 *3 (-961)) (-4 *4 (-754))))) +(((*1 *1 *1) (-12 (-4 *1 (-1198 *2 *3)) (-4 *2 (-756)) (-4 *3 (-961)))) + ((*1 *1 *1) (-12 (-5 *1 (-1202 *2 *3)) (-4 *2 (-961)) (-4 *3 (-754))))) (((*1 *1 *1 *2) - (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-960)) (-4 *3 (-715)) (-4 *2 (-312)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-179)))) + (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-961)) (-4 *3 (-716)) (-4 *2 (-312)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-179)))) ((*1 *1 *1 *1) - (OR (-12 (-5 *1 (-249 *2)) (-4 *2 (-312)) (-4 *2 (-1127))) - (-12 (-5 *1 (-249 *2)) (-4 *2 (-411)) (-4 *2 (-1127))))) + (OR (-12 (-5 *1 (-249 *2)) (-4 *2 (-312)) (-4 *2 (-1128))) + (-12 (-5 *1 (-249 *2)) (-4 *2 (-412)) (-4 *2 (-1128))))) ((*1 *1 *1 *1) (-4 *1 (-312))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-328)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-329)))) ((*1 *1 *2 *2) - (-12 (-5 *2 (-1037 *3 (-549 *1))) (-4 *3 (-494)) (-4 *3 (-1012)) - (-4 *1 (-362 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-411))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-299)) (-5 *1 (-465 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-472))) + (-12 (-5 *2 (-1038 *3 (-550 *1))) (-4 *3 (-495)) (-4 *3 (-1013)) + (-4 *1 (-363 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-412))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-299)) (-5 *1 (-466 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-473))) ((*1 *1 *2 *3) - (-12 (-4 *4 (-146)) (-5 *1 (-557 *2 *4 *3)) (-4 *2 (-38 *4)) - (-4 *3 (|SubsetCategory| (-662) *4)))) + (-12 (-4 *4 (-146)) (-5 *1 (-558 *2 *4 *3)) (-4 *2 (-38 *4)) + (-4 *3 (|SubsetCategory| (-663) *4)))) ((*1 *1 *1 *2) - (-12 (-4 *4 (-146)) (-5 *1 (-557 *3 *4 *2)) (-4 *3 (-38 *4)) - (-4 *2 (|SubsetCategory| (-662) *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-573 *2)) (-4 *2 (-146)) (-4 *2 (-312)))) + (-12 (-4 *4 (-146)) (-5 *1 (-558 *3 *4 *2)) (-4 *3 (-38 *4)) + (-4 *2 (|SubsetCategory| (-663) *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-574 *2)) (-4 *2 (-146)) (-4 *2 (-312)))) ((*1 *1 *2 *3) - (-12 (-4 *4 (-146)) (-5 *1 (-593 *2 *4 *3)) (-4 *2 (-653 *4)) - (-4 *3 (|SubsetCategory| (-662) *4)))) + (-12 (-4 *4 (-146)) (-5 *1 (-594 *2 *4 *3)) (-4 *2 (-654 *4)) + (-4 *3 (|SubsetCategory| (-663) *4)))) ((*1 *1 *1 *2) - (-12 (-4 *4 (-146)) (-5 *1 (-593 *3 *4 *2)) (-4 *3 (-653 *4)) - (-4 *2 (|SubsetCategory| (-662) *4)))) + (-12 (-4 *4 (-146)) (-5 *1 (-594 *3 *4 *2)) (-4 *3 (-654 *4)) + (-4 *2 (|SubsetCategory| (-663) *4)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-626 *2 *3 *4)) (-4 *2 (-960)) (-4 *3 (-322 *2)) - (-4 *4 (-322 *2)) (-4 *2 (-312)))) - ((*1 *1 *1 *1) (-5 *1 (-771))) + (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-323 *2)) + (-4 *4 (-323 *2)) (-4 *2 (-312)))) + ((*1 *1 *1 *1) (-5 *1 (-772))) ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-774 *2 *3 *4 *5)) (-4 *2 (-312)) (-4 *2 (-960)) - (-14 *3 (-582 (-1088))) (-14 *4 (-582 (-693))) (-14 *5 (-693)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-799 *2)) (-4 *2 (-1012)))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-903 *2)) (-4 *2 (-494)))) + (|partial| -12 (-5 *1 (-775 *2 *3 *4 *5)) (-4 *2 (-312)) (-4 *2 (-961)) + (-14 *3 (-583 (-1089))) (-14 *4 (-583 (-694))) (-14 *5 (-694)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-800 *2)) (-4 *2 (-1013)))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-904 *2)) (-4 *2 (-495)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-964 *3 *4 *2 *5 *6)) (-4 *2 (-960)) (-4 *5 (-196 *4 *2)) + (-12 (-4 *1 (-965 *3 *4 *2 *5 *6)) (-4 *2 (-961)) (-4 *5 (-196 *4 *2)) (-4 *6 (-196 *3 *2)) (-4 *2 (-312)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-960)) (-5 *1 (-1073 *3)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1185 *2)) (-4 *2 (-312)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-961)) (-5 *1 (-1074 *3)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1186 *2)) (-4 *2 (-312)))) ((*1 *1 *1 *1) - (|partial| -12 (-4 *2 (-312)) (-4 *2 (-960)) (-4 *3 (-755)) (-4 *4 (-716)) - (-14 *6 (-582 *3)) (-5 *1 (-1190 *2 *3 *4 *5 *6 *7 *8)) - (-4 *5 (-860 *2 *4 *3)) (-14 *7 (-582 (-693))) (-14 *8 (-693)))) + (|partial| -12 (-4 *2 (-312)) (-4 *2 (-961)) (-4 *3 (-756)) (-4 *4 (-717)) + (-14 *6 (-583 *3)) (-5 *1 (-1191 *2 *3 *4 *5 *6 *7 *8)) + (-4 *5 (-861 *2 *4 *3)) (-14 *7 (-583 (-694))) (-14 *8 (-694)))) ((*1 *1 *1 *2) - (-12 (-5 *1 (-1201 *2 *3)) (-4 *2 (-312)) (-4 *2 (-960)) (-4 *3 (-753))))) -(((*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-960)) (-4 *2 (-715)))) + (-12 (-5 *1 (-1202 *2 *3)) (-4 *2 (-312)) (-4 *2 (-961)) (-4 *3 (-754))))) +(((*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-961)) (-4 *2 (-716)))) ((*1 *2 *1) - (-12 (-5 *2 (-693)) (-5 *1 (-50 *3 *4)) (-4 *3 (-960)) - (-14 *4 (-582 (-1088))))) + (-12 (-5 *2 (-694)) (-5 *1 (-50 *3 *4)) (-4 *3 (-961)) + (-14 *4 (-583 (-1089))))) ((*1 *2 *1) - (-12 (-5 *2 (-483)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-960) (-755))) - (-14 *4 (-582 (-1088))))) + (-12 (-5 *2 (-484)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-961) (-756))) + (-14 *4 (-583 (-1089))))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-213 *4 *3 *5 *6)) (-4 *4 (-960)) (-4 *3 (-755)) - (-4 *5 (-228 *3)) (-4 *6 (-716)) (-5 *2 (-693)))) - ((*1 *2 *1) (-12 (-5 *2 (-693)) (-5 *1 (-229)))) + (-12 (-4 *1 (-213 *4 *3 *5 *6)) (-4 *4 (-961)) (-4 *3 (-756)) + (-4 *5 (-228 *3)) (-4 *6 (-717)) (-5 *2 (-694)))) + ((*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-229)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1083 *8)) (-5 *4 (-582 *6)) (-4 *6 (-755)) - (-4 *8 (-860 *7 *5 *6)) (-4 *5 (-716)) (-4 *7 (-960)) (-5 *2 (-582 (-693))) + (-12 (-5 *3 (-1084 *8)) (-5 *4 (-583 *6)) (-4 *6 (-756)) + (-4 *8 (-861 *7 *5 *6)) (-4 *5 (-717)) (-4 *7 (-961)) (-5 *2 (-583 (-694))) (-5 *1 (-272 *5 *6 *7 *8)))) - ((*1 *2 *1) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-5 *2 (-829)))) + ((*1 *2 *1) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-5 *2 (-830)))) ((*1 *2 *1) - (-12 (-4 *1 (-324 *3 *4)) (-4 *3 (-755)) (-4 *4 (-146)) (-5 *2 (-693)))) - ((*1 *2 *1) (-12 (-4 *1 (-408 *3 *2)) (-4 *3 (-146)) (-4 *2 (-23)))) + (-12 (-4 *1 (-325 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146)) (-5 *2 (-694)))) + ((*1 *2 *1) (-12 (-4 *1 (-409 *3 *2)) (-4 *3 (-146)) (-4 *2 (-23)))) ((*1 *2 *1) - (-12 (-4 *3 (-494)) (-5 *2 (-483)) (-5 *1 (-561 *3 *4)) (-4 *4 (-1153 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-644 *3)) (-4 *3 (-960)) (-5 *2 (-693)))) - ((*1 *2 *1) (-12 (-4 *1 (-760 *3)) (-4 *3 (-960)) (-5 *2 (-693)))) - ((*1 *2 *1) (-12 (-5 *2 (-693)) (-5 *1 (-812 *3)) (-4 *3 (-1012)))) - ((*1 *2 *1) (-12 (-5 *2 (-693)) (-5 *1 (-815 *3)) (-4 *3 (-1012)))) + (-12 (-4 *3 (-495)) (-5 *2 (-484)) (-5 *1 (-562 *3 *4)) (-4 *4 (-1154 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-645 *3)) (-4 *3 (-961)) (-5 *2 (-694)))) + ((*1 *2 *1) (-12 (-4 *1 (-761 *3)) (-4 *3 (-961)) (-5 *2 (-694)))) + ((*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-813 *3)) (-4 *3 (-1013)))) + ((*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-816 *3)) (-4 *3 (-1013)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-582 *6)) (-4 *1 (-860 *4 *5 *6)) (-4 *4 (-960)) (-4 *5 (-716)) - (-4 *6 (-755)) (-5 *2 (-582 (-693))))) + (-12 (-5 *3 (-583 *6)) (-4 *1 (-861 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-717)) + (-4 *6 (-756)) (-5 *2 (-583 (-694))))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-860 *4 *5 *3)) (-4 *4 (-960)) (-4 *5 (-716)) (-4 *3 (-755)) - (-5 *2 (-693)))) + (-12 (-4 *1 (-861 *4 *5 *3)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *3 (-756)) + (-5 *2 (-694)))) ((*1 *2 *1) - (-12 (-4 *1 (-885 *3 *2 *4)) (-4 *3 (-960)) (-4 *4 (-755)) (-4 *2 (-715)))) + (-12 (-4 *1 (-886 *3 *2 *4)) (-4 *3 (-961)) (-4 *4 (-756)) (-4 *2 (-716)))) ((*1 *2 *1) - (-12 (-4 *1 (-1122 *3 *4 *5 *6)) (-4 *3 (-494)) (-4 *4 (-716)) (-4 *5 (-755)) - (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-693)))) + (-12 (-4 *1 (-1123 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) + (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-694)))) ((*1 *2 *1) - (-12 (-4 *1 (-1141 *3 *4)) (-4 *3 (-960)) (-4 *4 (-1170 *3)) (-5 *2 (-483)))) + (-12 (-4 *1 (-1142 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1171 *3)) (-5 *2 (-484)))) ((*1 *2 *1) - (-12 (-4 *1 (-1162 *3 *4)) (-4 *3 (-960)) (-4 *4 (-1139 *3)) - (-5 *2 (-348 (-483))))) - ((*1 *2 *1) (-12 (-4 *1 (-1196 *3)) (-4 *3 (-312)) (-5 *2 (-742 (-829))))) + (-12 (-4 *1 (-1163 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1140 *3)) + (-5 *2 (-349 (-484))))) + ((*1 *2 *1) (-12 (-4 *1 (-1197 *3)) (-4 *3 (-312)) (-5 *2 (-743 (-830))))) ((*1 *2 *1) - (-12 (-4 *1 (-1200 *3 *4)) (-4 *3 (-755)) (-4 *4 (-960)) (-5 *2 (-693))))) + (-12 (-4 *1 (-1201 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)) (-5 *2 (-694))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-693)) (-4 *1 (-324 *3 *4)) (-4 *3 (-755)) (-4 *4 (-146)))) + (-12 (-5 *2 (-694)) (-4 *1 (-325 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-693)) (-4 *1 (-1200 *3 *4)) (-4 *3 (-755)) (-4 *4 (-960))))) + (-12 (-5 *2 (-694)) (-4 *1 (-1201 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961))))) (((*1 *1 *2) - (-12 (-5 *2 (-1177 *3)) (-4 *3 (-312)) (-14 *6 (-1177 (-629 *3))) - (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-829)) (-14 *5 (-582 (-1088))))) - ((*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-52 *3)) (-4 *3 (-1127)))) + (-12 (-5 *2 (-1178 *3)) (-4 *3 (-312)) (-14 *6 (-1178 (-630 *3))) + (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-830)) (-14 *5 (-583 (-1089))))) + ((*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-52 *3)) (-4 *3 (-1128)))) ((*1 *2 *3) - (-12 (-5 *3 (-1177 (-629 *4))) (-4 *4 (-146)) - (-5 *2 (-1177 (-629 (-348 (-856 *4))))) (-5 *1 (-163 *4)))) + (-12 (-5 *3 (-1178 (-630 *4))) (-4 *4 (-146)) + (-5 *2 (-1178 (-630 (-349 (-857 *4))))) (-5 *1 (-163 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-1003 (-265 *4))) (-4 *4 (-13 (-755) (-494) (-552 (-328)))) - (-5 *2 (-1003 (-328))) (-5 *1 (-219 *4)))) - ((*1 *1 *2) (-12 (-5 *2 (-582 (-483))) (-5 *1 (-229)))) + (-12 (-5 *3 (-1004 (-265 *4))) (-4 *4 (-13 (-756) (-495) (-553 (-329)))) + (-5 *2 (-1004 (-329))) (-5 *1 (-219 *4)))) + ((*1 *1 *2) (-12 (-5 *2 (-583 (-484))) (-5 *1 (-229)))) ((*1 *2 *1) - (-12 (-4 *2 (-1153 *3)) (-5 *1 (-244 *3 *2 *4 *5 *6 *7)) (-4 *3 (-146)) + (-12 (-4 *2 (-1154 *3)) (-5 *1 (-244 *3 *2 *4 *5 *6 *7)) (-4 *3 (-146)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) ((*1 *1 *2) - (-12 (-5 *2 (-1158 *4 *5 *6)) (-4 *4 (-13 (-27) (-1113) (-362 *3))) - (-14 *5 (-1088)) (-14 *6 *4) - (-4 *3 (-13 (-949 (-483)) (-579 (-483)) (-390))) + (-12 (-5 *2 (-1159 *4 *5 *6)) (-4 *4 (-13 (-27) (-1114) (-363 *3))) + (-14 *5 (-1089)) (-14 *6 *4) + (-4 *3 (-13 (-950 (-484)) (-580 (-484)) (-391))) (-5 *1 (-264 *3 *4 *5 *6)))) ((*1 *2 *3) (-12 (-4 *4 (-299)) (-4 *2 (-280 *4)) (-5 *1 (-297 *3 *4 *2)) @@ -796,11150 +797,11161 @@ (-12 (-4 *4 (-299)) (-4 *2 (-280 *4)) (-5 *1 (-297 *2 *4 *3)) (-4 *3 (-280 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-324 *3 *4)) (-4 *3 (-755)) (-4 *4 (-146)) - (-5 *2 (-1202 *3 *4)))) + (-12 (-4 *1 (-325 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146)) + (-5 *2 (-1203 *3 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-324 *3 *4)) (-4 *3 (-755)) (-4 *4 (-146)) - (-5 *2 (-1193 *3 *4)))) - ((*1 *1 *2) (-12 (-4 *1 (-324 *2 *3)) (-4 *2 (-755)) (-4 *3 (-146)))) + (-12 (-4 *1 (-325 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146)) + (-5 *2 (-1194 *3 *4)))) + ((*1 *1 *2) (-12 (-4 *1 (-325 *2 *3)) (-4 *2 (-756)) (-4 *3 (-146)))) ((*1 *1 *2) - (-12 (-5 *2 (-348 (-856 (-348 *3)))) (-4 *3 (-494)) (-4 *3 (-1012)) - (-4 *1 (-362 *3)))) + (-12 (-5 *2 (-349 (-857 (-349 *3)))) (-4 *3 (-495)) (-4 *3 (-1013)) + (-4 *1 (-363 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-856 (-348 *3))) (-4 *3 (-494)) (-4 *3 (-1012)) - (-4 *1 (-362 *3)))) + (-12 (-5 *2 (-857 (-349 *3))) (-4 *3 (-495)) (-4 *3 (-1013)) + (-4 *1 (-363 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-348 *3)) (-4 *3 (-494)) (-4 *3 (-1012)) (-4 *1 (-362 *3)))) + (-12 (-5 *2 (-349 *3)) (-4 *3 (-495)) (-4 *3 (-1013)) (-4 *1 (-363 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1037 *3 (-549 *1))) (-4 *3 (-960)) (-4 *3 (-1012)) - (-4 *1 (-362 *3)))) + (-12 (-5 *2 (-1038 *3 (-550 *1))) (-4 *3 (-961)) (-4 *3 (-1013)) + (-4 *1 (-363 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-281 *4)) (-4 *4 (-13 (-755) (-21))) (-5 *1 (-370 *3 *4)) - (-4 *3 (-13 (-146) (-38 (-348 (-483))))))) + (-12 (-5 *2 (-281 *4)) (-4 *4 (-13 (-756) (-21))) (-5 *1 (-371 *3 *4)) + (-4 *3 (-13 (-146) (-38 (-349 (-484))))))) ((*1 *1 *2) - (-12 (-5 *1 (-370 *2 *3)) (-4 *2 (-13 (-146) (-38 (-348 (-483))))) - (-4 *3 (-13 (-755) (-21))))) - ((*1 *2 *1) (-12 (-5 *2 (-1014)) (-5 *1 (-375)))) - ((*1 *2 *1) (-12 (-5 *2 (-1088)) (-5 *1 (-375)))) - ((*1 *1 *2) (-12 (-5 *2 (-1088)) (-5 *1 (-375)))) - ((*1 *1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-375)))) - ((*1 *1 *2) (-12 (-5 *2 (-375)) (-5 *1 (-377)))) + (-12 (-5 *1 (-371 *2 *3)) (-4 *2 (-13 (-146) (-38 (-349 (-484))))) + (-4 *3 (-13 (-756) (-21))))) + ((*1 *2 *1) (-12 (-5 *2 (-1015)) (-5 *1 (-376)))) + ((*1 *2 *1) (-12 (-5 *2 (-1089)) (-5 *1 (-376)))) + ((*1 *1 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-376)))) + ((*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-376)))) + ((*1 *1 *2) (-12 (-5 *2 (-376)) (-5 *1 (-378)))) ((*1 *1 *2) - (-12 (-5 *2 (-1177 (-348 (-856 *3)))) (-4 *3 (-146)) - (-14 *6 (-1177 (-629 *3))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *4 (-829)) - (-14 *5 (-582 (-1088))))) - ((*1 *1 *2) (-12 (-5 *2 (-582 (-582 (-853 (-179))))) (-5 *1 (-406)))) - ((*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-406)))) + (-12 (-5 *2 (-1178 (-349 (-857 *3)))) (-4 *3 (-146)) + (-14 *6 (-1178 (-630 *3))) (-5 *1 (-392 *3 *4 *5 *6)) (-14 *4 (-830)) + (-14 *5 (-583 (-1089))))) + ((*1 *1 *2) (-12 (-5 *2 (-583 (-583 (-854 (-179))))) (-5 *1 (-407)))) + ((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-407)))) ((*1 *1 *2) - (-12 (-5 *2 (-1158 *3 *4 *5)) (-4 *3 (-960)) (-14 *4 (-1088)) (-14 *5 *3) - (-5 *1 (-412 *3 *4 *5)))) + (-12 (-5 *2 (-1159 *3 *4 *5)) (-4 *3 (-961)) (-14 *4 (-1089)) (-14 *5 *3) + (-5 *1 (-413 *3 *4 *5)))) ((*1 *1 *2) - (-12 (-5 *2 (-1174 *4)) (-14 *4 (-1088)) (-5 *1 (-412 *3 *4 *5)) - (-4 *3 (-960)) (-14 *5 *3))) + (-12 (-5 *2 (-1175 *4)) (-14 *4 (-1089)) (-5 *1 (-413 *3 *4 *5)) + (-4 *3 (-961)) (-14 *5 *3))) ((*1 *1 *2) - (-12 (-5 *2 (-582 *6)) (-4 *6 (-860 *3 *4 *5)) (-4 *3 (-312)) (-4 *4 (-716)) - (-4 *5 (-755)) (-5 *1 (-442 *3 *4 *5 *6)))) - ((*1 *1 *2) (-12 (-5 *2 (-582 (-1128))) (-5 *1 (-461)))) - ((*1 *1 *2) (-12 (-5 *2 (-582 (-1128))) (-5 *1 (-538)))) - ((*1 *1 *2) (-12 (-4 *3 (-146)) (-5 *1 (-539 *3 *2)) (-4 *2 (-682 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-551 *2)) (-4 *2 (-1127)))) - ((*1 *1 *2) (-12 (-4 *1 (-554 *2)) (-4 *2 (-1127)))) - ((*1 *1 *2) (-12 (-4 *1 (-559 *2)) (-4 *2 (-960)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1198 *3 *4)) (-5 *1 (-565 *3 *4 *5)) (-4 *3 (-755)) - (-4 *4 (-13 (-146) (-653 (-348 (-483))))) (-14 *5 (-829)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1193 *3 *4)) (-5 *1 (-565 *3 *4 *5)) (-4 *3 (-755)) - (-4 *4 (-13 (-146) (-653 (-348 (-483))))) (-14 *5 (-829)))) - ((*1 *1 *2) (-12 (-4 *3 (-146)) (-5 *1 (-571 *3 *2)) (-4 *2 (-682 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-617 *3)) (-5 *1 (-613 *3)) (-4 *3 (-755)))) - ((*1 *2 *1) (-12 (-5 *2 (-738 *3)) (-5 *1 (-613 *3)) (-4 *3 (-755)))) - ((*1 *2 *1) (-12 (-5 *2 (-738 *3)) (-5 *1 (-617 *3)) (-4 *3 (-755)))) - ((*1 *1 *2) (-12 (-5 *2 (-1027)) (-5 *1 (-621)))) - ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-622 *3)) (-4 *3 (-1012)))) + (-12 (-5 *2 (-583 *6)) (-4 *6 (-861 *3 *4 *5)) (-4 *3 (-312)) (-4 *4 (-717)) + (-4 *5 (-756)) (-5 *1 (-443 *3 *4 *5 *6)))) + ((*1 *1 *2) (-12 (-5 *2 (-583 (-1129))) (-5 *1 (-462)))) + ((*1 *1 *2) (-12 (-5 *2 (-583 (-1129))) (-5 *1 (-539)))) + ((*1 *1 *2) (-12 (-4 *3 (-146)) (-5 *1 (-540 *3 *2)) (-4 *2 (-683 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-552 *2)) (-4 *2 (-1128)))) + ((*1 *1 *2) (-12 (-4 *1 (-555 *2)) (-4 *2 (-1128)))) + ((*1 *1 *2) (-12 (-4 *1 (-560 *2)) (-4 *2 (-961)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1199 *3 *4)) (-5 *1 (-566 *3 *4 *5)) (-4 *3 (-756)) + (-4 *4 (-13 (-146) (-654 (-349 (-484))))) (-14 *5 (-830)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1194 *3 *4)) (-5 *1 (-566 *3 *4 *5)) (-4 *3 (-756)) + (-4 *4 (-13 (-146) (-654 (-349 (-484))))) (-14 *5 (-830)))) + ((*1 *1 *2) (-12 (-4 *3 (-146)) (-5 *1 (-572 *3 *2)) (-4 *2 (-683 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-618 *3)) (-5 *1 (-614 *3)) (-4 *3 (-756)))) + ((*1 *2 *1) (-12 (-5 *2 (-739 *3)) (-5 *1 (-614 *3)) (-4 *3 (-756)))) + ((*1 *2 *1) (-12 (-5 *2 (-739 *3)) (-5 *1 (-618 *3)) (-4 *3 (-756)))) + ((*1 *1 *2) (-12 (-5 *2 (-1028)) (-5 *1 (-622)))) + ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-623 *3)) (-4 *3 (-1013)))) ((*1 *1 *2) - (-12 (-4 *3 (-960)) (-4 *1 (-626 *3 *4 *2)) (-4 *4 (-322 *3)) - (-4 *2 (-322 *3)))) - ((*1 *2 *3) (-12 (-5 *3 (-771)) (-5 *2 (-1071)) (-5 *1 (-646)))) + (-12 (-4 *3 (-961)) (-4 *1 (-627 *3 *4 *2)) (-4 *4 (-323 *3)) + (-4 *2 (-323 *3)))) + ((*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1072)) (-5 *1 (-647)))) ((*1 *2 *1) - (-12 (-4 *2 (-146)) (-5 *1 (-647 *2 *3 *4 *5 *6)) (-4 *3 (-23)) + (-12 (-4 *2 (-146)) (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *2 *1) - (-12 (-4 *2 (-146)) (-5 *1 (-651 *2 *3 *4 *5 *6)) (-4 *3 (-23)) + (-12 (-4 *2 (-146)) (-5 *1 (-652 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-582 (-2 (|:| -3952 *3) (|:| -3936 *4)))) (-4 *3 (-960)) - (-4 *4 (-662)) (-5 *1 (-673 *3 *4)))) - ((*1 *1 *2) (-12 (-5 *2 (-483)) (-4 *1 (-686)))) - ((*1 *2 *3) (-12 (-5 *2 (-695)) (-5 *1 (-696 *3)) (-4 *3 (-1127)))) - ((*1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-766)))) - ((*1 *2 *3) (-12 (-5 *3 (-856 (-48))) (-5 *2 (-265 (-483))) (-5 *1 (-783)))) - ((*1 *2 *3) - (-12 (-5 *3 (-348 (-856 (-48)))) (-5 *2 (-265 (-483))) (-5 *1 (-783)))) - ((*1 *1 *2) (-12 (-5 *1 (-802 *2)) (-4 *2 (-755)))) - ((*1 *2 *1) (-12 (-5 *2 (-738 *3)) (-5 *1 (-802 *3)) (-4 *3 (-755)))) - ((*1 *1 *2) (-12 (-5 *2 (-582 *3)) (-4 *3 (-1012)) (-5 *1 (-812 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-582 (-582 *3))) (-4 *3 (-1012)) (-5 *1 (-812 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-582 (-812 *3))) (-4 *3 (-1012)) (-5 *1 (-815 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-582 (-812 *3))) (-5 *1 (-815 *3)) (-4 *3 (-1012)))) - ((*1 *1 *2) (-12 (-5 *2 (-348 (-346 *3))) (-4 *3 (-258)) (-5 *1 (-824 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-348 *3)) (-5 *1 (-824 *3)) (-4 *3 (-258)))) - ((*1 *2 *3) - (-12 (-5 *3 (-415)) (-5 *2 (-265 *4)) (-5 *1 (-830 *4)) (-4 *4 (-494)))) - ((*1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *1 (-945 *3)) (-4 *3 (-1127)))) - ((*1 *2 *3) (-12 (-5 *3 (-262)) (-5 *1 (-945 *2)) (-4 *2 (-1127)))) + (-12 (-5 *2 (-583 (-2 (|:| -3953 *3) (|:| -3937 *4)))) (-4 *3 (-961)) + (-4 *4 (-663)) (-5 *1 (-674 *3 *4)))) + ((*1 *1 *2) (-12 (-5 *2 (-484)) (-4 *1 (-687)))) + ((*1 *2 *3) (-12 (-5 *2 (-696)) (-5 *1 (-697 *3)) (-4 *3 (-1128)))) + ((*1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-767)))) + ((*1 *2 *3) (-12 (-5 *3 (-857 (-48))) (-5 *2 (-265 (-484))) (-5 *1 (-784)))) + ((*1 *2 *3) + (-12 (-5 *3 (-349 (-857 (-48)))) (-5 *2 (-265 (-484))) (-5 *1 (-784)))) + ((*1 *1 *2) (-12 (-5 *1 (-803 *2)) (-4 *2 (-756)))) + ((*1 *2 *1) (-12 (-5 *2 (-739 *3)) (-5 *1 (-803 *3)) (-4 *3 (-756)))) + ((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1013)) (-5 *1 (-813 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1013)) (-5 *1 (-813 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-583 (-813 *3))) (-4 *3 (-1013)) (-5 *1 (-816 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-583 (-813 *3))) (-5 *1 (-816 *3)) (-4 *3 (-1013)))) + ((*1 *1 *2) (-12 (-5 *2 (-349 (-347 *3))) (-4 *3 (-258)) (-5 *1 (-825 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-349 *3)) (-5 *1 (-825 *3)) (-4 *3 (-258)))) + ((*1 *2 *3) + (-12 (-5 *3 (-416)) (-5 *2 (-265 *4)) (-5 *1 (-831 *4)) (-4 *4 (-495)))) + ((*1 *2 *3) (-12 (-5 *2 (-1184)) (-5 *1 (-946 *3)) (-4 *3 (-1128)))) + ((*1 *2 *3) (-12 (-5 *3 (-262)) (-5 *1 (-946 *2)) (-4 *2 (-1128)))) ((*1 *1 *2) - (-12 (-4 *3 (-312)) (-4 *4 (-716)) (-4 *5 (-755)) - (-5 *1 (-946 *3 *4 *5 *2 *6)) (-4 *2 (-860 *3 *4 *5)) (-14 *6 (-582 *2)))) - ((*1 *2 *3) (-12 (-5 *2 (-348 (-856 *3))) (-5 *1 (-951 *3)) (-4 *3 (-494)))) + (-12 (-4 *3 (-312)) (-4 *4 (-717)) (-4 *5 (-756)) + (-5 *1 (-947 *3 *4 *5 *2 *6)) (-4 *2 (-861 *3 *4 *5)) (-14 *6 (-583 *2)))) + ((*1 *2 *3) (-12 (-5 *2 (-349 (-857 *3))) (-5 *1 (-952 *3)) (-4 *3 (-495)))) ((*1 *1 *2) - (-12 (-4 *3 (-960)) (-4 *4 (-755)) (-5 *1 (-1038 *3 *4 *2)) - (-4 *2 (-860 *3 (-468 *4) *4)))) + (-12 (-4 *3 (-961)) (-4 *4 (-756)) (-5 *1 (-1039 *3 *4 *2)) + (-4 *2 (-861 *3 (-469 *4) *4)))) ((*1 *1 *2) - (-12 (-4 *3 (-960)) (-4 *2 (-755)) (-5 *1 (-1038 *3 *2 *4)) - (-4 *4 (-860 *3 (-468 *2) *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-960)) (-5 *2 (-771)))) - ((*1 *1 *2) (-12 (-5 *2 (-117)) (-4 *1 (-1056)))) - ((*1 *2 *3) (-12 (-5 *2 (-1067 *3)) (-5 *1 (-1073 *3)) (-4 *3 (-960)))) + (-12 (-4 *3 (-961)) (-4 *2 (-756)) (-5 *1 (-1039 *3 *2 *4)) + (-4 *4 (-861 *3 (-469 *2) *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-961)) (-5 *2 (-772)))) + ((*1 *1 *2) (-12 (-5 *2 (-117)) (-4 *1 (-1057)))) + ((*1 *2 *3) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-1074 *3)) (-4 *3 (-961)))) ((*1 *1 *2) - (-12 (-5 *2 (-1174 *4)) (-14 *4 (-1088)) (-5 *1 (-1080 *3 *4 *5)) - (-4 *3 (-960)) (-14 *5 *3))) + (-12 (-5 *2 (-1175 *4)) (-14 *4 (-1089)) (-5 *1 (-1081 *3 *4 *5)) + (-4 *3 (-961)) (-14 *5 *3))) ((*1 *1 *2) - (-12 (-5 *2 (-1174 *4)) (-14 *4 (-1088)) (-5 *1 (-1087 *3 *4 *5)) - (-4 *3 (-960)) (-14 *5 *3))) + (-12 (-5 *2 (-1175 *4)) (-14 *4 (-1089)) (-5 *1 (-1088 *3 *4 *5)) + (-4 *3 (-961)) (-14 *5 *3))) ((*1 *1 *2) - (-12 (-5 *2 (-1146 *4 *3)) (-4 *3 (-960)) (-14 *4 (-1088)) (-14 *5 *3) - (-5 *1 (-1087 *3 *4 *5)))) - ((*1 *2 *1) (-12 (-5 *2 (-1100 (-1088) (-377))) (-5 *1 (-1092)))) - ((*1 *2 *1) (-12 (-5 *2 (-1071)) (-5 *1 (-1093)))) - ((*1 *2 *1) (-12 (-5 *2 (-445)) (-5 *1 (-1093)))) - ((*1 *2 *1) (-12 (-5 *2 (-179)) (-5 *1 (-1093)))) - ((*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-1093)))) - ((*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-1101 *3)) (-4 *3 (-1012)))) - ((*1 *2 *3) (-12 (-5 *2 (-1107)) (-5 *1 (-1108 *3)) (-4 *3 (-1012)))) - ((*1 *1 *2) (-12 (-5 *2 (-856 *3)) (-4 *3 (-960)) (-5 *1 (-1120 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1088)) (-5 *1 (-1120 *3)) (-4 *3 (-960)))) + (-12 (-5 *2 (-1147 *4 *3)) (-4 *3 (-961)) (-14 *4 (-1089)) (-14 *5 *3) + (-5 *1 (-1088 *3 *4 *5)))) + ((*1 *2 *1) (-12 (-5 *2 (-1101 (-1089) (-378))) (-5 *1 (-1093)))) + ((*1 *2 *1) (-12 (-5 *2 (-1072)) (-5 *1 (-1094)))) + ((*1 *2 *1) (-12 (-5 *2 (-446)) (-5 *1 (-1094)))) + ((*1 *2 *1) (-12 (-5 *2 (-179)) (-5 *1 (-1094)))) + ((*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-1094)))) + ((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-1102 *3)) (-4 *3 (-1013)))) + ((*1 *2 *3) (-12 (-5 *2 (-1108)) (-5 *1 (-1109 *3)) (-4 *3 (-1013)))) + ((*1 *1 *2) (-12 (-5 *2 (-857 *3)) (-4 *3 (-961)) (-5 *1 (-1121 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-1121 *3)) (-4 *3 (-961)))) ((*1 *1 *2) - (-12 (-5 *2 (-1174 *4)) (-14 *4 (-1088)) (-5 *1 (-1137 *3 *4 *5)) - (-4 *3 (-960)) (-14 *5 *3))) - ((*1 *1 *2) (-12 (-5 *2 (-1000 *3)) (-4 *3 (-1127)) (-5 *1 (-1144 *3)))) + (-12 (-5 *2 (-1175 *4)) (-14 *4 (-1089)) (-5 *1 (-1138 *3 *4 *5)) + (-4 *3 (-961)) (-14 *5 *3))) + ((*1 *1 *2) (-12 (-5 *2 (-1001 *3)) (-4 *3 (-1128)) (-5 *1 (-1145 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1174 *4)) (-14 *4 (-1088)) (-5 *1 (-1167 *3 *4 *5)) - (-4 *3 (-960)) (-14 *5 *3))) + (-12 (-5 *2 (-1175 *4)) (-14 *4 (-1089)) (-5 *1 (-1168 *3 *4 *5)) + (-4 *3 (-961)) (-14 *5 *3))) ((*1 *1 *2) - (-12 (-5 *2 (-1146 *4 *3)) (-4 *3 (-960)) (-14 *4 (-1088)) (-14 *5 *3) - (-5 *1 (-1167 *3 *4 *5)))) - ((*1 *2 *1) (-12 (-5 *2 (-1088)) (-5 *1 (-1174 *3)) (-14 *3 *2))) - ((*1 *2 *3) (-12 (-5 *3 (-406)) (-5 *2 (-1180)) (-5 *1 (-1179)))) - ((*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-1180)))) - ((*1 *1 *2) (-12 (-4 *1 (-1197 *2 *3)) (-4 *2 (-755)) (-4 *3 (-960)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1202 *3 *4)) (-5 *1 (-1198 *3 *4)) (-4 *3 (-755)) + (-12 (-5 *2 (-1147 *4 *3)) (-4 *3 (-961)) (-14 *4 (-1089)) (-14 *5 *3) + (-5 *1 (-1168 *3 *4 *5)))) + ((*1 *2 *1) (-12 (-5 *2 (-1089)) (-5 *1 (-1175 *3)) (-14 *3 *2))) + ((*1 *2 *3) (-12 (-5 *3 (-407)) (-5 *2 (-1181)) (-5 *1 (-1180)))) + ((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-1181)))) + ((*1 *1 *2) (-12 (-4 *1 (-1198 *2 *3)) (-4 *2 (-756)) (-4 *3 (-961)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1203 *3 *4)) (-5 *1 (-1199 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146)))) ((*1 *2 *1) - (-12 (-5 *2 (-1193 *3 *4)) (-5 *1 (-1198 *3 *4)) (-4 *3 (-755)) + (-12 (-5 *2 (-1194 *3 *4)) (-5 *1 (-1199 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146)))) ((*1 *1 *2) - (-12 (-5 *2 (-605 *3 *4)) (-4 *3 (-755)) (-4 *4 (-146)) - (-5 *1 (-1198 *3 *4))))) + (-12 (-5 *2 (-606 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146)) + (-5 *1 (-1199 *3 *4))))) (((*1 *1 *2) - (|partial| -12 (-5 *2 (-1193 *3 *4)) (-4 *3 (-755)) (-4 *4 (-146)) - (-5 *1 (-605 *3 *4)))) + (|partial| -12 (-5 *2 (-1194 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146)) + (-5 *1 (-606 *3 *4)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-605 *3 *4)) (-5 *1 (-1198 *3 *4)) (-4 *3 (-755)) + (|partial| -12 (-5 *2 (-606 *3 *4)) (-5 *1 (-1199 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146))))) (((*1 *1 *1 *1) - (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-483)) (-14 *3 (-693)) (-4 *4 (-146)))) + (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-484)) (-14 *3 (-694)) (-4 *4 (-146)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1088)) (-4 *4 (-494)) (-5 *1 (-131 *4 *2)) (-4 *2 (-362 *4)))) + (-12 (-5 *3 (-1089)) (-4 *4 (-495)) (-5 *1 (-131 *4 *2)) (-4 *2 (-363 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1003 *2)) (-4 *2 (-362 *4)) (-4 *4 (-494)) + (-12 (-5 *3 (-1004 *2)) (-4 *2 (-363 *4)) (-4 *4 (-495)) (-5 *1 (-131 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1003 *1)) (-4 *1 (-133)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-133)) (-5 *2 (-1088)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-403 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1004 *1)) (-4 *1 (-133)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-133)) (-5 *2 (-1089)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-404 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) ((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-693)) (-5 *1 (-1198 *3 *4)) (-4 *3 (-755)) (-4 *4 (-146))))) + (-12 (-5 *2 (-694)) (-5 *1 (-1199 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146))))) (((*1 *1 *2) - (-12 (-5 *2 (-582 (-483))) (-5 *1 (-50 *3 *4)) (-4 *3 (-960)) - (-14 *4 (-582 (-1088))))) + (-12 (-5 *2 (-583 (-484))) (-5 *1 (-50 *3 *4)) (-4 *3 (-961)) + (-14 *4 (-583 (-1089))))) ((*1 *2 *2) - (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-914))))) + (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-348 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1141 *3 *4)))) + (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1142 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-348 (-483)))) (-4 *4 (-1139 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-895 *4)))) + (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1140 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-896 *4)))) ((*1 *1 *1) (-4 *1 (-239))) ((*1 *1 *2) - (-12 (-5 *2 (-605 *3 *4)) (-4 *3 (-755)) - (-4 *4 (-13 (-146) (-653 (-348 (-483))))) (-5 *1 (-565 *3 *4 *5)) - (-14 *5 (-829)))) + (-12 (-5 *2 (-606 *3 *4)) (-4 *3 (-756)) + (-4 *4 (-13 (-146) (-654 (-349 (-484))))) (-5 *1 (-566 *3 *4 *5)) + (-14 *5 (-830)))) ((*1 *2 *2) - (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-348 (-483)))) (-5 *1 (-1074 *3)))) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1075 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-348 (-483)))) (-5 *1 (-1075 *3)))) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1076 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-693)) (-4 *4 (-13 (-960) (-653 (-348 (-483))))) (-4 *5 (-755)) - (-5 *1 (-1194 *4 *5 *2)) (-4 *2 (-1200 *5 *4)))) + (-12 (-5 *3 (-694)) (-4 *4 (-13 (-961) (-654 (-349 (-484))))) (-4 *5 (-756)) + (-5 *1 (-1195 *4 *5 *2)) (-4 *2 (-1201 *5 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-693)) (-5 *1 (-1198 *3 *4)) (-4 *4 (-653 (-348 (-483)))) - (-4 *3 (-755)) (-4 *4 (-146))))) + (-12 (-5 *2 (-694)) (-5 *1 (-1199 *3 *4)) (-4 *4 (-654 (-349 (-484)))) + (-4 *3 (-756)) (-4 *4 (-146))))) (((*1 *2 *2) - (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-914))))) + (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-348 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1141 *3 *4)))) + (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1142 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-348 (-483)))) (-4 *4 (-1139 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-895 *4)))) + (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1140 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-896 *4)))) ((*1 *1 *1) (-4 *1 (-239))) ((*1 *2 *3) - (-12 (-5 *3 (-346 *4)) (-4 *4 (-494)) - (-5 *2 (-582 (-2 (|:| -3952 (-693)) (|:| |logand| *4)))) (-5 *1 (-271 *4)))) + (-12 (-5 *3 (-347 *4)) (-4 *4 (-495)) + (-5 *2 (-583 (-2 (|:| -3953 (-694)) (|:| |logand| *4)))) (-5 *1 (-271 *4)))) ((*1 *2 *1) - (-12 (-5 *2 (-605 *3 *4)) (-5 *1 (-565 *3 *4 *5)) (-4 *3 (-755)) - (-4 *4 (-13 (-146) (-653 (-348 (-483))))) (-14 *5 (-829)))) + (-12 (-5 *2 (-606 *3 *4)) (-5 *1 (-566 *3 *4 *5)) (-4 *3 (-756)) + (-4 *4 (-13 (-146) (-654 (-349 (-484))))) (-14 *5 (-830)))) ((*1 *2 *2) - (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-348 (-483)))) (-5 *1 (-1074 *3)))) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1075 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-348 (-483)))) (-5 *1 (-1075 *3)))) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1076 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-693)) (-4 *4 (-13 (-960) (-653 (-348 (-483))))) (-4 *5 (-755)) - (-5 *1 (-1194 *4 *5 *2)) (-4 *2 (-1200 *5 *4)))) + (-12 (-5 *3 (-694)) (-4 *4 (-13 (-961) (-654 (-349 (-484))))) (-4 *5 (-756)) + (-5 *1 (-1195 *4 *5 *2)) (-4 *2 (-1201 *5 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-693)) (-5 *1 (-1198 *3 *4)) (-4 *4 (-653 (-348 (-483)))) - (-4 *3 (-755)) (-4 *4 (-146))))) + (-12 (-5 *2 (-694)) (-5 *1 (-1199 *3 *4)) (-4 *4 (-654 (-349 (-484)))) + (-4 *3 (-756)) (-4 *4 (-146))))) (((*1 *2 *1) - (-12 (-4 *1 (-1197 *3 *4)) (-4 *3 (-755)) (-4 *4 (-960)) - (-5 *2 (-2 (|:| |k| (-738 *3)) (|:| |c| *4)))))) + (-12 (-4 *1 (-1198 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)) + (-5 *2 (-2 (|:| |k| (-739 *3)) (|:| |c| *4)))))) (((*1 *2 *2 *1) - (-12 (-5 *2 (-1202 *3 *4)) (-4 *1 (-324 *3 *4)) (-4 *3 (-755)) + (-12 (-5 *2 (-1203 *3 *4)) (-4 *1 (-325 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146)))) - ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-334 *2)) (-4 *2 (-1012)))) - ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-738 *2)) (-4 *2 (-755)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1197 *2 *3)) (-4 *2 (-755)) (-4 *3 (-960)))) + ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-335 *2)) (-4 *2 (-1013)))) + ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-739 *2)) (-4 *2 (-756)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1198 *2 *3)) (-4 *2 (-756)) (-4 *3 (-961)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-738 *3)) (-4 *1 (-1197 *3 *4)) (-4 *3 (-755)) (-4 *4 (-960)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1197 *2 *3)) (-4 *2 (-755)) (-4 *3 (-960))))) + (-12 (-5 *2 (-739 *3)) (-4 *1 (-1198 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1198 *2 *3)) (-4 *2 (-756)) (-4 *3 (-961))))) (((*1 *2 *2 *1) - (-12 (-5 *2 (-1202 *3 *4)) (-4 *1 (-324 *3 *4)) (-4 *3 (-755)) + (-12 (-5 *2 (-1203 *3 *4)) (-4 *1 (-325 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146)))) - ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-334 *2)) (-4 *2 (-1012)))) - ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-738 *2)) (-4 *2 (-755)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1197 *2 *3)) (-4 *2 (-755)) (-4 *3 (-960)))) + ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-335 *2)) (-4 *2 (-1013)))) + ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-739 *2)) (-4 *2 (-756)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1198 *2 *3)) (-4 *2 (-756)) (-4 *3 (-961)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-738 *3)) (-4 *1 (-1197 *3 *4)) (-4 *3 (-755)) (-4 *4 (-960)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1197 *2 *3)) (-4 *2 (-755)) (-4 *3 (-960))))) -(((*1 *1 *2 *3) (-12 (-4 *1 (-333 *3 *2)) (-4 *3 (-960)) (-4 *2 (-1012)))) + (-12 (-5 *2 (-739 *3)) (-4 *1 (-1198 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1198 *2 *3)) (-4 *2 (-756)) (-4 *3 (-961))))) +(((*1 *1 *2 *3) (-12 (-4 *1 (-334 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1013)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-483)) (-5 *2 (-1067 *3)) (-5 *1 (-1073 *3)) (-4 *3 (-960)))) + (-12 (-5 *4 (-484)) (-5 *2 (-1068 *3)) (-5 *1 (-1074 *3)) (-4 *3 (-961)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-738 *4)) (-4 *4 (-755)) (-4 *1 (-1197 *4 *3)) (-4 *3 (-960))))) + (-12 (-5 *2 (-739 *4)) (-4 *4 (-756)) (-4 *1 (-1198 *4 *3)) (-4 *3 (-961))))) (((*1 *2 *1) - (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-960)) (-4 *4 (-715)) (-5 *2 (-85)))) + (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716)) (-5 *2 (-85)))) ((*1 *2 *1) - (-12 (-4 *1 (-333 *3 *4)) (-4 *3 (-960)) (-4 *4 (-1012)) (-5 *2 (-85)))) - ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-529 *3)) (-4 *3 (-960)))) + (-12 (-4 *1 (-334 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1013)) (-5 *2 (-85)))) + ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-530 *3)) (-4 *3 (-961)))) ((*1 *2 *1) - (-12 (-4 *3 (-494)) (-5 *2 (-85)) (-5 *1 (-561 *3 *4)) (-4 *4 (-1153 *3)))) + (-12 (-4 *3 (-495)) (-5 *2 (-85)) (-5 *1 (-562 *3 *4)) (-4 *4 (-1154 *3)))) ((*1 *2 *1) - (-12 (-5 *2 (-85)) (-5 *1 (-673 *3 *4)) (-4 *3 (-960)) (-4 *4 (-662)))) + (-12 (-5 *2 (-85)) (-5 *1 (-674 *3 *4)) (-4 *3 (-961)) (-4 *4 (-663)))) ((*1 *2 *1) - (-12 (-4 *1 (-1197 *3 *4)) (-4 *3 (-755)) (-4 *4 (-960)) (-5 *2 (-85))))) -(((*1 *1 *1) (-12 (-4 *1 (-324 *2 *3)) (-4 *2 (-755)) (-4 *3 (-146)))) + (-12 (-4 *1 (-1198 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)) (-5 *2 (-85))))) +(((*1 *1 *1) (-12 (-4 *1 (-325 *2 *3)) (-4 *2 (-756)) (-4 *3 (-146)))) ((*1 *1 *1) - (-12 (-5 *1 (-565 *2 *3 *4)) (-4 *2 (-755)) - (-4 *3 (-13 (-146) (-653 (-348 (-483))))) (-14 *4 (-829)))) - ((*1 *1 *1) (-12 (-5 *1 (-617 *2)) (-4 *2 (-755)))) - ((*1 *1 *1) (-12 (-5 *1 (-738 *2)) (-4 *2 (-755)))) - ((*1 *1 *1) (-12 (-4 *1 (-1197 *2 *3)) (-4 *2 (-755)) (-4 *3 (-960))))) + (-12 (-5 *1 (-566 *2 *3 *4)) (-4 *2 (-756)) + (-4 *3 (-13 (-146) (-654 (-349 (-484))))) (-14 *4 (-830)))) + ((*1 *1 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-756)))) + ((*1 *1 *1) (-12 (-5 *1 (-739 *2)) (-4 *2 (-756)))) + ((*1 *1 *1) (-12 (-4 *1 (-1198 *2 *3)) (-4 *2 (-756)) (-4 *3 (-961))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-693)) (-4 *1 (-1197 *3 *4)) (-4 *3 (-755)) (-4 *4 (-960)) + (-12 (-5 *2 (-694)) (-4 *1 (-1198 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)) (-4 *4 (-146)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-1197 *2 *3)) (-4 *2 (-755)) (-4 *3 (-960)) (-4 *3 (-146))))) + (-12 (-4 *1 (-1198 *2 *3)) (-4 *2 (-756)) (-4 *3 (-961)) (-4 *3 (-146))))) (((*1 *2 *1) - (-12 (-4 *1 (-324 *3 *4)) (-4 *3 (-755)) (-4 *4 (-146)) (-5 *2 (-582 *3)))) + (-12 (-4 *1 (-325 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146)) (-5 *2 (-583 *3)))) ((*1 *2 *1) - (-12 (-5 *2 (-582 *3)) (-5 *1 (-565 *3 *4 *5)) (-4 *3 (-755)) - (-4 *4 (-13 (-146) (-653 (-348 (-483))))) (-14 *5 (-829)))) - ((*1 *2 *1) (-12 (-5 *2 (-582 *3)) (-5 *1 (-613 *3)) (-4 *3 (-755)))) - ((*1 *2 *1) (-12 (-5 *2 (-582 *3)) (-5 *1 (-617 *3)) (-4 *3 (-755)))) - ((*1 *2 *1) (-12 (-5 *2 (-582 *3)) (-5 *1 (-738 *3)) (-4 *3 (-755)))) - ((*1 *2 *1) (-12 (-5 *2 (-582 *3)) (-5 *1 (-802 *3)) (-4 *3 (-755)))) + (-12 (-5 *2 (-583 *3)) (-5 *1 (-566 *3 *4 *5)) (-4 *3 (-756)) + (-4 *4 (-13 (-146) (-654 (-349 (-484))))) (-14 *5 (-830)))) + ((*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-614 *3)) (-4 *3 (-756)))) + ((*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-618 *3)) (-4 *3 (-756)))) + ((*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-739 *3)) (-4 *3 (-756)))) + ((*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-803 *3)) (-4 *3 (-756)))) ((*1 *2 *1) - (-12 (-4 *1 (-1197 *3 *4)) (-4 *3 (-755)) (-4 *4 (-960)) (-5 *2 (-582 *3))))) + (-12 (-4 *1 (-1198 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)) (-5 *2 (-583 *3))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-1122 *4 *5 *3 *6)) (-4 *4 (-494)) (-4 *5 (-716)) (-4 *3 (-755)) - (-4 *6 (-976 *4 *5 *3)) (-5 *2 (-85)))) - ((*1 *2 *1) (-12 (-4 *1 (-1196 *3)) (-4 *3 (-312)) (-5 *2 (-85))))) -(((*1 *2 *1) (-12 (-4 *1 (-1196 *3)) (-4 *3 (-312)) (-5 *2 (-85))))) -(((*1 *2 *1) (-12 (-4 *1 (-1196 *3)) (-4 *3 (-312)) (-5 *2 (-85))))) + (-12 (-4 *1 (-1123 *4 *5 *3 *6)) (-4 *4 (-495)) (-4 *5 (-717)) (-4 *3 (-756)) + (-4 *6 (-977 *4 *5 *3)) (-5 *2 (-85)))) + ((*1 *2 *1) (-12 (-4 *1 (-1197 *3)) (-4 *3 (-312)) (-5 *2 (-85))))) +(((*1 *2 *1) (-12 (-4 *1 (-1197 *3)) (-4 *3 (-312)) (-5 *2 (-85))))) +(((*1 *2 *1) (-12 (-4 *1 (-1197 *3)) (-4 *3 (-312)) (-5 *2 (-85))))) (((*1 *2) - (-12 (-4 *4 (-312)) (-5 *2 (-829)) (-5 *1 (-279 *3 *4)) (-4 *3 (-280 *4)))) + (-12 (-4 *4 (-312)) (-5 *2 (-830)) (-5 *1 (-279 *3 *4)) (-4 *3 (-280 *4)))) ((*1 *2) - (-12 (-4 *4 (-312)) (-5 *2 (-742 (-829))) (-5 *1 (-279 *3 *4)) + (-12 (-4 *4 (-312)) (-5 *2 (-743 (-830))) (-5 *1 (-279 *3 *4)) (-4 *3 (-280 *4)))) - ((*1 *2) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-5 *2 (-829)))) - ((*1 *2) (-12 (-4 *1 (-1196 *3)) (-4 *3 (-312)) (-5 *2 (-742 (-829)))))) + ((*1 *2) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-5 *2 (-830)))) + ((*1 *2) (-12 (-4 *1 (-1197 *3)) (-4 *3 (-312)) (-5 *2 (-743 (-830)))))) (((*1 *2) - (-12 (-4 *4 (-312)) (-5 *2 (-693)) (-5 *1 (-279 *3 *4)) (-4 *3 (-280 *4)))) - ((*1 *2) (-12 (-4 *1 (-1196 *3)) (-4 *3 (-312)) (-5 *2 (-693))))) + (-12 (-4 *4 (-312)) (-5 *2 (-694)) (-5 *1 (-279 *3 *4)) (-4 *3 (-280 *4)))) + ((*1 *2) (-12 (-4 *1 (-1197 *3)) (-4 *3 (-312)) (-5 *2 (-694))))) (((*1 *2 *2) - (-12 (-4 *3 (-299)) (-4 *4 (-280 *3)) (-4 *5 (-1153 *4)) - (-5 *1 (-699 *3 *4 *5 *2 *6)) (-4 *2 (-1153 *5)) (-14 *6 (-829)))) + (-12 (-4 *3 (-299)) (-4 *4 (-280 *3)) (-4 *5 (-1154 *4)) + (-5 *1 (-700 *3 *4 *5 *2 *6)) (-4 *2 (-1154 *5)) (-14 *6 (-830)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-693)) (-4 *1 (-1196 *3)) (-4 *3 (-312)) (-4 *3 (-318)))) - ((*1 *1 *1) (-12 (-4 *1 (-1196 *2)) (-4 *2 (-312)) (-4 *2 (-318))))) + (-12 (-5 *2 (-694)) (-4 *1 (-1197 *3)) (-4 *3 (-312)) (-4 *3 (-319)))) + ((*1 *1 *1) (-12 (-4 *1 (-1197 *2)) (-4 *2 (-312)) (-4 *2 (-319))))) (((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-693)) (-4 *4 (-13 (-960) (-653 (-348 (-483))))) (-4 *5 (-755)) - (-5 *1 (-1194 *4 *5 *2)) (-4 *2 (-1200 *5 *4))))) + (-12 (-5 *3 (-694)) (-4 *4 (-13 (-961) (-654 (-349 (-484))))) (-4 *5 (-756)) + (-5 *1 (-1195 *4 *5 *2)) (-4 *2 (-1201 *5 *4))))) (((*1 *1 *2) - (|partial| -12 (-5 *2 (-582 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-494)) - (-4 *4 (-716)) (-4 *5 (-755)) (-5 *1 (-1191 *3 *4 *5 *6)))) + (|partial| -12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) + (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-1192 *3 *4 *5 *6)))) ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-582 *8)) (-5 *3 (-1 (-85) *8 *8)) - (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-976 *5 *6 *7)) (-4 *5 (-494)) (-4 *6 (-716)) - (-4 *7 (-755)) (-5 *1 (-1191 *5 *6 *7 *8))))) + (|partial| -12 (-5 *2 (-583 *8)) (-5 *3 (-1 (-85) *8 *8)) + (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-495)) (-4 *6 (-717)) + (-4 *7 (-756)) (-5 *1 (-1192 *5 *6 *7 *8))))) (((*1 *1 *2) - (|partial| -12 (-5 *2 (-582 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-494)) - (-4 *4 (-716)) (-4 *5 (-755)) (-5 *1 (-1191 *3 *4 *5 *6)))) + (|partial| -12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) + (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-1192 *3 *4 *5 *6)))) ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-582 *8)) (-5 *3 (-1 (-85) *8 *8)) - (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-976 *5 *6 *7)) (-4 *5 (-494)) (-4 *6 (-716)) - (-4 *7 (-755)) (-5 *1 (-1191 *5 *6 *7 *8))))) + (|partial| -12 (-5 *2 (-583 *8)) (-5 *3 (-1 (-85) *8 *8)) + (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-495)) (-4 *6 (-717)) + (-4 *7 (-756)) (-5 *1 (-1192 *5 *6 *7 *8))))) (((*1 *2 *3) - (-12 (-5 *3 (-582 *7)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-494)) (-4 *5 (-716)) - (-4 *6 (-755)) (-5 *2 (-582 (-1191 *4 *5 *6 *7))) - (-5 *1 (-1191 *4 *5 *6 *7)))) + (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-495)) (-4 *5 (-717)) + (-4 *6 (-756)) (-5 *2 (-583 (-1192 *4 *5 *6 *7))) + (-5 *1 (-1192 *4 *5 *6 *7)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-582 *9)) (-5 *4 (-1 (-85) *9 *9)) (-5 *5 (-1 *9 *9 *9)) - (-4 *9 (-976 *6 *7 *8)) (-4 *6 (-494)) (-4 *7 (-716)) (-4 *8 (-755)) - (-5 *2 (-582 (-1191 *6 *7 *8 *9))) (-5 *1 (-1191 *6 *7 *8 *9))))) + (-12 (-5 *3 (-583 *9)) (-5 *4 (-1 (-85) *9 *9)) (-5 *5 (-1 *9 *9 *9)) + (-4 *9 (-977 *6 *7 *8)) (-4 *6 (-495)) (-4 *7 (-717)) (-4 *8 (-756)) + (-5 *2 (-583 (-1192 *6 *7 *8 *9))) (-5 *1 (-1192 *6 *7 *8 *9))))) (((*1 *2 *3) - (-12 (-5 *3 (-693)) (-5 *2 (-1183)) (-5 *1 (-774 *4 *5 *6 *7)) (-4 *4 (-960)) - (-14 *5 (-582 (-1088))) (-14 *6 (-582 *3)) (-14 *7 *3))) + (-12 (-5 *3 (-694)) (-5 *2 (-1184)) (-5 *1 (-775 *4 *5 *6 *7)) (-4 *4 (-961)) + (-14 *5 (-583 (-1089))) (-14 *6 (-583 *3)) (-14 *7 *3))) ((*1 *2 *3) - (-12 (-5 *3 (-693)) (-4 *4 (-960)) (-4 *5 (-755)) (-4 *6 (-716)) - (-14 *8 (-582 *5)) (-5 *2 (-1183)) (-5 *1 (-1190 *4 *5 *6 *7 *8 *9 *10)) - (-4 *7 (-860 *4 *6 *5)) (-14 *9 (-582 *3)) (-14 *10 *3)))) -(((*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-457)))) + (-12 (-5 *3 (-694)) (-4 *4 (-961)) (-4 *5 (-756)) (-4 *6 (-717)) + (-14 *8 (-583 *5)) (-5 *2 (-1184)) (-5 *1 (-1191 *4 *5 *6 *7 *8 *9 *10)) + (-4 *7 (-861 *4 *6 *5)) (-14 *9 (-583 *3)) (-14 *10 *3)))) +(((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-458)))) ((*1 *2 *1) - (-12 (-4 *2 (-13 (-1012) (-34))) (-5 *1 (-1052 *3 *2)) - (-4 *3 (-13 (-1012) (-34))))) - ((*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-1189))))) -(((*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-1188))))) -(((*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-1188))))) + (-12 (-4 *2 (-13 (-1013) (-34))) (-5 *1 (-1053 *3 *2)) + (-4 *3 (-13 (-1013) (-34))))) + ((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-1190))))) +(((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-1189))))) +(((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-1189))))) (((*1 *2 *3) - (-12 (-4 *3 (-13 (-258) (-10 -8 (-15 -3969 ((-346 $) $))))) - (-4 *4 (-1153 *3)) + (-12 (-4 *3 (-13 (-258) (-10 -8 (-15 -3970 ((-347 $) $))))) + (-4 *4 (-1154 *3)) (-5 *2 - (-2 (|:| -2011 (-629 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-629 *3)))) - (-5 *1 (-300 *3 *4 *5)) (-4 *5 (-351 *3 *4)))) + (-2 (|:| -2012 (-630 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-630 *3)))) + (-5 *1 (-300 *3 *4 *5)) (-4 *5 (-352 *3 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-483)) (-4 *4 (-1153 *3)) + (-12 (-5 *3 (-484)) (-4 *4 (-1154 *3)) (-5 *2 - (-2 (|:| -2011 (-629 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-629 *3)))) - (-5 *1 (-691 *4 *5)) (-4 *5 (-351 *3 *4)))) + (-2 (|:| -2012 (-630 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-630 *3)))) + (-5 *1 (-692 *4 *5)) (-4 *5 (-352 *3 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-299)) (-4 *3 (-1153 *4)) (-4 *5 (-1153 *3)) + (-12 (-4 *4 (-299)) (-4 *3 (-1154 *4)) (-4 *5 (-1154 *3)) (-5 *2 - (-2 (|:| -2011 (-629 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-629 *3)))) - (-5 *1 (-897 *4 *3 *5 *6)) (-4 *6 (-660 *3 *5)))) + (-2 (|:| -2012 (-630 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-630 *3)))) + (-5 *1 (-898 *4 *3 *5 *6)) (-4 *6 (-661 *3 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-299)) (-4 *3 (-1153 *4)) (-4 *5 (-1153 *3)) + (-12 (-4 *4 (-299)) (-4 *3 (-1154 *4)) (-4 *5 (-1154 *3)) (-5 *2 - (-2 (|:| -2011 (-629 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-629 *3)))) - (-5 *1 (-1187 *4 *3 *5 *6)) (-4 *6 (-351 *3 *5))))) + (-2 (|:| -2012 (-630 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-630 *3)))) + (-5 *1 (-1188 *4 *3 *5 *6)) (-4 *6 (-352 *3 *5))))) (((*1 *2) - (-12 (-4 *3 (-1132)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-348 *4))) - (-5 *2 (-1177 *1)) (-4 *1 (-291 *3 *4 *5)))) + (-12 (-4 *3 (-1133)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-349 *4))) + (-5 *2 (-1178 *1)) (-4 *1 (-291 *3 *4 *5)))) ((*1 *2) - (-12 (-4 *3 (-13 (-258) (-10 -8 (-15 -3969 ((-346 $) $))))) - (-4 *4 (-1153 *3)) + (-12 (-4 *3 (-13 (-258) (-10 -8 (-15 -3970 ((-347 $) $))))) + (-4 *4 (-1154 *3)) (-5 *2 - (-2 (|:| -2011 (-629 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-629 *3)))) - (-5 *1 (-300 *3 *4 *5)) (-4 *5 (-351 *3 *4)))) + (-2 (|:| -2012 (-630 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-630 *3)))) + (-5 *1 (-300 *3 *4 *5)) (-4 *5 (-352 *3 *4)))) ((*1 *2) - (-12 (-4 *3 (-1153 (-483))) + (-12 (-4 *3 (-1154 (-484))) (-5 *2 - (-2 (|:| -2011 (-629 (-483))) (|:| |basisDen| (-483)) - (|:| |basisInv| (-629 (-483))))) - (-5 *1 (-691 *3 *4)) (-4 *4 (-351 (-483) *3)))) + (-2 (|:| -2012 (-630 (-484))) (|:| |basisDen| (-484)) + (|:| |basisInv| (-630 (-484))))) + (-5 *1 (-692 *3 *4)) (-4 *4 (-352 (-484) *3)))) ((*1 *2) - (-12 (-4 *3 (-299)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 *4)) + (-12 (-4 *3 (-299)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 *4)) (-5 *2 - (-2 (|:| -2011 (-629 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-629 *4)))) - (-5 *1 (-897 *3 *4 *5 *6)) (-4 *6 (-660 *4 *5)))) + (-2 (|:| -2012 (-630 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-630 *4)))) + (-5 *1 (-898 *3 *4 *5 *6)) (-4 *6 (-661 *4 *5)))) ((*1 *2) - (-12 (-4 *3 (-299)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 *4)) + (-12 (-4 *3 (-299)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 *4)) (-5 *2 - (-2 (|:| -2011 (-629 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-629 *4)))) - (-5 *1 (-1187 *3 *4 *5 *6)) (-4 *6 (-351 *4 *5))))) + (-2 (|:| -2012 (-630 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-630 *4)))) + (-5 *1 (-1188 *3 *4 *5 *6)) (-4 *6 (-352 *4 *5))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-693)) (-4 *6 (-312)) (-5 *4 (-1120 *6)) - (-5 *2 (-1 (-1067 *4) (-1067 *4))) (-5 *1 (-1186 *6)) (-5 *5 (-1067 *4))))) + (-12 (-5 *3 (-694)) (-4 *6 (-312)) (-5 *4 (-1121 *6)) + (-5 *2 (-1 (-1068 *4) (-1068 *4))) (-5 *1 (-1187 *6)) (-5 *5 (-1068 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1088)) (-4 *5 (-312)) (-5 *2 (-582 (-1120 *5))) - (-5 *1 (-1186 *5)) (-5 *4 (-1120 *5))))) + (-12 (-5 *3 (-1089)) (-4 *5 (-312)) (-5 *2 (-583 (-1121 *5))) + (-5 *1 (-1187 *5)) (-5 *4 (-1121 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1088)) (-5 *2 (-1 (-1083 (-856 *4)) (-856 *4))) - (-5 *1 (-1186 *4)) (-4 *4 (-312))))) + (-12 (-5 *3 (-1089)) (-5 *2 (-1 (-1084 (-857 *4)) (-857 *4))) + (-5 *1 (-1187 *4)) (-4 *4 (-312))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1088)) (-4 *5 (-312)) (-5 *2 (-1067 (-1067 (-856 *5)))) - (-5 *1 (-1186 *5)) (-5 *4 (-1067 (-856 *5)))))) + (-12 (-5 *3 (-1089)) (-4 *5 (-312)) (-5 *2 (-1068 (-1068 (-857 *5)))) + (-5 *1 (-1187 *5)) (-5 *4 (-1068 (-857 *5)))))) (((*1 *2 *3) - (-12 (-5 *3 (-693)) (-5 *2 (-1 (-1067 (-856 *4)) (-1067 (-856 *4)))) - (-5 *1 (-1186 *4)) (-4 *4 (-312))))) + (-12 (-5 *3 (-694)) (-5 *2 (-1 (-1068 (-857 *4)) (-1068 (-857 *4)))) + (-5 *1 (-1187 *4)) (-4 *4 (-312))))) (((*1 *2 *3) - (-12 (-5 *3 (-693)) (-5 *2 (-1 (-1067 (-856 *4)) (-1067 (-856 *4)))) - (-5 *1 (-1186 *4)) (-4 *4 (-312))))) + (-12 (-5 *3 (-694)) (-5 *2 (-1 (-1068 (-857 *4)) (-1068 (-857 *4)))) + (-5 *1 (-1187 *4)) (-4 *4 (-312))))) (((*1 *2) - (-12 (-14 *4 (-693)) (-4 *5 (-1127)) (-5 *2 (-107)) (-5 *1 (-195 *3 *4 *5)) + (-12 (-14 *4 (-694)) (-4 *5 (-1128)) (-5 *2 (-107)) (-5 *1 (-195 *3 *4 *5)) (-4 *3 (-196 *4 *5)))) ((*1 *2) (-12 (-4 *4 (-312)) (-5 *2 (-107)) (-5 *1 (-279 *3 *4)) (-4 *3 (-280 *4)))) ((*1 *2) - (-12 (-5 *2 (-693)) (-5 *1 (-338 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) + (-12 (-5 *2 (-694)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-146)))) ((*1 *2 *1) - (-12 (-4 *3 (-312)) (-4 *4 (-716)) (-4 *5 (-755)) (-5 *2 (-483)) - (-5 *1 (-442 *3 *4 *5 *6)) (-4 *6 (-860 *3 *4 *5)))) + (-12 (-4 *3 (-312)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-484)) + (-5 *1 (-443 *3 *4 *5 *6)) (-4 *6 (-861 *3 *4 *5)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-582 *6)) (-4 *6 (-755)) (-4 *4 (-312)) (-4 *5 (-716)) - (-5 *2 (-483)) (-5 *1 (-442 *4 *5 *6 *7)) (-4 *7 (-860 *4 *5 *6)))) - ((*1 *2 *1) (-12 (-4 *1 (-892 *3)) (-4 *3 (-960)) (-5 *2 (-829)))) - ((*1 *2) (-12 (-4 *1 (-1185 *3)) (-4 *3 (-312)) (-5 *2 (-107))))) -(((*1 *1) (-5 *1 (-1183)))) -(((*1 *2 *3) (-12 (-5 *3 (-328)) (-5 *2 (-179)) (-5 *1 (-1182)))) - ((*1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-1182))))) -(((*1 *2 *2) (-12 (-5 *2 (-829)) (-5 *1 (-1182)))) - ((*1 *2) (-12 (-5 *2 (-829)) (-5 *1 (-1182))))) -(((*1 *2) (-12 (-5 *2 (-829)) (-5 *1 (-1182)))) - ((*1 *2 *2) (-12 (-5 *2 (-829)) (-5 *1 (-1182))))) -(((*1 *2) (-12 (-5 *2 (-829)) (-5 *1 (-1182)))) - ((*1 *2 *2) (-12 (-5 *2 (-829)) (-5 *1 (-1182))))) -(((*1 *2) (-12 (-5 *2 (-582 (-1071))) (-5 *1 (-1182))))) -(((*1 *2) (-12 (-5 *2 (-582 (-1071))) (-5 *1 (-1182)))) - ((*1 *2 *2) (-12 (-5 *2 (-582 (-1071))) (-5 *1 (-1182))))) -(((*1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-1182))))) -(((*1 *2) (-12 (-5 *2 (-582 (-829))) (-5 *1 (-1182)))) - ((*1 *2 *2) (-12 (-5 *2 (-582 (-829))) (-5 *1 (-1182))))) -(((*1 *2) (-12 (-5 *2 (-582 (-693))) (-5 *1 (-1182)))) - ((*1 *2 *2) (-12 (-5 *2 (-582 (-693))) (-5 *1 (-1182))))) -(((*1 *2) (-12 (-5 *2 (-829)) (-5 *1 (-1182)))) - ((*1 *2 *2) (-12 (-5 *2 (-829)) (-5 *1 (-1182))))) -(((*1 *2) (-12 (-5 *2 (-782)) (-5 *1 (-1182)))) - ((*1 *2 *2) (-12 (-5 *2 (-782)) (-5 *1 (-1182))))) -(((*1 *2) (-12 (-5 *2 (-782)) (-5 *1 (-1182)))) - ((*1 *2 *2) (-12 (-5 *2 (-782)) (-5 *1 (-1182))))) -(((*1 *2) (-12 (-5 *2 (-782)) (-5 *1 (-1182)))) - ((*1 *2 *2) (-12 (-5 *2 (-782)) (-5 *1 (-1182))))) -(((*1 *2) (-12 (-5 *2 (-782)) (-5 *1 (-1182)))) - ((*1 *2 *2) (-12 (-5 *2 (-782)) (-5 *1 (-1182))))) -(((*1 *2 *2) (-12 (-5 *2 (-328)) (-5 *1 (-1181)))) - ((*1 *2) (-12 (-5 *2 (-328)) (-5 *1 (-1181))))) -(((*1 *2 *2) (-12 (-5 *2 (-328)) (-5 *1 (-1181)))) - ((*1 *2) (-12 (-5 *2 (-328)) (-5 *1 (-1181))))) -(((*1 *2 *2) (-12 (-5 *2 (-328)) (-5 *1 (-1181)))) - ((*1 *2) (-12 (-5 *2 (-328)) (-5 *1 (-1181))))) -(((*1 *2 *2) (-12 (-5 *2 (-328)) (-5 *1 (-1181)))) - ((*1 *2) (-12 (-5 *2 (-328)) (-5 *1 (-1181))))) -(((*1 *2 *2) (-12 (-5 *2 (-328)) (-5 *1 (-1181)))) - ((*1 *2) (-12 (-5 *2 (-328)) (-5 *1 (-1181))))) -(((*1 *1) (-5 *1 (-1181)))) + (-12 (-5 *3 (-583 *6)) (-4 *6 (-756)) (-4 *4 (-312)) (-4 *5 (-717)) + (-5 *2 (-484)) (-5 *1 (-443 *4 *5 *6 *7)) (-4 *7 (-861 *4 *5 *6)))) + ((*1 *2 *1) (-12 (-4 *1 (-893 *3)) (-4 *3 (-961)) (-5 *2 (-830)))) + ((*1 *2) (-12 (-4 *1 (-1186 *3)) (-4 *3 (-312)) (-5 *2 (-107))))) +(((*1 *1) (-5 *1 (-1184)))) +(((*1 *2 *3) (-12 (-5 *3 (-329)) (-5 *2 (-179)) (-5 *1 (-1183)))) + ((*1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-1183))))) +(((*1 *2 *2) (-12 (-5 *2 (-830)) (-5 *1 (-1183)))) + ((*1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-1183))))) +(((*1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-1183)))) + ((*1 *2 *2) (-12 (-5 *2 (-830)) (-5 *1 (-1183))))) +(((*1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-1183)))) + ((*1 *2 *2) (-12 (-5 *2 (-830)) (-5 *1 (-1183))))) +(((*1 *2) (-12 (-5 *2 (-583 (-1072))) (-5 *1 (-1183))))) +(((*1 *2) (-12 (-5 *2 (-583 (-1072))) (-5 *1 (-1183)))) + ((*1 *2 *2) (-12 (-5 *2 (-583 (-1072))) (-5 *1 (-1183))))) +(((*1 *2) (-12 (-5 *2 (-1184)) (-5 *1 (-1183))))) +(((*1 *2) (-12 (-5 *2 (-583 (-830))) (-5 *1 (-1183)))) + ((*1 *2 *2) (-12 (-5 *2 (-583 (-830))) (-5 *1 (-1183))))) +(((*1 *2) (-12 (-5 *2 (-583 (-694))) (-5 *1 (-1183)))) + ((*1 *2 *2) (-12 (-5 *2 (-583 (-694))) (-5 *1 (-1183))))) +(((*1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-1183)))) + ((*1 *2 *2) (-12 (-5 *2 (-830)) (-5 *1 (-1183))))) +(((*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1183)))) + ((*1 *2 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1183))))) +(((*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1183)))) + ((*1 *2 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1183))))) +(((*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1183)))) + ((*1 *2 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1183))))) +(((*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1183)))) + ((*1 *2 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1183))))) +(((*1 *2 *2) (-12 (-5 *2 (-329)) (-5 *1 (-1182)))) + ((*1 *2) (-12 (-5 *2 (-329)) (-5 *1 (-1182))))) +(((*1 *2 *2) (-12 (-5 *2 (-329)) (-5 *1 (-1182)))) + ((*1 *2) (-12 (-5 *2 (-329)) (-5 *1 (-1182))))) +(((*1 *2 *2) (-12 (-5 *2 (-329)) (-5 *1 (-1182)))) + ((*1 *2) (-12 (-5 *2 (-329)) (-5 *1 (-1182))))) +(((*1 *2 *2) (-12 (-5 *2 (-329)) (-5 *1 (-1182)))) + ((*1 *2) (-12 (-5 *2 (-329)) (-5 *1 (-1182))))) +(((*1 *2 *2) (-12 (-5 *2 (-329)) (-5 *1 (-1182)))) + ((*1 *2) (-12 (-5 *2 (-329)) (-5 *1 (-1182))))) +(((*1 *1) (-5 *1 (-1182)))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-1045 (-179))) (-5 *3 (-582 (-221))) (-5 *1 (-1181)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1045 (-179))) (-5 *3 (-1071)) (-5 *1 (-1181)))) - ((*1 *1 *1) (-5 *1 (-1181)))) -(((*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-960)) (-5 *2 (-1077 3 *3)))) - ((*1 *1) (-12 (-5 *1 (-1077 *2 *3)) (-14 *2 (-829)) (-4 *3 (-960)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1045 (-179))) (-5 *1 (-1181)))) - ((*1 *2 *1) (-12 (-5 *2 (-1045 (-179))) (-5 *1 (-1181))))) + (-12 (-5 *2 (-1046 (-179))) (-5 *3 (-583 (-221))) (-5 *1 (-1182)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1046 (-179))) (-5 *3 (-1072)) (-5 *1 (-1182)))) + ((*1 *1 *1) (-5 *1 (-1182)))) +(((*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-961)) (-5 *2 (-1078 3 *3)))) + ((*1 *1) (-12 (-5 *1 (-1078 *2 *3)) (-14 *2 (-830)) (-4 *3 (-961)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1046 (-179))) (-5 *1 (-1182)))) + ((*1 *2 *1) (-12 (-5 *2 (-1046 (-179))) (-5 *1 (-1182))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-693)) (-5 *3 (-853 *4)) (-4 *1 (-1046 *4)) (-4 *4 (-960)))) + (-12 (-5 *2 (-694)) (-5 *3 (-854 *4)) (-4 *1 (-1047 *4)) (-4 *4 (-961)))) ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-693)) (-5 *4 (-853 (-179))) (-5 *2 (-1183)) (-5 *1 (-1181))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-582 (-221))) (-5 *1 (-1180)))) - ((*1 *2 *1) (-12 (-5 *2 (-582 (-221))) (-5 *1 (-1180)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-582 (-221))) (-5 *1 (-1181)))) - ((*1 *2 *1) (-12 (-5 *2 (-582 (-221))) (-5 *1 (-1181))))) -(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-693)) (-5 *2 (-1183)) (-5 *1 (-1180)))) - ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-693)) (-5 *2 (-1183)) (-5 *1 (-1181))))) -(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-829)) (-5 *2 (-1183)) (-5 *1 (-1180)))) - ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-829)) (-5 *2 (-1183)) (-5 *1 (-1181))))) -(((*1 *1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-221)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-1071)) (-5 *3 (-582 (-221))) (-5 *1 (-222)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-1183)) (-5 *1 (-1180)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-1183)) (-5 *1 (-1181))))) + (-12 (-5 *3 (-694)) (-5 *4 (-854 (-179))) (-5 *2 (-1184)) (-5 *1 (-1182))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-221))) (-5 *1 (-1181)))) + ((*1 *2 *1) (-12 (-5 *2 (-583 (-221))) (-5 *1 (-1181)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-221))) (-5 *1 (-1182)))) + ((*1 *2 *1) (-12 (-5 *2 (-583 (-221))) (-5 *1 (-1182))))) +(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1184)) (-5 *1 (-1181)))) + ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1184)) (-5 *1 (-1182))))) +(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1184)) (-5 *1 (-1181)))) + ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1184)) (-5 *1 (-1182))))) +(((*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-221)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-1072)) (-5 *3 (-583 (-221))) (-5 *1 (-222)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1181)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1182))))) (((*1 *2 *1 *3 *3 *4 *4) - (-12 (-5 *3 (-693)) (-5 *4 (-829)) (-5 *2 (-1183)) (-5 *1 (-1180)))) + (-12 (-5 *3 (-694)) (-5 *4 (-830)) (-5 *2 (-1184)) (-5 *1 (-1181)))) ((*1 *2 *1 *3 *3 *4 *4) - (-12 (-5 *3 (-693)) (-5 *4 (-829)) (-5 *2 (-1183)) (-5 *1 (-1181))))) + (-12 (-5 *3 (-694)) (-5 *4 (-830)) (-5 *2 (-1184)) (-5 *1 (-1182))))) (((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3845 (-179)) + (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3846 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) (-5 *1 (-221)))) ((*1 *2 *3 *2) (-12 (-5 *2 - (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3845 (-179)) + (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3846 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) - (-5 *3 (-582 (-221))) (-5 *1 (-222)))) - ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-328)) (-5 *2 (-1183)) (-5 *1 (-1181)))) - ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-328)) (-5 *2 (-1183)) (-5 *1 (-1181)))) + (-5 *3 (-583 (-221))) (-5 *1 (-222)))) + ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-329)) (-5 *2 (-1184)) (-5 *1 (-1182)))) + ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-329)) (-5 *2 (-1184)) (-5 *1 (-1182)))) ((*1 *2 *1 *3 *3 *4 *4 *4) - (-12 (-5 *3 (-483)) (-5 *4 (-328)) (-5 *2 (-1183)) (-5 *1 (-1181)))) + (-12 (-5 *3 (-484)) (-5 *4 (-329)) (-5 *2 (-1184)) (-5 *1 (-1182)))) ((*1 *2 *1 *3) (-12 (-5 *3 - (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3845 (-179)) + (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3846 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) - (-5 *2 (-1183)) (-5 *1 (-1181)))) + (-5 *2 (-1184)) (-5 *1 (-1182)))) ((*1 *2 *1) (-12 (-5 *2 - (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3845 (-179)) + (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3846 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) - (-5 *1 (-1181)))) + (-5 *1 (-1182)))) ((*1 *2 *1 *3 *3 *3 *3 *3) - (-12 (-5 *3 (-328)) (-5 *2 (-1183)) (-5 *1 (-1181))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-1183)) (-5 *1 (-1180)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-1183)) (-5 *1 (-1181))))) + (-12 (-5 *3 (-329)) (-5 *2 (-1184)) (-5 *1 (-1182))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1181)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1182))))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-829)) (-5 *4 (-782)) (-5 *2 (-1183)) (-5 *1 (-1180)))) + (-12 (-5 *3 (-830)) (-5 *4 (-783)) (-5 *2 (-1184)) (-5 *1 (-1181)))) ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-829)) (-5 *4 (-1071)) (-5 *2 (-1183)) (-5 *1 (-1180)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-1183)) (-5 *1 (-1181))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-1183)) (-5 *1 (-1181))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-1183)) (-5 *1 (-1181))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-1183)) (-5 *1 (-1181))))) -(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-483)) (-5 *2 (-1183)) (-5 *1 (-1181)))) - ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-328)) (-5 *2 (-1183)) (-5 *1 (-1181))))) -(((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1000 (-179))) (-5 *1 (-835)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1000 (-179))) (-5 *1 (-835)))) - ((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1000 (-179))) (-5 *1 (-837)))) - ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-328)) (-5 *2 (-1183)) (-5 *1 (-1181)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-328)) (-5 *2 (-1183)) (-5 *1 (-1181))))) -(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1113))))) + (-12 (-5 *3 (-830)) (-5 *4 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1181)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1182))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1182))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1182))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1182))))) +(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-484)) (-5 *2 (-1184)) (-5 *1 (-1182)))) + ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-329)) (-5 *2 (-1184)) (-5 *1 (-1182))))) +(((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1001 (-179))) (-5 *1 (-836)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1001 (-179))) (-5 *1 (-836)))) + ((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1001 (-179))) (-5 *1 (-838)))) + ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-329)) (-5 *2 (-1184)) (-5 *1 (-1182)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-329)) (-5 *2 (-1184)) (-5 *1 (-1182))))) +(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1114))))) ((*1 *2 *1 *3 *4 *4) - (-12 (-5 *3 (-829)) (-5 *4 (-328)) (-5 *2 (-1183)) (-5 *1 (-1180)))) - ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-328)) (-5 *2 (-1183)) (-5 *1 (-1181))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-1183)) (-5 *1 (-1181))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-328)) (-5 *2 (-1183)) (-5 *1 (-1181))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-328)) (-5 *2 (-1183)) (-5 *1 (-1181))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-1183)) (-5 *1 (-1181))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-1183)) (-5 *1 (-1181))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-1183)) (-5 *1 (-1181))))) -(((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-328)) (-5 *2 (-1183)) (-5 *1 (-1181))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-328)) (-5 *2 (-1183)) (-5 *1 (-1181))))) -(((*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-1180)))) - ((*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-1181))))) -(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-130)) (-5 *2 (-1183)) (-5 *1 (-1181))))) + (-12 (-5 *3 (-830)) (-5 *4 (-329)) (-5 *2 (-1184)) (-5 *1 (-1181)))) + ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-329)) (-5 *2 (-1184)) (-5 *1 (-1182))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1182))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-329)) (-5 *2 (-1184)) (-5 *1 (-1182))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-329)) (-5 *2 (-1184)) (-5 *1 (-1182))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1182))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1182))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1182))))) +(((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-329)) (-5 *2 (-1184)) (-5 *1 (-1182))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-329)) (-5 *2 (-1184)) (-5 *1 (-1182))))) +(((*1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-1181)))) + ((*1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-1182))))) +(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-130)) (-5 *2 (-1184)) (-5 *1 (-1182))))) (((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-582 (-1071))) (-5 *2 (-1071)) (-5 *1 (-1180)))) - ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-1180)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-1180)))) + (-12 (-5 *3 (-583 (-1072))) (-5 *2 (-1072)) (-5 *1 (-1181)))) + ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-1181)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-1181)))) ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-582 (-1071))) (-5 *2 (-1071)) (-5 *1 (-1181)))) - ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-1181)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-1181))))) + (-12 (-5 *3 (-583 (-1072))) (-5 *2 (-1072)) (-5 *1 (-1182)))) + ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-1182)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-1182))))) (((*1 *2 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-145)))) - ((*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-1180)))) - ((*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-1181))))) -(((*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-406)))) - ((*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-1180)))) - ((*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-1181))))) -(((*1 *2 *1) (-12 (-5 *2 (-582 (-853 (-179)))) (-5 *1 (-1180))))) -(((*1 *1) (-5 *1 (-1180)))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-406)) (-5 *3 (-582 (-221))) (-5 *1 (-1180)))) - ((*1 *1 *1) (-5 *1 (-1180)))) + ((*1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-1181)))) + ((*1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-1182))))) +(((*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-407)))) + ((*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-1181)))) + ((*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-1182))))) +(((*1 *2 *1) (-12 (-5 *2 (-583 (-854 (-179)))) (-5 *1 (-1181))))) +(((*1 *1) (-5 *1 (-1181)))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-407)) (-5 *3 (-583 (-221))) (-5 *1 (-1181)))) + ((*1 *1 *1) (-5 *1 (-1181)))) (((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) - (-12 (-5 *3 (-829)) (-5 *4 (-179)) (-5 *5 (-483)) (-5 *6 (-782)) - (-5 *2 (-1183)) (-5 *1 (-1180))))) + (-12 (-5 *3 (-830)) (-5 *4 (-179)) (-5 *5 (-484)) (-5 *6 (-783)) + (-5 *2 (-1184)) (-5 *1 (-1181))))) (((*1 *2 *1) (-12 (-5 *2 - (-1177 + (-1178 (-2 (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |deltaX| (-179)) - (|:| |deltaY| (-179)) (|:| -3848 (-483)) (|:| -3846 (-483)) - (|:| |spline| (-483)) (|:| -3877 (-483)) (|:| |axesColor| (-782)) - (|:| -3849 (-483)) (|:| |unitsColor| (-782)) (|:| |showing| (-483))))) - (-5 *1 (-1180))))) -(((*1 *2 *3) (-12 (-5 *3 (-829)) (-5 *2 (-1090 (-348 (-483)))) (-5 *1 (-164)))) - ((*1 *2 *1) (-12 (-5 *2 (-1177 (-3 (-406) "undefined"))) (-5 *1 (-1180))))) + (|:| |deltaY| (-179)) (|:| -3849 (-484)) (|:| -3847 (-484)) + (|:| |spline| (-484)) (|:| -3878 (-484)) (|:| |axesColor| (-783)) + (|:| -3850 (-484)) (|:| |unitsColor| (-783)) (|:| |showing| (-484))))) + (-5 *1 (-1181))))) +(((*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1091 (-349 (-484)))) (-5 *1 (-164)))) + ((*1 *2 *1) (-12 (-5 *2 (-1178 (-3 (-407) "undefined"))) (-5 *1 (-1181))))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-406)) (-5 *4 (-829)) (-5 *2 (-1183)) (-5 *1 (-1180))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-829)) (-5 *2 (-406)) (-5 *1 (-1180))))) + (-12 (-5 *3 (-407)) (-5 *4 (-830)) (-5 *2 (-1184)) (-5 *1 (-1181))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-830)) (-5 *2 (-407)) (-5 *1 (-1181))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-582 (-328))) (-5 *3 (-582 (-221))) (-5 *1 (-222)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-582 (-328))) (-5 *1 (-406)))) - ((*1 *2 *1) (-12 (-5 *2 (-582 (-328))) (-5 *1 (-406)))) + (-12 (-5 *2 (-583 (-329))) (-5 *3 (-583 (-221))) (-5 *1 (-222)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-583 (-329))) (-5 *1 (-407)))) + ((*1 *2 *1) (-12 (-5 *2 (-583 (-329))) (-5 *1 (-407)))) ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-829)) (-5 *4 (-782)) (-5 *2 (-1183)) (-5 *1 (-1180)))) + (-12 (-5 *3 (-830)) (-5 *4 (-783)) (-5 *2 (-1184)) (-5 *1 (-1181)))) ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-829)) (-5 *4 (-1071)) (-5 *2 (-1183)) (-5 *1 (-1180))))) + (-12 (-5 *3 (-830)) (-5 *4 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1181))))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-829)) (-5 *4 (-1071)) (-5 *2 (-1183)) (-5 *1 (-1180))))) + (-12 (-5 *3 (-830)) (-5 *4 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1181))))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-829)) (-5 *4 (-1071)) (-5 *2 (-1183)) (-5 *1 (-1180))))) + (-12 (-5 *3 (-830)) (-5 *4 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1181))))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-829)) (-5 *4 (-1071)) (-5 *2 (-1183)) (-5 *1 (-1180))))) -(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1113))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-654 *2)) (-4 *2 (-312)))) - ((*1 *1 *2) (-12 (-5 *1 (-654 *2)) (-4 *2 (-312)))) + (-12 (-5 *3 (-830)) (-5 *4 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1181))))) +(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1114))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-655 *2)) (-4 *2 (-312)))) + ((*1 *1 *2) (-12 (-5 *1 (-655 *2)) (-4 *2 (-312)))) ((*1 *2 *1 *3 *4 *4) - (-12 (-5 *3 (-829)) (-5 *4 (-328)) (-5 *2 (-1183)) (-5 *1 (-1180))))) + (-12 (-5 *3 (-830)) (-5 *4 (-329)) (-5 *2 (-1184)) (-5 *1 (-1181))))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-829)) (-5 *4 (-1071)) (-5 *2 (-1183)) (-5 *1 (-1180))))) + (-12 (-5 *3 (-830)) (-5 *4 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1181))))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-406)) (-5 *4 (-829)) (-5 *2 (-1183)) (-5 *1 (-1180))))) + (-12 (-5 *3 (-407)) (-5 *4 (-830)) (-5 *2 (-1184)) (-5 *1 (-1181))))) (((*1 *2 *3 *4 *4 *5 *6) - (-12 (-5 *3 (-582 (-582 (-853 (-179))))) (-5 *4 (-782)) (-5 *5 (-829)) - (-5 *6 (-582 (-221))) (-5 *2 (-1180)) (-5 *1 (-1179)))) + (-12 (-5 *3 (-583 (-583 (-854 (-179))))) (-5 *4 (-783)) (-5 *5 (-830)) + (-5 *6 (-583 (-221))) (-5 *2 (-1181)) (-5 *1 (-1180)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-582 (-582 (-853 (-179))))) (-5 *4 (-582 (-221))) - (-5 *2 (-1180)) (-5 *1 (-1179))))) + (-12 (-5 *3 (-583 (-583 (-854 (-179))))) (-5 *4 (-583 (-221))) + (-5 *2 (-1181)) (-5 *1 (-1180))))) (((*1 *2 *3 *4 *4 *5 *6) - (-12 (-5 *3 (-582 (-582 (-853 (-179))))) (-5 *4 (-782)) (-5 *5 (-829)) - (-5 *6 (-582 (-221))) (-5 *2 (-406)) (-5 *1 (-1179)))) + (-12 (-5 *3 (-583 (-583 (-854 (-179))))) (-5 *4 (-783)) (-5 *5 (-830)) + (-5 *6 (-583 (-221))) (-5 *2 (-407)) (-5 *1 (-1180)))) ((*1 *2 *3) - (-12 (-5 *3 (-582 (-582 (-853 (-179))))) (-5 *2 (-406)) (-5 *1 (-1179)))) + (-12 (-5 *3 (-583 (-583 (-854 (-179))))) (-5 *2 (-407)) (-5 *1 (-1180)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-582 (-582 (-853 (-179))))) (-5 *4 (-582 (-221))) (-5 *2 (-406)) - (-5 *1 (-1179))))) + (-12 (-5 *3 (-583 (-583 (-854 (-179))))) (-5 *4 (-583 (-221))) (-5 *2 (-407)) + (-5 *1 (-1180))))) (((*1 *1 *1) (-5 *1 (-48))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-58 *5)) (-4 *5 (-1127)) (-4 *2 (-1127)) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-58 *5)) (-4 *5 (-1128)) (-4 *2 (-1128)) (-5 *1 (-59 *5 *2)))) ((*1 *2 *3 *1 *2 *2) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1012)) (|has| *1 (-6 -3993)) - (-4 *1 (-124 *2)) (-4 *2 (-1127)))) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1013)) (|has| *1 (-6 -3994)) + (-4 *1 (-124 *2)) (-4 *2 (-1128)))) ((*1 *2 *3 *1 *2) - (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -3993)) (-4 *1 (-124 *2)) - (-4 *2 (-1127)))) + (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -3994)) (-4 *1 (-124 *2)) + (-4 *2 (-1128)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -3993)) (-4 *1 (-124 *2)) - (-4 *2 (-1127)))) + (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -3994)) (-4 *1 (-124 *2)) + (-4 *2 (-1128)))) ((*1 *2 *3) - (-12 (-4 *4 (-960)) (-5 *2 (-2 (|:| -2003 (-1083 *4)) (|:| |deg| (-829)))) - (-5 *1 (-175 *4 *5)) (-5 *3 (-1083 *4)) (-4 *5 (-494)))) + (-12 (-4 *4 (-961)) (-5 *2 (-2 (|:| -2004 (-1084 *4)) (|:| |deg| (-830)))) + (-5 *1 (-175 *4 *5)) (-5 *3 (-1084 *4)) (-4 *5 (-495)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-197 *5 *6)) (-14 *5 (-693)) - (-4 *6 (-1127)) (-4 *2 (-1127)) (-5 *1 (-198 *5 *6 *2)))) + (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-197 *5 *6)) (-14 *5 (-694)) + (-4 *6 (-1128)) (-4 *2 (-1128)) (-5 *1 (-198 *5 *6 *2)))) ((*1 *1 *2 *3) - (-12 (-4 *4 (-146)) (-5 *1 (-244 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1153 *4)) + (-12 (-4 *4 (-146)) (-5 *1 (-244 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1154 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-494)) (-4 *2 (-1012)))) + ((*1 *1 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-495)) (-4 *2 (-1013)))) ((*1 *1 *1) - (-12 (-4 *1 (-286 *2 *3 *4 *5)) (-4 *2 (-312)) (-4 *3 (-1153 *2)) - (-4 *4 (-1153 (-348 *3))) (-4 *5 (-291 *2 *3 *4)))) + (-12 (-4 *1 (-286 *2 *3 *4 *5)) (-4 *2 (-312)) (-4 *3 (-1154 *2)) + (-4 *4 (-1154 (-349 *3))) (-4 *5 (-291 *2 *3 *4)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1127)) (-4 *2 (-1127)) - (-5 *1 (-323 *5 *4 *2 *6)) (-4 *4 (-322 *5)) (-4 *6 (-322 *2)))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1128)) (-4 *2 (-1128)) + (-5 *1 (-324 *5 *4 *2 *6)) (-4 *4 (-323 *5)) (-4 *6 (-323 *2)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1012)) (-4 *2 (-1012)) - (-5 *1 (-368 *5 *4 *2 *6)) (-4 *4 (-367 *5)) (-4 *6 (-367 *2)))) - ((*1 *1 *1) (-5 *1 (-433))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1013)) (-4 *2 (-1013)) + (-5 *1 (-369 *5 *4 *2 *6)) (-4 *4 (-368 *5)) (-4 *6 (-368 *2)))) + ((*1 *1 *1) (-5 *1 (-434))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-582 *5)) (-4 *5 (-1127)) (-4 *2 (-1127)) - (-5 *1 (-583 *5 *2)))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-583 *5)) (-4 *5 (-1128)) (-4 *2 (-1128)) + (-5 *1 (-584 *5 *2)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-960)) (-4 *2 (-960)) (-4 *6 (-322 *5)) - (-4 *7 (-322 *5)) (-4 *8 (-322 *2)) (-4 *9 (-322 *2)) - (-5 *1 (-627 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-626 *5 *6 *7)) - (-4 *10 (-626 *2 *8 *9)))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-961)) (-4 *2 (-961)) (-4 *6 (-323 *5)) + (-4 *7 (-323 *5)) (-4 *8 (-323 *2)) (-4 *9 (-323 *2)) + (-5 *1 (-628 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-627 *5 *6 *7)) + (-4 *10 (-627 *2 *8 *9)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-647 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) + (-12 (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *2) (-12 (-4 *3 (-960)) (-5 *1 (-648 *3 *2)) (-4 *2 (-1153 *3)))) + ((*1 *1 *2) (-12 (-4 *3 (-961)) (-5 *1 (-649 *3 *2)) (-4 *2 (-1154 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-651 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) + (-12 (-5 *1 (-652 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-348 *4)) (-4 *4 (-1153 *3)) (-4 *3 (-312)) - (-4 *3 (-146)) (-4 *1 (-660 *3 *4)))) - ((*1 *1 *2) (-12 (-4 *3 (-146)) (-4 *1 (-660 *3 *2)) (-4 *2 (-1153 *3)))) + (|partial| -12 (-5 *2 (-349 *4)) (-4 *4 (-1154 *3)) (-4 *3 (-312)) + (-4 *3 (-146)) (-4 *1 (-661 *3 *4)))) + ((*1 *1 *2) (-12 (-4 *3 (-146)) (-4 *1 (-661 *3 *2)) (-4 *2 (-1154 *3)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-868 *5)) (-4 *5 (-1127)) (-4 *2 (-1127)) - (-5 *1 (-869 *5 *2)))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-869 *5)) (-4 *5 (-1128)) (-4 *2 (-1128)) + (-5 *1 (-870 *5 *2)))) ((*1 *1 *2) - (-12 (-4 *3 (-312)) (-4 *4 (-716)) (-4 *5 (-755)) - (-5 *1 (-946 *3 *4 *5 *2 *6)) (-4 *2 (-860 *3 *4 *5)) (-14 *6 (-582 *2)))) + (-12 (-4 *3 (-312)) (-4 *4 (-717)) (-4 *5 (-756)) + (-5 *1 (-947 *3 *4 *5 *2 *6)) (-4 *2 (-861 *3 *4 *5)) (-14 *6 (-583 *2)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-960)) (-4 *2 (-960)) (-14 *5 (-693)) - (-14 *6 (-693)) (-4 *8 (-196 *6 *7)) (-4 *9 (-196 *5 *7)) + (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-961)) (-4 *2 (-961)) (-14 *5 (-694)) + (-14 *6 (-694)) (-4 *8 (-196 *6 *7)) (-4 *9 (-196 *5 *7)) (-4 *10 (-196 *6 *2)) (-4 *11 (-196 *5 *2)) - (-5 *1 (-966 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) - (-4 *4 (-964 *5 *6 *7 *8 *9)) (-4 *12 (-964 *5 *6 *2 *10 *11)))) + (-5 *1 (-967 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) + (-4 *4 (-965 *5 *6 *7 *8 *9)) (-4 *12 (-965 *5 *6 *2 *10 *11)))) ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1067 *5)) (-4 *5 (-1127)) (-4 *2 (-1127)) - (-5 *1 (-1069 *5 *2)))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1068 *5)) (-4 *5 (-1128)) (-4 *2 (-1128)) + (-5 *1 (-1070 *5 *2)))) ((*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-85) *2 *2)) - (-4 *1 (-1122 *5 *6 *7 *2)) (-4 *5 (-494)) (-4 *6 (-716)) (-4 *7 (-755)) - (-4 *2 (-976 *5 *6 *7)))) + (-4 *1 (-1123 *5 *6 *7 *2)) (-4 *5 (-495)) (-4 *6 (-717)) (-4 *7 (-756)) + (-4 *2 (-977 *5 *6 *7)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1177 *5)) (-4 *5 (-1127)) (-4 *2 (-1127)) - (-5 *1 (-1178 *5 *2))))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1178 *5)) (-4 *5 (-1128)) (-4 *2 (-1128)) + (-5 *1 (-1179 *5 *2))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-58 *6)) (-4 *6 (-1127)) (-4 *5 (-1127)) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-58 *6)) (-4 *6 (-1128)) (-4 *5 (-1128)) (-5 *2 (-58 *5)) (-5 *1 (-59 *6 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-197 *6 *7)) (-14 *6 (-693)) - (-4 *7 (-1127)) (-4 *5 (-1127)) (-5 *2 (-197 *6 *5)) + (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-197 *6 *7)) (-14 *6 (-694)) + (-4 *7 (-1128)) (-4 *5 (-1128)) (-5 *2 (-197 *6 *5)) (-5 *1 (-198 *6 *7 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1127)) (-4 *5 (-1127)) (-4 *2 (-322 *5)) - (-5 *1 (-323 *6 *4 *5 *2)) (-4 *4 (-322 *6)))) + (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1128)) (-4 *5 (-1128)) (-4 *2 (-323 *5)) + (-5 *1 (-324 *6 *4 *5 *2)) (-4 *4 (-323 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1012)) (-4 *5 (-1012)) (-4 *2 (-367 *5)) - (-5 *1 (-368 *6 *4 *5 *2)) (-4 *4 (-367 *6)))) + (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1013)) (-4 *5 (-1013)) (-4 *2 (-368 *5)) + (-5 *1 (-369 *6 *4 *5 *2)) (-4 *4 (-368 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-582 *6)) (-4 *6 (-1127)) (-4 *5 (-1127)) - (-5 *2 (-582 *5)) (-5 *1 (-583 *6 *5)))) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-583 *6)) (-4 *6 (-1128)) (-4 *5 (-1128)) + (-5 *2 (-583 *5)) (-5 *1 (-584 *6 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-868 *6)) (-4 *6 (-1127)) (-4 *5 (-1127)) - (-5 *2 (-868 *5)) (-5 *1 (-869 *6 *5)))) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-869 *6)) (-4 *6 (-1128)) (-4 *5 (-1128)) + (-5 *2 (-869 *5)) (-5 *1 (-870 *6 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1067 *6)) (-4 *6 (-1127)) (-4 *3 (-1127)) - (-5 *2 (-1067 *3)) (-5 *1 (-1069 *6 *3)))) + (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1068 *6)) (-4 *6 (-1128)) (-4 *3 (-1128)) + (-5 *2 (-1068 *3)) (-5 *1 (-1070 *6 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1177 *6)) (-4 *6 (-1127)) (-4 *5 (-1127)) - (-5 *2 (-1177 *5)) (-5 *1 (-1178 *6 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-582 *3)) (-4 *3 (-1127)) (-5 *1 (-1177 *3))))) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1178 *6)) (-4 *6 (-1128)) (-4 *5 (-1128)) + (-5 *2 (-1178 *5)) (-5 *1 (-1179 *6 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1128)) (-5 *1 (-1178 *3))))) (((*1 *1 *1 *1) (-4 *1 (-25))) ((*1 *1 *1 *1) (-5 *1 (-130))) ((*1 *1 *1 *1) (-12 (-5 *1 (-167 *2)) (-4 *2 - (-13 (-755) - (-10 -8 (-15 -3798 ((-1071) $ (-1088))) (-15 -3615 ((-1183) $)) - (-15 -1962 ((-1183) $))))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-249 *2)) (-4 *2 (-25)) (-4 *2 (-1127)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-25)) (-4 *2 (-1127)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-274 *2 *3)) (-4 *2 (-1012)) (-4 *3 (-104)))) + (-13 (-756) + (-10 -8 (-15 -3799 ((-1072) $ (-1089))) (-15 -3616 ((-1184) $)) + (-15 -1963 ((-1184) $))))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-249 *2)) (-4 *2 (-25)) (-4 *2 (-1128)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-25)) (-4 *2 (-1128)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-274 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-104)))) ((*1 *1 *2 *1) - (-12 (-4 *3 (-13 (-312) (-120))) (-5 *1 (-340 *3 *2)) (-4 *2 (-1153 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-408 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) + (-12 (-4 *3 (-13 (-312) (-120))) (-5 *1 (-341 *3 *2)) (-4 *2 (-1154 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-409 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-312)) (-4 *3 (-716)) (-4 *4 (-755)) (-5 *1 (-442 *2 *3 *4 *5)) - (-4 *5 (-860 *2 *3 *4)))) - ((*1 *1 *1 *1) (-5 *1 (-472))) + (-12 (-4 *2 (-312)) (-4 *3 (-717)) (-4 *4 (-756)) (-5 *1 (-443 *2 *3 *4 *5)) + (-4 *5 (-861 *2 *3 *4)))) + ((*1 *1 *1 *1) (-5 *1 (-473))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-626 *2 *3 *4)) (-4 *2 (-960)) (-4 *3 (-322 *2)) - (-4 *4 (-322 *2)))) - ((*1 *1 *1 *1) (-5 *1 (-771))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-799 *2)) (-4 *2 (-1012)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-960)) (-5 *1 (-1073 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-853 (-179))) (-5 *1 (-1124)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1176 *2)) (-4 *2 (-1127)) (-4 *2 (-25))))) + (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-323 *2)) + (-4 *4 (-323 *2)))) + ((*1 *1 *1 *1) (-5 *1 (-772))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-800 *2)) (-4 *2 (-1013)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-961)) (-5 *1 (-1074 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-854 (-179))) (-5 *1 (-1125)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1177 *2)) (-4 *2 (-1128)) (-4 *2 (-25))))) (((*1 *1 *2 *2) - (-12 (-5 *2 (-693)) (-4 *3 (-960)) (-4 *1 (-626 *3 *4 *5)) (-4 *4 (-322 *3)) - (-4 *5 (-322 *3)))) + (-12 (-5 *2 (-694)) (-4 *3 (-961)) (-4 *1 (-627 *3 *4 *5)) (-4 *4 (-323 *3)) + (-4 *5 (-323 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-693)) (-4 *1 (-1176 *3)) (-4 *3 (-23)) (-4 *3 (-1127))))) + (-12 (-5 *2 (-694)) (-4 *1 (-1177 *3)) (-4 *3 (-23)) (-4 *3 (-1128))))) (((*1 *1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1 *1) (|partial| -5 *1 (-107))) ((*1 *1 *1 *1) (-12 (-5 *1 (-167 *2)) (-4 *2 - (-13 (-755) - (-10 -8 (-15 -3798 ((-1071) $ (-1088))) (-15 -3615 ((-1183) $)) - (-15 -1962 ((-1183) $))))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-249 *2)) (-4 *2 (-21)) (-4 *2 (-1127)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-21)) (-4 *2 (-1127)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-408 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) - ((*1 *1 *1) (-12 (-4 *1 (-408 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) + (-13 (-756) + (-10 -8 (-15 -3799 ((-1072) $ (-1089))) (-15 -3616 ((-1184) $)) + (-15 -1963 ((-1184) $))))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-249 *2)) (-4 *2 (-21)) (-4 *2 (-1128)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-21)) (-4 *2 (-1128)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-409 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) + ((*1 *1 *1) (-12 (-4 *1 (-409 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) ((*1 *1 *1) - (-12 (-4 *1 (-626 *2 *3 *4)) (-4 *2 (-960)) (-4 *3 (-322 *2)) - (-4 *4 (-322 *2)))) + (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-323 *2)) + (-4 *4 (-323 *2)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-626 *2 *3 *4)) (-4 *2 (-960)) (-4 *3 (-322 *2)) - (-4 *4 (-322 *2)))) - ((*1 *1 *1) (-5 *1 (-771))) ((*1 *1 *1 *1) (-5 *1 (-771))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-960)) (-5 *1 (-1073 *3)))) - ((*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-960)) (-5 *1 (-1073 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-853 (-179))) (-5 *1 (-1124)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1176 *2)) (-4 *2 (-1127)) (-4 *2 (-21)))) - ((*1 *1 *1) (-12 (-4 *1 (-1176 *2)) (-4 *2 (-1127)) (-4 *2 (-21))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-196 *3 *2)) (-4 *2 (-1127)) (-4 *2 (-960)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-693)) (-5 *1 (-771)))) - ((*1 *1 *1) (-5 *1 (-771))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-853 (-179))) (-5 *2 (-179)) (-5 *1 (-1124)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-1176 *2)) (-4 *2 (-1127)) (-4 *2 (-960))))) + (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-323 *2)) + (-4 *4 (-323 *2)))) + ((*1 *1 *1) (-5 *1 (-772))) ((*1 *1 *1 *1) (-5 *1 (-772))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-961)) (-5 *1 (-1074 *3)))) + ((*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-961)) (-5 *1 (-1074 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-854 (-179))) (-5 *1 (-1125)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1177 *2)) (-4 *2 (-1128)) (-4 *2 (-21)))) + ((*1 *1 *1) (-12 (-4 *1 (-1177 *2)) (-4 *2 (-1128)) (-4 *2 (-21))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-196 *3 *2)) (-4 *2 (-1128)) (-4 *2 (-961)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-772)))) + ((*1 *1 *1) (-5 *1 (-772))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-854 (-179))) (-5 *2 (-179)) (-5 *1 (-1125)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-1177 *2)) (-4 *2 (-1128)) (-4 *2 (-961))))) (((*1 *2 *1 *1) - (-12 (-4 *1 (-1176 *3)) (-4 *3 (-1127)) (-4 *3 (-960)) (-5 *2 (-629 *3))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-892 *2)) (-4 *2 (-960)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-853 (-179))) (-5 *1 (-1124)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1176 *2)) (-4 *2 (-1127)) (-4 *2 (-960))))) -(((*1 *2 *3) - (-12 (-4 *4 (-960)) (-4 *2 (-13 (-345) (-949 *4) (-312) (-1113) (-239))) - (-5 *1 (-381 *4 *3 *2)) (-4 *3 (-1153 *4)))) - ((*1 *1 *1) (-4 *1 (-482))) - ((*1 *2 *1) (-12 (-5 *2 (-829)) (-5 *1 (-613 *3)) (-4 *3 (-755)))) - ((*1 *2 *1) (-12 (-5 *2 (-829)) (-5 *1 (-617 *3)) (-4 *3 (-755)))) - ((*1 *2 *1) (-12 (-5 *2 (-693)) (-5 *1 (-738 *3)) (-4 *3 (-755)))) - ((*1 *2 *1) (-12 (-5 *2 (-693)) (-5 *1 (-802 *3)) (-4 *3 (-755)))) - ((*1 *2 *1) (-12 (-4 *1 (-907 *3)) (-4 *3 (-1127)) (-5 *2 (-693)))) - ((*1 *2 *1) (-12 (-5 *2 (-693)) (-5 *1 (-1125 *3)) (-4 *3 (-1127)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1176 *2)) (-4 *2 (-1127)) (-4 *2 (-914)) (-4 *2 (-960))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1176 *2)) (-4 *2 (-1127)) (-4 *2 (-914)) (-4 *2 (-960))))) -(((*1 *2 *1) (-12 (-4 *1 (-228 *2)) (-4 *2 (-755)))) + (-12 (-4 *1 (-1177 *3)) (-4 *3 (-1128)) (-4 *3 (-961)) (-5 *2 (-630 *3))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-893 *2)) (-4 *2 (-961)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-854 (-179))) (-5 *1 (-1125)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1177 *2)) (-4 *2 (-1128)) (-4 *2 (-961))))) +(((*1 *2 *3) + (-12 (-4 *4 (-961)) (-4 *2 (-13 (-346) (-950 *4) (-312) (-1114) (-239))) + (-5 *1 (-382 *4 *3 *2)) (-4 *3 (-1154 *4)))) + ((*1 *1 *1) (-4 *1 (-483))) + ((*1 *2 *1) (-12 (-5 *2 (-830)) (-5 *1 (-614 *3)) (-4 *3 (-756)))) + ((*1 *2 *1) (-12 (-5 *2 (-830)) (-5 *1 (-618 *3)) (-4 *3 (-756)))) + ((*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-739 *3)) (-4 *3 (-756)))) + ((*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-803 *3)) (-4 *3 (-756)))) + ((*1 *2 *1) (-12 (-4 *1 (-908 *3)) (-4 *3 (-1128)) (-5 *2 (-694)))) + ((*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-1126 *3)) (-4 *3 (-1128)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1177 *2)) (-4 *2 (-1128)) (-4 *2 (-915)) (-4 *2 (-961))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1177 *2)) (-4 *2 (-1128)) (-4 *2 (-915)) (-4 *2 (-961))))) +(((*1 *2 *1) (-12 (-4 *1 (-228 *2)) (-4 *2 (-756)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1088)) (-5 *1 (-772 *3)) (-14 *3 (-582 *2)))) - ((*1 *2 *1) (-12 (-5 *2 (-1088)) (-5 *1 (-901)))) + (|partial| -12 (-5 *2 (-1089)) (-5 *1 (-773 *3)) (-14 *3 (-583 *2)))) + ((*1 *2 *1) (-12 (-5 *2 (-1089)) (-5 *1 (-902)))) ((*1 *2 *1) - (-12 (-4 *4 (-1127)) (-5 *2 (-1088)) (-5 *1 (-970 *3 *4)) - (-4 *3 (-1005 *4)))) - ((*1 *2 *1) (-12 (-5 *2 (-1088)) (-5 *1 (-1003 *3)) (-4 *3 (-1127)))) + (-12 (-4 *4 (-1128)) (-5 *2 (-1089)) (-5 *1 (-971 *3 *4)) + (-4 *3 (-1006 *4)))) + ((*1 *2 *1) (-12 (-5 *2 (-1089)) (-5 *1 (-1004 *3)) (-4 *3 (-1128)))) ((*1 *2 *1) - (-12 (-4 *1 (-1156 *3 *4)) (-4 *3 (-960)) (-4 *4 (-715)) (-5 *2 (-1088)))) - ((*1 *2) (-12 (-5 *2 (-1088)) (-5 *1 (-1174 *3)) (-14 *3 *2)))) + (-12 (-4 *1 (-1157 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716)) (-5 *2 (-1089)))) + ((*1 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-1175 *3)) (-14 *3 *2)))) (((*1 *2 *3) - (-12 (-5 *3 (-348 *5)) (-4 *5 (-1153 *4)) (-4 *4 (-494)) (-4 *4 (-960)) - (-4 *2 (-1170 *4)) (-5 *1 (-1172 *4 *5 *6 *2)) (-4 *6 (-599 *5))))) + (-12 (-5 *3 (-349 *5)) (-4 *5 (-1154 *4)) (-4 *4 (-495)) (-4 *4 (-961)) + (-4 *2 (-1171 *4)) (-5 *1 (-1173 *4 *5 *6 *2)) (-4 *6 (-600 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-960)) (-4 *5 (-1153 *4)) (-5 *2 (-1 *6 (-582 *6))) - (-5 *1 (-1172 *4 *5 *3 *6)) (-4 *3 (-599 *5)) (-4 *6 (-1170 *4))))) + (-12 (-4 *4 (-961)) (-4 *5 (-1154 *4)) (-5 *2 (-1 *6 (-583 *6))) + (-5 *1 (-1173 *4 *5 *3 *6)) (-4 *3 (-600 *5)) (-4 *6 (-1171 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-693)) (-4 *5 (-960)) (-4 *2 (-1153 *5)) - (-5 *1 (-1172 *5 *2 *6 *3)) (-4 *6 (-599 *2)) (-4 *3 (-1170 *5))))) + (-12 (-5 *4 (-694)) (-4 *5 (-961)) (-4 *2 (-1154 *5)) + (-5 *1 (-1173 *5 *2 *6 *3)) (-4 *6 (-600 *2)) (-4 *3 (-1171 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-960)) (-4 *3 (-1153 *4)) (-4 *2 (-1170 *4)) - (-5 *1 (-1172 *4 *3 *5 *2)) (-4 *5 (-599 *3))))) + (-12 (-4 *4 (-961)) (-4 *3 (-1154 *4)) (-4 *2 (-1171 *4)) + (-5 *1 (-1173 *4 *3 *5 *2)) (-4 *5 (-600 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-582 *5)) (-5 *4 (-582 (-1 *6 (-582 *6)))) - (-4 *5 (-38 (-348 (-483)))) (-4 *6 (-1170 *5)) (-5 *2 (-582 *6)) - (-5 *1 (-1171 *5 *6))))) + (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 (-1 *6 (-583 *6)))) + (-4 *5 (-38 (-349 (-484)))) (-4 *6 (-1171 *5)) (-5 *2 (-583 *6)) + (-5 *1 (-1172 *5 *6))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 (-582 *2))) (-5 *4 (-582 *5)) (-4 *5 (-38 (-348 (-483)))) - (-4 *2 (-1170 *5)) (-5 *1 (-1171 *5 *2))))) + (-12 (-5 *3 (-1 *2 (-583 *2))) (-5 *4 (-583 *5)) (-4 *5 (-38 (-349 (-484)))) + (-4 *2 (-1171 *5)) (-5 *1 (-1172 *5 *2))))) (((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1170 *4)) (-5 *1 (-1171 *4 *2)) - (-4 *4 (-38 (-348 (-483))))))) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1171 *4)) (-5 *1 (-1172 *4 *2)) + (-4 *4 (-38 (-349 (-484))))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1170 *4)) (-5 *1 (-1171 *4 *2)) - (-4 *4 (-38 (-348 (-483))))))) + (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1171 *4)) (-5 *1 (-1172 *4 *2)) + (-4 *4 (-38 (-349 (-484))))))) (((*1 *2 *2 *2) - (-12 (-4 *3 (-38 (-348 (-483)))) (-5 *1 (-1171 *3 *2)) (-4 *2 (-1170 *3))))) + (-12 (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1172 *3 *2)) (-4 *2 (-1171 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5 (-582 *5))) (-4 *5 (-1170 *4)) (-4 *4 (-38 (-348 (-483)))) - (-5 *2 (-1 (-1067 *4) (-582 (-1067 *4)))) (-5 *1 (-1171 *4 *5))))) + (-12 (-5 *3 (-1 *5 (-583 *5))) (-4 *5 (-1171 *4)) (-4 *4 (-38 (-349 (-484)))) + (-5 *2 (-1 (-1068 *4) (-583 (-1068 *4)))) (-5 *1 (-1172 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1170 *4)) (-4 *4 (-38 (-348 (-483)))) - (-5 *2 (-1 (-1067 *4) (-1067 *4) (-1067 *4))) (-5 *1 (-1171 *4 *5))))) + (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1171 *4)) (-4 *4 (-38 (-349 (-484)))) + (-5 *2 (-1 (-1068 *4) (-1068 *4) (-1068 *4))) (-5 *1 (-1172 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1170 *4)) (-4 *4 (-38 (-348 (-483)))) - (-5 *2 (-1 (-1067 *4) (-1067 *4))) (-5 *1 (-1171 *4 *5))))) + (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1171 *4)) (-4 *4 (-38 (-349 (-484)))) + (-5 *2 (-1 (-1068 *4) (-1068 *4))) (-5 *1 (-1172 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1088)) (-4 *4 (-13 (-390) (-949 (-483)) (-579 (-483)))) - (-5 *2 (-51)) (-5 *1 (-267 *4 *5)) (-4 *5 (-13 (-27) (-1113) (-362 *4))))) + (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-391) (-950 (-484)) (-580 (-484)))) + (-5 *2 (-51)) (-5 *1 (-267 *4 *5)) (-4 *5 (-13 (-27) (-1114) (-363 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-390) (-949 (-483)) (-579 (-483)))) (-5 *2 (-51)) - (-5 *1 (-267 *4 *3)) (-4 *3 (-13 (-27) (-1113) (-362 *4))))) + (-12 (-4 *4 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) + (-5 *1 (-267 *4 *3)) (-4 *3 (-13 (-27) (-1114) (-363 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-348 (-483))) (-4 *5 (-13 (-390) (-949 (-483)) (-579 (-483)))) - (-5 *2 (-51)) (-5 *1 (-267 *5 *3)) (-4 *3 (-13 (-27) (-1113) (-362 *5))))) + (-12 (-5 *4 (-349 (-484))) (-4 *5 (-13 (-391) (-950 (-484)) (-580 (-484)))) + (-5 *2 (-51)) (-5 *1 (-267 *5 *3)) (-4 *3 (-13 (-27) (-1114) (-363 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-249 *3)) (-4 *3 (-13 (-27) (-1113) (-362 *5))) - (-4 *5 (-13 (-390) (-949 (-483)) (-579 (-483)))) (-5 *2 (-51)) + (-12 (-5 *4 (-249 *3)) (-4 *3 (-13 (-27) (-1114) (-363 *5))) + (-4 *5 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-267 *5 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-249 *3)) (-5 *5 (-348 (-483))) - (-4 *3 (-13 (-27) (-1113) (-362 *6))) - (-4 *6 (-13 (-390) (-949 (-483)) (-579 (-483)))) (-5 *2 (-51)) + (-12 (-5 *4 (-249 *3)) (-5 *5 (-349 (-484))) + (-4 *3 (-13 (-27) (-1114) (-363 *6))) + (-4 *6 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-267 *6 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 (-483))) (-5 *4 (-249 *6)) - (-4 *6 (-13 (-27) (-1113) (-362 *5))) - (-4 *5 (-13 (-494) (-949 (-483)) (-579 (-483)))) (-5 *2 (-51)) - (-5 *1 (-397 *5 *6)))) + (-12 (-5 *3 (-1 *6 (-484))) (-5 *4 (-249 *6)) + (-4 *6 (-13 (-27) (-1114) (-363 *5))) + (-4 *5 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) + (-5 *1 (-398 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1088)) (-5 *5 (-249 *3)) (-4 *3 (-13 (-27) (-1113) (-362 *6))) - (-4 *6 (-13 (-494) (-949 (-483)) (-579 (-483)))) (-5 *2 (-51)) - (-5 *1 (-397 *6 *3)))) + (-12 (-5 *4 (-1089)) (-5 *5 (-249 *3)) (-4 *3 (-13 (-27) (-1114) (-363 *6))) + (-4 *6 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) + (-5 *1 (-398 *6 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-483))) (-5 *4 (-249 *7)) (-5 *5 (-1144 (-483))) - (-4 *7 (-13 (-27) (-1113) (-362 *6))) - (-4 *6 (-13 (-494) (-949 (-483)) (-579 (-483)))) (-5 *2 (-51)) - (-5 *1 (-397 *6 *7)))) + (-12 (-5 *3 (-1 *7 (-484))) (-5 *4 (-249 *7)) (-5 *5 (-1145 (-484))) + (-4 *7 (-13 (-27) (-1114) (-363 *6))) + (-4 *6 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) + (-5 *1 (-398 *6 *7)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1088)) (-5 *5 (-249 *3)) (-5 *6 (-1144 (-483))) - (-4 *3 (-13 (-27) (-1113) (-362 *7))) - (-4 *7 (-13 (-494) (-949 (-483)) (-579 (-483)))) (-5 *2 (-51)) - (-5 *1 (-397 *7 *3)))) + (-12 (-5 *4 (-1089)) (-5 *5 (-249 *3)) (-5 *6 (-1145 (-484))) + (-4 *3 (-13 (-27) (-1114) (-363 *7))) + (-4 *7 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) + (-5 *1 (-398 *7 *3)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-1 *8 (-348 (-483)))) (-5 *4 (-249 *8)) - (-5 *5 (-1144 (-348 (-483)))) (-5 *6 (-348 (-483))) - (-4 *8 (-13 (-27) (-1113) (-362 *7))) - (-4 *7 (-13 (-494) (-949 (-483)) (-579 (-483)))) (-5 *2 (-51)) - (-5 *1 (-397 *7 *8)))) + (-12 (-5 *3 (-1 *8 (-349 (-484)))) (-5 *4 (-249 *8)) + (-5 *5 (-1145 (-349 (-484)))) (-5 *6 (-349 (-484))) + (-4 *8 (-13 (-27) (-1114) (-363 *7))) + (-4 *7 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) + (-5 *1 (-398 *7 *8)))) ((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *4 (-1088)) (-5 *5 (-249 *3)) (-5 *6 (-1144 (-348 (-483)))) - (-5 *7 (-348 (-483))) (-4 *3 (-13 (-27) (-1113) (-362 *8))) - (-4 *8 (-13 (-494) (-949 (-483)) (-579 (-483)))) (-5 *2 (-51)) - (-5 *1 (-397 *8 *3)))) + (-12 (-5 *4 (-1089)) (-5 *5 (-249 *3)) (-5 *6 (-1145 (-349 (-484)))) + (-5 *7 (-349 (-484))) (-4 *3 (-13 (-27) (-1114) (-363 *8))) + (-4 *8 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) + (-5 *1 (-398 *8 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1067 (-2 (|:| |k| (-483)) (|:| |c| *3)))) (-4 *3 (-960)) - (-5 *1 (-529 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-960)) (-5 *1 (-530 *3)))) + (-12 (-5 *2 (-1068 (-2 (|:| |k| (-484)) (|:| |c| *3)))) (-4 *3 (-961)) + (-5 *1 (-530 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-961)) (-5 *1 (-531 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1067 (-2 (|:| |k| (-483)) (|:| |c| *3)))) (-4 *3 (-960)) - (-4 *1 (-1139 *3)))) + (-12 (-5 *2 (-1068 (-2 (|:| |k| (-484)) (|:| |c| *3)))) (-4 *3 (-961)) + (-4 *1 (-1140 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-693)) (-5 *3 (-1067 (-2 (|:| |k| (-348 (-483))) (|:| |c| *4)))) - (-4 *4 (-960)) (-4 *1 (-1160 *4)))) - ((*1 *1 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-960)) (-4 *1 (-1170 *3)))) + (-12 (-5 *2 (-694)) (-5 *3 (-1068 (-2 (|:| |k| (-349 (-484))) (|:| |c| *4)))) + (-4 *4 (-961)) (-4 *1 (-1161 *4)))) + ((*1 *1 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-961)) (-4 *1 (-1171 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1067 (-2 (|:| |k| (-693)) (|:| |c| *3)))) (-4 *3 (-960)) - (-4 *1 (-1170 *3))))) + (-12 (-5 *2 (-1068 (-2 (|:| |k| (-694)) (|:| |c| *3)))) (-4 *3 (-961)) + (-4 *1 (-1171 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-277 *3 *4)) (-4 *3 (-960)) (-4 *4 (-715)) (-5 *2 (-582 *3)))) + (-12 (-4 *1 (-277 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716)) (-5 *2 (-583 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-333 *3 *4)) (-4 *3 (-960)) (-4 *4 (-1012)) (-5 *2 (-582 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1067 *3)) (-5 *1 (-530 *3)) (-4 *3 (-960)))) + (-12 (-4 *1 (-334 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1013)) (-5 *2 (-583 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-531 *3)) (-4 *3 (-961)))) ((*1 *2 *1) - (-12 (-5 *2 (-582 *3)) (-5 *1 (-673 *3 *4)) (-4 *3 (-960)) (-4 *4 (-662)))) - ((*1 *2 *1) (-12 (-4 *1 (-760 *3)) (-4 *3 (-960)) (-5 *2 (-582 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-1170 *3)) (-4 *3 (-960)) (-5 *2 (-1067 *3))))) -(((*1 *1 *1) (-12 (-4 *1 (-1170 *2)) (-4 *2 (-960))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-483))) (-4 *3 (-960)) (-5 *1 (-529 *3)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-483))) (-4 *1 (-1139 *3)) (-4 *3 (-960)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-483))) (-4 *1 (-1170 *3)) (-4 *3 (-960))))) + (-12 (-5 *2 (-583 *3)) (-5 *1 (-674 *3 *4)) (-4 *3 (-961)) (-4 *4 (-663)))) + ((*1 *2 *1) (-12 (-4 *1 (-761 *3)) (-4 *3 (-961)) (-5 *2 (-583 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-1171 *3)) (-4 *3 (-961)) (-5 *2 (-1068 *3))))) +(((*1 *1 *1) (-12 (-4 *1 (-1171 *2)) (-4 *2 (-961))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-484))) (-4 *3 (-961)) (-5 *1 (-530 *3)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-484))) (-4 *1 (-1140 *3)) (-4 *3 (-961)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-484))) (-4 *1 (-1171 *3)) (-4 *3 (-961))))) (((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-693)) (-4 *1 (-678 *4 *5)) (-4 *4 (-960)) (-4 *5 (-755)) - (-5 *2 (-856 *4)))) + (-12 (-5 *3 (-694)) (-4 *1 (-679 *4 *5)) (-4 *4 (-961)) (-4 *5 (-756)) + (-5 *2 (-857 *4)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-693)) (-4 *1 (-678 *4 *5)) (-4 *4 (-960)) (-4 *5 (-755)) - (-5 *2 (-856 *4)))) + (-12 (-5 *3 (-694)) (-4 *1 (-679 *4 *5)) (-4 *4 (-961)) (-4 *5 (-756)) + (-5 *2 (-857 *4)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-693)) (-4 *1 (-1170 *4)) (-4 *4 (-960)) (-5 *2 (-856 *4)))) + (-12 (-5 *3 (-694)) (-4 *1 (-1171 *4)) (-4 *4 (-961)) (-5 *2 (-857 *4)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-693)) (-4 *1 (-1170 *4)) (-4 *4 (-960)) (-5 *2 (-856 *4))))) + (-12 (-5 *3 (-694)) (-4 *1 (-1171 *4)) (-4 *4 (-961)) (-5 *2 (-857 *4))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-348 (-483))) (-4 *4 (-949 (-483))) (-4 *4 (-494)) - (-5 *1 (-32 *4 *2)) (-4 *2 (-362 *4)))) + (-12 (-5 *3 (-349 (-484))) (-4 *4 (-950 (-484))) (-4 *4 (-495)) + (-5 *1 (-32 *4 *2)) (-4 *2 (-363 *4)))) ((*1 *1 *1 *1) (-5 *1 (-107))) - ((*1 *2 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-131 *3 *2)) (-4 *2 (-362 *3)))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-131 *3 *2)) (-4 *2 (-363 *3)))) ((*1 *1 *1 *1) (-5 *1 (-179))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-201)) (-5 *2 (-483)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-201)) (-5 *2 (-484)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-348 (-483))) (-4 *4 (-312)) (-4 *4 (-38 *3)) (-4 *5 (-1170 *4)) - (-5 *1 (-232 *4 *5 *2)) (-4 *2 (-1141 *4 *5)))) + (-12 (-5 *3 (-349 (-484))) (-4 *4 (-312)) (-4 *4 (-38 *3)) (-4 *5 (-1171 *4)) + (-5 *1 (-232 *4 *5 *2)) (-4 *2 (-1142 *4 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-348 (-483))) (-4 *4 (-312)) (-4 *4 (-38 *3)) (-4 *5 (-1139 *4)) - (-5 *1 (-233 *4 *5 *2 *6)) (-4 *2 (-1162 *4 *5)) (-4 *6 (-895 *5)))) + (-12 (-5 *3 (-349 (-484))) (-4 *4 (-312)) (-4 *4 (-38 *3)) (-4 *5 (-1140 *4)) + (-5 *1 (-233 *4 *5 *2 *6)) (-4 *2 (-1163 *4 *5)) (-4 *6 (-896 *5)))) ((*1 *1 *1 *1) (-4 *1 (-239))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-483)) (-5 *1 (-310 *2)) (-4 *2 (-1012)))) - ((*1 *1 *1 *1) (-5 *1 (-328))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-693)) (-4 *1 (-334 *2)) (-4 *2 (-1012)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-484)) (-5 *1 (-310 *2)) (-4 *2 (-1013)))) + ((*1 *1 *1 *1) (-5 *1 (-329))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-694)) (-4 *1 (-335 *2)) (-4 *2 (-1013)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-693)) (-4 *1 (-362 *3)) (-4 *3 (-1012)) (-4 *3 (-1024)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-411)) (-5 *2 (-483)))) + (-12 (-5 *2 (-694)) (-4 *1 (-363 *3)) (-4 *3 (-1013)) (-4 *3 (-1025)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-412)) (-5 *2 (-484)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-693)) (-4 *3 (-312)) (-4 *4 (-716)) (-4 *5 (-755)) - (-5 *1 (-442 *3 *4 *5 *6)) (-4 *6 (-860 *3 *4 *5)))) + (-12 (-5 *2 (-694)) (-4 *3 (-312)) (-4 *4 (-717)) (-4 *5 (-756)) + (-5 *1 (-443 *3 *4 *5 *6)) (-4 *6 (-861 *3 *4 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1177 *4)) (-5 *3 (-483)) (-4 *4 (-299)) (-5 *1 (-465 *4)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-472)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-693)) (-5 *1 (-472)))) + (-12 (-5 *2 (-1178 *4)) (-5 *3 (-484)) (-4 *4 (-299)) (-5 *1 (-466 *4)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-473)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-473)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-693)) (-4 *4 (-1012)) (-5 *1 (-622 *4)))) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-694)) (-4 *4 (-1013)) (-5 *1 (-623 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-483)) (-4 *1 (-626 *3 *4 *5)) (-4 *3 (-960)) (-4 *4 (-322 *3)) - (-4 *5 (-322 *3)) (-4 *3 (-312)))) + (-12 (-5 *2 (-484)) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-323 *3)) + (-4 *5 (-323 *3)) (-4 *3 (-312)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-693)) (-4 *1 (-626 *3 *4 *5)) (-4 *3 (-960)) (-4 *4 (-322 *3)) - (-4 *5 (-322 *3)))) + (-12 (-5 *2 (-694)) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-323 *3)) + (-4 *5 (-323 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-629 *4)) (-5 *3 (-693)) (-4 *4 (-960)) (-5 *1 (-630 *4)))) + (-12 (-5 *2 (-630 *4)) (-5 *3 (-694)) (-4 *4 (-961)) (-5 *1 (-631 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-483)) (-4 *3 (-960)) (-5 *1 (-650 *3 *4)) (-4 *4 (-589 *3)))) + (-12 (-5 *2 (-484)) (-4 *3 (-961)) (-5 *1 (-651 *3 *4)) (-4 *4 (-590 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-86)) (-5 *3 (-483)) (-4 *4 (-960)) (-5 *1 (-650 *4 *5)) - (-4 *5 (-589 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-656)) (-5 *2 (-829)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-658)) (-5 *2 (-693)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-662)) (-5 *2 (-693)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-744 *3)) (-4 *3 (-960)))) + (-12 (-5 *2 (-86)) (-5 *3 (-484)) (-4 *4 (-961)) (-5 *1 (-651 *4 *5)) + (-4 *5 (-590 *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-657)) (-5 *2 (-830)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-659)) (-5 *2 (-694)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-663)) (-5 *2 (-694)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-745 *3)) (-4 *3 (-961)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-86)) (-5 *3 (-483)) (-5 *1 (-744 *4)) (-4 *4 (-960)))) - ((*1 *1 *1 *1) (-5 *1 (-771))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-799 *2)) (-4 *2 (-1012)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-693)) (-5 *1 (-799 *3)) (-4 *3 (-1012)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-914)) (-5 *2 (-348 (-483))))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1024)) (-5 *2 (-829)))) + (-12 (-5 *2 (-86)) (-5 *3 (-484)) (-5 *1 (-745 *4)) (-4 *4 (-961)))) + ((*1 *1 *1 *1) (-5 *1 (-772))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-800 *2)) (-4 *2 (-1013)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-800 *3)) (-4 *3 (-1013)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-915)) (-5 *2 (-349 (-484))))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1025)) (-5 *2 (-830)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-483)) (-4 *1 (-1035 *3 *4 *5 *6)) (-4 *4 (-960)) + (-12 (-5 *2 (-484)) (-4 *1 (-1036 *3 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-196 *3 *4)) (-4 *6 (-196 *3 *4)) (-4 *4 (-312)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-348 (-483)))) (-5 *1 (-1074 *3)))) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1075 *3)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-348 (-483)))) (-5 *1 (-1075 *3)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1170 *2)) (-4 *2 (-960)) (-4 *2 (-312))))) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1076 *3)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1171 *2)) (-4 *2 (-961)) (-4 *2 (-312))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1003 (-749 *3))) (-4 *3 (-13 (-1113) (-870) (-29 *5))) - (-4 *5 (-13 (-258) (-120) (-949 (-483)) (-579 (-483)))) + (-12 (-5 *4 (-1004 (-750 *3))) (-4 *3 (-13 (-1114) (-871) (-29 *5))) + (-4 *5 (-13 (-258) (-120) (-950 (-484)) (-580 (-484)))) (-5 *2 - (-3 (|:| |f1| (-749 *3)) (|:| |f2| (-582 (-749 *3))) + (-3 (|:| |f1| (-750 *3)) (|:| |f2| (-583 (-750 *3))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole"))) (-5 *1 (-173 *5 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1003 (-749 *3))) (-5 *5 (-1071)) - (-4 *3 (-13 (-1113) (-870) (-29 *6))) - (-4 *6 (-13 (-258) (-120) (-949 (-483)) (-579 (-483)))) + (-12 (-5 *4 (-1004 (-750 *3))) (-5 *5 (-1072)) + (-4 *3 (-13 (-1114) (-871) (-29 *6))) + (-4 *6 (-13 (-258) (-120) (-950 (-484)) (-580 (-484)))) (-5 *2 - (-3 (|:| |f1| (-749 *3)) (|:| |f2| (-582 (-749 *3))) (|:| |fail| #1#) + (-3 (|:| |f1| (-750 *3)) (|:| |f2| (-583 (-750 *3))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-173 *6 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-348 (-856 *5))) (-5 *4 (-1003 (-749 (-265 *5)))) - (-4 *5 (-13 (-258) (-120) (-949 (-483)) (-579 (-483)))) + (-12 (-5 *3 (-349 (-857 *5))) (-5 *4 (-1004 (-750 (-265 *5)))) + (-4 *5 (-13 (-258) (-120) (-950 (-484)) (-580 (-484)))) (-5 *2 - (-3 (|:| |f1| (-749 (-265 *5))) (|:| |f2| (-582 (-749 (-265 *5)))) + (-3 (|:| |f1| (-750 (-265 *5))) (|:| |f2| (-583 (-750 (-265 *5)))) (|:| |fail| #3="failed") (|:| |pole| #4="potentialPole"))) (-5 *1 (-174 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-348 (-856 *6))) (-5 *4 (-1003 (-749 (-265 *6)))) - (-5 *5 (-1071)) (-4 *6 (-13 (-258) (-120) (-949 (-483)) (-579 (-483)))) + (-12 (-5 *3 (-349 (-857 *6))) (-5 *4 (-1004 (-750 (-265 *6)))) + (-5 *5 (-1072)) (-4 *6 (-13 (-258) (-120) (-950 (-484)) (-580 (-484)))) (-5 *2 - (-3 (|:| |f1| (-749 (-265 *6))) (|:| |f2| (-582 (-749 (-265 *6)))) + (-3 (|:| |f1| (-750 (-265 *6))) (|:| |f2| (-583 (-750 (-265 *6)))) (|:| |fail| #3#) (|:| |pole| #4#))) (-5 *1 (-174 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1003 (-749 (-348 (-856 *5))))) (-5 *3 (-348 (-856 *5))) - (-4 *5 (-13 (-258) (-120) (-949 (-483)) (-579 (-483)))) + (-12 (-5 *4 (-1004 (-750 (-349 (-857 *5))))) (-5 *3 (-349 (-857 *5))) + (-4 *5 (-13 (-258) (-120) (-950 (-484)) (-580 (-484)))) (-5 *2 - (-3 (|:| |f1| (-749 (-265 *5))) (|:| |f2| (-582 (-749 (-265 *5)))) + (-3 (|:| |f1| (-750 (-265 *5))) (|:| |f2| (-583 (-750 (-265 *5)))) (|:| |fail| #3#) (|:| |pole| #4#))) (-5 *1 (-174 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1003 (-749 (-348 (-856 *6))))) (-5 *5 (-1071)) - (-5 *3 (-348 (-856 *6))) - (-4 *6 (-13 (-258) (-120) (-949 (-483)) (-579 (-483)))) + (-12 (-5 *4 (-1004 (-750 (-349 (-857 *6))))) (-5 *5 (-1072)) + (-5 *3 (-349 (-857 *6))) + (-4 *6 (-13 (-258) (-120) (-950 (-484)) (-580 (-484)))) (-5 *2 - (-3 (|:| |f1| (-749 (-265 *6))) (|:| |f2| (-582 (-749 (-265 *6)))) + (-3 (|:| |f1| (-750 (-265 *6))) (|:| |f2| (-583 (-750 (-265 *6)))) (|:| |fail| #3#) (|:| |pole| #4#))) (-5 *1 (-174 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1088)) (-4 *5 (-13 (-258) (-120) (-949 (-483)) (-579 (-483)))) - (-5 *2 (-3 *3 (-582 *3))) (-5 *1 (-371 *5 *3)) - (-4 *3 (-13 (-1113) (-870) (-29 *5))))) + (-12 (-5 *4 (-1089)) (-4 *5 (-13 (-258) (-120) (-950 (-484)) (-580 (-484)))) + (-5 *2 (-3 *3 (-583 *3))) (-5 *1 (-372 *5 *3)) + (-4 *3 (-13 (-1114) (-871) (-29 *5))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1174 *4)) (-14 *4 (-1088)) (-5 *1 (-412 *3 *4 *5)) - (-4 *3 (-38 (-348 (-483)))) (-4 *3 (-960)) (-14 *5 *3))) + (-12 (-5 *2 (-1175 *4)) (-14 *4 (-1089)) (-5 *1 (-413 *3 *4 *5)) + (-4 *3 (-38 (-349 (-484)))) (-4 *3 (-961)) (-14 *5 *3))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-312) (-120) (-949 (-483)))) (-4 *5 (-1153 *4)) - (-5 *2 (-518 (-348 *5))) (-5 *1 (-503 *4 *5)) (-5 *3 (-348 *5)))) + (-12 (-4 *4 (-13 (-312) (-120) (-950 (-484)))) (-4 *5 (-1154 *4)) + (-5 *2 (-519 (-349 *5))) (-5 *1 (-504 *4 *5)) (-5 *3 (-349 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-348 (-856 *5))) (-5 *4 (-1088)) (-4 *5 (-120)) - (-4 *5 (-13 (-390) (-949 (-483)) (-579 (-483)))) - (-5 *2 (-3 (-265 *5) (-582 (-265 *5)))) (-5 *1 (-524 *5)))) + (-12 (-5 *3 (-349 (-857 *5))) (-5 *4 (-1089)) (-4 *5 (-120)) + (-4 *5 (-13 (-391) (-950 (-484)) (-580 (-484)))) + (-5 *2 (-3 (-265 *5) (-583 (-265 *5)))) (-5 *1 (-525 *5)))) ((*1 *1 *1) - (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-348 (-483)))) (-4 *2 (-960)))) + (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-349 (-484)))) (-4 *2 (-961)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-678 *3 *2)) (-4 *3 (-960)) (-4 *2 (-755)) - (-4 *3 (-38 (-348 (-483)))))) + (-12 (-4 *1 (-679 *3 *2)) (-4 *3 (-961)) (-4 *2 (-756)) + (-4 *3 (-38 (-349 (-484)))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1088)) (-5 *1 (-856 *3)) (-4 *3 (-38 (-348 (-483)))) - (-4 *3 (-960)))) + (-12 (-5 *2 (-1089)) (-5 *1 (-857 *3)) (-4 *3 (-38 (-349 (-484)))) + (-4 *3 (-961)))) ((*1 *1 *1 *2 *3) - (-12 (-4 *3 (-38 (-348 (-483)))) (-4 *3 (-960)) (-4 *2 (-755)) - (-5 *1 (-1038 *3 *2 *4)) (-4 *4 (-860 *3 (-468 *2) *2)))) + (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *3 (-961)) (-4 *2 (-756)) + (-5 *1 (-1039 *3 *2 *4)) (-4 *4 (-861 *3 (-469 *2) *2)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-348 (-483)))) (-4 *3 (-960)) - (-5 *1 (-1073 *3)))) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-4 *3 (-961)) + (-5 *1 (-1074 *3)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1174 *4)) (-14 *4 (-1088)) (-5 *1 (-1080 *3 *4 *5)) - (-4 *3 (-38 (-348 (-483)))) (-4 *3 (-960)) (-14 *5 *3))) + (-12 (-5 *2 (-1175 *4)) (-14 *4 (-1089)) (-5 *1 (-1081 *3 *4 *5)) + (-4 *3 (-38 (-349 (-484)))) (-4 *3 (-961)) (-14 *5 *3))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1174 *4)) (-14 *4 (-1088)) (-5 *1 (-1086 *3 *4 *5)) - (-4 *3 (-38 (-348 (-483)))) (-4 *3 (-960)) (-14 *5 *3))) + (-12 (-5 *2 (-1175 *4)) (-14 *4 (-1089)) (-5 *1 (-1087 *3 *4 *5)) + (-4 *3 (-38 (-349 (-484)))) (-4 *3 (-961)) (-14 *5 *3))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1174 *4)) (-14 *4 (-1088)) (-5 *1 (-1087 *3 *4 *5)) - (-4 *3 (-38 (-348 (-483)))) (-4 *3 (-960)) (-14 *5 *3))) + (-12 (-5 *2 (-1175 *4)) (-14 *4 (-1089)) (-5 *1 (-1088 *3 *4 *5)) + (-4 *3 (-38 (-349 (-484)))) (-4 *3 (-961)) (-14 *5 *3))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1088)) (-5 *1 (-1120 *3)) (-4 *3 (-38 (-348 (-483)))) - (-4 *3 (-960)))) + (-12 (-5 *2 (-1089)) (-5 *1 (-1121 *3)) (-4 *3 (-38 (-349 (-484)))) + (-4 *3 (-961)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1174 *4)) (-14 *4 (-1088)) (-5 *1 (-1137 *3 *4 *5)) - (-4 *3 (-38 (-348 (-483)))) (-4 *3 (-960)) (-14 *5 *3))) + (-12 (-5 *2 (-1175 *4)) (-14 *4 (-1089)) (-5 *1 (-1138 *3 *4 *5)) + (-4 *3 (-38 (-349 (-484)))) (-4 *3 (-961)) (-14 *5 *3))) ((*1 *1 *1 *2) (OR - (-12 (-5 *2 (-1088)) (-4 *1 (-1139 *3)) (-4 *3 (-960)) - (-12 (-4 *3 (-29 (-483))) (-4 *3 (-870)) (-4 *3 (-1113)) - (-4 *3 (-38 (-348 (-483)))))) - (-12 (-5 *2 (-1088)) (-4 *1 (-1139 *3)) (-4 *3 (-960)) - (-12 (|has| *3 (-15 -3080 ((-582 *2) *3))) - (|has| *3 (-15 -3810 (*3 *3 *2))) (-4 *3 (-38 (-348 (-483)))))))) + (-12 (-5 *2 (-1089)) (-4 *1 (-1140 *3)) (-4 *3 (-961)) + (-12 (-4 *3 (-29 (-484))) (-4 *3 (-871)) (-4 *3 (-1114)) + (-4 *3 (-38 (-349 (-484)))))) + (-12 (-5 *2 (-1089)) (-4 *1 (-1140 *3)) (-4 *3 (-961)) + (-12 (|has| *3 (-15 -3081 ((-583 *2) *3))) + (|has| *3 (-15 -3811 (*3 *3 *2))) (-4 *3 (-38 (-349 (-484)))))))) ((*1 *1 *1) - (-12 (-4 *1 (-1139 *2)) (-4 *2 (-960)) (-4 *2 (-38 (-348 (-483)))))) + (-12 (-4 *1 (-1140 *2)) (-4 *2 (-961)) (-4 *2 (-38 (-349 (-484)))))) ((*1 *1 *1) - (-12 (-4 *1 (-1153 *2)) (-4 *2 (-960)) (-4 *2 (-38 (-348 (-483)))))) + (-12 (-4 *1 (-1154 *2)) (-4 *2 (-961)) (-4 *2 (-38 (-349 (-484)))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1174 *4)) (-14 *4 (-1088)) (-5 *1 (-1158 *3 *4 *5)) - (-4 *3 (-38 (-348 (-483)))) (-4 *3 (-960)) (-14 *5 *3))) + (-12 (-5 *2 (-1175 *4)) (-14 *4 (-1089)) (-5 *1 (-1159 *3 *4 *5)) + (-4 *3 (-38 (-349 (-484)))) (-4 *3 (-961)) (-14 *5 *3))) ((*1 *1 *1 *2) (OR - (-12 (-5 *2 (-1088)) (-4 *1 (-1160 *3)) (-4 *3 (-960)) - (-12 (-4 *3 (-29 (-483))) (-4 *3 (-870)) (-4 *3 (-1113)) - (-4 *3 (-38 (-348 (-483)))))) - (-12 (-5 *2 (-1088)) (-4 *1 (-1160 *3)) (-4 *3 (-960)) - (-12 (|has| *3 (-15 -3080 ((-582 *2) *3))) - (|has| *3 (-15 -3810 (*3 *3 *2))) (-4 *3 (-38 (-348 (-483)))))))) + (-12 (-5 *2 (-1089)) (-4 *1 (-1161 *3)) (-4 *3 (-961)) + (-12 (-4 *3 (-29 (-484))) (-4 *3 (-871)) (-4 *3 (-1114)) + (-4 *3 (-38 (-349 (-484)))))) + (-12 (-5 *2 (-1089)) (-4 *1 (-1161 *3)) (-4 *3 (-961)) + (-12 (|has| *3 (-15 -3081 ((-583 *2) *3))) + (|has| *3 (-15 -3811 (*3 *3 *2))) (-4 *3 (-38 (-349 (-484)))))))) ((*1 *1 *1) - (-12 (-4 *1 (-1160 *2)) (-4 *2 (-960)) (-4 *2 (-38 (-348 (-483)))))) + (-12 (-4 *1 (-1161 *2)) (-4 *2 (-961)) (-4 *2 (-38 (-349 (-484)))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1174 *4)) (-14 *4 (-1088)) (-5 *1 (-1167 *3 *4 *5)) - (-4 *3 (-38 (-348 (-483)))) (-4 *3 (-960)) (-14 *5 *3))) + (-12 (-5 *2 (-1175 *4)) (-14 *4 (-1089)) (-5 *1 (-1168 *3 *4 *5)) + (-4 *3 (-38 (-349 (-484)))) (-4 *3 (-961)) (-14 *5 *3))) ((*1 *1 *1 *2) (OR - (-12 (-5 *2 (-1088)) (-4 *1 (-1170 *3)) (-4 *3 (-960)) - (-12 (-4 *3 (-29 (-483))) (-4 *3 (-870)) (-4 *3 (-1113)) - (-4 *3 (-38 (-348 (-483)))))) - (-12 (-5 *2 (-1088)) (-4 *1 (-1170 *3)) (-4 *3 (-960)) - (-12 (|has| *3 (-15 -3080 ((-582 *2) *3))) - (|has| *3 (-15 -3810 (*3 *3 *2))) (-4 *3 (-38 (-348 (-483)))))))) + (-12 (-5 *2 (-1089)) (-4 *1 (-1171 *3)) (-4 *3 (-961)) + (-12 (-4 *3 (-29 (-484))) (-4 *3 (-871)) (-4 *3 (-1114)) + (-4 *3 (-38 (-349 (-484)))))) + (-12 (-5 *2 (-1089)) (-4 *1 (-1171 *3)) (-4 *3 (-961)) + (-12 (|has| *3 (-15 -3081 ((-583 *2) *3))) + (|has| *3 (-15 -3811 (*3 *3 *2))) (-4 *3 (-38 (-349 (-484)))))))) ((*1 *1 *1) - (-12 (-4 *1 (-1170 *2)) (-4 *2 (-960)) (-4 *2 (-38 (-348 (-483))))))) + (-12 (-4 *1 (-1171 *2)) (-4 *2 (-961)) (-4 *2 (-38 (-349 (-484))))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-693)) (-5 *2 (-1146 *5 *4)) (-5 *1 (-1087 *4 *5 *6)) - (-4 *4 (-960)) (-14 *5 (-1088)) (-14 *6 *4))) + (-12 (-5 *3 (-694)) (-5 *2 (-1147 *5 *4)) (-5 *1 (-1088 *4 *5 *6)) + (-4 *4 (-961)) (-14 *5 (-1089)) (-14 *6 *4))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-693)) (-5 *2 (-1146 *5 *4)) (-5 *1 (-1167 *4 *5 *6)) - (-4 *4 (-960)) (-14 *5 (-1088)) (-14 *6 *4)))) -(((*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-960)) (-5 *1 (-1073 *3)))) + (-12 (-5 *3 (-694)) (-5 *2 (-1147 *5 *4)) (-5 *1 (-1168 *4 *5 *6)) + (-4 *4 (-961)) (-14 *5 (-1089)) (-14 *6 *4)))) +(((*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-961)) (-5 *1 (-1074 *3)))) ((*1 *1 *1) - (-12 (-5 *1 (-1167 *2 *3 *4)) (-4 *2 (-960)) (-14 *3 (-1088)) (-14 *4 *2)))) -(((*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-960)) (-5 *1 (-1073 *3)))) + (-12 (-5 *1 (-1168 *2 *3 *4)) (-4 *2 (-961)) (-14 *3 (-1089)) (-14 *4 *2)))) +(((*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-961)) (-5 *1 (-1074 *3)))) ((*1 *1 *1) - (-12 (-5 *1 (-1167 *2 *3 *4)) (-4 *2 (-960)) (-14 *3 (-1088)) (-14 *4 *2)))) -(((*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-960)) (-5 *1 (-1073 *3)))) + (-12 (-5 *1 (-1168 *2 *3 *4)) (-4 *2 (-961)) (-14 *3 (-1089)) (-14 *4 *2)))) +(((*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-961)) (-5 *1 (-1074 *3)))) ((*1 *1 *1) - (-12 (-5 *1 (-1167 *2 *3 *4)) (-4 *2 (-960)) (-14 *3 (-1088)) (-14 *4 *2)))) -(((*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-960)) (-5 *1 (-1073 *3)))) + (-12 (-5 *1 (-1168 *2 *3 *4)) (-4 *2 (-961)) (-14 *3 (-1089)) (-14 *4 *2)))) +(((*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-961)) (-5 *1 (-1074 *3)))) ((*1 *1 *1) - (-12 (-5 *1 (-1167 *2 *3 *4)) (-4 *2 (-960)) (-14 *3 (-1088)) (-14 *4 *2)))) + (-12 (-5 *1 (-1168 *2 *3 *4)) (-4 *2 (-961)) (-14 *3 (-1089)) (-14 *4 *2)))) (((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1067 *4)) (-5 *3 (-483)) (-4 *4 (-960)) (-5 *1 (-1073 *4)))) + (-12 (-5 *2 (-1068 *4)) (-5 *3 (-484)) (-4 *4 (-961)) (-5 *1 (-1074 *4)))) ((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-483)) (-5 *1 (-1167 *3 *4 *5)) (-4 *3 (-960)) (-14 *4 (-1088)) + (-12 (-5 *2 (-484)) (-5 *1 (-1168 *3 *4 *5)) (-4 *3 (-961)) (-14 *4 (-1089)) (-14 *5 *3)))) -(((*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-960)) (-5 *1 (-1073 *3)))) +(((*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-961)) (-5 *1 (-1074 *3)))) ((*1 *1 *1) - (-12 (-5 *1 (-1167 *2 *3 *4)) (-4 *2 (-960)) (-14 *3 (-1088)) (-14 *4 *2)))) + (-12 (-5 *1 (-1168 *2 *3 *4)) (-4 *2 (-961)) (-14 *3 (-1089)) (-14 *4 *2)))) (((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-1067 *4)) (-5 *3 (-483)) (-4 *4 (-960)) (-5 *1 (-1073 *4)))) + (-12 (-5 *2 (-1068 *4)) (-5 *3 (-484)) (-4 *4 (-961)) (-5 *1 (-1074 *4)))) ((*1 *1 *2 *2 *1) - (-12 (-5 *2 (-483)) (-5 *1 (-1167 *3 *4 *5)) (-4 *3 (-960)) (-14 *4 (-1088)) + (-12 (-5 *2 (-484)) (-5 *1 (-1168 *3 *4 *5)) (-4 *3 (-961)) (-14 *4 (-1089)) (-14 *5 *3)))) (((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-1067 *4)) (-5 *3 (-483)) (-4 *4 (-960)) (-5 *1 (-1073 *4)))) + (-12 (-5 *2 (-1068 *4)) (-5 *3 (-484)) (-4 *4 (-961)) (-5 *1 (-1074 *4)))) ((*1 *1 *2 *2 *1) - (-12 (-5 *2 (-483)) (-5 *1 (-1167 *3 *4 *5)) (-4 *3 (-960)) (-14 *4 (-1088)) + (-12 (-5 *2 (-484)) (-5 *1 (-1168 *3 *4 *5)) (-4 *3 (-961)) (-14 *4 (-1089)) (-14 *5 *3)))) -(((*1 *1 *2) (-12 (-5 *2 (-582 *1)) (-4 *1 (-592 *3)) (-4 *3 (-1127)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-592 *2)) (-4 *2 (-1127)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-592 *2)) (-4 *2 (-1127)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-592 *2)) (-4 *2 (-1127)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1067 (-1067 *4))) (-5 *2 (-1067 *4)) (-5 *1 (-1068 *4)) - (-4 *4 (-1127)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-1166 *2)) (-4 *2 (-1127)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1166 *2)) (-4 *2 (-1127))))) -(((*1 *2 *1) - (-12 (-4 *1 (-537 *3 *2)) (-4 *3 (-1012)) (-4 *3 (-755)) (-4 *2 (-1127)))) - ((*1 *2 *1) (-12 (-5 *1 (-617 *2)) (-4 *2 (-755)))) - ((*1 *2 *1) (-12 (-5 *1 (-738 *2)) (-4 *2 (-755)))) - ((*1 *2 *1) (-12 (-4 *2 (-1127)) (-5 *1 (-781 *2 *3)) (-4 *3 (-1127)))) - ((*1 *2 *1) (-12 (-5 *2 (-613 *3)) (-5 *1 (-802 *3)) (-4 *3 (-755)))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-1122 *3 *4 *5 *2)) (-4 *3 (-494)) (-4 *4 (-716)) - (-4 *5 (-755)) (-4 *2 (-976 *3 *4 *5)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-693)) (-4 *1 (-1166 *3)) (-4 *3 (-1127)))) - ((*1 *2 *1) (-12 (-4 *1 (-1166 *2)) (-4 *2 (-1127))))) +(((*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-593 *3)) (-4 *3 (-1128)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-1128)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-1128)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-593 *2)) (-4 *2 (-1128)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1068 (-1068 *4))) (-5 *2 (-1068 *4)) (-5 *1 (-1069 *4)) + (-4 *4 (-1128)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-1167 *2)) (-4 *2 (-1128)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1167 *2)) (-4 *2 (-1128))))) +(((*1 *2 *1) + (-12 (-4 *1 (-538 *3 *2)) (-4 *3 (-1013)) (-4 *3 (-756)) (-4 *2 (-1128)))) + ((*1 *2 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-756)))) + ((*1 *2 *1) (-12 (-5 *1 (-739 *2)) (-4 *2 (-756)))) + ((*1 *2 *1) (-12 (-4 *2 (-1128)) (-5 *1 (-782 *2 *3)) (-4 *3 (-1128)))) + ((*1 *2 *1) (-12 (-5 *2 (-614 *3)) (-5 *1 (-803 *3)) (-4 *3 (-756)))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-1123 *3 *4 *5 *2)) (-4 *3 (-495)) (-4 *4 (-717)) + (-4 *5 (-756)) (-4 *2 (-977 *3 *4 *5)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-1167 *3)) (-4 *3 (-1128)))) + ((*1 *2 *1) (-12 (-4 *1 (-1167 *2)) (-4 *2 (-1128))))) (((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-483)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1127)) (-4 *4 (-322 *2)) - (-4 *5 (-322 *2)))) + (-12 (-5 *3 (-484)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1128)) (-4 *4 (-323 *2)) + (-4 *5 (-323 *2)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-483)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-322 *2)) - (-4 *5 (-322 *2)) (-4 *2 (-1127)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-92 *3)) (-4 *3 (-1127)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-92 *3)) (-4 *3 (-1127)))) + (-12 (-5 *3 (-484)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-323 *2)) + (-4 *5 (-323 *2)) (-4 *2 (-1128)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-92 *3)) (-4 *3 (-1128)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-92 *3)) (-4 *3 (-1128)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-582 (-483))) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) - (-14 *4 (-483)) (-14 *5 (-693)))) + (-12 (-5 *3 (-583 (-484))) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) + (-14 *4 (-484)) (-14 *5 (-694)))) ((*1 *2 *1 *3 *3 *3 *3) - (-12 (-5 *3 (-483)) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 *3) - (-14 *5 (-693)))) + (-12 (-5 *3 (-484)) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 *3) + (-14 *5 (-694)))) ((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-483)) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 *3) - (-14 *5 (-693)))) + (-12 (-5 *3 (-484)) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 *3) + (-14 *5 (-694)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-483)) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 *3) - (-14 *5 (-693)))) + (-12 (-5 *3 (-484)) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 *3) + (-14 *5 (-694)))) ((*1 *2 *1) - (-12 (-4 *2 (-146)) (-5 *1 (-108 *3 *4 *2)) (-14 *3 (-483)) (-14 *4 (-693)))) + (-12 (-4 *2 (-146)) (-5 *1 (-108 *3 *4 *2)) (-14 *3 (-484)) (-14 *4 (-694)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-1088)) (-5 *2 (-203 (-1071))) (-5 *1 (-167 *4)) + (-12 (-5 *3 (-1089)) (-5 *2 (-203 (-1072))) (-5 *1 (-167 *4)) (-4 *4 - (-13 (-755) - (-10 -8 (-15 -3798 ((-1071) $ *3)) (-15 -3615 ((-1183) $)) - (-15 -1962 ((-1183) $))))))) + (-13 (-756) + (-10 -8 (-15 -3799 ((-1072) $ *3)) (-15 -3616 ((-1184) $)) + (-15 -1963 ((-1184) $))))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-901)) (-5 *1 (-167 *3)) + (-12 (-5 *2 (-902)) (-5 *1 (-167 *3)) (-4 *3 - (-13 (-755) - (-10 -8 (-15 -3798 ((-1071) $ (-1088))) (-15 -3615 ((-1183) $)) - (-15 -1962 ((-1183) $))))))) + (-13 (-756) + (-10 -8 (-15 -3799 ((-1072) $ (-1089))) (-15 -3616 ((-1184) $)) + (-15 -1963 ((-1184) $))))))) ((*1 *2 *1 *3) - (-12 (-5 *3 "count") (-5 *2 (-693)) (-5 *1 (-203 *4)) (-4 *4 (-755)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-203 *3)) (-4 *3 (-755)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-203 *3)) (-4 *3 (-755)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-241 *3 *2)) (-4 *3 (-1127)) (-4 *2 (-1127)))) - ((*1 *2 *1 *3 *2) (-12 (-4 *1 (-243 *3 *2)) (-4 *3 (-1012)) (-4 *2 (-1127)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-582 *1)) (-4 *1 (-254)))) + (-12 (-5 *3 "count") (-5 *2 (-694)) (-5 *1 (-203 *4)) (-4 *4 (-756)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-203 *3)) (-4 *3 (-756)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-203 *3)) (-4 *3 (-756)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-241 *3 *2)) (-4 *3 (-1128)) (-4 *2 (-1128)))) + ((*1 *2 *1 *3 *2) (-12 (-4 *1 (-243 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1128)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-583 *1)) (-4 *1 (-254)))) ((*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-254)) (-5 *2 (-86)))) ((*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-254)) (-5 *2 (-86)))) ((*1 *1 *2 *1 *1) (-12 (-4 *1 (-254)) (-5 *2 (-86)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-254)) (-5 *2 (-86)))) ((*1 *2 *1 *2 *2) - (-12 (-4 *1 (-291 *2 *3 *4)) (-4 *2 (-1132)) (-4 *3 (-1153 *2)) - (-4 *4 (-1153 (-348 *3))))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1088)) (-5 *2 (-1071)) (-5 *1 (-440)))) + (-12 (-4 *1 (-291 *2 *3 *4)) (-4 *2 (-1133)) (-4 *3 (-1154 *2)) + (-4 *4 (-1154 (-349 *3))))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-1072)) (-5 *1 (-441)))) ((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-582 (-483))) (-4 *1 (-626 *3 *4 *5)) (-4 *3 (-960)) - (-4 *4 (-322 *3)) (-4 *5 (-322 *3)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-582 (-771))) (-5 *1 (-771)))) + (-12 (-5 *2 (-583 (-484))) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) + (-4 *4 (-323 *3)) (-4 *5 (-323 *3)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-86)) (-5 *3 (-582 (-799 *4))) (-5 *1 (-799 *4)) - (-4 *4 (-1012)))) + (-12 (-5 *2 (-86)) (-5 *3 (-583 (-800 *4))) (-5 *1 (-800 *4)) + (-4 *4 (-1013)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-693)) (-5 *2 (-812 *4)) (-5 *1 (-815 *4)) (-4 *4 (-1012)))) - ((*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-922 *2)) (-4 *2 (-1127)))) + (-12 (-5 *3 (-694)) (-5 *2 (-813 *4)) (-5 *1 (-816 *4)) (-4 *4 (-1013)))) + ((*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-923 *2)) (-4 *2 (-1128)))) ((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-483)) (-4 *1 (-964 *4 *5 *2 *6 *7)) (-4 *2 (-960)) + (-12 (-5 *3 (-484)) (-4 *1 (-965 *4 *5 *2 *6 *7)) (-4 *2 (-961)) (-4 *6 (-196 *5 *2)) (-4 *7 (-196 *4 *2)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-483)) (-4 *1 (-964 *4 *5 *2 *6 *7)) (-4 *6 (-196 *5 *2)) - (-4 *7 (-196 *4 *2)) (-4 *2 (-960)))) + (-12 (-5 *3 (-484)) (-4 *1 (-965 *4 *5 *2 *6 *7)) (-4 *6 (-196 *5 *2)) + (-4 *7 (-196 *4 *2)) (-4 *2 (-961)))) ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-829)) (-4 *4 (-1012)) - (-4 *5 (-13 (-960) (-795 *4) (-552 (-799 *4)))) (-5 *1 (-986 *4 *5 *2)) - (-4 *2 (-13 (-362 *5) (-795 *4) (-552 (-799 *4)))))) + (-12 (-5 *3 (-830)) (-4 *4 (-1013)) + (-4 *5 (-13 (-961) (-796 *4) (-553 (-800 *4)))) (-5 *1 (-987 *4 *5 *2)) + (-4 *2 (-13 (-363 *5) (-796 *4) (-553 (-800 *4)))))) ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-829)) (-4 *4 (-1012)) - (-4 *5 (-13 (-960) (-795 *4) (-552 (-799 *4)))) (-5 *1 (-988 *4 *5 *2)) - (-4 *2 (-13 (-362 *5) (-795 *4) (-552 (-799 *4)))))) - ((*1 *1 *1 *1) (-4 *1 (-1056))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-582 (-771))) (-5 *1 (-1088)))) + (-12 (-5 *3 (-830)) (-4 *4 (-1013)) + (-4 *5 (-13 (-961) (-796 *4) (-553 (-800 *4)))) (-5 *1 (-989 *4 *5 *2)) + (-4 *2 (-13 (-363 *5) (-796 *4) (-553 (-800 *4)))))) + ((*1 *1 *1 *1) (-4 *1 (-1057))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-1089)))) ((*1 *2 *3 *2) - (-12 (-5 *3 (-348 *1)) (-4 *1 (-1153 *2)) (-4 *2 (-960)) (-4 *2 (-312)))) + (-12 (-5 *3 (-349 *1)) (-4 *1 (-1154 *2)) (-4 *2 (-961)) (-4 *2 (-312)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-348 *1)) (-4 *1 (-1153 *3)) (-4 *3 (-960)) (-4 *3 (-494)))) - ((*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1166 *2)) (-4 *2 (-1127)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1166 *3)) (-4 *3 (-1127)))) - ((*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1166 *2)) (-4 *2 (-1127))))) -(((*1 *1 *1) (-12 (-5 *1 (-617 *2)) (-4 *2 (-755)))) - ((*1 *1 *1) (-12 (-5 *1 (-738 *2)) (-4 *2 (-755)))) - ((*1 *1 *1) (-12 (-5 *1 (-802 *2)) (-4 *2 (-755)))) + (-12 (-5 *2 (-349 *1)) (-4 *1 (-1154 *3)) (-4 *3 (-961)) (-4 *3 (-495)))) + ((*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1167 *2)) (-4 *2 (-1128)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1167 *3)) (-4 *3 (-1128)))) + ((*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1167 *2)) (-4 *2 (-1128))))) +(((*1 *1 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-756)))) + ((*1 *1 *1) (-12 (-5 *1 (-739 *2)) (-4 *2 (-756)))) + ((*1 *1 *1) (-12 (-5 *1 (-803 *2)) (-4 *2 (-756)))) ((*1 *1 *1) - (|partial| -12 (-4 *1 (-1122 *2 *3 *4 *5)) (-4 *2 (-494)) (-4 *3 (-716)) - (-4 *4 (-755)) (-4 *5 (-976 *2 *3 *4)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-693)) (-4 *1 (-1166 *3)) (-4 *3 (-1127)))) - ((*1 *1 *1) (-12 (-4 *1 (-1166 *2)) (-4 *2 (-1127))))) -(((*1 *2 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1127)))) - ((*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-1007)))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-1122 *3 *4 *5 *2)) (-4 *3 (-494)) (-4 *4 (-716)) - (-4 *5 (-755)) (-4 *2 (-976 *3 *4 *5)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-693)) (-4 *1 (-1166 *3)) (-4 *3 (-1127)))) - ((*1 *2 *1) (-12 (-4 *1 (-1166 *2)) (-4 *2 (-1127))))) -(((*1 *1 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1127)))) + (|partial| -12 (-4 *1 (-1123 *2 *3 *4 *5)) (-4 *2 (-495)) (-4 *3 (-717)) + (-4 *4 (-756)) (-4 *5 (-977 *2 *3 *4)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-1167 *3)) (-4 *3 (-1128)))) + ((*1 *1 *1) (-12 (-4 *1 (-1167 *2)) (-4 *2 (-1128))))) +(((*1 *2 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1128)))) + ((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-1008)))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-1123 *3 *4 *5 *2)) (-4 *3 (-495)) (-4 *4 (-717)) + (-4 *5 (-756)) (-4 *2 (-977 *3 *4 *5)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-1167 *3)) (-4 *3 (-1128)))) + ((*1 *2 *1) (-12 (-4 *1 (-1167 *2)) (-4 *2 (-1128))))) +(((*1 *1 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1128)))) ((*1 *1 *1) - (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-960)) (-4 *3 (-716)) (-4 *4 (-755)))) - ((*1 *1 *1) (-12 (-4 *1 (-1166 *2)) (-4 *2 (-1127))))) -(((*1 *2 *1) (-12 (-4 *2 (-1127)) (-5 *1 (-781 *3 *2)) (-4 *3 (-1127)))) - ((*1 *2 *1) (-12 (-4 *1 (-1166 *2)) (-4 *2 (-1127))))) -(((*1 *2 *1) (-12 (-4 *1 (-1166 *2)) (-4 *2 (-1127))))) -(((*1 *1 *1) (-12 (-4 *1 (-1166 *2)) (-4 *2 (-1127))))) -(((*1 *2 *1) (-12 (-4 *1 (-1166 *3)) (-4 *3 (-1127)) (-5 *2 (-693))))) -(((*1 *1 *1) (-12 (-4 *1 (-1166 *2)) (-4 *2 (-1127))))) -(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -3994)) (-4 *1 (-202 *2)) (-4 *2 (-1127)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1127)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1127)))) - ((*1 *1 *1 *2) (-12 (|has| *1 (-6 -3994)) (-4 *1 (-1166 *2)) (-4 *2 (-1127)))) - ((*1 *1 *1 *1) (-12 (|has| *1 (-6 -3994)) (-4 *1 (-1166 *2)) (-4 *2 (-1127))))) -(((*1 *1 *1) (-12 (|has| *1 (-6 -3994)) (-4 *1 (-1166 *2)) (-4 *2 (-1127))))) -(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -3994)) (-4 *1 (-1166 *2)) (-4 *2 (-1127))))) + (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)))) + ((*1 *1 *1) (-12 (-4 *1 (-1167 *2)) (-4 *2 (-1128))))) +(((*1 *2 *1) (-12 (-4 *2 (-1128)) (-5 *1 (-782 *3 *2)) (-4 *3 (-1128)))) + ((*1 *2 *1) (-12 (-4 *1 (-1167 *2)) (-4 *2 (-1128))))) +(((*1 *2 *1) (-12 (-4 *1 (-1167 *2)) (-4 *2 (-1128))))) +(((*1 *1 *1) (-12 (-4 *1 (-1167 *2)) (-4 *2 (-1128))))) +(((*1 *2 *1) (-12 (-4 *1 (-1167 *3)) (-4 *3 (-1128)) (-5 *2 (-694))))) +(((*1 *1 *1) (-12 (-4 *1 (-1167 *2)) (-4 *2 (-1128))))) +(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -3995)) (-4 *1 (-202 *2)) (-4 *2 (-1128)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1128)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1128)))) + ((*1 *1 *1 *2) (-12 (|has| *1 (-6 -3995)) (-4 *1 (-1167 *2)) (-4 *2 (-1128)))) + ((*1 *1 *1 *1) (-12 (|has| *1 (-6 -3995)) (-4 *1 (-1167 *2)) (-4 *2 (-1128))))) +(((*1 *1 *1) (-12 (|has| *1 (-6 -3995)) (-4 *1 (-1167 *2)) (-4 *2 (-1128))))) +(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -3995)) (-4 *1 (-1167 *2)) (-4 *2 (-1128))))) (((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-483)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1127)) (-4 *4 (-322 *2)) - (-4 *5 (-322 *2)))) + (-12 (-5 *3 (-484)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1128)) (-4 *4 (-323 *2)) + (-4 *5 (-323 *2)))) ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "right") (|has| *1 (-6 -3994)) (-4 *1 (-92 *3)) (-4 *3 (-1127)))) + (-12 (-5 *2 "right") (|has| *1 (-6 -3995)) (-4 *1 (-92 *3)) (-4 *3 (-1128)))) ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "left") (|has| *1 (-6 -3994)) (-4 *1 (-92 *3)) (-4 *3 (-1127)))) + (-12 (-5 *2 "left") (|has| *1 (-6 -3995)) (-4 *1 (-92 *3)) (-4 *3 (-1128)))) ((*1 *2 *1 *3 *2) - (-12 (|has| *1 (-6 -3994)) (-4 *1 (-243 *3 *2)) (-4 *3 (-1012)) - (-4 *2 (-1127)))) - ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1088)) (-5 *1 (-570)))) + (-12 (|has| *1 (-6 -3995)) (-4 *1 (-243 *3 *2)) (-4 *3 (-1013)) + (-4 *2 (-1128)))) + ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1089)) (-5 *1 (-571)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *3 (-1144 (-483))) (|has| *1 (-6 -3994)) (-4 *1 (-592 *2)) - (-4 *2 (-1127)))) + (-12 (-5 *3 (-1145 (-484))) (|has| *1 (-6 -3995)) (-4 *1 (-593 *2)) + (-4 *2 (-1128)))) ((*1 *1 *1 *2 *2 *1) - (-12 (-5 *2 (-582 (-483))) (-4 *1 (-626 *3 *4 *5)) (-4 *3 (-960)) - (-4 *4 (-322 *3)) (-4 *5 (-322 *3)))) + (-12 (-5 *2 (-583 (-484))) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) + (-4 *4 (-323 *3)) (-4 *5 (-323 *3)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "value") (|has| *1 (-6 -3994)) (-4 *1 (-922 *2)) - (-4 *2 (-1127)))) - ((*1 *2 *1 *3 *2) (-12 (-4 *1 (-1105 *3 *2)) (-4 *3 (-1012)) (-4 *2 (-1012)))) + (-12 (-5 *3 "value") (|has| *1 (-6 -3995)) (-4 *1 (-923 *2)) + (-4 *2 (-1128)))) + ((*1 *2 *1 *3 *2) (-12 (-4 *1 (-1106 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1013)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "last") (|has| *1 (-6 -3994)) (-4 *1 (-1166 *2)) - (-4 *2 (-1127)))) + (-12 (-5 *3 "last") (|has| *1 (-6 -3995)) (-4 *1 (-1167 *2)) + (-4 *2 (-1128)))) ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "rest") (|has| *1 (-6 -3994)) (-4 *1 (-1166 *3)) - (-4 *3 (-1127)))) + (-12 (-5 *2 "rest") (|has| *1 (-6 -3995)) (-4 *1 (-1167 *3)) + (-4 *3 (-1128)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "first") (|has| *1 (-6 -3994)) (-4 *1 (-1166 *2)) - (-4 *2 (-1127))))) -(((*1 *1 *1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-1067 *3)) (-4 *3 (-1127)))) - ((*1 *1 *1 *1) (-12 (|has| *1 (-6 -3994)) (-4 *1 (-1166 *2)) (-4 *2 (-1127))))) -(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -3994)) (-4 *1 (-1166 *2)) (-4 *2 (-1127))))) + (-12 (-5 *3 "first") (|has| *1 (-6 -3995)) (-4 *1 (-1167 *2)) + (-4 *2 (-1128))))) +(((*1 *1 *1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-1068 *3)) (-4 *3 (-1128)))) + ((*1 *1 *1 *1) (-12 (|has| *1 (-6 -3995)) (-4 *1 (-1167 *2)) (-4 *2 (-1128))))) +(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -3995)) (-4 *1 (-1167 *2)) (-4 *2 (-1128))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-483)) (|has| *1 (-6 -3994)) (-4 *1 (-1166 *3)) - (-4 *3 (-1127))))) + (-12 (-5 *2 (-484)) (|has| *1 (-6 -3995)) (-4 *1 (-1167 *3)) + (-4 *3 (-1128))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-13 (-949 (-483)) (-579 (-483)) (-390))) - (-5 *2 (-749 *4)) (-5 *1 (-264 *3 *4 *5 *6)) - (-4 *4 (-13 (-27) (-1113) (-362 *3))) (-14 *5 (-1088)) (-14 *6 *4))) + (|partial| -12 (-4 *3 (-13 (-950 (-484)) (-580 (-484)) (-391))) + (-5 *2 (-750 *4)) (-5 *1 (-264 *3 *4 *5 *6)) + (-4 *4 (-13 (-27) (-1114) (-363 *3))) (-14 *5 (-1089)) (-14 *6 *4))) ((*1 *2 *1) - (|partial| -12 (-4 *3 (-13 (-949 (-483)) (-579 (-483)) (-390))) - (-5 *2 (-749 *4)) (-5 *1 (-1164 *3 *4 *5 *6)) - (-4 *4 (-13 (-27) (-1113) (-362 *3))) (-14 *5 (-1088)) (-14 *6 *4)))) + (|partial| -12 (-4 *3 (-13 (-950 (-484)) (-580 (-484)) (-391))) + (-5 *2 (-750 *4)) (-5 *1 (-1165 *3 *4 *5 *6)) + (-4 *4 (-13 (-27) (-1114) (-363 *3))) (-14 *5 (-1089)) (-14 *6 *4)))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-13 (-949 (-483)) (-579 (-483)) (-390))) + (|partial| -12 (-4 *3 (-13 (-950 (-484)) (-580 (-484)) (-391))) (-5 *2 (-2 (|:| |%term| - (-2 (|:| |%coef| (-1158 *4 *5 *6)) (|:| |%expon| (-270 *4 *5 *6)) - (|:| |%expTerms| (-582 (-2 (|:| |k| (-348 (-483))) (|:| |c| *4)))))) - (|:| |%type| (-1071)))) - (-5 *1 (-1164 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1113) (-362 *3))) - (-14 *5 (-1088)) (-14 *6 *4)))) + (-2 (|:| |%coef| (-1159 *4 *5 *6)) (|:| |%expon| (-270 *4 *5 *6)) + (|:| |%expTerms| (-583 (-2 (|:| |k| (-349 (-484))) (|:| |c| *4)))))) + (|:| |%type| (-1072)))) + (-5 *1 (-1165 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1114) (-363 *3))) + (-14 *5 (-1089)) (-14 *6 *4)))) (((*1 *2 *3) - (-12 (-5 *3 (-1088)) (-4 *4 (-13 (-390) (-949 (-483)) (-579 (-483)))) - (-5 *2 (-51)) (-5 *1 (-267 *4 *5)) (-4 *5 (-13 (-27) (-1113) (-362 *4))))) + (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-391) (-950 (-484)) (-580 (-484)))) + (-5 *2 (-51)) (-5 *1 (-267 *4 *5)) (-4 *5 (-13 (-27) (-1114) (-363 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-390) (-949 (-483)) (-579 (-483)))) (-5 *2 (-51)) - (-5 *1 (-267 *4 *3)) (-4 *3 (-13 (-27) (-1113) (-362 *4))))) + (-12 (-4 *4 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) + (-5 *1 (-267 *4 *3)) (-4 *3 (-13 (-27) (-1114) (-363 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-348 (-483))) (-4 *5 (-13 (-390) (-949 (-483)) (-579 (-483)))) - (-5 *2 (-51)) (-5 *1 (-267 *5 *3)) (-4 *3 (-13 (-27) (-1113) (-362 *5))))) + (-12 (-5 *4 (-349 (-484))) (-4 *5 (-13 (-391) (-950 (-484)) (-580 (-484)))) + (-5 *2 (-51)) (-5 *1 (-267 *5 *3)) (-4 *3 (-13 (-27) (-1114) (-363 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-249 *3)) (-4 *3 (-13 (-27) (-1113) (-362 *5))) - (-4 *5 (-13 (-390) (-949 (-483)) (-579 (-483)))) (-5 *2 (-51)) + (-12 (-5 *4 (-249 *3)) (-4 *3 (-13 (-27) (-1114) (-363 *5))) + (-4 *5 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-267 *5 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-249 *3)) (-5 *5 (-348 (-483))) - (-4 *3 (-13 (-27) (-1113) (-362 *6))) - (-4 *6 (-13 (-390) (-949 (-483)) (-579 (-483)))) (-5 *2 (-51)) + (-12 (-5 *4 (-249 *3)) (-5 *5 (-349 (-484))) + (-4 *3 (-13 (-27) (-1114) (-363 *6))) + (-4 *6 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-267 *6 *3)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-1 *8 (-348 (-483)))) (-5 *4 (-249 *8)) - (-5 *5 (-1144 (-348 (-483)))) (-5 *6 (-348 (-483))) - (-4 *8 (-13 (-27) (-1113) (-362 *7))) - (-4 *7 (-13 (-494) (-949 (-483)) (-579 (-483)))) (-5 *2 (-51)) - (-5 *1 (-397 *7 *8)))) + (-12 (-5 *3 (-1 *8 (-349 (-484)))) (-5 *4 (-249 *8)) + (-5 *5 (-1145 (-349 (-484)))) (-5 *6 (-349 (-484))) + (-4 *8 (-13 (-27) (-1114) (-363 *7))) + (-4 *7 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) + (-5 *1 (-398 *7 *8)))) ((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *4 (-1088)) (-5 *5 (-249 *3)) (-5 *6 (-1144 (-348 (-483)))) - (-5 *7 (-348 (-483))) (-4 *3 (-13 (-27) (-1113) (-362 *8))) - (-4 *8 (-13 (-494) (-949 (-483)) (-579 (-483)))) (-5 *2 (-51)) - (-5 *1 (-397 *8 *3)))) + (-12 (-5 *4 (-1089)) (-5 *5 (-249 *3)) (-5 *6 (-1145 (-349 (-484)))) + (-5 *7 (-349 (-484))) (-4 *3 (-13 (-27) (-1114) (-363 *8))) + (-4 *8 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) + (-5 *1 (-398 *8 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-348 (-483))) (-4 *4 (-960)) (-4 *1 (-1162 *4 *3)) - (-4 *3 (-1139 *4))))) + (-12 (-5 *2 (-349 (-484))) (-4 *4 (-961)) (-4 *1 (-1163 *4 *3)) + (-4 *3 (-1140 *4))))) (((*1 *2 *1) - (-12 (-4 *1 (-1162 *3 *4)) (-4 *3 (-960)) (-4 *4 (-1139 *3)) - (-5 *2 (-348 (-483)))))) -(((*1 *2 *1) (-12 (-4 *1 (-1162 *3 *2)) (-4 *3 (-960)) (-4 *2 (-1139 *3))))) + (-12 (-4 *1 (-1163 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1140 *3)) + (-5 *2 (-349 (-484)))))) +(((*1 *2 *1) (-12 (-4 *1 (-1163 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1140 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1088)) (-4 *4 (-13 (-390) (-949 (-483)) (-579 (-483)))) - (-5 *2 (-51)) (-5 *1 (-267 *4 *5)) (-4 *5 (-13 (-27) (-1113) (-362 *4))))) + (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-391) (-950 (-484)) (-580 (-484)))) + (-5 *2 (-51)) (-5 *1 (-267 *4 *5)) (-4 *5 (-13 (-27) (-1114) (-363 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-390) (-949 (-483)) (-579 (-483)))) (-5 *2 (-51)) - (-5 *1 (-267 *4 *3)) (-4 *3 (-13 (-27) (-1113) (-362 *4))))) + (-12 (-4 *4 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) + (-5 *1 (-267 *4 *3)) (-4 *3 (-13 (-27) (-1114) (-363 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-483)) (-4 *5 (-13 (-390) (-949 *4) (-579 *4))) (-5 *2 (-51)) - (-5 *1 (-267 *5 *3)) (-4 *3 (-13 (-27) (-1113) (-362 *5))))) + (-12 (-5 *4 (-484)) (-4 *5 (-13 (-391) (-950 *4) (-580 *4))) (-5 *2 (-51)) + (-5 *1 (-267 *5 *3)) (-4 *3 (-13 (-27) (-1114) (-363 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-249 *3)) (-4 *3 (-13 (-27) (-1113) (-362 *5))) - (-4 *5 (-13 (-390) (-949 (-483)) (-579 (-483)))) (-5 *2 (-51)) + (-12 (-5 *4 (-249 *3)) (-4 *3 (-13 (-27) (-1114) (-363 *5))) + (-4 *5 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-267 *5 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-249 *3)) (-4 *3 (-13 (-27) (-1113) (-362 *6))) - (-4 *6 (-13 (-390) (-949 *5) (-579 *5))) (-5 *5 (-483)) (-5 *2 (-51)) + (-12 (-5 *4 (-249 *3)) (-4 *3 (-13 (-27) (-1114) (-363 *6))) + (-4 *6 (-13 (-391) (-950 *5) (-580 *5))) (-5 *5 (-484)) (-5 *2 (-51)) (-5 *1 (-267 *6 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-483))) (-5 *4 (-249 *7)) (-5 *5 (-1144 (-483))) - (-4 *7 (-13 (-27) (-1113) (-362 *6))) - (-4 *6 (-13 (-494) (-949 (-483)) (-579 (-483)))) (-5 *2 (-51)) - (-5 *1 (-397 *6 *7)))) + (-12 (-5 *3 (-1 *7 (-484))) (-5 *4 (-249 *7)) (-5 *5 (-1145 (-484))) + (-4 *7 (-13 (-27) (-1114) (-363 *6))) + (-4 *6 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) + (-5 *1 (-398 *6 *7)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1088)) (-5 *5 (-249 *3)) (-5 *6 (-1144 (-483))) - (-4 *3 (-13 (-27) (-1113) (-362 *7))) - (-4 *7 (-13 (-494) (-949 (-483)) (-579 (-483)))) (-5 *2 (-51)) - (-5 *1 (-397 *7 *3)))) + (-12 (-5 *4 (-1089)) (-5 *5 (-249 *3)) (-5 *6 (-1145 (-484))) + (-4 *3 (-13 (-27) (-1114) (-363 *7))) + (-4 *7 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) + (-5 *1 (-398 *7 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-483)) (-4 *4 (-960)) (-4 *1 (-1141 *4 *3)) (-4 *3 (-1170 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-1162 *3 *2)) (-4 *3 (-960)) (-4 *2 (-1139 *3))))) + (-12 (-5 *2 (-484)) (-4 *4 (-961)) (-4 *1 (-1142 *4 *3)) (-4 *3 (-1171 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-1163 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1140 *3))))) (((*1 *2 *1) - (|partial| -12 (-4 *1 (-1162 *3 *2)) (-4 *3 (-960)) (-4 *2 (-1139 *3))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-693)) (-4 *1 (-1153 *3)) (-4 *3 (-960)))) + (|partial| -12 (-4 *1 (-1163 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1140 *3))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-1154 *3)) (-4 *3 (-961)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-829)) (-4 *1 (-1156 *3 *4)) (-4 *3 (-960)) (-4 *4 (-715)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-348 (-483))) (-4 *1 (-1160 *3)) (-4 *3 (-960))))) + (-12 (-5 *2 (-830)) (-4 *1 (-1157 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-349 (-484))) (-4 *1 (-1161 *3)) (-4 *3 (-961))))) (((*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) - (|:| |xpnt| (-483)))) - (-4 *4 (-13 (-1153 *3) (-494) (-10 -8 (-15 -3143 ($ $ $))))) (-4 *3 (-494)) - (-5 *1 (-1157 *3 *4))))) + (|:| |xpnt| (-484)))) + (-4 *4 (-13 (-1154 *3) (-495) (-10 -8 (-15 -3144 ($ $ $))))) (-4 *3 (-495)) + (-5 *1 (-1158 *3 *4))))) (((*1 *1 *1) - (-12 (-4 *1 (-860 *2 *3 *4)) (-4 *2 (-960)) (-4 *3 (-716)) (-4 *4 (-755)) - (-4 *2 (-390)))) + (-12 (-4 *1 (-861 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) + (-4 *2 (-391)))) ((*1 *2 *3 *1) - (-12 (-4 *4 (-390)) (-4 *5 (-716)) (-4 *6 (-755)) (-4 *3 (-976 *4 *5 *6)) - (-5 *2 (-582 (-2 (|:| |val| *3) (|:| -1598 *1)))) - (-4 *1 (-982 *4 *5 *6 *3)))) - ((*1 *1 *1) (-4 *1 (-1132))) + (-12 (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6)) + (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1599 *1)))) + (-4 *1 (-983 *4 *5 *6 *3)))) + ((*1 *1 *1) (-4 *1 (-1133))) ((*1 *2 *2) - (-12 (-4 *3 (-494)) (-5 *1 (-1157 *3 *2)) - (-4 *2 (-13 (-1153 *3) (-494) (-10 -8 (-15 -3143 ($ $ $)))))))) + (-12 (-4 *3 (-495)) (-5 *1 (-1158 *3 *2)) + (-4 *2 (-13 (-1154 *3) (-495) (-10 -8 (-15 -3144 ($ $ $)))))))) (((*1 *2 *1) - (-12 (-4 *1 (-274 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-104)) - (-5 *2 (-582 (-2 (|:| |gen| *3) (|:| -3941 *4)))))) + (-12 (-4 *1 (-274 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-104)) + (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -3942 *4)))))) ((*1 *2 *1) - (-12 (-4 *1 (-448 *3 *4)) (-4 *3 (-72)) (-4 *4 (-758)) - (-5 *2 (-582 (-452 *3 *4))))) + (-12 (-4 *1 (-449 *3 *4)) (-4 *3 (-72)) (-4 *4 (-759)) + (-5 *2 (-583 (-453 *3 *4))))) ((*1 *2 *1) - (-12 (-5 *2 (-582 (-2 (|:| -3952 *3) (|:| -3936 *4)))) (-5 *1 (-673 *3 *4)) - (-4 *3 (-960)) (-4 *4 (-662)))) + (-12 (-5 *2 (-583 (-2 (|:| -3953 *3) (|:| -3937 *4)))) (-5 *1 (-674 *3 *4)) + (-4 *3 (-961)) (-4 *4 (-663)))) ((*1 *2 *1) - (-12 (-4 *1 (-1156 *3 *4)) (-4 *3 (-960)) (-4 *4 (-715)) - (-5 *2 (-1067 (-2 (|:| |k| *4) (|:| |c| *3))))))) -(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1071)) (-5 *3 (-483)) (-5 *1 (-199)))) + (-12 (-4 *1 (-1157 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716)) + (-5 *2 (-1068 (-2 (|:| |k| *4) (|:| |c| *3))))))) +(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1072)) (-5 *3 (-484)) (-5 *1 (-199)))) ((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-582 (-1071))) (-5 *3 (-483)) (-5 *4 (-1071)) (-5 *1 (-199)))) - ((*1 *1 *1) (-5 *1 (-771))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-771)))) - ((*1 *2 *1) (-12 (-4 *1 (-1156 *2 *3)) (-4 *3 (-715)) (-4 *2 (-960))))) + (-12 (-5 *2 (-583 (-1072))) (-5 *3 (-484)) (-5 *4 (-1072)) (-5 *1 (-199)))) + ((*1 *1 *1) (-5 *1 (-772))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-772)))) + ((*1 *2 *1) (-12 (-4 *1 (-1157 *2 *3)) (-4 *3 (-716)) (-4 *2 (-961))))) (((*1 *2 *1) - (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-960)) (-4 *4 (-755)) - (-4 *5 (-228 *4)) (-4 *6 (-716)) (-5 *2 (-693)))) + (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-756)) + (-4 *5 (-228 *4)) (-4 *6 (-717)) (-5 *2 (-694)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-213 *4 *3 *5 *6)) (-4 *4 (-960)) (-4 *3 (-755)) - (-4 *5 (-228 *3)) (-4 *6 (-716)) (-5 *2 (-693)))) - ((*1 *2 *1) (-12 (-4 *1 (-228 *3)) (-4 *3 (-755)) (-5 *2 (-693)))) - ((*1 *2 *1) (-12 (-4 *1 (-299)) (-5 *2 (-829)))) - ((*1 *2 *3) - (-12 (-5 *3 (-283 *4 *5 *6 *7)) (-4 *4 (-13 (-318) (-312))) - (-4 *5 (-1153 *4)) (-4 *6 (-1153 (-348 *5))) (-4 *7 (-291 *4 *5 *6)) - (-5 *2 (-693)) (-5 *1 (-339 *4 *5 *6 *7)))) - ((*1 *2 *1) (-12 (-4 *1 (-343)) (-5 *2 (-742 (-829))))) - ((*1 *2 *1) (-12 (-4 *1 (-345)) (-5 *2 (-483)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-693)) (-5 *1 (-530 *3)) (-4 *3 (-960)))) - ((*1 *2 *1) (-12 (-5 *2 (-693)) (-5 *1 (-530 *3)) (-4 *3 (-960)))) - ((*1 *2 *1) - (-12 (-4 *3 (-494)) (-5 *2 (-483)) (-5 *1 (-561 *3 *4)) (-4 *4 (-1153 *3)))) + (-12 (-4 *1 (-213 *4 *3 *5 *6)) (-4 *4 (-961)) (-4 *3 (-756)) + (-4 *5 (-228 *3)) (-4 *6 (-717)) (-5 *2 (-694)))) + ((*1 *2 *1) (-12 (-4 *1 (-228 *3)) (-4 *3 (-756)) (-5 *2 (-694)))) + ((*1 *2 *1) (-12 (-4 *1 (-299)) (-5 *2 (-830)))) + ((*1 *2 *3) + (-12 (-5 *3 (-283 *4 *5 *6 *7)) (-4 *4 (-13 (-319) (-312))) + (-4 *5 (-1154 *4)) (-4 *6 (-1154 (-349 *5))) (-4 *7 (-291 *4 *5 *6)) + (-5 *2 (-694)) (-5 *1 (-340 *4 *5 *6 *7)))) + ((*1 *2 *1) (-12 (-4 *1 (-344)) (-5 *2 (-743 (-830))))) + ((*1 *2 *1) (-12 (-4 *1 (-346)) (-5 *2 (-484)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-531 *3)) (-4 *3 (-961)))) + ((*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-531 *3)) (-4 *3 (-961)))) + ((*1 *2 *1) + (-12 (-4 *3 (-495)) (-5 *2 (-484)) (-5 *1 (-562 *3 *4)) (-4 *4 (-1154 *3)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *2 (-693)) (-4 *1 (-678 *4 *3)) (-4 *4 (-960)) (-4 *3 (-755)))) + (-12 (-5 *2 (-694)) (-4 *1 (-679 *4 *3)) (-4 *4 (-961)) (-4 *3 (-756)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-678 *4 *3)) (-4 *4 (-960)) (-4 *3 (-755)) (-5 *2 (-693)))) - ((*1 *2 *1) (-12 (-4 *1 (-778 *3)) (-5 *2 (-693)))) - ((*1 *2 *1) (-12 (-5 *2 (-693)) (-5 *1 (-812 *3)) (-4 *3 (-1012)))) - ((*1 *2 *1) (-12 (-5 *2 (-693)) (-5 *1 (-815 *3)) (-4 *3 (-1012)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-283 *5 *6 *7 *8)) (-4 *5 (-362 *4)) - (-4 *6 (-1153 *5)) (-4 *7 (-1153 (-348 *6))) (-4 *8 (-291 *5 *6 *7)) - (-4 *4 (-13 (-494) (-949 (-483)))) (-5 *2 (-693)) - (-5 *1 (-821 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-283 (-348 (-483)) *4 *5 *6)) - (-4 *4 (-1153 (-348 (-483)))) (-4 *5 (-1153 (-348 *4))) - (-4 *6 (-291 (-348 (-483)) *4 *5)) (-5 *2 (-693)) (-5 *1 (-822 *4 *5 *6)))) + (-12 (-4 *1 (-679 *4 *3)) (-4 *4 (-961)) (-4 *3 (-756)) (-5 *2 (-694)))) + ((*1 *2 *1) (-12 (-4 *1 (-779 *3)) (-5 *2 (-694)))) + ((*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-813 *3)) (-4 *3 (-1013)))) + ((*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-816 *3)) (-4 *3 (-1013)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-283 *5 *6 *7 *8)) (-4 *5 (-363 *4)) + (-4 *6 (-1154 *5)) (-4 *7 (-1154 (-349 *6))) (-4 *8 (-291 *5 *6 *7)) + (-4 *4 (-13 (-495) (-950 (-484)))) (-5 *2 (-694)) + (-5 *1 (-822 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-283 (-349 (-484)) *4 *5 *6)) + (-4 *4 (-1154 (-349 (-484)))) (-4 *5 (-1154 (-349 *4))) + (-4 *6 (-291 (-349 (-484)) *4 *5)) (-5 *2 (-694)) (-5 *1 (-823 *4 *5 *6)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-283 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-312)) - (-4 *7 (-1153 *6)) (-4 *4 (-1153 (-348 *7))) (-4 *8 (-291 *6 *7 *4)) - (-4 *9 (-13 (-318) (-312))) (-5 *2 (-693)) (-5 *1 (-930 *6 *7 *4 *8 *9)))) + (-4 *7 (-1154 *6)) (-4 *4 (-1154 (-349 *7))) (-4 *8 (-291 *6 *7 *4)) + (-4 *9 (-13 (-319) (-312))) (-5 *2 (-694)) (-5 *1 (-931 *6 *7 *4 *8 *9)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-1153 *3)) (-4 *3 (-960)) (-4 *3 (-494)) (-5 *2 (-693)))) - ((*1 *2 *1 *2) (-12 (-4 *1 (-1156 *3 *2)) (-4 *3 (-960)) (-4 *2 (-715)))) - ((*1 *2 *1) (-12 (-4 *1 (-1156 *3 *2)) (-4 *3 (-960)) (-4 *2 (-715))))) -(((*1 *1 *1) (-4 *1 (-972))) - ((*1 *1 *1 *2 *2) (-12 (-4 *1 (-1156 *3 *2)) (-4 *3 (-960)) (-4 *2 (-715)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1156 *3 *2)) (-4 *3 (-960)) (-4 *2 (-715))))) + (-12 (-4 *1 (-1154 *3)) (-4 *3 (-961)) (-4 *3 (-495)) (-5 *2 (-694)))) + ((*1 *2 *1 *2) (-12 (-4 *1 (-1157 *3 *2)) (-4 *3 (-961)) (-4 *2 (-716)))) + ((*1 *2 *1) (-12 (-4 *1 (-1157 *3 *2)) (-4 *3 (-961)) (-4 *2 (-716))))) +(((*1 *1 *1) (-4 *1 (-973))) + ((*1 *1 *1 *2 *2) (-12 (-4 *1 (-1157 *3 *2)) (-4 *3 (-961)) (-4 *2 (-716)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1157 *3 *2)) (-4 *3 (-961)) (-4 *2 (-716))))) (((*1 *2 *1 *3) - (-12 (-5 *2 (-348 (-483))) (-5 *1 (-90 *4)) (-14 *4 *3) (-5 *3 (-483)))) - ((*1 *2 *1 *2) (-12 (-4 *1 (-778 *3)) (-5 *2 (-483)))) + (-12 (-5 *2 (-349 (-484))) (-5 *1 (-90 *4)) (-14 *4 *3) (-5 *3 (-484)))) + ((*1 *2 *1 *2) (-12 (-4 *1 (-779 *3)) (-5 *2 (-484)))) ((*1 *2 *1 *3) - (-12 (-5 *2 (-348 (-483))) (-5 *1 (-779 *4)) (-14 *4 *3) (-5 *3 (-483)))) + (-12 (-5 *2 (-349 (-484))) (-5 *1 (-780 *4)) (-14 *4 *3) (-5 *3 (-484)))) ((*1 *2 *1 *3) - (-12 (-14 *4 *3) (-5 *2 (-348 (-483))) (-5 *1 (-780 *4 *5)) (-5 *3 (-483)) - (-4 *5 (-778 *4)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-924)) (-5 *2 (-348 (-483))))) + (-12 (-14 *4 *3) (-5 *2 (-349 (-484))) (-5 *1 (-781 *4 *5)) (-5 *3 (-484)) + (-4 *5 (-779 *4)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-925)) (-5 *2 (-349 (-484))))) ((*1 *2 *3 *1 *2) - (-12 (-4 *1 (-979 *2 *3)) (-4 *2 (-13 (-754) (-312))) (-4 *3 (-1153 *2)))) + (-12 (-4 *1 (-980 *2 *3)) (-4 *2 (-13 (-755) (-312))) (-4 *3 (-1154 *2)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1156 *2 *3)) (-4 *3 (-715)) (|has| *2 (-15 ** (*2 *2 *3))) - (|has| *2 (-15 -3944 (*2 (-1088)))) (-4 *2 (-960))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-148 *3)) (-4 *3 (-258)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-483)) (-4 *1 (-615 *3)) (-4 *3 (-1127)))) + (-12 (-4 *1 (-1157 *2 *3)) (-4 *3 (-716)) (|has| *2 (-15 ** (*2 *2 *3))) + (|has| *2 (-15 -3945 (*2 (-1089)))) (-4 *2 (-961))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-148 *3)) (-4 *3 (-258)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-4 *1 (-616 *3)) (-4 *3 (-1128)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-693)) (-4 *1 (-678 *3 *4)) (-4 *3 (-960)) (-4 *4 (-755)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-778 *3)) (-5 *2 (-483)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-582 *3)) (-4 *1 (-892 *3)) (-4 *3 (-960)))) + (-12 (-5 *2 (-694)) (-4 *1 (-679 *3 *4)) (-4 *3 (-961)) (-4 *4 (-756)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-779 *3)) (-5 *2 (-484)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *1 (-893 *3)) (-4 *3 (-961)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-582 *1)) (-5 *3 (-582 *7)) (-4 *1 (-982 *4 *5 *6 *7)) - (-4 *4 (-390)) (-4 *5 (-716)) (-4 *6 (-755)) (-4 *7 (-976 *4 *5 *6)))) + (-12 (-5 *2 (-583 *1)) (-5 *3 (-583 *7)) (-4 *1 (-983 *4 *5 *6 *7)) + (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-582 *7)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-390)) (-4 *5 (-716)) - (-4 *6 (-755)) (-5 *2 (-582 *1)) (-4 *1 (-982 *4 *5 *6 *7)))) + (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-391)) (-4 *5 (-717)) + (-4 *6 (-756)) (-5 *2 (-583 *1)) (-4 *1 (-983 *4 *5 *6 *7)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-582 *1)) (-4 *1 (-982 *4 *5 *6 *3)) (-4 *4 (-390)) - (-4 *5 (-716)) (-4 *6 (-755)) (-4 *3 (-976 *4 *5 *6)))) + (-12 (-5 *2 (-583 *1)) (-4 *1 (-983 *4 *5 *6 *3)) (-4 *4 (-391)) + (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6)))) ((*1 *2 *3 *1) - (-12 (-4 *4 (-390)) (-4 *5 (-716)) (-4 *6 (-755)) (-4 *3 (-976 *4 *5 *6)) - (-5 *2 (-582 *1)) (-4 *1 (-982 *4 *5 *6 *3)))) + (-12 (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6)) + (-5 *2 (-583 *1)) (-4 *1 (-983 *4 *5 *6 *3)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1122 *3 *4 *5 *2)) (-4 *3 (-494)) (-4 *4 (-716)) (-4 *5 (-755)) - (-4 *2 (-976 *3 *4 *5)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1156 *3 *2)) (-4 *3 (-960)) (-4 *2 (-715))))) + (-12 (-4 *1 (-1123 *3 *4 *5 *2)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) + (-4 *2 (-977 *3 *4 *5)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1157 *3 *2)) (-4 *3 (-961)) (-4 *2 (-716))))) (((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-348 *5)) (-4 *4 (-1132)) (-4 *5 (-1153 *4)) - (-5 *1 (-121 *4 *5 *2)) (-4 *2 (-1153 *3)))) + (-12 (-5 *3 (-349 *5)) (-4 *4 (-1133)) (-4 *5 (-1154 *4)) + (-5 *1 (-121 *4 *5 *2)) (-4 *2 (-1154 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-1090 (-348 (-483)))) (-5 *2 (-348 (-483))) (-5 *1 (-164)))) + (-12 (-5 *3 (-1091 (-349 (-484)))) (-5 *2 (-349 (-484))) (-5 *1 (-164)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-582 (-249 *3))) (-4 *3 (-260 *3)) (-4 *3 (-1012)) - (-4 *3 (-1127)) (-5 *1 (-249 *3)))) + (-12 (-5 *2 (-583 (-249 *3))) (-4 *3 (-260 *3)) (-4 *3 (-1013)) + (-4 *3 (-1128)) (-5 *1 (-249 *3)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-260 *2)) (-4 *2 (-1012)) (-4 *2 (-1127)) (-5 *1 (-249 *2)))) + (-12 (-4 *2 (-260 *2)) (-4 *2 (-1013)) (-4 *2 (-1128)) (-5 *1 (-249 *2)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-1 *1 *1)) (-4 *1 (-254)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-86)) (-5 *3 (-1 *1 (-582 *1))) (-4 *1 (-254)))) + (-12 (-5 *2 (-86)) (-5 *3 (-1 *1 (-583 *1))) (-4 *1 (-254)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-582 (-86))) (-5 *3 (-582 (-1 *1 (-582 *1)))) (-4 *1 (-254)))) + (-12 (-5 *2 (-583 (-86))) (-5 *3 (-583 (-1 *1 (-583 *1)))) (-4 *1 (-254)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-582 (-86))) (-5 *3 (-582 (-1 *1 *1))) (-4 *1 (-254)))) - ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1088)) (-5 *3 (-1 *1 *1)) (-4 *1 (-254)))) + (-12 (-5 *2 (-583 (-86))) (-5 *3 (-583 (-1 *1 *1))) (-4 *1 (-254)))) + ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1089)) (-5 *3 (-1 *1 *1)) (-4 *1 (-254)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1088)) (-5 *3 (-1 *1 (-582 *1))) (-4 *1 (-254)))) + (-12 (-5 *2 (-1089)) (-5 *3 (-1 *1 (-583 *1))) (-4 *1 (-254)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-582 (-1088))) (-5 *3 (-582 (-1 *1 (-582 *1)))) (-4 *1 (-254)))) + (-12 (-5 *2 (-583 (-1089))) (-5 *3 (-583 (-1 *1 (-583 *1)))) (-4 *1 (-254)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-582 (-1088))) (-5 *3 (-582 (-1 *1 *1))) (-4 *1 (-254)))) + (-12 (-5 *2 (-583 (-1089))) (-5 *3 (-583 (-1 *1 *1))) (-4 *1 (-254)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-582 (-249 *3))) (-4 *1 (-260 *3)) (-4 *3 (-1012)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-249 *3)) (-4 *1 (-260 *3)) (-4 *3 (-1012)))) + (-12 (-5 *2 (-583 (-249 *3))) (-4 *1 (-260 *3)) (-4 *3 (-1013)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-249 *3)) (-4 *1 (-260 *3)) (-4 *3 (-1013)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 (-483))) (-5 *4 (-1090 (-348 (-483)))) (-5 *1 (-261 *2)) - (-4 *2 (-38 (-348 (-483)))))) + (-12 (-5 *3 (-1 *2 (-484))) (-5 *4 (-1091 (-349 (-484)))) (-5 *1 (-261 *2)) + (-4 *2 (-38 (-349 (-484)))))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-582 *4)) (-5 *3 (-582 *1)) (-4 *1 (-324 *4 *5)) (-4 *4 (-755)) + (-12 (-5 *2 (-583 *4)) (-5 *3 (-583 *1)) (-4 *1 (-325 *4 *5)) (-4 *4 (-756)) (-4 *5 (-146)))) - ((*1 *1 *1 *2 *1) (-12 (-4 *1 (-324 *2 *3)) (-4 *2 (-755)) (-4 *3 (-146)))) + ((*1 *1 *1 *2 *1) (-12 (-4 *1 (-325 *2 *3)) (-4 *2 (-756)) (-4 *3 (-146)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-1088)) (-5 *3 (-693)) (-5 *4 (-1 *1 *1)) (-4 *1 (-362 *5)) - (-4 *5 (-1012)) (-4 *5 (-960)))) + (-12 (-5 *2 (-1089)) (-5 *3 (-694)) (-5 *4 (-1 *1 *1)) (-4 *1 (-363 *5)) + (-4 *5 (-1013)) (-4 *5 (-961)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-1088)) (-5 *3 (-693)) (-5 *4 (-1 *1 (-582 *1))) - (-4 *1 (-362 *5)) (-4 *5 (-1012)) (-4 *5 (-960)))) + (-12 (-5 *2 (-1089)) (-5 *3 (-694)) (-5 *4 (-1 *1 (-583 *1))) + (-4 *1 (-363 *5)) (-4 *5 (-1013)) (-4 *5 (-961)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-582 (-1088))) (-5 *3 (-582 (-693))) - (-5 *4 (-582 (-1 *1 (-582 *1)))) (-4 *1 (-362 *5)) (-4 *5 (-1012)) - (-4 *5 (-960)))) + (-12 (-5 *2 (-583 (-1089))) (-5 *3 (-583 (-694))) + (-5 *4 (-583 (-1 *1 (-583 *1)))) (-4 *1 (-363 *5)) (-4 *5 (-1013)) + (-4 *5 (-961)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-582 (-1088))) (-5 *3 (-582 (-693))) (-5 *4 (-582 (-1 *1 *1))) - (-4 *1 (-362 *5)) (-4 *5 (-1012)) (-4 *5 (-960)))) + (-12 (-5 *2 (-583 (-1089))) (-5 *3 (-583 (-694))) (-5 *4 (-583 (-1 *1 *1))) + (-4 *1 (-363 *5)) (-4 *5 (-1013)) (-4 *5 (-961)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-582 (-86))) (-5 *3 (-582 *1)) (-5 *4 (-1088)) (-4 *1 (-362 *5)) - (-4 *5 (-1012)) (-4 *5 (-552 (-472))))) + (-12 (-5 *2 (-583 (-86))) (-5 *3 (-583 *1)) (-5 *4 (-1089)) (-4 *1 (-363 *5)) + (-4 *5 (-1013)) (-4 *5 (-553 (-473))))) ((*1 *1 *1 *2 *1 *3) - (-12 (-5 *2 (-86)) (-5 *3 (-1088)) (-4 *1 (-362 *4)) (-4 *4 (-1012)) - (-4 *4 (-552 (-472))))) - ((*1 *1 *1) (-12 (-4 *1 (-362 *2)) (-4 *2 (-1012)) (-4 *2 (-552 (-472))))) + (-12 (-5 *2 (-86)) (-5 *3 (-1089)) (-4 *1 (-363 *4)) (-4 *4 (-1013)) + (-4 *4 (-553 (-473))))) + ((*1 *1 *1) (-12 (-4 *1 (-363 *2)) (-4 *2 (-1013)) (-4 *2 (-553 (-473))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-582 (-1088))) (-4 *1 (-362 *3)) (-4 *3 (-1012)) - (-4 *3 (-552 (-472))))) + (-12 (-5 *2 (-583 (-1089))) (-4 *1 (-363 *3)) (-4 *3 (-1013)) + (-4 *3 (-553 (-473))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1088)) (-4 *1 (-362 *3)) (-4 *3 (-1012)) - (-4 *3 (-552 (-472))))) - ((*1 *1 *1 *2 *3) (-12 (-4 *1 (-454 *2 *3)) (-4 *2 (-1012)) (-4 *3 (-1127)))) + (-12 (-5 *2 (-1089)) (-4 *1 (-363 *3)) (-4 *3 (-1013)) + (-4 *3 (-553 (-473))))) + ((*1 *1 *1 *2 *3) (-12 (-4 *1 (-455 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1128)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-582 *4)) (-5 *3 (-582 *5)) (-4 *1 (-454 *4 *5)) (-4 *4 (-1012)) - (-4 *5 (-1127)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-742 *3)) (-4 *3 (-312)) (-5 *1 (-654 *3)))) - ((*1 *2 *1 *2) (-12 (-5 *1 (-654 *2)) (-4 *2 (-312)))) + (-12 (-5 *2 (-583 *4)) (-5 *3 (-583 *5)) (-4 *1 (-455 *4 *5)) (-4 *4 (-1013)) + (-4 *5 (-1128)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-743 *3)) (-4 *3 (-312)) (-5 *1 (-655 *3)))) + ((*1 *2 *1 *2) (-12 (-5 *1 (-655 *2)) (-4 *2 (-312)))) ((*1 *2 *2 *3 *2) - (-12 (-5 *2 (-348 (-856 *4))) (-5 *3 (-1088)) (-4 *4 (-494)) - (-5 *1 (-951 *4)))) + (-12 (-5 *2 (-349 (-857 *4))) (-5 *3 (-1089)) (-4 *4 (-495)) + (-5 *1 (-952 *4)))) ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-582 (-1088))) (-5 *4 (-582 (-348 (-856 *5)))) - (-5 *2 (-348 (-856 *5))) (-4 *5 (-494)) (-5 *1 (-951 *5)))) + (-12 (-5 *3 (-583 (-1089))) (-5 *4 (-583 (-349 (-857 *5)))) + (-5 *2 (-349 (-857 *5))) (-4 *5 (-495)) (-5 *1 (-952 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-249 (-348 (-856 *4)))) (-5 *2 (-348 (-856 *4))) (-4 *4 (-494)) - (-5 *1 (-951 *4)))) + (-12 (-5 *3 (-249 (-349 (-857 *4)))) (-5 *2 (-349 (-857 *4))) (-4 *4 (-495)) + (-5 *1 (-952 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-582 (-249 (-348 (-856 *4))))) (-5 *2 (-348 (-856 *4))) - (-4 *4 (-494)) (-5 *1 (-951 *4)))) - ((*1 *2 *2 *3) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-960)) (-5 *1 (-1073 *3)))) + (-12 (-5 *3 (-583 (-249 (-349 (-857 *4))))) (-5 *2 (-349 (-857 *4))) + (-4 *4 (-495)) (-5 *1 (-952 *4)))) + ((*1 *2 *2 *3) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-961)) (-5 *1 (-1074 *3)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1156 *3 *4)) (-4 *3 (-960)) (-4 *4 (-715)) - (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1067 *3))))) + (-12 (-4 *1 (-1157 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716)) + (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1068 *3))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-693)) (-4 *1 (-1153 *4)) (-4 *4 (-960)) (-5 *2 (-1177 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-960)) (-5 *2 (-1083 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-960)) (-4 *1 (-1153 *3))))) + (-12 (-5 *3 (-694)) (-4 *1 (-1154 *4)) (-4 *4 (-961)) (-5 *2 (-1178 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-1154 *3)) (-4 *3 (-961)) (-5 *2 (-1084 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-1084 *3)) (-4 *3 (-961)) (-4 *1 (-1154 *3))))) (((*1 *1 *1 *2) - (|partial| -12 (-5 *2 (-693)) (-4 *1 (-1153 *3)) (-4 *3 (-960))))) + (|partial| -12 (-5 *2 (-694)) (-4 *1 (-1154 *3)) (-4 *3 (-961))))) (((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-960)) (-4 *5 (-716)) (-4 *3 (-755)) - (-5 *2 (-2 (|:| -1971 *1) (|:| -2901 *1))) (-4 *1 (-860 *4 *5 *3)))) + (-12 (-4 *4 (-961)) (-4 *5 (-717)) (-4 *3 (-756)) + (-5 *2 (-2 (|:| -1972 *1) (|:| -2902 *1))) (-4 *1 (-861 *4 *5 *3)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-960)) (-5 *2 (-2 (|:| -1971 *1) (|:| -2901 *1))) - (-4 *1 (-1153 *3))))) + (-12 (-4 *3 (-961)) (-5 *2 (-2 (|:| -1972 *1) (|:| -2902 *1))) + (-4 *1 (-1154 *3))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-693)) (-4 *4 (-960)) (-5 *2 (-2 (|:| -1971 *1) (|:| -2901 *1))) - (-4 *1 (-1153 *4))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-693)) (-4 *1 (-1153 *3)) (-4 *3 (-960))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-693)) (-4 *1 (-1153 *3)) (-4 *3 (-960))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-960))))) -(((*1 *2 *1) (-12 (-4 *1 (-186 *2)) (-4 *2 (-1127)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-189)) (-5 *2 (-693)))) + (-12 (-5 *3 (-694)) (-4 *4 (-961)) (-5 *2 (-2 (|:| -1972 *1) (|:| -2902 *1))) + (-4 *1 (-1154 *4))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-1154 *3)) (-4 *3 (-961))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-1154 *3)) (-4 *3 (-961))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1154 *2)) (-4 *2 (-961))))) +(((*1 *2 *1) (-12 (-4 *1 (-186 *2)) (-4 *2 (-1128)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-189)) (-5 *2 (-694)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-693)) (-4 *1 (-225 *4)) (-4 *4 (-1127)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-225 *3)) (-4 *3 (-1127)))) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-694)) (-4 *1 (-225 *4)) (-4 *4 (-1128)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-225 *3)) (-4 *3 (-1128)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1132)) - (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-348 *4))))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1133)) + (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-349 *4))))) ((*1 *2 *1 *3) - (-12 (-4 *2 (-312)) (-4 *2 (-808 *3)) (-5 *1 (-518 *2)) (-5 *3 (-1088)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-518 *2)) (-4 *2 (-312)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-693)) (-5 *1 (-771)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-805 *2 *3)) (-4 *3 (-1127)) (-4 *2 (-1127)))) + (-12 (-4 *2 (-312)) (-4 *2 (-809 *3)) (-5 *1 (-519 *2)) (-5 *3 (-1089)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-519 *2)) (-4 *2 (-312)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-772)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-806 *2 *3)) (-4 *3 (-1128)) (-4 *2 (-1128)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-582 *4)) (-5 *3 (-582 (-693))) (-4 *1 (-810 *4)) - (-4 *4 (-1012)))) - ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-693)) (-4 *1 (-810 *2)) (-4 *2 (-1012)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-582 *3)) (-4 *1 (-810 *3)) (-4 *3 (-1012)))) - ((*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1153 *3)) (-4 *3 (-960))))) + (-12 (-5 *2 (-583 *4)) (-5 *3 (-583 (-694))) (-4 *1 (-811 *4)) + (-4 *4 (-1013)))) + ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-694)) (-4 *1 (-811 *2)) (-4 *2 (-1013)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *1 (-811 *3)) (-4 *3 (-1013)))) + ((*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1154 *3)) (-4 *3 (-961))))) (((*1 *2) (-12 (-4 *2 (-146)) (-5 *1 (-138 *3 *2)) (-4 *3 (-139 *2)))) ((*1 *2 *3) - (-12 (-5 *3 (-1177 *1)) (-4 *1 (-320 *2 *4)) (-4 *4 (-1153 *2)) + (-12 (-5 *3 (-1178 *1)) (-4 *1 (-321 *2 *4)) (-4 *4 (-1154 *2)) (-4 *2 (-146)))) ((*1 *2) - (-12 (-4 *4 (-1153 *2)) (-4 *2 (-146)) (-5 *1 (-350 *3 *2 *4)) - (-4 *3 (-351 *2 *4)))) - ((*1 *2) (-12 (-4 *1 (-351 *2 *3)) (-4 *3 (-1153 *2)) (-4 *2 (-146)))) + (-12 (-4 *4 (-1154 *2)) (-4 *2 (-146)) (-5 *1 (-351 *3 *2 *4)) + (-4 *3 (-352 *2 *4)))) + ((*1 *2) (-12 (-4 *1 (-352 *2 *3)) (-4 *3 (-1154 *2)) (-4 *2 (-146)))) ((*1 *2) - (-12 (-4 *3 (-1153 *2)) (-5 *2 (-483)) (-5 *1 (-691 *3 *4)) - (-4 *4 (-351 *2 *3)))) + (-12 (-4 *3 (-1154 *2)) (-5 *2 (-484)) (-5 *1 (-692 *3 *4)) + (-4 *4 (-352 *2 *3)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-860 *3 *4 *2)) (-4 *3 (-960)) (-4 *4 (-716)) (-4 *2 (-755)) + (-12 (-4 *1 (-861 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)) (-4 *3 (-146)))) - ((*1 *2 *3) (-12 (-4 *2 (-494)) (-5 *1 (-881 *2 *3)) (-4 *3 (-1153 *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-960)) (-4 *2 (-146))))) + ((*1 *2 *3) (-12 (-4 *2 (-495)) (-5 *1 (-882 *2 *3)) (-4 *3 (-1154 *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-1154 *2)) (-4 *2 (-961)) (-4 *2 (-146))))) (((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-860 *3 *4 *2)) (-4 *3 (-960)) (-4 *4 (-716)) (-4 *2 (-755)) + (-12 (-4 *1 (-861 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)) (-4 *3 (-146)))) - ((*1 *2 *3 *3) (-12 (-4 *2 (-494)) (-5 *1 (-881 *2 *3)) (-4 *3 (-1153 *2)))) + ((*1 *2 *3 *3) (-12 (-4 *2 (-495)) (-5 *1 (-882 *2 *3)) (-4 *3 (-1154 *2)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-960)) (-4 *3 (-716)) (-4 *4 (-755)) - (-4 *2 (-494)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-960)) (-4 *2 (-146))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-881 *3 *2)) (-4 *2 (-1153 *3)))) + (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) + (-4 *2 (-495)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-1154 *2)) (-4 *2 (-961)) (-4 *2 (-146))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-882 *3 *2)) (-4 *2 (-1154 *3)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-960)) (-4 *3 (-716)) (-4 *4 (-755)) - (-4 *2 (-494)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-960)) (-4 *2 (-494))))) -(((*1 *1 *2) (-12 (-5 *2 (-582 *1)) (-4 *1 (-1046 *3)) (-4 *3 (-960)))) + (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) + (-4 *2 (-495)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1154 *2)) (-4 *2 (-961)) (-4 *2 (-495))))) +(((*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-1047 *3)) (-4 *3 (-961)))) ((*1 *2 *2 *1) - (|partial| -12 (-5 *2 (-348 *1)) (-4 *1 (-1153 *3)) (-4 *3 (-960)) - (-4 *3 (-494)))) + (|partial| -12 (-5 *2 (-349 *1)) (-4 *1 (-1154 *3)) (-4 *3 (-961)) + (-4 *3 (-495)))) ((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-1153 *2)) (-4 *2 (-960)) (-4 *2 (-494))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-960)) (-4 *2 (-494))))) + (|partial| -12 (-4 *1 (-1154 *2)) (-4 *2 (-961)) (-4 *2 (-495))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1154 *2)) (-4 *2 (-961)) (-4 *2 (-495))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-494)) (-5 *2 (-2 (|:| -3952 *4) (|:| -1971 *3) (|:| -2901 *3))) - (-5 *1 (-881 *4 *3)) (-4 *3 (-1153 *4)))) + (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| -3953 *4) (|:| -1972 *3) (|:| -2902 *3))) + (-5 *1 (-882 *4 *3)) (-4 *3 (-1154 *4)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-960)) (-4 *4 (-716)) (-4 *5 (-755)) - (-5 *2 (-2 (|:| -1971 *1) (|:| -2901 *1))) (-4 *1 (-976 *3 *4 *5)))) + (-12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) + (-5 *2 (-2 (|:| -1972 *1) (|:| -2902 *1))) (-4 *1 (-977 *3 *4 *5)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-494)) (-4 *3 (-960)) - (-5 *2 (-2 (|:| -3952 *3) (|:| -1971 *1) (|:| -2901 *1))) - (-4 *1 (-1153 *3))))) + (-12 (-4 *3 (-495)) (-4 *3 (-961)) + (-5 *2 (-2 (|:| -3953 *3) (|:| -1972 *1) (|:| -2902 *1))) + (-4 *1 (-1154 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-312)) (-4 *4 (-494)) (-4 *5 (-1153 *4)) - (-5 *2 (-2 (|:| -1760 (-561 *4 *5)) (|:| -1759 (-348 *5)))) - (-5 *1 (-561 *4 *5)) (-5 *3 (-348 *5)))) + (-12 (-4 *4 (-312)) (-4 *4 (-495)) (-4 *5 (-1154 *4)) + (-5 *2 (-2 (|:| -1761 (-562 *4 *5)) (|:| -1760 (-349 *5)))) + (-5 *1 (-562 *4 *5)) (-5 *3 (-349 *5)))) ((*1 *2 *1) - (-12 (-5 *2 (-582 (-1077 *3 *4))) (-5 *1 (-1077 *3 *4)) (-14 *3 (-829)) - (-4 *4 (-960)))) + (-12 (-5 *2 (-583 (-1078 *3 *4))) (-5 *1 (-1078 *3 *4)) (-14 *3 (-830)) + (-4 *4 (-961)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-390)) (-4 *3 (-960)) - (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1153 *3))))) + (-12 (-4 *3 (-391)) (-4 *3 (-961)) + (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1154 *3))))) (((*1 *2 *2 *2 *3 *3) - (-12 (-5 *3 (-693)) (-4 *4 (-960)) (-5 *1 (-1151 *4 *2)) (-4 *2 (-1153 *4))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-960)) (-5 *1 (-1151 *3 *2)) (-4 *2 (-1153 *3))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-960)) (-5 *1 (-1151 *3 *2)) (-4 *2 (-1153 *3))))) + (-12 (-5 *3 (-694)) (-4 *4 (-961)) (-5 *1 (-1152 *4 *2)) (-4 *2 (-1154 *4))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-961)) (-5 *1 (-1152 *3 *2)) (-4 *2 (-1154 *3))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-961)) (-5 *1 (-1152 *3 *2)) (-4 *2 (-1154 *3))))) (((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-494)) (-5 *2 (-2 (|:| -1971 *3) (|:| -2901 *3))) - (-5 *1 (-1150 *4 *3)) (-4 *3 (-1153 *4))))) + (|partial| -12 (-4 *4 (-495)) (-5 *2 (-2 (|:| -1972 *3) (|:| -2902 *3))) + (-5 *1 (-1151 *4 *3)) (-4 *3 (-1154 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-494) (-120))) (-5 *2 (-582 *3)) (-5 *1 (-1149 *4 *3)) - (-4 *3 (-1153 *4))))) + (-12 (-4 *4 (-13 (-495) (-120))) (-5 *2 (-583 *3)) (-5 *1 (-1150 *4 *3)) + (-4 *3 (-1154 *4))))) (((*1 *2 *3) - (|partial| -12 (-4 *4 (-13 (-494) (-120))) - (-5 *2 (-2 (|:| -3137 *3) (|:| -3136 *3))) (-5 *1 (-1149 *4 *3)) - (-4 *3 (-1153 *4))))) + (|partial| -12 (-4 *4 (-13 (-495) (-120))) + (-5 *2 (-2 (|:| -3138 *3) (|:| -3137 *3))) (-5 *1 (-1150 *4 *3)) + (-4 *3 (-1154 *4))))) (((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-13 (-494) (-120))) (-5 *1 (-1149 *3 *2)) - (-4 *2 (-1153 *3))))) + (|partial| -12 (-4 *3 (-13 (-495) (-120))) (-5 *1 (-1150 *3 *2)) + (-4 *2 (-1154 *3))))) (((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *3 (-693)) (-4 *4 (-13 (-494) (-120))) - (-5 *1 (-1149 *4 *2)) (-4 *2 (-1153 *4))))) + (|partial| -12 (-5 *3 (-694)) (-4 *4 (-13 (-495) (-120))) + (-5 *1 (-1150 *4 *2)) (-4 *2 (-1154 *4))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-693)) (-4 *4 (-13 (-494) (-120))) - (-5 *1 (-1149 *4 *2)) (-4 *2 (-1153 *4))))) + (|partial| -12 (-5 *3 (-694)) (-4 *4 (-13 (-495) (-120))) + (-5 *1 (-1150 *4 *2)) (-4 *2 (-1154 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-494)) (-4 *5 (-903 *4)) + (-12 (-4 *4 (-495)) (-4 *5 (-904 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-115 *4 *5 *3)) - (-4 *3 (-322 *5)))) + (-4 *3 (-323 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-494)) (-4 *5 (-903 *4)) - (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-441 *4 *5 *6 *3)) - (-4 *6 (-322 *4)) (-4 *3 (-322 *5)))) + (-12 (-4 *4 (-495)) (-4 *5 (-904 *4)) + (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-442 *4 *5 *6 *3)) + (-4 *6 (-323 *4)) (-4 *3 (-323 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-629 *5)) (-4 *5 (-903 *4)) (-4 *4 (-494)) - (-5 *2 (-2 (|:| |num| (-629 *4)) (|:| |den| *4))) (-5 *1 (-632 *4 *5)))) + (-12 (-5 *3 (-630 *5)) (-4 *5 (-904 *4)) (-4 *4 (-495)) + (-5 *2 (-2 (|:| |num| (-630 *4)) (|:| |den| *4))) (-5 *1 (-633 *4 *5)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-312) (-120) (-949 (-348 (-483))))) (-4 *6 (-1153 *5)) - (-5 *2 (-2 (|:| -3265 *7) (|:| |rh| (-582 (-348 *6))))) - (-5 *1 (-727 *5 *6 *7 *3)) (-5 *4 (-582 (-348 *6))) (-4 *7 (-599 *6)) - (-4 *3 (-599 (-348 *6))))) + (-12 (-4 *5 (-13 (-312) (-120) (-950 (-349 (-484))))) (-4 *6 (-1154 *5)) + (-5 *2 (-2 (|:| -3266 *7) (|:| |rh| (-583 (-349 *6))))) + (-5 *1 (-728 *5 *6 *7 *3)) (-5 *4 (-583 (-349 *6))) (-4 *7 (-600 *6)) + (-4 *3 (-600 (-349 *6))))) ((*1 *2 *3) - (-12 (-4 *4 (-494)) (-4 *5 (-903 *4)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1148 *4 *5 *3)) - (-4 *3 (-1153 *5))))) + (-12 (-4 *4 (-495)) (-4 *5 (-904 *4)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1149 *4 *5 *3)) + (-4 *3 (-1154 *5))))) (((*1 *2 *2) - (-12 (-4 *3 (-494)) (-4 *4 (-903 *3)) (-5 *1 (-115 *3 *4 *2)) - (-4 *2 (-322 *4)))) + (-12 (-4 *3 (-495)) (-4 *4 (-904 *3)) (-5 *1 (-115 *3 *4 *2)) + (-4 *2 (-323 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-494)) (-4 *5 (-903 *4)) (-4 *2 (-322 *4)) - (-5 *1 (-441 *4 *5 *2 *3)) (-4 *3 (-322 *5)))) + (-12 (-4 *4 (-495)) (-4 *5 (-904 *4)) (-4 *2 (-323 *4)) + (-5 *1 (-442 *4 *5 *2 *3)) (-4 *3 (-323 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-629 *5)) (-4 *5 (-903 *4)) (-4 *4 (-494)) (-5 *2 (-629 *4)) - (-5 *1 (-632 *4 *5)))) + (-12 (-5 *3 (-630 *5)) (-4 *5 (-904 *4)) (-4 *4 (-495)) (-5 *2 (-630 *4)) + (-5 *1 (-633 *4 *5)))) ((*1 *2 *2) - (-12 (-4 *3 (-494)) (-4 *4 (-903 *3)) (-5 *1 (-1148 *3 *4 *2)) - (-4 *2 (-1153 *4))))) + (-12 (-4 *3 (-495)) (-4 *4 (-904 *3)) (-5 *1 (-1149 *3 *4 *2)) + (-4 *2 (-1154 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-903 *2)) (-4 *2 (-494)) (-5 *1 (-115 *2 *4 *3)) - (-4 *3 (-322 *4)))) + (-12 (-4 *4 (-904 *2)) (-4 *2 (-495)) (-5 *1 (-115 *2 *4 *3)) + (-4 *3 (-323 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-903 *2)) (-4 *2 (-494)) (-5 *1 (-441 *2 *4 *5 *3)) - (-4 *5 (-322 *2)) (-4 *3 (-322 *4)))) + (-12 (-4 *4 (-904 *2)) (-4 *2 (-495)) (-5 *1 (-442 *2 *4 *5 *3)) + (-4 *5 (-323 *2)) (-4 *3 (-323 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-629 *4)) (-4 *4 (-903 *2)) (-4 *2 (-494)) - (-5 *1 (-632 *2 *4)))) + (-12 (-5 *3 (-630 *4)) (-4 *4 (-904 *2)) (-4 *2 (-495)) + (-5 *1 (-633 *2 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-903 *2)) (-4 *2 (-494)) (-5 *1 (-1148 *2 *4 *3)) - (-4 *3 (-1153 *4))))) -(((*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-693)) (-5 *1 (-703 *3)) (-4 *3 (-960)))) + (-12 (-4 *4 (-904 *2)) (-4 *2 (-495)) (-5 *1 (-1149 *2 *4 *3)) + (-4 *3 (-1154 *4))))) +(((*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-694)) (-5 *1 (-704 *3)) (-4 *3 (-961)))) ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *1 (-866 *3 *2)) (-4 *2 (-104)) (-4 *3 (-494)) (-4 *3 (-960)) - (-4 *2 (-715)))) - ((*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-693)) (-5 *1 (-1083 *3)) (-4 *3 (-960)))) + (-12 (-5 *1 (-867 *3 *2)) (-4 *2 (-104)) (-4 *3 (-495)) (-4 *3 (-961)) + (-4 *2 (-716)))) + ((*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-694)) (-5 *1 (-1084 *3)) (-4 *3 (-961)))) ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-883)) (-4 *2 (-104)) (-5 *1 (-1090 *3)) (-4 *3 (-494)) - (-4 *3 (-960)))) + (-12 (-5 *2 (-884)) (-4 *2 (-104)) (-5 *1 (-1091 *3)) (-4 *3 (-495)) + (-4 *3 (-961)))) ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-693)) (-5 *1 (-1146 *4 *3)) (-14 *4 (-1088)) (-4 *3 (-960))))) -(((*1 *1 *1) (-5 *1 (-771))) ((*1 *1 *1 *1) (-5 *1 (-771))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-1127)))) - ((*1 *1 *2) (-12 (-5 *1 (-1144 *2)) (-4 *2 (-1127))))) -(((*1 *2 *1) (-12 (-4 *2 (-1005 *3)) (-5 *1 (-970 *2 *3)) (-4 *3 (-1127)))) - ((*1 *2 *1) (-12 (-5 *2 (-1000 *3)) (-5 *1 (-1003 *3)) (-4 *3 (-1127)))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-1127)))) - ((*1 *1 *2) (-12 (-5 *1 (-1144 *2)) (-4 *2 (-1127))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1144 *3)) (-4 *3 (-1127))))) + (-12 (-5 *2 (-694)) (-5 *1 (-1147 *4 *3)) (-14 *4 (-1089)) (-4 *3 (-961))))) +(((*1 *1 *1) (-5 *1 (-772))) ((*1 *1 *1 *1) (-5 *1 (-772))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-1128)))) + ((*1 *1 *2) (-12 (-5 *1 (-1145 *2)) (-4 *2 (-1128))))) +(((*1 *2 *1) (-12 (-4 *2 (-1006 *3)) (-5 *1 (-971 *2 *3)) (-4 *3 (-1128)))) + ((*1 *2 *1) (-12 (-5 *2 (-1001 *3)) (-5 *1 (-1004 *3)) (-4 *3 (-1128)))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-1128)))) + ((*1 *1 *2) (-12 (-5 *1 (-1145 *2)) (-4 *2 (-1128))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1145 *3)) (-4 *3 (-1128))))) (((*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-5 *2 - (-2 (|:| |contp| (-483)) - (|:| -1777 (-582 (-2 (|:| |irr| *3) (|:| -2394 (-483))))))) - (-5 *1 (-380 *3)) (-4 *3 (-1153 (-483))))) + (-2 (|:| |contp| (-484)) + (|:| -1778 (-583 (-2 (|:| |irr| *3) (|:| -2395 (-484))))))) + (-5 *1 (-381 *3)) (-4 *3 (-1154 (-484))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-5 *2 - (-2 (|:| |contp| (-483)) - (|:| -1777 (-582 (-2 (|:| |irr| *3) (|:| -2394 (-483))))))) - (-5 *1 (-1143 *3)) (-4 *3 (-1153 (-483)))))) + (-2 (|:| |contp| (-484)) + (|:| -1778 (-583 (-2 (|:| |irr| *3) (|:| -2395 (-484))))))) + (-5 *1 (-1144 *3)) (-4 *3 (-1154 (-484)))))) (((*1 *2 *3) - (-12 (-4 *4 (-299)) (-5 *2 (-346 *3)) (-5 *1 (-170 *4 *3)) - (-4 *3 (-1153 *4)))) - ((*1 *2 *3) (-12 (-5 *2 (-346 *3)) (-5 *1 (-380 *3)) (-4 *3 (-1153 (-483))))) + (-12 (-4 *4 (-299)) (-5 *2 (-347 *3)) (-5 *1 (-170 *4 *3)) + (-4 *3 (-1154 *4)))) + ((*1 *2 *3) (-12 (-5 *2 (-347 *3)) (-5 *1 (-381 *3)) (-4 *3 (-1154 (-484))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-693)) (-5 *2 (-346 *3)) (-5 *1 (-380 *3)) - (-4 *3 (-1153 (-483))))) + (-12 (-5 *4 (-694)) (-5 *2 (-347 *3)) (-5 *1 (-381 *3)) + (-4 *3 (-1154 (-484))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-582 (-693))) (-5 *2 (-346 *3)) (-5 *1 (-380 *3)) - (-4 *3 (-1153 (-483))))) + (-12 (-5 *4 (-583 (-694))) (-5 *2 (-347 *3)) (-5 *1 (-381 *3)) + (-4 *3 (-1154 (-484))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-582 (-693))) (-5 *5 (-693)) (-5 *2 (-346 *3)) (-5 *1 (-380 *3)) - (-4 *3 (-1153 (-483))))) + (-12 (-5 *4 (-583 (-694))) (-5 *5 (-694)) (-5 *2 (-347 *3)) (-5 *1 (-381 *3)) + (-4 *3 (-1154 (-484))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-693)) (-5 *2 (-346 *3)) (-5 *1 (-380 *3)) - (-4 *3 (-1153 (-483))))) + (-12 (-5 *4 (-694)) (-5 *2 (-347 *3)) (-5 *1 (-381 *3)) + (-4 *3 (-1154 (-484))))) ((*1 *2 *3) - (-12 (-5 *2 (-346 *3)) (-5 *1 (-919 *3)) (-4 *3 (-1153 (-348 (-483)))))) - ((*1 *2 *3) (-12 (-5 *2 (-346 *3)) (-5 *1 (-1143 *3)) (-4 *3 (-1153 (-483)))))) + (-12 (-5 *2 (-347 *3)) (-5 *1 (-920 *3)) (-4 *3 (-1154 (-349 (-484)))))) + ((*1 *2 *3) (-12 (-5 *2 (-347 *3)) (-5 *1 (-1144 *3)) (-4 *3 (-1154 (-484)))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-582 (-48))) (-5 *2 (-346 *3)) (-5 *1 (-39 *3)) - (-4 *3 (-1153 (-48))))) - ((*1 *2 *3) (-12 (-5 *2 (-346 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1153 (-48))))) + (-12 (-5 *4 (-583 (-48))) (-5 *2 (-347 *3)) (-5 *1 (-39 *3)) + (-4 *3 (-1154 (-48))))) + ((*1 *2 *3) (-12 (-5 *2 (-347 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1154 (-48))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-582 (-48))) (-4 *5 (-755)) (-4 *6 (-716)) (-5 *2 (-346 *3)) - (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-860 (-48) *6 *5)))) + (-12 (-5 *4 (-583 (-48))) (-4 *5 (-756)) (-4 *6 (-717)) (-5 *2 (-347 *3)) + (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-861 (-48) *6 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-582 (-48))) (-4 *5 (-755)) (-4 *6 (-716)) - (-4 *7 (-860 (-48) *6 *5)) (-5 *2 (-346 (-1083 *7))) (-5 *1 (-42 *5 *6 *7)) - (-5 *3 (-1083 *7)))) + (-12 (-5 *4 (-583 (-48))) (-4 *5 (-756)) (-4 *6 (-717)) + (-4 *7 (-861 (-48) *6 *5)) (-5 *2 (-347 (-1084 *7))) (-5 *1 (-42 *5 *6 *7)) + (-5 *3 (-1084 *7)))) ((*1 *2 *3) - (-12 (-4 *4 (-258)) (-5 *2 (-346 *3)) (-5 *1 (-140 *4 *3)) - (-4 *3 (-1153 (-142 *4))))) + (-12 (-4 *4 (-258)) (-5 *2 (-347 *3)) (-5 *1 (-140 *4 *3)) + (-4 *3 (-1154 (-142 *4))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-85)) (-4 *4 (-13 (-312) (-754))) (-5 *2 (-346 *3)) - (-5 *1 (-155 *4 *3)) (-4 *3 (-1153 (-142 *4))))) + (-12 (-5 *5 (-85)) (-4 *4 (-13 (-312) (-755))) (-5 *2 (-347 *3)) + (-5 *1 (-155 *4 *3)) (-4 *3 (-1154 (-142 *4))))) ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-312) (-754))) (-5 *2 (-346 *3)) (-5 *1 (-155 *4 *3)) - (-4 *3 (-1153 (-142 *4))))) + (-12 (-4 *4 (-13 (-312) (-755))) (-5 *2 (-347 *3)) (-5 *1 (-155 *4 *3)) + (-4 *3 (-1154 (-142 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-312) (-754))) (-5 *2 (-346 *3)) (-5 *1 (-155 *4 *3)) - (-4 *3 (-1153 (-142 *4))))) + (-12 (-4 *4 (-13 (-312) (-755))) (-5 *2 (-347 *3)) (-5 *1 (-155 *4 *3)) + (-4 *3 (-1154 (-142 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-299)) (-5 *2 (-346 *3)) (-5 *1 (-170 *4 *3)) - (-4 *3 (-1153 *4)))) - ((*1 *2 *3) (-12 (-5 *2 (-346 *3)) (-5 *1 (-380 *3)) (-4 *3 (-1153 (-483))))) + (-12 (-4 *4 (-299)) (-5 *2 (-347 *3)) (-5 *1 (-170 *4 *3)) + (-4 *3 (-1154 *4)))) + ((*1 *2 *3) (-12 (-5 *2 (-347 *3)) (-5 *1 (-381 *3)) (-4 *3 (-1154 (-484))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-693)) (-5 *2 (-346 *3)) (-5 *1 (-380 *3)) - (-4 *3 (-1153 (-483))))) + (-12 (-5 *4 (-694)) (-5 *2 (-347 *3)) (-5 *1 (-381 *3)) + (-4 *3 (-1154 (-484))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-582 (-693))) (-5 *2 (-346 *3)) (-5 *1 (-380 *3)) - (-4 *3 (-1153 (-483))))) + (-12 (-5 *4 (-583 (-694))) (-5 *2 (-347 *3)) (-5 *1 (-381 *3)) + (-4 *3 (-1154 (-484))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-582 (-693))) (-5 *5 (-693)) (-5 *2 (-346 *3)) (-5 *1 (-380 *3)) - (-4 *3 (-1153 (-483))))) + (-12 (-5 *4 (-583 (-694))) (-5 *5 (-694)) (-5 *2 (-347 *3)) (-5 *1 (-381 *3)) + (-4 *3 (-1154 (-484))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-693)) (-5 *2 (-346 *3)) (-5 *1 (-380 *3)) - (-4 *3 (-1153 (-483))))) + (-12 (-5 *4 (-694)) (-5 *2 (-347 *3)) (-5 *1 (-381 *3)) + (-4 *3 (-1154 (-484))))) ((*1 *2 *3) - (-12 (-5 *2 (-346 (-142 (-483)))) (-5 *1 (-384)) (-5 *3 (-142 (-483))))) + (-12 (-5 *2 (-347 (-142 (-484)))) (-5 *1 (-385)) (-5 *3 (-142 (-484))))) ((*1 *2 *3) (-12 (-4 *4 - (-13 (-755) - (-10 -8 (-15 -3970 ((-1088) $)) (-15 -3829 ((-3 $ "failed") (-1088)))))) - (-4 *5 (-716)) (-4 *7 (-494)) (-5 *2 (-346 *3)) - (-5 *1 (-394 *4 *5 *6 *7 *3)) (-4 *6 (-494)) (-4 *3 (-860 *7 *5 *4)))) + (-13 (-756) + (-10 -8 (-15 -3971 ((-1089) $)) (-15 -3830 ((-3 $ "failed") (-1089)))))) + (-4 *5 (-717)) (-4 *7 (-495)) (-5 *2 (-347 *3)) + (-5 *1 (-395 *4 *5 *6 *7 *3)) (-4 *6 (-495)) (-4 *3 (-861 *7 *5 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-258)) (-5 *2 (-346 (-1083 *4))) (-5 *1 (-396 *4)) - (-5 *3 (-1083 *4)))) + (-12 (-4 *4 (-258)) (-5 *2 (-347 (-1084 *4))) (-5 *1 (-397 *4)) + (-5 *3 (-1084 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-346 *6) *6)) (-4 *6 (-1153 *5)) (-4 *5 (-312)) - (-4 *7 (-13 (-312) (-120) (-660 *5 *6))) (-5 *2 (-346 *3)) - (-5 *1 (-432 *5 *6 *7 *3)) (-4 *3 (-1153 *7)))) + (-12 (-5 *4 (-1 (-347 *6) *6)) (-4 *6 (-1154 *5)) (-4 *5 (-312)) + (-4 *7 (-13 (-312) (-120) (-661 *5 *6))) (-5 *2 (-347 *3)) + (-5 *1 (-433 *5 *6 *7 *3)) (-4 *3 (-1154 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-346 (-1083 *7)) (-1083 *7))) (-4 *7 (-13 (-258) (-120))) - (-4 *5 (-755)) (-4 *6 (-716)) (-5 *2 (-346 *3)) (-5 *1 (-477 *5 *6 *7 *3)) - (-4 *3 (-860 *7 *6 *5)))) + (-12 (-5 *4 (-1 (-347 (-1084 *7)) (-1084 *7))) (-4 *7 (-13 (-258) (-120))) + (-4 *5 (-756)) (-4 *6 (-717)) (-5 *2 (-347 *3)) (-5 *1 (-478 *5 *6 *7 *3)) + (-4 *3 (-861 *7 *6 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-346 (-1083 *7)) (-1083 *7))) (-4 *7 (-13 (-258) (-120))) - (-4 *5 (-755)) (-4 *6 (-716)) (-4 *8 (-860 *7 *6 *5)) - (-5 *2 (-346 (-1083 *8))) (-5 *1 (-477 *5 *6 *7 *8)) (-5 *3 (-1083 *8)))) - ((*1 *2 *3) (-12 (-5 *2 (-346 *3)) (-5 *1 (-496 *3)) (-4 *3 (-482)))) + (-12 (-5 *4 (-1 (-347 (-1084 *7)) (-1084 *7))) (-4 *7 (-13 (-258) (-120))) + (-4 *5 (-756)) (-4 *6 (-717)) (-4 *8 (-861 *7 *6 *5)) + (-5 *2 (-347 (-1084 *8))) (-5 *1 (-478 *5 *6 *7 *8)) (-5 *3 (-1084 *8)))) + ((*1 *2 *3) (-12 (-5 *2 (-347 *3)) (-5 *1 (-497 *3)) (-4 *3 (-483)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-582 *5) *6)) - (-4 *5 (-13 (-312) (-120) (-949 (-483)) (-949 (-348 (-483))))) - (-4 *6 (-1153 *5)) (-5 *2 (-582 (-596 (-348 *6)))) (-5 *1 (-600 *5 *6)) - (-5 *3 (-596 (-348 *6))))) + (-12 (-5 *4 (-1 (-583 *5) *6)) + (-4 *5 (-13 (-312) (-120) (-950 (-484)) (-950 (-349 (-484))))) + (-4 *6 (-1154 *5)) (-5 *2 (-583 (-597 (-349 *6)))) (-5 *1 (-601 *5 *6)) + (-5 *3 (-597 (-349 *6))))) ((*1 *2 *3) (-12 (-4 *4 (-27)) - (-4 *4 (-13 (-312) (-120) (-949 (-483)) (-949 (-348 (-483))))) - (-4 *5 (-1153 *4)) (-5 *2 (-582 (-596 (-348 *5)))) (-5 *1 (-600 *4 *5)) - (-5 *3 (-596 (-348 *5))))) + (-4 *4 (-13 (-312) (-120) (-950 (-484)) (-950 (-349 (-484))))) + (-4 *5 (-1154 *4)) (-5 *2 (-583 (-597 (-349 *5)))) (-5 *1 (-601 *4 *5)) + (-5 *3 (-597 (-349 *5))))) ((*1 *2 *3) - (-12 (-5 *3 (-738 *4)) (-4 *4 (-755)) (-5 *2 (-582 (-613 *4))) - (-5 *1 (-613 *4)))) + (-12 (-5 *3 (-739 *4)) (-4 *4 (-756)) (-5 *2 (-583 (-614 *4))) + (-5 *1 (-614 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-483)) (-5 *2 (-582 *3)) (-5 *1 (-634 *3)) (-4 *3 (-1153 *4)))) + (-12 (-5 *4 (-484)) (-5 *2 (-583 *3)) (-5 *1 (-635 *3)) (-4 *3 (-1154 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-755)) (-4 *5 (-716)) (-4 *6 (-299)) (-5 *2 (-346 *3)) - (-5 *1 (-636 *4 *5 *6 *3)) (-4 *3 (-860 *6 *5 *4)))) + (-12 (-4 *4 (-756)) (-4 *5 (-717)) (-4 *6 (-299)) (-5 *2 (-347 *3)) + (-5 *1 (-637 *4 *5 *6 *3)) (-4 *3 (-861 *6 *5 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-755)) (-4 *5 (-716)) (-4 *6 (-299)) (-4 *7 (-860 *6 *5 *4)) - (-5 *2 (-346 (-1083 *7))) (-5 *1 (-636 *4 *5 *6 *7)) (-5 *3 (-1083 *7)))) + (-12 (-4 *4 (-756)) (-4 *5 (-717)) (-4 *6 (-299)) (-4 *7 (-861 *6 *5 *4)) + (-5 *2 (-347 (-1084 *7))) (-5 *1 (-637 *4 *5 *6 *7)) (-5 *3 (-1084 *7)))) ((*1 *2 *3) - (-12 (-4 *4 (-716)) + (-12 (-4 *4 (-717)) (-4 *5 - (-13 (-755) - (-10 -8 (-15 -3970 ((-1088) $)) (-15 -3829 ((-3 $ "failed") (-1088)))))) - (-4 *6 (-258)) (-5 *2 (-346 *3)) (-5 *1 (-668 *4 *5 *6 *3)) - (-4 *3 (-860 (-856 *6) *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-716)) (-4 *5 (-13 (-755) (-10 -8 (-15 -3970 ((-1088) $))))) - (-4 *6 (-494)) (-5 *2 (-346 *3)) (-5 *1 (-670 *4 *5 *6 *3)) - (-4 *3 (-860 (-348 (-856 *6)) *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-716)) (-4 *5 (-755)) (-4 *6 (-13 (-258) (-120))) - (-5 *2 (-346 *3)) (-5 *1 (-671 *4 *5 *6 *3)) - (-4 *3 (-860 (-348 *6) *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-755)) (-4 *5 (-716)) (-4 *6 (-13 (-258) (-120))) - (-5 *2 (-346 *3)) (-5 *1 (-679 *4 *5 *6 *3)) (-4 *3 (-860 *6 *5 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-755)) (-4 *5 (-716)) (-4 *6 (-13 (-258) (-120))) - (-4 *7 (-860 *6 *5 *4)) (-5 *2 (-346 (-1083 *7))) (-5 *1 (-679 *4 *5 *6 *7)) - (-5 *3 (-1083 *7)))) - ((*1 *2 *3) - (-12 (-5 *2 (-346 *3)) (-5 *1 (-919 *3)) (-4 *3 (-1153 (-348 (-483)))))) - ((*1 *2 *3) - (-12 (-5 *2 (-346 *3)) (-5 *1 (-953 *3)) - (-4 *3 (-1153 (-348 (-856 (-483))))))) - ((*1 *2 *3) - (-12 (-4 *4 (-1153 (-348 (-483)))) - (-4 *5 (-13 (-312) (-120) (-660 (-348 (-483)) *4))) (-5 *2 (-346 *3)) - (-5 *1 (-991 *4 *5 *3)) (-4 *3 (-1153 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-1153 (-348 (-856 (-483))))) - (-4 *5 (-13 (-312) (-120) (-660 (-348 (-856 (-483))) *4))) (-5 *2 (-346 *3)) - (-5 *1 (-992 *4 *5 *3)) (-4 *3 (-1153 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-716)) (-4 *5 (-755)) (-4 *6 (-390)) (-4 *7 (-860 *6 *4 *5)) - (-5 *2 (-346 (-1083 (-348 *7)))) (-5 *1 (-1085 *4 *5 *6 *7)) - (-5 *3 (-1083 (-348 *7))))) - ((*1 *2 *1) (-12 (-5 *2 (-346 *1)) (-4 *1 (-1132)))) - ((*1 *2 *3) (-12 (-5 *2 (-346 *3)) (-5 *1 (-1143 *3)) (-4 *3 (-1153 (-483)))))) -(((*1 *2 *1) (-12 (-4 *1 (-1141 *3 *2)) (-4 *3 (-960)) (-4 *2 (-1170 *3))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-90 *3)) (-14 *3 *2))) - ((*1 *1 *1) (-12 (-5 *1 (-90 *2)) (-14 *2 (-483)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-779 *3)) (-14 *3 *2))) - ((*1 *1 *1) (-12 (-5 *1 (-779 *2)) (-14 *2 (-483)))) + (-13 (-756) + (-10 -8 (-15 -3971 ((-1089) $)) (-15 -3830 ((-3 $ "failed") (-1089)))))) + (-4 *6 (-258)) (-5 *2 (-347 *3)) (-5 *1 (-669 *4 *5 *6 *3)) + (-4 *3 (-861 (-857 *6) *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-717)) (-4 *5 (-13 (-756) (-10 -8 (-15 -3971 ((-1089) $))))) + (-4 *6 (-495)) (-5 *2 (-347 *3)) (-5 *1 (-671 *4 *5 *6 *3)) + (-4 *3 (-861 (-349 (-857 *6)) *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-13 (-258) (-120))) + (-5 *2 (-347 *3)) (-5 *1 (-672 *4 *5 *6 *3)) + (-4 *3 (-861 (-349 *6) *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-756)) (-4 *5 (-717)) (-4 *6 (-13 (-258) (-120))) + (-5 *2 (-347 *3)) (-5 *1 (-680 *4 *5 *6 *3)) (-4 *3 (-861 *6 *5 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-756)) (-4 *5 (-717)) (-4 *6 (-13 (-258) (-120))) + (-4 *7 (-861 *6 *5 *4)) (-5 *2 (-347 (-1084 *7))) (-5 *1 (-680 *4 *5 *6 *7)) + (-5 *3 (-1084 *7)))) + ((*1 *2 *3) + (-12 (-5 *2 (-347 *3)) (-5 *1 (-920 *3)) (-4 *3 (-1154 (-349 (-484)))))) + ((*1 *2 *3) + (-12 (-5 *2 (-347 *3)) (-5 *1 (-954 *3)) + (-4 *3 (-1154 (-349 (-857 (-484))))))) + ((*1 *2 *3) + (-12 (-4 *4 (-1154 (-349 (-484)))) + (-4 *5 (-13 (-312) (-120) (-661 (-349 (-484)) *4))) (-5 *2 (-347 *3)) + (-5 *1 (-992 *4 *5 *3)) (-4 *3 (-1154 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-1154 (-349 (-857 (-484))))) + (-4 *5 (-13 (-312) (-120) (-661 (-349 (-857 (-484))) *4))) (-5 *2 (-347 *3)) + (-5 *1 (-993 *4 *5 *3)) (-4 *3 (-1154 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-391)) (-4 *7 (-861 *6 *4 *5)) + (-5 *2 (-347 (-1084 (-349 *7)))) (-5 *1 (-1086 *4 *5 *6 *7)) + (-5 *3 (-1084 (-349 *7))))) + ((*1 *2 *1) (-12 (-5 *2 (-347 *1)) (-4 *1 (-1133)))) + ((*1 *2 *3) (-12 (-5 *2 (-347 *3)) (-5 *1 (-1144 *3)) (-4 *3 (-1154 (-484)))))) +(((*1 *2 *1) (-12 (-4 *1 (-1142 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1171 *3))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-90 *3)) (-14 *3 *2))) + ((*1 *1 *1) (-12 (-5 *1 (-90 *2)) (-14 *2 (-484)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-780 *3)) (-14 *3 *2))) + ((*1 *1 *1) (-12 (-5 *1 (-780 *2)) (-14 *2 (-484)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-483)) (-14 *3 *2) (-5 *1 (-780 *3 *4)) (-4 *4 (-778 *3)))) - ((*1 *1 *1) (-12 (-14 *2 (-483)) (-5 *1 (-780 *2 *3)) (-4 *3 (-778 *2)))) + (-12 (-5 *2 (-484)) (-14 *3 *2) (-5 *1 (-781 *3 *4)) (-4 *4 (-779 *3)))) + ((*1 *1 *1) (-12 (-14 *2 (-484)) (-5 *1 (-781 *2 *3)) (-4 *3 (-779 *2)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-483)) (-4 *1 (-1141 *3 *4)) (-4 *3 (-960)) (-4 *4 (-1170 *3)))) - ((*1 *1 *1) (-12 (-4 *1 (-1141 *2 *3)) (-4 *2 (-960)) (-4 *3 (-1170 *2))))) + (-12 (-5 *2 (-484)) (-4 *1 (-1142 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1171 *3)))) + ((*1 *1 *1) (-12 (-4 *1 (-1142 *2 *3)) (-4 *2 (-961)) (-4 *3 (-1171 *2))))) (((*1 *2 *3) - (-12 (-5 *3 (-1088)) (-4 *4 (-13 (-390) (-949 (-483)) (-579 (-483)))) - (-5 *2 (-51)) (-5 *1 (-267 *4 *5)) (-4 *5 (-13 (-27) (-1113) (-362 *4))))) + (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-391) (-950 (-484)) (-580 (-484)))) + (-5 *2 (-51)) (-5 *1 (-267 *4 *5)) (-4 *5 (-13 (-27) (-1114) (-363 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-390) (-949 (-483)) (-579 (-483)))) (-5 *2 (-51)) - (-5 *1 (-267 *4 *3)) (-4 *3 (-13 (-27) (-1113) (-362 *4))))) + (-12 (-4 *4 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) + (-5 *1 (-267 *4 *3)) (-4 *3 (-13 (-27) (-1114) (-363 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-693)) (-4 *5 (-13 (-390) (-949 (-483)) (-579 (-483)))) - (-5 *2 (-51)) (-5 *1 (-267 *5 *3)) (-4 *3 (-13 (-27) (-1113) (-362 *5))))) + (-12 (-5 *4 (-694)) (-4 *5 (-13 (-391) (-950 (-484)) (-580 (-484)))) + (-5 *2 (-51)) (-5 *1 (-267 *5 *3)) (-4 *3 (-13 (-27) (-1114) (-363 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-249 *3)) (-4 *3 (-13 (-27) (-1113) (-362 *5))) - (-4 *5 (-13 (-390) (-949 (-483)) (-579 (-483)))) (-5 *2 (-51)) + (-12 (-5 *4 (-249 *3)) (-4 *3 (-13 (-27) (-1114) (-363 *5))) + (-4 *5 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-267 *5 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-249 *3)) (-5 *5 (-693)) (-4 *3 (-13 (-27) (-1113) (-362 *6))) - (-4 *6 (-13 (-390) (-949 (-483)) (-579 (-483)))) (-5 *2 (-51)) + (-12 (-5 *4 (-249 *3)) (-5 *5 (-694)) (-4 *3 (-13 (-27) (-1114) (-363 *6))) + (-4 *6 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-267 *6 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 (-483))) (-5 *4 (-249 *6)) - (-4 *6 (-13 (-27) (-1113) (-362 *5))) - (-4 *5 (-13 (-494) (-949 (-483)) (-579 (-483)))) (-5 *2 (-51)) - (-5 *1 (-397 *5 *6)))) + (-12 (-5 *3 (-1 *6 (-484))) (-5 *4 (-249 *6)) + (-4 *6 (-13 (-27) (-1114) (-363 *5))) + (-4 *5 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) + (-5 *1 (-398 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1088)) (-5 *5 (-249 *3)) (-4 *3 (-13 (-27) (-1113) (-362 *6))) - (-4 *6 (-13 (-494) (-949 (-483)) (-579 (-483)))) (-5 *2 (-51)) - (-5 *1 (-397 *6 *3)))) + (-12 (-5 *4 (-1089)) (-5 *5 (-249 *3)) (-4 *3 (-13 (-27) (-1114) (-363 *6))) + (-4 *6 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) + (-5 *1 (-398 *6 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-483))) (-5 *4 (-249 *7)) (-5 *5 (-1144 (-693))) - (-4 *7 (-13 (-27) (-1113) (-362 *6))) - (-4 *6 (-13 (-494) (-949 (-483)) (-579 (-483)))) (-5 *2 (-51)) - (-5 *1 (-397 *6 *7)))) + (-12 (-5 *3 (-1 *7 (-484))) (-5 *4 (-249 *7)) (-5 *5 (-1145 (-694))) + (-4 *7 (-13 (-27) (-1114) (-363 *6))) + (-4 *6 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) + (-5 *1 (-398 *6 *7)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1088)) (-5 *5 (-249 *3)) (-5 *6 (-1144 (-693))) - (-4 *3 (-13 (-27) (-1113) (-362 *7))) - (-4 *7 (-13 (-494) (-949 (-483)) (-579 (-483)))) (-5 *2 (-51)) - (-5 *1 (-397 *7 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-1141 *3 *2)) (-4 *3 (-960)) (-4 *2 (-1170 *3))))) + (-12 (-5 *4 (-1089)) (-5 *5 (-249 *3)) (-5 *6 (-1145 (-694))) + (-4 *3 (-13 (-27) (-1114) (-363 *7))) + (-4 *7 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) + (-5 *1 (-398 *7 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-1142 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1171 *3))))) (((*1 *2 *1) - (|partial| -12 (-4 *1 (-1141 *3 *2)) (-4 *3 (-960)) (-4 *2 (-1170 *3))))) + (|partial| -12 (-4 *1 (-1142 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1171 *3))))) (((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-483)) (-4 *1 (-1139 *4)) (-4 *4 (-960)) (-4 *4 (-494)) - (-5 *2 (-348 (-856 *4))))) + (-12 (-5 *3 (-484)) (-4 *1 (-1140 *4)) (-4 *4 (-961)) (-4 *4 (-495)) + (-5 *2 (-349 (-857 *4))))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-483)) (-4 *1 (-1139 *4)) (-4 *4 (-960)) (-4 *4 (-494)) - (-5 *2 (-348 (-856 *4)))))) + (-12 (-5 *3 (-484)) (-4 *1 (-1140 *4)) (-4 *4 (-961)) (-4 *4 (-495)) + (-5 *2 (-349 (-857 *4)))))) (((*1 *1 *1 *1) (-5 *1 (-101))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-1095 *2)) (-14 *2 (-829)))) - ((*1 *1 *1 *1) (-5 *1 (-1133))) ((*1 *1 *1 *1) (-5 *1 (-1134))) - ((*1 *1 *1 *1) (-5 *1 (-1135))) ((*1 *1 *1 *1) (-5 *1 (-1136)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-1096 *2)) (-14 *2 (-830)))) + ((*1 *1 *1 *1) (-5 *1 (-1134))) ((*1 *1 *1 *1) (-5 *1 (-1135))) + ((*1 *1 *1 *1) (-5 *1 (-1136))) ((*1 *1 *1 *1) (-5 *1 (-1137)))) (((*1 *1 *1 *1) (-5 *1 (-101))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-1095 *2)) (-14 *2 (-829)))) - ((*1 *1 *1 *1) (-5 *1 (-1133))) ((*1 *1 *1 *1) (-5 *1 (-1134))) - ((*1 *1 *1 *1) (-5 *1 (-1135))) ((*1 *1 *1 *1) (-5 *1 (-1136)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-1096 *2)) (-14 *2 (-830)))) + ((*1 *1 *1 *1) (-5 *1 (-1134))) ((*1 *1 *1 *1) (-5 *1 (-1135))) + ((*1 *1 *1 *1) (-5 *1 (-1136))) ((*1 *1 *1 *1) (-5 *1 (-1137)))) (((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-101))) ((*1 *1) - (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-483)) (-14 *3 (-693)) (-4 *4 (-146)))) - ((*1 *1) (-5 *1 (-484))) ((*1 *1) (-5 *1 (-485))) ((*1 *1) (-5 *1 (-486))) - ((*1 *1) (-5 *1 (-487))) ((*1 *1) (-4 *1 (-662))) ((*1 *1) (-5 *1 (-1088))) - ((*1 *1) (-12 (-5 *1 (-1094 *2)) (-14 *2 (-829)))) - ((*1 *1) (-12 (-5 *1 (-1095 *2)) (-14 *2 (-829)))) ((*1 *1) (-5 *1 (-1133))) - ((*1 *1) (-5 *1 (-1134))) ((*1 *1) (-5 *1 (-1135))) ((*1 *1) (-5 *1 (-1136)))) -(((*1 *2 *3) (-12 (-5 *3 (-142 (-483))) (-5 *2 (-85)) (-5 *1 (-384)))) + (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-484)) (-14 *3 (-694)) (-4 *4 (-146)))) + ((*1 *1) (-5 *1 (-485))) ((*1 *1) (-5 *1 (-486))) ((*1 *1) (-5 *1 (-487))) + ((*1 *1) (-5 *1 (-488))) ((*1 *1) (-4 *1 (-663))) ((*1 *1) (-5 *1 (-1089))) + ((*1 *1) (-12 (-5 *1 (-1095 *2)) (-14 *2 (-830)))) + ((*1 *1) (-12 (-5 *1 (-1096 *2)) (-14 *2 (-830)))) ((*1 *1) (-5 *1 (-1134))) + ((*1 *1) (-5 *1 (-1135))) ((*1 *1) (-5 *1 (-1136))) ((*1 *1) (-5 *1 (-1137)))) +(((*1 *2 *3) (-12 (-5 *3 (-142 (-484))) (-5 *2 (-85)) (-5 *1 (-385)))) ((*1 *2 *3) (-12 (-5 *3 - (-442 (-348 (-483)) (-197 *5 (-693)) (-772 *4) (-206 *4 (-348 (-483))))) - (-14 *4 (-582 (-1088))) (-14 *5 (-693)) (-5 *2 (-85)) (-5 *1 (-443 *4 *5)))) - ((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-872 *3)) (-4 *3 (-482)))) - ((*1 *2 *1) (-12 (-4 *1 (-1132)) (-5 *2 (-85))))) -(((*1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-1130))))) + (-443 (-349 (-484)) (-197 *5 (-694)) (-773 *4) (-206 *4 (-349 (-484))))) + (-14 *4 (-583 (-1089))) (-14 *5 (-694)) (-5 *2 (-85)) (-5 *1 (-444 *4 *5)))) + ((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-873 *3)) (-4 *3 (-483)))) + ((*1 *2 *1) (-12 (-4 *1 (-1133)) (-5 *2 (-85))))) +(((*1 *2) (-12 (-5 *2 (-1184)) (-5 *1 (-1131))))) (((*1 *2) - (-12 (-5 *2 (-2 (|:| -3227 (-582 (-1088))) (|:| -3228 (-582 (-1088))))) - (-5 *1 (-1130))))) -(((*1 *2 *3) (-12 (-5 *3 (-582 (-1088))) (-5 *2 (-1183)) (-5 *1 (-1130)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-582 (-1088))) (-5 *2 (-1183)) (-5 *1 (-1130))))) + (-12 (-5 *2 (-2 (|:| -3228 (-583 (-1089))) (|:| -3229 (-583 (-1089))))) + (-5 *1 (-1131))))) +(((*1 *2 *3) (-12 (-5 *3 (-583 (-1089))) (-5 *2 (-1184)) (-5 *1 (-1131)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-583 (-1089))) (-5 *2 (-1184)) (-5 *1 (-1131))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-693)) (-4 *1 (-1062 *4)) (-4 *4 (-1127)) (-5 *2 (-85)))) + (-12 (-5 *3 (-694)) (-4 *1 (-1063 *4)) (-4 *4 (-1128)) (-5 *2 (-85)))) ((*1 *2 *3 *3) - (-12 (-5 *2 (-85)) (-5 *1 (-1129 *3)) (-4 *3 (-755)) (-4 *3 (-1012))))) + (-12 (-5 *2 (-85)) (-5 *1 (-1130 *3)) (-4 *3 (-756)) (-4 *3 (-1013))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-582 *2)) (-5 *4 (-1 (-85) *2 *2)) (-5 *1 (-1129 *2)) - (-4 *2 (-1012)))) + (-12 (-5 *3 (-583 *2)) (-5 *4 (-1 (-85) *2 *2)) (-5 *1 (-1130 *2)) + (-4 *2 (-1013)))) ((*1 *2 *3) - (-12 (-5 *3 (-582 *2)) (-4 *2 (-1012)) (-4 *2 (-755)) (-5 *1 (-1129 *2))))) -(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1129 *3)) (-4 *3 (-1012))))) + (-12 (-5 *3 (-583 *2)) (-4 *2 (-1013)) (-4 *2 (-756)) (-5 *1 (-1130 *2))))) +(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1130 *3)) (-4 *3 (-1013))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-693)) (-4 *1 (-1062 *4)) (-4 *4 (-1127)) (-5 *2 (-85)))) + (-12 (-5 *3 (-694)) (-4 *1 (-1063 *4)) (-4 *4 (-1128)) (-5 *2 (-85)))) ((*1 *2 *3 *3) - (|partial| -12 (-5 *2 (-85)) (-5 *1 (-1129 *3)) (-4 *3 (-1012)))) + (|partial| -12 (-5 *2 (-85)) (-5 *1 (-1130 *3)) (-4 *3 (-1013)))) ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-1 (-85) *3 *3)) (-4 *3 (-1012)) (-5 *2 (-85)) - (-5 *1 (-1129 *3))))) + (-12 (-5 *4 (-1 (-85) *3 *3)) (-4 *3 (-1013)) (-5 *2 (-85)) + (-5 *1 (-1130 *3))))) (((*1 *2) - (-12 (-5 *2 (-2 (|:| -3228 (-582 *3)) (|:| -3227 (-582 *3)))) - (-5 *1 (-1129 *3)) (-4 *3 (-1012))))) + (-12 (-5 *2 (-2 (|:| -3229 (-583 *3)) (|:| -3228 (-583 *3)))) + (-5 *1 (-1130 *3)) (-4 *3 (-1013))))) (((*1 *2 *3) - (-12 (-5 *3 (-582 *4)) (-4 *4 (-1012)) (-5 *2 (-1183)) (-5 *1 (-1129 *4)))) + (-12 (-5 *3 (-583 *4)) (-4 *4 (-1013)) (-5 *2 (-1184)) (-5 *1 (-1130 *4)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-582 *4)) (-4 *4 (-1012)) (-5 *2 (-1183)) (-5 *1 (-1129 *4))))) + (-12 (-5 *3 (-583 *4)) (-4 *4 (-1013)) (-5 *2 (-1184)) (-5 *1 (-1130 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-483)) (-4 *5 (-299)) (-5 *2 (-346 (-1083 (-1083 *5)))) - (-5 *1 (-1126 *5)) (-5 *3 (-1083 (-1083 *5)))))) + (-12 (-5 *4 (-484)) (-4 *5 (-299)) (-5 *2 (-347 (-1084 (-1084 *5)))) + (-5 *1 (-1127 *5)) (-5 *3 (-1084 (-1084 *5)))))) (((*1 *2 *3) - (-12 (-4 *4 (-299)) (-5 *2 (-346 (-1083 (-1083 *4)))) (-5 *1 (-1126 *4)) - (-5 *3 (-1083 (-1083 *4)))))) + (-12 (-4 *4 (-299)) (-5 *2 (-347 (-1084 (-1084 *4)))) (-5 *1 (-1127 *4)) + (-5 *3 (-1084 (-1084 *4)))))) (((*1 *2 *3) - (-12 (-4 *4 (-299)) (-5 *2 (-346 (-1083 (-1083 *4)))) (-5 *1 (-1126 *4)) - (-5 *3 (-1083 (-1083 *4)))))) + (-12 (-4 *4 (-299)) (-5 *2 (-347 (-1084 (-1084 *4)))) (-5 *1 (-1127 *4)) + (-5 *3 (-1084 (-1084 *4)))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-85) *3)) (|has| *1 (-6 -3993)) (-4 *1 (-124 *3)) - (-4 *3 (-1127)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1127)) (-5 *1 (-535 *3)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-615 *3)) (-4 *3 (-1127)))) + (-12 (-5 *2 (-1 (-85) *3)) (|has| *1 (-6 -3994)) (-4 *1 (-124 *3)) + (-4 *3 (-1128)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1128)) (-5 *1 (-536 *3)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-616 *3)) (-4 *3 (-1128)))) ((*1 *2 *1 *3) - (|partial| -12 (-4 *1 (-1122 *4 *5 *3 *2)) (-4 *4 (-494)) (-4 *5 (-716)) - (-4 *3 (-755)) (-4 *2 (-976 *4 *5 *3)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-693)) (-5 *1 (-1125 *2)) (-4 *2 (-1127))))) + (|partial| -12 (-4 *1 (-1123 *4 *5 *3 *2)) (-4 *4 (-495)) (-4 *5 (-717)) + (-4 *3 (-756)) (-4 *2 (-977 *4 *5 *3)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-5 *1 (-1126 *2)) (-4 *2 (-1128))))) (((*1 *2 *3 *3 *3 *4 *5) - (-12 (-5 *5 (-582 (-582 (-179)))) (-5 *4 (-179)) (-5 *2 (-582 (-853 *4))) - (-5 *1 (-1124)) (-5 *3 (-853 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-483)) (-5 *2 (-582 (-582 (-179)))) (-5 *1 (-1124))))) + (-12 (-5 *5 (-583 (-583 (-179)))) (-5 *4 (-179)) (-5 *2 (-583 (-854 *4))) + (-5 *1 (-1125)) (-5 *3 (-854 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-484)) (-5 *2 (-583 (-583 (-179)))) (-5 *1 (-1125))))) (((*1 *1 *2) - (-12 (-5 *2 (-829)) (-4 *1 (-196 *3 *4)) (-4 *4 (-960)) (-4 *4 (-1127)))) + (-12 (-5 *2 (-830)) (-4 *1 (-196 *3 *4)) (-4 *4 (-961)) (-4 *4 (-1128)))) ((*1 *1 *2) - (-12 (-14 *3 (-582 (-1088))) (-4 *4 (-146)) (-4 *5 (-196 (-3955 *3) (-693))) + (-12 (-14 *3 (-583 (-1089))) (-4 *4 (-146)) (-4 *5 (-196 (-3956 *3) (-694))) (-14 *6 - (-1 (-85) (-2 (|:| -2399 *2) (|:| -2400 *5)) - (-2 (|:| -2399 *2) (|:| -2400 *5)))) - (-5 *1 (-399 *3 *4 *2 *5 *6 *7)) (-4 *2 (-755)) - (-4 *7 (-860 *4 *5 (-772 *3))))) - ((*1 *2 *2) (-12 (-5 *2 (-853 (-179))) (-5 *1 (-1124))))) + (-1 (-85) (-2 (|:| -2400 *2) (|:| -2401 *5)) + (-2 (|:| -2400 *2) (|:| -2401 *5)))) + (-5 *1 (-400 *3 *4 *2 *5 *6 *7)) (-4 *2 (-756)) + (-4 *7 (-861 *4 *5 (-773 *3))))) + ((*1 *2 *2) (-12 (-5 *2 (-854 (-179))) (-5 *1 (-1125))))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-853 (-179))) (-5 *4 (-782)) (-5 *2 (-1183)) (-5 *1 (-406)))) - ((*1 *1 *2) (-12 (-5 *2 (-582 *3)) (-4 *3 (-960)) (-4 *1 (-892 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-960)) (-5 *2 (-853 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-853 *3)) (-4 *3 (-960)) (-4 *1 (-1046 *3)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-693)) (-4 *1 (-1046 *3)) (-4 *3 (-960)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-582 *3)) (-4 *1 (-1046 *3)) (-4 *3 (-960)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-853 *3)) (-4 *1 (-1046 *3)) (-4 *3 (-960)))) + (-12 (-5 *3 (-854 (-179))) (-5 *4 (-783)) (-5 *2 (-1184)) (-5 *1 (-407)))) + ((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-961)) (-4 *1 (-893 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-961)) (-5 *2 (-854 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-854 *3)) (-4 *3 (-961)) (-4 *1 (-1047 *3)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-1047 *3)) (-4 *3 (-961)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *1 (-1047 *3)) (-4 *3 (-961)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-854 *3)) (-4 *1 (-1047 *3)) (-4 *3 (-961)))) ((*1 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-853 (-179))) (-5 *1 (-1124)) (-5 *3 (-179))))) + (-12 (-5 *2 (-854 (-179))) (-5 *1 (-1125)) (-5 *3 (-179))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-179)) (-5 *5 (-483)) (-5 *2 (-1123 *3)) (-5 *1 (-711 *3)) - (-4 *3 (-886)))) + (-12 (-5 *4 (-179)) (-5 *5 (-484)) (-5 *2 (-1124 *3)) (-5 *1 (-712 *3)) + (-4 *3 (-887)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *3 (-582 (-582 (-853 (-179))))) (-5 *4 (-85)) (-5 *1 (-1123 *2)) - (-4 *2 (-886))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1123 *3)) (-4 *3 (-886))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1123 *3)) (-4 *3 (-886))))) + (-12 (-5 *3 (-583 (-583 (-854 (-179))))) (-5 *4 (-85)) (-5 *1 (-1124 *2)) + (-4 *2 (-887))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1124 *3)) (-4 *3 (-887))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1124 *3)) (-4 *3 (-887))))) (((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-145)))) - ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1123 *3)) (-4 *3 (-886))))) + ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1124 *3)) (-4 *3 (-887))))) (((*1 *2 *1) - (-12 (-5 *2 (-582 (-582 (-853 (-179))))) (-5 *1 (-1123 *3)) (-4 *3 (-886))))) -(((*1 *2 *1) (-12 (-5 *1 (-1123 *2)) (-4 *2 (-886))))) + (-12 (-5 *2 (-583 (-583 (-854 (-179))))) (-5 *1 (-1124 *3)) (-4 *3 (-887))))) +(((*1 *2 *1) (-12 (-5 *1 (-1124 *2)) (-4 *2 (-887))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-582 *7)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-390)) (-4 *5 (-716)) - (-4 *6 (-755)) (-5 *2 (-85)) (-5 *1 (-900 *4 *5 *6 *7 *8)) - (-4 *8 (-982 *4 *5 *6 *7)))) + (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-391)) (-4 *5 (-717)) + (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-901 *4 *5 *6 *7 *8)) + (-4 *8 (-983 *4 *5 *6 *7)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-976 *3 *4 *5)) (-4 *3 (-960)) (-4 *4 (-716)) (-4 *5 (-755)) + (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-582 *7)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-390)) (-4 *5 (-716)) - (-4 *6 (-755)) (-5 *2 (-85)) (-5 *1 (-1017 *4 *5 *6 *7 *8)) - (-4 *8 (-982 *4 *5 *6 *7)))) + (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-391)) (-4 *5 (-717)) + (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-1018 *4 *5 *6 *7 *8)) + (-4 *8 (-983 *4 *5 *6 *7)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-1122 *3 *4 *5 *6)) (-4 *3 (-494)) (-4 *4 (-716)) (-4 *5 (-755)) - (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-85))))) + (-12 (-4 *1 (-1123 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) + (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-85))))) (((*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-85) *9)) (-5 *5 (-1 (-85) *9 *9)) - (-4 *9 (-976 *6 *7 *8)) (-4 *6 (-494)) (-4 *7 (-716)) (-4 *8 (-755)) - (-5 *2 (-2 (|:| |bas| *1) (|:| -3322 (-582 *9)))) (-5 *3 (-582 *9)) - (-4 *1 (-1122 *6 *7 *8 *9)))) + (-4 *9 (-977 *6 *7 *8)) (-4 *6 (-495)) (-4 *7 (-717)) (-4 *8 (-756)) + (-5 *2 (-2 (|:| |bas| *1) (|:| -3323 (-583 *9)))) (-5 *3 (-583 *9)) + (-4 *1 (-1123 *6 *7 *8 *9)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1 (-85) *8 *8)) (-4 *8 (-976 *5 *6 *7)) - (-4 *5 (-494)) (-4 *6 (-716)) (-4 *7 (-755)) - (-5 *2 (-2 (|:| |bas| *1) (|:| -3322 (-582 *8)))) (-5 *3 (-582 *8)) - (-4 *1 (-1122 *5 *6 *7 *8))))) + (|partial| -12 (-5 *4 (-1 (-85) *8 *8)) (-4 *8 (-977 *5 *6 *7)) + (-4 *5 (-495)) (-4 *6 (-717)) (-4 *7 (-756)) + (-5 *2 (-2 (|:| |bas| *1) (|:| -3323 (-583 *8)))) (-5 *3 (-583 *8)) + (-4 *1 (-1123 *5 *6 *7 *8))))) (((*1 *2 *1) - (-12 (-4 *1 (-1122 *3 *4 *5 *6)) (-4 *3 (-494)) (-4 *4 (-716)) (-4 *5 (-755)) - (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-582 *6))))) + (-12 (-4 *1 (-1123 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) + (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-583 *6))))) (((*1 *2 *1) - (-12 (-4 *1 (-1122 *3 *4 *5 *6)) (-4 *3 (-494)) (-4 *4 (-716)) (-4 *5 (-755)) - (-4 *6 (-976 *3 *4 *5)) - (-5 *2 (-2 (|:| -3859 (-582 *6)) (|:| -1700 (-582 *6))))))) + (-12 (-4 *1 (-1123 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) + (-4 *6 (-977 *3 *4 *5)) + (-5 *2 (-2 (|:| -3860 (-583 *6)) (|:| -1701 (-583 *6))))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-582 *1)) (-4 *1 (-976 *4 *5 *6)) (-4 *4 (-960)) (-4 *5 (-716)) - (-4 *6 (-755)) (-5 *2 (-85)))) + (-12 (-5 *3 (-583 *1)) (-4 *1 (-977 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-717)) + (-4 *6 (-756)) (-5 *2 (-85)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-976 *3 *4 *5)) (-4 *3 (-960)) (-4 *4 (-716)) (-4 *5 (-755)) + (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85)))) ((*1 *2 *1) - (-12 (-4 *1 (-1122 *3 *4 *5 *6)) (-4 *3 (-494)) (-4 *4 (-716)) (-4 *5 (-755)) - (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-85)))) + (-12 (-4 *1 (-1123 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) + (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-85)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-1122 *4 *5 *6 *3)) (-4 *4 (-494)) (-4 *5 (-716)) (-4 *6 (-755)) - (-4 *3 (-976 *4 *5 *6)) (-5 *2 (-85))))) + (-12 (-4 *1 (-1123 *4 *5 *6 *3)) (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) + (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-85))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-582 *1)) (-4 *1 (-976 *4 *5 *6)) (-4 *4 (-960)) (-4 *5 (-716)) - (-4 *6 (-755)) (-5 *2 (-85)))) + (-12 (-5 *3 (-583 *1)) (-4 *1 (-977 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-717)) + (-4 *6 (-756)) (-5 *2 (-85)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-976 *3 *4 *5)) (-4 *3 (-960)) (-4 *4 (-716)) (-4 *5 (-755)) + (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85)))) ((*1 *2 *3 *1 *4) - (-12 (-5 *4 (-1 (-85) *3 *3)) (-4 *1 (-1122 *5 *6 *7 *3)) (-4 *5 (-494)) - (-4 *6 (-716)) (-4 *7 (-755)) (-4 *3 (-976 *5 *6 *7)) (-5 *2 (-85))))) + (-12 (-5 *4 (-1 (-85) *3 *3)) (-4 *1 (-1123 *5 *6 *7 *3)) (-4 *5 (-495)) + (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-1122 *3 *4 *5 *6)) (-4 *3 (-494)) (-4 *4 (-716)) (-4 *5 (-755)) - (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-85)))) + (-12 (-4 *1 (-1123 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) + (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-85)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-1122 *4 *5 *6 *3)) (-4 *4 (-494)) (-4 *5 (-716)) (-4 *6 (-755)) - (-4 *3 (-976 *4 *5 *6)) (-5 *2 (-85))))) + (-12 (-4 *1 (-1123 *4 *5 *6 *3)) (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) + (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-85))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-582 *1)) (-4 *1 (-976 *4 *5 *6)) (-4 *4 (-960)) (-4 *5 (-716)) - (-4 *6 (-755)) (-5 *2 (-85)))) + (-12 (-5 *3 (-583 *1)) (-4 *1 (-977 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-717)) + (-4 *6 (-756)) (-5 *2 (-85)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-976 *3 *4 *5)) (-4 *3 (-960)) (-4 *4 (-716)) (-4 *5 (-755)) + (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85)))) ((*1 *2 *1) - (-12 (-4 *1 (-1122 *3 *4 *5 *6)) (-4 *3 (-494)) (-4 *4 (-716)) (-4 *5 (-755)) - (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-85)))) + (-12 (-4 *1 (-1123 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) + (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-85)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-1122 *4 *5 *6 *3)) (-4 *4 (-494)) (-4 *5 (-716)) (-4 *6 (-755)) - (-4 *3 (-976 *4 *5 *6)) (-5 *2 (-85))))) + (-12 (-4 *1 (-1123 *4 *5 *6 *3)) (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) + (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-85))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-582 *1)) (-4 *1 (-976 *4 *5 *6)) (-4 *4 (-960)) (-4 *5 (-716)) - (-4 *6 (-755)) (-5 *2 (-85)))) + (-12 (-5 *3 (-583 *1)) (-4 *1 (-977 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-717)) + (-4 *6 (-756)) (-5 *2 (-85)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-976 *3 *4 *5)) (-4 *3 (-960)) (-4 *4 (-716)) (-4 *5 (-755)) + (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85)))) ((*1 *2 *1) - (-12 (-4 *1 (-1122 *3 *4 *5 *6)) (-4 *3 (-494)) (-4 *4 (-716)) (-4 *5 (-755)) - (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-85)))) + (-12 (-4 *1 (-1123 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) + (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-85)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-1122 *4 *5 *6 *3)) (-4 *4 (-494)) (-4 *5 (-716)) (-4 *6 (-755)) - (-4 *3 (-976 *4 *5 *6)) (-5 *2 (-85))))) + (-12 (-4 *1 (-1123 *4 *5 *6 *3)) (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) + (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-85))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-1 (-85) *7 (-582 *7))) (-4 *1 (-1122 *4 *5 *6 *7)) - (-4 *4 (-494)) (-4 *5 (-716)) (-4 *6 (-755)) (-4 *7 (-976 *4 *5 *6)) + (-12 (-5 *3 (-1 (-85) *7 (-583 *7))) (-4 *1 (-1123 *4 *5 *6 *7)) + (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-85))))) (((*1 *2 *2 *1 *3 *4) - (-12 (-5 *2 (-582 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-85) *8 *8)) - (-4 *1 (-1122 *5 *6 *7 *8)) (-4 *5 (-494)) (-4 *6 (-716)) (-4 *7 (-755)) - (-4 *8 (-976 *5 *6 *7))))) + (-12 (-5 *2 (-583 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-85) *8 *8)) + (-4 *1 (-1123 *5 *6 *7 *8)) (-4 *5 (-495)) (-4 *6 (-717)) (-4 *7 (-756)) + (-4 *8 (-977 *5 *6 *7))))) (((*1 *2 *2 *1) - (-12 (-4 *1 (-1122 *3 *4 *5 *2)) (-4 *3 (-494)) (-4 *4 (-716)) (-4 *5 (-755)) - (-4 *2 (-976 *3 *4 *5))))) + (-12 (-4 *1 (-1123 *3 *4 *5 *2)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) + (-4 *2 (-977 *3 *4 *5))))) (((*1 *1 *1 *1) - (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-960)) (-4 *3 (-716)) (-4 *4 (-755)))) + (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)))) ((*1 *2 *2 *1) - (-12 (-4 *1 (-1122 *3 *4 *5 *2)) (-4 *3 (-494)) (-4 *4 (-716)) (-4 *5 (-755)) - (-4 *2 (-976 *3 *4 *5))))) + (-12 (-4 *1 (-1123 *3 *4 *5 *2)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) + (-4 *2 (-977 *3 *4 *5))))) (((*1 *1 *1 *1) - (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-960)) (-4 *3 (-716)) (-4 *4 (-755)))) + (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)))) ((*1 *2 *2 *1) - (-12 (-4 *1 (-1122 *3 *4 *5 *2)) (-4 *3 (-494)) (-4 *4 (-716)) (-4 *5 (-755)) - (-4 *2 (-976 *3 *4 *5))))) + (-12 (-4 *1 (-1123 *3 *4 *5 *2)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) + (-4 *2 (-977 *3 *4 *5))))) (((*1 *2 *2 *1) - (-12 (-4 *1 (-1122 *3 *4 *5 *2)) (-4 *3 (-494)) (-4 *4 (-716)) (-4 *5 (-755)) - (-4 *2 (-976 *3 *4 *5))))) + (-12 (-4 *1 (-1123 *3 *4 *5 *2)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) + (-4 *2 (-977 *3 *4 *5))))) (((*1 *1 *1) - (-12 (-4 *1 (-1122 *2 *3 *4 *5)) (-4 *2 (-494)) (-4 *3 (-716)) (-4 *4 (-755)) - (-4 *5 (-976 *2 *3 *4))))) + (-12 (-4 *1 (-1123 *2 *3 *4 *5)) (-4 *2 (-495)) (-4 *3 (-717)) (-4 *4 (-756)) + (-4 *5 (-977 *2 *3 *4))))) (((*1 *2 *2 *1) - (-12 (-4 *1 (-1122 *3 *4 *5 *2)) (-4 *3 (-494)) (-4 *4 (-716)) (-4 *5 (-755)) - (-4 *2 (-976 *3 *4 *5))))) + (-12 (-4 *1 (-1123 *3 *4 *5 *2)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) + (-4 *2 (-977 *3 *4 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-582 *8)) (-5 *4 (-85)) (-4 *8 (-976 *5 *6 *7)) (-4 *5 (-390)) - (-4 *6 (-716)) (-4 *7 (-755)) (-5 *2 (-582 *10)) - (-5 *1 (-562 *5 *6 *7 *8 *9 *10)) (-4 *9 (-982 *5 *6 *7 *8)) - (-4 *10 (-1019 *5 *6 *7 *8)))) + (-12 (-5 *3 (-583 *8)) (-5 *4 (-85)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-391)) + (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-583 *10)) + (-5 *1 (-563 *5 *6 *7 *8 *9 *10)) (-4 *9 (-983 *5 *6 *7 *8)) + (-4 *10 (-1020 *5 *6 *7 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-582 (-702 *5 (-772 *6)))) (-5 *4 (-85)) (-4 *5 (-390)) - (-14 *6 (-582 (-1088))) (-5 *2 (-582 (-957 *5 *6))) (-5 *1 (-566 *5 *6)))) + (-12 (-5 *3 (-583 (-703 *5 (-773 *6)))) (-5 *4 (-85)) (-4 *5 (-391)) + (-14 *6 (-583 (-1089))) (-5 *2 (-583 (-958 *5 *6))) (-5 *1 (-567 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-582 (-702 *5 (-772 *6)))) (-5 *4 (-85)) (-4 *5 (-390)) - (-14 *6 (-582 (-1088))) - (-5 *2 (-582 (-1058 *5 (-468 (-772 *6)) (-772 *6) (-702 *5 (-772 *6))))) - (-5 *1 (-566 *5 *6)))) + (-12 (-5 *3 (-583 (-703 *5 (-773 *6)))) (-5 *4 (-85)) (-4 *5 (-391)) + (-14 *6 (-583 (-1089))) + (-5 *2 (-583 (-1059 *5 (-469 (-773 *6)) (-773 *6) (-703 *5 (-773 *6))))) + (-5 *1 (-567 *5 *6)))) ((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-582 *8)) (-5 *4 (-85)) (-4 *8 (-976 *5 *6 *7)) (-4 *5 (-390)) - (-4 *6 (-716)) (-4 *7 (-755)) (-5 *2 (-582 (-939 *5 *6 *7 *8))) - (-5 *1 (-939 *5 *6 *7 *8)))) + (-12 (-5 *3 (-583 *8)) (-5 *4 (-85)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-391)) + (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-583 (-940 *5 *6 *7 *8))) + (-5 *1 (-940 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-582 *8)) (-5 *4 (-85)) (-4 *8 (-976 *5 *6 *7)) (-4 *5 (-390)) - (-4 *6 (-716)) (-4 *7 (-755)) (-5 *2 (-582 (-939 *5 *6 *7 *8))) - (-5 *1 (-939 *5 *6 *7 *8)))) + (-12 (-5 *3 (-583 *8)) (-5 *4 (-85)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-391)) + (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-583 (-940 *5 *6 *7 *8))) + (-5 *1 (-940 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-582 (-702 *5 (-772 *6)))) (-5 *4 (-85)) (-4 *5 (-390)) - (-14 *6 (-582 (-1088))) (-5 *2 (-582 (-957 *5 *6))) (-5 *1 (-957 *5 *6)))) + (-12 (-5 *3 (-583 (-703 *5 (-773 *6)))) (-5 *4 (-85)) (-4 *5 (-391)) + (-14 *6 (-583 (-1089))) (-5 *2 (-583 (-958 *5 *6))) (-5 *1 (-958 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-582 *8)) (-5 *4 (-85)) (-4 *8 (-976 *5 *6 *7)) (-4 *5 (-390)) - (-4 *6 (-716)) (-4 *7 (-755)) (-5 *2 (-582 *1)) (-4 *1 (-982 *5 *6 *7 *8)))) + (-12 (-5 *3 (-583 *8)) (-5 *4 (-85)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-391)) + (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-583 *1)) (-4 *1 (-983 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-582 *8)) (-5 *4 (-85)) (-4 *8 (-976 *5 *6 *7)) (-4 *5 (-390)) - (-4 *6 (-716)) (-4 *7 (-755)) (-5 *2 (-582 (-1058 *5 *6 *7 *8))) - (-5 *1 (-1058 *5 *6 *7 *8)))) + (-12 (-5 *3 (-583 *8)) (-5 *4 (-85)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-391)) + (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-583 (-1059 *5 *6 *7 *8))) + (-5 *1 (-1059 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-582 *8)) (-5 *4 (-85)) (-4 *8 (-976 *5 *6 *7)) (-4 *5 (-390)) - (-4 *6 (-716)) (-4 *7 (-755)) (-5 *2 (-582 (-1058 *5 *6 *7 *8))) - (-5 *1 (-1058 *5 *6 *7 *8)))) + (-12 (-5 *3 (-583 *8)) (-5 *4 (-85)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-391)) + (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-583 (-1059 *5 *6 *7 *8))) + (-5 *1 (-1059 *5 *6 *7 *8)))) ((*1 *2 *3) - (-12 (-5 *3 (-582 *7)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-494)) (-4 *5 (-716)) - (-4 *6 (-755)) (-5 *2 (-582 *1)) (-4 *1 (-1122 *4 *5 *6 *7))))) + (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-495)) (-4 *5 (-717)) + (-4 *6 (-756)) (-5 *2 (-583 *1)) (-4 *1 (-1123 *4 *5 *6 *7))))) (((*1 *2 *3) - (-12 (-4 *4 (-494)) (-4 *5 (-716)) (-4 *6 (-755)) (-4 *7 (-976 *4 *5 *6)) - (-5 *2 (-582 (-2 (|:| -3859 *1) (|:| -1700 (-582 *7))))) (-5 *3 (-582 *7)) - (-4 *1 (-1122 *4 *5 *6 *7))))) + (-12 (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)) + (-5 *2 (-583 (-2 (|:| -3860 *1) (|:| -1701 (-583 *7))))) (-5 *3 (-583 *7)) + (-4 *1 (-1123 *4 *5 *6 *7))))) (((*1 *2 *1) - (-12 (-4 *1 (-1122 *3 *4 *5 *6)) (-4 *3 (-494)) (-4 *4 (-716)) (-4 *5 (-755)) - (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-582 *5))))) + (-12 (-4 *1 (-1123 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) + (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-583 *5))))) (((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-1122 *3 *4 *5 *2)) (-4 *3 (-494)) (-4 *4 (-716)) - (-4 *5 (-755)) (-4 *2 (-976 *3 *4 *5))))) + (|partial| -12 (-4 *1 (-1123 *3 *4 *5 *2)) (-4 *3 (-495)) (-4 *4 (-717)) + (-4 *5 (-756)) (-4 *2 (-977 *3 *4 *5))))) (((*1 *2 *1) - (-12 (-4 *1 (-1122 *3 *4 *5 *6)) (-4 *3 (-494)) (-4 *4 (-716)) (-4 *5 (-755)) - (-4 *6 (-976 *3 *4 *5)) (-4 *5 (-318)) (-5 *2 (-693))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-715)) (-4 *2 (-960)))) + (-12 (-4 *1 (-1123 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) + (-4 *6 (-977 *3 *4 *5)) (-4 *5 (-319)) (-5 *2 (-694))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-716)) (-4 *2 (-961)))) ((*1 *2 *1 *1) - (-12 (-4 *2 (-960)) (-5 *1 (-50 *2 *3)) (-14 *3 (-582 (-1088))))) + (-12 (-4 *2 (-961)) (-5 *1 (-50 *2 *3)) (-14 *3 (-583 (-1089))))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-582 (-829))) (-4 *2 (-312)) (-5 *1 (-125 *4 *2 *5)) - (-14 *4 (-829)) (-14 *5 (-905 *4 *2)))) + (-12 (-5 *3 (-583 (-830))) (-4 *2 (-312)) (-5 *1 (-125 *4 *2 *5)) + (-14 *4 (-830)) (-14 *5 (-906 *4 *2)))) ((*1 *2 *1 *1) - (-12 (-5 *2 (-265 *3)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-960) (-755))) - (-14 *4 (-582 (-1088))))) - ((*1 *2 *3 *1) (-12 (-4 *1 (-274 *3 *2)) (-4 *3 (-1012)) (-4 *2 (-104)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-333 *2 *3)) (-4 *3 (-1012)) (-4 *2 (-960)))) - ((*1 *2 *1) (-12 (-4 *2 (-72)) (-5 *1 (-452 *2 *3)) (-4 *3 (-758)))) + (-12 (-5 *2 (-265 *3)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-961) (-756))) + (-14 *4 (-583 (-1089))))) + ((*1 *2 *3 *1) (-12 (-4 *1 (-274 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-104)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-334 *2 *3)) (-4 *3 (-1013)) (-4 *2 (-961)))) + ((*1 *2 *1) (-12 (-4 *2 (-72)) (-5 *1 (-453 *2 *3)) (-4 *3 (-759)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-483)) (-4 *2 (-494)) (-5 *1 (-561 *2 *4)) (-4 *4 (-1153 *2)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-693)) (-4 *1 (-644 *2)) (-4 *2 (-960)))) - ((*1 *2 *1 *3) (-12 (-4 *2 (-960)) (-5 *1 (-673 *2 *3)) (-4 *3 (-662)))) + (-12 (-5 *3 (-484)) (-4 *2 (-495)) (-5 *1 (-562 *2 *4)) (-4 *4 (-1154 *2)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-4 *1 (-645 *2)) (-4 *2 (-961)))) + ((*1 *2 *1 *3) (-12 (-4 *2 (-961)) (-5 *1 (-674 *2 *3)) (-4 *3 (-663)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-582 *5)) (-5 *3 (-582 (-693))) (-4 *1 (-678 *4 *5)) - (-4 *4 (-960)) (-4 *5 (-755)))) + (-12 (-5 *2 (-583 *5)) (-5 *3 (-583 (-694))) (-4 *1 (-679 *4 *5)) + (-4 *4 (-961)) (-4 *5 (-756)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-693)) (-4 *1 (-678 *4 *2)) (-4 *4 (-960)) (-4 *2 (-755)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-693)) (-4 *1 (-760 *2)) (-4 *2 (-960)))) + (-12 (-5 *3 (-694)) (-4 *1 (-679 *4 *2)) (-4 *4 (-961)) (-4 *2 (-756)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-4 *1 (-761 *2)) (-4 *2 (-961)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-582 *6)) (-5 *3 (-582 (-693))) (-4 *1 (-860 *4 *5 *6)) - (-4 *4 (-960)) (-4 *5 (-716)) (-4 *6 (-755)))) + (-12 (-5 *2 (-583 *6)) (-5 *3 (-583 (-694))) (-4 *1 (-861 *4 *5 *6)) + (-4 *4 (-961)) (-4 *5 (-717)) (-4 *6 (-756)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-693)) (-4 *1 (-860 *4 *5 *2)) (-4 *4 (-960)) (-4 *5 (-716)) - (-4 *2 (-755)))) + (-12 (-5 *3 (-694)) (-4 *1 (-861 *4 *5 *2)) (-4 *4 (-961)) (-4 *5 (-717)) + (-4 *2 (-756)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-693)) (-4 *2 (-860 *4 (-468 *5) *5)) (-5 *1 (-1038 *4 *5 *2)) - (-4 *4 (-960)) (-4 *5 (-755)))) + (-12 (-5 *3 (-694)) (-4 *2 (-861 *4 (-469 *5) *5)) (-5 *1 (-1039 *4 *5 *2)) + (-4 *4 (-961)) (-4 *5 (-756)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-693)) (-5 *2 (-856 *4)) (-5 *1 (-1120 *4)) (-4 *4 (-960))))) + (-12 (-5 *3 (-694)) (-5 *2 (-857 *4)) (-5 *1 (-1121 *4)) (-4 *4 (-961))))) (((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1 (-1038 *4 *3 *5))) (-4 *4 (-38 (-348 (-483)))) (-4 *4 (-960)) - (-4 *3 (-755)) (-5 *1 (-1038 *4 *3 *5)) (-4 *5 (-860 *4 (-468 *3) *3)))) + (-12 (-5 *2 (-1 (-1039 *4 *3 *5))) (-4 *4 (-38 (-349 (-484)))) (-4 *4 (-961)) + (-4 *3 (-756)) (-5 *1 (-1039 *4 *3 *5)) (-4 *5 (-861 *4 (-469 *3) *3)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1 (-1120 *4))) (-5 *3 (-1088)) (-5 *1 (-1120 *4)) - (-4 *4 (-38 (-348 (-483)))) (-4 *4 (-960))))) + (-12 (-5 *2 (-1 (-1121 *4))) (-5 *3 (-1089)) (-5 *1 (-1121 *4)) + (-4 *4 (-38 (-349 (-484)))) (-4 *4 (-961))))) (((*1 *2 *2) - (-12 (-4 *3 (-552 (-799 *3))) (-4 *3 (-795 *3)) (-4 *3 (-390)) - (-5 *1 (-1119 *3 *2)) (-4 *2 (-552 (-799 *3))) (-4 *2 (-795 *3)) - (-4 *2 (-13 (-362 *3) (-1113)))))) + (-12 (-4 *3 (-553 (-800 *3))) (-4 *3 (-796 *3)) (-4 *3 (-391)) + (-5 *1 (-1120 *3 *2)) (-4 *2 (-553 (-800 *3))) (-4 *2 (-796 *3)) + (-4 *2 (-13 (-363 *3) (-1114)))))) (((*1 *2 *2) - (-12 (-4 *3 (-390)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-362 *3) (-1113)))))) + (-12 (-4 *3 (-391)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-363 *3) (-1114)))))) (((*1 *2 *2) - (-12 (-4 *3 (-390)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-362 *3) (-1113)))))) + (-12 (-4 *3 (-391)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-363 *3) (-1114)))))) (((*1 *2 *2) - (-12 (-4 *3 (-390)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-362 *3) (-1113)))))) + (-12 (-4 *3 (-391)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-363 *3) (-1114)))))) (((*1 *2 *2) - (-12 (-4 *3 (-390)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-362 *3) (-1113)))))) + (-12 (-4 *3 (-391)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-363 *3) (-1114)))))) (((*1 *2 *2) - (-12 (-4 *3 (-390)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-362 *3) (-1113)))))) + (-12 (-4 *3 (-391)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-363 *3) (-1114)))))) (((*1 *2 *2) - (-12 (-4 *3 (-390)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-362 *3) (-1113)))))) + (-12 (-4 *3 (-391)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-363 *3) (-1114)))))) (((*1 *2 *2) - (-12 (-4 *3 (-390)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-362 *3) (-1113)))))) + (-12 (-4 *3 (-391)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-363 *3) (-1114)))))) (((*1 *2 *2) - (-12 (-4 *3 (-390)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-362 *3) (-1113)))))) + (-12 (-4 *3 (-391)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-363 *3) (-1114)))))) (((*1 *2 *2) - (-12 (-4 *3 (-390)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-362 *3) (-1113)))))) + (-12 (-4 *3 (-391)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-363 *3) (-1114)))))) (((*1 *2 *2) - (-12 (-4 *3 (-390)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-362 *3) (-1113)))))) + (-12 (-4 *3 (-391)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-363 *3) (-1114)))))) (((*1 *2 *2) - (-12 (-4 *3 (-390)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-362 *3) (-1113)))))) + (-12 (-4 *3 (-391)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-363 *3) (-1114)))))) (((*1 *2 *2) - (-12 (-4 *3 (-390)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-362 *3) (-1113)))))) + (-12 (-4 *3 (-391)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-363 *3) (-1114)))))) (((*1 *2 *2) - (-12 (-4 *3 (-390)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-362 *3) (-1113)))))) + (-12 (-4 *3 (-391)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-363 *3) (-1114)))))) (((*1 *2 *2) - (-12 (-4 *3 (-390)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-362 *3) (-1113)))))) + (-12 (-4 *3 (-391)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-363 *3) (-1114)))))) (((*1 *2 *2) - (-12 (-4 *3 (-390)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-362 *3) (-1113)))))) + (-12 (-4 *3 (-391)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-363 *3) (-1114)))))) (((*1 *2 *2) - (-12 (-4 *3 (-390)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-362 *3) (-1113)))))) + (-12 (-4 *3 (-391)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-363 *3) (-1114)))))) (((*1 *2 *2) - (-12 (-4 *3 (-390)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-362 *3) (-1113)))))) + (-12 (-4 *3 (-391)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-363 *3) (-1114)))))) (((*1 *2 *2) - (-12 (-4 *3 (-390)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-362 *3) (-1113)))))) + (-12 (-4 *3 (-391)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-363 *3) (-1114)))))) (((*1 *2 *2) - (-12 (-4 *3 (-390)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-362 *3) (-1113)))))) + (-12 (-4 *3 (-391)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-363 *3) (-1114)))))) (((*1 *2 *2) - (-12 (-4 *3 (-390)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-362 *3) (-1113)))))) + (-12 (-4 *3 (-391)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-363 *3) (-1114)))))) (((*1 *2 *2) - (-12 (-4 *3 (-390)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-362 *3) (-1113)))))) + (-12 (-4 *3 (-391)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-363 *3) (-1114)))))) (((*1 *2 *2) - (-12 (-4 *3 (-390)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-362 *3) (-1113)))))) + (-12 (-4 *3 (-391)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-363 *3) (-1114)))))) (((*1 *2 *2) - (-12 (-4 *3 (-390)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-362 *3) (-1113)))))) + (-12 (-4 *3 (-391)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-363 *3) (-1114)))))) (((*1 *2 *2) - (-12 (-4 *3 (-390)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-362 *3) (-1113)))))) + (-12 (-4 *3 (-391)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-363 *3) (-1114)))))) (((*1 *2 *2) - (-12 (-4 *3 (-390)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-362 *3) (-1113)))))) -(((*1 *2 *2) (-12 (-5 *2 (-876 *3)) (-4 *3 (-1012)) (-5 *1 (-877 *3)))) + (-12 (-4 *3 (-391)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-363 *3) (-1114)))))) +(((*1 *2 *2) (-12 (-5 *2 (-877 *3)) (-4 *3 (-1013)) (-5 *1 (-878 *3)))) ((*1 *1 *1) - (-12 (-4 *2 (-120)) (-4 *2 (-258)) (-4 *2 (-390)) (-4 *3 (-755)) - (-4 *4 (-716)) (-5 *1 (-898 *2 *3 *4 *5)) (-4 *5 (-860 *2 *4 *3)))) - ((*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-265 (-483))) (-5 *1 (-1031)))) + (-12 (-4 *2 (-120)) (-4 *2 (-258)) (-4 *2 (-391)) (-4 *3 (-756)) + (-4 *4 (-717)) (-5 *1 (-899 *2 *3 *4 *5)) (-4 *5 (-861 *2 *4 *3)))) + ((*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-265 (-484))) (-5 *1 (-1032)))) ((*1 *2 *2) - (-12 (-4 *3 (-390)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-362 *3) (-1113)))))) + (-12 (-4 *3 (-391)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-363 *3) (-1114)))))) (((*1 *2 *2 *3) - (-12 (-4 *3 (-494)) (-4 *4 (-322 *3)) (-4 *5 (-322 *3)) - (-5 *1 (-1118 *3 *4 *5 *2)) (-4 *2 (-626 *3 *4 *5))))) + (-12 (-4 *3 (-495)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)) + (-5 *1 (-1119 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5))))) (((*1 *2 *2 *3) - (-12 (-4 *3 (-494)) (-4 *4 (-322 *3)) (-4 *5 (-322 *3)) - (-5 *1 (-1118 *3 *4 *5 *2)) (-4 *2 (-626 *3 *4 *5))))) + (-12 (-4 *3 (-495)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)) + (-5 *1 (-1119 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-494) (-949 (-483)))) (-5 *2 (-142 (-265 *4))) - (-5 *1 (-162 *4 *3)) (-4 *3 (-13 (-27) (-1113) (-362 (-142 *4)))))) + (-12 (-4 *4 (-13 (-495) (-950 (-484)))) (-5 *2 (-142 (-265 *4))) + (-5 *1 (-162 *4 *3)) (-4 *3 (-13 (-27) (-1114) (-363 (-142 *4)))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-390) (-949 (-483)) (-579 (-483)))) (-5 *2 (-142 *3)) - (-5 *1 (-1117 *4 *3)) (-4 *3 (-13 (-27) (-1113) (-362 *4)))))) + (-12 (-4 *4 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *2 (-142 *3)) + (-5 *1 (-1118 *4 *3)) (-4 *3 (-13 (-27) (-1114) (-363 *4)))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-494) (-949 (-483)))) (-5 *2 (-85)) (-5 *1 (-162 *4 *3)) - (-4 *3 (-13 (-27) (-1113) (-362 (-142 *4)))))) - ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-375)))) + (-12 (-4 *4 (-13 (-495) (-950 (-484)))) (-5 *2 (-85)) (-5 *1 (-162 *4 *3)) + (-4 *3 (-13 (-27) (-1114) (-363 (-142 *4)))))) + ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-376)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-390) (-949 (-483)) (-579 (-483)))) (-5 *2 (-85)) - (-5 *1 (-1117 *4 *3)) (-4 *3 (-13 (-27) (-1113) (-362 *4)))))) + (-12 (-4 *4 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *2 (-85)) + (-5 *1 (-1118 *4 *3)) (-4 *3 (-13 (-27) (-1114) (-363 *4)))))) (((*1 *2 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-494) (-949 (-483)))) (-5 *2 (-265 *4)) - (-5 *1 (-162 *4 *3)) (-4 *3 (-13 (-27) (-1113) (-362 (-142 *4)))))) + (-12 (-4 *4 (-13 (-495) (-950 (-484)))) (-5 *2 (-265 *4)) + (-5 *1 (-162 *4 *3)) (-4 *3 (-13 (-27) (-1114) (-363 (-142 *4)))))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-390) (-949 (-483)) (-579 (-483)))) (-5 *1 (-1117 *3 *2)) - (-4 *2 (-13 (-27) (-1113) (-362 *3)))))) + (-12 (-4 *3 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *1 (-1118 *3 *2)) + (-4 *2 (-13 (-27) (-1114) (-363 *3)))))) (((*1 *2 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-494) (-949 (-483)))) (-5 *2 (-265 *4)) - (-5 *1 (-162 *4 *3)) (-4 *3 (-13 (-27) (-1113) (-362 (-142 *4)))))) - ((*1 *2 *1) (-12 (-4 *1 (-719 *2)) (-4 *2 (-146)))) - ((*1 *2 *1) (-12 (-4 *1 (-910 *2)) (-4 *2 (-146)))) + (-12 (-4 *4 (-13 (-495) (-950 (-484)))) (-5 *2 (-265 *4)) + (-5 *1 (-162 *4 *3)) (-4 *3 (-13 (-27) (-1114) (-363 (-142 *4)))))) + ((*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146)))) + ((*1 *2 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-146)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-390) (-949 (-483)) (-579 (-483)))) (-5 *1 (-1117 *3 *2)) - (-4 *2 (-13 (-27) (-1113) (-362 *3)))))) + (-12 (-4 *3 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *1 (-1118 *3 *2)) + (-4 *2 (-13 (-27) (-1114) (-363 *3)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-494) (-949 (-483)))) (-5 *1 (-162 *3 *2)) - (-4 *2 (-13 (-27) (-1113) (-362 (-142 *3)))))) + (-12 (-4 *3 (-13 (-495) (-950 (-484)))) (-5 *1 (-162 *3 *2)) + (-4 *2 (-13 (-27) (-1114) (-363 (-142 *3)))))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-390) (-949 (-483)) (-579 (-483)))) (-5 *1 (-1117 *3 *2)) - (-4 *2 (-13 (-27) (-1113) (-362 *3)))))) + (-12 (-4 *3 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *1 (-1118 *3 *2)) + (-4 *2 (-13 (-27) (-1114) (-363 *3)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-494) (-949 (-483)))) (-5 *1 (-162 *3 *2)) - (-4 *2 (-13 (-27) (-1113) (-362 (-142 *3)))))) + (-12 (-4 *3 (-13 (-495) (-950 (-484)))) (-5 *1 (-162 *3 *2)) + (-4 *2 (-13 (-27) (-1114) (-363 (-142 *3)))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1088)) (-4 *4 (-13 (-494) (-949 (-483)))) (-5 *1 (-162 *4 *2)) - (-4 *2 (-13 (-27) (-1113) (-362 (-142 *4)))))) + (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-495) (-950 (-484)))) (-5 *1 (-162 *4 *2)) + (-4 *2 (-13 (-27) (-1114) (-363 (-142 *4)))))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-390) (-949 (-483)) (-579 (-483)))) (-5 *1 (-1117 *3 *2)) - (-4 *2 (-13 (-27) (-1113) (-362 *3))))) + (-12 (-4 *3 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *1 (-1118 *3 *2)) + (-4 *2 (-13 (-27) (-1114) (-363 *3))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1088)) (-4 *4 (-13 (-390) (-949 (-483)) (-579 (-483)))) - (-5 *1 (-1117 *4 *2)) (-4 *2 (-13 (-27) (-1113) (-362 *4)))))) + (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-391) (-950 (-484)) (-580 (-484)))) + (-5 *1 (-1118 *4 *2)) (-4 *2 (-13 (-27) (-1114) (-363 *4)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-494) (-949 (-483)))) (-5 *1 (-162 *3 *2)) - (-4 *2 (-13 (-27) (-1113) (-362 (-142 *3)))))) + (-12 (-4 *3 (-13 (-495) (-950 (-484)))) (-5 *1 (-162 *3 *2)) + (-4 *2 (-13 (-27) (-1114) (-363 (-142 *3)))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1088)) (-4 *4 (-13 (-494) (-949 (-483)))) (-5 *1 (-162 *4 *2)) - (-4 *2 (-13 (-27) (-1113) (-362 (-142 *4)))))) + (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-495) (-950 (-484)))) (-5 *1 (-162 *4 *2)) + (-4 *2 (-13 (-27) (-1114) (-363 (-142 *4)))))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-390) (-949 (-483)) (-579 (-483)))) (-5 *1 (-1117 *3 *2)) - (-4 *2 (-13 (-27) (-1113) (-362 *3))))) + (-12 (-4 *3 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *1 (-1118 *3 *2)) + (-4 *2 (-13 (-27) (-1114) (-363 *3))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1088)) (-4 *4 (-13 (-390) (-949 (-483)) (-579 (-483)))) - (-5 *1 (-1117 *4 *2)) (-4 *2 (-13 (-27) (-1113) (-362 *4)))))) + (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-391) (-950 (-484)) (-580 (-484)))) + (-5 *1 (-1118 *4 *2)) (-4 *2 (-13 (-27) (-1114) (-363 *4)))))) (((*1 *2 *2) - (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-914))))) + (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-348 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1141 *3 *4)))) + (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1142 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-348 (-483)))) (-4 *4 (-1139 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-895 *4)))) + (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1140 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-896 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-348 (-483)))) (-5 *1 (-1074 *3)))) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1075 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-348 (-483)))) (-5 *1 (-1075 *3)))) - ((*1 *1 *1) (-4 *1 (-1116)))) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1076 *3)))) + ((*1 *1 *1) (-4 *1 (-1117)))) (((*1 *2 *2) - (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-914))))) + (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-348 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1141 *3 *4)))) + (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1142 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-348 (-483)))) (-4 *4 (-1139 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-895 *4)))) - ((*1 *1 *2) (-12 (-5 *1 (-281 *2)) (-4 *2 (-755)))) + (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1140 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-896 *4)))) + ((*1 *1 *2) (-12 (-5 *1 (-281 *2)) (-4 *2 (-756)))) ((*1 *2 *2) - (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-348 (-483)))) (-5 *1 (-1074 *3)))) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1075 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-348 (-483)))) (-5 *1 (-1075 *3)))) - ((*1 *1 *1) (-4 *1 (-1116)))) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1076 *3)))) + ((*1 *1 *1) (-4 *1 (-1117)))) (((*1 *2 *2) - (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-914))))) + (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-348 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1141 *3 *4)))) + (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1142 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-348 (-483)))) (-4 *4 (-1139 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-895 *4)))) + (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1140 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-896 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-348 (-483)))) (-5 *1 (-1074 *3)))) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1075 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-348 (-483)))) (-5 *1 (-1075 *3)))) - ((*1 *1 *1) (-4 *1 (-1116)))) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1076 *3)))) + ((*1 *1 *1) (-4 *1 (-1117)))) (((*1 *2 *2) - (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-914))))) + (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-348 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1141 *3 *4)))) + (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1142 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-348 (-483)))) (-4 *4 (-1139 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-895 *4)))) + (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1140 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-896 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-348 (-483)))) (-5 *1 (-1074 *3)))) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1075 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-348 (-483)))) (-5 *1 (-1075 *3)))) - ((*1 *1 *1) (-4 *1 (-1116)))) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1076 *3)))) + ((*1 *1 *1) (-4 *1 (-1117)))) (((*1 *2 *2) - (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-914))))) + (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-348 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1141 *3 *4)))) + (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1142 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-348 (-483)))) (-4 *4 (-1139 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-895 *4)))) + (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1140 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-896 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-348 (-483)))) (-5 *1 (-1074 *3)))) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1075 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-348 (-483)))) (-5 *1 (-1075 *3)))) - ((*1 *1 *1) (-4 *1 (-1116)))) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1076 *3)))) + ((*1 *1 *1) (-4 *1 (-1117)))) (((*1 *2 *2) - (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-914))))) + (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-348 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1141 *3 *4)))) + (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1142 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-348 (-483)))) (-4 *4 (-1139 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-895 *4)))) - ((*1 *1 *2) (-12 (-5 *1 (-281 *2)) (-4 *2 (-755)))) + (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1140 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-896 *4)))) + ((*1 *1 *2) (-12 (-5 *1 (-281 *2)) (-4 *2 (-756)))) ((*1 *2 *2) - (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-348 (-483)))) (-5 *1 (-1074 *3)))) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1075 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-348 (-483)))) (-5 *1 (-1075 *3)))) - ((*1 *1 *1) (-4 *1 (-1116)))) -(((*1 *2 *1) (-12 (-4 *1 (-922 *3)) (-4 *3 (-1127)) (-5 *2 (-85)))) - ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1114 *3)) (-4 *3 (-1012))))) -(((*1 *1 *2) (-12 (-5 *1 (-1114 *2)) (-4 *2 (-1012)))) - ((*1 *1 *2) (-12 (-5 *2 (-582 *3)) (-4 *3 (-1012)) (-5 *1 (-1114 *3)))) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1076 *3)))) + ((*1 *1 *1) (-4 *1 (-1117)))) +(((*1 *2 *1) (-12 (-4 *1 (-923 *3)) (-4 *3 (-1128)) (-5 *2 (-85)))) + ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1115 *3)) (-4 *3 (-1013))))) +(((*1 *1 *2) (-12 (-5 *1 (-1115 *2)) (-4 *2 (-1013)))) + ((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1013)) (-5 *1 (-1115 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *3 (-582 (-1114 *2))) (-5 *1 (-1114 *2)) (-4 *2 (-1012))))) -(((*1 *1 *1) (-12 (-5 *1 (-1114 *2)) (-4 *2 (-1012))))) + (-12 (-5 *3 (-583 (-1115 *2))) (-5 *1 (-1115 *2)) (-4 *2 (-1013))))) +(((*1 *1 *1) (-12 (-5 *1 (-1115 *2)) (-4 *2 (-1013))))) (((*1 *2 *1) - (-12 (-5 *2 (-582 (-1114 *3))) (-5 *1 (-1114 *3)) (-4 *3 (-1012))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1114 *3)) (-4 *3 (-1012))))) + (-12 (-5 *2 (-583 (-1115 *3))) (-5 *1 (-1115 *3)) (-4 *3 (-1013))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1115 *3)) (-4 *3 (-1013))))) (((*1 *2 *1) - (-12 (-5 *2 (-582 (-1114 *3))) (-5 *1 (-1114 *3)) (-4 *3 (-1012))))) + (-12 (-5 *2 (-583 (-1115 *3))) (-5 *1 (-1115 *3)) (-4 *3 (-1013))))) (((*1 *2) - (-12 (-4 *2 (-13 (-362 *3) (-914))) (-5 *1 (-230 *3 *2)) (-4 *3 (-494)))) - ((*1 *1) (-5 *1 (-415))) ((*1 *1) (-4 *1 (-1113)))) -(((*1 *2) (-12 (-5 *2 (-1045 (-179))) (-5 *1 (-1111))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1071)) (-5 *2 (-483)) (-5 *1 (-1110 *4)) (-4 *4 (-960))))) -(((*1 *2 *3) (|partial| -12 (-5 *2 (-483)) (-5 *1 (-1110 *3)) (-4 *3 (-960))))) -(((*1 *2 *1) (-12 (-4 *1 (-713)) (-5 *2 (-483)))) - ((*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-812 *3)) (-4 *3 (-1012)))) + (-12 (-4 *2 (-13 (-363 *3) (-915))) (-5 *1 (-230 *3 *2)) (-4 *3 (-495)))) + ((*1 *1) (-5 *1 (-416))) ((*1 *1) (-4 *1 (-1114)))) +(((*1 *2) (-12 (-5 *2 (-1046 (-179))) (-5 *1 (-1112))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1072)) (-5 *2 (-484)) (-5 *1 (-1111 *4)) (-4 *4 (-961))))) +(((*1 *2 *3) (|partial| -12 (-5 *2 (-484)) (-5 *1 (-1111 *3)) (-4 *3 (-961))))) +(((*1 *2 *1) (-12 (-4 *1 (-714)) (-5 *2 (-484)))) + ((*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-813 *3)) (-4 *3 (-1013)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-979 *4 *3)) (-4 *4 (-13 (-754) (-312))) (-4 *3 (-1153 *4)) - (-5 *2 (-483)))) + (-12 (-4 *1 (-980 *4 *3)) (-4 *4 (-13 (-755) (-312))) (-4 *3 (-1154 *4)) + (-5 *2 (-484)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-13 (-494) (-949 *2) (-579 *2) (-390))) (-5 *2 (-483)) - (-5 *1 (-1029 *4 *3)) (-4 *3 (-13 (-27) (-1113) (-362 *4))))) + (|partial| -12 (-4 *4 (-13 (-495) (-950 *2) (-580 *2) (-391))) (-5 *2 (-484)) + (-5 *1 (-1030 *4 *3)) (-4 *3 (-13 (-27) (-1114) (-363 *4))))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1088)) (-5 *5 (-749 *3)) - (-4 *3 (-13 (-27) (-1113) (-362 *6))) - (-4 *6 (-13 (-494) (-949 *2) (-579 *2) (-390))) (-5 *2 (-483)) - (-5 *1 (-1029 *6 *3)))) + (|partial| -12 (-5 *4 (-1089)) (-5 *5 (-750 *3)) + (-4 *3 (-13 (-27) (-1114) (-363 *6))) + (-4 *6 (-13 (-495) (-950 *2) (-580 *2) (-391))) (-5 *2 (-484)) + (-5 *1 (-1030 *6 *3)))) ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *4 (-1088)) (-5 *5 (-1071)) - (-4 *6 (-13 (-494) (-949 *2) (-579 *2) (-390))) (-5 *2 (-483)) - (-5 *1 (-1029 *6 *3)) (-4 *3 (-13 (-27) (-1113) (-362 *6))))) + (|partial| -12 (-5 *4 (-1089)) (-5 *5 (-1072)) + (-4 *6 (-13 (-495) (-950 *2) (-580 *2) (-391))) (-5 *2 (-484)) + (-5 *1 (-1030 *6 *3)) (-4 *3 (-13 (-27) (-1114) (-363 *6))))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-348 (-856 *4))) (-4 *4 (-390)) (-5 *2 (-483)) - (-5 *1 (-1030 *4)))) + (|partial| -12 (-5 *3 (-349 (-857 *4))) (-4 *4 (-391)) (-5 *2 (-484)) + (-5 *1 (-1031 *4)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1088)) (-5 *5 (-749 (-348 (-856 *6)))) - (-5 *3 (-348 (-856 *6))) (-4 *6 (-390)) (-5 *2 (-483)) (-5 *1 (-1030 *6)))) + (|partial| -12 (-5 *4 (-1089)) (-5 *5 (-750 (-349 (-857 *6)))) + (-5 *3 (-349 (-857 *6))) (-4 *6 (-391)) (-5 *2 (-484)) (-5 *1 (-1031 *6)))) ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *3 (-348 (-856 *6))) (-5 *4 (-1088)) (-5 *5 (-1071)) - (-4 *6 (-390)) (-5 *2 (-483)) (-5 *1 (-1030 *6)))) - ((*1 *2 *3) (|partial| -12 (-5 *2 (-483)) (-5 *1 (-1110 *3)) (-4 *3 (-960))))) -(((*1 *2 *1) (-12 (-5 *2 (-1071)) (-5 *1 (-1109)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-1109))))) -(((*1 *2 *1) (-12 (-5 *2 (-1071)) (-5 *1 (-1109))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1071)) (-5 *1 (-1109))))) -(((*1 *2 *1) (|partial| -12 (-5 *1 (-313 *2)) (-4 *2 (-1012)))) - ((*1 *2 *1) (|partial| -12 (-5 *2 (-1071)) (-5 *1 (-1109))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1109))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-771) (-771))) (-5 *1 (-86)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-771) (-582 (-771)))) (-5 *1 (-86)))) - ((*1 *2 *1) (-12 (-5 *2 (-631 (-1 (-771) (-582 (-771))))) (-5 *1 (-86)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1183)) (-5 *1 (-167 *3)) + (|partial| -12 (-5 *3 (-349 (-857 *6))) (-5 *4 (-1089)) (-5 *5 (-1072)) + (-4 *6 (-391)) (-5 *2 (-484)) (-5 *1 (-1031 *6)))) + ((*1 *2 *3) (|partial| -12 (-5 *2 (-484)) (-5 *1 (-1111 *3)) (-4 *3 (-961))))) +(((*1 *2 *1) (-12 (-5 *2 (-1072)) (-5 *1 (-1110)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-1110))))) +(((*1 *2 *1) (-12 (-5 *2 (-1072)) (-5 *1 (-1110))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1072)) (-5 *1 (-1110))))) +(((*1 *2 *1) (|partial| -12 (-5 *1 (-313 *2)) (-4 *2 (-1013)))) + ((*1 *2 *1) (|partial| -12 (-5 *2 (-1072)) (-5 *1 (-1110))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1110))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-772) (-772))) (-5 *1 (-86)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-772) (-583 (-772)))) (-5 *1 (-86)))) + ((*1 *2 *1) (-12 (-5 *2 (-632 (-1 (-772) (-583 (-772))))) (-5 *1 (-86)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1184)) (-5 *1 (-167 *3)) (-4 *3 - (-13 (-755) - (-10 -8 (-15 -3798 ((-1071) $ (-1088))) (-15 -3615 (*2 $)) - (-15 -1962 (*2 $))))))) - ((*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-440)))) - ((*1 *2 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-1183)) (-5 *1 (-646)))) - ((*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-1107)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-483)) (-5 *2 (-1183)) (-5 *1 (-1107))))) -(((*1 *2 *1) (-12 (-5 *2 (-582 (-1071))) (-5 *1 (-1107))))) -(((*1 *2 *1) (-12 (-5 *2 (-582 (-1071))) (-5 *1 (-1107))))) + (-13 (-756) + (-10 -8 (-15 -3799 ((-1072) $ (-1089))) (-15 -3616 (*2 $)) + (-15 -1963 (*2 $))))))) + ((*1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-441)))) + ((*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-647)))) + ((*1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-1108)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-484)) (-5 *2 (-1184)) (-5 *1 (-1108))))) +(((*1 *2 *1) (-12 (-5 *2 (-583 (-1072))) (-5 *1 (-1108))))) +(((*1 *2 *1) (-12 (-5 *2 (-583 (-1072))) (-5 *1 (-1108))))) (((*1 *1 *2 *2 *3) - (-12 (-5 *2 (-693)) (-4 *3 (-1127)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-322 *3)) - (-4 *5 (-322 *3)))) + (-12 (-5 *2 (-694)) (-4 *3 (-1128)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-323 *3)) + (-4 *5 (-323 *3)))) ((*1 *1) (-5 *1 (-145))) - ((*1 *1) (-12 (-5 *1 (-166 *2 *3)) (-14 *2 (-829)) (-4 *3 (-1012)))) - ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1071)) (-4 *1 (-337)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-693)) (-4 *1 (-592 *3)) (-4 *3 (-1127)))) + ((*1 *1) (-12 (-5 *1 (-166 *2 *3)) (-14 *2 (-830)) (-4 *3 (-1013)))) + ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1072)) (-4 *1 (-338)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-694)) (-4 *1 (-593 *3)) (-4 *3 (-1128)))) ((*1 *1) - (-12 (-4 *3 (-1012)) (-5 *1 (-794 *2 *3 *4)) (-4 *2 (-1012)) - (-4 *4 (-607 *3)))) - ((*1 *1) (-12 (-5 *1 (-797 *2 *3)) (-4 *2 (-1012)) (-4 *3 (-1012)))) - ((*1 *1 *2) (-12 (-5 *1 (-1054 *3 *2)) (-14 *3 (-693)) (-4 *2 (-960)))) - ((*1 *1) (-12 (-5 *1 (-1077 *2 *3)) (-14 *2 (-829)) (-4 *3 (-960)))) - ((*1 *1 *1) (-5 *1 (-1088))) ((*1 *1) (-5 *1 (-1088))) - ((*1 *1) (-5 *1 (-1107)))) -(((*1 *2 *1) (-12 (-5 *2 (-582 (-1071))) (-5 *1 (-1107))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-582 (-1071))) (-5 *1 (-1107))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-582 (-1071))) (-5 *1 (-1107))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-582 (-1071))) (-5 *1 (-1107))))) -(((*1 *1 *2 *1) (-12 (-4 *1 (-76 *2)) (-4 *2 (-1127)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-94 *2)) (-4 *2 (-755)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-99 *2)) (-4 *2 (-755)))) - ((*1 *1 *1 *1 *2) (-12 (-5 *2 (-483)) (-4 *1 (-237 *3)) (-4 *3 (-1127)))) - ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-483)) (-4 *1 (-237 *2)) (-4 *2 (-1127)))) - ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-693)) (-4 *1 (-633 *2)) (-4 *2 (-1012)))) - ((*1 *2 *3 *4) - (-12 (-5 *2 (-1183)) (-5 *1 (-1106 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1012))))) -(((*1 *2 *3) - (|partial| -12 (-4 *2 (-1012)) (-5 *1 (-1106 *3 *2)) (-4 *3 (-1012))))) + (-12 (-4 *3 (-1013)) (-5 *1 (-795 *2 *3 *4)) (-4 *2 (-1013)) + (-4 *4 (-608 *3)))) + ((*1 *1) (-12 (-5 *1 (-798 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013)))) + ((*1 *1 *2) (-12 (-5 *1 (-1055 *3 *2)) (-14 *3 (-694)) (-4 *2 (-961)))) + ((*1 *1) (-12 (-5 *1 (-1078 *2 *3)) (-14 *2 (-830)) (-4 *3 (-961)))) + ((*1 *1 *1) (-5 *1 (-1089))) ((*1 *1) (-5 *1 (-1089))) + ((*1 *1) (-5 *1 (-1108)))) +(((*1 *2 *1) (-12 (-5 *2 (-583 (-1072))) (-5 *1 (-1108))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1072))) (-5 *1 (-1108))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1072))) (-5 *1 (-1108))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1072))) (-5 *1 (-1108))))) +(((*1 *1 *2 *1) (-12 (-4 *1 (-76 *2)) (-4 *2 (-1128)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-94 *2)) (-4 *2 (-756)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-99 *2)) (-4 *2 (-756)))) + ((*1 *1 *1 *1 *2) (-12 (-5 *2 (-484)) (-4 *1 (-237 *3)) (-4 *3 (-1128)))) + ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-484)) (-4 *1 (-237 *2)) (-4 *2 (-1128)))) + ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-694)) (-4 *1 (-634 *2)) (-4 *2 (-1013)))) + ((*1 *2 *3 *4) + (-12 (-5 *2 (-1184)) (-5 *1 (-1107 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013))))) +(((*1 *2 *3) + (|partial| -12 (-4 *2 (-1013)) (-5 *1 (-1107 *3 *2)) (-4 *3 (-1013))))) (((*1 *2) - (-12 (-5 *2 (-85)) (-5 *1 (-1106 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1012))))) + (-12 (-5 *2 (-85)) (-5 *1 (-1107 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013))))) (((*1 *2) - (-12 (-5 *2 (-85)) (-5 *1 (-1106 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1012))))) + (-12 (-5 *2 (-85)) (-5 *1 (-1107 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013))))) (((*1 *2) - (-12 (-5 *2 (-85)) (-5 *1 (-1106 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1012))))) + (-12 (-5 *2 (-85)) (-5 *1 (-1107 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013))))) (((*1 *2) - (-12 (-5 *2 (-1183)) (-5 *1 (-1106 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1012))))) + (-12 (-5 *2 (-1184)) (-5 *1 (-1107 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013))))) (((*1 *2) - (-12 (-5 *2 (-1183)) (-5 *1 (-1106 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1012))))) + (-12 (-5 *2 (-1184)) (-5 *1 (-1107 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013))))) (((*1 *2 *3) - (-12 (-5 *3 (-1071)) (-5 *2 (-1183)) (-5 *1 (-1106 *4 *5)) (-4 *4 (-1012)) - (-4 *5 (-1012))))) + (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1107 *4 *5)) (-4 *4 (-1013)) + (-4 *5 (-1013))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1071)) (-5 *2 (-1183)) (-5 *1 (-1106 *4 *5)) (-4 *4 (-1012)) - (-4 *5 (-1012))))) + (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1107 *4 *5)) (-4 *4 (-1013)) + (-4 *5 (-1013))))) (((*1 *2) - (-12 (-5 *2 (-1183)) (-5 *1 (-1106 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1012))))) + (-12 (-5 *2 (-1184)) (-5 *1 (-1107 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013))))) (((*1 *1 *2) - (-12 (-5 *2 (-582 (-2 (|:| -3858 *3) (|:| |entry| *4)))) (-4 *3 (-1012)) - (-4 *4 (-1012)) (-4 *1 (-1105 *3 *4)))) - ((*1 *1) (-12 (-4 *1 (-1105 *2 *3)) (-4 *2 (-1012)) (-4 *3 (-1012))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-483)) (-5 *1 (-1103 *2)) (-4 *2 (-312))))) + (-12 (-5 *2 (-583 (-2 (|:| -3859 *3) (|:| |entry| *4)))) (-4 *3 (-1013)) + (-4 *4 (-1013)) (-4 *1 (-1106 *3 *4)))) + ((*1 *1) (-12 (-4 *1 (-1106 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-484)) (-5 *1 (-1104 *2)) (-4 *2 (-312))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-829)) (-5 *2 (-1083 *3)) (-5 *1 (-1103 *3)) (-4 *3 (-312))))) -(((*1 *2 *3) (-12 (-5 *3 (-582 *2)) (-5 *1 (-1103 *2)) (-4 *2 (-312))))) + (-12 (-5 *4 (-830)) (-5 *2 (-1084 *3)) (-5 *1 (-1104 *3)) (-4 *3 (-312))))) +(((*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-5 *1 (-1104 *2)) (-4 *2 (-312))))) (((*1 *2 *2) - (-12 (-5 *2 (-86)) (-4 *3 (-494)) (-5 *1 (-32 *3 *4)) (-4 *4 (-362 *3)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1088)) (-5 *3 (-55)) (-5 *1 (-86)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1088)) (-5 *3 (-693)) (-5 *1 (-86)))) - ((*1 *1 *2) (-12 (-5 *2 (-1088)) (-5 *1 (-86)))) + (-12 (-5 *2 (-86)) (-4 *3 (-495)) (-5 *1 (-32 *3 *4)) (-4 *4 (-363 *3)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1089)) (-5 *3 (-55)) (-5 *1 (-86)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1089)) (-5 *3 (-694)) (-5 *1 (-86)))) + ((*1 *1 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-86)))) ((*1 *2 *2) - (-12 (-5 *2 (-86)) (-4 *3 (-494)) (-5 *1 (-131 *3 *4)) (-4 *4 (-362 *3)))) - ((*1 *2 *3) (-12 (-5 *3 (-1088)) (-5 *2 (-86)) (-5 *1 (-136)))) + (-12 (-5 *2 (-86)) (-4 *3 (-495)) (-5 *1 (-131 *3 *4)) (-4 *4 (-363 *3)))) + ((*1 *2 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-86)) (-5 *1 (-136)))) ((*1 *2 *2) - (-12 (-5 *2 (-86)) (-4 *3 (-494)) (-5 *1 (-230 *3 *4)) - (-4 *4 (-13 (-362 *3) (-914))))) + (-12 (-5 *2 (-86)) (-4 *3 (-495)) (-5 *1 (-230 *3 *4)) + (-4 *4 (-13 (-363 *3) (-915))))) ((*1 *2 *2) (-12 (-5 *2 (-86)) (-5 *1 (-253 *3)) (-4 *3 (-254)))) ((*1 *2 *2) (-12 (-4 *1 (-254)) (-5 *2 (-86)))) ((*1 *2 *2) - (-12 (-5 *2 (-86)) (-4 *4 (-1012)) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4)))) + (-12 (-5 *2 (-86)) (-4 *4 (-1013)) (-5 *1 (-362 *3 *4)) (-4 *3 (-363 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-86)) (-4 *3 (-494)) (-5 *1 (-372 *3 *4)) (-4 *4 (-362 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-86)) (-5 *1 (-549 *3)) (-4 *3 (-1012)))) + (-12 (-5 *2 (-86)) (-4 *3 (-495)) (-5 *1 (-373 *3 *4)) (-4 *4 (-363 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-86)) (-5 *1 (-550 *3)) (-4 *3 (-1013)))) ((*1 *2 *2) - (-12 (-5 *2 (-86)) (-4 *3 (-494)) (-5 *1 (-567 *3 *4)) - (-4 *4 (-13 (-362 *3) (-914) (-1113))))) - ((*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-931)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-55)) (-5 *1 (-1102 *2)) (-4 *2 (-1012))))) + (-12 (-5 *2 (-86)) (-4 *3 (-495)) (-5 *1 (-568 *3 *4)) + (-4 *4 (-13 (-363 *3) (-915) (-1114))))) + ((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-932)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-55)) (-5 *1 (-1103 *2)) (-4 *2 (-1013))))) (((*1 *2 *1) - (-12 (-4 *1 (-626 *3 *4 *5)) (-4 *3 (-960)) (-4 *4 (-322 *3)) - (-4 *5 (-322 *3)) (-5 *2 (-582 (-582 *3))))) + (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-323 *3)) + (-4 *5 (-323 *3)) (-5 *2 (-583 (-583 *3))))) ((*1 *2 *1) - (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-960)) (-4 *6 (-196 *4 *5)) - (-4 *7 (-196 *3 *5)) (-5 *2 (-582 (-582 *5))))) - ((*1 *2 *1) (-12 (-5 *2 (-582 (-582 *3))) (-5 *1 (-1101 *3)) (-4 *3 (-1012))))) -(((*1 *1 *2) (-12 (-5 *2 (-582 (-582 *3))) (-4 *3 (-1012)) (-5 *1 (-1101 *3))))) + (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) + (-4 *7 (-196 *3 *5)) (-5 *2 (-583 (-583 *5))))) + ((*1 *2 *1) (-12 (-5 *2 (-583 (-583 *3))) (-5 *1 (-1102 *3)) (-4 *3 (-1013))))) +(((*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1013)) (-5 *1 (-1102 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-755)) + (-12 (-4 *4 (-756)) (-5 *2 - (-2 (|:| |f1| (-582 *4)) (|:| |f2| (-582 (-582 (-582 *4)))) - (|:| |f3| (-582 (-582 *4))) (|:| |f4| (-582 (-582 (-582 *4)))))) - (-5 *1 (-1099 *4)) (-5 *3 (-582 (-582 (-582 *4))))))) + (-2 (|:| |f1| (-583 *4)) (|:| |f2| (-583 (-583 (-583 *4)))) + (|:| |f3| (-583 (-583 *4))) (|:| |f4| (-583 (-583 (-583 *4)))))) + (-5 *1 (-1100 *4)) (-5 *3 (-583 (-583 (-583 *4))))))) (((*1 *2 *3 *4 *5 *4 *4 *4) - (-12 (-4 *6 (-755)) (-5 *3 (-582 *6)) (-5 *5 (-582 *3)) + (-12 (-4 *6 (-756)) (-5 *3 (-583 *6)) (-5 *5 (-583 *3)) (-5 *2 - (-2 (|:| |f1| *3) (|:| |f2| (-582 *5)) (|:| |f3| *5) (|:| |f4| (-582 *5)))) - (-5 *1 (-1099 *6)) (-5 *4 (-582 *5))))) + (-2 (|:| |f1| *3) (|:| |f2| (-583 *5)) (|:| |f3| *5) (|:| |f4| (-583 *5)))) + (-5 *1 (-1100 *6)) (-5 *4 (-583 *5))))) (((*1 *2 *2) - (|partial| -12 (-4 *3 (-312)) (-4 *4 (-322 *3)) (-4 *5 (-322 *3)) - (-5 *1 (-459 *3 *4 *5 *2)) (-4 *2 (-626 *3 *4 *5)))) + (|partial| -12 (-4 *3 (-312)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)) + (-5 *1 (-460 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-494)) (-4 *5 (-322 *4)) (-4 *6 (-322 *4)) - (-4 *7 (-903 *4)) (-4 *2 (-626 *7 *8 *9)) - (-5 *1 (-460 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-626 *4 *5 *6)) - (-4 *8 (-322 *7)) (-4 *9 (-322 *7)))) + (|partial| -12 (-4 *4 (-495)) (-4 *5 (-323 *4)) (-4 *6 (-323 *4)) + (-4 *7 (-904 *4)) (-4 *2 (-627 *7 *8 *9)) + (-5 *1 (-461 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-627 *4 *5 *6)) + (-4 *8 (-323 *7)) (-4 *9 (-323 *7)))) ((*1 *1 *1) - (|partial| -12 (-4 *1 (-626 *2 *3 *4)) (-4 *2 (-960)) (-4 *3 (-322 *2)) - (-4 *4 (-322 *2)) (-4 *2 (-312)))) + (|partial| -12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-323 *2)) + (-4 *4 (-323 *2)) (-4 *2 (-312)))) ((*1 *2 *2) - (|partial| -12 (-4 *3 (-312)) (-4 *3 (-146)) (-4 *4 (-322 *3)) - (-4 *5 (-322 *3)) (-5 *1 (-628 *3 *4 *5 *2)) (-4 *2 (-626 *3 *4 *5)))) - ((*1 *1 *1) (|partial| -12 (-5 *1 (-629 *2)) (-4 *2 (-312)) (-4 *2 (-960)))) + (|partial| -12 (-4 *3 (-312)) (-4 *3 (-146)) (-4 *4 (-323 *3)) + (-4 *5 (-323 *3)) (-5 *1 (-629 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5)))) + ((*1 *1 *1) (|partial| -12 (-5 *1 (-630 *2)) (-4 *2 (-312)) (-4 *2 (-961)))) ((*1 *1 *1) - (|partial| -12 (-4 *1 (-1035 *2 *3 *4 *5)) (-4 *3 (-960)) + (|partial| -12 (-4 *1 (-1036 *2 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-196 *2 *3)) (-4 *5 (-196 *2 *3)) (-4 *3 (-312)))) - ((*1 *2 *2) (-12 (-5 *2 (-582 *3)) (-4 *3 (-755)) (-5 *1 (-1099 *3))))) + ((*1 *2 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-756)) (-5 *1 (-1100 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-755)) (-5 *2 (-582 (-582 *4))) (-5 *1 (-1099 *4)) - (-5 *3 (-582 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-582 (-582 *3))) (-4 *3 (-755)) (-5 *1 (-1099 *3))))) + (-12 (-4 *4 (-756)) (-5 *2 (-583 (-583 *4))) (-5 *1 (-1100 *4)) + (-5 *3 (-583 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-756)) (-5 *1 (-1100 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-755)) (-5 *2 (-1101 (-582 *4))) (-5 *1 (-1099 *4)) - (-5 *3 (-582 *4))))) + (-12 (-4 *4 (-756)) (-5 *2 (-1102 (-583 *4))) (-5 *1 (-1100 *4)) + (-5 *3 (-583 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-755)) (-5 *2 (-582 (-582 (-582 *4)))) (-5 *1 (-1099 *4)) - (-5 *3 (-582 (-582 *4)))))) + (-12 (-4 *4 (-756)) (-5 *2 (-583 (-583 (-583 *4)))) (-5 *1 (-1100 *4)) + (-5 *3 (-583 (-583 *4)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1101 (-582 *4))) (-4 *4 (-755)) (-5 *2 (-582 (-582 *4))) - (-5 *1 (-1099 *4))))) + (-12 (-5 *3 (-1102 (-583 *4))) (-4 *4 (-756)) (-5 *2 (-583 (-583 *4))) + (-5 *1 (-1100 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-582 (-582 (-582 *4)))) (-5 *2 (-582 (-582 *4))) - (-5 *1 (-1099 *4)) (-4 *4 (-755))))) + (-12 (-5 *3 (-583 (-583 (-583 *4)))) (-5 *2 (-583 (-583 *4))) + (-5 *1 (-1100 *4)) (-4 *4 (-756))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-582 (-582 (-582 *4)))) (-5 *2 (-582 (-582 *4))) (-4 *4 (-755)) - (-5 *1 (-1099 *4))))) + (-12 (-5 *3 (-583 (-583 (-583 *4)))) (-5 *2 (-583 (-583 *4))) (-4 *4 (-756)) + (-5 *1 (-1100 *4))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-582 (-582 (-582 *4)))) (-5 *3 (-582 *4)) (-4 *4 (-755)) - (-5 *1 (-1099 *4))))) + (-12 (-5 *2 (-583 (-583 (-583 *4)))) (-5 *3 (-583 *4)) (-4 *4 (-756)) + (-5 *1 (-1100 *4))))) (((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-582 (-582 (-582 *5)))) (-5 *3 (-1 (-85) *5 *5)) - (-5 *4 (-582 *5)) (-4 *5 (-755)) (-5 *1 (-1099 *5))))) + (-12 (-5 *2 (-583 (-583 (-583 *5)))) (-5 *3 (-1 (-85) *5 *5)) + (-5 *4 (-583 *5)) (-4 *5 (-756)) (-5 *1 (-1100 *5))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-85) *6 *6)) (-4 *6 (-755)) (-5 *4 (-582 *6)) - (-5 *2 (-2 (|:| |fs| (-85)) (|:| |sd| *4) (|:| |td| (-582 *4)))) - (-5 *1 (-1099 *6)) (-5 *5 (-582 *4))))) -(((*1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-1098))))) -(((*1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-1098))))) -(((*1 *2) (-12 (-5 *2 (-103)) (-5 *1 (-1098))))) -(((*1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-1098))))) -(((*1 *2 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-1183)) (-5 *1 (-1098))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-582 (-348 (-856 *5)))) (-5 *4 (-582 (-1088))) (-4 *5 (-494)) - (-5 *2 (-582 (-582 (-856 *5)))) (-5 *1 (-1097 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-582 (-348 (-856 (-483))))) - (-5 *2 (-582 (-582 (-249 (-856 *4))))) (-5 *1 (-330 *4)) - (-4 *4 (-13 (-754) (-312))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-582 (-249 (-348 (-856 (-483)))))) - (-5 *2 (-582 (-582 (-249 (-856 *4))))) (-5 *1 (-330 *4)) - (-4 *4 (-13 (-754) (-312))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-348 (-856 (-483)))) (-5 *2 (-582 (-249 (-856 *4)))) - (-5 *1 (-330 *4)) (-4 *4 (-13 (-754) (-312))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-249 (-348 (-856 (-483))))) (-5 *2 (-582 (-249 (-856 *4)))) - (-5 *1 (-330 *4)) (-4 *4 (-13 (-754) (-312))))) + (-12 (-5 *3 (-1 (-85) *6 *6)) (-4 *6 (-756)) (-5 *4 (-583 *6)) + (-5 *2 (-2 (|:| |fs| (-85)) (|:| |sd| *4) (|:| |td| (-583 *4)))) + (-5 *1 (-1100 *6)) (-5 *5 (-583 *4))))) +(((*1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-1099))))) +(((*1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-1099))))) +(((*1 *2) (-12 (-5 *2 (-103)) (-5 *1 (-1099))))) +(((*1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-1099))))) +(((*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1099))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-583 (-349 (-857 *5)))) (-5 *4 (-583 (-1089))) (-4 *5 (-495)) + (-5 *2 (-583 (-583 (-857 *5)))) (-5 *1 (-1098 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-583 (-349 (-857 (-484))))) + (-5 *2 (-583 (-583 (-249 (-857 *4))))) (-5 *1 (-331 *4)) + (-4 *4 (-13 (-755) (-312))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-583 (-249 (-349 (-857 (-484)))))) + (-5 *2 (-583 (-583 (-249 (-857 *4))))) (-5 *1 (-331 *4)) + (-4 *4 (-13 (-755) (-312))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-349 (-857 (-484)))) (-5 *2 (-583 (-249 (-857 *4)))) + (-5 *1 (-331 *4)) (-4 *4 (-13 (-755) (-312))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-249 (-349 (-857 (-484))))) (-5 *2 (-583 (-249 (-857 *4)))) + (-5 *1 (-331 *4)) (-4 *4 (-13 (-755) (-312))))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1088)) - (-4 *6 (-13 (-258) (-949 (-483)) (-579 (-483)) (-120))) - (-4 *4 (-13 (-29 *6) (-1113) (-870))) - (-5 *2 (-2 (|:| |particular| *4) (|:| -2011 (-582 *4)))) - (-5 *1 (-594 *6 *4 *3)) (-4 *3 (-599 *4)))) + (|partial| -12 (-5 *5 (-1089)) + (-4 *6 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120))) + (-4 *4 (-13 (-29 *6) (-1114) (-871))) + (-5 *2 (-2 (|:| |particular| *4) (|:| -2012 (-583 *4)))) + (-5 *1 (-595 *6 *4 *3)) (-4 *3 (-600 *4)))) ((*1 *2 *3 *2 *4 *2 *5) - (|partial| -12 (-5 *4 (-1088)) (-5 *5 (-582 *2)) - (-4 *2 (-13 (-29 *6) (-1113) (-870))) - (-4 *6 (-13 (-258) (-949 (-483)) (-579 (-483)) (-120))) - (-5 *1 (-594 *6 *2 *3)) (-4 *3 (-599 *2)))) + (|partial| -12 (-5 *4 (-1089)) (-5 *5 (-583 *2)) + (-4 *2 (-13 (-29 *6) (-1114) (-871))) + (-4 *6 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120))) + (-5 *1 (-595 *6 *2 *3)) (-4 *3 (-600 *2)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-312)) (-4 *6 (-13 (-322 *5) (-10 -7 (-6 -3994)))) - (-4 *4 (-13 (-322 *5) (-10 -7 (-6 -3994)))) - (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2011 (-582 *4)))) - (-5 *1 (-608 *5 *6 *4 *3)) (-4 *3 (-626 *5 *6 *4)))) + (-12 (-4 *5 (-312)) (-4 *6 (-13 (-323 *5) (-10 -7 (-6 -3995)))) + (-4 *4 (-13 (-323 *5) (-10 -7 (-6 -3995)))) + (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2012 (-583 *4)))) + (-5 *1 (-609 *5 *6 *4 *3)) (-4 *3 (-627 *5 *6 *4)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-312)) (-4 *6 (-13 (-322 *5) (-10 -7 (-6 -3994)))) - (-4 *7 (-13 (-322 *5) (-10 -7 (-6 -3994)))) - (-5 *2 (-582 (-2 (|:| |particular| (-3 *7 #1#)) (|:| -2011 (-582 *7))))) - (-5 *1 (-608 *5 *6 *7 *3)) (-5 *4 (-582 *7)) (-4 *3 (-626 *5 *6 *7)))) + (-12 (-4 *5 (-312)) (-4 *6 (-13 (-323 *5) (-10 -7 (-6 -3995)))) + (-4 *7 (-13 (-323 *5) (-10 -7 (-6 -3995)))) + (-5 *2 (-583 (-2 (|:| |particular| (-3 *7 #1#)) (|:| -2012 (-583 *7))))) + (-5 *1 (-609 *5 *6 *7 *3)) (-5 *4 (-583 *7)) (-4 *3 (-627 *5 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-629 *5)) (-4 *5 (-312)) + (-12 (-5 *3 (-630 *5)) (-4 *5 (-312)) (-5 *2 - (-2 (|:| |particular| (-3 (-1177 *5) #2="failed")) - (|:| -2011 (-582 (-1177 *5))))) - (-5 *1 (-609 *5)) (-5 *4 (-1177 *5)))) + (-2 (|:| |particular| (-3 (-1178 *5) #2="failed")) + (|:| -2012 (-583 (-1178 *5))))) + (-5 *1 (-610 *5)) (-5 *4 (-1178 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-582 (-582 *5))) (-4 *5 (-312)) + (-12 (-5 *3 (-583 (-583 *5))) (-4 *5 (-312)) (-5 *2 - (-2 (|:| |particular| (-3 (-1177 *5) #2#)) (|:| -2011 (-582 (-1177 *5))))) - (-5 *1 (-609 *5)) (-5 *4 (-1177 *5)))) + (-2 (|:| |particular| (-3 (-1178 *5) #2#)) (|:| -2012 (-583 (-1178 *5))))) + (-5 *1 (-610 *5)) (-5 *4 (-1178 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-629 *5)) (-4 *5 (-312)) + (-12 (-5 *3 (-630 *5)) (-4 *5 (-312)) (-5 *2 - (-582 - (-2 (|:| |particular| (-3 (-1177 *5) #2#)) - (|:| -2011 (-582 (-1177 *5)))))) - (-5 *1 (-609 *5)) (-5 *4 (-582 (-1177 *5))))) + (-583 + (-2 (|:| |particular| (-3 (-1178 *5) #2#)) + (|:| -2012 (-583 (-1178 *5)))))) + (-5 *1 (-610 *5)) (-5 *4 (-583 (-1178 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-582 (-582 *5))) (-4 *5 (-312)) + (-12 (-5 *3 (-583 (-583 *5))) (-4 *5 (-312)) (-5 *2 - (-582 - (-2 (|:| |particular| (-3 (-1177 *5) #2#)) - (|:| -2011 (-582 (-1177 *5)))))) - (-5 *1 (-609 *5)) (-5 *4 (-582 (-1177 *5))))) + (-583 + (-2 (|:| |particular| (-3 (-1178 *5) #2#)) + (|:| -2012 (-583 (-1178 *5)))))) + (-5 *1 (-610 *5)) (-5 *4 (-583 (-1178 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-582 (-856 *5))) (-5 *4 (-582 (-1088))) (-4 *5 (-494)) - (-5 *2 (-582 (-582 (-249 (-348 (-856 *5)))))) (-5 *1 (-692 *5)))) + (-12 (-5 *3 (-583 (-857 *5))) (-5 *4 (-583 (-1089))) (-4 *5 (-495)) + (-5 *2 (-583 (-583 (-249 (-349 (-857 *5)))))) (-5 *1 (-693 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-582 (-856 *4))) (-4 *4 (-494)) - (-5 *2 (-582 (-582 (-249 (-348 (-856 *4)))))) (-5 *1 (-692 *4)))) + (-12 (-5 *3 (-583 (-857 *4))) (-4 *4 (-495)) + (-5 *2 (-583 (-583 (-249 (-349 (-857 *4)))))) (-5 *1 (-693 *4)))) ((*1 *2 *2 *2 *3 *4) - (|partial| -12 (-5 *3 (-86)) (-5 *4 (-1088)) - (-4 *5 (-13 (-258) (-949 (-483)) (-579 (-483)) (-120))) (-5 *1 (-694 *5 *2)) - (-4 *2 (-13 (-29 *5) (-1113) (-870))))) + (|partial| -12 (-5 *3 (-86)) (-5 *4 (-1089)) + (-4 *5 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120))) (-5 *1 (-695 *5 *2)) + (-4 *2 (-13 (-29 *5) (-1114) (-871))))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-629 *7)) (-5 *5 (-1088)) - (-4 *7 (-13 (-29 *6) (-1113) (-870))) - (-4 *6 (-13 (-258) (-949 (-483)) (-579 (-483)) (-120))) - (-5 *2 (-2 (|:| |particular| (-1177 *7)) (|:| -2011 (-582 (-1177 *7))))) - (-5 *1 (-724 *6 *7)) (-5 *4 (-1177 *7)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-629 *6)) (-5 *4 (-1088)) - (-4 *6 (-13 (-29 *5) (-1113) (-870))) - (-4 *5 (-13 (-258) (-949 (-483)) (-579 (-483)) (-120))) - (-5 *2 (-582 (-1177 *6))) (-5 *1 (-724 *5 *6)))) + (|partial| -12 (-5 *3 (-630 *7)) (-5 *5 (-1089)) + (-4 *7 (-13 (-29 *6) (-1114) (-871))) + (-4 *6 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120))) + (-5 *2 (-2 (|:| |particular| (-1178 *7)) (|:| -2012 (-583 (-1178 *7))))) + (-5 *1 (-725 *6 *7)) (-5 *4 (-1178 *7)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-630 *6)) (-5 *4 (-1089)) + (-4 *6 (-13 (-29 *5) (-1114) (-871))) + (-4 *5 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120))) + (-5 *2 (-583 (-1178 *6))) (-5 *1 (-725 *5 *6)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-582 (-249 *7))) (-5 *4 (-582 (-86))) (-5 *5 (-1088)) - (-4 *7 (-13 (-29 *6) (-1113) (-870))) - (-4 *6 (-13 (-258) (-949 (-483)) (-579 (-483)) (-120))) - (-5 *2 (-2 (|:| |particular| (-1177 *7)) (|:| -2011 (-582 (-1177 *7))))) - (-5 *1 (-724 *6 *7)))) + (|partial| -12 (-5 *3 (-583 (-249 *7))) (-5 *4 (-583 (-86))) (-5 *5 (-1089)) + (-4 *7 (-13 (-29 *6) (-1114) (-871))) + (-4 *6 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120))) + (-5 *2 (-2 (|:| |particular| (-1178 *7)) (|:| -2012 (-583 (-1178 *7))))) + (-5 *1 (-725 *6 *7)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-582 *7)) (-5 *4 (-582 (-86))) (-5 *5 (-1088)) - (-4 *7 (-13 (-29 *6) (-1113) (-870))) - (-4 *6 (-13 (-258) (-949 (-483)) (-579 (-483)) (-120))) - (-5 *2 (-2 (|:| |particular| (-1177 *7)) (|:| -2011 (-582 (-1177 *7))))) - (-5 *1 (-724 *6 *7)))) + (|partial| -12 (-5 *3 (-583 *7)) (-5 *4 (-583 (-86))) (-5 *5 (-1089)) + (-4 *7 (-13 (-29 *6) (-1114) (-871))) + (-4 *6 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120))) + (-5 *2 (-2 (|:| |particular| (-1178 *7)) (|:| -2012 (-583 (-1178 *7))))) + (-5 *1 (-725 *6 *7)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-249 *7)) (-5 *4 (-86)) (-5 *5 (-1088)) - (-4 *7 (-13 (-29 *6) (-1113) (-870))) - (-4 *6 (-13 (-258) (-949 (-483)) (-579 (-483)) (-120))) - (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -2011 (-582 *7))) *7 #3="failed")) - (-5 *1 (-724 *6 *7)))) + (-12 (-5 *3 (-249 *7)) (-5 *4 (-86)) (-5 *5 (-1089)) + (-4 *7 (-13 (-29 *6) (-1114) (-871))) + (-4 *6 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120))) + (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -2012 (-583 *7))) *7 #3="failed")) + (-5 *1 (-725 *6 *7)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-86)) (-5 *5 (-1088)) - (-4 *6 (-13 (-258) (-949 (-483)) (-579 (-483)) (-120))) - (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -2011 (-582 *3))) *3 #3#)) - (-5 *1 (-724 *6 *3)) (-4 *3 (-13 (-29 *6) (-1113) (-870))))) + (-12 (-5 *4 (-86)) (-5 *5 (-1089)) + (-4 *6 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120))) + (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -2012 (-583 *3))) *3 #3#)) + (-5 *1 (-725 *6 *3)) (-4 *3 (-13 (-29 *6) (-1114) (-871))))) ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *3 (-249 *2)) (-5 *4 (-86)) (-5 *5 (-582 *2)) - (-4 *2 (-13 (-29 *6) (-1113) (-870))) (-5 *1 (-724 *6 *2)) - (-4 *6 (-13 (-258) (-949 (-483)) (-579 (-483)) (-120))))) + (|partial| -12 (-5 *3 (-249 *2)) (-5 *4 (-86)) (-5 *5 (-583 *2)) + (-4 *2 (-13 (-29 *6) (-1114) (-871))) (-5 *1 (-725 *6 *2)) + (-4 *6 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120))))) ((*1 *2 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-86)) (-5 *4 (-249 *2)) (-5 *5 (-582 *2)) - (-4 *2 (-13 (-29 *6) (-1113) (-870))) - (-4 *6 (-13 (-258) (-949 (-483)) (-579 (-483)) (-120))) - (-5 *1 (-724 *6 *2)))) + (|partial| -12 (-5 *3 (-86)) (-5 *4 (-249 *2)) (-5 *5 (-583 *2)) + (-4 *2 (-13 (-29 *6) (-1114) (-871))) + (-4 *6 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120))) + (-5 *1 (-725 *6 *2)))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 - (-1 (-3 (-2 (|:| |particular| *6) (|:| -2011 (-582 *6))) "failed") *7 *6)) - (-4 *6 (-312)) (-4 *7 (-599 *6)) - (-5 *2 (-2 (|:| |particular| (-1177 *6)) (|:| -2011 (-629 *6)))) - (-5 *1 (-732 *6 *7)) (-5 *3 (-629 *6)) (-5 *4 (-1177 *6)))) + (-1 (-3 (-2 (|:| |particular| *6) (|:| -2012 (-583 *6))) "failed") *7 *6)) + (-4 *6 (-312)) (-4 *7 (-600 *6)) + (-5 *2 (-2 (|:| |particular| (-1178 *6)) (|:| -2012 (-630 *6)))) + (-5 *1 (-733 *6 *7)) (-5 *3 (-630 *6)) (-5 *4 (-1178 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-856 (-348 (-483)))) (-5 *2 (-582 (-328))) (-5 *1 (-935)) - (-5 *4 (-328)))) + (-12 (-5 *3 (-857 (-349 (-484)))) (-5 *2 (-583 (-329))) (-5 *1 (-936)) + (-5 *4 (-329)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-856 (-483))) (-5 *2 (-582 (-328))) (-5 *1 (-935)) - (-5 *4 (-328)))) + (-12 (-5 *3 (-857 (-484))) (-5 *2 (-583 (-329))) (-5 *1 (-936)) + (-5 *4 (-329)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-312) (-10 -8 (-15 ** ($ $ (-348 (-483))))))) - (-5 *2 (-582 *4)) (-5 *1 (-1040 *3 *4)) (-4 *3 (-1153 *4)))) + (-12 (-4 *4 (-13 (-312) (-10 -8 (-15 ** ($ $ (-349 (-484))))))) + (-5 *2 (-583 *4)) (-5 *1 (-1041 *3 *4)) (-4 *3 (-1154 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-258) (-949 (-483)) (-579 (-483)) (-120))) - (-5 *2 (-582 (-249 (-265 *4)))) (-5 *1 (-1043 *4)) (-5 *3 (-265 *4)))) + (-12 (-4 *4 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120))) + (-5 *2 (-583 (-249 (-265 *4)))) (-5 *1 (-1044 *4)) (-5 *3 (-265 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-258) (-949 (-483)) (-579 (-483)) (-120))) - (-5 *2 (-582 (-249 (-265 *4)))) (-5 *1 (-1043 *4)) + (-12 (-4 *4 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120))) + (-5 *2 (-583 (-249 (-265 *4)))) (-5 *1 (-1044 *4)) (-5 *3 (-249 (-265 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1088)) (-4 *5 (-13 (-258) (-949 (-483)) (-579 (-483)) (-120))) - (-5 *2 (-582 (-249 (-265 *5)))) (-5 *1 (-1043 *5)) + (-12 (-5 *4 (-1089)) (-4 *5 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120))) + (-5 *2 (-583 (-249 (-265 *5)))) (-5 *1 (-1044 *5)) (-5 *3 (-249 (-265 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1088)) (-4 *5 (-13 (-258) (-949 (-483)) (-579 (-483)) (-120))) - (-5 *2 (-582 (-249 (-265 *5)))) (-5 *1 (-1043 *5)) (-5 *3 (-265 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-582 (-1088))) - (-4 *5 (-13 (-258) (-949 (-483)) (-579 (-483)) (-120))) - (-5 *2 (-582 (-582 (-249 (-265 *5))))) (-5 *1 (-1043 *5)) - (-5 *3 (-582 (-249 (-265 *5)))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-582 (-348 (-856 *5)))) (-5 *4 (-582 (-1088))) (-4 *5 (-494)) - (-5 *2 (-582 (-582 (-249 (-348 (-856 *5)))))) (-5 *1 (-1097 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-582 (-1088))) (-4 *5 (-494)) - (-5 *2 (-582 (-582 (-249 (-348 (-856 *5)))))) (-5 *1 (-1097 *5)) - (-5 *3 (-582 (-249 (-348 (-856 *5))))))) - ((*1 *2 *3) - (-12 (-5 *3 (-582 (-348 (-856 *4)))) (-4 *4 (-494)) - (-5 *2 (-582 (-582 (-249 (-348 (-856 *4)))))) (-5 *1 (-1097 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-494)) (-5 *2 (-582 (-582 (-249 (-348 (-856 *4)))))) - (-5 *1 (-1097 *4)) (-5 *3 (-582 (-249 (-348 (-856 *4))))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1088)) (-4 *5 (-494)) (-5 *2 (-582 (-249 (-348 (-856 *5))))) - (-5 *1 (-1097 *5)) (-5 *3 (-348 (-856 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1088)) (-4 *5 (-494)) (-5 *2 (-582 (-249 (-348 (-856 *5))))) - (-5 *1 (-1097 *5)) (-5 *3 (-249 (-348 (-856 *5)))))) - ((*1 *2 *3) - (-12 (-4 *4 (-494)) (-5 *2 (-582 (-249 (-348 (-856 *4))))) (-5 *1 (-1097 *4)) - (-5 *3 (-348 (-856 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-494)) (-5 *2 (-582 (-249 (-348 (-856 *4))))) (-5 *1 (-1097 *4)) - (-5 *3 (-249 (-348 (-856 *4))))))) -(((*1 *2 *1) (-12 (-5 *1 (-631 *2)) (-4 *2 (-551 (-771))))) - ((*1 *2 *1) (-12 (-5 *2 (-1071)) (-5 *1 (-784)))) - ((*1 *2 *1) (-12 (-5 *2 (-445)) (-5 *1 (-784)))) - ((*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-483)))) - ((*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-1071)))) - ((*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-445)))) - ((*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-527)))) - ((*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-416)))) - ((*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-110)))) - ((*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-129)))) - ((*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-1079)))) - ((*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-564)))) - ((*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-1007)))) - ((*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-1002)))) - ((*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-984)))) - ((*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-882)))) - ((*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-154)))) - ((*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-947)))) - ((*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-263)))) - ((*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-612)))) - ((*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-127)))) - ((*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-1065)))) - ((*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-462)))) - ((*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-1189)))) - ((*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-977)))) - ((*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-457)))) - ((*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-621)))) - ((*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-67)))) - ((*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-1028)))) - ((*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-106)))) - ((*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-538)))) - ((*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-111)))) - ((*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-1188)))) - ((*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-616)))) - ((*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-172)))) - ((*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-461)))) - ((*1 *2 *1) (-12 (-5 *2 (-1071)) (-5 *1 (-1093)))) - ((*1 *2 *1) (-12 (-5 *2 (-445)) (-5 *1 (-1093)))) - ((*1 *2 *1) (-12 (-5 *2 (-179)) (-5 *1 (-1093)))) - ((*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-1093))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-582 (-1093))) (-5 *1 (-1093)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-445)) (-5 *3 (-582 (-1093))) (-5 *1 (-1093))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1093))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-445)) (-5 *1 (-234)))) - ((*1 *2 *1) - (-12 (-5 *2 (-3 (-483) (-179) (-445) (-1071) (-1093))) (-5 *1 (-1093))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-582 (-234))) (-5 *1 (-234)))) - ((*1 *2 *1) (-12 (-5 *2 (-582 (-1093))) (-5 *1 (-1093))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1093))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2854)) (-5 *2 (-85)) (-5 *1 (-555)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2239)) (-5 *2 (-85)) (-5 *1 (-555)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2853)) (-5 *2 (-85)) (-5 *1 (-555)))) + (-12 (-5 *4 (-1089)) (-4 *5 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120))) + (-5 *2 (-583 (-249 (-265 *5)))) (-5 *1 (-1044 *5)) (-5 *3 (-265 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-583 (-1089))) + (-4 *5 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120))) + (-5 *2 (-583 (-583 (-249 (-265 *5))))) (-5 *1 (-1044 *5)) + (-5 *3 (-583 (-249 (-265 *5)))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-583 (-349 (-857 *5)))) (-5 *4 (-583 (-1089))) (-4 *5 (-495)) + (-5 *2 (-583 (-583 (-249 (-349 (-857 *5)))))) (-5 *1 (-1098 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-583 (-1089))) (-4 *5 (-495)) + (-5 *2 (-583 (-583 (-249 (-349 (-857 *5)))))) (-5 *1 (-1098 *5)) + (-5 *3 (-583 (-249 (-349 (-857 *5))))))) + ((*1 *2 *3) + (-12 (-5 *3 (-583 (-349 (-857 *4)))) (-4 *4 (-495)) + (-5 *2 (-583 (-583 (-249 (-349 (-857 *4)))))) (-5 *1 (-1098 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-495)) (-5 *2 (-583 (-583 (-249 (-349 (-857 *4)))))) + (-5 *1 (-1098 *4)) (-5 *3 (-583 (-249 (-349 (-857 *4))))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1089)) (-4 *5 (-495)) (-5 *2 (-583 (-249 (-349 (-857 *5))))) + (-5 *1 (-1098 *5)) (-5 *3 (-349 (-857 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1089)) (-4 *5 (-495)) (-5 *2 (-583 (-249 (-349 (-857 *5))))) + (-5 *1 (-1098 *5)) (-5 *3 (-249 (-349 (-857 *5)))))) + ((*1 *2 *3) + (-12 (-4 *4 (-495)) (-5 *2 (-583 (-249 (-349 (-857 *4))))) (-5 *1 (-1098 *4)) + (-5 *3 (-349 (-857 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-495)) (-5 *2 (-583 (-249 (-349 (-857 *4))))) (-5 *1 (-1098 *4)) + (-5 *3 (-249 (-349 (-857 *4))))))) +(((*1 *2 *1) (-12 (-5 *1 (-632 *2)) (-4 *2 (-552 (-772))))) + ((*1 *2 *1) (-12 (-5 *2 (-1072)) (-5 *1 (-785)))) + ((*1 *2 *1) (-12 (-5 *2 (-446)) (-5 *1 (-785)))) + ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-484)))) + ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-1072)))) + ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-446)))) + ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-528)))) + ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-417)))) + ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-110)))) + ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-129)))) + ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-1080)))) + ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-565)))) + ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-1008)))) + ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-1003)))) + ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-985)))) + ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-883)))) + ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-154)))) + ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-948)))) + ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-263)))) + ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-613)))) + ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-127)))) + ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-1066)))) + ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-463)))) + ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-1190)))) + ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-978)))) + ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-458)))) + ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-622)))) + ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-67)))) + ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-1029)))) + ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-106)))) + ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-539)))) + ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-111)))) + ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-1189)))) + ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-617)))) + ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-172)))) + ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-462)))) + ((*1 *2 *1) (-12 (-5 *2 (-1072)) (-5 *1 (-1094)))) + ((*1 *2 *1) (-12 (-5 *2 (-446)) (-5 *1 (-1094)))) + ((*1 *2 *1) (-12 (-5 *2 (-179)) (-5 *1 (-1094)))) + ((*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-1094))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-1094))) (-5 *1 (-1094)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-446)) (-5 *3 (-583 (-1094))) (-5 *1 (-1094))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1094))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-446)) (-5 *1 (-234)))) + ((*1 *2 *1) + (-12 (-5 *2 (-3 (-484) (-179) (-446) (-1072) (-1094))) (-5 *1 (-1094))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-583 (-234))) (-5 *1 (-234)))) + ((*1 *2 *1) (-12 (-5 *2 (-583 (-1094))) (-5 *1 (-1094))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1094))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2855)) (-5 *2 (-85)) (-5 *1 (-556)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2240)) (-5 *2 (-85)) (-5 *1 (-556)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2854)) (-5 *2 (-85)) (-5 *1 (-556)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| -2364)) (-5 *2 (-85)) (-5 *1 (-631 *4)) - (-4 *4 (-551 (-771))))) + (-12 (-5 *3 (|[\|\|]| -2365)) (-5 *2 (-85)) (-5 *1 (-632 *4)) + (-4 *4 (-552 (-772))))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-551 (-771))) (-5 *2 (-85)) - (-5 *1 (-631 *4)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1071))) (-5 *2 (-85)) (-5 *1 (-784)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-445))) (-5 *2 (-85)) (-5 *1 (-784)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-483))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-1071))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-445))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-527))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-416))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-110))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-129))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-1079))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-564))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-1007))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-1002))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-984))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-882))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-154))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-947))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-263))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-612))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-127))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-1065))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-462))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-1189))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-977))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-457))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-621))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-67))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-1028))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-106))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-538))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-111))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-1188))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-616))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-172))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-461))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1071))) (-5 *2 (-85)) (-5 *1 (-1093)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-445))) (-5 *2 (-85)) (-5 *1 (-1093)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-179))) (-5 *2 (-85)) (-5 *1 (-1093)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-483))) (-5 *2 (-85)) (-5 *1 (-1093))))) -(((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-247))) ((*1 *1) (-5 *1 (-771))) + (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-552 (-772))) (-5 *2 (-85)) + (-5 *1 (-632 *4)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1072))) (-5 *2 (-85)) (-5 *1 (-785)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-446))) (-5 *2 (-85)) (-5 *1 (-785)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-484))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-1072))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-446))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-528))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-417))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-110))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-129))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-1080))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-565))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-1008))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-1003))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-985))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-883))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-154))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-948))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-263))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-613))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-127))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-1066))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-463))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-1190))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-978))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-458))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-622))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-67))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-1029))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-106))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-539))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-111))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-1189))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-617))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-172))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-462))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1072))) (-5 *2 (-85)) (-5 *1 (-1094)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-446))) (-5 *2 (-85)) (-5 *1 (-1094)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-179))) (-5 *2 (-85)) (-5 *1 (-1094)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-484))) (-5 *2 (-85)) (-5 *1 (-1094))))) +(((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-247))) ((*1 *1) (-5 *1 (-772))) ((*1 *1) - (-12 (-4 *2 (-390)) (-4 *3 (-755)) (-4 *4 (-716)) (-5 *1 (-898 *2 *3 *4 *5)) - (-4 *5 (-860 *2 *4 *3)))) - ((*1 *1) (-5 *1 (-996))) + (-12 (-4 *2 (-391)) (-4 *3 (-756)) (-4 *4 (-717)) (-5 *1 (-899 *2 *3 *4 *5)) + (-4 *5 (-861 *2 *4 *3)))) + ((*1 *1) (-5 *1 (-997))) ((*1 *1) - (-12 (-5 *1 (-1052 *2 *3)) (-4 *2 (-13 (-1012) (-34))) - (-4 *3 (-13 (-1012) (-34))))) - ((*1 *1) (-5 *1 (-1091))) ((*1 *1) (-5 *1 (-1092)))) -(((*1 *2 *3 *2 *3) (-12 (-5 *2 (-377)) (-5 *3 (-1088)) (-5 *1 (-1091)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-377)) (-5 *3 (-1088)) (-5 *1 (-1091)))) + (-12 (-5 *1 (-1053 *2 *3)) (-4 *2 (-13 (-1013) (-34))) + (-4 *3 (-13 (-1013) (-34))))) + ((*1 *1) (-5 *1 (-1092))) ((*1 *1) (-5 *1 (-1093)))) +(((*1 *2 *3 *2 *3) (-12 (-5 *2 (-378)) (-5 *3 (-1089)) (-5 *1 (-1092)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-378)) (-5 *3 (-1089)) (-5 *1 (-1092)))) ((*1 *2 *3 *2 *4 *1) - (-12 (-5 *2 (-377)) (-5 *3 (-582 (-1088))) (-5 *4 (-1088)) (-5 *1 (-1091)))) - ((*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-377)) (-5 *3 (-1088)) (-5 *1 (-1091)))) - ((*1 *2 *3 *2 *1) (-12 (-5 *2 (-377)) (-5 *3 (-1088)) (-5 *1 (-1092)))) - ((*1 *2 *3 *2 *1) (-12 (-5 *2 (-377)) (-5 *3 (-582 (-1088))) (-5 *1 (-1092))))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-1088)) (-5 *2 (-377)) (-5 *1 (-1092))))) -(((*1 *2 *1) (-12 (-5 *2 (-582 (-1088))) (-5 *1 (-1092))))) + (-12 (-5 *2 (-378)) (-5 *3 (-583 (-1089))) (-5 *4 (-1089)) (-5 *1 (-1092)))) + ((*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-378)) (-5 *3 (-1089)) (-5 *1 (-1092)))) + ((*1 *2 *3 *2 *1) (-12 (-5 *2 (-378)) (-5 *3 (-1089)) (-5 *1 (-1093)))) + ((*1 *2 *3 *2 *1) (-12 (-5 *2 (-378)) (-5 *3 (-583 (-1089))) (-5 *1 (-1093))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-1089)) (-5 *2 (-378)) (-5 *1 (-1093))))) +(((*1 *2 *1) (-12 (-5 *2 (-583 (-1089))) (-5 *1 (-1093))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-375)) + (-12 (-5 *3 (-376)) (-5 *2 - (-582 - (-3 (|:| -3540 (-1088)) - (|:| -3224 (-582 (-3 (|:| S (-1088)) (|:| P (-856 (-483))))))))) - (-5 *1 (-1092))))) -(((*1 *2 *1) (-12 (-5 *2 (-582 (-1088))) (-5 *1 (-1092))))) + (-583 + (-3 (|:| -3541 (-1089)) + (|:| -3225 (-583 (-3 (|:| S (-1089)) (|:| P (-857 (-484))))))))) + (-5 *1 (-1093))))) +(((*1 *2 *1) (-12 (-5 *2 (-583 (-1089))) (-5 *1 (-1093))))) (((*1 *2 *1) (-12 (-5 *2 - (-582 - (-582 - (-3 (|:| -3540 (-1088)) - (|:| -3224 (-582 (-3 (|:| S (-1088)) (|:| P (-856 (-483)))))))))) - (-5 *1 (-1092))))) -(((*1 *2 *1) (-12 (-5 *2 (-1014)) (-5 *1 (-1092))))) -(((*1 *2 *3) (-12 (-5 *3 (-1088)) (-5 *2 (-1183)) (-5 *1 (-1091)))) - ((*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-1092))))) + (-583 + (-583 + (-3 (|:| -3541 (-1089)) + (|:| -3225 (-583 (-3 (|:| S (-1089)) (|:| P (-857 (-484)))))))))) + (-5 *1 (-1093))))) +(((*1 *2 *1) (-12 (-5 *2 (-1015)) (-5 *1 (-1093))))) +(((*1 *2 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-1184)) (-5 *1 (-1092)))) + ((*1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-1093))))) (((*1 *1 *2) - (-12 (-5 *2 (-582 (-2 (|:| -3858 (-1088)) (|:| |entry| (-377))))) - (-5 *1 (-1092))))) -(((*1 *1) (-5 *1 (-1091)))) -(((*1 *2 *3) (-12 (-5 *3 (-1088)) (-5 *2 (-1183)) (-5 *1 (-1091)))) - ((*1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-1091))))) -(((*1 *2 *3) (-12 (-5 *3 (-1088)) (-5 *2 (-1183)) (-5 *1 (-1091))))) -(((*1 *2) (-12 (-5 *2 (-1088)) (-5 *1 (-1091))))) -(((*1 *2) (-12 (-5 *2 (-1088)) (-5 *1 (-1091))))) -(((*1 *2 *3) (-12 (-5 *3 (-582 (-1088))) (-5 *2 (-1183)) (-5 *1 (-1091)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-582 (-1088))) (-5 *3 (-1088)) (-5 *2 (-1183)) (-5 *1 (-1091)))) + (-12 (-5 *2 (-583 (-2 (|:| -3859 (-1089)) (|:| |entry| (-378))))) + (-5 *1 (-1093))))) +(((*1 *1) (-5 *1 (-1092)))) +(((*1 *2 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-1184)) (-5 *1 (-1092)))) + ((*1 *2) (-12 (-5 *2 (-1184)) (-5 *1 (-1092))))) +(((*1 *2 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-1184)) (-5 *1 (-1092))))) +(((*1 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-1092))))) +(((*1 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-1092))))) +(((*1 *2 *3) (-12 (-5 *3 (-583 (-1089))) (-5 *2 (-1184)) (-5 *1 (-1092)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-583 (-1089))) (-5 *3 (-1089)) (-5 *2 (-1184)) (-5 *1 (-1092)))) ((*1 *2 *3 *4 *1) - (-12 (-5 *4 (-582 (-1088))) (-5 *3 (-1088)) (-5 *2 (-1183)) (-5 *1 (-1091))))) + (-12 (-5 *4 (-583 (-1089))) (-5 *3 (-1089)) (-5 *2 (-1184)) (-5 *1 (-1092))))) (((*1 *2 *3) - (-12 (-5 *3 (-3 (|:| |fst| (-375)) (|:| -3908 #1="void"))) (-5 *2 (-1183)) - (-5 *1 (-1091)))) + (-12 (-5 *3 (-3 (|:| |fst| (-376)) (|:| -3909 #1="void"))) (-5 *2 (-1184)) + (-5 *1 (-1092)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1088)) (-5 *4 (-3 (|:| |fst| (-375)) (|:| -3908 #1#))) - (-5 *2 (-1183)) (-5 *1 (-1091)))) + (-12 (-5 *3 (-1089)) (-5 *4 (-3 (|:| |fst| (-376)) (|:| -3909 #1#))) + (-5 *2 (-1184)) (-5 *1 (-1092)))) ((*1 *2 *3 *4 *1) - (-12 (-5 *3 (-1088)) (-5 *4 (-3 (|:| |fst| (-375)) (|:| -3908 #1#))) - (-5 *2 (-1183)) (-5 *1 (-1091))))) -(((*1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-1091)))) - ((*1 *2 *3) (-12 (-5 *3 (-1088)) (-5 *2 (-1183)) (-5 *1 (-1091)))) - ((*1 *2 *3 *1) (-12 (-5 *3 (-1088)) (-5 *2 (-1183)) (-5 *1 (-1091))))) + (-12 (-5 *3 (-1089)) (-5 *4 (-3 (|:| |fst| (-376)) (|:| -3909 #1#))) + (-5 *2 (-1184)) (-5 *1 (-1092))))) +(((*1 *2) (-12 (-5 *2 (-1184)) (-5 *1 (-1092)))) + ((*1 *2 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-1184)) (-5 *1 (-1092)))) + ((*1 *2 *3 *1) (-12 (-5 *3 (-1089)) (-5 *2 (-1184)) (-5 *1 (-1092))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-1088)) (-5 *2 (-3 (|:| |fst| (-375)) (|:| -3908 "void"))) - (-5 *1 (-1091))))) -(((*1 *2 *3 *1) (-12 (-5 *2 (-582 (-1088))) (-5 *1 (-1091)) (-5 *3 (-1088))))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-1088)) (-5 *2 (-1092)) (-5 *1 (-1091))))) -(((*1 *2 *3) - (-12 (-5 *3 (-582 *4)) (-4 *4 (-960)) (-5 *2 (-1177 *4)) (-5 *1 (-1089 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-829)) (-5 *2 (-1177 *3)) (-5 *1 (-1089 *3)) (-4 *3 (-960))))) -(((*1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-1088))))) -(((*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-67)))) - ((*1 *2 *1) (-12 (-5 *2 (-445)) (-5 *1 (-78)))) - ((*1 *2 *1) (-12 (-4 *1 (-314 *2 *3)) (-4 *3 (-1012)) (-4 *2 (-1012)))) - ((*1 *2 *1) (-12 (-4 *1 (-337)) (-5 *2 (-1071)))) - ((*1 *2 *1) (-12 (-5 *2 (-1088)) (-5 *1 (-378 *3)) (-14 *3 *2))) - ((*1 *2 *1) (-12 (-5 *2 (-445)) (-5 *1 (-421)))) - ((*1 *2 *1) (-12 (-4 *1 (-746 *2)) (-4 *2 (-1012)))) - ((*1 *2 *1) (-12 (-5 *2 (-445)) (-5 *1 (-773)))) - ((*1 *2 *1) (-12 (-5 *2 (-445)) (-5 *1 (-875)))) - ((*1 *2 *1) (-12 (-5 *2 (-1088)) (-5 *1 (-987 *3)) (-14 *3 *2))) - ((*1 *2 *1) (-12 (-5 *2 (-445)) (-5 *1 (-1028)))) ((*1 *1 *1) (-5 *1 (-1088)))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1088))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-582 (-771))) (-5 *1 (-771)))) + (-12 (-5 *3 (-1089)) (-5 *2 (-3 (|:| |fst| (-376)) (|:| -3909 "void"))) + (-5 *1 (-1092))))) +(((*1 *2 *3 *1) (-12 (-5 *2 (-583 (-1089))) (-5 *1 (-1092)) (-5 *3 (-1089))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-1089)) (-5 *2 (-1093)) (-5 *1 (-1092))))) +(((*1 *2 *3) + (-12 (-5 *3 (-583 *4)) (-4 *4 (-961)) (-5 *2 (-1178 *4)) (-5 *1 (-1090 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-830)) (-5 *2 (-1178 *3)) (-5 *1 (-1090 *3)) (-4 *3 (-961))))) +(((*1 *2) (-12 (-5 *2 (-1184)) (-5 *1 (-1089))))) +(((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-67)))) + ((*1 *2 *1) (-12 (-5 *2 (-446)) (-5 *1 (-78)))) + ((*1 *2 *1) (-12 (-4 *1 (-314 *2 *3)) (-4 *3 (-1013)) (-4 *2 (-1013)))) + ((*1 *2 *1) (-12 (-4 *1 (-338)) (-5 *2 (-1072)))) + ((*1 *2 *1) (-12 (-5 *2 (-1089)) (-5 *1 (-379 *3)) (-14 *3 *2))) + ((*1 *2 *1) (-12 (-5 *2 (-446)) (-5 *1 (-422)))) + ((*1 *2 *1) (-12 (-4 *1 (-747 *2)) (-4 *2 (-1013)))) + ((*1 *2 *1) (-12 (-5 *2 (-446)) (-5 *1 (-774)))) + ((*1 *2 *1) (-12 (-5 *2 (-446)) (-5 *1 (-876)))) + ((*1 *2 *1) (-12 (-5 *2 (-1089)) (-5 *1 (-988 *3)) (-14 *3 *2))) + ((*1 *2 *1) (-12 (-5 *2 (-446)) (-5 *1 (-1029)))) ((*1 *1 *1) (-5 *1 (-1089)))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1089))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772)))) ((*1 *2 *1) (-12 (-5 *2 - (-2 (|:| -2583 (-582 (-771))) (|:| -2482 (-582 (-771))) - (|:| |presup| (-582 (-771))) (|:| -2581 (-582 (-771))) - (|:| |args| (-582 (-771))))) - (-5 *1 (-1088))))) + (-2 (|:| -2584 (-583 (-772))) (|:| -2483 (-583 (-772))) + (|:| |presup| (-583 (-772))) (|:| -2582 (-583 (-772))) + (|:| |args| (-583 (-772))))) + (-5 *1 (-1089))))) (((*1 *1 *1 *2) (-12 (-5 *2 - (-2 (|:| -2583 (-582 (-771))) (|:| -2482 (-582 (-771))) - (|:| |presup| (-582 (-771))) (|:| -2581 (-582 (-771))) - (|:| |args| (-582 (-771))))) - (-5 *1 (-1088)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-582 (-582 (-771)))) (-5 *1 (-1088))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-582 (-771))) (-5 *1 (-1088))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-582 (-771))) (-5 *1 (-1088))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-582 (-771))) (-5 *1 (-1088))))) -(((*1 *1 *1) (-5 *1 (-771))) - ((*1 *2 *1) - (-12 (-4 *1 (-1015 *2 *3 *4 *5 *6)) (-4 *3 (-1012)) (-4 *4 (-1012)) - (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *2 (-1012)))) - ((*1 *1 *2) (-12 (-5 *2 (-445)) (-5 *1 (-1071)))) - ((*1 *1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-1071)))) - ((*1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-1071)))) - ((*1 *2 *1) (-12 (-5 *2 (-1071)) (-5 *1 (-1088))))) -(((*1 *1 *2) (-12 (-4 *1 (-607 *2)) (-4 *2 (-1127)))) - ((*1 *2 *1) (-12 (-5 *2 (-582 (-1088))) (-5 *1 (-1088))))) + (-2 (|:| -2584 (-583 (-772))) (|:| -2483 (-583 (-772))) + (|:| |presup| (-583 (-772))) (|:| -2582 (-583 (-772))) + (|:| |args| (-583 (-772))))) + (-5 *1 (-1089)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-583 (-772)))) (-5 *1 (-1089))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-1089))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-1089))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-1089))))) +(((*1 *1 *1) (-5 *1 (-772))) + ((*1 *2 *1) + (-12 (-4 *1 (-1016 *2 *3 *4 *5 *6)) (-4 *3 (-1013)) (-4 *4 (-1013)) + (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *2 (-1013)))) + ((*1 *1 *2) (-12 (-5 *2 (-446)) (-5 *1 (-1072)))) + ((*1 *1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-1072)))) + ((*1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-1072)))) + ((*1 *2 *1) (-12 (-5 *2 (-1072)) (-5 *1 (-1089))))) +(((*1 *1 *2) (-12 (-4 *1 (-608 *2)) (-4 *2 (-1128)))) + ((*1 *2 *1) (-12 (-5 *2 (-583 (-1089))) (-5 *1 (-1089))))) (((*1 *2 *1 *3 *3 *4) - (-12 (-5 *3 (-1 (-771) (-771) (-771))) (-5 *4 (-483)) (-5 *2 (-771)) - (-5 *1 (-590 *5 *6 *7)) (-4 *5 (-1012)) (-4 *6 (-23)) (-14 *7 *6))) + (-12 (-5 *3 (-1 (-772) (-772) (-772))) (-5 *4 (-484)) (-5 *2 (-772)) + (-5 *1 (-591 *5 *6 *7)) (-4 *5 (-1013)) (-4 *6 (-23)) (-14 *7 *6))) ((*1 *2 *1 *2) - (-12 (-5 *2 (-771)) (-5 *1 (-762 *3 *4 *5)) (-4 *3 (-960)) (-14 *4 (-69 *3)) + (-12 (-5 *2 (-772)) (-5 *1 (-763 *3 *4 *5)) (-4 *3 (-961)) (-14 *4 (-69 *3)) (-14 *5 (-1 *3 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-771)))) - ((*1 *1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-771)))) - ((*1 *1 *2) (-12 (-5 *2 (-1088)) (-5 *1 (-771)))) - ((*1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-771)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-1083 *3)) (-4 *3 (-960))))) + ((*1 *1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-772)))) + ((*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-772)))) + ((*1 *1 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-772)))) + ((*1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-772)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-1084 *3)) (-4 *3 (-961))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-1000 *3)) (-4 *3 (-860 *7 *6 *4)) (-4 *6 (-716)) (-4 *4 (-755)) - (-4 *7 (-494)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-483)))) - (-5 *1 (-528 *6 *4 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-716)) (-4 *4 (-755)) (-4 *6 (-494)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-483)))) (-5 *1 (-528 *5 *4 *6 *3)) - (-4 *3 (-860 *6 *5 *4)))) - ((*1 *1 *1 *1 *1) (-5 *1 (-771))) ((*1 *1 *1 *1) (-5 *1 (-771))) - ((*1 *1 *1) (-5 *1 (-771))) + (-12 (-5 *5 (-1001 *3)) (-4 *3 (-861 *7 *6 *4)) (-4 *6 (-717)) (-4 *4 (-756)) + (-4 *7 (-495)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-484)))) + (-5 *1 (-529 *6 *4 *7 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-717)) (-4 *4 (-756)) (-4 *6 (-495)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-484)))) (-5 *1 (-529 *5 *4 *6 *3)) + (-4 *3 (-861 *6 *5 *4)))) + ((*1 *1 *1 *1 *1) (-5 *1 (-772))) ((*1 *1 *1 *1) (-5 *1 (-772))) + ((*1 *1 *1) (-5 *1 (-772))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1088)) (-4 *4 (-13 (-494) (-949 (-483)) (-579 (-483)))) - (-5 *1 (-1081 *4 *2)) (-4 *2 (-13 (-362 *4) (-133) (-27) (-1113))))) + (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-495) (-950 (-484)) (-580 (-484)))) + (-5 *1 (-1082 *4 *2)) (-4 *2 (-13 (-363 *4) (-133) (-27) (-1114))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1003 *2)) (-4 *2 (-13 (-362 *4) (-133) (-27) (-1113))) - (-4 *4 (-13 (-494) (-949 (-483)) (-579 (-483)))) (-5 *1 (-1081 *4 *2)))) + (-12 (-5 *3 (-1004 *2)) (-4 *2 (-13 (-363 *4) (-133) (-27) (-1114))) + (-4 *4 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *1 (-1082 *4 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1088)) (-4 *5 (-13 (-494) (-949 (-483)))) - (-5 *2 (-348 (-856 *5))) (-5 *1 (-1082 *5)) (-5 *3 (-856 *5)))) + (-12 (-5 *4 (-1089)) (-4 *5 (-13 (-495) (-950 (-484)))) + (-5 *2 (-349 (-857 *5))) (-5 *1 (-1083 *5)) (-5 *3 (-857 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1088)) (-4 *5 (-13 (-494) (-949 (-483)))) - (-5 *2 (-3 (-348 (-856 *5)) (-265 *5))) (-5 *1 (-1082 *5)) - (-5 *3 (-348 (-856 *5))))) + (-12 (-5 *4 (-1089)) (-4 *5 (-13 (-495) (-950 (-484)))) + (-5 *2 (-3 (-349 (-857 *5)) (-265 *5))) (-5 *1 (-1083 *5)) + (-5 *3 (-349 (-857 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1003 (-856 *5))) (-5 *3 (-856 *5)) - (-4 *5 (-13 (-494) (-949 (-483)))) (-5 *2 (-348 *3)) (-5 *1 (-1082 *5)))) + (-12 (-5 *4 (-1004 (-857 *5))) (-5 *3 (-857 *5)) + (-4 *5 (-13 (-495) (-950 (-484)))) (-5 *2 (-349 *3)) (-5 *1 (-1083 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1003 (-348 (-856 *5)))) (-5 *3 (-348 (-856 *5))) - (-4 *5 (-13 (-494) (-949 (-483)))) (-5 *2 (-3 *3 (-265 *5))) - (-5 *1 (-1082 *5))))) + (-12 (-5 *4 (-1004 (-349 (-857 *5)))) (-5 *3 (-349 (-857 *5))) + (-4 *5 (-13 (-495) (-950 (-484)))) (-5 *2 (-3 *3 (-265 *5))) + (-5 *1 (-1083 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-799 *4)) (-4 *4 (-1012)) (-5 *2 (-1 (-85) *5)) - (-5 *1 (-800 *4 *5)) (-4 *5 (-1127)))) - ((*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-1079))))) -(((*1 *1 *2) (-12 (-5 *2 (-582 *3)) (-4 *3 (-1127)) (-4 *1 (-124 *3)))) + (-12 (-5 *3 (-800 *4)) (-4 *4 (-1013)) (-5 *2 (-1 (-85) *5)) + (-5 *1 (-801 *4 *5)) (-4 *5 (-1128)))) + ((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-1080))))) +(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1128)) (-4 *1 (-124 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-582 (-2 (|:| -2400 (-693)) (|:| -3771 *4) (|:| |num| *4)))) - (-4 *4 (-1153 *3)) (-4 *3 (-13 (-312) (-120))) (-5 *1 (-340 *3 *4)))) + (-12 (-5 *2 (-583 (-2 (|:| -2401 (-694)) (|:| -3772 *4) (|:| |num| *4)))) + (-4 *4 (-1154 *3)) (-4 *3 (-13 (-312) (-120))) (-5 *1 (-341 *3 *4)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-3 (|:| |fst| (-375)) (|:| -3908 #1="void"))) - (-5 *3 (-582 (-856 (-483)))) (-5 *4 (-85)) (-5 *1 (-377)))) + (-12 (-5 *2 (-3 (|:| |fst| (-376)) (|:| -3909 #1="void"))) + (-5 *3 (-583 (-857 (-484)))) (-5 *4 (-85)) (-5 *1 (-378)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-3 (|:| |fst| (-375)) (|:| -3908 #1#))) (-5 *3 (-582 (-1088))) - (-5 *4 (-85)) (-5 *1 (-377)))) - ((*1 *2 *1) (-12 (-5 *2 (-1067 *3)) (-5 *1 (-535 *3)) (-4 *3 (-1127)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-573 *2)) (-4 *2 (-146)))) + (-12 (-5 *2 (-3 (|:| |fst| (-376)) (|:| -3909 #1#))) (-5 *3 (-583 (-1089))) + (-5 *4 (-85)) (-5 *1 (-378)))) + ((*1 *2 *1) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-536 *3)) (-4 *3 (-1128)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-574 *2)) (-4 *2 (-146)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-613 *3)) (-4 *3 (-755)) (-5 *1 (-605 *3 *4)) (-4 *4 (-146)))) + (-12 (-5 *2 (-614 *3)) (-4 *3 (-756)) (-5 *1 (-606 *3 *4)) (-4 *4 (-146)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-613 *3)) (-4 *3 (-755)) (-5 *1 (-605 *3 *4)) (-4 *4 (-146)))) + (-12 (-5 *2 (-614 *3)) (-4 *3 (-756)) (-5 *1 (-606 *3 *4)) (-4 *4 (-146)))) ((*1 *1 *2 *2) - (-12 (-5 *2 (-613 *3)) (-4 *3 (-755)) (-5 *1 (-605 *3 *4)) (-4 *4 (-146)))) + (-12 (-5 *2 (-614 *3)) (-4 *3 (-756)) (-5 *1 (-606 *3 *4)) (-4 *4 (-146)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-649 *2 *3 *4)) (-4 *2 (-755)) (-4 *3 (-1012)) + (-12 (-5 *1 (-650 *2 *3 *4)) (-4 *2 (-756)) (-4 *3 (-1013)) (-14 *4 - (-1 (-85) (-2 (|:| -2399 *2) (|:| -2400 *3)) - (-2 (|:| -2399 *2) (|:| -2400 *3)))))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-445)) (-5 *3 (-1027)) (-5 *1 (-748)))) - ((*1 *1 *2 *3) (-12 (-5 *1 (-781 *2 *3)) (-4 *2 (-1127)) (-4 *3 (-1127)))) + (-1 (-85) (-2 (|:| -2400 *2) (|:| -2401 *3)) + (-2 (|:| -2400 *2) (|:| -2401 *3)))))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-446)) (-5 *3 (-1028)) (-5 *1 (-749)))) + ((*1 *1 *2 *3) (-12 (-5 *1 (-782 *2 *3)) (-4 *2 (-1128)) (-4 *3 (-1128)))) ((*1 *1 *2) - (-12 (-5 *2 (-582 (-2 (|:| -3858 (-1088)) (|:| |entry| *4)))) (-4 *4 (-1012)) - (-5 *1 (-797 *3 *4)) (-4 *3 (-1012)))) + (-12 (-5 *2 (-583 (-2 (|:| -3859 (-1089)) (|:| |entry| *4)))) (-4 *4 (-1013)) + (-5 *1 (-798 *3 *4)) (-4 *3 (-1013)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-582 *5)) (-4 *5 (-13 (-1012) (-34))) - (-5 *2 (-582 (-1052 *3 *5))) (-5 *1 (-1052 *3 *5)) - (-4 *3 (-13 (-1012) (-34))))) + (-12 (-5 *4 (-583 *5)) (-4 *5 (-13 (-1013) (-34))) + (-5 *2 (-583 (-1053 *3 *5))) (-5 *1 (-1053 *3 *5)) + (-4 *3 (-13 (-1013) (-34))))) ((*1 *2 *3) - (-12 (-5 *3 (-582 (-2 (|:| |val| *4) (|:| -1598 *5)))) - (-4 *4 (-13 (-1012) (-34))) (-4 *5 (-13 (-1012) (-34))) - (-5 *2 (-582 (-1052 *4 *5))) (-5 *1 (-1052 *4 *5)))) + (-12 (-5 *3 (-583 (-2 (|:| |val| *4) (|:| -1599 *5)))) + (-4 *4 (-13 (-1013) (-34))) (-4 *5 (-13 (-1013) (-34))) + (-5 *2 (-583 (-1053 *4 *5))) (-5 *1 (-1053 *4 *5)))) ((*1 *1 *2) - (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1598 *4))) (-4 *3 (-13 (-1012) (-34))) - (-4 *4 (-13 (-1012) (-34))) (-5 *1 (-1052 *3 *4)))) + (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1599 *4))) (-4 *3 (-13 (-1013) (-34))) + (-4 *4 (-13 (-1013) (-34))) (-5 *1 (-1053 *3 *4)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-1052 *2 *3)) (-4 *2 (-13 (-1012) (-34))) - (-4 *3 (-13 (-1012) (-34))))) + (-12 (-5 *1 (-1053 *2 *3)) (-4 *2 (-13 (-1013) (-34))) + (-4 *3 (-13 (-1013) (-34))))) ((*1 *1 *2 *3 *4) - (-12 (-5 *4 (-85)) (-5 *1 (-1052 *2 *3)) (-4 *2 (-13 (-1012) (-34))) - (-4 *3 (-13 (-1012) (-34))))) + (-12 (-5 *4 (-85)) (-5 *1 (-1053 *2 *3)) (-4 *2 (-13 (-1013) (-34))) + (-4 *3 (-13 (-1013) (-34))))) ((*1 *1 *2 *3 *2 *4) - (-12 (-5 *4 (-582 *3)) (-4 *3 (-13 (-1012) (-34))) (-5 *1 (-1053 *2 *3)) - (-4 *2 (-13 (-1012) (-34))))) + (-12 (-5 *4 (-583 *3)) (-4 *3 (-13 (-1013) (-34))) (-5 *1 (-1054 *2 *3)) + (-4 *2 (-13 (-1013) (-34))))) ((*1 *1 *2 *3 *4) - (-12 (-5 *4 (-582 (-1052 *2 *3))) (-4 *2 (-13 (-1012) (-34))) - (-4 *3 (-13 (-1012) (-34))) (-5 *1 (-1053 *2 *3)))) + (-12 (-5 *4 (-583 (-1053 *2 *3))) (-4 *2 (-13 (-1013) (-34))) + (-4 *3 (-13 (-1013) (-34))) (-5 *1 (-1054 *2 *3)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *4 (-582 (-1053 *2 *3))) (-5 *1 (-1053 *2 *3)) - (-4 *2 (-13 (-1012) (-34))) (-4 *3 (-13 (-1012) (-34))))) + (-12 (-5 *4 (-583 (-1054 *2 *3))) (-5 *1 (-1054 *2 *3)) + (-4 *2 (-13 (-1013) (-34))) (-4 *3 (-13 (-1013) (-34))))) ((*1 *1 *2) - (-12 (-5 *2 (-1052 *3 *4)) (-4 *3 (-13 (-1012) (-34))) - (-4 *4 (-13 (-1012) (-34))) (-5 *1 (-1053 *3 *4)))) - ((*1 *1 *2 *3) (-12 (-5 *1 (-1078 *2 *3)) (-4 *2 (-1012)) (-4 *3 (-1012))))) -(((*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-110)))) - ((*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-129)))) - ((*1 *2 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1127)))) - ((*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-416)))) - ((*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-527)))) - ((*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-564)))) - ((*1 *2 *1) - (-12 (-4 *3 (-1012)) (-4 *2 (-13 (-362 *4) (-795 *3) (-552 (-799 *3)))) - (-5 *1 (-986 *3 *4 *2)) (-4 *4 (-13 (-960) (-795 *3) (-552 (-799 *3)))))) - ((*1 *2 *1) (-12 (-4 *2 (-1012)) (-5 *1 (-1078 *2 *3)) (-4 *3 (-1012))))) -(((*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-110)))) - ((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-129)))) - ((*1 *2 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1127)))) - ((*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-416)))) - ((*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-527)))) - ((*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-564)))) - ((*1 *2 *1) - (-12 (-4 *3 (-1012)) (-4 *2 (-13 (-362 *4) (-795 *3) (-552 (-799 *3)))) - (-5 *1 (-986 *3 *4 *2)) (-4 *4 (-13 (-960) (-795 *3) (-552 (-799 *3)))))) - ((*1 *2 *1) (-12 (-4 *2 (-1012)) (-5 *1 (-1078 *3 *2)) (-4 *3 (-1012))))) -(((*1 *2 *1) (-12 (-4 *1 (-922 *3)) (-4 *3 (-1127)) (-5 *2 (-85)))) - ((*1 *2 *1) - (-12 (-5 *2 (-85)) (-5 *1 (-1077 *3 *4)) (-14 *3 (-829)) (-4 *4 (-960))))) -(((*1 *2 *1) - (-12 (-5 *2 (-85)) (-5 *1 (-1077 *3 *4)) (-14 *3 (-829)) (-4 *4 (-960))))) -(((*1 *2 *1) - (-12 (-5 *2 (-85)) (-5 *1 (-1077 *3 *4)) (-14 *3 (-829)) (-4 *4 (-960))))) -(((*1 *1 *1) (-12 (-5 *1 (-1077 *2 *3)) (-14 *2 (-829)) (-4 *3 (-960))))) + (-12 (-5 *2 (-1053 *3 *4)) (-4 *3 (-13 (-1013) (-34))) + (-4 *4 (-13 (-1013) (-34))) (-5 *1 (-1054 *3 *4)))) + ((*1 *1 *2 *3) (-12 (-5 *1 (-1079 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013))))) +(((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-110)))) + ((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-129)))) + ((*1 *2 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1128)))) + ((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-417)))) + ((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-528)))) + ((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-565)))) + ((*1 *2 *1) + (-12 (-4 *3 (-1013)) (-4 *2 (-13 (-363 *4) (-796 *3) (-553 (-800 *3)))) + (-5 *1 (-987 *3 *4 *2)) (-4 *4 (-13 (-961) (-796 *3) (-553 (-800 *3)))))) + ((*1 *2 *1) (-12 (-4 *2 (-1013)) (-5 *1 (-1079 *2 *3)) (-4 *3 (-1013))))) +(((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-110)))) + ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-129)))) + ((*1 *2 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1128)))) + ((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-417)))) + ((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-528)))) + ((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-565)))) + ((*1 *2 *1) + (-12 (-4 *3 (-1013)) (-4 *2 (-13 (-363 *4) (-796 *3) (-553 (-800 *3)))) + (-5 *1 (-987 *3 *4 *2)) (-4 *4 (-13 (-961) (-796 *3) (-553 (-800 *3)))))) + ((*1 *2 *1) (-12 (-4 *2 (-1013)) (-5 *1 (-1079 *3 *2)) (-4 *3 (-1013))))) +(((*1 *2 *1) (-12 (-4 *1 (-923 *3)) (-4 *3 (-1128)) (-5 *2 (-85)))) + ((*1 *2 *1) + (-12 (-5 *2 (-85)) (-5 *1 (-1078 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961))))) +(((*1 *2 *1) + (-12 (-5 *2 (-85)) (-5 *1 (-1078 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961))))) +(((*1 *2 *1) + (-12 (-5 *2 (-85)) (-5 *1 (-1078 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961))))) +(((*1 *1 *1) (-12 (-5 *1 (-1078 *2 *3)) (-14 *2 (-830)) (-4 *3 (-961))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-693)) (-5 *1 (-1077 *3 *4)) (-14 *3 (-829)) (-4 *4 (-960))))) -(((*1 *2 *1) (-12 (-4 *3 (-1127)) (-5 *2 (-582 *1)) (-4 *1 (-922 *3)))) + (-12 (-5 *2 (-694)) (-5 *1 (-1078 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961))))) +(((*1 *2 *1) (-12 (-4 *3 (-1128)) (-5 *2 (-583 *1)) (-4 *1 (-923 *3)))) ((*1 *2 *1) - (-12 (-5 *2 (-582 (-1077 *3 *4))) (-5 *1 (-1077 *3 *4)) (-14 *3 (-829)) - (-4 *4 (-960))))) + (-12 (-5 *2 (-583 (-1078 *3 *4))) (-5 *1 (-1078 *3 *4)) (-14 *3 (-830)) + (-4 *4 (-961))))) (((*1 *2 *1) - (-12 (-5 *2 (-693)) (-5 *1 (-1077 *3 *4)) (-14 *3 (-829)) (-4 *4 (-960))))) -(((*1 *1 *1) (-12 (-5 *1 (-1077 *2 *3)) (-14 *2 (-829)) (-4 *3 (-960))))) -(((*1 *1 *1) (-12 (-5 *1 (-1077 *2 *3)) (-14 *2 (-829)) (-4 *3 (-960))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-322 *2)) (-4 *2 (-1127)) (-4 *2 (-755)))) + (-12 (-5 *2 (-694)) (-5 *1 (-1078 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961))))) +(((*1 *1 *1) (-12 (-5 *1 (-1078 *2 *3)) (-14 *2 (-830)) (-4 *3 (-961))))) +(((*1 *1 *1) (-12 (-5 *1 (-1078 *2 *3)) (-14 *2 (-830)) (-4 *3 (-961))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-323 *2)) (-4 *2 (-1128)) (-4 *2 (-756)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 (-85) *3 *3)) (-4 *1 (-322 *3)) (-4 *3 (-1127)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-880 *2)) (-4 *2 (-755)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1046 *2)) (-4 *2 (-960)))) - ((*1 *1 *2) (-12 (-5 *2 (-582 *1)) (-4 *1 (-1046 *3)) (-4 *3 (-960)))) + (-12 (-5 *2 (-1 (-85) *3 *3)) (-4 *1 (-323 *3)) (-4 *3 (-1128)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-881 *2)) (-4 *2 (-756)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1047 *2)) (-4 *2 (-961)))) + ((*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-1047 *3)) (-4 *3 (-961)))) ((*1 *1 *2) - (-12 (-5 *2 (-582 (-1077 *3 *4))) (-5 *1 (-1077 *3 *4)) (-14 *3 (-829)) - (-4 *4 (-960)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-1077 *2 *3)) (-14 *2 (-829)) (-4 *3 (-960))))) + (-12 (-5 *2 (-583 (-1078 *3 *4))) (-5 *1 (-1078 *3 *4)) (-14 *3 (-830)) + (-4 *4 (-961)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-1078 *2 *3)) (-14 *2 (-830)) (-4 *3 (-961))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-853 *5)) (-4 *5 (-960)) (-5 *2 (-693)) (-5 *1 (-1077 *4 *5)) - (-14 *4 (-829)))) + (-12 (-5 *3 (-854 *5)) (-4 *5 (-961)) (-5 *2 (-694)) (-5 *1 (-1078 *4 *5)) + (-14 *4 (-830)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-582 (-693))) (-5 *3 (-693)) (-5 *1 (-1077 *4 *5)) - (-14 *4 (-829)) (-4 *5 (-960)))) + (-12 (-5 *2 (-583 (-694))) (-5 *3 (-694)) (-5 *1 (-1078 *4 *5)) + (-14 *4 (-830)) (-4 *5 (-961)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-582 (-693))) (-5 *3 (-853 *5)) (-4 *5 (-960)) - (-5 *1 (-1077 *4 *5)) (-14 *4 (-829))))) + (-12 (-5 *2 (-583 (-694))) (-5 *3 (-854 *5)) (-4 *5 (-961)) + (-5 *1 (-1078 *4 *5)) (-14 *4 (-830))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-853 *4)) (-4 *4 (-960)) (-5 *1 (-1077 *3 *4)) (-14 *3 (-829))))) + (-12 (-5 *2 (-854 *4)) (-4 *4 (-961)) (-5 *1 (-1078 *3 *4)) (-14 *3 (-830))))) (((*1 *1 *1 *1 *2 *3) - (-12 (-5 *2 (-853 *5)) (-5 *3 (-693)) (-4 *5 (-960)) (-5 *1 (-1077 *4 *5)) - (-14 *4 (-829))))) + (-12 (-5 *2 (-854 *5)) (-5 *3 (-694)) (-4 *5 (-961)) (-5 *1 (-1078 *4 *5)) + (-14 *4 (-830))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-693)) (-5 *3 (-853 *5)) (-4 *5 (-960)) (-5 *1 (-1077 *4 *5)) - (-14 *4 (-829)))) + (-12 (-5 *2 (-694)) (-5 *3 (-854 *5)) (-4 *5 (-961)) (-5 *1 (-1078 *4 *5)) + (-14 *4 (-830)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-582 (-693))) (-5 *3 (-693)) (-5 *1 (-1077 *4 *5)) - (-14 *4 (-829)) (-4 *5 (-960)))) + (-12 (-5 *2 (-583 (-694))) (-5 *3 (-694)) (-5 *1 (-1078 *4 *5)) + (-14 *4 (-830)) (-4 *5 (-961)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-582 (-693))) (-5 *3 (-853 *5)) (-4 *5 (-960)) - (-5 *1 (-1077 *4 *5)) (-14 *4 (-829))))) + (-12 (-5 *2 (-583 (-694))) (-5 *3 (-854 *5)) (-4 *5 (-961)) + (-5 *1 (-1078 *4 *5)) (-14 *4 (-830))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-582 (-693))) (-5 *3 (-85)) (-5 *1 (-1077 *4 *5)) - (-14 *4 (-829)) (-4 *5 (-960))))) + (-12 (-5 *2 (-583 (-694))) (-5 *3 (-85)) (-5 *1 (-1078 *4 *5)) + (-14 *4 (-830)) (-4 *5 (-961))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-582 (-693))) (-5 *3 (-145)) (-5 *1 (-1077 *4 *5)) - (-14 *4 (-829)) (-4 *5 (-960))))) + (-12 (-5 *2 (-583 (-694))) (-5 *3 (-145)) (-5 *1 (-1078 *4 *5)) + (-14 *4 (-830)) (-4 *5 (-961))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-582 (-693))) (-5 *1 (-1077 *3 *4)) (-14 *3 (-829)) - (-4 *4 (-960))))) + (-12 (-5 *2 (-583 (-694))) (-5 *1 (-1078 *3 *4)) (-14 *3 (-830)) + (-4 *4 (-961))))) (((*1 *2 *1) - (-12 (-5 *2 (-853 *4)) (-5 *1 (-1077 *3 *4)) (-14 *3 (-829)) (-4 *4 (-960))))) + (-12 (-5 *2 (-854 *4)) (-5 *1 (-1078 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961))))) (((*1 *2 *1) - (-12 (-5 *2 (-693)) (-5 *1 (-1077 *3 *4)) (-14 *3 (-829)) (-4 *4 (-960))))) + (-12 (-5 *2 (-694)) (-5 *1 (-1078 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961))))) (((*1 *2 *1) - (-12 (-5 *2 (-85)) (-5 *1 (-1077 *3 *4)) (-14 *3 (-829)) (-4 *4 (-960))))) + (-12 (-5 *2 (-85)) (-5 *1 (-1078 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961))))) (((*1 *2 *1) - (-12 (-5 *2 (-145)) (-5 *1 (-1077 *3 *4)) (-14 *3 (-829)) (-4 *4 (-960))))) -(((*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-263)))) + (-12 (-5 *2 (-145)) (-5 *1 (-1078 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961))))) +(((*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-263)))) ((*1 *2 *1) - (-12 (-5 *2 (-693)) (-5 *1 (-1077 *3 *4)) (-14 *3 (-829)) (-4 *4 (-960))))) -(((*1 *1 *1) (-12 (-5 *1 (-1077 *2 *3)) (-14 *2 (-829)) (-4 *3 (-960))))) + (-12 (-5 *2 (-694)) (-5 *1 (-1078 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961))))) +(((*1 *1 *1) (-12 (-5 *1 (-1078 *2 *3)) (-14 *2 (-830)) (-4 *3 (-961))))) (((*1 *2 *1) - (-12 (-5 *2 (-582 (-853 *4))) (-5 *1 (-1077 *3 *4)) (-14 *3 (-829)) - (-4 *4 (-960))))) + (-12 (-5 *2 (-583 (-854 *4))) (-5 *1 (-1078 *3 *4)) (-14 *3 (-830)) + (-4 *4 (-961))))) (((*1 *1 *1) - (-12 (-4 *1 (-277 *2 *3)) (-4 *2 (-960)) (-4 *3 (-715)) (-4 *2 (-390)))) + (-12 (-4 *1 (-277 *2 *3)) (-4 *2 (-961)) (-4 *3 (-716)) (-4 *2 (-391)))) ((*1 *1 *1) - (-12 (-4 *1 (-291 *2 *3 *4)) (-4 *2 (-1132)) (-4 *3 (-1153 *2)) - (-4 *4 (-1153 (-348 *3))))) - ((*1 *1 *1) (-12 (-4 *1 (-760 *2)) (-4 *2 (-960)) (-4 *2 (-390)))) + (-12 (-4 *1 (-291 *2 *3 *4)) (-4 *2 (-1133)) (-4 *3 (-1154 *2)) + (-4 *4 (-1154 (-349 *3))))) + ((*1 *1 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-391)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-860 *3 *4 *2)) (-4 *3 (-960)) (-4 *4 (-716)) (-4 *2 (-755)) - (-4 *3 (-390)))) + (-12 (-4 *1 (-861 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)) + (-4 *3 (-391)))) ((*1 *1 *1) - (-12 (-4 *1 (-860 *2 *3 *4)) (-4 *2 (-960)) (-4 *3 (-716)) (-4 *4 (-755)) - (-4 *2 (-390)))) + (-12 (-4 *1 (-861 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) + (-4 *2 (-391)))) ((*1 *2 *2 *3) - (-12 (-4 *3 (-258)) (-4 *3 (-494)) (-5 *1 (-1076 *3 *2)) (-4 *2 (-1153 *3))))) + (-12 (-4 *3 (-258)) (-4 *3 (-495)) (-5 *1 (-1077 *3 *2)) (-4 *2 (-1154 *3))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-494)) (-5 *2 (-868 *3)) (-5 *1 (-1076 *4 *3)) - (-4 *3 (-1153 *4))))) + (-12 (-4 *4 (-495)) (-5 *2 (-869 *3)) (-5 *1 (-1077 *4 *3)) + (-4 *3 (-1154 *4))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-914))))) + (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-348 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1141 *3 *4)))) + (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1142 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-348 (-483)))) (-4 *4 (-1139 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-895 *4)))) + (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1140 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-896 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-348 (-483)))) (-5 *1 (-1074 *3)))) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1075 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-348 (-483)))) (-5 *1 (-1075 *3))))) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1076 *3))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-914))))) + (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-348 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1141 *3 *4)))) + (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1142 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-348 (-483)))) (-4 *4 (-1139 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-895 *4)))) + (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1140 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-896 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-348 (-483)))) (-5 *1 (-1074 *3)))) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1075 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-348 (-483)))) (-5 *1 (-1075 *3))))) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1076 *3))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-914))))) + (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-348 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1141 *3 *4)))) + (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1142 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-348 (-483)))) (-4 *4 (-1139 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-895 *4)))) + (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1140 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-896 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-348 (-483)))) (-5 *1 (-1074 *3)))) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1075 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-348 (-483)))) (-5 *1 (-1075 *3))))) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1076 *3))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-914))))) + (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-348 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1141 *3 *4)))) + (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1142 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-348 (-483)))) (-4 *4 (-1139 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-895 *4)))) + (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1140 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-896 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-348 (-483)))) (-5 *1 (-1074 *3)))) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1075 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-348 (-483)))) (-5 *1 (-1075 *3))))) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1076 *3))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-914))))) + (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-348 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1141 *3 *4)))) + (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1142 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-348 (-483)))) (-4 *4 (-1139 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-895 *4)))) + (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1140 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-896 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-348 (-483)))) (-5 *1 (-1074 *3)))) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1075 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-348 (-483)))) (-5 *1 (-1075 *3))))) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1076 *3))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-914))))) + (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-348 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1141 *3 *4)))) + (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1142 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-348 (-483)))) (-4 *4 (-1139 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-895 *4)))) + (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1140 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-896 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-348 (-483)))) (-5 *1 (-1074 *3)))) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1075 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-348 (-483)))) (-5 *1 (-1075 *3))))) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1076 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-914))))) + (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-348 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1141 *3 *4)))) + (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1142 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-348 (-483)))) (-4 *4 (-1139 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-895 *4)))) - ((*1 *1 *1) (-4 *1 (-431))) + (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1140 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-896 *4)))) + ((*1 *1 *1) (-4 *1 (-432))) ((*1 *2 *2) - (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-348 (-483)))) (-5 *1 (-1074 *3)))) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1075 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-348 (-483)))) (-5 *1 (-1075 *3))))) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1076 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-914))))) + (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-348 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1141 *3 *4)))) + (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1142 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-348 (-483)))) (-4 *4 (-1139 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-895 *4)))) - ((*1 *1 *1) (-4 *1 (-431))) + (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1140 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-896 *4)))) + ((*1 *1 *1) (-4 *1 (-432))) ((*1 *2 *2) - (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-348 (-483)))) (-5 *1 (-1074 *3)))) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1075 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-348 (-483)))) (-5 *1 (-1075 *3))))) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1076 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-914))))) + (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-348 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1141 *3 *4)))) + (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1142 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-348 (-483)))) (-4 *4 (-1139 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-895 *4)))) - ((*1 *1 *1) (-4 *1 (-431))) + (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1140 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-896 *4)))) + ((*1 *1 *1) (-4 *1 (-432))) ((*1 *2 *2) - (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-348 (-483)))) (-5 *1 (-1074 *3)))) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1075 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-348 (-483)))) (-5 *1 (-1075 *3))))) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1076 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-914))))) + (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-348 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1141 *3 *4)))) + (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1142 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-348 (-483)))) (-4 *4 (-1139 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-895 *4)))) - ((*1 *1 *1) (-4 *1 (-431))) + (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1140 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-896 *4)))) + ((*1 *1 *1) (-4 *1 (-432))) ((*1 *2 *2) - (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-348 (-483)))) (-5 *1 (-1074 *3)))) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1075 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-348 (-483)))) (-5 *1 (-1075 *3))))) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1076 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-914))))) + (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-348 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1141 *3 *4)))) + (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1142 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-348 (-483)))) (-4 *4 (-1139 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-895 *4)))) - ((*1 *1 *1) (-4 *1 (-431))) + (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1140 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-896 *4)))) + ((*1 *1 *1) (-4 *1 (-432))) ((*1 *2 *2) - (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-348 (-483)))) (-5 *1 (-1074 *3)))) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1075 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-348 (-483)))) (-5 *1 (-1075 *3))))) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1076 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-914))))) + (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-348 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1141 *3 *4)))) + (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1142 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-348 (-483)))) (-4 *4 (-1139 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-895 *4)))) - ((*1 *1 *1) (-4 *1 (-431))) + (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1140 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-896 *4)))) + ((*1 *1 *1) (-4 *1 (-432))) ((*1 *2 *2) - (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-348 (-483)))) (-5 *1 (-1074 *3)))) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1075 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-348 (-483)))) (-5 *1 (-1075 *3))))) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1076 *3))))) (((*1 *1 *1) (-4 *1 (-66))) ((*1 *2 *2) - (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-914))))) + (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-348 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1141 *3 *4)))) + (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1142 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-348 (-483)))) (-4 *4 (-1139 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-895 *4)))) + (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1140 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-896 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-348 (-483)))) (-5 *1 (-1074 *3)))) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1075 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-348 (-483)))) (-5 *1 (-1075 *3))))) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1076 *3))))) (((*1 *1 *1) (-4 *1 (-66))) ((*1 *2 *2) - (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-914))))) + (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-348 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1141 *3 *4)))) + (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1142 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-348 (-483)))) (-4 *4 (-1139 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-895 *4)))) + (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1140 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-896 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-348 (-483)))) (-5 *1 (-1074 *3)))) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1075 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-348 (-483)))) (-5 *1 (-1075 *3))))) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1076 *3))))) (((*1 *1 *1) (-4 *1 (-66))) ((*1 *2 *2) - (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-914))))) + (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-348 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1141 *3 *4)))) + (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1142 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-348 (-483)))) (-4 *4 (-1139 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-895 *4)))) + (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1140 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-896 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-348 (-483)))) (-5 *1 (-1074 *3)))) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1075 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-348 (-483)))) (-5 *1 (-1075 *3))))) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1076 *3))))) (((*1 *1 *1) (-4 *1 (-66))) ((*1 *1 *1 *1) (-5 *1 (-179))) ((*1 *2 *2) - (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-914))))) + (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-348 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1141 *3 *4)))) + (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1142 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-348 (-483)))) (-4 *4 (-1139 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-895 *4)))) - ((*1 *1 *1 *1) (-5 *1 (-328))) + (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1140 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-896 *4)))) + ((*1 *1 *1 *1) (-5 *1 (-329))) ((*1 *2 *2) - (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-348 (-483)))) (-5 *1 (-1074 *3)))) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1075 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-348 (-483)))) (-5 *1 (-1075 *3))))) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1076 *3))))) (((*1 *1 *1) (-4 *1 (-66))) ((*1 *2 *2) - (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-914))))) + (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-348 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1141 *3 *4)))) + (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1142 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-348 (-483)))) (-4 *4 (-1139 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-895 *4)))) + (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1140 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-896 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-348 (-483)))) (-5 *1 (-1074 *3)))) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1075 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-348 (-483)))) (-5 *1 (-1075 *3))))) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1076 *3))))) (((*1 *1 *1) (-4 *1 (-66))) ((*1 *2 *2) - (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-914))))) + (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-348 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1141 *3 *4)))) + (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1142 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-348 (-483)))) (-4 *4 (-1139 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-895 *4)))) + (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *4 (-1140 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-896 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-348 (-483)))) (-5 *1 (-1074 *3)))) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1075 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-348 (-483)))) (-5 *1 (-1075 *3))))) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-349 (-484)))) (-5 *1 (-1076 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-38 (-348 (-483)))) - (-5 *2 (-2 (|:| -3488 (-1067 *4)) (|:| -3489 (-1067 *4)))) - (-5 *1 (-1074 *4)) (-5 *3 (-1067 *4))))) + (-12 (-4 *4 (-38 (-349 (-484)))) + (-5 *2 (-2 (|:| -3489 (-1068 *4)) (|:| -3490 (-1068 *4)))) + (-5 *1 (-1075 *4)) (-5 *3 (-1068 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-38 (-348 (-483)))) - (-5 *2 (-2 (|:| -3636 (-1067 *4)) (|:| -3632 (-1067 *4)))) - (-5 *1 (-1074 *4)) (-5 *3 (-1067 *4))))) + (-12 (-4 *4 (-38 (-349 (-484)))) + (-5 *2 (-2 (|:| -3637 (-1068 *4)) (|:| -3633 (-1068 *4)))) + (-5 *1 (-1075 *4)) (-5 *3 (-1068 *4))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-1067 *3)) (-4 *3 (-312)) (-4 *3 (-960)) (-5 *1 (-1073 *3))))) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-312)) (-4 *3 (-961)) (-5 *1 (-1074 *3))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *4 (-483))) (-5 *5 (-1 (-1067 *4))) (-4 *4 (-312)) - (-4 *4 (-960)) (-5 *2 (-1067 *4)) (-5 *1 (-1073 *4))))) + (-12 (-5 *3 (-1 *4 (-484))) (-5 *5 (-1 (-1068 *4))) (-4 *4 (-312)) + (-4 *4 (-961)) (-5 *2 (-1068 *4)) (-5 *1 (-1074 *4))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-1067 *3)) (-4 *3 (-312)) (-4 *3 (-960)) (-5 *1 (-1073 *3))))) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-312)) (-4 *3 (-961)) (-5 *1 (-1074 *3))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-1067 *4)) (-4 *4 (-38 *3)) (-4 *4 (-960)) (-5 *3 (-348 (-483))) - (-5 *1 (-1073 *4))))) + (-12 (-5 *2 (-1068 *4)) (-4 *4 (-38 *3)) (-4 *4 (-961)) (-5 *3 (-349 (-484))) + (-5 *1 (-1074 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1067 (-1067 *4))) (-5 *2 (-1067 *4)) (-5 *1 (-1073 *4)) - (-4 *4 (-38 (-348 (-483)))) (-4 *4 (-960))))) + (-12 (-5 *3 (-1068 (-1068 *4))) (-5 *2 (-1068 *4)) (-5 *1 (-1074 *4)) + (-4 *4 (-38 (-349 (-484)))) (-4 *4 (-961))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-1067 *3))) (-5 *2 (-1067 *3)) (-5 *1 (-1073 *3)) - (-4 *3 (-38 (-348 (-483)))) (-4 *3 (-960))))) + (-12 (-5 *4 (-1 (-1068 *3))) (-5 *2 (-1068 *3)) (-5 *1 (-1074 *3)) + (-4 *3 (-38 (-349 (-484)))) (-4 *3 (-961))))) (((*1 *2 *3) - (-12 (-5 *3 (-1067 (-1067 *4))) (-5 *2 (-1067 *4)) (-5 *1 (-1073 *4)) - (-4 *4 (-960))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-960)) (-5 *1 (-803 *2 *3)) (-4 *2 (-1153 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-960)) (-5 *1 (-1073 *3))))) + (-12 (-5 *3 (-1068 (-1068 *4))) (-5 *2 (-1068 *4)) (-5 *1 (-1074 *4)) + (-4 *4 (-961))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-961)) (-5 *1 (-804 *2 *3)) (-4 *2 (-1154 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-961)) (-5 *1 (-1074 *3))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-1067 *4)) (-5 *3 (-1 *4 (-483))) (-4 *4 (-960)) - (-5 *1 (-1073 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-960)) (-5 *1 (-1073 *3))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-960)) (-5 *1 (-1073 *3))))) + (-12 (-5 *2 (-1068 *4)) (-5 *3 (-1 *4 (-484))) (-4 *4 (-961)) + (-5 *1 (-1074 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-961)) (-5 *1 (-1074 *3))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-961)) (-5 *1 (-1074 *3))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1088)) (-4 *4 (-13 (-258) (-949 (-483)) (-579 (-483)) (-120))) - (-5 *1 (-725 *4 *2)) (-4 *2 (-13 (-29 *4) (-1113) (-870))))) - ((*1 *1 *1 *1 *1) (-5 *1 (-771))) ((*1 *1 *1 *1) (-5 *1 (-771))) - ((*1 *1 *1) (-5 *1 (-771))) - ((*1 *2 *3) (-12 (-5 *2 (-1067 *3)) (-5 *1 (-1073 *3)) (-4 *3 (-960))))) + (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120))) + (-5 *1 (-726 *4 *2)) (-4 *2 (-13 (-29 *4) (-1114) (-871))))) + ((*1 *1 *1 *1 *1) (-5 *1 (-772))) ((*1 *1 *1 *1) (-5 *1 (-772))) + ((*1 *1 *1) (-5 *1 (-772))) + ((*1 *2 *3) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-1074 *3)) (-4 *3 (-961))))) (((*1 *2 *3) - (-12 (-5 *2 (-1067 (-483))) (-5 *1 (-1073 *4)) (-4 *4 (-960)) - (-5 *3 (-483))))) + (-12 (-5 *2 (-1068 (-484))) (-5 *1 (-1074 *4)) (-4 *4 (-961)) + (-5 *3 (-484))))) (((*1 *2 *3) - (-12 (-5 *2 (-1067 (-483))) (-5 *1 (-1073 *4)) (-4 *4 (-960)) - (-5 *3 (-483))))) + (-12 (-5 *2 (-1068 (-484))) (-5 *1 (-1074 *4)) (-4 *4 (-961)) + (-5 *3 (-484))))) (((*1 *1 *1) - (|partial| -12 (-5 *1 (-125 *2 *3 *4)) (-14 *2 (-829)) (-4 *3 (-312)) - (-14 *4 (-905 *2 *3)))) + (|partial| -12 (-5 *1 (-125 *2 *3 *4)) (-14 *2 (-830)) (-4 *3 (-312)) + (-14 *4 (-906 *2 *3)))) ((*1 *1 *1) (|partial| -12 (-4 *2 (-146)) (-5 *1 (-244 *2 *3 *4 *5 *6 *7)) - (-4 *3 (-1153 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) + (-4 *3 (-1154 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) - ((*1 *1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-146)) (-4 *2 (-494)))) + ((*1 *1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-146)) (-4 *2 (-495)))) ((*1 *1 *1) - (|partial| -12 (-5 *1 (-651 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) + (|partial| -12 (-5 *1 (-652 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-5 *1 (-654 *2)) (-4 *2 (-312)))) - ((*1 *1) (-12 (-5 *1 (-654 *2)) (-4 *2 (-312)))) - ((*1 *1 *1) (|partial| -4 *1 (-658))) ((*1 *1 *1) (|partial| -4 *1 (-662))) + ((*1 *1 *1) (-12 (-5 *1 (-655 *2)) (-4 *2 (-312)))) + ((*1 *1) (-12 (-5 *1 (-655 *2)) (-4 *2 (-312)))) + ((*1 *1 *1) (|partial| -4 *1 (-659))) ((*1 *1 *1) (|partial| -4 *1 (-663))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-390)) (-4 *6 (-716)) (-4 *7 (-755)) (-4 *3 (-976 *5 *6 *7)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-698 *5 *6 *7 *3 *4)) - (-4 *4 (-982 *5 *6 *7 *3)))) + (-12 (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-699 *5 *6 *7 *3 *4)) + (-4 *4 (-983 *5 *6 *7 *3)))) ((*1 *2 *2 *1) - (|partial| -12 (-4 *1 (-979 *3 *2)) (-4 *3 (-13 (-754) (-312))) - (-4 *2 (-1153 *3)))) + (|partial| -12 (-4 *1 (-980 *3 *2)) (-4 *3 (-13 (-755) (-312))) + (-4 *2 (-1154 *3)))) ((*1 *2 *2) - (|partial| -12 (-5 *2 (-1067 *3)) (-4 *3 (-960)) (-5 *1 (-1073 *3))))) + (|partial| -12 (-5 *2 (-1068 *3)) (-4 *3 (-961)) (-5 *1 (-1074 *3))))) (((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-139 *2)) (-4 *2 (-146)) (-4 *2 (-494)))) + (|partial| -12 (-4 *1 (-139 *2)) (-4 *2 (-146)) (-4 *2 (-495)))) ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-277 *2 *3)) (-4 *2 (-960)) (-4 *3 (-715)) - (-4 *2 (-494)))) - ((*1 *1 *1 *1) (|partial| -4 *1 (-494))) + (|partial| -12 (-4 *1 (-277 *2 *3)) (-4 *2 (-961)) (-4 *3 (-716)) + (-4 *2 (-495)))) + ((*1 *1 *1 *1) (|partial| -4 *1 (-495))) ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-626 *2 *3 *4)) (-4 *2 (-960)) (-4 *3 (-322 *2)) - (-4 *4 (-322 *2)) (-4 *2 (-494)))) - ((*1 *1 *1 *1) (|partial| -5 *1 (-693))) + (|partial| -12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-323 *2)) + (-4 *4 (-323 *2)) (-4 *2 (-495)))) + ((*1 *1 *1 *1) (|partial| -5 *1 (-694))) ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-760 *2)) (-4 *2 (-960)) (-4 *2 (-494)))) - ((*1 *1 *1 *1) (-5 *1 (-771))) + (|partial| -12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-495)))) + ((*1 *1 *1 *1) (-5 *1 (-772))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1177 *4)) (-4 *4 (-1153 *3)) (-4 *3 (-494)) - (-5 *1 (-881 *3 *4)))) + (-12 (-5 *2 (-1178 *4)) (-4 *4 (-1154 *3)) (-4 *3 (-495)) + (-5 *1 (-882 *3 *4)))) ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-964 *3 *4 *2 *5 *6)) (-4 *2 (-960)) - (-4 *5 (-196 *4 *2)) (-4 *6 (-196 *3 *2)) (-4 *2 (-494)))) + (|partial| -12 (-4 *1 (-965 *3 *4 *2 *5 *6)) (-4 *2 (-961)) + (-4 *5 (-196 *4 *2)) (-4 *6 (-196 *3 *2)) (-4 *2 (-495)))) ((*1 *2 *2 *2) - (|partial| -12 (-5 *2 (-1067 *3)) (-4 *3 (-960)) (-5 *1 (-1073 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-582 *3)) (-4 *3 (-1127)) (-5 *1 (-1067 *3))))) + (|partial| -12 (-5 *2 (-1068 *3)) (-4 *3 (-961)) (-5 *1 (-1074 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1128)) (-5 *1 (-1068 *3))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-582 *4)) (-4 *4 (-1012)) (-4 *4 (-1127)) (-5 *2 (-85)) - (-5 *1 (-1067 *4))))) + (-12 (-5 *3 (-583 *4)) (-4 *4 (-1013)) (-4 *4 (-1128)) (-5 *2 (-85)) + (-5 *1 (-1068 *4))))) (((*1 *2 *3 *1) (-12 - (-5 *2 (-2 (|:| |cycle?| (-85)) (|:| -2594 (-693)) (|:| |period| (-693)))) - (-5 *1 (-1067 *4)) (-4 *4 (-1127)) (-5 *3 (-693))))) -(((*1 *1 *2) (-12 (-5 *2 (-1 (-1067 *3))) (-5 *1 (-1067 *3)) (-4 *3 (-1127))))) -(((*1 *1 *2 *1) (-12 (-5 *1 (-582 *2)) (-4 *2 (-1127)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-1067 *2)) (-4 *2 (-1127))))) -(((*1 *1) (-5 *1 (-513))) - ((*1 *2 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-1183)) (-5 *1 (-767)))) - ((*1 *2 *3) (-12 (-5 *3 (-771)) (-5 *2 (-1183)) (-5 *1 (-767)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1071)) (-5 *4 (-771)) (-5 *2 (-1183)) (-5 *1 (-767)))) + (-5 *2 (-2 (|:| |cycle?| (-85)) (|:| -2595 (-694)) (|:| |period| (-694)))) + (-5 *1 (-1068 *4)) (-4 *4 (-1128)) (-5 *3 (-694))))) +(((*1 *1 *2) (-12 (-5 *2 (-1 (-1068 *3))) (-5 *1 (-1068 *3)) (-4 *3 (-1128))))) +(((*1 *1 *2 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1128)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-1068 *2)) (-4 *2 (-1128))))) +(((*1 *1) (-5 *1 (-514))) + ((*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-768)))) + ((*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1184)) (-5 *1 (-768)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1072)) (-5 *4 (-772)) (-5 *2 (-1184)) (-5 *1 (-768)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-483)) (-5 *2 (-1183)) (-5 *1 (-1067 *4)) (-4 *4 (-1012)) - (-4 *4 (-1127))))) + (-12 (-5 *3 (-484)) (-5 *2 (-1184)) (-5 *1 (-1068 *4)) (-4 *4 (-1013)) + (-4 *4 (-1128))))) (((*1 *2 *1) - (-12 (-5 *2 (-771)) (-5 *1 (-1067 *3)) (-4 *3 (-1012)) (-4 *3 (-1127))))) + (-12 (-5 *2 (-772)) (-5 *1 (-1068 *3)) (-4 *3 (-1013)) (-4 *3 (-1128))))) (((*1 *2) - (-12 (-5 *2 (-85)) (-5 *1 (-1067 *3)) (-4 *3 (-1012)) (-4 *3 (-1127))))) + (-12 (-5 *2 (-85)) (-5 *1 (-1068 *3)) (-4 *3 (-1013)) (-4 *3 (-1128))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-693)) (-5 *2 (-1177 (-582 (-483)))) (-5 *1 (-418)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1127)) (-5 *1 (-535 *3)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1127)) (-5 *1 (-1067 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1127)) (-5 *1 (-1067 *3))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1127)) (-5 *1 (-535 *3)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1127)) (-5 *1 (-1067 *3))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1127)) (-5 *1 (-535 *3)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1127)) (-5 *1 (-1067 *3))))) + (-12 (-5 *3 (-694)) (-5 *2 (-1178 (-583 (-484)))) (-5 *1 (-419)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1128)) (-5 *1 (-536 *3)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1128)) (-5 *1 (-1068 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1128)) (-5 *1 (-1068 *3))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1128)) (-5 *1 (-536 *3)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1128)) (-5 *1 (-1068 *3))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1128)) (-5 *1 (-536 *3)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1128)) (-5 *1 (-1068 *3))))) (((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-483)) (-4 *4 (-13 (-494) (-120))) (-5 *1 (-474 *4 *2)) - (-4 *2 (-1170 *4)))) + (-12 (-5 *3 (-484)) (-4 *4 (-13 (-495) (-120))) (-5 *1 (-475 *4 *2)) + (-4 *2 (-1171 *4)))) ((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-483)) (-4 *4 (-13 (-312) (-318) (-552 *3))) (-4 *5 (-1153 *4)) - (-4 *6 (-660 *4 *5)) (-5 *1 (-478 *4 *5 *6 *2)) (-4 *2 (-1170 *6)))) + (-12 (-5 *3 (-484)) (-4 *4 (-13 (-312) (-319) (-553 *3))) (-4 *5 (-1154 *4)) + (-4 *6 (-661 *4 *5)) (-5 *1 (-479 *4 *5 *6 *2)) (-4 *2 (-1171 *6)))) ((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-483)) (-4 *4 (-13 (-312) (-318) (-552 *3))) - (-5 *1 (-479 *4 *2)) (-4 *2 (-1170 *4)))) + (-12 (-5 *3 (-484)) (-4 *4 (-13 (-312) (-319) (-553 *3))) + (-5 *1 (-480 *4 *2)) (-4 *2 (-1171 *4)))) ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1067 *4)) (-5 *3 (-483)) (-4 *4 (-13 (-494) (-120))) - (-5 *1 (-1066 *4))))) + (-12 (-5 *2 (-1068 *4)) (-5 *3 (-484)) (-4 *4 (-13 (-495) (-120))) + (-5 *1 (-1067 *4))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-494) (-120))) (-5 *1 (-474 *3 *2)) (-4 *2 (-1170 *3)))) + (-12 (-4 *3 (-13 (-495) (-120))) (-5 *1 (-475 *3 *2)) (-4 *2 (-1171 *3)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-312) (-318) (-552 (-483)))) (-4 *4 (-1153 *3)) - (-4 *5 (-660 *3 *4)) (-5 *1 (-478 *3 *4 *5 *2)) (-4 *2 (-1170 *5)))) + (-12 (-4 *3 (-13 (-312) (-319) (-553 (-484)))) (-4 *4 (-1154 *3)) + (-4 *5 (-661 *3 *4)) (-5 *1 (-479 *3 *4 *5 *2)) (-4 *2 (-1171 *5)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-312) (-318) (-552 (-483)))) (-5 *1 (-479 *3 *2)) - (-4 *2 (-1170 *3)))) + (-12 (-4 *3 (-13 (-312) (-319) (-553 (-484)))) (-5 *1 (-480 *3 *2)) + (-4 *2 (-1171 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1067 *3)) (-4 *3 (-13 (-494) (-120))) (-5 *1 (-1066 *3))))) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-13 (-495) (-120))) (-5 *1 (-1067 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-494) (-120))) (-5 *1 (-474 *3 *2)) (-4 *2 (-1170 *3)))) + (-12 (-4 *3 (-13 (-495) (-120))) (-5 *1 (-475 *3 *2)) (-4 *2 (-1171 *3)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-312) (-318) (-552 (-483)))) (-4 *4 (-1153 *3)) - (-4 *5 (-660 *3 *4)) (-5 *1 (-478 *3 *4 *5 *2)) (-4 *2 (-1170 *5)))) + (-12 (-4 *3 (-13 (-312) (-319) (-553 (-484)))) (-4 *4 (-1154 *3)) + (-4 *5 (-661 *3 *4)) (-5 *1 (-479 *3 *4 *5 *2)) (-4 *2 (-1171 *5)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-312) (-318) (-552 (-483)))) (-5 *1 (-479 *3 *2)) - (-4 *2 (-1170 *3)))) + (-12 (-4 *3 (-13 (-312) (-319) (-553 (-484)))) (-5 *1 (-480 *3 *2)) + (-4 *2 (-1171 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1067 *3)) (-4 *3 (-13 (-494) (-120))) (-5 *1 (-1066 *3))))) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-13 (-495) (-120))) (-5 *1 (-1067 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-494) (-120))) (-5 *1 (-474 *3 *2)) (-4 *2 (-1170 *3)))) + (-12 (-4 *3 (-13 (-495) (-120))) (-5 *1 (-475 *3 *2)) (-4 *2 (-1171 *3)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-312) (-318) (-552 (-483)))) (-4 *4 (-1153 *3)) - (-4 *5 (-660 *3 *4)) (-5 *1 (-478 *3 *4 *5 *2)) (-4 *2 (-1170 *5)))) + (-12 (-4 *3 (-13 (-312) (-319) (-553 (-484)))) (-4 *4 (-1154 *3)) + (-4 *5 (-661 *3 *4)) (-5 *1 (-479 *3 *4 *5 *2)) (-4 *2 (-1171 *5)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-312) (-318) (-552 (-483)))) (-5 *1 (-479 *3 *2)) - (-4 *2 (-1170 *3)))) + (-12 (-4 *3 (-13 (-312) (-319) (-553 (-484)))) (-5 *1 (-480 *3 *2)) + (-4 *2 (-1171 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1067 *3)) (-4 *3 (-13 (-494) (-120))) (-5 *1 (-1066 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-445)) (-5 *1 (-462)))) - ((*1 *2 *1) (-12 (-5 *2 (-445)) (-5 *1 (-1065))))) -(((*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-1065))))) -(((*1 *2 *1) (-12 (-5 *2 (-631 (-1047))) (-5 *1 (-1065))))) -(((*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-1065))))) + (-12 (-5 *2 (-1068 *3)) (-4 *3 (-13 (-495) (-120))) (-5 *1 (-1067 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-446)) (-5 *1 (-463)))) + ((*1 *2 *1) (-12 (-5 *2 (-446)) (-5 *1 (-1066))))) +(((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-1066))))) +(((*1 *2 *1) (-12 (-5 *2 (-632 (-1048))) (-5 *1 (-1066))))) +(((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-1066))))) (((*1 *1 *1) - (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-960)) (-4 *3 (-716)) (-4 *4 (-755)))) - ((*1 *1) (-4 *1 (-1064)))) -(((*1 *2 *1) (-12 (-5 *2 (-631 *1)) (-4 *1 (-1064))))) -(((*1 *2 *1) (-12 (-4 *1 (-1062 *3)) (-4 *3 (-1127)) (-5 *2 (-85))))) -(((*1 *2 *1) (-12 (-4 *1 (-1062 *3)) (-4 *3 (-1127)) (-5 *2 (-85))))) + (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)))) + ((*1 *1) (-4 *1 (-1065)))) +(((*1 *2 *1) (-12 (-5 *2 (-632 *1)) (-4 *1 (-1065))))) +(((*1 *2 *1) (-12 (-4 *1 (-1063 *3)) (-4 *3 (-1128)) (-5 *2 (-85))))) +(((*1 *2 *1) (-12 (-4 *1 (-1063 *3)) (-4 *3 (-1128)) (-5 *2 (-85))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-693)) (-4 *1 (-1062 *4)) (-4 *4 (-1127)) (-5 *2 (-85))))) -(((*1 *1 *2) (-12 (-5 *2 (-582 *3)) (-4 *3 (-1127)) (-5 *1 (-1060 *3))))) + (-12 (-5 *3 (-694)) (-4 *1 (-1063 *4)) (-4 *4 (-1128)) (-5 *2 (-85))))) +(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1128)) (-5 *1 (-1061 *3))))) (((*1 *2 *3 *1 *4 *4 *4 *4 *4) - (-12 (-5 *4 (-85)) (-4 *5 (-390)) (-4 *6 (-716)) (-4 *7 (-755)) - (-5 *2 (-582 (-939 *5 *6 *7 *3))) (-5 *1 (-939 *5 *6 *7 *3)) - (-4 *3 (-976 *5 *6 *7)))) + (-12 (-5 *4 (-85)) (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) + (-5 *2 (-583 (-940 *5 *6 *7 *3))) (-5 *1 (-940 *5 *6 *7 *3)) + (-4 *3 (-977 *5 *6 *7)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-582 *6)) (-4 *1 (-982 *3 *4 *5 *6)) (-4 *3 (-390)) - (-4 *4 (-716)) (-4 *5 (-755)) (-4 *6 (-976 *3 *4 *5)))) + (-12 (-5 *2 (-583 *6)) (-4 *1 (-983 *3 *4 *5 *6)) (-4 *3 (-391)) + (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)))) ((*1 *1 *2 *1) - (-12 (-4 *1 (-982 *3 *4 *5 *2)) (-4 *3 (-390)) (-4 *4 (-716)) (-4 *5 (-755)) - (-4 *2 (-976 *3 *4 *5)))) + (-12 (-4 *1 (-983 *3 *4 *5 *2)) (-4 *3 (-391)) (-4 *4 (-717)) (-4 *5 (-756)) + (-4 *2 (-977 *3 *4 *5)))) ((*1 *2 *3 *1 *4 *4 *4 *4 *4) - (-12 (-5 *4 (-85)) (-4 *5 (-390)) (-4 *6 (-716)) (-4 *7 (-755)) - (-5 *2 (-582 (-1058 *5 *6 *7 *3))) (-5 *1 (-1058 *5 *6 *7 *3)) - (-4 *3 (-976 *5 *6 *7))))) + (-12 (-5 *4 (-85)) (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) + (-5 *2 (-583 (-1059 *5 *6 *7 *3))) (-5 *1 (-1059 *5 *6 *7 *3)) + (-4 *3 (-977 *5 *6 *7))))) (((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-582 *8)) (-5 *4 (-85)) (-4 *8 (-976 *5 *6 *7)) (-4 *5 (-390)) - (-4 *6 (-716)) (-4 *7 (-755)) (-5 *2 (-582 (-939 *5 *6 *7 *8))) - (-5 *1 (-939 *5 *6 *7 *8)))) + (-12 (-5 *3 (-583 *8)) (-5 *4 (-85)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-391)) + (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-583 (-940 *5 *6 *7 *8))) + (-5 *1 (-940 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-582 *8)) (-5 *4 (-85)) (-4 *8 (-976 *5 *6 *7)) (-4 *5 (-390)) - (-4 *6 (-716)) (-4 *7 (-755)) (-5 *2 (-582 (-1058 *5 *6 *7 *8))) - (-5 *1 (-1058 *5 *6 *7 *8))))) + (-12 (-5 *3 (-583 *8)) (-5 *4 (-85)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-391)) + (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-583 (-1059 *5 *6 *7 *8))) + (-5 *1 (-1059 *5 *6 *7 *8))))) (((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-85)) (-4 *5 (-390)) (-4 *6 (-716)) (-4 *7 (-755)) - (-4 *8 (-976 *5 *6 *7)) - (-5 *2 (-2 (|:| |val| (-582 *8)) (|:| |towers| (-582 (-939 *5 *6 *7 *8))))) - (-5 *1 (-939 *5 *6 *7 *8)) (-5 *3 (-582 *8)))) + (-12 (-5 *4 (-85)) (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) + (-4 *8 (-977 *5 *6 *7)) + (-5 *2 (-2 (|:| |val| (-583 *8)) (|:| |towers| (-583 (-940 *5 *6 *7 *8))))) + (-5 *1 (-940 *5 *6 *7 *8)) (-5 *3 (-583 *8)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-85)) (-4 *5 (-390)) (-4 *6 (-716)) (-4 *7 (-755)) - (-4 *8 (-976 *5 *6 *7)) - (-5 *2 (-2 (|:| |val| (-582 *8)) (|:| |towers| (-582 (-1058 *5 *6 *7 *8))))) - (-5 *1 (-1058 *5 *6 *7 *8)) (-5 *3 (-582 *8))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-582 (-2 (|:| |val| (-582 *8)) (|:| -1598 *9)))) (-5 *4 (-693)) - (-4 *8 (-976 *5 *6 *7)) (-4 *9 (-982 *5 *6 *7 *8)) (-4 *5 (-390)) - (-4 *6 (-716)) (-4 *7 (-755)) (-5 *2 (-1183)) - (-5 *1 (-980 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-582 (-2 (|:| |val| (-582 *8)) (|:| -1598 *9)))) (-5 *4 (-693)) - (-4 *8 (-976 *5 *6 *7)) (-4 *9 (-1019 *5 *6 *7 *8)) (-4 *5 (-390)) - (-4 *6 (-716)) (-4 *7 (-755)) (-5 *2 (-1183)) - (-5 *1 (-1057 *5 *6 *7 *8 *9))))) + (-12 (-5 *4 (-85)) (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) + (-4 *8 (-977 *5 *6 *7)) + (-5 *2 (-2 (|:| |val| (-583 *8)) (|:| |towers| (-583 (-1059 *5 *6 *7 *8))))) + (-5 *1 (-1059 *5 *6 *7 *8)) (-5 *3 (-583 *8))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-583 (-2 (|:| |val| (-583 *8)) (|:| -1599 *9)))) (-5 *4 (-694)) + (-4 *8 (-977 *5 *6 *7)) (-4 *9 (-983 *5 *6 *7 *8)) (-4 *5 (-391)) + (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-1184)) + (-5 *1 (-981 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-583 (-2 (|:| |val| (-583 *8)) (|:| -1599 *9)))) (-5 *4 (-694)) + (-4 *8 (-977 *5 *6 *7)) (-4 *9 (-1020 *5 *6 *7 *8)) (-4 *5 (-391)) + (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-1184)) + (-5 *1 (-1058 *5 *6 *7 *8 *9))))) (((*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 - (-2 (|:| |done| (-582 *11)) - (|:| |todo| (-582 (-2 (|:| |val| *3) (|:| -1598 *11)))))) - (-5 *6 (-693)) (-5 *2 (-582 (-2 (|:| |val| (-582 *10)) (|:| -1598 *11)))) - (-5 *3 (-582 *10)) (-5 *4 (-582 *11)) (-4 *10 (-976 *7 *8 *9)) - (-4 *11 (-982 *7 *8 *9 *10)) (-4 *7 (-390)) (-4 *8 (-716)) (-4 *9 (-755)) - (-5 *1 (-980 *7 *8 *9 *10 *11)))) + (-2 (|:| |done| (-583 *11)) + (|:| |todo| (-583 (-2 (|:| |val| *3) (|:| -1599 *11)))))) + (-5 *6 (-694)) (-5 *2 (-583 (-2 (|:| |val| (-583 *10)) (|:| -1599 *11)))) + (-5 *3 (-583 *10)) (-5 *4 (-583 *11)) (-4 *10 (-977 *7 *8 *9)) + (-4 *11 (-983 *7 *8 *9 *10)) (-4 *7 (-391)) (-4 *8 (-717)) (-4 *9 (-756)) + (-5 *1 (-981 *7 *8 *9 *10 *11)))) ((*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 - (-2 (|:| |done| (-582 *11)) - (|:| |todo| (-582 (-2 (|:| |val| *3) (|:| -1598 *11)))))) - (-5 *6 (-693)) (-5 *2 (-582 (-2 (|:| |val| (-582 *10)) (|:| -1598 *11)))) - (-5 *3 (-582 *10)) (-5 *4 (-582 *11)) (-4 *10 (-976 *7 *8 *9)) - (-4 *11 (-1019 *7 *8 *9 *10)) (-4 *7 (-390)) (-4 *8 (-716)) (-4 *9 (-755)) - (-5 *1 (-1057 *7 *8 *9 *10 *11))))) + (-2 (|:| |done| (-583 *11)) + (|:| |todo| (-583 (-2 (|:| |val| *3) (|:| -1599 *11)))))) + (-5 *6 (-694)) (-5 *2 (-583 (-2 (|:| |val| (-583 *10)) (|:| -1599 *11)))) + (-5 *3 (-583 *10)) (-5 *4 (-583 *11)) (-4 *10 (-977 *7 *8 *9)) + (-4 *11 (-1020 *7 *8 *9 *10)) (-4 *7 (-391)) (-4 *8 (-717)) (-4 *9 (-756)) + (-5 *1 (-1058 *7 *8 *9 *10 *11))))) (((*1 *2 *1) - (-12 (-4 *1 (-286 *3 *4 *5 *6)) (-4 *3 (-312)) (-4 *4 (-1153 *3)) - (-4 *5 (-1153 (-348 *4))) (-4 *6 (-291 *3 *4 *5)) + (-12 (-4 *1 (-286 *3 *4 *5 *6)) (-4 *3 (-312)) (-4 *4 (-1154 *3)) + (-4 *5 (-1154 (-349 *4))) (-4 *6 (-291 *3 *4 *5)) (-5 *2 - (-2 (|:| -2335 (-354 *4 (-348 *4) *5 *6)) (|:| |principalPart| *6))))) + (-2 (|:| -2336 (-355 *4 (-349 *4) *5 *6)) (|:| |principalPart| *6))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1153 *5)) (-4 *5 (-312)) - (-5 *2 (-2 (|:| |poly| *6) (|:| -3088 (-348 *6)) (|:| |special| (-348 *6)))) - (-5 *1 (-665 *5 *6)) (-5 *3 (-348 *6)))) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1154 *5)) (-4 *5 (-312)) + (-5 *2 (-2 (|:| |poly| *6) (|:| -3089 (-349 *6)) (|:| |special| (-349 *6)))) + (-5 *1 (-666 *5 *6)) (-5 *3 (-349 *6)))) ((*1 *2 *3) - (-12 (-4 *4 (-312)) (-5 *2 (-582 *3)) (-5 *1 (-806 *3 *4)) - (-4 *3 (-1153 *4)))) + (-12 (-4 *4 (-312)) (-5 *2 (-583 *3)) (-5 *1 (-807 *3 *4)) + (-4 *3 (-1154 *4)))) ((*1 *2 *3 *4 *4) - (|partial| -12 (-5 *4 (-693)) (-4 *5 (-312)) - (-5 *2 (-2 (|:| -3137 *3) (|:| -3136 *3))) (-5 *1 (-806 *3 *5)) - (-4 *3 (-1153 *5)))) + (|partial| -12 (-5 *4 (-694)) (-4 *5 (-312)) + (-5 *2 (-2 (|:| -3138 *3) (|:| -3137 *3))) (-5 *1 (-807 *3 *5)) + (-4 *3 (-1154 *5)))) ((*1 *2 *3 *2 *4 *4) - (-12 (-5 *2 (-582 *9)) (-5 *3 (-582 *8)) (-5 *4 (-85)) - (-4 *8 (-976 *5 *6 *7)) (-4 *9 (-982 *5 *6 *7 *8)) (-4 *5 (-390)) - (-4 *6 (-716)) (-4 *7 (-755)) (-5 *1 (-980 *5 *6 *7 *8 *9)))) + (-12 (-5 *2 (-583 *9)) (-5 *3 (-583 *8)) (-5 *4 (-85)) + (-4 *8 (-977 *5 *6 *7)) (-4 *9 (-983 *5 *6 *7 *8)) (-4 *5 (-391)) + (-4 *6 (-717)) (-4 *7 (-756)) (-5 *1 (-981 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *2 *4 *4 *4 *4 *4) - (-12 (-5 *2 (-582 *9)) (-5 *3 (-582 *8)) (-5 *4 (-85)) - (-4 *8 (-976 *5 *6 *7)) (-4 *9 (-982 *5 *6 *7 *8)) (-4 *5 (-390)) - (-4 *6 (-716)) (-4 *7 (-755)) (-5 *1 (-980 *5 *6 *7 *8 *9)))) + (-12 (-5 *2 (-583 *9)) (-5 *3 (-583 *8)) (-5 *4 (-85)) + (-4 *8 (-977 *5 *6 *7)) (-4 *9 (-983 *5 *6 *7 *8)) (-4 *5 (-391)) + (-4 *6 (-717)) (-4 *7 (-756)) (-5 *1 (-981 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *2 *4 *4) - (-12 (-5 *2 (-582 *9)) (-5 *3 (-582 *8)) (-5 *4 (-85)) - (-4 *8 (-976 *5 *6 *7)) (-4 *9 (-1019 *5 *6 *7 *8)) (-4 *5 (-390)) - (-4 *6 (-716)) (-4 *7 (-755)) (-5 *1 (-1057 *5 *6 *7 *8 *9)))) + (-12 (-5 *2 (-583 *9)) (-5 *3 (-583 *8)) (-5 *4 (-85)) + (-4 *8 (-977 *5 *6 *7)) (-4 *9 (-1020 *5 *6 *7 *8)) (-4 *5 (-391)) + (-4 *6 (-717)) (-4 *7 (-756)) (-5 *1 (-1058 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *2 *4 *4 *4 *4 *4) - (-12 (-5 *2 (-582 *9)) (-5 *3 (-582 *8)) (-5 *4 (-85)) - (-4 *8 (-976 *5 *6 *7)) (-4 *9 (-1019 *5 *6 *7 *8)) (-4 *5 (-390)) - (-4 *6 (-716)) (-4 *7 (-755)) (-5 *1 (-1057 *5 *6 *7 *8 *9))))) + (-12 (-5 *2 (-583 *9)) (-5 *3 (-583 *8)) (-5 *4 (-85)) + (-4 *8 (-977 *5 *6 *7)) (-4 *9 (-1020 *5 *6 *7 *8)) (-4 *5 (-391)) + (-4 *6 (-717)) (-4 *7 (-756)) (-5 *1 (-1058 *5 *6 *7 *8 *9))))) (((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-693)) (-5 *6 (-85)) (-4 *7 (-390)) (-4 *8 (-716)) - (-4 *9 (-755)) (-4 *3 (-976 *7 *8 *9)) + (-12 (-5 *5 (-694)) (-5 *6 (-85)) (-4 *7 (-391)) (-4 *8 (-717)) + (-4 *9 (-756)) (-4 *3 (-977 *7 *8 *9)) (-5 *2 - (-2 (|:| |done| (-582 *4)) - (|:| |todo| (-582 (-2 (|:| |val| (-582 *3)) (|:| -1598 *4)))))) - (-5 *1 (-980 *7 *8 *9 *3 *4)) (-4 *4 (-982 *7 *8 *9 *3)))) + (-2 (|:| |done| (-583 *4)) + (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1599 *4)))))) + (-5 *1 (-981 *7 *8 *9 *3 *4)) (-4 *4 (-983 *7 *8 *9 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-693)) (-4 *6 (-390)) (-4 *7 (-716)) (-4 *8 (-755)) - (-4 *3 (-976 *6 *7 *8)) + (-12 (-5 *5 (-694)) (-4 *6 (-391)) (-4 *7 (-717)) (-4 *8 (-756)) + (-4 *3 (-977 *6 *7 *8)) (-5 *2 - (-2 (|:| |done| (-582 *4)) - (|:| |todo| (-582 (-2 (|:| |val| (-582 *3)) (|:| -1598 *4)))))) - (-5 *1 (-980 *6 *7 *8 *3 *4)) (-4 *4 (-982 *6 *7 *8 *3)))) + (-2 (|:| |done| (-583 *4)) + (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1599 *4)))))) + (-5 *1 (-981 *6 *7 *8 *3 *4)) (-4 *4 (-983 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-390)) (-4 *6 (-716)) (-4 *7 (-755)) (-4 *3 (-976 *5 *6 *7)) + (-12 (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 - (-2 (|:| |done| (-582 *4)) - (|:| |todo| (-582 (-2 (|:| |val| (-582 *3)) (|:| -1598 *4)))))) - (-5 *1 (-980 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))) + (-2 (|:| |done| (-583 *4)) + (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1599 *4)))))) + (-5 *1 (-981 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-693)) (-5 *6 (-85)) (-4 *7 (-390)) (-4 *8 (-716)) - (-4 *9 (-755)) (-4 *3 (-976 *7 *8 *9)) + (-12 (-5 *5 (-694)) (-5 *6 (-85)) (-4 *7 (-391)) (-4 *8 (-717)) + (-4 *9 (-756)) (-4 *3 (-977 *7 *8 *9)) (-5 *2 - (-2 (|:| |done| (-582 *4)) - (|:| |todo| (-582 (-2 (|:| |val| (-582 *3)) (|:| -1598 *4)))))) - (-5 *1 (-1057 *7 *8 *9 *3 *4)) (-4 *4 (-1019 *7 *8 *9 *3)))) + (-2 (|:| |done| (-583 *4)) + (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1599 *4)))))) + (-5 *1 (-1058 *7 *8 *9 *3 *4)) (-4 *4 (-1020 *7 *8 *9 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-693)) (-4 *6 (-390)) (-4 *7 (-716)) (-4 *8 (-755)) - (-4 *3 (-976 *6 *7 *8)) + (-12 (-5 *5 (-694)) (-4 *6 (-391)) (-4 *7 (-717)) (-4 *8 (-756)) + (-4 *3 (-977 *6 *7 *8)) (-5 *2 - (-2 (|:| |done| (-582 *4)) - (|:| |todo| (-582 (-2 (|:| |val| (-582 *3)) (|:| -1598 *4)))))) - (-5 *1 (-1057 *6 *7 *8 *3 *4)) (-4 *4 (-1019 *6 *7 *8 *3)))) + (-2 (|:| |done| (-583 *4)) + (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1599 *4)))))) + (-5 *1 (-1058 *6 *7 *8 *3 *4)) (-4 *4 (-1020 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-390)) (-4 *6 (-716)) (-4 *7 (-755)) (-4 *3 (-976 *5 *6 *7)) + (-12 (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 - (-2 (|:| |done| (-582 *4)) - (|:| |todo| (-582 (-2 (|:| |val| (-582 *3)) (|:| -1598 *4)))))) - (-5 *1 (-1057 *5 *6 *7 *3 *4)) (-4 *4 (-1019 *5 *6 *7 *3))))) + (-2 (|:| |done| (-583 *4)) + (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1599 *4)))))) + (-5 *1 (-1058 *5 *6 *7 *3 *4)) (-4 *4 (-1020 *5 *6 *7 *3))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-693)) (-4 *6 (-390)) (-4 *7 (-716)) (-4 *8 (-755)) - (-4 *3 (-976 *6 *7 *8)) + (-12 (-5 *5 (-694)) (-4 *6 (-391)) (-4 *7 (-717)) (-4 *8 (-756)) + (-4 *3 (-977 *6 *7 *8)) (-5 *2 - (-2 (|:| |done| (-582 *4)) - (|:| |todo| (-582 (-2 (|:| |val| (-582 *3)) (|:| -1598 *4)))))) - (-5 *1 (-980 *6 *7 *8 *3 *4)) (-4 *4 (-982 *6 *7 *8 *3)))) + (-2 (|:| |done| (-583 *4)) + (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1599 *4)))))) + (-5 *1 (-981 *6 *7 *8 *3 *4)) (-4 *4 (-983 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-390)) (-4 *6 (-716)) (-4 *7 (-755)) (-4 *3 (-976 *5 *6 *7)) + (-12 (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 - (-2 (|:| |done| (-582 *4)) - (|:| |todo| (-582 (-2 (|:| |val| (-582 *3)) (|:| -1598 *4)))))) - (-5 *1 (-980 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))) + (-2 (|:| |done| (-583 *4)) + (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1599 *4)))))) + (-5 *1 (-981 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-693)) (-4 *6 (-390)) (-4 *7 (-716)) (-4 *8 (-755)) - (-4 *3 (-976 *6 *7 *8)) + (-12 (-5 *5 (-694)) (-4 *6 (-391)) (-4 *7 (-717)) (-4 *8 (-756)) + (-4 *3 (-977 *6 *7 *8)) (-5 *2 - (-2 (|:| |done| (-582 *4)) - (|:| |todo| (-582 (-2 (|:| |val| (-582 *3)) (|:| -1598 *4)))))) - (-5 *1 (-1057 *6 *7 *8 *3 *4)) (-4 *4 (-1019 *6 *7 *8 *3)))) + (-2 (|:| |done| (-583 *4)) + (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1599 *4)))))) + (-5 *1 (-1058 *6 *7 *8 *3 *4)) (-4 *4 (-1020 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-390)) (-4 *6 (-716)) (-4 *7 (-755)) (-4 *3 (-976 *5 *6 *7)) + (-12 (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 - (-2 (|:| |done| (-582 *4)) - (|:| |todo| (-582 (-2 (|:| |val| (-582 *3)) (|:| -1598 *4)))))) - (-5 *1 (-1057 *5 *6 *7 *3 *4)) (-4 *4 (-1019 *5 *6 *7 *3))))) + (-2 (|:| |done| (-583 *4)) + (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1599 *4)))))) + (-5 *1 (-1058 *5 *6 *7 *3 *4)) (-4 *4 (-1020 *5 *6 *7 *3))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-85)) (-4 *6 (-390)) (-4 *7 (-716)) (-4 *8 (-755)) - (-4 *3 (-976 *6 *7 *8)) + (-12 (-5 *5 (-85)) (-4 *6 (-391)) (-4 *7 (-717)) (-4 *8 (-756)) + (-4 *3 (-977 *6 *7 *8)) (-5 *2 - (-2 (|:| |done| (-582 *4)) - (|:| |todo| (-582 (-2 (|:| |val| (-582 *3)) (|:| -1598 *4)))))) - (-5 *1 (-980 *6 *7 *8 *3 *4)) (-4 *4 (-982 *6 *7 *8 *3)))) + (-2 (|:| |done| (-583 *4)) + (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1599 *4)))))) + (-5 *1 (-981 *6 *7 *8 *3 *4)) (-4 *4 (-983 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-390)) (-4 *6 (-716)) (-4 *7 (-755)) (-4 *3 (-976 *5 *6 *7)) + (-12 (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 - (-2 (|:| |done| (-582 *4)) - (|:| |todo| (-582 (-2 (|:| |val| (-582 *3)) (|:| -1598 *4)))))) - (-5 *1 (-1057 *5 *6 *7 *3 *4)) (-4 *4 (-1019 *5 *6 *7 *3))))) + (-2 (|:| |done| (-583 *4)) + (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1599 *4)))))) + (-5 *1 (-1058 *5 *6 *7 *3 *4)) (-4 *4 (-1020 *5 *6 *7 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-582 *8)) (-5 *4 (-582 *9)) (-4 *8 (-976 *5 *6 *7)) - (-4 *9 (-982 *5 *6 *7 *8)) (-4 *5 (-390)) (-4 *6 (-716)) (-4 *7 (-755)) - (-5 *2 (-693)) (-5 *1 (-980 *5 *6 *7 *8 *9)))) + (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *9)) (-4 *8 (-977 *5 *6 *7)) + (-4 *9 (-983 *5 *6 *7 *8)) (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) + (-5 *2 (-694)) (-5 *1 (-981 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-582 *8)) (-5 *4 (-582 *9)) (-4 *8 (-976 *5 *6 *7)) - (-4 *9 (-1019 *5 *6 *7 *8)) (-4 *5 (-390)) (-4 *6 (-716)) (-4 *7 (-755)) - (-5 *2 (-693)) (-5 *1 (-1057 *5 *6 *7 *8 *9))))) + (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *9)) (-4 *8 (-977 *5 *6 *7)) + (-4 *9 (-1020 *5 *6 *7 *8)) (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) + (-5 *2 (-694)) (-5 *1 (-1058 *5 *6 *7 *8 *9))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-582 *8)) (-5 *4 (-582 *9)) (-4 *8 (-976 *5 *6 *7)) - (-4 *9 (-982 *5 *6 *7 *8)) (-4 *5 (-390)) (-4 *6 (-716)) (-4 *7 (-755)) - (-5 *2 (-693)) (-5 *1 (-980 *5 *6 *7 *8 *9)))) + (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *9)) (-4 *8 (-977 *5 *6 *7)) + (-4 *9 (-983 *5 *6 *7 *8)) (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) + (-5 *2 (-694)) (-5 *1 (-981 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-582 *8)) (-5 *4 (-582 *9)) (-4 *8 (-976 *5 *6 *7)) - (-4 *9 (-1019 *5 *6 *7 *8)) (-4 *5 (-390)) (-4 *6 (-716)) (-4 *7 (-755)) - (-5 *2 (-693)) (-5 *1 (-1057 *5 *6 *7 *8 *9))))) + (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *9)) (-4 *8 (-977 *5 *6 *7)) + (-4 *9 (-1020 *5 *6 *7 *8)) (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) + (-5 *2 (-694)) (-5 *1 (-1058 *5 *6 *7 *8 *9))))) (((*1 *1) (-5 *1 (-114))) ((*1 *1 *1) (-5 *1 (-117))) - ((*1 *1 *1) (-4 *1 (-1056)))) -(((*1 *1 *1) (-4 *1 (-1056)))) + ((*1 *1 *1) (-4 *1 (-1057)))) +(((*1 *1 *1) (-4 *1 (-1057)))) (((*1 *1) (-5 *1 (-114))) ((*1 *1 *1) (-5 *1 (-117))) - ((*1 *1 *1) (-4 *1 (-1056)))) -(((*1 *1 *1) (-4 *1 (-1056)))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1056)) (-5 *2 (-85))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1056)) (-5 *2 (-85))))) -(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1056)) (-5 *3 (-483)) (-5 *2 (-85))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-582 *5)) (-5 *4 (-582 *6)) (-4 *5 (-1012)) (-4 *6 (-1127)) - (-5 *2 (-1 *6 *5)) (-5 *1 (-584 *5 *6)))) + ((*1 *1 *1) (-4 *1 (-1057)))) +(((*1 *1 *1) (-4 *1 (-1057)))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1057)) (-5 *2 (-85))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1057)) (-5 *2 (-85))))) +(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1057)) (-5 *3 (-484)) (-5 *2 (-85))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 *6)) (-4 *5 (-1013)) (-4 *6 (-1128)) + (-5 *2 (-1 *6 *5)) (-5 *1 (-585 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-582 *5)) (-5 *4 (-582 *2)) (-4 *5 (-1012)) (-4 *2 (-1127)) - (-5 *1 (-584 *5 *2)))) + (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 *2)) (-4 *5 (-1013)) (-4 *2 (-1128)) + (-5 *1 (-585 *5 *2)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-582 *6)) (-5 *4 (-582 *5)) (-4 *6 (-1012)) (-4 *5 (-1127)) - (-5 *2 (-1 *5 *6)) (-5 *1 (-584 *6 *5)))) + (-12 (-5 *3 (-583 *6)) (-5 *4 (-583 *5)) (-4 *6 (-1013)) (-4 *5 (-1128)) + (-5 *2 (-1 *5 *6)) (-5 *1 (-585 *6 *5)))) ((*1 *2 *3 *4 *5 *2) - (-12 (-5 *3 (-582 *5)) (-5 *4 (-582 *2)) (-4 *5 (-1012)) (-4 *2 (-1127)) - (-5 *1 (-584 *5 *2)))) + (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 *2)) (-4 *5 (-1013)) (-4 *2 (-1128)) + (-5 *1 (-585 *5 *2)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-582 *5)) (-5 *4 (-582 *6)) (-4 *5 (-1012)) - (-4 *6 (-1127)) (-5 *1 (-584 *5 *6)))) + (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-583 *5)) (-5 *4 (-583 *6)) (-4 *5 (-1013)) + (-4 *6 (-1128)) (-5 *1 (-585 *5 *6)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-582 *5)) (-5 *4 (-582 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1012)) - (-4 *2 (-1127)) (-5 *1 (-584 *5 *2)))) - ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1056)) (-5 *3 (-117)) (-5 *2 (-693))))) -(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1056)) (-5 *3 (-117)) (-5 *2 (-85))))) -(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1056)) (-5 *2 (-1144 (-483)))))) -(((*1 *2 *1) (-12 (-4 *1 (-105)) (-5 *2 (-693)))) + (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1013)) + (-4 *2 (-1128)) (-5 *1 (-585 *5 *2)))) + ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1057)) (-5 *3 (-117)) (-5 *2 (-694))))) +(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1057)) (-5 *3 (-117)) (-5 *2 (-85))))) +(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1057)) (-5 *2 (-1145 (-484)))))) +(((*1 *2 *1) (-12 (-4 *1 (-105)) (-5 *2 (-694)))) ((*1 *2 *3 *1 *2) - (-12 (-5 *2 (-483)) (-4 *1 (-322 *3)) (-4 *3 (-1127)) (-4 *3 (-1012)))) + (-12 (-5 *2 (-484)) (-4 *1 (-323 *3)) (-4 *3 (-1128)) (-4 *3 (-1013)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-322 *3)) (-4 *3 (-1127)) (-4 *3 (-1012)) (-5 *2 (-483)))) + (-12 (-4 *1 (-323 *3)) (-4 *3 (-1128)) (-4 *3 (-1013)) (-5 *2 (-484)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-85) *4)) (-4 *1 (-322 *4)) (-4 *4 (-1127)) (-5 *2 (-483)))) - ((*1 *2 *1) (-12 (-5 *2 (-1032)) (-5 *1 (-466)))) - ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1056)) (-5 *2 (-483)) (-5 *3 (-114)))) - ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1056)) (-5 *2 (-483))))) -(((*1 *2 *3) (-12 (-5 *2 (-346 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1153 (-48))))) + (-12 (-5 *3 (-1 (-85) *4)) (-4 *1 (-323 *4)) (-4 *4 (-1128)) (-5 *2 (-484)))) + ((*1 *2 *1) (-12 (-5 *2 (-1033)) (-5 *1 (-467)))) + ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1057)) (-5 *2 (-484)) (-5 *3 (-114)))) + ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1057)) (-5 *2 (-484))))) +(((*1 *2 *3) (-12 (-5 *2 (-347 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1154 (-48))))) ((*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-94 *3)) (|:| |greater| (-94 *3)))) - (-5 *1 (-94 *3)) (-4 *3 (-755)))) - ((*1 *2 *2) - (-12 (-5 *2 (-518 *4)) (-4 *4 (-13 (-29 *3) (-1113))) - (-4 *3 (-13 (-390) (-949 (-483)) (-579 (-483)))) (-5 *1 (-520 *3 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-518 (-348 (-856 *3)))) - (-4 *3 (-13 (-390) (-949 (-483)) (-579 (-483)))) (-5 *1 (-524 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1153 *5)) (-4 *5 (-312)) - (-5 *2 (-2 (|:| -3088 *3) (|:| |special| *3))) (-5 *1 (-665 *5 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1177 *5)) (-4 *5 (-312)) (-4 *5 (-960)) - (-5 *2 (-582 (-582 (-629 *5)))) (-5 *1 (-942 *5)) (-5 *3 (-582 (-629 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1177 (-1177 *5))) (-4 *5 (-312)) (-4 *5 (-960)) - (-5 *2 (-582 (-582 (-629 *5)))) (-5 *1 (-942 *5)) (-5 *3 (-582 (-629 *5))))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-114)) (-5 *2 (-582 *1)) (-4 *1 (-1056)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-117)) (-5 *2 (-582 *1)) (-4 *1 (-1056))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1056)) (-5 *2 (-114)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1056)) (-5 *2 (-117))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1056)) (-5 *2 (-114)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1056)) (-5 *2 (-117))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1056)) (-5 *2 (-114)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1056)) (-5 *2 (-117))))) + (-5 *1 (-94 *3)) (-4 *3 (-756)))) + ((*1 *2 *2) + (-12 (-5 *2 (-519 *4)) (-4 *4 (-13 (-29 *3) (-1114))) + (-4 *3 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *1 (-521 *3 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-519 (-349 (-857 *3)))) + (-4 *3 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *1 (-525 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1154 *5)) (-4 *5 (-312)) + (-5 *2 (-2 (|:| -3089 *3) (|:| |special| *3))) (-5 *1 (-666 *5 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1178 *5)) (-4 *5 (-312)) (-4 *5 (-961)) + (-5 *2 (-583 (-583 (-630 *5)))) (-5 *1 (-943 *5)) (-5 *3 (-583 (-630 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1178 (-1178 *5))) (-4 *5 (-312)) (-4 *5 (-961)) + (-5 *2 (-583 (-583 (-630 *5)))) (-5 *1 (-943 *5)) (-5 *3 (-583 (-630 *5))))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-114)) (-5 *2 (-583 *1)) (-4 *1 (-1057)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-117)) (-5 *2 (-583 *1)) (-4 *1 (-1057))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1057)) (-5 *2 (-114)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1057)) (-5 *2 (-117))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1057)) (-5 *2 (-114)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1057)) (-5 *2 (-117))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1057)) (-5 *2 (-114)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1057)) (-5 *2 (-117))))) (((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-483)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-693)) + (-12 (-5 *2 (-484)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-694)) (-4 *5 (-146)))) ((*1 *1 *1) - (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-483)) (-14 *3 (-693)) (-4 *4 (-146)))) + (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-484)) (-14 *3 (-694)) (-4 *4 (-146)))) ((*1 *1 *1) - (-12 (-4 *1 (-626 *2 *3 *4)) (-4 *2 (-960)) (-4 *3 (-322 *2)) - (-4 *4 (-322 *2)))) + (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-323 *2)) + (-4 *4 (-323 *2)))) ((*1 *1 *2) - (-12 (-4 *3 (-960)) (-4 *1 (-626 *3 *2 *4)) (-4 *2 (-322 *3)) - (-4 *4 (-322 *3)))) - ((*1 *1 *1) (-12 (-5 *1 (-1054 *2 *3)) (-14 *2 (-693)) (-4 *3 (-960))))) + (-12 (-4 *3 (-961)) (-4 *1 (-627 *3 *2 *4)) (-4 *2 (-323 *3)) + (-4 *4 (-323 *3)))) + ((*1 *1 *1) (-12 (-5 *1 (-1055 *2 *3)) (-14 *2 (-694)) (-4 *3 (-961))))) (((*1 *1 *2) - (-12 (-5 *2 (-629 *4)) (-4 *4 (-960)) (-5 *1 (-1054 *3 *4)) (-14 *3 (-693))))) + (-12 (-5 *2 (-630 *4)) (-4 *4 (-961)) (-5 *1 (-1055 *3 *4)) (-14 *3 (-694))))) (((*1 *1 *1) - (|partial| -12 (-5 *1 (-1053 *2 *3)) (-4 *2 (-13 (-1012) (-34))) - (-4 *3 (-13 (-1012) (-34)))))) + (|partial| -12 (-5 *1 (-1054 *2 *3)) (-4 *2 (-13 (-1013) (-34))) + (-4 *3 (-13 (-1013) (-34)))))) (((*1 *1 *1) - (-12 (-5 *1 (-1053 *2 *3)) (-4 *2 (-13 (-1012) (-34))) - (-4 *3 (-13 (-1012) (-34)))))) + (-12 (-5 *1 (-1054 *2 *3)) (-4 *2 (-13 (-1013) (-34))) + (-4 *3 (-13 (-1013) (-34)))))) (((*1 *2 *1) - (-12 (-5 *2 (-582 *4)) (-5 *1 (-1053 *3 *4)) (-4 *3 (-13 (-1012) (-34))) - (-4 *4 (-13 (-1012) (-34)))))) + (-12 (-5 *2 (-583 *4)) (-5 *1 (-1054 *3 *4)) (-4 *3 (-13 (-1013) (-34))) + (-4 *4 (-13 (-1013) (-34)))))) (((*1 *2 *1) - (-12 (-5 *2 (-582 (-2 (|:| |val| *3) (|:| -1598 *4)))) (-5 *1 (-1053 *3 *4)) - (-4 *3 (-13 (-1012) (-34))) (-4 *4 (-13 (-1012) (-34)))))) + (-12 (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1599 *4)))) (-5 *1 (-1054 *3 *4)) + (-4 *3 (-13 (-1013) (-34))) (-4 *4 (-13 (-1013) (-34)))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-1052 *4 *5)) (-4 *4 (-13 (-1012) (-34))) - (-4 *5 (-13 (-1012) (-34))) (-5 *2 (-85)) (-5 *1 (-1053 *4 *5))))) + (-12 (-5 *3 (-1053 *4 *5)) (-4 *4 (-13 (-1013) (-34))) + (-4 *5 (-13 (-1013) (-34))) (-5 *2 (-85)) (-5 *1 (-1054 *4 *5))))) (((*1 *2 *3 *1 *4) - (-12 (-5 *3 (-1052 *5 *6)) (-5 *4 (-1 (-85) *6 *6)) - (-4 *5 (-13 (-1012) (-34))) (-4 *6 (-13 (-1012) (-34))) (-5 *2 (-85)) - (-5 *1 (-1053 *5 *6))))) + (-12 (-5 *3 (-1053 *5 *6)) (-5 *4 (-1 (-85) *6 *6)) + (-4 *5 (-13 (-1013) (-34))) (-4 *6 (-13 (-1013) (-34))) (-5 *2 (-85)) + (-5 *1 (-1054 *5 *6))))) (((*1 *1 *2 *1) - (-12 (|has| *1 (-6 -3993)) (-4 *1 (-124 *2)) (-4 *2 (-1127)) - (-4 *2 (-1012)))) + (-12 (|has| *1 (-6 -3994)) (-4 *1 (-124 *2)) (-4 *2 (-1128)) + (-4 *2 (-1013)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-85) *3)) (|has| *1 (-6 -3993)) (-4 *1 (-124 *3)) - (-4 *3 (-1127)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-615 *3)) (-4 *3 (-1127)))) + (-12 (-5 *2 (-1 (-85) *3)) (|has| *1 (-6 -3994)) (-4 *1 (-124 *3)) + (-4 *3 (-1128)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-616 *3)) (-4 *3 (-1128)))) ((*1 *1 *2 *1 *3) - (-12 (-5 *2 (-1 (-85) *4)) (-5 *3 (-483)) (-4 *4 (-1012)) (-5 *1 (-674 *4)))) - ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-483)) (-5 *1 (-674 *2)) (-4 *2 (-1012)))) + (-12 (-5 *2 (-1 (-85) *4)) (-5 *3 (-484)) (-4 *4 (-1013)) (-5 *1 (-675 *4)))) + ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-484)) (-5 *1 (-675 *2)) (-4 *2 (-1013)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1052 *3 *4)) (-4 *3 (-13 (-1012) (-34))) - (-4 *4 (-13 (-1012) (-34))) (-5 *1 (-1053 *3 *4))))) + (-12 (-5 *2 (-1053 *3 *4)) (-4 *3 (-13 (-1013) (-34))) + (-4 *4 (-13 (-1013) (-34))) (-5 *1 (-1054 *3 *4))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-85) *3)) (|has| *1 (-6 -3993)) (-4 *1 (-193 *3)) - (-4 *3 (-1012)))) - ((*1 *1 *2 *1) (-12 (|has| *1 (-6 -3993)) (-4 *1 (-193 *2)) (-4 *2 (-1012)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1127)) (-4 *2 (-1012)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-237 *3)) (-4 *3 (-1127)))) + (-12 (-5 *2 (-1 (-85) *3)) (|has| *1 (-6 -3994)) (-4 *1 (-193 *3)) + (-4 *3 (-1013)))) + ((*1 *1 *2 *1) (-12 (|has| *1 (-6 -3994)) (-4 *1 (-193 *2)) (-4 *2 (-1013)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1128)) (-4 *2 (-1013)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-237 *3)) (-4 *3 (-1128)))) ((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-548 *3 *2)) (-4 *3 (-1012)) (-4 *2 (-1012)))) + (|partial| -12 (-4 *1 (-549 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1013)))) ((*1 *1 *2 *1 *3) - (-12 (-5 *2 (-1 (-85) *4)) (-5 *3 (-483)) (-4 *4 (-1012)) (-5 *1 (-674 *4)))) - ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-483)) (-5 *1 (-674 *2)) (-4 *2 (-1012)))) + (-12 (-5 *2 (-1 (-85) *4)) (-5 *3 (-484)) (-4 *4 (-1013)) (-5 *1 (-675 *4)))) + ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-484)) (-5 *1 (-675 *2)) (-4 *2 (-1013)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1052 *3 *4)) (-4 *3 (-13 (-1012) (-34))) - (-4 *4 (-13 (-1012) (-34))) (-5 *1 (-1053 *3 *4))))) + (-12 (-5 *2 (-1053 *3 *4)) (-4 *3 (-13 (-1013) (-34))) + (-4 *4 (-13 (-1013) (-34))) (-5 *1 (-1054 *3 *4))))) (((*1 *1 *1 *1 *2 *3) - (-12 (-5 *2 (-582 (-1052 *4 *5))) (-5 *3 (-1 (-85) *5 *5)) - (-4 *4 (-13 (-1012) (-34))) (-4 *5 (-13 (-1012) (-34))) - (-5 *1 (-1053 *4 *5)))) + (-12 (-5 *2 (-583 (-1053 *4 *5))) (-5 *3 (-1 (-85) *5 *5)) + (-4 *4 (-13 (-1013) (-34))) (-4 *5 (-13 (-1013) (-34))) + (-5 *1 (-1054 *4 *5)))) ((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-582 (-1052 *3 *4))) (-4 *3 (-13 (-1012) (-34))) - (-4 *4 (-13 (-1012) (-34))) (-5 *1 (-1053 *3 *4))))) + (-12 (-5 *2 (-583 (-1053 *3 *4))) (-4 *3 (-13 (-1013) (-34))) + (-4 *4 (-13 (-1013) (-34))) (-5 *1 (-1054 *3 *4))))) (((*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-85)))) ((*1 *2 *1) - (-12 (-4 *3 (-390)) (-4 *4 (-755)) (-4 *5 (-716)) (-5 *2 (-85)) - (-5 *1 (-898 *3 *4 *5 *6)) (-4 *6 (-860 *3 *5 *4)))) + (-12 (-4 *3 (-391)) (-4 *4 (-756)) (-4 *5 (-717)) (-5 *2 (-85)) + (-5 *1 (-899 *3 *4 *5 *6)) (-4 *6 (-861 *3 *5 *4)))) ((*1 *2 *1) - (-12 (-5 *2 (-85)) (-5 *1 (-1052 *3 *4)) (-4 *3 (-13 (-1012) (-34))) - (-4 *4 (-13 (-1012) (-34)))))) -(((*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-766)))) - ((*1 *2 *1) (-12 (-5 *2 (-1014)) (-5 *1 (-875)))) - ((*1 *2 *1) (-12 (-5 *2 (-1071)) (-5 *1 (-901)))) - ((*1 *2 *1) (-12 (-4 *1 (-922 *2)) (-4 *2 (-1127)))) + (-12 (-5 *2 (-85)) (-5 *1 (-1053 *3 *4)) (-4 *3 (-13 (-1013) (-34))) + (-4 *4 (-13 (-1013) (-34)))))) +(((*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-767)))) + ((*1 *2 *1) (-12 (-5 *2 (-1015)) (-5 *1 (-876)))) + ((*1 *2 *1) (-12 (-5 *2 (-1072)) (-5 *1 (-902)))) + ((*1 *2 *1) (-12 (-4 *1 (-923 *2)) (-4 *2 (-1128)))) ((*1 *2 *1) - (-12 (-4 *2 (-13 (-1012) (-34))) (-5 *1 (-1052 *2 *3)) - (-4 *3 (-13 (-1012) (-34)))))) + (-12 (-4 *2 (-13 (-1013) (-34))) (-5 *1 (-1053 *2 *3)) + (-4 *3 (-13 (-1013) (-34)))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-390)) (-4 *4 (-755)) (-4 *5 (-716)) (-5 *2 (-85)) - (-5 *1 (-898 *3 *4 *5 *6)) (-4 *6 (-860 *3 *5 *4)))) + (|partial| -12 (-4 *3 (-391)) (-4 *4 (-756)) (-4 *5 (-717)) (-5 *2 (-85)) + (-5 *1 (-899 *3 *4 *5 *6)) (-4 *6 (-861 *3 *5 *4)))) ((*1 *2 *1) - (-12 (-5 *2 (-85)) (-5 *1 (-1052 *3 *4)) (-4 *3 (-13 (-1012) (-34))) - (-4 *4 (-13 (-1012) (-34)))))) + (-12 (-5 *2 (-85)) (-5 *1 (-1053 *3 *4)) (-4 *3 (-13 (-1013) (-34))) + (-4 *4 (-13 (-1013) (-34)))))) (((*1 *1 *1) (-4 *1 (-34))) ((*1 *1 *1) (-5 *1 (-86))) - ((*1 *1 *1) (-5 *1 (-145))) ((*1 *1 *1) (-4 *1 (-482))) - ((*1 *1 *1) (-12 (-5 *1 (-799 *2)) (-4 *2 (-1012)))) - ((*1 *1 *1) (-12 (-4 *1 (-1046 *2)) (-4 *2 (-960)))) + ((*1 *1 *1) (-5 *1 (-145))) ((*1 *1 *1) (-4 *1 (-483))) + ((*1 *1 *1) (-12 (-5 *1 (-800 *2)) (-4 *2 (-1013)))) + ((*1 *1 *1) (-12 (-4 *1 (-1047 *2)) (-4 *2 (-961)))) ((*1 *1 *1) - (-12 (-5 *1 (-1052 *2 *3)) (-4 *2 (-13 (-1012) (-34))) - (-4 *3 (-13 (-1012) (-34)))))) + (-12 (-5 *1 (-1053 *2 *3)) (-4 *2 (-13 (-1013) (-34))) + (-4 *3 (-13 (-1013) (-34)))))) (((*1 *1 *1 *2) - (-12 (-5 *1 (-1052 *2 *3)) (-4 *2 (-13 (-1012) (-34))) - (-4 *3 (-13 (-1012) (-34)))))) + (-12 (-5 *1 (-1053 *2 *3)) (-4 *2 (-13 (-1013) (-34))) + (-4 *3 (-13 (-1013) (-34)))))) (((*1 *1 *1 *2) - (-12 (-5 *1 (-1052 *3 *2)) (-4 *3 (-13 (-1012) (-34))) - (-4 *2 (-13 (-1012) (-34)))))) + (-12 (-5 *1 (-1053 *3 *2)) (-4 *3 (-13 (-1013) (-34))) + (-4 *2 (-13 (-1013) (-34)))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-85)) (-5 *1 (-1052 *3 *4)) (-4 *3 (-13 (-1012) (-34))) - (-4 *4 (-13 (-1012) (-34)))))) + (-12 (-5 *2 (-85)) (-5 *1 (-1053 *3 *4)) (-4 *3 (-13 (-1013) (-34))) + (-4 *4 (-13 (-1013) (-34)))))) (((*1 *1 *1) - (-12 (-5 *1 (-1052 *2 *3)) (-4 *2 (-13 (-1012) (-34))) - (-4 *3 (-13 (-1012) (-34)))))) + (-12 (-5 *1 (-1053 *2 *3)) (-4 *2 (-13 (-1013) (-34))) + (-4 *3 (-13 (-1013) (-34)))))) (((*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-85) *5 *5)) (-5 *4 (-1 (-85) *6 *6)) - (-4 *5 (-13 (-1012) (-34))) (-4 *6 (-13 (-1012) (-34))) (-5 *2 (-85)) - (-5 *1 (-1052 *5 *6))))) + (-4 *5 (-13 (-1013) (-34))) (-4 *6 (-13 (-1013) (-34))) (-5 *2 (-85)) + (-5 *1 (-1053 *5 *6))))) (((*1 *2 *1 *1 *3) - (-12 (-5 *3 (-1 (-85) *5 *5)) (-4 *5 (-13 (-1012) (-34))) (-5 *2 (-85)) - (-5 *1 (-1052 *4 *5)) (-4 *4 (-13 (-1012) (-34)))))) + (-12 (-5 *3 (-1 (-85) *5 *5)) (-4 *5 (-13 (-1013) (-34))) (-5 *2 (-85)) + (-5 *1 (-1053 *4 *5)) (-4 *4 (-13 (-1013) (-34)))))) (((*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) ((*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) - ((*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-372 *3 *2)) (-4 *2 (-362 *3)))) - ((*1 *1 *1) (-4 *1 (-1051)))) + ((*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-373 *3 *2)) (-4 *2 (-363 *3)))) + ((*1 *1 *1) (-4 *1 (-1052)))) (((*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) ((*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) - ((*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-372 *3 *2)) (-4 *2 (-362 *3)))) - ((*1 *1 *1) (-4 *1 (-1051)))) + ((*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-373 *3 *2)) (-4 *2 (-363 *3)))) + ((*1 *1 *1) (-4 *1 (-1052)))) (((*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) - ((*1 *2 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-372 *3 *2)) (-4 *2 (-362 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1051)))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-373 *3 *2)) (-4 *2 (-363 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1052)))) (((*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) - ((*1 *2 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-372 *3 *2)) (-4 *2 (-362 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1051)))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-373 *3 *2)) (-4 *2 (-363 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1052)))) (((*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) - ((*1 *2 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-372 *3 *2)) (-4 *2 (-362 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1051)))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-373 *3 *2)) (-4 *2 (-363 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1052)))) (((*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) - ((*1 *2 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-372 *3 *2)) (-4 *2 (-362 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1051)))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-373 *3 *2)) (-4 *2 (-363 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1052)))) (((*1 *1 *1) (-5 *1 (-179))) ((*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) ((*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) - ((*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-372 *3 *2)) (-4 *2 (-362 *3)))) - ((*1 *2 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-372 *3 *2)) (-4 *2 (-362 *3)))) - ((*1 *1 *1) (-4 *1 (-1051))) ((*1 *1 *1 *1) (-4 *1 (-1051)))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-179)) (-5 *3 (-693)) (-5 *1 (-180)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-142 (-179))) (-5 *3 (-693)) (-5 *1 (-180)))) - ((*1 *2 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-372 *3 *2)) (-4 *2 (-362 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1051)))) + ((*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-373 *3 *2)) (-4 *2 (-363 *3)))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-373 *3 *2)) (-4 *2 (-363 *3)))) + ((*1 *1 *1) (-4 *1 (-1052))) ((*1 *1 *1 *1) (-4 *1 (-1052)))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-179)) (-5 *3 (-694)) (-5 *1 (-180)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-142 (-179))) (-5 *3 (-694)) (-5 *1 (-180)))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-373 *3 *2)) (-4 *2 (-363 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1052)))) (((*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) ((*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) - ((*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-372 *3 *2)) (-4 *2 (-362 *3)))) - ((*1 *1 *1) (-4 *1 (-1051)))) + ((*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-373 *3 *2)) (-4 *2 (-363 *3)))) + ((*1 *1 *1) (-4 *1 (-1052)))) (((*1 *1 *1 *1) (-5 *1 (-179))) ((*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) - ((*1 *2 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-372 *3 *2)) (-4 *2 (-362 *3)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-693)) (-5 *2 (-1 (-328))) (-5 *1 (-952)))) - ((*1 *1 *1 *1) (-4 *1 (-1051)))) -(((*1 *1 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)) (-4 *2 (-972)))) - ((*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-372 *3 *2)) (-4 *2 (-362 *3)))) - ((*1 *1 *1) (-4 *1 (-713))) - ((*1 *2 *1) (-12 (-4 *1 (-719 *2)) (-4 *2 (-146)) (-4 *2 (-972)))) - ((*1 *2 *1) (-12 (-4 *1 (-910 *2)) (-4 *2 (-146)) (-4 *2 (-972)))) - ((*1 *1 *1) (-4 *1 (-1051)))) -(((*1 *2 *3) (-12 (-5 *3 (-771)) (-5 *2 (-1183)) (-5 *1 (-1050)))) - ((*1 *2 *3) (-12 (-5 *3 (-582 (-771))) (-5 *2 (-1183)) (-5 *1 (-1050))))) -(((*1 *2 *3) (-12 (-5 *3 (-771)) (-5 *2 (-1183)) (-5 *1 (-1050)))) - ((*1 *2 *3) (-12 (-5 *3 (-582 (-771))) (-5 *2 (-1183)) (-5 *1 (-1050))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1071)) (-5 *4 (-771)) (-5 *2 (-1183)) (-5 *1 (-1050)))) - ((*1 *2 *3) (-12 (-5 *3 (-771)) (-5 *2 (-1183)) (-5 *1 (-1050)))) - ((*1 *2 *3) (-12 (-5 *3 (-582 (-771))) (-5 *2 (-1183)) (-5 *1 (-1050))))) -(((*1 *2 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-582 (-1093))) (-5 *1 (-1048))))) -(((*1 *1 *2) (-12 (-5 *2 (-1077 3 *3)) (-4 *3 (-960)) (-4 *1 (-1046 *3)))) - ((*1 *1) (-12 (-4 *1 (-1046 *2)) (-4 *2 (-960))))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-373 *3 *2)) (-4 *2 (-363 *3)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1 (-329))) (-5 *1 (-953)))) + ((*1 *1 *1 *1) (-4 *1 (-1052)))) +(((*1 *1 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)) (-4 *2 (-973)))) + ((*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-373 *3 *2)) (-4 *2 (-363 *3)))) + ((*1 *1 *1) (-4 *1 (-714))) + ((*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146)) (-4 *2 (-973)))) + ((*1 *2 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-146)) (-4 *2 (-973)))) + ((*1 *1 *1) (-4 *1 (-1052)))) +(((*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1184)) (-5 *1 (-1051)))) + ((*1 *2 *3) (-12 (-5 *3 (-583 (-772))) (-5 *2 (-1184)) (-5 *1 (-1051))))) +(((*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1184)) (-5 *1 (-1051)))) + ((*1 *2 *3) (-12 (-5 *3 (-583 (-772))) (-5 *2 (-1184)) (-5 *1 (-1051))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1072)) (-5 *4 (-772)) (-5 *2 (-1184)) (-5 *1 (-1051)))) + ((*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1184)) (-5 *1 (-1051)))) + ((*1 *2 *3) (-12 (-5 *3 (-583 (-772))) (-5 *2 (-1184)) (-5 *1 (-1051))))) +(((*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-583 (-1094))) (-5 *1 (-1049))))) +(((*1 *1 *2) (-12 (-5 *2 (-1078 3 *3)) (-4 *3 (-961)) (-4 *1 (-1047 *3)))) + ((*1 *1) (-12 (-4 *1 (-1047 *2)) (-4 *2 (-961))))) (((*1 *2) - (-12 (-4 *4 (-1132)) (-4 *5 (-1153 *4)) (-4 *6 (-1153 (-348 *5))) - (-5 *2 (-693)) (-5 *1 (-290 *3 *4 *5 *6)) (-4 *3 (-291 *4 *5 *6)))) + (-12 (-4 *4 (-1133)) (-4 *5 (-1154 *4)) (-4 *6 (-1154 (-349 *5))) + (-5 *2 (-694)) (-5 *1 (-290 *3 *4 *5 *6)) (-4 *3 (-291 *4 *5 *6)))) ((*1 *2) - (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3)) - (-4 *5 (-1153 (-348 *4))) (-5 *2 (-693)))) - ((*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-960)) (-5 *2 (-693))))) -(((*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-960)) (-5 *2 (-693))))) -(((*1 *2 *1) (-12 (-4 *3 (-960)) (-5 *2 (-582 *1)) (-4 *1 (-1046 *3))))) -(((*1 *2 *1) (-12 (-4 *3 (-960)) (-5 *2 (-582 *1)) (-4 *1 (-1046 *3))))) + (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) + (-4 *5 (-1154 (-349 *4))) (-5 *2 (-694)))) + ((*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-961)) (-5 *2 (-694))))) +(((*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-961)) (-5 *2 (-694))))) +(((*1 *2 *1) (-12 (-4 *3 (-961)) (-5 *2 (-583 *1)) (-4 *1 (-1047 *3))))) +(((*1 *2 *1) (-12 (-4 *3 (-961)) (-5 *2 (-583 *1)) (-4 *1 (-1047 *3))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-582 (-853 *4))) (-4 *1 (-1046 *4)) (-4 *4 (-960)) - (-5 *2 (-693))))) -(((*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-960)) (-5 *2 (-85))))) -(((*1 *1 *2 *2) (-12 (-5 *1 (-786 *2)) (-4 *2 (-1127)))) - ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-788 *2)) (-4 *2 (-1127)))) - ((*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-960)) (-5 *2 (-582 (-853 *3))))) - ((*1 *1 *2) (-12 (-5 *2 (-582 (-853 *3))) (-4 *3 (-960)) (-4 *1 (-1046 *3)))) + (-12 (-5 *3 (-583 (-854 *4))) (-4 *1 (-1047 *4)) (-4 *4 (-961)) + (-5 *2 (-694))))) +(((*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-961)) (-5 *2 (-85))))) +(((*1 *1 *2 *2) (-12 (-5 *1 (-787 *2)) (-4 *2 (-1128)))) + ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-789 *2)) (-4 *2 (-1128)))) + ((*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-854 *3))))) + ((*1 *1 *2) (-12 (-5 *2 (-583 (-854 *3))) (-4 *3 (-961)) (-4 *1 (-1047 *3)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-582 (-582 *3))) (-4 *1 (-1046 *3)) (-4 *3 (-960)))) + (-12 (-5 *2 (-583 (-583 *3))) (-4 *1 (-1047 *3)) (-4 *3 (-961)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-582 (-853 *3))) (-4 *1 (-1046 *3)) (-4 *3 (-960))))) -(((*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-960)) (-5 *2 (-85))))) -(((*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-960)) (-5 *2 (-582 (-853 *3))))) - ((*1 *1 *2) (-12 (-5 *2 (-582 (-853 *3))) (-4 *3 (-960)) (-4 *1 (-1046 *3)))) + (-12 (-5 *2 (-583 (-854 *3))) (-4 *1 (-1047 *3)) (-4 *3 (-961))))) +(((*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-961)) (-5 *2 (-85))))) +(((*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-854 *3))))) + ((*1 *1 *2) (-12 (-5 *2 (-583 (-854 *3))) (-4 *3 (-961)) (-4 *1 (-1047 *3)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-582 (-582 *3))) (-4 *1 (-1046 *3)) (-4 *3 (-960)))) + (-12 (-5 *2 (-583 (-583 *3))) (-4 *1 (-1047 *3)) (-4 *3 (-961)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-582 (-853 *3))) (-4 *1 (-1046 *3)) (-4 *3 (-960))))) -(((*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-960)) (-5 *2 (-85))))) -(((*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-960)) (-5 *2 (-582 (-853 *3))))) - ((*1 *1 *2) (-12 (-5 *2 (-582 (-853 *3))) (-4 *3 (-960)) (-4 *1 (-1046 *3)))) + (-12 (-5 *2 (-583 (-854 *3))) (-4 *1 (-1047 *3)) (-4 *3 (-961))))) +(((*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-961)) (-5 *2 (-85))))) +(((*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-854 *3))))) + ((*1 *1 *2) (-12 (-5 *2 (-583 (-854 *3))) (-4 *3 (-961)) (-4 *1 (-1047 *3)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-582 (-582 *3))) (-4 *1 (-1046 *3)) (-4 *3 (-960)))) + (-12 (-5 *2 (-583 (-583 *3))) (-4 *1 (-1047 *3)) (-4 *3 (-961)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-582 (-853 *3))) (-4 *1 (-1046 *3)) (-4 *3 (-960))))) -(((*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-960)) (-5 *2 (-85))))) + (-12 (-5 *2 (-583 (-854 *3))) (-4 *1 (-1047 *3)) (-4 *3 (-961))))) +(((*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-961)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-1046 *3)) (-4 *3 (-960)) (-5 *2 (-582 (-582 (-853 *3)))))) + (-12 (-4 *1 (-1047 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-583 (-854 *3)))))) ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-582 (-582 (-853 *4)))) (-5 *3 (-85)) (-4 *4 (-960)) - (-4 *1 (-1046 *4)))) + (-12 (-5 *2 (-583 (-583 (-854 *4)))) (-5 *3 (-85)) (-4 *4 (-961)) + (-4 *1 (-1047 *4)))) ((*1 *1 *2) - (-12 (-5 *2 (-582 (-582 (-853 *3)))) (-4 *3 (-960)) (-4 *1 (-1046 *3)))) + (-12 (-5 *2 (-583 (-583 (-854 *3)))) (-4 *3 (-961)) (-4 *1 (-1047 *3)))) ((*1 *1 *1 *2 *3 *3) - (-12 (-5 *2 (-582 (-582 (-582 *4)))) (-5 *3 (-85)) (-4 *1 (-1046 *4)) - (-4 *4 (-960)))) + (-12 (-5 *2 (-583 (-583 (-583 *4)))) (-5 *3 (-85)) (-4 *1 (-1047 *4)) + (-4 *4 (-961)))) ((*1 *1 *1 *2 *3 *3) - (-12 (-5 *2 (-582 (-582 (-853 *4)))) (-5 *3 (-85)) (-4 *1 (-1046 *4)) - (-4 *4 (-960)))) + (-12 (-5 *2 (-583 (-583 (-854 *4)))) (-5 *3 (-85)) (-4 *1 (-1047 *4)) + (-4 *4 (-961)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-582 (-582 (-582 *5)))) (-5 *3 (-582 (-145))) (-5 *4 (-145)) - (-4 *1 (-1046 *5)) (-4 *5 (-960)))) + (-12 (-5 *2 (-583 (-583 (-583 *5)))) (-5 *3 (-583 (-145))) (-5 *4 (-145)) + (-4 *1 (-1047 *5)) (-4 *5 (-961)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-582 (-582 (-853 *5)))) (-5 *3 (-582 (-145))) (-5 *4 (-145)) - (-4 *1 (-1046 *5)) (-4 *5 (-960))))) -(((*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-960)) (-5 *2 (-85))))) -(((*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-960)) (-5 *2 (-582 (-853 *3)))))) + (-12 (-5 *2 (-583 (-583 (-854 *5)))) (-5 *3 (-583 (-145))) (-5 *4 (-145)) + (-4 *1 (-1047 *5)) (-4 *5 (-961))))) +(((*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-961)) (-5 *2 (-85))))) +(((*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-854 *3)))))) (((*1 *2 *1) - (-12 (-4 *1 (-1046 *3)) (-4 *3 (-960)) (-5 *2 (-582 (-582 (-582 (-693)))))))) + (-12 (-4 *1 (-1047 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-583 (-583 (-694)))))))) (((*1 *2 *1) - (-12 (-4 *1 (-1046 *3)) (-4 *3 (-960)) - (-5 *2 (-582 (-582 (-582 (-853 *3)))))))) + (-12 (-4 *1 (-1047 *3)) (-4 *3 (-961)) + (-5 *2 (-583 (-583 (-583 (-854 *3)))))))) (((*1 *2 *1) - (-12 (-4 *1 (-1046 *3)) (-4 *3 (-960)) (-5 *2 (-582 (-582 (-145))))))) -(((*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-960)) (-5 *2 (-582 (-145)))))) + (-12 (-4 *1 (-1047 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-583 (-145))))))) +(((*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-145)))))) (((*1 *2 *1) - (-12 (-4 *1 (-1046 *3)) (-4 *3 (-960)) + (-12 (-4 *1 (-1047 *3)) (-4 *3 (-961)) (-5 *2 - (-2 (|:| -3848 (-693)) (|:| |curves| (-693)) (|:| |polygons| (-693)) - (|:| |constructs| (-693))))))) + (-2 (|:| -3849 (-694)) (|:| |curves| (-694)) (|:| |polygons| (-694)) + (|:| |constructs| (-694))))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-582 (-2 (|:| -3730 (-1083 *6)) (|:| -2400 (-483))))) - (-4 *6 (-258)) (-4 *4 (-716)) (-4 *5 (-755)) (-5 *2 (-85)) - (-5 *1 (-680 *4 *5 *6 *7)) (-4 *7 (-860 *6 *4 *5)))) - ((*1 *1 *1) (-12 (-4 *1 (-1046 *2)) (-4 *2 (-960))))) + (-12 (-5 *3 (-583 (-2 (|:| -3731 (-1084 *6)) (|:| -2401 (-484))))) + (-4 *6 (-258)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85)) + (-5 *1 (-681 *4 *5 *6 *7)) (-4 *7 (-861 *6 *4 *5)))) + ((*1 *1 *1) (-12 (-4 *1 (-1047 *2)) (-4 *2 (-961))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1127)) (-5 *1 (-1044 *4 *2)) - (-4 *2 (-13 (-537 (-483) *4) (-10 -7 (-6 -3993) (-6 -3994)))))) + (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1128)) (-5 *1 (-1045 *4 *2)) + (-4 *2 (-13 (-538 (-484) *4) (-10 -7 (-6 -3994) (-6 -3995)))))) ((*1 *2 *2) - (-12 (-4 *3 (-755)) (-4 *3 (-1127)) (-5 *1 (-1044 *3 *2)) - (-4 *2 (-13 (-537 (-483) *3) (-10 -7 (-6 -3993) (-6 -3994))))))) + (-12 (-4 *3 (-756)) (-4 *3 (-1128)) (-5 *1 (-1045 *3 *2)) + (-4 *2 (-13 (-538 (-484) *3) (-10 -7 (-6 -3994) (-6 -3995))))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1127)) (-5 *1 (-1044 *4 *2)) - (-4 *2 (-13 (-537 (-483) *4) (-10 -7 (-6 -3993) (-6 -3994)))))) + (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1128)) (-5 *1 (-1045 *4 *2)) + (-4 *2 (-13 (-538 (-484) *4) (-10 -7 (-6 -3994) (-6 -3995)))))) ((*1 *2 *2) - (-12 (-4 *3 (-755)) (-4 *3 (-1127)) (-5 *1 (-1044 *3 *2)) - (-4 *2 (-13 (-537 (-483) *3) (-10 -7 (-6 -3993) (-6 -3994))))))) + (-12 (-4 *3 (-756)) (-4 *3 (-1128)) (-5 *1 (-1045 *3 *2)) + (-4 *2 (-13 (-538 (-484) *3) (-10 -7 (-6 -3994) (-6 -3995))))))) (((*1 *2 *3) - (-12 (-5 *3 (-1177 *4)) (-4 *4 (-960)) (-4 *2 (-1153 *4)) - (-5 *1 (-382 *4 *2)))) + (-12 (-5 *3 (-1178 *4)) (-4 *4 (-961)) (-4 *2 (-1154 *4)) + (-5 *1 (-383 *4 *2)))) ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-348 (-1083 (-265 *5)))) (-5 *3 (-1177 (-265 *5))) - (-5 *4 (-483)) (-4 *5 (-494)) (-5 *1 (-1042 *5))))) + (-12 (-5 *2 (-349 (-1084 (-265 *5)))) (-5 *3 (-1178 (-265 *5))) + (-5 *4 (-484)) (-4 *5 (-495)) (-5 *1 (-1043 *5))))) (((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-348 (-1083 (-265 *3)))) (-4 *3 (-494)) (-5 *1 (-1042 *3))))) + (-12 (-5 *2 (-349 (-1084 (-265 *3)))) (-4 *3 (-495)) (-5 *1 (-1043 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-249 (-348 (-856 *5)))) (-5 *4 (-1088)) + (-12 (-5 *3 (-249 (-349 (-857 *5)))) (-5 *4 (-1089)) (-4 *5 (-13 (-258) (-120))) - (-5 *2 (-1078 (-582 (-265 *5)) (-582 (-249 (-265 *5))))) - (-5 *1 (-1041 *5)))) + (-5 *2 (-1079 (-583 (-265 *5)) (-583 (-249 (-265 *5))))) + (-5 *1 (-1042 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-348 (-856 *5))) (-5 *4 (-1088)) (-4 *5 (-13 (-258) (-120))) - (-5 *2 (-1078 (-582 (-265 *5)) (-582 (-249 (-265 *5))))) - (-5 *1 (-1041 *5))))) + (-12 (-5 *3 (-349 (-857 *5))) (-5 *4 (-1089)) (-4 *5 (-13 (-258) (-120))) + (-5 *2 (-1079 (-583 (-265 *5)) (-583 (-249 (-265 *5))))) + (-5 *1 (-1042 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-348 (-856 *5))) (-5 *4 (-1088)) (-4 *5 (-13 (-258) (-120))) - (-5 *2 (-582 (-265 *5))) (-5 *1 (-1041 *5)))) + (-12 (-5 *3 (-349 (-857 *5))) (-5 *4 (-1089)) (-4 *5 (-13 (-258) (-120))) + (-5 *2 (-583 (-265 *5))) (-5 *1 (-1042 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-582 (-348 (-856 *5)))) (-5 *4 (-582 (-1088))) - (-4 *5 (-13 (-258) (-120))) (-5 *2 (-582 (-582 (-265 *5)))) - (-5 *1 (-1041 *5))))) + (-12 (-5 *3 (-583 (-349 (-857 *5)))) (-5 *4 (-583 (-1089))) + (-4 *5 (-13 (-258) (-120))) (-5 *2 (-583 (-583 (-265 *5)))) + (-5 *1 (-1042 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-348 (-856 *5))) (-5 *4 (-1088)) (-4 *5 (-13 (-258) (-120))) - (-5 *2 (-582 (-249 (-265 *5)))) (-5 *1 (-1041 *5)))) + (-12 (-5 *3 (-349 (-857 *5))) (-5 *4 (-1089)) (-4 *5 (-13 (-258) (-120))) + (-5 *2 (-583 (-249 (-265 *5)))) (-5 *1 (-1042 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-348 (-856 *4))) (-4 *4 (-13 (-258) (-120))) - (-5 *2 (-582 (-249 (-265 *4)))) (-5 *1 (-1041 *4)))) + (-12 (-5 *3 (-349 (-857 *4))) (-4 *4 (-13 (-258) (-120))) + (-5 *2 (-583 (-249 (-265 *4)))) (-5 *1 (-1042 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-249 (-348 (-856 *5)))) (-5 *4 (-1088)) - (-4 *5 (-13 (-258) (-120))) (-5 *2 (-582 (-249 (-265 *5)))) - (-5 *1 (-1041 *5)))) + (-12 (-5 *3 (-249 (-349 (-857 *5)))) (-5 *4 (-1089)) + (-4 *5 (-13 (-258) (-120))) (-5 *2 (-583 (-249 (-265 *5)))) + (-5 *1 (-1042 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-249 (-348 (-856 *4)))) (-4 *4 (-13 (-258) (-120))) - (-5 *2 (-582 (-249 (-265 *4)))) (-5 *1 (-1041 *4)))) + (-12 (-5 *3 (-249 (-349 (-857 *4)))) (-4 *4 (-13 (-258) (-120))) + (-5 *2 (-583 (-249 (-265 *4)))) (-5 *1 (-1042 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-582 (-348 (-856 *5)))) (-5 *4 (-582 (-1088))) - (-4 *5 (-13 (-258) (-120))) (-5 *2 (-582 (-582 (-249 (-265 *5))))) - (-5 *1 (-1041 *5)))) + (-12 (-5 *3 (-583 (-349 (-857 *5)))) (-5 *4 (-583 (-1089))) + (-4 *5 (-13 (-258) (-120))) (-5 *2 (-583 (-583 (-249 (-265 *5))))) + (-5 *1 (-1042 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-582 (-348 (-856 *4)))) (-4 *4 (-13 (-258) (-120))) - (-5 *2 (-582 (-582 (-249 (-265 *4))))) (-5 *1 (-1041 *4)))) + (-12 (-5 *3 (-583 (-349 (-857 *4)))) (-4 *4 (-13 (-258) (-120))) + (-5 *2 (-583 (-583 (-249 (-265 *4))))) (-5 *1 (-1042 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-582 (-249 (-348 (-856 *5))))) (-5 *4 (-582 (-1088))) - (-4 *5 (-13 (-258) (-120))) (-5 *2 (-582 (-582 (-249 (-265 *5))))) - (-5 *1 (-1041 *5)))) + (-12 (-5 *3 (-583 (-249 (-349 (-857 *5))))) (-5 *4 (-583 (-1089))) + (-4 *5 (-13 (-258) (-120))) (-5 *2 (-583 (-583 (-249 (-265 *5))))) + (-5 *1 (-1042 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-582 (-249 (-348 (-856 *4))))) (-4 *4 (-13 (-258) (-120))) - (-5 *2 (-582 (-582 (-249 (-265 *4))))) (-5 *1 (-1041 *4))))) + (-12 (-5 *3 (-583 (-249 (-349 (-857 *4))))) (-4 *4 (-13 (-258) (-120))) + (-5 *2 (-583 (-583 (-249 (-265 *4))))) (-5 *1 (-1042 *4))))) (((*1 *2 *2 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-312) (-10 -8 (-15 ** ($ $ (-348 (-483))))))) - (-5 *1 (-1040 *3 *2)) (-4 *3 (-1153 *2))))) + (-12 (-4 *2 (-13 (-312) (-10 -8 (-15 ** ($ $ (-349 (-484))))))) + (-5 *1 (-1041 *3 *2)) (-4 *3 (-1154 *2))))) (((*1 *2 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-312) (-10 -8 (-15 ** ($ $ (-348 (-483))))))) - (-5 *1 (-1040 *3 *2)) (-4 *3 (-1153 *2))))) + (-12 (-4 *2 (-13 (-312) (-10 -8 (-15 ** ($ $ (-349 (-484))))))) + (-5 *1 (-1041 *3 *2)) (-4 *3 (-1154 *2))))) (((*1 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-312) (-10 -8 (-15 ** ($ $ (-348 (-483))))))) - (-5 *1 (-1040 *3 *2)) (-4 *3 (-1153 *2))))) + (-12 (-4 *2 (-13 (-312) (-10 -8 (-15 ** ($ $ (-349 (-484))))))) + (-5 *1 (-1041 *3 *2)) (-4 *3 (-1154 *2))))) (((*1 *2 *2 *2) - (-12 (-4 *2 (-13 (-312) (-10 -8 (-15 ** ($ $ (-348 (-483))))))) - (-5 *1 (-1040 *3 *2)) (-4 *3 (-1153 *2))))) + (-12 (-4 *2 (-13 (-312) (-10 -8 (-15 ** ($ $ (-349 (-484))))))) + (-5 *1 (-1041 *3 *2)) (-4 *3 (-1154 *2))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-312) (-10 -8 (-15 ** ($ $ (-348 (-483))))))) - (-5 *2 (-582 *4)) (-5 *1 (-1040 *3 *4)) (-4 *3 (-1153 *4)))) + (-12 (-4 *4 (-13 (-312) (-10 -8 (-15 ** ($ $ (-349 (-484))))))) + (-5 *2 (-583 *4)) (-5 *1 (-1041 *3 *4)) (-4 *3 (-1154 *4)))) ((*1 *2 *3 *3 *3 *3 *3) - (-12 (-4 *3 (-13 (-312) (-10 -8 (-15 ** ($ $ (-348 (-483))))))) - (-5 *2 (-582 *3)) (-5 *1 (-1040 *4 *3)) (-4 *4 (-1153 *3))))) + (-12 (-4 *3 (-13 (-312) (-10 -8 (-15 ** ($ $ (-349 (-484))))))) + (-5 *2 (-583 *3)) (-5 *1 (-1041 *4 *3)) (-4 *4 (-1154 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-312) (-10 -8 (-15 ** ($ $ (-348 (-483))))))) - (-5 *2 (-582 *4)) (-5 *1 (-1040 *3 *4)) (-4 *3 (-1153 *4)))) + (-12 (-4 *4 (-13 (-312) (-10 -8 (-15 ** ($ $ (-349 (-484))))))) + (-5 *2 (-583 *4)) (-5 *1 (-1041 *3 *4)) (-4 *3 (-1154 *4)))) ((*1 *2 *3 *3 *3 *3) - (-12 (-4 *3 (-13 (-312) (-10 -8 (-15 ** ($ $ (-348 (-483))))))) - (-5 *2 (-582 *3)) (-5 *1 (-1040 *4 *3)) (-4 *4 (-1153 *3))))) + (-12 (-4 *3 (-13 (-312) (-10 -8 (-15 ** ($ $ (-349 (-484))))))) + (-5 *2 (-583 *3)) (-5 *1 (-1041 *4 *3)) (-4 *4 (-1154 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-312) (-10 -8 (-15 ** ($ $ (-348 (-483))))))) - (-5 *2 (-582 *4)) (-5 *1 (-1040 *3 *4)) (-4 *3 (-1153 *4)))) + (-12 (-4 *4 (-13 (-312) (-10 -8 (-15 ** ($ $ (-349 (-484))))))) + (-5 *2 (-583 *4)) (-5 *1 (-1041 *3 *4)) (-4 *3 (-1154 *4)))) ((*1 *2 *3 *3 *3) - (-12 (-4 *3 (-13 (-312) (-10 -8 (-15 ** ($ $ (-348 (-483))))))) - (-5 *2 (-582 *3)) (-5 *1 (-1040 *4 *3)) (-4 *4 (-1153 *3))))) + (-12 (-4 *3 (-13 (-312) (-10 -8 (-15 ** ($ $ (-349 (-484))))))) + (-5 *2 (-583 *3)) (-5 *1 (-1041 *4 *3)) (-4 *4 (-1154 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-312) (-10 -8 (-15 ** ($ $ (-348 (-483))))))) - (-5 *2 (-582 *4)) (-5 *1 (-1040 *3 *4)) (-4 *3 (-1153 *4)))) + (-12 (-4 *4 (-13 (-312) (-10 -8 (-15 ** ($ $ (-349 (-484))))))) + (-5 *2 (-583 *4)) (-5 *1 (-1041 *3 *4)) (-4 *3 (-1154 *4)))) ((*1 *2 *3 *3) - (-12 (-4 *3 (-13 (-312) (-10 -8 (-15 ** ($ $ (-348 (-483))))))) - (-5 *2 (-582 *3)) (-5 *1 (-1040 *4 *3)) (-4 *4 (-1153 *3))))) + (-12 (-4 *3 (-13 (-312) (-10 -8 (-15 ** ($ $ (-349 (-484))))))) + (-5 *2 (-583 *3)) (-5 *1 (-1041 *4 *3)) (-4 *4 (-1154 *3))))) (((*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) - (-4 *5 (-13 (-312) (-10 -8 (-15 ** ($ $ (-348 (-483))))))) + (-4 *5 (-13 (-312) (-10 -8 (-15 ** ($ $ (-349 (-484))))))) (-5 *2 - (-2 (|:| |solns| (-582 *5)) - (|:| |maps| (-582 (-2 (|:| |arg| *5) (|:| |res| *5)))))) - (-5 *1 (-1040 *3 *5)) (-4 *3 (-1153 *5))))) + (-2 (|:| |solns| (-583 *5)) + (|:| |maps| (-583 (-2 (|:| |arg| *5) (|:| |res| *5)))))) + (-5 *1 (-1041 *3 *5)) (-4 *3 (-1154 *5))))) (((*1 *2 *3 *2) - (|partial| -12 (-4 *4 (-312)) (-4 *5 (-13 (-322 *4) (-10 -7 (-6 -3994)))) - (-4 *2 (-13 (-322 *4) (-10 -7 (-6 -3994)))) (-5 *1 (-608 *4 *5 *2 *3)) - (-4 *3 (-626 *4 *5 *2)))) + (|partial| -12 (-4 *4 (-312)) (-4 *5 (-13 (-323 *4) (-10 -7 (-6 -3995)))) + (-4 *2 (-13 (-323 *4) (-10 -7 (-6 -3995)))) (-5 *1 (-609 *4 *5 *2 *3)) + (-4 *3 (-627 *4 *5 *2)))) ((*1 *2 *3 *2) - (|partial| -12 (-5 *2 (-1177 *4)) (-5 *3 (-629 *4)) (-4 *4 (-312)) - (-5 *1 (-609 *4)))) + (|partial| -12 (-5 *2 (-1178 *4)) (-5 *3 (-630 *4)) (-4 *4 (-312)) + (-5 *1 (-610 *4)))) ((*1 *2 *3 *2 *4 *5) - (|partial| -12 (-5 *4 (-582 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-312)) - (-5 *1 (-733 *2 *3)) (-4 *3 (-599 *2)))) + (|partial| -12 (-5 *4 (-583 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-312)) + (-5 *1 (-734 *2 *3)) (-4 *3 (-600 *2)))) ((*1 *2 *3) - (-12 (-4 *2 (-13 (-312) (-10 -8 (-15 ** ($ $ (-348 (-483))))))) - (-5 *1 (-1040 *3 *2)) (-4 *3 (-1153 *2))))) + (-12 (-4 *2 (-13 (-312) (-10 -8 (-15 ** ($ $ (-349 (-484))))))) + (-5 *1 (-1041 *3 *2)) (-4 *3 (-1154 *2))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-582 *6)) (-5 *4 (-582 (-1067 *7))) (-4 *6 (-755)) - (-4 *7 (-860 *5 (-468 *6) *6)) (-4 *5 (-960)) (-5 *2 (-1 (-1067 *7) *7)) - (-5 *1 (-1038 *5 *6 *7))))) + (-12 (-5 *3 (-583 *6)) (-5 *4 (-583 (-1068 *7))) (-4 *6 (-756)) + (-4 *7 (-861 *5 (-469 *6) *6)) (-4 *5 (-961)) (-5 *2 (-1 (-1068 *7) *7)) + (-5 *1 (-1039 *5 *6 *7))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-258)) (-4 *6 (-322 *5)) (-4 *4 (-322 *5)) - (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2011 (-582 *4)))) - (-5 *1 (-1036 *5 *6 *4 *3)) (-4 *3 (-626 *5 *6 *4))))) + (-12 (-4 *5 (-258)) (-4 *6 (-323 *5)) (-4 *4 (-323 *5)) + (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2012 (-583 *4)))) + (-5 *1 (-1037 *5 *6 *4 *3)) (-4 *3 (-627 *5 *6 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-258)) (-4 *5 (-322 *4)) (-4 *6 (-322 *4)) + (-12 (-4 *4 (-258)) (-4 *5 (-323 *4)) (-4 *6 (-323 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) - (-5 *1 (-1036 *4 *5 *6 *3)) (-4 *3 (-626 *4 *5 *6))))) + (-5 *1 (-1037 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6))))) (((*1 *2 *2) - (-12 (-4 *3 (-258)) (-4 *4 (-322 *3)) (-4 *5 (-322 *3)) - (-5 *1 (-1036 *3 *4 *5 *2)) (-4 *2 (-626 *3 *4 *5))))) + (-12 (-4 *3 (-258)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)) + (-5 *1 (-1037 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-258)) (-4 *5 (-322 *4)) (-4 *6 (-322 *4)) - (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1036 *4 *5 *6 *3)) - (-4 *3 (-626 *4 *5 *6))))) -(((*1 *2 *3) (-12 (-5 *2 (-1083 (-483))) (-5 *1 (-852)) (-5 *3 (-483)))) + (-12 (-4 *4 (-258)) (-4 *5 (-323 *4)) (-4 *6 (-323 *4)) + (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1037 *4 *5 *6 *3)) + (-4 *3 (-627 *4 *5 *6))))) +(((*1 *2 *3) (-12 (-5 *2 (-1084 (-484))) (-5 *1 (-853)) (-5 *3 (-484)))) ((*1 *2 *2) - (-12 (-4 *3 (-258)) (-4 *4 (-322 *3)) (-4 *5 (-322 *3)) - (-5 *1 (-1036 *3 *4 *5 *2)) (-4 *2 (-626 *3 *4 *5))))) + (-12 (-4 *3 (-258)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)) + (-5 *1 (-1037 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-693)) (-4 *3 (-960)) (-4 *1 (-626 *3 *4 *5)) (-4 *4 (-322 *3)) - (-4 *5 (-322 *3)))) + (-12 (-5 *2 (-694)) (-4 *3 (-961)) (-4 *1 (-627 *3 *4 *5)) (-4 *4 (-323 *3)) + (-4 *5 (-323 *3)))) ((*1 *1 *2) - (-12 (-4 *2 (-960)) (-4 *1 (-1035 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) + (-12 (-4 *2 (-961)) (-4 *1 (-1036 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2))))) (((*1 *1 *2) - (-12 (-5 *2 (-582 *1)) (-4 *3 (-960)) (-4 *1 (-626 *3 *4 *5)) - (-4 *4 (-322 *3)) (-4 *5 (-322 *3)))) + (-12 (-5 *2 (-583 *1)) (-4 *3 (-961)) (-4 *1 (-627 *3 *4 *5)) + (-4 *4 (-323 *3)) (-4 *5 (-323 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-582 *3)) (-4 *3 (-960)) (-4 *1 (-626 *3 *4 *5)) - (-4 *4 (-322 *3)) (-4 *5 (-322 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-960)) (-5 *1 (-629 *3)))) + (-12 (-5 *2 (-583 *3)) (-4 *3 (-961)) (-4 *1 (-627 *3 *4 *5)) + (-4 *4 (-323 *3)) (-4 *5 (-323 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-961)) (-5 *1 (-630 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-582 *4)) (-4 *4 (-960)) (-4 *1 (-1035 *3 *4 *5 *6)) + (-12 (-5 *2 (-583 *4)) (-4 *4 (-961)) (-4 *1 (-1036 *3 *4 *5 *6)) (-4 *5 (-196 *3 *4)) (-4 *6 (-196 *3 *4))))) (((*1 *2 *1) - (-12 (-4 *1 (-1035 *3 *4 *2 *5)) (-4 *4 (-960)) (-4 *5 (-196 *3 *4)) + (-12 (-4 *1 (-1036 *3 *4 *2 *5)) (-4 *4 (-961)) (-4 *5 (-196 *3 *4)) (-4 *2 (-196 *3 *4))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-829)) (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-318)))) + (-12 (-5 *2 (-830)) (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-319)))) ((*1 *2 *1) (-12 (-4 *1 (-280 *2)) (-4 *2 (-312)))) - ((*1 *2 *1) (-12 (-4 *1 (-320 *2 *3)) (-4 *3 (-1153 *2)) (-4 *2 (-146)))) + ((*1 *2 *1) (-12 (-4 *1 (-321 *2 *3)) (-4 *3 (-1154 *2)) (-4 *2 (-146)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1177 *4)) (-5 *3 (-829)) (-4 *4 (-299)) (-5 *1 (-465 *4)))) + (-12 (-5 *2 (-1178 *4)) (-5 *3 (-830)) (-4 *4 (-299)) (-5 *1 (-466 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-1035 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2)) - (-4 *2 (-960))))) + (-12 (-4 *1 (-1036 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2)) + (-4 *2 (-961))))) (((*1 *2 *3) - (-12 (-5 *3 (-629 *2)) (-4 *4 (-1153 *2)) - (-4 *2 (-13 (-258) (-10 -8 (-15 -3969 ((-346 $) $))))) - (-5 *1 (-437 *2 *4 *5)) (-4 *5 (-351 *2 *4)))) + (-12 (-5 *3 (-630 *2)) (-4 *4 (-1154 *2)) + (-4 *2 (-13 (-258) (-10 -8 (-15 -3970 ((-347 $) $))))) + (-5 *1 (-438 *2 *4 *5)) (-4 *5 (-352 *2 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-1035 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2)) - (-4 *2 (-960))))) + (-12 (-4 *1 (-1036 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2)) + (-4 *2 (-961))))) (((*1 *2 *3) - (-12 (-4 *4 (-322 *2)) (-4 *5 (-322 *2)) (-4 *2 (-312)) - (-5 *1 (-459 *2 *4 *5 *3)) (-4 *3 (-626 *2 *4 *5)))) + (-12 (-4 *4 (-323 *2)) (-4 *5 (-323 *2)) (-4 *2 (-312)) + (-5 *1 (-460 *2 *4 *5 *3)) (-4 *3 (-627 *2 *4 *5)))) ((*1 *2 *1) - (-12 (-4 *1 (-626 *2 *3 *4)) (-4 *3 (-322 *2)) (-4 *4 (-322 *2)) - (|has| *2 (-6 (-3995 "*"))) (-4 *2 (-960)))) + (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *3 (-323 *2)) (-4 *4 (-323 *2)) + (|has| *2 (-6 (-3996 "*"))) (-4 *2 (-961)))) ((*1 *2 *3) - (-12 (-4 *4 (-322 *2)) (-4 *5 (-322 *2)) (-4 *2 (-146)) - (-5 *1 (-628 *2 *4 *5 *3)) (-4 *3 (-626 *2 *4 *5)))) + (-12 (-4 *4 (-323 *2)) (-4 *5 (-323 *2)) (-4 *2 (-146)) + (-5 *1 (-629 *2 *4 *5 *3)) (-4 *3 (-627 *2 *4 *5)))) ((*1 *2 *1) - (-12 (-4 *1 (-1035 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2)) - (|has| *2 (-6 (-3995 "*"))) (-4 *2 (-960))))) + (-12 (-4 *1 (-1036 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2)) + (|has| *2 (-6 (-3996 "*"))) (-4 *2 (-961))))) (((*1 *2 *1) - (-12 (-4 *1 (-626 *2 *3 *4)) (-4 *3 (-322 *2)) (-4 *4 (-322 *2)) - (|has| *2 (-6 (-3995 "*"))) (-4 *2 (-960)))) + (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *3 (-323 *2)) (-4 *4 (-323 *2)) + (|has| *2 (-6 (-3996 "*"))) (-4 *2 (-961)))) ((*1 *2 *3) - (-12 (-4 *4 (-322 *2)) (-4 *5 (-322 *2)) (-4 *2 (-146)) - (-5 *1 (-628 *2 *4 *5 *3)) (-4 *3 (-626 *2 *4 *5)))) + (-12 (-4 *4 (-323 *2)) (-4 *5 (-323 *2)) (-4 *2 (-146)) + (-5 *1 (-629 *2 *4 *5 *3)) (-4 *3 (-627 *2 *4 *5)))) ((*1 *2 *1) - (-12 (-4 *1 (-1035 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2)) - (|has| *2 (-6 (-3995 "*"))) (-4 *2 (-960))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-1033 *2)) (-4 *2 (-1127))))) -(((*1 *2 *1) (-12 (-4 *1 (-1033 *2)) (-4 *2 (-1127))))) -(((*1 *2 *1) (-12 (-4 *1 (-1033 *2)) (-4 *2 (-1127))))) -(((*1 *2 *1) (-12 (-5 *2 (-693)) (-5 *1 (-799 *3)) (-4 *3 (-1012)))) - ((*1 *2 *1) (-12 (-4 *1 (-1033 *3)) (-4 *3 (-1127)) (-5 *2 (-693))))) + (-12 (-4 *1 (-1036 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2)) + (|has| *2 (-6 (-3996 "*"))) (-4 *2 (-961))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-1034 *2)) (-4 *2 (-1128))))) +(((*1 *2 *1) (-12 (-4 *1 (-1034 *2)) (-4 *2 (-1128))))) +(((*1 *2 *1) (-12 (-4 *1 (-1034 *2)) (-4 *2 (-1128))))) +(((*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-800 *3)) (-4 *3 (-1013)))) + ((*1 *2 *1) (-12 (-4 *1 (-1034 *3)) (-4 *3 (-1128)) (-5 *2 (-694))))) (((*1 *1 *1 *1) (-5 *1 (-85))) ((*1 *1 *1 *1) (-4 *1 (-96))) - ((*1 *1 *1 *1) (-5 *1 (-1032)))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-445)) (-5 *3 (-1027)) (-5 *1 (-1028))))) -(((*1 *2 *1) (-12 (-5 *2 (-1027)) (-5 *1 (-172)))) - ((*1 *2 *1) (-12 (-5 *2 (-1027)) (-5 *1 (-379)))) - ((*1 *2 *1) (-12 (-5 *2 (-1027)) (-5 *1 (-748)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-582 (-1093))) (-5 *3 (-1093)) (-5 *1 (-1027)))) - ((*1 *2 *1) (-12 (-5 *2 (-1027)) (-5 *1 (-1028))))) -(((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-154)))) - ((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-621)))) - ((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-882)))) - ((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-984)))) - ((*1 *2 *1) (-12 (-5 *2 (-1093)) (-5 *1 (-1027))))) -(((*1 *2 *1) (-12 (-5 *2 (-582 (-1128))) (-5 *1 (-621)))) - ((*1 *2 *1) (-12 (-5 *2 (-582 (-1093))) (-5 *1 (-1027))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1146 *5 *4)) (-4 *4 (-390)) (-4 *4 (-739)) (-14 *5 (-1088)) - (-5 *2 (-483)) (-5 *1 (-1026 *4 *5))))) + ((*1 *1 *1 *1) (-5 *1 (-1033)))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-446)) (-5 *3 (-1028)) (-5 *1 (-1029))))) +(((*1 *2 *1) (-12 (-5 *2 (-1028)) (-5 *1 (-172)))) + ((*1 *2 *1) (-12 (-5 *2 (-1028)) (-5 *1 (-380)))) + ((*1 *2 *1) (-12 (-5 *2 (-1028)) (-5 *1 (-749)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-583 (-1094))) (-5 *3 (-1094)) (-5 *1 (-1028)))) + ((*1 *2 *1) (-12 (-5 *2 (-1028)) (-5 *1 (-1029))))) +(((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-154)))) + ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-622)))) + ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-883)))) + ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-985)))) + ((*1 *2 *1) (-12 (-5 *2 (-1094)) (-5 *1 (-1028))))) +(((*1 *2 *1) (-12 (-5 *2 (-583 (-1129))) (-5 *1 (-622)))) + ((*1 *2 *1) (-12 (-5 *2 (-583 (-1094))) (-5 *1 (-1028))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1147 *5 *4)) (-4 *4 (-391)) (-4 *4 (-740)) (-14 *5 (-1089)) + (-5 *2 (-484)) (-5 *1 (-1027 *4 *5))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1146 *5 *4)) (-4 *4 (-390)) (-4 *4 (-739)) (-14 *5 (-1088)) - (-5 *2 (-483)) (-5 *1 (-1026 *4 *5))))) + (-12 (-5 *3 (-1147 *5 *4)) (-4 *4 (-391)) (-4 *4 (-740)) (-14 *5 (-1089)) + (-5 *2 (-484)) (-5 *1 (-1027 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1146 *5 *4)) (-4 *4 (-739)) (-14 *5 (-1088)) (-5 *2 (-483)) - (-5 *1 (-1026 *4 *5))))) + (-12 (-5 *3 (-1147 *5 *4)) (-4 *4 (-740)) (-14 *5 (-1089)) (-5 *2 (-484)) + (-5 *1 (-1027 *4 *5))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1146 *5 *4)) (-4 *4 (-739)) (-14 *5 (-1088)) (-5 *2 (-483)) - (-5 *1 (-1026 *4 *5))))) + (-12 (-5 *3 (-1147 *5 *4)) (-4 *4 (-740)) (-14 *5 (-1089)) (-5 *2 (-484)) + (-5 *1 (-1027 *4 *5))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1146 *5 *4)) (-4 *4 (-739)) (-14 *5 (-1088)) (-5 *2 (-582 *4)) - (-5 *1 (-1026 *4 *5))))) + (-12 (-5 *3 (-1147 *5 *4)) (-4 *4 (-740)) (-14 *5 (-1089)) (-5 *2 (-583 *4)) + (-5 *1 (-1027 *4 *5))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-739)) (-14 *5 (-1088)) (-5 *2 (-582 (-1146 *5 *4))) - (-5 *1 (-1026 *4 *5)) (-5 *3 (-1146 *5 *4))))) + (-12 (-4 *4 (-740)) (-14 *5 (-1089)) (-5 *2 (-583 (-1147 *5 *4))) + (-5 *1 (-1027 *4 *5)) (-5 *3 (-1147 *5 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-739)) (-14 *5 (-1088)) (-5 *2 (-582 (-1146 *5 *4))) - (-5 *1 (-1026 *4 *5)) (-5 *3 (-1146 *5 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *3 (-72)) (-5 *1 (-1021 *3))))) -(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-582 (-483))) (-5 *1 (-1020)) (-5 *3 (-483))))) -(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-582 (-483))) (-5 *1 (-1020)) (-5 *3 (-483))))) -(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-582 (-483))) (-5 *1 (-1020)) (-5 *3 (-483))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-1020))))) -(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-1177 (-483))) (-5 *3 (-483)) (-5 *1 (-1020)))) + (-12 (-4 *4 (-740)) (-14 *5 (-1089)) (-5 *2 (-583 (-1147 *5 *4))) + (-5 *1 (-1027 *4 *5)) (-5 *3 (-1147 *5 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *3 (-72)) (-5 *1 (-1022 *3))))) +(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-583 (-484))) (-5 *1 (-1021)) (-5 *3 (-484))))) +(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-583 (-484))) (-5 *1 (-1021)) (-5 *3 (-484))))) +(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-583 (-484))) (-5 *1 (-1021)) (-5 *3 (-484))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-1021))))) +(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-1178 (-484))) (-5 *3 (-484)) (-5 *1 (-1021)))) ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-1177 (-483))) (-5 *3 (-582 (-483))) (-5 *4 (-483)) - (-5 *1 (-1020))))) + (-12 (-5 *2 (-1178 (-484))) (-5 *3 (-583 (-484))) (-5 *4 (-484)) + (-5 *1 (-1021))))) (((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-582 (-483))) (-5 *3 (-582 (-829))) (-5 *4 (-85)) - (-5 *1 (-1020))))) + (-12 (-5 *2 (-583 (-484))) (-5 *3 (-583 (-830))) (-5 *4 (-85)) + (-5 *1 (-1021))))) (((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-629 (-483))) (-5 *3 (-582 (-483))) (-5 *1 (-1020))))) + (-12 (-5 *2 (-630 (-484))) (-5 *3 (-583 (-484))) (-5 *1 (-1021))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-582 (-829))) (-5 *4 (-582 (-483))) (-5 *2 (-629 (-483))) - (-5 *1 (-1020))))) + (-12 (-5 *3 (-583 (-830))) (-5 *4 (-583 (-484))) (-5 *2 (-630 (-484))) + (-5 *1 (-1021))))) (((*1 *2 *3) - (-12 (-5 *3 (-582 (-829))) (-5 *2 (-582 (-629 (-483)))) (-5 *1 (-1020))))) + (-12 (-5 *3 (-583 (-830))) (-5 *2 (-583 (-630 (-484)))) (-5 *1 (-1021))))) (((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-582 (-483))) (-5 *3 (-629 (-483))) (-5 *1 (-1020))))) + (-12 (-5 *2 (-583 (-484))) (-5 *3 (-630 (-484))) (-5 *1 (-1021))))) (((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-582 (-483))) (-5 *2 (-629 (-483))) (-5 *1 (-1020))))) + (-12 (-5 *3 (-583 (-484))) (-5 *2 (-630 (-484))) (-5 *1 (-1021))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-390)) (-4 *6 (-716)) (-4 *7 (-755)) (-4 *3 (-976 *5 *6 *7)) - (-5 *2 (-582 (-2 (|:| |val| *3) (|:| -1598 *4)))) - (-5 *1 (-1018 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3))))) + (-12 (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) + (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1599 *4)))) + (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-390)) (-4 *6 (-716)) (-4 *7 (-755)) (-4 *3 (-976 *5 *6 *7)) - (-5 *2 (-582 *4)) (-5 *1 (-1018 *5 *6 *7 *3 *4)) - (-4 *4 (-982 *5 *6 *7 *3))))) + (-12 (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) + (-5 *2 (-583 *4)) (-5 *1 (-1019 *5 *6 *7 *3 *4)) + (-4 *4 (-983 *5 *6 *7 *3))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-390)) (-4 *6 (-716)) (-4 *7 (-755)) (-4 *3 (-976 *5 *6 *7)) - (-5 *2 (-85)) (-5 *1 (-1018 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))) + (-12 (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) + (-5 *2 (-85)) (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-390)) (-4 *6 (-716)) (-4 *7 (-755)) (-4 *3 (-976 *5 *6 *7)) - (-5 *2 (-582 (-2 (|:| |val| (-85)) (|:| -1598 *4)))) - (-5 *1 (-1018 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3))))) + (-12 (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) + (-5 *2 (-583 (-2 (|:| |val| (-85)) (|:| -1599 *4)))) + (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-390)) (-4 *6 (-716)) (-4 *7 (-755)) (-4 *3 (-976 *5 *6 *7)) - (-5 *2 (-582 *4)) (-5 *1 (-1018 *5 *6 *7 *3 *4)) - (-4 *4 (-982 *5 *6 *7 *3))))) + (-12 (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) + (-5 *2 (-583 *4)) (-5 *1 (-1019 *5 *6 *7 *3 *4)) + (-4 *4 (-983 *5 *6 *7 *3))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-390)) (-4 *6 (-716)) (-4 *7 (-755)) (-4 *3 (-976 *5 *6 *7)) - (-5 *2 (-582 (-2 (|:| |val| (-85)) (|:| -1598 *4)))) - (-5 *1 (-1018 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3))))) + (-12 (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) + (-5 *2 (-583 (-2 (|:| |val| (-85)) (|:| -1599 *4)))) + (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-390)) (-4 *6 (-716)) (-4 *7 (-755)) (-4 *3 (-976 *5 *6 *7)) - (-5 *2 (-582 *4)) (-5 *1 (-1018 *5 *6 *7 *3 *4)) - (-4 *4 (-982 *5 *6 *7 *3))))) + (-12 (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) + (-5 *2 (-583 *4)) (-5 *1 (-1019 *5 *6 *7 *3 *4)) + (-4 *4 (-983 *5 *6 *7 *3))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-390)) (-4 *6 (-716)) (-4 *7 (-755)) (-4 *3 (-976 *5 *6 *7)) - (-5 *2 (-582 (-2 (|:| |val| (-85)) (|:| -1598 *4)))) - (-5 *1 (-1018 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3))))) + (-12 (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) + (-5 *2 (-583 (-2 (|:| |val| (-85)) (|:| -1599 *4)))) + (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3))))) (((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-390)) (-4 *6 (-716)) (-4 *7 (-755)) (-4 *3 (-976 *5 *6 *7)) - (-5 *2 (-582 (-2 (|:| |val| *3) (|:| -1598 *4)))) - (-5 *1 (-1018 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3))))) + (-12 (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) + (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1599 *4)))) + (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3))))) (((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-390)) (-4 *6 (-716)) (-4 *7 (-755)) (-4 *3 (-976 *5 *6 *7)) - (-5 *2 (-582 (-2 (|:| |val| *3) (|:| -1598 *4)))) - (-5 *1 (-1018 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3))))) + (-12 (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) + (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1599 *4)))) + (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3))))) (((*1 *2 *3 *3 *4 *5 *5) - (-12 (-5 *5 (-85)) (-4 *6 (-390)) (-4 *7 (-716)) (-4 *8 (-755)) - (-4 *3 (-976 *6 *7 *8)) (-5 *2 (-582 (-2 (|:| |val| *3) (|:| -1598 *4)))) - (-5 *1 (-1018 *6 *7 *8 *3 *4)) (-4 *4 (-982 *6 *7 *8 *3)))) + (-12 (-5 *5 (-85)) (-4 *6 (-391)) (-4 *7 (-717)) (-4 *8 (-756)) + (-4 *3 (-977 *6 *7 *8)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1599 *4)))) + (-5 *1 (-1019 *6 *7 *8 *3 *4)) (-4 *4 (-983 *6 *7 *8 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-582 (-2 (|:| |val| (-582 *8)) (|:| -1598 *9)))) (-5 *5 (-85)) - (-4 *8 (-976 *6 *7 *4)) (-4 *9 (-982 *6 *7 *4 *8)) (-4 *6 (-390)) - (-4 *7 (-716)) (-4 *4 (-755)) - (-5 *2 (-582 (-2 (|:| |val| *8) (|:| -1598 *9)))) - (-5 *1 (-1018 *6 *7 *4 *8 *9))))) + (-12 (-5 *3 (-583 (-2 (|:| |val| (-583 *8)) (|:| -1599 *9)))) (-5 *5 (-85)) + (-4 *8 (-977 *6 *7 *4)) (-4 *9 (-983 *6 *7 *4 *8)) (-4 *6 (-391)) + (-4 *7 (-717)) (-4 *4 (-756)) + (-5 *2 (-583 (-2 (|:| |val| *8) (|:| -1599 *9)))) + (-5 *1 (-1019 *6 *7 *4 *8 *9))))) (((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-390)) (-4 *6 (-716)) (-4 *7 (-755)) (-4 *3 (-976 *5 *6 *7)) - (-5 *2 (-582 (-2 (|:| |val| (-582 *3)) (|:| -1598 *4)))) - (-5 *1 (-1018 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3))))) + (-12 (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) + (-5 *2 (-583 (-2 (|:| |val| (-583 *3)) (|:| -1599 *4)))) + (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3))))) (((*1 *2) - (-12 (-4 *3 (-390)) (-4 *4 (-716)) (-4 *5 (-755)) (-4 *6 (-976 *3 *4 *5)) - (-5 *2 (-1183)) (-5 *1 (-983 *3 *4 *5 *6 *7)) (-4 *7 (-982 *3 *4 *5 *6)))) + (-12 (-4 *3 (-391)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) + (-5 *2 (-1184)) (-5 *1 (-984 *3 *4 *5 *6 *7)) (-4 *7 (-983 *3 *4 *5 *6)))) ((*1 *2) - (-12 (-4 *3 (-390)) (-4 *4 (-716)) (-4 *5 (-755)) (-4 *6 (-976 *3 *4 *5)) - (-5 *2 (-1183)) (-5 *1 (-1018 *3 *4 *5 *6 *7)) (-4 *7 (-982 *3 *4 *5 *6))))) + (-12 (-4 *3 (-391)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) + (-5 *2 (-1184)) (-5 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *7 (-983 *3 *4 *5 *6))))) (((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1071)) (-4 *4 (-390)) (-4 *5 (-716)) (-4 *6 (-755)) - (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-1183)) (-5 *1 (-983 *4 *5 *6 *7 *8)) - (-4 *8 (-982 *4 *5 *6 *7)))) + (-12 (-5 *3 (-1072)) (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) + (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-1184)) (-5 *1 (-984 *4 *5 *6 *7 *8)) + (-4 *8 (-983 *4 *5 *6 *7)))) ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1071)) (-4 *4 (-390)) (-4 *5 (-716)) (-4 *6 (-755)) - (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-1183)) (-5 *1 (-1018 *4 *5 *6 *7 *8)) - (-4 *8 (-982 *4 *5 *6 *7))))) + (-12 (-5 *3 (-1072)) (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) + (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-1184)) (-5 *1 (-1019 *4 *5 *6 *7 *8)) + (-4 *8 (-983 *4 *5 *6 *7))))) (((*1 *2) - (-12 (-4 *3 (-390)) (-4 *4 (-716)) (-4 *5 (-755)) (-4 *6 (-976 *3 *4 *5)) - (-5 *2 (-1183)) (-5 *1 (-983 *3 *4 *5 *6 *7)) (-4 *7 (-982 *3 *4 *5 *6)))) + (-12 (-4 *3 (-391)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) + (-5 *2 (-1184)) (-5 *1 (-984 *3 *4 *5 *6 *7)) (-4 *7 (-983 *3 *4 *5 *6)))) ((*1 *2) - (-12 (-4 *3 (-390)) (-4 *4 (-716)) (-4 *5 (-755)) (-4 *6 (-976 *3 *4 *5)) - (-5 *2 (-1183)) (-5 *1 (-1018 *3 *4 *5 *6 *7)) (-4 *7 (-982 *3 *4 *5 *6))))) + (-12 (-4 *3 (-391)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) + (-5 *2 (-1184)) (-5 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *7 (-983 *3 *4 *5 *6))))) (((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1071)) (-4 *4 (-390)) (-4 *5 (-716)) (-4 *6 (-755)) - (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-1183)) (-5 *1 (-983 *4 *5 *6 *7 *8)) - (-4 *8 (-982 *4 *5 *6 *7)))) + (-12 (-5 *3 (-1072)) (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) + (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-1184)) (-5 *1 (-984 *4 *5 *6 *7 *8)) + (-4 *8 (-983 *4 *5 *6 *7)))) ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1071)) (-4 *4 (-390)) (-4 *5 (-716)) (-4 *6 (-755)) - (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-1183)) (-5 *1 (-1018 *4 *5 *6 *7 *8)) - (-4 *8 (-982 *4 *5 *6 *7))))) + (-12 (-5 *3 (-1072)) (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) + (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-1184)) (-5 *1 (-1019 *4 *5 *6 *7 *8)) + (-4 *8 (-983 *4 *5 *6 *7))))) (((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) - (|partial| -12 (-5 *5 (-85)) (-4 *6 (-390)) (-4 *7 (-716)) (-4 *8 (-755)) - (-4 *9 (-976 *6 *7 *8)) - (-5 *2 (-2 (|:| -3265 (-582 *9)) (|:| -1598 *4) (|:| |ineq| (-582 *9)))) - (-5 *1 (-900 *6 *7 *8 *9 *4)) (-5 *3 (-582 *9)) (-4 *4 (-982 *6 *7 *8 *9)))) + (|partial| -12 (-5 *5 (-85)) (-4 *6 (-391)) (-4 *7 (-717)) (-4 *8 (-756)) + (-4 *9 (-977 *6 *7 *8)) + (-5 *2 (-2 (|:| -3266 (-583 *9)) (|:| -1599 *4) (|:| |ineq| (-583 *9)))) + (-5 *1 (-901 *6 *7 *8 *9 *4)) (-5 *3 (-583 *9)) (-4 *4 (-983 *6 *7 *8 *9)))) ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) - (|partial| -12 (-5 *5 (-85)) (-4 *6 (-390)) (-4 *7 (-716)) (-4 *8 (-755)) - (-4 *9 (-976 *6 *7 *8)) - (-5 *2 (-2 (|:| -3265 (-582 *9)) (|:| -1598 *4) (|:| |ineq| (-582 *9)))) - (-5 *1 (-1017 *6 *7 *8 *9 *4)) (-5 *3 (-582 *9)) - (-4 *4 (-982 *6 *7 *8 *9))))) + (|partial| -12 (-5 *5 (-85)) (-4 *6 (-391)) (-4 *7 (-717)) (-4 *8 (-756)) + (-4 *9 (-977 *6 *7 *8)) + (-5 *2 (-2 (|:| -3266 (-583 *9)) (|:| -1599 *4) (|:| |ineq| (-583 *9)))) + (-5 *1 (-1018 *6 *7 *8 *9 *4)) (-5 *3 (-583 *9)) + (-4 *4 (-983 *6 *7 *8 *9))))) (((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-582 *10)) (-5 *5 (-85)) (-4 *10 (-982 *6 *7 *8 *9)) - (-4 *6 (-390)) (-4 *7 (-716)) (-4 *8 (-755)) (-4 *9 (-976 *6 *7 *8)) + (-12 (-5 *4 (-583 *10)) (-5 *5 (-85)) (-4 *10 (-983 *6 *7 *8 *9)) + (-4 *6 (-391)) (-4 *7 (-717)) (-4 *8 (-756)) (-4 *9 (-977 *6 *7 *8)) (-5 *2 - (-582 (-2 (|:| -3265 (-582 *9)) (|:| -1598 *10) (|:| |ineq| (-582 *9))))) - (-5 *1 (-900 *6 *7 *8 *9 *10)) (-5 *3 (-582 *9)))) + (-583 (-2 (|:| -3266 (-583 *9)) (|:| -1599 *10) (|:| |ineq| (-583 *9))))) + (-5 *1 (-901 *6 *7 *8 *9 *10)) (-5 *3 (-583 *9)))) ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-582 *10)) (-5 *5 (-85)) (-4 *10 (-982 *6 *7 *8 *9)) - (-4 *6 (-390)) (-4 *7 (-716)) (-4 *8 (-755)) (-4 *9 (-976 *6 *7 *8)) + (-12 (-5 *4 (-583 *10)) (-5 *5 (-85)) (-4 *10 (-983 *6 *7 *8 *9)) + (-4 *6 (-391)) (-4 *7 (-717)) (-4 *8 (-756)) (-4 *9 (-977 *6 *7 *8)) (-5 *2 - (-582 (-2 (|:| -3265 (-582 *9)) (|:| -1598 *10) (|:| |ineq| (-582 *9))))) - (-5 *1 (-1017 *6 *7 *8 *9 *10)) (-5 *3 (-582 *9))))) + (-583 (-2 (|:| -3266 (-583 *9)) (|:| -1599 *10) (|:| |ineq| (-583 *9))))) + (-5 *1 (-1018 *6 *7 *8 *9 *10)) (-5 *3 (-583 *9))))) (((*1 *2 *2) - (-12 (-5 *2 (-582 (-2 (|:| |val| (-582 *6)) (|:| -1598 *7)))) - (-4 *6 (-976 *3 *4 *5)) (-4 *7 (-982 *3 *4 *5 *6)) (-4 *3 (-390)) - (-4 *4 (-716)) (-4 *5 (-755)) (-5 *1 (-900 *3 *4 *5 *6 *7)))) + (-12 (-5 *2 (-583 (-2 (|:| |val| (-583 *6)) (|:| -1599 *7)))) + (-4 *6 (-977 *3 *4 *5)) (-4 *7 (-983 *3 *4 *5 *6)) (-4 *3 (-391)) + (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-901 *3 *4 *5 *6 *7)))) ((*1 *2 *2) - (-12 (-5 *2 (-582 (-2 (|:| |val| (-582 *6)) (|:| -1598 *7)))) - (-4 *6 (-976 *3 *4 *5)) (-4 *7 (-982 *3 *4 *5 *6)) (-4 *3 (-390)) - (-4 *4 (-716)) (-4 *5 (-755)) (-5 *1 (-1017 *3 *4 *5 *6 *7))))) + (-12 (-5 *2 (-583 (-2 (|:| |val| (-583 *6)) (|:| -1599 *7)))) + (-4 *6 (-977 *3 *4 *5)) (-4 *7 (-983 *3 *4 *5 *6)) (-4 *3 (-391)) + (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-1018 *3 *4 *5 *6 *7))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-2 (|:| |val| (-582 *7)) (|:| -1598 *8))) - (-4 *7 (-976 *4 *5 *6)) (-4 *8 (-982 *4 *5 *6 *7)) (-4 *4 (-390)) - (-4 *5 (-716)) (-4 *6 (-755)) (-5 *2 (-85)) (-5 *1 (-900 *4 *5 *6 *7 *8)))) + (-12 (-5 *3 (-2 (|:| |val| (-583 *7)) (|:| -1599 *8))) + (-4 *7 (-977 *4 *5 *6)) (-4 *8 (-983 *4 *5 *6 *7)) (-4 *4 (-391)) + (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-901 *4 *5 *6 *7 *8)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-2 (|:| |val| (-582 *7)) (|:| -1598 *8))) - (-4 *7 (-976 *4 *5 *6)) (-4 *8 (-982 *4 *5 *6 *7)) (-4 *4 (-390)) - (-4 *5 (-716)) (-4 *6 (-755)) (-5 *2 (-85)) (-5 *1 (-1017 *4 *5 *6 *7 *8))))) + (-12 (-5 *3 (-2 (|:| |val| (-583 *7)) (|:| -1599 *8))) + (-4 *7 (-977 *4 *5 *6)) (-4 *8 (-983 *4 *5 *6 *7)) (-4 *4 (-391)) + (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-1018 *4 *5 *6 *7 *8))))) (((*1 *2 *2) - (-12 (-5 *2 (-582 *7)) (-4 *7 (-982 *3 *4 *5 *6)) (-4 *3 (-390)) - (-4 *4 (-716)) (-4 *5 (-755)) (-4 *6 (-976 *3 *4 *5)) - (-5 *1 (-900 *3 *4 *5 *6 *7)))) + (-12 (-5 *2 (-583 *7)) (-4 *7 (-983 *3 *4 *5 *6)) (-4 *3 (-391)) + (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) + (-5 *1 (-901 *3 *4 *5 *6 *7)))) ((*1 *2 *2) - (-12 (-5 *2 (-582 *7)) (-4 *7 (-982 *3 *4 *5 *6)) (-4 *3 (-390)) - (-4 *4 (-716)) (-4 *5 (-755)) (-4 *6 (-976 *3 *4 *5)) - (-5 *1 (-1017 *3 *4 *5 *6 *7))))) + (-12 (-5 *2 (-583 *7)) (-4 *7 (-983 *3 *4 *5 *6)) (-4 *3 (-391)) + (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) + (-5 *1 (-1018 *3 *4 *5 *6 *7))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-390)) (-4 *5 (-716)) (-4 *6 (-755)) (-4 *7 (-976 *4 *5 *6)) - (-5 *2 (-85)) (-5 *1 (-900 *4 *5 *6 *7 *3)) (-4 *3 (-982 *4 *5 *6 *7)))) + (-12 (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)) + (-5 *2 (-85)) (-5 *1 (-901 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-582 *3)) (-4 *3 (-982 *5 *6 *7 *8)) (-4 *5 (-390)) - (-4 *6 (-716)) (-4 *7 (-755)) (-4 *8 (-976 *5 *6 *7)) (-5 *2 (-85)) - (-5 *1 (-900 *5 *6 *7 *8 *3)))) + (-12 (-5 *4 (-583 *3)) (-4 *3 (-983 *5 *6 *7 *8)) (-4 *5 (-391)) + (-4 *6 (-717)) (-4 *7 (-756)) (-4 *8 (-977 *5 *6 *7)) (-5 *2 (-85)) + (-5 *1 (-901 *5 *6 *7 *8 *3)))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-390)) (-4 *5 (-716)) (-4 *6 (-755)) (-4 *7 (-976 *4 *5 *6)) - (-5 *2 (-85)) (-5 *1 (-1017 *4 *5 *6 *7 *3)) (-4 *3 (-982 *4 *5 *6 *7)))) + (-12 (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)) + (-5 *2 (-85)) (-5 *1 (-1018 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-582 *3)) (-4 *3 (-982 *5 *6 *7 *8)) (-4 *5 (-390)) - (-4 *6 (-716)) (-4 *7 (-755)) (-4 *8 (-976 *5 *6 *7)) (-5 *2 (-85)) - (-5 *1 (-1017 *5 *6 *7 *8 *3))))) + (-12 (-5 *4 (-583 *3)) (-4 *3 (-983 *5 *6 *7 *8)) (-4 *5 (-391)) + (-4 *6 (-717)) (-4 *7 (-756)) (-4 *8 (-977 *5 *6 *7)) (-5 *2 (-85)) + (-5 *1 (-1018 *5 *6 *7 *8 *3))))) (((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-390)) (-4 *5 (-716)) (-4 *6 (-755)) - (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-900 *4 *5 *6 *7 *3)) - (-4 *3 (-982 *4 *5 *6 *7)))) + (|partial| -12 (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) + (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-901 *4 *5 *6 *7 *3)) + (-4 *3 (-983 *4 *5 *6 *7)))) ((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-390)) (-4 *5 (-716)) (-4 *6 (-755)) - (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-1017 *4 *5 *6 *7 *3)) - (-4 *3 (-982 *4 *5 *6 *7))))) + (|partial| -12 (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) + (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-1018 *4 *5 *6 *7 *3)) + (-4 *3 (-983 *4 *5 *6 *7))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-582 *7)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-390)) (-4 *5 (-716)) - (-4 *6 (-755)) (-5 *2 (-85)) (-5 *1 (-900 *4 *5 *6 *7 *8)) - (-4 *8 (-982 *4 *5 *6 *7)))) + (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-391)) (-4 *5 (-717)) + (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-901 *4 *5 *6 *7 *8)) + (-4 *8 (-983 *4 *5 *6 *7)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-582 *7)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-390)) (-4 *5 (-716)) - (-4 *6 (-755)) (-5 *2 (-85)) (-5 *1 (-1017 *4 *5 *6 *7 *8)) - (-4 *8 (-982 *4 *5 *6 *7))))) + (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-391)) (-4 *5 (-717)) + (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-1018 *4 *5 *6 *7 *8)) + (-4 *8 (-983 *4 *5 *6 *7))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-582 *7)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-390)) (-4 *5 (-716)) - (-4 *6 (-755)) (-5 *2 (-85)) (-5 *1 (-900 *4 *5 *6 *7 *8)) - (-4 *8 (-982 *4 *5 *6 *7)))) + (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-391)) (-4 *5 (-717)) + (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-901 *4 *5 *6 *7 *8)) + (-4 *8 (-983 *4 *5 *6 *7)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-582 *7)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-390)) (-4 *5 (-716)) - (-4 *6 (-755)) (-5 *2 (-85)) (-5 *1 (-1017 *4 *5 *6 *7 *8)) - (-4 *8 (-982 *4 *5 *6 *7))))) + (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-391)) (-4 *5 (-717)) + (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-1018 *4 *5 *6 *7 *8)) + (-4 *8 (-983 *4 *5 *6 *7))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-582 *7)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-390)) (-4 *5 (-716)) - (-4 *6 (-755)) (-5 *2 (-85)) (-5 *1 (-900 *4 *5 *6 *7 *8)) - (-4 *8 (-982 *4 *5 *6 *7)))) + (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-391)) (-4 *5 (-717)) + (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-901 *4 *5 *6 *7 *8)) + (-4 *8 (-983 *4 *5 *6 *7)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-582 *7)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-390)) (-4 *5 (-716)) - (-4 *6 (-755)) (-5 *2 (-85)) (-5 *1 (-1017 *4 *5 *6 *7 *8)) - (-4 *8 (-982 *4 *5 *6 *7))))) + (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-391)) (-4 *5 (-717)) + (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-1018 *4 *5 *6 *7 *8)) + (-4 *8 (-983 *4 *5 *6 *7))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-390)) (-4 *5 (-716)) (-4 *6 (-755)) (-4 *7 (-976 *4 *5 *6)) - (-5 *2 (-85)) (-5 *1 (-900 *4 *5 *6 *7 *3)) (-4 *3 (-982 *4 *5 *6 *7)))) + (-12 (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)) + (-5 *2 (-85)) (-5 *1 (-901 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7)))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-390)) (-4 *5 (-716)) (-4 *6 (-755)) (-4 *7 (-976 *4 *5 *6)) - (-5 *2 (-85)) (-5 *1 (-1017 *4 *5 *6 *7 *3)) (-4 *3 (-982 *4 *5 *6 *7))))) + (-12 (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)) + (-5 *2 (-85)) (-5 *1 (-1018 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-390)) (-4 *5 (-716)) (-4 *6 (-755)) (-4 *7 (-976 *4 *5 *6)) - (-5 *2 (-85)) (-5 *1 (-900 *4 *5 *6 *7 *3)) (-4 *3 (-982 *4 *5 *6 *7)))) + (-12 (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)) + (-5 *2 (-85)) (-5 *1 (-901 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7)))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-390)) (-4 *5 (-716)) (-4 *6 (-755)) (-4 *7 (-976 *4 *5 *6)) - (-5 *2 (-85)) (-5 *1 (-1017 *4 *5 *6 *7 *3)) (-4 *3 (-982 *4 *5 *6 *7))))) + (-12 (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)) + (-5 *2 (-85)) (-5 *1 (-1018 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7))))) (((*1 *2 *2) - (-12 (-5 *2 (-582 *7)) (-4 *7 (-982 *3 *4 *5 *6)) (-4 *3 (-390)) - (-4 *4 (-716)) (-4 *5 (-755)) (-4 *6 (-976 *3 *4 *5)) - (-5 *1 (-900 *3 *4 *5 *6 *7)))) + (-12 (-5 *2 (-583 *7)) (-4 *7 (-983 *3 *4 *5 *6)) (-4 *3 (-391)) + (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) + (-5 *1 (-901 *3 *4 *5 *6 *7)))) ((*1 *2 *2) - (-12 (-5 *2 (-582 *7)) (-4 *7 (-982 *3 *4 *5 *6)) (-4 *3 (-390)) - (-4 *4 (-716)) (-4 *5 (-755)) (-4 *6 (-976 *3 *4 *5)) - (-5 *1 (-1017 *3 *4 *5 *6 *7))))) + (-12 (-5 *2 (-583 *7)) (-4 *7 (-983 *3 *4 *5 *6)) (-4 *3 (-391)) + (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) + (-5 *1 (-1018 *3 *4 *5 *6 *7))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-390)) (-4 *5 (-716)) (-4 *6 (-755)) (-4 *7 (-976 *4 *5 *6)) - (-5 *2 (-85)) (-5 *1 (-900 *4 *5 *6 *7 *3)) (-4 *3 (-982 *4 *5 *6 *7)))) + (-12 (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)) + (-5 *2 (-85)) (-5 *1 (-901 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7)))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-390)) (-4 *5 (-716)) (-4 *6 (-755)) (-4 *7 (-976 *4 *5 *6)) - (-5 *2 (-85)) (-5 *1 (-1017 *4 *5 *6 *7 *3)) (-4 *3 (-982 *4 *5 *6 *7))))) + (-12 (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)) + (-5 *2 (-85)) (-5 *1 (-1018 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7))))) (((*1 *2) - (-12 (-4 *3 (-390)) (-4 *4 (-716)) (-4 *5 (-755)) (-4 *6 (-976 *3 *4 *5)) - (-5 *2 (-1183)) (-5 *1 (-900 *3 *4 *5 *6 *7)) (-4 *7 (-982 *3 *4 *5 *6)))) + (-12 (-4 *3 (-391)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) + (-5 *2 (-1184)) (-5 *1 (-901 *3 *4 *5 *6 *7)) (-4 *7 (-983 *3 *4 *5 *6)))) ((*1 *2) - (-12 (-4 *3 (-390)) (-4 *4 (-716)) (-4 *5 (-755)) (-4 *6 (-976 *3 *4 *5)) - (-5 *2 (-1183)) (-5 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *7 (-982 *3 *4 *5 *6))))) + (-12 (-4 *3 (-391)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) + (-5 *2 (-1184)) (-5 *1 (-1018 *3 *4 *5 *6 *7)) (-4 *7 (-983 *3 *4 *5 *6))))) (((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1071)) (-4 *4 (-390)) (-4 *5 (-716)) (-4 *6 (-755)) - (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-1183)) (-5 *1 (-900 *4 *5 *6 *7 *8)) - (-4 *8 (-982 *4 *5 *6 *7)))) + (-12 (-5 *3 (-1072)) (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) + (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-1184)) (-5 *1 (-901 *4 *5 *6 *7 *8)) + (-4 *8 (-983 *4 *5 *6 *7)))) ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1071)) (-4 *4 (-390)) (-4 *5 (-716)) (-4 *6 (-755)) - (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-1183)) (-5 *1 (-1017 *4 *5 *6 *7 *8)) - (-4 *8 (-982 *4 *5 *6 *7))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-985)))) + (-12 (-5 *3 (-1072)) (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) + (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-1184)) (-5 *1 (-1018 *4 *5 *6 *7 *8)) + (-4 *8 (-983 *4 *5 *6 *7))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-986)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-1015 *3 *4 *5 *6 *7)) (-4 *3 (-1012)) (-4 *4 (-1012)) - (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *7 (-1012)) (-5 *2 (-85))))) + (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013)) + (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-1015 *3 *4 *5 *6 *7)) (-4 *3 (-1012)) (-4 *4 (-1012)) - (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *7 (-1012)) (-5 *2 (-85))))) + (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013)) + (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-1015 *3 *4 *5 *6 *7)) (-4 *3 (-1012)) (-4 *4 (-1012)) - (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *7 (-1012)) (-5 *2 (-85))))) + (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013)) + (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-1015 *3 *4 *5 *6 *7)) (-4 *3 (-1012)) (-4 *4 (-1012)) - (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *7 (-1012)) (-5 *2 (-85))))) + (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013)) + (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-1015 *3 *4 *5 *6 *7)) (-4 *3 (-1012)) (-4 *4 (-1012)) - (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *7 (-1012)) (-5 *2 (-85))))) + (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013)) + (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-1015 *3 *4 *5 *6 *7)) (-4 *3 (-1012)) (-4 *4 (-1012)) - (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *7 (-1012)) (-5 *2 (-85))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-799 *3)) (-4 *3 (-1012)))) + (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013)) + (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-85))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-800 *3)) (-4 *3 (-1013)))) ((*1 *2 *1) - (-12 (-4 *1 (-1015 *3 *4 *5 *6 *7)) (-4 *3 (-1012)) (-4 *4 (-1012)) - (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *7 (-1012)) (-5 *2 (-85))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-375)))) - ((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-504 *3)) (-4 *3 (-949 (-483))))) + (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013)) + (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-85))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-376)))) + ((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-505 *3)) (-4 *3 (-950 (-484))))) ((*1 *2 *1) - (-12 (-4 *1 (-1015 *3 *4 *5 *6 *7)) (-4 *3 (-1012)) (-4 *4 (-1012)) - (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *7 (-1012)) (-5 *2 (-85))))) + (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013)) + (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-1015 *3 *4 *5 *6 *7)) (-4 *3 (-1012)) (-4 *4 (-1012)) - (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *7 (-1012)) (-5 *2 (-85))))) + (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013)) + (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-5 *2 (-582 (-2 (|:| -3858 (-1088)) (|:| |entry| *4)))) - (-5 *1 (-797 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1012)))) + (-12 (-5 *2 (-583 (-2 (|:| -3859 (-1089)) (|:| |entry| *4)))) + (-5 *1 (-798 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)))) ((*1 *2 *1) - (-12 (-4 *3 (-1012)) (-4 *4 (-1012)) (-4 *5 (-1012)) (-4 *6 (-1012)) - (-4 *7 (-1012)) (-5 *2 (-582 *1)) (-4 *1 (-1015 *3 *4 *5 *6 *7))))) + (-12 (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) + (-4 *7 (-1013)) (-5 *2 (-583 *1)) (-4 *1 (-1016 *3 *4 *5 *6 *7))))) (((*1 *2 *1) - (-12 (-4 *1 (-1015 *3 *2 *4 *5 *6)) (-4 *3 (-1012)) (-4 *4 (-1012)) - (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *2 (-1012))))) -(((*1 *2 *3) (-12 (-5 *2 (-483)) (-5 *1 (-504 *3)) (-4 *3 (-949 *2)))) + (-12 (-4 *1 (-1016 *3 *2 *4 *5 *6)) (-4 *3 (-1013)) (-4 *4 (-1013)) + (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *2 (-1013))))) +(((*1 *2 *3) (-12 (-5 *2 (-484)) (-5 *1 (-505 *3)) (-4 *3 (-950 *2)))) ((*1 *2 *1) - (-12 (-4 *1 (-1015 *3 *4 *2 *5 *6)) (-4 *3 (-1012)) (-4 *4 (-1012)) - (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *2 (-1012))))) -(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-483)) (-5 *3 (-829)) (-4 *1 (-345)))) - ((*1 *1 *2 *2) (-12 (-5 *2 (-483)) (-4 *1 (-345)))) + (-12 (-4 *1 (-1016 *3 *4 *2 *5 *6)) (-4 *3 (-1013)) (-4 *4 (-1013)) + (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *2 (-1013))))) +(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-484)) (-5 *3 (-830)) (-4 *1 (-346)))) + ((*1 *1 *2 *2) (-12 (-5 *2 (-484)) (-4 *1 (-346)))) ((*1 *2 *1) - (-12 (-4 *1 (-1015 *3 *4 *5 *2 *6)) (-4 *3 (-1012)) (-4 *4 (-1012)) - (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *2 (-1012))))) + (-12 (-4 *1 (-1016 *3 *4 *5 *2 *6)) (-4 *3 (-1013)) (-4 *4 (-1013)) + (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *2 (-1013))))) (((*1 *2 *1) - (-12 (-4 *1 (-1015 *3 *4 *5 *6 *2)) (-4 *3 (-1012)) (-4 *4 (-1012)) - (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *2 (-1012))))) + (-12 (-4 *1 (-1016 *3 *4 *5 *6 *2)) (-4 *3 (-1013)) (-4 *4 (-1013)) + (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *2 (-1013))))) (((*1 *1 *1) - (-12 (-4 *1 (-1015 *2 *3 *4 *5 *6)) (-4 *2 (-1012)) (-4 *3 (-1012)) - (-4 *4 (-1012)) (-4 *5 (-1012)) (-4 *6 (-1012))))) + (-12 (-4 *1 (-1016 *2 *3 *4 *5 *6)) (-4 *2 (-1013)) (-4 *3 (-1013)) + (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013))))) (((*1 *1 *1) - (-12 (-4 *1 (-1015 *2 *3 *4 *5 *6)) (-4 *2 (-1012)) (-4 *3 (-1012)) - (-4 *4 (-1012)) (-4 *5 (-1012)) (-4 *6 (-1012))))) + (-12 (-4 *1 (-1016 *2 *3 *4 *5 *6)) (-4 *2 (-1013)) (-4 *3 (-1013)) + (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013))))) (((*1 *1 *1 *2) - (|partial| -12 (-5 *2 (-829)) (-5 *1 (-1013 *3 *4)) (-14 *3 *2) (-14 *4 *2)))) + (|partial| -12 (-5 *2 (-830)) (-5 *1 (-1014 *3 *4)) (-14 *3 *2) (-14 *4 *2)))) (((*1 *1 *1 *2 *2) - (|partial| -12 (-5 *2 (-829)) (-5 *1 (-1013 *3 *4)) (-14 *3 *2) (-14 *4 *2)))) -(((*1 *2 *1) (-12 (-5 *2 (-582 (-1047))) (-5 *1 (-612)))) + (|partial| -12 (-5 *2 (-830)) (-5 *1 (-1014 *3 *4)) (-14 *3 *2) (-14 *4 *2)))) +(((*1 *2 *1) (-12 (-5 *2 (-583 (-1048))) (-5 *1 (-613)))) ((*1 *2 *1) - (-12 (-5 *2 (-582 (-829))) (-5 *1 (-1013 *3 *4)) (-14 *3 (-829)) - (-14 *4 (-829))))) + (-12 (-5 *2 (-583 (-830))) (-5 *1 (-1014 *3 *4)) (-14 *3 (-830)) + (-14 *4 (-830))))) (((*1 *1 *2) - (-12 (-5 *2 (-582 (-829))) (-5 *1 (-1013 *3 *4)) (-14 *3 (-829)) - (-14 *4 (-829))))) + (-12 (-5 *2 (-583 (-830))) (-5 *1 (-1014 *3 *4)) (-14 *3 (-830)) + (-14 *4 (-830))))) (((*1 *2) - (-12 (-5 *2 (-1177 (-1013 *3 *4))) (-5 *1 (-1013 *3 *4)) (-14 *3 (-829)) - (-14 *4 (-829))))) + (-12 (-5 *2 (-1178 (-1014 *3 *4))) (-5 *1 (-1014 *3 *4)) (-14 *3 (-830)) + (-14 *4 (-830))))) (((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -3993)) (-4 *1 (-427 *3)) (-4 *3 (-1127)) (-4 *3 (-1012)) + (-12 (-4 *1 (-317 *3)) (-4 *3 (-1128)) (-4 *3 (-1013)) (-5 *2 (-85)))) + ((*1 *2 *3 *1) + (-12 (|has| *1 (-6 -3994)) (-4 *1 (-428 *3)) (-4 *3 (-1128)) (-4 *3 (-1013)) (-5 *2 (-85)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-812 *4)) (-4 *4 (-1012)) (-5 *2 (-85)) (-5 *1 (-815 *4)))) + (-12 (-5 *3 (-813 *4)) (-4 *4 (-1013)) (-5 *2 (-85)) (-5 *1 (-816 *4)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-829)) (-5 *2 (-85)) (-5 *1 (-1013 *4 *5)) (-14 *4 *3) + (-12 (-5 *3 (-830)) (-5 *2 (-85)) (-5 *1 (-1014 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) (((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-829)) (-5 *2 (-693)) (-5 *1 (-1013 *4 *5)) (-14 *4 *3) + (-12 (-5 *3 (-830)) (-5 *2 (-694)) (-5 *1 (-1014 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) -(((*1 *2 *1) (-12 (-4 *1 (-1012)) (-5 *2 (-1032))))) -(((*1 *2 *1) (-12 (-4 *1 (-1012)) (-5 *2 (-1071))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1010 *3)) (-4 *3 (-1012)) (-5 *2 (-85))))) -(((*1 *1 *2) (-12 (-5 *2 (-582 (-771))) (-5 *1 (-771)))) - ((*1 *1 *1) (-5 *1 (-771))) - ((*1 *1 *2) (-12 (-5 *2 (-582 *3)) (-4 *3 (-1012)) (-4 *1 (-1010 *3)))) - ((*1 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1012))))) -(((*1 *1 *2) (-12 (-5 *2 (-582 *3)) (-4 *3 (-1012)) (-4 *1 (-1010 *3)))) - ((*1 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1012))))) +(((*1 *2 *1) (-12 (-4 *1 (-1013)) (-5 *2 (-1033))))) +(((*1 *2 *1) (-12 (-4 *1 (-1013)) (-5 *2 (-1072))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1011 *3)) (-4 *3 (-1013)) (-5 *2 (-85))))) +(((*1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772)))) + ((*1 *1 *1) (-5 *1 (-772))) + ((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1013)) (-4 *1 (-1011 *3)))) + ((*1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013))))) +(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1013)) (-4 *1 (-1011 *3)))) + ((*1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013))))) (((*1 *1 *2) - (-12 (-5 *2 (-582 (-442 *3 *4 *5 *6))) (-4 *3 (-312)) (-4 *4 (-716)) - (-4 *5 (-755)) (-5 *1 (-442 *3 *4 *5 *6)) (-4 *6 (-860 *3 *4 *5)))) + (-12 (-5 *2 (-583 (-443 *3 *4 *5 *6))) (-4 *3 (-312)) (-4 *4 (-717)) + (-4 *5 (-756)) (-5 *1 (-443 *3 *4 *5 *6)) (-4 *6 (-861 *3 *4 *5)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-312)) (-4 *3 (-716)) (-4 *4 (-755)) (-5 *1 (-442 *2 *3 *4 *5)) - (-4 *5 (-860 *2 *3 *4)))) + (-12 (-4 *2 (-312)) (-4 *3 (-717)) (-4 *4 (-756)) (-5 *1 (-443 *2 *3 *4 *5)) + (-4 *5 (-861 *2 *3 *4)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-582 *1)) (-4 *1 (-982 *4 *5 *6 *3)) (-4 *4 (-390)) - (-4 *5 (-716)) (-4 *6 (-755)) (-4 *3 (-976 *4 *5 *6)))) + (-12 (-5 *2 (-583 *1)) (-4 *1 (-983 *4 *5 *6 *3)) (-4 *4 (-391)) + (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-582 *1)) (-5 *3 (-582 *7)) (-4 *1 (-982 *4 *5 *6 *7)) - (-4 *4 (-390)) (-4 *5 (-716)) (-4 *6 (-755)) (-4 *7 (-976 *4 *5 *6)))) + (-12 (-5 *2 (-583 *1)) (-5 *3 (-583 *7)) (-4 *1 (-983 *4 *5 *6 *7)) + (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-582 *7)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-390)) (-4 *5 (-716)) - (-4 *6 (-755)) (-5 *2 (-582 *1)) (-4 *1 (-982 *4 *5 *6 *7)))) + (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-391)) (-4 *5 (-717)) + (-4 *6 (-756)) (-5 *2 (-583 *1)) (-4 *1 (-983 *4 *5 *6 *7)))) ((*1 *2 *3 *1) - (-12 (-4 *4 (-390)) (-4 *5 (-716)) (-4 *6 (-755)) (-4 *3 (-976 *4 *5 *6)) - (-5 *2 (-582 *1)) (-4 *1 (-982 *4 *5 *6 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1012))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1012)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1012))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1012))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1010 *3)) (-4 *3 (-1012)) (-5 *2 (-85))))) + (-12 (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6)) + (-5 *2 (-583 *1)) (-4 *1 (-983 *4 *5 *6 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1011 *3)) (-4 *3 (-1013)) (-5 *2 (-85))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-582 (-549 *4))) (-4 *4 (-362 *3)) (-4 *3 (-1012)) - (-5 *1 (-508 *3 *4)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-797 *2 *3)) (-4 *2 (-1012)) (-4 *3 (-1012)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1012)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1012)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1012))))) -(((*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-31)))) - ((*1 *2 *1) (-12 (-5 *2 (-1093)) (-5 *1 (-49)))) - ((*1 *2 *1) (-12 (-5 *2 (-582 (-1047))) (-5 *1 (-106)))) - ((*1 *2 *1) (-12 (-5 *2 (-582 (-1047))) (-5 *1 (-111)))) - ((*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-127)))) - ((*1 *2 *1) (-12 (-5 *2 (-582 (-1047))) (-5 *1 (-135)))) - ((*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-172)))) - ((*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-616)))) - ((*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-931)))) - ((*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-977)))) - ((*1 *2 *1) (-12 (-5 *2 (-582 (-1047))) (-5 *1 (-1007))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-483)) (-4 *1 (-1005 *3)) (-4 *3 (-1127))))) -(((*1 *2 *1) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-1127))))) -(((*1 *2 *1) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-1127))))) -(((*1 *2 *1) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-1127))))) -(((*1 *2 *1) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-1127))))) -(((*1 *2 *1) (-12 (-4 *1 (-1005 *3)) (-4 *3 (-1127)) (-5 *2 (-483))))) -(((*1 *1 *2 *2) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1127)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1088)) (-5 *3 (-1071)) (-5 *1 (-901)))) + (-12 (-5 *2 (-583 (-550 *4))) (-4 *4 (-363 *3)) (-4 *3 (-1013)) + (-5 *1 (-509 *3 *4)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-798 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013))))) +(((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-31)))) + ((*1 *2 *1) (-12 (-5 *2 (-1094)) (-5 *1 (-49)))) + ((*1 *2 *1) (-12 (-5 *2 (-583 (-1048))) (-5 *1 (-106)))) + ((*1 *2 *1) (-12 (-5 *2 (-583 (-1048))) (-5 *1 (-111)))) + ((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-127)))) + ((*1 *2 *1) (-12 (-5 *2 (-583 (-1048))) (-5 *1 (-135)))) + ((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-172)))) + ((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-617)))) + ((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-932)))) + ((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-978)))) + ((*1 *2 *1) (-12 (-5 *2 (-583 (-1048))) (-5 *1 (-1008))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-4 *1 (-1006 *3)) (-4 *3 (-1128))))) +(((*1 *2 *1) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-1128))))) +(((*1 *2 *1) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-1128))))) +(((*1 *2 *1) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-1128))))) +(((*1 *2 *1) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-1128))))) +(((*1 *2 *1) (-12 (-4 *1 (-1006 *3)) (-4 *3 (-1128)) (-5 *2 (-484))))) +(((*1 *1 *2 *2) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1128)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1089)) (-5 *3 (-1072)) (-5 *1 (-902)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1088)) (-4 *4 (-1127)) (-5 *1 (-970 *3 *4)) - (-4 *3 (-1005 *4)))) + (-12 (-5 *2 (-1089)) (-4 *4 (-1128)) (-5 *1 (-971 *3 *4)) + (-4 *3 (-1006 *4)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1088)) (-5 *3 (-1000 *4)) (-4 *4 (-1127)) (-5 *1 (-1003 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-582 (-1047))) (-5 *1 (-1002))))) -(((*1 *1 *2) (-12 (-5 *2 (-1 (-853 (-179)) (-853 (-179)))) (-5 *1 (-221)))) + (-12 (-5 *2 (-1089)) (-5 *3 (-1001 *4)) (-4 *4 (-1128)) (-5 *1 (-1004 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-583 (-1048))) (-5 *1 (-1003))))) +(((*1 *1 *2) (-12 (-5 *2 (-1 (-854 (-179)) (-854 (-179)))) (-5 *1 (-221)))) ((*1 *2 *3) - (-12 (-5 *3 (-1177 *1)) (-4 *1 (-280 *4)) (-4 *4 (-312)) (-5 *2 (-629 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-5 *2 (-1177 *3)))) + (-12 (-5 *3 (-1178 *1)) (-4 *1 (-280 *4)) (-4 *4 (-312)) (-5 *2 (-630 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-5 *2 (-1178 *3)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-1177 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-629 *4)))) + (-12 (-5 *3 (-1178 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-630 *4)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-1177 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-1177 *4)))) + (-12 (-5 *3 (-1178 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-1178 *4)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-1177 *1)) (-4 *1 (-320 *4 *5)) (-4 *4 (-146)) - (-4 *5 (-1153 *4)) (-5 *2 (-629 *4)))) + (-12 (-5 *3 (-1178 *1)) (-4 *1 (-321 *4 *5)) (-4 *4 (-146)) + (-4 *5 (-1154 *4)) (-5 *2 (-630 *4)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-1177 *1)) (-4 *1 (-320 *4 *5)) (-4 *4 (-146)) - (-4 *5 (-1153 *4)) (-5 *2 (-1177 *4)))) + (-12 (-5 *3 (-1178 *1)) (-4 *1 (-321 *4 *5)) (-4 *4 (-146)) + (-4 *5 (-1154 *4)) (-5 *2 (-1178 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-1177 *1)) (-4 *1 (-351 *4 *5)) (-4 *4 (-146)) - (-4 *5 (-1153 *4)) (-5 *2 (-629 *4)))) + (-12 (-5 *3 (-1178 *1)) (-4 *1 (-352 *4 *5)) (-4 *4 (-146)) + (-4 *5 (-1154 *4)) (-5 *2 (-630 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-351 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1153 *3)) - (-5 *2 (-1177 *3)))) + (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1154 *3)) + (-5 *2 (-1178 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-1177 *1)) (-4 *1 (-359 *4)) (-4 *4 (-146)) (-5 *2 (-629 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-359 *3)) (-4 *3 (-146)) (-5 *2 (-1177 *3)))) + (-12 (-5 *3 (-1178 *1)) (-4 *1 (-360 *4)) (-4 *4 (-146)) (-5 *2 (-630 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-360 *3)) (-4 *3 (-146)) (-5 *2 (-1178 *3)))) ((*1 *2 *1) - (-12 (-5 *2 (-1177 *3)) (-5 *1 (-578 *3 *4)) (-4 *3 (-312)) - (-14 *4 (-582 (-1088))))) + (-12 (-5 *2 (-1178 *3)) (-5 *1 (-579 *3 *4)) (-4 *3 (-312)) + (-14 *4 (-583 (-1089))))) ((*1 *2 *1) - (-12 (-5 *2 (-1177 *3)) (-5 *1 (-580 *3 *4)) (-4 *3 (-312)) - (-14 *4 (-582 (-1088))))) + (-12 (-5 *2 (-1178 *3)) (-5 *1 (-581 *3 *4)) (-4 *3 (-312)) + (-14 *4 (-583 (-1089))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-582 (-629 *5))) (-5 *3 (-629 *5)) (-4 *5 (-312)) - (-5 *2 (-1177 *5)) (-5 *1 (-997 *5))))) + (-12 (-5 *4 (-583 (-630 *5))) (-5 *3 (-630 *5)) (-4 *5 (-312)) + (-5 *2 (-1178 *5)) (-5 *1 (-998 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1177 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) - (-5 *2 (-1177 (-629 *4))))) + (-12 (-5 *3 (-1178 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) + (-5 *2 (-1178 (-630 *4))))) ((*1 *2) - (-12 (-4 *4 (-146)) (-5 *2 (-1177 (-629 *4))) (-5 *1 (-358 *3 *4)) - (-4 *3 (-359 *4)))) - ((*1 *2) (-12 (-4 *1 (-359 *3)) (-4 *3 (-146)) (-5 *2 (-1177 (-629 *3))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-582 (-1088))) (-4 *5 (-312)) - (-5 *2 (-1177 (-629 (-348 (-856 *5))))) (-5 *1 (-997 *5)) - (-5 *4 (-629 (-348 (-856 *5)))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-582 (-1088))) (-4 *5 (-312)) (-5 *2 (-1177 (-629 (-856 *5)))) - (-5 *1 (-997 *5)) (-5 *4 (-629 (-856 *5))))) - ((*1 *2 *3) - (-12 (-5 *3 (-582 (-629 *4))) (-4 *4 (-312)) (-5 *2 (-1177 (-629 *4))) - (-5 *1 (-997 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-582 (-149))) (-5 *1 (-996))))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-445)) (-5 *2 (-631 (-78))) (-5 *1 (-149)))) - ((*1 *2 *3 *1) (-12 (-5 *3 (-445)) (-5 *2 (-631 (-78))) (-5 *1 (-996))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-78)) (-5 *1 (-996))))) -(((*1 *1) (-5 *1 (-996)))) -(((*1 *1) (-5 *1 (-996)))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-1 (-85) *2)) (-4 *2 (-105)) (-5 *1 (-995 *2)))) + (-12 (-4 *4 (-146)) (-5 *2 (-1178 (-630 *4))) (-5 *1 (-359 *3 *4)) + (-4 *3 (-360 *4)))) + ((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-146)) (-5 *2 (-1178 (-630 *3))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-583 (-1089))) (-4 *5 (-312)) + (-5 *2 (-1178 (-630 (-349 (-857 *5))))) (-5 *1 (-998 *5)) + (-5 *4 (-630 (-349 (-857 *5)))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-583 (-1089))) (-4 *5 (-312)) (-5 *2 (-1178 (-630 (-857 *5)))) + (-5 *1 (-998 *5)) (-5 *4 (-630 (-857 *5))))) + ((*1 *2 *3) + (-12 (-5 *3 (-583 (-630 *4))) (-4 *4 (-312)) (-5 *2 (-1178 (-630 *4))) + (-5 *1 (-998 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-583 (-149))) (-5 *1 (-997))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-446)) (-5 *2 (-632 (-78))) (-5 *1 (-149)))) + ((*1 *2 *3 *1) (-12 (-5 *3 (-446)) (-5 *2 (-632 (-78))) (-5 *1 (-997))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-78)) (-5 *1 (-997))))) +(((*1 *1) (-5 *1 (-997)))) +(((*1 *1) (-5 *1 (-997)))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-1 (-85) *2)) (-4 *2 (-105)) (-5 *1 (-996 *2)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-483) *2 *2)) (-4 *2 (-105)) (-5 *1 (-995 *2))))) -(((*1 *2) (-12 (-5 *2 (-582 *3)) (-5 *1 (-995 *3)) (-4 *3 (-105))))) -(((*1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-995 *3)) (-4 *3 (-105))))) -(((*1 *1) (-5 *1 (-993)))) + (-12 (-5 *3 (-1 (-484) *2 *2)) (-4 *2 (-105)) (-5 *1 (-996 *2))))) +(((*1 *2) (-12 (-5 *2 (-583 *3)) (-5 *1 (-996 *3)) (-4 *3 (-105))))) +(((*1 *2) (-12 (-5 *2 (-1184)) (-5 *1 (-996 *3)) (-4 *3 (-105))))) +(((*1 *1) (-5 *1 (-994)))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-716)) (-4 *7 (-755)) - (-4 *8 (-976 *5 *6 *7)) (-5 *2 (-582 *3)) (-5 *1 (-526 *5 *6 *7 *8 *3)) - (-4 *3 (-1019 *5 *6 *7 *8)))) + (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-717)) (-4 *7 (-756)) + (-4 *8 (-977 *5 *6 *7)) (-5 *2 (-583 *3)) (-5 *1 (-527 *5 *6 *7 *8 *3)) + (-4 *3 (-1020 *5 *6 *7 *8)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) - (-5 *2 (-582 (-2 (|:| -1745 (-1083 *5)) (|:| -3223 (-582 (-856 *5)))))) - (-5 *1 (-989 *5 *6)) (-5 *3 (-582 (-856 *5))) (-14 *6 (-582 (-1088))))) + (-5 *2 (-583 (-2 (|:| -1746 (-1084 *5)) (|:| -3224 (-583 (-857 *5)))))) + (-5 *1 (-990 *5 *6)) (-5 *3 (-583 (-857 *5))) (-14 *6 (-583 (-1089))))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-258) (-120))) - (-5 *2 (-582 (-2 (|:| -1745 (-1083 *4)) (|:| -3223 (-582 (-856 *4)))))) - (-5 *1 (-989 *4 *5)) (-5 *3 (-582 (-856 *4))) (-14 *5 (-582 (-1088))))) + (-5 *2 (-583 (-2 (|:| -1746 (-1084 *4)) (|:| -3224 (-583 (-857 *4)))))) + (-5 *1 (-990 *4 *5)) (-5 *3 (-583 (-857 *4))) (-14 *5 (-583 (-1089))))) ((*1 *2 *3 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) - (-5 *2 (-582 (-2 (|:| -1745 (-1083 *5)) (|:| -3223 (-582 (-856 *5)))))) - (-5 *1 (-989 *5 *6)) (-5 *3 (-582 (-856 *5))) (-14 *6 (-582 (-1088)))))) + (-5 *2 (-583 (-2 (|:| -1746 (-1084 *5)) (|:| -3224 (-583 (-857 *5)))))) + (-5 *1 (-990 *5 *6)) (-5 *3 (-583 (-857 *5))) (-14 *6 (-583 (-1089)))))) (((*1 *1 *2) - (-12 (-5 *2 (-582 (-986 *3 *4 *5))) (-4 *3 (-1012)) - (-4 *4 (-13 (-960) (-795 *3) (-552 (-799 *3)))) - (-4 *5 (-13 (-362 *4) (-795 *3) (-552 (-799 *3)))) (-5 *1 (-988 *3 *4 *5))))) + (-12 (-5 *2 (-583 (-987 *3 *4 *5))) (-4 *3 (-1013)) + (-4 *4 (-13 (-961) (-796 *3) (-553 (-800 *3)))) + (-4 *5 (-13 (-363 *4) (-796 *3) (-553 (-800 *3)))) (-5 *1 (-989 *3 *4 *5))))) (((*1 *2 *1) - (-12 (-4 *3 (-1012)) (-4 *4 (-13 (-960) (-795 *3) (-552 (-799 *3)))) - (-5 *2 (-582 (-986 *3 *4 *5))) (-5 *1 (-988 *3 *4 *5)) - (-4 *5 (-13 (-362 *4) (-795 *3) (-552 (-799 *3))))))) + (-12 (-4 *3 (-1013)) (-4 *4 (-13 (-961) (-796 *3) (-553 (-800 *3)))) + (-5 *2 (-583 (-987 *3 *4 *5))) (-5 *1 (-989 *3 *4 *5)) + (-4 *5 (-13 (-363 *4) (-796 *3) (-553 (-800 *3))))))) (((*1 *1 *2 *2 *3) - (-12 (-5 *3 (-582 (-1088))) (-4 *4 (-1012)) - (-4 *5 (-13 (-960) (-795 *4) (-552 (-799 *4)))) (-5 *1 (-986 *4 *5 *2)) - (-4 *2 (-13 (-362 *5) (-795 *4) (-552 (-799 *4)))))) + (-12 (-5 *3 (-583 (-1089))) (-4 *4 (-1013)) + (-4 *5 (-13 (-961) (-796 *4) (-553 (-800 *4)))) (-5 *1 (-987 *4 *5 *2)) + (-4 *2 (-13 (-363 *5) (-796 *4) (-553 (-800 *4)))))) ((*1 *1 *2 *2) - (-12 (-4 *3 (-1012)) (-4 *4 (-13 (-960) (-795 *3) (-552 (-799 *3)))) - (-5 *1 (-986 *3 *4 *2)) (-4 *2 (-13 (-362 *4) (-795 *3) (-552 (-799 *3))))))) + (-12 (-4 *3 (-1013)) (-4 *4 (-13 (-961) (-796 *3) (-553 (-800 *3)))) + (-5 *1 (-987 *3 *4 *2)) (-4 *2 (-13 (-363 *4) (-796 *3) (-553 (-800 *3))))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-799 *4)) (-5 *3 (-1 (-85) *5)) (-4 *4 (-1012)) (-4 *5 (-1127)) - (-5 *1 (-800 *4 *5)))) + (-12 (-5 *2 (-800 *4)) (-5 *3 (-1 (-85) *5)) (-4 *4 (-1013)) (-4 *5 (-1128)) + (-5 *1 (-801 *4 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-799 *4)) (-5 *3 (-582 (-1 (-85) *5))) (-4 *4 (-1012)) - (-4 *5 (-1127)) (-5 *1 (-800 *4 *5)))) + (-12 (-5 *2 (-800 *4)) (-5 *3 (-583 (-1 (-85) *5))) (-4 *4 (-1013)) + (-4 *5 (-1128)) (-5 *1 (-801 *4 *5)))) ((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-799 *5)) (-5 *3 (-582 (-1088))) (-5 *4 (-1 (-85) (-582 *6))) - (-4 *5 (-1012)) (-4 *6 (-1127)) (-5 *1 (-800 *5 *6)))) + (-12 (-5 *2 (-800 *5)) (-5 *3 (-583 (-1089))) (-5 *4 (-1 (-85) (-583 *6))) + (-4 *5 (-1013)) (-4 *6 (-1128)) (-5 *1 (-801 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1088)) (-5 *4 (-1 (-85) *5)) (-4 *5 (-1127)) - (-5 *2 (-265 (-483))) (-5 *1 (-847 *5)))) + (-12 (-5 *3 (-1089)) (-5 *4 (-1 (-85) *5)) (-4 *5 (-1128)) + (-5 *2 (-265 (-484))) (-5 *1 (-848 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1088)) (-5 *4 (-582 (-1 (-85) *5))) (-4 *5 (-1127)) - (-5 *2 (-265 (-483))) (-5 *1 (-847 *5)))) + (-12 (-5 *3 (-1089)) (-5 *4 (-583 (-1 (-85) *5))) (-4 *5 (-1128)) + (-5 *2 (-265 (-484))) (-5 *1 (-848 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-85) *5)) (-4 *5 (-1127)) (-4 *4 (-1012)) - (-5 *1 (-848 *4 *2 *5)) (-4 *2 (-362 *4)))) + (-12 (-5 *3 (-1 (-85) *5)) (-4 *5 (-1128)) (-4 *4 (-1013)) + (-5 *1 (-849 *4 *2 *5)) (-4 *2 (-363 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-582 (-1 (-85) *5))) (-4 *5 (-1127)) (-4 *4 (-1012)) - (-5 *1 (-848 *4 *2 *5)) (-4 *2 (-362 *4)))) + (-12 (-5 *3 (-583 (-1 (-85) *5))) (-4 *5 (-1128)) (-4 *4 (-1013)) + (-5 *1 (-849 *4 *2 *5)) (-4 *2 (-363 *4)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-582 (-1088))) (-5 *3 (-1 (-85) (-582 *6))) - (-4 *6 (-13 (-362 *5) (-795 *4) (-552 (-799 *4)))) (-4 *4 (-1012)) - (-4 *5 (-13 (-960) (-795 *4) (-552 (-799 *4)))) (-5 *1 (-986 *4 *5 *6))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1012)) (-4 *4 (-13 (-960) (-795 *3) (-552 *2))) - (-5 *2 (-799 *3)) (-5 *1 (-986 *3 *4 *5)) - (-4 *5 (-13 (-362 *4) (-795 *3) (-552 *2)))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1012)) (-4 *4 (-13 (-960) (-795 *3) (-552 (-799 *3)))) - (-5 *2 (-582 (-1088))) (-5 *1 (-986 *3 *4 *5)) - (-4 *5 (-13 (-362 *4) (-795 *3) (-552 (-799 *3))))))) -(((*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-154)))) - ((*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-263)))) - ((*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-882)))) - ((*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-906)))) - ((*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-947)))) - ((*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-984))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-390)) (-4 *6 (-716)) (-4 *7 (-755)) (-4 *3 (-976 *5 *6 *7)) - (-5 *2 (-582 (-2 (|:| |val| *3) (|:| -1598 *4)))) - (-5 *1 (-983 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-390)) (-4 *6 (-716)) (-4 *7 (-755)) (-4 *3 (-976 *5 *6 *7)) - (-5 *2 (-582 *4)) (-5 *1 (-983 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-390)) (-4 *6 (-716)) (-4 *7 (-755)) (-4 *3 (-976 *5 *6 *7)) - (-5 *2 (-85)) (-5 *1 (-983 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-390)) (-4 *6 (-716)) (-4 *7 (-755)) (-4 *3 (-976 *5 *6 *7)) - (-5 *2 (-582 (-2 (|:| |val| (-85)) (|:| -1598 *4)))) - (-5 *1 (-983 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3))))) + (-12 (-5 *2 (-583 (-1089))) (-5 *3 (-1 (-85) (-583 *6))) + (-4 *6 (-13 (-363 *5) (-796 *4) (-553 (-800 *4)))) (-4 *4 (-1013)) + (-4 *5 (-13 (-961) (-796 *4) (-553 (-800 *4)))) (-5 *1 (-987 *4 *5 *6))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1013)) (-4 *4 (-13 (-961) (-796 *3) (-553 *2))) + (-5 *2 (-800 *3)) (-5 *1 (-987 *3 *4 *5)) + (-4 *5 (-13 (-363 *4) (-796 *3) (-553 *2)))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1013)) (-4 *4 (-13 (-961) (-796 *3) (-553 (-800 *3)))) + (-5 *2 (-583 (-1089))) (-5 *1 (-987 *3 *4 *5)) + (-4 *5 (-13 (-363 *4) (-796 *3) (-553 (-800 *3))))))) +(((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-154)))) + ((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-263)))) + ((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-883)))) + ((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-907)))) + ((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-948)))) + ((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-985))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) + (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1599 *4)))) + (-5 *1 (-984 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) + (-5 *2 (-583 *4)) (-5 *1 (-984 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) + (-5 *2 (-85)) (-5 *1 (-984 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) + (-5 *2 (-583 (-2 (|:| |val| (-85)) (|:| -1599 *4)))) + (-5 *1 (-984 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3))))) (((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-390)) (-4 *6 (-716)) (-4 *7 (-755)) (-4 *3 (-976 *5 *6 *7)) - (-5 *2 (-582 (-2 (|:| |val| *3) (|:| -1598 *4)))) - (-5 *1 (-983 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3))))) + (-12 (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) + (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1599 *4)))) + (-5 *1 (-984 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3))))) (((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-390)) (-4 *6 (-716)) (-4 *7 (-755)) (-4 *3 (-976 *5 *6 *7)) - (-5 *2 (-582 (-2 (|:| |val| *3) (|:| -1598 *4)))) - (-5 *1 (-983 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3))))) + (-12 (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) + (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1599 *4)))) + (-5 *1 (-984 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3))))) (((*1 *2 *3 *3 *4 *5 *5) - (-12 (-5 *5 (-85)) (-4 *6 (-390)) (-4 *7 (-716)) (-4 *8 (-755)) - (-4 *3 (-976 *6 *7 *8)) (-5 *2 (-582 (-2 (|:| |val| *3) (|:| -1598 *4)))) - (-5 *1 (-983 *6 *7 *8 *3 *4)) (-4 *4 (-982 *6 *7 *8 *3)))) + (-12 (-5 *5 (-85)) (-4 *6 (-391)) (-4 *7 (-717)) (-4 *8 (-756)) + (-4 *3 (-977 *6 *7 *8)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1599 *4)))) + (-5 *1 (-984 *6 *7 *8 *3 *4)) (-4 *4 (-983 *6 *7 *8 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-582 (-2 (|:| |val| (-582 *8)) (|:| -1598 *9)))) (-5 *5 (-85)) - (-4 *8 (-976 *6 *7 *4)) (-4 *9 (-982 *6 *7 *4 *8)) (-4 *6 (-390)) - (-4 *7 (-716)) (-4 *4 (-755)) - (-5 *2 (-582 (-2 (|:| |val| *8) (|:| -1598 *9)))) - (-5 *1 (-983 *6 *7 *4 *8 *9))))) + (-12 (-5 *3 (-583 (-2 (|:| |val| (-583 *8)) (|:| -1599 *9)))) (-5 *5 (-85)) + (-4 *8 (-977 *6 *7 *4)) (-4 *9 (-983 *6 *7 *4 *8)) (-4 *6 (-391)) + (-4 *7 (-717)) (-4 *4 (-756)) + (-5 *2 (-583 (-2 (|:| |val| *8) (|:| -1599 *9)))) + (-5 *1 (-984 *6 *7 *4 *8 *9))))) (((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-390)) (-4 *6 (-716)) (-4 *7 (-755)) (-4 *3 (-976 *5 *6 *7)) - (-5 *2 (-582 (-2 (|:| |val| (-582 *3)) (|:| -1598 *4)))) - (-5 *1 (-983 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3))))) + (-12 (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) + (-5 *2 (-583 (-2 (|:| |val| (-583 *3)) (|:| -1599 *4)))) + (-5 *1 (-984 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-982 *3 *4 *5 *6)) (-4 *3 (-390)) (-4 *4 (-716)) (-4 *5 (-755)) - (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-85)))) + (-12 (-4 *1 (-983 *3 *4 *5 *6)) (-4 *3 (-391)) (-4 *4 (-717)) (-4 *5 (-756)) + (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-85)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-982 *4 *5 *6 *3)) (-4 *4 (-390)) (-4 *5 (-716)) (-4 *6 (-755)) - (-4 *3 (-976 *4 *5 *6)) (-5 *2 (-85))))) + (-12 (-4 *1 (-983 *4 *5 *6 *3)) (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) + (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-85))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-982 *4 *5 *6 *3)) (-4 *4 (-390)) (-4 *5 (-716)) (-4 *6 (-755)) - (-4 *3 (-976 *4 *5 *6)) (-5 *2 (-85))))) + (-12 (-4 *1 (-983 *4 *5 *6 *3)) (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) + (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-85))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-982 *4 *5 *6 *3)) (-4 *4 (-390)) (-4 *5 (-716)) (-4 *6 (-755)) - (-4 *3 (-976 *4 *5 *6)) (-5 *2 (-85))))) + (-12 (-4 *1 (-983 *4 *5 *6 *3)) (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) + (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-85))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-982 *4 *5 *6 *3)) (-4 *4 (-390)) (-4 *5 (-716)) (-4 *6 (-755)) - (-4 *3 (-976 *4 *5 *6)) (-5 *2 (-85))))) + (-12 (-4 *1 (-983 *4 *5 *6 *3)) (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) + (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-85))))) (((*1 *2 *3 *1) - (-12 (-4 *4 (-390)) (-4 *5 (-716)) (-4 *6 (-755)) (-4 *3 (-976 *4 *5 *6)) - (-5 *2 (-3 (-85) (-582 *1))) (-4 *1 (-982 *4 *5 *6 *3))))) + (-12 (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6)) + (-5 *2 (-3 (-85) (-583 *1))) (-4 *1 (-983 *4 *5 *6 *3))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-982 *4 *5 *6 *3)) (-4 *4 (-390)) (-4 *5 (-716)) (-4 *6 (-755)) - (-4 *3 (-976 *4 *5 *6)) (-5 *2 (-85)))) + (-12 (-4 *1 (-983 *4 *5 *6 *3)) (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) + (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-85)))) ((*1 *2 *3 *1) - (-12 (-4 *4 (-390)) (-4 *5 (-716)) (-4 *6 (-755)) (-4 *3 (-976 *4 *5 *6)) - (-5 *2 (-582 (-2 (|:| |val| (-85)) (|:| -1598 *1)))) - (-4 *1 (-982 *4 *5 *6 *3))))) + (-12 (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6)) + (-5 *2 (-583 (-2 (|:| |val| (-85)) (|:| -1599 *1)))) + (-4 *1 (-983 *4 *5 *6 *3))))) (((*1 *2 *3 *1) - (-12 (-4 *4 (-390)) (-4 *5 (-716)) (-4 *6 (-755)) (-4 *3 (-976 *4 *5 *6)) - (-5 *2 (-582 *1)) (-4 *1 (-982 *4 *5 *6 *3))))) + (-12 (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6)) + (-5 *2 (-583 *1)) (-4 *1 (-983 *4 *5 *6 *3))))) (((*1 *2 *3 *3 *1) - (-12 (-4 *4 (-390)) (-4 *5 (-716)) (-4 *6 (-755)) (-4 *3 (-976 *4 *5 *6)) - (-5 *2 (-3 *3 (-582 *1))) (-4 *1 (-982 *4 *5 *6 *3))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-703 *2)) (-4 *2 (-494)) (-4 *2 (-960)))) - ((*1 *2 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-881 *3 *2)) (-4 *2 (-1153 *3)))) + (-12 (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6)) + (-5 *2 (-3 *3 (-583 *1))) (-4 *1 (-983 *4 *5 *6 *3))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-704 *2)) (-4 *2 (-495)) (-4 *2 (-961)))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-882 *3 *2)) (-4 *2 (-1154 *3)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-960)) (-4 *3 (-716)) (-4 *4 (-755)) - (-4 *2 (-494)))) + (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) + (-4 *2 (-495)))) ((*1 *2 *3 *3 *1) - (-12 (-4 *4 (-390)) (-4 *5 (-716)) (-4 *6 (-755)) (-4 *3 (-976 *4 *5 *6)) - (-5 *2 (-582 (-2 (|:| |val| *3) (|:| -1598 *1)))) - (-4 *1 (-982 *4 *5 *6 *3))))) + (-12 (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6)) + (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1599 *1)))) + (-4 *1 (-983 *4 *5 *6 *3))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-582 *1)) (-5 *3 (-582 *7)) (-4 *1 (-982 *4 *5 *6 *7)) - (-4 *4 (-390)) (-4 *5 (-716)) (-4 *6 (-755)) (-4 *7 (-976 *4 *5 *6)))) + (-12 (-5 *2 (-583 *1)) (-5 *3 (-583 *7)) (-4 *1 (-983 *4 *5 *6 *7)) + (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-582 *7)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-390)) (-4 *5 (-716)) - (-4 *6 (-755)) (-5 *2 (-582 *1)) (-4 *1 (-982 *4 *5 *6 *7)))) + (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-391)) (-4 *5 (-717)) + (-4 *6 (-756)) (-5 *2 (-583 *1)) (-4 *1 (-983 *4 *5 *6 *7)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-582 *1)) (-4 *1 (-982 *4 *5 *6 *3)) (-4 *4 (-390)) - (-4 *5 (-716)) (-4 *6 (-755)) (-4 *3 (-976 *4 *5 *6)))) + (-12 (-5 *2 (-583 *1)) (-4 *1 (-983 *4 *5 *6 *3)) (-4 *4 (-391)) + (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6)))) ((*1 *2 *3 *1) - (-12 (-4 *4 (-390)) (-4 *5 (-716)) (-4 *6 (-755)) (-4 *3 (-976 *4 *5 *6)) - (-5 *2 (-582 *1)) (-4 *1 (-982 *4 *5 *6 *3))))) + (-12 (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6)) + (-5 *2 (-583 *1)) (-4 *1 (-983 *4 *5 *6 *3))))) (((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-85)))) ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-55)))) ((*1 *2 *1) - (-12 (-4 *3 (-312)) (-4 *4 (-716)) (-4 *5 (-755)) (-5 *2 (-85)) - (-5 *1 (-442 *3 *4 *5 *6)) (-4 *6 (-860 *3 *4 *5)))) + (-12 (-4 *3 (-312)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85)) + (-5 *1 (-443 *3 *4 *5 *6)) (-4 *6 (-861 *3 *4 *5)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-979 *4 *3)) (-4 *4 (-13 (-754) (-312))) (-4 *3 (-1153 *4)) + (-12 (-4 *1 (-980 *4 *3)) (-4 *4 (-13 (-755) (-312))) (-4 *3 (-1154 *4)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-492 *3)) (-4 *3 (-13 (-345) (-1113))) (-5 *2 (-85)))) - ((*1 *2 *1) (-12 (-4 *1 (-713)) (-5 *2 (-85)))) + (-12 (-4 *1 (-493 *3)) (-4 *3 (-13 (-346) (-1114))) (-5 *2 (-85)))) + ((*1 *2 *1) (-12 (-4 *1 (-714)) (-5 *2 (-85)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-979 *4 *3)) (-4 *4 (-13 (-754) (-312))) (-4 *3 (-1153 *4)) + (-12 (-4 *1 (-980 *4 *3)) (-4 *4 (-13 (-755) (-312))) (-4 *3 (-1154 *4)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-492 *3)) (-4 *3 (-13 (-345) (-1113))) (-5 *2 (-85)))) - ((*1 *2 *1) (-12 (-4 *1 (-715)) (-5 *2 (-85)))) + (-12 (-4 *1 (-493 *3)) (-4 *3 (-13 (-346) (-1114))) (-5 *2 (-85)))) + ((*1 *2 *1) (-12 (-4 *1 (-716)) (-5 *2 (-85)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-979 *4 *3)) (-4 *4 (-13 (-754) (-312))) (-4 *3 (-1153 *4)) + (-12 (-4 *1 (-980 *4 *3)) (-4 *4 (-13 (-755) (-312))) (-4 *3 (-1154 *4)) (-5 *2 (-85))))) (((*1 *2 *2) - (-12 (-4 *3 (-949 (-483))) (-4 *3 (-494)) (-5 *1 (-32 *3 *2)) - (-4 *2 (-362 *3)))) + (-12 (-4 *3 (-950 (-484))) (-4 *3 (-495)) (-5 *1 (-32 *3 *2)) + (-4 *2 (-363 *3)))) ((*1 *2) - (-12 (-4 *4 (-146)) (-5 *2 (-1083 *4)) (-5 *1 (-138 *3 *4)) + (-12 (-4 *4 (-146)) (-5 *2 (-1084 *4)) (-5 *1 (-138 *3 *4)) (-4 *3 (-139 *4)))) - ((*1 *1 *1) (-12 (-4 *1 (-960)) (-4 *1 (-254)))) - ((*1 *2) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-5 *2 (-1083 *3)))) - ((*1 *2) (-12 (-4 *1 (-660 *3 *2)) (-4 *3 (-146)) (-4 *2 (-1153 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-979 *3 *2)) (-4 *3 (-13 (-754) (-312))) (-4 *2 (-1153 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-856 (-483))) (-5 *2 (-582 *1)) (-4 *1 (-924)))) - ((*1 *2 *3) - (-12 (-5 *3 (-856 (-348 (-483)))) (-5 *2 (-582 *1)) (-4 *1 (-924)))) - ((*1 *2 *3) (-12 (-5 *3 (-856 *1)) (-4 *1 (-924)) (-5 *2 (-582 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-1083 (-483))) (-5 *2 (-582 *1)) (-4 *1 (-924)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1083 (-348 (-483)))) (-5 *2 (-582 *1)) (-4 *1 (-924)))) - ((*1 *2 *3) (-12 (-5 *3 (-1083 *1)) (-4 *1 (-924)) (-5 *2 (-582 *1)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-754) (-312))) (-4 *3 (-1153 *4)) (-5 *2 (-582 *1)) - (-4 *1 (-979 *4 *3))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1083 *1)) (-5 *3 (-1088)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-1083 *1)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-856 *1)) (-4 *1 (-27)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1088)) (-4 *1 (-29 *3)) (-4 *3 (-494)))) - ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-494)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1083 *2)) (-5 *4 (-1088)) (-4 *2 (-362 *5)) (-5 *1 (-32 *5 *2)) - (-4 *5 (-494)))) + ((*1 *1 *1) (-12 (-4 *1 (-961)) (-4 *1 (-254)))) + ((*1 *2) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-5 *2 (-1084 *3)))) + ((*1 *2) (-12 (-4 *1 (-661 *3 *2)) (-4 *3 (-146)) (-4 *2 (-1154 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-980 *3 *2)) (-4 *3 (-13 (-755) (-312))) (-4 *2 (-1154 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-857 (-484))) (-5 *2 (-583 *1)) (-4 *1 (-925)))) + ((*1 *2 *3) + (-12 (-5 *3 (-857 (-349 (-484)))) (-5 *2 (-583 *1)) (-4 *1 (-925)))) + ((*1 *2 *3) (-12 (-5 *3 (-857 *1)) (-4 *1 (-925)) (-5 *2 (-583 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-1084 (-484))) (-5 *2 (-583 *1)) (-4 *1 (-925)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1084 (-349 (-484)))) (-5 *2 (-583 *1)) (-4 *1 (-925)))) + ((*1 *2 *3) (-12 (-5 *3 (-1084 *1)) (-4 *1 (-925)) (-5 *2 (-583 *1)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-755) (-312))) (-4 *3 (-1154 *4)) (-5 *2 (-583 *1)) + (-4 *1 (-980 *4 *3))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1084 *1)) (-5 *3 (-1089)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-1084 *1)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-857 *1)) (-4 *1 (-27)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1089)) (-4 *1 (-29 *3)) (-4 *3 (-495)))) + ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-495)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1084 *2)) (-5 *4 (-1089)) (-4 *2 (-363 *5)) (-5 *1 (-32 *5 *2)) + (-4 *5 (-495)))) ((*1 *1 *2 *3) - (|partial| -12 (-5 *2 (-1083 *1)) (-5 *3 (-829)) (-4 *1 (-924)))) + (|partial| -12 (-5 *2 (-1084 *1)) (-5 *3 (-830)) (-4 *1 (-925)))) ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-1083 *1)) (-5 *3 (-829)) (-5 *4 (-771)) - (-4 *1 (-924)))) + (|partial| -12 (-5 *2 (-1084 *1)) (-5 *3 (-830)) (-5 *4 (-772)) + (-4 *1 (-925)))) ((*1 *1 *2 *3) - (|partial| -12 (-5 *3 (-829)) (-4 *4 (-13 (-754) (-312))) - (-4 *1 (-979 *4 *2)) (-4 *2 (-1153 *4))))) + (|partial| -12 (-5 *3 (-830)) (-4 *4 (-13 (-755) (-312))) + (-4 *1 (-980 *4 *2)) (-4 *2 (-1154 *4))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-348 (-483))) (-5 *1 (-936 *3)) - (-4 *3 (-13 (-754) (-312) (-932))))) + (-12 (-5 *2 (-349 (-484))) (-5 *1 (-937 *3)) + (-4 *3 (-13 (-755) (-312) (-933))))) ((*1 *2 *3 *1 *2) - (-12 (-4 *2 (-13 (-754) (-312))) (-5 *1 (-973 *2 *3)) (-4 *3 (-1153 *2)))) + (-12 (-4 *2 (-13 (-755) (-312))) (-5 *1 (-974 *2 *3)) (-4 *3 (-1154 *2)))) ((*1 *2 *3 *1 *2) - (-12 (-4 *1 (-979 *2 *3)) (-4 *2 (-13 (-754) (-312))) (-4 *3 (-1153 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-582 (-1047))) (-5 *1 (-127)))) - ((*1 *2 *1) (-12 (-5 *2 (-582 (-1047))) (-5 *1 (-977))))) + (-12 (-4 *1 (-980 *2 *3)) (-4 *2 (-13 (-755) (-312))) (-4 *3 (-1154 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-583 (-1048))) (-5 *1 (-127)))) + ((*1 *2 *1) (-12 (-5 *2 (-583 (-1048))) (-5 *1 (-978))))) (((*1 *2 *1) - (-12 (-4 *1 (-888 *3 *4 *2 *5)) (-4 *3 (-960)) (-4 *4 (-716)) - (-4 *5 (-976 *3 *4 *2)) (-4 *2 (-755)))) + (-12 (-4 *1 (-889 *3 *4 *2 *5)) (-4 *3 (-961)) (-4 *4 (-717)) + (-4 *5 (-977 *3 *4 *2)) (-4 *2 (-756)))) ((*1 *2 *1) - (-12 (-4 *1 (-976 *3 *4 *2)) (-4 *3 (-960)) (-4 *4 (-716)) (-4 *2 (-755))))) + (-12 (-4 *1 (-977 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756))))) (((*1 *2 *1) - (-12 (-4 *1 (-976 *3 *4 *5)) (-4 *3 (-960)) (-4 *4 (-716)) (-4 *5 (-755)) - (-5 *2 (-693))))) -(((*1 *2 *1) (-12 (-5 *2 (-421)) (-5 *1 (-172)))) - ((*1 *1 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1127)))) - ((*1 *2 *1) (-12 (-5 *2 (-421)) (-5 *1 (-616)))) + (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) + (-5 *2 (-694))))) +(((*1 *2 *1) (-12 (-5 *2 (-422)) (-5 *1 (-172)))) + ((*1 *1 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1128)))) + ((*1 *2 *1) (-12 (-5 *2 (-422)) (-5 *1 (-617)))) ((*1 *1 *1) - (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-960)) (-4 *3 (-716)) (-4 *4 (-755))))) + (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756))))) (((*1 *1 *1) - (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-960)) (-4 *3 (-716)) (-4 *4 (-755))))) + (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756))))) (((*1 *2 *1) - (-12 (-4 *3 (-960)) (-4 *4 (-716)) (-4 *5 (-755)) (-5 *2 (-582 *1)) - (-4 *1 (-976 *3 *4 *5))))) + (-12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-583 *1)) + (-4 *1 (-977 *3 *4 *5))))) (((*1 *1 *1) - (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-960)) (-4 *3 (-716)) (-4 *4 (-755))))) -(((*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-715)) (-4 *2 (-960)))) - ((*1 *2 *1) (-12 (-4 *2 (-960)) (-5 *1 (-50 *2 *3)) (-14 *3 (-582 (-1088))))) + (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756))))) +(((*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-716)) (-4 *2 (-961)))) + ((*1 *2 *1) (-12 (-4 *2 (-961)) (-5 *1 (-50 *2 *3)) (-14 *3 (-583 (-1089))))) ((*1 *2 *1) - (-12 (-5 *2 (-265 *3)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-960) (-755))) - (-14 *4 (-582 (-1088))))) - ((*1 *2 *1) (-12 (-4 *1 (-333 *2 *3)) (-4 *3 (-1012)) (-4 *2 (-960)))) + (-12 (-5 *2 (-265 *3)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-961) (-756))) + (-14 *4 (-583 (-1089))))) + ((*1 *2 *1) (-12 (-4 *1 (-334 *2 *3)) (-4 *3 (-1013)) (-4 *2 (-961)))) ((*1 *2 *1) - (-12 (-14 *3 (-582 (-1088))) (-4 *5 (-196 (-3955 *3) (-693))) + (-12 (-14 *3 (-583 (-1089))) (-4 *5 (-196 (-3956 *3) (-694))) (-14 *6 - (-1 (-85) (-2 (|:| -2399 *4) (|:| -2400 *5)) - (-2 (|:| -2399 *4) (|:| -2400 *5)))) - (-4 *2 (-146)) (-5 *1 (-399 *3 *2 *4 *5 *6 *7)) (-4 *4 (-755)) - (-4 *7 (-860 *2 *5 (-772 *3))))) - ((*1 *2 *1) (-12 (-4 *1 (-448 *2 *3)) (-4 *3 (-758)) (-4 *2 (-72)))) - ((*1 *2 *1) (-12 (-4 *2 (-494)) (-5 *1 (-561 *2 *3)) (-4 *3 (-1153 *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-644 *2)) (-4 *2 (-960)))) - ((*1 *2 *1) - (-12 (-4 *2 (-960)) (-5 *1 (-673 *2 *3)) (-4 *3 (-755)) (-4 *3 (-662)))) - ((*1 *2 *1) (-12 (-4 *1 (-760 *2)) (-4 *2 (-960)))) - ((*1 *2 *1) - (-12 (-4 *1 (-885 *2 *3 *4)) (-4 *3 (-715)) (-4 *4 (-755)) (-4 *2 (-960)))) + (-1 (-85) (-2 (|:| -2400 *4) (|:| -2401 *5)) + (-2 (|:| -2400 *4) (|:| -2401 *5)))) + (-4 *2 (-146)) (-5 *1 (-400 *3 *2 *4 *5 *6 *7)) (-4 *4 (-756)) + (-4 *7 (-861 *2 *5 (-773 *3))))) + ((*1 *2 *1) (-12 (-4 *1 (-449 *2 *3)) (-4 *3 (-759)) (-4 *2 (-72)))) + ((*1 *2 *1) (-12 (-4 *2 (-495)) (-5 *1 (-562 *2 *3)) (-4 *3 (-1154 *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-645 *2)) (-4 *2 (-961)))) + ((*1 *2 *1) + (-12 (-4 *2 (-961)) (-5 *1 (-674 *2 *3)) (-4 *3 (-756)) (-4 *3 (-663)))) + ((*1 *2 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)))) + ((*1 *2 *1) + (-12 (-4 *1 (-886 *2 *3 *4)) (-4 *3 (-716)) (-4 *4 (-756)) (-4 *2 (-961)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-976 *3 *4 *2)) (-4 *3 (-960)) (-4 *4 (-716)) (-4 *2 (-755))))) + (-12 (-4 *1 (-977 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756))))) (((*1 *2 *3) - (-12 (-4 *4 (-960)) (-5 *2 (-85)) (-5 *1 (-382 *4 *3)) (-4 *3 (-1153 *4)))) + (-12 (-4 *4 (-961)) (-5 *2 (-85)) (-5 *1 (-383 *4 *3)) (-4 *3 (-1154 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-976 *3 *4 *5)) (-4 *3 (-960)) (-4 *4 (-716)) (-4 *5 (-755)) + (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-976 *3 *4 *5)) (-4 *3 (-960)) (-4 *4 (-716)) (-4 *5 (-755)) + (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85))))) (((*1 *1 *1) - (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-960)) (-4 *3 (-716)) (-4 *4 (-755))))) + (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756))))) (((*1 *1 *1) - (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-960)) (-4 *3 (-716)) (-4 *4 (-755))))) + (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756))))) (((*1 *2 *1) - (-12 (-4 *3 (-960)) (-4 *4 (-716)) (-4 *5 (-755)) (-5 *2 (-582 *1)) - (-4 *1 (-976 *3 *4 *5))))) + (-12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-583 *1)) + (-4 *1 (-977 *3 *4 *5))))) (((*1 *2 *1) - (-12 (-4 *3 (-960)) (-4 *4 (-716)) (-4 *5 (-755)) (-5 *2 (-582 *1)) - (-4 *1 (-976 *3 *4 *5))))) + (-12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-583 *1)) + (-4 *1 (-977 *3 *4 *5))))) (((*1 *2 *1 *1) - (|partial| -12 (-4 *1 (-976 *3 *4 *5)) (-4 *3 (-960)) (-4 *4 (-716)) - (-4 *5 (-755)) (-5 *2 (-85))))) + (|partial| -12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) + (-4 *5 (-756)) (-5 *2 (-85))))) (((*1 *2 *1 *1) - (-12 (-4 *1 (-976 *3 *4 *5)) (-4 *3 (-960)) (-4 *4 (-716)) (-4 *5 (-755)) + (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85))))) (((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-976 *3 *4 *2)) (-4 *3 (-960)) (-4 *4 (-716)) (-4 *2 (-755)))) + (-12 (-4 *1 (-977 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-960)) (-4 *3 (-716)) (-4 *4 (-755))))) + (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756))))) (((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-976 *3 *4 *2)) (-4 *3 (-960)) (-4 *4 (-716)) (-4 *2 (-755)))) + (-12 (-4 *1 (-977 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-960)) (-4 *3 (-716)) (-4 *4 (-755))))) + (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756))))) (((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-976 *3 *4 *2)) (-4 *3 (-960)) (-4 *4 (-716)) (-4 *2 (-755)))) + (-12 (-4 *1 (-977 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-960)) (-4 *3 (-716)) (-4 *4 (-755))))) + (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756))))) (((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-976 *3 *4 *2)) (-4 *3 (-960)) (-4 *4 (-716)) (-4 *2 (-755)))) + (-12 (-4 *1 (-977 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-960)) (-4 *3 (-716)) (-4 *4 (-755))))) + (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756))))) (((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-960)) (-4 *5 (-716)) (-4 *3 (-755)) - (-5 *2 (-2 (|:| -3952 *1) (|:| |gap| (-693)) (|:| -2901 *1))) - (-4 *1 (-976 *4 *5 *3)))) + (-12 (-4 *4 (-961)) (-4 *5 (-717)) (-4 *3 (-756)) + (-5 *2 (-2 (|:| -3953 *1) (|:| |gap| (-694)) (|:| -2902 *1))) + (-4 *1 (-977 *4 *5 *3)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-960)) (-4 *4 (-716)) (-4 *5 (-755)) - (-5 *2 (-2 (|:| -3952 *1) (|:| |gap| (-693)) (|:| -2901 *1))) - (-4 *1 (-976 *3 *4 *5))))) + (-12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) + (-5 *2 (-2 (|:| -3953 *1) (|:| |gap| (-694)) (|:| -2902 *1))) + (-4 *1 (-977 *3 *4 *5))))) (((*1 *2 *1 *1) (-12 (-5 *2 - (-2 (|:| -3952 *3) (|:| |gap| (-693)) (|:| -1971 (-703 *3)) - (|:| -2901 (-703 *3)))) - (-5 *1 (-703 *3)) (-4 *3 (-960)))) + (-2 (|:| -3953 *3) (|:| |gap| (-694)) (|:| -1972 (-704 *3)) + (|:| -2902 (-704 *3)))) + (-5 *1 (-704 *3)) (-4 *3 (-961)))) ((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-960)) (-4 *5 (-716)) (-4 *3 (-755)) - (-5 *2 (-2 (|:| -3952 *1) (|:| |gap| (-693)) (|:| -1971 *1) (|:| -2901 *1))) - (-4 *1 (-976 *4 *5 *3)))) + (-12 (-4 *4 (-961)) (-4 *5 (-717)) (-4 *3 (-756)) + (-5 *2 (-2 (|:| -3953 *1) (|:| |gap| (-694)) (|:| -1972 *1) (|:| -2902 *1))) + (-4 *1 (-977 *4 *5 *3)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-960)) (-4 *4 (-716)) (-4 *5 (-755)) - (-5 *2 (-2 (|:| -3952 *1) (|:| |gap| (-693)) (|:| -1971 *1) (|:| -2901 *1))) - (-4 *1 (-976 *3 *4 *5))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-703 *2)) (-4 *2 (-960)))) + (-12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) + (-5 *2 (-2 (|:| -3953 *1) (|:| |gap| (-694)) (|:| -1972 *1) (|:| -2902 *1))) + (-4 *1 (-977 *3 *4 *5))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-704 *2)) (-4 *2 (-961)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-960)) (-4 *3 (-716)) (-4 *4 (-755))))) + (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756))))) (((*1 *2 *1 *1) (-12 - (-5 *2 (-2 (|:| |polnum| (-703 *3)) (|:| |polden| *3) (|:| -3479 (-693)))) - (-5 *1 (-703 *3)) (-4 *3 (-960)))) + (-5 *2 (-2 (|:| |polnum| (-704 *3)) (|:| |polden| *3) (|:| -3480 (-694)))) + (-5 *1 (-704 *3)) (-4 *3 (-961)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-960)) (-4 *4 (-716)) (-4 *5 (-755)) - (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3479 (-693)))) - (-4 *1 (-976 *3 *4 *5))))) -(((*1 *2 *3) (|partial| -12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1127)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-299)) (-4 *5 (-280 *4)) (-4 *6 (-1153 *5)) - (-5 *2 (-1083 (-1083 *4))) (-5 *1 (-699 *4 *5 *6 *3 *7)) (-4 *3 (-1153 *6)) - (-14 *7 (-829)))) + (-12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) + (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3480 (-694)))) + (-4 *1 (-977 *3 *4 *5))))) +(((*1 *2 *3) (|partial| -12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1128)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-299)) (-4 *5 (-280 *4)) (-4 *6 (-1154 *5)) + (-5 *2 (-1084 (-1084 *4))) (-5 *1 (-700 *4 *5 *6 *3 *7)) (-4 *3 (-1154 *6)) + (-14 *7 (-830)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-582 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-960)) - (-4 *4 (-716)) (-4 *5 (-755)) (-4 *1 (-888 *3 *4 *5 *6)))) - ((*1 *2 *1) (|partial| -12 (-4 *1 (-949 *2)) (-4 *2 (-1127)))) + (|partial| -12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-961)) + (-4 *4 (-717)) (-4 *5 (-756)) (-4 *1 (-889 *3 *4 *5 *6)))) + ((*1 *2 *1) (|partial| -12 (-4 *1 (-950 *2)) (-4 *2 (-1128)))) ((*1 *1 *2) (|partial| OR - (-12 (-5 *2 (-856 *3)) - (-12 (-2559 (-4 *3 (-38 (-348 (-483))))) (-2559 (-4 *3 (-38 (-483)))) - (-4 *5 (-552 (-1088)))) - (-4 *3 (-960)) (-4 *1 (-976 *3 *4 *5)) (-4 *4 (-716)) (-4 *5 (-755))) - (-12 (-5 *2 (-856 *3)) - (-12 (-2559 (-4 *3 (-482))) (-2559 (-4 *3 (-38 (-348 (-483))))) - (-4 *3 (-38 (-483))) (-4 *5 (-552 (-1088)))) - (-4 *3 (-960)) (-4 *1 (-976 *3 *4 *5)) (-4 *4 (-716)) (-4 *5 (-755))) - (-12 (-5 *2 (-856 *3)) - (-12 (-2559 (-4 *3 (-903 (-483)))) (-4 *3 (-38 (-348 (-483)))) - (-4 *5 (-552 (-1088)))) - (-4 *3 (-960)) (-4 *1 (-976 *3 *4 *5)) (-4 *4 (-716)) (-4 *5 (-755))))) + (-12 (-5 *2 (-857 *3)) + (-12 (-2560 (-4 *3 (-38 (-349 (-484))))) (-2560 (-4 *3 (-38 (-484)))) + (-4 *5 (-553 (-1089)))) + (-4 *3 (-961)) (-4 *1 (-977 *3 *4 *5)) (-4 *4 (-717)) (-4 *5 (-756))) + (-12 (-5 *2 (-857 *3)) + (-12 (-2560 (-4 *3 (-483))) (-2560 (-4 *3 (-38 (-349 (-484))))) + (-4 *3 (-38 (-484))) (-4 *5 (-553 (-1089)))) + (-4 *3 (-961)) (-4 *1 (-977 *3 *4 *5)) (-4 *4 (-717)) (-4 *5 (-756))) + (-12 (-5 *2 (-857 *3)) + (-12 (-2560 (-4 *3 (-904 (-484)))) (-4 *3 (-38 (-349 (-484)))) + (-4 *5 (-553 (-1089)))) + (-4 *3 (-961)) (-4 *1 (-977 *3 *4 *5)) (-4 *4 (-717)) (-4 *5 (-756))))) ((*1 *1 *2) (|partial| OR - (-12 (-5 *2 (-856 (-483))) (-4 *1 (-976 *3 *4 *5)) - (-12 (-2559 (-4 *3 (-38 (-348 (-483))))) (-4 *3 (-38 (-483))) - (-4 *5 (-552 (-1088)))) - (-4 *3 (-960)) (-4 *4 (-716)) (-4 *5 (-755))) - (-12 (-5 *2 (-856 (-483))) (-4 *1 (-976 *3 *4 *5)) - (-12 (-4 *3 (-38 (-348 (-483)))) (-4 *5 (-552 (-1088)))) (-4 *3 (-960)) - (-4 *4 (-716)) (-4 *5 (-755))))) + (-12 (-5 *2 (-857 (-484))) (-4 *1 (-977 *3 *4 *5)) + (-12 (-2560 (-4 *3 (-38 (-349 (-484))))) (-4 *3 (-38 (-484))) + (-4 *5 (-553 (-1089)))) + (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))) + (-12 (-5 *2 (-857 (-484))) (-4 *1 (-977 *3 *4 *5)) + (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *5 (-553 (-1089)))) (-4 *3 (-961)) + (-4 *4 (-717)) (-4 *5 (-756))))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-856 (-348 (-483)))) (-4 *1 (-976 *3 *4 *5)) - (-4 *3 (-38 (-348 (-483)))) (-4 *5 (-552 (-1088))) (-4 *3 (-960)) - (-4 *4 (-716)) (-4 *5 (-755))))) -(((*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1127)))) + (|partial| -12 (-5 *2 (-857 (-349 (-484)))) (-4 *1 (-977 *3 *4 *5)) + (-4 *3 (-38 (-349 (-484)))) (-4 *5 (-553 (-1089))) (-4 *3 (-961)) + (-4 *4 (-717)) (-4 *5 (-756))))) +(((*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1128)))) ((*1 *1 *2) - (-12 (-5 *2 (-582 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-960)) (-4 *4 (-716)) - (-4 *5 (-755)) (-4 *1 (-888 *3 *4 *5 *6)))) - ((*1 *2 *1) (-12 (-4 *1 (-949 *2)) (-4 *2 (-1127)))) + (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) + (-4 *5 (-756)) (-4 *1 (-889 *3 *4 *5 *6)))) + ((*1 *2 *1) (-12 (-4 *1 (-950 *2)) (-4 *2 (-1128)))) ((*1 *1 *2) (OR - (-12 (-5 *2 (-856 *3)) - (-12 (-2559 (-4 *3 (-38 (-348 (-483))))) (-2559 (-4 *3 (-38 (-483)))) - (-4 *5 (-552 (-1088)))) - (-4 *3 (-960)) (-4 *1 (-976 *3 *4 *5)) (-4 *4 (-716)) (-4 *5 (-755))) - (-12 (-5 *2 (-856 *3)) - (-12 (-2559 (-4 *3 (-482))) (-2559 (-4 *3 (-38 (-348 (-483))))) - (-4 *3 (-38 (-483))) (-4 *5 (-552 (-1088)))) - (-4 *3 (-960)) (-4 *1 (-976 *3 *4 *5)) (-4 *4 (-716)) (-4 *5 (-755))) - (-12 (-5 *2 (-856 *3)) - (-12 (-2559 (-4 *3 (-903 (-483)))) (-4 *3 (-38 (-348 (-483)))) - (-4 *5 (-552 (-1088)))) - (-4 *3 (-960)) (-4 *1 (-976 *3 *4 *5)) (-4 *4 (-716)) (-4 *5 (-755))))) + (-12 (-5 *2 (-857 *3)) + (-12 (-2560 (-4 *3 (-38 (-349 (-484))))) (-2560 (-4 *3 (-38 (-484)))) + (-4 *5 (-553 (-1089)))) + (-4 *3 (-961)) (-4 *1 (-977 *3 *4 *5)) (-4 *4 (-717)) (-4 *5 (-756))) + (-12 (-5 *2 (-857 *3)) + (-12 (-2560 (-4 *3 (-483))) (-2560 (-4 *3 (-38 (-349 (-484))))) + (-4 *3 (-38 (-484))) (-4 *5 (-553 (-1089)))) + (-4 *3 (-961)) (-4 *1 (-977 *3 *4 *5)) (-4 *4 (-717)) (-4 *5 (-756))) + (-12 (-5 *2 (-857 *3)) + (-12 (-2560 (-4 *3 (-904 (-484)))) (-4 *3 (-38 (-349 (-484)))) + (-4 *5 (-553 (-1089)))) + (-4 *3 (-961)) (-4 *1 (-977 *3 *4 *5)) (-4 *4 (-717)) (-4 *5 (-756))))) ((*1 *1 *2) (OR - (-12 (-5 *2 (-856 (-483))) (-4 *1 (-976 *3 *4 *5)) - (-12 (-2559 (-4 *3 (-38 (-348 (-483))))) (-4 *3 (-38 (-483))) - (-4 *5 (-552 (-1088)))) - (-4 *3 (-960)) (-4 *4 (-716)) (-4 *5 (-755))) - (-12 (-5 *2 (-856 (-483))) (-4 *1 (-976 *3 *4 *5)) - (-12 (-4 *3 (-38 (-348 (-483)))) (-4 *5 (-552 (-1088)))) (-4 *3 (-960)) - (-4 *4 (-716)) (-4 *5 (-755))))) + (-12 (-5 *2 (-857 (-484))) (-4 *1 (-977 *3 *4 *5)) + (-12 (-2560 (-4 *3 (-38 (-349 (-484))))) (-4 *3 (-38 (-484))) + (-4 *5 (-553 (-1089)))) + (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))) + (-12 (-5 *2 (-857 (-484))) (-4 *1 (-977 *3 *4 *5)) + (-12 (-4 *3 (-38 (-349 (-484)))) (-4 *5 (-553 (-1089)))) (-4 *3 (-961)) + (-4 *4 (-717)) (-4 *5 (-756))))) ((*1 *1 *2) - (-12 (-5 *2 (-856 (-348 (-483)))) (-4 *1 (-976 *3 *4 *5)) - (-4 *3 (-38 (-348 (-483)))) (-4 *5 (-552 (-1088))) (-4 *3 (-960)) - (-4 *4 (-716)) (-4 *5 (-755))))) + (-12 (-5 *2 (-857 (-349 (-484)))) (-4 *1 (-977 *3 *4 *5)) + (-4 *3 (-38 (-349 (-484)))) (-4 *5 (-553 (-1089))) (-4 *3 (-961)) + (-4 *4 (-717)) (-4 *5 (-756))))) (((*1 *1 *1) - (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-960)) (-4 *3 (-716)) (-4 *4 (-755)) - (-4 *2 (-494))))) + (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) + (-4 *2 (-495))))) (((*1 *1 *1) - (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-960)) (-4 *3 (-716)) (-4 *4 (-755)) - (-4 *2 (-494))))) + (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) + (-4 *2 (-495))))) (((*1 *1 *1 *1) - (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-960)) (-4 *3 (-716)) (-4 *4 (-755)) - (-4 *2 (-494)))) + (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) + (-4 *2 (-495)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-960)) (-4 *3 (-716)) (-4 *4 (-755)) - (-4 *2 (-494))))) + (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) + (-4 *2 (-495))))) (((*1 *1 *1 *1) - (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-960)) (-4 *3 (-716)) (-4 *4 (-755)) - (-4 *2 (-494)))) + (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) + (-4 *2 (-495)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-960)) (-4 *3 (-716)) (-4 *4 (-755)) - (-4 *2 (-494))))) + (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) + (-4 *2 (-495))))) (((*1 *2 *1 *1) (-12 (-5 *2 - (-2 (|:| -3143 (-703 *3)) (|:| |coef1| (-703 *3)) (|:| |coef2| (-703 *3)))) - (-5 *1 (-703 *3)) (-4 *3 (-494)) (-4 *3 (-960)))) + (-2 (|:| -3144 (-704 *3)) (|:| |coef1| (-704 *3)) (|:| |coef2| (-704 *3)))) + (-5 *1 (-704 *3)) (-4 *3 (-495)) (-4 *3 (-961)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-494)) (-4 *3 (-960)) (-4 *4 (-716)) (-4 *5 (-755)) - (-5 *2 (-2 (|:| -3143 *1) (|:| |coef1| *1) (|:| |coef2| *1))) - (-4 *1 (-976 *3 *4 *5))))) + (-12 (-4 *3 (-495)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) + (-5 *2 (-2 (|:| -3144 *1) (|:| |coef1| *1) (|:| |coef2| *1))) + (-4 *1 (-977 *3 *4 *5))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -3143 (-703 *3)) (|:| |coef1| (-703 *3)))) - (-5 *1 (-703 *3)) (-4 *3 (-494)) (-4 *3 (-960)))) + (-12 (-5 *2 (-2 (|:| -3144 (-704 *3)) (|:| |coef1| (-704 *3)))) + (-5 *1 (-704 *3)) (-4 *3 (-495)) (-4 *3 (-961)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-494)) (-4 *3 (-960)) (-4 *4 (-716)) (-4 *5 (-755)) - (-5 *2 (-2 (|:| -3143 *1) (|:| |coef1| *1))) (-4 *1 (-976 *3 *4 *5))))) + (-12 (-4 *3 (-495)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) + (-5 *2 (-2 (|:| -3144 *1) (|:| |coef1| *1))) (-4 *1 (-977 *3 *4 *5))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -3143 (-703 *3)) (|:| |coef2| (-703 *3)))) - (-5 *1 (-703 *3)) (-4 *3 (-494)) (-4 *3 (-960)))) + (-12 (-5 *2 (-2 (|:| -3144 (-704 *3)) (|:| |coef2| (-704 *3)))) + (-5 *1 (-704 *3)) (-4 *3 (-495)) (-4 *3 (-961)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-494)) (-4 *3 (-960)) (-4 *4 (-716)) (-4 *5 (-755)) - (-5 *2 (-2 (|:| -3143 *1) (|:| |coef2| *1))) (-4 *1 (-976 *3 *4 *5))))) + (-12 (-4 *3 (-495)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) + (-5 *2 (-2 (|:| -3144 *1) (|:| |coef2| *1))) (-4 *1 (-977 *3 *4 *5))))) (((*1 *2 *1 *1) - (-12 (-4 *3 (-494)) (-4 *3 (-960)) (-4 *4 (-716)) (-4 *5 (-755)) - (-5 *2 (-582 *1)) (-4 *1 (-976 *3 *4 *5))))) + (-12 (-4 *3 (-495)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) + (-5 *2 (-583 *1)) (-4 *1 (-977 *3 *4 *5))))) (((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-693)) (-4 *1 (-976 *3 *4 *5)) (-4 *3 (-960)) (-4 *4 (-716)) - (-4 *5 (-755)) (-4 *3 (-494))))) + (-12 (-5 *2 (-694)) (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) + (-4 *5 (-756)) (-4 *3 (-495))))) (((*1 *1 *1 *1 *1 *2) - (-12 (-5 *2 (-693)) (-4 *1 (-976 *3 *4 *5)) (-4 *3 (-960)) (-4 *4 (-716)) - (-4 *5 (-755)) (-4 *3 (-494))))) + (-12 (-5 *2 (-694)) (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) + (-4 *5 (-756)) (-4 *3 (-495))))) (((*1 *1 *1 *1 *1 *1) - (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-960)) (-4 *3 (-716)) (-4 *4 (-755)) - (-4 *2 (-494))))) -(((*1 *1 *2) (-12 (-5 *2 (-582 *1)) (-4 *1 (-390)))) - ((*1 *1 *1 *1) (-4 *1 (-390))) - ((*1 *2 *3) (-12 (-5 *3 (-582 *2)) (-5 *1 (-424 *2)) (-4 *2 (-1153 (-483))))) - ((*1 *2 *2 *2 *3) (-12 (-5 *3 (-483)) (-5 *1 (-634 *2)) (-4 *2 (-1153 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-693))) + (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) + (-4 *2 (-495))))) +(((*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-391)))) + ((*1 *1 *1 *1) (-4 *1 (-391))) + ((*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-5 *1 (-425 *2)) (-4 *2 (-1154 (-484))))) + ((*1 *2 *2 *2 *3) (-12 (-5 *3 (-484)) (-5 *1 (-635 *2)) (-4 *2 (-1154 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-694))) ((*1 *2 *2 *2) - (-12 (-4 *3 (-716)) (-4 *4 (-755)) (-4 *5 (-258)) (-5 *1 (-826 *3 *4 *5 *2)) - (-4 *2 (-860 *5 *3 *4)))) + (-12 (-4 *3 (-717)) (-4 *4 (-756)) (-4 *5 (-258)) (-5 *1 (-827 *3 *4 *5 *2)) + (-4 *2 (-861 *5 *3 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-582 *2)) (-4 *2 (-860 *6 *4 *5)) (-5 *1 (-826 *4 *5 *6 *2)) - (-4 *4 (-716)) (-4 *5 (-755)) (-4 *6 (-258)))) + (-12 (-5 *3 (-583 *2)) (-4 *2 (-861 *6 *4 *5)) (-5 *1 (-827 *4 *5 *6 *2)) + (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-258)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1083 *6)) (-4 *6 (-860 *5 *3 *4)) (-4 *3 (-716)) (-4 *4 (-755)) - (-4 *5 (-258)) (-5 *1 (-826 *3 *4 *5 *6)))) + (-12 (-5 *2 (-1084 *6)) (-4 *6 (-861 *5 *3 *4)) (-4 *3 (-717)) (-4 *4 (-756)) + (-4 *5 (-258)) (-5 *1 (-827 *3 *4 *5 *6)))) ((*1 *2 *3) - (-12 (-5 *3 (-582 (-1083 *7))) (-4 *4 (-716)) (-4 *5 (-755)) (-4 *6 (-258)) - (-5 *2 (-1083 *7)) (-5 *1 (-826 *4 *5 *6 *7)) (-4 *7 (-860 *6 *4 *5)))) - ((*1 *1 *1 *1) (-5 *1 (-829))) + (-12 (-5 *3 (-583 (-1084 *7))) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-258)) + (-5 *2 (-1084 *7)) (-5 *1 (-827 *4 *5 *6 *7)) (-4 *7 (-861 *6 *4 *5)))) + ((*1 *1 *1 *1) (-5 *1 (-830))) ((*1 *2 *2 *2) - (-12 (-4 *3 (-390)) (-4 *3 (-494)) (-5 *1 (-881 *3 *2)) (-4 *2 (-1153 *3)))) + (-12 (-4 *3 (-391)) (-4 *3 (-495)) (-5 *1 (-882 *3 *2)) (-4 *2 (-1154 *3)))) ((*1 *2 *2 *1) - (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-960)) (-4 *3 (-716)) (-4 *4 (-755)) - (-4 *2 (-390))))) + (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) + (-4 *2 (-391))))) (((*1 *1 *1) - (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-960)) (-4 *3 (-716)) (-4 *4 (-755)) - (-4 *2 (-390))))) + (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) + (-4 *2 (-391))))) (((*1 *1 *1) - (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-960)) (-4 *3 (-716)) (-4 *4 (-755)) - (-4 *2 (-390))))) + (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) + (-4 *2 (-391))))) (((*1 *1 *1) - (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-960)) (-4 *3 (-716)) (-4 *4 (-755)) - (-4 *2 (-390))))) + (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) + (-4 *2 (-391))))) (((*1 *1 *1) - (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-960)) (-4 *3 (-716)) (-4 *4 (-755)) - (-4 *2 (-390))))) -(((*1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-974)))) - ((*1 *1 *2) (-12 (-5 *2 (-1088)) (-5 *1 (-974))))) -(((*1 *1 *1) (-12 (-4 *1 (-92 *2)) (-4 *2 (-1127)))) - ((*1 *1 *1) (-12 (-5 *1 (-613 *2)) (-4 *2 (-755)))) - ((*1 *1 *1) (-12 (-5 *1 (-617 *2)) (-4 *2 (-755)))) - ((*1 *1 *1) (-5 *1 (-771))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-771)))) - ((*1 *2 *1) - (-12 (-4 *2 (-13 (-754) (-312))) (-5 *1 (-973 *2 *3)) (-4 *3 (-1153 *2))))) -(((*1 *1 *1) (-12 (-4 *1 (-92 *2)) (-4 *2 (-1127)))) - ((*1 *1 *1) (-12 (-5 *1 (-613 *2)) (-4 *2 (-755)))) - ((*1 *1 *1) (-12 (-5 *1 (-617 *2)) (-4 *2 (-755)))) - ((*1 *1 *1) (-5 *1 (-771))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-771)))) - ((*1 *2 *1) - (-12 (-4 *2 (-13 (-754) (-312))) (-5 *1 (-973 *2 *3)) (-4 *3 (-1153 *2))))) + (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) + (-4 *2 (-391))))) +(((*1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-975)))) + ((*1 *1 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-975))))) +(((*1 *1 *1) (-12 (-4 *1 (-92 *2)) (-4 *2 (-1128)))) + ((*1 *1 *1) (-12 (-5 *1 (-614 *2)) (-4 *2 (-756)))) + ((*1 *1 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-756)))) + ((*1 *1 *1) (-5 *1 (-772))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-772)))) + ((*1 *2 *1) + (-12 (-4 *2 (-13 (-755) (-312))) (-5 *1 (-974 *2 *3)) (-4 *3 (-1154 *2))))) +(((*1 *1 *1) (-12 (-4 *1 (-92 *2)) (-4 *2 (-1128)))) + ((*1 *1 *1) (-12 (-5 *1 (-614 *2)) (-4 *2 (-756)))) + ((*1 *1 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-756)))) + ((*1 *1 *1) (-5 *1 (-772))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-772)))) + ((*1 *2 *1) + (-12 (-4 *2 (-13 (-755) (-312))) (-5 *1 (-974 *2 *3)) (-4 *3 (-1154 *2))))) (((*1 *2) - (-12 (-14 *4 *2) (-4 *5 (-1127)) (-5 *2 (-693)) (-5 *1 (-195 *3 *4 *5)) + (-12 (-14 *4 *2) (-4 *5 (-1128)) (-5 *2 (-694)) (-5 *1 (-195 *3 *4 *5)) (-4 *3 (-196 *4 *5)))) ((*1 *2 *1) - (-12 (-4 *1 (-274 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-104)) (-5 *2 (-693)))) + (-12 (-4 *1 (-274 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-104)) (-5 *2 (-694)))) ((*1 *2) - (-12 (-4 *4 (-312)) (-5 *2 (-693)) (-5 *1 (-279 *3 *4)) (-4 *3 (-280 *4)))) - ((*1 *2 *1) (-12 (-5 *2 (-693)) (-5 *1 (-310 *3)) (-4 *3 (-1012)))) - ((*1 *2) (-12 (-4 *1 (-318)) (-5 *2 (-693)))) - ((*1 *2 *1) (-12 (-4 *1 (-334 *3)) (-4 *3 (-1012)) (-5 *2 (-693)))) + (-12 (-4 *4 (-312)) (-5 *2 (-694)) (-5 *1 (-279 *3 *4)) (-4 *3 (-280 *4)))) + ((*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-310 *3)) (-4 *3 (-1013)))) + ((*1 *2) (-12 (-4 *1 (-319)) (-5 *2 (-694)))) + ((*1 *2 *1) (-12 (-4 *1 (-335 *3)) (-4 *3 (-1013)) (-5 *2 (-694)))) ((*1 *2) - (-12 (-4 *4 (-1012)) (-5 *2 (-693)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) + (-12 (-4 *4 (-1013)) (-5 *2 (-694)) (-5 *1 (-367 *3 *4)) (-4 *3 (-368 *4)))) ((*1 *2 *1) - (-12 (-5 *2 (-693)) (-5 *1 (-590 *3 *4 *5)) (-4 *3 (-1012)) (-4 *4 (-23)) + (-12 (-5 *2 (-694)) (-5 *1 (-591 *3 *4 *5)) (-4 *3 (-1013)) (-4 *4 (-23)) (-14 *5 *4))) ((*1 *2) - (-12 (-4 *4 (-146)) (-4 *5 (-1153 *4)) (-5 *2 (-693)) (-5 *1 (-659 *3 *4 *5)) - (-4 *3 (-660 *4 *5)))) - ((*1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-918)))) + (-12 (-4 *4 (-146)) (-4 *5 (-1154 *4)) (-5 *2 (-694)) (-5 *1 (-660 *3 *4 *5)) + (-4 *3 (-661 *4 *5)))) + ((*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-919)))) ((*1 *2 *1) - (-12 (-4 *2 (-13 (-754) (-312))) (-5 *1 (-973 *2 *3)) (-4 *3 (-1153 *2))))) + (-12 (-4 *2 (-13 (-755) (-312))) (-5 *1 (-974 *2 *3)) (-4 *3 (-1154 *2))))) (((*1 *2 *1) - (-12 (-4 *2 (-13 (-754) (-312))) (-5 *1 (-973 *2 *3)) (-4 *3 (-1153 *2))))) + (-12 (-4 *2 (-13 (-755) (-312))) (-5 *1 (-974 *2 *3)) (-4 *3 (-1154 *2))))) (((*1 *1 *1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-30)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-346 *4) *4)) (-4 *4 (-494)) (-5 *2 (-346 *4)) - (-5 *1 (-360 *4)))) - ((*1 *1 *1) (-5 *1 (-835))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1000 (-179))) (-5 *1 (-835)))) - ((*1 *1 *1) (-5 *1 (-837))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1000 (-179))) (-5 *1 (-837)))) + (-12 (-5 *3 (-1 (-347 *4) *4)) (-4 *4 (-495)) (-5 *2 (-347 *4)) + (-5 *1 (-361 *4)))) + ((*1 *1 *1) (-5 *1 (-836))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1001 (-179))) (-5 *1 (-836)))) + ((*1 *1 *1) (-5 *1 (-838))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1001 (-179))) (-5 *1 (-838)))) ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-2 (|:| -3137 (-348 (-483))) (|:| -3136 (-348 (-483))))) - (-5 *4 (-348 (-483))) (-5 *1 (-933 *3)) (-4 *3 (-1153 (-483))))) + (-12 (-5 *2 (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484))))) + (-5 *4 (-349 (-484))) (-5 *1 (-934 *3)) (-4 *3 (-1154 (-484))))) ((*1 *2 *3 *2 *2) (|partial| -12 - (-5 *2 (-2 (|:| -3137 (-348 (-483))) (|:| -3136 (-348 (-483))))) - (-5 *1 (-933 *3)) (-4 *3 (-1153 (-483))))) + (-5 *2 (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484))))) + (-5 *1 (-934 *3)) (-4 *3 (-1154 (-484))))) ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-2 (|:| -3137 (-348 (-483))) (|:| -3136 (-348 (-483))))) - (-5 *4 (-348 (-483))) (-5 *1 (-934 *3)) (-4 *3 (-1153 *4)))) + (-12 (-5 *2 (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484))))) + (-5 *4 (-349 (-484))) (-5 *1 (-935 *3)) (-4 *3 (-1154 *4)))) ((*1 *2 *3 *2 *2) (|partial| -12 - (-5 *2 (-2 (|:| -3137 (-348 (-483))) (|:| -3136 (-348 (-483))))) - (-5 *1 (-934 *3)) (-4 *3 (-1153 (-348 (-483)))))) + (-5 *2 (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484))))) + (-5 *1 (-935 *3)) (-4 *3 (-1154 (-349 (-484)))))) ((*1 *1 *1) - (-12 (-4 *2 (-13 (-754) (-312))) (-5 *1 (-973 *2 *3)) (-4 *3 (-1153 *2))))) + (-12 (-4 *2 (-13 (-755) (-312))) (-5 *1 (-974 *2 *3)) (-4 *3 (-1154 *2))))) (((*1 *2 *3 *1) - (-12 (-4 *4 (-13 (-754) (-312))) (-5 *2 (-85)) (-5 *1 (-973 *4 *3)) - (-4 *3 (-1153 *4))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-582 (-549 (-48)))) (-5 *1 (-48)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-549 (-48))) (-5 *1 (-48)))) + (-12 (-4 *4 (-13 (-755) (-312))) (-5 *2 (-85)) (-5 *1 (-974 *4 *3)) + (-4 *3 (-1154 *4))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-550 (-48)))) (-5 *1 (-48)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-550 (-48))) (-5 *1 (-48)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1083 (-48))) (-5 *3 (-582 (-549 (-48)))) (-5 *1 (-48)))) - ((*1 *2 *2 *3) (-12 (-5 *2 (-1083 (-48))) (-5 *3 (-549 (-48))) (-5 *1 (-48)))) + (-12 (-5 *2 (-1084 (-48))) (-5 *3 (-583 (-550 (-48)))) (-5 *1 (-48)))) + ((*1 *2 *2 *3) (-12 (-5 *2 (-1084 (-48))) (-5 *3 (-550 (-48))) (-5 *1 (-48)))) ((*1 *2 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) ((*1 *2 *3) - (-12 (-4 *2 (-13 (-312) (-754))) (-5 *1 (-155 *2 *3)) - (-4 *3 (-1153 (-142 *2))))) + (-12 (-4 *2 (-13 (-312) (-755))) (-5 *1 (-155 *2 *3)) + (-4 *3 (-1154 (-142 *2))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-829)) (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-318)))) + (-12 (-5 *2 (-830)) (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-319)))) ((*1 *2 *1) (-12 (-4 *1 (-280 *2)) (-4 *2 (-312)))) - ((*1 *2 *1) (-12 (-4 *1 (-320 *2 *3)) (-4 *3 (-1153 *2)) (-4 *2 (-146)))) + ((*1 *2 *1) (-12 (-4 *1 (-321 *2 *3)) (-4 *3 (-1154 *2)) (-4 *2 (-146)))) ((*1 *2 *1) - (-12 (-4 *4 (-1153 *2)) (-4 *2 (-903 *3)) (-5 *1 (-354 *3 *2 *4 *5)) - (-4 *3 (-258)) (-4 *5 (-13 (-351 *2 *4) (-949 *2))))) + (-12 (-4 *4 (-1154 *2)) (-4 *2 (-904 *3)) (-5 *1 (-355 *3 *2 *4 *5)) + (-4 *3 (-258)) (-4 *5 (-13 (-352 *2 *4) (-950 *2))))) ((*1 *2 *1) - (-12 (-4 *4 (-1153 *2)) (-4 *2 (-903 *3)) (-5 *1 (-356 *3 *2 *4 *5 *6)) - (-4 *3 (-258)) (-4 *5 (-351 *2 *4)) (-14 *6 (-1177 *5)))) + (-12 (-4 *4 (-1154 *2)) (-4 *2 (-904 *3)) (-5 *1 (-357 *3 *2 *4 *5 *6)) + (-4 *3 (-258)) (-4 *5 (-352 *2 *4)) (-14 *6 (-1178 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-829)) (-4 *5 (-960)) - (-4 *2 (-13 (-345) (-949 *5) (-312) (-1113) (-239))) (-5 *1 (-381 *5 *3 *2)) - (-4 *3 (-1153 *5)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-582 (-549 (-433)))) (-5 *1 (-433)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-549 (-433))) (-5 *1 (-433)))) + (-12 (-5 *4 (-830)) (-4 *5 (-961)) + (-4 *2 (-13 (-346) (-950 *5) (-312) (-1114) (-239))) (-5 *1 (-382 *5 *3 *2)) + (-4 *3 (-1154 *5)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-550 (-434)))) (-5 *1 (-434)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-550 (-434))) (-5 *1 (-434)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1083 (-433))) (-5 *3 (-582 (-549 (-433)))) (-5 *1 (-433)))) + (-12 (-5 *2 (-1084 (-434))) (-5 *3 (-583 (-550 (-434)))) (-5 *1 (-434)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1083 (-433))) (-5 *3 (-549 (-433))) (-5 *1 (-433)))) + (-12 (-5 *2 (-1084 (-434))) (-5 *3 (-550 (-434))) (-5 *1 (-434)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1177 *4)) (-5 *3 (-829)) (-4 *4 (-299)) (-5 *1 (-465 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-390)) (-4 *5 (-660 *4 *2)) (-4 *2 (-1153 *4)) - (-5 *1 (-697 *4 *2 *5 *3)) (-4 *3 (-1153 *5)))) - ((*1 *2 *1) (-12 (-4 *1 (-719 *2)) (-4 *2 (-146)))) - ((*1 *2 *1) (-12 (-4 *1 (-910 *2)) (-4 *2 (-146)))) - ((*1 *1 *1) (-4 *1 (-972)))) -(((*1 *2 *1) (-12 (-4 *1 (-903 *2)) (-4 *2 (-494)) (-4 *2 (-482)))) - ((*1 *1 *1) (-4 *1 (-972)))) -(((*1 *2 *1) (-12 (-4 *1 (-903 *2)) (-4 *2 (-494)) (-4 *2 (-482)))) - ((*1 *1 *1) (-4 *1 (-972)))) + (-12 (-5 *2 (-1178 *4)) (-5 *3 (-830)) (-4 *4 (-299)) (-5 *1 (-466 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-391)) (-4 *5 (-661 *4 *2)) (-4 *2 (-1154 *4)) + (-5 *1 (-698 *4 *2 *5 *3)) (-4 *3 (-1154 *5)))) + ((*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146)))) + ((*1 *2 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-146)))) + ((*1 *1 *1) (-4 *1 (-973)))) +(((*1 *2 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-495)) (-4 *2 (-483)))) + ((*1 *1 *1) (-4 *1 (-973)))) +(((*1 *2 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-495)) (-4 *2 (-483)))) + ((*1 *1 *1) (-4 *1 (-973)))) (((*1 *2 *1) (-12 (-5 *1 (-148 *2)) (-4 *2 (-258)))) - ((*1 *2 *1) (-12 (-5 *1 (-824 *2)) (-4 *2 (-258)))) - ((*1 *2 *1) (-12 (-4 *1 (-903 *2)) (-4 *2 (-494)) (-4 *2 (-258)))) - ((*1 *2 *1) (-12 (-4 *1 (-972)) (-5 *2 (-483))))) -(((*1 *2 *1) (-12 (-5 *2 (-348 (-483))) (-5 *1 (-77)))) - ((*1 *2 *1) (-12 (-5 *2 (-348 (-483))) (-5 *1 (-171)))) - ((*1 *2 *1) (-12 (-5 *2 (-348 (-483))) (-5 *1 (-425)))) - ((*1 *1 *1) (-12 (-4 *1 (-903 *2)) (-4 *2 (-494)) (-4 *2 (-258)))) - ((*1 *2 *1) (-12 (-5 *2 (-348 (-483))) (-5 *1 (-916 *3)) (-14 *3 (-483)))) - ((*1 *1 *1) (-4 *1 (-972)))) -(((*1 *1 *1) (-4 *1 (-972)))) + ((*1 *2 *1) (-12 (-5 *1 (-825 *2)) (-4 *2 (-258)))) + ((*1 *2 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-495)) (-4 *2 (-258)))) + ((*1 *2 *1) (-12 (-4 *1 (-973)) (-5 *2 (-484))))) +(((*1 *2 *1) (-12 (-5 *2 (-349 (-484))) (-5 *1 (-77)))) + ((*1 *2 *1) (-12 (-5 *2 (-349 (-484))) (-5 *1 (-171)))) + ((*1 *2 *1) (-12 (-5 *2 (-349 (-484))) (-5 *1 (-426)))) + ((*1 *1 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-495)) (-4 *2 (-258)))) + ((*1 *2 *1) (-12 (-5 *2 (-349 (-484))) (-5 *1 (-917 *3)) (-14 *3 (-484)))) + ((*1 *1 *1) (-4 *1 (-973)))) +(((*1 *1 *1) (-4 *1 (-973)))) (((*1 *2) - (-12 (-4 *4 (-146)) (-5 *2 (-693)) (-5 *1 (-138 *3 *4)) (-4 *3 (-139 *4)))) + (-12 (-4 *4 (-146)) (-5 *2 (-694)) (-5 *1 (-138 *3 *4)) (-4 *3 (-139 *4)))) ((*1 *2) - (-12 (-14 *4 *2) (-4 *5 (-1127)) (-5 *2 (-693)) (-5 *1 (-195 *3 *4 *5)) + (-12 (-14 *4 *2) (-4 *5 (-1128)) (-5 *2 (-694)) (-5 *1 (-195 *3 *4 *5)) (-4 *3 (-196 *4 *5)))) ((*1 *2) - (-12 (-4 *4 (-1012)) (-5 *2 (-693)) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4)))) - ((*1 *2) (-12 (-5 *2 (-693)) (-5 *1 (-481 *3)) (-4 *3 (-482)))) - ((*1 *2) (-12 (-4 *1 (-686)) (-5 *2 (-693)))) + (-12 (-4 *4 (-1013)) (-5 *2 (-694)) (-5 *1 (-362 *3 *4)) (-4 *3 (-363 *4)))) + ((*1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-482 *3)) (-4 *3 (-483)))) + ((*1 *2) (-12 (-4 *1 (-687)) (-5 *2 (-694)))) ((*1 *2) - (-12 (-4 *4 (-146)) (-5 *2 (-693)) (-5 *1 (-718 *3 *4)) (-4 *3 (-719 *4)))) + (-12 (-4 *4 (-146)) (-5 *2 (-694)) (-5 *1 (-719 *3 *4)) (-4 *3 (-720 *4)))) ((*1 *2) - (-12 (-4 *4 (-494)) (-5 *2 (-693)) (-5 *1 (-902 *3 *4)) (-4 *3 (-903 *4)))) + (-12 (-4 *4 (-495)) (-5 *2 (-694)) (-5 *1 (-903 *3 *4)) (-4 *3 (-904 *4)))) ((*1 *2) - (-12 (-4 *4 (-146)) (-5 *2 (-693)) (-5 *1 (-909 *3 *4)) (-4 *3 (-910 *4)))) - ((*1 *2) (-12 (-5 *2 (-693)) (-5 *1 (-923 *3)) (-4 *3 (-924)))) - ((*1 *2) (-12 (-4 *1 (-960)) (-5 *2 (-693)))) - ((*1 *2) (-12 (-5 *2 (-693)) (-5 *1 (-971 *3)) (-4 *3 (-972))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-969)) (-5 *2 (-85))))) + (-12 (-4 *4 (-146)) (-5 *2 (-694)) (-5 *1 (-910 *3 *4)) (-4 *3 (-911 *4)))) + ((*1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-924 *3)) (-4 *3 (-925)))) + ((*1 *2) (-12 (-4 *1 (-961)) (-5 *2 (-694)))) + ((*1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-972 *3)) (-4 *3 (-973))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-970)) (-5 *2 (-85))))) (((*1 *1 *2) - (-12 (-5 *2 (-629 *5)) (-4 *5 (-960)) (-5 *1 (-965 *3 *4 *5)) (-14 *3 (-693)) - (-14 *4 (-693))))) + (-12 (-5 *2 (-630 *5)) (-4 *5 (-961)) (-5 *1 (-966 *3 *4 *5)) (-14 *3 (-694)) + (-14 *4 (-694))))) (((*1 *1 *2 *2 *3) - (-12 (-5 *2 (-693)) (-5 *3 (-1 *4 (-483) (-483))) (-4 *4 (-960)) - (-4 *1 (-626 *4 *5 *6)) (-4 *5 (-322 *4)) (-4 *6 (-322 *4)))) + (-12 (-5 *2 (-694)) (-5 *3 (-1 *4 (-484) (-484))) (-4 *4 (-961)) + (-4 *1 (-627 *4 *5 *6)) (-4 *5 (-323 *4)) (-4 *6 (-323 *4)))) ((*1 *1 *2) - (-12 (-5 *2 (-582 (-582 *3))) (-4 *3 (-960)) (-4 *1 (-626 *3 *4 *5)) - (-4 *4 (-322 *3)) (-4 *5 (-322 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-582 (-582 (-771)))) (-5 *1 (-771)))) + (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-961)) (-4 *1 (-627 *3 *4 *5)) + (-4 *4 (-323 *3)) (-4 *5 (-323 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-583 (-583 (-772)))) (-5 *1 (-772)))) ((*1 *2 *1) - (-12 (-5 *2 (-1054 *3 *4)) (-5 *1 (-905 *3 *4)) (-14 *3 (-829)) + (-12 (-5 *2 (-1055 *3 *4)) (-5 *1 (-906 *3 *4)) (-14 *3 (-830)) (-4 *4 (-312)))) ((*1 *1 *2) - (-12 (-5 *2 (-582 (-582 *5))) (-4 *5 (-960)) (-4 *1 (-964 *3 *4 *5 *6 *7)) + (-12 (-5 *2 (-583 (-583 *5))) (-4 *5 (-961)) (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5))))) (((*1 *2 *1) - (-12 (-4 *1 (-626 *3 *4 *5)) (-4 *3 (-960)) (-4 *4 (-322 *3)) - (-4 *5 (-322 *3)) (-5 *2 (-85)))) + (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-323 *3)) + (-4 *5 (-323 *3)) (-5 *2 (-85)))) ((*1 *2 *1) - (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-960)) (-4 *6 (-196 *4 *5)) + (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-626 *3 *4 *5)) (-4 *3 (-960)) (-4 *4 (-322 *3)) - (-4 *5 (-322 *3)) (-5 *2 (-85)))) + (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-323 *3)) + (-4 *5 (-323 *3)) (-5 *2 (-85)))) ((*1 *2 *1) - (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-960)) (-4 *6 (-196 *4 *5)) + (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-626 *3 *4 *5)) (-4 *3 (-960)) (-4 *4 (-322 *3)) - (-4 *5 (-322 *3)) (-5 *2 (-85)))) + (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-323 *3)) + (-4 *5 (-323 *3)) (-5 *2 (-85)))) ((*1 *2 *1) - (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-960)) (-4 *6 (-196 *4 *5)) + (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-626 *3 *4 *5)) (-4 *3 (-960)) (-4 *4 (-322 *3)) - (-4 *5 (-322 *3)) (-5 *2 (-85)))) + (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-323 *3)) + (-4 *5 (-323 *3)) (-5 *2 (-85)))) ((*1 *2 *1) - (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-960)) (-4 *6 (-196 *4 *5)) + (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1127)) (-4 *4 (-322 *3)) - (-4 *5 (-322 *3)) (-5 *2 (-483)))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1128)) (-4 *4 (-323 *3)) + (-4 *5 (-323 *3)) (-5 *2 (-484)))) ((*1 *2 *1) - (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-960)) (-4 *6 (-196 *4 *5)) - (-4 *7 (-196 *3 *5)) (-5 *2 (-483))))) + (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) + (-4 *7 (-196 *3 *5)) (-5 *2 (-484))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1127)) (-4 *4 (-322 *3)) - (-4 *5 (-322 *3)) (-5 *2 (-483)))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1128)) (-4 *4 (-323 *3)) + (-4 *5 (-323 *3)) (-5 *2 (-484)))) ((*1 *2 *1) - (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-960)) (-4 *6 (-196 *4 *5)) - (-4 *7 (-196 *3 *5)) (-5 *2 (-483))))) + (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) + (-4 *7 (-196 *3 *5)) (-5 *2 (-484))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1127)) (-4 *4 (-322 *3)) - (-4 *5 (-322 *3)) (-5 *2 (-483)))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1128)) (-4 *4 (-323 *3)) + (-4 *5 (-323 *3)) (-5 *2 (-484)))) ((*1 *2 *1) - (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-960)) (-4 *6 (-196 *4 *5)) - (-4 *7 (-196 *3 *5)) (-5 *2 (-483))))) + (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) + (-4 *7 (-196 *3 *5)) (-5 *2 (-484))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1127)) (-4 *4 (-322 *3)) - (-4 *5 (-322 *3)) (-5 *2 (-483)))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1128)) (-4 *4 (-323 *3)) + (-4 *5 (-323 *3)) (-5 *2 (-484)))) ((*1 *2 *1) - (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-960)) (-4 *6 (-196 *4 *5)) - (-4 *7 (-196 *3 *5)) (-5 *2 (-483))))) + (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) + (-4 *7 (-196 *3 *5)) (-5 *2 (-484))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1127)) (-4 *4 (-322 *3)) - (-4 *5 (-322 *3)) (-5 *2 (-693)))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1128)) (-4 *4 (-323 *3)) + (-4 *5 (-323 *3)) (-5 *2 (-694)))) ((*1 *2 *1) - (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-960)) (-4 *6 (-196 *4 *5)) - (-4 *7 (-196 *3 *5)) (-5 *2 (-693))))) + (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) + (-4 *7 (-196 *3 *5)) (-5 *2 (-694))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1127)) (-4 *4 (-322 *3)) - (-4 *5 (-322 *3)) (-5 *2 (-693)))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1128)) (-4 *4 (-323 *3)) + (-4 *5 (-323 *3)) (-5 *2 (-694)))) ((*1 *2 *1) - (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-960)) (-4 *6 (-196 *4 *5)) - (-4 *7 (-196 *3 *5)) (-5 *2 (-693))))) + (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) + (-4 *7 (-196 *3 *5)) (-5 *2 (-694))))) (((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-483)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-322 *2)) - (-4 *5 (-322 *2)) (-4 *2 (-1127)))) + (-12 (-5 *3 (-484)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-323 *2)) + (-4 *5 (-323 *2)) (-4 *2 (-1128)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-693)) (-4 *2 (-1012)) (-5 *1 (-166 *4 *2)) (-14 *4 (-829)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-243 *3 *2)) (-4 *3 (-1012)) (-4 *2 (-1127)))) + (-12 (-5 *3 (-694)) (-4 *2 (-1013)) (-5 *1 (-166 *4 *2)) (-14 *4 (-830)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-243 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1128)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-483)) (-4 *1 (-964 *4 *5 *2 *6 *7)) (-4 *6 (-196 *5 *2)) - (-4 *7 (-196 *4 *2)) (-4 *2 (-960))))) + (-12 (-5 *3 (-484)) (-4 *1 (-965 *4 *5 *2 *6 *7)) (-4 *6 (-196 *5 *2)) + (-4 *7 (-196 *4 *2)) (-4 *2 (-961))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-483)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1127)) (-4 *5 (-322 *4)) - (-4 *2 (-322 *4)))) + (-12 (-5 *3 (-484)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1128)) (-4 *5 (-323 *4)) + (-4 *2 (-323 *4)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-483)) (-4 *1 (-964 *4 *5 *6 *2 *7)) (-4 *6 (-960)) + (-12 (-5 *3 (-484)) (-4 *1 (-965 *4 *5 *6 *2 *7)) (-4 *6 (-961)) (-4 *7 (-196 *4 *6)) (-4 *2 (-196 *5 *6))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-483)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1127)) (-4 *5 (-322 *4)) - (-4 *2 (-322 *4)))) + (-12 (-5 *3 (-484)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1128)) (-4 *5 (-323 *4)) + (-4 *2 (-323 *4)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-483)) (-4 *1 (-964 *4 *5 *6 *7 *2)) (-4 *6 (-960)) + (-12 (-5 *3 (-484)) (-4 *1 (-965 *4 *5 *6 *7 *2)) (-4 *6 (-961)) (-4 *7 (-196 *5 *6)) (-4 *2 (-196 *4 *6))))) (((*1 *2 *2) - (-12 (-4 *3 (-312)) (-4 *4 (-322 *3)) (-4 *5 (-322 *3)) - (-5 *1 (-459 *3 *4 *5 *2)) (-4 *2 (-626 *3 *4 *5)))) + (-12 (-4 *3 (-312)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)) + (-5 *1 (-460 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-494)) (-4 *5 (-322 *4)) (-4 *6 (-322 *4)) (-4 *7 (-903 *4)) - (-4 *2 (-626 *7 *8 *9)) (-5 *1 (-460 *4 *5 *6 *3 *7 *8 *9 *2)) - (-4 *3 (-626 *4 *5 *6)) (-4 *8 (-322 *7)) (-4 *9 (-322 *7)))) + (-12 (-4 *4 (-495)) (-4 *5 (-323 *4)) (-4 *6 (-323 *4)) (-4 *7 (-904 *4)) + (-4 *2 (-627 *7 *8 *9)) (-5 *1 (-461 *4 *5 *6 *3 *7 *8 *9 *2)) + (-4 *3 (-627 *4 *5 *6)) (-4 *8 (-323 *7)) (-4 *9 (-323 *7)))) ((*1 *1 *1) - (-12 (-4 *1 (-626 *2 *3 *4)) (-4 *2 (-960)) (-4 *3 (-322 *2)) - (-4 *4 (-322 *2)) (-4 *2 (-258)))) + (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-323 *2)) + (-4 *4 (-323 *2)) (-4 *2 (-258)))) ((*1 *2 *2) - (-12 (-4 *3 (-258)) (-4 *3 (-146)) (-4 *4 (-322 *3)) (-4 *5 (-322 *3)) - (-5 *1 (-628 *3 *4 *5 *2)) (-4 *2 (-626 *3 *4 *5)))) - ((*1 *2 *2 *3) (-12 (-5 *2 (-629 *3)) (-4 *3 (-258)) (-5 *1 (-637 *3)))) + (-12 (-4 *3 (-258)) (-4 *3 (-146)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)) + (-5 *1 (-629 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5)))) + ((*1 *2 *2 *3) (-12 (-5 *2 (-630 *3)) (-4 *3 (-258)) (-5 *1 (-638 *3)))) ((*1 *1 *1) - (-12 (-4 *1 (-964 *2 *3 *4 *5 *6)) (-4 *4 (-960)) (-4 *5 (-196 *3 *4)) + (-12 (-4 *1 (-965 *2 *3 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-196 *3 *4)) (-4 *6 (-196 *2 *4)) (-4 *4 (-258))))) (((*1 *2 *1) - (-12 (-5 *2 (-693)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-483)) (-14 *4 *2) + (-12 (-5 *2 (-694)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-484)) (-14 *4 *2) (-4 *5 (-146)))) ((*1 *2) - (-12 (-4 *4 (-146)) (-5 *2 (-829)) (-5 *1 (-138 *3 *4)) (-4 *3 (-139 *4)))) - ((*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-829)))) + (-12 (-4 *4 (-146)) (-5 *2 (-830)) (-5 *1 (-138 *3 *4)) (-4 *3 (-139 *4)))) + ((*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-830)))) ((*1 *2) - (-12 (-4 *1 (-320 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1153 *3)) (-5 *2 (-829)))) + (-12 (-4 *1 (-321 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1154 *3)) (-5 *2 (-830)))) ((*1 *2 *3) - (-12 (-4 *4 (-312)) (-4 *5 (-322 *4)) (-4 *6 (-322 *4)) (-5 *2 (-693)) - (-5 *1 (-459 *4 *5 *6 *3)) (-4 *3 (-626 *4 *5 *6)))) + (-12 (-4 *4 (-312)) (-4 *5 (-323 *4)) (-4 *6 (-323 *4)) (-5 *2 (-694)) + (-5 *1 (-460 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-312)) (-4 *6 (-13 (-322 *5) (-10 -7 (-6 -3994)))) - (-4 *4 (-13 (-322 *5) (-10 -7 (-6 -3994)))) (-5 *2 (-693)) - (-5 *1 (-608 *5 *6 *4 *3)) (-4 *3 (-626 *5 *6 *4)))) + (-12 (-4 *5 (-312)) (-4 *6 (-13 (-323 *5) (-10 -7 (-6 -3995)))) + (-4 *4 (-13 (-323 *5) (-10 -7 (-6 -3995)))) (-5 *2 (-694)) + (-5 *1 (-609 *5 *6 *4 *3)) (-4 *3 (-627 *5 *6 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-629 *5)) (-5 *4 (-1177 *5)) (-4 *5 (-312)) (-5 *2 (-693)) - (-5 *1 (-609 *5)))) + (-12 (-5 *3 (-630 *5)) (-5 *4 (-1178 *5)) (-4 *5 (-312)) (-5 *2 (-694)) + (-5 *1 (-610 *5)))) ((*1 *2 *1) - (-12 (-4 *1 (-626 *3 *4 *5)) (-4 *3 (-960)) (-4 *4 (-322 *3)) - (-4 *5 (-322 *3)) (-4 *3 (-494)) (-5 *2 (-693)))) + (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-323 *3)) + (-4 *5 (-323 *3)) (-4 *3 (-495)) (-5 *2 (-694)))) ((*1 *2 *3) - (-12 (-4 *4 (-494)) (-4 *4 (-146)) (-4 *5 (-322 *4)) (-4 *6 (-322 *4)) - (-5 *2 (-693)) (-5 *1 (-628 *4 *5 *6 *3)) (-4 *3 (-626 *4 *5 *6)))) + (-12 (-4 *4 (-495)) (-4 *4 (-146)) (-4 *5 (-323 *4)) (-4 *6 (-323 *4)) + (-5 *2 (-694)) (-5 *1 (-629 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6)))) ((*1 *2 *1) - (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-960)) (-4 *6 (-196 *4 *5)) - (-4 *7 (-196 *3 *5)) (-4 *5 (-494)) (-5 *2 (-693))))) + (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) + (-4 *7 (-196 *3 *5)) (-4 *5 (-495)) (-5 *2 (-694))))) (((*1 *2 *3) - (-12 (-4 *4 (-312)) (-4 *5 (-322 *4)) (-4 *6 (-322 *4)) (-5 *2 (-693)) - (-5 *1 (-459 *4 *5 *6 *3)) (-4 *3 (-626 *4 *5 *6)))) + (-12 (-4 *4 (-312)) (-4 *5 (-323 *4)) (-4 *6 (-323 *4)) (-5 *2 (-694)) + (-5 *1 (-460 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6)))) ((*1 *2 *1) - (-12 (-4 *1 (-626 *3 *4 *5)) (-4 *3 (-960)) (-4 *4 (-322 *3)) - (-4 *5 (-322 *3)) (-4 *3 (-494)) (-5 *2 (-693)))) + (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-323 *3)) + (-4 *5 (-323 *3)) (-4 *3 (-495)) (-5 *2 (-694)))) ((*1 *2 *3) - (-12 (-4 *4 (-494)) (-4 *4 (-146)) (-4 *5 (-322 *4)) (-4 *6 (-322 *4)) - (-5 *2 (-693)) (-5 *1 (-628 *4 *5 *6 *3)) (-4 *3 (-626 *4 *5 *6)))) + (-12 (-4 *4 (-495)) (-4 *4 (-146)) (-4 *5 (-323 *4)) (-4 *6 (-323 *4)) + (-5 *2 (-694)) (-5 *1 (-629 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6)))) ((*1 *2 *1) - (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-960)) (-4 *6 (-196 *4 *5)) - (-4 *7 (-196 *3 *5)) (-4 *5 (-494)) (-5 *2 (-693))))) + (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) + (-4 *7 (-196 *3 *5)) (-4 *5 (-495)) (-5 *2 (-694))))) (((*1 *2 *3) - (-12 (|has| *6 (-6 -3994)) (-4 *4 (-312)) (-4 *5 (-322 *4)) (-4 *6 (-322 *4)) - (-5 *2 (-582 *6)) (-5 *1 (-459 *4 *5 *6 *3)) (-4 *3 (-626 *4 *5 *6)))) + (-12 (|has| *6 (-6 -3995)) (-4 *4 (-312)) (-4 *5 (-323 *4)) (-4 *6 (-323 *4)) + (-5 *2 (-583 *6)) (-5 *1 (-460 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6)))) ((*1 *2 *3) - (-12 (|has| *9 (-6 -3994)) (-4 *4 (-494)) (-4 *5 (-322 *4)) (-4 *6 (-322 *4)) - (-4 *7 (-903 *4)) (-4 *8 (-322 *7)) (-4 *9 (-322 *7)) (-5 *2 (-582 *6)) - (-5 *1 (-460 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-626 *4 *5 *6)) - (-4 *10 (-626 *7 *8 *9)))) + (-12 (|has| *9 (-6 -3995)) (-4 *4 (-495)) (-4 *5 (-323 *4)) (-4 *6 (-323 *4)) + (-4 *7 (-904 *4)) (-4 *8 (-323 *7)) (-4 *9 (-323 *7)) (-5 *2 (-583 *6)) + (-5 *1 (-461 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-627 *4 *5 *6)) + (-4 *10 (-627 *7 *8 *9)))) ((*1 *2 *1) - (-12 (-4 *1 (-626 *3 *4 *5)) (-4 *3 (-960)) (-4 *4 (-322 *3)) - (-4 *5 (-322 *3)) (-4 *3 (-494)) (-5 *2 (-582 *5)))) + (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-323 *3)) + (-4 *5 (-323 *3)) (-4 *3 (-495)) (-5 *2 (-583 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-494)) (-4 *4 (-146)) (-4 *5 (-322 *4)) (-4 *6 (-322 *4)) - (-5 *2 (-582 *6)) (-5 *1 (-628 *4 *5 *6 *3)) (-4 *3 (-626 *4 *5 *6)))) + (-12 (-4 *4 (-495)) (-4 *4 (-146)) (-4 *5 (-323 *4)) (-4 *6 (-323 *4)) + (-5 *2 (-583 *6)) (-5 *1 (-629 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6)))) ((*1 *2 *1) - (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-960)) (-4 *6 (-196 *4 *5)) - (-4 *7 (-196 *3 *5)) (-4 *5 (-494)) (-5 *2 (-582 *7))))) + (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) + (-4 *7 (-196 *3 *5)) (-4 *5 (-495)) (-5 *2 (-583 *7))))) (((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1146 *4 *5)) (-5 *3 (-582 *5)) (-14 *4 (-1088)) (-4 *5 (-312)) - (-5 *1 (-832 *4 *5)))) + (-12 (-5 *2 (-1147 *4 *5)) (-5 *3 (-583 *5)) (-14 *4 (-1089)) (-4 *5 (-312)) + (-5 *1 (-833 *4 *5)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-582 *5)) (-4 *5 (-312)) (-5 *2 (-1083 *5)) (-5 *1 (-832 *4 *5)) - (-14 *4 (-1088)))) + (-12 (-5 *3 (-583 *5)) (-4 *5 (-312)) (-5 *2 (-1084 *5)) (-5 *1 (-833 *4 *5)) + (-14 *4 (-1089)))) ((*1 *2 *3 *3 *4 *4) - (-12 (-5 *3 (-582 *6)) (-5 *4 (-693)) (-4 *6 (-312)) (-5 *2 (-348 (-856 *6))) - (-5 *1 (-961 *5 *6)) (-14 *5 (-1088))))) -(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-958))))) -(((*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-483))) (-5 *1 (-958))))) -(((*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-483))) (-5 *1 (-958))))) + (-12 (-5 *3 (-583 *6)) (-5 *4 (-694)) (-4 *6 (-312)) (-5 *2 (-349 (-857 *6))) + (-5 *1 (-962 *5 *6)) (-14 *5 (-1089))))) +(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-959))))) +(((*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-484))) (-5 *1 (-959))))) +(((*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-484))) (-5 *1 (-959))))) (((*1 *1 *1 *1) (-4 *1 (-116))) - ((*1 *2 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-131 *3 *2)) (-4 *2 (-362 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-482)))) - ((*1 *1 *1 *1) (-5 *1 (-771))) - ((*1 *2 *3 *4) - (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-483))) (-5 *1 (-958)) - (-5 *3 (-483))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1008 *4)) (-4 *4 (-1012)) (-5 *2 (-1 *4)) (-5 *1 (-929 *4)))) - ((*1 *2 *3 *3) (-12 (-5 *2 (-1 (-328))) (-5 *1 (-952)) (-5 *3 (-328)))) - ((*1 *2 *3) (-12 (-5 *3 (-1000 (-483))) (-5 *2 (-1 (-483))) (-5 *1 (-958))))) -(((*1 *1) (-12 (-4 *1 (-956 *2)) (-4 *2 (-23))))) -(((*1 *1) (-5 *1 (-130))) ((*1 *2 *1) (-12 (-4 *1 (-955 *2)) (-4 *2 (-23))))) -(((*1 *1) (-5 *1 (-130))) ((*1 *2 *1) (-12 (-4 *1 (-955 *2)) (-4 *2 (-23))))) -(((*1 *1) (-5 *1 (-130))) ((*1 *2 *1) (-12 (-4 *1 (-955 *2)) (-4 *2 (-23))))) -(((*1 *2) (-12 (-4 *1 (-955 *2)) (-4 *2 (-23))))) -(((*1 *2 *3) - (-12 (-5 *3 (-348 (-856 *4))) (-4 *4 (-258)) (-5 *2 (-348 (-346 (-856 *4)))) - (-5 *1 (-954 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-693)) (-5 *2 (-1 (-328))) (-5 *1 (-952))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-693)) (-5 *2 (-1 (-328))) (-5 *1 (-952))))) -(((*1 *2 *3) (-12 (-5 *3 (-693)) (-5 *2 (-1 (-328))) (-5 *1 (-952))))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-131 *3 *2)) (-4 *2 (-363 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-483)))) + ((*1 *1 *1 *1) (-5 *1 (-772))) + ((*1 *2 *3 *4) + (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-484))) (-5 *1 (-959)) + (-5 *3 (-484))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1009 *4)) (-4 *4 (-1013)) (-5 *2 (-1 *4)) (-5 *1 (-930 *4)))) + ((*1 *2 *3 *3) (-12 (-5 *2 (-1 (-329))) (-5 *1 (-953)) (-5 *3 (-329)))) + ((*1 *2 *3) (-12 (-5 *3 (-1001 (-484))) (-5 *2 (-1 (-484))) (-5 *1 (-959))))) +(((*1 *1) (-12 (-4 *1 (-957 *2)) (-4 *2 (-23))))) +(((*1 *1) (-5 *1 (-130))) ((*1 *2 *1) (-12 (-4 *1 (-956 *2)) (-4 *2 (-23))))) +(((*1 *1) (-5 *1 (-130))) ((*1 *2 *1) (-12 (-4 *1 (-956 *2)) (-4 *2 (-23))))) +(((*1 *1) (-5 *1 (-130))) ((*1 *2 *1) (-12 (-4 *1 (-956 *2)) (-4 *2 (-23))))) +(((*1 *2) (-12 (-4 *1 (-956 *2)) (-4 *2 (-23))))) +(((*1 *2 *3) + (-12 (-5 *3 (-349 (-857 *4))) (-4 *4 (-258)) (-5 *2 (-349 (-347 (-857 *4)))) + (-5 *1 (-955 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1 (-329))) (-5 *1 (-953))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1 (-329))) (-5 *1 (-953))))) +(((*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1 (-329))) (-5 *1 (-953))))) (((*1 *1 *2) - (-12 (-5 *2 (-1158 *3 *4 *5)) (-4 *3 (-312)) (-14 *4 (-1088)) (-14 *5 *3) + (-12 (-5 *2 (-1159 *3 *4 *5)) (-4 *3 (-312)) (-14 *4 (-1089)) (-14 *5 *3) (-5 *1 (-270 *3 *4 *5)))) - ((*1 *2 *3) (-12 (-5 *2 (-1 (-328))) (-5 *1 (-952)) (-5 *3 (-328))))) -(((*1 *2 *3 *3) (-12 (-5 *2 (-1 (-328))) (-5 *1 (-952)) (-5 *3 (-328))))) -(((*1 *2 *3) (-12 (-5 *3 (-693)) (-5 *2 (-328)) (-5 *1 (-952))))) -(((*1 *2) (-12 (-5 *2 (-328)) (-5 *1 (-952))))) -(((*1 *2) (-12 (-5 *2 (-328)) (-5 *1 (-952))))) -(((*1 *2) (-12 (-5 *2 (-328)) (-5 *1 (-952))))) + ((*1 *2 *3) (-12 (-5 *2 (-1 (-329))) (-5 *1 (-953)) (-5 *3 (-329))))) +(((*1 *2 *3 *3) (-12 (-5 *2 (-1 (-329))) (-5 *1 (-953)) (-5 *3 (-329))))) +(((*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-329)) (-5 *1 (-953))))) +(((*1 *2) (-12 (-5 *2 (-329)) (-5 *1 (-953))))) +(((*1 *2) (-12 (-5 *2 (-329)) (-5 *1 (-953))))) +(((*1 *2) (-12 (-5 *2 (-329)) (-5 *1 (-953))))) (((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1083 (-348 (-1083 *2)))) (-5 *4 (-549 *2)) - (-4 *2 (-13 (-362 *5) (-27) (-1113))) - (-4 *5 (-13 (-390) (-949 (-483)) (-120) (-579 (-483)))) - (-5 *1 (-497 *5 *2 *6)) (-4 *6 (-1012)))) + (-12 (-5 *3 (-1084 (-349 (-1084 *2)))) (-5 *4 (-550 *2)) + (-4 *2 (-13 (-363 *5) (-27) (-1114))) + (-4 *5 (-13 (-391) (-950 (-484)) (-120) (-580 (-484)))) + (-5 *1 (-498 *5 *2 *6)) (-4 *6 (-1013)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1083 *1)) (-4 *1 (-860 *4 *5 *3)) (-4 *4 (-960)) (-4 *5 (-716)) - (-4 *3 (-755)))) + (-12 (-5 *2 (-1084 *1)) (-4 *1 (-861 *4 *5 *3)) (-4 *4 (-961)) (-4 *5 (-717)) + (-4 *3 (-756)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1083 *4)) (-4 *4 (-960)) (-4 *1 (-860 *4 *5 *3)) (-4 *5 (-716)) - (-4 *3 (-755)))) + (-12 (-5 *2 (-1084 *4)) (-4 *4 (-961)) (-4 *1 (-861 *4 *5 *3)) (-4 *5 (-717)) + (-4 *3 (-756)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-348 (-1083 *2))) (-4 *5 (-716)) (-4 *4 (-755)) (-4 *6 (-960)) + (-12 (-5 *3 (-349 (-1084 *2))) (-4 *5 (-717)) (-4 *4 (-756)) (-4 *6 (-961)) (-4 *2 (-13 (-312) - (-10 -8 (-15 -3944 ($ *7)) (-15 -2997 (*7 $)) (-15 -2996 (*7 $))))) - (-5 *1 (-861 *5 *4 *6 *7 *2)) (-4 *7 (-860 *6 *5 *4)))) + (-10 -8 (-15 -3945 ($ *7)) (-15 -2998 (*7 $)) (-15 -2997 (*7 $))))) + (-5 *1 (-862 *5 *4 *6 *7 *2)) (-4 *7 (-861 *6 *5 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-348 (-1083 (-348 (-856 *5))))) (-5 *4 (-1088)) - (-5 *2 (-348 (-856 *5))) (-5 *1 (-951 *5)) (-4 *5 (-494))))) + (-12 (-5 *3 (-349 (-1084 (-349 (-857 *5))))) (-5 *4 (-1089)) + (-5 *2 (-349 (-857 *5))) (-5 *1 (-952 *5)) (-4 *5 (-495))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-549 *1)) (-4 *1 (-362 *4)) (-4 *4 (-1012)) (-4 *4 (-494)) - (-5 *2 (-348 (-1083 *1))))) + (-12 (-5 *3 (-550 *1)) (-4 *1 (-363 *4)) (-4 *4 (-1013)) (-4 *4 (-495)) + (-5 *2 (-349 (-1084 *1))))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-549 *3)) (-4 *3 (-13 (-362 *6) (-27) (-1113))) - (-4 *6 (-13 (-390) (-949 (-483)) (-120) (-579 (-483)))) - (-5 *2 (-1083 (-348 (-1083 *3)))) (-5 *1 (-497 *6 *3 *7)) (-5 *5 (-1083 *3)) - (-4 *7 (-1012)))) + (-12 (-5 *4 (-550 *3)) (-4 *3 (-13 (-363 *6) (-27) (-1114))) + (-4 *6 (-13 (-391) (-950 (-484)) (-120) (-580 (-484)))) + (-5 *2 (-1084 (-349 (-1084 *3)))) (-5 *1 (-498 *6 *3 *7)) (-5 *5 (-1084 *3)) + (-4 *7 (-1013)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1174 *5)) (-14 *5 (-1088)) (-4 *6 (-960)) - (-5 *2 (-1146 *5 (-856 *6))) (-5 *1 (-858 *5 *6)) (-5 *3 (-856 *6)))) + (-12 (-5 *4 (-1175 *5)) (-14 *5 (-1089)) (-4 *6 (-961)) + (-5 *2 (-1147 *5 (-857 *6))) (-5 *1 (-859 *5 *6)) (-5 *3 (-857 *6)))) ((*1 *2 *1) - (-12 (-4 *1 (-860 *3 *4 *5)) (-4 *3 (-960)) (-4 *4 (-716)) (-4 *5 (-755)) - (-5 *2 (-1083 *3)))) + (-12 (-4 *1 (-861 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) + (-5 *2 (-1084 *3)))) ((*1 *2 *1 *3) - (-12 (-4 *4 (-960)) (-4 *5 (-716)) (-4 *3 (-755)) (-5 *2 (-1083 *1)) - (-4 *1 (-860 *4 *5 *3)))) + (-12 (-4 *4 (-961)) (-4 *5 (-717)) (-4 *3 (-756)) (-5 *2 (-1084 *1)) + (-4 *1 (-861 *4 *5 *3)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-716)) (-4 *4 (-755)) (-4 *6 (-960)) (-4 *7 (-860 *6 *5 *4)) - (-5 *2 (-348 (-1083 *3))) (-5 *1 (-861 *5 *4 *6 *7 *3)) + (-12 (-4 *5 (-717)) (-4 *4 (-756)) (-4 *6 (-961)) (-4 *7 (-861 *6 *5 *4)) + (-5 *2 (-349 (-1084 *3))) (-5 *1 (-862 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-312) - (-10 -8 (-15 -3944 ($ *7)) (-15 -2997 (*7 $)) (-15 -2996 (*7 $))))))) + (-10 -8 (-15 -3945 ($ *7)) (-15 -2998 (*7 $)) (-15 -2997 (*7 $))))))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-1083 *3)) + (-12 (-5 *2 (-1084 *3)) (-4 *3 (-13 (-312) - (-10 -8 (-15 -3944 ($ *7)) (-15 -2997 (*7 $)) (-15 -2996 (*7 $))))) - (-4 *7 (-860 *6 *5 *4)) (-4 *5 (-716)) (-4 *4 (-755)) (-4 *6 (-960)) - (-5 *1 (-861 *5 *4 *6 *7 *3)))) + (-10 -8 (-15 -3945 ($ *7)) (-15 -2998 (*7 $)) (-15 -2997 (*7 $))))) + (-4 *7 (-861 *6 *5 *4)) (-4 *5 (-717)) (-4 *4 (-756)) (-4 *6 (-961)) + (-5 *1 (-862 *5 *4 *6 *7 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1088)) (-4 *5 (-494)) (-5 *2 (-348 (-1083 (-348 (-856 *5))))) - (-5 *1 (-951 *5)) (-5 *3 (-348 (-856 *5)))))) + (-12 (-5 *4 (-1089)) (-4 *5 (-495)) (-5 *2 (-349 (-1084 (-349 (-857 *5))))) + (-5 *1 (-952 *5)) (-5 *3 (-349 (-857 *5)))))) (((*1 *2 *1) - (|partial| -12 (-4 *1 (-860 *3 *4 *2)) (-4 *3 (-960)) (-4 *4 (-716)) - (-4 *2 (-755)))) + (|partial| -12 (-4 *1 (-861 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) + (-4 *2 (-756)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-716)) (-4 *5 (-960)) (-4 *6 (-860 *5 *4 *2)) - (-4 *2 (-755)) (-5 *1 (-861 *4 *2 *5 *6 *3)) + (|partial| -12 (-4 *4 (-717)) (-4 *5 (-961)) (-4 *6 (-861 *5 *4 *2)) + (-4 *2 (-756)) (-5 *1 (-862 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-312) - (-10 -8 (-15 -3944 ($ *6)) (-15 -2997 (*6 $)) (-15 -2996 (*6 $))))))) + (-10 -8 (-15 -3945 ($ *6)) (-15 -2998 (*6 $)) (-15 -2997 (*6 $))))))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-348 (-856 *4))) (-4 *4 (-494)) (-5 *2 (-1088)) - (-5 *1 (-951 *4))))) + (|partial| -12 (-5 *3 (-349 (-857 *4))) (-4 *4 (-495)) (-5 *2 (-1089)) + (-5 *1 (-952 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1083 *7)) (-4 *7 (-860 *6 *4 *5)) (-4 *4 (-716)) (-4 *5 (-755)) - (-4 *6 (-960)) (-5 *2 (-582 *5)) (-5 *1 (-272 *4 *5 *6 *7)))) - ((*1 *2 *1) (-12 (-4 *1 (-362 *3)) (-4 *3 (-1012)) (-5 *2 (-582 (-1088))))) - ((*1 *2 *1) (-12 (-5 *2 (-582 (-799 *3))) (-5 *1 (-799 *3)) (-4 *3 (-1012)))) + (-12 (-5 *3 (-1084 *7)) (-4 *7 (-861 *6 *4 *5)) (-4 *4 (-717)) (-4 *5 (-756)) + (-4 *6 (-961)) (-5 *2 (-583 *5)) (-5 *1 (-272 *4 *5 *6 *7)))) + ((*1 *2 *1) (-12 (-4 *1 (-363 *3)) (-4 *3 (-1013)) (-5 *2 (-583 (-1089))))) + ((*1 *2 *1) (-12 (-5 *2 (-583 (-800 *3))) (-5 *1 (-800 *3)) (-4 *3 (-1013)))) ((*1 *2 *1) - (-12 (-4 *1 (-860 *3 *4 *5)) (-4 *3 (-960)) (-4 *4 (-716)) (-4 *5 (-755)) - (-5 *2 (-582 *5)))) + (-12 (-4 *1 (-861 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) + (-5 *2 (-583 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-716)) (-4 *5 (-755)) (-4 *6 (-960)) (-4 *7 (-860 *6 *4 *5)) - (-5 *2 (-582 *5)) (-5 *1 (-861 *4 *5 *6 *7 *3)) + (-12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-961)) (-4 *7 (-861 *6 *4 *5)) + (-5 *2 (-583 *5)) (-5 *1 (-862 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-312) - (-10 -8 (-15 -3944 ($ *7)) (-15 -2997 (*7 $)) (-15 -2996 (*7 $))))))) + (-10 -8 (-15 -3945 ($ *7)) (-15 -2998 (*7 $)) (-15 -2997 (*7 $))))))) ((*1 *2 *1) - (-12 (-4 *1 (-885 *3 *4 *5)) (-4 *3 (-960)) (-4 *4 (-715)) (-4 *5 (-755)) - (-5 *2 (-582 *5)))) + (-12 (-4 *1 (-886 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-716)) (-4 *5 (-756)) + (-5 *2 (-583 *5)))) ((*1 *2 *1) - (-12 (-4 *1 (-888 *3 *4 *5 *6)) (-4 *3 (-960)) (-4 *4 (-716)) (-4 *5 (-755)) - (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-582 *5)))) + (-12 (-4 *1 (-889 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) + (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-583 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-348 (-856 *4))) (-4 *4 (-494)) (-5 *2 (-582 (-1088))) - (-5 *1 (-951 *4))))) + (-12 (-5 *3 (-349 (-857 *4))) (-4 *4 (-495)) (-5 *2 (-583 (-1089))) + (-5 *1 (-952 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-582 (-856 *6))) (-5 *4 (-582 (-1088))) - (-4 *6 (-13 (-494) (-949 *5))) (-4 *5 (-494)) - (-5 *2 (-582 (-582 (-249 (-348 (-856 *6)))))) (-5 *1 (-950 *5 *6))))) + (-12 (-5 *3 (-583 (-857 *6))) (-5 *4 (-583 (-1089))) + (-4 *6 (-13 (-495) (-950 *5))) (-4 *5 (-495)) + (-5 *2 (-583 (-583 (-249 (-349 (-857 *6)))))) (-5 *1 (-951 *5 *6))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-549 *6)) (-4 *6 (-13 (-362 *5) (-27) (-1113))) - (-4 *5 (-13 (-390) (-949 (-483)) (-120) (-579 (-483)))) - (-5 *2 (-1083 (-348 (-1083 *6)))) (-5 *1 (-497 *5 *6 *7)) (-5 *3 (-1083 *6)) - (-4 *7 (-1012)))) - ((*1 *2 *1) (-12 (-4 *2 (-1153 *3)) (-5 *1 (-648 *3 *2)) (-4 *3 (-960)))) - ((*1 *2 *1) (-12 (-4 *1 (-660 *3 *2)) (-4 *3 (-146)) (-4 *2 (-1153 *3)))) + (-12 (-5 *4 (-550 *6)) (-4 *6 (-13 (-363 *5) (-27) (-1114))) + (-4 *5 (-13 (-391) (-950 (-484)) (-120) (-580 (-484)))) + (-5 *2 (-1084 (-349 (-1084 *6)))) (-5 *1 (-498 *5 *6 *7)) (-5 *3 (-1084 *6)) + (-4 *7 (-1013)))) + ((*1 *2 *1) (-12 (-4 *2 (-1154 *3)) (-5 *1 (-649 *3 *2)) (-4 *3 (-961)))) + ((*1 *2 *1) (-12 (-4 *1 (-661 *3 *2)) (-4 *3 (-146)) (-4 *2 (-1154 *3)))) ((*1 *2 *3 *4 *4 *5 *6 *7 *8) - (|partial| -12 (-5 *4 (-1083 *11)) (-5 *6 (-582 *10)) (-5 *7 (-582 (-693))) - (-5 *8 (-582 *11)) (-4 *10 (-755)) (-4 *11 (-258)) (-4 *9 (-716)) - (-4 *5 (-860 *11 *9 *10)) (-5 *2 (-582 (-1083 *5))) - (-5 *1 (-680 *9 *10 *11 *5)) (-5 *3 (-1083 *5)))) + (|partial| -12 (-5 *4 (-1084 *11)) (-5 *6 (-583 *10)) (-5 *7 (-583 (-694))) + (-5 *8 (-583 *11)) (-4 *10 (-756)) (-4 *11 (-258)) (-4 *9 (-717)) + (-4 *5 (-861 *11 *9 *10)) (-5 *2 (-583 (-1084 *5))) + (-5 *1 (-681 *9 *10 *11 *5)) (-5 *3 (-1084 *5)))) ((*1 *2 *1) - (-12 (-4 *2 (-860 *3 *4 *5)) (-5 *1 (-946 *3 *4 *5 *2 *6)) (-4 *3 (-312)) - (-4 *4 (-716)) (-4 *5 (-755)) (-14 *6 (-582 *2))))) + (-12 (-4 *2 (-861 *3 *4 *5)) (-5 *1 (-947 *3 *4 *5 *2 *6)) (-4 *3 (-312)) + (-4 *4 (-717)) (-4 *5 (-756)) (-14 *6 (-583 *2))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-829)) (-5 *1 (-944 *2)) - (-4 *2 (-13 (-1012) (-10 -8 (-15 * ($ $ $)))))))) + (-12 (-5 *3 (-830)) (-5 *1 (-945 *2)) + (-4 *2 (-13 (-1013) (-10 -8 (-15 * ($ $ $)))))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-829)) (-5 *1 (-943 *2)) - (-4 *2 (-13 (-1012) (-10 -8 (-15 -3837 ($ $ $)))))))) + (-12 (-5 *3 (-830)) (-5 *1 (-944 *2)) + (-4 *2 (-13 (-1013) (-10 -8 (-15 -3838 ($ $ $)))))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-582 (-1177 *5))) (-5 *4 (-483)) (-5 *2 (-1177 *5)) - (-5 *1 (-942 *5)) (-4 *5 (-312)) (-4 *5 (-318)) (-4 *5 (-960))))) + (-12 (-5 *3 (-583 (-1178 *5))) (-5 *4 (-484)) (-5 *2 (-1178 *5)) + (-5 *1 (-943 *5)) (-4 *5 (-312)) (-4 *5 (-319)) (-4 *5 (-961))))) (((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-85)) (-5 *5 (-483)) (-4 *6 (-312)) (-4 *6 (-318)) - (-4 *6 (-960)) (-5 *2 (-582 (-582 (-629 *6)))) (-5 *1 (-942 *6)) - (-5 *3 (-582 (-629 *6))))) + (-12 (-5 *4 (-85)) (-5 *5 (-484)) (-4 *6 (-312)) (-4 *6 (-319)) + (-4 *6 (-961)) (-5 *2 (-583 (-583 (-630 *6)))) (-5 *1 (-943 *6)) + (-5 *3 (-583 (-630 *6))))) ((*1 *2 *3) - (-12 (-4 *4 (-312)) (-4 *4 (-318)) (-4 *4 (-960)) - (-5 *2 (-582 (-582 (-629 *4)))) (-5 *1 (-942 *4)) (-5 *3 (-582 (-629 *4))))) + (-12 (-4 *4 (-312)) (-4 *4 (-319)) (-4 *4 (-961)) + (-5 *2 (-583 (-583 (-630 *4)))) (-5 *1 (-943 *4)) (-5 *3 (-583 (-630 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-85)) (-4 *5 (-312)) (-4 *5 (-318)) (-4 *5 (-960)) - (-5 *2 (-582 (-582 (-629 *5)))) (-5 *1 (-942 *5)) (-5 *3 (-582 (-629 *5))))) + (-12 (-5 *4 (-85)) (-4 *5 (-312)) (-4 *5 (-319)) (-4 *5 (-961)) + (-5 *2 (-583 (-583 (-630 *5)))) (-5 *1 (-943 *5)) (-5 *3 (-583 (-630 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-829)) (-4 *5 (-312)) (-4 *5 (-318)) (-4 *5 (-960)) - (-5 *2 (-582 (-582 (-629 *5)))) (-5 *1 (-942 *5)) (-5 *3 (-582 (-629 *5)))))) + (-12 (-5 *4 (-830)) (-4 *5 (-312)) (-4 *5 (-319)) (-4 *5 (-961)) + (-5 *2 (-583 (-583 (-630 *5)))) (-5 *1 (-943 *5)) (-5 *3 (-583 (-630 *5)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-582 (-629 *5))) (-5 *4 (-483)) (-4 *5 (-312)) (-4 *5 (-960)) - (-5 *2 (-85)) (-5 *1 (-942 *5)))) + (-12 (-5 *3 (-583 (-630 *5))) (-5 *4 (-484)) (-4 *5 (-312)) (-4 *5 (-961)) + (-5 *2 (-85)) (-5 *1 (-943 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-582 (-629 *4))) (-4 *4 (-312)) (-4 *4 (-960)) (-5 *2 (-85)) - (-5 *1 (-942 *4))))) + (-12 (-5 *3 (-583 (-630 *4))) (-4 *4 (-312)) (-4 *4 (-961)) (-5 *2 (-85)) + (-5 *1 (-943 *4))))) (((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-582 (-629 *6))) (-5 *4 (-85)) (-5 *5 (-483)) (-5 *2 (-629 *6)) - (-5 *1 (-942 *6)) (-4 *6 (-312)) (-4 *6 (-960)))) + (-12 (-5 *3 (-583 (-630 *6))) (-5 *4 (-85)) (-5 *5 (-484)) (-5 *2 (-630 *6)) + (-5 *1 (-943 *6)) (-4 *6 (-312)) (-4 *6 (-961)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-582 (-629 *4))) (-5 *2 (-629 *4)) (-5 *1 (-942 *4)) - (-4 *4 (-312)) (-4 *4 (-960)))) + (-12 (-5 *3 (-583 (-630 *4))) (-5 *2 (-630 *4)) (-5 *1 (-943 *4)) + (-4 *4 (-312)) (-4 *4 (-961)))) ((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-582 (-629 *5))) (-5 *4 (-483)) (-5 *2 (-629 *5)) - (-5 *1 (-942 *5)) (-4 *5 (-312)) (-4 *5 (-960))))) + (-12 (-5 *3 (-583 (-630 *5))) (-5 *4 (-484)) (-5 *2 (-630 *5)) + (-5 *1 (-943 *5)) (-4 *5 (-312)) (-4 *5 (-961))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-582 (-629 *5))) (-5 *4 (-1177 *5)) (-4 *5 (-258)) - (-4 *5 (-960)) (-5 *2 (-629 *5)) (-5 *1 (-942 *5))))) + (-12 (-5 *3 (-583 (-630 *5))) (-5 *4 (-1178 *5)) (-4 *5 (-258)) + (-4 *5 (-961)) (-5 *2 (-630 *5)) (-5 *1 (-943 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-582 (-629 *5))) (-4 *5 (-258)) (-4 *5 (-960)) - (-5 *2 (-1177 (-1177 *5))) (-5 *1 (-942 *5)) (-5 *4 (-1177 *5))))) + (-12 (-5 *3 (-583 (-630 *5))) (-4 *5 (-258)) (-4 *5 (-961)) + (-5 *2 (-1178 (-1178 *5))) (-5 *1 (-943 *5)) (-5 *4 (-1178 *5))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-582 (-629 *4))) (-5 *2 (-629 *4)) (-4 *4 (-960)) - (-5 *1 (-942 *4))))) + (-12 (-5 *3 (-583 (-630 *4))) (-5 *2 (-630 *4)) (-4 *4 (-961)) + (-5 *1 (-943 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1177 (-1177 *4))) (-4 *4 (-960)) (-5 *2 (-629 *4)) - (-5 *1 (-942 *4))))) + (-12 (-5 *3 (-1178 (-1178 *4))) (-4 *4 (-961)) (-5 *2 (-630 *4)) + (-5 *1 (-943 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-812 (-483))) (-5 *4 (-483)) (-5 *2 (-629 *4)) (-5 *1 (-941 *5)) - (-4 *5 (-960)))) + (-12 (-5 *3 (-813 (-484))) (-5 *4 (-484)) (-5 *2 (-630 *4)) (-5 *1 (-942 *5)) + (-4 *5 (-961)))) ((*1 *2 *3) - (-12 (-5 *3 (-582 (-483))) (-5 *2 (-629 (-483))) (-5 *1 (-941 *4)) - (-4 *4 (-960)))) + (-12 (-5 *3 (-583 (-484))) (-5 *2 (-630 (-484))) (-5 *1 (-942 *4)) + (-4 *4 (-961)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-582 (-812 (-483)))) (-5 *4 (-483)) (-5 *2 (-582 (-629 *4))) - (-5 *1 (-941 *5)) (-4 *5 (-960)))) + (-12 (-5 *3 (-583 (-813 (-484)))) (-5 *4 (-484)) (-5 *2 (-583 (-630 *4))) + (-5 *1 (-942 *5)) (-4 *5 (-961)))) ((*1 *2 *3) - (-12 (-5 *3 (-582 (-582 (-483)))) (-5 *2 (-582 (-629 (-483)))) - (-5 *1 (-941 *4)) (-4 *4 (-960))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-629 *3)) (-4 *3 (-960)) (-5 *1 (-941 *3)))) + (-12 (-5 *3 (-583 (-583 (-484)))) (-5 *2 (-583 (-630 (-484)))) + (-5 *1 (-942 *4)) (-4 *4 (-961))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-961)) (-5 *1 (-942 *3)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-582 (-629 *3))) (-4 *3 (-960)) (-5 *1 (-941 *3)))) - ((*1 *2 *2) (-12 (-5 *2 (-629 *3)) (-4 *3 (-960)) (-5 *1 (-941 *3)))) - ((*1 *2 *2) (-12 (-5 *2 (-582 (-629 *3))) (-4 *3 (-960)) (-5 *1 (-941 *3))))) + (-12 (-5 *2 (-583 (-630 *3))) (-4 *3 (-961)) (-5 *1 (-942 *3)))) + ((*1 *2 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-961)) (-5 *1 (-942 *3)))) + ((*1 *2 *2) (-12 (-5 *2 (-583 (-630 *3))) (-4 *3 (-961)) (-5 *1 (-942 *3))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-629 *4)) (-5 *3 (-829)) (-4 *4 (-960)) (-5 *1 (-941 *4)))) + (-12 (-5 *2 (-630 *4)) (-5 *3 (-830)) (-4 *4 (-961)) (-5 *1 (-942 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-582 (-629 *4))) (-5 *3 (-829)) (-4 *4 (-960)) - (-5 *1 (-941 *4))))) + (-12 (-5 *2 (-583 (-630 *4))) (-5 *3 (-830)) (-4 *4 (-961)) + (-5 *1 (-942 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-693)) (-5 *2 (-629 (-856 *4))) (-5 *1 (-941 *4)) - (-4 *4 (-960))))) + (-12 (-5 *3 (-694)) (-5 *2 (-630 (-857 *4))) (-5 *1 (-942 *4)) + (-4 *4 (-961))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-629 *4)) (-5 *3 (-829)) (|has| *4 (-6 (-3995 "*"))) - (-4 *4 (-960)) (-5 *1 (-941 *4)))) + (-12 (-5 *2 (-630 *4)) (-5 *3 (-830)) (|has| *4 (-6 (-3996 "*"))) + (-4 *4 (-961)) (-5 *1 (-942 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-582 (-629 *4))) (-5 *3 (-829)) (|has| *4 (-6 (-3995 "*"))) - (-4 *4 (-960)) (-5 *1 (-941 *4))))) + (-12 (-5 *2 (-583 (-630 *4))) (-5 *3 (-830)) (|has| *4 (-6 (-3996 "*"))) + (-4 *4 (-961)) (-5 *1 (-942 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-629 (-348 (-856 (-483))))) (-5 *2 (-582 (-629 (-265 (-483))))) - (-5 *1 (-940))))) -(((*1 *2 *2) (-12 (-5 *2 (-582 (-629 (-265 (-483))))) (-5 *1 (-940))))) -(((*1 *2 *2) (-12 (-5 *2 (-629 (-265 (-483)))) (-5 *1 (-940))))) + (-12 (-5 *3 (-630 (-349 (-857 (-484))))) (-5 *2 (-583 (-630 (-265 (-484))))) + (-5 *1 (-941))))) +(((*1 *2 *2) (-12 (-5 *2 (-583 (-630 (-265 (-484))))) (-5 *1 (-941))))) +(((*1 *2 *2) (-12 (-5 *2 (-630 (-265 (-484)))) (-5 *1 (-941))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-629 (-348 (-856 (-483))))) - (-5 *2 (-629 (-265 (-483)))) (-5 *1 (-940))))) + (|partial| -12 (-5 *3 (-630 (-349 (-857 (-484))))) + (-5 *2 (-630 (-265 (-484)))) (-5 *1 (-941))))) (((*1 *2 *3) - (-12 (-5 *3 (-629 (-348 (-856 (-483))))) (-5 *2 (-582 (-265 (-483)))) - (-5 *1 (-940))))) + (-12 (-5 *3 (-630 (-349 (-857 (-484))))) (-5 *2 (-583 (-265 (-484)))) + (-5 *1 (-941))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-629 (-348 (-856 (-483))))) (-5 *2 (-582 (-629 (-265 (-483))))) - (-5 *1 (-940)) (-5 *3 (-265 (-483)))))) + (-12 (-5 *4 (-630 (-349 (-857 (-484))))) (-5 *2 (-583 (-630 (-265 (-484))))) + (-5 *1 (-941)) (-5 *3 (-265 (-484)))))) (((*1 *2 *3) - (-12 (-5 *3 (-629 (-348 (-856 (-483))))) + (-12 (-5 *3 (-630 (-349 (-857 (-484))))) (-5 *2 - (-582 - (-2 (|:| |radval| (-265 (-483))) (|:| |radmult| (-483)) - (|:| |radvect| (-582 (-629 (-265 (-483)))))))) - (-5 *1 (-940))))) + (-583 + (-2 (|:| |radval| (-265 (-484))) (|:| |radmult| (-484)) + (|:| |radvect| (-583 (-630 (-265 (-484)))))))) + (-5 *1 (-941))))) (((*1 *2 *1 *1) (-12 (-4 *1 (-72)) (-5 *2 (-85)))) - ((*1 *1 *2 *2) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1127)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-375)))) - ((*1 *1 *1 *1) (-5 *1 (-771))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-938 *3)) (-4 *3 (-1127))))) -(((*1 *1 *2) (-12 (-5 *1 (-938 *2)) (-4 *2 (-1127))))) -(((*1 *2 *1) (-12 (-5 *1 (-938 *2)) (-4 *2 (-1127))))) -(((*1 *2 *1 *2) (-12 (-5 *1 (-938 *2)) (-4 *2 (-1127))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-312)) (-5 *1 (-937 *3 *2)) (-4 *2 (-599 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-312)) (-5 *2 (-2 (|:| -3265 *3) (|:| -2512 (-582 *5)))) - (-5 *1 (-937 *5 *3)) (-5 *4 (-582 *5)) (-4 *3 (-599 *5))))) + ((*1 *1 *2 *2) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1128)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-376)))) + ((*1 *1 *1 *1) (-5 *1 (-772))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-939 *3)) (-4 *3 (-1128))))) +(((*1 *1 *2) (-12 (-5 *1 (-939 *2)) (-4 *2 (-1128))))) +(((*1 *2 *1) (-12 (-5 *1 (-939 *2)) (-4 *2 (-1128))))) +(((*1 *2 *1 *2) (-12 (-5 *1 (-939 *2)) (-4 *2 (-1128))))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-312)) (-5 *1 (-938 *3 *2)) (-4 *2 (-600 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-312)) (-5 *2 (-2 (|:| -3266 *3) (|:| -2513 (-583 *5)))) + (-5 *1 (-938 *5 *3)) (-5 *4 (-583 *5)) (-4 *3 (-600 *5))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-973 (-936 *4) (-1083 (-936 *4)))) (-5 *3 (-771)) - (-5 *1 (-936 *4)) (-4 *4 (-13 (-754) (-312) (-932)))))) + (-12 (-5 *2 (-974 (-937 *4) (-1084 (-937 *4)))) (-5 *3 (-772)) + (-5 *1 (-937 *4)) (-4 *4 (-13 (-755) (-312) (-933)))))) (((*1 *2 *1) - (|partial| -12 (-5 *2 (-973 (-936 *3) (-1083 (-936 *3)))) (-5 *1 (-936 *3)) - (-4 *3 (-13 (-754) (-312) (-932)))))) + (|partial| -12 (-5 *2 (-974 (-937 *3) (-1084 (-937 *3)))) (-5 *1 (-937 *3)) + (-4 *3 (-13 (-755) (-312) (-933)))))) (((*1 *2 *3) - (-12 (-5 *2 (-582 (-2 (|:| -3137 (-348 (-483))) (|:| -3136 (-348 (-483)))))) - (-5 *1 (-933 *3)) (-4 *3 (-1153 (-483))))) + (-12 (-5 *2 (-583 (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484)))))) + (-5 *1 (-934 *3)) (-4 *3 (-1154 (-484))))) ((*1 *2 *3 *4) - (-12 (-5 *2 (-582 (-2 (|:| -3137 (-348 (-483))) (|:| -3136 (-348 (-483)))))) - (-5 *1 (-933 *3)) (-4 *3 (-1153 (-483))) - (-5 *4 (-2 (|:| -3137 (-348 (-483))) (|:| -3136 (-348 (-483))))))) + (-12 (-5 *2 (-583 (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484)))))) + (-5 *1 (-934 *3)) (-4 *3 (-1154 (-484))) + (-5 *4 (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484))))))) ((*1 *2 *3 *4) - (-12 (-5 *2 (-582 (-2 (|:| -3137 (-348 (-483))) (|:| -3136 (-348 (-483)))))) - (-5 *1 (-933 *3)) (-4 *3 (-1153 (-483))) (-5 *4 (-348 (-483))))) + (-12 (-5 *2 (-583 (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484)))))) + (-5 *1 (-934 *3)) (-4 *3 (-1154 (-484))) (-5 *4 (-349 (-484))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-348 (-483))) (-5 *2 (-582 (-2 (|:| -3137 *5) (|:| -3136 *5)))) - (-5 *1 (-933 *3)) (-4 *3 (-1153 (-483))) - (-5 *4 (-2 (|:| -3137 *5) (|:| -3136 *5))))) + (-12 (-5 *5 (-349 (-484))) (-5 *2 (-583 (-2 (|:| -3138 *5) (|:| -3137 *5)))) + (-5 *1 (-934 *3)) (-4 *3 (-1154 (-484))) + (-5 *4 (-2 (|:| -3138 *5) (|:| -3137 *5))))) ((*1 *2 *3) - (-12 (-5 *2 (-582 (-2 (|:| -3137 (-348 (-483))) (|:| -3136 (-348 (-483)))))) - (-5 *1 (-934 *3)) (-4 *3 (-1153 (-348 (-483)))))) + (-12 (-5 *2 (-583 (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484)))))) + (-5 *1 (-935 *3)) (-4 *3 (-1154 (-349 (-484)))))) ((*1 *2 *3 *4) - (-12 (-5 *2 (-582 (-2 (|:| -3137 (-348 (-483))) (|:| -3136 (-348 (-483)))))) - (-5 *1 (-934 *3)) (-4 *3 (-1153 (-348 (-483)))) - (-5 *4 (-2 (|:| -3137 (-348 (-483))) (|:| -3136 (-348 (-483))))))) + (-12 (-5 *2 (-583 (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484)))))) + (-5 *1 (-935 *3)) (-4 *3 (-1154 (-349 (-484)))) + (-5 *4 (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484))))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-348 (-483))) (-5 *2 (-582 (-2 (|:| -3137 *4) (|:| -3136 *4)))) - (-5 *1 (-934 *3)) (-4 *3 (-1153 *4)))) + (-12 (-5 *4 (-349 (-484))) (-5 *2 (-583 (-2 (|:| -3138 *4) (|:| -3137 *4)))) + (-5 *1 (-935 *3)) (-4 *3 (-1154 *4)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-348 (-483))) (-5 *2 (-582 (-2 (|:| -3137 *5) (|:| -3136 *5)))) - (-5 *1 (-934 *3)) (-4 *3 (-1153 *5)) - (-5 *4 (-2 (|:| -3137 *5) (|:| -3136 *5)))))) + (-12 (-5 *5 (-349 (-484))) (-5 *2 (-583 (-2 (|:| -3138 *5) (|:| -3137 *5)))) + (-5 *1 (-935 *3)) (-4 *3 (-1154 *5)) + (-5 *4 (-2 (|:| -3138 *5) (|:| -3137 *5)))))) (((*1 *2 *3) - (-12 (-5 *3 (-582 (-2 (|:| -3137 (-348 (-483))) (|:| -3136 (-348 (-483)))))) - (-5 *2 (-582 (-348 (-483)))) (-5 *1 (-933 *4)) (-4 *4 (-1153 (-483)))))) + (-12 (-5 *3 (-583 (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484)))))) + (-5 *2 (-583 (-349 (-484)))) (-5 *1 (-934 *4)) (-4 *4 (-1154 (-484)))))) (((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| -3137 (-348 (-483))) (|:| -3136 (-348 (-483))))) - (-5 *2 (-348 (-483))) (-5 *1 (-933 *4)) (-4 *4 (-1153 (-483)))))) + (-12 (-5 *3 (-2 (|:| -3138 (-349 (-484))) (|:| -3137 (-349 (-484))))) + (-5 *2 (-349 (-484))) (-5 *1 (-934 *4)) (-4 *4 (-1154 (-484)))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1177 *6)) (-5 *4 (-1177 (-483))) (-5 *5 (-483)) (-4 *6 (-1012)) - (-5 *2 (-1 *6)) (-5 *1 (-929 *6))))) + (-12 (-5 *3 (-1178 *6)) (-5 *4 (-1178 (-484))) (-5 *5 (-484)) (-4 *6 (-1013)) + (-5 *2 (-1 *6)) (-5 *1 (-930 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-582 (-2 (|:| -3400 *4) (|:| -1520 (-483))))) (-4 *4 (-1012)) - (-5 *2 (-1 *4)) (-5 *1 (-929 *4))))) + (-12 (-5 *3 (-583 (-2 (|:| -3401 *4) (|:| -1521 (-484))))) (-4 *4 (-1013)) + (-5 *2 (-1 *4)) (-5 *1 (-930 *4))))) (((*1 *2 *3 *3 *3) - (|partial| -12 (-4 *4 (-13 (-312) (-120) (-949 (-483)))) (-4 *5 (-1153 *4)) - (-5 *2 (-582 (-348 *5))) (-5 *1 (-928 *4 *5)) (-5 *3 (-348 *5))))) + (|partial| -12 (-4 *4 (-13 (-312) (-120) (-950 (-484)))) (-4 *5 (-1154 *4)) + (-5 *2 (-583 (-349 *5))) (-5 *1 (-929 *4 *5)) (-5 *3 (-349 *5))))) (((*1 *2 *3 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1153 *5)) - (-4 *5 (-13 (-312) (-120) (-949 (-483)))) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1154 *5)) + (-4 *5 (-13 (-312) (-120) (-950 (-484)))) (-5 *2 - (-2 (|:| |a| *6) (|:| |b| (-348 *6)) (|:| |h| *6) (|:| |c1| (-348 *6)) - (|:| |c2| (-348 *6)) (|:| -3092 *6))) - (-5 *1 (-928 *5 *6)) (-5 *3 (-348 *6))))) + (-2 (|:| |a| *6) (|:| |b| (-349 *6)) (|:| |h| *6) (|:| |c1| (-349 *6)) + (|:| |c2| (-349 *6)) (|:| -3093 *6))) + (-5 *1 (-929 *5 *6)) (-5 *3 (-349 *6))))) (((*1 *2 *3 *3 *3 *4 *5) - (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1153 *6)) - (-4 *6 (-13 (-312) (-120) (-949 *4))) (-5 *4 (-483)) + (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1154 *6)) + (-4 *6 (-13 (-312) (-120) (-950 *4))) (-5 *4 (-484)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-85)))) - (|:| -3265 + (|:| -3266 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) - (-5 *1 (-927 *6 *3))))) + (-5 *1 (-928 *6 *3))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-312) (-120) (-949 (-483)))) (-4 *5 (-1153 *4)) - (-5 *2 (-2 (|:| |ans| (-348 *5)) (|:| |nosol| (-85)))) (-5 *1 (-927 *4 *5)) - (-5 *3 (-348 *5))))) + (-12 (-4 *4 (-13 (-312) (-120) (-950 (-484)))) (-4 *5 (-1154 *4)) + (-5 *2 (-2 (|:| |ans| (-349 *5)) (|:| |nosol| (-85)))) (-5 *1 (-928 *4 *5)) + (-5 *3 (-349 *5))))) (((*1 *2 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1153 *5)) - (-4 *5 (-13 (-312) (-120) (-949 (-483)))) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1154 *5)) + (-4 *5 (-13 (-312) (-120) (-950 (-484)))) (-5 *2 - (-2 (|:| |a| *6) (|:| |b| (-348 *6)) (|:| |c| (-348 *6)) (|:| -3092 *6))) - (-5 *1 (-927 *5 *6)) (-5 *3 (-348 *6))))) + (-2 (|:| |a| *6) (|:| |b| (-349 *6)) (|:| |c| (-349 *6)) (|:| -3093 *6))) + (-5 *1 (-928 *5 *6)) (-5 *3 (-349 *6))))) (((*1 *2 *3 *4 *4 *4 *5 *6 *7) - (|partial| -12 (-5 *5 (-1088)) + (|partial| -12 (-5 *5 (-1089)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) - (|:| |limitedlogs| (-582 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) + (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") - *4 (-582 *4))) - (-5 *7 (-1 (-3 (-2 (|:| -2135 *4) (|:| |coeff| *4)) "failed") *4 *4)) - (-4 *4 (-13 (-1113) (-27) (-362 *8))) - (-4 *8 (-13 (-390) (-120) (-949 *3) (-579 *3))) (-5 *3 (-483)) - (-5 *2 (-582 *4)) (-5 *1 (-926 *8 *4))))) + *4 (-583 *4))) + (-5 *7 (-1 (-3 (-2 (|:| -2136 *4) (|:| |coeff| *4)) "failed") *4 *4)) + (-4 *4 (-13 (-1114) (-27) (-363 *8))) + (-4 *8 (-13 (-391) (-120) (-950 *3) (-580 *3))) (-5 *3 (-484)) + (-5 *2 (-583 *4)) (-5 *1 (-927 *8 *4))))) (((*1 *2 *3 *4 *4 *5 *6 *7) - (-12 (-5 *5 (-1088)) + (-12 (-5 *5 (-1089)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) - (|:| |limitedlogs| (-582 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) + (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") - *4 (-582 *4))) - (-5 *7 (-1 (-3 (-2 (|:| -2135 *4) (|:| |coeff| *4)) "failed") *4 *4)) - (-4 *4 (-13 (-1113) (-27) (-362 *8))) - (-4 *8 (-13 (-390) (-120) (-949 *3) (-579 *3))) (-5 *3 (-483)) - (-5 *2 (-2 (|:| |ans| *4) (|:| -3136 *4) (|:| |sol?| (-85)))) - (-5 *1 (-925 *8 *4))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-778 *3)) (-5 *2 (-483)))) - ((*1 *1 *1) (-4 *1 (-914))) ((*1 *1 *2) (-12 (-5 *2 (-483)) (-4 *1 (-924)))) - ((*1 *1 *2) (-12 (-5 *2 (-348 (-483))) (-4 *1 (-924)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-924)) (-5 *2 (-829)))) - ((*1 *1 *1) (-4 *1 (-924)))) -(((*1 *2 *1) (|partial| -12 (-4 *1 (-924)) (-5 *2 (-771))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1083 *1)) (-4 *1 (-924))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1083 *1)) (-4 *1 (-924))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-924)) (-5 *2 (-771))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-924)) (-5 *2 (-771))))) -(((*1 *2 *1) (-12 (-4 *3 (-1127)) (-5 *2 (-582 *1)) (-4 *1 (-922 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-922 *3)) (-4 *3 (-1127)) (-5 *2 (-582 *3))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-922 *3)) (-4 *3 (-1127)) (-5 *2 (-483))))) + *4 (-583 *4))) + (-5 *7 (-1 (-3 (-2 (|:| -2136 *4) (|:| |coeff| *4)) "failed") *4 *4)) + (-4 *4 (-13 (-1114) (-27) (-363 *8))) + (-4 *8 (-13 (-391) (-120) (-950 *3) (-580 *3))) (-5 *3 (-484)) + (-5 *2 (-2 (|:| |ans| *4) (|:| -3137 *4) (|:| |sol?| (-85)))) + (-5 *1 (-926 *8 *4))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-779 *3)) (-5 *2 (-484)))) + ((*1 *1 *1) (-4 *1 (-915))) ((*1 *1 *2) (-12 (-5 *2 (-484)) (-4 *1 (-925)))) + ((*1 *1 *2) (-12 (-5 *2 (-349 (-484))) (-4 *1 (-925)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-925)) (-5 *2 (-830)))) + ((*1 *1 *1) (-4 *1 (-925)))) +(((*1 *2 *1) (|partial| -12 (-4 *1 (-925)) (-5 *2 (-772))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1084 *1)) (-4 *1 (-925))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1084 *1)) (-4 *1 (-925))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-925)) (-5 *2 (-772))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-925)) (-5 *2 (-772))))) +(((*1 *2 *1) (-12 (-4 *3 (-1128)) (-5 *2 (-583 *1)) (-4 *1 (-923 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-923 *3)) (-4 *3 (-1128)) (-5 *2 (-583 *3))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-923 *3)) (-4 *3 (-1128)) (-5 *2 (-484))))) (((*1 *2 *1 *1) - (-12 (-4 *1 (-922 *3)) (-4 *3 (-1127)) (-4 *3 (-1012)) (-5 *2 (-85))))) + (-12 (-4 *1 (-923 *3)) (-4 *3 (-1128)) (-4 *3 (-1013)) (-5 *2 (-85))))) (((*1 *2 *1 *1) - (-12 (-4 *1 (-922 *3)) (-4 *3 (-1127)) (-4 *3 (-1012)) (-5 *2 (-85))))) + (-12 (-4 *1 (-923 *3)) (-4 *3 (-1128)) (-4 *3 (-1013)) (-5 *2 (-85))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-582 *1)) (|has| *1 (-6 -3994)) (-4 *1 (-922 *3)) - (-4 *3 (-1127))))) -(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -3994)) (-4 *1 (-922 *2)) (-4 *2 (-1127))))) + (-12 (-5 *2 (-583 *1)) (|has| *1 (-6 -3995)) (-4 *1 (-923 *3)) + (-4 *3 (-1128))))) +(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -3995)) (-4 *1 (-923 *2)) (-4 *2 (-1128))))) (((*1 *2 *1) - (|partial| -12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-482)) - (-5 *2 (-348 (-483))))) + (|partial| -12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-483)) + (-5 *2 (-349 (-484))))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-348 (-483))) (-5 *1 (-346 *3)) (-4 *3 (-482)) - (-4 *3 (-494)))) - ((*1 *2 *1) (|partial| -12 (-4 *1 (-482)) (-5 *2 (-348 (-483))))) + (|partial| -12 (-5 *2 (-349 (-484))) (-5 *1 (-347 *3)) (-4 *3 (-483)) + (-4 *3 (-495)))) + ((*1 *2 *1) (|partial| -12 (-4 *1 (-483)) (-5 *2 (-349 (-484))))) ((*1 *2 *1) - (|partial| -12 (-4 *1 (-719 *3)) (-4 *3 (-146)) (-4 *3 (-482)) - (-5 *2 (-348 (-483))))) + (|partial| -12 (-4 *1 (-720 *3)) (-4 *3 (-146)) (-4 *3 (-483)) + (-5 *2 (-349 (-484))))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-348 (-483))) (-5 *1 (-742 *3)) (-4 *3 (-482)) - (-4 *3 (-1012)))) + (|partial| -12 (-5 *2 (-349 (-484))) (-5 *1 (-743 *3)) (-4 *3 (-483)) + (-4 *3 (-1013)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-348 (-483))) (-5 *1 (-749 *3)) (-4 *3 (-482)) - (-4 *3 (-1012)))) + (|partial| -12 (-5 *2 (-349 (-484))) (-5 *1 (-750 *3)) (-4 *3 (-483)) + (-4 *3 (-1013)))) ((*1 *2 *1) - (|partial| -12 (-4 *1 (-910 *3)) (-4 *3 (-146)) (-4 *3 (-482)) - (-5 *2 (-348 (-483))))) + (|partial| -12 (-4 *1 (-911 *3)) (-4 *3 (-146)) (-4 *3 (-483)) + (-5 *2 (-349 (-484))))) ((*1 *2 *3) - (|partial| -12 (-5 *2 (-348 (-483))) (-5 *1 (-920 *3)) (-4 *3 (-949 *2))))) + (|partial| -12 (-5 *2 (-349 (-484))) (-5 *1 (-921 *3)) (-4 *3 (-950 *2))))) (((*1 *2 *1) - (-12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-482)) (-5 *2 (-85)))) + (-12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-483)) (-5 *2 (-85)))) ((*1 *2 *1) - (-12 (-5 *2 (-85)) (-5 *1 (-346 *3)) (-4 *3 (-482)) (-4 *3 (-494)))) - ((*1 *2 *1) (-12 (-4 *1 (-482)) (-5 *2 (-85)))) + (-12 (-5 *2 (-85)) (-5 *1 (-347 *3)) (-4 *3 (-483)) (-4 *3 (-495)))) + ((*1 *2 *1) (-12 (-4 *1 (-483)) (-5 *2 (-85)))) ((*1 *2 *1) - (-12 (-4 *1 (-719 *3)) (-4 *3 (-146)) (-4 *3 (-482)) (-5 *2 (-85)))) + (-12 (-4 *1 (-720 *3)) (-4 *3 (-146)) (-4 *3 (-483)) (-5 *2 (-85)))) ((*1 *2 *1) - (-12 (-5 *2 (-85)) (-5 *1 (-742 *3)) (-4 *3 (-482)) (-4 *3 (-1012)))) + (-12 (-5 *2 (-85)) (-5 *1 (-743 *3)) (-4 *3 (-483)) (-4 *3 (-1013)))) ((*1 *2 *1) - (-12 (-5 *2 (-85)) (-5 *1 (-749 *3)) (-4 *3 (-482)) (-4 *3 (-1012)))) + (-12 (-5 *2 (-85)) (-5 *1 (-750 *3)) (-4 *3 (-483)) (-4 *3 (-1013)))) ((*1 *2 *1) - (-12 (-4 *1 (-910 *3)) (-4 *3 (-146)) (-4 *3 (-482)) (-5 *2 (-85)))) + (-12 (-4 *1 (-911 *3)) (-4 *3 (-146)) (-4 *3 (-483)) (-5 *2 (-85)))) ((*1 *2 *3) - (-12 (-5 *2 (-85)) (-5 *1 (-920 *3)) (-4 *3 (-949 (-348 (-483))))))) + (-12 (-5 *2 (-85)) (-5 *1 (-921 *3)) (-4 *3 (-950 (-349 (-484))))))) (((*1 *2 *1) - (-12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-482)) (-5 *2 (-348 (-483))))) + (-12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-483)) (-5 *2 (-349 (-484))))) ((*1 *2 *1) - (-12 (-5 *2 (-348 (-483))) (-5 *1 (-346 *3)) (-4 *3 (-482)) (-4 *3 (-494)))) - ((*1 *2 *1) (-12 (-4 *1 (-482)) (-5 *2 (-348 (-483))))) + (-12 (-5 *2 (-349 (-484))) (-5 *1 (-347 *3)) (-4 *3 (-483)) (-4 *3 (-495)))) + ((*1 *2 *1) (-12 (-4 *1 (-483)) (-5 *2 (-349 (-484))))) ((*1 *2 *1) - (-12 (-4 *1 (-719 *3)) (-4 *3 (-146)) (-4 *3 (-482)) (-5 *2 (-348 (-483))))) + (-12 (-4 *1 (-720 *3)) (-4 *3 (-146)) (-4 *3 (-483)) (-5 *2 (-349 (-484))))) ((*1 *2 *1) - (-12 (-5 *2 (-348 (-483))) (-5 *1 (-742 *3)) (-4 *3 (-482)) (-4 *3 (-1012)))) + (-12 (-5 *2 (-349 (-484))) (-5 *1 (-743 *3)) (-4 *3 (-483)) (-4 *3 (-1013)))) ((*1 *2 *1) - (-12 (-5 *2 (-348 (-483))) (-5 *1 (-749 *3)) (-4 *3 (-482)) (-4 *3 (-1012)))) + (-12 (-5 *2 (-349 (-484))) (-5 *1 (-750 *3)) (-4 *3 (-483)) (-4 *3 (-1013)))) ((*1 *2 *1) - (-12 (-4 *1 (-910 *3)) (-4 *3 (-146)) (-4 *3 (-482)) (-5 *2 (-348 (-483))))) - ((*1 *2 *3) (-12 (-5 *2 (-348 (-483))) (-5 *1 (-920 *3)) (-4 *3 (-949 *2))))) -(((*1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-918))))) -(((*1 *2 *3) (-12 (-5 *3 (-483)) (-5 *2 (-1183)) (-5 *1 (-918))))) -(((*1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-918)))) - ((*1 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-918))))) + (-12 (-4 *1 (-911 *3)) (-4 *3 (-146)) (-4 *3 (-483)) (-5 *2 (-349 (-484))))) + ((*1 *2 *3) (-12 (-5 *2 (-349 (-484))) (-5 *1 (-921 *3)) (-4 *3 (-950 *2))))) +(((*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-919))))) +(((*1 *2 *3) (-12 (-5 *3 (-484)) (-5 *2 (-1184)) (-5 *1 (-919))))) +(((*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-919)))) + ((*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-919))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-348 (-483))) (-5 *4 (-483)) (-5 *2 (-51)) (-5 *1 (-917))))) -(((*1 *2 *1) (-12 (-5 *2 (-582 (-483))) (-5 *1 (-916 *3)) (-14 *3 (-483))))) -(((*1 *2 *1) (-12 (-5 *2 (-1067 (-483))) (-5 *1 (-916 *3)) (-14 *3 (-483))))) -(((*1 *2 *1) (-12 (-5 *2 (-582 (-483))) (-5 *1 (-916 *3)) (-14 *3 (-483))))) -(((*1 *2 *1) (-12 (-5 *2 (-582 (-483))) (-5 *1 (-916 *3)) (-14 *3 (-483))))) -(((*1 *1 *2) (-12 (-5 *2 (-582 (-483))) (-5 *1 (-916 *3)) (-14 *3 (-483))))) -(((*1 *1 *2 *2) (-12 (-5 *2 (-582 (-483))) (-5 *1 (-916 *3)) (-14 *3 (-483))))) + (-12 (-5 *3 (-349 (-484))) (-5 *4 (-484)) (-5 *2 (-51)) (-5 *1 (-918))))) +(((*1 *2 *1) (-12 (-5 *2 (-583 (-484))) (-5 *1 (-917 *3)) (-14 *3 (-484))))) +(((*1 *2 *1) (-12 (-5 *2 (-1068 (-484))) (-5 *1 (-917 *3)) (-14 *3 (-484))))) +(((*1 *2 *1) (-12 (-5 *2 (-583 (-484))) (-5 *1 (-917 *3)) (-14 *3 (-484))))) +(((*1 *2 *1) (-12 (-5 *2 (-583 (-484))) (-5 *1 (-917 *3)) (-14 *3 (-484))))) +(((*1 *1 *2) (-12 (-5 *2 (-583 (-484))) (-5 *1 (-917 *3)) (-14 *3 (-484))))) +(((*1 *1 *2 *2) (-12 (-5 *2 (-583 (-484))) (-5 *1 (-917 *3)) (-14 *3 (-484))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-346 *5)) (-4 *5 (-494)) - (-5 *2 (-2 (|:| -2400 (-693)) (|:| -3952 *5) (|:| |radicand| (-582 *5)))) - (-5 *1 (-271 *5)) (-5 *4 (-693)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-914)) (-5 *2 (-483))))) -(((*1 *1 *2) (-12 (-5 *2 (-582 *3)) (-4 *3 (-1012)) (-5 *1 (-912 *3))))) + (-12 (-5 *3 (-347 *5)) (-4 *5 (-495)) + (-5 *2 (-2 (|:| -2401 (-694)) (|:| -3953 *5) (|:| |radicand| (-583 *5)))) + (-5 *1 (-271 *5)) (-5 *4 (-694)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-915)) (-5 *2 (-484))))) +(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1013)) (-5 *1 (-913 *3))))) (((*1 *1 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) - ((*1 *1 *1 *1) (-4 *1 (-411))) - ((*1 *1 *1) (-12 (-4 *1 (-719 *2)) (-4 *2 (-146)))) - ((*1 *2 *2) (-12 (-5 *2 (-582 (-829))) (-5 *1 (-792)))) - ((*1 *1 *1) (-5 *1 (-883))) - ((*1 *1 *1) (-12 (-4 *1 (-910 *2)) (-4 *2 (-146))))) -(((*1 *2 *1) (-12 (-4 *1 (-719 *2)) (-4 *2 (-146)))) - ((*1 *2 *1) (-12 (-4 *1 (-910 *2)) (-4 *2 (-146))))) -(((*1 *2 *1) (-12 (-4 *1 (-719 *2)) (-4 *2 (-146)))) - ((*1 *2 *1) (-12 (-4 *1 (-910 *2)) (-4 *2 (-146))))) -(((*1 *2 *1) (-12 (-4 *1 (-719 *2)) (-4 *2 (-146)))) - ((*1 *2 *1) (-12 (-4 *1 (-910 *2)) (-4 *2 (-146))))) -(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-910 *2)) (-4 *2 (-146))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-907 *2)) (-4 *2 (-1127))))) -(((*1 *2 *1) (-12 (-4 *1 (-907 *2)) (-4 *2 (-1127))))) -(((*1 *1 *1) (-12 (-4 *1 (-907 *2)) (-4 *2 (-1127))))) -(((*1 *2 *1) (-12 (-4 *1 (-907 *2)) (-4 *2 (-1127))))) -(((*1 *2 *1) (-12 (-4 *1 (-907 *2)) (-4 *2 (-1127))))) + ((*1 *1 *1 *1) (-4 *1 (-412))) + ((*1 *1 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146)))) + ((*1 *2 *2) (-12 (-5 *2 (-583 (-830))) (-5 *1 (-793)))) + ((*1 *1 *1) (-5 *1 (-884))) + ((*1 *1 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-146))))) +(((*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146)))) + ((*1 *2 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-146))))) +(((*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146)))) + ((*1 *2 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-146))))) +(((*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146)))) + ((*1 *2 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-146))))) +(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-911 *2)) (-4 *2 (-146))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-908 *2)) (-4 *2 (-1128))))) +(((*1 *2 *1) (-12 (-4 *1 (-908 *2)) (-4 *2 (-1128))))) +(((*1 *1 *1) (-12 (-4 *1 (-908 *2)) (-4 *2 (-1128))))) +(((*1 *2 *1) (-12 (-4 *1 (-908 *2)) (-4 *2 (-1128))))) +(((*1 *2 *1) (-12 (-4 *1 (-908 *2)) (-4 *2 (-1128))))) (((*1 *1 *2) - (-12 (-5 *2 (-1054 *3 *4)) (-14 *3 (-829)) (-4 *4 (-312)) - (-5 *1 (-905 *3 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1037 (-483) (-549 (-48)))) (-5 *1 (-48)))) + (-12 (-5 *2 (-1055 *3 *4)) (-14 *3 (-830)) (-4 *4 (-312)) + (-5 *1 (-906 *3 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1038 (-484) (-550 (-48)))) (-5 *1 (-48)))) ((*1 *2 *1) - (-12 (-4 *3 (-258)) (-4 *4 (-903 *3)) (-4 *5 (-1153 *4)) (-5 *2 (-1177 *6)) - (-5 *1 (-354 *3 *4 *5 *6)) (-4 *6 (-13 (-351 *4 *5) (-949 *4))))) + (-12 (-4 *3 (-258)) (-4 *4 (-904 *3)) (-4 *5 (-1154 *4)) (-5 *2 (-1178 *6)) + (-5 *1 (-355 *3 *4 *5 *6)) (-4 *6 (-13 (-352 *4 *5) (-950 *4))))) ((*1 *2 *1) - (-12 (-4 *3 (-960)) (-4 *3 (-1012)) (-5 *2 (-1037 *3 (-549 *1))) - (-4 *1 (-362 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1037 (-483) (-549 (-433)))) (-5 *1 (-433)))) + (-12 (-4 *3 (-961)) (-4 *3 (-1013)) (-5 *2 (-1038 *3 (-550 *1))) + (-4 *1 (-363 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1038 (-484) (-550 (-434)))) (-5 *1 (-434)))) ((*1 *2 *1) - (-12 (-4 *3 (-146)) (-4 *2 (-38 *3)) (-5 *1 (-557 *2 *3 *4)) - (-4 *4 (|SubsetCategory| (-662) *3)))) + (-12 (-4 *3 (-146)) (-4 *2 (-38 *3)) (-5 *1 (-558 *2 *3 *4)) + (-4 *4 (|SubsetCategory| (-663) *3)))) ((*1 *2 *1) - (-12 (-4 *3 (-146)) (-4 *2 (-653 *3)) (-5 *1 (-593 *2 *3 *4)) - (-4 *4 (|SubsetCategory| (-662) *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-903 *2)) (-4 *2 (-494))))) -(((*1 *2 *1) (-12 (-5 *2 (-1037 (-483) (-549 (-48)))) (-5 *1 (-48)))) + (-12 (-4 *3 (-146)) (-4 *2 (-654 *3)) (-5 *1 (-594 *2 *3 *4)) + (-4 *4 (|SubsetCategory| (-663) *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-495))))) +(((*1 *2 *1) (-12 (-5 *2 (-1038 (-484) (-550 (-48)))) (-5 *1 (-48)))) ((*1 *2 *1) - (-12 (-4 *3 (-903 *2)) (-4 *4 (-1153 *3)) (-4 *2 (-258)) - (-5 *1 (-354 *2 *3 *4 *5)) (-4 *5 (-13 (-351 *3 *4) (-949 *3))))) + (-12 (-4 *3 (-904 *2)) (-4 *4 (-1154 *3)) (-4 *2 (-258)) + (-5 *1 (-355 *2 *3 *4 *5)) (-4 *5 (-13 (-352 *3 *4) (-950 *3))))) ((*1 *2 *1) - (-12 (-4 *3 (-494)) (-4 *3 (-1012)) (-5 *2 (-1037 *3 (-549 *1))) - (-4 *1 (-362 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1037 (-483) (-549 (-433)))) (-5 *1 (-433)))) + (-12 (-4 *3 (-495)) (-4 *3 (-1013)) (-5 *2 (-1038 *3 (-550 *1))) + (-4 *1 (-363 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1038 (-484) (-550 (-434)))) (-5 *1 (-434)))) ((*1 *2 *1) - (-12 (-4 *4 (-146)) (-4 *2 (|SubsetCategory| (-662) *4)) - (-5 *1 (-557 *3 *4 *2)) (-4 *3 (-38 *4)))) + (-12 (-4 *4 (-146)) (-4 *2 (|SubsetCategory| (-663) *4)) + (-5 *1 (-558 *3 *4 *2)) (-4 *3 (-38 *4)))) ((*1 *2 *1) - (-12 (-4 *4 (-146)) (-4 *2 (|SubsetCategory| (-662) *4)) - (-5 *1 (-593 *3 *4 *2)) (-4 *3 (-653 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-903 *2)) (-4 *2 (-494))))) -(((*1 *1 *1) (-12 (-4 *1 (-362 *2)) (-4 *2 (-1012)) (-4 *2 (-960)))) - ((*1 *1 *1) (-12 (-4 *1 (-903 *2)) (-4 *2 (-494))))) -(((*1 *1 *1) (-12 (-4 *1 (-362 *2)) (-4 *2 (-1012)) (-4 *2 (-494)))) - ((*1 *1 *1) (-12 (-4 *1 (-903 *2)) (-4 *2 (-494))))) + (-12 (-4 *4 (-146)) (-4 *2 (|SubsetCategory| (-663) *4)) + (-5 *1 (-594 *3 *4 *2)) (-4 *3 (-654 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-495))))) +(((*1 *1 *1) (-12 (-4 *1 (-363 *2)) (-4 *2 (-1013)) (-4 *2 (-961)))) + ((*1 *1 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-495))))) +(((*1 *1 *1) (-12 (-4 *1 (-363 *2)) (-4 *2 (-1013)) (-4 *2 (-495)))) + ((*1 *1 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-495))))) (((*1 *2 *3) - (-12 (-5 *3 (-829)) (-5 *2 (-1083 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299)))) + (-12 (-5 *3 (-830)) (-5 *2 (-1084 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-829)) (-5 *2 (-1083 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299)))) - ((*1 *1) (-4 *1 (-318))) + (-12 (-5 *3 (-830)) (-5 *2 (-1084 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299)))) + ((*1 *1) (-4 *1 (-319))) ((*1 *2 *3) - (-12 (-5 *3 (-829)) (-5 *2 (-1177 *4)) (-5 *1 (-465 *4)) (-4 *4 (-299)))) - ((*1 *1 *1) (-4 *1 (-482))) ((*1 *1) (-4 *1 (-482))) - ((*1 *1 *1) (-5 *1 (-693))) - ((*1 *2 *1) (-12 (-5 *2 (-812 *3)) (-5 *1 (-815 *3)) (-4 *3 (-1012)))) + (-12 (-5 *3 (-830)) (-5 *2 (-1178 *4)) (-5 *1 (-466 *4)) (-4 *4 (-299)))) + ((*1 *1 *1) (-4 *1 (-483))) ((*1 *1) (-4 *1 (-483))) + ((*1 *1 *1) (-5 *1 (-694))) + ((*1 *2 *1) (-12 (-5 *2 (-813 *3)) (-5 *1 (-816 *3)) (-4 *3 (-1013)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-483)) (-5 *2 (-812 *4)) (-5 *1 (-815 *4)) (-4 *4 (-1012)))) - ((*1 *1) (-12 (-4 *1 (-903 *2)) (-4 *2 (-482)) (-4 *2 (-494))))) + (-12 (-5 *3 (-484)) (-5 *2 (-813 *4)) (-5 *1 (-816 *4)) (-4 *4 (-1013)))) + ((*1 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-483)) (-4 *2 (-495))))) (((*1 *2 *2) (-12 (-5 *2 - (-898 (-348 (-483)) (-772 *3) (-197 *4 (-693)) (-206 *3 (-348 (-483))))) - (-14 *3 (-582 (-1088))) (-14 *4 (-693)) (-5 *1 (-899 *3 *4))))) + (-899 (-349 (-484)) (-773 *3) (-197 *4 (-694)) (-206 *3 (-349 (-484))))) + (-14 *3 (-583 (-1089))) (-14 *4 (-694)) (-5 *1 (-900 *3 *4))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-582 *3)) (-4 *3 (-860 *4 *6 *5)) (-4 *4 (-390)) (-4 *5 (-755)) - (-4 *6 (-716)) (-5 *1 (-898 *4 *5 *6 *3))))) + (-12 (-5 *2 (-583 *3)) (-4 *3 (-861 *4 *6 *5)) (-4 *4 (-391)) (-4 *5 (-756)) + (-4 *6 (-717)) (-5 *1 (-899 *4 *5 *6 *3))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-3 (-85) "failed")) (-4 *3 (-390)) (-4 *4 (-755)) (-4 *5 (-716)) - (-5 *1 (-898 *3 *4 *5 *6)) (-4 *6 (-860 *3 *5 *4))))) + (-12 (-5 *2 (-3 (-85) "failed")) (-4 *3 (-391)) (-4 *4 (-756)) (-4 *5 (-717)) + (-5 *1 (-899 *3 *4 *5 *6)) (-4 *6 (-861 *3 *5 *4))))) (((*1 *2 *1) - (-12 (-4 *3 (-390)) (-4 *4 (-755)) (-4 *5 (-716)) (-5 *2 (-582 *6)) - (-5 *1 (-898 *3 *4 *5 *6)) (-4 *6 (-860 *3 *5 *4))))) + (-12 (-4 *3 (-391)) (-4 *4 (-756)) (-4 *5 (-717)) (-5 *2 (-583 *6)) + (-5 *1 (-899 *3 *4 *5 *6)) (-4 *6 (-861 *3 *5 *4))))) (((*1 *2 *1) - (-12 (-4 *2 (-860 *3 *5 *4)) (-5 *1 (-898 *3 *4 *5 *2)) (-4 *3 (-390)) - (-4 *4 (-755)) (-4 *5 (-716))))) + (-12 (-4 *2 (-861 *3 *5 *4)) (-5 *1 (-899 *3 *4 *5 *2)) (-4 *3 (-391)) + (-4 *4 (-756)) (-4 *5 (-717))))) (((*1 *1 *1) - (-12 (-4 *2 (-390)) (-4 *3 (-755)) (-4 *4 (-716)) (-5 *1 (-898 *2 *3 *4 *5)) - (-4 *5 (-860 *2 *4 *3))))) + (-12 (-4 *2 (-391)) (-4 *3 (-756)) (-4 *4 (-717)) (-5 *1 (-899 *2 *3 *4 *5)) + (-4 *5 (-861 *2 *4 *3))))) (((*1 *2 *3) - (-12 (-4 *3 (-1153 *2)) (-4 *2 (-1153 *4)) (-5 *1 (-897 *4 *2 *3 *5)) - (-4 *4 (-299)) (-4 *5 (-660 *2 *3))))) + (-12 (-4 *3 (-1154 *2)) (-4 *2 (-1154 *4)) (-5 *1 (-898 *4 *2 *3 *5)) + (-4 *4 (-299)) (-4 *5 (-661 *2 *3))))) (((*1 *2 *2 *3) - (-12 (-4 *4 (-716)) (-4 *3 (-13 (-755) (-10 -8 (-15 -3970 ((-1088) $))))) - (-4 *5 (-494)) (-5 *1 (-670 *4 *3 *5 *2)) - (-4 *2 (-860 (-348 (-856 *5)) *4 *3)))) + (-12 (-4 *4 (-717)) (-4 *3 (-13 (-756) (-10 -8 (-15 -3971 ((-1089) $))))) + (-4 *5 (-495)) (-5 *1 (-671 *4 *3 *5 *2)) + (-4 *2 (-861 (-349 (-857 *5)) *4 *3)))) ((*1 *2 *2 *3) - (-12 (-4 *4 (-960)) (-4 *5 (-716)) + (-12 (-4 *4 (-961)) (-4 *5 (-717)) (-4 *3 - (-13 (-755) - (-10 -8 (-15 -3970 ((-1088) $)) - (-15 -3829 ((-3 $ #1="failed") (-1088)))))) - (-5 *1 (-896 *4 *5 *3 *2)) (-4 *2 (-860 (-856 *4) *5 *3)))) + (-13 (-756) + (-10 -8 (-15 -3971 ((-1089) $)) + (-15 -3830 ((-3 $ #1="failed") (-1089)))))) + (-5 *1 (-897 *4 *5 *3 *2)) (-4 *2 (-861 (-857 *4) *5 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-582 *6)) + (-12 (-5 *3 (-583 *6)) (-4 *6 - (-13 (-755) - (-10 -8 (-15 -3970 ((-1088) $)) (-15 -3829 ((-3 $ #1#) (-1088)))))) - (-4 *4 (-960)) (-4 *5 (-716)) (-5 *1 (-896 *4 *5 *6 *2)) - (-4 *2 (-860 (-856 *4) *5 *6))))) + (-13 (-756) + (-10 -8 (-15 -3971 ((-1089) $)) (-15 -3830 ((-3 $ #1#) (-1089)))))) + (-4 *4 (-961)) (-4 *5 (-717)) (-5 *1 (-897 *4 *5 *6 *2)) + (-4 *2 (-861 (-857 *4) *5 *6))))) (((*1 *2 *2 *3) - (-12 (-4 *4 (-716)) (-4 *3 (-13 (-755) (-10 -8 (-15 -3970 ((-1088) $))))) - (-4 *5 (-494)) (-5 *1 (-670 *4 *3 *5 *2)) - (-4 *2 (-860 (-348 (-856 *5)) *4 *3)))) + (-12 (-4 *4 (-717)) (-4 *3 (-13 (-756) (-10 -8 (-15 -3971 ((-1089) $))))) + (-4 *5 (-495)) (-5 *1 (-671 *4 *3 *5 *2)) + (-4 *2 (-861 (-349 (-857 *5)) *4 *3)))) ((*1 *2 *2 *3) - (-12 (-4 *4 (-960)) (-4 *5 (-716)) + (-12 (-4 *4 (-961)) (-4 *5 (-717)) (-4 *3 - (-13 (-755) - (-10 -8 (-15 -3970 ((-1088) $)) - (-15 -3829 ((-3 $ #1="failed") (-1088)))))) - (-5 *1 (-896 *4 *5 *3 *2)) (-4 *2 (-860 (-856 *4) *5 *3)))) + (-13 (-756) + (-10 -8 (-15 -3971 ((-1089) $)) + (-15 -3830 ((-3 $ #1="failed") (-1089)))))) + (-5 *1 (-897 *4 *5 *3 *2)) (-4 *2 (-861 (-857 *4) *5 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-582 *6)) + (-12 (-5 *3 (-583 *6)) (-4 *6 - (-13 (-755) - (-10 -8 (-15 -3970 ((-1088) $)) (-15 -3829 ((-3 $ #1#) (-1088)))))) - (-4 *4 (-960)) (-4 *5 (-716)) (-5 *1 (-896 *4 *5 *6 *2)) - (-4 *2 (-860 (-856 *4) *5 *6))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-895 *2)) (-4 *2 (-1113))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-895 *2)) (-4 *2 (-1113))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-895 *2)) (-4 *2 (-1113))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-895 *2)) (-4 *2 (-1113))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-895 *2)) (-4 *2 (-1113))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-895 *2)) (-4 *2 (-1113))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-895 *2)) (-4 *2 (-1113))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-895 *2)) (-4 *2 (-1113))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-895 *2)) (-4 *2 (-1113))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-895 *2)) (-4 *2 (-1113))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-895 *2)) (-4 *2 (-1113))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-895 *2)) (-4 *2 (-1113))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-895 *2)) (-4 *2 (-1113))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-895 *2)) (-4 *2 (-1113))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-895 *2)) (-4 *2 (-1113))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-895 *2)) (-4 *2 (-1113))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-895 *2)) (-4 *2 (-1113))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-895 *2)) (-4 *2 (-1113))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-895 *2)) (-4 *2 (-1113))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-895 *2)) (-4 *2 (-1113))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-895 *2)) (-4 *2 (-1113))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-895 *2)) (-4 *2 (-1113))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-895 *2)) (-4 *2 (-1113))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-895 *2)) (-4 *2 (-1113))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-895 *2)) (-4 *2 (-1113))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-895 *2)) (-4 *2 (-1113))))) + (-13 (-756) + (-10 -8 (-15 -3971 ((-1089) $)) (-15 -3830 ((-3 $ #1#) (-1089)))))) + (-4 *4 (-961)) (-4 *5 (-717)) (-5 *1 (-897 *4 *5 *6 *2)) + (-4 *2 (-861 (-857 *4) *5 *6))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1114))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1114))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1114))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1114))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1114))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1114))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1114))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1114))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1114))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1114))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1114))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1114))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1114))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1114))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1114))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1114))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1114))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1114))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1114))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1114))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1114))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1114))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1114))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1114))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1114))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1114))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-693)) (-4 *1 (-895 *2)) (-4 *2 (-1113))))) -(((*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-782)))) - ((*1 *2 *3) (-12 (-5 *3 (-853 *2)) (-5 *1 (-894 *2)) (-4 *2 (-960))))) -(((*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-130)))) - ((*1 *2 *1) (-12 (-5 *2 (-130)) (-5 *1 (-782)))) - ((*1 *2 *3) (-12 (-5 *3 (-853 *2)) (-5 *1 (-894 *2)) (-4 *2 (-960))))) -(((*1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-130)))) - ((*1 *2 *3) (-12 (-5 *3 (-853 *2)) (-5 *1 (-894 *2)) (-4 *2 (-960))))) -(((*1 *2 *3) (-12 (-5 *3 (-853 *2)) (-5 *1 (-894 *2)) (-4 *2 (-960))))) -(((*1 *2 *3) (-12 (-5 *3 (-853 *2)) (-5 *1 (-894 *2)) (-4 *2 (-960))))) -(((*1 *2 *3) (-12 (-5 *3 (-853 *2)) (-5 *1 (-894 *2)) (-4 *2 (-960))))) -(((*1 *2 *3) (-12 (-5 *3 (-853 *2)) (-5 *1 (-894 *2)) (-4 *2 (-960))))) -(((*1 *2 *3) (-12 (-5 *3 (-853 *2)) (-5 *1 (-894 *2)) (-4 *2 (-960))))) -(((*1 *2 *3) (-12 (-5 *3 (-853 *2)) (-5 *1 (-894 *2)) (-4 *2 (-960))))) + (|partial| -12 (-5 *3 (-694)) (-4 *1 (-896 *2)) (-4 *2 (-1114))))) +(((*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-783)))) + ((*1 *2 *3) (-12 (-5 *3 (-854 *2)) (-5 *1 (-895 *2)) (-4 *2 (-961))))) +(((*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-130)))) + ((*1 *2 *1) (-12 (-5 *2 (-130)) (-5 *1 (-783)))) + ((*1 *2 *3) (-12 (-5 *3 (-854 *2)) (-5 *1 (-895 *2)) (-4 *2 (-961))))) +(((*1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-130)))) + ((*1 *2 *3) (-12 (-5 *3 (-854 *2)) (-5 *1 (-895 *2)) (-4 *2 (-961))))) +(((*1 *2 *3) (-12 (-5 *3 (-854 *2)) (-5 *1 (-895 *2)) (-4 *2 (-961))))) +(((*1 *2 *3) (-12 (-5 *3 (-854 *2)) (-5 *1 (-895 *2)) (-4 *2 (-961))))) +(((*1 *2 *3) (-12 (-5 *3 (-854 *2)) (-5 *1 (-895 *2)) (-4 *2 (-961))))) +(((*1 *2 *3) (-12 (-5 *3 (-854 *2)) (-5 *1 (-895 *2)) (-4 *2 (-961))))) +(((*1 *2 *3) (-12 (-5 *3 (-854 *2)) (-5 *1 (-895 *2)) (-4 *2 (-961))))) +(((*1 *2 *3) (-12 (-5 *3 (-854 *2)) (-5 *1 (-895 *2)) (-4 *2 (-961))))) (((*1 *2 *3 *4) (-12 (-4 *5 (-312)) - (-5 *2 (-582 (-2 (|:| C (-629 *5)) (|:| |g| (-1177 *5))))) (-5 *1 (-890 *5)) - (-5 *3 (-629 *5)) (-5 *4 (-1177 *5))))) + (-5 *2 (-583 (-2 (|:| C (-630 *5)) (|:| |g| (-1178 *5))))) (-5 *1 (-891 *5)) + (-5 *3 (-630 *5)) (-5 *4 (-1178 *5))))) (((*1 *2 *2 *2 *3 *4) - (-12 (-5 *2 (-629 *5)) (-5 *3 (-69 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-312)) - (-5 *1 (-890 *5))))) + (-12 (-5 *2 (-630 *5)) (-5 *3 (-69 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-312)) + (-5 *1 (-891 *5))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-582 *2)) (-4 *2 (-860 *4 *5 *6)) (-4 *4 (-312)) (-4 *4 (-390)) - (-4 *5 (-716)) (-4 *6 (-755)) (-5 *1 (-385 *4 *5 *6 *2)))) + (-12 (-5 *3 (-583 *2)) (-4 *2 (-861 *4 *5 *6)) (-4 *4 (-312)) (-4 *4 (-391)) + (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-386 *4 *5 *6 *2)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-69 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-312)) - (-5 *2 (-2 (|:| R (-629 *6)) (|:| A (-629 *6)) (|:| |Ainv| (-629 *6)))) - (-5 *1 (-890 *6)) (-5 *3 (-629 *6))))) + (-5 *2 (-2 (|:| R (-630 *6)) (|:| A (-630 *6)) (|:| |Ainv| (-630 *6)))) + (-5 *1 (-891 *6)) (-5 *3 (-630 *6))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-582 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-120)) (-4 *3 (-258)) - (-4 *3 (-494)) (-4 *4 (-716)) (-4 *5 (-755)) (-5 *1 (-889 *3 *4 *5 *6))))) + (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-120)) (-4 *3 (-258)) + (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6))))) (((*1 *2 *2) - (-12 (-5 *2 (-582 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-120)) (-4 *3 (-258)) - (-4 *3 (-494)) (-4 *4 (-716)) (-4 *5 (-755)) (-5 *1 (-889 *3 *4 *5 *6))))) + (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-120)) (-4 *3 (-258)) + (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6))))) (((*1 *2 *2) - (-12 (-5 *2 (-582 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-120)) (-4 *3 (-258)) - (-4 *3 (-494)) (-4 *4 (-716)) (-4 *5 (-755)) (-5 *1 (-889 *3 *4 *5 *6))))) + (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-120)) (-4 *3 (-258)) + (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-582 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-390)) (-4 *3 (-494)) - (-4 *4 (-716)) (-4 *5 (-755)) (-5 *1 (-889 *3 *4 *5 *6))))) + (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-391)) (-4 *3 (-495)) + (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-582 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-390)) (-4 *3 (-494)) - (-4 *4 (-716)) (-4 *5 (-755)) (-5 *1 (-889 *3 *4 *5 *6))))) + (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-391)) (-4 *3 (-495)) + (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-582 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-390)) (-4 *3 (-494)) - (-4 *4 (-716)) (-4 *5 (-755)) (-5 *1 (-889 *3 *4 *5 *6))))) + (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-391)) (-4 *3 (-495)) + (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6))))) (((*1 *2 *2) - (-12 (-5 *2 (-582 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-390)) (-4 *3 (-494)) - (-4 *4 (-716)) (-4 *5 (-755)) (-5 *1 (-889 *3 *4 *5 *6)))) + (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-391)) (-4 *3 (-495)) + (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-582 *7)) (-5 *3 (-85)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-390)) - (-4 *4 (-494)) (-4 *5 (-716)) (-4 *6 (-755)) (-5 *1 (-889 *4 *5 *6 *7))))) + (-12 (-5 *2 (-583 *7)) (-5 *3 (-85)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-391)) + (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-890 *4 *5 *6 *7))))) (((*1 *2 *3) - (-12 (-4 *4 (-390)) (-4 *4 (-494)) (-4 *5 (-716)) (-4 *6 (-755)) - (-5 *2 (-582 *3)) (-5 *1 (-889 *4 *5 *6 *3)) (-4 *3 (-976 *4 *5 *6))))) + (-12 (-4 *4 (-391)) (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) + (-5 *2 (-583 *3)) (-5 *1 (-890 *4 *5 *6 *3)) (-4 *3 (-977 *4 *5 *6))))) (((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-582 *8)) (-5 *3 (-1 (-85) *8 *8)) (-5 *4 (-1 *8 *8 *8)) - (-4 *8 (-976 *5 *6 *7)) (-4 *5 (-494)) (-4 *6 (-716)) (-4 *7 (-755)) - (-5 *1 (-889 *5 *6 *7 *8))))) + (-12 (-5 *2 (-583 *8)) (-5 *3 (-1 (-85) *8 *8)) (-5 *4 (-1 *8 *8 *8)) + (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-495)) (-4 *6 (-717)) (-4 *7 (-756)) + (-5 *1 (-890 *5 *6 *7 *8))))) (((*1 *2 *2 *3 *4 *5) - (-12 (-5 *2 (-582 *9)) (-5 *3 (-1 (-85) *9)) (-5 *4 (-1 (-85) *9 *9)) - (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-976 *6 *7 *8)) (-4 *6 (-494)) (-4 *7 (-716)) - (-4 *8 (-755)) (-5 *1 (-889 *6 *7 *8 *9))))) + (-12 (-5 *2 (-583 *9)) (-5 *3 (-1 (-85) *9)) (-5 *4 (-1 (-85) *9 *9)) + (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-977 *6 *7 *8)) (-4 *6 (-495)) (-4 *7 (-717)) + (-4 *8 (-756)) (-5 *1 (-890 *6 *7 *8 *9))))) (((*1 *2 *2) - (-12 (-5 *2 (-582 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-494)) (-4 *4 (-716)) - (-4 *5 (-755)) (-5 *1 (-889 *3 *4 *5 *6))))) + (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-4 *4 (-717)) + (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6))))) (((*1 *2 *3) - (|partial| -12 (-4 *4 (-494)) (-4 *5 (-716)) (-4 *6 (-755)) - (-4 *7 (-976 *4 *5 *6)) - (-5 *2 (-2 (|:| |bas| (-414 *4 *5 *6 *7)) (|:| -3322 (-582 *7)))) - (-5 *1 (-889 *4 *5 *6 *7)) (-5 *3 (-582 *7))))) + (|partial| -12 (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) + (-4 *7 (-977 *4 *5 *6)) + (-5 *2 (-2 (|:| |bas| (-415 *4 *5 *6 *7)) (|:| -3323 (-583 *7)))) + (-5 *1 (-890 *4 *5 *6 *7)) (-5 *3 (-583 *7))))) (((*1 *2 *2) - (-12 (-5 *2 (-582 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-494)) (-4 *4 (-716)) - (-4 *5 (-755)) (-5 *1 (-889 *3 *4 *5 *6))))) + (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-4 *4 (-717)) + (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-582 *2)) (-4 *2 (-976 *4 *5 *6)) (-4 *4 (-494)) (-4 *5 (-716)) - (-4 *6 (-755)) (-5 *1 (-889 *4 *5 *6 *2))))) + (-12 (-5 *3 (-583 *2)) (-4 *2 (-977 *4 *5 *6)) (-4 *4 (-495)) (-4 *5 (-717)) + (-4 *6 (-756)) (-5 *1 (-890 *4 *5 *6 *2))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-582 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-494)) (-4 *4 (-716)) - (-4 *5 (-755)) (-5 *1 (-889 *3 *4 *5 *6)))) + (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-4 *4 (-717)) + (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6)))) ((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-582 *7)) (-5 *3 (-85)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-494)) - (-4 *5 (-716)) (-4 *6 (-755)) (-5 *1 (-889 *4 *5 *6 *7))))) + (-12 (-5 *2 (-583 *7)) (-5 *3 (-85)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-495)) + (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-890 *4 *5 *6 *7))))) (((*1 *2 *3) - (-12 (-4 *4 (-494)) (-4 *5 (-716)) (-4 *6 (-755)) (-4 *7 (-976 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-582 *7)) (|:| |badPols| (-582 *7)))) - (-5 *1 (-889 *4 *5 *6 *7)) (-5 *3 (-582 *7))))) + (-12 (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-583 *7)) (|:| |badPols| (-583 *7)))) + (-5 *1 (-890 *4 *5 *6 *7)) (-5 *3 (-583 *7))))) (((*1 *2 *3) - (-12 (-4 *4 (-494)) (-4 *5 (-716)) (-4 *6 (-755)) (-5 *2 (-85)) - (-5 *1 (-889 *4 *5 *6 *3)) (-4 *3 (-976 *4 *5 *6))))) + (-12 (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)) + (-5 *1 (-890 *4 *5 *6 *3)) (-4 *3 (-977 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-4 *4 (-494)) (-4 *5 (-716)) (-4 *6 (-755)) (-4 *7 (-976 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-582 *7)) (|:| |badPols| (-582 *7)))) - (-5 *1 (-889 *4 *5 *6 *7)) (-5 *3 (-582 *7))))) + (-12 (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-583 *7)) (|:| |badPols| (-583 *7)))) + (-5 *1 (-890 *4 *5 *6 *7)) (-5 *3 (-583 *7))))) (((*1 *2 *3) - (-12 (-4 *4 (-494)) (-4 *5 (-716)) (-4 *6 (-755)) (-5 *2 (-85)) - (-5 *1 (-889 *4 *5 *6 *3)) (-4 *3 (-976 *4 *5 *6))))) + (-12 (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)) + (-5 *1 (-890 *4 *5 *6 *3)) (-4 *3 (-977 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-4 *4 (-494)) (-4 *5 (-716)) (-4 *6 (-755)) (-4 *7 (-976 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-582 *7)) (|:| |badPols| (-582 *7)))) - (-5 *1 (-889 *4 *5 *6 *7)) (-5 *3 (-582 *7))))) + (-12 (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-583 *7)) (|:| |badPols| (-583 *7)))) + (-5 *1 (-890 *4 *5 *6 *7)) (-5 *3 (-583 *7))))) (((*1 *2 *3) - (-12 (-4 *4 (-494)) (-4 *5 (-716)) (-4 *6 (-755)) (-5 *2 (-85)) - (-5 *1 (-889 *4 *5 *6 *3)) (-4 *3 (-976 *4 *5 *6))))) + (-12 (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)) + (-5 *1 (-890 *4 *5 *6 *3)) (-4 *3 (-977 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-4 *4 (-494)) (-4 *5 (-716)) (-4 *6 (-755)) (-4 *7 (-976 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-582 *7)) (|:| |badPols| (-582 *7)))) - (-5 *1 (-889 *4 *5 *6 *7)) (-5 *3 (-582 *7))))) + (-12 (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-583 *7)) (|:| |badPols| (-583 *7)))) + (-5 *1 (-890 *4 *5 *6 *7)) (-5 *3 (-583 *7))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-582 (-1 (-85) *8))) (-4 *8 (-976 *5 *6 *7)) (-4 *5 (-494)) - (-4 *6 (-716)) (-4 *7 (-755)) - (-5 *2 (-2 (|:| |goodPols| (-582 *8)) (|:| |badPols| (-582 *8)))) - (-5 *1 (-889 *5 *6 *7 *8)) (-5 *4 (-582 *8))))) + (-12 (-5 *3 (-583 (-1 (-85) *8))) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-495)) + (-4 *6 (-717)) (-4 *7 (-756)) + (-5 *2 (-2 (|:| |goodPols| (-583 *8)) (|:| |badPols| (-583 *8)))) + (-5 *1 (-890 *5 *6 *7 *8)) (-5 *4 (-583 *8))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-582 (-1 (-85) *8))) (-4 *8 (-976 *5 *6 *7)) (-4 *5 (-494)) - (-4 *6 (-716)) (-4 *7 (-755)) - (-5 *2 (-2 (|:| |goodPols| (-582 *8)) (|:| |badPols| (-582 *8)))) - (-5 *1 (-889 *5 *6 *7 *8)) (-5 *4 (-582 *8))))) + (-12 (-5 *3 (-583 (-1 (-85) *8))) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-495)) + (-4 *6 (-717)) (-4 *7 (-756)) + (-5 *2 (-2 (|:| |goodPols| (-583 *8)) (|:| |badPols| (-583 *8)))) + (-5 *1 (-890 *5 *6 *7 *8)) (-5 *4 (-583 *8))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-85) *8)) (-4 *8 (-976 *5 *6 *7)) (-4 *5 (-494)) - (-4 *6 (-716)) (-4 *7 (-755)) - (-5 *2 (-2 (|:| |goodPols| (-582 *8)) (|:| |badPols| (-582 *8)))) - (-5 *1 (-889 *5 *6 *7 *8)) (-5 *4 (-582 *8))))) + (-12 (-5 *3 (-1 (-85) *8)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-495)) + (-4 *6 (-717)) (-4 *7 (-756)) + (-5 *2 (-2 (|:| |goodPols| (-583 *8)) (|:| |badPols| (-583 *8)))) + (-5 *1 (-890 *5 *6 *7 *8)) (-5 *4 (-583 *8))))) (((*1 *2 *3) - (-12 (-5 *3 (-582 *7)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-494)) (-4 *5 (-716)) - (-4 *6 (-755)) (-5 *2 (-85)) (-5 *1 (-889 *4 *5 *6 *7))))) + (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-495)) (-4 *5 (-717)) + (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-890 *4 *5 *6 *7))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-582 (-582 *8))) (-5 *3 (-582 *8)) (-4 *8 (-976 *5 *6 *7)) - (-4 *5 (-494)) (-4 *6 (-716)) (-4 *7 (-755)) (-5 *2 (-85)) - (-5 *1 (-889 *5 *6 *7 *8))))) + (-12 (-5 *4 (-583 (-583 *8))) (-5 *3 (-583 *8)) (-4 *8 (-977 *5 *6 *7)) + (-4 *5 (-495)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-85)) + (-5 *1 (-890 *5 *6 *7 *8))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-582 *7)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-494)) (-4 *5 (-716)) - (-4 *6 (-755)) (-5 *2 (-85)) (-5 *1 (-889 *4 *5 *6 *7))))) + (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-495)) (-4 *5 (-717)) + (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-890 *4 *5 *6 *7))))) (((*1 *2 *2) - (-12 (-5 *2 (-582 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-494)) (-4 *4 (-716)) - (-4 *5 (-755)) (-5 *1 (-889 *3 *4 *5 *6)))) + (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-4 *4 (-717)) + (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6)))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-494)) (-4 *5 (-716)) (-4 *6 (-755)) (-5 *2 (-582 *3)) - (-5 *1 (-889 *4 *5 *6 *3)) (-4 *3 (-976 *4 *5 *6)))) + (-12 (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-583 *3)) + (-5 *1 (-890 *4 *5 *6 *3)) (-4 *3 (-977 *4 *5 *6)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-582 *3)) (-4 *3 (-976 *4 *5 *6)) (-4 *4 (-494)) (-4 *5 (-716)) - (-4 *6 (-755)) (-5 *1 (-889 *4 *5 *6 *3)))) + (-12 (-5 *2 (-583 *3)) (-4 *3 (-977 *4 *5 *6)) (-4 *4 (-495)) (-4 *5 (-717)) + (-4 *6 (-756)) (-5 *1 (-890 *4 *5 *6 *3)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-582 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-494)) (-4 *4 (-716)) - (-4 *5 (-755)) (-5 *1 (-889 *3 *4 *5 *6)))) + (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-4 *4 (-717)) + (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6)))) ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 (-582 *7) (-582 *7))) (-5 *2 (-582 *7)) - (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-494)) (-4 *5 (-716)) (-4 *6 (-755)) - (-5 *1 (-889 *4 *5 *6 *7))))) + (-12 (-5 *3 (-1 (-583 *7) (-583 *7))) (-5 *2 (-583 *7)) + (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) + (-5 *1 (-890 *4 *5 *6 *7))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-494)) (-4 *5 (-716)) (-4 *6 (-755)) (-5 *2 (-582 *3)) - (-5 *1 (-889 *4 *5 *6 *3)) (-4 *3 (-976 *4 *5 *6))))) + (-12 (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-583 *3)) + (-5 *1 (-890 *4 *5 *6 *3)) (-4 *3 (-977 *4 *5 *6))))) (((*1 *2 *2) - (-12 (-5 *2 (-582 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-494)) (-4 *4 (-716)) - (-4 *5 (-755)) (-5 *1 (-889 *3 *4 *5 *6))))) + (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-4 *4 (-717)) + (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6))))) (((*1 *2 *1) - (-12 (-4 *1 (-888 *3 *4 *5 *6)) (-4 *3 (-960)) (-4 *4 (-716)) (-4 *5 (-755)) - (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-582 *5))))) + (-12 (-4 *1 (-889 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) + (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-583 *5))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-888 *4 *5 *3 *6)) (-4 *4 (-960)) (-4 *5 (-716)) (-4 *3 (-755)) - (-4 *6 (-976 *4 *5 *3)) (-5 *2 (-85))))) + (-12 (-4 *1 (-889 *4 *5 *3 *6)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *3 (-756)) + (-4 *6 (-977 *4 *5 *3)) (-5 *2 (-85))))) (((*1 *1 *1 *2) - (-12 (-4 *1 (-888 *3 *4 *2 *5)) (-4 *3 (-960)) (-4 *4 (-716)) (-4 *2 (-755)) - (-4 *5 (-976 *3 *4 *2))))) + (-12 (-4 *1 (-889 *3 *4 *2 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)) + (-4 *5 (-977 *3 *4 *2))))) (((*1 *1 *1 *2) - (-12 (-4 *1 (-888 *3 *4 *2 *5)) (-4 *3 (-960)) (-4 *4 (-716)) (-4 *2 (-755)) - (-4 *5 (-976 *3 *4 *2))))) + (-12 (-4 *1 (-889 *3 *4 *2 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)) + (-4 *5 (-977 *3 *4 *2))))) (((*1 *1 *1 *2) - (-12 (-4 *1 (-888 *3 *4 *2 *5)) (-4 *3 (-960)) (-4 *4 (-716)) (-4 *2 (-755)) - (-4 *5 (-976 *3 *4 *2))))) -(((*1 *1 *1) (-12 (-4 *1 (-322 *2)) (-4 *2 (-1127)) (-4 *2 (-755)))) + (-12 (-4 *1 (-889 *3 *4 *2 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)) + (-4 *5 (-977 *3 *4 *2))))) +(((*1 *1 *1) (-12 (-4 *1 (-323 *2)) (-4 *2 (-1128)) (-4 *2 (-756)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-85) *3 *3)) (-4 *1 (-322 *3)) (-4 *3 (-1127)))) - ((*1 *2 *2) (-12 (-5 *2 (-582 (-812 *3))) (-5 *1 (-812 *3)) (-4 *3 (-1012)))) + (-12 (-5 *2 (-1 (-85) *3 *3)) (-4 *1 (-323 *3)) (-4 *3 (-1128)))) + ((*1 *2 *2) (-12 (-5 *2 (-583 (-813 *3))) (-5 *1 (-813 *3)) (-4 *3 (-1013)))) ((*1 *2 *1 *3) - (-12 (-4 *4 (-960)) (-4 *5 (-716)) (-4 *3 (-755)) (-4 *6 (-976 *4 *5 *3)) - (-5 *2 (-2 (|:| |under| *1) (|:| -3129 *1) (|:| |upper| *1))) - (-4 *1 (-888 *4 *5 *3 *6))))) + (-12 (-4 *4 (-961)) (-4 *5 (-717)) (-4 *3 (-756)) (-4 *6 (-977 *4 *5 *3)) + (-5 *2 (-2 (|:| |under| *1) (|:| -3130 *1) (|:| |upper| *1))) + (-4 *1 (-889 *4 *5 *3 *6))))) (((*1 *2 *1) - (-12 (-4 *1 (-888 *3 *4 *5 *6)) (-4 *3 (-960)) (-4 *4 (-716)) (-4 *5 (-755)) - (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-85))))) + (-12 (-4 *1 (-889 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) + (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-888 *3 *4 *5 *6)) (-4 *3 (-960)) (-4 *4 (-716)) (-4 *5 (-755)) - (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-494)) (-5 *2 (-85))))) + (-12 (-4 *1 (-889 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) + (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-5 *2 (-85))))) (((*1 *2 *1 *1) - (-12 (-4 *1 (-888 *3 *4 *5 *6)) (-4 *3 (-960)) (-4 *4 (-716)) (-4 *5 (-755)) - (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-494)) (-5 *2 (-85))))) + (-12 (-4 *1 (-889 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) + (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-5 *2 (-85))))) (((*1 *2 *1 *1) - (-12 (-4 *1 (-888 *3 *4 *5 *6)) (-4 *3 (-960)) (-4 *4 (-716)) (-4 *5 (-755)) - (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-494)) (-5 *2 (-85))))) + (-12 (-4 *1 (-889 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) + (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-888 *3 *4 *5 *6)) (-4 *3 (-960)) (-4 *4 (-716)) (-4 *5 (-755)) - (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-494)) (-5 *2 (-85))))) + (-12 (-4 *1 (-889 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) + (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-5 *2 (-85))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-888 *4 *5 *6 *3)) (-4 *4 (-960)) (-4 *5 (-716)) (-4 *6 (-755)) - (-4 *3 (-976 *4 *5 *6)) (-4 *4 (-494)) + (-12 (-4 *1 (-889 *4 *5 *6 *3)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *6 (-756)) + (-4 *3 (-977 *4 *5 *6)) (-4 *4 (-495)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4)))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-888 *4 *5 *6 *3)) (-4 *4 (-960)) (-4 *5 (-716)) (-4 *6 (-755)) - (-4 *3 (-976 *4 *5 *6)) (-4 *4 (-494)) + (-12 (-4 *1 (-889 *4 *5 *6 *3)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *6 (-756)) + (-4 *3 (-977 *4 *5 *6)) (-4 *4 (-495)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4)))))) (((*1 *2 *2 *1) - (-12 (-5 *2 (-582 *6)) (-4 *1 (-888 *3 *4 *5 *6)) (-4 *3 (-960)) - (-4 *4 (-716)) (-4 *5 (-755)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-494))))) + (-12 (-5 *2 (-583 *6)) (-4 *1 (-889 *3 *4 *5 *6)) (-4 *3 (-961)) + (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495))))) (((*1 *2 *2 *1) - (-12 (-5 *2 (-582 *6)) (-4 *1 (-888 *3 *4 *5 *6)) (-4 *3 (-960)) - (-4 *4 (-716)) (-4 *5 (-755)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-494))))) -(((*1 *2 *1) - (-12 (-4 *1 (-888 *3 *4 *5 *6)) (-4 *3 (-960)) (-4 *4 (-716)) (-4 *5 (-755)) - (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-494)) (-5 *2 (-85))))) -(((*1 *2 *1) (-12 (-4 *1 (-865)) (-5 *2 (-582 (-582 (-853 (-179))))))) - ((*1 *2 *1) (-12 (-4 *1 (-886)) (-5 *2 (-582 (-582 (-853 (-179)))))))) -(((*1 *2 *1) (-12 (-4 *1 (-865)) (-5 *2 (-1000 (-179))))) - ((*1 *2 *1) (-12 (-4 *1 (-886)) (-5 *2 (-1000 (-179)))))) -(((*1 *2 *1) (-12 (-4 *1 (-865)) (-5 *2 (-1000 (-179))))) - ((*1 *2 *1) (-12 (-4 *1 (-886)) (-5 *2 (-1000 (-179)))))) -(((*1 *2 *1) (-12 (-4 *1 (-886)) (-5 *2 (-1000 (-179)))))) -(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-960)) (-4 *3 (-715)))) - ((*1 *2 *1) (-12 (-4 *1 (-333 *3 *2)) (-4 *3 (-960)) (-4 *2 (-1012)))) - ((*1 *2 *1) - (-12 (-14 *3 (-582 (-1088))) (-4 *4 (-146)) (-4 *6 (-196 (-3955 *3) (-693))) + (-12 (-5 *2 (-583 *6)) (-4 *1 (-889 *3 *4 *5 *6)) (-4 *3 (-961)) + (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495))))) +(((*1 *2 *1) + (-12 (-4 *1 (-889 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) + (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-5 *2 (-85))))) +(((*1 *2 *1) (-12 (-4 *1 (-866)) (-5 *2 (-583 (-583 (-854 (-179))))))) + ((*1 *2 *1) (-12 (-4 *1 (-887)) (-5 *2 (-583 (-583 (-854 (-179)))))))) +(((*1 *2 *1) (-12 (-4 *1 (-866)) (-5 *2 (-1001 (-179))))) + ((*1 *2 *1) (-12 (-4 *1 (-887)) (-5 *2 (-1001 (-179)))))) +(((*1 *2 *1) (-12 (-4 *1 (-866)) (-5 *2 (-1001 (-179))))) + ((*1 *2 *1) (-12 (-4 *1 (-887)) (-5 *2 (-1001 (-179)))))) +(((*1 *2 *1) (-12 (-4 *1 (-887)) (-5 *2 (-1001 (-179)))))) +(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-961)) (-4 *3 (-716)))) + ((*1 *2 *1) (-12 (-4 *1 (-334 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1013)))) + ((*1 *2 *1) + (-12 (-14 *3 (-583 (-1089))) (-4 *4 (-146)) (-4 *6 (-196 (-3956 *3) (-694))) (-14 *7 - (-1 (-85) (-2 (|:| -2399 *5) (|:| -2400 *6)) - (-2 (|:| -2399 *5) (|:| -2400 *6)))) - (-5 *2 (-649 *5 *6 *7)) (-5 *1 (-399 *3 *4 *5 *6 *7 *8)) (-4 *5 (-755)) - (-4 *8 (-860 *4 *6 (-772 *3))))) + (-1 (-85) (-2 (|:| -2400 *5) (|:| -2401 *6)) + (-2 (|:| -2400 *5) (|:| -2401 *6)))) + (-5 *2 (-650 *5 *6 *7)) (-5 *1 (-400 *3 *4 *5 *6 *7 *8)) (-4 *5 (-756)) + (-4 *8 (-861 *4 *6 (-773 *3))))) ((*1 *2 *1) - (-12 (-4 *2 (-662)) (-4 *2 (-755)) (-5 *1 (-673 *3 *2)) (-4 *3 (-960)))) + (-12 (-4 *2 (-663)) (-4 *2 (-756)) (-5 *1 (-674 *3 *2)) (-4 *3 (-961)))) ((*1 *1 *1) - (-12 (-4 *1 (-885 *2 *3 *4)) (-4 *2 (-960)) (-4 *3 (-715)) (-4 *4 (-755))))) -(((*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-960)) (-4 *3 (-715)))) + (-12 (-4 *1 (-886 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-716)) (-4 *4 (-756))))) +(((*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-961)) (-4 *3 (-716)))) ((*1 *1 *2 *3) - (-12 (-5 *3 (-582 (-829))) (-5 *1 (-125 *4 *2 *5)) (-14 *4 (-829)) - (-4 *2 (-312)) (-14 *5 (-905 *4 *2)))) + (-12 (-5 *3 (-583 (-830))) (-5 *1 (-125 *4 *2 *5)) (-14 *4 (-830)) + (-4 *2 (-312)) (-14 *5 (-906 *4 *2)))) ((*1 *1 *2 *3) - (-12 (-5 *3 (-649 *5 *6 *7)) (-4 *5 (-755)) (-4 *6 (-196 (-3955 *4) (-693))) + (-12 (-5 *3 (-650 *5 *6 *7)) (-4 *5 (-756)) (-4 *6 (-196 (-3956 *4) (-694))) (-14 *7 - (-1 (-85) (-2 (|:| -2399 *5) (|:| -2400 *6)) - (-2 (|:| -2399 *5) (|:| -2400 *6)))) - (-14 *4 (-582 (-1088))) (-4 *2 (-146)) (-5 *1 (-399 *4 *2 *5 *6 *7 *8)) - (-4 *8 (-860 *2 *6 (-772 *4))))) - ((*1 *1 *2 *3) (-12 (-4 *1 (-448 *2 *3)) (-4 *2 (-72)) (-4 *3 (-758)))) + (-1 (-85) (-2 (|:| -2400 *5) (|:| -2401 *6)) + (-2 (|:| -2400 *5) (|:| -2401 *6)))) + (-14 *4 (-583 (-1089))) (-4 *2 (-146)) (-5 *1 (-400 *4 *2 *5 *6 *7 *8)) + (-4 *8 (-861 *2 *6 (-773 *4))))) + ((*1 *1 *2 *3) (-12 (-4 *1 (-449 *2 *3)) (-4 *2 (-72)) (-4 *3 (-759)))) ((*1 *1 *2 *3) - (-12 (-5 *3 (-483)) (-4 *2 (-494)) (-5 *1 (-561 *2 *4)) (-4 *4 (-1153 *2)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-693)) (-4 *1 (-644 *2)) (-4 *2 (-960)))) - ((*1 *1 *2 *3) (-12 (-5 *1 (-673 *2 *3)) (-4 *2 (-960)) (-4 *3 (-662)))) + (-12 (-5 *3 (-484)) (-4 *2 (-495)) (-5 *1 (-562 *2 *4)) (-4 *4 (-1154 *2)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-694)) (-4 *1 (-645 *2)) (-4 *2 (-961)))) + ((*1 *1 *2 *3) (-12 (-5 *1 (-674 *2 *3)) (-4 *2 (-961)) (-4 *3 (-663)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-582 *5)) (-5 *3 (-582 (-693))) (-4 *1 (-678 *4 *5)) - (-4 *4 (-960)) (-4 *5 (-755)))) + (-12 (-5 *2 (-583 *5)) (-5 *3 (-583 (-694))) (-4 *1 (-679 *4 *5)) + (-4 *4 (-961)) (-4 *5 (-756)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-693)) (-4 *1 (-678 *4 *2)) (-4 *4 (-960)) (-4 *2 (-755)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-693)) (-4 *1 (-760 *2)) (-4 *2 (-960)))) + (-12 (-5 *3 (-694)) (-4 *1 (-679 *4 *2)) (-4 *4 (-961)) (-4 *2 (-756)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-694)) (-4 *1 (-761 *2)) (-4 *2 (-961)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-582 *6)) (-5 *3 (-582 (-693))) (-4 *1 (-860 *4 *5 *6)) - (-4 *4 (-960)) (-4 *5 (-716)) (-4 *6 (-755)))) + (-12 (-5 *2 (-583 *6)) (-5 *3 (-583 (-694))) (-4 *1 (-861 *4 *5 *6)) + (-4 *4 (-961)) (-4 *5 (-717)) (-4 *6 (-756)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-693)) (-4 *1 (-860 *4 *5 *2)) (-4 *4 (-960)) (-4 *5 (-716)) - (-4 *2 (-755)))) + (-12 (-5 *3 (-694)) (-4 *1 (-861 *4 *5 *2)) (-4 *4 (-961)) (-4 *5 (-717)) + (-4 *2 (-756)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-582 *6)) (-5 *3 (-582 *5)) (-4 *1 (-885 *4 *5 *6)) - (-4 *4 (-960)) (-4 *5 (-715)) (-4 *6 (-755)))) + (-12 (-5 *2 (-583 *6)) (-5 *3 (-583 *5)) (-4 *1 (-886 *4 *5 *6)) + (-4 *4 (-961)) (-4 *5 (-716)) (-4 *6 (-756)))) ((*1 *1 *1 *2 *3) - (-12 (-4 *1 (-885 *4 *3 *2)) (-4 *4 (-960)) (-4 *3 (-715)) (-4 *2 (-755))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-530 *3)) (-4 *3 (-960)))) + (-12 (-4 *1 (-886 *4 *3 *2)) (-4 *4 (-961)) (-4 *3 (-716)) (-4 *2 (-756))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-531 *3)) (-4 *3 (-961)))) ((*1 *2 *1) - (-12 (-4 *1 (-885 *3 *4 *5)) (-4 *3 (-960)) (-4 *4 (-715)) (-4 *5 (-755)) + (-12 (-4 *1 (-886 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-716)) (-4 *5 (-756)) (-5 *2 (-85))))) (((*1 *1 *1) (-12 (-5 *1 (-148 *2)) (-4 *2 (-258)))) - ((*1 *2 *3) (-12 (-5 *3 (-829)) (-5 *2 (-1090 (-348 (-483)))) (-5 *1 (-164)))) - ((*1 *1 *1) (-12 (-4 *1 (-615 *2)) (-4 *2 (-1127)))) - ((*1 *1 *1) (-4 *1 (-778 *2))) + ((*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1091 (-349 (-484)))) (-5 *1 (-164)))) + ((*1 *1 *1) (-12 (-4 *1 (-616 *2)) (-4 *2 (-1128)))) + ((*1 *1 *1) (-4 *1 (-779 *2))) ((*1 *1 *1) - (-12 (-4 *1 (-885 *2 *3 *4)) (-4 *2 (-960)) (-4 *3 (-715)) (-4 *4 (-755))))) -(((*1 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-482)))) - ((*1 *1 *2) (-12 (-5 *2 (-582 (-829))) (-5 *1 (-883))))) -(((*1 *2 *1) - (-12 (|has| *1 (-6 -3993)) (-4 *1 (-427 *3)) (-4 *3 (-1127)) - (-5 *2 (-582 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-582 (-829))) (-5 *1 (-883))))) -(((*1 *2 *3) (-12 (-5 *3 (-693)) (-5 *2 (-1067 (-883))) (-5 *1 (-883))))) -(((*1 *2 *1) (-12 (-5 *2 (-582 (-781 (-829) (-829)))) (-5 *1 (-883))))) -(((*1 *2 *1) (-12 (-5 *2 (-829)) (-5 *1 (-883))))) + (-12 (-4 *1 (-886 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-716)) (-4 *4 (-756))))) +(((*1 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-483)))) + ((*1 *1 *2) (-12 (-5 *2 (-583 (-830))) (-5 *1 (-884))))) +(((*1 *2 *1) + (-12 (|has| *1 (-6 -3994)) (-4 *1 (-428 *3)) (-4 *3 (-1128)) + (-5 *2 (-583 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-583 (-830))) (-5 *1 (-884))))) +(((*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1068 (-884))) (-5 *1 (-884))))) +(((*1 *2 *1) (-12 (-5 *2 (-583 (-782 (-830) (-830)))) (-5 *1 (-884))))) +(((*1 *2 *1) (-12 (-5 *2 (-830)) (-5 *1 (-884))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-494)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3754 *4))) - (-5 *1 (-881 *4 *3)) (-4 *3 (-1153 *4))))) + (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3755 *4))) + (-5 *1 (-882 *4 *3)) (-4 *3 (-1154 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-494)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3754 *4))) - (-5 *1 (-881 *4 *3)) (-4 *3 (-1153 *4))))) -(((*1 *2 *3 *3) (-12 (-4 *2 (-494)) (-5 *1 (-881 *2 *3)) (-4 *3 (-1153 *2))))) + (-12 (-4 *4 (-495)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3755 *4))) + (-5 *1 (-882 *4 *3)) (-4 *3 (-1154 *4))))) +(((*1 *2 *3 *3) (-12 (-4 *2 (-495)) (-5 *1 (-882 *2 *3)) (-4 *3 (-1154 *2))))) (((*1 *2 *2 *2 *2 *3) - (-12 (-4 *3 (-494)) (-5 *1 (-881 *3 *2)) (-4 *2 (-1153 *3))))) + (-12 (-4 *3 (-495)) (-5 *1 (-882 *3 *2)) (-4 *2 (-1154 *3))))) (((*1 *2 *2 *3 *3 *4) - (-12 (-5 *4 (-693)) (-4 *3 (-494)) (-5 *1 (-881 *3 *2)) (-4 *2 (-1153 *3))))) + (-12 (-5 *4 (-694)) (-4 *3 (-495)) (-5 *1 (-882 *3 *2)) (-4 *2 (-1154 *3))))) (((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-693)) (-4 *2 (-494)) (-5 *1 (-881 *2 *4)) (-4 *4 (-1153 *2))))) + (-12 (-5 *3 (-694)) (-4 *2 (-495)) (-5 *1 (-882 *2 *4)) (-4 *4 (-1154 *2))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -1971 *1) (|:| -2901 *1))) (-4 *1 (-258)))) + (-12 (-5 *2 (-2 (|:| -1972 *1) (|:| -2902 *1))) (-4 *1 (-258)))) ((*1 *2 *1 *1) - (|partial| -12 (-4 *3 (-1012)) (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) - (-4 *1 (-334 *3)))) + (|partial| -12 (-4 *3 (-1013)) (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) + (-4 *1 (-335 *3)))) ((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -1971 (-693)) (|:| -2901 (-693)))) (-5 *1 (-693)))) + (-12 (-5 *2 (-2 (|:| -1972 (-694)) (|:| -2902 (-694)))) (-5 *1 (-694)))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-494)) (-5 *2 (-2 (|:| -1971 *3) (|:| -2901 *3))) - (-5 *1 (-881 *4 *3)) (-4 *3 (-1153 *4))))) + (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| -1972 *3) (|:| -2902 *3))) + (-5 *1 (-882 *4 *3)) (-4 *3 (-1154 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-390)) (-4 *4 (-494)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| -2875 *4))) (-5 *1 (-881 *4 *3)) - (-4 *3 (-1153 *4))))) + (-12 (-4 *4 (-391)) (-4 *4 (-495)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| -2876 *4))) (-5 *1 (-882 *4 *3)) + (-4 *3 (-1154 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-390)) (-4 *4 (-494)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2875 *4))) - (-5 *1 (-881 *4 *3)) (-4 *3 (-1153 *4))))) + (-12 (-4 *4 (-391)) (-4 *4 (-495)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2876 *4))) + (-5 *1 (-882 *4 *3)) (-4 *3 (-1154 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *2 (-494)) (-4 *2 (-390)) (-5 *1 (-881 *2 *3)) (-4 *3 (-1153 *2))))) + (-12 (-4 *2 (-495)) (-4 *2 (-391)) (-5 *1 (-882 *2 *3)) (-4 *3 (-1154 *2))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-494)) (-5 *2 (-582 (-693))) (-5 *1 (-881 *4 *3)) - (-4 *3 (-1153 *4))))) + (-12 (-4 *4 (-495)) (-5 *2 (-583 (-694))) (-5 *1 (-882 *4 *3)) + (-4 *3 (-1154 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-494)) (-5 *2 (-582 *3)) (-5 *1 (-881 *4 *3)) - (-4 *3 (-1153 *4))))) + (-12 (-4 *4 (-495)) (-5 *2 (-583 *3)) (-5 *1 (-882 *4 *3)) + (-4 *3 (-1154 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-494)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3755 *4))) - (-5 *1 (-881 *4 *3)) (-4 *3 (-1153 *4))))) + (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3756 *4))) + (-5 *1 (-882 *4 *3)) (-4 *3 (-1154 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-494)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3755 *4))) - (-5 *1 (-881 *4 *3)) (-4 *3 (-1153 *4))))) + (-12 (-4 *4 (-495)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3756 *4))) + (-5 *1 (-882 *4 *3)) (-4 *3 (-1154 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-494)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3143 *3))) - (-5 *1 (-881 *4 *3)) (-4 *3 (-1153 *4))))) + (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3144 *3))) + (-5 *1 (-882 *4 *3)) (-4 *3 (-1154 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-494)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3143 *3))) - (-5 *1 (-881 *4 *3)) (-4 *3 (-1153 *4))))) + (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3144 *3))) + (-5 *1 (-882 *4 *3)) (-4 *3 (-1154 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-494)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3143 *3))) - (-5 *1 (-881 *4 *3)) (-4 *3 (-1153 *4))))) + (-12 (-4 *4 (-495)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3144 *3))) + (-5 *1 (-882 *4 *3)) (-4 *3 (-1154 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-494)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-881 *4 *3)) (-4 *3 (-1153 *4))))) + (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-882 *4 *3)) (-4 *3 (-1154 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-494)) + (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-881 *4 *3)) (-4 *3 (-1153 *4))))) + (-5 *1 (-882 *4 *3)) (-4 *3 (-1154 *4))))) (((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-693)) (-4 *5 (-494)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-881 *5 *3)) - (-4 *3 (-1153 *5))))) + (-12 (-5 *4 (-694)) (-4 *5 (-495)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-882 *5 *3)) + (-4 *3 (-1154 *5))))) (((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-693)) (-4 *5 (-494)) + (-12 (-5 *4 (-694)) (-4 *5 (-495)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-881 *5 *3)) (-4 *3 (-1153 *5))))) + (-5 *1 (-882 *5 *3)) (-4 *3 (-1154 *5))))) (((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-693)) (-4 *4 (-494)) (-5 *1 (-881 *4 *2)) (-4 *2 (-1153 *4))))) + (-12 (-5 *3 (-694)) (-4 *4 (-495)) (-5 *1 (-882 *4 *2)) (-4 *2 (-1154 *4))))) (((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-693)) (-4 *5 (-494)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-881 *5 *3)) - (-4 *3 (-1153 *5))))) + (-12 (-5 *4 (-694)) (-4 *5 (-495)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-882 *5 *3)) + (-4 *3 (-1154 *5))))) (((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-693)) (-4 *5 (-494)) + (-12 (-5 *4 (-694)) (-4 *5 (-495)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-881 *5 *3)) (-4 *3 (-1153 *5))))) + (-5 *1 (-882 *5 *3)) (-4 *3 (-1154 *5))))) (((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-693)) (-4 *4 (-494)) (-5 *1 (-881 *4 *2)) (-4 *2 (-1153 *4))))) + (-12 (-5 *3 (-694)) (-4 *4 (-495)) (-5 *1 (-882 *4 *2)) (-4 *2 (-1154 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-494)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3754 *4))) - (-5 *1 (-881 *4 *3)) (-4 *3 (-1153 *4))))) + (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3755 *4))) + (-5 *1 (-882 *4 *3)) (-4 *3 (-1154 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-494)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3754 *4))) - (-5 *1 (-881 *4 *3)) (-4 *3 (-1153 *4))))) + (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3755 *4))) + (-5 *1 (-882 *4 *3)) (-4 *3 (-1154 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-494)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3754 *4))) - (-5 *1 (-881 *4 *3)) (-4 *3 (-1153 *4))))) + (-12 (-4 *4 (-495)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3755 *4))) + (-5 *1 (-882 *4 *3)) (-4 *3 (-1154 *4))))) (((*1 *1) - (-12 (-4 *1 (-345)) (-2559 (|has| *1 (-6 -3984))) - (-2559 (|has| *1 (-6 -3976))))) - ((*1 *2 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-1012)) (-4 *2 (-755)))) - ((*1 *1) (-4 *1 (-751))) ((*1 *1 *1 *1) (-4 *1 (-758))) - ((*1 *2 *1) (-12 (-4 *1 (-880 *2)) (-4 *2 (-755))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1127)) (-4 *2 (-755)))) + (-12 (-4 *1 (-346)) (-2560 (|has| *1 (-6 -3985))) + (-2560 (|has| *1 (-6 -3977))))) + ((*1 *2 *1) (-12 (-4 *1 (-368 *2)) (-4 *2 (-1013)) (-4 *2 (-756)))) + ((*1 *1) (-4 *1 (-752))) ((*1 *1 *1 *1) (-4 *1 (-759))) + ((*1 *2 *1) (-12 (-4 *1 (-881 *2)) (-4 *2 (-756))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1128)) (-4 *2 (-756)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 (-85) *3 *3)) (-4 *1 (-237 *3)) (-4 *3 (-1127)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-880 *2)) (-4 *2 (-755))))) -(((*1 *1) (-4 *1 (-879)))) -(((*1 *1) (-4 *1 (-879)))) -(((*1 *1 *1 *1) (-4 *1 (-879)))) -(((*1 *1 *1 *1) (-4 *1 (-879)))) -(((*1 *1 *2) (-12 (-5 *2 (-576 *3)) (-14 *3 (-582 (-1088))) (-5 *1 (-168 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-168 *3)) (-14 *3 (-582 (-1088))) (-5 *1 (-576 *3)))) - ((*1 *2 *2) (-12 (-5 *2 (-876 *3)) (-4 *3 (-1012)) (-5 *1 (-877 *3))))) -(((*1 *2 *1) - (-12 (-4 *4 (-1012)) (-5 *2 (-797 *3 *4)) (-5 *1 (-794 *3 *4 *5)) - (-4 *3 (-1012)) (-4 *5 (-607 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-876 *4)) (-4 *4 (-1012)) (-5 *2 (-1008 *4)) (-5 *1 (-877 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-631 *3)) (-5 *1 (-876 *3)) (-4 *3 (-1012))))) -(((*1 *2 *1) (-12 (-5 *2 (-631 (-876 *3))) (-5 *1 (-876 *3)) (-4 *3 (-1012))))) -(((*1 *2 *1) - (-12 (-5 *2 (-631 (-781 (-876 *3) (-876 *3)))) (-5 *1 (-876 *3)) - (-4 *3 (-1012))))) -(((*1 *2 *1) - (-12 (-5 *2 (-631 (-781 (-876 *3) (-876 *3)))) (-5 *1 (-876 *3)) - (-4 *3 (-1012))))) -(((*1 *2 *1) - (-12 (-5 *2 (-631 (-781 (-876 *3) (-876 *3)))) (-5 *1 (-876 *3)) - (-4 *3 (-1012))))) -(((*1 *2 *1) - (-12 (-5 *2 (-631 (-781 (-876 *3) (-876 *3)))) (-5 *1 (-876 *3)) - (-4 *3 (-1012))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-876 *2)) (-4 *2 (-1012))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-876 *2)) (-4 *2 (-1012))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-445)) (-5 *2 (-631 (-695))) (-5 *1 (-86)))) - ((*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1071)) (-5 *2 (-695)) (-5 *1 (-86)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-445)) (-5 *3 (-1014)) (-5 *1 (-875))))) -(((*1 *1 *2 *3) (-12 (-5 *1 (-874 *2 *3)) (-4 *2 (-1012)) (-4 *3 (-1012))))) -(((*1 *2 *1) (-12 (-4 *2 (-1012)) (-5 *1 (-874 *2 *3)) (-4 *3 (-1012))))) -(((*1 *2 *1) (-12 (-4 *2 (-1012)) (-5 *1 (-874 *3 *2)) (-4 *3 (-1012))))) -(((*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-771)))) - ((*1 *2 *3) (-12 (-5 *3 (-771)) (-5 *2 (-1183)) (-5 *1 (-873))))) -(((*1 *2 *3 *3) (-12 (-5 *2 (-582 *3)) (-5 *1 (-872 *3)) (-4 *3 (-482))))) -(((*1 *2 *2) (-12 (-5 *1 (-872 *2)) (-4 *2 (-482))))) -(((*1 *2 *2) (-12 (-5 *1 (-872 *2)) (-4 *2 (-482))))) + (-12 (-5 *2 (-1 (-85) *3 *3)) (-4 *1 (-237 *3)) (-4 *3 (-1128)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-881 *2)) (-4 *2 (-756))))) +(((*1 *1) (-4 *1 (-880)))) +(((*1 *1) (-4 *1 (-880)))) +(((*1 *1 *1 *1) (-4 *1 (-880)))) +(((*1 *1 *1 *1) (-4 *1 (-880)))) +(((*1 *1 *2) (-12 (-5 *2 (-577 *3)) (-14 *3 (-583 (-1089))) (-5 *1 (-168 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-168 *3)) (-14 *3 (-583 (-1089))) (-5 *1 (-577 *3)))) + ((*1 *2 *2) (-12 (-5 *2 (-877 *3)) (-4 *3 (-1013)) (-5 *1 (-878 *3))))) +(((*1 *2 *1) + (-12 (-4 *4 (-1013)) (-5 *2 (-798 *3 *4)) (-5 *1 (-795 *3 *4 *5)) + (-4 *3 (-1013)) (-4 *5 (-608 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-877 *4)) (-4 *4 (-1013)) (-5 *2 (-1009 *4)) (-5 *1 (-878 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-632 *3)) (-5 *1 (-877 *3)) (-4 *3 (-1013))))) +(((*1 *2 *1) (-12 (-5 *2 (-632 (-877 *3))) (-5 *1 (-877 *3)) (-4 *3 (-1013))))) +(((*1 *2 *1) + (-12 (-5 *2 (-632 (-782 (-877 *3) (-877 *3)))) (-5 *1 (-877 *3)) + (-4 *3 (-1013))))) +(((*1 *2 *1) + (-12 (-5 *2 (-632 (-782 (-877 *3) (-877 *3)))) (-5 *1 (-877 *3)) + (-4 *3 (-1013))))) +(((*1 *2 *1) + (-12 (-5 *2 (-632 (-782 (-877 *3) (-877 *3)))) (-5 *1 (-877 *3)) + (-4 *3 (-1013))))) +(((*1 *2 *1) + (-12 (-5 *2 (-632 (-782 (-877 *3) (-877 *3)))) (-5 *1 (-877 *3)) + (-4 *3 (-1013))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-877 *2)) (-4 *2 (-1013))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-877 *2)) (-4 *2 (-1013))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-446)) (-5 *2 (-632 (-696))) (-5 *1 (-86)))) + ((*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1072)) (-5 *2 (-696)) (-5 *1 (-86)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-446)) (-5 *3 (-1015)) (-5 *1 (-876))))) +(((*1 *1 *2 *3) (-12 (-5 *1 (-875 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013))))) +(((*1 *2 *1) (-12 (-4 *2 (-1013)) (-5 *1 (-875 *2 *3)) (-4 *3 (-1013))))) +(((*1 *2 *1) (-12 (-4 *2 (-1013)) (-5 *1 (-875 *3 *2)) (-4 *3 (-1013))))) +(((*1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-772)))) + ((*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1184)) (-5 *1 (-874))))) +(((*1 *2 *3 *3) (-12 (-5 *2 (-583 *3)) (-5 *1 (-873 *3)) (-4 *3 (-483))))) +(((*1 *2 *2) (-12 (-5 *1 (-873 *2)) (-4 *2 (-483))))) +(((*1 *2 *2) (-12 (-5 *1 (-873 *2)) (-4 *2 (-483))))) (((*1 *1) (-4 *1 (-299))) ((*1 *2 *3) - (-12 (-5 *3 (-582 *5)) (-4 *5 (-362 *4)) (-4 *4 (-13 (-494) (-120))) + (-12 (-5 *3 (-583 *5)) (-4 *5 (-363 *4)) (-4 *4 (-13 (-495) (-120))) (-5 *2 - (-2 (|:| |primelt| *5) (|:| |poly| (-582 (-1083 *5))) - (|:| |prim| (-1083 *5)))) - (-5 *1 (-373 *4 *5)))) + (-2 (|:| |primelt| *5) (|:| |poly| (-583 (-1084 *5))) + (|:| |prim| (-1084 *5)))) + (-5 *1 (-374 *4 *5)))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-494) (-120))) + (-12 (-4 *4 (-13 (-495) (-120))) (-5 *2 - (-2 (|:| |primelt| *3) (|:| |pol1| (-1083 *3)) (|:| |pol2| (-1083 *3)) - (|:| |prim| (-1083 *3)))) - (-5 *1 (-373 *4 *3)) (-4 *3 (-27)) (-4 *3 (-362 *4)))) + (-2 (|:| |primelt| *3) (|:| |pol1| (-1084 *3)) (|:| |pol2| (-1084 *3)) + (|:| |prim| (-1084 *3)))) + (-5 *1 (-374 *4 *3)) (-4 *3 (-27)) (-4 *3 (-363 *4)))) ((*1 *2 *3 *4 *3 *4) - (-12 (-5 *3 (-856 *5)) (-5 *4 (-1088)) (-4 *5 (-13 (-312) (-120))) + (-12 (-5 *3 (-857 *5)) (-5 *4 (-1089)) (-4 *5 (-13 (-312) (-120))) (-5 *2 - (-2 (|:| |coef1| (-483)) (|:| |coef2| (-483)) (|:| |prim| (-1083 *5)))) - (-5 *1 (-871 *5)))) + (-2 (|:| |coef1| (-484)) (|:| |coef2| (-484)) (|:| |prim| (-1084 *5)))) + (-5 *1 (-872 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-582 (-856 *5))) (-5 *4 (-582 (-1088))) + (-12 (-5 *3 (-583 (-857 *5))) (-5 *4 (-583 (-1089))) (-4 *5 (-13 (-312) (-120))) (-5 *2 - (-2 (|:| -3952 (-582 (-483))) (|:| |poly| (-582 (-1083 *5))) - (|:| |prim| (-1083 *5)))) - (-5 *1 (-871 *5)))) + (-2 (|:| -3953 (-583 (-484))) (|:| |poly| (-583 (-1084 *5))) + (|:| |prim| (-1084 *5)))) + (-5 *1 (-872 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-582 (-856 *6))) (-5 *4 (-582 (-1088))) (-5 *5 (-1088)) + (-12 (-5 *3 (-583 (-857 *6))) (-5 *4 (-583 (-1089))) (-5 *5 (-1089)) (-4 *6 (-13 (-312) (-120))) (-5 *2 - (-2 (|:| -3952 (-582 (-483))) (|:| |poly| (-582 (-1083 *6))) - (|:| |prim| (-1083 *6)))) - (-5 *1 (-871 *6))))) + (-2 (|:| -3953 (-583 (-484))) (|:| |poly| (-583 (-1084 *6))) + (|:| |prim| (-1084 *6)))) + (-5 *1 (-872 *6))))) (((*1 *1 *2 *3) - (-12 (-5 *3 (-1088)) (-5 *1 (-518 *2)) (-4 *2 (-949 *3)) (-4 *2 (-312)))) - ((*1 *1 *2 *2) (-12 (-5 *1 (-518 *2)) (-4 *2 (-312)))) + (-12 (-5 *3 (-1089)) (-5 *1 (-519 *2)) (-4 *2 (-950 *3)) (-4 *2 (-312)))) + ((*1 *1 *2 *2) (-12 (-5 *1 (-519 *2)) (-4 *2 (-312)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1088)) (-4 *4 (-494)) (-5 *1 (-567 *4 *2)) - (-4 *2 (-13 (-362 *4) (-914) (-1113))))) + (-12 (-5 *3 (-1089)) (-4 *4 (-495)) (-5 *1 (-568 *4 *2)) + (-4 *2 (-13 (-363 *4) (-915) (-1114))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1003 *2)) (-4 *2 (-13 (-362 *4) (-914) (-1113))) (-4 *4 (-494)) - (-5 *1 (-567 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-870)) (-5 *2 (-1088)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1003 *1)) (-4 *1 (-870))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-829)) (-4 *5 (-494)) (-5 *2 (-629 *5)) - (-5 *1 (-867 *5 *3)) (-4 *3 (-599 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-1032)) (-5 *1 (-864))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-716)) (-4 *6 (-755)) (-4 *7 (-494)) (-4 *3 (-860 *7 *5 *6)) - (-5 *2 (-2 (|:| -2400 (-693)) (|:| -3952 *3) (|:| |radicand| (-582 *3)))) - (-5 *1 (-863 *5 *6 *7 *3 *8)) (-5 *4 (-693)) + (-12 (-5 *3 (-1004 *2)) (-4 *2 (-13 (-363 *4) (-915) (-1114))) (-4 *4 (-495)) + (-5 *1 (-568 *4 *2)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-871)) (-5 *2 (-1089)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1004 *1)) (-4 *1 (-871))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-830)) (-4 *5 (-495)) (-5 *2 (-630 *5)) + (-5 *1 (-868 *5 *3)) (-4 *3 (-600 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-1033)) (-5 *1 (-865))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-495)) (-4 *3 (-861 *7 *5 *6)) + (-5 *2 (-2 (|:| -2401 (-694)) (|:| -3953 *3) (|:| |radicand| (-583 *3)))) + (-5 *1 (-864 *5 *6 *7 *3 *8)) (-5 *4 (-694)) (-4 *8 (-13 (-312) - (-10 -8 (-15 -3944 ($ *3)) (-15 -2997 (*3 $)) (-15 -2996 (*3 $)))))))) + (-10 -8 (-15 -3945 ($ *3)) (-15 -2998 (*3 $)) (-15 -2997 (*3 $)))))))) (((*1 *2 *3 *4) - (-12 (-4 *7 (-390)) (-4 *5 (-716)) (-4 *6 (-755)) (-4 *7 (-494)) - (-4 *8 (-860 *7 *5 *6)) - (-5 *2 (-2 (|:| -2400 (-693)) (|:| -3952 *3) (|:| |radicand| *3))) - (-5 *1 (-863 *5 *6 *7 *8 *3)) (-5 *4 (-693)) + (-12 (-4 *7 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-495)) + (-4 *8 (-861 *7 *5 *6)) + (-5 *2 (-2 (|:| -2401 (-694)) (|:| -3953 *3) (|:| |radicand| *3))) + (-5 *1 (-864 *5 *6 *7 *8 *3)) (-5 *4 (-694)) (-4 *3 (-13 (-312) - (-10 -8 (-15 -3944 ($ *8)) (-15 -2997 (*8 $)) (-15 -2996 (*8 $)))))))) + (-10 -8 (-15 -3945 ($ *8)) (-15 -2998 (*8 $)) (-15 -2997 (*8 $)))))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-348 (-483))) (-4 *5 (-716)) (-4 *6 (-755)) (-4 *7 (-494)) - (-4 *8 (-860 *7 *5 *6)) - (-5 *2 (-2 (|:| -2400 (-693)) (|:| -3952 *9) (|:| |radicand| *9))) - (-5 *1 (-863 *5 *6 *7 *8 *9)) (-5 *4 (-693)) + (-12 (-5 *3 (-349 (-484))) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-495)) + (-4 *8 (-861 *7 *5 *6)) + (-5 *2 (-2 (|:| -2401 (-694)) (|:| -3953 *9) (|:| |radicand| *9))) + (-5 *1 (-864 *5 *6 *7 *8 *9)) (-5 *4 (-694)) (-4 *9 (-13 (-312) - (-10 -8 (-15 -3944 ($ *8)) (-15 -2997 (*8 $)) (-15 -2996 (*8 $)))))))) + (-10 -8 (-15 -3945 ($ *8)) (-15 -2998 (*8 $)) (-15 -2997 (*8 $)))))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-716)) (-4 *6 (-755)) (-4 *3 (-494)) (-4 *7 (-860 *3 *5 *6)) - (-5 *2 (-2 (|:| -2400 (-693)) (|:| -3952 *8) (|:| |radicand| *8))) - (-5 *1 (-863 *5 *6 *3 *7 *8)) (-5 *4 (-693)) + (-12 (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-495)) (-4 *7 (-861 *3 *5 *6)) + (-5 *2 (-2 (|:| -2401 (-694)) (|:| -3953 *8) (|:| |radicand| *8))) + (-5 *1 (-864 *5 *6 *3 *7 *8)) (-5 *4 (-694)) (-4 *8 (-13 (-312) - (-10 -8 (-15 -3944 ($ *7)) (-15 -2997 (*7 $)) (-15 -2996 (*7 $)))))))) + (-10 -8 (-15 -3945 ($ *7)) (-15 -2998 (*7 $)) (-15 -2997 (*7 $)))))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-960)) (-4 *3 (-1012)) - (-5 *2 (-2 (|:| |val| *1) (|:| -2400 (-483)))) (-4 *1 (-362 *3)))) + (|partial| -12 (-4 *3 (-961)) (-4 *3 (-1013)) + (-5 *2 (-2 (|:| |val| *1) (|:| -2401 (-484)))) (-4 *1 (-363 *3)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-2 (|:| |val| (-799 *3)) (|:| -2400 (-799 *3)))) - (-5 *1 (-799 *3)) (-4 *3 (-1012)))) + (|partial| -12 (-5 *2 (-2 (|:| |val| (-800 *3)) (|:| -2401 (-800 *3)))) + (-5 *1 (-800 *3)) (-4 *3 (-1013)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-716)) (-4 *5 (-755)) (-4 *6 (-960)) - (-4 *7 (-860 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2400 (-483)))) - (-5 *1 (-861 *4 *5 *6 *7 *3)) + (|partial| -12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-961)) + (-4 *7 (-861 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2401 (-484)))) + (-5 *1 (-862 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-312) - (-10 -8 (-15 -3944 ($ *7)) (-15 -2997 (*7 $)) (-15 -2996 (*7 $)))))))) + (-10 -8 (-15 -3945 ($ *7)) (-15 -2998 (*7 $)) (-15 -2997 (*7 $)))))))) (((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-1088)) (-4 *4 (-960)) (-4 *4 (-1012)) - (-5 *2 (-2 (|:| |var| (-549 *1)) (|:| -2400 (-483)))) (-4 *1 (-362 *4)))) + (|partial| -12 (-5 *3 (-1089)) (-4 *4 (-961)) (-4 *4 (-1013)) + (-5 *2 (-2 (|:| |var| (-550 *1)) (|:| -2401 (-484)))) (-4 *1 (-363 *4)))) ((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-86)) (-4 *4 (-960)) (-4 *4 (-1012)) - (-5 *2 (-2 (|:| |var| (-549 *1)) (|:| -2400 (-483)))) (-4 *1 (-362 *4)))) + (|partial| -12 (-5 *3 (-86)) (-4 *4 (-961)) (-4 *4 (-1013)) + (-5 *2 (-2 (|:| |var| (-550 *1)) (|:| -2401 (-484)))) (-4 *1 (-363 *4)))) ((*1 *2 *1) - (|partial| -12 (-4 *3 (-1024)) (-4 *3 (-1012)) - (-5 *2 (-2 (|:| |var| (-549 *1)) (|:| -2400 (-483)))) (-4 *1 (-362 *3)))) + (|partial| -12 (-4 *3 (-1025)) (-4 *3 (-1013)) + (-5 *2 (-2 (|:| |var| (-550 *1)) (|:| -2401 (-484)))) (-4 *1 (-363 *3)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-2 (|:| |val| (-799 *3)) (|:| -2400 (-693)))) - (-5 *1 (-799 *3)) (-4 *3 (-1012)))) + (|partial| -12 (-5 *2 (-2 (|:| |val| (-800 *3)) (|:| -2401 (-694)))) + (-5 *1 (-800 *3)) (-4 *3 (-1013)))) ((*1 *2 *1) - (|partial| -12 (-4 *1 (-860 *3 *4 *5)) (-4 *3 (-960)) (-4 *4 (-716)) - (-4 *5 (-755)) (-5 *2 (-2 (|:| |var| *5) (|:| -2400 (-693)))))) + (|partial| -12 (-4 *1 (-861 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) + (-4 *5 (-756)) (-5 *2 (-2 (|:| |var| *5) (|:| -2401 (-694)))))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-716)) (-4 *5 (-755)) (-4 *6 (-960)) - (-4 *7 (-860 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2400 (-483)))) - (-5 *1 (-861 *4 *5 *6 *7 *3)) + (|partial| -12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-961)) + (-4 *7 (-861 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2401 (-484)))) + (-5 *1 (-862 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-312) - (-10 -8 (-15 -3944 ($ *7)) (-15 -2997 (*7 $)) (-15 -2996 (*7 $)))))))) + (-10 -8 (-15 -3945 ($ *7)) (-15 -2998 (*7 $)) (-15 -2997 (*7 $)))))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-1024)) (-4 *3 (-1012)) (-5 *2 (-582 *1)) - (-4 *1 (-362 *3)))) + (|partial| -12 (-4 *3 (-1025)) (-4 *3 (-1013)) (-5 *2 (-583 *1)) + (-4 *1 (-363 *3)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-582 (-799 *3))) (-5 *1 (-799 *3)) (-4 *3 (-1012)))) + (|partial| -12 (-5 *2 (-583 (-800 *3))) (-5 *1 (-800 *3)) (-4 *3 (-1013)))) ((*1 *2 *1) - (|partial| -12 (-4 *3 (-960)) (-4 *4 (-716)) (-4 *5 (-755)) (-5 *2 (-582 *1)) - (-4 *1 (-860 *3 *4 *5)))) + (|partial| -12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-583 *1)) + (-4 *1 (-861 *3 *4 *5)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-716)) (-4 *5 (-755)) (-4 *6 (-960)) - (-4 *7 (-860 *6 *4 *5)) (-5 *2 (-582 *3)) (-5 *1 (-861 *4 *5 *6 *7 *3)) + (|partial| -12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-961)) + (-4 *7 (-861 *6 *4 *5)) (-5 *2 (-583 *3)) (-5 *1 (-862 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-312) - (-10 -8 (-15 -3944 ($ *7)) (-15 -2997 (*7 $)) (-15 -2996 (*7 $)))))))) + (-10 -8 (-15 -3945 ($ *7)) (-15 -2998 (*7 $)) (-15 -2997 (*7 $)))))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1012)) (-5 *2 (-582 *1)) - (-4 *1 (-362 *3)))) + (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1013)) (-5 *2 (-583 *1)) + (-4 *1 (-363 *3)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-582 (-799 *3))) (-5 *1 (-799 *3)) (-4 *3 (-1012)))) + (|partial| -12 (-5 *2 (-583 (-800 *3))) (-5 *1 (-800 *3)) (-4 *3 (-1013)))) ((*1 *2 *1) - (|partial| -12 (-4 *3 (-960)) (-4 *4 (-716)) (-4 *5 (-755)) (-5 *2 (-582 *1)) - (-4 *1 (-860 *3 *4 *5)))) + (|partial| -12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-583 *1)) + (-4 *1 (-861 *3 *4 *5)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-716)) (-4 *5 (-755)) (-4 *6 (-960)) - (-4 *7 (-860 *6 *4 *5)) (-5 *2 (-582 *3)) (-5 *1 (-861 *4 *5 *6 *7 *3)) + (|partial| -12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-961)) + (-4 *7 (-861 *6 *4 *5)) (-5 *2 (-583 *3)) (-5 *1 (-862 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-312) - (-10 -8 (-15 -3944 ($ *7)) (-15 -2997 (*7 $)) (-15 -2996 (*7 $)))))))) + (-10 -8 (-15 -3945 ($ *7)) (-15 -2998 (*7 $)) (-15 -2997 (*7 $)))))))) (((*1 *2 *1) - (-12 (-4 *3 (-960)) (-4 *4 (-1012)) (-5 *2 (-582 *1)) (-4 *1 (-333 *3 *4)))) + (-12 (-4 *3 (-961)) (-4 *4 (-1013)) (-5 *2 (-583 *1)) (-4 *1 (-334 *3 *4)))) ((*1 *2 *1) - (-12 (-5 *2 (-582 (-673 *3 *4))) (-5 *1 (-673 *3 *4)) (-4 *3 (-960)) - (-4 *4 (-662)))) + (-12 (-5 *2 (-583 (-674 *3 *4))) (-5 *1 (-674 *3 *4)) (-4 *3 (-961)) + (-4 *4 (-663)))) ((*1 *2 *1) - (-12 (-4 *3 (-960)) (-4 *4 (-716)) (-4 *5 (-755)) (-5 *2 (-582 *1)) - (-4 *1 (-860 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-277 *3 *2)) (-4 *3 (-960)) (-4 *2 (-715)))) - ((*1 *2 *1) (-12 (-4 *1 (-644 *3)) (-4 *3 (-960)) (-5 *2 (-693)))) - ((*1 *2 *1) (-12 (-4 *1 (-760 *3)) (-4 *3 (-960)) (-5 *2 (-693)))) + (-12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-583 *1)) + (-4 *1 (-861 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-277 *3 *2)) (-4 *3 (-961)) (-4 *2 (-716)))) + ((*1 *2 *1) (-12 (-4 *1 (-645 *3)) (-4 *3 (-961)) (-5 *2 (-694)))) + ((*1 *2 *1) (-12 (-4 *1 (-761 *3)) (-4 *3 (-961)) (-5 *2 (-694)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-582 *6)) (-4 *1 (-860 *4 *5 *6)) (-4 *4 (-960)) (-4 *5 (-716)) - (-4 *6 (-755)) (-5 *2 (-582 (-693))))) + (-12 (-5 *3 (-583 *6)) (-4 *1 (-861 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-717)) + (-4 *6 (-756)) (-5 *2 (-583 (-694))))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-860 *4 *5 *3)) (-4 *4 (-960)) (-4 *5 (-716)) (-4 *3 (-755)) - (-5 *2 (-693))))) + (-12 (-4 *1 (-861 *4 *5 *3)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *3 (-756)) + (-5 *2 (-694))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-582 *6)) (-4 *1 (-860 *4 *5 *6)) (-4 *4 (-960)) (-4 *5 (-716)) - (-4 *6 (-755)) (-5 *2 (-693)))) + (-12 (-5 *3 (-583 *6)) (-4 *1 (-861 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-717)) + (-4 *6 (-756)) (-5 *2 (-694)))) ((*1 *2 *1) - (-12 (-4 *1 (-860 *3 *4 *5)) (-4 *3 (-960)) (-4 *4 (-716)) (-4 *5 (-755)) - (-5 *2 (-693))))) + (-12 (-4 *1 (-861 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) + (-5 *2 (-694))))) (((*1 *2 *1) - (-12 (-4 *3 (-960)) (-4 *4 (-716)) (-4 *5 (-755)) (-5 *2 (-582 *1)) - (-4 *1 (-860 *3 *4 *5))))) + (-12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-583 *1)) + (-4 *1 (-861 *3 *4 *5))))) (((*1 *2 *1) - (-12 (-4 *1 (-277 *2 *3)) (-4 *3 (-715)) (-4 *2 (-960)) (-4 *2 (-390)))) + (-12 (-4 *1 (-277 *2 *3)) (-4 *3 (-716)) (-4 *2 (-961)) (-4 *2 (-391)))) ((*1 *2 *3) - (-12 (-5 *3 (-582 *4)) (-4 *4 (-1153 (-483))) (-5 *2 (-582 (-483))) - (-5 *1 (-424 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-760 *2)) (-4 *2 (-960)) (-4 *2 (-390)))) + (-12 (-5 *3 (-583 *4)) (-4 *4 (-1154 (-484))) (-5 *2 (-583 (-484))) + (-5 *1 (-425 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-391)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-860 *3 *4 *2)) (-4 *3 (-960)) (-4 *4 (-716)) (-4 *2 (-755)) - (-4 *3 (-390))))) + (-12 (-4 *1 (-861 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)) + (-4 *3 (-391))))) (((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-582 *5)) (-5 *4 (-483)) (-4 *5 (-754)) (-4 *5 (-312)) - (-5 *2 (-693)) (-5 *1 (-855 *5 *6)) (-4 *6 (-1153 *5))))) + (-12 (-5 *3 (-583 *5)) (-5 *4 (-484)) (-4 *5 (-755)) (-4 *5 (-312)) + (-5 *2 (-694)) (-5 *1 (-856 *5 *6)) (-4 *6 (-1154 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-582 *4)) (-4 *4 (-754)) (-4 *4 (-312)) (-5 *2 (-693)) - (-5 *1 (-855 *4 *5)) (-4 *5 (-1153 *4))))) + (-12 (-5 *3 (-583 *4)) (-4 *4 (-755)) (-4 *4 (-312)) (-5 *2 (-694)) + (-5 *1 (-856 *4 *5)) (-4 *5 (-1154 *4))))) (((*1 *2 *3) - (-12 (-4 *2 (-312)) (-4 *2 (-754)) (-5 *1 (-855 *2 *3)) (-4 *3 (-1153 *2))))) + (-12 (-4 *2 (-312)) (-4 *2 (-755)) (-5 *1 (-856 *2 *3)) (-4 *3 (-1154 *2))))) (((*1 *2 *3) - (-12 (-4 *4 (-312)) (-5 *2 (-582 *3)) (-5 *1 (-855 *4 *3)) - (-4 *3 (-1153 *4))))) + (-12 (-4 *4 (-312)) (-5 *2 (-583 *3)) (-5 *1 (-856 *4 *3)) + (-4 *3 (-1154 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-312)) (-5 *2 (-582 *3)) (-5 *1 (-855 *4 *3)) - (-4 *3 (-1153 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-856 *5)) (-4 *5 (-960)) (-5 *2 (-206 *4 *5)) - (-5 *1 (-854 *4 *5)) (-14 *4 (-582 (-1088)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-206 *4 *5)) (-14 *4 (-582 (-1088))) (-4 *5 (-960)) - (-5 *2 (-856 *5)) (-5 *1 (-854 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-419 *4 *5)) (-14 *4 (-582 (-1088))) (-4 *5 (-960)) - (-5 *2 (-856 *5)) (-5 *1 (-854 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-856 *5)) (-4 *5 (-960)) (-5 *2 (-419 *4 *5)) - (-5 *1 (-854 *4 *5)) (-14 *4 (-582 (-1088)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-419 *4 *5)) (-14 *4 (-582 (-1088))) (-4 *5 (-960)) - (-5 *2 (-206 *4 *5)) (-5 *1 (-854 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-206 *4 *5)) (-14 *4 (-582 (-1088))) (-4 *5 (-960)) - (-5 *2 (-419 *4 *5)) (-5 *1 (-854 *4 *5))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-498)))) - ((*1 *2 *3) (-12 (-5 *2 (-1083 (-348 (-483)))) (-5 *1 (-852)) (-5 *3 (-483))))) -(((*1 *2 *3) (-12 (-5 *2 (-1083 (-483))) (-5 *1 (-852)) (-5 *3 (-483))))) -(((*1 *2 *3) (-12 (-5 *3 (-1083 (-483))) (-5 *2 (-483)) (-5 *1 (-852))))) -(((*1 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-498)))) - ((*1 *2 *3) (-12 (-5 *2 (-1083 (-348 (-483)))) (-5 *1 (-852)) (-5 *3 (-483))))) -(((*1 *2 *3) (-12 (-5 *2 (-1083 (-483))) (-5 *1 (-165)) (-5 *3 (-483)))) - ((*1 *2 *3 *2) (-12 (-5 *3 (-693)) (-5 *1 (-705 *2)) (-4 *2 (-146)))) - ((*1 *2 *3) (-12 (-5 *2 (-1083 (-483))) (-5 *1 (-852)) (-5 *3 (-483))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-693)) (-5 *1 (-764 *2)) (-4 *2 (-146)))) - ((*1 *2 *3) (-12 (-5 *2 (-1083 (-483))) (-5 *1 (-852)) (-5 *3 (-483))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-693)) (-5 *1 (-764 *2)) (-4 *2 (-146)))) - ((*1 *2 *3) (-12 (-5 *2 (-1083 (-483))) (-5 *1 (-852)) (-5 *3 (-483))))) -(((*1 *2 *3) (-12 (-5 *2 (-348 (-483))) (-5 *1 (-498)) (-5 *3 (-483)))) - ((*1 *2 *3) (-12 (-5 *2 (-1083 (-348 (-483)))) (-5 *1 (-852)) (-5 *3 (-483))))) + (-12 (-4 *4 (-312)) (-5 *2 (-583 *3)) (-5 *1 (-856 *4 *3)) + (-4 *3 (-1154 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-857 *5)) (-4 *5 (-961)) (-5 *2 (-206 *4 *5)) + (-5 *1 (-855 *4 *5)) (-14 *4 (-583 (-1089)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-206 *4 *5)) (-14 *4 (-583 (-1089))) (-4 *5 (-961)) + (-5 *2 (-857 *5)) (-5 *1 (-855 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-420 *4 *5)) (-14 *4 (-583 (-1089))) (-4 *5 (-961)) + (-5 *2 (-857 *5)) (-5 *1 (-855 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-857 *5)) (-4 *5 (-961)) (-5 *2 (-420 *4 *5)) + (-5 *1 (-855 *4 *5)) (-14 *4 (-583 (-1089)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-420 *4 *5)) (-14 *4 (-583 (-1089))) (-4 *5 (-961)) + (-5 *2 (-206 *4 *5)) (-5 *1 (-855 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-206 *4 *5)) (-14 *4 (-583 (-1089))) (-4 *5 (-961)) + (-5 *2 (-420 *4 *5)) (-5 *1 (-855 *4 *5))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-499)))) + ((*1 *2 *3) (-12 (-5 *2 (-1084 (-349 (-484)))) (-5 *1 (-853)) (-5 *3 (-484))))) +(((*1 *2 *3) (-12 (-5 *2 (-1084 (-484))) (-5 *1 (-853)) (-5 *3 (-484))))) +(((*1 *2 *3) (-12 (-5 *3 (-1084 (-484))) (-5 *2 (-484)) (-5 *1 (-853))))) +(((*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-499)))) + ((*1 *2 *3) (-12 (-5 *2 (-1084 (-349 (-484)))) (-5 *1 (-853)) (-5 *3 (-484))))) +(((*1 *2 *3) (-12 (-5 *2 (-1084 (-484))) (-5 *1 (-165)) (-5 *3 (-484)))) + ((*1 *2 *3 *2) (-12 (-5 *3 (-694)) (-5 *1 (-706 *2)) (-4 *2 (-146)))) + ((*1 *2 *3) (-12 (-5 *2 (-1084 (-484))) (-5 *1 (-853)) (-5 *3 (-484))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-694)) (-5 *1 (-765 *2)) (-4 *2 (-146)))) + ((*1 *2 *3) (-12 (-5 *2 (-1084 (-484))) (-5 *1 (-853)) (-5 *3 (-484))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-694)) (-5 *1 (-765 *2)) (-4 *2 (-146)))) + ((*1 *2 *3) (-12 (-5 *2 (-1084 (-484))) (-5 *1 (-853)) (-5 *3 (-484))))) +(((*1 *2 *3) (-12 (-5 *2 (-349 (-484))) (-5 *1 (-499)) (-5 *3 (-484)))) + ((*1 *2 *3) (-12 (-5 *2 (-1084 (-349 (-484)))) (-5 *1 (-853)) (-5 *3 (-484))))) (((*1 *2 *3 *4 *2 *5) - (-12 (-5 *3 (-582 *8)) (-5 *4 (-582 (-799 *6))) - (-5 *5 (-1 (-797 *6 *8) *8 (-799 *6) (-797 *6 *8))) (-4 *6 (-1012)) - (-4 *8 (-13 (-960) (-552 (-799 *6)) (-949 *7))) (-5 *2 (-797 *6 *8)) - (-4 *7 (-960)) (-5 *1 (-851 *6 *7 *8))))) + (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 (-800 *6))) + (-5 *5 (-1 (-798 *6 *8) *8 (-800 *6) (-798 *6 *8))) (-4 *6 (-1013)) + (-4 *8 (-13 (-961) (-553 (-800 *6)) (-950 *7))) (-5 *2 (-798 *6 *8)) + (-4 *7 (-961)) (-5 *1 (-852 *6 *7 *8))))) (((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-797 *5 *3)) (-5 *4 (-799 *5)) (-4 *5 (-1012)) (-4 *3 (-139 *6)) - (-4 (-856 *6) (-795 *5)) (-4 *6 (-13 (-795 *5) (-146))) + (-12 (-5 *2 (-798 *5 *3)) (-5 *4 (-800 *5)) (-4 *5 (-1013)) (-4 *3 (-139 *6)) + (-4 (-857 *6) (-796 *5)) (-4 *6 (-13 (-796 *5) (-146))) (-5 *1 (-152 *5 *6 *3)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *2 (-797 *4 *1)) (-5 *3 (-799 *4)) (-4 *1 (-795 *4)) - (-4 *4 (-1012)))) + (-12 (-5 *2 (-798 *4 *1)) (-5 *3 (-800 *4)) (-4 *1 (-796 *4)) + (-4 *4 (-1013)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-797 *5 *6)) (-5 *4 (-799 *5)) (-4 *5 (-1012)) - (-4 *6 (-13 (-1012) (-949 *3))) (-4 *3 (-795 *5)) (-5 *1 (-841 *5 *3 *6)))) + (-12 (-5 *2 (-798 *5 *6)) (-5 *4 (-800 *5)) (-4 *5 (-1013)) + (-4 *6 (-13 (-1013) (-950 *3))) (-4 *3 (-796 *5)) (-5 *1 (-842 *5 *3 *6)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-797 *5 *3)) (-4 *5 (-1012)) - (-4 *3 (-13 (-362 *6) (-552 *4) (-795 *5) (-949 (-549 $)))) - (-5 *4 (-799 *5)) (-4 *6 (-13 (-494) (-795 *5))) (-5 *1 (-842 *5 *6 *3)))) + (-12 (-5 *2 (-798 *5 *3)) (-4 *5 (-1013)) + (-4 *3 (-13 (-363 *6) (-553 *4) (-796 *5) (-950 (-550 $)))) + (-5 *4 (-800 *5)) (-4 *6 (-13 (-495) (-796 *5))) (-5 *1 (-843 *5 *6 *3)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-797 (-483) *3)) (-5 *4 (-799 (-483))) (-4 *3 (-482)) - (-5 *1 (-843 *3)))) + (-12 (-5 *2 (-798 (-484) *3)) (-5 *4 (-800 (-484))) (-4 *3 (-483)) + (-5 *1 (-844 *3)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-797 *5 *6)) (-5 *3 (-549 *6)) (-4 *5 (-1012)) - (-4 *6 (-13 (-1012) (-949 (-549 $)) (-552 *4) (-795 *5))) (-5 *4 (-799 *5)) - (-5 *1 (-844 *5 *6)))) + (-12 (-5 *2 (-798 *5 *6)) (-5 *3 (-550 *6)) (-4 *5 (-1013)) + (-4 *6 (-13 (-1013) (-950 (-550 $)) (-553 *4) (-796 *5))) (-5 *4 (-800 *5)) + (-5 *1 (-845 *5 *6)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-794 *5 *6 *3)) (-5 *4 (-799 *5)) (-4 *5 (-1012)) - (-4 *6 (-795 *5)) (-4 *3 (-607 *6)) (-5 *1 (-845 *5 *6 *3)))) + (-12 (-5 *2 (-795 *5 *6 *3)) (-5 *4 (-800 *5)) (-4 *5 (-1013)) + (-4 *6 (-796 *5)) (-4 *3 (-608 *6)) (-5 *1 (-846 *5 *6 *3)))) ((*1 *2 *3 *4 *2 *5) - (-12 (-5 *5 (-1 (-797 *6 *3) *8 (-799 *6) (-797 *6 *3))) (-4 *8 (-755)) - (-5 *2 (-797 *6 *3)) (-5 *4 (-799 *6)) (-4 *6 (-1012)) - (-4 *3 (-13 (-860 *9 *7 *8) (-552 *4))) (-4 *7 (-716)) - (-4 *9 (-13 (-960) (-795 *6))) (-5 *1 (-846 *6 *7 *8 *9 *3)))) + (-12 (-5 *5 (-1 (-798 *6 *3) *8 (-800 *6) (-798 *6 *3))) (-4 *8 (-756)) + (-5 *2 (-798 *6 *3)) (-5 *4 (-800 *6)) (-4 *6 (-1013)) + (-4 *3 (-13 (-861 *9 *7 *8) (-553 *4))) (-4 *7 (-717)) + (-4 *9 (-13 (-961) (-796 *6))) (-5 *1 (-847 *6 *7 *8 *9 *3)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-797 *5 *3)) (-4 *5 (-1012)) - (-4 *3 (-13 (-860 *8 *6 *7) (-552 *4))) (-5 *4 (-799 *5)) (-4 *7 (-795 *5)) - (-4 *6 (-716)) (-4 *7 (-755)) (-4 *8 (-13 (-960) (-795 *5))) - (-5 *1 (-846 *5 *6 *7 *8 *3)))) + (-12 (-5 *2 (-798 *5 *3)) (-4 *5 (-1013)) + (-4 *3 (-13 (-861 *8 *6 *7) (-553 *4))) (-5 *4 (-800 *5)) (-4 *7 (-796 *5)) + (-4 *6 (-717)) (-4 *7 (-756)) (-4 *8 (-13 (-961) (-796 *5))) + (-5 *1 (-847 *5 *6 *7 *8 *3)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-797 *5 *3)) (-4 *5 (-1012)) (-4 *3 (-903 *6)) - (-4 *6 (-13 (-494) (-795 *5) (-552 *4))) (-5 *4 (-799 *5)) - (-5 *1 (-849 *5 *6 *3)))) + (-12 (-5 *2 (-798 *5 *3)) (-4 *5 (-1013)) (-4 *3 (-904 *6)) + (-4 *6 (-13 (-495) (-796 *5) (-553 *4))) (-5 *4 (-800 *5)) + (-5 *1 (-850 *5 *6 *3)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-797 *5 (-1088))) (-5 *3 (-1088)) (-5 *4 (-799 *5)) - (-4 *5 (-1012)) (-5 *1 (-850 *5)))) + (-12 (-5 *2 (-798 *5 (-1089))) (-5 *3 (-1089)) (-5 *4 (-800 *5)) + (-4 *5 (-1013)) (-5 *1 (-851 *5)))) ((*1 *2 *3 *4 *5 *2 *6) - (-12 (-5 *4 (-582 (-799 *7))) (-5 *5 (-1 *9 (-582 *9))) - (-5 *6 (-1 (-797 *7 *9) *9 (-799 *7) (-797 *7 *9))) (-4 *7 (-1012)) - (-4 *9 (-13 (-960) (-552 (-799 *7)) (-949 *8))) (-5 *2 (-797 *7 *9)) - (-5 *3 (-582 *9)) (-4 *8 (-960)) (-5 *1 (-851 *7 *8 *9))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 (-85) *6)) (-4 *6 (-13 (-1012) (-949 *5))) (-4 *5 (-795 *4)) - (-4 *4 (-1012)) (-5 *2 (-1 (-85) *5)) (-5 *1 (-841 *4 *5 *6))))) -(((*1 *2 *3) (-12 (-5 *3 (-1088)) (-5 *2 (-265 (-483))) (-5 *1 (-839)))) - ((*1 *2 *2) (-12 (-4 *3 (-1012)) (-5 *1 (-840 *3 *2)) (-4 *2 (-362 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-1088)) (-5 *2 (-265 (-483))) (-5 *1 (-839)))) - ((*1 *2 *2) (-12 (-4 *3 (-1012)) (-5 *1 (-840 *3 *2)) (-4 *2 (-362 *3))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-445)) (-5 *1 (-86)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1088)) (-5 *4 (-445)) (-5 *2 (-265 (-483))) (-5 *1 (-839)))) + (-12 (-5 *4 (-583 (-800 *7))) (-5 *5 (-1 *9 (-583 *9))) + (-5 *6 (-1 (-798 *7 *9) *9 (-800 *7) (-798 *7 *9))) (-4 *7 (-1013)) + (-4 *9 (-13 (-961) (-553 (-800 *7)) (-950 *8))) (-5 *2 (-798 *7 *9)) + (-5 *3 (-583 *9)) (-4 *8 (-961)) (-5 *1 (-852 *7 *8 *9))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 (-85) *6)) (-4 *6 (-13 (-1013) (-950 *5))) (-4 *5 (-796 *4)) + (-4 *4 (-1013)) (-5 *2 (-1 (-85) *5)) (-5 *1 (-842 *4 *5 *6))))) +(((*1 *2 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-265 (-484))) (-5 *1 (-840)))) + ((*1 *2 *2) (-12 (-4 *3 (-1013)) (-5 *1 (-841 *3 *2)) (-4 *2 (-363 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-265 (-484))) (-5 *1 (-840)))) + ((*1 *2 *2) (-12 (-4 *3 (-1013)) (-5 *1 (-841 *3 *2)) (-4 *2 (-363 *3))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-446)) (-5 *1 (-86)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1089)) (-5 *4 (-446)) (-5 *2 (-265 (-484))) (-5 *1 (-840)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-445)) (-4 *4 (-1012)) (-5 *1 (-840 *4 *2)) (-4 *2 (-362 *4))))) + (-12 (-5 *3 (-446)) (-4 *4 (-1013)) (-5 *1 (-841 *4 *2)) (-4 *2 (-363 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-582 (-582 (-853 (-179))))) (-5 *2 (-582 (-1000 (-179)))) - (-5 *1 (-838))))) + (-12 (-5 *3 (-583 (-583 (-854 (-179))))) (-5 *2 (-583 (-1001 (-179)))) + (-5 *1 (-839))))) (((*1 *1 *2 *3 *3 *3) - (-12 (-5 *2 (-1 (-853 (-179)) (-179))) (-5 *3 (-1000 (-179))) - (-5 *1 (-835)))) + (-12 (-5 *2 (-1 (-854 (-179)) (-179))) (-5 *3 (-1001 (-179))) + (-5 *1 (-836)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-853 (-179)) (-179))) (-5 *3 (-1000 (-179))) - (-5 *1 (-835)))) + (-12 (-5 *2 (-1 (-854 (-179)) (-179))) (-5 *3 (-1001 (-179))) + (-5 *1 (-836)))) ((*1 *1 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-1 (-853 (-179)) (-179))) (-5 *3 (-1000 (-179))) - (-5 *1 (-837)))) + (-12 (-5 *2 (-1 (-854 (-179)) (-179))) (-5 *3 (-1001 (-179))) + (-5 *1 (-838)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-853 (-179)) (-179))) (-5 *3 (-1000 (-179))) - (-5 *1 (-837))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1000 (-179))) (-5 *1 (-835)))) + (-12 (-5 *2 (-1 (-854 (-179)) (-179))) (-5 *3 (-1001 (-179))) + (-5 *1 (-838))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1001 (-179))) (-5 *1 (-836)))) ((*1 *1 *2 *2 *3 *3 *3) - (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1000 (-179))) (-5 *1 (-835)))) + (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1001 (-179))) (-5 *1 (-836)))) ((*1 *1 *2 *2 *3) - (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1000 (-179))) (-5 *1 (-835)))) + (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1001 (-179))) (-5 *1 (-836)))) ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-582 (-1 (-179) (-179)))) (-5 *3 (-1000 (-179))) - (-5 *1 (-835)))) + (-12 (-5 *2 (-583 (-1 (-179) (-179)))) (-5 *3 (-1001 (-179))) + (-5 *1 (-836)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-582 (-1 (-179) (-179)))) (-5 *3 (-1000 (-179))) - (-5 *1 (-835)))) + (-12 (-5 *2 (-583 (-1 (-179) (-179)))) (-5 *3 (-1001 (-179))) + (-5 *1 (-836)))) ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1000 (-179))) (-5 *1 (-835)))) + (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1001 (-179))) (-5 *1 (-836)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1000 (-179))) (-5 *1 (-835)))) + (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1001 (-179))) (-5 *1 (-836)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1088)) (-5 *5 (-1000 (-179))) (-5 *2 (-835)) (-5 *1 (-836 *3)) - (-4 *3 (-552 (-472))))) + (-12 (-5 *4 (-1089)) (-5 *5 (-1001 (-179))) (-5 *2 (-836)) (-5 *1 (-837 *3)) + (-4 *3 (-553 (-473))))) ((*1 *2 *3 *3 *4 *5) - (-12 (-5 *4 (-1088)) (-5 *5 (-1000 (-179))) (-5 *2 (-835)) (-5 *1 (-836 *3)) - (-4 *3 (-552 (-472))))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1000 (-179))) (-5 *1 (-837)))) + (-12 (-5 *4 (-1089)) (-5 *5 (-1001 (-179))) (-5 *2 (-836)) (-5 *1 (-837 *3)) + (-4 *3 (-553 (-473))))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1001 (-179))) (-5 *1 (-838)))) ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1000 (-179))) (-5 *1 (-837)))) + (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1001 (-179))) (-5 *1 (-838)))) ((*1 *1 *2 *2 *2 *2 *3) - (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1000 (-179))) (-5 *1 (-837))))) -(((*1 *2 *1) (-12 (-5 *2 (-1000 (-179))) (-5 *1 (-835)))) - ((*1 *2 *1) (-12 (-5 *2 (-1000 (-179))) (-5 *1 (-837))))) -(((*1 *2 *1) (-12 (-5 *2 (-582 (-582 (-179)))) (-5 *1 (-837))))) -(((*1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-837))))) -(((*1 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-837))))) -(((*1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-837))))) -(((*1 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-837))))) -(((*1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-837))))) -(((*1 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-837))))) -(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-837))))) -(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-837))))) -(((*1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-837))))) -(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-837))))) -(((*1 *1 *2) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *1 (-835)))) + (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1001 (-179))) (-5 *1 (-838))))) +(((*1 *2 *1) (-12 (-5 *2 (-1001 (-179))) (-5 *1 (-836)))) + ((*1 *2 *1) (-12 (-5 *2 (-1001 (-179))) (-5 *1 (-838))))) +(((*1 *2 *1) (-12 (-5 *2 (-583 (-583 (-179)))) (-5 *1 (-838))))) +(((*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-838))))) +(((*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-838))))) +(((*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-838))))) +(((*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-838))))) +(((*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-838))))) +(((*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-838))))) +(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-838))))) +(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-838))))) +(((*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-838))))) +(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-838))))) +(((*1 *1 *2) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *1 (-836)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1000 (-179))) (-5 *1 (-835)))) + (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1001 (-179))) (-5 *1 (-836)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1088)) (-5 *5 (-1000 (-179))) (-5 *2 (-835)) (-5 *1 (-836 *3)) - (-4 *3 (-552 (-472))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1088)) (-5 *2 (-835)) (-5 *1 (-836 *3)) (-4 *3 (-552 (-472)))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-835))))) -(((*1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-405)))) - ((*1 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-405)))) - ((*1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-835))))) -(((*1 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-835))))) -(((*1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-405)))) - ((*1 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-405)))) - ((*1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-835))))) -(((*1 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-835))))) -(((*1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-405)))) - ((*1 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-405)))) - ((*1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-835))))) -(((*1 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-835))))) -(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-835))))) -(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-835))))) -(((*1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-835))))) -(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-835))))) -(((*1 *2 *3) - (-12 (-5 *3 (-582 *7)) (-4 *7 (-860 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) - (-4 *5 (-13 (-755) (-552 (-1088)))) (-4 *6 (-716)) (-5 *2 (-85)) - (-5 *1 (-834 *4 *5 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-582 (-856 *4))) (-4 *4 (-13 (-258) (-120))) - (-4 *5 (-13 (-755) (-552 (-1088)))) (-4 *6 (-716)) (-5 *2 (-85)) - (-5 *1 (-834 *4 *5 *6 *7)) (-4 *7 (-860 *4 *6 *5))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-258) (-120))) (-4 *4 (-13 (-755) (-552 (-1088)))) - (-4 *5 (-716)) (-5 *1 (-834 *3 *4 *5 *2)) (-4 *2 (-860 *3 *5 *4))))) + (-12 (-5 *4 (-1089)) (-5 *5 (-1001 (-179))) (-5 *2 (-836)) (-5 *1 (-837 *3)) + (-4 *3 (-553 (-473))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1089)) (-5 *2 (-836)) (-5 *1 (-837 *3)) (-4 *3 (-553 (-473)))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-836))))) +(((*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-406)))) + ((*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-406)))) + ((*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-836))))) +(((*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-836))))) +(((*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-406)))) + ((*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-406)))) + ((*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-836))))) +(((*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-836))))) +(((*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-406)))) + ((*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-406)))) + ((*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-836))))) +(((*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-836))))) +(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-836))))) +(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-836))))) +(((*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-836))))) +(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-836))))) +(((*1 *2 *3) + (-12 (-5 *3 (-583 *7)) (-4 *7 (-861 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) + (-4 *5 (-13 (-756) (-553 (-1089)))) (-4 *6 (-717)) (-5 *2 (-85)) + (-5 *1 (-835 *4 *5 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-583 (-857 *4))) (-4 *4 (-13 (-258) (-120))) + (-4 *5 (-13 (-756) (-553 (-1089)))) (-4 *6 (-717)) (-5 *2 (-85)) + (-5 *1 (-835 *4 *5 *6 *7)) (-4 *7 (-861 *4 *6 *5))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-258) (-120))) (-4 *4 (-13 (-756) (-553 (-1089)))) + (-4 *5 (-717)) (-5 *1 (-835 *3 *4 *5 *2)) (-4 *2 (-861 *3 *5 *4))))) (((*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 - (-2 (|:| |det| *12) (|:| |rows| (-582 (-483))) (|:| |cols| (-582 (-483))))) - (-5 *4 (-629 *12)) (-5 *5 (-582 (-348 (-856 *9)))) (-5 *6 (-582 (-582 *12))) - (-5 *7 (-693)) (-5 *8 (-483)) (-4 *9 (-13 (-258) (-120))) - (-4 *12 (-860 *9 *11 *10)) (-4 *10 (-13 (-755) (-552 (-1088)))) - (-4 *11 (-716)) - (-5 *2 - (-2 (|:| |eqzro| (-582 *12)) (|:| |neqzro| (-582 *12)) - (|:| |wcond| (-582 (-856 *9))) + (-2 (|:| |det| *12) (|:| |rows| (-583 (-484))) (|:| |cols| (-583 (-484))))) + (-5 *4 (-630 *12)) (-5 *5 (-583 (-349 (-857 *9)))) (-5 *6 (-583 (-583 *12))) + (-5 *7 (-694)) (-5 *8 (-484)) (-4 *9 (-13 (-258) (-120))) + (-4 *12 (-861 *9 *11 *10)) (-4 *10 (-13 (-756) (-553 (-1089)))) + (-4 *11 (-717)) + (-5 *2 + (-2 (|:| |eqzro| (-583 *12)) (|:| |neqzro| (-583 *12)) + (|:| |wcond| (-583 (-857 *9))) (|:| |bsoln| - (-2 (|:| |partsol| (-1177 (-348 (-856 *9)))) - (|:| -2011 (-582 (-1177 (-348 (-856 *9))))))))) - (-5 *1 (-834 *9 *10 *11 *12))))) + (-2 (|:| |partsol| (-1178 (-349 (-857 *9)))) + (|:| -2012 (-583 (-1178 (-349 (-857 *9))))))))) + (-5 *1 (-835 *9 *10 *11 *12))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-629 *7)) (-5 *3 (-582 *7)) (-4 *7 (-860 *4 *6 *5)) - (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-755) (-552 (-1088)))) - (-4 *6 (-716)) (-5 *1 (-834 *4 *5 *6 *7))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-629 *8)) (-5 *4 (-693)) (-4 *8 (-860 *5 *7 *6)) - (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-755) (-552 (-1088)))) - (-4 *7 (-716)) - (-5 *2 - (-582 - (-2 (|:| |det| *8) (|:| |rows| (-582 (-483))) - (|:| |cols| (-582 (-483)))))) - (-5 *1 (-834 *5 *6 *7 *8))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-582 (-582 *8))) (-5 *3 (-582 *8)) (-4 *8 (-860 *5 *7 *6)) - (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-755) (-552 (-1088)))) - (-4 *7 (-716)) (-5 *2 (-85)) (-5 *1 (-834 *5 *6 *7 *8))))) + (-12 (-5 *2 (-630 *7)) (-5 *3 (-583 *7)) (-4 *7 (-861 *4 *6 *5)) + (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-756) (-553 (-1089)))) + (-4 *6 (-717)) (-5 *1 (-835 *4 *5 *6 *7))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-630 *8)) (-5 *4 (-694)) (-4 *8 (-861 *5 *7 *6)) + (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-756) (-553 (-1089)))) + (-4 *7 (-717)) + (-5 *2 + (-583 + (-2 (|:| |det| *8) (|:| |rows| (-583 (-484))) + (|:| |cols| (-583 (-484)))))) + (-5 *1 (-835 *5 *6 *7 *8))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-583 (-583 *8))) (-5 *3 (-583 *8)) (-4 *8 (-861 *5 *7 *6)) + (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-756) (-553 (-1089)))) + (-4 *7 (-717)) (-5 *2 (-85)) (-5 *1 (-835 *5 *6 *7 *8))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-755) (-552 (-1088)))) - (-4 *6 (-716)) (-5 *2 (-582 (-582 (-483)))) (-5 *1 (-834 *4 *5 *6 *7)) - (-5 *3 (-483)) (-4 *7 (-860 *4 *6 *5))))) + (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-756) (-553 (-1089)))) + (-4 *6 (-717)) (-5 *2 (-583 (-583 (-484)))) (-5 *1 (-835 *4 *5 *6 *7)) + (-5 *3 (-484)) (-4 *7 (-861 *4 *6 *5))))) (((*1 *2 *2) - (-12 (-5 *2 (-582 (-582 *6))) (-4 *6 (-860 *3 *5 *4)) - (-4 *3 (-13 (-258) (-120))) (-4 *4 (-13 (-755) (-552 (-1088)))) - (-4 *5 (-716)) (-5 *1 (-834 *3 *4 *5 *6))))) + (-12 (-5 *2 (-583 (-583 *6))) (-4 *6 (-861 *3 *5 *4)) + (-4 *3 (-13 (-258) (-120))) (-4 *4 (-13 (-756) (-553 (-1089)))) + (-4 *5 (-717)) (-5 *1 (-835 *3 *4 *5 *6))))) (((*1 *2 *3) (-12 (-5 *3 - (-582 - (-2 (|:| -3107 (-693)) + (-583 + (-2 (|:| -3108 (-694)) (|:| |eqns| - (-582 - (-2 (|:| |det| *7) (|:| |rows| (-582 (-483))) - (|:| |cols| (-582 (-483)))))) - (|:| |fgb| (-582 *7))))) - (-4 *7 (-860 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) - (-4 *5 (-13 (-755) (-552 (-1088)))) (-4 *6 (-716)) (-5 *2 (-693)) - (-5 *1 (-834 *4 *5 *6 *7))))) + (-583 + (-2 (|:| |det| *7) (|:| |rows| (-583 (-484))) + (|:| |cols| (-583 (-484)))))) + (|:| |fgb| (-583 *7))))) + (-4 *7 (-861 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) + (-4 *5 (-13 (-756) (-553 (-1089)))) (-4 *6 (-717)) (-5 *2 (-694)) + (-5 *1 (-835 *4 *5 *6 *7))))) (((*1 *2 *3) (-12 (-5 *3 - (-582 - (-2 (|:| -3107 (-693)) + (-583 + (-2 (|:| -3108 (-694)) (|:| |eqns| - (-582 - (-2 (|:| |det| *7) (|:| |rows| (-582 (-483))) - (|:| |cols| (-582 (-483)))))) - (|:| |fgb| (-582 *7))))) - (-4 *7 (-860 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) - (-4 *5 (-13 (-755) (-552 (-1088)))) (-4 *6 (-716)) (-5 *2 (-693)) - (-5 *1 (-834 *4 *5 *6 *7))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-755) (-552 (-1088)))) - (-4 *6 (-716)) (-5 *2 (-582 *3)) (-5 *1 (-834 *4 *5 *6 *3)) - (-4 *3 (-860 *4 *6 *5))))) + (-583 + (-2 (|:| |det| *7) (|:| |rows| (-583 (-484))) + (|:| |cols| (-583 (-484)))))) + (|:| |fgb| (-583 *7))))) + (-4 *7 (-861 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) + (-4 *5 (-13 (-756) (-553 (-1089)))) (-4 *6 (-717)) (-5 *2 (-694)) + (-5 *1 (-835 *4 *5 *6 *7))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-756) (-553 (-1089)))) + (-4 *6 (-717)) (-5 *2 (-583 *3)) (-5 *1 (-835 *4 *5 *6 *3)) + (-4 *3 (-861 *4 *6 *5))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |mat| (-629 (-348 (-856 *4)))) (|:| |vec| (-582 (-348 (-856 *4)))) - (|:| -3107 (-693)) (|:| |rows| (-582 (-483))) (|:| |cols| (-582 (-483))))) - (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-755) (-552 (-1088)))) - (-4 *6 (-716)) - (-5 *2 - (-2 (|:| |partsol| (-1177 (-348 (-856 *4)))) - (|:| -2011 (-582 (-1177 (-348 (-856 *4))))))) - (-5 *1 (-834 *4 *5 *6 *7)) (-4 *7 (-860 *4 *6 *5))))) + (-2 (|:| |mat| (-630 (-349 (-857 *4)))) (|:| |vec| (-583 (-349 (-857 *4)))) + (|:| -3108 (-694)) (|:| |rows| (-583 (-484))) (|:| |cols| (-583 (-484))))) + (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-756) (-553 (-1089)))) + (-4 *6 (-717)) + (-5 *2 + (-2 (|:| |partsol| (-1178 (-349 (-857 *4)))) + (|:| -2012 (-583 (-1178 (-349 (-857 *4))))))) + (-5 *1 (-835 *4 *5 *6 *7)) (-4 *7 (-861 *4 *6 *5))))) (((*1 *2 *2 *3) (-12 (-5 *2 - (-2 (|:| |partsol| (-1177 (-348 (-856 *4)))) - (|:| -2011 (-582 (-1177 (-348 (-856 *4))))))) - (-5 *3 (-582 *7)) (-4 *4 (-13 (-258) (-120))) (-4 *7 (-860 *4 *6 *5)) - (-4 *5 (-13 (-755) (-552 (-1088)))) (-4 *6 (-716)) - (-5 *1 (-834 *4 *5 *6 *7))))) + (-2 (|:| |partsol| (-1178 (-349 (-857 *4)))) + (|:| -2012 (-583 (-1178 (-349 (-857 *4))))))) + (-5 *3 (-583 *7)) (-4 *4 (-13 (-258) (-120))) (-4 *7 (-861 *4 *6 *5)) + (-4 *5 (-13 (-756) (-553 (-1089)))) (-4 *6 (-717)) + (-5 *1 (-835 *4 *5 *6 *7))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-629 *8)) (-4 *8 (-860 *5 *7 *6)) (-4 *5 (-13 (-258) (-120))) - (-4 *6 (-13 (-755) (-552 (-1088)))) (-4 *7 (-716)) + (-12 (-5 *3 (-630 *8)) (-4 *8 (-861 *5 *7 *6)) (-4 *5 (-13 (-258) (-120))) + (-4 *6 (-13 (-756) (-553 (-1089)))) (-4 *7 (-717)) (-5 *2 - (-582 - (-2 (|:| -3107 (-693)) + (-583 + (-2 (|:| -3108 (-694)) (|:| |eqns| - (-582 - (-2 (|:| |det| *8) (|:| |rows| (-582 (-483))) - (|:| |cols| (-582 (-483)))))) - (|:| |fgb| (-582 *8))))) - (-5 *1 (-834 *5 *6 *7 *8)) (-5 *4 (-693))))) + (-583 + (-2 (|:| |det| *8) (|:| |rows| (-583 (-484))) + (|:| |cols| (-583 (-484)))))) + (|:| |fgb| (-583 *8))))) + (-5 *1 (-835 *5 *6 *7 *8)) (-5 *4 (-694))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-755) (-552 (-1088)))) - (-4 *6 (-716)) (-4 *7 (-860 *4 *6 *5)) - (-5 *2 (-2 (|:| |sysok| (-85)) (|:| |z0| (-582 *7)) (|:| |n0| (-582 *7)))) - (-5 *1 (-834 *4 *5 *6 *7)) (-5 *3 (-582 *7))))) -(((*1 *2 *3) - (-12 (-5 *3 (-856 *4)) (-4 *4 (-13 (-258) (-120))) (-4 *2 (-860 *4 *6 *5)) - (-5 *1 (-834 *4 *5 *6 *2)) (-4 *5 (-13 (-755) (-552 (-1088)))) - (-4 *6 (-716))))) -(((*1 *2 *3) - (-12 (-5 *3 (-582 (-1088))) (-4 *4 (-13 (-258) (-120))) - (-4 *5 (-13 (-755) (-552 (-1088)))) (-4 *6 (-716)) - (-5 *2 (-582 (-348 (-856 *4)))) (-5 *1 (-834 *4 *5 *6 *7)) - (-4 *7 (-860 *4 *6 *5))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-755) (-552 (-1088)))) - (-4 *6 (-716)) (-5 *2 (-348 (-856 *4))) (-5 *1 (-834 *4 *5 *6 *3)) - (-4 *3 (-860 *4 *6 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-629 *7)) (-4 *7 (-860 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) - (-4 *5 (-13 (-755) (-552 (-1088)))) (-4 *6 (-716)) - (-5 *2 (-629 (-348 (-856 *4)))) (-5 *1 (-834 *4 *5 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-582 *7)) (-4 *7 (-860 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) - (-4 *5 (-13 (-755) (-552 (-1088)))) (-4 *6 (-716)) - (-5 *2 (-582 (-348 (-856 *4)))) (-5 *1 (-834 *4 *5 *6 *7))))) + (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-756) (-553 (-1089)))) + (-4 *6 (-717)) (-4 *7 (-861 *4 *6 *5)) + (-5 *2 (-2 (|:| |sysok| (-85)) (|:| |z0| (-583 *7)) (|:| |n0| (-583 *7)))) + (-5 *1 (-835 *4 *5 *6 *7)) (-5 *3 (-583 *7))))) +(((*1 *2 *3) + (-12 (-5 *3 (-857 *4)) (-4 *4 (-13 (-258) (-120))) (-4 *2 (-861 *4 *6 *5)) + (-5 *1 (-835 *4 *5 *6 *2)) (-4 *5 (-13 (-756) (-553 (-1089)))) + (-4 *6 (-717))))) +(((*1 *2 *3) + (-12 (-5 *3 (-583 (-1089))) (-4 *4 (-13 (-258) (-120))) + (-4 *5 (-13 (-756) (-553 (-1089)))) (-4 *6 (-717)) + (-5 *2 (-583 (-349 (-857 *4)))) (-5 *1 (-835 *4 *5 *6 *7)) + (-4 *7 (-861 *4 *6 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-756) (-553 (-1089)))) + (-4 *6 (-717)) (-5 *2 (-349 (-857 *4))) (-5 *1 (-835 *4 *5 *6 *3)) + (-4 *3 (-861 *4 *6 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-630 *7)) (-4 *7 (-861 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) + (-4 *5 (-13 (-756) (-553 (-1089)))) (-4 *6 (-717)) + (-5 *2 (-630 (-349 (-857 *4)))) (-5 *1 (-835 *4 *5 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-583 *7)) (-4 *7 (-861 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) + (-4 *5 (-13 (-756) (-553 (-1089)))) (-4 *6 (-717)) + (-5 *2 (-583 (-349 (-857 *4)))) (-5 *1 (-835 *4 *5 *6 *7))))) (((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-629 *11)) (-5 *4 (-582 (-348 (-856 *8)))) (-5 *5 (-693)) - (-5 *6 (-1071)) (-4 *8 (-13 (-258) (-120))) (-4 *11 (-860 *8 *10 *9)) - (-4 *9 (-13 (-755) (-552 (-1088)))) (-4 *10 (-716)) + (-12 (-5 *3 (-630 *11)) (-5 *4 (-583 (-349 (-857 *8)))) (-5 *5 (-694)) + (-5 *6 (-1072)) (-4 *8 (-13 (-258) (-120))) (-4 *11 (-861 *8 *10 *9)) + (-4 *9 (-13 (-756) (-553 (-1089)))) (-4 *10 (-717)) (-5 *2 (-2 (|:| |rgl| - (-582 - (-2 (|:| |eqzro| (-582 *11)) (|:| |neqzro| (-582 *11)) - (|:| |wcond| (-582 (-856 *8))) + (-583 + (-2 (|:| |eqzro| (-583 *11)) (|:| |neqzro| (-583 *11)) + (|:| |wcond| (-583 (-857 *8))) (|:| |bsoln| - (-2 (|:| |partsol| (-1177 (-348 (-856 *8)))) - (|:| -2011 (-582 (-1177 (-348 (-856 *8)))))))))) - (|:| |rgsz| (-483)))) - (-5 *1 (-834 *8 *9 *10 *11)) (-5 *7 (-483))))) + (-2 (|:| |partsol| (-1178 (-349 (-857 *8)))) + (|:| -2012 (-583 (-1178 (-349 (-857 *8)))))))))) + (|:| |rgsz| (-484)))) + (-5 *1 (-835 *8 *9 *10 *11)) (-5 *7 (-484))))) (((*1 *2 *3) - (-12 (-5 *3 (-1071)) (-4 *4 (-13 (-258) (-120))) - (-4 *5 (-13 (-755) (-552 (-1088)))) (-4 *6 (-716)) + (-12 (-5 *3 (-1072)) (-4 *4 (-13 (-258) (-120))) + (-4 *5 (-13 (-756) (-553 (-1089)))) (-4 *6 (-717)) (-5 *2 - (-582 - (-2 (|:| |eqzro| (-582 *7)) (|:| |neqzro| (-582 *7)) - (|:| |wcond| (-582 (-856 *4))) + (-583 + (-2 (|:| |eqzro| (-583 *7)) (|:| |neqzro| (-583 *7)) + (|:| |wcond| (-583 (-857 *4))) (|:| |bsoln| - (-2 (|:| |partsol| (-1177 (-348 (-856 *4)))) - (|:| -2011 (-582 (-1177 (-348 (-856 *4)))))))))) - (-5 *1 (-834 *4 *5 *6 *7)) (-4 *7 (-860 *4 *6 *5))))) + (-2 (|:| |partsol| (-1178 (-349 (-857 *4)))) + (|:| -2012 (-583 (-1178 (-349 (-857 *4)))))))))) + (-5 *1 (-835 *4 *5 *6 *7)) (-4 *7 (-861 *4 *6 *5))))) (((*1 *2 *3 *4) (-12 (-5 *3 - (-582 - (-2 (|:| |eqzro| (-582 *8)) (|:| |neqzro| (-582 *8)) - (|:| |wcond| (-582 (-856 *5))) + (-583 + (-2 (|:| |eqzro| (-583 *8)) (|:| |neqzro| (-583 *8)) + (|:| |wcond| (-583 (-857 *5))) (|:| |bsoln| - (-2 (|:| |partsol| (-1177 (-348 (-856 *5)))) - (|:| -2011 (-582 (-1177 (-348 (-856 *5)))))))))) - (-5 *4 (-1071)) (-4 *5 (-13 (-258) (-120))) (-4 *8 (-860 *5 *7 *6)) - (-4 *6 (-13 (-755) (-552 (-1088)))) (-4 *7 (-716)) (-5 *2 (-483)) - (-5 *1 (-834 *5 *6 *7 *8))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-629 *8)) (-4 *8 (-860 *5 *7 *6)) (-4 *5 (-13 (-258) (-120))) - (-4 *6 (-13 (-755) (-552 (-1088)))) (-4 *7 (-716)) - (-5 *2 - (-582 - (-2 (|:| |eqzro| (-582 *8)) (|:| |neqzro| (-582 *8)) - (|:| |wcond| (-582 (-856 *5))) + (-2 (|:| |partsol| (-1178 (-349 (-857 *5)))) + (|:| -2012 (-583 (-1178 (-349 (-857 *5)))))))))) + (-5 *4 (-1072)) (-4 *5 (-13 (-258) (-120))) (-4 *8 (-861 *5 *7 *6)) + (-4 *6 (-13 (-756) (-553 (-1089)))) (-4 *7 (-717)) (-5 *2 (-484)) + (-5 *1 (-835 *5 *6 *7 *8))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-630 *8)) (-4 *8 (-861 *5 *7 *6)) (-4 *5 (-13 (-258) (-120))) + (-4 *6 (-13 (-756) (-553 (-1089)))) (-4 *7 (-717)) + (-5 *2 + (-583 + (-2 (|:| |eqzro| (-583 *8)) (|:| |neqzro| (-583 *8)) + (|:| |wcond| (-583 (-857 *5))) (|:| |bsoln| - (-2 (|:| |partsol| (-1177 (-348 (-856 *5)))) - (|:| -2011 (-582 (-1177 (-348 (-856 *5)))))))))) - (-5 *1 (-834 *5 *6 *7 *8)) (-5 *4 (-582 *8)))) + (-2 (|:| |partsol| (-1178 (-349 (-857 *5)))) + (|:| -2012 (-583 (-1178 (-349 (-857 *5)))))))))) + (-5 *1 (-835 *5 *6 *7 *8)) (-5 *4 (-583 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-629 *8)) (-5 *4 (-582 (-1088))) (-4 *8 (-860 *5 *7 *6)) - (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-755) (-552 (-1088)))) - (-4 *7 (-716)) + (-12 (-5 *3 (-630 *8)) (-5 *4 (-583 (-1089))) (-4 *8 (-861 *5 *7 *6)) + (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-756) (-553 (-1089)))) + (-4 *7 (-717)) (-5 *2 - (-582 - (-2 (|:| |eqzro| (-582 *8)) (|:| |neqzro| (-582 *8)) - (|:| |wcond| (-582 (-856 *5))) + (-583 + (-2 (|:| |eqzro| (-583 *8)) (|:| |neqzro| (-583 *8)) + (|:| |wcond| (-583 (-857 *5))) (|:| |bsoln| - (-2 (|:| |partsol| (-1177 (-348 (-856 *5)))) - (|:| -2011 (-582 (-1177 (-348 (-856 *5)))))))))) - (-5 *1 (-834 *5 *6 *7 *8)))) + (-2 (|:| |partsol| (-1178 (-349 (-857 *5)))) + (|:| -2012 (-583 (-1178 (-349 (-857 *5)))))))))) + (-5 *1 (-835 *5 *6 *7 *8)))) ((*1 *2 *3) - (-12 (-5 *3 (-629 *7)) (-4 *7 (-860 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) - (-4 *5 (-13 (-755) (-552 (-1088)))) (-4 *6 (-716)) + (-12 (-5 *3 (-630 *7)) (-4 *7 (-861 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) + (-4 *5 (-13 (-756) (-553 (-1089)))) (-4 *6 (-717)) (-5 *2 - (-582 - (-2 (|:| |eqzro| (-582 *7)) (|:| |neqzro| (-582 *7)) - (|:| |wcond| (-582 (-856 *4))) + (-583 + (-2 (|:| |eqzro| (-583 *7)) (|:| |neqzro| (-583 *7)) + (|:| |wcond| (-583 (-857 *4))) (|:| |bsoln| - (-2 (|:| |partsol| (-1177 (-348 (-856 *4)))) - (|:| -2011 (-582 (-1177 (-348 (-856 *4)))))))))) - (-5 *1 (-834 *4 *5 *6 *7)))) + (-2 (|:| |partsol| (-1178 (-349 (-857 *4)))) + (|:| -2012 (-583 (-1178 (-349 (-857 *4)))))))))) + (-5 *1 (-835 *4 *5 *6 *7)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-629 *9)) (-5 *5 (-829)) (-4 *9 (-860 *6 *8 *7)) - (-4 *6 (-13 (-258) (-120))) (-4 *7 (-13 (-755) (-552 (-1088)))) - (-4 *8 (-716)) + (-12 (-5 *3 (-630 *9)) (-5 *5 (-830)) (-4 *9 (-861 *6 *8 *7)) + (-4 *6 (-13 (-258) (-120))) (-4 *7 (-13 (-756) (-553 (-1089)))) + (-4 *8 (-717)) (-5 *2 - (-582 - (-2 (|:| |eqzro| (-582 *9)) (|:| |neqzro| (-582 *9)) - (|:| |wcond| (-582 (-856 *6))) + (-583 + (-2 (|:| |eqzro| (-583 *9)) (|:| |neqzro| (-583 *9)) + (|:| |wcond| (-583 (-857 *6))) (|:| |bsoln| - (-2 (|:| |partsol| (-1177 (-348 (-856 *6)))) - (|:| -2011 (-582 (-1177 (-348 (-856 *6)))))))))) - (-5 *1 (-834 *6 *7 *8 *9)) (-5 *4 (-582 *9)))) + (-2 (|:| |partsol| (-1178 (-349 (-857 *6)))) + (|:| -2012 (-583 (-1178 (-349 (-857 *6)))))))))) + (-5 *1 (-835 *6 *7 *8 *9)) (-5 *4 (-583 *9)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-629 *9)) (-5 *4 (-582 (-1088))) (-5 *5 (-829)) - (-4 *9 (-860 *6 *8 *7)) (-4 *6 (-13 (-258) (-120))) - (-4 *7 (-13 (-755) (-552 (-1088)))) (-4 *8 (-716)) + (-12 (-5 *3 (-630 *9)) (-5 *4 (-583 (-1089))) (-5 *5 (-830)) + (-4 *9 (-861 *6 *8 *7)) (-4 *6 (-13 (-258) (-120))) + (-4 *7 (-13 (-756) (-553 (-1089)))) (-4 *8 (-717)) (-5 *2 - (-582 - (-2 (|:| |eqzro| (-582 *9)) (|:| |neqzro| (-582 *9)) - (|:| |wcond| (-582 (-856 *6))) + (-583 + (-2 (|:| |eqzro| (-583 *9)) (|:| |neqzro| (-583 *9)) + (|:| |wcond| (-583 (-857 *6))) (|:| |bsoln| - (-2 (|:| |partsol| (-1177 (-348 (-856 *6)))) - (|:| -2011 (-582 (-1177 (-348 (-856 *6)))))))))) - (-5 *1 (-834 *6 *7 *8 *9)))) + (-2 (|:| |partsol| (-1178 (-349 (-857 *6)))) + (|:| -2012 (-583 (-1178 (-349 (-857 *6)))))))))) + (-5 *1 (-835 *6 *7 *8 *9)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-629 *8)) (-5 *4 (-829)) (-4 *8 (-860 *5 *7 *6)) - (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-755) (-552 (-1088)))) - (-4 *7 (-716)) + (-12 (-5 *3 (-630 *8)) (-5 *4 (-830)) (-4 *8 (-861 *5 *7 *6)) + (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-756) (-553 (-1089)))) + (-4 *7 (-717)) (-5 *2 - (-582 - (-2 (|:| |eqzro| (-582 *8)) (|:| |neqzro| (-582 *8)) - (|:| |wcond| (-582 (-856 *5))) + (-583 + (-2 (|:| |eqzro| (-583 *8)) (|:| |neqzro| (-583 *8)) + (|:| |wcond| (-583 (-857 *5))) (|:| |bsoln| - (-2 (|:| |partsol| (-1177 (-348 (-856 *5)))) - (|:| -2011 (-582 (-1177 (-348 (-856 *5)))))))))) - (-5 *1 (-834 *5 *6 *7 *8)))) + (-2 (|:| |partsol| (-1178 (-349 (-857 *5)))) + (|:| -2012 (-583 (-1178 (-349 (-857 *5)))))))))) + (-5 *1 (-835 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-629 *9)) (-5 *4 (-582 *9)) (-5 *5 (-1071)) - (-4 *9 (-860 *6 *8 *7)) (-4 *6 (-13 (-258) (-120))) - (-4 *7 (-13 (-755) (-552 (-1088)))) (-4 *8 (-716)) (-5 *2 (-483)) - (-5 *1 (-834 *6 *7 *8 *9)))) + (-12 (-5 *3 (-630 *9)) (-5 *4 (-583 *9)) (-5 *5 (-1072)) + (-4 *9 (-861 *6 *8 *7)) (-4 *6 (-13 (-258) (-120))) + (-4 *7 (-13 (-756) (-553 (-1089)))) (-4 *8 (-717)) (-5 *2 (-484)) + (-5 *1 (-835 *6 *7 *8 *9)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-629 *9)) (-5 *4 (-582 (-1088))) (-5 *5 (-1071)) - (-4 *9 (-860 *6 *8 *7)) (-4 *6 (-13 (-258) (-120))) - (-4 *7 (-13 (-755) (-552 (-1088)))) (-4 *8 (-716)) (-5 *2 (-483)) - (-5 *1 (-834 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-629 *8)) (-5 *4 (-1071)) (-4 *8 (-860 *5 *7 *6)) - (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-755) (-552 (-1088)))) - (-4 *7 (-716)) (-5 *2 (-483)) (-5 *1 (-834 *5 *6 *7 *8)))) + (-12 (-5 *3 (-630 *9)) (-5 *4 (-583 (-1089))) (-5 *5 (-1072)) + (-4 *9 (-861 *6 *8 *7)) (-4 *6 (-13 (-258) (-120))) + (-4 *7 (-13 (-756) (-553 (-1089)))) (-4 *8 (-717)) (-5 *2 (-484)) + (-5 *1 (-835 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-630 *8)) (-5 *4 (-1072)) (-4 *8 (-861 *5 *7 *6)) + (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-756) (-553 (-1089)))) + (-4 *7 (-717)) (-5 *2 (-484)) (-5 *1 (-835 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-629 *10)) (-5 *4 (-582 *10)) (-5 *5 (-829)) (-5 *6 (-1071)) - (-4 *10 (-860 *7 *9 *8)) (-4 *7 (-13 (-258) (-120))) - (-4 *8 (-13 (-755) (-552 (-1088)))) (-4 *9 (-716)) (-5 *2 (-483)) - (-5 *1 (-834 *7 *8 *9 *10)))) + (-12 (-5 *3 (-630 *10)) (-5 *4 (-583 *10)) (-5 *5 (-830)) (-5 *6 (-1072)) + (-4 *10 (-861 *7 *9 *8)) (-4 *7 (-13 (-258) (-120))) + (-4 *8 (-13 (-756) (-553 (-1089)))) (-4 *9 (-717)) (-5 *2 (-484)) + (-5 *1 (-835 *7 *8 *9 *10)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-629 *10)) (-5 *4 (-582 (-1088))) (-5 *5 (-829)) (-5 *6 (-1071)) - (-4 *10 (-860 *7 *9 *8)) (-4 *7 (-13 (-258) (-120))) - (-4 *8 (-13 (-755) (-552 (-1088)))) (-4 *9 (-716)) (-5 *2 (-483)) - (-5 *1 (-834 *7 *8 *9 *10)))) + (-12 (-5 *3 (-630 *10)) (-5 *4 (-583 (-1089))) (-5 *5 (-830)) (-5 *6 (-1072)) + (-4 *10 (-861 *7 *9 *8)) (-4 *7 (-13 (-258) (-120))) + (-4 *8 (-13 (-756) (-553 (-1089)))) (-4 *9 (-717)) (-5 *2 (-484)) + (-5 *1 (-835 *7 *8 *9 *10)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-629 *9)) (-5 *4 (-829)) (-5 *5 (-1071)) (-4 *9 (-860 *6 *8 *7)) - (-4 *6 (-13 (-258) (-120))) (-4 *7 (-13 (-755) (-552 (-1088)))) - (-4 *8 (-716)) (-5 *2 (-483)) (-5 *1 (-834 *6 *7 *8 *9))))) + (-12 (-5 *3 (-630 *9)) (-5 *4 (-830)) (-5 *5 (-1072)) (-4 *9 (-861 *6 *8 *7)) + (-4 *6 (-13 (-258) (-120))) (-4 *7 (-13 (-756) (-553 (-1089)))) + (-4 *8 (-717)) (-5 *2 (-484)) (-5 *1 (-835 *6 *7 *8 *9))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-582 *4)) (-4 *4 (-312)) (-4 *2 (-1153 *4)) - (-5 *1 (-833 *4 *2))))) + (-12 (-5 *3 (-583 *4)) (-4 *4 (-312)) (-4 *2 (-1154 *4)) + (-5 *1 (-834 *4 *2))))) (((*1 *2 *3) - (-12 (-4 *1 (-831)) (-5 *2 (-2 (|:| -3952 (-582 *1)) (|:| -2408 *1))) - (-5 *3 (-582 *1))))) + (-12 (-4 *1 (-832)) (-5 *2 (-2 (|:| -3953 (-583 *1)) (|:| -2409 *1))) + (-5 *3 (-583 *1))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-831)) (-5 *2 (-631 (-582 *1))) (-5 *3 (-582 *1))))) + (-12 (-4 *1 (-832)) (-5 *2 (-632 (-583 *1))) (-5 *3 (-583 *1))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-582 (-856 *4))) (-5 *3 (-582 (-1088))) (-4 *4 (-390)) - (-5 *1 (-828 *4))))) + (-12 (-5 *2 (-583 (-857 *4))) (-5 *3 (-583 (-1089))) (-4 *4 (-391)) + (-5 *1 (-829 *4))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-582 (-856 *4))) (-5 *3 (-582 (-1088))) (-4 *4 (-390)) - (-5 *1 (-828 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-582 (-483))) (-5 *2 (-815 (-483))) (-5 *1 (-827)))) - ((*1 *2 *3) (-12 (-5 *3 (-883)) (-5 *2 (-815 (-483))) (-5 *1 (-827))))) -(((*1 *2) (-12 (-5 *2 (-815 (-483))) (-5 *1 (-827))))) -(((*1 *2 *3) (-12 (-5 *3 (-582 (-483))) (-5 *2 (-815 (-483))) (-5 *1 (-827)))) - ((*1 *2) (-12 (-5 *2 (-815 (-483))) (-5 *1 (-827))))) -(((*1 *2 *3) (-12 (-5 *3 (-582 (-483))) (-5 *2 (-815 (-483))) (-5 *1 (-827)))) - ((*1 *2) (-12 (-5 *2 (-815 (-483))) (-5 *1 (-827))))) -(((*1 *2 *3) (-12 (-5 *3 (-582 (-483))) (-5 *2 (-815 (-483))) (-5 *1 (-827)))) - ((*1 *2) (-12 (-5 *2 (-815 (-483))) (-5 *1 (-827))))) -(((*1 *2 *3) (-12 (-5 *3 (-582 (-483))) (-5 *2 (-815 (-483))) (-5 *1 (-827)))) - ((*1 *2) (-12 (-5 *2 (-815 (-483))) (-5 *1 (-827))))) -(((*1 *2 *3) (-12 (-5 *3 (-582 (-483))) (-5 *2 (-815 (-483))) (-5 *1 (-827)))) - ((*1 *2) (-12 (-5 *2 (-815 (-483))) (-5 *1 (-827))))) -(((*1 *2 *3) (-12 (-5 *3 (-582 (-483))) (-5 *2 (-815 (-483))) (-5 *1 (-827)))) - ((*1 *2) (-12 (-5 *2 (-815 (-483))) (-5 *1 (-827))))) -(((*1 *2 *3) (-12 (-5 *3 (-829)) (-5 *2 (-815 (-483))) (-5 *1 (-827)))) - ((*1 *2 *3) (-12 (-5 *3 (-582 (-483))) (-5 *2 (-815 (-483))) (-5 *1 (-827))))) -(((*1 *2 *3) (-12 (-5 *3 (-829)) (-5 *2 (-815 (-483))) (-5 *1 (-827)))) - ((*1 *2 *3) (-12 (-5 *3 (-582 (-483))) (-5 *2 (-815 (-483))) (-5 *1 (-827))))) -(((*1 *2 *3) (-12 (-5 *3 (-582 (-829))) (-5 *2 (-815 (-483))) (-5 *1 (-827))))) -(((*1 *2 *3) (-12 (-5 *3 (-829)) (-5 *2 (-815 (-483))) (-5 *1 (-827)))) - ((*1 *2 *3) (-12 (-5 *3 (-582 (-483))) (-5 *2 (-815 (-483))) (-5 *1 (-827))))) -(((*1 *2 *3) (-12 (-5 *3 (-829)) (-5 *2 (-815 (-483))) (-5 *1 (-827)))) - ((*1 *2 *3) (-12 (-5 *3 (-582 (-483))) (-5 *2 (-815 (-483))) (-5 *1 (-827))))) + (-12 (-5 *2 (-583 (-857 *4))) (-5 *3 (-583 (-1089))) (-4 *4 (-391)) + (-5 *1 (-829 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-583 (-484))) (-5 *2 (-816 (-484))) (-5 *1 (-828)))) + ((*1 *2 *3) (-12 (-5 *3 (-884)) (-5 *2 (-816 (-484))) (-5 *1 (-828))))) +(((*1 *2) (-12 (-5 *2 (-816 (-484))) (-5 *1 (-828))))) +(((*1 *2 *3) (-12 (-5 *3 (-583 (-484))) (-5 *2 (-816 (-484))) (-5 *1 (-828)))) + ((*1 *2) (-12 (-5 *2 (-816 (-484))) (-5 *1 (-828))))) +(((*1 *2 *3) (-12 (-5 *3 (-583 (-484))) (-5 *2 (-816 (-484))) (-5 *1 (-828)))) + ((*1 *2) (-12 (-5 *2 (-816 (-484))) (-5 *1 (-828))))) +(((*1 *2 *3) (-12 (-5 *3 (-583 (-484))) (-5 *2 (-816 (-484))) (-5 *1 (-828)))) + ((*1 *2) (-12 (-5 *2 (-816 (-484))) (-5 *1 (-828))))) +(((*1 *2 *3) (-12 (-5 *3 (-583 (-484))) (-5 *2 (-816 (-484))) (-5 *1 (-828)))) + ((*1 *2) (-12 (-5 *2 (-816 (-484))) (-5 *1 (-828))))) +(((*1 *2 *3) (-12 (-5 *3 (-583 (-484))) (-5 *2 (-816 (-484))) (-5 *1 (-828)))) + ((*1 *2) (-12 (-5 *2 (-816 (-484))) (-5 *1 (-828))))) +(((*1 *2 *3) (-12 (-5 *3 (-583 (-484))) (-5 *2 (-816 (-484))) (-5 *1 (-828)))) + ((*1 *2) (-12 (-5 *2 (-816 (-484))) (-5 *1 (-828))))) +(((*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-816 (-484))) (-5 *1 (-828)))) + ((*1 *2 *3) (-12 (-5 *3 (-583 (-484))) (-5 *2 (-816 (-484))) (-5 *1 (-828))))) +(((*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-816 (-484))) (-5 *1 (-828)))) + ((*1 *2 *3) (-12 (-5 *3 (-583 (-484))) (-5 *2 (-816 (-484))) (-5 *1 (-828))))) +(((*1 *2 *3) (-12 (-5 *3 (-583 (-830))) (-5 *2 (-816 (-484))) (-5 *1 (-828))))) +(((*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-816 (-484))) (-5 *1 (-828)))) + ((*1 *2 *3) (-12 (-5 *3 (-583 (-484))) (-5 *2 (-816 (-484))) (-5 *1 (-828))))) +(((*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-816 (-484))) (-5 *1 (-828)))) + ((*1 *2 *3) (-12 (-5 *3 (-583 (-484))) (-5 *2 (-816 (-484))) (-5 *1 (-828))))) (((*1 *2 *2 *2) - (-12 (-4 *3 (-716)) (-4 *4 (-755)) (-4 *5 (-258)) (-5 *1 (-826 *3 *4 *5 *2)) - (-4 *2 (-860 *5 *3 *4)))) + (-12 (-4 *3 (-717)) (-4 *4 (-756)) (-4 *5 (-258)) (-5 *1 (-827 *3 *4 *5 *2)) + (-4 *2 (-861 *5 *3 *4)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1083 *6)) (-4 *6 (-860 *5 *3 *4)) (-4 *3 (-716)) (-4 *4 (-755)) - (-4 *5 (-258)) (-5 *1 (-826 *3 *4 *5 *6)))) + (-12 (-5 *2 (-1084 *6)) (-4 *6 (-861 *5 *3 *4)) (-4 *3 (-717)) (-4 *4 (-756)) + (-4 *5 (-258)) (-5 *1 (-827 *3 *4 *5 *6)))) ((*1 *2 *3) - (-12 (-5 *3 (-582 *2)) (-4 *2 (-860 *6 *4 *5)) (-5 *1 (-826 *4 *5 *6 *2)) - (-4 *4 (-716)) (-4 *5 (-755)) (-4 *6 (-258))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-346 *2)) (-4 *2 (-258)) (-5 *1 (-824 *2)))) + (-12 (-5 *3 (-583 *2)) (-4 *2 (-861 *6 *4 *5)) (-5 *1 (-827 *4 *5 *6 *2)) + (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-258))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-347 *2)) (-4 *2 (-258)) (-5 *1 (-825 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-348 (-856 *5))) (-5 *4 (-1088)) (-4 *5 (-13 (-258) (-120))) - (-5 *2 (-51)) (-5 *1 (-825 *5)))) + (-12 (-5 *3 (-349 (-857 *5))) (-5 *4 (-1089)) (-4 *5 (-13 (-258) (-120))) + (-5 *2 (-51)) (-5 *1 (-826 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-346 (-856 *6))) (-5 *5 (-1088)) (-5 *3 (-856 *6)) - (-4 *6 (-13 (-258) (-120))) (-5 *2 (-51)) (-5 *1 (-825 *6))))) -(((*1 *1 *1) (-12 (-5 *1 (-824 *2)) (-4 *2 (-258))))) -(((*1 *2 *1) (-12 (-5 *2 (-346 *3)) (-5 *1 (-824 *3)) (-4 *3 (-258))))) -(((*1 *2 *1) (-12 (-5 *1 (-824 *2)) (-4 *2 (-258))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-824 *3)) (-4 *3 (-258))))) -(((*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-824 *3)) (-4 *3 (-258))))) -(((*1 *2 *3 *3) (-12 (-5 *2 (-1083 *3)) (-5 *1 (-824 *3)) (-4 *3 (-258))))) -(((*1 *1 *1) (-12 (-5 *1 (-824 *2)) (-4 *2 (-258))))) -(((*1 *2 *2) - (-12 (-4 *3 (-1153 (-348 (-483)))) (-5 *1 (-823 *3 *2)) - (-4 *2 (-1153 (-348 *3)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1153 (-348 *2))) (-5 *2 (-483)) (-5 *1 (-823 *4 *3)) - (-4 *3 (-1153 (-348 *4)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-582 (-2 (|:| |den| (-483)) (|:| |gcdnum| (-483))))) - (-4 *4 (-1153 (-348 *2))) (-5 *2 (-483)) (-5 *1 (-823 *4 *5)) - (-4 *5 (-1153 (-348 *4)))))) -(((*1 *2 *3) - (-12 (-4 *3 (-1153 (-348 (-483)))) - (-5 *2 (-2 (|:| |den| (-483)) (|:| |gcdnum| (-483)))) (-5 *1 (-823 *3 *4)) - (-4 *4 (-1153 (-348 *3))))) - ((*1 *2 *3) - (-12 (-4 *4 (-1153 (-348 *2))) (-5 *2 (-483)) (-5 *1 (-823 *4 *3)) - (-4 *3 (-1153 (-348 *4)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-483)) (-4 *4 (-1153 (-348 *3))) (-5 *2 (-829)) - (-5 *1 (-823 *4 *5)) (-4 *5 (-1153 (-348 *4)))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-283 *5 *6 *7 *8)) (-4 *5 (-362 *4)) - (-4 *6 (-1153 *5)) (-4 *7 (-1153 (-348 *6))) (-4 *8 (-291 *5 *6 *7)) - (-4 *4 (-13 (-494) (-949 (-483)))) - (-5 *2 (-2 (|:| -3770 (-693)) (|:| -2382 *8))) - (-5 *1 (-821 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-283 (-348 (-483)) *4 *5 *6)) - (-4 *4 (-1153 (-348 (-483)))) (-4 *5 (-1153 (-348 *4))) - (-4 *6 (-291 (-348 (-483)) *4 *5)) - (-5 *2 (-2 (|:| -3770 (-693)) (|:| -2382 *6))) (-5 *1 (-822 *4 *5 *6))))) -(((*1 *2 *3) - (-12 (-5 *3 (-283 *5 *6 *7 *8)) (-4 *5 (-362 *4)) (-4 *6 (-1153 *5)) - (-4 *7 (-1153 (-348 *6))) (-4 *8 (-291 *5 *6 *7)) - (-4 *4 (-13 (-494) (-949 (-483)))) (-5 *2 (-85)) - (-5 *1 (-821 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (-12 (-5 *3 (-283 (-348 (-483)) *4 *5 *6)) (-4 *4 (-1153 (-348 (-483)))) - (-4 *5 (-1153 (-348 *4))) (-4 *6 (-291 (-348 (-483)) *4 *5)) (-5 *2 (-85)) - (-5 *1 (-822 *4 *5 *6))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1083 *1)) (-4 *1 (-390)))) + (-12 (-5 *4 (-347 (-857 *6))) (-5 *5 (-1089)) (-5 *3 (-857 *6)) + (-4 *6 (-13 (-258) (-120))) (-5 *2 (-51)) (-5 *1 (-826 *6))))) +(((*1 *1 *1) (-12 (-5 *1 (-825 *2)) (-4 *2 (-258))))) +(((*1 *2 *1) (-12 (-5 *2 (-347 *3)) (-5 *1 (-825 *3)) (-4 *3 (-258))))) +(((*1 *2 *1) (-12 (-5 *1 (-825 *2)) (-4 *2 (-258))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-825 *3)) (-4 *3 (-258))))) +(((*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-825 *3)) (-4 *3 (-258))))) +(((*1 *2 *3 *3) (-12 (-5 *2 (-1084 *3)) (-5 *1 (-825 *3)) (-4 *3 (-258))))) +(((*1 *1 *1) (-12 (-5 *1 (-825 *2)) (-4 *2 (-258))))) +(((*1 *2 *2) + (-12 (-4 *3 (-1154 (-349 (-484)))) (-5 *1 (-824 *3 *2)) + (-4 *2 (-1154 (-349 *3)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1154 (-349 *2))) (-5 *2 (-484)) (-5 *1 (-824 *4 *3)) + (-4 *3 (-1154 (-349 *4)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-583 (-2 (|:| |den| (-484)) (|:| |gcdnum| (-484))))) + (-4 *4 (-1154 (-349 *2))) (-5 *2 (-484)) (-5 *1 (-824 *4 *5)) + (-4 *5 (-1154 (-349 *4)))))) +(((*1 *2 *3) + (-12 (-4 *3 (-1154 (-349 (-484)))) + (-5 *2 (-2 (|:| |den| (-484)) (|:| |gcdnum| (-484)))) (-5 *1 (-824 *3 *4)) + (-4 *4 (-1154 (-349 *3))))) + ((*1 *2 *3) + (-12 (-4 *4 (-1154 (-349 *2))) (-5 *2 (-484)) (-5 *1 (-824 *4 *3)) + (-4 *3 (-1154 (-349 *4)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-484)) (-4 *4 (-1154 (-349 *3))) (-5 *2 (-830)) + (-5 *1 (-824 *4 *5)) (-4 *5 (-1154 (-349 *4)))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-283 *5 *6 *7 *8)) (-4 *5 (-363 *4)) + (-4 *6 (-1154 *5)) (-4 *7 (-1154 (-349 *6))) (-4 *8 (-291 *5 *6 *7)) + (-4 *4 (-13 (-495) (-950 (-484)))) + (-5 *2 (-2 (|:| -3771 (-694)) (|:| -2383 *8))) + (-5 *1 (-822 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-283 (-349 (-484)) *4 *5 *6)) + (-4 *4 (-1154 (-349 (-484)))) (-4 *5 (-1154 (-349 *4))) + (-4 *6 (-291 (-349 (-484)) *4 *5)) + (-5 *2 (-2 (|:| -3771 (-694)) (|:| -2383 *6))) (-5 *1 (-823 *4 *5 *6))))) +(((*1 *2 *3) + (-12 (-5 *3 (-283 *5 *6 *7 *8)) (-4 *5 (-363 *4)) (-4 *6 (-1154 *5)) + (-4 *7 (-1154 (-349 *6))) (-4 *8 (-291 *5 *6 *7)) + (-4 *4 (-13 (-495) (-950 (-484)))) (-5 *2 (-85)) + (-5 *1 (-822 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (-12 (-5 *3 (-283 (-349 (-484)) *4 *5 *6)) (-4 *4 (-1154 (-349 (-484)))) + (-4 *5 (-1154 (-349 *4))) (-4 *6 (-291 (-349 (-484)) *4 *5)) (-5 *2 (-85)) + (-5 *1 (-823 *4 *5 *6))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1084 *1)) (-4 *1 (-391)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1083 *6)) (-4 *6 (-860 *5 *3 *4)) (-4 *3 (-716)) (-4 *4 (-755)) - (-4 *5 (-820)) (-5 *1 (-395 *3 *4 *5 *6)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1083 *1)) (-4 *1 (-820))))) -(((*1 *2 *3) - (-12 (-5 *2 (-346 (-1083 *1))) (-5 *1 (-265 *4)) (-5 *3 (-1083 *1)) - (-4 *4 (-390)) (-4 *4 (-494)) (-4 *4 (-1012)))) - ((*1 *2 *3) (-12 (-4 *1 (-820)) (-5 *2 (-346 (-1083 *1))) (-5 *3 (-1083 *1))))) -(((*1 *2 *3) - (-12 (-5 *2 (-346 (-1083 *1))) (-5 *1 (-265 *4)) (-5 *3 (-1083 *1)) - (-4 *4 (-390)) (-4 *4 (-494)) (-4 *4 (-1012)))) - ((*1 *2 *3) (-12 (-4 *1 (-820)) (-5 *2 (-346 (-1083 *1))) (-5 *3 (-1083 *1))))) -(((*1 *2 *3) (-12 (-4 *1 (-820)) (-5 *2 (-346 (-1083 *1))) (-5 *3 (-1083 *1))))) + (-12 (-5 *2 (-1084 *6)) (-4 *6 (-861 *5 *3 *4)) (-4 *3 (-717)) (-4 *4 (-756)) + (-4 *5 (-821)) (-5 *1 (-396 *3 *4 *5 *6)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1084 *1)) (-4 *1 (-821))))) +(((*1 *2 *3) + (-12 (-5 *2 (-347 (-1084 *1))) (-5 *1 (-265 *4)) (-5 *3 (-1084 *1)) + (-4 *4 (-391)) (-4 *4 (-495)) (-4 *4 (-1013)))) + ((*1 *2 *3) (-12 (-4 *1 (-821)) (-5 *2 (-347 (-1084 *1))) (-5 *3 (-1084 *1))))) +(((*1 *2 *3) + (-12 (-5 *2 (-347 (-1084 *1))) (-5 *1 (-265 *4)) (-5 *3 (-1084 *1)) + (-4 *4 (-391)) (-4 *4 (-495)) (-4 *4 (-1013)))) + ((*1 *2 *3) (-12 (-4 *1 (-821)) (-5 *2 (-347 (-1084 *1))) (-5 *3 (-1084 *1))))) +(((*1 *2 *3) (-12 (-4 *1 (-821)) (-5 *2 (-347 (-1084 *1))) (-5 *3 (-1084 *1))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-582 (-1083 *5))) (-5 *3 (-1083 *5)) (-4 *5 (-139 *4)) - (-4 *4 (-482)) (-5 *1 (-122 *4 *5)))) + (|partial| -12 (-5 *2 (-583 (-1084 *5))) (-5 *3 (-1084 *5)) (-4 *5 (-139 *4)) + (-4 *4 (-483)) (-5 *1 (-122 *4 *5)))) ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-582 *3)) (-4 *3 (-1153 *5)) (-4 *5 (-1153 *4)) + (|partial| -12 (-5 *2 (-583 *3)) (-4 *3 (-1154 *5)) (-4 *5 (-1154 *4)) (-4 *4 (-299)) (-5 *1 (-307 *4 *5 *3)))) ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-582 (-1083 (-483)))) (-5 *3 (-1083 (-483))) - (-5 *1 (-507)))) + (|partial| -12 (-5 *2 (-583 (-1084 (-484)))) (-5 *3 (-1084 (-484))) + (-5 *1 (-508)))) ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-582 (-1083 *1))) (-5 *3 (-1083 *1)) (-4 *1 (-820))))) + (|partial| -12 (-5 *2 (-583 (-1084 *1))) (-5 *3 (-1084 *1)) (-4 *1 (-821))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-629 *1)) (-4 *1 (-299)) (-5 *2 (-1177 *1)))) + (|partial| -12 (-5 *3 (-630 *1)) (-4 *1 (-299)) (-5 *2 (-1178 *1)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-629 *1)) (-4 *1 (-118)) (-4 *1 (-820)) - (-5 *2 (-1177 *1))))) -(((*1 *2 *1) (-12 (-5 *2 (-631 *1)) (-4 *1 (-118)))) + (|partial| -12 (-5 *3 (-630 *1)) (-4 *1 (-118)) (-4 *1 (-821)) + (-5 *2 (-1178 *1))))) +(((*1 *2 *1) (-12 (-5 *2 (-632 *1)) (-4 *1 (-118)))) ((*1 *1 *1) (-4 *1 (-299))) - ((*1 *2 *1) (-12 (-5 *2 (-631 *1)) (-4 *1 (-118)) (-4 *1 (-820))))) + ((*1 *2 *1) (-12 (-5 *2 (-632 *1)) (-4 *1 (-118)) (-4 *1 (-821))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-582 *7)) (-4 *7 (-755)) (-4 *5 (-820)) (-4 *6 (-716)) - (-4 *8 (-860 *5 *6 *7)) (-5 *2 (-346 (-1083 *8))) (-5 *1 (-817 *5 *6 *7 *8)) - (-5 *4 (-1083 *8)))) + (-12 (-5 *3 (-583 *7)) (-4 *7 (-756)) (-4 *5 (-821)) (-4 *6 (-717)) + (-4 *8 (-861 *5 *6 *7)) (-5 *2 (-347 (-1084 *8))) (-5 *1 (-818 *5 *6 *7 *8)) + (-5 *4 (-1084 *8)))) ((*1 *2 *3) - (-12 (-4 *4 (-820)) (-4 *5 (-1153 *4)) (-5 *2 (-346 (-1083 *5))) - (-5 *1 (-818 *4 *5)) (-5 *3 (-1083 *5))))) + (-12 (-4 *4 (-821)) (-4 *5 (-1154 *4)) (-5 *2 (-347 (-1084 *5))) + (-5 *1 (-819 *4 *5)) (-5 *3 (-1084 *5))))) (((*1 *2) - (-12 (-4 *3 (-716)) (-4 *4 (-755)) (-4 *2 (-820)) (-5 *1 (-395 *3 *4 *2 *5)) - (-4 *5 (-860 *2 *3 *4)))) + (-12 (-4 *3 (-717)) (-4 *4 (-756)) (-4 *2 (-821)) (-5 *1 (-396 *3 *4 *2 *5)) + (-4 *5 (-861 *2 *3 *4)))) ((*1 *2) - (-12 (-4 *3 (-716)) (-4 *4 (-755)) (-4 *2 (-820)) (-5 *1 (-817 *2 *3 *4 *5)) - (-4 *5 (-860 *2 *3 *4)))) - ((*1 *2) (-12 (-4 *2 (-820)) (-5 *1 (-818 *2 *3)) (-4 *3 (-1153 *2))))) + (-12 (-4 *3 (-717)) (-4 *4 (-756)) (-4 *2 (-821)) (-5 *1 (-818 *2 *3 *4 *5)) + (-4 *5 (-861 *2 *3 *4)))) + ((*1 *2) (-12 (-4 *2 (-821)) (-5 *1 (-819 *2 *3)) (-4 *3 (-1154 *2))))) (((*1 *2 *3) - (-12 (-4 *4 (-820)) (-4 *5 (-716)) (-4 *6 (-755)) (-4 *7 (-860 *4 *5 *6)) - (-5 *2 (-346 (-1083 *7))) (-5 *1 (-817 *4 *5 *6 *7)) (-5 *3 (-1083 *7)))) + (-12 (-4 *4 (-821)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-861 *4 *5 *6)) + (-5 *2 (-347 (-1084 *7))) (-5 *1 (-818 *4 *5 *6 *7)) (-5 *3 (-1084 *7)))) ((*1 *2 *3) - (-12 (-4 *4 (-820)) (-4 *5 (-1153 *4)) (-5 *2 (-346 (-1083 *5))) - (-5 *1 (-818 *4 *5)) (-5 *3 (-1083 *5))))) + (-12 (-4 *4 (-821)) (-4 *5 (-1154 *4)) (-5 *2 (-347 (-1084 *5))) + (-5 *1 (-819 *4 *5)) (-5 *3 (-1084 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-820)) (-4 *5 (-716)) (-4 *6 (-755)) (-4 *7 (-860 *4 *5 *6)) - (-5 *2 (-346 (-1083 *7))) (-5 *1 (-817 *4 *5 *6 *7)) (-5 *3 (-1083 *7)))) + (-12 (-4 *4 (-821)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-861 *4 *5 *6)) + (-5 *2 (-347 (-1084 *7))) (-5 *1 (-818 *4 *5 *6 *7)) (-5 *3 (-1084 *7)))) ((*1 *2 *3) - (-12 (-4 *4 (-820)) (-4 *5 (-1153 *4)) (-5 *2 (-346 (-1083 *5))) - (-5 *1 (-818 *4 *5)) (-5 *3 (-1083 *5))))) + (-12 (-4 *4 (-821)) (-4 *5 (-1154 *4)) (-5 *2 (-347 (-1084 *5))) + (-5 *1 (-819 *4 *5)) (-5 *3 (-1084 *5))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-582 (-1083 *7))) (-5 *3 (-1083 *7)) - (-4 *7 (-860 *4 *5 *6)) (-4 *4 (-820)) (-4 *5 (-716)) (-4 *6 (-755)) - (-5 *1 (-817 *4 *5 *6 *7)))) + (|partial| -12 (-5 *2 (-583 (-1084 *7))) (-5 *3 (-1084 *7)) + (-4 *7 (-861 *4 *5 *6)) (-4 *4 (-821)) (-4 *5 (-717)) (-4 *6 (-756)) + (-5 *1 (-818 *4 *5 *6 *7)))) ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-582 (-1083 *5))) (-5 *3 (-1083 *5)) - (-4 *5 (-1153 *4)) (-4 *4 (-820)) (-5 *1 (-818 *4 *5))))) + (|partial| -12 (-5 *2 (-583 (-1084 *5))) (-5 *3 (-1084 *5)) + (-4 *5 (-1154 *4)) (-4 *4 (-821)) (-5 *1 (-819 *4 *5))))) (((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *2 (-582 (-1083 *7))) (-5 *3 (-1083 *7)) - (-4 *7 (-860 *5 *6 *4)) (-4 *5 (-820)) (-4 *6 (-716)) (-4 *4 (-755)) - (-5 *1 (-817 *5 *6 *4 *7))))) -(((*1 *2 *1) - (-12 (-4 *3 (-312)) (-4 *4 (-716)) (-4 *5 (-755)) (-5 *2 (-582 *6)) - (-5 *1 (-442 *3 *4 *5 *6)) (-4 *6 (-860 *3 *4 *5)))) - ((*1 *2 *1) (-12 (-5 *2 (-582 (-812 *3))) (-5 *1 (-815 *3)) (-4 *3 (-1012))))) -(((*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-31)))) - ((*1 *2) (-12 (-4 *1 (-345)) (-5 *2 (-829)))) ((*1 *1) (-4 *1 (-482))) - ((*1 *2 *1) (-12 (-5 *2 (-582 *3)) (-5 *1 (-815 *3)) (-4 *3 (-1012))))) -(((*1 *2 *1) (-12 (-5 *2 (-582 (-812 *3))) (-5 *1 (-815 *3)) (-4 *3 (-1012))))) -(((*1 *2 *1) - (-12 (-5 *2 (-582 (-582 (-693)))) (-5 *1 (-815 *3)) (-4 *3 (-1012))))) -(((*1 *1 *2) (-12 (-5 *2 (-582 (-812 *3))) (-4 *3 (-1012)) (-5 *1 (-815 *3))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-814 *3)) (-4 *3 (-1012)) (-5 *2 (-1008 *3)))) + (|partial| -12 (-5 *2 (-583 (-1084 *7))) (-5 *3 (-1084 *7)) + (-4 *7 (-861 *5 *6 *4)) (-4 *5 (-821)) (-4 *6 (-717)) (-4 *4 (-756)) + (-5 *1 (-818 *5 *6 *4 *7))))) +(((*1 *2 *1) + (-12 (-4 *3 (-312)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-583 *6)) + (-5 *1 (-443 *3 *4 *5 *6)) (-4 *6 (-861 *3 *4 *5)))) + ((*1 *2 *1) (-12 (-5 *2 (-583 (-813 *3))) (-5 *1 (-816 *3)) (-4 *3 (-1013))))) +(((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-31)))) + ((*1 *2) (-12 (-4 *1 (-346)) (-5 *2 (-830)))) ((*1 *1) (-4 *1 (-483))) + ((*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-816 *3)) (-4 *3 (-1013))))) +(((*1 *2 *1) (-12 (-5 *2 (-583 (-813 *3))) (-5 *1 (-816 *3)) (-4 *3 (-1013))))) +(((*1 *2 *1) + (-12 (-5 *2 (-583 (-583 (-694)))) (-5 *1 (-816 *3)) (-4 *3 (-1013))))) +(((*1 *1 *2) (-12 (-5 *2 (-583 (-813 *3))) (-4 *3 (-1013)) (-5 *1 (-816 *3))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-815 *3)) (-4 *3 (-1013)) (-5 *2 (-1009 *3)))) ((*1 *2 *1 *3) - (-12 (-4 *4 (-1012)) (-5 *2 (-1008 (-582 *4))) (-5 *1 (-815 *4)) - (-5 *3 (-582 *4)))) + (-12 (-4 *4 (-1013)) (-5 *2 (-1009 (-583 *4))) (-5 *1 (-816 *4)) + (-5 *3 (-583 *4)))) ((*1 *2 *1 *3) - (-12 (-4 *4 (-1012)) (-5 *2 (-1008 (-1008 *4))) (-5 *1 (-815 *4)) - (-5 *3 (-1008 *4)))) - ((*1 *2 *1 *3) (-12 (-5 *2 (-1008 *3)) (-5 *1 (-815 *3)) (-4 *3 (-1012))))) + (-12 (-4 *4 (-1013)) (-5 *2 (-1009 (-1009 *4))) (-5 *1 (-816 *4)) + (-5 *3 (-1009 *4)))) + ((*1 *2 *1 *3) (-12 (-5 *2 (-1009 *3)) (-5 *1 (-816 *3)) (-4 *3 (-1013))))) (((*1 *2 *1) - (-12 (-5 *2 (-1008 (-1008 *3))) (-5 *1 (-815 *3)) (-4 *3 (-1012))))) + (-12 (-5 *2 (-1009 (-1009 *3))) (-5 *1 (-816 *3)) (-4 *3 (-1013))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-812 *4)) (-4 *4 (-1012)) (-5 *2 (-582 (-693))) - (-5 *1 (-815 *4))))) + (-12 (-5 *3 (-813 *4)) (-4 *4 (-1013)) (-5 *2 (-583 (-694))) + (-5 *1 (-816 *4))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-812 *4)) (-4 *4 (-1012)) (-5 *2 (-582 (-693))) - (-5 *1 (-815 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-814 *3)) (-4 *3 (-1012)) (-5 *2 (-1008 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1008 *3)) (-5 *1 (-815 *3)) (-4 *3 (-1012))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-758)) (-5 *2 (-85)))) - ((*1 *1 *1 *1) (-5 *1 (-771))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-814 *3)) (-4 *3 (-1012)) (-5 *2 (-85)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-815 *3)) (-4 *3 (-1012))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-758)) (-5 *2 (-85)))) - ((*1 *1 *1 *1) (-5 *1 (-771))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-815 *3)) (-4 *3 (-1012))))) + (-12 (-5 *3 (-813 *4)) (-4 *4 (-1013)) (-5 *2 (-583 (-694))) + (-5 *1 (-816 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-815 *3)) (-4 *3 (-1013)) (-5 *2 (-1009 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1009 *3)) (-5 *1 (-816 *3)) (-4 *3 (-1013))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-759)) (-5 *2 (-85)))) + ((*1 *1 *1 *1) (-5 *1 (-772))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-815 *3)) (-4 *3 (-1013)) (-5 *2 (-85)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-816 *3)) (-4 *3 (-1013))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-759)) (-5 *2 (-85)))) + ((*1 *1 *1 *1) (-5 *1 (-772))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-816 *3)) (-4 *3 (-1013))))) (((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-483)) (-5 *2 (-1183)) (-5 *1 (-815 *4)) (-4 *4 (-1012)))) - ((*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-815 *3)) (-4 *3 (-1012))))) -(((*1 *1 *2) (-12 (-5 *2 (-582 *3)) (-4 *3 (-1012)) (-4 *1 (-814 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-582 (-582 *3))) (-4 *3 (-1012)) (-4 *1 (-814 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1054 *4 *2)) (-14 *4 (-829)) - (-4 *2 (-13 (-960) (-10 -7 (-6 (-3995 "*"))))) (-5 *1 (-813 *4 *2))))) -(((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| |preimage| (-582 *3)) (|:| |image| (-582 *3)))) - (-5 *1 (-812 *3)) (-4 *3 (-1012))))) -(((*1 *1 *2) (-12 (-5 *2 (-582 (-582 *3))) (-4 *3 (-1012)) (-5 *1 (-812 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-582 (-582 *3))) (-4 *3 (-1012)) (-5 *1 (-812 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-883)) (-5 *1 (-812 *3)) (-4 *3 (-1012))))) -(((*1 *2 *1) (-12 (-5 *2 (-693)) (-5 *1 (-812 *3)) (-4 *3 (-1012))))) -(((*1 *2 *1) (-12 (-4 *1 (-949 (-483))) (-4 *1 (-254)) (-5 *2 (-85)))) - ((*1 *2 *1) (-12 (-4 *1 (-482)) (-5 *2 (-85)))) - ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-812 *3)) (-4 *3 (-1012))))) -(((*1 *2 *1) (-12 (-4 *1 (-949 (-483))) (-4 *1 (-254)) (-5 *2 (-85)))) - ((*1 *2 *1) (-12 (-4 *1 (-482)) (-5 *2 (-85)))) - ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-812 *3)) (-4 *3 (-1012))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1008 *3)) (-5 *1 (-812 *3)) (-4 *3 (-318)) (-4 *3 (-1012))))) -(((*1 *1 *2) (-12 (-5 *2 (-582 *3)) (-4 *3 (-1012)) (-5 *1 (-812 *3))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-811 *2)) (-4 *2 (-1012)))) - ((*1 *1 *2) (-12 (-5 *1 (-811 *2)) (-4 *2 (-1012))))) -(((*1 *2 *1) (-12 (-4 *1 (-186 *2)) (-4 *2 (-1127)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-189)) (-5 *2 (-693)))) + (-12 (-5 *3 (-484)) (-5 *2 (-1184)) (-5 *1 (-816 *4)) (-4 *4 (-1013)))) + ((*1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-816 *3)) (-4 *3 (-1013))))) +(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1013)) (-4 *1 (-815 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1013)) (-4 *1 (-815 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1055 *4 *2)) (-14 *4 (-830)) + (-4 *2 (-13 (-961) (-10 -7 (-6 (-3996 "*"))))) (-5 *1 (-814 *4 *2))))) +(((*1 *2 *1) + (-12 (-5 *2 (-2 (|:| |preimage| (-583 *3)) (|:| |image| (-583 *3)))) + (-5 *1 (-813 *3)) (-4 *3 (-1013))))) +(((*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1013)) (-5 *1 (-813 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1013)) (-5 *1 (-813 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-884)) (-5 *1 (-813 *3)) (-4 *3 (-1013))))) +(((*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-813 *3)) (-4 *3 (-1013))))) +(((*1 *2 *1) (-12 (-4 *1 (-950 (-484))) (-4 *1 (-254)) (-5 *2 (-85)))) + ((*1 *2 *1) (-12 (-4 *1 (-483)) (-5 *2 (-85)))) + ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-813 *3)) (-4 *3 (-1013))))) +(((*1 *2 *1) (-12 (-4 *1 (-950 (-484))) (-4 *1 (-254)) (-5 *2 (-85)))) + ((*1 *2 *1) (-12 (-4 *1 (-483)) (-5 *2 (-85)))) + ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-813 *3)) (-4 *3 (-1013))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1009 *3)) (-5 *1 (-813 *3)) (-4 *3 (-319)) (-4 *3 (-1013))))) +(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1013)) (-5 *1 (-813 *3))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-812 *2)) (-4 *2 (-1013)))) + ((*1 *1 *2) (-12 (-5 *1 (-812 *2)) (-4 *2 (-1013))))) +(((*1 *2 *1) (-12 (-4 *1 (-186 *2)) (-4 *2 (-1128)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-189)) (-5 *2 (-694)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-693)) (-4 *1 (-225 *4)) (-4 *4 (-1127)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-225 *3)) (-4 *3 (-1127)))) - ((*1 *1) (-12 (-4 *1 (-599 *2)) (-4 *2 (-960)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-805 *2 *3)) (-4 *3 (-1127)) (-4 *2 (-1127)))) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-694)) (-4 *1 (-225 *4)) (-4 *4 (-1128)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-225 *3)) (-4 *3 (-1128)))) + ((*1 *1) (-12 (-4 *1 (-600 *2)) (-4 *2 (-961)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-806 *2 *3)) (-4 *3 (-1128)) (-4 *2 (-1128)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-582 *4)) (-5 *3 (-582 (-693))) (-4 *1 (-810 *4)) - (-4 *4 (-1012)))) - ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-693)) (-4 *1 (-810 *2)) (-4 *2 (-1012)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-582 *3)) (-4 *1 (-810 *3)) (-4 *3 (-1012))))) + (-12 (-5 *2 (-583 *4)) (-5 *3 (-583 (-694))) (-4 *1 (-811 *4)) + (-4 *4 (-1013)))) + ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-694)) (-4 *1 (-811 *2)) (-4 *2 (-1013)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *1 (-811 *3)) (-4 *3 (-1013))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-693)) (-4 *4 (-312)) (-5 *1 (-806 *2 *4)) (-4 *2 (-1153 *4))))) + (-12 (-5 *3 (-694)) (-4 *4 (-312)) (-5 *1 (-807 *2 *4)) (-4 *2 (-1154 *4))))) (((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-312)) (-5 *1 (-806 *2 *3)) (-4 *2 (-1153 *3))))) -(((*1 *1) (-12 (-4 *1 (-403 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) - ((*1 *1) (-5 *1 (-472))) ((*1 *1) (-4 *1 (-658))) ((*1 *1) (-4 *1 (-662))) - ((*1 *1) (-12 (-5 *1 (-799 *2)) (-4 *2 (-1012)))) - ((*1 *1) (-12 (-5 *1 (-802 *2)) (-4 *2 (-755))))) -(((*1 *2 *1) - (-12 (-4 *1 (-333 *3 *4)) (-4 *3 (-960)) (-4 *4 (-1012)) - (-5 *2 (-582 (-2 (|:| |k| *4) (|:| |c| *3)))))) - ((*1 *2 *1) - (-12 (-5 *2 (-582 (-2 (|:| |k| (-802 *3)) (|:| |c| *4)))) - (-5 *1 (-565 *3 *4 *5)) (-4 *3 (-755)) - (-4 *4 (-13 (-146) (-653 (-348 (-483))))) (-14 *5 (-829)))) - ((*1 *2 *1) (-12 (-5 *2 (-582 (-613 *3))) (-5 *1 (-802 *3)) (-4 *3 (-755))))) -(((*1 *2 *1) - (-12 (-5 *2 (-85)) (-5 *1 (-50 *3 *4)) (-4 *3 (-960)) - (-14 *4 (-582 (-1088))))) - ((*1 *2 *3) - (-12 (-5 *3 (-51)) (-5 *2 (-85)) (-5 *1 (-52 *4)) (-4 *4 (-1127)))) - ((*1 *2 *1) - (-12 (-5 *2 (-85)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-960) (-755))) - (-14 *4 (-582 (-1088))))) - ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-613 *3)) (-4 *3 (-755)))) - ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-617 *3)) (-4 *3 (-755)))) - ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-802 *3)) (-4 *3 (-755))))) -(((*1 *2 *3) - (-12 (-5 *3 (-799 *4)) (-4 *4 (-1012)) (-5 *2 (-582 *5)) (-5 *1 (-800 *4 *5)) - (-4 *5 (-1127))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-799 *3)) (-4 *3 (-1012)))) + (|partial| -12 (-4 *3 (-312)) (-5 *1 (-807 *2 *3)) (-4 *2 (-1154 *3))))) +(((*1 *1) (-12 (-4 *1 (-404 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) + ((*1 *1) (-5 *1 (-473))) ((*1 *1) (-4 *1 (-659))) ((*1 *1) (-4 *1 (-663))) + ((*1 *1) (-12 (-5 *1 (-800 *2)) (-4 *2 (-1013)))) + ((*1 *1) (-12 (-5 *1 (-803 *2)) (-4 *2 (-756))))) +(((*1 *2 *1) + (-12 (-4 *1 (-334 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1013)) + (-5 *2 (-583 (-2 (|:| |k| *4) (|:| |c| *3)))))) + ((*1 *2 *1) + (-12 (-5 *2 (-583 (-2 (|:| |k| (-803 *3)) (|:| |c| *4)))) + (-5 *1 (-566 *3 *4 *5)) (-4 *3 (-756)) + (-4 *4 (-13 (-146) (-654 (-349 (-484))))) (-14 *5 (-830)))) + ((*1 *2 *1) (-12 (-5 *2 (-583 (-614 *3))) (-5 *1 (-803 *3)) (-4 *3 (-756))))) +(((*1 *2 *1) + (-12 (-5 *2 (-85)) (-5 *1 (-50 *3 *4)) (-4 *3 (-961)) + (-14 *4 (-583 (-1089))))) + ((*1 *2 *3) + (-12 (-5 *3 (-51)) (-5 *2 (-85)) (-5 *1 (-52 *4)) (-4 *4 (-1128)))) + ((*1 *2 *1) + (-12 (-5 *2 (-85)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-961) (-756))) + (-14 *4 (-583 (-1089))))) + ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-614 *3)) (-4 *3 (-756)))) + ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-618 *3)) (-4 *3 (-756)))) + ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-803 *3)) (-4 *3 (-756))))) +(((*1 *2 *3) + (-12 (-5 *3 (-800 *4)) (-4 *4 (-1013)) (-5 *2 (-583 *5)) (-5 *1 (-801 *4 *5)) + (-4 *5 (-1128))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-800 *3)) (-4 *3 (-1013)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-799 *4)) (-4 *4 (-1012)) (-5 *1 (-800 *4 *3)) (-4 *3 (-1127))))) + (-12 (-5 *2 (-800 *4)) (-4 *4 (-1013)) (-5 *1 (-801 *4 *3)) (-4 *3 (-1128))))) (((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-799 *4)) (-4 *4 (-1012)) (-5 *2 (-85)) - (-5 *1 (-797 *4 *5)) (-4 *5 (-1012)))) + (|partial| -12 (-5 *3 (-800 *4)) (-4 *4 (-1013)) (-5 *2 (-85)) + (-5 *1 (-798 *4 *5)) (-4 *5 (-1013)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-799 *5)) (-4 *5 (-1012)) (-5 *2 (-85)) (-5 *1 (-800 *5 *3)) - (-4 *3 (-1127)))) + (-12 (-5 *4 (-800 *5)) (-4 *5 (-1013)) (-5 *2 (-85)) (-5 *1 (-801 *5 *3)) + (-4 *3 (-1128)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-582 *6)) (-5 *4 (-799 *5)) (-4 *5 (-1012)) (-4 *6 (-1127)) - (-5 *2 (-85)) (-5 *1 (-800 *5 *6))))) + (-12 (-5 *3 (-583 *6)) (-5 *4 (-800 *5)) (-4 *5 (-1013)) (-4 *6 (-1128)) + (-5 *2 (-85)) (-5 *1 (-801 *5 *6))))) (((*1 *1) (-4 *1 (-23))) - ((*1 *1) (-12 (-4 *1 (-408 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) - ((*1 *1) (-5 *1 (-472))) ((*1 *1) (-12 (-5 *1 (-799 *2)) (-4 *2 (-1012))))) + ((*1 *1) (-12 (-4 *1 (-409 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) + ((*1 *1) (-5 *1 (-473))) ((*1 *1) (-12 (-5 *1 (-800 *2)) (-4 *2 (-1013))))) (((*1 *2 *1) - (|partial| -12 (-5 *2 (-2 (|:| -2512 (-86)) (|:| |arg| (-582 (-799 *3))))) - (-5 *1 (-799 *3)) (-4 *3 (-1012)))) + (|partial| -12 (-5 *2 (-2 (|:| -2513 (-86)) (|:| |arg| (-583 (-800 *3))))) + (-5 *1 (-800 *3)) (-4 *3 (-1013)))) ((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-86)) (-5 *2 (-582 (-799 *4))) (-5 *1 (-799 *4)) - (-4 *4 (-1012))))) -(((*1 *2 *1) - (|partial| -12 (-5 *2 (-2 (|:| |num| (-799 *3)) (|:| |den| (-799 *3)))) - (-5 *1 (-799 *3)) (-4 *3 (-1012))))) -(((*1 *2 *1) - (|partial| -12 (-5 *2 (-582 (-799 *3))) (-5 *1 (-799 *3)) (-4 *3 (-1012))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-799 *3)) (-4 *3 (-1012))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-799 *3)) (-4 *3 (-1012))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-799 *3)) (-4 *3 (-1012))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-799 *3)) (-4 *3 (-1012))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-799 *3)) (-4 *3 (-1012))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-799 *3)) (-4 *3 (-1012))))) -(((*1 *2 *1) (-12 (-5 *2 (-582 (-51))) (-5 *1 (-799 *3)) (-4 *3 (-1012))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-582 (-51))) (-5 *1 (-799 *3)) (-4 *3 (-1012))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-582 (-51))) (-5 *1 (-799 *3)) (-4 *3 (-1012))))) + (|partial| -12 (-5 *3 (-86)) (-5 *2 (-583 (-800 *4))) (-5 *1 (-800 *4)) + (-4 *4 (-1013))))) +(((*1 *2 *1) + (|partial| -12 (-5 *2 (-2 (|:| |num| (-800 *3)) (|:| |den| (-800 *3)))) + (-5 *1 (-800 *3)) (-4 *3 (-1013))))) +(((*1 *2 *1) + (|partial| -12 (-5 *2 (-583 (-800 *3))) (-5 *1 (-800 *3)) (-4 *3 (-1013))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-800 *3)) (-4 *3 (-1013))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-800 *3)) (-4 *3 (-1013))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-800 *3)) (-4 *3 (-1013))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-800 *3)) (-4 *3 (-1013))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-800 *3)) (-4 *3 (-1013))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-800 *3)) (-4 *3 (-1013))))) +(((*1 *2 *1) (-12 (-5 *2 (-583 (-51))) (-5 *1 (-800 *3)) (-4 *3 (-1013))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-51))) (-5 *1 (-800 *3)) (-4 *3 (-1013))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-51))) (-5 *1 (-800 *3)) (-4 *3 (-1013))))) (((*1 *1 *2 *3 *3 *3) - (-12 (-5 *2 (-1088)) (-5 *3 (-85)) (-5 *1 (-799 *4)) (-4 *4 (-1012))))) + (-12 (-5 *2 (-1089)) (-5 *3 (-85)) (-5 *1 (-800 *4)) (-4 *4 (-1013))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-582 (-1088))) (-5 *3 (-51)) (-5 *1 (-799 *4)) (-4 *4 (-1012))))) + (-12 (-5 *2 (-583 (-1089))) (-5 *3 (-51)) (-5 *1 (-800 *4)) (-4 *4 (-1013))))) (((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| |var| (-582 (-1088))) (|:| |pred| (-51)))) - (-5 *1 (-799 *3)) (-4 *3 (-1012))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-799 *3)) (-4 *3 (-1012))))) -(((*1 *1 *1) (-12 (-5 *1 (-799 *2)) (-4 *2 (-1012))))) -(((*1 *2 *1) (-12 (-5 *2 (-582 (-51))) (-5 *1 (-799 *3)) (-4 *3 (-1012))))) + (-12 (-5 *2 (-2 (|:| |var| (-583 (-1089))) (|:| |pred| (-51)))) + (-5 *1 (-800 *3)) (-4 *3 (-1013))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-800 *3)) (-4 *3 (-1013))))) +(((*1 *1 *1) (-12 (-5 *1 (-800 *2)) (-4 *2 (-1013))))) +(((*1 *2 *1) (-12 (-5 *2 (-583 (-51))) (-5 *1 (-800 *3)) (-4 *3 (-1013))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-582 (-799 *3))) (-5 *1 (-799 *3)) (-4 *3 (-1012))))) + (|partial| -12 (-5 *2 (-583 (-800 *3))) (-5 *1 (-800 *3)) (-4 *3 (-1013))))) (((*1 *2 *1) - (-12 (-4 *4 (-1012)) (-5 *2 (-85)) (-5 *1 (-794 *3 *4 *5)) (-4 *3 (-1012)) - (-4 *5 (-607 *4)))) + (-12 (-4 *4 (-1013)) (-5 *2 (-85)) (-5 *1 (-795 *3 *4 *5)) (-4 *3 (-1013)) + (-4 *5 (-608 *4)))) ((*1 *2 *1) - (-12 (-5 *2 (-85)) (-5 *1 (-797 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1012))))) + (-12 (-5 *2 (-85)) (-5 *1 (-798 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013))))) (((*1 *1) - (-12 (-4 *3 (-1012)) (-5 *1 (-794 *2 *3 *4)) (-4 *2 (-1012)) - (-4 *4 (-607 *3)))) - ((*1 *1) (-12 (-5 *1 (-797 *2 *3)) (-4 *2 (-1012)) (-4 *3 (-1012))))) + (-12 (-4 *3 (-1013)) (-5 *1 (-795 *2 *3 *4)) (-4 *2 (-1013)) + (-4 *4 (-608 *3)))) + ((*1 *1) (-12 (-5 *1 (-798 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013))))) (((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-799 *4)) (-4 *4 (-1012)) (-4 *2 (-1012)) - (-5 *1 (-797 *4 *2))))) + (|partial| -12 (-5 *3 (-800 *4)) (-4 *4 (-1013)) (-4 *2 (-1013)) + (-5 *1 (-798 *4 *2))))) (((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-799 *4)) (-4 *4 (-1012)) (-5 *1 (-797 *4 *3)) (-4 *3 (-1012))))) + (-12 (-5 *2 (-800 *4)) (-4 *4 (-1013)) (-5 *1 (-798 *4 *3)) (-4 *3 (-1013))))) (((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-799 *4)) (-4 *4 (-1012)) (-5 *1 (-797 *4 *3)) (-4 *3 (-1012))))) + (-12 (-5 *2 (-800 *4)) (-4 *4 (-1013)) (-5 *1 (-798 *4 *3)) (-4 *3 (-1013))))) (((*1 *1 *2 *3 *1 *3) - (-12 (-5 *2 (-799 *4)) (-4 *4 (-1012)) (-5 *1 (-797 *4 *3)) (-4 *3 (-1012))))) + (-12 (-5 *2 (-800 *4)) (-4 *4 (-1013)) (-5 *1 (-798 *4 *3)) (-4 *3 (-1013))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-1012)) (-4 *6 (-795 *5)) (-5 *2 (-794 *5 *6 (-582 *6))) - (-5 *1 (-796 *5 *6 *4)) (-5 *3 (-582 *6)) (-4 *4 (-552 (-799 *5))))) + (-12 (-4 *5 (-1013)) (-4 *6 (-796 *5)) (-5 *2 (-795 *5 *6 (-583 *6))) + (-5 *1 (-797 *5 *6 *4)) (-5 *3 (-583 *6)) (-4 *4 (-553 (-800 *5))))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-1012)) (-5 *2 (-582 (-249 *3))) (-5 *1 (-796 *5 *3 *4)) - (-4 *3 (-949 (-1088))) (-4 *3 (-795 *5)) (-4 *4 (-552 (-799 *5))))) + (-12 (-4 *5 (-1013)) (-5 *2 (-583 (-249 *3))) (-5 *1 (-797 *5 *3 *4)) + (-4 *3 (-950 (-1089))) (-4 *3 (-796 *5)) (-4 *4 (-553 (-800 *5))))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-1012)) (-5 *2 (-582 (-249 (-856 *3)))) (-5 *1 (-796 *5 *3 *4)) - (-4 *3 (-960)) (-2559 (-4 *3 (-949 (-1088)))) (-4 *3 (-795 *5)) - (-4 *4 (-552 (-799 *5))))) + (-12 (-4 *5 (-1013)) (-5 *2 (-583 (-249 (-857 *3)))) (-5 *1 (-797 *5 *3 *4)) + (-4 *3 (-961)) (-2560 (-4 *3 (-950 (-1089)))) (-4 *3 (-796 *5)) + (-4 *4 (-553 (-800 *5))))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-1012)) (-5 *2 (-797 *5 *3)) (-5 *1 (-796 *5 *3 *4)) - (-2559 (-4 *3 (-949 (-1088)))) (-2559 (-4 *3 (-960))) (-4 *3 (-795 *5)) - (-4 *4 (-552 (-799 *5)))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-254)) (-5 *3 (-1088)) (-5 *2 (-85)))) + (-12 (-4 *5 (-1013)) (-5 *2 (-798 *5 *3)) (-5 *1 (-797 *5 *3 *4)) + (-2560 (-4 *3 (-950 (-1089)))) (-2560 (-4 *3 (-961))) (-4 *3 (-796 *5)) + (-4 *4 (-553 (-800 *5)))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-254)) (-5 *3 (-1089)) (-5 *2 (-85)))) ((*1 *2 *1 *3) (-12 (-4 *1 (-254)) (-5 *3 (-86)) (-5 *2 (-85)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-1088)) (-5 *2 (-85)) (-5 *1 (-549 *4)) (-4 *4 (-1012)))) + (-12 (-5 *3 (-1089)) (-5 *2 (-85)) (-5 *1 (-550 *4)) (-4 *4 (-1013)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-86)) (-5 *2 (-85)) (-5 *1 (-549 *4)) (-4 *4 (-1012)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-746 *3)) (-4 *3 (-1012)) (-5 *2 (-85)))) + (-12 (-5 *3 (-86)) (-5 *2 (-85)) (-5 *1 (-550 *4)) (-4 *4 (-1013)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-747 *3)) (-4 *3 (-1013)) (-5 *2 (-85)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-1012)) (-5 *2 (-85)) (-5 *1 (-796 *5 *3 *4)) (-4 *3 (-795 *5)) - (-4 *4 (-552 (-799 *5))))) + (-12 (-4 *5 (-1013)) (-5 *2 (-85)) (-5 *1 (-797 *5 *3 *4)) (-4 *3 (-796 *5)) + (-4 *4 (-553 (-800 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-582 *6)) (-4 *6 (-795 *5)) (-4 *5 (-1012)) (-5 *2 (-85)) - (-5 *1 (-796 *5 *6 *4)) (-4 *4 (-552 (-799 *5)))))) + (-12 (-5 *3 (-583 *6)) (-4 *6 (-796 *5)) (-4 *5 (-1013)) (-5 *2 (-85)) + (-5 *1 (-797 *5 *6 *4)) (-4 *4 (-553 (-800 *5)))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-797 *4 *5)) (-5 *3 (-797 *4 *6)) (-4 *4 (-1012)) - (-4 *5 (-1012)) (-4 *6 (-607 *5)) (-5 *1 (-794 *4 *5 *6))))) + (-12 (-5 *2 (-798 *4 *5)) (-5 *3 (-798 *4 *6)) (-4 *4 (-1013)) + (-4 *5 (-1013)) (-4 *6 (-608 *5)) (-5 *1 (-795 *4 *5 *6))))) (((*1 *2 *1) - (-12 (-4 *4 (-1012)) (-5 *2 (-797 *3 *5)) (-5 *1 (-794 *3 *4 *5)) - (-4 *3 (-1012)) (-4 *5 (-607 *4))))) -(((*1 *2 *3) (-12 (-5 *2 (-1067 (-582 (-483)))) (-5 *1 (-792)) (-5 *3 (-483))))) + (-12 (-4 *4 (-1013)) (-5 *2 (-798 *3 *5)) (-5 *1 (-795 *3 *4 *5)) + (-4 *3 (-1013)) (-4 *5 (-608 *4))))) +(((*1 *2 *3) (-12 (-5 *2 (-1068 (-583 (-484)))) (-5 *1 (-793)) (-5 *3 (-484))))) (((*1 *2 *3 *3) - (-12 (-5 *2 (-1067 (-582 (-483)))) (-5 *1 (-792)) (-5 *3 (-582 (-483))))) + (-12 (-5 *2 (-1068 (-583 (-484)))) (-5 *1 (-793)) (-5 *3 (-583 (-484))))) ((*1 *2 *3) - (-12 (-5 *2 (-1067 (-582 (-483)))) (-5 *1 (-792)) (-5 *3 (-582 (-483)))))) + (-12 (-5 *2 (-1068 (-583 (-484)))) (-5 *1 (-793)) (-5 *3 (-583 (-484)))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-1067 (-582 (-483)))) (-5 *3 (-582 (-483))) (-5 *1 (-792))))) + (-12 (-5 *2 (-1068 (-583 (-484)))) (-5 *3 (-583 (-484))) (-5 *1 (-793))))) (((*1 *2 *3 *3) - (-12 (-5 *2 (-1067 (-582 (-483)))) (-5 *1 (-792)) (-5 *3 (-582 (-483)))))) -(((*1 *2 *2) (-12 (-5 *2 (-1067 (-582 (-829)))) (-5 *1 (-792))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-693)) (-5 *1 (-786 *2)) (-4 *2 (-1127)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-693)) (-5 *1 (-788 *2)) (-4 *2 (-1127)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-693)) (-5 *1 (-791 *2)) (-4 *2 (-1127))))) -(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-791 *2)) (-4 *2 (-1127))))) -(((*1 *2 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-582 (-1093))) (-5 *1 (-789))))) -(((*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-782))))) -(((*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-782))))) -(((*1 *2 *3) (-12 (-5 *2 (-582 (-1071))) (-5 *1 (-199)) (-5 *3 (-1071)))) - ((*1 *2 *2) (-12 (-5 *2 (-582 (-1071))) (-5 *1 (-199)))) - ((*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-782))))) -(((*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-782))))) -(((*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-782))))) -(((*1 *1 *2 *3) (-12 (-5 *1 (-781 *2 *3)) (-4 *2 (-1127)) (-4 *3 (-1127))))) -(((*1 *2 *1) - (-12 (-5 *2 (-148 (-348 (-483)))) (-5 *1 (-90 *3)) (-14 *3 (-483)))) - ((*1 *1 *2 *3 *3) (-12 (-5 *3 (-1067 *2)) (-4 *2 (-258)) (-5 *1 (-148 *2)))) - ((*1 *1 *2) (-12 (-5 *2 (-348 *3)) (-4 *3 (-258)) (-5 *1 (-148 *3)))) - ((*1 *2 *3) (-12 (-5 *2 (-148 (-483))) (-5 *1 (-688 *3)) (-4 *3 (-345)))) - ((*1 *2 *1) - (-12 (-5 *2 (-148 (-348 (-483)))) (-5 *1 (-779 *3)) (-14 *3 (-483)))) - ((*1 *2 *1) - (-12 (-14 *3 (-483)) (-5 *2 (-148 (-348 (-483)))) (-5 *1 (-780 *3 *4)) - (-4 *4 (-778 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-829)) (-5 *1 (-344 *3)) (-4 *3 (-345)))) - ((*1 *2) (-12 (-5 *2 (-829)) (-5 *1 (-344 *3)) (-4 *3 (-345)))) - ((*1 *2 *2) (-12 (-5 *2 (-829)) (|has| *1 (-6 -3984)) (-4 *1 (-345)))) - ((*1 *2) (-12 (-4 *1 (-345)) (-5 *2 (-829)))) - ((*1 *2 *1) (-12 (-4 *1 (-778 *3)) (-5 *2 (-1067 (-483)))))) + (-12 (-5 *2 (-1068 (-583 (-484)))) (-5 *1 (-793)) (-5 *3 (-583 (-484)))))) +(((*1 *2 *2) (-12 (-5 *2 (-1068 (-583 (-830)))) (-5 *1 (-793))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-5 *1 (-787 *2)) (-4 *2 (-1128)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-5 *1 (-789 *2)) (-4 *2 (-1128)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-5 *1 (-792 *2)) (-4 *2 (-1128))))) +(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-792 *2)) (-4 *2 (-1128))))) +(((*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-583 (-1094))) (-5 *1 (-790))))) +(((*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-783))))) +(((*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-783))))) +(((*1 *2 *3) (-12 (-5 *2 (-583 (-1072))) (-5 *1 (-199)) (-5 *3 (-1072)))) + ((*1 *2 *2) (-12 (-5 *2 (-583 (-1072))) (-5 *1 (-199)))) + ((*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-783))))) +(((*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-783))))) +(((*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-783))))) +(((*1 *1 *2 *3) (-12 (-5 *1 (-782 *2 *3)) (-4 *2 (-1128)) (-4 *3 (-1128))))) +(((*1 *2 *1) + (-12 (-5 *2 (-148 (-349 (-484)))) (-5 *1 (-90 *3)) (-14 *3 (-484)))) + ((*1 *1 *2 *3 *3) (-12 (-5 *3 (-1068 *2)) (-4 *2 (-258)) (-5 *1 (-148 *2)))) + ((*1 *1 *2) (-12 (-5 *2 (-349 *3)) (-4 *3 (-258)) (-5 *1 (-148 *3)))) + ((*1 *2 *3) (-12 (-5 *2 (-148 (-484))) (-5 *1 (-689 *3)) (-4 *3 (-346)))) + ((*1 *2 *1) + (-12 (-5 *2 (-148 (-349 (-484)))) (-5 *1 (-780 *3)) (-14 *3 (-484)))) + ((*1 *2 *1) + (-12 (-14 *3 (-484)) (-5 *2 (-148 (-349 (-484)))) (-5 *1 (-781 *3 *4)) + (-4 *4 (-779 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-830)) (-5 *1 (-345 *3)) (-4 *3 (-346)))) + ((*1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-345 *3)) (-4 *3 (-346)))) + ((*1 *2 *2) (-12 (-5 *2 (-830)) (|has| *1 (-6 -3985)) (-4 *1 (-346)))) + ((*1 *2) (-12 (-4 *1 (-346)) (-5 *2 (-830)))) + ((*1 *2 *1) (-12 (-4 *1 (-779 *3)) (-5 *2 (-1068 (-484)))))) (((*1 *2 *1) (-12 (-4 *3 (-146)) (-4 *2 (-23)) (-5 *1 (-244 *3 *4 *2 *5 *6 *7)) - (-4 *4 (-1153 *3)) (-14 *5 (-1 *4 *4 *2)) + (-4 *4 (-1154 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) ((*1 *2 *1) - (-12 (-4 *2 (-23)) (-5 *1 (-647 *3 *2 *4 *5 *6)) (-4 *3 (-146)) + (-12 (-4 *2 (-23)) (-5 *1 (-648 *3 *2 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) - ((*1 *2) (-12 (-4 *2 (-1153 *3)) (-5 *1 (-648 *3 *2)) (-4 *3 (-960)))) + ((*1 *2) (-12 (-4 *2 (-1154 *3)) (-5 *1 (-649 *3 *2)) (-4 *3 (-961)))) ((*1 *2 *1) - (-12 (-4 *2 (-23)) (-5 *1 (-651 *3 *2 *4 *5 *6)) (-4 *3 (-146)) + (-12 (-4 *2 (-23)) (-5 *1 (-652 *3 *2 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) - ((*1 *2) (-12 (-4 *1 (-778 *3)) (-5 *2 (-483))))) -(((*1 *2 *1) (-12 (-4 *1 (-778 *3)) (-5 *2 (-483))))) -(((*1 *1 *1) (-4 *1 (-778 *2)))) -(((*1 *1 *1 *1) (-5 *1 (-771))) ((*1 *1 *1) (-5 *1 (-771))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1083 (-483))) (-5 *3 (-483)) (-4 *1 (-778 *4))))) + ((*1 *2) (-12 (-4 *1 (-779 *3)) (-5 *2 (-484))))) +(((*1 *2 *1) (-12 (-4 *1 (-779 *3)) (-5 *2 (-484))))) +(((*1 *1 *1) (-4 *1 (-779 *2)))) +(((*1 *1 *1 *1) (-5 *1 (-772))) ((*1 *1 *1) (-5 *1 (-772))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1084 (-484))) (-5 *3 (-484)) (-4 *1 (-779 *4))))) (((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-693)) (-4 *5 (-312)) (-5 *2 (-348 *6)) - (-5 *1 (-775 *5 *4 *6)) (-4 *4 (-1170 *5)) (-4 *6 (-1153 *5)))) + (|partial| -12 (-5 *3 (-694)) (-4 *5 (-312)) (-5 *2 (-349 *6)) + (-5 *1 (-776 *5 *4 *6)) (-4 *4 (-1171 *5)) (-4 *6 (-1154 *5)))) ((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-693)) (-5 *4 (-1167 *5 *6 *7)) (-4 *5 (-312)) - (-14 *6 (-1088)) (-14 *7 *5) (-5 *2 (-348 (-1146 *6 *5))) - (-5 *1 (-776 *5 *6 *7)))) + (|partial| -12 (-5 *3 (-694)) (-5 *4 (-1168 *5 *6 *7)) (-4 *5 (-312)) + (-14 *6 (-1089)) (-14 *7 *5) (-5 *2 (-349 (-1147 *6 *5))) + (-5 *1 (-777 *5 *6 *7)))) ((*1 *2 *3 *3 *4) - (|partial| -12 (-5 *3 (-693)) (-5 *4 (-1167 *5 *6 *7)) (-4 *5 (-312)) - (-14 *6 (-1088)) (-14 *7 *5) (-5 *2 (-348 (-1146 *6 *5))) - (-5 *1 (-776 *5 *6 *7))))) + (|partial| -12 (-5 *3 (-694)) (-5 *4 (-1168 *5 *6 *7)) (-4 *5 (-312)) + (-14 *6 (-1089)) (-14 *7 *5) (-5 *2 (-349 (-1147 *6 *5))) + (-5 *1 (-777 *5 *6 *7))))) (((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-693)) (-4 *5 (-312)) (-5 *2 (-148 *6)) - (-5 *1 (-775 *5 *4 *6)) (-4 *4 (-1170 *5)) (-4 *6 (-1153 *5))))) -(((*1 *2 *1) - (-12 (|has| *1 (-6 -3993)) (-4 *1 (-427 *3)) (-4 *3 (-1127)) - (-5 *2 (-582 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-582 *3)) (-5 *1 (-674 *3)) (-4 *3 (-1012)))) - ((*1 *2 *1) (-12 (-5 *2 (-582 (-379))) (-5 *1 (-773))))) -(((*1 *1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-771))))) -(((*1 *2 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-1183)) (-5 *1 (-771))))) -(((*1 *2 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-771))))) -(((*1 *2 *1) (-12 (-4 *1 (-492 *2)) (-4 *2 (-13 (-345) (-1113))))) - ((*1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-771)))) - ((*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-771))))) -(((*1 *2 *1) (-12 (-4 *1 (-214 *3)) (-4 *3 (-1127)) (-5 *2 (-693)))) - ((*1 *2 *1) (-12 (-4 *1 (-254)) (-5 *2 (-693)))) - ((*1 *2 *3) - (-12 (-4 *4 (-960)) (-4 *2 (-13 (-345) (-949 *4) (-312) (-1113) (-239))) - (-5 *1 (-381 *4 *3 *2)) (-4 *3 (-1153 *4)))) - ((*1 *2 *1) (-12 (-5 *2 (-693)) (-5 *1 (-549 *3)) (-4 *3 (-1012)))) - ((*1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-771)))) - ((*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-771))))) -(((*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-771))))) -(((*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-771))))) -(((*1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-771))))) -(((*1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-771))))) -(((*1 *1 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-771))))) -(((*1 *1 *2) (-12 (-5 *2 (-582 (-771))) (-5 *1 (-771)))) - ((*1 *1 *1 *1) (-5 *1 (-771)))) -(((*1 *1 *2) (-12 (-5 *2 (-582 (-771))) (-5 *1 (-771)))) - ((*1 *1 *1 *1) (-5 *1 (-771)))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-582 (-771))) (-5 *1 (-771))))) -(((*1 *1 *1 *1 *1) (-5 *1 (-771))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-582 (-771))) (-5 *1 (-771))))) -(((*1 *1 *1 *1) (-5 *1 (-771)))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-771))))) -(((*1 *1 *1 *1) (-5 *1 (-771)))) -(((*1 *1 *2) (-12 (-5 *2 (-582 *1)) (-4 *1 (-254)))) - ((*1 *1 *1) (-4 *1 (-254))) ((*1 *1 *1) (-5 *1 (-771)))) -(((*1 *1 *1 *1) (-5 *1 (-771)))) -(((*1 *1 *1 *1) (-5 *1 (-771)))) -(((*1 *1 *1 *1) (-5 *1 (-771)))) -(((*1 *1 *1 *1) (-5 *1 (-771)))) -(((*1 *1 *1 *1) (-5 *1 (-771)))) -(((*1 *1 *1 *1) (-5 *1 (-771)))) -(((*1 *1 *1 *1) (-5 *1 (-771)))) -(((*1 *1 *1 *1) (-5 *1 (-771)))) -(((*1 *1 *1 *1) (-5 *1 (-771)))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-582 (-771))) (-5 *1 (-771))))) -(((*1 *1) (-5 *1 (-117))) ((*1 *1 *1) (-5 *1 (-771)))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-693)) (-5 *1 (-771)))) - ((*1 *1 *1) (-5 *1 (-771)))) -(((*1 *1 *1) (-5 *1 (-771)))) -(((*1 *1 *1 *1) (-5 *1 (-771)))) -(((*1 *1 *1 *1 *1) (-5 *1 (-771))) ((*1 *1 *1 *1) (-5 *1 (-771))) - ((*1 *1 *1) (-5 *1 (-771)))) -(((*1 *1 *2) (-12 (-5 *2 (-582 (-771))) (-5 *1 (-771)))) - ((*1 *1 *1) (-5 *1 (-771)))) -(((*1 *1 *2) (-12 (-5 *2 (-582 *1)) (-4 *1 (-254)))) + (|partial| -12 (-5 *3 (-694)) (-4 *5 (-312)) (-5 *2 (-148 *6)) + (-5 *1 (-776 *5 *4 *6)) (-4 *4 (-1171 *5)) (-4 *6 (-1154 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-317 *3)) (-4 *3 (-1128)) (-5 *2 (-583 *3)))) + ((*1 *2 *1) + (-12 (|has| *1 (-6 -3994)) (-4 *1 (-428 *3)) (-4 *3 (-1128)) + (-5 *2 (-583 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-675 *3)) (-4 *3 (-1013)))) + ((*1 *2 *1) (-12 (-5 *2 (-583 (-380))) (-5 *1 (-774))))) +(((*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-772))))) +(((*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-772))))) +(((*1 *2 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-772))))) +(((*1 *2 *1) (-12 (-4 *1 (-493 *2)) (-4 *2 (-13 (-346) (-1114))))) + ((*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-772)))) + ((*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-772))))) +(((*1 *2 *1) (-12 (-4 *1 (-214 *3)) (-4 *3 (-1128)) (-5 *2 (-694)))) + ((*1 *2 *1) (-12 (-4 *1 (-254)) (-5 *2 (-694)))) + ((*1 *2 *3) + (-12 (-4 *4 (-961)) (-4 *2 (-13 (-346) (-950 *4) (-312) (-1114) (-239))) + (-5 *1 (-382 *4 *3 *2)) (-4 *3 (-1154 *4)))) + ((*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-550 *3)) (-4 *3 (-1013)))) + ((*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-772)))) + ((*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-772))))) +(((*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-772))))) +(((*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-772))))) +(((*1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-772))))) +(((*1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-772))))) +(((*1 *1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-772))))) +(((*1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772)))) + ((*1 *1 *1 *1) (-5 *1 (-772)))) +(((*1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772)))) + ((*1 *1 *1 *1) (-5 *1 (-772)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772))))) +(((*1 *1 *1 *1 *1) (-5 *1 (-772))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772))))) +(((*1 *1 *1 *1) (-5 *1 (-772)))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-772))))) +(((*1 *1 *1 *1) (-5 *1 (-772)))) +(((*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-254)))) + ((*1 *1 *1) (-4 *1 (-254))) ((*1 *1 *1) (-5 *1 (-772)))) +(((*1 *1 *1 *1) (-5 *1 (-772)))) +(((*1 *1 *1 *1) (-5 *1 (-772)))) +(((*1 *1 *1 *1) (-5 *1 (-772)))) +(((*1 *1 *1 *1) (-5 *1 (-772)))) +(((*1 *1 *1 *1) (-5 *1 (-772)))) +(((*1 *1 *1 *1) (-5 *1 (-772)))) +(((*1 *1 *1 *1) (-5 *1 (-772)))) +(((*1 *1 *1 *1) (-5 *1 (-772)))) +(((*1 *1 *1 *1) (-5 *1 (-772)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772))))) +(((*1 *1) (-5 *1 (-117))) ((*1 *1 *1) (-5 *1 (-772)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-772)))) + ((*1 *1 *1) (-5 *1 (-772)))) +(((*1 *1 *1) (-5 *1 (-772)))) +(((*1 *1 *1 *1) (-5 *1 (-772)))) +(((*1 *1 *1 *1 *1) (-5 *1 (-772))) ((*1 *1 *1 *1) (-5 *1 (-772))) + ((*1 *1 *1) (-5 *1 (-772)))) +(((*1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772)))) + ((*1 *1 *1) (-5 *1 (-772)))) +(((*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-254)))) ((*1 *1 *1) (-4 *1 (-254))) - ((*1 *1 *2) (-12 (-5 *2 (-582 (-771))) (-5 *1 (-771)))) - ((*1 *1 *1) (-5 *1 (-771)))) -(((*1 *1 *2) (-12 (-5 *2 (-582 (-771))) (-5 *1 (-771))))) -(((*1 *1 *2) (-12 (-5 *2 (-582 (-771))) (-5 *1 (-771))))) -(((*1 *1 *2) (-12 (-5 *2 (-582 (-771))) (-5 *1 (-771))))) -(((*1 *1 *2) (-12 (-5 *2 (-582 (-771))) (-5 *1 (-771))))) + ((*1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772)))) + ((*1 *1 *1) (-5 *1 (-772)))) +(((*1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772))))) +(((*1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772))))) +(((*1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772))))) +(((*1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772))))) (((*1 *2 *1 *1) (-12 (-4 *1 (-72)) (-5 *2 (-85)))) - ((*1 *1 *1 *1) (-5 *1 (-771)))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-758)) (-5 *2 (-85)))) - ((*1 *1 *1 *1) (-5 *1 (-771)))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-758)) (-5 *2 (-85)))) - ((*1 *1 *1 *1) (-5 *1 (-771)))) + ((*1 *1 *1 *1) (-5 *1 (-772)))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-759)) (-5 *2 (-85)))) + ((*1 *1 *1 *1) (-5 *1 (-772)))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-759)) (-5 *2 (-85)))) + ((*1 *1 *1 *1) (-5 *1 (-772)))) (((*1 *2 *1 *1) - (|partial| -12 (-5 *2 (-2 (|:| |lm| (-738 *3)) (|:| |rm| (-738 *3)))) - (-5 *1 (-738 *3)) (-4 *3 (-755)))) - ((*1 *1 *1 *1) (-5 *1 (-771)))) -(((*1 *1 *1 *1) (-4 *1 (-258))) ((*1 *1 *1 *1) (-5 *1 (-693))) - ((*1 *1 *1 *1) (-5 *1 (-771)))) -(((*1 *1 *1 *1) (-4 *1 (-258))) ((*1 *1 *1 *1) (-5 *1 (-693))) - ((*1 *1 *1 *1) (-5 *1 (-771)))) -(((*1 *1 *1 *1) (-4 *1 (-84))) ((*1 *1 *1 *1) (-5 *1 (-771)))) -(((*1 *1 *1 *1) (-4 *1 (-84))) ((*1 *1 *1 *1) (-5 *1 (-771)))) -(((*1 *1 *1) (-4 *1 (-84))) ((*1 *1 *1) (-5 *1 (-771)))) -(((*1 *1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-770)))) - ((*1 *1 *2) (-12 (-5 *2 (-336)) (-5 *1 (-770))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-466)))) - ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-512)))) - ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-770))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-769)) (-5 *2 (-631 (-101))) (-5 *3 (-101))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-769)) (-5 *2 (-631 (-487))) (-5 *3 (-487))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-769)) (-5 *2 (-631 (-1136))) (-5 *3 (-1136))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-769)) (-5 *3 (-102)) (-5 *2 (-693))))) -(((*1 *2 *3) (-12 (-5 *3 (-582 (-51))) (-5 *2 (-1183)) (-5 *1 (-767))))) + (|partial| -12 (-5 *2 (-2 (|:| |lm| (-739 *3)) (|:| |rm| (-739 *3)))) + (-5 *1 (-739 *3)) (-4 *3 (-756)))) + ((*1 *1 *1 *1) (-5 *1 (-772)))) +(((*1 *1 *1 *1) (-4 *1 (-258))) ((*1 *1 *1 *1) (-5 *1 (-694))) + ((*1 *1 *1 *1) (-5 *1 (-772)))) +(((*1 *1 *1 *1) (-4 *1 (-258))) ((*1 *1 *1 *1) (-5 *1 (-694))) + ((*1 *1 *1 *1) (-5 *1 (-772)))) +(((*1 *1 *1 *1) (-4 *1 (-84))) ((*1 *1 *1 *1) (-5 *1 (-772)))) +(((*1 *1 *1 *1) (-4 *1 (-84))) ((*1 *1 *1 *1) (-5 *1 (-772)))) +(((*1 *1 *1) (-4 *1 (-84))) ((*1 *1 *1) (-5 *1 (-772)))) +(((*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-771)))) + ((*1 *1 *2) (-12 (-5 *2 (-337)) (-5 *1 (-771))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-467)))) + ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-513)))) + ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-771))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-770)) (-5 *2 (-632 (-101))) (-5 *3 (-101))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-770)) (-5 *2 (-632 (-488))) (-5 *3 (-488))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-770)) (-5 *2 (-632 (-1137))) (-5 *3 (-1137))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-770)) (-5 *3 (-102)) (-5 *2 (-694))))) +(((*1 *2 *3) (-12 (-5 *3 (-583 (-51))) (-5 *2 (-1184)) (-5 *1 (-768))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-693)) (-5 *1 (-764 *2)) (-4 *2 (-38 (-348 (-483)))) + (-12 (-5 *3 (-694)) (-5 *1 (-765 *2)) (-4 *2 (-38 (-349 (-484)))) (-4 *2 (-146))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-693)) (-5 *1 (-764 *2)) (-4 *2 (-146)))) - ((*1 *2 *3 *3 *2) (-12 (-5 *3 (-693)) (-5 *1 (-764 *2)) (-4 *2 (-146))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-693)) (-5 *1 (-764 *2)) (-4 *2 (-146))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-694)) (-5 *1 (-765 *2)) (-4 *2 (-146)))) + ((*1 *2 *3 *3 *2) (-12 (-5 *3 (-694)) (-5 *1 (-765 *2)) (-4 *2 (-146))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-694)) (-5 *1 (-765 *2)) (-4 *2 (-146))))) (((*1 *2 *1 *1) - (-12 (-4 *3 (-312)) (-4 *3 (-960)) (-5 *2 (-2 (|:| -1971 *1) (|:| -2901 *1))) - (-4 *1 (-760 *3)))) + (-12 (-4 *3 (-312)) (-4 *3 (-961)) (-5 *2 (-2 (|:| -1972 *1) (|:| -2902 *1))) + (-4 *1 (-761 *3)))) ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-69 *5)) (-4 *5 (-312)) (-4 *5 (-960)) - (-5 *2 (-2 (|:| -1971 *3) (|:| -2901 *3))) (-5 *1 (-761 *5 *3)) - (-4 *3 (-760 *5))))) + (-12 (-5 *4 (-69 *5)) (-4 *5 (-312)) (-4 *5 (-961)) + (-5 *2 (-2 (|:| -1972 *3) (|:| -2902 *3))) (-5 *1 (-762 *5 *3)) + (-4 *3 (-761 *5))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-312)) (-5 *2 (-2 (|:| -1971 *3) (|:| -2901 *3))) - (-5 *1 (-689 *3 *4)) (-4 *3 (-644 *4)))) + (-12 (-4 *4 (-312)) (-5 *2 (-2 (|:| -1972 *3) (|:| -2902 *3))) + (-5 *1 (-690 *3 *4)) (-4 *3 (-645 *4)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-312)) (-4 *3 (-960)) (-5 *2 (-2 (|:| -1971 *1) (|:| -2901 *1))) - (-4 *1 (-760 *3)))) + (-12 (-4 *3 (-312)) (-4 *3 (-961)) (-5 *2 (-2 (|:| -1972 *1) (|:| -2902 *1))) + (-4 *1 (-761 *3)))) ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-69 *5)) (-4 *5 (-312)) (-4 *5 (-960)) - (-5 *2 (-2 (|:| -1971 *3) (|:| -2901 *3))) (-5 *1 (-761 *5 *3)) - (-4 *3 (-760 *5))))) + (-12 (-5 *4 (-69 *5)) (-4 *5 (-312)) (-4 *5 (-961)) + (-5 *2 (-2 (|:| -1972 *3) (|:| -2902 *3))) (-5 *1 (-762 *5 *3)) + (-4 *3 (-761 *5))))) (((*1 *2 *1 *1) - (-12 (-4 *3 (-494)) (-4 *3 (-960)) (-5 *2 (-2 (|:| -1971 *1) (|:| -2901 *1))) - (-4 *1 (-760 *3)))) + (-12 (-4 *3 (-495)) (-4 *3 (-961)) (-5 *2 (-2 (|:| -1972 *1) (|:| -2902 *1))) + (-4 *1 (-761 *3)))) ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-69 *5)) (-4 *5 (-494)) (-4 *5 (-960)) - (-5 *2 (-2 (|:| -1971 *3) (|:| -2901 *3))) (-5 *1 (-761 *5 *3)) - (-4 *3 (-760 *5))))) + (-12 (-5 *4 (-69 *5)) (-4 *5 (-495)) (-4 *5 (-961)) + (-5 *2 (-2 (|:| -1972 *3) (|:| -2902 *3))) (-5 *1 (-762 *5 *3)) + (-4 *3 (-761 *5))))) (((*1 *2 *1 *1) - (-12 (-4 *3 (-494)) (-4 *3 (-960)) (-5 *2 (-2 (|:| -1971 *1) (|:| -2901 *1))) - (-4 *1 (-760 *3)))) + (-12 (-4 *3 (-495)) (-4 *3 (-961)) (-5 *2 (-2 (|:| -1972 *1) (|:| -2902 *1))) + (-4 *1 (-761 *3)))) ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-69 *5)) (-4 *5 (-494)) (-4 *5 (-960)) - (-5 *2 (-2 (|:| -1971 *3) (|:| -2901 *3))) (-5 *1 (-761 *5 *3)) - (-4 *3 (-760 *5))))) + (-12 (-5 *4 (-69 *5)) (-4 *5 (-495)) (-4 *5 (-961)) + (-5 *2 (-2 (|:| -1972 *3) (|:| -2902 *3))) (-5 *1 (-762 *5 *3)) + (-4 *3 (-761 *5))))) (((*1 *2 *3 *4 *2) - (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-589 *5)) (-4 *5 (-960)) - (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-760 *5)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-629 *3)) (-4 *1 (-359 *3)) (-4 *3 (-146)))) - ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-760 *2)) (-4 *2 (-960)))) + (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-590 *5)) (-4 *5 (-961)) + (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-761 *5)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-630 *3)) (-4 *1 (-360 *3)) (-4 *3 (-146)))) + ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)))) ((*1 *2 *3 *2 *2 *4 *5) - (-12 (-5 *4 (-69 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-960)) (-5 *1 (-761 *2 *3)) - (-4 *3 (-760 *2))))) + (-12 (-5 *4 (-69 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-961)) (-5 *1 (-762 *2 *3)) + (-4 *3 (-761 *2))))) (((*1 *2 *2 *2 *3 *4) - (-12 (-5 *3 (-69 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-960)) (-5 *1 (-761 *5 *2)) - (-4 *2 (-760 *5))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-312)) (-5 *1 (-689 *2 *3)) (-4 *2 (-644 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-760 *2)) (-4 *2 (-960)) (-4 *2 (-312))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-312)) (-5 *1 (-689 *2 *3)) (-4 *2 (-644 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-760 *2)) (-4 *2 (-960)) (-4 *2 (-312))))) + (-12 (-5 *3 (-69 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-961)) (-5 *1 (-762 *5 *2)) + (-4 *2 (-761 *5))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-312)) (-5 *1 (-690 *2 *3)) (-4 *2 (-645 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-312))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-312)) (-5 *1 (-690 *2 *3)) (-4 *2 (-645 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-312))))) (((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-312)) (-5 *1 (-689 *2 *3)) (-4 *2 (-644 *3)))) + (|partial| -12 (-4 *3 (-312)) (-5 *1 (-690 *2 *3)) (-4 *2 (-645 *3)))) ((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-760 *2)) (-4 *2 (-960)) (-4 *2 (-312))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-312)) (-5 *1 (-689 *2 *3)) (-4 *2 (-644 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-760 *2)) (-4 *2 (-960)) (-4 *2 (-312))))) + (|partial| -12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-312))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-312)) (-5 *1 (-690 *2 *3)) (-4 *2 (-645 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-312))))) (((*1 *2 *1 *1) - (-12 (-4 *3 (-312)) (-4 *3 (-960)) - (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2408 *1))) - (-4 *1 (-760 *3))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-760 *2)) (-4 *2 (-960)) (-4 *2 (-312))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-760 *2)) (-4 *2 (-960)) (-4 *2 (-312))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-760 *2)) (-4 *2 (-960)) (-4 *2 (-312))))) + (-12 (-4 *3 (-312)) (-4 *3 (-961)) + (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2409 *1))) + (-4 *1 (-761 *3))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-312))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-312))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-312))))) (((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-760 *2)) (-4 *2 (-960)) (-4 *2 (-312))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-760 *2)) (-4 *2 (-960)) (-4 *2 (-312))))) + (|partial| -12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-312))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-312))))) (((*1 *2 *1 *1) - (-12 (-4 *3 (-312)) (-4 *3 (-960)) - (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2408 *1))) - (-4 *1 (-760 *3))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-312)) (-5 *1 (-689 *2 *3)) (-4 *2 (-644 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-760 *2)) (-4 *2 (-960)) (-4 *2 (-312))))) + (-12 (-4 *3 (-312)) (-4 *3 (-961)) + (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2409 *1))) + (-4 *1 (-761 *3))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-312)) (-5 *1 (-690 *2 *3)) (-4 *2 (-645 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-312))))) (((*1 *1) - (-12 (-4 *1 (-345)) (-2559 (|has| *1 (-6 -3984))) - (-2559 (|has| *1 (-6 -3976))))) - ((*1 *2 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-1012)) (-4 *2 (-755)))) - ((*1 *2 *1) (-12 (-4 *1 (-741 *2)) (-4 *2 (-755)))) ((*1 *1) (-4 *1 (-751))) - ((*1 *1 *1 *1) (-4 *1 (-758)))) + (-12 (-4 *1 (-346)) (-2560 (|has| *1 (-6 -3985))) + (-2560 (|has| *1 (-6 -3977))))) + ((*1 *2 *1) (-12 (-4 *1 (-368 *2)) (-4 *2 (-1013)) (-4 *2 (-756)))) + ((*1 *2 *1) (-12 (-4 *1 (-742 *2)) (-4 *2 (-756)))) ((*1 *1) (-4 *1 (-752))) + ((*1 *1 *1 *1) (-4 *1 (-759)))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1177 *5)) (-4 *5 (-715)) (-5 *2 (-85)) (-5 *1 (-752 *4 *5)) - (-14 *4 (-693))))) + (-12 (-5 *3 (-1178 *5)) (-4 *5 (-716)) (-5 *2 (-85)) (-5 *1 (-753 *4 *5)) + (-14 *4 (-694))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1177 *5)) (-4 *5 (-715)) (-5 *2 (-85)) (-5 *1 (-752 *4 *5)) - (-14 *4 (-693))))) + (-12 (-5 *3 (-1178 *5)) (-4 *5 (-716)) (-5 *2 (-85)) (-5 *1 (-753 *4 *5)) + (-14 *4 (-694))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1177 *5)) (-4 *5 (-715)) (-5 *2 (-85)) (-5 *1 (-752 *4 *5)) - (-14 *4 (-693))))) -(((*1 *2) (-12 (-5 *2 (-749 (-483))) (-5 *1 (-471)))) - ((*1 *1) (-12 (-5 *1 (-749 *2)) (-4 *2 (-1012))))) -(((*1 *2) (-12 (-5 *2 (-749 (-483))) (-5 *1 (-471)))) - ((*1 *1) (-12 (-5 *1 (-749 *2)) (-4 *2 (-1012))))) + (-12 (-5 *3 (-1178 *5)) (-4 *5 (-716)) (-5 *2 (-85)) (-5 *1 (-753 *4 *5)) + (-14 *4 (-694))))) +(((*1 *2) (-12 (-5 *2 (-750 (-484))) (-5 *1 (-472)))) + ((*1 *1) (-12 (-5 *1 (-750 *2)) (-4 *2 (-1013))))) +(((*1 *2) (-12 (-5 *2 (-750 (-484))) (-5 *1 (-472)))) + ((*1 *1) (-12 (-5 *1 (-750 *2)) (-4 *2 (-1013))))) (((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-107)))) - ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-742 *3)) (-4 *3 (-1012)))) - ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-749 *3)) (-4 *3 (-1012))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-742 *3)) (-4 *3 (-1012)))) - ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-749 *3)) (-4 *3 (-1012))))) -(((*1 *2 *1) (-12 (-5 *2 (-1032)) (-5 *1 (-749 *3)) (-4 *3 (-1012))))) -(((*1 *2 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-167 (-440))) (-5 *1 (-747))))) -(((*1 *2 *1) (-12 (-4 *1 (-746 *3)) (-4 *3 (-1012)) (-5 *2 (-55))))) -(((*1 *1 *1) (-12 (-4 *1 (-599 *2)) (-4 *2 (-960)))) - ((*1 *2 *3) - (-12 (-4 *4 (-494)) (-4 *4 (-146)) (-4 *5 (-322 *4)) (-4 *6 (-322 *4)) - (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-628 *4 *5 *6 *3)) - (-4 *3 (-626 *4 *5 *6)))) + ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-743 *3)) (-4 *3 (-1013)))) + ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-750 *3)) (-4 *3 (-1013))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-743 *3)) (-4 *3 (-1013)))) + ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-750 *3)) (-4 *3 (-1013))))) +(((*1 *2 *1) (-12 (-5 *2 (-1033)) (-5 *1 (-750 *3)) (-4 *3 (-1013))))) +(((*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-167 (-441))) (-5 *1 (-748))))) +(((*1 *2 *1) (-12 (-4 *1 (-747 *3)) (-4 *3 (-1013)) (-5 *2 (-55))))) +(((*1 *1 *1) (-12 (-4 *1 (-600 *2)) (-4 *2 (-961)))) + ((*1 *2 *3) + (-12 (-4 *4 (-495)) (-4 *4 (-146)) (-4 *5 (-323 *4)) (-4 *6 (-323 *4)) + (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-629 *4 *5 *6 *3)) + (-4 *3 (-627 *4 *5 *6)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-146)) (-4 *2 (-960)) (-5 *1 (-650 *2 *3)) (-4 *3 (-589 *2)))) + (-12 (-4 *2 (-146)) (-4 *2 (-961)) (-5 *1 (-651 *2 *3)) (-4 *3 (-590 *2)))) ((*1 *1 *1) - (-12 (-4 *2 (-146)) (-4 *2 (-960)) (-5 *1 (-650 *2 *3)) (-4 *3 (-589 *2)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-744 *2)) (-4 *2 (-146)) (-4 *2 (-960)))) - ((*1 *1 *1) (-12 (-5 *1 (-744 *2)) (-4 *2 (-146)) (-4 *2 (-960))))) + (-12 (-4 *2 (-146)) (-4 *2 (-961)) (-5 *1 (-651 *2 *3)) (-4 *3 (-590 *2)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-745 *2)) (-4 *2 (-146)) (-4 *2 (-961)))) + ((*1 *1 *1) (-12 (-5 *1 (-745 *2)) (-4 *2 (-146)) (-4 *2 (-961))))) (((*1 *2 *2) - (-12 (-4 *2 (-146)) (-4 *2 (-960)) (-5 *1 (-650 *2 *3)) (-4 *3 (-589 *2)))) - ((*1 *2 *2) (-12 (-5 *1 (-744 *2)) (-4 *2 (-146)) (-4 *2 (-960))))) + (-12 (-4 *2 (-146)) (-4 *2 (-961)) (-5 *1 (-651 *2 *3)) (-4 *3 (-590 *2)))) + ((*1 *2 *2) (-12 (-5 *1 (-745 *2)) (-4 *2 (-146)) (-4 *2 (-961))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-86)) (-5 *4 (-582 *2)) (-5 *1 (-87 *2)) - (-4 *2 (-1012)))) + (|partial| -12 (-5 *3 (-86)) (-5 *4 (-583 *2)) (-5 *1 (-87 *2)) + (-4 *2 (-1013)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-86)) (-5 *3 (-1 *4 (-582 *4))) (-4 *4 (-1012)) + (-12 (-5 *2 (-86)) (-5 *3 (-1 *4 (-583 *4))) (-4 *4 (-1013)) (-5 *1 (-87 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-86)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1012)) (-5 *1 (-87 *4)))) + (-12 (-5 *2 (-86)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1013)) (-5 *1 (-87 *4)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-86)) (-5 *2 (-1 *4 (-582 *4))) (-5 *1 (-87 *4)) - (-4 *4 (-1012)))) + (|partial| -12 (-5 *3 (-86)) (-5 *2 (-1 *4 (-583 *4))) (-5 *1 (-87 *4)) + (-4 *4 (-1013)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-589 *3)) (-4 *3 (-960)) - (-5 *1 (-650 *3 *4)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-960)) (-5 *1 (-744 *3))))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-590 *3)) (-4 *3 (-961)) + (-5 *1 (-651 *3 *4)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-745 *3))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-589 *3)) (-4 *3 (-960)) - (-5 *1 (-650 *3 *4)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-960)) (-5 *1 (-744 *3))))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-590 *3)) (-4 *3 (-961)) + (-5 *1 (-651 *3 *4)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-745 *3))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-86)) (-4 *4 (-960)) (-5 *1 (-650 *4 *2)) (-4 *2 (-589 *4)))) - ((*1 *2 *3 *2) (-12 (-5 *3 (-86)) (-5 *1 (-744 *2)) (-4 *2 (-960))))) + (-12 (-5 *3 (-86)) (-4 *4 (-961)) (-5 *1 (-651 *4 *2)) (-4 *2 (-590 *4)))) + ((*1 *2 *3 *2) (-12 (-5 *3 (-86)) (-5 *1 (-745 *2)) (-4 *2 (-961))))) (((*1 *1 *2 *3) - (-12 (-5 *3 (-310 (-86))) (-4 *2 (-960)) (-5 *1 (-650 *2 *4)) - (-4 *4 (-589 *2)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-310 (-86))) (-5 *1 (-744 *2)) (-4 *2 (-960))))) -(((*1 *2) (-12 (-5 *2 (-742 (-483))) (-5 *1 (-471)))) - ((*1 *1) (-12 (-5 *1 (-742 *2)) (-4 *2 (-1012))))) -(((*1 *1 *2) (-12 (-4 *3 (-960)) (-5 *1 (-740 *2 *3)) (-4 *2 (-644 *3))))) -(((*1 *2 *1) (-12 (-4 *2 (-644 *3)) (-5 *1 (-740 *2 *3)) (-4 *3 (-960))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-613 *3)) (-4 *3 (-755)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-617 *3)) (-4 *3 (-755)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-738 *3)) (-4 *3 (-755))))) + (-12 (-5 *3 (-310 (-86))) (-4 *2 (-961)) (-5 *1 (-651 *2 *4)) + (-4 *4 (-590 *2)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-310 (-86))) (-5 *1 (-745 *2)) (-4 *2 (-961))))) +(((*1 *2) (-12 (-5 *2 (-743 (-484))) (-5 *1 (-472)))) + ((*1 *1) (-12 (-5 *1 (-743 *2)) (-4 *2 (-1013))))) +(((*1 *1 *2) (-12 (-4 *3 (-961)) (-5 *1 (-741 *2 *3)) (-4 *2 (-645 *3))))) +(((*1 *2 *1) (-12 (-4 *2 (-645 *3)) (-5 *1 (-741 *2 *3)) (-4 *3 (-961))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-614 *3)) (-4 *3 (-756)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-618 *3)) (-4 *3 (-756)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-739 *3)) (-4 *3 (-756))))) (((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-582 *4)) (-4 *4 (-312)) (-5 *2 (-1177 *4)) - (-5 *1 (-733 *4 *3)) (-4 *3 (-599 *4))))) + (|partial| -12 (-5 *5 (-583 *4)) (-4 *4 (-312)) (-5 *2 (-1178 *4)) + (-5 *1 (-734 *4 *3)) (-4 *3 (-600 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-582 *4)) (-4 *4 (-312)) (-5 *2 (-629 *4)) (-5 *1 (-733 *4 *5)) - (-4 *5 (-599 *4)))) + (-12 (-5 *3 (-583 *4)) (-4 *4 (-312)) (-5 *2 (-630 *4)) (-5 *1 (-734 *4 *5)) + (-4 *5 (-600 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-582 *5)) (-5 *4 (-693)) (-4 *5 (-312)) (-5 *2 (-629 *5)) - (-5 *1 (-733 *5 *6)) (-4 *6 (-599 *5))))) + (-12 (-5 *3 (-583 *5)) (-5 *4 (-694)) (-4 *5 (-312)) (-5 *2 (-630 *5)) + (-5 *1 (-734 *5 *6)) (-4 *6 (-600 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-582 (-856 *5))) (-5 *4 (-582 (-1088))) (-4 *5 (-494)) - (-5 *2 (-582 (-582 (-249 (-348 (-856 *5)))))) (-5 *1 (-692 *5)))) + (-12 (-5 *3 (-583 (-857 *5))) (-5 *4 (-583 (-1089))) (-4 *5 (-495)) + (-5 *2 (-583 (-583 (-249 (-349 (-857 *5)))))) (-5 *1 (-693 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-582 (-856 *4))) (-4 *4 (-494)) - (-5 *2 (-582 (-582 (-249 (-348 (-856 *4)))))) (-5 *1 (-692 *4)))) + (-12 (-5 *3 (-583 (-857 *4))) (-4 *4 (-495)) + (-5 *2 (-583 (-583 (-249 (-349 (-857 *4)))))) (-5 *1 (-693 *4)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-629 *7)) + (-12 (-5 *3 (-630 *7)) (-5 *5 - (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2011 (-582 *6))) *7 *6)) - (-4 *6 (-312)) (-4 *7 (-599 *6)) + (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2012 (-583 *6))) *7 *6)) + (-4 *6 (-312)) (-4 *7 (-600 *6)) (-5 *2 - (-2 (|:| |particular| (-3 (-1177 *6) "failed")) - (|:| -2011 (-582 (-1177 *6))))) - (-5 *1 (-732 *6 *7)) (-5 *4 (-1177 *6))))) + (-2 (|:| |particular| (-3 (-1178 *6) "failed")) + (|:| -2012 (-583 (-1178 *6))))) + (-5 *1 (-733 *6 *7)) (-5 *4 (-1178 *6))))) (((*1 *2 *3 *4) (-12 (-4 *5 (-312)) (-5 *2 - (-2 (|:| A (-629 *5)) + (-2 (|:| A (-630 *5)) (|:| |eqs| - (-582 - (-2 (|:| C (-629 *5)) (|:| |g| (-1177 *5)) (|:| -3265 *6) + (-583 + (-2 (|:| C (-630 *5)) (|:| |g| (-1178 *5)) (|:| -3266 *6) (|:| |rh| *5)))))) - (-5 *1 (-732 *5 *6)) (-5 *3 (-629 *5)) (-5 *4 (-1177 *5)) - (-4 *6 (-599 *5)))) + (-5 *1 (-733 *5 *6)) (-5 *3 (-630 *5)) (-5 *4 (-1178 *5)) + (-4 *6 (-600 *5)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-312)) (-4 *6 (-599 *5)) - (-5 *2 (-2 (|:| |mat| (-629 *6)) (|:| |vec| (-1177 *5)))) - (-5 *1 (-732 *5 *6)) (-5 *3 (-629 *6)) (-5 *4 (-1177 *5))))) + (-12 (-4 *5 (-312)) (-4 *6 (-600 *5)) + (-5 *2 (-2 (|:| |mat| (-630 *6)) (|:| |vec| (-1178 *5)))) + (-5 *1 (-733 *5 *6)) (-5 *3 (-630 *6)) (-5 *4 (-1178 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-596 (-348 *6))) (-5 *4 (-1 (-582 *5) *6)) - (-4 *5 (-13 (-312) (-120) (-949 (-483)) (-949 (-348 (-483))))) - (-4 *6 (-1153 *5)) (-5 *2 (-582 (-348 *6))) (-5 *1 (-731 *5 *6)))) + (-12 (-5 *3 (-597 (-349 *6))) (-5 *4 (-1 (-583 *5) *6)) + (-4 *5 (-13 (-312) (-120) (-950 (-484)) (-950 (-349 (-484))))) + (-4 *6 (-1154 *5)) (-5 *2 (-583 (-349 *6))) (-5 *1 (-732 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-596 (-348 *7))) (-5 *4 (-1 (-582 *6) *7)) - (-5 *5 (-1 (-346 *7) *7)) - (-4 *6 (-13 (-312) (-120) (-949 (-483)) (-949 (-348 (-483))))) - (-4 *7 (-1153 *6)) (-5 *2 (-582 (-348 *7))) (-5 *1 (-731 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-597 *6 (-348 *6))) (-5 *4 (-1 (-582 *5) *6)) - (-4 *5 (-13 (-312) (-120) (-949 (-483)) (-949 (-348 (-483))))) - (-4 *6 (-1153 *5)) (-5 *2 (-582 (-348 *6))) (-5 *1 (-731 *5 *6)))) + (-12 (-5 *3 (-597 (-349 *7))) (-5 *4 (-1 (-583 *6) *7)) + (-5 *5 (-1 (-347 *7) *7)) + (-4 *6 (-13 (-312) (-120) (-950 (-484)) (-950 (-349 (-484))))) + (-4 *7 (-1154 *6)) (-5 *2 (-583 (-349 *7))) (-5 *1 (-732 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-598 *6 (-349 *6))) (-5 *4 (-1 (-583 *5) *6)) + (-4 *5 (-13 (-312) (-120) (-950 (-484)) (-950 (-349 (-484))))) + (-4 *6 (-1154 *5)) (-5 *2 (-583 (-349 *6))) (-5 *1 (-732 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-597 *7 (-348 *7))) (-5 *4 (-1 (-582 *6) *7)) - (-5 *5 (-1 (-346 *7) *7)) - (-4 *6 (-13 (-312) (-120) (-949 (-483)) (-949 (-348 (-483))))) - (-4 *7 (-1153 *6)) (-5 *2 (-582 (-348 *7))) (-5 *1 (-731 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-596 (-348 *5))) (-4 *5 (-1153 *4)) (-4 *4 (-27)) - (-4 *4 (-13 (-312) (-120) (-949 (-483)) (-949 (-348 (-483))))) - (-5 *2 (-582 (-348 *5))) (-5 *1 (-731 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-596 (-348 *6))) (-5 *4 (-1 (-346 *6) *6)) (-4 *6 (-1153 *5)) - (-4 *5 (-27)) (-4 *5 (-13 (-312) (-120) (-949 (-483)) (-949 (-348 (-483))))) - (-5 *2 (-582 (-348 *6))) (-5 *1 (-731 *5 *6)))) - ((*1 *2 *3) - (-12 (-5 *3 (-597 *5 (-348 *5))) (-4 *5 (-1153 *4)) (-4 *4 (-27)) - (-4 *4 (-13 (-312) (-120) (-949 (-483)) (-949 (-348 (-483))))) - (-5 *2 (-582 (-348 *5))) (-5 *1 (-731 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-597 *6 (-348 *6))) (-5 *4 (-1 (-346 *6) *6)) (-4 *6 (-1153 *5)) - (-4 *5 (-27)) (-4 *5 (-13 (-312) (-120) (-949 (-483)) (-949 (-348 (-483))))) - (-5 *2 (-582 (-348 *6))) (-5 *1 (-731 *5 *6))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-582 *5) *6)) - (-4 *5 (-13 (-312) (-120) (-949 (-348 (-483))))) (-4 *6 (-1153 *5)) - (-5 *2 (-582 (-2 (|:| |poly| *6) (|:| -3265 *3)))) - (-5 *1 (-728 *5 *6 *3 *7)) (-4 *3 (-599 *6)) (-4 *7 (-599 (-348 *6))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-582 *5) *6)) - (-4 *5 (-13 (-312) (-120) (-949 (-483)) (-949 (-348 (-483))))) - (-4 *6 (-1153 *5)) - (-5 *2 (-582 (-2 (|:| |poly| *6) (|:| -3265 (-597 *6 (-348 *6)))))) - (-5 *1 (-731 *5 *6)) (-5 *3 (-597 *6 (-348 *6)))))) + (-12 (-5 *3 (-598 *7 (-349 *7))) (-5 *4 (-1 (-583 *6) *7)) + (-5 *5 (-1 (-347 *7) *7)) + (-4 *6 (-13 (-312) (-120) (-950 (-484)) (-950 (-349 (-484))))) + (-4 *7 (-1154 *6)) (-5 *2 (-583 (-349 *7))) (-5 *1 (-732 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-597 (-349 *5))) (-4 *5 (-1154 *4)) (-4 *4 (-27)) + (-4 *4 (-13 (-312) (-120) (-950 (-484)) (-950 (-349 (-484))))) + (-5 *2 (-583 (-349 *5))) (-5 *1 (-732 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-597 (-349 *6))) (-5 *4 (-1 (-347 *6) *6)) (-4 *6 (-1154 *5)) + (-4 *5 (-27)) (-4 *5 (-13 (-312) (-120) (-950 (-484)) (-950 (-349 (-484))))) + (-5 *2 (-583 (-349 *6))) (-5 *1 (-732 *5 *6)))) + ((*1 *2 *3) + (-12 (-5 *3 (-598 *5 (-349 *5))) (-4 *5 (-1154 *4)) (-4 *4 (-27)) + (-4 *4 (-13 (-312) (-120) (-950 (-484)) (-950 (-349 (-484))))) + (-5 *2 (-583 (-349 *5))) (-5 *1 (-732 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-598 *6 (-349 *6))) (-5 *4 (-1 (-347 *6) *6)) (-4 *6 (-1154 *5)) + (-4 *5 (-27)) (-4 *5 (-13 (-312) (-120) (-950 (-484)) (-950 (-349 (-484))))) + (-5 *2 (-583 (-349 *6))) (-5 *1 (-732 *5 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-583 *5) *6)) + (-4 *5 (-13 (-312) (-120) (-950 (-349 (-484))))) (-4 *6 (-1154 *5)) + (-5 *2 (-583 (-2 (|:| |poly| *6) (|:| -3266 *3)))) + (-5 *1 (-729 *5 *6 *3 *7)) (-4 *3 (-600 *6)) (-4 *7 (-600 (-349 *6))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-583 *5) *6)) + (-4 *5 (-13 (-312) (-120) (-950 (-484)) (-950 (-349 (-484))))) + (-4 *6 (-1154 *5)) + (-5 *2 (-583 (-2 (|:| |poly| *6) (|:| -3266 (-598 *6 (-349 *6)))))) + (-5 *1 (-732 *5 *6)) (-5 *3 (-598 *6 (-349 *6)))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 (-582 *7) *7 (-1083 *7))) (-5 *5 (-1 (-346 *7) *7)) - (-4 *7 (-1153 *6)) (-4 *6 (-13 (-312) (-120) (-949 (-348 (-483))))) - (-5 *2 (-582 (-2 (|:| |frac| (-348 *7)) (|:| -3265 *3)))) - (-5 *1 (-728 *6 *7 *3 *8)) (-4 *3 (-599 *7)) (-4 *8 (-599 (-348 *7))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-346 *6) *6)) (-4 *6 (-1153 *5)) - (-4 *5 (-13 (-312) (-120) (-949 (-483)) (-949 (-348 (-483))))) - (-5 *2 (-582 (-2 (|:| |frac| (-348 *6)) (|:| -3265 (-597 *6 (-348 *6)))))) - (-5 *1 (-731 *5 *6)) (-5 *3 (-597 *6 (-348 *6)))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-312)) (-4 *7 (-1153 *5)) (-4 *4 (-660 *5 *7)) - (-5 *2 (-2 (|:| |mat| (-629 *6)) (|:| |vec| (-1177 *5)))) - (-5 *1 (-730 *5 *6 *7 *4 *3)) (-4 *6 (-599 *5)) (-4 *3 (-599 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-596 (-348 *2))) (-4 *2 (-1153 *4)) (-5 *1 (-729 *4 *2)) - (-4 *4 (-13 (-312) (-120) (-949 (-483)) (-949 (-348 (-483))))))) - ((*1 *2 *3) - (-12 (-5 *3 (-597 *2 (-348 *2))) (-4 *2 (-1153 *4)) (-5 *1 (-729 *4 *2)) - (-4 *4 (-13 (-312) (-120) (-949 (-483)) (-949 (-348 (-483)))))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-596 (-348 *6))) (-5 *4 (-348 *6)) (-4 *6 (-1153 *5)) - (-4 *5 (-13 (-312) (-120) (-949 (-483)) (-949 (-348 (-483))))) - (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2011 (-582 *4)))) - (-5 *1 (-729 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-596 (-348 *6))) (-4 *6 (-1153 *5)) - (-4 *5 (-13 (-312) (-120) (-949 (-483)) (-949 (-348 (-483))))) - (-5 *2 (-2 (|:| -2011 (-582 (-348 *6))) (|:| |mat| (-629 *5)))) - (-5 *1 (-729 *5 *6)) (-5 *4 (-582 (-348 *6))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-597 *6 (-348 *6))) (-5 *4 (-348 *6)) (-4 *6 (-1153 *5)) - (-4 *5 (-13 (-312) (-120) (-949 (-483)) (-949 (-348 (-483))))) - (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2011 (-582 *4)))) - (-5 *1 (-729 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-597 *6 (-348 *6))) (-4 *6 (-1153 *5)) - (-4 *5 (-13 (-312) (-120) (-949 (-483)) (-949 (-348 (-483))))) - (-5 *2 (-2 (|:| -2011 (-582 (-348 *6))) (|:| |mat| (-629 *5)))) - (-5 *1 (-729 *5 *6)) (-5 *4 (-582 (-348 *6)))))) + (-12 (-5 *4 (-1 (-583 *7) *7 (-1084 *7))) (-5 *5 (-1 (-347 *7) *7)) + (-4 *7 (-1154 *6)) (-4 *6 (-13 (-312) (-120) (-950 (-349 (-484))))) + (-5 *2 (-583 (-2 (|:| |frac| (-349 *7)) (|:| -3266 *3)))) + (-5 *1 (-729 *6 *7 *3 *8)) (-4 *3 (-600 *7)) (-4 *8 (-600 (-349 *7))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-347 *6) *6)) (-4 *6 (-1154 *5)) + (-4 *5 (-13 (-312) (-120) (-950 (-484)) (-950 (-349 (-484))))) + (-5 *2 (-583 (-2 (|:| |frac| (-349 *6)) (|:| -3266 (-598 *6 (-349 *6)))))) + (-5 *1 (-732 *5 *6)) (-5 *3 (-598 *6 (-349 *6)))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-312)) (-4 *7 (-1154 *5)) (-4 *4 (-661 *5 *7)) + (-5 *2 (-2 (|:| |mat| (-630 *6)) (|:| |vec| (-1178 *5)))) + (-5 *1 (-731 *5 *6 *7 *4 *3)) (-4 *6 (-600 *5)) (-4 *3 (-600 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-597 (-349 *2))) (-4 *2 (-1154 *4)) (-5 *1 (-730 *4 *2)) + (-4 *4 (-13 (-312) (-120) (-950 (-484)) (-950 (-349 (-484))))))) + ((*1 *2 *3) + (-12 (-5 *3 (-598 *2 (-349 *2))) (-4 *2 (-1154 *4)) (-5 *1 (-730 *4 *2)) + (-4 *4 (-13 (-312) (-120) (-950 (-484)) (-950 (-349 (-484)))))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-597 (-349 *6))) (-5 *4 (-349 *6)) (-4 *6 (-1154 *5)) + (-4 *5 (-13 (-312) (-120) (-950 (-484)) (-950 (-349 (-484))))) + (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2012 (-583 *4)))) + (-5 *1 (-730 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-597 (-349 *6))) (-4 *6 (-1154 *5)) + (-4 *5 (-13 (-312) (-120) (-950 (-484)) (-950 (-349 (-484))))) + (-5 *2 (-2 (|:| -2012 (-583 (-349 *6))) (|:| |mat| (-630 *5)))) + (-5 *1 (-730 *5 *6)) (-5 *4 (-583 (-349 *6))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-598 *6 (-349 *6))) (-5 *4 (-349 *6)) (-4 *6 (-1154 *5)) + (-4 *5 (-13 (-312) (-120) (-950 (-484)) (-950 (-349 (-484))))) + (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2012 (-583 *4)))) + (-5 *1 (-730 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-598 *6 (-349 *6))) (-4 *6 (-1154 *5)) + (-4 *5 (-13 (-312) (-120) (-950 (-484)) (-950 (-349 (-484))))) + (-5 *2 (-2 (|:| -2012 (-583 (-349 *6))) (|:| |mat| (-630 *5)))) + (-5 *1 (-730 *5 *6)) (-5 *4 (-583 (-349 *6)))))) (((*1 *2 *2 *3) - (-12 (-4 *4 (-13 (-312) (-120) (-949 (-348 (-483))))) (-4 *3 (-1153 *4)) - (-5 *1 (-728 *4 *3 *2 *5)) (-4 *2 (-599 *3)) (-4 *5 (-599 (-348 *3))))) + (-12 (-4 *4 (-13 (-312) (-120) (-950 (-349 (-484))))) (-4 *3 (-1154 *4)) + (-5 *1 (-729 *4 *3 *2 *5)) (-4 *2 (-600 *3)) (-4 *5 (-600 (-349 *3))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-348 *5)) (-4 *4 (-13 (-312) (-120) (-949 (-348 (-483))))) - (-4 *5 (-1153 *4)) (-5 *1 (-728 *4 *5 *2 *6)) (-4 *2 (-599 *5)) - (-4 *6 (-599 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-582 *5) *6)) - (-4 *5 (-13 (-312) (-120) (-949 (-348 (-483))))) (-4 *6 (-1153 *5)) - (-5 *2 (-582 (-2 (|:| -3950 *5) (|:| -3265 *3)))) (-5 *1 (-728 *5 *6 *3 *7)) - (-4 *3 (-599 *6)) (-4 *7 (-599 (-348 *6)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-312) (-120) (-949 (-348 (-483))))) (-4 *5 (-1153 *4)) - (-5 *2 (-582 (-2 (|:| |deg| (-693)) (|:| -3265 *5)))) - (-5 *1 (-728 *4 *5 *3 *6)) (-4 *3 (-599 *5)) (-4 *6 (-599 (-348 *5)))))) -(((*1 *2 *3) - (-12 (-4 *2 (-1153 *4)) (-5 *1 (-728 *4 *2 *3 *5)) - (-4 *4 (-13 (-312) (-120) (-949 (-348 (-483))))) (-4 *3 (-599 *2)) - (-4 *5 (-599 (-348 *2)))))) -(((*1 *2 *3 *4) - (-12 (-4 *2 (-1153 *4)) (-5 *1 (-727 *4 *2 *3 *5)) - (-4 *4 (-13 (-312) (-120) (-949 (-348 (-483))))) (-4 *3 (-599 *2)) - (-4 *5 (-599 (-348 *2))))) - ((*1 *2 *3 *4) - (-12 (-4 *2 (-1153 *4)) (-5 *1 (-727 *4 *2 *5 *3)) - (-4 *4 (-13 (-312) (-120) (-949 (-348 (-483))))) (-4 *5 (-599 *2)) - (-4 *3 (-599 (-348 *2)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-312) (-120) (-949 (-348 (-483))))) (-4 *5 (-1153 *4)) - (-5 *2 (-582 (-2 (|:| -3771 *5) (|:| -3225 *5)))) (-5 *1 (-727 *4 *5 *3 *6)) - (-4 *3 (-599 *5)) (-4 *6 (-599 (-348 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-312) (-120) (-949 (-348 (-483))))) (-4 *4 (-1153 *5)) - (-5 *2 (-582 (-2 (|:| -3771 *4) (|:| -3225 *4)))) (-5 *1 (-727 *5 *4 *3 *6)) - (-4 *3 (-599 *4)) (-4 *6 (-599 (-348 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-312) (-120) (-949 (-348 (-483))))) (-4 *5 (-1153 *4)) - (-5 *2 (-582 (-2 (|:| -3771 *5) (|:| -3225 *5)))) (-5 *1 (-727 *4 *5 *6 *3)) - (-4 *6 (-599 *5)) (-4 *3 (-599 (-348 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-312) (-120) (-949 (-348 (-483))))) (-4 *4 (-1153 *5)) - (-5 *2 (-582 (-2 (|:| -3771 *4) (|:| -3225 *4)))) (-5 *1 (-727 *5 *4 *6 *3)) - (-4 *6 (-599 *4)) (-4 *3 (-599 (-348 *4)))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-348 *2)) (-4 *2 (-1153 *5)) - (-5 *1 (-727 *5 *2 *3 *6)) (-4 *5 (-13 (-312) (-120) (-949 (-348 (-483))))) - (-4 *3 (-599 *2)) (-4 *6 (-599 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-582 (-348 *2))) (-4 *2 (-1153 *5)) (-5 *1 (-727 *5 *2 *3 *6)) - (-4 *5 (-13 (-312) (-120) (-949 (-348 (-483))))) (-4 *3 (-599 *2)) - (-4 *6 (-599 (-348 *2)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-596 *4)) (-4 *4 (-291 *5 *6 *7)) - (-4 *5 (-13 (-312) (-120) (-949 (-483)) (-949 (-348 (-483))))) - (-4 *6 (-1153 *5)) (-4 *7 (-1153 (-348 *6))) - (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2011 (-582 *4)))) - (-5 *1 (-726 *5 *6 *7 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1088)) (-4 *4 (-13 (-258) (-949 (-483)) (-579 (-483)) (-120))) - (-5 *2 (-1 *5 *5)) (-5 *1 (-725 *4 *5)) - (-4 *5 (-13 (-29 *4) (-1113) (-870)))))) + (-12 (-5 *3 (-349 *5)) (-4 *4 (-13 (-312) (-120) (-950 (-349 (-484))))) + (-4 *5 (-1154 *4)) (-5 *1 (-729 *4 *5 *2 *6)) (-4 *2 (-600 *5)) + (-4 *6 (-600 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-583 *5) *6)) + (-4 *5 (-13 (-312) (-120) (-950 (-349 (-484))))) (-4 *6 (-1154 *5)) + (-5 *2 (-583 (-2 (|:| -3951 *5) (|:| -3266 *3)))) (-5 *1 (-729 *5 *6 *3 *7)) + (-4 *3 (-600 *6)) (-4 *7 (-600 (-349 *6)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-312) (-120) (-950 (-349 (-484))))) (-4 *5 (-1154 *4)) + (-5 *2 (-583 (-2 (|:| |deg| (-694)) (|:| -3266 *5)))) + (-5 *1 (-729 *4 *5 *3 *6)) (-4 *3 (-600 *5)) (-4 *6 (-600 (-349 *5)))))) +(((*1 *2 *3) + (-12 (-4 *2 (-1154 *4)) (-5 *1 (-729 *4 *2 *3 *5)) + (-4 *4 (-13 (-312) (-120) (-950 (-349 (-484))))) (-4 *3 (-600 *2)) + (-4 *5 (-600 (-349 *2)))))) +(((*1 *2 *3 *4) + (-12 (-4 *2 (-1154 *4)) (-5 *1 (-728 *4 *2 *3 *5)) + (-4 *4 (-13 (-312) (-120) (-950 (-349 (-484))))) (-4 *3 (-600 *2)) + (-4 *5 (-600 (-349 *2))))) + ((*1 *2 *3 *4) + (-12 (-4 *2 (-1154 *4)) (-5 *1 (-728 *4 *2 *5 *3)) + (-4 *4 (-13 (-312) (-120) (-950 (-349 (-484))))) (-4 *5 (-600 *2)) + (-4 *3 (-600 (-349 *2)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-312) (-120) (-950 (-349 (-484))))) (-4 *5 (-1154 *4)) + (-5 *2 (-583 (-2 (|:| -3772 *5) (|:| -3226 *5)))) (-5 *1 (-728 *4 *5 *3 *6)) + (-4 *3 (-600 *5)) (-4 *6 (-600 (-349 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-13 (-312) (-120) (-950 (-349 (-484))))) (-4 *4 (-1154 *5)) + (-5 *2 (-583 (-2 (|:| -3772 *4) (|:| -3226 *4)))) (-5 *1 (-728 *5 *4 *3 *6)) + (-4 *3 (-600 *4)) (-4 *6 (-600 (-349 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-312) (-120) (-950 (-349 (-484))))) (-4 *5 (-1154 *4)) + (-5 *2 (-583 (-2 (|:| -3772 *5) (|:| -3226 *5)))) (-5 *1 (-728 *4 *5 *6 *3)) + (-4 *6 (-600 *5)) (-4 *3 (-600 (-349 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-13 (-312) (-120) (-950 (-349 (-484))))) (-4 *4 (-1154 *5)) + (-5 *2 (-583 (-2 (|:| -3772 *4) (|:| -3226 *4)))) (-5 *1 (-728 *5 *4 *6 *3)) + (-4 *6 (-600 *4)) (-4 *3 (-600 (-349 *4)))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-349 *2)) (-4 *2 (-1154 *5)) + (-5 *1 (-728 *5 *2 *3 *6)) (-4 *5 (-13 (-312) (-120) (-950 (-349 (-484))))) + (-4 *3 (-600 *2)) (-4 *6 (-600 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-583 (-349 *2))) (-4 *2 (-1154 *5)) (-5 *1 (-728 *5 *2 *3 *6)) + (-4 *5 (-13 (-312) (-120) (-950 (-349 (-484))))) (-4 *3 (-600 *2)) + (-4 *6 (-600 (-349 *2)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-597 *4)) (-4 *4 (-291 *5 *6 *7)) + (-4 *5 (-13 (-312) (-120) (-950 (-484)) (-950 (-349 (-484))))) + (-4 *6 (-1154 *5)) (-4 *7 (-1154 (-349 *6))) + (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2012 (-583 *4)))) + (-5 *1 (-727 *5 *6 *7 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120))) + (-5 *2 (-1 *5 *5)) (-5 *1 (-726 *4 *5)) + (-4 *5 (-13 (-29 *4) (-1114) (-871)))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1088)) (-4 *4 (-13 (-258) (-949 (-483)) (-579 (-483)) (-120))) - (-5 *1 (-725 *4 *2)) (-4 *2 (-13 (-29 *4) (-1113) (-870)))))) + (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120))) + (-5 *1 (-726 *4 *2)) (-4 *2 (-13 (-29 *4) (-1114) (-871)))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-1088)) (-4 *6 (-13 (-258) (-949 (-483)) (-579 (-483)) (-120))) - (-4 *4 (-13 (-29 *6) (-1113) (-870))) - (-5 *2 (-2 (|:| |particular| *4) (|:| -2011 (-582 *4)))) - (-5 *1 (-723 *6 *4 *3)) (-4 *3 (-599 *4))))) -(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-719 *2)) (-4 *2 (-146)))) - ((*1 *1 *2 *2) (-12 (-5 *2 (-908 *3)) (-4 *3 (-146)) (-5 *1 (-721 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-719 *2)) (-4 *2 (-146))))) -(((*1 *2 *1) (-12 (-4 *1 (-719 *2)) (-4 *2 (-146))))) -(((*1 *2 *1) (-12 (-4 *1 (-719 *2)) (-4 *2 (-146))))) -(((*1 *2 *1) (-12 (-4 *1 (-719 *2)) (-4 *2 (-146))))) + (-12 (-5 *5 (-1089)) (-4 *6 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120))) + (-4 *4 (-13 (-29 *6) (-1114) (-871))) + (-5 *2 (-2 (|:| |particular| *4) (|:| -2012 (-583 *4)))) + (-5 *1 (-724 *6 *4 *3)) (-4 *3 (-600 *4))))) +(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146)))) + ((*1 *1 *2 *2) (-12 (-5 *2 (-909 *3)) (-4 *3 (-146)) (-5 *1 (-722 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146))))) +(((*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146))))) +(((*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146))))) +(((*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146))))) (((*1 *1 *1) (-4 *1 (-201))) ((*1 *1 *1) - (-12 (-4 *2 (-146)) (-5 *1 (-244 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1153 *2)) + (-12 (-4 *2 (-146)) (-5 *1 (-244 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1154 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) ((*1 *1 *1) - (OR (-12 (-5 *1 (-249 *2)) (-4 *2 (-312)) (-4 *2 (-1127))) - (-12 (-5 *1 (-249 *2)) (-4 *2 (-411)) (-4 *2 (-1127))))) - ((*1 *1 *1) (-4 *1 (-411))) - ((*1 *2 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-299)) (-5 *1 (-465 *3)))) + (OR (-12 (-5 *1 (-249 *2)) (-4 *2 (-312)) (-4 *2 (-1128))) + (-12 (-5 *1 (-249 *2)) (-4 *2 (-412)) (-4 *2 (-1128))))) + ((*1 *1 *1) (-4 *1 (-412))) + ((*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-299)) (-5 *1 (-466 *3)))) ((*1 *1 *1) - (-12 (-5 *1 (-651 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) + (-12 (-5 *1 (-652 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-4 *1 (-719 *2)) (-4 *2 (-146)) (-4 *2 (-312))))) -(((*1 *2 *1) (-12 (-4 *1 (-492 *2)) (-4 *2 (-13 (-345) (-1113))))) - ((*1 *1 *1 *1) (-4 *1 (-716)))) + ((*1 *1 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146)) (-4 *2 (-312))))) +(((*1 *2 *1) (-12 (-4 *1 (-493 *2)) (-4 *2 (-13 (-346) (-1114))))) + ((*1 *1 *1 *1) (-4 *1 (-717)))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-328) (-328))) (-5 *4 (-328)) + (-12 (-5 *3 (-1 (-329) (-329))) (-5 *4 (-329)) (-5 *2 - (-2 (|:| -3400 *4) (|:| -1594 *4) (|:| |totalpts| (-483)) + (-2 (|:| -3401 *4) (|:| -1595 *4) (|:| |totalpts| (-484)) (|:| |success| (-85)))) - (-5 *1 (-710)) (-5 *5 (-483))))) + (-5 *1 (-711)) (-5 *5 (-484))))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-328) (-328))) (-5 *4 (-328)) + (-12 (-5 *3 (-1 (-329) (-329))) (-5 *4 (-329)) (-5 *2 - (-2 (|:| -3400 *4) (|:| -1594 *4) (|:| |totalpts| (-483)) + (-2 (|:| -3401 *4) (|:| -1595 *4) (|:| |totalpts| (-484)) (|:| |success| (-85)))) - (-5 *1 (-710)) (-5 *5 (-483))))) + (-5 *1 (-711)) (-5 *5 (-484))))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-328) (-328))) (-5 *4 (-328)) + (-12 (-5 *3 (-1 (-329) (-329))) (-5 *4 (-329)) (-5 *2 - (-2 (|:| -3400 *4) (|:| -1594 *4) (|:| |totalpts| (-483)) + (-2 (|:| -3401 *4) (|:| -1595 *4) (|:| |totalpts| (-484)) (|:| |success| (-85)))) - (-5 *1 (-710)) (-5 *5 (-483))))) + (-5 *1 (-711)) (-5 *5 (-484))))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-328) (-328))) (-5 *4 (-328)) + (-12 (-5 *3 (-1 (-329) (-329))) (-5 *4 (-329)) (-5 *2 - (-2 (|:| -3400 *4) (|:| -1594 *4) (|:| |totalpts| (-483)) + (-2 (|:| -3401 *4) (|:| -1595 *4) (|:| |totalpts| (-484)) (|:| |success| (-85)))) - (-5 *1 (-710)) (-5 *5 (-483))))) + (-5 *1 (-711)) (-5 *5 (-484))))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-328) (-328))) (-5 *4 (-328)) + (-12 (-5 *3 (-1 (-329) (-329))) (-5 *4 (-329)) (-5 *2 - (-2 (|:| -3400 *4) (|:| -1594 *4) (|:| |totalpts| (-483)) + (-2 (|:| -3401 *4) (|:| -1595 *4) (|:| |totalpts| (-484)) (|:| |success| (-85)))) - (-5 *1 (-710)) (-5 *5 (-483))))) + (-5 *1 (-711)) (-5 *5 (-484))))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-328) (-328))) (-5 *4 (-328)) + (-12 (-5 *3 (-1 (-329) (-329))) (-5 *4 (-329)) (-5 *2 - (-2 (|:| -3400 *4) (|:| -1594 *4) (|:| |totalpts| (-483)) + (-2 (|:| -3401 *4) (|:| -1595 *4) (|:| |totalpts| (-484)) (|:| |success| (-85)))) - (-5 *1 (-710)) (-5 *5 (-483))))) + (-5 *1 (-711)) (-5 *5 (-484))))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) - (-12 (-5 *3 (-1 (-328) (-328))) (-5 *4 (-328)) + (-12 (-5 *3 (-1 (-329) (-329))) (-5 *4 (-329)) (-5 *2 - (-2 (|:| -3400 *4) (|:| -1594 *4) (|:| |totalpts| (-483)) + (-2 (|:| -3401 *4) (|:| -1595 *4) (|:| |totalpts| (-484)) (|:| |success| (-85)))) - (-5 *1 (-710)) (-5 *5 (-483))))) + (-5 *1 (-711)) (-5 *5 (-484))))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) - (-12 (-5 *3 (-1 (-328) (-328))) (-5 *4 (-328)) + (-12 (-5 *3 (-1 (-329) (-329))) (-5 *4 (-329)) (-5 *2 - (-2 (|:| -3400 *4) (|:| -1594 *4) (|:| |totalpts| (-483)) + (-2 (|:| -3401 *4) (|:| -1595 *4) (|:| |totalpts| (-484)) (|:| |success| (-85)))) - (-5 *1 (-710)) (-5 *5 (-483))))) + (-5 *1 (-711)) (-5 *5 (-484))))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) - (-12 (-5 *3 (-1 (-328) (-328))) (-5 *4 (-328)) + (-12 (-5 *3 (-1 (-329) (-329))) (-5 *4 (-329)) (-5 *2 - (-2 (|:| -3400 *4) (|:| -1594 *4) (|:| |totalpts| (-483)) + (-2 (|:| -3401 *4) (|:| -1595 *4) (|:| |totalpts| (-484)) (|:| |success| (-85)))) - (-5 *1 (-710)) (-5 *5 (-483))))) + (-5 *1 (-711)) (-5 *5 (-484))))) (((*1 *2 *3 *4 *5 *5 *4 *6) - (-12 (-5 *4 (-483)) (-5 *6 (-1 (-1183) (-1177 *5) (-1177 *5) (-328))) - (-5 *3 (-1177 (-328))) (-5 *5 (-328)) (-5 *2 (-1183)) (-5 *1 (-709))))) + (-12 (-5 *4 (-484)) (-5 *6 (-1 (-1184) (-1178 *5) (-1178 *5) (-329))) + (-5 *3 (-1178 (-329))) (-5 *5 (-329)) (-5 *2 (-1184)) (-5 *1 (-710))))) (((*1 *2 *3 *4 *5 *6 *5 *3 *7) - (-12 (-5 *4 (-483)) - (-5 *6 (-2 (|:| |tryValue| (-328)) (|:| |did| (-328)) (|:| -1473 (-328)))) - (-5 *7 (-1 (-1183) (-1177 *5) (-1177 *5) (-328))) (-5 *3 (-1177 (-328))) - (-5 *5 (-328)) (-5 *2 (-1183)) (-5 *1 (-709)))) + (-12 (-5 *4 (-484)) + (-5 *6 (-2 (|:| |tryValue| (-329)) (|:| |did| (-329)) (|:| -1474 (-329)))) + (-5 *7 (-1 (-1184) (-1178 *5) (-1178 *5) (-329))) (-5 *3 (-1178 (-329))) + (-5 *5 (-329)) (-5 *2 (-1184)) (-5 *1 (-710)))) ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) - (-12 (-5 *4 (-483)) - (-5 *6 (-2 (|:| |tryValue| (-328)) (|:| |did| (-328)) (|:| -1473 (-328)))) - (-5 *7 (-1 (-1183) (-1177 *5) (-1177 *5) (-328))) (-5 *3 (-1177 (-328))) - (-5 *5 (-328)) (-5 *2 (-1183)) (-5 *1 (-709))))) + (-12 (-5 *4 (-484)) + (-5 *6 (-2 (|:| |tryValue| (-329)) (|:| |did| (-329)) (|:| -1474 (-329)))) + (-5 *7 (-1 (-1184) (-1178 *5) (-1178 *5) (-329))) (-5 *3 (-1178 (-329))) + (-5 *5 (-329)) (-5 *2 (-1184)) (-5 *1 (-710))))) (((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) - (-12 (-5 *4 (-483)) (-5 *6 (-1 (-1183) (-1177 *5) (-1177 *5) (-328))) - (-5 *3 (-1177 (-328))) (-5 *5 (-328)) (-5 *2 (-1183)) (-5 *1 (-709))))) + (-12 (-5 *4 (-484)) (-5 *6 (-1 (-1184) (-1178 *5) (-1178 *5) (-329))) + (-5 *3 (-1178 (-329))) (-5 *5 (-329)) (-5 *2 (-1184)) (-5 *1 (-710))))) (((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *4 (-483)) (-5 *6 (-1 (-1183) (-1177 *5) (-1177 *5) (-328))) - (-5 *3 (-1177 (-328))) (-5 *5 (-328)) (-5 *2 (-1183)) (-5 *1 (-709)))) + (-12 (-5 *4 (-484)) (-5 *6 (-1 (-1184) (-1178 *5) (-1178 *5) (-329))) + (-5 *3 (-1178 (-329))) (-5 *5 (-329)) (-5 *2 (-1184)) (-5 *1 (-710)))) ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) - (-12 (-5 *4 (-483)) (-5 *6 (-1 (-1183) (-1177 *5) (-1177 *5) (-328))) - (-5 *3 (-1177 (-328))) (-5 *5 (-328)) (-5 *2 (-1183)) (-5 *1 (-709))))) -(((*1 *2 *3) (|partial| -12 (-5 *3 (-1071)) (-5 *2 (-328)) (-5 *1 (-708))))) -(((*1 *2 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-328)) (-5 *1 (-708))))) -(((*1 *2 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-829)) (-5 *1 (-708))))) -(((*1 *2 *3) (-12 (-5 *3 (-829)) (-5 *2 (-1071)) (-5 *1 (-708))))) -(((*1 *2 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-829)) (-5 *1 (-708))))) -(((*1 *2 *3) (-12 (-5 *3 (-829)) (-5 *2 (-1071)) (-5 *1 (-708))))) + (-12 (-5 *4 (-484)) (-5 *6 (-1 (-1184) (-1178 *5) (-1178 *5) (-329))) + (-5 *3 (-1178 (-329))) (-5 *5 (-329)) (-5 *2 (-1184)) (-5 *1 (-710))))) +(((*1 *2 *3) (|partial| -12 (-5 *3 (-1072)) (-5 *2 (-329)) (-5 *1 (-709))))) +(((*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-329)) (-5 *1 (-709))))) +(((*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-830)) (-5 *1 (-709))))) +(((*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1072)) (-5 *1 (-709))))) +(((*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-830)) (-5 *1 (-709))))) +(((*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1072)) (-5 *1 (-709))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-856 (-142 *4))) (-4 *4 (-146)) (-4 *4 (-552 (-328))) - (-5 *2 (-142 (-328))) (-5 *1 (-707 *4)))) + (|partial| -12 (-5 *3 (-857 (-142 *4))) (-4 *4 (-146)) (-4 *4 (-553 (-329))) + (-5 *2 (-142 (-329))) (-5 *1 (-708 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-856 (-142 *5))) (-5 *4 (-829)) (-4 *5 (-146)) - (-4 *5 (-552 (-328))) (-5 *2 (-142 (-328))) (-5 *1 (-707 *5)))) + (|partial| -12 (-5 *3 (-857 (-142 *5))) (-5 *4 (-830)) (-4 *5 (-146)) + (-4 *5 (-553 (-329))) (-5 *2 (-142 (-329))) (-5 *1 (-708 *5)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-856 *4)) (-4 *4 (-960)) (-4 *4 (-552 (-328))) - (-5 *2 (-142 (-328))) (-5 *1 (-707 *4)))) + (|partial| -12 (-5 *3 (-857 *4)) (-4 *4 (-961)) (-4 *4 (-553 (-329))) + (-5 *2 (-142 (-329))) (-5 *1 (-708 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-856 *5)) (-5 *4 (-829)) (-4 *5 (-960)) - (-4 *5 (-552 (-328))) (-5 *2 (-142 (-328))) (-5 *1 (-707 *5)))) + (|partial| -12 (-5 *3 (-857 *5)) (-5 *4 (-830)) (-4 *5 (-961)) + (-4 *5 (-553 (-329))) (-5 *2 (-142 (-329))) (-5 *1 (-708 *5)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-348 (-856 *4))) (-4 *4 (-494)) (-4 *4 (-552 (-328))) - (-5 *2 (-142 (-328))) (-5 *1 (-707 *4)))) + (|partial| -12 (-5 *3 (-349 (-857 *4))) (-4 *4 (-495)) (-4 *4 (-553 (-329))) + (-5 *2 (-142 (-329))) (-5 *1 (-708 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-348 (-856 *5))) (-5 *4 (-829)) (-4 *5 (-494)) - (-4 *5 (-552 (-328))) (-5 *2 (-142 (-328))) (-5 *1 (-707 *5)))) + (|partial| -12 (-5 *3 (-349 (-857 *5))) (-5 *4 (-830)) (-4 *5 (-495)) + (-4 *5 (-553 (-329))) (-5 *2 (-142 (-329))) (-5 *1 (-708 *5)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-348 (-856 (-142 *4)))) (-4 *4 (-494)) - (-4 *4 (-552 (-328))) (-5 *2 (-142 (-328))) (-5 *1 (-707 *4)))) + (|partial| -12 (-5 *3 (-349 (-857 (-142 *4)))) (-4 *4 (-495)) + (-4 *4 (-553 (-329))) (-5 *2 (-142 (-329))) (-5 *1 (-708 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-348 (-856 (-142 *5)))) (-5 *4 (-829)) (-4 *5 (-494)) - (-4 *5 (-552 (-328))) (-5 *2 (-142 (-328))) (-5 *1 (-707 *5)))) + (|partial| -12 (-5 *3 (-349 (-857 (-142 *5)))) (-5 *4 (-830)) (-4 *5 (-495)) + (-4 *5 (-553 (-329))) (-5 *2 (-142 (-329))) (-5 *1 (-708 *5)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-265 *4)) (-4 *4 (-494)) (-4 *4 (-755)) - (-4 *4 (-552 (-328))) (-5 *2 (-142 (-328))) (-5 *1 (-707 *4)))) + (|partial| -12 (-5 *3 (-265 *4)) (-4 *4 (-495)) (-4 *4 (-756)) + (-4 *4 (-553 (-329))) (-5 *2 (-142 (-329))) (-5 *1 (-708 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-265 *5)) (-5 *4 (-829)) (-4 *5 (-494)) (-4 *5 (-755)) - (-4 *5 (-552 (-328))) (-5 *2 (-142 (-328))) (-5 *1 (-707 *5)))) + (|partial| -12 (-5 *3 (-265 *5)) (-5 *4 (-830)) (-4 *5 (-495)) (-4 *5 (-756)) + (-4 *5 (-553 (-329))) (-5 *2 (-142 (-329))) (-5 *1 (-708 *5)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-265 (-142 *4))) (-4 *4 (-494)) (-4 *4 (-755)) - (-4 *4 (-552 (-328))) (-5 *2 (-142 (-328))) (-5 *1 (-707 *4)))) + (|partial| -12 (-5 *3 (-265 (-142 *4))) (-4 *4 (-495)) (-4 *4 (-756)) + (-4 *4 (-553 (-329))) (-5 *2 (-142 (-329))) (-5 *1 (-708 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-265 (-142 *5))) (-5 *4 (-829)) (-4 *5 (-494)) - (-4 *5 (-755)) (-4 *5 (-552 (-328))) (-5 *2 (-142 (-328))) - (-5 *1 (-707 *5))))) + (|partial| -12 (-5 *3 (-265 (-142 *5))) (-5 *4 (-830)) (-4 *5 (-495)) + (-4 *5 (-756)) (-4 *5 (-553 (-329))) (-5 *2 (-142 (-329))) + (-5 *1 (-708 *5))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-856 *4)) (-4 *4 (-960)) (-4 *4 (-552 *2)) - (-5 *2 (-328)) (-5 *1 (-707 *4)))) + (|partial| -12 (-5 *3 (-857 *4)) (-4 *4 (-961)) (-4 *4 (-553 *2)) + (-5 *2 (-329)) (-5 *1 (-708 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-856 *5)) (-5 *4 (-829)) (-4 *5 (-960)) - (-4 *5 (-552 *2)) (-5 *2 (-328)) (-5 *1 (-707 *5)))) + (|partial| -12 (-5 *3 (-857 *5)) (-5 *4 (-830)) (-4 *5 (-961)) + (-4 *5 (-553 *2)) (-5 *2 (-329)) (-5 *1 (-708 *5)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-348 (-856 *4))) (-4 *4 (-494)) (-4 *4 (-552 *2)) - (-5 *2 (-328)) (-5 *1 (-707 *4)))) + (|partial| -12 (-5 *3 (-349 (-857 *4))) (-4 *4 (-495)) (-4 *4 (-553 *2)) + (-5 *2 (-329)) (-5 *1 (-708 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-348 (-856 *5))) (-5 *4 (-829)) (-4 *5 (-494)) - (-4 *5 (-552 *2)) (-5 *2 (-328)) (-5 *1 (-707 *5)))) + (|partial| -12 (-5 *3 (-349 (-857 *5))) (-5 *4 (-830)) (-4 *5 (-495)) + (-4 *5 (-553 *2)) (-5 *2 (-329)) (-5 *1 (-708 *5)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-265 *4)) (-4 *4 (-494)) (-4 *4 (-755)) - (-4 *4 (-552 *2)) (-5 *2 (-328)) (-5 *1 (-707 *4)))) + (|partial| -12 (-5 *3 (-265 *4)) (-4 *4 (-495)) (-4 *4 (-756)) + (-4 *4 (-553 *2)) (-5 *2 (-329)) (-5 *1 (-708 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-265 *5)) (-5 *4 (-829)) (-4 *5 (-494)) (-4 *5 (-755)) - (-4 *5 (-552 *2)) (-5 *2 (-328)) (-5 *1 (-707 *5))))) + (|partial| -12 (-5 *3 (-265 *5)) (-5 *4 (-830)) (-4 *5 (-495)) (-4 *5 (-756)) + (-4 *5 (-553 *2)) (-5 *2 (-329)) (-5 *1 (-708 *5))))) (((*1 *2 *3) - (-12 (-5 *2 (-142 (-328))) (-5 *1 (-707 *3)) (-4 *3 (-552 (-328))))) + (-12 (-5 *2 (-142 (-329))) (-5 *1 (-708 *3)) (-4 *3 (-553 (-329))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-829)) (-5 *2 (-142 (-328))) (-5 *1 (-707 *3)) - (-4 *3 (-552 (-328))))) + (-12 (-5 *4 (-830)) (-5 *2 (-142 (-329))) (-5 *1 (-708 *3)) + (-4 *3 (-553 (-329))))) ((*1 *2 *3) - (-12 (-5 *3 (-142 *4)) (-4 *4 (-146)) (-4 *4 (-552 (-328))) - (-5 *2 (-142 (-328))) (-5 *1 (-707 *4)))) + (-12 (-5 *3 (-142 *4)) (-4 *4 (-146)) (-4 *4 (-553 (-329))) + (-5 *2 (-142 (-329))) (-5 *1 (-708 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-142 *5)) (-5 *4 (-829)) (-4 *5 (-146)) (-4 *5 (-552 (-328))) - (-5 *2 (-142 (-328))) (-5 *1 (-707 *5)))) + (-12 (-5 *3 (-142 *5)) (-5 *4 (-830)) (-4 *5 (-146)) (-4 *5 (-553 (-329))) + (-5 *2 (-142 (-329))) (-5 *1 (-708 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-856 (-142 *4))) (-4 *4 (-146)) (-4 *4 (-552 (-328))) - (-5 *2 (-142 (-328))) (-5 *1 (-707 *4)))) + (-12 (-5 *3 (-857 (-142 *4))) (-4 *4 (-146)) (-4 *4 (-553 (-329))) + (-5 *2 (-142 (-329))) (-5 *1 (-708 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-856 (-142 *5))) (-5 *4 (-829)) (-4 *5 (-146)) - (-4 *5 (-552 (-328))) (-5 *2 (-142 (-328))) (-5 *1 (-707 *5)))) + (-12 (-5 *3 (-857 (-142 *5))) (-5 *4 (-830)) (-4 *5 (-146)) + (-4 *5 (-553 (-329))) (-5 *2 (-142 (-329))) (-5 *1 (-708 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-856 *4)) (-4 *4 (-960)) (-4 *4 (-552 (-328))) - (-5 *2 (-142 (-328))) (-5 *1 (-707 *4)))) + (-12 (-5 *3 (-857 *4)) (-4 *4 (-961)) (-4 *4 (-553 (-329))) + (-5 *2 (-142 (-329))) (-5 *1 (-708 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-856 *5)) (-5 *4 (-829)) (-4 *5 (-960)) (-4 *5 (-552 (-328))) - (-5 *2 (-142 (-328))) (-5 *1 (-707 *5)))) + (-12 (-5 *3 (-857 *5)) (-5 *4 (-830)) (-4 *5 (-961)) (-4 *5 (-553 (-329))) + (-5 *2 (-142 (-329))) (-5 *1 (-708 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-348 (-856 *4))) (-4 *4 (-494)) (-4 *4 (-552 (-328))) - (-5 *2 (-142 (-328))) (-5 *1 (-707 *4)))) + (-12 (-5 *3 (-349 (-857 *4))) (-4 *4 (-495)) (-4 *4 (-553 (-329))) + (-5 *2 (-142 (-329))) (-5 *1 (-708 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-348 (-856 *5))) (-5 *4 (-829)) (-4 *5 (-494)) - (-4 *5 (-552 (-328))) (-5 *2 (-142 (-328))) (-5 *1 (-707 *5)))) + (-12 (-5 *3 (-349 (-857 *5))) (-5 *4 (-830)) (-4 *5 (-495)) + (-4 *5 (-553 (-329))) (-5 *2 (-142 (-329))) (-5 *1 (-708 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-348 (-856 (-142 *4)))) (-4 *4 (-494)) (-4 *4 (-552 (-328))) - (-5 *2 (-142 (-328))) (-5 *1 (-707 *4)))) + (-12 (-5 *3 (-349 (-857 (-142 *4)))) (-4 *4 (-495)) (-4 *4 (-553 (-329))) + (-5 *2 (-142 (-329))) (-5 *1 (-708 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-348 (-856 (-142 *5)))) (-5 *4 (-829)) (-4 *5 (-494)) - (-4 *5 (-552 (-328))) (-5 *2 (-142 (-328))) (-5 *1 (-707 *5)))) + (-12 (-5 *3 (-349 (-857 (-142 *5)))) (-5 *4 (-830)) (-4 *5 (-495)) + (-4 *5 (-553 (-329))) (-5 *2 (-142 (-329))) (-5 *1 (-708 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-265 *4)) (-4 *4 (-494)) (-4 *4 (-755)) (-4 *4 (-552 (-328))) - (-5 *2 (-142 (-328))) (-5 *1 (-707 *4)))) + (-12 (-5 *3 (-265 *4)) (-4 *4 (-495)) (-4 *4 (-756)) (-4 *4 (-553 (-329))) + (-5 *2 (-142 (-329))) (-5 *1 (-708 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-265 *5)) (-5 *4 (-829)) (-4 *5 (-494)) (-4 *5 (-755)) - (-4 *5 (-552 (-328))) (-5 *2 (-142 (-328))) (-5 *1 (-707 *5)))) + (-12 (-5 *3 (-265 *5)) (-5 *4 (-830)) (-4 *5 (-495)) (-4 *5 (-756)) + (-4 *5 (-553 (-329))) (-5 *2 (-142 (-329))) (-5 *1 (-708 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-265 (-142 *4))) (-4 *4 (-494)) (-4 *4 (-755)) - (-4 *4 (-552 (-328))) (-5 *2 (-142 (-328))) (-5 *1 (-707 *4)))) + (-12 (-5 *3 (-265 (-142 *4))) (-4 *4 (-495)) (-4 *4 (-756)) + (-4 *4 (-553 (-329))) (-5 *2 (-142 (-329))) (-5 *1 (-708 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-265 (-142 *5))) (-5 *4 (-829)) (-4 *5 (-494)) (-4 *5 (-755)) - (-4 *5 (-552 (-328))) (-5 *2 (-142 (-328))) (-5 *1 (-707 *5))))) -(((*1 *2 *3) (-12 (-5 *2 (-328)) (-5 *1 (-707 *3)) (-4 *3 (-552 *2)))) + (-12 (-5 *3 (-265 (-142 *5))) (-5 *4 (-830)) (-4 *5 (-495)) (-4 *5 (-756)) + (-4 *5 (-553 (-329))) (-5 *2 (-142 (-329))) (-5 *1 (-708 *5))))) +(((*1 *2 *3) (-12 (-5 *2 (-329)) (-5 *1 (-708 *3)) (-4 *3 (-553 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-829)) (-5 *2 (-328)) (-5 *1 (-707 *3)) (-4 *3 (-552 *2)))) + (-12 (-5 *4 (-830)) (-5 *2 (-329)) (-5 *1 (-708 *3)) (-4 *3 (-553 *2)))) ((*1 *2 *3) - (-12 (-5 *3 (-856 *4)) (-4 *4 (-960)) (-4 *4 (-552 *2)) (-5 *2 (-328)) - (-5 *1 (-707 *4)))) + (-12 (-5 *3 (-857 *4)) (-4 *4 (-961)) (-4 *4 (-553 *2)) (-5 *2 (-329)) + (-5 *1 (-708 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-856 *5)) (-5 *4 (-829)) (-4 *5 (-960)) (-4 *5 (-552 *2)) - (-5 *2 (-328)) (-5 *1 (-707 *5)))) + (-12 (-5 *3 (-857 *5)) (-5 *4 (-830)) (-4 *5 (-961)) (-4 *5 (-553 *2)) + (-5 *2 (-329)) (-5 *1 (-708 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-348 (-856 *4))) (-4 *4 (-494)) (-4 *4 (-552 *2)) (-5 *2 (-328)) - (-5 *1 (-707 *4)))) + (-12 (-5 *3 (-349 (-857 *4))) (-4 *4 (-495)) (-4 *4 (-553 *2)) (-5 *2 (-329)) + (-5 *1 (-708 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-348 (-856 *5))) (-5 *4 (-829)) (-4 *5 (-494)) (-4 *5 (-552 *2)) - (-5 *2 (-328)) (-5 *1 (-707 *5)))) + (-12 (-5 *3 (-349 (-857 *5))) (-5 *4 (-830)) (-4 *5 (-495)) (-4 *5 (-553 *2)) + (-5 *2 (-329)) (-5 *1 (-708 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-265 *4)) (-4 *4 (-494)) (-4 *4 (-755)) (-4 *4 (-552 *2)) - (-5 *2 (-328)) (-5 *1 (-707 *4)))) + (-12 (-5 *3 (-265 *4)) (-4 *4 (-495)) (-4 *4 (-756)) (-4 *4 (-553 *2)) + (-5 *2 (-329)) (-5 *1 (-708 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-265 *5)) (-5 *4 (-829)) (-4 *5 (-494)) (-4 *5 (-755)) - (-4 *5 (-552 *2)) (-5 *2 (-328)) (-5 *1 (-707 *5))))) + (-12 (-5 *3 (-265 *5)) (-5 *4 (-830)) (-4 *5 (-495)) (-4 *5 (-756)) + (-4 *5 (-553 *2)) (-5 *2 (-329)) (-5 *1 (-708 *5))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-693)) (-5 *1 (-705 *2)) (-4 *2 (-38 (-348 (-483)))) + (-12 (-5 *3 (-694)) (-5 *1 (-706 *2)) (-4 *2 (-38 (-349 (-484)))) (-4 *2 (-146))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-693)) (-5 *1 (-705 *2)) (-4 *2 (-38 (-348 (-483)))) + (-12 (-5 *3 (-694)) (-5 *1 (-706 *2)) (-4 *2 (-38 (-349 (-484)))) (-4 *2 (-146))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-703 *2)) (-4 *2 (-960))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-703 *2)) (-4 *2 (-960))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-704 *2)) (-4 *2 (-961))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-704 *2)) (-4 *2 (-961))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-582 (-703 *3))) (-5 *1 (-703 *3)) (-4 *3 (-494)) - (-4 *3 (-960))))) + (-12 (-5 *2 (-583 (-704 *3))) (-5 *1 (-704 *3)) (-4 *3 (-495)) + (-4 *3 (-961))))) (((*1 *2 *1 *1) (-12 - (-5 *2 (-2 (|:| -3754 *3) (|:| |coef1| (-703 *3)) (|:| |coef2| (-703 *3)))) - (-5 *1 (-703 *3)) (-4 *3 (-494)) (-4 *3 (-960))))) + (-5 *2 (-2 (|:| -3755 *3) (|:| |coef1| (-704 *3)) (|:| |coef2| (-704 *3)))) + (-5 *1 (-704 *3)) (-4 *3 (-495)) (-4 *3 (-961))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -3754 *3) (|:| |coef1| (-703 *3)))) (-5 *1 (-703 *3)) - (-4 *3 (-494)) (-4 *3 (-960))))) + (-12 (-5 *2 (-2 (|:| -3755 *3) (|:| |coef1| (-704 *3)))) (-5 *1 (-704 *3)) + (-4 *3 (-495)) (-4 *3 (-961))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -3754 *3) (|:| |coef2| (-703 *3)))) (-5 *1 (-703 *3)) - (-4 *3 (-494)) (-4 *3 (-960))))) + (-12 (-5 *2 (-2 (|:| -3755 *3) (|:| |coef2| (-704 *3)))) (-5 *1 (-704 *3)) + (-4 *3 (-495)) (-4 *3 (-961))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-629 (-348 (-483)))) + (-12 (-5 *3 (-630 (-349 (-484)))) (-5 *2 - (-582 - (-2 (|:| |outval| *4) (|:| |outmult| (-483)) - (|:| |outvect| (-582 (-629 *4)))))) - (-5 *1 (-701 *4)) (-4 *4 (-13 (-312) (-754)))))) + (-583 + (-2 (|:| |outval| *4) (|:| |outmult| (-484)) + (|:| |outvect| (-583 (-630 *4)))))) + (-5 *1 (-702 *4)) (-4 *4 (-13 (-312) (-755)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-629 (-348 (-483)))) (-5 *2 (-582 *4)) (-5 *1 (-701 *4)) - (-4 *4 (-13 (-312) (-754)))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-629 *2)) (-4 *2 (-146)) (-5 *1 (-119 *2)))) + (-12 (-5 *3 (-630 (-349 (-484)))) (-5 *2 (-583 *4)) (-5 *1 (-702 *4)) + (-4 *4 (-13 (-312) (-755)))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-630 *2)) (-4 *2 (-146)) (-5 *1 (-119 *2)))) ((*1 *2 *3) - (-12 (-4 *4 (-146)) (-4 *2 (-1153 *4)) (-5 *1 (-151 *4 *2 *3)) - (-4 *3 (-660 *4 *2)))) + (-12 (-4 *4 (-146)) (-4 *2 (-1154 *4)) (-5 *1 (-151 *4 *2 *3)) + (-4 *3 (-661 *4 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-629 (-348 (-856 *5)))) (-5 *4 (-1088)) (-5 *2 (-856 *5)) - (-5 *1 (-248 *5)) (-4 *5 (-390)))) + (-12 (-5 *3 (-630 (-349 (-857 *5)))) (-5 *4 (-1089)) (-5 *2 (-857 *5)) + (-5 *1 (-248 *5)) (-4 *5 (-391)))) ((*1 *2 *3) - (-12 (-5 *3 (-629 (-348 (-856 *4)))) (-5 *2 (-856 *4)) (-5 *1 (-248 *4)) - (-4 *4 (-390)))) - ((*1 *2 *1) (-12 (-4 *1 (-320 *3 *2)) (-4 *3 (-146)) (-4 *2 (-1153 *3)))) + (-12 (-5 *3 (-630 (-349 (-857 *4)))) (-5 *2 (-857 *4)) (-5 *1 (-248 *4)) + (-4 *4 (-391)))) + ((*1 *2 *1) (-12 (-4 *1 (-321 *3 *2)) (-4 *3 (-146)) (-4 *2 (-1154 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-629 (-142 (-348 (-483))))) (-5 *2 (-856 (-142 (-348 (-483))))) - (-5 *1 (-687 *4)) (-4 *4 (-13 (-312) (-754))))) + (-12 (-5 *3 (-630 (-142 (-349 (-484))))) (-5 *2 (-857 (-142 (-349 (-484))))) + (-5 *1 (-688 *4)) (-4 *4 (-13 (-312) (-755))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-629 (-142 (-348 (-483))))) (-5 *4 (-1088)) - (-5 *2 (-856 (-142 (-348 (-483))))) (-5 *1 (-687 *5)) - (-4 *5 (-13 (-312) (-754))))) + (-12 (-5 *3 (-630 (-142 (-349 (-484))))) (-5 *4 (-1089)) + (-5 *2 (-857 (-142 (-349 (-484))))) (-5 *1 (-688 *5)) + (-4 *5 (-13 (-312) (-755))))) ((*1 *2 *3) - (-12 (-5 *3 (-629 (-348 (-483)))) (-5 *2 (-856 (-348 (-483)))) - (-5 *1 (-701 *4)) (-4 *4 (-13 (-312) (-754))))) + (-12 (-5 *3 (-630 (-349 (-484)))) (-5 *2 (-857 (-349 (-484)))) + (-5 *1 (-702 *4)) (-4 *4 (-13 (-312) (-755))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-629 (-348 (-483)))) (-5 *4 (-1088)) - (-5 *2 (-856 (-348 (-483)))) (-5 *1 (-701 *5)) (-4 *5 (-13 (-312) (-754)))))) + (-12 (-5 *3 (-630 (-349 (-484)))) (-5 *4 (-1089)) + (-5 *2 (-857 (-349 (-484)))) (-5 *1 (-702 *5)) (-4 *5 (-13 (-312) (-755)))))) (((*1 *2 *3) - (-12 (-4 *4 (-716)) (-4 *5 (-755)) (-4 *6 (-258)) (-5 *2 (-582 (-693))) - (-5 *1 (-700 *3 *4 *5 *6 *7)) (-4 *3 (-1153 *6)) (-4 *7 (-860 *6 *4 *5))))) + (-12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-258)) (-5 *2 (-583 (-694))) + (-5 *1 (-701 *3 *4 *5 *6 *7)) (-4 *3 (-1154 *6)) (-4 *7 (-861 *6 *4 *5))))) (((*1 *2 *3 *4 *5) - (-12 (-4 *6 (-1153 *9)) (-4 *7 (-716)) (-4 *8 (-755)) (-4 *9 (-258)) - (-4 *10 (-860 *9 *7 *8)) + (-12 (-4 *6 (-1154 *9)) (-4 *7 (-717)) (-4 *8 (-756)) (-4 *9 (-258)) + (-4 *10 (-861 *9 *7 *8)) (-5 *2 - (-2 (|:| |deter| (-582 (-1083 *10))) - (|:| |dterm| (-582 (-582 (-2 (|:| -3077 (-693)) (|:| |pcoef| *10))))) - (|:| |nfacts| (-582 *6)) (|:| |nlead| (-582 *10)))) - (-5 *1 (-700 *6 *7 *8 *9 *10)) (-5 *3 (-1083 *10)) (-5 *4 (-582 *6)) - (-5 *5 (-582 *10))))) + (-2 (|:| |deter| (-583 (-1084 *10))) + (|:| |dterm| (-583 (-583 (-2 (|:| -3078 (-694)) (|:| |pcoef| *10))))) + (|:| |nfacts| (-583 *6)) (|:| |nlead| (-583 *10)))) + (-5 *1 (-701 *6 *7 *8 *9 *10)) (-5 *3 (-1084 *10)) (-5 *4 (-583 *6)) + (-5 *5 (-583 *10))))) (((*1 *2 *3) - (-12 (-4 *4 (-299)) (-4 *5 (-280 *4)) (-4 *6 (-1153 *5)) (-5 *2 (-582 *3)) - (-5 *1 (-699 *4 *5 *6 *3 *7)) (-4 *3 (-1153 *6)) (-14 *7 (-829))))) + (-12 (-4 *4 (-299)) (-4 *5 (-280 *4)) (-4 *6 (-1154 *5)) (-5 *2 (-583 *3)) + (-5 *1 (-700 *4 *5 *6 *3 *7)) (-4 *3 (-1154 *6)) (-14 *7 (-830))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-390)) (-4 *6 (-716)) (-4 *7 (-755)) (-4 *3 (-976 *5 *6 *7)) - (-5 *2 (-582 (-2 (|:| |val| (-85)) (|:| -1598 *4)))) - (-5 *1 (-698 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3))))) + (-12 (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) + (-5 *2 (-583 (-2 (|:| |val| (-85)) (|:| -1599 *4)))) + (-5 *1 (-699 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3))))) (((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-1071)) (-4 *6 (-390)) (-4 *7 (-716)) (-4 *8 (-755)) - (-4 *4 (-976 *6 *7 *8)) (-5 *2 (-1183)) (-5 *1 (-698 *6 *7 *8 *4 *5)) - (-4 *5 (-982 *6 *7 *8 *4))))) + (-12 (-5 *3 (-1072)) (-4 *6 (-391)) (-4 *7 (-717)) (-4 *8 (-756)) + (-4 *4 (-977 *6 *7 *8)) (-5 *2 (-1184)) (-5 *1 (-699 *6 *7 *8 *4 *5)) + (-4 *5 (-983 *6 *7 *8 *4))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-494) (-949 (-483)) (-579 (-483)))) (-5 *1 (-231 *3 *2)) - (-4 *2 (-13 (-27) (-1113) (-362 *3))))) + (-12 (-4 *3 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *1 (-231 *3 *2)) + (-4 *2 (-13 (-27) (-1114) (-363 *3))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1088)) (-4 *4 (-13 (-494) (-949 (-483)) (-579 (-483)))) - (-5 *1 (-231 *4 *2)) (-4 *2 (-13 (-27) (-1113) (-362 *4))))) - ((*1 *1 *1) (-5 *1 (-328))) + (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-495) (-950 (-484)) (-580 (-484)))) + (-5 *1 (-231 *4 *2)) (-4 *2 (-13 (-27) (-1114) (-363 *4))))) + ((*1 *1 *1) (-5 *1 (-329))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-390)) (-4 *6 (-716)) (-4 *7 (-755)) (-4 *3 (-976 *5 *6 *7)) - (-5 *2 (-582 (-2 (|:| |val| *3) (|:| -1598 *4)))) - (-5 *1 (-698 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3))))) + (-12 (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) + (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1599 *4)))) + (-5 *1 (-699 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3))))) (((*1 *2 *2 *3) - (-12 (-4 *4 (-390)) (-4 *5 (-716)) (-4 *6 (-755)) (-4 *2 (-976 *4 *5 *6)) - (-5 *1 (-698 *4 *5 *6 *2 *3)) (-4 *3 (-982 *4 *5 *6 *2))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-328)))) - ((*1 *1 *1 *1) (-4 *1 (-482))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-654 *2)) (-4 *2 (-312)))) - ((*1 *1 *2) (-12 (-5 *1 (-654 *2)) (-4 *2 (-312)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-693))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-429)) (-5 *4 (-864)) (-5 *2 (-631 (-470))) (-5 *1 (-470)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-864)) (-4 *3 (-1012)) (-5 *2 (-631 *1)) (-4 *1 (-690 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-690 *3)) (-4 *3 (-1012)) (-5 *2 (-85))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-629 (-142 (-348 (-483))))) - (-5 *2 - (-582 - (-2 (|:| |outval| (-142 *4)) (|:| |outmult| (-483)) - (|:| |outvect| (-582 (-629 (-142 *4))))))) - (-5 *1 (-687 *4)) (-4 *4 (-13 (-312) (-754)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-629 (-142 (-348 (-483))))) (-5 *2 (-582 (-142 *4))) - (-5 *1 (-687 *4)) (-4 *4 (-13 (-312) (-754)))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-684)))) -(((*1 *1 *1 *1) (-4 *1 (-411))) ((*1 *1 *1 *1) (-4 *1 (-684)))) -(((*1 *1 *1 *1) (-4 *1 (-684)))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-829)) (-4 *1 (-682 *3)) (-4 *3 (-146))))) + (-12 (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *2 (-977 *4 *5 *6)) + (-5 *1 (-699 *4 *5 *6 *2 *3)) (-4 *3 (-983 *4 *5 *6 *2))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-329)))) + ((*1 *1 *1 *1) (-4 *1 (-483))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-655 *2)) (-4 *2 (-312)))) + ((*1 *1 *2) (-12 (-5 *1 (-655 *2)) (-4 *2 (-312)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-694))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-430)) (-5 *4 (-865)) (-5 *2 (-632 (-471))) (-5 *1 (-471)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-865)) (-4 *3 (-1013)) (-5 *2 (-632 *1)) (-4 *1 (-691 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-691 *3)) (-4 *3 (-1013)) (-5 *2 (-85))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-630 (-142 (-349 (-484))))) + (-5 *2 + (-583 + (-2 (|:| |outval| (-142 *4)) (|:| |outmult| (-484)) + (|:| |outvect| (-583 (-630 (-142 *4))))))) + (-5 *1 (-688 *4)) (-4 *4 (-13 (-312) (-755)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-630 (-142 (-349 (-484))))) (-5 *2 (-583 (-142 *4))) + (-5 *1 (-688 *4)) (-4 *4 (-13 (-312) (-755)))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-685)))) +(((*1 *1 *1 *1) (-4 *1 (-412))) ((*1 *1 *1 *1) (-4 *1 (-685)))) +(((*1 *1 *1 *1) (-4 *1 (-685)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-830)) (-4 *1 (-683 *3)) (-4 *3 (-146))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-1083 *6)) (-5 *3 (-483)) (-4 *6 (-258)) (-4 *4 (-716)) - (-4 *5 (-755)) (-5 *1 (-680 *4 *5 *6 *7)) (-4 *7 (-860 *6 *4 *5))))) + (-12 (-5 *2 (-1084 *6)) (-5 *3 (-484)) (-4 *6 (-258)) (-4 *4 (-717)) + (-4 *5 (-756)) (-5 *1 (-681 *4 *5 *6 *7)) (-4 *7 (-861 *6 *4 *5))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1083 *9)) (-5 *4 (-582 *7)) (-4 *7 (-755)) - (-4 *9 (-860 *8 *6 *7)) (-4 *6 (-716)) (-4 *8 (-258)) (-5 *2 (-582 (-693))) - (-5 *1 (-680 *6 *7 *8 *9)) (-5 *5 (-693))))) + (-12 (-5 *3 (-1084 *9)) (-5 *4 (-583 *7)) (-4 *7 (-756)) + (-4 *9 (-861 *8 *6 *7)) (-4 *6 (-717)) (-4 *8 (-258)) (-5 *2 (-583 (-694))) + (-5 *1 (-681 *6 *7 *8 *9)) (-5 *5 (-694))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-483)) (-5 *4 (-346 *2)) (-4 *2 (-860 *7 *5 *6)) - (-5 *1 (-680 *5 *6 *7 *2)) (-4 *5 (-716)) (-4 *6 (-755)) (-4 *7 (-258))))) + (-12 (-5 *3 (-484)) (-5 *4 (-347 *2)) (-4 *2 (-861 *7 *5 *6)) + (-5 *1 (-681 *5 *6 *7 *2)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-258))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1083 *9)) (-5 *4 (-582 *7)) (-5 *5 (-582 (-582 *8))) - (-4 *7 (-755)) (-4 *8 (-258)) (-4 *9 (-860 *8 *6 *7)) (-4 *6 (-716)) + (-12 (-5 *3 (-1084 *9)) (-5 *4 (-583 *7)) (-5 *5 (-583 (-583 *8))) + (-4 *7 (-756)) (-4 *8 (-258)) (-4 *9 (-861 *8 *6 *7)) (-4 *6 (-717)) (-5 *2 - (-2 (|:| |upol| (-1083 *8)) (|:| |Lval| (-582 *8)) - (|:| |Lfact| (-582 (-2 (|:| -3730 (-1083 *8)) (|:| -2400 (-483))))) + (-2 (|:| |upol| (-1084 *8)) (|:| |Lval| (-583 *8)) + (|:| |Lfact| (-583 (-2 (|:| -3731 (-1084 *8)) (|:| -2401 (-484))))) (|:| |ctpol| *8))) - (-5 *1 (-680 *6 *7 *8 *9))))) + (-5 *1 (-681 *6 *7 *8 *9))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-582 *7)) (-5 *5 (-582 (-582 *8))) (-4 *7 (-755)) (-4 *8 (-258)) - (-4 *6 (-716)) (-4 *9 (-860 *8 *6 *7)) + (-12 (-5 *4 (-583 *7)) (-5 *5 (-583 (-583 *8))) (-4 *7 (-756)) (-4 *8 (-258)) + (-4 *6 (-717)) (-4 *9 (-861 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) - (|:| |suPart| (-582 (-2 (|:| -3730 (-1083 *9)) (|:| -2400 (-483))))))) - (-5 *1 (-680 *6 *7 *8 *9)) (-5 *3 (-1083 *9))))) + (|:| |suPart| (-583 (-2 (|:| -3731 (-1084 *9)) (|:| -2401 (-484))))))) + (-5 *1 (-681 *6 *7 *8 *9)) (-5 *3 (-1084 *9))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-483)) (-4 *6 (-716)) (-4 *7 (-755)) (-4 *8 (-258)) - (-4 *9 (-860 *8 *6 *7)) - (-5 *2 (-2 (|:| -2003 (-1083 *9)) (|:| |polval| (-1083 *8)))) - (-5 *1 (-680 *6 *7 *8 *9)) (-5 *3 (-1083 *9)) (-5 *4 (-1083 *8))))) + (-12 (-5 *5 (-484)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *8 (-258)) + (-4 *9 (-861 *8 *6 *7)) + (-5 *2 (-2 (|:| -2004 (-1084 *9)) (|:| |polval| (-1084 *8)))) + (-5 *1 (-681 *6 *7 *8 *9)) (-5 *3 (-1084 *9)) (-5 *4 (-1084 *8))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-716)) (-4 *4 (-755)) (-4 *6 (-258)) (-5 *2 (-346 *3)) - (-5 *1 (-680 *5 *4 *6 *3)) (-4 *3 (-860 *6 *5 *4))))) + (-12 (-4 *5 (-717)) (-4 *4 (-756)) (-4 *6 (-258)) (-5 *2 (-347 *3)) + (-5 *1 (-681 *5 *4 *6 *3)) (-4 *3 (-861 *6 *5 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-582 (-2 (|:| -3730 (-1083 *6)) (|:| -2400 (-483))))) - (-4 *6 (-258)) (-4 *4 (-716)) (-4 *5 (-755)) (-5 *2 (-483)) - (-5 *1 (-680 *4 *5 *6 *7)) (-4 *7 (-860 *6 *4 *5))))) + (-12 (-5 *3 (-583 (-2 (|:| -3731 (-1084 *6)) (|:| -2401 (-484))))) + (-4 *6 (-258)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-484)) + (-5 *1 (-681 *4 *5 *6 *7)) (-4 *7 (-861 *6 *4 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-716)) (-4 *5 (-755)) (-4 *6 (-258)) (-5 *2 (-346 *3)) - (-5 *1 (-680 *4 *5 *6 *3)) (-4 *3 (-860 *6 *4 *5))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-582 *3)) (-4 *3 (-755)) (-5 *1 (-677 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-1183)) (-5 *1 (-676))))) -(((*1 *1 *2) (-12 (-5 *2 (-582 *3)) (-4 *3 (-1012)) (-5 *1 (-674 *3)))) - ((*1 *1 *2) (-12 (-5 *1 (-674 *2)) (-4 *2 (-1012)))) - ((*1 *1) (-12 (-5 *1 (-674 *2)) (-4 *2 (-1012))))) + (-12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-258)) (-5 *2 (-347 *3)) + (-5 *1 (-681 *4 *5 *6 *3)) (-4 *3 (-861 *6 *4 *5))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-756)) (-5 *1 (-678 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-677))))) +(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1013)) (-5 *1 (-675 *3)))) + ((*1 *1 *2) (-12 (-5 *1 (-675 *2)) (-4 *2 (-1013)))) + ((*1 *1) (-12 (-5 *1 (-675 *2)) (-4 *2 (-1013))))) (((*1 *2 *1) - (-12 (-4 *1 (-277 *3 *4)) (-4 *3 (-960)) (-4 *4 (-715)) (-5 *2 (-693)))) + (-12 (-4 *1 (-277 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716)) (-5 *2 (-694)))) ((*1 *2 *1) - (-12 (-4 *1 (-333 *3 *4)) (-4 *3 (-960)) (-4 *4 (-1012)) (-5 *2 (-693)))) + (-12 (-4 *1 (-334 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1013)) (-5 *2 (-694)))) ((*1 *2 *1) - (-12 (-5 *2 (-693)) (-5 *1 (-673 *3 *4)) (-4 *3 (-960)) (-4 *4 (-662))))) + (-12 (-5 *2 (-694)) (-5 *1 (-674 *3 *4)) (-4 *3 (-961)) (-4 *4 (-663))))) (((*1 *2 *3 *4) - (-12 (-4 *6 (-494)) (-4 *2 (-860 *3 *5 *4)) (-5 *1 (-670 *5 *4 *6 *2)) - (-5 *3 (-348 (-856 *6))) (-4 *5 (-716)) - (-4 *4 (-13 (-755) (-10 -8 (-15 -3970 ((-1088) $)))))))) + (-12 (-4 *6 (-495)) (-4 *2 (-861 *3 *5 *4)) (-5 *1 (-671 *5 *4 *6 *2)) + (-5 *3 (-349 (-857 *6))) (-4 *5 (-717)) + (-4 *4 (-13 (-756) (-10 -8 (-15 -3971 ((-1089) $)))))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1083 (-856 *6))) (-4 *6 (-494)) - (-4 *2 (-860 (-348 (-856 *6)) *5 *4)) (-5 *1 (-670 *5 *4 *6 *2)) - (-4 *5 (-716)) (-4 *4 (-13 (-755) (-10 -8 (-15 -3970 ((-1088) $)))))))) + (-12 (-5 *3 (-1084 (-857 *6))) (-4 *6 (-495)) + (-4 *2 (-861 (-349 (-857 *6)) *5 *4)) (-5 *1 (-671 *5 *4 *6 *2)) + (-4 *5 (-717)) (-4 *4 (-13 (-756) (-10 -8 (-15 -3971 ((-1089) $)))))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1083 *2)) (-4 *2 (-860 (-348 (-856 *6)) *5 *4)) - (-5 *1 (-670 *5 *4 *6 *2)) (-4 *5 (-716)) - (-4 *4 (-13 (-755) (-10 -8 (-15 -3970 ((-1088) $))))) (-4 *6 (-494))))) + (-12 (-5 *3 (-1084 *2)) (-4 *2 (-861 (-349 (-857 *6)) *5 *4)) + (-5 *1 (-671 *5 *4 *6 *2)) (-4 *5 (-717)) + (-4 *4 (-13 (-756) (-10 -8 (-15 -3971 ((-1089) $))))) (-4 *6 (-495))))) (((*1 *2 *3) - (-12 (-4 *4 (-716)) (-4 *5 (-13 (-755) (-10 -8 (-15 -3970 ((-1088) $))))) - (-4 *6 (-494)) (-5 *2 (-2 (|:| -2482 (-856 *6)) (|:| -2057 (-856 *6)))) - (-5 *1 (-670 *4 *5 *6 *3)) (-4 *3 (-860 (-348 (-856 *6)) *4 *5))))) + (-12 (-4 *4 (-717)) (-4 *5 (-13 (-756) (-10 -8 (-15 -3971 ((-1089) $))))) + (-4 *6 (-495)) (-5 *2 (-2 (|:| -2483 (-857 *6)) (|:| -2058 (-857 *6)))) + (-5 *1 (-671 *4 *5 *6 *3)) (-4 *3 (-861 (-349 (-857 *6)) *4 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-582 *8)) (-5 *4 (-108 *5 *6 *7)) (-14 *5 (-483)) - (-14 *6 (-693)) (-4 *7 (-146)) (-4 *8 (-146)) (-5 *2 (-108 *5 *6 *8)) + (-12 (-5 *3 (-583 *8)) (-5 *4 (-108 *5 *6 *7)) (-14 *5 (-484)) + (-14 *6 (-694)) (-4 *7 (-146)) (-4 *8 (-146)) (-5 *2 (-108 *5 *6 *8)) (-5 *1 (-109 *5 *6 *7 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-582 *9)) (-4 *9 (-960)) (-4 *5 (-755)) (-4 *6 (-716)) - (-4 *8 (-960)) (-4 *2 (-860 *9 *7 *5)) (-5 *1 (-666 *5 *6 *7 *8 *9 *4 *2)) - (-4 *7 (-716)) (-4 *4 (-860 *8 *6 *5))))) + (-12 (-5 *3 (-583 *9)) (-4 *9 (-961)) (-4 *5 (-756)) (-4 *6 (-717)) + (-4 *8 (-961)) (-4 *2 (-861 *9 *7 *5)) (-5 *1 (-667 *5 *6 *7 *8 *9 *4 *2)) + (-4 *7 (-717)) (-4 *4 (-861 *8 *6 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-348 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1153 *5)) - (-5 *1 (-665 *5 *2)) (-4 *5 (-312))))) + (-12 (-5 *3 (-349 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1154 *5)) + (-5 *1 (-666 *5 *2)) (-4 *5 (-312))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1153 *5)) (-4 *5 (-312)) - (-5 *2 (-2 (|:| -3088 (-346 *3)) (|:| |special| (-346 *3)))) - (-5 *1 (-665 *5 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-664 *2)) (-4 *2 (-72))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *3 (-72)) (-5 *1 (-663 *3))))) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1154 *5)) (-4 *5 (-312)) + (-5 *2 (-2 (|:| -3089 (-347 *3)) (|:| |special| (-347 *3)))) + (-5 *1 (-666 *5 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-665 *2)) (-4 *2 (-72))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *3 (-72)) (-5 *1 (-664 *3))))) (((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-55)))) ((*1 *2 *1) - (-12 (-4 *3 (-312)) (-4 *4 (-716)) (-4 *5 (-755)) (-5 *2 (-85)) - (-5 *1 (-442 *3 *4 *5 *6)) (-4 *6 (-860 *3 *4 *5)))) - ((*1 *2 *1) (-12 (-4 *1 (-658)) (-5 *2 (-85)))) - ((*1 *2 *1) (-12 (-4 *1 (-662)) (-5 *2 (-85))))) + (-12 (-4 *3 (-312)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85)) + (-5 *1 (-443 *3 *4 *5 *6)) (-4 *6 (-861 *3 *4 *5)))) + ((*1 *2 *1) (-12 (-4 *1 (-659)) (-5 *2 (-85)))) + ((*1 *2 *1) (-12 (-4 *1 (-663)) (-5 *2 (-85))))) (((*1 *1 *2) - (-12 (-5 *2 (-693)) (-5 *1 (-50 *3 *4)) (-4 *3 (-960)) - (-14 *4 (-582 (-1088))))) + (-12 (-5 *2 (-694)) (-5 *1 (-50 *3 *4)) (-4 *3 (-961)) + (-14 *4 (-583 (-1089))))) ((*1 *1 *2) - (-12 (-5 *2 (-693)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-960) (-755))) - (-14 *4 (-582 (-1088))))) - ((*1 *1) (-12 (-4 *1 (-280 *2)) (-4 *2 (-318)) (-4 *2 (-312)))) + (-12 (-5 *2 (-694)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-961) (-756))) + (-14 *4 (-583 (-1089))))) + ((*1 *1) (-12 (-4 *1 (-280 *2)) (-4 *2 (-319)) (-4 *2 (-312)))) ((*1 *2 *1) - (|partial| -12 (-4 *1 (-286 *3 *4 *5 *2)) (-4 *3 (-312)) (-4 *4 (-1153 *3)) - (-4 *5 (-1153 (-348 *4))) (-4 *2 (-291 *3 *4 *5)))) + (|partial| -12 (-4 *1 (-286 *3 *4 *5 *2)) (-4 *3 (-312)) (-4 *4 (-1154 *3)) + (-4 *5 (-1154 (-349 *4))) (-4 *2 (-291 *3 *4 *5)))) ((*1 *1 *2) - (-12 (-5 *2 (-693)) (-5 *1 (-338 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) + (-12 (-5 *2 (-694)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-146)))) - ((*1 *1) (-12 (-4 *2 (-146)) (-4 *1 (-660 *2 *3)) (-4 *3 (-1153 *2))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1177 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-312)) - (-4 *1 (-660 *5 *6)) (-4 *5 (-146)) (-4 *6 (-1153 *5)) (-5 *2 (-629 *5))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-656)) (-5 *2 (-829)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-658)) (-5 *2 (-693))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-656)) (-5 *2 (-829)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-658)) (-5 *2 (-693))))) -(((*1 *1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-146)) (-4 *2 (-494)))) - ((*1 *1 *1) (|partial| -4 *1 (-658)))) -(((*1 *1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-146)) (-4 *2 (-494)))) - ((*1 *1 *1) (|partial| -4 *1 (-658)))) -(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-654 *2)) (-4 *2 (-312))))) + ((*1 *1) (-12 (-4 *2 (-146)) (-4 *1 (-661 *2 *3)) (-4 *3 (-1154 *2))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1178 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-312)) + (-4 *1 (-661 *5 *6)) (-4 *5 (-146)) (-4 *6 (-1154 *5)) (-5 *2 (-630 *5))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-657)) (-5 *2 (-830)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-659)) (-5 *2 (-694))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-657)) (-5 *2 (-830)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-659)) (-5 *2 (-694))))) +(((*1 *1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-146)) (-4 *2 (-495)))) + ((*1 *1 *1) (|partial| -4 *1 (-659)))) +(((*1 *1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-146)) (-4 *2 (-495)))) + ((*1 *1 *1) (|partial| -4 *1 (-659)))) +(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-655 *2)) (-4 *2 (-312))))) (((*1 *1 *1 *1) (|partial| -12 (-4 *2 (-146)) (-5 *1 (-244 *2 *3 *4 *5 *6 *7)) - (-4 *3 (-1153 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) + (-4 *3 (-1154 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-647 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) + (|partial| -12 (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-651 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) + (|partial| -12 (-5 *1 (-652 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) (((*1 *2 *1) - (-12 (-5 *2 (-1158 *3 *4 *5)) (-5 *1 (-270 *3 *4 *5)) (-4 *3 (-312)) - (-14 *4 (-1088)) (-14 *5 *3))) - ((*1 *2 *1) (-12 (-4 *1 (-345)) (-5 *2 (-483)))) - ((*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-346 *3)) (-4 *3 (-494)))) + (-12 (-5 *2 (-1159 *3 *4 *5)) (-5 *1 (-270 *3 *4 *5)) (-4 *3 (-312)) + (-14 *4 (-1089)) (-14 *5 *3))) + ((*1 *2 *1) (-12 (-4 *1 (-346)) (-5 *2 (-484)))) + ((*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-347 *3)) (-4 *3 (-495)))) ((*1 *2 *1) - (-12 (-4 *2 (-1012)) (-5 *1 (-649 *3 *2 *4)) (-4 *3 (-755)) + (-12 (-4 *2 (-1013)) (-5 *1 (-650 *3 *2 *4)) (-4 *3 (-756)) (-14 *4 - (-1 (-85) (-2 (|:| -2399 *3) (|:| -2400 *2)) - (-2 (|:| -2399 *3) (|:| -2400 *2))))))) -(((*1 *1 *2) (-12 (-5 *2 (-829)) (-4 *1 (-318)))) - ((*1 *2 *1) (-12 (-4 *2 (-758)) (-5 *1 (-452 *3 *2)) (-4 *3 (-72)))) + (-1 (-85) (-2 (|:| -2400 *3) (|:| -2401 *2)) + (-2 (|:| -2400 *3) (|:| -2401 *2))))))) +(((*1 *1 *2) (-12 (-5 *2 (-830)) (-4 *1 (-319)))) + ((*1 *2 *1) (-12 (-4 *2 (-759)) (-5 *1 (-453 *3 *2)) (-4 *3 (-72)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-829)) (-5 *2 (-1177 *4)) (-5 *1 (-465 *4)) (-4 *4 (-299)))) + (-12 (-5 *3 (-830)) (-5 *2 (-1178 *4)) (-5 *1 (-466 *4)) (-4 *4 (-299)))) ((*1 *2 *1) - (-12 (-4 *2 (-755)) (-5 *1 (-649 *2 *3 *4)) (-4 *3 (-1012)) + (-12 (-4 *2 (-756)) (-5 *1 (-650 *2 *3 *4)) (-4 *3 (-1013)) (-14 *4 - (-1 (-85) (-2 (|:| -2399 *2) (|:| -2400 *3)) - (-2 (|:| -2399 *2) (|:| -2400 *3))))))) -(((*1 *2 *2) (-12 (-4 *3 (-960)) (-5 *1 (-648 *3 *2)) (-4 *2 (-1153 *3))))) + (-1 (-85) (-2 (|:| -2400 *2) (|:| -2401 *3)) + (-2 (|:| -2400 *2) (|:| -2401 *3))))))) +(((*1 *2 *2) (-12 (-4 *3 (-961)) (-5 *1 (-649 *3 *2)) (-4 *2 (-1154 *3))))) (((*1 *2 *1) - (-12 (-4 *3 (-960)) (-5 *2 (-1177 *3)) (-5 *1 (-648 *3 *4)) - (-4 *4 (-1153 *3))))) + (-12 (-4 *3 (-961)) (-5 *2 (-1178 *3)) (-5 *1 (-649 *3 *4)) + (-4 *4 (-1154 *3))))) (((*1 *1 *2) - (-12 (-5 *2 (-1177 *3)) (-4 *3 (-960)) (-5 *1 (-648 *3 *4)) - (-4 *4 (-1153 *3))))) + (-12 (-5 *2 (-1178 *3)) (-4 *3 (-961)) (-5 *1 (-649 *3 *4)) + (-4 *4 (-1154 *3))))) (((*1 *2 *1) - (-12 (-4 *3 (-960)) (-5 *2 (-1177 *3)) (-5 *1 (-648 *3 *4)) - (-4 *4 (-1153 *3))))) + (-12 (-4 *3 (-961)) (-5 *2 (-1178 *3)) (-5 *1 (-649 *3 *4)) + (-4 *4 (-1154 *3))))) (((*1 *2) - (-12 (-4 *3 (-960)) (-5 *2 (-868 (-648 *3 *4))) (-5 *1 (-648 *3 *4)) - (-4 *4 (-1153 *3))))) + (-12 (-4 *3 (-961)) (-5 *2 (-869 (-649 *3 *4))) (-5 *1 (-649 *3 *4)) + (-4 *4 (-1154 *3))))) (((*1 *2) - (-12 (-4 *3 (-960)) (-5 *2 (-868 (-648 *3 *4))) (-5 *1 (-648 *3 *4)) - (-4 *4 (-1153 *3))))) + (-12 (-4 *3 (-961)) (-5 *2 (-869 (-649 *3 *4))) (-5 *1 (-649 *3 *4)) + (-4 *4 (-1154 *3))))) (((*1 *1 *1) - (-12 (-4 *2 (-299)) (-4 *2 (-960)) (-5 *1 (-648 *2 *3)) (-4 *3 (-1153 *2))))) -(((*1 *2 *3) (-12 (-5 *3 (-771)) (-5 *2 (-1071)) (-5 *1 (-646))))) -(((*1 *2 *3) (-12 (-5 *3 (-771)) (-5 *2 (-1071)) (-5 *1 (-646))))) -(((*1 *2 *3) (-12 (-5 *3 (-771)) (-5 *2 (-1071)) (-5 *1 (-646))))) + (-12 (-4 *2 (-299)) (-4 *2 (-961)) (-5 *1 (-649 *2 *3)) (-4 *3 (-1154 *2))))) +(((*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1072)) (-5 *1 (-647))))) +(((*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1072)) (-5 *1 (-647))))) +(((*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1072)) (-5 *1 (-647))))) (((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) - (|partial| -12 (-5 *2 (-582 (-1083 *13))) (-5 *3 (-1083 *13)) - (-5 *4 (-582 *12)) (-5 *5 (-582 *10)) (-5 *6 (-582 *13)) - (-5 *7 (-582 (-582 (-2 (|:| -3077 (-693)) (|:| |pcoef| *13))))) - (-5 *8 (-582 (-693))) (-5 *9 (-1177 (-582 (-1083 *10)))) (-4 *12 (-755)) - (-4 *10 (-258)) (-4 *13 (-860 *10 *11 *12)) (-4 *11 (-716)) - (-5 *1 (-643 *11 *12 *10 *13))))) + (|partial| -12 (-5 *2 (-583 (-1084 *13))) (-5 *3 (-1084 *13)) + (-5 *4 (-583 *12)) (-5 *5 (-583 *10)) (-5 *6 (-583 *13)) + (-5 *7 (-583 (-583 (-2 (|:| -3078 (-694)) (|:| |pcoef| *13))))) + (-5 *8 (-583 (-694))) (-5 *9 (-1178 (-583 (-1084 *10)))) (-4 *12 (-756)) + (-4 *10 (-258)) (-4 *13 (-861 *10 *11 *12)) (-4 *11 (-717)) + (-5 *1 (-644 *11 *12 *10 *13))))) (((*1 *2 *3 *4 *5 *6 *7 *8 *9) - (|partial| -12 (-5 *4 (-582 *11)) (-5 *5 (-582 (-1083 *9))) (-5 *6 (-582 *9)) - (-5 *7 (-582 *12)) (-5 *8 (-582 (-693))) (-4 *11 (-755)) (-4 *9 (-258)) - (-4 *12 (-860 *9 *10 *11)) (-4 *10 (-716)) (-5 *2 (-582 (-1083 *12))) - (-5 *1 (-643 *10 *11 *9 *12)) (-5 *3 (-1083 *12))))) + (|partial| -12 (-5 *4 (-583 *11)) (-5 *5 (-583 (-1084 *9))) (-5 *6 (-583 *9)) + (-5 *7 (-583 *12)) (-5 *8 (-583 (-694))) (-4 *11 (-756)) (-4 *9 (-258)) + (-4 *12 (-861 *9 *10 *11)) (-4 *10 (-717)) (-5 *2 (-583 (-1084 *12))) + (-5 *1 (-644 *10 *11 *9 *12)) (-5 *3 (-1084 *12))))) (((*1 *2 *3 *4 *5 *6 *2 *7 *8) - (|partial| -12 (-5 *2 (-582 (-1083 *11))) (-5 *3 (-1083 *11)) - (-5 *4 (-582 *10)) (-5 *5 (-582 *8)) (-5 *6 (-582 (-693))) - (-5 *7 (-1177 (-582 (-1083 *8)))) (-4 *10 (-755)) (-4 *8 (-258)) - (-4 *11 (-860 *8 *9 *10)) (-4 *9 (-716)) (-5 *1 (-643 *9 *10 *8 *11))))) + (|partial| -12 (-5 *2 (-583 (-1084 *11))) (-5 *3 (-1084 *11)) + (-5 *4 (-583 *10)) (-5 *5 (-583 *8)) (-5 *6 (-583 (-694))) + (-5 *7 (-1178 (-583 (-1084 *8)))) (-4 *10 (-756)) (-4 *8 (-258)) + (-4 *11 (-861 *8 *9 *10)) (-4 *9 (-717)) (-5 *1 (-644 *9 *10 *8 *11))))) (((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1088)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-638 *3 *5 *6 *7)) - (-4 *3 (-552 (-472))) (-4 *5 (-1127)) (-4 *6 (-1127)) (-4 *7 (-1127)))) + (-12 (-5 *4 (-1089)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-639 *3 *5 *6 *7)) + (-4 *3 (-553 (-473))) (-4 *5 (-1128)) (-4 *6 (-1128)) (-4 *7 (-1128)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1088)) (-5 *2 (-1 *6 *5)) (-5 *1 (-642 *3 *5 *6)) - (-4 *3 (-552 (-472))) (-4 *5 (-1127)) (-4 *6 (-1127))))) + (-12 (-5 *4 (-1089)) (-5 *2 (-1 *6 *5)) (-5 *1 (-643 *3 *5 *6)) + (-4 *3 (-553 (-473))) (-4 *5 (-1128)) (-4 *6 (-1128))))) (((*1 *2 *3) - (-12 (-5 *3 (-1088)) (-5 *2 (-1 *6 *5)) (-5 *1 (-642 *4 *5 *6)) - (-4 *4 (-552 (-472))) (-4 *5 (-1127)) (-4 *6 (-1127))))) + (-12 (-5 *3 (-1089)) (-5 *2 (-1 *6 *5)) (-5 *1 (-643 *4 *5 *6)) + (-4 *4 (-553 (-473))) (-4 *5 (-1128)) (-4 *6 (-1128))))) (((*1 *2 *3 *4) - (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-641 *3 *4)) - (-4 *3 (-1127)) (-4 *4 (-1127))))) -(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-582 (-1088))) (-5 *3 (-1088)) (-5 *1 (-472)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-1088)) (-5 *1 (-640 *3)) (-4 *3 (-552 (-472))))) + (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-642 *3 *4)) + (-4 *3 (-1128)) (-4 *4 (-1128))))) +(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-1089))) (-5 *3 (-1089)) (-5 *1 (-473)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-641 *3)) (-4 *3 (-553 (-473))))) ((*1 *2 *3 *2 *2) - (-12 (-5 *2 (-1088)) (-5 *1 (-640 *3)) (-4 *3 (-552 (-472))))) + (-12 (-5 *2 (-1089)) (-5 *1 (-641 *3)) (-4 *3 (-553 (-473))))) ((*1 *2 *3 *2 *2 *2) - (-12 (-5 *2 (-1088)) (-5 *1 (-640 *3)) (-4 *3 (-552 (-472))))) + (-12 (-5 *2 (-1089)) (-5 *1 (-641 *3)) (-4 *3 (-553 (-473))))) ((*1 *2 *3 *2 *4) - (-12 (-5 *4 (-582 (-1088))) (-5 *2 (-1088)) (-5 *1 (-640 *3)) - (-4 *3 (-552 (-472)))))) + (-12 (-5 *4 (-583 (-1089))) (-5 *2 (-1089)) (-5 *1 (-641 *3)) + (-4 *3 (-553 (-473)))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1088)) (-5 *2 (-1 (-179) (-179))) (-5 *1 (-639 *3)) - (-4 *3 (-552 (-472))))) + (-12 (-5 *4 (-1089)) (-5 *2 (-1 (-179) (-179))) (-5 *1 (-640 *3)) + (-4 *3 (-553 (-473))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1088)) (-5 *2 (-1 (-179) (-179) (-179))) (-5 *1 (-639 *3)) - (-4 *3 (-552 (-472)))))) + (-12 (-5 *4 (-1089)) (-5 *2 (-1 (-179) (-179) (-179))) (-5 *1 (-640 *3)) + (-4 *3 (-553 (-473)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1088)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-638 *4 *5 *6 *7)) - (-4 *4 (-552 (-472))) (-4 *5 (-1127)) (-4 *6 (-1127)) (-4 *7 (-1127))))) + (-12 (-5 *3 (-1089)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-639 *4 *5 *6 *7)) + (-4 *4 (-553 (-473))) (-4 *5 (-1128)) (-4 *6 (-1128)) (-4 *7 (-1128))))) (((*1 *2 *3 *3) - (-12 (-4 *3 (-258)) (-4 *3 (-146)) (-4 *4 (-322 *3)) (-4 *5 (-322 *3)) - (-5 *2 (-2 (|:| -1971 *3) (|:| -2901 *3))) (-5 *1 (-628 *3 *4 *5 *6)) - (-4 *6 (-626 *3 *4 *5)))) + (-12 (-4 *3 (-258)) (-4 *3 (-146)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)) + (-5 *2 (-2 (|:| -1972 *3) (|:| -2902 *3))) (-5 *1 (-629 *3 *4 *5 *6)) + (-4 *6 (-627 *3 *4 *5)))) ((*1 *2 *3 *3) - (-12 (-5 *2 (-2 (|:| -1971 *3) (|:| -2901 *3))) (-5 *1 (-637 *3)) + (-12 (-5 *2 (-2 (|:| -1972 *3) (|:| -2902 *3))) (-5 *1 (-638 *3)) (-4 *3 (-258))))) -(((*1 *2 *2 *3 *3) (-12 (-5 *2 (-629 *3)) (-4 *3 (-258)) (-5 *1 (-637 *3))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-629 *3)) (-4 *3 (-258)) (-5 *1 (-637 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-629 *3)) (-4 *3 (-258)) (-5 *1 (-637 *3))))) +(((*1 *2 *2 *3 *3) (-12 (-5 *2 (-630 *3)) (-4 *3 (-258)) (-5 *1 (-638 *3))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-630 *3)) (-4 *3 (-258)) (-5 *1 (-638 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-258)) (-5 *1 (-638 *3))))) (((*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1 (-179) (-179) (-179) (-179))) - (-5 *2 (-1 (-853 (-179)) (-179) (-179))) (-5 *1 (-635))))) + (-5 *2 (-1 (-854 (-179)) (-179) (-179))) (-5 *1 (-636))))) (((*1 *2 *3 *3 *3 *4 *5 *6) - (-12 (-5 *3 (-265 (-483))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1000 (-179))) - (-5 *6 (-582 (-221))) (-5 *2 (-1045 (-179))) (-5 *1 (-635))))) + (-12 (-5 *3 (-265 (-484))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1001 (-179))) + (-5 *6 (-583 (-221))) (-5 *2 (-1046 (-179))) (-5 *1 (-636))))) (((*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-3 (-1 (-179) (-179) (-179) (-179)) "undefined")) - (-5 *5 (-1000 (-179))) (-5 *6 (-582 (-221))) (-5 *2 (-1045 (-179))) - (-5 *1 (-635))))) + (-5 *5 (-1001 (-179))) (-5 *6 (-583 (-221))) (-5 *2 (-1046 (-179))) + (-5 *1 (-636))))) (((*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-3 (-1 (-179) (-179) (-179) (-179)) "undefined")) - (-5 *5 (-1000 (-179))) (-5 *6 (-582 (-221))) (-5 *2 (-1045 (-179))) - (-5 *1 (-635)))) + (-5 *5 (-1001 (-179))) (-5 *6 (-583 (-221))) (-5 *2 (-1046 (-179))) + (-5 *1 (-636)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-853 (-179)) (-179) (-179))) (-5 *4 (-1000 (-179))) - (-5 *5 (-582 (-221))) (-5 *2 (-1045 (-179))) (-5 *1 (-635)))) + (-12 (-5 *3 (-1 (-854 (-179)) (-179) (-179))) (-5 *4 (-1001 (-179))) + (-5 *5 (-583 (-221))) (-5 *2 (-1046 (-179))) (-5 *1 (-636)))) ((*1 *2 *2 *3 *4 *4 *5) - (-12 (-5 *2 (-1045 (-179))) (-5 *3 (-1 (-853 (-179)) (-179) (-179))) - (-5 *4 (-1000 (-179))) (-5 *5 (-582 (-221))) (-5 *1 (-635))))) + (-12 (-5 *2 (-1046 (-179))) (-5 *3 (-1 (-854 (-179)) (-179) (-179))) + (-5 *4 (-1001 (-179))) (-5 *5 (-583 (-221))) (-5 *1 (-636))))) (((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-693)) (-4 *4 (-299)) (-5 *1 (-170 *4 *2)) (-4 *2 (-1153 *4)))) + (-12 (-5 *3 (-694)) (-4 *4 (-299)) (-5 *1 (-170 *4 *2)) (-4 *2 (-1154 *4)))) ((*1 *2 *2 *3 *2 *3) - (-12 (-5 *3 (-483)) (-5 *1 (-634 *2)) (-4 *2 (-1153 *3))))) + (-12 (-5 *3 (-484)) (-5 *1 (-635 *2)) (-4 *2 (-1154 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-582 (-2 (|:| |deg| (-693)) (|:| -2574 *5)))) (-4 *5 (-1153 *4)) - (-4 *4 (-299)) (-5 *2 (-582 *5)) (-5 *1 (-170 *4 *5)))) + (-12 (-5 *3 (-583 (-2 (|:| |deg| (-694)) (|:| -2575 *5)))) (-4 *5 (-1154 *4)) + (-4 *4 (-299)) (-5 *2 (-583 *5)) (-5 *1 (-170 *4 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-582 (-2 (|:| -3730 *5) (|:| -3946 (-483))))) (-5 *4 (-483)) - (-4 *5 (-1153 *4)) (-5 *2 (-582 *5)) (-5 *1 (-634 *5))))) + (-12 (-5 *3 (-583 (-2 (|:| -3731 *5) (|:| -3947 (-484))))) (-5 *4 (-484)) + (-4 *5 (-1154 *4)) (-5 *2 (-583 *5)) (-5 *1 (-635 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-483)) (-5 *2 (-582 (-2 (|:| -3730 *3) (|:| -3946 *4)))) - (-5 *1 (-634 *3)) (-4 *3 (-1153 *4))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-483)) (-5 *1 (-634 *2)) (-4 *2 (-1153 *3))))) -(((*1 *1 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1127)) (-4 *2 (-1012)))) - ((*1 *1 *1) (-12 (-4 *1 (-633 *2)) (-4 *2 (-1012))))) + (-12 (-5 *4 (-484)) (-5 *2 (-583 (-2 (|:| -3731 *3) (|:| -3947 *4)))) + (-5 *1 (-635 *3)) (-4 *3 (-1154 *4))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-484)) (-5 *1 (-635 *2)) (-4 *2 (-1154 *3))))) +(((*1 *1 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1128)) (-4 *2 (-1013)))) + ((*1 *1 *1) (-12 (-4 *1 (-634 *2)) (-4 *2 (-1013))))) (((*1 *2 *1) - (-12 (-4 *1 (-633 *3)) (-4 *3 (-1012)) - (-5 *2 (-582 (-2 (|:| |entry| *3) (|:| -1944 (-693)))))))) -(((*1 *1 *2) (-12 (-5 *1 (-631 *2)) (-4 *2 (-551 (-771)))))) -(((*1 *1) (-12 (-5 *1 (-631 *2)) (-4 *2 (-551 (-771)))))) + (-12 (-4 *1 (-634 *3)) (-4 *3 (-1013)) + (-5 *2 (-583 (-2 (|:| |entry| *3) (|:| -1945 (-694)))))))) +(((*1 *1 *2) (-12 (-5 *1 (-632 *2)) (-4 *2 (-552 (-772)))))) +(((*1 *1) (-12 (-5 *1 (-632 *2)) (-4 *2 (-552 (-772)))))) (((*1 *2 *2 *2 *2 *2 *3) - (-12 (-5 *2 (-629 *4)) (-5 *3 (-693)) (-4 *4 (-960)) (-5 *1 (-630 *4))))) -(((*1 *2 *2 *2 *2) (-12 (-5 *2 (-629 *3)) (-4 *3 (-960)) (-5 *1 (-630 *3))))) -(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-629 *3)) (-4 *3 (-960)) (-5 *1 (-630 *3))))) -(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-629 *3)) (-4 *3 (-960)) (-5 *1 (-630 *3))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-629 *3)) (-4 *3 (-960)) (-5 *1 (-630 *3)))) - ((*1 *2 *2 *2 *2) (-12 (-5 *2 (-629 *3)) (-4 *3 (-960)) (-5 *1 (-630 *3))))) -(((*1 *2 *2 *2 *2) (-12 (-5 *2 (-629 *3)) (-4 *3 (-960)) (-5 *1 (-630 *3))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-629 *3)) (-4 *3 (-960)) (-5 *1 (-630 *3))))) -(((*1 *2 *2) - (|partial| -12 (-4 *3 (-494)) (-4 *3 (-146)) (-4 *4 (-322 *3)) - (-4 *5 (-322 *3)) (-5 *1 (-628 *3 *4 *5 *2)) (-4 *2 (-626 *3 *4 *5))))) -(((*1 *2 *2) - (-12 (-4 *3 (-494)) (-4 *3 (-146)) (-4 *4 (-322 *3)) (-4 *5 (-322 *3)) - (-5 *1 (-628 *3 *4 *5 *2)) (-4 *2 (-626 *3 *4 *5))))) + (-12 (-5 *2 (-630 *4)) (-5 *3 (-694)) (-4 *4 (-961)) (-5 *1 (-631 *4))))) +(((*1 *2 *2 *2 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-961)) (-5 *1 (-631 *3))))) +(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-630 *3)) (-4 *3 (-961)) (-5 *1 (-631 *3))))) +(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-961)) (-5 *1 (-631 *3))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-961)) (-5 *1 (-631 *3)))) + ((*1 *2 *2 *2 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-961)) (-5 *1 (-631 *3))))) +(((*1 *2 *2 *2 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-961)) (-5 *1 (-631 *3))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-961)) (-5 *1 (-631 *3))))) +(((*1 *2 *2) + (|partial| -12 (-4 *3 (-495)) (-4 *3 (-146)) (-4 *4 (-323 *3)) + (-4 *5 (-323 *3)) (-5 *1 (-629 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5))))) +(((*1 *2 *2) + (-12 (-4 *3 (-495)) (-4 *3 (-146)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)) + (-5 *1 (-629 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5))))) (((*1 *2 *2 *3 *4 *4) - (-12 (-5 *4 (-483)) (-4 *3 (-146)) (-4 *5 (-322 *3)) (-4 *6 (-322 *3)) - (-5 *1 (-628 *3 *5 *6 *2)) (-4 *2 (-626 *3 *5 *6))))) + (-12 (-5 *4 (-484)) (-4 *3 (-146)) (-4 *5 (-323 *3)) (-4 *6 (-323 *3)) + (-5 *1 (-629 *3 *5 *6 *2)) (-4 *2 (-627 *3 *5 *6))))) (((*1 *2 *2 *3 *4 *4) - (-12 (-5 *4 (-483)) (-4 *3 (-146)) (-4 *5 (-322 *3)) (-4 *6 (-322 *3)) - (-5 *1 (-628 *3 *5 *6 *2)) (-4 *2 (-626 *3 *5 *6))))) + (-12 (-5 *4 (-484)) (-4 *3 (-146)) (-4 *5 (-323 *3)) (-4 *6 (-323 *3)) + (-5 *1 (-629 *3 *5 *6 *2)) (-4 *2 (-627 *3 *5 *6))))) (((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-483)) (-4 *4 (-146)) (-4 *5 (-322 *4)) (-4 *6 (-322 *4)) - (-5 *1 (-628 *4 *5 *6 *2)) (-4 *2 (-626 *4 *5 *6))))) + (-12 (-5 *3 (-484)) (-4 *4 (-146)) (-4 *5 (-323 *4)) (-4 *6 (-323 *4)) + (-5 *1 (-629 *4 *5 *6 *2)) (-4 *2 (-627 *4 *5 *6))))) (((*1 *1 *1) - (-12 (-4 *1 (-626 *2 *3 *4)) (-4 *2 (-960)) (-4 *3 (-322 *2)) - (-4 *4 (-322 *2))))) + (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-323 *2)) + (-4 *4 (-323 *2))))) (((*1 *1 *1 *1) - (-12 (-4 *1 (-626 *2 *3 *4)) (-4 *2 (-960)) (-4 *3 (-322 *2)) - (-4 *4 (-322 *2))))) + (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-323 *2)) + (-4 *4 (-323 *2))))) (((*1 *1 *1 *1) - (-12 (-4 *1 (-626 *2 *3 *4)) (-4 *2 (-960)) (-4 *3 (-322 *2)) - (-4 *4 (-322 *2))))) + (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-323 *2)) + (-4 *4 (-323 *2))))) (((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-483)) (-4 *1 (-626 *3 *4 *5)) (-4 *3 (-960)) (-4 *4 (-322 *3)) - (-4 *5 (-322 *3))))) + (-12 (-5 *2 (-484)) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-323 *3)) + (-4 *5 (-323 *3))))) (((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-483)) (-4 *1 (-626 *3 *4 *5)) (-4 *3 (-960)) (-4 *4 (-322 *3)) - (-4 *5 (-322 *3))))) + (-12 (-5 *2 (-484)) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-323 *3)) + (-4 *5 (-323 *3))))) (((*1 *1 *1 *2 *2 *2 *2) - (-12 (-5 *2 (-483)) (-4 *1 (-626 *3 *4 *5)) (-4 *3 (-960)) (-4 *4 (-322 *3)) - (-4 *5 (-322 *3))))) + (-12 (-5 *2 (-484)) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-323 *3)) + (-4 *5 (-323 *3))))) (((*1 *1 *1 *2 *2 *1) - (-12 (-5 *2 (-483)) (-4 *1 (-626 *3 *4 *5)) (-4 *3 (-960)) (-4 *4 (-322 *3)) - (-4 *5 (-322 *3))))) + (-12 (-5 *2 (-484)) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-323 *3)) + (-4 *5 (-323 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1012)) (-4 *5 (-1012)) (-4 *6 (-1012)) - (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-624 *4 *5 *6))))) + (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) + (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-625 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-5 *2 (-1 *6 *4 *5)) - (-5 *1 (-624 *4 *5 *6)) (-4 *4 (-1012))))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-5 *2 (-1 *6 *4 *5)) + (-5 *1 (-625 *4 *5 *6)) (-4 *4 (-1013))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1012)) (-4 *6 (-1012)) (-5 *2 (-1 *6 *4 *5)) - (-5 *1 (-624 *4 *5 *6)) (-4 *5 (-1012))))) + (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1013)) (-4 *6 (-1013)) (-5 *2 (-1 *6 *4 *5)) + (-5 *1 (-625 *4 *5 *6)) (-4 *5 (-1013))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1012)) (-4 *5 (-1012)) (-4 *6 (-1012)) - (-5 *2 (-1 *6 *5)) (-5 *1 (-624 *4 *5 *6))))) + (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) + (-5 *2 (-1 *6 *5)) (-5 *1 (-625 *4 *5 *6))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1012)) (-4 *4 (-1012)) (-4 *6 (-1012)) - (-5 *2 (-1 *6 *5)) (-5 *1 (-624 *5 *4 *6))))) + (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1013)) (-4 *4 (-1013)) (-4 *6 (-1013)) + (-5 *2 (-1 *6 *5)) (-5 *1 (-625 *5 *4 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1012)) (-4 *5 (-1012)) (-5 *2 (-1 *5 *4)) - (-5 *1 (-623 *4 *5))))) + (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-5 *2 (-1 *5 *4)) + (-5 *1 (-624 *4 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1012)) (-4 *5 (-1012)) (-5 *2 (-1 *5)) - (-5 *1 (-623 *4 *5))))) + (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-5 *2 (-1 *5)) + (-5 *1 (-624 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-623 *4 *3)) (-4 *4 (-1012)) - (-4 *3 (-1012))))) + (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-624 *4 *3)) (-4 *4 (-1013)) + (-4 *3 (-1013))))) (((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 (-693) *2)) (-5 *4 (-693)) (-4 *2 (-1012)) - (-5 *1 (-618 *2)))) - ((*1 *2 *2) (-12 (-5 *2 (-1 *3 (-693) *3)) (-4 *3 (-1012)) (-5 *1 (-622 *3))))) -(((*1 *2 *2) (-12 (-5 *1 (-622 *2)) (-4 *2 (-1012))))) -(((*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-622 *2)) (-4 *2 (-1012)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-582 *5) (-582 *5))) (-5 *4 (-483)) (-5 *2 (-582 *5)) - (-5 *1 (-622 *5)) (-4 *5 (-1012))))) -(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-622 *3)) (-4 *3 (-1012))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-582 (-1128))) (-5 *3 (-1128)) (-5 *1 (-621))))) + (-12 (-5 *3 (-1 *2 (-694) *2)) (-5 *4 (-694)) (-4 *2 (-1013)) + (-5 *1 (-619 *2)))) + ((*1 *2 *2) (-12 (-5 *2 (-1 *3 (-694) *3)) (-4 *3 (-1013)) (-5 *1 (-623 *3))))) +(((*1 *2 *2) (-12 (-5 *1 (-623 *2)) (-4 *2 (-1013))))) +(((*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-623 *2)) (-4 *2 (-1013)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 (-583 *5) (-583 *5))) (-5 *4 (-484)) (-5 *2 (-583 *5)) + (-5 *1 (-623 *5)) (-4 *5 (-1013))))) +(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-623 *3)) (-4 *3 (-1013))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-583 (-1129))) (-5 *3 (-1129)) (-5 *1 (-622))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1012)) (-4 *6 (-1012)) - (-4 *2 (-1012)) (-5 *1 (-620 *5 *6 *2))))) -(((*1 *2 *3 *2) (-12 (-5 *1 (-619 *3 *2)) (-4 *3 (-1012)) (-4 *2 (-1012))))) -(((*1 *2 *2 *3) (-12 (-5 *1 (-619 *2 *3)) (-4 *2 (-1012)) (-4 *3 (-1012))))) + (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1013)) (-4 *6 (-1013)) + (-4 *2 (-1013)) (-5 *1 (-621 *5 *6 *2))))) +(((*1 *2 *3 *2) (-12 (-5 *1 (-620 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1013))))) +(((*1 *2 *2 *3) (-12 (-5 *1 (-620 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013))))) (((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-693)) (-4 *2 (-1012)) (-5 *1 (-618 *2))))) -(((*1 *2 *1) (-12 (-4 *1 (-615 *3)) (-4 *3 (-1127)) (-5 *2 (-85))))) -(((*1 *2 *1) (-12 (-4 *1 (-615 *3)) (-4 *3 (-1127)) (-5 *2 (-85))))) -(((*1 *2 *1) (-12 (-4 *1 (-615 *3)) (-4 *3 (-1127)) (-5 *2 (-85))))) -(((*1 *1 *1) (-12 (-4 *1 (-615 *2)) (-4 *2 (-1127))))) -(((*1 *2 *1) (-12 (-4 *1 (-615 *2)) (-4 *2 (-1127))))) -(((*1 *1 *1) (-12 (-4 *1 (-615 *2)) (-4 *2 (-1127))))) -(((*1 *2 *1) (-12 (-4 *1 (-615 *3)) (-4 *3 (-1127)) (-5 *2 (-693))))) -(((*1 *2 *3) - (-12 (-5 *3 (-738 *4)) (-4 *4 (-755)) (-5 *2 (-85)) (-5 *1 (-613 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-738 *3)) (-4 *3 (-755)) (-5 *1 (-613 *3))))) + (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-694)) (-4 *2 (-1013)) (-5 *1 (-619 *2))))) +(((*1 *2 *1) (-12 (-4 *1 (-616 *3)) (-4 *3 (-1128)) (-5 *2 (-85))))) +(((*1 *2 *1) (-12 (-4 *1 (-616 *3)) (-4 *3 (-1128)) (-5 *2 (-85))))) +(((*1 *2 *1) (-12 (-4 *1 (-616 *3)) (-4 *3 (-1128)) (-5 *2 (-85))))) +(((*1 *1 *1) (-12 (-4 *1 (-616 *2)) (-4 *2 (-1128))))) +(((*1 *2 *1) (-12 (-4 *1 (-616 *2)) (-4 *2 (-1128))))) +(((*1 *1 *1) (-12 (-4 *1 (-616 *2)) (-4 *2 (-1128))))) +(((*1 *2 *1) (-12 (-4 *1 (-616 *3)) (-4 *3 (-1128)) (-5 *2 (-694))))) +(((*1 *2 *3) + (-12 (-5 *3 (-739 *4)) (-4 *4 (-756)) (-5 *2 (-85)) (-5 *1 (-614 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-739 *3)) (-4 *3 (-756)) (-5 *1 (-614 *3))))) (((*1 *1 *2) - (|partial| -12 (-5 *2 (-738 *3)) (-4 *3 (-755)) (-5 *1 (-613 *3))))) + (|partial| -12 (-5 *2 (-739 *3)) (-4 *3 (-756)) (-5 *1 (-614 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-582 *5)) (-5 *4 (-829)) (-4 *5 (-755)) - (-5 *2 (-58 (-582 (-613 *5)))) (-5 *1 (-613 *5))))) + (-12 (-5 *3 (-583 *5)) (-5 *4 (-830)) (-4 *5 (-756)) + (-5 *2 (-58 (-583 (-614 *5)))) (-5 *1 (-614 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-582 *5)) (-5 *4 (-829)) (-4 *5 (-755)) (-5 *2 (-582 (-613 *5))) - (-5 *1 (-613 *5))))) + (-12 (-5 *3 (-583 *5)) (-5 *4 (-830)) (-4 *5 (-756)) (-5 *2 (-583 (-614 *5))) + (-5 *1 (-614 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-582 *8)) (-5 *4 (-582 *7)) (-4 *7 (-755)) - (-4 *8 (-860 *5 *6 *7)) (-4 *5 (-494)) (-4 *6 (-716)) + (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *7)) (-4 *7 (-756)) + (-4 *8 (-861 *5 *6 *7)) (-4 *5 (-495)) (-4 *6 (-717)) (-5 *2 - (-2 (|:| |particular| (-3 (-1177 (-348 *8)) "failed")) - (|:| -2011 (-582 (-1177 (-348 *8)))))) - (-5 *1 (-610 *5 *6 *7 *8))))) + (-2 (|:| |particular| (-3 (-1178 (-349 *8)) "failed")) + (|:| -2012 (-583 (-1178 (-349 *8)))))) + (-5 *1 (-611 *5 *6 *7 *8))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-312)) (-4 *6 (-13 (-322 *5) (-10 -7 (-6 -3994)))) - (-4 *4 (-13 (-322 *5) (-10 -7 (-6 -3994)))) (-5 *2 (-85)) - (-5 *1 (-608 *5 *6 *4 *3)) (-4 *3 (-626 *5 *6 *4)))) + (-12 (-4 *5 (-312)) (-4 *6 (-13 (-323 *5) (-10 -7 (-6 -3995)))) + (-4 *4 (-13 (-323 *5) (-10 -7 (-6 -3995)))) (-5 *2 (-85)) + (-5 *1 (-609 *5 *6 *4 *3)) (-4 *3 (-627 *5 *6 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-629 *5)) (-5 *4 (-1177 *5)) (-4 *5 (-312)) (-5 *2 (-85)) - (-5 *1 (-609 *5))))) + (-12 (-5 *3 (-630 *5)) (-5 *4 (-1178 *5)) (-4 *5 (-312)) (-5 *2 (-85)) + (-5 *1 (-610 *5))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-582 (-1083 *4))) (-5 *3 (-1083 *4)) (-4 *4 (-820)) - (-5 *1 (-604 *4))))) -(((*1 *1 *1) (-4 *1 (-603)))) -(((*1 *1 *1 *1) (-4 *1 (-603)))) -(((*1 *1 *1 *1) (-4 *1 (-603)))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-599 *2)) (-4 *2 (-960)) (-4 *2 (-312)))) + (|partial| -12 (-5 *2 (-583 (-1084 *4))) (-5 *3 (-1084 *4)) (-4 *4 (-821)) + (-5 *1 (-605 *4))))) +(((*1 *1 *1) (-4 *1 (-604)))) +(((*1 *1 *1 *1) (-4 *1 (-604)))) +(((*1 *1 *1 *1) (-4 *1 (-604)))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-600 *2)) (-4 *2 (-961)) (-4 *2 (-312)))) ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-312)) (-5 *1 (-601 *4 *2)) - (-4 *2 (-599 *4))))) + (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-312)) (-5 *1 (-602 *4 *2)) + (-4 *2 (-600 *4))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-693)) (-4 *1 (-599 *3)) (-4 *3 (-960)) (-4 *3 (-312)))) + (-12 (-5 *2 (-694)) (-4 *1 (-600 *3)) (-4 *3 (-961)) (-4 *3 (-312)))) ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-693)) (-5 *4 (-1 *5 *5)) (-4 *5 (-312)) (-5 *1 (-601 *5 *2)) - (-4 *2 (-599 *5))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-599 *2)) (-4 *2 (-960)) (-4 *2 (-312)))) + (-12 (-5 *3 (-694)) (-5 *4 (-1 *5 *5)) (-4 *5 (-312)) (-5 *1 (-602 *5 *2)) + (-4 *2 (-600 *5))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-600 *2)) (-4 *2 (-961)) (-4 *2 (-312)))) ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-312)) (-5 *1 (-601 *4 *2)) - (-4 *2 (-599 *4))))) + (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-312)) (-5 *1 (-602 *4 *2)) + (-4 *2 (-600 *4))))) (((*1 *2 *3) (-12 (-4 *4 (-27)) - (-4 *4 (-13 (-312) (-120) (-949 (-483)) (-949 (-348 (-483))))) - (-4 *5 (-1153 *4)) (-5 *2 (-582 (-596 (-348 *5)))) (-5 *1 (-600 *4 *5)) - (-5 *3 (-596 (-348 *5)))))) -(((*1 *1 *1) (-12 (-4 *1 (-599 *2)) (-4 *2 (-960)) (-4 *2 (-312))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1144 (-483))) (-4 *1 (-592 *3)) (-4 *3 (-1127)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-483)) (-4 *1 (-592 *3)) (-4 *3 (-1127))))) -(((*1 *1 *1 *1 *2) (-12 (-5 *2 (-483)) (-4 *1 (-592 *3)) (-4 *3 (-1127)))) - ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-483)) (-4 *1 (-592 *2)) (-4 *2 (-1127))))) -(((*1 *2 *1) - (-12 (-5 *2 (-582 (-2 (|:| |gen| *3) (|:| -3941 *4)))) - (-5 *1 (-590 *3 *4 *5)) (-4 *3 (-1012)) (-4 *4 (-23)) (-14 *5 *4)))) + (-4 *4 (-13 (-312) (-120) (-950 (-484)) (-950 (-349 (-484))))) + (-4 *5 (-1154 *4)) (-5 *2 (-583 (-597 (-349 *5)))) (-5 *1 (-601 *4 *5)) + (-5 *3 (-597 (-349 *5)))))) +(((*1 *1 *1) (-12 (-4 *1 (-600 *2)) (-4 *2 (-961)) (-4 *2 (-312))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1145 (-484))) (-4 *1 (-593 *3)) (-4 *3 (-1128)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-4 *1 (-593 *3)) (-4 *3 (-1128))))) +(((*1 *1 *1 *1 *2) (-12 (-5 *2 (-484)) (-4 *1 (-593 *3)) (-4 *3 (-1128)))) + ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-484)) (-4 *1 (-593 *2)) (-4 *2 (-1128))))) +(((*1 *2 *1) + (-12 (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -3942 *4)))) + (-5 *1 (-591 *3 *4 *5)) (-4 *3 (-1013)) (-4 *4 (-23)) (-14 *5 *4)))) (((*1 *1 *2 *3) - (-12 (-5 *1 (-590 *2 *3 *4)) (-4 *2 (-1012)) (-4 *3 (-23)) (-14 *4 *3)))) + (-12 (-5 *1 (-591 *2 *3 *4)) (-4 *2 (-1013)) (-4 *3 (-23)) (-14 *4 *3)))) (((*1 *1 *2) - (-12 (-5 *2 (-582 (-2 (|:| |gen| *3) (|:| -3941 *4)))) (-4 *3 (-1012)) - (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-590 *3 *4 *5))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-310 *3)) (-4 *3 (-1012)))) + (-12 (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -3942 *4)))) (-4 *3 (-1013)) + (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-591 *3 *4 *5))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-310 *3)) (-4 *3 (-1013)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-483)) (-4 *1 (-334 *4)) (-4 *4 (-1012)) (-5 *2 (-693)))) + (-12 (-5 *3 (-484)) (-4 *1 (-335 *4)) (-4 *4 (-1013)) (-5 *2 (-694)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-483)) (-4 *2 (-23)) (-5 *1 (-590 *4 *2 *5)) (-4 *4 (-1012)) + (-12 (-5 *3 (-484)) (-4 *2 (-23)) (-5 *1 (-591 *4 *2 *5)) (-4 *4 (-1013)) (-14 *5 *2)))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-483)) (-4 *1 (-274 *2 *4)) (-4 *4 (-104)) (-4 *2 (-1012)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-483)) (-5 *1 (-310 *2)) (-4 *2 (-1012)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-483)) (-4 *1 (-334 *2)) (-4 *2 (-1012)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-483)) (-5 *1 (-346 *2)) (-4 *2 (-494)))) + (-12 (-5 *3 (-484)) (-4 *1 (-274 *2 *4)) (-4 *4 (-104)) (-4 *2 (-1013)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-484)) (-5 *1 (-310 *2)) (-4 *2 (-1013)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-484)) (-4 *1 (-335 *2)) (-4 *2 (-1013)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-484)) (-5 *1 (-347 *2)) (-4 *2 (-495)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-483)) (-4 *2 (-1012)) (-5 *1 (-590 *2 *4 *5)) (-4 *4 (-23)) + (-12 (-5 *3 (-484)) (-4 *2 (-1013)) (-5 *1 (-591 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4)))) -(((*1 *1 *1) (-12 (-4 *1 (-322 *2)) (-4 *2 (-1127)))) - ((*1 *2 *2) (-12 (-4 *3 (-960)) (-5 *1 (-382 *3 *2)) (-4 *2 (-1153 *3)))) +(((*1 *1 *1) (-12 (-4 *1 (-323 *2)) (-4 *2 (-1128)))) + ((*1 *2 *2) (-12 (-4 *3 (-961)) (-5 *1 (-383 *3 *2)) (-4 *2 (-1154 *3)))) ((*1 *1 *1) - (-12 (-5 *1 (-590 *2 *3 *4)) (-4 *2 (-1012)) (-4 *3 (-23)) (-14 *4 *3)))) -(((*1 *1 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1127)))) - ((*1 *1 *1) (-12 (|has| *1 (-6 -3994)) (-4 *1 (-322 *2)) (-4 *2 (-1127)))) + (-12 (-5 *1 (-591 *2 *3 *4)) (-4 *2 (-1013)) (-4 *3 (-23)) (-14 *4 *3)))) +(((*1 *1 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1128)))) + ((*1 *1 *1) (-12 (|has| *1 (-6 -3995)) (-4 *1 (-323 *2)) (-4 *2 (-1128)))) ((*1 *1 *1) - (-12 (-5 *1 (-590 *2 *3 *4)) (-4 *2 (-1012)) (-4 *3 (-23)) (-14 *4 *3)))) + (-12 (-5 *1 (-591 *2 *3 *4)) (-4 *2 (-1013)) (-4 *3 (-23)) (-14 *4 *3)))) (((*1 *1) - (-12 (-5 *1 (-590 *2 *3 *4)) (-4 *2 (-1012)) (-4 *3 (-23)) (-14 *4 *3)))) + (-12 (-5 *1 (-591 *2 *3 *4)) (-4 *2 (-1013)) (-4 *3 (-23)) (-14 *4 *3)))) (((*1 *1 *1 *2) - (-12 (-5 *1 (-590 *2 *3 *4)) (-4 *2 (-1012)) (-4 *3 (-23)) (-14 *4 *3)))) + (-12 (-5 *1 (-591 *2 *3 *4)) (-4 *2 (-1013)) (-4 *3 (-23)) (-14 *4 *3)))) (((*1 *1 *2 *1) - (-12 (-5 *1 (-590 *2 *3 *4)) (-4 *2 (-1012)) (-4 *3 (-23)) (-14 *4 *3)))) + (-12 (-5 *1 (-591 *2 *3 *4)) (-4 *2 (-1013)) (-4 *3 (-23)) (-14 *4 *3)))) (((*1 *1 *1 *1) - (-12 (-5 *1 (-590 *2 *3 *4)) (-4 *2 (-1012)) (-4 *3 (-23)) (-14 *4 *3))) + (-12 (-5 *1 (-591 *2 *3 *4)) (-4 *2 (-1013)) (-4 *3 (-23)) (-14 *4 *3))) ((*1 *1 *2 *3 *1) - (-12 (-5 *1 (-590 *2 *3 *4)) (-4 *2 (-1012)) (-4 *3 (-23)) (-14 *4 *3)))) + (-12 (-5 *1 (-591 *2 *3 *4)) (-4 *2 (-1013)) (-4 *3 (-23)) (-14 *4 *3)))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-85)) (-5 *1 (-590 *3 *4 *5)) (-4 *3 (-1012)) (-4 *4 (-23)) + (-12 (-5 *2 (-85)) (-5 *1 (-591 *3 *4 *5)) (-4 *3 (-1013)) (-4 *4 (-23)) (-14 *5 *4)))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-483) (-483))) (-5 *1 (-310 *3)) (-4 *3 (-1012)))) + (-12 (-5 *2 (-1 (-484) (-484))) (-5 *1 (-310 *3)) (-4 *3 (-1013)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-693) (-693))) (-4 *1 (-334 *3)) (-4 *3 (-1012)))) + (-12 (-5 *2 (-1 (-694) (-694))) (-4 *1 (-335 *3)) (-4 *3 (-1013)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-590 *3 *4 *5)) - (-4 *3 (-1012))))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-591 *3 *4 *5)) + (-4 *3 (-1013))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-274 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-104)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1012)) (-5 *1 (-310 *3)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-334 *3)) (-4 *3 (-1012)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-274 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-104)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1013)) (-5 *1 (-310 *3)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-335 *3)) (-4 *3 (-1013)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1012)) (-5 *1 (-590 *3 *4 *5)) (-4 *4 (-23)) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1013)) (-5 *1 (-591 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4)))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-588 *3)) (-4 *3 (-1012))))) -(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-588 *2)) (-4 *2 (-1012))))) -(((*1 *1) (-12 (-5 *1 (-582 *2)) (-4 *2 (-1127))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-582 *3)) (-4 *3 (-1127))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-582 *2)) (-4 *2 (-1127))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-582 *2)) (-4 *2 (-1012)) (-4 *2 (-1127))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-582 *2)) (-4 *2 (-1012)) (-4 *2 (-1127))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-582 *2)) (-4 *2 (-1012)) (-4 *2 (-1127))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-589 *3)) (-4 *3 (-1013))))) +(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-589 *2)) (-4 *2 (-1013))))) +(((*1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1128))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-583 *3)) (-4 *3 (-1128))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1128))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1013)) (-4 *2 (-1128))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1013)) (-4 *2 (-1128))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1013)) (-4 *2 (-1128))))) (((*1 *1 *2) - (-12 (-5 *2 (-582 *3)) (-4 *3 (-312)) (-5 *1 (-580 *3 *4)) - (-14 *4 (-582 (-1088)))))) + (-12 (-5 *2 (-583 *3)) (-4 *3 (-312)) (-5 *1 (-581 *3 *4)) + (-14 *4 (-583 (-1089)))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-1177 *1)) (-4 *1 (-579 *4)) (-4 *4 (-960)) - (-5 *2 (-2 (|:| |mat| (-629 *4)) (|:| |vec| (-1177 *4)))))) + (-12 (-5 *3 (-1178 *1)) (-4 *1 (-580 *4)) (-4 *4 (-961)) + (-5 *2 (-2 (|:| |mat| (-630 *4)) (|:| |vec| (-1178 *4)))))) ((*1 *2 *3) - (-12 (-5 *3 (-1177 *1)) (-4 *1 (-579 *4)) (-4 *4 (-960)) (-5 *2 (-629 *4))))) + (-12 (-5 *3 (-1178 *1)) (-4 *1 (-580 *4)) (-4 *4 (-961)) (-5 *2 (-630 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-629 *1)) (-5 *4 (-1177 *1)) (-4 *1 (-579 *5)) (-4 *5 (-960)) - (-5 *2 (-2 (|:| |mat| (-629 *5)) (|:| |vec| (-1177 *5)))))) + (-12 (-5 *3 (-630 *1)) (-5 *4 (-1178 *1)) (-4 *1 (-580 *5)) (-4 *5 (-961)) + (-5 *2 (-2 (|:| |mat| (-630 *5)) (|:| |vec| (-1178 *5)))))) ((*1 *2 *3) - (-12 (-5 *3 (-629 *1)) (-4 *1 (-579 *4)) (-4 *4 (-960)) (-5 *2 (-629 *4))))) + (-12 (-5 *3 (-630 *1)) (-4 *1 (-580 *4)) (-4 *4 (-961)) (-5 *2 (-630 *4))))) (((*1 *1 *2) - (-12 (-5 *2 (-582 *3)) (-4 *3 (-312)) (-5 *1 (-578 *3 *4)) - (-14 *4 (-582 (-1088)))))) + (-12 (-5 *2 (-583 *3)) (-4 *3 (-312)) (-5 *1 (-579 *3 *4)) + (-14 *4 (-583 (-1089)))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1177 *4)) (-4 *4 (-13 (-960) (-579 *5))) - (-4 *5 (-312)) (-4 *5 (-494)) (-5 *2 (-1177 *5)) (-5 *1 (-577 *5 *4)))) + (|partial| -12 (-5 *3 (-1178 *4)) (-4 *4 (-13 (-961) (-580 *5))) + (-4 *5 (-312)) (-4 *5 (-495)) (-5 *2 (-1178 *5)) (-5 *1 (-578 *5 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1177 *4)) (-4 *4 (-13 (-960) (-579 *5))) - (-2559 (-4 *5 (-312))) (-4 *5 (-494)) (-5 *2 (-1177 (-348 *5))) - (-5 *1 (-577 *5 *4))))) + (|partial| -12 (-5 *3 (-1178 *4)) (-4 *4 (-13 (-961) (-580 *5))) + (-2560 (-4 *5 (-312))) (-4 *5 (-495)) (-5 *2 (-1178 (-349 *5))) + (-5 *1 (-578 *5 *4))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-1177 *5)) (-4 *5 (-13 (-960) (-579 *4))) - (-4 *4 (-494)) (-5 *2 (-1177 *4)) (-5 *1 (-577 *4 *5))))) + (|partial| -12 (-5 *3 (-1178 *5)) (-4 *5 (-13 (-961) (-580 *4))) + (-4 *4 (-495)) (-5 *2 (-1178 *4)) (-5 *1 (-578 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1177 *5)) (-4 *5 (-13 (-960) (-579 *4))) (-4 *4 (-494)) - (-5 *2 (-85)) (-5 *1 (-577 *4 *5))))) + (-12 (-5 *3 (-1178 *5)) (-4 *5 (-13 (-961) (-580 *4))) (-4 *4 (-495)) + (-5 *2 (-85)) (-5 *1 (-578 *4 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-249 (-749 *3))) (-4 *3 (-13 (-27) (-1113) (-362 *5))) - (-4 *5 (-13 (-390) (-949 (-483)) (-579 (-483)))) + (-12 (-5 *4 (-249 (-750 *3))) (-4 *3 (-13 (-27) (-1114) (-363 *5))) + (-4 *5 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *2 - (-3 (-749 *3) - (-2 (|:| |leftHandLimit| (-3 (-749 *3) #1="failed")) - (|:| |rightHandLimit| (-3 (-749 *3) #1#))) + (-3 (-750 *3) + (-2 (|:| |leftHandLimit| (-3 (-750 *3) #1="failed")) + (|:| |rightHandLimit| (-3 (-750 *3) #1#))) "failed")) - (-5 *1 (-574 *5 *3)))) + (-5 *1 (-575 *5 *3)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-249 *3)) (-5 *5 (-1071)) - (-4 *3 (-13 (-27) (-1113) (-362 *6))) - (-4 *6 (-13 (-390) (-949 (-483)) (-579 (-483)))) (-5 *2 (-749 *3)) - (-5 *1 (-574 *6 *3)))) + (|partial| -12 (-5 *4 (-249 *3)) (-5 *5 (-1072)) + (-4 *3 (-13 (-27) (-1114) (-363 *6))) + (-4 *6 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *2 (-750 *3)) + (-5 *1 (-575 *6 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-249 (-749 (-856 *5)))) (-4 *5 (-390)) + (-12 (-5 *4 (-249 (-750 (-857 *5)))) (-4 *5 (-391)) (-5 *2 - (-3 (-749 (-348 (-856 *5))) - (-2 (|:| |leftHandLimit| (-3 (-749 (-348 (-856 *5))) #2="failed")) - (|:| |rightHandLimit| (-3 (-749 (-348 (-856 *5))) #2#))) + (-3 (-750 (-349 (-857 *5))) + (-2 (|:| |leftHandLimit| (-3 (-750 (-349 (-857 *5))) #2="failed")) + (|:| |rightHandLimit| (-3 (-750 (-349 (-857 *5))) #2#))) #3="failed")) - (-5 *1 (-575 *5)) (-5 *3 (-348 (-856 *5))))) + (-5 *1 (-576 *5)) (-5 *3 (-349 (-857 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-249 (-348 (-856 *5)))) (-5 *3 (-348 (-856 *5))) (-4 *5 (-390)) + (-12 (-5 *4 (-249 (-349 (-857 *5)))) (-5 *3 (-349 (-857 *5))) (-4 *5 (-391)) (-5 *2 - (-3 (-749 *3) - (-2 (|:| |leftHandLimit| (-3 (-749 *3) #2#)) - (|:| |rightHandLimit| (-3 (-749 *3) #2#))) + (-3 (-750 *3) + (-2 (|:| |leftHandLimit| (-3 (-750 *3) #2#)) + (|:| |rightHandLimit| (-3 (-750 *3) #2#))) #3#)) - (-5 *1 (-575 *5)))) + (-5 *1 (-576 *5)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-249 (-348 (-856 *6)))) (-5 *5 (-1071)) - (-5 *3 (-348 (-856 *6))) (-4 *6 (-390)) (-5 *2 (-749 *3)) - (-5 *1 (-575 *6))))) + (|partial| -12 (-5 *4 (-249 (-349 (-857 *6)))) (-5 *5 (-1072)) + (-5 *3 (-349 (-857 *6))) (-4 *6 (-391)) (-5 *2 (-750 *3)) + (-5 *1 (-576 *6))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-249 (-742 *3))) - (-4 *5 (-13 (-390) (-949 (-483)) (-579 (-483)))) (-5 *2 (-742 *3)) - (-5 *1 (-574 *5 *3)) (-4 *3 (-13 (-27) (-1113) (-362 *5))))) + (|partial| -12 (-5 *4 (-249 (-743 *3))) + (-4 *5 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *2 (-743 *3)) + (-5 *1 (-575 *5 *3)) (-4 *3 (-13 (-27) (-1114) (-363 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-249 (-742 (-856 *5)))) (-4 *5 (-390)) - (-5 *2 (-742 (-348 (-856 *5)))) (-5 *1 (-575 *5)) (-5 *3 (-348 (-856 *5))))) + (-12 (-5 *4 (-249 (-743 (-857 *5)))) (-4 *5 (-391)) + (-5 *2 (-743 (-349 (-857 *5)))) (-5 *1 (-576 *5)) (-5 *3 (-349 (-857 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-249 (-348 (-856 *5)))) (-5 *3 (-348 (-856 *5))) (-4 *5 (-390)) - (-5 *2 (-742 *3)) (-5 *1 (-575 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-336)) (-5 *1 (-570))))) -(((*1 *1 *1) (-12 (-5 *1 (-546 *2)) (-4 *2 (-1012)))) - ((*1 *1 *1) (-5 *1 (-570)))) + (-12 (-5 *4 (-249 (-349 (-857 *5)))) (-5 *3 (-349 (-857 *5))) (-4 *5 (-391)) + (-5 *2 (-743 *3)) (-5 *1 (-576 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-337)) (-5 *1 (-571))))) +(((*1 *1 *1) (-12 (-5 *1 (-547 *2)) (-4 *2 (-1013)))) + ((*1 *1 *1) (-5 *1 (-571)))) (((*1 *2 *3) - (-12 (-5 *3 (-206 *4 *5)) (-14 *4 (-582 (-1088))) (-4 *5 (-390)) - (-5 *2 (-419 *4 *5)) (-5 *1 (-569 *4 *5))))) + (-12 (-5 *3 (-206 *4 *5)) (-14 *4 (-583 (-1089))) (-4 *5 (-391)) + (-5 *2 (-420 *4 *5)) (-5 *1 (-570 *4 *5))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-582 (-206 *4 *5))) (-5 *2 (-206 *4 *5)) (-14 *4 (-582 (-1088))) - (-4 *5 (-390)) (-5 *1 (-569 *4 *5))))) + (-12 (-5 *3 (-583 (-206 *4 *5))) (-5 *2 (-206 *4 *5)) (-14 *4 (-583 (-1089))) + (-4 *5 (-391)) (-5 *1 (-570 *4 *5))))) (((*1 *2 *3 *2 *2) - (-12 (-5 *2 (-582 (-419 *4 *5))) (-5 *3 (-772 *4)) (-14 *4 (-582 (-1088))) - (-4 *5 (-390)) (-5 *1 (-569 *4 *5))))) + (-12 (-5 *2 (-583 (-420 *4 *5))) (-5 *3 (-773 *4)) (-14 *4 (-583 (-1089))) + (-4 *5 (-391)) (-5 *1 (-570 *4 *5))))) (((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-582 *6)) (-5 *4 (-582 (-206 *5 *6))) (-4 *6 (-390)) - (-5 *2 (-206 *5 *6)) (-14 *5 (-582 (-1088))) (-5 *1 (-569 *5 *6))))) -(((*1 *1 *2) (-12 (-5 *2 (-1 (-853 (-179)) (-853 (-179)))) (-5 *1 (-221)))) + (-12 (-5 *3 (-583 *6)) (-5 *4 (-583 (-206 *5 *6))) (-4 *6 (-391)) + (-5 *2 (-206 *5 *6)) (-14 *5 (-583 (-1089))) (-5 *1 (-570 *5 *6))))) +(((*1 *1 *2) (-12 (-5 *2 (-1 (-854 (-179)) (-854 (-179)))) (-5 *1 (-221)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-1 (-853 (-179)) (-853 (-179)))) (-5 *3 (-582 (-221))) + (-12 (-5 *2 (-1 (-854 (-179)) (-854 (-179)))) (-5 *3 (-583 (-221))) (-5 *1 (-222)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-582 (-419 *5 *6))) (-5 *3 (-419 *5 *6)) (-14 *5 (-582 (-1088))) - (-4 *6 (-390)) (-5 *2 (-1177 *6)) (-5 *1 (-569 *5 *6))))) + (-12 (-5 *4 (-583 (-420 *5 *6))) (-5 *3 (-420 *5 *6)) (-14 *5 (-583 (-1089))) + (-4 *6 (-391)) (-5 *2 (-1178 *6)) (-5 *1 (-570 *5 *6))))) (((*1 *2 *2) - (-12 (-5 *2 (-582 (-419 *3 *4))) (-14 *3 (-582 (-1088))) (-4 *4 (-390)) - (-5 *1 (-569 *3 *4))))) + (-12 (-5 *2 (-583 (-420 *3 *4))) (-14 *3 (-583 (-1089))) (-4 *4 (-391)) + (-5 *1 (-570 *3 *4))))) (((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-582 (-419 *5 *6))) (-5 *4 (-772 *5)) (-14 *5 (-582 (-1088))) - (-5 *2 (-419 *5 *6)) (-5 *1 (-569 *5 *6)) (-4 *6 (-390)))) + (-12 (-5 *3 (-583 (-420 *5 *6))) (-5 *4 (-773 *5)) (-14 *5 (-583 (-1089))) + (-5 *2 (-420 *5 *6)) (-5 *1 (-570 *5 *6)) (-4 *6 (-391)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-582 (-419 *5 *6))) (-5 *4 (-772 *5)) (-14 *5 (-582 (-1088))) - (-5 *2 (-419 *5 *6)) (-5 *1 (-569 *5 *6)) (-4 *6 (-390))))) + (-12 (-5 *3 (-583 (-420 *5 *6))) (-5 *4 (-773 *5)) (-14 *5 (-583 (-1089))) + (-5 *2 (-420 *5 *6)) (-5 *1 (-570 *5 *6)) (-4 *6 (-391))))) (((*1 *2 *3) - (-12 (-5 *3 (-582 (-419 *4 *5))) (-14 *4 (-582 (-1088))) (-4 *5 (-390)) - (-5 *2 (-582 (-206 *4 *5))) (-5 *1 (-569 *4 *5))))) + (-12 (-5 *3 (-583 (-420 *4 *5))) (-14 *4 (-583 (-1089))) (-4 *5 (-391)) + (-5 *2 (-583 (-206 *4 *5))) (-5 *1 (-570 *4 *5))))) (((*1 *2 *3) - (-12 (-14 *4 (-582 (-1088))) (-4 *5 (-390)) - (-5 *2 (-2 (|:| |glbase| (-582 (-206 *4 *5))) (|:| |glval| (-582 (-483))))) - (-5 *1 (-569 *4 *5)) (-5 *3 (-582 (-206 *4 *5)))))) + (-12 (-14 *4 (-583 (-1089))) (-4 *5 (-391)) + (-5 *2 (-2 (|:| |glbase| (-583 (-206 *4 *5))) (|:| |glval| (-583 (-484))))) + (-5 *1 (-570 *4 *5)) (-5 *3 (-583 (-206 *4 *5)))))) (((*1 *2 *3) - (-12 (-5 *3 (-582 (-419 *4 *5))) (-14 *4 (-582 (-1088))) (-4 *5 (-390)) - (-5 *2 (-2 (|:| |gblist| (-582 (-206 *4 *5))) (|:| |gvlist| (-582 (-483))))) - (-5 *1 (-569 *4 *5))))) + (-12 (-5 *3 (-583 (-420 *4 *5))) (-14 *4 (-583 (-1089))) (-4 *5 (-391)) + (-5 *2 (-2 (|:| |gblist| (-583 (-206 *4 *5))) (|:| |gvlist| (-583 (-484))))) + (-5 *1 (-570 *4 *5))))) (((*1 *2 *2) - (-12 (-4 *3 (-494)) (-5 *1 (-567 *3 *2)) - (-4 *2 (-13 (-362 *3) (-914) (-1113))))) - ((*1 *1 *1) (-4 *1 (-568)))) + (-12 (-4 *3 (-495)) (-5 *1 (-568 *3 *2)) + (-4 *2 (-13 (-363 *3) (-915) (-1114))))) + ((*1 *1 *1) (-4 *1 (-569)))) (((*1 *2 *2) - (-12 (-4 *3 (-494)) (-5 *1 (-567 *3 *2)) - (-4 *2 (-13 (-362 *3) (-914) (-1113))))) - ((*1 *1 *1) (-4 *1 (-568)))) + (-12 (-4 *3 (-495)) (-5 *1 (-568 *3 *2)) + (-4 *2 (-13 (-363 *3) (-915) (-1114))))) + ((*1 *1 *1) (-4 *1 (-569)))) (((*1 *2 *2) - (-12 (-4 *3 (-494)) (-5 *1 (-567 *3 *2)) - (-4 *2 (-13 (-362 *3) (-914) (-1113))))) - ((*1 *1 *1) (-4 *1 (-568)))) + (-12 (-4 *3 (-495)) (-5 *1 (-568 *3 *2)) + (-4 *2 (-13 (-363 *3) (-915) (-1114))))) + ((*1 *1 *1) (-4 *1 (-569)))) (((*1 *2 *2) - (-12 (-4 *3 (-494)) (-5 *1 (-567 *3 *2)) - (-4 *2 (-13 (-362 *3) (-914) (-1113))))) - ((*1 *1 *1) (-4 *1 (-568)))) + (-12 (-4 *3 (-495)) (-5 *1 (-568 *3 *2)) + (-4 *2 (-13 (-363 *3) (-915) (-1114))))) + ((*1 *1 *1) (-4 *1 (-569)))) (((*1 *2 *2) - (-12 (-4 *3 (-494)) (-5 *1 (-567 *3 *2)) - (-4 *2 (-13 (-362 *3) (-914) (-1113))))) - ((*1 *1 *1) (-4 *1 (-568)))) + (-12 (-4 *3 (-495)) (-5 *1 (-568 *3 *2)) + (-4 *2 (-13 (-363 *3) (-915) (-1114))))) + ((*1 *1 *1) (-4 *1 (-569)))) (((*1 *2 *2) - (-12 (-4 *3 (-494)) (-5 *1 (-567 *3 *2)) - (-4 *2 (-13 (-362 *3) (-914) (-1113))))) - ((*1 *1 *1) (-4 *1 (-568)))) + (-12 (-4 *3 (-495)) (-5 *1 (-568 *3 *2)) + (-4 *2 (-13 (-363 *3) (-915) (-1114))))) + ((*1 *1 *1) (-4 *1 (-569)))) (((*1 *2 *3) - (-12 (-5 *3 (-86)) (-4 *4 (-494)) (-5 *2 (-85)) (-5 *1 (-32 *4 *5)) - (-4 *5 (-362 *4)))) + (-12 (-5 *3 (-86)) (-4 *4 (-495)) (-5 *2 (-85)) (-5 *1 (-32 *4 *5)) + (-4 *5 (-363 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-86)) (-4 *4 (-494)) (-5 *2 (-85)) (-5 *1 (-131 *4 *5)) - (-4 *5 (-362 *4)))) + (-12 (-5 *3 (-86)) (-4 *4 (-495)) (-5 *2 (-85)) (-5 *1 (-131 *4 *5)) + (-4 *5 (-363 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-86)) (-4 *4 (-494)) (-5 *2 (-85)) (-5 *1 (-230 *4 *5)) - (-4 *5 (-13 (-362 *4) (-914))))) + (-12 (-5 *3 (-86)) (-4 *4 (-495)) (-5 *2 (-85)) (-5 *1 (-230 *4 *5)) + (-4 *5 (-13 (-363 *4) (-915))))) ((*1 *2 *3) (-12 (-5 *3 (-86)) (-5 *2 (-85)) (-5 *1 (-253 *4)) (-4 *4 (-254)))) ((*1 *2 *3) (-12 (-4 *1 (-254)) (-5 *3 (-86)) (-5 *2 (-85)))) ((*1 *2 *3) - (-12 (-5 *3 (-86)) (-4 *5 (-1012)) (-5 *2 (-85)) (-5 *1 (-361 *4 *5)) - (-4 *4 (-362 *5)))) + (-12 (-5 *3 (-86)) (-4 *5 (-1013)) (-5 *2 (-85)) (-5 *1 (-362 *4 *5)) + (-4 *4 (-363 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-86)) (-4 *4 (-494)) (-5 *2 (-85)) (-5 *1 (-372 *4 *5)) - (-4 *5 (-362 *4)))) + (-12 (-5 *3 (-86)) (-4 *4 (-495)) (-5 *2 (-85)) (-5 *1 (-373 *4 *5)) + (-4 *5 (-363 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-86)) (-4 *4 (-494)) (-5 *2 (-85)) (-5 *1 (-567 *4 *5)) - (-4 *5 (-13 (-362 *4) (-914) (-1113)))))) + (-12 (-5 *3 (-86)) (-4 *4 (-495)) (-5 *2 (-85)) (-5 *1 (-568 *4 *5)) + (-4 *5 (-13 (-363 *4) (-915) (-1114)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-582 (-702 *5 (-772 *6)))) (-5 *4 (-85)) (-4 *5 (-390)) - (-14 *6 (-582 (-1088))) - (-5 *2 (-582 (-1058 *5 (-468 (-772 *6)) (-772 *6) (-702 *5 (-772 *6))))) - (-5 *1 (-566 *5 *6))))) + (-12 (-5 *3 (-583 (-703 *5 (-773 *6)))) (-5 *4 (-85)) (-4 *5 (-391)) + (-14 *6 (-583 (-1089))) + (-5 *2 (-583 (-1059 *5 (-469 (-773 *6)) (-773 *6) (-703 *5 (-773 *6))))) + (-5 *1 (-567 *5 *6))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-582 (-702 *5 (-772 *6)))) (-5 *4 (-85)) (-4 *5 (-390)) - (-14 *6 (-582 (-1088))) (-5 *2 (-582 (-957 *5 *6))) (-5 *1 (-566 *5 *6))))) + (-12 (-5 *3 (-583 (-703 *5 (-773 *6)))) (-5 *4 (-85)) (-4 *5 (-391)) + (-14 *6 (-583 (-1089))) (-5 *2 (-583 (-958 *5 *6))) (-5 *1 (-567 *5 *6))))) (((*1 *2 *2) - (-12 (-5 *2 (-582 (-856 *3))) (-4 *3 (-390)) (-5 *1 (-309 *3 *4)) - (-14 *4 (-582 (-1088))))) + (-12 (-5 *2 (-583 (-857 *3))) (-4 *3 (-391)) (-5 *1 (-309 *3 *4)) + (-14 *4 (-583 (-1089))))) ((*1 *2 *2) - (-12 (-5 *2 (-582 *6)) (-4 *6 (-860 *3 *4 *5)) (-4 *3 (-390)) (-4 *4 (-716)) - (-4 *5 (-755)) (-5 *1 (-385 *3 *4 *5 *6)))) + (-12 (-5 *2 (-583 *6)) (-4 *6 (-861 *3 *4 *5)) (-4 *3 (-391)) (-4 *4 (-717)) + (-4 *5 (-756)) (-5 *1 (-386 *3 *4 *5 *6)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-582 *7)) (-5 *3 (-1071)) (-4 *7 (-860 *4 *5 *6)) (-4 *4 (-390)) - (-4 *5 (-716)) (-4 *6 (-755)) (-5 *1 (-385 *4 *5 *6 *7)))) + (-12 (-5 *2 (-583 *7)) (-5 *3 (-1072)) (-4 *7 (-861 *4 *5 *6)) (-4 *4 (-391)) + (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-386 *4 *5 *6 *7)))) ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-582 *7)) (-5 *3 (-1071)) (-4 *7 (-860 *4 *5 *6)) (-4 *4 (-390)) - (-4 *5 (-716)) (-4 *6 (-755)) (-5 *1 (-385 *4 *5 *6 *7)))) + (-12 (-5 *2 (-583 *7)) (-5 *3 (-1072)) (-4 *7 (-861 *4 *5 *6)) (-4 *4 (-391)) + (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-386 *4 *5 *6 *7)))) ((*1 *1 *1) - (-12 (-4 *2 (-312)) (-4 *3 (-716)) (-4 *4 (-755)) (-5 *1 (-442 *2 *3 *4 *5)) - (-4 *5 (-860 *2 *3 *4)))) + (-12 (-4 *2 (-312)) (-4 *3 (-717)) (-4 *4 (-756)) (-5 *1 (-443 *2 *3 *4 *5)) + (-4 *5 (-861 *2 *3 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-582 (-702 *3 (-772 *4)))) (-4 *3 (-390)) - (-14 *4 (-582 (-1088))) (-5 *1 (-566 *3 *4))))) + (-12 (-5 *2 (-583 (-703 *3 (-773 *4)))) (-4 *3 (-391)) + (-14 *4 (-583 (-1089))) (-5 *1 (-567 *3 *4))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-582 (-856 *3))) (-4 *3 (-390)) (-5 *1 (-309 *3 *4)) - (-14 *4 (-582 (-1088))))) + (|partial| -12 (-5 *2 (-583 (-857 *3))) (-4 *3 (-391)) (-5 *1 (-309 *3 *4)) + (-14 *4 (-583 (-1089))))) ((*1 *2 *2) - (|partial| -12 (-5 *2 (-582 (-702 *3 (-772 *4)))) (-4 *3 (-390)) - (-14 *4 (-582 (-1088))) (-5 *1 (-566 *3 *4))))) + (|partial| -12 (-5 *2 (-583 (-703 *3 (-773 *4)))) (-4 *3 (-391)) + (-14 *4 (-583 (-1089))) (-5 *1 (-567 *3 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-582 (-856 *4))) (-4 *4 (-390)) (-5 *2 (-85)) - (-5 *1 (-309 *4 *5)) (-14 *5 (-582 (-1088))))) + (-12 (-5 *3 (-583 (-857 *4))) (-4 *4 (-391)) (-5 *2 (-85)) + (-5 *1 (-309 *4 *5)) (-14 *5 (-583 (-1089))))) ((*1 *2 *3) - (-12 (-5 *3 (-582 (-702 *4 (-772 *5)))) (-4 *4 (-390)) - (-14 *5 (-582 (-1088))) (-5 *2 (-85)) (-5 *1 (-566 *4 *5))))) + (-12 (-5 *3 (-583 (-703 *4 (-773 *5)))) (-4 *4 (-391)) + (-14 *5 (-583 (-1089))) (-5 *2 (-85)) (-5 *1 (-567 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-582 *4)) (-4 *4 (-755)) (-5 *2 (-582 (-605 *4 *5))) - (-5 *1 (-565 *4 *5 *6)) (-4 *5 (-13 (-146) (-653 (-348 (-483))))) - (-14 *6 (-829))))) + (-12 (-5 *3 (-583 *4)) (-4 *4 (-756)) (-5 *2 (-583 (-606 *4 *5))) + (-5 *1 (-566 *4 *5 *6)) (-4 *5 (-13 (-146) (-654 (-349 (-484))))) + (-14 *6 (-830))))) (((*1 *2 *1) - (-12 (-5 *2 (-582 (-2 (|:| |k| (-613 *3)) (|:| |c| *4)))) - (-5 *1 (-565 *3 *4 *5)) (-4 *3 (-755)) - (-4 *4 (-13 (-146) (-653 (-348 (-483))))) (-14 *5 (-829))))) + (-12 (-5 *2 (-583 (-2 (|:| |k| (-614 *3)) (|:| |c| *4)))) + (-5 *1 (-566 *3 *4 *5)) (-4 *3 (-756)) + (-4 *4 (-13 (-146) (-654 (-349 (-484))))) (-14 *5 (-830))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-582 (-249 *4))) (-5 *1 (-565 *3 *4 *5)) (-4 *3 (-755)) - (-4 *4 (-13 (-146) (-653 (-348 (-483))))) (-14 *5 (-829))))) + (-12 (-5 *2 (-583 (-249 *4))) (-5 *1 (-566 *3 *4 *5)) (-4 *3 (-756)) + (-4 *4 (-13 (-146) (-654 (-349 (-484))))) (-14 *5 (-830))))) (((*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) - (|:| -1777 (-582 (-2 (|:| |irr| *10) (|:| -2394 (-483))))))) - (-5 *6 (-582 *3)) (-5 *7 (-582 *8)) (-4 *8 (-755)) (-4 *3 (-258)) - (-4 *10 (-860 *3 *9 *8)) (-4 *9 (-716)) + (|:| -1778 (-583 (-2 (|:| |irr| *10) (|:| -2395 (-484))))))) + (-5 *6 (-583 *3)) (-5 *7 (-583 *8)) (-4 *8 (-756)) (-4 *3 (-258)) + (-4 *10 (-861 *3 *9 *8)) (-4 *9 (-717)) (-5 *2 - (-2 (|:| |polfac| (-582 *10)) (|:| |correct| *3) - (|:| |corrfact| (-582 (-1083 *3))))) - (-5 *1 (-563 *8 *9 *3 *10)) (-5 *4 (-582 (-1083 *3)))))) + (-2 (|:| |polfac| (-583 *10)) (|:| |correct| *3) + (|:| |corrfact| (-583 (-1084 *3))))) + (-5 *1 (-564 *8 *9 *3 *10)) (-5 *4 (-583 (-1084 *3)))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-693)) (-5 *5 (-582 *3)) (-4 *3 (-258)) (-4 *6 (-755)) - (-4 *7 (-716)) (-5 *2 (-85)) (-5 *1 (-563 *6 *7 *3 *8)) - (-4 *8 (-860 *3 *7 *6))))) -(((*1 *2 *2) - (-12 (-4 *3 (-390)) (-4 *4 (-716)) (-4 *5 (-755)) (-4 *6 (-976 *3 *4 *5)) - (-5 *1 (-562 *3 *4 *5 *6 *7 *2)) (-4 *7 (-982 *3 *4 *5 *6)) - (-4 *2 (-1019 *3 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-4 *2 (-494)) (-5 *1 (-561 *2 *3)) (-4 *3 (-1153 *2))))) + (-12 (-5 *4 (-694)) (-5 *5 (-583 *3)) (-4 *3 (-258)) (-4 *6 (-756)) + (-4 *7 (-717)) (-5 *2 (-85)) (-5 *1 (-564 *6 *7 *3 *8)) + (-4 *8 (-861 *3 *7 *6))))) +(((*1 *2 *2) + (-12 (-4 *3 (-391)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) + (-5 *1 (-563 *3 *4 *5 *6 *7 *2)) (-4 *7 (-983 *3 *4 *5 *6)) + (-4 *2 (-1020 *3 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-4 *2 (-495)) (-5 *1 (-562 *2 *3)) (-4 *3 (-1154 *2))))) (((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-1088)) (-4 *4 (-13 (-258) (-120) (-949 (-483)) (-579 (-483)))) - (-5 *1 (-560 *4 *2)) (-4 *2 (-13 (-1113) (-870) (-29 *4)))))) -(((*1 *1) (-5 *1 (-555)))) + (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-258) (-120) (-950 (-484)) (-580 (-484)))) + (-5 *1 (-561 *4 *2)) (-4 *2 (-13 (-1114) (-871) (-29 *4)))))) +(((*1 *1) (-5 *1 (-556)))) (((*1 *2 *3 *3 *3) - (|partial| -12 (-4 *4 (-13 (-120) (-27) (-949 (-483)) (-949 (-348 (-483))))) - (-4 *5 (-1153 *4)) (-5 *2 (-1083 (-348 *5))) (-5 *1 (-553 *4 *5)) - (-5 *3 (-348 *5)))) + (|partial| -12 (-4 *4 (-13 (-120) (-27) (-950 (-484)) (-950 (-349 (-484))))) + (-4 *5 (-1154 *4)) (-5 *2 (-1084 (-349 *5))) (-5 *1 (-554 *4 *5)) + (-5 *3 (-349 *5)))) ((*1 *2 *3 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 (-346 *6) *6)) (-4 *6 (-1153 *5)) - (-4 *5 (-13 (-120) (-27) (-949 (-483)) (-949 (-348 (-483))))) - (-5 *2 (-1083 (-348 *6))) (-5 *1 (-553 *5 *6)) (-5 *3 (-348 *6))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-549 *4)) (-4 *4 (-1012)) (-4 *2 (-1012)) - (-5 *1 (-550 *2 *4))))) -(((*1 *2 *3) - (-12 (-5 *2 (-549 *4)) (-5 *1 (-550 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1012))))) -(((*1 *2 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)) (-4 *2 (-1113)))) - ((*1 *2 *1) (-12 (-5 *1 (-281 *2)) (-4 *2 (-755)))) - ((*1 *2 *1) (-12 (-5 *2 (-582 *3)) (-5 *1 (-549 *3)) (-4 *3 (-1012))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-582 *1)) (-4 *1 (-254)))) + (|partial| -12 (-5 *4 (-1 (-347 *6) *6)) (-4 *6 (-1154 *5)) + (-4 *5 (-13 (-120) (-27) (-950 (-484)) (-950 (-349 (-484))))) + (-5 *2 (-1084 (-349 *6))) (-5 *1 (-554 *5 *6)) (-5 *3 (-349 *6))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-550 *4)) (-4 *4 (-1013)) (-4 *2 (-1013)) + (-5 *1 (-551 *2 *4))))) +(((*1 *2 *3) + (-12 (-5 *2 (-550 *4)) (-5 *1 (-551 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013))))) +(((*1 *2 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)) (-4 *2 (-1114)))) + ((*1 *2 *1) (-12 (-5 *1 (-281 *2)) (-4 *2 (-756)))) + ((*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-550 *3)) (-4 *3 (-1013))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-583 *1)) (-4 *1 (-254)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-254)) (-5 *2 (-86)))) - ((*1 *1 *2) (-12 (-5 *2 (-1088)) (-5 *1 (-549 *3)) (-4 *3 (-1012)))) + ((*1 *1 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-550 *3)) (-4 *3 (-1013)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-86)) (-5 *3 (-582 *5)) (-5 *4 (-693)) (-4 *5 (-1012)) - (-5 *1 (-549 *5))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1088)) (-5 *1 (-549 *3)) (-4 *3 (-1012))))) + (-12 (-5 *2 (-86)) (-5 *3 (-583 *5)) (-5 *4 (-694)) (-4 *5 (-1013)) + (-5 *1 (-550 *5))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1089)) (-5 *1 (-550 *3)) (-4 *3 (-1013))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-548 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1012)) (-5 *2 (-85))))) + (-12 (-4 *1 (-549 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-548 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1012)) (-5 *2 (-582 *3))))) + (-12 (-4 *1 (-549 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-5 *2 (-583 *3))))) (((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-548 *3 *2)) (-4 *3 (-1012)) (-4 *2 (-1012))))) -(((*1 *1) (-5 *1 (-541))) ((*1 *1) (-5 *1 (-543))) ((*1 *1) (-5 *1 (-544)))) -(((*1 *1) (-5 *1 (-543))) ((*1 *1) (-5 *1 (-544)))) -(((*1 *1) (-5 *1 (-543))) ((*1 *1) (-5 *1 (-544)))) -(((*1 *1) (-5 *1 (-543))) ((*1 *1) (-5 *1 (-544)))) -(((*1 *1) (-5 *1 (-541))) ((*1 *1) (-5 *1 (-543))) ((*1 *1) (-5 *1 (-544)))) + (|partial| -12 (-4 *1 (-549 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1013))))) +(((*1 *1) (-5 *1 (-542))) ((*1 *1) (-5 *1 (-544))) ((*1 *1) (-5 *1 (-545)))) +(((*1 *1) (-5 *1 (-544))) ((*1 *1) (-5 *1 (-545)))) +(((*1 *1) (-5 *1 (-544))) ((*1 *1) (-5 *1 (-545)))) +(((*1 *1) (-5 *1 (-544))) ((*1 *1) (-5 *1 (-545)))) +(((*1 *1) (-5 *1 (-542))) ((*1 *1) (-5 *1 (-544))) ((*1 *1) (-5 *1 (-545)))) +(((*1 *1) (-5 *1 (-545)))) +(((*1 *1) (-5 *1 (-545)))) +(((*1 *1) (-5 *1 (-542))) ((*1 *1) (-5 *1 (-545)))) +(((*1 *1) (-5 *1 (-545)))) (((*1 *1) (-5 *1 (-544)))) (((*1 *1) (-5 *1 (-544)))) -(((*1 *1) (-5 *1 (-541))) ((*1 *1) (-5 *1 (-544)))) -(((*1 *1) (-5 *1 (-544)))) +(((*1 *1) (-5 *1 (-543)))) +(((*1 *1) (-5 *1 (-543)))) +(((*1 *1) (-5 *1 (-543)))) +(((*1 *1) (-5 *1 (-543)))) +(((*1 *1) (-5 *1 (-543)))) +(((*1 *1) (-5 *1 (-543)))) +(((*1 *1) (-5 *1 (-543)))) +(((*1 *1) (-5 *1 (-543)))) +(((*1 *1) (-5 *1 (-543)))) (((*1 *1) (-5 *1 (-543)))) (((*1 *1) (-5 *1 (-543)))) (((*1 *1) (-5 *1 (-542)))) (((*1 *1) (-5 *1 (-542)))) -(((*1 *1) (-5 *1 (-542)))) -(((*1 *1) (-5 *1 (-542)))) -(((*1 *1) (-5 *1 (-542)))) -(((*1 *1) (-5 *1 (-542)))) -(((*1 *1) (-5 *1 (-542)))) -(((*1 *1) (-5 *1 (-542)))) -(((*1 *1) (-5 *1 (-542)))) -(((*1 *1) (-5 *1 (-542)))) -(((*1 *1) (-5 *1 (-542)))) -(((*1 *1) (-5 *1 (-541)))) -(((*1 *1) (-5 *1 (-541)))) -(((*1 *2 *1) (-12 (-5 *2 (-868 (-158 (-112)))) (-5 *1 (-282)))) - ((*1 *2 *1) (-12 (-5 *2 (-582 (-1128))) (-5 *1 (-538))))) +(((*1 *2 *1) (-12 (-5 *2 (-869 (-158 (-112)))) (-5 *1 (-282)))) + ((*1 *2 *1) (-12 (-5 *2 (-583 (-1129))) (-5 *1 (-539))))) (((*1 *2 *1) - (-12 (-4 *1 (-537 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1127)) (-5 *2 (-582 *4))))) + (-12 (-4 *1 (-538 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1128)) (-5 *2 (-583 *4))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-537 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1127)) (-5 *2 (-85))))) + (-12 (-4 *1 (-538 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1128)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-537 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1127)) (-5 *2 (-582 *3))))) + (-12 (-4 *1 (-538 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1128)) (-5 *2 (-583 *3))))) (((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -3993)) (-4 *1 (-537 *4 *3)) (-4 *4 (-1012)) - (-4 *3 (-1127)) (-4 *3 (-1012)) (-5 *2 (-85))))) + (-12 (|has| *1 (-6 -3994)) (-4 *1 (-538 *4 *3)) (-4 *4 (-1013)) + (-4 *3 (-1128)) (-4 *3 (-1013)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-537 *2 *3)) (-4 *3 (-1127)) (-4 *2 (-1012)) (-4 *2 (-755))))) + (-12 (-4 *1 (-538 *2 *3)) (-4 *3 (-1128)) (-4 *2 (-1013)) (-4 *2 (-756))))) (((*1 *2 *1) - (-12 (-4 *1 (-537 *2 *3)) (-4 *3 (-1127)) (-4 *2 (-1012)) (-4 *2 (-755))))) + (-12 (-4 *1 (-538 *2 *3)) (-4 *3 (-1128)) (-4 *2 (-1013)) (-4 *2 (-756))))) (((*1 *1 *1 *2) - (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1127)) (-4 *3 (-322 *2)) - (-4 *4 (-322 *2)))) + (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1128)) (-4 *3 (-323 *2)) + (-4 *4 (-323 *2)))) ((*1 *1 *1 *2) - (-12 (|has| *1 (-6 -3994)) (-4 *1 (-537 *3 *2)) (-4 *3 (-1012)) - (-4 *2 (-1127))))) + (-12 (|has| *1 (-6 -3995)) (-4 *1 (-538 *3 *2)) (-4 *3 (-1013)) + (-4 *2 (-1128))))) (((*1 *2 *1 *3 *3) - (-12 (|has| *1 (-6 -3994)) (-4 *1 (-537 *3 *4)) (-4 *3 (-1012)) - (-4 *4 (-1127)) (-5 *2 (-1183))))) + (-12 (|has| *1 (-6 -3995)) (-4 *1 (-538 *3 *4)) (-4 *3 (-1013)) + (-4 *4 (-1128)) (-5 *2 (-1184))))) (((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-582 (-549 *2))) (-5 *4 (-582 (-1088))) - (-4 *2 (-13 (-362 (-142 *5)) (-914) (-1113))) (-4 *5 (-494)) - (-5 *1 (-534 *5 *6 *2)) (-4 *6 (-13 (-362 *5) (-914) (-1113)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-494)) (-5 *2 (-142 *5)) (-5 *1 (-534 *4 *5 *3)) - (-4 *5 (-13 (-362 *4) (-914) (-1113))) - (-4 *3 (-13 (-362 (-142 *4)) (-914) (-1113)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-494)) (-4 *2 (-13 (-362 (-142 *4)) (-914) (-1113))) - (-5 *1 (-534 *4 *3 *2)) (-4 *3 (-13 (-362 *4) (-914) (-1113)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-494)) (-4 *2 (-13 (-362 *4) (-914) (-1113))) - (-5 *1 (-534 *4 *2 *3)) (-4 *3 (-13 (-362 (-142 *4)) (-914) (-1113)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-142 *5)) (-4 *5 (-13 (-362 *4) (-914) (-1113))) (-4 *4 (-494)) - (-4 *2 (-13 (-362 (-142 *4)) (-914) (-1113))) (-5 *1 (-534 *4 *5 *2))))) -(((*1 *1) (-5 *1 (-531)))) -(((*1 *1) (-5 *1 (-531)))) -(((*1 *1) (-5 *1 (-531)))) -(((*1 *1) (-5 *1 (-531)))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-582 (-531))) (-5 *1 (-531))))) + (-12 (-5 *3 (-583 (-550 *2))) (-5 *4 (-583 (-1089))) + (-4 *2 (-13 (-363 (-142 *5)) (-915) (-1114))) (-4 *5 (-495)) + (-5 *1 (-535 *5 *6 *2)) (-4 *6 (-13 (-363 *5) (-915) (-1114)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-495)) (-5 *2 (-142 *5)) (-5 *1 (-535 *4 *5 *3)) + (-4 *5 (-13 (-363 *4) (-915) (-1114))) + (-4 *3 (-13 (-363 (-142 *4)) (-915) (-1114)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-495)) (-4 *2 (-13 (-363 (-142 *4)) (-915) (-1114))) + (-5 *1 (-535 *4 *3 *2)) (-4 *3 (-13 (-363 *4) (-915) (-1114)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-495)) (-4 *2 (-13 (-363 *4) (-915) (-1114))) + (-5 *1 (-535 *4 *2 *3)) (-4 *3 (-13 (-363 (-142 *4)) (-915) (-1114)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-142 *5)) (-4 *5 (-13 (-363 *4) (-915) (-1114))) (-4 *4 (-495)) + (-4 *2 (-13 (-363 (-142 *4)) (-915) (-1114))) (-5 *1 (-535 *4 *5 *2))))) +(((*1 *1) (-5 *1 (-532)))) +(((*1 *1) (-5 *1 (-532)))) +(((*1 *1) (-5 *1 (-532)))) +(((*1 *1) (-5 *1 (-532)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-532))) (-5 *1 (-532))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-938 (-749 (-483)))) - (-5 *3 (-1067 (-2 (|:| |k| (-483)) (|:| |c| *4)))) (-4 *4 (-960)) - (-5 *1 (-529 *4))))) + (-12 (-5 *2 (-939 (-750 (-484)))) + (-5 *3 (-1068 (-2 (|:| |k| (-484)) (|:| |c| *4)))) (-4 *4 (-961)) + (-5 *1 (-530 *4))))) (((*1 *2 *1) - (-12 (-5 *2 (-938 (-749 (-483)))) (-5 *1 (-529 *3)) (-4 *3 (-960))))) + (-12 (-5 *2 (-939 (-750 (-484)))) (-5 *1 (-530 *3)) (-4 *3 (-961))))) (((*1 *2 *1) - (-12 (-5 *2 (-1067 (-2 (|:| |k| (-483)) (|:| |c| *3)))) (-5 *1 (-529 *3)) - (-4 *3 (-960))))) + (-12 (-5 *2 (-1068 (-2 (|:| |k| (-484)) (|:| |c| *3)))) (-5 *1 (-530 *3)) + (-4 *3 (-961))))) (((*1 *1 *1 *1 *2) - (|partial| -12 (-5 *2 (-85)) (-5 *1 (-529 *3)) (-4 *3 (-960))))) -(((*1 *1 *1) (-12 (-5 *1 (-529 *2)) (-4 *2 (-960))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-529 *2)) (-4 *2 (-960))))) + (|partial| -12 (-5 *2 (-85)) (-5 *1 (-530 *3)) (-4 *3 (-961))))) +(((*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-961))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-961))))) (((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-1067 (-2 (|:| |k| (-483)) (|:| |c| *6)))) - (-5 *4 (-938 (-749 (-483)))) (-5 *5 (-1088)) (-5 *7 (-348 (-483))) - (-4 *6 (-960)) (-5 *2 (-771)) (-5 *1 (-529 *6))))) + (-12 (-5 *3 (-1068 (-2 (|:| |k| (-484)) (|:| |c| *6)))) + (-5 *4 (-939 (-750 (-484)))) (-5 *5 (-1089)) (-5 *7 (-349 (-484))) + (-4 *6 (-961)) (-5 *2 (-772)) (-5 *1 (-530 *6))))) (((*1 *1 *1 *2) - (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-348 (-483)))) (-4 *2 (-960))))) + (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-349 (-484)))) (-4 *2 (-961))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-348 (-483))) (-5 *1 (-529 *3)) (-4 *3 (-38 *2)) - (-4 *3 (-960))))) + (-12 (-5 *2 (-349 (-484))) (-5 *1 (-530 *3)) (-4 *3 (-38 *2)) + (-4 *3 (-961))))) (((*1 *1 *1) - (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-348 (-483)))) (-4 *2 (-960))))) + (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-349 (-484)))) (-4 *2 (-961))))) (((*1 *1 *1) - (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-348 (-483)))) (-4 *2 (-960))))) + (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-349 (-484)))) (-4 *2 (-961))))) (((*1 *1 *1) - (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-348 (-483)))) (-4 *2 (-960))))) + (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-349 (-484)))) (-4 *2 (-961))))) (((*1 *1 *1) - (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-348 (-483)))) (-4 *2 (-960))))) + (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-349 (-484)))) (-4 *2 (-961))))) (((*1 *1 *1) - (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-348 (-483)))) (-4 *2 (-960))))) + (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-349 (-484)))) (-4 *2 (-961))))) (((*1 *1 *1) - (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-348 (-483)))) (-4 *2 (-960))))) + (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-349 (-484)))) (-4 *2 (-961))))) (((*1 *1 *1) - (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-348 (-483)))) (-4 *2 (-960))))) + (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-349 (-484)))) (-4 *2 (-961))))) (((*1 *1 *1) - (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-348 (-483)))) (-4 *2 (-960))))) + (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-349 (-484)))) (-4 *2 (-961))))) (((*1 *1 *1) - (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-348 (-483)))) (-4 *2 (-960))))) + (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-349 (-484)))) (-4 *2 (-961))))) (((*1 *1 *1) - (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-348 (-483)))) (-4 *2 (-960))))) + (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-349 (-484)))) (-4 *2 (-961))))) (((*1 *1 *1) - (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-348 (-483)))) (-4 *2 (-960))))) + (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-349 (-484)))) (-4 *2 (-961))))) (((*1 *1 *1) - (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-348 (-483)))) (-4 *2 (-960))))) + (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-349 (-484)))) (-4 *2 (-961))))) (((*1 *1 *1) - (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-348 (-483)))) (-4 *2 (-960))))) + (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-349 (-484)))) (-4 *2 (-961))))) (((*1 *1 *1) - (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-348 (-483)))) (-4 *2 (-960))))) + (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-349 (-484)))) (-4 *2 (-961))))) (((*1 *1 *1) - (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-348 (-483)))) (-4 *2 (-960))))) + (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-349 (-484)))) (-4 *2 (-961))))) (((*1 *1 *1) - (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-348 (-483)))) (-4 *2 (-960))))) + (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-349 (-484)))) (-4 *2 (-961))))) (((*1 *1 *1) - (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-348 (-483)))) (-4 *2 (-960))))) + (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-349 (-484)))) (-4 *2 (-961))))) (((*1 *1 *1) - (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-348 (-483)))) (-4 *2 (-960))))) + (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-349 (-484)))) (-4 *2 (-961))))) (((*1 *1 *1) - (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-348 (-483)))) (-4 *2 (-960))))) + (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-349 (-484)))) (-4 *2 (-961))))) (((*1 *1 *1) - (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-348 (-483)))) (-4 *2 (-960))))) + (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-349 (-484)))) (-4 *2 (-961))))) (((*1 *1 *1) - (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-348 (-483)))) (-4 *2 (-960))))) + (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-349 (-484)))) (-4 *2 (-961))))) (((*1 *1 *1) - (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-348 (-483)))) (-4 *2 (-960))))) + (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-349 (-484)))) (-4 *2 (-961))))) (((*1 *1 *1) - (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-348 (-483)))) (-4 *2 (-960))))) + (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-349 (-484)))) (-4 *2 (-961))))) (((*1 *1 *1) - (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-348 (-483)))) (-4 *2 (-960))))) + (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-349 (-484)))) (-4 *2 (-961))))) (((*1 *1 *1) - (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-348 (-483)))) (-4 *2 (-960))))) + (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-349 (-484)))) (-4 *2 (-961))))) (((*1 *1 *1) - (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-348 (-483)))) (-4 *2 (-960))))) + (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-349 (-484)))) (-4 *2 (-961))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-582 *3)) (-4 *3 (-1019 *5 *6 *7 *8)) - (-4 *5 (-13 (-258) (-120))) (-4 *6 (-716)) (-4 *7 (-755)) - (-4 *8 (-976 *5 *6 *7)) (-5 *2 (-85)) (-5 *1 (-526 *5 *6 *7 *8 *3))))) + (-12 (-5 *4 (-583 *3)) (-4 *3 (-1020 *5 *6 *7 *8)) + (-4 *5 (-13 (-258) (-120))) (-4 *6 (-717)) (-4 *7 (-756)) + (-4 *8 (-977 *5 *6 *7)) (-5 *2 (-85)) (-5 *1 (-527 *5 *6 *7 *8 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-582 (-829))) (-5 *4 (-812 (-483))) (-5 *2 (-629 (-483))) - (-5 *1 (-525)))) + (-12 (-5 *3 (-583 (-830))) (-5 *4 (-813 (-484))) (-5 *2 (-630 (-484))) + (-5 *1 (-526)))) ((*1 *2 *3) - (-12 (-5 *3 (-582 (-829))) (-5 *2 (-582 (-629 (-483)))) (-5 *1 (-525)))) + (-12 (-5 *3 (-583 (-830))) (-5 *2 (-583 (-630 (-484)))) (-5 *1 (-526)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-582 (-829))) (-5 *4 (-582 (-812 (-483)))) - (-5 *2 (-582 (-629 (-483)))) (-5 *1 (-525))))) -(((*1 *2 *3) (-12 (-5 *3 (-582 (-829))) (-5 *2 (-693)) (-5 *1 (-525))))) + (-12 (-5 *3 (-583 (-830))) (-5 *4 (-583 (-813 (-484)))) + (-5 *2 (-583 (-630 (-484)))) (-5 *1 (-526))))) +(((*1 *2 *3) (-12 (-5 *3 (-583 (-830))) (-5 *2 (-694)) (-5 *1 (-526))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1088)) (-4 *4 (-13 (-258) (-120) (-949 (-483)) (-579 (-483)))) - (-5 *1 (-369 *4 *2)) (-4 *2 (-13 (-1113) (-29 *4))))) + (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-258) (-120) (-950 (-484)) (-580 (-484)))) + (-5 *1 (-370 *4 *2)) (-4 *2 (-13 (-1114) (-29 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-348 (-856 *5))) (-5 *4 (-1088)) (-4 *5 (-120)) - (-4 *5 (-13 (-390) (-949 (-483)) (-579 (-483)))) (-5 *2 (-265 *5)) - (-5 *1 (-524 *5))))) + (-12 (-5 *3 (-349 (-857 *5))) (-5 *4 (-1089)) (-4 *5 (-120)) + (-4 *5 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *2 (-265 *5)) + (-5 *1 (-525 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-518 *2)) (-4 *2 (-13 (-29 *4) (-1113))) (-5 *1 (-520 *4 *2)) - (-4 *4 (-13 (-390) (-949 (-483)) (-579 (-483)))))) + (-12 (-5 *3 (-519 *2)) (-4 *2 (-13 (-29 *4) (-1114))) (-5 *1 (-521 *4 *2)) + (-4 *4 (-13 (-391) (-950 (-484)) (-580 (-484)))))) ((*1 *2 *3) - (-12 (-5 *3 (-518 (-348 (-856 *4)))) - (-4 *4 (-13 (-390) (-949 (-483)) (-579 (-483)))) (-5 *2 (-265 *4)) - (-5 *1 (-524 *4))))) + (-12 (-5 *3 (-519 (-349 (-857 *4)))) + (-4 *4 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *2 (-265 *4)) + (-5 *1 (-525 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-829)) (-5 *2 (-1083 *4)) (-5 *1 (-523 *4)) (-4 *4 (-299))))) -(((*1 *2 *2) (-12 (-5 *1 (-522 *2)) (-4 *2 (-482))))) -(((*1 *2 *2) (|partial| -12 (-5 *1 (-522 *2)) (-4 *2 (-482))))) -(((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-522 *3)) (-4 *3 (-482))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-693)) (-5 *1 (-522 *2)) (-4 *2 (-482))))) + (-12 (-5 *3 (-830)) (-5 *2 (-1084 *4)) (-5 *1 (-524 *4)) (-4 *4 (-299))))) +(((*1 *2 *2) (-12 (-5 *1 (-523 *2)) (-4 *2 (-483))))) +(((*1 *2 *2) (|partial| -12 (-5 *1 (-523 *2)) (-4 *2 (-483))))) +(((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-523 *3)) (-4 *3 (-483))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-694)) (-5 *1 (-523 *2)) (-4 *2 (-483))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-693)) (-5 *1 (-522 *2)) (-4 *2 (-482)))) + (|partial| -12 (-5 *3 (-694)) (-5 *1 (-523 *2)) (-4 *2 (-483)))) ((*1 *2 *3) - (-12 (-5 *2 (-2 (|:| -2693 *3) (|:| -2400 (-693)))) (-5 *1 (-522 *3)) - (-4 *3 (-482))))) + (-12 (-5 *2 (-2 (|:| -2694 *3) (|:| -2401 (-694)))) (-5 *1 (-523 *3)) + (-4 *3 (-483))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-693)) (-5 *2 (-85)) (-5 *1 (-522 *3)) (-4 *3 (-482))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-445)) (-5 *3 (-531)) (-5 *1 (-521))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-445)) (-5 *3 (-531)) (-5 *1 (-521))))) -(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-445)) (-5 *3 (-531)) (-5 *1 (-521))))) + (-12 (-5 *4 (-694)) (-5 *2 (-85)) (-5 *1 (-523 *3)) (-4 *3 (-483))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-446)) (-5 *3 (-532)) (-5 *1 (-522))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-446)) (-5 *3 (-532)) (-5 *1 (-522))))) +(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-446)) (-5 *3 (-532)) (-5 *1 (-522))))) (((*1 *1 *2 *3 *4) (-12 (-5 *3 - (-582 - (-2 (|:| |scalar| (-348 (-483))) (|:| |coeff| (-1083 *2)) - (|:| |logand| (-1083 *2))))) - (-5 *4 (-582 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-312)) - (-5 *1 (-518 *2))))) -(((*1 *2 *1) (-12 (-5 *1 (-518 *2)) (-4 *2 (-312))))) + (-583 + (-2 (|:| |scalar| (-349 (-484))) (|:| |coeff| (-1084 *2)) + (|:| |logand| (-1084 *2))))) + (-5 *4 (-583 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-312)) + (-5 *1 (-519 *2))))) +(((*1 *2 *1) (-12 (-5 *1 (-519 *2)) (-4 *2 (-312))))) (((*1 *2 *1) (-12 (-5 *2 - (-582 - (-2 (|:| |scalar| (-348 (-483))) (|:| |coeff| (-1083 *3)) - (|:| |logand| (-1083 *3))))) - (-5 *1 (-518 *3)) (-4 *3 (-312))))) -(((*1 *2 *1) - (-12 (-5 *2 (-582 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) - (-5 *1 (-518 *3)) (-4 *3 (-312))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-518 *3)) (-4 *3 (-312))))) -(((*1 *2 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-1183)) (-5 *1 (-517))))) -(((*1 *1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-514))))) -(((*1 *2 *1) (-12 (-5 *2 (-166 4 (-101))) (-5 *1 (-514))))) -(((*1 *2 *3) (-12 (-5 *3 (-429)) (-5 *2 (-631 (-514))) (-5 *1 (-514))))) -(((*1 *2 *1) (-12 (-5 *2 (-631 (-1 (-472) (-582 (-472))))) (-5 *1 (-86)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-472) (-582 (-472)))) (-5 *1 (-86)))) - ((*1 *1) (-5 *1 (-513)))) -(((*1 *1) (-5 *1 (-513)))) -(((*1 *1) (-5 *1 (-513)))) -(((*1 *1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-512)))) - ((*1 *1 *2) (-12 (-5 *2 (-336)) (-5 *1 (-512))))) + (-583 + (-2 (|:| |scalar| (-349 (-484))) (|:| |coeff| (-1084 *3)) + (|:| |logand| (-1084 *3))))) + (-5 *1 (-519 *3)) (-4 *3 (-312))))) +(((*1 *2 *1) + (-12 (-5 *2 (-583 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) + (-5 *1 (-519 *3)) (-4 *3 (-312))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-519 *3)) (-4 *3 (-312))))) +(((*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-518))))) +(((*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-515))))) +(((*1 *2 *1) (-12 (-5 *2 (-166 4 (-101))) (-5 *1 (-515))))) +(((*1 *2 *3) (-12 (-5 *3 (-430)) (-5 *2 (-632 (-515))) (-5 *1 (-515))))) +(((*1 *2 *1) (-12 (-5 *2 (-632 (-1 (-473) (-583 (-473))))) (-5 *1 (-86)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-473) (-583 (-473)))) (-5 *1 (-86)))) + ((*1 *1) (-5 *1 (-514)))) +(((*1 *1) (-5 *1 (-514)))) +(((*1 *1) (-5 *1 (-514)))) +(((*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-513)))) + ((*1 *1 *2) (-12 (-5 *2 (-337)) (-5 *1 (-513))))) (((*1 *2 *2 *3 *3) - (|partial| -12 (-5 *3 (-1088)) - (-4 *4 (-13 (-258) (-120) (-949 (-483)) (-579 (-483)))) (-5 *1 (-510 *4 *2)) - (-4 *2 (-13 (-1113) (-870) (-1051) (-29 *4)))))) + (|partial| -12 (-5 *3 (-1089)) + (-4 *4 (-13 (-258) (-120) (-950 (-484)) (-580 (-484)))) (-5 *1 (-511 *4 *2)) + (-4 *2 (-13 (-1114) (-871) (-1052) (-29 *4)))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1153 *5)) (-4 *5 (-312)) - (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-509 *5 *3))))) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1154 *5)) (-4 *5 (-312)) + (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-510 *5 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1153 *5)) (-4 *5 (-312)) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1154 *5)) (-4 *5 (-312)) (-5 *2 - (-2 (|:| |ir| (-518 (-348 *6))) (|:| |specpart| (-348 *6)) + (-2 (|:| |ir| (-519 (-349 *6))) (|:| |specpart| (-349 *6)) (|:| |polypart| *6))) - (-5 *1 (-509 *5 *6)) (-5 *3 (-348 *6))))) + (-5 *1 (-510 *5 *6)) (-5 *3 (-349 *6))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-561 *4 *5)) - (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3136 *4) (|:| |sol?| (-85))) (-483) *4)) - (-4 *4 (-312)) (-4 *5 (-1153 *4)) (-5 *1 (-509 *4 *5))))) + (|partial| -12 (-5 *2 (-562 *4 *5)) + (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3137 *4) (|:| |sol?| (-85))) (-484) *4)) + (-4 *4 (-312)) (-4 *5 (-1154 *4)) (-5 *1 (-510 *4 *5))))) (((*1 *2 *2 *3 *4) (|partial| -12 - (-5 *3 (-1 (-3 (-2 (|:| -2135 *4) (|:| |coeff| *4)) "failed") *4)) - (-4 *4 (-312)) (-5 *1 (-509 *4 *2)) (-4 *2 (-1153 *4))))) + (-5 *3 (-1 (-3 (-2 (|:| -2136 *4) (|:| |coeff| *4)) "failed") *4)) + (-4 *4 (-312)) (-5 *1 (-510 *4 *2)) (-4 *2 (-1154 *4))))) (((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-582 (-348 *7))) (-4 *7 (-1153 *6)) - (-5 *3 (-348 *7)) (-4 *6 (-312)) + (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-583 (-349 *7))) (-4 *7 (-1154 *6)) + (-5 *3 (-349 *7)) (-4 *6 (-312)) (-5 *2 (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-582 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-509 *6 *7))))) + (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-510 *6 *7))))) (((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1153 *5)) (-4 *5 (-312)) - (-5 *2 (-2 (|:| -2135 (-348 *6)) (|:| |coeff| (-348 *6)))) - (-5 *1 (-509 *5 *6)) (-5 *3 (-348 *6))))) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1154 *5)) (-4 *5 (-312)) + (-5 *2 (-2 (|:| -2136 (-349 *6)) (|:| |coeff| (-349 *6)))) + (-5 *1 (-510 *5 *6)) (-5 *3 (-349 *6))))) (((*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) - (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3136 *7) (|:| |sol?| (-85))) (-483) *7)) - (-5 *6 (-582 (-348 *8))) (-4 *7 (-312)) (-4 *8 (-1153 *7)) (-5 *3 (-348 *8)) + (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3137 *7) (|:| |sol?| (-85))) (-484) *7)) + (-5 *6 (-583 (-349 *8))) (-4 *7 (-312)) (-4 *8 (-1154 *7)) (-5 *3 (-349 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-582 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) - (-5 *1 (-509 *7 *8))))) + (-5 *1 (-510 *7 *8))))) (((*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) - (-5 *5 (-1 (-3 (-2 (|:| -2135 *7) (|:| |coeff| *7)) "failed") *7)) - (-5 *6 (-582 (-348 *8))) (-4 *7 (-312)) (-4 *8 (-1153 *7)) (-5 *3 (-348 *8)) + (-5 *5 (-1 (-3 (-2 (|:| -2136 *7) (|:| |coeff| *7)) "failed") *7)) + (-5 *6 (-583 (-349 *8))) (-4 *7 (-312)) (-4 *8 (-1154 *7)) (-5 *3 (-349 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-582 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) - (-5 *1 (-509 *7 *8))))) + (-5 *1 (-510 *7 *8))))) (((*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3136 *6) (|:| |sol?| (-85))) (-483) *6)) - (-4 *6 (-312)) (-4 *7 (-1153 *6)) + (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3137 *6) (|:| |sol?| (-85))) (-484) *6)) + (-4 *6 (-312)) (-4 *7 (-1154 *6)) (-5 *2 - (-3 (-2 (|:| |answer| (-348 *7)) (|:| |a0| *6)) - (-2 (|:| -2135 (-348 *7)) (|:| |coeff| (-348 *7))) "failed")) - (-5 *1 (-509 *6 *7)) (-5 *3 (-348 *7))))) + (-3 (-2 (|:| |answer| (-349 *7)) (|:| |a0| *6)) + (-2 (|:| -2136 (-349 *7)) (|:| |coeff| (-349 *7))) "failed")) + (-5 *1 (-510 *6 *7)) (-5 *3 (-349 *7))))) (((*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-3 (-2 (|:| -2135 *6) (|:| |coeff| *6)) "failed") *6)) - (-4 *6 (-312)) (-4 *7 (-1153 *6)) + (-5 *5 (-1 (-3 (-2 (|:| -2136 *6) (|:| |coeff| *6)) "failed") *6)) + (-4 *6 (-312)) (-4 *7 (-1154 *6)) (-5 *2 - (-3 (-2 (|:| |answer| (-348 *7)) (|:| |a0| *6)) - (-2 (|:| -2135 (-348 *7)) (|:| |coeff| (-348 *7))) "failed")) - (-5 *1 (-509 *6 *7)) (-5 *3 (-348 *7))))) + (-3 (-2 (|:| |answer| (-349 *7)) (|:| |a0| *6)) + (-2 (|:| -2136 (-349 *7)) (|:| |coeff| (-349 *7))) "failed")) + (-5 *1 (-510 *6 *7)) (-5 *3 (-349 *7))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-582 *6) "failed") (-483) *6 *6)) - (-4 *6 (-312)) (-4 *7 (-1153 *6)) - (-5 *2 (-2 (|:| |answer| (-518 (-348 *7))) (|:| |a0| *6))) - (-5 *1 (-509 *6 *7)) (-5 *3 (-348 *7))))) + (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-583 *6) "failed") (-484) *6 *6)) + (-4 *6 (-312)) (-4 *7 (-1154 *6)) + (-5 *2 (-2 (|:| |answer| (-519 (-349 *7))) (|:| |a0| *6))) + (-5 *1 (-510 *6 *7)) (-5 *3 (-349 *7))))) (((*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3136 *6) (|:| |sol?| (-85))) (-483) *6)) - (-4 *6 (-312)) (-4 *7 (-1153 *6)) - (-5 *2 (-2 (|:| |answer| (-518 (-348 *7))) (|:| |a0| *6))) - (-5 *1 (-509 *6 *7)) (-5 *3 (-348 *7))))) + (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3137 *6) (|:| |sol?| (-85))) (-484) *6)) + (-4 *6 (-312)) (-4 *7 (-1154 *6)) + (-5 *2 (-2 (|:| |answer| (-519 (-349 *7))) (|:| |a0| *6))) + (-5 *1 (-510 *6 *7)) (-5 *3 (-349 *7))))) (((*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-3 (-2 (|:| -2135 *6) (|:| |coeff| *6)) "failed") *6)) - (-4 *6 (-312)) (-4 *7 (-1153 *6)) - (-5 *2 (-2 (|:| |answer| (-518 (-348 *7))) (|:| |a0| *6))) - (-5 *1 (-509 *6 *7)) (-5 *3 (-348 *7))))) + (-5 *5 (-1 (-3 (-2 (|:| -2136 *6) (|:| |coeff| *6)) "failed") *6)) + (-4 *6 (-312)) (-4 *7 (-1154 *6)) + (-5 *2 (-2 (|:| |answer| (-519 (-349 *7))) (|:| |a0| *6))) + (-5 *1 (-510 *6 *7)) (-5 *3 (-349 *7))))) (((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-1 (-518 *3) *3 (-1088))) + (-12 (-5 *5 (-1 (-519 *3) *3 (-1089))) (-5 *6 - (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1088))) - (-4 *3 (-239)) (-4 *3 (-568)) (-4 *3 (-949 *4)) (-4 *3 (-362 *7)) - (-5 *4 (-1088)) (-4 *7 (-552 (-799 (-483)))) (-4 *7 (-390)) - (-4 *7 (-795 (-483))) (-4 *7 (-1012)) (-5 *2 (-518 *3)) - (-5 *1 (-508 *7 *3))))) + (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1089))) + (-4 *3 (-239)) (-4 *3 (-569)) (-4 *3 (-950 *4)) (-4 *3 (-363 *7)) + (-5 *4 (-1089)) (-4 *7 (-553 (-800 (-484)))) (-4 *7 (-391)) + (-4 *7 (-796 (-484))) (-4 *7 (-1013)) (-5 *2 (-519 *3)) + (-5 *1 (-509 *7 *3))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1088)) (-4 *4 (-390)) (-4 *4 (-1012)) (-5 *1 (-508 *4 *2)) - (-4 *2 (-239)) (-4 *2 (-362 *4))))) + (-12 (-5 *3 (-1089)) (-4 *4 (-391)) (-4 *4 (-1013)) (-5 *1 (-509 *4 *2)) + (-4 *2 (-239)) (-4 *2 (-363 *4))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1088)) (-4 *4 (-494)) (-4 *4 (-1012)) (-5 *1 (-508 *4 *2)) - (-4 *2 (-362 *4))))) + (-12 (-5 *3 (-1089)) (-4 *4 (-495)) (-4 *4 (-1013)) (-5 *1 (-509 *4 *2)) + (-4 *2 (-363 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-582 *6)) (-5 *4 (-1088)) (-4 *6 (-362 *5)) (-4 *5 (-1012)) - (-5 *2 (-582 (-549 *6))) (-5 *1 (-508 *5 *6))))) + (-12 (-5 *3 (-583 *6)) (-5 *4 (-1089)) (-4 *6 (-363 *5)) (-4 *5 (-1013)) + (-5 *2 (-583 (-550 *6))) (-5 *1 (-509 *5 *6))))) (((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-582 (-549 *6))) (-5 *4 (-1088)) (-5 *2 (-549 *6)) - (-4 *6 (-362 *5)) (-4 *5 (-1012)) (-5 *1 (-508 *5 *6))))) + (-12 (-5 *3 (-583 (-550 *6))) (-5 *4 (-1089)) (-5 *2 (-550 *6)) + (-4 *6 (-363 *5)) (-4 *5 (-1013)) (-5 *1 (-509 *5 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-582 (-549 *5))) (-4 *4 (-1012)) (-5 *2 (-549 *5)) - (-5 *1 (-508 *4 *5)) (-4 *5 (-362 *4))))) + (-12 (-5 *3 (-583 (-550 *5))) (-4 *4 (-1013)) (-5 *2 (-550 *5)) + (-5 *1 (-509 *4 *5)) (-4 *5 (-363 *4))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-582 (-549 *5))) (-5 *3 (-1088)) (-4 *5 (-362 *4)) - (-4 *4 (-1012)) (-5 *1 (-508 *4 *5))))) + (-12 (-5 *2 (-583 (-550 *5))) (-5 *3 (-1089)) (-4 *5 (-363 *4)) + (-4 *4 (-1013)) (-5 *1 (-509 *4 *5))))) (((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1088)) (-4 *5 (-13 (-494) (-949 (-483)) (-120))) - (-5 *2 (-2 (|:| -2135 (-348 (-856 *5))) (|:| |coeff| (-348 (-856 *5))))) - (-5 *1 (-505 *5)) (-5 *3 (-348 (-856 *5)))))) + (|partial| -12 (-5 *4 (-1089)) (-4 *5 (-13 (-495) (-950 (-484)) (-120))) + (-5 *2 (-2 (|:| -2136 (-349 (-857 *5))) (|:| |coeff| (-349 (-857 *5))))) + (-5 *1 (-506 *5)) (-5 *3 (-349 (-857 *5)))))) (((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1088)) (-5 *5 (-582 (-348 (-856 *6)))) - (-5 *3 (-348 (-856 *6))) (-4 *6 (-13 (-494) (-949 (-483)) (-120))) + (|partial| -12 (-5 *4 (-1089)) (-5 *5 (-583 (-349 (-857 *6)))) + (-5 *3 (-349 (-857 *6))) (-4 *6 (-13 (-495) (-950 (-484)) (-120))) (-5 *2 (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-582 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-505 *6))))) + (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-506 *6))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-348 (-856 *4))) (-5 *3 (-1088)) - (-4 *4 (-13 (-494) (-949 (-483)) (-120))) (-5 *1 (-505 *4))))) + (|partial| -12 (-5 *2 (-349 (-857 *4))) (-5 *3 (-1089)) + (-4 *4 (-13 (-495) (-950 (-484)) (-120))) (-5 *1 (-506 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1088)) (-4 *5 (-13 (-258) (-120) (-949 (-483)) (-579 (-483)))) - (-5 *2 (-518 *3)) (-5 *1 (-369 *5 *3)) (-4 *3 (-13 (-1113) (-29 *5))))) + (-12 (-5 *4 (-1089)) (-4 *5 (-13 (-258) (-120) (-950 (-484)) (-580 (-484)))) + (-5 *2 (-519 *3)) (-5 *1 (-370 *5 *3)) (-4 *3 (-13 (-1114) (-29 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1088)) (-4 *5 (-13 (-494) (-949 (-483)) (-120))) - (-5 *2 (-518 (-348 (-856 *5)))) (-5 *1 (-505 *5)) (-5 *3 (-348 (-856 *5)))))) + (-12 (-5 *4 (-1089)) (-4 *5 (-13 (-495) (-950 (-484)) (-120))) + (-5 *2 (-519 (-349 (-857 *5)))) (-5 *1 (-506 *5)) (-5 *3 (-349 (-857 *5)))))) (((*1 *2 *3) - (|partial| -12 (-5 *2 (-483)) (-5 *1 (-504 *3)) (-4 *3 (-949 *2))))) + (|partial| -12 (-5 *2 (-484)) (-5 *1 (-505 *3)) (-4 *3 (-950 *2))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-582 (-348 *6))) (-5 *3 (-348 *6)) (-4 *6 (-1153 *5)) - (-4 *5 (-13 (-312) (-120) (-949 (-483)))) + (|partial| -12 (-5 *4 (-583 (-349 *6))) (-5 *3 (-349 *6)) (-4 *6 (-1154 *5)) + (-4 *5 (-13 (-312) (-120) (-950 (-484)))) (-5 *2 (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-582 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-503 *5 *6))))) + (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-504 *5 *6))))) (((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-13 (-312) (-120) (-949 (-483)))) (-4 *5 (-1153 *4)) - (-5 *2 (-2 (|:| -2135 (-348 *5)) (|:| |coeff| (-348 *5)))) - (-5 *1 (-503 *4 *5)) (-5 *3 (-348 *5))))) + (|partial| -12 (-4 *4 (-13 (-312) (-120) (-950 (-484)))) (-4 *5 (-1154 *4)) + (-5 *2 (-2 (|:| -2136 (-349 *5)) (|:| |coeff| (-349 *5)))) + (-5 *1 (-504 *4 *5)) (-5 *3 (-349 *5))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-348 *4)) (-4 *4 (-1153 *3)) - (-4 *3 (-13 (-312) (-120) (-949 (-483)))) (-5 *1 (-503 *3 *4))))) + (|partial| -12 (-5 *2 (-349 *4)) (-4 *4 (-1154 *3)) + (-4 *3 (-13 (-312) (-120) (-950 (-484)))) (-5 *1 (-504 *3 *4))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1088)) (-4 *5 (-552 (-799 (-483)))) - (-4 *5 (-795 (-483))) (-4 *5 (-13 (-949 (-483)) (-390) (-579 (-483)))) - (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-502 *5 *3)) - (-4 *3 (-568)) (-4 *3 (-13 (-27) (-1113) (-362 *5))))) + (|partial| -12 (-5 *4 (-1089)) (-4 *5 (-553 (-800 (-484)))) + (-4 *5 (-796 (-484))) (-4 *5 (-13 (-950 (-484)) (-391) (-580 (-484)))) + (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-503 *5 *3)) + (-4 *3 (-569)) (-4 *3 (-13 (-27) (-1114) (-363 *5))))) ((*1 *2 *2 *3 *4 *4) - (|partial| -12 (-5 *3 (-1088)) (-5 *4 (-749 *2)) (-4 *2 (-1051)) - (-4 *2 (-13 (-27) (-1113) (-362 *5))) (-4 *5 (-552 (-799 (-483)))) - (-4 *5 (-795 (-483))) (-4 *5 (-13 (-949 (-483)) (-390) (-579 (-483)))) - (-5 *1 (-502 *5 *2))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1088)) (-4 *5 (-552 (-799 (-483)))) - (-4 *5 (-795 (-483))) (-4 *5 (-13 (-949 (-483)) (-390) (-579 (-483)))) - (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-502 *5 *3)) - (-4 *3 (-568)) (-4 *3 (-13 (-27) (-1113) (-362 *5)))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1088)) (-4 *5 (-13 (-949 (-483)) (-390) (-579 (-483)))) - (-5 *2 (-2 (|:| -2337 *3) (|:| |nconst| *3))) (-5 *1 (-502 *5 *3)) - (-4 *3 (-13 (-27) (-1113) (-362 *5)))))) + (|partial| -12 (-5 *3 (-1089)) (-5 *4 (-750 *2)) (-4 *2 (-1052)) + (-4 *2 (-13 (-27) (-1114) (-363 *5))) (-4 *5 (-553 (-800 (-484)))) + (-4 *5 (-796 (-484))) (-4 *5 (-13 (-950 (-484)) (-391) (-580 (-484)))) + (-5 *1 (-503 *5 *2))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-1089)) (-4 *5 (-553 (-800 (-484)))) + (-4 *5 (-796 (-484))) (-4 *5 (-13 (-950 (-484)) (-391) (-580 (-484)))) + (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-503 *5 *3)) + (-4 *3 (-569)) (-4 *3 (-13 (-27) (-1114) (-363 *5)))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1089)) (-4 *5 (-13 (-950 (-484)) (-391) (-580 (-484)))) + (-5 *2 (-2 (|:| -2338 *3) (|:| |nconst| *3))) (-5 *1 (-503 *5 *3)) + (-4 *3 (-13 (-27) (-1114) (-363 *5)))))) (((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *5 (-549 *4)) (-5 *6 (-1088)) (-4 *4 (-13 (-362 *7) (-27) (-1113))) - (-4 *7 (-13 (-390) (-949 (-483)) (-120) (-579 (-483)))) - (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2011 (-582 *4)))) - (-5 *1 (-501 *7 *4 *3)) (-4 *3 (-599 *4)) (-4 *3 (-1012))))) + (-12 (-5 *5 (-550 *4)) (-5 *6 (-1089)) (-4 *4 (-13 (-363 *7) (-27) (-1114))) + (-4 *7 (-13 (-391) (-950 (-484)) (-120) (-580 (-484)))) + (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2012 (-583 *4)))) + (-5 *1 (-502 *7 *4 *3)) (-4 *3 (-600 *4)) (-4 *3 (-1013))))) (((*1 *2 *2 *2 *2 *3 *3 *4) - (|partial| -12 (-5 *3 (-549 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1088))) - (-4 *2 (-13 (-362 *5) (-27) (-1113))) - (-4 *5 (-13 (-390) (-949 (-483)) (-120) (-579 (-483)))) - (-5 *1 (-501 *5 *2 *6)) (-4 *6 (-1012))))) + (|partial| -12 (-5 *3 (-550 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1089))) + (-4 *2 (-13 (-363 *5) (-27) (-1114))) + (-4 *5 (-13 (-391) (-950 (-484)) (-120) (-580 (-484)))) + (-5 *1 (-502 *5 *2 *6)) (-4 *6 (-1013))))) (((*1 *2 *3 *4 *4 *5) - (|partial| -12 (-5 *4 (-549 *3)) (-5 *5 (-582 *3)) - (-4 *3 (-13 (-362 *6) (-27) (-1113))) - (-4 *6 (-13 (-390) (-949 (-483)) (-120) (-579 (-483)))) + (|partial| -12 (-5 *4 (-550 *3)) (-5 *5 (-583 *3)) + (-4 *3 (-13 (-363 *6) (-27) (-1114))) + (-4 *6 (-13 (-391) (-950 (-484)) (-120) (-580 (-484)))) (-5 *2 (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-582 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-501 *6 *3 *7)) (-4 *7 (-1012))))) + (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-502 *6 *3 *7)) (-4 *7 (-1013))))) (((*1 *2 *3 *4 *4 *3) - (|partial| -12 (-5 *4 (-549 *3)) (-4 *3 (-13 (-362 *5) (-27) (-1113))) - (-4 *5 (-13 (-390) (-949 (-483)) (-120) (-579 (-483)))) - (-5 *2 (-2 (|:| -2135 *3) (|:| |coeff| *3))) (-5 *1 (-501 *5 *3 *6)) - (-4 *6 (-1012))))) + (|partial| -12 (-5 *4 (-550 *3)) (-4 *3 (-13 (-363 *5) (-27) (-1114))) + (-4 *5 (-13 (-391) (-950 (-484)) (-120) (-580 (-484)))) + (-5 *2 (-2 (|:| -2136 *3) (|:| |coeff| *3))) (-5 *1 (-502 *5 *3 *6)) + (-4 *6 (-1013))))) (((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-549 *3)) (-4 *3 (-13 (-362 *5) (-27) (-1113))) - (-4 *5 (-13 (-390) (-949 (-483)) (-120) (-579 (-483)))) (-5 *2 (-518 *3)) - (-5 *1 (-501 *5 *3 *6)) (-4 *6 (-1012))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1153 *5)) (-4 *5 (-312)) - (-4 *7 (-1153 (-348 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -2134 *3))) - (-5 *1 (-499 *5 *6 *7 *3)) (-4 *3 (-291 *5 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1153 *5)) (-4 *5 (-312)) - (-5 *2 - (-2 (|:| |answer| (-348 *6)) (|:| -2134 (-348 *6)) - (|:| |specpart| (-348 *6)) (|:| |polypart| *6))) - (-5 *1 (-500 *5 *6)) (-5 *3 (-348 *6))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-483)) (-5 *3 (-693)) (-5 *1 (-498))))) -(((*1 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-498))))) -(((*1 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-498))))) -(((*1 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-498))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-498))))) -(((*1 *2 *3) (-12 (-5 *2 (-348 (-483))) (-5 *1 (-498)) (-5 *3 (-483))))) -(((*1 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-498))))) -(((*1 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-498))))) -(((*1 *2 *3) (-12 (-5 *2 (-582 (-483))) (-5 *1 (-498)) (-5 *3 (-483))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-582 *2)) (-5 *1 (-153 *2)) (-4 *2 (-258)))) + (-12 (-5 *4 (-550 *3)) (-4 *3 (-13 (-363 *5) (-27) (-1114))) + (-4 *5 (-13 (-391) (-950 (-484)) (-120) (-580 (-484)))) (-5 *2 (-519 *3)) + (-5 *1 (-502 *5 *3 *6)) (-4 *6 (-1013))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1154 *5)) (-4 *5 (-312)) + (-4 *7 (-1154 (-349 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -2135 *3))) + (-5 *1 (-500 *5 *6 *7 *3)) (-4 *3 (-291 *5 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1154 *5)) (-4 *5 (-312)) + (-5 *2 + (-2 (|:| |answer| (-349 *6)) (|:| -2135 (-349 *6)) + (|:| |specpart| (-349 *6)) (|:| |polypart| *6))) + (-5 *1 (-501 *5 *6)) (-5 *3 (-349 *6))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-484)) (-5 *3 (-694)) (-5 *1 (-499))))) +(((*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-499))))) +(((*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-499))))) +(((*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-499))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-499))))) +(((*1 *2 *3) (-12 (-5 *2 (-349 (-484))) (-5 *1 (-499)) (-5 *3 (-484))))) +(((*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-499))))) +(((*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-499))))) +(((*1 *2 *3) (-12 (-5 *2 (-583 (-484))) (-5 *1 (-499)) (-5 *3 (-484))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-583 *2)) (-5 *1 (-153 *2)) (-4 *2 (-258)))) ((*1 *2 *3 *2) - (-12 (-5 *3 (-582 (-582 *4))) (-5 *2 (-582 *4)) (-4 *4 (-258)) + (-12 (-5 *3 (-583 (-583 *4))) (-5 *2 (-583 *4)) (-4 *4 (-258)) (-5 *1 (-153 *4)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-582 *8)) + (-12 (-5 *3 (-583 *8)) (-5 *4 - (-582 - (-2 (|:| -2011 (-629 *7)) (|:| |basisDen| *7) - (|:| |basisInv| (-629 *7))))) - (-5 *5 (-693)) (-4 *8 (-1153 *7)) (-4 *7 (-1153 *6)) (-4 *6 (-299)) - (-5 *2 - (-2 (|:| -2011 (-629 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-629 *7)))) - (-5 *1 (-436 *6 *7 *8)))) - ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-498))))) + (-583 + (-2 (|:| -2012 (-630 *7)) (|:| |basisDen| *7) + (|:| |basisInv| (-630 *7))))) + (-5 *5 (-694)) (-4 *8 (-1154 *7)) (-4 *7 (-1154 *6)) (-4 *6 (-299)) + (-5 *2 + (-2 (|:| -2012 (-630 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-630 *7)))) + (-5 *1 (-437 *6 *7 *8)))) + ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-499))))) (((*1 *2 *3 *4 *5 *5 *4 *6) - (-12 (-5 *5 (-549 *4)) (-5 *6 (-1083 *4)) - (-4 *4 (-13 (-362 *7) (-27) (-1113))) - (-4 *7 (-13 (-390) (-949 (-483)) (-120) (-579 (-483)))) - (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2011 (-582 *4)))) - (-5 *1 (-497 *7 *4 *3)) (-4 *3 (-599 *4)) (-4 *3 (-1012)))) + (-12 (-5 *5 (-550 *4)) (-5 *6 (-1084 *4)) + (-4 *4 (-13 (-363 *7) (-27) (-1114))) + (-4 *7 (-13 (-391) (-950 (-484)) (-120) (-580 (-484)))) + (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2012 (-583 *4)))) + (-5 *1 (-498 *7 *4 *3)) (-4 *3 (-600 *4)) (-4 *3 (-1013)))) ((*1 *2 *3 *4 *5 *5 *5 *4 *6) - (-12 (-5 *5 (-549 *4)) (-5 *6 (-348 (-1083 *4))) - (-4 *4 (-13 (-362 *7) (-27) (-1113))) - (-4 *7 (-13 (-390) (-949 (-483)) (-120) (-579 (-483)))) - (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2011 (-582 *4)))) - (-5 *1 (-497 *7 *4 *3)) (-4 *3 (-599 *4)) (-4 *3 (-1012))))) + (-12 (-5 *5 (-550 *4)) (-5 *6 (-349 (-1084 *4))) + (-4 *4 (-13 (-363 *7) (-27) (-1114))) + (-4 *7 (-13 (-391) (-950 (-484)) (-120) (-580 (-484)))) + (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2012 (-583 *4)))) + (-5 *1 (-498 *7 *4 *3)) (-4 *3 (-600 *4)) (-4 *3 (-1013))))) (((*1 *2 *2 *2 *3 *3 *4 *2 *5) - (|partial| -12 (-5 *3 (-549 *2)) - (-5 *4 (-1 (-3 *2 #1="failed") *2 *2 (-1088))) (-5 *5 (-1083 *2)) - (-4 *2 (-13 (-362 *6) (-27) (-1113))) - (-4 *6 (-13 (-390) (-949 (-483)) (-120) (-579 (-483)))) - (-5 *1 (-497 *6 *2 *7)) (-4 *7 (-1012)))) + (|partial| -12 (-5 *3 (-550 *2)) + (-5 *4 (-1 (-3 *2 #1="failed") *2 *2 (-1089))) (-5 *5 (-1084 *2)) + (-4 *2 (-13 (-363 *6) (-27) (-1114))) + (-4 *6 (-13 (-391) (-950 (-484)) (-120) (-580 (-484)))) + (-5 *1 (-498 *6 *2 *7)) (-4 *7 (-1013)))) ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) - (|partial| -12 (-5 *3 (-549 *2)) (-5 *4 (-1 (-3 *2 #1#) *2 *2 (-1088))) - (-5 *5 (-348 (-1083 *2))) (-4 *2 (-13 (-362 *6) (-27) (-1113))) - (-4 *6 (-13 (-390) (-949 (-483)) (-120) (-579 (-483)))) - (-5 *1 (-497 *6 *2 *7)) (-4 *7 (-1012))))) + (|partial| -12 (-5 *3 (-550 *2)) (-5 *4 (-1 (-3 *2 #1#) *2 *2 (-1089))) + (-5 *5 (-349 (-1084 *2))) (-4 *2 (-13 (-363 *6) (-27) (-1114))) + (-4 *6 (-13 (-391) (-950 (-484)) (-120) (-580 (-484)))) + (-5 *1 (-498 *6 *2 *7)) (-4 *7 (-1013))))) (((*1 *2 *3 *4 *4 *5 *3 *6) - (|partial| -12 (-5 *4 (-549 *3)) (-5 *5 (-582 *3)) (-5 *6 (-1083 *3)) - (-4 *3 (-13 (-362 *7) (-27) (-1113))) - (-4 *7 (-13 (-390) (-949 (-483)) (-120) (-579 (-483)))) + (|partial| -12 (-5 *4 (-550 *3)) (-5 *5 (-583 *3)) (-5 *6 (-1084 *3)) + (-4 *3 (-13 (-363 *7) (-27) (-1114))) + (-4 *7 (-13 (-391) (-950 (-484)) (-120) (-580 (-484)))) (-5 *2 (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-582 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-497 *7 *3 *8)) (-4 *8 (-1012)))) + (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-498 *7 *3 *8)) (-4 *8 (-1013)))) ((*1 *2 *3 *4 *4 *5 *4 *3 *6) - (|partial| -12 (-5 *4 (-549 *3)) (-5 *5 (-582 *3)) (-5 *6 (-348 (-1083 *3))) - (-4 *3 (-13 (-362 *7) (-27) (-1113))) - (-4 *7 (-13 (-390) (-949 (-483)) (-120) (-579 (-483)))) + (|partial| -12 (-5 *4 (-550 *3)) (-5 *5 (-583 *3)) (-5 *6 (-349 (-1084 *3))) + (-4 *3 (-13 (-363 *7) (-27) (-1114))) + (-4 *7 (-13 (-391) (-950 (-484)) (-120) (-580 (-484)))) (-5 *2 (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-582 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-497 *7 *3 *8)) (-4 *8 (-1012))))) + (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-498 *7 *3 *8)) (-4 *8 (-1013))))) (((*1 *2 *3 *4 *4 *3 *3 *5) - (|partial| -12 (-5 *4 (-549 *3)) (-5 *5 (-1083 *3)) - (-4 *3 (-13 (-362 *6) (-27) (-1113))) - (-4 *6 (-13 (-390) (-949 (-483)) (-120) (-579 (-483)))) - (-5 *2 (-2 (|:| -2135 *3) (|:| |coeff| *3))) (-5 *1 (-497 *6 *3 *7)) - (-4 *7 (-1012)))) + (|partial| -12 (-5 *4 (-550 *3)) (-5 *5 (-1084 *3)) + (-4 *3 (-13 (-363 *6) (-27) (-1114))) + (-4 *6 (-13 (-391) (-950 (-484)) (-120) (-580 (-484)))) + (-5 *2 (-2 (|:| -2136 *3) (|:| |coeff| *3))) (-5 *1 (-498 *6 *3 *7)) + (-4 *7 (-1013)))) ((*1 *2 *3 *4 *4 *3 *4 *3 *5) - (|partial| -12 (-5 *4 (-549 *3)) (-5 *5 (-348 (-1083 *3))) - (-4 *3 (-13 (-362 *6) (-27) (-1113))) - (-4 *6 (-13 (-390) (-949 (-483)) (-120) (-579 (-483)))) - (-5 *2 (-2 (|:| -2135 *3) (|:| |coeff| *3))) (-5 *1 (-497 *6 *3 *7)) - (-4 *7 (-1012))))) + (|partial| -12 (-5 *4 (-550 *3)) (-5 *5 (-349 (-1084 *3))) + (-4 *3 (-13 (-363 *6) (-27) (-1114))) + (-4 *6 (-13 (-391) (-950 (-484)) (-120) (-580 (-484)))) + (-5 *2 (-2 (|:| -2136 *3) (|:| |coeff| *3))) (-5 *1 (-498 *6 *3 *7)) + (-4 *7 (-1013))))) (((*1 *2 *3 *4 *4 *3 *5) - (-12 (-5 *4 (-549 *3)) (-5 *5 (-1083 *3)) - (-4 *3 (-13 (-362 *6) (-27) (-1113))) - (-4 *6 (-13 (-390) (-949 (-483)) (-120) (-579 (-483)))) (-5 *2 (-518 *3)) - (-5 *1 (-497 *6 *3 *7)) (-4 *7 (-1012)))) + (-12 (-5 *4 (-550 *3)) (-5 *5 (-1084 *3)) + (-4 *3 (-13 (-363 *6) (-27) (-1114))) + (-4 *6 (-13 (-391) (-950 (-484)) (-120) (-580 (-484)))) (-5 *2 (-519 *3)) + (-5 *1 (-498 *6 *3 *7)) (-4 *7 (-1013)))) ((*1 *2 *3 *4 *4 *4 *3 *5) - (-12 (-5 *4 (-549 *3)) (-5 *5 (-348 (-1083 *3))) - (-4 *3 (-13 (-362 *6) (-27) (-1113))) - (-4 *6 (-13 (-390) (-949 (-483)) (-120) (-579 (-483)))) (-5 *2 (-518 *3)) - (-5 *1 (-497 *6 *3 *7)) (-4 *7 (-1012))))) -(((*1 *2 *2) (|partial| -12 (-5 *1 (-496 *2)) (-4 *2 (-482))))) -(((*1 *2 *3) (-12 (-5 *2 (-346 *3)) (-5 *1 (-496 *3)) (-4 *3 (-482))))) + (-12 (-5 *4 (-550 *3)) (-5 *5 (-349 (-1084 *3))) + (-4 *3 (-13 (-363 *6) (-27) (-1114))) + (-4 *6 (-13 (-391) (-950 (-484)) (-120) (-580 (-484)))) (-5 *2 (-519 *3)) + (-5 *1 (-498 *6 *3 *7)) (-4 *7 (-1013))))) +(((*1 *2 *2) (|partial| -12 (-5 *1 (-497 *2)) (-4 *2 (-483))))) +(((*1 *2 *3) (-12 (-5 *2 (-347 *3)) (-5 *1 (-497 *3)) (-4 *3 (-483))))) (((*1 *2 *3 *4 *5 *6) - (|partial| -12 (-5 *4 (-1088)) (-5 *6 (-582 (-549 *3))) (-5 *5 (-549 *3)) - (-4 *3 (-13 (-27) (-1113) (-362 *7))) - (-4 *7 (-13 (-390) (-120) (-949 (-483)) (-579 (-483)))) - (-5 *2 (-2 (|:| -2135 *3) (|:| |coeff| *3))) (-5 *1 (-495 *7 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1088)) (-4 *5 (-13 (-390) (-120) (-949 (-483)) (-579 (-483)))) - (-5 *2 (-518 *3)) (-5 *1 (-495 *5 *3)) - (-4 *3 (-13 (-27) (-1113) (-362 *5)))))) + (|partial| -12 (-5 *4 (-1089)) (-5 *6 (-583 (-550 *3))) (-5 *5 (-550 *3)) + (-4 *3 (-13 (-27) (-1114) (-363 *7))) + (-4 *7 (-13 (-391) (-120) (-950 (-484)) (-580 (-484)))) + (-5 *2 (-2 (|:| -2136 *3) (|:| |coeff| *3))) (-5 *1 (-496 *7 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1089)) (-4 *5 (-13 (-391) (-120) (-950 (-484)) (-580 (-484)))) + (-5 *2 (-519 *3)) (-5 *1 (-496 *5 *3)) + (-4 *3 (-13 (-27) (-1114) (-363 *5)))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-1088)) - (-4 *4 (-13 (-390) (-120) (-949 (-483)) (-579 (-483)))) (-5 *1 (-495 *4 *2)) - (-4 *2 (-13 (-27) (-1113) (-362 *4)))))) + (|partial| -12 (-5 *3 (-1089)) + (-4 *4 (-13 (-391) (-120) (-950 (-484)) (-580 (-484)))) (-5 *1 (-496 *4 *2)) + (-4 *2 (-13 (-27) (-1114) (-363 *4)))))) (((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1088)) (-5 *5 (-582 *3)) - (-4 *3 (-13 (-27) (-1113) (-362 *6))) - (-4 *6 (-13 (-390) (-120) (-949 (-483)) (-579 (-483)))) + (|partial| -12 (-5 *4 (-1089)) (-5 *5 (-583 *3)) + (-4 *3 (-13 (-27) (-1114) (-363 *6))) + (-4 *6 (-13 (-391) (-120) (-950 (-484)) (-580 (-484)))) (-5 *2 (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-582 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-495 *6 *3))))) + (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-496 *6 *3))))) (((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1088)) - (-4 *5 (-13 (-390) (-120) (-949 (-483)) (-579 (-483)))) - (-5 *2 (-2 (|:| -2135 *3) (|:| |coeff| *3))) (-5 *1 (-495 *5 *3)) - (-4 *3 (-13 (-27) (-1113) (-362 *5)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| -1770 *1) (|:| -3980 *1) (|:| |associate| *1))) - (-4 *1 (-494))))) -(((*1 *1 *1) (-4 *1 (-494)))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-494)) (-5 *2 (-85))))) -(((*1 *2 *1) (-12 (-4 *1 (-494)) (-5 *2 (-85))))) + (|partial| -12 (-5 *4 (-1089)) + (-4 *5 (-13 (-391) (-120) (-950 (-484)) (-580 (-484)))) + (-5 *2 (-2 (|:| -2136 *3) (|:| |coeff| *3))) (-5 *1 (-496 *5 *3)) + (-4 *3 (-13 (-27) (-1114) (-363 *5)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-2 (|:| -1771 *1) (|:| -3981 *1) (|:| |associate| *1))) + (-4 *1 (-495))))) +(((*1 *1 *1) (-4 *1 (-495)))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-495)) (-5 *2 (-85))))) +(((*1 *2 *1) (-12 (-4 *1 (-495)) (-5 *2 (-85))))) (((*1 *1 *2) - (-12 (-5 *2 (-348 (-483))) (-4 *1 (-492 *3)) (-4 *3 (-13 (-345) (-1113))))) - ((*1 *1 *2) (-12 (-4 *1 (-492 *2)) (-4 *2 (-13 (-345) (-1113))))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-492 *2)) (-4 *2 (-13 (-345) (-1113)))))) -(((*1 *1 *2 *2) (-12 (-4 *1 (-492 *2)) (-4 *2 (-13 (-345) (-1113)))))) -(((*1 *2 *1) (-12 (-4 *1 (-492 *2)) (-4 *2 (-13 (-345) (-1113)))))) + (-12 (-5 *2 (-349 (-484))) (-4 *1 (-493 *3)) (-4 *3 (-13 (-346) (-1114))))) + ((*1 *1 *2) (-12 (-4 *1 (-493 *2)) (-4 *2 (-13 (-346) (-1114))))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-493 *2)) (-4 *2 (-13 (-346) (-1114)))))) +(((*1 *1 *2 *2) (-12 (-4 *1 (-493 *2)) (-4 *2 (-13 (-346) (-1114)))))) +(((*1 *2 *1) (-12 (-4 *1 (-493 *2)) (-4 *2 (-13 (-346) (-1114)))))) (((*1 *2 *1 *3) - (-12 (-4 *1 (-492 *3)) (-4 *3 (-13 (-345) (-1113))) (-5 *2 (-85))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-483)) (-5 *2 (-85)) (-5 *1 (-491))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-491))))) -(((*1 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-491))))) + (-12 (-4 *1 (-493 *3)) (-4 *3 (-13 (-346) (-1114))) (-5 *2 (-85))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-484)) (-5 *2 (-85)) (-5 *1 (-492))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-492))))) +(((*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-492))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1153 *5)) - (-4 *5 (-13 (-27) (-362 *4))) (-4 *4 (-13 (-494) (-949 (-483)))) - (-4 *7 (-1153 (-348 *6))) (-5 *1 (-490 *4 *5 *6 *7 *2)) + (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1154 *5)) + (-4 *5 (-13 (-27) (-363 *4))) (-4 *4 (-13 (-495) (-950 (-484)))) + (-4 *7 (-1154 (-349 *6))) (-5 *1 (-491 *4 *5 *6 *7 *2)) (-4 *2 (-291 *5 *6 *7))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1153 *6)) (-4 *6 (-13 (-27) (-362 *5))) - (-4 *5 (-13 (-494) (-949 (-483)))) (-4 *8 (-1153 (-348 *7))) - (-5 *2 (-518 *3)) (-5 *1 (-490 *5 *6 *7 *8 *3)) (-4 *3 (-291 *6 *7 *8))))) + (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1154 *6)) (-4 *6 (-13 (-27) (-363 *5))) + (-4 *5 (-13 (-495) (-950 (-484)))) (-4 *8 (-1154 (-349 *7))) + (-5 *2 (-519 *3)) (-5 *1 (-491 *5 *6 *7 *8 *3)) (-4 *3 (-291 *6 *7 *8))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1153 *6)) (-4 *6 (-13 (-27) (-362 *5))) - (-4 *5 (-13 (-494) (-949 (-483)))) (-4 *8 (-1153 (-348 *7))) - (-5 *2 (-518 *3)) (-5 *1 (-490 *5 *6 *7 *8 *3)) (-4 *3 (-291 *6 *7 *8))))) + (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1154 *6)) (-4 *6 (-13 (-27) (-363 *5))) + (-4 *5 (-13 (-495) (-950 (-484)))) (-4 *8 (-1154 (-349 *7))) + (-5 *2 (-519 *3)) (-5 *1 (-491 *5 *6 *7 *8 *3)) (-4 *3 (-291 *6 *7 *8))))) (((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-549 *3)) (-5 *5 (-1 (-1083 *3) (-1083 *3))) - (-4 *3 (-13 (-27) (-362 *6))) (-4 *6 (-494)) (-5 *2 (-518 *3)) - (-5 *1 (-489 *6 *3))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-482)) (-5 *2 (-85))))) -(((*1 *1 *1 *1) (-4 *1 (-482)))) -(((*1 *1 *1 *1) (-4 *1 (-482)))) -(((*1 *1 *1) (-4 *1 (-482)))) -(((*1 *1 *1) (-4 *1 (-482)))) -(((*1 *1 *1) (-4 *1 (-482)))) -(((*1 *1 *1 *1 *1) (-4 *1 (-482)))) -(((*1 *1 *1 *1 *1) (-4 *1 (-482)))) -(((*1 *1 *1 *1 *1) (-4 *1 (-482)))) -(((*1 *1 *1 *1 *1) (-4 *1 (-482)))) -(((*1 *1 *1 *1) (-4 *1 (-482)))) + (-12 (-5 *4 (-550 *3)) (-5 *5 (-1 (-1084 *3) (-1084 *3))) + (-4 *3 (-13 (-27) (-363 *6))) (-4 *6 (-495)) (-5 *2 (-519 *3)) + (-5 *1 (-490 *6 *3))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-483)) (-5 *2 (-85))))) +(((*1 *1 *1 *1) (-4 *1 (-483)))) +(((*1 *1 *1 *1) (-4 *1 (-483)))) +(((*1 *1 *1) (-4 *1 (-483)))) +(((*1 *1 *1) (-4 *1 (-483)))) +(((*1 *1 *1) (-4 *1 (-483)))) +(((*1 *1 *1 *1 *1) (-4 *1 (-483)))) +(((*1 *1 *1 *1 *1) (-4 *1 (-483)))) +(((*1 *1 *1 *1 *1) (-4 *1 (-483)))) +(((*1 *1 *1 *1 *1) (-4 *1 (-483)))) +(((*1 *1 *1 *1) (-4 *1 (-483)))) (((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *4 (-1 (-3 (-483) #1="failed") *5)) (-4 *5 (-960)) - (-5 *2 (-483)) (-5 *1 (-480 *5 *3)) (-4 *3 (-1153 *5)))) + (|partial| -12 (-5 *4 (-1 (-3 (-484) #1="failed") *5)) (-4 *5 (-961)) + (-5 *2 (-484)) (-5 *1 (-481 *5 *3)) (-4 *3 (-1154 *5)))) ((*1 *2 *3 *4 *2 *5) - (|partial| -12 (-5 *5 (-1 (-3 (-483) #1#) *4)) (-4 *4 (-960)) (-5 *2 (-483)) - (-5 *1 (-480 *4 *3)) (-4 *3 (-1153 *4)))) + (|partial| -12 (-5 *5 (-1 (-3 (-484) #1#) *4)) (-4 *4 (-961)) (-5 *2 (-484)) + (-5 *1 (-481 *4 *3)) (-4 *3 (-1154 *4)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1 (-3 (-483) #1#) *4)) (-4 *4 (-960)) (-5 *2 (-483)) - (-5 *1 (-480 *4 *3)) (-4 *3 (-1153 *4))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-258)) (-5 *1 (-393 *3 *2)) (-4 *2 (-1153 *3)))) - ((*1 *2 *2 *3) (-12 (-4 *3 (-258)) (-5 *1 (-398 *3 *2)) (-4 *2 (-1153 *3)))) + (|partial| -12 (-5 *5 (-1 (-3 (-484) #1#) *4)) (-4 *4 (-961)) (-5 *2 (-484)) + (-5 *1 (-481 *4 *3)) (-4 *3 (-1154 *4))))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-258)) (-5 *1 (-394 *3 *2)) (-4 *2 (-1154 *3)))) + ((*1 *2 *2 *3) (-12 (-4 *3 (-258)) (-5 *1 (-399 *3 *2)) (-4 *2 (-1154 *3)))) ((*1 *2 *2 *3) - (-12 (-4 *3 (-258)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-693))) - (-5 *1 (-476 *3 *2 *4 *5)) (-4 *2 (-1153 *3))))) + (-12 (-4 *3 (-258)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-694))) + (-5 *1 (-477 *3 *2 *4 *5)) (-4 *2 (-1154 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-582 *2)) (-4 *2 (-1153 *4)) (-5 *1 (-476 *4 *2 *5 *6)) - (-4 *4 (-258)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-693)))))) + (-12 (-5 *3 (-583 *2)) (-4 *2 (-1154 *4)) (-5 *1 (-477 *4 *2 *5 *6)) + (-4 *4 (-258)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-694)))))) (((*1 *2 *3) - (-12 (-5 *3 (-582 *2)) (-4 *2 (-1153 *4)) (-5 *1 (-476 *4 *2 *5 *6)) - (-4 *4 (-258)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-693)))))) + (-12 (-5 *3 (-583 *2)) (-4 *2 (-1154 *4)) (-5 *1 (-477 *4 *2 *5 *6)) + (-4 *4 (-258)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-694)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-582 *6)) (-5 *4 (-582 (-1088))) (-4 *6 (-312)) - (-5 *2 (-582 (-249 (-856 *6)))) (-5 *1 (-475 *5 *6 *7)) (-4 *5 (-390)) - (-4 *7 (-13 (-312) (-754)))))) + (-12 (-5 *3 (-583 *6)) (-5 *4 (-583 (-1089))) (-4 *6 (-312)) + (-5 *2 (-583 (-249 (-857 *6)))) (-5 *1 (-476 *5 *6 *7)) (-4 *5 (-391)) + (-4 *7 (-13 (-312) (-755)))))) (((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-582 (-856 *6))) (-5 *4 (-582 (-1088))) (-4 *6 (-390)) - (-5 *2 (-582 (-582 *7))) (-5 *1 (-475 *6 *7 *5)) (-4 *7 (-312)) - (-4 *5 (-13 (-312) (-754)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1083 *5)) (-4 *5 (-390)) (-5 *2 (-582 *6)) - (-5 *1 (-475 *5 *6 *4)) (-4 *6 (-312)) (-4 *4 (-13 (-312) (-754))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-856 *5)) (-4 *5 (-390)) (-5 *2 (-582 *6)) - (-5 *1 (-475 *5 *6 *4)) (-4 *6 (-312)) (-4 *4 (-13 (-312) (-754)))))) -(((*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-472)))) - ((*1 *2 *3) (-12 (-5 *3 (-472)) (-5 *1 (-473 *2)) (-4 *2 (-1127))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1088)) (-5 *2 (-472)) (-5 *1 (-473 *4)) (-4 *4 (-1127))))) -(((*1 *1 *2) (-12 (-5 *2 (-348 (-483))) (-5 *1 (-77)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-582 (-472))) (-5 *1 (-472))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-582 (-1088))) (-5 *1 (-472))))) -(((*1 *1 *1) (-5 *1 (-472)))) -(((*1 *2 *1) (-12 (-5 *2 (-1071)) (-5 *1 (-472))))) -(((*1 *1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-472))))) -(((*1 *2 *3) (-12 (-5 *3 (-582 (-472))) (-5 *2 (-1088)) (-5 *1 (-472))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-1088)) (-5 *3 (-582 (-472))) (-5 *1 (-472))))) + (-12 (-5 *3 (-583 (-857 *6))) (-5 *4 (-583 (-1089))) (-4 *6 (-391)) + (-5 *2 (-583 (-583 *7))) (-5 *1 (-476 *6 *7 *5)) (-4 *7 (-312)) + (-4 *5 (-13 (-312) (-755)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1084 *5)) (-4 *5 (-391)) (-5 *2 (-583 *6)) + (-5 *1 (-476 *5 *6 *4)) (-4 *6 (-312)) (-4 *4 (-13 (-312) (-755))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-857 *5)) (-4 *5 (-391)) (-5 *2 (-583 *6)) + (-5 *1 (-476 *5 *6 *4)) (-4 *6 (-312)) (-4 *4 (-13 (-312) (-755)))))) +(((*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-473)))) + ((*1 *2 *3) (-12 (-5 *3 (-473)) (-5 *1 (-474 *2)) (-4 *2 (-1128))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1089)) (-5 *2 (-473)) (-5 *1 (-474 *4)) (-4 *4 (-1128))))) +(((*1 *1 *2) (-12 (-5 *2 (-349 (-484))) (-5 *1 (-77)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-473))) (-5 *1 (-473))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-1089))) (-5 *1 (-473))))) +(((*1 *1 *1) (-5 *1 (-473)))) +(((*1 *2 *1) (-12 (-5 *2 (-1072)) (-5 *1 (-473))))) +(((*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-473))))) +(((*1 *2 *3) (-12 (-5 *3 (-583 (-473))) (-5 *2 (-1089)) (-5 *1 (-473))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-1089)) (-5 *3 (-583 (-473))) (-5 *1 (-473))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-629 *6)) (-5 *5 (-1 (-346 (-1083 *6)) (-1083 *6))) + (-12 (-5 *3 (-630 *6)) (-5 *5 (-1 (-347 (-1084 *6)) (-1084 *6))) (-4 *6 (-312)) (-5 *2 - (-582 - (-2 (|:| |outval| *7) (|:| |outmult| (-483)) - (|:| |outvect| (-582 (-629 *7)))))) - (-5 *1 (-469 *6 *7 *4)) (-4 *7 (-312)) (-4 *4 (-13 (-312) (-754)))))) + (-583 + (-2 (|:| |outval| *7) (|:| |outmult| (-484)) + (|:| |outvect| (-583 (-630 *7)))))) + (-5 *1 (-470 *6 *7 *4)) (-4 *7 (-312)) (-4 *4 (-13 (-312) (-755)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1083 *5)) (-4 *5 (-312)) (-5 *2 (-582 *6)) - (-5 *1 (-469 *5 *6 *4)) (-4 *6 (-312)) (-4 *4 (-13 (-312) (-754)))))) + (-12 (-5 *3 (-1084 *5)) (-4 *5 (-312)) (-5 *2 (-583 *6)) + (-5 *1 (-470 *5 *6 *4)) (-4 *6 (-312)) (-4 *4 (-13 (-312) (-755)))))) (((*1 *2 *3) - (-12 (-5 *3 (-629 *4)) (-4 *4 (-312)) (-5 *2 (-1083 *4)) - (-5 *1 (-469 *4 *5 *6)) (-4 *5 (-312)) (-4 *6 (-13 (-312) (-754)))))) + (-12 (-5 *3 (-630 *4)) (-4 *4 (-312)) (-5 *2 (-1084 *4)) + (-5 *1 (-470 *4 *5 *6)) (-4 *5 (-312)) (-4 *6 (-13 (-312) (-755)))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-467 *3)) (-4 *3 (-13 (-662) (-25)))))) + (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-468 *3)) (-4 *3 (-13 (-663) (-25)))))) (((*1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-467 *3)) (-4 *3 (-13 (-662) (-25)))))) -(((*1 *1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-466)))) - ((*1 *1 *2) (-12 (-5 *2 (-336)) (-5 *1 (-466))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-466))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-1032)) (-5 *1 (-466))))) + (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-468 *3)) (-4 *3 (-13 (-663) (-25)))))) +(((*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-467)))) + ((*1 *1 *2) (-12 (-5 *2 (-337)) (-5 *1 (-467))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-467))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-1033)) (-5 *1 (-467))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-829)) (-4 *4 (-318)) (-4 *4 (-312)) (-5 *2 (-1083 *1)) + (-12 (-5 *3 (-830)) (-4 *4 (-319)) (-4 *4 (-312)) (-5 *2 (-1084 *1)) (-4 *1 (-280 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-5 *2 (-1083 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-5 *2 (-1084 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-320 *3 *2)) (-4 *3 (-146)) (-4 *3 (-312)) (-4 *2 (-1153 *3)))) + (-12 (-4 *1 (-321 *3 *2)) (-4 *3 (-146)) (-4 *3 (-312)) (-4 *2 (-1154 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-1177 *4)) (-4 *4 (-299)) (-5 *2 (-1083 *4)) (-5 *1 (-465 *4))))) -(((*1 *1) (-12 (-4 *1 (-280 *2)) (-4 *2 (-318)) (-4 *2 (-312)))) + (-12 (-5 *3 (-1178 *4)) (-4 *4 (-299)) (-5 *2 (-1084 *4)) (-5 *1 (-466 *4))))) +(((*1 *1) (-12 (-4 *1 (-280 *2)) (-4 *2 (-319)) (-4 *2 (-312)))) ((*1 *2 *3) - (-12 (-5 *3 (-829)) (-5 *2 (-1177 *4)) (-5 *1 (-465 *4)) (-4 *4 (-299))))) + (-12 (-5 *3 (-830)) (-5 *2 (-1178 *4)) (-5 *1 (-466 *4)) (-4 *4 (-299))))) (((*1 *2 *2) - (-12 (-5 *2 (-1177 *4)) (-4 *4 (-359 *3)) (-4 *3 (-258)) (-4 *3 (-494)) + (-12 (-5 *2 (-1178 *4)) (-4 *4 (-360 *3)) (-4 *3 (-258)) (-4 *3 (-495)) (-5 *1 (-43 *3 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-829)) (-4 *4 (-312)) (-5 *2 (-1177 *1)) (-4 *1 (-280 *4)))) - ((*1 *2) (-12 (-4 *3 (-312)) (-5 *2 (-1177 *1)) (-4 *1 (-280 *3)))) + (-12 (-5 *3 (-830)) (-4 *4 (-312)) (-5 *2 (-1178 *1)) (-4 *1 (-280 *4)))) + ((*1 *2) (-12 (-4 *3 (-312)) (-5 *2 (-1178 *1)) (-4 *1 (-280 *3)))) ((*1 *2) - (-12 (-4 *3 (-146)) (-4 *4 (-1153 *3)) (-5 *2 (-1177 *1)) - (-4 *1 (-351 *3 *4)))) + (-12 (-4 *3 (-146)) (-4 *4 (-1154 *3)) (-5 *2 (-1178 *1)) + (-4 *1 (-352 *3 *4)))) ((*1 *2 *1) - (-12 (-4 *3 (-258)) (-4 *4 (-903 *3)) (-4 *5 (-1153 *4)) (-5 *2 (-1177 *6)) - (-5 *1 (-354 *3 *4 *5 *6)) (-4 *6 (-13 (-351 *4 *5) (-949 *4))))) + (-12 (-4 *3 (-258)) (-4 *4 (-904 *3)) (-4 *5 (-1154 *4)) (-5 *2 (-1178 *6)) + (-5 *1 (-355 *3 *4 *5 *6)) (-4 *6 (-13 (-352 *4 *5) (-950 *4))))) ((*1 *2 *1) - (-12 (-4 *3 (-258)) (-4 *4 (-903 *3)) (-4 *5 (-1153 *4)) (-5 *2 (-1177 *6)) - (-5 *1 (-356 *3 *4 *5 *6 *7)) (-4 *6 (-351 *4 *5)) (-14 *7 *2))) - ((*1 *2) (-12 (-4 *3 (-146)) (-5 *2 (-1177 *1)) (-4 *1 (-359 *3)))) + (-12 (-4 *3 (-258)) (-4 *4 (-904 *3)) (-4 *5 (-1154 *4)) (-5 *2 (-1178 *6)) + (-5 *1 (-357 *3 *4 *5 *6 *7)) (-4 *6 (-352 *4 *5)) (-14 *7 *2))) + ((*1 *2) (-12 (-4 *3 (-146)) (-5 *2 (-1178 *1)) (-4 *1 (-360 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-829)) (-5 *2 (-1177 (-1177 *4))) (-5 *1 (-465 *4)) + (-12 (-5 *3 (-830)) (-5 *2 (-1178 (-1178 *4))) (-5 *1 (-466 *4)) (-4 *4 (-299))))) (((*1 *2 *1) - (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-318)) (-5 *2 (-85)))) + (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-319)) (-5 *2 (-85)))) ((*1 *2 *3) - (-12 (-5 *3 (-1083 *4)) (-4 *4 (-299)) (-5 *2 (-85)) (-5 *1 (-305 *4)))) + (-12 (-5 *3 (-1084 *4)) (-4 *4 (-299)) (-5 *2 (-85)) (-5 *1 (-305 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-1177 *4)) (-4 *4 (-299)) (-5 *2 (-85)) (-5 *1 (-465 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-318)) (-5 *2 (-829)))) + (-12 (-5 *3 (-1178 *4)) (-4 *4 (-299)) (-5 *2 (-85)) (-5 *1 (-466 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-319)) (-5 *2 (-830)))) ((*1 *2 *3) - (-12 (-5 *3 (-1177 *4)) (-4 *4 (-299)) (-5 *2 (-829)) (-5 *1 (-465 *4))))) + (-12 (-5 *3 (-1178 *4)) (-4 *4 (-299)) (-5 *2 (-830)) (-5 *1 (-466 *4))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-1177 *4)) (-5 *3 (-483)) (-4 *4 (-299)) (-5 *1 (-465 *4))))) + (-12 (-5 *2 (-1178 *4)) (-5 *3 (-484)) (-4 *4 (-299)) (-5 *1 (-466 *4))))) (((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1177 *4)) (-5 *3 (-1032)) (-4 *4 (-299)) (-5 *1 (-465 *4))))) + (-12 (-5 *2 (-1178 *4)) (-5 *3 (-1033)) (-4 *4 (-299)) (-5 *1 (-466 *4))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-1177 *4)) (-5 *3 (-693)) (-4 *4 (-299)) (-5 *1 (-465 *4))))) + (-12 (-5 *2 (-1178 *4)) (-5 *3 (-694)) (-4 *4 (-299)) (-5 *1 (-466 *4))))) (((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-1177 *5)) (-5 *3 (-693)) (-5 *4 (-1032)) (-4 *5 (-299)) - (-5 *1 (-465 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-693)) (-5 *2 (-1083 *4)) (-5 *1 (-465 *4)) (-4 *4 (-299))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1177 *4)) (-4 *4 (-299)) (-5 *2 (-1083 *4)) (-5 *1 (-465 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1177 (-582 (-2 (|:| -3400 *4) (|:| -2399 (-1032)))))) - (-4 *4 (-299)) (-5 *2 (-1183)) (-5 *1 (-465 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-464)) (-5 *2 (-631 (-101)))))) -(((*1 *2 *1) (-12 (-4 *1 (-464)) (-5 *2 (-631 (-487)))))) -(((*1 *2 *1) (-12 (-4 *1 (-464)) (-5 *2 (-631 (-1136)))))) -(((*1 *2 *1) (-12 (-4 *1 (-464)) (-5 *2 (-631 (-484)))))) -(((*1 *2 *1) (-12 (-4 *1 (-464)) (-5 *2 (-631 (-1133)))))) -(((*1 *2 *1) (-12 (-4 *1 (-464)) (-5 *2 (-631 (-485)))))) -(((*1 *2 *1) (-12 (-4 *1 (-464)) (-5 *2 (-631 (-1134)))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-464)) (-5 *3 (-102)) (-5 *2 (-693))))) -(((*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-462))))) -(((*1 *2 *1) (-12 (-5 *2 (-582 (-1128))) (-5 *1 (-461))))) -(((*1 *2 *2) - (-12 (-4 *3 (-312)) (-4 *4 (-322 *3)) (-4 *5 (-322 *3)) - (-5 *1 (-459 *3 *4 *5 *2)) (-4 *2 (-626 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-457))))) -(((*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-457))))) -(((*1 *1 *2) (-12 (-5 *2 (-582 *3)) (-4 *3 (-1127)) (-5 *1 (-278 *3)))) + (-12 (-5 *2 (-1178 *5)) (-5 *3 (-694)) (-5 *4 (-1033)) (-4 *5 (-299)) + (-5 *1 (-466 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-694)) (-5 *2 (-1084 *4)) (-5 *1 (-466 *4)) (-4 *4 (-299))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1178 *4)) (-4 *4 (-299)) (-5 *2 (-1084 *4)) (-5 *1 (-466 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1178 (-583 (-2 (|:| -3401 *4) (|:| -2400 (-1033)))))) + (-4 *4 (-299)) (-5 *2 (-1184)) (-5 *1 (-466 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-465)) (-5 *2 (-632 (-101)))))) +(((*1 *2 *1) (-12 (-4 *1 (-465)) (-5 *2 (-632 (-488)))))) +(((*1 *2 *1) (-12 (-4 *1 (-465)) (-5 *2 (-632 (-1137)))))) +(((*1 *2 *1) (-12 (-4 *1 (-465)) (-5 *2 (-632 (-485)))))) +(((*1 *2 *1) (-12 (-4 *1 (-465)) (-5 *2 (-632 (-1134)))))) +(((*1 *2 *1) (-12 (-4 *1 (-465)) (-5 *2 (-632 (-486)))))) +(((*1 *2 *1) (-12 (-4 *1 (-465)) (-5 *2 (-632 (-1135)))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-465)) (-5 *3 (-102)) (-5 *2 (-694))))) +(((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-463))))) +(((*1 *2 *1) (-12 (-5 *2 (-583 (-1129))) (-5 *1 (-462))))) +(((*1 *2 *2) + (-12 (-4 *3 (-312)) (-4 *4 (-323 *3)) (-4 *5 (-323 *3)) + (-5 *1 (-460 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-458))))) +(((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-458))))) +(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1128)) (-5 *1 (-278 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-582 *3)) (-4 *3 (-1127)) (-5 *1 (-456 *3 *4)) (-14 *4 (-483))))) -(((*1 *2 *1) (-12 (-5 *2 (-693)) (-5 *1 (-278 *3)) (-4 *3 (-1127)))) + (-12 (-5 *2 (-583 *3)) (-4 *3 (-1128)) (-5 *1 (-457 *3 *4)) (-14 *4 (-484))))) +(((*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-278 *3)) (-4 *3 (-1128)))) ((*1 *2 *1) - (-12 (-5 *2 (-693)) (-5 *1 (-456 *3 *4)) (-4 *3 (-1127)) (-14 *4 (-483))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-278 *3)) (-4 *3 (-1127)))) + (-12 (-5 *2 (-694)) (-5 *1 (-457 *3 *4)) (-4 *3 (-1128)) (-14 *4 (-484))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-278 *3)) (-4 *3 (-1128)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-483)) (-5 *1 (-456 *3 *4)) (-4 *3 (-1127)) (-14 *4 *2)))) -(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-278 *3)) (-4 *3 (-1127)))) + (-12 (-5 *2 (-484)) (-5 *1 (-457 *3 *4)) (-4 *3 (-1128)) (-14 *4 *2)))) +(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-278 *3)) (-4 *3 (-1128)))) ((*1 *2 *2) - (-12 (-5 *2 (-85)) (-5 *1 (-456 *3 *4)) (-4 *3 (-1127)) (-14 *4 (-483))))) -(((*1 *1 *2 *3) (-12 (-5 *1 (-452 *3 *2)) (-4 *3 (-72)) (-4 *2 (-758))))) + (-12 (-5 *2 (-85)) (-5 *1 (-457 *3 *4)) (-4 *3 (-1128)) (-14 *4 (-484))))) +(((*1 *1 *2 *3) (-12 (-5 *1 (-453 *3 *2)) (-4 *3 (-72)) (-4 *2 (-759))))) (((*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4 *4)) (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-72)) - (-5 *1 (-449 *4 *5)) (-4 *5 (-758))))) -(((*1 *2 *1) (-12 (-4 *1 (-448 *3 *2)) (-4 *3 (-72)) (-4 *2 (-758))))) -(((*1 *1) (-5 *1 (-445)))) + (-5 *1 (-450 *4 *5)) (-4 *5 (-759))))) +(((*1 *2 *1) (-12 (-4 *1 (-449 *3 *2)) (-4 *3 (-72)) (-4 *2 (-759))))) +(((*1 *1) (-5 *1 (-446)))) (((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-483)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-693)) + (-12 (-5 *2 (-484)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-694)) (-4 *5 (-146)))) ((*1 *1 *1 *2 *1 *2) - (-12 (-5 *2 (-483)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-693)) + (-12 (-5 *2 (-484)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-694)) (-4 *5 (-146)))) ((*1 *2 *2 *3) (-12 (-5 *2 - (-442 (-348 (-483)) (-197 *5 (-693)) (-772 *4) (-206 *4 (-348 (-483))))) - (-5 *3 (-582 (-772 *4))) (-14 *4 (-582 (-1088))) (-14 *5 (-693)) - (-5 *1 (-443 *4 *5))))) + (-443 (-349 (-484)) (-197 *5 (-694)) (-773 *4) (-206 *4 (-349 (-484))))) + (-5 *3 (-583 (-773 *4))) (-14 *4 (-583 (-1089))) (-14 *5 (-694)) + (-5 *1 (-444 *4 *5))))) (((*1 *2 *3) - (-12 (-14 *4 (-582 (-1088))) (-14 *5 (-693)) + (-12 (-14 *4 (-583 (-1089))) (-14 *5 (-694)) (-5 *2 - (-582 - (-442 (-348 (-483)) (-197 *5 (-693)) (-772 *4) (-206 *4 (-348 (-483)))))) - (-5 *1 (-443 *4 *5)) + (-583 + (-443 (-349 (-484)) (-197 *5 (-694)) (-773 *4) (-206 *4 (-349 (-484)))))) + (-5 *1 (-444 *4 *5)) (-5 *3 - (-442 (-348 (-483)) (-197 *5 (-693)) (-772 *4) (-206 *4 (-348 (-483)))))))) + (-443 (-349 (-484)) (-197 *5 (-694)) (-773 *4) (-206 *4 (-349 (-484)))))))) (((*1 *2 *2) (-12 (-5 *2 - (-442 (-348 (-483)) (-197 *4 (-693)) (-772 *3) (-206 *3 (-348 (-483))))) - (-14 *3 (-582 (-1088))) (-14 *4 (-693)) (-5 *1 (-443 *3 *4))))) + (-443 (-349 (-484)) (-197 *4 (-694)) (-773 *3) (-206 *3 (-349 (-484))))) + (-14 *3 (-583 (-1089))) (-14 *4 (-694)) (-5 *1 (-444 *3 *4))))) (((*1 *2 *3) (-12 (-5 *3 - (-442 (-348 (-483)) (-197 *5 (-693)) (-772 *4) (-206 *4 (-348 (-483))))) - (-14 *4 (-582 (-1088))) (-14 *5 (-693)) (-5 *2 (-85)) (-5 *1 (-443 *4 *5))))) + (-443 (-349 (-484)) (-197 *5 (-694)) (-773 *4) (-206 *4 (-349 (-484))))) + (-14 *4 (-583 (-1089))) (-14 *5 (-694)) (-5 *2 (-85)) (-5 *1 (-444 *4 *5))))) (((*1 *2 *3) (-12 (-5 *3 - (-442 (-348 (-483)) (-197 *5 (-693)) (-772 *4) (-206 *4 (-348 (-483))))) - (-14 *4 (-582 (-1088))) (-14 *5 (-693)) (-5 *2 (-85)) (-5 *1 (-443 *4 *5))))) + (-443 (-349 (-484)) (-197 *5 (-694)) (-773 *4) (-206 *4 (-349 (-484))))) + (-14 *4 (-583 (-1089))) (-14 *5 (-694)) (-5 *2 (-85)) (-5 *1 (-444 *4 *5))))) (((*1 *2 *3 *1) - (-12 (-4 *4 (-312)) (-4 *5 (-716)) (-4 *6 (-755)) (-5 *2 (-85)) - (-5 *1 (-442 *4 *5 *6 *3)) (-4 *3 (-860 *4 *5 *6))))) + (-12 (-4 *4 (-312)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)) + (-5 *1 (-443 *4 *5 *6 *3)) (-4 *3 (-861 *4 *5 *6))))) (((*1 *2 *1 *1) - (-12 (-4 *3 (-312)) (-4 *4 (-716)) (-4 *5 (-755)) (-5 *2 (-85)) - (-5 *1 (-442 *3 *4 *5 *6)) (-4 *6 (-860 *3 *4 *5))))) + (-12 (-4 *3 (-312)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85)) + (-5 *1 (-443 *3 *4 *5 *6)) (-4 *6 (-861 *3 *4 *5))))) (((*1 *2 *3 *1) - (-12 (-4 *4 (-312)) (-4 *5 (-716)) (-4 *6 (-755)) (-5 *2 (-85)) - (-5 *1 (-442 *4 *5 *6 *3)) (-4 *3 (-860 *4 *5 *6))))) + (-12 (-4 *4 (-312)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)) + (-5 *1 (-443 *4 *5 *6 *3)) (-4 *3 (-861 *4 *5 *6))))) (((*1 *2 *1) - (-12 (-4 *3 (-312)) (-4 *4 (-716)) (-4 *5 (-755)) (-5 *2 (-85)) - (-5 *1 (-442 *3 *4 *5 *6)) (-4 *6 (-860 *3 *4 *5)))) + (-12 (-4 *3 (-312)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85)) + (-5 *1 (-443 *3 *4 *5 *6)) (-4 *6 (-861 *3 *4 *5)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-582 *6)) (-4 *6 (-755)) (-4 *4 (-312)) (-4 *5 (-716)) - (-5 *2 (-85)) (-5 *1 (-442 *4 *5 *6 *7)) (-4 *7 (-860 *4 *5 *6))))) + (-12 (-5 *3 (-583 *6)) (-4 *6 (-756)) (-4 *4 (-312)) (-4 *5 (-717)) + (-5 *2 (-85)) (-5 *1 (-443 *4 *5 *6 *7)) (-4 *7 (-861 *4 *5 *6))))) (((*1 *1 *1 *2) - (-12 (-4 *3 (-312)) (-4 *4 (-716)) (-4 *5 (-755)) (-5 *1 (-442 *3 *4 *5 *2)) - (-4 *2 (-860 *3 *4 *5)))) + (-12 (-4 *3 (-312)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-443 *3 *4 *5 *2)) + (-4 *2 (-861 *3 *4 *5)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-312)) (-4 *3 (-716)) (-4 *4 (-755)) (-5 *1 (-442 *2 *3 *4 *5)) - (-4 *5 (-860 *2 *3 *4))))) + (-12 (-4 *2 (-312)) (-4 *3 (-717)) (-4 *4 (-756)) (-5 *1 (-443 *2 *3 *4 *5)) + (-4 *5 (-861 *2 *3 *4))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-582 *6)) (-4 *6 (-755)) (-4 *4 (-312)) (-4 *5 (-716)) + (-12 (-5 *3 (-583 *6)) (-4 *6 (-756)) (-4 *4 (-312)) (-4 *5 (-717)) (-5 *2 - (-2 (|:| |mval| (-629 *4)) (|:| |invmval| (-629 *4)) - (|:| |genIdeal| (-442 *4 *5 *6 *7)))) - (-5 *1 (-442 *4 *5 *6 *7)) (-4 *7 (-860 *4 *5 *6))))) + (-2 (|:| |mval| (-630 *4)) (|:| |invmval| (-630 *4)) + (|:| |genIdeal| (-443 *4 *5 *6 *7)))) + (-5 *1 (-443 *4 *5 *6 *7)) (-4 *7 (-861 *4 *5 *6))))) (((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |mval| (-629 *3)) (|:| |invmval| (-629 *3)) - (|:| |genIdeal| (-442 *3 *4 *5 *6)))) - (-4 *3 (-312)) (-4 *4 (-716)) (-4 *5 (-755)) (-5 *1 (-442 *3 *4 *5 *6)) - (-4 *6 (-860 *3 *4 *5))))) + (-2 (|:| |mval| (-630 *3)) (|:| |invmval| (-630 *3)) + (|:| |genIdeal| (-443 *3 *4 *5 *6)))) + (-4 *3 (-312)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-443 *3 *4 *5 *6)) + (-4 *6 (-861 *3 *4 *5))))) (((*1 *1 *1) - (-12 (-4 *2 (-312)) (-4 *3 (-716)) (-4 *4 (-755)) (-5 *1 (-442 *2 *3 *4 *5)) - (-4 *5 (-860 *2 *3 *4))))) + (-12 (-4 *2 (-312)) (-4 *3 (-717)) (-4 *4 (-756)) (-5 *1 (-443 *2 *3 *4 *5)) + (-4 *5 (-861 *2 *3 *4))))) (((*1 *2 *1) - (-12 (-4 *1 (-286 *3 *4 *5 *6)) (-4 *3 (-312)) (-4 *4 (-1153 *3)) - (-4 *5 (-1153 (-348 *4))) (-4 *6 (-291 *3 *4 *5)) - (-5 *2 (-354 *4 (-348 *4) *5 *6)))) + (-12 (-4 *1 (-286 *3 *4 *5 *6)) (-4 *3 (-312)) (-4 *4 (-1154 *3)) + (-4 *5 (-1154 (-349 *4))) (-4 *6 (-291 *3 *4 *5)) + (-5 *2 (-355 *4 (-349 *4) *5 *6)))) ((*1 *1 *2) - (-12 (-5 *2 (-1177 *6)) (-4 *6 (-13 (-351 *4 *5) (-949 *4))) - (-4 *4 (-903 *3)) (-4 *5 (-1153 *4)) (-4 *3 (-258)) - (-5 *1 (-354 *3 *4 *5 *6)))) + (-12 (-5 *2 (-1178 *6)) (-4 *6 (-13 (-352 *4 *5) (-950 *4))) + (-4 *4 (-904 *3)) (-4 *5 (-1154 *4)) (-4 *3 (-258)) + (-5 *1 (-355 *3 *4 *5 *6)))) ((*1 *1 *2) - (-12 (-5 *2 (-582 *6)) (-4 *6 (-860 *3 *4 *5)) (-4 *3 (-312)) (-4 *4 (-716)) - (-4 *5 (-755)) (-5 *1 (-442 *3 *4 *5 *6))))) + (-12 (-5 *2 (-583 *6)) (-4 *6 (-861 *3 *4 *5)) (-4 *3 (-312)) (-4 *4 (-717)) + (-4 *5 (-756)) (-5 *1 (-443 *3 *4 *5 *6))))) (((*1 *1 *2) - (-12 (-5 *2 (-582 *6)) (-4 *6 (-860 *3 *4 *5)) (-4 *3 (-312)) (-4 *4 (-716)) - (-4 *5 (-755)) (-5 *1 (-442 *3 *4 *5 *6))))) + (-12 (-5 *2 (-583 *6)) (-4 *6 (-861 *3 *4 *5)) (-4 *3 (-312)) (-4 *4 (-717)) + (-4 *5 (-756)) (-5 *1 (-443 *3 *4 *5 *6))))) (((*1 *2 *1) - (-12 (-4 *3 (-312)) (-4 *4 (-716)) (-4 *5 (-755)) (-5 *2 (-85)) - (-5 *1 (-442 *3 *4 *5 *6)) (-4 *6 (-860 *3 *4 *5))))) + (-12 (-4 *3 (-312)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85)) + (-5 *1 (-443 *3 *4 *5 *6)) (-4 *6 (-861 *3 *4 *5))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-582 *6)) (-4 *6 (-755)) (-4 *4 (-312)) (-4 *5 (-716)) - (-5 *1 (-442 *4 *5 *6 *2)) (-4 *2 (-860 *4 *5 *6)))) + (-12 (-5 *3 (-583 *6)) (-4 *6 (-756)) (-4 *4 (-312)) (-4 *5 (-717)) + (-5 *1 (-443 *4 *5 *6 *2)) (-4 *2 (-861 *4 *5 *6)))) ((*1 *1 *1 *2) - (-12 (-4 *3 (-312)) (-4 *4 (-716)) (-4 *5 (-755)) (-5 *1 (-442 *3 *4 *5 *2)) - (-4 *2 (-860 *3 *4 *5))))) + (-12 (-4 *3 (-312)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-443 *3 *4 *5 *2)) + (-4 *2 (-861 *3 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-582 *7)) (-4 *7 (-860 *4 *5 *6)) (-4 *6 (-552 (-1088))) - (-4 *4 (-312)) (-4 *5 (-716)) (-4 *6 (-755)) - (-5 *2 (-1078 (-582 (-856 *4)) (-582 (-249 (-856 *4))))) - (-5 *1 (-442 *4 *5 *6 *7))))) + (-12 (-5 *3 (-583 *7)) (-4 *7 (-861 *4 *5 *6)) (-4 *6 (-553 (-1089))) + (-4 *4 (-312)) (-4 *5 (-717)) (-4 *6 (-756)) + (-5 *2 (-1079 (-583 (-857 *4)) (-583 (-249 (-857 *4))))) + (-5 *1 (-443 *4 *5 *6 *7))))) (((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-829)) (-5 *2 (-1183)) (-5 *1 (-167 *4)) + (-12 (-5 *3 (-830)) (-5 *2 (-1184)) (-5 *1 (-167 *4)) (-4 *4 - (-13 (-755) - (-10 -8 (-15 -3798 ((-1071) $ (-1088))) (-15 -3615 (*2 $)) - (-15 -1962 (*2 $))))))) + (-13 (-756) + (-10 -8 (-15 -3799 ((-1072) $ (-1089))) (-15 -3616 (*2 $)) + (-15 -1963 (*2 $))))))) ((*1 *2 *1) - (-12 (-5 *2 (-1183)) (-5 *1 (-167 *3)) + (-12 (-5 *2 (-1184)) (-5 *1 (-167 *3)) (-4 *3 - (-13 (-755) - (-10 -8 (-15 -3798 ((-1071) $ (-1088))) (-15 -3615 (*2 $)) - (-15 -1962 (*2 $))))))) - ((*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-440))))) + (-13 (-756) + (-10 -8 (-15 -3799 ((-1072) $ (-1089))) (-15 -3616 (*2 $)) + (-15 -1963 (*2 $))))))) + ((*1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-441))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-960)) (-4 *7 (-960)) (-4 *6 (-1153 *5)) - (-5 *2 (-1083 (-1083 *7))) (-5 *1 (-439 *5 *6 *4 *7)) (-4 *4 (-1153 *6))))) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-961)) (-4 *7 (-961)) (-4 *6 (-1154 *5)) + (-5 *2 (-1084 (-1084 *7))) (-5 *1 (-440 *5 *6 *4 *7)) (-4 *4 (-1154 *6))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-629 (-1083 *8))) - (-4 *5 (-960)) (-4 *8 (-960)) (-4 *6 (-1153 *5)) (-5 *2 (-629 *6)) - (-5 *1 (-439 *5 *6 *7 *8)) (-4 *7 (-1153 *6))))) + (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-630 (-1084 *8))) + (-4 *5 (-961)) (-4 *8 (-961)) (-4 *6 (-1154 *5)) (-5 *2 (-630 *6)) + (-5 *1 (-440 *5 *6 *7 *8)) (-4 *7 (-1154 *6))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1083 *7)) - (-4 *5 (-960)) (-4 *7 (-960)) (-4 *2 (-1153 *5)) (-5 *1 (-439 *5 *2 *6 *7)) - (-4 *6 (-1153 *2))))) + (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1084 *7)) + (-4 *5 (-961)) (-4 *7 (-961)) (-4 *2 (-1154 *5)) (-5 *1 (-440 *5 *2 *6 *7)) + (-4 *6 (-1154 *2))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1083 *7)) (-4 *5 (-960)) (-4 *7 (-960)) - (-4 *2 (-1153 *5)) (-5 *1 (-439 *5 *2 *6 *7)) (-4 *6 (-1153 *2)))) + (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1084 *7)) (-4 *5 (-961)) (-4 *7 (-961)) + (-4 *2 (-1154 *5)) (-5 *1 (-440 *5 *2 *6 *7)) (-4 *6 (-1154 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-960)) (-4 *7 (-960)) (-4 *4 (-1153 *5)) - (-5 *2 (-1083 *7)) (-5 *1 (-439 *5 *4 *6 *7)) (-4 *6 (-1153 *4))))) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-961)) (-4 *7 (-961)) (-4 *4 (-1154 *5)) + (-5 *2 (-1084 *7)) (-5 *1 (-440 *5 *4 *6 *7)) (-4 *6 (-1154 *4))))) (((*1 *2 *2 *2) (-12 (-5 *2 - (-2 (|:| -2011 (-629 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-629 *3)))) - (-4 *3 (-13 (-258) (-10 -8 (-15 -3969 ((-346 $) $))))) (-4 *4 (-1153 *3)) - (-5 *1 (-437 *3 *4 *5)) (-4 *5 (-351 *3 *4))))) + (-2 (|:| -2012 (-630 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-630 *3)))) + (-4 *3 (-13 (-258) (-10 -8 (-15 -3970 ((-347 $) $))))) (-4 *4 (-1154 *3)) + (-5 *1 (-438 *3 *4 *5)) (-4 *5 (-352 *3 *4))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-629 *3)) (-4 *3 (-13 (-258) (-10 -8 (-15 -3969 ((-346 $) $))))) - (-4 *4 (-1153 *3)) (-5 *1 (-437 *3 *4 *5)) (-4 *5 (-351 *3 *4))))) + (-12 (-5 *2 (-630 *3)) (-4 *3 (-13 (-258) (-10 -8 (-15 -3970 ((-347 $) $))))) + (-4 *4 (-1154 *3)) (-5 *1 (-438 *3 *4 *5)) (-4 *5 (-352 *3 *4))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-629 *3)) (-4 *3 (-13 (-258) (-10 -8 (-15 -3969 ((-346 $) $))))) - (-4 *4 (-1153 *3)) (-5 *1 (-437 *3 *4 *5)) (-4 *5 (-351 *3 *4)))) + (-12 (-5 *2 (-630 *3)) (-4 *3 (-13 (-258) (-10 -8 (-15 -3970 ((-347 $) $))))) + (-4 *4 (-1154 *3)) (-5 *1 (-438 *3 *4 *5)) (-4 *5 (-352 *3 *4)))) ((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-629 *3)) (-4 *3 (-13 (-258) (-10 -8 (-15 -3969 ((-346 $) $))))) - (-4 *4 (-1153 *3)) (-5 *1 (-437 *3 *4 *5)) (-4 *5 (-351 *3 *4))))) + (-12 (-5 *2 (-630 *3)) (-4 *3 (-13 (-258) (-10 -8 (-15 -3970 ((-347 $) $))))) + (-4 *4 (-1154 *3)) (-5 *1 (-438 *3 *4 *5)) (-4 *5 (-352 *3 *4))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-693)) (-4 *3 (-13 (-258) (-10 -8 (-15 -3969 ((-346 $) $))))) - (-4 *4 (-1153 *3)) (-5 *1 (-437 *3 *4 *5)) (-4 *5 (-351 *3 *4))))) + (-12 (-5 *2 (-694)) (-4 *3 (-13 (-258) (-10 -8 (-15 -3970 ((-347 $) $))))) + (-4 *4 (-1154 *3)) (-5 *1 (-438 *3 *4 *5)) (-4 *5 (-352 *3 *4))))) (((*1 *2 *3 *3 *2 *4) - (-12 (-5 *3 (-629 *2)) (-5 *4 (-483)) - (-4 *2 (-13 (-258) (-10 -8 (-15 -3969 ((-346 $) $))))) (-4 *5 (-1153 *2)) - (-5 *1 (-437 *2 *5 *6)) (-4 *6 (-351 *2 *5))))) + (-12 (-5 *3 (-630 *2)) (-5 *4 (-484)) + (-4 *2 (-13 (-258) (-10 -8 (-15 -3970 ((-347 $) $))))) (-4 *5 (-1154 *2)) + (-5 *1 (-438 *2 *5 *6)) (-4 *6 (-352 *2 *5))))) (((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-629 *2)) (-5 *4 (-693)) - (-4 *2 (-13 (-258) (-10 -8 (-15 -3969 ((-346 $) $))))) (-4 *5 (-1153 *2)) - (-5 *1 (-437 *2 *5 *6)) (-4 *6 (-351 *2 *5))))) + (-12 (-5 *3 (-630 *2)) (-5 *4 (-694)) + (-4 *2 (-13 (-258) (-10 -8 (-15 -3970 ((-347 $) $))))) (-4 *5 (-1154 *2)) + (-5 *1 (-438 *2 *5 *6)) (-4 *6 (-352 *2 *5))))) (((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-693)) (-4 *5 (-299)) (-4 *6 (-1153 *5)) + (-12 (-5 *4 (-694)) (-4 *5 (-299)) (-4 *6 (-1154 *5)) (-5 *2 - (-582 - (-2 (|:| -2011 (-629 *6)) (|:| |basisDen| *6) - (|:| |basisInv| (-629 *6))))) - (-5 *1 (-436 *5 *6 *7)) + (-583 + (-2 (|:| -2012 (-630 *6)) (|:| |basisDen| *6) + (|:| |basisInv| (-630 *6))))) + (-5 *1 (-437 *5 *6 *7)) (-5 *3 - (-2 (|:| -2011 (-629 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-629 *6)))) - (-4 *7 (-1153 *6))))) + (-2 (|:| -2012 (-630 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-630 *6)))) + (-4 *7 (-1154 *6))))) (((*1 *2 *1) (-12 (-5 *2 - (-582 + (-583 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) - (|:| |xpnt| (-483))))) - (-5 *1 (-346 *3)) (-4 *3 (-494)))) + (|:| |xpnt| (-484))))) + (-5 *1 (-347 *3)) (-4 *3 (-495)))) ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *4 (-693)) (-4 *3 (-299)) (-4 *5 (-1153 *3)) - (-5 *2 (-582 (-1083 *3))) (-5 *1 (-436 *3 *5 *6)) (-4 *6 (-1153 *5))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-433))))) -(((*1 *1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-429))))) + (-12 (-5 *4 (-694)) (-4 *3 (-299)) (-4 *5 (-1154 *3)) + (-5 *2 (-583 (-1084 *3))) (-5 *1 (-437 *3 *5 *6)) (-4 *6 (-1154 *5))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-434))))) +(((*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-430))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1127)) - (-4 *4 (-322 *3)) (-4 *5 (-322 *3)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1128)) + (-4 *4 (-323 *3)) (-4 *5 (-323 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -3994)) (-4 *1 (-427 *3)) - (-4 *3 (-1127))))) + (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -3995)) (-4 *1 (-428 *3)) + (-4 *3 (-1128))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-85) *4)) (|has| *1 (-6 -3993)) (-4 *1 (-427 *4)) - (-4 *4 (-1127)) (-5 *2 (-85))))) + (-12 (-5 *3 (-1 (-85) *4)) (-4 *1 (-317 *4)) (-4 *4 (-1128)) (-5 *2 (-85)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-85) *4)) (|has| *1 (-6 -3994)) (-4 *1 (-428 *4)) + (-4 *4 (-1128)) (-5 *2 (-85))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-85) *4)) (|has| *1 (-6 -3993)) (-4 *1 (-427 *4)) - (-4 *4 (-1127)) (-5 *2 (-85))))) + (-12 (-5 *3 (-1 (-85) *4)) (-4 *1 (-317 *4)) (-4 *4 (-1128)) (-5 *2 (-85)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-85) *4)) (|has| *1 (-6 -3994)) (-4 *1 (-428 *4)) + (-4 *4 (-1128)) (-5 *2 (-85))))) (((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -3993)) (-4 *1 (-427 *3)) (-4 *3 (-1127)) (-4 *3 (-1012)) - (-5 *2 (-693)))) + (-12 (-4 *1 (-317 *3)) (-4 *3 (-1128)) (-4 *3 (-1013)) (-5 *2 (-694)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-85) *4)) (-4 *1 (-317 *4)) (-4 *4 (-1128)) (-5 *2 (-694)))) + ((*1 *2 *3 *1) + (-12 (|has| *1 (-6 -3994)) (-4 *1 (-428 *3)) (-4 *3 (-1128)) (-4 *3 (-1013)) + (-5 *2 (-694)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-85) *4)) (|has| *1 (-6 -3993)) (-4 *1 (-427 *4)) - (-4 *4 (-1127)) (-5 *2 (-693))))) -(((*1 *1 *2) (-12 (-5 *2 (-348 (-483))) (-5 *1 (-425))))) -(((*1 *2 *3) - (-12 (-5 *3 (-582 (-483))) (-5 *2 (-483)) (-5 *1 (-424 *4)) - (-4 *4 (-1153 *2))))) -(((*1 *2 *2) (-12 (-5 *2 (-582 *3)) (-4 *3 (-1153 (-483))) (-5 *1 (-424 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-582 *3)) (-4 *3 (-1153 (-483))) (-5 *1 (-424 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-582 *2)) (-5 *1 (-424 *2)) (-4 *2 (-1153 (-483)))))) -(((*1 *1 *2) (-12 (-5 *2 (-582 *3)) (-4 *3 (-755)) (-5 *1 (-422 *3))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-445)) (-5 *3 (-582 (-784))) (-5 *1 (-421))))) -(((*1 *2 *1) (-12 (-5 *2 (-582 (-445))) (-5 *1 (-49)))) - ((*1 *2 *1) (-12 (-5 *2 (-582 (-784))) (-5 *1 (-421))))) + (-12 (-5 *3 (-1 (-85) *4)) (|has| *1 (-6 -3994)) (-4 *1 (-428 *4)) + (-4 *4 (-1128)) (-5 *2 (-694))))) +(((*1 *1 *2) (-12 (-5 *2 (-349 (-484))) (-5 *1 (-426))))) +(((*1 *2 *3) + (-12 (-5 *3 (-583 (-484))) (-5 *2 (-484)) (-5 *1 (-425 *4)) + (-4 *4 (-1154 *2))))) +(((*1 *2 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1154 (-484))) (-5 *1 (-425 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1154 (-484))) (-5 *1 (-425 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-5 *1 (-425 *2)) (-4 *2 (-1154 (-484)))))) +(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-756)) (-5 *1 (-423 *3))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-446)) (-5 *3 (-583 (-785))) (-5 *1 (-422))))) +(((*1 *2 *1) (-12 (-5 *2 (-583 (-446))) (-5 *1 (-49)))) + ((*1 *2 *1) (-12 (-5 *2 (-583 (-785))) (-5 *1 (-422))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-582 (-483))) (-5 *1 (-206 *3 *4)) (-14 *3 (-582 (-1088))) - (-4 *4 (-960)))) + (-12 (-5 *2 (-583 (-484))) (-5 *1 (-206 *3 *4)) (-14 *3 (-583 (-1089))) + (-4 *4 (-961)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-582 (-483))) (-14 *3 (-582 (-1088))) (-5 *1 (-392 *3 *4 *5)) - (-4 *4 (-960)) (-4 *5 (-196 (-3955 *3) (-693))))) + (-12 (-5 *2 (-583 (-484))) (-14 *3 (-583 (-1089))) (-5 *1 (-393 *3 *4 *5)) + (-4 *4 (-961)) (-4 *5 (-196 (-3956 *3) (-694))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-582 (-483))) (-5 *1 (-419 *3 *4)) (-14 *3 (-582 (-1088))) - (-4 *4 (-960))))) -(((*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-483)) (-5 *2 (-85)) (-5 *1 (-418))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-418))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-582 (-772 *5))) (-14 *5 (-582 (-1088))) (-4 *6 (-390)) - (-5 *2 (-2 (|:| |dpolys| (-582 (-206 *5 *6))) (|:| |coords| (-582 (-483))))) - (-5 *1 (-409 *5 *6 *7)) (-5 *3 (-582 (-206 *5 *6))) (-4 *7 (-390))))) + (-12 (-5 *2 (-583 (-484))) (-5 *1 (-420 *3 *4)) (-14 *3 (-583 (-1089))) + (-4 *4 (-961))))) +(((*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-484)) (-5 *2 (-85)) (-5 *1 (-419))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-419))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-583 (-773 *5))) (-14 *5 (-583 (-1089))) (-4 *6 (-391)) + (-5 *2 (-2 (|:| |dpolys| (-583 (-206 *5 *6))) (|:| |coords| (-583 (-484))))) + (-5 *1 (-410 *5 *6 *7)) (-5 *3 (-583 (-206 *5 *6))) (-4 *7 (-391))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-582 (-419 *4 *5))) (-5 *3 (-582 (-772 *4))) - (-14 *4 (-582 (-1088))) (-4 *5 (-390)) (-5 *1 (-409 *4 *5 *6)) - (-4 *6 (-390))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-582 (-772 *5))) (-14 *5 (-582 (-1088))) (-4 *6 (-390)) - (-5 *2 (-582 (-582 (-206 *5 *6)))) (-5 *1 (-409 *5 *6 *7)) - (-5 *3 (-582 (-206 *5 *6))) (-4 *7 (-390))))) -(((*1 *1) (-5 *1 (-406)))) + (|partial| -12 (-5 *2 (-583 (-420 *4 *5))) (-5 *3 (-583 (-773 *4))) + (-14 *4 (-583 (-1089))) (-4 *5 (-391)) (-5 *1 (-410 *4 *5 *6)) + (-4 *6 (-391))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-583 (-773 *5))) (-14 *5 (-583 (-1089))) (-4 *6 (-391)) + (-5 *2 (-583 (-583 (-206 *5 *6)))) (-5 *1 (-410 *5 *6 *7)) + (-5 *3 (-583 (-206 *5 *6))) (-4 *7 (-391))))) +(((*1 *1) (-5 *1 (-407)))) (((*1 *1 *2 *3 *3 *4 *5) - (-12 (-5 *2 (-582 (-582 (-853 (-179))))) (-5 *3 (-582 (-782))) - (-5 *4 (-582 (-829))) (-5 *5 (-582 (-221))) (-5 *1 (-406)))) + (-12 (-5 *2 (-583 (-583 (-854 (-179))))) (-5 *3 (-583 (-783))) + (-5 *4 (-583 (-830))) (-5 *5 (-583 (-221))) (-5 *1 (-407)))) ((*1 *1 *2 *3 *3 *4) - (-12 (-5 *2 (-582 (-582 (-853 (-179))))) (-5 *3 (-582 (-782))) - (-5 *4 (-582 (-829))) (-5 *1 (-406)))) - ((*1 *1 *2) (-12 (-5 *2 (-582 (-582 (-853 (-179))))) (-5 *1 (-406)))) - ((*1 *1 *1) (-5 *1 (-406)))) -(((*1 *2 *1) (-12 (-5 *2 (-582 (-582 (-853 (-179))))) (-5 *1 (-406))))) -(((*1 *1 *2) (-12 (-5 *2 (-582 (-1000 (-328)))) (-5 *1 (-221)))) + (-12 (-5 *2 (-583 (-583 (-854 (-179))))) (-5 *3 (-583 (-783))) + (-5 *4 (-583 (-830))) (-5 *1 (-407)))) + ((*1 *1 *2) (-12 (-5 *2 (-583 (-583 (-854 (-179))))) (-5 *1 (-407)))) + ((*1 *1 *1) (-5 *1 (-407)))) +(((*1 *2 *1) (-12 (-5 *2 (-583 (-583 (-854 (-179))))) (-5 *1 (-407))))) +(((*1 *1 *2) (-12 (-5 *2 (-583 (-1001 (-329)))) (-5 *1 (-221)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-582 (-1000 (-328)))) (-5 *3 (-582 (-221))) (-5 *1 (-222)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-582 (-1000 (-328)))) (-5 *1 (-406)))) - ((*1 *2 *1) (-12 (-5 *2 (-582 (-1000 (-328)))) (-5 *1 (-406))))) + (-12 (-5 *2 (-583 (-1001 (-329)))) (-5 *3 (-583 (-221))) (-5 *1 (-222)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1001 (-329)))) (-5 *1 (-407)))) + ((*1 *2 *1) (-12 (-5 *2 (-583 (-1001 (-329)))) (-5 *1 (-407))))) (((*1 *2 *1 *3 *4 *4 *5) - (-12 (-5 *3 (-853 (-179))) (-5 *4 (-782)) (-5 *5 (-829)) (-5 *2 (-1183)) - (-5 *1 (-406)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-853 (-179))) (-5 *2 (-1183)) (-5 *1 (-406)))) + (-12 (-5 *3 (-854 (-179))) (-5 *4 (-783)) (-5 *5 (-830)) (-5 *2 (-1184)) + (-5 *1 (-407)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-854 (-179))) (-5 *2 (-1184)) (-5 *1 (-407)))) ((*1 *2 *1 *3 *4 *4 *5) - (-12 (-5 *3 (-582 (-853 (-179)))) (-5 *4 (-782)) (-5 *5 (-829)) - (-5 *2 (-1183)) (-5 *1 (-406))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-853 (-179))) (-5 *2 (-1183)) (-5 *1 (-406))))) + (-12 (-5 *3 (-583 (-854 (-179)))) (-5 *4 (-783)) (-5 *5 (-830)) + (-5 *2 (-1184)) (-5 *1 (-407))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-854 (-179))) (-5 *2 (-1184)) (-5 *1 (-407))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-582 (-582 (-853 (-179))))) (-5 *3 (-582 (-782))) - (-5 *1 (-406))))) + (-12 (-5 *2 (-583 (-583 (-854 (-179))))) (-5 *3 (-583 (-783))) + (-5 *1 (-407))))) (((*1 *2 *3) - (-12 (-5 *3 (-582 (-582 (-853 (-179))))) (-5 *2 (-582 (-179))) - (-5 *1 (-406))))) + (-12 (-5 *3 (-583 (-583 (-854 (-179))))) (-5 *2 (-583 (-179))) + (-5 *1 (-407))))) (((*1 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-221)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *3 (-582 (-221))) (-5 *1 (-222)))) - ((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-405)))) - ((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-405))))) -(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-405)))) - ((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-405))))) -(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-405)))) - ((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-405))))) -(((*1 *2 *3) - (-12 (-5 *3 (-829)) (-5 *2 (-1177 (-1177 (-483)))) (-5 *1 (-404))))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *3 (-583 (-221))) (-5 *1 (-222)))) + ((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-406)))) + ((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-406))))) +(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-406)))) + ((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-406))))) +(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-406)))) + ((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-406))))) +(((*1 *2 *3) + (-12 (-5 *3 (-830)) (-5 *2 (-1178 (-1178 (-484)))) (-5 *1 (-405))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-1177 (-1177 (-483)))) (-5 *3 (-829)) (-5 *1 (-404))))) + (-12 (-5 *2 (-1178 (-1178 (-484)))) (-5 *3 (-830)) (-5 *1 (-405))))) (((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-755)) (-4 *5 (-716)) (-4 *6 (-494)) - (-4 *7 (-860 *6 *5 *3)) (-5 *1 (-400 *5 *3 *6 *7 *2)) + (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-756)) (-4 *5 (-717)) (-4 *6 (-495)) + (-4 *7 (-861 *6 *5 *3)) (-5 *1 (-401 *5 *3 *6 *7 *2)) (-4 *2 - (-13 (-949 (-348 (-483))) (-312) - (-10 -8 (-15 -3944 ($ *7)) (-15 -2997 (*7 $)) (-15 -2996 (*7 $)))))))) + (-13 (-950 (-349 (-484))) (-312) + (-10 -8 (-15 -3945 ($ *7)) (-15 -2998 (*7 $)) (-15 -2997 (*7 $)))))))) (((*1 *2 *1) - (-12 (-14 *3 (-582 (-1088))) (-4 *4 (-146)) + (-12 (-14 *3 (-583 (-1089))) (-4 *4 (-146)) (-14 *6 - (-1 (-85) (-2 (|:| -2399 *5) (|:| -2400 *2)) - (-2 (|:| -2399 *5) (|:| -2400 *2)))) - (-4 *2 (-196 (-3955 *3) (-693))) (-5 *1 (-399 *3 *4 *5 *2 *6 *7)) - (-4 *5 (-755)) (-4 *7 (-860 *4 *2 (-772 *3)))))) + (-1 (-85) (-2 (|:| -2400 *5) (|:| -2401 *2)) + (-2 (|:| -2400 *5) (|:| -2401 *2)))) + (-4 *2 (-196 (-3956 *3) (-694))) (-5 *1 (-400 *3 *4 *5 *2 *6 *7)) + (-4 *5 (-756)) (-4 *7 (-861 *4 *2 (-773 *3)))))) (((*1 *2 *1) - (-12 (-14 *3 (-582 (-1088))) (-4 *4 (-146)) (-4 *5 (-196 (-3955 *3) (-693))) + (-12 (-14 *3 (-583 (-1089))) (-4 *4 (-146)) (-4 *5 (-196 (-3956 *3) (-694))) (-14 *6 - (-1 (-85) (-2 (|:| -2399 *2) (|:| -2400 *5)) - (-2 (|:| -2399 *2) (|:| -2400 *5)))) - (-4 *2 (-755)) (-5 *1 (-399 *3 *4 *2 *5 *6 *7)) - (-4 *7 (-860 *4 *5 (-772 *3)))))) + (-1 (-85) (-2 (|:| -2400 *2) (|:| -2401 *5)) + (-2 (|:| -2400 *2) (|:| -2401 *5)))) + (-4 *2 (-756)) (-5 *1 (-400 *3 *4 *2 *5 *6 *7)) + (-4 *7 (-861 *4 *5 (-773 *3)))))) (((*1 *1 *2 *3 *4) - (-12 (-14 *5 (-582 (-1088))) (-4 *2 (-146)) (-4 *4 (-196 (-3955 *5) (-693))) + (-12 (-14 *5 (-583 (-1089))) (-4 *2 (-146)) (-4 *4 (-196 (-3956 *5) (-694))) (-14 *6 - (-1 (-85) (-2 (|:| -2399 *3) (|:| -2400 *4)) - (-2 (|:| -2399 *3) (|:| -2400 *4)))) - (-5 *1 (-399 *5 *2 *3 *4 *6 *7)) (-4 *3 (-755)) - (-4 *7 (-860 *2 *4 (-772 *5)))))) + (-1 (-85) (-2 (|:| -2400 *3) (|:| -2401 *4)) + (-2 (|:| -2400 *3) (|:| -2401 *4)))) + (-5 *1 (-400 *5 *2 *3 *4 *6 *7)) (-4 *3 (-756)) + (-4 *7 (-861 *2 *4 (-773 *5)))))) (((*1 *1 *2 *3 *1) - (-12 (-14 *4 (-582 (-1088))) (-4 *2 (-146)) (-4 *3 (-196 (-3955 *4) (-693))) + (-12 (-14 *4 (-583 (-1089))) (-4 *2 (-146)) (-4 *3 (-196 (-3956 *4) (-694))) (-14 *6 - (-1 (-85) (-2 (|:| -2399 *5) (|:| -2400 *3)) - (-2 (|:| -2399 *5) (|:| -2400 *3)))) - (-5 *1 (-399 *4 *2 *5 *3 *6 *7)) (-4 *5 (-755)) - (-4 *7 (-860 *2 *3 (-772 *4)))))) + (-1 (-85) (-2 (|:| -2400 *5) (|:| -2401 *3)) + (-2 (|:| -2400 *5) (|:| -2401 *3)))) + (-5 *1 (-400 *4 *2 *5 *3 *6 *7)) (-4 *5 (-756)) + (-4 *7 (-861 *2 *3 (-773 *4)))))) (((*1 *2 *3 *2 *4 *5) - (-12 (-5 *2 (-582 *3)) (-5 *5 (-829)) (-4 *3 (-1153 *4)) (-4 *4 (-258)) - (-5 *1 (-398 *4 *3))))) + (-12 (-5 *2 (-583 *3)) (-5 *5 (-830)) (-4 *3 (-1154 *4)) (-4 *4 (-258)) + (-5 *1 (-399 *4 *3))))) (((*1 *2 *3 *4 *5 *6) - (-12 (-5 *6 (-829)) (-4 *5 (-258)) (-4 *3 (-1153 *5)) - (-5 *2 (-2 (|:| |plist| (-582 *3)) (|:| |modulo| *5))) (-5 *1 (-398 *5 *3)) - (-5 *4 (-582 *3))))) + (-12 (-5 *6 (-830)) (-4 *5 (-258)) (-4 *3 (-1154 *5)) + (-5 *2 (-2 (|:| |plist| (-583 *3)) (|:| |modulo| *5))) (-5 *1 (-399 *5 *3)) + (-5 *4 (-583 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-582 *5)) (-4 *5 (-1153 *3)) (-4 *3 (-258)) (-5 *2 (-85)) - (-5 *1 (-393 *3 *5))))) + (-12 (-5 *4 (-583 *5)) (-4 *5 (-1154 *3)) (-4 *3 (-258)) (-5 *2 (-85)) + (-5 *1 (-394 *3 *5))))) (((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1177 (-582 *3))) (-4 *4 (-258)) (-5 *2 (-582 *3)) - (-5 *1 (-393 *4 *3)) (-4 *3 (-1153 *4))))) + (|partial| -12 (-5 *5 (-1178 (-583 *3))) (-4 *4 (-258)) (-5 *2 (-583 *3)) + (-5 *1 (-394 *4 *3)) (-4 *3 (-1154 *4))))) (((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-693)) (-4 *4 (-258)) (-4 *6 (-1153 *4)) - (-5 *2 (-1177 (-582 *6))) (-5 *1 (-393 *4 *6)) (-5 *5 (-582 *6))))) + (|partial| -12 (-5 *3 (-694)) (-4 *4 (-258)) (-4 *6 (-1154 *4)) + (-5 *2 (-1178 (-583 *6))) (-5 *1 (-394 *4 *6)) (-5 *5 (-583 *6))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-582 *3)) (-4 *3 (-1153 *5)) (-4 *5 (-258)) (-5 *2 (-693)) - (-5 *1 (-393 *5 *3))))) + (-12 (-5 *4 (-583 *3)) (-4 *3 (-1154 *5)) (-4 *5 (-258)) (-5 *2 (-694)) + (-5 *1 (-394 *5 *3))))) (((*1 *2) - (|partial| -12 (-4 *3 (-494)) (-4 *3 (-146)) - (-5 *2 (-2 (|:| |particular| *1) (|:| -2011 (-582 *1)))) (-4 *1 (-316 *3)))) + (|partial| -12 (-4 *3 (-495)) (-4 *3 (-146)) + (-5 *2 (-2 (|:| |particular| *1) (|:| -2012 (-583 *1)))) (-4 *1 (-316 *3)))) ((*1 *2) (|partial| -12 (-5 *2 - (-2 (|:| |particular| (-391 *3 *4 *5 *6)) - (|:| -2011 (-582 (-391 *3 *4 *5 *6))))) - (-5 *1 (-391 *3 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-829)) - (-14 *5 (-582 (-1088))) (-14 *6 (-1177 (-629 *3)))))) + (-2 (|:| |particular| (-392 *3 *4 *5 *6)) + (|:| -2012 (-583 (-392 *3 *4 *5 *6))))) + (-5 *1 (-392 *3 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-830)) + (-14 *5 (-583 (-1089))) (-14 *6 (-1178 (-630 *3)))))) (((*1 *2) - (|partial| -12 (-4 *3 (-494)) (-4 *3 (-146)) - (-5 *2 (-2 (|:| |particular| *1) (|:| -2011 (-582 *1)))) (-4 *1 (-316 *3)))) + (|partial| -12 (-4 *3 (-495)) (-4 *3 (-146)) + (-5 *2 (-2 (|:| |particular| *1) (|:| -2012 (-583 *1)))) (-4 *1 (-316 *3)))) ((*1 *2) (|partial| -12 (-5 *2 - (-2 (|:| |particular| (-391 *3 *4 *5 *6)) - (|:| -2011 (-582 (-391 *3 *4 *5 *6))))) - (-5 *1 (-391 *3 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-829)) - (-14 *5 (-582 (-1088))) (-14 *6 (-1177 (-629 *3)))))) + (-2 (|:| |particular| (-392 *3 *4 *5 *6)) + (|:| -2012 (-583 (-392 *3 *4 *5 *6))))) + (-5 *1 (-392 *3 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-830)) + (-14 *5 (-583 (-1089))) (-14 *6 (-1178 (-630 *3)))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-1177 (-1088))) (-5 *3 (-1177 (-391 *4 *5 *6 *7))) - (-5 *1 (-391 *4 *5 *6 *7)) (-4 *4 (-146)) (-14 *5 (-829)) - (-14 *6 (-582 (-1088))) (-14 *7 (-1177 (-629 *4))))) + (-12 (-5 *2 (-1178 (-1089))) (-5 *3 (-1178 (-392 *4 *5 *6 *7))) + (-5 *1 (-392 *4 *5 *6 *7)) (-4 *4 (-146)) (-14 *5 (-830)) + (-14 *6 (-583 (-1089))) (-14 *7 (-1178 (-630 *4))))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1088)) (-5 *3 (-1177 (-391 *4 *5 *6 *7))) - (-5 *1 (-391 *4 *5 *6 *7)) (-4 *4 (-146)) (-14 *5 (-829)) (-14 *6 (-582 *2)) - (-14 *7 (-1177 (-629 *4))))) + (-12 (-5 *2 (-1089)) (-5 *3 (-1178 (-392 *4 *5 *6 *7))) + (-5 *1 (-392 *4 *5 *6 *7)) (-4 *4 (-146)) (-14 *5 (-830)) (-14 *6 (-583 *2)) + (-14 *7 (-1178 (-630 *4))))) ((*1 *1 *2) - (-12 (-5 *2 (-1177 (-391 *3 *4 *5 *6))) (-5 *1 (-391 *3 *4 *5 *6)) - (-4 *3 (-146)) (-14 *4 (-829)) (-14 *5 (-582 (-1088))) - (-14 *6 (-1177 (-629 *3))))) + (-12 (-5 *2 (-1178 (-392 *3 *4 *5 *6))) (-5 *1 (-392 *3 *4 *5 *6)) + (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1089))) + (-14 *6 (-1178 (-630 *3))))) ((*1 *1 *2) - (-12 (-5 *2 (-1177 (-1088))) (-5 *1 (-391 *3 *4 *5 *6)) (-4 *3 (-146)) - (-14 *4 (-829)) (-14 *5 (-582 (-1088))) (-14 *6 (-1177 (-629 *3))))) + (-12 (-5 *2 (-1178 (-1089))) (-5 *1 (-392 *3 *4 *5 *6)) (-4 *3 (-146)) + (-14 *4 (-830)) (-14 *5 (-583 (-1089))) (-14 *6 (-1178 (-630 *3))))) ((*1 *1 *2) - (-12 (-5 *2 (-1088)) (-5 *1 (-391 *3 *4 *5 *6)) (-4 *3 (-146)) - (-14 *4 (-829)) (-14 *5 (-582 *2)) (-14 *6 (-1177 (-629 *3))))) + (-12 (-5 *2 (-1089)) (-5 *1 (-392 *3 *4 *5 *6)) (-4 *3 (-146)) + (-14 *4 (-830)) (-14 *5 (-583 *2)) (-14 *6 (-1178 (-630 *3))))) ((*1 *1) - (-12 (-5 *1 (-391 *2 *3 *4 *5)) (-4 *2 (-146)) (-14 *3 (-829)) - (-14 *4 (-582 (-1088))) (-14 *5 (-1177 (-629 *2)))))) + (-12 (-5 *1 (-392 *2 *3 *4 *5)) (-4 *2 (-146)) (-14 *3 (-830)) + (-14 *4 (-583 (-1089))) (-14 *5 (-1178 (-630 *2)))))) (((*1 *2) - (-12 (-4 *4 (-146)) (-5 *2 (-1083 (-856 *4))) (-5 *1 (-358 *3 *4)) - (-4 *3 (-359 *4)))) + (-12 (-4 *4 (-146)) (-5 *2 (-1084 (-857 *4))) (-5 *1 (-359 *3 *4)) + (-4 *3 (-360 *4)))) ((*1 *2) - (-12 (-4 *1 (-359 *3)) (-4 *3 (-146)) (-4 *3 (-312)) - (-5 *2 (-1083 (-856 *3))))) + (-12 (-4 *1 (-360 *3)) (-4 *3 (-146)) (-4 *3 (-312)) + (-5 *2 (-1084 (-857 *3))))) ((*1 *2) - (-12 (-5 *2 (-1083 (-348 (-856 *3)))) (-5 *1 (-391 *3 *4 *5 *6)) - (-4 *3 (-494)) (-4 *3 (-146)) (-14 *4 (-829)) (-14 *5 (-582 (-1088))) - (-14 *6 (-1177 (-629 *3)))))) + (-12 (-5 *2 (-1084 (-349 (-857 *3)))) (-5 *1 (-392 *3 *4 *5 *6)) + (-4 *3 (-495)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1089))) + (-14 *6 (-1178 (-630 *3)))))) (((*1 *2 *1) - (-12 (-5 *2 (-1083 (-348 (-856 *3)))) (-5 *1 (-391 *3 *4 *5 *6)) - (-4 *3 (-494)) (-4 *3 (-146)) (-14 *4 (-829)) (-14 *5 (-582 (-1088))) - (-14 *6 (-1177 (-629 *3)))))) + (-12 (-5 *2 (-1084 (-349 (-857 *3)))) (-5 *1 (-392 *3 *4 *5 *6)) + (-4 *3 (-495)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1089))) + (-14 *6 (-1178 (-630 *3)))))) (((*1 *2 *1) - (-12 (-5 *2 (-348 (-856 *3))) (-5 *1 (-391 *3 *4 *5 *6)) (-4 *3 (-494)) - (-4 *3 (-146)) (-14 *4 (-829)) (-14 *5 (-582 (-1088))) - (-14 *6 (-1177 (-629 *3)))))) + (-12 (-5 *2 (-349 (-857 *3))) (-5 *1 (-392 *3 *4 *5 *6)) (-4 *3 (-495)) + (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1089))) + (-14 *6 (-1178 (-630 *3)))))) (((*1 *2 *1) - (-12 (-5 *2 (-348 (-856 *3))) (-5 *1 (-391 *3 *4 *5 *6)) (-4 *3 (-494)) - (-4 *3 (-146)) (-14 *4 (-829)) (-14 *5 (-582 (-1088))) - (-14 *6 (-1177 (-629 *3)))))) + (-12 (-5 *2 (-349 (-857 *3))) (-5 *1 (-392 *3 *4 *5 *6)) (-4 *3 (-495)) + (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1089))) + (-14 *6 (-1178 (-630 *3)))))) (((*1 *2) - (-12 (-4 *4 (-146)) (-5 *2 (-1083 (-856 *4))) (-5 *1 (-358 *3 *4)) - (-4 *3 (-359 *4)))) + (-12 (-4 *4 (-146)) (-5 *2 (-1084 (-857 *4))) (-5 *1 (-359 *3 *4)) + (-4 *3 (-360 *4)))) ((*1 *2) - (-12 (-4 *1 (-359 *3)) (-4 *3 (-146)) (-4 *3 (-312)) - (-5 *2 (-1083 (-856 *3))))) + (-12 (-4 *1 (-360 *3)) (-4 *3 (-146)) (-4 *3 (-312)) + (-5 *2 (-1084 (-857 *3))))) ((*1 *2) - (-12 (-5 *2 (-1083 (-348 (-856 *3)))) (-5 *1 (-391 *3 *4 *5 *6)) - (-4 *3 (-494)) (-4 *3 (-146)) (-14 *4 (-829)) (-14 *5 (-582 (-1088))) - (-14 *6 (-1177 (-629 *3)))))) + (-12 (-5 *2 (-1084 (-349 (-857 *3)))) (-5 *1 (-392 *3 *4 *5 *6)) + (-4 *3 (-495)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1089))) + (-14 *6 (-1178 (-630 *3)))))) (((*1 *2 *1) - (-12 (-5 *2 (-1083 (-348 (-856 *3)))) (-5 *1 (-391 *3 *4 *5 *6)) - (-4 *3 (-494)) (-4 *3 (-146)) (-14 *4 (-829)) (-14 *5 (-582 (-1088))) - (-14 *6 (-1177 (-629 *3)))))) + (-12 (-5 *2 (-1084 (-349 (-857 *3)))) (-5 *1 (-392 *3 *4 *5 *6)) + (-4 *3 (-495)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1089))) + (-14 *6 (-1178 (-630 *3)))))) (((*1 *2 *1) - (-12 (-5 *2 (-348 (-856 *3))) (-5 *1 (-391 *3 *4 *5 *6)) (-4 *3 (-494)) - (-4 *3 (-146)) (-14 *4 (-829)) (-14 *5 (-582 (-1088))) - (-14 *6 (-1177 (-629 *3)))))) + (-12 (-5 *2 (-349 (-857 *3))) (-5 *1 (-392 *3 *4 *5 *6)) (-4 *3 (-495)) + (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1089))) + (-14 *6 (-1178 (-630 *3)))))) (((*1 *2 *1) - (-12 (-5 *2 (-348 (-856 *3))) (-5 *1 (-391 *3 *4 *5 *6)) (-4 *3 (-494)) - (-4 *3 (-146)) (-14 *4 (-829)) (-14 *5 (-582 (-1088))) - (-14 *6 (-1177 (-629 *3)))))) + (-12 (-5 *2 (-349 (-857 *3))) (-5 *1 (-392 *3 *4 *5 *6)) (-4 *3 (-495)) + (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1089))) + (-14 *6 (-1178 (-630 *3)))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-348 (-856 *3))) (-5 *1 (-391 *3 *4 *5 *6)) (-4 *3 (-494)) - (-4 *3 (-146)) (-14 *4 (-829)) (-14 *5 (-582 (-1088))) - (-14 *6 (-1177 (-629 *3)))))) + (-12 (-5 *2 (-349 (-857 *3))) (-5 *1 (-392 *3 *4 *5 *6)) (-4 *3 (-495)) + (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1089))) + (-14 *6 (-1178 (-630 *3)))))) (((*1 *2) - (-12 (-5 *2 (-348 (-856 *3))) (-5 *1 (-391 *3 *4 *5 *6)) (-4 *3 (-494)) - (-4 *3 (-146)) (-14 *4 (-829)) (-14 *5 (-582 (-1088))) - (-14 *6 (-1177 (-629 *3)))))) + (-12 (-5 *2 (-349 (-857 *3))) (-5 *1 (-392 *3 *4 *5 *6)) (-4 *3 (-495)) + (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1089))) + (-14 *6 (-1178 (-630 *3)))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-348 (-856 *3))) (-5 *1 (-391 *3 *4 *5 *6)) (-4 *3 (-494)) - (-4 *3 (-146)) (-14 *4 (-829)) (-14 *5 (-582 (-1088))) - (-14 *6 (-1177 (-629 *3)))))) + (-12 (-5 *2 (-349 (-857 *3))) (-5 *1 (-392 *3 *4 *5 *6)) (-4 *3 (-495)) + (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1089))) + (-14 *6 (-1178 (-630 *3)))))) (((*1 *2) - (-12 (-5 *2 (-348 (-856 *3))) (-5 *1 (-391 *3 *4 *5 *6)) (-4 *3 (-494)) - (-4 *3 (-146)) (-14 *4 (-829)) (-14 *5 (-582 (-1088))) - (-14 *6 (-1177 (-629 *3)))))) + (-12 (-5 *2 (-349 (-857 *3))) (-5 *1 (-392 *3 *4 *5 *6)) (-4 *3 (-495)) + (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1089))) + (-14 *6 (-1178 (-630 *3)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1177 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) - (-5 *2 (-582 (-856 *4))))) + (-12 (-5 *3 (-1178 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) + (-5 *2 (-583 (-857 *4))))) ((*1 *2) - (-12 (-4 *4 (-146)) (-5 *2 (-582 (-856 *4))) (-5 *1 (-358 *3 *4)) - (-4 *3 (-359 *4)))) - ((*1 *2) (-12 (-4 *1 (-359 *3)) (-4 *3 (-146)) (-5 *2 (-582 (-856 *3))))) + (-12 (-4 *4 (-146)) (-5 *2 (-583 (-857 *4))) (-5 *1 (-359 *3 *4)) + (-4 *3 (-360 *4)))) + ((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-146)) (-5 *2 (-583 (-857 *3))))) ((*1 *2) - (-12 (-5 *2 (-582 (-856 *3))) (-5 *1 (-391 *3 *4 *5 *6)) (-4 *3 (-494)) - (-4 *3 (-146)) (-14 *4 (-829)) (-14 *5 (-582 (-1088))) - (-14 *6 (-1177 (-629 *3))))) - ((*1 *2 *3) - (-12 (-5 *3 (-1177 (-391 *4 *5 *6 *7))) (-5 *2 (-582 (-856 *4))) - (-5 *1 (-391 *4 *5 *6 *7)) (-4 *4 (-494)) (-4 *4 (-146)) (-14 *5 (-829)) - (-14 *6 (-582 (-1088))) (-14 *7 (-1177 (-629 *4)))))) -(((*1 *1 *2) (-12 (-5 *2 (-582 *1)) (-4 *1 (-390)))) - ((*1 *1 *1 *1) (-4 *1 (-390)))) -(((*1 *2 *3) - (-12 (-4 *4 (-390)) (-4 *5 (-716)) (-4 *6 (-755)) (-5 *2 (-693)) - (-5 *1 (-388 *4 *5 *6 *3)) (-4 *3 (-860 *4 *5 *6))))) + (-12 (-5 *2 (-583 (-857 *3))) (-5 *1 (-392 *3 *4 *5 *6)) (-4 *3 (-495)) + (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1089))) + (-14 *6 (-1178 (-630 *3))))) + ((*1 *2 *3) + (-12 (-5 *3 (-1178 (-392 *4 *5 *6 *7))) (-5 *2 (-583 (-857 *4))) + (-5 *1 (-392 *4 *5 *6 *7)) (-4 *4 (-495)) (-4 *4 (-146)) (-14 *5 (-830)) + (-14 *6 (-583 (-1089))) (-14 *7 (-1178 (-630 *4)))))) +(((*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-391)))) + ((*1 *1 *1 *1) (-4 *1 (-391)))) +(((*1 *2 *3) + (-12 (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-694)) + (-5 *1 (-389 *4 *5 *6 *3)) (-4 *3 (-861 *4 *5 *6))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-2 (|:| |totdeg| (-693)) (|:| -2003 *4))) (-5 *5 (-693)) - (-4 *4 (-860 *6 *7 *8)) (-4 *6 (-390)) (-4 *7 (-716)) (-4 *8 (-755)) + (-12 (-5 *3 (-2 (|:| |totdeg| (-694)) (|:| -2004 *4))) (-5 *5 (-694)) + (-4 *4 (-861 *6 *7 *8)) (-4 *6 (-391)) (-4 *7 (-717)) (-4 *8 (-756)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) - (-5 *1 (-388 *6 *7 *8 *4))))) + (-5 *1 (-389 *6 *7 *8 *4))))) (((*1 *2 *3 *3) (-12 (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-693)) (|:| |poli| *7) + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-694)) (|:| |poli| *7) (|:| |polj| *7))) - (-4 *5 (-716)) (-4 *7 (-860 *4 *5 *6)) (-4 *4 (-390)) (-4 *6 (-755)) - (-5 *2 (-85)) (-5 *1 (-388 *4 *5 *6 *7))))) + (-4 *5 (-717)) (-4 *7 (-861 *4 *5 *6)) (-4 *4 (-391)) (-4 *6 (-756)) + (-5 *2 (-85)) (-5 *1 (-389 *4 *5 *6 *7))))) (((*1 *2 *3) - (-12 (-5 *3 (-483)) (-4 *4 (-390)) (-4 *5 (-716)) (-4 *6 (-755)) - (-5 *2 (-1183)) (-5 *1 (-388 *4 *5 *6 *7)) (-4 *7 (-860 *4 *5 *6))))) + (-12 (-5 *3 (-484)) (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) + (-5 *2 (-1184)) (-5 *1 (-389 *4 *5 *6 *7)) (-4 *7 (-861 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-582 *7)) (-4 *7 (-860 *4 *5 *6)) (-4 *4 (-390)) (-4 *5 (-716)) - (-4 *6 (-755)) (-5 *2 (-1183)) (-5 *1 (-388 *4 *5 *6 *7))))) + (-12 (-5 *3 (-583 *7)) (-4 *7 (-861 *4 *5 *6)) (-4 *4 (-391)) (-4 *5 (-717)) + (-4 *6 (-756)) (-5 *2 (-1184)) (-5 *1 (-389 *4 *5 *6 *7))))) (((*1 *2 *3 *4 *4 *2 *2 *2 *2) - (-12 (-5 *2 (-483)) + (-12 (-5 *2 (-484)) (-5 *3 - (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-693)) (|:| |poli| *4) + (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-694)) (|:| |poli| *4) (|:| |polj| *4))) - (-4 *6 (-716)) (-4 *4 (-860 *5 *6 *7)) (-4 *5 (-390)) (-4 *7 (-755)) - (-5 *1 (-388 *5 *6 *7 *4))))) + (-4 *6 (-717)) (-4 *4 (-861 *5 *6 *7)) (-4 *5 (-391)) (-4 *7 (-756)) + (-5 *1 (-389 *5 *6 *7 *4))))) (((*1 *2 *3 *4 *4 *2 *2 *2) - (-12 (-5 *2 (-483)) + (-12 (-5 *2 (-484)) (-5 *3 - (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-693)) (|:| |poli| *4) + (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-694)) (|:| |poli| *4) (|:| |polj| *4))) - (-4 *6 (-716)) (-4 *4 (-860 *5 *6 *7)) (-4 *5 (-390)) (-4 *7 (-755)) - (-5 *1 (-388 *5 *6 *7 *4))))) + (-4 *6 (-717)) (-4 *4 (-861 *5 *6 *7)) (-4 *5 (-391)) (-4 *7 (-756)) + (-5 *1 (-389 *5 *6 *7 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-390)) (-4 *5 (-716)) (-4 *6 (-755)) (-5 *2 (-1183)) - (-5 *1 (-388 *4 *5 *6 *3)) (-4 *3 (-860 *4 *5 *6))))) + (-12 (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-1184)) + (-5 *1 (-389 *4 *5 *6 *3)) (-4 *3 (-861 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-4 *4 (-390)) (-4 *5 (-716)) (-4 *6 (-755)) (-5 *2 (-483)) - (-5 *1 (-388 *4 *5 *6 *3)) (-4 *3 (-860 *4 *5 *6))))) + (-12 (-4 *4 (-391)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-484)) + (-5 *1 (-389 *4 *5 *6 *3)) (-4 *3 (-861 *4 *5 *6))))) (((*1 *2 *2) - (-12 (-5 *2 (-582 *6)) (-4 *6 (-860 *3 *4 *5)) (-4 *3 (-390)) (-4 *4 (-716)) - (-4 *5 (-755)) (-5 *1 (-388 *3 *4 *5 *6))))) + (-12 (-5 *2 (-583 *6)) (-4 *6 (-861 *3 *4 *5)) (-4 *3 (-391)) (-4 *4 (-717)) + (-4 *5 (-756)) (-5 *1 (-389 *3 *4 *5 *6))))) (((*1 *2 *2 *2) (-12 (-5 *2 - (-582 - (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-693)) (|:| |poli| *6) + (-583 + (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-694)) (|:| |poli| *6) (|:| |polj| *6)))) - (-4 *4 (-716)) (-4 *6 (-860 *3 *4 *5)) (-4 *3 (-390)) (-4 *5 (-755)) - (-5 *1 (-388 *3 *4 *5 *6))))) + (-4 *4 (-717)) (-4 *6 (-861 *3 *4 *5)) (-4 *3 (-391)) (-4 *5 (-756)) + (-5 *1 (-389 *3 *4 *5 *6))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-693)) (|:| |poli| *2) + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-694)) (|:| |poli| *2) (|:| |polj| *2))) - (-4 *5 (-716)) (-4 *2 (-860 *4 *5 *6)) (-5 *1 (-388 *4 *5 *6 *2)) - (-4 *4 (-390)) (-4 *6 (-755))))) + (-4 *5 (-717)) (-4 *2 (-861 *4 *5 *6)) (-5 *1 (-389 *4 *5 *6 *2)) + (-4 *4 (-391)) (-4 *6 (-756))))) (((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-582 (-2 (|:| |totdeg| (-693)) (|:| -2003 *3)))) (-5 *4 (-693)) - (-4 *3 (-860 *5 *6 *7)) (-4 *5 (-390)) (-4 *6 (-716)) (-4 *7 (-755)) - (-5 *1 (-388 *5 *6 *7 *3))))) + (-12 (-5 *2 (-583 (-2 (|:| |totdeg| (-694)) (|:| -2004 *3)))) (-5 *4 (-694)) + (-4 *3 (-861 *5 *6 *7)) (-4 *5 (-391)) (-4 *6 (-717)) (-4 *7 (-756)) + (-5 *1 (-389 *5 *6 *7 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-390)) (-4 *4 (-716)) (-4 *5 (-755)) (-5 *1 (-388 *3 *4 *5 *2)) - (-4 *2 (-860 *3 *4 *5))))) + (-12 (-4 *3 (-391)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-389 *3 *4 *5 *2)) + (-4 *2 (-861 *3 *4 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-582 *3)) (-4 *3 (-860 *5 *6 *7)) (-4 *5 (-390)) (-4 *6 (-716)) - (-4 *7 (-755)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) - (-5 *1 (-388 *5 *6 *7 *3))))) + (-12 (-5 *4 (-583 *3)) (-4 *3 (-861 *5 *6 *7)) (-4 *5 (-391)) (-4 *6 (-717)) + (-4 *7 (-756)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) + (-5 *1 (-389 *5 *6 *7 *3))))) (((*1 *2 *3 *2) (-12 (-5 *2 - (-582 - (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-693)) (|:| |poli| *6) + (-583 + (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-694)) (|:| |poli| *6) (|:| |polj| *6)))) - (-4 *3 (-716)) (-4 *6 (-860 *4 *3 *5)) (-4 *4 (-390)) (-4 *5 (-755)) - (-5 *1 (-388 *4 *3 *5 *6))))) + (-4 *3 (-717)) (-4 *6 (-861 *4 *3 *5)) (-4 *4 (-391)) (-4 *5 (-756)) + (-5 *1 (-389 *4 *3 *5 *6))))) (((*1 *2 *2) (-12 (-5 *2 - (-582 - (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-693)) (|:| |poli| *6) + (-583 + (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-694)) (|:| |poli| *6) (|:| |polj| *6)))) - (-4 *4 (-716)) (-4 *6 (-860 *3 *4 *5)) (-4 *3 (-390)) (-4 *5 (-755)) - (-5 *1 (-388 *3 *4 *5 *6))))) + (-4 *4 (-717)) (-4 *6 (-861 *3 *4 *5)) (-4 *3 (-391)) (-4 *5 (-756)) + (-5 *1 (-389 *3 *4 *5 *6))))) (((*1 *2 *3 *2) (-12 (-5 *2 - (-582 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-693)) (|:| |poli| *3) + (-583 + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-694)) (|:| |poli| *3) (|:| |polj| *3)))) - (-4 *5 (-716)) (-4 *3 (-860 *4 *5 *6)) (-4 *4 (-390)) (-4 *6 (-755)) - (-5 *1 (-388 *4 *5 *6 *3))))) + (-4 *5 (-717)) (-4 *3 (-861 *4 *5 *6)) (-4 *4 (-391)) (-4 *6 (-756)) + (-5 *1 (-389 *4 *5 *6 *3))))) (((*1 *2 *3 *3 *3 *3) - (-12 (-4 *4 (-390)) (-4 *3 (-716)) (-4 *5 (-755)) (-5 *2 (-85)) - (-5 *1 (-388 *4 *3 *5 *6)) (-4 *6 (-860 *4 *3 *5))))) + (-12 (-4 *4 (-391)) (-4 *3 (-717)) (-4 *5 (-756)) (-5 *2 (-85)) + (-5 *1 (-389 *4 *3 *5 *6)) (-4 *6 (-861 *4 *3 *5))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-390)) (-4 *3 (-716)) (-4 *5 (-755)) (-5 *2 (-85)) - (-5 *1 (-388 *4 *3 *5 *6)) (-4 *6 (-860 *4 *3 *5))))) + (-12 (-4 *4 (-391)) (-4 *3 (-717)) (-4 *5 (-756)) (-5 *2 (-85)) + (-5 *1 (-389 *4 *3 *5 *6)) (-4 *6 (-861 *4 *3 *5))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-693)) (|:| |poli| *7) + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-694)) (|:| |poli| *7) (|:| |polj| *7))) - (-4 *5 (-716)) (-4 *7 (-860 *4 *5 *6)) (-4 *4 (-390)) (-4 *6 (-755)) - (-5 *2 (-85)) (-5 *1 (-388 *4 *5 *6 *7))))) + (-4 *5 (-717)) (-4 *7 (-861 *4 *5 *6)) (-4 *4 (-391)) (-4 *6 (-756)) + (-5 *2 (-85)) (-5 *1 (-389 *4 *5 *6 *7))))) (((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-582 *7)) (-5 *3 (-483)) (-4 *7 (-860 *4 *5 *6)) (-4 *4 (-390)) - (-4 *5 (-716)) (-4 *6 (-755)) (-5 *1 (-388 *4 *5 *6 *7))))) + (-12 (-5 *2 (-583 *7)) (-5 *3 (-484)) (-4 *7 (-861 *4 *5 *6)) (-4 *4 (-391)) + (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-389 *4 *5 *6 *7))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-582 *2)) (-4 *2 (-860 *4 *5 *6)) (-4 *4 (-390)) (-4 *5 (-716)) - (-4 *6 (-755)) (-5 *1 (-388 *4 *5 *6 *2))))) + (-12 (-5 *3 (-583 *2)) (-4 *2 (-861 *4 *5 *6)) (-4 *4 (-391)) (-4 *5 (-717)) + (-4 *6 (-756)) (-5 *1 (-389 *4 *5 *6 *2))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-582 *2)) (-4 *2 (-860 *4 *5 *6)) (-4 *4 (-390)) (-4 *5 (-716)) - (-4 *6 (-755)) (-5 *1 (-388 *4 *5 *6 *2))))) + (-12 (-5 *3 (-583 *2)) (-4 *2 (-861 *4 *5 *6)) (-4 *4 (-391)) (-4 *5 (-717)) + (-4 *6 (-756)) (-5 *1 (-389 *4 *5 *6 *2))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-716)) (-4 *6 (-755)) - (-4 *7 (-860 *4 *5 *6)) (-5 *2 (-582 (-582 *7))) (-5 *1 (-387 *4 *5 *6 *7)) - (-5 *3 (-582 *7)))) + (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-717)) (-4 *6 (-756)) + (-4 *7 (-861 *4 *5 *6)) (-5 *2 (-583 (-583 *7))) (-5 *1 (-388 *4 *5 *6 *7)) + (-5 *3 (-583 *7)))) ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-716)) (-4 *7 (-755)) - (-4 *8 (-860 *5 *6 *7)) (-5 *2 (-582 (-582 *8))) (-5 *1 (-387 *5 *6 *7 *8)) - (-5 *3 (-582 *8)))) + (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-717)) (-4 *7 (-756)) + (-4 *8 (-861 *5 *6 *7)) (-5 *2 (-583 (-583 *8))) (-5 *1 (-388 *5 *6 *7 *8)) + (-5 *3 (-583 *8)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-716)) (-4 *6 (-755)) - (-4 *7 (-860 *4 *5 *6)) (-5 *2 (-582 (-582 *7))) (-5 *1 (-387 *4 *5 *6 *7)) - (-5 *3 (-582 *7)))) + (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-717)) (-4 *6 (-756)) + (-4 *7 (-861 *4 *5 *6)) (-5 *2 (-583 (-583 *7))) (-5 *1 (-388 *4 *5 *6 *7)) + (-5 *3 (-583 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-716)) (-4 *7 (-755)) - (-4 *8 (-860 *5 *6 *7)) (-5 *2 (-582 (-582 *8))) (-5 *1 (-387 *5 *6 *7 *8)) - (-5 *3 (-582 *8))))) + (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-717)) (-4 *7 (-756)) + (-4 *8 (-861 *5 *6 *7)) (-5 *2 (-583 (-583 *8))) (-5 *1 (-388 *5 *6 *7 *8)) + (-5 *3 (-583 *8))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-716)) (-4 *6 (-755)) - (-4 *7 (-860 *4 *5 *6)) (-5 *2 (-582 (-582 *7))) (-5 *1 (-387 *4 *5 *6 *7)) - (-5 *3 (-582 *7)))) + (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-717)) (-4 *6 (-756)) + (-4 *7 (-861 *4 *5 *6)) (-5 *2 (-583 (-583 *7))) (-5 *1 (-388 *4 *5 *6 *7)) + (-5 *3 (-583 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-716)) (-4 *7 (-755)) - (-4 *8 (-860 *5 *6 *7)) (-5 *2 (-582 (-582 *8))) (-5 *1 (-387 *5 *6 *7 *8)) - (-5 *3 (-582 *8))))) + (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-717)) (-4 *7 (-756)) + (-4 *8 (-861 *5 *6 *7)) (-5 *2 (-583 (-583 *8))) (-5 *1 (-388 *5 *6 *7 *8)) + (-5 *3 (-583 *8))))) (((*1 *2 *2) - (-12 (-5 *2 (-582 *6)) (-4 *6 (-860 *3 *4 *5)) (-4 *3 (-258)) (-4 *4 (-716)) - (-4 *5 (-755)) (-5 *1 (-386 *3 *4 *5 *6)))) + (-12 (-5 *2 (-583 *6)) (-4 *6 (-861 *3 *4 *5)) (-4 *3 (-258)) (-4 *4 (-717)) + (-4 *5 (-756)) (-5 *1 (-387 *3 *4 *5 *6)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-582 *7)) (-5 *3 (-1071)) (-4 *7 (-860 *4 *5 *6)) (-4 *4 (-258)) - (-4 *5 (-716)) (-4 *6 (-755)) (-5 *1 (-386 *4 *5 *6 *7)))) + (-12 (-5 *2 (-583 *7)) (-5 *3 (-1072)) (-4 *7 (-861 *4 *5 *6)) (-4 *4 (-258)) + (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-387 *4 *5 *6 *7)))) ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-582 *7)) (-5 *3 (-1071)) (-4 *7 (-860 *4 *5 *6)) (-4 *4 (-258)) - (-4 *5 (-716)) (-4 *6 (-755)) (-5 *1 (-386 *4 *5 *6 *7))))) + (-12 (-5 *2 (-583 *7)) (-5 *3 (-1072)) (-4 *7 (-861 *4 *5 *6)) (-4 *4 (-258)) + (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-387 *4 *5 *6 *7))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-582 *2)) (-4 *2 (-860 *4 *5 *6)) (-4 *4 (-258)) (-4 *5 (-716)) - (-4 *6 (-755)) (-5 *1 (-386 *4 *5 *6 *2))))) -(((*1 *2 *3) (-12 (-5 *2 (-582 (-483))) (-5 *1 (-384)) (-5 *3 (-483))))) + (-12 (-5 *3 (-583 *2)) (-4 *2 (-861 *4 *5 *6)) (-4 *4 (-258)) (-4 *5 (-717)) + (-4 *6 (-756)) (-5 *1 (-387 *4 *5 *6 *2))))) +(((*1 *2 *3) (-12 (-5 *2 (-583 (-484))) (-5 *1 (-385)) (-5 *3 (-484))))) (((*1 *2 *2) - (-12 (-5 *2 (-693)) (-5 *1 (-383 *3)) (-4 *3 (-345)) (-4 *3 (-960)))) - ((*1 *2) (-12 (-5 *2 (-693)) (-5 *1 (-383 *3)) (-4 *3 (-345)) (-4 *3 (-960))))) + (-12 (-5 *2 (-694)) (-5 *1 (-384 *3)) (-4 *3 (-346)) (-4 *3 (-961)))) + ((*1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-384 *3)) (-4 *3 (-346)) (-4 *3 (-961))))) (((*1 *2 *3) - (-12 (-5 *2 (-483)) (-5 *1 (-383 *3)) (-4 *3 (-345)) (-4 *3 (-960))))) + (-12 (-5 *2 (-484)) (-5 *1 (-384 *3)) (-4 *3 (-346)) (-4 *3 (-961))))) (((*1 *2 *3) - (-12 (-5 *2 (-483)) (-5 *1 (-383 *3)) (-4 *3 (-345)) (-4 *3 (-960))))) -(((*1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-383 *3)) (-4 *3 (-960))))) -(((*1 *2) (-12 (-5 *2 (-693)) (-5 *1 (-383 *3)) (-4 *3 (-960))))) -(((*1 *2 *2) (-12 (-5 *2 (-693)) (-5 *1 (-383 *3)) (-4 *3 (-960)))) - ((*1 *2) (-12 (-5 *2 (-693)) (-5 *1 (-383 *3)) (-4 *3 (-960))))) + (-12 (-5 *2 (-484)) (-5 *1 (-384 *3)) (-4 *3 (-346)) (-4 *3 (-961))))) +(((*1 *2) (-12 (-5 *2 (-1184)) (-5 *1 (-384 *3)) (-4 *3 (-961))))) +(((*1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-384 *3)) (-4 *3 (-961))))) +(((*1 *2 *2) (-12 (-5 *2 (-694)) (-5 *1 (-384 *3)) (-4 *3 (-961)))) + ((*1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-384 *3)) (-4 *3 (-961))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-693)) (-5 *4 (-483)) (-5 *1 (-383 *2)) (-4 *2 (-960))))) + (-12 (-5 *3 (-694)) (-5 *4 (-484)) (-5 *1 (-384 *2)) (-4 *2 (-961))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-829)) (-5 *4 (-346 *6)) (-4 *6 (-1153 *5)) (-4 *5 (-960)) - (-5 *2 (-582 *6)) (-5 *1 (-382 *5 *6))))) + (-12 (-5 *3 (-830)) (-5 *4 (-347 *6)) (-4 *6 (-1154 *5)) (-4 *5 (-961)) + (-5 *2 (-583 *6)) (-5 *1 (-383 *5 *6))))) (((*1 *2 *3 *2) - (|partial| -12 (-5 *3 (-829)) (-5 *1 (-380 *2)) (-4 *2 (-1153 (-483))))) + (|partial| -12 (-5 *3 (-830)) (-5 *1 (-381 *2)) (-4 *2 (-1154 (-484))))) ((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-829)) (-5 *4 (-693)) (-5 *1 (-380 *2)) - (-4 *2 (-1153 (-483))))) + (|partial| -12 (-5 *3 (-830)) (-5 *4 (-694)) (-5 *1 (-381 *2)) + (-4 *2 (-1154 (-484))))) ((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-829)) (-5 *4 (-582 (-693))) (-5 *1 (-380 *2)) - (-4 *2 (-1153 (-483))))) + (|partial| -12 (-5 *3 (-830)) (-5 *4 (-583 (-694))) (-5 *1 (-381 *2)) + (-4 *2 (-1154 (-484))))) ((*1 *2 *3 *2 *4 *5) - (|partial| -12 (-5 *3 (-829)) (-5 *4 (-582 (-693))) (-5 *5 (-693)) - (-5 *1 (-380 *2)) (-4 *2 (-1153 (-483))))) + (|partial| -12 (-5 *3 (-830)) (-5 *4 (-583 (-694))) (-5 *5 (-694)) + (-5 *1 (-381 *2)) (-4 *2 (-1154 (-484))))) ((*1 *2 *3 *2 *4 *5 *6) - (|partial| -12 (-5 *3 (-829)) (-5 *4 (-582 (-693))) (-5 *5 (-693)) - (-5 *6 (-85)) (-5 *1 (-380 *2)) (-4 *2 (-1153 (-483))))) + (|partial| -12 (-5 *3 (-830)) (-5 *4 (-583 (-694))) (-5 *5 (-694)) + (-5 *6 (-85)) (-5 *1 (-381 *2)) (-4 *2 (-1154 (-484))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-829)) (-5 *4 (-346 *2)) (-4 *2 (-1153 *5)) (-5 *1 (-382 *5 *2)) - (-4 *5 (-960))))) + (-12 (-5 *3 (-830)) (-5 *4 (-347 *2)) (-4 *2 (-1154 *5)) (-5 *1 (-383 *5 *2)) + (-4 *5 (-961))))) (((*1 *2 *3) - (-12 (-5 *3 (-582 (-2 (|:| -3730 *4) (|:| -3946 (-483))))) - (-4 *4 (-1153 (-483))) (-5 *2 (-674 (-693))) (-5 *1 (-380 *4)))) + (-12 (-5 *3 (-583 (-2 (|:| -3731 *4) (|:| -3947 (-484))))) + (-4 *4 (-1154 (-484))) (-5 *2 (-675 (-694))) (-5 *1 (-381 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-346 *5)) (-4 *5 (-1153 *4)) (-4 *4 (-960)) - (-5 *2 (-674 (-693))) (-5 *1 (-382 *4 *5))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-960)) (-5 *1 (-382 *3 *2)) (-4 *2 (-1153 *3))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-960)) (-5 *1 (-382 *3 *2)) (-4 *2 (-1153 *3))))) + (-12 (-5 *3 (-347 *5)) (-4 *5 (-1154 *4)) (-4 *4 (-961)) + (-5 *2 (-675 (-694))) (-5 *1 (-383 *4 *5))))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-961)) (-5 *1 (-383 *3 *2)) (-4 *2 (-1154 *3))))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-961)) (-5 *1 (-383 *3 *2)) (-4 *2 (-1154 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-960)) (-4 *2 (-13 (-345) (-949 *4) (-312) (-1113) (-239))) - (-5 *1 (-381 *4 *3 *2)) (-4 *3 (-1153 *4))))) + (-12 (-4 *4 (-961)) (-4 *2 (-13 (-346) (-950 *4) (-312) (-1114) (-239))) + (-5 *1 (-382 *4 *3 *2)) (-4 *3 (-1154 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-960)) (-4 *2 (-13 (-345) (-949 *4) (-312) (-1113) (-239))) - (-5 *1 (-381 *4 *3 *2)) (-4 *3 (-1153 *4))))) + (-12 (-4 *4 (-961)) (-4 *2 (-13 (-346) (-950 *4) (-312) (-1114) (-239))) + (-5 *1 (-382 *4 *3 *2)) (-4 *3 (-1154 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-693)) (-4 *5 (-960)) (-5 *2 (-483)) (-5 *1 (-381 *5 *3 *6)) - (-4 *3 (-1153 *5)) (-4 *6 (-13 (-345) (-949 *5) (-312) (-1113) (-239))))) + (-12 (-5 *4 (-694)) (-4 *5 (-961)) (-5 *2 (-484)) (-5 *1 (-382 *5 *3 *6)) + (-4 *3 (-1154 *5)) (-4 *6 (-13 (-346) (-950 *5) (-312) (-1114) (-239))))) ((*1 *2 *3) - (-12 (-4 *4 (-960)) (-5 *2 (-483)) (-5 *1 (-381 *4 *3 *5)) (-4 *3 (-1153 *4)) - (-4 *5 (-13 (-345) (-949 *4) (-312) (-1113) (-239)))))) + (-12 (-4 *4 (-961)) (-5 *2 (-484)) (-5 *1 (-382 *4 *3 *5)) (-4 *3 (-1154 *4)) + (-4 *5 (-13 (-346) (-950 *4) (-312) (-1114) (-239)))))) (((*1 *2 *3) - (-12 (-4 *4 (-960)) (-5 *2 (-483)) (-5 *1 (-381 *4 *3 *5)) (-4 *3 (-1153 *4)) - (-4 *5 (-13 (-345) (-949 *4) (-312) (-1113) (-239)))))) + (-12 (-4 *4 (-961)) (-5 *2 (-484)) (-5 *1 (-382 *4 *3 *5)) (-4 *3 (-1154 *4)) + (-4 *5 (-13 (-346) (-950 *4) (-312) (-1114) (-239)))))) (((*1 *2 *3) - (-12 (-4 *4 (-960)) (-4 *2 (-13 (-345) (-949 *4) (-312) (-1113) (-239))) - (-5 *1 (-381 *4 *3 *2)) (-4 *3 (-1153 *4)))) + (-12 (-4 *4 (-961)) (-4 *2 (-13 (-346) (-950 *4) (-312) (-1114) (-239))) + (-5 *1 (-382 *4 *3 *2)) (-4 *3 (-1154 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-829)) (-4 *5 (-960)) - (-4 *2 (-13 (-345) (-949 *5) (-312) (-1113) (-239))) (-5 *1 (-381 *5 *3 *2)) - (-4 *3 (-1153 *5))))) + (-12 (-5 *4 (-830)) (-4 *5 (-961)) + (-4 *2 (-13 (-346) (-950 *5) (-312) (-1114) (-239))) (-5 *1 (-382 *5 *3 *2)) + (-4 *3 (-1154 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-960)) (-5 *2 (-483)) (-5 *1 (-381 *4 *3 *5)) (-4 *3 (-1153 *4)) - (-4 *5 (-13 (-345) (-949 *4) (-312) (-1113) (-239)))))) + (-12 (-4 *4 (-961)) (-5 *2 (-484)) (-5 *1 (-382 *4 *3 *5)) (-4 *3 (-1154 *4)) + (-4 *5 (-13 (-346) (-950 *4) (-312) (-1114) (-239)))))) (((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-85)) (-5 *5 (-1008 (-693))) (-5 *6 (-693)) - (-5 *2 - (-2 (|:| |contp| (-483)) - (|:| -1777 (-582 (-2 (|:| |irr| *3) (|:| -2394 (-483))))))) - (-5 *1 (-380 *3)) (-4 *3 (-1153 (-483)))))) -(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-380 *3)) (-4 *3 (-1153 (-483)))))) -(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-380 *3)) (-4 *3 (-1153 (-483)))))) -(((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-380 *3)) (-4 *3 (-1153 (-483)))))) -(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-380 *3)) (-4 *3 (-1153 (-483)))))) -(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-380 *3)) (-4 *3 (-1153 (-483)))))) -(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-380 *3)) (-4 *3 (-1153 (-483)))))) -(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-380 *3)) (-4 *3 (-1153 (-483)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-2 (|:| -2577 (-483)) (|:| -1777 (-582 *3)))) (-5 *1 (-380 *3)) - (-4 *3 (-1153 (-483)))))) -(((*1 *2 *1) (-12 (-5 *2 (-693)) (-5 *1 (-346 *3)) (-4 *3 (-494)))) - ((*1 *2 *3) - (-12 (-5 *3 (-582 (-2 (|:| -3730 *4) (|:| -3946 (-483))))) - (-4 *4 (-1153 (-483))) (-5 *2 (-693)) (-5 *1 (-380 *4))))) -(((*1 *2) (-12 (-5 *2 (-829)) (-5 *1 (-380 *3)) (-4 *3 (-1153 (-483))))) - ((*1 *2 *2) (-12 (-5 *2 (-829)) (-5 *1 (-380 *3)) (-4 *3 (-1153 (-483)))))) -(((*1 *2) (-12 (-5 *2 (-829)) (-5 *1 (-380 *3)) (-4 *3 (-1153 (-483))))) - ((*1 *2 *2) (-12 (-5 *2 (-829)) (-5 *1 (-380 *3)) (-4 *3 (-1153 (-483)))))) + (-12 (-5 *4 (-85)) (-5 *5 (-1009 (-694))) (-5 *6 (-694)) + (-5 *2 + (-2 (|:| |contp| (-484)) + (|:| -1778 (-583 (-2 (|:| |irr| *3) (|:| -2395 (-484))))))) + (-5 *1 (-381 *3)) (-4 *3 (-1154 (-484)))))) +(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-381 *3)) (-4 *3 (-1154 (-484)))))) +(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-381 *3)) (-4 *3 (-1154 (-484)))))) +(((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-381 *3)) (-4 *3 (-1154 (-484)))))) +(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-381 *3)) (-4 *3 (-1154 (-484)))))) +(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-381 *3)) (-4 *3 (-1154 (-484)))))) +(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-381 *3)) (-4 *3 (-1154 (-484)))))) +(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-381 *3)) (-4 *3 (-1154 (-484)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-2 (|:| -2578 (-484)) (|:| -1778 (-583 *3)))) (-5 *1 (-381 *3)) + (-4 *3 (-1154 (-484)))))) +(((*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-347 *3)) (-4 *3 (-495)))) + ((*1 *2 *3) + (-12 (-5 *3 (-583 (-2 (|:| -3731 *4) (|:| -3947 (-484))))) + (-4 *4 (-1154 (-484))) (-5 *2 (-694)) (-5 *1 (-381 *4))))) +(((*1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-381 *3)) (-4 *3 (-1154 (-484))))) + ((*1 *2 *2) (-12 (-5 *2 (-830)) (-5 *1 (-381 *3)) (-4 *3 (-1154 (-484)))))) +(((*1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-381 *3)) (-4 *3 (-1154 (-484))))) + ((*1 *2 *2) (-12 (-5 *2 (-830)) (-5 *1 (-381 *3)) (-4 *3 (-1154 (-484)))))) (((*1 *1 *2 *3) (-12 (-5 *3 - (-582 + (-583 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) - (|:| |xpnt| (-483))))) - (-4 *2 (-494)) (-5 *1 (-346 *2)))) + (|:| |xpnt| (-484))))) + (-4 *2 (-495)) (-5 *1 (-347 *2)))) ((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |contp| (-483)) - (|:| -1777 (-582 (-2 (|:| |irr| *4) (|:| -2394 (-483))))))) - (-4 *4 (-1153 (-483))) (-5 *2 (-346 *4)) (-5 *1 (-380 *4))))) -(((*1 *2 *1) - (-12 (-5 *2 (-3 (|:| |fst| (-375)) (|:| -3908 "void"))) (-5 *1 (-377))))) -(((*1 *2 *1) (-12 (-5 *2 (-582 (-856 (-483)))) (-5 *1 (-377))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-377))))) -(((*1 *1) (-5 *1 (-377)))) -(((*1 *1) (-5 *1 (-377)))) -(((*1 *1) (-5 *1 (-377)))) -(((*1 *1) (-5 *1 (-377)))) -(((*1 *1) (-5 *1 (-377)))) -(((*1 *1) (-5 *1 (-377)))) -(((*1 *1) (-5 *1 (-377)))) -(((*1 *2 *3) - (|partial| -12 (-4 *5 (-949 (-48))) (-4 *4 (-13 (-494) (-949 (-483)))) - (-4 *5 (-362 *4)) (-5 *2 (-346 (-1083 (-48)))) (-5 *1 (-376 *4 *5 *3)) - (-4 *3 (-1153 *5))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-494) (-949 (-483)))) (-4 *5 (-362 *4)) - (-5 *2 - (-3 (|:| |overq| (-1083 (-348 (-483)))) (|:| |overan| (-1083 (-48))) - (|:| -2638 (-85)))) - (-5 *1 (-376 *4 *5 *3)) (-4 *3 (-1153 *5))))) -(((*1 *2 *3) - (|partial| -12 (-4 *4 (-13 (-494) (-949 (-483)))) (-4 *5 (-362 *4)) - (-5 *2 (-346 (-1083 (-348 (-483))))) (-5 *1 (-376 *4 *5 *3)) - (-4 *3 (-1153 *5))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-494) (-949 (-483)))) (-4 *5 (-362 *4)) (-5 *2 (-346 *3)) - (-5 *1 (-376 *4 *5 *3)) (-4 *3 (-1153 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-375))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-375))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-375))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-375))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-375))))) + (-2 (|:| |contp| (-484)) + (|:| -1778 (-583 (-2 (|:| |irr| *4) (|:| -2395 (-484))))))) + (-4 *4 (-1154 (-484))) (-5 *2 (-347 *4)) (-5 *1 (-381 *4))))) +(((*1 *2 *1) + (-12 (-5 *2 (-3 (|:| |fst| (-376)) (|:| -3909 "void"))) (-5 *1 (-378))))) +(((*1 *2 *1) (-12 (-5 *2 (-583 (-857 (-484)))) (-5 *1 (-378))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-378))))) +(((*1 *1) (-5 *1 (-378)))) +(((*1 *1) (-5 *1 (-378)))) +(((*1 *1) (-5 *1 (-378)))) +(((*1 *1) (-5 *1 (-378)))) +(((*1 *1) (-5 *1 (-378)))) +(((*1 *1) (-5 *1 (-378)))) +(((*1 *1) (-5 *1 (-378)))) +(((*1 *2 *3) + (|partial| -12 (-4 *5 (-950 (-48))) (-4 *4 (-13 (-495) (-950 (-484)))) + (-4 *5 (-363 *4)) (-5 *2 (-347 (-1084 (-48)))) (-5 *1 (-377 *4 *5 *3)) + (-4 *3 (-1154 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-495) (-950 (-484)))) (-4 *5 (-363 *4)) + (-5 *2 + (-3 (|:| |overq| (-1084 (-349 (-484)))) (|:| |overan| (-1084 (-48))) + (|:| -2639 (-85)))) + (-5 *1 (-377 *4 *5 *3)) (-4 *3 (-1154 *5))))) +(((*1 *2 *3) + (|partial| -12 (-4 *4 (-13 (-495) (-950 (-484)))) (-4 *5 (-363 *4)) + (-5 *2 (-347 (-1084 (-349 (-484))))) (-5 *1 (-377 *4 *5 *3)) + (-4 *3 (-1154 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-495) (-950 (-484)))) (-4 *5 (-363 *4)) (-5 *2 (-347 *3)) + (-5 *1 (-377 *4 *5 *3)) (-4 *3 (-1154 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-376))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-376))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-376))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-376))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-376))))) (((*1 *2) - (-12 (-4 *3 (-13 (-494) (-949 (-483)))) (-5 *2 (-1183)) (-5 *1 (-374 *3 *4)) - (-4 *4 (-362 *3))))) + (-12 (-4 *3 (-13 (-495) (-950 (-484)))) (-5 *2 (-1184)) (-5 *1 (-375 *3 *4)) + (-4 *4 (-363 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-494) (-949 (-483)))) (-5 *2 (-348 (-483))) - (-5 *1 (-374 *4 *3)) (-4 *3 (-362 *4)))) + (-12 (-4 *4 (-13 (-495) (-950 (-484)))) (-5 *2 (-349 (-484))) + (-5 *1 (-375 *4 *3)) (-4 *3 (-363 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-549 *3)) (-4 *3 (-362 *5)) (-4 *5 (-13 (-494) (-949 (-483)))) - (-5 *2 (-1083 (-348 (-483)))) (-5 *1 (-374 *5 *3))))) -(((*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-372 *3 *2)) (-4 *2 (-362 *3))))) -(((*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-372 *3 *2)) (-4 *2 (-362 *3))))) + (-12 (-5 *4 (-550 *3)) (-4 *3 (-363 *5)) (-4 *5 (-13 (-495) (-950 (-484)))) + (-5 *2 (-1084 (-349 (-484)))) (-5 *1 (-375 *5 *3))))) +(((*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-373 *3 *2)) (-4 *2 (-363 *3))))) +(((*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-373 *3 *2)) (-4 *2 (-363 *3))))) (((*1 *1 *2 *3) - (-12 (-5 *1 (-370 *3 *2)) (-4 *3 (-13 (-146) (-38 (-348 (-483))))) - (-4 *2 (-13 (-755) (-21)))))) + (-12 (-5 *1 (-371 *3 *2)) (-4 *3 (-13 (-146) (-38 (-349 (-484))))) + (-4 *2 (-13 (-756) (-21)))))) (((*1 *1 *2 *3) - (-12 (-5 *1 (-370 *3 *2)) (-4 *3 (-13 (-146) (-38 (-348 (-483))))) - (-4 *2 (-13 (-755) (-21)))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1088)) (-4 *5 (-13 (-258) (-120) (-949 (-483)) (-579 (-483)))) - (-5 *2 (-518 *3)) (-5 *1 (-369 *5 *3)) (-4 *3 (-13 (-1113) (-29 *5)))))) -(((*1 *2 *1) (-12 (-4 *1 (-367 *3)) (-4 *3 (-1012)) (-5 *2 (-693))))) -(((*1 *1 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-1012)) (-4 *2 (-318))))) -(((*1 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-318)) (-4 *2 (-1012))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-390) (-949 (-483)) (-579 (-483)))) - (-5 *1 (-364 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1113) (-362 *3))) - (-14 *4 (-1088)) (-14 *5 *2))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-390) (-949 (-483)) (-579 (-483)))) - (-4 *2 (-13 (-27) (-1113) (-362 *3) (-10 -8 (-15 -3944 ($ *4))))) - (-4 *4 (-754)) + (-12 (-5 *1 (-371 *3 *2)) (-4 *3 (-13 (-146) (-38 (-349 (-484))))) + (-4 *2 (-13 (-756) (-21)))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1089)) (-4 *5 (-13 (-258) (-120) (-950 (-484)) (-580 (-484)))) + (-5 *2 (-519 *3)) (-5 *1 (-370 *5 *3)) (-4 *3 (-13 (-1114) (-29 *5)))))) +(((*1 *2 *1) (-12 (-4 *1 (-368 *3)) (-4 *3 (-1013)) (-5 *2 (-694))))) +(((*1 *1 *1) (-12 (-4 *1 (-368 *2)) (-4 *2 (-1013)) (-4 *2 (-319))))) +(((*1 *1) (-12 (-4 *1 (-368 *2)) (-4 *2 (-319)) (-4 *2 (-1013))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-391) (-950 (-484)) (-580 (-484)))) + (-5 *1 (-365 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1114) (-363 *3))) + (-14 *4 (-1089)) (-14 *5 *2))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-391) (-950 (-484)) (-580 (-484)))) + (-4 *2 (-13 (-27) (-1114) (-363 *3) (-10 -8 (-15 -3945 ($ *4))))) + (-4 *4 (-755)) (-4 *5 - (-13 (-1156 *2 *4) (-312) (-1113) - (-10 -8 (-15 -3756 ($ $)) (-15 -3810 ($ $))))) - (-5 *1 (-365 *3 *2 *4 *5 *6 *7)) (-4 *6 (-895 *5)) (-14 *7 (-1088))))) + (-13 (-1157 *2 *4) (-312) (-1114) + (-10 -8 (-15 -3757 ($ $)) (-15 -3811 ($ $))))) + (-5 *1 (-366 *3 *2 *4 *5 *6 *7)) (-4 *6 (-896 *5)) (-14 *7 (-1089))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-85)) (-4 *6 (-13 (-390) (-949 (-483)) (-579 (-483)))) - (-4 *3 (-13 (-27) (-1113) (-362 *6) (-10 -8 (-15 -3944 ($ *7))))) - (-4 *7 (-754)) + (-12 (-5 *4 (-85)) (-4 *6 (-13 (-391) (-950 (-484)) (-580 (-484)))) + (-4 *3 (-13 (-27) (-1114) (-363 *6) (-10 -8 (-15 -3945 ($ *7))))) + (-4 *7 (-755)) (-4 *8 - (-13 (-1156 *3 *7) (-312) (-1113) - (-10 -8 (-15 -3756 ($ $)) (-15 -3810 ($ $))))) + (-13 (-1157 *3 *7) (-312) (-1114) + (-10 -8 (-15 -3757 ($ $)) (-15 -3811 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) - (|:| |%problem| (-2 (|:| |func| (-1071)) (|:| |prob| (-1071)))))) - (-5 *1 (-365 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1071)) (-4 *9 (-895 *8)) - (-14 *10 (-1088))))) + (|:| |%problem| (-2 (|:| |func| (-1072)) (|:| |prob| (-1072)))))) + (-5 *1 (-366 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1072)) (-4 *9 (-896 *8)) + (-14 *10 (-1089))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-85)) (-4 *6 (-13 (-390) (-949 (-483)) (-579 (-483)))) - (-4 *3 (-13 (-27) (-1113) (-362 *6) (-10 -8 (-15 -3944 ($ *7))))) - (-4 *7 (-754)) + (-12 (-5 *4 (-85)) (-4 *6 (-13 (-391) (-950 (-484)) (-580 (-484)))) + (-4 *3 (-13 (-27) (-1114) (-363 *6) (-10 -8 (-15 -3945 ($ *7))))) + (-4 *7 (-755)) (-4 *8 - (-13 (-1156 *3 *7) (-312) (-1113) - (-10 -8 (-15 -3756 ($ $)) (-15 -3810 ($ $))))) + (-13 (-1157 *3 *7) (-312) (-1114) + (-10 -8 (-15 -3757 ($ $)) (-15 -3811 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) - (|:| |%problem| (-2 (|:| |func| (-1071)) (|:| |prob| (-1071)))))) - (-5 *1 (-365 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1071)) (-4 *9 (-895 *8)) - (-14 *10 (-1088))))) + (|:| |%problem| (-2 (|:| |func| (-1072)) (|:| |prob| (-1072)))))) + (-5 *1 (-366 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1072)) (-4 *9 (-896 *8)) + (-14 *10 (-1089))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-85)) (-4 *5 (-13 (-390) (-949 (-483)) (-579 (-483)))) + (-12 (-5 *4 (-85)) (-4 *5 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *2 (-3 (|:| |%expansion| (-264 *5 *3 *6 *7)) - (|:| |%problem| (-2 (|:| |func| (-1071)) (|:| |prob| (-1071)))))) - (-5 *1 (-364 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1113) (-362 *5))) - (-14 *6 (-1088)) (-14 *7 *3)))) -(((*1 *2 *1) - (-12 (-4 *1 (-277 *3 *4)) (-4 *3 (-960)) (-4 *4 (-715)) (-5 *2 (-85)))) - ((*1 *2 *1) (-12 (-4 *1 (-362 *3)) (-4 *3 (-1012)) (-5 *2 (-85))))) -(((*1 *2 *1) (-12 (-4 *1 (-277 *2 *3)) (-4 *3 (-715)) (-4 *2 (-960)))) - ((*1 *2 *1) (-12 (-4 *1 (-362 *2)) (-4 *2 (-1012))))) + (|:| |%problem| (-2 (|:| |func| (-1072)) (|:| |prob| (-1072)))))) + (-5 *1 (-365 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1114) (-363 *5))) + (-14 *6 (-1089)) (-14 *7 *3)))) +(((*1 *2 *1) + (-12 (-4 *1 (-277 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716)) (-5 *2 (-85)))) + ((*1 *2 *1) (-12 (-4 *1 (-363 *3)) (-4 *3 (-1013)) (-5 *2 (-85))))) +(((*1 *2 *1) (-12 (-4 *1 (-277 *2 *3)) (-4 *3 (-716)) (-4 *2 (-961)))) + ((*1 *2 *1) (-12 (-4 *1 (-363 *2)) (-4 *2 (-1013))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-1088)) (-5 *3 (-582 *1)) (-4 *1 (-362 *4)) (-4 *4 (-1012)))) + (-12 (-5 *2 (-1089)) (-5 *3 (-583 *1)) (-4 *1 (-363 *4)) (-4 *4 (-1013)))) ((*1 *1 *2 *1 *1 *1 *1) - (-12 (-5 *2 (-1088)) (-4 *1 (-362 *3)) (-4 *3 (-1012)))) - ((*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1088)) (-4 *1 (-362 *3)) (-4 *3 (-1012)))) - ((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1088)) (-4 *1 (-362 *3)) (-4 *3 (-1012)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1088)) (-4 *1 (-362 *3)) (-4 *3 (-1012))))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1012)) - (-5 *2 (-2 (|:| -3952 (-483)) (|:| |var| (-549 *1)))) (-4 *1 (-362 *3))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-346 *3)) (-4 *3 (-494)) (-5 *1 (-360 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-312)) (-4 *1 (-280 *3)))) + (-12 (-5 *2 (-1089)) (-4 *1 (-363 *3)) (-4 *3 (-1013)))) + ((*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1089)) (-4 *1 (-363 *3)) (-4 *3 (-1013)))) + ((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1089)) (-4 *1 (-363 *3)) (-4 *3 (-1013)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1089)) (-4 *1 (-363 *3)) (-4 *3 (-1013))))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1013)) + (-5 *2 (-2 (|:| -3953 (-484)) (|:| |var| (-550 *1)))) (-4 *1 (-363 *3))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-347 *3)) (-4 *3 (-495)) (-5 *1 (-361 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-312)) (-4 *1 (-280 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1177 *3)) (-4 *3 (-1153 *4)) (-4 *4 (-1132)) - (-4 *1 (-291 *4 *3 *5)) (-4 *5 (-1153 (-348 *3))))) + (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1154 *4)) (-4 *4 (-1133)) + (-4 *1 (-291 *4 *3 *5)) (-4 *5 (-1154 (-349 *3))))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1177 *4)) (-5 *3 (-1177 *1)) (-4 *4 (-146)) (-4 *1 (-316 *4)))) + (-12 (-5 *2 (-1178 *4)) (-5 *3 (-1178 *1)) (-4 *4 (-146)) (-4 *1 (-316 *4)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1177 *4)) (-5 *3 (-1177 *1)) (-4 *4 (-146)) - (-4 *1 (-320 *4 *5)) (-4 *5 (-1153 *4)))) + (-12 (-5 *2 (-1178 *4)) (-5 *3 (-1178 *1)) (-4 *4 (-146)) + (-4 *1 (-321 *4 *5)) (-4 *5 (-1154 *4)))) ((*1 *1 *2) - (-12 (-5 *2 (-1177 *3)) (-4 *3 (-146)) (-4 *1 (-351 *3 *4)) - (-4 *4 (-1153 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-146)) (-4 *1 (-359 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-1177 *1)) (-4 *1 (-316 *2)) (-4 *2 (-146)))) - ((*1 *2) (-12 (-4 *2 (-146)) (-5 *1 (-358 *3 *2)) (-4 *3 (-359 *2)))) - ((*1 *2) (-12 (-4 *1 (-359 *2)) (-4 *2 (-146))))) -(((*1 *2 *3) (-12 (-5 *3 (-1177 *1)) (-4 *1 (-316 *2)) (-4 *2 (-146)))) - ((*1 *2) (-12 (-4 *2 (-146)) (-5 *1 (-358 *3 *2)) (-4 *3 (-359 *2)))) - ((*1 *2) (-12 (-4 *1 (-359 *2)) (-4 *2 (-146))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1177 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-629 *4)))) + (-12 (-5 *2 (-1178 *3)) (-4 *3 (-146)) (-4 *1 (-352 *3 *4)) + (-4 *4 (-1154 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-146)) (-4 *1 (-360 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-1178 *1)) (-4 *1 (-316 *2)) (-4 *2 (-146)))) + ((*1 *2) (-12 (-4 *2 (-146)) (-5 *1 (-359 *3 *2)) (-4 *3 (-360 *2)))) + ((*1 *2) (-12 (-4 *1 (-360 *2)) (-4 *2 (-146))))) +(((*1 *2 *3) (-12 (-5 *3 (-1178 *1)) (-4 *1 (-316 *2)) (-4 *2 (-146)))) + ((*1 *2) (-12 (-4 *2 (-146)) (-5 *1 (-359 *3 *2)) (-4 *3 (-360 *2)))) + ((*1 *2) (-12 (-4 *1 (-360 *2)) (-4 *2 (-146))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1178 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-630 *4)))) ((*1 *2) - (-12 (-4 *4 (-146)) (-5 *2 (-629 *4)) (-5 *1 (-358 *3 *4)) - (-4 *3 (-359 *4)))) - ((*1 *2) (-12 (-4 *1 (-359 *3)) (-4 *3 (-146)) (-5 *2 (-629 *3))))) + (-12 (-4 *4 (-146)) (-5 *2 (-630 *4)) (-5 *1 (-359 *3 *4)) + (-4 *3 (-360 *4)))) + ((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-146)) (-5 *2 (-630 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1177 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-629 *4)))) + (-12 (-5 *3 (-1178 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-630 *4)))) ((*1 *2) - (-12 (-4 *4 (-146)) (-5 *2 (-629 *4)) (-5 *1 (-358 *3 *4)) - (-4 *3 (-359 *4)))) - ((*1 *2) (-12 (-4 *1 (-359 *3)) (-4 *3 (-146)) (-5 *2 (-629 *3))))) + (-12 (-4 *4 (-146)) (-5 *2 (-630 *4)) (-5 *1 (-359 *3 *4)) + (-4 *3 (-360 *4)))) + ((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-146)) (-5 *2 (-630 *3))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-1177 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-629 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-359 *3)) (-4 *3 (-146)) (-5 *2 (-629 *3))))) + (-12 (-5 *3 (-1178 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-630 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-360 *3)) (-4 *3 (-146)) (-5 *2 (-630 *3))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-1177 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-629 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-359 *3)) (-4 *3 (-146)) (-5 *2 (-629 *3))))) + (-12 (-5 *3 (-1178 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-630 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-360 *3)) (-4 *3 (-146)) (-5 *2 (-630 *3))))) (((*1 *1 *2) - (-12 (-5 *2 (-354 *3 *4 *5 *6)) (-4 *6 (-949 *4)) (-4 *3 (-258)) - (-4 *4 (-903 *3)) (-4 *5 (-1153 *4)) (-4 *6 (-351 *4 *5)) - (-14 *7 (-1177 *6)) (-5 *1 (-356 *3 *4 *5 *6 *7)))) + (-12 (-5 *2 (-355 *3 *4 *5 *6)) (-4 *6 (-950 *4)) (-4 *3 (-258)) + (-4 *4 (-904 *3)) (-4 *5 (-1154 *4)) (-4 *6 (-352 *4 *5)) + (-14 *7 (-1178 *6)) (-5 *1 (-357 *3 *4 *5 *6 *7)))) ((*1 *1 *2) - (-12 (-5 *2 (-1177 *6)) (-4 *6 (-351 *4 *5)) (-4 *4 (-903 *3)) - (-4 *5 (-1153 *4)) (-4 *3 (-258)) (-5 *1 (-356 *3 *4 *5 *6 *7)) + (-12 (-5 *2 (-1178 *6)) (-4 *6 (-352 *4 *5)) (-4 *4 (-904 *3)) + (-4 *5 (-1154 *4)) (-4 *3 (-258)) (-5 *1 (-357 *3 *4 *5 *6 *7)) (-14 *7 *2)))) (((*1 *1 *1) - (-12 (-4 *2 (-258)) (-4 *3 (-903 *2)) (-4 *4 (-1153 *3)) - (-5 *1 (-354 *2 *3 *4 *5)) (-4 *5 (-13 (-351 *3 *4) (-949 *3)))))) + (-12 (-4 *2 (-258)) (-4 *3 (-904 *2)) (-4 *4 (-1154 *3)) + (-5 *1 (-355 *2 *3 *4 *5)) (-4 *5 (-13 (-352 *3 *4) (-950 *3)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-693)) (-5 *4 (-1177 *2)) (-4 *5 (-258)) (-4 *6 (-903 *5)) - (-4 *2 (-13 (-351 *6 *7) (-949 *6))) (-5 *1 (-354 *5 *6 *7 *2)) - (-4 *7 (-1153 *6))))) + (-12 (-5 *3 (-694)) (-5 *4 (-1178 *2)) (-4 *5 (-258)) (-4 *6 (-904 *5)) + (-4 *2 (-13 (-352 *6 *7) (-950 *6))) (-5 *1 (-355 *5 *6 *7 *2)) + (-4 *7 (-1154 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-1177 *1)) (-4 *1 (-320 *4 *5)) (-4 *4 (-146)) - (-4 *5 (-1153 *4)) (-5 *2 (-629 *4)))) + (-12 (-5 *3 (-1178 *1)) (-4 *1 (-321 *4 *5)) (-4 *4 (-146)) + (-4 *5 (-1154 *4)) (-5 *2 (-630 *4)))) ((*1 *2) - (-12 (-4 *4 (-146)) (-4 *5 (-1153 *4)) (-5 *2 (-629 *4)) - (-5 *1 (-350 *3 *4 *5)) (-4 *3 (-351 *4 *5)))) + (-12 (-4 *4 (-146)) (-4 *5 (-1154 *4)) (-5 *2 (-630 *4)) + (-5 *1 (-351 *3 *4 *5)) (-4 *3 (-352 *4 *5)))) ((*1 *2) - (-12 (-4 *1 (-351 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1153 *3)) - (-5 *2 (-629 *3))))) + (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1154 *3)) + (-5 *2 (-630 *3))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-1177 *1)) (-4 *1 (-320 *4 *5)) (-4 *4 (-146)) - (-4 *5 (-1153 *4)) (-5 *2 (-629 *4)))) + (-12 (-5 *3 (-1178 *1)) (-4 *1 (-321 *4 *5)) (-4 *4 (-146)) + (-4 *5 (-1154 *4)) (-5 *2 (-630 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-351 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1153 *3)) - (-5 *2 (-629 *3))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-483)) (-5 *1 (-346 *2)) (-4 *2 (-494))))) + (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1154 *3)) + (-5 *2 (-630 *3))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-484)) (-5 *1 (-347 *2)) (-4 *2 (-495))))) (((*1 *2 *1) - (-12 (-5 *2 (-582 (-2 (|:| |gen| *3) (|:| -3941 (-483))))) (-5 *1 (-310 *3)) - (-4 *3 (-1012)))) + (-12 (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -3942 (-484))))) (-5 *1 (-310 *3)) + (-4 *3 (-1013)))) ((*1 *2 *1) - (-12 (-4 *1 (-334 *3)) (-4 *3 (-1012)) - (-5 *2 (-582 (-2 (|:| |gen| *3) (|:| -3941 (-693))))))) + (-12 (-4 *1 (-335 *3)) (-4 *3 (-1013)) + (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -3942 (-694))))))) ((*1 *2 *1) - (-12 (-5 *2 (-582 (-2 (|:| -3730 *3) (|:| -2400 (-483))))) (-5 *1 (-346 *3)) - (-4 *3 (-494))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-483)) (-5 *1 (-346 *2)) (-4 *2 (-494))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-346 *3)) (-4 *3 (-494))))) + (-12 (-5 *2 (-583 (-2 (|:| -3731 *3) (|:| -2401 (-484))))) (-5 *1 (-347 *3)) + (-4 *3 (-495))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-484)) (-5 *1 (-347 *2)) (-4 *2 (-495))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-347 *3)) (-4 *3 (-495))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-483)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) - (-5 *1 (-346 *4)) (-4 *4 (-494))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-483)) (-5 *1 (-346 *2)) (-4 *2 (-494))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-483)) (-5 *1 (-346 *2)) (-4 *2 (-494))))) + (-12 (-5 *3 (-484)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) + (-5 *1 (-347 *4)) (-4 *4 (-495))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-484)) (-5 *1 (-347 *2)) (-4 *2 (-495))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-484)) (-5 *1 (-347 *2)) (-4 *2 (-495))))) (((*1 *1 *2 *3 *4) - (-12 (-5 *3 (-483)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) - (-5 *1 (-346 *2)) (-4 *2 (-494))))) -(((*1 *1 *2) (-12 (-5 *2 (-582 (-328))) (-5 *1 (-221)))) - ((*1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-494)) (-4 *2 (-146)))) - ((*1 *2 *1) (-12 (-5 *1 (-346 *2)) (-4 *2 (-494))))) -(((*1 *1 *1) (-12 (-5 *1 (-346 *2)) (-4 *2 (-494))))) -(((*1 *2 *1) (-12 (-4 *1 (-345)) (-5 *2 (-483))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-693)) (-5 *3 (-85)) (-5 *1 (-81)))) - ((*1 *2 *2) (-12 (-5 *2 (-829)) (|has| *1 (-6 -3984)) (-4 *1 (-345)))) - ((*1 *2) (-12 (-4 *1 (-345)) (-5 *2 (-829))))) -(((*1 *2 *2) (-12 (-5 *2 (-829)) (|has| *1 (-6 -3984)) (-4 *1 (-345)))) - ((*1 *2) (-12 (-4 *1 (-345)) (-5 *2 (-829))))) -(((*1 *2 *3) - (-12 (-5 *3 (-483)) (|has| *1 (-6 -3984)) (-4 *1 (-345)) (-5 *2 (-829))))) -(((*1 *2 *3) - (-12 (-5 *3 (-483)) (|has| *1 (-6 -3984)) (-4 *1 (-345)) (-5 *2 (-829))))) -(((*1 *2 *1) (-12 (-4 *1 (-299)) (-5 *2 (-693)))) - ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-343)) (-5 *2 (-693))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-343)) (-5 *2 (-693)))) - ((*1 *1 *1) (-4 *1 (-343)))) + (-12 (-5 *3 (-484)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) + (-5 *1 (-347 *2)) (-4 *2 (-495))))) +(((*1 *1 *2) (-12 (-5 *2 (-583 (-329))) (-5 *1 (-221)))) + ((*1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-495)) (-4 *2 (-146)))) + ((*1 *2 *1) (-12 (-5 *1 (-347 *2)) (-4 *2 (-495))))) +(((*1 *1 *1) (-12 (-5 *1 (-347 *2)) (-4 *2 (-495))))) +(((*1 *2 *1) (-12 (-4 *1 (-346)) (-5 *2 (-484))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-694)) (-5 *3 (-85)) (-5 *1 (-81)))) + ((*1 *2 *2) (-12 (-5 *2 (-830)) (|has| *1 (-6 -3985)) (-4 *1 (-346)))) + ((*1 *2) (-12 (-4 *1 (-346)) (-5 *2 (-830))))) +(((*1 *2 *2) (-12 (-5 *2 (-830)) (|has| *1 (-6 -3985)) (-4 *1 (-346)))) + ((*1 *2) (-12 (-4 *1 (-346)) (-5 *2 (-830))))) +(((*1 *2 *3) + (-12 (-5 *3 (-484)) (|has| *1 (-6 -3985)) (-4 *1 (-346)) (-5 *2 (-830))))) +(((*1 *2 *3) + (-12 (-5 *3 (-484)) (|has| *1 (-6 -3985)) (-4 *1 (-346)) (-5 *2 (-830))))) +(((*1 *2 *1) (-12 (-4 *1 (-299)) (-5 *2 (-694)))) + ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-344)) (-5 *2 (-694))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-344)) (-5 *2 (-694)))) + ((*1 *1 *1) (-4 *1 (-344)))) (((*1 *1 *2) - (-12 (-5 *2 (-348 *4)) (-4 *4 (-1153 *3)) (-4 *3 (-13 (-312) (-120))) - (-5 *1 (-340 *3 *4))))) + (-12 (-5 *2 (-349 *4)) (-4 *4 (-1154 *3)) (-4 *3 (-13 (-312) (-120))) + (-5 *1 (-341 *3 *4))))) (((*1 *2 *1) - (-12 (-4 *2 (-1153 *3)) (-5 *1 (-340 *3 *2)) (-4 *3 (-13 (-312) (-120)))))) + (-12 (-4 *2 (-1154 *3)) (-5 *1 (-341 *3 *2)) (-4 *3 (-13 (-312) (-120)))))) (((*1 *2 *1) (-12 (-4 *3 (-13 (-312) (-120))) - (-5 *2 (-582 (-2 (|:| -2400 (-693)) (|:| -3771 *4) (|:| |num| *4)))) - (-5 *1 (-340 *3 *4)) (-4 *4 (-1153 *3))))) + (-5 *2 (-583 (-2 (|:| -2401 (-694)) (|:| -3772 *4) (|:| |num| *4)))) + (-5 *1 (-341 *3 *4)) (-4 *4 (-1154 *3))))) (((*1 *2 *1) - (-12 (-5 *2 (-771)) (-5 *1 (-338 *3 *4 *5)) (-14 *3 (-693)) (-14 *4 (-693)) + (-12 (-5 *2 (-772)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-694)) (-14 *4 (-694)) (-4 *5 (-146))))) (((*1 *2 *1) - (-12 (-5 *2 (-771)) (-5 *1 (-338 *3 *4 *5)) (-14 *3 (-693)) (-14 *4 (-693)) + (-12 (-5 *2 (-772)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-694)) (-14 *4 (-694)) (-4 *5 (-146))))) -(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1071)) (-4 *1 (-337))))) -(((*1 *2 *1) (-12 (-4 *1 (-337)) (-5 *2 (-1071))))) -(((*1 *2 *1) (-12 (-4 *1 (-337)) (-5 *2 (-1071))))) -(((*1 *2 *1) (-12 (-4 *1 (-337)) (-5 *2 (-85))))) -(((*1 *2 *1) (-12 (-4 *1 (-337)) (-5 *2 (-85))))) -(((*1 *2 *1) (-12 (-4 *1 (-337)) (-5 *2 (-85))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-334 *2)) (-4 *2 (-1012))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-334 *2)) (-4 *2 (-1012))))) +(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1072)) (-4 *1 (-338))))) +(((*1 *2 *1) (-12 (-4 *1 (-338)) (-5 *2 (-1072))))) +(((*1 *2 *1) (-12 (-4 *1 (-338)) (-5 *2 (-1072))))) +(((*1 *2 *1) (-12 (-4 *1 (-338)) (-5 *2 (-85))))) +(((*1 *2 *1) (-12 (-4 *1 (-338)) (-5 *2 (-85))))) +(((*1 *2 *1) (-12 (-4 *1 (-338)) (-5 *2 (-85))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-335 *2)) (-4 *2 (-1013))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-335 *2)) (-4 *2 (-1013))))) (((*1 *2 *1 *1) - (-12 (-4 *3 (-1012)) (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1))) - (-4 *1 (-334 *3))))) + (-12 (-4 *3 (-1013)) (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1))) + (-4 *1 (-335 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-333 *3 *4)) (-4 *3 (-960)) (-4 *4 (-1012)) + (-12 (-4 *1 (-334 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1013)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3)))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-582 (-348 (-856 (-483))))) (-5 *4 (-582 (-1088))) - (-5 *2 (-582 (-582 *5))) (-5 *1 (-330 *5)) (-4 *5 (-13 (-754) (-312))))) + (-12 (-5 *3 (-583 (-349 (-857 (-484))))) (-5 *4 (-583 (-1089))) + (-5 *2 (-583 (-583 *5))) (-5 *1 (-331 *5)) (-4 *5 (-13 (-755) (-312))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-348 (-856 (-483)))) (-5 *2 (-582 *4)) (-5 *1 (-330 *4)) - (-4 *4 (-13 (-754) (-312)))))) + (-12 (-5 *3 (-349 (-857 (-484)))) (-5 *2 (-583 *4)) (-5 *1 (-331 *4)) + (-4 *4 (-13 (-755) (-312)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-348 (-856 (-142 (-483))))) (-5 *2 (-582 (-142 *4))) - (-5 *1 (-329 *4)) (-4 *4 (-13 (-312) (-754))))) + (-12 (-5 *3 (-349 (-857 (-142 (-484))))) (-5 *2 (-583 (-142 *4))) + (-5 *1 (-330 *4)) (-4 *4 (-13 (-312) (-755))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-582 (-348 (-856 (-142 (-483)))))) (-5 *4 (-582 (-1088))) - (-5 *2 (-582 (-582 (-142 *5)))) (-5 *1 (-329 *5)) - (-4 *5 (-13 (-312) (-754)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-582 (-348 (-856 (-142 (-483)))))) - (-5 *2 (-582 (-582 (-249 (-856 (-142 *4)))))) (-5 *1 (-329 *4)) - (-4 *4 (-13 (-312) (-754))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-582 (-249 (-348 (-856 (-142 (-483))))))) - (-5 *2 (-582 (-582 (-249 (-856 (-142 *4)))))) (-5 *1 (-329 *4)) - (-4 *4 (-13 (-312) (-754))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-348 (-856 (-142 (-483))))) - (-5 *2 (-582 (-249 (-856 (-142 *4))))) (-5 *1 (-329 *4)) - (-4 *4 (-13 (-312) (-754))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-249 (-348 (-856 (-142 (-483)))))) - (-5 *2 (-582 (-249 (-856 (-142 *4))))) (-5 *1 (-329 *4)) - (-4 *4 (-13 (-312) (-754)))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-483)) (-5 *1 (-328))))) -(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-693)) (-5 *2 (-348 (-483))) (-5 *1 (-179)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-693)) (-5 *2 (-348 (-483))) (-5 *1 (-179)))) - ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-693)) (-5 *2 (-348 (-483))) (-5 *1 (-328)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-693)) (-5 *2 (-348 (-483))) (-5 *1 (-328))))) -(((*1 *1 *1) (-5 *1 (-179))) ((*1 *1 *1) (-5 *1 (-328))) - ((*1 *1) (-5 *1 (-328)))) -(((*1 *1 *1) (-5 *1 (-179))) ((*1 *1 *1) (-5 *1 (-328))) - ((*1 *1) (-5 *1 (-328)))) -(((*1 *1) (-5 *1 (-179))) ((*1 *1) (-5 *1 (-328)))) -(((*1 *2 *3) (-12 (-5 *3 (-693)) (-5 *2 (-1183)) (-5 *1 (-328)))) - ((*1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-328))))) -(((*1 *2 *3) (-12 (-5 *3 (-693)) (-5 *2 (-1183)) (-5 *1 (-328)))) - ((*1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-328))))) -(((*1 *2 *3) (-12 (-5 *3 (-693)) (-5 *2 (-1183)) (-5 *1 (-328)))) - ((*1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-328))))) -(((*1 *2 *3) (-12 (-5 *3 (-693)) (-5 *2 (-1183)) (-5 *1 (-328))))) + (-12 (-5 *3 (-583 (-349 (-857 (-142 (-484)))))) (-5 *4 (-583 (-1089))) + (-5 *2 (-583 (-583 (-142 *5)))) (-5 *1 (-330 *5)) + (-4 *5 (-13 (-312) (-755)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-583 (-349 (-857 (-142 (-484)))))) + (-5 *2 (-583 (-583 (-249 (-857 (-142 *4)))))) (-5 *1 (-330 *4)) + (-4 *4 (-13 (-312) (-755))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-583 (-249 (-349 (-857 (-142 (-484))))))) + (-5 *2 (-583 (-583 (-249 (-857 (-142 *4)))))) (-5 *1 (-330 *4)) + (-4 *4 (-13 (-312) (-755))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-349 (-857 (-142 (-484))))) + (-5 *2 (-583 (-249 (-857 (-142 *4))))) (-5 *1 (-330 *4)) + (-4 *4 (-13 (-312) (-755))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-249 (-349 (-857 (-142 (-484)))))) + (-5 *2 (-583 (-249 (-857 (-142 *4))))) (-5 *1 (-330 *4)) + (-4 *4 (-13 (-312) (-755)))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-484)) (-5 *1 (-329))))) +(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-694)) (-5 *2 (-349 (-484))) (-5 *1 (-179)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-5 *2 (-349 (-484))) (-5 *1 (-179)))) + ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-694)) (-5 *2 (-349 (-484))) (-5 *1 (-329)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-5 *2 (-349 (-484))) (-5 *1 (-329))))) +(((*1 *1 *1) (-5 *1 (-179))) ((*1 *1 *1) (-5 *1 (-329))) + ((*1 *1) (-5 *1 (-329)))) +(((*1 *1 *1) (-5 *1 (-179))) ((*1 *1 *1) (-5 *1 (-329))) + ((*1 *1) (-5 *1 (-329)))) +(((*1 *1) (-5 *1 (-179))) ((*1 *1) (-5 *1 (-329)))) +(((*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1184)) (-5 *1 (-329)))) + ((*1 *2) (-12 (-5 *2 (-1184)) (-5 *1 (-329))))) +(((*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1184)) (-5 *1 (-329)))) + ((*1 *2) (-12 (-5 *2 (-1184)) (-5 *1 (-329))))) +(((*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1184)) (-5 *1 (-329)))) + ((*1 *2) (-12 (-5 *2 (-1184)) (-5 *1 (-329))))) +(((*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1184)) (-5 *1 (-329))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1127)) (-5 *1 (-325 *4 *2)) - (-4 *2 (-13 (-322 *4) (-10 -7 (-6 -3994))))))) + (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1128)) (-5 *1 (-326 *4 *2)) + (-4 *2 (-13 (-323 *4) (-10 -7 (-6 -3995))))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1127)) (-5 *1 (-325 *4 *2)) - (-4 *2 (-13 (-322 *4) (-10 -7 (-6 -3994))))))) + (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1128)) (-5 *1 (-326 *4 *2)) + (-4 *2 (-13 (-323 *4) (-10 -7 (-6 -3995))))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1127)) (-5 *1 (-325 *4 *2)) - (-4 *2 (-13 (-322 *4) (-10 -7 (-6 -3994))))))) + (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1128)) (-5 *1 (-326 *4 *2)) + (-4 *2 (-13 (-323 *4) (-10 -7 (-6 -3995))))))) (((*1 *1 *2) - (-12 (-5 *2 (-613 *3)) (-4 *3 (-755)) (-4 *1 (-324 *3 *4)) (-4 *4 (-146))))) + (-12 (-5 *2 (-614 *3)) (-4 *3 (-756)) (-4 *1 (-325 *3 *4)) (-4 *4 (-146))))) (((*1 *2 *1) - (-12 (-4 *1 (-322 *3)) (-4 *3 (-1127)) (-4 *3 (-755)) (-5 *2 (-85)))) + (-12 (-4 *1 (-323 *3)) (-4 *3 (-1128)) (-4 *3 (-756)) (-5 *2 (-85)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *1 (-322 *4)) (-4 *4 (-1127)) + (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *1 (-323 *4)) (-4 *4 (-1128)) (-5 *2 (-85))))) (((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-483)) (|has| *1 (-6 -3994)) (-4 *1 (-322 *3)) (-4 *3 (-1127))))) + (-12 (-5 *2 (-484)) (|has| *1 (-6 -3995)) (-4 *1 (-323 *3)) (-4 *3 (-1128))))) (((*1 *1 *1) - (-12 (|has| *1 (-6 -3994)) (-4 *1 (-322 *2)) (-4 *2 (-1127)) (-4 *2 (-755)))) + (-12 (|has| *1 (-6 -3995)) (-4 *1 (-323 *2)) (-4 *2 (-1128)) (-4 *2 (-756)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-85) *3 *3)) (|has| *1 (-6 -3994)) (-4 *1 (-322 *3)) - (-4 *3 (-1127))))) -(((*1 *2) (-12 (-4 *3 (-146)) (-5 *2 (-1177 *1)) (-4 *1 (-316 *3))))) + (-12 (-5 *2 (-1 (-85) *3 *3)) (|has| *1 (-6 -3995)) (-4 *1 (-323 *3)) + (-4 *3 (-1128))))) +(((*1 *2) (-12 (-4 *3 (-146)) (-5 *2 (-1178 *1)) (-4 *1 (-316 *3))))) (((*1 *2 *1) (-12 (-4 *1 (-316 *2)) (-4 *2 (-146))))) (((*1 *2 *1) (-12 (-4 *1 (-316 *2)) (-4 *2 (-146))))) (((*1 *2 *1) (-12 (-4 *1 (-316 *2)) (-4 *2 (-146))))) (((*1 *2 *1) (-12 (-4 *1 (-316 *2)) (-4 *2 (-146))))) -(((*1 *2 *1) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-1083 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-1083 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-1084 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-1084 *3))))) (((*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) ((*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85))))) @@ -11984,1176 +11996,1176 @@ (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) ((*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85))))) (((*1 *2) - (-12 (-4 *4 (-146)) (-5 *2 (-582 (-1177 *4))) (-5 *1 (-315 *3 *4)) + (-12 (-4 *4 (-146)) (-5 *2 (-583 (-1178 *4))) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) ((*1 *2) - (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-4 *3 (-494)) - (-5 *2 (-582 (-1177 *3)))))) + (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-4 *3 (-495)) + (-5 *2 (-583 (-1178 *3)))))) (((*1 *2 *1) - (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-4 *3 (-494)) (-5 *2 (-1083 *3))))) + (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-4 *3 (-495)) (-5 *2 (-1084 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-4 *3 (-494)) (-5 *2 (-1083 *3))))) -(((*1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-494)) (-4 *2 (-146))))) -(((*1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-494)) (-4 *2 (-146))))) + (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-4 *3 (-495)) (-5 *2 (-1084 *3))))) +(((*1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-495)) (-4 *2 (-146))))) +(((*1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-495)) (-4 *2 (-146))))) (((*1 *1 *2 *3) - (-12 (-5 *3 (-1071)) (-4 *1 (-314 *2 *4)) (-4 *2 (-1012)) (-4 *4 (-1012)))) - ((*1 *1 *2) (-12 (-4 *1 (-314 *2 *3)) (-4 *2 (-1012)) (-4 *3 (-1012))))) + (-12 (-5 *3 (-1072)) (-4 *1 (-314 *2 *4)) (-4 *2 (-1013)) (-4 *4 (-1013)))) + ((*1 *1 *2) (-12 (-4 *1 (-314 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-1071)) (-4 *1 (-314 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1012))))) + (-12 (-5 *2 (-1072)) (-4 *1 (-314 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013))))) (((*1 *1 *1) (-4 *1 (-147))) - ((*1 *1 *1) (-12 (-4 *1 (-314 *2 *3)) (-4 *2 (-1012)) (-4 *3 (-1012))))) + ((*1 *1 *1) (-12 (-4 *1 (-314 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013))))) (((*1 *2 *1) - (-12 (-4 *1 (-314 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1012)) (-5 *2 (-1071))))) -(((*1 *2 *1) (-12 (-4 *1 (-314 *3 *2)) (-4 *3 (-1012)) (-4 *2 (-1012))))) -(((*1 *2 *1 *2) (-12 (-4 *1 (-314 *3 *2)) (-4 *3 (-1012)) (-4 *2 (-1012))))) + (-12 (-4 *1 (-314 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-5 *2 (-1072))))) +(((*1 *2 *1) (-12 (-4 *1 (-314 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1013))))) +(((*1 *2 *1 *2) (-12 (-4 *1 (-314 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1013))))) (((*1 *2 *3) - (-12 (-5 *3 (-1083 *4)) (-4 *4 (-299)) + (-12 (-5 *3 (-1084 *4)) (-4 *4 (-299)) (-4 *2 - (-13 (-343) - (-10 -7 (-15 -3944 (*2 *4)) (-15 -2009 ((-829) *2)) - (-15 -2011 ((-1177 *2) (-829))) (-15 -3926 (*2 *2))))) + (-13 (-344) + (-10 -7 (-15 -3945 (*2 *4)) (-15 -2010 ((-830) *2)) + (-15 -2012 ((-1178 *2) (-830))) (-15 -3927 (*2 *2))))) (-5 *1 (-306 *2 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-299)) (-5 *2 (-868 (-1083 *4))) (-5 *1 (-305 *4)) - (-5 *3 (-1083 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3))))) + (-12 (-4 *4 (-299)) (-5 *2 (-869 (-1084 *4))) (-5 *1 (-305 *4)) + (-5 *3 (-1084 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-1084 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-1083 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3))))) + (|partial| -12 (-5 *2 (-1084 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-1083 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3))))) + (|partial| -12 (-5 *2 (-1084 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-1083 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3))))) + (|partial| -12 (-5 *2 (-1084 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-1083 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3))))) + (|partial| -12 (-5 *2 (-1084 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-1083 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3))))) + (|partial| -12 (-5 *2 (-1084 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-829)) (-5 *2 (-1083 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299))))) + (-12 (-5 *3 (-830)) (-5 *2 (-1084 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299))))) (((*1 *2 *3) - (-12 (-5 *3 (-829)) (-5 *2 (-1083 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299))))) + (-12 (-5 *3 (-830)) (-5 *2 (-1084 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299))))) (((*1 *2 *3) - (-12 (-5 *3 (-829)) (-5 *2 (-1083 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299))))) + (-12 (-5 *3 (-830)) (-5 *2 (-1084 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299))))) (((*1 *2 *3) - (-12 (-5 *3 (-829)) (-5 *2 (-1083 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299))))) + (-12 (-5 *3 (-830)) (-5 *2 (-1084 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299))))) (((*1 *2 *3) - (-12 (-5 *3 (-829)) (-5 *2 (-1083 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299))))) -(((*1 *2 *2) (-12 (-5 *2 (-829)) (-5 *1 (-305 *3)) (-4 *3 (-299))))) -(((*1 *2 *2) (-12 (-5 *2 (-829)) (-5 *1 (-305 *3)) (-4 *3 (-299))))) -(((*1 *2 *2) (-12 (-5 *2 (-829)) (-5 *1 (-305 *3)) (-4 *3 (-299))))) + (-12 (-5 *3 (-830)) (-5 *2 (-1084 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299))))) +(((*1 *2 *2) (-12 (-5 *2 (-830)) (-5 *1 (-305 *3)) (-4 *3 (-299))))) +(((*1 *2 *2) (-12 (-5 *2 (-830)) (-5 *1 (-305 *3)) (-4 *3 (-299))))) +(((*1 *2 *2) (-12 (-5 *2 (-830)) (-5 *1 (-305 *3)) (-4 *3 (-299))))) (((*1 *2 *1) (-12 (-4 *1 (-299)) (-5 *2 (-85)))) ((*1 *2 *3) - (-12 (-5 *3 (-1083 *4)) (-4 *4 (-299)) (-5 *2 (-85)) (-5 *1 (-305 *4))))) + (-12 (-5 *3 (-1084 *4)) (-4 *4 (-299)) (-5 *2 (-85)) (-5 *1 (-305 *4))))) (((*1 *2) - (-12 (-5 *2 (-1177 (-582 (-2 (|:| -3400 (-816 *3)) (|:| -2399 (-1032)))))) - (-5 *1 (-301 *3 *4)) (-14 *3 (-829)) (-14 *4 (-829)))) + (-12 (-5 *2 (-1178 (-583 (-2 (|:| -3401 (-817 *3)) (|:| -2400 (-1033)))))) + (-5 *1 (-301 *3 *4)) (-14 *3 (-830)) (-14 *4 (-830)))) ((*1 *2) - (-12 (-5 *2 (-1177 (-582 (-2 (|:| -3400 *3) (|:| -2399 (-1032)))))) - (-5 *1 (-302 *3 *4)) (-4 *3 (-299)) (-14 *4 (-3 (-1083 *3) *2)))) + (-12 (-5 *2 (-1178 (-583 (-2 (|:| -3401 *3) (|:| -2400 (-1033)))))) + (-5 *1 (-302 *3 *4)) (-4 *3 (-299)) (-14 *4 (-3 (-1084 *3) *2)))) ((*1 *2) - (-12 (-5 *2 (-1177 (-582 (-2 (|:| -3400 *3) (|:| -2399 (-1032)))))) - (-5 *1 (-303 *3 *4)) (-4 *3 (-299)) (-14 *4 (-829))))) + (-12 (-5 *2 (-1178 (-583 (-2 (|:| -3401 *3) (|:| -2400 (-1033)))))) + (-5 *1 (-303 *3 *4)) (-4 *3 (-299)) (-14 *4 (-830))))) (((*1 *2) - (-12 (-5 *2 (-629 (-816 *3))) (-5 *1 (-301 *3 *4)) (-14 *3 (-829)) - (-14 *4 (-829)))) + (-12 (-5 *2 (-630 (-817 *3))) (-5 *1 (-301 *3 *4)) (-14 *3 (-830)) + (-14 *4 (-830)))) ((*1 *2) - (-12 (-5 *2 (-629 *3)) (-5 *1 (-302 *3 *4)) (-4 *3 (-299)) + (-12 (-5 *2 (-630 *3)) (-5 *1 (-302 *3 *4)) (-4 *3 (-299)) (-14 *4 - (-3 (-1083 *3) (-1177 (-582 (-2 (|:| -3400 *3) (|:| -2399 (-1032))))))))) + (-3 (-1084 *3) (-1178 (-583 (-2 (|:| -3401 *3) (|:| -2400 (-1033))))))))) ((*1 *2) - (-12 (-5 *2 (-629 *3)) (-5 *1 (-303 *3 *4)) (-4 *3 (-299)) (-14 *4 (-829))))) + (-12 (-5 *2 (-630 *3)) (-5 *1 (-303 *3 *4)) (-4 *3 (-299)) (-14 *4 (-830))))) (((*1 *2 *3) - (-12 (-5 *3 (-1177 (-582 (-2 (|:| -3400 *4) (|:| -2399 (-1032)))))) - (-4 *4 (-299)) (-5 *2 (-693)) (-5 *1 (-296 *4)))) + (-12 (-5 *3 (-1178 (-583 (-2 (|:| -3401 *4) (|:| -2400 (-1033)))))) + (-4 *4 (-299)) (-5 *2 (-694)) (-5 *1 (-296 *4)))) ((*1 *2) - (-12 (-5 *2 (-693)) (-5 *1 (-301 *3 *4)) (-14 *3 (-829)) (-14 *4 (-829)))) + (-12 (-5 *2 (-694)) (-5 *1 (-301 *3 *4)) (-14 *3 (-830)) (-14 *4 (-830)))) ((*1 *2) - (-12 (-5 *2 (-693)) (-5 *1 (-302 *3 *4)) (-4 *3 (-299)) + (-12 (-5 *2 (-694)) (-5 *1 (-302 *3 *4)) (-4 *3 (-299)) (-14 *4 - (-3 (-1083 *3) (-1177 (-582 (-2 (|:| -3400 *3) (|:| -2399 (-1032))))))))) + (-3 (-1084 *3) (-1178 (-583 (-2 (|:| -3401 *3) (|:| -2400 (-1033))))))))) ((*1 *2) - (-12 (-5 *2 (-693)) (-5 *1 (-303 *3 *4)) (-4 *3 (-299)) (-14 *4 (-829))))) + (-12 (-5 *2 (-694)) (-5 *1 (-303 *3 *4)) (-4 *3 (-299)) (-14 *4 (-830))))) (((*1 *2) (-12 (-4 *1 (-299)) - (-5 *2 (-582 (-2 (|:| -3730 (-483)) (|:| -2400 (-483)))))))) -(((*1 *2 *3) (-12 (-4 *1 (-299)) (-5 *3 (-483)) (-5 *2 (-1100 (-829) (-693)))))) + (-5 *2 (-583 (-2 (|:| -3731 (-484)) (|:| -2401 (-484)))))))) +(((*1 *2 *3) (-12 (-4 *1 (-299)) (-5 *3 (-484)) (-5 *2 (-1101 (-830) (-694)))))) (((*1 *1) (-4 *1 (-299)))) (((*1 *2) (-12 (-4 *1 (-299)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) (((*1 *2 *3) - (-12 (-5 *3 (-829)) + (-12 (-5 *3 (-830)) (-5 *2 - (-3 (-1083 *4) (-1177 (-582 (-2 (|:| -3400 *4) (|:| -2399 (-1032))))))) + (-3 (-1084 *4) (-1178 (-583 (-2 (|:| -3401 *4) (|:| -2400 (-1033))))))) (-5 *1 (-296 *4)) (-4 *4 (-299))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-829)) - (-5 *2 (-1177 (-582 (-2 (|:| -3400 *4) (|:| -2399 (-1032)))))) + (|partial| -12 (-5 *3 (-830)) + (-5 *2 (-1178 (-583 (-2 (|:| -3401 *4) (|:| -2400 (-1033)))))) (-5 *1 (-296 *4)) (-4 *4 (-299))))) (((*1 *2 *3) - (-12 (-5 *3 (-1177 (-582 (-2 (|:| -3400 *4) (|:| -2399 (-1032)))))) - (-4 *4 (-299)) (-5 *2 (-629 *4)) (-5 *1 (-296 *4))))) + (-12 (-5 *3 (-1178 (-583 (-2 (|:| -3401 *4) (|:| -2400 (-1033)))))) + (-4 *4 (-299)) (-5 *2 (-630 *4)) (-5 *1 (-296 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1083 *4)) (-4 *4 (-299)) - (-5 *2 (-1177 (-582 (-2 (|:| -3400 *4) (|:| -2399 (-1032)))))) + (-12 (-5 *3 (-1084 *4)) (-4 *4 (-299)) + (-5 *2 (-1178 (-583 (-2 (|:| -3401 *4) (|:| -2400 (-1033)))))) (-5 *1 (-296 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1083 *4)) (-4 *4 (-299)) (-5 *2 (-868 (-1032))) + (-12 (-5 *3 (-1084 *4)) (-4 *4 (-299)) (-5 *2 (-869 (-1033))) (-5 *1 (-296 *4))))) (((*1 *2) - (-12 (-5 *2 (-868 (-1032))) (-5 *1 (-293 *3 *4)) (-14 *3 (-829)) - (-14 *4 (-829)))) + (-12 (-5 *2 (-869 (-1033))) (-5 *1 (-293 *3 *4)) (-14 *3 (-830)) + (-14 *4 (-830)))) ((*1 *2) - (-12 (-5 *2 (-868 (-1032))) (-5 *1 (-294 *3 *4)) (-4 *3 (-299)) - (-14 *4 (-1083 *3)))) + (-12 (-5 *2 (-869 (-1033))) (-5 *1 (-294 *3 *4)) (-4 *3 (-299)) + (-14 *4 (-1084 *3)))) ((*1 *2) - (-12 (-5 *2 (-868 (-1032))) (-5 *1 (-295 *3 *4)) (-4 *3 (-299)) - (-14 *4 (-829))))) + (-12 (-5 *2 (-869 (-1033))) (-5 *1 (-295 *3 *4)) (-4 *3 (-299)) + (-14 *4 (-830))))) (((*1 *2) - (-12 (-4 *4 (-1132)) (-4 *5 (-1153 *4)) (-4 *6 (-1153 (-348 *5))) - (-5 *2 (-693)) (-5 *1 (-290 *3 *4 *5 *6)) (-4 *3 (-291 *4 *5 *6)))) + (-12 (-4 *4 (-1133)) (-4 *5 (-1154 *4)) (-4 *6 (-1154 (-349 *5))) + (-5 *2 (-694)) (-5 *1 (-290 *3 *4 *5 *6)) (-4 *3 (-291 *4 *5 *6)))) ((*1 *2) - (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3)) - (-4 *5 (-1153 (-348 *4))) (-5 *2 (-693))))) + (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) + (-4 *5 (-1154 (-349 *4))) (-5 *2 (-694))))) (((*1 *2) - (-12 (-4 *4 (-1132)) (-4 *5 (-1153 *4)) (-4 *6 (-1153 (-348 *5))) + (-12 (-4 *4 (-1133)) (-4 *5 (-1154 *4)) (-4 *6 (-1154 (-349 *5))) (-5 *2 (-85)) (-5 *1 (-290 *3 *4 *5 *6)) (-4 *3 (-291 *4 *5 *6)))) ((*1 *2) - (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3)) - (-4 *5 (-1153 (-348 *4))) (-5 *2 (-85))))) + (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) + (-4 *5 (-1154 (-349 *4))) (-5 *2 (-85))))) (((*1 *2 *3 *3) - (-12 (-4 *3 (-1132)) (-4 *5 (-1153 *3)) (-4 *6 (-1153 (-348 *5))) + (-12 (-4 *3 (-1133)) (-4 *5 (-1154 *3)) (-4 *6 (-1154 (-349 *5))) (-5 *2 (-85)) (-5 *1 (-290 *4 *3 *5 *6)) (-4 *4 (-291 *3 *5 *6)))) ((*1 *2 *3 *3) - (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3)) - (-4 *5 (-1153 (-348 *4))) (-5 *2 (-85))))) + (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) + (-4 *5 (-1154 (-349 *4))) (-5 *2 (-85))))) (((*1 *2) - (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3)) - (-4 *5 (-1153 (-348 *4))) (-5 *2 (-85))))) + (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) + (-4 *5 (-1154 (-349 *4))) (-5 *2 (-85))))) (((*1 *2 *3) - (-12 (-4 *1 (-291 *4 *3 *5)) (-4 *4 (-1132)) (-4 *3 (-1153 *4)) - (-4 *5 (-1153 (-348 *3))) (-5 *2 (-85)))) + (-12 (-4 *1 (-291 *4 *3 *5)) (-4 *4 (-1133)) (-4 *3 (-1154 *4)) + (-4 *5 (-1154 (-349 *3))) (-5 *2 (-85)))) ((*1 *2 *3) - (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3)) - (-4 *5 (-1153 (-348 *4))) (-5 *2 (-85))))) + (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) + (-4 *5 (-1154 (-349 *4))) (-5 *2 (-85))))) (((*1 *2) - (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3)) - (-4 *5 (-1153 (-348 *4))) (-5 *2 (-85))))) + (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) + (-4 *5 (-1154 (-349 *4))) (-5 *2 (-85))))) (((*1 *2 *3) - (-12 (-4 *1 (-291 *4 *3 *5)) (-4 *4 (-1132)) (-4 *3 (-1153 *4)) - (-4 *5 (-1153 (-348 *3))) (-5 *2 (-85)))) + (-12 (-4 *1 (-291 *4 *3 *5)) (-4 *4 (-1133)) (-4 *3 (-1154 *4)) + (-4 *5 (-1154 (-349 *3))) (-5 *2 (-85)))) ((*1 *2 *3) - (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3)) - (-4 *5 (-1153 (-348 *4))) (-5 *2 (-85))))) + (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) + (-4 *5 (-1154 (-349 *4))) (-5 *2 (-85))))) (((*1 *2) - (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3)) - (-4 *5 (-1153 (-348 *4))) (-5 *2 (-85))))) + (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) + (-4 *5 (-1154 (-349 *4))) (-5 *2 (-85))))) (((*1 *2 *3) - (-12 (-4 *1 (-291 *4 *3 *5)) (-4 *4 (-1132)) (-4 *3 (-1153 *4)) - (-4 *5 (-1153 (-348 *3))) (-5 *2 (-85)))) + (-12 (-4 *1 (-291 *4 *3 *5)) (-4 *4 (-1133)) (-4 *3 (-1154 *4)) + (-4 *5 (-1154 (-349 *3))) (-5 *2 (-85)))) ((*1 *2 *3) - (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3)) - (-4 *5 (-1153 (-348 *4))) (-5 *2 (-85))))) + (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) + (-4 *5 (-1154 (-349 *4))) (-5 *2 (-85))))) (((*1 *2) - (-12 (-4 *3 (-1132)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-348 *4))) - (-5 *2 (-1177 *1)) (-4 *1 (-291 *3 *4 *5))))) + (-12 (-4 *3 (-1133)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-349 *4))) + (-5 *2 (-1178 *1)) (-4 *1 (-291 *3 *4 *5))))) (((*1 *2 *1) - (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3)) - (-4 *5 (-1153 (-348 *4))) (-5 *2 (-85))))) + (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) + (-4 *5 (-1154 (-349 *4))) (-5 *2 (-85))))) (((*1 *2 *1 *3) - (-12 (-4 *1 (-291 *4 *3 *5)) (-4 *4 (-1132)) (-4 *3 (-1153 *4)) - (-4 *5 (-1153 (-348 *3))) (-5 *2 (-85)))) + (-12 (-4 *1 (-291 *4 *3 *5)) (-4 *4 (-1133)) (-4 *3 (-1154 *4)) + (-4 *5 (-1154 (-349 *3))) (-5 *2 (-85)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3)) - (-4 *5 (-1153 (-348 *4))) (-5 *2 (-85)))) + (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) + (-4 *5 (-1154 (-349 *4))) (-5 *2 (-85)))) ((*1 *2 *1) - (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3)) - (-4 *5 (-1153 (-348 *4))) (-5 *2 (-85))))) + (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) + (-4 *5 (-1154 (-349 *4))) (-5 *2 (-85))))) (((*1 *2 *2) - (-12 (-5 *2 (-1177 *1)) (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1132)) - (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-348 *4)))))) + (-12 (-5 *2 (-1178 *1)) (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1133)) + (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-349 *4)))))) (((*1 *2 *2) - (-12 (-5 *2 (-1177 *1)) (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1132)) - (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-348 *4)))))) + (-12 (-5 *2 (-1178 *1)) (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1133)) + (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-349 *4)))))) (((*1 *2 *2) - (-12 (-5 *2 (-1177 *1)) (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1132)) - (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-348 *4)))))) + (-12 (-5 *2 (-1178 *1)) (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1133)) + (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-349 *4)))))) (((*1 *2) - (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3)) - (-4 *5 (-1153 (-348 *4))) (-5 *2 (-629 (-348 *4)))))) + (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) + (-4 *5 (-1154 (-349 *4))) (-5 *2 (-630 (-349 *4)))))) (((*1 *2) - (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3)) - (-4 *5 (-1153 (-348 *4))) (-5 *2 (-629 (-348 *4)))))) + (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) + (-4 *5 (-1154 (-349 *4))) (-5 *2 (-630 (-349 *4)))))) (((*1 *2) - (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3)) - (-4 *5 (-1153 (-348 *4))) (-5 *2 (-629 (-348 *4)))))) + (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) + (-4 *5 (-1154 (-349 *4))) (-5 *2 (-630 (-349 *4)))))) (((*1 *2) - (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3)) - (-4 *5 (-1153 (-348 *4))) (-5 *2 (-629 (-348 *4)))))) + (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) + (-4 *5 (-1154 (-349 *4))) (-5 *2 (-630 (-349 *4)))))) (((*1 *2 *1) - (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3)) - (-4 *5 (-1153 (-348 *4))) - (-5 *2 (-2 (|:| |num| (-1177 *4)) (|:| |den| *4)))))) + (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) + (-4 *5 (-1154 (-349 *4))) + (-5 *2 (-2 (|:| |num| (-1178 *4)) (|:| |den| *4)))))) (((*1 *2 *1) - (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3)) - (-4 *5 (-1153 (-348 *4))) - (-5 *2 (-2 (|:| |num| (-1177 *4)) (|:| |den| *4)))))) + (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) + (-4 *5 (-1154 (-349 *4))) + (-5 *2 (-2 (|:| |num| (-1178 *4)) (|:| |den| *4)))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-1177 *3)) (-4 *3 (-1153 *4)) (-4 *4 (-1132)) - (-4 *1 (-291 *4 *3 *5)) (-4 *5 (-1153 (-348 *3)))))) + (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1154 *4)) (-4 *4 (-1133)) + (-4 *1 (-291 *4 *3 *5)) (-4 *5 (-1154 (-349 *3)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-291 *4 *5 *6)) (-4 *4 (-1132)) - (-4 *5 (-1153 *4)) (-4 *6 (-1153 (-348 *5))) - (-5 *2 (-2 (|:| |num| (-629 *5)) (|:| |den| *5)))))) + (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-291 *4 *5 *6)) (-4 *4 (-1133)) + (-4 *5 (-1154 *4)) (-4 *6 (-1154 (-349 *5))) + (-5 *2 (-2 (|:| |num| (-630 *5)) (|:| |den| *5)))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-853 *3) (-853 *3))) (-5 *1 (-150 *3)) - (-4 *3 (-13 (-312) (-1113) (-914))))) + (-12 (-5 *2 (-1 (-854 *3) (-854 *3))) (-5 *1 (-150 *3)) + (-4 *3 (-13 (-312) (-1114) (-915))))) ((*1 *2) - (|partial| -12 (-4 *4 (-1132)) (-4 *5 (-1153 (-348 *2))) (-4 *2 (-1153 *4)) + (|partial| -12 (-4 *4 (-1133)) (-4 *5 (-1154 (-349 *2))) (-4 *2 (-1154 *4)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *3 (-291 *4 *2 *5)))) ((*1 *2) - (|partial| -12 (-4 *1 (-291 *3 *2 *4)) (-4 *3 (-1132)) - (-4 *4 (-1153 (-348 *2))) (-4 *2 (-1153 *3))))) + (|partial| -12 (-4 *1 (-291 *3 *2 *4)) (-4 *3 (-1133)) + (-4 *4 (-1154 (-349 *2))) (-4 *2 (-1154 *3))))) (((*1 *2) - (|partial| -12 (-4 *4 (-1132)) (-4 *5 (-1153 (-348 *2))) (-4 *2 (-1153 *4)) + (|partial| -12 (-4 *4 (-1133)) (-4 *5 (-1154 (-349 *2))) (-4 *2 (-1154 *4)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *3 (-291 *4 *2 *5)))) ((*1 *2) - (|partial| -12 (-4 *1 (-291 *3 *2 *4)) (-4 *3 (-1132)) - (-4 *4 (-1153 (-348 *2))) (-4 *2 (-1153 *3))))) + (|partial| -12 (-4 *1 (-291 *3 *2 *4)) (-4 *3 (-1133)) + (-4 *4 (-1154 (-349 *2))) (-4 *2 (-1154 *3))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1153 *4)) (-4 *4 (-1132)) - (-4 *6 (-1153 (-348 *5))) + (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1154 *4)) (-4 *4 (-1133)) + (-4 *6 (-1154 (-349 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-291 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-1088)) (-4 *5 (-1132)) (-4 *6 (-1153 *5)) - (-4 *7 (-1153 (-348 *6))) (-5 *2 (-582 (-856 *5))) + (-12 (-5 *3 (-1089)) (-4 *5 (-1133)) (-4 *6 (-1154 *5)) + (-4 *7 (-1154 (-349 *6))) (-5 *2 (-583 (-857 *5))) (-5 *1 (-290 *4 *5 *6 *7)) (-4 *4 (-291 *5 *6 *7)))) ((*1 *2 *3) - (-12 (-5 *3 (-1088)) (-4 *1 (-291 *4 *5 *6)) (-4 *4 (-1132)) - (-4 *5 (-1153 *4)) (-4 *6 (-1153 (-348 *5))) (-4 *4 (-312)) - (-5 *2 (-582 (-856 *4)))))) + (-12 (-5 *3 (-1089)) (-4 *1 (-291 *4 *5 *6)) (-4 *4 (-1133)) + (-4 *5 (-1154 *4)) (-4 *6 (-1154 (-349 *5))) (-4 *4 (-312)) + (-5 *2 (-583 (-857 *4)))))) (((*1 *2) - (-12 (-4 *4 (-1132)) (-4 *5 (-1153 *4)) (-4 *6 (-1153 (-348 *5))) - (-5 *2 (-582 (-582 *4))) (-5 *1 (-290 *3 *4 *5 *6)) + (-12 (-4 *4 (-1133)) (-4 *5 (-1154 *4)) (-4 *6 (-1154 (-349 *5))) + (-5 *2 (-583 (-583 *4))) (-5 *1 (-290 *3 *4 *5 *6)) (-4 *3 (-291 *4 *5 *6)))) ((*1 *2) - (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3)) - (-4 *5 (-1153 (-348 *4))) (-4 *3 (-318)) (-5 *2 (-582 (-582 *3)))))) + (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) + (-4 *5 (-1154 (-349 *4))) (-4 *3 (-319)) (-5 *2 (-583 (-583 *3)))))) (((*1 *1 *2 *3 *3 *3 *4) - (-12 (-4 *4 (-312)) (-4 *3 (-1153 *4)) (-4 *5 (-1153 (-348 *3))) + (-12 (-4 *4 (-312)) (-4 *3 (-1154 *4)) (-4 *5 (-1154 (-349 *3))) (-4 *1 (-286 *4 *3 *5 *2)) (-4 *2 (-291 *4 *3 *5)))) ((*1 *1 *2 *2 *3) - (-12 (-5 *3 (-483)) (-4 *2 (-312)) (-4 *4 (-1153 *2)) - (-4 *5 (-1153 (-348 *4))) (-4 *1 (-286 *2 *4 *5 *6)) + (-12 (-5 *3 (-484)) (-4 *2 (-312)) (-4 *4 (-1154 *2)) + (-4 *5 (-1154 (-349 *4))) (-4 *1 (-286 *2 *4 *5 *6)) (-4 *6 (-291 *2 *4 *5)))) ((*1 *1 *2 *2) - (-12 (-4 *2 (-312)) (-4 *3 (-1153 *2)) (-4 *4 (-1153 (-348 *3))) + (-12 (-4 *2 (-312)) (-4 *3 (-1154 *2)) (-4 *4 (-1154 (-349 *3))) (-4 *1 (-286 *2 *3 *4 *5)) (-4 *5 (-291 *2 *3 *4)))) ((*1 *1 *2) - (-12 (-4 *3 (-312)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-348 *4))) + (-12 (-4 *3 (-312)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-349 *4))) (-4 *1 (-286 *3 *4 *5 *2)) (-4 *2 (-291 *3 *4 *5)))) ((*1 *1 *2) - (-12 (-5 *2 (-354 *4 (-348 *4) *5 *6)) (-4 *4 (-1153 *3)) - (-4 *5 (-1153 (-348 *4))) (-4 *6 (-291 *3 *4 *5)) (-4 *3 (-312)) + (-12 (-5 *2 (-355 *4 (-349 *4) *5 *6)) (-4 *4 (-1154 *3)) + (-4 *5 (-1154 (-349 *4))) (-4 *6 (-291 *3 *4 *5)) (-4 *3 (-312)) (-4 *1 (-286 *3 *4 *5 *6))))) (((*1 *2 *1) - (-12 (-4 *1 (-286 *3 *4 *5 *6)) (-4 *3 (-312)) (-4 *4 (-1153 *3)) - (-4 *5 (-1153 (-348 *4))) (-4 *6 (-291 *3 *4 *5)) (-5 *2 (-85))))) + (-12 (-4 *1 (-286 *3 *4 *5 *6)) (-4 *3 (-312)) (-4 *4 (-1154 *3)) + (-4 *5 (-1154 (-349 *4))) (-4 *6 (-291 *3 *4 *5)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *3 (-312)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-348 *4))) - (-5 *2 (-1177 *6)) (-5 *1 (-283 *3 *4 *5 *6)) (-4 *6 (-291 *3 *4 *5))))) + (-12 (-4 *3 (-312)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-349 *4))) + (-5 *2 (-1178 *6)) (-5 *1 (-283 *3 *4 *5 *6)) (-4 *6 (-291 *3 *4 *5))))) (((*1 *2 *1) - (-12 (-4 *3 (-312)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-348 *4))) - (-5 *2 (-1177 *6)) (-5 *1 (-283 *3 *4 *5 *6)) (-4 *6 (-291 *3 *4 *5))))) + (-12 (-4 *3 (-312)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-349 *4))) + (-5 *2 (-1178 *6)) (-5 *1 (-283 *3 *4 *5 *6)) (-4 *6 (-291 *3 *4 *5))))) (((*1 *2 *1) (-12 (-5 *2 (-209)) (-5 *1 (-282))))) -(((*1 *2 *1) (-12 (-5 *2 (-582 (-781 (-1093) (-693)))) (-5 *1 (-282))))) -(((*1 *2 *1) (-12 (-5 *2 (-868 (-693))) (-5 *1 (-282))))) -(((*1 *2 *1) (-12 (-5 *2 (-445)) (-5 *1 (-282))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-281 *3)) (-4 *3 (-755))))) -(((*1 *1) (-12 (-4 *1 (-280 *2)) (-4 *2 (-318)) (-4 *2 (-312))))) +(((*1 *2 *1) (-12 (-5 *2 (-583 (-782 (-1094) (-694)))) (-5 *1 (-282))))) +(((*1 *2 *1) (-12 (-5 *2 (-869 (-694))) (-5 *1 (-282))))) +(((*1 *2 *1) (-12 (-5 *2 (-446)) (-5 *1 (-282))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-281 *3)) (-4 *3 (-756))))) +(((*1 *1) (-12 (-4 *1 (-280 *2)) (-4 *2 (-319)) (-4 *2 (-312))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-1083 *3)) (-4 *3 (-318)) (-4 *1 (-280 *3)) (-4 *3 (-312))))) + (-12 (-5 *2 (-1084 *3)) (-4 *3 (-319)) (-4 *1 (-280 *3)) (-4 *3 (-312))))) (((*1 *2 *1) - (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-318)) (-5 *2 (-1083 *3))))) + (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-319)) (-5 *2 (-1084 *3))))) (((*1 *2 *1 *1) - (|partial| -12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-318)) - (-5 *2 (-1083 *3)))) + (|partial| -12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-319)) + (-5 *2 (-1084 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-318)) (-5 *2 (-1083 *3))))) + (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-319)) (-5 *2 (-1084 *3))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-277 *3 *4)) (-4 *3 (-960)) (-4 *4 (-715))))) -(((*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-277 *2 *3)) (-4 *2 (-960)) (-4 *3 (-715))))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-277 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716))))) +(((*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-277 *2 *3)) (-4 *2 (-961)) (-4 *3 (-716))))) (((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-693)) (-4 *1 (-277 *3 *4)) (-4 *3 (-960)) (-4 *4 (-715)) + (-12 (-5 *2 (-694)) (-4 *1 (-277 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716)) (-4 *3 (-146))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-483)) (-4 *1 (-274 *4 *2)) (-4 *4 (-1012)) (-4 *2 (-104))))) + (-12 (-5 *3 (-484)) (-4 *1 (-274 *4 *2)) (-4 *4 (-1013)) (-4 *2 (-104))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-274 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-104))))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-274 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-104))))) (((*1 *1 *1 *1) - (-12 (-4 *1 (-274 *2 *3)) (-4 *2 (-1012)) (-4 *3 (-104)) (-4 *3 (-715))))) + (-12 (-4 *1 (-274 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-104)) (-4 *3 (-716))))) (((*1 *2 *3) - (-12 (-5 *3 (-483)) (-4 *4 (-716)) (-4 *5 (-755)) (-4 *2 (-960)) - (-5 *1 (-272 *4 *5 *2 *6)) (-4 *6 (-860 *2 *4 *5))))) + (-12 (-5 *3 (-484)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *2 (-961)) + (-5 *1 (-272 *4 *5 *2 *6)) (-4 *6 (-861 *2 *4 *5))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-1083 *7)) (-5 *3 (-483)) (-4 *7 (-860 *6 *4 *5)) (-4 *4 (-716)) - (-4 *5 (-755)) (-4 *6 (-960)) (-5 *1 (-272 *4 *5 *6 *7))))) + (-12 (-5 *2 (-1084 *7)) (-5 *3 (-484)) (-4 *7 (-861 *6 *4 *5)) (-4 *4 (-717)) + (-4 *5 (-756)) (-4 *6 (-961)) (-5 *1 (-272 *4 *5 *6 *7))))) (((*1 *2 *3) - (-12 (-5 *3 (-1083 *6)) (-4 *6 (-960)) (-4 *4 (-716)) (-4 *5 (-755)) - (-5 *2 (-1083 *7)) (-5 *1 (-272 *4 *5 *6 *7)) (-4 *7 (-860 *6 *4 *5))))) + (-12 (-5 *3 (-1084 *6)) (-4 *6 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) + (-5 *2 (-1084 *7)) (-5 *1 (-272 *4 *5 *6 *7)) (-4 *7 (-861 *6 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1083 *7)) (-4 *7 (-860 *6 *4 *5)) (-4 *4 (-716)) (-4 *5 (-755)) - (-4 *6 (-960)) (-5 *2 (-1083 *6)) (-5 *1 (-272 *4 *5 *6 *7))))) + (-12 (-5 *3 (-1084 *7)) (-4 *7 (-861 *6 *4 *5)) (-4 *4 (-717)) (-4 *5 (-756)) + (-4 *6 (-961)) (-5 *2 (-1084 *6)) (-5 *1 (-272 *4 *5 *6 *7))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1083 *9)) (-5 *4 (-582 *7)) (-5 *5 (-582 *8)) (-4 *7 (-755)) - (-4 *8 (-960)) (-4 *9 (-860 *8 *6 *7)) (-4 *6 (-716)) (-5 *2 (-1083 *8)) + (-12 (-5 *3 (-1084 *9)) (-5 *4 (-583 *7)) (-5 *5 (-583 *8)) (-4 *7 (-756)) + (-4 *8 (-961)) (-4 *9 (-861 *8 *6 *7)) (-4 *6 (-717)) (-5 *2 (-1084 *8)) (-5 *1 (-272 *6 *7 *8 *9))))) (((*1 *2 *1) - (-12 (-5 *2 (-348 (-483))) (-5 *1 (-270 *3 *4 *5)) (-4 *3 (-312)) - (-14 *4 (-1088)) (-14 *5 *3)))) + (-12 (-5 *2 (-349 (-484))) (-5 *1 (-270 *3 *4 *5)) (-4 *3 (-312)) + (-14 *4 (-1089)) (-14 *5 *3)))) (((*1 *2 *3 *3 *3 *4 *5 *4 *6) - (-12 (-5 *3 (-265 (-483))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1000 (-179))) - (-5 *6 (-483)) (-5 *2 (-1123 (-837))) (-5 *1 (-269)))) + (-12 (-5 *3 (-265 (-484))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1001 (-179))) + (-5 *6 (-484)) (-5 *2 (-1124 (-838))) (-5 *1 (-269)))) ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) - (-12 (-5 *3 (-265 (-483))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1000 (-179))) - (-5 *6 (-483)) (-5 *7 (-1071)) (-5 *2 (-1123 (-837))) (-5 *1 (-269)))) + (-12 (-5 *3 (-265 (-484))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1001 (-179))) + (-5 *6 (-484)) (-5 *7 (-1072)) (-5 *2 (-1124 (-838))) (-5 *1 (-269)))) ((*1 *2 *3 *3 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-265 (-483))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1000 (-179))) - (-5 *6 (-179)) (-5 *7 (-483)) (-5 *2 (-1123 (-837))) (-5 *1 (-269)))) + (-12 (-5 *3 (-265 (-484))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1001 (-179))) + (-5 *6 (-179)) (-5 *7 (-484)) (-5 *2 (-1124 (-838))) (-5 *1 (-269)))) ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) - (-12 (-5 *3 (-265 (-483))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1000 (-179))) - (-5 *6 (-179)) (-5 *7 (-483)) (-5 *8 (-1071)) (-5 *2 (-1123 (-837))) + (-12 (-5 *3 (-265 (-484))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1001 (-179))) + (-5 *6 (-179)) (-5 *7 (-484)) (-5 *8 (-1072)) (-5 *2 (-1124 (-838))) (-5 *1 (-269))))) (((*1 *2 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *1 (-269)) (-5 *3 (-179))))) (((*1 *2 *3 *4 *3 *3) - (-12 (-5 *3 (-249 *6)) (-5 *4 (-86)) (-4 *6 (-362 *5)) - (-4 *5 (-13 (-494) (-552 (-472)))) (-5 *2 (-51)) (-5 *1 (-268 *5 *6)))) + (-12 (-5 *3 (-249 *6)) (-5 *4 (-86)) (-4 *6 (-363 *5)) + (-4 *5 (-13 (-495) (-553 (-473)))) (-5 *2 (-51)) (-5 *1 (-268 *5 *6)))) ((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-249 *7)) (-5 *4 (-86)) (-5 *5 (-582 *7)) (-4 *7 (-362 *6)) - (-4 *6 (-13 (-494) (-552 (-472)))) (-5 *2 (-51)) (-5 *1 (-268 *6 *7)))) + (-12 (-5 *3 (-249 *7)) (-5 *4 (-86)) (-5 *5 (-583 *7)) (-4 *7 (-363 *6)) + (-4 *6 (-13 (-495) (-553 (-473)))) (-5 *2 (-51)) (-5 *1 (-268 *6 *7)))) ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *3 (-582 (-249 *7))) (-5 *4 (-582 (-86))) (-5 *5 (-249 *7)) - (-4 *7 (-362 *6)) (-4 *6 (-13 (-494) (-552 (-472)))) (-5 *2 (-51)) + (-12 (-5 *3 (-583 (-249 *7))) (-5 *4 (-583 (-86))) (-5 *5 (-249 *7)) + (-4 *7 (-363 *6)) (-4 *6 (-13 (-495) (-553 (-473)))) (-5 *2 (-51)) (-5 *1 (-268 *6 *7)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-582 (-249 *8))) (-5 *4 (-582 (-86))) (-5 *5 (-249 *8)) - (-5 *6 (-582 *8)) (-4 *8 (-362 *7)) (-4 *7 (-13 (-494) (-552 (-472)))) + (-12 (-5 *3 (-583 (-249 *8))) (-5 *4 (-583 (-86))) (-5 *5 (-249 *8)) + (-5 *6 (-583 *8)) (-4 *8 (-363 *7)) (-4 *7 (-13 (-495) (-553 (-473)))) (-5 *2 (-51)) (-5 *1 (-268 *7 *8)))) ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *3 (-582 *7)) (-5 *4 (-582 (-86))) (-5 *5 (-249 *7)) - (-4 *7 (-362 *6)) (-4 *6 (-13 (-494) (-552 (-472)))) (-5 *2 (-51)) + (-12 (-5 *3 (-583 *7)) (-5 *4 (-583 (-86))) (-5 *5 (-249 *7)) + (-4 *7 (-363 *6)) (-4 *6 (-13 (-495) (-553 (-473)))) (-5 *2 (-51)) (-5 *1 (-268 *6 *7)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-582 *8)) (-5 *4 (-582 (-86))) (-5 *6 (-582 (-249 *8))) - (-4 *8 (-362 *7)) (-5 *5 (-249 *8)) (-4 *7 (-13 (-494) (-552 (-472)))) + (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 (-86))) (-5 *6 (-583 (-249 *8))) + (-4 *8 (-363 *7)) (-5 *5 (-249 *8)) (-4 *7 (-13 (-495) (-553 (-473)))) (-5 *2 (-51)) (-5 *1 (-268 *7 *8)))) ((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-249 *5)) (-5 *4 (-86)) (-4 *5 (-362 *6)) - (-4 *6 (-13 (-494) (-552 (-472)))) (-5 *2 (-51)) (-5 *1 (-268 *6 *5)))) + (-12 (-5 *3 (-249 *5)) (-5 *4 (-86)) (-4 *5 (-363 *6)) + (-4 *6 (-13 (-495) (-553 (-473)))) (-5 *2 (-51)) (-5 *1 (-268 *6 *5)))) ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *4 (-86)) (-5 *5 (-249 *3)) (-4 *3 (-362 *6)) - (-4 *6 (-13 (-494) (-552 (-472)))) (-5 *2 (-51)) (-5 *1 (-268 *6 *3)))) + (-12 (-5 *4 (-86)) (-5 *5 (-249 *3)) (-4 *3 (-363 *6)) + (-4 *6 (-13 (-495) (-553 (-473)))) (-5 *2 (-51)) (-5 *1 (-268 *6 *3)))) ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-86)) (-5 *5 (-249 *3)) (-4 *3 (-362 *6)) - (-4 *6 (-13 (-494) (-552 (-472)))) (-5 *2 (-51)) (-5 *1 (-268 *6 *3)))) + (-12 (-5 *4 (-86)) (-5 *5 (-249 *3)) (-4 *3 (-363 *6)) + (-4 *6 (-13 (-495) (-553 (-473)))) (-5 *2 (-51)) (-5 *1 (-268 *6 *3)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-86)) (-5 *5 (-249 *3)) (-5 *6 (-582 *3)) (-4 *3 (-362 *7)) - (-4 *7 (-13 (-494) (-552 (-472)))) (-5 *2 (-51)) (-5 *1 (-268 *7 *3))))) + (-12 (-5 *4 (-86)) (-5 *5 (-249 *3)) (-5 *6 (-583 *3)) (-4 *3 (-363 *7)) + (-4 *7 (-13 (-495) (-553 (-473)))) (-5 *2 (-51)) (-5 *1 (-268 *7 *3))))) (((*1 *2 *1) - (-12 (-5 *2 (-85)) (-5 *1 (-265 *3)) (-4 *3 (-494)) (-4 *3 (-1012))))) + (-12 (-5 *2 (-85)) (-5 *1 (-265 *3)) (-4 *3 (-495)) (-4 *3 (-1013))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-483)) (-5 *1 (-265 *3)) (-4 *3 (-494)) (-4 *3 (-1012))))) + (-12 (-5 *2 (-484)) (-5 *1 (-265 *3)) (-4 *3 (-495)) (-4 *3 (-1013))))) (((*1 *2 *1 *1) (-12 (-4 *1 (-258)) (-5 *2 (-85))))) -(((*1 *2 *1) (-12 (-4 *1 (-258)) (-5 *2 (-693))))) +(((*1 *2 *1) (-12 (-4 *1 (-258)) (-5 *2 (-694))))) (((*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-258)))) ((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2408 *1))) + (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2409 *1))) (-4 *1 (-258))))) -(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-582 *1)) (-4 *1 (-258))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-254)) (-4 *2 (-1127)))) +(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-583 *1)) (-4 *1 (-258))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-254)) (-4 *2 (-1128)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-582 (-549 *1))) (-5 *3 (-582 *1)) (-4 *1 (-254)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-582 (-249 *1))) (-4 *1 (-254)))) + (-12 (-5 *2 (-583 (-550 *1))) (-5 *3 (-583 *1)) (-4 *1 (-254)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-249 *1))) (-4 *1 (-254)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-249 *1)) (-4 *1 (-254))))) (((*1 *1 *1 *1) (-4 *1 (-254))) ((*1 *1 *1) (-4 *1 (-254)))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-549 *1)) (-4 *1 (-254))))) -(((*1 *2 *1) (-12 (-5 *2 (-582 (-549 *1))) (-4 *1 (-254))))) -(((*1 *2 *1) (-12 (-5 *2 (-582 (-549 *1))) (-4 *1 (-254))))) -(((*1 *2 *1) (-12 (-4 *1 (-254)) (-5 *2 (-582 (-86)))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-254)) (-5 *3 (-1088)) (-5 *2 (-85)))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-550 *1)) (-4 *1 (-254))))) +(((*1 *2 *1) (-12 (-5 *2 (-583 (-550 *1))) (-4 *1 (-254))))) +(((*1 *2 *1) (-12 (-5 *2 (-583 (-550 *1))) (-4 *1 (-254))))) +(((*1 *2 *1) (-12 (-4 *1 (-254)) (-5 *2 (-583 (-86)))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-254)) (-5 *3 (-1089)) (-5 *2 (-85)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-254)) (-5 *2 (-85))))) (((*1 *2 *3) - (-12 (-5 *3 (-549 *5)) (-4 *5 (-362 *4)) (-4 *4 (-949 (-483))) (-4 *4 (-494)) - (-5 *2 (-1083 *5)) (-5 *1 (-32 *4 *5)))) + (-12 (-5 *3 (-550 *5)) (-4 *5 (-363 *4)) (-4 *4 (-950 (-484))) (-4 *4 (-495)) + (-5 *2 (-1084 *5)) (-5 *1 (-32 *4 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-549 *1)) (-4 *1 (-960)) (-4 *1 (-254)) (-5 *2 (-1083 *1))))) -(((*1 *2 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-262)) (-5 *1 (-252)))) - ((*1 *2 *3) (-12 (-5 *3 (-582 (-1071))) (-5 *2 (-262)) (-5 *1 (-252)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-262)) (-5 *1 (-252)))) + (-12 (-5 *3 (-550 *1)) (-4 *1 (-961)) (-4 *1 (-254)) (-5 *2 (-1084 *1))))) +(((*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-262)) (-5 *1 (-252)))) + ((*1 *2 *3) (-12 (-5 *3 (-583 (-1072))) (-5 *2 (-262)) (-5 *1 (-252)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-262)) (-5 *1 (-252)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-582 (-1071))) (-5 *3 (-1071)) (-5 *2 (-262)) (-5 *1 (-252))))) + (-12 (-5 *4 (-583 (-1072))) (-5 *3 (-1072)) (-5 *2 (-262)) (-5 *1 (-252))))) (((*1 *2 *2) - (-12 (-4 *3 (-960)) (-4 *4 (-1153 *3)) (-5 *1 (-137 *3 *4 *2)) - (-4 *2 (-1153 *4)))) - ((*1 *1 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1127))))) -(((*1 *1 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-21)) (-4 *2 (-1127))))) -(((*1 *1 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-21)) (-4 *2 (-1127))))) -(((*1 *1 *1) (|partial| -12 (-5 *1 (-249 *2)) (-4 *2 (-662)) (-4 *2 (-1127))))) -(((*1 *1 *1) (|partial| -12 (-5 *1 (-249 *2)) (-4 *2 (-662)) (-4 *2 (-1127))))) + (-12 (-4 *3 (-961)) (-4 *4 (-1154 *3)) (-5 *1 (-137 *3 *4 *2)) + (-4 *2 (-1154 *4)))) + ((*1 *1 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1128))))) +(((*1 *1 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-21)) (-4 *2 (-1128))))) +(((*1 *1 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-21)) (-4 *2 (-1128))))) +(((*1 *1 *1) (|partial| -12 (-5 *1 (-249 *2)) (-4 *2 (-663)) (-4 *2 (-1128))))) +(((*1 *1 *1) (|partial| -12 (-5 *1 (-249 *2)) (-4 *2 (-663)) (-4 *2 (-1128))))) (((*1 *2 *1) - (-12 (-5 *2 (-582 (-249 *3))) (-5 *1 (-249 *3)) (-4 *3 (-494)) - (-4 *3 (-1127))))) + (-12 (-5 *2 (-583 (-249 *3))) (-5 *1 (-249 *3)) (-4 *3 (-495)) + (-4 *3 (-1128))))) (((*1 *2 *3) - (-12 (-4 *4 (-390)) + (-12 (-4 *4 (-391)) (-5 *2 - (-582 - (-2 (|:| |eigval| (-3 (-348 (-856 *4)) (-1078 (-1088) (-856 *4)))) - (|:| |eigmult| (-693)) (|:| |eigvec| (-582 (-629 (-348 (-856 *4)))))))) - (-5 *1 (-248 *4)) (-5 *3 (-629 (-348 (-856 *4))))))) + (-583 + (-2 (|:| |eigval| (-3 (-349 (-857 *4)) (-1079 (-1089) (-857 *4)))) + (|:| |eigmult| (-694)) (|:| |eigvec| (-583 (-630 (-349 (-857 *4)))))))) + (-5 *1 (-248 *4)) (-5 *3 (-630 (-349 (-857 *4))))))) (((*1 *2 *3) - (-12 (-4 *4 (-390)) + (-12 (-4 *4 (-391)) (-5 *2 - (-582 - (-2 (|:| |eigval| (-3 (-348 (-856 *4)) (-1078 (-1088) (-856 *4)))) - (|:| |geneigvec| (-582 (-629 (-348 (-856 *4)))))))) - (-5 *1 (-248 *4)) (-5 *3 (-629 (-348 (-856 *4))))))) + (-583 + (-2 (|:| |eigval| (-3 (-349 (-857 *4)) (-1079 (-1089) (-857 *4)))) + (|:| |geneigvec| (-583 (-630 (-349 (-857 *4)))))))) + (-5 *1 (-248 *4)) (-5 *3 (-630 (-349 (-857 *4))))))) (((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-3 (-348 (-856 *6)) (-1078 (-1088) (-856 *6)))) (-5 *5 (-693)) - (-4 *6 (-390)) (-5 *2 (-582 (-629 (-348 (-856 *6))))) (-5 *1 (-248 *6)) - (-5 *4 (-629 (-348 (-856 *6)))))) + (-12 (-5 *3 (-3 (-349 (-857 *6)) (-1079 (-1089) (-857 *6)))) (-5 *5 (-694)) + (-4 *6 (-391)) (-5 *2 (-583 (-630 (-349 (-857 *6))))) (-5 *1 (-248 *6)) + (-5 *4 (-630 (-349 (-857 *6)))))) ((*1 *2 *3 *4) (-12 (-5 *3 - (-2 (|:| |eigval| (-3 (-348 (-856 *5)) (-1078 (-1088) (-856 *5)))) - (|:| |eigmult| (-693)) (|:| |eigvec| (-582 *4)))) - (-4 *5 (-390)) (-5 *2 (-582 (-629 (-348 (-856 *5))))) (-5 *1 (-248 *5)) - (-5 *4 (-629 (-348 (-856 *5))))))) + (-2 (|:| |eigval| (-3 (-349 (-857 *5)) (-1079 (-1089) (-857 *5)))) + (|:| |eigmult| (-694)) (|:| |eigvec| (-583 *4)))) + (-4 *5 (-391)) (-5 *2 (-583 (-630 (-349 (-857 *5))))) (-5 *1 (-248 *5)) + (-5 *4 (-630 (-349 (-857 *5))))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-3 (-348 (-856 *5)) (-1078 (-1088) (-856 *5)))) (-4 *5 (-390)) - (-5 *2 (-582 (-629 (-348 (-856 *5))))) (-5 *1 (-248 *5)) - (-5 *4 (-629 (-348 (-856 *5))))))) + (-12 (-5 *3 (-3 (-349 (-857 *5)) (-1079 (-1089) (-857 *5)))) (-4 *5 (-391)) + (-5 *2 (-583 (-630 (-349 (-857 *5))))) (-5 *1 (-248 *5)) + (-5 *4 (-630 (-349 (-857 *5))))))) (((*1 *2 *3) - (-12 (-5 *3 (-629 (-348 (-856 *4)))) (-4 *4 (-390)) - (-5 *2 (-582 (-3 (-348 (-856 *4)) (-1078 (-1088) (-856 *4))))) + (-12 (-5 *3 (-630 (-349 (-857 *4)))) (-4 *4 (-391)) + (-5 *2 (-583 (-3 (-349 (-857 *4)) (-1079 (-1089) (-857 *4))))) (-5 *1 (-248 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-582 (-996))) (-5 *1 (-247))))) -(((*1 *2 *3 *3 *1) (-12 (-5 *3 (-445)) (-5 *2 (-631 (-1014))) (-5 *1 (-247))))) -(((*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-445)) (-5 *3 (-1014)) (-5 *1 (-247))))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-445)) (-5 *2 (-582 (-875))) (-5 *1 (-247))))) -(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-445)) (-5 *3 (-582 (-875))) (-5 *1 (-247))))) +(((*1 *2 *1) (-12 (-5 *2 (-583 (-997))) (-5 *1 (-247))))) +(((*1 *2 *3 *3 *1) (-12 (-5 *3 (-446)) (-5 *2 (-632 (-1015))) (-5 *1 (-247))))) +(((*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-446)) (-5 *3 (-1015)) (-5 *1 (-247))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-446)) (-5 *2 (-583 (-876))) (-5 *1 (-247))))) +(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-446)) (-5 *3 (-583 (-876))) (-5 *1 (-247))))) (((*1 *1) (-5 *1 (-247)))) (((*1 *1) (-5 *1 (-247)))) (((*1 *1) (-5 *1 (-247)))) (((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-483)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1127)) (-4 *4 (-322 *2)) - (-4 *5 (-322 *2)))) + (-12 (-5 *3 (-484)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1128)) (-4 *4 (-323 *2)) + (-4 *5 (-323 *2)))) ((*1 *2 *1 *3 *2) - (-12 (|has| *1 (-6 -3994)) (-4 *1 (-243 *3 *2)) (-4 *3 (-1012)) - (-4 *2 (-1127))))) -(((*1 *2 *3 *4) - (-12 (-4 *4 (-312)) (-5 *2 (-582 (-1067 *4))) (-5 *1 (-240 *4 *5)) - (-5 *3 (-1067 *4)) (-4 *5 (-1170 *4))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-312)) (-5 *1 (-240 *3 *2)) (-4 *2 (-1170 *3))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-312)) (-5 *1 (-240 *3 *2)) (-4 *2 (-1170 *3))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-312)) (-5 *1 (-240 *3 *2)) (-4 *2 (-1170 *3))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1144 (-483))) (-4 *1 (-237 *3)) (-4 *3 (-1127)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-483)) (-4 *1 (-237 *3)) (-4 *3 (-1127))))) + (-12 (|has| *1 (-6 -3995)) (-4 *1 (-243 *3 *2)) (-4 *3 (-1013)) + (-4 *2 (-1128))))) +(((*1 *2 *3 *4) + (-12 (-4 *4 (-312)) (-5 *2 (-583 (-1068 *4))) (-5 *1 (-240 *4 *5)) + (-5 *3 (-1068 *4)) (-4 *5 (-1171 *4))))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-312)) (-5 *1 (-240 *3 *2)) (-4 *2 (-1171 *3))))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-312)) (-5 *1 (-240 *3 *2)) (-4 *2 (-1171 *3))))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-312)) (-5 *1 (-240 *3 *2)) (-4 *2 (-1171 *3))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1145 (-484))) (-4 *1 (-237 *3)) (-4 *3 (-1128)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-4 *1 (-237 *3)) (-4 *3 (-1128))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-85) *3)) (|has| *1 (-6 -3993)) (-4 *1 (-193 *3)) - (-4 *3 (-1012)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-237 *3)) (-4 *3 (-1127))))) + (-12 (-5 *2 (-1 (-85) *3)) (|has| *1 (-6 -3994)) (-4 *1 (-193 *3)) + (-4 *3 (-1013)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-237 *3)) (-4 *3 (-1128))))) (((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-521)) (-5 *3 (-531)) (-5 *4 (-247)) (-5 *1 (-235))))) -(((*1 *2 *1) (-12 (-5 *2 (-521)) (-5 *1 (-235))))) -(((*1 *2 *1) (-12 (-5 *2 (-531)) (-5 *1 (-235))))) + (-12 (-5 *2 (-522)) (-5 *3 (-532)) (-5 *4 (-247)) (-5 *1 (-235))))) +(((*1 *2 *1) (-12 (-5 *2 (-522)) (-5 *1 (-235))))) +(((*1 *2 *1) (-12 (-5 *2 (-532)) (-5 *1 (-235))))) (((*1 *2 *1) (-12 (-5 *2 (-247)) (-5 *1 (-235))))) -(((*1 *2 *1) (-12 (-5 *2 (-1093)) (-5 *1 (-234))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1014)) (-5 *1 (-234))))) +(((*1 *2 *1) (-12 (-5 *2 (-1094)) (-5 *1 (-234))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1015)) (-5 *1 (-234))))) (((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-234))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-445)) (-5 *1 (-234))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-446)) (-5 *1 (-234))))) (((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-234))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-348 (-483))) (-4 *4 (-13 (-494) (-949 (-483)) (-579 (-483)))) - (-5 *1 (-231 *4 *2)) (-4 *2 (-13 (-27) (-1113) (-362 *4)))))) + (-12 (-5 *3 (-349 (-484))) (-4 *4 (-13 (-495) (-950 (-484)) (-580 (-484)))) + (-5 *1 (-231 *4 *2)) (-4 *2 (-13 (-27) (-1114) (-363 *4)))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-549 *2)) (-4 *2 (-13 (-27) (-1113) (-362 *4))) - (-4 *4 (-13 (-494) (-949 (-483)) (-579 (-483)))) (-5 *1 (-231 *4 *2))))) + (-12 (-5 *3 (-550 *2)) (-4 *2 (-13 (-27) (-1114) (-363 *4))) + (-4 *4 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *1 (-231 *4 *2))))) (((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-582 (-549 *2))) (-5 *4 (-1088)) - (-4 *2 (-13 (-27) (-1113) (-362 *5))) - (-4 *5 (-13 (-494) (-949 (-483)) (-579 (-483)))) (-5 *1 (-231 *5 *2))))) + (|partial| -12 (-5 *3 (-583 (-550 *2))) (-5 *4 (-1089)) + (-4 *2 (-13 (-27) (-1114) (-363 *5))) + (-4 *5 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *1 (-231 *5 *2))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-494) (-949 (-483)) (-579 (-483)))) (-5 *1 (-231 *3 *2)) - (-4 *2 (-13 (-27) (-1113) (-362 *3))))) + (-12 (-4 *3 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *1 (-231 *3 *2)) + (-4 *2 (-13 (-27) (-1114) (-363 *3))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1088)) (-4 *4 (-13 (-494) (-949 (-483)) (-579 (-483)))) - (-5 *1 (-231 *4 *2)) (-4 *2 (-13 (-27) (-1113) (-362 *4)))))) + (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-495) (-950 (-484)) (-580 (-484)))) + (-5 *1 (-231 *4 *2)) (-4 *2 (-13 (-27) (-1114) (-363 *4)))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1088)) (-4 *5 (-13 (-494) (-949 (-483)) (-579 (-483)))) + (-12 (-5 *4 (-1089)) (-4 *5 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *2 - (-2 (|:| |func| *3) (|:| |kers| (-582 (-549 *3))) (|:| |vals| (-582 *3)))) - (-5 *1 (-231 *5 *3)) (-4 *3 (-13 (-27) (-1113) (-362 *5)))))) + (-2 (|:| |func| *3) (|:| |kers| (-583 (-550 *3))) (|:| |vals| (-583 *3)))) + (-5 *1 (-231 *5 *3)) (-4 *3 (-13 (-27) (-1114) (-363 *5)))))) (((*1 *2 *3) - (-12 (-4 *4 (-494)) (-5 *2 (-85)) (-5 *1 (-230 *4 *3)) - (-4 *3 (-13 (-362 *4) (-914)))))) + (-12 (-4 *4 (-495)) (-5 *2 (-85)) (-5 *1 (-230 *4 *3)) + (-4 *3 (-13 (-363 *4) (-915)))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-582 (-2 (|:| |func| *2) (|:| |pole| (-85))))) - (-4 *2 (-13 (-362 *4) (-914))) (-4 *4 (-494)) (-5 *1 (-230 *4 *2))))) + (|partial| -12 (-5 *3 (-583 (-2 (|:| |func| *2) (|:| |pole| (-85))))) + (-4 *2 (-13 (-363 *4) (-915))) (-4 *4 (-495)) (-5 *1 (-230 *4 *2))))) (((*1 *2 *2) - (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-914)))))) + (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915)))))) (((*1 *2 *2) - (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-914)))))) + (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915)))))) (((*1 *2 *2) - (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-914)))))) + (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915)))))) (((*1 *2 *2) - (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-914)))))) + (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915)))))) (((*1 *2 *2) - (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-914)))))) + (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915)))))) (((*1 *2 *2) - (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-914)))))) + (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915)))))) (((*1 *2 *2) - (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-914)))))) + (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915)))))) (((*1 *2 *2) - (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-914)))))) + (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915)))))) (((*1 *2 *2) - (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-914)))))) + (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915)))))) (((*1 *2 *2) - (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-914)))))) + (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915)))))) (((*1 *2 *2) - (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-914)))))) + (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915)))))) (((*1 *2 *2) - (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-914)))))) + (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915)))))) (((*1 *2 *2) - (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-914)))))) + (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915)))))) (((*1 *2 *2) - (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-914)))))) + (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915)))))) (((*1 *2 *2) - (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-914)))))) + (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915)))))) (((*1 *2 *2) - (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-914)))))) + (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915)))))) (((*1 *2 *2) - (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-914)))))) + (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915)))))) (((*1 *2 *2) - (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-914)))))) + (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915)))))) (((*1 *2 *2) - (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-914)))))) + (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915)))))) (((*1 *2 *2) - (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-914)))))) + (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915)))))) (((*1 *2 *2) - (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-914)))))) + (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915)))))) (((*1 *2 *2) - (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-914)))))) + (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915)))))) (((*1 *2 *2) - (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-914)))))) + (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915)))))) (((*1 *2 *2) - (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-914)))))) + (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915)))))) (((*1 *2 *2) - (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-914)))))) + (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915)))))) (((*1 *2 *2) - (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-914)))))) + (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-363 *3) (-915)))))) (((*1 *2) - (-12 (-4 *2 (-13 (-362 *3) (-914))) (-5 *1 (-230 *3 *2)) (-4 *3 (-494))))) + (-12 (-4 *2 (-13 (-363 *3) (-915))) (-5 *1 (-230 *3 *2)) (-4 *3 (-495))))) (((*1 *2) - (-12 (-4 *2 (-13 (-362 *3) (-914))) (-5 *1 (-230 *3 *2)) (-4 *3 (-494))))) -(((*1 *2 *1) (-12 (-5 *2 (-582 (-483))) (-5 *1 (-229))))) -(((*1 *1 *2) (-12 (-5 *2 (-693)) (-5 *1 (-229))))) -(((*1 *2 *1) - (-12 (-4 *3 (-190)) (-4 *3 (-960)) (-4 *4 (-755)) (-4 *5 (-228 *4)) - (-4 *6 (-716)) (-5 *2 (-1 *1 (-693))) (-4 *1 (-213 *3 *4 *5 *6)))) - ((*1 *2 *3) - (-12 (-4 *4 (-960)) (-4 *3 (-755)) (-4 *5 (-228 *3)) (-4 *6 (-716)) - (-5 *2 (-1 *1 (-693))) (-4 *1 (-213 *4 *3 *5 *6)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-693)) (-4 *1 (-228 *2)) (-4 *2 (-755))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-693)) (-5 *1 (-86)))) - ((*1 *2 *1) (-12 (-5 *2 (-693)) (-5 *1 (-86)))) + (-12 (-4 *2 (-13 (-363 *3) (-915))) (-5 *1 (-230 *3 *2)) (-4 *3 (-495))))) +(((*1 *2 *1) (-12 (-5 *2 (-583 (-484))) (-5 *1 (-229))))) +(((*1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-229))))) +(((*1 *2 *1) + (-12 (-4 *3 (-190)) (-4 *3 (-961)) (-4 *4 (-756)) (-4 *5 (-228 *4)) + (-4 *6 (-717)) (-5 *2 (-1 *1 (-694))) (-4 *1 (-213 *3 *4 *5 *6)))) + ((*1 *2 *3) + (-12 (-4 *4 (-961)) (-4 *3 (-756)) (-4 *5 (-228 *3)) (-4 *6 (-717)) + (-5 *2 (-1 *1 (-694))) (-4 *1 (-213 *4 *3 *5 *6)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-694)) (-4 *1 (-228 *2)) (-4 *2 (-756))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-86)))) + ((*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-86)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-213 *4 *3 *5 *6)) (-4 *4 (-960)) (-4 *3 (-755)) - (-4 *5 (-228 *3)) (-4 *6 (-716)) (-5 *2 (-693)))) + (-12 (-4 *1 (-213 *4 *3 *5 *6)) (-4 *4 (-961)) (-4 *3 (-756)) + (-4 *5 (-228 *3)) (-4 *6 (-717)) (-5 *2 (-694)))) ((*1 *2 *1) - (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-960)) (-4 *4 (-755)) - (-4 *5 (-228 *4)) (-4 *6 (-716)) (-5 *2 (-693)))) - ((*1 *2 *1) (-12 (-4 *1 (-228 *3)) (-4 *3 (-755)) (-5 *2 (-693))))) + (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-756)) + (-4 *5 (-228 *4)) (-4 *6 (-717)) (-5 *2 (-694)))) + ((*1 *2 *1) (-12 (-4 *1 (-228 *3)) (-4 *3 (-756)) (-5 *2 (-694))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-582 (-221))) (-5 *4 (-1088)) (-5 *2 (-51)) + (|partial| -12 (-5 *3 (-583 (-221))) (-5 *4 (-1089)) (-5 *2 (-51)) (-5 *1 (-221)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-582 (-221))) (-5 *4 (-1088)) (-5 *1 (-223 *2)) - (-4 *2 (-1127))))) -(((*1 *1 *2) (-12 (-5 *2 (-328)) (-5 *1 (-221)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-328)) (-5 *3 (-582 (-221))) (-5 *1 (-222))))) -(((*1 *1 *2) (-12 (-5 *2 (-829)) (-5 *1 (-221)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-829)) (-5 *3 (-582 (-221))) (-5 *1 (-222))))) + (|partial| -12 (-5 *3 (-583 (-221))) (-5 *4 (-1089)) (-5 *1 (-223 *2)) + (-4 *2 (-1128))))) +(((*1 *1 *2) (-12 (-5 *2 (-329)) (-5 *1 (-221)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-329)) (-5 *3 (-583 (-221))) (-5 *1 (-222))))) +(((*1 *1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-221)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-830)) (-5 *3 (-583 (-221))) (-5 *1 (-222))))) (((*1 *1) (-5 *1 (-117))) - ((*1 *1 *2) (-12 (-5 *2 (-1045 (-179))) (-5 *1 (-221)))) - ((*1 *2 *3) (-12 (-5 *3 (-582 (-221))) (-5 *2 (-1045 (-179))) (-5 *1 (-222))))) -(((*1 *1 *2) (-12 (-5 *2 (-829)) (-5 *1 (-221)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-829)) (-5 *3 (-582 (-221))) (-5 *1 (-222))))) -(((*1 *1 *2) (-12 (-5 *2 (-829)) (-5 *1 (-221)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-829)) (-5 *3 (-582 (-221))) (-5 *1 (-222))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-782)) (-5 *3 (-582 (-221))) (-5 *1 (-222))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-782)) (-5 *3 (-582 (-221))) (-5 *1 (-222))))) + ((*1 *1 *2) (-12 (-5 *2 (-1046 (-179))) (-5 *1 (-221)))) + ((*1 *2 *3) (-12 (-5 *3 (-583 (-221))) (-5 *2 (-1046 (-179))) (-5 *1 (-222))))) +(((*1 *1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-221)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-830)) (-5 *3 (-583 (-221))) (-5 *1 (-222))))) +(((*1 *1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-221)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-830)) (-5 *3 (-583 (-221))) (-5 *1 (-222))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-783)) (-5 *3 (-583 (-221))) (-5 *1 (-222))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-783)) (-5 *3 (-583 (-221))) (-5 *1 (-222))))) (((*1 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-221)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *3 (-582 (-221))) (-5 *1 (-222))))) -(((*1 *1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-221)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-1071)) (-5 *3 (-582 (-221))) (-5 *1 (-222))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *3 (-582 (-221))) (-5 *1 (-222))))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *3 (-583 (-221))) (-5 *1 (-222))))) +(((*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-221)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-1072)) (-5 *3 (-583 (-221))) (-5 *1 (-222))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *3 (-583 (-221))) (-5 *1 (-222))))) (((*1 *2 *3) - (-12 (-5 *3 (-835)) + (-12 (-5 *3 (-836)) (-5 *2 - (-2 (|:| |brans| (-582 (-582 (-853 (-179))))) - (|:| |xValues| (-1000 (-179))) (|:| |yValues| (-1000 (-179))))) + (-2 (|:| |brans| (-583 (-583 (-854 (-179))))) + (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179))))) (-5 *1 (-126)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-835)) (-5 *4 (-348 (-483))) + (-12 (-5 *3 (-836)) (-5 *4 (-349 (-484))) (-5 *2 - (-2 (|:| |brans| (-582 (-582 (-853 (-179))))) - (|:| |xValues| (-1000 (-179))) (|:| |yValues| (-1000 (-179))))) + (-2 (|:| |brans| (-583 (-583 (-854 (-179))))) + (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179))))) (-5 *1 (-126)))) ((*1 *2 *3) (-12 (-5 *2 - (-2 (|:| |brans| (-582 (-582 (-853 (-179))))) - (|:| |xValues| (-1000 (-179))) (|:| |yValues| (-1000 (-179))))) - (-5 *1 (-126)) (-5 *3 (-582 (-853 (-179)))))) + (-2 (|:| |brans| (-583 (-583 (-854 (-179))))) + (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179))))) + (-5 *1 (-126)) (-5 *3 (-583 (-854 (-179)))))) ((*1 *2 *3) (-12 (-5 *2 - (-2 (|:| |brans| (-582 (-582 (-853 (-179))))) - (|:| |xValues| (-1000 (-179))) (|:| |yValues| (-1000 (-179))))) - (-5 *1 (-126)) (-5 *3 (-582 (-582 (-853 (-179))))))) - ((*1 *1 *2) (-12 (-5 *2 (-582 (-1000 (-328)))) (-5 *1 (-221)))) + (-2 (|:| |brans| (-583 (-583 (-854 (-179))))) + (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179))))) + (-5 *1 (-126)) (-5 *3 (-583 (-583 (-854 (-179))))))) + ((*1 *1 *2) (-12 (-5 *2 (-583 (-1001 (-329)))) (-5 *1 (-221)))) ((*1 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-221))))) -(((*1 *1 *2) (-12 (-5 *2 (-782)) (-5 *1 (-221)))) - ((*1 *1 *2) (-12 (-5 *2 (-328)) (-5 *1 (-221))))) -(((*1 *1 *2) (-12 (-5 *2 (-782)) (-5 *1 (-221)))) - ((*1 *1 *2) (-12 (-5 *2 (-328)) (-5 *1 (-221))))) +(((*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-221)))) + ((*1 *1 *2) (-12 (-5 *2 (-329)) (-5 *1 (-221))))) +(((*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-221)))) + ((*1 *1 *2) (-12 (-5 *2 (-329)) (-5 *1 (-221))))) (((*1 *1 *2) (-12 (-5 *2 (-1 (-179) (-179) (-179) (-179))) (-5 *1 (-221)))) ((*1 *1 *2) (-12 (-5 *2 (-1 (-179) (-179) (-179))) (-5 *1 (-221)))) ((*1 *1 *2) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *1 (-221))))) -(((*1 *1 *2) (-12 (-5 *2 (-582 (-1000 (-348 (-483))))) (-5 *1 (-221)))) - ((*1 *1 *2) (-12 (-5 *2 (-582 (-1000 (-328)))) (-5 *1 (-221))))) +(((*1 *1 *2) (-12 (-5 *2 (-583 (-1001 (-349 (-484))))) (-5 *1 (-221)))) + ((*1 *1 *2) (-12 (-5 *2 (-583 (-1001 (-329)))) (-5 *1 (-221))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-582 (-221))) (-5 *4 (-1088)) (-5 *2 (-85)) (-5 *1 (-221))))) + (-12 (-5 *3 (-583 (-221))) (-5 *4 (-1089)) (-5 *2 (-85)) (-5 *1 (-221))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1003 (-328))) (-5 *5 (-582 (-221))) (-5 *2 (-1180)) - (-5 *1 (-215 *3)) (-4 *3 (-13 (-552 (-472)) (-1012))))) + (-12 (-5 *4 (-1004 (-329))) (-5 *5 (-583 (-221))) (-5 *2 (-1181)) + (-5 *1 (-215 *3)) (-4 *3 (-13 (-553 (-473)) (-1013))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1003 (-328))) (-5 *2 (-1180)) (-5 *1 (-215 *3)) - (-4 *3 (-13 (-552 (-472)) (-1012))))) + (-12 (-5 *4 (-1004 (-329))) (-5 *2 (-1181)) (-5 *1 (-215 *3)) + (-4 *3 (-13 (-553 (-473)) (-1013))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-786 *6)) (-5 *4 (-1003 (-328))) (-5 *5 (-582 (-221))) - (-4 *6 (-13 (-552 (-472)) (-1012))) (-5 *2 (-1180)) (-5 *1 (-215 *6)))) + (-12 (-5 *3 (-787 *6)) (-5 *4 (-1004 (-329))) (-5 *5 (-583 (-221))) + (-4 *6 (-13 (-553 (-473)) (-1013))) (-5 *2 (-1181)) (-5 *1 (-215 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-786 *5)) (-5 *4 (-1003 (-328))) - (-4 *5 (-13 (-552 (-472)) (-1012))) (-5 *2 (-1180)) (-5 *1 (-215 *5)))) + (-12 (-5 *3 (-787 *5)) (-5 *4 (-1004 (-329))) + (-4 *5 (-13 (-553 (-473)) (-1013))) (-5 *2 (-1181)) (-5 *1 (-215 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-788 *6)) (-5 *4 (-1003 (-328))) (-5 *5 (-582 (-221))) - (-4 *6 (-13 (-552 (-472)) (-1012))) (-5 *2 (-1181)) (-5 *1 (-215 *6)))) + (-12 (-5 *3 (-789 *6)) (-5 *4 (-1004 (-329))) (-5 *5 (-583 (-221))) + (-4 *6 (-13 (-553 (-473)) (-1013))) (-5 *2 (-1182)) (-5 *1 (-215 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-788 *5)) (-5 *4 (-1003 (-328))) - (-4 *5 (-13 (-552 (-472)) (-1012))) (-5 *2 (-1181)) (-5 *1 (-215 *5)))) + (-12 (-5 *3 (-789 *5)) (-5 *4 (-1004 (-329))) + (-4 *5 (-13 (-553 (-473)) (-1013))) (-5 *2 (-1182)) (-5 *1 (-215 *5)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-1003 (-328))) (-5 *5 (-582 (-221))) (-5 *2 (-1181)) - (-5 *1 (-215 *3)) (-4 *3 (-13 (-552 (-472)) (-1012))))) + (-12 (-5 *4 (-1004 (-329))) (-5 *5 (-583 (-221))) (-5 *2 (-1182)) + (-5 *1 (-215 *3)) (-4 *3 (-13 (-553 (-473)) (-1013))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1003 (-328))) (-5 *2 (-1181)) (-5 *1 (-215 *3)) - (-4 *3 (-13 (-552 (-472)) (-1012))))) + (-12 (-5 *4 (-1004 (-329))) (-5 *2 (-1182)) (-5 *1 (-215 *3)) + (-4 *3 (-13 (-553 (-473)) (-1013))))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-791 *6)) (-5 *4 (-1003 (-328))) (-5 *5 (-582 (-221))) - (-4 *6 (-13 (-552 (-472)) (-1012))) (-5 *2 (-1181)) (-5 *1 (-215 *6)))) + (-12 (-5 *3 (-792 *6)) (-5 *4 (-1004 (-329))) (-5 *5 (-583 (-221))) + (-4 *6 (-13 (-553 (-473)) (-1013))) (-5 *2 (-1182)) (-5 *1 (-215 *6)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-791 *5)) (-5 *4 (-1003 (-328))) - (-4 *5 (-13 (-552 (-472)) (-1012))) (-5 *2 (-1181)) (-5 *1 (-215 *5)))) + (-12 (-5 *3 (-792 *5)) (-5 *4 (-1004 (-329))) + (-4 *5 (-13 (-553 (-473)) (-1013))) (-5 *2 (-1182)) (-5 *1 (-215 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-179) (-179))) (-5 *4 (-1000 (-328))) (-5 *5 (-582 (-221))) - (-5 *2 (-1180)) (-5 *1 (-216)))) + (-12 (-5 *3 (-1 (-179) (-179))) (-5 *4 (-1001 (-329))) (-5 *5 (-583 (-221))) + (-5 *2 (-1181)) (-5 *1 (-216)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-179) (-179))) (-5 *4 (-1000 (-328))) (-5 *2 (-1180)) + (-12 (-5 *3 (-1 (-179) (-179))) (-5 *4 (-1001 (-329))) (-5 *2 (-1181)) (-5 *1 (-216)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-786 (-1 (-179) (-179)))) (-5 *4 (-1000 (-328))) - (-5 *5 (-582 (-221))) (-5 *2 (-1180)) (-5 *1 (-216)))) + (-12 (-5 *3 (-787 (-1 (-179) (-179)))) (-5 *4 (-1001 (-329))) + (-5 *5 (-583 (-221))) (-5 *2 (-1181)) (-5 *1 (-216)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-786 (-1 (-179) (-179)))) (-5 *4 (-1000 (-328))) (-5 *2 (-1180)) + (-12 (-5 *3 (-787 (-1 (-179) (-179)))) (-5 *4 (-1001 (-329))) (-5 *2 (-1181)) (-5 *1 (-216)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-788 (-1 (-179) (-179)))) (-5 *4 (-1000 (-328))) - (-5 *5 (-582 (-221))) (-5 *2 (-1181)) (-5 *1 (-216)))) + (-12 (-5 *3 (-789 (-1 (-179) (-179)))) (-5 *4 (-1001 (-329))) + (-5 *5 (-583 (-221))) (-5 *2 (-1182)) (-5 *1 (-216)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-788 (-1 (-179) (-179)))) (-5 *4 (-1000 (-328))) (-5 *2 (-1181)) + (-12 (-5 *3 (-789 (-1 (-179) (-179)))) (-5 *4 (-1001 (-329))) (-5 *2 (-1182)) (-5 *1 (-216)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-853 (-179)) (-179))) (-5 *4 (-1000 (-328))) - (-5 *5 (-582 (-221))) (-5 *2 (-1181)) (-5 *1 (-216)))) + (-12 (-5 *3 (-1 (-854 (-179)) (-179))) (-5 *4 (-1001 (-329))) + (-5 *5 (-583 (-221))) (-5 *2 (-1182)) (-5 *1 (-216)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-853 (-179)) (-179))) (-5 *4 (-1000 (-328))) (-5 *2 (-1181)) + (-12 (-5 *3 (-1 (-854 (-179)) (-179))) (-5 *4 (-1001 (-329))) (-5 *2 (-1182)) (-5 *1 (-216)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1000 (-328))) - (-5 *5 (-582 (-221))) (-5 *2 (-1181)) (-5 *1 (-216)))) + (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1001 (-329))) + (-5 *5 (-583 (-221))) (-5 *2 (-1182)) (-5 *1 (-216)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1000 (-328))) (-5 *2 (-1181)) + (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1001 (-329))) (-5 *2 (-1182)) (-5 *1 (-216)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-853 (-179)) (-179) (-179))) (-5 *4 (-1000 (-328))) - (-5 *5 (-582 (-221))) (-5 *2 (-1181)) (-5 *1 (-216)))) + (-12 (-5 *3 (-1 (-854 (-179)) (-179) (-179))) (-5 *4 (-1001 (-329))) + (-5 *5 (-583 (-221))) (-5 *2 (-1182)) (-5 *1 (-216)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-853 (-179)) (-179) (-179))) (-5 *4 (-1000 (-328))) - (-5 *2 (-1181)) (-5 *1 (-216)))) + (-12 (-5 *3 (-1 (-854 (-179)) (-179) (-179))) (-5 *4 (-1001 (-329))) + (-5 *2 (-1182)) (-5 *1 (-216)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-791 (-1 (-179) (-179) (-179)))) (-5 *4 (-1000 (-328))) - (-5 *5 (-582 (-221))) (-5 *2 (-1181)) (-5 *1 (-216)))) + (-12 (-5 *3 (-792 (-1 (-179) (-179) (-179)))) (-5 *4 (-1001 (-329))) + (-5 *5 (-583 (-221))) (-5 *2 (-1182)) (-5 *1 (-216)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-791 (-1 (-179) (-179) (-179)))) (-5 *4 (-1000 (-328))) - (-5 *2 (-1181)) (-5 *1 (-216)))) + (-12 (-5 *3 (-792 (-1 (-179) (-179) (-179)))) (-5 *4 (-1001 (-329))) + (-5 *2 (-1182)) (-5 *1 (-216)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-249 *7)) (-5 *4 (-1088)) (-5 *5 (-582 (-221))) - (-4 *7 (-362 *6)) (-4 *6 (-13 (-494) (-755) (-949 (-483)))) (-5 *2 (-1180)) + (-12 (-5 *3 (-249 *7)) (-5 *4 (-1089)) (-5 *5 (-583 (-221))) + (-4 *7 (-363 *6)) (-4 *6 (-13 (-495) (-756) (-950 (-484)))) (-5 *2 (-1181)) (-5 *1 (-217 *6 *7)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-582 (-179))) (-5 *2 (-1180)) (-5 *1 (-220)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-583 (-179))) (-5 *2 (-1181)) (-5 *1 (-220)))) ((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-582 (-179))) (-5 *4 (-582 (-221))) (-5 *2 (-1180)) + (-12 (-5 *3 (-583 (-179))) (-5 *4 (-583 (-221))) (-5 *2 (-1181)) (-5 *1 (-220)))) - ((*1 *2 *3) (-12 (-5 *3 (-582 (-853 (-179)))) (-5 *2 (-1180)) (-5 *1 (-220)))) + ((*1 *2 *3) (-12 (-5 *3 (-583 (-854 (-179)))) (-5 *2 (-1181)) (-5 *1 (-220)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-582 (-853 (-179)))) (-5 *4 (-582 (-221))) (-5 *2 (-1180)) + (-12 (-5 *3 (-583 (-854 (-179)))) (-5 *4 (-583 (-221))) (-5 *2 (-1181)) (-5 *1 (-220)))) - ((*1 *2 *3 *3 *3) (-12 (-5 *3 (-582 (-179))) (-5 *2 (-1181)) (-5 *1 (-220)))) + ((*1 *2 *3 *3 *3) (-12 (-5 *3 (-583 (-179))) (-5 *2 (-1182)) (-5 *1 (-220)))) ((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-582 (-179))) (-5 *4 (-582 (-221))) (-5 *2 (-1181)) + (-12 (-5 *3 (-583 (-179))) (-5 *4 (-583 (-221))) (-5 *2 (-1182)) (-5 *1 (-220))))) (((*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-218))))) -(((*1 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-218))))) -(((*1 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-218))))) +(((*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-218))))) +(((*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-218))))) (((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-142 (-179)) (-142 (-179)))) (-5 *4 (-1000 (-179))) - (-5 *2 (-1181)) (-5 *1 (-218))))) + (-12 (-5 *3 (-1 (-142 (-179)) (-142 (-179)))) (-5 *4 (-1001 (-179))) + (-5 *2 (-1182)) (-5 *1 (-218))))) (((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-142 (-179)) (-142 (-179)))) (-5 *4 (-1000 (-179))) - (-5 *5 (-85)) (-5 *2 (-1181)) (-5 *1 (-218))))) + (-12 (-5 *3 (-1 (-142 (-179)) (-142 (-179)))) (-5 *4 (-1001 (-179))) + (-5 *5 (-85)) (-5 *2 (-1182)) (-5 *1 (-218))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-1 (-853 (-179)) (-179) (-179))) + (-12 (-5 *2 (-1 (-854 (-179)) (-179) (-179))) (-5 *3 (-1 (-179) (-179) (-179) (-179))) (-5 *1 (-216))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-788 *6)) (-5 *4 (-1003 (-328))) (-5 *5 (-582 (-221))) - (-4 *6 (-13 (-552 (-472)) (-1012))) (-5 *2 (-1045 (-179))) + (-12 (-5 *3 (-789 *6)) (-5 *4 (-1004 (-329))) (-5 *5 (-583 (-221))) + (-4 *6 (-13 (-553 (-473)) (-1013))) (-5 *2 (-1046 (-179))) (-5 *1 (-215 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-788 *5)) (-5 *4 (-1003 (-328))) - (-4 *5 (-13 (-552 (-472)) (-1012))) (-5 *2 (-1045 (-179))) + (-12 (-5 *3 (-789 *5)) (-5 *4 (-1004 (-329))) + (-4 *5 (-13 (-553 (-473)) (-1013))) (-5 *2 (-1046 (-179))) (-5 *1 (-215 *5)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-1003 (-328))) (-5 *5 (-582 (-221))) (-5 *2 (-1045 (-179))) - (-5 *1 (-215 *3)) (-4 *3 (-13 (-552 (-472)) (-1012))))) + (-12 (-5 *4 (-1004 (-329))) (-5 *5 (-583 (-221))) (-5 *2 (-1046 (-179))) + (-5 *1 (-215 *3)) (-4 *3 (-13 (-553 (-473)) (-1013))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1003 (-328))) (-5 *2 (-1045 (-179))) (-5 *1 (-215 *3)) - (-4 *3 (-13 (-552 (-472)) (-1012))))) + (-12 (-5 *4 (-1004 (-329))) (-5 *2 (-1046 (-179))) (-5 *1 (-215 *3)) + (-4 *3 (-13 (-553 (-473)) (-1013))))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-791 *6)) (-5 *4 (-1003 (-328))) (-5 *5 (-582 (-221))) - (-4 *6 (-13 (-552 (-472)) (-1012))) (-5 *2 (-1045 (-179))) + (-12 (-5 *3 (-792 *6)) (-5 *4 (-1004 (-329))) (-5 *5 (-583 (-221))) + (-4 *6 (-13 (-553 (-473)) (-1013))) (-5 *2 (-1046 (-179))) (-5 *1 (-215 *6)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-791 *5)) (-5 *4 (-1003 (-328))) - (-4 *5 (-13 (-552 (-472)) (-1012))) (-5 *2 (-1045 (-179))) + (-12 (-5 *3 (-792 *5)) (-5 *4 (-1004 (-329))) + (-4 *5 (-13 (-553 (-473)) (-1013))) (-5 *2 (-1046 (-179))) (-5 *1 (-215 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-788 (-1 (-179) (-179)))) (-5 *4 (-1000 (-328))) - (-5 *5 (-582 (-221))) (-5 *2 (-1045 (-179))) (-5 *1 (-216)))) + (-12 (-5 *3 (-789 (-1 (-179) (-179)))) (-5 *4 (-1001 (-329))) + (-5 *5 (-583 (-221))) (-5 *2 (-1046 (-179))) (-5 *1 (-216)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-788 (-1 (-179) (-179)))) (-5 *4 (-1000 (-328))) - (-5 *2 (-1045 (-179))) (-5 *1 (-216)))) + (-12 (-5 *3 (-789 (-1 (-179) (-179)))) (-5 *4 (-1001 (-329))) + (-5 *2 (-1046 (-179))) (-5 *1 (-216)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-853 (-179)) (-179))) (-5 *4 (-1000 (-328))) - (-5 *5 (-582 (-221))) (-5 *2 (-1045 (-179))) (-5 *1 (-216)))) + (-12 (-5 *3 (-1 (-854 (-179)) (-179))) (-5 *4 (-1001 (-329))) + (-5 *5 (-583 (-221))) (-5 *2 (-1046 (-179))) (-5 *1 (-216)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-853 (-179)) (-179))) (-5 *4 (-1000 (-328))) - (-5 *2 (-1045 (-179))) (-5 *1 (-216)))) + (-12 (-5 *3 (-1 (-854 (-179)) (-179))) (-5 *4 (-1001 (-329))) + (-5 *2 (-1046 (-179))) (-5 *1 (-216)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1000 (-328))) - (-5 *5 (-582 (-221))) (-5 *2 (-1045 (-179))) (-5 *1 (-216)))) + (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1001 (-329))) + (-5 *5 (-583 (-221))) (-5 *2 (-1046 (-179))) (-5 *1 (-216)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1000 (-328))) - (-5 *2 (-1045 (-179))) (-5 *1 (-216)))) + (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1001 (-329))) + (-5 *2 (-1046 (-179))) (-5 *1 (-216)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-853 (-179)) (-179) (-179))) (-5 *4 (-1000 (-328))) - (-5 *5 (-582 (-221))) (-5 *2 (-1045 (-179))) (-5 *1 (-216)))) + (-12 (-5 *3 (-1 (-854 (-179)) (-179) (-179))) (-5 *4 (-1001 (-329))) + (-5 *5 (-583 (-221))) (-5 *2 (-1046 (-179))) (-5 *1 (-216)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-853 (-179)) (-179) (-179))) (-5 *4 (-1000 (-328))) - (-5 *2 (-1045 (-179))) (-5 *1 (-216)))) + (-12 (-5 *3 (-1 (-854 (-179)) (-179) (-179))) (-5 *4 (-1001 (-329))) + (-5 *2 (-1046 (-179))) (-5 *1 (-216)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-791 (-1 (-179) (-179) (-179)))) (-5 *4 (-1000 (-328))) - (-5 *5 (-582 (-221))) (-5 *2 (-1045 (-179))) (-5 *1 (-216)))) + (-12 (-5 *3 (-792 (-1 (-179) (-179) (-179)))) (-5 *4 (-1001 (-329))) + (-5 *5 (-583 (-221))) (-5 *2 (-1046 (-179))) (-5 *1 (-216)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-791 (-1 (-179) (-179) (-179)))) (-5 *4 (-1000 (-328))) - (-5 *2 (-1045 (-179))) (-5 *1 (-216))))) -(((*1 *1 *2) (-12 (-5 *2 (-582 *3)) (-4 *3 (-1012)) (-5 *1 (-176 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-582 *3)) (-4 *3 (-1127)) (-4 *1 (-214 *3)))) - ((*1 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1127))))) -(((*1 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1127))))) -(((*1 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1127))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1127))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1127))))) -(((*1 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1127))))) -(((*1 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1127))))) -(((*1 *2 *1) - (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-960)) (-4 *4 (-755)) - (-4 *5 (-228 *4)) (-4 *6 (-716)) (-5 *2 (-582 *4))))) + (-12 (-5 *3 (-792 (-1 (-179) (-179) (-179)))) (-5 *4 (-1001 (-329))) + (-5 *2 (-1046 (-179))) (-5 *1 (-216))))) +(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1013)) (-5 *1 (-176 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1128)) (-4 *1 (-214 *3)))) + ((*1 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1128))))) +(((*1 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1128))))) +(((*1 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1128))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1128))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1128))))) +(((*1 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1128))))) +(((*1 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1128))))) +(((*1 *2 *1) + (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-756)) + (-4 *5 (-228 *4)) (-4 *6 (-717)) (-5 *2 (-583 *4))))) (((*1 *2 *1 *3) - (-12 (-4 *1 (-213 *4 *3 *5 *6)) (-4 *4 (-960)) (-4 *3 (-755)) - (-4 *5 (-228 *3)) (-4 *6 (-716)) (-5 *2 (-582 (-693))))) + (-12 (-4 *1 (-213 *4 *3 *5 *6)) (-4 *4 (-961)) (-4 *3 (-756)) + (-4 *5 (-228 *3)) (-4 *6 (-717)) (-5 *2 (-583 (-694))))) ((*1 *2 *1) - (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-960)) (-4 *4 (-755)) - (-4 *5 (-228 *4)) (-4 *6 (-716)) (-5 *2 (-582 (-693)))))) + (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-756)) + (-4 *5 (-228 *4)) (-4 *6 (-717)) (-5 *2 (-583 (-694)))))) (((*1 *2 *1) - (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-960)) (-4 *4 (-755)) - (-4 *5 (-228 *4)) (-4 *6 (-716)) (-5 *2 (-85))))) + (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-756)) + (-4 *5 (-228 *4)) (-4 *6 (-717)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-213 *3 *4 *2 *5)) (-4 *3 (-960)) (-4 *4 (-755)) (-4 *5 (-716)) + (-12 (-4 *1 (-213 *3 *4 *2 *5)) (-4 *3 (-961)) (-4 *4 (-756)) (-4 *5 (-717)) (-4 *2 (-228 *4))))) (((*1 *1 *1) - (-12 (-4 *1 (-213 *2 *3 *4 *5)) (-4 *2 (-960)) (-4 *3 (-755)) - (-4 *4 (-228 *3)) (-4 *5 (-716))))) + (-12 (-4 *1 (-213 *2 *3 *4 *5)) (-4 *2 (-961)) (-4 *3 (-756)) + (-4 *4 (-228 *3)) (-4 *5 (-717))))) (((*1 *1 *1) - (-12 (-4 *1 (-213 *2 *3 *4 *5)) (-4 *2 (-960)) (-4 *3 (-755)) - (-4 *4 (-228 *3)) (-4 *5 (-716))))) + (-12 (-4 *1 (-213 *2 *3 *4 *5)) (-4 *2 (-961)) (-4 *3 (-756)) + (-4 *4 (-228 *3)) (-4 *5 (-717))))) (((*1 *2 *1) (-12 (-5 *2 (-282)) (-5 *1 (-208))))) (((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-113)))) ((*1 *2 *1) (-12 (-5 *1 (-158 *2)) (-4 *2 (-160)))) ((*1 *2 *1) (-12 (-5 *2 (-208)) (-5 *1 (-207))))) (((*1 *2 *1) (-12 (-5 *2 (-158 (-208))) (-5 *1 (-207))))) (((*1 *1 *2) (-12 (-5 *2 (-158 (-208))) (-5 *1 (-207))))) -(((*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-207))))) +(((*1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-207))))) (((*1 *2 *3 *3 *2) - (|partial| -12 (-5 *2 (-693)) - (-4 *3 (-13 (-662) (-318) (-10 -7 (-15 ** (*3 *3 (-483)))))) + (|partial| -12 (-5 *2 (-694)) + (-4 *3 (-13 (-663) (-319) (-10 -7 (-15 ** (*3 *3 (-484)))))) (-5 *1 (-204 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-582 *3)) (-4 *3 (-755)) (-5 *1 (-203 *3))))) -(((*1 *1 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1127))))) -(((*1 *1 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1127))))) -(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -3994)) (-4 *1 (-202 *2)) (-4 *2 (-1127))))) -(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -3994)) (-4 *1 (-202 *2)) (-4 *2 (-1127))))) -(((*1 *2 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-483)) (-5 *1 (-199)))) - ((*1 *2 *3) (-12 (-5 *3 (-582 (-1071))) (-5 *2 (-483)) (-5 *1 (-199))))) -(((*1 *2 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-1183)) (-5 *1 (-199)))) - ((*1 *2 *3) (-12 (-5 *3 (-582 (-1071))) (-5 *2 (-1183)) (-5 *1 (-199))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-1071)) (-5 *3 (-483)) (-5 *1 (-199))))) -(((*1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-199))))) -(((*1 *1 *2) (-12 (-5 *2 (-1177 *4)) (-4 *4 (-1127)) (-4 *1 (-196 *3 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-249 (-856 (-483)))) - (-5 *2 - (-2 (|:| |varOrder| (-582 (-1088))) - (|:| |inhom| (-3 (-582 (-1177 (-693))) "failed")) - (|:| |hom| (-582 (-1177 (-693)))))) +(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-756)) (-5 *1 (-203 *3))))) +(((*1 *1 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1128))))) +(((*1 *1 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1128))))) +(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -3995)) (-4 *1 (-202 *2)) (-4 *2 (-1128))))) +(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -3995)) (-4 *1 (-202 *2)) (-4 *2 (-1128))))) +(((*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-484)) (-5 *1 (-199)))) + ((*1 *2 *3) (-12 (-5 *3 (-583 (-1072))) (-5 *2 (-484)) (-5 *1 (-199))))) +(((*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-199)))) + ((*1 *2 *3) (-12 (-5 *3 (-583 (-1072))) (-5 *2 (-1184)) (-5 *1 (-199))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-1072)) (-5 *3 (-484)) (-5 *1 (-199))))) +(((*1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-199))))) +(((*1 *1 *2) (-12 (-5 *2 (-1178 *4)) (-4 *4 (-1128)) (-4 *1 (-196 *3 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-249 (-857 (-484)))) + (-5 *2 + (-2 (|:| |varOrder| (-583 (-1089))) + (|:| |inhom| (-3 (-583 (-1178 (-694))) "failed")) + (|:| |hom| (-583 (-1178 (-694)))))) (-5 *1 (-194))))) -(((*1 *1 *2) (-12 (-5 *2 (-582 *3)) (-4 *3 (-1012)) (-4 *1 (-193 *3)))) - ((*1 *1) (-12 (-4 *1 (-193 *2)) (-4 *2 (-1012))))) -(((*1 *1) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1113)))))) -(((*1 *1 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1113)))))) -(((*1 *1 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1113)))))) -(((*1 *1 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1113)))))) +(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1013)) (-4 *1 (-193 *3)))) + ((*1 *1) (-12 (-4 *1 (-193 *2)) (-4 *2 (-1013))))) +(((*1 *1) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1114)))))) +(((*1 *1 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1114)))))) +(((*1 *1 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1114)))))) +(((*1 *1 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1114)))))) (((*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180))))) (((*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) ((*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180))))) (((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-179))))) (((*1 *2 *3 *4 *5 *5 *2) - (|partial| -12 (-5 *2 (-85)) (-5 *3 (-856 *6)) (-5 *4 (-1088)) - (-5 *5 (-749 *7)) (-4 *6 (-13 (-390) (-949 (-483)) (-579 (-483)))) - (-4 *7 (-13 (-1113) (-29 *6))) (-5 *1 (-178 *6 *7)))) + (|partial| -12 (-5 *2 (-85)) (-5 *3 (-857 *6)) (-5 *4 (-1089)) + (-5 *5 (-750 *7)) (-4 *6 (-13 (-391) (-950 (-484)) (-580 (-484)))) + (-4 *7 (-13 (-1114) (-29 *6))) (-5 *1 (-178 *6 *7)))) ((*1 *2 *3 *4 *4 *2) - (|partial| -12 (-5 *2 (-85)) (-5 *3 (-1083 *6)) (-5 *4 (-749 *6)) - (-4 *6 (-13 (-1113) (-29 *5))) - (-4 *5 (-13 (-390) (-949 (-483)) (-579 (-483)))) (-5 *1 (-178 *5 *6))))) + (|partial| -12 (-5 *2 (-85)) (-5 *3 (-1084 *6)) (-5 *4 (-750 *6)) + (-4 *6 (-13 (-1114) (-29 *5))) + (-4 *5 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *1 (-178 *5 *6))))) (((*1 *2 *3 *4 *2 *2 *5) - (|partial| -12 (-5 *2 (-749 *4)) (-5 *3 (-549 *4)) (-5 *5 (-85)) - (-4 *4 (-13 (-1113) (-29 *6))) - (-4 *6 (-13 (-390) (-949 (-483)) (-579 (-483)))) (-5 *1 (-178 *6 *4))))) + (|partial| -12 (-5 *2 (-750 *4)) (-5 *3 (-550 *4)) (-5 *5 (-85)) + (-4 *4 (-13 (-1114) (-29 *6))) + (-4 *6 (-13 (-391) (-950 (-484)) (-580 (-484)))) (-5 *1 (-178 *6 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1071)) (-4 *4 (-13 (-390) (-949 (-483)) (-579 (-483)))) - (-5 *2 (-85)) (-5 *1 (-178 *4 *5)) (-4 *5 (-13 (-1113) (-29 *4)))))) -(((*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-960)) (-14 *3 (-582 (-1088))))) + (-12 (-5 *3 (-1072)) (-4 *4 (-13 (-391) (-950 (-484)) (-580 (-484)))) + (-5 *2 (-85)) (-5 *1 (-178 *4 *5)) (-4 *5 (-13 (-1114) (-29 *4)))))) +(((*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-961)) (-14 *3 (-583 (-1089))))) ((*1 *1 *1) - (-12 (-5 *1 (-177 *2 *3)) (-4 *2 (-13 (-960) (-755))) - (-14 *3 (-582 (-1088)))))) + (-12 (-5 *1 (-177 *2 *3)) (-4 *2 (-13 (-961) (-756))) + (-14 *3 (-583 (-1089)))))) (((*1 *2 *1) - (-12 (-5 *2 (-85)) (-5 *1 (-50 *3 *4)) (-4 *3 (-960)) - (-14 *4 (-582 (-1088))))) + (-12 (-5 *2 (-85)) (-5 *1 (-50 *3 *4)) (-4 *3 (-961)) + (-14 *4 (-583 (-1089))))) ((*1 *2 *1) - (-12 (-5 *2 (-85)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-960) (-755))) - (-14 *4 (-582 (-1088)))))) + (-12 (-5 *2 (-85)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-961) (-756))) + (-14 *4 (-583 (-1089)))))) (((*1 *1 *2) - (-12 (-5 *2 (-265 *3)) (-4 *3 (-13 (-960) (-755))) (-5 *1 (-177 *3 *4)) - (-14 *4 (-582 (-1088)))))) + (-12 (-5 *2 (-265 *3)) (-4 *3 (-13 (-961) (-756))) (-5 *1 (-177 *3 *4)) + (-14 *4 (-583 (-1089)))))) (((*1 *1 *1) - (-12 (-5 *1 (-177 *2 *3)) (-4 *2 (-13 (-960) (-755))) - (-14 *3 (-582 (-1088)))))) + (-12 (-5 *1 (-177 *2 *3)) (-4 *2 (-13 (-961) (-756))) + (-14 *3 (-583 (-1089)))))) (((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *4 (-1088)) (-5 *6 (-85)) - (-4 *7 (-13 (-258) (-120) (-949 (-483)) (-579 (-483)))) - (-4 *3 (-13 (-1113) (-870) (-29 *7))) + (-12 (-5 *4 (-1089)) (-5 *6 (-85)) + (-4 *7 (-13 (-258) (-120) (-950 (-484)) (-580 (-484)))) + (-4 *3 (-13 (-1114) (-871) (-29 *7))) (-5 *2 - (-3 (|:| |f1| (-749 *3)) (|:| |f2| (-582 (-749 *3))) (|:| |fail| "failed") + (-3 (|:| |f1| (-750 *3)) (|:| |f2| (-583 (-750 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-173 *7 *3)) (-5 *5 (-749 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-348 (-483))) (-5 *1 (-171))))) + (-5 *1 (-173 *7 *3)) (-5 *5 (-750 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-349 (-484))) (-5 *1 (-171))))) (((*1 *2 *3) - (-12 (-4 *4 (-299)) (-5 *2 (-85)) (-5 *1 (-170 *4 *3)) (-4 *3 (-1153 *4))))) + (-12 (-4 *4 (-299)) (-5 *2 (-85)) (-5 *1 (-170 *4 *3)) (-4 *3 (-1154 *4))))) (((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-693)) (-4 *4 (-299)) (-5 *1 (-170 *4 *2)) (-4 *2 (-1153 *4))))) + (-12 (-5 *3 (-694)) (-4 *4 (-299)) (-5 *1 (-170 *4 *2)) (-4 *2 (-1154 *4))))) (((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-693)) (-4 *4 (-299)) (-5 *1 (-170 *4 *2)) (-4 *2 (-1153 *4))))) + (-12 (-5 *3 (-694)) (-4 *4 (-299)) (-5 *1 (-170 *4 *2)) (-4 *2 (-1154 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-299)) (-5 *2 (-582 (-2 (|:| |deg| (-693)) (|:| -2574 *3)))) - (-5 *1 (-170 *4 *3)) (-4 *3 (-1153 *4))))) + (-12 (-4 *4 (-299)) (-5 *2 (-583 (-2 (|:| |deg| (-694)) (|:| -2575 *3)))) + (-5 *1 (-170 *4 *3)) (-4 *3 (-1154 *4))))) (((*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-299)) (-5 *2 (-2 (|:| |cont| *5) - (|:| -1777 (-582 (-2 (|:| |irr| *3) (|:| -2394 (-483))))))) - (-5 *1 (-170 *5 *3)) (-4 *3 (-1153 *5))))) + (|:| -1778 (-583 (-2 (|:| |irr| *3) (|:| -2395 (-484))))))) + (-5 *1 (-170 *5 *3)) (-4 *3 (-1154 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-312)) (-4 *6 (-1153 (-348 *2))) - (-4 *2 (-1153 *5)) (-5 *1 (-169 *5 *2 *6 *3)) (-4 *3 (-291 *5 *2 *6))))) + (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-312)) (-4 *6 (-1154 (-349 *2))) + (-4 *2 (-1154 *5)) (-5 *1 (-169 *5 *2 *6 *3)) (-4 *3 (-291 *5 *2 *6))))) (((*1 *2 *1 *3 *2) - (-12 (-5 *3 (-693)) (-5 *1 (-166 *4 *2)) (-14 *4 (-829)) (-4 *2 (-1012))))) -(((*1 *2 *3) (-12 (-5 *2 (-346 (-1083 (-483)))) (-5 *1 (-165)) (-5 *3 (-483))))) -(((*1 *2 *3) (-12 (-5 *2 (-582 (-1083 (-483)))) (-5 *1 (-165)) (-5 *3 (-483))))) + (-12 (-5 *3 (-694)) (-5 *1 (-166 *4 *2)) (-14 *4 (-830)) (-4 *2 (-1013))))) +(((*1 *2 *3) (-12 (-5 *2 (-347 (-1084 (-484)))) (-5 *1 (-165)) (-5 *3 (-484))))) +(((*1 *2 *3) (-12 (-5 *2 (-583 (-1084 (-484)))) (-5 *1 (-165)) (-5 *3 (-484))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-582 (-483))) (-5 *2 (-1090 (-348 (-483)))) (-5 *1 (-164))))) + (-12 (-5 *3 (-583 (-484))) (-5 *2 (-1091 (-349 (-484)))) (-5 *1 (-164))))) (((*1 *2 *3) - (-12 (-5 *3 (-582 (-829))) (-5 *2 (-1090 (-348 (-483)))) (-5 *1 (-164))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1090 (-348 (-483)))) (-5 *1 (-164))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1090 (-348 (-483)))) (-5 *1 (-164))))) + (-12 (-5 *3 (-583 (-830))) (-5 *2 (-1091 (-349 (-484)))) (-5 *1 (-164))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1091 (-349 (-484)))) (-5 *1 (-164))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1091 (-349 (-484)))) (-5 *1 (-164))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1090 (-348 (-483)))) (-5 *2 (-348 (-483))) (-5 *1 (-164))))) -(((*1 *2 *3) (-12 (-5 *3 (-829)) (-5 *2 (-1090 (-348 (-483)))) (-5 *1 (-164))))) -(((*1 *2 *3) (-12 (-5 *3 (-829)) (-5 *2 (-1090 (-348 (-483)))) (-5 *1 (-164))))) -(((*1 *2 *3) (-12 (-5 *3 (-829)) (-5 *2 (-1090 (-348 (-483)))) (-5 *1 (-164))))) -(((*1 *2 *3) (-12 (-5 *3 (-829)) (-5 *2 (-1090 (-348 (-483)))) (-5 *1 (-164))))) -(((*1 *2 *3) (-12 (-5 *3 (-829)) (-5 *2 (-1090 (-348 (-483)))) (-5 *1 (-164))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1177 (-629 *4))) (-4 *4 (-146)) - (-5 *2 (-1177 (-629 (-856 *4)))) (-5 *1 (-163 *4))))) + (-12 (-5 *3 (-1091 (-349 (-484)))) (-5 *2 (-349 (-484))) (-5 *1 (-164))))) +(((*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1091 (-349 (-484)))) (-5 *1 (-164))))) +(((*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1091 (-349 (-484)))) (-5 *1 (-164))))) +(((*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1091 (-349 (-484)))) (-5 *1 (-164))))) +(((*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1091 (-349 (-484)))) (-5 *1 (-164))))) +(((*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1091 (-349 (-484)))) (-5 *1 (-164))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1178 (-630 *4))) (-4 *4 (-146)) + (-5 *2 (-1178 (-630 (-857 *4)))) (-5 *1 (-163 *4))))) (((*1 *1) (-5 *1 (-161)))) (((*1 *1) (-5 *1 (-161)))) (((*1 *1) (-5 *1 (-161)))) (((*1 *2 *1) (-12 (-5 *2 (-161)) (-5 *1 (-111)))) ((*1 *2 *1) (-12 (-4 *1 (-160)) (-5 *2 (-161))))) -(((*1 *2 *1) (-12 (-4 *1 (-160)) (-5 *2 (-582 (-85)))))) -(((*1 *2 *1) (-12 (-4 *1 (-160)) (-5 *2 (-582 (-773)))))) -(((*1 *2 *1) (-12 (-5 *2 (-582 (-1093))) (-5 *1 (-158 *3)) (-4 *3 (-160))))) -(((*1 *2 *3) (-12 (-5 *3 (-445)) (-5 *2 (-631 (-157))) (-5 *1 (-157))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-1127)) (-5 *1 (-156 *3 *2)) (-4 *2 (-615 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-160)) (-5 *2 (-583 (-85)))))) +(((*1 *2 *1) (-12 (-4 *1 (-160)) (-5 *2 (-583 (-774)))))) +(((*1 *2 *1) (-12 (-5 *2 (-583 (-1094))) (-5 *1 (-158 *3)) (-4 *3 (-160))))) +(((*1 *2 *3) (-12 (-5 *3 (-446)) (-5 *2 (-632 (-157))) (-5 *1 (-157))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-1128)) (-5 *1 (-156 *3 *2)) (-4 *2 (-616 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-1127)) (-5 *2 (-693)) (-5 *1 (-156 *4 *3)) (-4 *3 (-615 *4))))) + (-12 (-4 *4 (-1128)) (-5 *2 (-694)) (-5 *1 (-156 *4 *3)) (-4 *3 (-616 *4))))) (((*1 *2 *2) - (|partial| -12 (-4 *3 (-1127)) (-5 *1 (-156 *3 *2)) (-4 *2 (-615 *3))))) + (|partial| -12 (-4 *3 (-1128)) (-5 *1 (-156 *3 *2)) (-4 *2 (-616 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-312) (-754))) - (-5 *2 (-2 (|:| |start| *3) (|:| -1777 (-346 *3)))) (-5 *1 (-155 *4 *3)) - (-4 *3 (-1153 (-142 *4)))))) + (-12 (-4 *4 (-13 (-312) (-755))) + (-5 *2 (-2 (|:| |start| *3) (|:| -1778 (-347 *3)))) (-5 *1 (-155 *4 *3)) + (-4 *3 (-1154 (-142 *4)))))) (((*1 *2 *2) - (-12 (-4 *2 (-13 (-312) (-754))) (-5 *1 (-155 *2 *3)) - (-4 *3 (-1153 (-142 *2)))))) + (-12 (-4 *2 (-13 (-312) (-755))) (-5 *1 (-155 *2 *3)) + (-4 *3 (-1154 (-142 *2)))))) (((*1 *2 *3) - (-12 (-5 *2 (-142 *4)) (-5 *1 (-155 *4 *3)) (-4 *4 (-13 (-312) (-754))) - (-4 *3 (-1153 *2))))) + (-12 (-5 *2 (-142 *4)) (-5 *1 (-155 *4 *3)) (-4 *4 (-13 (-312) (-755))) + (-4 *3 (-1154 *2))))) (((*1 *2 *3 *2) - (-12 (-4 *2 (-13 (-312) (-754))) (-5 *1 (-155 *2 *3)) - (-4 *3 (-1153 (-142 *2))))) + (-12 (-4 *2 (-13 (-312) (-755))) (-5 *1 (-155 *2 *3)) + (-4 *3 (-1154 (-142 *2))))) ((*1 *2 *3) - (-12 (-4 *2 (-13 (-312) (-754))) (-5 *1 (-155 *2 *3)) - (-4 *3 (-1153 (-142 *2)))))) + (-12 (-4 *2 (-13 (-312) (-755))) (-5 *1 (-155 *2 *3)) + (-4 *3 (-1154 (-142 *2)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-312) (-754))) (-5 *1 (-155 *3 *2)) - (-4 *2 (-1153 (-142 *3)))))) + (-12 (-4 *3 (-13 (-312) (-755))) (-5 *1 (-155 *3 *2)) + (-4 *2 (-1154 (-142 *3)))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-85)) (-4 *4 (-13 (-312) (-754))) (-5 *2 (-346 *3)) - (-5 *1 (-155 *4 *3)) (-4 *3 (-1153 (-142 *4))))) + (-12 (-5 *5 (-85)) (-4 *4 (-13 (-312) (-755))) (-5 *2 (-347 *3)) + (-5 *1 (-155 *4 *3)) (-4 *3 (-1154 (-142 *4))))) ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-312) (-754))) (-5 *2 (-346 *3)) (-5 *1 (-155 *4 *3)) - (-4 *3 (-1153 (-142 *4)))))) + (-12 (-4 *4 (-13 (-312) (-755))) (-5 *2 (-347 *3)) (-5 *1 (-155 *4 *3)) + (-4 *3 (-1154 (-142 *4)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-312) (-754))) (-5 *1 (-155 *3 *2)) - (-4 *2 (-1153 (-142 *3)))))) + (-12 (-4 *3 (-13 (-312) (-755))) (-5 *1 (-155 *3 *2)) + (-4 *2 (-1154 (-142 *3)))))) (((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-85)) (-4 *5 (-13 (-312) (-754))) - (-5 *2 (-582 (-2 (|:| -1777 (-582 *3)) (|:| -1594 *5)))) - (-5 *1 (-155 *5 *3)) (-4 *3 (-1153 (-142 *5))))) + (-12 (-5 *4 (-85)) (-4 *5 (-13 (-312) (-755))) + (-5 *2 (-583 (-2 (|:| -1778 (-583 *3)) (|:| -1595 *5)))) + (-5 *1 (-155 *5 *3)) (-4 *3 (-1154 (-142 *5))))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-312) (-754))) - (-5 *2 (-582 (-2 (|:| -1777 (-582 *3)) (|:| -1594 *4)))) - (-5 *1 (-155 *4 *3)) (-4 *3 (-1153 (-142 *4)))))) + (-12 (-4 *4 (-13 (-312) (-755))) + (-5 *2 (-583 (-2 (|:| -1778 (-583 *3)) (|:| -1595 *4)))) + (-5 *1 (-155 *4 *3)) (-4 *3 (-1154 (-142 *4)))))) (((*1 *2 *3 *4) - (-12 (-5 *2 (-582 (-142 *4))) (-5 *1 (-128 *3 *4)) - (-4 *3 (-1153 (-142 (-483)))) (-4 *4 (-13 (-312) (-754))))) + (-12 (-5 *2 (-583 (-142 *4))) (-5 *1 (-128 *3 *4)) + (-4 *3 (-1154 (-142 (-484)))) (-4 *4 (-13 (-312) (-755))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-312) (-754))) (-5 *2 (-582 (-142 *4))) - (-5 *1 (-155 *4 *3)) (-4 *3 (-1153 (-142 *4))))) + (-12 (-4 *4 (-13 (-312) (-755))) (-5 *2 (-583 (-142 *4))) + (-5 *1 (-155 *4 *3)) (-4 *3 (-1154 (-142 *4))))) ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-312) (-754))) (-5 *2 (-582 (-142 *4))) - (-5 *1 (-155 *4 *3)) (-4 *3 (-1153 (-142 *4)))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-582 *3)) (-4 *3 (-258)) (-5 *1 (-153 *3))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-582 *3)) (-4 *3 (-258)) (-5 *1 (-153 *3))))) + (-12 (-4 *4 (-13 (-312) (-755))) (-5 *2 (-583 (-142 *4))) + (-5 *1 (-155 *4 *3)) (-4 *3 (-1154 (-142 *4)))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-583 *3)) (-4 *3 (-258)) (-5 *1 (-153 *3))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-258)) (-5 *1 (-153 *3))))) (((*1 *2 *3 *3) - (-12 (-5 *2 (-1 (-853 *3) (-853 *3))) (-5 *1 (-150 *3)) - (-4 *3 (-13 (-312) (-1113) (-914)))))) + (-12 (-5 *2 (-1 (-854 *3) (-854 *3))) (-5 *1 (-150 *3)) + (-4 *3 (-13 (-312) (-1114) (-915)))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-853 *3) (-853 *3))) (-5 *1 (-150 *3)) - (-4 *3 (-13 (-312) (-1113) (-914)))))) + (-12 (-5 *2 (-1 (-854 *3) (-854 *3))) (-5 *1 (-150 *3)) + (-4 *3 (-13 (-312) (-1114) (-915)))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-853 *3) (-853 *3))) (-5 *1 (-150 *3)) - (-4 *3 (-13 (-312) (-1113) (-914)))))) + (-12 (-5 *2 (-1 (-854 *3) (-854 *3))) (-5 *1 (-150 *3)) + (-4 *3 (-13 (-312) (-1114) (-915)))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-853 *3) (-853 *3))) (-5 *1 (-150 *3)) - (-4 *3 (-13 (-312) (-1113) (-914)))))) + (-12 (-5 *2 (-1 (-854 *3) (-854 *3))) (-5 *1 (-150 *3)) + (-4 *3 (-13 (-312) (-1114) (-915)))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-853 *3) (-853 *3))) (-5 *1 (-150 *3)) - (-4 *3 (-13 (-312) (-1113) (-914)))))) + (-12 (-5 *2 (-1 (-854 *3) (-854 *3))) (-5 *1 (-150 *3)) + (-4 *3 (-13 (-312) (-1114) (-915)))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-853 *3) (-853 *3))) (-5 *1 (-150 *3)) - (-4 *3 (-13 (-312) (-1113) (-914)))))) + (-12 (-5 *2 (-1 (-854 *3) (-854 *3))) (-5 *1 (-150 *3)) + (-4 *3 (-13 (-312) (-1114) (-915)))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-853 *3) (-853 *3))) (-5 *1 (-150 *3)) - (-4 *3 (-13 (-312) (-1113) (-914)))))) + (-12 (-5 *2 (-1 (-854 *3) (-854 *3))) (-5 *1 (-150 *3)) + (-4 *3 (-13 (-312) (-1114) (-915)))))) (((*1 *2 *2) - (-12 (-5 *2 (-853 *3)) (-4 *3 (-13 (-312) (-1113) (-914))) + (-12 (-5 *2 (-854 *3)) (-4 *3 (-13 (-312) (-1114) (-915))) (-5 *1 (-150 *3))))) (((*1 *2 *2) - (-12 (-5 *2 (-853 *3)) (-4 *3 (-13 (-312) (-1113) (-914))) + (-12 (-5 *2 (-854 *3)) (-4 *3 (-13 (-312) (-1114) (-915))) (-5 *1 (-150 *3))))) (((*1 *2 *2) - (-12 (-5 *2 (-853 *3)) (-4 *3 (-13 (-312) (-1113) (-914))) + (-12 (-5 *2 (-854 *3)) (-4 *3 (-13 (-312) (-1114) (-915))) (-5 *1 (-150 *3))))) (((*1 *2 *2) - (-12 (-5 *2 (-853 *3)) (-4 *3 (-13 (-312) (-1113) (-914))) + (-12 (-5 *2 (-854 *3)) (-4 *3 (-13 (-312) (-1114) (-915))) (-5 *1 (-150 *3))))) (((*1 *2 *2) - (-12 (-5 *2 (-853 *3)) (-4 *3 (-13 (-312) (-1113) (-914))) + (-12 (-5 *2 (-854 *3)) (-4 *3 (-13 (-312) (-1114) (-915))) (-5 *1 (-150 *3))))) (((*1 *2 *2) - (-12 (-5 *2 (-853 *3)) (-4 *3 (-13 (-312) (-1113) (-914))) + (-12 (-5 *2 (-854 *3)) (-4 *3 (-13 (-312) (-1114) (-915))) (-5 *1 (-150 *3))))) (((*1 *2 *2) - (-12 (-5 *2 (-853 *3)) (-4 *3 (-13 (-312) (-1113) (-914))) + (-12 (-5 *2 (-854 *3)) (-4 *3 (-13 (-312) (-1114) (-915))) (-5 *1 (-150 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-582 (-78))) (-5 *1 (-149))))) +(((*1 *2 *1) (-12 (-5 *2 (-583 (-78))) (-5 *1 (-149))))) (((*1 *1 *2 *1) (-12 (-5 *2 (-78)) (-5 *1 (-149))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-1067 *2)) (-4 *2 (-258)) (-5 *1 (-148 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-1067 *3)) (-5 *1 (-148 *3)) (-4 *3 (-258))))) -(((*1 *2 *1) (-12 (-5 *2 (-1067 *3)) (-5 *1 (-148 *3)) (-4 *3 (-258))))) -(((*1 *2 *1) (-12 (-5 *2 (-1067 *3)) (-5 *1 (-148 *3)) (-4 *3 (-258))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-1068 *2)) (-4 *2 (-258)) (-5 *1 (-148 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-148 *3)) (-4 *3 (-258))))) +(((*1 *2 *1) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-148 *3)) (-4 *3 (-258))))) +(((*1 *2 *1) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-148 *3)) (-4 *3 (-258))))) (((*1 *1 *1) (-12 (-5 *1 (-148 *2)) (-4 *2 (-258))))) -(((*1 *2 *1) (-12 (-5 *2 (-1067 (-348 *3))) (-5 *1 (-148 *3)) (-4 *3 (-258))))) -(((*1 *2 *1) (-12 (-5 *2 (-1067 (-348 *3))) (-5 *1 (-148 *3)) (-4 *3 (-258))))) -(((*1 *2 *1) (-12 (-5 *2 (-1067 *3)) (-5 *1 (-148 *3)) (-4 *3 (-258))))) -(((*1 *2 *1) (-12 (-5 *2 (-1067 *3)) (-5 *1 (-148 *3)) (-4 *3 (-258))))) +(((*1 *2 *1) (-12 (-5 *2 (-1068 (-349 *3))) (-5 *1 (-148 *3)) (-4 *3 (-258))))) +(((*1 *2 *1) (-12 (-5 *2 (-1068 (-349 *3))) (-5 *1 (-148 *3)) (-4 *3 (-258))))) +(((*1 *2 *1) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-148 *3)) (-4 *3 (-258))))) +(((*1 *2 *1) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-148 *3)) (-4 *3 (-258))))) (((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-145))))) (((*1 *2 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-145))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-1047)) (-5 *3 (-247)) (-5 *1 (-141))))) -(((*1 *2 *3) (-12 (-5 *3 (-1047)) (-5 *2 (-631 (-235))) (-5 *1 (-141))))) -(((*1 *2 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-582 (-631 (-235)))) (-5 *1 (-141))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-1048)) (-5 *3 (-247)) (-5 *1 (-141))))) +(((*1 *2 *3) (-12 (-5 *3 (-1048)) (-5 *2 (-632 (-235))) (-5 *1 (-141))))) +(((*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-583 (-632 (-235)))) (-5 *1 (-141))))) (((*1 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146))))) (((*1 *1 *2 *2) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146))))) (((*1 *2 *1) - (-12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-972)) (-4 *3 (-1113)) + (-12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-973)) (-4 *3 (-1114)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3)))))) (((*1 *1 *1 *1) (-5 *1 (-134))) - ((*1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-134))))) -(((*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-131 *3 *2)) (-4 *2 (-362 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-134))))) +(((*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-131 *3 *2)) (-4 *2 (-363 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1088)) (-4 *4 (-494)) (-5 *1 (-131 *4 *2)) (-4 *2 (-362 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-133)) (-5 *2 (-1088)))) + (-12 (-5 *3 (-1089)) (-4 *4 (-495)) (-5 *1 (-131 *4 *2)) (-4 *2 (-363 *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-133)) (-5 *2 (-1089)))) ((*1 *1 *1) (-4 *1 (-133)))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1088)) (-4 *4 (-494)) (-5 *1 (-131 *4 *2)) (-4 *2 (-362 *4)))) + (-12 (-5 *3 (-1089)) (-4 *4 (-495)) (-5 *1 (-131 *4 *2)) (-4 *2 (-363 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1003 *2)) (-4 *2 (-362 *4)) (-4 *4 (-494)) + (-12 (-5 *3 (-1004 *2)) (-4 *2 (-363 *4)) (-4 *4 (-495)) (-5 *1 (-131 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1003 *1)) (-4 *1 (-133)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-133)) (-5 *2 (-1088))))) -(((*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-482))))) -(((*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-482))))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1004 *1)) (-4 *1 (-133)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-133)) (-5 *2 (-1089))))) +(((*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-483))))) +(((*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-483))))) (((*1 *1 *1 *1) (-4 *1 (-116))) - ((*1 *2 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-131 *3 *2)) (-4 *2 (-362 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-482))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-582 *2)) (-4 *2 (-482)) (-5 *1 (-132 *2))))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-131 *3 *2)) (-4 *2 (-363 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-483))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-483)) (-5 *1 (-132 *2))))) (((*1 *1 *1) (-4 *1 (-116))) - ((*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-131 *3 *2)) (-4 *2 (-362 *3)))) - ((*1 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-482))))) + ((*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-131 *3 *2)) (-4 *2 (-363 *3)))) + ((*1 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-483))))) (((*1 *2 *3) - (-12 (-5 *3 (-582 *2)) (-4 *2 (-362 *4)) (-5 *1 (-131 *4 *2)) - (-4 *4 (-494))))) + (-12 (-5 *3 (-583 *2)) (-4 *2 (-363 *4)) (-5 *1 (-131 *4 *2)) + (-4 *4 (-495))))) (((*1 *2 *3) - (-12 (-5 *3 (-582 *2)) (-4 *2 (-362 *4)) (-5 *1 (-131 *4 *2)) - (-4 *4 (-494))))) + (-12 (-5 *3 (-583 *2)) (-4 *2 (-363 *4)) (-5 *1 (-131 *4 *2)) + (-4 *4 (-495))))) (((*1 *2 *3) - (-12 (-5 *3 (-582 *2)) (-4 *2 (-362 *4)) (-5 *1 (-131 *4 *2)) - (-4 *4 (-494))))) + (-12 (-5 *3 (-583 *2)) (-4 *2 (-363 *4)) (-5 *1 (-131 *4 *2)) + (-4 *4 (-495))))) (((*1 *2 *3) - (-12 (-5 *3 (-582 *2)) (-4 *2 (-362 *4)) (-5 *1 (-131 *4 *2)) - (-4 *4 (-494))))) + (-12 (-5 *3 (-583 *2)) (-4 *2 (-363 *4)) (-5 *1 (-131 *4 *2)) + (-4 *4 (-495))))) (((*1 *2 *3) - (-12 (-5 *3 (-582 *2)) (-4 *2 (-362 *4)) (-5 *1 (-131 *4 *2)) - (-4 *4 (-494))))) + (-12 (-5 *3 (-583 *2)) (-4 *2 (-363 *4)) (-5 *1 (-131 *4 *2)) + (-4 *4 (-495))))) (((*1 *2 *3) - (-12 (-5 *3 (-582 *2)) (-4 *2 (-362 *4)) (-5 *1 (-131 *4 *2)) - (-4 *4 (-494))))) -(((*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-131 *3 *2)) (-4 *2 (-362 *3))))) + (-12 (-5 *3 (-583 *2)) (-4 *2 (-363 *4)) (-5 *1 (-131 *4 *2)) + (-4 *4 (-495))))) +(((*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-131 *3 *2)) (-4 *2 (-363 *3))))) (((*1 *1) (-5 *1 (-130)))) -(((*1 *2) (-12 (-5 *2 (-829)) (-5 *1 (-130))))) +(((*1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-130))))) (((*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-179)) (-5 *2 - (-2 (|:| |brans| (-582 (-582 (-853 *4)))) (|:| |xValues| (-1000 *4)) - (|:| |yValues| (-1000 *4)))) - (-5 *1 (-126)) (-5 *3 (-582 (-582 (-853 *4))))))) + (-2 (|:| |brans| (-583 (-583 (-854 *4)))) (|:| |xValues| (-1001 *4)) + (|:| |yValues| (-1001 *4)))) + (-5 *1 (-126)) (-5 *3 (-583 (-583 (-854 *4))))))) (((*1 *2 *3) - (-12 (-5 *3 (-835)) + (-12 (-5 *3 (-836)) (-5 *2 - (-2 (|:| |brans| (-582 (-582 (-853 (-179))))) - (|:| |xValues| (-1000 (-179))) (|:| |yValues| (-1000 (-179))))) + (-2 (|:| |brans| (-583 (-583 (-854 (-179))))) + (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179))))) (-5 *1 (-126)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-835)) (-5 *4 (-348 (-483))) + (-12 (-5 *3 (-836)) (-5 *4 (-349 (-484))) (-5 *2 - (-2 (|:| |brans| (-582 (-582 (-853 (-179))))) - (|:| |xValues| (-1000 (-179))) (|:| |yValues| (-1000 (-179))))) + (-2 (|:| |brans| (-583 (-583 (-854 (-179))))) + (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179))))) (-5 *1 (-126))))) (((*1 *1 *2) - (-12 (-5 *2 (-829)) (-5 *1 (-125 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-312)) - (-14 *5 (-905 *3 *4))))) + (-12 (-5 *2 (-830)) (-5 *1 (-125 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-312)) + (-14 *5 (-906 *3 *4))))) (((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-1 (-85) *2)) (-4 *1 (-124 *2)) (-4 *2 (-1127))))) + (|partial| -12 (-5 *3 (-1 (-85) *2)) (-4 *1 (-124 *2)) (-4 *2 (-1128))))) (((*1 *1 *1) - (-12 (|has| *1 (-6 -3993)) (-4 *1 (-124 *2)) (-4 *2 (-1127)) - (-4 *2 (-1012))))) + (-12 (|has| *1 (-6 -3994)) (-4 *1 (-124 *2)) (-4 *2 (-1128)) + (-4 *2 (-1013))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-1132)) (-4 *5 (-1153 *4)) + (-12 (-4 *4 (-1133)) (-4 *5 (-1154 *4)) (-5 *2 - (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-348 *5)) - (|:| |c2| (-348 *5)) (|:| |deg| (-693)))) - (-5 *1 (-121 *4 *5 *3)) (-4 *3 (-1153 (-348 *5)))))) + (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-349 *5)) + (|:| |c2| (-349 *5)) (|:| |deg| (-694)))) + (-5 *1 (-121 *4 *5 *3)) (-4 *3 (-1154 (-349 *5)))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-1153 *2)) (-4 *2 (-1132)) (-5 *1 (-121 *2 *4 *3)) - (-4 *3 (-1153 (-348 *4)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-348 *6)) (-4 *5 (-1132)) (-4 *6 (-1153 *5)) - (-5 *2 (-2 (|:| -2400 (-693)) (|:| -3952 *3) (|:| |radicand| *6))) - (-5 *1 (-121 *5 *6 *7)) (-5 *4 (-693)) (-4 *7 (-1153 *3))))) -(((*1 *2 *3) - (|partial| -12 (-4 *4 (-1132)) (-4 *5 (-1153 *4)) - (-5 *2 (-2 (|:| |radicand| (-348 *5)) (|:| |deg| (-693)))) - (-5 *1 (-121 *4 *5 *3)) (-4 *3 (-1153 (-348 *5)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1132)) (-4 *5 (-1153 *4)) - (-5 *2 (-2 (|:| -3952 (-348 *5)) (|:| |poly| *3))) (-5 *1 (-121 *4 *5 *3)) - (-4 *3 (-1153 (-348 *5)))))) -(((*1 *2 *1) (-12 (-5 *2 (-693)) (-5 *1 (-117))))) -(((*1 *1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-117)))) - ((*1 *1 *2) (-12 (-5 *2 (-693)) (-5 *1 (-117))))) + (-12 (-4 *4 (-1154 *2)) (-4 *2 (-1133)) (-5 *1 (-121 *2 *4 *3)) + (-4 *3 (-1154 (-349 *4)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-349 *6)) (-4 *5 (-1133)) (-4 *6 (-1154 *5)) + (-5 *2 (-2 (|:| -2401 (-694)) (|:| -3953 *3) (|:| |radicand| *6))) + (-5 *1 (-121 *5 *6 *7)) (-5 *4 (-694)) (-4 *7 (-1154 *3))))) +(((*1 *2 *3) + (|partial| -12 (-4 *4 (-1133)) (-4 *5 (-1154 *4)) + (-5 *2 (-2 (|:| |radicand| (-349 *5)) (|:| |deg| (-694)))) + (-5 *1 (-121 *4 *5 *3)) (-4 *3 (-1154 (-349 *5)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1133)) (-4 *5 (-1154 *4)) + (-5 *2 (-2 (|:| -3953 (-349 *5)) (|:| |poly| *3))) (-5 *1 (-121 *4 *5 *3)) + (-4 *3 (-1154 (-349 *5)))))) +(((*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-117))))) +(((*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-117)))) + ((*1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-117))))) (((*1 *1) (-5 *1 (-117)))) (((*1 *1) (-5 *1 (-117)))) (((*1 *1) (-5 *1 (-117)))) @@ -13169,997 +13181,997 @@ (((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117))))) (((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117))))) (((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117))))) -(((*1 *1 *2) (-12 (-5 *2 (-582 (-117))) (-5 *1 (-114)))) - ((*1 *1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-114))))) +(((*1 *1 *2) (-12 (-5 *2 (-583 (-117))) (-5 *1 (-114)))) + ((*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-114))))) (((*1 *1) (-5 *1 (-114)))) (((*1 *1) (-5 *1 (-114)))) (((*1 *1) (-5 *1 (-114)))) (((*1 *1) (-5 *1 (-114)))) -(((*1 *2 *1) (-12 (-5 *2 (-582 (-748))) (-5 *1 (-113))))) -(((*1 *2 *1) (-12 (-5 *2 (-582 (-158 (-112)))) (-5 *1 (-113))))) -(((*1 *2 *1) (-12 (-5 *2 (-582 (-158 (-112)))) (-5 *1 (-113))))) +(((*1 *2 *1) (-12 (-5 *2 (-583 (-749))) (-5 *1 (-113))))) +(((*1 *2 *1) (-12 (-5 *2 (-583 (-158 (-112)))) (-5 *1 (-113))))) +(((*1 *2 *1) (-12 (-5 *2 (-583 (-158 (-112)))) (-5 *1 (-113))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-582 (-483))) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-483)) - (-14 *4 (-693)) (-4 *5 (-146))))) + (-12 (-5 *2 (-583 (-484))) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-484)) + (-14 *4 (-694)) (-4 *5 (-146))))) (((*1 *1) - (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-483)) (-14 *3 (-693)) (-4 *4 (-146))))) + (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-484)) (-14 *3 (-694)) (-4 *4 (-146))))) (((*1 *1) - (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-483)) (-14 *3 (-693)) (-4 *4 (-146))))) + (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-484)) (-14 *3 (-694)) (-4 *4 (-146))))) (((*1 *2 *1) - (-12 (-5 *2 (-582 *5)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-483)) - (-14 *4 (-693)) (-4 *5 (-146))))) + (-12 (-5 *2 (-583 *5)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-484)) + (-14 *4 (-694)) (-4 *5 (-146))))) (((*1 *1 *2) - (-12 (-5 *2 (-582 *5)) (-4 *5 (-146)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-483)) - (-14 *4 (-693))))) -(((*1 *1 *2) (-12 (-5 *2 (-693)) (-5 *1 (-107))))) + (-12 (-5 *2 (-583 *5)) (-4 *5 (-146)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-484)) + (-14 *4 (-694))))) +(((*1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-107))))) (((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-107))))) (((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-107))))) (((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-107))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-105)) (-5 *3 (-693)) (-5 *2 (-1183))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-105)) (-5 *3 (-694)) (-5 *2 (-1184))))) (((*1 *1 *1 *1) (|partial| -4 *1 (-104)))) (((*1 *1) (-5 *1 (-103)))) (((*1 *1) (-5 *1 (-103)))) (((*1 *1) (-5 *1 (-103)))) -(((*1 *1 *2) (-12 (-5 *2 (-693)) (-5 *1 (-102))))) -(((*1 *2 *1) (-12 (-5 *2 (-693)) (-5 *1 (-102))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-693)) (-5 *1 (-102))))) -(((*1 *1 *2) (-12 (-5 *2 (-693)) (-5 *1 (-101))))) -(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-100 *2)) (-4 *2 (-1012)))) - ((*1 *1 *2) (-12 (-5 *1 (-100 *2)) (-4 *2 (-1012))))) -(((*1 *1 *2) (-12 (-5 *2 (-582 *3)) (-4 *3 (-755)) (-5 *1 (-99 *3))))) -(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-98 *2)) (-4 *2 (-1012))))) +(((*1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-102))))) +(((*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-102))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-102))))) +(((*1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-101))))) +(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-100 *2)) (-4 *2 (-1013)))) + ((*1 *1 *2) (-12 (-5 *1 (-100 *2)) (-4 *2 (-1013))))) +(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-756)) (-5 *1 (-99 *3))))) +(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-98 *2)) (-4 *2 (-1013))))) (((*1 *1 *1 *1) (-5 *1 (-85))) ((*1 *1 *1 *1) (-4 *1 (-96)))) (((*1 *1 *1 *1) (-5 *1 (-85))) ((*1 *1 *1 *1) (-4 *1 (-96)))) -(((*1 *1 *2) (-12 (-5 *2 (-582 *3)) (-4 *3 (-755)) (-5 *1 (-94 *3))))) -(((*1 *1 *2 *1) (-12 (-5 *1 (-94 *2)) (-4 *2 (-755))))) -(((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-93 *3)) (-4 *3 (-1153 (-483)))))) -(((*1 *2) (-12 (-5 *2 (-693)) (-5 *1 (-93 *3)) (-4 *3 (-1153 (-483))))) - ((*1 *2 *2) (-12 (-5 *2 (-693)) (-5 *1 (-93 *3)) (-4 *3 (-1153 (-483)))))) -(((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-93 *3)) (-4 *3 (-1153 (-483))))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *1 (-93 *3)) (-4 *3 (-1153 (-483)))))) -(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -3994)) (-4 *1 (-92 *2)) (-4 *2 (-1127))))) -(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -3994)) (-4 *1 (-92 *2)) (-4 *2 (-1127))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-312) (-949 (-348 *2)))) (-5 *2 (-483)) (-5 *1 (-88 *4 *3)) - (-4 *3 (-1153 *4))))) -(((*1 *2 *3) (|partial| -12 (-5 *3 (-86)) (-5 *1 (-87 *2)) (-4 *2 (-1012))))) -(((*1 *2 *3) (-12 (-5 *2 (-86)) (-5 *1 (-87 *3)) (-4 *3 (-1012))))) +(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-756)) (-5 *1 (-94 *3))))) +(((*1 *1 *2 *1) (-12 (-5 *1 (-94 *2)) (-4 *2 (-756))))) +(((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-93 *3)) (-4 *3 (-1154 (-484)))))) +(((*1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-93 *3)) (-4 *3 (-1154 (-484))))) + ((*1 *2 *2) (-12 (-5 *2 (-694)) (-5 *1 (-93 *3)) (-4 *3 (-1154 (-484)))))) +(((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-93 *3)) (-4 *3 (-1154 (-484))))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *1 (-93 *3)) (-4 *3 (-1154 (-484)))))) +(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -3995)) (-4 *1 (-92 *2)) (-4 *2 (-1128))))) +(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -3995)) (-4 *1 (-92 *2)) (-4 *2 (-1128))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-312) (-950 (-349 *2)))) (-5 *2 (-484)) (-5 *1 (-88 *4 *3)) + (-4 *3 (-1154 *4))))) +(((*1 *2 *3) (|partial| -12 (-5 *3 (-86)) (-5 *1 (-87 *2)) (-4 *2 (-1013))))) +(((*1 *2 *3) (-12 (-5 *2 (-86)) (-5 *1 (-87 *3)) (-4 *3 (-1013))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-86)) (-5 *3 (-582 (-1 *4 (-582 *4)))) (-4 *4 (-1012)) + (-12 (-5 *2 (-86)) (-5 *3 (-583 (-1 *4 (-583 *4)))) (-4 *4 (-1013)) (-5 *1 (-87 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-86)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1012)) (-5 *1 (-87 *4)))) + (-12 (-5 *2 (-86)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1013)) (-5 *1 (-87 *4)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-86)) (-5 *2 (-582 (-1 *4 (-582 *4)))) - (-5 *1 (-87 *4)) (-4 *4 (-1012))))) -(((*1 *2 *1) (-12 (-5 *2 (-582 (-875))) (-5 *1 (-78)))) - ((*1 *2 *1) (-12 (-5 *2 (-45 (-1071) (-695))) (-5 *1 (-86))))) + (|partial| -12 (-5 *3 (-86)) (-5 *2 (-583 (-1 *4 (-583 *4)))) + (-5 *1 (-87 *4)) (-4 *4 (-1013))))) +(((*1 *2 *1) (-12 (-5 *2 (-583 (-876))) (-5 *1 (-78)))) + ((*1 *2 *1) (-12 (-5 *2 (-45 (-1072) (-696))) (-5 *1 (-86))))) (((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-86))))) (((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-86))))) (((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-86))))) (((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-85) (-86) (-86))) (-5 *1 (-86))))) (((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-85) (-86) (-86))) (-5 *1 (-86))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-445)) (-5 *2 (-85)) (-5 *1 (-86))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-445)) (-5 *1 (-86)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-86))))) -(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-445)) (-5 *3 (-695)) (-5 *1 (-86)))) - ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1071)) (-5 *3 (-695)) (-5 *1 (-86))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1071) (-695))) (-5 *1 (-86))))) -(((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *3 (-1127)) (-5 *1 (-79 *3))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-445)) (-5 *3 (-582 (-875))) (-5 *1 (-78))))) -(((*1 *1 *2) (-12 (-5 *2 (-582 *3)) (-4 *3 (-1127)) (-4 *1 (-76 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-76 *2)) (-4 *2 (-1127))))) -(((*1 *2 *1) (-12 (-4 *1 (-76 *2)) (-4 *2 (-1127))))) -(((*1 *2 *3) - (-12 (|has| *2 (-6 (-3995 "*"))) (-4 *5 (-322 *2)) (-4 *6 (-322 *2)) - (-4 *2 (-960)) (-5 *1 (-74 *2 *3 *4 *5 *6)) (-4 *3 (-1153 *2)) - (-4 *4 (-626 *2 *5 *6))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-446)) (-5 *2 (-85)) (-5 *1 (-86))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-446)) (-5 *1 (-86)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-86))))) +(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-446)) (-5 *3 (-696)) (-5 *1 (-86)))) + ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1072)) (-5 *3 (-696)) (-5 *1 (-86))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1072) (-696))) (-5 *1 (-86))))) +(((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *3 (-1128)) (-5 *1 (-79 *3))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-446)) (-5 *3 (-583 (-876))) (-5 *1 (-78))))) +(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1128)) (-4 *1 (-76 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-76 *2)) (-4 *2 (-1128))))) +(((*1 *2 *1) (-12 (-4 *1 (-76 *2)) (-4 *2 (-1128))))) +(((*1 *2 *3) + (-12 (|has| *2 (-6 (-3996 "*"))) (-4 *5 (-323 *2)) (-4 *6 (-323 *2)) + (-4 *2 (-961)) (-5 *1 (-74 *2 *3 *4 *5 *6)) (-4 *3 (-1154 *2)) + (-4 *4 (-627 *2 *5 *6))))) (((*1 *2 *3 *3) - (-12 (|has| *2 (-6 (-3995 "*"))) (-4 *5 (-322 *2)) (-4 *6 (-322 *2)) - (-4 *2 (-960)) (-5 *1 (-74 *2 *3 *4 *5 *6)) (-4 *3 (-1153 *2)) - (-4 *4 (-626 *2 *5 *6))))) + (-12 (|has| *2 (-6 (-3996 "*"))) (-4 *5 (-323 *2)) (-4 *6 (-323 *2)) + (-4 *2 (-961)) (-5 *1 (-74 *2 *3 *4 *5 *6)) (-4 *3 (-1154 *2)) + (-4 *4 (-627 *2 *5 *6))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-960)) (-4 *2 (-626 *4 *5 *6)) (-5 *1 (-74 *4 *3 *2 *5 *6)) - (-4 *3 (-1153 *4)) (-4 *5 (-322 *4)) (-4 *6 (-322 *4))))) + (-12 (-4 *4 (-961)) (-4 *2 (-627 *4 *5 *6)) (-5 *1 (-74 *4 *3 *2 *5 *6)) + (-4 *3 (-1154 *4)) (-4 *5 (-323 *4)) (-4 *6 (-323 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-960)) (-4 *2 (-626 *4 *5 *6)) (-5 *1 (-74 *4 *3 *2 *5 *6)) - (-4 *3 (-1153 *4)) (-4 *5 (-322 *4)) (-4 *6 (-322 *4))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-693)) (-5 *1 (-73 *3)) (-4 *3 (-1012))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-582 *3)) (-4 *3 (-1012)) (-5 *1 (-73 *3))))) + (-12 (-4 *4 (-961)) (-4 *2 (-627 *4 *5 *6)) (-5 *1 (-74 *4 *3 *2 *5 *6)) + (-4 *3 (-1154 *4)) (-4 *5 (-323 *4)) (-4 *6 (-323 *4))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-694)) (-5 *1 (-73 *3)) (-4 *3 (-1013))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1013)) (-5 *1 (-73 *3))))) (((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1012)) (-5 *1 (-73 *3)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-73 *2)) (-4 *2 (-1012))))) + (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1013)) (-5 *1 (-73 *3)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-73 *2)) (-4 *2 (-1013))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-1 (-582 *2) *2 *2 *2)) (-4 *2 (-1012)) (-5 *1 (-73 *2)))) + (-12 (-5 *3 (-1 (-583 *2) *2 *2 *2)) (-4 *2 (-1013)) (-5 *1 (-73 *2)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1012)) (-5 *1 (-73 *2))))) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1013)) (-5 *1 (-73 *2))))) (((*1 *2 *1 *1) (-12 (-4 *1 (-72)) (-5 *2 (-85))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-390) (-120))) (-5 *2 (-346 *3)) (-5 *1 (-70 *4 *3)) - (-4 *3 (-1153 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-582 *3)) (-4 *3 (-1153 *5)) (-4 *5 (-13 (-390) (-120))) - (-5 *2 (-346 *3)) (-5 *1 (-70 *5 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-483))) (-4 *3 (-960)) (-5 *1 (-69 *3)))) - ((*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-960)) (-5 *1 (-69 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-960)) (-5 *1 (-69 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-582 *3)) (-4 *3 (-1012)) (-5 *1 (-62 *3))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-312)) (-4 *5 (-494)) - (-5 *2 - (-2 (|:| |minor| (-582 (-829))) (|:| -3265 *3) - (|:| |minors| (-582 (-582 (-829)))) (|:| |ops| (-582 *3)))) - (-5 *1 (-61 *5 *3)) (-5 *4 (-829)) (-4 *3 (-599 *5))))) -(((*1 *2 *3) - (-12 (-4 *4 (-494)) (-5 *2 (-1177 (-629 *4))) (-5 *1 (-61 *4 *5)) - (-5 *3 (-629 *4)) (-4 *5 (-599 *4))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-494)) - (-5 *2 (-2 (|:| |mat| (-629 *5)) (|:| |vec| (-1177 (-582 (-829)))))) - (-5 *1 (-61 *5 *3)) (-5 *4 (-829)) (-4 *3 (-599 *5))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-693)) (-5 *1 (-58 *3)) (-4 *3 (-1127)))) - ((*1 *1 *2) (-12 (-5 *2 (-582 *3)) (-4 *3 (-1127)) (-5 *1 (-58 *3))))) + (-12 (-4 *4 (-13 (-391) (-120))) (-5 *2 (-347 *3)) (-5 *1 (-70 *4 *3)) + (-4 *3 (-1154 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-583 *3)) (-4 *3 (-1154 *5)) (-4 *5 (-13 (-391) (-120))) + (-5 *2 (-347 *3)) (-5 *1 (-70 *5 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-484))) (-4 *3 (-961)) (-5 *1 (-69 *3)))) + ((*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-69 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-69 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1013)) (-5 *1 (-62 *3))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-312)) (-4 *5 (-495)) + (-5 *2 + (-2 (|:| |minor| (-583 (-830))) (|:| -3266 *3) + (|:| |minors| (-583 (-583 (-830)))) (|:| |ops| (-583 *3)))) + (-5 *1 (-61 *5 *3)) (-5 *4 (-830)) (-4 *3 (-600 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-495)) (-5 *2 (-1178 (-630 *4))) (-5 *1 (-61 *4 *5)) + (-5 *3 (-630 *4)) (-4 *5 (-600 *4))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-495)) + (-5 *2 (-2 (|:| |mat| (-630 *5)) (|:| |vec| (-1178 (-583 (-830)))))) + (-5 *1 (-61 *5 *3)) (-5 *4 (-830)) (-4 *3 (-600 *5))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-694)) (-5 *1 (-58 *3)) (-4 *3 (-1128)))) + ((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1128)) (-5 *1 (-58 *3))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-483)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1127)) (-4 *3 (-322 *4)) - (-4 *5 (-322 *4))))) + (-12 (-5 *2 (-484)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1128)) (-4 *3 (-323 *4)) + (-4 *5 (-323 *4))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-483)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1127)) (-4 *5 (-322 *4)) - (-4 *3 (-322 *4))))) + (-12 (-5 *2 (-484)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1128)) (-4 *5 (-323 *4)) + (-4 *3 (-323 *4))))) (((*1 *1) (-5 *1 (-55)))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-582 (-1088))) (-4 *4 (-1012)) - (-4 *5 (-13 (-960) (-795 *4) (-552 (-799 *4)))) (-5 *1 (-54 *4 *5 *2)) - (-4 *2 (-13 (-362 *5) (-795 *4) (-552 (-799 *4))))))) + (-12 (-5 *3 (-583 (-1089))) (-4 *4 (-1013)) + (-4 *5 (-13 (-961) (-796 *4) (-553 (-800 *4)))) (-5 *1 (-54 *4 *5 *2)) + (-4 *2 (-13 (-363 *5) (-796 *4) (-553 (-800 *4))))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-582 (-986 *4 *5 *2))) (-4 *4 (-1012)) - (-4 *5 (-13 (-960) (-795 *4) (-552 (-799 *4)))) - (-4 *2 (-13 (-362 *5) (-795 *4) (-552 (-799 *4)))) (-5 *1 (-54 *4 *5 *2)))) + (-12 (-5 *3 (-583 (-987 *4 *5 *2))) (-4 *4 (-1013)) + (-4 *5 (-13 (-961) (-796 *4) (-553 (-800 *4)))) + (-4 *2 (-13 (-363 *5) (-796 *4) (-553 (-800 *4)))) (-5 *1 (-54 *4 *5 *2)))) ((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-582 (-986 *5 *6 *2))) (-5 *4 (-829)) (-4 *5 (-1012)) - (-4 *6 (-13 (-960) (-795 *5) (-552 (-799 *5)))) - (-4 *2 (-13 (-362 *6) (-795 *5) (-552 (-799 *5)))) (-5 *1 (-54 *5 *6 *2))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1014)) (-5 *3 (-695)) (-5 *1 (-51))))) -(((*1 *2 *1) (-12 (-5 *2 (-1014)) (-5 *1 (-51))))) -(((*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-51))))) + (-12 (-5 *3 (-583 (-987 *5 *6 *2))) (-5 *4 (-830)) (-4 *5 (-1013)) + (-4 *6 (-13 (-961) (-796 *5) (-553 (-800 *5)))) + (-4 *2 (-13 (-363 *6) (-796 *5) (-553 (-800 *5)))) (-5 *1 (-54 *5 *6 *2))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1015)) (-5 *3 (-696)) (-5 *1 (-51))))) +(((*1 *2 *1) (-12 (-5 *2 (-1015)) (-5 *1 (-51))))) +(((*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-51))))) (((*1 *2) - (-12 (-4 *3 (-494)) (-5 *2 (-582 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-359 *3))))) + (-12 (-4 *3 (-495)) (-5 *2 (-583 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-360 *3))))) (((*1 *2) - (-12 (-4 *3 (-494)) (-5 *2 (-582 (-629 *3))) (-5 *1 (-43 *3 *4)) - (-4 *4 (-359 *3))))) + (-12 (-4 *3 (-495)) (-5 *2 (-583 (-630 *3))) (-5 *1 (-43 *3 *4)) + (-4 *4 (-360 *3))))) (((*1 *2) - (-12 (-4 *3 (-494)) (-5 *2 (-582 (-629 *3))) (-5 *1 (-43 *3 *4)) - (-4 *4 (-359 *3))))) + (-12 (-4 *3 (-495)) (-5 *2 (-583 (-630 *3))) (-5 *1 (-43 *3 *4)) + (-4 *4 (-360 *3))))) (((*1 *2) - (-12 (-4 *3 (-494)) (-5 *2 (-582 (-629 *3))) (-5 *1 (-43 *3 *4)) - (-4 *4 (-359 *3))))) + (-12 (-4 *3 (-495)) (-5 *2 (-583 (-630 *3))) (-5 *1 (-43 *3 *4)) + (-4 *4 (-360 *3))))) (((*1 *2) - (-12 (-4 *3 (-494)) (-5 *2 (-582 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-359 *3))))) + (-12 (-4 *3 (-495)) (-5 *2 (-583 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-360 *3))))) (((*1 *2) - (-12 (-4 *3 (-494)) (-5 *2 (-582 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-359 *3))))) + (-12 (-4 *3 (-495)) (-5 *2 (-583 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-360 *3))))) (((*1 *2) - (-12 (-4 *3 (-494)) (-5 *2 (-582 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-359 *3))))) + (-12 (-4 *3 (-495)) (-5 *2 (-583 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-360 *3))))) (((*1 *2) - (-12 (-4 *3 (-494)) (-5 *2 (-582 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-359 *3))))) + (-12 (-4 *3 (-495)) (-5 *2 (-583 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-360 *3))))) (((*1 *2) - (-12 (-4 *3 (-494)) (-5 *2 (-582 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-359 *3))))) + (-12 (-4 *3 (-495)) (-5 *2 (-583 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-360 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-494)) (-5 *2 (-582 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-359 *4))))) + (-12 (-4 *4 (-495)) (-5 *2 (-583 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-360 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-494)) (-5 *2 (-582 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-359 *4))))) + (-12 (-4 *4 (-495)) (-5 *2 (-583 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-360 *4))))) (((*1 *2) - (-12 (-4 *3 (-494)) (-5 *2 (-582 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-359 *3))))) + (-12 (-4 *3 (-495)) (-5 *2 (-583 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-360 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-494)) (-5 *2 (-693)) (-5 *1 (-43 *4 *3)) (-4 *3 (-359 *4))))) + (-12 (-4 *4 (-495)) (-5 *2 (-694)) (-5 *1 (-43 *4 *3)) (-4 *3 (-360 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-494)) (-5 *2 (-693)) (-5 *1 (-43 *4 *3)) (-4 *3 (-359 *4))))) + (-12 (-4 *4 (-495)) (-5 *2 (-694)) (-5 *1 (-43 *4 *3)) (-4 *3 (-360 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-494)) (-5 *2 (-693)) (-5 *1 (-43 *4 *3)) (-4 *3 (-359 *4))))) + (-12 (-4 *4 (-495)) (-5 *2 (-694)) (-5 *1 (-43 *4 *3)) (-4 *3 (-360 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-494)) (-5 *2 (-693)) (-5 *1 (-43 *4 *3)) (-4 *3 (-359 *4))))) + (-12 (-4 *4 (-495)) (-5 *2 (-694)) (-5 *1 (-43 *4 *3)) (-4 *3 (-360 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-494)) (-5 *2 (-693)) (-5 *1 (-43 *4 *3)) (-4 *3 (-359 *4))))) + (-12 (-4 *4 (-495)) (-5 *2 (-694)) (-5 *1 (-43 *4 *3)) (-4 *3 (-360 *4))))) (((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-86)) (-5 *4 (-693)) (-4 *5 (-13 (-390) (-949 (-483)))) - (-4 *5 (-494)) (-5 *1 (-41 *5 *2)) (-4 *2 (-362 *5)) + (-12 (-5 *3 (-86)) (-5 *4 (-694)) (-4 *5 (-13 (-391) (-950 (-484)))) + (-4 *5 (-495)) (-5 *1 (-41 *5 *2)) (-4 *2 (-363 *5)) (-4 *2 (-13 (-312) (-254) - (-10 -8 (-15 -2997 ((-1037 *5 (-549 $)) $)) - (-15 -2996 ((-1037 *5 (-549 $)) $)) - (-15 -3944 ($ (-1037 *5 (-549 $)))))))))) + (-10 -8 (-15 -2998 ((-1038 *5 (-550 $)) $)) + (-15 -2997 ((-1038 *5 (-550 $)) $)) + (-15 -3945 ($ (-1038 *5 (-550 $)))))))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-390) (-949 (-483)))) (-4 *3 (-494)) (-5 *1 (-41 *3 *2)) - (-4 *2 (-362 *3)) + (-12 (-4 *3 (-13 (-391) (-950 (-484)))) (-4 *3 (-495)) (-5 *1 (-41 *3 *2)) + (-4 *2 (-363 *3)) (-4 *2 (-13 (-312) (-254) - (-10 -8 (-15 -2997 ((-1037 *3 (-549 $)) $)) - (-15 -2996 ((-1037 *3 (-549 $)) $)) - (-15 -3944 ($ (-1037 *3 (-549 $)))))))))) + (-10 -8 (-15 -2998 ((-1038 *3 (-550 $)) $)) + (-15 -2997 ((-1038 *3 (-550 $)) $)) + (-15 -3945 ($ (-1038 *3 (-550 $)))))))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-390) (-949 (-483)))) (-4 *3 (-494)) (-5 *1 (-41 *3 *2)) - (-4 *2 (-362 *3)) + (-12 (-4 *3 (-13 (-391) (-950 (-484)))) (-4 *3 (-495)) (-5 *1 (-41 *3 *2)) + (-4 *2 (-363 *3)) (-4 *2 (-13 (-312) (-254) - (-10 -8 (-15 -2997 ((-1037 *3 (-549 $)) $)) - (-15 -2996 ((-1037 *3 (-549 $)) $)) - (-15 -3944 ($ (-1037 *3 (-549 $)))))))))) + (-10 -8 (-15 -2998 ((-1038 *3 (-550 $)) $)) + (-15 -2997 ((-1038 *3 (-550 $)) $)) + (-15 -3945 ($ (-1038 *3 (-550 $)))))))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-390) (-949 (-483)))) (-4 *3 (-494)) (-5 *1 (-41 *3 *2)) - (-4 *2 (-362 *3)) + (-12 (-4 *3 (-13 (-391) (-950 (-484)))) (-4 *3 (-495)) (-5 *1 (-41 *3 *2)) + (-4 *2 (-363 *3)) (-4 *2 (-13 (-312) (-254) - (-10 -8 (-15 -2997 ((-1037 *3 (-549 $)) $)) - (-15 -2996 ((-1037 *3 (-549 $)) $)) - (-15 -3944 ($ (-1037 *3 (-549 $)))))))))) + (-10 -8 (-15 -2998 ((-1038 *3 (-550 $)) $)) + (-15 -2997 ((-1038 *3 (-550 $)) $)) + (-15 -3945 ($ (-1038 *3 (-550 $)))))))))) (((*1 *2 *3) - (-12 (-4 *4 (-494)) (-5 *2 (-1083 *3)) (-5 *1 (-41 *4 *3)) + (-12 (-4 *4 (-495)) (-5 *2 (-1084 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 (-13 (-312) (-254) - (-10 -8 (-15 -2997 ((-1037 *4 (-549 $)) $)) - (-15 -2996 ((-1037 *4 (-549 $)) $)) - (-15 -3944 ($ (-1037 *4 (-549 $)))))))))) + (-10 -8 (-15 -2998 ((-1038 *4 (-550 $)) $)) + (-15 -2997 ((-1038 *4 (-550 $)) $)) + (-15 -3945 ($ (-1038 *4 (-550 $)))))))))) (((*1 *2 *2) - (-12 (-4 *3 (-494)) (-5 *1 (-41 *3 *2)) + (-12 (-4 *3 (-495)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-312) (-254) - (-10 -8 (-15 -2997 ((-1037 *3 (-549 $)) $)) - (-15 -2996 ((-1037 *3 (-549 $)) $)) - (-15 -3944 ($ (-1037 *3 (-549 $))))))))) + (-10 -8 (-15 -2998 ((-1038 *3 (-550 $)) $)) + (-15 -2997 ((-1038 *3 (-550 $)) $)) + (-15 -3945 ($ (-1038 *3 (-550 $))))))))) ((*1 *2 *2 *2) - (-12 (-4 *3 (-494)) (-5 *1 (-41 *3 *2)) + (-12 (-4 *3 (-495)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-312) (-254) - (-10 -8 (-15 -2997 ((-1037 *3 (-549 $)) $)) - (-15 -2996 ((-1037 *3 (-549 $)) $)) - (-15 -3944 ($ (-1037 *3 (-549 $))))))))) + (-10 -8 (-15 -2998 ((-1038 *3 (-550 $)) $)) + (-15 -2997 ((-1038 *3 (-550 $)) $)) + (-15 -3945 ($ (-1038 *3 (-550 $))))))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-582 *2)) + (-12 (-5 *3 (-583 *2)) (-4 *2 (-13 (-312) (-254) - (-10 -8 (-15 -2997 ((-1037 *4 (-549 $)) $)) - (-15 -2996 ((-1037 *4 (-549 $)) $)) - (-15 -3944 ($ (-1037 *4 (-549 $))))))) - (-4 *4 (-494)) (-5 *1 (-41 *4 *2)))) + (-10 -8 (-15 -2998 ((-1038 *4 (-550 $)) $)) + (-15 -2997 ((-1038 *4 (-550 $)) $)) + (-15 -3945 ($ (-1038 *4 (-550 $))))))) + (-4 *4 (-495)) (-5 *1 (-41 *4 *2)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-582 (-549 *2))) + (-12 (-5 *3 (-583 (-550 *2))) (-4 *2 (-13 (-312) (-254) - (-10 -8 (-15 -2997 ((-1037 *4 (-549 $)) $)) - (-15 -2996 ((-1037 *4 (-549 $)) $)) - (-15 -3944 ($ (-1037 *4 (-549 $))))))) - (-4 *4 (-494)) (-5 *1 (-41 *4 *2))))) + (-10 -8 (-15 -2998 ((-1038 *4 (-550 $)) $)) + (-15 -2997 ((-1038 *4 (-550 $)) $)) + (-15 -3945 ($ (-1038 *4 (-550 $))))))) + (-4 *4 (-495)) (-5 *1 (-41 *4 *2))))) (((*1 *2 *2) - (-12 (-4 *3 (-494)) (-5 *1 (-41 *3 *2)) + (-12 (-4 *3 (-495)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-312) (-254) - (-10 -8 (-15 -2997 ((-1037 *3 (-549 $)) $)) - (-15 -2996 ((-1037 *3 (-549 $)) $)) - (-15 -3944 ($ (-1037 *3 (-549 $)))))))))) + (-10 -8 (-15 -2998 ((-1038 *3 (-550 $)) $)) + (-15 -2997 ((-1038 *3 (-550 $)) $)) + (-15 -3945 ($ (-1038 *3 (-550 $)))))))))) (((*1 *2 *3) - (-12 (-5 *3 (-693)) (-4 *4 (-312)) (-4 *5 (-1153 *4)) (-5 *2 (-1183)) - (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1153 (-348 *5))) (-14 *7 *6)))) -(((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-39 *3)) (-4 *3 (-1153 (-48)))))) + (-12 (-5 *3 (-694)) (-4 *4 (-312)) (-4 *5 (-1154 *4)) (-5 *2 (-1184)) + (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1154 (-349 *5))) (-14 *7 *6)))) +(((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-39 *3)) (-4 *3 (-1154 (-48)))))) (((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1012)) - (-5 *2 (-2 (|:| -3858 *3) (|:| |entry| *4)))))) + (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)) + (-5 *2 (-2 (|:| -3859 *3) (|:| |entry| *4)))))) (((*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-85))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-483)) (-4 *2 (-362 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-949 *4)) - (-4 *3 (-494))))) + (-12 (-5 *4 (-484)) (-4 *2 (-363 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-950 *4)) + (-4 *3 (-495))))) (((*1 *2 *3) - (-12 (-5 *3 (-582 *5)) (-4 *5 (-362 *4)) (-4 *4 (-494)) (-5 *2 (-771)) + (-12 (-5 *3 (-583 *5)) (-4 *5 (-363 *4)) (-4 *4 (-495)) (-5 *2 (-772)) (-5 *1 (-32 *4 *5))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-1083 *2)) (-4 *2 (-362 *4)) (-4 *4 (-494)) + (-12 (-5 *3 (-1084 *2)) (-4 *2 (-363 *4)) (-4 *4 (-495)) (-5 *1 (-32 *4 *2))))) (((*1 *1 *2 *3 *3 *4 *4) - (-12 (-5 *2 (-856 (-483))) (-5 *3 (-1088)) (-5 *4 (-1000 (-348 (-483)))) + (-12 (-5 *2 (-857 (-484))) (-5 *3 (-1089)) (-5 *4 (-1001 (-349 (-484)))) (-5 *1 (-30))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1083 *1)) (-5 *4 (-1088)) (-4 *1 (-27)) (-5 *2 (-582 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-1083 *1)) (-4 *1 (-27)) (-5 *2 (-582 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-856 *1)) (-4 *1 (-27)) (-5 *2 (-582 *1)))) + (-12 (-5 *3 (-1084 *1)) (-5 *4 (-1089)) (-4 *1 (-27)) (-5 *2 (-583 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-1084 *1)) (-4 *1 (-27)) (-5 *2 (-583 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-857 *1)) (-4 *1 (-27)) (-5 *2 (-583 *1)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-1088)) (-4 *4 (-494)) (-5 *2 (-582 *1)) (-4 *1 (-29 *4)))) - ((*1 *2 *1) (-12 (-4 *3 (-494)) (-5 *2 (-582 *1)) (-4 *1 (-29 *3))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1083 *1)) (-5 *3 (-1088)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-1083 *1)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-856 *1)) (-4 *1 (-27)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1088)) (-4 *1 (-29 *3)) (-4 *3 (-494)))) - ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-494))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1083 *1)) (-5 *4 (-1088)) (-4 *1 (-27)) (-5 *2 (-582 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-1083 *1)) (-4 *1 (-27)) (-5 *2 (-582 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-856 *1)) (-4 *1 (-27)) (-5 *2 (-582 *1)))) + (-12 (-5 *3 (-1089)) (-4 *4 (-495)) (-5 *2 (-583 *1)) (-4 *1 (-29 *4)))) + ((*1 *2 *1) (-12 (-4 *3 (-495)) (-5 *2 (-583 *1)) (-4 *1 (-29 *3))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1084 *1)) (-5 *3 (-1089)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-1084 *1)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-857 *1)) (-4 *1 (-27)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1089)) (-4 *1 (-29 *3)) (-4 *3 (-495)))) + ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-495))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1084 *1)) (-5 *4 (-1089)) (-4 *1 (-27)) (-5 *2 (-583 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-1084 *1)) (-4 *1 (-27)) (-5 *2 (-583 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-857 *1)) (-4 *1 (-27)) (-5 *2 (-583 *1)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-1088)) (-4 *4 (-494)) (-5 *2 (-582 *1)) (-4 *1 (-29 *4)))) - ((*1 *2 *1) (-12 (-4 *3 (-494)) (-5 *2 (-582 *1)) (-4 *1 (-29 *3))))) + (-12 (-5 *3 (-1089)) (-4 *4 (-495)) (-5 *2 (-583 *1)) (-4 *1 (-29 *4)))) + ((*1 *2 *1) (-12 (-4 *3 (-495)) (-5 *2 (-583 *1)) (-4 *1 (-29 *3))))) (((*1 *2 *1 *1) (-12 (-4 *1 (-23)) (-5 *2 (-85))))) -((-1212 . 630887) (-1213 . 630491) (-1214 . 630189) (-1215 . 629793) - (-1216 . 629672) (-1217 . 629570) (-1218 . 629457) (-1219 . 629341) - (-1220 . 629288) (-1221 . 629151) (-1222 . 629076) (-1223 . 628920) - (-1224 . 628692) (-1225 . 627728) (-1226 . 627481) (-1227 . 627197) - (-1228 . 626913) (-1229 . 626629) (-1230 . 626310) (-1231 . 626218) - (-1232 . 626126) (-1233 . 626034) (-1234 . 625942) (-1235 . 625850) - (-1236 . 625758) (-1237 . 625663) (-1238 . 625568) (-1239 . 625476) - (-1240 . 625384) (-1241 . 625292) (-1242 . 625200) (-1243 . 625108) - (-1244 . 625006) (-1245 . 624904) (-1246 . 624802) (-1247 . 624710) - (-1248 . 624659) (-1249 . 624607) (-1250 . 624537) (-1251 . 624117) - (-1252 . 623923) (-1253 . 623896) (-1254 . 623773) (-1255 . 623650) - (-1256 . 623506) (-1257 . 623336) (-1258 . 623212) (-1259 . 622973) - (-1260 . 622900) (-1261 . 622675) (-1262 . 622429) (-1263 . 622376) - (-1264 . 622198) (-1265 . 622029) (-1266 . 621953) (-1267 . 621880) - (-1268 . 621727) (-1269 . 621574) (-1270 . 621390) (-1271 . 621209) - (-1272 . 621154) (-1273 . 621099) (-1274 . 621026) (-1275 . 620950) - (-1276 . 620873) (-1277 . 620805) (-1278 . 620662) (-1279 . 620555) - (-1280 . 620487) (-1281 . 620417) (-1282 . 620347) (-1283 . 620297) - (-1284 . 620247) (-1285 . 620197) (-1286 . 620076) (-1287 . 619760) - (-1288 . 619691) (-1289 . 619612) (-1290 . 619493) (-1291 . 619413) - (-1292 . 619333) (-1293 . 619180) (-1294 . 619031) (-1295 . 618955) - (-1296 . 618898) (-1297 . 618826) (-1298 . 618763) (-1299 . 618700) - (-1300 . 618639) (-1301 . 618567) (-1302 . 618451) (-1303 . 618399) - (-1304 . 618344) (-1305 . 618292) (-1306 . 618240) (-1307 . 618212) - (-1308 . 618184) (-1309 . 618156) (-1310 . 618112) (-1311 . 618041) - (-1312 . 617990) (-1313 . 617942) (-1314 . 617891) (-1315 . 617839) - (-1316 . 617723) (-1317 . 617607) (-1318 . 617515) (-1319 . 617423) - (-1320 . 617300) (-1321 . 617234) (-1322 . 617168) (-1323 . 617109) - (-1324 . 617081) (-1325 . 617053) (-1326 . 617025) (-1327 . 616997) - (-1328 . 616887) (-1329 . 616836) (-1330 . 616785) (-1331 . 616734) - (-1332 . 616683) (-1333 . 616632) (-1334 . 616581) (-1335 . 616553) - (-1336 . 616525) (-1337 . 616497) (-1338 . 616469) (-1339 . 616441) - (-1340 . 616413) (-1341 . 616385) (-1342 . 616357) (-1343 . 616329) - (-1344 . 616226) (-1345 . 616174) (-1346 . 616008) (-1347 . 615824) - (-1348 . 615613) (-1349 . 615498) (-1350 . 615265) (-1351 . 615166) - (-1352 . 615073) (-1353 . 614958) (-1354 . 614560) (-1355 . 614342) - (-1356 . 614293) (-1357 . 614265) (-1358 . 614189) (-1359 . 614090) - (-1360 . 613991) (-1361 . 613892) (-1362 . 613793) (-1363 . 613694) - (-1364 . 613595) (-1365 . 613437) (-1366 . 613361) (-1367 . 613194) - (-1368 . 613136) (-1369 . 613078) (-1370 . 612769) (-1371 . 612515) - (-1372 . 612431) (-1373 . 612299) (-1374 . 612241) (-1375 . 612189) - (-1376 . 612107) (-1377 . 612032) (-1378 . 611961) (-1379 . 611907) - (-1380 . 611856) (-1381 . 611782) (-1382 . 611708) (-1383 . 611627) - (-1384 . 611546) (-1385 . 611491) (-1386 . 611417) (-1387 . 611343) - (-1388 . 611269) (-1389 . 611192) (-1390 . 611138) (-1391 . 611080) - (-1392 . 610981) (-1393 . 610882) (-1394 . 610783) (-1395 . 610684) - (-1396 . 610585) (-1397 . 610486) (-1398 . 610387) (-1399 . 610273) - (-1400 . 610159) (-1401 . 610045) (-1402 . 609931) (-1403 . 609817) - (-1404 . 609703) (-1405 . 609586) (-1406 . 609510) (-1407 . 609434) - (-1408 . 609047) (-1409 . 608702) (-1410 . 608600) (-1411 . 608339) - (-1412 . 608237) (-1413 . 608032) (-1414 . 607919) (-1415 . 607817) - (-1416 . 607660) (-1417 . 607571) (-1418 . 607477) (-1419 . 607397) - (-1420 . 607323) (-1421 . 607245) (-1422 . 607186) (-1423 . 607128) - (-1424 . 607026) (-7 . 606998) (-8 . 606970) (-9 . 606942) (-1428 . 606823) - (-1429 . 606741) (-1430 . 606659) (-1431 . 606577) (-1432 . 606495) - (-1433 . 606413) (-1434 . 606319) (-1435 . 606249) (-1436 . 606179) - (-1437 . 606088) (-1438 . 605994) (-1439 . 605912) (-1440 . 605830) - (-1441 . 605732) (-1442 . 605572) (-1443 . 605374) (-1444 . 605238) - (-1445 . 605138) (-1446 . 605038) (-1447 . 604945) (-1448 . 604886) - (-1449 . 604553) (-1450 . 604453) (-1451 . 604335) (-1452 . 604123) - (-1453 . 603944) (-1454 . 603786) (-1455 . 603583) (-1456 . 603165) - (-1457 . 603114) (-1458 . 603005) (-1459 . 602890) (-1460 . 602821) - (-1461 . 602752) (-1462 . 602683) (-1463 . 602617) (-1464 . 602492) - (-1465 . 602275) (-1466 . 602197) (-1467 . 602147) (-1468 . 602076) - (-1469 . 601933) (-1470 . 601792) (-1471 . 601711) (-1472 . 601630) - (-1473 . 601574) (-1474 . 601518) (-1475 . 601445) (-1476 . 601305) - (-1477 . 601252) (-1478 . 601193) (-1479 . 601134) (-1480 . 600979) - (-1481 . 600927) (-1482 . 600810) (-1483 . 600693) (-1484 . 600576) - (-1485 . 600445) (-1486 . 600166) (-1487 . 600031) (-1488 . 599975) - (-1489 . 599919) (-1490 . 599860) (-1491 . 599801) (-1492 . 599745) - (-1493 . 599689) (-1494 . 599492) (-1495 . 597150) (-1496 . 597023) - (-1497 . 596878) (-1498 . 596750) (-1499 . 596698) (-1500 . 596646) - (-1501 . 596594) (-1502 . 592556) (-1503 . 592462) (-1504 . 592323) - (-1505 . 592114) (-1506 . 592012) (-1507 . 591910) (-1508 . 590995) - (-1509 . 590919) (-1510 . 590790) (-1511 . 590665) (-1512 . 590588) - (-1513 . 590511) (-1514 . 590384) (-1515 . 590257) (-1516 . 590091) - (-1517 . 589964) (-1518 . 589837) (-1519 . 589620) (-1520 . 589186) - (-1521 . 588822) (-1522 . 588770) (-1523 . 588711) (-1524 . 588623) - (-1525 . 588535) (-1526 . 588444) (-1527 . 588353) (-1528 . 588262) - (-1529 . 588171) (-1530 . 588080) (-1531 . 587989) (-1532 . 587898) - (-1533 . 587807) (-1534 . 587716) (-1535 . 587625) (-1536 . 587534) - (-1537 . 587443) (-1538 . 587352) (-1539 . 587261) (-1540 . 587170) - (-1541 . 587079) (-1542 . 586988) (-1543 . 586897) (-1544 . 586806) - (-1545 . 586715) (-1546 . 586624) (-1547 . 586533) (-1548 . 586442) - (-1549 . 586351) (-1550 . 586260) (-1551 . 586169) (-1552 . 586007) - (-1553 . 585899) (-1554 . 585656) (-1555 . 585369) (-1556 . 585174) - (-1557 . 585018) (-1558 . 584858) (-1559 . 584807) (-1560 . 584745) - (-1561 . 584694) (-1562 . 584631) (-1563 . 584578) (-1564 . 584526) - (-1565 . 584474) (-1566 . 584422) (-1567 . 584332) (-1568 . 584145) - (-1569 . 583991) (-1570 . 583911) (-1571 . 583831) (-1572 . 583751) - (-1573 . 583621) (-1574 . 583389) (-1575 . 583361) (-1576 . 583333) - (-1577 . 583305) (-1578 . 583225) (-1579 . 583148) (-1580 . 583071) - (-1581 . 582990) (-1582 . 582931) (-1583 . 582773) (-1584 . 582580) - (-1585 . 582095) (-1586 . 581853) (-1587 . 581591) (-1588 . 581490) - (-1589 . 581409) (-1590 . 581328) (-1591 . 581258) (-1592 . 581188) - (-1593 . 581030) (-1594 . 580726) (-1595 . 580498) (-1596 . 580376) - (-1597 . 580318) (-1598 . 580256) (-1599 . 580194) (-1600 . 580129) - (-1601 . 580067) (-1602 . 579788) (-1603 . 579720) (-1604 . 579510) - (-1605 . 579458) (-1606 . 579404) (-1607 . 579313) (-1608 . 579226) - (-1609 . 577479) (-1610 . 577400) (-1611 . 576655) (-1612 . 576538) - (-1613 . 576332) (-1614 . 576171) (-1615 . 576010) (-1616 . 575850) - (-1617 . 575712) (-1618 . 575618) (-1619 . 575520) (-1620 . 575426) - (-1621 . 575312) (-1622 . 575230) (-1623 . 575133) (-1624 . 574937) - (-1625 . 574846) (-1626 . 574752) (-1627 . 574685) (-1628 . 574616) - (-1629 . 574564) (-1630 . 574505) (-1631 . 574431) (-1632 . 574379) - (-1633 . 574222) (-1634 . 574065) (-1635 . 573913) (-1636 . 573155) - (-1637 . 572844) (-1638 . 572492) (-1639 . 572275) (-1640 . 572012) - (-1641 . 571637) (-1642 . 571453) (-1643 . 571319) (-1644 . 571153) - (-1645 . 570987) (-1646 . 570853) (-1647 . 570719) (-1648 . 570585) - (-1649 . 570451) (-1650 . 570320) (-1651 . 570189) (-1652 . 570058) - (-1653 . 569678) (-1654 . 569552) (-1655 . 569424) (-1656 . 569174) - (-1657 . 569051) (-1658 . 568801) (-1659 . 568678) (-1660 . 568428) - (-1661 . 568305) (-1662 . 568022) (-1663 . 567751) (-1664 . 567478) - (-1665 . 567180) (-1666 . 567078) (-1667 . 566933) (-1668 . 566792) - (-1669 . 566641) (-1670 . 566480) (-1671 . 566392) (-1672 . 566364) - (-1673 . 566282) (-1674 . 566185) (-1675 . 565717) (-1676 . 565366) - (-1677 . 564933) (-1678 . 564794) (-1679 . 564724) (-1680 . 564654) - (-1681 . 564584) (-1682 . 564493) (-1683 . 564402) (-1684 . 564311) - (-1685 . 564220) (-1686 . 564129) (-1687 . 564043) (-1688 . 563957) - (-1689 . 563871) (-1690 . 563785) (-1691 . 563699) (-1692 . 563625) - (-1693 . 563520) (-1694 . 563294) (-1695 . 563216) (-1696 . 563141) - (-1697 . 563048) (-1698 . 562944) (-1699 . 562848) (-1700 . 562679) - (-1701 . 562602) (-1702 . 562525) (-1703 . 562434) (-1704 . 562343) - (-1705 . 562143) (-1706 . 561990) (-1707 . 561837) (-1708 . 561684) - (-1709 . 561531) (-1710 . 561378) (-1711 . 561225) (-1712 . 561159) - (-1713 . 561006) (-1714 . 560853) (-1715 . 560700) (-1716 . 560547) - (-1717 . 560394) (-1718 . 560241) (-1719 . 560088) (-1720 . 559935) - (-1721 . 559861) (-1722 . 559787) (-1723 . 559732) (-1724 . 559677) - (-1725 . 559622) (-1726 . 559567) (-1727 . 559496) (-1728 . 559292) - (-1729 . 559191) (-1730 . 559003) (-1731 . 558910) (-1732 . 558774) - (-1733 . 558638) (-1734 . 558502) (-1735 . 558434) (-1736 . 558318) - (-1737 . 558202) (-1738 . 558086) (-1739 . 558033) (-1740 . 557948) - (-1741 . 557863) (-1742 . 557555) (-1743 . 557500) (-1744 . 556848) - (-1745 . 556533) (-1746 . 556249) (-1747 . 556131) (-1748 . 556012) - (-1749 . 555953) (-1750 . 555894) (-1751 . 555843) (-1752 . 555792) - (-1753 . 555741) (-1754 . 555688) (-1755 . 555635) (-1756 . 555576) - (-1757 . 555463) (-1758 . 555350) (-1759 . 555183) (-1760 . 555091) - (-1761 . 554978) (-1762 . 554894) (-1763 . 554779) (-1764 . 554688) - (-1765 . 554597) (-1766 . 554476) (-1767 . 554289) (-1768 . 554237) - (-1769 . 554182) (-1770 . 553995) (-1771 . 553872) (-1772 . 553799) - (-1773 . 553726) (-1774 . 553606) (-1775 . 553533) (-1776 . 553460) - (-1777 . 553120) (-1778 . 553047) (-1779 . 552827) (-1780 . 552494) - (-1781 . 552311) (-1782 . 552168) (-1783 . 551808) (-1784 . 551640) - (-1785 . 551472) (-1786 . 551216) (-1787 . 550960) (-1788 . 550765) - (-1789 . 550570) (-1790 . 549976) (-1791 . 549900) (-1792 . 549761) - (-1793 . 549354) (-1794 . 549227) (-1795 . 549070) (-1796 . 548753) - (-1797 . 548273) (-1798 . 547793) (-1799 . 547291) (-1800 . 547223) - (-1801 . 547152) (-1802 . 547081) (-1803 . 546909) (-1804 . 546790) - (-1805 . 546671) (-1806 . 546595) (-1807 . 546519) (-1808 . 546246) - (-1809 . 546132) (-1810 . 546081) (-1811 . 546030) (-1812 . 545979) - (-1813 . 545928) (-1814 . 545877) (-1815 . 545736) (-1816 . 545563) - (-1817 . 545332) (-1818 . 545146) (-1819 . 545118) (-1820 . 545090) - (-1821 . 545062) (-1822 . 545034) (-1823 . 545006) (-1824 . 544978) - (-1825 . 544950) (-1826 . 544899) (-1827 . 544833) (-1828 . 544743) - (-1829 . 544372) (-1830 . 544221) (-1831 . 544070) (-1832 . 543865) - (-1833 . 543743) (-1834 . 543669) (-1835 . 543592) (-1836 . 543518) - (-1837 . 543441) (-1838 . 543364) (-1839 . 543290) (-1840 . 543213) - (-1841 . 542980) (-1842 . 542827) (-1843 . 542532) (-1844 . 542379) - (-1845 . 542057) (-1846 . 541919) (-1847 . 541781) (-1848 . 541701) - (-1849 . 541621) (-1850 . 541357) (-1851 . 540626) (-1852 . 540490) - (-1853 . 540400) (-1854 . 540265) (-1855 . 540198) (-1856 . 540130) - (-1857 . 540043) (-1858 . 539956) (-1859 . 539789) (-1860 . 539715) - (-1861 . 539571) (-1862 . 539111) (-1863 . 538732) (-1864 . 537970) - (-1865 . 537826) (-1866 . 537682) (-1867 . 537520) (-1868 . 537283) - (-1869 . 537143) (-1870 . 536997) (-1871 . 536758) (-1872 . 536522) - (-1873 . 536283) (-1874 . 536091) (-1875 . 535968) (-1876 . 535764) - (-1877 . 535541) (-1878 . 535302) (-1879 . 535161) (-1880 . 535023) - (-1881 . 534884) (-1882 . 534631) (-1883 . 534375) (-1884 . 534218) - (-1885 . 534064) (-1886 . 533824) (-1887 . 533539) (-1888 . 533401) - (-1889 . 533314) (-1890 . 532648) (-1891 . 532472) (-1892 . 532290) - (-1893 . 532114) (-1894 . 531932) (-1895 . 531753) (-1896 . 531574) - (-1897 . 531387) (-1898 . 531005) (-1899 . 530826) (-1900 . 530647) - (-1901 . 530460) (-1902 . 530078) (-1903 . 529085) (-1904 . 528701) - (-1905 . 528317) (-1906 . 528199) (-1907 . 528042) (-1908 . 527900) - (-1909 . 527783) (-1910 . 527601) (-1911 . 527477) (-1912 . 527188) - (-1913 . 526899) (-1914 . 526616) (-1915 . 526333) (-1916 . 526055) - (-1917 . 525967) (-1918 . 525882) (-1919 . 525785) (-1920 . 525688) - (-1921 . 525468) (-1922 . 525368) (-1923 . 525265) (-1924 . 525187) - (-1925 . 524862) (-1926 . 524570) (-1927 . 524497) (-1928 . 524112) - (-1929 . 524084) (-1930 . 523885) (-1931 . 523711) (-1932 . 523470) - (-1933 . 523415) (-1934 . 523340) (-1935 . 522972) (-1936 . 522857) - (-1937 . 522780) (-1938 . 522707) (-1939 . 522626) (-1940 . 522545) - (-1941 . 522464) (-1942 . 522363) (-1943 . 522304) (-1944 . 522066) - (-1945 . 521944) (-1946 . 521822) (-1947 . 521595) (-1948 . 521542) - (-1949 . 521488) (-1950 . 521156) (-1951 . 520832) (-1952 . 520644) - (-1953 . 520453) (-1954 . 520289) (-1955 . 519954) (-1956 . 519787) - (-1957 . 519546) (-1958 . 519222) (-1959 . 519032) (-1960 . 518817) - (-1961 . 518646) (-1962 . 518224) (-1963 . 517997) (-1964 . 517726) - (-1965 . 517589) (-1966 . 517448) (-1967 . 516971) (-1968 . 516848) - (-1969 . 516612) (-1970 . 516358) (-1971 . 516108) (-1972 . 515815) - (-1973 . 515675) (-1974 . 515535) (-1975 . 515395) (-1976 . 515206) - (-1977 . 515017) (-1978 . 514842) (-1979 . 514568) (-1980 . 514133) - (-1981 . 514105) (-1982 . 514033) (-1983 . 513900) (-1984 . 513825) - (-1985 . 513666) (-1986 . 513503) (-1987 . 513342) (-1988 . 513175) - (-1989 . 513122) (-1990 . 513069) (-1991 . 512940) (-1992 . 512880) - (-1993 . 512827) (-1994 . 512757) (-1995 . 512697) (-1996 . 512638) - (-1997 . 512578) (-1998 . 512519) (-1999 . 512459) (-2000 . 512400) - (-2001 . 512341) (-2002 . 512199) (-2003 . 512104) (-2004 . 512013) - (-2005 . 511897) (-2006 . 511803) (-2007 . 511705) (-2008 . 511611) - (-2009 . 511470) (-2010 . 511208) (-2011 . 510352) (-2012 . 510196) - (-2013 . 509827) (-2014 . 509771) (-2015 . 509720) (-2016 . 509617) - (-2017 . 509532) (-2018 . 509444) (-2019 . 509298) (-2020 . 509149) - (-2021 . 508859) (-2022 . 508781) (-2023 . 508706) (-2024 . 508653) - (-2025 . 508600) (-2026 . 508569) (-2027 . 508506) (-2028 . 508388) - (-2029 . 508299) (-2030 . 508179) (-2031 . 507884) (-2032 . 507690) - (-2033 . 507502) (-2034 . 507357) (-2035 . 507212) (-2036 . 506926) - (-2037 . 506484) (-2038 . 506450) (-2039 . 506413) (-2040 . 506376) - (-2041 . 506339) (-2042 . 506302) (-2043 . 506271) (-2044 . 506240) - (-2045 . 506209) (-2046 . 506175) (-2047 . 506141) (-2048 . 506087) - (-2049 . 505911) (-2050 . 505677) (-2051 . 505443) (-2052 . 505214) - (-2053 . 505162) (-2054 . 505107) (-2055 . 505038) (-2056 . 504950) - (-2057 . 504881) (-2058 . 504809) (-2059 . 504579) (-2060 . 504528) - (-2061 . 504474) (-2062 . 504443) (-2063 . 504337) (-2064 . 504112) - (-2065 . 503802) (-2066 . 503628) (-2067 . 503446) (-2068 . 503175) - (-2069 . 503102) (-2070 . 503037) (-2071 . 502561) (-2072 . 501999) - (-2073 . 501273) (-2074 . 500712) (-2075 . 500084) (-2076 . 499505) - (-2077 . 499431) (-2078 . 499379) (-2079 . 499327) (-2080 . 499253) - (-2081 . 499198) (-2082 . 499146) (-2083 . 499094) (-2084 . 499042) - (-2085 . 498972) (-2086 . 498524) (-2087 . 498318) (-2088 . 498069) - (-2089 . 497735) (-2090 . 497481) (-2091 . 497179) (-2092 . 496976) - (-2093 . 496687) (-2094 . 496139) (-2095 . 496002) (-2096 . 495800) - (-2097 . 495520) (-2098 . 495435) (-2099 . 495102) (-2100 . 494961) - (-2101 . 494670) (-2102 . 494450) (-2103 . 494324) (-2104 . 494199) - (-2105 . 494052) (-2106 . 493908) (-2107 . 493792) (-2108 . 493661) - (-2109 . 493289) (-2110 . 493029) (-2111 . 492759) (-2112 . 492519) - (-2113 . 492189) (-2114 . 491849) (-2115 . 491441) (-2116 . 491023) - (-2117 . 490826) (-2118 . 490551) (-2119 . 490383) (-2120 . 490187) - (-2121 . 489965) (-2122 . 489810) (-2123 . 489625) (-2124 . 489522) - (-2125 . 489494) (-2126 . 489466) (-2127 . 489292) (-2128 . 489218) - (-2129 . 489157) (-2130 . 489104) (-2131 . 489035) (-2132 . 488966) - (-2133 . 488847) (-2134 . 488669) (-2135 . 488614) (-2136 . 488368) - (-2137 . 488295) (-2138 . 488225) (-2139 . 488155) (-2140 . 488066) - (-2141 . 487876) (-2142 . 487803) (-2143 . 487734) (-2144 . 487669) - (-2145 . 487614) (-2146 . 487523) (-2147 . 487232) (-2148 . 486906) - (-2149 . 486832) (-2150 . 486510) (-2151 . 486305) (-2152 . 486220) - (-2153 . 486135) (-2154 . 486050) (-2155 . 485965) (-2156 . 485880) - (-2157 . 485795) (-2158 . 485710) (-2159 . 485625) (-2160 . 485540) - (-2161 . 485455) (-2162 . 485370) (-2163 . 485285) (-2164 . 485200) - (-2165 . 485115) (-2166 . 485030) (-2167 . 484945) (-2168 . 484860) - (-2169 . 484775) (-2170 . 484690) (-2171 . 484605) (-2172 . 484520) - (-2173 . 484435) (-2174 . 484350) (-2175 . 484265) (-2176 . 484180) - (-2177 . 484095) (-2178 . 483993) (-2179 . 483905) (-2180 . 483697) - (-2181 . 483639) (-2182 . 483584) (-2183 . 483497) (-2184 . 483386) - (-2185 . 483300) (-2186 . 483154) (-2187 . 483092) (-2188 . 483064) - (-2189 . 483036) (-2190 . 483008) (-2191 . 482980) (-2192 . 482811) - (-2193 . 482660) (-2194 . 482509) (-2195 . 482337) (-2196 . 482129) - (-2197 . 482005) (-2198 . 481797) (-2199 . 481705) (-2200 . 481613) - (-2201 . 481478) (-2202 . 481383) (-2203 . 481289) (-2204 . 481194) - (-2205 . 481070) (-2206 . 481042) (-2207 . 481014) (-2208 . 480986) - (-2209 . 480958) (-2210 . 480930) (-2211 . 480902) (-2212 . 480874) - (-2213 . 480846) (-2214 . 480818) (-2215 . 480790) (-2216 . 480762) - (-2217 . 480734) (-2218 . 480706) (-2219 . 480678) (-2220 . 480650) - (-2221 . 480622) (-2222 . 480569) (-2223 . 480541) (-2224 . 480513) - (-2225 . 480435) (-2226 . 480382) (-2227 . 480329) (-2228 . 480276) - (-2229 . 480198) (-2230 . 480108) (-2231 . 480013) (-2232 . 479919) - (-2233 . 479837) (-2234 . 479531) (-2235 . 479335) (-2236 . 479240) - (-2237 . 479132) (-2238 . 478721) (-2239 . 478693) (-2240 . 478529) - (-2241 . 478452) (-2242 . 478265) (-2243 . 478086) (-2244 . 477662) - (-2245 . 477510) (-2246 . 477330) (-2247 . 477157) (-2248 . 476897) - (-2249 . 476645) (-2250 . 475834) (-2251 . 475667) (-2252 . 475449) - (-2253 . 474625) (-2254 . 474494) (-2255 . 474363) (-2256 . 474232) - (-2257 . 474101) (-2258 . 473970) (-2259 . 473839) (-2260 . 473644) - (-2261 . 473450) (-2262 . 473307) (-2263 . 472992) (-2264 . 472877) - (-2265 . 472537) (-2266 . 472377) (-2267 . 472238) (-2268 . 472099) - (-2269 . 471970) (-2270 . 471885) (-2271 . 471833) (-2272 . 471353) - (-2273 . 470091) (-2274 . 469964) (-2275 . 469822) (-2276 . 469486) - (-2277 . 469381) (-2278 . 469132) (-2279 . 468900) (-2280 . 468795) - (-2281 . 468720) (-2282 . 468645) (-2283 . 468570) (-2284 . 468511) - (-2285 . 468441) (-2286 . 468388) (-2287 . 468326) (-2288 . 468256) - (-2289 . 467893) (-2290 . 467606) (-2291 . 467496) (-2292 . 467309) - (-2293 . 467216) (-2294 . 467123) (-2295 . 467036) (-2296 . 466816) - (-2297 . 466597) (-2298 . 466179) (-2299 . 465907) (-2300 . 465764) - (-2301 . 465671) (-2302 . 465528) (-2303 . 465376) (-2304 . 465222) - (-2305 . 465152) (-2306 . 464945) (-2307 . 464768) (-2308 . 464559) - (-2309 . 464382) (-2310 . 464348) (-2311 . 464314) (-2312 . 464283) - (-2313 . 464165) (-2314 . 463852) (-2315 . 463574) (-2316 . 463453) - (-2317 . 463326) (-2318 . 463241) (-2319 . 463168) (-2320 . 463079) - (-2321 . 463008) (-2322 . 462952) (-2323 . 462896) (-2324 . 462840) - (-2325 . 462770) (-2326 . 462700) (-2327 . 462630) (-2328 . 462532) - (-2329 . 462454) (-2330 . 462376) (-2331 . 462233) (-2332 . 462154) - (-2333 . 462082) (-2334 . 461879) (-2335 . 461823) (-2336 . 461635) - (-2337 . 461536) (-2338 . 461418) (-2339 . 461297) (-2340 . 461154) - (-2341 . 461011) (-2342 . 460871) (-2343 . 460731) (-2344 . 460588) - (-2345 . 460462) (-2346 . 460333) (-2347 . 460210) (-2348 . 460087) - (-2349 . 459982) (-2350 . 459877) (-2351 . 459775) (-2352 . 459625) - (-2353 . 459472) (-2354 . 459319) (-2355 . 459175) (-2356 . 459021) - (-2357 . 458945) (-2358 . 458866) (-2359 . 458713) (-2360 . 458634) - (-2361 . 458555) (-2362 . 458476) (-2363 . 458374) (-2364 . 458315) - (-2365 . 458253) (-2366 . 458136) (-2367 . 458010) (-2368 . 457933) - (-2369 . 457801) (-2370 . 457495) (-2371 . 457312) (-2372 . 456767) - (-2373 . 456547) (-2374 . 456373) (-2375 . 456203) (-2376 . 456130) - (-2377 . 456054) (-2378 . 455975) (-2379 . 455678) (-2380 . 455516) - (-2381 . 455282) (-2382 . 454840) (-2383 . 454710) (-2384 . 454570) - (-2385 . 454261) (-2386 . 453959) (-2387 . 453643) (-2388 . 453237) - (-2389 . 453169) (-2390 . 453101) (-2391 . 453033) (-2392 . 452939) - (-2393 . 452832) (-2394 . 452725) (-2395 . 452624) (-2396 . 452523) - (-2397 . 452422) (-2398 . 452345) (-2399 . 451952) (-2400 . 451535) - (-2401 . 450908) (-2402 . 450844) (-2403 . 450725) (-2404 . 450606) - (-2405 . 450498) (-2406 . 450390) (-2407 . 450234) (-2408 . 449634) - (-2409 . 449351) (-2410 . 449272) (-2411 . 449218) (-2412 . 449050) - (-2413 . 448928) (-2414 . 448532) (-2415 . 448296) (-2416 . 448095) - (-2417 . 447887) (-2418 . 447694) (-2419 . 447427) (-2420 . 447248) - (-2421 . 447179) (-2422 . 447103) (-2423 . 446962) (-2424 . 446759) - (-2425 . 446615) (-2426 . 446365) (-2427 . 446057) (-2428 . 445701) - (-2429 . 445542) (-2430 . 445336) (-2431 . 445176) (-2432 . 445103) - (-2433 . 445069) (-2434 . 445004) (-2435 . 444967) (-2436 . 444830) - (-2437 . 444592) (-2438 . 444522) (-2439 . 444336) (-2440 . 444087) - (-2441 . 443931) (-2442 . 443408) (-2443 . 443211) (-2444 . 442999) - (-2445 . 442837) (-2446 . 442438) (-2447 . 442271) (-2448 . 441196) - (-2449 . 441073) (-2450 . 440856) (-2451 . 440726) (-2452 . 440596) - (-2453 . 440439) (-2454 . 440336) (-2455 . 440278) (-2456 . 440220) - (-2457 . 440114) (-2458 . 440008) (-2459 . 439092) (-2460 . 436965) - (-2461 . 436151) (-2462 . 434348) (-2463 . 434280) (-2464 . 434212) - (-2465 . 434144) (-2466 . 434076) (-2467 . 434008) (-2468 . 433930) - (-2469 . 433574) (-2470 . 433392) (-2471 . 432853) (-2472 . 432677) - (-2473 . 432456) (-2474 . 432235) (-2475 . 432014) (-2476 . 431796) - (-2477 . 431578) (-2478 . 431360) (-2479 . 431142) (-2480 . 430924) - (-2481 . 430706) (-2482 . 430605) (-2483 . 429872) (-2484 . 429817) - (-2485 . 429762) (-2486 . 429707) (-2487 . 429652) (-2488 . 429502) - (-2489 . 429254) (-2490 . 429093) (-2491 . 428913) (-2492 . 428626) - (-2493 . 428240) (-2494 . 427368) (-2495 . 427028) (-2496 . 426860) - (-2497 . 426638) (-2498 . 426388) (-2499 . 426040) (-2500 . 425030) - (-2501 . 424719) (-2502 . 424507) (-2503 . 423943) (-2504 . 423430) - (-2505 . 421674) (-2506 . 421202) (-2507 . 420603) (-2508 . 420353) - (-2509 . 420219) (-2510 . 420007) (-2511 . 419931) (-2512 . 419855) - (-2513 . 419748) (-2514 . 419566) (-2515 . 419401) (-2516 . 419223) - (-2517 . 418642) (-2518 . 418481) (-2519 . 417908) (-2520 . 417838) - (-2521 . 417763) (-2522 . 417691) (-2523 . 417553) (-2524 . 417366) - (-2525 . 417259) (-2526 . 417152) (-2527 . 417037) (-2528 . 416922) - (-2529 . 416807) (-2530 . 416529) (-2531 . 416379) (-2532 . 416236) - (-2533 . 416163) (-2534 . 416078) (-2535 . 416005) (-2536 . 415932) - (-2537 . 415859) (-2538 . 415716) (-2539 . 415566) (-2540 . 415392) - (-2541 . 415242) (-2542 . 415092) (-2543 . 414966) (-2544 . 414580) - (-2545 . 414296) (-2546 . 414012) (-2547 . 413603) (-2548 . 413319) - (-2549 . 413246) (-2550 . 413099) (-2551 . 412993) (-2552 . 412919) - (-2553 . 412849) (-2554 . 412770) (-2555 . 412693) (-2556 . 412616) - (-2557 . 412467) (-2558 . 412364) (-2559 . 412306) (-2560 . 412242) - (-2561 . 412178) (-2562 . 412081) (-2563 . 411984) (-2564 . 411824) - (-2565 . 411738) (-2566 . 411652) (-2567 . 411567) (-2568 . 411508) - (-2569 . 411449) (-2570 . 411390) (-2571 . 411331) (-2572 . 411161) - (-2573 . 411073) (-2574 . 410976) (-2575 . 410942) (-2576 . 410911) - (-2577 . 410827) (-2578 . 410771) (-2579 . 410709) (-2580 . 410675) - (-2581 . 410641) (-2582 . 410607) (-2583 . 410573) (-2584 . 410539) - (-2585 . 410505) (-2586 . 410471) (-2587 . 410437) (-2588 . 410403) - (-2589 . 410291) (-2590 . 410257) (-2591 . 410206) (-2592 . 410172) - (-2593 . 410075) (-2594 . 410013) (-2595 . 409922) (-2596 . 409831) - (-2597 . 409776) (-2598 . 409724) (-2599 . 409672) (-2600 . 409620) - (-2601 . 409568) (-2602 . 409145) (-2603 . 408979) (-2604 . 408926) - (-2605 . 408857) (-2606 . 408804) (-2607 . 408574) (-2608 . 408418) - (-2609 . 407897) (-2610 . 407756) (-2611 . 407722) (-2612 . 407667) - (-2613 . 406957) (-2614 . 406642) (-2615 . 406138) (-2616 . 406060) - (-2617 . 406008) (-2618 . 405956) (-2619 . 405772) (-2620 . 405720) - (-2621 . 405668) (-2622 . 405592) (-2623 . 405530) (-2624 . 405312) - (-2625 . 405245) (-2626 . 405151) (-2627 . 405057) (-2628 . 404874) - (-2629 . 404792) (-2630 . 404670) (-2631 . 404524) (-2632 . 403873) - (-2633 . 403171) (-2634 . 403067) (-2635 . 402966) (-2636 . 402865) - (-2637 . 402754) (-2638 . 402586) (-2639 . 402382) (-2640 . 402289) - (-2641 . 402212) (-2642 . 402156) (-2643 . 402086) (-2644 . 401966) - (-2645 . 401865) (-2646 . 401768) (-2647 . 401688) (-2648 . 401608) - (-2649 . 401531) (-2650 . 401461) (-2651 . 401391) (-2652 . 401321) - (-2653 . 401251) (-2654 . 401181) (-2655 . 401111) (-2656 . 401018) - (-2657 . 400890) (-2658 . 400648) (-2659 . 400478) (-2660 . 400109) - (-2661 . 399940) (-2662 . 399824) (-2663 . 399328) (-2664 . 398947) - (-2665 . 398701) (-2666 . 398609) (-2667 . 398512) (-2668 . 397850) - (-2669 . 397737) (-2670 . 397663) (-2671 . 397571) (-2672 . 397381) - (-2673 . 397191) (-2674 . 397120) (-2675 . 397049) (-2676 . 396968) - (-2677 . 396887) (-2678 . 396762) (-2679 . 396629) (-2680 . 396548) - (-2681 . 396474) (-2682 . 396309) (-2683 . 396152) (-2684 . 395924) - (-2685 . 395776) (-2686 . 395672) (-2687 . 395568) (-2688 . 395483) - (-2689 . 395115) (-2690 . 395034) (-2691 . 394947) (-2692 . 394866) - (-2693 . 394670) (-2694 . 394450) (-2695 . 394263) (-2696 . 393941) - (-2697 . 393648) (-2698 . 393355) (-2699 . 393045) (-2700 . 392728) - (-2701 . 392576) (-2702 . 392388) (-2703 . 391915) (-2704 . 391833) - (-2705 . 391617) (-2706 . 391401) (-2707 . 391142) (-2708 . 390721) - (-2709 . 390208) (-2710 . 390078) (-2711 . 389804) (-2712 . 389625) - (-2713 . 389510) (-2714 . 389406) (-2715 . 389351) (-2716 . 389274) - (-2717 . 389204) (-2718 . 389131) (-2719 . 389076) (-2720 . 389003) - (-2721 . 388948) (-2722 . 388593) (-2723 . 388185) (-2724 . 388032) - (-2725 . 387879) (-2726 . 387798) (-2727 . 387645) (-2728 . 387492) - (-2729 . 387357) (-2730 . 387222) (-2731 . 387087) (-2732 . 386952) - (-2733 . 386817) (-2734 . 386682) (-2735 . 386626) (-2736 . 386473) - (-2737 . 386362) (-2738 . 386251) (-2739 . 386166) (-2740 . 386056) - (-2741 . 385953) (-2742 . 381802) (-2743 . 381354) (-2744 . 380927) - (-2745 . 380310) (-2746 . 379709) (-2747 . 379491) (-2748 . 379313) - (-2749 . 379054) (-2750 . 378643) (-2751 . 378349) (-2752 . 377906) - (-2753 . 377728) (-2754 . 377335) (-2755 . 376942) (-2756 . 376757) - (-2757 . 376550) (-2758 . 376330) (-2759 . 376024) (-2760 . 375825) - (-2761 . 375196) (-2762 . 375039) (-2763 . 374650) (-2764 . 374599) - (-2765 . 374550) (-2766 . 374499) (-2767 . 374451) (-2768 . 374399) - (-2769 . 374253) (-2770 . 374201) (-2771 . 374055) (-2772 . 374003) - (-2773 . 373857) (-2774 . 373806) (-2775 . 373431) (-2776 . 373380) - (-2777 . 373331) (-2778 . 373280) (-2779 . 373232) (-2780 . 373180) - (-2781 . 373131) (-2782 . 373079) (-2783 . 373030) (-2784 . 372978) - (-2785 . 372929) (-2786 . 372863) (-2787 . 372745) (-2788 . 371583) - (-2789 . 371166) (-2790 . 371058) (-2791 . 370816) (-2792 . 370666) - (-2793 . 370516) (-2794 . 370355) (-2795 . 368148) (-2796 . 367887) - (-2797 . 367733) (-2798 . 367587) (-2799 . 367441) (-2800 . 367222) - (-2801 . 367090) (-2802 . 367015) (-2803 . 366940) (-2804 . 366805) - (-2805 . 366676) (-2806 . 366547) (-2807 . 366421) (-2808 . 366295) - (-2809 . 366169) (-2810 . 366043) (-2811 . 365940) (-2812 . 365840) - (-2813 . 365746) (-2814 . 365616) (-2815 . 365465) (-2816 . 365089) - (-2817 . 364975) (-2818 . 364734) (-2819 . 364276) (-2820 . 363966) - (-2821 . 363399) (-2822 . 362830) (-2823 . 361820) (-2824 . 361278) - (-2825 . 360965) (-2826 . 360627) (-2827 . 360296) (-2828 . 359976) - (-2829 . 359923) (-2830 . 359796) (-2831 . 359294) (-2832 . 358151) - (-2833 . 358096) (-2834 . 358041) (-2835 . 357965) (-2836 . 357846) - (-2837 . 357771) (-2838 . 357696) (-2839 . 357618) (-2840 . 357395) - (-2841 . 357336) (-2842 . 357277) (-2843 . 357174) (-2844 . 357071) - (-2845 . 356968) (-2846 . 356865) (-2847 . 356784) (-2848 . 356710) - (-2849 . 356495) (-2850 . 356261) (-2851 . 356227) (-2852 . 356193) - (-2853 . 356165) (-2854 . 356137) (-2855 . 355920) (-2856 . 355642) - (-2857 . 355492) (-2858 . 355362) (-2859 . 355232) (-2860 . 355132) - (-2861 . 354955) (-2862 . 354795) (-2863 . 354695) (-2864 . 354518) - (-2865 . 354358) (-2866 . 354199) (-2867 . 354060) (-2868 . 353910) - (-2869 . 353780) (-2870 . 353650) (-2871 . 353503) (-2872 . 353376) - (-2873 . 353273) (-2874 . 353166) (-2875 . 353069) (-2876 . 352904) - (-2877 . 352756) (-2878 . 352341) (-2879 . 352241) (-2880 . 352138) - (-2881 . 352050) (-2882 . 351970) (-2883 . 351820) (-2884 . 351690) - (-2885 . 351638) (-2886 . 351565) (-2887 . 351490) (-2888 . 351332) - (-2889 . 351220) (-2890 . 350908) (-2891 . 350731) (-2892 . 349133) - (-2893 . 348505) (-2894 . 348445) (-2895 . 348327) (-2896 . 348209) - (-2897 . 348065) (-2898 . 347913) (-2899 . 347754) (-2900 . 347595) - (-2901 . 347389) (-2902 . 347202) (-2903 . 347050) (-2904 . 346895) - (-2905 . 346740) (-2906 . 346588) (-2907 . 346451) (-2908 . 346028) - (-2909 . 345902) (-2910 . 345776) (-2911 . 345650) (-2912 . 345510) - (-2913 . 345369) (-2914 . 345228) (-2915 . 345084) (-2916 . 344336) - (-2917 . 344178) (-2918 . 343992) (-2919 . 343837) (-2920 . 343599) - (-2921 . 343354) (-2922 . 343109) (-2923 . 342899) (-2924 . 342762) - (-2925 . 342552) (-2926 . 342415) (-2927 . 342205) (-2928 . 342068) - (-2929 . 341858) (-2930 . 341555) (-2931 . 341411) (-2932 . 341270) - (-2933 . 341047) (-2934 . 340906) (-2935 . 340684) (-2936 . 340487) - (-2937 . 340331) (-2938 . 340004) (-2939 . 339845) (-2940 . 339686) - (-2941 . 339527) (-2942 . 339356) (-2943 . 339185) (-2944 . 339011) - (-2945 . 338659) (-2946 . 338536) (-2947 . 338374) (-2948 . 338301) - (-2949 . 338228) (-2950 . 338155) (-2951 . 338082) (-2952 . 338009) - (-2953 . 337936) (-2954 . 337813) (-2955 . 337640) (-2956 . 337517) - (-2957 . 337431) (-2958 . 337365) (-2959 . 337299) (-2960 . 337233) - (-2961 . 337167) (-2962 . 337101) (-2963 . 337035) (-2964 . 336969) - (-2965 . 336903) (-2966 . 336837) (-2967 . 336771) (-2968 . 336705) - (-2969 . 336639) (-2970 . 336573) (-2971 . 336507) (-2972 . 336441) - (-2973 . 336375) (-2974 . 336309) (-2975 . 336243) (-2976 . 336177) - (-2977 . 336111) (-2978 . 336045) (-2979 . 335979) (-2980 . 335913) - (-2981 . 335847) (-2982 . 335781) (-2983 . 335715) (-2984 . 335068) - (-2985 . 334421) (-2986 . 334293) (-2987 . 334170) (-2988 . 334047) - (-2989 . 333906) (-2990 . 333752) (-2991 . 333608) (-2992 . 333433) - (-2993 . 332823) (-2994 . 332699) (-2995 . 332575) (-2996 . 331897) - (-2997 . 331200) (-2998 . 331099) (-2999 . 331043) (-3000 . 330987) - (-3001 . 330931) (-3002 . 330875) (-3003 . 330816) (-3004 . 330752) - (-3005 . 330644) (-3006 . 330536) (-3007 . 330428) (-3008 . 330149) - (-3009 . 330075) (-3010 . 329849) (-3011 . 329768) (-3012 . 329690) - (-3013 . 329612) (-3014 . 329534) (-3015 . 329455) (-3016 . 329377) - (-3017 . 329284) (-3018 . 329185) (-3019 . 329117) (-3020 . 329068) - (-3021 . 328377) (-3022 . 327737) (-3023 . 326946) (-3024 . 326865) - (-3025 . 326761) (-3026 . 326670) (-3027 . 326579) (-3028 . 326505) - (-3029 . 326431) (-3030 . 326357) (-3031 . 326302) (-3032 . 326247) - (-3033 . 326181) (-3034 . 326115) (-3035 . 326053) (-3036 . 325778) - (-3037 . 325286) (-3038 . 324828) (-3039 . 324575) (-3040 . 324387) - (-3041 . 324046) (-3042 . 323750) (-3043 . 323582) (-3044 . 323451) - (-3045 . 323311) (-3046 . 323156) (-3047 . 322987) (-3048 . 321601) - (-3049 . 321468) (-3050 . 321327) (-3051 . 321098) (-3052 . 321039) - (-3053 . 320983) (-3054 . 320927) (-3055 . 320662) (-3056 . 320450) - (-3057 . 320311) (-3058 . 320204) (-3059 . 320087) (-3060 . 320021) - (-3061 . 319948) (-3062 . 319834) (-3063 . 319581) (-3064 . 319481) - (-3065 . 319287) (-3066 . 318979) (-3067 . 318513) (-3068 . 318408) - (-3069 . 318302) (-3070 . 318153) (-3071 . 318013) (-3072 . 317601) - (-3073 . 317357) (-3074 . 316699) (-3075 . 316546) (-3076 . 316432) - (-3077 . 316322) (-3078 . 315502) (-3079 . 315308) (-3080 . 314282) - (-3081 . 313834) (-3082 . 312445) (-3083 . 311594) (-3084 . 311545) - (-3085 . 311496) (-3086 . 311447) (-3087 . 311380) (-3088 . 311305) - (-3089 . 311115) (-3090 . 311043) (-3091 . 310968) (-3092 . 310896) - (-3093 . 310779) (-3094 . 310728) (-3095 . 310649) (-3096 . 310570) - (-3097 . 310491) (-3098 . 310440) (-3099 . 310196) (-3100 . 309894) - (-3101 . 309812) (-3102 . 309730) (-3103 . 309669) (-3104 . 309280) - (-3105 . 308408) (-3106 . 307835) (-3107 . 306600) (-3108 . 305793) - (-3109 . 305543) (-3110 . 305293) (-3111 . 304868) (-3112 . 304624) - (-3113 . 304380) (-3114 . 304136) (-3115 . 303892) (-3116 . 303648) - (-3117 . 303404) (-3118 . 303162) (-3119 . 302920) (-3120 . 302678) - (-3121 . 302436) (-3122 . 301858) (-3123 . 301742) (-3124 . 301688) - (-3125 . 300846) (-3126 . 300815) (-3127 . 300470) (-3128 . 300244) - (-3129 . 300145) (-3130 . 300046) (-3131 . 298280) (-3132 . 298168) - (-3133 . 297118) (-3134 . 297026) (-3135 . 296104) (-3136 . 295771) - (-3137 . 295438) (-3138 . 295335) (-3139 . 295224) (-3140 . 295113) - (-3141 . 295002) (-3142 . 294891) (-3143 . 293804) (-3144 . 293684) - (-3145 . 293549) (-3146 . 293417) (-3147 . 293285) (-3148 . 292991) - (-3149 . 292697) (-3150 . 292352) (-3151 . 292126) (-3152 . 291900) - (-3153 . 291789) (-3154 . 291678) (-3155 . 290216) (-3156 . 288512) - (-3157 . 288203) (-3158 . 288051) (-3159 . 287528) (-3160 . 287199) - (-3161 . 287006) (-3162 . 286813) (-3163 . 286620) (-3164 . 286427) - (-3165 . 286314) (-3166 . 286191) (-3167 . 286077) (-3168 . 285963) - (-3169 . 285870) (-3170 . 285777) (-3171 . 285667) (-3172 . 285466) - (-3173 . 284322) (-3174 . 284229) (-3175 . 284115) (-3176 . 284022) - (-3177 . 283775) (-3178 . 283664) (-3179 . 283450) (-3180 . 283332) - (-3181 . 283035) (-3182 . 282307) (-3183 . 281731) (-3184 . 281253) - (-3185 . 281009) (-3186 . 280765) (-3187 . 280422) (-3188 . 279816) - (-3189 . 279373) (-3190 . 279218) (-3191 . 279074) (-3192 . 278754) - (-3193 . 278599) (-3194 . 278459) (-3195 . 278319) (-3196 . 278179) - (-3197 . 277904) (-3198 . 277685) (-3199 . 277166) (-3200 . 276954) - (-3201 . 276742) (-3202 . 276362) (-3203 . 276188) (-3204 . 275979) - (-3205 . 275671) (-3206 . 275479) (-3207 . 275306) (-3208 . 274170) - (-3209 . 273805) (-3210 . 273605) (-3211 . 273405) (-3212 . 272569) - (-3213 . 272541) (-3214 . 272473) (-3215 . 272403) (-3216 . 272239) - (-3217 . 272211) (-3218 . 272183) (-3219 . 272129) (-3220 . 271979) - (-3221 . 271920) (-3222 . 271227) (-3223 . 269842) (-3224 . 269781) - (-3225 . 269457) (-3226 . 269385) (-3227 . 269328) (-3228 . 269271) - (-3229 . 269214) (-3230 . 269157) (-3231 . 269082) (-3232 . 268492) - (-3233 . 268132) (-3234 . 268058) (-3235 . 267998) (-3236 . 267880) - (-3237 . 266937) (-3238 . 266810) (-3239 . 266597) (-3240 . 266523) - (-3241 . 266469) (-3242 . 266415) (-3243 . 266306) (-3244 . 265996) - (-3245 . 265888) (-3246 . 265785) (-3247 . 265624) (-3248 . 265523) - (-3249 . 265425) (-3250 . 265287) (-3251 . 265149) (-3252 . 265011) - (-3253 . 264749) (-3254 . 264540) (-3255 . 264402) (-3256 . 264111) - (-3257 . 263959) (-3258 . 263684) (-3259 . 263464) (-3260 . 263312) - (-3261 . 263160) (-3262 . 263008) (-3263 . 262856) (-3264 . 262704) - (-3265 . 262497) (-3266 . 262110) (-3267 . 261779) (-3268 . 261440) - (-3269 . 261093) (-3270 . 260754) (-3271 . 260415) (-3272 . 260034) - (-3273 . 259653) (-3274 . 259272) (-3275 . 258907) (-3276 . 258189) - (-3277 . 257842) (-3278 . 257397) (-3279 . 256972) (-3280 . 256361) - (-3281 . 255769) (-3282 . 255382) (-3283 . 255051) (-3284 . 254664) - (-3285 . 254333) (-3286 . 254113) (-3287 . 253592) (-3288 . 253379) - (-3289 . 253166) (-3290 . 252953) (-3291 . 252775) (-3292 . 252562) - (-3293 . 252384) (-3294 . 252002) (-3295 . 251824) (-3296 . 251614) - (-3297 . 251524) (-3298 . 251434) (-3299 . 251343) (-3300 . 251231) - (-3301 . 251141) (-3302 . 251034) (-3303 . 250845) (-3304 . 250789) - (-3305 . 250708) (-3306 . 250627) (-3307 . 250546) (-3308 . 250469) - (-3309 . 250334) (-3310 . 250199) (-3311 . 250075) (-3312 . 249954) - (-3313 . 249836) (-3314 . 249700) (-3315 . 249567) (-3316 . 249448) - (-3317 . 249190) (-3318 . 248905) (-3319 . 248833) (-3320 . 248737) - (-3321 . 248596) (-3322 . 248539) (-3323 . 248482) (-3324 . 248422) - (-3325 . 248027) (-3326 . 247505) (-3327 . 247228) (-3328 . 246808) - (-3329 . 246696) (-3330 . 246258) (-3331 . 246028) (-3332 . 245825) - (-3333 . 245643) (-3334 . 245513) (-3335 . 245307) (-3336 . 245100) - (-3337 . 244910) (-3338 . 244345) (-3339 . 244089) (-3340 . 243798) - (-3341 . 243504) (-3342 . 243207) (-3343 . 242907) (-3344 . 242777) - (-3345 . 242644) (-3346 . 242508) (-3347 . 242369) (-3348 . 241152) - (-3349 . 240844) (-3350 . 240480) (-3351 . 240383) (-3352 . 240143) - (-3353 . 239848) (-3354 . 239553) (-3355 . 239294) (-3356 . 239120) - (-3357 . 239042) (-3358 . 238955) (-3359 . 238855) (-3360 . 238761) - (-3361 . 238680) (-3362 . 238610) (-3363 . 237819) (-3364 . 237749) - (-3365 . 237421) (-3366 . 237351) (-3367 . 237023) (-3368 . 236953) - (-3369 . 236508) (-3370 . 236438) (-3371 . 236334) (-3372 . 236260) - (-3373 . 236186) (-3374 . 236115) (-3375 . 235773) (-3376 . 235645) - (-3377 . 235568) (-3378 . 235337) (-3379 . 235194) (-3380 . 235051) - (-3381 . 234712) (-3382 . 234382) (-3383 . 234169) (-3384 . 233914) - (-3385 . 233564) (-3386 . 233339) (-3387 . 233114) (-3388 . 232889) - (-3389 . 232664) (-3390 . 232451) (-3391 . 232238) (-3392 . 232088) - (-3393 . 231907) (-3394 . 231802) (-3395 . 231680) (-3396 . 231572) - (-3397 . 231464) (-3398 . 231139) (-3399 . 230875) (-3400 . 230564) - (-3401 . 230262) (-3402 . 229953) (-3403 . 229224) (-3404 . 228635) - (-3405 . 228460) (-3406 . 228316) (-3407 . 228161) (-3408 . 228038) - (-3409 . 227933) (-3410 . 227818) (-3411 . 227723) (-3412 . 227242) - (-3413 . 227132) (-3414 . 227022) (-3415 . 226912) (-3416 . 225840) - (-3417 . 225329) (-3418 . 225262) (-3419 . 225189) (-3420 . 224316) - (-3421 . 224243) (-3422 . 224188) (-3423 . 224133) (-3424 . 224101) - (-3425 . 224015) (-3426 . 223983) (-3427 . 223897) (-3428 . 223477) - (-3429 . 223057) (-3430 . 222505) (-3431 . 221401) (-3432 . 219691) - (-3433 . 218141) (-3434 . 217349) (-3435 . 216849) (-3436 . 216363) - (-3437 . 215961) (-3438 . 215311) (-3439 . 215236) (-3440 . 215145) - (-3441 . 215074) (-3442 . 215003) (-3443 . 214947) (-3444 . 214827) - (-3445 . 214773) (-3446 . 214712) (-3447 . 214658) (-3448 . 214555) - (-3449 . 214115) (-3450 . 213675) (-3451 . 213235) (-3452 . 212713) - (-3453 . 212552) (-3454 . 212391) (-3455 . 212080) (-3456 . 211994) - (-3457 . 211904) (-3458 . 211546) (-3459 . 211429) (-3460 . 211348) - (-3461 . 211190) (-3462 . 211077) (-3463 . 211002) (-3464 . 210156) - (-3465 . 208974) (-3466 . 208875) (-3467 . 208776) (-3468 . 208447) - (-3469 . 208369) (-3470 . 208294) (-3471 . 208188) (-3472 . 208032) - (-3473 . 207925) (-3474 . 207790) (-3475 . 207655) (-3476 . 207533) - (-3477 . 207438) (-3478 . 207290) (-3479 . 207195) (-3480 . 207040) - (-3481 . 206885) (-3482 . 206333) (-3483 . 205781) (-3484 . 205166) - (-3485 . 204614) (-3486 . 204062) (-3487 . 203510) (-3488 . 202957) - (-3489 . 202404) (-3490 . 201851) (-3491 . 201298) (-3492 . 200745) - (-3493 . 200192) (-3494 . 199640) (-3495 . 199088) (-3496 . 198536) - (-3497 . 197984) (-3498 . 197432) (-3499 . 196880) (-3500 . 196776) - (-3501 . 196191) (-3502 . 196086) (-3503 . 196011) (-3504 . 195869) - (-3505 . 195777) (-3506 . 195686) (-3507 . 195594) (-3508 . 195499) - (-3509 . 195394) (-3510 . 195271) (-3511 . 195149) (-3512 . 194785) - (-3513 . 194663) (-3514 . 194565) (-3515 . 194204) (-3516 . 193675) - (-3517 . 193600) (-3518 . 193525) (-3519 . 193433) (-3520 . 193252) - (-3521 . 193157) (-3522 . 193082) (-3523 . 192991) (-3524 . 192900) - (-3525 . 192741) (-3526 . 192192) (-3527 . 191643) (-3528 . 188936) - (-3529 . 188764) (-3530 . 187354) (-3531 . 186794) (-3532 . 186679) - (-3533 . 186307) (-3534 . 186244) (-3535 . 186181) (-3536 . 186118) - (-3537 . 185840) (-3538 . 185573) (-3539 . 185521) (-3540 . 184880) - (-3541 . 184829) (-3542 . 184641) (-3543 . 184568) (-3544 . 184488) - (-3545 . 184375) (-3546 . 184185) (-3547 . 183821) (-3548 . 183549) - (-3549 . 183498) (-3550 . 183447) (-3551 . 183377) (-3552 . 183258) - (-3553 . 183229) (-3554 . 183125) (-3555 . 183003) (-3556 . 182949) - (-3557 . 182772) (-3558 . 182711) (-3559 . 182530) (-3560 . 182469) - (-3561 . 182397) (-3562 . 181922) (-3563 . 181548) (-3564 . 178016) - (-3565 . 177964) (-3566 . 177836) (-3567 . 177686) (-3568 . 177634) - (-3569 . 177493) (-3570 . 175435) (-3571 . 167792) (-3572 . 167641) - (-3573 . 167571) (-3574 . 167520) (-3575 . 167470) (-3576 . 167419) - (-3577 . 167368) (-3578 . 167172) (-3579 . 167030) (-3580 . 166916) - (-3581 . 166795) (-3582 . 166677) (-3583 . 166565) (-3584 . 166447) - (-3585 . 166342) (-3586 . 166261) (-3587 . 166157) (-3588 . 165223) - (-3589 . 165003) (-3590 . 164766) (-3591 . 164684) (-3592 . 164340) - (-3593 . 163201) (-3594 . 163127) (-3595 . 163032) (-3596 . 162958) - (-3597 . 162754) (-3598 . 162663) (-3599 . 162547) (-3600 . 162434) - (-3601 . 162343) (-3602 . 162252) (-3603 . 162163) (-3604 . 162074) - (-3605 . 161985) (-3606 . 161897) (-3607 . 161409) (-3608 . 161345) - (-3609 . 161281) (-3610 . 161217) (-3611 . 161156) (-3612 . 160416) - (-3613 . 160355) (-3614 . 160294) (-3615 . 159668) (-3616 . 159616) - (-3617 . 159488) (-3618 . 159424) (-3619 . 159370) (-3620 . 159261) - (-3621 . 157964) (-3622 . 157883) (-3623 . 157794) (-3624 . 157736) - (-3625 . 157596) (-3626 . 157511) (-3627 . 157437) (-3628 . 157352) - (-3629 . 157295) (-3630 . 157079) (-3631 . 156940) (-3632 . 156333) - (-3633 . 155779) (-3634 . 155225) (-3635 . 154671) (-3636 . 154064) - (-3637 . 153510) (-3638 . 152950) (-3639 . 152390) (-3640 . 152128) - (-3641 . 151689) (-3642 . 151356) (-3643 . 151017) (-3644 . 150712) - (-3645 . 150579) (-3646 . 150446) (-3647 . 150058) (-3648 . 149965) - (-3649 . 149872) (-3650 . 149779) (-3651 . 149686) (-3652 . 149593) - (-3653 . 149500) (-3654 . 149407) (-3655 . 149314) (-3656 . 149221) - (-3657 . 149128) (-3658 . 149035) (-3659 . 148942) (-3660 . 148849) - (-3661 . 148756) (-3662 . 148663) (-3663 . 148570) (-3664 . 148477) - (-3665 . 148384) (-3666 . 148291) (-3667 . 148198) (-3668 . 148105) - (-3669 . 148012) (-3670 . 147919) (-3671 . 147826) (-3672 . 147733) - (-3673 . 147548) (-3674 . 147238) (-3675 . 145610) (-3676 . 145456) - (-3677 . 145319) (-3678 . 145177) (-3679 . 144975) (-3680 . 143048) - (-3681 . 142921) (-3682 . 142797) (-3683 . 142670) (-3684 . 142449) - (-3685 . 142228) (-3686 . 142101) (-3687 . 141900) (-3688 . 141724) - (-3689 . 141207) (-3690 . 140690) (-3691 . 140413) (-3692 . 140004) - (-3693 . 139487) (-3694 . 139303) (-3695 . 139161) (-3696 . 138666) - (-3697 . 138035) (-3698 . 137979) (-3699 . 137885) (-3700 . 137766) - (-3701 . 137696) (-3702 . 137623) (-3703 . 137393) (-3704 . 136774) - (-3705 . 136344) (-3706 . 136262) (-3707 . 136120) (-3708 . 135646) - (-3709 . 135524) (-3710 . 135402) (-3711 . 135262) (-3712 . 135075) - (-3713 . 134959) (-3714 . 134679) (-3715 . 134611) (-3716 . 134413) - (-3717 . 134233) (-3718 . 134078) (-3719 . 133971) (-3720 . 133920) - (-3721 . 133543) (-3722 . 133015) (-3723 . 132793) (-3724 . 132571) - (-3725 . 132332) (-3726 . 132242) (-3727 . 130500) (-3728 . 129918) - (-3729 . 129840) (-3730 . 124380) (-3731 . 123590) (-3732 . 123213) - (-3733 . 123142) (-3734 . 122877) (-3735 . 122702) (-3736 . 122217) - (-3737 . 121795) (-3738 . 121355) (-3739 . 120492) (-3740 . 120368) - (-3741 . 120241) (-3742 . 120132) (-3743 . 119980) (-3744 . 119866) - (-3745 . 119727) (-3746 . 119646) (-3747 . 119565) (-3748 . 119461) - (-3749 . 119043) (-3750 . 118622) (-3751 . 118548) (-3752 . 118285) - (-3753 . 118021) (-3754 . 117642) (-3755 . 116943) (-3756 . 115900) - (-3757 . 115841) (-3758 . 115767) (-3759 . 115693) (-3760 . 115571) - (-3761 . 115321) (-3762 . 115235) (-3763 . 115160) (-3764 . 115085) - (-3765 . 114990) (-3766 . 111215) (-3767 . 110045) (-3768 . 109385) - (-3769 . 109201) (-3770 . 106996) (-3771 . 106671) (-3772 . 106189) - (-3773 . 105748) (-3774 . 105513) (-3775 . 105268) (-3776 . 105178) - (-3777 . 103743) (-3778 . 103665) (-3779 . 103560) (-3780 . 102084) - (-3781 . 101679) (-3782 . 101278) (-3783 . 101176) (-3784 . 101094) - (-3785 . 100936) (-3786 . 99702) (-3787 . 99620) (-3788 . 99541) - (-3789 . 99186) (-3790 . 99129) (-3791 . 99057) (-3792 . 99000) - (-3793 . 98943) (-3794 . 98813) (-3795 . 98611) (-3796 . 98243) - (-3797 . 97822) (-3798 . 94012) (-3799 . 93410) (-3800 . 92943) - (-3801 . 92730) (-3802 . 92517) (-3803 . 92351) (-3804 . 92138) - (-3805 . 91972) (-3806 . 91806) (-3807 . 91640) (-3808 . 91474) - (-3809 . 91204) (-3810 . 85790) (** . 82837) (-3812 . 82421) (-3813 . 82180) - (-3814 . 82124) (-3815 . 81632) (-3816 . 78824) (-3817 . 78674) - (-3818 . 78510) (-3819 . 78346) (-3820 . 78250) (-3821 . 78132) - (-3822 . 78008) (-3823 . 77865) (-3824 . 77694) (-3825 . 77568) - (-3826 . 77424) (-3827 . 77272) (-3828 . 77113) (-3829 . 76600) - (-3830 . 76511) (-3831 . 75846) (-3832 . 75654) (-3833 . 75559) - (-3834 . 75251) (-3835 . 74079) (-3836 . 73873) (-3837 . 72698) - (-3838 . 72623) (-3839 . 71442) (-3840 . 67861) (-3841 . 67497) - (-3842 . 67220) (-3843 . 67128) (-3844 . 67035) (-3845 . 66758) - (-3846 . 66665) (-3847 . 66572) (-3848 . 66479) (-3849 . 66095) - (-3850 . 66024) (-3851 . 65932) (-3852 . 65774) (-3853 . 65420) - (-3854 . 65262) (-3855 . 65154) (-3856 . 65125) (-3857 . 65058) - (-3858 . 64904) (-3859 . 64746) (-3860 . 64352) (-3861 . 64277) - (-3862 . 64171) (-3863 . 64099) (-3864 . 64021) (-3865 . 63948) - (-3866 . 63875) (-3867 . 63802) (-3868 . 63730) (-3869 . 63658) - (-3870 . 63585) (-3871 . 63344) (-3872 . 63004) (-3873 . 62856) - (-3874 . 62783) (-3875 . 62710) (-3876 . 62637) (-3877 . 62383) - (-3878 . 62239) (-3879 . 60903) (-3880 . 60709) (-3881 . 60438) - (-3882 . 60290) (-3883 . 60142) (-3884 . 59902) (-3885 . 59708) - (-3886 . 59440) (-3887 . 59244) (-3888 . 59215) (-3889 . 59114) - (-3890 . 59013) (-3891 . 58912) (-3892 . 58811) (-3893 . 58710) - (-3894 . 58609) (-3895 . 58508) (-3896 . 58407) (-3897 . 58306) - (-3898 . 58205) (-3899 . 58090) (-3900 . 57975) (-3901 . 57924) - (-3902 . 57807) (-3903 . 57749) (-3904 . 57648) (-3905 . 57547) - (-3906 . 57446) (-3907 . 57330) (-3908 . 57301) (-3909 . 56570) - (-3910 . 56445) (-3911 . 56320) (-3912 . 56180) (-3913 . 56062) - (-3914 . 55937) (-3915 . 55782) (-3916 . 54799) (-3917 . 53940) - (-3918 . 53886) (-3919 . 53832) (-3920 . 53624) (-3921 . 53252) - (-3922 . 52841) (-3923 . 52483) (-3924 . 52125) (-3925 . 51973) - (-3926 . 51671) (-3927 . 51515) (-3928 . 51189) (-3929 . 51119) - (-3930 . 51049) (-3931 . 50840) (-3932 . 50231) (-3933 . 50027) - (-3934 . 49654) (-3935 . 49145) (-3936 . 48880) (-3937 . 48399) - (-3938 . 47918) (-3939 . 47793) (-3940 . 46693) (-3941 . 45617) - (-3942 . 45044) (-3943 . 44826) (-3944 . 36500) (-3945 . 36315) - (-3946 . 34232) (-3947 . 32064) (-3948 . 31918) (-3949 . 31740) - (-3950 . 31333) (-3951 . 31038) (-3952 . 30690) (-3953 . 30524) - (-3954 . 30358) (-3955 . 29945) (-3956 . 16071) (-3957 . 14964) (* . 10917) - (-3959 . 10663) (-3960 . 10479) (-3961 . 9522) (-3962 . 9469) (-3963 . 9409) - (-3964 . 9140) (-3965 . 8513) (-3966 . 7240) (-3967 . 5996) (-3968 . 5127) - (-3969 . 3864) (-3970 . 420) (-3971 . 306) (-3972 . 173) (-3973 . 30))
\ No newline at end of file +((-1213 . 631493) (-1214 . 631097) (-1215 . 630795) (-1216 . 630399) + (-1217 . 630278) (-1218 . 630176) (-1219 . 630063) (-1220 . 629947) + (-1221 . 629894) (-1222 . 629757) (-1223 . 629682) (-1224 . 629526) + (-1225 . 629298) (-1226 . 628334) (-1227 . 628087) (-1228 . 627803) + (-1229 . 627519) (-1230 . 627235) (-1231 . 626916) (-1232 . 626824) + (-1233 . 626732) (-1234 . 626640) (-1235 . 626548) (-1236 . 626456) + (-1237 . 626364) (-1238 . 626269) (-1239 . 626174) (-1240 . 626082) + (-1241 . 625990) (-1242 . 625898) (-1243 . 625806) (-1244 . 625714) + (-1245 . 625612) (-1246 . 625510) (-1247 . 625408) (-1248 . 625316) + (-1249 . 625265) (-1250 . 625213) (-1251 . 625143) (-1252 . 624723) + (-1253 . 624529) (-1254 . 624502) (-1255 . 624379) (-1256 . 624256) + (-1257 . 624112) (-1258 . 623942) (-1259 . 623818) (-1260 . 623579) + (-1261 . 623506) (-1262 . 623281) (-1263 . 623035) (-1264 . 622982) + (-1265 . 622804) (-1266 . 622635) (-1267 . 622559) (-1268 . 622486) + (-1269 . 622333) (-1270 . 622180) (-1271 . 621996) (-1272 . 621815) + (-1273 . 621760) (-1274 . 621705) (-1275 . 621632) (-1276 . 621556) + (-1277 . 621479) (-1278 . 621411) (-1279 . 621268) (-1280 . 621161) + (-1281 . 621093) (-1282 . 621023) (-1283 . 620953) (-1284 . 620903) + (-1285 . 620853) (-1286 . 620803) (-1287 . 620682) (-1288 . 620366) + (-1289 . 620297) (-1290 . 620218) (-1291 . 620099) (-1292 . 620019) + (-1293 . 619939) (-1294 . 619786) (-1295 . 619637) (-1296 . 619561) + (-1297 . 619504) (-1298 . 619432) (-1299 . 619369) (-1300 . 619306) + (-1301 . 619245) (-1302 . 619173) (-1303 . 619057) (-1304 . 619005) + (-1305 . 618950) (-1306 . 618898) (-1307 . 618846) (-1308 . 618818) + (-1309 . 618790) (-1310 . 618762) (-1311 . 618718) (-1312 . 618647) + (-1313 . 618596) (-1314 . 618548) (-1315 . 618497) (-1316 . 618445) + (-1317 . 618329) (-1318 . 618213) (-1319 . 618121) (-1320 . 618029) + (-1321 . 617906) (-1322 . 617840) (-1323 . 617774) (-1324 . 617715) + (-1325 . 617687) (-1326 . 617659) (-1327 . 617631) (-1328 . 617603) + (-1329 . 617493) (-1330 . 617442) (-1331 . 617391) (-1332 . 617340) + (-1333 . 617289) (-1334 . 617238) (-1335 . 617187) (-1336 . 617159) + (-1337 . 617131) (-1338 . 617103) (-1339 . 617075) (-1340 . 617047) + (-1341 . 617019) (-1342 . 616991) (-1343 . 616963) (-1344 . 616935) + (-1345 . 616832) (-1346 . 616780) (-1347 . 616614) (-1348 . 616430) + (-1349 . 616219) (-1350 . 616104) (-1351 . 615871) (-1352 . 615772) + (-1353 . 615679) (-1354 . 615564) (-1355 . 615166) (-1356 . 614948) + (-1357 . 614899) (-1358 . 614871) (-1359 . 614795) (-1360 . 614696) + (-1361 . 614597) (-1362 . 614498) (-1363 . 614399) (-1364 . 614300) + (-1365 . 614201) (-1366 . 614043) (-1367 . 613967) (-1368 . 613800) + (-1369 . 613742) (-1370 . 613684) (-1371 . 613375) (-1372 . 613121) + (-1373 . 613037) (-1374 . 612905) (-1375 . 612847) (-1376 . 612795) + (-1377 . 612713) (-1378 . 612638) (-1379 . 612567) (-1380 . 612513) + (-1381 . 612462) (-1382 . 612388) (-1383 . 612314) (-1384 . 612233) + (-1385 . 612152) (-1386 . 612097) (-1387 . 612023) (-1388 . 611949) + (-1389 . 611875) (-1390 . 611798) (-1391 . 611744) (-1392 . 611686) + (-1393 . 611587) (-1394 . 611488) (-1395 . 611389) (-1396 . 611290) + (-1397 . 611191) (-1398 . 611092) (-1399 . 610993) (-1400 . 610879) + (-1401 . 610765) (-1402 . 610651) (-1403 . 610537) (-1404 . 610423) + (-1405 . 610309) (-1406 . 610192) (-1407 . 610116) (-1408 . 610040) + (-1409 . 609653) (-1410 . 609308) (-1411 . 609206) (-1412 . 608945) + (-1413 . 608843) (-1414 . 608638) (-1415 . 608525) (-1416 . 608423) + (-1417 . 608266) (-1418 . 608177) (-1419 . 608083) (-1420 . 608003) + (-1421 . 607929) (-1422 . 607851) (-1423 . 607792) (-1424 . 607734) + (-1425 . 607632) (-7 . 607604) (-8 . 607576) (-9 . 607548) (-1429 . 607429) + (-1430 . 607347) (-1431 . 607265) (-1432 . 607183) (-1433 . 607101) + (-1434 . 607019) (-1435 . 606925) (-1436 . 606855) (-1437 . 606785) + (-1438 . 606694) (-1439 . 606600) (-1440 . 606518) (-1441 . 606436) + (-1442 . 606338) (-1443 . 606178) (-1444 . 605980) (-1445 . 605844) + (-1446 . 605744) (-1447 . 605644) (-1448 . 605551) (-1449 . 605492) + (-1450 . 605159) (-1451 . 605059) (-1452 . 604941) (-1453 . 604729) + (-1454 . 604550) (-1455 . 604392) (-1456 . 604189) (-1457 . 603771) + (-1458 . 603720) (-1459 . 603611) (-1460 . 603496) (-1461 . 603427) + (-1462 . 603358) (-1463 . 603289) (-1464 . 603223) (-1465 . 603098) + (-1466 . 602881) (-1467 . 602803) (-1468 . 602753) (-1469 . 602682) + (-1470 . 602539) (-1471 . 602398) (-1472 . 602317) (-1473 . 602236) + (-1474 . 602180) (-1475 . 602124) (-1476 . 602051) (-1477 . 601911) + (-1478 . 601858) (-1479 . 601799) (-1480 . 601740) (-1481 . 601585) + (-1482 . 601533) (-1483 . 601416) (-1484 . 601299) (-1485 . 601182) + (-1486 . 601051) (-1487 . 600772) (-1488 . 600637) (-1489 . 600581) + (-1490 . 600525) (-1491 . 600466) (-1492 . 600407) (-1493 . 600351) + (-1494 . 600295) (-1495 . 600098) (-1496 . 597756) (-1497 . 597629) + (-1498 . 597484) (-1499 . 597356) (-1500 . 597304) (-1501 . 597252) + (-1502 . 597200) (-1503 . 593162) (-1504 . 593068) (-1505 . 592929) + (-1506 . 592720) (-1507 . 592618) (-1508 . 592516) (-1509 . 591601) + (-1510 . 591525) (-1511 . 591396) (-1512 . 591271) (-1513 . 591194) + (-1514 . 591117) (-1515 . 590990) (-1516 . 590863) (-1517 . 590697) + (-1518 . 590570) (-1519 . 590443) (-1520 . 590226) (-1521 . 589792) + (-1522 . 589428) (-1523 . 589376) (-1524 . 589317) (-1525 . 589229) + (-1526 . 589141) (-1527 . 589050) (-1528 . 588959) (-1529 . 588868) + (-1530 . 588777) (-1531 . 588686) (-1532 . 588595) (-1533 . 588504) + (-1534 . 588413) (-1535 . 588322) (-1536 . 588231) (-1537 . 588140) + (-1538 . 588049) (-1539 . 587958) (-1540 . 587867) (-1541 . 587776) + (-1542 . 587685) (-1543 . 587594) (-1544 . 587503) (-1545 . 587412) + (-1546 . 587321) (-1547 . 587230) (-1548 . 587139) (-1549 . 587048) + (-1550 . 586957) (-1551 . 586866) (-1552 . 586775) (-1553 . 586613) + (-1554 . 586505) (-1555 . 586262) (-1556 . 585975) (-1557 . 585780) + (-1558 . 585624) (-1559 . 585464) (-1560 . 585413) (-1561 . 585351) + (-1562 . 585300) (-1563 . 585237) (-1564 . 585184) (-1565 . 585132) + (-1566 . 585080) (-1567 . 585028) (-1568 . 584938) (-1569 . 584751) + (-1570 . 584597) (-1571 . 584517) (-1572 . 584437) (-1573 . 584357) + (-1574 . 584227) (-1575 . 583995) (-1576 . 583967) (-1577 . 583939) + (-1578 . 583911) (-1579 . 583831) (-1580 . 583754) (-1581 . 583677) + (-1582 . 583596) (-1583 . 583537) (-1584 . 583379) (-1585 . 583186) + (-1586 . 582701) (-1587 . 582459) (-1588 . 582197) (-1589 . 582096) + (-1590 . 582015) (-1591 . 581934) (-1592 . 581864) (-1593 . 581794) + (-1594 . 581636) (-1595 . 581332) (-1596 . 581104) (-1597 . 580982) + (-1598 . 580924) (-1599 . 580862) (-1600 . 580800) (-1601 . 580735) + (-1602 . 580673) (-1603 . 580394) (-1604 . 580326) (-1605 . 580116) + (-1606 . 580064) (-1607 . 580010) (-1608 . 579919) (-1609 . 579832) + (-1610 . 578085) (-1611 . 578006) (-1612 . 577261) (-1613 . 577144) + (-1614 . 576938) (-1615 . 576777) (-1616 . 576616) (-1617 . 576456) + (-1618 . 576318) (-1619 . 576224) (-1620 . 576126) (-1621 . 576032) + (-1622 . 575918) (-1623 . 575836) (-1624 . 575739) (-1625 . 575543) + (-1626 . 575452) (-1627 . 575358) (-1628 . 575291) (-1629 . 575222) + (-1630 . 575170) (-1631 . 575111) (-1632 . 575037) (-1633 . 574985) + (-1634 . 574828) (-1635 . 574671) (-1636 . 574519) (-1637 . 573761) + (-1638 . 573450) (-1639 . 573098) (-1640 . 572881) (-1641 . 572618) + (-1642 . 572243) (-1643 . 572059) (-1644 . 571925) (-1645 . 571759) + (-1646 . 571593) (-1647 . 571459) (-1648 . 571325) (-1649 . 571191) + (-1650 . 571057) (-1651 . 570926) (-1652 . 570795) (-1653 . 570664) + (-1654 . 570284) (-1655 . 570158) (-1656 . 570030) (-1657 . 569780) + (-1658 . 569657) (-1659 . 569407) (-1660 . 569284) (-1661 . 569034) + (-1662 . 568911) (-1663 . 568628) (-1664 . 568357) (-1665 . 568084) + (-1666 . 567786) (-1667 . 567684) (-1668 . 567539) (-1669 . 567398) + (-1670 . 567247) (-1671 . 567086) (-1672 . 566998) (-1673 . 566970) + (-1674 . 566888) (-1675 . 566791) (-1676 . 566323) (-1677 . 565972) + (-1678 . 565539) (-1679 . 565400) (-1680 . 565330) (-1681 . 565260) + (-1682 . 565190) (-1683 . 565099) (-1684 . 565008) (-1685 . 564917) + (-1686 . 564826) (-1687 . 564735) (-1688 . 564649) (-1689 . 564563) + (-1690 . 564477) (-1691 . 564391) (-1692 . 564305) (-1693 . 564231) + (-1694 . 564126) (-1695 . 563900) (-1696 . 563822) (-1697 . 563747) + (-1698 . 563654) (-1699 . 563550) (-1700 . 563454) (-1701 . 563285) + (-1702 . 563208) (-1703 . 563131) (-1704 . 563040) (-1705 . 562949) + (-1706 . 562749) (-1707 . 562596) (-1708 . 562443) (-1709 . 562290) + (-1710 . 562137) (-1711 . 561984) (-1712 . 561831) (-1713 . 561765) + (-1714 . 561612) (-1715 . 561459) (-1716 . 561306) (-1717 . 561153) + (-1718 . 561000) (-1719 . 560847) (-1720 . 560694) (-1721 . 560541) + (-1722 . 560467) (-1723 . 560393) (-1724 . 560338) (-1725 . 560283) + (-1726 . 560228) (-1727 . 560173) (-1728 . 560102) (-1729 . 559898) + (-1730 . 559797) (-1731 . 559609) (-1732 . 559516) (-1733 . 559380) + (-1734 . 559244) (-1735 . 559108) (-1736 . 559040) (-1737 . 558924) + (-1738 . 558808) (-1739 . 558692) (-1740 . 558639) (-1741 . 558554) + (-1742 . 558469) (-1743 . 558161) (-1744 . 558106) (-1745 . 557454) + (-1746 . 557139) (-1747 . 556855) (-1748 . 556737) (-1749 . 556618) + (-1750 . 556559) (-1751 . 556500) (-1752 . 556449) (-1753 . 556398) + (-1754 . 556347) (-1755 . 556294) (-1756 . 556241) (-1757 . 556182) + (-1758 . 556069) (-1759 . 555956) (-1760 . 555789) (-1761 . 555697) + (-1762 . 555584) (-1763 . 555500) (-1764 . 555385) (-1765 . 555294) + (-1766 . 555203) (-1767 . 555082) (-1768 . 554895) (-1769 . 554843) + (-1770 . 554788) (-1771 . 554601) (-1772 . 554478) (-1773 . 554405) + (-1774 . 554332) (-1775 . 554212) (-1776 . 554139) (-1777 . 554066) + (-1778 . 553726) (-1779 . 553653) (-1780 . 553433) (-1781 . 553100) + (-1782 . 552917) (-1783 . 552774) (-1784 . 552414) (-1785 . 552246) + (-1786 . 552078) (-1787 . 551822) (-1788 . 551566) (-1789 . 551371) + (-1790 . 551176) (-1791 . 550582) (-1792 . 550506) (-1793 . 550367) + (-1794 . 549960) (-1795 . 549833) (-1796 . 549676) (-1797 . 549359) + (-1798 . 548879) (-1799 . 548399) (-1800 . 547897) (-1801 . 547829) + (-1802 . 547758) (-1803 . 547687) (-1804 . 547515) (-1805 . 547396) + (-1806 . 547277) (-1807 . 547201) (-1808 . 547125) (-1809 . 546852) + (-1810 . 546738) (-1811 . 546687) (-1812 . 546636) (-1813 . 546585) + (-1814 . 546534) (-1815 . 546483) (-1816 . 546342) (-1817 . 546169) + (-1818 . 545938) (-1819 . 545752) (-1820 . 545724) (-1821 . 545696) + (-1822 . 545668) (-1823 . 545640) (-1824 . 545612) (-1825 . 545584) + (-1826 . 545556) (-1827 . 545505) (-1828 . 545439) (-1829 . 545349) + (-1830 . 544978) (-1831 . 544827) (-1832 . 544676) (-1833 . 544471) + (-1834 . 544349) (-1835 . 544275) (-1836 . 544198) (-1837 . 544124) + (-1838 . 544047) (-1839 . 543970) (-1840 . 543896) (-1841 . 543819) + (-1842 . 543586) (-1843 . 543433) (-1844 . 543138) (-1845 . 542985) + (-1846 . 542663) (-1847 . 542525) (-1848 . 542387) (-1849 . 542307) + (-1850 . 542227) (-1851 . 541963) (-1852 . 541232) (-1853 . 541096) + (-1854 . 541006) (-1855 . 540871) (-1856 . 540804) (-1857 . 540736) + (-1858 . 540649) (-1859 . 540562) (-1860 . 540395) (-1861 . 540321) + (-1862 . 540177) (-1863 . 539717) (-1864 . 539338) (-1865 . 538576) + (-1866 . 538432) (-1867 . 538288) (-1868 . 538126) (-1869 . 537889) + (-1870 . 537749) (-1871 . 537603) (-1872 . 537364) (-1873 . 537128) + (-1874 . 536889) (-1875 . 536697) (-1876 . 536574) (-1877 . 536370) + (-1878 . 536147) (-1879 . 535908) (-1880 . 535767) (-1881 . 535629) + (-1882 . 535490) (-1883 . 535237) (-1884 . 534981) (-1885 . 534824) + (-1886 . 534670) (-1887 . 534430) (-1888 . 534145) (-1889 . 534007) + (-1890 . 533920) (-1891 . 533254) (-1892 . 533078) (-1893 . 532896) + (-1894 . 532720) (-1895 . 532538) (-1896 . 532359) (-1897 . 532180) + (-1898 . 531993) (-1899 . 531611) (-1900 . 531432) (-1901 . 531253) + (-1902 . 531066) (-1903 . 530684) (-1904 . 529691) (-1905 . 529307) + (-1906 . 528923) (-1907 . 528805) (-1908 . 528648) (-1909 . 528506) + (-1910 . 528389) (-1911 . 528207) (-1912 . 528083) (-1913 . 527794) + (-1914 . 527505) (-1915 . 527222) (-1916 . 526939) (-1917 . 526661) + (-1918 . 526573) (-1919 . 526488) (-1920 . 526391) (-1921 . 526294) + (-1922 . 526074) (-1923 . 525974) (-1924 . 525871) (-1925 . 525793) + (-1926 . 525468) (-1927 . 525176) (-1928 . 525103) (-1929 . 524718) + (-1930 . 524690) (-1931 . 524491) (-1932 . 524317) (-1933 . 524076) + (-1934 . 524021) (-1935 . 523946) (-1936 . 523578) (-1937 . 523463) + (-1938 . 523386) (-1939 . 523313) (-1940 . 523232) (-1941 . 523151) + (-1942 . 523070) (-1943 . 522969) (-1944 . 522910) (-1945 . 522486) + (-1946 . 522269) (-1947 . 522052) (-1948 . 521825) (-1949 . 521772) + (-1950 . 521718) (-1951 . 521386) (-1952 . 521062) (-1953 . 520874) + (-1954 . 520683) (-1955 . 520519) (-1956 . 520184) (-1957 . 520017) + (-1958 . 519776) (-1959 . 519452) (-1960 . 519262) (-1961 . 519047) + (-1962 . 518876) (-1963 . 518454) (-1964 . 518227) (-1965 . 517956) + (-1966 . 517819) (-1967 . 517678) (-1968 . 517201) (-1969 . 517078) + (-1970 . 516842) (-1971 . 516588) (-1972 . 516338) (-1973 . 516045) + (-1974 . 515905) (-1975 . 515765) (-1976 . 515625) (-1977 . 515436) + (-1978 . 515247) (-1979 . 515072) (-1980 . 514798) (-1981 . 514363) + (-1982 . 514335) (-1983 . 514263) (-1984 . 514130) (-1985 . 514055) + (-1986 . 513896) (-1987 . 513733) (-1988 . 513572) (-1989 . 513405) + (-1990 . 513352) (-1991 . 513299) (-1992 . 513170) (-1993 . 513110) + (-1994 . 513057) (-1995 . 512987) (-1996 . 512927) (-1997 . 512868) + (-1998 . 512808) (-1999 . 512749) (-2000 . 512689) (-2001 . 512630) + (-2002 . 512571) (-2003 . 512429) (-2004 . 512334) (-2005 . 512243) + (-2006 . 512127) (-2007 . 512033) (-2008 . 511935) (-2009 . 511841) + (-2010 . 511700) (-2011 . 511438) (-2012 . 510582) (-2013 . 510426) + (-2014 . 510057) (-2015 . 510001) (-2016 . 509950) (-2017 . 509847) + (-2018 . 509762) (-2019 . 509674) (-2020 . 509528) (-2021 . 509379) + (-2022 . 509089) (-2023 . 509011) (-2024 . 508936) (-2025 . 508883) + (-2026 . 508830) (-2027 . 508799) (-2028 . 508736) (-2029 . 508618) + (-2030 . 508529) (-2031 . 508409) (-2032 . 508114) (-2033 . 507920) + (-2034 . 507732) (-2035 . 507587) (-2036 . 507442) (-2037 . 507156) + (-2038 . 506714) (-2039 . 506680) (-2040 . 506643) (-2041 . 506606) + (-2042 . 506569) (-2043 . 506532) (-2044 . 506501) (-2045 . 506470) + (-2046 . 506439) (-2047 . 506405) (-2048 . 506371) (-2049 . 506317) + (-2050 . 506141) (-2051 . 505907) (-2052 . 505673) (-2053 . 505444) + (-2054 . 505392) (-2055 . 505337) (-2056 . 505268) (-2057 . 505180) + (-2058 . 505111) (-2059 . 505039) (-2060 . 504809) (-2061 . 504758) + (-2062 . 504704) (-2063 . 504673) (-2064 . 504567) (-2065 . 504342) + (-2066 . 504032) (-2067 . 503858) (-2068 . 503676) (-2069 . 503405) + (-2070 . 503332) (-2071 . 503267) (-2072 . 502791) (-2073 . 502229) + (-2074 . 501503) (-2075 . 500942) (-2076 . 500314) (-2077 . 499735) + (-2078 . 499661) (-2079 . 499609) (-2080 . 499557) (-2081 . 499483) + (-2082 . 499428) (-2083 . 499376) (-2084 . 499324) (-2085 . 499272) + (-2086 . 499202) (-2087 . 498754) (-2088 . 498548) (-2089 . 498299) + (-2090 . 497965) (-2091 . 497711) (-2092 . 497409) (-2093 . 497206) + (-2094 . 496917) (-2095 . 496369) (-2096 . 496232) (-2097 . 496030) + (-2098 . 495750) (-2099 . 495665) (-2100 . 495332) (-2101 . 495191) + (-2102 . 494900) (-2103 . 494680) (-2104 . 494554) (-2105 . 494429) + (-2106 . 494282) (-2107 . 494138) (-2108 . 494022) (-2109 . 493891) + (-2110 . 493519) (-2111 . 493259) (-2112 . 492989) (-2113 . 492749) + (-2114 . 492419) (-2115 . 492079) (-2116 . 491671) (-2117 . 491253) + (-2118 . 491056) (-2119 . 490781) (-2120 . 490613) (-2121 . 490417) + (-2122 . 490195) (-2123 . 490040) (-2124 . 489855) (-2125 . 489752) + (-2126 . 489724) (-2127 . 489696) (-2128 . 489522) (-2129 . 489448) + (-2130 . 489387) (-2131 . 489334) (-2132 . 489265) (-2133 . 489196) + (-2134 . 489077) (-2135 . 488899) (-2136 . 488844) (-2137 . 488598) + (-2138 . 488525) (-2139 . 488455) (-2140 . 488385) (-2141 . 488296) + (-2142 . 488106) (-2143 . 488033) (-2144 . 487964) (-2145 . 487899) + (-2146 . 487844) (-2147 . 487753) (-2148 . 487462) (-2149 . 487136) + (-2150 . 487062) (-2151 . 486740) (-2152 . 486535) (-2153 . 486450) + (-2154 . 486365) (-2155 . 486280) (-2156 . 486195) (-2157 . 486110) + (-2158 . 486025) (-2159 . 485940) (-2160 . 485855) (-2161 . 485770) + (-2162 . 485685) (-2163 . 485600) (-2164 . 485515) (-2165 . 485430) + (-2166 . 485345) (-2167 . 485260) (-2168 . 485175) (-2169 . 485090) + (-2170 . 485005) (-2171 . 484920) (-2172 . 484835) (-2173 . 484750) + (-2174 . 484665) (-2175 . 484580) (-2176 . 484495) (-2177 . 484410) + (-2178 . 484325) (-2179 . 484223) (-2180 . 484135) (-2181 . 483927) + (-2182 . 483869) (-2183 . 483814) (-2184 . 483727) (-2185 . 483616) + (-2186 . 483530) (-2187 . 483384) (-2188 . 483322) (-2189 . 483294) + (-2190 . 483266) (-2191 . 483238) (-2192 . 483210) (-2193 . 483041) + (-2194 . 482890) (-2195 . 482739) (-2196 . 482567) (-2197 . 482359) + (-2198 . 482235) (-2199 . 482027) (-2200 . 481935) (-2201 . 481843) + (-2202 . 481708) (-2203 . 481613) (-2204 . 481519) (-2205 . 481424) + (-2206 . 481300) (-2207 . 481272) (-2208 . 481244) (-2209 . 481216) + (-2210 . 481188) (-2211 . 481160) (-2212 . 481132) (-2213 . 481104) + (-2214 . 481076) (-2215 . 481048) (-2216 . 481020) (-2217 . 480992) + (-2218 . 480964) (-2219 . 480936) (-2220 . 480908) (-2221 . 480880) + (-2222 . 480852) (-2223 . 480799) (-2224 . 480771) (-2225 . 480743) + (-2226 . 480665) (-2227 . 480612) (-2228 . 480559) (-2229 . 480506) + (-2230 . 480428) (-2231 . 480338) (-2232 . 480243) (-2233 . 480149) + (-2234 . 480067) (-2235 . 479761) (-2236 . 479565) (-2237 . 479470) + (-2238 . 479362) (-2239 . 478951) (-2240 . 478923) (-2241 . 478759) + (-2242 . 478682) (-2243 . 478495) (-2244 . 478316) (-2245 . 477892) + (-2246 . 477740) (-2247 . 477560) (-2248 . 477387) (-2249 . 477127) + (-2250 . 476875) (-2251 . 476064) (-2252 . 475897) (-2253 . 475679) + (-2254 . 474855) (-2255 . 474724) (-2256 . 474593) (-2257 . 474462) + (-2258 . 474331) (-2259 . 474200) (-2260 . 474069) (-2261 . 473874) + (-2262 . 473680) (-2263 . 473537) (-2264 . 473222) (-2265 . 473107) + (-2266 . 472767) (-2267 . 472607) (-2268 . 472468) (-2269 . 472329) + (-2270 . 472200) (-2271 . 472115) (-2272 . 472063) (-2273 . 471583) + (-2274 . 470321) (-2275 . 470194) (-2276 . 470052) (-2277 . 469716) + (-2278 . 469611) (-2279 . 469362) (-2280 . 469130) (-2281 . 469025) + (-2282 . 468950) (-2283 . 468875) (-2284 . 468800) (-2285 . 468741) + (-2286 . 468671) (-2287 . 468618) (-2288 . 468556) (-2289 . 468486) + (-2290 . 468123) (-2291 . 467836) (-2292 . 467726) (-2293 . 467539) + (-2294 . 467446) (-2295 . 467353) (-2296 . 467266) (-2297 . 467046) + (-2298 . 466827) (-2299 . 466409) (-2300 . 466137) (-2301 . 465994) + (-2302 . 465901) (-2303 . 465758) (-2304 . 465606) (-2305 . 465452) + (-2306 . 465382) (-2307 . 465175) (-2308 . 464998) (-2309 . 464789) + (-2310 . 464612) (-2311 . 464578) (-2312 . 464544) (-2313 . 464513) + (-2314 . 464395) (-2315 . 464082) (-2316 . 463804) (-2317 . 463683) + (-2318 . 463556) (-2319 . 463471) (-2320 . 463398) (-2321 . 463309) + (-2322 . 463238) (-2323 . 463182) (-2324 . 463126) (-2325 . 463070) + (-2326 . 463000) (-2327 . 462930) (-2328 . 462860) (-2329 . 462762) + (-2330 . 462684) (-2331 . 462606) (-2332 . 462463) (-2333 . 462384) + (-2334 . 462312) (-2335 . 462109) (-2336 . 462053) (-2337 . 461865) + (-2338 . 461766) (-2339 . 461648) (-2340 . 461527) (-2341 . 461384) + (-2342 . 461241) (-2343 . 461101) (-2344 . 460961) (-2345 . 460818) + (-2346 . 460692) (-2347 . 460563) (-2348 . 460440) (-2349 . 460317) + (-2350 . 460212) (-2351 . 460107) (-2352 . 460005) (-2353 . 459855) + (-2354 . 459702) (-2355 . 459549) (-2356 . 459405) (-2357 . 459251) + (-2358 . 459175) (-2359 . 459096) (-2360 . 458943) (-2361 . 458864) + (-2362 . 458785) (-2363 . 458706) (-2364 . 458604) (-2365 . 458545) + (-2366 . 458483) (-2367 . 458366) (-2368 . 458240) (-2369 . 458163) + (-2370 . 458031) (-2371 . 457725) (-2372 . 457542) (-2373 . 456997) + (-2374 . 456777) (-2375 . 456603) (-2376 . 456433) (-2377 . 456360) + (-2378 . 456284) (-2379 . 456205) (-2380 . 455908) (-2381 . 455746) + (-2382 . 455512) (-2383 . 455070) (-2384 . 454940) (-2385 . 454800) + (-2386 . 454491) (-2387 . 454189) (-2388 . 453873) (-2389 . 453467) + (-2390 . 453399) (-2391 . 453331) (-2392 . 453263) (-2393 . 453169) + (-2394 . 453062) (-2395 . 452955) (-2396 . 452854) (-2397 . 452753) + (-2398 . 452652) (-2399 . 452575) (-2400 . 452182) (-2401 . 451765) + (-2402 . 451138) (-2403 . 451074) (-2404 . 450955) (-2405 . 450836) + (-2406 . 450728) (-2407 . 450620) (-2408 . 450464) (-2409 . 449864) + (-2410 . 449581) (-2411 . 449502) (-2412 . 449448) (-2413 . 449280) + (-2414 . 449158) (-2415 . 448762) (-2416 . 448526) (-2417 . 448325) + (-2418 . 448117) (-2419 . 447924) (-2420 . 447657) (-2421 . 447478) + (-2422 . 447409) (-2423 . 447333) (-2424 . 447192) (-2425 . 446989) + (-2426 . 446845) (-2427 . 446595) (-2428 . 446287) (-2429 . 445931) + (-2430 . 445772) (-2431 . 445566) (-2432 . 445406) (-2433 . 445333) + (-2434 . 445299) (-2435 . 445234) (-2436 . 445197) (-2437 . 445060) + (-2438 . 444822) (-2439 . 444752) (-2440 . 444566) (-2441 . 444317) + (-2442 . 444161) (-2443 . 443638) (-2444 . 443441) (-2445 . 443229) + (-2446 . 443067) (-2447 . 442668) (-2448 . 442501) (-2449 . 441426) + (-2450 . 441303) (-2451 . 441086) (-2452 . 440956) (-2453 . 440826) + (-2454 . 440669) (-2455 . 440566) (-2456 . 440508) (-2457 . 440450) + (-2458 . 440344) (-2459 . 440238) (-2460 . 439322) (-2461 . 437195) + (-2462 . 436381) (-2463 . 434578) (-2464 . 434510) (-2465 . 434442) + (-2466 . 434374) (-2467 . 434306) (-2468 . 434238) (-2469 . 434160) + (-2470 . 433804) (-2471 . 433622) (-2472 . 433083) (-2473 . 432907) + (-2474 . 432686) (-2475 . 432465) (-2476 . 432244) (-2477 . 432026) + (-2478 . 431808) (-2479 . 431590) (-2480 . 431372) (-2481 . 431154) + (-2482 . 430936) (-2483 . 430835) (-2484 . 430102) (-2485 . 430047) + (-2486 . 429992) (-2487 . 429937) (-2488 . 429882) (-2489 . 429732) + (-2490 . 429484) (-2491 . 429323) (-2492 . 429143) (-2493 . 428856) + (-2494 . 428470) (-2495 . 427598) (-2496 . 427258) (-2497 . 427090) + (-2498 . 426868) (-2499 . 426618) (-2500 . 426270) (-2501 . 425260) + (-2502 . 424949) (-2503 . 424737) (-2504 . 424173) (-2505 . 423660) + (-2506 . 421904) (-2507 . 421432) (-2508 . 420833) (-2509 . 420583) + (-2510 . 420449) (-2511 . 420237) (-2512 . 420161) (-2513 . 420085) + (-2514 . 419978) (-2515 . 419796) (-2516 . 419631) (-2517 . 419453) + (-2518 . 418872) (-2519 . 418711) (-2520 . 418138) (-2521 . 418068) + (-2522 . 417993) (-2523 . 417921) (-2524 . 417783) (-2525 . 417596) + (-2526 . 417489) (-2527 . 417382) (-2528 . 417267) (-2529 . 417152) + (-2530 . 417037) (-2531 . 416759) (-2532 . 416609) (-2533 . 416466) + (-2534 . 416393) (-2535 . 416308) (-2536 . 416235) (-2537 . 416162) + (-2538 . 416089) (-2539 . 415946) (-2540 . 415796) (-2541 . 415622) + (-2542 . 415472) (-2543 . 415322) (-2544 . 415196) (-2545 . 414810) + (-2546 . 414526) (-2547 . 414242) (-2548 . 413833) (-2549 . 413549) + (-2550 . 413476) (-2551 . 413329) (-2552 . 413223) (-2553 . 413149) + (-2554 . 413079) (-2555 . 413000) (-2556 . 412923) (-2557 . 412846) + (-2558 . 412697) (-2559 . 412594) (-2560 . 412536) (-2561 . 412472) + (-2562 . 412408) (-2563 . 412311) (-2564 . 412214) (-2565 . 412054) + (-2566 . 411968) (-2567 . 411882) (-2568 . 411797) (-2569 . 411738) + (-2570 . 411679) (-2571 . 411620) (-2572 . 411561) (-2573 . 411391) + (-2574 . 411303) (-2575 . 411206) (-2576 . 411172) (-2577 . 411141) + (-2578 . 411057) (-2579 . 411001) (-2580 . 410939) (-2581 . 410905) + (-2582 . 410871) (-2583 . 410837) (-2584 . 410803) (-2585 . 410769) + (-2586 . 410735) (-2587 . 410701) (-2588 . 410667) (-2589 . 410633) + (-2590 . 410521) (-2591 . 410487) (-2592 . 410436) (-2593 . 410402) + (-2594 . 410305) (-2595 . 410243) (-2596 . 410152) (-2597 . 410061) + (-2598 . 410006) (-2599 . 409954) (-2600 . 409902) (-2601 . 409850) + (-2602 . 409798) (-2603 . 409375) (-2604 . 409209) (-2605 . 409156) + (-2606 . 409087) (-2607 . 409034) (-2608 . 408732) (-2609 . 408576) + (-2610 . 408055) (-2611 . 407914) (-2612 . 407880) (-2613 . 407825) + (-2614 . 407115) (-2615 . 406800) (-2616 . 406296) (-2617 . 406218) + (-2618 . 406166) (-2619 . 406114) (-2620 . 405930) (-2621 . 405878) + (-2622 . 405826) (-2623 . 405750) (-2624 . 405688) (-2625 . 405470) + (-2626 . 405403) (-2627 . 405309) (-2628 . 405215) (-2629 . 405032) + (-2630 . 404950) (-2631 . 404828) (-2632 . 404682) (-2633 . 404031) + (-2634 . 403329) (-2635 . 403225) (-2636 . 403124) (-2637 . 403023) + (-2638 . 402912) (-2639 . 402744) (-2640 . 402540) (-2641 . 402447) + (-2642 . 402370) (-2643 . 402314) (-2644 . 402244) (-2645 . 402124) + (-2646 . 402023) (-2647 . 401926) (-2648 . 401846) (-2649 . 401766) + (-2650 . 401689) (-2651 . 401619) (-2652 . 401549) (-2653 . 401479) + (-2654 . 401409) (-2655 . 401339) (-2656 . 401269) (-2657 . 401176) + (-2658 . 401048) (-2659 . 400806) (-2660 . 400636) (-2661 . 400267) + (-2662 . 400098) (-2663 . 399982) (-2664 . 399486) (-2665 . 399105) + (-2666 . 398859) (-2667 . 398767) (-2668 . 398670) (-2669 . 398008) + (-2670 . 397895) (-2671 . 397821) (-2672 . 397729) (-2673 . 397539) + (-2674 . 397349) (-2675 . 397278) (-2676 . 397207) (-2677 . 397126) + (-2678 . 397045) (-2679 . 396920) (-2680 . 396787) (-2681 . 396706) + (-2682 . 396632) (-2683 . 396467) (-2684 . 396310) (-2685 . 396082) + (-2686 . 395934) (-2687 . 395830) (-2688 . 395726) (-2689 . 395641) + (-2690 . 395273) (-2691 . 395192) (-2692 . 395105) (-2693 . 395024) + (-2694 . 394828) (-2695 . 394608) (-2696 . 394421) (-2697 . 394099) + (-2698 . 393806) (-2699 . 393513) (-2700 . 393203) (-2701 . 392886) + (-2702 . 392734) (-2703 . 392546) (-2704 . 392073) (-2705 . 391991) + (-2706 . 391775) (-2707 . 391559) (-2708 . 391300) (-2709 . 390879) + (-2710 . 390366) (-2711 . 390236) (-2712 . 389962) (-2713 . 389783) + (-2714 . 389668) (-2715 . 389564) (-2716 . 389509) (-2717 . 389432) + (-2718 . 389362) (-2719 . 389289) (-2720 . 389234) (-2721 . 389161) + (-2722 . 389106) (-2723 . 388751) (-2724 . 388343) (-2725 . 388190) + (-2726 . 388037) (-2727 . 387956) (-2728 . 387803) (-2729 . 387650) + (-2730 . 387515) (-2731 . 387380) (-2732 . 387245) (-2733 . 387110) + (-2734 . 386975) (-2735 . 386840) (-2736 . 386784) (-2737 . 386631) + (-2738 . 386520) (-2739 . 386409) (-2740 . 386324) (-2741 . 386214) + (-2742 . 386111) (-2743 . 381960) (-2744 . 381512) (-2745 . 381085) + (-2746 . 380468) (-2747 . 379867) (-2748 . 379649) (-2749 . 379471) + (-2750 . 379212) (-2751 . 378801) (-2752 . 378507) (-2753 . 378064) + (-2754 . 377886) (-2755 . 377493) (-2756 . 377100) (-2757 . 376915) + (-2758 . 376708) (-2759 . 376488) (-2760 . 376182) (-2761 . 375983) + (-2762 . 375354) (-2763 . 375197) (-2764 . 374808) (-2765 . 374757) + (-2766 . 374708) (-2767 . 374657) (-2768 . 374609) (-2769 . 374557) + (-2770 . 374411) (-2771 . 374359) (-2772 . 374213) (-2773 . 374161) + (-2774 . 374015) (-2775 . 373964) (-2776 . 373589) (-2777 . 373538) + (-2778 . 373489) (-2779 . 373438) (-2780 . 373390) (-2781 . 373338) + (-2782 . 373289) (-2783 . 373237) (-2784 . 373188) (-2785 . 373136) + (-2786 . 373087) (-2787 . 373021) (-2788 . 372903) (-2789 . 371741) + (-2790 . 371324) (-2791 . 371216) (-2792 . 370974) (-2793 . 370824) + (-2794 . 370674) (-2795 . 370513) (-2796 . 368306) (-2797 . 368045) + (-2798 . 367891) (-2799 . 367745) (-2800 . 367599) (-2801 . 367380) + (-2802 . 367248) (-2803 . 367173) (-2804 . 367098) (-2805 . 366963) + (-2806 . 366834) (-2807 . 366705) (-2808 . 366579) (-2809 . 366453) + (-2810 . 366327) (-2811 . 366201) (-2812 . 366098) (-2813 . 365998) + (-2814 . 365904) (-2815 . 365774) (-2816 . 365623) (-2817 . 365247) + (-2818 . 365133) (-2819 . 364892) (-2820 . 364434) (-2821 . 364124) + (-2822 . 363557) (-2823 . 362988) (-2824 . 361978) (-2825 . 361436) + (-2826 . 361123) (-2827 . 360785) (-2828 . 360454) (-2829 . 360134) + (-2830 . 360081) (-2831 . 359954) (-2832 . 359452) (-2833 . 358309) + (-2834 . 358254) (-2835 . 358199) (-2836 . 358123) (-2837 . 358004) + (-2838 . 357929) (-2839 . 357854) (-2840 . 357776) (-2841 . 357553) + (-2842 . 357494) (-2843 . 357435) (-2844 . 357332) (-2845 . 357229) + (-2846 . 357126) (-2847 . 357023) (-2848 . 356942) (-2849 . 356868) + (-2850 . 356653) (-2851 . 356419) (-2852 . 356385) (-2853 . 356351) + (-2854 . 356323) (-2855 . 356295) (-2856 . 356078) (-2857 . 355800) + (-2858 . 355650) (-2859 . 355520) (-2860 . 355390) (-2861 . 355290) + (-2862 . 355113) (-2863 . 354953) (-2864 . 354853) (-2865 . 354676) + (-2866 . 354516) (-2867 . 354357) (-2868 . 354218) (-2869 . 354068) + (-2870 . 353938) (-2871 . 353808) (-2872 . 353661) (-2873 . 353534) + (-2874 . 353431) (-2875 . 353324) (-2876 . 353227) (-2877 . 353062) + (-2878 . 352914) (-2879 . 352499) (-2880 . 352399) (-2881 . 352296) + (-2882 . 352208) (-2883 . 352128) (-2884 . 351978) (-2885 . 351848) + (-2886 . 351796) (-2887 . 351723) (-2888 . 351648) (-2889 . 351490) + (-2890 . 351378) (-2891 . 351066) (-2892 . 350889) (-2893 . 349291) + (-2894 . 348663) (-2895 . 348603) (-2896 . 348485) (-2897 . 348367) + (-2898 . 348223) (-2899 . 348071) (-2900 . 347912) (-2901 . 347753) + (-2902 . 347547) (-2903 . 347360) (-2904 . 347208) (-2905 . 347053) + (-2906 . 346898) (-2907 . 346746) (-2908 . 346609) (-2909 . 346186) + (-2910 . 346060) (-2911 . 345934) (-2912 . 345808) (-2913 . 345668) + (-2914 . 345527) (-2915 . 345386) (-2916 . 345242) (-2917 . 344494) + (-2918 . 344336) (-2919 . 344150) (-2920 . 343995) (-2921 . 343757) + (-2922 . 343512) (-2923 . 343267) (-2924 . 343057) (-2925 . 342920) + (-2926 . 342710) (-2927 . 342573) (-2928 . 342363) (-2929 . 342226) + (-2930 . 342016) (-2931 . 341713) (-2932 . 341569) (-2933 . 341428) + (-2934 . 341205) (-2935 . 341064) (-2936 . 340842) (-2937 . 340645) + (-2938 . 340489) (-2939 . 340162) (-2940 . 340003) (-2941 . 339844) + (-2942 . 339685) (-2943 . 339514) (-2944 . 339343) (-2945 . 339169) + (-2946 . 338817) (-2947 . 338694) (-2948 . 338532) (-2949 . 338459) + (-2950 . 338386) (-2951 . 338313) (-2952 . 338240) (-2953 . 338167) + (-2954 . 338094) (-2955 . 337971) (-2956 . 337798) (-2957 . 337675) + (-2958 . 337589) (-2959 . 337523) (-2960 . 337457) (-2961 . 337391) + (-2962 . 337325) (-2963 . 337259) (-2964 . 337193) (-2965 . 337127) + (-2966 . 337061) (-2967 . 336995) (-2968 . 336929) (-2969 . 336863) + (-2970 . 336797) (-2971 . 336731) (-2972 . 336665) (-2973 . 336599) + (-2974 . 336533) (-2975 . 336467) (-2976 . 336401) (-2977 . 336335) + (-2978 . 336269) (-2979 . 336203) (-2980 . 336137) (-2981 . 336071) + (-2982 . 336005) (-2983 . 335939) (-2984 . 335873) (-2985 . 335226) + (-2986 . 334579) (-2987 . 334451) (-2988 . 334328) (-2989 . 334205) + (-2990 . 334064) (-2991 . 333910) (-2992 . 333766) (-2993 . 333591) + (-2994 . 332981) (-2995 . 332857) (-2996 . 332733) (-2997 . 332055) + (-2998 . 331358) (-2999 . 331257) (-3000 . 331201) (-3001 . 331145) + (-3002 . 331089) (-3003 . 331033) (-3004 . 330974) (-3005 . 330910) + (-3006 . 330802) (-3007 . 330694) (-3008 . 330586) (-3009 . 330307) + (-3010 . 330233) (-3011 . 330007) (-3012 . 329926) (-3013 . 329848) + (-3014 . 329770) (-3015 . 329692) (-3016 . 329613) (-3017 . 329535) + (-3018 . 329442) (-3019 . 329343) (-3020 . 329275) (-3021 . 329226) + (-3022 . 328535) (-3023 . 327895) (-3024 . 327104) (-3025 . 327023) + (-3026 . 326919) (-3027 . 326828) (-3028 . 326737) (-3029 . 326663) + (-3030 . 326589) (-3031 . 326515) (-3032 . 326460) (-3033 . 326405) + (-3034 . 326339) (-3035 . 326273) (-3036 . 326211) (-3037 . 325936) + (-3038 . 325444) (-3039 . 324986) (-3040 . 324733) (-3041 . 324545) + (-3042 . 324204) (-3043 . 323908) (-3044 . 323740) (-3045 . 323609) + (-3046 . 323469) (-3047 . 323314) (-3048 . 323145) (-3049 . 321759) + (-3050 . 321626) (-3051 . 321485) (-3052 . 321256) (-3053 . 321197) + (-3054 . 321141) (-3055 . 321085) (-3056 . 320820) (-3057 . 320608) + (-3058 . 320469) (-3059 . 320362) (-3060 . 320245) (-3061 . 320179) + (-3062 . 320106) (-3063 . 319992) (-3064 . 319739) (-3065 . 319639) + (-3066 . 319445) (-3067 . 319137) (-3068 . 318671) (-3069 . 318566) + (-3070 . 318460) (-3071 . 318311) (-3072 . 318171) (-3073 . 317759) + (-3074 . 317515) (-3075 . 316857) (-3076 . 316704) (-3077 . 316590) + (-3078 . 316480) (-3079 . 315660) (-3080 . 315466) (-3081 . 314440) + (-3082 . 313992) (-3083 . 312603) (-3084 . 311752) (-3085 . 311703) + (-3086 . 311654) (-3087 . 311605) (-3088 . 311538) (-3089 . 311463) + (-3090 . 311273) (-3091 . 311201) (-3092 . 311126) (-3093 . 311054) + (-3094 . 310937) (-3095 . 310886) (-3096 . 310807) (-3097 . 310728) + (-3098 . 310649) (-3099 . 310598) (-3100 . 310354) (-3101 . 310052) + (-3102 . 309970) (-3103 . 309888) (-3104 . 309827) (-3105 . 309438) + (-3106 . 308566) (-3107 . 307993) (-3108 . 306758) (-3109 . 305951) + (-3110 . 305701) (-3111 . 305451) (-3112 . 305026) (-3113 . 304782) + (-3114 . 304538) (-3115 . 304294) (-3116 . 304050) (-3117 . 303806) + (-3118 . 303562) (-3119 . 303320) (-3120 . 303078) (-3121 . 302836) + (-3122 . 302594) (-3123 . 302016) (-3124 . 301900) (-3125 . 301846) + (-3126 . 301004) (-3127 . 300973) (-3128 . 300628) (-3129 . 300402) + (-3130 . 300303) (-3131 . 300204) (-3132 . 298438) (-3133 . 298326) + (-3134 . 297276) (-3135 . 297184) (-3136 . 296262) (-3137 . 295929) + (-3138 . 295596) (-3139 . 295493) (-3140 . 295382) (-3141 . 295271) + (-3142 . 295160) (-3143 . 295049) (-3144 . 293962) (-3145 . 293842) + (-3146 . 293707) (-3147 . 293575) (-3148 . 293443) (-3149 . 293149) + (-3150 . 292855) (-3151 . 292510) (-3152 . 292284) (-3153 . 292058) + (-3154 . 291947) (-3155 . 291836) (-3156 . 290374) (-3157 . 288670) + (-3158 . 288361) (-3159 . 288209) (-3160 . 287686) (-3161 . 287357) + (-3162 . 287164) (-3163 . 286971) (-3164 . 286778) (-3165 . 286585) + (-3166 . 286472) (-3167 . 286349) (-3168 . 286235) (-3169 . 286121) + (-3170 . 286028) (-3171 . 285935) (-3172 . 285825) (-3173 . 285624) + (-3174 . 284480) (-3175 . 284387) (-3176 . 284273) (-3177 . 284180) + (-3178 . 283933) (-3179 . 283822) (-3180 . 283608) (-3181 . 283490) + (-3182 . 283193) (-3183 . 282465) (-3184 . 281889) (-3185 . 281411) + (-3186 . 281167) (-3187 . 280923) (-3188 . 280580) (-3189 . 279974) + (-3190 . 279531) (-3191 . 279376) (-3192 . 279232) (-3193 . 278912) + (-3194 . 278757) (-3195 . 278617) (-3196 . 278477) (-3197 . 278337) + (-3198 . 278062) (-3199 . 277843) (-3200 . 277324) (-3201 . 277112) + (-3202 . 276900) (-3203 . 276520) (-3204 . 276346) (-3205 . 276137) + (-3206 . 275829) (-3207 . 275637) (-3208 . 275464) (-3209 . 274328) + (-3210 . 273963) (-3211 . 273763) (-3212 . 273563) (-3213 . 272727) + (-3214 . 272699) (-3215 . 272631) (-3216 . 272561) (-3217 . 272397) + (-3218 . 272369) (-3219 . 272341) (-3220 . 272287) (-3221 . 272137) + (-3222 . 272078) (-3223 . 271385) (-3224 . 270000) (-3225 . 269939) + (-3226 . 269615) (-3227 . 269543) (-3228 . 269486) (-3229 . 269429) + (-3230 . 269372) (-3231 . 269315) (-3232 . 269240) (-3233 . 268650) + (-3234 . 268290) (-3235 . 268216) (-3236 . 268156) (-3237 . 268038) + (-3238 . 267095) (-3239 . 266968) (-3240 . 266755) (-3241 . 266681) + (-3242 . 266627) (-3243 . 266573) (-3244 . 266464) (-3245 . 266065) + (-3246 . 265957) (-3247 . 265854) (-3248 . 265693) (-3249 . 265592) + (-3250 . 265494) (-3251 . 265356) (-3252 . 265218) (-3253 . 265080) + (-3254 . 264818) (-3255 . 264609) (-3256 . 264471) (-3257 . 264180) + (-3258 . 264028) (-3259 . 263753) (-3260 . 263533) (-3261 . 263381) + (-3262 . 263229) (-3263 . 263077) (-3264 . 262925) (-3265 . 262773) + (-3266 . 262566) (-3267 . 262179) (-3268 . 261848) (-3269 . 261509) + (-3270 . 261162) (-3271 . 260823) (-3272 . 260484) (-3273 . 260103) + (-3274 . 259722) (-3275 . 259341) (-3276 . 258976) (-3277 . 258258) + (-3278 . 257911) (-3279 . 257466) (-3280 . 257041) (-3281 . 256430) + (-3282 . 255838) (-3283 . 255451) (-3284 . 255120) (-3285 . 254733) + (-3286 . 254402) (-3287 . 254182) (-3288 . 253661) (-3289 . 253448) + (-3290 . 253235) (-3291 . 253022) (-3292 . 252844) (-3293 . 252631) + (-3294 . 252453) (-3295 . 252071) (-3296 . 251893) (-3297 . 251683) + (-3298 . 251593) (-3299 . 251503) (-3300 . 251412) (-3301 . 251300) + (-3302 . 251210) (-3303 . 251103) (-3304 . 250914) (-3305 . 250858) + (-3306 . 250777) (-3307 . 250696) (-3308 . 250615) (-3309 . 250538) + (-3310 . 250403) (-3311 . 250268) (-3312 . 250144) (-3313 . 250023) + (-3314 . 249905) (-3315 . 249769) (-3316 . 249636) (-3317 . 249517) + (-3318 . 249259) (-3319 . 248974) (-3320 . 248902) (-3321 . 248806) + (-3322 . 248665) (-3323 . 248608) (-3324 . 248551) (-3325 . 248491) + (-3326 . 248096) (-3327 . 247574) (-3328 . 247297) (-3329 . 246877) + (-3330 . 246765) (-3331 . 246327) (-3332 . 246097) (-3333 . 245894) + (-3334 . 245712) (-3335 . 245582) (-3336 . 245376) (-3337 . 245169) + (-3338 . 244979) (-3339 . 244414) (-3340 . 244158) (-3341 . 243867) + (-3342 . 243573) (-3343 . 243276) (-3344 . 242976) (-3345 . 242846) + (-3346 . 242713) (-3347 . 242577) (-3348 . 242438) (-3349 . 241221) + (-3350 . 240913) (-3351 . 240549) (-3352 . 240452) (-3353 . 240212) + (-3354 . 239917) (-3355 . 239622) (-3356 . 239363) (-3357 . 239189) + (-3358 . 239111) (-3359 . 239024) (-3360 . 238924) (-3361 . 238830) + (-3362 . 238749) (-3363 . 238679) (-3364 . 237888) (-3365 . 237818) + (-3366 . 237490) (-3367 . 237420) (-3368 . 237092) (-3369 . 237022) + (-3370 . 236577) (-3371 . 236507) (-3372 . 236403) (-3373 . 236329) + (-3374 . 236255) (-3375 . 236184) (-3376 . 235842) (-3377 . 235714) + (-3378 . 235637) (-3379 . 235406) (-3380 . 235263) (-3381 . 235120) + (-3382 . 234781) (-3383 . 234451) (-3384 . 234238) (-3385 . 233983) + (-3386 . 233633) (-3387 . 233408) (-3388 . 233183) (-3389 . 232958) + (-3390 . 232733) (-3391 . 232520) (-3392 . 232307) (-3393 . 232157) + (-3394 . 231976) (-3395 . 231871) (-3396 . 231749) (-3397 . 231641) + (-3398 . 231533) (-3399 . 231208) (-3400 . 230944) (-3401 . 230633) + (-3402 . 230331) (-3403 . 230022) (-3404 . 229293) (-3405 . 228704) + (-3406 . 228529) (-3407 . 228385) (-3408 . 228230) (-3409 . 228107) + (-3410 . 228002) (-3411 . 227887) (-3412 . 227792) (-3413 . 227311) + (-3414 . 227201) (-3415 . 227091) (-3416 . 226981) (-3417 . 225909) + (-3418 . 225398) (-3419 . 225331) (-3420 . 225258) (-3421 . 224385) + (-3422 . 224312) (-3423 . 224257) (-3424 . 224202) (-3425 . 224170) + (-3426 . 224084) (-3427 . 224052) (-3428 . 223966) (-3429 . 223546) + (-3430 . 223126) (-3431 . 222574) (-3432 . 221470) (-3433 . 219760) + (-3434 . 218210) (-3435 . 217418) (-3436 . 216918) (-3437 . 216432) + (-3438 . 216030) (-3439 . 215380) (-3440 . 215305) (-3441 . 215214) + (-3442 . 215143) (-3443 . 215072) (-3444 . 215016) (-3445 . 214896) + (-3446 . 214842) (-3447 . 214781) (-3448 . 214727) (-3449 . 214624) + (-3450 . 214184) (-3451 . 213744) (-3452 . 213304) (-3453 . 212782) + (-3454 . 212621) (-3455 . 212460) (-3456 . 212149) (-3457 . 212063) + (-3458 . 211973) (-3459 . 211615) (-3460 . 211498) (-3461 . 211417) + (-3462 . 211259) (-3463 . 211146) (-3464 . 211071) (-3465 . 210225) + (-3466 . 209043) (-3467 . 208944) (-3468 . 208845) (-3469 . 208516) + (-3470 . 208438) (-3471 . 208363) (-3472 . 208257) (-3473 . 208101) + (-3474 . 207994) (-3475 . 207859) (-3476 . 207724) (-3477 . 207602) + (-3478 . 207507) (-3479 . 207359) (-3480 . 207264) (-3481 . 207109) + (-3482 . 206954) (-3483 . 206402) (-3484 . 205850) (-3485 . 205235) + (-3486 . 204683) (-3487 . 204131) (-3488 . 203579) (-3489 . 203026) + (-3490 . 202473) (-3491 . 201920) (-3492 . 201367) (-3493 . 200814) + (-3494 . 200261) (-3495 . 199709) (-3496 . 199157) (-3497 . 198605) + (-3498 . 198053) (-3499 . 197501) (-3500 . 196949) (-3501 . 196845) + (-3502 . 196260) (-3503 . 196155) (-3504 . 196080) (-3505 . 195938) + (-3506 . 195846) (-3507 . 195755) (-3508 . 195663) (-3509 . 195568) + (-3510 . 195463) (-3511 . 195340) (-3512 . 195218) (-3513 . 194854) + (-3514 . 194732) (-3515 . 194634) (-3516 . 194273) (-3517 . 193744) + (-3518 . 193669) (-3519 . 193594) (-3520 . 193502) (-3521 . 193321) + (-3522 . 193226) (-3523 . 193151) (-3524 . 193060) (-3525 . 192969) + (-3526 . 192810) (-3527 . 192261) (-3528 . 191712) (-3529 . 189005) + (-3530 . 188833) (-3531 . 187423) (-3532 . 186863) (-3533 . 186748) + (-3534 . 186376) (-3535 . 186313) (-3536 . 186250) (-3537 . 186187) + (-3538 . 185909) (-3539 . 185642) (-3540 . 185590) (-3541 . 184949) + (-3542 . 184898) (-3543 . 184710) (-3544 . 184637) (-3545 . 184557) + (-3546 . 184444) (-3547 . 184254) (-3548 . 183890) (-3549 . 183618) + (-3550 . 183567) (-3551 . 183516) (-3552 . 183446) (-3553 . 183327) + (-3554 . 183298) (-3555 . 183194) (-3556 . 183072) (-3557 . 183018) + (-3558 . 182841) (-3559 . 182780) (-3560 . 182599) (-3561 . 182538) + (-3562 . 182466) (-3563 . 181991) (-3564 . 181617) (-3565 . 178085) + (-3566 . 178033) (-3567 . 177905) (-3568 . 177755) (-3569 . 177703) + (-3570 . 177562) (-3571 . 175504) (-3572 . 167861) (-3573 . 167710) + (-3574 . 167640) (-3575 . 167589) (-3576 . 167539) (-3577 . 167488) + (-3578 . 167437) (-3579 . 167241) (-3580 . 167099) (-3581 . 166985) + (-3582 . 166864) (-3583 . 166746) (-3584 . 166634) (-3585 . 166516) + (-3586 . 166411) (-3587 . 166330) (-3588 . 166226) (-3589 . 165292) + (-3590 . 165072) (-3591 . 164835) (-3592 . 164753) (-3593 . 164409) + (-3594 . 163270) (-3595 . 163196) (-3596 . 163101) (-3597 . 163027) + (-3598 . 162823) (-3599 . 162732) (-3600 . 162616) (-3601 . 162503) + (-3602 . 162412) (-3603 . 162321) (-3604 . 162232) (-3605 . 162143) + (-3606 . 162054) (-3607 . 161966) (-3608 . 161478) (-3609 . 161414) + (-3610 . 161350) (-3611 . 161286) (-3612 . 161225) (-3613 . 160485) + (-3614 . 160424) (-3615 . 160363) (-3616 . 159737) (-3617 . 159685) + (-3618 . 159557) (-3619 . 159493) (-3620 . 159439) (-3621 . 159330) + (-3622 . 158033) (-3623 . 157952) (-3624 . 157863) (-3625 . 157805) + (-3626 . 157665) (-3627 . 157580) (-3628 . 157506) (-3629 . 157421) + (-3630 . 157364) (-3631 . 157148) (-3632 . 157009) (-3633 . 156402) + (-3634 . 155848) (-3635 . 155294) (-3636 . 154740) (-3637 . 154133) + (-3638 . 153579) (-3639 . 153019) (-3640 . 152459) (-3641 . 152197) + (-3642 . 151758) (-3643 . 151425) (-3644 . 151086) (-3645 . 150781) + (-3646 . 150648) (-3647 . 150515) (-3648 . 150127) (-3649 . 150034) + (-3650 . 149941) (-3651 . 149848) (-3652 . 149755) (-3653 . 149662) + (-3654 . 149569) (-3655 . 149476) (-3656 . 149383) (-3657 . 149290) + (-3658 . 149197) (-3659 . 149104) (-3660 . 149011) (-3661 . 148918) + (-3662 . 148825) (-3663 . 148732) (-3664 . 148639) (-3665 . 148546) + (-3666 . 148453) (-3667 . 148360) (-3668 . 148267) (-3669 . 148174) + (-3670 . 148081) (-3671 . 147988) (-3672 . 147895) (-3673 . 147802) + (-3674 . 147617) (-3675 . 147307) (-3676 . 145679) (-3677 . 145525) + (-3678 . 145388) (-3679 . 145246) (-3680 . 145044) (-3681 . 143117) + (-3682 . 142990) (-3683 . 142866) (-3684 . 142739) (-3685 . 142518) + (-3686 . 142297) (-3687 . 142170) (-3688 . 141969) (-3689 . 141793) + (-3690 . 141276) (-3691 . 140759) (-3692 . 140482) (-3693 . 140073) + (-3694 . 139556) (-3695 . 139372) (-3696 . 139230) (-3697 . 138735) + (-3698 . 138104) (-3699 . 138048) (-3700 . 137954) (-3701 . 137835) + (-3702 . 137765) (-3703 . 137692) (-3704 . 137462) (-3705 . 136843) + (-3706 . 136413) (-3707 . 136331) (-3708 . 136189) (-3709 . 135715) + (-3710 . 135593) (-3711 . 135471) (-3712 . 135331) (-3713 . 135144) + (-3714 . 135028) (-3715 . 134748) (-3716 . 134680) (-3717 . 134482) + (-3718 . 134302) (-3719 . 134147) (-3720 . 134040) (-3721 . 133989) + (-3722 . 133612) (-3723 . 133084) (-3724 . 132862) (-3725 . 132640) + (-3726 . 132401) (-3727 . 132311) (-3728 . 130569) (-3729 . 129987) + (-3730 . 129909) (-3731 . 124449) (-3732 . 123659) (-3733 . 123282) + (-3734 . 123211) (-3735 . 122946) (-3736 . 122771) (-3737 . 122286) + (-3738 . 121864) (-3739 . 121424) (-3740 . 120561) (-3741 . 120437) + (-3742 . 120310) (-3743 . 120201) (-3744 . 120049) (-3745 . 119935) + (-3746 . 119796) (-3747 . 119715) (-3748 . 119634) (-3749 . 119530) + (-3750 . 119112) (-3751 . 118691) (-3752 . 118617) (-3753 . 118354) + (-3754 . 118090) (-3755 . 117711) (-3756 . 117012) (-3757 . 115969) + (-3758 . 115910) (-3759 . 115836) (-3760 . 115762) (-3761 . 115640) + (-3762 . 115390) (-3763 . 115304) (-3764 . 115229) (-3765 . 115154) + (-3766 . 115059) (-3767 . 111284) (-3768 . 110114) (-3769 . 109454) + (-3770 . 109270) (-3771 . 107065) (-3772 . 106740) (-3773 . 106258) + (-3774 . 105817) (-3775 . 105582) (-3776 . 105337) (-3777 . 105247) + (-3778 . 103812) (-3779 . 103734) (-3780 . 103629) (-3781 . 102153) + (-3782 . 101748) (-3783 . 101347) (-3784 . 101245) (-3785 . 101163) + (-3786 . 101005) (-3787 . 99771) (-3788 . 99689) (-3789 . 99610) + (-3790 . 99255) (-3791 . 99198) (-3792 . 99126) (-3793 . 99069) + (-3794 . 99012) (-3795 . 98882) (-3796 . 98680) (-3797 . 98312) + (-3798 . 97891) (-3799 . 94081) (-3800 . 93479) (-3801 . 93012) + (-3802 . 92799) (-3803 . 92586) (-3804 . 92420) (-3805 . 92207) + (-3806 . 92041) (-3807 . 91875) (-3808 . 91709) (-3809 . 91543) + (-3810 . 91273) (-3811 . 85859) (** . 82906) (-3813 . 82490) (-3814 . 82249) + (-3815 . 82193) (-3816 . 81701) (-3817 . 78893) (-3818 . 78743) + (-3819 . 78579) (-3820 . 78415) (-3821 . 78319) (-3822 . 78201) + (-3823 . 78077) (-3824 . 77934) (-3825 . 77763) (-3826 . 77637) + (-3827 . 77493) (-3828 . 77341) (-3829 . 77182) (-3830 . 76669) + (-3831 . 76580) (-3832 . 75915) (-3833 . 75723) (-3834 . 75628) + (-3835 . 75320) (-3836 . 74148) (-3837 . 73942) (-3838 . 72767) + (-3839 . 72692) (-3840 . 71511) (-3841 . 67930) (-3842 . 67566) + (-3843 . 67289) (-3844 . 67197) (-3845 . 67104) (-3846 . 66827) + (-3847 . 66734) (-3848 . 66641) (-3849 . 66548) (-3850 . 66164) + (-3851 . 66093) (-3852 . 66001) (-3853 . 65843) (-3854 . 65489) + (-3855 . 65331) (-3856 . 65223) (-3857 . 65194) (-3858 . 65127) + (-3859 . 64973) (-3860 . 64815) (-3861 . 64421) (-3862 . 64346) + (-3863 . 64240) (-3864 . 64168) (-3865 . 64090) (-3866 . 64017) + (-3867 . 63944) (-3868 . 63871) (-3869 . 63799) (-3870 . 63727) + (-3871 . 63654) (-3872 . 63413) (-3873 . 63073) (-3874 . 62925) + (-3875 . 62852) (-3876 . 62779) (-3877 . 62706) (-3878 . 62452) + (-3879 . 62308) (-3880 . 60972) (-3881 . 60778) (-3882 . 60507) + (-3883 . 60359) (-3884 . 60211) (-3885 . 59971) (-3886 . 59777) + (-3887 . 59509) (-3888 . 59313) (-3889 . 59284) (-3890 . 59183) + (-3891 . 59082) (-3892 . 58981) (-3893 . 58880) (-3894 . 58779) + (-3895 . 58678) (-3896 . 58577) (-3897 . 58476) (-3898 . 58375) + (-3899 . 58274) (-3900 . 58159) (-3901 . 58044) (-3902 . 57993) + (-3903 . 57876) (-3904 . 57818) (-3905 . 57717) (-3906 . 57616) + (-3907 . 57515) (-3908 . 57399) (-3909 . 57370) (-3910 . 56639) + (-3911 . 56514) (-3912 . 56389) (-3913 . 56249) (-3914 . 56131) + (-3915 . 56006) (-3916 . 55851) (-3917 . 54868) (-3918 . 54009) + (-3919 . 53955) (-3920 . 53901) (-3921 . 53693) (-3922 . 53321) + (-3923 . 52910) (-3924 . 52552) (-3925 . 52194) (-3926 . 52042) + (-3927 . 51740) (-3928 . 51584) (-3929 . 51258) (-3930 . 51188) + (-3931 . 51118) (-3932 . 50909) (-3933 . 50300) (-3934 . 50096) + (-3935 . 49723) (-3936 . 49214) (-3937 . 48949) (-3938 . 48468) + (-3939 . 47987) (-3940 . 47862) (-3941 . 46762) (-3942 . 45686) + (-3943 . 45113) (-3944 . 44895) (-3945 . 36569) (-3946 . 36384) + (-3947 . 34301) (-3948 . 32133) (-3949 . 31987) (-3950 . 31809) + (-3951 . 31402) (-3952 . 31107) (-3953 . 30759) (-3954 . 30593) + (-3955 . 30427) (-3956 . 29945) (-3957 . 16071) (-3958 . 14964) (* . 10917) + (-3960 . 10663) (-3961 . 10479) (-3962 . 9522) (-3963 . 9469) (-3964 . 9409) + (-3965 . 9140) (-3966 . 8513) (-3967 . 7240) (-3968 . 5996) (-3969 . 5127) + (-3970 . 3864) (-3971 . 420) (-3972 . 306) (-3973 . 173) (-3974 . 30))
\ No newline at end of file |